Burroughs

Reference
L EUTTE]

Priced Item 1162252
Printed in U.S.A.
August 1983

Burroughs

Reference
Manual

Priced Item 1162252

Printed in U.S.A.
August 1983

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Warning: This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in accordance with the
instructions manual, may cause interference to radio communications. It
has been tested and found to comply with the limits for a Class A
computing device pursuant to Subpart J of Part 15 of FCC Rules, which
are designed to provide reasonable protection against such interference
when operated in a commercial environment. Operation of this
equipment in a residential area is likely to cause interference in which
case the user at his own expense will be required to take whatever
measures may be required to correct the interference.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of this manual, or may be addressed directly to
Documentation East, Burroughs Corporation, P.O. Box CB7, Malvern,
Pennsylvania, 19355, U.S. America.

LIST OF EFFECTIVE PAGES

Page

iii thru xxv
XXVi

1-1 thru 1-7
1-8

2-1 thru 2-25
2-26

3-1 thru 3-12
4-1 thru 4-31
4-32

5-1 thru 5-6

6-1 thru 6-16
7-1 thru 7-16
8-1 thru 8-11
8-12

9-1 thru 9-17
9-18

10-1 thru 10-26
11-1 thru 11-12
12-1

12-2

13-1 thru 13-7
13-8

14-1 thru 14-82
15-1 thru 15-40
16-1 thru 16-10
17-1 thru 17-34
18-1 thru 18-12
19-1 thru 19-17
19-18

20-1 thru 20-4
21-1 thru 21-28
22-1 thru 22-6
23-1 thru 23-18
24-1 thru 24-16
25-1 thru 25-10
26-1 thru 26-28
27-1 thru 27-3
27-4

28-1 thru 28-20
29-1 thru 29-21
29-22

30-1 thru 30-6
A-1 thru A-49
A-50

B-1 thru B-10
C-1 and C-2
D-1 thru D-5
D-6

E-1 thru E-12
F-1 thru F-19
F-20

G-1 thru G41
G-42

1 thru 20

Issue

Bhaed!
Original
Blank

Original
Blank

Original
Original
Blank

Original
Original
Original
Original
Blank

Original
Blank

Original
Original
Original
Blank

Original
Blank

Original
Original
Original
Original
Original
Original
Blank

Original
Original
Original
Original
Original
Original
Original
Blank

Original
Original
Original
Blank

Original
Original
Blank

Original
Original
Original
Blank

Original
Original
Blank

Original
Blank

Original

iii

Section

1

TABLE OF CONTENTS

Title

OVERVIEW

Multiprogramming

Event-Driven Priority Schedullng
Interprocess Communication

Exchanges . .

System Service Processes

Accessing System Services

Filters . .
Local Resource Sharlng Network (Cluster) .
Standard Network

Virtual Code Segment Management

File Management . e

Device Handlers

Other Features .

Command Interpreter .

Compact System .

Batch Manager

CONCEPTS .
General .
Structure of the B 20 Operatmg System .
Processing Concepts
Memory Organization .
Types of Memory . .
Virtual Code Segment Management
Interprocess Communication
Messages and Exchanges
Process States .
Process Priorities and Process Schedulrng .
Sending a Message .
Waiting for a Message . .
Applying Interprocess Commumcatron .
Communication
Synchronization .
Resource Management
B 20 System Services .
Procedural Access to System Servrces
Direct Access to System Services

Page

Voo
BN D e e

P ek ek ek pd pd ek ek ek ek b ek ok ok e e ek
1

QNI LW 4Waahdhbas

NSRRI

l\)l\)l\)l\)l\)l})l\)l\)t\)l\)

Interaction of Client Processes and System Servrce Processes 2-17

Filter Processes .

Request Blocks .

Cluster Configuration . .

Interstation Communication . .
Cluster Workstation Agent Service Process .
Master Workstation Agent Service Process
Interstation Request/Response Message .

Communications I/O Processor .

Software Organization

User-Written Software in a Cluster Conﬁguratlon .

Standard Network

PROCESS MANAGEMENT
Overview .

2-19
2-20
2-21
2-21
2-22
2-22
2-23
2-23
2-24
2-24
2-25

vi

Section

TABLE OF CONTENTS (CONT.)

Title

3 (Cont.) Concepts .

Process . .
Context of a Process . .
Process Priorities and Process Scheduhng .
Process States

Operations: Primitives and Procedures
ChangePriority .
CreateProcess
GetUserNumber
QueryProcessNumber

INTERPROCESS COMMUNICATION MANAGEMENT

Overview .
Messages
Exchanges .
System Service Processes
Accessing System Services .
Filter Processes .
Cluster Configuration
Concepts .
Messages
Exchanges . .
Link Blocks .
Exchange Allocation
Sending a Message .
Waiting for a Message .
Sending Messages to Another Partltlon .
System Service Processes
Accessing System Services .
Procedural Access to System Servrces
Direct Access to System Services

Interaction of Client Processes and System Serv10e Processes

Filter Processes .
Request Blocks . .
Standard Header .
Request-Specific Control Informatlon
Request Data Item .
Response Data Item
Example . .

Request Primitive .

Respond Primitive .

Wait Primitive .

Interstation Commumcatlon . .
Cluster Workstation Agent Service Process .
Master Workstation Agent Service Process
Interstation Request/Response Message .

Operations: Primitives

Check

PSend

Request .

Respond

Send .

Wait

Page

WO LUABALLLDL

wwwwo)uwww

P
-

ALl — -~

S it ol S

AN
Vo L 1

-P-P-PA-F-I}-A-B
O \O 000NN\

4-10
4-10
4-10
4-11
4-13
4-15
4-16
4-17
4-18
4-18
4-18
4-19
4-20
4-21
4-22
4-22
4-23
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31

Section

5

TABLE OF CONTENTS (CONT.)

Title
EXCHANGE MANAGEMENT
Overview .
Concepts .
Exchange

Exchange Allocat1on . . .
Operations: Procedures and Serv1ces .
AllocExch . .

DeallocExch . . .
QueryDefaultRespExch

MEMORY MANAGEMENT
Overview . .
Types of Memory .
Concepts . .
Addressing Memory
Segments

Code, Static Data and Dynamlc Data Segments .

Memory Organization . . .
Long-Lived and Short-Lived Memory .
Operations .

Deallocations
Long-Lived Memory Uses
Short-Lived Memory Uses
Virtual Code Segment Management
Operations: Services ..

AllocAllMemorySL

AllocMemoryLL

AllocMemorySL

DeallocMemoryLL

DeallocMemorySL

QueryMem Avail

ResetMemoryLL

TASK MANAGEMENT

Overview .

Concepts . ..

Application System

Task . .

Code and Data Segments

Loading a Task .

Exit Run File

Operations e e e
Operations: Procedures and Services .
Chain

ErrorExit

Exit . . .

LoadTask
QueryExitRunFile

SetExitRunFile .

VIRTUAL CODE SEGMENT MANAGEMENT .

Overview .
Concepts .

Page

1 1
[y

(@) W@, T~ SV I NG R SE N

N A
W NN N =

O oo aaLda

O\O\O\OI\O\O\O\
ok ok ko ek
AN DWW -—O

1)

RIS
WD

<2
i

PR

O&ah A

7-11
7-12
7-14
7-16

OOOlOOO
[N I

vii

viii

Section

8 (Cont.)

10

TABLE OF CONTENTS (CONT.)

Title

Virtual Memory . . .

Virtual Code Segment Swapplng .
Virtual Code Segment Swapping Versus Page Swapplng
Using the Virtual Code Segment Management Fac111ty .
Initializing .
Linking

Using Overlays .

Operations: Procedures .

GetCParasOvlyZone .

InitLargeOverlays .

InitOverlays . .

MakeRecentlyUsed

RelnitLargeOverlays .

RelnitOverlays .

PARAMETER MANAGEMENT .
Overview . .

Forms-Oriented Interface .

Parameters .
Organizing Parameters Variable-Length Parameter Block
Concepts .

Parameter and Subparameter

Variable-Length Parameter Block .

Application System Control Block

Operations: Procedures . .

CParams. . .

CSubParams .

GetpASCB .

RgParam

RgParamlnit . .

RgParamSetEltNext .

RgParamSetListStart .

RgParamSetSimple

APPLICATION PARTITION MANAGEMENT
Overview .
Concepts . .
Types of Partltlons
Types of Application Partltlons
Primary Application Partitions
Secondary Application Partitions
Dynamic Control of Application Partitions
Memory Organization of Application Partitions
Creating Secondary Application Partitions
At System Initialization . . .
Dynamically
Partition Handle
Loading Tasks
Exit Run File.
Obtaining Partition Status
Interpartition Communication .
Terminating Tasks .
Removing Partitions .

Page

9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17

10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-3
10-4
10-6
10-6
10-6
10-6
10-6
10-7
10-7
10-7
10-8
10-8

Section

10 (Cont.)

11

12
13

TABLE OF CONTENTS (CONT.)

Title

Deallocation of System Resources .
Application Partition Data Structures

Operating: Services . .
Interpartition Commumcatlon .
Partition Control

Task Control .
CreatePartition . .
GetPartitionExchange
GetPartitionHandle
GetPartitionStatus
LoadPrimaryTask .
RemovePartition
SetPartitionExchange
SetPartitionLock
TerminatePartitionTasks
VacatePartition .

CLUSTER MANAGEMENT
Overview .

Concepts .

Software

Initialization .

Operation .

Status

Operations: Serv1ces
DisableCluster .
GetClusterStatus
GetWSUserName
SetWSUserName ..
NETWORK MANAGEMENT

SYSTEM SERVICES MANAGEMENT
Overview .
Concepts .

Dynamically Instalhng a System Serv1ce in an Extended

System Partition .
Typical Operational Sequence
Restrictions .

Dynamically Instalhng a System Servwe in a Secondary

Application Partition

Operations: Services
ConvertToSys
ServeRq

iX

TABLE OF CONTENTS (CONT.)

Section Title Page
14 FILE MANAGEMENT 141
Overview . . o O |
File Access Methods N F)
Local File System 143
Concepts« 144
Node 144
Volume 144
Directory 145
File 14-5
Automatic Volume Recognmon e e 146
NodeName 146
VolumeName 146
System Volume 146
Scratch Volume 147
Directory Name 147
File Nameo 1447
Directory and File Spemﬁcatlons P Y
Abbreviated Specifications 14-8
Passwords 149
File Protection . . . e 1400
Creating and Accessing a Flle 1413
Logical File Address 14-13
FileHandle 14-13
Memory Address 1414
UsingaFile1414
Creatinga File1414
Opening a File T S)
Reading and ertmgaFlle A -5)
Local File System1416
Operations: Procedures and Serv1ces e 1418
ChangeFile Length. 1422
ChangeOpenMode 1423
CheckReadAsync1424
CheckWriteAsync 1425
ClearPath 1426
CloseAllFiles 1427
CloseAllFilesLL 1428
CloseFile1429
CreateDir1430
CreateFile1432
DeleteDir1434
DeleteFile1435
GetDirStatus1436
GetFhLongevity 1438
GetFileStatus.1439
GetUCB.144
OpenFile1442
OpenFileLLl1444
QueryWSNum 1446
Read1447
ReadAsync1449

ReadDirSector1450

Section

14 (Cont.)

15

TABLE OF CONTENTS (CONT.)

Title

RenameFile .
SetDirStatus . .
SetFhLongevity .
SetFileStatus .
SetPath .
SetPrefix
Write . .
WriteAsync .
Volume Control Structures .
Volume Home Block . . .
Allocation Bit Map and Bad Sector Flle .
File Header Block . e
Disk Extent
BootExt.Sys . .
Extension File Header Block
‘Master File Directory and Directories
System Volume
System Image .
Crash Dump Area .
Log File .
Standard Cuaracter Font
$ Directories .

System Data Structures
User Control Block

User Control Blocks in the Master Workstatlon .
User Control Blocks in the Cluster Workstations .

Device Control Block.

QUEUE MANAGEMENT

Overview . .o
Client Processes
Server Processes .

Sequence for Using Queue Management Facrhty
Queue Index File

Installing the Queue Manager

Queue Entry File

Queue Entry .

Client Operations . .
Adding an Entry to a Queue .
Reading Queue Entries .

Queue Entry Handle
Queue Status Block .
Removing and Entry .

Server Operations
Establishing Servers
Marking Queue Entries .
Unmarking Queue Entries .
Sample Queue Entry .

Control Queues .
Spooler Status Queue ..
Printer Spooler Escape Sequences .

Page

. 14-52
. 14-54
. 14-56
. 14-57
. 14-59
. 14-61
. 14-62
. 14-64
. 14-65
. 14-66
. 14-66
. 14-66
. 14-66
. 14-71
. 14-72
. 14-73
. 14-75
. 14-75
. 14-76
. 14-76
. 14-76
. 14-76
. 14-78
. 14-78
. 14-79
. 14-79
. 14-79

15-1
15-1
15-3
15-3
15-3
15-4
15-7
15-7
15-8
15-9
15-9
15-9

. 15-10
. 15-10
. 15-11
. 15-12
. 15-12
. 15-12
. 15-13
. 15-13
. 15-16
. 15-17
. 15-19

Xi

Xii

Section

TABLE OF CONTENTS (CONT.)

Title

15(Cont.) Operations: Services

16

Client Process Group .
Server Process Group .
AddQueueEntry
EstablishQueueServer
MarkKeyedQueueEntry .
MarkNextQueueEntry
ReadKeyedQueueEntry .
ReadNextQueueEntry
RemoveKeyedQueueEntry
RemoveMarkedQueueEntry .
RewriteMarkedQueueEntry
TerminateQueueServer .
UnmarkQueueEntry .

FILE ACCESS METHODS .
Overview . .
Characteristics of the Flle Access Methods
Hybrid Patterns of Access .
Modifying and Reading Data Flles
Concepts
Standard Record Header
Standard Record Trailer
Standard File Header .
Operations: Procedures .
GetStamFileHeader

Page

. 15-20
. 15-20
. 1520
. 1522
. 15-24
. 15-25
. 15-28
. 15-30
. 15-32
. 15-34
. 15-36
. 15-37
. 15-39
. 1540

16-1
16-1
16-2
16-3
16-4
16-5
16-5
16-7
16-8

16-10
. 16-10

Section

17

18

19

TABLE OF CONTENTS (CONT.)
Title

SEQUENTIAL ACCESS METHOD .
Overview
Concepts .

Byte Streams . .

Using a Byte Stream .

Predefined Byte Streams for V1deo and Keyboard .

Device/File Specifications .

Customizing SAM .

File Byte Streams .

Printer Byte Streams .
Printing Modes

Spooler Byte Streams
Printing Modes

Keyboard Byte Streams .

Communications Byte Streams .

X.25 Byte Streams

Video Byte Streams .
Special Characters in Video Byte Streams
Multibyte Escape Sequences

Operations: Procedures .

CheckpointBs

CloseByteStream

GetBsLfa

OpenByteStream

PutBackByte .

QueryVidBs

ReadBsRecord

ReadByte .

ReadBytes .

ReleaseByteStream

SetBsLfa

SetlmageMode

WriteBsRecord .

WriteByte .

RECORD SEQUENTIAL ACCESS METHOD

Overview .

Concepts . .

RSAM Files and Records
Working Area

Buffer e
Operations: Procedures
CheckpointRsFile .
CloseRsFile

GetRsLfa .
OpenRsFile . .
ReadRsRecord .
ReleaseRsFile . .
ScanToGoodRsRecord .
WriteRsRecord .

DIRECT ACCESS METHOD
Overview .

Page

17-1
17-1
17-2
17-2
17-2
17-2
17-3
17-5
17-5
17-6
17-6
17-7
17-7
17-8
17-8
17-9
17-9
17-10
17-11
17-18
17-20
17-21
17-22
17-23
17-25
17-26
17-27
17-28
17-29
17-30
17-31
17-32
17-33
17-34

18-1
18-1
18-2
18-2
18-2
18-2
18-3
18-4
18-5
18-6
18-7
18-9
18-10
18-11
18-12

19-1

xiii

Xiv

Section

TABLE OF CONTENTS (CONT.)

Title

19 (Cont.) Concepts .

20

21

DAM Files, Records and Record Fragments
Working Area e e .o
Buffer .

Buffer Size and Sequentla] Access

Buffer Management Modes: Wnte-Through and

Write-Behind . .
Operations: Procedures .
CloseDakFile .
DeleteDaRecord
OpenDaFile
QueryDaLastRecord .
QueryDaRecordStatus
ReadDaFragment .
ReadDaRecord . .
SetDaBufferMode .
TruncateDaFile .
WriteDaFragment .
WriteDaRecord .

INDEXED SEQUENTIAL ACCESS METHOD

Overview .

Concepts .

Key Types .

File Types

Operations . .

ISAM Organ1zat10n
Multiuser Access Package.
Single-User Access Package .
Utilities . e

DISK MANAGEMENT
Overview .
Concepts . .

Accessing a Disk Dev1ce

Device Specification and Device Password
Operations: Procedures and Services .
CheckReadAsync .
CheckWriteAsync .

CloseFile

DismountVolume .

Format .

GetVHB

MountVolume

OpenFile

QueryDCB

Read . . .

ReadAsync

SetDevParams

Write . .

Write Async

Page

19-2
19-2
19-2
19-2
19-3

19-3
19-4
19-6
19-7
19-8
19-10
19-11
19-12
19-13
19-14
19-15
19-16
19-17

20-1
20-1
20-1
20-1
20-2
20-2
20-3
20-3
20-4
20-4

21-1
21-1
21-2
21-2
21-2
21-3
21-5
21-6
21-7
21-8
21-10

21-12

21-14
21-16
21-18
21-20
21-22
21-24
21-26
21-28

Section

22

23

24

TABLE OF CONTENTS (CONT.)
Title

PRINTER SPOOLER MANAGEMENT
Overview .
Concepts . . .
Printer Spooler Conﬁguratxon
Sending a Password
Operations: Services
ConfigureSpooler .
SpoolerPassword

VIDEO MANAGEMENT
Overview . . .
Video Attrlbutes
Video Software .
Hierarchy of Video Software
Concepts
Video Capablhtles .
Basic .
Standard .
Standard Video Capablhty
Video Attributes .
Video Refresh .
Cursor RAM
Style RAM
Basic Video Capablhty .
Video Attributes .
Video Refresh .
Video Software .
Hierarchy of Video Software
Video Display Manager
Video Access Method . .
Sequential Access Method

Application System/Video Subsystem Interactlon

Video Control Block .

System Data Structures: Vlae(; Control Block and .

Frame Descriptor

VIDEO DISPLAY MANAGEMENT
Overview .
Concepts .

Reinitializing the Vldeo Subsystem
Operations: Services ..
InitCharMap .

InitVidFrame

LoadFontRam

QueryVidHdw

ResetVideo ..
SetScreenVidAttr .

Page

22-1
22-1
22-2
22-2
223
22-3
224
22-6

23-1
23-1
23-1
23-2
23-2
23-3
23-3
23-3
23-3
234
234
23-5
23-5
23-6
23-6
23-6
23-7
23-7
23-7
23-8
23-8
239
239
23-10

23-11

24-1
24-1
24-2
24-2
244
24-5
24-6
249

2411
2413
2415

XV

XVvi

Section

25

26

27

28

TABLE OF CONTENTS (CONT.)
Title

VIDEO ACCESS METHOD
Overview .
Forms-Oriented Interactlon
Advanced Text Processing .
Operations: Procedures .
PosFrameCursor
PutFrameAttrs .
PutFrameChars .
QueryFrameChar
ResetFrame
ScrollFrame

KEYBOARD MANAGEMENT
Overview . .
Physical Keyboard

Keyboard Modes: Unencoded and Character'

Keyboard Encoding Table .
LED Keys . ..
Submit Facility .

Concepts . .

Physical Keyboard

Keyboard Modes: Unencoded and Character.

Type Ahead

ACTION Key .

Independence of Keyboard and V1de0 .

Keyboard Encoding Table .

Standard Character Set .

Submit Facility .

Submit File Escape Sequences

Read-Direct Escape Sequence .

Application System Termination
Operations: Services

Beep . . .

CheckpomtSysIn ..

DisableActionFinish .

QueryKbdLeds .

QueryKbdState .

ReadActionCode

ReadKbd . . .

ReadKbdDirect .

SetKbdLed . . .

SethdUnencodedMode

SetSysInMode

COMMUNICATIONS MANAGEMENT
Overview . .

Operations: Procedures .

LockIn .

LockOut

TIMER MANAGEMENT
Overview . .
Real-Time Clock

Page

25-1
25-1
25-1
25-1
25-2
25-3
25-4
25-6
25-7
25-8
25-9

26-1
26-1
26-1
26-1
26-2
26-3
26-3
26-5
26-5
26-5
26-7
26-7
26-8
26-8
26-9
26-9
26-11
26-12
26-13
26-14
26-15
26-16
26-17
26-18
26-19
26-21
26-22
26-23
26-25
26-26
26-27

27-1
27-1
27-1
27-2
27-3

TABLE OF CONTENTS (CONT.)
Section Title

28 (Cont.) Programmable Interval Timer
Concepts .
Simplified Date/Trme Format
System Date/Time Format
Expanded Date/Time Format
Timer Management Operations .
Date/Time .
Format Conversion .
Delay . . .
Real-Time Clock .
Programmable Interval Tlmer .

Operations: Primitives, Procedures, and Servrces

CloseRTClock
Compact DateTime
Delay . . .
ExpandDateTrme .
GetDateTime
OpenRTClock
ResetTimerInt
SetDateTime .
SetTimerInt

29 INTERRUPT HANDLERS .
Overview .
External Interrupts
Internal Interrupts
Device Handlers
Concepts . ..
Interrupt Types .
Interrupts . .
External Interrupts .
Internal Interrupts
Pseudointerrupts
Interrupt Handlers
Communications Interrupt Handlers
Packaging of Interrupt Handlers .
Mediated Interrupt Handlers
Raw Interrupt Handlers
Communications Interrupt Service Routmes
Printer Interrupt Service Routines
Operations: Primitives and Services
MediateIntHandler
ResetCommISR
SetCommISR
SetIntHandler
SetLpISR .

30 CONTINGENCY MANAGEMENT .
Overview .
Operations: Procedures and Servrces .
Crash .
FatalError .
WriteLog

Page

28-1
28-2
28-2
28-3
28-3
28-4
284
284
28-4
28-5
28-8
28-10
28-12
28-13
28-14
28-15
28-16
28-17
28-18
28-19
28-20

29-1
29-1
29-1
29-2
29-2
29-3
29-3
29-5
29-5
29-8
29-8
299
299
299
29-10
29-11
29-13
29-13
29-14
29-15
29-16
29-17
29-19
29-21

30-1
30-1
30-1
30-2
30-3
304

Xvii

XViii

Section

MmO A w

TABLE OF CONTENTS (CONT.)

Title

STATUS CODES

STANDARD CHARACTER SET

KEYBOARD CODES .

REQUEST CODES IN NUMERIC SEQUENCE .
DATA STRUCTURES

ACCESSING SYSTEM OPERATIONS FROM ASSEMBLY
LANGUAGE o

GLOSSARY
INDEX

Page
A-1
B-1
C-1

D-1

Figure

10-1
10-2

10-3
10-4
14-1
15-1
15-2
26-1
E-1

LIST OF ILLUSTRATIONS

Title Page
Relationship of Processes, Tasks, and an Application
System . . . e e e e e e oo 28
Memory Orgamzatron . .. 24
Memory Organization with Secondary Apphcatlon Partrtron 2-5
Relationship of Exchanges, Messages, and Processes . . 2-8
Process States . . . e e 210
Communication between Processes 2-13
Synchronization 2-14
Interaction of Client and System Servrce Processes .. . 2-18

Processing Flow of Client and System Service Processes . 2-19
Interaction of Filter Process with Client and System
Service Processes 220
Relationship of Processes Tasks and an Apphcatron

System . 29X
Process States 35
Relationship of Exchanges Messages and Processes . 47
Interaction of Client and System Service Process . . . 4-14
Processing Flow of Client and System Service Processes . 4-15
Interaction of Filter Process with Client and System

Service Processes 4-16
Memory Organization of the Apphcatron Part1t10n ina
Compact System 65
Memory Organization of an Apphcatron Partltron ina

System Allowing Simultaneous Execution of Multiple
Application Systems 66
Memory Organization without Secondary Apphcatron
Partitions 103
Memory Orgamzatron wrth Secondary Apphcatron

Partitions 104
Memory Orgamzatlon of an Apphcatron Partrtron .. . 105
Application Partition Data Structures 10-10
Volume Control Structures . . . 14-62
Example Configuration with Queue Management Facrhty 15-2
Sample Queue Index File 156
Keyboard 266
Application Partrtron and Batch Data Structure EOS

Xix

Table

N o
W PN = et et it N e

1]

'—‘\O\O\.OO\(A

P
=

11-1
11-2
14-1
14-2
14-3
14-4
14-5
14-6
14-7
15-1
15-2
15-3
16-1
16-2
16-3
17-1

17-2
19-1
21-1
23-1
23-2
26-1
28-1
28-2
28-3
28-4
28-5
28-6
29-1
B-1

C-1
E-1
E-2
E-3
E-4
E-§
E-6

XX

LIST OF TABLES
Title

Process State Transition .

Process State Transition .

Processor Descriptor Block . .

Format of a Request Block Header . .
Exchange Management Operations by Functlon .
Memory Management Operations by Function
Variable-Length Parameter Block

Application System Control Block .

Parameter Management Operations by Functlon
Application Partition Management Operations by
Function . ..
Communications Status Buffer

wsStatus Block

File Protection Levels .

File Management Operations by Functlon
Volume Home Block

File Header Block

Entry for a Directory in the Master F11e Drrectory .

User Control Block .

Device Control Block .

Examples of Queue Entry Frles

Queue Status Block . .
Sample Queue Entry .
Format of a Standard Record Header .
Format of a Standard Record Trailer .
Format of a Standard File Header

Interpretation of Special Characters by Vldeo Byte

Streams

Sequential Access Method Operat10ns by Functlon

Direct Access Method Operations by Function
Disk Management Operations by Function .
Video Control Block

Frame Descriptor .
Permitted Codes in Escape Sequences .
Simplified Date/Time Structure .

System Date/Time Structure

Expanded Date/Time Format .

Timer Request Block Format .

Timer Pseudointerrupt Block .

Timer Management Operations by Functlon
Interrupt Types

Standard Character Set

Graphic Representation of the Standard Character Set
Keyboard Codes Generated by Unencoded Keyboard .

System Common Address Table (SCAT)
Batch Control Block .. .
Extended Partition Descrrptor

Partition Configuration Block .

Partition Descriptor

System Configuration Block

Page

2-9
3-6
3-10
4-17
5-3
6-9
9-4
9-5
9-7

. 10-12

11-9

. 11-10
. 14-11
. 14-18
. 14-63
. 14-64
. 14-65
. 14-70
. 14-72

15-6

.~ 15-10
15-13

16-6
16-7
16-8

. 17-10
. 17-18

19-4
21-3

23-12
. 23-16
26-11

28-2
28-3
28-4
28-6
28-9

. 28-10

29-4
B-2
B-10
C-1
E-2
E-6
E-7
E-7
E-8
E-10

INTRODUCTION

This manual provides descriptive and operational
information for the B 20 Operating System
(BTOS), hereinafter referred to as "Operating
System" or "OS". The OS is a powerful, real time
multitasking operating system for the B 20 Micro-
Computer Systems. The information is provided in
sections and appendices as listed in the Table
of Contents. This information is relative to
BTOS Release Level 3.0.

The following technical manuals are referenced
for additional information:

Title

B 20 System Programmers and Assembler
Reference Manual (Part 2)

B 20 Installation Planning Guide

B 20 Operations (Part 1)

B 20 Operations (Part 2)

B 20 Word Processing Quick Reference
Guide

20 Pascal Reference Manual

20 FORTRAN Reference Manual

20 COBOL II Reference Manual

20 Systems Debugger Reference Manual
20 Systems Editor Reference Manual
20 Systems Linker/Librarian
Reference Manual

B 20 System Programmers and Assembler
Reference Manual (Part 1)

20 Systems Font Reference Manual

20 Systems Form Reference Manual

20 Systems ISAM Reference Manual

20 2780; 3780 RJE Reference Manual
20 3270 Reference Manual

20 Asynchronous Terminal Emulator
(ATE) Reference Manual

B 20 Systems Sort/Merge Reference
Manual

B 20 System Software Operation Guide

Wwwwww

oo www

Form numbers and release 1level numbers for the
above manuals can Dbe found in the Customer
Technical Publications Catalog and Price List -
Form 1130010.

XXi

Software Patches

Within a particular release, patches to individual items may be
issued. For example, an Operating System identified by 2.02.03
contains certain improvements over an Operating System 2.02.01.
A patch always increases the patch number. All system software
items within a given release (mark and level numbers) may be
used together, regardless of the patch number, unless explicitly
stated otherwise in the technical notes of the item.

The file [D0]<Sys>Sys.Version will be used to record the patches
made to the software on the B20. It will be "Appended"™ if a new
patch release is 1issued. The format of the file records will be
as follows:

AAA BBBBB X.XX.XX

————————— release level
-------------- affected file
——————————————————— Operating System or
utility identifier

For example, if a change to the Spooler was made, the record will
look as follows:

Spooler InstallSpl.Run 2.2.4-USA

XXii

CONVENTIONS USED IN THIS MANUAL

Numbers

Memory Address

Variable Names

Prefixes

Numbers are decimal except when suffixed with "h"
for hexadecimal. Thus, 10h = 16 and OFFh = 255,

Memory address refers to the 1logical memory
address. (See the "Memory Management" section.)

variables are named according to a formal
convention. Some of the characteristics of the
variable can Dbe inferred from its name.
Parameters used in procedure definitions and
fields of request blocks and other data
structures are named according to this

convention.

A variable name 1is composed of up to three
parts: a prefix, a root, and a suffix.

The prefix identifies the data type of the
variable. Common prefixes are:

b byte (8-bit character or unsigned number),
c count (unsigned number),

f flag (TRUE = OFFh or FALSE = 0),

i index (unsigned number),

n number (unsigned number) (same as "c"),

o offset from the segment base address (16
bits),

P logical memory address (pointer) (32 bits
consisting of the offset and the segment
base address),

q quad (32-bit unsigned integer),

xxiii

rg array of..., and
s size in bytes (unsigned number).

Prefixes can be composed. Common compound
prefixes are:

cb count of bytes (the number of bytes in a
string of bytes),

pb pointer to (logical memory address of) a
string of bytes, and

rgb array of bytes.

Roots
The root of a variable name can be unique to that
variable, selected from the 1list below, or a
compound of the two. Common roots are:
dcb Device Control Block,
dh device handle,
erc status (error) code,
exch exchange,
fcbo File Control Block,
fh file handle,
1fa logical file address,
ph partition handle
geh queue entry handle
rq request block, and
ucb User Control Block.
Suffixes

The suffix identifies the use of the variable.
Suffixes are:

Last the largest allowable index of an array,

XX1V

Examples

Max

Ret

the maximum length of an array or buffer
(thus one greater than the largest
allowable index), and

identifies a variable whose value is to
be set by the called process or procedure
rather than specified by the calling
process.

Here are a few examples of variable names:

cbFile

Spec the count of bytes of a file
specification,

ercRet the status code to be returned to
the calling process,

pbFileSpec the memory address of a string of
bytes containing a file
specification,

pDataRet the memory address of an area into

which data 1is to be returned to
the calling process,

ppDataRet the memory address of a 4-byte

memory area into which the memory
address of a data item 1is to Dbe
returned to the calling process,

PRa the memory address of a request
block,

psDataRet the memory address of a (2-byte)
memory area into which the size of
a data item is to be returned,

sData the size (in bytes) of a data
area,

sDataMax the maximum size (in bytes) of a
data area, and

ssDataRet the size of the area into which

the size of a data item is to be
returned.

XXV

SECTION 1
OVERVIEW

MULTIPROGRAMMING

The B20 Operating System provides a real-time,
mul tiprogramming environment. Mul ti programmi ng
is supported at three levels: application
systems, tasks, and processes.

First, any number of application systems can
coexist, each in its own memory partition. (An
application system is a collection of one or more
tasks that access a common set of files and
implement a single application.)

Second, any number of tasks can be 1loaded into
the memory of a partition and independently
executed. (A task 1is an executable program,
created by translating one or more source
programs into object modules and 1linking them
together.)

Third, any number of processes can independently
execute the code (instructions) of each task. (A
process is the basic element of computation that
competes for access to the processor.)

EVENT-DRIVEN PRIORITY SCHEDULING

To meet the system builder's need for high
performance, the Operating System Kernel provides
efficient, event-driven, priority scheduling for
an unlimited number of processes.

Each process is assigned one of 255 priorities
and is scheduled for execution based on that
priority. Whenever an event, such as the
completion of an input/output operation, makes a
higher priority process eligible for execution,
rescheduling occurs immediately. This provides a
more responsive system than scheduling techniques
that are entirely time based.

To give multiple tasks with the same priority a
fair share of system resources, processes with
priorities in a predefined range are subject to
time slicing. Processes with the same priority
are then executed in turn for intervals of 100 ms
in round robin fashion.

INTERPROCESS COMMUNICATION

EXCHANGES

The other major function provided by the O0S
Kernel is the interprocess communication (IPC)
facility. IPC is used for synchronizing process
execution and for transmitting information
between processes.

A process can "send" a message and can "wait" for
a message. When a process waits for a message,
its execution is suspended until a message is
sent to it. This allows processes to synchronize
execution. A process can also "check" whether a
message 1s available without its execution being
suspended.

As a simple example, Process A sends a message to
Process B and then waits for an answer. Process
B waits for a message, performs a function
determined by that message, and then sends an
answering message. This sequence assures that
Process B does not begin its function until
requested and that Process A does not resume
execution wuntil Process B has completed its
function.

As a more complex example, Process A continues
execution 1in parallel with the execution of
Process B before synchronizing execution by
waiting for the answer.

Messages are not sent directly from process to
process. Rather, they are routed through an
intermediary element called an exchange.

Expanding on the example above: Process A sends
a message to Exchange X and waits at Exchange Y,
while Process B waits at Exchange X and sends an
answering message to Exchange Y.

A single process can serve several exchanges, in
which case it can select which of several kinds
of messages to process next. This can be used to
set priorities for the work the process is to
perform.

Also, several processes can serve the same
exchange, thereby sharing the processing of a
single kind of message.

SYSTEM SERVICE PROCESSES

The B20 Operating System includes a number of
system service processes. These processes, which
are scheduled for execution in the same manner as
application processes, receive IPC messages to
request the performance of their services.
Because of this internal use of IPC, the
Operating System is classified as message-based.

Each system service process acts as the guardian
and manager for a class of system resources such
as files, memory, or Kkeyboard. Because the
system service process is the only software
element that accesses the resource, and because
the interface to the system service process is
formalized through the use of IPC, a highly
modular environment results.

This modular environment increases reliability by
localizing the scope of processing and provides
the flexibility to replace a system service
process as a complete entity.

ACCESSING SYSTEM SERVICES

Each of the functions provided by the system
service processes can be accessed through the use
of a procedure call from high-level languages
such as FORTRAN and Pascal, as well as from
assembly language.

The use of a procedural interface masks all the
complexities of using IPC: the procedural
interface automatically uses a default response
exchange and builds the "request block" message
on the stack of the calling process.

In high-performance applications, however, the
direct use of IPC operations to access system
services allows an increased degree of
concurrency between multiple input/output
operations and computation.

1-3

FILTERS

Requests for system services are directed to the
appropriate system service process through
reference to a table that can be modified. This
allows a system service request to be redirected
to another system service process and also allows
the implementation of filters. A filter enables
the system builder to customize the function of a
system service without modifying the system
service process that implements it.

As an example, a filter process positioned
between the file management system and its client
processes can perform special password validation
before permitting access to a file.

LOCAL RESOURCE-SHARING NETWORK (CLUSTER)

The Operating System provides support for local
resource-sharing networks (clusters), as well as
for standalone workstations. In a cluster
configuration (consisting of a master workstation
and up to 16 cluster workstations), essentially
the same Operating System executes 1in each
cluster workstation as in the master workstation.
The master workstation provides file system and
queue management resources for all workstations
in the cluster. In addition, it concurrently
supports its own interactive application
processing.

In the cluster configuration, the IPC facility is
extended to provide transparent access to system
service processes that execute 1in the master
workstation. While some services, like file
management, queue management, 3270 emulator, and
data base management, migrate to the master
workstation, others, such as video and keyboard
management, remain at the cluster workstation.

One high-speed RS-422 channel is standard on each
workstation. This channel 1is used by cluster
workstations for communication with the master
workstation. Master workstations of small
cluster configurations (up to four cluster
workstations) use this channel for communications
with their cluster workstations. However, master
workstations of large cluster configurations use
one oOr two Communications I/0 Processors
(CommIOPs) for communications with their cluster
workstations.

The CommIOP, which is added to the Multibus of
the master workstation, is an intelligent
communications processor based on the Intel 8085
microprocessor. The CommIOP serves up to four
cluster workstations on each of its two high-
speed serial lines.

STANDARD NETWORK

A Standard Network extends the O0OS resource-
sharing capabilility to permit sharing of file
system and printer spooler resources between
clusters connected by leased, voice-grade 1lines
and/or an X.25 Value-Added Network. In addition,
the Standard Network permits access to other
computers through the Value-Added Network.

VIRTUAL CODE SEGMENT MANAGEMENT

The OS virtual code segment management facility
permits the execution of an application system
whose size exceeds the available partition
memory. To ensure maximum real-time performance,
the use of this facility is under control of the
system builder; an application system uses
virtual code segment management only if the
option is selected when its task image is linked.

If the virtual code segment facility is selected
for a task, the code of the task is divided into
variable-length segments that reside on disk. As
the task executes, only the code segment being
executed at a particular time must occupy the
main memory of the partition. However, to
maximize performance, recently used code segments
are retained in memory as 1long as possible.
Also, the data of the task remains in the main
memory of the partition for the duration of task
execution.

FILE MANAGEMENT

The OS file management system provides a
hierarchical organization by volume, directory,
and file. A volume is automatically recognized
when placed online. Each file can have a 50-
character file name, a l2-character password, and
a file protection 1level. A file can be
dynamically expanded or contracted without 1limit
as long as it fits on one disk. Concurrent file
access is controlled by read (shared) and modify
(exclusive) access modes.

1-5

While providing convenience and security, the O0S

file management system supplies the system
builder with the full throughput capability of
the disk hardware. This includes reading or

writing any sector of any open file with one disk
access, reading or writing up to 64k bytes with
one disk access, input/output overlapped with
process execution, and optimized disk arm
scheduling.

The duplication of «critical volume control

structures protects the integrity of disk file
data against hardware malfunction. The Backup
Volume utility is able to recover a file if
either of its redundant File Header Blocks is
valid.

DEVICE HANDLERS

A device handler can be part of the application
process or it can be a system service process.
Its interrupt handler can let the OS Kernel save
process context (in which case it can be written
in FORTRAN or Pascal), or it can receive the
interrupt directly from the hardware. IPC
provides an efficient, yet formal, interface from
interrupt handler to device handler and from
device handler to application process.

OTHER FEATURES

The Operating System also provides support for
video display with multiple split screens,
unencoded keyboard, communications lines,
Sequential Access Method, Record Sequential
Access Method, Direct Access Method, and Indexed
Sequential Access Method.

COMMAND INTERPRETER

Interaction with the workstation operator is a
function of the B20 Executive, not of the
Operating System. This allows the system builder
to choose the manner in which the video display
and keyboard are used.

The Executive is a forms-oriented command
interpreter providing an operator interface that
includes a HELP facility, command files, and the
interactive addition of new commands. The
Executive 1is available for program development
and for system builders that find its operator
interface compatible with their users' needs.
However, the Executive is a normal application-
level program that can easily be replaced by the
customized command interpreter of the system
builder.

See the B20 System Executive Reference Manual,
form 1144474 for more information about the
Executive.

COMPACT SYSTEM

A compact version of the Operating System can be
created at system build. The compact version
requires less memory yet provides all Operating
System functions except the simul taneous
execution of multiple application systems. In
the compact version, one application system 1is
executed at a time.

BATCH MANAGER

Sequential execution of noninteractive
application systems is a function of the batch
manager. The batch manager interprets job

control language files that execute specified
application systems with specified parameters.
The batch manager is wuseful for both program
development and end-user environments.

GENERAL

SECTION 2
CONCEPTS

Some of the concepts described in this Section
are illustrated in program examples in Appendix
F.

STRUCTURE OF THE B 20 OPERATING SYSTEM

The basic components of the B20 Operating System
are:

o the Kernel,

o system service processes,

o system common procedures,

o) object module procedures, and
o device and interrupt handlers.

The Kernel, the most primitive yet most powerful
component of the Operating System, provides
process management and interprocess communication
facilities. It schedules process execution,
including the saving and restoring of process
context. A process 1is the basic element of
computation that competes for access to the
processor. The Kernel's interprocess
communication primitives are the primary building
blocks for synchronizing process execution and
transmitting information between processes.

System service processes are OS processes that
guard and manage system resources. System
service processes are scheduled for execution in
the same manner as application processes.

The four major categories of system services are:
o) task management,

o file management,

o device management, and

o memory management.

There are two ways to access OS system services.
The more convenient is by a procedure call from a
high-level language. The more primitive allows
an increased degree of concurrency between
multiple input/output operations and computation.

System common procedures are OS procedures that
perform some common system functions. An example
of a system common procedure is Exit, which
terminates the execution of an application
system. System common procedures are executed in
the same context and at the same priority as the
invoking process. The Video Access Method is an
example of system common procedures.

Object module procedures are procedures that are
supplied as part of an object module file. They
are not part of the 0OS System Image itself. Most
application systems require only a subset, not a
full set, of these procedures. The desired
subset is linked into the application task. The
Sequential Access Method is an example of object
module procedures.

Device handlers and interrupt handlers of the
Operating System are accessed indirectly through
the convenient interfaces of the system service
processes.

System builders <can easily include their own
system service processes, system common
procedures, device handlers, and interrupt
handlers in the OS System Image at system build.
System build is the name for the sequence of
actions necessary to construct a customized OS
System Image. System build is described 1in the
B20 System Programmers and Assembler Reference
Manual (Part 1), form 1148699.

PROCESSING CONCEPTS

Under the Operating System, an application system
(see Figure 2-1) is the collection of all logical
software elements (tasks) currently in a
partition. These tasks can be loosely or tightly
coupled, but all perform related portions of the
same application. These tasks execute
asynchronously. '

A task consists of executable code, data, and one
Or more processes. The code and data can be
unique to the task or shared with other tasks. A
task is created by translating one or more source
programs into object modules and then 1linking
them together. This results in a task image that
is stored on disk in a run file.

Program Code W
Program Data
Process

Process > Task 3
[]

. J

Program Code
Program Data ¢
Process

Task | Application
System

Program Code
Program Data

Process s Task J
Process
Process

Figure 2-1. Relationship of Processes, Tasks, and an Application System

When requested by a currently active task, such
as the Executive, the Operating System reads the
task image from the run file into partition
memory, relocates intersegment references, and
schedules it for execution. The new task can
coexist with or replace other application tasks
in its partition memory.

A process is the basic element of computation
that competes for access to the processor. A
process consists of: (1) the address of the next
instruction to execute on behalf of this process,
(2) a copy of the data to be 1loaded into the
processor registers before control is returned to
this process, and (3) a stack. A process is
assigned one of 255 priorities so that the
Operating System can schedule its execution
appropriately.

MEMORY ORGANIZATION

The memory of a system consists of two types of
partitions:

system partitions, which contain the
operating system and dynamically installed
system services, and

application partitions, each of which
contains an application system.

When a system is initiated, the Operating System
is loaded into the system partition at the 1low
address end of memory. Dynamically installed
system services are loaded into extended system
partitions located at the high address end of
memory. The remaining memory is defined as a
single application partition, called the primary
application partition. (See Figure 2-2.)

Low End of Memory
System Partition

—
Interactive
Application 1 Primary Appiication Partition
System

—

Extended System Partition

High End of Memory

Figure 2-2. Memory Organization

When new partitions are created, they are placed
at the high address end of the existing
application partition and are called secondary
application partitions. The remaining memory 1is
defined as the primary application partition.
(See Figure 2-3.)

The primary application partition is for
interactive programs that use the keyboard and
video display to interact with the |user. Such
partitions can be loaded wi th interactive
programs chosen by the user, such as the Word
Processor, a terminal emulator, or a user—-written
application program.

Low End of Memory

System Partition

Interactive
Application {
System

Primary Application Partition

Noninteractive Secondary Application Partition B

Appilication {
Systems

Secondary Application Partition A

Extended System Partition

High End of Memory

Figure 2-3. Memory Organization with Secondary Application Partition

Types of Memory

Secondary application partitions are for
noninteractive applications. Such partitions can
be used for execution batch jobs under control of
the batch manager, user-written applications, or
system services.

A compact version of the Operating System can be
built at system build that saves memory vyet
provides all Operating System functions described
for the execution of one application system at a
time. The compact version can have only one
application partition, as shown in Figure 2-2.

Two types of memory allocation are available to
the application system: 1long-lived and short-
lived. Within each application partition, 1long-
lived memory expands upward from low memory
locations while short-lived memory expands
downward from high memory locations. The
Operating System allocates short-lived memory for
application tasks.

Processes wi thin an application partition
allocate and deallocate 1long-lived and short-
lived memory by requests to OS system services.
A process in one partition cannot allocate or
deallocate memory in other partitions.

When the execution of an application system 1is
terminated, the short-lived memory of its
partition is automatically deallocated.

Long-lived memory 1is deallocated only at the
explicit request of the application system.
Therefore, 1long-lived memory 1is useful for
passing information from an application system to
a succeeding application system within the same
partition.

VIRTUAL CODE SEGMENT MANAGEMENT

Virtual code segment management supports the
execution of an application system whose size
exceeds the available memory in its application
partition. Program code (but not data) can
reside on disk while a task is executing. Only
the code segment whose 1instructions are being
executed at a particular time need occupy the
main memory of an application partition. The
remaining code segments of the application system

are automatically read into partition memory as
needed. When necessary, the oldest code segment
in partition memory is overlaid to make enough
partition memory available for a new code
segment.

INTERPROCESS COMMUNICATION

As a message-based operating system, the 0OS uses
its interprocess communication (IPC) facility
internally for synchronization of process
execution and information transmission. The O0S
Kernel provides IPC primitives to facilitate the
consistent but flexible exchange of information
between processes. Processes can communicate
with each other within or between application
partitions.

Six IPC primitives are provided: Check, PSend,
Request, Respond, Send, and Wait. Both Operating
System (that is, system service) and application
system processes use these primitives.

Messages and Exchanges
Messages and exchanges are used in IPC.

A message conveys information and provides
synchronization between processes. Although only
a single 4-byte data item is literally
communicated between processes, this data item is
usually the memory address of a larger data
structure. The larger data structure is called
the message.

An exchange is the path over which messages are
communicated from process to process (or from
interrupt handler to process). An exchange
consists of two first-in, first-out queues: one
of processes waiting for a message, the other of
messages for which no process has yet waited.

Processes or messages (but not both) <can be
queued at an exchange at any given instant. If a
process waits at an exchange at which messages
are queued, then the message that was enqueued
first is dequeued and its address given to the
process; the process then continues execution.
Similarly, if a message is sent to an exchange at
which processes are queued, then the process that
was enqueued first is dequeued, given the address
of the message, and placed into the ready state.

The relationship of exchanges, messages, and
processes is shown in Figure 2-4.

Link g Link
pres—s c— — e— e — —
Message 1 Message 2
Or
‘ Exchange >
—T B
Process A Process B

Figure 2-4. Relationship of Exchanges, Messages, and Processes

Exchanges are allocated in three ways:

o at system build (for system service
processes),

o dynamically using the AllocExch (and
DeallocExch) operation, and

o at process creation.

Process States

A process can send a message to a process 1in

another application partition. The destination
process allocates an exchange and makes the
exchange known to the O0S. The sender process

obtains the exchange number and sends messages to
the exchange. Each of the processes must 1lock
itself in its partition to prevent interference
with the communication.

A process can exist in one of three states:
running, ready, and waiting.

A process 1is 1in the running state when the
processor is actually executing its
instructions. Only one process can be in the
running state at a time.

A process is in the ready state when it could be
running, but a higher priority process is
currently running. Any number of processes can
be in the ready state at a time.

A process 1is in the waiting state when it is
waiting at an exchange for a message. Any number
of processes can be waiting at a time.

Table 2-1 describes the transitions between
process states and the events causing the
transitions. The relationship among process
states is shown in Figure 2-5.

Table 2-1. Process State Transition

Transition
From To Event
Runni ng Waiting A process executes a
Wait but no messages
are at the exchange.

Waiting Ready/ A process sends a
Runni ng message to the
exchange at which a
process is waiting.

Runni ng Ready A higher priority
process leaves the
waiting state.

Ready Runni ng All higher priority

proceses enter the
waiting state-

2-9

Running

Waiting

1

Figure 2-5. Process States

Process Priorities and Process Scheduling

Every process has a priority that indicates its
importance relative to other processes. The
priority of a process 1is assigned at process
creation.

The Operating System has event-driven priority
scheduling. This means that processes are
scheduled for execution based on their priorities
and system events, not on a time limit imposed by
the scheduler. This involves very little
decision-making of the 0Ss. The scheduler
maintains a queue of the processes that are
eligible to execute. Priority determines which
process, among those eligible, is executed. At
any time, the 0OS always allocates the processor
to the highest priority process that can be
executed. Rescheduling occurs when a system
event makes executable a process with a higher
priority than the one currently executing.

A system event affects the executability of a
process. Examples of system events are an
interrupt from a device controller, Multibus
device, timer, or real-time clock, or a message
sent from another process. The system event
causes a message to be sent to an exchange at
which a higher priority process is waiting; this,
in turn, causes the O0OS to reallocate the
processor.

When a system event occurs that makes a process
eligible to execute, the process receives control
of the processor until another higher priority
process preempts its execution, or until it
voluntarily relinquishes control of the
processor.

If no other process has work to perform, the null
process, which executes at a priority (255) lower
than any real process and which is always ready-
to-run, is given control of the processor. The
null process exists only to simplify the
algorithm of the scheduler; it performs no other
useful work.

To give multiple tasks with the same priority a
fair share of system resources, processes with
priorities in a predefined range are subject to
time slicing. Such processes with the same
priority are executed in turn for intervals of
100 ms in round robin fashion.

Sending a Message

When a message 1is sent to an exchange, the
Operating System queues the address of the
message, not the message itself. Because only
the address is moved, overhead is minimized, and
queueing a number of messages at the same
exchange requires 1little execution time or
memory.

When a process sends a message to an exchange,
one of two actions results at the exchange:

If no processes are waiting, the message 1is
queued.

If one or more processes are waiting, the
process that was enqueued first is given the
message and is placed into the ready state.
If this process has a higher priority than
the sending process, it becomes the running
process and the sending process loses control
until it once again becomes the highest
priority ready process.

2-11

After a message is queued at an exchange, it must
not be modified by the sending process. A
process that receives the message by waiting at
the exchange where the message was queued is free
to modify the message.

Waiting for a Message

When a process waits for a message at an
exchange, one of two actions results at the
exchange:

If no messages are queued, the process 1is
placed into the waiting state until a message
is sent. When a message is sent, its address
is returned to the process, which leaves the
waiting state and is scheduled for execution.

If one or more messages are queued, the
message that was enqueued first 1is dequeued
and its address returned to the process,
which continues to execute.

Applying Interprocess Communication

Communication

To a large extent, the power of the Operating
System results from its interprocess
communication facility. IPC supports three
mul titasking capabilities:

o) communication,
o synchronization, and

o resource management.

Communication, the most elementary interaction
between processes, is the transmission of data
from one process to another via an exchange.
Figure 2-6 below shows an example of
communication between Process A and Process B.
Process A sends a message to Exchange X, and
Process B waits for a message at that Exchange.

Synchronization

Exchange X

Send Wait

Process A Process B

Figure 2-6. Communication between Processes

Synchronization is the means by which a process
ensures that a second process has completed a
particular item of work before the first process
continues execution. Synchroni zation between
processes and the transmission of data between
processes usually occur simul taneously.

As shown in Figure 2-7 below, Process A sends a
message to Exchange Y, requesting that Process B
perform an item of work. Process A then waits at
Exchange Z until Process B has completed the
work. This synchronizes the continued execution
of Process A with the completion of an item of
work by Process B.

2-13

Wait
Satisfied
B2

Exchange Y

Send
A1

Wait

Process A Wait B1 Process B

~ A2

Resource Management

Wait Send
Satisfied B3
A3
Figure 2-7. Synchronization
In a multitasking environment, resource

management is the means of sharing resources

among several processes in a controlled way. For
example, several processes may need to use the
printer; however, only one process can use the
printer at a particular time.

One way to control a resource is to establish a
process to manage it. Only the managing process
accesses the resource directly. Other processes
access the resource indirectly by sendi ng
messages to the process that performs the desired
function. OS system services, which manage
resources such as files, devices, and memory, are
implemented via an analogous mechanism.

B 20 SYSTEM

Procedural Access

SERVICES

The Operating System includes a number of system
service processes. These processes, which are
scheduled for execution in the same manner as
application processes, receive IPC messages to
request the performance of their services. Any
process, even a system service process, can use
(be a client of) a system service process.

Each system service process acts as the guardian
and manager for a class of system resources such
as files, memory, or keyboard.

0OS system services can be accessed:

indirectly, by a procedural interface, or

directly, by the Request and Wait primitives.

Using the procedural interface is easier because
it automatically performs most of the necessary
housekeeping and issues the Request and Wait
primitives.

Using the Request and Wait primitives is more
powerful, however, as it allows a greater degree
of overlap between mul tiple input/output
operations and computation.

to System Services

When a procedural interface is used, a request
block is automatically constructed and the
default response exchange of the process is
automatically used. (Request block and default
response exchange are defined immediately
below.) Except for the ReadAsync and WriteAsync
procedures, the request block is constructed on
the stack of the client process.

Direct Access to System Services

Execution of a system service involves the
participation of two processes (client and system
service), three kinds of [Kernel primitives
(Request, Respond, and Wait), two kinds of
exchanges (response exchange and default response
exchange), and a data structure (request block).

2-16

The process requesting the system service is the
client process. Any process, even a system

service process, can be a client process, since
any process can request system services.

OS system services are provided by system service
processes. These processes are created when the
system is first loaded and execute code that was
linked into the System Image at system build.

A request block, a data structure provided by the
client process, contains the specification of,
and the parameters to, the desired system
service. A request block contains a request code
field, a response exchange field, and several
other fields.

A request code is a 16-bit value that uniquely
identifies the desired system service. For
example, the request code for the Write operation
is 36. The request code is used both to route a
request to the appropriate system service process
and to specify to that process which of the
several services it provides is currently
requested.

A response exchange is the exchange at which the
requesting client process waits for the response
of a system service. The response can be
directed to the exchange at which the client
process is expecting it because the exchange at
which the response is desired is specified in the
request block.

A special case of response exchange 1is the

default response exchange of a process. Each
process 1is given a unique default response
exchange when it 1is created. This special

exchange is automatically used as the response
exchange whenever & client process uses the
procedural interface to a system service.

A service exchange 1is an exchange that 1is
assigned to a system service process at system
build. The system service process waits for
requests for its service at its service exchange.

The Request primitive is a variant of the Send
primitive. It is used to direct a request for a
system service from a client process to the
service exchange of the system service process.
Request, unlike Send, does not accept an exchange

identification as a parameter. Rather, it infers
the appropriate service exchange by using the
request code as an index into the Service
Exchange Table.

The Service Exchange Table 1is constructed at
system build, resides in the System Image, and
translates request codes to service exchanges.

The Respond primitive is another variant of the
Send primitive. System service processes use
Respond to report the completion of the requested
system service.

Interaction of Client Processes and System Service Processes

The client process initiates the transaction by
formatting a request block and issuing a Request
primitive. After issuing the Request primitive,
the client process can continue execution but
must not modify the request block.

In order to determine when the request was
completed, the client process must issue either a
Wait or a Check primitive. The Wait or Check
primitive must specify the same exchange that the
client process specified as the response exchange
in the request block.

The Wait primitive suspends execution of the
client process until the system service process
responds (or until another message is queued at
the specified exchange).

The Check primitive does not suspend execution of
the client process; instead it inquires whether a
message is queued at the specified exchange.

The system service process waits for a request to
be queued at an exchange. Upon receiving a
request, the system service process verifies the
control information and data given it before
processing the request. After performing the
requested function, it acknowledges completion of
the service by responding to the client process.
It then resumes waiting until it receives the
next request.

2-17

The interaction of <client and system service
processes is shown in Figure 2-8. The processing

flow of client and system service processes is
shown in Figure 2-9.

Service

Wait
Exchange

Satisfied B2

Reun

Wait B1 Svst
Client Request Sz:v?crg
Process A) Block
Wait A2 Process B
Respond B3
s t.“:?i:j A3 Response
atistie Exchange

Figure 2-8. Interaction of Client and System Service Processes

Filter Processes

Process Entry Process Entry
Point Point
Initialize Process Initialize Process
—» Compute —>{ Wait for Request
Request Service Perform Function
Wait for Response Respond
CLIENT PROCESS SERVICE PROCESS

Figure 2-9. Processing Flow of Client and System Service Processes

A filter process is a user-written system service
process that is included in the System Image at
system build. A filter process 1is interposed
between a client process and a system service
process that believe they are communicating
directly with each other. The Service Exchange
Table is adjusted at system build to route
requests through the desired filter process.

A filter process might be used between the file
management system and its client process to
perform special password validation on all or
some requests.

The interaction of a filter process with a client
process and system service process 1is shown 1in
Figure 2-10 below.

Service
Exchange

Service
Exchan
ghange Wait
Satisfied

B2

Wait
Satisfied
c2

Request B3
Request A1 Wait B1 Wait C1
ilter
lient SF;::m System
P ol A S!:‘rvice Service
rocess Process C
Process B
Wait A2 Respond B6 Wait B4
\A‘Iai.t Wait Respond C3
Satistied Satisfied
A3 85
Response Response
Exchange \ Exchange

Figure 2-10. Interaction of Filter Process with Client and System Service Processes

Request Blocks
The format of request blocks is designed to allow
the transparent migration of system service
processes between standalone and cluster
configurations. Request blocks are completely
self-describing and consist of four parts:
1. a standard header,
2. request-specific control information,
3. descriptions of the request data items, and
4. descriptions of the response data items.
Each data item is described by memory address,

size, and source (client or system service
process).

CLUSTER CONFIGURATION

Cluster configurations of the B20 Series of
Business Computer Systems consist of a master
workstation and up to 16 <cluster workstations.
Essentially the same Operating System executes in
each cluster workstation as 1in the master
workstation. The master workstation provides
file system and queue management resources for
all workstations in the cluster. 1In addition, it
concurrently supports its own interactive
application processing as well as user-written
mul tiuser system services. A cluster workstation
can have its own local file system and printer
spooler.

In the cluster configuration, the IPC facility is
extended to provide transparent access to system
service processes that execute in the master
workstation. While some services, like file
management, 3270 terminal emulator, and data base
management, migrate to the master workstation,

others, such as video and keyboard management,
remain at the cluster workstation.

Application systems access the file system of a
master workstation exactly as they do that of a
standalone workstation. A program that works on
a standalone workstation (accessing the 1local

file system) <can be moved to a cluster
workstation (accessing the file system of the
master workstation) wi thout modification,

recompilation, or relinking.
Interstation Communication

The interstation communication (ISC) facility is
an upward-compatible extension of the
interprocess communication facility. When a
client process requests a system service, a
request block is constructed that contains all
the information necessary to describe the desired
function.

In a standalone workstation, the request block is
queued at the exchange of the system service
process that actually performs the desired
function.

2-21

Cluster Workstation

Master Workstation

Agent Service Process

In a cluster workstation, however, if the
function 1is to be performed at the master
workstation, then the request block is queued at
the exchange of the Cluster Workstation Agent
Service Process. The Cluster Workstation Agent
Service Process converts interprocess requests to
interstation messages for transmission to the
master workstation. The Cluster Workstation
Agent Service Process is included at system build
in a System Image that is to be used on a cluster
workstation.

Agent Service Process

The System Image used at the master workstation
is built to include a corresponding service
process. This process, the master workstation
Agent Service Process, reconverts the
interstation message to an interprocess request
that it queues at the exchange of the master
workstation system service process that actually
performs the desired function. Note that the
Service Exchange Table that translates the
request code to a service exchange at the master
workstation is necessarily different from the
table at the cluster workstation.

When the system service process at the master
workstation responds, the response is routed
through the master workstation Agent Service
Process, the high-speed data 1link, and the
cluster workstation Agent Service Process before
being queued at the response exchange in the
cluster workstation that was specified in the
request block.

The format of request blocks is designed to allow
the cluster workstation and master workstation
Agent Service Processes to convert between
interprocess requests and interstation messages
efficiently and with no external information.
Because request blocks are completely self-
describing, the Agent Service Processes can
transfer requests and responses between master
workstation and cluster workstations without any
knowledge of what function is requested or how it
is to be performed.

Interstation Request/Response Message

An interstation request message consists of:
o) a header,
o) control information,

o the size and actual text of each request data
item, and

o the maximum allowed size of each response
data item.

An interstation response message consists of:

o a status code, and

o the actual size and text of each response
data item.

The cluster workstation Agent Service Process
forms an interstation request message by copying
the header and control information from the
request block, moving the actual text of the
request data items into the message, and
including a specification of the maximum allowed
sizes of the response data items.

After receiving the interstation response
message, the cluster workstation Agent Service
Process stores the status code into the request
block and moves the text of the response data
items into the memory areas specified for them by
the request block. This transformation scheme
ensures that no redundant or extraneous
information is transmitted between master
workstation and cluster workstations.

Communications /O Processor

One high-speed RS-422 channel is standard on each
workstation. This channel 1is used by cluster
workstations for communications with the master
workstation. Master workstations of small
cluster confiqurations (up to four cluster
workstations) see this channel for communications

wi th their cluster workstations. Master
workstations of large cluster configurations use
one oOr two Communications 1/0 Processors

(CommIOPs) for communications with their cluster
workstations.

2-23

The CommIOP, which is added to the Multibus of
the master workstation, is an intelligent
communications processor based on the Intel 8085
microprocessor. The CommIOP serves up to four
cluster workstations on each of its two high-
speed serial lines.

CommIOP software consists of an 8085 bootstrap-
ROM program, the main CommIOP program (which
executes in 8085 RAM), and a CommIOP handler
(written in 8086 code) which executes 1in system
memory under OS control.

Software Organization

An OS System Image built for a cluster
workstation differs from an OS System Image built
for a standalone workstation in the (optional)
exclusion of the file management system and the
disk handler, and the inclusion of the <cluster
workstation Agent Service Process.

An OS System Image built for a master workstation
differs from an OS System Image built for a
standalone workstation only in its 1inclusion of
the master workstation Agent Service Process.
The master workstation is the file server for the
entire cluster configuration. However, this does
not necessitate the use of a different file
management system from the one wused in the
standalone workstations. In fact, the file
management system of the Operating System is
actually a multiuser file system, even in a
standalone workstation.

User-Written Software in a Cluster Configuration

2-24

Concurrency 1is the ma jor issue concerning
application systems executing on cluster
workstations. Preferred programming practice
dictates that the client process of a system
service always examines the status code returned
by the system service. However, while a program
that opens a file without considering the
possibility of receiving status code 220 ("File
in use") executes successfully on a standalone
workstation, such a program fails intermittently
when executed on a cluster workstation at the
same time that a program in another workstation
is modifying the same file.

Whether user-written system services are good
candidates for supporting multiple client
processes depends both on the function they
perform and the generality with which they are
written. As an example, consider a user-written
handler for a special Multibus device. If it
used the standard format for request blocks, the
device handler could be relocated to the master
workstation. However, if it did not include
concurrency checks, the device handler might
become confused when it received requests from
two or more workstations.

STANDARD NETWORK

(To be supplied)

OVERVIEW

SECTION 3
PROCESS MANAGEMENT

The process management facility provides event-

driven priority scheduling and dynamic creation
of multiprocess tasks.

Within each task of the application system and
within the O0S itself, the basic element of
computation that competes for access to the
processor is a process. Every process is
assigned a ©priority. At all times, the O0S
process management facility allocates the
processor to the highest ©priority ©process
currently requesting it.

CONCEPTS

Process

A process is the basic element of computation
that competes for access to the processor and
which the OS schedules for execution.

A task has a single process associated with it
when it is first loaded. That single process can
create additional processes using the
CreateProcess operation. The additional
processes created typically share the same code
but have separate stacks. The degree and means
of data sharing are application-specific.

Processes and tasks usually have a hierarchical
relationship. However, processes can execute
code in multiple tasks. The usual relationship
of a process to the tasks of an application
system is shown in Figure 3-1 below.

Program Code
Program Data
Process
Process > Task 3

. J

Program Code
Program Data 1 Task
Process

Application
System

Program Code
Program Data

Process y Task J
Process
Process

Figure 3-1. Relationship of Processes, Tasks, and an Application System

Context of a Process

The context of a process is the collection of all
information about a process. The context has
both hardware and software components.

The hardware context of a process consists of
values to be loaded into processor registers when
the process 1is scheduled for execution. This
includes the registers that control the location
of the process's stack.

The software context of a process consists of its
default response exchange and the priority at
which it is to be scheduled for execution.

The combined hardware and software context of a
process is maintained in a system data structure
called a Process Control Block (PCB). A PCB is
the physical representation of a process.

When a higher priority process preempts a lower
priority process, the OS saves the hardware
context of the preempted process in that
process's PCB. The OS later restores the
contents of the registers when the process is
rescheduled for execution; this permits the
process to continue as though it were never
interrupted. This is known as a context switch.

Process Priorities and Process Scheduling

Every process has a priority that indicates its
importance relative to other processes. The
priority of a process 1is assigned at process
creation. Priorities range from 0 to 254 with 0
being the highest priority.

The OS has event-driven ©priority scheduling.
This means that processes are scheduled for
execution based on their priorities and system
events, not on a time 1limit imposed by the
scheduler. This involves very little decision-
making for the OS. The scheduler maintains a
queue of the processes that are eligible to
execute., Priority determines which process among
those eligible is executed. At any time, the OS
always allocates the processor to the highest
priority process that can be executed.

Rescheduling occurs when a system event makes
executable a process with a higher priority than

3-3

Process States

the one currently executing. 1In most cases, the
interval between events 1is determined by the
duration of the typical input/output operation.
A process never loses control involuntarily to
another process of equal priority, only to a
process of higher priority.

A gystem event affects the executability of a
process. Examples of system events are an
interrupt from a device controller, Multibus
device, timer, or real-time clock, or a message
sent from another process. The system event
causes a message to be sent to an exchange at
which a higher priority process is waiting; this,
in turn, «causes the O0S to reallocate the
processor.

When a system event occurs that makes a process
eligible to execute, the process receives
control of the processor until another higher
priority process preempts 1its execution, or
until it voluntarily relingquishes control of the
processor.

If no other process has work to perform, the
null process, which executes at a priority (255)
lower than any real process and which is always
ready—-to-run, is given control of the processor.
The null process exists only to simplify the
algorithm of the OS scheduler; it performs no
other useful work.

To give multiple tasks with the same priority a
fair share of system resources, processes with
priorities in a predefined range are subject to
time slicing. Such processes with the same
priority are executed in turn for intervals of
100 ms in round robin fashion. The priority
range is a system build parameter, the default
of which is 128 (80h) to 254 (FEh).

A process can exist in one of three states:
running, ready, and waiting.

A process 1is in the running state when the
processor is actually executing its
instructions. Only one process can be in the
running state at a time. Any other ready-to-run
processes are in the ready state. As soon as the
running process waits, the highest priority
process in the ready state is placed into the
running state and the execution context is
switched to that process's context.

A process is in the ready state when it could be
running, but a higher ©priority process Iis
currently running. Any number of processes can
be in the ready state at a time.

A process 1is in the waiting state when it is
waiting at an exchange for a message. A process
enters the waiting state when it must synchronize
with other processes. A process can only enter
the waiting state by voluntarily issuing a Wait
primitive that specifies an exchange at which no
messages are currently queued. The process
remains in the waiting state wuntil another
process (or interrupt handler) issues a Send (or
PSend, Request, or Respond) primitive that
specifies (indirectly in the case of
Request/Respond) the same exchange that was
specified by the Wait primitive. Any number of
processes can be waiting at a time. (See the
"Interprocess Communication Management" section
for more information on the Wait, Send, PSend,
Request, and Respond primitives.)

The relationship among process states is shown in
Figure 3-2 below.

Running

Waiting

Figure 3-2. Process States

Table 3-1 below describes the transitions between
process states and the events causing the
transitions.

Table 3-1. Process State Transition

Transition

From To Event

Runni ng Waiting A process executes a
Wait but no messages
are at the exchange.

Waiting Ready/ Another process
Runni ng sends a message to
the exchange at
which a process is
waiting.

Runni ng Ready A higher priority
process leaves the
waiting state.

Ready Runni ng All higher priority

processes enter the
waiting state.

OPERATIONS: PRIMITIVES AND PROCEDURES

Process management provides the operations listed

below.

ChangePriority changes the priority of the
calling process.

CreateProcess creates a new process and
schedules it for execution.

GetUserNumber allows a process to determine

its own user number.

QueryProcessNumber allows a process to determine
its own process number.

ChangePriority
Description

The ChangePriority primitive changes the priority
of the calling process.

Procedural Interface
ChangePriority (priority): ErcType
where
priority is the new priority.
Request Block

ChangePriority is a Kernel primitive.

3-7

CreateProcess

Description

The CreateProcess primitive creates a new process
and schedules it for execution. CreateProcess is
called by an application process to establish an
application system in which multiple processes
execute the same reentrant task code.

The CreateProcess primitive is also used by the
Chain and LoadTask operations to create the
initial process of a new task. (See the "Task
Management" section.)

Procedural Interface

Request Block

CreateProcess (pProcessDescriptor): ErcType

where

pProcessDescriptor
is the memory address of a Process

Descriptor Block. The format for a
Process Descriptor Block is shown in
Table 3-2 below.

CreateProcess is a Kernel primitive.

GetUserNumber
Description

The GetUserNumber procedure allows a process to
determine its own user number.

Procedural Interface

GetUserNumber (pUserNumberRet): ErcType

where

pUserNumberRet
is the memory address of a word into
which the user number of the
inquiring process is returned.

Request Block

GetUserNumber is a system common procedure.

3-9

Table 3-2. Processor Descriptor Block

Size
Offset (bytes) Field Description

0 4 pPEntry Memory address (CS:IP)
at which to begin
execution of the new
process.

4 2 saData Segment base address to
be loaded into the Data
Segment (DS) register
when the new process is
scheduled for
execution.

6 2 saExtra Segment base address to
be loaded into the
Extra Segment (ES) reg-
ister when the new pro-
cess is scheduled for
execution.

8 2 saStack Segment base address to
be loaded into the
Stack Segment (SS) reg-
ister when the new
process is scheduled
for execution.

10 2 oStackInit Offset value to be
loaded into the Stack
Pointer (SP) register
when the new process is
scheduled for execu-
tion.

12 1 priority Priority (0-254, with 0
the highest) at which
the new process is to
be scheduled for
execution.

3-10

Table 3-2. Process Descriptor Block (Cont.)

Description

Always FALSE. A value of
TRUE would indicate that
the new process was a
system process and would
cause a subsequent Chain
operation to fail.

defaul tResponseExchange

Size
Offset (bytes) Field
13 1 fSys
14 2
16 1 fDebug

Identification of an
exchange that the calling
process has allocated using
the AllocExch operation.
(See the "Exchange
Mangement" section.)

This exchange becomes the
default response exchange
of the new process. The
calling process must never
use this exchange again in
order to avoid possible
conflict.

Indicates whether the new

process is to be debugged.
TRUE indicates it will be

debugged, and, therefore,

is not to be scheduled for
execution; FALSE indicates
it is to be scheduled for

execution. (See the B 20

Systems Debugger Reference
Manual, form 1148665.)

3-11

QueryProcessNumber

Description

The QueryProcessNumber procedure allows a process
to determine its own process number.

Procedural Interface

Request Block

3-12

QueryProcessNumber (pProcessNumberRet): ErcType
where
pProcessNumberRet

is the memory address of a word into

which the process number of the
inquiring process is returned.

QueryProcessNumber is a system common procedure.

SECTION 4

INTERPROCESS COMMUNICATION MANAGEMENT

OVERVIEW

Messages

The 1interprocess communication (IPC) facility
synchronizes process execution and information
transmission between processes through the use
of messages and exchanges. A process can
communicate with another process in its own
partition or in another application partition.

A process can send a message and wait for a
message, When a process waits for a message, its
execution is suspended until a message is sent to
it. This allows processes to synchronize
execution. A process can also check whether a
message is available without its execution being
suspended.

In its simplest form, IPC provides unidirectional
transmission of arbitrary data. After preparing
a data structure (a message) that is to be passed
to another process, Process A uses the IPC
facility to send the address of the message to
Process B. Only the address of the message, not
the message itself, is buffered by IPC. The size
and content of the message are not constrained by
IPC. Process B must be programmed to use the IPC
facility to wait or check for the availability of
a message.

The full power of IPC is best appreciated when
pairs of unidirectional transmissions are
matched.

As a simple example, Process A sends a message to
Process B and then waits for an answer. Process
B waits for a message, performs a function
determined by that message, and then sends an
answering message. This sequence assures that
Process B does not begin its function until
requested and that Process A does not resume
execution until Process B has completed its
function.

Since Process B does not send an answer until
after it has processed the message, the answer
can signal Process A that the message is no
longer being used by Process B and (possibly)

4-1

Exchanges

that Process B has modified the message in a
manner agreed upon by the two processes.

As a more complex example, Process A continues
execution in parallel with the execution of
Process B before synchronizing execution by
waiting for the answer.

A message is sent to a system entity called an
exchange rather than directly to a process. An
exchange should be thought of as serving the
function of a post office where postal patrons
(processes) go to mail (send) letters (messages)
or pick up (wait/check for) letters (messages).

In the same way that a postal patron drops a
letter in the mailbox and then walks away
trusting that the 1letter will be delivered, a
process sends a message and then continues
executing without further regard for the message.

A postal patron who is expecting an important
letter can periodically go to the post office to
check whether it has arrived. If the letter is
especially important, the patron can wait in the
post office for the letter to arrive.

A process has analogous mechanisms available when
it expects to receive a message. It can
periodically check whether a message is posted at
(enqueued on) an exchange or it can wait at the
exchange for the arrival of a message. Because
computers are many orders of magnitude faster
than the postal service, it 1is usually more
appropriate to wait for a message than to check
for its arrival.

A process can send a message to a process in
another application partition. The destination
process allocates an exchange, then makes the
exchange known to the Operating System. The
sender process obtains the exchange number and
sends messages to the exchange. Each process
must lock itself into its partition so it cannot
be terminated.

System Service Processes

4-2

The Operating System includes a number of system
service processes. These processes, which are
scheduled for execution in the same manner as

application processes, receive IPC messages to
request the performance of their services. Any
process, even a system service process, can use
(be a client of) a system service process.

Each system service process acts as the guardian
and manager for a class of system resources such
as files, memory, or keyboard. Because the
system service process is the only software
element that accesses the resource, and because
the interface to the system service process is
formalized through the use of 1IPC, a highly
modular environment results.

This modular environment increases reliability by
localizing the scope of processing and provides
the flexibility to replace a system service
process as a complete entity.

Accessing System Services
OS system services can be accessed:
o indirectly, by a procedural interface, or
o directly, by the Request and Wait primitives.

Using the procedural interface is easier because
it automatically performs most of the necessary
housekeeping, as well as issuing the Request and
Wait primitives.

Using the Request and Wait primitives is more
powerful, however, as it allows a greater degree
of overlap between multiple input/output
operations and computation.

When the processes of an application system use
the Send and Wait primitives to communicate among
themselves, they are free to structure their
messages in whatever way is most convenient.
They are also free to pair unidirectional
transmissions into bidirectional transmissions
using whatever conventions are convenient, or to
use the IPC facility in a manner that does not
involve pairing.

When communicating with OS system service
processes, however, the rules are different.
The concept of pairing two undi rectional
transmissions into a bidirectional transmission
is formalized and enforced. Also, the format of
the message that is communicated is formalized.

4-3

Filter Processes

The format of the message (a request block) is
designed to allow the transparent migration of
system service processes between standalone and
cluster configurations. Request Dblocks are
completely self-describing and consist of (1) a
standard header, (2) request-specific control
information, and (3) descriptions of the request
and response data items. Each data item is
described by memory address, size, and source
(client or system service process).

The Send primitive is not used to communicate
with OS system services. Rather, two other
primitives, Request and Respond, initiate the
request for a system service and its response.
This provides:

o assurance that Requests and Responds are
matched,

o assurance that system resources are always
available to transmit responses,

o opportunity to redirect requests for system
services to other system service processes,
and

o opportunity to redirect requests for system
services to the master workstation of a
cluster configuration.

Requests for system services are directed to the
appropriate system service process through
reference to a table that can be modified. This
allows a system service request to be redirected
to another system service process and also allows
the implementation of filters. A filter enables
the system builder to customize the function of a
system service without modifying or even looking
at the system service process that implements it.

As an example, a filter process positioned
between the file management system and its client
process can perform special password validation
before permitting access to a file.

Cluster Configuration

4-4

In the cluster configuration, the IPC facility
is extended to provide transparent access to
system service processes that execute 1in the

master workstation. In the master workstation,
the Operating System concurrently supports local
application processing and resource sharing
(disk and printer) for the other workstations of
the cluster. While some services, 1like file
management, queue management, 3270 terminal
emulator, and data base management, migrate to
the master workstation, others, such as video
and keyboard management, remain at the cluster
workstation.

CONCEPTS

Messages

Exchanges

Link Blocks

The interprocess communication (IPC) facility
provides process synchronization and information
transmission through the use of messages and
exchanges.

A message conveys information and ©provides
synchronization between processes. Although only
a single 4-byte data item is literally
communicated between processes, this data item is
usually the memory address of a 1larger data
structure. The larger data structure is called
the message while the 4-byte data item is
conventionally called the address of the
message. The message can be in any part of
memory that is under the control of the sending
process. By convention, control of the memory
that contains the message is passed along with
the message.

An exchange is the path over which messages are
communicated from process to process (or from
interrupt handler to process). An exchange
consists of two first-in, first-out queues: one
of processes waiting for a message, the other of
messages for which no process has yet waited. An
exchange 1is referred to by a unique 16-bit
integer.

Processes or messages (but not both) can be
queued at an exchange at any given instant. If a
process waits at an exchange at which messages
are queued, then the message that was enqueued
first is dequeued and its memory address given to
the process; the process then continues
execution. Similarly, if a message is sent to an
exchange at which processes are queued, then the
process that was enqueued first is dequeued,
given the address of the message, and placed into
the ready state.

Small system data structures (link blocks) are
used for enqueueing messages onto an exchange.

Each 1link block contains the address of the
message and the address of the next link block
(if any) that 1is 1linked onto the exchange.
Processes are enqueued onto an exchange by
linking through a field of each Process Control
Block that is reserved for this purpose.

The relationship of exchanges, messages, and
processes is shown in Figure 4-1 below.

Message 1

Message 2

Or

‘ Exchange ’

/
m————

Process A Process B

Figure 4-1. Relationship of Exchanges, Messages, and Processes

4-7

Exchange Allocation

Exchanges are allocated in three ways:

o Exchanges for system service processes are
allocated at system build.

o Exchanges can be dynamically allocated and
deallocated using the AllocExch and
DeallocExch operations. (See the "Exchange
Management" section.)

o When a process is created, its creator gives
it a unique default response exchange. A
process can determine the identification of
its own default response exchange using the
QueryDefaultRespExch operation. (See the
"Exchange Management" section.)

Sending a Message

4-8

When a message is sent to an exchange, the O0S
queues the address of the message at the
exchange. Thus overhead is minimized as just the
address of the message, not the message itself,
is moved. Therefore queueing a number of
messages at the same exchange requires very
little execution time or memory.

When a process sends a message to an exchange,
one of two actions results at the exchange:

If no processes are waiting, the message is
queued.

If one or more processes are waiting, the
process that was enqueued first is given the
message and is placed in the ready state.
If this process has a higher priority than
the sending process, it becomes the running
process and the sendi ng process loses
control until it once again becomes the
ready process with the highest priority.

After a message is queued at an exchange, it must
not be modified by the sending process. A
process that receives the message by waiting at
the exchange where the message was queued is free
to modify the message.

The Send primitive transfers a 4-byte field from
the sending process to the waiting process. The
4-byte field can be interpreted as the memory
address of a data structure but this is not

necessary. The interpretation of the 4-byte
field 1is by agreement of the two processes
involved.

Waiting for a Message

When a process waits for a message at an
exchange, one of two actions results at the
exchange:

If no messages are queued, the process is
placed in the waiting state until a message
is sent. When a message is sent, its memory
address 1is returned to the process, which
leaves the waiting state and is scheduled
for execution.

If one or more messages are queued, then the
message that was enqueued first is dequeued
and 1its memory address returned to the
process, which continues to execute.

Sending Messages to Another Partition

A process can send a message to a process in
another application partition (interpartition
communication). The destination process first
allocates an exhange with the AllocExch
operation, then wuses the SetPartitionExchange
operation to make the exchange known to the OS.
The sender process uses the GetPartitionExchange
operation to obtain the exchange number, then
sends messages to the exchange.

Each process must use the LockPartition
operation to lock itself into its partition so

that it cannot be terminated by a
TerminatePartitionTasks or VacatePartition
operation.

The AllocExchange operation is described in the
"Exchange Management" section. The GetPartition-
Exchange, LockPartition, SetPartitionExchange,
TerminatePartitionTasks, and VacatePartition
operations are described in the "Application
Partition Management" section.

4-9

System Service Processes

The Operating System includes a number of system
service processes. These processes, which are
scheduled for execution in the same manner as
application processes, receive IPC messages to
request the performance of their services. Any
process, even a system service process, can use
(be a client of) a system service process.

Each system service process acts as the guardian
and manager for a class of system resources such
as files, memory, or keyboard. Because the
system service process 1is the only software
element that accesses the resource, and because
the interface to the system service process is
formalized through the use of IPC, a highly
modular environment results.

This modular environment increases reliability by
localizing the scope of processing and provides
the flexibility to replace a system service
process as a complete entity.

Accessing System Services

0S system services can be accessed:
o] indirectly, by a procedural interface, or
o directly, by the Request and Wait primitives.

Using the procedural interface is easier because
it automatically performs most of the necessary
housekeeping, as well as issuing the Request and
Wait primitives.

Using the Request and Wait primitives is more
powerful, however, as it allows a greater degree
of overlap between multiple input/output
operations and computation.

Procedural Access to System Services

4-10

When a procedural interface is used, a request
block is automatically <constructed and the
default response exchange of the process 1is
automatically used. Except for the ReadAsync and
WriteAsync procedures, the request block is
constructed on the stack of the client process.

Most procedural interfaces to system services do
not provide any overlap between computation by

Direct Access to

the client process and execution of the system
service. Because Read and Write are the system
services for which the overlap of computation
and execution of the system service 1is most

desirable, the procedures ReadAsync and
CheckReadAsync and WriteAsync and
CheckWri teAsync have been provided. (See the
"pile," "Disk," and "Printer Spooler Management"

sections.) These procedures allow the client
process to initiate an input/output operation

and then compute and/or initiate other
input/output operations before checking for the
successful completion of the i nput/output
operation.

System Services

Execution of a system service involves the
participation of two processes (client and system
service), three kinds of Kernel primitives
(Request, Respond, and Wait), two kinds of
exchanges (response exchange and default response
exchange), and a data structure (request block).

The process requesting the system service is the
client process. Any process, even a system

service process, can be a client process, since
any process can request system services.

0OS system services are provided by system
service processes. These processes are created
when the system is first loaded and execute code
that was linked into the System Image at system
build.

System services are customized at system build
through the 1inclusion/exclusion of Burroughs
written system service processes in the System

Image. User-written system service processes
can also be included, either to replace or to
augment the Burroughs-written ones.

User-written system service processes have the
same power and flexibility as Burroughs-written
ones; customizing the set of system services
requires no modification of Burroughs-written
code.

A request block, a data structure provided by the
client process, contains the specification of and
the parameters to the desired system service. A
request block contains a request code field, a
response exchange field, and several other fields
that are explained in the section below on
"Request Blocks."

4-11

A request code is a 1l6-bit value that uniquely
identifies the desired system service. For
example, the request code for the Write operation
is 36. The request code is used both to route a
request to the appropriate system service process
and to specify to that process which of the
several services it provides is currently
requested.

A response exchange is the exchange at which the
requesting client process waits for the response
of a system service. The response can be
directed to the exchange at which the client
process is expecting it because the exchange at
which the response is desired is specified in the
request block.

A special case of response exchange 1is the
default response exchange of a process. Each

process 1is given a unique default response
exchange when it 1is created. This special
exchange 1is automatically used as the response
exchange whenever a client process uses the
procedural interface to a system service.

For this reason, the direct use of the default
response exchange is not recommended. The use of
the default response exchange is 1limited to
requests of a synchronous nature. That is, the
client process, after specifying the exchange in
a Request, must wait for a response before
specifying it again (indirectly or directly) in
another Request.

A service exchange 1is an exchange that |is
assigned to a system service process at system
build. The system service process waits for
requests for its services at its service
exchange.

The Request primitive is a variant of the Send
primitive. It is used to direct a request for a
system service from a client process to the
service exchange of the system service process.
Request, unlike Send, does not accept an exchange
identification as a parameter. Rather, it infers
the appropriate service exchange by using the
request code as an index into the Service
Exchange Table.

The Service Exchange Table 1is constructed at
system build, resides in the System Image, and
translates request codes to service exchanges. A
companion table, the Local Service Code Table,

translates each request code to a local service
code to specify which of the several services of
the system service process is desired.

The Respond primitive is another variant of the

Send primitive. System service processes use
Respond to report the completion of the requested
system service. The exchange to which the

response is directed is not a direct parameter to
Respond but is obtained from the response
exchange field of the request block. Only system
service processes are allowed to use the Respond
primitive, and they must always specify as a
parameter the same request block that the client
process used to request the system service.

Interaction of Client Processes and System Service Processes

The client process initiates the transaction by
formatting a request block and issuing a Request
primitive. The client process can then continue
execution but must not modify the request block.
In order to determine when the request was
completed, the client process must issue either
a Wait or a Check primitive. The Wait or Check
primitive must specify the same exchange that
the client process specified as the response
exchange in the request block.

The Wait primitive suspends execution of the
client process until the system service process
responds (or until another message is queued at
the specified exchange).

The Check primitive does not suspend execution of
the client process; instead it inquires whether a
message is queued at the specified exchange.

The system service process waits for a request to
be queued at an exchange. Upon receiving a
request, the system service process verifies the
control information and data given it before
processing the request.

If the request is invalid, the system service
process inserts an appropriate error code into
the status code field (that is, ercRet) of the
request block.

If the request is wvalid, the system service
process performs the request, places appropriate
information into the response packets described
by the request block, inserts a normal status
code into the request block, and acknowledges

4-13

completion of the service by responding to the
exchange specified by the client process. It
then resumes waiting until it receives the next

request.

The interaction of client and system service
processes is shown in Figure 4-2 below.

Service Wait
Exchange Satisfied B2
Request A1
Wait B1

. . System
Client Request Serice
ess A k
Proc Wait A2 Bloc Process B
Respond B3
Wait Response

Satisfied A3 Exchange

Figure 4-2. Interaction of Client and System Service Processes

The processing flow of client and system service
processes is shown in Figure 4-3.

Filter Processes

Process Entry Process Entry
Point Point
Initialize Process Initialize Process
——» Compute —»1 Wait for Request
Request Service Perform Function
Wait for Response Respond
CLIENT PROCESS SERVICE PROCESS

Figure 4-3. Processing Flow of Client and System Service Processes

A filter process is a user-written system service
process that is included in the System Image at
system build. A filter process is interposed
between a client process and a system service
process that believe they are communicating
directly with each other. The Service Exchange
Table is adjusted at system build to route
requests through the desired filter process.

A filter process might be used between the file
management system and its client process to
perform special password validation on all or
some requests.

4-15

The interaction of a filter process with a client
and system service process is shown in Figure 4-4
below.

schang
Exchange . Exchange
V{al.t Wait
» Sath2hed Satisfied
Request B3 c2
Request A1 Wait B1 Wait C1
Filter System
Client System Service
Process A Prs:cr:;cseB Process C

Wait A2 Respond B6

Wait Wait Respond C3

Satistied Satisfied
A3 Bs
Response Response
Exchange Exchange

Figure 4-4. Interaction of Filter Process with Client and System Service Processes

Request Blocks

The format of request blocks is designed to allow
the transparent migration of system service
processes between standalone and cluster
configurations. Request blocks are completely
self-describing and consist of four parts:

1. a standard header,
2. request-specific control information,
3. descriptions of the request data items, and

4. descriptions of the response data items.

4-16

Standard Header

Each data item is described by memory address,

size, and
process).

source (client or system service

The format of the standard request block header
is shown in Table 4-1 below.

Table 4-1. Format of a Request Block Header

Size
Offset Field (bytes)
0 sCntInfo 2
2 nRegPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
where
sCntInfo is the number of bytes of control
information.
nRegPbCb is the number of request
address/size (pb/cb) pairs.
nRespPbCb is the number of response
address/maximum size (pb/cbMax)
pairs.
userNum is a 16-bit user number that
uniquely identifies the application
system. Each application partition
has a unique wuser number. The
processes in an application
partition share the same user
number. A process can obtain its
user number with the GetUserNumber
operation (see the "pProcess
Management" section).
exchResp is the response exchange.

CAUTION: Be extremely careful in
specifying the response exchange in
the request block. Conflicting use

4-17

of exchanges, especially explicit
use of the default response exchange
of a process that conflicts with the
implicit use by procedural calls to
system services and system common
procedures, tends to cause
application systems to malfunction
in ways that are difficult ¢to
diagnose.

ercRet is the status code (returned by the
system service process).

rgCode is a request code, a 1l6-bit value
that uniquely identifies the desired
system service. The request code is
used both to route a request to the
appropriate system service process
and to specify to that process which
of the several services it provides
is currently requested.

Request-Specific Control Information

Request Data ltem

The request-specific control information consists
of sCntInfo bytes that are transmitted from
client to system service (except for ercRet,
which 1is transmitted from system service to
client).

Each request data item descriptor consists of the
4-byte memory address of the request data item
followed by the 2-byte size of the item. The
total size (in bytes) of the request data item
descriptors is six times nRegPbCb. Request data
items are transmitted from client to system
service.

Response Data Item

4-18

Each response data item descriptor consists of
(1) the 4-byte memory address of the area into
which the response data item is to be moved by
the system service, and (2) the 2-byte maximum
allowable byte count of the response data item.
The total size (in bytes) of the response data
item descriptors is six times nRespPbCbMax.
Response data items are transmitted from system
service to client.

Example

As an example, consider a request to write one
sector into a file that has already been
opened. Assume that the client process is using
a procedural interface rather than directly using
the Request and Wait primitives. The client
process makes a function reference (that 1is,
erc = Write (fh, pBuffer, sBuffer, 1fa,
psDataRet) ;) to the file management system Write
operation, supplying as arguments:

o the file handle returned from a previous
OpenFile operation,

o the memory address of the first byte of data
to be written,

o the count of bytes to be written,

o the logical file address of the sector into
which the data is to be written, and

o the memory address of the word into which the
count of bytes successfully written is to be
returned.

The Write function also returns a status code
indicating the success of the operation.

The Write system service 1illustrates both a
request data item (the data to be written) for
which the client process 1is the source and a
response data item (the count of bytes
successfully written) for which the system
service process is the source.

In this example, the procedural interface
automatically allocates memory on the stack of
the <client process for a request block and
creates a header containing:

o the number of bytes of control information
(6),

o) the number of items of request data (1),

o the number of items of response data (1),

o the user number (the default is 0 for the
application system in the interactive

partition),

(o} the response exchange (the default response
exchange of the <c¢lient process is wused

4-19

Request Primitive

automatically whenever a system service is
activated through its procedural interface),

o the status code (this 1is returned by the
system service process), and

o) the request code (36 is the request code to
invoke the Write system service).

The control information contains:

o the file handle (2 bytes), and

o the logical file address (4 bytes).

The single request data item is described by:

o the memory address of the data to be written,
and

o the count of bytes to be written.
The single response data item is described by:

o the memory address of the word into which the
count of bytes successfully written is to be
returned, and

o the size (in bytes) of the word into which
the count of bytes successfully written is to
be returned (the number 2 is automatically
supplied by the procedural interface).

The Request primitive is a variant of the Send
primitive. It directs a request for a system
service from a client process to the service
exchange of the system service process.

The Send primitive accepts any 4-byte field as a
parameter. This is usually, but not
necessarily, the address of a message. In
contrast, the Request and Respond primitives
explicitly interpret the 4-byte field as the
memory address of a request Dblock. Before
issuing the Request primitive, the client
process arranges the data required for the
system service into a request block in its
memory.

Unlike Send, Request does not accept an
identification of an exchange as a parameter.
Rather, it infers the appropriate service

Respond Primitive

exchange by using the request code of the request
block as an index into the Service Exchange
Table. The Service Exchange Table is constructed
at system build, resides in the System Image, and
translates request codes to service exchanges.

The use of the Service Exchange Table allows

request codes to remain invariant among
Operating Systems with varying organizations of
system service processes. This invariance

facilitates the development of filters and 1is
critical to the transparent operation of the
cluster configuration.

A companion table, the Local Service Code Table,
translates each request code to a local service
code to specify which of the several services of
the system service process is desired.

The Respond primitive is only used by a system
service process to respond to a client process
that requested the performance of a system
service.

The only parameter to the Respond primitive is
the memory address of the request block of the
client process. That is, the system service must
use the same memory address as a parameter to
Respond that the client process used as a
parameter to the Request primitive. The exchange
to which the response is directed is determined
by the response exchange (exchResp) field of the
request block.

In normal operation, sufficient resources (that
is, 1link blocks) are always available for the
successful execution of the Respond primitive.
This is because the Request primitive reserves a
link block for the exclusive wuse of the
corresponding Respond primitive. Calls to the
Respond primitive must exactly match calls to the
Request primitive. That is, each Request must be
answered by a Respond, and Respond must never be
used for any purpose other than to answer a
Request.

If a malfunctioning user-written system service
were to fail to respond to a client process's
request, unmatched requests would cause all link
blocks to be reserved and future requests would
receive the "No 1link block available" status
code.

4-21

Wait Primitive

If an application process inappropriately called
the Respond primitive, the unmatched Respond
would cause the count of link blocks reserved to
be insufficient and might cause another call to
Respond to receive the "No link block available"
status code.

The Wait primitive is used with the Request and
Respond primitives, as well as with the Send
primitive. System service processes use Wait to
suspend execution until a client process requests
the performance of a system service. Client
processes use Wait to synchronize their execution
with the completion of the system service they
requested. In the context of Request and
Respond, the message that 1is queued at an
exchange is always a request block.

The Wait primitive first checks whether one or
more messages are queued at the specified
exchange.

If messages are queued, then the message that was
enqueued first is dequeued from the exchange and
its memory address returned to the calling
process; the calling process then continues
execution.

If no messages are queued, the Process Control
Block of the calling process 1is queued at the

exchange and the process is placed into the

waiting state. 1In the waiting state, the process
stops executing and relinquishes control of the
processor. The calling process remains in the
waiting state until another process queues a
message at the specified exchange. The calling
process then leaves the waiting state and is
placed into the ready state. The memory address
of the message queued at the exchange by the
other process is returned to the calling process
and it resumes execution when it becomes the
highest priority ready process.

Interstation Communication

4-22

The interstation communication (ISC) facility is
an upward-compatible extension of the
interprocess communication facility. When a
client process requests a system service, a
request block is constructed that contains all

the information necessary to describe the
desired function.

In a standalone workstation, the request block is
queued at the exchange of the system service
process that actually performs the desired
function.

Cluster Workstation Agent Service Process

In a cluster workstation, however, if the
function is to be performed at the master
workstation, the request block is queued at the
exchange of the cluster workstation Agent
Service Process. The cluster workstation Agent
Service Process converts interprocess requests
to interstation messages for transmission to the
master workstation. The cluster workstation
Agent Service Process 1is included at system
build in a System Image that is to be used on a
cluster workstation.

Master Workstation Agent Service Process

The System Image used at the master workstation
is built to include a corresponding service
process: the master workstation Agent Service
Process. The master workstation Agent Service
Process reconverts the interstation message to
an 1interprocess request that it queues at the
exchange of the master workstation system
service process that actually performs the
desired function. Note that the Service
Exchange Table that translates request code to
service exchange at the master workstation is
necessarily different from the table at the
cluster workstation. When the system service
process at the master workstation responds, the
response is routed through the master
workstation Agent Service Process, the
high-speed data link, and the cluster
workstation Agent Service Process before being
queued at the response exchange in the cluster
workstation that was specified in the request
block.

The format of request blocks 1is designed to
allow the cluster workstation and master
workstation Agent Service Processes to convert
between interprocess requests and interstation
messages very efficiently and with no external
information. Because request blocks are
completely self-describing, the Agent Service

4-23

Processes can transfer requests and responses
between the master workstation and <cluster
workstation without any knowledge of what
function 1is requested or how it 1is to be
performed. ’

Interstation Request/Response Message

4-24

An interstation request message consists of:
o) a header,
o control information,

o the size and actual text of each request data
item, and

o) the maximum allowed size of each response
data item.

An interstation response message consists of:

o a status code, and

o the actual size and text of each response
data item.

The cluster workstation Agent Service Process
forms an interstation request message by copying
the header and control information from the
request block, moving the actual text of the
request data items into the message, and
including a specification of the maximum allowed
sizes of the response data items.

After receiving the interstation response
message, the cluster workstation Agent Service
Process stores the status code into the request
block and moves the text of the response data
items into the memory areas specified for them
by the request Dblock. This transformation
scheme ensures that no redundant or extraneous
information is transmitted between the master
workstation and cluster workstations.

OPERATIONS: PRIMITIVES

Interprocess communication management provides
the operations listed below.

Check dequeues the message (if any)
that was enqueued first at the
specified exchange. Returns
the status code "No message
available" (14) if none are
queued.

PSend a privileged send used by
interrupt handlers. Sends the
specified message to the
specified exchange.

Request requests a system service by
sending a request block to the
exchange of the system service
process.

Respond notifies a client process that
the requested system service
was performed by sending the
request block of the client
process back to the response
exchange specified in the
request block.

Send sends the specified message to
the specified exchange.

Wait dequeues the message (if any)
that was enqueued first at the
specified exchange. Causes the
calling process to be placed
into the waiting state if no
messages are enqueued.

Check

Description

The Check primitive checks whether messages are
queued at the specified exchange. If messages
are queued, then the message that was enqueued
first is dequeued and its memory address is
returned to the calling process. If no messages
are queued, then status code 14 ("No message
available") is returned.

The Check primitive, unlike the Wait primitive,
never causes the calling process to be placed
into the waiting state.

Procedural Interface

Request Block

4-26

Check (exchange, ppMsgRet): ErcType

where

exchange is the identification of the
exchange to check.

ppMsgRet is the memory address of a 4-byte

field into which the memory address
of the message that was enqueued
first at the exchange, if any, is
returned.

Check is a Kernel primitive.

PSend

Description

The PSend primitive, a privileged Send primitive
used by interrupt handlers, checks whether
processes are queued at the specified exchange.
If processes are queued, then the process that
was enqueued first is dequeued, given the memory
address of the message, and placed into the ready
state.

If no processes are waiting at the exchange, then
the message is queued at the exchange.

PSend uses a special pool of 1link blocks that
are reserved at system build (see the B 20
System Programmers and Assembler Reference
Manual (Part 1), form 1148699).

Procedural Interface

Request Block

PSend (exchange, pMsg): ErcType

where

exchange is the identification of the
exchange to which the message 1is
sent.

pMsg is the memory address of the message

(or a 4-byte field of information
whose interpretation is agreed upon
by the sending and receiving
processes) .

PSend is a Kernel primitive.

4-27

Request

Description

The Request primitive requests a system service
by sending a request block to the service
exchange of the system service process.

A client process uses the Request primitive
indirectly when it uses the procedural interface
to a system service or directly when it is
necessary to overlap its own execution with the
performance of the service.

The Request primitive infers the appropriate
service exchange by using the request code of
the request block as an index into the Service
Exchange Table. The use of the Service Exchange
Table allows request codes to remain invariant
among Operating Systems wi th varying
organizations of system service processes. This
invariance facilitates the development of
filters and 1is critical to the transparent
operation of the cluster configuration.

The <client process must wuse the AllocExch
operation (see the "Exchange Management" section)
to acquire an exchange identification to place
into the exchResp field of the request block.

There must not be conflicting uses of the
response exchange specified in the request block;
such conflict can cause malfunction of the
application system that is difficult to diagnose.

Procedural Interface

Request Block

4-28

Request (pRg): ErcType
where

PRg is the memory address of the request
block.

Request is a Kernel primitive.

Respond

Description

The Respond primitive is only used by a system
service process to respond to a client process.
After the system service process has completed
the processing of a service request, it invokes
Respond to send the request block of the client
process back to the response exchange specified
in the request block.

The Respond primitive accepts the memory address
of the request block of the client process as its
only parameter; the system service process must
use the same memory address as a parameter to the
Respond primitive that the client process used as
a parameter to the Request primitive. The
exchange to which the response is directed is
determined by the exchange response field of the
request block.

Calls to the Respond primitive must exactly match
calls to the Request primitive; that 1is, each
Respond must answer a Request and each Request
must be answered by a Respond.

A link block is reserved by the corresponding
Request primitive to ensure the successful
execution of the Respond primitive.

The use of the Respond primitive within an
application system would <cause <catastrophic
mismanagement of link blocks and termination of
OS operation. See the discussion in the B 20
System Programmers and Assembler Reference
Manual (Part 1), form 1148699, for complete
explanation.

Procedural Interface

Request Block

Respond (pRqg): ErcType

where

PRq is the memory address of the same
request block that the system

service process received from its
exchange.

Respond is a Kernel primitive.

4-29

Send

Description

The Send primitive checks whether processes are
queued at the specified exchange. If processes
are queued, then the process that was enqueued
first is dequeued, given the memory address of
the message, and placed into the ready state. 1If
such a process has a higher priority than the
calling process, it is scheduled for immediate
execution and the calling ©process remains
preempted until the higher priority process
reenters the waiting state.

If no processes are waiting at the exchange, then
the message is queued at the exchange.

Procedural Interface

Request Block

Send (exchange, pMsg): ErcType

where

exchange is the identification of the
exchange to which the message is
sent.

pMsg is the memory address of the message

(or a 4-byte field of information
whose interpretation is agreed upon
by the sending and receiving
process).

Send is a Kernel primitive.

Wait

Description

The Wait primitive checks whether messages are
queued at the specified exchange. If messages
are queued, then the message that was enqueued
first is dequeued and its memory address returned
to the calling process; the calling process then
continues execution.

If no messages are queued, then the Process
Control Block of the calling process is queued at
the exchange and the process is placed into the
waiting state. 1In the waiting state, the process
stops executing and relinquishes control of the
processor. The calling process remains in the
waiting state until another process gqueues a
message at the specified exchange using the Send,

PSend, Request, or Respond primitives. The
calling process then leaves the waiting state and
is placed into the ready state. The memory

address of the message queued at the exchange by
the other process 1is returned to the calling
process and it resumes execution when it becomes
the highest priority ready process.

Procedural Interface

Request Block

Wait (exchange, ppMsgRet): ErcType

where

exchange is the identification of the
exchange at which to wait.

pPpMsgRet is the memory address of a 4-byte

field into which the memory address
of the message that was enqueued
first at the exchange, if any, is
returned.

Wait is a Kernel primitive.

4-31

OVERVIEW

CONCEPTS

Exchange

SECTION 5
EXCHANGE MANAGEMENT

The exchange management facility supports the
dynamic allocation and deallocation of
exchanges. For more information about exchanges,
see the "Interprocess Communication Management"
section.

An exchange is the path over which messages are
communicated from process to process (or from
interrupt handler to process). An exchange
consists of two first-in, first-out queues: one
of processes waiting for messages, the other of
messages for which no process has yet waited. An
exchange is referred to by a unique 16-bit
integer.

Processes or messages, but not both, can be
queued at an exchange at any given moment. If a
process waits at an exchange at which messages
are queued, then the message that was enqueued
first is dequeued and its memory address given to
the process; the process then continues
execution. Similarly, if a message is sent to an
exchange at which processes are queued, then the
process that was enqueued first 1is dequeued,
given the address of the message, and placed into
the ready state.

Exchange Allocation

5-2

Exchanges are allocated in three ways:

o Exchanges for system service processes are
allocated at system build.

o Exchanges can be dynamically allocated and
deallocated using the AllocExch and
DeallocExch operations.

o When a process is created, its creator gives
it a unique default response exchange. (See
the "Interprocess Communication Management"
section.) A process can determine the
identification of its own default response
exchange using the QueryDefaultRespExch
operation.

In a compact system, all allocated exchanges are
deallocated when the application system exits.
In a system where multiple application systems
can execute simultaneously, only the exchanges of
an exiting application system are deallocated.

Operations and data structures for interpartition
communication are described in the "Application
Partition Management" section.

OPERATIONS: PROCEDURES AND SERVICES

Exchange management operations are categorized by
function in Table 5-1 below.

Table 5-1. Exchange Management Operations by Function

Allocation Deallocation
AllocExch DeallocExch
Inquiry
QueryDefaultRespExch
Allocation
AllocExch allocates an exchange.
Deallocation
DeallocExch deallocates an exchange.
Inquiry

QueryDefaultRespExch
allows a process to determine
the identification of its own
default response exchange.

AllocExch

Description

The AllocExch service allocates an exchange.

Procedural Interface

Request Block

AllocExch
where

PExchRet

(pExchRet) :

ErcType

is the memory address of a word into
identification of
allocated exchange is returned.

which

the

sExchMax is always 2.

the

Size
Offset Field (bytes) Contents
0 sCntInfo 2 6
2 nRegPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rgCode 2 40
12 reserved 6
18 PExchRet 4
22 sExchMax 2 2

DeallocExch

Description

The DeallocExch service deallocates an exchange.

Procedural Interface

DeallocExch (exchange): ErcType

where

exchange

Request Block

is the identification of the
exchange to deallocate. This
identification must have been
obtained using the AllocExch
operation.

Offset

Size
Field (bytes) Contents

QO WNO

sCntInfo
nRegPbCb
nRespPbCb
userNum
exchResp
ercRet
rgCode

2
0
0

NDNNDNDHEFDN

41

N

exchange

QueryDefaultRespExch

Description

The QueryDefaultRespExch procedure allows a
process to determine the identification of its
own default response exchange.

Procedural Interface

Request Block

QueryDefaultRespExch (pExchRet): ErcType

where

pPExchRet is the memory address of a word into
which the identification of the
default response exchange of the
inquiring process is returned.

QueryDefaultRespExch is a system common

procedure.

OVERVIEW

SECTION 6
MEMORY MANAGEMENT

The memory management facility supports the
dynamic allocation and deallocation of areas of
memory for code, data, etc., by each application
system in its own partition.

Types of Memory

Two types of memory allocation are available to
the application system: 1long-lived and short-
lived. Within each application partition, long-
lived memory expands upward from 1low memory
locations, while short-lived memory expands
downward from high memory locations. The O0S
allocates short-lived memory for application
tasks.

Both long-lived and short-lived memory can be
dynamically allocated and deallocated by requests
to OS system services.

When the execution of an application system 1is
terminated, the short-lived memory of its
partition is automatically deallocated.

Long-lived memory is deallocated only at the
explicit request of each application system.
Therefore, 1long-lived memory 1is useful for
passing information from an application system to
a succeeding application system in the same
partition.

CONCEPTS

Addressing Memory

Segments

The B20 Information Processing System has a one-
megabyte address space. Each of the 1,048,576
bytes in the address space has a unique 20-bit
physical memory address. However, software does
not use physical memory addresses. Software
identifies specific bytes of memory by wusing
logical memory addresses.

A logical memory address is a 32-bit entity
consisting of a 1l6-bit segment base address and a
16-bit offset.

A segment base address is the high-order 16-bits
of the 20-bit physical memory address of a

hardware segment. (The low-order 4 bits are
implicitly 0.) The CS, DS, SS, and ES segment
registers of the processor contain segment

base addresses.

The offset 1is the distance, in bytes, of the
target location from the beginning of the
hardware segment. The physical memory address of
a byte 1is computed by multiplying the segment
base address by 16 and adding the offset.

A byte of memory does not have a unique logical
memory address. Rather, any of the 4096
combinations of segment base address and offset
refer to the same byte of memory. Whenever the
term memory address is used in this Manual, it
refers to logical memory address.

A segment is a contiguous (usually large) area of
memory that consists of an integral number of
paragraphs. A paragraph is 16 bytes of memory
whose physical memory address is a multiple of
16.

Hardware segments can be adjacent, disjoint,

partially overlapping, or completely
overlapping. A physical memory location can be
contained in multiple hardware segments.

Software segments are nonoverlapping hardware

segments that contain single, logical entities.
It is conventional to address a byte within a

Code, Static Data,

software segment by using a logical memory
address whose segment base address points to the
first byte of the segment and whose offset is the
physical memory address of the addressed byte
minus the physical memory address of the first
byte of the segment. This convention limits the
size of a software segment to 65,536 bytes.

and Dynamic Data Segments

There are three types of software segments:
code, static data, and dynamic data. Each type
of segment can be either shared or nonshared.

A code segment contains only processor
instructions (code) and is never modified once it
is loaded into memory. This characteristic

permits several processes to execute instructions
from the same code segment. It also allows the
virtual code segment management facility (see the
section of that name) to reload code segments
from the run file as needed without saving the
copy of the segment previously in memory.

A data segment contains data. It can also
contain code, although this is not recommended.
There are no restrictions on modifying the
contents of a data segment. If a data segment is
shared among processes, concurrency control is
the responsibility of those processes.

A static data segment 1is automatically 1loaded
into memory when its containing task image is
loaded.

A dynamic data segment is allocated by a request
from an executing process to the memory
management facility.

Code and static data segments are created by
compiling and/or assembling source programs into
object modules and 1linking the object modules
into task images.

A task image is a program stored in a run file
that contains code and/or static data segments.
When requested, the task management facility
loads the task image into memory and adjusts any
logical memory addresses that exist in either
code or data segments to reflect the memory
address at which the task is loaded.

6-3

If the virtual code segment management facility
is in use, all the static data segments, but only
the resident code segment, are loaded into
memory. The nonresident code segments are loaded
into memory only as needed.

The Linker utility reads segments from object
module files and combines them according to their
segment names, class names, and directives from
the user. See the B20 Systems Linker/Librarian
Reference Manual, form 1148681 and B20 Systems
Programmers and Assembler Reference Manual (Part

2), form 1144466.

A task image that was created by linking object
modules produced by the Pascal and/or FORTRAN
compilers consists of one code segment for each
object module included in the link and a single
static data segment. The single static data
segment (DGroup) combines the static data and
stack requirements of all the object modules. A
task image of this form is considered standard;
assembly language programmers are urged to adopt
this standard unless other considerations are
overriding. (The COBOL compiler and BASIC
interpreter do not produce object modules.)

Memory Organization

The memory organization of an application
partition in a compact system (in which
application systems can be executed one at a
time) differs from that of a system in which
multiple application systems can be executed
simul taneously.

Figure 6-1 shows the memory organization of the
application partition in the compact system.

Figure 6-2 shows the memory organization of an
application partition in a system 1in which
multiple applications can be executed
simul taneously. In this system, both the primary
and secondary application partitions have the
same memory organization.

Low End of Memory

Long-Lived Memory

Common Pool of Unallocated Memory

Short-Lived Memory

Secondary Task 2
Secondary Task 1

Primary Task

High End of Memory

Figure 6-1. Memory Organization of the Application Partition in a Compact System

Long-Lived and Short-Lived Memory

Two types of memory allocation are available to
each application system: 1long-lived and short-
lived. Within each application partition, 1long-
lived memory expands upward from low memory
locations, while short-lived memory expands

downward from high memory 1locations. The O0S
allocates short-lived memory for application
tasks.

All currently unallocated memory in an
application partition is in a contiguous area
called the common memory pool. Memory <can be

allocated from both ends of the pool. There 1is
no restriction on how much can be allocated from
either end other than that the sum of the
allocations cannot exceed the amount of memory
available in an application partition. The
QueryMemAvail operation returns the size of all
available memory in an application partition.

6-5

The memory management facility of the OS allows
client processes to allocate and deallocate areas
of memory (dynamic data segments) from the common
pool in an application partition. Memory is
allocated and deallocated only on paragraph
boundaries. That is, the physical address of the
area is a multiple of 16. Because of this, areas
of memory allocated by the 0S can be referenced
conveniently using the segment addressing
convention discussed previously.

Low End of Memor
Y System Data Structures

Long-Lived Memory

Common Pool of Unallocated Memory

—— D —

Short-Lived Memory

Secondary Task 2
High End of Memory Secondary Task 1
Primary Task

Figure 6-2. Memory Organization of an Application Partition in a System Allowing

Simultaneous Execution of Multiple Application Systems

Operations

Deallocations

The AllocMemoryLL and AllocMemorySL operations
allocate 1long-lived and short-lived memory
segments, respectively, in an application
partition. Note, however, that the
AllocAllMemorySL operation can allocate more than
65,536 bytes, and thus the entire area allocated
by this operation is not necessarily addressable
as a single segment.

The DeallocMemoryLL and DeallocMemorySL
operations deallocate long-lived and short-lived
memory segments, respectively, in an application
partition. The ResetMemoryLL operation
deallocates all long-lived memory in an
application partition.

Relative to allocations from one end of an
application partition's memory, deallocations
must occur 1in exactly the opposite sequence.
That is, the user must follow a 1last allocated,
first allocated discipline when deallocating
either long-lived or short-lived memory. For
example, if an application system allocates
short-lived memory segments A, B, and C, it then
deallocates them in the order C, B, A.

Thus the motion of the borders (the dashed 1lines
in Figures 6-1 and 6-2) of the common pool of
memory in an application partition resembles the
playing of an accordion: the borders converge
when memory is allocated and diverge when memory
is deallocated. This scheme is efficient because
all unallocated memory is in a common pool and
simple because the 0S has to remember only the
addresses of the next (long-lived and short-
lived) segments to allocate, not the addresses of
all allocated segments.

Long-Lived Memory Uses

The long-lived memory in an application partition
is used for:

parameters passed from one application system
to a succeeding application system in the
same partition, and

user data that 1is to be processed by
succeeding application systems in the same
partition.

Long-lived memory allocations are returned to the
common pool of unallocated memory in an
application partition only upon explicit request
of the application system.

Short-Lived Memory Uses

The short-lived memory in an application
partition is used by the OS to contain the code
and static data segments of each task. It is
also allocated by application processes for use
as dynamic data segments for data that is to be
processed only by the current application system.
Other common uses of short-lived memory are
i nput/output buffers and the Pascal heap.

Short-lived memory allocations are returned to
the common pool of wunallocated memory whenever
the application system 1is replaced (in any
application partition by the Chain, ErrorExit, or
Exit operations, or in the ©primary application
partition by the key combination ACTION-FINISH).
(See the "Task Management" section.)

Virtual Code Segment Management

See the "Virtual Code Segment Management" section
for how tasks of an application system are
handled when they require an area larger than the
available physical memory in an application
partition.

OPERATIONS: SERVICES

Allocation

Deallocation

Inquiry

Memory management operations are categorized by
function in Table 6-1.

Table 6-1. Memory Management Operations by Function

Allocation Deallocation
AllocAllMemorySL DeallocMemoryLL
AllocMemoryLL DeallocMemorySL
AllocMemorySL ResetMemoryLL
Inquiry
QueryMemAvail

AllocAllMemorySL

allocates the largest possible
short-lived memory segment in an
application partition.

AllocMemoryLL
allocates a long-lived memory
segment in an application partition.

AllocMemorySL
allocates a short-lived memory
segment in an application partition.

DeallocMemoryLL
deallocates a long-lived memory
segment in an application partition.

DeallocMemorySL
deallocates a short-lived memory
segment in an application partition.

ResetMemoryLL
deallocates all long-lived memory in
an application partition.

QueryMemAvail
returns the size of all available
memory in an application partition.

AllocAllMemorySL
Description

The AllocAllMemorySL service allocates the
largest possible short-lived memory segment
within an application partition.

Procedural Interface

AllocAllMemorySL (pcParagraphRet,
ppSegmentRet) : ErcType

where

pcParagraphRet
is the memory address of a word into

which the count of bytes available
(divided by 16) is returned.

ppSegmentRet is the memory address of 4 bytes
into which the memory address of the
allocated segment is returned. The
low-order 2 bytes contain the
offset, which 1is always 0. The
high-order 2 Dbytes contain the
segment base address of the
allocated segment.

Request Block

scParagraphMax is always 2 and spSegmentMax is

always 4.
Size
Offset Field (bytes) Contents
0 sCntInfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rgCode 2 46
12 reserved 6
18 pcParagraphRet 4
22 scParagraphMax 2 2
24 ppSegmentRet 4
28 spSegmentMax 4 4

6-10

AllocMemoryLL

Description

The AllocMemoryLL service allocates a 1long-lived
memory segment of the specified size within an
application partition.

Procedural Interface
AllocMemoryLL (cBytes, ppSegmentRet): ErcType
where
cBytes is the desired segment size.

ppSegmentRet is the memory address of 4 bytes
into which the memory address of the
allocated segment is returned. The
low-order 2 bytes contain the
offset, which is always 0. The
high-order 2 bytes contain the
segment base address of the
allocated segment.

Request Block

spSegmentMax is always 4.

Size
Offset Field (bytes) Contents

0 sCntInfo 2 6
2 nRegPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2

6 exchResp 2

8 ercRet 2

10 rgCode 2 44
12 cBytes 2

14 reserved 4

18 ppSegmentRet 4

22 spSegmentMax 2 4

6-11

AllocMemorySL

Description

Procedural Interface

Request Block

6-12

where
cBytes

ppSegmentRet

size

AllocMemorySL (cBytes, ppSegmentRet): ErcType

is the desired segment size.

within

The AllocMemorySL service allocates a short-lived
memory segment of the specified
application partition.

an

is the memory address of 4 bytes

into which the memory address of the

allocated segment is returned.
low-order

offset,

high-order

segment

2

which

2

base
allocated segment.

spSegmentMax is always 4.

contain
always 0.

contain
address of

The
the
The
the
the

Size
Offset Field (bytes) Contents
0 sCntInfo 2 6
2 nRegPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 42
12 cBytes 2
14 reserved 4
18 ppSegmentRet 4
22 spSegmentMax 2 4

DeallocMemoryLL

Description

The DeallocMemoryLL service deallocates a long-
lived memory segment of the specified size within
an application partition. Segments must be
deallocated in a sequence exactly opposite the
one in which they were allocated (that 1is, last
allocated, first deallocated).

Procedural Interface

Request Block

DeallocMemoryLL (pSegment, cBytes): ErcType

where
pSegment is the memory address of the segment
to deallocate. The offset portion
must be 0. pSegment should be the
same memory address that was
returned by the corresponding
AllocMemoryLL operation.
cBytes is the size (in bytes) of the
segment to deallocate. cBytes
should be the same value that was
passed to the corresponding
AllocMemoryLL operation.
Size
Offset Field (bytes) Contents
0 sCntInfo 2 6
2 nRegPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rgqCode 2 45
12 cBytes 2
14 pSegment 4

6-13

DeallocMemorySL

Description

The DeallocMemorySL service deallocates a short-
lived memory segment of the specified size within
an application partition. Segments must be
deallocated in a sequence exactly opposite the
one in which they were allocated (that 1is, 1last
allocated, first deallocated).

Procedural Interface

Request Block

6-14

DeallocMemorySL (pSegment, cBytes): ErcType

where
pSegment is the memory address of the segment
to deallocate. The offset portion
must be 0. pSegment should be the
same memory address that was
returned by the corresponding
AllocMemorySL operation.
cBytes is the size (in Dbytes) of the
segment to deallocate. cBytes
should be the same value that was
passed to the corresponding
AllocMemorySL operation.
Size
Offset Field (bytes) Contents
0 sCntInfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rgCode 2 43
12 cBytes 2
14 pSegment 4

QueryMemAuvail

Description

The QueryMemAvail service returns the size (in
l6-byte paragraphs) of all currently available
memory in an application partition. Because of
the way in which memory 1is organized, it 1is
possible to allocate segments from available
memory using both the AllocMemoryLL and
AllocMemorySL operations.

Procedural Interface

Request Block

QueryMemAvail (pcParagraphRet): ErcType
where
pcParagraphRet
is the memory address of a word into

which the count of bytes available
(divided by 16) is returned.

scParagraphMax is always 2.

Size
Offset Field (bytes) Contents
0 sCntInfo 2 6
2 nRegPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqgCode 2 48
12 reserved 6
18 pcParagraphRet 4
22 scParagraphMax 4 2

6-15

ResetMemoryLL

Description

The ResetMemoryLL service deallocates all long-
lived memory within an application partition. An
application system in the primary application
partition should not use ResetMemoryLL unless
another Executive was substituted for the
Executive; this is because the Executive depends
on part of the contents of long-lived memory.

Procedural Interface

Request Block

6-16

ResetMemoryLL: ErcType

Size
Offset Field (bytes) Contents

sCntInfo
nRegPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

0
0
0

OO N WNO
NNMNNDNDHEHEDN

47

OVERVIEW

SECTION 7
TASK MANAGEMENT

The task management facility supports the
asynchronous execution of several loosely and/or
tightly coupled application software elements
(tasks) performing related portions of a single
application system.

An application system consists of one or more
tasks. A task consists of code, data, and one or
more processes. The code and data can be unique
to the task or shared with other tasks.

An application system can be executed 1in each

application partition. Multiple application
systems can be executed simultaneously, each 1in
its own partition. (See the "Application

Partition Management" section.)

Task management provides operations to (1)
replace an entire application system (all tasks
within an application partition) with a single
new task and (2) incrementally add a task to a
current application system. A task 1is always
loaded into the highest available memory location
within the application partition and has a single
process associated with it when it is first
loaded. Additional processes can be created
dynamically.

CONCEPTS

Application System

Task

An application system is the name for all the
tasks currently loaded in a specific application
partition. These tasks can be loosely or tightly
coupled, but all perform related portions of the
same application system. These tasks execute
asynchronously. A task can be added to an
application system but not removed from it.

A task is an executable program that consists of
code, data, and one or more processes. The code
and data can be unique to the task or shared with
other tasks.

A task image is the disk-resident image of an
executable program. It is created by compiling
and/or assembling source language modules into
object modules and 1linking the object modules
together. A disk file that contains a task image
is called a run file. A task image contains code
and/or data segments.

Code and Data Segments

A code segment contains only processor
instructions (code) and is never modified once it
is 1loaded into memory. This characteristic

permits several processes to execute instructions
from the same code segment. It also allows the
virtual code segment management facility (see the
section of that name) to reload code segments
from the run file as needed without saving the
copy of the segment previously in memory.

A data segment contains data. It can also
contain code, although this is not recommended.
There are no restrictions on modifying the
contents of a data segment. If a data segment is
shared among processes, concurrency control is
the responsibility of those processes.

A data segment that is automatically loaded into
memory when its containing task image is loaded
is called a static data segment, to differentiate
it from a dynamic data segment. A dynamic data
segment is allocated by a request from the
executing ©process to the memory management
facility.

Loading a Task

The Linker utility reads segments from object
module files and combines them according to their
segment names, class names, and directives from
the user. (See the B20 System Linker/Librarian
Reference Manual, form 1148681, and B20 System
Programmers Guide, Part 2, form 1144464.)

A task image that was created by linking object
modules produced by the Pascal and/or FORTRAN
compilers consists of one code segment for each
object module included in the link and a single
static data segment. The single static data
segment (DGroup) combines the static data and
stack requirements of all the object modules. A
task image of this form is considered standard;
assembly language programmers are urged to adopt
this standard unless other considerations are
overriding. (The COBOL compiler and BASIC
interpreter do not produce object modules.)

Loading a task consists of reading the task image
into the short-lived memory of an application
partition and adjusting any logical memory
addresses (intersegment references) that exist in
either code or data segments to reflect the
memory address at which the task is loaded.

Short-lived memory is allocated from the high-
address end of the common pool of unallocated
memory of the . application partition and is
returned to the common pool whenever the
application system is replaced (in any
application partition by the Chain, ErrorExit, or
Exit operations, or in the primary application
partition by the key combination ACTION-FINISH).

If the virtual code segment management facility
is in use, all the static data segments, but only
the resident code segment, are 1loaded into
memory. The nonresident code segments are loaded
into memory only as needed.

Virtual code segment management is available to
the primary or a secondary task of an
application partition. However, a secondary
task cannot be wvirtual if the primary task
already uses virtual code segment management.

Primary tasks are those 1loaded by the Chain,
ErrorExit, or Exit operations (see the "Task
Management"” section), or the LoadPrimaryTask
operation (see the "Application Partition
Management" section). Secondary tasks are those
loaded by the task management LoadTask operation.

7-3

Exit Run File

Operations

An exit run file is a user-specified file that is
loaded and activated when an application system
exits. Each application partition has its own
exit run file.

An application system can specify an exit run
file for its partition with the SetExitRunFile
operations. An application system can determine
the exit run file of its partition with the
QueryExitRunFile operation.

An exit run file is a primary task that «can, 1in
turn, load additional tasks into 1its ©partition
with the LoadTask operation.

In the primary application partition, if no exit
run file is specified, the system will
malfunction and reboot itself. If the exit run
file cannot be read, it displays the message
"Cannot load exit run file" and a status code
indicating the type of error that occurred. If
the exit run file is on a floppy disk, the user
can insert a floppy disk with the appropriate
exit run file and the system will resume loading
of the exit run file.

The task management facility provides six
operations: Chain, ErrorExit, Exit, LoadTask,
QueryExitRunFile, and SetExitRunFile.

Chain, ErrorExit, and Exit terminate all
application processes and deallocate all short-
lived memory in an application partition before
loading the succeeding application system and
creating a single process to execute it. In
addition, ErrorExit and Exit pass an abnormal and
normal status code, respectively, to the
succeeding application system in the same
application partition.

The LoadTask operation, in contrast, preserves
all current application processes and short-lived
memory allocations in the application partition
while loading and activating an additional task
and creating an additional process to execute it.

The SetExitRunFile operation establishes a new
exit run file for an application partition. The
QueryExitRunFile operation returns the name,
password, and priority of the exit run file of an
application partition.

OPERATIONS: PROCEDURES AND SERVICES

Task management provides the operations 1listed
below.

Chain replaces the current application
system in an application partition
with the specified run file.

ErrorExit terminates the current application
system in an application partition
and passes an abnormal status code
to the exit run file.

Exit terminates the current application
system in an application partition
and passes a normal status code to
the exit run file.

LoadTask loads and activates an additional
task as part of the current
application system in an application
partition.

QueryExitRunFile
returns the name, password, and
priority of the exit run file of an
application partition.

SetExitRunFile
establishes a new exit run file for

an application partition.

Chain

Description

7-6

The Chain service replaces a current application
system with a specified run file. Chain returns
control to the calling process only if an error
condition is detected.

Chain:

l.

Verifies that the specified run file exists,
that it can be opened for Read wusing the
password provided, that it contains a wvalid
task image, and that the task image fits 1in
the application partition.

Places the status code in the Application
System Control Block of the application
partition.

Disconnects interrupt handlers of the
application partition and terminates all
processes of the application partition.

Terminates keyboard (primary application
partition only), timer, and communications
requests, and waits until all disk and
printer input/output activity has ceased.

In the primary application partition only,
resets the keyboard to character mode .
Discards the content of the type-ahead buffer
if the keyboard was in unencoded mode and/or
the status code is nonzero.

In the primary application partition only,
reenables the ACTION-FINISH feature and
discards the action code (if any).

In the primary application partition only,
closes the submit or recording file if the
status code is nonzero.

Closes all files opened for the application
partition except those marked long-lived (by
the OpenFileLL or SetFhLongevity operations;
see the "File Management" section).

Releases for reuse all application partition
memory that was allocated as short-lived.

10. Allocates a short-lived memory segment in the
application partition that is large enough to
contain the task image from the specified run

file.

11. Reads the task image from the run file into
the application partition.

12. Relocates all intersegment reference to
accommodate the memory address at which the
task image is loaded.

13. Creates a process to be scheduled at the
specified priority. The initial values loaded
into the segment registers (CS, DS, SS, ES),
the Stack Pointer (SP), and the Instruction
Pointer (IP) are derived from information 1in
the run-file header.

Chain has no effect on the allocation of long-
lived memory.

If the task requires virtual code segment
management, the run file 1is 1left open to
accommodate code swapping. The file handle of the
open run file is placed in the Application System
Control Block of the application partition.

Procedural Interface

Chain (pbFileSpec, cbFileSpec, pbPassword,
cbPassword, priority, ercTermination,
fDebug): ErcType

where

pbFileSpec

cbFileSpec describe a character string of the
form {node} [volname] <di rname>
filename.

pbPassword

cbPassword describe either the volume,
directory, or file password that
authorizes access to the specified
file.

priority is the priority (0-254, with 0 the

highest) at which to schedule the
newly created process for execution.

Request Block

7-8

ercTermination

is a 16-bit status code to be placed
in the Application System Control
Block of the application partition
for examination by the run file. 1In
the primary application partition
only, a nonzero status code causes
the content of the type-ahead buffer
to be discarded and the submit or
recording file to be closed.

fDebug indicates whether the run file is to
be debugged. TRUE indicates it is to
be debugged and therefore not
scheduled for execution; FALSE
indicates it is to be scheduled for
execution. If fDebug is TRUE, then
the Debugger is entered
automatically as soon as the task
image is loaded into the application
partition.
Size
Offset Field (bytes) Contents
0 sCntiInfo 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 28
12 priority 2
14 ercTermination 2
16 fDebug 2
18 pbFileSpec 4
22 cbFileSpec 2
24 pbPassword 4
28 cbPassword 2

ErrorExit
Description

The ErrorExit procedure terminates the current
application system and passes an abnormal status
code to the specified exit run file. ErrorExit
never returns to the calling process.

ErrorExit is exactly 1like the Exit operation
except that the status code in ErrorExit 1is
explicit.

ErrorExit:

1. Verifies that the specified exit run file
exists, that it contains a valid task image,
and that the task image fits in the
application partition memory (the oS
terminates if this verification fails.)

2. Places the specified abnormal status code 1in
the Application System Control Block of the
application partition.

3. Disconnects interrupt handlers of the
application partition and terminates all
processes of the application partition.

4. Terminates keyboard (primary application
partition only), timer, and communications
requests, and waits until all disk and
printer input/output activity has ceased.

5. In the primary application only, resets the
keyboard to character mode. Discards the
content of the type-ahead buffer if the
keyboard was in unencoded mode and/or the
status code is nonzero.

6. In the primary application partition only,
reenables the ACTION-FINISH feature and
discards the action code (if any).

7. In the primary application partition only,
closes the submit or recording file if the
status code is nonzero.

8. Closes all files opened for the application
partition except those marked long-lived (by
the OpenFileLL or SetFhLongevity operations;
see the "File Management" section).

9. Releases for reuse all application partition
memory that was allocated as short-lived.

10. Allocates a short-lived memory segment large
enough to contain the task 1image from the
specified exit run file. If sufficient
application partition memory to load the exit
run file cannot otherwise be allocated, then
long-lived memory is reset (that is, released
to the common pool of wunallocated memory)
before the exit run file is loaded.

1l1. Reads the task image from the run file into
the application partition.

12. Relocates all intersegment references to
accommodate the memory address at which the
task image is loaded.

13. Creates a process to be scheduled at the
default priority. The initial values 1loaded
into the segment registers (CS, DS, SS, ES),
the Stack Pointer (SP), and the Instruction
Pointer (IP) are derived from information 1in
the run-file header.

ErrorExit has no effect on the allocation of
long-lived memory except as noted in step 10
above. If necessary, the exit run file 1is 1left
open to accommodate code swapping of the exit run
file. The file handle of the open run file is
placed in the Application System Control Block of
the application partition.

Procedural Interface

Request Block

7-10

Call ErrorExit (ercTermination)

ercTermination

is a 16-bit status code to be placed
in the Application System Control
Block of the application partition
for examination by the exit run
file. In the primary application
partition only, a nonzero status
code causes the content of the type-
ahead buffer to be discarded and the
submit or recording file to be
closed.

ErrorExit is a system common procedure.

Exit

Description

The Exit procedure terminates the current
application system and passes a normal status
code to the specified exit run file. EXxit never
returns to the calling process.

Exit is exactly 1like the ErrorExit operation
except that the status code in Exit is implicit.
That is,

Call Exit
is equivalent to:
Call ErrorExit (0)

Exit:
l. Terminates the current application system.

2. Places a normal successful status code (0) in
the Application System Control Block of the
application partition.

3. Closes all files opened for the specific
application partition except those marked
long-lived (by the OpenFileLL or
SetFhLongevity operations; see the "File
Management" section).

4, 1Invokes the exit run file of the application
partition.

Procedural Interface

Request Block

Call Exit

Exit is a system common procedure.

LoadTask

Description

The LoadTask service 1loads and activates an
additional task as part of the current
application system in the application partition.

LoadTask:

l. Verifies that the file handle specifies a run
file that contains a valid task image and
that the task image fits in the application
partition memory.

2. Allocates a short-lived memory segment large
enough to contain the task 1image from the
specified run file.

3. Reads the task image from the run file 1into
the application partition.

4. Relocates all intersegment references to
accommodate the memory address at which the
task image is loaded.

5. Creates a process to be scheduled at the
specified priority. The initial values
loaded into the segment registers (CS, DS,
SS, ES), the Stack Pointer (SP), and the
Instruction Pointer (IP) are derived from
information in the run-file header.

Procedural Interface

LoadTask (fh, priority, fDebug): ErcType

where

fh is the file handle of a run file
that has been opened by the calling
process.

priority is the priority (0-254, with 0 the
highest) at which to schedule the
newly created process for

execution. A value of 255 requests
that a process not be created. This
permits the loading of a task image
that 1is executed by calling the
procedures in it from another
process.

Request Block

fDebug indicates whether the task is to be
debugged. TRUE indicates it is to
be debugged and therefore not
scheduled for execution; FALSE
indicates it is to be scheduled for
execution. In contrast to its
meaning in the Chain operation,
setting fDebug to TRUE does not
automatically activate the Debugger.
Size
Offset Field (bytes) Contents
0 sCntInfo 2 6
2 nRegPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rgCode 2 29
12 fh 2
14 priority 2
16 fDebug 2

Task Management

7-13

QueryExitRunFile

Description))
The QueryExitRunFile service returns the name,
password, and priority of the exit run file of
the application partition.

Procedural Interface

QueryExitRunFile (pbExitRunFileRet,
cbExi tRunFileRet,
pbPasswordRet, cbPasswordRet,
pbPriorityRet): ErcType

pbExi tRunFileRet

cbExitRunFileRet
define the memory area into which
the exit run file specification 1is

returned. The first byte of the
returned information is the size of

the exit run file specification.

pbPasswordRet
PasswordRet) . .
cb define the memory area into which
the password for the exit run file
is returned. The first byte of the
returned information is the size of
the password.
PriorityRet,
pb Y is the memory address of the word
into which the priority of the exit
run file is returned.

Request Block

cbPriorityRet is always 2.

Offset

P
SO WNO

P
N

18
22

24
28

30
34

Size
Field (Bytes)
sCntInfo 2
nRegPbCb 1
nRespPbCb 1
userNum 2
exchResp 2
ercRet 2
rgCode 2
reserved 6
pbExi tRunFileRet 4
cbExitRunFileRet 2
pbPasswordRet 4
cbPasswordRet 2
pbPriorityRet 4
cbPriorityRet 2

Contents

187

SetExitRunFile

Description . .) . .
The SetExitRunFile service establishes a new exit

run file for the application partition in which
the calling process is executing.

Procedural Interface
SetExitRunFile (pbExitRunFile, cbExitRunFile,
pbPassword, cbPassword,
priority): ErcType

where

pbExitRunFile

cbExitRunFile
describe a character string of the
form {node} [volname]<dirname>file-
name that specifies the run file to
be 1loaded into the application
partition when an Exit request is
issued by the current task.

pbPassword

cbPassword describe the volume, directory, or
file password that authorizes access
to the specified file.

priority is the priority (10-254, with 10 the

highest) at which the newly created
process is scheduled for execution.

Request Block

Size
Offset Field (Bytes) Contents
0 sCntInfo 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rgcode 2 186
12 priority 2
14 reserved 4
18 pbExitRunFile 4
22 cbExitRunFile 2
24 pbPassword 4
28 cbPassword 2

SECTION 8

VIRTUAL CODE SEGMENT MANAGEMENT

OVERVIEW

The wvirtual code segment management facility
permits the execution of application systems that
exceed the size of physical memory of an
application partition. This 1is accomplished
through the use of the virtual memory technique.

Virtual code segment management is available to
the primary or a secondary task of an application
partition. However, a secondary task cannot be
virtual if the primary task already uses virtual
code segment management.

Primary tasks are those 1loaded by the Chain,
ErrorExit, or Exit operations (see the "Task
Management" section), or the LoadPrimaryTask
operation (see the "Application Partition
Management" section).

Secondary tasks are those 1loaded by the task
management LoadTask operation.

CONCEPTS
Virtual Memory

Virtual memory is a technique that makes the
apparent size of memory of an application
partition (from the perspective of the
application programmer) greater than its actual
physical size. This improves the efficiency of
memory usage by allowing disk storage, as well as
the main memory of an application partition, to
be used to <contain parts of the current
application system.

Two popular implementations of virtual memory are
segment swapping and page swapping. (The use of

program overlays is not considered virtual memory
because it is not transparent to the application
programmer.)

Virtual Code Segment Swapping

8-2

The Operating System supports virtual code
segment swapping. Each task 1is divided into
variable-length code segments that reside on disk
in a run file. As the task executes, only those
code segments that are required at a particular
time actually reside in the main memory of an
application partition; the other code segments
remain on disk until they, in turn, are required.

When a particular code segment in the memory of
an application partition is no longer needed, it
is overlaid by another code segment. This can be
done because all code segments produced by B20
compilers (and by assembler code that is written
according to a simple set of guidelines; see the
B20 System Programmers and Assembler Reference
Manual (Part 2), form 1144466) are reentrant.

When the particular code segment 1is required
again, it is simply reread from the run file.
Since code segments are never modified, they can
always be read directly from the run file into
which the Linker wrote them.

Virtual Code Segment Swapping Versus Page Swapping

Using the Virtual

Initializing

0OS virtual code segment swapping differs from the
page swapping of other systems in two significant
ways:

Since only code, not data, segments are moved

o from disk to the main memory of an
application partition, it is never necessary
to allocate a swapping file or to write
segments back to disk.

o A code segment is a variable-length logical
entity, not a fixed-length physical entity.
A code segment contains one or more complete
procedures.

Code Segment Management Facility

There are two steps to using virtual code segment
management:

o initializing the virtual code segment
management facility, and

o specifying to the Linker the desired grouping
of object modules into code segments.

The swap buffer is an overlay area in the memory

of an application partition. It is wused to
contain all nonresident code segments. It must
be allocated either dynamically using the
AllocMemorySL operation (see the "Memory

Management" section) or statically configured
into the task. The swap buffer is commonly
allocated dynamically so that its size <can be
determined by the amount of memory available in
the partition.

The InitOverlays object module procedure must be
called before any procedure in a nonresident
(virtual) code segment is called.

The arguments to the InitOverlays operation are
the memory address and the size of the swap
buffer. This buffer must be large enough to
contain the largest nonresident code segment. A
larger buffer permits more code segments to be
kept in the main memory of an application
partition and improves system performance.

8-3

Linking

Using Overlays

After the wvirtual code segment management
facility is 1initialized, no further explicit
reference must be made to the swap buffer; the
facility automatically allocates the memory in
the swap buffer to code segments as they are read
in.

When linking a task to use the virtual code
segment management facility, the desired grouping
of object modules into code segments must be
specified to the Linker.

No restrictions are placed on the ability of
procedures to call other procedures in any code
segment to any degree of nesting or recursion.
Note, however, that the performance of an
application system is substantially improved if
some care is exercised in the grouping of
procedures into object modules and object modules
into code segments. (See the B20 Systems
Linker/Librarian Reference Manual, form 1148681,
for more information about the Linker utility.)

Programs that use overlays have two parts:
resident and overlaid.

The resident part contains resident code and
data. It must contain the main program and the
call to the InitOverlays operation.

The overlaid part contains one or more overlays.
Each overlay corresponds to one or more code
segments. Only code segments can be overlaid.
All other segments must remain memory-resident.

The Linker identifies code segments by the class
name CODE. This is set automatically by FORTRAN
and Pascal but must be set explicitly when using
assembly language.

Normally, a code segment is generated by a single
compilation and is <contained in one object
module. However, the Linker can combine code
segments in any number of object modules into a
single code segment.

OPERATIONS: PROCEDURES

When using overlays:

The maximum size

of the resident code 1is

equal to the total memory in the B 20 minus
the used memory (ie. Operating System, system
services and user programs).

The maximum number of overlays is 256.

Any procedures called before the overlay area
is initialized must be in the resident code.

The SwapAl, SwapO,

Swapl, Swap2, and ComSub

object modules in the OS library must be 1in

the resident code.

All callers of

the LocklIn and LockOut

operations in ComSub (for example, SamCop)
must be in the resident code.

Virtual code segment management provides the
operation listed below.

GetCParasOvlyZone

InitLargeOverlays

InitOverlays

MakeRecentlyUsed

RelnitlLargeOverlays

ReInitOverlays

returns the size of the swap
buffer measured in

paragraphs.

is identical to InitOverlays
service with the exception
that the user describes the
length of the swap buffer as
a count of paragraphs instead

of bytes.

initializes the virtual code
segment management facility.

is called from within an

overlay to prevent that
overlay from being
inadvertently swapped out.

is identical to the
ReInitOverlays with the
exception that the user

describes the length of the
swap buffer as a count of
paragraphs instead of Dbytes.

allows the user to change the
size of the swap buffer to
recover memory or extend the
swap buffer for better

performance.
8-5

GetCParasOviyZone
The GetCParasOvlyZone service returns the size of

the swap buffer measured in paragraphs. A
paragraph is 16 bytes.

Procedural Interface
GetCParasOvlyZone: WORD

where the returned word contains the size of the
swap buffer measured in paragraphs.

Request Block

GetCParasOVlyZone is an object module procedure.

InitLargeOverlays

The InitLargeOverlays service is identical to the
InitOverlays service with the exception that the
user describes the length of the swap buffer as a
count of paragraphs instead of bytes. A
paragraph equals 16 bytes.

Procedural Interface

Request Block

InitLargeOverlays (pSwapBuffer, cParasSwapBuffer)

where

pSwapBuffer is the memory address of the
first byte of the swap buffer.
The buffer must be word-
aligned.

cParasSwapBuffer is the size of the swap buffer

in paragraphs. A paragraph is
16 bytes. The buffer must be
large enough to contain the
largest non- resident code
segment.

InitLargeOverlays is an object module procedure.

InitOverlays

Description

The 1InitOverlays procedure initializes the
virtual code segment management facility.
InitOverlays is called once at the beginning of a
task. It must be included in the resident code
of a task and must be called before any procedure
in a nonresident (virtual) code segment is
called.

Procedural Interface

Request Block

InitOverlays (pSwapBuffer, sSwapBuffer)

where

pSwapBuffer 1is the memory address of the first
byte of the swap buffer. The buffer
must be word-aligned.

sSwapBuffer 1is the size of the swap buffer.
The buffer must be 1large enough
to contain the largest nonresident
code segment.

InitOverlays is an object module procedure.

MakeRecentlyUsed

The MakeRecentlyUsed service 1is called from
within an overlay to prevent that overlay from
being inadvertently swapped out. The default
replacement algorithm of the Virtual Code
facility will swap out overlays based on age in
memory. MakeRecentlyUsed over rides this default
by making an overlay appear to have zero age
regardless of when it was swapped in. When
MakeRecentlyUsed is called by an overlay, it will
only be replaced 1in memory if there is
insufficient room for itself and for the next
overlay called. In this way the user may dictate
to the virtual code facility that a specific
overlay should remain in memory if possible.

Procedural Interface

Request Block

MakeRecentlyUsed

with no arguments

MakeRecentlyUsed is an object module procedure.

8-9

RelnitLargeOverlays

The RelInitlLargeOverlays service is identical to
the RelInitOverlays service documented above with
the exception that the user describes the length

of the swap buffer
instead of bytes.

Procedural Interface

as a count of paragraphs
A paragraph equals 16 bytes.

ReInitLargeOverlays (cParasSwapBuffer)

where

cParasSwapBuffer

Request Block

ReInitLargeOverlays

procedure.

810

is the size of the swap
buffer in paragraphs. A
paragraph is 16 Dbytes. The
buffer must be large enough to
contain the largest
nonresident code segment.

is an object module

RelnitOverlays

user to
recover

The ReInitOverlays service allows the
change the size of the swap buffer to
memory or extend the swap buffer for Dbetter
performance. The swap buffer size can only be
changed by adding or subtracting memory from the
high memory side of the Dbuffer. Remember that
the size of the swap buffer must always follow
the constraints previously described.

Procedural Interface

Request Block

ReInitOverlays (sSwapBuffer)
where

sSwapBuffer is the size of the
buffer. The buffer
large enough to
largest
segment.

swap
must Dbe
contain the
nonresident code

ReInitOverlays is an object module procedure.

8-11

OVERVIEW

SECTION 9
PARAMETER MANAGEMENT

The parameter management facility provides a
structured mechanism for passing limited
information from one application system to 1its
successor within the same partition.

Application systems that pass parameters include,
for example, the B20 Executive in the primary
application partition, or the batch manager in
any application partition.

Forms-Oriented Interface

Parameters

The B20 Information Processing System supports
and encourages the use of forms—-oriented
interfaces for workstation operators.

The B20 Executive 1is an example of a forms-
oriented interface. The operator types a command
name and presses the RETURN key; the Executive
responds with the command form appropriate to it.
(See the B20 System Executive Reference Manual,
form 1144474 for details about this type of
interface.)

For example, if the operator types Delete and
presses RETURN, the following form appears:

Delete
File list
[Confirm each?]

The operator enters data into the fields of the
form and also corrects typing errors by modifying
the data. The operator, when satisfied with the
contents of the fields, presses the GO key.

Note that the Delete command takes two kinds of
parameters: a parameter and a list of
subparameters. A parameter consists of zero or
more subparameters. A subparameter typically
consists of an arbitrary sequence of characters
not i ncluding a space. (For Executive
parameters, see the "Parameters in a Command
Form" section of the B20 System Executive
Reference Manual, form 1144474.)

9-1

Organizing Parameters: Variable-Length Parameter Block

Continuing the previous example, after the
operator has pressed GO, the Executive organizes
the operator's data to simplify Delete's
extraction of the parameters. The organized data
is stored in the Variable-Length Parameter Block.

The Variable-Length Parameter Block (VLPB) 1is a
formal structure used by the Executive and batch
manager to communicate parameters to application
systems. The VLPB is created in the 1long-lived
memory of an application partition, and its
memory address is stored in the Application
System Control Block (ASCB) of the application
partition.

An ASCB in each application partition
communicates parameters and other information
between application systems within its partition.

The VLPB and the parameter passing services of
the Executive and batch manager are applicable to
any application system on a B20 system.

A common case is an application system to be
invoked from the Executive. When implementing
such an application system, the user decides on a
command name, the captions for the fields of the
command form, and the corresponding message that
appears when the operator presses the HELP key.
This information is supplied to the Executive
using the New Command command (as described in
the B20 System Executive Reference Manual, form
1144474).

Another common case is an application system to
be invoked from the batch manager. When
implementing such an application system, the user
creates a batch job control language file.

CONCEPTS

Parameter and Subparameter

A parameter consists of Zero or more
subparameters. A subparameter typically consists
of an arbitrary sequence of characters not
including a space. For example, the parameter:

1 abc Work.Fri

contains three subparameters: 1, abc, and
Work.Fri.

A space 1is embedded 1in a subparameter by
including the entire subparameter in single
quotes. For example, the parameter:

'l abc' Work.Fri

contains two subparameters: 1 abc, and Work.Fri.

Variable-Length Parameter Block

The Variable-Length Parameter Block (VLPB) is a
formal structure used by the Executive or batch
manager to communicate parameters to application
systems in an application partition. The VLPB is
created 1in the long-lived memory of an
application partition; its memory address 1is
stored in the pVLPB field of the Application
System Control Block (see below). The
application system gets its parameters from the
VLPB using three operations: CParams, CSubParams,
and RgParam.

The CParams operation returns the number of
parameters stored in the VLPB, that 1is, the
number of fields in the command form.

The CSubParams operation returns the number of
subparameters stored in the VLPB for a specified
parameter, that is, the number of subparameters
the operator entered in a specified field of the
command form.

The RgParam operation provides access to the
parameters stored in the VLPB.

Four object module procedures support the

creation of a VLPB: RgParamInit, RgParamSetElt-
Next, RgParamSetListStart, and RgParamSetSimple.

9-3

The VLPB is a self-describing, two-dimensional
array of character strings. Each element of the
array rgSdoParam is a pair (ob, cb) of words,
where ob is the offset within the VLPB of the
corresponding row of the two-dimensional array,
and cb is the number of bytes occupied by the
row. The strings that make up a row are prefixed
with a l-byte count and packed together without
padding.

The format of the VLPB is shown in Table 9-1
below.

Table 9-1. Variable-Length Parameter Block

Size
Offset Field (bytes)
0 sVarParams 2
2 ibFirstFree ’ 2
4 cParams 2
6 rgSdoParam 4* (cParams + 1)

(cParams + 1)

Application System Control Block

An Application System Control Block (ASCB) in
each application partition communicates
parameters, the termination code, and other
information between application systems within
its partition.

The address of the ASCB is obtained through the
GetASCB operation.

The format of the ASCB is shown in Table 9-2.

Table 9-2. Application System Control Block

Size
Offset Field (bytes) Description

0 fhSwapFile 2 Set by the Chain op-
eration. (See the
"Task Management"
section.) If the
primary task is
virtual, then
fhSwapFile is the
file handle of its
run file; otherwise,
fhSwapFile is set to
OFFFFh.

2 pPVLPB 4 Memory address of the
VLPB in the long-
lived memory of an
application
partition.

6 fExecScreen 1 Set to FALSE by the
ResetVideo operation
(see the "Video Dis-
play Management"
section) and to TRUE
by the Executive. If
fExecScreen is FALSE
when the B20
Executive is loaded,
it reinitializes the
video subsystem.

7 fChkBoot 1 Set to FALSE during
OS initialization
and to TRUE by the
Executive.

8 ercRet 2 The Chain operation
writes its ercTermi-
nation parameter into
this word.

9-6

Table 9-2. Application System Control Block (Cont.)

Size
Offset Field (bytes) Description

10 pbMsgRet 4

14 cbMsgRet 2 pbMsgRet and cbMsgRet
can be set by an ap-
plication system to
describe a string of
text located in long-
lived memory. When
the Executive is
loaded, this text
appears on the video
display.

16 reserved 8

22 fTermination 1 Set to TRUE when a
user tries to ACTION-
FINISH an application
system when ACTION-
FINISH is disabled; or
when an application
system tries to
terminate the task in
a locked secondary
partition. This is
set to FALSE when a
task replaces the old
task in the partition

23 fVvacate 1 Set to TRUE when a
user or an application
system tries to vacate
the task in a locked
secondary partition.
This is set to FALSE
when a task replaces
the old task in the
partition.

24 oLastTask 2 Offset of the last
task loaded.

Table 9-2. Application System Control Block (Cont.)

Size
Offset Field (Bytes) Description

26 fExecFont 1 Set to FALSE by OS
when the font is
changed. When the
Executive finds fExec-
font set to FALSE, it
reloads the font and
sets fExecfont to
TRUE.

27 bActionCode 1 Contains the last
action code detected
by the keyboard
process (not including
ACTION-A, -B, and
FINISH codes).

28 cParMemArray 2 The size of the memory
array (in l6-byte
paragraphs) of the
primary task when
loaded.

30 reserved 34

Table 9-2. Application System Control Block (Cont.)

Size

Offset Field (Bytes) Description

64 sbUserName 31

95 sbPassword 13

108 sbCmdFile 79

OPERATIONS: PROCEDURES

The name of the
current user (the
first byte of the
string is the length
of the name).

The password the user
gave when signing on
(for accessing the
user configuration
file).

The name of the
user's Executive
command file.

Parameter management operations are categorized
by function in Table 9-3 below.

Table 9-3. Parameter Management Operations by Function

Retrieval Creation

CParams RgParamlnit
CSubParams RgParamSetEltNext
Ge tpASCB RgParamSetListStart
RgParam RgParamSetSimple

Retrieval

Creation

CParams

CSubParams

GetpASCB

RgParam

RgParamlInit

RgParamSetEltNext

RgParamSetListStart

RgParamSetSimple

returns the number of
parameters stored in the
Variable-Length Parameter
Block.

returns the number of
subparameters stored in the
Variable-Length Parameter Block
for a specified parameter.

returns the address of the
Application System Control
Block in an application
partition.

provides access to the
parameters stored in the
Variable-Length Parameter
Block.

initializes the specified
memory to be the Variable-
Length Parameter Block.

creates an additional
subparameter of the current
parameter in the Variable-
Length Parameter Block.

initiates the creation of a
parameter with multiple
subparameters.

creates a parameter with one
subparameter.

CParams

Description

The CParams procedure returns the number of
parameters stored in the Variable-Length

Parameter Block, that is, the number of fields in
the command form.

Note that the B20 Executive passes the

name of
the command as parameter zero.

Procedural Interface

Request Block

9-10

CParams: WORD

CParams is an object module procedure.

CSubParams

Description

The CSubParams procedure returns the number of
subparameters stored in the Variable-Length
Parameter Block for a specified parameter, that
is, the number of subparameters the operator
entered in a specified field of the form.

Procedural Interface

Request Block

CSubParams (iParam): WORD
where

iParam is the index of the parameter.

CSubParams is an object module procedure.

GetpASCB

Description

The GetpASCB procedure returns the address of the
Application System Control Block (ASCB) of the
application partition in which the application
system is executing.

Procedural Interface

Request Block

9-12

GetpASCB (ppASCBRet): ErcType

where

PPASCBRet is the memory address of a pointer
that is returned with the address to
the ASCB.

GetpASCB is a system common procedure.

RgParam

Description

The RgParam procedure provides access to the
parameters stored in the Variable-Length
Parameter Block. Each RgParam invocation returns
the memory address and size of a subparameter.
Note that the Executive stores the command name
used to invoke the application system in RgParam
(0,0).

Procedural Interface

Request Block

RgParam (iParam, jParam, pSdRet): ErcType

where

iParam is the index of the parameter.
jParam is the index of the subparameter.
pSdRet is the location of a 6-byte block of

memory. The memory address of the
subparameter is returned in the
first 4 bytes, and its size is
stored in the last 2 bytes.

RgParam is an object module procedure.

9-13

RgParaminit

Description

The RgParamInit procedure initializes the
specified memory to be the Variable-Length
Parameter Block. If the block of memory 1is not
large enough, RgParamInit attempts to 1increase
its size by allocating additional 1long-lived
memory. This attempt succeeds only if the block
of memory is at the top of the long-lived memory
of an application partition.

Procedural Interface

Request Block

RgParamInit (pVarParams, sVarParams,

iParamMax): ErcType
where

pvarParams

sVarParams describe the block of memory to be
used for the Variable-Length
Parameter Block. If sVarParams is
0, the current Variable-Length
Parameter Block is reinitialized.

i ParamMax is one 1less than the number of
parameters to be recorded.

RgParamInit is an object module procedure.

RgParamSetEItNext

Description

The RgParamSetEltNext procedure creates an
additional subparameter of the current parameter
in the Variable-Length Parameter Block. The
invocation of RgParamSetEltNext must immediately
follow the invocation of either the RgParamSet-
ListStart or RgParamSetEltNext procedure.

If the Variable-Length Parameter Block is not
large enough to accommodate this subparameter, it
is compacted and an attempt made to extend it by
allocating additional 1long-lived memory. This
attempt succeeds only if the Variable-Length
Parameter Block is at the top of the 1long-lived
memory of an application partition.

Procedural Interface

Request Block

RgParamSetEltNext (pSd): ErcType
where

pSd is the location of a 6-byte block of
memory, the first 4 bytes of which
contain the memory address of the
string to be used and the 1last 2
bytes of which contain the string's
length.

RgParamSetEltNext is an object module procedure.

9-15

RgParamSetListStart

Description

The RgParamSetListStart procedure initiates the
creation of a parameter with multiple
subparameters. The RgParamSetEltNext procedure,
which must be called immediately following an
invocation of RgParamSetListStart, creates a
subparameter. If the parameter already exists,
all its o0ld subparameters are destroyed and the
memory they occupied reused.

Procedural Interface

Request Block

9-16

RgParamSetListStart (iParam): ErcType

where

iParam is the index of the parameter.
RgParamSetListStart is an object module
procedure.

RgParamSetSimple

Description

The RgParamSetSimple procedure creates a
parameter with one subparameter. If the
parameter already exists, all its old
subparameters are destroyed and the memory they
occupied reused.

If the Variable-Length Parameter Block is not
large enough to accommodate this parameter, it is
compacted and an attempt made to extend it by
allocating additional 1long-lived memory. This
attempt succeeds only if the Variable-Length
Parameter Block is at the top of the 1long-lived
memory of an application partition.

Procedural Interface

Request Block

RgParamSetSimple (iParam, pSd): ErcType

where
iParam is the index of the parameter.
psd is the location of a 6-byte block of

memory, the first 4 bytes of which
contain the memory address of the
string to be used and the 1last 2
bytes of which contain the string's
length.

RgParamSetSimple is an object module procedure.

9-17

SECTION 10

APPLICATION PARTITION MANAGEMENT

OVERVIEW

The application partition management facility
supports the simultaneous execution of several
application systems, each in its own partition.
An interactive application system can be
executing in one partition while noninteractive
application systems are executing in other
partitions.

Each application system can load and activate any
number of tasks within its partition. Any number
of processes can execute the code in each task.
Each application system is completely independent
of the others, yet can communicate with
application systems in other partitions.

10-1

CONCEPTS

Types of Partitions

The memory of a system consists of two types of
partitions:

system partitions, which are loaded with the
operating system (0S) and dynamically
installed system services, and

application partitions, each of which can be
loaded with an application system.

When a system is initialized, the OS 1is 1loaded
into the system partition at the low-address end
of memory. Dynamically installed system services
are loaded 1into an extended system partition
located at the high-addr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>