

Burroughs

Reference
Manual

Priced Item
Printed in U.S.A
August 1983 .

1162252

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Warning: This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in accordance with the
instructions manual, may cause interference to radio communications. It
has been tested and found to comply with the limits for a Class A
computing device pursuant to Subpart 1 of Part 15 of FCC Rules, which
are designed to provide reasonable protection against such interference
when operated in a commercial environment. Operation of this
equipment in a residential area is likely to cause interference in which
case the user at his own expense will be required to take whatever
measures may be required to correct the interference.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of this manual, or may be addressed directly to
Documentation East, Burroughs Corporation, P .0. Box CB7, Malvern,
Pennsylvania, 19355, U.S. America.

LIST OF EFFECTIVE PAGES

Page
iii thru xxv
xx vi
1-1thru1-7
1-8
2-1 thru 2-25
2-26
3-1 thru 3-12
4-1 thru 4-31
4-32
5-1 thru 5-6
6-1 thru 6-16
7-1 thru 7-16
8-1 thru 8-11
8-12
9-1 thru 9-17
9-18
10-1 thru 1 0-26
11-1thru11-12
12-1
12-2
13-1 thru 13-7
13-8
14-1 thru 14-82
15-1 thru 15-40
16-1 thru 16-10
17-1 thru 17-34
18-1thru18-12
19-1thru19-17
19-18
20-1 thru 20-4
21-1 thru 21-28
22-1 thru 22-6
23-1 thru 23-18
24-1 thru 24-16
25-1 thru 25-10
26-1 thru 26-28
27-1 thru 27-3
27-4
28-1 thru 28-20
29-1 thru 29-21
29-22
30-1 thru 30-6
A-1 thru A-49
A-50
B-1 thru B-10
C-1 and C-2
D-1 thru D-5
D-6
E-1 thru E-12
F-1 thru F-19
F-20
G-1 thru G-41
G-42
1 thru 20

Issue
Origi,nal
Blank
Original
Blank
Original
Blank
Original
Original
Blank
Original
Original
Original
Original
Blank
Original
Blank
Original
Original
Original
Blank
Original
Blank
Original
Original
Original
Original
Original
Original
Blank
Original
Original
Original
Original
Original
Original
Original
Blank
Original
Original
Original
Blank
Original
Original
Blank
Original
Original
Original
Blank
Original
Original
Blank
Original
Blank
Original

iii

TABLE OF CONTENTS

Section Title Page

1 OVERVIEW 1-1
Multiprogramming 1-1
Event-Driven Priority Scheduling 1-1
Interprocess Communication 1-2
Exchanges 1-2
System Service Processes . 1-3
Accessing System Services 1-3
Filters . 1-4
Local Resource-Sharing Network (Cluster) 1-4
Standard Network 1-5
Virtual Code Segment Management 1-5
File Management . 1-5
Device Handlers 1-6
Other Features 1-6
Command Interpreter 1-7
Compact System . 1-7
Batch Manager 1-7

2 CONCEPTS. 2-1
General 2-1
Structure of the B 20 Operating System 2-1
Processing Concepts 2-2
Memory Organization . 2-4

Types of Memory 2-6
Virtual Code Segment Management 2-6
Interprocess Communication 2-7

Messages and Exchanges 2-7
Process States 2-9
Process Priorities and Process Scheduling 2-10
Sending a Message . 2-11
Waiting for a Message 2-12
Applying Interprocess Communication . 2-12

Communication 2-12
Synchronization 2-13
Resource Management 2-14

B 20 System Services 2-15
Procedural Access to System Services 2-15
Direct Access to System Services 2-15
Interaction of Client Processes and System Service Processes 2-17
Filter Processes . 2-19
Request Blocks . 2-20

Ouster Configuration 2-21
Interstation Communication . 2-21

Ouster Workstation Agent Service Process 2-22
Master Workstation Agent Service Process 2-22
Interstation Request/Response Message 2-23

Communications I/O Processor . 2-23
Software Organization 2-24
User::-Written Software in a Ouster Configuration 2-24

Standard Network 2-25

3 PROCESS MANAGEMENT 3-1
Overview . 3-1

v

vi

TABLE OF CONTENTS (CONT.)

Section Title Page

3 (Cont.) Concepts 3-2
3-2
3-3
3-3
3-4
3-6
3-7
3-8
3-9

Process
Context of a Process
Process Priorities and Process Scheduling
Process States

QJerations: Primitives and Procedures
ChangePriority .
Create Process
Get User Number
Query ProcessNum ber 3-12

4 INTERPROCESS COMMUNICATION MANAGEMENT 4-1
Overview . 4-1
Messages 4-1
Exchanges 4-2
System Service Processes 4-2
Accessing System Services . 4-3
Filter Processes . . . 4-4
Cluster Configuration 4-4

Concepts . 4-6
Messages 4-6
Exchanges 4-6

Link Blocks . 4-6
Exchange Allocation 4-8

Sending a Message . . 4-8
Waiting for a Message 4-9
Sending Messages to Another Partition 4-9
System Service Processes 4-10
Accessing System Services 4-10
Procedural Access to System Services 4-10
Direct Access to System Services . . 4-11
Interaction of Client Processes and System Service Processes 4-13
Filter Processes . 4-15
Request Blocks 4-16

Standard Header 4-1 7
Request-Specific Control Information 4-18
Request Data Item . 4-18
Response Data Item 4-18
Example 4-19

Request Primitive . 4-20
Respond Primitive . 4-21
Wait Primitive 4-22
Interstation Communication 4-22

Cluster Workstation Agent Service Process 4-23
Master Workstation Agent Service Process 4-23
Interstation Request/Response Message 4-24

Operations: Primitives 4-25
Check 4-26
PSend 4-27
Request . 4-28
Respond 4-29
Send 4-30
Wait . . 4-31

TABLE OF CONTENTS (CONT.)

Section Title Page

5 EXCHANGE MANAGEMENT 5-1
Overview . 5-1
Concepts . 5-1

Exchange 5-1
Exchange Allocation . 5-2

Operations: Procedures and Services 5-3
AllocExch . 5-4
DeallocExch 5-5
Query DefaultRespExch 5-6

6 MEMORY MANAGEMENT 6-1
Overview . 6-1

Types of Memory 6-1
Concepts . 6-2

Addressing Memory 6-2
Segments 6-2

Code, Static Data, and Dynamic Data Segments 6-3
Memory Organization 6-4

Long-Lived and Short-Lived Memory 6-5
Operations 6-7
De all oca ti ons 6-7
Long-Lived Memory Uses 6-7
Short-Lived Memory Uses 6·8

Virtual Code Segment Management 6-8
Operations: Services 6-9

AllocAllMemorySL 6-10
AllocMemory LL 6-11
AllocMemorySL 6-12
DeallocMemory LL 6-13
DeallocMemorySL 6-14
Query MemAvail 6-15
ResetMemory LL 6-16

7 TASK MANAGEMENT 7-1
Overview. 7-1
Concepts . 7-2

Application System 7-2
Task 7-2
Code and Data Segments 7-2
Loading a Task 7-3
Exit Run File 7-4
Operations 7-4

Operations: Procedures and Services 7-5
Chain 7-6
Error Exit 7-9
Exit 7-11
Load Task 7-12
QueryExitRunFile 7-14
SetExitRunFile . 7-16

8 VIRTUAL CODE SEGMENT MANAGEMENT 8-1
Overview . 8-1
Concepts . 8-2

vii

Section

8 (Cont.)

9

10

viii

TABLE OF CONTENTS (CONT.)

Title

Virtual Memory
Virtual Code Segment Swapping
Virtual Code Segment Swapping Versus Page Swapping
Using the Virtual Code Segment Management Facility

Initializing
Linking

Using Overlays . . .
Operations: Procedures

GetCParasOvly Zone
InitLargeOverlays .
InitOverlays . : .
MakeRecentlyUsed
Reini tLargeOverlays
ReinitOverlays . .

PARAMETER MANAGEMENT
Overview

Forms-Oriented Interface . .
Parameters
Organizing Parameters: Variable-Length Parameter Block

Concepts
Parameter and Subparameter. . .
Variable-Length Parameter Block .
Application System Control Block

Operations: Procedures
CParams ..
CSubParams
GetpASCB.
RgParam
RgParaminit
RgParamSetEltNext
RgParamSetListStart .
RgParamSetSimple

APPLICATION PARTITION MANAGEMENT
Overview
Concepts

Types of Partitions
Types of Application Partitions .

Primary Application Partitions
Secondary Application Partitions ·

Dynamic Control of Application Partitions
Memory Organization of Application Partitions
Creating Secondary Application Partitions

At System Initialization
Dynamically

Partition Handle
Loading Tasks .
Exit Run File. .
Obtaining Partition Status .
Interpartition Communication
Terminating Tasks .
Removing Partitions

Page

8-2
8-2
8-3
8-3
8-3
8-4
8-4
8-5
8-6
8-7
8-8
8-9

8-10
8-11

9-1
9-1
9-1
9-1
9-2
9-3
9-3
9-3
9-4
9-8

9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17

10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-3
10-4
10-6
10-6
10-6
10-6
10-6
10-7
10-7
10-7
10-8
10-8

TABLE OF CONTENTS (CONT.)

Section Title Page

IO (Cont.) Deallocation of System Resources . 10-9
Application Partition Data Structures 10-9

Operating: Services. 10-12
Interpartition Communication 10-12
Partition Control 10-13
Task Control . 10-13
CreatePartition 10-14
GetPartitionExchange 10-16
GetPartitionHandle 10-17
GetPartitionStatus 10-18
LoadPrimaryTask . 10-20
RemovePartition 10-22
SetPartitionExchange 10-23
SetPartitionLock 10-24
TerminatePartition Tasks 10-25
VacatePartition . 10-26

11 CLUSTER MANAGEMENT 11-1
Overview . 11-1
Concepts . 11-2

Softwarn 11-2
Initialization 11-2
Operation 11-3
Status 11-4

Operations: Services 11-5
DisableCluster 11-6
GetClusterStatus 11-8
GetWSUserName 11-11
SetWSUserName 11-12

12 NETWORK MANAGEMENT 12-1

13 SYSTEM SERVICES MANAGEMENT 13-1
Overview . 13-1
Concepts . 13-2

Dynamically Installing a System Service in an Extended
System Partition 13-2

Typical Operational Sequence . 13-3
Restrictions . 13-4

Dynamically Installing a System Service in a Secondary
Application Partition 13-4

Operations: Services 13-5
ConvertToSys 13-6
ServeRq . 13-7

ix

Section

14

x

TABLE OF CONTENTS (CONT.)

FILE MANAGEMENT
Overview

File Access Methods
Local File System

Concepts .
Node ..
Volume .
Directory
File

Title

Automatic Volume Recognition
Node Name ..
Volume Name .

System Volume
Scratch Volume
Directory Name
File Name . . .
Directory and File Specifications
Abbreviated Specifications
Passwords
File Protection

Creating and Accessing a File
Logical File Address
File Handle
Memory Address
Using a File . .

Creating a File .
Opening a File .
Reading and Writing a File

Local File System
Operations: Procedures and Services

ChangeFile Length .
ChangeOpenMode .
CheckReadAsync
CheckWriteAsync
ClearPath . . .
CloseAllFiles . .
CloseAllFilesLL .
CloseFile
Create Dir
CreateFile
DeleteDir
Delete File
GetDirStatus .
GetFhLongevity
GetFileStatus .
GetUCB ..
OpenFile . .
OpenFileLL .
QueryWSNum
Read
ReadAsync
ReadDirSector

Page

14-1
14-1
14-2
14-3
14-4
14-4
14-4
14-5
14-5
14-6
14-6
14-6
14-6
14-7
14-7
14-7
14-7
14-8
14-9

14-10
14-13
14-13
14-13
14-14
14-14
14-14
14-15
14-15
14-16
14-18
14-22
14-23
14-24
14-25
14-26
14-27
14-28
14-29
14-30
14-32
14-34
14-35
14-36
14-38
14-39
14-41
14-42
14-44
14-46
14-47
14-49
14-50

TABLE OF CONTENTS (CONT.)

Section Title Page

14 (Cont.) RenameFile 14-52
SetDirStatus 14-54
SetFhLongevity . 14-56
SetFileStatus . 14-57
SetPath . 14-59
SetPrefix 14-61
Write . 14-62
WriteAsync 14-64

Volume Control Structures . 14-65
Volume Home Block . 14-66
Allocation Bit Map and Bad Sector File. 14-66
File Header Block 14-66
Disk Extent 14-66
BootExt.Sys 14-71
Extension File Header Block . 14-72
Master File Directory and Directories 14-73

System Volume 14-75
System Image 14-75
Crash Dump Area 14-76
Log File. 14-76
Standard Character Font 14-76
$ Directories . 14-76

System Data Structures 14-78
User Control Block 14-78

User Control Blocks in the Master Workstation 14-79
User Control Blocks in the Cluster Workstations . 14-79

Device Control Block. 14-79

15 QUEUE MANAGEMENT 15-1
Overview . 15-1

Client Processes . 15-3
Server Processes . 15-3
Sequence for Using Queue Management Facility 15-3
Queue Index File 15-4
Installing the Queue Manager. 15-7
Queue Entry File 15-7
Queue Entry . 15-8

Client Operations. 15-9
Adding an Entry to a Queue 15-9
Reading Queue Entries 15-9

Queue Entry Handle 15-10
Queue Status Block . 15-10

Removing and Entry . 15-11
Server Operations 15-12

Establishing Servers 15-12
Marking Queue Entries 15-12
Unmarking Queue Entries . 15-13
Sample Queue Entry . 15-13
Control Queues . 15-16
Spooler Status Queue 15-17
Printer Spooler Escape Sequences . 15-19

xi

xii

TABLE OF CONTENTS (CONT.)

Section Title

15 (Cont.) Operations: Services .
Client Process Group .
Server Process Group .
AddQueueEntry
Establish Queue Server
MarkKeyedQueueEntry .
MarkNextQueueEntry .
ReadKeyedQueueEntry.
ReadNextQueueEntry .
RemoveKeyedQueueEntry
RemoveMarkedQueueEntry
RewriteMarkedQueueEntry
TerminateQueueServer
UnmarkQueueEntry . .

16 FILE ACCESS METHODS
Overview

Characteristics of the File Access Methods
Hybrid Patterns of Access
Modifying and Reading Data Files .

Concepts
Standard Record Header
Standard Record Trailer
Standard File Header.

Operations: Procedures
GetStamFileHeader .

Page

15-20
15-20
15-20
15-22
15-24
15-25
15-28
15-30
15-32
15-34
15-36
15-37
15-39
15-40

16-1
16-1
16-2
16-3
16-4
16-5
16-5
16-7
16-8

16-10
16-10

TABLE OF CONTENTS (CONT.)

Section Title Page

17 SEQUENTIAL ACCESS METHOD . 17-1
Overview . 17-1
Concepts . 17-2

Byte Streams . 17-2
Using a Byte Stream 17-2

Predefined Byte Streams for Video and Keyboard 17-2
Device/File Specifications . 17-3
Customizing SAM . 17-5
File Byte Streams . 17-5
Printer Byte Streams . 17-6

Printing Modes 17-6
Spooler Byte Streams 17-7

Printing Modes 17-7
Keyboard Byte Streams 17-8
Communications Byte Streams 17-8
X.25 Byte Streams 17-9
Video Byte Streams 17-9

Special Characters in Video Byte Streams 17-10
Multibyte Escape Sequences 17-11

Operations: Procedures 17-18
CheckpointBs 17-20
CloseByteStream 17-21
GetBsLfa 17-22
OpenByteStream 17-23
PutBackByte . 17-25
QueryVidBs 17-26
ReadBsRecord 17-27
ReadByte 17-28
ReadBytes. 17-29
ReleaseByteStream 17-30
SetBsLfa 17-31
SetlmageMode 17-32
WriteBsRecord 17-33
Write Byte 17-34

18 RECORD SEQUENTIAL ACCESS METHOD 18-1
Overview . 18-1
Concepts . 18-2

RSAM Files and Records 18-2
Working Area 18-2
Buffer 18-2
Operations: Procedures 18-3
Checkpoint Rs File 18-4
CloseRsFile 18-5
GetRsLfa 18-6
OpenRsFile 18-7
ReadRsRecord 18-9
Release Rs File 18-10
Scan ToGoodRsRecord 18-11
WriteRsRecord . 18-12

19 DIRECT ACCESS METHOD 19-1
Overview . 19-1

xiii

xiv

TABLE OF CONTENTS (CONT.)

Section Title

19 (Cont.) Concepts
DAM Files, Records, and Record Fragments .
Working Area
Buffer
Buffer Size and Sequential Access
Buffer Management Modes: Write-Through and
Write-Behind

Operations: Procedures
CloseDaFile . .
DeleteDaRecord
OpenDaFile . .
Query DaLast Record
Query DaRecordStatus
ReadDaFragment
ReadDaRecord .
SetDaBuff erMode
TruncateDaFile .
WriteDaFragment
WriteDaRecord .

20 INDEXED SEQUENTIAL ACCESS METHOD
Overview . .
Concepts . .

Key Types.
File Types
Operations
ISAM Organization

Multiuser Access Package.
Single-User Access Package
Utilities

21 DISK MANAGEMENT
Overview
Concepts

Accessing a Disk Device
Device Specification and Device Password

Operations: Procedures and Services
CheckReadAsync
CheckWriteAsync
CloseFile . . .
Dismount Volume
Format ...
GetVHB
Mount Volume
OpenFile .
Query DCB
Read ...
ReadAsync
SetDevParams
Write . . .
WriteAsync

Page

19-2
19-2
19-2
19-2
19-3

19-3
19-4
19-6
19-7
19-8

19-10
19-11
19-12
19-13
19-14
19-15
19-16
19-17

20-1
20-1
20-1
20-1
20-2
20-2
20-3
20-3
20-4
20-4

21-1
21-1
21-2
21-2
21-2
21-3
21-5
21-6
21-7
21-8

21-10
21-12
21-14
21-16
21-18
21-20
21-22
21-24
21-26
21-28

TABLE OF CONTENTS (CONT.)

Section Title Page

22 PRINTER SPOOLER MANAGEMENT 22-1
Overview . 22-1
Concepts . 22-2

Printer Spooler Configuration 22-2
Sending a Password 22-3

Operations: Services 22-3
Con figureSpooler 22-4
Spool er Password 22-6

23 VIDEO MANAGEMENT 23-1
Overview . 23-1
Video Attributes 23-1
Video Software . 23-2
Hierarchy of Video Software 23-2

Concepts . 23-3
Video Capabilities . 23-3

Basic 23-3
Standard . 23-3

Standard Video Capability 23-4
Video Attributes . 23-4
Video Refresh . 23-5
Cursor RAM 23-5
Style RAM 23-6

Basic Video Capability 23-6
Video Attributes . 23-6
Video Refresh . 23-7

Video Software . 23-7
Hierarchy of Video Software 23-7

Video Display Manager 23-8
Video Access Method 23-8
Sequential Access Method 23-9

Application System/Video Subsystem Interaction 23-9
Video Control Block . 23-10

System Data Structures: Video Control Block and
Frame Descriptor 23-11

24 VIDEO DISPLAY MANAGEMENT 24-1
Overview . 24-1
Concepts . 24-2

Reinitializing the Video Subsystem 24-2
Operations: Services 24-4

InitCharMap 24-5
InitVidFrame 24-6
LoadFontRam 24-9
QueryVidHdw 24-11
Reset Video 24-13
SetScreen VidAttr 24-15

xv

TABLE OF CONTENTS {CONT.)

Section Title Page

25 VIDEO ACCESS METHOD 25-1
Overview . 25-1

Forms-Oriented Interaction 25-1
Advanced Text Processing . 25-1

Operations: Procedures 25-2
PosFrameCursor 25-3
PutFrameAttrs 25-4
PutFrameChars . 25-6
Query FrameChar 25-7
ResetFrame 25-8
Scroll Frame 25-9

26 KEYBOARD MANAGEMENT 26-1
Overview . 26-1

Physical Keyboard 26-1
Keyboard Modes: Unencoded and Character 26-1
Keyboard Encoding Table . 26-2
LED Keys . 26-3
Submit Facility . 26-3

Concepts . 26-5
Physical Keyboard . 26-5
Keyboard Modes: Unencoded and Character 26-5
Type Ahead 26-7
ACTION Key 26-7
Independence of Keyboard and Video 26-8
Keyboard Encoding Table . 26-8
Standard Character Set . 26-9
Submit Facility . 26-9
Submit File Escape Sequences 26-11

Read-Direct Escape Sequence 26-12
Application System Termination 26-13

Operations: Services 26-14
Beep 26-15
CheckpointSysin 26-16
DisableActionFinish 26-17
QueryKbdLeds . 26-18
Query KbdState . 26-19
ReadActionCode 26-21
ReadKbd 26-22
ReadKbdDirect . 26-23
SetKbdLed 26-25
SetKbdUnencodedMode 26-26
SetSysinMode 26-27

27 COMMUNICATIONS MANAGEMENT 27-1
Overview . 27-1
Operations: Procedures 27-1

Lockin 27-2
LockOut 27-3

28 TIMER MANAGEMENT 28-1
Oterview . 28-1
Real-Time Clock 28-1

xvi

TABLE OF CONTENTS (CONT.)

Section Title Page

28 (Cont.) Programmable Interval Timer 28-1
Concepts . 28-2

Simplified Date/Time Format 28-2
System Date/Time Format 28-3
Expanded Date/Time Format 28-3
Timer Management Operations 28-4

Date/Time 28-4
Format Conversion 28-4
Delay 28-4
Real-Time Clock . 28-5
Programmable Interval Timer 28-8

Operations: Primitives, Procedures, and Services 28-10
CloseRTClock 28-12
Compact DateTime 28-13
Delay 28-14
ExpandDateTime 28-15
GetDateTime 28-16
OpenRTClock 28-17
ResetTimerlnt 28-18
SetDateTime . 28-19
SetTimerln t 28-20

29 INTERRUPT HANDLERS 29-1
Overview. 29-1

External Interrupts 29-1
Internal Interrupts 29-2
Device Handlers 29-2

Concepts . 29-3
Interrupt Types . 29-3
Interrupts . 29-5

External Interrupts 29-5
Internal Interrupts 29-8

Pseudointerrupts 29-8
Interrupt Handlers 29-9

Communications Interrupt Handlers 29-9
Packaging of Interrupt Handlers . 29-9
Mediated Interrupt Handlers 29-10
Raw Interrupt Handlers 29-11
Communications Interrupt Service Routines 29-13
Printer Interrupt Service Routines 29-13

Operations: Primitives and Services 29-14
MediatelntHandler 29-15
ResetCommISR 29-16
SetCommISR 29-17
SetlntHandler 29-19
SetLpISR 29-21

30 CONTINGENCY MANAGEMENT 30-1
Overview . 30-1
Operations: Procedures and Services 30-1

Crash. 30-2
FatalError . 30-3
Write Log 30-4

xvii

TABLE OF CONTENTS (CONT.)

Section Title Page

A STATUS CODES A-1

B STANDARD CHARACTER SET B-1

C KEYBOARD CODES C-1

D REQUEST CODES IN NUMERIC SEQUENCE D-1

E DAT A STRUCTURES E-1

F ACCESSING SYSTEM OPERATIONS FROM ASSEMBLY
LANGUAGE F-1

G GLOSSARY G 1

INDEX ..

xviii

LIST OF ILLUSTRATIONS

Figure Title Page

2-1 Relationship of Processes, Tasks, and an Application
System 2-3

2-2 Memory Organization 2-4
2-3 Memory Organization with Secondary Application Partition 2-5
2-4 Relationship of Exchanges, Messages, and Processes 2-8
2-5 Process States 2-10
2-6 Comm uni ca ti on between Processes 2-13
2-7 Synchronization 2-14
2-8 Interaction of Client and System Service Processes 2-18
2-9 Processing Flow of Client and System Service Processes 2-19
2-10 Interaction of Filter Process with Client and System

Service Processes 2-20
3-1 Relationship of Processes, Tasks, and an Application

System 3-2
3-2 Process States 3-5
4-1 Relationship of Exchanges, Messages, and Processes 4-7
4-2 Interaction of Client and System Service Process 4-14
4-3 Processing F1ow of Client and System Service Processes 4-15
4-4 Interaction of Filter Process with Client and System

Service Processes 4-16
6-1 Memory Organization of the Application Partition in a

Compact System 6-5
6-2 Memory Organization of an Application Partition in a

System Allowing Simultaneous Execution of Multiple
Application Systems 6-6

10-1 Memory Organization without Secondary Application
Partitions 10-3

10-2 Memory Organization with Secondary Application
Partitions 10-4

10-3 Memory Organization of an Application Partition 10-5
10-4 Application Partition Data Structures 10-10
14-1 Volume Control Structures 14-62
15-1 Example Configuration with Queue Management Facility 15-2
15-2 Sample Queue Index File 15-6
26-1 Keyboard 26-6
E-1 Application Partition and Batch Data Structure E-9

xix

UST OF TABLES

Table Title Page

2-1 Process State Transition 2-9
3-1 Process State Transition 3-6
3-2 Processor Descriptor Block 3-10
4-1 Format of a Request Block Header . 4-17
5-1 Exchange Management Operations by Function 5-3
6-1 Memory Management ~erations by Function 6-9
9-1 Variable-Length Parameter Block 9-4
9-2 Application System Control Block 9-5
9-3 Parameter Management Operations by Function . 9-7
10-1 Appl1cation Partition Management Operations by

Function . 10-12
11-1 Communications Status Buffer 11-9
11-2 wsStatus Block 11-10
14-1 File Protection Levels . 14-11
14-2 File Management Operations by Function 14-18
14-3 Volume Home Block 14-63
14-4 File Header Block 14-64
14-5 Entry for a Directory in the Master File Directory 14-65
14-6 User Control Block . 14-70
14-7 Device Control Block 14-72
15-1 Examples of Queue Entry Files 15-6
15-2 Queue Status Block . 15-10
15-3 Sample Queue Entry 15-13
16-1 Format of a Standard Record Header 16-6
16-2 Format of a Standard Record Trailer 16-7
16-3 Format of a Standard File Header 16-8
17-1 Interpretation of Special Characters by Video Byte

Streams 17-10
17-2 Sequential Access Method Operations by Function 17-18
19-1 Direct Access Method Operations by Function 19-4
21-1 Disk Management Operations by Function 21-3
23-1 Video Control Block 23-12
23-2 Frame Descriptor 23-16
26-1 Permitted Codes in Escape Sequences 26-11
28-1 Simplified Date/Time Structure 28-2
28-2 System Date/Time Structure 28-3
28-3 Expanded Date/Time Format 28-4
28-4 Timer Request Block Format 28-6
28-5 Timer Pseudointerrupt Block 28-9
28-6 Timer Management Operations by Function 28-10
29-1 Interrupt Types 29-4
B-1 Standard Character Set B-2
B-2 Graphic Representation of the Standard Character Set B-10
C-1 Keyboard Codes Generated by Unencoded Keyboard . C-1
E-1 System Common Address Table (SCAT) . E-2
E-2 Batch Control Block E-6
E-3 Extended Partition Descriptor E-7
E-4 Partition Configuration Block E-7
E-5 Partition Descriptor E-8
E-6 System Configuration Block E-10

xx

INTRODUCTION

This manual provides descriptive and operational
information for the B 20 Operating System
(BTOS), hereinafter referred to as "Operating
System" or "OS". The OS is a powerful, real time
multitasking operating system for the B 20 Micro­
computer Systems. The information is provided in
sections and appendices as listed in the Table
of Contents. This information is relative to
BTOS Release Level 3.o.

The following technical manuals are referenced
for additional information:

Title

B 20 System Programmers and Assembler
Reference Manual (Part 2)
B 20 Installation Planning Guide
B 20 Operations (Part 1)
B 20 Operations (Part 2)
B 20 Word Processing Quick Reference
Guide
B 20 Pascal Reference Manual
B 20 FORTRAN Reference Manual
B 20 COBOL II Reference Manual
B 20 Systems Debugger Reference Manual
B 20 Systems Editor Reference Manual
B 20 Systems Linker/Librarian
Reference Manual
B 20 System Programmers and Assembler
Reference Manual (Part 1)
B 20 Systems Font Reference Manual
B 20 Systems Form Reference Manual
B 20 Systems ISAM Reference Manual
B 20 2780; 3780 RJE Reference Manual
B 20 3270 Reference Manual
B 20 Asynchronous Terminal Emulator
(ATE) Reference Manual
B 20 Systems Sort/Merge Reference
Manual
B 20 System Software Operation Guide

Form numbers and release
above manuals can be
Technical Publications

level numbers for the
found in the Customer

Catalog and Price List -
Form 1130010.

xxi

Software Patches

Within a particular release, patches to individual items may be
issued. For example, an Operating System identified by 2.02.03
contains certain improvements over an Operating System 2.02.01.
A patch always increases the patch number. All system software
items within a given release (mark and level numbers) may be
used together, regardless of the patch number, unless explicitly
stated otherwise in the technical notes of the item.

The file [DOJ<Sys>Sys.Version will be used to record the patches
made to the software on the 820. It will be "Appended" if a new
patch release is issued. The format of the file records will be
as follows:

AAA BBBBB X.XX.XX

release level
affected file
Operating System or
utility identifier

For example, if a change to the Spooler was made, the record will
look as follows:

Spooler InstallSpl.Run 2.2.4-USA

xxii

CONVENTIONS USED IN THIS MANUAL

Numbers

Memory Address

Variable Names

Prefixes

Numbers are decimal except when suffixed with 11 h 11

for hexadecimal. Thus, lOh = 16 and OFFh = 255.

Memory address refers to the logical memory
address. (See the 11 Memory Management 11 section.)

variables are named according to a formal
convention. Some of the characteristics of the
variable can be inferred from its name.
Parameters used in procedure definitions and
fields of request blocks and other ddta
structures are named according to this
convention.

A variable name
parts: a prefix,

is composed of up
a root, and a suffix.

to three

The pref ix identifies the data type of the
variable. Common prefixes are:

b byte (8-bit character or unsigned number),

c count (unsigned number),

f flag {TRUE= OFFh or FALSE= 0),

i index (unsigned number),

n number (unsigned number) (same as "c"),

o offset from the segment base address (16
bits),

p logical memory address (pointer) (32 bits
consisting of the offset and the segment
base address),

q quad (32-bit unsigned integer),

xx iii

Roots

Suffixes

xxiv

rg array of .•. , and

s size in bytes (unsigned number).

Prefixes can be composed.
prefixes are:

Common compound

cb count of bytes (the number of bytes in a
string of bytes),

pb pointer to (logical memory address of) a
string of bytes, and

rgb array of bytes.

The root of a variable name can be unique to that
variable, selected from the list below, or a
compound of the two. Common roots are:

deb Device Control Block,

dh device handle,

ere status (error) code,

ex ch exchange,

fcb File Control Block,

fh file handle,

lfa logical file address,

ph partition handle

qeh queue entry handle

rq request block, and

ucb User Control Block.

The suffix identifies the use of the variable.
Suffixes are:

Last the largest allowable index of an array,

Examples

Max the maximum length of an array or buffer
(thus one greater than the largest
allowable index), and

Ret identifies a variable whose value is to
be set by the called process or procedure
rather than specified by the calling
process.

Here are a few examples of variable names:

cbFileSpec

ercRet

pbFileSpec

pDataRet

ppDataRet

pRq

psDataRet

sData

sDataMax

ssDataRet

the count of bytes of a file
specification,

the status code to be returned to
the calling process,

the memory address of a string of
bytes containing a file
specification,

the memory address of an area into
which data is to be returned to
the calling process,

the memory address of a 4-byte
memory area into which the memory
address of a data i tern is to be
returned to the calling process,

the memory address of a request
block,

the memory address of a (2-byte)
memory area into which the size of
a data item is to be returned,

the size (in bytes) of a data
area,

the maximum size (.in bytes) of a
data area, and

the size
the size
returned.

of the area into which
of a data item is to be

xxv

MULTIPROGRAMMING

SECTION 1
OVERVIEW

The B20 Operating System provides a real-time,
multiprogramming environment. Multiprogramming
is supported at three levels: application
systems, tasks, and processes.

First, any number of application systems can
coexist, each in its own memory partition. (An
application system is a collection of one or more
tasks that access a common set of files and
implement a single application.)

Second, any number of tasks can be loaded into
the memory of a pa rti ti on and i ndepe nde ntl y
executed. (A task is an executable program,
created by translating one or more source
programs into object modules and linking them
together.)

Third, any number of processes can independently
execute the code (instructions) of each task. (A
process is the basic element of computation that
competes for access to the processor.)

EVENT-DRIVEN PRIORITY SCHEDULING
To meet the system builder's
performance, the Operating System
efficient, event-driven, priority
an unlimited number of processes.

need for high
Kernel provides
scheduling for

Each process is assigned one of 255 priorities
and is scheduled for execution based on that
priority. Whenever an event, such as the
completion of an input/output operation, makes a
higher priority process eligible for execution,
rescheduling occurs immediately. This provides a
more responsive system than scheduling techniques
that are entirely time based.

To give multiple tasks with the same priority a
fair share of system resources, processes with
priori ties in a predefined range are subject to
time slicing. Processes with the same priority
are then executed in turn for intervals of 100 ms
in round robin fas hi on.

1-1

INTERPROCESS COMMUNICATION

EXCHANGES

1-2

The other major function provided by the OS
Kernel is the interprocess communication (!PC)
facility. !PC is used for synchronizing process
execution and for transmitting information
between processes.

A process can "send" a message and can "wait" for
a message. When a process waits for a message,
its execution is suspended until a message is
sent to it. This allows processes to synchronize
execution. A process can also "check" whether a
message is available without its execution being
suspended.

As a simple example, Process A sends a message to
Process B and then waits for an answer. Process
B waits for a message, performs a function
determined by that message, and then sends an
answering message. This sequence assures that
Process B does not begin its function until
requested and that Process A does not resume
execution until Process B has completed its
function.

As a more complex example, Process A continues
execution in parallel with the execution of
Process B before synchronizing execution by
waiting for the answer.

Messages are not sent directly from process to
process. Rather, they are routed through an
intermediary element called an exchange.

Expanding on the example above:
a message to Exchange X and waits
while Process B waits at Exchange
answering message to Exchange Y.

Process A sends
at Exchange Y,
X and sends an

A single process can serve several exchanges, in
which case it can select which of several kinds
of messages to process next. This can be used to
set priori ties for the work the process is to
perform.

Also, several processes can
exchange, thereby sharing the
single kind of message.

serve the same
processing of a

SYSTEM SERVICE PROCESSES
The B20 Operating System includes a number of
system service processes. These processes, which
are scheduled for execution in the same manner as
application processes, receive IPC messages to
request the performance of their services.
Because of this internal use of IPC, the
Operating System is classified as message-based.

Each system service process acts as the guardian
and manager for a class of system resources such
as files, memory, or keyboard. Because the
system service process is the only software
element that accesses the resource, and because
the interface to the system service process is
formalized through the use of !PC, a highly
modular environment results.

This modular environment increases reliability by
localizing the scope of processing and provides
the flexibility to replace a system service
process as a complete entity.

ACCESSING SYSTEM SERVICES
Each of the functions provided by the system
service processes can be accessed through the use
of a procedure call from high-level languages
such as FORTRAN and Pascal, as well as from
assembly language.

The use of a procedural interface masks all the
complexities of using IPC: the p(ocedural
interface automatically uses a default response
exchange and builds the "request block" message
on the stack of the calling process.

In high-performance applications,
direct use of !PC operations to
services allows an increased
concurrency between multiple
operations and computation.

however, the
access system

degree of
input/output

1-3

FILTERS

Requests for system services are directed to the
appropriate system service process through
reference to a table that can be modified. This
allows a system service request to be redirected
to another system service process and also allows
the implementation of filters. A filter enables
the system builder to customize the function of a
system service without modifying the system
service process that implements it.

As an example, a filter process
between the file management system and
processes can perform special password
before permitting access to a file.

positioned
its client
validation

LOCAL RESOURCE-SHARING NETWORK (CLUSTER}

1-4

The Operating System provides support for local
resource-sharing networks (clusters), as well as
for standalone workstations. In a cluster
configuration (consisting of a master workstation
and up to 16 cluster workstations), essentially
the same Operating System executes in each
cluster workstation as in the master workstation.
The master workstation provides file system and
queue management resources for all workstations
in the cluster. In addition, it concurrently
supports its own interactive application
processing.

In the cluster configuration, the IPC facility is
extended to provide transparent access to system
service processes that execute in the master
workstation. While some services, like file
management, queue management, 3270 emulator, and
data base management, migrate to the master
workstation, others, such as video and keyboard
management, remain at the cluster workstation.

One high-speed RS-422 channel is standard on each
workstation. This channel is used by cluster
workstations for communication with the master
workstation. Master workstations of small
cluster configurations (up to four cluster
workstations) use this channel for communications
with their cluster workstations. However, master
workstations of large cluster configurations use
one or two Communications I/O Processors
(CommIOPs) for communications with their cluster
workstations.

The CommIOP, which is added to the Multi bus of
the master workstation, is an intelligent
communications processor based on the Intel 8085
microprocessor. The CommIOP serves up to four
cluster workstations on each of its two high­
speed serial lines.

STANDARD NETWORK
A Standard Network extends the OS resource­
sharing capabilility to permit sharing of file
system and printer spooler resources between
clusters connected by leased, voice-grade lines
and/or an X.25 Value-Added Network. In addition,
the Standard Network permits access to other
computers through the Value-Added Network.

VIRTUAL CODE SEGMENT MANAGEMENT
The OS virtual code segment management facility
permits the execution of an application system
whose size exceeds the available partition
memory. To ensure maximum real-time performance,
the use of this facility is under control of the
system builder; an application system uses
virtual code segment management only if the
option is selected when its task image is linked.

If the virtual code segment facility is selected
for a task, the code of the task is divided into
variable-length segments that reside on disk. As
the task executes, only the code segment being
executed at a particular time must occupy the
main memory of the partition. However, to
maximize pe rf o rma nee, recently used code segments
are retained in memory as long as possible.
Also, the data of the task remains in the main
memory of the partition for the duration of task
execution.

FILE MANAGEMENT
The OS file management system provides a
hierarchical organization by volume, directory,
and file. A volume is automatically recognized
when placed onli ne. Each file can have a 50-
character file name, a 12-character password, and
a file protection level. A file can be
dynamically expanded or contracted without limit
as long as it fits on one disk. Concurrent file
access is controlled by read (shared) and modify
(exclusive) access modes.

1-5

While providing convenience and security, the OS
file management system supplies the system
builder with the full throughput capability of
the disk hardware. This includes reading or
writing any sector of any open file with one disk
access, reading or writing up to 64k bytes with
one disk access, input/output overlapped with
process execution, and optimized disk arm
scheduling.

The duplication of er i ti cal volume control
structures protects the integrity of disk file
data against hardware malfunction. The Backup
Volume utility is able to recover a file if
either of its redundant File Header Blocks is
valid.

DEVICE HANDLERS
A device handler can be part of the application
process or it can be a system service process.
Its interrupt handler can let the OS Kernel save
process context (in which case it can be written
in FORTRAN or Pascal), or it can receive the
interrupt directly from the hardware. !PC
provides an efficient, yet formal, interface from
interrupt handler to device handler and from
device handler to application process.

OTHER FEATURES

1-6

The Operating System also provides support for
video display with multiple split screens,
unencoded keyboard, communications lines,
Sequential Access Method, Record Sequential
Access Method, Direct Access Method, and Indexed
Sequential Access Method.

COMMAND INTERPRETER
Interaction with the workstation operator is a
function of the B20 Executive, not of the
Operating System. This allows the system builder
to choose the manner in which the video display
and keyboard a re used.

The Executive is a forms-oriented command
interpreter providing an operator interface that
includes a HELP facility, command files, and the
interactive addition of new commands. The
Executive is available for program development
and for system builders that find its operator
interface compatible with their users' needs.
However, the Executive is a normal application­
level program that can easily be replaced by the
customized command interpreter of the system
builder.

See the B20 System
form 1144474 for
Executive.

COMPACT SYSTEM

Executive Reference Manual,
more information about the

A compact version of the Operating System can be
created at system build. The compact version
requires less memory yet provides all Operating
System functions except the simultaneous
execution of multiple application systems. In
the compact version, one application system is
executed at a time.

BATCH MANAGER
Sequential execution of noninteractive
application systems is a function of the batch
manager. The batch manager interprets job
control language files that execute specified
application systems with specified parameters.
The batch manager is useful for both program
development and end-user environments.

1-7

GENERAL

SECTION 2
CONCEPTS

Some of the concepts described in
a re i 11 ustra ted in program examples
F.

this Section
in Appendix

STRUCTURE OF THE B 20 OPERATING SYSTEM

The basic components of the B20 Operating System
are:

0 the Kernel,

0 system service processes,

0 system common procedures,

0 object module procedures, and

0 device and interrupt handlers.

The Kernel, the most primitive yet most powerful
component of the Operating System, provides
process management and interprocess communication
facilities. It schedules process execution,
including the saving and restoring of process
context. A process is the basic element of
computation that competes for access to the
processor. The Kernel's interprocess
communication primitives are the primary building
blocks for synchronizing process execution and
transmitting information between processes.

System service processes are OS processes that
guard and manage system resources. System
service processes are scheduled for execution in
the same manner as application processes.

The four major categories of system services are:

o task management,

o file management,

o device management, and

o memory management.

There are two ways to access OS system services.
The more convenient is by a procedure call from a
high-level language. The more primitive allows
an increased degree of concurrency between
multiple input/output operations and computation.

2-1

System common procedures are OS procedures that
perform some common system functions. An example
of a system common procedure is Exit, which
terminates the execution of an application
system. System common procedures are executed in
the same context and at the same priority as the
invoking process. The Video Access Method is an
example of system common procedures.

Object module procedµres are procedures that are
supplied as part of an object module file. They
are not part of the OS System Image itself. Most
application systems require only a subset, not a
full set, of these procedures. The desired
subset is linked into the application task. The
Sequential Access Method is an example of object
module procedures.

Device handlers and interrupt handlers
Operating System are accessed indirectly
the convenient interfaces of the system
processes.

of the
through
service

System builders can easily include their own
system service processes, system common
procedures, device handlers, and interrupt
handlers in the OS System Image at system build.
System build is the name for the sequence of
actions necessary to construct a customized OS
System Image. System build is described in the
B20 System Programmers and Assembler Reference
Manual (Part 1), form 1148699.

PROCESSING CONCEPTS

2-2

Under the Operating System, an application system
(see Figure 2-1) is the collection of all logical
software elements (tasks) currently in a
partition. These tasks can be loosely or tightly
coupled, but all perform related portions of the
same application. These tasks execute
a synchronously.

A task consists of executable code, data, and one
or more processes. The code and data can be
unique to the task or shared with other tasks. A
task is created by translating one or more source
programs into object modules and then linking
them together. This results in a task image that
is stored on disk in a run file.

Program Code
Program Data
Process
Process

•
•
•

Program Code
Program Data
Process

Program Code
Program Data
Process
Process
Process

Application
System

Figure 2-1. Relationship of Processes, Tasks, and an Application System

When requested by a currently active task, such
as the Executive, the Operating System reads the
task image from the run file into partition
memory, relocates intersegment references, and
schedules it for execution. The new task can
coexist with or replace other application tasks
in its partition memory.

A process is the basic element of computation
that competes for access to the processor. A
process consists of: (1) the address of the next
instruction to execute on behalf of this process,
(2) a copy of the data to be loaded into the
processor registers before control is returned to
this process, and (3) a stack. A process is
assigned one of 255 priorities so that the
Operating System can schedule its execution
appropriately.

2-3

MEMORY ORGANIZATION

2-4

The memory of a system consists of two types of
partitions:

sys tern pa rti ti o ns,
operating system and
system services, and

which contain the
dynamically installed

application partitions, each
contains an appli ca ti on system.

of which

When a system is initiated, the Operating System
is loaded into the system partition at the low
address end of memory. Dynamically installed
system services are loaded into extended system
partitions located at the high address end of
memory. The remaining memory is defined as a
single application partition, called the primary
application partition. (See Figure 2-2.)

Low End of Memory

Interactive
Application
System

High End of Memory

System P artitlon

Primary Application Partttlon

Extended System Partition

Figure 2-2. Memory Organization

When new partitions are created, they are placed
at the high address end of the existing
application partition and are called secondary
application partitions. The remaining memory is
defined as the primary application partition.
(See Figure 2-3.)

The primary application partition is for
interactive programs that use the keyboard and
video display to interact with the user. Such
partitions can be loaded with interactive
programs chosen by the user, such as the Word
Processor, a terminal emulator, or a user-written
application program.

Low End ot Memory

lnteraciive
Application
System

Noninleractive
Application
Systems

High End ot Memory

System Partltion

Primary Application Partition

S~ondary Application Partition B

S.condary Appllc:atlon Partition A

E.xtended System P artltlon

Figure 2-3. Memory Organization with Secondary Application Partition

2-5

Types of Memory

Secondary application partitions are for
noni nteracti ve applications. Such partitions can
be used for execution batch jobs under control of
the batch manager, user-written applications, or
system services.

A compact version of the Operating System can be
built at system build that saves memory yet
provides all Operating System functions described
for the execution of one application system at a
time. The compact version can have only one
application partition, as shown in Figure 2-2.

Two types of memory allocation are available to
the application system: long-lived and short­
lived. Within each application partition, long­
lived memory expands upward from low memory
locations while short-lived memory expands
downward from high memory locations. The
Operating System allocates short-lived memory for
application tasks.

Processes within an application partition
allocate and deallocate long-lived and short­
lived memory by requests to OS system services.
A process in one partition cannot allocate or
deallocate memory in other partitions.

When the execution of an application system is
terminated, the short-lived memory of its
partition is automatically deallocated.

Long-lived memory is deallocated only at the
explicit request of the application system.
Therefore, long-lived memory is useful for
passing information from an application system to
a succeeding application system within the same
partition.

VIRTUAL CODE SEGMENT MANAGEMENT

2-6

Virtual code segment management supports the
execution of an application system whose size
exceeds the available memory in its application
partition. Program code (but not data) can
reside on disk while a task is executing. Only
the code segment whose instructions are being
executed at a particular time need occupy the
main memory of an application partition. The
remaining code segments of the application system

are automatically read into partition memory as
needed. When necessary, the oldest code segment
in partition memory is overlaid to make enough
partition memory available for a new code
segment.

INTERPROCESS COMMUNICATION

As a message-based operating system, the OS uses
its interprocess communication (IPC) facility
internally for synchronization of process
execution and information transmission. The OS
Kernel provides IPC primitives to facilitate the
consistent but flexible exchange of information
between processes. Processes can communicate
with each other within or between application
partitions.

Six IPC primitives are provided: Check, PSend,
Request, Respond, Send, and Wait. Both Operating
System (that is, system service) and application
system processes use these primitives.

Messages and Exchanges

Messages and exchanges are used in IPC.

A message conveys information and provides
synchronization between processes. Although only
a single 4-byte data item is literally
communicated between processes, this data item is
usually the memory address of a larger data
structure. The larger data structure is called
the message.

An exchange is the path over which messages are
communicated from process to process (or from
interrupt handler to process). An exchange
consists of two first-in, first-out queues: one
of processes waiting for a message, the other of
messages for which no process has yet waited.

Processes or messages (but not both) can be
queued at an--exchange at any given instant. If a
process waits at an exchange at which messages
are queued, then the message that was enqueued
first is dequeued and its address given to the
process; the process then continues execution.
Similarly, if a message is sent to an exchange at
which processes are queued, then the process that
was enqueued first is dequeued, given the address
of the message, and placed into the ready state.

2-7

2-8

The relationship of exchanges, messages, and
processes is shown in Figure 2-4.

Exchange

Link Link

Message 1 Message 2

Or

Exchange

Process A Process B

Figure 2-4. Relationship of Exchanges, Messages, and Processes

Exchanges are allocated in three ways:

0

0

at system
processes),

build (for system

dynamically using the AllocExch
DeallocExch) operation, and

o at process creation.

service

(and

Process States

A process can send a message to a process in
another application partition. The destination
process allocates an exchange and makes the
exchange known to the OS. The sender process
obtains the exchange number and sends messages to
the exchange. Each of the processes must lock
itself in its partition to prevent interference
with the communication.

A process can exist in one of three states:
running, ready, and waiting.

A process is in the running state when the
processor is actually executing its
instructions. Only one process can be in the
running state at a time.

A process is in the ready state when it could be
running, but a higher priority process is
currently running. Any number of processes can
be in the ready state at a time.

A process is in the waiting state
waiting at an exchange for a message.
of processes can be waiting at a time.

when it is
Any number

Table 2-1 describes the transitions between
process states and the events causing the
transitions. The relationship among process
states is shown in Figure 2-5.

Table 2-1. Process State Transition

Transition
From To

Running

Waiting

Running

Ready

Waiting

Ready/
Running

Ready

Running

Event

A process executes a
Wait but no messages
a re at the exchange.

A process sends a
message to the
exchange at which a
process is waiting.

A higher priority
process leaves the
waiting state.

All higher priority
proceses enter the
wa i ti ng state.

2-9

Running

Ready

Waiting

Figure 2-5. Process States

Process Priorities and Process Scheduling

2-10

Every process has a priority that indicates its
importance relative to other processes. The
priority of a process is assigned at process
creation.

The Operating System has event-driven priority
scheduling. This means that processes are
scheduled for execution based on their priorities
and system events, not on a time limit imposed by
the scheduler. This involves very little
decision-making of the OS. The scheduler
maintains a queue of the processes that are
eligible to execute. Priority determines which
process, among those eligible, is executed. At
any time, the OS always allocates the processor
to the highest priority process that can be
executed. Rescheduling occurs when a system
event makes executable a process with a higher
priority than the one currently executing.

A system event affects the executabili ty of a
process. Examples of system events are an
interrupt from a device controller, Multibus
device, timer, or real-time clock, or a message
sent from another process. The system event
causes a message to be sent to an exchange at
which a higher priority process is waiting; this,
in turn, causes the OS to reallocate the
processor.

When a system event occurs that makes a process
eligible to execute, the process receives control
of the processor until another higher priority
process preempts its execution, or until it
voluntarily relinquishes control of the
processor.

If no other process has work to perform, the null
process, which executes at a priority (255) lower
than any real process and which is always ready­
to-run, is given control of the processor. The
null process exists only to simplify the
algorithm of the scheduler; it performs no other
useful work.

To give multiple tasks with the same priority a
fair share of system resources, processes with
priorities in a predefined range are subject to
time slicing. Such processes with the same
priority are executed in turn for intervals of
100 ms in round robin fashion.

Sending a Message
When a message is sent to an exchange,
Operating System queues the address of
message, not the message itself. Because
the address is moved, overhead is minimized,
queueing a number of messages at the
exchange requires little execution time
memory.

the
the

only
and

same
or

When a process sends a message to an exchange,
one of two actions results at the exchange:

If no processes are waiting, the message is
queued.

If one or more processes are waiting, the
process that was enqueued first is given the
message and is placed into the ready state.
If this process has a higher priority than
the sending process, it becomes the running
process and the sending process loses control
until it once again becomes the highest
priority ready process.

2-11

After a message is queued at an exchange, it must
not be modified by the sending process. A
process that receives the message by waiting at
the exchange where the message was queued is free
to modify the message.

Waiting for a Message

When a process
exchange, one of
exchange:

waits for a
two actions

message
results

at
at

an
the

If no messages are queued, the process is
placed into the waiting state until a message
is sent. When a message is sent, its address
is returned to the process, which leaves the
waiting state and is scheduled for execution.

If one or more messages are
message that was enqueued first
and its address returned to
which continues to execute.

queued, the
is dequeued

the process,

Applying Interprocess Communication

Communication

2-12

To a large extent, the power of
System results from its
communication facility. !PC
multitasking capabilities:

o communication,

o synchronization, and

o resource management.

the Operating
interprocess

supports three

Communication, the most elementary interaction
between processes, is the transmission of data
from one process to another via an exchange.
Figure 2-6 below shows an example of
communication between Process A and Process B.
Process A sends a message to Exchange X, and
Process B waits for a message at that Exchange.

Synchronization

Exchange X

Figure 2-6. Communication between Processes

Synchronization is the means by which a process
ensures that a second process has completed a
particular item of work before the first process
continues execution. Synchronization between
processes and the transmission of data between
processes usually occur simultaneously.

As shown in Figure 2-7 below, Process A sends a
message to Exchange Y, requesting that Process B
perform an i tern of work. Process A then waits at
Exchange z until Process B has completed the
work. This synchronizes the continued execution
of Process A with the completion of an item of
work by Process B.

2-13

Satisfied
A3

Figure 2-7. Synchronization

Resource Management

2-14

In a multitasking environment, resource
management is the means of sharing resources
among several processes in a controlled way. For
example, several processes may need to use the
pr inter; however, only one process can use the
printer at a particular time.

One way to control a resource is to establish a
process to manage it. Only the managing process
accesses the resource directly. Other processes
access the resource i ndi rectl y by sending
messages to the process that performs the desired
function. OS system services, which manage
resources such as files, devices, and memory, are
implemented via an analogous mechanism.

B 20 SYSTEM SERVICES

The Operating System includes a number of system
service processes. These processes, which are
scheduled for execution in the same manner as
application processes, receive IPC messages to
request the performance of their services. Any
process, even a system service process, can use
(be a client of) a system service process.

Each system service process acts as the guardian
and manager for a class of system resources such
as files, memory, or keyboard.

OS system services can be accessed:

indirectly, by a procedural interface, or

directly, by the Request and Wait primitives.

Using the procedural interface is easier because
it automatically performs most of the necessary
housekeeping and issues the Request and Wait
primitives.

Using the Request and Wait primitives is more
powerful, however, as it allows a greater degree
of overlap between multiple input/output
operations and computation.

Procedurai Access to System Services

When a procedural inter face is used, a request
block is automatically constructed and the
default response exchange of the process is
automatically used. (Request block and default
response exchange are defined immediately
below.) Except for the ReadAsync and Wr i teAsync
procedures, the request block is constructed on
the stack of the client process.

Direct Access to System Services

Execution of a system service involves the
participation of two processes (client and system
service) , three kinds of Kernel pr imi ti ves
(Request, Respond, and Wait), two kinds of
exchanges (response exchange and default response
exchange), and a data structure (request block).

2-15

2-16

The process requesting the system service is the
client process. Any process, even a system
service process, can be a client process, since
any process can request system services.

OS system services are provided by system service
processes. These processes are created when the
system is first loaded and execute code that was
linked into the System Image at system build.

A request block, a data structure provided by the
client process, contains the specification of,
and the parameters to, the desired system
service. A request block contains a request code
field, a response exchange field, and several
other fields.

A request code is a 16-bi t value that uniquely
identifies the desired system service. For
example, the request code for the Write operation
is 36. The request code is used both to route a
request to the appropriate system service process
and to specify to that process which of the
several services it provides is currently
requested.

A response exchange is the exchange at which the
requesting client process waits for the response
of a system service. The response can be
directed to the exchange at which the client
process is expecting it because the exchange at
which the response is desired is specified in the
request block.

A special case of response exchange is the
default response exchange of a process. Each
process is given a unique default response
exchange when it is created. This special
exchange is automatically used as the response
exchange whenever a client process uses the
procedural interface to a system service.

A service exchange is an exchange that is
assigned to a system service process at system
build. The system service process waits for
requests for its service at its service exchange.

The Request primitive is a variant of the Send
primitive. It is used to direct a request for a
system service from a client process to the
service exchange of the system service process.
Request, unlike Send, does not accept an exchange

identification as a parameter. Rather, it infers
the appropriate service exchange by using the
request code as an index into the Service
Exchange Table.

The Service E~change Table is constructed at
system build, resides in the System Image, and
translates request codes to service exchanges.

The Respond primitive is another variant of the
Send primitive. System service processes use
Respond to report the completion of the requested
system service.

Interaction of Client Processes and System Service Processes

The client process initiates the transaction by
formatting a request block and issuing a Request
primitive. After issuing the Request primitive,
the client process can continue execution but
must not modify the request block.

In order to determine when the request was
completed, the client process must issue either a
Wait or a Check primitive. The Wait or Check
primitive must specify the same exchange that the
client process specified as the response exchange
in the request block.

The Wait primitive suspends execution of the
client process until the system service process
responds (or until another message is queued at
the specified exchange).

The Check primitive does not suspend execution of
the client process; instead it inquires whether a
message is queued at the specified exchange.

The system service process waits for a request to
be queued at an exchange. Upon receiving a
request, the system service process verifies the
control information and data given it before
processing the request. After performing the
requested function, it acknowledges completion of
the service by responding to the client process.
It then resumes waiting until it receives the
next request.

2-17

2-18

The interaction of client and
processes is shown in Figure 2-8.
flow of client and system service
shown in Figure 2-9.

Client

Wait
Satisfied A3

Service
Exchange

Response
Exchange

system service
The processing

processes is

Wait
Satisfied 82

System
Service

Process B

Figure 2-8. Interaction of Client and System Service Processes

Filter Processes

Process Entry
Point

Initialize Process

Compute

Request Service

Wait for Response

CLIENT PROCESS

Process Entry
Point

Initialize Process

Wait for Request

Perform Function

Respond

SERVICE PROCESS

Figure 2-9. Processing Flow of Client and System Service Processes

A filter process is a user-written system service
process that is included in the System Image at
system build. A filter process is interposed
between a client process and a system service
process that believe they are communicating
directly with each other. The Service Exchange
Table is adjusted at system build to route
requests through the desired filter process.

A filter process might be used between the file
manage~ent system and its client process to
perform special password validation on all or
some requests.

2-19

Client
Process A

Wait
Satisfied

A3

The interaction of a filter process with a client
process and system service process is shown in
Figure 2-10 below.

Wait 81

Wait
Satisfied

82

Filter
System
Service

Process B

Wait
Satisfied

85

Wait
Satisfied

C2

System
Service

Process C

Figure 2-10. Interaction of Filter Process with Client and System Service Processes

Request Blocks

2-20

The format of request blocks is designed to allow
the transparent migration of system service
processes between standalone and cluster
configurations. Request blocks are completely
self-describing and consist of four parts:

1. a standard header,

2. request-specific control information,

3. descriptions of the request data items, and

4. descriptions of the response data items.

Each data i tern is
size, and source
process}.

described by memory address,
(client or system service

CLUSTER CONFIGURATION

Cluster configurations of the B20 Series of
Business Computer Systems consist of a master
works ta ti on and up to 16 cluster workstations.
Essentially the same Operating System executes in
each cluster workstation as in the master
workstation. The master workstation provides
file system and queue management resources for
all workstations in the cluster. In addition, it
concurrently supports its own interactive
application processing as well as user-written
multiuser system services. A cluster workstation
can have its own local file system and printer
spooler.

In the cluster configuration, the IPC facility is
extended to provide transparent access to system
service processes that execute in the master
workstation. While some services, like file
management, 3270 terminal emulator, and data base
management, migrate to the master workstation,
others, such as video and keyboard management,
remain at the cluster workstation.

Application systems access the file system of a
master workstation exactly as they do that of a
standalone workstation. A program that works on
a standalone workstation (accessing the local
file system) can be moved to a cluster
workstation {accessing the file system of the
master workstation) without modification,
recompilation, or relinking.

lnterstation Communication

The interstation communication (ISC) facility is
an upward-compatible extension of the
interprocess communication facility. When a
client process requests a system service, a
request block is constructed that contains all
the information necessary to describe the desired
function.

In a standalone workstation, the request block is
queued at the exchange of the system service
process that actually performs the desired
function.

2-21

Cluster Workstation Agent Service Process

In a cluster workstation, however, if the
function is to be performed at the master
workstation, then the request block is queued at
the exchange of the Cluster Workstation Agent
Service Process. The Cluster Workstation Agent
Service Process converts interprocess requests to
interstation messages for transmission to the
master workstation. The Cluster Workstation
Agent Service Process is included at system build
in a System Image that is to be used on a cluster
workstation.

Master Workstation Agent Service Process

2-22

The System Image used at the master workstation
is built to include a corresponding service
process. This process, the master workstation
Agent Service Process, reconverts the
interstation message to an interprocess request
that it queues at the exchange of the master
workstation system service process that actually
performs the desired function. Note that the
Service Exchange Table that translates the
request code to a service exchange at the master
works ta ti on is necessarily different from the
table at the cluster workstation.

When the system service process at the master
workstation responds, the response is routed
through the master workstation Agent Service
Process, the hiqh-speed data link, and the
cluster workstation Agent Service Process before
being queued at the response exchange in the
cluster workstation that was specified in the
request block.

The format of request blocks is designed to allow
the cluster workstation and master workstation
Agent Service Processes to convert between
interprocess requests and interstation messages
efficiently and with no external information.
Because request blocks are completely self­
describi ng, the Agent Service Processes can
transfer requests and responses between master
workstation and cluster workstations without any
knowledge of what function is requested or how it
is to be performed.

lnterstation Request/Response Message

An interstation request message consists of:

o a header,

o control information,

o the size and actual text of each request data
item, and

o the maximum allowed size of each response
data item.

An interstation response message consists of:

o a status code, and

o the actual size and text of each response
data item.

The cluster workstation Agent Service Process
forms an interstation request message by copying
the header and control i nforma ti on from the
request block, moving the actual text of the
request data i terns into the message, and
including a specification of the maximum allowed
sizes of the response data items.

After receiving the i ntersta ti on response
message, the cluster workstation Agent Service
Process stores the status code into the request
block and moves the text of the response data
items into the memory areas specified for them by
the request block. This transformation scheme
ensures that no redundant or extraneous
i nforma ti on is transmitted between master
workstation and cluster workstations.

Communications 1/0 Processor

One high-speed RS-422 channel is standard on each
workstation. This channel is used by cluster
workstations for communications with the master
workstation. Master workstations of small
cluster configurations (up to four cluster
workstations) see this channel for communications
with their cluster workstations. Master
workstations of large cluster configurations use
one or two Communications I/O Processors
(CommIOPs) for communications with their cluster
works ta ti ons.

2-23

The CommIOP, which is added to the Multibus of
the master workstation, is an intelligent
communications processor based on the Intel 8085
microprocessor. The CommIOP ~erves up to four
cluster workstations on each of its two high­
speed serial lines.

CommIOP software consists of an 8085 bootstrap­
ROM program, the main CommIOP program (which
executes in 8085 RAM), and a CommIOP handler
(written in 8086 code) which executes in system
memory under OS control.

Software Organization

An OS System Image built for a cluster
workstation differs from an OS System Image built
for a standalone workstation in the (optional)
exclusion of the file management system and the
disk handler, and the inclusion of the cluster
workstation Agent Service Process.

An OS System Image built for a master workstation
differs from an OS System Image built for a
standalone workstation only in its inclusion of
the master workstation Agent Service Process.
The master workstation is the file server for the
entire cluster configuration. However, this does
not necessitate the use of a different file
management system from the one used in the
standalone workstations. In fact, the file
management system of the Operating System is
actually a multiuser file system, even in a
standalone works ta ti on.

User-Written Software in a Cluster Configuration

2-24

Concurrency is the major issue concerning
application systems executing on cluster
workstations. Preferred programming practice
dictates that the client process of a system
service always examines the status code returned
by the system service. However, while a program
that opens a file without considering the
possibility of receiving status code 220 ("File
in use") executes successfully on a standalone
workstation, such a program fails intermittently
when executed on a cluster workstation at the
same time that a program in another workstation
is modifying the same file.

Whether user-written system services are good
candidates for supporting multiple client
processes depends both on the function they
perform and the generality with which they are
written. As an example, consider a user-written
handler for a special Multibus device. If it
used the standard format for request blocks, the
device handler could be relocated to the master
workstation. However, if it did not include
concurrency checks, the device handler might
become confused when it received requests from
two or more workstations.

STANDARD NETWORK

(To be supplied)

2-25

OVERVIEW

SECTION 3
PROCESS MANAGEMENT

The process management facility provides event­
dr i ven priority scheduling and dynamic creation
of multiprocess tasks.

Within each task of the application system and
within the OS itself, the basic element of
computation that competes for access to the
processor
assigned
process
processor
currently

is a process. Every process is
a priority. At all times, the OS
management facility allocates the

to the highest priority process
requesting it.

3-1

CONCEPTS

Process

3-2

A process is the basic element of computation
that competes for access to the processor and
which the OS schedules for execution.

A task has a single process associated with it
when it is first loaded. That single process can
create additional processes using the
CreateProcess operation. The additional
processes ere a ted typically share the same code
but have separate stacks. The degree and means
of data sharing are application-specific.

Processes and tasks usually have a
relationship. However, processes
code in multiple tasks. The usual
of a process to the tasks of an
system is shown in Figure 3-1 below.

Program Code
Program Data
Process
Process

•
•
•

Program Code
Program Data
Process

Program Code
Program Data
Process
Process
Process

hierarchical
can execute
relationship
application

Application
System

Figure 3-1. Relationship of Processes, Tasks, and an Application System

Context of a Process

The context of 1!_ process is the collection of all
information about a process. The context has
both hardware and software components.

The hardware context of a process consists of
values to be loaded into processor registers when
the process is scheduled for execution. This
includes the registers that control the location
of the process's stack.

The software context of a process consists of its
default response exchange and the priority at
which it is to be scheduled for execution.

The combined hardware and software context of a
process is maintained in a system data structure
cal led a Process Control Block (PCB). A PCB is
the physical representation of a process.

When a higher priority process preempts a lower
priority process, the OS saves the hardware
context of the preempted process in that
process's PCB. The OS later restores the
contents of the registers when the process is
rescheduled for execution: this permits the
process to continue as though it were never
interrupted. This is known as a context switch.

Process Priorities and Process Scheduling

Every process has a priority that indicates its
importance relative to other processes. The
priority of a process is assigned at process
creation. Priorities range from 0 to 254 with 0
being the highest priority.

The OS has event-driven priority scheduling.
This means that processes are scheduled for
execution based on their priori ties and system
events, not on a time limit imposed by the
scheduler. This involves very little decision­
making for the OS. The scheduler maintains a
queue of the processes that are eligible to
execute. Priority determines which process among
those eligible is executed. At any time, the OS
always allocates the processor to the highest
priority process that can be executed.

Rescheduling occurs when a system event makes
executable a process with a higher priority than

3-3

Process States

3-4

the one currently executing. In most cases, the
interval between events is determined by the
duration of the typical input/output operation.
A process never loses control involuntarily to
another process of equal priority, only to a
process of higher priority.

A system event affects the executabili ty of a
process. Examples of system events are an
interrupt from a device controller, Multibus
device, timer, or real-time clock, or a message
sent from another process. The system event
causes a message to be sent to an exchange at
which a higher priority process is waiting; this,
in turn, causes the OS to reallocate the
processor.

When a system event occurs that makes a process
eligible to execute, the process receives
control of the processor until another higher
priority process preempts its execution, or
until it voluntarily relinquishes control of the
processor.

If no other process has work to perform, the
null process, which executes at a priority (255)
lower than any real process and which is always
ready-to-run, is given control of the processor.
The null process exists only to simplify the
algorithm of the OS scheduler; it performs no
other useful work.

To give multiple tasks with the same priority a
fair share of system resources, processes with
priori ties 1 n a predefined range are subject to
time slicing. Such processes with the same
priority are executed in turn for intervals of
100 ms in round robin fashion. The priority
range is a sys tern bui 1 d pa rame te r, the default
of which is 128 (80h) to 254 (FEh).

A process can exist in one of three states:
running, ready, and waiting.

A process is in the running state when the
processor is actually executing its
instructions. Only one process can be in the
running state at a time. Any other ready-to-run
processes are in the ready state. As soon as the
running process waits, the highest priority
process in the ready state is placed into the
running state and the execution context is
switched to that process's context.

A process
running,
currently
be in the

is in the ready state when it could be
but a higher priority process is
running. Any number of processes can
ready state at a time.

A process is in the waiting state when it is
waiting at an exchange for a message. A process
enters the waiting state when it must synchronize
with other processes. A process can only enter
the waiting state by voluntarily issuing a Wait
primitive that specifies an exchange at which no
messages are currently queued. The process
remains in the waiting state until another
process (or interrupt handler) issues a Send (or
PSend, Request, or Respond) primitive that
specifies (indirectly in the case of
Request/Respond) the same exchange that was
specified by the Wait primitive. Any number of
processes can be waiting at a time. (See the
"Interprocess Communication Management" section
for more information on the Wait, Send, PSend,
Request, and Respond primitives.)

The relationship among process states is shown in
Figure 3-2 below.

Running

Ready

Waiting

Figure 3-2. Process States

3-5

Table 3-1 below describes the transitions between
process states and the events causing the
transitions.

Table 3-1. Process State Transition

Transition
From

Running

Waiting

Running

Ready

To

Waiting

Ready/
Running

Ready

Running

Event

A process executes a
Wait but no messages
are at the exchange.

Another process
sends a message to
the exchange at
which a process is
waiting.

A higher priority
process leaves the
waiting state.

All higher priority
processes enter the
waiting state.

OPERATIONS: PRIMITIVES AND PROCEDURES

3-6

Process management provides the operations listed
below.

ChangePriority changes the priority of the
calling process.

CreateProcess creates a new process and
schedules it for execution.

GetUserNumber allows a process to determine
its own user number.

QueryProcessNumber allows a process to determine
its own process number.

ChangePriority

Description

The ChangePriority primitive changes the priority
of the calling process.

Procedural Interface

ChangePriority (priority): ErcType

where

priority is the new priority.

Request Block

ChangePriority is a Kernel primitive.

3-7

CreateProcess

Description

The CreateProcess primitive creates a new process
and schedules it for execution. CreateProcess is
called by an application process to establish an
application system in which multiple processes
execute the same reentrant task code.

The CreateProcess pr imi ti ve is also used by the
Chain and LoadTask operations to create the
initial process of a new task. (See the "Task
Management" section.)

Procedural Interface

Request Block

3-8

CreateProcess (pProcessDescriptor): ErcType

where

pProcessDescriptor
is the memory address of a Process
Descriptor Block. The format for a
Process Descriptor Block is shown in
Table 3-2 below.

CreateProcess is a Kernel primitive.

GetUserNumber

Description

The GetUserNumber procedure allows a process to
determine its own user number.

Procedural Interface

Request Block

GetUserNumber (pUserNumberRet): ErcType
where
pUserNumberRet

is the memory address of a word into
which the user number of the
inquiring process is returned.

GetUserNumber is a system common procedure.

3-9

Off set

0

4

6

8

10

12

3-10

Size
~tes)

4

2

2

2

2

1

Table 3-2. Processor Descriptor Block

Field

pEntry

saData

saExtra

saStack

oStackinit

priority

Description

Memory address (CS:IP)
at which to begin
execution of the new
process.

Segment base address to
be loaded into the Data
Segment (DS} register
when the new process is
scheduled for
execution.

Segment base address to
be loaded into the
Extra Segment (ES) reg­
ister when the new pro­
cess is scheduled for
execution.

Segment base address to
be loaded into the
Stack Segment (SS) reg­
ister when the new
process is scheduled
for execution.

Off set value to be
loaded into the Stack
Pointer (SP) register
when the new process is
scheduled for execu­
tion.

Priority (0-254, with 0
the highest) at which
the new process is to
be scheduled for
execution.

Off set

13

14

16

Size
(bytes)

1

2

1

Table 3-2. Process Descriptor Block (Cont.)

Field

f Sys

Description

Always FALSE. A value of
TRUE would indicate that
the new process was a
system process and would
cause a subsequent Chain
opera ti on to fail.

defaultResponseExchange

f Debug

Identification of an
exchange that the calling
process has allocated using
the AllocExch operation.
(See the "Exchange
Mangement" section.)
This exchange becomes the
default response exchange
of the new process. The
calling process must never
use this exchange again in
order to avoid possible
conflict.

I ndi ca tes whether the new
process is to be debugged.
TRUE indicates it will be
debugged, and, therefore,
is not to be scheduled for
execution; FALSE indicates
it is to be scheduled for
execution. (See the B 20
Systems Debugger Reference
Manual, form 1148665.)

3-11

QueryProcessNumber

Description

The QueryProcessNumber procedure allows a process
to determine its own process number.

Procedural Interface

Request Block

3-12

QueryProcessNumber (pProcessNumberRet) : ErcType

where

pProcessNumberRet
is the memory address of a word into
which the process number of the
inquiring process is returned.

QueryProcessNumber is a system common procedure.

SECTION 4

INTERPROCESS COMMUNICATION MANAGEMENT

OVERVIEW

Messages

The interprocess communication (IPC) facility
synchronizes process execution and information
transmission between processes through the use
of messages and exchanges. A process can
communicate with another process in its own
partition or in another application partition.

A process can send a message and wait for a
message~ When a process waits for a message, its
execution is suspended until a message is sent to
it. This allows processes to synchronize
execution. A process can also check whether a
message is available without its execution being
suspended.

In its simplest form, IPC provides unidirectional
transmission of arbitrary data. After preparing
a data structure (a message) that is to be passed
to another process, Process A uses the IPC
facility to send the address of the message to
Process B. Only the address of the message, not
the message itself, is buffered by IPC. The size
and content of the message are not constrained by
IPC. Process B must be programmed to use the IPC
facility to wait or check for the availability of
a message.

The full power of IPC is best appreciated when
pairs of unidirectional transmissions are
matched.

As a simple example, Process A sends a message to
Process B and then waits for an answer. Process
B waits for a message, performs a function
determined by that message, and then sends an
answering message. This sequence assures that
Process B does not begin its function until
requested and that Process A does not resume
execution until Process B has completed its
function.

Since Process B does not send an answer until
after it has processed the message, the answer
can signal Process A that the message is no
longer being used by Process B and (possibly)

4-1

Exchanges

that Process B has modified the message in a
manner agreed upon by the two processes.

As a more complex example, Process A continues
execution in parallel with the execution of
Process B before synchronizing execution by
waiting for the answer.

A message is sent to a system entity called an
exchange rather than directly to a process. An
exchange should be thought of as serving the
function of a post off ice where postal patrons
(processes) go to mail (send) letters (messages)
or pick up (wait/check for) letters (messages).

In the same way that a postal patron drops a
letter in the mailbox and then walks away
trusting that the letter will be delivered, a
process sends a message and then continues
executing without further regard for the message.

A postal patron who is expecting an important
letter can periodically go to the post off ice to
check whether it has arrived. If the letter is
especially important, the patron can wait in the
post office for the letter to arrive.

A process has analogous mechanisms available when
it expects to receive a message. It can
periodically check whether a message is posted at
(enqueued on) an exchange or it can wait at the
exchange for the arrival of a message. Because
computers are many orders of magnitude faster
than the postal service, it is usually more
appropriate to wait for a message than to check
for its arrival.

A process can send a message to a process in
another application partition. The destination
process allocates an exchange, then makes the
exchange known to the Operating System. The
sender process obtains the exchange number and
sends messages to the exchange. Each process
must lock itself into its partition so it cannot
be te rmi na ted.

System Service Processes

4-2

The Operating System includes a number of system
service processes. These processes, which a re
scheduled for execution in the same manner as

application processes, receive IPC messages to
request the performance of their services. Any
process, even a system service process, can use
(be a client of) a system service process.

Each system service process acts as the guardian
and manager for a class of system resources such
as files, memory, or keyboard. Because the
system service process is the only software
element that accesses the resource, and because
the interface to the system service process is
formalized through the use of IPC, a highly
modular environment results.

This modular environment increases reliability by
localizing the scope of processing and provides
the flexibility to replace a system service
process as a complete entity.

Accessing System Services

OS system services can be accessed:

o indirectly, by a procedural interface, or

o directly, by the Request and Wait primitives.

Using the procedural interface is easier because
it automatically performs most of the necessary
housekeeping, as well as issuing the Request and
Wait primitives.

Using the Request and Wait primitives is more
powerful, however, as it allows a greater degree
of overlap between multiple input/output
operations and computation.

When the processes of an application system use
the Send and Wait primitives to communicate among
themselves, they are free to structure their
messages in whatever way is most convenient.
They are also free to pair unidirectional
transmissions into bidirectional transmissions
using whatever conventions are convenient, or to
use the IPC facility in a manner that does not
involve pairing.

When communicating with OS system service
processes, however, the rules are different.
The concept of pairing two undirectional
transmissions into a bidirectional transmission
is formalized and enforced. Also, the format of
the message that is communicated is formalized.

4-3

Filter Processes

The format of the message (a request block) is
designed to allow the transparent migration of
system service processes between standalone and
cluster configurations. Request blocks are
completely self-describing and consist of (1) a
standard header, (2) request-specific control
information, and (3) descriptions of the request
and response data items. Each data item is
described by memory address, size, and source
(client or system service process).

The Send pri mi ti ve is not used to comm uni ca te
with OS system services. Rather, two other
primitives, Request and Respond, initiate the
request for a system service and its response.
This provides:

o assurance that Requests and Responds are
matched,

o assurance that system resources are always
available to transmit responses,

o opportunity to redirect requests for system
services to other system service processes,
and

o opportunity to redirect requests for system
services to the master workstation of a
cluster configuration.

Requests for system services are directed to the
appropriate system service process through
reference to a table that can be modified. This
allows a system service request to be redirected
to another system service process and also allows
the implementation of filters. A filter enables
the system builder to customize the function of a
system service without modifying or even looking
at the system service process that implements it.

As an example, a filter process
between the file management system and
process can perform special password
before permitting access to a file.

positioned
its client
validation

Cluster Configuration

4-4

In the cluster configuration, the IPC facility
is extended to provide transparent access to
system service processes that execute in the

master workstation. In the master workstation,
the Operating System concurrently supports local
application processing and resource sharing
(disk and printer) for the other workstations of
the cluster. While some services, like file
management, queue management, 3270 terminal
emulator, and data base management, migrate to
the master workstation, others, such as video
and keyboard management, remain at the cluster
works ta ti on.

4-5

CONCEPTS

Messages

Exchanges

Link Blocks

4-6

The interprocess communication (IPC) facility
provides process synchronization and information
transmission through the use of messages and
exchanges.

A message conveys information and provides
synchronization between processes. Although only
a single 4-byte data item is literally
communicated between processes, this data item is
usually the memory address of a larger data
structure. The larger data structure is called
the message while the 4-byte data item is
conventionally called the address of the
message. The message can be in any part of
memory that is under the control of the sending
process. By convention, control of the memory
that contains the message is passed along with
the message.

An exchange is the path over which messages are
communicated from process to process (or from
interrupt handler to process). An exchange
consists of two first-in, first-out queues: one
of processes waiting for a message, the other of
messages for which no process has yet waited. An
exchange is referred to by a unique 16-bit
integer.

Processes or messages (but not both) can be
queued at an exchange at any given instant. If a
process waits at an exchange at which messages
are queued, then the message that was enqueued
first is dequeued and its memory address given to
the process; the process then continues
execution. Similarly, if a message is sent to an
exchange at which processes are queued, then the
process that was enqueued first is dequeued,
given the address of the message, and placed into
the ready state.

Small system data structures
used for enqueueing messages

(link blocks) are
onto an exchange.

Each link block contains the address of the
message and the address of the next link block
(if any) that is linked onto the exchange.
Processes are enqueued onto an exchange by
linking through a field of each Process Control
Block that is reserved for this purpose.

The relationship of exchanges, messages, and
processes is shown in Figure 4-1 below.

Exchange

Link Link

Message 1 Message 2

Or

Exchange

Process A Process B

Figure 4-1. Relationship of Exchanges, Messages, and Processes

4-7

Exchange Allocation

Exchanges are allocated in three ways:

o Exchanges for system service processes are
allocated at system build.

o Exchanges can be dynamically allocated and
deallocated using the AllocExch and
DeallocExch operations. (See the "Exchange
Management" section.)

o When a process is created, its creator gives
it a unique default response exchange. A
process can determine the identification of
its own default response exchange using the
QueryDefaultRespExch operation. (See the
"Exchange Management" section.)

Sending a Message

4-8

When a message is sent to an exchange, the OS
queues the address of the message at the
exchange. Thus overhead is minimized as just the
address of the message, not the message itself,
is moved. Therefore queueing a number of
messages at the same exchange requires very
little execution time or memory.

When a process sends a message to an exchange,
one of two actions results at the exchange:

If no processes a re waiting, the message is
queued.

If one or more processes are waiting, the
process that was enqueued first is given the
message and is placed in the ready state.
If this process has a higher priority than
the sending process, it becomes the running
process and the sending process 1 oses
control until it once again becomes the
ready process with the highest priority.

After a message is queued at an exchange, it must
not be modified by the sending process. A
process that receives the message by waiting at
the exchange where the message was queued is free
to modify the message.

The Send primitive transfers a 4-byte field from
the sending process to the waiting process. The
4-byte field can be interpreted as the memory
address of a data structure but this is not
necessary. The interpretation of the 4-byte
field is by agreement of the two processes
involved.

Waiting for a Message

When a process waits
exchange, one of two
exchange:

for a
actions

message
results

at
at

an
the

If no messages are queued, the process is
placed in the waiting state until a message
is sent. When a message is sent, its memory
address is returned to the process, which
leaves the waiting state and is scheduled
for execution.

If one or more messages are queued,
message that was enqueued first is
and its memory address returned
process, which continues to execute.

Sending Messages to Another Partition

then the
dequeued
to the

A process can send a message to a process in
another application partition (interpartition
communication). The destination process first
allocates an exhange with the AllocExch
operation, then uses the SetParti tionExchange
operation to make the exchange known to the OS.
The sender process uses the GetPartitionExchange
opera ti on to obtain the exchange number, then
sends messages to the exchange.

Each process must use the LockPartition
operation to lock itself into its partition so
that it cannot be terminated by a
Termi nateParti tionTasks or Vaca teParti ti on
opera ti on.

The AllocExchange operation is described in the
"Exchange Management" section. The GetParti tion-
Exchange, LockPartition, SetPartitionExchange,
Termi na tePa rti tionTasks, and Vaca teParti ti on
operations are described in the "Application
Partition Management" section.

4-9

System Service Processes

The Operating System includes a number of system
service processes. These processes, which a re
scheduled for execution in the same manner as
appl i ca ti on processes, receive IPC messages to
request the performance of their services. Any
process, even a system service process, can use
(be a client of) a system service process.

Each system service process acts as the guardian
and manager for a class of system resources such
as files, memory, or keyboard. Because the
system service process is the only software
element that accesses the resource, and because
the interface to the system service process is
formalized through the use of IPC, a highly
modular environment results.

This modular environment increases reliability by
localizing the scope of processing and prov ides
the flexibility to replace a system service
process as a complete entity.

Accessing System Services

OS system services can be accessed:

o indirectly, by a procedural interface, or

o directly, by the Request and Wait primitives.

Using the procedural interface is easier because
it automatically performs most of the necessary
housekeeping, as well as issuing the Request and
Wait primitives.

Using the Request and Wait pr imi ti ves is more
powerful, however, as it allows a greater degree
of overlap between multiple input/output
operations and computation.

Procedural Access to System Services

4-10

When a procedural interface is used, a request
block is automatically constructed and the
default response exchange of the process is
automatically used. Except for the ReadAsync and
WriteAsync procedures, the request block is
constructed on the stack of the client process.

Most procedural interfaces to system services do
not provide any overlap between computation by

the client process and execution of the system
service. Because Read and Write are the system
services for which the overlap of computation
and execution of the system service is most
desirable, the procedures ReadAsync and
CheckReadAsync and WriteAsync and
CheckWriteAsync have been provided. (See the
"File," "Disk," and "Printer Spooler Management"
sections.) These procedures allow the client
process to initiate an input/output operation
and then compute and/or initiate other
input/output operations before checking for the
successful completion of the input/output
operation.

Direct Access to System Services

Execution of a system service involves the
participation of two processes (client and system
service), three kinds of Kernel primitives
(Request, Respond, and Wait), two kinds of
exchanges (response exchange and default response
exchange), and a data structure (request block).

The process requesting the system service is the
client process. Any process, even a system
service process, can be a client process, since
any process can request system services.

OS system services are provided by system
service processes. These processes are created
when the sys tern is first loaded and execute code
that was linked into the System Image at system
build.

System services are customized at system build
th rough the incl usi on/exclusion of Burroughs
written system service processes in the System
Image. User-written system service processes
can also be included, either to replace or to
augment the Burroughs-written ones.
User-written sys tern service processes have the
same power and flexibility as Burroughs-written
ones; customizing the set of system services
requires no modification of Burroughs-written
code.

A request block, a data structure provided by the
client process, contains the specification of and
the parameters to the desired system service. A
request block contains a request code field, a
response exchange field, and several other fields
that are explained in the section below on
"Request Blocks."

4-11

4-12

A request code is a 16-bi t value that uniquely
identifies the desired system service. For
example, the request code for the Write operation
is 36. The request code is used both to route a
request to the appropriate system service process
and to specify to that process which of the
several services it provides is currently
requested.

A response exchange is the exchange at which the
requesting client process waits for the response
of a system service. The response can be
directed to the exchange at which the client
process is expecting it because the exchange at
which the response is desired is specified in the
request block.

A special case of response exchange is the
default response exchange of a process. Each
process is given a unique default response
exchange when it is created. This special
exchange is automatically used as the response
exchange whenever a client process uses the
procedural interface to a system service.

For this reason, the direct use of the default
response exchange is not recommended. The use of
the default respons-e--exchange is limited to
requests of a synchronous nature. That is, the
client process, after specifying the exchange in
a Request, must wait for a response before
specifying it again (indirectly or directly) in
another Request.

A service exchange is an exchange that is
assigned to a system service process at system
build. The system service process waits for
requests for its services at its service
exchange.

The Request primitive is a variant of the Send
primitive. It is used to direct a request for a
system service from a client process to the
service exchange of the system service process.
Request, unlike Send, does not accept an exchange
identification as a parameter. Rather, it infers
the appropriate service exchange by using the
request code as an index into the Service
Exchange Table.

The Service Exchange Table is constructed at
system build, resides in the System Image, and
translates request codes to service exchanges. A
companion table, the Local Service Code Table,

translates each request code to a local service
code to specify which of the several services of
the system service process is desired.

The Respond pr imi ti ve is another variant of the
Send primitive. System service processes use
Respond to report the completion of the requested
system service. The exchange to which the
response is directed is not a direct parameter to
Respond but is obtained from the response
exchange field of the request block. Only system
service processes are allowed to use the Respond
primitive, and they must always specify as a
parameter the same request block that the client
process used to request the system service.

Interaction of Client Processes and System Service Processes

The client process initiates the transaction by
formatting a request block and issuing a Request
primitive. The client process can then continue
execution but must not modify the request block.
In order to determine when the request was
completed, the client process must issue either
a Wait or a Check primitive. The Wait or Check
primitive must specify the same exchange that
the client process specified as the response
exchange in the request block.

The Wait primitive suspends execution of the
client process until the system service process
responds (or until another message is queued at
the specified exchange).

The Check primitive does not suspend execution of
the client process1 instead it inquires whether a
message is queued at the specified exchange.

The system service process waits for a request to
be queued at an exchange. Upon receiving a
request, the system service process verifies the
control information and data given it before
processing the request.

If the request is invalid, the system service
process inserts an appropriate error code into
the status code field (that is, ercRet) of the
request block.

If the request is valid, the system service
process performs the request, places appropriate
information into the response packets described
by the request block, inserts a normal status
code into the request block, and acknowledges

4-13

4-14

completion of the service by responding to the
exchange specified by the client process. It
then resumes waiting until it receives the next
request.

The interaction of client and system service
processes is shown in Figure 4-2 below.

Client

Wait
Satisfied A3

Service
Exchange

Response
Exchange

System
Service

Process B

Figure 4-2. Interaction of Client and System Service Processes

The processing flow of client and system service
processes is shown in Figure 4-3.

Filter Processes

Process Entry
Point

Initialize Process

Compute

Request Service

Wait for Response

CLIENT PROCESS

Process Entry
Point

Initialize Process

Wait for Request

Perform Function

Respond

SERVICE PROCESS

Figure 4-3. Processing Flow of Oient and System Service Processes

A filter process is a user-written system service
process that is included in the System Image at
system build. A filter process is interposed
between a client process and a system service
process that believe they are communicating
directly with each other. The Service Exchange
Table is adjusted at system build to route
requests through the desired filter process.

A filter process might be used between the file
management system and its client process to
perform special password validation on all or
some requests.

4-15

Client
Process A

Wait
Satisfied

A3

The interaction of a filter process with a client
and system service process is shown in Figure 4-4
below.

Wait 81

Wait
Satisfied

82

Filter
System
Service

Process B

Wait
Satisfied

BS

Wait
Satisfied

C2

System
Service

Process C

Figure 4-4. Interaction of Filter Process with Oient and System Service Processes

Request Blocks

4-16

The format of request blocks is designed to allow
the transparent migration of system service
processes between standalone and cluster
configurations. Request blocks are completely
self-describing and consist of four parts:

1. a standard header,

2. request-specific control information,

3. descriptions of the request data items, and

4. descriptions of the response data items.

Standard Header

Each data
size, and
process) •

i tern is
source

described by memory address,
(client or system service

The format of the standard request block header
is shown in Table 4-1 below.

Off set

0
2
3
4
6
8

10

where

sCntinfo

nReqPbCb

nRespPbCb

userNum

exchResp

Table 4-1. Fonnat of a Request Block Header

Field

sCntinfo
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

Size
(bytes)

2
1
1
2
2
2
2

is the number of bytes of control
information.

is the number of request
address/size {pb/cb) pairs.

is the number of
address/maximum size
pairs.

response
(pb/cbMax)

is a 16-bi t user number that
uniquely identifies the application
system. Each application partition
has a unique user number. The
processes in an application
partition share the same user
number. A process can obtain its
user number with the GetUserNumber
operation (see the "Process
Management" section).

is the response exchange.
CAUTION: Be extremely careful in
specifying the response exchange in
the request block. Conflicting use

4-17

ercRet

rqCode

of exchanges, especially explicit
use of the default response exchange
of a process that conflicts with the
implicit use by procedural calls to
system services and system common
procedures, tends to cause
application systems to malfunction
in ways that are difficult to
diagnose.

is the status code (returned by the
system service process).

is a request code, a 16-bi t value
that uniquely identifies the desired
system service. The request code is
used both to route a request to the
appropriate system service process
and to specify to that process which
of the several services it provides
is currently requested.

Request-Specific Control Information

Request Data Item

The request-specific control information consists
of sCntinfo bytes that are transmitted from
client to system service (except for ercRet,
which is transmitted from system service to
client) •

Each request data item descriptor consists of the
4-byte memory address of the request data i tern
followed by the 2-byte size of the i tern. The
total size (in bytes) of the request data i tern
descriptors is six times nReqPbCb. Request data
items are transmitted from client to system
service.

Response Data Item

4-18

Each response data i tern descriptor consists of
(1) the 4-byte memory address of the area into
which the response data i tern is to be moved by
the system service, and (2) the 2-byte maximum
allowable byte count of the response data item.
The total size (in bytes) of the response data
item descriptors is six times nRespPbCbMax.
Response data i terns are transmitted from system
service to client.

Example

As an example, consider a request to write one
sector into a file that has already been
opened. Assume that the client process is using
a procedural interface rather than directly using
the Request and Wait primitives. The client
process makes a function reference (that is,
ere = Write (fh, pBuffer, sBuffer, lf a,
psDataRet)1) to the file management system Write
operation, supplying as arguments:

o the file handle returned from a previous
OpenFile operation,

o the memory address of the first byte of data
to be written,

o the count of bytes to be written,

o the logical file address of the sector into
which the data is to be written, and

o the memory address of the word into which the
count of bytes successfully written is to be
returned.

The Write function also returns a status code
indicating the success of the operation.

The Write system service illustrates both a
request data i tern (the data to be written) for
which the client process is the source and a
response data item (the count of bytes
successfully written) for which the system
service process is the source.

In this example, the procedural interface
automatically allocates memory on the stack of
the client process for a request block and
creates a header ~ontaining:

o the number of bytes of control information
(6) ,

o the number of items of request data (1),

o the number of items of response data (1),

o the user number (the default is 0 for the
application system in the interactive
partition),

o the response exchange (the default response
exchange of the client process is used

4-19

Request Primitive

4-20

automatically whenever a system service is
activated through its procedural interface),

o the status code (this is returned by the
system service process), and

o the request code (36 is the request code to
__ invoke the Write system service).

The control information contains:

o the file handle (2 bytes), and

o the logical file address (4 bytes).

The single request data item is described by:

o the memory address of the data to be written,
and

o the count of bytes to be written.

The single response data item is described by:

o the memory address of the word into which the
count of bytes successfully written is to be
returned, and

o the size (in bytes) of the word into which
the count of bytes successfully written is to
be returned (the number 2 is automatically
supplied by the procedural interface).

The Request pr imi ti ve is a variant of the Send
primitive. It directs a request for a system
service from a client process to the service
exchange of the system service process.

The Send primitive accepts any 4-byte field as a
parameter. This is usually, but not
necessarily, the address of a message. In
contrast, the Request and Respond primitives
explicitly interpret the 4-byte field as the
memory address of a request block. Before
issuing the Request primitive, the client
process arranges the data required for the
system service into a request block in its
memory.

Unlike Send, Request does not accept an
identification of an exchange as a parameter.
Rather, it infers the appropriate service

Respond Primitive

exchange by using the request code of the request
block as an index into the Service Exchange
Table. The Service Exchange Table is constructed
at system build, resides in the System Image, and
translates request codes to service exchanges.

The use of the Service Exchange Table allows
request codes to remain invariant among
Operating Systems with varying organizations of
system service processes. This invariance
facilitates the development of filters and is
critical to the transparent operation of the
cluster confi gura ti on.

A companion table, the Local Service Code Table,
translates each request code to a local service
code to specify which of the several services of
the system service process is desired.

The Respond primitive is only used by a system
service process to respond to a client process
that requested the performance of a system
service.

The only parameter to the Respond primitive is
the memory address of the request block of the
client process. That is, the system service must
use the same memory address as a parameter to
Respond that the client process used as a
parameter to the Request primitive. The exchange
to which the response is directed is determined
by the response exchange (exchResp) field of the
request block.

In normal operation, sufficient resources (that
is, link blocks) are always available for the
successful execution of the Respond pr imi ti ve.
This is because the Request primitive reserves a
link block for the exclusive use of the
corresponding Respond primitive. Calls to the
Respond primitive must exactly match calls to the
Request primitive. That is, each Request must be
answered by a Respond, and Respond must never be
used for any purpose other than to answer a
Request.

If a malfunctioning user-written system service
were to fail to respond to a client process's
request, unmatched requests would cause all link
blocks to be reserved and future requests would
receive the "No link block available" status
code.

4-21

Wait Primitive

If an application process inappropriately called
the Respond primitive, the unmatched Respond
would cause the count of link blocks reserved to
be insufficient and might cause another call to
Respond to receive the "No link block available"
status code.

The Wait primitive is used with the Request and
Respond primitives, as well as with the Send
primitive. System service processes use Wait to
suspend execution until a client process requests
the performance of a system service. Client
processes use Wait to synchronize their execution
with the completion of the system service they
requested. In the context of Request and
Respond, the message that is queued at an
exchange is always a request block.

The Wait primitive first checks whether one or
more messages are queued at the specified
exchange.

If messages are queued, then the
enqueued first is dequeued from
its memory address returned
process; the calling process
execution.

message that was
the exchange and
to the calling

then continues

If no messages are queued, the Process Control
Block of the calling process is queued at the
exchange and the process is placed into the
waiting state. In the waiting state, the process
stops executing and relinquishes control of the
processor. The calling process remains in the
waiting state until another process queues a
message at the specified exchange. The calling
process then leaves the waiting state and is
placed into the ready state. The memory address
of the message queued at the exchange by the
other process is returned to the calling process
and it resumes execution when it becomes the
highest priority ready process.

lnterstation Communication

4-22

The interstation communication (ISC) facility is
an upward-compatible extension of the
interprocess communication facility. When a
client process requests a system service, a
request block is constructed that contains all

the information
desired function.

necessary to describe the

In a standalone
queued at the
process that
function.

workstation, the request block is
exchange of the system service
actually performs the desired

Cluster Workstation Agent Service Process

In a cluster workstation, however, if the
function is to be performed at the master
workstation, the request block is queued at the
exchange of the cluster workstation Agent
Service Process. The cluster workstation Agent
Service Process converts interprocess requests
to interstation messages for transmission to the
master workstation. The cluster workstation
Agent Service Process is included at system
build in a System Image that is to be used on a
cluster workstation.

Master Workstation Agent Service Process

The System Image used at the master workstation
is built to include a corresponding service
process: the master workstation Agent Service
Process. The master workstation Agent Service
Process reconverts the interstation message to
an interprocess request that it queues at the
exchange of the master workstation system
service process that actually performs the
desired function. Note that the Service
Exchange Table that translates request code to
service exchange at the master workstation is
necessarily different from the table at the
cluster workstation. When the system service
process at the master workstation responds, the
response is routed through the master
workstation Agent Service Process, the
high-speed data link, and the cluster
workstation Agent Service Process before being
queued at the response exchange in the cluster
workstation that was specified in the request
block.

The format of request blocks is designed to
allow the cluster workstation and master
workstation Agent Service Processes to convert
between interprocess requests and i nterstation
messages very efficiently and with no external
information. Because request blocks are
completely self-describing, the Agent Service

4-23

transfer requests and responses
master workstation and cluster

without any knowledge of what
requested or how it is to be

Processes can
between the
works ta ti on
function is
performed.

lnterstation Request/Response Message

4-24

An interstation request message consists of:

o a header,

o control information,

o the size and actual text of each request data
item, and

o the maximum allowed size of each response
data item.

An interstation response message consists of:

o a status code, and

o the actual size and text of each response
data item.

The cluster workstation Agent Service Process
forms an i nterstation request message by copying
the header and control information from the
request block, moving the actual text of the
request data items into the message, and
including a specification of the maximum allowed
sizes of the response data items.

After receiving the interstation response
message, the cluster workstation Agent Service
Process stores the status code into the request
block and moves the text of the response data
i terns into the memory areas specified for them
by the request block. This transformation
scheme ensures that no redundant or extraneous
information is transmitted between the master
workstation and cluster workstations.

OPERATIONS: PRIMITIVES
Interprocess communication management provides
the operations listed below.

Check

PS end

Request

Respond

Send

Wait

dequeues the message (if any)
that was enqueued first at the
specified exchange. Returns
the status code "No message
available" (14) if none are
queued.

a privileged send used by
interrupt handlers. Sends the
specified message to the
specified exchange.

requests a system service by
sending a request block to the
exchange of the system service
process.

notifies a client process that
the requested system service
was performed by sending the
request block of the client
process back to the response
exchange specified in the
request block.

sends the specified message to
the specified exchange.

dequeues the message (if any)
that was enqueued first at the
specified exchange. Causes the
calling process to be placed
into the waiting state if no
messages are enqueued.

4-25

Check

Description

The Check primitive checks whether messages are
queued at the specified exchange. If messages
are queued, then the message that was enqueued
first is dequeued and its memory address is
returned to the calling process. If no messages
are queued, then status code 14 ("No message
available") is returned.

The Check primitive, µnlike the Wait primitive,
never causes the calling process to be placed
into the waiting state.

Procedural Interface

Request Block

4-26

Check (exchange, ppMsgRet): ErcType

where

exchange

ppMsgRet

is the identification of the
exchange to check.

is the memory address of a 4-byte
field into which the memory address
of the message that was enqueued
first at the exchange, if any, is
returned.

Check is a Kernel primitive.

PSend

Description

The PSend primitive, a privileged Send primitive
used by interrupt handlers, checks whether
processes are queued at the specified exchange.
If processes are queued, then the process that
was enqueued first is dequeued, given the memory
address of the message, and placed into the ready
state.

If no processes are waiting at the exchange, then
the message is queued at the exchange.

PSend uses a special pool of link blocks that
are reserved at system build (see the B 20
System Programmers and Assembler Reference
Manual (Part 1), form 1148699).

Procedural Interface

Request Block

PSend (exchange, pMsg): ErcType

where

exchange is the
exchange
sent.

identification of the
to which the message is

pMsg is the memory address of
(or a 4-byte field of
whose interpretation is
by the sending and
processes) •

PSend is a Kernel primitive.

the message
information
agreed upon

receiving

4-27

Request

Description

The Request primitive requests a system service
by sending a request block to the service
exchange of the system service process.

A client process uses the Request primitive
indirectly when it uses the procedural interface
to a system service or directly when it is
necessary to overlap its own execution with the
performance of the service.

The Request primitive infers the appropriate
service exchange by using the request code of
the request block as an index into the Service
Exchange Table. The use of the Service Exchange
Table allows request codes to remain invariant
among Operating Systems with varying
organizations of system service processes. This
invariance facilitates the development of
filters and is critical to the transparent
operation of the cluster configuration.

The client process must use the AllocExch
operation (see the "Exchange Management" section)
to acquire an exchange identification to place
into the exchResp field of the request block.

There must not be conflicting uses of the
response exchange specified in the request block;
such conflict can cause malfunction of the
application system that is difficult to diagnose.

Procedural Interface

Request Block

4-28

Request (pRq): ErcType

where

pRq is the memory address of the request
block.

Request is a Kernel primitive.

Respond

Description

The Respond pr imi ti ve is only used by a system
service process to respond to a client process.
After the system service process has completed
the processing of a service request, it invokes
Respond to send the request block of the client
process back to the response exchange specified
in the request block.

The Respond primitive accepts the memory address
of the request block of the client process as its
only parameter; the system service process must
use the same memory address as a parameter to the
Respond primitive that the client process used as
a parameter to the Request primitive. The
exchange to which the response is directed is
determined by the exchange response field of the
request block.

Calls to the Respond primitive must exactly match
calls to the Request primitive; that is, each
Respond must answer a Request and each Request
must be answered by a Respond.

A link block is reserved by the corresponding
Request pr imi ti ve to ensure the successful
execution of the Respond primitive.

The use of the Respond primitive within an
application system would cause catastrophic
mismanagement of link blocks and termination of
OS operation. See the discussion in the B 20
System Programmers and Assembler Reference
Manual (Part 1), form 1148699, for complete
explanation.

Procedural Interface

Request Block

Respond (pRq): ErcType

where

pRq is the memory address of the same
request block that the system
service process received from its
exchange.

Respond is a Kernel primitive.

4-29

Send

Description

The Send pr imi ti ve checks whether processes are
queued at the specified exchange. If processes
are queued, then the process that was enqueued
first is dequeued, given the memory address of
the message, and placed into the ready state. If
such a process has a higher priority than the
calling process, it is scheduled for immediate
execution and the calling process remains
preempted until the higher priority process
reenters the waiting state.

If no processes are waiting at the exchange, then
the message is queued at the exchange.

Procedural Interface

Request Block

4-30

Send (exchange, pMsg): ErcType

where

exchange

pMsg

is the
exchange
sent.

identification of the
to which the message is

is the memory address of
(or a 4-byte field of
whose interpretation is
by the sending and
process) •

the message
information
agreed upon

receiving

Send is a Kernel primitive.

Wait

Description

The Wait pr imi ti ve checks whether messages are
queued at the specified exchange. If messages
are queued, then the message that was enqueued
first is dequeued and its memory address returned
to the calling process; the calling process then
continues execution.

If no messages are queued, then the Process
Control Block of the calling process is queued at
the exchange and the process is placed into the
waiting state. In the waiting state, the process
stops executing and relinquishes control of the
processor. The calling process remains in the
waiting state until another process queues a
message at the specified exchange using the Send,
PSend, Request, or Respond primitives. The
calling process then leaves the waiting state and
is placed into the ready state. The memory
address of the message queued at the exchange by
the other process is returned to the calling
process and it resumes execution when it becomes
the highest priority ready process.

Procedural Interface

Request Block

Wait (exchange, ppMsgRet): ErcType

where

exchange

ppMsgRet

is the identification of
exchange at which to wait.

the

is the memory address of a 4-byte
field into which the memory address
of the message that was enqueued
first at the exchange, if any, is
returned.

Wait is a Kernel primitive.

4-31

OVERVIEW

CONCEPTS
Exchange

SECTION 5
EXCHANGE MANAGEMENT

The exchange management facility supports the
dynamic allocation and deallocation of
exchanges. For more information about exchanges,
see the "Interprocess Communication Management"
section.

An exchange is the path over which messages are
communicated from process to process (or from
interrupt handler to process). An exchange
consists of two first-in, first-out queues: one
of processes waiting for messages, the other of
messages for which no process has yet waited. An
exchange is referred to by a unique 16-bit
integer.

Processes or messages, but not both, can be
queued at an exchange at any given moment. If a
process waits at an exchange at which messages
are queued, then the message that was enqueued
first is dequeued and its memory address given to
the process~ the process then continues
execution. Similarly, if a message is sent to an
exchange at which processes are queued, then the
process that was enqueued first is dequeued,
given the address of the message, and placed into
the ready state.

5-1

Exchange Allocation

5-2

Exchanges are allocated in three ways:

o Exchanges for system service processes are
allocated at system build.

o Exchanges can be dynamically allocated and
deallocated using the AllocExch and
DeallocExch operations.

o When a process is created, its creator gives
it a unique default response exchange. (See
the "Interprocess Communication Management"
section.) A process can determine the
identification of its own default response
exchange using the QueryDefaultRespExch
operation.

In a compact system, all allocated exchanges are
deallocated when the application system exits.
In a system where multiple application systems
can execute simultaneously, only the exchanges of
an exiting application system are deallocated.

Operations and data structures for interpartition
communication are described in the "Application
Partition Management" section.

OPERATIONS: PROCEDURES AND SERVICES

Allocation

Deallocation

Inquiry

Exchange management operations are categorized by
function in Table 5-1 below.

Table 5-1. Exchange Management Operations by Function

Allocation

AllocExch

Inquiry

QueryDefaultRespExch

Deallocation

DeallocExch

AllocExch allocates an exchange.

DeallocExch deallocates an exchange.

QueryDefaultRespExch
allows a process to determine
the identification of its own
default response exchange.

5-3

AllocExch

Description

The AllocExch service allocates an exchange.

Procedural Interface

Request Block

5-4

AllocExch (pExchRet): ErcType

where

pExchRet is the memory address of a word into
which the identification of the
allocated exchange is returned.

sExchMax is always 2.

Size
Off set Field (bytes) Contents

0 sent Info 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 40

12 reserved 6

18 pExchRet 4
22 sExchMax 2 2

DeallocExch

Description

The DeallocExch service deallocates an exchange.

Procedural Interface

Request Block

DeallocExch (exchange): ErcType

where

exchange

Off set

0
2
3
4
6
8

10

12

is the identification of the
exchange to deallocate. This
identification must have been
obtained using the AllocExch
operation.

Size
Field (bytes) Contents

sCntinfo 2 2
nRegPbCb 1 0
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rgCode 2 41

exchange 2

5-5

QueryDefaultRespExch

Description

The QueryDef aul tRespExch procedure allows a
process to determine the identification of its
own default response exchange.

Procedura1 Interface

Request B1ock

5-6

QueryDefaultRespExch (pExchRet): ErcType

where

pExchRet is the memory address of a word
which the identification of
default response exchange of
inquiring process is returned.

into
the
the

QueryDefaultRespExch
procedure.

is a system common

OVERVIEW

SECTION 6
MEMORY MANAGEMENT

The memory management facility supports the
dynamic allocation and deallocation of areas of
memory for code, data, etc., by each application
system in its own partition.

Types of Memory

Two types of memory allocation are available to
the application system: long-lived and short­
lived. Within each application partition, long­
lived memory expands upward from low memory
locations, while short-lived memory expands
downward from high memory locations. The OS
allocates short-lived memory for application
tasks.

Both long-lived and short-lived memory ca.n be
dynamically allocated and deallocated by requests
to OS system services.

When the execution of an application system is
terminated, the short-lived memory of its
partition is automatically deallocated.

Long-lived memory is deallocated only at the
explicit request of each application system.
Therefore, long-lived memory is useful for
passing information from an application system to
a succeeding application system in the same
partition.

6-1

CONCEPTS

Addressing Memory

Segments

6-2

The B20 Information Processing System has a one­
megabyte address space. Each of the 1,048,576
bytes in the address space has a unique 20-bit
physical memory address. However, software does
not use physical memory addresses. Software
identifies specific bytes of memory by using
logical memory addresses.

A logical memory address is a 32-bit entity
consisting of a 16-bit segment base address and a
16-bit offset.

A segment base address is the high-order 16-bits
of the 20-bit physical memory address of a
hardware segment. (The low-order 4 bits are
implicitly 0.) The CS, DS, SS, and ES segment
registers of the processor contain segment
base addresses.

The offset is the distance, in bytes, of the
target location from the beginning of the
hardware segment. The physical memory address of
a byte is computed by multiplying the segment
base address by 16 and adding the offset.

A byte of memory does not have a unique logical
memory address. Rather, any of the 4096
combinations of segment base address and off set
refer to the same byte of memory. Whenever the
term memory address is used in th is Manual, it
refers to logical memory address.

A segment is a contiguous (usually large) area of
memory that consists of an integral number of
paragraphs. A paragraph is 16 bytes of memory
whose physical memory address is a multiple of
16.

Hardware segments can be adjacent, disjoint,
partially overlapping, or completely
overlapping. A physical memory location can be
contained in multiple hardware segments.

Software segments are nonoverlapping hardware
segments that contain single, logical entities.
It is conventional to address a byte within a

software segment by using a logical memory
address whose segment base address points to the
first byte of the segment and whose offset is the
physical memory address of the addressed byte
minus the physical memory address of the first
byte of the segment. This convention limits the
size of a software segment to 65,536 bytes.

Code, Static Data, and Dynamic Data Segments

There are three types of software segments:
code, static data, and dynamic data. Each type
of segment can be either shared or nonshared.

A code segment contains only processor
instructions (code) and is never modified once it
is loaded into memory. This characteristic
permits several processes to execute instructions
from the same code segment. It also allows the
virtual code segment management facility (see the
section of that name) to reload code segments
from the run file as needed without saving the
copy of the segment previously in memory.

A data segment contains data. It can also
contain code, although this is not recommended.
There are no restrictions on modifying the
contents of a data segment. If a data segment is
shared among processes, concurrency control is
the responsibility of those processes.

A static data segment is automatically loaded
into memory when its containing task image is
loaded.

A dynamic data segment is allocated by a request
from an executing process to the memory
management facility.

Code and static data segments are created by
compiling and/or assembling source programs into
object modules and linking the object modules
into task images.

A task image is a program stored in a run file
that contains code and/or static data segments.
When requested, the task management facility
loads the task image into memory and adjusts any
logical memory addresses that exist in either
code or data segments to reflect the memory
address at which the task is loaded.

6-3

If the virtual code segment management facility
is in use, all the static data segments, but only
the resident code segment, are loaded into
memory. The nonresident code segments are loaded
into memory only as needed.

The Linker utility reads segments from object
module files and combines them according to their
segment names, class names, and directives from
the user. See the 820 Systems Li n~e:r/J.ibrarian
Reference Manual, form 1148681 and 820 Systems
Programmers and Assembler Reference Manual (Part
2), form 1144466.

A task image that was created by linking object
modules produced by the Pascal and/or FORTRAN
compilers consists of one code segment for each
object module included in the link and a single
static data segment. The single static data
segment (DGroup) combines the static data and
stack requirements of all the object modules. A
task image of th is form is considered standard:
assembly language programmers are urged to adopt
this standard unless other considerations are
overriding. (The COBOL compiler and BASIC
interpreter do not produce object modules.)

Memory Organization

6-4

a ppl i cation
(in which

The memory organization of an
partition in a compact system
application systems can be executed
time) differs from that of a system
multiple application systems can be
simultaneously.

one at a
in which
executed

Figure 6-1 shows the memory organization of the
application partition in the compact system.

Figure 6-2 shows the memory organization of an
application partition in a system in which
multiple applications can be executed
simultaneously. In this system, both the primary
and secondary application partitions have the
same memory organization.

Low End of Memory

High End of Memory

Long-Lived Memory

Common Pool of Unallocated Memory

Short-Lived Memory

Secondary Task 2

Secondary Task 1

Primary Task

Figure 6-1. Memory Organization of the Application Partition in a Compact System

Long-Lived and Short-Lived Memory
Two types of memory allocation are available to
each application system: long-lived and short­
lived. Within each application partition, long­
lived memory expands upward from low memory
locations, while short-lived memory expands
downward from high memory locations. The OS
allocates short-lived memory for application
tasks.

All currently unallocated memory in an
application partition is in a contiguous area
called the common memory pool. Memory can be
allocated from both ends of the pool. There is
no restriction on how much can be allocated from
either end other than that the sum of the
allocations cannot exceed the amount of memory
available in an application partition. The
QueryMemAvail operation returns the size of all
available memory in an application partition.

6-5

6-6

The memory management facility of the OS allows
client processes to allocate and deallocate areas
of memory (dynamic data segments) from the common
pool in an application partition. Memory is
allocated and deallocated only on paragraph
boundaries. That is, the physical address of the
area is a multiple of 16. Because of this, areas
of memory allocated by the OS can be referenced
conveniently using the segment addressing
convention discussed previously.

Low End of Memory

High End of Memory

System Data Structures

Long-Lived Memory

Common Pool of Unallocated Memory

Short-Lived Memory

Secondary Task 2

Secondary Task 1

Primary Task

Figure 6-2. Memory Organization of an Application Partition in a System Allowing

Simultaneous Execution of Multiple Application Systems

Operations

Deallocations

The AllocMemoryLL and AllocMemorySL operations
allocate long-lived and short-lived memory
segments, respectively, in an application
partition. Note, however, that the
AllocAllMemorySL operation can allocate more than
65,536 bytes, and thus the entire area allocated
by this operation is not necessarily addressable
as a single segment.

The DeallocMemoryLL and DeallocMemorySL
operations deallocate long-lived and short-lived
memory segments, respectively, in an application
partition. The ResetMemoryLL operation
deallocates all long-lived memory in an
application partition.

Relative to allocations from one end of an
application partition's memory, deallocations
must occur in exactly the opposite sequence.
That is, the user must follow a last allocated,
first allocated discipline when deallocating
either long-lived or short-lived memory. For
example, if an application system allocates
short-lived memory segments A, B, and C, it then
deallocates them in the order C, B, A.

Thus the motion of the borders (the dashed lines
in Figures 6-1 and 6-2) of the common pool of
memory in an application partition resembles the
playing of an accordion: the borders converge
when memory is allocated and diverge when memory
is deallocated. This scheme is efficient because
all unallocated memory is in a common pool and
simple because the OS has to remember only the
addresses of the next (long-lived and short­
lived} segments to allocate, not the addresses of
all allocated segments.

Long-Lived Memory Uses

The long-lived memory in an application partition
is used for:

parameters passed from one application system
to a succeeding application system in the
same pa rti ti on, and

user data that is to be
succeeding application systems
partition.

processed by
in the same

6-7

Long-lived memory allocations are returned to the
common pool of unallocated memory in an
application partition only upon explicit request
of the application system.

Short-Lived Memory Uses

The short-lived memory in an ~pplication
partition is used by the OS to contain the code
and static data segments of each task. It is
also allocated by application processes for use
as dynamic data segments for data that is to be
processed only by the current application system.
Other common uses of short-lived memory are
input/output buffers and the Pascal heap.

Short-lived memory allocations are returned to
the common pool of unallocated memory whenever
the application system is replaced (in any
application partition by the Chain, ErrorExit, or
Exit operations, or in the primary application
partition by the key combination ACTION-FINISH).
(See the "Task Management" section.)

Virtual Code Segment Management

6-8

See the "Virtual Code Segment Management" section
for how tasks of an application system are
handled when they require an area larger than the
available physical memory in an application
partition.

OPERATIONS: SERVICES

Allocation

Deallocation

Inquiry

Memory management operations are categorized by
function in Table 6-1.

Table 6-1. Memory Management Operations by Function

Allocation

AllocAllMemorySL
AllocMemoryLL
AllocMemorySL

Inquiry

QueryMemAvail

AllocAllMemorySL
allocates
short-lived
application

AllocMemoryLL

Deallocation

DeallocMemoryLL
DeallocMemorySL
ResetMemoryLL

the largest possible
memory segment in an

partition.

allocates a long-lived memory
segment in an application partition.

Al 1 ocMemo rySL
allocates a short-lived memory
segment in an application partition.

Deal l ocMemo ryLL
deallocates a
C!onmon~ in ~n --":j···- ··- - ...

long-lived memory
application partition.

DeallocMemorySL

ResetMemoryLL

Que ryMemAvail

deallocates a short-lived memory
segment in an application partition.

deallocates all long-lived memory in
an application partition.

returns the size of all available
memory in an application partition.

6-9

AllocAllMemorySL

Description

The AllocAllMemorySL service
largest possible short-lived
within an application partition.

allocates the
memory segment

Procedural Interface

Request Block

6-10

AllocAllMemorySL (pcParagraphRet,
ppSegmentRet): ErcType

where

pcParagraphRet
is the memory address of a word into
which the count of bytes available
(divided by 16) is returned.

ppSegmentRet is the memory address of 4 bytes
into which the memory address of the
allocated segment is returned. The
low-order 2 bytes contain the
offset, which is always O. The
high-order 2 bytes contain the
segment base address of the
allocated segment.

scParagraphMax is always 2 and spSegmentMax is
always 4.

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 46

12 reserved 6

18 pcParagraphRet 4
22 scParagraphMax 2 2

24 ppSegmentRet 4
28 spSegmentMax 4 4

AllocMemoryll

Description
The AllocMemoryLL service allocates a long-lived
memory segment of the specified size within an
application partition.

Procedural Interface

Request Block

AllocMemoryLL (cBytes, ppSegmentRet): ErcType

where

cBytes is the desired segment size.

ppSegmentRet is the memory address of 4 bytes
into which the memory address of the
allocated segment is returned. The
low-order 2 bytes contain the
offset, which is always O. The
high-order 2 bytes contain the
segment base address of the
allocated segment.

spSegmentMax is always 4.

Size
Offset Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum ., ...
6 exchResp 2
8 ercRet 2

10 rqCode 2 44

12 cBytes 2

14 reserved 4

18 ppSegmentRet 4
22 spSegmentMax 2 4

6-11

AllocMemorySL

Description

The AllocMemorySL service allocates a short-lived
memory segment of the specified size within an
application partition.

Procedural Interface

Request Block

6-12

AllocMemorySL (cBytes, ppSegmentRet): ErcType

where

cBytes is the desired segment size.

ppSegmentRet is the memory address of 4 bytes
into which the memory address of the
allocated segment is returned. The
low-order 2 bytes contain the
offset, which is always O. The
high-order 2 bytes contain the
segment base address of the
allocated segment.

spSegmentMax is always 4.

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 42

12 cBytes 2

14 reserved 4

18 ppSegmentRet 4
22 spSegmentMax 2 4

DeallocMemoryll

Description

The DeallocMemoryLL service deallocates a long­
lived memory segment of the specified size within
an application partition. Segments must be
deallocated in a sequence exactly opposite the
one in which they were allocated (that is, last
allocated, first deallocated).

Procedural Interface

Request Block

DeallocMemoryLL {pSegment, cBytes): ErcType

where

pSegment

cBytes

Off set

0
2
3
4
6
8

10

12

14

is the memory address of the segment
to deallocate. The off set portion
must be 0. pSegment should be the
same memory address that was
returned by the corresponding
AllocMemoryLL operation.

is the size (in bytes) of the
segment to deallocate. cBytes
should be the same value that was
passed to the corresponding
AllocMemoryLL operation.

Size
Field (bytes) Contents

sCntinfo 2 6
nReqPbCb 1 0
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 45

cBytes 2

pSegment 4

6-13

DeallocMemorySL

Description

The DeallocMemorySL service deallocates a short­
lived memory segment of the specified size within
an application partition. Segments must be
deallocated in a sequence exactly opposite the
one in which they were allocated (that is, last
allocated, first deallocated).

Procedural Interface

Request Block

6-14

DeallocMemorySL (pSegment, cBytes): ErcType

where

pSegment

cBytes

Offset

0
2
3
4
6
8

10

12

14

is the memory address of the segment
to deallocate. The off set portion
must be o. pSegment should be the
same memory address that was
returned by the corresponding
AllocMemorySL operation.

is the size (in bytes) of the
segment to deallocate. cBytes
should be the same value that was
passed to the corresponding
AllocMemorySL operation.

Size
Field (bytes) Contents

sCntinfo 2 6
nReqPbCb 1 0
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 43

cBytes 2

pSegment 4

QueryMemAvail

Description

The QueryMemAvail service returns the size (in
16-byte paragraphs) of all currently available
memory in an application partition. Because of
the way in which memory is organized, it is
possible to allocate segments from available
memory using both the AllocMemoryLL and
AllocMemorySL operations.

Procedural Interface

Request Block

QueryMemAvail (pcParagraphRet) : ErcType

where

pcParagraphRet
is the memory address of a word into
which the count of bytes available
(divided by 16) is returned.

scParagraphMax is always 2.

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 48

12 reserved 6

18 pcParagraphRet 4
22 scParagraphMax 4 2

6-15

ResetMemoryll

Description

The ResetMemoryLL service deallocates all long­
li ved memory within an application partition. An
application system in the primary application
partition should not use ResetMemoryLL unless
another Executive was substituted for the
Executive; this is because the Executive depends
on part of the contents of long-lived memory.

Procedural Interface

ResetMemoryLL: ErcType

Request Block

Size
Offset Field (bytes) Contents

0 sent Info 2 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 47

6-16

OVERVIEW

SECTION 7
TASK MANAGEMENT

The task management facility supports the
asynchronous execution of several loosely and/or
tightly coupled application software elements
(tasks) performing related portions of a single
application system.

An application system consists of one or more
tasks. A task consists of code, data, and one or
more processes. The code and data can be unique
to the task or shared with other tasks.

An application system can be executed in each
application partition. Multiple application
systems can be executed simultaneously, each in
its own partition. (See the "Application
Partition Management" section.)

Task management provides operations to (1)
replace an entire application system (all tasks
within an application partition) with a single
new task and (2) incrementally add a task to a
current application system. A task is always
loaded into the highest available memory location
within the application partition and has a single
process associated with it when it is first
loaded. Additional processes can be created
dynamical 1 y.

7-1

CONCEPTS

Application System

Task

An application system is the name for all the
tasks currently loaded in a specific application
partition. These tasks can be loosely or tightly
coupled, but all perform related portions of the
same application system. These tasks execute
asynchronously. A task can be added to an
application system but not removed from it.

A task is an executable program that consists of
code, data, and one or more processes. The code
and data can be unique to the task or shared with
other tasks.

A task image is the disk-resident image of an
executable program. It is created by compiling
and/or assembling source language modules into
object modules and linking the object modules
together. A disk file that contains a task image
is called a run file. A task image contains code
and/or data segments.

Code and Data Segments

7-2

A code segment contains only processor
instructions (code) and is never modified once it
is loaded into memory. This characteristic
permits several processes to execute instructions
from the same code segment. It also allows the
virtual code segment management facility (see the
section of that name) to reload code segments
from the run file as needed without saving the
copy of the segment previously in memory.

A data segment contains data. It can also
contain code, al though this is not recommended.
There are no restrictions on modifying the
contents of a data segment. If a data segment is
shared among processes, concurrency control is
the responsibility of those processes.

A data segment that is automatically loaded into
memory when its containing task image is loaded
is called a static data segment, to differentiate
it from a dynamic data segment. A dynamic data
segment is allocated by a request from the
executing process to the memory management
facility.

Loading a Task

The Linker utility reads segments from object
module files and combines them according to their
segment names, class names, and directives from
the user. (See the B20 System Linker/Librarian
Reference Manual, form 1148681, and B20 System
Programmers Guide, Part 2, form 1144464.)

A task image that was created by linking object
modules produced by the Pascal and/or FORTRAN
compilers consists of one code segment for each
object module included in the link and a single
static data segment. The single static data
segment (DGroup) combines the static data and
stack requirements of all the object modules. A
task image of this form is considered standard;
assembly language programmers are urged to adopt
this standard unless other considerations are
overriding. (The COBOL compiler and BASIC
interpreter do not produce object modules.)

Loading a task consists of reading the task image
into the short-lived memory of an application
partition and adjusting any logical memory
addresses (intersegment references) that exist in
either code or data segments to reflect the
memory address at which the task is loaded.

Short-lived memory is allocated from the high­
address end of the common pool of unallocated
memory of the, application partition and is
returned to the common pool whenever the
application system is replaced (in any
application partition by the Chain, ErrorExit, or
Exit operations, or in the primary application
partition by the key combination ACTION-FINISH).

If the virtual code segment management facility
is in use, all the static data segments, but only
the resident code segment, are loaded into
memory. The nonresident code segments are loaded
into memory only as needed.

Virtual code segment management
the primary or a secondary
application partition. However,
task cannot be virtual if the
already uses virtual code segment

is available to
task of an

a secondary
primary task

management.

Primary tasks are those loaded by the Chain,
ErrorExit, or Exit operations (see the "Task
Management" section), or the LoadPrimaryTask
operation (see the "Application Partition
Management" section). Secondary tasks are those
loaded by the task management LoadTask operation.

7-3

Exit Run File

Operations

7-4

An exit run file is a user-specified file that is
loaded and activated when an application system
exits. Each application partition has its own
exit run file.

An application system can specify an exit run
file for its partition with the SetExitRunFile
operations. An appli ca ti on system can determine
the exit run file of its partition with the
QueryExitRunFile operation.

An exit run file is a primary task that
turn, load additional tasks into its
with the LoadTask operation.

can, in
partition

In the primary application partition, if no exit
run file is specified, the system will
malfunction and reboot itself. If the exit run
file cannot be read, it displays the message
"Cannot load exit run file" and a status code
indicating the type of error that occurred. If
the exit run file is on a floppy disk, the user
can insert a floppy disk with the appropriate
exit run file and the system will resume loading
of the exit run file.

The task management facility provides six
operations: Chain, ErrorExit, Exit, LoadTask,
QueryExitRunFile, and SetExitRunFile.

Chain, ErrorExit, and Exit terminate all
application processes and deallocate all short­
lived memory in an application partition before
loading the succeeding application system and
creating a single process to execute it. In
addition, ErrorExi t and Exit pass an abnormal and
normal status code, respectively, to the
succeeding application system in the same
application partition.

The LoadTask operation, in contrast, preserves
all current application processes and short-lived
memory allocations in the application partition
while loading and activating an additional task
and creating an additional process to execute it.

The SetExitRunFile operation establishes a new
exit run file for an application partition. The
QueryExitRunFile operation returns the name,
password, and priority of the exit run file of an
application partition.

OPERATIONS: PROCEDURES AND SERVICES

Task management provides the operations listed
below.

Chain

ErrorExi t

Exit

Load Task

replaces the current application
system in an application partition
with the specified run file.

terminates the current application
system in an appli ca ti on pa rti ti on
and passes an abnormal status code
to the exit run file.

terminates the current application
system in an application partition
and passes a normal status code to
the exit run file.

loads and activates
task as part of
application system in
partition.

an additional
the current

an application

QueryExitRunFile
returns the
priority of
appli ca ti on

SetExitRunFile

name, password,
the exit run file of
partition.

and
an

establishes a new exit run file for
an application partition.

7-5

Chain

Description

7-6

The Chain service replaces a current application
system with a specified run file. Chain returns
control to the calling process only if an error
condition is detected.

Chain:

1. Verifies that the specified run file exists,
that it can be opened for Read using the
password provided, that it contains a valid
task image, and that the task image fits in
the application partition.

2. Places the status code
System Control Block
partition.

in
of

the
the

Appl i ca ti on
application

3. Disconnects interrupt handlers of the
appl i ca ti on pa rti ti on and te rmi na tes al 1
processes of the application partition.

4. Terminates keyboard (primary application
partition only), timer, and communications
requests, and waits until all disk and
printer input/output activity has ceased.

5.

6.

7.

In the primary application partition
resets the keyboard to character
Discards the content of the type-ahead
if the keyboard was in unencoded mode
the status code is nonzero.

In the primary application partition
reenables the ACTION-FINISH feature
discards the action code (if any).

only,
mode.

buffer
and/or

only,
and

In the primary appli ca ti on partition only,
closes the submit or recording file if the
status code is nonzero.

8. Closes all files opened for the application
partition except those marked long-lived (by
the OpenFileLL or SetFhLongevi ty operations;
see the "File Management" section).

9. Releases for reuse all application partition
memory that was allocated as short-lived.

10. Allocates a short-lived memory segment in the
application partition that is large enough to
contain the task image from the specified run
file.

11. Reads the task image from the run file into
the application partition.

12. Relocates all intersegment reference to
accommodate the memory address at which the
task image is loaded.

13. Creates a process to be scheduled at the
specified priority. The initial values loaded
into the segment registers (CS, DS, SS, ES),
the Stack Pointer (SP), and the Instruction
Pointer (IP) are derived from information in
the run-file header.

Chain has no effect on the allocation of long­
lived memory.

If the task requires virtual code segment
management, the
accommodate code
open run file is
Control Block of

run file is left open to
swapping. The file handle of the
placed in the Application System
the appli ca ti on partition.

Procedural Interface

Chain (pbFileSpec, cbFileSpec, pbPassword,
cbPassword, priority, ercTermination,
fDebug): ErcType

where

pbFileSpec
cbFileSpec

pbPassword
cbPassword

priority

describe a character string of the
form {node} [volname] <dirname>
filename.

describe
di rectory,
authorizes
file.

either
or file

access to

the volume,
password that
the specified

is the priority (0-254, with 0 the
highest) at which to schedule the
newly created process for execution.

7-7

Request Block

7-8

ercTermi nation

£Debug

Off set

0
2
3
4
6
8

10

12

14

16

18
22

24
28

is a 16-bit status code to be placed
in the Application System Control
Block of the application partition
for exami nation by the run file. In
the primary application partition
only, a nonzero status code causes
the content of the type-ahead buffer
to be discarded and the submit or
recording file to be closed.

indicates whether the run file is to
be debugged. TRUE indicates it is to
be debugged and therefore not
scheduled for execution; FALSE
indicates it is to be scheduled for
execution. If £Debug is TRUE, then
the Debugger is entered
automatically as soon as the task
image is loaded into the application
partition.

Size
Field (bytes) Contents

sCntinfo 2 6
nReqPbCb 1 2
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 28

priority 2

ercTermination 2

£Debug 2

pbFileSpec 4
cbFileSpec 2

pbPassword 4
cbPassword 2

ErrorExit
Description

The ErrorExit procedure terminates the current
application system and passes an abnormal status
code to the specified exit run file. ErrorExit
never returns to the calling process.

ErrorExi t is
except that
explicit.

exactly like the Exit operation
the status code in ErrorExit is

ErrorExi t:

1.

2.

3.

Verifies that the specified exit run file
exists, that it contains a valid task image,
and that the task image fits in the
application partition memory {the OS
terminates if this verification fails.)

Places the specified abnormal status code
the Application System Control Block of
application partition.

Disconnects interrupt handlers of
application partition and terminates
processes of the application partition.

in
the

the
all

4. Terminates keyboard {primary application
partition only), timer, and communications
requests, and waits until all disk and
printer input/output activity has ceased.

5. In the primary application only, resets the
keyboard to character mode. Discards the
content of the type-ahead buffer if the
keyboard was in unencoded mode and/or the
status code is nonzero.

6. In the primary application partition only,
reenables the ACTION-FINISH feature and
discards the action code (if any).

7. In the primary application partition only,
closes the submit or recording file if the
status code is nonzero.

8. Closes all files opened for the application
partition except those marked long-lived {by
the Ope nFileLL or SetFhLongevi ty operations;
see the "File Management" section).

7-9

9. Releases for reuse all application partition
memory that was allocated as short-lived.

10. Allocates a short-lived memory segment large
enough to contain the task image from the
specified exit run file. If sufficient
application partition memory to load the exit
run file cannot otherwise be allocated, then
long-lived memory is reset (that is, released
to the common pool of unallocated memory)
before the exit run file is loaded.

11. Reads the task image from the run file into
the application partition.

12. Relocates all intersegment references to
accommodate the memory address at which the
task image is loaded.

13. Creates a process to be scheduled at the
default priority. The initial values loaded
into the segment registers (CS, DS, SS, ES),
the Stack Pointer (SP), and the Instruction
Pointer (IP) are derived from information in
the run-file header.

ErrorExit has no effect on the allocation of
long-lived memory except as noted in step 10
above. If necessary, the exit run file is left
open to accommodate code swapping of the exit run
file. The file handle of the open run file is
placed in the Application System Control Block of
the application partition.

Procedural Interface

Request Block

7-10

Call ErrorExit (ercTermination)

ercTermination
is a 16-bit status code to be placed
in the Application System Control
Block of the application partition
for examination by the exit run
file. In the primary application
partition only, a nonzero status
code causes the content of the type­
ahead buffer to be discarded and the
submit or recording file to be
closed.

ErrorExit is a system common procedure.

Exit

Description

The Exit procedure terminates the current
application system and passes a normal status
code to the specified exit run file. Exit never
returns to the calling process.

Exit is exactly like the ErrorExit
except that the status code in Exit is
That is,

Call Exit
is equivalent to:

Call ErrorExit (0)

Exit:

operation
implicit.

1. Terminates the current application system.

2. Places a normal successful status code (0) in
the Application System Control Block of the
application partition.

3. Closes all files opened for the specific
application partition except those marked
long-lived (by the OpenFileLL or
SetFhLongevi ty operations; see the "File
Management" section).

4. Invokes the exit run file of the application
partition.

Procedural Interface

Call Exit

Request Block

Exit is a system common procedure.

7-11

LoadTask

Description

The LoadTask service loads and activates an
additional task as pa rt of the current
application system in the application partition.

LoadTask:

1. Verifies that the file handle specifies a run
file that contains a valid task image and
that the task image fits in the application
partition memory.

2. Allocates a short-lived memory segment large
enough to contain the task image from the
specified run file.

3. Reads the task image from the run file into
the application partition.

4. Relocates all intersegment references to
accommodate the memory address at which the
task image is loaded.

5. Creates a process to be scheduled at the
specified priority. The initial values
loaded into the segment registers (CS, DS,
SS, ES), the Stack Pointer (SP), and the
Instruction Pointer (IP) are derived from
information in the run-file header.

Procedural Interface

7-12

LoadTask (fh, priority, fDebug): ErcType

where

f h

priority

is the file handle of a run file
that has been opened by the calling
process.

is the priority (0-254, with 0 the
highest) at which to schedule the
newly created process for
execution. A value of 255 requests
that a process not be created. This
permits the loading of a task image
that is executed by calling the
procedures in it from another
process.

f Debug

Request Block

Off set

0
2
3
4
6
8

10

12

14

16

indicates whether the task is to be
debugged. TRUE indicates it is to
be debugged and therefore not
scheduled for execution; FALSE
indicates it is to be scheduled for
execution. In contrast to its
meaning in the Chain operation,
setting fDebug to TRUE does not
automatically activate the Debugger.

Size
Field (bytes) Contents

sCntinfo 2 6
nReqPbCb 1 0
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 29

f h 2

priority 2

fDebug 2

Task Management 7-13

QueryExitRunFile

Description

•

The Que ryExi tRunFile service returns the name,
password, and priority of the exit run file of
the application partition.

Procedural Interface

7-14

QueryExitRunFile (pbExitRunFileRet,
cbExitRunFileRet,
pbPasswordRet, cbPasswordRet,
pbPriori tyRet): ErcType

pbExi tRunFileRet
cbExi tRunFileRet

pbPasswordRet

define the memory area into which
the exit run file specification is
returned. The first byte of the
returned information is the size of
the exit run file specification.

cbPasswordRet .
define the memory area into which

file
the
of

pbPriori tyRet

the password for the exit run
is returned. The first byte of
returned information is the size
the password.

is the memory address of the
into which the priority of the
run file is returned.

word
exit

Request Block
cbPriori tyRet is al ways 2.

Size
Offset Field (Bytes) Contents
------ ----- ------- --------

0 sCntinfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 3
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 187

12 reserved 6

18 pbExitRunFileRet 4
22 cbExitRunFileRet 2

24 pbPasswordRet 4
28 cbPasswordRet 2

30 pbPriori tyRet 4
34 cbPriori tyRet 2 2

7-15

SetExitRunFile
Description

The SetExitRunFile service establishes a new exit
run file for the application partition in which
the calling process is executing.

Procedural Interface

Request Block

7-16

SetExitRunFile (pbExitRunFile, cbExitRunFile,
pbPassword, cbPassword,
priority): ErcType

where

pbExi tRunFile
cbExitRunFile

pbPassword
cbPassword

priority

Off set

0
2
3
4
6
8

10

12

14

18
22

24
28

describe a character string of the
form {node} [volname]<dirname>file­
name that specifies the run file to
be loaded into the application
partition when an Exit request is
issued by the current task.

describe the volume, directory, or
file password that authorizes access
to the specified file.

is the priority (10-254, with 10 the
highest) at which the newly created
process is scheduled for execution.

Field

sCntinfo
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqcode

priority

reserved

pbExi tRunFile
cbExitRunFile

pbPassword
cbPassword

Size
(Bytes)

2
1
1
2
2
2
2

2

4

4
2

4
2

Contents

6
2
0

186

SECTION 8
VIRTUAL CODE SEGMENT MANAGEMENT

OVERVIEW

The virtual code segment management facility
permits the execution of application systems that
exceed the size of physical memory of an
application partition. This is accomplished
through the use of the virtual memory technique.

Virtual code segment management is available to
the primary or a secondary task of an application
partition. However, a secondary task cannot be
virtual if the primary task al ready uses virtual
code segment management.

Primary tasks are those loaded by the Chain,
ErrorExit, or Exit operations (see the "Task
Management" section) , or the Load Prima ryTask
operation (see the "Application Partition
Management" section).

Secondary tasks are those loaded by the task
management LoadTask operation.

8-1

CONCEPTS

Virtual Memory

Virtual memory is a technique that makes the
apparent size of memory of an appli ca ti on
partition (from the perspective of the
appli ca ti on programmer) greater than its actual
physical size. This improves the efficiency of
memory usage by allowing disk storage, as well as
the main memory of an application partition, to
be used to contain parts of the current
application system.

Two popular implementations of virtual memory are
segment swapping and page swapping. (The use of
program overlays is not considered virtual memory
because it is not transparent to the application
programmer.)

Virtual Code Segment Swapping

8-2

The Operating System supports virtual code
segment swapping. Each task is divided into
variable-length code segments that reside on disk
in a run file. As the task executes, only those
code segments that a re required at a pa rti cul a r
time actually reside in the main memory of an
application partition; the other code segments
remain on disk until they, in turn, are required.

When a particular code segment in the memory of
an application partition is no longer needed, it
is overlaid by another code segment. This can be
done because all code segments produced by 820
compilers (and by assembler code that is written
according to a simple set of guidelines; see the
B20 System Programmers and Assembler Reference
Manual (Part 2), form 1144466) are reentrant.

When the particular code segment is required
again, it is simply reread from the run file.
Since code segments are never modified, they can
always be read directly from the run file into
which the Linker wrote them.

Virtual Code Segment Swapping Versus Page Swapping

OS virtual code segment swapping differs from the
page swapping of other systems in two significant
ways:

0

Si nee only code, not data,
from disk to the main
application partition, it
to allocate a swapping
segments back to disk.

segments are moved
memory of an

is never necessary
file or to write

o A code segment is a variable-length logical
entity, not a fixed-length physical entity.
A code segment contains one or more complete
procedures.

Using the Virtual Code Segment Management Facility

Initializing

There are two steps to using virtual code segment
management:

0 initializing the virtual
management facility, and

code segment

o specifying to the Linker the desired grouping
of object modules into code segments.

The swap buffer is an overlay area in the memory
of an application partition. It is used to
contain all nonresident code segments. It must
be allocated either dynamically using the
AllocMemorySL operation (see the "Memory
Management" section) or statically configured
into the task. The swap buffer is commonly
allocated dynamically so that its size can be
determined by the amount of memory available in
the partition.

The InitOverlays object module procedure must be
called before any procedure in a nonresident
(virtual) code segment is called.

The arguments to the InitOverlays operation are
the memory address and the size of the swap
buffer. This buffer must be large enough to
contain the largest nonresident code segment. A
larger buffer permits more code segments to be
kept in the main memory of an application
partition and improves system performance.

8-3

Linking

Using Overlays

8-4

After the virtual code segment management
facility is initialized, no further explicit
reference must be made to the swap buffer; the
facility automatically allocates the memory in
the swap buff er to code segments as they are read
in.

When linking a task to use the virtual code
segment management facility, the desired grouping
of object modules into code segments must be
specified to the Linker.

No restrictions are placed on the ability of
procedures to call other procedures in any code
segment to any degree of nesting or recursion.
Note, however, that the performance of an
application system is substantially improved if
some care is exercised in the grouping of
procedures into object modules and object modules
into code segments. (See the B2 0 Sys terns
Linker/Librarian Reference Manual, form 1148681,
for more information about the Linker utility.)

Programs that use overlays have two
resident and overlaid.

The resident part contains resident
data. It must contain the main program
call to the Ini tOverlays opera ti on.

parts:

code
and

and
the

The overlaid part contains one or more overlays.
Each overlay corresponds to one or more code
segments. Only code segments can be overlaid.
All other segments must remain memory-resident.

The Linker identifies code segments by the class
name CODE. This is set automatically by FORTRAN
and Pascal but must be set explicitly when using
assembly language.

Normally, a code segment is generated by a single
compilation and is contained in one object
module. However, the Linker can combine code
segments in any number of object modules into a
single code segment.

OPERATIONS: PROCEDURES
When using overlays:

The maximum size of the resident code is
equal to the total memory in the B 20 minus
the used memory (ie. Operating System, system
services and user programs).

The maximum number of overlays is 256.

Any procedures called before the overlay area
is initialized must be in the resident code.

The SwapAl, SwapO, Swapl, Swap2, and
object modules in the OS library must
the resident code.

All callers of the Lockin and
operations in ComSub (for example,
must be in the resident code.

ComSub
be in

Lockout
SamCop)

Virtual code segment management provides the
operation listed below.

GetCParasOvlyZone returns the size of the swap
buffer measured in
paragraphs.

InitLargeOverlays is identical to InitOverlays
service with the exception
that the user describes the
length of the swap buffer as
a count of paragraphs instead
of bytes.

InitOverlays initializes the virtual code
segment management facility.

MakeRecentlyUsed is called from within an
overlay to prevent that
overlay from being
inadvertently swapped out.

ReinitLargeOverlays is identical to the
ReinitOverlays with the
exception that the user
describes the length of the
swap buffer as a count of
paragraphs instead of bytes.

ReinitOverlays allows the user to change the
size of the swap buffer to
recover memory or extend the
swap buffer for better
performance.

8-5

GetCParasOvlyZone

The GetCParasOvlyZone service returns the size of
the swap buffer measured in paragraphs. A
paragraph is 16 bytes.

Procedural Interface

Request Block

8-6

GetCParasOvlyZone: WORD

where the returned word contains the size of the
swap buffer measured in paragraphs.

GetCParasOVlyZone is an object module procedure.

lnitlargeOverlays

The InitLargeOverlays service is identical to the
InitOverlays service with the exception that the
user describes the length of the swap buffer as a
count of paragraphs instead of bytes. A
paragraph equals 16 bytes.

Procedural Interface

Request Block

InitLargeOverlays (pSwapBuffer, cParasSwapBuffer)

where

pSwapBuffer

cParasSwapBuf fer

is the memory address of the
first byte of the swap buffer.
The buffer must be word­
aligned.

is the size of the swap buffer
in paragraphs. A paragraph is
16 bytes. The buffer must be
large enough to contain the
largest non- resident code
segment.

InitLargeOverlays is an object module procedure.

8-7

lnitOverlays

Description

The InitOverlays procedure initializes the
virtual code segment management facility.
InitOverlays is called once at the beginning of a
task. It must be included in the resident code
of a task and must be called before any procedure
in a nonresident {virtual) code segment is
called.

Procedural Interface

Request Block

8-8

InitOverlays (pSwapBuffer, sSwapBuffer)

where

pSwapBuffer is the memory address of
byte of the swap buffer.
must be word-aligned.

the first
The buffer

sSwapBuffer is the size of the swap buffer.
The buffer must be large enough
to contain the largest nonresident
code segment.

InitOverlays is an object module procedure.

MakeRecentlyUsed

The MakeRecentlyUsed service is called from
within an overlay to prevent that overlay from
being inadvertently swapped out. The default
replacement algorithm of the Virtual Code
facility will swap out overlays based on age in
memory. MakeRecentlyUsed over rides this default
by making an overlay appear to have zero age
regardless of when it was swapped in. When
MakeRecentlyUsed is called by an overlay, it will
only be replaced in memory if there is
insufficient room for itself and for the next
overlay called. In this way the user may dictate
to the virtual code facility that a specific
overlay should remain in memory if possible.

Procedura1 Interface

MakeRecentlyUsed

with no arguments

Request B1ock

MakeRecentlyUsed is an object module procedure.

8-9

Rel nitlargeOverlays

The ReinitLargeOverlays service is identical to
the Reinitoverlays service documented above with
the exception that the user describes the length
of the swap buffer as a count of paragraphs
instead of bytes. A paragraph equals 16 bytes.

Procedural Interface

Request Block

8-10

ReinitLargeOverlays (cParasSwapBuffer)

where

cParasSwapBuf fer

ReinitLargeOverlays
procedure.

is the size of the swap
buffer in paragraphs. A
paragraph is 16 bytes. The
buffer must be large enough to
contain the largest
nonresident code segment.

is an object module

Re In itOverlays

The ReinitOverlays service allows the user to
change the size of the swap buffer to recover
memory or extend the swap buffer for better
performance. The swap buffer size can only be
changed by adding or subtracting memory from the
high memory side of the buffer. Remember that
the size of the swap buffer must always follow
the constraints previously described.

Procedura1 Interface

Request Block

ReinitOverlays (sSwapBuffer)

where

sSwapBuf fer is the size of the swap
buffer. The buffer must be
large enough to contain the
largest nonresident code
segment.

ReinitOverlays is an object module procedure.

8-11

OVERVIEW

SECTION 9
PARAMETER MANAGEMENT

The parameter management facility provides a
structured mechanism for passing limited
information from one application system to its
successor within the same partition.

Application systems that pass parameters include,
for example, the B20 Executive in the primary
application partition, or the batch manager in
any application partition.

Forms-Oriented Interface

Parameters

The B20 Information Processing System supports
and encourages the use of forms-oriented
interfaces for workstation operators.

The B20 Executive is an example of a forms­
oriented interface. The operator types a command
name and presses the RETURN key; the Executive
responds with the command form appropriate to it.
(See the B20 System Executive Reference Manual,
form 1144474 for details about this type of
interface.)

For example, if the operator types Delete and
presses RETURN, the following form appears:

Delete
File list
[Confirm each?]

The operator enters data into the fields of the
form and also corrects typing errors by modifying
the data. The operator, when satisfied with the
contents of the fields, presses the GO key.

Note that the Delete command takes two
parameters: a parameter and a
subparameters. A parameter consists of
more subparameters. A subparameter
consists of an arbitrary sequence of
not including a space. (For
parameters, see the "Parameters in
Form" section of the B20 System
Reference Manual, form 1144474.)

kinds of
list of

zero or
typically

characters
Executive

a Command
Executive

9-1

Organizing Parameters: Variable-length Parameter Block

9-2

Continuing the previous example, after the
operator has pressed GO, the Executive organizes
the operator's data to simplify Delete's
extraction of the parameters. The organized data
is stored in the Variable-Length Parameter Block.

The Variable-Length Parameter Block {VLPB) is a
formal structure used by the Executive and batch
manager to communicate parameters to application
systems. The VLPB is created in the long-lived
memory of an application partition, and its
memory address is stored in the Application
System Control Block (ASCB) of the application
partition.

An ASCB in each application partition
communicates parameters and other information
between application systems within its partition.

The VLPB and the parameter passing services of
the Executive and batch manager are applicable to
any application system on a B20 system.

A common case is an application system to be
invoked from the Executive. When implementing
such an application system, the user decides on a
command name, the captions for the fields of the
command form, and the corresponding message that
appears when the operator presses the HELP key.
This information is supplied to the Executive
using the New Command command (as described in
the B20 System Executive Reference Manual, form
1144474).

Another common case is an application system to
be invoked from the batch manager. When
implementing such an application system, the user
creates a batch job control language file.

CONCEPTS

Parameter and Subparameter

A parameter consists of zero or more
subparameters. A subparameter typically consists
of an arbitrary sequence of characters not
including a space. For example, the parameter:

1 abc Work.Fri

contains three subparameters: 1, abc, and
Work.Fri.

A space is embedded in a subparameter by
including the entire subparameter in single
quotes. For example, the parameter:

'l abc' Work.Fri

contains two subparameters: 1 abc, and Work.Fri.

Variable-Length Parameter Block

The Variable-Length Parameter Block (VLPB) is a
formal structure used by the Executive or batch
manager to communicate parameters to application
systems in an application partition. The VLPB is
created in the long-lived memory of an
application partition; its memory address is
stored in the pVLPB field of the Application
System Control Block (see below). The
application system gets its parameters from the
VLPB using three operations: CParams, CSubParams,
and RgPa ram.

The CParams operation returns the number of
parameters stored in the VLPB, that is, the
number of fields in the command form.

The CSubParams operation returns the number of
subparameters stored in the VLPB for a specified
parameter, that is, the number of subparameters
the operator entered in a specified field of the
command form.

The RgParam operation provides access to the
pa rame te rs stored in the VLPB.

Four object module procedures support the
creation of a VLPB: RgParaminit, RgParamSetElt­
Next, RgParamSetListStart, and RgParamSetSimple.

9-3

The VLPB is a self-describing, two-dimensional
array of character strings. Each element of the
array rgSdoParam is a pair (ob, cb) of words,
where ob is the offset within the VLPB of the
corresponding row of the two-dimensional array,
and cb is the number of bytes occupied by the
row. -rrhe strings that make up a row are prefixed
with a 1-byte count and packed together without
padding.

The format of the VLPB is shown in Table 9-1
below.

Table 9-1. Variable-Length Parameter Block

Size
Offset Field (bytes)

0 sVarParams 2

2 ibFirstFree 2

4 cParams 2

6 rgSdoParam 4*(cParams + 1)
(cParams + 1)

Application System Control Block

9-4

An Application System Control Block (ASCB} in
each application partition communicates
parameters, the termination code, and other
information between application systems within
its partition.

The address of the ASCB is obtained through the
GetASCB operation.

The format of the ASCB is shown in Table 9-2.

Table 9-2. Application System Control Block

Size
Off set Field (bytes) Description

0 fhSwapFile 2

2 pVLPB 4

6 fExecScreen 1

7 fChkBoot 1

8 ercRet 2

Set by the Chain op­
eration. (See the
"Task Management"
section.) If the
primary task is
virtual, then
fhSwapFile is the
file handle of its
run file~ otherwise,
fhSwapFile is set to
OFFFFh.

Memory address of the
VLPB in the long­
lived memory of an
appli ca ti on
partition.

Set to FALSE by the
ResetVideo operation
(see the "Video Dis­
play Management"
section) and to TRUE
by the Executive. If
fExecScreen is FALSE
when the B20
Executive is loaded,
it reinitializes the
video subsystem.

Set to FALSE during
OS initialization
and to TRUE by the
Executive.

The Chain operation
writes its ercTermi­
nation parameter into
this word.

9-5

9-6

Table 9-2. Application System Control Block (Cont.)

Size
Off set Field (bytes) Description

10
14

16

22

23

24

pbMsgRet
cbMsgRet

reserved

4
2

8

fTermination 1

fVacate 1

oLastTask 2

pbMsgRet and cbMsgRet
can be set by an ap­
plication system to
describe a string of
text located in long­
lived memory. When
the Executive is
loaded, this text
appears on the video
display.

Set to TRUE when a
user tries to ACTION­
FINISH an application
system when ACTION­
FINISH is disabled: or
when an application
system tries to
terminate the task in
a locked secondary
partition. This is
set to FALSE when a
task replaces the old
task in the partition

Set to TRUE when a
user or an application
system tries to vacate
the task in a locked
secondary partition.
This is set to FALSE
when a task replaces
the old task in the
partition.

Off set of the last
task loaded.

Table 9-2. Application System Control Block (Cont.)

Size
Offset Field (Bytes) Description

26 fExecFont 1 Set to FALSE by OS
when the font is
changed. When the
Executive finds fExec­
font set to FALSE, it
reloads the font and
sets fExecfont to
TRUE.

27 bActionCode 1 Contains the last
action code detected
by the keyboard
process (not including
ACTION-A, -B, and
FINISH codes).

28

30

cParMemArray 2

reserved 34

The size of the memory
array (in 16-byte
paragraphs) of the
primary task when
loaded.

9-7

Table 9-2. Application System Control Block (Cont.)

Off set Field

64 sbUserName

95 sbPassword

108 sbCmdFile

Size
(Bytes) Description

31

13

79

The name of the
current user (the
first byte of the
string is the length
of the name) •

The password the user
gave when signing on
(for accessing the
user conf i gura ti on
file).

The name of the
user's Executive
command file.

OPERATIONS: PROCEDURES

9-8

Parameter management operations are categorized
by function in Table 9-3 below.

Table 9-3. Parameter Management Operations by Function

Retrieval

CParams
CSubParams
GetpASCB
RgParam

Creation

RgParaminit
RgParamSetEltNext
RgParamSetListStart
RgParamSetSimple

Retrieval

Creation

CParams

CSubParams

GetpASCB

RgParam

RgParaminit

RgParamSetEltNext

returns the number of
parameters stored in the
Variable-Length Parameter
Block.

returns the number of
subparameters stored in the
Variable-Length Parameter Block
for a specified parameter.

returns the address of the
Application System Control
Block in an application
pa rti ti on.

provides access to the
parameters stored in the
Variable-Length Parameter
Block.

initializes the specified
memory to be the Variable­
Length Parameter Block.

creates an additional
subparameter of the current
parameter in the Variable­
Length Parameter Block.

RgParamSetListStart
initiates the creation of a
parameter with multiple
subparameters.

RgParamSetSimple creates a parameter with one
subparameter.

9-9

CParams

Description
The CParams procedure returns the number of
parameters stored in the Variable-Length
Parameter Block, that is, the number of fields in
the command form.

Note that the B20 Executive passes the name of
the command as parameter zero.

Procedural Interface

CParams: WORD

Request Block

CParams is an object module procedure.

9-10

CSubParams

Description

The CSubParams procedure returns the number of
subparameters stored in the Variable-Length
Parameter Block for a specified parameter, that
is, the number of subparameters the operator
entered in a specified field of the form.

Procedural Interface

CSubParams (iParam): WORD

where

iParam is the index of the parameter.

Request Block

CSubParams is an object module procedure.

9- J I

GetpASCB

Description

The GetpASCB procedure returns the address of the
Application System Control Block (ASCB) of the
appli ca ti on pa rti ti on in which the appli ca ti on
system is executing.

Procedural Interface

Request Block

9-12

GetpASCB (ppASCBRet): ErcType

where

ppASCBRet is the memory address of a pointer
that is returned with the address to
the ASCB.

GetpASCB is a system common procedure.

RgParam

Description

The RgParam procedure provides access to the
parameters stored in the Variable-Length
Parameter Block. Each RgParam invocation returns
the memory address and size of a subparameter.
Note that the Executive stores the command name
used to invoke the application system in RgParam
(0,0).

Procedural Interface

RgParam (iParam, jParam, pSdRet): ErcType

where

iParam is the index of the parameter.

jParam is the index of the subparameter.

pSdRet is the location of a 6-byte block of
memory. The memory address of the
subparameter is returned in the
first 4 bytes, and its size is
stored in the last 2 bytes.

Request Block

RgParam is an object module procedure.

9-13

RgParamlnit

Description

The RgParamini t procedure i ni tiali zes the
specified memory to be the Variable-Length
Parameter Block. If the block of memory is not
large enough, RgParaminit attempts to increase
its size by allocating additional long-lived
memory. This attempt succeeds only if the block
of memory is at the top of the long-lived memory
of an application partition.

Procedural Interface

Request Block

9-14

RgPa ram I nit (pVa rPa rams, sVarPa rams,
i Pa ramMax): E rcType

where

pVarPararns
sVarParams

i ParamMax

describe the block
used for the
Parameter Block.
O, the current
Parameter Block is

of memory to be
Variable-Length

If sVarPararns is
Variable-Length

reinitialized.

is one less than the number of
parameters to be recorded.

RgParaminit is an object module procedure.

RgParamSetEltNext

Description
The RgParamSetEltNext procedure creates an
additional subparameter of the current parameter
in the Variable-Length Parameter Block. The
invocation of RgParamSetEltNext must immediately
follow the invocation of either the RgParamSet­
ListStart or RgParamSetEltNext procedure.

If the Variable-Length Parameter Block is not
large enough to accommodate this subparameter, it
is compacted and an attempt made to extend it by
allocating additional long-lived memory. This
attempt succeeds only if the Variable-Length
Parameter Block is at the top of the long-lived
memory of an application partition.

Procedural Interface

Request Block

RgParamSetEltNext (pSd) : ErcType

where

pSd is the location of a 6-byte block of
memory, the first 4 bytes of which
contain the memory address of the
string to be used and the last 2
bytes of which contain the string's
length.

RgParamSetEltNext is an object module procedure.

9-15

RgParamSetlistStart

Description

The RgParamSetListStart procedure initiates the
creation of a parameter with multiple
subparameters. The RgParamSetEltNext procedure,
which must be called immediately following an
invocation of RgParamSetListStart, creates a
subparameter. If the parameter already ex is ts,
all its old subparameters are destroyed and the
memory they occupied reused.

Procedural Interface

Request Block

9-16

RgParamSetListStart (iParam): ErcType

where

iParam is the index of the parameter.

RgParamSetListStart
procedure.

is an object module

RgParamSetSimple

Description

The RgParamSetSimple procedure
parameter with one subparameter.
parameter already exists, all
subparameters are destroyed and the
occupied reused.

creates
If

its
memory

a
the
old

they

If the Variable-Length Parameter Block is not
large enough to accommodate this parameter, it is
compacted and an attempt made to extend it by
allocating additional long-lived memory. This
attempt succeeds only if the Variable-Length
Parameter Block is at the top of the long-lived
memory of an appli ca ti on pa rti ti on.

Procedural Interface

Request Block

RgParamSetSimple (iParam, pSd): ErcType

where

iParam

pSd

is the index of the parameter.

is the location of a 6-byte block of
memory, the first 4 bytes of which
contain the memory address of the
string to be used and the last 2
bytes of which contain the string's
length.

RgParamSetSimple is an object module procedure.

9-17

SECTION 10
APPLICATION PARTITION MANAGEMENT

OVERVIEW
The application partition management facility
supports the simultaneous execution of several
application systems, each in its own partition.
An interactive application system can be
executing in one partition while noninteractive
application systems are executing in other
partitions.

Each application system can load and activate any
number of tasks within its partition. Any number
of processes can execute the code in each task.
Each application system is completely independent
of the others, yet can communicate with
application systems in other partitions.

10-1

CONCEPTS

Types of Partitions

The memory of a system consists of two types of
pa rti ti ons:

system partitions, which are loaded with the
operating system (OS) and dynamically
installed system services, and

application partitions, each of which can be
loaded with an application system.

When a system is initialized, the OS is loaded
into the system partition at the low-address end
of memory. Dynamically installed system services
are loaded into an extended system partition
located at the high-address end of memory. All
remaining memory is defined as a single
application partition called the primary
application partition. (See Figure 10-1 below.)

When new partitions are created, they are placed
at the high-address end of the existing
application partition and are called secondary
application partitions. The remaining memory is
defined as the primary application partition.
(See Figure 10-2 below.)

Types of Application Partitions

Primary Application Partitions

The primary application partition is for
interactive programs that use the keyboard and
video display to interact with the user. Such
partitions can be loaded with interactive
programs chosen by the user, such as the Editor,
Word Processor, or Terminal Emulators.

Secondary Application Partitions

10-2

Secondary application partitions are for
noninteractive applications. Such partitions can
be loaded with user applications, the batch
manager, and system services (such as the printer
spooler, ISAM, or a remote job entry).

Application systems executing in secondary
application partitions under control of the batch
manager have their keyboard input and video
output automatically redirected to System Input
(Sysin) and System Output (SysOut) facilities.

Low End of Memory

Interactive
Application
System

High End of Memory

System Partition

Primary Appllcatlon Partition

Extended System Partition

Figure 10-1. Memory Organization Without Secondary Application Partitions

Dynamic Control of Application Partitions

Application partitions are dynamically controlled
through utilities (described in the B 20 System
Software Operation Guide, form 1148772) or
operations (described in this Manual).

The operations described in this section control
processing in secondary application partitions.
Operations described elsewhere in this Manual
apply to all application partitions, unless
otherwise noted.

10-3

Low End of Memory

Interactive
Application
System

Noninteractlve
Application
Systems

Hl9h End of Memory

System P1rtttlon

Primary Appllcallon Partition

s.c:ondary AppllCl'tlon PU1ftlon B

Secondary Applk:atlon Partition A

Extended System Partition

Figure 10-2. Memory Organization With Secondary Application Partitions

Memory Organization of Application Partitions

10-4

The memory of application partitions is organized
as shown in Figure 10-3. The entities in the
partition are:

system data structures describing the
partition and its current application system,
and

primary and secondary tasks that make up the
current application system.

A process executing in an application partition
can allocate and deallocate the memory of its own
partition. Long-lived memory is allocated from
the low-address end, and short-lived memory from
the high-address end of the partition. A process
cannot allocate or deallocate memory in other
partitions.

Low End of Memory

High End of Memory

System Data Structures

Long-Lived Memory

Common Pool of Unallocated Memory

Shor1-Uved Memory

Secondary Task 2
Secondary Task 1

Primary Task

Figure 10-3. Memory Organization of an Application Partition

10-5

Creating Secondary Application Partitions

Secondary application partitions can be created
and loaded either at system initialization or
dynamically during execution.

At System Initialization

Dynamically

Partition Handle

Loading Tasks

10-6

A user can create and load secondary application
partitions through a batch job control file that
is processed during system initialization.
System services such as the printer spooler,
ISAM, or RJE can be loaded in this way.

A process residing in the primary application
partition can create secondary application
partitions dynamically with the CreatePartition
operation. Each new partition is created from
the high-address end of the primary application
partition. The remaining memory is redefined as
the primary application partition.
CreatePartition specifies a partition name,
returns a partition handle, and causes the exit
run file (see below) to be loaded immediately
into the primary application partition, replacing
the application system that executed the
opera ti on.

A partition handle is a 16-bit integer that
uniquely identifies a secondary application
partition. It is returned by the CreatePartition
operation and is used to refer to the partition
in subsequent operations such as GetPartition­
Status, LoadPrimaryTask, and RemovePartition.

A process can obtain a previously assigned
partition handle by supplying the partition name
when using a GetPartitionHandle operation.

vacant when
appl i ca ti on

A secondary application partition is
created. A process in the primary
partition loads and activates the
called the primary task, in
application partition with the
opera ti on.

first task,
a secondary

Load Prima ryTask

Exit Run File

The primary task in turn can load
tasks, called secondary tasks, in
partition with the LoadTask operation.
"Task Management" sec ti on.)

additional
its own
(See the

An exit run file is a user-specified file that is
loaded and activated when the executing
application system exits. Each application
partition has its own exit run file. (See the
"Task Management" section.)

In the primary application partition, if no exit
run file is specified, the system will
malfunction and reboot itself. If the exit run
file cannot be read, it di splays the message
"Cannot load exit run file" and a status code
i ndi ca ting the type of error that occurred. If
the exit run file is on a floppy disk, the user
can insert a floppy disk with the appropriate
exit run file and the system will resume loading
the exit run file.

In a secondary application partition, if no exit
run file is specified or if it cannot be read,
the partition becomes vacant.

Obtaining Partition Status

A process can obtain status information about a
specified application partition and the job
executing in it with the Get Pa rti ti onSta tus
operation. The process can obtain any of the
following: User Control Block, Partition
Descriptor, or Batch Control Block. (See "System
Data Structures" below.)

lnterpartition Communication
A process in one application partition can send
messages to a process in another application
partition. The destination process first
allocates an exchange and makes the exchange
known to the OS with the SetPartitionExchange
operation. The sender process obtains the
exchange number with the GetParti tionExchange
operation, then sends messages to the exchange.

10-7

The processes engaged in the i nte rpa rti ti on
communications must lock themselves into their
respective partitions with the SetPartitionLock
operation to avoid being terminated by a
TerminatePartitionTasks or VacatePartition
operation from the primary application partition.
The termination of an application system that is
currently engaged in interpartition communication
will result in unpredictable system malfunction.

Terminating Tasks

A process terminates the entire
system in its own partition by using
Exit, or ErrorExi t operation. (See
Management" section.)

appli ca ti on
the Chain,
the "Task

In addition, two operations can be executed in
the primary appl i ca ti on pa rti ti on to te rmi na te
the application system in a specified secondary
appli ca ti on partition:

TerminatePartitionTasks terminates all tasks
in the specified secondary application
partition and loads and activates the
partition's exit run file, if one is
specified.

VacatePartition terminates all tasks in the
specified secondary application partition but
does not load and activate the partition's
exit run file. VacatePartition leaves the
pa rti ti on vacant.

Removing Partitions

10-8

A process in the primary application partition
can remove an existing secondary application
partition that is vacant with the RemovePartition
operation.

A secondary application partition is vacant when:

i t i s f i rs t created ,

the current application system exits with no
exit run file specified, or

the VacateParti ti on operation is performed.

If a secondary application partition
the primary application partition is
memory it occupied becomes part of
application partition.

adjacent to
removed, the
the primary

If a secondary application partition that is not
adjacent to the primary partition is removed, the
memory it occupied becomes a block of unused
memory. Adjacent blocks of unused memory are
combined into a single block. Such blocks serve
as a pool of unallocated memory from which new
application partitions are created using a first­
fi t algorithm.

Deallocation of System Resources

In a compact system, all allocated resources are
deallocated when the application system exits.
(Examples of allocated resources are exchanges,
file handles, and timer requests.)

In a system where multiple application systems
can be executed simultaneously, only the
resources allocated to an exiting application
system are deallocated. Information on the
resource allocations of each application system
is stored in application partition data
structures that augment but do not replace the
data structures present in the compact
conf i gura ti on.

Application Partition Data Structures

The application partition management facility
maintains six data structures for each
application partition. These data structures
are described in the order shown in Figure 10-4
(from the left side, top to bottom):

Extended User Control Block (Extended UCB),
which contains the offset of the Partition
Descriptor.

Partition Descriptor, which contains the
partition name, and the boundaries of the
partition and of its long- and short-lived
memory areas. It also contains internal
links to partition descriptors in other
partitions.

10-9

10-10

UCB

Extended uca

Pllrtttion Descriptor

Partltlon Conl\guration Bloek

------~-
Extended Partition Oeseriptor

Batch Control Block

-...--- ...,__, ____ _
A.pplicatlon System Control Blocic

Leng-Lived Memory

- ---------·---t
C11mmon Pool of Unallocated Memory

Sl'lort-Wved Memory

S.Condary Task 2
Secondary Task 1

Primary Task

Figure 10-4. Application Partition Data Structures

Partition Configuration Block, which contains
the offsets of the Extended Partition
Descriptor, Batch Control Block, and
Application System Control Block.

Extended Partition Descriptor, which
contains specifications for the current
application system and exit run file.

Batch Control Block, which contains the job
name and class, file handle and logical file
address of the batch job control file,
Assigned Device Block, and Sys!n and SysOut
byte stream work area and buffers. This data
structure is used by the batch manager.

Application System Control Block (see the
"Parameter Management" section), which
communicates parameters between application
systems.

The format for each data structure is given in
Appendix E.

10-11

OPERATIONS: SERVICES

Application partition management operations are
categorized by function in Table 10-1 below.

Table 10-1. Application Partition Management Operations by Function

Interparti tion
Communication

GetPartitionExchange
SetPartitionExchange
SetPartitionLock

Task Control

LoadPrimaryTask
TerminateParti~ionTasks
VacatePartition

Partition Control

Create Partition
GetPartitionHandle
GetPartitionStatus
RemovePartition

lnterpartition Communication

10-12

GetParti tionExchange
gets the exchange number set up by
the SetParti tionExchange operation.

SetParti tionExchange
sets up an exchange number that can
be queried by a task in another
application partition for
interpartition communication.

SetParti tionLock
declares whether an appli ca ti on
system in the specified application
partition can be terminated by the
Termi nateParti tionTasks or
VacateParti ti on operation.

Partition Control

Task Control

CreateParti tion
creates a new secondary application
partition, assigns its name, and
returns a partition handle.

GetParti tionHandle
translates the name of the
application partition
partition handle.

GetPartitionStatus

specified
into a

returns status information about the
specified application partition and
the job currently executing in it.

RemoveParti ti on
removes the specified vacant
application partition.

Load Prima ryTa s k
loads and activates a primary task
run file in the vacant appli ca ti on
partition specified by the partition
handle.

Termi nateParti tionTasks
terminates all tasks in the
application partition specified by
the partition handle and and loads
the partition's exit run file.

Vaca tePa rti ti on
terminates all tasks in the
application partition specified by
the partition handle but does not
load the pa rti ti on' s exit run file.
VacateParti ti on leaves the partition
vacant.

10-13

Create Partition

Description

The CreatePartition service creates a new
application partition, assigns its name, and
returns a partition handle. CreatePartition can
be issued only by a process executing in the
primary application partition.

CreatePartition causes the exit run file to be
loaded into the primary application partition,
replacing the application system that executed
the CreatePartition operation.

Procedural Interface

10-14

CreatePartition (pbPartitionName, cbPartitionName,
cParagraph, fRunBatch 1 p.PhRet):
ErcType

where

pbPa rti ti onName
cbPa rti ti onName

cParagraph

fRunBatch

pPhRet

describe the partition name (up to
12 ch a ra ct e rs) •

is the number- of paragraphs of
the memory to be allocated to

application partition.

is TRUE or FALSE. TRUE indicates a
Batch Control Block of 1.3
kilobytes is allocated in addition
to the memory for the partition
itself. FALSE indicates no Batch
Control Block is allocated.

is the memory address of
into which the pa rti ti on
returned.

the word
handle is

Request Block

sPhRet is always 2.

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 1
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 181

12 cParagraph 2
14 fRunBatch 1

15 reserved 3

18 pbPartitionName 4
22 cbPartitionName 2

24 pPhRet 4
28 sPhRet 2 2

10-15

GetPartitionExchange

Description

The GetPartitionExchange service
exchange number established
SetParti tionExchange operation.
number is used to communicate with
system executing in another
pa rti ti on.

returns the
by the

The exchange
an appl i ca ti on

appl i ca ti on

Procedural Interface

Request Block

10-16

GetPartitionExchange (ph, pExchRet): ErcType

where

ph

pExchRet

is the partition handle returned
from a CreatePartition or
GetPartitionHandle operation. A O
specifies the application partition
in which the client process is
executing.

is a pointer to a 16-bit word into
which the exchange is returned.

sExchRet is always 2.

Size
Offset Field (Bytes) Contents
------ ----- ------- --------

0 sCntinfo 2 2
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 UserNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 184

12 ph 2

14 pExchRet 4
16 sExchRet 2 2

GetPartitionHandle

Description

The GetParti tionHandle
specified application
partition handle.

service translates
partition name into

the
a

Procedural Interface

Request Block

Get Pa rti tionHandle (pbPa rti tionName,
cbParti tionName,
pPhRet): ErcType

where

pbParti tionName

cbParti tionName

describe the partition name (up to
12 characters).

pPhRet is the memory address of
into which the pa rti ti on
returned.

the word
handle is

sPhRet is always 2.

Size
Off set Field (Bytes) Contents
------ ----- ------- --------

0 sCntinfo 2 0
2 nReqPbCb 1 1
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 177

12 pbParti tionName 4

16 cbParti tionName 2

18 pPhRet 4
22 sPhRet 2 2

10-17

GetPartitionStatus

Description

The GetPartitionStatus service returns status
information about the specified application
partition and the job currently executing in it.

Procedural Interface

10-18

GetPartitionStatus (ph, statusCode, pStatusRet,
sStatusMax): ErcType

where

ph

statusCode

pStatusRet
sStatusMax

is the partition handle returned
from a CreateParti ti on or
GetPartitionHandle operation. A 0
specifies the application partition
in which the client process is
executing.

specifies the status code.
status items and values are:

Code

0
1

2
3

Item

Pa rti ti on Descriptor
Extended Partition
Descriptor
Batch Control Block
Application System
Control Block

The

Size

33

172
1548

280

describe the memory area to which
the status information is returned.

Request Block

Size
Off set Field (Bytes) Contents
------ ----- ------- --------

0 sCntinfo 2 2
2 nReqPbCb 1 1
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 185

12 ph 2

14 statusCode 2

16 pStatusRet 4
20 sStatusMax 2

10-1.9

Load Primary Task

Description

The LoadPrimaryTask service loads and activates
the primary task run file in the vacant
application partition specified by the file
specification.

LoadPri ma ryTask:

1. Verifies that the file specification
specifies a run file that contains a valid
task image and that the task image fits in
the application partition.

2. Allocates a short-lived memory segment large
enough to contain the task image from the
specified run file.

3. Reads the task image from the run file into
the appli ca ti on pa rti ti on.

4. Relocates all intersegment references to
accommodate the memory address at which the
task image is loaded.

5. Creates a process to be scheduled at the
specified priority. The initial values
loaded into the segment registers (CS, OS,
SS, ES), the Stack Pointer (SP), and the
Instruction Pointer (IP) are derived from
information in the run-file header. (See the
"Task Management" section.)

Procedural Interface

10-20

LoadPrimaryTask (ph, pbFileSpec, cbFileSpec,
pbPassWord, cbPassWord,
priority): ErcType

where

ph

pbFileSpec
cbFileSpec

is the partition handle returned
from a CreatePartition or
GetPartitionHandle operation.

describes a character string of the
form {node}[volname]<dirname>file­
name. The distinction between
uppercase and lowercase in file
specifications is not significant
in matching file names.

Request Block

pbPassWord
cbPassWord describes the volume, directory, or

file password that authorizes
access to the specified file.

priority

Off set

0
2
3
4
6
8

10

12

14

16

18
22

24
28

is the priority (0-254, with 0 the
highest) at which to schedule the
newly created process for
execution.

Size
Field (Bytes) Contents
----- ------- --------

sCntinfo 2 6
nReqPbCb 1 2
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 178

ph 2

priority 2

reserved 2

pbFileSpec 4
cbFileSpec 2

pbPassWord 4
cbPassWord. 2

10-21

Remove Partition

Description

The RemovePartition service removes the specified
vacant application partition. RemovePartition
can be issued only from a process executing in
the primary application partition.

Procedural Interface

Request Block

10-22

RemoveParti ti on (ph}: ErcType

where

ph

Off set

0
2
3
4
6
8

10

12

Field

is the partition handle returned
from a CreateParti ti on or
GetParti tionHandle operation. A 0
specifies the application partition
in which the client process is
executing.

Size
(Bytes) Contents

sCnt!nfo 2 2
0
0

nReqPbCb 1
nRespPbCb 1
userNum 2
exchResp 2
ercRet 2
rqCode 2 176

ph 2

SetPartitionExchange

Description

The SetPartitionExchange service sets up an
exchange number that can be queried by a task in
another application partition for interpartition
communication. The application system should use
the SetPartitionLock operation before using
SetPartitionExchange to ensure the integrity of
its opera ti on.

Procedural Interface

Request Block

Set Pa rti ti onExcha nge (exchange): E rcType

exchange is an exchange previously allocated
by the application system.

Off set Field
------ -----

0 sCntinfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet

10 rqCode

12 exchange

Size
(Bytes)

2
1
1
2
2
2
2

2

Contents

2
0
0

183

10-23

SetPartitionlock

Description

The SetPartitionLock service declares whether an
application system executing in the specified
application partition is locked. If it is
locked, it cannot be terminated by the
TerminatePartitionTasks or VacatePartition
operation. An application system can lock itself
into its own partition only.

An Exit or ErrorExit from an application system
in the locked partition vacates the application
partition, but no other run file is loaded and
the partition cannot be deleted except by system
reload.

Procedural Interface

Request Block

10-24

SetPartitionLock: (fLock) ErcType

where

f Lock

Off set

0
2
3
4
6
8

10

12

13

is TRUE or FALSE.
the partition is
means that the
unlocked.

Size

TRUE means
locked.
partition

that
FALSE

is

Field (Bytes) Contents

sCntinfo
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

f Lock

reserved

2
1
1
2
2
2
2

1

2
0
0

182

TerminatePartition Tasks

Description
The TerminatePartitionTasks service
all tasks in the application partition
by the partition handle and loads and
the partition's exit run file.

terminates
specified
activates

If the partition is
returned and a flag
System Control Block
partition.

locked, a status code is
is set in the Application
to notify the task in the

Procedural Interface

Request Block

Termi na tePa rti tionTasks (ph): ErcType

where

ph

Offset

0
2
3
4
6
8

10

12

is the partition handle returned
from a CreateParti ti on or
GetPartitionHandle operation. A 0
specifies the application partition
in which the client process is
executing.

Field

sCntinfo
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

ph

Size
(Bytes)

2
1
1
2
2
2
2

2

Contents

2
0
0

179

10-25

VacatePartition

Description

The VacatePartition service terminates all tasks
in the application partition specified by the
partition handle but does not load and activate
the exit run file. VacatePartition leaves the
partition vacant.

If the partition is locked, a status code is
returned and a flag is set .in the Application
System Control Block to notify the task in the
partition.

Procedural Interface

Request Block

10-26

Vacate Pa rti ti on (ph): E rcType

where

ph

Off set

0
2
3
4
6
8

10

12

is the partition handle returned
from a CreatePartition or
GetPartitionHandle operation. A 0
specifies the application partition
in which the client process is
executing.

Field

sCntinfo
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

ph

Size
(Bytes}

2
1
1
2
2
2
2

2

Contents

2
0
0

180

OVERVIEW

SECTION 11
CLUSTER MANAGEMENT

One high-speed RS-422 channel is standard on each
workstation. In small cluster configurations (up
to four cluster workstations), the master
workstation uses this Channel for communications
with the cluster workstations. However, in large
cluster configurations, the master B22
workstation uses one or two Communications I/O
Processors (CommIOPs) for communications with the
cluster workstations.

The CommIOP, which is added to the Multibus of
the B22, is an intelligent communications
processor based on the Intel 8085 microprocessor.
The CommIOP serves up to four cluster
workstations on each 0£ its two high-speed serial
input/output channels. (The CommIOP can actually
handle up to 15 cluster workstations per high­
speed line if they have their own local file
system and only occasionally access files Qn the
master workstation.)

CommIOP software consists of an 8085 bootstrap­
ROM program, the main CommIOP program (which
executes in 8085 RAM), and a CommIOP handler
(written in 8086 code) which executes in system
memory under OS control.

11-1

CONCEPTS

Software

Initialization

11-2

The CommIOP is an intelligent communications
processor based on the Intel 8085 micro­
processor. The CommIOP serves up to four cluster
workstations on each of its two high-speed serial
input/output (SIO) channels.

CommIOP software consists of:

o the 8085 bootstrap-ROM program (used for
self-tests),

o the main CommIOP program (which executes in
8085 RAM), and

o the CommIOP handler (written in 8086 code)
which executes in system memory under OS
control.

The CommIOP and the master workstation
communicate using interprocessor interrupts 'and
shared memory. When the master workstation is
turned on or its reset button pushed, the CommIOP
performs a self-test using the 8085 bootstrap-ROM
program and waits for an interrupt from the 8086
processor.

The CommIOP handler initializes each CommIOP in
four steps. (The number of CommIOPs is a system
build parameter.) The CommIOP:

1. acknowledges to the CommIOP handler that it
is functioning,

2. runs a memory test in its RAM,

3. loads the main CommIOP program into its RAM
from system memory, and

4. starts operation.

The CommIOP and the CommIOP handler communicate
using an initialization control block located in

Operation

system memory at locations OlEOh-OlEFh. The
CommIOP acknowledges completion of each of the
above steps by writing a completion status in the
initialization control block.

The CommIOP can also, as part of its
initialization, (1) dump the contents of its RAM
into system memory (this is useful for
debugging), and (2) test system memory. These
two functions are system build parameters and
occur, if requested, after steps 1 and 2 above,
respectively.

Before the main CommIOP program actually starts
operation, the CommIOP handler establishes queues
in system memory for its use. These queues
contain addresses of buffers used by the CommIOP
to copy requests from each cluster workstation.

As a request comes in from the cluster
workstation, the main CommIOP program obtains a
buffer, copies the request into it, and places
the request on the inbound request queue. The
CommIOP handler removes the request from the
inbound request queue and submits it to the
master workstation Agent Service Process, which
then submits it to the appropriate system service
process.

After the request is processed, it is returned to
the CommIOP handler, which places it on the
outbound data queue. The CornmIOP then copies the
request into its own RAM and returns the response
to the appropriate cluster workstation.

The CommIOP interrupts the master workstation
only when it deposits data onto a previously
empty queue. The Communications Interrupt
Service Routine in the processor sends a message
to the exchange of the CommIOP handler to awaken
it.

The maximum number of requests a cluster
workstation can have outstanding is three.

11-3

Status

11-4

At regular intervals, the CommIOP updates a
status block in system memory. The CommIOP
inserts a status code into this block if it
detects any irrecoverable errors (hardware
malfunction, invalid control structures, etc.) •
The content of the status block is returned by
the GetClusterStatus operation.

The master workstation (with or without a
CommIOP) keeps statistics about errors and normal
operational parameters. The GetClusterStatus
operation makes these statistics available to any
workstation.

OPERATIONS: SERVICES

Cluster management provides the operations listed
below.

DisableCluster allows an application system on
the master workstation to
disable polling of the cluster
workstations after a specified
time period. DisableCluster
is also used to resume polling
of the cluster workstations.

GetClusterStatus returns usage statistics for
each communications channel and
the workstations attached to
it.

GetWSUserName

SetWSUserName

returns the user name that is
signed on at the specified
workstation.

stores the user signon name of
the workstation.

11-5

DisableCluster

Description

The DisableCluster service allows an application
system on the master workstation to disable
polling of the cluster workstations after a
specified time period. DisableCluster is also
used to resume polling of the cluster
workstations.

During the specified time period, the GetDateTime
operation (see the "Timer Management" section)
returns the "Master workstation going down"
status code and the time left (in seconds) before
polling stops. After the specified time period,
all operations return status code 46 ("Master
works ta ti on going down").

Typically, the application system (for example,
the Executive in the primary application
partition) on the cluster workstation that
performs the GetDateTime operation would notify
the cluster workstation user when it received the
"Master workstation going down" status code.

DisableCluster is useful for stopping all cluster
workstation activity, for example, to perform
software maintenance on the master workstation.

Procedural Interface

11-6

DisableCluster (fDisablePoll,
timeinterval): ErcType

where

fDisablePoll

timeinterval

disables polling if TRUE or resumes
it if FALSE.

is the time period (in tenths of a
second). This is not meaningful if
fDisablePoll is FALSE.

Request Block

Size
Off set Field (bytes) Contents

0 sCntinfo 2 4
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2 ,. exchResp 2 0

8 ercRet 2
10 rqCode 2 122

12 fDisablePoll 2

14 timeinterval 2

11-7

GetClusterStatus

Description

The GetClusterStatus service returns usage
statistics for each communications line and the
workstations attached to it.

The communications channels are identified as
follows:

Channel Number

0
l
2
3
4

Communications Channel

standard channel
CommIOP 1, Channel A
CommIOP 1, Channel B
CommIOP 2, Channel A
CommIOP 2, Channel B

Procedural Interface

11-8

GetClusterStatus (iLine, pBufferRet,
sBufferMax): ErcType

where

iLine

pRuf f erRet

sBuf ferMax

is the communications channel
number.

is the memory address of the buffer
into which to place the
communications status buffer (see
Table 11-1, below).

is the size of the buffer. If the
buffer is too small, the statistics
are truncated.

Request Block

Size
Off set Field (bytes} Contents

0 sCntinfo 2 6
2- nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 100

12 iLine 2

14 reserved 4

18 pBuf f erRet 4
22 sBuf f erMax 2

Table 11-1. Communications Status Buffer

Size
Off set Field (bytes)

0 nWsConf 1
1 nWsActive 1
2 Up 4
6 Idle 4

10 Ops 4
14 ErrTO 4
18 ErrCRC 4
22 ErrOvrn 4
26 ErrGen 4
30 rgWsStatus n*16

where

nWsConf is the number of workstations
configured for this communications
channel at system build.

nWsActive is the number of
currently active.

workstations

11-9

11-10

Up

Idle

Ops

ErrTO

ErrCRC

ErrOvrn

ErrGen

rgWsStatus

are the number of 100 ms intervals
elapsed since the communications
channel was activated.

are the number of 100 ms intervals
elapsed in which the communications
channel was inactive.

are the
performed
channel.

number
on this

of operations
communications

is the number of time out errors.

is the number of cyclic redundancy
check errors.

is the number of overrun errors.

is the number of sequence and other
nonclassified errors.

is an array of n workstation status
blocks, where n is the number of
configured workstations. The format
of each block is shown in Table 11-2
below.

Table 11-2. wsStatus Block

Size
Off set Field (bytes)

0 iUserNum 1
1 fActive 1
2 RxRq 4
6 nRqs 2
8 reserved 8

where

iUserNum

fActive

RxRq

nRqs

is the user number associated with
the workstation.

is the workstation active flag. The
workstation is inactive if it is O,
and active if it is OFFh.

is the number of requests received
during the cur rent session for the
workstation.

is the number of pending requests
for this workstation.

GetWSUserName

Description

The GetWSUserName service returns the user name
that is signed on at the specified workstation
(used with the GetClusterStatus operation to find
the user names of active workstations). (See the
description of the GetClusterStatus operation.)

Procedural Interface

Request Block

GetWSUserNarne (WSNum, pWSUserNameRet,
sWSUserNameRetMax): ErcType

where

WSNum is the workstation identification
number.

pWSUserNameRet
is the memory address of the first
byte of the buffer to which the user
name is returned. The first byte of
the character string is the size
(maximum of 31).

sWSUserNameRetMax
is the size of the buffer.

Size
Offset Field (bytes) Contents

0 sent Info 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 202

12 WSNum 2

14 reserved 4

18 pWSUserNameRet 4

22 sWSUserNameRetMax 2

11-11

SetWSUserName

Description

The SetWSUserName service stores the user signon
name of the workstation. SetWSUserName is used
primarily by the Signon program which also places
the user name in the Application System Control
Block of the master workstation in a cluster
configuration.
(See the "Application System Control Block"
subsection in the "Parameter Management"section.)

Procedural Interface

Request Block

11-12

SetWSUserName (pbUserName, cbUserName): ErcType

where

pbUsername
cbUserName describe the user signon name to be

stored.

Size
Offset Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 1
3 nRespPbCb l 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 203

12 reserved 6

18 pbUserName 4
22 cbUserName 2

SECTION 12
NETWORK MANAGEMENT

(To be supplied)

12-1

OVERVIEW

SECTION 13
SYSTEM SERVICES MANAGEMENT

The Operating System includes a number of system
service processes. These processes, which are
scheduled for execution in the same manner as
application processes, receive IPC messages to
request the performance of their services. Any
process, even a system service process, can use
(be a client of) a system service process.

Each system service process acts as the system­
wide guardian and manager for a class of system
resources, such as files, memory, or keyboard.
Because the system service process is the only
software element that accesses the resource, and
because the interface to the system service
process is formalized through the use of IPC, a
highly modular environment results.

This modular environment increases reliability by
localizing the scope of processing and provides
the flexibility to replace a system service
process as a complete entity.

System builders can also include their own system
service processes, which are then
indistinguishable from Burroughs processes.

In the "Interprocess Communication Management"
sect ion, see the following subsections for more
details: "System Service Processes," "Accessing
System Services," "Procedural Access to System
Services," "Direct Access to System Services,"
"Interaction of Client Processes and System
Service Processes," "Filter Processes," "Request
Blocks," "Request Primitive", "Respond
Primitive," "Wait Primitive," and "Interstation
Communication."

13-1

CONCEPTS
A system service process can
Operating System in three ways.

be added to
It can be:

linking into the OS System Image,

the

dynamically installed in an extended system
partition, or

dynamically installed
application partition.

in a secondary

The request codes served by a dynamically
installed system service process must be reserved
at system build. (See the B20 System Programmers
and Assembler Reference Manual (Part 1), form
1148699 for details on linking into the OS System
Image and on system build.)

Dynamically Installing a System Service in an Extended System Partition

13-2

A system service process that is to be
dynamically installed in an extended system
partition is first linked into its own self­
contained task image. The system service process
must be self-installing. It is installed with
the Executive's Run File command or its own
command (created with the Executive's New Command
command). (See the 820 System Executive
Reference Manual, form 1144474 for more
information about these two commands.)

Once installed, the system service is permanent
and cannot be removed except by system reload.
The location of the extended system partition
depends on whether any secondary application
partitions have been created before the system
service is installed.

If the system service process is installed
before any secondary application partition is
created, the extended system partition is
placed at the highest available memory
location.

If the system service process
after a secondary application
created, the extended system
located between the secondary
application partitions.

is installed
partition is
partition is

and primary

Typical Operational Sequence

A typical sequence of operations for a self­
installing system service process might include:

1. The ChangePriority operation (see the
"Process Management" section) to change its
priority appropriately.

2. The AllocMemorySL or DeallocMemorySL
operation to allocate/deallocate its short­
li ved memory segment (if different from the
size of its run file). It may be efficient
to place initialization code (which is never
reused) in the lowest address locations of
the task image and to use DeallocMemorySL to
deallocate the memory that contains this
initialization code before step 6 below.

3. The AllocExch operation (see the "Exchange
Management" section) to allocate a service
exchange and any other exchanges needed for
its internal operation.

4. The CreateProcess operation (see the "Process
Management" section) to create any additional
processes needed for its operation.

5. The ServeRq operation (described later in
this Section) for each request code it is to
serve. Specify the service exchange
allocated in step 3 above. The number of
request codes is specified at system build.

Request codes 0 through 7FFFh are reserved
for future expansion and should not be used
by system builders. Request codes 8000h-
0FFFFh are available for system builder use.
(Appendix D lists the request codes.)

6. The ConvertToSys operation (described later
in this Section) to convert its processes,
short-lived memory, and exchanges to system
service processes, system memory, and system
exchanges, respectively. This prevents these
resources from being released during Chain,
ErrorExit, and Exit operations (see the "Task
Management" section).

7. The Chain operation to load the specified
exit run file as the succeeding application
system. Chain normally returns to the
appli ca ti on system only if it fails.

13-3

Restrictions

However, in the special case described in
this sequence, Chain always returns.
Therefore the call to Chain should not be in
the initialization code that is overlaid by
the new application system.

The following restrictions are to avoid conflict
with the Chain, ErrorExit, and Exit operations
initiated by the application system. After using
ConvertToSys in step 6 above, a system service
process must:

o use the OpenFileLL, rather than the OpenFile,
operation (described in the "File Management"
section),

o not use the CloseAllFiles or CloseAllFilesLL
operations (described in the "File
Management" section) ,

o not allocate or deallocate exchanges,

o not allocate or deallocate memory,

o not create processes, and

o not use the Chain (other than as described in
step 7 above), ErrorExit, or Exit operations.

Dynamically Installing a System Service
in a Secondary Application Partition

13-4

A system service is installed in a secondary
application partition by the process executing in
the primary application partition with the
LoadPrimaryTask operation. (See the "Application
Partition Management" section.) A system service
installed in a secondary partition is not
permanently installed and can be removed by
application partition management operations.

A system service executing in a secondary
application partition must not use the
ConvertToSys operation, because doing so would
prevent its dynamic removal. Also, it should use
the Chain operation only to remove itself, not to
replace the current application system with a
specified run file. Since a system service in a
secondary application partition has a unique user
number, it is not subject to the restrictions
noted above for a system service installed in an
extended system partition.

OPERATIONS: SERVICES
System services management provides the
operations listed below.

ConvertToSys

ServeRq

converts all processes, short­
lived memory, and exchanges in
the primary application
partition to system service
processes, system memory, and
system exchanges, respectively.

used by a dynamically installed
system service process to
declare its readiness to serve
the specified request code.

13-5

ConvertToSys

Description
The ConvertToSys service converts all processes,
short-lived memory, and exchanges in the primary
application partition to system service
processes, system memory, and system exchanges,
respectively.

Procedural Interface

ConvertToSys: ErcType

Request Block

Size
Off set Field (bytes) Contents

0 sent Info 2 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 98

13-6

ServeRq

Description
The ServRq service is used by a system service
process that is dynamically installed to serve
the specified request code. Future requests
containing the specified request code are queued
at the specified exchange.

Specifying exchange 0 indicates that the calling
process is no longer serving the specified
request code. However, this does not dequeue
currently queued requests at the exchange that
was formerly associated with the specified
request code. Status code 33 ("Service not
available") is returned to future requests
containing the specified request code.

Procedural Interface

ServeRq (requestCode, exchange}: ErcType

where

requestCode is the request code.

exchange is the service exchange number or O.

Request Block

Size
Offset Field (bytes) Contents

0 sCntinfo 2 4
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 99

12 requestCode 2

14 exchange 2

13-7

OVERVIEW

SECTION 14

FILE MANAGEMENT

The file management system provides a
hierarchical organization of disk file data by
node, volume, directory, and file. Volumes are
automatically recognized when placed online.
Each file can have a SO-character file name, a
12-character password, and a file protection
level. A file can be dynamically expanded and
contracted without limit as long as it fits on
one disk. Concurrent access is controlled by
read (shared) and modify (exclusive) access
modes.

While providing convenience and reliability, the
file rnanagernen t system supplies the system
builder with the full throughput capability of
the disk hardware. This includes reading or
writing any 512-byte sector of an open file with
one disk access, reading or writing up to 65K
bytes with one disk operation, input/output
overlapped with process execution, and optimized
disk arm scheduling.

In a cluster configuration, files can be located
at cluster workstations as well as the master
works ta ti on.

The file management services of the OS are
efficient, reliable, and convenient to use.

Efficiency is provided through:

careful data placement.

The volume control structures resident on
each volume are placed to minimize disk arm
movement.

The Volume Horne Block is brought into memory
when a volume is placed online. In addition,
the most recently used directory information
is retained in memory.

randomization (hashing) techniques.

These techniques reduce the number of disk
reads required to access directory
information. These techniques are used for
placing an entry in a directory and are later
used for locating it.

14-1

Reliability is provided through:

0 multilevel (volume,
password protection.

directory, or file)

o multiple file protection levels.

A file protection level specifies the access
allowed to a file when the aces sing process
does not present a valid volume or directory
password.

o duplication of two volume control
structures: the Volume Home Block and the
File Header Blocks.

This duplication ensures that damage to one
copy of a volume control structure does not
cause a loss of data.

Convenience is provided through:

o hierarchical organization of disk file data
by node, volume, directory, and file.

o long file names (up to 50 characters).

o dynamic file length.

The user determines the file length when the
file is created and can change it later.

o removable file volumes (floppy disks).

0

0

automatic
online.

recognition of volumes

read (shared) or modify (exclusive)
modes.

o device independence.

placed

file

The device a file is
transparent to the user.

located on is

File Access Methods

14-2

File access methods augment the file management
system by providing more structured access to
disk file data. There are four file access
methods:

o th~ Sequential Access Method,

o the Record Sequential Access Method,

o the Direct Access Method, and

o the Indexed Sequential Access Method (ISAM).

The first three access methods are
detail in this manual. The fourth
is described in the B20 System
Manual, form 1148723.

Local File System

described in
access method

ISAM Reference

A cluster workstation can have its own local file
system. The local file system allows a cluster
workstation to access files on local mass storage
as well as files on mass storage at the master
workstation. The file system filter process of
the cluster workstation intercepts each file
access request and directs it either to the local
file system or to the master workstation.

A cluster workstation can be bootstrapped either
from a file at the master workstation or from its
local file system. A cluster workstation
bootstrapped from its local file system is a
self-contained entity that accesses the master
workstation only for shared files. If a
malfunction occurs at the master workstation, the
cluster workstation can continue to operate
normally, provided all file accesses are to local
mass storage.

14-3

CONCEPTS

Node

Volume

14-4

The file management system has a hierarchical
organization of disk file data by node, volume,
directory, and file.

A B20 system connected to a standard network can
access the files of other network nodes, subject
to password protection. The node at which a file
is located must be specified for files not
located at the same node as the requesting
process.

The files of the system are located on volumes.
A volume is the media of a disk drive that was
formatted and initialized using the !Volume
utility. It is protected by a volume password.
{See the B20 System Software Operation Guide,
form 1148772.)

For example, a floppy disk and the media sealed
inside a Winchester disk drive are volumes and a
floppy disk is a removable volume.

A volume contains a number of volume control
structures: the Volume Home Block, the File
Header Blocks, and the Master File Directory,
among others. (These structures are described in
detail in "Volume Control Structures" below.)

The Volume Home Block is the root structure of
information of a disk volume. The File Header
Block of each file contains information about
that file and about the disk address and size of
each of its Disk Extents. (A Disk Extent is one
or more contiguous disk sectors.) The Master
File Directory (which contains an entry for each
directory on the volume) and the directories
provide fast access to the File Header Block of a
specific file. They do not, however, contain any
information about the file that is not also
contained in its File Header Block.

There are duplicate Volume Home Blocks (working
and initial copies) and duplicate File Header
Blocks (primary and secondary copies) on the
volume for reliability. The primary and
secondary copies of the File Header Blocks are

Directory

File

located on different cylinders and at different
rotational positions and are accessed (except for
floppy disks) by different read/write heads.
These duplicates ensure that damage to one copy
does not cause a loss of data.

The location on the volume of the Volume Home
Blocks, the File Header Blocks, and the other
volume control structures m1n1m1zes disk arm
movement and therefore maximizes efficiency. The
File Header Blocks are located in a single area
of the volume, the disk address and size of which
are recorded in the working and initial copies of
the Volume Home Block. Volume control structures
that are frequently accessed, including the
primary and secondary copies of the File Header
Blocks, are located near the middle of the disk.

The files of a volume are divided into one or
more directories. A directory is a collection of
related files on one volume. The maximum number
of directories that can be created on a volume
depends on the size of the Master File Di rectory;
its size is specified when the volume is
initialized. The maximum number of files that
can be created in a di rectory depends on the
directory's size, which is specified when the
directory is created. A directory is protected
by a directory password.

A directory is
operation and
operation.

created
deleted

with
with

the
the

CreateDir
DeleteDir

A file is a set of related records (on disk)
treated as a unit. The files of a volume consist
of integral numbers of 512-byte sectors and must
be completely contained on it. There are no
other restrictions on file size. A file is
protected by a file protection level and by an
optional file password.

A file is created with the CreateFile operation
and deleted with the DeleteFile operation. Once
it is created, it is accessed with the OpenFile
operation and closed with the CloseFile
operation. The ChangeFileLength operation

14-5

changes the length of an open file. The
RenameFile operation renames an existing file.

Automatic Volume Recognition

Node Name

Volume Name

System Volume

14-6

The OS automatically recognizes volumes placed
online (that is, mounted). For example, when a
floppy disk is inserted into a disk drive, the OS
reads the disk to determine whether it contains a
volume and, if it does, that no other volume of
the same name is already online. After this
validation by the OS, the volume responds to user
requests containing appropriate specifications
and passwords.

When a volume is placed online, the Volume Home
Block is read into memory. It remains there as
long as the volume remains online.

If a floppy drive door is opened, any open files
on the disk in that drive are automatically put
into a special dismounted state. Such files can
be closed as usual, but any attempt to perform
other operations on them returns status code 216
("Wrong volume mounted 11).

A node name is a string of characters.
have a maximum of 12 characters.

It can

A vol name
characters.
characters.

(volume
It can

name)
have

is
a

a string
maximum of

of
12

the OS resides can be
by its synonym, Sys, or
when it was initialized

The volume on which
referenced in two ways:
by the name it was given
with the IVolume utility.

Scratch Volume

Directory Name

File Name

In a master or standalone workstation, Sys
synonym for the volume name of the device
which the OS is bootstrapped.

is a
from

For example, in a dual-floppy standalone system,
where the OS is bootstrapped from the floppy disk
in drive O, Sys can be used instead of the volume
name of the floppy disk in drive o. In a
Winchester-based (hard disk) system, where the OS
is bootstrapped from hard-disk drive O, Sys can
be used instead of its volume name.

In a cluster workstation without local disk
storage, Sys is a synonym for the volume name of
the device from which the master workstation of
that cluster system is bootstrapped.

In a cluster workstation bootstrapped from its
local disk, Sys is a synonym for the volume name
of the device from which the cluster workstation
is bootstrapped.

!Sys is a synonym for the volume name of the
device from which the master workstation of the
cluster is bootstrapped.

The volume on which scratch (temporary) files are
placed can be referenced either by its synonym,
Ser, or by its real name.

A dirname
characters.
characters.

A filename
characters.
characters.

(directory
It can

(file
It can

name)
have

name)
have

is a string
a maximum of

is
a

a string
maximum of

of
12

of
50

Directory and File Specifications

A directory is referred to with a directory
specification. A directory specification has the
form:

14-7

{node}[volname]dirname

A file is
specification.
form:

referred to with a file
A full file specification has the

{node} [vol name] <di rname> file name

The distinction between uppercase and lowercase
in directory and file specifications is not
significant in matching directory and/or file
names during directory lookup; the distinction
is, however, preserved by the file management
system to make the directory and file
specifications easier to read. For example, a
file can be created with the specification:

[MasterVol]<Susan>Todays>work

The same file can later be accessed as:

[mastervol]<SUSAN>todays>Work

It is recommended that node names, volume names,
and directory names consist only of alphanumeric
characters, plus the period, ".", and the hyphen,
"-" It is recommended that file names consist
of alphanumeric characters, plus the period, ".",
the hyphen, "-", and the right angle bracket,
II>" o

Abbreviated Specifications

14-8

A file or directory can be referred to with an
abbreviated specification if default specifica­
tions were previously established.

The SetPath operation establishes a default node,
a default volume, a default directory, and a
default password. (See "Passwords" below.) The
SetPrefix operation establishes a default file
prefix. SetPath and SetPrefix establish defaults
for the user number of the calling process. A
unique user number is associated with each
application partition.

If a SetPath operation is issued with the default
volname of [MasterVol] and the default dirname of
<Susan>, the user can access the files:

[MasterVol)<Susan>Todays>work
(MasterVol]<Susan>Yesterdays>work

as either:

<Susan>Todays>work
<Susan>Yesterdays>work

Passwords

if just the volname is omitted, or:

Todays>work
Yesterdays>work

if the default volname and default dirname are
omitted. <dirname > cannot be omitted unless
[volname] is also omitted.

If a SetPrefix operation is
default file prefix of Todays>,
the default volname and dirname
the SetPath operation above, the
the files:

issued with the
in addition to
established by

user can access

[MasterVol]<Susan>Todays>work
[MasterVol]<Susan>Yesterdays>work

as:

work

and:

<Susan>Yesterdays>work

The file in the last example above could no
longer be specified as:

Yesterdays>work

because the file accessed would have been:

(MasterVol]<Susan>Todays>Yesterdays>work

which was not what was meant.

Password protection is available at three levels:

volume,

directory, or

file.

A volume password protects a volume. A directory
password protects a directory on a volume. A
file password protects a file in a directory on a
volume.

14-9

File Protection

14-10

Volume passwords are specified with the !Volume
utility. Directory passwords are specified in
the CreateDir operation. File passwords are
specified in the SetFileStatus operation.

Volume, directory and file passwords can consist
of all alphanumeric characters, plus the period,
".", and the hyphen, "-" A volume, directory,
or file password can have a maximum of 12
characters.

A file can be accessed by knowledge of its
volume, directory, or file password. Knowledge
of a volume password allows access to all the
directories and all the files of that volume.
Knowledge of a directory password allows access
to all the files of that directory. Knowledge of
a file password permits access that is dependent
on the file protection level specified for that
file. (See "File Protection" below.}

The OpenFile operation accepts a single
password. This password is compared first
against the volume password, then against the
directory password, and last against the file
password (if one was specified). Access is
granted to open the file if any of these
comparisons match.

The CreateFile operation accepts a single
password that authorizes the creation of a file
in the specified directory. It is not a password
to be assigned to the file being created. This
password is compared first against the volume
password and then against the directory
password. Access is granted to create the file
if either of these comparisons match. (The
SetFileStatus operation assigns a password to the
file being created. The CreateDir operation
assigns a password to the directory being
created.)

A default password can be specified in the
SetPath operation. It is used whenever an
explicit password is not specified to an
operation. The default password, like an
explicit one, is used in a comparison against the
volume, directory, and file passwords (in that
order).

A file is assigned a file protection level. A
file protection level specifies the access

allowed to a file when the accessing process does
not present a valid volume or directory password.

A default file protection level is specified for
the files of a directory when it is created with
the CreateDir operation. When a file is created,
it is assigned the default file protection level
of the directory in which it is created. The
file protect ion level of a file can be changed
with the SetFileStatus operation.

The file protection levels are described in Table
14-1 below. Three levels (unprotected, modify
protected, and access protected) ignore file
passwords; five levels (modify password, access
password, read password, nondirectory modify
password, and nondirectory access password) use
file passwords.

The unprotected level is used for files that any
process can read or modify.

The modify protected, modify password, and
nondirectory modify password levels are used for
files that any process can read but for which a
password is needed to modify.

The access protected, access password, read
password, and nondirectory access password levels
are used for files that need a password to read
or modify.

Table 14-1. File Protection Levels

Level

unprotected

modify protected

access protected

Decimal
Value Description

15

5

0

The file is unpro­
tected. It can be read
or modified without a
password.

The file is modify pro­
tected. It can be read
without a password. A
volume or directory
password is needed to
modify it.

The file is read and
modify protected. A

14-11

14-12

Table 14-1. File Protection Levels (Cont.)

Level

modify password

access password

read password

nondirectory
modify password

nondirectory
access password

Decimal
Value Description

7

3

1

23

19

volume or directory
password is needed to
read or modify it.

The file is modify pro­
tected. It can be read
without a password. A
password (volume, di­
rectory, or file) is
needed to modify it.

The file is read and
modify protected. A
password (volume, di­
rectory, or file) is
needed to read or modi­
fy it.

The file is read and
modify protected. A
password (volume, di­
rectory, or file) is
needed to read it. A
volume or directory
password is needed to
modify it.

The file is modify pro­
tected. It can be
read without a pass­
word. A volume or file
password is needed to
modify it; a directory
password alone is in­
sufficient.

The file is read and
modify protected. A
password (volume, di­
rectory, or file) is
needed to read it. A
volume or file password
is needed to modify it;
a directory password
alone is insufficient.

CREATING AND ACCESSING A FILE

The file management system provides random access
to 512-byte sectors of a file. (512 bytes is the
size of a physical disk sector.) The operations
of the file management system allow reading and
writing of multiple sectors, starting with a
particular sector of a file. The file management
system provides device independence by masking
the device characteristics of the disk on which
the file is located.

logical File Address

File Handle

A logical file address (lfa) is used to locate a
particular sector of a file. It specifies the
byte position within a file; that is, it is the
number (the offset) that would be assigned to a
byte in a file if all the bytes were numbered
consecutively starting with 0. An lfa is a 32-
bi t unsigned integer that must be on a sector
boundary and is therefore a multiple of 512. For
example, the lfa of the third sector of a file is
1024.

The two high-order bits of the lfa are reserved
as special indicators. Bit 31 is set to override
normal system checks and is used to attempt
access to defective disks. Bit 30 is set to
suppress retry of input/output to recover from
errors. For example, a program logging high­
speed digitized wave forms that could accept
badly written data but not the time required for
retry, would specify an lfa of 40000400h to
specify the third sector of a file with error
retry suppressed. The returned status code
reports errors in the normal way even when the
special indicators are set.

A file handle (fh) is a 16-bit integer that
uniquely identifies an open file. It is returned
by the OpenFile operation and is used to refer to
the file in subsequent operations such as Read,
Write, and DeleteFile.

A file handle can be long-lived or short-lived.
It is set long-lived by an OpenFileLL or
SetFhLongevity operation. Only a short-lived
(normal) file handle is closed by a CloseAllFiles

14-13

Memory Address

Using a File

Creating a File

14-14

operation or automatically when an application
system terminates. A long-lived, as well as a
short-lived, file handle is closed by an explicit
CloseFile operation or by the CloseAllFilesLL
operation.

A memory address, as referred to in
operations, is always a 32-bit
consists of a 16-bit segment base
offset.

input/output
address that

and a 16-bi t

There are three steps in using a file:

1. creating it,

2. opening it, and

3. reading and writing it.

The following steps occur when a CreateFile
operation is requested:

1. The OS verifies that a
requested name is already
Volume Horne Block is brought
a volume is placed online.)

volume of the
online. (The

into memory when

2. The OS verifies that a directory of the
requested name is on that volume. (The most
recently used directory information is
retained in memory.)

3. The OS verifies that a file of the requested
name does not exist in that directory.

4. The OS allocates a File Header Block and
assigns the requested number of disk sectors
by using the Allocation Bit Map.

5. The OS inserts an entry for the file in the
requested directory.

Opening a File

The following steps occur when an OpenFile
operation is requested:

1. The OS verifies that a
requested name is already
Volume Home Block is brought
a volume is placed online.)

volume of the
online. (The

into memory when

2. The OS verifies that a directory of the
requested name is on that volume. (The most
recently used directory information is
retained in memory.)

3. The OS verifies that a file of the requested
name is in that directory.

4. The OS allocates a File Control Block, one or
more File Area Blocks, and a pointer in the
User Control Block to the File Control
Block. (These structures are discussed in
"System Data Structures" below.)

5. The OS copies the information from the File
Header Block to the File Control Block and
the one or more File Area Blocks.

6. The OS returns a file handle to the user
process. The file handle serves to identify
this particular File Control Block.

Reading and Writing a File

There are three ways to read and write the
sectors of a file:

o with the Read and Write procedures,

0 with the ReadAsync and CheckReadAsync and
WriteAsync and CheckWriteAsync procedures,
and

o with a user-constructed request block and the
Request and Wait (or Check) primitives.

The Read and Write procedures are the simplest
way of doing input/output because much of the
necessary housekeeping (for example, constructing
a request block) and issuing the Request and Wait
primitives is done automatically. These two

14-15

Local File System

14-16

procedures do not provide for any overlap between
input/output operations and computation.

The ReadAsync and WriteAsync procedures are a
more complex way of doing input/output. These
two procedures allow a process to initiate an
input/output transfer and then compute and/or
initiate other input/output transfers before
checking (with the CheckReadAsync and
CheckWriteAsync procedures) for the successful
completion of the transfer.

The user-constructed request block and the
Request and Wait primitives are the most complex
way of doing input/output. They allow the
program to overlap multiple input/output
operations and computation in an arbitrarily
complex manner.

A cluster workstation can have its own local file
system. The local file system allows a cluster
workstation to access files on local mass storage
as well as files on mass storage at the master
workstation. The file system filter process of
the cluster workstation intercepts each file
access request and directs it either to the local
file system or to the master workstation.

When a request to open a file is intercepted, the
filter process first routes it to the local file
system. If the volume is not found, the request
is routed to the master workstation.

The user can explicitly route a file access
request to the master workstation by including
the special character (!} before the volume
speci fi ca ti on.

Files on mass storage at the master workstation
can be accessed by any cluster workstation.
However, files on local mass storage cannot be
accessed from the master workstation or from
other cluster workstations. A local file must be
copied to the master workstation if it is to be
processed by the master workstation, another
workstation in the cluster, or another node.

A local file must be copied to the master
workstation before it can be processed by any of
the following:

printer spooler,
batch manager,
RJE,
ISAM, or
any system service executing at the master
workstation or another cluster workstation

The file system filter
workstation duplicates
workstation information:

process of the
the following

default path information (specified
SetPath operation). This allows the
operation to be serviced in the
workstation.

date/time information (specified
SetDa teTi me opera ti on).

cluster
master

in the
Get UCB

cluster

in the

A cluster workstation bootstrapped from its local
file system is a self-contained entity that must
access the master workstation only for shared
files. If a malfunction occurs at the master
workstation, the cluster workstation can continue
to operate normally provided all file accesses
are to local mass storage.

14-17

OPERATIONS: PROCEDURES AND SERVICES

Allocation

Access

14-18

File management operations are categorized by
function in Table 14-2 below.

Table 14-2. File Management Operations by Function

Allocation

ChangeFileLength
CreateFile
DeleteFile

Access

ChangeOpenMode
CloseAllFiles
CloseAllFilesLL
CloseFile
OpenFile
OpenFileLL

Input/Output

CheckReadAsync
CheckWriteAsync
Read
ReadAsync
Write
WriteAsync

Defaults

ClearPath
SetPath
SetPref ix

Directory

CreateDir
DeleteDir
GetDirStatus
ReadDirSector
SetDirStatus

Other

GetFhLongevity
GetFileStatus
Get UCB
QueryWSNum
RenameFile
SetFhLongevity
SetFileStatus

ChangeFileLength expands or contracts an open
file to a new length.

CreateFile creates a file of the specified
name in the specified directory
on the specified volume.

DeleteFile deletes an open file.

ChangeOpenMode

CloseAllFiles

allows a program to change
the access mode of a file
that is already open.

closes all files that are
currently open for the user,
except those marked long-lived.

CloseAllFilesLL

CloseFile

OpenFile

OpenFileLL

Input/Output

CheckReadAsync

CheckWriteAsync

Read

ReadAsync

Write

WriteAsync

closes all files that are
currently open for the user,
including those marked long-
1 i ved.

closes an open file.

opens an already existing file,
and returns a file handle.

opens an already existing file,
and returns a file handle
marked long-lived.

waits for input completion,
checks the status code, and
obtains the byte count of data
read after a ReadAsync
procedure.

waits for output completion,
checks the status code, and
obtains the byte count of data
written after a WriteAsync
procedure.

transfers an integral number of
512-byte sectors from disk to
memory.

initiates the transfer of an
integral number of 512-byte
sectors from disk to memory.
The CheckReadAsync procedure
must be called to check the
completion status of the
transfer.

transfers an integral number of
512-byte sectors from memory to
disk.

initiates the transfer of an
integral number of 512-byte
sectors from memory to disk.
The CheckWriteAsync procedure
must be called to check the
completion status of the
transfer.

14-19

Defaults

Clear Path

SetPath

SetPref ix

Directory

CreateDir

DeleteDir

GetDirStatus

ReadDirSector

SetDirStatus

14-20

clears the defaults established
by the SetPath and SetPref ix
operations.

establishes a default volume, a
default directory, and a
default password.

establishes a default file
pref ix that is prefixed to the
file name part of a file
specification if that file
specification does not have an
explicit volume name or
directory name.

creates a directory of the
specified name on the specified
volume.

deletes an empty directory.

allows a user
information
directory.

to determine
about a

reads a 512-byte sector of the
specified directory.

allows a user to change a
directory's password or
default protection level.

Other

GetFhLongevity

GetFileStatus

Get UCB

QueryWSNum

RenameFile

SetFhLongevity

SetFileStatus

copies the requested
information on the longevity of
the file handle to the
specified area.

copies the requested status
information to the specified
area.

copies the User Control Block
for the current user number to
the specified area.

returns the user number of the
application system in the
partition.

changes the file name and/or
the directory name of an
existing file. A file can be
renamed to another directory on
the same volume.

sets how long a file handle is
to survive.

copies the specified status
information from the specified
memory area to the File Header
Block.

14-21

Changefilelength

Description

The ChangeFileLength service expands or contracts
the file length to a new length. The end-of-file
pointer in the File Header Block is set to
reflect the new length.

Procedural Interface

Request Block

14-22

ChangeFileLength (fh, lfaNewFileSize): ErcType

where

f h is a file handle returned from an
OpenFile operation. The file must
be open in modify mode.

lfaNewFileSize

Off set

0
2
3
4
6
8

10

12

14

is the new file size in bytes. It
must be a multiple of 512.

Size
Field (bytes) Contents

sCntinfo 2 6
nReqPbCb 1 0
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 13

f h 2

lfaNewFileSize 4

ChangeOpenMode

Description

The ChangeOpenMode service allows a program to
change the access mode of a file that is already
open.

Error Code "Access Denied" (219) is returned if
the password supplied does not grant access to
the file in the new mode. Error code "File in
Use" is returned if the new mode is "mode modify"
and other users have the file open (in "mode
read").

Procedura1 Interface

Request Block

ChangeOpenMode (fh, pbPassword, cbPassword,
newMode) : ErcType

where

f h

pbPassword
cbPassword

newMode

Off set Field

0 sCntinfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet

10 rqCode
12 f h
14 newMode
16 reserved
18 pbPassword
22 cbPassword

is a file handle
currently open file.

for a

describe a password which
gives access to the file in
the new mode.

is the new file open mode.

Size
(bytes) Contents

2 6
2 1
1 0
2
2
2
2 215
2
2
2
4
2

14-23

CheckReadAsync

Description

After calling the ReadAsync procedure to initiate
a read, the requesting process continues
execution. When the process wants to synchronize
with the asynchronous read (that is, wait for its
completion), the process does a CheckReadAsync.
The CheckReadAsync procedure waits for input
completion, checks the status code, and obtains
the byte count of data read.

Status code 248 ("Wrong pRq argument") is
returned if the pRq argument does not match the
one of the preceding ReadAsync procedure.

Procedural Interface

Request Block

14-24

CheckReadAsync (pRq, psDataRet): ErcType

where

pRq

psDataRet

is the same memory address as given
in the pRq argument of the ReadAsync
procedure.

is the memory address of the word to
which the count of bytes success­
fully read is to be returned.

The ReadAsync and CheckReadAsync procedures are
procedural interfaces to the Read operation. See
the Read operation below.

CheckWriteAsync

Description

After calling the WriteAsync procedure to
initiate a write, the requesting process
continues execution. When the process wants to
synchronize with the asynchronous write (that is,
wait for its completion), the process does a
CheckWr i teAsync. The CheckWr i teAsync procedure
waits for output completion, checks the status
code, and obtains the byte count of data written.

Status code 2 48
code is returned
match the one
procedure.

("Wrong
if the
of the

pRq argument") status
pRq argument does not

preceding WriteAsync

Procedural Interface

Request Block

CheckWriteAsync (pRq, psDataRet): ErcType

where

pRq

psDataRet

is the same memory address as given
in the pRq argument of the
WriteAsync procedure.

is the memory address of the word to
which the count of bytes success­
fully written is to be returned.

The WriteAsync and CheckWriteAsync procedures are
procedural interfaces to the Write operation.
See the Write operation below.

14-25

ClearPath

Description

The Clear Path
established by
operations.

Procedural Interface

service clears
the SetPath

ClearPath: ErcType

Request Block

Size
Off set Field (bytes)

0 sCntinfo 2
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2

14-26

the
and

defaults
SetPref ix

Contents

0
0
0

2

CloseAllFiles

Description

The CloseAllFiles service closes all files that
are currently open for the user, except those
marked long-lived.

Procedural Interface

CloseAllFiles: ErcType

Request Block

Size
Off set Field (bytes) Contents

0 sCntinfo 2 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 19

14-27

CloseAllFilesLL

Description

The CloseAllFilesLL service closes all files that
are currently open for the user, including those
marked long-lived.

Procedural Interface

CloseAllFilesLL: ErcType

Request Block

Size
Off set Field (bytes) Contents

0 sent Info 2 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 62

14-28

Close File

Description

The CloseFile service closes an open file.

Procedural Interface

Request Block

CloseFile (fh): ErcType

where

f h

Offset

0
2
3
4
6
8

10

12

is the file handle returned from an
OpenFile operation.

Size
Field (bytes) Contents

sCntinfo 2 2
nReqPbCb 1 0
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 10

f h 2

14-29

CreateDir

Description

The CreateDir service creates a directory of the
specified name on the specified volume. The
volume name can be defaulted to that specified in
a previous SetPath operation.

Status code 240 ("Directory
status code is returned if a
specified name already exists.

al ready
di rectory

exists")
of the

Procedural Interface

14-30

CreateDir (pbDirSpec, cbDirSpec, pbVolPassword,
cbVolPassword, pbDirPassword,
cbDirPassword, cSectors,
defaultFileProtectionLevel): ErcType

where

pbDirSpec
cbDirSpec

pbVolPassword
cbVolPassword

pbDirPassword
cbDirPassword

cSectors

describe a character string of the
form {node} [volname] d irname.

describe the volume password that
authorizes the creation of the
directory on the specified volume.

describe the directory password to
be assigned to this directory.

is the size of the directory in 512-
byte sectors.

The number of directory entries per
sector depends on the length of the
file names of the files created in
the directory. An approximate value
for the cSectors argument can be
computed by dividing the expected
maximum number of files ever to be
created in the directory by 15.

defaultFileProtectionLevel
is the default file protection level
to be assigned to files in this
directory. (See Table 14-1 above.)

Request Block

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 3
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 17

12 reserved 2

14 cSectors 2

16 defaultFile- 2
ProtectionLevel

18 pbDirSpec 4
22 cbDirSpec 2

24 pbVolPassword 4
28 cbVolPassword 2

30 pbDirPassword 4
34 cbDirPassword 2

14-31

CreateFile

Description

The CreateFile service creates a file of the
specified name in the specified directory on the
specified volume.

CreateFile creates a file; it does not open it.
The OpenFile operation opens a file after it is
created.

Status code 224 ("File already exists") status
code is returned if a file of the specified name
al ready exists.

Procedural Interface

14-32

CreateFile (pbFileSpec, cbFileSpec, pbPassword,
cbPassword, lfaFileSize): ErcType

where

pbFileSpec
cbFileSpec

pbPassword
cbPassword

describe a character string of the
form {node} [volname] <dirname>f ile­
name. The distinction between
uppercase and lowercase in file
specifications is not significant in
matching file names.

describes a volume or directory
password that authorizes the
creation of a file in the specified
directory. It is not a password to
be assigned to the file being
created. A password can be assigned
to the file being created with the
SetFileStatus operation.

lfaFileSize is the file size in bytes.
be a multiple of 512.

It must

Request Block

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 5

12 reserved 2

14 lfaFileSize 4

18 pbFileSpec 4
22 cbFileSpec 2

24 pbPassword 4
28 cbPassword '2

14-33

Delete Dir

Description

The DeleteDir service deletes an empty
directory. All the files must be deleted from a
directory before it can be deleted.

Status code 241 ("Directory not empty") status
code is returned if the directory is not empty.

Procedural Interface

Request Block

14-34

DeleteDir (pbDirSpec, cbDirSpec, pbPassword,
cbPassword): ErcType

where

pbDirSpec
cbDirSpec describe a character string of the

form node volname dirname.

pbPassword
cbPassword describe the volume or directory

password. Either password autho­
rizes the deletion of the directory.

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 18

12 reserved 6

18 pbDirSpec 4
22 cbDirSpec 2

24 pbPassword 4
28 cbPassword 2

Delete File

Description

The DeleteFile service deletes an open file.

Procedural Interface

Request Block

DeleteFile (fh): ErcType

where

f h

Off set

0
2
3
4
6
8

10

12

is the file handle returned from an
OpenFile operation. The file must
be open in modify mode.

Size
Field (bytes) Contents

sCntinfo 2 2
nReqPbCb 1 0
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 6

f h 2

14-35

GetDirStatus

Description

The GetDirStatus allows a user to determine
information about a directory. Either a volume
password or the directory password are required.

Error code "Bad Mode" (218) is returned if the
statusCode is invalid.

Procedural Interface

14-36

GetDirStatus

where

pbDirName
cbDirName

pbPassword
cbPassword

statusCode

pStatusRet
sStatusMax

(pbDirname, cbDirName, pbPassword,
cbPassword,pStatusRet, statusCode,
sStatusMax) : ErcType

describe the directory name.

describe a password which
gives access to the directory.

specifies the status code.
Status items and their codes
are:

0 Directory Size

1 invalid

Size
(bytes)

4

2 File Protection Level 2

3 Password* 13

* The first byte of a password
item is the number (0-12) of
characters in the password.

describe the memory area to
which the status information
is returned.

Request Block

Size
Offset Field (bytes} Contents

0 sent Info 2 6
2 nReqPbCb 2 2
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 216
12 status code 2
14 reserved 4
18 pbDirName 4
22 cbDirName 2
24 pbPassword 4
28 cbPassword 2
30 pStatusRet 4
32 sStatusMax 2

14-37

Getfhlongevity

Description

The GetFhLongevi ty service copies the requested
information on the longevity of the file handle
to the specified area.

Procedural Interface

Request Block

14-38

GetFhLongevity (fh, pCodeRet): ErcType

where

f h

pCodeRet

is the file handle returned from an
OpenFile operation. The file can be
open in either read or modify mode.

is the memory address of the word to
which the longevity code is
returned. If the code is O, the
file handle is short-lived; if it is
1, the file handle is long-lived.

sCodeRet is always 2.

Size
Offset Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 31

12 f h 2

14 reserved 4

18 pCodeRet 4
22 sCodeRet 2 2

GetfileStatus

Description

The GetFileStatus service copies the requested
status information to the specified memory
area. If the specified area is not large enough
to hold the requested information, the
information is truncated.

Procedural Interface

GetFileStatus (fh, statusCode, pStatusRet,
sStatusMax): ErcType

where

f h

statusCode

is the file handle returned from an
OpenFile operation. To get the
password, the file must be open in
modify mode. If the file is open
in read mode, the file password
field in the File Header Block is
erased. The password fields in the
Volume Horne Block and Device
Control Block are always erased.

specifies the status code.
items and their codes are:

Status

Code Item
Size

(bytes)

0 File length 4
1 File type 1
2 File protection level 1
3 Password* 13
4 Date/time of creation 4
5 Date/time last modified 4
6 End-of-file pointer 4
7 File Header Block 512
8 Volume Horne Block 256
9 Device Control Block 100

10 Application-specific
field** in the File
Header Block 64

*The first byte of a password item
is the number (0-12) of characters
in the password.

**For example, this field is used by
B20 Word Processor files.

14-39

Request Block

14-40

pStatusRet
sStatusMax describe the memory area to which

the status information is returned.

Size
Off set Field (bytes} Contents

0 sCntinfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 8

12 f h 2

14 statusCode 2

16 reserved 2

18 pStatusRet 4
22 sStatusMax 2

GetUCB

Description

The GetUCB service copies the User Control Block
for the current user number to the specified
area. If the specified area is not large enough
to hold the requested information, the
information is truncated.

The User Control Block is described in "System
Data Structures" below.

Procedural Interface

Request Block

GetUCB (pUcbRet, sUcbMax): ErcType

where

pUcbRet
sUcbMax

Off set

0
2
3
4
6
8

10

12

18
22

describe the memory area to which
the User Control Block is copied.

Size
Field (bytes) Contents

sCntinfo 2 6
nReqPbCb l 0
nRespPbCb l 1
userNum 2
exchResp 2
ercRet 2
rqCode 2 27

reserved 6

pUcbRet 4
sUcbMax 2

14-41

Open file

Description

The OpenFile service opens an already existing
file and returns a file handle. The file handle
returned by OpenFile is used to refer to the file
in subsequent operations such as Read, Write, and
DeleteFile.

Procedural Interface

14-42

OpenFile (pFhRet, pbFileSpec, cbFileSpec,
pbPassword, cbPassword, mode): ErcType

where

pFhRet

pbFileSpec
cbFileSpec

pbPassword
cbPassword

mode

is the memory address of the word to
which the file handle is returned.

describe a character string of the
form {node} [volname]<dirname>file­
name. The distinction between
uppercase and lowercase in file
specifications is not significant in
matching file names.

describe
directory,
authorizes
file.

either
or file
access to

the volume,
password that
the specified

is read (shared) or modify
(exclusive). This is indicated by
16-bit values representing the ASCII
constants "mr" (mode read) or "mm"
(mode modify). In these ASCII
constants, the fir st char act er (m)
is the high-order byte and the
second character (r or m,
respectively) is the low-order
byte.

Access in read mode permits the
returned file handle to be used as
an argument only to the CloseFile,
CheckReadAsync, Read, ReadAsync,
GetFhLongevity, GetFileStatus, and
SetFhLongevity operations.

Request Block

Access in modify mode, however,
permits the returned file handle to
be used as an argument to all
operations that expect a file
handle.

If the file is currently open in
read mode, access in read mode is
permitted but attempted access in
modify mode causes the return of
status code 220 ("File in use").

If the file is currently open in
modify mode, attempted access in
either read or modify mode causes
the return of status code 220 ("File
in use").

sFhMax is the size of a file handle and is always
2.

Size
Off set Field (bytes) Co.ntents

0 sCntinfo 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 4

12 reserved 2

14 mode 2

16 reserved 2

18 pbFileSpec 4
22 cbFileSpec 2

24 pbPassword 4
28 cbPassword 2

30 pFhRet 4
34 sFhMax 2 2

14-43

OpenFileLL

Description

The OpenFileLL service opens an already existing
file and returns a file ·handle. The file handle
is marked long-lived and can therefore be closed
by the CloseFile and CloseAllFilesLL operations,
but not by the CloseAllFiles operation. The file
handle returned by OpenFileLL is used to refer to
the file in subsequent operations such as Read,
Write, and DeleteFile.

Procedural Interface

14-44

OpenFileLL (pFhRet, pbFileSpec, cbFileSpec,
pbPassword, cbPassword,

where

pFhRet

pbFileSpec
cbFileSpec

pbPassword
cbPassword

mode

mode): ErcType

is the memory address of the word to
which the file handle is returned.

describe a character string of the
form {node} [volname]<dirname>file­
name. The distinction between
uppercase and lowercase in file
specifications is not significant in
matching file names.

describe the volume, directory, or
file password that authorizes access
to the specified file.

is read (shared) or modify
(exclusive). This is indicated by
16-bit values representing the ASCII
constants "mr" (mode read) or "mm"
(mode modify). In these ASCII
constants, the fir st character (m)
is the high-order byte and the
second character (r or m,
respectively) is the low-order
byte.

Access in read mode permits the
returned file handle to be used as
an argument only to the CloseFile,

Request Block

CheckReadAsync, Read, ReadAsync,
GetFhLongevi ty, GetFileSta tus, and
SetFhLongevity operations. Access
in modify mode, however, permits the
returned file handle to be used as
an argument to all operations that
expect a file handle.

If the file is currently
read mode, access in read
permitted but attempted
modify mode causes the
status code 220 ("File in

open
mode

access
return
use").

in
is
in
of

If the file is currently open in
modify mode, attempted access in
either read or modify mode causes
the return of status code 220 ("File
in use").

sFhMax is al ways 2.

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 97

12 reserved 2

14 mode 2

16 reserved 2

18 pbFileSpec 4
22 cbFileSpec 2

24 pbPassword 4
28 cbPassword 2

30 pFhRet 4
34 sFhMax 2 2

14-45

QueryWSNum

Description

The QueryWSNum service returns the number of the
cluster workstation. QueryWSNum returns O if
executed on a standalone workstation.

Procedura1 Interface

Request B1ock

14-46

QueryWSNum (pWSNumRet) : ErcType

where

pWSNumRet is the memory address of a word to
which the number of the cluster
workstation is returned.

sWSNumRet is always 2.

Size
Offset Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 61

12 reserved 6

18 pWSNumRet 4
22 sWSNumRet 2 2

Read

Description

The Read service transfers an integral number of
512-byte sectors from disk to memory. Read
returns only when the requested transfer is
complete. The ReadAsync and CheckReadAsync
procedures are used to overlap computation and
input/output transfer.

To accommodate programming languages in which
Read is a reserved word, ReadFile is permitted as
a synonym for the Read service.

Procedural Interface

Read (fh, pBufferRet, sBufferMax, lfa,
psDataRet): ErcType

where

f h

pBuf ferRet

sBuf ferMax

lf a

psDataRet

is a file handle returned from an
OpenFile operation. The file can be
open in either read or modify mode.

is the memory address of the first
byte of the buffer to which the data
is to be read. The buffer must be
word aligned.

is the count
into memory.
of 512.

of bytes to be read
It must be a multiple

is the byte offset, from the
beginning of the file, of the first
byte to be read. It must be a
multiple of 512.

is the memory address of the word to
which the count of bytes success­
fully read is to be returned.

14-47

Request Block

ssDataRet is always 2.

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 35

12 f h 2

14 lfa 4

18 pBuf ferRet 4
22 sBuf ferMax 2

24 psDataRet 4
28 ssDataRet 2 2

14-48

ReadAsync

Description

The ReadAsync procedure initiates the transfer of
an integral number of 512-byte sectors from disk
to memory. The CheckReadAsync procedure must be
called to check the completion status of the
transfer.

The information returned by Read with its
psDataRet argument and ErcType status is obtained
by CheckReadAsync.

Procedural Interface

Request Block

ReadAsync (fh, pBufferRet, sBufferMax, lfa, pRq,
exchangeReply) : ErcType

where

f h

pBuf ferRet

sBuf ferMax

lf a

pRq

exchangeReply

is a file handle returned from an
OpenFile operation. The file can be
open in either read or modify mode.

is the memory address of the first
byte of the buffer to which the data
is to be read. The buffer must be
word aligned.

is the count of bytes to be read to
memory. It must be a multiple of
512.

is the byte offset, from the
beginning of the file, of the first
byte to be read. It must be a
multiple of 512.

is the memory address of a 64-byte
area to be used as workspace by
ReadAsync.

is an exchange provided by the
client process for the exclusive use
of ReadAsync and CheckReadAsync.

The ReadAsync and CheckReadAsync procedures are
procedural interfaces to the Read operation. See
the Read operation above.

14-49

ReadDirSector

Description
The ReadDirSector service reads a 512-byte sector
of the specified directory. ReadDirSector is
used primarily by the B20 Executive.

Procedural Interface

14-50

ReadDirSector (pbDirSpec, cbDirSpec, pbPassword,
cbPassword, iSector,

where

pbDirSpec
cbDirSpec

pbPassword
cbPassword

iSector

pBuf ferRet

pBufferRet): ErcType

describe a character string of the
form {node} [volname]dirname.

describe the volume or directory
password. Either password autho­
rizes access to the directory
sector.

is the number of the sector to be
read within the directory.

is the memory address of the first
byte of the buffer to which the data
is to be read. The buffer must be
word aligned.

Request Block

sBufferMax is always 512.

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 25

12 reserved 2

14 iSector 2

16 reserved 2

18 pbDirSpec 4
22 cbDirSpec 2

24 pbPassword 4
28 cbPassword 2

30 pBuf ferRet 4
34 sBuf f erMax 2 512

14-51

Rename File

Description

The RenameFile service changes the file name
and/or the directory name of an existing file. A
file can be renamed to another directory on the
same volume. However, it cannot be moved to
another node or volume by renaming it.

Procedural Interface

14-52

RenameFile (fh, pbNewFileSpec, cbNewFileSpec,
pbPassword, cbPassword): ErcType

where

f h

pbNewFileSpec
cbNewFileSpec

pbPassword
cbPassword

is a file handle returned from an
OpenFile operation. The file must
be open in modify mode.

describe a character string of the
form {node} [volname]<dirname>file­
name. The distinction between
uppercase and lowercase in file
specifications is not significant in
matching file names.

describe a volume or di rectory
password that authorizes the
insertion of a file in the specified
directory. It is not a password to
be assigned to the file being
renamed. The SetFileStatus
operation can be used to assign a
password to the file being renamed.

Request Block

Size
Offset Field {bytes) Contents

0 sent Info 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 7

12 f h 2

14 reserved 4

18 pbNewFileSpec 4
22 cbNewFileSpec 2

24 pbPassword 4
28 cbPassword 2

14-53

SetDirStatus

Description

The SetDirStatus allows a user to change a
directory's password or default file protection
level. A volume or directory password is
required.

Error code "Bad Mode" (218) is returned if the
statusCode is invalid.

Procedura1 Interface

14-54

SetDirStatus

where

pbDirName
cbDirName

pbPassword
cbPassword

statusCode

pStatus
sStatus

(pbDirName, cbDirName,
cbPassword, pSta tus,
sStatus) : Erctype

pbPassword,
statusCode,

describe the directory name.

describe a password which
gives access to the directory.

specifies the status code.
Status items and their codes
are:

Size
Code Item (bytes} -

0 invalid

1 invalid

2 File Protection Level 2

3 Password *

* The length of the password
is nefined by sStatus, which
must be less than or equal to
12.

describe the memory area from
which the status information
is copied.

Request Block

Size
Offset Field (bytes) Contents

0 sent Info 2 6
2 nReqPbCb 2 3
3 nRespPbCb l 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 217
12 statusCode 2
14 reserved 4
18 pbDirName 4
22 cbDirNarne 2
24 pbPassword 4
28 cbPassword 2
30 pStatus 4
32 sStatus 2

14-55

SetFhlongevity

Description

The SetFhLongevi ty service sets how long a file
handle is to survive. If the file handle is
marked short-lived {the default condition when a
file is first opened), it is closed by the
CloseAllFiles, Exit, ErrorExit, and Chain
operations. If it is marked long-lived, it is
closed only by an explicit CloseFile operation or
by a CloseAllFilesLL operation.

Procedural Interface

Request Block

14-56

SetFhLongevity {fh, iCode): ErcType

where

f h

iCode

Off set

0
2
3
4
6
8

10

12

14

is the file handle returned from an
OpenFile operation. The file can be
open in either read or modify mode.

is either 0 for a short-lived file
handle or 1 for long-lived one.

Size
Field {bytes) Contents

sCntinfo 2 4
nReqPbCb 1 0
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 30

f h 2

iCode 2

SetfileStatus

Description

The SetFileStatus service copies the specified
status information from the specified memory area
to the File Header Block for the file defined by
the file handle. SetFileStatus cannot change the
file length. The ChangeFileLength operation can
be used to change the file length.

Procedural Interface

SetFileStatus (fh, statusCode, pStatus,
sStatus): ErcType

where

f h

statusCode

pStatus
sstatus

is a file handle returned from an
OpenFile operation. The file must
be open in modify mode.

specifies the status code.
items and their codes are:

Status

Code Item
Size

(bytes)

1 File type 1
2 File protection level 1
3 Password *
4 Date/time of creation 4
5 Date/time last modified 4
6 End-of-file pointer 4
7 invalid
8 invalid
9 invalid

10 Application-specific
field** in the File
Header Block 64

*The length of password is defined
by sstatus, which must be less than
or equal to 12.

**This field is used
by B20 Word Processor
files, for example.

describe the memory area from which
the status information is copied.

14-57

Request Block

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 1
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 9

12 f h 2

14 statusCode 2

16 reserved 2

18 pStatus 4
22 sStatus 2

14-58

Set Path

Description

The SetPath service establishes a default volume,
a default directory, and a default password. It
also clears the default file pref ix. A
subsequent Clear Path operation clears the
defaults.

Procedural Interface

SetPath (pbVolSpec, cbVolSpec, pbDirName,
cbDirName, pbPassword,
cbPassword): ErcType

where

pbVolSpec
cbVolSpec

pbDirName
cbDirName

pbPassword
cbPassword

describe the default volume specifi­
cation of the form {node}[volname].

describe the default directory name.

describe the default password.

14-59

Request Block

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 3
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 1

12 reserved 6

18 pbVolSpec 4
22 cbVolSpec 2

24 pbDirName 4
28 cbDirName 2

30 pbPassword 4
34 cbPassword 2

14-60

SetPrefix

Description

The SetPref ix service establishes a default file
pref ix that is prefixed to the file name part of
a file specification if that file specification
does not have an explicit volume name or
directory name. A new SetPref ix overrides a
previous SetPref ix. The default pref ix
established by SetPref ix can be removed by:

1. another SetPrefix that specifies a null
string,

2. the SetPath operation, or

3. the ClearPath operation.

Procedural Interface

Request Block

SetPref ix (pbPref ix, cbPref ix): ErcType

where

pbPref ix
cbPref ix

Off set

0
2
3
4
6
8

10

12

18
22

describe the character string that
is to be used as a default file
pref ix.

Size
Field (bytes) Contents

sent Info 2 6
nReqPbCb 1 1
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 3

reserved 6

pbPref ix 4
cbPref ix 2

14-61

Write

Description

The Write operation transfers an integral number
of 512-byte sectors from memory to disk. Write
returns only when the requested transfer is
complete. The WriteAsync and CheckWriteAsync
procedures are used to overlap computation and
input/output transfer. Write can also be
accessed as the WriteFile operation.

Attempting to write beyond the end of a file
results in the return of status code 2 ("End of
medium") •

To accommodate programming languages in which
Write is a reserved word, WriteFile is permitted
as a synonym for the Write service.

Procedural Interface

14-62

Write (fh, pBuffer, sBuffer, lfa,
psDataRet): ErcType

where

f h

pBuf fer

sBuf fer

lf a

psDataRet

is a file handle returned from an
OpenFile operation. The file must
be open in modify mode.

is the memory address of the first
byte of the buffer from which the
data is to be written. The buffer
must be word aligned.

is the count of bytes to be written
from memory. It must be a multiple
of 512.

is the byte offset, from the
beginning of the file, of the first
byte to be written. It must be a
multiple of 512.

is the memory address of the word to
which the count of bytes success­
fully written is to be returned.

Request Block

ssDataRet is always 2.

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 1
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 36

12 f h 2

14 lf a 4

18 pBuf fer 4
22 sBuf fer 2

24 psDataRet 4
28 ssDataRet 2 2

14-63

WriteAsync

Description

The Wr i teAsync procedure initiates the transfer
of an integral number of 512-byte sectors from
memory to disk. The CheckWriteAsync procedure
must be called to check the completion status of
the transfer.

The information returned by Write with its
psDataRet argument and ErcType status is obtained
by CheckWriteAsync.

Procedural Interface

Request Block

14-64

WriteAsync (fh, pBuffer, sBuffer, lfa, pRq,
exchangeReply) : ErcType

where

f h

pBuf fer

sBuf fer

lf a

pRq

exchangeReply

is a file handle returned from an
OpenFile operation. The file must
be open in modify mode.

is the memory address of the first
byte of the buffer from which the
data is to be written. The buffer
must be word aligned.

is the count of bytes to be written
from memory. It must be a multiple
of 512.

is the byte offset, from the
beginning of the file, of the first
byte to be written. It must be a
multiple of 512.

is the memory address of a 64-byte
area to be used as workspace by
WriteAsync.

is an exchange provided by the
client process for the exclusive use
of WriteAsync and CheckWriteAsync.

The WriteAsync and CheckWriteAsync procedures are
procedural interfaces to the Write operation.
See the Write operation above.

VOLUME CONTROL STRUCTURES

A disk volume contains volume control structures
after it is initialized with the !Volume utility.
(See the B20 System Software Operation Guide,
form 1148772.) These structures allow the file
management system to manage (allocate,
deallocate, locate, avoid duplication of) the
space on the volume not already allocated to the
volume control structures themselves.

The volume control structures include:

0 the Volume Home Block,

0 the File Header Blocks,

0 the Master File Directory,

0 the directories, and

0 the Allocation Bit Map, among others.

There are duplicate Volume Home Blocks (working
and initial copies} and (normally} duplicate File
Header Blocks (primary and secondary copies} on
the volume for reliability. The primary and
secondary copies of the File Header Blocks are
located on different cylinders and at different
rotational positions and are accessed (except for
floppy disks} by different read/write heads.
These duplicates ensure that damage to one copy
does not cause a loss of data. The !Volume
utility permits suppression of duplicate File
Header Blocks. However, this reduces reliability
and is not recommended.

The initial copy, unlike the working copy, of the
Volume Home Block, is not modified after it is
created. However, the primary and secondary
copies of the File Header Blocks are always true
duplicates.

The location on the volume of the volume control
structures minimizes disk arm movement. In
particular, the structures that are necessary to
create and open files (the working copy of the
Volume Home Block, the File Header Blocks, the
Master File Directory, the directories, and the
Allocation Bit Map} are located near one another
and near the middle of the disk. The initial
copy of the Volume Home Block is located near the
start of the disk. Both the primary and

14-65

secondary copies of the File Header Blocks are
located in a single area, the disk address and
size of which are recorded in the working and
initial copies of the Volume Home Block.

Figure 14-1 shows the interrelationships of the
volume control structures.

Volume Home Block

There is a Volume Home Block (VHB} for each
volume. The VHB is the root structure (that is,
the starting point for the tree structure} of
information of a disk volume. The VHB contains
information about the volume such as its name and
the date it was created. The VHB also contains
pointers to the Allocation Bit Map, the Bad
Sector File, the File Header Blocks, the Master
File Directory, the directories, the System
Image, the Crash Dump Area, and the Log File.
The VHB is 1 sector in size. (See Table 14-3 on
the Volume Home Block below.}

Allocation Bit Map and Bad Sector File

File Header Block

Disk Extent

14-66

The Allocation Bit Map controls the assignment of
disk sectors. It has 1 bit for every sector on
the disk and the bit is set if the sector is
available. The size of the Allocation Bit Map
depends on the size of the volume. If a sector
of a disk is unusable, there is an entry in the
Bad Sector File. The Bad Sector File is 1 sector
in size.

There is a File Header Block (FHB} for each
file. The FHB of each file contains information
about that file such as its name, password,
protection level, the date/time it was created,
the date/time it was last modified, and the disk
address and size of each of its Disk
Extents. The FHB is 1 sector in size. (See
Table 14-4 on the File Header Block below.}

A Disk Extent is one or more contiguous
sectors that compose all or part of a file.

disk
The

Master
File

Directory

Volume
Home
Block

r---..,
user

directory

user
directory

I
..J

File
Header
Blocks

Allocation
Bit Map

r----,
I

- _ .J

r-----,
I

user file

user file

Bad
Sector File

Crash
Dump Area

Log File

System Image

Figure 14-1. Volume Control Structures

14-67

14-68

entry for the Disk Extent in the FHB is 8
bytes: 4 bytes specify its location and 4 bytes
specify its size.

Table 14-3. Volume Home Block

Size
Off set Field (bytes) Description

0 checksum 2
2 lfaSysimageBase 4
6 cPagesSysimage 2
8 lf aBadBlkBase 4

12 cPagesBadBlk 2
14 lf aCrashDumpBase 4
18 cPagesCrashDump 2
20 volName* 13
33 volPassword* 13
46 lf aVhb 4
50 lfainitialVhb 4
54 creationDT 4
58 modif icationDT 4
62 lf aMfdBase 4
66 cPagesMfd 2
68 lf aLogBase 4
72 cPageLog 2
74 currentLogPage 2
76 currentLogByte 2
78 lf aFileHeadersBase 4
82 cPagesFileHeader 2
84 altFileHeaderPageOffset 2
86 iFreeFileHeader 2
88 cFreeFileHeaders 2
90 clusterFactor 2
92 defaultExtend 2
94 allocSkipCnt 2
96 lf aAllocBase 4

100 allocPageCnt 2
102 lastAllocPg 2
104 lastAllocWd 2
106 lastAllocBit 2
108 cFreePages 4
112 idev 2
114 rgLruDirEntries 105

(sRgLruDirEntries)
219 magicWd 2

*The first byte contains the character count.

Offset Field
Size

(bytes)

221 BootBaseSector 1

222 BootBaseHead l

223 BootBaseCyl 2

Description

225 BootMaxPageCount 2 These fields describe
for the Bootstrap ROM
the location and file
size of the program to
be bootstrapped.

227 BadBlkBaseSector 1

228 BadBlkBaseHead 1

229 BadBlkBaseCyl 2

231 BadBlkMaxPgCnt 2 These fields describe
the bad block map used
by I Volume when
reinitalizing a volume.

233 DumpBaseSector 1

234 DumpBaseHead 1

235 DumpBaseCyl 2

237 DumpMaxPageCount 2 These fields describe
the location and file
size of a crash dump
area to be used by the
Bootstrap ROM.

239 bytesPersector 2

241 sectorsPerTrack 2

243 tracksPerCyl 2

14-69

14-70

Offset

245

247

248

250

251

Field
Size

(bytes) Description

cylindersPerDisk 2 These fields describe
the disk size para-
metei::-s.

interleaveFactor 1

sectorSize 2

spiralFactor 1

startingSector 1 These fields describe
formatting parameters
by IVolume.

252 reserved 4 Reserved
expansion.

for future

BootExt.Sys

Off set

0
2
4

55
68
81
83
85
86
87
88
92
96

100
104
108
109
110
111
115
119
121
249
377
448

Table 14-4. File Header Block

Field

checksum
f ileHeaderPageNum
f ileName*
password*
dirName*
f ileHeaderNum
extensionHeaderNumChain
headerSequenceNum
f ileClass
accessProtection
lfaDirPage
creationDT
modif icationDT
accessDT
expirationDT
fNoSave
fNoDirPrint
fNoDelete
lfaEndOfFile
defaultExpansion
f reeRunindex
vda (runsPerFhb)
runLength(runsPerFhb)
(reserved for expansion)
application-specific field

Size
(bytes)

2
2

51
13
13

2
2
1
1
1
4
4
4
4
4
1
1
1
4
4
2

128
128

71
64

*The first byte contains the character count.

BootExt.Sys is placed in the Sys directory of
every B22 volume which has a Sysimage.Sys file
specified. The file is 10 sectors long, and is
pointed to in the VHB Boot ROM fields starting at
offset 221.

The first stage bootstrap program is
automatically placed in BootExt.Sys by !Volume
during initialization by copying from
[Sys]<Sys>BootExt.Sys. [Sys] is [fO] if you have
booted from a floppy, or [dO] if you have booted
from the hard disk.

14-71

Extension File Header Block

14-72

An FHB can accommodate 32 Disk Extents. A file
that contains more than 32 Disk Extents requires
extension File Header Blocks. Extension FHBs are
seldom necessary unless the user places an
unusually heavy burden on the file management
system by, for example, expanding the same file
many times or fragmenting the available disk
space by frequently deleting and creating files
on a nearly full volume that is seldom refreshed.
(A volume is refreshed by using the Backup
Volume, !Volume, and Restore utilities. See the
B20 System Software Operation Guide, form 1148772
for more details about these utilities.)

Master File Directory and Directories

System Directory

There is an entry for each directory on the
volume in the Master File Directory (MFD),
including the Sys Directory (see below). The
position of an entry within the MFD is determined
by randomization (hashing) techniques. The entry
contains the directory's name, password,
location, and size. (See Table 14-5 on the Entry
for a Directory in the MFD below.)

Table 14-5. Entry for a Directory in the Master File Directory

Size
Off set Field (bytes)

0 dirEntryName* 13
13 password* 13
26 lfaBase 4
30 cPages 2
32 defaultAccessCode 1
33 lruCnt 2

*The first byte contains the character count.

There is an entry for each file in one of the
di rectories on the volume. The posit ion of an
entry within a directory is determined by
randomization (hashing) techniques. The entry
contains the file's name and a pointer to the
File Header Block.

The MFD and the directories provide fast access
to the File Header Block of a specific file.
They do not, however, contain any information
about the file that is not also contained in its
File Header Block. (The most recently used
directory information is retained in memory.)

The ~(tern) Directory is different from other
directories in two ways. First, when a volume is
initialized, its MFD contains only one entry and
that is for the Sys Directory. (The other
directories are created by the CreateDir

14-73

14-74

operation.) Second, the Sys Directory contains
entries for all system files. These files must
not be deleted, renamed, or overwritten.

These file entries are required in the Sys
Directory of each volume:

o the Bad Sector File (BadBlk.Sys),

o the Master File Directory (Mfd.Sys), and

o the File Header Blocks (FileHeaders.Sys).

SYSTEM VOLUME

System Image

The Sys(tem) Directory of the Sys(tem) Volume
contains entries for system files that are not
necessary in the Sys Directories of other
volumes. These additional entries must be placed
in [Sys]<Sys> when the volume is initialized.
Sysimage.Sys, CrashDump.Sys, and Log.Sys are
created (but not initialized) by the !Volume
utility. The other file entries are created
using the CreateDir operation or the Create
Directory command (see the B20 System Executive
Reference Manual, form 1144474).

These system files are:

the System Images (Sysimage.Sys and ws­
nnn>Sysimage.Sys),

the Crash Dump Areas (CrashDump.Sys and
WSnnn>CrashDump.Sys),

the Log File (Log.Sys),

the standard character font (Sys.Font).

For information on other initialization files,
including the Executive and Debugger, see the
Release Notice for the current OS version and the
section on "Getting Started" in the B20 System
Programmers and Assembler Reference Manual (Part
1), form 1148699.

The System Image (the file Sysimage.Sys) contains
a run-file copy of the OS for the standalone or
master workstation.

In a cluster system, the OS for the cluster
workstations also must be placed in this volume
and di rectory in the file WSnnn>Sys Image. Sys
where nnn is the workstation type, as follows:

000 B22
255 B21-l
254 B21-3
253 B21-4

If the file WSnnn>Sysimage.Sys does not exist,
WS>Sysimage.Sys is reset.

See the B20 System Programmers and Assembler
Reference Manual (Part 1), form 1148699 for more
detail.

14-75

Crash Dump Area

Log File

The Crash Dump Area (the file CrashDump.Sys)
contains a binary memory dump for the standalone
or master workstation in the event of a system
failure.

The files WSnnn>CrashDump.Sys (if
contain binary memory dumps
workstations in the event of system
the cluster workstations. In
specification, nnn is the
identification of the cluster
(Crash Dump files are created with
ope ra ti o n •)

they exist)
for cluster
failures at
the file
works ta ti on

works ta ti on.
the Crea teFile

If the files WSnnn>CrashDump.Sys do
the memory dump is made to
WS>CrashDump. Sys (if it exists).
eliminates the need for a Crash Dump
each cluster works ta ti on.

exist,
file
file
for

not
the

This
file

The Log File (the file Log.Sys} is an error­
loggi ng file. An entry is placed in the Log File
for each recoverable and nonrecoverable device
error. This file can be used as a general­
purpose logging file, for example, to write
entries for accounting i nforma ti on for system
services. The PLog utility (see the 820 System
Software Operation Guide, form 1148772) prints
the content of this file.

Standard Character Font

$ Directories

14-76

The standard character font is loaded from the
file Sys.Font into the font RAM (except on a 821,
which has the standard character font in ROM).

The $ Directories are special directories
required for the software to operate correctly.
When a request with the di rectory name of <$> is
given as part of a file specification to the OS,
the di rectory name is expanded to the form
<$nnn>, where nnn is the user number of the
application partition. This expansion occurs
only if the directory name is <$>.

For example, the following file specifications
are expanded as shown when they are part of a
request from an application system in the primary
application partition of a standalone or master
workstation (user number 0):

[Vol]<$>Filename to [Vol]<$000>Filename

<$>Filename to <$000>Filename

[Vol]<$xyz>Filename to [Vo1]<$xyz>Filename

If an application system in a cluster workstation
(with user number 3, for example,) generates a
request with a directory name of <$>, it is
expanded as follows:

[Vol]<$>Filename to [Vol]<$003>Filename

All software that uses temporary files
to place those files in the [Sys]<$>
first, and, if that fails, then in the
volume and directory.

attempts
directory
logged-in

Since the user number(s) of a cluster workstation
are reassigned whenever the system is
bootstrapped, the $ directories should not be
used for permanent files.

14~7

SYSTEM DATA STRUCTURES
_System data structures are data areas contained
within the OS and necessary for its operation.
They are often configuration-dependent. The five
system data structures related to the file
management system are:

the User Control Block,

the File Control Block,

the File Area Block,

the Device Control Block, and

the I/O Block.

The User Control Block and
Block are user-accessible
below.

the
and

Device Control
are described

User Control Block

14-78

There is a User Control Block (UCB) for each user
number. The UCB contains the default volume,
default directory, default password, and default
file pref ix set by the last SetPath and SetPrefix
operations. (See Table 14-6 on the User Control
Block below.)

There is a user number for each application
partition.

Offset

0
2

15
28
41
54

Table 14-6. User Control Block

Field

loginid
defaultVol*
defaultDir*
defaultPassword*
pref ix*
verifyCode

Size
(byte~

2
13
13
13
41

1

*The first byte contains the character count.

UCBs reside in master and cluster workstations as
discussed below.

User Control Blocks in the Master Workstation

Two types of UCBs
works ta ti on:

reside in the master

local UCBs for
partitions, and

secondary appl i ca ti on

remote UCBs for file access by
workstations.

cluster

Local UCBs are allocated for secondary
application partitions created within the master
workstation. They are associated with Batch
Control Blocks and Partition Descriptors, and are
statically allocated by the OS.

Remote UCBs are allocated for tasks located in
cluster workstations that access files at the
master workstation. They are dynamically
allocated and deallocated by the OS.

User Control Blocks in the Cluster Workstations

are allocated in the cluster
for the local file system. They are
with Batch Control Blocks and
Descriptors, and are statically

Local UCBs
workstation
associated
Partition
allocated by the OS.

Device Control Block

There is a Device Control Block (DCB) for each
physical device. The DCB contains information,
generated at system build, about the device. For
a disk, the information includes how many tracks
are on a disk, the number of sectors per track,
etc. The DCB points to a chain of I/O Blocks.
(See Table 14-7 below.)

14-79

14-80

Table 14-7. Device Control Block

Offset Field
Size

(Bytes) Description

(device independent fields)

0 fMountable

1 fNonSharable

2 fDoubleDensity

3 fNoMultiTrack

4 fAttention

5 fTimeout

6 devName(l3)

19 devpassword(l3)

32 reserved

1 True (OFFh) if the
device may have a valid
B20 file system.

1 False (0) if the device
may be shared by
multiple users. True if
the device is non­
shareable, such as a
tape device.

1 True if the media is a
diskette and is dual
density.

1 True if the controller
does not support
multiple track read/
write operations. This
must be True for floppy
drives on B21 and B22
with old controller.

1 Device has come ready
or not ready. Flag is
set in interrupt
routine and cleared by
MassIO process upon
Mount or Dismount.

1 Flag is set if a
timeout has occurred.

13 The name of the device.
The first byte is the
size.

13 The device password.

1

The first byte is the
size.

Offset Field

33 unitNum

34 state

35 unitStatus

36 deviceClass

37 userCount

38 oVhb

40 oiobFirst

42 oiobLast

44 lfaMax

Size
{bytes~ Description

1 The logical unit number
of the device.

1 The state of the
device where:

0 means idle,

1 means seeking,

2 means busy (reading
or writing), and

3 means retrying.

1 The status of the unit,
where:

O means ready

1 means not ready or
inoperable.

1 The device class where:

0 means Winchester on
either a B21 or on
a B22.

1 means a floppy on
B21 or on B22.

1 The number of users that
have opened the device or
the number of files in
file system on device.

2 An offset pointer (from
the OS's DGroup) to the
Volume Home Block of
the device.

2 Off set to the head of
the I/O Block list for
the device.

2 Offset to the tail of
the IOB list.

4 The size (in bytes) of
the device.

14-81

14-82

Size
Offset Field (bytes~ Q_~~criptJ:o_~_

48 lfaMask

50 verifyKey

2 Mask used for separat­
ing the upper bi ts of 1 fa
which contain control
information.

2 Used in creation of
file handles for check­
ing the type of
resource which is open.

52 reserved 6

58 softErrorCnt 2

60 hardErrorCnt 2 Accumulated count of
errors during an I/O.

62 currentCylinder 2 Set after every suc­
cessful seek. Used by
by queueing algorithm.

64 sectorSizeCode 1 Sector size, where:

65 gapLength(2) 2

0 means use bytes per
sector field (must
be less than 256),

1 means 256 bytes,

2 means 512 bytes, and

3 means 1024 bytes.

67 dataLength 1 Floppy controller
parameters.

68 bytes/Sector 2

70 sectors/Track 2

72 tracks/Cylinder 2

74 cylinders/Disk 2 Disk size parameters.

OVERVIEW

SECTION 15
QUEUE MANAGEMENT

The queue management facility controls named,
priority-ordered, disk-based queues. The files
that contain these queues are called queue entry
files. Each queue entry file contains
information for a single type of processing, such
as spooled printing, batch processing, or remote
job entry (RJE). This information is created,
accessed, and modified by both client processes
and server processes such as the printer spooler,
batch manager, or RJE. Because the queue entry
files are disk-based, their contents are immune
to system failures.

In a cluster configuration, the queue management
facility must be installed at the master
workstation. However, the server processes that
use the queue management facility can be
installed at cluster workstations as well as at
the master workstation. Multiple server
processes in different cluster workstations can
serve the same queue simultaneously.

The system administrator defines the queues to be
used in the system. Each queue is assigned as a
unique name and a queue entry file specificq.tion.

Client processes can then add queue entries by
using operations in which a queue entry file is
referenced by a queue name. The client process
need not specify the location of the server
process. The first available server process in
the cluster can serve the queue entry.

Figure 15-1 shows an example of a
configuration with the queue management
a client process, and a server process
spooler).

cluster
facility,

(printer

15-1

Master WorlcstaUon

r 7
Queue Managet" i Queue Enby Files

~ Cata Files

l
Cluster c:uster Cluster I c:uster
Workstation Work.station Work.station I Wor!(stati on

:
Requestor Printer

Spooler

Printer(s)

Figure 15-1. Example Configuration With Queue Management Facility

15-2

CONCEPTS

Client Processes

Server Processes

The queue management facility acts as a central
switch between client and server processes.

Client processes submit requests for processing
services, such as printing, transmission, and
batch processtng of files, to the queue manager.
By using the queue management facility, client
processes can:

access queue entry files by using operations
that specify the queue name,

submit entries to the appropriate queue entry
file,

delete previously queued entries, and

obtain a list of entries queued.

Server processes (such as the
RJE, and batch manager) serve
files. The queue management
server processes to:

printer spooler,
the queue entry
facility allows

specify the queue(s) (and therefore the queue
entry files) they will serve,

process entries in the specified queue(s),
and

request the removal of queue e nt ri es that a re
processed.

Sequence for Using Queue Management Facility

A simplified sequence for installing and using
the queue management facility is described below.

1. The system administrator creates a queue
index file in the master workstation. The
queue index file is a system-wide text file
that defines the queues to be used in the
system. The queue index file assigns to each
queue a queue entry file for storing queue
entries submitted by client processes, the
size of the queue entry, and the queue type.

15-3

Queue Index File

15-4

2.

3 •

4.

5.

The queue manager is
workstation with the
utility. Typically,
or batch job control
bootstrapped.

installed in the master
Install Queue Manager

this is part of a submit
file when the system is

After the queue manager is installed,
opens the queue entry files named in
queue index file. The queue entry files
maintained in the master works ta ti on.

it
the
are

A server process (such as a printer
RJE, or batch manager) wishing to
particular queue uses
EstablishQueueServer operation to
itself as an active server.

spooler,
serve a

the
establish

A client process adds
specified queue entry
AddQueueEntry operation.

entries
file

to
with

the
the

6. The server process obtains for processing a
particular queue entry with the
MarkKeyedQueueEntry, or the next available
queue entry with the MarkNextQueueEntry
operation. The queue manager marks the queue
entry as being in use to prevent other server
processes from operating on it. The marked
queue entry remains in the queue entry file
until it is removed (see next step).

7.

8.

The server process services the marked
entry, then removes the processed entry
the queue entry file with
RemoveMarkedQueueEntry operation.

queue
from
the

When the server process no longer wishes
serve a queue, it re~oves itself from

to
the
the list of active servers with

TerminateQueueServer operation.

The queue index file is a system-wide text file
that defines the queues to be used in the system.
It contains i nforma ti on such as the name of each
queue to be used in the system and the associated
queue entry file.

The system administrator must create
index file [Sys]<Sys>Queue.Index in
workstation.

the queue
the master

The queue index file is created with the
Edi tor or Word Processor. A record of
following format is required for each queue:

Text
the

queueName/fileSpec/entrySize/queueType RETURN

where

queue Name

fileSpec

entrySi ze

queue Type

is a user-defined queue name that is
unique to the installation. The
name can be any name of up to 50
characters, except the following
system device names: Comm, Kbd, Lpt,
Nul, Ptr, Tape, Vid, and X25.
Examples of acceptable names are:
SpoolerA, SPL, Pri nterX, Ba tchCa rol,
Centronix, Diablo, and RJEtoBoston.

is the file specification of the
queue entry file in which queue
entries submitted by client
processes are stored (for example,
[Winl]<Sys>SpoolerAQueueEntryFile).

is the size of an entry for the
queue entry file. The size is the
number of 512-byte sectors per
entry. For example, to define 1024-
byte entries, specify an entry size
of 2. In this case, 984 bytes are
usable and 40 are reserved for the
queue manager.

is the type of the queue (an integer
less than or equal to 255), which
enables a consistency check. The
queue manager checks the type
against the type in operations to
add entries to the queue and in
operations to establish servers for
the queue. Types 0-80 a re reserved;
types 1, 2, and 3 are assigned as
follows:

Type

1
2
3

Assignment

Printer Spooler queue
RJE queue
Batch queue

15-5

15-6

A sample queue index file is shown in Figure 15-2
below.

SpoolerA/SpoolerAQueueEntryFile/l/l <RETURN>

RJEBoston/RJEBostonQueueEntryFile/1/2 <RETURN>

BatchCarol/BatchCarolQueueEntryFile/l/3 <RETURN>

Figure 15-2. Sample Queue Index File

The above example defines one queue entry file
for each queue name. Each queue-oriented service
generally requires more than one type of queue
entry file. See Table 15-1 below.

Table 15-1. Examples of Queue Entry Files

Server Process Type Number Requi red
-------------- ---------------
Batch manager Scheduling 1 per batch queue

Control 1 per batch manager
Status 1 per cluster

confi gura ti on

Printer spooler Scheduling 1 per print class
Control 1 per printer
Status 1 per cluster

confi gura ti on

RJE Transmit 1 per cluster
confi gura ti on

Receive 1 per cluster
confi gura ti on

Client processes add entries to the scheduling
queue entry files. In the case of RJE, entries
are added to the transmit queue entry file and
removed from the receive queue entry file. The
control and status queue entry files are used
internally by the server processes for control
and status purposes. For further information on
queue entry files required in the queue index
file, see:

the B 20 System Software Operation Guide,
form 1148772 for the printer spooler, and

the B 20 2780; 3780 RJE Reference Manual,
form 1148731 for the RJE.

Installing the Queue Manager

Queue Entry File

The queue manager is installed with the Install
Queue Manager utility (see the B 20 System
Software Operation Guide, form 1148772).
Typically, this is part of a submit file or batch
job control file that is executed when the system
is bootstrapped. See the B 20 System Executive
Reference Manual, form 1144474.

The queue manager can be installed either:

in an extended system partition, in which
case the queue manager can be removed only
when the OS is reloaded (see the "System
Service Management" sec ti on), or

in a secondary application partition, in
which case the queue manager can be removed
with the Termi nateParti tionTasks or
VacatePartition operation (see the
"Appl i ca ti on Pa rti ti on Management" section) •

A queue entry file contains information
single type of processing such as
printing, batch processing, or RJE.

for a
spooled

15-7

Queue Entry

15-8

More than one type of queue entry file is
generally required for each queue-oriented
service (for example, scheduling, control, and
status queue entry files are required for a
printer spooler queue). (See Table 15-1 above.)

The client process specifies the queue name
submitting a queue entry for
queue entry is automatically
appropriate queue entry file
manager.

processing.
placed in
by the

when
The
the

queue

When the queue manager is installed, it opens the
queue entry files specified in the queue index
file. If a queue entry file does not exist, it
is created with an initial size of 30 entries.

If a queue entry file has insufficient space for
adding an entry, the queue manager expands that
queue entry file by an increment sufficient to
contain 30 entries.

A queue entry is a formatted request for
processing that is added to the specified queue
entry file by client processes. Client and
server processes communicate by way of fields
within the queue entries located at fixed offsets
known to both client and server processes. When
a server process is available, it obtains a queue
entry for processing.

A queue entry is a number of contiguous 512-byte
sectors in a queue file. Each queue entry
consists of two parts:

The first 40 bytes of the queue entry are
reserved for the queue manager and include
control information (see "Queue Status Block"
below).

The remaining bytes are type-specific,
is, they are specific to the type of
queue (see "Sample Queue Entry" below).

that
the

CLIENT OPERATIONS

A client process can add entries to queue entry
files, read the entries of a queue entry file
(typically, to determine the sequence and status
of entries), and delete specific entries from the
queue entry file.

Adding an Entry to a Queue
A client process adds an entry to the specified
queue entry file with the AddQueueEntry
operation. The client process specifies
information, including:

a queue name that must correspond to a queue
name contained in the queue index file,

a priority level (0-9 with 0 the highest), at
which the entry is queued,

a pointer to a buffer containing the type­
specific portion of the queue entry,

an optional time specification for the
earliest time the entry is serviced, and

an optional time interval for requeueing of
the entry after its removal from the queue
entry file. The time interval is added to
the time specification for servicing the
entry.

Before adding a new entry to the queue entry
file, the queue manager checks the number of
active server processes. If no server processes
are actively serving the queue, some client
processes may not wish to queue a new entry.

Reading Queue Entries

A client process reads queue entries with the
ReadNextQueueEntry operation for each entry to be
read. ReadNextQueueEntry is typically used to
list the contents of all entries by utilities
such as the Spooler utility (see the "Printer
Spooler Utilities Overview" in the B20 System
Software Operation Guide, form 1148772).

15-9

Queue Entry Handle

The client process specifies the queue name,
queue entry handle (see below), and pointers to
buffers to which the queue entry and Queue Status
Block (see below) are returned.

A queue entry handle is a 32-bit integer that
uniquely identifies a queue entry. The control
portion of the queue entry (the first 40 bytes
that are reserved for the queue manager) contains
the queue entry handle of the logically following
queue entry.

Queue Status Block

15-10

The MarkKeyedQueueEntry, MarkNextQueueEntry (see
"Marking Queue Entries" below), and
ReadQueueEntry operations take a parameter that
is the memory address of a Queue Status Block.
These operations use the Queue Status Block to
report a queue entry's server user number,
priority, and the buffers in which the queue
entry handles for the queue entry and the
logically following queue entry are stored.

The format of the Queue Status Block is shown in
Table 15-2 below. The Queue Status Block is part
of the control portion of the queue entry (the
first 40 bytes that are reserved for the queue
manager).

where

qehRet

Table 15-2. Queue Status Block

Size
Off set Field (Bytes)
------ ----- -------

0
4
5
7

qehRet 4
priority 1
Serve ruse rNum 2
qehNextRet 4

is the buffer in which
entry handle of the queue
stored.

the queue
entry is

priority

serve ruse rNum

qehNextRet

Removing an Entry

is the priority (0-9, with 0 the
highest) at which the queue entry is
placed in the queue.

is a 16-bit user number that
uniquely identifies the server in
the master workstation. If a server
marks the entry OFFFFh, the entry is
unmarked.

is the buffer in which the queue
entry handle of the logically
following queue entry is stored.

A client process removes a specific queue entry
from the queue with the RemoveKeyedQueueEntry
operation. The queue entry is identified by one
or two key fields.

A key is a particular field or combination of
fields in a data record upon which the lookup
process is performed. The RemoveKeyedQueueEntry
operation can specify that up to two key fields
must match corresponding fields in the queue
entry before the queue entry is removed.

15-11

SERVER OPERATIONS

A server process can:

establish itself as an active server for the
specified queue(s),

mark and obtain queue entries for processing,
and

unmark queue entries or remove itself as an
active server.

Establishing Servers

A server process must establish itself as a
server for a specific queue entry file with the
EstablishQueueServer operation before it can
service the queue.

EstablishQueueServer enables the queue manager to
keep a count of the number of servers servicing
each queue entry file. The queue manager checks
the count of servers before adding entries to a
queue entry file. If no servers are active, a
client process may not wish to queue a new entry.

Marking Queue Entries

15-12

The server process obtains a queue entry on which
to operate with either of two operations:

the MarkNextQueueEntry operation to specify
the next available queue entry, or

the MarkKeyedQueueEntry operation to specify
a specific queue entry.

The queue manager marks the specified queue entry
as being in use to prevent other server processes
from operating on it.

The marking operations prevents interference
among multiple server processes servicing a
single queue entry file. When a queue entry is
marked, it is not returned in subsequent marking
operations.

Unmarking Queue Entries

Entries are reset to the unmarked (not in use)
state when:

Sample Queue Entry

the queue manager is installed,

a server process terminates operation for any
reason, including malfunction of a cluster
workstation. The queue manager searches all
queue entry files affected and resets any
queue entries marked by server processes from
the malfunctioning workstation.

a server process no longer wishes to service
a queue entry file and issues a
TerminateQueueServer operation. The queue
manager decrements the count of active
servers for that queue and resets all entries
previously marked by the te rmi na ting server.

Table 15-3 below shows a sample queue entry for
printer spooler scheduling. The queue entry
format can also be used for user-defined server
processes. Queue entries must be large enough to
accommodate the control portion of the queue
entry (40 bytes that are reserved by the queue
manager).

15-13

Table 15-3. Sample Queue Entry

Size
Offset Field (bytes) Description

0 fDelAftPrt l If set to TRUE (OFFh)
the spooled file will be
deleted after it lS

printed.

1 sbFileSpec 92 The name of the file to
be printed (the first
byte of an "sb" string
is the length of the
string).

93 sbFormNarne 13 The name of the forms to
be used. If the length
is zero, the standard
form will be used.

106 sbWheelName 13 The name of the print
wheel to be used. If
the length is zero, the
standard print wheel
will be used.

119 cCopies 2 The number of copies of
the file that are to be
printed.

121 bPrintMode l The printing mode, where

0 means normal,
1 means binary, and
2 means image mode.

122 fAlignForms l If this is TRUE, the
forms alignment option
will be used.

123 fSecurityMode 1 If this is TRUE, the
file will be printed in
security mode.

124 reserved 5 Reserved for use by the
WRITEone.

15-14

Offset Field

129 sbDocName

221 sbUserName

232 reserved

234 reserved

236 timeQueued

240 fSupressNewPage

241 fWPPaging

242 fSupressBanner

243 fSingleSheet

244 reserved

Size
(bytes)

92

31

2

2

4

1

1

l

l

20

Description

The name of the document
being printed. This is
different from sbFileSpec,
which is typically a
temporary file in the
[!Scr]<Spl> directory.

The client's user name.

Reserved for use by the
WRITEone.

The date/time that the
print was queued.

If TRUE, the Spooler
Manager will not print a
form-feed at the start
of the print.

If TRUE, the Spooler
Manager will use WP page
escape sequences to
determine page numbers.

If TRUE, the Spooler
Manager will not print a
banner or the notice
file.

If TRUE, the printer
attached is manual feed.

Reserved for future
expansion.

15-15

Control Queues

Off set

0

1

3

15-16

A control queue is required for each printer in
the system. Control queues store the printer
control requests required by the printer spooler
for processing. When the user invokes the
Spooler utility and uses its printer control
subcommands, entries are automatically placed in
the associated control queue entry file. The
printer spooler queries the control queue entry
file periodically to check for printer control
entries. The format of the control queue entry
is shown below.

Printer Spooler Control Queue Entry Format

Field

bCommand

restartPage

sbWpRestartPage

Size
(bytes) Description

1 The command to the
spooler, where

2

13

0 means halt/pause
printer,

1 means cancel print,
2 means restart

printer, and
3 means align forms.

The page number from
which to restart
printing. If this value
is 0 then the printing
restarts at the
beginning of the current
page. If this value is
OFFFFh then the printing
starts at the next
character in the file.

Character sequence that
defines a page number in
a WRITEone print file.

SpoolerStatus Queue

A single, system-wide status queue named
SpoolerStatus stores information about each
spooled printer in the cluster configuration.
Each printer spooler periodically updates the
entry for each printer under its control and for
special events. The status information contained
in the SpoolerStatus queue is accessed when the
user invokes the Spooler utility. The format of
the status queue is shown below.

If an application system is reading through a
status queue with the ReadNextQueueEntry
operation, the only active (valid) printer status
entries are those that are marked. An
application system can determine which entries
are marked by looking at the serverUserNum field
of the returned Queue Status Block. If the
serverUserNum field is OFFFFFh, the entry is not
an active printer.

Printer Spooler Status Queue Entry Format

Size
Offset Field (bytes) _Description

0 sbPrinterName

13 sbCurrentPage

26 reserved

51 sbQueueName

102 bChannelNum

103 sbCong figFile

13 The name of the printer

13 Character sequence that
defines a page number in
a WRITEone pr int file.

25

51 The name of the queue
the printer is serving

1 The channel used, where

0 (30h) means parallel
port,

A (4lh) means serial
channel A, and

B (42h) means serial
channel B

79 The name of the printer
configuration file.

15-17

15-18

Off set Field

182 fAtMaster

183 bStatus

184 sbSpooledFile

263 sbWheelName

276 sbFormName

289 sbPauseMessage

Size
(bytes) Description

1 TRUE if server is
located at the Master of
a cluster.

1 The printer status,
where status means:

0 idle
1 paused
2 printing
3 offline
4 down

79 The name of the
currently printing
file.

13 The name of the current
print wheel. If the
length is zero, the
standard print wheel is
used.

13 The name of the current
forms. If the length is
zero, then the standard
forms are being used.

61 The pause message to be
displayed.

3 50 fNeedWheelChange 1 TRUE if a different
print wheel is needed.

351 fNeedFormsChange 1 TRUE if a different form
is needed.

352 fShowPauseMsg

353 wsNum

3 55 reserved

357 sbDocName

436 sbUserName

467 timeStarted

1 TRUE if the pause
message should be
displayed.

2 The workstation number.

79 The name of the document
being printed.

31 The client's user name.

4 The date/time that the
print was started.

Printer Spooler Escape Sequences

Printer spooler escape sequences are special
character sequences embedded in text files to be
printed by the printer spooler. They either
cause an intentional manual intervention
condition when processed by the printer spooler
or override the page count generated by the
printer spooler. The format for a printer
spooler escape sequence is:

OFFh, type, cbText, text

where

type

cbText

text

indentifies the reason a
manual intervention is
required:

1 = forms change,
2 = print wheel change,
3 = generic printer pause, or
4 = page number overwrite.

is the count of
following text.
is 12 for types
60 for type 3.

bytes
The

1 and

in the
maximum
2, and

is a character string that
identifies the desired form or
print wheel, the reason for
the generic printer pause, or
the page number.

15-19

OPERATIONS: SERVICES

Queue management operations are categorized by
user group.

Client Process Group

AddQueueEntry
adds an entry to the specified queue
entry file for processing by the
appropriate queue server.

ReadKeyedQueueEntry
obtains the first queue entry in the
specified queue entry file with up
to two key fields equal to the
values specified, reads it into a
buffer, and returns the Queue Status
Block.

ReadNextQueueEntry
reads an entry from the specified
queue entry file into a buffer and
returns the queue entry handle of
the next queue entry.

RemoveKeyedQueueEntry
locates an unmarked entry
specified queue entry file
to two key fields equal
values specified and removes
the queue entry file.

in the
with up
to the
it from

Server Process Group

15-20

Establi shQueueServe r
establishes that a
wishes to service
queue entry file.

MarkKeyedQueueEntry

server process
the specified

locates the first unmarked entry in
the specified queue entry file with
up to two key iields equal to the
values specified, marks it into a
buffer, and returns a queue entry
handle for use in a subsequent
RemoveMarkedQueueEntry operation.

MarkNextQueueEntry
reads the first unmarked entry in
the specified queue entry file into
a buffer, marks it as being in use,
and returns a queue entry handle.
Entries are marked in order of
priority.

RemoveMarkedQueueEntry
removes a previously marked entry
from the specified queue entry file.

RewriteMarkedQueueEntry
rewrites the specified marked queue
entry with a new queue entry.

TerminateQueueServer
process is no longer servicing the
specified queue entry file.

Unma rkQueueEntry
resets the specified queue entry as
unmarked (not in use).

15-21

AddQueueEntry

Description

The AddQueueEntry service is used by
process to add a queue entry to the
queue entry file for processing
appropriate queue server.

the client
specified

by the

Procedural Interface

15-22

AddQueueEntry (pbQueueName, cbQueueName,
fQueueifNoServer, priority,
queueType, pEntry, sEntry,
pDateTime, repeatTime): ErcType

where

pbQueueName
cbQueueName

describe a queue name corresponding
to a queue name specified in the
queue index file.

fQueue IfNoServer

priority

queue Type

pEntry
sEntry

is TRUE or FALSE.

If fQueueifNoServer is TRUE, the
queue manager adds the entry to the
specified queue entry file whether
or not serve rs a re active.
If fQueueifNoServer is FALSE, the
queue manager returns status code
908 ("Queue not served") when no
servers are active for the specified
queue entry file.

is the priority (0-9, with 0 the
highest) at which the entry is
placed in the queue entry file.

is the type of the queue (an integer
less than or equal to 255), which is
used in a consistency check. The
queue manager checks the type
against the type in the queue index
file.

describe the buffer
the type-specific
queue entry.

that
portion

contains
of the

pDateTime

repeatTime

Request Block

sDateTime

Offset

0
2
3
4
6
8

10

12

13

14

16

18
22

24
28

30
34

is a pointer to the 32-bit date/time
in B20 format (described in
"Time Management" section).
specifies the earliest time
queue entry is served. A 0
the entry is served before an
with a time specification.

the
It

the
means
entry

specifies the repeating time
interval in minutes (up to 65,335
minutes) at which the queue entry is
serviced. A 0 means no repetition
occurs. (For example, to repeat the
entry once a day, specify 1,440
minutes; to repeat the entry once
each week, specify 10,080 minutes.)

is al ways 4.

Size
Field (Bytes) Contents
----- ------- --------

sCntinfo 2 6
nReqPbCb 1 3
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 137

f Queue I fNoSe rve r 1

priority 1

queue Type 2

repeatTime 2

pbQueueName 4
cbQueueName 2

pEntry 4
sEntry 2

pDa teTime 4
sDateTime 2 4

15-23

EstablishQueueServer

Description

The EstablishOueueServer service is used by the
server process to notify the queue manager that
it wishes to service the specified queue entry
file. A server process should issue
EstablishOueueServer before any other operation
to the queue manager.

Procedural Interface

15-24

EstablishOueueServer (pbOueueName, cbOueueName,
queueType,
fUniqueServer): ErcType

where

pbOueueName
cbOueueName

queueType

f Unique Server

describe a queue name corresponding
to the queue name specified in the
queue index file.

is the type of the queue (an integer
less than or equal to 255), which is
used in a consistency check. The
queue manager checks the type
against the type in the queue index
file.

is TRUE or FALSE.

If fUniqueServer is TRUE, the
requesting process intends to become
the unique server of the specified
queue. If servers already exist,
the queue manager returns status
code 914 ("Queue already served").
If the operation succeeds, it
prevents other servers from being
established for that queue.

If fUniqueServer is FALSE, the
requesting process does not intend
to become the unique server of the
specified queue.

Request Block

Size
Off set Field (bytes) Contents

0 sCntinfo 2 4
2 nReqPbCb l l
3 nRespPbCb l 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 146

12 queue Type 2

14 fUniqueServer l

15 reserved l

16 pbQueueName 4
20 cbQueueName 2

MarkKeyedQueueEntry

Description

The MarkKeyedQueueEntry service is used by the
server process to obtain the first unmarked queue
entry with up to two key fields equal to the
values specified. MarkKeyedQueueEntry marks the
queue entry as being in use, reads it into a
buffer, and returns a queue entry handle by which
the queue entry is identified in a subsequent
RemoveMarkedQueueEntry operation.

The byte count of at least one key
cbKeyl or cbKey2) must be nonzero.
is nonzero, only that key field is
search. If both a re nonzero, both
the search.

f i e 1 d (e i the r
If only one
used in the
a re used in

Each nonzero key field must match a specified sb
string in the queue entry. In an sb string, the
first byte contains the byte count of the string
in binary.

15-25

Procedural Interface

MarkKeyedQueueEntry (pbQueueName,

15-26

where

pbQueueName
cbQueueName

pbKeyl
cbKeyl

oKeyl

pbKey2
cbKey2

oKey2

pEntryRet
sEntryRet

pStatusBlock
sStatusBlock

cbQueueName, pbKeyl, cbKeyl,
oKeyl, pbKey2, cbKey2,
oKey2, pEntryRet, sEntryRet,
pStatusBlock,
sStatusBlock): ErcType

describe a queue name corresponding
to a queue name specified in the
queue index file.

describe a key field to be compared
with an sb string located at an
offset oKeyl in the queue entry.

is the offset of the sb string key
field in the queue entry. The
offset starts from byte 40 (the
first byte of the type-specific
portion of the queue entry).

describe a second key field to be
compared with an sb string located
at an offset oKey2 in the queue
entry.

is the offset of the second sb
string key field in the queue entry.
The offset starts from byte 40 (the
first byte of the type-specific
portion of the queue entry).

describe the buffer into which the
queue entry is read.

describe the buffer into which the
status block for the queue entry is
returned.

Request Block

Size
Off set Field (Bytes) Contents
------ ----- ------- --------

0 sCntinfo 2 4
2 nReqPbCb 1 3
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 142

12 oKeyl 2
14 oKey2 2

16 pbOueueName 4
20 cbOueueName 2

22 pbKeyl 4
26 cbKeyl 2

28 pbKey2 4
32 cbKey2 2

34 pEntryRet 4
38 sEntryRet 2

40 pStatusBlock 4
44 sStatusBlock 2

15-27

MarkNextOueueEntry

Description

The MarkNextQueueEntry service is used by the
server process to read the first unmarked entry
from the specified queue entry file into a buffer
for processing. Entries are marked in order of
priority.

MarkNextQueueEntry marks the entry as being in
use and returns a queue entry handle by which the
entry is identified in a subsequent
RemoveMarkedQueueEntry operation.

Procedural Interface

15-28

MarkNextQueueEntry (pbQueueName, cbQueueName,
fReturnifNoEntries,
pEntryRet, sEntryRet,
pStatusBlock,
sStatusBlock): ErcType

where

pbQueueName
cbQueueName describe a queue name corresponding

to a queue name specified in the
queue index file.

fReturnifNoEntries

pEntryRet
sEntryRet

pStatusBlock
sStatusBlock

is TRUE or FALSE.

If fReturnifNoEntries is TRUE, the
queue manager returns status code
903 ("No entries available") unless
an unmarked entry is queued.

If fReturnifNoEntries is FALSE, the
queue manager responds to
MarkNextQueueEntry only when an
unmarked entry is queued.

describe the buffer into which the
queue entry is read.

describe the buffer into which the
status block for the queue entry is
returned.

Request Block

Size
Off set Field (Bytes) Contents
------ ----- ------- --------

0 sent Info 2 2
2 nReqPbCb 1 1
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 141

12 fReturnifNoEntries 1

13 reserved 1

14 pbOueueName 4
18 cbQueueName 2

20 pEntryRet 4
24 sEntryRet 2
26 pStatusBlock 4
30 sStatusBlock 2

15-29

Read Keyed Queue Entry

The ReadKeyedQueueEntry service is used by the
client process to obtain the first queue entry
with up to two key fields equal to the values
specified. ReadKeyedQueueEntry reads the entry
into a buffer and returns the Queue Status Block.

The byte count of at least one key field (either
cbKeyl or cbKey2) must be nonzero. If only one
is nonzero, only that key is used in the search.
If both are nonzero, both are used in the search.

Each nonzero key field must match a specified sb
string in the queue entry. In an sb string, the
first byte contains the byte count of the string
in binary.

Procedural Interface

15-30

ReadKeyedQueueEntry (pbQueueName,

where

pbQue ue Na me
cbQue ue Name

pbKeyl
cbKeyl

oKeyl

pbKey2
cbKey2

cbQueueName, pbKeyl, cbKeyl,
oKeyl, pbKey2, cbKey2,
oKey2, pEntryRet, sEntryRet,
pSta tusBlock,
sStatusBlock): ErcType

describe a queue name corresponding
to a queue name specified in the
queue index file.

describe a key field to be compared
with an sb string located at an
offset oKeyl in the queue entry.

is the offset of the sb string key
field in the queue entry. The
offset starts from byte 40 (the
first byte of the type-specific
portion of the queue entry).

describe a second key field to be
compared with an sb string located
at an offset oKey2 in the queue
entry.

Request Block

oKey2

pEntryRet
sEntryRet

pStatusBlock

is the offset of the second sb
string key field in the queue entry.
The offset starts from byte 40 (the
first byte of the type-specific
portion of the queue entry).

describe the buffer into which the
queue entry is read.

sStatusBlock describe the buffer into which the
status block for the queue entry is
returned.

Off set

0
2
3
4
6
8

10

12
14

16
20

22
26

28
32

34
38

40
44

Field

sCntinfo
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

oKeyl
oKey2

pbQue ue Na me
cbQueueName

pbKeyl
cbKeyl

pbKey2
cbKey2

pEntryRet
sEntryRet

pSta tusBlock
sStatusBlock

Size
(Bytes)

2
l
l
2
2
2
2

2
2

4
2

4
2

4
2

4
2

4
2

Contents

4
3
2

140

15-31

Read NextOueueEntry

Description
The ReadNextQueueEntry service is used by the
client process to obtain a list of queue
entries. ReadNextQueueEntry reads an entry from
the specified queue entry file into a buffer and
returns the Queue Status Block, which contains
the queue entry handle of the next entry in the
queue. The entry data returned begins with byte
40 (first byte of the type-specific portion} of
the first sector of the queue entry.

If another client process removes the next queue
entry before it is read, status code 904 ("Entry
deleted") is returned on any attempt to read that
entry.

Procedural Interface

15-32

ReadNextQueueEntry (pbQueueName, cbQueueName,
qeh, pEntryRet, sEntryRet,
pStatusBlock,
sStatusBlock): ErcType

where

pbQueueName
cbQueueName

qeh

pEntryRet
sEntryRet

pStatusBlock

describe a queue name corresponding
to a queue name specified in the
queue index file.

is the 32-bit queue entry handle
returned from a previous
MarkKeyedQueueEntry or
MarkNextQueueEntry operation. A 0
indicates the first entry in the
queue.

describe the buffer into which the
queue entry is read.

sStatusBlock describe the buffer into which the
status block for the queue entry is
returned.

Request Block

Size
Offset Field (Bytes) Contents
------ ----- ------- --------

0 sent Info 2 4
2 nReqPbCb 1 1
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 140

12 qeh 4

16 pbQueueName 4
20 cbQue ue Name 2

22 pEntryRet 4
26 sEntryRet 2

28 pStatusBlock 4
32 sStatusBlock 2

15-33

RemoveKeyedOueueEntry

Description

The RemoveKeyedQueueEntry service is used by the
client process to locate an unmarked entry in the
specified queue entry file with up to two key
fields equal to the values specified and to
remove the entry from the queue entry file.

The byte count of at least one key
cbKeyl or cbKey2) must be nonzero.
is nonzero, only that key field is
search. If both are nonzero, both
the search.

field (either
If only one
used in the
are used in

Each nonzero key field must match a specified sb
string in the queue entry. In an sb string, the
first byte contains the byte count of the string
in bi nary.

Procedural Interface

15-34

RemoveKeyedQueueEntry (pbQueueName, cbQueueName,
pbKeyl, cbKeyl, oKeyl,
pbKey2, cbKey2,

where

pbQueueName
cbQueueName

pbKeyl
cbKeyl

oKeyl

pbKey2
cbKey2

oKey2): E rcType

describe a queue name corresponding
to a queue name specified in the
queue index file.

describe a key field to be compared
with an sb string located at an
offset oKeyl in the queue entry.

is the off set of the sb string key
field in the queue entry. The
offset starts from byte 40 (the
first byte of the type-specific
portion of the queue entry).

describe a second key field to be
compared with an sb string located
at an offset oKey2 in the queue
entry.

oKey2

Request Block

Offset

0
2
3
4
6
8

10

12
14

16
20

22
26
28
32

is the offset of the second sb
string key field in the queue entry.
The offset starts from byte 40 (the
first byte of the type-specific
portion of the queue entry}.

Size
Field (Bytes) Contents
----- ------- --------
sCntinfo 2 4
nReqPbCb 1 3
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 138

oKeyl 2
oKey2 2

pbQueName 4
cbQueName 2

pbKeyl 4
cbKeyl 2
pbKey2 4
cbKey2 2

15-35

RemoveMarkedOueueEntry

Description

The RemoveMarkedQueueEntry service is used by the
server process to remove a previously marked
entry from the specified queue entry file. The
queue entry to be removed is identified by a
queue entry handle previously returned from a
MarkKeyedQueueEntry or MarkNextQueueEntry
opera ti on.

Procedural I nte rf ace

Request Block

15-36

RemoveMarkedQueueEntry (pbQueueName, cbQueueName,
qeh): E rcType

where

pbQueueName
cbQueueName

qeh

Off set

0
2
3
4
6
8

10

12

16
20

describe a queue name corresponding
to a queue name specified in the
queue index file.

is the 32-bit queue entry handle
returned from a previous
MarkKeyedQueueEntry or
MarkNextQueueEntry operation.

Field

sCntinfo
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

qeh

pbQue ue Na me
cbQueueName

Size
(Bytes)

2
1
1
2
2
2
2

4

4
2

Contents

4
1
0

143

RewriteMarkedOueueEntry

Description

The RewriteMarkedQueueEntry service is used by
the server process to rewrite the specified queue
entry with a new entry. RewriteMarkedQueueEntry
can be used to update a field contained in a
queue entry. The entry to be overwritten is
identified by a queue entry handle returned from
a previous MarkKeyedQueueEntry or
MarkNextQueueEntry operation.

Procedural Interface

RewriteMarkedQueueEntry (pbQueueName,
cbQueueName, qeh,
pEntry, sEntry): ErcType

where

pbQueueName
cbQueueName

qeh

pEntry
sEntry

describe a queue name corresponding
to a queue name specified in the
queue index file.

is the 32-bit queue entry handle
returned from a previous
MarkKeyedQueueEntry or
MarkNextQueueEntry operation.

describe the buffer into
type-specific portion of
entry i s read •

which the
the queue

15-37

Request Block

Size
Off set Field (Bytes) Contents
------ ----- ------- --------

0 sent Info 2 2
2 nReqPbCb 1 2
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 145

12 qeh 4

16 pbQue ue Na me 4
20 cbQueueName 2
22 pEntry 4
26 sEntry 2

15-38

TerminateOueueServer

Description

The TerminateOueueServer service is used by the
server process to notify the queue manager that
the server process is no 1 o nge r se rvi ci ng the
specified queue entry file. The server process
should use Termi nateOueueServer when it
terminates under normal circumstances.

Termi nateOueueServer unmarks
that were marked by the
process.

any queue
te rmi na ti ng

entries
server

Procedural Interface

Request Block

Termi nateOueueServer (pbOueueName,
cbOueueName): ErcType

where

pbOueueName

cbOueueName describe a queue name corresponding
to a queue name specified in the
queue index file.

Offset Field
------ -----

0 sCntinfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet

10 rqCode

12 pbOueueName
16 cbOueueName

Size
(Bytes)

2
l
l
2
2
2
2

4
2

Contents

0
l
0

147

15-39

UnmarkOueueEntry

Description

The UnmarkQueueEntry service is used by the
server process to reset the specified queue entry
as being unmarked {not in use). The queue entry
to be unmarked is identified by a queue entry
handle returned from a previous
Ma rkKeyedQueueEntry or Ma rkNextQueueEntry
operation.

Procedural Interface

Request Block

15-40

UnmarkQueueEntry {pbQueueName, cbQueueName,
qeh): E rcType

where

pbQueueName
cbQue ue Na me

qeh

Offset

0
2
3
4
6
8

10

12

16
20

describe a queue name corresponding
to a queue name specified in the
queue index file.

is the 32-bit queue entry handle
returned from a previous
MarkKeyedQueueEntry or
MarkNextQueueEntry operation.

Field

sCntinfo
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

qeh

pbQueueName
cbQueueName

Size
(Bytes)

2
1
1
2
2
2
2

4

4
2

Contents

4
1
0

144

OVERVIEW

SECTION 16
FILE ACCESS METHODS

The file management system provides access to
disk file data as randomly addressable 512-byte
sectors. Up to 127 sectors can be read or
written in a single request. Data is transferred
directly between disk and the buffer specified in
the read/write request (that is, it is not
buffered by the file system). Asynchronous
operation (concurrent input/output and
computation on behalf of the same process) is a
standard feature of the file management system.

Several file access methods (described in detail
elsewhere in this Manual) augment the
capabilities of the file management system. The
file access methods are object module procedures
that are located in the standard OS library and
linked to application systems as required. They
provide buffering and use the asynchronous
input/output capabilities of the file management
system to automatically overlap input/output and
computation.

In contrast to the file management system, which
organizes disk file data as unstructured 512-byte
sectors, the file access methods organize disk
file data as either:

o an unstructured sequence of bytes,

o a sequence of variable-length records, or

o a sequence of fixed-length records.

Whenever a file is organized as a sequence of
records, these records are both blocked (that is,
as many records as possible are packed in each
physical sector) and spanned (that is, logical
records are permitted to cross physical sector
boundaries).

Generally, a file that is an unstructured
sequence of bytes is created and subsequently
accessed with the Sequential Access Method. A
file that is a sequence of variable-length
records is created and accessed with the Record
Sequential Access Method. A file that is a
sequence of fixed-length records is created and
accessed with the Direct Access Method or the
Indexed Sequential Access Method.

16-1

Characteristics of the File Access Methods

16-2

The access methods and their general
characteristics are:

Sequential Access Metho~ (SAM) provides primarily
sequential, overlapped input and output.
(Overlapped means that although the application
system makes a call to a SAM operation and that
operation returns, input/output can continue
overlapped automatically with the computations of
the application system.) A SAM file is accessed
as an unstructured sequence of bytes. Files can
be opened for read, write (which replaces any
prior file content), and append. In addition to
pure sequential access, there are operations for
randomly seeking to a specified logical file
address.

Record Sequential Access Method (RSAM) provides
sequential, overlapped input and output. An RSAM
file is accessed as a sequence of fixed- or
variable-length records. Files can be opened for
read, write (which replaces any prior file
content), and append. In addition to pure
sequential access, there are operations for
scanning forward to the next well-formed record
following detection of a malformed record.

Direct Access Method (DAM) provides, random,
nonoverlappea- inputand output. (Nonoverlapped
means that a call to a DAM operation does not
return to the application system until all
associated input or output is complete.) A DAM
file is accessed as a sequence of numbered,
fixed-length records. Random access is by record
number; the implementation is such that reading
or writing records with sequential record numbers
provides good sequential performance. Files can
be opened for read or modify (permitting
selective modification of prior file content).

Indexed Sequential Acces~ Method (ISAM) provides
random and sequential, nonoverlapped input and
output. ISAM is a multikey, multiuser access
method. Each ISAM data set holds one type of
data record. All data records in a given ISAM
data set have the same size. The size of the
data records, the number of keys, and the type of

each key are specified when an ISAM data set is
created. An ISAM data set consists of two
files: an index file and a data store file.

Hybrid Patterns of Access

In the following sections, a file is often
referred to as a SAM file, meaning that access to
the file is primarily by means of the Sequential
Access Method. The terms RSAM file, DAM file, or
ISAM data store file are used similarly.

This usage, while convenient, is oversimpli­
fied: any file created with RSAM, DAM, or ISAM
can be physically viewed as unstructured and
accessed using SAM. Similarly, any file of
records created with DAM or ISAM can be
physically accessed using RSAM (that is, treating
fixed-length records as a special case of
variable-length records). Finally, an ISAM data
store file contains fixed-length records and
therefore can be accessed using DAM.

Although all these hybrid patterns of access are
possible, they are not all advisable. For
example, reading a DAM file with SAM fetches
control bytes along with the DAM record bytes~
interpreting these requires special knowledge.

As a second example, an ISAM data store file has
an associated index file that must be updated in
a complex way when the data store file is
modified. If the data store file is modified
using ISAM, this is done automatically. If the
data store file is updated otherwise, the
integrity of the ISAM data set can easily be
destroyed.

The hybrid patterns of access below are both
useful and safe:

o Use of RSAM to read, write, or append to a
DAM-created file. (However, if, following a
write or append to such a file, there are
records of different lengths, then the file
is subsequently accessible only with RSAM,
not with DAM.)

o Use of DAM to read or modify an RSAM-created
file in which all records have the same
length.

16-3

o Use of RSAM or DAM to read an ISAM-created
file as though it were an unkeyed DAM file,
that is, with the records accessed according
to their physical ordering.

Modifying and Reading Data Files

16-4

The Maintain File utility can modify and/or read
RSAM and DAM data files. Maintain File can:

o verify the file structure,

o remove malformed record,

o remove deleted records, and

o optionally write a log of the verification of
the file structure to a file. (The log
always appears on the video display.)

Maintain File is
Reorganize utility.
Reference Manual,
information.

also used with the
See the B 20 System

form 1148723 for

ISAM
ISAM
more

Maintain File is described in the B 20 System
Software Operation Guide, form 1148772.

CONCEPTS
RSAM and DAM files and ISAM data store files
contain standard record headers, record trailers,
and file headers.

Standard Record Header

The off sets described in Table 16-1 below are
relative to the beginning of a physical record.
A physical record consists of the record header,
the record data, and the record trailer stored in
contiguous bytes.

16-5

16-6

Table 16-1. Format of a Standard Record Header

Size
Offset Field (bytes) Description

O qURI 4 Universal Record
Identifier. lfa
of the physical
record.

4 sPhyRecord 2 Size of the phy­
sical record, in­
cluding the record
header and
trailer.

6 bCheck 1 Status byte that
has the following
meaning:

0

1

Record does not
logically exist.

Record previous­
ly existed but
was deleted.

2-15
Reserved.

16-255
Record logically
exists. bCheck
is set to 16 the
first time it is
written and is
incremented on
each subsequent
write. bCheck
recycles to 16
on overflow.

Standard Record Trailer

The off sets described in Table 16-2 below are
relative to the beginning of a physical record.
sRecord is the logical record size.

Table 16-2. Format of a Standard Record Trailer

Size
Offset Field (bytes) Description

sRecord+7 bDoubleCheck 1 Copy of
bCheck. If
bCheck and
bDoubleCheck
are not
equal, the
record is
malformed.

16-7

Standard File Header

16-8

The offsets described in Table 16-3 below are
relative to the beginning of the file. A
standard file header occupies an integral number
of sectors at the start of the file. The header
consists of information common to all standard
access methods, followed by information unique to
the particular access method. If no access­
method-dependent information is present, the
first physical record is located at the beginning
of the second file sector.

Table 16-3. Format of a Standard File Header

Size
Offset Field (bytes) Description

O recordHeader 7 Standard record
header with the
following con­
tents:

7 rgbSignature 2

9 bFileType 1

qURI 0
sPhyRecord 50
bCheck 16*

Standard file
header signature,
which is the ASCII
characters "am".

Indication of the
file type. The
type corresponds
to the last access
method that
modified the file.

Value File Ty:ee

2 RSAM
4 DAM
8 ISAM data

store
9 ISAM index

All other values
are reserved.

Table 16-3. Format of a Standard File Header (Cont.)

Size
Off set Field (bytes) Description

10

14

45

47

49

sPhyRecordMin 2
sPhyRecordMax 2

reserved 31

cbAmDependent 2

wChecksum 2

recordTrailer 1

The minimum and
maximum physical
record sizes (in­
cluding the 8-byte
standard record
header and trailer
in the file). DAM
can be used to ac­
cess a file only
if sPhyRecordMin
is equal to
sPhyRecordMax
which is equal to
or greater than 8.

Reserved.

Size of the
access-method­
dependent informa­
tion that follows
the standard file
header.

A word checksum of
the preceding 40
bytes. The stan­
dard record header
at the beginning
of the file header
is not included in
the checksum.

A standard record
trailer.

*This value changes as per the description in
Table 16-1 above.

16-9

OPERATIONS: PROCEDURES

GetStamFileHeader

Description

The File Access Methods provide the operation
listed below.

GetStamFileHeader
copies the file header of an RSAM, DAM,
or ISAM file into the specified area.

The GetStamFileHeader procedure copies the file
header of an RSAM, DAM, or ISAM file into the
specified area. The format of the standard file
header is described in the section of that name
above.

Procedural Interface

Request Block

16-10

GetStamFileHeader (pbFileSpec, cbFileSpec,
pbPassword, cbPassword,
pFileHeaderRet): ErcType

where

pbFileSpec
cbFileSpec

pbPassword
cbPassword

describe a character string
specifying the name of the file
whose header is to be read.

describe a character string
specifying the password authorizing
the requested file access.

pFileHeaderRet
describes the memory area into
which the file header is copied.
The memory area must be at least
512 bytes long and word aligned.

GetStamFileHeader is an object module procedure.
(

OVERVIEW

SECTION 17

SEQUENTIAL ACCESS METHOD

The Sequential Access Method (SAM) provides
device-independent access to real devices (such
as the video display, printer, files, and
keyboard) by emulating a conceptual, sequential,
cha racte r-orie nted device.

SAM augments the device-dependent OS operations
that a re specific to each kind of pe ri phe ral
device available on a workstation. These
operations maximize efficiency and provide access
to all features of the peripheral device
hardware. However, in many cases, maximum
efficiency and specialized features are not as
important as device independence.

Consider a program such as a compiler. It is
advantageous if a compiler can accept its source
data from either the keyboard or a file and can
direct its listing to the video display, a
printer, or a file.

Programs of this type characterize their input
and output as sequences of characters. Selection
at execution time of input/output devices can be
accomplished for such programs by allowing each
type of real device or file to emulate a
conceptual device that accepts or supplies any
number of characters, but only in sequence.

To retain a large degree of device independence
and yet allow access to a few of the most
important device-dependent features, extensions
to SAM provide device-dependent operations.

For some application systems, not all of the
devices supported by SAM are used. For example,
an application system can use SAM only to obtain
keyboard input and to display text on the video
display. It is possible to customize the
selection of device-dependent SAM object modules
that are linked with an application system. This
customization, SAMGen, is described in the 820
Systems Programmers and Assembler Reference
Manual (Part 1), form 1148699.

17-1

CONCEPTS

Byte Streams

The Sequential Access Method (SAM) uses real
devices such as the video display, printer,
files, and keyboard to emulate a conceptual,
sequential, character-oriented device known as a
byte stream.

A byte stream is a readable (input) or writable
(output) sequence of 8-bit bytes. An input byte
stream can be read until either the reader
chooses to stop reading or until it receives
status code 1 ("End of file"). An output byte
stream can be written until the writer chooses to
stop writing. (Of course the re a re physical
limitations: a file could expand to fill all
available disk storage, for example.)

A Byte Stream Work Area (BSWA) is a
memory work area for the exclusive use
procedures. Any number of byte streams
open concurrently, using separate BSWAs.

130-byte
of SAM
can be

SAM consists of object module procedures
contained in the standard OS library.

Using a Byte Stream

The first step in using a byte stream is to call
the OpenByteStream operation. The user supplies
the specification of the device/file, a password
if appropriate, the mode (indicating whether
input or output is desired), and the address of
the 130-byte BSWA. When calling other operations
such as ReadBsRecord, Wri teBsRecord, and
CloseByteStream, the user supplies the address of
the same BSWA.

Predefined Byte Streams for Video and Keyboard

17-2

There are two predefined and al ready opened Byte
Stream Work Areas (bsVid for video frame 0 and
bsKbd for the keyboard). These special BSWAs are
defined in SAM standard object modules. Because
these BSWAs are already opened, it is not
necessary (nor allowed) to specify them as
arguments to OpenByteStream or CloseByteStream.
In secondary application partitions, these
special BSWAs access System Output (SysOut) and
System Input (Sysin) facilities.

Device/File Specifications

The device/file specification in the
OpenByteStream operation is any of the following:

{node} [vol name] <di rname>filename
File identified by its full file

specification. Abbreviated
specifications are also allowed.
See the "File Management" section.

[Lpt]&[volname]<dirname>filename
Centronics-compatible
connected to the parallel
port. See the "Printer
Management" section.

printer
printer
Spooler

&[volname]<dirname>filename de-
scribes an optional configuration
file containing the printer
characteristics. A default
configuration file is used if none
is specified. See the Create
Configuration File Utility in the
B20 System Software Operation Guide,
form 1148772, for details about the
configuration file.

[Ptr] !}_&[vol name]<di rname>filename
RS-232C-compatible printer. n is A
or B to indicate the SIO
communications channel to which the
printer is connected. See the
"Printer Spooler Utilities Overview"
in the B20 System Software Operation
Guide, form 1148772.

&[volnarne]<dirnarne>filenarne de-
scribes an optional configuration
file containing the printer
characteristics. A default
configuration file is used if none
is specified. See the Create
Configuration File Utility in the
B20 System Software Operation Guide,
form 1148772, for details about the
configuration file.

{node} [queue name] report name
Spooled Printer.

The queue name is the name of the
scheduling queue associated with the

17-3

17-4

[Kbd]

printer spooler. [Spl]
default name of the first
printer.

is the
spooled

The report name is a text string of
up to 12 characters that is included
in the Spooler utility's status
di splay.

See the "Printer Spooler Utilities
Overview" in the B20 System Software
Operation Guide, form 1148772.

Keyboard. This also includes the
System Input (Sysin) facility used
for submit files and batch jobs.
See the "Keyboard Management"
section in this Manual.

[Comm] !}&[vol name] <di rname >f i 1 e name
Communications Channel !} (A or B) of
the SIO communications controller.

&[volname]<dirname>filename de­
scribes an optional configuration
file containing the communications
characteristics. A default
configuration file is used if none
is specified. See the Create
Configuration File Utility in the
820 System Software Operation Guide,
form 1148772, for details about the
configuration file.

[X25ln&[volname]<dirname>filename

[Nul]

[Vid]

X.25 virtual circuit. n
network identification

is a
which

currently must be zero.

&[volname]<dirname>filename de-
scribes an optional configuration
file containing the circuit
characteristics.

Null device. Input operations
always return status code 1 ("End of
file"). Output operations discard
all output but return status code 0
("OK").

Video frame O. The frame must
established in advance using
Video Display Management or the

be
the
B20

Customizing SAM

Executive. (See the "Video Display
Management" section.) In secondary
appli ca ti on partitions, [Vid] refers
to the System Output (SysOut)
facility.

[Vid] n Video frame n.

SAM provides device-independent access to a
variety of devices. The code that implements SAM
is divided into a device-independent portion and
several device-dependent portions, one for each
kind of device that is supported.

The default SAM supports these devices:

disk,

parallel printer,

spooled printer,

keyboard,

null, and

video display.

For further flexibility, SAM can be customized by
a SAM generation (SAMGen) that is similar to a
system build. This allows:

reduction of the
application system
device support,

memory needed
by eliminating

by an
unneeded

inclusion of support for communications and
serial (RS-232C) printers, and

inclusion of user-written device-specific SAM
object modules.

See the B20 System Programmers and Assembler
Reference Manual (Part 1), form 1148699 for
information on SAMGen.

File Byte Streams

A file byte stream is a byte stream that
file on disk. The standard operations of
augmented by two operations that allow
access to files: GetBsLfa and SetBsLfa.

uses a
SAM are

random
These

17-5

device-dependent operations are
for file byte streams and return
("Not implemented") if attempted
streams.

only available
status code 7
on other byte

Printer Byte Streams

Printing Modes

17-6

A printer byte stream is a byte stream that
performs direct printing. Direct printing
transfers text directly from application system
memory to the specified parallel or serial
printer interface of the workstation on which the
application system is executing. A printer byte
stream cannot be used to access a printer
assigned to the printer spooler.

The selected configuration file determines the
printer characteristics. (See the Create
Configuration File utility in the B20 System
Software Operation Guide, form 1148772.) For
example, the configuration file controls whether
a printer byte stream suspends execution of the
client process until the workstation operator
corrects a condition requiring manual
intervention or reports it to the calling
process.

Normally printer byte streams change tab and end­
of-li ne characters to the form expected by the
printer. For example, 820 RETURNS (code OAh) can
be transformed to carriage return/linefeed
combinations for some printers, or just to
carriage returns (code ODh) or linefeeds (code
OAh) for others. Tab characters can be
transformed to spaces for printers without
mechanical tabs. These transformations are
controlled by the selected configuration file.

Any of three printing modes can be specified with
the SetimageMode operation: normal, image, or
binary. SetimageMode sets the printing mode any
time following the opening of the printer byte
stream. This differs from the effect of
SetimageMode when used with spooler byte streams
(see below).

For compatibility between spooled and direct
printing, SetimageMode should be used before the
first Wri teBsRecord or Wri teByte operation.

Normal mode converts
converts end-of-line
dependent codes.

tabs into
characters

spaces and
to device-

Image mode
conversion.

and binary mode perform no code

Binary mode does not print the banner page, send
any extra code not in the file to the printer,
nor does it recognize the escape sequences.

Spooler Byte Streams

Printing Modes

See the "Printer Spooler Utilities Overview" in
the B20 System Software Operation Guide, form
1148772 before using a spooler byte stream and
for information on printer spooler escape
segue nces.

A spooler byte stream automatically creates a
uniquely named disk file for temporary text
storage. It then transfers the text to the disk
file and expands the disk file as necessary.
When the spooler byte stream is closed, a request
is queued by the printer spooler to the queue
manager to print the disk file and delete it
after it is printed. This is spooled printing.

Normally, spooler byte streams change tab and
end-of-line characters to the form expected by
the printer. For example, B20 RETURNS (code 0Ah)
can be transformed to carriage return/linefeed
combinations for some printers, or just to
carriage returns (code ODh) or linefeeds (code
OAh) for others. Tab characters can be
transformed to spaces for printers without
mechanical tabs. These transformations are
controlled by the selected configuration file.
(See the Create Configuration File utility in the
B20 System Software Operation Guide, form
1148772.)

Any of three printing modes can be set with the
SetimageMode operation: normal, image, or binary.
SetimageMode sets the printing mode only if it is
called immediately following the opening of the
spooler byte stream. This differs from the
effect of SetimageMode when used with printer
byte streams (see above).

For compatibility between spooled and direct
printing, SetimageMode should be used before the
first Wri teBsRecord or Wri teByte operation.

17-7

Normal mode prints the banner page between files,
converts tabs into spaces, converts end-of-line
characters to devi ce-depe nde nt codes, and
recognizes the escape sequences for manual
intervention. (See the "Printer Spooler
Utilities Overview" in the 820 System Software
Operation Guide, form 1148772 for information on
banner pages.)

Image mode prints the banner page between files
and recognizes the escape sequences, but pe rf orrns
no code conversion.

Bi nary mode does not print the banner, send any
extra code not in the file to the printer, nor
does it recognize the escape sequences.

Keyboard Byte Streams

A keyboard byte stream is a byte stream that uses
the keyboard. The function provided is
equivalent to the use of the ReadKbd operation in
character mode. (See the "Keyboard Management"
section.) The keyboard byte stream does not
support unencoded keyboard mode.

To support device-independence, keyboard byte
streams return status code 1 ("End of file")
when the FINISH (ASCII value 7) key is pressed,
and status code 4 ("Operator intervention") when
the CANCEL (ASCII value 4) key is pressed.

For applications executing under control of the
batch manager in secondary application
partitions, keyboard input is received from a
System Input (Sysin) facility.

See the "Keyboard Ma nagerne nt" sec ti on for
information on the submit facility and submit
file escape sequences.

Communications Byte Streams

17-8

A communications byte stream is a byte stream
that uses a communications channel.
Communications byte streams provide support for
the two communications channels of the standard
SIO communications controller. Operation is in
asynchronous full-duplex mode without explicit
modern control. Unlike other byte streams,
communications byte streams permit both input and
output to be directed to the same open byte
stream (that is, the same BSWA). Only one byte

stream can be opened for each communications
channel of the SIO.

The selected configuration file determines the
communications characteristics. (See the Create
Configuration File utility in the B20 System
Software Operation Guide, form 1148772.)

Normally, communications byte streams strip null
(OOh) and delete (7Fh) characters from the stream
of received data characters. Image mode (set
with the SetimageMode operation) specifies that
communications byte streams pass all incoming
characters to the client process exactly as
received.

X.25 Byte Streams

An X.25 byte stream is a byte stream that enables
data transmission via the X. 25 Network Gateway.

Each open X.25 byte stream corresponds to a
virtual circuit that is initiated when the byte
stream is opened, and cleared when the byte
stream is closed. Setting up and clearing of the
virtual circuit is controlled through the use of
a configuration file.

Video Byte Streams

A video byte stream is a byte stream that uses
the video display. The standard operations of
SAM are augmented by:

Special interpretation of certain characters.

Multibyte escape sequences. The multibyte
escape sequences (beginning with the
character OFFh) can be used to control the
special video capabilities of the system
workstations.

One devi ce-depe nde nt opera ti on. The
QueryVidBs operation returns information
about video byte streams. (See the
description of that operation below.)

For applications executing under control of the
batch manager in secondary application
partitions, video output is redirected to a
System Output (SysOut) facility.

See the "Video Management" section
information on other ways to control the
subsystem.

for
video

17-9

Special Characters in Video Byte Streams

17-10

The characters specially interpreted by video
byte streams are described in Table 17-1 below.
Note that a multibyte escape sequence (see
"Miscellaneous Functions" below) is available
that disables all these special interpretations
except OFFh.

Table 17-1. Interpretation of Special Characters

by Video Byte Streams

Hexa­
decimal

Value ~

Olh up arrow

07h CANCEL

08h BACKSPACE

09h TAB

OAh RETURN

OBh down arrow

OCh NEXT PAGE

Video Byte Stream
Interpretation

Move the cursor up one
line. If the cursor is
in the top line of the
frame, reposition it to
the bottom line.

Activate audio alarm for
one-half second.

Backspace one character
(with wraparound) and
blank that character.

Tab to next multiple of
eight columns. For ex­
ample, if the cursor is
in columns 0-7, it moves
to column 8; if it is in
columns 8-15, it moves to
column 16, etc.

Move to first column of
next line; scroll if nec­
essary.

Move the cursor down one
line. If the cursor is
in the bottom line of the
frame, reposition it to
the top line.

Blank the frame and posi­
tion the cursor in its
upper left corner.

Table 17-1. Interpretation of Special Characters

by Video Byte Streams (Cont.)

Hexa­
decimal

Value ~

ODh BOUND

OEh left arrow

12h right arrow

OFFh CODE-DELETE

Multibyte Escape Sequences

Video Byte Stream
Interpretation

Ignored.

Move the cursor left one
character position. If
the cursor is in the
first column of the
frame, reposition it to
the last column.

Move the cursor right one
character position. If
the cursor is in the last
column of the frame, re­
position it to the first
column.

Begin multibyte escape
sequence.

Multibyte escape sequences can:

control screen attributes,

control character attributes,

control scrolling and cursor positioning,

dynamically redirect a video byte stream,

automatically pause between full frames of
text, and

perform various other miscellaneous
functions.

(Note that where the escape sequences include
alphabetic characters, upper- and lowercase are
equivalent.)

17-11

17-12

Controlling Screen Attributes. Screen attributes
can be controlled with these four multibyte
escape sequences. Each of the 3-byte sequences
below begins with the escape byte OFFh and
continues with a pair of characters represented
by the specified 8-bit ASCII character codes.

Sequence

OFFh, I H I , I NI

OFFh, I HI , I F I

OFFh, I RI , IN I

OFFh, IR I , I F I

Effect

Turn on the screen half­
br ight attribute.

Turn off the screen half­
br ight attribute.

Turn on the screen reverse
video attribute.

Turn off the screen reverse
video attribute.

Controlling Character Attributes. Character
attributes can be controlled with these multibyte
escape sequences.

Sequence

OFFh, 'A' , mode

Mode

I A I

I BI
I c I
ID I

IE I
IF I
'G'
IHI
I I I

'J'
I KI

IL I

'MI
'N'
'O'
Ip I

Blink

no
no
no
no
no
no
no
no

yes
yes
yes
yes
yes
yes
yes
yes

Effect

Set the attribute for sub­
sequent characters sent to
the frame according to mode,
where mode is a single ASCII
character defined as fol­
lows:

Reverse

no
no
no
no

yes
yes
yes
yes

no
no
no
no

yes
yes
yes
yes

Underline

no
no

yes
yes

no
no

yes
yes

no
no

yes
yes

no
no

yes
yes

Half-bright

no
yes

no
yes

no
yes

no
yes

no
yes

no
yes

no
yes

no
yes

Sequence

OFFh, 'A I , ' z '
Effect

Enable a mode where writing
a character to a character
position does not change the
character attributes of that
character position.

Controlling Scrolling and Cursor Positioning.
Characters are normally written to the frame
sequentially, with the cursor advancing one
character position at a time, from left to right
and top to bottom. A cursor is normally
displayed at the character position where the
next character will be displayed. Text is
automatically scrolled each time a character is
written to the lower right corner of a frame.
When such a scroll occurs, the entire contents of
the frame scroll up one line, and the contents of
the previous top line of the frame disappear.

The following escape sequences directly control
both scrolling and cursor positioning.

Sequence

OFFh, 'C' , .!_, y

Effect

Position the cursor at
column x of line y
where x and y are
single bytes contain­
ing (in binary) the
column and line num­
bers. A value of OFFh
for .!. or y specifies,
respectively, the last
column or line of the
frame.

OFFh, 'S', !_, .!_, _£, 'D' Scroll down a portion
of the frame. The
portion begins at line
f (irst) and extends
down to, but not in­
cluding, line 1 (ast).
It is scrolled down by
c lines and the top c
lines of the scrolled
area are filled with
the blank character
recorded in the bSpace
field of the Video
Control Block. f, 1,
and c are single bytes

17-13

17-14

Sequence

OFFh, Is I f i_, l_, ~, I u I

OFFh, 'V', 'N'

OFFh, 'V', IF I

Effect

containing binary num­
bers. A value of OFFh
for f or 1 specifies
an imaginary line just
below the bottom of
the frame.

Scroll up a portion of
the frame.

Make the cursor vis-
ible.

Make the cursor invis-
ible.

Dynamically Redirecting a Video Byte Stream.
When a video byte stream is opened, it is
designated as directed to one of the frames.
However, it is possible to dynamically redirect a
video byte stream.

Sequence

OFFh, Ix I , l

Effect

Redirect this video byte
stream to frame i where i is
a single byte containing-(in
binary) the number of the
required frame.

An independent cursor posit ion is recorded for
each frame. The position within frame i is
restored automatically when a video byte stream
is redirected to frame i.

Automatically Pausing Between Full Frames of
Text. Automatic pausing between full frames of
text can be controlled through multibyte escape
sequences. When this pause facility is enabled,
and further output to the frame would cause text
to be scrolled off the top of the frame, the
message:

Press NEXT PAGE to continue

is displayed on the last line of the frame. At
this point, if the user presses NEXT PAGE, output
continues for a no the r f ul 1 frame of text. If the
user presses CANCEL, status code 4 ("Operator
intervention") is returned to the calling
process. If the user presses FINISH, status code

1 ("End of file") is returned to the calling
process. If the user presses any other key, the
audio alarm is momentarily activated.

Since the automatic pause facility reads
characters from the keyboard (using the
ReadKbdDirect operation; see the "Keyboard
Management" section), there is a potential for
interaction with the client process's use of the
keyboard. A single process that uses a keyboard
byte stream and one or more video byte s-treams
will operate correctly.

A more complex environment may require the use of
application-specific logic to control pauses in
scrolling. Contraindications to automatic
pausing are:

use of the unencoded keyboard mode,

keyboard input performed by
process than the one using
streams, and

a different
video byte

keyboard input initiated by the use of the
Request primitive and not immediately
followed by the Wait primitive.

Sequence Effect

OFFh, Ip I , IN I Turn on the pause facility.

OFFh, Ip I , IF I Turn off the pause facility.

Miscellaneous Functions. The following multibyte
escape sequences perform the specified
miscellaneous functions.

Sequence

OFFh, IL I , IN I

Effect

Enable literal mode,
with special character
interpretation sup­
pressed (except for the
escape character OFFh).
(See Table 17-1 above.)

17-15

17-16

Sequence

OFFh, I L I ' I FI

OFFh' IE I ' IL I

OFFh' IE ' ' I F I

OFFh, 'F' , char, ..!_, y,
w, E.

OFFh, ' I ' , led, 'N'

Effect

For example, in literal
mode, the character
code 08h displays a
visible backspace sym­
bol rather than per­
forming the backspace
function.

Disable literal mode.

Erase to the end of the
current line of the
frame. That is, set
the characters to the
blank character re­
corded in the bSpace
field of the Video
Control Block and turn
off all attributes.

Erase to the end of the
current frame.

Fill an entire rec­
tangle of the current
frame with a single
char act er given by the
single byte char. The
rectangle is specified
by four 1-byte binary
numbers: the column
and line of the upper
left corner (..!_ and y),
and the width and
height (w and h) of the
rectangle. A -value of
OFFh for ...!. or y spec­
ifies, respectively,
the last column or line
of the frame. A value
of OFFh for w or h
specifies, respective-=­
ly, the remaining width
or height of the frame.

Turn on an
cator on the
according to
lowing table:

LED indi­
keyboard

the fol-

Sequence

OFFh, ' I ' , led, 'F'

OFFh, OFFh

Effect

LED ~

I l' fl
I 2 I f 2
I 3 I f 3
I 8' f 8
I 91 f 9
I QI f 10
IT I OVERTYPE

Turn off an LED indi­
cator on the keyboard
according to the table
immediately above.

Display a single cross­
hatch bar-chart char­
acter. The cross-hatch
bar-chart character has
an 8-bit representation
of OFFh (255) and thus
cannot be displayed in
any other way.

17-17

OPERATIONS: PROCEDURES

Access

Input

17-18

Sequential Access Method operations are
categorized by function in Table 17-2 below.

Table 17-2. Sequential Access Method Operations by Function

Access

CloseByteStream
OpenByteStream

Input

ReadBsRecord
ReadByte
ReadBytes

Output

WriteBsRecord
WriteByte

CloseByteStream

OpenByteStream

ReadBsRecord

ReadByte

ReadBytes

Video

QueryVidBs

File

GetBsLf a
SetBsLf a

Other

CheckpointBs
PutBackByte
ReleaseByteStream
SetimageMode

closes the open byte stream.

opens a device/file as a byte
stream.

reads the specified count of
bytes from the open input byte
stream to the specified memory
area.

reads 1 byte from the open
input byte stream.

reads up to the specified count
of bytes from the open input
byte stream.

Output

WriteBsRecord

WriteByte

Video

QueryVidBs

File

GetBsLf a

SetBsLf a

Other

CheckpointBs

PutBackByte

ReleaseByteStream

SetimageMode

writes the specified count of
bytes to the open output byte
stream from the specified
memory area.

writes 1 byte to the open
output byte stream.

returns information about video
byte streams to the client
structure.

returns the logical file
address at which the next
input/output operation will
occur for the open byte stream.

sets the logical file address
at which the input/output
operation is to continue for
the open file byte stream.

checkpoints the open output
byte stream.

returns 1 byte to the open
input byte stream.

abnormally closes the
device/file associated with the
open output byte stream.

sets normal, image,, or bi nary
mode.

17--19

CheckpointBs

Description

The CheckpointBs procedure checkpoints the open
output byte stream identified by the memory
address of the Byte Stream Work Area.
CheckpointBs writes any partially full buffers
and waits for all write operations to complete
successfully before returning. The byte stream
remains open for subsequent output.

Procedural Interface

Request Block

17-20

CheckpointBs (pBSWA): ErcType

where

pBSWA is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

CheckpointBS is an object module procedure.

CloseByteStream

Description

The CloseByteStream procedure closes the open
byte stream identified by the memory address of
the Byte Stream Work Area. If the byte stream
was open for output, then CloseByteStream writes
any partially full buffers and waits for all
write operations to complete before returning.
After calling CloseByteStream, the process can
reuse the Byte Stream Work Area and buffer
area. If an error occurs during a
CloseByteStream operation, then the byte stream
is closed and the error status is returned.

Procedural Interface

Request Block

CloseByteStream (pBSWA) : ErcType

where

pBSWA is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

CloseByteStream is an object module procedure.

17-21

GetBslfa

Description

The GetBsLfa procedure returns the logical file
address at which the next input/output operation
will occur for the open byte stream identified by
the memory address of the Byte Stream Work Area.

GetBsLfa is only valid
otherwise it returns
i mpl eme nted") •

for file byte
status code

streams;
7 ("Not

Procedural Interface

Request Block

17-22

GetBsLfa (pBSWA, pLfaRet): ErcType

where

pBSWA

pLfaRet

is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

is the memory address of 4 bytes to
which the current logical file
address is to be returned.

GetBsLfa is an object module procedure.

OpenByteStream

Description

The OpenByteStream procedure opens a device/file
as a byte stream. If an output byte stream is
opened for a file that does not already exist,
then OpenByteStream creates it. The address of
the Byte Stream Work Area supplied to
OpenByteStream must be supplied to subsequent
operations such as ReadBytes, WriteBsRecord, and
CloseByteStream to identify this particular byte
stream.

Procedural Interface

OpenByteStream (pBSWA, pbFileSpec, cbFileSpec,
pbPassword, cbPassword, mode,
pBuf ferArea,

where

pBSWA

pbFileSpec
cbFileSpec

pbPassword
cbPassword

mode

sBufferArea): ErcType

is the memory address of a 130-byte
memory work area for use by SAM
procedures.

describe a device or file
specification. See the "Device/File
Specifications" section above.

describe a device, volume,
directory, or file password. The
Kbd, Vid, Comm, and Nul devices do
not require passwords.

is read, text, write, append, or
modify. This is indicated by 16-bit
values representing the ASCII
constants "mr", "mt", "mw", "ma", or
"mm". In these ASCII constants, the
first character (m) is the high­
order byte and the second character
(r, t , w, a , or m , respect i v e 1 y) i s
the low-order byte.

Mode read reads an existing file
from the beginning.

17-23

Request Block

17-24

pBuf ferArea

Mode text reads an existing file
from the beginning. Mode text is
identical to mode read except when
used to read Word Processor files.
The text of a Word Processor file is
followed by formatting information,
which is not usually desired. When
mode text is specified, status code
1 ("End of file") is returned after
the last byte of text is read (that
is, the formatting information is
ignored).

Mode write overwrites a previously
existing file of the specified name
(if any) and adjusts the length as
necessary. If a file of the
specified name does not exist, SAM
creates one.

Mode append appends output to the
end of an existing file (if any).
If a file of the specified name does
not exist, SAM creates one.

Mode modify is only applicable
communications byte streams
i ndi ca tes that both reading
writing are allowed on the
communications channel.

to
and
and

same

sBuf ferArea describe a memory area provided for
the exclusive use of SAM procedures.
To ensure device independence, this
area must be at least 1024 bytes and
word-aligned. Providing a larger
area improves the efficiency of file
operations •

OpenByteStream is an object module procedure.

PutBackByte

Description

The PutBackByte procedure returns 1 byte to the
open input byte stream identified by the memory
address of the Byte Stream Work Area. This can
be useful to a program such as a compiler that
may decide, after looking at a character, that it
should be processed by a different routine. Only
1 byte can be put back before reading again. An
attempt to put back more than 1 byte returns
status code 2305 ("T6o many put backs").

Procedural Interface

Request Block

PutBackByte (pBSWA, b): ErcType

~ere

pBSWA

b

is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

is the 8-bit byte to be put back.

PutBackByte is an object module procedure.

17-25

QueryVidBs

Description

The QueryVidBs procedure returns information
about video byte streams to the client structure.

Procedural Interface

Request Block

17-26

QueryVidBs (pBSWA, pBsVidStateRet): ErcType

where

pBSWA is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

pBsVidStateRet
is the memory address of a 16-byte
structure of the format:

Byte Field
Size

(bytes)

0 number of frame 1
1 number of lines in frame 1
2 number of columns in 1

frame ,_
3 current line number 1
4 current column number 1
5 cursor visible 1

(TRUE/FALSE)
6 pausing between full 1

frames of text enabled
(TRUE/FALSE)

7 current character attri- 1
bute mode, as specified
in controlling character
attributes escape sequence

8 literal mode (TRUE/FALSE) 1
9 reserved 7

QueryVidBs is an object module procedure.

ReadBsRecord

Description

The ReadBsRecord procedure reads the specified
count of bytes from the open input byte stream
identified by the memory address of the Byte
Stream Work Area to the specified memory area.
ReadBsRecord always reads the count of bytes
specified except when fewer than that count
remain in the file or when an input/output error
occurs. If fewer than the specified count of
bytes (or no bytes) remain in the file, status
code 1 ("End of file") is returned in conjunction
with the actual count of bytes read.

Procedural Interface

Request Block

ReadBsRecord (pBSWA, pBufferRet, sBufferMax,
psDa taRet): ErcType

where

pBSWA

pBuf ferRet

sBufferMax

psDa taRet

is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

is the memory address of the first
byte of the buffer to which the data
is to be read.

is the count of bytes to be read to
memory.

is the memory address of the word to
which the count of bytes
successfully read is returned.

ReadBsRecord is an object module procedure.

17-27

Read Byte

Description

The ReadByte procedure reads 1 byte from the open
input byte stream identified by the memory
address of the Byte Stream Work Area. If no
bytes remain in the file, status code 1 ("End of
file") is returned.

Procedural Interface

Request Block

17-28

ReadByte (pBSWA, pbRet): ErcType

where

pBSWA

pbRet

is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

is the memory address of the byte to
which the data is returned.

ReadByte is an object module procedure.

(Read Bytes

Description

The ReadBytes procedure reads up to the specified
count of bytes from the open input byte stream
identified by the memory address of the Byte
Stream Work Area. The count of bytes made
available by this operation is chosen to optimize
hardware performance and is not predictable. It
can range from 1 to the specified maximum.

ReadBytes returns the memory address of the data
bytes in its buffer rather than moving the data
to a specified location. This optimizes
performance, but imposes the restriction that the
calling process must completely process the data
before calling ReadBytes again. If this
restriction is inconvenient, the ReadBsRecord
operation should be used instead. If no bytes
remain in the file, status code 1 ("End of file")
is returned.

Procedural Interface

Request Block

ReadBytes (pBSWA, cbMax, ppbRet, pcbRet): ErcType

where

pBSWA

cbMax

ppbRet

pcbRet

is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

is the maximum count
data that the calling
accept.

of bytes of
process will

is the memory address of 4 bytes to
which the memory address of the data
is returned.

is the memory address of a word to
which the actual count of data bytes
made available is returned.

ReadBytes is an object module procedure.

17-29

ReleaseByteStream

Description

The ReleaseByteStream procedure abnormally closes
the device/file associated with the open output
byte stream identified by the memory address of
the Byte Stream Work Area. ReleaseByteStream,
unlike the CloseByteStream operation, does not
properly write remaining partially full buffers.
ReleaseByteStream should only be used when a
WriteBsRecord, WriteBytes, or CheckpointBs
operation fails due to a device error.

Procedural Interface

Request Block

17-30

ReleaseByteStream (pBSWA): ErcType

where

pBSWA is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

ReleaseByteStream is an object module procedure.

SetBslfa

Description

The SetBsLfa procedure sets the logical file
address at which the input/output operation is to
continue for the open file byte stream identified
by the memory address of the Byte Stream Work
Area. If each of the 4 bytes of the lfa contain
OFFh, then the lfa of the file byte stream is set
to the end-of-file 1 fa of the file. After
setting the lfa to the end-of-file, the GetBsLfa
operation can be called to determine the length
of the file.

SetBsLfa is only valid
otherwise, it returns
i mpl eme nted") •

for file byte
status code

streams;
7 ("Not

Procedural Interface

Request Block

SetBsLfa (pBSWA, lfa): ErcType

where

pBSWA

lfa

is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

is the byte offset,
beginning of the file, of
byte to be read/written.

from
the

the
next

SetBsLfa is an object module procedure.

17-31

SetlmageMode

Description

The SetimageMode procedure sets the normal,
image, or binary mode for printer, spooler, and
communications byte streams. SetimageMode, if
attempted on other byte streams, returns status
code 7 ("Not implemented").

Procedural Interface

Request Block

17-32

SetimageMode (pBSWA, mode): ErcType

where

pBSWA

mode

SetimageMode

is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

is a code as follows:

0 for normal mode
1 for image mode
2 for bi nary mode

is an object module procedure.

WriteBsRecord

Description

The WriteBsRecord procedure writes the specified
count of bytes to the open output byte stream
identified by the memory address of the Byte
Stream Work Area from the specified memory area.
Because output is buffered, there is no guarantee
of the time at which output is actually written.
Only the CheckpointBs and CloseByteStream
operations ensure that data was actually written.

Procedural Interface

Request Block

WriteBsRecord (pBSWA, pb, cb, pcbRet): ErcType

where

pBSWA

pb

cb

pcbRet

is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

is the memory address of the data to
be written.

is the count of bytes to write.

is the memory address of the word to
which the count of data bytes
successfully written is returned.

WriteBsRecord is an object module procedure.

17-33

Write Byte

Description

The WriteByte procedure writes 1 byte to the open
output byte stream identified by the memory
address of the Byte Stream Work Area. Because
output is buffered, there is no guarantee of the
time at which output is actually written. Only
the CheckpointBs and CloseByteStream operations
ensure that data was actually written.

Procedural Interface

Request Block

17-34

WriteByte {pBSWA, b): ErcType

where

pBSWA

b

is the memory address of the same
Byte Stream Work Area that was
supplied to OpenByteStream.

is the 8-bit byte to write.

WriteByte is an object module procedure.

SECTION 18
RECORD SEQUENTIAL ACCESS METHOD

OVERVIEW
The Record Sequential Access Method {RSAM)
provides efficient sequential access to fixed­
and variable-length records. Records are read
and written using sequential, overlapped input
and output. Records are both blocked {that is,
as many records as possible are packed in each
physical sector) and spanned {that is, logical
records are permitted to cross physical sector
boundaries). There is also an operation to scan
forward to the next well-formed record following
detection of a malformed record. Files can be
opened for read, write {which replaces any prior
file content), and append.

RSAM can be called directly from any of the B20
programming languages. RSAM is a library of
object module procedures.

18-1

CONCEPTS

RSAM Files and Records

Working Area

Buffer

18-2

The Record Sequential Access Method (RSAM)
provides efficient sequential access to fixed­
and variable-length records in a file. An RSAM
file is a sequence of these records.

A record can be as large as 65, 527 bytes or as
small as 1 byte. Records are packed into disk
sectors to provide efficient disk storage use.
RSAM packs records on write and unpacks them on
read. The structure of RSAM records, record
headers, record trailers, and of the initial
sectors of an RSAM file are explained in the
"File Access Methods" section.

If a sector cannot be read or a record is
malformed, the remainder of the file can be read
after the ScanToGoodRsRecord operation is used to
locate the next well-formed record.

RSAM uses a work area supplied by the application
system. A Record Sequential Work Area (RSWA) is
a 150-byte memory work area for the exclusive use
of the RSAM procedures. Any number of RSAM files
can be open simultaneously using separate RSWAs.

RSAM also uses a word-aligned buffer supplied by
the application system. The buffer must be at
least 1024 bytes long. The buffer size is not
constrained by the longest record to be read or
written, but performance is improved with the use
of large buffers.

RSAM uses overlapped output. Therefore data
written to an RSAM file can be retained in the
buffer and not actually written to the file until
sometime after the WriteRsRecord operation
returns. The CheckpointRsFile operation flushes
the buffers of an RSAM file, ensuring that all
data was written to disk.

OPERATIONS: PROCEDURES

The Record Sequential Access Method provides the
operations listed below.

CheckpointRsFile checkpoints the open output
RSAM file.

CloseRsFile closes an RSAM file (including
conclusion of all input/output
operations).

GetRsLfa returns the logical file
address at which the next
input/output operation will
occur.

OpenRsFile

ReadRsRecord

ReleaseRsFile

ScanToGoodRsRecord

WriteRsRecord

opens or creates an RSAM file.

reads the next record from an
RSAM file.

releases all resources
associated with an open RSAM
file (for example, open files
and exchanges).

scans forward to the next well­
formed record in an RSAM file.

writes a record to an RSAM
file.

18-3

CheckpointRsFile

Description

The CheckpointRsFile procedure checkpoints the
open output RSAM file identified by the memory
address of the Record Sequential Work Area.
CheckpointRsFile writes any partially full
buffers and waits for all write operations to
complete before returning. The RSAM file remains
open for subsequent output.

Procedural Interface

Request Block

18-4

CheckpointRsFile (pRSWA): ErcType

where

pRSWA is the memory address of the same
Record Sequential Work Area that was
supplied to OpenRsFile.

CheckpointRsFile is an object module procedure.

CloseRsFile

Description

The CloseRsFile procedure closes the open RSAM
file identified by the memory address of the
Record Sequential Work Area. If the RSAM file
was open for output, CloseRsFile writes any
partially full buffers and waits for all write
operations to complete before returning. After
calling ClosRsFile, the Record Sequential Work
Area and buffer area can be reused. If an error
occurs during a CloseRsFile operation, the RSAM
file is closed and the pertinent status code is
returned.

Procedural Interface

Request Block

CloseRsFile (pRSWA): ErcType

where

pRSWA is the memory address of the same
Record Sequential Work Area that was
supplied to OpenRsFile.

CloseRsFile is an object module procedure.

18-5

GetRslfa

Description

The GetRsLfa procedure returns the logical file
address at which the next input/output operation
will occur for the open RSAM file identified by
the memory address of the Record Sequential Work
Area.

Procedural Interface

Request Block

18-6

GetRsLfa (pRSWA, pLfaRet): ErcType

where

pRSWA

pLf aRet

is the memory address of the same
Record Sequential Work Area that was
supplied to OpenRsFile.

is the memory address of 4 bytes to
which the current logical file
address is to be returned.

GetRsLfa is an object module procedure.

OpenRsfile

Description

The OpenRsFile procedure opens an RSAM file in
read, write, or append mode. For write and
append modes, if the file does not exist, it is
created. The address of the Record Sequential
Work Area supplied to OpenRsFile must be supplied
to subsequent RSAM operations.

Procedural Interface

OpenRsFile {pRSWARet, pbFilespec, cbFilespec,
pbPassword, cbPassword, mode,
pBufferArea, sBufferArea): ErcType

pRSWARet

pbFilespec
cbFilespec

pbPassword
cbPassword

mode

is the memory address of a
memory work area for use
Record Sequential Access
procedures.

150-byte
by the
Method

describe a character string
specifying the name of the file to
be opened.

describe a character string
specifying a password authorizing
the requested file access.

is read, write, or append. This is
indicated by 16-bit values
representing the ASCII constants
"mr" (mode read), "mw" (mode write),
or "ma" (mode append) • In these
ASCII constants, the first character
(m) is the high-order byte and the
second character (r, w, or a,
respectively) is the low-order
byte.

Mode read reads an existing file
from the beginning.

Mode write overwrites a previously
existing file of the specified name
(if any) and adjusts the length as
necessary. If a file of that name
does not exist, RSAM creates one.

18-7

Request Block

18-8

pBuf f erArea
sBuf ferArea

Mode append appends the records
written to the end of an existing
file (if any). If a file of the
specified name does not exist, RSAM
creates one.

describe a memory area provided for
the exclusive use of the RSAM
procedures. This area must be at
least 1024 bytes long and word­
al igned. Providing a larger area
improves the efficiency of RSAM
operations.

OpenRsFile is an object module procedure.

Read Rs Record

Description

The ReadRsRecord procedure reads the next record
from the open RSAM file identified by the memory
address of the Record Sequential Work Area.

Procedural Interface

Request Block

ReadRsRecord (pRSWA, pRecordRet, sRecordMax,
pcbRet) : ErcType

where

pRSWA

pRecordRet
sRecordMax

pcbRet

is the memory address of the same
Record Sequential Work Area that was
supplied to OpenRsFile.

describe the memory area to which
the record is to be read.

is the memory address of the word to
which the number of bytes read is
returned. If the record fits in the
supplied memory area, pcbRet is the
length of the record. If the record
does not fit in the supplied memory
area, pcbRet is sRecordMax and
status code 3606 ("Record too
large") is returned.

ReadRsRecord is an object module procedure.

18-9

Release Rs File

Description

The ReleaseRsFile procedure abnormally closes the
file associated with the open output RSAM file
identified by the memory address of the Record
Sequential Work Ar~a. ReleaseRsFile, unlike the
CloseRsFile operation, does not properly write
remaining partially full buffers. ReleaseRsFile
should only be used when a Wri teRsRecord of
CheckpointRsFile operation fails because of a
device error.

Procedural Interface

Request Block

18-10

ReleaseRsFile (pRSWA) : ErcType

where

pRSWA is the memory address of the same
Record Sequential Work Area that was
supplied to OpenRsFile.

ReleaseRsFile is an object module procedure.

ScanToGoodRsRecord

Description

The ScanToGoodRsRecord procedure is called after
an attempt is made to read a malformed record or
a disk error occurs while reading the open RSAM
file identified by the memory address of the
Record Sequential Work Area. ScanToGoodRsRecord
searches the sectors of the RSAM file until a
valid record header is found. The double-check
byte of the record found and the header of the
following record are then checked, and if they
are valid, the RSAM file is positioned to the
record found. If the RSAM file is also a Direct
Access Method (DAM) file, that is, a file of
fixed-length records, record headers are only
searched for at the positions where they can
occur. These positions are computed by simple
arithmetic involving the record length.

ScanToGoodRsRecord reads every sector in the area
scanned, so that sectors of the file that were
damaged are detected and skipped.

Procedural Interface

Request Block

ScanToGoodRsRecord {pRSWA, qbSkipMax,
pLfaScanStartRet,
pqbRet) : ErcType

where

pRSWA

qbSkipMax

is the memory address of the same
Record Sequential Work Area that was
supplied to OpenRsFile.

is a 32-bit unsigned integer
maximum number of bytes to
while scanning).

(the
skip

pLfaScanStartRet

pqbRet

is the memory address of a logical
file address to which the byte
off set in the RSAM file of the first
byte skipped is returned.

is the memory address of a 32-bi t
unsigned integer to which the number
of bytes skipped is returned.

ScanToGoodRsRecord is an object module procedure.

18-11

Write Rs Record

Description

The Wr i teRsRecord procedure writes a record to
the open RSAM file identified by the memory
address of the Record Sequential Work Area. The
RSAM file is automatically extended to
accommodate new records. Because output is
buffered, there is no guarantee of the time at
which output is actually written. Only the
CheckpointRsFile and CloseRsFile operations
ensure that data was actually written.

Procedural Interface

Request Block

18-12

WriteRsRecord (pRSWA, pRecord, sRecord): ErcType

where

pRSWA

pRecord
sRecord

is the memory address of the same
Record Sequential Work Area that was
supplied to OpenRsFile.

describe the memory area containing
the record to be written.

WriteRsRecord is an object module procedure.

OVERVIEW

SECTION 19

DIRECT ACCESS METHOD

The Direct Access Method {DAM) provides efficient
random access to fixed-length records. A record
is referred to in DAM by the record number within
a file.

DAM can be accessed in the COBOL language through
COBOL Relative I-0. DAM can also be called
directly from any of the B20 programming
languages. DAM is a library of object module
procedures.

In reading, writing, or deleting, DAM does simple
address calculations based on the record number
to find the required sectors of the DAM file.
DAM keeps a cache of recently referenced sectors
that are obtained without reference to the disk.
Sectors not in the cache are accessed with a
single disk access.

19-1

CONCEPTS

DAM Files, Records, and Record Fragments

Working Area

Buffer

19-2

The Direct Access Method (DAM) provides efficient
random access to records identified by record
number within a file. A record number specifies
the record position relative to the first record
in a file. The record number of the first record
in a file is 1.

A DAM file
records. The
each DAM file
first created.

is a sequence of fixed-length
length of a record is specific to
and is specified when the file is

A record can be as large as 63, 992 bytes or as
small as 0 bytes. Records are packed into disk
sectors to provide efficient disk storage use.
DAM packs records on write and unpacks them on
read. A packed record contains eight bytes of
header and trailer in addition to the stored
data.

A record fragment is a contiguous area of memory
within a record. A record fragment is specified
using an offset from the beginning of the record
and a byte count. The record fragment must be
contained within the record.

DAM uses a work area supplied by the application
system. A Direct Access Work Area (DAWA) is a
64-byte memory work area for the exclusive use of
the DAM procedures. Any number of DAM files can
be open simultaneously using separate DAWAs.

DAM also uses a word-aligned buffer supplied by
the application system. The buffer size is
specified by the application system, subject only
to the constraint that it be a multiple of 512
greater than or equal to the record size plus
519. This constraint can be relaxed in two
cases. First, if 512 is a multiple of the record
size plus eight, the minimal size is simply
512. Second, if the record size plus eight is a
multiple of 512, the minimal size is the record
size plus eight.

Buffer Size and Sequential Access

DAM reads and writes the buffer by using a single
request to the file management system. This
typically requires only a single disk access.
Whenever the disk is read, the entire buffer is
filled. If the buffer size is chosen to be
larger than the record size (by at least a factor
of two), the buffer acts as a look-ahead cache:
if sequentially numbered records are requested,
DAM typically finds them in the buffer and does
not access the disk. In this way, if the
application system makes a suitable choice of
buffer size, the Direct Access Method can provide
efficient, record sequential access.

Buffer Management Modes: Write-Through and Write-Behind

DAM provides two modes of buffer management:
write-through and write-behind. The mode is
initially set to write-through when a DAM file is
opened. The mode can be changed using the
SetDaBufferMode operation.

In the write-through mode, DAM immediately writes
the changed sectors of the buffer to disk
whenever a record is written or deleted. DAM
guarantees that the file content on disk is
accurate at the completion of a modify operation.

In the write-behind mode, DAM writes changed
sectors of the buffer to disk only when new
sectors are brought into the buffer, the DAM file
is closed, or the mode is changed to write­
through. Write-behind mode provides better
performance when DAM is used to modify records in
sequential order.

19-3

OPERATIONS: PROCEDURES

Access

Input

Output

19-4

Direct Access Method operations are categoried by
function in Table 19-1 below.

Table 19-1. Direct Access Method Operations by Function

Access

CloseDaFile
OpenDaFile

Inquiry

Input

ReadDaFragment
ReadDaRecord

Output

QueryDaLastRecord
QueryDaRecordStatus

DeleteDaRecord
WriteDaFragment
WriteDaRecord

Other

SetDaBuf ferMode
TruncateDaFile

CloseDaFile

OpenDaFile

ReadDaFragment

ReadDaRecord

DeleteDaRecord

WriteDaFragment

WriteDaRecord

closes a DAM file.

opens or creates a DAM file.

read a record fragment from an
open DAM file.

reads a record from a DAM file.

deletes a record from a DAM
file.

write a record fragment to an
open DAM file.

writes a record to a DAM file.

Inquiry

Other

QueryDaLastRecord
copies to the specified area
the number of the last record
in an open DAM file.

QueryDaRecordStatus

SetDaBuf f erMode

TruncateDaFile

copies to the specified area
the status of a record in an
open DAM file.

sets the buffer management mode
to write-through or write­
behind.

truncates an open DAM file
(that is, it removes all
records beyond a specified
point) •

19-5

CloseDaFile

Description

The CloseDaFile procedure closes the open DAM
file identified by the memory address of the
Direct Access Work Area. After calling
CloseDaFile, the application system can reuse the
Direct Access Work Area and the buffer area.

Procedural Interface

Request Block

19-6

CloseDaFile (pDAWA) : ErcType

where

pDAWA is the memory address of
Direct Access Work Area
supplied to OpenDaFile.

the same
that was

CloseDaFile is an object module procedure.

DeleteDaRecord

Description

The DeleteDaRecord procedure deletes a record
from the open DAM file identified by the memory
address of the Direct Access Work Area. The
deleted record is specified by the record
number. Once a record is deleted, it can no
longer be read.

Procedural Interface

Request Block

DeleteDaRecord (pDAWA, qiRecord): ErcType

where

pDAWA

qiRecord

is the memory address of
Direct Access Work Area
supplied to OpenDaFile.

the same
that was

is a 32-bit unsigned integer
specifying the number of the record
to be deleted.

DeleteDaRecord is an object module procedure.

19-7

OpenDaFile

Description

The OpenDaFile procedure opens a DAM file in
either read (shared) or modify (exclusive)
mode. If the file does not exist, it is
created. The address of the Direct Access Work
Area supplied to OpenDaFile must be supplied to
subsequent DAM operations.

Access to a DAM file is most efficient if its
sectors are physically contiguous. This
contiguity can be increased by preallocating the
file. To preallocate the file, follow the call
to OpenDaFile that creates the file with a call
to WriteDaRecord. This call to WriteDaRecord
should specify a value of qiRecord large enough
to preallocate the desired file length. This
"end record" can then be deleted.

Procedural Interface

19-8

OpenDaFile (pDAWARet, pbFilespec, cbFilespec,
pbPassword, cbPassword, mode,
pBuffer, sBuffer, sRecord): ErcType

where

pDAWARet

pbFilespec
cbFilespec

pbPassword
cbPassword

mode

is the memory address of a 64-byte
memory work area for use by the
Direct Access Method procedures.

describe a character string
specifying the name of the file to
be opened.

describe a character string
specifying a password that
authorizes the requested file
access.

is read (shared) or modify
(exclusive). This is indicated by
16-bit values representing the ASCII
constants "mr" (mode read) or "mm"
(mode modify). In these ASCII
constants, the first character (m)
is the high-order byte and the
second character (r or m,
respectively) is the low-order
byte.

Request Block

pBuf fer
sBuf fer

sRecord

describe a word-aligned memory area
provided for the exclusive use of
the Direct Access Method
procedures. The size of this area
is discussed in the "Buffer" section
above.

describes the fixed record size for
the DAM file. If the DAM file
already exists, sRecord must match
the record size specified when the
file was created.

OpenDaFile is an object module procedure.

19-9

OueryDalastRecord

Description

The QueryDaLastRecord procedure copies to the
specified area the number of the last record in
the open DAM file. The file is identified by the
memory address of the Direct Access Work Area.
The last record is the existing record having the
largest record number.

If the DAM file contains no records, the last
record number is O.

Procedural Interface

Request Block

19-10

QueryDaLastRecord (pDAWA, pqiRecordRet) : ErcType

where

pDAWA is the memory address of
Direct Access Work Area
supplied to OpenDaFile.

the same
that was

pqiRecordRet is the memory address of the 32-bit
memory area to which the last record
number is written.

QueryDaLastRecord is an object module procedure.

QueryDaRecordStatus

Description

The QueryDaRecordStatus procedure copies to the
specified area the status of a record in the open
DAM file. The file is identified by the memory
address of the Direct Access Work Area. The
record status is interpreted in this way:

ercOK the record exists.

ercRecordDoesNotExist (code 3302)
the record does not exist.

ercRecordBeyondExi sti ngRecords (code 3007)
the record does not exist. The
record has a larger record number
than any existing record.

by
the

Caution: The status code value returned
QueryDaRecordStatus is the status of
operation, not the record status. The memory
address of the record status is passed as a
parameter.

Procedural Interface

Request Block

QueryDaRecordStatus {pDAWA, qiRecord,
pStatusRet) : ErcType

where

pDAWA

qiRecord

pStatusRet

is the memory address of
Direct Access Work Area
supplied to OpenDaFile.

the same
that was

is a 32-bit unsigned integer
specifying the number of the record
to query.

is the memory address of a word to
which the record status is written.

QueryDaRecordStatus
procedure.

is an object module

19-11

ReadDaFragment

Description

The ReadDaFragment procedure reads a record
fragment from the open DAM file identified by the
memory address of the Direct Access Work Area.
The returned record fragment is specified by the
record number, relative offset, and byte count.

Procedural Interface

Request Block

19-12

ReadDaFragment (pDAWA, qiRecord, pFragmentRet,
rbFragment, cbFragment): ErcType

where

pDAWA

qiRecord

pFragmentRet

rbFragment

cbFragment

is the memory address of
Direct Access Work Area
supplied to OpenDaFile.

the same
that was

is a 32-bit unsigned integer
specifying the number of the record
containing the record fragment to be
read. qiRecord must correspond to
an existing record.

is the memory address of the memory
area to which the record fragment is
returned.

is the offset from the beginning of
the record to the first byte of the
record fragment.

is the size of the record fragment.

ReadDaFragment is an object module procedure.

ReadDaRecord

Description

The ReadDaRecord procedure reads a
the open DAM file identified by
address of the Direct Access Work
returned record is specified by
number.

record from
the memory
Area. The
the record

Procedural Interface

Request Block

ReadDaRecord {pDAWA, qiRecord,
pRecordRet): ErcType

where

pDAWA

qi Record

pRecordRet

is the memory address of
Direct Access Work Area
supplied to OpenDaFile.

the same
that was

is a 32-bit unsigned integer
specifying the number of the record
to be read. qiRecord must
correspond to an existing record.

is the memory address of the memory
area to which the record is
returned.

ReadDaRecord is an object module procedure.

19-13

SetDaBufferMode

Description

The SetDaBuf f erMode procedure sets the buffer
management mode to write-through or write­
behind. These two buffering modes are described
in the "Concepts" section above.

Procedural Interface

Request Block

19-14

SetDaBufferMode (pDAWA, mode): ErcType

where

pDAWA

mode

is 'the memory address of
Direct Access Work Area
supplied to OpenDaFile.

the same
that was

is either the write-through or
write-behind buffer management
mode. This is indicated by 16-bi t
values representing the ASCII
constants "wt" (write-through) and
"wb" (write-behind). In these ASCII
constants, the first character (w)
is the high-order byte and the
second character (t or b,
respectively) is the low-order
byte.

SetDaBufferMode is an object module procedure.

TruncateDaFile

Description

The TruncateDaFile procedure truncates the open
DAM file (that is, it removes all records beyond
a specified point). All records having record
numbers greater than the qiRecord parameter are
deleted. If qiRecord is 0, all records in the
DAM file are deleted.

Procedural Interface

Request Block

TruncateDaFile (pDAWA, qiRecord): ErcType

where

pDAWA

qiRecord

is the memory address of
Direct Access Work Area
supplied to OpenDaFile.

the same
that was

is a 32-bit unsigned integer
specifying a record number. All
records having record numbers
greater than qiRecord are deleted.

TruncateDaFile is an object module procedure.

19-15

Write Ca Fragment

Description

The WriteDaFragment procedure writes a record
fragment to the open DAM file identified by the
memory address of the Direct Access Work Area.
The written record fragment is specified by the
record number, relative offset, and byte count.
The DAM file is automatically extended to
accommodate new records.

Procedural Interface

Request Block

19-16

WriteDaFragment (pDAWA, qiRecord, pFragment,
rbFragment, cbFragment): ErcType

where

pDAWA

qiRecord

pFragment

rbFragment

cbFragment

is the memory address of
Direct Access Work Area
supplied to OpenDaFile.

the same
that was

is a 32-bit unsigned integer
specifying the number of the record
containing the record fragment to be
written.

is the memory address of the memory
area from which the record fragment
is written.

is the off set from the beginning of
the record to the first byte of the
record fragment.

is the size of the record fragment.

WriteDaFragment is an object module procedure.

WriteDaRecord

Description

The Wr i teDaRecord procedure writes a record to
the open DAM file identified by the memory
address of the Direct Access Work Area. The
written record is specified by the record
number. The DAM file is automatically extended
to accommodate new records.

Wr i teDaRecord can write a record with a record
number larger than any existing record number.
If this is done, the file is extended and
standard record header and trailer formats are
written automatically to all added sectors. The
time required for the WriteDaRecord operation is
proportional to the amount by which the file is
extended.

Procedural Interface

Request Block

WriteDaRecord (pDAWA, qiRecord, pRecord): ErcType

where

pDAWA

qi Record

pRecord

is the memory address of
Direct Access Work Area
supplied to OpenDaFile.

the same
that was

is a 32-bit unsigned integer
specifying the number of the record
to be written.

is the memory address of the memory
area from which the record is
written.

WriteDaRecord is an object module procedure.

19-17

SECTION 20

INDEXED SEQUENTIAL ACCESS METHOD
OVERVIEW

CONCEPTS
Key Types

The Indexed Sequential Access Method (ISAM)
provides efficient, yet flexible, random access
to fixed-length records identified by multiple
keys stored in disk files.

Each ISAM data set holds one type of data
record. The size of the data records, the number
of keys, and the type of each key are specified
when an ISAM data set is created.

ISAM, a software product, is described in the B20
System ISAM Reference Manual, form 1148723.

A record can have an unl irni ted number of keys.
Each ~ is described by its position in the
record (offset from the first byte of the
record), the key length, and the key type.

There are six ~ types:

o byte string (up to 64 bytes),

o character string (up to 64 bytes),

o packed decimal (COBOL COMP-3),

o binary,

o long real, and

o short real.

Key type is important because the collating
sequence depends on it.

Each key defines an index (that is, an inversion)
which is automatically updated when records are
stored or modified and which is used as the basis
of retrieval. Records can be retrieved in key­
order sequence by any key field, starting with
any key value.

To increase flexibility, the following parameters
can be specified for each key at the time an ISAM
data set is created:

20-1

File Types

Operations

20-2

o whether duplicates are allowed,

o whether the index is to be kept in ascending
or descending order, and

o whether indexing of a record whose key field
contains a null value is to be suppressed.
(Suppressing the indexing of such fields
reduces the size of the index.}

Each ISAM data set holds one
stored as two physical files:
and an index file. These
different physical volumes if

record type but is
a data store file

can be placed on
desired.

The data store file holds the data records.
Because all the records in a data set have the
same length, physical space management that
conserves disk space is simple and efficient:
whenever a record is deleted, its space is added
to a free list and later reused when a new record
is created.

The data store file is a Direct Access Method
(DAM} file. See the "Direct Access Method"
section.

The index file holds all indexes for all of a
data set's keys. Each index is implemented as a
B-tree. This implementation technique, sometimes
called "block splitting," ensures that data
records can be repeatedly added without creating
long overflow chains or requiring physical
reorganization.

ISAM supports four
operations: storing,
deleting.

principal kinds
reading, modifying,

of
and

When an application system stores a new record,
ISAM automatically indexes the record according
to the values in all its key fields.

When an application system reads an existing
record, it can retrieve any of the following:

ISAM Organization

o all records whose keys have a specific value
(that is, an exact match),

0 all records whose key
specified range (that is,

values lie in a
a range match), or

o all records in which the initial bytes of a
byte or character string key match a
particular value (that is, a prefix match).

An application system can retrieve either the
specified records in order, or a seque nee of 4-
byte unique record identifiers in order. If
record identifiers are retrieved, then the
application program can later obtain the
corresponding data records by a special form of
the retrieval operation, without reaccessing the
index.

Modifying an existing record combines storing and
reading. Before a record is modified, it is
automatically removed from each index for which
the key field is being changed, then indexed
under the new key field.

The ISAM facility consists of:

o a multiuser access package,

o a single-user access package, and

o utilities.

The multiuser access package and the single-user
access package provide identical procedural
interfaces to the application system.

Multiuser Access Package

The ISAM multiuser access package provides shared
access to ISAM data sets from several cluster
workstations. ISAM must be resident on the
master (or standalone) workstation. ISAM
operations are invoked using the standard OS
request model: either by making an Operating
System request or by invoking a procedure (which
automatically makes the request).

20-3

Single-User Access Package

Utilities

20-4

The ISAM single-user access package provides
exclusive access to ISAM data sets from a single
application partition of the workstation on which
the application system runs. ISAM must be linked
into the application system and then initialized
by invoking an initialization procedure. ISAM
operations are invoked by calling ISAM procedures
directly. ISAM operations can be invoked by only
one process at a time.

ISAM includes utilities that are invoked from the
Executive. The ISAM Create utility creates an
empty ISAM data set. The ISAM utilities ISAM
Copy, ISAM Rename, ISAM Delete, and ISAM Set
Protection provide capabilities for ISAM data
sets similar to those the Executive commands
Copy, Rename, Delete, and Set Protection provide
for individual files. The ISAM Status utility
displays information about an ISAM data set. The
ISAM Reorganize utility changes the key fields of
a data set, loads data from files, and recovers
data from data sets that have become malformed.

OVERVIEW

SECTION 21
DISK MANAGEMENT

Disk management operations provide device-level
access to disk devices, in contrast to the file­
level access provided by file management
operations. Access to a disk device at such a
level is necessary in order to read a floppy disk
written on a non-B20 system or to format an
uninitialized disk.

Device-level access is provided to IBM­
compatible, single-sided, 8-inch floppy disks
written in either single or double density with
sector sizes of 128, 256, 512, or 1024. The
sector size and density of a floppy disk, if
other than 512-byte double density, must be
specified with the SetDevParams operation.

21-1

CONCEPTS

Accessing a Disk Device

A device can be accessed by using an OpenFi le
operation with a device or volume specifica­
tion. The Read, Write, ReadAsync and CheckRead­
Async, WriteAsync and CheckWriteAsync, and
CloseFile operations all accept a file handle
returned by such an OpenFile operation. (File
handles are discussed in detail in the "File
Management" section.)

Device-level access to disks bypasses the
concurrency control of the file management
system. Thus extreme care is required if device­
level access is used in a cluster configuration.

Device Specification and Device Password

21-2

A disk device is a physical hardware entity.
Access to a device requires presentation of a
device specification and a password. A device
specification can take either of two forms,
depending on whether the medium of the disk
device contains a valid file system.

If a volume contains a valid file system, the
device specification has the form:

{node } [vol name]

(In this case, the volume password of the volume
must be specified. Volume passwords are
described in the "File Management" section.)

However, if the medium does not contain a valid
file system (either because the medium was never
initialized to contain one or because the file
system has become malformed), the device
specification has the form:

{node} [devname]

(In this case, the device password of the device
must be specified. A device password protects a
device. It can have a maximum of 12 characters,
consisting of all alphanumeric characters plus
the period, ".", and the hyphen, "-".)

A volname (volume name) or a devname (device
name) is a string of characters. A volname or
devname can have a maximum of 12 characters,
consisting of all alphanumeric characters, plus
the period, ".", and the hyphen, "-"

OPERATIONS: PROCEDURES AND SERVICES

Access

Input/Output

Disk management operations are categorized by
function in Table 21-1 below.

Table 21-1. Disk Management Operations by Function

Access

CloseFile
OpenFile

Other

Input/Output

CheckReadAsync
CheckWriteAsync
Format
Read
ReadAsync

DismountVolume
GetVHB
MountVolume
QueryDCB
SetDevParams

Write
WriteAsync

CloseFile

OpenFile

closes an open file handle.

opens a device and returns a file
handle.

CheckReadAsync
waits for input completion, checks
the status code, and obtains the
byte count of data read after a
ReadAsync procedure.

CheckWriteAsync

Format

waits for output completion, checks
the status code, and obtains the
byte count of data written after a
WriteAsync procedure.

initializes the surface of a floppy
disk or other disk media to
accommodate fixed-size data
sectors. Used by the !Volume
utility.

21-3

Other

21-4

Read

ReadAsync

Write

WriteAsync

transfers an integral number of
128-, 256-, 512-, or 1024-byte
sectors from disk to memory.

initiates the transfer of an
integral number of 128-, 256-, 512-,
or 1024-byte sectors from disk to
memory. The CheckReadAsync
procedure must be used to check the
completion status of the transfer.

transfers an integral number of
128-, 256-, 512-, or 1024-byte
sectors from memory to disk.

initiates the transfer of an
integral number of 128-, 256-, 512-,
or 1024-byte sectors from memory to
disk. The CheckWriteAsync procedure
must be used to check the completion
status of the transfer.

DismountVolume
dismounts the specified volume.

GetVHB copies the Volume Home Block of the
specified device to the specified
memory area.

MountVolume mounts the volume on the specified
disk drive.

QueryDCB copies the Device Control Block of
the specified device to the
specified memory area.

Set Dev Pa rams
allows the characteristics
floppy disk controller
modified to accommodate
floppy disks.

of the
to be
non-B20

CheckReadAsync

Description

After calling the ReadAsync procedure to initiate
a read, the requesting process continues
execution. When the process wants to synchronize
with the asynchronous read (that is, wait for its
completion) , the process does a CheckReadAsync.
The CheckReadAsync procedure waits for input
completion, checks the status code, and obtains
the byte count of data read.

Status code 248 ("Wrong pRq argument") is
returned if the pRq argument does not match the
one of the preceding ReadAsync procedure.

Procedural Interface

Request Block

CheckReadAsync (pRq, psDataRet): ErcType

where

pRq

psDataRet

is the same memory address as given
in the pRq argument of the ReadAsync
procedure.

is the memory address of the word to
which the count of bytes success­
fully read is to be returned.

The ReadAsync and CheckReadAsync procedures are
procedural interfaces to the Read operation. See
the Read operation below.

21-5

CheckWriteAsync

Description

After calling the WriteAsync procedure to
initiate a write, the requesting process
continues execution. When the process wants to
synchronize with the asynchronous write (that is,
wait for its completion), the process does a
CheckWr i teAsync. The CheckWr i teAsync procedure
waits for output completion, checks the status
code, and obtains the byte count of data written.

Status code 248 ("Wrong pRq argument") is
returned if the pRq argument does not match the
one of the preceding WriteAsync procedure.

Procedural Interface

Request Block

21-6

CheckWriteAsync (pRq, psDataRet): ErcType

where

pRq

psDataRet

is the same memory address as given
in the pRq argument of the
WriteAsync procedure.

is the memory address of the word to
which the count of bytes success­
fully written is to be returned.

The WriteAsync and CheckWriteAsync procedures are
procedural interfaces to the Write operation.
See the Write operation below.

Close File

Description

The CloseFile service closes an open file.

Procedural Interface

Request Block

CloseFile (fh): ErcType

where

f h

Off set

0
2
3
4
6
8

10

12

is the file handle returned from an
OpenFile operation.

Size
Field (bytes) Contents

sCntinfo 2 2
nReqPbCb 1 0
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 10

f h 2

21-7

DismountVolume

Description

The DismountVolume
specified volume.

service dismounts the

Dismounting (and mounting) of volumes is normally
controlled by the Automatic Volume Recognition
(AVR) capability of the file management system.
The Dismount (and Mount) operations are provided
for the use of utilities, such as !Volume, that
must override AVR. (!Volume is described in the
820 System Software Operation Guide, form
1148772.)

Procedural Interface

21-8

DismountVolume (pbVolName, cbVolName, pbPassword,
cbPassword): ErcType

where

pbVolName
cbVolName

pbPassword
cbPassword

describe a character string of the
form {node} [volname]. Square
brackets are optional for the device
name. The distinction between
uppercase and lowercase is not
significant in matching device
names.

describe the volume password that
authorizes access to the specifiea
volume.

Request Block

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb l 2
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 12

12 reserved 6

18 pbVolName 4
22 cbVolName 2

24 pbPassword 4
28 cbPassword 2

21-9

Format

Description

The Format service initializes the surface of a
floppy disk or other disk media to accommodate
fixed-size data sectors. Format is used by the
!Volume utility (described in the B20 System
Software Operation Guide, form 1148772) and is
device-dependent.

Procedural Interface

21-10

Format (fh, pBuffer, sBuffer, lfa,
psDataRet): ErcType

where

f h

pBuf fer

sBuf fer

lf a

psDataRet

is a file handle returned from an
OpenFile operation that specifies a
device.

is the memory address of the first
byte of control information. The
buffer must be word aligned.

is the count of bytes of control
information to be transferred. It
must be a multiple of 2.

is the byte offset, from the
beginning of the device, of the
first sector to be initialized.

is the memory address of the word to
which the count of bytes success­
fully transferred is to be returned.

Request Block

ssDataRet is always 2.

Size
Off set Field {bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 1
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 38

12 f h 2

14 lfa 4

18 pBuf fer 4
22 sBuf fer 2

24 psDataRet 4
28 ssDataRet 2 2

21-11

GetVHB

Description

The GetVHB service copies the Volume Home Block
of the specified device to the specified memory
area. If the specified area is not large enough
to hold the requested information, the
information is truncated.

GetVHB does not require a password. To avoid
security violations, O's are returned in the
volPassword field of the Volume Home Block.

The Volume Home Block is described in the "File
Management" section.

Procedural Interface

21-12

GetVHB (pbDevSpec, cbDevSpec, pVhbRet,
sVhbMax): ErcType

where

pbDevSpec
cbDevSpec

pVhbRet
sVhbMax

describe a character string of the
form {node} [devname] or {node} [vol­
name]. Square brackets are optional
for the device name. The
distinction between uppercase and
lowercase is not significant in
matching device names.

describe the memory area.

Request Block

Size
Offset Field (bytes} Contents

0 sent Info 2 6
2 nReqPbCb l 2
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 15

12 reserved 6

18 pbDevSpec 4
22 cbDevSpec 2

24 pVhbRet 4
28 sVhbMax 2

21-13

MountVolume

Description

The MountVolume service mounts the volume on the
specified disk drive.

Mounting (and dismounting) of volumes is normally
controlled by the Automatic Volume Recognition
(AVR) capability of the file management system.
The Mount (and Dismount) operations are provided
for the use of utilities, such as !Volume, that
must override AVR. {!Volume is described in the
B20 System Software Operation Guide, form
1148772.)

Procedural Interface

21-14

MountVolume (pbDevSpec, cbDevSpec, pbDevPassword,
cbDevPassword) : ErcType

where

pbDevSpec
cbDevSpec

pbPassword
cbPassword

describe a character string of the
form {node} [devname] • Square
brackets are optional for the device
name. The distinction between
uppercase and lowercase is not
significant in matching device
names.

describe the device password that
authorizes access to the specified
device.

Request Block

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 0
4 userNurn 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 11

12 reserved 6

18 pbDevSpec 4
22 cbDevSpec 2

24 pbPassword 4
28 cbPassword 2

21-15

Open File

Description

The disk management form of the OpenFile service
opens the entire specified volume/device as a
file and returns a file handle. The file handle
returned by OpenFile is used to refer to the file
in subsequent operations such as Read, Write, and
CloseFile.

Procedural Interface

21-16

OpenFile (pFhRet, pbDevSpec, cbDevSpec,
pbPassword, cbPassword, mode): ErcType

where

pFhRet

pbDevSpec
cbDevSpec

pbPassword
cbPassword

mode

is the memory address of the word to
which the file handle is returned.

describe a character string of the
form {node} [devname) or {node} [vol­
name]. The distinction between
uppercase and lowercase is not
significant in matching device
names.

describe either the device or volume
password that authorizes access to
the specified device.

is read or modify. This is
indicated by 16-bit values
representing the ASCII constants
"mr" (mode read) and "mm" (mode
modify). In these ASCII constants,
the first character (m) is the high­
order byte and the second character
(r or m, respectively) is the low-
order byte.

Access in read mode permits the
returned file handle to be used as
an argument only to the Read,
ReadAsync, CheckReadAsync, and
CloseFile operations. Access in
modify mode, however, also permits
the returned file handle to be used

Request Block

as an argument
CheckWriteAsync,
tions.

to the Wr i teAsync,
and Write opera-

There is no limit to the number of
concurrent opens of a disk device in
either read or modify mode.

sFhMax is the size of a file handle and is always
2.

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 4

12 reserved 2

14 mode 2

16 reserved 2

18 pbDevSpec 4
22 cbDevSpec 2

24 pbPassword 4
28 cbPassword 2

30 pFhRet 4
34 sFhMax 2 2

21-17

OueryDCB

Description

The QueryDCB service copies the Device Control
Block of the specified device to the specified
memory area. If the specified area is not large
enough to hold the requested information, the
information is truncated.

QueryDCB does not require a password. To avoid
security violations, O's are returned in the
devPassword field of the Device Control Block.

The Device Control Block is described in the
"File Management" section.

Procedural Interface

21-18

QueryDCB (pbDevSpec, cbDevSpec, pDcbRet,
sDcbMax): ErcType

where

pbDevSpec
cbDevSpec

pDcbRet
sDcbMax

describe a character string of the
form {node} [devname] or {node} [vol­
name]. Square brackets are optional
for the device name. The
distinction between uppercase and
lowercase is not significant in
matching device names.

describe the memory area.

Request Block

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 1
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 124

12 reserved 6

18 pbDevSpec 4
22 cbDevSpec 2

24 pDcbRet 4
28 sDcbMax 2

21-19

Read

Description

The Read service transfers an integral number of
128-, 256-, 512-, or 1024-byte sectors from disk
to memory. Read returns only when the requested
transfer is complete. The ReadAsync and
CheckReadAsync procedures are used to overlap
computation and input/output transfer.

To accommodate programming languages in which
Read is a reserved word, ReadFile is permitted as
a synonym for the Read service.

Procedural Interface

21-20

Read (fh, pBufferRet, sBufferMax, lfa,
psDataRet): ErcType

where

f h

pBuf f erRet

sBuf ferMax

lf a

psDataRet

is a file handle returned from an
OpenFile operation. The device can
be open in either read or modify
mode.

is the memory address of the first
byte of the buffer to which the data
is to be read. The buffer must be
word aligned.

is the count of bytes to be read to
memory. It must be a multiple of
the sector size (128, 256, 512, or
1024).

is the byte offset, from the
beginning of the file, of the first
byte to be read. It must be a
multiple of the sector size (128,
256, 512, or 1024).

is the memory address of the word to
which the count of bytes success­
fully read is to be returned.

Request Block

ssDataRet is always 2.

Size
Off set Field bytes)_ Contents

0 sCntinfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 35

12 f h 2

14 lf a 4

18 pBuf f erRet 4
22 sBuf f erMax 2

24 psDataRet 4
28 ssDataRet 2 2

21-21

ReadAsync

Description

The ReadAsync procedure initiates the transfer of
an integral number of 128-, 256-, 512-, or 1024-
byte sectors from disk to memory. The CheckRead­
Async procedure must be called to check the
completion status of the transfer.

The information returned by Read with its
psDataRet argument and ErcType status is obtained
by CheckReadAsync.

Procedural Interface

21-22

ReadAsync (fh, pBufferRet, sBufferMax, lfa, pRq,
exchangeReply): ErcType

where

f h

pBuf f erRet

sBuf f erMax

lf a

pRq

exchangeReply

is a file handle returned from an
OpenFile operation. The device can
be open in either read or modify
mode.

is the memory address of the first
byte of the buffer to which the data
is to be read. The buff er must be
word aligned.

is the count of bytes to be read to
memory. It must be a multiple of
the sector size (128, 256, 512, or
1024).

is the byte offset, from the
beginning of the file, of the first
byte to be read. It must be a
multiple of the sector size (128,
256, 512, or 1024) •

is the memory address of a 64-byte
area to be used as workspace by
ReadAsync.

is an exchange provided by the
client process for the exclusive use
of ReadAsync and CheckReadAsync.

Request Block

The ReadAsync and CheckReadAsync procedures are
procedural interfaces to the Read operation. See
the Read operation above.

21-23

SetDevParams

Description

The SetDevParams service allows the
characteristics of the 8-inch floppy disk
controller to be modified to accommodate non-B20
floppy disks.

Procedural Interface

21-24

SetDevParams (pbDevSpec, cbDevSpec, pbPassword,
cbPassword, paramCode): ErcType

where

pbDevSpec
cbDevSpec describe a character string of the

form {node} [devname]. Square
brackets are optional for the device
name. The distinction between
uppercase and lowercase is not
significant in matching device
names.

pbPassword
cbPassword describe the device

authorizes access to
device.

password that
the specified

paramCode describes the desired characteris­
tics to which the floppy disk
controller is to be initialized.

Sector
Code Density Size Compatibility

0 single 128 IBM Diskette 1
1 single 256 IBM Diskette 2
2 single 512
3 double 256 IBM Diskette 2D
4 double 512 B 22
5 double 1024 IBM Diskette 2D
6 reserved
7 double 256 B 21 (sirigle-sided

5 1/4-in floppy)
8 double 256 B 21 (double-sided

9 5 1/4-in floppy)
double 512 MS-DOS 5 1/4-inch

single sided
(B21-2/3 only)

10 double 512 MS-DOS 5 1/4-inch
dual sided (B21-
2/3 only)

Request Block

Size
Off set Field (bytes) Contents

0 sent Info 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 16

12 paramCode 2

14 reserved 4

18 pbDevSpec 4
22 cbDevSpec 2

24 pbPassword 4
28 cbPassword 2

21-25

Write

Description

The Write operation transfers an integral number
of 128-, 256-, 512-, or 1024-byte sectors from
memory to disk. Write returns only when the
requested transfer is complete. The Wr i teAsync
and CheckWr i teAsync procedures are used to
overlap computation and input/output transfer.

To accommodate programming languages in which
Write is a reserved word, WriteFile is permitted
as a synonym for the Write service.

Attempting to write beyond the end of the medium
results in the return of status code 2 ("End of
medium").

Procedural Interface

21-26

Write (fh, pBuffer, sBuffer, lfa,
psDataRet) : ErcType

where

f h

pBuf fer

sBuf fer

lf a

psDataRet

is a file handle returned from an
OpenFile operation. The device must
be open in modify mode.

is the memory address of the fir st
byte of the buffer from which the
data is to be writ ten. The buffer
must be word aligned.

is the count of bytes to be written
from memory. It must be a multiple
of the sector size (128, 256, 512,
or 1024).

is the byte offset, from the
beginning of the file, of the first
byte to be written. It must be a
multiple of the sector size (128,
256, 512, or 1024).

is the memory address of the word to
which the count of bytes success­
fully written is to be returned.

Request Block

ssDataRet is always 2.

Size
Off set Field {bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 1
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 36

12 f h 2

14 lf a 4

18 pBuf fer 4
22 sBuf fer 2

24 psDataRet 4
28 ssDataRet 2 2

21-27

WriteAsync

Description

The Wr i teAsync procedure initiates the transfer
of an integral number of 128-, 256-, 512-, or
1024-byte sectors from memory to disk. The
CheckWriteAsync procedure must be called to check
the completion status of the transfer.

The information returned by Write with its
psDataRet argument and ErcType status is obtained
by CheckWriteAsync.

Procedural Interface

Request Block

21-28

WriteAsync (fh, pBuffer, sBuffer, lfa, pRq,
exchangeReply): ErcType

where

f h

pBuf fer

sBuf fer

lf a

pRq

exchange Reply

is a file handle returned from an
OpenFile operation. The file must
be open in modify mode.

is the memory address of the first
byte of the buffer from which the
data is to be written. The buff er
must be word aligned.

is the count of bytes to be written
from memory. It must be a multiple
of the sector size (128, 256, 512,
or 1024).

is the byte offset, from the
beginning of the file, of the first
byte to be written. It must be a
multiple of the sector size (128,
256, 512, or 1024).

is the memory address of a 64-byte
area to be used as workspace by
WriteAsync.

is an exchange provided by the
client process for the exclusive use
of WriteAsync and CheckWriteAsync.

The WriteAsync and CheckWriteAsync procedures are
procedural interfaces to the Write operation.
See the Write operation above.

SECTION 22
PRINTER SPOOLER MANAGEMENT

OVERVIEW

The printer spooler (simultaneous peripheral
operation online) management facility provides
di re ct and spoc>led printing to parallel
(Centronics-compatible) and serial (RS-232C­
compatible) printer interfaces.

Direct printing transfers text directly from
application system memory to a parallel or serial
printer interface of the local workstation. The
local printer must be available before direct
printing is activated.

In spooled printing, a queue entry is created for
each printing request and entered in a queue
managed by the queue manager. A printer spooler
obtains a queue entry for printing when a printer
is available. The user need not wait for a
printer to be available to enter a printing
request.

Di re ct and spooled printing a re accessed by the
printer spooler utilities described in the
"Printer Spooler Utilities Overview" in the B 20
System Software Operation Guide, form 1148772.
The reader should be familiar with that section
before continuing in this section.

22-1

CONCEPTS
All printer spooler concepts are described in the
"Printer Spooler Utilities Overview" section in
the B 20 System Software Operation Guide, form
1148772. The following operations are contained
in this section.

ConfigureSpooler, which sets or changes the
printer spooler's configuration, and

SpoolerPassword, which sends a file passwords
to the printer spooler.

Printer Spooler Configuration

22-2

When the printer spooler is installed, it reads a
spooler configuration file designated by the
user.

The spooler configuration file at printer spooler
installation must contain at least the code of
each printer channel to be controlled by the
printer spooler. Additional information required
for each printer can be supplied to the printer
spooler in either of two ways:

in the spooler configuration file at printer
spooler installation, or

dynamically through
operation.

the Confi gureSpoole r

The additional information required for each
printer is:

the name of the printer,

the name of the scheduling queue,

the printer configuration file specification,

the priority of the process that controls the
pri nte r, and

whether to print a banner page at the
beginning of each file.

Sending a Password

printing
before
of a

the

If the security mode is specified in a
request, the printer spooler pauses
printing the file and waits for receipt
password. The password can be sent to
printer spooler in either of two ways:

by the operator invoking the Spooler utility
and typing the password at the local printer,
or

by a process using
opera ti on.

OPERATIONS: SERVICES

the

Printer spooler management
operations listed below.

ConfigureSpooler
sets or changes
configuration.

SpoolerPassword

SpoolerPassword

provides the

the spooler's

sends a file password to the printer
spooler.

22-3

ConfigureSpooler

Description

The ConfigureSpooler service sets or changes has
printer spooler's configuration. A printer can
be added or deleted from a printer spooler. To
add a printer, the printing queue associated with
the printer must be defined to the queue manager
and the printer channel must be defined to the
printer spooler during the printer spooler's
i nstal la ti on.

Procedural Interface

22-4

ConfigureSpooler (channel, pbPrinterName,
cbPrinterName, pbQueueName,
cbQueueName, pbConfigureFile,
cbConfigureFile, priority,
fBanner): ErcType

where

channel is a single-character code that
specifies the printer channel to
which the printer is connected:

0 is the parallel channel
A is channel A
B is channel B

pbPri nterName
cbPri nterName

pbQue ue Na me
cbQueueName

describe the name of the printer to
be added. A 0 means the printer
connected to the channel is deleted.

describe the name of the .scheduling
queue associated with the printer.
The name must match a queue name
defined for the system.

pbConfigureFile
cbConf i gure Fi le

describe the file specification of
the printer configuration file.

priority is the priority (10-24, with 10 the
highest) of the printer spooler's
control process for the printer. A
priority lower than 128 (the default
priority of the user program)
ensures that the printer spooler
does not impact the user program.

fBanner is a flag that indicates whether a
banner page is to be printed at the
beginning of each file.

Request Block

Off set

0
2
3
4
6
8

10

12

13
17

19
23

25
29

31

32

33

Size
Field (Bytes)
----- -------
sCntinfo 2
nReqPbCb l
nRespPbCb l
userNum 2
exchResp 2
ercRet 2
rqCode 2

channel l

pbPri nterName 4
cbPri nterName 2

pbQueueName 4
cbQueueName 2

pbConfi gureFile 4
cbConfi gureFile 2

priority l

fBanner l

reserved 3

Contents

6
3
0

188

22-5

SpoolerPassword

Description

The SpoolerPassword service sends a file password
to the printer spooler. If the printer spooler
is in the security mode, it waits for the
password before it proceeds to open and read the
protected file.

Procedural Interface

Request

22-6

Block

Spoole rPassword (pbPri nte rName, cbPri nte rName,
pbPassword, cbPassword): E rcType

pbPri nterName
cbPri nterName

pbPassword
cbPassword

describe the name of the printer.

describe the password.

Size
Off set Field (Bytes) Contents
------ -----

0 sCntinfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet

10 rqCode

12 reserved

18 pbPri nterName
22 cbPri nterName

24 pbPassword
28 cbPassword

2
1
1
2
2
2
2

6

4
2

4
2

6
2
0

189

OVERVIEW

Video Attributes

SECTION 23
VIDEO MANAGEMENT

The video subsystem provides a highly flexible
means for the display of alphanumeric and
(limited) graphic information by the application
system in the primary application partition. The
video hardware uses DMA to continuously refresh
the image on the screen, thus ensuring a flicker­
f ree image. The video hardware reads characters
and attributes from memory. It then converts
them from the extended ASCII (8-bit) memory
representation to a pattern of illuminated dots
(pixels) that it displays on the screen. During
this conversion, the video hardware references a
translation table (font) that is part of the
video hardware. In some models of workstation,
the font can be modified by software.

Video attributes control the visual presentation
of characters on the screen. There are three
kinds of video attributes: screen, line, and
character.

o Screen attributes control the presentation of
the entire screen. Examples are: blank,
reverse video (dark characters on a light
background), half-bright, number of
characters per line (80 or 132), and the
presence or absence of character attributes.

0 Line attributes control the
single line. Examples are:
double-height characters,
characters.

presentation of a
cursor position,

and double-width

o Character attributes control the presentation
of a single character. Examples are:
reverse video, blinking, half-bright, under­
lining, bold, superscript, and subscript.

23-1

Video Software

The video software provides several features
(multiple frames, scrolling of each frame) that
enhance the capabilities of the video
subsystem. To the video software, the screen
consists of a number of separate, rectangular
areas called frames. A frame can have any
desired height and width (up to those of the
entire screen) • Each frame can be scrolled up or
down independent of other frames.

Hierarchy of Video Software

23-2

Three levels of video software control the video
subsystem:

0

0

Video Display Management (VDM). The
Display Management facility provides
control over the video hardware.

Video
direct

Video Access Method (VAM). The Video Access
Method provides direct access to the
characters and character attributes of each
frame. The Video Access Method includes
explicit control of scrolling.

o Sequential Access Method (SAM). The
Sequential Access Method provides device­
i ndependent access to devices such as the
printer, files, keyboard, as well as the
video display. The Sequential Access Method
provides automatic scrolling. Video-specific
extensions to the Sequential Access Method
provide direct cursor addressing, control of
character attributes, etc.

CONCEPTS

Video Capabilities

Basic

Standard

The several models of
video capabilities:
advanced.

workstation have varying
basic, standard, or

Users who access the video subsystem at the Video
and Sequential Access Method levels (but not the
Video Display Manager level) , and who only use
the basic video capability, are assured
compatibility among the different models.

Basic video capabilities are provided by the B21
workstation. These capabilities are
characterized by: an 80-character by 28-line
screen, one cursor on the screen, a 256 character
set that cannot be modified by software, and a
screen split horizontally into multiple frames.

Standard video capabilities are provided by the
B22 family of workstations. These capabilities
are characterized by a 34-line- screen, a
software-selectable 80- or 132-character line,
one cursor per line, a 256 character set that can
be dynamically modified by software, and a screen
split horizontally and/or vertically into
multiple frames that can overlap each other.

23-3

Standard Video Capability

Video Attributes

23-4

Characters displayed on the screen are stored in
a contiguous area called the character map. The
physical memory address and size of the character
map are loaded into the video DMA channel. The
character map must start at a word boundary and
must be completely contained in the first 128k
bytes of memory. There is a default 6800-byte
character map in the System Image.
Alternatively, the application system in the
primary application partition can relocate the
character map to an area of long-lived memory it
allocated.

The size of this character map depends on:

o the number of characters per line (80 or
13 2) ,

o the number of lines per screen (1 to 34), and

0 the presence
attributes.

or absence of character

Video attributes control the visual presentation
of characters on the screen. The three kinds of
video attributes are screen, line, and character.

Screen Attributes. Screen attributes control the
presentation of the entire screen. The screen
attributes, specified in the Screen Attribute
Register in the video hardware, are blank,
reverse video (dark characters on a light
background), half-bright, number of characters
per line (80 or 132), and the presence or absence
of character attributes. The number of lines (1
to 34) displayed on the screen is determined
implicitly by the size of the character map
loaded into the video DMA register.

Line Attributes. Line attributes control
presentation of a single line. They
specified in the character map in the word
precedes the first character of the line.
standard line attribute is cursor position.

the
are

that
The

Video Refresh

Cursor RAM

Character Attributes. Character attributes
control the presentation of a single character.
Character attributes can be present or absent,
depending on the value of a screen attribute. If
character attributes are present, then each
character has a 4-bi t character attribute
field. The 4-bit character attribute field
specifies the presence or absence of four
attributes: reverse video, blinking, half­
bright, and underlining,

The video hardware continuously refreshes the
image on the screen, thus ensuring a flicker-free
image. Video refresh is a hardware function that
reads (using DMA) characters and line and
character attributes from the character map in
memory. It then converts them from the extended
ASCII (8-bit) memory representation to a 10 by 15
bit array, and displays these bits on the screen
as a pattern of illuminated dots (pixels).

Font RAM. During the conversion from a memory
representation to a bit array, the standard video
hardware references a translation table (font)
located in the font RAM. The font RAM, part of
the video hardware, contains a 10 by lSbi t array
for each of the 256 characters in the character
set. The font RAM can be modified by software.

A cursor RAM allows software to specify a 10 by
15 bit array and display these bits as a pattern
of pixels in place of the standard cursor (a
blinking underline). The cursor bit array is
superimposed on the character and blinks.

23-5

Style RAM

To allow access to the additional character
attributes, the 4-bi t character attribute field
is interpreted as an index into the style RAM.
The style RAM contains 16 entries, each of which
specifies the presence or absence of each of the
video attributes.

Basic Video Capability

Video Attributes

23-6

The B21 has basic video capability only, in
contrast to the standard video capability of the
B22.

Characters displayed on the screen are stored in
a contiguous area of memory called the character
map. The physical memory address and size of the
character map are loaded into the video DMA
channel. The character map must be completely
contained in the first 64k bytes of memory.
There is a default 2784-byte character map in the
System Image. Alternatively, the application
system can relocate the character map to an area
of long-lived memory that it allocated. The size
of this character map depends on the number of
lines per screen (1 to 28).

Video attributes control the visual presentation
of characters on the screen. There are two kinds
of video attributes: screen and character.

Screen Attributes. Screen attributes control the
presentation of the entire screen. Screen
attributes, processed by the video software, are
blank, reverse video (dark characters on a light
background), half-bright, and cursor position.
The number of lines (1 to 28) displayed on the
screen is determined implicitly by the size of
the character map loaded into the video DMA
register.

Character Attributes. Character attributes
control the presentation of a single character.
Character attributes are 8-bit bytes that are

Video Refresh

Video Software

embedded in the character map and specify the
presence or absence of five attributes: reverse
video, blinking, half-bright, underlining, and
special character. Character attributes are
identified by having their high-order bit set and
are limited to 16 per line. The special
character attribute is used to display character
codes 80h to OFFh.

The video hardware continuously refreshes the
image on the screen, thus ensuring a flicker-free
image. Video refresh is a hardware function that
reads (using DMA} characters and character
attributes from the character map in memory. It
then converts them to a 9 by 11 bit array, and
displays these bits on the screen as a pattern of
illuminated dots (pixels}.

Font ROM. During the conversion from a memory
representation to a bit array, the basic video
hardware references a translation table (font}
located in the font ROM. The font ROM, part of
the video hardware, contains a 9 by'"'Ir-bit array
for each of the 256 characters in the character
set.

The video software provides several features
(multiple frames, scrolling of each frame} that
enhance the capabilities of the video
subsystem. To the video software, the screen
consists of a number of separate, rectangular
areas called frames. A frame can have any
desired height and width (up to those of the
entire screen} . The number of frames supported
is a parameter supplied at system build~ the
default is 8. Each frame can be scrolled up or
down independent of other frames.

Hierarchy of Video Software

Three levels of video software control the video
subsystem: the Video Display Manager, the Video
Access Method, and the Sequential Access Method.

23-7

Video Display Manager

The Video Display Management (VDM)
direct control over the video hardware.
an application system can:

provides
With it,

o determine the level of video capability
present,

o load a new character font into the font RAM,

o change screen attributes, such as reverse
video and half-bright, while the screen is
being video-refreshed,

c stop video refresh {this is useful when
moving or changing the size of the frames or
the character map),

o calculate the amount of memory needed for the
character map based on the desired number of
columns and lines, and the presence or
absence of character attributes,

o initialize each of the frames, and

o initialize the character map.

Once the character map is initialized and video
refresh started, the image on the screen is
controlled by modifying the characters and
attributes stored in the character map. This is
best accomplished using the system common
procedures of the Video Access Method and the
object module procedures of the Sequential Access
Method. If necessary, however, an application
system can manipulate the image on the screen by
writing directly into the character map. This is
somewhat more efficient than using the procedures
of the Video and Sequential Access Methods, but
results in code that is not compatible among the
several models of workstation.

Video Access Method

23-8

The Video Access _Method (VAM) provides direct
access to the characters and character attributes
of each frame. The operations of VAM can:

o put a string of characters anywhere in a
frame,

o specify character attributes for a string of
characters,

o scroll a frame up or down a specified number
of lines,

o position a cursor in a frame (each frame can
have its own cursor except in workstations
having only basic video capability), and

o blank a frame (that is, set all character
positions to blank, reset all character
attributes, and eliminate any visible cursor
from the frame).

The Video Access Method consists of a set of
system common procedures.

Sequential Access Method

The Sequential Access Method (SAM) provides
device-independent access to devices such as the
printer, files, keyboard, as well as the video
display. The video byte stream extensions to the
Sequential Access Method support multiple frames,
character attributes, and explicit positioning of
characters in a frame, but do not support line
attributes (other than cursor position). The
Sequential Access Method recognizes a few special
cursor-positioning characters including RETURN,
NEXT PAGE, BACKSPACE, and TAB. When a special
character or full line would cause the cursor to
move below the bottom line of the frame, the
Sequential Access Method automatically scrolls
the frame and repositions the cursor.

Application System/Video Subsystem Interaction
To eliminate the need for user programming to
support video display initialization, the 820
Executive performs initialization before invoking
an application system. (See the 820 System
Executive Reference Manual, form 1144474.) It
also allows the workstation operator to use the
Screen Setup command to respecify these video
characteristics:

o reverse video,

o number of characters per line (80 or 132),

23-9

o number of lines (1 to 34), and

0 the presence
attributes.

or absence of character

When an application system is invoked, it
inherits the character font, the character map
(in system memory), and two frames (Command Frame
and Status Frame) from the Executive. Video
refresh continues and the image on the screen
remains unchanged.

The application system can now update the image
on the screen by using the Video or Sequential
Access Methods or by directly manipulating the
content of the area of memory containing the
character map.

The application system needs to use the
operations of the Video Display Management
facility only if the character font, screen size,
frames, or provision for character attributes
must be changed during the execution of the
application system.

Video Control Block

23-10

The Video Control Block (VCB) contains all
information known to the OS about the video
display, including the location, height, and
width of each frame, and the coordinates at which
the next character is to be stored in the frame
by the Sequential Access Method. The VCB is
located in system memory at an address recorded
in the System Common Address Table. The VCB is
described in more detail below.

SYSTEM DATA STRUCTURES: VIDEO CONTROL BLOCK
AND FRAME DESCRIPTOR

This section should be read after the "Video
Display Management" and "Video Access Method"
sections.

The Video Control Block (VCB) contains all
information known about the video display,
including the location, height, and width of each
frame, and coordinates at which the next
character is to be stored in the frame by the
Sequential Access Method. The VCB is located in
system memory at an address recorded at address
244h in the System Common Address Table. The
content of the VCB is shown in Table 23-1.

The Video Control Block contains an array of
frame descriptors. A frame descriptor is a
component of the VCB and contains all information
known about one of the frames. The number of
frame descriptors in the VCB is specified at
system build. The content of a frame descriptor
is shown in Table 23-2.

23-11

23-12

where

level

Table 23-1. Video Control Block

Size
Offset Field (Bytes)
------ ----- -------

0 level 1
1 fCharAttrs 1
2 fReve rseVideo 1
3 fHalfBright 1
4 pMap 4
8 sMap 2

10 cFrames 1
11 cColsMax 1
12 cLi nesMax 1
13 sLi ne 1
14 ibToAttrs 1
15 i bToChars 1
16 bSpace 1
17 SAR 2
19 pRgf Li neDi rty 4
23 pRgbRuns 4
27 i FrameCursor 1
28 pRgbRunsVi rgi n 4
32 rgbRgFrame *

* 20 bytes for each frame defined
at system build.

is the level of video capability:

0 = standard;
2 = basic.

Other values will identify future
capability levels. It is set by the
QueryVidHdw and ResetVideo
operations.

fCharAttrs is TRUE if the character map
includes character attributes and
the use of character attributes is
enabled in the Screen Attribute
Register in the video hardware. It
is FALSE otherwise. The fAttr
parameter to the ResetVideo
operation is placed here. It is set
by the ResetVideo operation.

fReverseVideo

fHalfBright

pMap
sMap

cFrames

cColsMax
cLinesMax

sLi ne

is TRUE if the screen reverse video
is enabled in the Screen Attribute
Register in the video hardware.
This causes the hardware to display
dark characters on a light
background. It is FALSE other-
wise. It is initialized by the
ResetVideo operation to FALSE and
can be changed by the SetScreenVid­
Attr operation.

is TRUE if screen half-bright is
enabled in the Screen Attribute
Register in the video hardware.
This causes the hardware to display
at half-bright. It is FALSE other­
wise. It is initialized by the
ResetVideo operation to FALSE and
can be changed by the SetScreenVid­
At tr operation.

are the memory address and size of
the character map, which are
provided as parameters to the
InitCharMap operation.

is the
number
build.

number of frames.
is established at
The default is 8.

This
system

are the height and width of the
screen. These values are used by
the InitVidFrame operation to verify
frame coordinates and dimensions.
They are set by the ResetVideo
operation.

is the total number of bytes
required to contain all the
information for one line of the
character map. This information
includes 1 i ne attributes, filler
bytes needed by the video hardware,
text characters, and character
attributes (if specified). This
field can be multiplied by the
number of a line to compute the
offset from pMap of the first byte
of the line. It is set by the
ResetVideo operation.

23-13

23-14

NOTE: The inforrnat ion given for the next tvvo
fields, ibToAttrs and ibToChars, is not
meaningful for workstations with only basic video
capability. Dependence on this information will
result in software that is not compatible amon~1
workstation models.

ibToAttrs

ibToChars

is the number of bytes from the
start of a line in the character map
to the first byte of character
attributes (this is only valid if
fCharAttrs = TRUE). To compute thf~

offset (from the beginning of th"°'
character map) of the char ac te r
attribute field for the character at
column iCol and line iLine:

1. multiply iLine by the
field of the VCB,

T • s u i. ne

2. add the ibToAttrs field of the
VCB, and

3. add the integer quotient of iCol
divided by 2.

The character attributes for even
column numbers are in bits 0-3 (low­
order nibble) and for odd column
numbers in bi ts 4-7 (high-order
nibble). It is set by the Reset­
Video operation.

is the number of bytes from the
start of a line in the character map
to the character 0 of the line. To
compute the offset (from the
beginning of the character map) of
the character displayed at screen
coordinates iLine and iCol:

1. multiply
field of

2. add the
VCB, and

3. add iCol.

It is set
operation.

iLine by the sLine
the VCB,

ibToChars field of the

by the ResetVideo

bSpace

SAR

is the 8-bit character code that
displays an empty character position
on the screen. This code is 0
(null) in the standard Burroughs
font. The bSpace field of the VCB
is set from a parameter to the
ResetVideo operation and is used by
the InitCharMap, ResetFrame, and
ScrollFrame operations.

is an exact copy of the 16 bits that
were last loaded into the Screen
Attribute Register.

pRgfLi neDi rty

pRgbRuns

i FrameCursor

is the memory address of an array of
28 flags (bytes), one flag for each
line. Each flag i ndi ca tes whether
or not video attributes are
intermixed with the characters on
that line (B21 only).

is the memory address of an array of
16 x 28 words. The low-order byte
of each word describes an attribute,
and the high-order byte specifies
the number of characters to which
the attribute applies. Sixteen
words are used to describe each line
on the video display (B21 only).

stores the number of the frame in
which the cursor is located. This
field is updated whenever
PosFrameCursor is called (B21 only).

pRgbRunsVi rgi n

rgbRgFrame

is the memory address of an array of
16 words. The contents of this
array represent a line that does not
have attributes intermixed with the
characters (B21 only).

is the array of frame descriptors.
It is set by the Ini tVidFrame
operation and cleared by the
ResetVideo operation.

23-15

23-16

Table 23-2. Frame Descriptor

Size
Off set Field (bytes)

0 iLineStart 1
1 iColStart 1
2 cLines 1
3 cCols 1
4 iLineLef tOf f 1
5 iColLeftOf f 1
6 bBorderDesc 1
7 bBorderChar 1
8 bBorderAttr 1
9 iLinePause 1

10 iLineCursor 1
11 iColCursor 1
12 fDblWide 1
13 fDblHigh 1
14 reserved 6

where

iLineStart
iColStart are the vertical and horizontal

screen coordinates of the upper left
corner of the frame. This is where
a character would go if the
PutFrameChars operation were called
with iLine and iCol = O.

cLines
cCols is the height and width of the

frame.

iLineLef tOf f
iColLef tOf f

bBorderDesc

is used by the Sequential Access
Method to record the coordinates at
which the next character is to be
stored in the frame. The presence
of this information in the VCB
allows a successor application
system to append to information
displayed by its predecessor.

is a byte with bits 0-3 specifying a
border just outside the frame on the
corresponding side.

Bit Side

0 Top
]_ Right
2 Bottom
3 Left

The border is drawn when the
InitCharMap operation is executed.
The same character with the same
character attributes (see the
bBorderChar and bBorderAttr
parameters of the InitVidFrame
operation) is used for all sides and
corners.

bBorderChar is the character to use for borders
when the InitCharMap operation is
executed.

bBorderAttr is the character attribute to use
for borders when the InitCharMap
operation is executed.

iLinePause is used by the Sequential Access
Method to determine when to prompt
the workstation operator to press

23-17

23-18

iLineCursor
iColCursor

the NEXT PAGE key after a new page
of text is scrolled onto the
screen. iLinePause indicates which
line (0-33) is "marked." iLinePause
is decremented whenever the marked
line is scrolied upward. When it is
decremented to O, a message
prompting the user is displayed.
(See the complete description of
this in the subsection on
"Automatically Pausing Between Full
Frames of Text" in the "Sequential
Access Method" section.) If
iLinePause is set to 255 (OFFh), as
it is by the ResetFrame operation,
the functions described above are
suppressed.

are the vertical and horizontal
coordinates within the frame at
which the visible cursor is
displayed. If iLineCursor and
iColCursor are each set to 255
(OFFh), there is no visible cursor
in the frame.

OVERVIEW

SECTION 24

VIDEO DISPLAY MANAGEMENT

The Video Display Management
provides direct control over the
With it, the application system
application partition can:

{VDM) facility
video hardware.
in the primary

determine the level of video capability
present {basic, standard, and advanced video
capabilities are described in the "Video
Management" section),

load a new character font into the font RAM,

stop video refresh
changing the size
character map),

{useful
of the

when moving
frames or

or
the

change screen attributes, such as reverse
video and half-bright, while the screen is
being video-refreshed,

calculate the amount of memory needed for the
character map based on the desired height and
width of the characters, and the presence or
absence of character attributes,

initialize each of the frames, and

i ni tiali ze the character map.

Once the character map is set up and video
refresh is started, the image on the screen is
controlled by modifying the characters and
attributes stored in the character map. This
manipulation is best accomplished using the
system common procedures of the Video Access
Method and the object module procedures of the
Sequential Access Method. If necessary however,
the application system in the primary application
partition can manipulate the image on the screen
by writing directly into the character map.
Writing directly is somewhat more efficient than
using the procedures of the Video and Sequential
Access Methods, but results in code that is not
compatible among the several models of
workstation.

24-1

CONCEPTS
Reinitializing the Video Subsystem

24-2

The varied capabilities of the video subsystem
are initialized by a sequence of software
operations. The application system in the
primary application partition needs to
reinitialize the video subsystem only if the
desired state is not a capability of the Screen
Setup command (described in the B20 System
Executive Reference Manual, form 1144474.) An
application system that reinitializes the video
subsystem must include a sequence of software
operations similar to the following. The
application must:

1. Use the QueryVidHdw operation to determine
the level of video capability present on the
workstation in use.

2. Use the LoadFontRam operation to read the
character font from a file to memory and then
load this font into the font RAM, except in
workstations having only the basic video
capability. In workstations having advanced
video #1 capability, the application system
must load the cursor RAM and the style RAM
using the LoadCursorRam and LoadStyleRam
operations.

3. Use the ResetVideo operation to place the
following information in the Video Control
Block (described in the "Video Management"
section):

number of characters per line (80 or 132),

number of lines per screen (1 to 34), and

the prese nee
attributes.

or absence of character

4. Allocate a long-lived memory segment to use
as the character map, if the use of the
character map in system memory is
unsatisfactory. When calling the
AllocMemoryLL operation, the application
system should specify the size computed by
the ResetVideo operation. (See the "Memory
Management" section.)

5. Use the InitVidFrame operation to specify the
screen coordinates and dimensions of one of
the frames.

6. Use the SetScreenVidAttr operation to set
reverse video or half-bright, if desired.

7. Use the InitCharMap operation to initialize
the character map.

8. Use the SetScreenVidAttr
initiate video refresh.

operation to

The application system can now display
information by using the Video or Sequential
Access Methods or by writing characters and
attributes directly into the character map.

2~3

OPERATIONS: SERVICES

24-4

The Video Display Manager provides the operations
listed below.

InitCharMap

InitVidFrame

LoadFontRam

QueryVidHdw

ResetVideo

initializes the character map.

defines the screen coordinates
and dimensions of one of the
frames.

reads the character font from
the specified open file to the
specified memory area and then
transfers the font to the font
RAM.

places information describing
the level of video capability
of the workstation in the
specified memory area.

suspends video refresh, resets
all screen attributes, and
changes the values stored in
the Video Control Block to
reflect the specified
parameters.

SetScreenVidAttr sets/resets a specified screen
attribute.

lnitCharMap

Description

The InitCharMap service initializes the character
map. The ResetVideo and InitVidFrame operations
must be called first.

Ini tCharMap sets all character positions of the
character map to blanks and resets all line and
character attributes. It then places the border
character at the character positions that define
the border of the frames for which borders were
requested. The border descriptor, border
character, and border attributes of each frame
are specified by the Ini tVidFrame operation and
are stored in a frame descriptor of the Video
Control Block. (The Video Control Block and
frame descriptor are described in the "Video
Management" section.)

Procedural Interface

Request Block

InitCharMap (pMap, sMap): ErcType

where

pMap

sMap

Off set

0
2
3
4
6
8

10

12

18
22

is either 0 to indicate the use of
the character map in system memory
or is the memory address of a
character map in long-lived memory.

is the size of the character map.

Size
Field (bytes) Contents

sCntinfo 2 6
nReqPbCb 1 0
nRespPbCb 1 1
userNum 2
exchResp 2
ercRet 2
rqCode 2 76

reserved 6

pMap 4
sMap 2

24-5

lnitVidFrame

Description

The InitVidFrame service defines the screen
coordinates and dimensions of one of the
frames. Ini tVidFrame must be called at least
once after the ResetVideo operation and before
the InitCharMap operation is called. It can also
be called while the video subsystem is in use to
change a frame or to add a frame. The Video
Control Block is updated to reflect the changed
or added frame. (The Video Control Block and
frame descriptor are described in the "Video
Management" section.)

The screen coordinates of the upper left corner
of the frame are specified by iColStart and
iLineStart. The width and height of the frame
are given by nCols and nLines, respectively.
Frames can overlap, but they cannot exceed the
screen dimensions.

Procedural Interface

24-6

InitVidFrame (iFrame, iColStart, iLineStart,
nCols, nLines, borderDesc,
bBorderChar, bBorderAttr,
fDblHigh, fDblWide): ErcType

where

iFrame

iColStart

iLineStart

nCols

nLines

is an integer that ranges from 0 to
the number of frame descriptors in
the Video Control Block minus 1.
This identifies the frame to be
acted upon and selects one of the
frame descriptors of the Video
Control Block for modification.

is the column
corresponds to
of the frame.

of
the

the screen that
leftmost column

is the line of the screen that
corresponds to the top line of the
frame.

is the width of the frame in
columns.

is the height of the frame in
lines.

borderDesc is a byte with bits 0-3 specifying a
border just outside the frame on the
corresponding side. Note that the
border characters are in addition to
the area defined by nCols and
nLines.

Bit Side

0 Top
1 Right
2 Bottom
3 Left

The border is drawn when the
InitCharMap operation is executed.
The same character and attributes
(bBorderChar and bBorderAttr) are
used for all sides and corners.
Left and right borders are not
permitted in workstations with only
basic video capability.

bBorderChar specifies the character code to use
for the frame borders when drawn by
the InitCharMap operation.

bBorderAttr specifies the 4-bit character

f DblHigh

fDblWide

attribute field with which
bBorderChar is to be displayed.

To create complex borders, including
corner characters, initialize a
frame that defines the entire
screen; then put the appropriate
border characters and attributes
into the character map (using the
PutFrameChars and PutFrameAttrs
operations; see the "Video Access
Method" section).

Must be false.

Must be false.

24-7

Request Block

Size
Off set Field (bytes) Contents ·-------

0 sCntinfo 2 10
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 75

12 iFrame l

13 iColStart l

14 iLineStart 1

15 nCols 1

16 nI.ines l

17 borderDesc l

18 bBorderChar 1

19 bBorderAttr 1

20 f DblHigh 1

21 fDblWide l

24-8

LoadFontRam

Description

The LoadFontRam service reads the character font
from the specified open file to the specified
memory area and then transfers the font to the
font RAM. The file must contain a 16-word entry
for each of 256 characters. Thus the file is
exactly 4096 words (8192 bytes) long. Word 0 of
each 16-word entry must be O; words 1 to 15
represent the 15 rows of the character from top
to bottom. Only bits 9 to 0 (where bit 0 is the
least significant) of each word are used and
represent the pixels from left to right.

LoadFontRam only has effect in a video subsystem
with standard or advanced video capabilities.

Procedural Interface

LoadFontRam (fh, pBuffer, sBuffer): ErcType

where

f h

pBuf fer

sBuf fer

is the file handle of an open file
containing the character font.

is the memory address of the buffer
to use in loading the font RAM.

is 8704. pBuffer/sBuffer describe
the memory area to be used by
LoadFontRam. The memory area must
be completely contained in the first
128K bytes of memory and its size
must be 8704 bytes.

24-9

Request Block

Size
Off set Field (bytes) Contents

0 sCntinfo 2 6
2 nReqPbCb 1 1
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 22

12 f h 2

14 reserved 4

18 pBuf fer 4
22 sBuf fer 2 8704

24-10

QueryVidHdw

Description

The QueryVidHdw service places information
describing the level of video capabi 1 i ty of the
workstation in the specified memory area. When
writing software that must work on several models
of workstation, use QueryVidHdw to determine the
level of video capability present before calling
the ResetVideo operation. The format of the
returned data is shown below.

Off set Field

0 level

]_ nLinesMax

2 nColsNarrow

Size
(bytes) Description

1 Level of video
capability:

1

1

0 = standard;
2 = basic.

Maximum number of
lines (for exam­
ple, 34).

For models of
video hardware
that permit a se­
lection of line
width (for exam­
ple, 80/132
columns),
nColsNarrow
specifies the
narrower (for
example, 80) and
nColsWide
specifies the
wider (for exam­
ple, 132). For
models with only
one width,
nColsNarrow is
equal to
nColsWide.

24-11

24-12

Offset Field

3 nColsWide

4 bitMapLevel

5 nPixelsHigh

7 nPixelsWide

Size
(bytes) Descriotion

1 Wider line width

1

2

2

(for example,
132) •

Level of bit map
capability:
0 = none;
1 = for B22 work­
stations.

Number of pixels
high for this
version of bit
map.

Number of pixels
wide for this
version of bit
map.

9 saGraphicsBoard 2 Only applies if
bit map level is
1. Segment
address of 64k
memory segment
assigned to
Graphics Multibus
Board.

11 ioPort

13 reserved

2

87

Only applies if
bit map level is
1. This is the
switch-selectable
input/output port
used to select a
64k segment
within the
Graphics Multibus
Board memory.

Procedural Interface

QueryVidHdw (pBuffer, sBuffer): ErcType

where

pBuf fer

sBuf fer

Request Block

Off set

0
2
3
4
6
8

10

12

18
22

is the memory address of the buffer
to which the video capability
information is to be copied.

is the size of the buffer. If
sBuffer is too small, the data is
truncated.

Size
Field (bytes) Contents

sCntinfo 2 6
nReqPbCb 1 0
nRespPbCb 1 1
userNum 2
exchResp 2
ercRet 2
rqCode 2 21

reserved 6

pBuf fer 4
sBuf fer 2

24-13

Reset Video

Description

The ResetVideo service suspends video refresh,
resets all screen attributes, and changes the
values stored in the Video Control Block to
reflect the specified parameters. Subsequent
calls to the InitVidFrame operation are validated
against the values in the Video Control Bloc1<.
(The Video Control Block is described in the
"Video Management" section.)

Any number of columns or lines can be specified
if the video hardware permits specification of an
equal or greater number of columns or lines. For
example, a screen of 105 columns can be specified
on a video subsystem that has an 80-column mode
and a 132-column mode. In this case, the mode
would be set to 132-column mode, the leftmost 105
columns would be used, and the rightmost 27
columns would be blank.

Three values (sLine, ibToAttrs, and ibToChars)
are calculated and stored in the Video Control
Block for the Video Access Method or equivalent
user code. The rest of the Video Control Block
is reset, notably the definitions of all
frames. Also, the fExecScreen flag in the
Application System Control Block is set to FALSE.

Procedural Interface

24-14

ResetVideo (nCols, nLines, fAttr, bSpace,
psMapRet): ErcType

where

nCols

nLines

fAttr

bSpace

specifies the number of characters
per line (1 to 132).

specifies the number of lines per.
screen (1 to 34).

specifies whether the character map
is to include character
attributes. It is TRUE if character
attributes are to be used: it is
FALSE otherwise.

specifies a character code
blank in the font. This
when the character

that is
is used

map is

Request Block

initialized by the InitCharMap
operation, and by the ResetFrame and
ScrollFrame operations. (See the
"Video Access Method" section) •

psMapRet is the memory address of the word to
which the required size of the
character map is returned.

ssMapRet is always 2.

Off set Field

0 sCntinfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet

10 rqCode

12

13

14

15

16

18
22

nCols

nLines

fAttr

bSpace

reserved

psMapRet
ssMapRet

Size
(bytes)

2
1
1
2
2
2
2

1

1

1

1

2

4
2

Contents

6
0
1

74

2

24-15

Set Screen VidAttr

Description

The SetScreenVidAttr service sets and resets a
specified screen attribute.

Procedural Interface

Request Block

24-16

SetScreenVidAttr (iAttr, fOn): ErcType

where

iAttr

f On

Off set

0
2
3
4
6
8

10

12

14

identifies the screen attribute.

Value

0
1
2

Screen Attribute

reverse video
video refresh
half-bright

is TRUE to turn the specified screen
attribute on and FALSE to turn it
off.

Size
Field (bytes) Contents

sCntinfo 2 4
nReqPbCb 1 0
nRespPbCb 1 0
userNum 2
exchResp 2
ercRet 2
rqCode 2 77

iAttr 2

f On 2

OVERVIEW

SECTION 25
VIDEO ACCESS METHOD

The Video Access Method (VAM) provides direct
access to the characters and character attributes
of each frame. Its convenient interface provides
the application system with independence from the
position of the frame on the screen. In addi­
tion, the application system can be independent
of the model of workstation in use as long as
only the basic video capability is used. (The
basic, standard, and advanced video capabilities
are described in the "Video Management" section.)

VAM is a set of system common procedures.

Forms-Oriented Interaction

VAM is ideal for forms-oriented interaction; that
is, interaction in which a form is displayed in a
frame and the workstation operator enters data
into the fields (blanks) of the form. Direct
cursor addressing and modification of individual
characters and character attributes support this
interaction.

For example, the PutFrameAttrs operation is used
to highlight the field to be entered next by
setting reverse video for the range of character
positions that compose the field. After the
field is entered, the PutFrameAttrs operation is
used again to reset the reverse video attribute
on the character positions of the field.

Advanced Text Processing

VAM is also ideal for advanced text processing
because it provides scrolling up and down of
entire or partial frames. It is easy, for
example, to scroll up the top four lines of a
frame and insert a new line of text between the
old fourth and fifth lines. During scrolling,
character attributes scroll along with the text
they affect.

25-1

OPERATIONS: PROCEDURES

25-2

The Video Access Method provides the operations
listed below.

PosFrameCursor

PutFrameAttrs

PutFrameChars

QueryFrameChar

ResetFrame

ScrollFrame

establishes a visible cursor
within the specified frame at
the specified coordinates.

establishes the same character
attribute for a range of
character positions within a
specified frame.

overwrites the specified
character positions in the
specif led frame with the
specified text string.

returns a single character
located in the character map at
the specified coordinates of
the specified frame.

restores the frame to its
initial state, that is, all
character positions are blanked
and all character attributes
are reset.

scrolls the specified portion
of the specified frame up or
down by the specified number of
lines.

•

PosframeCursor

Description

The PosFrameCursor procedure establishes a
visible cursor within the specified frame at the
specified coordinates.

In a workstation with only basic video
capability, PosFrameCursor erases any previously
displayed cursor, even one in another frame.

Procedural Interface

Request Block

PosFrameCursor (iFrame, iCol, iLine): ErcType

where

iFrame

iCol
iLine

specifies the frame.

specify the horizontal and vertical
coordinates within iFrame at which
to establish a cursor. To remove
the cursor from a frame, both iCol
and iLine must be specified as 255
(OFFh).

PosFrameCursor is a system common procedure.

25-3

PutFrameAttrs

Description

The PutFrameAttrs procedure establishes the same
character attribute for a range of character
positions within a specified frame. The
character attribute is applied first left to
right and then top to bottom in the same manner
as characters are moved into a frame.

Procedural Interface

25-4

PutFrameAttrs (iFrame, iCol, iLine, attr,
nPos): ErcType

where

iFrame

iCol
iLine

attr

specifies the frame.

specify the
coordinates
to begin
attributes.

horizontal and vertical
within iFrame at which

altering character

the low-order 4 bits of attr specify
the character attributes. For
workstations with basic or standard
video capabilities, the
interpretation of the bits is as
shown below.

Bit Value Attribute

O 1 Half-bright. (Note that
if screen half-bright is
set, the interpretation
of the character attrib­
ute half-bright is to
negate half-bright (that
is, to display the
character at full
brightness.)

1 2 Underlining.

Request Block

nPos

Bit Value Attribute

2 4 Reverse video. {Note
that if screen reverse
video is set, the inter­
pretation of the charac­
ter attribute reverse
video is to negate re­
verse video {that is, to
display a light charac­
ter on a dark back­
ground.)

3 8 Blinking.

specifies the number of character
positions whose character attributes
are to be changed.

PutFrameAttrs is a system common procedure.

25-5

PutFrameChars

Description

The PutFrarneChars procedure overwrites the
specified character positions in the specified
frame with the specified text string. PutFrame­
Chars does not cause the character attributes
associated with the character positions to change
and never causes scrolling.

Procedural Interface

Request Block

25-6

PutFrarneChars (iFrame, iCol, iLine, pbText,
cbText): ErcType

where

iFrarne

iCol
iLine

pbText
cbText

specifies the frame.

specify the horizontal and vertical
coordinates within iFrame at which
the first character of the text
string is to be moved.

describe the text string to be moved
into the character map.

PutFrameChars is a system common procedure.

QueryFrameChar

Description

The QueryFrameChar procedure returns a single
character located in the character map at the
specified coordinates of the specified frame.

Procedural Interface

Request Block

QueryFrameChar (iFrame, iCol, iLine,
pbRet): ErcType

where

iFrame

iCol
iLine

pbRet

specifies the frame.

specify the horizontal and vertical
coordinates within iFrame of the
character to be returned.

is the memory address of the byte to
which the character is to be
returned.

QueryFrameChar is a system common procedure.

25-7

Reset Frame

Description
The Reset Frame procedure restores the frame to
its initial state, that is, all character
positions are blanked and all character
attributes are reset. The visible cursor of the
frame is disabled (the iLineCursor and iColCursor
fields of the frame descriptor of the Video
Control Block are set to OFFh). (The Video
Control Block and frame descriptor are described
in the "Video Management" section.) The
coordinates at which the Sequential Access Method
is to place the next character are set to the
upper left corner of the frame (the frame
descriptor fields iLineLeftOff and iColLeftOff
are set to 0).

To support the Sequential Access Method's ability
to request confi rma ti on before scrolling
information off the top of the frame, the first
line of the frame is marked, unless pausing is
disabled (the frame descriptor field iLinePause
is set to O, unless its previous value was OFFh).

Procedural Interface

ResetFrame (iFrame): ErcType

where

iFrame specifies the frame.

Request Block

ResetFrame is a system common procedure.

25-8

Scroll Frame

Description

The ScrollFrame procedure scrolls the specified
portion of the specified frame up or down by the
specified number of lines. Vacated lines are
replaced by blank lines. The portion to scroll
begins at iLineStart and extends down to, but
does not include, iLineMax. It is scrolled
up/down by cLines and the bottommost/topmost
cLines lines of the scrolled area are filled with
nulls (character code 0). fUp specifies the
direction of the scroll. A value of OFFh for
iLineStart or iLineMax specifies an imaginary
line just below the bottom of the frame.

For example, to scroll an entire frame up by one
line, specify:

iLineStart = O
iLineMax = OFFh
cLines = 1
f Up = TRUE

To open a two-,line space at
lines 4 and 5 become blank)
frame down, specify:

iLineStart = 4
iLineMax = OFFh
cLines = 2
fUp = FALSE

line 4 (that is,
by scrolling the

To close the two-line space again, by scrolling
the frame up (leaving the bottom two lines
blank), specify:

iLineStart = 4
iLineMax = OFFh
cLines = 2
f Up = TRUE

25-9

Procedural Interface

Request Block

25-10

ScrollFrame (iFrame, iLineStart, iLineMax,
cLines, fUp): ErcType

where

iFrame

iLineStart

iLineMax

cLines

f Up

specifies the frame.

is the line at the top of the area
to scroll.

is the line just below the area to
scroll.

is the number of lines by which to
scroll.

specifies the direction of the
scroll. It is TRUE for scroll up or
FALSE for scroll down.

ScrollFrame is a system common procedure.

OVERVIEW

Physical Keyboard

SECTION 26
KEYBOARD MANAGEMENT

The keyboard management facility
application system in the primary
partition to control the keyboard.

enables the
appli ca ti on

The 98-key keyboard includes ten special function
keys and eight keys with LEDs. The keyboard is
unencoded, that is, pressing or releasing a key
causes unambiguous information to be transmitted
from the 8048 microprocessor in the keyboard to
keyboard management.

Consider this sequence: press the SHIFT key (to
the left of the Z), press the A, release the A,
release the SHIFT. An encoded keyboard would
transmit only one i tern of information, the code
for uppercase A. The B20 unencoded keyboard,
however, transmits four items of information, one
for each key transition. It also differentiates
the depression/release of the left SHIFT key from
the depression/release of the right SHIFT key.

Although this Manual refers to the keys by the
standard symbols engraved on them, the meaning of
each key is completely under the control of the
application system in the primary application
partition.

Keyboard Modes: Unencoded and Character

The appl i cation sys tern in the primary appl i ca ti on
partition can request input from the keyboard in
either of two modes: unencoded or character.

In unencoded mode, the application system
receives an indication of each key depression and
release. This mode provides maximum flexibility.
With unencoded mode, an application system can,
for example, use any key as a SHIFT key, provide
a hierarchy of SHIFT keys, and make decisions
based on how long a key remains depressed. These
are only three of many possibilities. The Editor
makes extensive use of the flexibility afforded
by unencoded mode. See the B20 Systems Editor
Reference Manual, form 1148673 and especially
note the description of the MOVE and COPY keys in
the "Manipulating the Selection" section.

26-1

In character mode, the application system
receives an 8-bit character code when a key other
than SHIFT, CODE, LOCK, or ACTION is pressed.
Character mode provides the application system
with the same kind of information as a
traditional n-key rollover encoded keyboard.
However, even character mode provides greater
flexibility than an encoded keyboard. As
keyboard management converts the sequence of
keyboard codes to 8-bit character codes, it
accesses the Keyboard Encoding Table to direct
its translation.

Keyboard Encoding Table

26-2

The Keyboard Encoding Table can be modified
dynamically during application system execution,
as well as at system build. This Table controls
several aspects of the keyboard-code-to­
char acter-code translation:

the character code to generate if the SHIFT
key is/is not depressed,

whether the LOCK key has the effect of the
SHIFT key for this key,

whether the key is Typematic (repeats),

the initial delay before beginning Typematic
repeating, and

the frequency of Typematic repeating.

The standard Keyboard Encoding Table (see
Appendix B) provides an 8-bi t superset of the
ASCII printable characters. All 256 8-bit
character codes can be generated from the
keyboard. Each of the first 128 character codes
(and some of the second 128) can be generated
either by pressing a single key or by depressing
the SHIFT key while depressing another key.
Depressing the CODE key while depressing another
key causes the high-order bit to be set (80h to
be inclusive ORed) in the character code that
would otherwise be generated. Thus, the use of
the CODE key (or the CODE and SHIFT keys) permits
the generation of the remainder of the 256
character codes.

The ability to modify the Keyboard Encoding Table
allows the keyboard to be customized without
requiring the application system to support the
complexity of directly interpreting the unencoded
keyboard.

LED Keys

Submit Facility

A typical requirement is to use the numeric pad
keys as function rather than data entry keys.
This requires that the application system
distinguish, for example, between the 3 on the
numeric pad and the 3 on the typewriter pad.
Changing the entry for the 3 on the numeric pad
in the Keyboard Encoding Table provides the
selected unique code to the application system
whenever that key is pressed. (Support of this
function may also require changing the key cap
engraving for the numeric pad 3 key.)

Seven of the eight keyboard LEDs are under
application system control. The LED in the LOCK
key is under control of the application system
control in unencoded mode and control of keyboard
management in character mode.

The System Input Manager augments keyboard
management by providing a submit facility. The
submit facility permits a sequence of characters
from a file to be substituted for characters
typed at the keyboard. The use of submit files
allows the convenient repetition of command
sequences. For example, a submit file might be
used to run the sequence of programs necessary to
produce end-of-month reports.

One convenient way to use the submit facility is
to use the Editor to prepare a submit file
containing the same sequence of characters that
would be typed to the desired programs. When
this submit file is activated by a request from
an application system or an Executive command, a
character from the file is returned to the
application system whenever it requests a
character from the keyboard. (Since the System
Input Manager always operates in character mode,
this is not applicable to an application system
that uses the keyboard in unencoded mode.)

Use of the submit facility does not preclude
direct access to the keyboard. The application
system can bypass an active submit file and read
characters directly from the keyboard. This is
necessary when the application system needs

26-3

26-4

confirmation that a physical action was
performed. For example, if a submit file is used
to produce a sequence of reports, the application
system needs to accept confirmation from the
keyboard, rather than from the submit file, that
the correct report forms are loaded into the
printer.

When requesting a character, an application
system can specify that the character must come
from the keyboard rather than the submit file.
Also, a special sequence of characters (an escape
sequence) in the submit file can cause input to
be accepted temporarily directly from the
keyboard. Pressing a special key causes the
input source to revert to the submit file.

The System Input Manager has a complementary
capability that records in a file all the
characters typed at the keyboard, in addition to
returning them to the application system
requesting them. This file can be used as a
record of all data typed at the workstation.
Also, a file of this kind can be used as a submit
file to repeat the same sequence of input
characters to the same programs at a later time.

CONCEPTS

Physical Keyboard

The 98-key keyboard (see Figure 26-1) includes
ten special function keys and eight keys with
LEDs. The keyboard is unencoded, that is,
pressing or releasing a key causes unambiguous
information to be transmitted from the 8048
microprocessor in the keyboard to keyboard
management.

When a key is depressed or released, the 8048
microprocessor in the keyboard transmits a
sequence of bytes to indicate all keys currently
depressed. The seven low-order bits of each byte
identify the key. The high-order bit is 0 in all
bytes except the last of the sequence; it is set
in the last byte to indicate the end of the
sequence. A special code is transmitted to
indicate that the last key was released and that
no keys remain depressed.

Keyboard management remembers which keys are
depressed. When it receives a byte sequence from
the keyboard microprocessor, it compares the keys
now reported as depressed to the ones it
remembers as depressed. The differences are the
keys depressed/released. This information is
represented in an 8-bit byte for each key
depression/release. The seven low-order bits
identify the key; the high-order bit is O to
indicate key depression and 1 to indicate key
release.

Keyboard Modes: Unencoded and Character

primary application An application system in the
partition can use the
opera ti on to specify in which
and ReadKbdDirect operations
There are two modes: unencoded

SetKbdUnencodedMode
mode the ReadKbd
are to function.
and character.

In unencoded mode, the application system
receives an indication of each key depression and
release. In this mode, the 8-bit byte, the
keyboard code, returned by the ReadKbd or
ReadKbdDirect operation identifies the key in the
seven low-order bits; the high-order bit is 0 to
indicate key depression and 1 to indicate key
release. Appendix C specifies the 7-bi t code
generated for each key of the physical keyboard.

26-5

IV
C'I
I

C'I

/'

Display LED I Pad /Indicators

Function
Pad

L
Keyboard label Strip Cursor Pad

~~~ I I 7 . I t:.JL!JEJ 
PREY 11 SCROLL 
PAGE DOWN 

r-
HELP \DEL; 

• 
ACTION 

OVER 
TYPE 

• • • • • • 
f1 12 f3 f4 f5 f6 f7 f8 19 110 

mOJWWWl ~. IWWW 
gl!!~~~~~~~ 

TAB ml~L:JL.:JLJ~L:Jl!:J_' _______ .. _I_ 

• 
LOCK J~~l!.. 
B JEJix 

CODE 

\ 
Control Pad 

F G H J K L ...... ~._. ....... ~~ ~ 
c v B N M 

...._.~~~ 

CODE 

\ 
Typewriter Pad 

Figure 26-1. Keyboard 

?CJ! """~ ,n SHITT 

I 
I 

7 

~~ 

\ 
Numeric Pad 



Type Ahead 

ACTION Key 

In character mode, the default mode, the 8-bi t 
byte, the character code, returned by the ReadKbd 
or ReadKbdDirect operation signifies the 
depression of a key other than SHIFT, CODE, LOCK, 
or ACTION. Depression of SHIFT, CODE, and LOCK 
does not generate a character code, but 
influences the character codes generated for 
other keys depressed concurrently. ACTION has a 
special, system-wide meaning. (See the "ACTION 
Key" section below.) 

Keyboard management has a type-ahead buffer that 
stores character codes (or keyboard codes, if in 
unencoded mode) not yet read by an application 
system. If the -workstation operator types too 
many characters in advance of processing, the 
excess are discarded. When the application 
system reads beyond those characters that were 
buffered successfully, it receives status code 
610 ("Type-ahead buffer overflow"). The size of 
the type-ahead buffer is usually 128 characters, 
put can be changed at system build. The content 
of the type-ahead buffer is discarded by the 
SetKbdUnencodedMode operation if the mode is 
actually changed and by the Chain and ErrorExi t 
operations if the status code is abnormal 
(nonzero) (see the "Task Management" section). 

The ACTION key is a special kind of SHIFT key. 
It is processed specially, even in unencoded 
mode. The interpretation of all other keys is 
modified while ACTION is depressed. 

Key combinations that include the ACTION key are 
processed independently of calls by the 
application system to the ReadKbd or 
ReadKbdDirect operation and are not affected by 
character or keyboard codes stored in the type­
ahead buffer. 

The key combination ACTION-FINISH terminates the 
execution of the current application system and 
invokes the Executive. The DisableActionFinish 
operation disables this feature. 

26-7 



The key combinations ACTION-A and ACTION-B invoke 
the Debugger if the Debugger is included in the 
Operating System at system build. 

Some of the key combinations that include the 
ACTION key are available for interpretation by an 
application system. Depressing CANCEL, HELP, 
0-9, or fl-f 10 while ACTION is depressed causes 
the keyboard code for the key depressed in 
conjunction with ACTION to be remembered. This 
code is an action code and can be obtained by 
calling the ReadActionCode operation. This 
allows the application system to test for special 
operator intervention without preventing type 
ahead. 

For example, the BASIC interpreter uses ACTION­
CANCEL to interrupt computation without 
interfering with type ahead. 

If the workstation operator types a second key 
combination that includes the ACTION key before 
the first is read by the ReadActionCode 
operation, the second action code supersedes the 
first. 

Independence of Keyboard and Video 

Keyboard management never communicates with the 
video subsystem. The application system is free 
to interpret each character as it chooses and to 
echo characters to the video subsystem when and 
how it chooses. Keyboard management attaches no 
special significance to keys such as FINISH, 
HELP, RETURN, or DELETE. Only ACTION has special 
si gni fi ca nee. 

Keyboard Encoding Table 

26-8 

Keyboard management converts the sequence of 
keyboard codes to 8-bit character codes using the 
Keyboard Encoding Table. (See Appendix B for the 
standard character set stored in the Keyboard 
Encoding Table.) The address of the the Keyboard 
Encoding Table is stored at address 270h in the 
System Common Address Table. This allows the 
Keyboard Encoding Table to be modified 
dynamically during application system execution, 
as well as at system build. This Table controls 
several aspects of the keyboard-code-to­
character-code translation: 



the character code to generate if the SHIFT 
key is/is not depressed, 

whether the LOCK key has the ef feet of the 
SHIFT key for this key, 

whether the key is Typematic (repeats), 

the initial delay before begining Typematic 
repeating, and 

the frequency of Typematic repeating. 

See the 820 System Programmers 
Reference Manual (Part 1), form 
detailed information on modifying 
Encoding Table. 

and Assembler 
1148699 for 

the Keyboard 

Standard Character Set 

Submit Facility 

The standard character set (see Appendix B) 
provides an 8-bit superset of the ASCII printable 
characters. All 256 8-bit character codes can be 
generated from the keyboard. Each of the first 
128 character codes (and some of the second 128) 
can be generated either by pressing a single key 
or by depressing the SHIFT key while depressing 
another key. Depressing the CODE key while 
depressing another key causes the high-order bit 
to be set (80h to be inclusive ORed) in the 
character code that would otherwise be 
generated. Thus, the use of the CODE key (or the 
CODE and SHIFT keys) permits the generation of 
the remainder of the 256 character codes. 

The submit facility permits a sequence of 
characters from a file to be substituted for 
characters typed at the keyboard. The use of 
submit files allows the convenient repetition of 
command sequences. 

A submit file can be activated by the 
SetSysinMode operation from an application system 
or by an Executive command. The submit file 
remains active until all its characters are read, 
an end-of-file escape sequence is read from it, 
or the application system calls the SetSysinMode 
operation again. 

26-9 



26-10 

While a submit file is active, a character is 
read from the file and returned to the 
application system when the ReadKbd operation is 
called. After all characters are read from the 
submit file, it is automatically closed and 
subsequent ReadKbd operations read characters 
directly from the keyboard. The application 
system is not informed of the transition of input 
source from submit file to keyboard. This 
permits the use of submit files to be transparent 
to the application system. However, the 
QueryKbdState operation is available to an 
application system that needs to know whether a 
submit file is active. 

Two circumstances can temporarily disable a 
submit file: the SetKbdUnencodedMode operation 
and a read-direct escape sequence (see the "Read­
Direct Escape Sequence" section below). 

If the application system sets unencoded mode by 
calling the SetKbdUnencodedMode operation, then 
the ReadKbd operation reads keyboard codes from 
the keyboard, not from the submit file. Thus, 
the submit facility is not available to 
application systems that use the keyboard in 
unencoded mode. When the application system 
calls the SetKbdUnencodedMode operation with the 
argument FALSE to set character mode, the submit 
file is reactivated and characters are again read 
from the submit file. 

The submit file is also temporarily disabled when 
a read-direct escape sequence is read from the 
submit file. 

The ReadKbdDirect operation is available to read 
from the keyboard at all times, regardless of 
whether a submit file is active. 

The SetSysinMode operation can also specify 
recording mode. When recording mode is active, 
all characters typed at the keyboard and read in 
character mode by the ReadKbd operation (but not 
by the ReadKbdDirect operation) are written tO"'""a 
recording file, in addition to being returned to 
the application system of the ReadKbd 
operation. A recording file can later be used as 
a submit file to repeat the same sequence of 
input characters. A recording file and a submit 
file cannot be active simultaneously. 



Submit File Escape Sequences 

Certain sequences of characters (escape 
sequences) invoke special functions when read 
from a submit file. A submit file escape 
seguence consists of two or three characters. 
The first is the character code 03h (¢), which 
indicates the presence of an escape sequence. 
The second character of the escape sequence is a 
code to identify the special function. The third 
character, if present, is an argument to the 
special function. The permitted codes are shown 
in Table 26-1 below. 

Table 26-1. Pe!!mitted Codes in Escape Sequences 

Character Code Function 

¢ 03h Two-character escape sequence 
that represents the character 
code 03h (¢}. Since 03h is 
used to introduce escape 
sequences, this escape 
sequence (that is, two 
consecutive ¢) is the only way 
to represent the ¢ in a submit 
file. 

1 3lh Three-character read-direct 
escape sequence (see below). 

2 32h End-of-file escape sequence. 
When this two-character escape 
sequence is read during a 
ReadKbd operation, the submit 
file is closed. The current 
and subsequent ReadKbd 
operations read characters 
directly from the keyboard. 
(This escape sequence is 
meaningful only in submit 
files that were created as 
recording files rather than 
through the Editor.) 

26-11 



Read-Direct Escape Sequence 

26-12 

The read-direct escape sequence is a three­
character submit file escape sequence that causes 
the ReadKbd operation to read characters directly 
from the keyboard until a specified key is 
depressed. The third byte of the escape sequence 
specifies the key that is to terminate input from 
the keyboard. When the specified key is 
depressed, its keyboard code is not returned to 
the application system. Rather, the current and 
all subsequent ReadKbd operations read characters 
from the submit file (unless another escape 
sequence redirects the input source). 

For example, it is frequently useful to have the 
operator enter data into a single field of an 
Executive command form (see the B20 System 
Executive Reference Manual, form 1144474) during 
the playing of a submit file. To accomplish 
this, the submit file should contain: 

data for the previous field 

OAh (RETURN/NEXT) 

the three-character escape sequence 03h, 3lh, 
OAh (¢, 1, RETURN/NEXT) 

OAh (RETURN/NEXT) 

data for the next field 

. . . 
When the escape sequence is read from the submit 
file, the cursor is blinking in the leftmost 
character position of the field that is to be 
entered manually. The operator then enters the 
desired data into the field and presses either 
the RETURN or the NEXT key (symbolized by 
RETURN/NEXT). Pressing RETURN/NEXT resumes the 
execution of the submit file but control is not 
returned to the application system. The second 
RETURN/NEXT in the submit file ends the entry of 
data into the field and advances to the next 
field of the form. 

As another example: it may be useful to have the 
operator enter data into all the fields of a form 
during the playing of a submit file. To 
accomplish this, include the four characters: 



03h, 31h, lBh, lBh 

in the submit file. This causes all characters 
except GO ( lBh) to be read from the keyboard. 
When the operator completes the form and presses 
GO, the GO read from the keyboard resumes the 
playing of the submit file. The GO in the submit 
file (the lBh following the three..;.character 
escape sequence) completes the processing of the 
form. 

Application System Termination 

When an application system terminates (because of 
the Chain, Exit, or ErrorExit operations, or the 
ACTION-FINISH key combination): 

if the keyboard was in unencoded mode, it is 
reset to character mode and the content of 
the type-ahead buffer is discarded, 

the ACTION-FINISH feature is reenabled, and 

the action code, if any, is discarded. 

In addition, if the application system terminates 
abnormally (because of the Chain or ErrorExit 
operations with a nonzero status code, or ACTION­
FINISH): 

the content of the type-ahead buffer is 
discarded, and 

the submit or recording file is closed. 

Termination of the application system does not 
affect the keyboard LEDs. However, the Executive 
resets the LEDs when it is called. 

26-13 



OPERATIONS: SERVICES 

26-14 

Keyboard management prov ides 
listed below. 

the operations 

Beep 

CheckpointSysin 

actives an audio tone for one­
half second. 

writes the content of the 
current, partially filled, 
output buffer to the recording 
file if the System Input 
Manager is in recording mode. 

DisableActionFinish 

QueryKbdLeds 

QueryKbdState 

ReadActionCode 

ReadKbd 

ReadKbdDirect 

SetKbdLed 

disables OS interpretation of 
ACTION-FINISH. 

returns the state (on/off) of 
the eight keyboard LEDs. 

returns the status of the 
keyboard and the System Input 
Manager to a structure provided 
by the application system. 

returns the action code, if 
any, and resets the indication 
that an action code is 
available. 

reads one character from the 
keyboard, or from a submit file 
if one is active. 

reads one character code (or 
keyboard code, if in unencoded 
mode) from the keyboard. 

turns on/off one of the 
keyboard LEDs. 

SetKbdUnencodedMode 

SetSysinMode 

selects unencoded or cha~acter 
mode. 

changes the state of the System 
Input Manager. 



Beep 

Description 

The Beep service activates an audio tone for one­
half second. 

Procedural Interface 

Beep: ErcType 

Request Block 

Size 
Off set Field (bytes) Contents 

0 sCntinfo 2 0 
2 nReqPbCb 1 0 
3 nRespPbCb 1 0 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 52 

26-15 



CheckpointSysln 

Description 

The CheckpointSysin service writes the content of 
the current, partially filled, output buffer to 
the recording file if the System Input Manager is 
in recording mode. If the System Input Manager 
is in normal or submit mode, no action occurs. 

Procedural Interface 

CheckpointSysin: ErcType 

Request Block 

Size 
Off set Field (bytes) Contents 

0 sCntinfo 2 0 
2 nReqPbCb 1 0 
3 nRespPbCb 1 0 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 68 

26-16 



Dbmlil~A.r:tinnFinish 

The DisableActionFinish service permits an 
application system in the primary application 
partition to disable OS interpretation of the 
ACTION-FINISH key combination. 

Normally, the operator can terminate the current 
primary application system by simultaneously 
depressing the ACTION and FINISH keys. However, 
it is highly undesirable to terminate the 
execution of certain types of application 
systems. DisableActionFinish permits such 
application systems to disable OS interpretation 
of ACTION-FINISH. 

P~~ennral Interface 

RP.qnest Block 

DisableActionFinish (fDisable): ErcType 

where 

fDisable 

Off set 

0 
2 
3 
4 
6 
8 

10 

12 

disables ACTION-FINISH if TRUE or 
enables ACTION-FINISH if FALSE. 

Size 
Field (bytes) Contents 

sCntinfo 2 2 
nReqPbCb 1 0 
nRespPbCb 1 0 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 67 

fDisable 2 

26-17 



QueryKbdleds 

Description 

The QueryKbdLeds s ce retur the tate 
(on/off) of the eight eyboard LEDs. 

Procedural Interface 

Request Block 

26-18 

QueryKbdLeds: (pLEDsR2t): ErcType 

where 

pLEDsRet is the ff -c.c ,, addres::: .;:)f a byte to 
which th0 stbc0 is re rned. 

Bit 

0 (low) 
1 
2 
3 
4 
5 
6 
7 

f 10 
f 9 
f 8 
f 3 
f 2 
fl 
LOCK 
OVERTYPB 

sLEDsRet is always 1. 

Off set Field 

0 sCntinfo 
2 nReqPbCb 
3 nRespPbCb 
4 userNum 
6 exchResp 
8 ercRet 

10 rqCode 

12 reserved 

18 pLEDsRet 
22 sLEDsRet 

Size 
·-··-·{l;iv te s L __ "cg 10 tents . __ _ 

2 
1 
-L. 

l 
2 
2 
2 
2 

6 

4 

6 
0 
1 

55 

1 



OueryKbdState 

Description 
The QueryKbdState service returns the status of 
the keyboard and the System Input Manager to a 
structure provided by the application system in 
the primary application partition. 

Procedural Interface 

QueryKbdState (pKbdDescRet): ErcType 

where 

pKbdDescRet is the memory address of a 16-byte 
keyboard descriptor area to which 
the status of the keyboard and the 
System Input Manager are returned. 

Size 
Off set Field (bytes) 

O fUnencodedMode 1 
1 sysinMode 1 
2 fhSysin 2 
4 reserved 12 

where 

fUnencodedMode 
is character mode if FALSE or 
unencoded mode if TRUE. 

sysinMode 
O = normal mode (neither submit 

nor recording mode is active); 
1 = recording mode (a copy of 

keyboard input is being 
written to the file specified 
by fhSysin); 

2 = submit mode (input is being 
read from the file specified 
by fhSysin); 

3 = escaped submit mode (the 
submit file specified by 
fhSysin is in use, but a read­
direct escape sequence was 
read from that file causing 
input to be read directly from 
the keyboard until a special 
key is pressed). 

26-19 



Request Block 

26-20 

fhSysin 
is the file handle of the 
currently open submit or recording 
file. If sysinMode is 0 (normal 
mode), fhSysin is not meaningful. 

sKbdDescRet is al ways 16. 

Off set Field 

0 sCntinfo 
2 nReqPbCb 
3 nRespPbCb 
4 userNum 
6 exchResp 
8 ercRet 

10 rqCode 

12 reserved 

18 pKbdDescRet 
22 sKbdDescRet 

Size 
(bytes) 

2 
1 
1 
2 
2 
2 
2 

6 

4 
2 

Contents 

6 
0 
1 

58 

16 



ReadActionCode 

Description 

The ReadActionCode service returns the action 
code, if any, and resets the indication that an 
action code is available. If no action code is 
available, ReadActionCode returns status code 609 
("No action code available"). 

Procedural Interface 

Request Block 

ReadActionCode (pCodeRet): ErcRet 

where 

pCodeRet is the memory address of a byte to 
which the keyboard code of the key 
that was depressed while the ACTION 
key was depressed is to be returned. 

sCodeRet is always 1. 

Size 
Off set Field (bytes) Contents 

0 sCntinfo 2 6 
2 nReqPbCb 1 0 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 60 

12 reserved 6 

18 pCodeRet 4 
22 sCodeRet 2 1 

26-21 



ReadKbd 

Description 

The ReadKbd service reads one character from the 
keyboard. If a submit file is currently active, 
ReadKbd reads the character from that file 
instead of from the keyboard. 

Procedural Interface 

Request Block 

26-22 

ReadKbd (pCharRet} : ErcType 

where 

pCharRet is the memory address of a byte to 
which the character is to be 
returned. 

sCharRet is always 1. 

Off set Field 

0 sCntinfo 
2 nReqPbCb 
3 nRespPbCb 
4 userNum 
6 exchResp 
8 ercRet 

10 rqCode 

12 reserved 

18 pCharRet 
22 sCharRet 

Size 
(bytes} 

2 
1 
1 
2 
2 
2 
2 

6 

4 
2 

Contents 

6 
0 
1 

53 

1 



ReadKbdDirect 

Description 

The ReadKbdDirect service reads one character 
code (or keyboard code, if in unencoded mode) 
from the keyboard. ReadKbdDirect never reads 
from a submit file. Special modes permit testing 
for the presence of a character in the type-ahead 
buffer. 

Procedural Interface 

ReadKbdDirect (mode, pCharRet): ErcType 

where 

mode is one of the following codes: 

Code Description 

0 wait until a character 
code (or keyboard code, if 
i n une ncoded mode ) is 
available, then return it. 

1 if a character code (or 
keyboard code, if in 
une ncoded mode) is 
currently available, 
return it. If no 
character code or keyboard 
code is available, return 
status code 602 ("No 
character available"). 

2 wait until a character 
code (or keyboard code, if 
in unencoded mode) is 
available, then return a 
copy of it but do not 
remove it from the type­
ahead buffer. A 
subsequent ReadKbdDirect 
or ReadKbd operation reads 
the same character code or 
keyboard code again. 

26-23 



Request Block 

26-24 

pCharRet 

Code Description 

3 if a character code (or 
keyboard code, if i n 
unencoded mode) is 
available, return a copy 
of it but do not remove it 
from the type-ahead 
buffer. If no character 
code or keyboard code is 
available, return status 
code 602 ("No character 
available"). 

is the memory address of a byte to 
which to return a character code or 
keyboard code. 

sCharRet is always 1. 

Size 
Off set Field (bytes) Contents 

0 sCntinfo 2 6 
2 nReqPbCb 1 0 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 . 54 

12 mode 2 

14 reserved 4 

18 pCharRet 4 
22 sCharRet 2 1 



SetKbdled 

Description 

The SetKbdLed service turns one of the keyboard 
LEDs on or off. 

Procedural Interface 

Request Block 

SetKbdLed (iLED, fOn}: ErcType 

where 

iLED 

f On 

Off set 

0 
2 
3 
4 
6 
8 

10 

12 

14 

is the identification of the LED to 
turn on/off. 

iLED ~ 

0 f 10 
1 f 9 
2 f 8 
3 f 3 
4 f 2 
5 fl 
6 LOCK (only if the keyboard 

is in unencoded 
mode) 

7 OVERTYPE 

is on if TRUE or off if FALSE. 

Size 
Field (bytes} Contents 

sCntinfo 2 4 
nReqPbCb 1 0 
nRespPbCb 1 0 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 56 

iLED 2 

f On 2 

26-25 



SetKbdUnencodedMode 

Description 

The SetKbdUnencodedMode service selects unencoded 
or character mode. SetKbdUnencodedMode discards 
the content of the type-ahead buffer if the mode 
is actually changed. 

Procedural Interface 

Request Block 

26-26 

SetKbdUnencodedMode (fOn): ErcType 

where 

f On 

Offset 

0 
2 
3 
4 
6 
8 

10 

12 

is unencoded mode if 
character mode if FALSE. 

Size 

TRUE or 

Field (bytes) Contents 

sCntinfo 2 2 
nReqPbCb 1 0 
nRespPbCb 1 0 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 57 

f On 2 



Sets ~>lnMode 

Descr: iption 

The SetSys.- Aode service changes the state of the 
System Input Manager. SetSysinMode first closes 
the existing submit or recording file, if any, 
and then sets the specified mode using the 
specified file, if any. 

Procedural I:nt.£!:rface 

SetSysinMode (iMode, fhSysin): ErcType 

where 

iMode 

fhSysin 

is one of the following codes: 

Code 

0 

1 

2 

Mode 

normal mode (neither 
submit nor recording mode 
is active); 

recording mode (a copy of 
keyboard input is to be 
written to the file 
specified by fhSysin); 

submit mode (input is to 
be read from the file 
specified by fhSysin). 

is the file handle of the open file 
to use for the submit or recording 
file. The application system must 
make no further reference to this 
file. This is not used if iMode is 
0 (normal mode). 

26-27 



Request Block 

Size 
Off set Field (bytes) Contents 

0 sCntinfo 2 4 
2 nReqPbCb 1 0 
3 nRespPbCb 1 0 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 59 

12 f h 2 

14 iMode 2 

26-28 



SECTION 27 

COMMUNICATIONS MANAGEMENT 

OVERVIEW 

Each workstation, except the B21-l, includes an 
integral serial input/output (SIO) communications 
controller that supports two communications 
channels. Each channel can be used in 
asynchronous, character-synchronous, or bit­
synchronous mode. Software support is provided 
at three levels. 

Terminal Emulator, 

Sequential Access Method, and 

user-written Communication Interrupt Service 
Routine. 

The Asynchronous Terminal Emulator (ATE), the 
X.25 Terminal Emulator, the 3270 Terminal 
Emulator, and the 2780/3780 RJE Terminal Emulator 
provide the ability to communicate with remote 
computers without requiring any user programming. 

The Sequential Access Method supports full­
duplex, asynchronous transmission, and X.25 
transmission. See the "Sequential Access Method" 
section. 

More specialized communications needs require a 
user-written Communication Interrupt Service 
Routine. See the "Interrupt Handlers" section 
and the B20 System Programmers and Assembler 
Reference Manual (Part 1), form 1148699. 

OPERATIONS: PROCEDURES 
Communications management provides the operations 
listed below. 

Lock In 

Lockout 

inputs from the SIO communications 
controller. 

outputs from the SIO communications 
controller. 

27-1 



Lock In 

Description 

The Lockin procedure must be used in a B22 to 
input from the SIO communications controller. 
Lock In is necessary because the SIO 
communications controller supports two 
communications channels. 

If Lockin is not used, there may be unpredictable 
results on both the input/output operation being 
attempted, and the DMA operation in progress on 
the other Channel. In a cluster configuration, 
this almost certainly results in a system crash 
at the workstation in question, and possibly 
severe performance degradation throughout the 
cluster configuration. 

Procedural Interface 

Request Block 

27-2 

Lockin (bPort, bValueRet) 

where 

bPort 

bVal ueRet 

is the input/output port from which 
a byte value is to be read. 

is the byte value read. 

Lockin is an object module procedure. 



LockOut 

Description 
The Lockout procedure must be used in a 822 to 
output from the SIO communications controller. 
Lockout is necessary because the SIO 
communications controller supports two 
communications channels. 

If Lockout is not used, there may be 
unpredictable results on both the input/output 
operation being attempted, and the DMA operation 
in progress on the other Channel. In a cluster 
configuration, this almost certainly results in a 
system crash at the workstation in question, and 
possibly severe performance degradation 
throughout the cluster configuration. 

Procedural Interface 

Request Block 

Lockout (bPort, bValue) 

where 

bPort 

bValue 

is the input/output port to which a 
byte value is to be written. 

is the byte value to be written. 

Lockout is an object module procedure. 

27-3 





OVERVIEW 
Real-Time Clock 

SECTION 28 
TIMER MANAGEMENT 

Each workstation has a Real-Time Clock (RTC). 
The RTC of the 822 family of workstations uses 
the power-line frequency ( 50 or 60 Hz) as a 
timing source. The RTC of the 821 family of 
workstations uses a crystal-controlled timing 
source. 

Timer management uses the RTC to provide both the 
current date and time of day and the timing of 
intervals (in units of 100 ms). (For a cluster 
workstation without a local file system, the 
current date and time is maintained at the master 
workstation. For a cluster workstation with a 
local file system, the current date and time is 
maintained at both the master and cluster 
workstations.) 

A client process can request that a message be 
sent to a specified exchange either once after a 
specified interval or repetitively with a 
specified constant interval between send 
operations. The first time a message is sent to 
an exchange can be up to 100 ms earlier than 
specified. Subsequent intervals are timed 
exactly. 

Programmable Interval Timer 

The workstations in the 822 family also have a 
second timer, a Programmable Interval Timer 
(PIT), that uses a 19.5 kHz crystal-controlled 
timing source to provide a resolution of 51.3 
microseconds. The PIT is controlled'by a 16-bit 
counter and therefore has a maximum interval of 
approximately three seconds. 

Timer management uses the PIT to provide high­
resol ution, low-overhead activation of user 
pseudointerrupt handlers. A client process or 
interrupt handler can request that a pseudo­
interrupt handler be activated after a specified 
interval. Pseudoi nterrupt handlers are not 
available on the 821. 

28-1 



CONCEPTS 

Simplified Date/Time Format 

28-2 

The simplified date/time format provides a 
compact represe nta ti on of the date and the ti me 
of day. This precludes invalid dates and allows 
simple subtraction to compute the interval 
between two dates. The simplified date/time 
structure is shown in Table 28-1 below. 

The date/time format is represented in 32 bits to 
an accuracy of one second. The high-order 15 
bits of the high-order word contain the count of 
days since March 1, 1952. The use of a 15-bi t 
field allows dates up to the year 2042 to be 
represented. The low-order bit of the high-order 
word is 0 to represent AM and 1 to represent 
PM. The low-order word contains the count of 
seconds since midnight/noon. Valid values are O 
to 43199. 

The current date/time is maintained in the master 
workstation (for all the workstations of a 
cluster configuration) or in the standalone 
workstation. It can be accessed by the 
GetDateTime operation and modified by the 
SetDateTime operation. 

Table 28-1. Simplified Date/Time Structure 

Size 
Offset Field (Bytes) Description 

2 seconds 2 Count (0-43199) of 
seconds since last 
midnight/noon. 

4 dayTimes2 2 Count (0-65535) of 
12-hour periods 
si nee March 1, 19 52 
( 0 = null 
date/time). 



System Date/Time Format 

If a client process executing on a master or 
standalone workstation needs to know the time to 
greater precision than one second, it can access 
the system date/time structure, the address of 
which is at address 240h in the System Common 
Address Table (described in Appendix E). The 
format of the system date/time structure is shown 
in Table 28-2 below. 

Table 28-2. System Date/Time Structure 

Size 
Offset Field (bytes) Description 

O ticks 1 Counted down from 5 
(50 Hz) or 6 (60 
Hz) to 0. 

1 hundredMsec 1 Count (0-9) of 100 
ms since last 
second. 

2 seconds 2 Count (0-43199) of 
seconds since last 
midnight/noon. 

4 dayTimes2 2 Count (0-65535) of 
12-hour periods 
since March 1, 1952 
(0 = null 
date/time) • 

Expanded Date/Time Format 

The ExpandDateTime and CompactDateTime operations 
convert between simplified date/time format and 
an expanded date/time format in which year, 
month, day of month, etc., are represented as 
discrete fields. The expanded date/time format 
is shown in Table 28-3 below. 

28-3 



Table 28-3. Expanded Date/Time Format 

Size 
Offset Field {bytes} DescriEtion 

0 year 2 1952-2042 (0 = null 
date/time) 

2 month 1 0 = Jan, 11 = Dec 

3 day of month 1 1-31 

4 day of week 1 0 = Sun, 6 = Sat 

5 hour 1 0-23 

6 minute 1 0-59 

7 second 1 0-59 

Timer Management Operations 

Date/Time 

Format Conversion 

Delay 

28-4 

There are five classes of timer management 
operations: date/time, format conversion, delay, 
Real-Time Clock, and Programmable Interval Timer. 

The GetDateTime and SetDateTime operations access 
and modify the current OS date/time. 

The ExpandDateTime and CompactDateTime operations 
convert between simplified date/time format and 
an expanded date/time format in which year, 
month, day of month, etc., are represented as 
discrete fields. See Table 28-3 above. 

The Delay operation allows a process to suspend 
execution for a specified interval (in units of 
100 ms). 



Real-Time Clock 

The OpenRTClock operation initiates the use of a 
client-process-provided data structure for 
control of complex Real-Time Clock (RTC) 
services. This data structure, the Timer Request 
Block (TRB), is shared by the client process and 
timer management. The CloseRTClock operation 
terminates the sharing of the TRB. 

The TRB defines the interval after which a 
message is sent to a specified exchange. The 
message can be sent either once after the 
specified interval or repetitively with the 
specified constant interval between send 
operations. The message is the TRB itself. 

The client process must acknowledge receipt of 
the TRB (as described below) before timer 
management will send the same TRB again. This 
ensures that system resources (link blocks) are 
not consumed by queueing the same TRB at the same 
exchange many times. The client process can also 
dynamically modify other fields of the TRB. 

The format of a TRB is shown in Table 28-4 below. 

Timer Management Operation. Every 100 ms, the 
timer management RTC interrupt handler performs 
the following sequence of operations on each 
active TRB. This sequence ensures that timer 
management will not send the same TRB again until 
the client process decrements the cEvents field 
to O. 

1. If the counter field is O, do nothing. 

2. Decrement the counter field by 1. 

3. If the counter field has not become O, do 
nothing more. 

4. If the cEvents field is 0, send a message to 
the exchange specified by the exchResp 
field. The message is the TRB itself (not a 
copy of the TRB). 

5. Increment the cEvents field by 1. 

6. Copy the coun terReload field to the counter 
field. 

28-5 



28-6 

Table 28-4. Timer Request Block Format 

Offset Field 

0 counter 

Size 
(bytes) Description 

2 Decremented every 
100 ms. 

2 counterReload 2 Copied to counter 
field when counter 
reaches 0. 

4 cEvents 

6 exchResp 

8 ercRet 

10 rqCode 

2 

2 

2 

2 

Incremented when 
counter field 
reaches O. 

Response exchange. 

Status code. Not 
used by timer 
management. Avail­
able for the client 
process. 

Request code. Not 
used by timer 
management. The 
client process 
should place a uni­
que value in this 
field so that it 
can identify its 
TRB when it is 
received as a 
message. 

"One-Shot" Timing. A client process should use 
the sequence below to initialize a TRB to time a 
single interval (a "one-shot" timer). 

1. Set the counter field to 0. 

2. Call the OpenRTClock operation. 

3. Set the cEvents field to 0. 



4. Set the counterReload field to O. 

5. Set the counter 
interval. 

field to the desired 

Use the Wait or Check operation (specifying the 
exchange specified by the exchResp field) to 
receive the indication that the interval 
expired. (The Wait and Check operations are 
described in the "Interprocess Communication 
Management" section.) Remember that the RTC only 
operates in units of 100 ms. Thus, if the 
counter field is set to 3, the TRB can be sent to 
the exchResp exchange in as few as 200 ms or as 
many as 300 ms. To reuse the TRB to time another 
single interval, repeat the sequence above from 
step 3. 

Repetitive Timing. 
the sequence below 
repetitive timing. 

A client process should 
to initialize a TRB 

1. Set the counter field to O. 

2. Call the OpenRTClock operation. 

3. Set the cEvents field to O. 

use 
for 

4. Set the counterReload field to the desired 
interval. 

5. Set the counter 
interval. 

field to the desired 

The first time that the TRB is sent to the 
exchResp exchange can be up to 100 ms earlier 
than specified. Subsequent intervals are timed 
exactly. This is guaranteed because the counter 
field of the TRB is decremented even if the 
client process has not finished processing the 
previous event. The cEvents field provides a 
continuous count of the events that have occurred 
but are not yet processed. If the client process 
is too slow, the count in the cEvents field 
becomes ever larger. Under these circumstances, 
the count in the cEvents field provides a measure 
of how far behind processing has fallen. 

The client process should use the sequence below 
to process the TRB. This sequence avoids a race 
condition and yet processes the correct number of 
events. 

28-7 



1. Receive the indication that the interval 
expired by calling either the Wait or Check 
operation and specifying the exchange 
specified by the exchResp field. 

2. If the cEvents field is O, processing is 
complete; return to step 1. (In this 
sequence, it is possible to receive a TRB in 
which cEvents is O; thus it is necessary to 
perform this test before processing the 
event.) 

3. Process the event. Processing is 
application-specific. 

4. Decrement the cEvents field by 1. (It is not 
necessary to decrement the cEvents field in a 
single instruction unless the client process 
is keeping a count of events.) 

5. Repeat the processing sequence from step 2. 

Programmable Interval Timer 

28-8 

The Programmable Interval Timer (PIT), which is 
present in B22 workstations, is accessed through 
the SetTimerint and ResetTimerint operations. 

The SetTimerint operation establishes a pseudo­
interrupt handler in the application system to 
receive a pseudointerrupt after a specified 
interval (in uni ts of 51. 3 microseconds) • The 
SetTimerint operation specifies the memory 
address of a Timer Pseudointerrupt Block (TPIB) 
in user memory that must be allocated by the 
application system. 

The format of a Timer Pseudointerrupt Block is 
shown in Table 28-5 below. 

It is sometimes convenient to have a single 
pseudointerrupt handler service the 
pseudointerrupts associated with multiple 
TPIBs. To do this, the pRqBlkRet field of each 
TPIB must point to the same 4-byte memory area 
and the SetTimerint operation must be invoked for 
each TPIB. The pseudointerrupt handler must 
examine this 4-byte memory area to determine 
which TPIB caused activation of the pseudo­
interrupt handler. Even when the pseudointerrupt 



handler is serving only a single TPIB, pRqBlkRet 
must still point to an otherwise unused 4-byte 
memory area. 

The ResetTimerint operation terminates a previous 
SetTimerint operation. 

To understand the operation of a pseudointerrupt 
handler, read the "Interrupt Handlers" section. 

Table 28-5. Timer Pseudointerrupt Block 
Size 

Offset Field (bytes) Description 

0 

4 

8 

12 

14 

16 

20 

22 

24 

linkFieldl 

linkField2 

pintHandler 

saData 

cintervals 

pRqBlkRet 

footPrint 

delta 

reserved 

4 

4 

4 

2 

2 

4 

2 

2 

8 

Used by the OS. 

Used by the OS. 

CS:IP of the entry 
point of the 
pseudointerrupt 
handler. 

Segment base ad­
dress of the data 
segment to be used 
by the pseudo-
i n terr upt handler. 

Interval before the 
pseudointerrupt is 
to occur (in units 
of 51.3 micro­
seconds). 

The memory address 
of 4 bytes into 
which the memory 
address of the TPIB 
is returned when 
the pseudointerrupt 
handler is invoked. 

Used by the OS. 

Used by the OS. 

Used by the OS. 

28-9 



OPERATIONS: PRIMITIVES, PROCEDURES, AND SERVICES 

Date/Time 

Timer management operations are categorized by 
function in Table 28-6 below. 

Table 28-6. Timer Management Operations by Function 

Date/Time Delay 

GetDateTime 
SetDateTime 

Delay 

Real-Time Clock 
Format Conversion 

CompactDateTime 
ExpandDateTime 

GetDateTime 

SetDateTime 

CloseRTClock 
OpenRTClock 

Programmable Interval Timer 

ResetTimerint 
SetTimerint 

returns the current data/time 
simplified date/time format. 

sets the date/time of the OS. 

Format Conversion 

CompactDateTime 

ExpandDateTime 

Delay 

Delay 

Real-Time Clock 

CloseRTClock 

28-10 

converts from expanded 
date/time format to simplified 
date/time format. 

converts from simplified 
date/time format to expanded 
date/time format. 

delays the execution of the 
client process for the 
specified interval. 

terminates the use of the 
specified TRB. 



OpenRTClock 

Progranonable Interval Timer 

ResetTimerint 

SetTimerint 

establishes a TRB between the 
client process and timer 
management. 

terminates the TPIB initiated 
by a SetTimerint call. 

establishes a PIT pseudo­
inter r rupt handler. 

28-11 



CloseRTClock 

Description 

The CloseRTClock service terminates the use of 
the specified TRB. 

The format of a TRB is shown in Table 28-4 above. 

Procedural Interface 

Request Block 

28-12 

CloseRTClock {pRqTime): ErcType 

where 

pRqTime 
sRqTime 

Off set 

0 
2 
3 
4 
6 
8 

10 

12 

18 
22 

describe a TRB that is currently 
open. 

Size 
Field (bytes) Contents 

sCntinfo 2 6 
nReqPbCb 1 1 
nRespPbCb 1 0 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 50 

reserved 6 

pRqTime 4 
sRqTime 2 



CompactDateTime 

Description 

The CompactDateTime procedure converts from 
expanded date/time format to simplified date/time 
format. Each field of the expanded date/time 
format is verified. If the day of week does not 
agree with the other fields, status code 2702 
("Day and date disagree") is returned. 

The expanded date/time format is shown in Table 
28-3 above. 

Procedural Interface 

Request Block 

CompactDateTime (pExpDateTime, 
pDateTimeRet) : ErcType 

where 

pExpDateTime 

pDateTimeRet 

is the memory address of an 8-byte 
expanded date/time block. 

is the memory address of 4 bytes to 
which the simplified date/time 
format is to be returned. 

CompactDateTime is an object module procedure. 

28-13 



Delay 

Description 

The Delay procedure delays the execution of the 
client process for the specified interval. 

Procedural Interface 

Request Block 

28-14 

Delay (n): ErcType 

where 

n is the interval to delay (in uni ts 
of 100 ms). 

Delay is a system common procedure. 



Expand Date Time 

Description 

The ExpandDateTime procedure converts from 
simplified date/time format to an expanded 
date/time format in which year, month, day of 
month, etc., are represented as discrete fields. 

The expanded date/time format is shown in Table 
28-3 above. 

Procedural Interface 

Request Block 

ExpandDateTime (dateTime, 
pExpDateTimeRet) : ErcType 

where 

dateTime is the 32-bit 
simplified format. 

date/time in 

pExpDateTimeRet 
is the memory address of an 8-byte 
expanded date/time block to which 
expanded date/time format is to be 
returned. 

ExpandDateTime is an object module procedure. 

28-15 



GetDateTime 

Description 

The GetDateTime service returns the current 
date/time in the simplified date/time format. 

Status code 46 ("Master workstation going down") 
is returned if a DisableCluster operation was 
performed. (See the "Cluster Management" 
section.) If status code 46 ("Master workstation 
going down") is returned, the low-order word of 
the structure pointed to by pDateTimeRet contains 
the ti me (in seconds) remaining before the master 
workstation goes down. 

Procedural Interface 

Request Block 

28-16 

GetDateTime (pDateTimeRet) : ErcType 

where 

pDateTimeRet 
is the memory address of the 4-word 
structure to which the date/time is 
returned. 

sDateTimeRet is always 4. 

Offset Field 

0 sCntinfo 
2 nReqPbCb 
3 nRespPbCb 
4 userNum 
6 exchResp 
8 ercRet 

10 rqCode 

12 reserved 

18 pDateTimeRet 
22 sDateTimeRet 

Size 
(bytes) 

2 
1 
1 
2 
2 
2 
2 

6 

4 
2 

Contents 

6 
0 
1 

14 

4 



OpenRTClock 

Description 

The OpenRTClock service establishes a TRB between 
the client process that requests the timing 
services and timer management. The client 
process and timer management communicate by 
changing the fields in the TRB after an 
OpenRTClock call. 

The format of a TRB is shown in Table 28-4 above. 

Procedural Interface 

Request Block 

OpenRTClock (pRqTime): ErcType 

where 

pRqTime 

sRqTime 

Off set 

0 
2 
3 
4 
6 
8 

10 

12 

18 
22 

is the memory address of the client­
process-provided TRB to be shared by 
the client process and timer 
management. 

is always 12. 

Field 

sCntinfo 
nReqPbCb 
nRespPbCb 
userNum 
exchResp 
ercRet 
rqCode 

reserved 

pRqTime 
sRqTime 

Size 
(bytes) 

2 
1 
1 
2 
2 
2 
2 

6 

4 
2 

Contents 

6 
1 
0 

49 

12 

28-17 



ResetTimerlnt 

Description 

The ResetTimerint primitive terminates the TPIB 
initiated by a previous SetTimerint call. 
ResetTimerint is used only to cancel a previous 
SetTimerint operation before the requested 
pseudointerrupt has occurred. The "No such TPIB" 
status code is returned if the pseudointerrupt 
has already occurred. 

The format of a TPIB is shown in Table 28-5 
above. 

Procedural Interface 

Request Block 

28-18 

ResetTimerint {pTPIB): ErcType 

where 

pTPIB is the memory address of the TPIB to 
be terminated. 

ResetTimerint is a Kernel primitive. 



SetDate Time 

Description 

The SetDateTime service sets the date/time of the 
OS. 

Procedural Interface 

Request Block 

SetDateTime (seconds, dayTimes2): ErcType 

where 

seconds 

dayTimes2 

Off set 

0 
2 
3 
4 
6 
8 

10 

12 

14 

is the count (0-43199) of seconds 
since the last midnight/noon. 

is the count (0-65535) of 12-hour 
periods since March 1, 1952. 

Size 
Field (bytes) Contents 

sCntinfo 2 4 
nReqPbCb 1 0 
nRespPbCb 1 0 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 51 

seconds 2 

dayTimes2 2 

28-19 



SetTimerlnt 

Description 

The SetTimerint primitive establishes a PIT 
pseudointerrupt handler and specifies the 
interval after which the PIT pseudointerrupt is 
to be generated. SetTimerint can be called from 
a PIT pseudointerrupt handler to reestablish the 
PIT pseudointerrupt handler with a {possibly 
different) interval. Multiple pseudointerrupt 
handlers can use the PIT simultaneously. 

The format of a TPIB is shown in Table 28-5 
above. 

Procedural Interface 

SetTimerint (pTPIB) : ErcType 

where 

pTPIB is the memory address of the TPIB. 

Request Block 

SetTimerint is a Kernel primitive. 

28-20 



OVERVIEW 

SECTION 29 

INTERRUPT HANDLERS 

An interrupt is an event that interrupts the 
sequential execution of processor instructions. 
When an interrupt occurs, the current hardware 
context (the state of the hardware registers) is 
saved. This context save is performed partly by 
the processor and partly by the Operating System. 
After the condition causing the interrupt is 
identified and acted upon, the context of the 
interrupted process (or another higher priority 
process) is restored and execution resumed as if 
the interrupt never occurred. 

(The description that follows is 
to B21 workstations, since B21 
not contain Multibus slots or 
written interrupt handlers.) 

not applicable 
workstations do 

support user-

External Interrupts 

External (true) interrupts are caused by 
conditions that are external to the processor and 
are asynchronous to the execution of processor 
instructions. 

In a standard workstation, eight of the interrupt 
levels are ordered in priority and controlled by 
the 8259A Programmable Interrupt Controller 
(PIC) • They can be masked (ignored) by the use 
of the processor interrupt-enable flag. They can 
also be selectively masked (that is, some 
recognized, some ignored) by programming the 
8259A PIC. 

Four of these eight interrupt levels are used for 
the standard device controllers of a work­
station. The other four interrupt levels are 
available for the connection of device 
controllers that are installed in the Multibus­
compatible card slots. 

One interrupt level (with a higher priority than 
those controlled by the 8259A PIC) supports the 
critical error conditions: 

29-1 



Internal Interrupts 

Device Handlers 

29-2 

0 write-protect violation, 

0 nonexistent memory or device address 
reference, 

0 memory parity error, and 

0 power failure detection. 

Internal interrupts (traps) are caused by and are 
synchronous with the execution of processor 
instructions. The causes of internal interrupts 
are: 

0 an erroneous divide instruction, 

0 the processor Trap Flag, 

0 the INTO (interrupt on overflow) instruction, 
and 

0 the INT (interrupt) instruction. 

Accommodation of user-written device handlers was 
a major design goal of the Operating System. A 
device handler can be part of either an 
application system or a system service process. 
Its interrupt handler can let the Kernel save the 
process context (in which case it can be written 
in FORTRAN or Pascal), or it can receive the 
interrupt directly from the hardware. 
Interprocess communication provides an efficient, 
yet formal, interface from interrupt handler to 
device handler and from device handler to 
application system. 



CONCEPTS 

Interrupt Types 

An interrupt is an event that interrupts the 
sequential execution of processor instructions. 
When an interrupt occurs, the current hardware 
context (the state of the hardware registers) is 
saved. This context save is performed partly by 
the processor and partly by the Operating System. 

After the condition causing the interrupt is 
identified and acted upon, the OS Kernel either 
(1) restores the context of the interrupted 
process and resumes its execution, or (2) 
determines that a higher priority process is 
ready to execute, performs a context switch, and 
initiates execution of the higher priority 
process. 

Interrupts can be nested, that is, a higher 
priority interrupt can interrupt the execution of 
an interrupt handler that is servicing a lower 
priority interrupt. When the higher priority 
interrupt handler completes its processing, 
execution of the lower priority interrupt handler 
resumes. 

The processor has a simple yet versatile 
interrupt system. Each potential source of 
interrupt is assigned an interrupt type code. 
This is a number in the range 0-119 and is used 
to vector (direct) the interrupt to the 
appropriate interrupt handler. The Interrupt 
Vector Table begins at physical memory address 0 
and contains a 4-byte entry for each interrupt 
type. Each 4-byte entry contains the logical 
memory address (CS:IP) of the first instruction 
to be executed when an interrupt of that type 
occurs. 

The interrupt types are shown in Table 29-1. 

29-3 



29-4 

Interrupt 
Type 
Code 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Table 29-1. Interrupt Types 

8259A 
PIC 

Level Description 

Interrupt 
Vector 
Address 

0 

1 

2 

3 

Divide error trap. OOh 

Single step trap 04h 
(used by the 
Debugger). 

Nonmaskable external 08h 
interrupts (write-
protect violation, 
nonexistent memory or 
device address refer­
ence, memory parity 
error, or power 
failure detection. 

Breakpoint trap OCh 
(used by the Debugger). 

Signed arithmetic 
overflow trap. 

Access to Kernel 
primitives. 

Access to system 
services. 

Access to system 
common procedures. 

Multibus devices. 

SIO communications 
controller. 

Multibus devices. 

Programmable 
Interval Timer. 

lOh 

14h 

18h 

lCh 

20h 

24h 

28h 

2Ch 



Interrupts 

External Interrupts 

Interrupt 
Type 
Code 

12 

13 

14 

15 

16-119 

Table 29-1. Interrupt Types (Cont.) 

8259A 
PIC 

Level 

4 

5 

6 

7 

Interrupt 
Vector 

Description Address 

Printer, keyboard, 30h 
Real-Time Clock, and 
high-speed mathe-
matics coprocessor. 

Multibus devices. 34h 

Multibus devices. 38h 

Disk storage sub- 3Ch 
system (floppy and 
Winchester). 

Available for 40h-lDCh 
software-generated 
interrupts and 
Multibus device 
interrupts using 
cascaded slave 
8259A PICs on Multi­
bus logic boards). 

Interrupts are either external or internal. 

External interrupts are caused by conditions that 
are external to the processor and are 
asynchronous to the execution of processor 
instructions. There are two kinds of external 
interrupts: maskable and nonmaskable. 

Maskable Interrupts. Maskable interrupts are 
given a priority and controlled by the 8259A 
Programmable Interrupt Controller (PIC). They 
can be masked (ignored) by the use of the 
processor interrupt-enable flag. They can also 

29-5 



29-6 

be selectively masked (that is, some recognized, 
some ignored) by programming the 8259A PIC. 

8259A PrograDDDable Interrupt Controller. A 
"master" 8259A PIC is standard on each 
workstation and controls eight priority interrupt 
levels. Each interrupt level can be connected 
(wire ORed) to one or more device controllers or 
to a "slave" 8259A PIC. The use of slave 8259A 
PICs multiplies the number of external interrupt 
sources that can be uniquely identified and 
ordered in priority. 

Four of the eight interrupt levels are used for 
the standard device controllers of a workstation. 

The other four interrupt levels are available for 
the connection of device controllers that are 
installed in the Multibus-compatible card 
slots. These can be connected directly to the 
four available interrupt levels or can be 
multiplexed through the use of slave 8259A PICs 
installed on logic boards installed in the 
Multibus-compatible card slots. 

Master workstations support large -populations of 
cluster workstations by using one or more 
CommIOPs in the Multibus area. The use of other 
Multibus boards requires the implementation of 
user-written device handlers or interrupt 
handlers. 

The 8259A PIC is a flexible hardware entity that 
can operate in a number of modes. The modes 
established by OS initialization are: 

level (not edge) triggered, 

fully nested (but not special fully nested), 

fixed (not rotating) priority, and 

not special mask. 

CAUTION: Do not change 
82 59A PIC. Cha ngi ng 
Operating System to 
unpredictable manner. 

the mode of the master 
the mode causes the 

malfunction in an 



A device handler or interrupt handler can only 
perform the following operations on the master 
8259A PIC (all other operations are forbidden): 

0 They can read the Interrupt Mask Register 
(IMR) of the 8259A PIC; set or clear only the 
bit affecting the interrupt level serviced by 
the handler; and write the updated mask into 
the IMR. Processor interrupts must be 
disabled during this sequence. 

o They can read the Interrupt Request Register 
(IRR) or the Interrupt Service Register (ISR) 
of the 8259A PIC. Because reading either the 
IRR or the ISR requires issuing a command to 
the OCW3 register of the 8259A PIC to select 
the register to be read, processor interrupts 
must be disabled between selecting the 
register and reading it. 

o Raw interrupt handlers (but not mediated 
interrupt handlers) must issue either a 
specific or nonspecific End-Of-Interrupt 
(EOI) command to the 8259A PIC before 
returning from the raw interrupt handler to 
the point of interrupt. 

CAUTION: Any other user programming of the 
master 8259A PIC causes the Operating System to 
malfunction in an unpredictable manner. 

Slave 8259A PICs must be completely programmed by 
user code. 

Nonmaskable Interrupts. Nonmaskable interrupts 
{NMI} have a higher priority than maskable 
interrupts. NMis cannot be masked through the 
use of the processor interrupt-enable flag; 
however, bits in the Input/Output Control 
Register allow each of the four conditions that 
cause NMis to be masked individually. These 
conditions are: 

0 write-protect violation, 

0 nonexistent memory or device address 
reference, 

0 memory parity error, and 

0 power failure detection. 

29-7 



Internal Interrupts 

Pseudointerrupts 

29-8 

Internal interrupts (traps) are caused by and are 
synchronous with the execution of processor 
instructions. The causes of internal interrupts 
are: 

o an erroneous divide instruction (interrupt 
type 0), 

o the processor Trap Flag (interrupt type l; 
single step), 

o the INTO (interrupt on overflow) instruction, 
if the processor Overflow Flag is set 
(interrupt type 4), and 

0 the INT (interrupt) 
interrupt type) • 

instruction (any 

Pseudointerrupts are implemented in software 
rather than in hardware. In this sense, they are 
not really interrupts at all. However, they are 
similar to interrupts in that they cause an 
interrupt handler to be executed. An interrupt 
handler activated by a pseudointerrupt executes 
in the same environment and has the same 
responsibilities and privileges as an interrupt 
handler activated by a real interrupt. 

As an example of the use of pseudointerrupts, the 
SetTimerint operation {see the "Timer Management" 
section) establishes a Programmable Interval 
Timer pseudointerrupt handler to service timer 
pseudointerrupts. Pseudointerrupts, in this 
case, allow each of several software routines to 
believe that it has exclusive use of the high­
resolution Programmable Interval Timer. In a 
master workstation, for example, the Cluster Line 
Protocol Handler, the 3270 terminal emulator, and 
a user-written device handler for real-time data 
acquisition equipment would concurrently need 
high-resolution interval timing. Each of the 
three pseudointerrupt handlers performs the same 
logical {but not device-dependent) processing as 
if it were servicing an external interrupt from 
the Programmable Interval Timer itself. 



Interrupt Handlers 

OS interrupt handlers are provided for each 
interrupt type. For interrupt types that a re not 
expected to occur, the Extraneous Interrupt 
Handler calls the Carsh operation (see the 
"Contingency Management" section) to terminate OS 
operation in an orderly manner, display the 
termination code, and restart the OS. 

Ea ch interrupt handler services al 1 interrupts of 
a single type. For example, the interrupt 
handler that services NMis must accommodate all 
four kinds of NMis. If another interrupt handler 
is substituted for the B20 NM! handler, the 
substitute must also handle all four kinds of 
NMis. 

The OS 
handlers: 

supports two kinds 
mediated and raw. 

of interrupt 

Communications Interrupt Handlers 

Because both SIO communications channels are 
served by type 9 interrupts, the communications 
interrupt handler should not be replaced unless 
both channels are to be controlled by the user­
wri tten interrupt handler. The communications 
interrupt handler is required in a cluster 
workstation, in the master workstation of a 
mi nicl uster configuration, or when a 
communications program, such as the Asynchronous 
Terminal Emulator utility or the 3270 terminal 
emulator, is to be used. 

The communications interrupt handler that 
services type 9 interrupts determines which of 
the two communications channels caused the 
interrupt and dispatches to the appropriate 
Communication Interrupt Service Routine. (See 
"Communications Interrupt Service Routines".) 

Packaging of Interrupt Handlers 

Additional interrupt handle rs can be 1 inked 
either to a task of an application system or to a 
system service process. The system service 
process can be linked to the System Image at 
system build or dynamically installed. 

29-9 



Application System. Packaging an interrupt 
handler with an application system permits the 
interrupt handler to occupy memory only when the 
application system that needs it is in memory. 
Also, it requires somewhat less effort to package 
the interrupt handler with an application 
system. An interrupt handler that is used by 
only one application system and not by others 
should generally be packaged with the application 
·system. 

The SetintHandler operation is used to inform the 
OS of the existence of an interrupt handler in an 
application system. 

System Service Process. If an interrupt handler 
must be available continuously, even while one 
application system is being replaced with 
another, then the interrupt handler must be 
packaged with a system service. An interrupt 
handler that supports a device attached to a 
master workstation on behalf of application 
systems executing in cluster workstations must be 
packaged with a system service in the master 
workstation (and must also use the formal 
Request/Respond model of interprocess 
communication) • Packaging an interrupt handler 
with a system service reduces the size of the run 
files of the application systems that would 
otherwise include the interrupt handler. An 
interrupt handler that is used by all or most 
application systems should generally be packaged 
with a system service. 

The SetintHandler operation is used to inform the 
OS of the existence of an interrupt handler in a 
dynamically installed system service. 

Mediated Interrupt Handlers 

29-10 

A mediated interrupt handler (MIH) is easier to 
write than raw interrupt handlers (it can be 
written in FORTRAN or Pascal, as well as assembly 
language), permits automatic nesting by priority 
si nee processor interrupts are enabled during its 
executi'on, and can communicate its results to 
processes through the PSend and Send operations. 
(See the "I nte rproces s Comm uni cation Management" 
section.) MIHs are recommended except where 
specifically contraindicated. 



For an MIH, the entry in the Interrupt Vector 
Table points to a procedure in the Kernel that: 

o saves the hardware context on to the stack 
that is active at the time of the interrupt, 

o switches the stack (SS:SP) to a special stack 
that is reserved for the use of MIHs, 

o enables processor interrupts (turns on the 
processor interrupt-enable flag), 

o establishes the data segment appropriate to 
the MIH, and 

o calls the MIH at the memory address (CS: IP) 
of its entry point. 

The MIH is responsible for giving an End-Of­
Interrupt (EOI) command to the slave 8259A PIC, 
if any, on the Multi bus board that caused the 
interrupt. However, it must not give an EOI 
command to the master 8259A PIC.~-

The only operations an MIH can use are PSend, 
Send, SetTimerint, and ResetTimerint. (The first 
two operations are described in the "Interprocess 
Communication Management" section; the latter two 
in the "Timer Management" section.) 

After it completes its processing, the MIH 
returns to the Kernel by using a RET (not IRET) 
instruction. 

Upon return from the MIH, the Kernel issues a 
nonspecific EOI command to the master 8259A PIC 
if the interrupt was caused by an external 
maskable interrupt (that is, was caused by the 
8259A PIC). 

If interrupts are nested and a lower priority 
interrupt handler was interrupted, the Kernel 
unconditionally returns control to the point-of­
interrupt (within the lower priority interrupt 
handler). If the MIH sent a message to a higher 
priority process than the one executing at the 
time of the interrupt, the Kernel establishes 
the context of and returns control to the higher 
priority process. Otherwise, the Kernel 
reestablishes the context of and returns control 
to the interrupted process. 

29-11 



Raw Interrupt Handlers 

29-12 

A raw interrupt handler (RIH} provides the 
fastest execution since the entry in the 
Interrupt Vector Table points directly to the 
entry point of the RIH. 

An RIH is useful for servicing a high-speed non­
DMA device that causes an interrupt whenever a 
byte is to be transferred. To service such a 
device, the RIH saves the minimum number of 
registers, transfers the byte, issues an EOI 
command to the master 8259A PIC (and slave 8259A 
PIC, if appropriate}, restores the saved 
registers, and uses the IRET instruction to 
reenable processor interrupts while returning to 
the point of interrupt. 

When the RIH determines (through counting bytes 
or examining the bytes being transferred} that a 
complete logical block was transferred, it 
converts itself to a mediated interrupt handler 
(using the MediateintHandler operation}. It then 
uses the PSend or Send operation to inform the 
device handler (or other} process that the block 
was transferred, issues an EOI command, if 
appropriate, to a slave (but not to the master} 
8259A PIC, and uses a RET (not IRET} instruction 
to transfer control to the Kernel. The Kernel 
then performs the conventional termination 
sequence for a mediated interrupt handler. This 
includes issuing a nonspecific EOI command to the 
master 8259A PIC (but not to a slave 8259A PIC, 
if any}. 

An RIH uses the stack of the process it 
interrupted. It is responsible for saving and 
restoring all registers it uses and for giving an 
EOI command to the master 8259A PIC (and slave 
8259A PIC, if appropriate}. An RIH must leave 
processor interrupts disabled. Because an RIH 
cannot be interrupted, nesting of interrupts 
cannot occur while an RIH is executing. An RIH 
can serve an internal or external interrupt, but 
not a pseudointerrupt. 

The only operation an RIH can use is Mediateint­
Handler. The MediateintHandler operation permits 
an RIH to be converted to an MIH during interrupt 
processing. 



Communications Interrupt Service: Routines 

Communications Interrupt Service Routines (CISR) 
are similar to MIHs except that a CISR serves 
only one of the two communications channels of 
the SIO communications controller. 

CISRs can be linked to the System Image and 
declared at system build. Alternatively, they 
can be linked to a dynamically installed system 
service or an application system and declared 
through the use of the SetCommISR operation. 

CISRs differ from MIHs in that the communications 
channel number (0 or 1) is passed to the CISR as 
a parameter. The CISR must have one parameter 
specified in its procedure definition. For an 
assembly language program, this means that the 
return is by means of an intersegment RET 2 
instruction. 

CAUTION: Read the "Communications Management" 
section of this Manual and the "Communications 
(SIO) Programming" section of the B20 System 
Programmers and Assembler Reference Manual (Part 
1), form 1148699, to understand the 
responsibilities of a communications interrupt 
handler with regard to the use of the Lockln and 
Lockout operations, preservation of the "status 
affects vector" mode when programming Channel B 
of the SIO communications controller, and other 
critical issues. 

Printer Interrupt Service Routines 

Printer Interrupt Service Routines (PISR) are 
similar to MIHs except that a PISR serves only 
one of several devices connected to the 8259A PIC 
level 4 (interrupt type 12) interrupts. A PISR 
serves parallel pr inter interrupts without also 
servicing keyboard, Real-Time Clock, and other 
level 4 interrupts. 

PISRs can be linked to the System Image and 
declared at system build. Alternatively, they 
can be linked to a dynamically installed system 
service or an application system and declared 
through the use of the SetLpISR operation. 

29-13 



OPERATIONS: PRIMITIVES AND SERVICES 

29-14 

Interrupt handlers provides the operations listed 
below. 

MediateintHandler 

ResetCommISR 

SetCommISR 

SetintHandler 

SetLpISR 

converts a raw interrupt 
handler to a mediated interrupt 
handler. 

purges the CISRs previously 
established for the specified 
communications channel. 

establishes the CISRs for the 
specified communications 
channel. 

establishes a raw or mediated 
interrupt handler. 

establishes the PISR to process 
interrupts generated by the 
parallel printer interface. 



/ MediatelntHandler 

Description 

The MediateintHandler primitive converts a raw 
interrupt handler to a mediated interrupt 
handler. Before using Media teintHandler, the raw 
interrupt handler must save the contents of the 
registers of the interrupted process on the stack 
of the interrupted process in the following 
order: AX, BX, DS, ex, ES, SI, DX, DI, BP. 

After that, the argument to the call should be 
pushed on to the stack. No other information can 
be pushed on to the stack at the time of the call 
to MediateintHandler. MediateintHandler switches 
the stack (SS:SP) to point to the MIH stack. 

Procedural Interface 

Request Block 

MediateintHandler (fDeviceint) : ErcType 

where 

fDeviceint is TRUE or FALSE. TRUE (OFFh) 
indicates the interrupt handler 
serves device-generated interrupts. 
FALSE (0) indicates the interrupt 
handler serves software-generated 
interrupts (traps). 

MediateintHandler is a Kernel primitive. 

29-15 



ResetCommlSR 

Description 

The ResetCommISR service purges the CISRs 
previously established for the specified 
communications channel. Future interrupts from 
the specified channel are ignored. 

Procedural Interface 

Request Block 

29-16 

ResetCommISR (iLine): ErcType 

iLi ne 

Off set 

0 
2 
3 
4 
6 
8 

10 

12 

is S IO Channel A if i Li ne is 0 and 
SIO Channel B if iLine is 1. 

Size 
Field (bytes) Contents 

sCntinfo 2 2 
nReqPbCb 1 0 
nRespPbCb 1 0 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 102 

iLine 2 



SetCommlSR 

Description 

The SetCommISR service establishes the CISRs for 
the specified communications channel. Separate 
CISRs are established to process transmit, 
external/status, receive, and special receive 
conditions. 

Procedural Interface 

SetCommISR (iLine, pDS, pTxisr, pExtisr, pRxisr, 
pSpRxisr): ErcType 

where 

iLine 

pDS 

pTxisr 

pExtisr 

pRxisr 

pSpRxisr 

is SIO Channel A if it is 0 and SIO 
Channel B if it is 1. 

is the memory address of any byte in 
the memory segment to be used as the 
data segment of the CISRs. The 
segment base address part of pDS is 
to be used as the data segment base 
(that is, loaded into the DS 
register) when any of the four CISRs 
is activated. 

is the memory address (CS:IP) of the 
CISR that is to process Transmit­
Data-Buffer-Empty interrupts. 

is the memory address (CS:IP) of the 
CISR that is to process 
External/Status interrupts. 

is the memory address (CS:IP) of the 
CISR that is to process Receive­
Character-Available interrupts. 

is the memory address (CS:IP) of the 
CISR that is to process Receive­
Special-Condi tion interrupts. 

29-17 



Request Block 

Size 
Off set Field (bytes) Contents 

0 sCntinfo 2 22 
2 nReqPbCb 1 0 
3 nRespPbCb 1 0 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 101 

12 iLine 2 

14 pDS 4 

18 pTxisr 4 

22 pExtisr 4 

26 pRxisr 4 

30 pSpRxisr 4 

29-18 



SetlntHandler 

Description 

The SetintHandler service establishes a raw or 
mediated interrupt handler. When an application 
system terminates, its interrupt handler is 
detached and the default interrupt handler again 
serves the interrupts. 

Procedural Interface 

SetintHandler (iint, pintHandler, saData, 
fDeviceint, fRaw): ErcType 

where 

iint is the interrupt type (0-119). 

pintHandler is the entry point of the interrupt 
handler. 

saData is the segment base address of the 
data segment that is used by the 
mediated interrupt handler (for 
mediated interrupt handlers only). 

fDeviceint is TRUE or FALSE. TRUE (OFFh) 
i ndi ca tes the i nte rrupt handler 
serves device-generated interrupts. 
FALSE (0) indicates the interrupt 
handler serves software-generated 
interrupts (for mediated interrupt 
handlers only). 

fRaw is TRUE or FALSE. TRUE (OFFh) 
indicates the interrupt handler 
serves raw interrupts. FALSE (0) 
indicates the interrupt handler 
serves mediated interrupts. 

29-19 



Request Block 

Size 
Off set Field (bytes) Contents 

0 sCntinfo 2 12 
2 nReqPbCb 1 0 
3 nRespPbCb 1 0 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 69 

12 iint 2 

14 pintHandler 4 

18 saData 2 

20 fDeviceint 2 

22 f Raw 2 

29-20 



SetlplSR 

Description 

The SetLpISR service establishes the PISR to 
process interrupts generated by the parallel 
printer interface. A PISR established by an 
application system is reset automatically when 
the application system terminates. 

Procedural Interface 

Request Block 

SetLpISR (pLpisr, saData): ErcType 

where 

pLpisr 

saData 

Offset 

0 
2 
3 
4 
6 
8 

10 

12 

14 

is the memory address (CS:IP) of the 
printer interrupt handler. If it is 
0, it resets the current interrupt 
handler. 

is the value of the data segment 
(DS) which is used by the printer 
interrupt handler. 

Size 
Field (bytes) Contents 

sCntinfo 2 0 
nReqPbCb 1 0 
nRespPbCb 1 0 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 121 

saData 2 

pLpisr 4 

29-21 





OVERVIEW 

SECTION 30 

CONTINGENCY MANAGEMENT 

Contingency refers to a variety of hardware and 
software conditions that have undesirable 
effects. These conditions can be hardware faults 
such as a memory parity error, OS-detected 
inconsistencies such as a bad checksum of a 
Volume Home Block, or application system-detected 
conditions. 

The OS always terminates execution when it 
detects an inconsistency. The default handling 
of hardware faults (nonmaskable interrupts) is to 
terminate system operation; however, nonmaskable 
(type 2) interrupts can be directed to a user-
wri tten interrupt handler linked to the System 
Image or declared through the use of the 
SetintHandler operation (see the "Interrupt 
Handlers" section). 

OS crash conditions are logged in the Log File 
( [Sys]<Sys>Log.Sys). The OS also logs disk 
controller faults, disk input/output errors, and 
fatal communications errors in the cluster 
configuration there. The application system can 
also use the WriteLog operation to write records 
to the Log File. The PLog utility prints the Log 
File (see the B20 System Software Operation 
Guide, form 1148772). (The Log File is also 
discussed in the "File Management" section.) 

OPERATIONS: PROCEDURES AND SERVICES 

Contingency management provides the operations 
listed below. 

Crash 

FatalError 

WriteLog 

causes OS operation to 
terminate, a crash dump to be 
written, the OS to be reloaded, 
and the Executive to display 
the cause of the crash when it 
is restarted. 

terminates operation of the 
application system after a 
catastrophic event. 

writes a variable-length record 
to the Log File. 

30-1 



Crash 

Description 

The Crash procedure causes OS operation to 
terminate, a crash dump to be written to the file 
[Sys] <Sys>Cr ashDump. Sys, the OS to be reloaded, 
and the Executive to display the cause of the 
crash when it is restarted. Crash never returns. 

Procedural Interface 

Request Block 

30-2 

Call Crash (ercTermination) 

where 

ercTermination 
is a 16-bit status code to be 
displayed by the Executive after the 
OS is reloaded. 

Crash is a system common procedure. 



Fatal Error 

Description 

The FatalError procedure terminates operation of 
the application system after a catastrophic 
event. The Burroughs-supplied version of 
FatalError consists of a call to the ErrorExit 
operation (see the "Task Management" section). 

Burroughs object module procedures call 
Fatal Error rather than the ErrorExi t operation 
when they encounter inconsistencies. This allows 
the system builder to easily substitute a user­
written version of FatalError that does one of 
the following: 

o invokes the Debugger, 

o calls the Crash operation because it causes a 
crash dump to be written that is useful in 
debugging, 

o calls the Crash operation because the 
application system wants to terminate when it 
malfunctions, or 

o provides special logic to attempt an orderly 
system shutdown when the application system 
detects a malfunction. Such code is best 
included in a user-written version of 
FatalError. 

Procedura1 Interface 

Request B1ock 

Call FatalError (ercTermination) 

where 

ercTermination 
is a 16-bit status code to be placed 
in the Application System Control 
Block for interrogation by the 
Executive. A nonzero status code 
causes the contents of the type­
ahead buffer to be discarded and the 
submit or recording file to be 
closed. 

FatalError is an object module procedure. 

30-3 



Write log 

Description 

The WriteLog service is used by an application 
system to write a variable-length record to the 
Log File ( [Sys] <Sys> Log. Sys) . The PLog 
utility (see the B 20 System Software Operation 
Guide, form 1148772) prints the Log File. The 
PLog utility interprets the first word of the 
record as an error type: the reset of the record 
is not interpreted. When the record is written 
to the Log File, additional information is 
inserted by the BTOS Operating System. The size 
of the entry in the Log File is the sum of the 
size of the record and the size of the 
additional information. 

Procedural Interface 

Request Block 

30-4 

WriteLog (pbRecord, cbRecord): ErcType 

where 

pbRecord 
cbRecord 

Off set 

0 
2 
3 
4 
6 
8 

10 

12 

18 
22 

describe the record to be logged. 
Its maximum size is 255 bytes. 

Size 
Field (bytes) Contents 

sCntinfo 2 6 
nReqPbCb 1 1 
nRespPbCb 1 0 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 125 

reserved 6 

pbRecord 4 
cbRecord 2 



Log File Record Format 

Offset Field 

0 sEntry 

1 datetime 

5 ErrorType 

7 hardwaretype 

8 fNoFileSystem 

9 ClusterConf ig 

10 fCommIOP 

Size 
(bytes) Description 

1 The size of the entry 

4 The time of logging, 
in simplified 
Date/Time format. 

2 The error type of 
the entry. The error 
type is a 16-bit 
word. The defined 
types are as follows: 

0 ASCII character 
messages 

61440 reserved by 
to BTOS to log 

65535 errors and 
events 

1 

1 

1 

1 

11 fMultiPartition 1 Information from the 
System Configuration 
Block (described in 
this manual) of the 
workstation. 

12 reserved 3 

15 lineNumber 1 The line number of the 
workstation making the 
log, if it is a 
CommIOP-Cluster 
workstation. 

30-5 



30-6 

Size 
_.:::::O:.:f:.:::f;..:s~e::.;t::;:__ _ __:,F..:i~e::.:l::.:d=----....;(:...;.b;;...yo1...t~e~s..:.) ___ D_e_s~c r=~t _l?_n_=-=~-· 

16 idNumber 1 The cluster ID of the 
workstation if it is 
cluster workstation. 

17 sMemory 2 The amount of memory 
in the workstation. 

19 userName 12 The first 12 
characters of the user 
name at the time of 
the error. 

31 typeSpecificinfo Information supplied 
by caller of WriteLog. 

The ErrorType and typeSpecificinfo fields are 
supplied by the caller of WriteLog, the rest of 
the information is supplied by BTOS. 



General 

Kernel 

APPENDIX A 
STATUS CODES 

Codes marked with an asterisk {*) cause OS 
termination and an automatic reload. 

Decimal 
Value 

0 

1 

2 

3* 

4 

5 

6 

7 

8 

10 

11 

12 

Hexa­
decimal 

Value 

0000 

0001 

0002 

0003 

0004 

0005 

0006 

0007 

0008 

OOOA 

OOOB 

oooc 

Meaning 

OK. 
Successful completion. 

End of file (EOF). 

End of medium (EOM). 
An attempt to read or write 
beyond the end of a file or 
device. 

Inconsistency. 
Run the crash qump analyzer. 

Operator intervention. 

Syntax error. 

Master workstation not running. 
Interstation communication with 
the master workstation of the 
cluster has been interrupted. 

The procedures necessary to 
implement this operation were 
excluded at system build. 

An internal inconsistent state 
is discovered. 

Exchange out of range. 

Bad pointer. 

No link block. 
Generated by PSend. (See the 
"Interprocess Communication 
Management" section.) 

A-1 



A-2 

Decimal 
Value 

13 

14 

15 

16 

17 

18 

19* 

20 

21* 

22* 

23* 

24* 

25* 

26* 

Hexa­
decimal 

Value Meaning 

OOOD Bad interrupt vector. 
Generated by SetintHandler. 
(See the hinterrupt Handlers" 
section.) 

OOOE No message available. 

OOOF No link block available. 
Generated by Send and 
Request. (See the 
"Interprocess Communication 
Management" section.) 

0010 Inconsistent request block. 

0011 Mismatched respond. 

0012 No PCB available. 

0013 

0014 

0015 

0016 

0017 

0018 

0019 

OOlA 

Create fewer processes or 
specify more Process Control 
Blocks at system build. 

PIT chain bad. 
Programmable Interval Timer 
block that was established by 
SetTimerint was erroneously 
modified. (See the "Timer 
Management" section. ) 

Invalid response exchange 
specified in request block. 

Memory protect violation. 

Bus time out. 
Attempted access to a 
nonexistent memory location or 
input/output port. 

Memory parity failure. 

Power failure. 

Unknown NMI. 

Stray interrupt. 
Interrupt of unexpected 
interrupt type. 



Decimal 
Value 

27* 

30* 

31 

32 

33 

34 

35 

Hex a-
decimal 

Value 

OOlB 

OOlE 

OOlF 

0020 

0021 

0022 

0023 

Cluster Request Management 

40* 0028 

41 0029 

42 002A 

43* 002B 

Meaning 

Divide error. 

Request table inconsistent. 

No such request code. 

Bad message on default response 
exchange. 

Service not available. 
The request is not ready to be 
served by the system service 
process. The installed system 
service process has to call 
ServeRq to declare its 
readiness to service the 
specified request code. 

Exit run file is not specified. 

Wrong Overlay: 
Wrong file system overlay has 
been loaded. Overlays specified 
in ObjLink file must be in 
correct order at system build. 

Not enough cluster buffer 
memory. 
Initialization error in master 
workstation. Insufficient 
memory is available to allocate 
for cluster buffers. Specify 
smaller data structures at 
system build. 

No available RCB. 
No RCB is available at the 
local cluster workstationAgent 
Service Process to process this 
request. Specify more RCBs at 
system build or modify the 
application system to require 
fewer concurrent requests. 

Agent Srp no room. User­
def ined request block is too 
big for the Agent to handle. 

Bad response from master 
workstation. The response 
from the master workstation 
does not match the request. 

A-3 



Initialization 

File Management 

A-4 

Decimal 
Value 

44* 

45 

46 

100* 

101* 

102* 

103 

201 

Hexa­
decimal 

Value 

002C 

0020 

002E 

0064 

0065 

0066 

0067 

OOC9 

Meaning 

Unmatched response at master 
workstation Agent Service 
Process. 
Probably a message was 
erroneously sent to exchange 12 
at the master workstation. 

Request block too big. 
The request block (with data 
fields expanded) is too big for 
the transmission buffer or line 
buffer. Reduce the size of the 
request or specify larger 
buffers at system build. 

Master workstation going down. 
Polling of the cluster 
workstation is going to stop. 

Memory failure detected during 
initialization. 

Insufficient memory for 
initialization. 

OS 

No DCB for the device from 
which the OS was bootstrapped. 

Ini tiali za ti on error. 
The Operating System logs this 
(see PLog in form 1148'772.) 
during initialization if it 
finds something wrong with the 
keyboard, video display, and so 
forth. 

No free volume structure. 
The Volume Home Block and 
Device Control Block values 
specified at system build are 
inconsistent. 



Decimal 
Value 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

Hexa­
decimal 

Value Meaning 

OOCA Directory full. 
Rename all the files in this 
directory to another directory 
and then delete this 
directory. Create a new 
directory with the name of the 
old directory. Then rename all 
the files from the other 
directory to this new, expanded 
directory. 

OOCB No such file. 

OOCC No such directory. 

OOCD Bad file specification. 

OOCE Bad user number. 
The user number should always 
be o. 

OOCF Bad request code. 

OODO Duplicate volume. 

OODl File is read only. 

OOD2 Bad file handle. 

OOD3 Bad buffer size. 
This must be a multiple of 512 
for disk volumes. 

OOD4 Bad logical file address. 
This must be a multiple of 512 
for disk volumes. 

OODS No free FAB. 
Open fewer files concurrently 
or specify more File Area 
Blocks at system build. 

OOD6 No free file number. 
Open fewer files concurrently 
or specify more File Control 
Blocks per User Control Block 
at system build. 

A-5 



A-6 

Decimal 
Value 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

Hexa­
decimal 

Value Meaning 

0007 No such volume or no such 
device. 
The volume is currently not 
mounted. 

0008 Volume not mounted. 

0009 Bad password. 

CODA Bad mode. 

OODB Access denied: 
A file system request was made 
which was denied because of 
wrong password or because of an 
illegal request to modify or 
access a system file 
(such as <sys>Sysimage.Sys). 

OODC File in use. 
A process that opens a file in 
modify mode is guaranteed 
exclusive access. Only one 
file handle can refer to a file 
that is open in modify mode. 

OODD File Header bad checksum. 
The volume control structures 
are invalid. Run Backup 
Volume, !Volume, and Restore on 
this volume. 

OODE File Header bad page number. 
The volume control structures 
are invalid. Run Backup 
Volume, !Volume, and Restore on 
this volume. 

OODF File Header bad header number. 
The volume control structures 
are invalid. Run Backup 
Volume, !Volume, and Restore on 
this volume. 

OOEO File already exists. 

OOEl No free File Headers. 
Run Backup Volume, !Volume (and 
specify more File Header 
Blocks), and Restore on this 
volume. 



Decima.+ 
Value 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

Hexa­
de cima 1 

Value Meaning 

OOE2 Free File Headers broken. 
The volume control structures 
are invalid. Run Backup 
Volume, !Volume, and Restore on 
this volume. 

OOE3 Device in use~ 

OOE4 Device already mounted. 

OOES Device not mounted. 

OOE6 Disk full. 
There are not enough available 
disk sectors to accommodate the 
current CreateFile or 
ChangeFileLength request. 

OOE7 Not a device that can be 
mounted. 

OOES No valid VHB. 

OOE9 

OOEA 

OOEB 

OOEC 

OOED 

OO!E 

The volume control structures 
are invalid. Run Backup 
Volume, IVolume, and Restore on 
this volume. 

File Header bad file name. 
The volume control structures 
are invalid. Run Backup 
Volume, IVolume, and Restore on 
t.his volume. 

Odd byte buffer address. 
The buffer must be word­
aligned. 

Wrong volume mounted. 

Bad device specification. 

Directory page invalid. 
The volume control structures 
are invalid. Run Backup 
Volume, !Volume, and Restore on 
thia volume. 

Request not valid for device. 

A-7 



A-8 

Decimal 
Value 

239 

240 

241 

242 

243 

244'* 

245 

246 

247 

Hexa­
decimal 

Value Meaning 

OOEF Wrong volume destination. 
Rename cannot move a file to 
another volume. 

OOFO Directory already exists. 

OOFl Directory not empty. 

OOF2 MFD is full. 
Run Backup Volume, IVolume (and 
specify more sectors for the 
Master File Directory), and 
Restore on this volume. 

OOF3 Verify error. 
A volume control structure 
(VFIB, FHB, etc.) was written 
and then immediately reread to 
verify that it was written 
correctly. The information 
reread does not compare with 
the information written, 
although the disk controller 
did not reFOrt an error. Error 
243 indicates a serious disk 
controller, DM.~, or memory 
hardware malfunction. 

OOF4 System device not ready. 
If a swap~ing OS was 
bootstrap~ed from a floppy 
disk, then the OS floppy disk 
cannot be {emoved from the 
drive. 

00~5 Run file bAd checksum. 
The file i.s probably not a run 
file. 

OOF6 Bad run file. 
The file is probably not a run 
file. 

0011 Old forma,t run file. 
The file is probably not a run 
file. 



Decimal 
Value 

248 

249 

250 

251 

252 

253 

254 

290 

Hexa­
decimal 

Value Meaning 

OOFS Wrong pRq argument. 
CheckReadAsync or 
CheckWriteAsync does not agree 
with the preceding ReadAsync or 
WriteAsync. 

OOF9 Invalid attributes for 
secondary task. 
A task loaded with LoadTask (as 
opposed to Chain) cannot use 
virtual code segments or have a 
memory array. (See form 
1148681 and the "Task 
Management" section.) 

OOFA Too many runs. 
The file cannot be expanded 
because it already contains the 
maximum number of runs. The 
maximum number of runs per file 
is a system build parameter. 

OOFB Cannot write to the 
[Sys]<Sys>Log. 

OOFC Cannot open the OS image file 
for the swapping cluster 
workstation. 

OOFD Cannot read the OS overlay for 
the swapping cluster 
workstation. 

OOFE All the user numbers on the 
master workstation have been 
used. Change the system build 
parameter for the User Control 
Block (multiple application 
partitions only). 

0122 Log buffer overflow. 
Multiple errors occurred 
rapidly and the Operating 
System was unable to log all of 
them. 

A-9 



Hexa­
Dec imal decimal 

Value Value Meaning 

Device Management 

300 012C 

301 0120 

302 012E 

303 012F 

304 0130 

Device not ready. 
Make sure that the power is on 
and that there is a floppy disk 
in the disk drive. 

I/O error. 
If you are using a floppy disk, 
the disk is bad and should be 
replaced with another disk. 

Write protected. 
There is no write enable tab on 
the floppy disk. 

No free IOB. 
There are too many concurrent 
input/output operations. More 
I/O Blocks should be specified 
at system build. 

Odd DMA Count: 
The number of bytes transferred 
by DMA must be even. 

Floppy Disk Controller 

A-10 

These codes relate to hardware controller 
failure. Code 328 (decimal) may result 'from a 
failure to include all floppy disks in the system 
build. 

320 0140 Floppy disk controller busy in 
command. 

321 0141 Floppy disk controller never 
ready in command. 

322 0142 Floppy disk controller data 
input in command. 

323 0143 Floppy disk controller never 
ready in result~ 

324- 0144 Floppy disk controller not data 
input in result. 

325 0145 Floppy disk controller not busy 
after Xfer request. 



Decimal 
Value 

326 

327 

328 

329 

330 

Bard Disk controller 

Hexa­
decimal 

Value Meaning 

0146 Floppy disk controller wrong 
unit after Xfer request. 

0147 Floppy disk controller busy 
without Xfer request. 

0148 Floppy disk controller 
interrupt from undefined unit •. 

0149 Floppy time out. 

014A Incomplete DMA transfer to/from 
floppy disk. 

These codes relate to hardware controller 
failure. Code 348 (decimal) may result from a 
failure to include all Winchester disks in the 
system build. 

340 0154 

341 0155 

342 0156 

343 0157 

344 0158 

345 0159 

346 015A 

347 015B 

348 OlSC 

Hard disk controller busy in 
command. 

Hard disk controller never 
ready in command. 

Hard disk controller data input 
in command. 

Hard disk controller never 
ready in result. 

Hard disk controller not data 
input in result. 

Hard disk controller not busy 
after Xfer request. 

Hard disk controller wrong unit 
after Xfer request. 

Hard disk controller busy 
without Xfer request. 

Hard disk controller interrupt 
from undefined unit. 

A-11 



Allocation 

Decimal 
Value 

349 

350 

351 

400 

401 

402 

410 

411 

Timer Management 

420 

421 

A-12 

Hexa­
decimal 

Value Meaning 

OlSD Hard disk time out. 

OlSE Incomplete DMA transfer to/from 
hard disk. 

OlSF Bad hard disk controller. 

0190 

0191 

0192 

019A 

0198 

01A4 

OlAS 

Not enough memory available to 
satisfy memory allocation 
request. 

Cannot allocate long-lived 
memory. 
The memory cannot be allocated 
becuase the Debugger is locked 
into memory in multiple-process 
or interrupt mode. (See form 
1148665.) 

Invalid memory segment 
specification to 
DeallocMemorySL/LL. 
(See the "Memory Management" 
section.) 

All exchanges already 
allocated. 
Specify more exchanges at 
system build. Also caused by 
too many files listed i~ the 
Submit command. Submit fewer 
files at a time. 

Invalid exchange identification 
specified to DeallocExch. 
(See the "Exchange Management" 
section.) 

Too many RTC requests. 
Specify a bigger Real-Time 
Clock request table at system 
build. 

Invalid timer block 
specification in CloseRTClock. 



Task Management 

Decimal 
Value 

430* 

431 

Video Display Manager 

500 

501 

502 

503 

504 

505 

Keyboard Management 

601 

602 

603 

Hexa­
decimal 

Value 

OlAE 

OlAF 

01F4 

01F5 

01F6 

01F7 

OlFS 

01F9 

0259 

025A 

02SB 

Meaning 

Cannot load Executive. 
The Debugger is locked in 
memory, [Sys]<Sys>Exec.Run is 
bad, or the memory 
specifications at system build 
were erroneous. 

The printer ISR already exists. 

Frame number/coordinates do not 
agree with the VCB. 

Invalid argument to VDM. 

Video buffer is not word­
aligned. 

VCB not completely initialized. 

Video OMA hardware failure. 

Too many attributes on a line 
(B 21 System only). 

Duplicate ReadKbd or 
ReadKbdDirect. 
Only one ReadKbd or 
ReadKbdDirect request can be 
outstanding at a time. 

No character available. 
ReadKbdDirect specified not to 
wait for a character and no 
keyboard character/code is 
currently available. 

Invalid escape sequence in 
submit file. 

A-13 



Printer Spooler 

A-14 

Decimal 
Value 

604 

605 

606 

607 

608 

609 

610 

700 

701 

702 

703 

704 

705 

706 

Hexa­
decimal 

Value 

025C 

0250 

02SE 

02SF 

0260 

0261 

0262 

02BC 

02BD 

02BE 

02BF 

02CO 

02Cl 

02C2 

Meaning 

Invalid argument to a keyboard 
operation. · 

Invalid mode code to 
SetSysinMode. 

Failure of 8048 keyboard 
microprocessor. 

Reserved. 

Application system being 
terminated by request of 
another process or ACTION­
FINISH. 

No action code available. 
ReadActionCode returns this 
status if the workstation 
operator has not entered an 
action code. 

Type-ahead buffer overflow. 

A ConfigureSpooler operation 
attempted to free a printer 
that was not attached. 

A SpoolerPassword operation 
attempted to enter a password 
when the printer spooler was 
not waiting for a password. 

Invalid printer name specified 
in a SpoolerPassword operation. 

Invalid channel number 
specified in a ConfigureSpooler 
operation. 

A Conf igureSpooler operation 
attempted to add a new printer 
to a channel that is not free 

Invalid printer spooler 
configuration file specified in 
a ConfigureSpooler operation. 

A spooler was installed with a 
printer name which was already 
in use. Printer names must be 
unique. 



,.. 

Decimal 
Value 

707 

708 

Hexa­
decimal 

Value 

02C3 

02C4 

Application Partition Management 

800 0302 

801 0303 

802 0304 

803 0305 

804 0306 

805 0307 

806 0308 

807 0309 

808 030A 

809 030B 

Meaning 

BadPrinter Configuration File: 
The "cbConfigureFile" field 
of the ConfigureSpooler service 
exceeds 91 characters. 

Bad Queue Name: 
The "cbQueueName" field of the 
ConfigureSpooler service 
exceeds 50 characters. 

Application partition is not 
vacant. Vacate the partition 
first. 

Cannot create any more 
application partitions. Number 
of application partitions is a 
system build parameter. 

Partition name is duplicated. 
Default name for the first 
application partition is 'bkg. 

Invalid partition handle is 
specified. 

Invalid partition. name is 
specified. Indicates too many 
characters or illegal 
characters. 

Application partition is 
vacant. 

Application partition is 
locked. A task on ~ locked 
partition cannot be terminated. 

Application partition is not 
locked. The partition should 
be locked before using the 
SetPartitionExchange operation. 

Partition exchange has not been 
set. 

Partition exchange has already 
been set. 

A-15 



Queue Management 

A-16 

Decimal 
Value 

810 

900 

901 

902 

903 

904 

905 

906 

907 

Hexa­
decimal 

Value Meaning 

030C An Assign statement in JCL file 
is attempted when the assign 
table is full. 

0384 

0385 

0386 

0387 

0388 

0389 

038A 

038B 

A DeleteMarkedQueueEntry, 
UnmarkQueueEntry, or 
RewriteMarkedQueueEntry 
operation was invoked with an 
invalid queue entry handle 
(qeh). The qeh specified was 
for an entry that is not 
marked. 

A DeleteKeyedQueueEntry 
operation specified an entry 
that was previously marked. 

A DeleteKeyedQueueEntry, 
ReadKeyedQueueEntry, or 
MarkKeyedQueueEnt=y operation 
was invoked for which no 
matching entry was found. 

A MarkNextQueueEntry operation 
was invoked when no entries 
were available. 

The ReadNextQueueEntry 
operation specified an entry 
that was deleted since its 
queue entry handle was 
returned. 

The pb/ cbQueueNa.rne fields of an 
operation specifies an invalid 
queue. 

An EstablishQueueEntry 
operation was invoked when 100 
server processes were already 
established. 

A Marking operation was invoked 
by a server process that had 
not invoked an 
EstablishQueueServer operation. 



Debugger 

Decimal 
Value 

908 

909 

910 

911 

912 

913 

914 

Hexa­
decimal 

Value Meaning 

038C An AddQueueEntry operation was 
involved with the 
fQueueifNoServers flag set to 
FALSE when no server processes 
were established. 

0380 A OeleteMarkedQueueEntry, 
UnrnarkQueueEntry, or 
RewriteMarkedQueueEntry 
operation was invoked with an 
invalid queue entry handle. 

038E A DeleteMarkedQueueEntry, 
UnrnarkQueueEntry, or 
R~writeMarkedQueueEntry 
operation was invoked by a 
server process other than the 
server process that marked the 
entry. 

038F A syntax error was made when 
opening the queue index file. 

0390 An AddQueueEntry operation 
specifies a queue type that 
does not match the queue type 
in the queue index file. 

0391 An AddQueueEntry operation was 
invoked with an invalid 
date/time specification. 

0392 The server process specified in 
an EstablishQueueServer 
operation is already 
established as a server. 

(See form 1148665 for additional information.) 

1001 03E9 Cannot convert from simple mode 
to multiple-process mode. To 
enter multiple-process mode, 
first exit the Debugger and 
then press ACTION-B. 

A-17 



Decimal 
Value 

1002 

1003 

1004 

1005 

Sequential Access Method 

A-18 

2305 

2315 

2325 

2335 

2336 

2340 

Hexa­
decimal 

Value Meaning 

03EA Not enough memory for multiple­
process mode or CODE-I 
breakpoint. Approximately 37k 
of memory must be available to 
enter multiple-process mode or 
set a CODE-I breakpoint. 

03EB Cannot deactivate Debugger. 
The Debugger cannot be 
deactivated while CODE-I 
breakpoints are set or while a 
breakpoint has just executed. 
To deactivate the Debugger, 
first remove all CODE-I 
breakpoints and/or proceed 
(single step) from the 
breakpoint. 

03EC Breakpoint already there. 
The Debugger allows only one 
breakpoint per location. 

03ED Debugger crash. 

0901 

090B 

0915 

091F 

0920 

0924 

A fatal internal error has 
occurred. Press the RESET 
button on the back of the 
workstation. 

Too many put backs. 
Only one PutBackByte is allowed 
before reading again. 

Invalid mode to OpenByteStream. 

Invalid BSWA. 
BSWA has been erroneously 
modified by the user or a byte 
stream was not opened for BSWA. 

Buffer too small. 
Buffer must be 1024 bytes to 
allow device independence. 

Invalid video byte stream 
escape sequence. 

Parity error detected on the 
last byte received by the 
communications byte strea~. 
All bytes, except the last one, 
·returned from the read 
operation were received without 
error. 



Decimal 
Value 

2341 

2342 

2343 

2344 

Fiexa­
dec irna l 

Value Meaning 

0925 Receive overrun error detected 
on the last byte received by 
the communications byte stream. 
All bytes, except the last one, 
returned from the read 
operation were received without 
error. 

0926 Framing error detected on last 
byte received by the 
communications byte stream. 
All bytes, except the last one, 
returned from the read 
operation were received without 
error. 

0927 Wrong configuration type~ 
The specified configuration 
file is not of the type 
expected for the device 
specified. 

0928 Bad configuration file. 
There was an error in accessing 
the appropriate configuration 
file. Either the specified 
configuration file (or the 
default if one was not spec­
ified) does not exist or an 
error was encountered when 
trying to read the file. 

X.25 Sequential Access Method 

2350 092E 

2351 092F 

X.25 error occurred during 
operation. 
If an x.25 error occurs during 
a byte stream operation, the 
call is cleared, but the byte 
stream is not closed. A 
ReleaseByteStream or CloseByte­
Stream operation must be done 
to close the byte stream. 

Time out. 
The specified time out elapsed 
before the X.25 Network Gateway 
system service operation fin­
ished. The operation in ques­
tion is terminated, but the 
call is not cleared. 

A-19 



Decimal 
Value 

Parameter Management 

2440 

2450 

2470 

2480 

2490 

Date/Time Conversion 

2700 

2701 

2702 

2703 

Direct Access Method 

3000 

A-20 

Hexa­
decimal 

Value 

0988 

0992 

09A6 

0980 

09BA 

OA8C 

OA8D 

OA8E 

OA8F 

OBB8 

~eaning 

No such iParam. 
The value of iParam supplied to 
RgParam is not less than 
CParams. 

No such jParam. 
The value of jParam supplied to 
RgParam is not less than 
CSubparams (iParam). 

VLPB full. 
The operation failed because 
the Variable Length Parameter 
Block could not be extended by 
allocating long-lived memory. 

Illegal iPararn. 
The value of iPararn supplied to 
RgParamSetListStart or 
RgPararnSetSimple is not less 
than CParams. 

Not in list. 
RgPararnSetEltNext was invoked 
after a RgPararnSetListStart or 
RgParamSetSirnple other than 
RgParamSetListStart or 
RgParamSetEltNext. 

Year out of range 1952-2042. 

Day not valid for specified 
month. 
Must be l to 28/29/30/31 as 
appropriate. 

Date and day of week disagree. 

Invalid tL~e of day 
specification. 

DAWA in use. 
OpenDaFile failed because the 
DAWh is currently associated 
with another DAM file. 



Decimal 
Value 

3001 

3002 

3003 

3004 

3005 

3006 

3007 

Hexa­
decimal 

Value Meaning 

OBB9 Not readable by DAM. 
OpenDaFile failed because the 
specified file contains records 
that cannot be read by the 
DAM. For e~ample; the file can 
contain variable-length 
records. 

OBBA sRecord mismatch. 

OBBB 

OBBC 

OBBD 

OBBE 

OBBF 

OpenDaFile failed because the 
sRecord parameter did not match 
the sRecord specified when the 
file was created. 

DAM internal error. 
The operation failed because an 
internal inconsistency was 
detected. 

DAWA invalid. 
The operation failed because 
pDAWA specified an invalid 
DAWA. A DAWA is invalid if it 
is not recognized as a DAWA or 
if it is not associated with an 
open file. 

Bad record fragment. 
ReadDaFragment or 
WriteDaFragment failed because 
the record fragment exceeds the 
record bounds. 

Bad buffer mode. 
SetDaBufferMode failed because 
an invalid buffer mode was 
given. 

Record beyond existing records. 
The operation failed because 
the specified record does not 
exist. This status code is 
equivalent to ercRecordDoesNot­
Exist (code 3302) except that 
this code {that is, 3007) 
provides this additional 
information: the record is 
beyond any existing record. 

A-21 



Decimal 
Value 

Hexa­
decimal 

Value 

Indexed Sequential Access Method 

Meaning 

{See form 1148723 for additional information.) 

3100 OClC 

3101 OClD 

3102 OClE 

3103 OClF 

3104 OC20 

3105 OC2l 

3106 OC22 

3107 OC23 

A-22 

No such index. 
The specified key field does 
not exist. 

Prefix not valid. 
The type of index specified to 
SetupISAMiterationPref ix is 
neither byte string nor 
character string. 

Bad key length. 
The length of the key is 
inconsistent with the type of 
the index •. 

Bad ISAM handle. 
The ISAM handle does not 
identify an open ISAM data set. 

Bad ISAM header size. 
The ISAM data set cannot be 
opened by OpenISAM due to an 
inconsistency in the header of 
one of the files of the data 
set. 

Bad ISAM header. 
The ISAM data set cannot be 
opened by OpenISAM due to an 
inconsistency in the header of 
one of the files of the data 
set. 

Too many indexes. 
The number of indexes in the 
data set created by CreateISAM 
or opened by OpenISAM is larger 
than the cindexesMax parameter 
of InstallISAM or the number 
specified in (Maximum no. of 
indexes in any ISAM data set 
(default 10)] of ISAM Install. 

ISAM already installed. 
This code is generated by 
InstallISAM or ISAM Install if 
ISAM is already installed. 



Decimal 
Value 

3108 

3109 

3110 

3111 

3112 

3113 

3114 

Hexa­
decimal 

Value Meaning 

OC24 Not enough DGroup memory. 
The memory area specified by 
the oDGroupMemory and 
sDGroupMernory parameters of 
InstallISAM is not large 
enough, or not enough short­
lived memory can be allocated 
for DGroup memory, or the 
values of the parameters of 
InstallISAM require allocation 
of more than 64,435 bytes of 
DGroup memory. 

OC25 Not addressable from OS. 
The short-lived memory 
allocated by InstallISAM for 
DGroup memory is not 
addressable from the DS (data 
segment) register of the 
invoking process. 

OC26 No free ISAM Control Blocks. 
All the ISAM Control Blocks are 
in use. Reinstall ISAM with 
more ISAM Control Blocks. 

OC27 No free ISAM User Blocks. 
All the ISAM User Blocks are in 
use. Reinstall ISAM with more 
ISAM User Blocks. 

OC28 No free ISAM Index 
Specification Blocks. 
All the ISAM Index 
Specification Blocks are in 
use. Reinstall ISAM with more 
ISAM Index Specification 
Blocks. 

OC29 Buffers too large. 
The amount of memory required 
by the buffer sizes specified 
to InstallISAM or to ISAM 
Install exceeds one megabyte. 

OC2A Bad pCacheBuffers. 
The relative address part of 
the pCacheBuffers parameter of 
InstallISAM is nonzero. 

A-23 



A-24 

Decimal 
Value 

3115 

3116 

3117 

3118 

3119 

3120 

3121 

3122 

Hexa­
decimal 

Value Meaning 

OC2B ISAM crashed. 
This code is generated by all 
ISAM operations upon detection 
of an internal error. 

OC2C ISAM not installed. 
This code is generated by all 
ISAM operations before 
InstallISAM is called or· ISAM 
Install is successfully 
executed. 

OC2D Bad unique record identifier. 
An incorrect unique :ecord 
identifier parameter was passed 
to ISAM. 

OC2E Duplicate key. 
A StoreISA.~Record or 
ModifyISAMRecord was attempted 
with the ~alue of a key field 
that duplicates the field in 
another record. 

OC2F Index file error. 
This is returned as the status 
code of an ISAM operation. The 
detail status code refers to a 
problem with the index file of 
the ISAM data set. 

OC30 Attempted privacy breach. 

OC3l 

OC32 

An attempt was made to modify a 
data set which is open in batch 
read or transaction read mode. 

Bad ISAM request. 
The parameters of an ISAM 
operation are inconsistent or 
have invalid values. 

Data store file error. 
This is returned as the status 
code of an ISAM operation. The 
detail status code refers to a 
problem with the data store 
file of the ISAM data set. 



Decimal 
Value 

3123 

3124 

3125 

3126 

3127 

3128 

3129 

3130 

3131 

Hexa­
decimal 

Value Meaning 

OC33 Index to data error. 

OC34 

OC35 

OC36 

OC37 

OC38 

OC39 

OC3A 

OC3B 

An inconsistency has arisen 
between the index and data 
store files of the ISAM data 
set. 

Record size incorrect. 
The record size specified is 
incorrect for the ISAM data 
set. 

Duplicates allowed. 
An attempt was made to use 
ReadUniqueISAMRecord for keys 
for which duplicates are 
allowed. 

No such record. 
An attempt was made to use 
ReadUniqueISAMRecord to read a 
record that does not exist. 

No more records. 
An attempt was made by 
ReadNextISAMRecord or 
GetISAMRecords to read more 
records than those specified to 
SetupISAMiterationKey, 
SetupISAMiterationPrefix, or 
SetupISAMiterationRange. 

Bad key. 
A key does not correspond to 
the index type. (For example, 
each digit of a BCD key must be 
between 0 and 9.) 

Bad index. 
The specified key field does 
not exist. 

Bad ISAM mode. 
OpenISAM detects a bad mode. 

Cannot open ISAM. 
This is returned as the status 
code of an ISAM operation. The 
detail status code gives the 
reason for the failure. 

A-25 



A-26 

Decimal 
Value 

3132 

3133 

3134 

3135 

3136 

3137 

3138 

3139 

3140 

Hexa­
decimal 

Value Meaning 

OC3C Bad ISAM password. 
The password does not give the 
access desired by OpenISAM, or 
the password is larger than the 
12 bytes accepted by 
SetISAMPasswords. 

OC3D Wrong size record. 
OpenISAM detects the wrong size 
record. 

OC3E Incompatible ISAM mode. 

OC3F 

OC40 

OC4l 

OC42 

OC43 

OC44 

An attempt was made to open d 

data set when the data set is 
already open in an incompatible 
mode. 

ISAM already locked. 
Lockrs;..11 ·,.;as invo:<ed while an 
ISAi.~ data set is locked by the 
user. 

Not administrator. 
An operation for which the data 
set must be open in 
administrator mode •,,;as 
attempted with the data set 
open in some other mode. 

Cannot create ISAM. 
This is returned as the status 
code of CreateISAM. The detail 
status code gives the reason 
for the failure. 

ISAM buffer too small. 
The data set being opened or 
created requires buffers larger 
than those installed. 

Not locked. 
An attempt was made in 
transaction mode to call an 
ISAM operation other than 
CloseISAM for a data set that 
is not locked. 

Small ISk~ Record. 
An attempt was made to create 
an ISAM data set with records 
shorter than four bytes. 



Decimal 
Value 

3141 

3142 

3143 

3144 

3145 

3146 

3147 

3148 

Hexa­
decimal 

Value Meaning 

OC45 Not in transaction. 

OC46 

OC47 

OC48 

OC49 

OC4A 

OC4B 

OC4C 

An operation was invoked for 
which the user must be in a 
transaction, but the user was 
not in a transaction. 

Data set not available. 
An attempt was made to read or 
hold a record, or to hold a 
data set, without queueing, and 
the data set was held by 
another user. 

Record not available. 
An attempt was made to read or 
hold a record without queueing, 
and the record was held by 
another user. 

Record not held. 
An operation for which the 
record (or its data set) must 
be held was invoked when 
neither the record nor its data 
set was held. 

Too many records held. 
An attempt was made to hold a 
record when the maximum 
allowable number of records are 
already held. 

In transaction. 
StartISAMTransaction was 
invoked during a transaction. 

Request pending. 
A transaction operation other 
than PurgeISAMTransaction was 
invoked when one or more 
requests were queued for the 
user. 

Transaction purged. 
PurgeISAMTransaction was 
invoked while the request was 
queued. 

A-27 



Key-in-Record 

Decimal 
Value 

3149 

3170-
3199 

Hexa­
decimal 

Value Meaning 

OC4D Not enough buff~rs. 

OC62-

InstallISAM (or the !Sh~ 
Install conunari.d) was invoked 
specifying fewer than two data 
store buffers or three index 
buffers. Specify at least two 
data store buffers and three 
index buffers. 

0C7F Internal ISAM errors. 

(See forms 1148764 and 1148723 for additional information.} 
Bad key type. 3200 ocao 

3201 OCSl 

3202 OC82 

Standard Access Methods 

3300 OCE4 

3301 OCES 

3302 OCE6 

A-28 

The type field of a key 
specification for Sort/Merge or 
ISAM is invalid. 

Incorrect key length. 
The cbKey field of a key 
specification for a Sort/Merge 
or ISAM operation does not 
correspond to the type field of 
the key specification. (For 
example, for binary keys, cbKey 
must be 2.} 

Bad key. 
A key contained in a record for 
Sort/Merge or ISAM, or a key 
described by a parameter of an 
ISAM operation, is not of the 
correct type. (For example, 
each digit of a BCD key must be 
between 0 and 9.) 

Not a STAM file. 
The operation failed because 
the file did not contain the 
proper signature. 

STAM header bad checksum. 
The operation failed because 
the checksum computed on the 
file header did not match the 
checksum computed when the file 
was created. 

Record does not exist. 
The operation failed because 
the specified record does not 
exist. 



Decimal 
Value 

3303 

3304 

3305 

3306 

3307 

External-Key Sort 

Hexa­
decimal 

Value 

OCE7 

OCE8 

OCE9 

OCEA 

OCEB 

Meaning 

Malformed record. 
The operation failed because 
data read from the disk 
contained an inconsistency in 
the record header and trailer. 

Not fixed-length record. 
The operation failed because 
the access method cannot 
reference variable-length 
records. 

Bad file type .. 
The operation failed because 
the file cannot be accessed 
with the specified access 
method. 

Bad buffer size. 
The operation failed because 
the buffer size was too small 
or not a multiple of 512. 

Buffer not word-aligned. 
The operation =ailed because 
the buffer was not word­
aligned. 

(See form 1148764 for additional information.) 

3400 0048 

3401 0049 

3402 004A 

3403 0048 

Cannot open work file. 
Unable to open one of the work 
files during Prepa=eSort. 

Work area bad. 
Unable to allocate work area 
during PrepareSort. 

Bad key size. 
A key passed to 
ReleaseRecordAndKey is a 
different length than the 
length specified in 
PrepareSort. 

File error during sort. 
A file error occurred during 
the sort phase of the program. 

A-29 



Decimal 
Value 

3404 

3405 

3406 

3407 

3408 

3409 

3410 

3411 

Key-in-Record Sort 

Hexa­
decimal 

Value 

004C 

0040 

OD4E 

004F 

0050 

0051 

0052 

0053 

(See form 1148715 for additional 

3500 OOAC 

3501 ODAD 

A-30 

Meaning 

No more records. 
ReturnRecordAndKey was called 
after all records were 
retrieved. 

Error returning record. 
An error occurred in 
ReturnRecordAndKey. 

Error during conclude. 
An error occurred in 
ConcludeSort or TerminateSort. 

More records available. 
ConcludeSort was called before 
all records were retrieved. To 
end a sort prematurely, call 
TerminateSort. 

Record too large. 
The size of a record is larger 
than the maximum key size 
specified in PrepareSort or the 
sort area is not large enough. 

Error during sort. 
An error occurred during 
DoSort. 

Insufficient memory. 
Not enough memory was allocated 
for the sort work area. 

No records to sort. 
DoSort was called before any 
records were released. 

i nforma ti on.) 

Sort pending. 
PrepareKeySort was 
a sort was already 

No sort pending. 

called while 
active. 

A sort procedure other than 
PrepareKeySort was called 
before PrepareKeySort. 



Hexa­
Decimal decimal 

Value Value Meaning 

3502 ODAE Bad sort key. 
The key provided is 
inconsistent with its 
specifications. 

3503 ODAF Sort key not in record. 
A key could not be synthesized 
from this record, given the 
initial specifications of keys 
within records. 

3504 ODBO Bad key specification. 

Record Sequential Access Method 

3600 OElO 

3601 OEll 

3602 0El2 

3603 OE13 

3604 0El4 

The key specification in 
PrepareKeySort is incorrect. 
It conflicts with the maxi.mum 
record size provided. 

RSWA in use. 
OpenRsFile failed because the 
RSWA is currently associated 
with another RSA..~ file. 

RSWA invalid. 
The operation failed because 
pRSWA specified an invalid 
RSWA. An RSWA is invalid if it 
is not recognized as an RSWA or 
if it is not associated with an 
open file. 

RSAM internal error. 
The operation failed because an 
internal inconsistency was 
detected. 

Bad mode. 
OpenRsFile failed because the 
mode parameter was invalid. 

Not readable by RSAM. 
OpenRsFile failed because the 
specified file cannot be read 
by RSAM. 

A-31 



Forms 

Decimal 
Value 

3605 

3606 

3607 

Hexa­
decimal 

Value Meaning 

OElS Wrong mode. 
The mode, which was specified 
when the file was opened, does 
not allow the operation to 
succeed. For example, mode 
read does not allow 
WriteRsRecord to succeed. 

OE16 Record too large. 
The record is too large to fit 
into the buffer supplied by 
ReadRsRecord. 

OE17 Good record not found. 
ScanToGoodRsRecord was unable 
to locate a well-formed record. 

(See form 1148715 for additional information.) 

3700 OE74 

3701 OE75 

3702 OE76 

A-32 

Name not found. 
The form name supplied to 
OpenForm was not found within 
the file. Check that the file 
name and form name are correct 
for the form you want. 

Bad object file. 
The file supplied to OpenForm 
does not appear to be a valid 
object module. Possibly the 
file is empty. Check that the 
file name is correct for the 
form you want. 

Form too big. 
The work area supplied to 
OpenForm was too small to 
contain the named form. Use 
FReport to learn the size of 
the required work area, and 
make sure you have allocated 
sufficient space. 



Decimal 
Value 

3703 

3704 

3705 

3706 

Hexa­
decimal 

Value 

OE74 

OE78 

OE79 

OE7A 

Meaning 

Form out of bounds. 
The screen coordinates passed 
to DisplayForm would result in 
a part of the form lying 
outside the frame. use FReport 
to learn the required height 
and width, and make sure that 
the frame number and 
coordinates within the frame 
are correct for these values. 

Form not displayed. 
A Forms run-time operation 
(DefaultField, DefaultForm, 
ReadField, SetFieldAttrs, 
UndisplayForm, UserFillField, 
or WriteFi~ld) was attempted on 
a form that had not been 
displayed wit~ DisplayForm. 
Make sure that the form was 
displayed before attempting any 
of these operations. 

No such field. 
A Forms r1Jn-time operation 
(DefaultField, GetField!nfo, 
ReadField, SetFieldAttrs, 
userFillField, or WriteField) 
was attempted for which the 
field specified by pbFieldName, 
cbFieldName, and index does not 
exist. Use FReport to display 
the names and allowable indexes 
for all fields, and make sure 
the field specification you 
have supplied is correct. 

Bad type specification. 
ReadField or WriteField was 
supplied with a type code that 
is not defined in your 
configuration. Examine the 
source text of FmRgtd.Asm for a 
list of defined type codes, and 
make sure that the codes you 
are supplying are in this list. 

A-33 



Decimal 
Value 

3707 

3708 

Hexa­
decimal 

Value Meaning 

OE7B Bad data size. 
ReadField was attempted in 
which the cbMax parameter was 
incorrect for the type of data 
being returned, for example, a 
cbMax of three for type 
"Binary." Make sure that the 
size and type of your data area 
agree. 

OE7C Invalid data. 
ReadField or WriteField was 
attempted in which the 
requested data conversion could 
not be performed, for example, 
reading an alphabetic string as 
type "Binary." For WriteField, 
make sure the type of the data 
you are displaying is 
correct. For ReadField, it is 
probably appropriate to display 
an error message and have the 
user reenter the data. 

Virtual Code Segment Management 

7300 

7301 

7302 

7303 

A-34 

1C84 

1C85 

1C86 

1C87 

Overlay already in memory. 

Next overlay does not fit: 
The swap buffer is not large 
enough to swap in the next 
overlay. Increase the size of 
the swap buffer. 

ROD will not fit: 
The swap buffer is not large 
enough. Increase the size of 
the swap buffer. 

Swap failed: 
Internal system error detected 
(possibly a file system error 
involving the run file). 



Communications 

Decimal 
Value 

7304 

8002 

8003 

Hexa­
decimal 

Value Meaning 

1C88 Inconsistent Procinfo table: 

lF42 

lF43 

An internal data structure has 
been corrupted (possibly caused 
by link time errors reported in 
the runfile load map}. 

Lost clear to send during 
transmission. 
This generally indicates a 
modem problem. 

Lost carrier during reception. 
This indicates a problem with 
the modem or tra~smission 
facilities, or at the host 
computer site. 

Master/Cluster Workstation Communications 

8100 lFA4 

8101* lFAS 

8102* 1FA6 

Time out. 
A workstation no longer 
responds to polling. 

In the context of 2780/3780, 
8100 also means: the host 
computer failed to respond to a 
transmission. 
Possibly indicates a total 
break in communications. 

Invalid state. 
Run the crash dump analyzer. 

Communications hardware 
failure. 
Run the communications 
diagnostic. 

A-35 



A-36 

Decimal 
Value 

8103* 

8104* 

8105 

8106 

8109* 

Hexa­
decimal 

Value Meaning 

1FA7 Unrecoverable protocol failure 
detected by the master 
workstation. 
A cluster workstation has 
ceased to obey proper protocol 
procedure and has defied all 
attempts to recover (including 
an attempt to refuse 
corrununication with the master 
workstation). This can be 
caused by a hardware failure 
(including cabling) or 
excessive DMA loading. 

1FA8 Bad OMA buffer address. 

1FA9 

lFAA 

lFAD 

An error in system 
initialization has caused the 
DMA buffer of the Agent 
Service Process to fall outside 
the low-order 128k bytes of 
memory or on an odd-byte 
boundary. 

Invalid card bit. 
An error has occurred in the 
Cluster Line Protocol Handle. 

Busy bit IO. 
An error has occurred in thP­
Cluster Line Protocol Handle. 

Unrecoverable protocol failure 
detected by a cluster 
workstation. 
The cluster workstation has 
determined that the master 
workstation is no longer 
obeying proper protocol 
procedures. This can be caused 
by a hardware failure 
(including cabling) or 
excessive Multibus DMA loading. 



Decimal 
value 

8111 

8112* 

8113 

8115 

8116 

8117 

Hexa­
decimal 

Value Meaning 

lFAF An error in the hardware (SIO 
or cabling) on the cluster line 
has caused a temporary 
inability of the cluster 
workstation to communicate with 
the master workstation. 

lFBO Master workstation disconnect. 

lFBl 

1FB3 

lFB4 

lFBS 

An unrecoverable protocol 
failure has occurred at the 
master workstation and it has 
refused further communications 
with this workstation. The 
most likely cause is a dupli­
cate workstation identification 
somewhere within the cluster 
(if so, the workstation with 
the duplicate identification 
should have si~ultaneously 
crashed with this error). 
Other possible causes are the 
same as code 8109. 

Request block error. 
An L~properly formatted request 
block was repeatedly sent by a 
workstation. 

Bootstrap failure. 
A protocol failure occurred 
during the bootstrap process. 

No IDs. 
The ID search algorithm was 
unable to find a free ID. In 
general, this indicates that 
the system build performed for 
the Operating System currently 
running on the master work­
station specified too few IDs 
for the cluster configuration. 

ID search failure. 
The ID search algorithm found a 
free ID but was unable to lock 
onto it for use. In general, 
this indicates a serious 
hardware or software problem. 

A-37 



Decimal 
Value 

2780/3780 and 3270 

8205 

8207 

8208 

8209 

8210 

8211 

8212 

A-38 

Hexa­
decimal 

Value 

2000 

200F 

2010 

2011 

2012 

2013 

2014 

Meaning 

Host computer not polling. 

Invalid 3270 command. 
A subsystem error in the 3270 
emulator. 

Unexpected response. 
A subsystem error in the 3270 
emulator. 

Buffer too small. 
The buffer must be large enough 
to accept the longest EBCDIC 
transmission from the host 
computer, which may be larger 
than the screen size. 

Request from unknown 
workstation. 
Open3270Emulator must be the 
first request issued, and the 
device address in all 
subsequent requests must match 
the one returned from 
Open3270Emulator. 

Too many workstations. 
The number of device addresses 
already assigned is equal to 
the maximum set at system 
build: no further 
Open3270Emulator requests can 
be honored. 

Reject. 
Subsystem error in the 3270 
emulator. 



Decimal 
Value 

8213 

8214 

8218 

8219 

8220 

8221 

8222 

8223 

Hexa­
decimal 

Value 

2015 

2016 

201A 

201B 

201C 

2010 

201E 

201F 

Meaning 

For 2780/3780: protocol 
failure during reception. 

For 3270: protocol failure 
after selection. 
A valid selection was received; 
however the normal BSC error 
recovery procedures were unable 
to successfully receive a data 
block from the host computer. 

For 2780/3780: protocol 
failure during transmission. 

For 3270: protocol failure 
after poll. 
A valid poll sequence was 
received; however the ~or:nal 
BSC error recovery procedures 
were unable to successfully 
transmit a data block to the 
host computer. 

Reverse interrupt received from 
host computer. 
Transmission was terminated. 

An attempt was made to sign on 
when already signed on, or sign 
off when already signed off or 
not idle. 

Invalid request code for RJE 
system service. 

Communications line 
disconnected. 

Cannot create sequenced file 
specification. 
The entire range of sequence 
numbers (0-65535) was tried. 

Invalid configuration file 
format. 
Use the Configure RJE command 
to create a properly formatted 
file. 

A-39 



Hexa­
decimal Decimal 

Value Value Meaning 

Communications Interrupt Handlers 

8400 2000 

8401 2001 

X.25 Packet Access Method 

8500 2134 

8501 2135 

A-40 

Invalid line number. 
The line number specified in 
SetCommISR or ResetCommISR must 
be either 0 or l. 

Line in use. 
The line specified in 
SetCommISR is being used by the 
Operating System. 

Link level down. 
The link level of the X.25 
Network Gateway system service 
is not operational. This situ­
ation occurs either at power up 
before communication with the 
PON is established.or during 
operation if an irrecoverable 
link level error occurs. The 
X.25 Network Gateway system 
service link level software 
should reestablish conununica­
tion as soon as possible. If 
the link level remains down for 
an extended period, an irrecov­
erable error at the physical 
level or the link level exists, 
and a PON representative should 
be contacted. 

Packet level down. 
The packet level of the X.25 
Network Gateway system service 
is not operational. This situ­
ation occurs (1) at power up, 
(2) during operation following 
a link level failure and subse­
quent reestablishment of link 
level communications, or (3) 
following an irrecoverable 
packet level error condition. 
The X.25 Network Gateway system 
service should reestablish the 
packet level as soon as possi­
ble. If the packet level 
remains down for an extended 
period, a PON representative 
should be contacted. 



Hexa­
Decimal decimal 

Value Value Meaning 

8502 2136 Maximum number of this request 
has been queued. 

8503 2137 

Previously submitted requests 
of this type must be completed 
before more can be issued. The 
maximum number of each request 
type is 

o NotifyNextincomingCall 
requests: the number of 
virtual circuits per line. 

o ReadX25Packet requests: 
two per virtual circuit. 

o WriteX25Packet requests: 
five per virtual circuit. 

o all other packet access 
method operation 
requests: one per virtual 
circuit. 

Generally, since the packet 
level should complete requests 
in a short period, the request 
should be resubmitted. If this 
condition persists, Query­
X25Status should be used to 
examine the state of the X.25 
Network Gateway system service 
to determine the cause of the 
delay. 

X.25 Network Gateway system 
service is busy. 
Insufficient memory is availa­
ble for the X.25 Network Gate­
way system service to process 
any more requests at this 
time. In normal operation, the 
X.25 Network Gateway system 
service should complete enough 
requests to free the memory 
required for new requests. If 
this error persists, 
reinstallation of the x.2s 
Network Gateway with additional 
memory should be considered. 

A-41 



A-42 

Hexa­
Dec imal decimal 

Value Value 

8504 2138 

8505 2139 

8506 213A 

8507 2138 

8508 213C 

8509 2130 

Meaning 

Process termination. 
All requests were (or shortly 
will be) returned and all vir­
tual calls were (or shortly 
will be) cleared because the 
user's process has terminated. 

Bad port parameter. 
A NotifyNextincomingCall opera­
tion contains a port range with 
one of two error conditions: 

o The high port number is 
less than the low port 
number. 

o The low and/or high port 
number is not in ASCII 
digits. 

No virtual circuit available. 
An InitiateX25Call operation 
was received, but all virtual 
circuits were either in use or 
out of order. 

User-specified time out. 
A ReadX25Packet or a Notify­
NextincomingCall operation 
could not be fulfilled by the 
packet level during the speci­
fied maximum time. 

Virtual circuit in use. 
A request was received for a 
virtual circuit (or permanent 
virtual circuit) in use by some 
other user. 

Call collision. 
An incoming call was received 
on a virtual circuit before an 
InitiateX25Call operation that 
had been allocated· to that 
virtual circuit could be com­
pleted. The process should 
resubmit the InitiateX25Call 
operation. 



Decimal 
Value 

8510 

8511 

8512 

8513 

8514 

8515 

Hexa­
decimal 

Value Meaning 

213E Call cleared. 
An AcceptX25Call operation was 
made on a circuit for which no 
call was pending. 

213F Virtual circuit not in use. 
A request was received for a 
virtual circuit (or permanent 
virtual cicuit) that was not 
allocated to any user. 

2140 DTE clear. 

2141 

2142 

2143 

Either an erroneous packet was 
received from the PON, or the 
process requested that the call 
be terminated. The X.25 Net­
work Gateway system service 
cleared the call that was on 
this virtual circuit. Data in 
the process of being trans­
ferred may have been lost. 

DCE clear. 
The PON cleared the call that 
was on this virtual circuit. 
Data in the process of being 
transferred may have been lost. 

DTE reset. 
Either an erroneous packet was 
received from the PDN, or the 
process requested the call be 
reset. Th~ X.25 Network Gate­
way system service reset the 
call on this virtual circuit. 
Data in the process of being 
transferred may have been lost. 

DCE reset. 
The PDN reset the call on this 
virtual circuit. Data in the 
process of being transferred 
may have been lost. 

A-43 



A-44 

Decimal 
value 

8516 

8517 

8518 

8519 

8520 

Hexa­
decimal 

Value Meaning 

2144 DTE restart. 

2145 

2146 

2147 

2148 

An erroneous packet was 
received from the PON, and the 
X.25 Network Gateway system 
service was restarted. All 
active calls were cleared. 
Data in the process of being 
transferred may have been lost. 

DCE restart. 
The PON restarted the packet 
level. All active calls were 
cleared. Data in the process 
of being transferred may have 
been lost. 

Virtual circuit not in data 
transfer mode. 
A read, write, reset, or inter­
rupt request was received for a 
virtual circuit that was not in 
the correct state. Either no 
call was present, or the cir­
cuit was in the process~of 
being cleared or reset. 

Interrupt data. 
This indicates normal comple­
tion of a read request, but 
with an interrupt data packet 
rather than a normal data 
packet. Interrupt data are 
returned to the process before 
any normal packets being held 
for the process by the packet 
level. 

Virtual circuit out of order. 
An irrecoverable error occurred 
on this virtual circuit, and 
the X.25 Network Gateway system 
service declared it out of 
order. All calls on this cir­
cuit were cleared. The circuit 
can be restored only by the 
PON. 



Decimal 
Value 

8521 

8522 

8523 

8524 

8525 

Hexa­
decimal 

Value Meaning 

2149 Internal time out. 
The PON did not respond to the 
packet generated by the request 
in the required time period. 
The process should resubmit the 
request. 

214A Invalid virtual circuit number. 
Either (l) a request was 
received for a virtual circuit 
with a vch parameter that is 
either out of bounds or is 0 
(~ircuit O is reserved), or (2) 
a ConnectX25Permanent operation 
was received for a nonpermanent 
virtual circuit. 

214B Data truncated. 

214C 

214D 

Data to be returned to the 
process exceeded the size of 
sPacketRet as specified by the 
process. The data were 
truncated ;~o the size of the 
buffer. 

No buffer. 
A read or write operation was 
attempted, with sBuffer equal 
to o. 
Permanent circuit. 
ClearX25Call or AcceptX25Call 
was issued with the vch 
parameter of a permanent 
virtual circuit. 

A-45 



CommIOP 

A-46 

Decimal 
Value 

8601 

8602 

8603 

8604 

8605 

8606 

Hexa­
decimal 

Value Meaning 

2199 

219A 

219B 

219C 

2190 

219E 

ComrnIOP time out. 
The ComrnIOP failed to update 
the status cell within a 
certain time period. Run the 
ComrnIOP diagnostic to determine 
the cause of the error. 

Line not configured. 
The communications line number 
is not currently configured in 
the system. Change the system 
build parameters. 

Missing system image for 
CommIOP. 
The file [Sys]<Sys>CommIOP>Sys­
Image.Sys was not found. 

CornmIOP loading error. 
The ComrnIOP could not be loaded 
successfully. Run the CornmIOP 
diagnostic. 

Invalid CornmIOP data structure. 
There is an invalid queue 
entry, an invalid CornmIOP 
number, etc. Take a crash dump 
and run the ComrnIOP diagnostic. 

CommIOP channel restart. 
The carrier problem on the 
CornmIOP channel was cleared. 



Decimal 
Value 

8607 

8610 

8615 

8616 

8617 

8618 

8621 

8622 

8623 

8624 

Hexa­
dec irnal 

Value Meaning 

219F CommIOP channel hold. 
There is a carrier problem on 
one of the CommIOP channels. 
Disconnect cluster workstation 
one at a time to determine which 
is failing. 

2lA2 CommIOP command failure. 
The CommIOP returned erroneous 
control information to the 
master workstation. 

21A7 Bad master workstation to 
CommIOP command. 

21A8 

21A9 

21AA 

21AD 

21AE 

21AF 

21BO 

The CommIOP did not recognize 
the command from the master 
workstation. 

Comm!OP bootstrap checksum 
failure. 
The CommIOP checksum test 
failed while loading its code 
file from the master 
workstation. 

CommIOP stacker/destacker 
failure. 
The Multibus interface hardware 
(stacker/destacker) on the 
CommIOP is not functional. 

Bad CommIOP interrupt. 
The CommIOP recei~ed an 
interrupt from an unknown 
source. 

CommIOP RAM failure in 
write/read test. 

CommIOP RAM failure - invalid 
bit set. 

CommIOP failure - invalid bit 
cleared. 

CommIOP RAM failure in 
addressing test. 

A-47 



A-48 

Decimal 
Value 

8631 

8632 

8633 

8634 

8635 

8636 

8637 

8641 

8642 

Hexa­
decimal 

Value Meaning 

21B7 CommIOP handler time out. 
The CommIOP did not get proper 
status information from the 
master workstation. The most 
probable cause is a software 
problem in the master 
workstation that caused the 
master workstation Agent 
Service Process to be 
permanently suspended. 

21B8 Invalid CommIOP check word. 

21B9 

21BA 

21BB 

21B·c 

21BD 

21Cl 

21C2 

The CommIOP has encountered an 
invalid check word in its 
queues. There is probably a 
memory error in the master 
workstation. 

CommIOP RAM checksum error. 
The CommIOP's RAM is probably 
faulty. Run the CommIOP 
diagnostic. 

Invalid queue entry. 
The CommIOP has discovered an 
invalid queue entry in its data 
queues. This is possibly a 
software error. 

Invalid CommIOP buffer pointer. 
The ComrnIOP received an invalid 
memory address of a buffer. 

ComrnIOP carrier problem. 

ComrnIOP software inconsistency. 
This is probably a software 
error. A crash dump should be 
taken. 

ComrnIOP timer failure. 
The timer hardware on the 
CommIOP failed the 
initialization tests. 

CommIOP DMA failure. 
The DMA hardware on the CommIOP 
failed the initialization 
tests. 



Decimal 
Value 

8643 

8644 

8701 

9702 

8703 

6704-
9712 

8699 

Hexa­
decimal 

Value Meaning 

21C3 Comm!OP SIO static test 
failure. 
The communications hardware on 
the CommIOP failed the static 
initialization test. 

2lC4 CommIOP SIO functional test 
failure. 
The communications hardware on 
the Comm!OP failed the 
functional test. 

21FD Cluster workstation time out. 
The cluster workstation did not 
respond in the allotted time 
period. 

21FE Cluster works ta ti on CRC error. 

21.FF 

2200-
2208 

2lFB 

An excessive number of CRC 
errors were encountered from 
the cluster workstation. Run 
the communications and the 
CommIOP diagnostics. 

Cluster workstation overrun 
error. 
The cluster sent too much data 
per buffer. Check the cluster 
works ta ti on/master works ta ti on 
system build parameters. 
Bad protocol errors. 
These errors are probably due 
to ( 1) a reset or power down on 
the cluster works ta ti or. or (2) 
a faulty cluster works ta ti on. 
The cluster is too heavily 
loaded when the 
GetClusterStatus operation is 
invoked. 

A-49 





GENERAL 

CODE Keys 

APPENDIX B 
STANDARD CHARACTER SET 

Table B-1 below describes the 256-entry character 
set used when the keyboard is in character mode, 
the standard encoding is in the Keyboard Encoding 
Table, and the standard font is in the font 
RAM. Table B-2 below shows the graphical 
representation of the characters of Table B-1. 

When the keyboard is in character mode, the two 
CODE keys are special kinds of SHIFT keys. If 
either or both is depressed when a non-SHIFT key 
is pressed, the high-order bit of the key is 
turned c;m. For example, CODE-A generates 
80h + 6lh = OElh, CODE-space generates 
80h + 20h = OAOh, etc. Note that any of the 
values 80h ... OFFh can be generated from the 
keyboard in this way. 

In addition, some of the character codes in the 
range 80h to ODFh have keyboard encodings that do 
not require the CODE key. 

Legend for Table B-1 

Uppercase 
label on 
SH·IFT) • 

alphabetics are used for the actual 
the key cap (for example, FINISH, 

Lowercase alphabetics are used for descriptions 
of the key cap label (for example, left arrow) or 
video display character (for example, dagger). 

Where a character can be generated only by 
depressing a combination of SHIFT and/or CODE and 
another key, the key combination is shown as a 
hyphenated list of keys (for example, SHIFT-6). 

The four empty key posts covered by the double 
keys left-SHIFT, right-SHIFT, numeric-0, and NEXT 
are denoted by (SH-L'), (SH-R'), (0'), and 
(NEXT'), respectively. 

The keys on the numeric pad are denoted "num O", 
etc. to distinguish them from the corresponding 
keys on the typewriter pad. 

B-1 



B-2 

Character 
Code 

(hexa­
decimal) 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 

OB 
oc 
OD 
OE 
OF 
10 
ll 
12 
13 
14 
15 
16 
17 
18 
19 
lA 
lB 
lC 
lD 
lE 
lF 
20 
21 
22 
23 
24 
25 

Table B-1. Standard Character Set 

Video Display 
Character 

null 
up arrow 
._ (triangle) 
¢ 
filled square 
empty square 
1/2 
bell 

t.ab 
r.ew line 

down arrow 
formfeed 
~ (triangle) 
left arrow 
double dagger 
1/4 
t 
right arrow 
trough 
raised dot 

I (vertical bar) 
§ 
~ 
similarity 
f 
filled circle 
not 
f. 

• 
:\ 
space 
l 
II 

# 
$ 
% 

HELP 
up arrow 
MARK 
SHIFT-6 
FINISH 
PREil P.i\GE 
1/2 
CANCEL 
3ACKS?.il..CE 
T.~.a 

RE':'URN 
NEXT 
down arrow 
NEXT P.Z\GE 
SOUND 
lef-t. arrow 
MOVE 
SHIFT-1/2 
SCROLL UP 
right arrow 
SCROLL DOWN 
COPY 
fl 
f 2 
f 3 
f 4 
f S 
f 6 
GO 
f7 
f 8 
f 9 
flO 
space 
SHIFT-1 
SHIFT-' 
SHIFT-3 
SHIFT-4 
SHIFT-5 



Table B-1. Standard Character Set (Cont.) 

Character 
Code 

(hexa- Video Display 
decimal) Character ~ 

26 & SHIFT-7 
27 I (single quote) 
28 ( SHIFT-9 
29 ) SHIFT-0 
2A * SHIFT-8 
2B + SHIFT-= 
2C I (comma) 
2D - (hyphen) 
2E . (period) 
2F I I 
30 0 0 
31 1 1 
32 2 2 
33 3 3 
34 4 4 
35 5 5 
36 6 6 
37 7 7 
38 ,8 8 
39 9 9 
3A SHIFT-; 
3B ; 
3C < SHIFT-[ 
3D = = 
3E > SHIFT-] 
3F ? SHIFT-/ 
40 @ SHIFT-2 
41 A SHIFT-a 
42 8 SHIFT-b 
43 c SHIFT-c 
44 D SHIFT-d 
45 E SHIFT-e 
46 F SHIFT-f 
47 G SHIFT-g 
48 H SHIFT-h 
49 I SHIFT-i 
4A J SHIFT-j 
4B K SHIFT-k 
4C L SHIFT-1 
40 M SHIFT-m 

B-3 



Table B-1. Standard Character Set (Cont.) 

Character 
Code 

(hexa- Video Display 
decimal) Character Key 

4E N SHIFT-n 
4F 0 SHIFT-o 
50 p SHIFT-p 
51 Q SHIFT-q 
52 R SHIFT-r 
53 s SHIFT-s 
S4 T SEIFT-t 
SS u SHIFT-u 
S6 v SHIFT-v 
57 w SHIPT-w 
S8 x SHIFT-x 
59 y SH!FT-y 
SA z SHIFT-z 
SB [ [ 
SC " (back slash) SHIFT-num 8 
SD ] J 
SE A (caret) " SF (underline) SHIFT--
60 \ (reverse ac- SHIFT-num l 

cent) 
61 a a 
62 b b 
63 c c 
64 d d 
6S e e 
66 f f 
67 g g 
GS h h 
G9 i i 
GA j j 
6B k k 
6C 1 l 
GD m m 
6E n n 
6F 0 0 

70 p p 
71 q q 
72 r r 
73 s s 
74 t t 

B-4 



Table B-1. Standard Character Set (Cont.) 

Character 
Code 

(hexa­
decimal) 

75 
76 
77 
78 
79 
7A 
7B 
7C 

7D 
7E 
7F 
80 

81 

82 

83 

84 

85 

86 

87 

88 
89 
SA 

SB 

SC 
SD 
SE 

Video Display 
Character 

u 
v 
w 
x 
y 

f 
: (broken verti­
cal bar) 
} 
- (tilde) 
filled rectangle 
null 

lo 

11 

12 

13 

14 

Is 

16 
17 
la 

19 

~ (superscript) 
2 (superscript) 

(superscript) 

u 
v 
w 
x 
y 
z 
SHIFT-num 4 
SHIFT-num 7 

SHIFT-num 5 
SHIFT-A 
DELETE 
CODE-HELP 
(SH-LI ) 
CODE-up arrow 
SHIFT (SH-LI ) 
CODE-MARK 
(SH-RI ) 
CODE-SHIFT-6 
SHIFT (SH-RI ) 
CODE-FINISH 
( 0 I ) 

CODE-PREV PAGE 
SHIFT (O') 
CODE-1/2 
(NEXT I) 
CODE-CANCEL 
SHIFT (NEXT I ) 
CODE-BACKSPACE 
CODE-TAB 
CODE-RETURN 
CODE-NEXT 
CODE-down arrow 

CODE-NEXT PAGE 
CODE-BOUND 
CODE-left arrow 

B-5 



B-6 

Table B-1. Standard Character Set (Cont.) 

Character 
Code 

(hexa­
decimal) 

8F 
90 
91 
92 
93 
94 
95 

96 
97 
98 
99 
9A 
98 
9C 
90 
9E 
9E' 

AO 
Al 
A2 
A3 
.~4 

AS 
A6 
A7 
AS 
A9 
AA 
AB 
AC 
AD 
AE 
AF 
BO 
Bl 
B2 

Video Display 
Character 

3 (superscript) 
4 (superscript) 
5 (superscript) 
6 (superscript) 
1 (superscript) 
8 (superscript) 
9 (superscript) 

0 (subsc::-ipt) 
1 (subscript) 
2 (subscript) 
3 (subscript) 
4 (subscript) 
5 (subscript) 
6 (subscript) 
7 (subscript) 
8 (subscript) 
9 (subscript) 

A circle 
a circle 
A umlaut 
a umlaut 
0 umlaut 
o umlaut 
0 slashed 
o slashed 
U umlaut 
u umlaut 
c cedilla 
e circumflex 
e grave 
e acute 
AE ligature 
ae ligature 
{3 
£ 
degree 

~ 

CODE-MOVE 
CODE-SHIFT-1/2 
CODE-SCROLL UP 
CODE-right arrow 
CODE-SCROLL DOWN 
CODE-COPY 
CODE-fl 

CODE-f2 
CODE-f 3 
C8DE-f4 
CODE-f5 
CODE-f6 
CODE-GO 
CODE-f 7 
CODE-f8 
CODE-f9 
CODE-f 10 

CODE-space 
CODE-SHIFT-1 
CODE-SHIFT-' 
CODE-SHIFT-3 
CODE-SHIFT-4 
CODE-SHIFT-5 
CODE-SHIFT-7 
CODE-' 
CODE-SHIFT-9 
CODE-SHIFT-0 
CODE-SHIFT-8 
CODE-SHIFT-= 
CODE-, 
CODE-­
CODE-. 
CODE-/ 
CODE-0 
CODE-1 
CODE-2 



Table B-1. Standard Character Set (Cont.) 

Character 
Code 

{hexa- Video Display 
decimal) Character Key 

B3 @ CODE-3 
B4 ® CODE-4 
BS .. CODE-5 

B6 CODE-6 
B7 '1 CODE-7 
BS I 2 CODE-8 
B9 I 3 CODE-9 
BA '4 CODE-SHIFT-; 
BB I 5 CODE-; 
BC '6 CODE-SHIFT-[ 
BO I 7 CODE-= 
BE 'a CODE-SHIFT-] 
BF '9 CODE-SHIFT-/ 

co see Table B-2 CODE-SHIFT-2 
SHIFT-HELP 

Cl see Table B-2 CODE-SHIFT-a 
SHIFT-up arrow 

C2 see Table B-2 CODE-SHIFT-b 
SHIFT-MARK 

C3 see Table B-2 CODE-SHIFT-c 
SHIFT-BOUND 

C4 see Table B-2 CODE-SHIFT-d 
SHIFT-FINISH 

cs see Table B-2 CODE-SHIFT-e 
SHIFT-PREV PAGE 

C6 see Table B-2 CODE-SHIFT-f 
C7 see Table B-2 CODE-SHIFT-g 

SHIFT-CANCEL 
cs see Table B-2 CODE-SHIFT-h 

SHIFT-DELETE 
C9 see Table B-2 CODE-SHIFT-i 

SHIFT-GO 
CA see Table B-2 CODE-SHIFT-j 

SHIFT-f9 
CB see Table B-2 CODE-SHIFT-k 

SHIFT-down arrow 
cc see Table B-2 CODE-SHIFT-1 

SHIFT-NEXT PAGE 
CD see Table B-2 CODE-SHIFT-m 

B-7 



Table B-l. Standard Character Set (Cont.) 

Character 
Code 

(hexa- Video Display 
decimal) Character Key 

CE see Table B-2 CODE-SHIFT-n 
SHIFT-left arrow 

CF see Table B-2 CODE-SHIFT-o 
SHIFT-MOVE 

DO see Table B-2 CODE-SHIFT-p 
OVERTYPE 

Dl see Table 3-2 CODE-SHIFT-q 
SHIFT-SCROLL UP 

D2 see Table B-2 CODE-SHIFT-r 
SHI:::'T-right arrow 

D3 see Table 3-2 CODE-SH!FT-s 
SHIFT-SCROLL oow~ 

D4 see '!'able 8-2 CODE-SHIFT-t 
SHIFT-COPY 

.OS see Table B-2 CODE-SHIFT-u 
SHIFT-fl 

06 see Table 8-2 CODE-SFIIFT-v 
SHIFT-f2 

D7 see Table 8-2 CODE-SHIFT-w 
SHIFT-f 3 

D8 see Table B-2 CODE-SHIFT-x 
SHIFT-f4 

09 see Table S-2 CODE-SHIFT-y 
SHIFT-f S 

DA see Table 8-2 CODE-SHIFT-z 
SHIFT-£6 

DB see Table 8-2 CODE-( 
DC see Table 8-2 CODE-SHIFT-num 8 

SHIFT-f7 
DD see Table 8-2 CODE-] 

SHIFT-£8 
DE see Table 8-2 CODE- A 

DF see Table 8-2 CODE-SHIFT--
SHIFT-flO 

EO see Table B-2 CODE-SHIFT-num l 
El see Table 8-2 CODE-a 
E2 see Table 8-2 CODE-b 
E3 see Table B-2 CODE-c 
E4 see Table B-2 CODE-d 
ES see Table 8-2 CODE-e 

B-8 



Table B-1. Standard Character Set (Cont.) 

Character 
Code 

(hexa- Video Display 
decimal) Character ~ 

E6 see Table B-2 CODE-f 
E7 see Table B-2 CODE-g 
ES see Table B-2 CODE-h 
E9 see Table B-2 CODE-i 
EA see Table B-2 CODE-j 
EB see Table B-2 CODE-k 
EC see Table B-2 CODE-1 
ED see Table B-2 CODE-m 
EE see Table B-2 CODE-n 
EF see Table B-2 CODE-o 
FO see Table B-2 CODE-p 
Fl see Table B-2 CODE-q 
F2 see Table B-2 CODE-r 
F3 see Table B-2 CODE-s 
F4 see Table B-2 CODE-t 
FS see Table B-2 CODE-u 
F6 see Table B-2 CODE-v 
F7 see Table B-2 CODE-w 
F8 see Table B-2 CODE-x 
F9 see Table B-2 CODE-y 
FA see Table B-2 CODE-z 
FB see Table B-2 CODE-SHIFT-num 4 
FC see Table B-2 CODE-SHIFT-num 7 
FD bar chart CODE-SHIFT-num 5 
FE bar chart CODE-SHIFT- A 

FF bar chart CODE-DELETE 

B-9 



IIl 
I 

...... 
0 

Character 
Code 

(hexa-
decimal] 

00 
01 
02 
03 
04 
OS 
06 
07 
OB 
09 
OA 
OB 
OC 
OD 
OE 
OF 
1J 
11 
12 
13 
14 
1S 
16 
17 
1B 
19 
1A 
1B 
1C 
10 
1E 
1F 

Video 
Display 

Character 

t 
~ 

¢ 

• 
D 

~ 

6 
I<-
->! 
,j 

!-
\, 

~ 

f-

+ 

"' t 
-t 

~ 

I 
§ 

;t! 

~ .. 
• 
~ 

~ 

± 
~ 

Character 
Video Character 

Code Code 
(hex a- Display (hex a-

decimal] Character decimal] 

20 40 
21 ! 41 
22 " 42 
23 # 43 
24 $ 44 
2S 96 4S 
26 & 46 
27 ' 47 
2B ( 4B 
29 ) 49 
2A * 4A 
2B + 4B 
2C ' 4C 
20 - 40 
2E 4E 
2F I 4F 
30 0 so 
31 1 S1 
32 2 S2 
33 3 S3 
34 4 S4 
3S 5 SS 
36 6 S6 
37 7 S7 
3B 8 SB 
39 9 S9 
3A : SA 
3B ; SB 
3C < SC 
30 = SD 
3E > SE 
3F ? SF 

Table B-2. Graphic Representation of the Standard Character Set 

Video 
Character 

Video 
Character 

Video Character 
Video 

Character 
Video 

Character 
Video Code Code Code Code Code Display (hexa- Display (hex a- Display (hexa- Display (hex a- Display (hex a- Display 

Character decimal) Character decimal] Character decimal] Character decimal] Character decimal] Character 

~ 60 . BO AO A co ~ EO I!: 
A 61 B1 I A1 0 C1 ~ E1 I a a 
B 62 b B2 lo A2 1:l C2 + E2 I-
c 63 c B3 11 A3 a C3 + E3 1 
D 64 d B4 12 A4 1j C4 ~ E4 Ir 
E 6S e BS 13 AS 5 cs i ES F 
F 66 f B6 14 A6 0 C6 I E6 ~ 
G 67 g B7 Is A7 0 C7 + E7 !..I 

H 6B h BB Is AB 0 CB + EB 11 
I 69 i B9 b A9 Q C9 'T' E9 L 

J 6A j BA le AA ~ CA .I. EA .I 

K 6B k BB Is AB e CB + EB r 
L 6C I BC 0 AC e cc T EC , 
M 60 m BO 1 AD e CD .L ED L 

N 6E n BE 2 AE fE CE - EE J 

0 6F 0 BF J AF ;e CF + EF r 
p 70 p 90 4 BO () DO ... FO 1 
Q 71 q 91 < ., B1 l 01 I~ F1 I~ 
R 72 r 92 6 B2 0 02 jl F2 ir 
s 73 s 93 7 B3 © 03 II F3 ~I 
T 74 t 94 8 B4 @ 04 tt F4 JL 

u 7S u 9S 9 BS TH OS # FS ~ 
IJ 76 v 96 0 B6 I 06 :;: F6 Tl' 
w 77 w 97 1 B7 I 07 1 

~ F7 ~ 
x 7B x 9B 2 BB I DB = FB .II. 

2 
y 79 y 99 3 B9 I 09 :f F9 I~ 3 z 7A z 9A 4 BA I DA - FA :y: 4 
[ 7B { 9B 5 BB I DB + FB ii 5 
\ 7C ' 9C 6 BC I DC FC .L 

I 
f; T -

] 70 } 90 7 BO ' DD .L FD I 7 

" 7E ~ 9E :3 BE I DE ll FE I ::: 
7F I 9F 9 BF I OF Tr FF I -

•J 



APPENDIX C 
KEYBOARD CODES 

Table C-1 lists the keyboard codes generated by 
the keyboard microprocessor. (Refer to legend 
on page C-2.) 

Table C-1. Keyboard Codes Generated by Unencoded Keyboard 

Keyboard Code 
(hexadecimal) ~ 

Keyboard Code 
(hexadecimal) ~ 

00 
01 
02 
03 
04 
OS 
06 
07 
08 
09 
OA 
OB 
oc 
OD 
OE 
OF 
10 
11 
12 
13 
14 
lS 
16 
17 
18 
19 
lA 
lB 
lC 
lD 
lE 
lF 
20 
21 
22 
23 
24 
2S 
26 
27 
28 
29 

HELP 
up arrow 
MARK 
BOUND 
FINISH 
PREV PAGE 
1/2 
CANCEL 
BAC~SPACE 
TAB 
RETURN 
down arrow 
NEXT PAGE 
NEXT 
left arrow 
right arrow 
(SH-LI) 
SCROLL UP 
MOVE 
SCROLL DOWN 
COPY 
fl 
f 2 
f 3 
f 4 
f S 
f 6 
GO 
f 7 
f 8 
f 9 
f 10 
space 
num 9 
(SH-RI) 
( 0 I ) 

(NEXT I) 
unused code 
unused code 
' (single quote) 
unused code 
unused code 

2A 
2B 
2C 
2D 
2E 
2F 

30 ••• 39 
3A 
3B 
3C 
3D 
3E 
3F 
40 

41 
42 
43 
44 
4S 
46 
47 
48 
49 
4A 
4B 
4C 
4D 

4E ••• SA 
SB 
SC 
SD 
SE 
SF 
60 

61. •• 7A 
7B 
7C 
7D 
7E 
7F 

unused code 
= 
, (comma) 
- (hyphen) 
. (period) 
I 
0 ••• 9 
unused code . 
I 

unused code 
unused code 
unused code 
invalid code 
indicates the last key 
released; always has high 
bit on (that is, OCOh) 
num 6 
num -
ACTION 
OVERTYPE 
LOCK 
num 2 
num 3 
left SHIFT 
right SHIFT 
num 0 
num • 
left CODE 
right CODE 
unused code 
[ 

num 7 
] 

/\ (caret) 
unused code 
num 1 
a ••• z 
num 4 
num 8 
num S 
unused code 
DELETE 

C-1 



Legend for Table C-1 

C-2 

Uppercase 
label on 
SHIFT). 

alphabetics are used for the 
the key cap {for example, 

actual 
FINISH, 

Lowercase alphabetics are used for descriptions 
of the label {for example, left arrow). 

The four empty key posts covered by the double 
keys left-SHIFT, right-SHIFT, numeric-a, and NEXT 
are denoted by {SH-L'), {SH-R'), {0'), and 
(NEXT'), respectively. 

The keys on the numeric pad are denoted "num O", 
etc. to distinguish them from the corresponding 
keys on the typewriter pad. 



APPENDIX D 
REQUEST CODES IN NUMERIC SEQUENCE 

The request codes listed in this appendix (and 
up to 7FFFh) are reserved for future expansion. 
THESE CODES SHOULD NOT BE USED BY SYSTEM 
BUILDERS. Request codes 8000h through OFFFFh 
are available for system-builder use. 

Request Code Operation Name 

00 (illegal) 
01 SetPath 
02 ClearPath 
03 SetPref ix 
04 OpenFile 
05 CreateFile 
06 DeleteFile 
07 RenarneFile 
08 GetFileStatus 
09 SetFileStatus 
10 CloseFile 
11 MountVolurne 
12 DisrnountVolurne 
13 ChangeFileLength 
14 GetDateTirne 
15 GetVHB 
16 SetDevPararns 
17 CreateDir 
18 DeleteDir 
19 CloseAllFiles 
20 QuietIO (internal) 
21 QueryVidHdw 
22 LoadFontRarn 
23 LoadStyleRarn 
24 LoadCursorRarn 
25 ReadDirSector 
26 (reserved) 
27 GetUCB 
28 Chain 
29 Load Task 
30 SetFhLongevity 
31 GetFhLongevity 
32 ResetSubsys (internal) 
33 (reserved) 
34 (reserved) 
35 Read 
36 Write 
37 DeviceReadidAndData (internal) 
38 Format 

D-1 



Request Code Operation Name 

39 DeviceReadid {internal} 
40 AllocExch 
41 DeallocExch 
42 AllocMemorySL 
43 DeallocMemorySL 
44 AllocMemoryLL 
45 DeallocMemoryLL 
46 AllocAllMemorySL 
47 ResetMemoryLL 
48 QueryMemAvail 
49 OpenRTClock 
50 CloseRTClock 
51 SetDateTime 
52 Beep 
53 ReadKbd 
54 ReadKbdDirect 
55 QueryKbdLeds 
56 SetKbdLed 
57 SetKbdUnencodedMode 
58 QueryKbdState 
59 SetSysinMode 
60 ReadActionCode 
61 QueryWSNum 
62 CloseAllFilesLL 
63 KbdWakeUp {internal} 
64 BeeperOff {internal} 
65 SetKbdUnencodedModeReal {internal} 
66 KbdResetSysin {internal} 
67 DisableActionFinish 
68 CheckpointSysin 
69 SetintHandler 
70 ResetKbd {internal} 
71 ResetSysin {internal} 
72 ResetAgent {internal} 
73 ResetComm {internal} 
74 ResetVideo 
75 InitVidFrame 
76 InitCharMap 
77 SetScreenVidAttr 
78 Close ISAM 
79 Create ISAM 
80 Delete ISAM 
81 DeleteISAMRecord 
82 GetISAMRecords 
83 Lock ISAM 
84 ModifyISAMRecord 
85 Open ISAM 
86 ReadISAMRecordByUri 
87 ReadNextISAMRecord 
88 ReadUniqueISAMRecord 
89 Rename ISAM 
90 SetISAMProtection 
91 SetupISAMiterationKey 

D-2 



Request Code 

92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 

112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134· 
135 
136 

137 
138 
139 
140 
141 
142 
143 
144 
145 

Operation Name 

SetupISAMiterationPref ix 
SetupISAMiterationRange 
StoreISAMRecord 
Unlock ISAM 
PurgeISAMUser (internal) 
OpenFileLL 
ConvertToSys 
ServeRq 
GetClusterStatus 
SetCommISR 
ResetCommISR 
KbAttn3270 (internal) 
ScreenRead3270 (internal) 
StatusRead3270 (internal) 
ReadyForCmd3270 (internal) 
StartEm3270 (internal) 
StopEm3270 (internal) 
Cance1Rq3270 (internal) 
ReportStatus3270 (internal) 
SetVerifyCode (internal) 
(reserved} 
(reserved) 
(reserved} 
(reserved} 
(reserved) 
(reserved) 
(reserved) 
(reserved) 
(reserved) 
SetLpISR 
DisableCluster 
GetRunFileHdr (internal) 
Query DCB 
WriteLog 
SetCommISRRaw (internal} 
PurgeISAMTransaction 
EndISAMTransaction 
GetISAMRecordsHold 
HoldISAMRecord 
ReadISAMRecordByUriHold 
ReadNextISAMRecordHold 
ReadUniqueISAMRecordHold 
ReleaseISAMRecord 
SetupISAMiteration 
StartISAMTransaction 

AddQueueEntry 
RemoveKeyedQueueEntry 
ReadNextQueueEntry 
ReadKeyedQueueEntry 
MarkNextQueueEntry 
MarkKeyedQueueEntry 
RemoveMarkedQueueEntry 
OnmarkQueueEntry 
ReWriteMarkedQueue!ntry 

D-3 



D-4 

Request Code 

146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
l 71 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 

Operation Name 

EstablishQueueServer 
TerminateQueueServer 
PurgeQueueServer (internalj 
Signof fRJE 
SignonRJE 
StatusRJE 
AcceptCommCall 
CloseAllCommLines 
CloseCommLine 
Dial Comm 
DisconnectComm 
FlushCommBuf !er 
GetCommParameters 
OpenCommLine 
Read Comm 
SetCommPararneters 
WriteComm 
Break.Comm 
(reserved) 
NotifyNextincomingCall 
Acc:eptX25Call 
InitiateX25Call 
ClearX25Call 
?urgeX25User 
ReadX25Packet 
WriteXSPacket 
WriteX25Interrupt 
ResetX2SCall 
QueryX25Status 
ConnectX25Per.nanent 
Remove?artition 
GetPartitionHandle 
LoadPrimaryTask 
TerminatePartitionTasks 
Vac:atePartition 
Createl?artition 
SetPartitionLock 
Setl?artitionExchange 
Getl?artitionExchange 
GetPartitionStatus 
SetExitRun.E'ile 
QueryExitRunFile 
Conf igureSpooler 
SpoolerPassword 
OpenTape 
ReadTapeRecords 
WriteTapeRecords 
TapeOperation 
CloseTape 
PurgeTapeUser 
TapeStatus 



197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 

ResetSplr (internal) 
ModifyISAMRecordByKey 
DeleteISAMRecordByKey 
LogRemote (internal) 
VacateParCleanup (internal) 
Get wsuserName 
Set WSUserName 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Change Open Mode 
GetDirStatus 
SetDirStatus 

D-5 





APPENDIX E 
DATA STRUCTURES 

This appendix describes the following: 

o System Common Address Table 

0 Application partition 
structures including 

Batch Control Block 

and 

Extended Partition Descriptor 
Extended User Control Block 
Partition Configuration Block 
Partition Descriptor 

o System Configuration Block 

SYSTEM COMMON ADDRESS TABLE 

batch data 

The System Common Address Tab le (SCAT) contains 
the 4-byte logical memory address of each of a 
number of system data structures. A field whose 
name begins with "po" contains the logical memory 
address of the offset (from OGroup of the System 
Image) of the system data structure rather than 
the memory address of the system data structure 
itself. The SCAT, shown in Table E-l below, 
beqins at memory location 240h. 

E-1 



E-2 

Table E-1. System Common Address Table (SCAT) 

Memory 
Location Field Description 

240h pSysTime System date/time 
structure. 

242h 

244h 

248h 

24Ch 

250h 

254h 

258h 

25Ch 

260h 

264h 

saDGroup 

pVCB 

pRgSysError 

ppPcbRun 

Segment base address of 
the DGroup of the System 
Image (l-word field; 
overlaps second half of 
pSysTime) . 

Video Control Block. 

System Error Status 
Block. 

Memory address of ~he 
Process Control 3lock of 
the currently running 
process. 

pASCB Application System 
Cont:ol Block. 

pVersion Version is a character 
string whose length is 
defined by its own first 
byte. 

prgpCISR A:rray of entry points 
(CS:IPs} of the 
Communications Interrupt 
Service Routines. 

prgQOsCISR A:rray of 4-byte 
entries. The second two 
bytes of each entry are 
the segment base address 
to load into the OS 
Register when the 
corresponding CISR is 
activated. The first two 
bytes are unused. 

pDefaultCISR 
First instruction of 
default CISR. 

pcLinkBlks Word containing the count 
of available link blocks. 



Table E-1. System Common Address Table (SCAT) (Cont.) 

Memory 
Loc:atio·n Field Description 

268h pLinkBlkAvail 

26Ch 

270h 

274h 

278h 

27Ch 

280h 

284h 

288h 

28Ch 

pcLinkBlkRes 

prgKbdEncode 

poRgExch 

poRgLinkBlk 

poRgODcb 

poRgOFcb 

poRgOUcb 

poRgOVhb 

poRgl?cb 

First link block on a 
linked list of link 
blocks available. 

Word containing the count 
of reserved link 
blocks. This is the sum 
of link blocks reserved 
at system build for the 
PSend primitive and those 
dynamically reserved by 
the Request primitive for 
use by the Respond 
primitive. 

Keyboard Encoding Table 
(the default contents are 
shown in Appendix B). 

Offset to exchange zero. 

Off set to the first link 
block. 

Off set to the first entry 
in the array of offsets 
to the Device Control 
Blocks. 

Off set to the first entry 
in the array of offsets 
to the File Control 
alocks. 

Off set to the first entry 
in the array of offsets 
to the User Control 
Blocks. 

Offset to the first entry 
in the array of offsets 
to the Volume Home 
Blocks. 

Off set to the first 
Process Control Block. 

E-3 



E-4 

Table E-1. System Common Address Table (SCAT) (Cont.) 

Memory 
Location Field Descriotion 

290h poRqPTrb Off set to the first entry 
in the array of memory 
addresses of active timer 
request blocks. 

294h pSSET System Service Exchange 
Table (the Service 
Exchange Table for 
request codes 0-7FFFh). 

298h pUSET User Service Exchange 
Table (the Service 
Exchange Table for 
request codes 8000h­
OFFFFh). 

29Ch pRunQ Queue of ready-to-run 
Process Control Blocks. 

2B4h pBootBlock A 16-word array that 

2B8h 

2BCh 

2COh 

2C4h 

pBootDevName 

contains the information 
passed to the OS by the 
bootstrap ROM. 

Character string 
containing the name of 
the device from which the 
OS was bootstrapped. The 
first byte of the string 
contains the byte count 
of the string. 

pCrashDumpDevName 
· Character string 

containing the name of 
the device to which the 
OS crash dump was 
written. The first byte 
of the string contains 
the byte count of the 
string. 

pHdcCntlBlk 
Hard Disk (Winchester) 
Control Block. 

pFloppyCntlBlk 
Floppy Disk Control 
Block. 



Table E-1. System Common Address Table (SCAT) (Cont.) 

Memory 
Location Field Description 

2C8h pConf igBlk System Configuration 
Block. 

204 pSysoeviceNum 
System device number. 

208 pSLSC System Local Service Code 
Table (that is, the Local 
Service Code Table for 
request codes 0-7FFFh). 

2DC pULSC User Local Service Code 
Table (that is, the Local 
Service Code Table fo~ 
request codes 8000h­
OFFFFh). 

2E4 pExtCntlReg A byte that is a copy of 
the contents of the 
external control register 
on B 21-1, B 21-2, and 
B 21-3 workstation hardware 
(B 21-1, B 21-2, and B 21-3 
workstations only). 

2E8 pGrPortVal The last byte written to 

2EC pFontRamBuf 

the graphics Multibus port. 

The pointer to the 8k buffer 
in the Operating System for 
LoadFontRam operation. It 
is set to 0 if there is no 
buffer reserved (B22 work­
stations only). 

APPLICATION PARTITION AND BATCH DATA STRUCTURES 

The application partition and batch data 
structures are located in each application 
partition. They provide information about the 
application system executing in an application 
partition. 

The application partition data structures are: 

o Application System Control Block (described 
in the "Parameter Management" section), 

E-5 



E-6 

0 Extended Partition Descriptor, 

0 Extended User Control Block, 

0 Partition Configuration Block, and 

0 Partition Descriptor. 

The batch data structure is: 

0 Batch Control Block. 

The Bat.ch Control Block contains the job name, 
the batch queue name, the file handle and logical 
file address of the batch job control file, the 
Sysin and SysOut byte stream work area and 
buffers, and informa tio.n on assigned devices. 
Its format is shown in Table E-2 below. 

Off set 

0 
512 

1024 
1025 
1037 
1038 
1088 
1089 
1139 
1140 
1191 
1193 
1197 
1199 
1200 
1212 
1213 
1225 
1226 
1238 
1239 
1317 
1318 
1396 
1397 
1475 
1479 
1483 
1484 
1485 

Table E-2. Batch Control Block 

Field 

SysinBuffer 
SysOutBuf fer 
cbJobName 
JobName 
cbQueueName 
Queue Name 
fSysinBsOpen 
SysinBswa 
fSysOutBsOpen 
SysOutBswa 
fhLogLL 
lfaLogLL 
c.~ssDev 

cbLogicalDevl 
LogicalDevl 
cbLogicalDev2 
Logica1Dev2 
cbLogicalbev3 
Logica1Dev3 
cbPhysicalDevl 
PhysicalDevl 
cbPhysicalDev2 
Physica1Dev2 
cbPhysicalDev3 
Physica1Dev3 
qeh 
qehStatus 
bSequence 
fSpoolSysout 
dateTime 

Size 
(bytes) 

512 
512 

1 
12 

l 
50 

1 
so 

1 
51 

2 
4 
2. 
1 

12 
1 

12 
1 

12 
1 

78 
l 

78 
1 

78 
4 
4 
l 
1 
4 



The Extended Partition Descriptor contains 
specifications for the current application file 
and exit run file. Its format is shown in Table 
E-3 below. 

The Extended User Control Block contains 
information including the offset of the Partition 
Descriptor and the exit status code. Its use is 
transparent to the user. 

Off set 

0 
l 

79 
80 

158 
159 
171 

Table E-3. Extended Partition Descriptor 

Field 

cbCurrentRunFileSpec 
CurrentRunFileSpec 
cbExitRunFileSpec 
ExitRunFileSpec 
cbExitRunFilePSwd 
ExitRunFilePswd 
ExitRunFilePriority 

Size 
(bytes) 

1 
78 

1 
78 

1 
12 

1 

The Partition Configuration Block contains the 
offsets of the Extended Partition Descriptor, 
Batch Control Block, and Application System 
Control Block. Its format is shown in Table E-4 
below. 

Table E-4. Partition Configuration Block 

Size 
Off set Field (bytes) 

0 oExtendedParDesc 2 
2 oBCB 2 
4 oASCB 2 

E-7 



E-8 

The Partition Descriptor contains the partition 
name, the boundaries of the partition and of its 
long- and short-lived memory areas, and internal 
links to Partition Decriptors in other parti­
tions. Its format is shown in Table E-5 below. 

Table E-5. Partition Descriptor 

Size 
Off set Field (bytes) 

0 oForwardLink 2 
2 oBackwardLink 2 
4 saLowBound 2 
6 saMinLL 2 
8 saCurLL 2 

10 saCurSL 2 
12 saMaxSL 2 
14 saHighBound 2 
16 obParitionName l 
17 PartitionName 
29 fPartitionVacant 

12 
1 
l 
2 

30 fPartitionLocked 
31 PartitionExchange 

The lo~ation of the 
application partition 
below. For more 
"Application Partition 

data structures in 
are shown in ?igura 

info r:na tio n, see 
Management" section. 

the 
E-l 
the 



... -
uca PartlUon Conflgunitlon Block 

....-.--------~ 
Extended uca .... Extended Partition Descriptor -

ti-------~-----.... Batch Control Block -1-----------
~ Application System Control Block 

__,,,, -
""' Partition Descriptor - oForwardllnk Long-Uvec:I Memory 

oSackwardllnk 
salowBound ,,., --------saMlnLL J-
saCurlL Common Pool of Unallocated Memory 
saCurSL .... ---------saMaxSL 
saHlghBound 
c:OPvtltlonName 

Short-Lived Memory 

Partition Name 
fPartitlonVacant ..... --------------,... 
t Partitlonlocited Secondary Task 2 
PartltlonExchange Secondary Task 1 

Primary Task 
-"" -

Figure E-1. Application Partition and Batch Data Structure 

E-9 



SYSTEM CONFIGURATION BLOCK 

E-10 

The System Configuration Block contains detailed 
information about the OS System Image 
(workstation configuration and system build 
parameters). The System Configuration Block is 
located in the system partition. Its address is 
recorded at address 2C8h in the System Common 
Address Table. 

The format of the System Configuration Block is 
shown in Table E-6 below. 

Off set 

0 

l 

2 

4 

6 

8 

10 

12 

14 

16 

Table E-6. System Configuration Block 

Field 

System­
BuildType 

Os Type 

SaMinLL 

SaCurrLL 

SaCurrSL 

SaMaxSL 

SaMemMax 

cPcb 

cExch 

cLinkBlk 

Size 
(bytes) 

, ... 

l 

2 

2 

2 

2 

2 

2 

2 

2 

Descr:i.otion 

TY?e of system build 
(used internally). 

Type of Operating 
System: 

O swapping; 
l resident. 

Segment base address 
of first byte of 
long-lived memory. 

Segment base address 
of first byte of the 
common pool of 
memory. 

Segment base address 
of first byte above 
common pool of 
memory. 

Segment base address 
of first byte above 
short-lived memory. 

Segment base address 
of first byte above 
installed system 
memory. 

Number of Process 
Control Blocks. 

Number of exchanges. 

Number of link 
blocks. 



Table E-6. System Configuration Block (Cont.) 

Size 
Offset Field (bytes) Description 

18 cLinkBlkRes 2 Number of reserved 
link blocks. 

20 cTrb 2 Number of timer 
request blocks. 

22 ciob 2 Number of I/O 
Blocks. 

24 cFcb 2 Number of File 
Control Blocks. 

26 cVhb 2 Number of Volume 
Home 
Blocks. 

28 cUcb 2 Number of User 
Control Blocks. 

30 cUfb 2 Number of User File 
Blocks. 

32 

33 

34 

HardwareType l 

Cluster­
Conf igura­
tion 

fNoFile­
System 

1 

1 

Workstation model: 
0 822 
1 B 21-1 
2 B 21-2, B 21-3 
3 B 21-4 

Type of 
configuration: 

0 Standalone; 
1 Cluster: 
2 Master. 

Local file system or 
not: 

0 With file 
system; 

1 Without file 
system. 

E-11 



E-12 

Size 
Offset Field (bytes) Description 

35 fCommiop 1 CommIOP or not: 

36 fMultiparti- l 
tion 

0 Without 
CommIOP; 

1 With ComrnIOP. 

Multiple application 
partitions or not: 

0 Single 
application 
partition; 

1 Multiple 
application 
partitions. 



APPENDIX F 
ACCESSING SYSTEM OPERATIONS FROM ASSEMBLY 

LANGUAGE 

GENERAL 

Argument Passing 

This Appendix describes (1) accessing OS 
operations from programs written in assembly 
language and (2) the conventions for 
argument-passing, register usage, and segments, 
classes, and groups. Assembly language examples 
illustrate both OS access and the conventions. 

The Operating System and object module procedures 
(such as byte streams) deal with data items and 
structures of many different sizes, ranging from 
single-byte items, such as Boolean flags, to 
multibyte structures, such as request blocks and 
Byte Stream Work Areas. 

Three of these are special: 1-byte, 2-byte, and 
4-byte data i terns. Only these are passed as 
arguments on the stack or returned as results in 
the registers. 

When it is necessary to pass a data structure as 
an argument, the 4-byte logical memory address of 
{pointer to) the data structure is used as the 
argument. 

Note that pointers are arranged in memory with 
the low-order part, the offset, at the lower 
memory address and the high-order pa rt, the 
segment base, at the higher memory address. 
However, the processor architecture of the B 20 
System is such that stacks grow from high memory 
addresses toward low memory addresses. Hence, 
the high-order part of a pointer is pushed 
before the low-order part. 

Also note that byte arguments are pushed on to 
the stack as words, with the low-order byte of 
the word being the argument. 

If the argument is Boolean, then the convention 
is to use a byte value of OFFh for true and 0 for 
false. This is not simply nonzero or 0, as the 
actual test used is to see if the least 
significant bit is set or clear. 

F-1 



Example 1 

F-4 

The segments included in the group DGroup are: 

Segment Class 

Const Const 
Statics Const 
Data Data 
Stack Stack 
Memory Memory 

The TypeSector program copies the first sector of 
a file to the video display using OS file 
system operations to open and read the file and 
SAM (the Sequential Access Method) to write to 
the video display. The file specification used 
is obtained from the Executive. The program 
assumes the file name is specified in a form 
like: 

Command TypeSector 
TypeSector 

File name Sample.File 

The TypeSector program calls ErrorExi t and 
returns to the Executive if an error is detected. 

The program consists of two modules, TypeSector 
and TypeArg. The modules are assembled and 
linked as follows: 

Command 
Assemble 

Assemble 

Source files TypeSector.Asm 

Command Assemble 
Assemble 

Source files TypeArg.Asm 

Command 
Link 

Object modules 
Run file 

Link 

TypeSector.Obj TypeArg.Obj 
TypeSector.Run 



Public and external declarations. 

PUBLIC Main 
EXTRN RgParam:FAR, OpenFile:FAR, Read:FAR, CloseFile:FAR 
EXTRN WriteByte:FAR, WriteBsRecord:FAR, bsVid:BYTE 
EXTRN TypeArg:FAR 
EXTRN Exit:FAR, ErrorExit:FAR 
; 
; Segment register default initialization. 

ASSUME CS:NOTHING, DS:NOTHING, ES:NOTHING, SS:NOTHING 
; 
; Segment declarations. 
; All segments used are mentioned in the order they are linked. 
; 
TypeCode SEGMENT PUBLIC 'Code' 
TypeCode ENDS 

Const SEGMENT PUBLIC 'Const' 
Const ENDS 

Statics SEGMENT PUBLIC 'Const' 
Statics ENDS 

Data SEGMENT PUBLIC 'Data' 
Data ENDS 

Stack SEGMENT STACK 'Stack' 
Stack ENDS 

; Group the segments together for compatibility with 
object modules. 

; 
DGroup GROUP Const, Statics, Data, Stack 

Stack declaration. 

Declare lOOh bytes in this module. See form 1148681 for 
combining stack segments in different modules. raStackLim is 
placed so that the stack is the size of the sum of all stack 
declarations. 

; 
Stack SEGMENT 
DB lOOh DUP (?) 
raStackLim LABEL BYTE 
Stack ENDS 

F-5 



Data declarations. 
; All of the variables used in this module are declared here. 

Data SEGMENT 
sDataRet DW ? 

sdRet DB 6 DUP (?) 

f h DW ? 

EVEN 
rgbBuf DB 512 DUP (?) 

DATA ENDS 

Macro definition for checking errors. 

This is the variable 
that the OS Read 
calls and the byte 
stream WriteBsRecord 
uses to fill in the 

; actual count of bytes 
read. 

This is the structure 
used to obtain 
parameters from the 
Executive. The sdRet 
structure is defined 
to be a pointer (four 
bytes) followed by a 
count (two bytes). 

File handle for the 
source file. 

Word-aligned input 
buffer. 

A procedure of ErcType returns the ere in register AX. If AX 
; is nonzero, then simply call ErrorExit. 
; 
$SAVE NOGEN 
%*DEFINE(CheckErc)LOCAL ok( 

AND AX, AX 
JE %ok 
PUSH AX 
CALL ErrorExit 

%ok: 
) 
%RESTORE 
i 
; Main code segment follows. 

TypeCode SEGMENT 
ASSUME CS:TypeCode 
Main PROC FAR 

F-6 



Initialization. 
; Set the segment registers (SS, DS) and stack. The 8086 CPU 
; chip disables interrupts for one instruction following a move 

to a segment register, so there is no problem initializing the 
; stack pointer (SP) • 

Since the segment registers SS and DS are being initialized to 
; DGroup, DGroup must be explicitly specified when referring to 
; the offset of a variable. If this is not done, then the offset 
; of a variable is from the start of the segment in which it is 
; declared, not from the start of the group of segments • . 
I 

MOV AX, DGroup ; Set SS. 
MOV SS, AX 

ASSUME SS:DGroup 
MOV SP, OFFSET DGroup:raStackLim 
MOV BP, SP ; Set BP for 

PUSH SS 
POP DS 

; compatibility with 
; object 
; modules. 

; Set DS. 
ASSUME DS:DGroup 
; 
; Type the parameter to the video display using TypeArg. . 
I 

; ere := TypeArg (iParam, j Par am) ; 
; 

MOV AX, 1 . iParam ( 1) • I 

PUSH AX 
XOR AX, AX ; jParam ( 0) • 
PUSH AX 
CALL TypeArg 
%CheckErc . 

I 

; Type a II : II and a new line character. 

. ere := WriteByte (pBSWA, b) ; I 

; 
PUSH DS . pBSWA {pBsVid) • I 

MOV AX, OFFSET DGroup:bsVid 
PUSH AX 
MOV AX, ' : ' . b ( : ) . I 

PUSH AX 
CALL WriteByte 
%CheckErc 
PUSH DS . pBSWA (pBsVid). I 

MOV AX, OFFSET DGroup:bsVid 
PUSH AX 
MOV AX, OAh ; b (new line) • 
PUSH AX 

F-7 



. 
I 

CALL 
%CheckErc 

WriteByte 

; Get the file name from the Executive. 
; (parameter 1, subparameter 0) 
; 
; ere:= RgParam (iParam, jParam, pSdRet); . 
I 

. 
I 

MOV 
PUSH 
XOR 
PUSH 
PUSH 
MOV 
PUSH 
CALL 
%CheckErc 

AX, 1 
AX 
AX, AX 
AX 
DS 
AX, OFFSET DGroup:sdRet 
AX 
RgParam 

; Open the file for mode read • . 
I 

. 
I 

. 
I 

iParam ( 1) • 

jParam ( 0) • 

pSdRet. 

; ere := OpenFile (pFh, pbFileSpec, cbFileSpec, pbPassword, 
cbPassword, mode); 

PUSH DS . pFh. I 

MOV AX, OFFSET DGroup:fh 
PUSH AX 
PUSH word ptr sdRet + 2 pbFileSpec. 
PUSH word ptr sdRet 
PUSH word ptr sdRet + 4 ; cbFileSpec. 
XOR AX, AX pbPassword (null). 
PUSH AX 
PUSH AX 
PUSH AX . cbPassword ( 0) • I 

MOV AX, 'mr' . mode. I 

PUSH AX 
CALL OpenFile 
%CheckErc 

; Read in the first sector ( 512 bytes) • 

ere := Read (fh, pBufferRet, sBufferMax, lfa, psDataRet) ; 
; 

PUSH f h fh. 
PUSH DS pBufferRet. 
MOV AX, OFFSET DGroup:rgbBuf 
PUSH AX 
MOV AX, 512 sBufferMax. 
PUSH AX 
XOR AX, AX . lf a ( 0) • I 

PUSH AX 
PUSH AX 
PUSH DS ; psDataRet. 
MOV AX, OFFSET DGroup:sDataRet 

F-8 



PUSH 
CALL 
%CheckErc 

AX 
Read 

Write the buffer to the video display. 

; ere:= WriteBsRecord (pBSWA, pb, cb, pcbRet); . 
I 

PUSH 
MOV 
PUSH 
PUSH 
MOV 
PUSH 
MOV 
PUSH 
PUSH 
MOV 
PUSH 
CALL 
%CheckErc 

DS pBSWA (pBsVid). 
AX, OFFSET DGroup:bsVid 
AX 
DS pb. 
AX, OFFSET DGroup:rgbBuf 
AX 
AX, 512 cb. 
AX 
DS ; pcbRet. 
AX, OFFSET DGroup:sDataRet 
AX 
WriteBsRecord 

; Return to the Executive • . 
I 

CALL 
Main ENDP 

TypeCode ENDS 

END Main 

Exit 
End of Main. 

; End of segment. 

; End of module 
; (specify starting 

point as Main) • 

The TypeArg procedure types a parameter passed 
from the Executive to the video display. It is 
called with two parameters, iParam and jParam, 
and is of the type ErcType. It can be called 
from Pascal as follows: 

ere := TypeArg (iParam, jParam); 

The procedure returns 0 if no errors were 
encountered; otherwise it returns the error in 
register AX. 

The procedure is reentrant and uses no static 
variables. 

This is not a main program but a procedure. It 
is assumed that the segment registers are 
properly set before calling this procedure, with 
DS and SS set to DGroup. 

F-9 



. 
I 

; Public and external declarations. 

PUBLIC TypeArg 
EXTRN RgParam:FAR, WriteBsRecord:FAR, bsVid:BYTE 
; 
; The procedure uses 18 bytes of stack for itself, not counting 

calls to other procedures, as follows: . 
I 

; four bytes for parameters passed to it, . 
I four bytes for the return address of the calling service, 

two bytes to store the BP of the calling service, and 
eight bytes of local variables. 

; 
Stack SEGMENT STACK 'Stack' 
DB 18 DUP (?) 
Stack ENDS 
DGroup GROUP Stack 

TypeArgCode SEGMENT 
ASSUME CS:TypeArgCode, DS:DGroup, ES:NOTHING, SS:DGroup 
TypeArg PROC FAR 
; 
; Set the local variables and parameters as EQUs . . 
I 

sArgFrame EQU 4 

sLocalFrame EQU 8 

SUB SP, 
PUSH BP 

MOV BP, 

iParam EQU WORD PTR 

jParam EQU WORD PTR 

sdRet EQU BYTE PTR 
pbArg EQU DWORD PTR 
cbArg EQU WORD PTR 

F-10 

sLocalFrame 

SP 

BP + 16 

BP + 14 

BP + 2 
BP + 2 

BP + 6 

Parameters to argument 
are two words (four 

; bytes). 

Eight bytes of local 
; variables. 

; Save the calling 
service's BP. 

; Use BP as a frame 
pointer. 

; First parameter on 
; stack. 

; Second parameter on 
stack. 

; sdRet is a 6-byte 
structure consisting 

; of a pointer {pbArg; 
; four bytes) and a 

count (cbArg; two 
; bytes) located on the 

stack at SS: BP + 2 
; to SS: BP + 7 • 



sDataRet EQU WORD PTR BP + 8 

. 
I 

: sDataRet is the count 
of bytes actually 
written to the video 

: display, and is 
: ignored in this 
: procedure • 

: ere:= RgParam {iParam, jParam,.pSdRet): 

. 
' 

PUSH 
PUSH 
LEA 
PUSH 
PUSH 
CALL 
AND 
JNZ 

iParam 
jParam 
AX, sdRet 
SS 
AX 
RgParam 
AX, AX 
Finish 

iParam. 
jParam. 

: pSdRet. 

Check for errors. 

: ere := WriteBsRecord {pBSWA, pb, cb, pcbRet): 
: 

PUSH DS 
MOV AX, OFFSET DGroup:bsVid 
PUSH AX 
LES AX, pbArg 
PUSH ES 
PUSH AX 
PUSH cbArg 
LEA AX, sDataRet 
PUSH SS 
PUSH AX 
CALL WriteBsRecord 

. All done, so return ere in AX. ' : 
Finish: 

POP 

ADD 

RET 

TypeArg ENDP 
TypeArgCode ENDS 
END 

BP 

SP, sLocalFrame 

sArgFrame 

pBSWA {pBsVid) • 

pb. 

: cb. 
pcbRet. 

Restore the calling 
: service's BP. . Remove the local ' : variables from the 

stack. 
Return with arguments . {four bytes) removed ' 
from the stack. 

F-11 



Example 2 

The Timer program uses the Programmable Interval 
Timer (8253 chip) to generate interrupts and then 
waits for five interrupts before returning to the 
Executive. 

This example only executes correctly on a 
standalone workstation because the PIT is used by 
the OS at cluster and master workstations. 
This example demonstrates interrupt handling and 
is not intended for actual use. The SetTimerint 
operation is used to control the PIT. (See the 
"Timer Management" section.) 

The Timer program has two parts: the main 
program and the interrupt handler. The main 
program sets the interrupt handler as raw using 
the OS SetintHandler operation. When this is 
done, it loops until a flag is set by the 
interrupt handler, and then displays an * on the 
video display and resets the flag. When this is 
done five times, it returns to the Executive. 

The interrupt handler, RawTimerHandler, is 
entered when the 8253 timer counter reaches 0 and 
generates an interrupt. Because the interrupt is 
raw, the handler must preserve the register state 
and send an EOI (end-of-interrupt) to the 8259A 
when the interrupt service is completed. The 
handler does this, and also sets the register DS 
to DGroup before calling the actual service 
procedure, TimerHandler, which sets a flag and 
then restarts the timer. 

Conversion to Mediated Interrupt Handler 

F-12 

While Timer sets and uses a raw interrupt 
handler, it can easily be converted to use a 
mediated interrupt handler. The places in the 
module that need to be changed are as follows: 

1. Change the Equate for fRawinterrupt to FALSE: 

fRawinterrupt EQU FALSE 

2. Change the procedure offset pushed on the 
stack before the call to SetintHandler to be 
TimerHandler (instead of RawTimerHandler, 
which calls TimerHandler): 

MOV 
PUSH 

AX, OFFSET TimerHandler 
AX 

3. Delete the handler RawTimerHandler and remove 
its PUBLIC declaration as it will no longer 
be used. 



Program Assembly and Linking 

References 

The program is assembled and linked as follows: 

Command 
Assemble 

Assemble 

Source files Timer.Asm 

Command 
Link 

Object modules 
Run file 

Link 

Timer.Obj 
Timer.Run 

The information required to create the Timer 
program is located in the following sections: 

OS Interrupt Interface 
"Interrupt Handler" section. 

8253 Programmable Interval Timer 
"Interrupt Handler" section. 

8259A Interrupt Controller 
"Interrupt Handler" section of this Manual. 

Wri teByte 
"Sequential Access Method" section. 

bsVid 
"Sequential Access Method" section. 

F-13 



. 
I 

Public and external declarations. Symbols are made public so 
that they are included in the symbol file produced by the 
Linker . 

PUBLIC, Main, PutChar, RawTimerHandler, TimerHandler 
EXTRN WriteByte:FAR, bsVid:BYTE 
EXTRN SetintHandler:FAR 
EXTRN Exit:FAR, ErrorExit:FAR 
; 
; Segment register default Assume's. 

ASSUME CS:NOTHING, DS:NOTHING, ES:NOTHING, SS:NOTHING 
; 
; Segment declarations. 
; All segments used are mentioned in the order they are linked. 
i 
TimerCode SEGMENT PUBLIC 'Code' 
TimerCode ENDS 

Const SEGMENT PUBLIC 'Const' 
Const ENDS 

Statics SEGMENT PUBLIC 'Const' 
Statics ENDS 

Data SEGMENT PUBLIC 'Data' 
Data ENDS 

Stack SEGMENT STACK 'Stack' 
Stack ENDS 
i 

Group the segments together for compatibility with object 
modules. 

DGroup GROUP Const, Statics, Data, Stack 
; 

Stack declaration. 
Declare lOOh bytes in this module. See form 1148681 for 
combining stack segments in different modules. raStackLim is 
placed so that the stack is the size of the sum of all stack 

i declarations. The stack must be large enough for requests to 
be built by the OS procedural interface, and for the OS to 
save the process state when the process is swapped out for 

. 
I 

any reason • 

Stack SEGMENT 
DB lOOh DUP (?) 
raStackLim LABEL BYTE 
Stack ENDS 
; 

Data declarations. 
All of the variables and constants used in this module are 
declared here. 

F-14 



; 
Data SEGMENT 
f Interrupt DW ? 
cinterrupts DW ? 
cbRet DW ? 
DATA ends 
; 
; Equates used in module • . , 
; Boolean values • . , 
TRUE 
FALSE 
fRawinterrupt 
; 

EQU OFFFFh 
EQU 0 
EQU TRUE 

; 8253 Timer Equates. 
; 
iinterrupt 
reg8253Cnt0 
reg8253Mode 
cmdMode 

bDataLsb 
bDataMsb 
; 

EQU 11 
EQU 28h 
EQU 2Eh 
EQU 30h 

EQU OFFh 
EQU OFFh 

; 8259A Interrupt Equates. 
; 
reg8259aISR 
reg8259aIMR 
cmdEOI 
maskTimerOf f 

maskTimerOn 

; 

EQU 20h 
EQU 22h 
EQU 20h 
EQU Sh 

EQU OF7h 

; Macro definition for checking errors • . , 

; Select Counter 0, Load 
lsb, then Msb, Mode O, 
Binary Counter 16 

; bits. 

; Nonspecific EOI. 
This is OR'ed with the 

; value read from IMR 
; (Interrupt Mask 
; Register). 
; This is AND'ed with 

the value read from 
; IMR. 

; A procedure of ErcType returns the ere in register AX. If AX 
; is nonzero, then simply call ErrorExit. 
; 

F-15 



$SAVE NOGEN 
%*DEFINE(CheckErc)LOCAL ok( 

AND AX, AX 
JE %ok 
PUSH AX 
CALL ErrorExit 

%ok: 
) 
$RESTORE 
; 
; Main code segment follows • . 
I 

TimerCode SEGMENT 
saDGroup DW DGroup 
ASSUME CS:TimerCode, DS:NOTHING, SS:NOTHING, ES:NOTHING 
Main PROC FAR . 
I 

; Set segment, stack, and frame registers. 
; 

MOV SS, saDGroup 
ASSUME SS:DGroup 

MOV SP, OFFSET DGroup:raStackLim 
MOV BP, SP 
PUSH SS 
POP DS 

ASSUME DS:DGroup 
; 
; Set the interrupt handler. 
; 
; ere := SetintHandler(iint, pintHandler, saData, fDeviceint, 

fRaw) ; . 
I 

. 
I 

MOV 
PUSH 
PUSH 
MOV 
PUSH 
PUSH 

MOV 
PUSH 
MOV 
PUSH 
CALL 
%CheckErc 

Start the 8253 
; 

CL! 
MOV 
OUT 
MOV 

F-16 

AX, iinterrupt 
AX 
cs . 

I 

iint. 

pintHandler. 
AX, OFFSET RawTimerHandler 
AX 
DS 

AX, 
AX 

TRUE 

AX, fRawinterrupt 
AX 
SetintHandler 

timer. 

AL, cmdMode 
reg8253Mode, AL 
AL, bDataLsb 

; saData (not used if 
fRawinterrupt is 
TRUE). 

; fDeviceint. 

fRaw. 

Initialize counter O. 



; 

OUT 
MOV 
OUT 
IN 

AND 
OUT 
MOV 
MOV 
MOV 
MOV 
ST! 

reg8253Cnt0, AL 
AL, bDataMsb 
reg8253Cnt0, AL 
AL, reg8259aIMR 

AL, maskTimerON 
reg8259aIMR, AL 
AX, 5 
cinterrupts, AX 
AX, FLASE 
finterrupt, AX 

Turn 8259A mask bit 
on. 

Initialize counter. 

; Initialize flag. 

; Loop until counter is decremented to 0 • . 
' MainLoop: . 
' ; Access to the flag must be with interrupts disabled. 
; 

; 

CL! 
MOV 
MOV 
MOV 
ST! 

CMP 
JNE 

BX, finterrupt 
AX, FALSE 
finterrupt, AX 

BX, TRUE 
MainLoop 

Get the flag value. 

; Reset flag. 

; Check for interrupt. 

; Interrupt occurred, so display a character and decrement 
counter. 

. 
I 

MOV 
PUSH 
CALL 
DEC 
JNZ 

AL, I* I 

AX 
PutChar 
cinterrupts 
MainLoop 

; Received five interrupts, so quit • . 
I 

CALL 
Main ENDP 

. PutChar I 

; 
; Syntax: 

Exit 

-- Write one character 

. MOV AL, char I 

; PUSH AX . CALL PutChar I 

; 
PutChar PROC NEAR 

PUSH BP 
MOV BP, SP 

to the 

Return to Executive. 
End of Main. 

video display. 

F-17 



SArgFrame EQU 2 
sRetFrame EQU 2 
bChar EQU BYTE PTR SS: BP + sArgFrame + sRetFrame . 
I 

; ere:= WriteByte (pBSWA, b); 

MOV AX, SEG bsVid 
PUSH AX 
MOV AX, OFFSET bsVid 
PUSH AX 
MOV AL, bChar 
PUSH AX 
CALL WriteByte 
%CheckErc 

POP BP 
RET sRetFrame 

PutChar ENDP 
; 

RawTimerHandler. 

pBSWA. 

; b. 

; This handler preserves the state of the registers of the 
; interrupted process, sets the data segments to DGroup, and 
; then calls TimerHandler. When TimerHandler returns, it 
; restores the register state and sends the required EOI to the 
; 8259A interrupt controller • . 
I 

; The routine assumes that TimerHandler uses no registers besides 
; AX and DX. 
; 
ASSUME CS:TimerCode, DS:NOTHING, SS:NOTHING 
RawTimerHandler PROC FAR 

PUSH DS ; Save DS, AX. 
PUSH AX 

MOV DS, saDGroup 
ASSUME DS:DGroup 

CALL FAR PTR TimerHandler 
MOV AL, cmdEOI 
OUT reg8259aISR, AL 

POP AX 
POP DS 

ASSUME DS:NOTHING 
IRET 

RawTimerHandler ENDP 
; 
; TimerHandler. 

Put in local DS. 

Specify EOI to 8259A. 

; Restore old DS, AX 

Return from interrupt. 

; This procedure sets the flag for main program to look at, 
; restarts the timer, and then returns • . 
I 

; The procedure requires DS to be set to DGroup, and it uses AX • . 
I 

F-18 



ASSUME CS:TimerCode, DS:DGroup, SS:NOTHING 
TimerHandler PROC FAR 

MOV AX, TRUE Set interrupt flag. 
MOV finterrupt, AX 
MOV AL, cmdMode ; Reinitialize counter. 
OUT reg8253Mode, AL 
MOV AL, bDataLsb 
OUT reg8253Cnt0, AL 
MOV AL, bDataMsb 
OUT reg8352Cnt0, AL 
RET 

TimerHandler ENDP 
TimerCode ENDS ; End of segment. 
END Main 

F-19 





APPENDIX G 
GLOSSARY 

$ Directories. The $ Directories are special 
directories required for the system software to 
operate correctly. When a request with the 
directory name of <$> is given as part of a file 
specification to the OS, the directory name is 
expanded to the form <$~ , where ~ is the 
user number of the application system. 

Action Code. An action code is a key (CANCEL, 
HELP, 0-9, or fl-flO) depressed in conjunction 
with the ACTION key. Also see ACTION Key. 

ACTION Key. The ACTION key is a special kind of 
SHIFT key. It is processed specially, even in 
unencoded mode. The interpretation of all other 
keys is modified while ACTION is depressed. The 
key combination ACTION-FINISH terminates the 
execution of the application system in the 
primary application partition and invokes the 
Executive. The key combinations ACTION-A and 
ACTION-B invoke the Debugger if the Debugger is 
included in the system at system build. Some of 
the key combinations that include the ACTION key 
are available for interpretation by the 
application system in the primary application 
partition. This allows the application system to 
test for special operator intervention without 
preventing type ahead. Key combinations that 
include the ACTION key are processed immediately 
when they are typed. This processing is 
independent of characters or keyboard codes 
stored in the type-ahead buffer. Also see Action 
Code. 

Advanced Video Capability. Advanced video 
capabilities are provided by workstations in the 
B 22 series with an optional board added to the 
standard video board. Several versions of this 
optional board provide various capabilities (for 
example, bold characters, double-height 
characters, double-width characters, or a 512 
character set) that augment the standard video 
capabilities of the B 22 series of workstations. 
Also see Basic Video Capability, Standard Video 
Capability, and Video Capability. 

Agent Service Process. 
Agent Service Process 
Agent Service Process. 

See Cluster Workstation 
or Master Workstation 

G-1 



G-2 

Allocation Bit Map. The Allocation 3it Map 
controls the assigr.rnent of disk sectors. It has 
1 bit for every sector on the disk and the bit is 
set if the sector is available. The Allocation 
Bit ~ap is disk-resident. 

Application Partition. An application partition 
is a partition of user memory in which an 
application system can be executed. A 
workstation can have any number of application 
partitions, with an application system executing 
concurrently in each. Also see Primary 
Application Partition, Secondary Application 
Partition, and System Partition. 

Application Partition Management. The 
application partition management facility permits 
concurrent execution of multiple application 
systems, each in its own partition. It provides 
operations for creating, managing, and removing 
secondary application partitions. Also see 
Application Partition, Primary Application 
Partition, and Secondary Application 
Partition. 

Application Process. 
executes code in the 
not a system service 
Service Process. 

An application process 
application system. It is 
process. .Uso see System 

Application System. An application system is the 
collection of all tasks currently in an 
application partition. The tasks in an 
application system access a common set of files 
and implement a single application. The tasks 
execute asynchronously. Also see Task and 
Application Partition. 

Application System Control Block. The 
Application System Control Block (ASCB) 
communicates parameters, the termination code, 
and other information between an exiting 
application system and a succeeding application 
system in the same partition. Also see the 
variable-Length Parameter Block. 

Application Workstation. See B 21 Workstation 
or B 22 Workstation. 
ASCB. See Application System Control Block. 

Asynchronous Terminal Emulator. The Asynchronous 
Terminal Emulator (ATE) utility allows a 
workstation to emulate an asynchronous character-



oriented ASCII terminal. (See form 1148756 
for additional i nforma ti on.) 

ATE. See Asynchronous Terminal Emulator. 

Bad Sector File. The Bad Sector File contains an 
entry for each unusable sector of a disk. The 
Bad Sector File is 1 sector in size. 

Banner Page. A banner page is optionally 
printed by the printer spooler before the 
printing of each file. The banner page is 
visually distinctive and also identifies the file 
being printed. The banner page can contain the 
text of a notice file. Also see Notice File and 
Printer Spooler. 

Basic Video Capability. Basic video 
capabilities are provided by the B 21 
workstation. Thes capabilities are 
characterized by an 80-character by 28-line 
screen, one cursor on the screen, a 256 
character set that cannot be modified by 
software, and a screen split horizontally into 
multiple frames. Also see Advanced Video 
Capability, Standard Video Capability, and Video 
Capability. 

Batch Control Block. The Batch Control Block, 
which is used by the batch manager, contains the 
job name and class, file handle and logical file 
address of the batch job control file, Assigned 
Device Block, and Sysin and SysOut Byte Stream 
Work Area and buffers. Also see Batch Job 
Stream and Assigned Device Block. 

Batch Job Control File. See Batch Job Stream. 

Batch Job Stream. A batch job stream is a file 
containing batch control statements that is used 
by the batch manager to direct the execution of 
noninteractive application systems. 

G-3 



G-4 

Batch Manager. :'he batch mar.ager Ls a sys tern 
service that uses the batch control statements in 
a batch job stream to direct the ~oadi~g and 
execution of noninteractive application 
systems. 

Batch Partition. A 
application partition 
of the batch manager. 
and Batch Job Stream. 

batch 
that is 

Also 

partition is an 
under the contr-ol 

see Batch Manager 

Binary Mode. Binary mode is one of three 
printing mode options in the printer, printer 
spooler, and communications byte streams. Binary 
mode does not print the banner page before each 
file, send extra code not in the file to the 
printer, nor recognize the escape sequence. Also 
see Image Mode and Normal Mode. 

Blocked. A record file with several 
physical sector is blocked. Also 
Sequential Access ~ethod ar.d Span~ed. 

records per 
see Record 

Bootstrap. To bootstrap (or boot) the system is 
to start it by reloading the Opera ting Sys-t:.em 
from disk. On other systems, this is often known 
as Initial Program Load (IPL). 

BSWA. See Byte Stream Work .:\rea. 

Buffer Management Modes. The Direct Access 
Method provides two modes of buffer management, 
write-through and write-behind. Also see Write­
Behind Mode and Write-Through ~ode. 

Byte Stream. A byte stream, a concept of the 
Sequential Access Method, is a readable (input) 
or writable (output) sequence of 8-bit bytes. .Zill 
input byte stream can be read until either the 
reader chooses to stop reading or it receives 
status code l ( 11 End of File 11 ) • -~ output byte 
stream car. be written until the writer chooses to 
stop writing. Also see Byte Stream 'Work: Area, 
Communications Byte Stream, File Byte ~tre;un, 
Keyboard Byte Stream, Printer Byte Stream, 
Sequential Access Method, Spooler Byte Stream, 
Video Byte Stream, and X.25 Byte Stream. 

Byte Stream Work Area. The Byte Stream Work Area 
is a 130-byte memory work area for the exclusive 
use of Sequential Access Method procedures. Any 
number of byte streams can be open concurrently, 
using separate Byte Stream Work Areas. Also see 



Byte Stream, Communications Byte Stream, File 
Byte Stream, Keyboard Byte Stream, Printer Byte 
Stream, Sequential Access Method, Spooler Byte 
Stream, Video Byte Stream, and x.25 Byte Stream. 

cb. A cb is the count of bytes in a string of 
bytes. 

Character Attribute. A character attribute 
controls the presentation of a single 
character. The standard character attributes are 
reverse video, blinking, half-bright, and 
underlining. Also see Line Attribute, Screen 
Attribute, and Video Attributes. 

Character Code. In character mode, the 8-bi t 
byte returned by certain keyboard manageme~t 
operations is called a character code (in 
contrast to the keyboard code returned when the 
keyboard. is in unencoded mode) . The character 
code signifies the depression of a key other than 
SHIFT I CODE, LOCK, or ACTION. Depression of 
SHIFT, CODE,. and LOCK does not generate a 
character code, but influences the character 
codes generated for other keys depressed 
concurrently. ACTION has a special, system-wide 
meaning. Also see Character Mode. 

Character Map. The character map is the area of 
memory that holds the coded representation of the 
characters displayed on the video display. Also 
see Video Refresh. 

Character Mode. In character mode (the default 
mode), the client process receives an 8-bit 
character when a key other than SHIFT, CODE, 
LOCK, or ACTION is pressed. Also see Character 
Code and Unencoded Mode. 

Character Set. See Standard Character Set. 

CISR. See Communications Interrupt Service 
Routine. 

Client Process. A client process is a process 
that makes a request of a system service. Any 
process, even a OS process, can be a client 
process since any process can request system 
services. Also see Queue Manager and System 
Service Process. 

G-5 



G-6 

Cluster Configuration. A cluster configuration 
is a local resource-sharing network consisting 
of a master workstation and up to 16 cluster 
workstations. A cluster is connected by one ot 
four high-speed multidrop half-duplex data links 
using a variant of the ADCCP/HDLC bit-oriented 
synchronous protocol. The OS executes in each 
cluster workstation and in the master 
workstation. Also the Cluster Workstation, 
CommIOP, Master Workstation, and Minicluster. 

Cluster Workstation. A cluster workstation is a 
workstation in a cluster configuration and is 
connected to a master workstation. Also see 
Cluster and Master Workstation. 

Cluster Workstation Agent Service Process. The 
cluster workstation Agent Service Process 
converts interprocess requests to interstation 
messages for transmission to the master 
workstation. The Agent Service Process is 
included at system guild in a System Image that 
is to be used on a cluster workstation. Also 
see Master Workstation Agent Service Process. 

CommIOP. The CommIOP is an intelligent 
communications processor. The CommIOP serves up 
to four cluster workstations on each of its two 
high-speed serial input/output channels. The 
CommIOP is installed in the Multibus slot of 
workstations in the B 22 series. CommIOP 
software consists of: the B 22 series 
bootstrap-ROM program, the main CommIOP program, 
and the CommIOP handler. 

Code Segment. A code segment is a variable­
lenqth (up to 641< bytes) logical entity 
cons is ting of reentrant code and containing one 
or more complete procedures. Also see Data 
Segment, Segment, and Virtual Code Segment 
Swapping. 

Common Memory Pool. The common memory pool is a 
single contiguol.ls area of memory in each 
application part.ition ~rom which long-lived and 
short-lived memory segments are allocated. 

Communications Byte Stream. A communications 
byte stream is a oyte stream that uses a 
communications channel, Also see Byte Stream, 
Byte Stream Work Area, File Byte Stream, Keyboard 
Byte Stream, ?rinter Byte Stream, Sequential 
Access Method, Spooler Byte Stream, Video Syte 
Stream, and X.25 Byte Stream. 



Cou:&pact System. A compact system is a version of 
the Operating System that provides all 
Operating System functions except for the 
concurrent execution of multiple application 
systems. A compact system has a primary 
application partition and can execute application 
systems one at a time. An OS is specified to be 
compact during system build. 

Configuration File. A configuration file 
specifies the characteristics of either the 
parallel printer, the serial printer, or other 
device attached to a communications channel. 
Examples of characteristics are number of 
characters per line, baud rate, and line control 
mode ( XON/XOFF, CTS). A conf igura ti on file is 
created by the Create Configuration File utility 
see form 1148772) and is used by printer, 
printer spooler, and communications byte 
streams. 

Context Switch. A context switch is the saving 
of register contents when a process is 
interrupted. When a process is preempted by a 
process with a higher priority, the OS saves the 
hardware context of the preempted process in that 
process's Process Control Block. When the 
preempted process is rescheduled for execution, 
the OS restores the contents of the registers. 
The context switch permits the process to resume 
as though it were never interrupted. Also see 
Process, Process Context, and Process Control 
Block. 

Contingency. A contingency can refer to a 
variety of hardware and software conditions that 
have undesirable effects. These conditions can 
be hardware faults such as a memory parity error, 
inconsistencies detected by the OS such as a bad 
checksum of a Volume Home Block, or conditions 
detected by the application system. The OS 
always terminates execution when it detects an 
inconsistency·. 

CPU. The CPU (central processing unit) is the 
8086 or 8088 microprocessor. 

Crash Dump Area. The Crash Dump Area (the file 
(Sys]<Sys>CrashDump.Sys} contains a binary memory 
dump in the event of a system failure. 

G-7 



G-8 

Cursor RAM. The cursor RAM, part of the advanced 
video capability, allows software to specify a lO 
by 15 bit array as a pattern of pixels in place 
of the standard cursor (a 'olin1cin9 underline). 
The cursor bit array is superL~posed on the 
character and 'clinks. 

DAM. See Direct Access Method. 

Data Se9111ent. A data segment contains data. It 
can also contain code, although this is not 
recommended. If a data segment is shared among 
processes, concurrency control is the 
responsibility of thoee processes. A data 
segment that is automatically loaded into memory 
when its containing task image is loaded is 
calleq a static data segment to differentiate it 
from a dynamic data segment that is allocated by 
a request from the executing process to the 
memory management facility. Also see Code 
Sec;ment, Segment, and Task Image. 

Date/Time Format. The date/time format 
provides a compact representation of the date 
and the time of day that precludes invalid 
dates and allows simple subtraction to compute 
the interval between two dates. The date/time 
format is represented in 32 bits to an accuracy 
of one second. 

DAWA. See Direct Access Work Area •. 

DCB. See Device Control Slock. 



Default Response Exchange. Each process is given 
a unique default response exchange when it is 
created. This special exchange is automatically 
used as the response exchange whenever a client 
process uses the procedural interface to a system 
service. For this reason, the direct use of the 
default response exchange is not recommended. 
The use of the default response exchange is 
limited to requests of a synchronous nature. 
That is, the client process, after specifying the 
exchange in a Request, must wait for a response 
before specifying it again (indirectly or 
directly) in another Req.uest. Also see Exchange 
and Response Exchange. 

Device. A device is a physical hardware 
entity. Printers, tape, floppy disks, and 
Winchester disks are examples of devices. 

Device Control Block. There is a Device Control 
Block (DCB) for each physical device. The DCB 
contains information, generat~d at system build, 
about the device. For a disk, the information 
includes how many tracks are on a disk, the 
number of sectors per track, etc. The DCB points 
to a chain of I/O Blocks. The DCB is memory­
resident. 

Device Password. 
device. 

A device password protects a 

Device Specification. A device specification 
consists of a devname (device name). 

Devname. (Device name) A devname is the only 
element of a device specification. 

Direct Access Method. The Direct Access Method 
provides random access to disk file records 
identified by record number. The record size is 
specified when the DAM file is created. DAM 
supports COBOL Relative I-0, but can also be 
called directly from any of the Burroughs 
languages. Also see Direct Access Work Area. 

Direct Access Work Area. A Direct Access Work 
Area is a 64-byte memory work area for the 
exclusive use of the Direct Access Method 
procedures. Any number of DAM files can be open 
simultaneously using separate DAWAs. Also see 
Direct Access Method. 

G-9 



G-10 

Direct Printing. Direct printing transfers text 
directly from application system partition memory 
to the specified parallel or serial printer 
interface of the workstation on which the 
application system is executing. Direct printing 
is always accessed through the Sequential Access 
Method (printer byte streams). Also see Printer 
Byte Stream, Spooled Printing, and Spooler Byte 
Stream. 

Directory. A directory is a collection of 
related files on one volume. A directory is 
protected by a directory password. 

Directory Password. A directory password 
protects a directory on a volume. 

Directory Specification. A directory 
specification consists of 
volname (volume name), and 
name). 

Oirname. (Directory name) 

a node (node name) , 
a dirname (directory 

third element of a directory 
full file specification. 

.'lli. dirname is the 
specification or a 

Disk Extent. A disk extent is one or more 
contiguous disk sectors that compose all or part 
of a file. 

OMA. See Direct Memory Access. 

Dynamic Data Segment. See Data Seg~ent. 

Dynamically Installed System Service. A 
dynamically installed system service is a system 
service process that was loaded as an application 
system and converted itself into a system service 
using the ConvertToSys operation. (See the 
"System Services Management" section.) Once 
installed, a dynamically installed system service 
has the same capabilities as a system service 
process that was linked to the System Image. A 
dynamically installed system service must use 
OS operations (rather than system build 
parameters) to identify the request codes that it 
serves, specify its execution priority, establish 
its interrupt handlers, etc. 

Ere. An Ere is a status (error) code. 

Escape Sequence. An escape sequence is a special 
sequence of characters that invokes special 



functions. Also see Printer Spooler Escape 
Sequence, Submit File Escape Sequence, and Video 
Byte Stream. 

Event. In the context of timer management, an 
event occurs when an interval elapses. Also see 
System Event. 

Event-driven Priority Scheduling. Event-driven 
priority scheduling means that processes are 
scheduled for execution based on their priorities 
and system events, not on a time limit imposed by 
the OS scheduler. Also see Process and System 
Event. 

Exchange. An exchange is the pa th over which 
messages are communicated from process to process 
(or from interrupt handler to process). An 
exchange consists of two first-in, first-out 
queues, one of processes waiting for messages, 
the other of messages for which no process has 
yet waited. An exchange is referred to by a 
unique 16-bit integer. Also see Default Response 
Exchange and Response Exchange. 

Executive. An Executive is an interactive 
application program that can be executed in the 
primary application partition. It accepts 
commands from the workstation operator and 
requests the OS to load tasks to execute those 
commands. This function can be performed by the 
Burroughs Executive or by a user-written 
Executive. The Executive is loaded from the 
file [Sys]<Sys>Exec.Run if specified as the 
SignOnExitFile. The file [Sys]<Sys>Exec.Run 
usually contains the Burrouqhs Executive; 
however, it can contain a user-written 
Executive. 

Exit Run File. An exit run file is a user­
specified file that is loaded and activated when 
an application system exits. Each application 
partition has its own exit run file. 

Extended Partition Descriptor. An Extended 
Partition Descriptor is located in each 
application partition and contains specifications 
for the current application file and exit run 
file. 

Extended User Control Block. 
Control Block is located in 

An Extended User 
each applicaton 

G-11 



G-12 

partititon 
Partition 
Descriptor. 

and con ta ins 
Descriptor. 

the 
Also 

offset of the 
see Partition 

Extension File Header Blocks. An Extension File 
Header Block is required for each file that 
contains more than 32 Disk Extents. Also see 
File Header Block. 

External Interrupt. An external interrupt is 
caused by conditions· that are external to the 
8086 processor and are asynchronous to the 
execution of processor instructions. There are 
two kinds of external interrupts: maskable and 
nonmaskable. Also see Internal Interrupt, 
Maskable Interrupt, and Nonmaskable Interrupt. 

FAB. See File Area Block. 

FALSE. 
as o. 

FALSE is represented in a flag •1ariable 

FCB. See File Control Block. 

FHB. See File Header Block. 

FIFO. First in, first out. 

File. A file is a set of related records (on 
disk) treated as a unit. 

File Access Methods. Several file access methods 
augment the capabilities of the file management 
system. The file access methods are object 
module procedures that are located in the 
standard OS library and linked to application 
systems as required. They provide buffering and 
use the asynchronous input/ouput capabilities of 
the file management system to automatically 
overlap input/output and computation. Also see 
Direct Access Method, Record Sequential Access 
Method, and Sequential Access Method. 

File Area Block. There is a File Area Block for 
each Disk Extent in an open file. The FAB 
specifies where the sectors are and how many 
there are in the Disk Extent. The FAB is pointed 
to by a File Control Block or another FAB. The 
FAB is memory-resident. Also see Disk Extent. 

File Byte Stream. A file byte stream is a byte 
stream that uses a file on disk. Also see Byte 
Stream, Byte Stream Work Area, Communications 



Byte Stream, Keyboard Byte Stream, Printer Byte 
Stream, Sequential Access Method, Spooler Byte 
Stream, Video Byte Stream, and x.25 Byte Stream. 

File Control Block. There is a File Control 
Block (FCB) for each open file. The FCB contains 
information about the file such as the device on 
which it is located, the user count (that is, how 
many file handles currently refer to this file), 
and the file mode (read or modify). The FCB is 
pointed to by a User Control Block and contains a 
pointer to a chain of File Area Blocks. The FCB 
is memory-resident. 

Pile Bandle. A file handle is a 16-bit integer 
that uniquely identifies an open file. It is 
returned by the OpenFile operation and is used to 
refer to the file in subsequent operations such 
as Read, Write, and DeleteFile. 

Pile Header Block. There is a File Header Block 
for each file. The FHB of each file contains 
information about that file such as its name, 
password, protection level, the date/time it was 
created, the date/time it was last modified, the 
disk address and size of each of its Disk 
Extents. The FHB is disk-resident and 1 sector 
in size. Also see Extension File Header Block. 

File Password. A file password protects a file 
in a directory on a volume. 

File Protection Level. A file protection level 
specifies the access allowed to a file when the 
accessing process does not present a valid volume 
or directory password. 

Filename. (File name) A filename is the fourth 
element of a full file specification. 

Filter Process (User-defined). A user-defined 
filter process is a user-written system service 
process that is included in the System Image at 
system build. A filter process is interposed 
between a client proces·s and a system service 
process that believe they are communicating 
directly with each other. The Service Exchange 
Table is adjusted at system build to route 
requests through the desired filter process. 
Also see Service Exchange Table. 

Filter Process (Local File System). 
File System. 

See Local 

G-13 



G-14 

Font. A font is a bit array for each of the 256 
characters in the character set that defi~es the 
representation of each character when displayed 
on the video display. 

Font RAM. The font RAM, part of the video 
hardware of B22 workstations, contains a 10 by 15 
bit array for each of the 256 characters in the 
character set. The font RAM can be modified 
under software control. Also see Font ROM. 

Font ROM. The font ROM, part of the video 
hardware of a B21 workstation, contains a 9 by 11 
bit array for each of the 256 characters in the 
character set. Also see Font RAM. 

Frame. A frame is a separate, rectangular area 
of the screen. A. frame can have any des ired 
width and height (up to tnose of the entire 
screen) . 

Frame Descriptor. A frame 
component of the Video Control 
all infoniation about cne of 
number of frame descriptors in 
Block is specified at system 
Video Control Block. 

descriptor is a 
3lock and contains 
the frames. The 
the Video Control 
build. .:1...lso see 

Full File Specification. A full file 
specification consists of a node (node name), 
volname (volume name), dirname (directorv name), 
and a filename (file name). 

Hashing Techniques. See Randomization 
Techniques. 

Image Mode. Image mode is one of three printing 
options in printer, printer spooler, and 
communications byte streams. L'ilage mode prints 
the banner page before each file and recognizes 
escape sequences but performs no code 
conversions. Also see Normal Mode and Binary 
Mode. 

Indexed Sequential Access Method. The Indexed 
Sequential Access Method (ISAM) provides 
efficient, yet flexible random access to 
fixed-length records identified by multiple keys 
stored in disk files. (See form 1148723.) 

Input Byte Stream. See Byte Stream. 



Internal Interrupt. An internal interrupt (often 
called a trap) is caused by and is synchronous 
with the execution of processor instructions. 
The causes of internal interrupts are an 
erroneous divide instruction, the 8086 Trap Flag, 
the I.NTO (interrupt on overflow) instruction, and 
the INT (interrupt) instruction. Also see 
External Interrupt. 

Interrupt. An interrupt {external or internal) 
is an event that interrupts the sequential 
execution of processor instructions. When an 
interrupt occurs, the current hardware context 
(the state of the hardware registers) is saved. 
This context save is performed partly by the 8086 
processor and partly by the Operating System. 
Also see External Interrupt, Internal Interrupt, 
Maskable Interrupt, Nonmaskable Interrupt, and 
Pseudointerrupt. 

Interrupt Sandler. An interrupt handler is a 
locus of computation that is given control when 
an interrupt occurs. Since an interrupt handler 
is not a process, it is permitted to invoke only 
a few specific operations. OS interrupt 
handlers are provided for each interrupt type. 
Each interrupt handler services all interrupts of 
a single type. The OS supports two kinds of 
interrupt handlers, mediated and raw. Also see 
Mediated Interrupt Handler and Raw Interrupt 
Handler. 

Interrupt Levels. On B 22 workstations, the 
Programmable Interrupt Controller supports eight 
interrupt levels: 0-Multibus devices, 1-SIO 
communications controller, 2-Multibus devices, 
3-Programmable Interval Timer, 4-pri nter, 
keyboard, Real-Time Clock, and high-speed 
mathematics coprocessor 5-Multibus devices 
6-Multibus devices, and ~-disk storage subsystem 
(floppy and Winchester). 

Interrupt Type Code. Each potential source of 
interrupt is assigned an interrupt type code (a 
number in the range 0 to 119) that is used to 
vector (direct) the interrupt to the appropriate 
interrupt handler. Also see Interrupt and 
Interrupt Handler. 

G-15 



G-16 

Interrupt Vector Table. The Interrupt Vector 
Table begins at physical memory address 0 and 
contains a 4-byte entry for each interrupt 
type. Each 4-byte entry contains the logical 
memory address (CS: IP) of the first instruction 
to be executed when an interrupt of that type 
occurs. Also see Interrupt Type Code. 

IOB. See I/O Block. 

I/O Block. The I/O Block (IOS) is used by the OS 
as temporary storage during Read, Write, and 
other input/output operations. The IOB contains 
information obtained from the request blocl<.. The 
number of IOSs specified at system build must be 
adequate for the maximum number of input/output 
operations that will be in progress 
simultaneously. The IOS is memory-resident. 

IPC. Inte?:"process Communication. See the 
"Interprocess Communication Management'' section. 

ISAM. See Indexed Sequential Access Method. 

ISC. Interstation Communication. See the 
"Interprocess Communication Management" section. 

Kernel. The Kernel is the most primitive and the 
most powerful component of the OS. It 
executes with a higher priority than any process 
but it is not itself a process. The Kernel is 
responsible for the scheduling of process 
execution7 it also provides interprocess 
communication primitives. 

Keyboard Byte Stream. A keyboard byte stream is 
a byte stream that uses the keyboard. Also see 
Syte Stream, Byte Stream Work Area, 
Communications Byte Stream, File Byte Stream, 
Printer Byte Stream, Sequential Access Method, 
Spooler Byte Stream, Submit Facility, Video Byte 
Stream, and x.25 Byte Stream. 

Keyboard Code. 
returned by 
operations is 

In unencoded mode, the 8-bit byte 
certain keyboard management 

called a keyboard code. nte 



keyboard code identifies the key in the low-order 
seven bi ts and indicates the direction of key 
motion in the high-order bit. A 0 indicates key 
depression: 1 indicates key release. Also see 
Unencoded Mode and Appendix C of this Manual. 

Keyboard Encoding Table. The Keyboard Encoding 
Table is used in converting the sequence of 
keyboard codes to 8-bit character codes. The 
Table controls several aspects of the keyboard 
code-to-character-code translation: the 
character code to generate if SHIFT is/is not 
depressed, whether LOCK has the effect of SHIFT 
for this key, whether the key is Typematic 
(repeats), the i ni ti al delay before beginning 
Typema tic repeating, and the frequency of 
Type ma tic re pea ti ng. The Keyboard Encoding 
Table can be modified dynamically, as well as at 
system build. See form 1148699 for detailed 
information on modifying the Keyboard Encoding 
Table. See Appendix B for the default contents 
of the Keyboard Encoding Table. 

lfa. See Logical File Address. 

Line Attribute. A line attribute 
presentation of a single line. The 
attribute is cursor position. Also 
Attribute, Screen Attribute, 
Attributes. 

controls the 
standard line 
see Character 

and Video 

Link Block. A link block is a system data 
structure that is used to queue messages at 
exchanges. Each link block contains the address 
of the message and the address of the next link 
block (if any) that is linked onto the 
exchange. Two pools of link blocks are specified 
at system build, a general pool, and a special 
pool used only by the PSend primitive. A call to 
the Request primitive reserves one link block 
from the general pool for the corresponding 
Respond primitive. For these reasons, the number 
of link blocks in each pool can be specified at 
system build. 

Linker. The Linker utility links one or more 
object files into a task image stored in a run 
file. (See form 1148681.) 

Local File System. The Local File System allows 
a cluster workstation to access files on local 
mass storage as well as files on mass storage at 
the master workstation. The filter process of 

G-17 



G-18 

the local file system intercepts each file access 
request and directs it to the local file system 
or to the master workstation. 

Local Service Code Table. The Local Service Code 
Table translates each request code to a local 
service code to specify which of the several 
services of the system service process is 
desired. Also see Service Exchange Table. 

Log File. The Loq File (the file 
(SysJ<Sys)Log.Sys) is an error-logging file. An 
entry is placed in the Log File for each 
recoverable and nonrecoverable device error. 
This file can be used as a general-purpose 
log9ing file, for example, to write entries for 
accounting information for system services. 

Loc;ical File Address. A logical file address is 
used to locate a particular sector of a file. An 
lfa specifies the byte position within a file~ it 
is the number (the offset) that would be assigned 
to a oyte in a file if all ~he bytes were 
numbered consecutively starti:ig with O. :\n lfa 
is a 32-bit unsigned integer that must be on a 
sector boundary and is therefore a multiple of 
512. For example, the lfa of the third sector of 
a file is 1024. 

Logical Memory Address. (usually abbreviated as 
memory address) A logical memory address is a 
32-bit. entity that consists of a 16-bit segment 
base address and a 16-bit offset. The physical 
memory address ot a byte is computed by 
multiplying the segment base address by 16 and 
adding the offset. .:\ "byte of memory does not 
have a unique logicl!l.l memory address. Rather, 
any of 4096 combinations of segment base address 
and of~set refer to the same byte of memory. 

Long-lived Memcry. Long-lived memory is an area 
ot memory in an application partition. It is 
used for parameters or data passed from an 
application system to a succeeding application 
$ystem in the same partition. If a character map 
ot.her th&n the one in the system partition is 
ncteded, it must "be allocated in the long-lived 
memory area of the primary application 



partition. Also see Application Partitions and 
System Partitions. 

Maskable Interrupt. A maskable interrupt is a 
type of external interrupt. A maskable interrupt 
is given a priority and controlled by the 8259A 
Programmable Interrupt Controller and can be 
masked (ignored) by the use of the processor 
interrupt-enable flag. A maskable interrupt can 
be selectively masked by programming the 8259A 
Programmable Interrupt Controller. Also see 
External Interrupt and Nonmaskable Interrupt. 

MaS.ter File Directory. There is an entry for 
each directory on the volume in the Master File 
Directory (MFD), including the Sys Directory. 
The position of an entry within the MFD is 
_determined by randorniza tion (hashing) 
techniques. The entry contains the directory 1 s 
name, password, location, and size. The Master 
File Directory is disk-resident. 

Master Workstation. A master workstation is the 
hub of .a cluster or rninicluster configuration. 
The master workstation provides file system, 
queue management facility, and other services to 
all the cluster workstations. In addition, it 
supports its own interactive and batch 
application dystems. Also see Cluster 
Workstat.ion. 

Master Workstation Agent Service Process. The 
Master Workstation Agent Service Process 
reconverts an interstation message to an 
interprocess request and queues it at the 
exchange of the master workstation system service 
process that performs the desired function. Also 
see Agent Service Process. 

Mediated Interrupt Handler. A mediated interrupt 
handler (MIH) is easier to write than a raw 
interrupt handler, permits automatic nesting by 
priority since processor interrupts are enabled 
during its execution, and can communicate its 
results to processes through certain Kernel 
primitives. Also see Interrupt Handler and Raw 
Interrupt Handler. 

Memory Address. See Logical Memory Address. 

Message. A message is the entity transmitted 
between processes by the interprocess 
communication facility. It conveys info rma ti on 

G-19 



G-20 

and provides synchronization between processes. 
Although only a single 4-byte data item is 
literally communicated between processes, this 
data item is usually the memory address of a 
larger data structure. The larger data structure 
is called the message while the 4-byte data item 
is conventionally called the address of the 
message. The message can be in any part of 
memory that is under the control of the sending 
process. By convention, control of the memory 
that contains the message is passed along with 
the message. 

MFD. See Master File Directory. 

MIB. See Mediated Interrupt Handler. 

Minicluster. A minicluster configuration 
consists of a master wor:<station and up to four 
cluster workstations. T:le master workstation 
uses its SIO Channel A rather than a Ccm.mIOP to 
connect to the cluster workstations. .~so see 
Cluster, Cluster Workstation, and Comm!OP. 

Mu.l tiprogramming. Multiprogramming is supported 
at three levels by the OS. First, any 
number of application systems can coexist, each 
in its own partition. Second, any number of 
tasks can be loaded into the memory of the 
partition and independently executed. Third, any 
number of processes can independently execute the 
code of each task. Also see Application System, 
Process, and Task. 

NMI. See Nonmaskable Interrupt. 

Node. A node (node name) is the first element of 
a full file specification. A node is also a 
standalone or master workstation that is part of 
a NET Network. 

Nonmaskable Interrupt. A nonmaskable interrupt 
( NMI) is a type of external interrupt. An NMI 
has a higher priority than a maskable 
interrupt. An NMI cannot be masked through the 
use of the processor interrupt-enable flag; 
however, bi ts in the Input/ Output Con tro 1 
Register allow each of the four conditions that 
cause NMI to be masked individually. These 
conditions are write-protect violation, 
nonexistent or device-addressed memory parity 



error, and power failure detection. Also see 
External Interrupt and Maskable Interrupt. 

Nonoverlapped. Nonoverlapped, in the context of 
file access methods, means that a call to an 
access method read or write operation does not 
return to the calling program until all 
associated input or output is complete. 

Normal Mode. Normal Mode is one of three 
printing options in printer, printer spooler, and 
communications byte streams. Normal mode prints 
the banner page before each file, converts tabs 
into spaces and end-of-line characters to device­
dependent codes, and recognizes the escape 
sequences for manual intervention. Also see 
Binary Mode and Image Mode. 

Notice File. The notice file contains text to be 
printed on banner pages. The notice file is a 
convenient way to convey operational information, 
such as the version of the software currently in 
use, to a later reader of the printed output. 
The notice file ([Sys]<Sys>Spooler.Notice) is an 
ordinary text file that can be created and 
modified with the Editor or Word Processor. Also 
see Banner Page. 

Object Module Procedure. An object module 
procedure is a procedure supplied as part of an 
object module file. It is linked with the user­
written object modules of an application system 
and is not supplied as part of the System 
Image. Most application systems only require a 
subset of these procedures. When the application 
system is linked, the desired procedures are 
linked ·together in the run file of the 
application. The Sequential Access Method is an 
example of object module procedures. Also see 
System Common Procedure. 

Offset. The offset is the distance, in bytes, of 
the target location from the beginning of the 
hardware segment. Also see Logical Memory 
Address and Physical Memory Address. 

Operation. An operation is 
service, or procedure. 

OS. Operating system. 

an OS primitive, 

Output Byte Stream.. See Byte Stream. 

G-21 



G-22 

Overlapped. Overlapped, in the context of file 
access methods, means that although the 
application system makes a call to an access 
method read or write operation and that operation 
returns, input/output can continue overlapped 
automatically with the computations of the 
application system. 

Overlay Area. See Swap Buffer. 

Paragraph. A paragraph is 16 bytes of memory 
whose physical memory address is a multiple of 
16. 

Partition Configuration Block. A Partition 
Configuration Block is located in each 
application partiti~n and contains the offsets of 
the Application System Control Block, Batch 
Control Block, and Extended Partition 
Descriptor. Also see Application System Control 
Block, Batch Control Block, and Extended 
Partition Descriptor. 

Partition Descriptor. A ?artition Descriptor is 
located in each application partition and 
contains the partition name, the boundaries of 
the partition and of its long- and short-lived 
memory areas, and internal links to partition 
descriptors in other partitions. 

Partition Handle. A Partition Handle is a 16-bit 
integer that uniquely identifies a secondary 
application partition. It is returned by the 
CreatePartition operation and is used to refer to 
the partition in subsequent operations such as 
LoadPrimaryTask, GetPartitionStatus, and 
RemovePartition. 

pb. A pb is the memory address of a string of 
bytes. 

pb/cb. A pb/cb is a 6-byte entity consisting of 
the 4-byte memory address of a byte string 
followed by the 2-byte count of the bytes in that 
byte string. 

PCB. See Process Control Block. 

PhysicaJ. Memory Address. Each byte of memory has 
a unique 20-bit physical memory address. 
Software uses logical memory addresses, not 
physical memory addresses. The physical :nemory 
address of a byte is computed by mul~iplying the 



segment base address by 16 and adding the 
offset. Also see Logical Memory Address, Offset, 
and Segment Base Address. 

Physical Record. A physical record (in the 
context of file access methods) is an entity that 
consists of the record header, the record data, 
and the record trailer stored in contiguous 
bytes. 

PIC. See Programmable Interrupt Controller. 

PIT. See Programmable Interval Timer. 

Primary Application Partition. The primary 
application partition is for interactive programs 
that use the keyboard and video display to 
interact with the user. Such partitions can be 
loaded with interactive programs chosen by the 
user, such as the Editor, Word Processor, or 
terminal emulators. Also see Secondary 
Application Partition. 

Primary Task. The primary task is the first task 
that is loaded into an application partition. It 
is loaded with the LoadPrimaryTask operation by a 
process in the primary application partition, or 
a Chain, Exit, or ErrorExit operation by a 
process in its own partition. The primary task 
in turn can load additional tasks, called 
secondary tasks, in its own partition with the 
LoadTask operation. 

Primitive. A primitive is an operation performed 
by the Kernel. Also see Kernel. 

Printer Byte Stream. A printer byte stream is a 
byte stream that performs direct printing. It 
can use either a Centronics-compatible printer 
connected to a parallel printer port or an 
RS-232C-compatible printer connected to 
communications Channel A or B of the workstation 
on which the application system is executing. 
Also see Byte Stream, Byte Stream Work Area, 
Communications Byte Stream, Direct Printing, File 
Byte Stream, Keyboard Byte Stream, Sequential 
Access Method, Spooled Printing, Spooler Byte 
Stream, Video Byte Stream; and x.25 Byte Stream. 

Printer Spooler. The printer 
dynamically installed system 
transfers text from disk files 
interfaces of the workstation 

spooler is a 
service that 

to the printer 
on which the 

G-23 



G-24 

printer spooler is installed. It can 
simultaneously control the operation of several 
printers. A disk-based priority-ordered queue 
controlled by the queue manager contains the file 
specifications of the files to be printed and the 
parameters (such as the number of copies and 
whether to delete the file after printing} 
controlling the printing. This allows the 
printer spooler to resume printing automatically 
when reinstalled following an OS reload. Also 
see Direct Printing, Printer Byte Stream, Spooled 
Printing, and Spooler Byte Stream. 

Printer Spooler Escape Sequence. Printer 
spooler escape sequences are special character 
sequences embedded in text files. They cause 
the printer to pause when processed by the 
printer spooler. Escape sequences are available 
to request a forms change, a print wheel change, 
and a generic printer pause. The reason for the 
printer pause (including a text string that is 
included in the escape seque nee} can be 
ascertained by the Spooler utility. (See the 
"Printer Spooler Utilities Overview" in form 
1148772.) ( Also see Escape Sequence.) 

Printing Mode. 
Normal Mode. 

See Binary Mode, !mage Mode, and 

Procedural Interface. A procedural interface,. is 
a convenient way to access system services and is 
compatible with FORTRA.i.\T and Pascal, as well as 
assembly language. 

Procedure. A procedure is a subroutine. 

Process. A process is the basic entity that 
competes for access to the processor and which 
the OS schedules for execution. Associated with 
a process is the address (CS: IP) of the next 
instruction to execute on behalf of this 
process, a copy of the data to be loaded into 
the processor registers before control is 
returned to this process, a default response 
exchange, and a stack. A process is assigned a 
priority when it is created so that the OS can 
schedule its execution appropriately. 

Process Context. The context of a process is the 
collection of all information about a process. 
The context has both hardware and software 
components. The hardware context of a process 
consists of values to be loaded into processor 



registers when the process is scheduled for 
execution. This includes the registers that 
control the location of the process's stack. The 
software context of a process consists of its 
default response exchange and the priority at 
which it is to be scheduled for execution. The 
combined hardware and software context of a 
process is maintained in a system data structure 
called a Process Control Block. Also see Context 
Switch and Process Control Block. 

Process Control Block. The combined hardware and 
software context of a process is maintained in a 
system data structure called a Process Control 
Block. A Process Control Block is the physical 
representation of a process. Also see Process 
Context. 

Processor. 
memory, and 

A processor 
associated 

consists of 
circuitry. 

the CPU, 

Programmable Interrupt Controller. A master 
Programmable Interrupt Controller is standard on 
each workstation in the B 22 series and controls 
eight interrupt levels. Each interrupt level 
can be connected (wire ORed) to one or more 
devilce controllers or to a slave. The use of 
slave controllers multi pl es the number of 
external interrupt sources that can have a 
unique identity and priority. The PIC is a very 
flexible hardware entitiy that can operate in a 
number of modes. The modes established by OS 
initialization are level (not edge) triggered, 
fully (not special fully) nested, fixed (not 
rotating) priority, and not special mask mode. 
Also see Interrupt and Interrupt Levels. 

Programmable Interval Timer. The Programmable 
Interval Timer provides high-resolution low­
overhead activation of user pseudo interrupt 
handlers. B 21 workstations do not provide a 
PIT. Also see Real-Time Clock. 

Pseudointerrupt. A pseudointerrupt is 
implemented in software rather than in hardware 
and in this sense is not really an interrupt. 
However, a pseudointerrupt causes an interrupt 
handler to be executed as a real interrupt is and 
has the same responsibilities and privileges. 
Also see Interrupt. 

G-25 



G-26 

Queue Entry. A queue entry is a formatted 
request for processing that is added to the 
specified queue e:'ltry file by client processes. 
A_ queue entry consists of a number of contiguous 
512-byte sectors and has two parts, a control 
part (40 bytes reserved for the queue manager), 
and a type-specific part defined by the user. 
Client and server processes communicate via 
fields within the queue ent:-y. Also see Client 
Process, Queue Entry File, Queue Manager, and 
Server Process. 

Queue Entry File. A queue entry file contains 
entries for a single type of processing such as 
spooled printing, batch processing, or remote job 
entry. Each queue entry file represents a 
priority-ordered, disk-based queue that is 
controlled by the queue manager. Also see Queue 
Manager. 

Queue Entry Handle. A queue entry handle is a 
32-bit integer that uniquely identifies a queue 
entry. It is returned by the MarkKeyedQueueEntry 
and MarkNextQueueEntry operations and used in 
subsequent ReadQueueEntry, RemoveMarked-
QueueE:ntry, Rewri teMar'kedQueueEntry, and 
UrunarkQueueEntry operations. 

Queue Index File. The queue index file is a 
system-wide text. file that defines the queues to 
be used in the system. The system manager 
creates the queue index file in the master 
workstation, entering information such as the 
name of each queue, its associated queue entry 
file, the size of its entries, and the type of 
the queue (for example, printer spooler, RJE, or 
batch queue) . 

Queue Manager. The queue manager controls named, 
priority-ordered, disk-based queues contained in 
queue entry files. It must be installed in the 
master workstation, either as a system service in 
the system partition., or in a s~condary 
application partition. Also see Queue Entry, 
Queue Entry File, Queue Entry Handle, Queue Index 
File, Queue Status Block, and System Service. 

Queue Status Block The Queue Status Block is in 
the control portion of the queue entry that is 
reserved for the queue manager. It is· refe·renced 
by the MarkKeyedQueueEntry, ~ark..~extQueueEntry, 

and ReadQueueEnt:y operations and reports a queue 



entry's server user number, priority, and the 
buffers in which the queue entry handles for the 
queue entry and the logically following queue 
entry are stored. 

Randomization Techniques. A file entry in a 
directory (or a directory entry in a Master File 
Directory) is located by means of the character 
string that identifies the file (or the 
directory). The character string is converted to 
a pseudorandom number which is then converted to 
the address of the sector where the entry is 
expected to be located. If the entry is not in 
the expected sector, then adjacent sectors are 
searched. 

Raw Interrupt Handler. A raw interrupt handler 
(RIH) provides faster execution than a mediated 
interrupt handler since the entry in the 
Interrupt Vector Table points directly to the 
entry point of the RIH. A RIH is useful for 
servicing a high-speed non-DMA device that causes 
an interrupt whenever a byte is to be 
transferred. Also see Interrupt Handler and 
Mediated Interrupt Handler. 

Ready State. The ready state is one of three 
states in which a process can exist. A process 
is in the ready state when it could be running, 
but a higher priority process is currently 
running. Any number of processes can be in the 
ready state at a time. Also see Running State 
and Waiting State. 

Real-Time Clock. The Real-Time Clock 
used by the OS to provide the current 
time of day and timing of intervals (in 
100 ms). Also see Programmable Interval 

( RTC) is 
date and 
units of 
Timer. 

Record Fragment. A record fragment is a 
contiguous area of memory within a record. A 
record fragment is specified using an offset from 
the beginning of the record and a byte count. 

Record Number. A record number specifies the 
record position relative to the first record in a 
file. The record number of the first record in a 
file access method file is 1. 

Record Sequential Access Method. The Record 
Sequential Access Method (RSAM) provides blocked, 
spanned, overlapped input and output. An RSAM 
file is a sequence of fixed- or variable-length 

G-27 



G-28 

records. Files can be opened for read, write, or 
aooend operations. Also see Blocked, Record 
Sequential Work Area, and Spanned. 

Record Sequential Work Area. A Record Sequential 
Work Area is a 150-byte memory work area for the 
exclusive use of the Record Sequential Access 
Method procedures. Any n~~~er of RSAM files can 
be open simultaneously using separate RSWAs. 
Also see Record Sequential Access Method. 

Recording File. A recording file, ~ file used in 
recording mode, contains a copy of all characters 
typed at the keyboard while recording mode is 
active. A recording file can later be used as a 
submit file to repeat the same sequence of input 
characters. The use of a recording file and the 
use of a submit file are mutually exclusive. 
Also see Recording Mode and Submit File. 

Recording Mode. When :-ecording :node is active, 
all characters typed at the keyboard and read in 
character ;:r.ode are writ.ten to a recording file, 
in addition to being returned to the client 
process. Also see Recording File. 

Request. A request requests that an operation be 
performed by a system service process. 

Request Block. .:\ request block is a block of 
memory provided by the client process that 
contains highly structured information. (See the 
"Concepts" section.) The memory address of the 
request block is provided by the client process 
during a Request primitive and by the system 
service process during a Respond primitive. A 
request block is the "element" that the 
application system (or the OS) sends to the OS to 
request that a particular operation be performed. 

Request Code. A request code is a unique 16-bit 
integer that is placed in a request block by a 
client process. The request code is used by the 
Request primitive both to route a request to the 
appropriate system service process and to specify 
to that process which of the several services it 
provides is currently requested. Request codes 
are listed in numeric sequence in Appendix D. 

Request Control Block. A Request Control Block 
is an internal data structure. There is one for 
each concurrent request. The number of RCBs is a 
system build parameter. 



Response Exchange. A response exchange is the 
exchange at which the requesting client process 
waits for the response of a system service. Also 
see Default Response Exchange and Exchange. 

RIH. See Raw Interrupt Handler. 

RSAM. See Record Sequential Access Method. 

RTC. See Real-Time Clock. 

Run File. A run file is created by the Linker 
and contains a task image. Also see Task Image. 

Running State. The runnning state is one of 
three states in which a process can exist. A 
process is in the running state when the 
processor is actually executing its 
instructions. Only one process can be in the 
running state at a time. Also see Ready State 
and Waiting State. 

SAM. See Sequential Access Method. 

SAMGen. See SAM Generation. 

SAM Generation. SAM generation permits the 
specification of the device-dependent object 
modules to be linked to an application system. 
(See form 1148699.) 

Screen Attribute. A screen attribute controls 
the presentation of the entire screen. The 
standard screen attributes are blank, reverse 
video (dark characters on a light background), 
half-bright, number of characters per line (80 or 
132), and the presence or absence of character 
attributes. Also see Character Attribute, Line 
Attribute, and Video Attributes. 

Secondary Application Partition. A secondary 
application partition is a memory partition that 
is created and controlled by using operations 
provided by the application partition management 
facility. Such partitions are used for 
noninteractive applications, such as user 
applications, the batch manager, or system 
services including the printer spooler, ISAM, and 
remote job entry. Also see Application 
Partition, Application Partition Management, and 
Primary Application Partition. 

G-29 



G-30 

Secondary Task. 
is loaded by the 
Task. 

A secondary task is a task that 
primary t.ask. Also see Primary 

Security Mode. The security mode causes the 
printer spooler to pause before printing a file 
and wait for a password to be entered. 

Segment. A segment is a contiguous (usually 
large) area of memory that consists of an 
integral number of paragraphs. Segments are 
usually classified into one of three types: 
code, static data, or dynamic data. Each kind of 
segment can be either shared or nonshared. Also 
see Code Segment and Data Segment. 

Segment Base Address. A segment base address is 
the high-order 16 bit.s of the 20-bit physical 
memory address of the first byte of a hardware 
segment. (The low-order 4 bits are implicit.ly 
O.) The processor segment registers CS, DS, 
SS, and ES co~tain segnent ~ase addresses. Also 
see Logical ~1err:c:-y Add::-ess and ?hys ic3.l ~emory 
Address. 

Sequential Access Method. The Sequential Access 
Method provides device-independent access to 
devices (such as the video display, printer, 
files, and keyboard) by emu la ting a conceptual, 
sequential character-oriented device ~own as a 
byte stream. .:\lso see Byte Stream, Byte Stream 
Work Area, Communications Byte Stream, File Byte 
Stream, Keyboard Byte Stream, Printer Byte 
Stream, Spooler Byte Stream, Video 3yte St.:-eam, 
and X.25 Byte Stream. 

Server Process. .;. server process (such as the 
printer spooler, remote job entry, and batch 
manager) is a system service that has established 
itself as an active server for a particular 
queue. Also see Queue Entry and Queue Manager. 

Service Exchange. A service exchange is an 
exchange that is assigned to a system service 
process at system build. The system service 
process waits for requests for its services at 
its service exchange. Also see Service Exchange 
Table. 

Service Exchange Table. The Servic:: e Exchange 
Table is constructed at system build, ::-esides in 
the System Image, and translates request codes to 



service exchanges. Also see Local Service Code 
Table and Service Exchange. 

Service Process. See System Service Process. 

Short-lived Memory. Short-lived memory is an 
a~ea of memory in an. application partition. When 
a task is loaded, the OS allocates short-lived 
memory to contain its code and data. Short-lived 
memory can also be allocated directly by a client 
process in its own partition. Common uses of 
short-lived memory are input/output buffers and 
the Pascal heap. Also see Application 
Partitions. 

Size. The size of a data item or structure 
always refers to the number of bytes contained. 

Spanned. A record file in which a record can 
begin and end in different physical sectors is 
spanned. Also see Blocked and Record Sequential 
Access Method. 

Spooled Printing.. Spooled printing transfers 
text to a disk file for temporary storage and 
queues a request through the queue manager for 
the printer spooler to trans fer the text to the 
first available printer interface under control 
of the printer spooler. This facilitates sharing 
of printers by cluster workstations, as well as 
concurrent interactive computing and printing. 
Spooled printing can be accessed through the 
Sequential Access Method (spooler byte streams) 
and the printer spooler utilities. Also see 
Direct Printing, Printer Byte Stream, and Spooler 
Byte Stream. 

Spooler Byte Stream. A spooler byte stream 
automatically creates a uniquely named disk file 
for temporary text storage. It then transfers 
the text to the disk file and expands the disk 
file as necessary. When the spooler byte stream 
is closed, a request is queued through the queue 
manager to the printer spooler to print the disk 
file and delete it after it is printed. This is 
spooled printing. Also see Byte Stream, Byte 
Stream Work Area, Communications Byte Stream, 
Direct Printing, File Byte Stream, Keyboard Byte 
Stream, Printer Byte Stream, Sequential Access 
Method, Spooled Printing, Video Byte Stream, and 
X.25 Byte Stream. 

G-31 



G-32 

Standard Character Set. The 256-entry standard 
character set is described in Appendix B. 
Unless requested otherwise, the OS loads the 
Keyboard Encoding Table and the font RAM (B 22 
workstations) to implement the standard 
character set. On B 21 workstations, the 
character set is stored in ROM. 

Standard Video Capability. Standard video 
capabilities are provided by the B 22 series 
workstations. These capabilities are 
characterized by a 34-li ne screen, a 
software-selectable 80- or 132-character line, 
one cursor per line, a 256 character set that 
can be dynamically modified by software, and a 
screen split horizontally and/or vertically into 
multiple frames that can overlap each other. 
Also see Advanced Video Capability, Basic Video 
Capability, and Video Capability. 

Static Data Segment. See Data Segment. 

Status Code. A status code reports the success 
or failure of the requested operation. A status 
code is stored in a request block by the system 
service process and is examined by the client 
process. See Appendix A for a list of status 
codes. 

Style RAM. The style RAM, part of the advanced 
video capability, contains 16 entries, each of 
which specifies the presence or absence of each 
of the video attributes. Entries are selected by 
the 4-bit values in the character attribute 
fields of the character map. 

Submit Facility. The submit facility permits a 
sequence of characters from a file to be sub­
stituted for characters typed at the keyboard. 
The use of submit files allows the convenient 
repetition of command sequences. Also see Submit 
File. 

Submit File. A submit file, a file used in the 
submit facility, contains the same sequence of 
characters that would be typed to the desired 
programs. When a submit file is activated by a 
request from an application process or a cormnand 
to the Executive,. a character from the file is 
returned to the application process whenever it 
requests a character from the keyboard. A 
recording file and a submit file cannot be used 



simultaneously. 
Submit Facility. 

Also see Recording File and 

Submit File Escape Sequence. A submit file 
escape sequence consists of two or three 
characters. The first is the code 03h, which 
indicates the presence of an escape sequence. 
The second character of the escape sequence is a 
code to identify the special function. The third 
character, if present, is an argument to the 
function. Also see Escape Sequence and Submit 
File. 

swap Buffer. The swap buffer is an overlay area 
in the memory of an application partition. The 
swap buffer is used to contain all nonresident 
code segments. This buffer must be large enough 
to contain the largest nonresident code 
segment. A larger buffer permits more code 
segments to be kept in the main memory of the 
partition and improves system performance. Also 
see Virtual Code Segment Swapping_. 

SysCmds. The Executive's command file (SysCmds) 
contains information about each command known to 
the Executive. [Sys]<Sys>SysCmds is used if 
there is no SysCmds file in the Application 
System Control Block. The New Command command is 
used to enter additional commands into SysCmds. 

Sys.Font. The [Sys]<Sys>Sys.Font file contains 
the font for the standard character set. 

System Administrator. See System Manager. 

System Build. System build is the collective 
name for the seque nee of actions necessary to 
construct a customized OS System Image. 
System build allows the specification of 
installation-specific parameters and the 
inclusion of user-written system services. (See 
form 1148699.) 

System Common Address Table. The System Common 
Address Table contains the 4-byte logical memory 
address of each of a number of OS system data 
structures. It starts at physical memory address 
240h. See Appendix E for more information. 

System Common Procedure. A system common 
procedure performs a common system function, such 
as returning the current date and time. The code 
of the system common procedure is included in the 

G-33 



G-34 

System Image a~d is executed in the same context 
and at the sarne priority as the invoking 
process. The Video Access Method, for example, 
is a system common procedure. Also see Object 
Module Procedure. 

System Configuration Block. The System 
Configuration Block allows the application 
system to determine detailed information about 
the System Image (workstation configuration and 
system build parameters). See Appendix E for 
more information. 

System Data Structures. System data structures 
are data areas contained within the OS and 
necessary for its operation. These structures 
are often configuration-dependent. .~ File 
Control Sleek and a File Area Block are examples 
of system data structures. 

Sys(tem) Directory. The Sys(tem) Di=ectory of 
each volume contains entries for system files, 
i~cludi:-ig the Bad Sec-tor ?ile, the File 2eader 
3locks, the ~aster File Jirectory, the System 
Image, the Crash Dump Area, the Log File, and the 
Executive. The Sys Directory is c:-eated by the 
!Volume utility rather than by the CreateDir 
operation. Also see Sys(tem) Volume. 

System Event. A system event affects the 
executa:Oili ty of a process. Examples of system 
events are an interrupt from a device controller, 
Multibus device, timer, or Real-Time Clock, or a 
message sent from another process. ~e system 
event causes a message to be sent to an exchange 
at which a higher priority process is waiting 7 

this, in turn, causes the OS to reallocate the 
processor. A.J.so see Event. 

System Image. The System Image (the file 
[Sys]<Sys>Sysimage.Sys) contains a run-file copy 
of the os. 

System Manaqer. The system manager is the person 
responsibl• for· planning, generating, extending, 
and controlling the use of the OS to improve the 
overall productivity of the installation. 

System Memory. System memory is a contiguous 
area of memory beginning at address O that is 
permanently reserved tor use by the as. 



System Partition. A system partition contains 
the OS or dynamically installed system services. 
Also see Application Partition. 

System Service. A system service is an operation 
performed by a system service process. 

System Service Process. A system service 
process is an OS process that services and 
responds to requests from client processes. 
Both Burroughs - and user-written system service 
processes can be dynamically installed or linked 
to the System Image at system build. A system 
service process is scheduled for execution in 
the same manner that an application process is 
scheduled. Also see Application Process and 
Client Process. 

Sys(tem) Volume. The OS is bootstrapped from the 
Sys(tem) Volume. The Sys(tem) Directory of the 
Sys(tem) Volume contains entries for system files 
that are not necessary in the Sys Directories of 
other volumes. These additional entries must be 
placed in [Sysj<Sys> when the volu,.~e is 
initialized. Sysimage.Sys, CrashDump.Sys, and 
Log.Sys are created (but not initialized) by the 
!Volume utility. The other file entries are 
created using the CreateDir operation or the 
Create Directory command. These system files 
are the System Images, the Crash Dump Areas, the 
Log File, the Debugger, the Executive, the 
Executive's command file, and the standard 
character font. Also see Crash Dump Area, 
Executive, Log File, Sys(tem) Directory, and 
System Image. 

Task. A task consists of executable code, data, 
and one or more processes. The code and data can 
be unique to the task or shared with other 
tasks. A task is creat.ed by translating source 
programs into object modules and then linking 
them together. This results in a task image that 
is stored on disk in a run file. When requested 
by a eurrently active task, such as the 
Convergent Executive, the OS reads the task image 
from the run file into the application partition, 
relocates intersegment references, and schedules 
it for execution. The new task can coexist with 
or replace other application tasks. Also see 
Application System, Run File, and Task Image. 

Task Image. 
a run file 

A task image is a program stored in 
that contains code segments and/or 

G-35 



G-36 

static data se9ments. 
Task. 

Also see Run File and 

Text File. A text file is a file in which each 
byte represents a printable character, or a 
control character such as tab (09h), new line 
(OAh), or formfeed (OCh). 

Time slicin9. Time slicin9 means that processes 
with the same priority are executed in turn for 
intervals of 100 ms in round rocin fashion. 
Processes havin9 priorities within a predefined 
ranqe are sucject to time slicinq. 

Timer Request Block. The Timer Request Block is 
a data structure shared by the client process and 
timer management. The TRB defines the interval 
after which a message is to be sent to a 
specified exchange. iUso see Real-Time Clock. 

Trap. See Internal Interrupt. 

TRB. See Timer Request 9lock. 

TROE. TRUE is represented in a flag variable as 
OFFh. 

Type-Ahead Buffer. The type-ahead buffer stores 
keyboard characters (or keyboard codes, if in 
unencoded mode) t~at have not yet been read by a 
client process. If the workstation operator 
types too many characters in advance of 
processing, the excess characters are 
discarded. When the client process reads beyond 
those characters that were buffered successfully, 
it receives a special status code. The size of 
the type-ahead buffer is usually 128 characters, 
but can be changed at system build. 

UCB. See User Control Block. 

Un encoded Mode. In unencoded mode, the client 
process receives an indication of each key 
depression and release. This mode provides 
maximum flexibility. Also see Character Mode and 
Keyboard Code. 

User Control Block. There is a User Control 
Block (UCB) for each user number. The UCB 
contains the default volume, default directory, 
default password, and default file prefix set by 
the last SetPath and SetPrefix operations. The 
UCB is memory-resident. 



User File Block. The User File Block contains a 
pointer to the File Control Block for each open 
file. 

User Number. A user number is a 16-bit integer 
that uniquely identifies an application system. 
Each application partition has a different user 
number. Processes in the same application 
partition share the same user number. A process 
obtains its user number with the GetUserNumber 
operation (see the "Process Management" 
section.) In the primary application partition 
of a standalone or master workstation, the user 
number is always o. 
Utility. A utility is a program designed to 
perform a common task such as comparing the 
contents of two files. !Volume, Backup Volume, 
Restore, Dump, and Maintain File are examples of 
utilities. (See form 1148772.) 

VAM. See Video Access Method. 

Variable-Length Parameter Block. The Variable­
Length Parameter Block (VLPB) is used by the 
Executive or batch manager to communicate 
parameters to a succeeding application system in 
the partition in which the VLPB is located. The 
VLPB is created in the long-lived memory of an 
application partition and its memory address is 
stored in the Application System Control Block. 
Also see Application System Control Block. 

VCB. See Video Control Block. 

VDM. See Video Display Management. 

VBB. See Volume Home Block. 

Video Access Method. The Video Access Method 
provides direct access to the characters and 
attributes of e-ach frame. VAM can put a string 
of characters anywhere in a frame, specify 
character attributes for a string of characters, 
scroll a frame up or down a specified number of 
lines, position a cursor in a frame, and reset a 
frame. 

Video Attributes. Video attributes control the 
visual presentation of characters on the 
screen. There are three kinds of video 
attributes: screen, line, and character. Also 

G-37 



G-38 

see Character Attribute, Line Attribute, and 
Screen Attribute. 

Video Byte Stream. A video byte stream is a byte 
stream that uses the video display. .:\lso see 
Byte Stream, Byte Stream Work Area, 
Communications Byte Stream, File Syte Stream, 
Keyboard Syi:.e Stream, Printer Byte Stream, 
Sequential Access Method, Spooler ay~e Stream, 
and x.2s Byte Stream. 

Video Capability. The several models of 
workstation have varying levels of video 
capability: basic, standard, or advanced. Also 
see Advanced Video Capability, Basic Video 
Capability, and Standard Video Capability. 

Video Control Block. The Video Cont:ol Block 
contains all infor:nation known about the video 
display, including the location, height, and 
width of aach frame, and the coordinates at which 
the next character is t~ be stored in the f::-ame 
by the Sequential Access ~ethod. '!':'le VCE is 
located in OS memory at an address recorded in 
the System Common Address Table. ~lso see Frame 
Descriptor. 

Video Display Management. Video Display 
Management provides direct control over the video 
hardware. With it, an application system can 
determine the level of video capability, load a 
new character font into the font RA.'1, change 
screen attributes, stop video refresh, calculate 
the amount of memory needed for the character map 
based on the desi:ed number of columns and lines 
and the presence or absence of character 
attributes, initialize each of the frames, and 
initialize the character map. 

Video Refresh. Video refresh is a hardware 
function that reads (using OMA) characters and 
line and character attributes from the character 
map in memory. It then converts them from the 
extended ASCII (8-bit) memory representation to a 
bit array by accessing the font RAM (or font 
ROM), and displays these cits on the screen as a 
pattern of illuminated dots (pixels). Also see 
Font RAM and Pont ROM. 

Virtual Code Segment Swapping. Virtual code 
segment swapping is the method of virtual memory 
supported by the OS. The code of each task 
is divided into variable-length segments that 



reside on disk in a run file. As the task 
executes, only those code segments that are 
required at a particular time actually reside in 
the main memory of the application partition: the 
other code segments remain on disk until they, in 
turn, are required. When a particular code seg­
ment is no longer required, it is simply overlaid 
by another code segment. Also see Code Segment 
and virtual Memory. 

Virtual Memory. Virtual memory is a technique 
that makes the apparent size of memory in an 
appli ca ti on pa rti ti on (from the perspective of 
the application programmer) greater than its 
physical size. The primary mechanisms for the 
implementation of virtual memory are page 
swapping and segment swapping. The OS supports 
virtual code segment swapping. (The use of 
program overlays is not considered virtual 
memory because it is not transparent to the 
application programmer.) Also see Virtual Code 
Segment Swapping. 

VLPB. See Variable-Length Parameter Block. 

Volname. (Volume name) A volname is the second 
element of a full file specification. 

Volume. A volume is the medium of a disk drive 
that was formatted and initialized with a volume 
name, a password, and '1olume control structures 
such as the Volume Home Block, the File Header 
Blocks, the Master File Directory, etc. A floppy 
disk and the medium sealed inside a Winchester 
disk are examples of volumes. 

Volume Control Structures. Volume control 
structures allow the file management system to 
manage (allocate, deallocate, locate, avoid 
duplication of) the space on the volume not 
already allocated t~ the volume control 
structures themselves. A volume contains a 
number of volume control structures: the Volume 
Home 'Block, the File Header Blocks, the Master 
File Directory, and the Allocation Bit Map, among 
others. 

G-39 



G-40 

Volume Hoae Block. There is a Volume Home Block 
for each volume. The VHB is the root structure 
(that is, the starting point for the tree 
structure) of information on a disk volume. The 
VHB contains information about the volume such as 
its name and the date it was created. The VHB 
also contains pointers to the Log File, the 
System Image, the Crash Dump Area, the Allocation 
Bit Map, the Master File Directory, and the File 
Header Blocks. The VHB is disk-resident and 1 
sector in size. 

Volume Password. 
volume. 

A volume password protects a 

Waiting State. The waiting state is one of three 
states in which a process can exist. A process 
is in the waiting state when it is waiting at an 
exchange for a message. A process enters the 
waiting state when it must synchronize with other 
processes. A process can only enter the waiting 
state by voluntarily issuing a Wait Kernel 
primitive that specifies an exchange at which no 
messages are currently queued. The process 
remains in the waiting state until another 
process (or interrupt handler) issues a Send (or 
PSend, Request, or Respond) Kernel primitive that 
specifies the same exchange that was specified by 
the Wait primitive. Any number of processes can 
be in the waiting state at a time. Also see 
Ready State and Running State. 

Workstation. A B 22 workstation is a 
workstation that has standard (or optionally 
advanced) video capabilities and two (or 
optionally five) Multibus slots. Also see 
Advanced Video Capability, and Standard Video 
Capability. 

A B 
that has basic 
multi bus slots. 
Capability. 

21 works ta ti on is a 
video capabilities 

Also see Basic 

station 
and no 

Video 

Write-Behind Mode. In write-behind mode, the 
Direct Access Method writes changed sectors of 
the buffer to disk only when new sectors are 
brought into the buffer, the Direct Access Method 
file is closed, or the mode is changed to write­
through. Write-behind mode provides better 
performance when the Direct Access Method is used 
to modify records in sequential order. Also see 
Buffer Management Modes and Write-Through Mode. 



Write-Through Mode. !n write-through mode, the 
Direct Access Method immediately writes the 
changed sectors of the buffer to disk whenever a 
record is written or deleted. The Direct Access 
Method guarantees that the file content on disk 
is accurate at the completion of a modify 
operation. Also see Buffer Management Modes and 
Write-Behind Mode. 

x. 25 Byte Stream. An x. 25 byte stream is a byte 
stream that enables data transmission via the 
x.2s network gateway. Each open x.25 byte stream 
corresponds to a virtual circuit that is initiat­
ed when the byte stream is opened and cleared 
when the byte stream is closed. Also see Byte 
Stream, Byte Stream Work Area, Communications 
Byte Stream, File Byte Stream, Keyboard Byte 
Stream, Printer Byte Stream, Sequential Access 
Method, and Video Byte Stream. 

G-41 





INDEX 

I, 14-16 
!Sys, 14-7 
$ Directories, 14-68 
< > (directory name), 14··8 
<$>, see $ Directories 
\ } (node name), 14-6 
( ) (device specification), 17-2 
[ 1 (volume name), 14-6 
[Comm], 17-4 
(Kbd] I 17-4 
[Lpt) I 17-3 
(Null, 17-4 
(PtrJ, 17-3 
(Spl), 17-4 
(Sys)<$>, 14-69 
(Sys)<Sys>CrashDump.Sys, 30-2 
[Sys]<Sys>Log.Sys, 30-1, 30-4 
(Sys)<Sys>Queue.Index, 15-5, also see 

Queue index file 
[Vid), 17-4 
(X25) I 17-4 

8048 microprocessor, 26-1 
8085 bootstrap-RCM program, 11-1 
8085 microprocessor, 11-1 
8086 CPU,F-7 
8086 processor, 29-1 
8259A Programmable Interrupt 

Controller, 29-5 

A 

Abbreviated specification, 14-8 
Access methods, 16-1 
ACTION-A, 26-8 
ACTION-B, 26-8 
Action code, 26-8 

ReadActionCode service, 26-21 
ACTION-FI NISH, 26-7 

DisableActionFinish service, 26-17 
ACTION key, 26-7 
AddQueueEntry service, 15-9, 15-22 
Address 

logical, 6-2 
physical, 6-2 
segment base, 6-2 
LoadFontRam service, 24-9 

Agent Service Process 
cluster workstation, 4-23 
master workstation, 4-23 

AllocAllMemorySL service, 6-1 O 
Allocation Bit Map, 14-66 
AllocExch service, 5-4 
AllocMemoryLL service, 6- 11 
AllocMemorySL service, 6-12 
Alphanumeric information, 23-1 

~ideo management, 23-1 
Append mode 

OpenRsFile procedure, 18-7 
Application partition, 10-2 

::reating 
~reatePartition service, 10-14 
dynamically, 10-6 
system initialization, 10-6 

data structures, 10-9 
Application System Control Block, 

10-11 
Batch Control Block, 10-11 
Extended Partition Descriptor, 

10-11 
Extended User Control Block, 10-9 
Partition Configuration Block, 

10-11 
Partition Descriptor, 1'0-9 

dynamic control, 10-3 
exchange number 

GetPartitionExchange service, 
10-16 

SetPartitionExchange service, 
10-23 

exit rWl file, 10-7 
loading, 10-6 
locking 

SetPartitionLock service, 
10-24 

memory organization, 10-4 
partition handle, 10-6 

GetPartitionHandle service, 10-17 
primary task, 10-6 

LoadPrimaryTask service, 10-20 
removing, 10-8 

RemovePartition service, 10-22 
secondary tasks, 10-7 
status, 10-7 

GetPartitionStatus service, 10-18 
system resource deallocating, 10-9 
terminating tasks, 10-8 

l 



2 

INDEX (CONT.) 

Application partition (cont.) 
TerminatePartitionTasks service, 

10-25 
user nwnber, 14-78 
vacant, 10 -8 
vacating tasks 

VacatePartition service, 10-26 
Application partition data 

structures, E-7 
Application partition management, 

10-1 
Application partitions 

communication between, 10-7 
Application system, 7-1, 7-2 

exit run file, 7-4 
replacing 

Chain service, 7-6 
SetintHandler service, 29-19 
status code, 7-4 
task, 7-2 
task image, 7-2 
terminating, 7-4 

ErrorExit procedure, 7-9 
Exit procedure, 7 -1 1 

Application System Control Block, 
9-4 I 10 -11 

address, 9-4 
GetpASCB procedure, 9-12 
ResetVideo service, 24-13 

Application System Control Block 
format, 9-5 

Argument passing, F-1 
ASCB, see Application System Control 

Block 
Assembly language access to OS, F-1 
Assembly language conventions, F-1 
Asynchronous conditions, 29-5 
Asynchronous mode, 27-1 
Asynchronous operation, 16-1 
Asynchronous Terminal Emulator, 

G-2 
ATE, see Asynchronous Terminal 

Emulator 
Audio tone 

Beep service, 26-15 
Automatic Volume Recognition, 21-0, 

21-14 

B 
B21 Workstation 

basic video capability, 23-6 
B21 Workstation 

QueryVidHdw service, 24-11 

Background partition, see Secondary 
application partition 

Backup Volume utility, 14-69 
BadBlk.Sys, 14-66, also see Bad 

Sector File 
Bad Sector File, 14-66 
Banner page, 22-2 
Bar chart, B-9 
Basic video capability, 23-6 

character attributes, 23-6 
character map, 23-6 
screen attributes, 23-6 

Batch Control Block, 10-11, E-7 
Batch Control Block format, E-8 
Batch data structure, E-7 
Batch job, G-3 
Batch manager, 1-7 
Batch processing, 15-1 
Beep service, 26-15 
Binary key 

Indexed Sequential Access Method, 
20-1 

Binary mode 
printer byte stream, 17-6 
SetimageMode procedure, 17-32 
spooler byte stream, 17-7 

Bit-synchronous mode, 27-1 
Blank character, 17-17 
Blink, 17-13 
Blinking, 23-5 

PutFrameAttrs procedure, 25-5 
Block splitting, 20-2 
Bold character, 23-5 
Boolean, F-1 

FALSE, F-1 
TRUE, F-1 

Bootstrap, G-4 
BP Register, F-2 
bsKbd, 17-2 
bsVid, 17-2 
BSWA, see Byte Stream Work Area 
B-tree, 2 0-2 
Buffer 

Direct Access Method, 19-2 
file access methods, 16-1 
Record Sequential Access Method, 

18-2 
Buff er management 

Direct Access Method, 19-3 
Byte arguments, F-1 
Byte stream., 17-2 



INDEX (CONT.) 

Byte stream (cont.) 
access 

CloseByteStream procedure,11-21 
OpenByteStream procedure, 17-23 

checkpointing 
CheckpointBs procedure, 17-20 

communications, 17-8 
file, 17-5 
file address 

GetBsLfa procedure, 17-2 2 
SetBsLfa procedure, 17-31 

input, 17-1 
ReadBsRecord procedure, 17-27 
ReadByte procedure, 1 7 - 2 8 
ReadBytes procedure, 17-29 

keyboard, 17-8 
output, 17-2 

WriteBsRecord procedure, 17-33 
WriteByte procedure, 17-34 

predefined, 17-2 
printer, 17-6 

direct printing, 17-6 
printing modes, 17-7 

printing mode 
Se timageMode procedure, 1 7 - 3 2 

releasing 
ReleaseByteStream procedure, 

17-30 
return byte 

PutBackByte procedure, 17-2 5 
spooler, 17-7 

printing modes, 17-8 
video, 17-10 

QueryVidBs procedure, 17-26 
special characters, 17-10 

:<. 25, 17-9 
Byt~ Stream Work Area, 17-2 
Byte string key 

Indexed Sequential Access Method, 
20-1 

c 
CANCEL key, 17-8, 17-14 
Centronics-compatible printer, 17-3 
Chain service, 7-7 
ChangeFileLength service, 14-23 
ChangeOpenMode procedure, 14-18, 14-23 
ChangePriority primitive, 3-7 
Character attributes, 17-13, 23-5, 23-6 

blink, 17-13 
half-bright, 17-13 
PutFrameAttrs procedure, 25-4 
reverse, 17-13 

underline, 17-13 
Character code, 26-7 

ReadKbdDirect service, 26-23 
Character font 

standard, 14-76 
Sys.Font, 14-76 

Character map, 23-4, 23-6 
basic video capability, 23-6 
InitCharMap service, 24-5 
QueryFrameChar procedure, 25-7 
standard video capability, 23-4 

Character mode, 26-2, 26-7, B-1 
SetKbdUnencodedMode service, 26-26 

Character set 
standard, 26-9, B-1 

graphic representation, B-10 
Character string key 

Indexed Sequential Access Method, 
20-1 

Character-synchronous mode, 27-1 
CheckpointBs procedure, 17-20 
CheckpointRsFile procedure, 18-4 
CheckpointSysin service, 26-16 
Check primitive, 4-26 
CheckReadAsync procedure, 14-24, 21-6 
CheckWriteAsync procedure, 14-25 

21-6 
CISR, see Communications Interrupt 

Service Routines 
Classes, F-1, F-3 
ClearPath service, 14-26 
Client process, 4-11 

queue management facility, 15-3 
Client-system service 

processing flow, 4-15 
CloseAllFiles service, 14-27 
CloseAllFilesLL service, 14-28 
CloseByteStream procedure, 17-21 
CloseDaFile procedure, 19-6 
CloseFile service, 14-29, 21-7 
CloseRsFile procedure, 18-5 
CloseRTClock service, 28-12 
Cluster configuration, 2-21, 2-24 

cluster workstation, 1-4 
concurrency, 2- 2 4 
IPC facility, 1-2 
master workstation, 1-4 
queue management facility, 15-1 
RS-422 channel, 1-4 
System Configuration Block, E-4 
user-written software, 2-24 

Cluster management, 11-1 
Com.ml OP I 1 1 _, 

3 



4 

INDEX (CONT.) 

Cluster management (cont.) 
communications I/O processors, 11-1 
communications processor, 11-1 
communications status buffer, 11-9 
DisableCluster service, 11-8 
GetClusterStatus service, 11-10 
GetWSUserName service, 11-6 
RS-422 channel, 11-1 
SetWSUserName service, 11-7 
wsStatus block, 11-10 

Clusters, see Cluster configuration 
Cluster workstation, 2-22, 4-23, 14-7 

! Sys, 14-7 
$ Directories, 14-76 
CWS Agent Service Process, 4-23 
local file system, 14-16 
QueryWSNum service, 14-46 
Sys, 14-7 
System Image, 14-75 
User Control Block, 14-78 
volume name, 14-6 
WS>Sysimage.Sys, 14-75 
WS~Sysimage.Sys, 14-75 

COBOL COMP-3 key 
Indexed.Sequential Access Method, 
20-1 

COBOL Relative I-v, 19-1 
CODE key, 26-2, B-1 
Code segment, 6-3 
Collating sequence, 20-1 
Command Interpreter, 1-7 
CommI OP, 11-2 

initialization, 11-2 
initialization control block, 11-2 
opera,tion, 11-3 
status, 11-3 
System Configuration Block, E-1 O 

ComrnI OP handler, 1 1-2 
Common memory pool, 6-5 
Communication between processes, 2-15 
Communications Channel, 17-4 

[Comm) , 17-4 
Communications controller, 27-1 

Communications interrupt handler, 
29-9 

Communications Interrupt Service 
Routine, 11-3, 27-1, 29-13 

ResetCommISR service, 29-16 
SetCommISR service, 29-17 

Communications I/O processors, 11-1 
Communications processor, 11-1 
Communications status buffer format, 

11-9 

Concurrency, 16-1 
cluster workstation, 2-27 

Concurrency control, 21-2 
ConfigureSpooler service 

spooler configuration, 2~-4 
Context switch, 3-3 
Contingency, G- 7 

Contingency management, 30-1 
Control Queues, 15-16 
Conversion to mediated interrupt 
handler, F-12 
ConvertToSys service, 13-6 
CParams procedure, 9-10 
CPU, G-7 
Crash Dump Area, 14-76 

CrashDump.Sys, 14-76 
Crash procedure, 30-2 
WS>CrashDump.Sys, 14-76 
WS~>CrashDump.Sys, 14-76 

CrashDump.Sys, 14-76 
Crash procedure, 30-2 
Create Configuration File utility, 
17-3 
CreateDir service, 14-30 
CreateFile service, 14-14, 14-32 
CreateParition service, 10-14 
CreateProcess primitive, 3-8 
CSubParams procedure, 9-11 
Cursor, 2 3-9 

PosFrameCursor procedure, 25-3 
ResetFrame procedure, 25-8 

Cursor positioning, 17-14 
Cursor RAM, 23-5 

LoadCursorRam service, 24-11 
Customizing SAM, 17-5 



INDEX (CONT.) 

D 
DAM, see Direct Access Method 
Data segment, 6-3 
Data Set 

Indexed Sequential Access Method, 
16-2 

Data store file 
Indexed Sequential Access Method, 

20-3 
Sequential Access Method, 20-3 

Date/time 
GetFileStatus service, 14-39 
SetFileStatus service, 14-57 

Date/time format 
Simplified, 28-2 

expanded, 28-3 
System, 28-3 

Date/time format conversion, 28-4 
DAWA, see Direct Access Work Area 
DCB, see Device Control Block 
Deallocation 

system resource, 10-9 
DeallocExch service, 5-5 
DeallocMemoryLL service, 6-13 
DeallocMemorySL service, 6-14 
Debugger, F-2 

Chain service, 7-8 
FatalError procedure, 30-3 

Default password, 14-10 
Default response exchange, 4-10, 4-12 
Default specification, 14-8 
Defective disk access, 14-14 
Delay procedure, 28-14 
DeleteDaRecord procedure, 19-7 
DeleteDir service, 14-34 
DeleteFile service, 14-35 
Density 

floppy disk, 21-1 
Device 

(Null, 17-4 
Device Control Block, 14-70 
null, 17-4 
Sequential Access Method, 17-1 

Device Control Block, 14-79 
GetFileStatus service, 14-39 
QueryDCB service, 21-18 

Device Control Block format, 14-80 
Device/file specification, 17-3 
Device handler, 1-6, 2-2, 29-2, 29-6, 

29-7 
Device-independent access, 17-1 
Device-level access, 21-1 
Device name, 21-2 
Device password, 21-2 

Device specification, 21-2 
oevname, 21-2, also see Device name 
DGroup, F-3 

System Image, E-2 
Direct access 

system service, 4-11 
Direct Access Method, 16-2, 19-1 

buffer, 19-2 
buffer management, 19-3 
cache, 19-1 
COBOL Relative I-0, 19-1 
data store file, 20-2 
Direct Access Work Area, 19-2 
file 

access 
CloseDaFile procedure, 19-6 
OpenDaFile procedure, 19-8 

input 
ReadDaFragment procedure, 19-12 
Read.DaRecord procedure, 19-13 

output 
WriteDaFragment procedure, 

19-16 
WriteDaRecord procedure, 19-17 

truncating 
TruncateDaFile procedure, 19-15 

file header 
standard, 16-7 

GetStamFileHeader procedure, 16-11 
Maintain File utility, 16-4 
random access, 16-2 
record 

deleting 
DeleteDaRecord procedure, 19-7 

record fragment, 19-2 
record header 

standard, 16-5 
record number, 19-2 

QueryDaLastRecord procedure, 
19-10 

Record Sequential Access Method 
hybrid access, 16-3 

record status 
QueryDaRecordStatus procedure, 

19-11 
record trailer 

standard, 16-7 
sequential access, 19-3 
write-behind mode, 19-3 
write-through mode, 19-3 

Direct Access Method buffer 
SetDaBufferMode procedure, 19-14 

Direct Access work Area, 19-2 

5 



INDEX (CONT.) 

Directories, $, see $ Directories 
Directory, 14-5 

ClearPath service, 14-26 
CreateDir service, 14-30 
DeleteDir service, 14-34 
GetDirStatus service, 14-36 
Master File Directory, 14-73 
ReadDirSector service, 14-50 
RenameFile service, 14-52 
SetDirStatus service, 14-54 
SetPath service, 14-59 

Directory lookup, 14-8 
Directory name, 14-7 
Directory password, 14-9 
Directory specification, 14-8 

abbreviated, 14-8 
default, 14-8 

Direct printing, 22-1 
Dirname, see Directory name 
DisableActionFinish service, 26-17 
DisableCluster service, 11-6 
Disk access 

CloseFile service, 21-7 
OpenFile service, 21-16 

Disk arm movement 
Volume Horne Block, 14-66 

Disk device, 21-2 
Disk error 

ScanToGoodRsRecord procedure, 18-11 
Disk Extent, 14-66 
Disk input 

CheckReadAsync procedure, 21-5 
ReadAsync procedure, 21-28 
Read service, 21-20 

Disk input/output 
Format service, 21-10 

Disk management, 21-1 
Disk output 

CheckWriteAsync procedure, 21-6 
WriteAsync procedure, 21-28 
Write operation, 21-26 

Disk sector, 14-66 
Allocation Bit Map, 14-66 
Bad Sector File, 14-66 
Disk Extent, 14-66 

Disk volume, 14-
IVolume utility, 14-65 

DisrnountVolurne service, 21-9 
Divide, 29-8 
Double-height line, 23-5 
Double-width line, 23-5 
Doubleword, F-2 

6 Dynamic data segment, 6-3 

E 
End of file, 17-2 
End-of-file 

GetFileStatus s~rvice, 14-39 
ChangeFileLength service, 14-23 
SetFileStatus service, 14-57 

End-of-Interrupt, 29-11 
EOI, see End-of-Interrupt 
Epilogue, F-2 
Erase, 1 7 - 1 6 
ErrorExi t procedure, 7 - 9 
Escape Sequence 

multibyte, 17-11 
permitted codes, 26-11 
read-direct, 26-12 
submit file, 26-4, 26-11 
video byte stream multibyte, 26-11 
video byte streams, 17-1 0 

EstablishQueueServer service, 15-12, 
15-18 

Events, 29-1 
continuous count, 28-7 

Exact match, 20-2 
Exchange, 5 - 1 

allocation, 5-2 
AllocExch service, 5-4 

deallocation, 5-2 
DeallocExch service, 5-5 

identification, 5-1 
QueryDefaultRespExch procedure, 

5-6 
relationship to message, 4-7 
relationship to process, 4-7 

Exchange management, 5-1 
Exchange number 

GetPartitionExchange service, 10-16 
SetPartitionExchange service, 10-23 

Executive, 1-7, G-11 
Exit procedure, 7-11 
Exit run file, 7-4, 10-7 

determining, 7-4 
establishing 

SetExitRunFile service, 7-16 
loading additional tasks, 7-4 
primary task, 7-4 
QueryExitRunFile service, 7-14 
specifying, 7-4 
TerminatePartitionTasks service, 

10-25 
ExpandDateTime procedure, 28-15 
Expanded date/time format, 28-3 

CompactOateTime procedure, 28-13 
ExpandOateTime procedure, 28-15 



INDEX (CONT.) 

Expanded date/time structure, 28-4 
Extended Partition Descriptor format, 

10-10, E-8, E-9 
Exteuded UCB, see Extended User 

Control Block 
Extended system partitions, 2-5 
Extended User Control Block, 10-9 
Extension File Header Block, 14-72 
External interrupts, 29-5 
Extraneous interrupt handler, 29-9 
EXTRN, F-3 

F 

FALSE, G-12 
FatalError procedure, 30-3 
fh, see file handle 
FHB, see File Header Block 
FIFO, G-12 
File, 14-5, 17-3 

creating, 14-14 
File Header Block, 14-66 
opening, 14-15 
passwords, 14-9 
reading, 1 4- 1 5 
using, 14-1 4 
writing, 14-15 

File access 
CloseAllFiles service, 14-27 
CloseFile service, 14-29 
defective disk, 14-13 
DeleteFile service, 14-35 
long-lived 

CloseAllFilesLL service, 14-28 
OpenFileLL service, 14-44 

OpenFile service, 14-42 
random, 14-14 

File access methods, 16-1, 16-2 
Direct Access Method, 16-2 
hybrid access patterns, 16-3 
Indexed Sequential Access Method, 

16-2 
Record Sequential Access Method, 

16-2 
Sequential Access Method, 16-2 

File access modes 
modify (exclusive), 1-5 
read (shared), 1- 5 

File allocation 
createFile service, 14-34 

. File handle, 1 4- 1 3 
GetFhLongevity service, 14-38 
long-lived, 14-13 

OpenFile service, 14-42 
OpenFileLL service, 14-44 
short-lived, 14-13 

SetFhLongevity service, 14-56 
File header 

GetStamFileHeader procedure, 16-10 
standard, 16-7 

File Header Block, 14-66 
Disk Extent, 14-66 
extension File Header Blocks, 14-72 
GetFileStatus service, 14-39 
SetFileStatus service, 14-57 

File Header Block format, 14-71 
File header format, 16-8 
FileHeaders.Sys, 14-74, also see File 
Header Blocks 
File input/output 

CheckReadAsync procedure, 14-24 
CheckWriteAsync procedure, 14-25 
ReadAsync procedure, 14-49 
Read service, 14-47 
WriteAsync procedure, 14-64 
Write service, 14-62 

File length 
ChangeFileLength service, 14-23 
GetFileStatus service, 14-39 

File management, 14-1 
volume control structures, 14-65 

Filename 
File Header Block, 14-66 

File name, 14-7 
RenameFile service, 14-52 

File password, 14-10 
SpoolerPassword service, 22-6 

File prefix 
ClearPath service, 14-26 
default 

SetPrefix service, 14-61 
SetPath service, 14-59 

File protection level, 14-10 
access password, 14-11 
access protected, 14-11 
CreateDir operation, 14-11 
decimal values, 14-12 
default, 14-11 
GetFileStatus service, 14-39 
modify password, 14-11 
modify protected, 14-11 
nondirectory access password, 14-11 
nondirectory modify, 14-11 
read password, 14-11 
SetFileStatus operation, 14-11 
SetFileStatus service, 14-57 

7 



8 

INDEX (CONT.) 
G 

File protection level (cont.) 
unprotected level, 14-11 

File specification 
abbreviated, 14-8 
default, 14-8 
f.Ull, 14-8 I 17-3 

File status 
GetFileStatus service, 14-39 

File type 
GetFileStatus service, 14-39 
SetFileStatus service, 14-57 

File types 
Indexed Sequential Access Method, 

20-2 
Fill current frame, 17-16 
Filter process 

client-system service interaction, 
4-15 

local file system, 14-16 
system service, 4-1 4 

Filters, 1-4 
FINISH key, 17-8, 17-16 
Fixed-length record, 16-1, 19-1 
Flags, F-1 
Floppy disk 

density, 21-1 
formatting, 21-1 
IBM-compatible, 21-1 

SetDevPararns, 2 1- 2 4 
sector size, 21-1 

Font RAM, 14-761 23-5 
LoadFontRam service; 24-9 

Font ROM, 14-76, 23-7 
Format service, 21-10 
Forms-oriented interaction, 2 5-1, 

also see Parameter management 
Fragmenting, 14-72 
Frame, 17-15, 23-7 

InitVidFrame service, 4-7 
PosFrameCursor procedure, 25-3 
PutFrameAttrs procedure, 25-4 
PutFrameChars procedure, 25-6 
QueryFrameChar procedure, 25-7 
ResetFrame procedure, 25-8 
ScrollFrame procedure, 25-9 

Frame borders 
InitVidFrame service, 24-6 

Frame descriptor, 23-11 
Frame descriptor fonnat, 23-16 
Full brightness 

PutFrameAttrs procedure, 25-4 
Function, F-2 

GetBsLfa procedure, 17-22 
GetClusterStatus service, 11-8 
GetCParasOvlyZone procedure, 8-5, 8-6 
GetDateTime service, 28-16 
GetDirStatus service, 14-20, 14-36 
GetFhLongevity service, 14-38 
GetFileStatus service, 14-39 
GetPartitionExchange service, 10-16 
GetPartitionHandle service, 10-17 
GetPartitionStatus service, 10-18 
GetpASCB procedure, 9-12 
GetRsLfa procedure, 18-6 
GetStamFileHeader procedure, 16-10 
GetUCB service, 14-41 
GetUserNwnber procedure, 3-9 
GetVHB service, 21-12 
Graphic information, 23-1 

video management, 23-1 
Groups, F-1, F-3 

H 
Half-bright,17-12, 23-4, 23-5 

PutFrarneAttrs procedure, 25-4 
Handle 

file, 14-13 
queue entry, 15-10 

Hardware context, 3 - 3 , 2 9 - 1 
Hardware segment, 6-2 
Hashing, 14-73 
Highlight, see Full brightness 
Hybrid access patterns, 16-3 

IBM-compatible floppy disk, 21-1 
Image mode 

printer byte stream, 17-6 
SetimageMode procedure, 1 7 -3 2 
spooler byte stream, 17-7 

IMR, see Interrupt Mask Register 
Index 

Indexed Sequential Access Method, 
20-2 

Index file, 16-3 
Indexed Sequential Access Method, 

20-2 
Indexed Sequential Access Method, 

16-2, 20-1 
data store file, 20-2 
Direct Access Method hybrid access, 

16-4 
file header 

standard, 16-7 
file types, 20-2 
GetStam.FileHeader procedure, 16-11 
index, 20-1 



INDEX (CONT.) 

Indexed Sequental Access Method 
(cont.) 

key types 
byte string, 20-1 
character string, 20-1 
COBOL COMP-3, 20-1 
long real, 20-1 
packed decimal, 20-1 
short real, 20-1 

keys 
ascending order, 20-2 
col la ting sequence, 2 0 - 1 
descending order, 20-2 
duplicates, 20-2 
inversion, 20-2 

multiuser access, 2 0-3 
operations, 2 0-2 
record header 

standard, 16-5 
Record Sequential Access Method 

hybrid access, 16-4 
record trailer 

standard, 16-7 
retrieval 

exact match, 20-3 
prefix match, 20-3 
range match, 20-3 

single-user access,20-3 
utilities, 20-4 

InitCharMap service, 24-5 
Initial Program Load, see Bootstrap 
Initialization, F-8 
Initialization control block, 11-2 
Initialization files, 14-75 
InitLargeOverlays procedure, 8-5, 8-7 
InitOverlays procedure, 8-5, 8-8 
InitVidFrame service, 24-6 
Input byte stream, 24-6 
Input/Output, 27-2, 27-3 

Direct Access Method, 16-2 
Indexed Sequential Access Method, 
16-2 
Lockin procedure, 27-2 
Lockout procedure, 27-3 
nonoverlapped, 16-2 
overlapped, 16-2 
Record Sequential Access Method, 
16-2 
Sequential Access Method, 16-2 

Input/Output Control Register, 29-7 
Install Queue Manager utility, 15-7 
Interactive partition, see Primary 
application partition 
Internal interrupts, 29-8 

Interpartition communication, 10-7 
exchanges, 10-7 
GetPartitionExchange service, 10-16 
messages, 1o-7 
SetPartitionExchange service, 10-23 
SetPartitionLock service, 10-24 
terminating 

application system, 10-8 
Interprocess communication, 4-1 

multitasking capability, 2-14 
conununication, 2-14 
resource management, 2-14 
synchronization, 2-14 

Interprocess request to interstation 
message conversion 

request block, 4-24 
Interrupt, 29-1, 29-3 

8259A Programmable Interrupt 
Controller, 29-5 

edge, 29-6 
external, 29-5 
fixed, 29-6 
level, 29-6 
maskable, 29-5 
nested, 29-6 
nesting, 29-3, 29-11 
pseudo, 29-8 
special mask, 29-6 
stack, 29-11 
type code, 29-3 

Interrupt handler, 1-6, 2-2, 29-1, 
29-9 

communications, 29-9 
Communications Interrupt Service 

Routines, 29-13 
dynamically installed system 

service, 29-10 
Extraneous Interrupt Handler, 29-9 
mediated, 29-10 
Printer Interrupt Service Routines, 

29-13 
PSend, 29-10 
PSend primitive, 4-2 7 
raw, 29-10 
Send primitive, 29-10 

Interrupt handler packaging, 29-9 
Interrupt handling, F-14 
Interrupt Mask Register, 29-7 
Interrupt Request Register, 29-7 
Interrupt Service Register, 29-7 
Interrupt type code, 29-3 
Interrupt types, 29-4 
Interrupt Vector Table, 29-3 

9 



10 

INDEX (CONT.) 

Interstation communication, 4-23 
interprocess communication, 4-23 
master workstation Agent Service 

Process, 4-23 
request mes·sage, 4-24 
response message, 4-24 

Interval, 28-5 
Delay procedure, 28-14 

Inversion, 20-2 
IPC, see Interprocess communication 
IPL, see Bootstrap 
IRR, see Interrupt Request Register 
ISAM, see Indexed Sequential Access 

Method 
ISC, see Interstation communication 
ISR, see Interrupt Service Register 
IVolume utility, 14-72, 21-8, 21-10 

K 
Kernel, 2-1 

interprocess communication, 2-1 
process execution scheduling, 2-1 
process synchronization, 2-1 

Key, 16-3 
Indexed Sequential Access Method, 

20-1 
RemoveKeyedQueueEntry, 15-11 

Keyboard, 17-4, 26-6 
[Kbd] I 17-4 
unencoded, 26-1 

Keyboard character 
ReadKbd service, 26-22 

Keyboard code, 26-5, c-1 
ReadKbdOirect service, 26-23 

Keyboard Encoding Table, 26-2, 26-8, 
B-1 

Keyboard management, 26-1 
character mode 

CODE keys, B-1 
Keyboard modes, 26-1, 26-5 

character, 26-2, 26-7 
unencoded, 26-1, 26-5 

Keyboard/Video Independence, 26-8 
Key types 

binary, 20-2 

L 
LED indicator, 1 7 - 1 7 
LED keys, 26-1,3 

QuerylC.bdLeds service, 26-16 

SetI<bdLed service, 26-25 
lfa, see logical file address 
Line attributes, 23-4 
Link block, 4-6 

PSend primitive,4-27 
Respond primitive, 4-28 
Timer Request Block, 28-5 

Linker/Librarian, F-6 
Linking 

virtual code segment management, 
8-4 

LoadFontRam service, 24-9 
Loading tasks, 7-3 
LOadPrimaryTask service, 10-20 
LoadTask service, 7-12 
Local file system, 14-16 
Local resource-sharing networks, 1-4, 
also see Cluster configuration 
Local Service Code Table, 4-21 
Local UCBs, 14-79 
Local variables, F-3 
Lockin procedure, 27-2 
LOCK key, 26-2 
LockOut procedure, 27-3 
Log File, 14-76, 30-1 

Log.Sys, 14-76 
PLog utility, 14-76 
record format, 30-5 
WriteLog service, 30-4 

Logging file, see Log File 
Logical file address, 14-13, F-2 
Logical memory address, see Memory 
address 
Log.Sys, 14-76 
Long-lived memory, 6-5, 9-2 
Long real key 

Indexed Sequential Access Method, 
20-2 

Main CommIOP program, 11-2 
Maintain File utility, 16-4 
MakeRecentlyUsed procedure, 8-5, 8-9 
Malformed record 

ScanToGoodRsRecord procedure, 18-11 
MarkKeyedQueueEntry service, 15-12, 15-25 
MarkNextQueueEntry service, 15-12, 15-28 
Maskable interrupts, 29-5 
Master File Directory, 14-73, 14-74 

entry format, 14-73 
Sys(tem) Directory, 14-73 



INDEX (CONT.) 

Master workstation, 2-21 
Master workstation ~gent Service 

Process, 4-24 
Mediated interrupt handler, 29-10 

conversion to, F-12 
XediateintHandler primitive, 29-15 
SetintHandler service, 29-19 

MediateintHandler primitive, 29-15 
stack, 29-15 

Memory, 
allocation, 6-5 

AllocAllMemorySL service,6-10 
AllocMemoryLL service, 6-1 1 
AllocMemorySL service, 6- 1 2 

available size, 
QueryMemAvail service, 6-15 

common memory pool, 6-5 
deallocation, 6-7 

DeallocMemoryLL, 6-13 
DeallocMemorySL service, 6-14 
ResetMemoryLL service, 6-16 

long-lived, 6-5 
?i.llocMemoryLL, 6-11 
DeallocMemoryLL se:::-vice, 6-1 3 
Rese tMemo ryLL service, 6-1 6 
uses of, 6-7 

short-lived, 6-5, 6-8 
AllocAllMemorySl service, 6-1 0 
AllocMemorySL service,6-12 
DeallocMemorySL service,6-14 
uses of, 6-8 

Memory address, 6-2, 14-14, F-1 
Memory management, 6-1 
Memory organization, 6-4 

application partition 
compact system, 6-4 
concurrent application system, 

6-4 
Memory parity error, 29-7 
Message, 4-6 

address, 4-6 
relationship to exchange, 4-7 
relationship to process, 4-7 
sending, 4-8 
sending to another partition, 4-9 
waiting, 4-9 

Xessage inquiry 
Check primitive, 4-26 

Message transmission 
Send primitive, 4-3 0 

MFD, see Master File Directory 
Mfd.Sys, 14-73, also see Master File 

Directory 

MIH, see mediated interrupt handler 
Minicluster, G-2 0 
Mode append, 17-24, 18-7 
Mode modify, 17-2 4 
Mode read, 1 7 - 2 3 , 18-7 
Mode text, 17-23 
Mode write, 17-24, 18-7 
Modify (exclusive) mode, 19-8 

OpenDaFile procedure, 19-8 
OpenFile service, 14-42, 21-17 
OpenFileLL service, 14-44 

MountVolume service, 21-14 
Multibus, 29-1 
Multibyte escape sequence,17-11 
Multikey 

Indexed Sequential Access Method, 
16-2 

Multiple frames, 23-2 
Multiprogramming, 1-1 

application system, 1-1 
process, 1-1 
task, 1-1 

Multitasking, see Multiprogramming 
Multiuser access 

Indexed Sequential Access Method, 
20-4 

Name 
N 

directory, 14-7 
file, 14-7 
node, 14-6 
volume, 14-6 

NEX'l' PAGE key, 17-14 
NMI, see Nonmaskable interrupts 
nnn 

user number, 14-78 
workstation identification, 14-75 

Node name, 14-6 
Nodes, 14-4 
Nonmaskable interrupts, 29-7 
Normal mode 

printer byte stream, 17-6 
SetimageMode procedure,17-32 
SetSysinMode service, 26-27 
spooler byte stream, 17-7 

Null process, 3-4 
Numeric pad, 26-3 

0 
Object module procedure, 2-2 

file access methods, 16-1 
Object modules, F-6 

11 



12 

INDEX (CONT.) 

Offset, 6-2, F-1 
Open file, 14-14 

Partition Configuration Block fornat, 
E-9 

OpenByteStream procedure,17-23 
OpenOaFile procedure, 19-8 
OpenFile service, 14-15, 14-42, 
OpenFileLL service, 14-44 
OpenRsFile procedure, 18-7 
OpenRTClock service, 28-17 
Operation, G-21 

Partition Descriptor, 10-9, E-9 
Partition Descriptor format, E-10 

21-16 Partition handle, 10-6 
CreatePartition service, 10-14 
GetPartitionHandle service, 10-17 

Partitions, 10-2 

Output byte stream, 17-2 
overlapped operation, 16-1 
overlay area, 8-3 
overlays, 8-4 

nwnber of, 8-5 
overlaid code, 8-4 
resident code, 8-4 
Size I 8-5 
usage, 8-4 

p 
Packed decimal key 

Indexed Sequential Access Method, 
20-1 

Paragraph, 6-2 
Parallel printer 

Printer Interrupt Service Routines, 
29-13 

Parallel printer service routines 
SetLpISR service, 29-21 

Parameter, 9-3 
Parameter creation 

RgParaminit procedure, 9-13 
RgParamSetEltNext procedure,9-14 
RgParamSetListStart procedure, 9-15 
RgParamSetSimple procedure, 9-16 

Parameter ma.nagement, 9-1 
Applicatioi1 System Control Block, 

9-4 
forms-oriented interface, 9-1 
Variable-Length Parameter Block, 

9-3 
Parameter retrieval 

CParams procedure, 9-9 
CSubParams procedure, 9-1 O 
GetpASCB procedure, 9-11 
RgParam procedure, 9-12 

Partition 
application, 10-2 
primary application, 10-2 
secondary application, 10-2 
system, 10-2 

Partition Configuration Block, 10-10, 
E-9 

Partition status, 10-7 
GetPartitionStatus service, 10-18 

Password, 14-9 
Clearpath service, 14-25 
CreateFile, 14-10 
default, 14-10 
device, 21-2 
directory, 14-9 
file, 14-9 
File Header Block, 14-66 
GetFileStatus service, 14-39 
OpenFile, 14-1 O 
SetFileStatus service, 14-57 
SetPath service, 14-59 
volume, 14-9 

Pause facility, 1 7-14 
PCB, see Process Control Block 
Physical memory address, 6-2 
Physical record, 16-5 
PISR, see Printer Interrupt Service 

Routines 
PIT, see Programmable Interval Timer 
Pixels, 23-1, 23-5, 23-7 
PLog utility, 14-68, 30-1 
Pointers, F-1 
POP, F-3 
PosFrameCursor procedure, 25-3 
Power failure detection, 29-7 
Primary application partition, 10-2 
Primary task, 10-6 

LoadPrimaryTask service, 10-20 
Printer 

(Lptl I 17-3 
Centronics-compatible printer, 17-3 
parallel, 17-3 
RS-232-C-compatible, 17-3 

Printer Interrupt Service Routine, 29-13 
SetLpISR service, 29-21 

Printer spooler, 17-4 
banner page, 22-2 
control queue entry format, 15-16 
direct printing, 22-1 
escape sequences, 15-19 
security mode, 22-3 
spooled printing, 22-1 
spooler configuration file, 22-2 
status queue entry format, 15-17 



INDEX (CONT.) 

Printer spooler management, 22-1 
Centronics-compatible printer, 22-1 
parallel printer, 22-1 
RS-232-C compatible printer, 22-1 
serial printer, 22-1 

Printing mode 
binary, 17-7, 17-8 
image, 17-7, 17-8 
normal, 17-7, 17-8 

Priority 
ChangePriority primitive, 3-7 

Priority interrupt levels, 29-6 
Procedural access 

system services, 4-10 
Procedural interface 

example, 4- 19 
Procedure, 2-2 

object module, 2-2 
system common, 2-2 

Process, 2-3, 3-2 
client-system service interaction, 

4-13 
filter, 4-15 
relationship to application system, 

3-3 
relationship to message, 4-7 
relationship to process, 4-7 
relationship to task, 3-3 

Process context, 29-2 
context switch, 3-3 
hardware, 3- 3 
Process Control Block, 3-3 
software, 3-3 

Process Control Block,3-3, 4-22 
Wait primitive, 4-31 

Process creation 
CreateProcess primitive, 3-8 

Process Descriptor Block 
CreateProcess primitive, 3-8 

Process management, 3-1 
Process number 

QueryProcessNumber procedure,3-12 
Process priority, 3-3 

ChangePriority primitive, 3-7 
Process scheduling 

event-driven priority, 3-3 
null process, 3-4 
rescheduling, 3-4 
system event, 3-4 
time slicing, 3-4 

Process state, 3-4 
ready, 3-5 
running, 3-4 

waiting, 3-5 
Process state transition, 3-6 
Process suspension 

Wait primitive, 4-31 
Processing flow 

client-system service, 4-14 
Processor architecture, F-1 
Programmable Interval Timer, 28-1, 

28-8, F-14 
ResetTimerint primitive, 28-18 
SetTimerint primitive, 28-20 

Prologue, F-2 
Protection level 

File Header Block, 14-61 
PSend primitive, 4- 2 7 
Pseudointerrupt handler, 28-8 
Pseudointerrupts, 29-8 
PUBLIC, F-3 
PUSH, F-3 
PutBackByte procedure,17-25 
PutFrameAttrs procedure, 25-4 
PutFrameChars procedure, 25-6 

Q 

QueryDaLastRecord procedure, 19-10 
QueryDaRecordStatus procedure, 19-11 
Query DCB service, 2 1- 1 8 
QueryDefaultRespExch procedure, 5-6 
QueryExitRunFile service, 7-14 
QueryFrameChar procedure, 25-7 
QueryKl>d.Leds service, 26-18 
QueryK.bdState service, 26-19 
QueryMemAvail service, 6-1 5 
QueryProcessNwnber procedure, 3-12 
QueryVidBs procedure, 17-26 
QueryVidHdw service, 24-11 
QueryWSNum service, 14-46 
Queue entry, 15-8 

adding, 15-9 
AddQueueEntry service, 15-9, 15-22 
MarkKeyedQueueEntry service, 15-26 
MarkNextQueueEntry service, 15-29 
Queue Status Block, 15-10 
reading, 15-9 
ReadKeyedQueueEntry service, 15-31 
ReadNextQueueEntry service, 15-9, 15-33 
RemoveKeyedOueueEntry service, 15-11, 

15-35 
RemoveMarkedQueueEntry service, 15-36 
removing, 15-11 

13 



14 

INDEX (CONT.) 

RewriteMarkedQueueEntry service, 
15-38 

sample, 15-13 
UnmarkQueueEntry service, 15-41 

Queue entry file, 15-7 
Queue entry handle, 15-10 
Queue index file, 15-4 
Queue management, 15-1 
Queue management facility 

client process, 15-3 
sequence for using, 15-3 
server process, 15-3 

Queue Manager 
installing, 15-7 

Install Queue Manager utility, 
15-7 

secondary application partition, 
15-7 

system partition, 15-7 
Queue name, 15-5 
Queue server 

EstablishQueueServer service, 15-24 
TerminateQueueServer service, 15-40 

Queue Status Block, 15-10 
Queue Status Block format, 15-10 
Queue type , 15-5 

R 
Random access, 14-14, 16-2, 19-1, 

20-1 
Direct Access Method, 16-2 

Randomization, 14-73 
Range match, 20-3 
Raw interrupt handler, 29-12 

conversion to mediated interrupt 
handler, F-14 

MediateintHandler primitive, 29-15 
SetintHandler service, 29-19 

ReadActionCode service, 26-21 
ReadAsync procedure, 14-49, 21-22 
ReadBsRecord procedure, 17-27 
ReadByte procedure, 17-28 
ReadBytes procedure, 17-29 
ReadDaFragment procedure, 19-12 
ReadDaRecord procedure, 19-13 
ReadDirSector service, 14-50 
ReadFile, see Read service 
ReadKbd service, 26-22 
ReadKbdDirect service, 26-23 
Read.KeyedQueueEntry service, 15-25 
Read mode, see Read (shared) mode 
ReadNextQueueEntry service, 15-27 
ReadRsRecord procedure, 18-9 

Read service, 14-47, 21-20 
Read (shared) mode, 19-8 

OpenDaFile procedure, 19-8 
OpenFile service, 14-42, 21-16 
OpenFileLL service, 14-44 
OpenRSFile procedure, 18-7 

Ready state, 3-5 
Real-Time Clock, 28-1, 5 

CloseRTClock service, 28-12 
OpenRTClock service, 28-17 

Real-Time Clock service, 28-17 
Record, 18-2 

blocked, 16-1, 18-1 
Direct Access Method, 16-2 
fixed-length, 16-1, 19-1 
Indexed Sequential Access Method, 

16-2 
overlapped, 18-1 
Record Sequential Access Method, 

16-2 
Sequential Access Method, 16-2 
spanned, 16-1, 18-1 
unstructured byte sequence, 16-1 
variable-length, 16-1, 18-1 

Record fragment 
Direct Access Method, 19-2 

Record header 
standard, 16-5 

Record header format, 16-6 
Universal Record Identifier, 16-6 

Record identifiers, 2 0-2 
Record number. 

Direct Access Method, 19-2 
Record Sequential Access Method, 

16-2, 18-1 
address 

GetRsLfa procedure, 18-6 
buffer, 18-2 
Direct Access Method hybrid access, 

16-3 
file 

access 
CloseRsFile procedure, 18-5 
OpenRsFile procedure, 18-7 

checkpointing 
CheckpointRsFile procedure, 

18-4 
input 

ReadRsRecord procedure, 18-9 
output 

WriteRSRecord procedure, 18-13 
releasing 

ReleaseRsFile procedure, 18-10 



INDEX (CONT.) 

Record Sequential Access Method 
(cont.) 

file header 
standard, 16-7 

GetStamFileHeader procedure,16-10 
Maintain File utility, 16-4 
record, 18-2 
record header 

standard, 16-5 
Record Sequential Work ~rea, 18-2 
record trailer 

standard, 16-7 
scanning 

ScanToGoodRsRecord procedure, 18-11 
Record Sequential Work Area, 18-2 
Record trailer format, 16-7 
Record trailer 

standard, 16-7 
Recording file, 26-10 

FatalError procedure, 30-4 
Recording mode, 26-10 

SetSysinMode service, 26-27 
Region, see Application partition 
Register usage, F-1, F-2 
ReinitLargeOverlays procedure, 8-5, 8-10 
ReinitOverlays p~ocedure, 8-5, 8-11 
ReleaseBvteStream procedure. 17-30 
ReleaseRsFile procedure, 18-10 
Reliability, Volume Home Block, 14-66 
Remote job entry, 15-1 
Remote UCBs, 14-79 
RemoveKeyedQueueEntry service, 15-34 
RemoveMarkedQueueEntry service, 15-36 
RernovePartition service, 10-22 
RenameFile service, 14-52 
Repetitive timing, 28-7 
Request block, 4-16, 4-23 

interprocess request to 
interstation message 

conversion, 4-24 
Request primitive, 4-28 
Respond primitive, 4-29 

Request block header format, 4-17 
Request code, 4-12, 13-2 

ServRq service, 13- 7 
Request codes 

in numeric sequence, D-1 
Request data item, 4-18 
Request primitive, 4-20, 4-28 
ResetComrnISR service, 29-16 
ResetFrame procedure, 25-8 
ResetMemoryLL service, 6-16 
ResetTimerint primitive, 28-18 

ResetVideo service, 24-14 
Resource management, 2-14 
Response data item, 4-18 
Response exchange, 4-12 

Request primitive, 4-28 
Restore utility, 14-64 
Retrieval 

Indexed Sequential Access Method, 
20-1 

Re-verse video,17-12, 23-4, 23-5 
RewriteMarkedQueueEntry service, 

15-38 
RgParamlnit procedure, 9-14 
RgParam procedure, 9-13 
RgParamSetEltNext procedure,9-15 
RgParamSetListStart procedure, 9-16 
RgParamSetSimple procedure, 9-17 
RIH, see Raw interrupt handler 
RJE, see Remote job entry 
Root structure 

Volume Home Block, 14-66 
RS-232-C-compatible printer, 17-3 
RS-422 channel, 11-1 
RSAM, see Record Sequential Access 

Method 
RSAM file 

address 
GetR.~Lfa procedure, 18-6 

output 
WriteRsRecord procedure, 18-13 

RSWA, see Record Sequential Work Area 
RTC, see Real-Time Clock 
RTC interrupt handler, 28-5 
Run file, 2-2, 7-2 

exit, 7-4 
Running state, 3-4 

s 
SAM, see Sequential Access Method 
SAMGen, 17-5 
SAR, see Screen Attribute Register 
ScanToGoodRsRecord procedure, 18-11 
SCAT, see System Common Address Table 
Scheduling, 3-3 
Ser, 14-7 
scratch volume, 14-7 
Screen Attribute Register, 23-15 
screen attributes, 17-12, 23-4, 23-6 

half-bright, 17-12 
reverse video, 17-12 
ResetVideo service, 2 4-1 3 
SetScreenVidAttr service, 24-1 5 

ScrollFrame procedure, 25-9 

15 



16 

INDEX (CONT.) 

Scrolling, 23-2, 23-9 
Scrolling control, 17 -1 3 
Secondary application partition, 10-2 
Secondary task, 10-7 
Sector size 

floppy disk, 21-1 
Security mode 

printer spooler, 22-3 
Segment, 6-2, F-1, 3 

code, 6-3 
data, 6-3 
dynamic data, 6-3 
hardware, 6-2 
software, 6-2 
static data, 6-3 

Send primitive, 4-30 
Sequential access, 19-3 
Sequential Access Method, 16-2, 17-1, 

23-9, 27-1, F-4 
byte stream, 17-2 
Byte Stream Work Area, 17-2 
customizing, 17-5 
file header 

standard 
OpenByteStream operation, 17-2 
random access 

files, 17-5 
GETBsLfa, 1 7-5 
SETBsLfa, 17-5 

record trailer 
standard, 16-7 

Serial input/output, 27-1 
Serial printer, see 

RS-232-C-cornpatible printer 
server process 

queue management facility, 15-3 
Service exchange, 4-12 
Service Exchange Table, 4-21 

Request primitive, 4-28 

ServRq service, 13-7 
SetBsLfa procedure, 17-31 
SetCommISR service, 29-17 
SetDaBufferMode procedure, 19-14 
SetDateTime service, 28-19 
SetDevParams service, 21-24 
SetDirStatus service, 14-20, 14-54 
SetExitRunFile service, 7-16 
SetFhLongevity service, 14-56 
SetFileStatus service, 14-57 
SetimageMode procedure, 17-32 
SetintHandler service, 29-19 
SetKbdLed service, 26-25 
SetKbdUnencodedMode service, 26-26 
SetLpISR service, 29-21 

SetPartitionExchange service, 10-23 
SetPartitionLock service, 10-24 
SetPath service, 14-59 
SetPrefix service, 14-61 
SetScreenVid.Attr service, 24-16 
SetSysinMode service, 26-27 
SetTimerint primitive, 28-20 
SHIFT key, 26-2, B-1 
Short-lived memory, 6-5 
Short real key 

Indexed Sequential Access Method, 
20-1 

Single-user access 
Indexed Sequential Access Method, 

20-3 
SIO, see Serial input/output 
SIO communications controller 

Communications Interrupt Service 
Routines, 29-13 

Lock In procedure, 2 7 - 2 
LockOut procedure, 27-3 
ResetCommISR service, 29-16 
SetCommISR service, 29-17 

Software context, 3- 3 
Software organization, 2-24 
Software segments, 6-2 
SP, F-2 
Split screen, 23-3 
Spooled printer, 17-3 
Spooled pr in ting, 1 5- 1 , 1 7 - 6 , 2 2 - 1 
Spooler configuration 

ConfigureSpooler service,22-4 
Spooler configuration file, 22-2 
SpoolerPassword service, 22-6 
Spooler utility, 1 7 - 3 
SS, F-2 
Stack, F-1 

MediateintHandler primitive, 29-15 
request block, 4-11 

Standalone workstation, 2-2 1 
Standard character font, 14-76 
Standard cursor, 23-5 
Standard Network, 1-5 
Standard video capability, 23-4 

character attributes, 23-5 
character map, 23-4 
line attributes, 23-4 
LoadFontRam service,24-9 
screen attributes, 23-4 

Static data segment, 6-3 
Status code 

establishing 
ErrorExit procedure, 7-9 
Exit procedure, 7-11 



INDEX (CONT.) 

Style RAM, 23-6 
Submit facility, 26-3, 9 
Submit file, 26-3,9 

escape sequence, 26-11 
FatalError procedure, 30-3 

Submit mode 
SetSysinMode service, 26-27 

Subparameter, 9-3 
Subscript, 23-5, B-6 
Superscript, 23-5, B-5 
Swap buffer, 8-3 

allocating, 8-3 
InitOVerlays procedure, 8-3 
size, 8-3 

Swapping, 8-2 
InitOVerlays procedure, 8-6 

Synchronization, 2-13 
Sys, 14-6 
Sys Directory, see Sys(tem) 

Directory 
Sys. Font, 14-76 
Sysimage.sys, 14-76 

System Image, 14-76 
Sysin, 17-2 
SysOUt, 17-2 
System administrator, 15-1 
System build, 2-2, 26-9 

Communications Interrupt Service 
Routines, 29-13 

System Common Address Table, 23-11, 
26-8, 28-3, E-2 

System common procedures, 2-2 
System Configuration Block, E-10 
System Configuration Block format, 

E-10 
System data structures 

Application System Control Block, 
9-4, 10-11, E-2 

Batch Control Block, 10-11, E-7 
Device Control Block, 14-70 
communications buffer status, 11-9 
Extended Partition Descriptor, 

10-11, E-8 
Extended User Control Block, 10-9, 

E-8 
File Area Block, 14-70 
File Control Block, 14-70 
file header 

standard, 16-7 
initialization control block, 11-2 
I/O Block, 14-78 
link blocks, 4-7 

Partition Configuration Block, 
10-11, E-9 

Partition Descriptor, 10-9, E-9 
Process Control Block, 3-3 
Process Descriptor Block, 3-10 
Queue Status Block, 15-10 
record header 

standard, 16-5 
record trailer 

standard, 16-7 
System Configuration Block,E-10 
Timer Pseudointerrupt Block, 28-9 
User Control Block, 14-78 
Variable-Length Parameter Block, 9-3 

Video Control Block, 23-11 
wsStatus block, 11-10 

System date/time format, 28-3 
System date/time structure, 28-3 
Sys{tem) Directory, 14-73 
System directory 

Sys(tem) Volume, 14-75 
system file, 14-74 

Systemfile 
BadBlk.Sys, 14-74, also see Bad 
Sector File 
Bad Sector File, 14-74 
File Header Block, 14-74 
FileHeaders.Sys, 14-74, also see 
File Header block 
Master File Directory, 14-74 
Mfd.Sys, 14-74, also see Master 
File Directory 
Sys(tem) Volume, 14-75 

System Image, 2-2, 2-24, 14-75 
cluster workstation, 2-24, 14-75 
master workstation, 2-24 
standalone workstation, 2-24 
Sysimage.Sys, 14-75 
System Configuration Block, E-10 
Volume Home Block, 14-66 

System Input Manager, 26-3 
CheckpointSysin service, 26-16 
QueryKbdState service, 26-19 
SetSysinMode service, 26-27 
Sysin, 26-3 

System Manager, G-34 
System partition, 10-2 
System service,4-11, 13-1 

ConvertToSys service,13-6 
direct access 

default response exchange, 4-12 
Local Service Code Table, 4-12 

17 



18 

INDEX (CONT.) 

System service (cont.) 
request block, 4- 11 
request code, 4-12 
Request primitive, 4-28 
Respond primitive, 4-29 
response exchange, 4-12 
service exchange, 4-12 
Service Exchange Table, 4-12 
Wait primitive, 4-31 

dynamically installed 
extended system partition, 13-2 

operational sequence, 13-3 
restrictions, 13-4 
secondary application 

partition, 13-4 
SetintHandler service, 29-19 

filter process, 4-15 
request codes, 13-2 
ServRq service, 13-7 

System service access, 4-10 
direct (Request and Wait 

primitives), 4-10 
procedural interface, 4-10 

System service process, 4-10, 13-1 
Sys(tem) Volume, 14-75 

system files, 14-75 
System volume 

t Sys, 14-7 
Sys, 14-6 
Sys(tem) Directory, 14-73 

Task, 7-2 
activating 

T 

LoadTask service, 7-13 
loading, 7-3, 10-6 

LoadTask service, 7-12 
memory allocation, short-lived, 7-3 
primary, 10-6 
secondary, 10-7 

Task image,2-2, 6-3, 7-2, 7-3 
Task management, 7-1 
Temporary file, 14-7, 14-77 
Terminal emulator, 27-1 

2780/3780, 27-1 
3270, 27-1 
ATE, 27-1 
x.2s, 21-1 

TerminatePartitionTask.s service, 
10-25 

TerminateQueueServer service, 15-21 
15-34 

Terminating 
application system, 26-13 

ErrorExit procedure, 7-9 
Exit procedure, 7-11 

server process, 15-20 
tasks 

application partition 
VacatePartition service, 10-26 

Text file, G-36 
Timer 

single interval, 28-6 
Timer example program, F-14 
Timer management, 28-1 
Timer Pseudointerrupt Block, 28-8 

ResetTimerint primitive, 28-18 
SetTimerint primitive, 28-20 

Timer Pseudointerrupt Block format, 
28-9 

Timer Request Block, 28-S 
CloseRTClock service, 28-12 
OpenRTClock service, 28-17 

Timer Request Block format, 28-6 
Time slicing, 3-4 
TPIB, see Timer Pseudointerrupt Block 
Trap Flag, 29-8 
Traps, 29-8 
TR.B, see Timer Request Block 
Tree structure 

Volume Home Block, 14-66 
TRUE, G-36 
TruncateDaFile procedure, 19-15 
Type-ahead buffer, 26-7 

FatalError procedure,30-3 
Typematic repeating, 26-2 
TypeSector example program, F-4 
Typewriter pad, 26-3 

u 
UCB, see User Control Block 
Underline, 1 7 -1 2 
Underlining, 23-5, 25-4 
Underscore, see Underlining 
Unencoded keyboard, C-2 
Unencoded mode, 26-1, 26-5 

SetKbdUnencodedMode service, 26-26 
Universal Record Identifier, 16-6 
UnmarkQueueEntry service, 15-41 
URI, see Universal Record Identifier 
User Control Block, 14-78, 14-79 

cluster workstations, 14-78 
GetUCB service, 14-41 
master workstation, 14-79 



INDEX (CONT.) 

User Control Block, (cont.) 
local UCBs, 14-79 
remote UCBs, 14-79 

User Control Block format,. 14-78 
User number, 14-8, Glossary-37 

GetUserNumber procedure, 3-9 
nnn, 14-77 

Utility, G-37 

v 
VacatePartition service, 10-26 
VAM, see Video Access Method 
Variable-Length Parameter Block, 

9-3 
address, 9-3 
CParams procedure, 9-9 
creating, 9-3 
CSubParams procedure, 9-10 
RgParam procedure, 9-12 
RgParam.Init procedure, 9-13 
RgParamSetEltNext procedure, 9-14 
RgPararnSetListStart procedure, 

9-15 
RgParamSetSimple procedure, 9-16 

Variable-length record, 16-1, 18-1 
VCB, see Video Control Block 
VDM, see Video Display Management 
VHB, see Volume Home Block 
Video Access Method, 23-8, 25-1 
Video attributes, 23-4 

basic video capability, 23-6 
character, 23-5, 23-6 
line, 23-4 
screen, 23-4, 23-6 
SetScreenVid.Attr service, 24-16 
standard video capability, 23-4 

Video Byte Stream multibyt.e 
escape sequences, 26-11 

Video capability, 23-3 
advanced, 23-3 
basic, 23-3 
QueryVidHw service, 24-11 
standard, 23-3 

Video Control Block, 23-11 
ResetVideo service, 24-14 

Video Control Block format, 23-12 
Video display 

(Vidl I 17-5 
Video display management, 23-8, 

24-1 
character map, 24-1 
font RAM, 24-1 
frames, 24-1 

memory, 24-1 
screen attributes, 24-1 
video capability, 24-1 
video refresh, 24-1 

Video frame a I 17-4 
Video management, 23-1 

alphanumeric infonnation, 23-1 
graphic information, 23-1 

Video refresh, 23-5, 23-7 
ResetVideo service, 24-17 

Video software, 23-7 
Video subsystem, 23-1 

ResetVideo service, 24-14 
Video subsystem reinitialization, 

24-2 
Virtual code segment, 8-1, 8-3 

InitOverlays procedure, 8-6 
Virtual code segment management, 8-1, 

8-3 
initializing, 8-3 
linking, 8-3, 8-4 

Virtual memory, 8-2 
VLPB, see Variable-Length Parameter 

Block 
Volname, 14-6, also see Volume name 
Volume, 14-4 

Backup Volume utility, 14-72 
ClearPath service, 14-26 
DismountVolume service, 21-9 
MountVolume service, 21-14 
password, 14-9 
Restore utility, 14-72 
SetPath service, 14-59 

Volume automatic recognition, 14-6 
Volume control structures, 14-65 

Allocation Bit Map, 14-66 
BootExt.Sys, 14-71 
directory, 14-73 
extension File Header Block, 14-72 
file, 14-73 
File Header Block, 14-60 
Master File Directory, 14-66 
Volume Home Block, 14-66 

Volume Home Block, 14-66 
Allocation Bit Map, 14-66 
Bad Sector File, 14-66 
Crash Dump Area, 14-76 
directory, 14-76 
File Header Blocks, 14-66 
GetFileStatus service, 14-39 
GetVHB service, 21-12 
Log File, 14-76 
Master File Directory, 14-73 

19 



20 

INDEX (CONT.) 

Volume Home Block (cont.) 
System Image, 14-75 

Volume Home Block format, 14-68 
Volume name, 14-6, 21-3 
Volume password, 14-9 
Volume space 

allocating, 14-66 
deallocating, 14-66 
location, 14-66 

w 
Wait primitive, 4-22, 4-31 
Waiting state, 3-6 
Word Processor files, 17-24 
Workstation identification 

~· 14-68 
Workstation type, 14-75 
WriteAsync procedure, 14-64, 21-29 
Write-behind mode 

Direct Access Method, 19-3 
WriteBsRecord procedure, 17-33 
WriteByte procedure, 17-34 
WriteDaFragment procedure, 19-16 

WriteDaRecord procedure, 19-17 
WriteFile, 14-62, also see Write 
operation 
WriteLog service, 30-4 
Write mode 

OpenRsFile procedure, 18-7 
Write operation, 21-26 
WriteRsRecord procedure, 18-13 
Write service, 14-62 
Write-through mode 

Direct Access Method, 19-3 
Writing to video display (example), F-4 
WS>CrashDump.Sys, 14-75 
WS~CRashDump.Sys, 14-75 
WS~Sysirnage.Sys, 14-74 
wsStatus block format, 11-10 
WS>Sysirnage.Sys, 14-74 

x 
X.25 Network Gateway, 17-4, 17-9 
x.25 virtual circuit, 17-4 

[X25] I 17-4 



Documentation Evaluation Form 

Title: -""'B..:2:.;;0-.0::..pi;..;e;.;.r""'at_in...,g~S~y'""s..:.;te""'m"'"""'( B::..T:...;O:..;S~l"-'R"""e~f""'er""e.:...:.nc;:;.:e'"""M"'"""'an:.:.:u:::.:.a:.:...I ___ _ Form No: 1162252 

(Release Level 3.0) Date: August 1983 

Burroughs Corporation is interested in receiving your comments 
and suggestions regarding this manual. Comments will be util­
ized in ensuing revisions to improve this manual. 

Please check type of Suggestion: 

D Addition 

Comments: 

From: 

Name 

Title 

Company 

Address 

D Deletion D Revision D Error 

Phone Number --------------- Date----------

Remove form and mail to: 

Documentation Dept, · East 
Burroughs Corporation 

BoxCB7 
Malvern, PA 19355 










