CTIX™ OPERATING SYSTEM MANUAL

Version B
Volume 2

Specifications Subject to Change.

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Convergent, CT-DBMS, CT-MAIL, CT-Net, CTIX, CTOS,
DISTRIX, Document Designer, The Operator,
AWS, CWS, IWS, MegaFrame, MiniFrame,
MightyFrame, and X-Bus, are trademarks
of Convergent Technologies, Inc.

CTIX 1s derived from UNIX System V by Convergent
Technologies under license from AT&T. UNIX is a trademark of
AT&T Bell Laboratories.

Material excerpted from the UNIX System V User Reference
Manual, Administrator Reference Manual, and Programmer
Reference Manual is Copyright 1984 by AT&T Technologies.
Reprinted by permission.

This software and documentation is based in part on the Fourth
Berkeley Software Distribution under license from the Regents of
the University of California.

This manual was prepared on a Convergent Technologies
MegaFrame Computer System and was printed on an Imagen
8/300 Laser Printer.

First Edition (November 1985) B-09-00635-01

Copyright © 1985 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. Title to and ownership of the documentation
contained herein shall at all times remain in Convergent
Technologies, Inc., and/or its suppliers. The full copyright
notice may not be modified except with the express written
consent of Convergent Technologies, Inc.

HOW TO USE THIS MANUAL

The CTIX Operating System Manual, Version B, describes the
commands, system calls, libraries, data files, and device
interfaces that make up the CTIX Operating System on
MiniFrame Computer Systems and MightyFrame Computer
Systems. Only internal-use and unbundled software products are
excluded. This manual should always be your starting point
when you need to find the documentation for a CTIX feature
with which you are unfamiliar.

The manual consists of a large number of short entries,
sometimes called ‘“the man pages,” after the command which
accesses the entries when they are kept online. Each entry
briefly documents some feature of CTIX. Some features require
longer documentation than an entry in this manual; such features
have an entry that outlines the feature and cross-references the
manual that documents the feature fully. Entries that do not
refer to other manuals are self-contained and are the final word
on the features they describe.

Organization of the manual. The entries are organized into
seven sections in two volumes:

Volume 1:
1. Commands and Application Programs.

Volume 2:

System Calls.

Subroutines and Libraries.
File Formats.
Miscellaneous Facilities.
Games.

Special files.

NO R 0o

Within each section, entries are alphabetical by title, except for
an tatro entry at the beginning of each section.

Entry Title Conventions. An entry title looks like this
example:

erf{3M)

l:lntry Type
ection Number

ame

5/86 -1-

Name is the name of the entry. Section Number indicates the
section that contains the entry. In this case, the entry is in
Section 3, which is in Volume 2. Entry Type is only on entries
that belong to special categories; refer to the section’s iniro entry
for an explanation. In this case, a reference to sntro(3) would tell
you that erf3M) describes functions from the Math Library,
which the C compiler does not load by default.

Finding the entry you need. To find out which entry you
need, refer to the following guides:

. The Permuted Index. This indexes each significant word
in each entry’s description. It is useful when you only
have a general notion what you’re looking for. It is also
useful when you know the name of the command,
function, etc., that you are interested in, but there is no
entry by that name. To simplify its use, a complete
Permuted Index for both volumes is in each volume.

. The Table of Contents. This is a simple list of entries,
by section, together with the entry descriptions. Volume
1 has a Table of Contents for Section 1. Volume 2 has a
Table of Contents for Sections 2 through 7.

. The Table of Related Entries. For Volume 1 only. A
table of entries organized so that related entries are
grouped together.

Section organization. Each section begins with an intro entry,
which provides important general information for that section.

Section 1, Commands and Application Programs, describes
programs intended to be invoked directly by the user or by
command language procedures, as opposed to subroutines, which
are intended to be called by the user’s programs. Commands
generally reside in the directory /bin (for binary programs).
Some programs also reside in /usr/bin, to save space in /bin.
These directories are searched automatically by the command
interpreter called the shell. Commands that were not
transported from UNIX System V reside in /usr/local/bin; this
directory is recommended for locally implemented programs.
Some administrative commands reside in /ete and various other
places. The /etc directory is searched automatically if you are
logged in as root; otherwise type out the full path name given
under SYNOPSIS or change the PATH environment variable to
include the command’s directory.

Section 2, System Calls, describes the entries into the CTIX
kernel, including the C language interfaces.

5/86 -2-

Section 3, Subroutines and Libraries, describes the available
library functions or subroutines. Their binary versions reside in
various system libraries in the directories /lib and /usr/lib. See
intro(3) for descriptions of these libraries and the files in which
they are stored.

Section 4, File Formats, documents the structure of particular
kinds of files; for example, the format of the output of the link
editor is given in a.out(4). Excluded are files used by only one
command (for example, the assembler’s intermediate files). In
general, the C language struct declarations corresponding to
these formats can be found in the directories /usr/include and
/usr/include/sys.

Section 5, Miscellaneous Facilities, contains a variety of things.
Included are descriptions of character sets, macro packages, etc.

Section 6, Games, describes the games and educational programs
that reside in the directory /usr/games.

Section 7, Special Files, discusses the characteristics of files that
actually refer to input/output devices.

Entry organization. All entries are based on a common
format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly
states its purpose.

The SYNOPSIS part summarizes the use of the program
being described. A few conventions are used, particularly in
Section 1 (Commands):

Boldface strings are literals and are to be typed just as
they appear.

Italic strings usually represent substitutable argument
prototypes and program names found elsewhere in the
manual (they are underlined in the typed version of the
entries).

Square brackets [] around an argument prototype
indicate that the argument is optional. When an
argument prototype is given as ‘“‘name’ or “file’’, 1t
always refers to a file name.

Ellipses ... are used to show that the previous
argument prototype may be repeated.

A final convention is used by the commands themselves.
An argument beginning with a minus -, plus +, or
equal sign = is often taken to be some sort of flag

argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files
whose names begin with —, +, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where
appropriate.

The FILES part gives the file names that are built into the
program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic
indications that may be produced. Messages that are
intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes
deficiencies. Occasionally, the suggested fix is also
described.

A table of contents and a permuted index derived from that
table precede Section 1. On each indez line, the title of the
entry to which that line refers is followed by the appropriate
section number in parentheses. This is important because there
is considerable duplication of names among the sections, arising
principally from commands that exist only to exercise a
particular system call.

If the entries are online, they are available via the catman(1)
command.

PERMUTED INDEX

This index includes entries for all pages of both Volumes 1 and 2.
The entries themselves are based on the one-line descriptions or
titles found in the NAME portion of each manual page; the
significant words (keywords) of these descriptions are listed
alphabetically down the center of the index.

The index is actually a keyword-in-context (KWIC) index that
has three columns. To use the index, read the center column to
look up specific commands by name or by subject topics. Note
that the entry may begin in the left column or wrap around and
continue into the left column. A period (.) marks the end of the
entry, and a slash (/) indicates where the entry has been
continued or truncated. The right column gives the manual page
where the command or subject is described.

/functions of HP 2640 and 2621-series terminals. . . . hp(1)

/special functions of HP 2640 and 2621-series/ . hp(1)
special functions of/ 300, 300s: handle 300(1)
/functions of DASI 300 and 300s terminals. . . 300(1)
functions of DASI/ 300, 300s: handle special 300(1)
Jof DASI 300 and 300s terminals. 300(1
/1tol3: convert between 3-byte integers and long/ . . 13tol(3C)
comparison. diff3: 3-way differential file . . diff3(1)
TEKTRONIX 4014/ 4014: paginator for the . . . 4014(1)
/for the TEKTRONIX 4014 terminal. 4014(1)
functions of the DASI/ 450: handle special 450(1)
functions of the DASI 450 terminal. /special . . 450(1)
/parameters for Xylogics 772 half-inch tape/ xmset(1IM)
between long integer/ a64l, 164a: convert a641(3C)
fault. abort: generate an IOT . . abort(3C)
absolute value. abs: return integer abs(3C)
adb: absolute debugger. adb(l)
abs: return integer absolute value. abs(3C)
ceiling, remainder, absolute value/ /floor, . . . floor(3M)
tiop: terminal accelerator interface. tiop(7)
socket. accept: accept a connectionona . . accept(2N)
connection on a socket. accept: accepta accept(2N)
allow/prevent LP/ accept, reject: accept(1M)

times of/ touch: update
times. utime: set file
accessibility of a/
numerical/ graphics:
drvalloc, drvbind:

in a/ sputl, sgetl:

sadp: disk

common object file

file systems for optimal

5/86

access and modification
access and modification
access: determine
access graphical and . .
access loadable drivers. .
access long integer data
access profiler. .
access routines. ldfen:
access time. /copy

touch(1

)
. utime(2)

access(2)

. graphics(1G)

. 1ddrv(2)

. sputl(3X)
M)

sadp(l
1dfen(4

)
. dcopy(1M)

locking: exclusive
/endutent, utmpname:
access: determine

or disable process
acctcon?2: connect-time
acctpre2: process

shell procedures for
acctwtmp: overview of
/and miscellaneous
diskusg: generate disk
acct: per-process
/search and print process
/merge or add total
/summary from per-process
/manipulate connect
runacct: run daily
process accounting.
accounting file format.
from per-process/
print process/
connect-time/
accounting. acctconl,
accton, acctwimp:/
acctwtmp:/ acctdisk,
total accounting files.
acctdisk, acctdusg,
process accounting.
accounting. acctprel,
/acctdusg, accton,

sin, cos, tan, asin,
killall: kill alt

sag: system

sal, sa2, sadc: system
sar: system

SCCS file editing
process data and system
protocols. Dialers:
hopefully interesting,

acctmerg: merge or
putenv: change or

/set DARPA Internet
/inet_netof: Internet
setenet: write Ethernet
administer SCCS files.
admin: create and
interface. swap: swap
Cave.

alarm: set a process
alarm clock.

data segment space
calloc: main memory
fast main memory
accept, reject:

running process/ renice:
sort: sort

and link editor output.

5/86

access to regions of a/ . . .
access utmp file entry. . . .
accesgibility of afile.
accounting. /enable
accounting. accteconl, . . .
accounting. acctprel, . . .
accounting. /turnacct: . . .
accounting and/ /accton, .
accounting commands. . . .
accounting data by user/ . .
accounting file format. . . .
accounting file(s).
accounting files.
accounting records.
accounting records.
accounting. .« « ¢« s o . o o
acct: enable or disable . . .
acct: per-process . . o o .
acctems: command summary
acctcom: searchand
acctconl, acctcon2:
acctcon2: connect-time . . .
acctdisk, acctdusg,
acctdusg, accton,
acctmerg: merge or add . .
accton, acctwtmp:/
acctprel, acetpre2: P
acctprc2: process . . o . .
acctwtmp: overview of/ . .
acos, atan, atan2:/
active processes.
activity graph.
activity report package. . .
activity reporter.
activity. /print current . .
activity. /report
ACU/modem calling
adage. /print a random, . .
adb: absolute debugger. . .
add total accounting/ . . .
add valueto/ «
address from node name. . .
address manipulation/ . . .
addressondisk. . . ., . . .
admin: createand
administer SCCS files. . . .
administrative
advent: explore Colossal . .
alarmeclock. ¢ ..
alarm: set a process
allocation. /change
allocator. /realloc,
allocator. /mallinfo:
allow/prevent LP/
alter priority of
and/or merge files.
a.out: common assembler . .

locking(2)
getut(3C)
access(2)
acct(2)
acctcon(1M)
acctpre(1M)
acctsh(1M)
acct(1M)
acct(IM)
diskusg(1M)
acct(4)
accteom(1)
acctmerg(1M)
acctems(1M)
fwitmp(1M)
runacct(1M)
acct(2)
acct(4)
acctems({1M)
acctcom(1)
accteon(IM)
acctcon(1M)
acet(1M)
acct(1M)
acctmerg(1M)
acct(1M)
acetpre(IM)
acctpre(1M)
acct(1M)
trig(3M)
Killall(1M)
s3g(1G)
sar(1M)
sar(1)
sact(1)
timex(1)
Dialers(5)
fortune(6)
adb(1)
acctmerg(1M)
putenv(3C)
setaddr(1NM)
inet(3N)
setenet(1NM)
admin(1)
admin(1)
swap(1M)
advent(6)
alarm(2)
alarm(2)
brk(2)
malloc(3C)
malloc(3X)
accept(1M)
renice(1)
sort(1)
a.out(4)

/to commands and
maintainer for portable/
format.

number: convert
arithmetic/ be:
maintainer for/ ar:
cpio: format of cpio

ar: common

header of a member of an
/convert object and
Idahread: read the

tar: tape file

maintainer for portable
cpio: copy file

varargs: handle variable
/output of a varargs
xargs: construct

/get option letter from
expr: evaluate

echo: echo

be: arbitrary-precision
drill in number facts.
expr: evaluate arguments

/and detach serial lines
/locate a terminal to use
asa: interpret

carriage control/

ascii: map of

hd: hexadecimal and
character set.

long integer and base-64
atof: convert

strings: extract the
date/ /localtime, gmtime,
sin, cos, tan,

help:

editor/ a.out: common
as:

assertion.

assert: verify program
setbuf, setvbuf:

out the list of blocks
commands at a later/
cos, tan, asin, acos,
/tan, asin, acos, atan,
string to/

strtod,

integer. strtol, atol,
string to/ strtol,
slattach, sldetach:
process. wait:

and processing/
ungete: push character
backgammon.

back: the game of

fine: fast incremental

5/86

application programs. .
ar: archive and library .
ar: common archive file

Arabic numerals to/ . .
arbitrary-precision . . .
archive and library . .
archive. .+ ¢ ¢« o v o &
archive file format. . .
archive file. /archive .
archive files to common/
archive header of a/ . .
archiver.
archives. /and library .
archives in and out. . .
argument list. «
argument list. « + + « &
argument list(s) and/ .
argument vector. . . .
arguments asan/ . . .
arguments. .« ¢ . .+ .
arithmetic language. . .
arithmetic: provide . .
as an expression. . . .
as: assembler.
as network interfaces. .
as the virtual system/ .
ASA carriage control/ .
asa: interpret ASA . .
ASCII character set. . .
ascii file dump.
ascii: map of ASCII . .
ASCII string. /between

ASCII string to/ . . .
ASCII text strings in a/

asctime, tzset: convert .
asin, acos, atan, atan2:/

ask for help.
assembler and link . .
assembler.
asgert: verify program .
assertion. « . « « . o o
assign buffering toa/ .
associated with/ /print

at, batch: execute . . .
atan, atan2:/ sin, . . .
atan2: trigonometric/ .
atof: convert ASCII . .
atof: convert string to/ .
atoi: convert string to .
atol, atoi: convert . . .
attach and detach serial/
await completion of . .
awk: pattern scanning .
back into input stream.

back: the game of . . .
backgammon.
backup.

intro{1)

ar(l

ar(4
number(6)
be(1)

ar(1)

cpio(4)

ar(4)
ldahread(3X)
convert(1)
ldahread(3X)
tar(1)

ar(1)

cpio(1)
varargs(5)
vprintf(3S)
xargs(1)
getopt(3C)
expr(1)
echo(1)

be(1)
arithmetic(6)
expr(1)

as(1)
slattach(1NM)
conlocate(1M)
asa(1)

asa(l)
ascii(5)

hd(1)

ascii(5)
2641(3C)
atof(3C)
strings(1)
ctime(3C)
trig(3M)
help(1)
a.out(4)

as(1)
assert(3X)
assert(3X)
setbuf(3S)
bcheck(1M)
at(1)
trig(3M)
trig(3M)
atof(3C)
strtod(3C)
strtol(3C)
strtol(3C)
slattach(1NM)
wait(1)
awk(1)
ungete(3S)
back(6)
back(6)
fine(1M)

recover files from a

terminal capability data
terminal capability data
/between long integer and
/(visual) display editor
proto file; set links
deliver portions of /

at a later time. at,
arithmetic language.
list of blocks/

drvload: system/ bre,
copy.

¢b: C program
i9, i1, jm, y0, y1, ym:

/install object files in
fread, fwrite:

table. bsearch:
/tdelete, twalk: manage
bind:

socket.

jack.

bj: the game of

bcopy: interactive

sum: print checksum and
sync: update the super
/print out the list of
number of free disk
manipulate Volume Home
powerfail, drvioad:/
segment space/

sorted table.

stdio: standard

setbuf, setvbuf: assign
mknod:

vme: VME

between host and network
swab: swap

cc:

cflow: generate

cpp: the

includes: determine

cb:

lint: a

cxref: generate

ctrace:

and share strings in
cprofile: setting up a

de: desk

cal: print

service.

system. cu:

returned by stat system
Dialers: ACU/modem

5/86

backup tape. frec:
banner: make posters. . .
base. termcap:

frec(1M)

. banner(1)
. termcap(4)

base. terminfo: terminfo(4)
base-64 ASClI string. . . . a641(3C)
basedonex. Vi(l)
based on. /lists from . . . qlist(1)
basename, dirname: basename(l)
batch: execute commands . at(l)

be: arbitrary-precision . . . be(l)
beheck: print out the . . . bcheck(1M)
beheckre, re, powerfail, . . . bre¢(IM)
beopy: interactive block . . beopy(1M)
bdiff: big diff. bdiff(1)
beautifier. cb(1)
Bessel functions. bessel(3M)
bfs: big file scanner. . bfs(1)
binary directories. cpset(1M)
binary input/output. . . . fread(3S)
binary search a sorted . . . bsearch(3C)
binary search trees. tsearch(3C)
bind a name to a socket. . . bind(2N)
bind: bind a name to 2 . . . bind(2N})
bj: the game of black . . . bj(6

black jack. bj(6

block copy. e« « « .« beopy(IM)
block count of a file. sum(l)
block. &+ v v v v o v .. syne(1)
blocks associated with/ . . bcheck(1M)
blocks. df:report df(1M)
Blocks (VHB). libdev: . . . libdev(3X)
bre, beheckre, re, bre(1M)
brk, sbrk: change data . . . brk(2)

bsearch: binary search a
buffered input/output/
buffering to a stream.

. bsearch(3C)
. stdio(35)
. setbuf(3S)

build special file. mknod(1M)
bus interface. . . .+ . . . vme(7)
byte order. /values . byteorder(3N)
bytes. . « + 4 o « s « o « sWab(30)
C compiler. « « & . o 4 .. ce(1)

C flowgraph. cflow(l)

C language preprocessor. . ¢pp(1)

C language preprocessor/ . . includes(l)
C program beautifier. . . . cb(1)

C program checker. lint(1)
Cprogram/ .« « .+ ¢ o cxref(1)

C program debugger. . ctrace(1)
C programs. /extract . . . xstr(1)

C shell environment at/ . . cprofile(4)
cal: print calendar. cal(l)
calculator. de(l)
calendar. « . « « . ¢ 4 .. cal(1)
calendar: reminder calendar(l)
call another computer . cu(1C)
call. stat: data stat(5)
calling protocols. Dialers(5)

malloc, free, realloc,
malloc, {ree, realloc,
/introduction to system
link and unlink system
requests to an LP/ lp,
termcap: terminal
terminfo: terminal

asa: interpret ASA
(variant of ex for

print files.

catman: create the

files for the manual.
advent: explore Colossal
beautifier.

directory.

commentary of an SCCS/
ceiling,/ floor,

/ceil, fmod, fabs: floor,
flowgraph.

delta: make a delta

of running process by
create an interprocess
terminal’s local RS-232
input/ ungete: push
for/ eqnchar: special
the user. cuserid: get
[Tgete, getw: get
/fpute, putw: put

ascii: map of ASCII
ASA carriage control
toascii: translate
isascii: classify

tr: translate

dodisk, lastlogin,/
directory.

/file system consisteney
directories/ uucheck:
constant-width text/ cw,
mathematical/ eqn, neqn,
lint: a C program
password /group file
file systems with label
systems processed by/
documents/ mm, osdd,
of a file. sum: print
group. chown,

times: get process and
wait: wait for

file.

group of a file.
owner or group.
directory.

directory for a/
lastlogin,/ chargefee,
/iscntr}, isascii:

5/86

calloc: main memory/ . .
calloc, mallopt,/
calls and error numbers. .
calls. /unlink: exercise . .
cancel: send/cancel . . .
capability data base. . . .
capability data base. . . .
carriage control/
casual users). [feditor . .
cat: concatenate and . . .
cat files for the/
catman: create the cat . .
Cave. + o ¢ o o o o o o
¢b: C program
cc: C compiler.
¢d: change working . . .
cde: change the delta . .
ceil, fmod, fabs: floor, . .
ceiling, remainder,/ . . .
cflow: generate C . « . .
(change) to an SCCS/ . .
changing nice. /priority .
channel. pipe:
channels. /controlling . .
character back into . . .
character definitions . . .
character login name of .
character or word from a/

character or word on a/ .
characterset. + « « « + &
characters. /interpret . .
characters. /_tolower, . .
characters. fisentrl, . . .
characters. . .« . « . . .
chargefee, ckpacet, . . .
chdir: change working . .
check and interactive/ . .
check the UUCP
checkew: prepare
checkeq: format
checker. . . .+
checkers. pwck, grpck: . .
checking. /labelit: copy .
checklist: list of file . . .
checkmm: print/check . .
checksum and block count
chgrp: change owner or .
child process times. . . .
child process to stop or/ .
chmod: change mode. . .
chmod: change mode of .
chown: change owner and

chown, chgrp: change . .
chroot: change root . . .
chroot: change root . . .
ckpaccet, dodisk,
classify characters. . . .

malloc(3C)
malloc(3X)
intro(2)
link(1M)
1p(1)
termeap(4)
terminfo(4)
asa(1)
edit(1)
cat(1)
catman(1)
catman(1)
advent(6)
¢cb(1)
ce(1)
ed(1)
cde(1)
floor(3M)
ﬂoor%SM)
cflow(1)
delta(1)
renice(1)
pipe(2)

tp(7)
ungetc(3S)
eqnchar(5)
cuserid(3S)
gete(3S)
pute(3S)
aseii(5)
asa(1)
conv(3C)
ctype(3C)
tr(1)
acctsh(1M)
chdir(2)
fsck(1M)
uucheck(1M)
ew(1)

eqn(l

lint(1
pwck(1M)
volcopy(1M)
checklist(4)
mm(1)
sum(1)
chown(1)
times(2)
wait(2)

)
chroot(2)
chroot(1M)
acctsh(1M)
ctype(3C)

uucp spool directory
screen.

clri:

clear:

status/ ferror, feof,
interpreter) with
set a process alarm
cron:

used.

ldclose, 1daclose:
close:

descriptor.

fclose, fflush:

line-feeds.

advent: explore

deltas.

comb:

lines common to two/
nice: run a

root directory for a

env: set environment for
remd: remote shell

uux: CTIX to CTIX remote
hangups/ nohup:runa
with/ csh: a shell
getopt: parse

executable file for

/the standard/restricted
a stream to a remote
data and/ timex: time a
uuxqt: execute remote
stream to a remote
per-process/ acctcms:
system: issue a shell
condition evaluation
time: time a

list(s) and execute
miscellaneous accounting
intro: introduction to
at, batch: execute
graphical and numerical
install: install

mkhosts: make node name
useful with graphical
cde: change the delta
format. ar:

link editor/ a.out:

and archive files to
access routines. ldfen:
ldopen, ldaopen: open a
/line number entries of a
/1daclose: close a

/the file header of a

Jof a section of a

/file header of a

5/86

clean-up. uucleanup: . .
clear: clear terminal . . .
clear i-node.
clear terminal screen. . .
clearerr, fileno: stream . .
C-like syntax. /(command
clock. alarm:
clock demon.
clock: report CPU time .
close a common object/ .
close a file descriptor. . .
close: cloge afile
close or flush a stream. . .
clri: clear i-node.
ecmp: compare two files.
col: filter reverse
Colossal Cave.
comb: combine SCCS . .
combine SCCS deltas. . .
comm: select or reject . .
command at low priority.

command. chroot: change
command execution. . . .
command execution. . . .
command execution. . . .
command immune to . .
(command interpreter) . .
command options.
command. path: locate .
command programming/ .
command. /for returning

command; report process .
command requests. . . .
command. rexec: return .
command summary from .
command. .+ ¢+ ¢ o o .
command. test:
command. . « . ¢ . o .
command. /argument . .
commands. fand
commands and application/
commands at a later/ . .
commands. /access . . .
commands.
commands. + ¢ o s o o
commands. /network . .
commentary of an SCCS/

common archive file . . .
common assembler and

common formats. /object
common object file . .
common object file for/

common object file/ . . .
common object file. . . .
common object file. . . .
common object file. . . .
common object file. . . .

LI T

uucleanup(1M)
clear(1)
clri(1M)
clear(1)
ferror(3S)
csh(1)
alarm(2)
cron(1M}
clock(3C)
1dclose(3X)
close(2)
close(2)
fclose(3S)
clri(1M)
emp(1)
col(1)
advent(6)
comb(1)
comb(1)
comm(1)
nice(1)
chroot(1M)
env(1)
remd(1N)
uux(1C)
nohup(1)
csh(1)
getopt(1)
path(1)
sh(1)
remd(3N)
timex(1)
wuxqt(1M)
rexec(3N)
acctems(1M)
system(3S)
test(1)
time(1)
xargs(1)
acet{IM)
intro(1)
at(1)
graphics(1G)
install(1M)
mkhosts(1NM)
stat(1G)
ede(1)

ar(4)
a.out(4)
convert(1)
1dfen(4)
ldopen(3X)
ldIread(3X)
ldclose(3X)
ldfhread(3X)
ldlseek(3X)
ldohseek(3X)

/of a section of a
/section header of a
/section of a

symbol table entry of a
/symbol table entry of a
/to the symbol table of a
/line number entries in a
nm: print name list of
/information for a
/section header for a
/information from a
/retrieve symbol name for
symbol table/ syms:
filehdr: file header for
1d: link editor for

/print section sizes of
/select or reject lines
/report inter-process
/standard interprocess
create an endpoint for
/file for uucp

diff: differential file
emp:

an SCCS file. scesdiff:
3-way differential file
dircmp: directory
regular/ regemp, regex:
/regular expression
regular expression

term: format of

ce: C

tic: terminfo

yace: yet another

/erfe: error function and
wait: await

pack, pcat, unpack:
symbol table/ ldtbindex:
cu: call another

files. cat:

command. test:

system.

uucp/ Devices:

config:

interface/ ifconfig:
spooling/ lpadmin:
terminal to use as the/
/wtmpfix: manipulate
connection on a socket.
getpeername: get name of
out-going terminal line
accept: accept a
connect: initiate a

part of a full-duplex
listen: listen for
acctconl, acctcon2:
fsck, dfsck: file system
as the virtual system

5/86

common object file. . .
common object file. . .
common object file. . .
common object file. /a
common object file. . .
common object file. . .
common object file. . .
common object file. . .
common object file. . .
common object file. . .
common object file. . .
common object file/ . .
common object file . .
common object files. . .
common object files. . .
common object files. . .
common to two sorted/
communication facilities/
communication package.
communication. socket:
communications lines. .
comparator. .«
compare two files. . . .
compare two versions of
comparison. diff3: . . .
comparison.
compile and execute . .
compile and match/ . .
compile. regemp: . . .
compiled term file.. . .
compiler.
compiler. + + ¢« ¢« ¢ . .
compiler-compiler. . . .
complementary error/ .
completion of process. .
compress and expand/ .
compute the index of a .
computer system.
concatenate and print .
condition evaluation . .
config: configure a CTIX
configuration file for

« e 8 o s s o

configure a CTIX system.

configure network . . .
configure the LP . . .
conlocate: locate a . . .
connect accounting/ . .
connect: initiatea . . .
connected peer.
connection. /an
connection on a socket.

connection on a socket.

connection. /shut down
connections on a socket.
connect-time accounting.
consistency check and/ .
console. /touse

ldrseek(3X)
1dshread(3X)
ldsseek(3X)
1dtbindex(3X)
1dtbread(3X)
ldtbseek(3X)
linenum(4)
nm(1)
reloc(4)
scnhdr(4)
strip(1)
ldgetname(3X)
syms(4)
filehdr(4)
1d(1)

size(1)
comm(1)
ipes(1)
stdip¢(3C)
socket(2N)
Devices(5)
diff(1)

cmp(1)
scesdiff(1)
diff3(1)
diremp(1)
regemp(3X)
regexp(5)
regemp(1)
term(4)

ce(1)

tic(1M)
yace(1)
erf(3M)
wait(1)
pack(1)
1dtbindex(3X)
cu(1C)

cat(1)

test(1)
config(1M)
Devices(5)
config(1M)
ifconfig(1INM)
lpadmin(1M)
conlocate(1M)
fwtmp(1M)
connect(2N)
getpeername(2N)
dial(3C)
accept(2N)
connect(2N)
shutdown{2N)
listen(2N)
acctcon(1M)
fsck(1M)
conlocate(1M)

terminal.

console:

math: math functions and
cw, checkcw: prepare
mkfs:

list(s) and/ xargs:
/tbl, and eqn

with/ Uutry: try to

Is: list

toc: graphical table of
esplit:

/interpret ASA carriage
ioctl:

fentl: file

init, telinit: process
msgctl: message

semctl: semaphore
shmctl: shared memory
fentl: file

status inquiry and job
v¢: version

772 half-inch tape
interface. tty:

local RS-232/ tp:
terminals. term:

units:

dd:

to English. number:
floating-point/ atof:
integers/ 13tol, ltol3:
integer and/ a64l, 164a:
and archive files to/
/gmtime, asctime, tzset:
ecvt, fevt, gevt:

scanf, fscanf, sscanf:
archive files/ convert:
strtod, atof:

strtol, atol, atoi:
/htons, ntohl, ntohs:
dd: convert and

beopy: interactive block
and out. cpio:

optimal access/ dcopy:
label/ voleopy, labelit:
files. ¢p, In, mv:

rep: remote file

system to CTIX system
CTIX-to-CTIX system file
for the UUCP/ uucico:
image file.

core: format of

atan, atan2:/ sin,
functions. sinh,

print checksum and block
we: word

or move files.

cpio: format of

5/36

console: console . . o
console terminal. . . .
constants. .« « & o ¢ .
constant-width text for/
construct a file system. .
construct argument
constructs. « ¢ & o o
contact a remote system
contents of directory. .
contents routines. . . .
context split.
control characters. . . .
control device.
control.
control initialization. . .
control operations.
control operations. . .
control operations. . .
control options.
control. uustat: uucp .
control. + .+ 4 o 4 o
controller. /Xylogics . .
controlling terminal . .
controlling terminal’s .
conventional names for .
conversion program. . .
convert and copy a file.
convert Arabic numerals
convert ASCII string to
convert between 3-byte
convert between long .
convert: convert object .
convert date and time to/
convert floating-point/ .
convert formatted input.
convert object and
convert string to/
convert string to/ . . .
convert values between/
copy a file.
copy.
copy file archivesin . .
copy file systems for . .
copy file systems with .
copy, link or move . . .
copy.
copy. uuep: CTIX . . .
copy. /uupick: public .
copy-in/copy-out program
core: format of core
core image file.
cos, tan, asin, acos, . .
cosh, tanh: hyperbolic .
count of a file. sum: . .
count. ¢ . . .
¢p, In, mv: copy, link .
cpio archive.

* s s e s s s s

console(7)
console(7)
math(5)
cw(1)
mkfs(1M)
xargs(1)
deroff(1)
Uutry(1M)
1s(1)
toc(1G)
esplit(1)
asa(l)
ioctl(2)
fentl(2)
init(1M)
msgetl(2)
semectl(2)
shmetl(2)
fentl(5)
uustat(1C)
ve(l)
xmset(1M)
tty(7)
tp(7)
term(5)
units(1)
dd(1)
number(6)
atof(3C)
13t0l(3C)
a641(3C)
convert(1)
ctime(3C)
ecvt(3C)
scanf(3S)
convert(1)
strtod(3C)
strtol(3C)
byteorder(3N)
dd(1)
beopy(1M)
cpio(1)
dcopy(1M)
volcopy(1M)
ep(1)
rep(1IN)
uuep(1C)
uuto(1C)
uucico(1M)
core(4)
core(4)
trig(3M)
sinh(3M)
sum(1)
we(1)
ep(1)
cpio(4)

in and out.

archive.

preprocessor.

shell environment at/
files in binary/

clock: report

craps: the game of
craps.

images.

or rewrite an existing/
tmpnam, tempnam:
rewrite an/ creat:
fork:

ctags:

tmpfile:
communication. socket:
channel. pipe:

SCCS files. admin:
the manual. catman:
umask: set and get file

file.

crontab - user
generate C program
optimization/ curses:
generate hashing/
interpreter) with/

remote terminal.

file.

name for terminal.
gmtime, asctime, tzset:/
software.

execution. uux: CTIX to
config: configure a

uucp: CTIX system to
system copy. uucp:
print name of current
get name of current
command execution. uux:
uuto, uupick: public
debugger.

computer system.

ttt,

uname: print name of
uname: get name of
gethostname: get name of
editing/ saet: print

in the utmp file of the
getewd: get path-name of
handling and/
interpolate smooth

login name of the user.
fields of each line of/

of each line of a/ cut:
constant-width text for/
program/

5/86

cpio: copy file archives . .
cpio: format of cpio . . .
cpp: the C language . . .
cprofile: settingupa C . .
cpset: install object . . .
CPU time used.
CIAPS. =+ o o o » o o o @
craps: the gameof
crash: examine system . .
creat: create a new file ., .
create a name fora/ . . .
create a new fileor . . .
create a new process. ..
create a tags file.
create a temporary file. .
create an endpoint for . .
create an interprocess . .
create and administer . .,
create the cat files for . .
creation mask.
cron: clock demon. . . .
crontab - user crontab . .
crontab file.
cross-reference. cxref: . .
CRT screen handling and

crypt, setkey, encrypt: . .
csh: a shell (command . .
csplit: context split. . . .
ct: spawn gettytoa . . .
ctags: create a tags . . .
ctermid: generate file . .
ctime, localtime,
ctinstall: install
CTIX remote command .
CTIX system.
CTIX system copy. .« . «
CTIX system to CTIX . .
CTIX system. uname: . .
CTIX system. uname: . .
CTIX to CTIX remote . .
CTIX-to-CTIX system file/
ctrace: C program
cu: call another
cubic: tic-tac-toe.
current CTIX system. . .
current CTIX system. . .
current host.
current SCCS file
current user. /theslot . .
current working/
curgses: CRT screen . . .
curve. spline:
cuserid: get character . .
cut: cut out selected . . .
cut out selected fields . .
cw, checkcw: prepare . .
cxref: generate C

cpio(1)
cpio(4)
epp(1)
cprofile(4)
cpset(1M)
clock(3C)
craps(6)
craps(6)
crash(1M)
creat(2)
tmpnam(3S)
creat(2)
fork(2)
ctags(1)
tmpfile(3S)
socket(2N)
pipe(2)
admin(1)
catman(1)
umask(2)
cron(1M)
crontab(1)
crontab(1)
cxref(1)
curses(3X)
crypt(3C)
csh(1)
esplit(1)
ct(1C)
ctags(1)
ctermid(3S)
ctime(3C)
ctinstall(1)
uux(1C)
config(1M)
uuep(1C)
uucp(1C)
uname(
uname(
uux(1C
uuto(1C)
ctrace(1)
cu(1C)

ttt(6)

uname(1)
uname(2)
gethostname(3N)
sact(1)
ttyslot(3C)
getewd(3C)
curses(3X)
spline(1G)
cuserid(3S)
cut(1)

cut(1)

cw(1)

exref(1)

1
2
)

runacct: run

from node/ setaddr: set
Transfer Protocol/ ftpd:
server. telnetd:

/user interface to the
Transfer/ tftpd:
/special functions of
/special functions of the
command; report process
terminal capability
terminal capability
generate disk accounting
access long integer

lock process, text, or
prof: display profile
system call. stat:

brk, sbrk: change

types: primitive system
join: relational

the mkfs(1) proto file
tput: query terminfo
/asctime, tzset: convert
date: print and set the
date.

for optimal access/

file.

adb: absolute

ctrace: C program
fsdb: file system

sdb: symbolic

a remote system with
neqn. /special character
basename, dirname:

a file. tail:
commentary of an SCCS
SCCS/ delta: make a
SCCS/ cde: change the
rmdel: remove a
(change) to an SCCS/
comb: combine SCCS
cron: clock

errdemon: error-logging
the error-logging

mesg: permit or
nroff/troff, tbl, and/
system: system

close: close a file
duplicate an open file
de:

/sldetach: attach and
of a file. access:
preprocessor/ includes:
file:

drivers: loadable

for finite width output
table. master: master

5/86

daily accounting.
DARPA Internet address . .
DARPA Internet File . .
DARPA TELNET protocol
DARPA TFTP protocol.
DARPA Trivial File
DASI 300 and 300s/

DASI 450 terminal. . . .
data and system/ /time a
data base. termcap: .
data base. terminfo: . .
data by userID.

runacct(1M)
setaddr(1NM)

. ftpd(1NM)
. telnetd(1NM)
. tftp(1N)

tftpd(1NM)

. 300(1)

. 450(1)

. timex(1)

. termcap(4)
. terminfo(4)

diskusg(1M)
data in a/ sputl, sgetl: . . . sputl(3X)
data in memory. plock: . . plock(2)
data. prof(1)
data returned by stat . . . stat(5)
data segment space/ brk(2)
data types. . . « « types(5)
database operator. join(1)

database. /using

. qinstall(1)

database. tput(1)
date and time to string. . . ctime(3C)
date. « & o v 0 v 00 0. date(1)
date: print and set the . . . date(1)
dc: desk caleulator. de(1)
deopy: copy file systems . . dcopy(IM)
dd: convert and copy a . . . dd(1)
debugger. adb(1)
debugger. ctrace(1)
debugger. fsdb(IM)
debugger. sdb(l}
debugging on. /contact . . Uutry(1M)

definitions for eqn and . .
deliver portions of path/

. eqnchar(5)
. basename(1)

deliver the last part of . . . tail(l)
delta. /change the delta . . cde(1)
delta (change) to an . . delta(l)
delta commentary of an . . cde(1)
delta from an SCCS file. . . rmdel(1)
delta: make a delta delta(l)
deltas. . . . ¢ o ¢ comb(1)
demon. « « « ¢ v 4o .. . cron(1M)
demon. « « ¢ . o 4 0. . errdemon(1M)
demon. /terminate errstop(1M)
deny messages. mesg(l)
deroff: remove deroff(1)
description file. .« system(4)
descriptor. . « « close(2)
descriptor. dup: dup(2)
desk calculator. de(1)
detach serial lines as/ . . . slattach(1NM)
determine accessibility . . . access(2)
determine C language . . . includes(1)
determine file type. file(1)
device drivers. drivers(7)
device. /fold long lines . . . fold(1)
device information master(4)

- 10 -

ioctl: control

devnm:

/tekset, td: graphical
file for wuep/

free disk blocks.
consistency check/ fsck,
out-going terminal line/
calling protocols.

bdiff: big

comparator.

differential file/

sdiff: side-by-side

files. diffmk: mark
comparator. diff:

diff3: 3-way

between files.
directories.

comparison.

uucheck: check the UUCP
object files in binary
dir: format of

rmdir: remove files or
cd: change working
chdir: change working
chroot: change root
uucleanup: uucp spool
diremp:

unlink: remove

chroot: change root
make a lost+found

of current working

Is: list contents of
mkdir, mkdirs: make a
myvdir: move a

pwd: working

or/ mknod: make a
portions of/ basename,
LP printers. enable,
acct: enable or

modes, speed, and line
modes, speed, and line
sadp:

user/ diskusg: generate
report number of free
remove exchangeable
disk: general

driver.

Ethernet address on
update: provide

du: summarize
accounting data by user/

mount, umount: mount and

exchangeable disk.
/screen-oriented (visual)
prof:

on local/ ruptime:

5/86

device.
device name.
device routines and/ . . .
Devices: configuration . .

devnm: device name.

df: report number of . . .
dfsck: file system
dial: establishan
Dialers: ACU/modem . .
diff. . .
diff: differential file . . .
diff3: 3-way . .
difference program.
differences between . . .
differential file
differential file/
diffmk: mark differences .
dir: format of
diremp: directory
directories and/
directories. /install
directories. . . .«
directories. rm,
directory.
directory.
directory.
directory clean-up. . . .
directory comparison.

(
... difra(1)
. diffmk(1)

. ioctl(2)

devnm{1M)
gdev(1G)
Devices(5)
devnm(1M)
df(1IM)
fsck(1M)
dial(3C)

. Dialers(5)

bdiff(1)

. diff(1)
R sdiff(l))
. diffmk(1)

diff3(1

diff(1)

dir(4)

. diremp(1)

uucheck(1M)

. . cpset(1M)
. dir(4)

rm(1})
cd(1)
chdir(2)
chroot(2)

. uucleanup(1M)
. diremp(1)

directory entry. unlink(2)
directory for a command. . . chroot(1M)
directory for fsck. mklost+found{1M)
directory. /path-name . . . getewd(3C)
directory. .« . « ¢ . o .. 1s(1)
directory. &+ 4 4 o 0 . mkdir(1)
directory. .« .« + ¢ mvdir(IM)
directory name. pwd(l)
directory, or a special . . . mknod(2)
dirname: deliver basename(1)
disable: enable/disable enable(1)
disable process/ acet(2)
discipline. /type, getty (1IM)
discipline. /type, uugetty(1M)
disk access profiler. sadp(IM)

disk accounting data by .
disk blocks. df:

disk driver.
disk: general disk
disk. setenet: write

disk synchronization.

disk usage.

dismount file system. . .
dismount: remove
display editor based on/ .
display profile data. . . .
display status of nodes

-11 -

disk. dismount:

diskusg: generate disk . . .

. diskusg(1M)

df(1M)
dismount(1)
disk(7)

. disk(7)
. setenet{1INM)
. update(1M)

du(1)
diskusg(1M)
mount(1M)
dismount(1)
vi{1)

. prof(1)
. ruptime(1N)

hypot: Euclidean
generate uniformly
/checkmm: print/check
package for formatting
and/ mmt, mvt: typeset
chargefee, ckpacct,
whodo: who is

/atof: convert string to
ptdl: RS-232 terminal
Irand48, nrand48,/
graph:

arithmetic: provide
Xylogics 772/ xmset: set
disk: general disk

sxt: pseudo-device
make a loadable
drivers: loadable device
/manage loadable
drvbind: access loadable
drivers.

access loadable/
drivers. drvalloc,
beheckre, re, powerfail,
usage.

parts of an object/
status information from
and ascii file

od: octal

an object file. dump:
file descriptor.
descriptor. dup:

echo:

convert floating-point/

program. end, etext,
(variant of ex for/
print current SCCS file
/(visual} display

ed, red: text

ex: text

files. ld: link

ged: graphical
assembler and link
sed: stream

for casual/ edit: text
Ideeprom: load

/user, real group, and
/getegid: get real user,
FORTRAN, ratfor, or
file for a/ grep,
enable/disable LP/
process/ acct:

enable, disable:
hashing/ crypt, setkey,
generate hashing
locations in program.

5/86

distance function.
distributed/ /lcong48: . .
documents formatted with/
documents. /the MM macro
documents, view graphs,
dodisk, lastlogin,/
doing what.
double-precision number.
download. tdl, gtdl, . . .
drand48, erand48,

drill in number facts.
drive parameters for
driver.
driver. I
driver for tunable variables.
drivers.
drivers. .+« 4 4 4 0 . .o
drivers. drvalloe,
drivers: loadable device .
drvalloc, drvbind:
drvbind: access loadable
drvload: system/ bre, . .
du: summarize disk

dump: dump selected . .
dump. /error records and
dump. hd: hexadecimal
dump. . .

hypot(3M)

. drand48(3C)
. mm(1)

mm(5)

. mmt(1)

acetsh(1M)
whodo(1M)
strtod(3C)
tdl(1)

. drand48(3C)
draw a graph. e

graph(1G)
arithmetic(6)
xmset(1M)
disk(7)

. sxt(7)

mktunedrv{IM)
drivers(7)
1ddrv(1M)
1ddrv(2)
drivers(7)
1ddrv(2)

. 1ddrv(2)

bre(1M)

. du(l)

dump(1)

. errdead(1M)
. hd(1)

dump selected parts of . . .
dup: duplicate an open . . .
. dup(2)

duplicate an open file . .
echo arguments.
echo: echo arguments.

ecvt, fevt, gevt: o
ed, red: text editor. . . .
edata: last locationsin . .
edit: text editor
editing activity. sact:

editor based onex. . . .
editor. « v ¢ ¢ 4 4 o o .
editor. o v o 4 ¢ 4 e o s
editor for common object .
editor. « « « v s 0 v .

editor output. /common

editor. + ¢« o ¢ o .4 .
editor (variant of ex . . .
EEPROM.
effective group IDs. . . .

od(1)
dump(1)
dup(2)

echo(1)

. echo(l)

ecvt(3C)

. ed(1)
. end(3C)
. edit(1)

sact(1)

. vi(1)

ed(1)
ex(l))

. 1d(1

ged(1G)
a.out(4)
sed(1)

. edit(1)

effective user, real/

efl files. /split
egrep, fgrep: search a

enable, disable:
enable or disable
enable/disable LP/ . . .
encrypt: generate
encryption. /encrypt:
end, etext, edata: last

-12 -

ldeeprom(1M)
getuid(2)
getuid(2)
fsplit(1)

. grep(1)
. enable(1)

acct(2)
enable(1)
crypt(3C)

. crypt(3C)
. end(3C)

/getgrnam, setgrent,
host entry. /sethostent,
/getnetbyname, setnetent,
socket: create an
protocol/ /setprotoent,
/getpwnam, setpwent,
entry. /setservent,
/pututline, setutent,
Arabic numerals to
nlist: get

linenum: line number
man, manprog: print
/macros for formatting
/manipulate line number
a/ /seek to line number
a/ [seek to relocation
wtmp: utmp and wtmp
get group file

get network host
endnetent: get network
get protocol

get password file
endservent: get service
access utmp file

object file symbol table
/index of a symbol table
/an indexed symbol table
write password file
unlink: remove directory
command execution.
environment.

/setting up a C shell
profile: setting up an
environ: user

execution. env: set
getenv: return value for
change or add value to
inteface, and terminal
definitions for
nroff/troff, tbl, and
format mathematical/
character definitions/
rhosts: remote
nrand48,/ drand48,

td: graphical/ hpd,
function and/
complementary/ erf,
interface.

records and status/
demon.

format.

sys_nerr:/ perror,

erf, erfc:

/and complementary
/sys_nerr: system

/to system calls and
errdead: extract

5/86

endgrent, fgetgrent: get/ .
endhostent: get network .
endnetent: get network/ .
endpoint for/ «+ + ¢« .« . .
endprotoent: get
endpwent, fgetpwent: get/
endservent: get service . .
endutent, utmpname:/ . .
English. /convert
entries from name list. . .
entries in a common/ . .
entries in this manual. . .
entries in this manual. . .
entries of a common/ . .
entries of a section of . .
entries of a section of . .
entry formats. utmp, . .
entry. /fgetgrent:
entry. /endhostent: . . .
entry. /setnetent,
entry. /endprotoent: . .
entry. /fgetpwent: . . .
entry. /setservent, . . .
entry. /utmpname: . . .
entry. /name for common

entry of a common object/
entry of a common object/
entry. putpwent:
ENETY. @ o v o o s e o e
env: set environment for .
environ: User o .
environment at login/ . .
environment at login/ . .
environment. . « . . .
environment for command
environment name. . . .
environment. putenv: . .
environment. /terminal .
eqn and neqn. /character

eqn construets. /remove .
eqn, neqn, checkeq: . . .
eqnchar: special
equivalent users.
erand48, Irand48,
erase, hardcopy, tekset, .
erf, erfc:error « « « o & &
erfc: error function and .
err; error-logging
errdead: extract error . .
errdemon: error-logging .
errfile: error-log file . . .
errno, sys_errlist,
error function and/ . . .
error function.
eITOr mMessages. .+ « + «
error numbers.
error records and status/ .

-13 -

getgrent(3C)
gethostent(3N)
getnetent(3N)
socket(2N)
getprotoent(3N)
getpwent(3C)
getservent(3N)
getut(3C)
number(6)
nlist(3C)
linenum(4)
man(1)

man(5)
1dIread(3X)
1diseek(3X)
ldrseek(3X)
utmp(4)
getgrent(3C)
gethostent(3N)
getnetent(3N)
getprotoent(3N)
getpwent(3C)
getservent(3N)
getut(3C)
ldgetname(3X)
1dtbindex(3X)
1dtbread(3X)
putpwent{3C)
unlink(2)
env(1)
environ(5)
cprofile(4)
profile(4)
environ(5)
env(1)
getenv(3C)
putenv(3C)
tset(1)
eqnchar(5)
deroff(1)
eqn(1)
eqnchar(5)
rhosts(4N)
drand48(3C)
gdev(1G)
erf(3M)
erf(3M)

err(7)
errdead(1M)
errdemon(1M)
errfile(4)
perror(3C)
erf(3M)
erf(3M)
perror(3C)
intro(2)
errdead(1M)

matherr:

errfile:

errdemon:

errstop: terminate the
err:

a report of logged
hashcheck: find spelling
of logged errors.
error-logging demon.
terminal line/ dial:
setmnt:

loadable drivers.
locations in/ end,
disk. setenet: write
function. hypot:
expression. expr:

test: condition

/text editor (variant of

display editor based on
crash:

dismount: remove
regions of a/ locking:
execve, execlp, execvp:/
execvp:/ execl, execv,
[execv, execle, execve,
command. path: locate
execve, execlp, execvp:
Jargument list(s) and
later time. at, batch:
regex: compile and
requests. uuxqt:
environment for command
sleep: suspend

sleep: suspend

monitor: prepare

remote shell command
rexecd: remote

profil:

to CTIX remote command
execlp, execvp:/ execl,
execl, execv, execle,
/execle, execve, execlp,
system/ link, unlink:

a new file or rewrite an
process.

process. exit,

sqrt: exponential,/
unpack: compress and
and/ expand, unexpand:
tabs to spaces, and/
advent:

/log, log10, pow, sqrt:

as an expression.

match/ regexp: regular
regemp: regular

evaluate arguments as an

5/86

error-handling function. . .

error-log file format.
error-logging demon.
error-logging demon.
error-logging interface. . . .
errors. errpt: process . . .
errors. /spellin,
errpt: process a report . . .
errstop: terminate the . . .
establish an out-going . . .
establish mount table. . . .
Iddrv: manage
etext, edata: last
Ethernet addresson
Euclidean distance
evaluate arguments as an . .
evaluation command. . . .
ex for casual users).
ex: text editor.
ex. f(visual)
examine system images. . .
exchangeable disk.
exclusive accessto
execl, execy, execle,
execle, execve, execlp, . . .
execlp, execvp: execute/ . .
executable file for
execute a file. /execle, . . .
execute command.
execute commands at a . .
execute regular/ regcmp, . .
execute remote command . .
execution. env: set [N
execution foran/
execution for interval. . . .
execution profile.
execution. remd:
execution server.
execution time profile. . . .
execution. uux: CTIX . . .
execv, execle, execve,
execve, execlp, execvp:/ . .
execvp: execute a file. . . .
exercise link and unlink . .
existing one. /create
exit, _exit: terminate
_exit: terminate
exp, log, logl0, pow,
expand files. /peat,
expand tabs to spaces,

expand, unexpand: expand .

explore Colossal Cave. . . .
exponential, logarithm,/ . .
expr: evaluate arguments . .
expression compile and . . .
expression compile.
expression. expr:

- 14 -

matherr(3M)
errfile(4)
errdemon(1M)
errstop(1M)
err(7)
errpt(1M)
spell(1)
errpt(1M)
errstop(1M)
dial(3C)
setmnt(1M)
lddrv(1M)
end(3C)
setenet(1INM)
hy pot(3M)
expr(1)
test(1)
edit(1)

ex(1)

vi(1)
crash(1M)
dismount(1)
locking(2)
exec(2
exec(2
exec(2)
path(1)
exec(2)
xargs(1)
at(1)
regemp(3X)
uuxqt(1M)
env(1)
sleep(1)
sleep(3C)
monitor(3C)
remd(1N)
rexecd(1NM)
profil(2)
uux(1C)
exec(2)
exec(2)
exec(2)
link(1M)
creat(2)
exit(2)
exit(2)
exp(3M)
pack(1)
expand(1)
expand(1)
advent(6)
exp(3M)
expr(1)
regexp(5)
regemp(1)
expr(1)

and execute regular
strings in C/ xstr:
and status/ errdead:
strings in a/ strings:
floor, ceil, fmod,
factor:

values. true,

in 2 machine-independent
finc:

/mallopt, mallinfo:

abort: generate an IOT
flush a stream.

options.

floating-point/ ecvt,
fopen, freopen,

stream status/ ferror,
fileno: stream status/
and statistics for a/
stream. fclose,

gete, getchar,
/setgrent, endgrent,
/setpwent, endpwent,
a stream. gets,

a pattern. grep, egrep,
modification/ utime: set
ldfcn: common object
accessibility of a

tar: tape

out. cpio: copy

grpck: password/group
chmod: change mode of
owner and group of a
diff: differential

3-way differential
fentl:

fentl:

rcp: remote
CTEX-to-CTIX system
format of core image
umask: set and get
crontab - user crontab
ctags: create a tags
fields of each line of a
using the mkfs(1) proto
dd: convert and copy a
(change) to an SCCS
close: close a

dup: duplicate an open
type.

hexadecimal and ascii
parts of an object

sact: print current SCCS
fgetgrent: get group
fgetpwent: get password
utmpname: access utmp

5/86

expression. /compile . .
extract and share . . .
extract error records . .
extract the ASCII text .
fabs: floor, ceiling,/ . .
factor a number. . . .
factor: factor a number.
false: provide truth . .
fashion.. /integer data
fast incremental backup.
fast main memory/ . .
fault. .+ « ¢« o ¢ & o« ©
felose, fflush: close or .

fentl: file control. . .
fentl: file control . .
fevt, gevt: convert . .
fdopen: open a stream.
feof, clearerr, fileno: .
ferror, feof, clearerr, .
ff: list file names . . .
fflush: close or flusha .
fgete, getw: get/ . . .
fgetgrent: get group/ .
fgetpwent: get password/
fgets: get a string from .
fgrep: search a file for .
file accessand
file access routines, . .
file. access: determine .
file archiver. »
file archives in and . .
file checkers. pwek, . .
file. . . o0 o oo
file. chown: change . .
file comparator.
file comparison. diff3: .
file control. . « « . . .
file control options. . .
file copy.
file copy. /public . . .
file. core: . « ¢ @ o &
file creation mask. . . .
file. o o oo o oo
file. « o o o o oo o
file. /cut out selected .
file database. /software
file. + v o v o o o v
file. /make a delta . .
file descriptor. . « .« «
file descriptor. .« « « .
file: determine file . . .
file dump. hd:
file. /dump selected . .
file editing activity. . .
file entry. /endgrent, .
file entry. /endpwent, .
file entry. /endutent, .

-15 -

regemp(3X)
xstr(1)
errdead(1M)
strings(1)
floor(3M)
factor(1
factor(1
true(1)
sputl(3X)
fine(1M)
malloe(3X)
abort(3C)
fclose(3S)
fentl(2)
fentl(5)
ecvt(3C)
fopen(3S)
ferror(3S)
ferror(3S)
£1(1M)
fclose(3S)
gete(3S)
getgrent(3C)
getpwent(3C)
gets(3S)
grep(1)
utime(2)
ldfen(4)
access(2)
tar(1)
cpio(1)
pwck(1M)
chmod(2)
chown(2)
diff(1)
difr3(1)
fentl(2)
fentl(5)
rep(1N)
uuto(1C)
core(4)
umask(2)
crontab(1)
ctags(1)
cut(1)
ginstall(1)
dd(1)
delta(1)
close(2)
dup(2)
file(1)

hd(1)
dump(1)
sact(1)
getgrent(3C)
getpwent(3C)
getut(3C)

putpwent: write password '
execvp: execute a

[egrep, fgrep: search a
path: locate executable
/open a common object
Devices: configuration
per-process accounting
ar: common archive
errfile: error-log

intro: introduction to

of a common object

get a version of an SCCS
group: group

object files. filehdr:
ldfhread: read the

/seek to the optional
split: split a

issue identification

a member of an archive
close a common object
of a common object

of a common object

of a common object

of a common object

of a common object

of a common object
entry of a common object
entry of a common object
table of a common object
in a common object

link: link to a

file;/ qlist: print out
access to regions of a

an ifile from an object
mknod: build special

or a special or ordinary
ctermid: generate
mktemp: make a unique
statistics/ ff: list

the format of a text

list of common object
null: the null

/the slot in the utmp
/processes using a

creat: create a new
passwd: password
subsequent lines of one
soft-copy/ pg:

/ftell: reposition a

lseek: move read/write
prs: print an SCCS

read: read from

for a common object

a delta from an SCCS
bfs: big

two versions of an SCCS
scesfile: format of SCCS

5/86

fileentry. putpwent(3C)
file. /execve, execlp, exec(2)
file for a pattern. grep(l)
file for command. path(1)

file for reading. ldopen(3X)
file for uuep/ . « Devices(5)
file format. acet: acct(4)

file format. ar(4)

file format. errfile(4)
file formats. intro(4)
file function. /entries . . . ldlread(3X)
file. get: « .+ o o v v o o . get(l)

filee. <o ooooeoe.o. group(4)

file header for common . .
file header of a common/
file header of a common/
file into pieces.

file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.

file
file

file.
file.

file
file
file
file

file.
file.
file.

file
file
file

file.

file
file
file
file
file
file
file
file
file
file
file

issue: ... 00 ..
/archive header of
/1daclose:
/the file header . . .
Jof asection
/file header
Jof a section
/section header
[section
/of a symbol table
/symbol table .
/to the symbol . . .

filehdr(4)

. . ldfhread(3X)
. » ldohseek(3X)
. split(1)

issue(4)

. ldahread(3X)

ldclose(3X)

. ldfhread(3X)

ldlseek(3X)

. ldohseek(3X)

ldrseek(3X)
ldshread(3X)
ldsseek(3X)

. . ldtbindex(3X)
. ldtbread(3X)
. ldtbseek(3X)

/number entries . . . linenum(4)
e e e link(2)
lists from proto . . qlist(1)
. [exclusive locking(2)
mkifile: make mkifile(1M)
........... mknod(1M)
. /make a directory, . . mknod(2)
name for terminal. . . . ctermid(3S)
NBME. « o o s o » o o mktemp(3C)
namesand ff(1M)
newform: change . . . newform(1)
nm: print name nm(1)
......... null(7)

. ttyslot(3C)

or file structure. . fuser(1M)

or rewritean/ creat(2)
et e e e e e e e passwd(4)

. [several filesor paste(l)

perusal filter for . pg(l)

pointerina/ fseek(3S)

pointer. « « « ¢« « . . . Iseek(2)

s e e e e e e e e prs(1)

s e e e e e e e e read(2)

. /information reloc(4)

. rmdel: remove rmdel(1)

scanner. . bfs(1)

. scesdiff: compare

- 16 -

. scesdiff(1)

scesfile(4)

for a common object
/file lists from proto
fsize: report

i-node. openi: open a
stat, fstat: get

ASCII text strings in a
from a common object
/using a file or

and block count of a
synchronous write on a
/name for common object
syms: common object
check and/ fsck, dfsck:
fsdb:

and statistics for a

fs:

mkfs: construct a
mount and dismount
mount: mount a

ustat: get

mnttab: mounted
umount: unmount a
system description
access/ dcopy: copy
by/ checklist: list of
voleopy, labelit: copy
the last part of a
format of compiled term
create a temporary

a name for a temporary
modification times of a
ftp:

ftpd: DARPA Internet
tftpd: DARPA Trivial
ftw: walk a

file: determine

TZ: time zone

previous get of an SCCS
repeated lines in a

and Permissions

val: validate SCCS
write: write on a
umask: set

common object files.
ferror, feof, clearerr,
print process accounting
or add total accounting
and administer SCCS
concatenate and print
cmp: compare two
common to two sorted
myv: copy, link or move
mark differences between
header for common object
find: find

catman: create the cat
tape. frec: recover

5/86

file. /section header . . .
file; set links based/ . . .
filesize. .+ ¢« ¢« o« ¢« o & &
file specified by
file status. . . « . « . .
file. /extract the
file. /information
file structure.

. scnhdr(4)

file. /print checksum . . .

file. swrite:
file symbol table entry. .
file symbol table/ . .
file system consistency
file system debugger.
file system. /file names
file system format. . .
file system.
file system. /umount: . .
file system. . . « « 4 . &
file system statistics. . . .
file system table.
file system.
file. system:
file systems for optimal
file systems processed
file systems with label/
file.
file..
file.

term: . . .0 0 .0
tmpfile:

qlist(1)
fsize(1)
openi(2)
stat(2)
strings(1)
strip(1)
fuser(1M)
sum(1)
swrite(2)

. ldgetname(3X)
. syms(4)

. fsck(1IM)

. fsdb(1M)

. fi(1M)

. fs(4)

mkfs(1M)
mount(1M)

. mount(2)
. ustat(2)

file. /tempnam: create . . .

file. /update access and
file transfer program. .
File Transfer Protocol/ .
File Transfer Protocol/

mnttab(4)
umount(2)
system(4)

deopy(1M)

. « checklist(4)
. « volcopy(IM)
tail: deliver

tail(1)
term(4)
tmpfile(3S)
tmpnam(3S)
touch(1)

.. ftp(1N)

. ftpd(1NM)
. tftpd(1INM)

filetree. .« .« ..« . . ftw(30)
filetype. « « o o ¢ o o« . . file(1)

1 tz(4)

file. unget: undo a . unget(1)
file. uniq: report uniq(1)
file. /UUCP directories . uucheck(1M)
file. « v v v v v 0 v v a val(1)
file. & o s« o o s« oo o write(2)
file-creation mode mask. . . umask(1)
filehdr: file header for . filehdr(4)
fileno: stream status/ . . ferror(3S)
file(s). /search and acctcom(l)
files. acctmerg: merge . acctmerg(1M)
files. admin: create . admin(1)
files. cat: cat(1)
files. « « « v ¢ « oo+ .. cmp(l)
files. /or reject lines comm(1)
files. ¢p,In, .+ . « ¢p(1)
files. diffmk: diffmk(1)
files. filehdr:file filehdr(4)
files. o« o o o o o o o o« o find(1)

files for the manual.
files from a backup

-17 -

. catman(1)

frec(IM)

specification in text
ratfor, or efl

format of graphical
cpset: install object
preprocessor include
introduction to special
editor for common object
lockf: record locking on
rm, rmdir: remove
/same lines of several
compress and expand
pr: print

sizes of common object
sort: sort and /or merge
/object and archive
what: identify SCCS
pg: file perusal

greek: select terminal
nl: line numbering
line-feeds. col:

device routines and
tplot: graphics

backup.

find:

hyphen:

ttyname, isatty:

for an object/ lorder:
/spellin, hashcheck:
utmp file of/ ttyslot:
/fold long lines for
fish: play “Go

tee: pipe

/eonvert ASCII string to
/fevt, gevt: convert
/manipulate parts of
floor, ceiling,/

floor, ceil, fmod, fabs:
cflow: generate C

fclose, fflush: close or
ceiling,/ floor, ceil,

for finite width output/
finite width/ fold:

open a stream.

process.

accounting file

ar: common archive file
errfile: error-log file

fs: file system

for/ eqn, neqn, checkeq:
newform: change the

inode:

file.. term:
file. core:
cpio:

dir:

5/86

files. fspec: format fspec(4)
files. /split FORTRAN, . . fsplit(1)
files. /string, gps(4)
files in binary/ cpset(1IM)
files. /C language includes(1)
files. intro: . . « + intro(7)
files. 1d: link 1d(1)
files. « v ¢ .o, .. . lockf(3C)
files or directories. rm(1)
files or subsequent/ . . paste(l)
files. /pcat, unpack: pack(l)
files. « o v o v o v oo pr(l)
files. /print section size(1)
files,. &« o oo oo . sort(l)

files to common formats.

. convert(1)

files. « « o o ¢ v o« .« . what(l)
filter for soft-copy/ pg(l)
filter. . « .« ..« .. greek(l)
filter. « o ¢+ v oo« nll)
filter reverse col(1)
filters. /td: graphical .« gdev(1G)
filters. « o« « ¢ o o « « . . tplot(1G)

finc: fast incremental . . .
find files. e e e e
find: find files.
find hyphenated words. . .
find name of a terminal.
find ordering relation

find spelling errors.
find the slot in the

finc(1M)

. find(1)
. find(1)

hyphen(1)

. « ttyname(3C)
. lorder(1)

spell(1)

. ttyslot(3C)

finite width output/ fold(1)
Fish”. « « ¢« ¢ o« « . . fish(6)
fish: play “Go Fish”. . fish(6)
fitting. o « o o o o ¢ o o & tee(1)
floating-point number. . . . atof(3C)
floating-point number to/ . ecvt(3C)
floating-point numbers. . . frexp(3C)
floor, ceil, fmod, fabs: . . . floor(3M)
floor, ceiling,/ . « « « « . . floor(3M)
flowgraph. . . « cflow(1)
flush a stream. fclose(3S)
fmod, fabs: floor, floor(3M)
fold: fold long lines fold(1)
fold long linesfor fold(1)
fopen, freopen, fdopen: . . . fopen(3S)
fork: create a new fork(2)
format. /per-process . . . acct(4)
format. .« . . 4 4 o 4 . ar(4)
format. .+ . . ¢ v 0 .. errfile(4)
format. fs(4)
format mathematical text . eqn(1)

format of a text file. . . .
format of an i-node.
format of compiled term . .
format of core image . . .
format of cpio archive.
format of directories.

- 18 -

. newform(1)

inode(4)
term(4)

. core(4)
. cpio(4)
. dir(4)

/primitive string,
scesfile:

text files. fspec:

object file symbol table
or troff. tbl:

nroff:

archive files to common
introduction to file

utmp and wtmp entry
fscanf, sscanf: convert
varargs/ /vsprintf: print
/Tprintf, sprintf: print
/print/check documents
/the macro package for
/the MM macro package for
this/ man: macros for
management. netman:
efl/ fsplit: split
hopefully interesting,/
formatted/ printf,

pute, putchar,

stream. puts,
input/output.

a backup tape.

df: report number of
main memory/ malloc,
mallopt,/ malloc,
stream. fopen,
manipulate parts of/
frec: recover files

/line number information
/receive a message

get character or word
fgets: get a string
mkifile: make an ifile
rmdel: remove a delta
/get option letter

and status information
read: read

ncheck: generate names
nlist: get entries

DARPA Internet address
acctems: command summary
/print out file lists
getpw: get name

formatted input. scanf,
systems processed by

make a lost+found directory for
consistency check and/
debugger.

reposition a file/

specification in text/
ratfor, or efl files.

stat,

pointer/ fseek, rewind,

5/86

format of graphical/ . .
format of SCCS file. . .
format specification in .
format. syms: common

format tables for nroff .
format text.
formats. /object and .
formats. intro:
formats. utmp, wtmp: .
formatted input. scanf,

formatted output of 2 .
formatted output. . . .
formatted with the MM/
formatting a permuted/

formatting documents. .
formatting entries in . .
form-based network . .
FORTRAN, ratfor,or .
fortune: print a random,
fprintf, sprintf: print . .
fpute, putw: put/ . . .
fputs: put a stringon a

fread, fwrite: binary . .
frec: recover files from .
free disk blocks.
free, realloe, calloc: . .
free, realloc, calloe, . .
freopen, f{dopen: open a

frexp, ldexp, modf: . .
from a backup tape. . .
from a common object/

from a socket.
from a stream. /getw: .
from a stream. gets, . .
from an object file. . .
from an SCCS file. . .
from argument vector. .
from dump. /records .
fromfile. ¢« « ¢ o « o «
from i-numbers.
from name list.
from node name. /set .
from per-process/ . . .
from proto file; set/ . .
fromUD.
fs: file system format. .
fscanf, sscanf: convert .
fack. /list of file . .

fsck.

{sck, dfsck: file system .
fsdb: file system
fseek, rewind, ftell: . .
fsize: report file size. . .
fspec: format .
fsplit: split FORTRAN,

fstat: get file status. . .
ftell: reposition a file . .

-19 -

gps(4)
scesfile(4)
fspec(4)
syms(4)
tbi(1)
nroff(1)
convert(1)
intro(4)
utmp(4)
scanf(3S)
vprintf(3S)
printf(3S)
mm(1)
mptx(5)
mm(5)
man(5)
netman(1NM)
fsplit{1)
fortune(6)
printf(3S)
pute(3S)
puts(3S)
fread(3S)
frec(1M)
df(1M)
malloc(3C)
malloe(3X)
fopen(3S)
frexp(3C)
frec(1M)
strip(1)
recv(2N)
gete(3S)
gets(3S)
mkifile(1M)
rmdel(1)
getopt(3C)
errdead(1M)
read(2)
ncheck(1M)
nlist(3C)
setaddr(1NM)
acctems(1M)
qlist(1)
getpw(3C)
fs(4)
scanf(3S)
checklist(4)

mklost+found(1M)

fsek(1M)
fsdb(1M)
fseek(3S)
fsize(1)
fspec(4)
fsplit(1)
stat(2)
fseek(3S)

interprocess/
program.
File Transfer Protocol/

/shut down part of a
erf, erfc: error

and complementary error
gamma: log gamma
Euclidean distance

of a common object file
matherr; error-handling
prof: profile within a
math: math

jn, y0, y1, yn: Bessel
power, square root
absolute value

ocurse: optimized screen
/300s: handle special
hp: handle special

450/ 450: handle special
cosh, tanh: hyperbolic
atan2: trigonometric
processes using a file/
input /output. fread,
manipulate connect/
moo: guessing

back: the

bj: the

craps: the

wump: the

trk: trekkie

intro: introduction to
gamma: log

function.

ecvt, fevt,

maze:
abort:

cflow:

cross-reference. cxref:
data by user/ diskusg:
terminal. ctermid:
crypt, setkey, encrypt:
i-numbers. ncheck:
simple lexical/ lex:
/seed48, lcong48:
simple random-number
stream. gets, fgets:
file. get:

getsockopt, setsockopt:
ulimit:

of the user. cuserid:
/getchar, fgete, getw:
list. nlist:

umask: set and

stat, fstat:

statistics. ustat:

5/86

ftok: standard
ftp: file transfer
ftpd: DARPA Internet . .
ftw: walk a file tree. . . .
full-duplex connection. . .
functionand/
function. /function . . .
function. « . « « « « . .
function. hypot:
function. /entries
function.
function. « « « ¢ ¢ + « &
functions and constants. .
functions. jO,jl,
functions. /logarithm, . .
functions. /remainder, . .
functions.
functions of DASI 300/ .
functions of HP 2640 and/
functions of the DASI . .
functions. sinh,
functions. /acos, atan, . .
fuser: identify . . . « . .
fwrite: binary « + « + « &
fwtmp, wtmpfix:
GAME. & o o o o o s .
game of backgammon. . .
game of black jack. . . .
gameof craps. < . « . »
game of hunt-the-wumpus.
game.
BAINES. o o o o o » o o o
gamma function.
gamma: log gamma . . .
gevt: convert/
ged: graphical editor. . .
generate a maze.
generate an IOT fault. . .
generate C flowgraph. . .
generate C program . . .
generate disk accounting .
generate file name for . .
generate hashing/
generate names from . . .
generate programs for . .
generate uniformly/ . . .
generator. rand, srand: .
get a string froma . . .
get a version of an SCCS .
get and set options on/ .
get and set user limits. . .
get character login name .
get character or word/ . .
get entries from name . .
get file creation mask. . .
get file status.
get file system

- 920 -

stdip¢(3C)
ftp(1N)
ftpd(1INM)
ftw(3C)
shutdown(2N)
erf(3M
erf(3M
gamma(3M)
hypot(3M)
ldIread(3X)
matherr(3M)
prof(5)
math(5)
bessel(3M)
exp(3M)
floor(3M)
ocurse(3X)
300(1)

hp(1)

450(1)
sinh(3M)
trig(3M)
fuser(1M)
fread(3S)
fwtmp(1M)
moo(6)
back(6)
bj(6)
craps(6)
wump(6)
trk(6)
intro(6)
gamma(3M)
gamma(3M)
ecvt(3C)
ged(1G)
maze(6)
abort(3C)
cflow(1)
exref(1)
diskusg(1M)
ctermid(3S)
crypt(3C)
ncheck(1IM)
lex(1)
drand48(3C)
rand(3C)
gets(3S)
get(1)
getsockopt(2N)
ulimit(2)
cuserid(3S)
gete(3S)
nlist(3C)
umask(2)
stat(2)
ustat(2)

SCCS file.

/endgrent, fgetgrent:
getlogin:

logname:

msgget:

getpw:

peer. getpeername:
system. uname:

host. gethostname:
[setnetent, endnetent:
/sethostent, endhostent:
unget: undo a previous
argument/ getopt:
/endpwent, fgetpwent:
working/ getewd:
process times. times:
/getpgrp, getppid:
/endprotoent:

user,/ /getgid, getegid:
/setservent, endservent:
semget:

segment. shmget:
getsockname:
terminal. tty:

time:

getw: get character or/
get character or/ gete,
current working/
getuid, geteuid, getgid,
environment name.
getegid: get/ getuid,
real/ getuid, geteuid,
getgrnam, setgrent,/
setgrent,/ getgrent,
getgrent, getgrgid,
gethostent,
/gethostbyaddr,
gethostbyaddr,/
current host.

name,

getnetent,

getnetent, getnetbyaddr,
getnetbyname,/

letter from argument/
options.

password.

connected peer.
process,/ getpid,
getppid: get process,/
getpid, getpgrp,
/getprotobynumber,
getprotoent,
getprotobynumber,/
UID.

getpwnam, setpwent,/
getpwent, getpwuid,
setpwent,/ getpwent,

5/86

get: get a version of an . .
get group file entry. . . .
get login name.
get login name.
get message queue., . . .
get name from UID. . . .
get name of connected . .
get name of current CTIX

get name of current . . .
get network entry.
get network host entry. .
get of an SCCS file. . . .
get option letter from . .
get password file entry. .
get path-name of current .
get process and child . .
get process, process/ . . .
get protocol entry. « . . .
get real user, effective . .
get service entry.
get set of semaphores. . .
get shared memory . . .
get socket name.
get the nAme of the . . .
gettime. .+ « . o ¢ o ..
gete, getchar, fgete, . . .
getchar, fgetc, getw: . . .
getewd: get path-name of

getegid: get real user,/ . .
getenv: return value for .
geteuid, getgid,
getgid, getegid: get . . .
getgrent, getgrgid,
getgrgid, getgrnam, . . .
getgrnam, setgrent,/ . . .
gethostbyaddr,/
gethostbyname,/
gethostent,
gethostname: get name of

getlogin: get login
getnetbyaddr,/
getnetbyname, setnetent,/

getnetent, getnetbyaddr, .
getopt: get option
getopt: parse command .
getpass: read a
getpeername: get name of

getpgrp, getppid: get . .
getpid, getpgrp,
getppid: get process,/ . .
getprotobyname,/
getprotobynumber,/ . . .
getprotoent,
getpw: get name from . .
getpwent, getpwuid, . . .
getpwnam, setpwent,/ . .
getpwuid, getpwnam, . .

- 91 -

get(1)
getgrent(3C)
getlogin(3C)
logname(1)
msgget(2)
getpw(3C)
getpeername(2N)
uname(2)
gethostname(3N)
getnetent(3N)
gethostent(3N)
unget(1)
getopt(3C)
getpwent(3C)
getewd(3C)
times(2)
getpid(2)
getprotoent(3N)
getuid(2)
getservent(3N)
semget(2)
shmget(2)
getsockname(2N)
tty(1)

time(2)

getc(3S)
gete(3S)
getewd(3C)
getuid(2)
getenv(3C)
getuid(2)
getuid(2)
getgrent(3C)
getgrent(3C)
getgrent(3C)
gethostent(3N)
gethostent(3N)
gethostent(3N)
gethostname(3N)
getlogin(3C)
getnetent(3N)
getnetent(3N)
getnetent(3N)
getopt(3C)
getopt(1)
getpass(3C)
getpeername(2N)
getpid(2)
getpid(2)
getpid(2)
getprotoent(3N)
getprotoent(3N)
getprotoent(3N)
getpw(3C)
getpwent(3C)
getpwent(3C)
getpwent(3C)

string from a stream.
/getservbyport,
getservent,
getservbyport,/

name.

get and set options on/
settings used by

type, modes, speed, and/
terminal. ct: spawn
terminal settings used/
getegid: get real user,/
getutline, pututline,/
pututline,/ getutent,
getutent, getutid,

getc, getchar, fgete,
ctime, localtime,

fish: play

longjmp: non-local
string, format of/

graph: draw a

sag: system activity
graphics: access
/network useful with
hardcopy, tekset, td:
ged:

/string, format of
string, format of/ gps:
contents routines. toc:
gutil:

graphical and numerical/
tplot:

plot:

subroutines. plot:
/typeset documents, view
/for typesetting view
filter.

search a file for a/
/effective user, real

/get process, process
chgrp: change owner or
/endgrent, fgetgrent: get
group:

setpgrp: set process

id: print user and
group, and effective
setgid: set user and
newgrp: log in to a new
chown: change owner and
signal to a process or a
/update, and regenerate
file checkers. pwck,
signals. ssignal,

Jor relocate a PT or
terminal download. tdl,
hangman:

5/86

gets, fgets: geta
getservbyname,/ . . .
getservbyport,/
getservent,
getsockname: get socket
getsockopt, setsockopt: .
getty. /and terminal .
getty: set terminal . ., .
getty to aremote . . .
gettydefs: speed and . .
getuid, geteuid, getgid, .
getutent, getutid, . . .
getutid, getutline, . . .
getutline, pututline,/ .
getw: get character or/ .
gmtime, asctime, tzset:/
“GoFish”. .«
goto. setjmp, « « . . .
gps: graphical primitive

graph: draw a graph. .
graph.
graph.

graphical and numencal/
graphical commands. .
graphical device/ /erase,
graphical editor.
graphical files.
graphical primitive . .
graphical tableof . . .
graphical utilities. . . .
graphics: access
graphics filters.
graphics interface. . . .
graphics interface . . .
graphs, and slides. . . .
graphs and slides. . . .
greek: select terminal .
grep, egrep, fgrep: .
group, and effective/ .
group, and parent/
group. chown,
group file entry.
group file.
group: group file. .
groupID.
group IDs and names. .
group IDs. /user, real .
group IDs. setuid, . . .
group.
group of a file.
group of processes. /a .
groups of programs. . .
grpck: password/group .
gsignal: software
GT local printer. . . .
gtdl, ptdl: RS-232 . . .
guess the word.

-922.

gets(3S)
getservent(3N)
getservent(3N)
getservent(3N)
getsockname(2N)
getsockopt(2N)
gettydefs(4)
getty(IM)
ct(1C)
gettydefs(4)
getuid(2)
getut(3C)
getut(3C)
getut(3C)
gete(3S)
ctime(3C)
fish(6)
setjmp(3C)
gps(4)
graph(1G)
graph(1G)
sa2g(1G)
graphics(1G)
stat(1G)
gdev(1G)
ged(1G)
gps(4)

gps(4)

toc(1G)
gutil(1G)
graphies(1G)
tplot(1G)
plot(4)
plot(3X)
mmt{1}

mv(5)

greek()

roup(4)
setpgrp(2)
id(1)
getuid(2)
setuid(2)
newgrp(1)
chown(2)
Kill(2)
make(1)
pweck(1M)
ssignal(3C)
mktpy(1)
td1(1)
hangman(6)

moo:
utilities.

/for Xylogics 772
processing. shutdown,
of DASI 300/ 300, 300s:
of HP 2640 and/ hp:

of the DASI 450/ 450:
list. varargs:

curses: CRT screen

/run a command immune to
graphical/ hpd, erase,
hinv:

/hdestroy: manage
/hashmake, spellin,
/encrypt: generate
hashcheck: find/ spell,
manage hash/ hsearch,
ascii file dump.
hsearch, hereate,
object/ secnhdr: section
files. filehdr: file
ldfhread: read the file
to the optional file
indexed/named section
/read the archive

help: ask for

file dump. hd:
inventory.

/manipulate Volume
fortune: print a random,
/convert values between
endhostent: get network
get name of current
network.

/special functions of
functions of HP 2640/
tekset, td: graphical/
hdestroy: manage hash/
ntohs: convert values/
convert values/ htonl,
wump: the game of
sinh, cosh, tanh:

words.

hyphen: find

distance function.
accounting data by user
set or shared memory
IDs and names.

set process group

issue: issue

a file or file/ fuser:
what:

id: print user and group
and parent process

and effective group

5/86

guessing game., o
gutil: graphical
half-inch tape/
halt: terminateall .,
handle special functions . .
handle special functions . .
handle special functions . .
handle variable argument .
handling and/
hangman: guess the word.
hangups and quits.

hardware inventory.
hash search tables. . . .
hashcheck: find spelling/ .
hashing encryption.
hashmake, spellin,
hcreate, hdestroy:
hd: hexadecimal and
hdestroy: manage hash/
header for a common . . .
header for common object
header of a common/ . .
header of a common/ /seek
header of a common/ /an
header of a member of an/
help: ask for help.
help. « ¢ ¢ e v ¢ v v o ¢ »
hexadecimal and ascii . . .
hinv: hardware
Home Blocks (VHB).
hopefully interesting,/
host and network byte/
host entry. /sethostent,
host. gethostname: . . .

. ldshread(
. ldahread(3X)

. moo(6)

gutil(1G)
xmset(1M)
shutdown(1M)
300(1)

hp(1)

450(1)
varargs(5)
curses(3X)

. hangman(6)

nohup(1)
gdev(1G)
hinv(1M)

. hsearch(3C)
. spell(1)

erypt(3C)
spell(1)
hsearch(3C)

. hd(1)
. hsearch(3C)

scnhdr(4)

. filehdr(4)
. ldfhread(3

X)
ldohseek(3X)
3X)
help(1)
help(1)

hd(1)
hinv(1M)

. libdev(3X)

. fortune(6)

. byteorder(3N)
. gethostent(3N)
. gethostname(3N)

hosts: list of nodeson . . . hosts(4N)

HP 2640 and 2621-series/ . hp(1)

hp: handle special hp(1)

hpd, erase, hardcopy, . gdev(1G)
hsearch, hcreate, hsearch(3C)
htonl, htons, ntohl, byteorder(3N)
htons, ntohl, ntohs: . byteorder(3N)
hunt-the-wumpus. wump(6)
hyperbolic functions. sinh(3M)

hyphen: find hyphenated
hyphenated words.
hypot: Euclidean
ID. generate disk

. hyphen(1)

hyphen(1)
hypot(3M)

. diskusg(IM)

id. /queue, semaphore . . . ipcrm(l)
id: print user and group . id(1)
ID. setpgrp: .+ . « « . . . setpgrp(2)

identification file.
identify processes using
identify SCCS files.
IDs and names.
IDs. /process group, . . -
IDs. /user, real group, . . .

- 923 -

issue(4)

. fuser(1M)

what(1)
id(1)

. getpid(2)

getuid(2)

set user and group
network interface/

file. mkifile: make an
core: format of core
crash: examine system
nohup: run & command
/C language preprocessor
language preprocessor/
finc: fast

/tgoto, tputs: terminal
formatting a permuted
Idtbindex: compute the
ptx: permuted

entry/ ldtbread: read an
/ldnshread: read an

of/ /ldnsseek: seek to an
inet_ntoa,/

Internet/ /inet_makeaddr,
/inet_network, inet_ntos,
address/ /inet_lnaof,
inet_addr,

inet_addr, inet_network,
inittab: script for the
control initialization.
telinit: process control
/drvioad: system
volume. iv:

a socket. connect:
process. popen, pclose:
init process.

clri: clear

i-node.

inode: format of an

open a file specified by
blocks associated with
/start and stop terminal
convert formatted

push character back into
fread, fwrite: binary
stdio: standard buffered
fileno: stream status
uustat: uucp status
software/ ginstall:
install:

commands.

binary/ cpset:

or GT/ mktpy, mvtpy:
ctinstall:

/set terminal, terminal
abs: return

/convert between long
/sgetl: access long

atoi: convert string to
/convert between 3-byte
3-byte integers and long
beopy:

processing/ mailx:

5/86

IDs. setuid, setgid: . .
ifconfig: configure . . .
ifile from an object . .
image file.
images.
immune to hangups and/
include files.
includes: determine C .
incremental backup. . .
independent operations.

index. /package for . .
index of a symbol table/
index.
indexed symbol table .
indexed /named section/

indexed /named section .
inet_addr, inet_network,
inet_lnaof, inet_netof: .
inet_makeaddr,/ . . .
inet_netof: Internet . .
inet_network, inet_ntoa,/
inet_ntoa,/
init process. . . ¢ & .
init, telinit: process . .
initialization. init, . . .

I

initialization shell/ . . .

initialize and maintain .
initiate a connection on

initiate pipe to/froma .
inittab: script for the .
i-node. « . .. 0 ..
inode: format of an . .
i-node.
i-node. openi: .« + . . .
i-node(s). /thelist of .
input and output. . .
input. /fscanf, sscanf: .
input stream. ungetc: .
input/output.
input/output package. .
inquiries. /clearerr, . .
inquiry and job control.

install and verify . . .
install commands. . . .
install: install
install object filesin . .
install or relocate a PT .
install software.
inteface, and terminal/ .
integer absolute value. .
integer and base-64/ . .
integer dataina/ . . .
integer. strtol, atol, . .
integers and long/ . . .
integers. /between . .
interactive block copy. .
interactive message . .

- 94 -

setuid(2)
ifconfig(INM)
mkifile(1M)
core(4)
crash(1M)
nohup(1)
includes(1)
includes(1)
finc(1M)
termcap(3X)
mptx(5)
1dtbindex(3X)
ptx(1)
1dtbread(3X)
ldshreadEI&X)

(
inet.E3N
re

inet(3N)
inittab(4)
init(1M)
init(1M)
bre(1M)
iv(1)
connect(2N)
popen(3S)
inittab(4)
clri(1M)
inode(4)
inode(4)
openi(2)
beheck (1M)
rsterm(1M)
scanf(3S)
ungetc(3S)
fread(3S)
stdio(3S)
ferror(3S)
uustat(1C)
qinstall(1)
install(1M)
install(1M)
cpset(1M)
mktpy(1)
ctinstall(1)
tset(1)
abs(3C)
a841(3C)
sputl(3X)
strtol(3C)
13t01(3C)
13t0l(3C)
beopy(1M)
mailx(1)

/consistency check and

/a random, hopefully

err: error-logging

qic:

Ip: parallel printer

mem, kmem: system memory
/configure network

plot: graphics

plot: graphics

swap administrative

termio: general terminal
terminal accelerator
protocol. telnet: user
TFTP/ tftp: user
controlling terminal

vme: VME bus

serial lines as network

node/ setaddr: set DARPA
/inet_lnaof, inet_netof:
Protocol/ ftpd: DARPA
and numbers for the
protocols: list of

services: list of

curve. spline:

control/ asa:

csh: a shell (command

pipe: create an

ipcs: report

ftok: standard

suspend execution for an
suspend execution for
commands and/

file formats.

games.

miscellany.

special files.

subroutines and/

system calls and error/

and application/ intro:
formats. intro:

intro:
intro:
intro:
subroutines and/ intro:
calls and error/ intro:
generate names from
hinv: hardware

miscellany.
files.

abort: generate an
queue, semaphore set or/
inter-process/

/isdigit, isxdigit,

islower, isdigit,/
/isgraph, iscntrl,
terminal. ttyname,
/isprint, isgraph,
/isupper, islower,

5/86

interactive repair.
interesting, adage.
interface. . . « «
interface for QIC tape. . .
interface.
interface. « . . .
interface parameters. . .
interface. . . « «
interface subroutines. . .
interface. swap:
interface. + « o ¢ o ¢ o
interface. tiop:
interface to TELNET . .
interface to the DARPA .
interface. tty:
interface. . . « . « . . .
interfaces. /and detach .
Internet address from . .
Internet address/
Internet File Transfer . .
internet. /names
Internet protocols.
Internet services.
interpolate smooth . . .
interpret ASA carriage . .
interpreter) with C-like/ .
interprocess channel. . . .
inter-process/ . «
interprocess/ .«
interval. sieep:
interval. sleep:
intro: introduction to . .
intro: introduction to . .
intro: introduction to . .
intro: introduction to . .
intro: introduction to . .
intro: introduction to . .
intro: introduction to . .
introduction to commands
introduction to file . . .
introduction to games. . .
introduction to
introduction to special . .
introduction to
introduction to system . .
i-numbers. ncheck: . . .
inventory. .« + ¢ + o o o
ioctl: control device. . . .
IOT fault.
iperm: remove a message .
ipes: report
isalnum, isspace,/
isalpha, isupper,
isascii: classify/
isatty: find nameofa . .
isentrl, isascii:/
isdigit, isxdigit,/

R S

-925-

fsck(1M)
fortune(6)
err(7)

qic(7)

1p(7)

mem(7)
ifconfig(1NM)
plot(4)
plot(3X)
swap(1M)
termio(7)
tiop(7)
telnet(1N)
tftp(1N)

tty(7)

vme(7)
slattach(1NM)
setaddr(1NM)
inet(3N)
ftpd(1INM)
networks(4N)
protocols(4N)
services(4N)
spline(1G)
asa(l)

esh(1)

pipe(2)

ipes(1)
stdipe(3C)
sleep(1)
sleep(3C)
intro(1)
intro(4)
intro(6)
intro(5)
intro(7)
intro(3)
intro(2)
intro(1)
intro(4)
intro{6)
intro{5)
intro(7)
intro(3)
intro(2)
ncheck(1M)
hinv(1M)
ioctl(2)
abort(3C)
iperm(1)
ipes(1)
ctype(3C)
ctype(3C)
ctype(3C)
ttyname(3C)
ctype(3C)
ctype(3C)

[ispunet, isprint,
isalpha, isupper,
/isspace, ispunct,
/isalnum, isspace,
/isxdigit, isalnum,
system:

file. issue:
identification file.
isdigit,/ isalpha,
/islower, isdigit,

news: print news
maintain volume.
Bessel functions.

Bessel functions. j0,
bj: the game of black
functions. jO, j1,
database operator.
/nrand48, mrand48,
processes. killall:
process or a group of/
process.

processes.

interface. mem,

quiz: test your

between 3-byte integers/
long integer and/ a64l,
/copy file systems with
systems with/ volcopy,
scanning and processing
/arithmetic

cpp: the C

includes: determine C
/command programming
/ckpacct, dodisk,

shl: shell

/srand48, seed48,
common object files.
object {ile. ldclose,
archive header of a/
object file for/ ldopen,
a common object file.

parts of/ frexp,

file access routines.
header of a common/
symbol name for common/
manipulate/ ldlread,
ldlread, 1dlinit,

ldlitem: manipulate/

to line number entries/
number entries/ ldlseek,
relocation/ ldrseek,
Idshread,
indexed/named/ ldsseek,
optional file header of/
common object file for/
to relocation entries/

5/86

isgraph, isentsl,/ . . .

islower, isdigit,/
isprint, isgraph,/

ispunct, isprint,/ . . .

isspace, ispunct,/

issue a shell command.
issue identification . . .

issue:issue 0 0 . .
isupper, islower,

isxdigit, isalnum,/ .
items. « . s ¢ ¢ 4 o
iv: initialize and . .

J0, i1, jn, y0, y1, yn:
j1,jn, y0, y1,yn: . . .

jack, « ¢ oo v 0 s e o

jn, y0, y1, yn: Bessel

join: relational
jrand48, srand48,/

kill: send a signal to a
kill: terminate a
killall: kill all active
kmem: system memory .
knowledge.
13tol, 1tol3: convert
164a: convert between
label checking. . . .
labelit: copy file
language. awk: pattern
language. . .
language preprocessor.
language preprocessor/ .

language. « + « « o o o .

lastlogin, monacct,/
layer manager.
leong48: generate/

1d: link editor for

. ldclose(3X)
Idahread: read the
ldaopen: open a common .. .

ldaclose: close a common

ldclose, ldaclose: close .
ldeeprom: load EEPROM.
Idexp, modf: manipulate
ldfen: common object

Idfhread: read the file . .

ldgetname: retrieve
1dlinit, ldlitem: . .

IdIseek, ldnlseek: seek
ldnlseek: seek to line . .
ldnrseek: seek to
ldnshread: read an/
ldnsseek: seek to an

ldopen, ldaopen: open a
ldrseek, ldnrseek: seek

- 926 -

kill all active

LR Y

drand48(3C)

. killall(1M)
. kill(2)

kili(1)

. killall(1M)
. mem(7)

quiz(6)

.« 13t0l(3C)

. ab41(3C)
. volcopy(1M)
(1M

)

volcopy

. . awk(l)
. be(1)
- cpp(1)

includes(1)
sh(1)

. acctsh(1M)

shi(1)
drand48(3C)
1d(1)

Idahread(3X)
ldopen(3X)
ldclose(3X)

. ldeeprom(1M)
. Irexp(3C)
. . ldfen(4)
. ldfhread(3X)
. ldgetname(3X)
« « o o ldlread(3X)
ldlitem: manipulate line/ . .
IdIread, Mdlinit,

ldIread(3X
1dIread(3X

)
.. ldlseek(3X§

1dlseek(3X
ldrseek(3X)

. ldshread(3X)
. ldsseek(3X)

ldohseek: seek tothe
. ldopen(3X)
. ldrseek(3X)

ldohseek{3X)

read an indexed/named/
to an indexed/named/
index of a symbol table/
indexed symbol table/
symbol table of a/
getopt: get option

for simple lexical/
programs for simple
update. lsearch,

Volume Home Blocks/
to subroutines and
relation for an object

ar: archive and

ulimit: get and set user
/an out-going terminal
/type, modes, speed, and
/type, modes, speed, and
line: read one

common object/ linenum:
/1dlitem: manipulate
/ldnlseek: seek to

strip: strip symbol and
nl:

selected fields of each
/requests to an LP

Ipset: set parallel

Ipr:

update. lsearch, Ifind:
col: filter reverse

entries in a common/
/attach and detach serial
comm: select or reject
for uucp communications
output/ fold: fold long
head: give first few

uniq: report repeated
/files or subsequent

or/ paste: merge same
link, unlink: exercise
object files. 1d:
/common assembler and

cp, In, mv: copy,

link:

link and unlink system/
from proto file; set
checker.

directory. ls:

statistics for a/ ff:

get entries from name
beheck: print out the
file. nm: print name
processed by/ checklist:
protocols. protocols:
services. services:
network. hosts:

5,/86

Ildshread, ldnshread: . . .
ldsseek, ldnsseek: seek . . .
ldtbindex: compute the
ldtbread: read an

. ldshread(3X)

1dsseek(3X)

. ldtbindex(3X)
. ldtbread(3X)

ldtbseek: seek to the ldtbseek(3X)
letter from argument/ . . . getopt(3C)
lex: generate programs . . . lex(1)
lexical tasks., /generate . . lex(1)

Ifind: linear search and . . . lsearch(3C)
libdev: manipulate libdev(3X)
libraries. /introduction . . intro(3)
library. /find ordering . . . lorder(1)
library maintainer for/ . . . ar(1)
limits. . .« .+« ulimit(2)
line connection. dial(3C)
line discipline. getty(1M)
line discipline. uugetty(IM)
line.00. ... line(1)

line number entriesina . . linenum(4)

line number entries of a/
line number entries of a/ .

. ldlread(3X)
. ldlseek(3X)

line number information/ . strip(1}
line numbering filter. . . . nl(1)

line of a file. /cut out . cut(l)

line printer. 1p(1)

line printer options. lpset(1M)
line printer spooler. lpr(1)
line: read one line. line(1)
linear searchand Isearch(3C)
line-feeds. .« « « « « . . . col(1)
linenum: line number . linenum(4)
lines as network/ slattach(1NM)
lines common to two/ . . comm(1)
lines. /file Devices(5)
lines for finite width fold(1)
lines. & . 0 0 0 v v v u head(1)
linesinafile. uniq(1)
lines of one file. « paste(1)

lines of several files
link and unlink system/ . .
link editor for common . . .

paste(1)
link (1M)
1d(1)

link editor output. a.out(4)
link: link toafile. link(2)
link or move files. cp(1)
linktoafile. link(2)
link, unlink: exercise link(1M)
links based on. /lists . . . gqlist(1)
lint: a C program lint(1)
list contentsof 1s(1)

list file namesand
list. nlist:

list of blocks/ « « « « « o &
list of common object . . .
list of file systems
list of Internet
list of Internet + .

list of nodeson . . « « o «

.97 -

checklist(4)
protocols(4N)
services(4N)
hosts(4N)

by terminal/ ttytype:
uuname:

handle variable argument
of a varargs argument
on a socket. listen:
connections on a/
/construct argument
qlist: print out file
move files. cp,
ldeeprom:

drivers:

mktunedrv: make a
1ddrv: manage
drvbind: access
asctime, tzset:/ ctime,
as the/ conlocate:

for command. path:
end, etext, edata: last
data in memory. plock:
files.

access to regions of a/
lockf: record

gamma:

newgrp:

exponential,/ exp,
exponential,/ exp, log,
/pow, sqrt: exponential,
uulog: output

process a report of
network. rwho: who is
getlogin: get

logname: get

cuserid: get character
logname: return
passwd: change

rlogin: remote

rlogind: remote

a C shell environment at
up an environment at

name of user.

/164a: convert between
sputl, sgetl: access
3-byte integers and
width output/ fold: fold
setjmp,

relation for an object/
make a

nice: run a command at
requests to an LP line/
/requests to an
interface.

disable: enable/disable
/lpmove: start/stop the
reject: allow/prevent
Ipadmin: configure the

5/86

list of terminal types
list UUCP system names. . .
list. varargs: . . « o o « &
list. /formatted output . .
listen for connections . . .
listen: listen for
list(s) and execute/ .
lists from proto file;/ . . .
In, mv: copy, linkor
load EEPROM.
loadable device drivers. . .
loadable driver for/
loadable drivers.
loadable drivers.
localtime, gmtime, . . « . .
locate a terminal to use . .
locate executable file
locations in program. . . .
lock process, text,or . « . .
lockf: record lockingon . .
locking: exclusive
locking on files. « .
log gamma function.
log in to a new group. . . .
log, logl0, pow, sqrt: . « . .
log10, pow, sqrt: P
logarithm, power, square/ .
logfile information.
logged errors. errpt:
logged inonlocal
login name.
login name.
login name of the user. . . .
login name of user.
login password.
login.
login server. ¢ . .
login: signon. « « + . « « .
login time. /setting up . . .
login time. /setting
logname: get login name. . .
logname: return login . . .
long integer and base-64/ .
long integer dataina/ . . .
long integers. /between . .
long lines for finite
longjmp: non-local goto. . .
lorder: find ordering
lost+found directory for fsck
low priority.
Ip, cancel: send/cancel
LP line printer.
lp: parallel printer
LP printers. enable,
LP request scheduler and/ .
LP requests. accept,
LP spooling system.

« v s e

« e .

- 98 -

ttytype(4)
uuname(1C)
varargs(5)
vprintf{(3S)
listen(2N)
listen(2N)
xargs(1)

qlist(1)

cp(1)
ldeeprom(1M)
drivers(7)
mktunedrv(1M)
1ddrv(1M)
lddrv(2)
ctime(3C)
conlocate(1M)
path(1)
end(3C)
plock(2)
lockf(3C)
locking(2)
lockf(3C)
gamma(3M)
newgrp(1)
exp(3M)
exp(3M)
exp(3M)
uulog(1C)
errpt(1M)
rwho(1N)
getlogin(3C)
logname(1)
cuserid(3S)
logname(3X)
passwd(1)
rlogin(1N)
rlogind (1NM)
login(1)
cprofile(4)
profile(4)
logname(1
logname(3
a641(3C)
sputl(3X)
13t0l(3C)
fold(1)
setjmp(3C)
lorder(1)
mklost+found(1M)
nice(1)

Ip(1)

Ip(1)

1p(7)

enable(1)

lpsched (1M}
accept(1M)
Ipadmin(1M)

)
X)

Ipstat: print

LP spooling system.
LP/ lpsched, Ipshut,
spooler.

start/stop the LP/
printer options.

start /stop the/ lpsched,
information.

drand48, erand48,
directory.

search and update.
file pointer.

3-byte integers/ 13tol,

values, values:

[long integer data in 2
formatting a/ mptx: the
formatting/ mm: the MM
typesetting/ mv: a troff
m4:

entries in this/ man:
formatted with the MM
mail to users or read

to users or read mail.
mail. mail, rmail: send
message processing/
/free, realloc, calloc:
/mallopt, mallinfo: fast
regenerate groups/ make:
iv: initialize and

ar: archive and library
an SCCS file. delta:
mkdir, mkdirs:

special or/ mknod:
mktunedrv:
mklost+found:
mktemp:

object file. mkifile:

and regenerate groups/
mkhosts:

banner:

terminal/ script:
memory/ /calloc, mallopt,
calloc: main memory/
calloc, mallopt,/

/Iree, realloc, calloc,
formatting entries in/
entries in this manual.
/tfind, tdelete, twalk:
/hereate, hdestroy:
lddrv:

form-based network
window: window

wm: window

shl: shell layer

fwtmp, wtmpfix:
/1dlinit, 1dlitem:

5/86

LP status information. . .
Ipadmin: configure the
Ipmove: start/stop the
Ipr: line printer
Ipsched, lpshut, lpmove: .
Ipset: set parallel line
Ipshut, lpmove:
Ipstat: print LP status
Irand48, nrand48,/ . ..
Is: list contentsof
Isearch, Ifind: linear . . .
lseek: move read/write
Itol3: convert between
m4: macro processor. ..
machine-dependent .
machine-independent/
macro package for
macro packagefor
macro package for
MACrO Processor. .« . + .
macros for formatting . .
macros. /documents . . .
mail. mail, rmail: send . .
mail, rmail: send mail . .
mail to users or read . . .
mailx: interactive . .
main memory allocator. .
main memory allocator. .
maintain, update, and . .
maintain volume.
maintainer for portable/ .
make a delta (change) to .
make a directory.
make a directory,ora . .
make a loadable driver/ .

make a lost+found dlrectory/

make a unique file name. .
make an ifile froman . .
make: maintain, update, .

make node name commands.

make posters.
make typescript of . . .
mallinfo: fast main . . .
malloe, free, realloc, . . .
malloc, free, realloc, . . .
mallopt, mallinfo: fast/ .
man: macros for
man, manprog: print . . .
manage binary search/ . .
manage hash search/ . .
manage loadable drivers. .
management. netman: . .
management primitives.
management.
MANager. o « o o » o » «
manipulate connect/ . . .
manipulate line number/ .

- 929 -

Ipstat(1)
lpadmin(1M)
lpsched(1M)
lpr(1)
lpsched(1M)
Ipset(1M)
Ipsched(1M)
Ipstat(1)
drand48(3C)
1s(1)
Isearch(3C)
lseek(2)
13tol(3C)

m4(1)

values(5)
sputi(3X)
mptx(5)

mm(5)

mv(5)

m4(1)

man(5)

mm(1)

mail(1)

mail(1)

mail(1)
mailx(1)
malloc(3C)
malloc(3X)
make(1)

iv(1)

ar(1)

delta(1)
mkdir(1)
mknod(2)
mktunedrv(iM)
mklost+found(1M)
mktemp(3C)
mkifile(1M)
make(1)
mkhosts(1NM)
banner(1)
script(1)
malloc(3X)
malloc(3C)
malloc(3X)
malloe(3X)
man(5)
man(1)
tsearch(3C)
hsearch(3C)
1ddrv(1M)
netman(1NM)
window(7)
wm(1)
shl(1)
fwtmp(1M)
ldiread(3X)

frexp, ldexp, modf:
tables. route: manually
Blocks (VHB). libdev:
/Internet address

in this manual. man,
the cat files for the
print entries in this
entries in this

routing tables. route:
terminal input/ rsterm:
set. ascii:

files. diffmk:

set file-creation mode
and get file creation
information/ master:
information table.
expression compile and
constants. math:
constants.

/neqn, checkeq: format
function.

maze: generate a

vax: provide truth/
interface.

memepy, memset: memory/
memset: memory/ memccpy,
memory/ memccpy, memchr,
memeccpy, memchr, mememp,
realloc, calloc: main
/mallinfo: fast main

shmectl: shared

semaphore set or shared
mem, kmem: system
/mememp, memepy, memset:
shmop: shared

text, or data in

shmget: get shared

memchr, mememp, memepy,
sort: sort and /or
accounting/ acctmerg:
several files or/ paste:
messages.

operations. msgctl:
/recvfrom: receive a

msgop:

mailx: interactive

msgget: get

set or/ iperm: remove a
send, sendto: send a

mesg: permit or deny
sys_nerr: system error
directory.

directory. mkdir,

system.

/software using the
commands.

5/86

manipulate parts of/
manipulate the routing . . .
manipulate Volume Home .
manipulation routines. . . .
manprog: print entries . . .
manual. catman: create . .
manual. man, manprog: . .
manual. /for formatting . .
manually manipulate the . .
manually start and stop . .
map of ASCII character . .
mark differences between . .
mask. umask:
mask. umask: set .
master device
master: master device . . .
match routines. /regular . .
math functions and
math: math functions and .
mathematical text for/ . . .
matherr: error-handling . .
maze: generate a maze. . . .
MAZE. + o o o o o o o o &«
mc68k, pdpll, u3b, u3b5, .
mem, kmem: system memory
memeepy, memchr, mememp,
memchr, mememp, memepy,

memecmp, memcpy, memset:

memepy, memset: memory/

memory allocator. /free, . .
memory allocator.
memory control/
memory id. /queue,
memory interface.
memory operations.
memory operations.
memory. [lock process, . .
memory segment.
memset: memory,/ memeccpy,
merge files.
merge or add total
merge same linesof
mesg: permit or deny . . .
message control
message from a socket. . . .
message operations.
message processing/
message qUEUe. . o + o o o
message queue, semaphore .
message to a socket.
messages.
messages. /sys_errlist, . . .
mkdir, mkdirs: makea . . .
mkdirs: makea
mkfs: construct a file . . .
mkfs(1) proto file/
mkhosts: make node name .

- 30 -

frexp(3C)
route(1NM)
libdev(3X)
inet(3N)
man(1)
catman(1)
man(1)
man(5)
route(1NM)
rsterm(1M)
ascii(5)
diffmk(1
umask(1
umask(2)
master(4)
master(4)}
regexp(5)
math(5)
math(5)
eqn(1)
matherr(3M)
maze(6)
maze(6)
machid(1)
mem(7)
memory(3C
memory(3C
memory(3C
memory(3C
malloc(3C)
malloc(3X)
shmetl(2)
iperm(1)
mem(7)
memory(3C)
shmop(2)
plock(2)
shmget(2)
memory(3C)
sort(1)
acctmerg(1M)
paste(1)
mesg(1)
msgetl(2)
recv(2N)
msgop(2)
mailx(1)
msgget(2)
iperm(1)
send(2N)
mesg(1)
perror(3C)
mkdir(1)
mkdir(1)

mk fs(1M)
ginstall(1)
mkhosts(1NM)

)
)
)
)

from an object file.
lost+found directory/
file.

or a special or/

file name.

relocate a PT or GT/
driver for tunable/
formatting/ mm: the
formatted with the
print/check documents/
for formatting/
documents, view graphs,/
system table.

chmod: change

umask: set file-creation
chmod: change

/set terminal type,

/set terminal type,

of/ frexp, ldexp,

touch: update access and
/set file access and
/dodisk, lastlogin,
execution profile.
uusub:

perusal.

mount:

system. mount, umount:
system.

setmnt: establish
dismount file system.
table. mnttab:

mvdir:

In, mv: copy, link or
pointer. lseek:

LP request scheduler and
for formatting a/
/Irand48, nrand48,
operations.

queue.

operations.

package for typesetting/
files. ¢p, In,

view graphs, and/ mmt,
relocate a PT or/ mktpy,
from i-numbers.
mathematical text/ eqn,
definitions for eqn and
network management.
status.

/values between host and
/endnetent: get
/endhostent: get

hosts: list of nodes on
ifconfig: configure

detach serial lines as

5/86

mkifile: make an ifile . . .
mklost+found: makea . . .
mknod: build special
mknod: make a directory, .
mktemp: make a unique . .
mktpy, mvtpy: install or
mktunedrv: make a loadable
MM macro package for . .
MM macros. /documents .
mm, osdd, checkmm: . . .
mm: the MM macro package
mmt, mvt: typeset
mnttab: mounted file . . .
mode. + ¢ o 4 s o e 0 o
mode mask.
mode of file.
modes, speed, and line/ . .
modes, speed, and line/ .
modf: manipulate parts .
modification times of a/ .
modification times. . . .
monacct, nulladm,/
monitor: prepare
monitor uucp network. . . .
moo: guessing game.
more, page: text
mount a file system.
mount and dismount file . .
mount: mount a file
mount table.
mount, umount: mount and

mounted file system
move a directory.

move files. ¢cp, + « + o &
move read/write file
move requests. /the
mptx: the macro package . .
mrand48, jrand48,/
msgctl: message control . .
msgget: get message
msgop: message
mv: a troff macro
myv: copy, link or move . . .
mvdir: move a directory. . .
mvt: typeset documents, . .
mvtpy: install or
ncheck: generate names . .
neqn, checkeq: format . . .
neqn. /special character . .
netman; form-based
netstat: show network . . .
network byte order.
network entry.
network host entry.
network. « « o o ¢« o o o &
network interface/
network interfaces. /and . .

D Y

-31 -

mkifile(1M)
mklost+found(1M)
mknod(1M)
mknod(2)
mktemp(3C)
mktpy(1)
mktunedrv(1M)
mm(5)

mm(1)

mm(1)

mm(5)

mmt(1)

mnttab(4)
chmod(1)
umask(1)
chmod(2)
getty(1M)
uugetty(1M)
frexp(3C)
touch(1)

utime(2)
acctsh(1M)
monitor(3C)
uusub(1M)
moo(6)

more(1)

mount(2)
mount{1M})
mount(2)
setmnt(1M)
mount(1M)
mnttab(4)
mvdir(1IM)
ep(1)

lseek(2)
lpsched(1M)
mptx(5)
drand48(3C)
msgetl(2)
msgget(2)
msgop(2)
mv(5)

cp(1)
mvdir(1M)
mmt(1)
mktpy(1)
ncheck(1M)
eqn(1)
eqnchar(b)
netman{1NM)
netstat(1N)
byteorder(3N)
getnetent(3N)
gethostent(3N)
hosts(4N)
ifconfig(1INM)
slattach(1NM)

netman: form-based
status of nodes on local
is logged in on local
netstat: show

stat: statistical
uuepd:

uusub: monitor uucp
numbers for the/
format of a text file.
group.

news: print

a process.
process by changing

low priority.

filter.

name list.

common object file.
mkhosts: make

Internet address from
rwhod:

/display status of

hosts: list of

immune to hangups and/
setjmp, longjmp:
/erand48, Irand48,

mathematical text for
tbl: format tables for
eqn/ deroff: remove
values/ htonl, htons,
htonl, htons, ntohl,
null: the

/lastlogin, monacct,

nl: line

number: convert Arabic
/access graphical and

to/ convert: convert
routines. ldfen: common
selected parts of an
/1daopen: open a common
/entries of a common
Idaclose: close a common
file header of a common
of a section of a common
file header of a common
of a section of a common
header of a common
/section of a common
table entry of a comrmon
table entry of a common
symbol table of a common
entries in 3 common
make an ifile from an
name list of common
information for a common

5/86

network management. .
network. /display . . .
network. rwho: who . .
network status. . ., . .
network useful with/ .
network uucp server. .
network.
networks: names and .
newform: change the . .
newgrp: log in to a new

newsitems.
news: print news items.

nice: change priority of .
nice. /of running . . .
nice: run a command at

nl: line numbering . . .
nlist: get entries from .
nm: print name list of .
node name commands. .
node name. /set DARPA
node status server. . .
nodes on local network.

nodes on network. . . .
nohup: run a command

non-local goto.
nrand48, mrand48,/ . .
nroff: format text. . . .
nroff or troff. /format .
nroff or troff.
nroff/troff, tbl, and . .
ntohl, ntohs: convert . .
ntohs: convert values/ .
null file.
null: the null file.
nulladm, pretmp,/ . . .
numbering filter. . . .
numerals to English. . .
numerical commands. .
object and archive files .
object file access . . .
object file. dump: dump
object file for reading. .
object file function. . .
object file. ldclose, . .
object file. /read the .
object file. /entries . .
object file. /optional .
object file. /entries . .
object file. /section . .
object file.
object file.
object file.
object file.
object file.
object file.
object file.
object file.

/a symbol .
/symbol . .
Jtothe . .
/number . .
mkifile: . .
nm: print .
/[relocation .

-32-

netman(1NM)
ruptime(1N)
rwho(1N)
netstat(1N)
stat(1G)
uucpd(1NM)
uusub(1M)
networks(4N)

. newform(1)

newgrp(1)
news(1)
news(1)
nice(2)
renice(1)
nice(1)

nl(1)

nlist(3C)
nm(1)
mkhosts(1NM)
setaddr(1NM)
rwhod(1NM)
ruptime(1N)
hosts(4N)
nohup(1)
setjmp(3C)
drand48(3C)
nroff(1)

eqn(1)

tbi(1)
deroff(1)
byteorder(3N)
byteorder(3N})

. nuli(7)

null(7)
acctsh(1M)
ni(1)
number(6)
graphics(1G)
convert(1)
1dfen(4)
dump(1)
ldopen(3X)
ldlread(3X)
ldclose(3X)
1dfhread(3X)
1dlseek (3X)
ldohseek(3X)
ldrseek(3X)
ldshread(3X)
ldsseek(3X)
1dtbindex(3X)
1dtbread(3X)
1dtbseek(3X)
linenum(4)
mkifile(1M)
nm(1)
reloc(4)

header for a common
/from a common

/symbol name for common
format. syms: common
file header for common
cpset: install

link editor for common
section sizes of common
ordering relation for an
Od'

functions.

file/ 1dopen, ldaopen:
i-node. openi:

fopen, freopen, fdopen:
dup: duplicate an
writing. open:

or writing.

specified by i-node.
profiler. prf:

/prfde, prfsnap, pripr:
memepy, memset: memory
msgetl: message control
msgop: message
semaphore control
semop: semaphore
shared memory control
shmop: shared memory
strespn, strtok: string
terminal independent
relational database
/copy file systems for
/CRT screen handling and
functions. ocurse:
argument/ getopt: get
a/ ldohseek: seek to the
fentl: file control

stty: set the

getopt: parse command
parallel line printer
/setsockopt: get and set
object/ lorder: find
/or a special or
print/check/ mm,

dial: establish an

and link editor

lines for finite width
information. uulog:
/print formatted
sprintf: print formatted
stop terminal input and
and/ /accton, acctwtmp:
file. chown: change
chown, chgrp: change
compress and expand/
and optimization

mptx: the macro

5/86

object file. /section
object file. + ¢« & 4 ¢ o o &
object file symbol table/ . .
object file symbol table . .
object files. filehdr:

object files in binary/ . . .

object files. 1d:
object files. /print

object library. /find

octal dump.

od: octal dump.

open a stream.

open for readingor

open: open for reading . . .
openi:openafile

operating system
operating system/
operations.

operations. . « o+ + ¢ o .
operations. + o &+ o & o o
operations. semctl:
operations. .« « « « + ¢ o
operations. shmetl:
operations. « « « ¢ ¢ o o .
operations. /strspn,
operations. /tputs:

operator. join: . o+ « o o+ .
optimal access time.
optimization package. . . .
optimized screen
option letter from
optional file header of . . .
options.
options for a terminal. . . .
options. 4 . . .
options. lpset:set
options on sockets.
ordering relation for an . .
ordinary file. « ..
osdd, checkmm:
out-going terminal line/ . .
output. /assembler
output device. /long . . .
output logfile « . .
output of a varargs/
output. /fprintf, «
output. /start and
overview of accounting . . .
owner and groupofa . . .
OWDEr OF GroUP. « « o « » »
pack, pcat, unpack:
package. /handling
package for formatting a/ .

-33-

ocurse: optimized screen . .
open a common object . . .
open a file specified by . . .

open file descriptor.

/mememp, . . .

scnhdr(4)
strip(1)
ldgetname(3X)
syms(4)
filehdr{4)
cpset(1M)
14(1)

size(1)
lorder(1)
od(1)
ocurse(3X)
od(1)
ldopen(3X)
openi(2)
fopen(3S)
dup(2)
open(2)
open(2)
openi(2)
prf(7)
profiler(1M)
memory(3C)
msgetl(2)
msgop(2)
semctl(2)
semop(2)
shmetl(2)
shmop(2)
string(3C)
termeap(3X)
join(1)
deopy(1M)
curses(3X)
ocurse(3X)
getopt(3C)
ldohseek(3X)
fentl(5)
stty(1)
getopt(1)
Ipset(1M)
getsockopt(2N)
lorder(1)
mknod(2)
mm(1)
dial(3C)
a.out(4)
fold(1)
uulog(1C)
vprintf(3S)
printf(3s)
rsterm(1M)
acct(1M)
chown(2)
chown(1)
pack(1)
curses(3X)
mptx(5)

mm: the MM macro
view/ mv: a troff macro
system activity report
buffered input/output
communication

more,

TEKTRONIX 4014/ 4014:
options. lpset: set
interface. lp:

772/ xmset: set drive
network interface
/process group, and
getopt:

password.

/endpwent, fgetpwent: get
putpwent: write
passwd:

getpass: read a

passwd: change login
checkers. pwck, grpck:
of several files or/

file for command.
deliver portions of
working/ getewd: get
search a file for a
processing/ awk:

until signal.

and expand files. pack,
to/from a/ popen,
provide truth/ mc68k,
get name of connected
the UUCP directories and
mesg:

package for formatting a
ptx:

file format. acct:
/command summary from
sys_errlist, sys_nerr:/
soft-copy/ pg: file
more, page: text

for soft-copy/

split: split a file into
interprocess channel.
tee:

popen, pclose: initiate
fish:

text, or data in/
interface.

subroutines.

/ftell: reposition a file
move read/write file
pipe to/from a process.
library maintainer for
/dirname: deliver
banner: make

exp, log, log10,

5/86

package for formatting/
package for typesetting
package. /sa2, sade: .
package. /standard . .
package. /interprocess
page: text perusal. . . .
paginator for the . .
parallel line printer . .
parallel printer
parameters for Xylogics
parameters. /configure
parent process [Ds. . .
parse command options.
passwd: change login
passwd: password file. .
password file entry. . .
password file entry. . .
password file.
password.
password.
password /group file . .
paste: merge same lines
path: locate executable
path names. /dirname:
path-name of current
pattern. /egrep, fgrep:
pattern scanning and .
pause: suspend process .
pcat, unpack: compress
pclose: initiate pipe . .
pdpll, u3b, udbs, vax: .
peer. getpeername: . .
Permissions file. /check
permit or deny messages.
permuted index. /macro
permuted index.
per-process accounting .
per-process accounting/
perror, errno,
perusal filter for
perusal.
pg: file perusal filter . .
pieces. o « » o ¢ o o .
pipe: createan
pipe fitting.
pipe to/from a process.
play “Go Fish”.
plock: lock process, . .
plot: graphies «
plot: graphics interface .
pointer in a stream. . .
pointer. lseek:
popen, pclose: initiate .
portable archives. /and
portions of path names.
posters. . .+« .« . .
pow, sqrt: exponential,/

- 34 -

mm(5)
mv(5)
sar(1M)
stdio(3S)
stdipc(3C)
more(1)
4014(1)
Ipset{1M)
Ip(7)
xmset(1M)
ifconfig(1INM)
getpid(2)
getopt(1)
passwd(1)
passwd(4)
getpwent(3C)
putpwent(3C)
passwd(4)
getpass(3C)
passwd(1)
pwek(1IM)
paste(1)
path(1)
basename(1)
getewd(3C)
grep(1)
awk(1)
pause(2)
pack(1)
popen(3S)
machid(1)

getpeername(2N)

uucheck(1M)
mesg(1)
mptx(5)
ptx(1)
acct(4)
acctems(1M)
perror(3C)
pg(1)
more(1)
pe(1)
split(1)
pipe(2)
tee(1)
popen(3S)
fish(6)
plock(2)
plot(4)
plot(3X)
fseek(3S)
Iseek(2)
popen(3S)
ar(1)
basename(1)
banner(1)
exp(3M)

/exponential, logarithm,
bre, beheckre, re,

/monacct, nulladm,
/nulladm, pretmp,

text for/ cw, checkew:
profile. monitor:

cpp: the C language
/determine C language
file. unget: undo a
profiler.

prfld, prfstat,

prfsnap, prfpr:/
/pristat, prfde, prisnap,
prfld, prfstat, prfdc,
prfpr: operating/ prfld,
of/ gps: graphical
types. types:

window management
hopefully/ fortune:
prs:

date:

cal:

count of a file. sum:
editing activity. sact:
manual. man, manprog:
cat: concatenate and

pr:
of/ /vfprintf, vsprintf:
/fprintf{, sprintf:
information. lpstat:
common object file. nm:
CTIX system. uname:
news:

from proto file;/ glist:
blocks/ bcheck:
acctcom: search and
trpt:

common object/ size:
and names. id:

mm, osdd, checkmm:
Ip: parallel

requests to an LP line
a PT or GT local
Ipset: set parallel line
Ipr: line

enable/disable LP
sprintf: print/

run a command at low
nice: change

process/ renice: alter
logged errors. errpt:
acct: enable or disable
acctprel, acetpre2:
/search and print
alarm: set a

process/ times: get

5/86

power, square root/ . .
powerfail, drvload:/ . .
pr: print files.
pretmp, prdaily,/ . . .
prdaily, prtacct,/ . . .
prepare constant-width

prepare execution . . .
Preprocessor.
preprocessor include/ .
previous get of an SCCS
prf: operating system .
prfdc, prfsnap, prfpr:/ .
prfld, prfstat, prfdc,
prfpr: operating system/
prfsnap, pripr:/
prfstat, pride, prfsnap, .
primitive string, format

primitive system data .
primitives. window: . .
print 2 random,
print an SCCS file. . .
print and set the date. .
print calendar.
print checksum and block
print current SCCS file

print entries in this . .
print files.
print files.
print formatted output

print formatted output.

print LP status
print name list of . . .
print name of current .
print news items. . . .
print out file lists . . .
print out the list of . .
print process accounting/
print protocol trace.
print section sizes of
print user and group IDs
print/check documents/
printer interface.
printer. /send/cancel .
printer. /or relocate . .
printer options.
printer spooler.
printers. /disable: . . .
printf, fprintf,
priority. nice:
priority of a process. . .
priority of running . .
process a report of . . .
process accounting. . .
process accounting. . .
process accounting/ . .
process alarm clock. . .
process and child . . .

-35.

exp(3M)
bre(1M)
pr(1)
acctsh(1M)
acctsh(1M)
ew(1)
monitor(3C)
epp(1)
includes(1)
unget(1)
pri(7)
profiler(1M)
profiler(1M)
profiler(1M)
profiler(1M)
profiler(1M)
gps(4)
types(5)
window(7)
fortune(6)
prs(1)
date(1)
cal(1)
sum(1)
sact(1)
man(1)
cat(1)

pr(1)
vprintf(3S)
printf(3S)
Ipstat(1)
nm(1)
uname(1)
ne'ws(1)
qlist(1)
bcheck (1M)
accteom(1)
trpt(1NM)
size(1)

id(1)

mm(1)

In(7)

Ip(1)
mktpy(1)
Ipset(1M)
lpr(1)
enable(1)
printf(3S)
nice(l)
mce.:(2)
renice(1)
errpt(1M)
acet(2)
acctpre(1M)
accteom(1)
alarm(2)
times(2)

/priority of running
init, telinit:

/time a command; report
exit, _exit: terminate
fork: create a new
/getppid: get process,
setpgrp: set

group, and parent
script for the init

kill: terminate a
change priority of a
kill: send a signal to a
initiate pipe to/from a
/getpgrp, getppid: get
ps: report

in memory. plock: lock
get process and child
wait: wait for child
ptrace:

pause: suspend

await completion of
Jlist of file systems

a process or a group of
killall: kill all active

or file/ fuser: identify
/pattern scanning and
halt: terminate all
/interactive message
m4: macro

truth value about your
data.

function.

profile.

prof: display

prepare execution
profil: execution time
environment at login/
function. prof:

prf: operating system
prfpr: operating system
sadp: disk access
/command

/using the mkfs(1)
/out file lists from
/endprotoent: get
Internet File Transfer
telnetd: DARPA TELNET
Trivial File Transfer
user interface to TELNET
to the DARPA TFTP
trpt: print
ACU/modem calling
Internet protocols.

list of Internet

update:

facts. arithmetic:
/pdpll, udb, udbs, vax:

5/86

process by changing/ . .
process control/
process data and system/

process.
PrOCeSS. o« o o o o o o o
process group, and/ . . .
process group ID.
process IDs. /process . .
process. injttab:
ProCesS. o o o & o « o o
process. nice:
process or a group of/ . .
process. popen, pclose: . .
process, process group,/ .
process status.
process, text, or data . .
process times. times: . .
process to stopor/ . . .
process trace. . . « . o
process until signal. . . .
process. wait: + . . « . .
processed by fsck.
processes. /a signalto . .
Processes. « o« o « o o o
processes using a file . . .
processing language. . . .
processing. shutdown, . .
processing system.
PrOCESSOT. o « o « o « »
processor type. /provide .
prof: display profile . . .
prof: profile withina . . .
profil: execution time . .
profile data.
profile. monitor:
profile. . « . . . ¢ & ..
profile: setting up an . .
profile withina
profiler. ¢ . .
profiler. /prfsnap,
profiler. « ¢ ¢ & o ¢ 4 &
programming language. .
proto file database. . . .
proto file; set links/
protocol entry. .+ « « . &
Protocol server. /DARPA
protocol server.
Protocol server. /DARPA
protocol. telnet:
protocol. /interface . . .
protocol trace. . . . o .
protocols. Dialers:
protocols: listof
protocols. protocols: . . .
provide disk/
provide drill in number .
provide truth value/ . . .

- 36 -

renice(1)
init(1M)
timex(1)
exit(2)
fork(2)
getpid(2)
setpgrp(2)
getpid(2)
inittab(4)
Kill(1)

nice(2)

Kill(2)
popen(3S)
getpid(2)
ps(1)
plock(2)
times(2)
wait(2)
ptrace(2)
pause(2)
wait(1)
checklist(4)
kill(2)
killall(1M)
fuser(1M)
awk(1)
shutdown(1M)
mailx(1)
m4(1)
machid(1)
prof(1)
prof(5)
profil(2)
prof(1)
monitor(3C)
profil(2)
profile(4)
prof(5)

pri(7)
profiler(1M)
sadp{1M)
sh(1)
qginstall(1)
qlist(1)
getprotoent(3N)
ftpd(1NM)
telnetd(1NM)
tftpd(1NM)
telnet(1N)
tftp(1N)
trpt(1NM)
Dialers(5)
protocols(4N)
protocols(4N)
update(1M)
arithmetic(6)
machid(1)

true, false:

/pretmp, prdaily,
status.

sxt:

/uniformly distributed
/install or relocate a
download. tdl, gtd],

input stream. ungetc:
putw: put character or/
put character or/ putc,
value to environment.
file entry.

string on a stream.
/getutid, getutline,
pute, putchar, fputc,
password/group file/
name.

tape.

qic: interface for

verify software using/
lists from proto file;/

tput:

msgget: get message
ipcrm: remove a message
gsort:

immune to hangups and
knowledge.
random-number/
fortune: print a

rand, srand: simple
fsplit: split FORTRAN,
system/ bre, beheckre,
command execution.
ruserok: routines for/

getpass:

table entry/ ldtbread:
Idshread, ldnshread:
read:

send mail to users or
line:

of a member/ ldahread:
a common/ ldfhread:

a common object file for
open: open for

Iseek: move

memory/ malloc, free,
mallopt,/ malloc, free,
system.

reboot:

/specify what to do upon
socket. recv, recvfrom:

5/86

provide truth values. .
prs: print an SCCS file.
prtacct, runacct,/
ps: report process . . .
pseudo-device driver. .
pseudo-random numbers.
PT or GT local printer.
ptdl: RS-232 terminal .
ptrace: process trace. .
ptx: permuted index. .
push character back into
putc, putchar, fpute, . .
putchar, fpute, putw: .
putenv: change or add .
putpwent: write password
puts, fputs: puta . . .
pututline, setutent,/ . .
putw: put character or/
pwek, grpek:
pwd: working directory
qic: interface for QIC .
QIC tape. . « . &« &
qinstall: install and . .
qlist: print out file . . .
gsort: quicker sort. . .
query terminfo database.
QUEUE. + & o o & s s &
queue, semaphore set or/
quickersort.
quits. /run a command
quiz: test your
rand, srand: simple . .
random, hopefully/
random-number generator.
ratfor, or efl files. . . .
rc, powerfail, drvload: .
remd: remote shell . . .
remd, rresvport,
rcp: remote file copy. .
read a password. . . .
read an indexed symbol
read an indexed/named/
read from file.
read mail. mail, rmail: .
read one line.
read: read from file.
read the archive header
read the file header of .
reading. /ldaopen: open
reading or writing. . .
read/write file pointer. .
realloc, calloc: main . .
realloc, calloc, « « + « «
reboot: reboot the . . .
reboot the system. . . .
receipt of a signal. . . .
receive a message from a

-37 -

true(1)

prs(1)
acctsh(1M)
ps(1)

sxt(7)
drand48(3C)
mktpy(1)
tdl(1)
ptrace(2)
ptx(1)
ungetc(3S)
pute(3S)
putce(3S)
putenv(3C)
putpwent(3C)
puts(3S)
getut(3C)
pute(3S)
pwck(1M)
pwd(1)

qic(7)

qic(7)
qginstall(1)
qlist(1)
gsort(3C)
tput(1)
msgget(2)
iperm(1)
gsort(3C)
nohup(1)
quiz(6)
rand(3C)
fortune(6)
rand(3C)
fsplit(1)
bre(1M)
remd(1N)
remd(3N)
rep(IN)
getpass(3C)
1dtbread(3X)
1dshread(3X)
read(2)
mail(1)

line(1)

read(2)
ldahread(3X)
ldfhread(3X)
Idopen(3X)
open(2)
Iseek(2)
malloc(
malloc(
reboot(1M)
reboot,(1M)
signal(2)
recv(2N)

3C)
3X)
1

lockf:

per-process accounting
errdead: extract error
connect accounting
backup tape. frec:

a message from a/
message from a/ recv,
ed,

and execute regular/
expression compile.
/maintain, update, and
execute regular/ regemp,
expression compile and/
/exclusive access to
compile and/ regexp:
compile. regemp:
/compile and execute
requests. accept,

two/ comm: select or
lorder: find ordering
operator. join:
information for a/
mktpy, mvtpy: install or
/ldnrseek: seek to

for a common/ reloc:
/fabs: floor, ceiling,
calendar:

uux: CTIX to CTIX
returning a stream to a
uuxqt: execute

return stream to a
rhosts:

rexecd:

rep:

rlogin:

rlogind:

execution. remd:

rshd:

Uutry: try to contact a
ct: spawn getty toa
SCCS file. rmdel:
semaphore set or/ ipcrm:
unlink:

disk. dismount:
directories. rm, rmdir:
and eqn/ deroff:

of running process by/
check and interactive
file. uniq: report
clock:

fsize:

communication/ ipes:
disk blocks. df:

errpt: process a

sadc: system activity
timex: time a command;
ps:

5/86

record locking on files. .
records. /summary from
records and status/ . .
records. /manipulate .
recover files froma . .
recy, recvfrom: receive .
recvfrom: receivea . .
red: text editor.
regcmp, regex: compile .
regcmp: regular
regenerate groups of/ .
regex: compile and . . .
regexp: regular
regions of afile.
regular expression . . .
regular expression . . .
regular expression. . . .
reject: allow/prevent LP
reject lines common to .
relation for an object/ .
relational database . .
reloc: relocation
relocate a PT or GT/ .
relocation entries of a/ .
relocation information .
remainder, absolute/ . .
reminder service. . . .
remote command/ . . .
remote command. /for .

remote command requests.

remote command. rexec:
remote equivalent users.
remote execution server.
remote file copy.
remote login.
remote login server. . .
remote shell command .
remote shell server. . .
remote system with/ . .
remote terminal. . . .
remove a delta from an

remove a message queue,
remove directory entry.

remove exchangeable . .
remove filessor
remove nroff /troff, tbl, .
renice: alter priority . .
repair. /consistency . .
repeated linesina . . .
report CPU time used. .
report file size.
report inter-process . .
report number of free .
report of logged errors. .
report package. /sa2, .
report process data and/
report process status, .

- 38 -

lockf(3C)
acctems(1M)
errdead(1M)
fwtmp(1M)
frec(1M)
recv(2N

-
@
53
<
—
(]
Z
NN

(
(
make(1)
(

regexp(5)
locking(2)
regexp{5)
regemp(1)
regemp(3X)
accept(1M)
comm(1)
lorder(1)
join(1)
reloc(4)
mktpy(1)
ldrseek(3X)
reloc(4)
floor(3M)
calendar(1)
wux(10)
remd(3N)
uuxqt(1M)
rexec(3N)
rhosts(4N)
rexecd(1NM)
rep(1N)
rlogin(1N)
rlogind(1NM)
remd(1N)
rshd(1NM)
Uutry(1M)
ct(1C)
rmdel(1)
iperm(1)
unlink(2)
dismount(1)
rm(1)
deroff(1)
renice(1)
fsck(1M)
uniq(1)
clock(3C)
fsize(1)
ipes(1)
df(1M)
errpt(1IM)
sar(1M)
timex(1)
ps(1)

a file. uniq:
sar: system activity
fseek, rewind, ftell:

move,/ /start/stop the LP
reject: allow/prevent LP
scheduler and move
syslocal: special system
lp, cancel: send/cancel
execute remote command
common/ ldgetname:
value. abs:

user. logname:

remote command. rexec:
environment,/ getenv:
call. stat: data

/ruserok: routines for
col: filter

reposition a/ fseek,
/create a new file or

a remote command.
server.

equivalent users.

server.
or directories.

users or read/ mail,
from an SCCS file.
directories. rm,

chroot: change
command. chroot: change
/logarithm, power, square
manipulate the routing/
/td: graphical device
/rresvport, ruserok:
address manipulation
object file access

compile and match

table of contents
manually manipulate the
routines for/ remd,
/terminal’s local

tdl, gtdl, ptdl:
standard/restricted/ sh,
server.

and stop terminal input/
priority. nice:

hangups and/ nohup:
runacet:

accounting.

/prdaily, prtacct,

/alter priority of

of nodes on local/

rcemd, rresvport,

on local network.

server.

activity report/

activity report/ sal,

5/86

report repeated lines in .
reporter. .+ « ¢ ¢+ o
reposition a file/
request scheduler and . .
requests. accept, . . « .
requests. /LP request . .
requests. « o ¢ o o ¢ o .
requests to an LP line/ . .
requests. uuxqt: “ e e
retrieve symbol name for .
return integer absolute . .
return login nameof . . .
return streamtoa
return valuefor
returned by stat system .
returning a stream toa/ .
reverse line-feeds.
rewind, ftel:
rewrite an existing one. .
rexec: return stream to . .
rexecd: remote execution .
rhosts: remote
rlogin: remote login. . . .
rlogind: remote login . . .
rm, rmdir: remove files . .
rmail: send mailto . . .
rmdel: remove a delta . .
rmdir: remove filesor . .
root directory. . . « o o
root directory fora . . .
root functions. . . « . .
route: manually
routines and filters. . . .
routines for returning a/ .
routines. /Internet . . .
routines. ldfen: common .
routines, /expression . .
routines. /graphical . . .
routing tables. route: . .
rresvport, ruserok: . . o .
RS-232 channels.
RS-232 terminal/
rsh: shell, the
rshd: remote shell
rsterm: manually start . .
run a command at low . .
run a command immune to
run daily accounting. . .
runacct: run daily
runacct, shutacet,/ . . .
running process by/ . . .
ruptime: display status . .
ruserok: routines for/ . .
rwho: who is logged in . .
rwhod: node status . . .
sal, sa?2, sadc: system . .

sa2, sadc: system

-39-

uniq(1)
sar(1)
fseek(3S)
1psched(1M)
accept(1M)
Ipsched (1M}
syslocal(2)
Ip(1)
uuxqt(1M)
ldgetname(3X)
abs(3C)
logname(3X)
rexec(3N)
getenv(3C)
stat(5)
remd(3N)
col(1)
fseek(3S)
creat(2)
rexec(3N)
rexecd (1NM)
rhosts(4N)
rlogin(1N)
rlogind (INM)
rm(1)
mail(1)
rmdel(1)
rm(1)
chroot(2)
chroot(1M)
exp(3M)
route(1NM)
gdev(1G)
remd(3N)
inet(3N)
1dfen(4)
regexp(5)
toe(1G)
route(1NM)
remd(3N)
tp(7)

tdi(1)

sh(1)
rshd(1NM)
rsterm(1M)
nice(1)
nohup(1)
runacect(1M)
runacct(1M)
acctsh(1M)
renice(1)
ruptime(1N)
remd(3N)
rwho(1N)
rwhod(1NM)
sar(1M)
sar(1M)

file editing activity.
report/ sal, sa2,
profiler.

graph.

reporter.

segment space/ brk,
convert formatted/
bfs: big file

language. awk: pattern
delta commentary of an
comb: combine

a delta (change) to an
sact: print current

get: get a version of an
prs: print an

remove a delta from an
two versions of an
scesfile: format of

a previous get of an
val: validate

create and administer
what: identify

versions of an SCCS/
file.

/the LP request
system. uusched: the
for a common object/
clear: clear terminal
ocurse: optimized
curses: CRT

display editor/ vi:
process. inittab:

of terminal session.
initialization shell

difference program.
grep, egrep, fgrep:
bsearch: binary
accounting/ acctcom:
Isearch, Ifind: linear
hdestroy: manage hash
twalk: manage binary
common object/ scnhdr:
/read an indexed/named
line number entries of a
relocation entries of a
/to an indexed /named
object/ size: print

/irand48, srand48,
ldsseek, ldnsseek:
ldlseek, ldnlseek:
ldrseek, ldnrseek:

file header/ ldohseek:
of a common/ ldtbseek:
get shared memory

brk, sbrk: change data

5/86

sact: print current SCCS

. sact(1)

sadc: system activity sar(1M)
sadp: disk access sadp(IM)
sag: system activity sag(1G)
sar: system activity sar(l)
sbrk: change data brk(2)
scanf, fscanf, sscanf: . scanf(3S)
SCANMET. o o o o o s o o & bfs(1)
scanning and processing . awk(1)
SCCS delta. /change the . cde(1)
SCCS deltas. .+ v v o . . comb(1)
SCCS file. delta: make . delta(l)
SCCS file editing/ sact(l)
SCOSfile. v v v v oo get(l)
SCCSfile. prs(1)
SCCS file. rmdel: rmdel(1)
SCCS file. /compare . scesdiff(1)
SCCSfile. scesfile(4)
SCCS file. unget: undo . unget(1)
SCCSfile. v v wuwown. val(1)
SCCS files. admin: admin(1)
SCCSfiles. + . v v v o v what(1}

scesdiff; compare two
scesfile: format of SCCS
scheduler and move/ . .
scheduler for the UUCP
scnhdr: section header
SCrEEN. « « o o o o o s« &
screen functions.
screen handling and/

. . scesdiff(1)
. .« scesfile(4)

. Ipsched(1M)
.« uusched(1M)
. . scnhdr(4)

. clear(1)

ocurse(3X)

. curses(3X)

screen-oriented (visual) . . . vi(1)
seript for theinit inittab(4)
script: make typescript . . . script(1)
scripts. /system bre(1M)
sdb: symbolic debugger. . sdb(1)
sdiff: side-by-side sdiff(1)
search afilefora/ grep(l)

search a sorted table.
search and print process . .
search and update.

search tables. /hcreate,
search trees. /tdelete,
section header for a
section header of a/
section of a common/ /to
section of a common/ /to
section of a common/

. bsearch(3C)

acctcom(1)

. . Isearch(3C)
. hsearch(3C)
. tsearch(3C)
. scnhdr(4)

. ldshread(3X)
. ldlseek(3X)
. ldrseek(3X)
. ldsseek(3X)

section sizes of common . size(1)

sed: stream editor. sed(1)
seed48, lcong48:/ drand48(3C)
seektoan/ 1dsseek(3X)
seek to line number/ ldlseek{(3X)
seek to relocation/ ldrseek(3X)

seek to the optional
seek to the symbol table

segment. shmget:
segment space/

- 40 -

ldohseek(3X)

. ldtbseek(3X)
. shmget(2)

brk(2)

common to two/ comm:
greek:

line of a/ cut: cut out
object file. dump: dump
operations. semctl:
semop:

/remove a message queue,
semnget: get set of
control operations.
semaphores.

operations.

socket. send, sendto:
process or a/ kill:

read mail. mail, rmail:
message to a socket.

an LP line/ Ip, cancel:
to a socket, send,
/attach and detach

File Transfer Protocol
rexecd: remote execution
rlogind: remote login
rshd: remote shell
rwhod: node status
DARPA TELNET protocol
File Transfer Protocol
uucpd: network uucp
typescript of terminal
Internet address from/
buffering to a stream.
address on disk.

group IDs. setuid,
/getgrgid, getgrnam,
get/ /gethostbyname,
non-local goto.

generate hashing/ ecrypt,
table.

get/ /getnetbyname,
group ID.
/getprotobyname,
/getpwuid, getpwnam,
get/ /getservbyname,
options on/ getsockopt,
environment,/ cprofile:
environment at/ profile:
/speed and terminal

and group IDs.

system.

/getutline, pututline,
buffering to a/ setbuf,
integer data in/ sputl,
standard/restricted/
xstr: extract and
operations. shmetl:
/queue, semaphore set or
operations. shmop:
shmget: get

remd: remote

5/86

select or reject lines . . .
select, terminal filter. . . .
selected fields of each . .
selected partsofan . . .
semaphore control
semaphore operations. , .
semaphore set or shared/ .
semaphores.
semctl: semaphore
semget: get set of
semop: semaphore
send a messagetoa . . .
send a signaltoa
send mail to usersor . . .
send, sendto: senda . . .
send/cancel requests to .
sendto: send a message . .
serial lines as network/ .
server. /DARPA Internet

server.
server.
server.
SEEVEr. & ¢ v s o« w o »
server. telnetd:
server. /DARPA Trivial .
SEIVET. « o s o o s 2 o o
session. script: make . .
setaddr: set DARPA . . .
setbuf, setvbuf: assign . .
setenet: write Ethernet . .
setgid: set userand . . .
setgrent, endgrent,/ . . .
sethostent, endhostent: . .
setjmp, longjmp: .+ . . .
setkey, encrypt:
setmnt: establish mount .
setnetent, endnetent: . .
setpgrp: set process
setprotoent,/ .
setpwent, endpwent,/ . .
setservent, endservent: . .
setsockopt: get and set . .
setting up a C shell . . .
settingupan
settings used by getty. . .
setuid, setgid: set user . .
setuname: set name of . .
setutent, endutent,/ . . .
setvbuf: assign
sgetl: accesslong
sh, rsh: shell, the
share stringsin C/ . . .
shared memory control . .
shared memory id.
shared memory . . « . .
shared memory segment. .
shell command execution.

- 41 -

comm(1)
greek(1)
cut(1)
dump(1)
semctl(2)
semop(2)
iperm(1)
semget(2)
semct](2)
semget(2)
semop(2)
send(2N)
kill(2)

mail(1)
send(2N)

Ip(1)

send(2N)
slattach(1NM)
ftpd(1NM)
rexecd(1NM)
rlogind(1INM)
rshd(1NM)
rwhod(1NM)
telnetd(1INM)
tftpd(1NM)
uuepd(1INM)
seript(1)
setaddr(1NM)
setbuf(3S)
setenet(1NM)
setuid(2)
getgrent(3C)
gethostent(3N)
setjmp(3C)
crypt(3C)
setmnt(1M)
getnetent(3N)
setpgrp(2)
getprotoent(3N)
getpwent(3C)
getservent(3N)
getsockopt(2N)
cprofile(4)
profile(4)
gettydefs(4)
setuid(2)
setuname(1M)
getut(3C)
setbuf(3S)
sputl(3X)
sh(1)

xstr(1)
shmectl(2)
iperm(1)
shmop(2)
shmget(2)
remd(1N)

interpreter)/ csh: a
system: issue a

cprofile: setting up a C
shl:

/startup, turnacct:
system initialization
rshd: remote

sh, rsh:

manager.

control operations.
memory segment.
operations.
full-duplex/ shutdown:
/prtacct, runacct,
terminate all/

of a full-duplex/
program. sdiff:

login:

suspend process until
to do upon receipt of a
do upon receipt of a/
group of/ kill: send a
gsignal: software
/generate programs for
generator. rand, srand:
acos, atan, atan2:/
hyperbolic functions.
fsize: report file

sizes of common object/
size: print section
attach and detach/
detach serial/ slattach,
for an interval.

for interval.

view graphs, and

view graphs and

the/ ttyslot: find the
spline: interpolate
accept a connection on a
bind: bind a name to a
a connection on a
endpoint for/

for connections on a
getsockname: get
receive a message from a
send a message to a
get and set options on
/file perusal filter for
ctinstall: install

ssignal, gsignal:

/install and verify

sort:

gsort: quicker

files.

tsort: topological

lines common to two
bsearch: binary search a

5/86

shell (command
shell command.
shell environment at/ . .
shell layer manager. . . .
shell procedures for/ . . .
shell seripts. /drvload: . .
shell server.
shell, the/
shl: shell layer
shmctl: shared memory .
shmget: get shared . . .
shmop: shared memory . .
shut down partofa . . .
shutacct, startup,/ . . .
shutdown, halt:
shutdown: shut down part
side-by-side difference . .
SIBNON. & 4 4 o 4 o o
signal. pause:
signal. /specify what . .
signal: specify what to . .
signal to a processora . .
signals. ssignal,
simple lexical tasks. . . .
simple random-number . .
sin, cos, tan, asin,
sinh, cosh, tanh:
SIZE. 4 4 4 e s s e e s
size: print section
sizes of common object/ .
slattach, sldetach:
sldetach: attach and . . .
sleep: suspend execution .
sleep: suspend execution .
slides. /documents, . . .
slides. /for typesetting . .
slot in the utmp file of . .
smooth curve, ,
socket. accept:
socket.
socket. /initiate
socket: createan
socket. listen: listen . . .
socket name.
socket. recv, recvfrom: . .
socket. send, sendto: . .
sockets. /setsockopt: . .
soft-copy terminals. . . .
software.
software signals.
software using the/ . . .
sort and/or merge files. .
SOFt. v o ¢ o o o ¢ & o @
sort: sort and/or merge .
SOFt. & o o ¢ o ¢ o s o o
sorted files. /for reject . .
sorted table.

- 492 -

esh(1)
system(3S)
eprofile(4)
shi(1)
acctsh(1M)
bre(1M)
rshd(1INM)
sh(1)

shl(1)
shmetl(2)
shmget(2)
shmop(2)
shutdown(2N)
acctsh(1M)
shutdown(1M)
shutdown(2N)
sdiff(1)
login(1)
pause(2)
signal(2)
signal(2)
kill(2)
ssignal(3C)
lex(1)
rand(3C)
trig(3M)
sinh(3M)
fsize(1)

size(1)

size(1)
slattach(1NM)
slattach(1NM)
sleep(1)
sleep(3C)
mmt(1)

mv(5)
ttyslot(3C)
spline(1G)
accept(2N)
bind(2N)
connect(2N)
socket(2N)
listen(2N)
getsockname(2N)
recv(2N)
send(2N)
getsockopt(2N)
pg(l)
ctinstall(1)
ssignal(3C)
ginstall(1)
sort(1)
gsort(3C)
sort(1)

tsort(1)
comm(1)
bsearch(3C)

change data segment
/unexpand: expand tabs to
terminal. ct:

files. fspec: format
openi: open a file
receipt of a/ signal:
terminal type, modes,
terminal type, modes,
settings/ gettydefs:
spellin, hashcheck:/
spell, hashmake,
/spellin, hashcheck: find
smooth curve.

pieces. split:

csplit: context

or efl files, fsplit:
pieces.

uucleanup: uucp

Ipr: line printer
/configure the LP
printf, fprintf,

long integer data in a/
exp, log, logl0, pow,
/logarithm, power,
random-number/ rand,
/mrand48, jrand48,
scanf, fscanf,

software signals.
input/output/ stdio:
communication/ ftok:
sh, rsh: shell, the
input/ rsterm: manually
Ipsched, Ipshut, lpmove:
/runacct, shutacct,

stat system call.

status.

network useful with/
stat: data returned by
useful with/ stat:

Jlist file names and
ustat: get file system
dump. /error records and
Ipstat: print LP
clearerr, fileno: stream
control. uustat: uucp
communication facilities
netstat: show network
ruptime: display

ps: report process
rwhod: node

stat, fstat: get file
input/output package.

for child process to
/manually start and
strnemp, strepy,/
/strepy, strnepy, strlen,

5/86

space allocation. /sbrk:
spaces, and vice versa. .
spawn getty to a remote
specification in text
specified by i-node.
specify what ta do upon
speed, and line/ /set .
speed, and line/ /set .
speed and terminal . .
spell, hashmake,
spellin, hashcheck: find/
spelling errors.
spline: interpolate
split a fileinto
split, « ¢« &« ¢ o 0 v .
split FORTRAN, ratfor,
split: split a file into . .
spool directory/
spooler.

spooling system.

sprintf: print formatted/
sputl, sgetl: access . . .
sqrt: exponential,/ . . .
square root functions. .
stand: simple
srand48, seed48,/ . . .
sscanf: convert/
ssignal, gsignal:
standard buffered . . .
standard interprocess .
standard/restricted/ . .
start and stop terminal

start/stop the LP/ . .
startup, turnacct: shell/

stat: data returned by .
stat, fstat: get file . . .
stat: statistical
stat system call.
statistical network . . .
statistics for a file/ . .
statistics, + « o« o o . .
status information from

status information. . .
status inquiries. /feof, .
status inquiry and job .
status. /inter-process .
status. . ¢ o ¢ o 0 o .
status of nodes on local/
status. « ¢ » o 0 0 . .
status server.
status. o ¢ 4 4 0 0 . .
stdio: standard buffered
stime: set time.
stop or terminate. /wait
stop terminal input and/
strcat, strncat, stremp, .
strchr, strrehr,/

- 43 -

br(2)
expand(1)
¢t(1C)
fspec(4)
openi(2)
signal(2)
getty(1M)
uugetty(1M)
gettydefs(4)
spell(1)
spell(1)
spell(1)
spline(1G)
split(1)
esplit(1)
fsplit(1)
split(1)
uucleanup(1M)
lpr(1)
lpadmin(1M)
printf(3S)
sputl(3X)
exp(3M)
exp(3M)
rand(3C)
drand48(3C)
scanf(3S)
ssignal(3C)
stdio(3S)
stdipe(3C)
sh(1)
rsterm(1M)
Ipsched(1M)
acctsh(1M)
stat(5)
stat(2)
stat(1G)
stat(5)
stat(1G)
f(1M)
ustat(2)
errdead(1M)
1pstat(1)
ferror(3S)
uustat(1C)
ipes(1)
netstat(1N)
ruptime(1N)
ps(1)
rwhod(1NM)
stat(2)
stdio(3S)
stime(2)
wait(2)
rsterm(1M)
string(3C)
string(3C)

strcat, strncat,

/stremp, strnemp,
/strpbrk, strspn,

sed:

fflush: close or flush a
freopen, f{dopen: open a
a file pointer in a
character or word {rom a
get a string from a
character or word on a
fputs: put a string on a
assign buffering to a
/feof, clearerr, fileno:
/routines for returning a
command. rexec: return
back into input

and base-64 ASCII
convert date and time to
floating-point number to
gps: graphical primitive
gets, fgets: get a

puts, fputs: put a
/strspn, strespn, strtok:
strtod, atof: convert
atof: convert ASCII
/atol, atoi: convert
ASCII text strings in a/
/extract the ASCII text
xstr: extract and share
line number information/
number/ strip:

/strepy, stroepy,
strncmp,/ streat,
strcat, strncat, stremp,
/strcmp, strnemp, strepy,
/strlen, strehr, strrchr,
/strncpy, strlen, strehr,
/strrehr, strpbrk,

string to/

strspn, strespn,

convert string to/

using a file or file

for a terminal.

another user.

intro: introduction to
plot: graphics interface
Jof several files or

block count of a file.

du:

acctems: command
sync: update the

sync: update

user. su: become
interval. sleep:

interval. sleep:

signal. pause:

5/86

stremp, strnemp, strepy,/

strepy, strnepy, strlen,/ .
strespn, strtok: string/ . .
stream editor.
stream.
stream.
stream.
stream.
stream.
stream.

fclose,
fopen,
/reposition . . .

gets, fgets: . . .
/putw: put . . .
stream. puts, + « ¢ . o o
stream. /setvbuf:
stream status inquiries. .
stream to a remote/ . . .
stream to a remote . . .
stream. /push character .
string. /long integer . . .
string. /asctime, tzset: . .
string. /gevt: convert . .
string, format of/
string from a stream. . .
string on a stream. . . .
string operations.
string to/
string to floating-point/ .
string to integer.
strings: extract the . . .
strings in a file.
strings in C programs. . .
strip: strip symbol and . .
strip symbol and line . .
strlen, strchr, strrehr,/ . .
strneat, stremp, < o . . .
strnemp, strepy,/ .+ . . .
strncpy, strlen, strchr,/ .
strpbrk, strspn,/
strrchr, strpbrk,/
strspn, strespn, strtok:/ .
strtod, atof: convert . . .
strtok: string/ /strpbrk, .
strtol, atol, atoi:
structure. /processes . .
stty: set the options . . .
su: become super-user or .
subroutines and/
subroutines.
subsequent lines of one/ .
sum: print checksum and .
summarize disk usage. . .
summary from per-process/
super block.
super-block.
super-user or another . .
suspend execution for an .
suspend execution for . .
suspend process until . .
swab: swap bytes.

- 44 -

/getwiget

string(3C)
string(3C)
string(3C)
sed(1)
fclose(3S)
fopen(3S)
fseek(3S)
gete(3S)
gets(3S)
pute(3S)
puts(3S)
setbuf(3S)
ferror(3S)
remd(3N)
rexec(3N)
ungete(3S)
a641(3C)
ctime(3C)
ecvt(3C)
gps(4)
gets(3S)
puts(3S)
string(3C)
strtod(3C)
atof(3C)
strtol(3C)
strings(1)
strings(1)
xstr(1)
strip(1)
strip(1)

acctems(1M)
syne(1)
sync(2)

su(1)
sleep(1)
sleep(3C)
pause(2)
swab(3C)

interface. swap:

swab:

administrative/

write on a file.

driver.

strip: strip

ldgetname: retrieve

/for common object file
/compute the index of a
common/ /read an indexed
syms: common object file
ldtbseek: seek to the
sdb:

symbol table format.
super-block.

block.

update: provide disk
file. swrite:

interpreter) with C-like
system/ perror, errno,
requests.

/errno, sys_errlist,
binary search a sorted
object file symbol

/the index of a symbol
/read an indexed symbol
object file symbol
device information
mounted file system
/seek to the symbol

toc: graphical

setmnt: establish mount
troff. tbl: format
manage hash search
manipulate the routing
tabs: set

terminal.

expand, unexpand: expand
ctags: create a

part of a file.

atan2:/ sin, cos,
functions. sinh, cosh,
Xylogics 772 half-inch
tar:

files from a backup

qgic: interface for QIC

for simple lexical
/remove nroff/troff,
nroff or troff.

/erase, hardcopy, tekset,
binary/ tsearch, tfind,
terminal download.

hpd, erase, hardcopy,

4014: paginator for the
initialization. init,

5/86

swap administrative
swap bytes.
BWARDI SWAD .+ « o+ » s o s
swrite: synchronous
sxt: pseudo-device
symbol and line number/ ., .
symbol name for common/ .
symbol table entry.
symbol table entry of a/ . .
symbol table entry ofa . .
symbol table format.
symbol table of a common/ .
symbolic debugger.
syms: common object file . .
sync: update
sync: update the super . . .
synchronization.
synchronous writeona . .
syntax. [shell (command . .
sys_errlist, sys_nerr:
syslocal: special system . . .
sys_nerr: system error/ . . .
table. bsearch:
table entry. /for common .
table entry of a common/ .
table entry of a common/ .
table format. /common . .
table. master: master . . .
table. mnttab:
table of a common object/ .
table of contents/
table. . . ¢ ¢ ¢ . ¢ 0 .
tables for nroffor
tables. /hdestroy:
tables. route: manually . .
tabs on a terminal.
tabs: set tabsona
tabs to spaces, and vice/ . .
tags file. o« ¢ « & o o o o
tail: deliver the last
tan, asin, acos, atan,
tanh: hyperbolic
tape controller. /for
tape file archiver.
tape. frec:recover
LAPe. o« o « o « o 4 s o o a
tar: tape file archiver. . . .
tasks. /programs
tbl, and eqn constructs. . .
tbl: format tables for . . .
td: graphical device/
tdelete, twalk: manage . . .
tdl, gtdl, ptdl: RS-232 . . .
tee: pipe fitting. . . « . . .
tekset, td: graphical/ . . .
TEKTRONIX 4014 terminal.
telinit: process control . . .

- 45 -

swap(1M)
swab(3C)
swap(1M)
swrite(2)
sxt(7)
strip(1)
ldgetname(3X)
ldgetname(3X)
ldtbindex(3X)
1dtbread(3X)
syms(4)
1dtbseek(3X)
sdb(1)
syms(4)
syne(2)
syne(1)
update(1M)
swrite(2)
esh(1)
perror(3C)
syslocal(2)
perror(3C)
bsearch(3C)
ldgetname(3X)
1dtbindex(3X)
1dtbread(3X)
syms(4)
master(4)
mnttab(4)
1dtbseek(3X)
toc(1G})
setmnt{1M)
tbl(1)
hsearch(3C)
route(LNM)
tabs(1)
tabs(1)
expand(1)
ctags(1)
tail(1)
trig(3M)
sinh(3M)
xmset{1M)
tar(1)
frec(1M)
qie(7)

tar(1)

lex(1)
deroff(1)
tbl(1)
gdev(1G)
tsearch(3C)
tdi(1)

tee(1)
gdev(1G)
4014(1)
init(1M)

telnetd: DARPA

/user interface to

to TELNET protocol.
protocol server.

for a temporary/ tmpnam,
tmpfile: create a

/create a name for a

for terminals.

term: format of compiled
term file..

capability data base.

for the TEKTRONIX 4014
of the DASI 450
interface. tiop:

base. termcap:

base. terminfo:

console: console

spawn getty to a remote
generate file name for
tdl, gtdl, ptdl: RS-232
/terminal inteface, and
greek: select

/tgetstr, tgoto, tputs:
/manually start and stop
tset: set terminal,
termio: general

tty: controlling

establish an out-going

of terminal types by
clear: clear

/make typescript of

by/ gettydefs: speed and
set the options for a
tabs: set tabs on a
inteface, and/ tset: set
conlocate: locate a

tty: get the name of the
isatty: find name of a
speed, and/ getty: set
speed, and/ uugetty: set
ttytype: list of

vt: virtual

of DASI 300 and 300s
HP 2640 and 2621-series
tp: controlling

filter for soft-copy
conventional names for
kill:

shutdown, halt:

exit, _exit:

error-logging/ errstop:
child process to stop or
tic:

tput: query

capability data base.
interface.

evaluation command.

5/86

TELNET protocol server.
TELNET protocol. . .
telnet: user interface . .
telnetd: DARPA TELNET
tempnam: create a name

temporary file.
temporary file.
term: conventional names
term file..
term: format of compiled
termcap: terminal . . .
terminal. /paginator .
terminal. /functions . .
terminal accelerator . .
terminal capability data
terminal capability data
terminal.
terminal, ct:
terminal. ctermid: . . .
terminal download. . .
terminal environment. .
terminal filter.
terminal independent/ .
terminal input and/ . .
terminal inteface, and/ .
terminal interface.

terminal interface.

terminal line/ dial: . .
terminal number. /list .
terminal screen.
terminal session. . . .
terminal settings used .
terminal. stty:
terminal.
terminal, terminal . . .
terminal to use as the/ .
terminal.
terminal. ttyname, . .
terminal type, modes, .
terminal type, modes, .
terminal types by/ . .
terminal. . . . < . . .
terminals. /functions .
terminals. /functions of
terminal’s local RS-232/
terminals. /file perusal

terminals. term: . . .
terminate a process. . .
terminate all/
terminate process.
terminate the
terminate. /wait for . .
terminfo compiler. . . .
terminfo database. . .
terminfo: terminal
termio: general terminal
test: condition

- 46 -

telnetd(1NM)
telnet(1N)
telnet(1N)
telnetd(1NM)
tmpnam(3S)
tmpfile(3S)
tmpnam(3S)
term(5)
term(4)
term(4)
termcap(4)
4014(1)

450(1)

tiop(7)
termeap(4)
terminfo(4)
console(7)
ct(1C)
ctermid(3S)
tdl(1)

tset(1)
greek(1)
termeap(3X)
rsterm(1M)
tset(1)
termio(7)
tty(7)
dial(3C)
ttytype(4)
clear(1)
seript(1)
gettydefs(4)
stty(1)
tabs(1)
tset(1)
conlocate(1M}
tty(1)
ttyname(3C)
getty(1M)
uugetty(1M)
ttytype(4)
vt(7)

300(1)

hp(1)

tp(7)

rg(1)
term(5)
kill(1)
shutdown(1M)
exit(2)
errstop(1M)
wait(2)
tie(1M)
tput(1)
terminfo(4)
termio(7)
test(1)

quiz:

ed, red:

ex:

ex for casual/ edit:
change the format of a
format specification in
/format mathematical
/prepare constant-width
nroff: format

plock: lock process,
more, page:

/extract the ASCI
troff: typeset

manage binary/ tsearch,
interface to the DARPA
the DARPA TFTP/
File Transfer Protocol/
tgetflag, tgetstr,/
tgetent, tgetnum,
tgetstr,/ tgetent,
/tgetnum, tgetflag,
[teetflag, tgetstr,

ttt, cubic:

process data and/ timex:
time:

commands at a later
environment at login

for optimal access

profil: execution
an environment at login
stime: set

time: get

[tzset: convert date and
clock: report CPU

TZ:

child process times.
access and modification
and child process

access and modification
report process data and/
accelerator interface.
temporary file.

a name for a temporary/
/_toupper, _tolower,
contents routines.
/pclose: initiate pipe
/tolower, _toupper,
_tolower,/ toupper,
tsort:

acctmerg: merge or add
modification times of a/
toupper, tolower,
_toupper, _tolower,/
terminal’s local RS-232/

5/86

test your knowledge. . .
text editor.
text editor.
text editor (variant of .
text file. newform: . .
text files. fspee:
text for nroff or troff. .
text for troff.
text. « ¢« v ¢ ¢ 0 0 0
text, or data in memory.
text perusal.
text strings in a file. . .
text. o« ¢ b e o 0o oe .
tfind, tdelete, twalk: . .
TFTP protocol. [user .
tftp: user interface to .
tftpd: DARPA Trivial .
tgetent, tgetnum, . .
tgetflag, tgetstr,/ . . .
tgetnum, tgetflag, . . .
tgetstr, tgoto, tputs:/ .
tgoto, tputs: terminal/ .
tic: terminfo compiler. .
tic-tac-toe. . «
time a command; report
time a command. . . .
time. /batch: execute .
time. /up a C shell
time. /copy file systems
time: get time.
time profile.
time. /setting up . . .
time. .« ¢ ¢ ¢ ¢ ¢ o .
time: time a command. .
time. . ¢ ¢ ¢ o 0 0.
time to string. . . .+ .
time used.
time zone file.
times: get process and .
times of a file. /update

times. /get process . .
times. utime: set file .
timex: time a command;

tiop: terminal
tmpfile: createa
tmpnam, tempnam: create
toascii: translate/ . . .
toc: graphical table of .
to/from a process. . . .
_tolower, toascii:/ . . .
tolower, _toupper, . . .
topological sort.
total accounting files. .
touch: update access and
_toupper, _tolower,/ . .
toupper, tolower,
tp: controlling

- 47 -

quiz(6)
ed(1)

ex(1)

edit(1)
newform(1)
fspec(4)
eqn(1}
ew(1)
nroff(1)
plock(2)
more(1)
strings(1)
troff(1)
tsearch(3C)
tftp(1N)
tftp(1N)
tftpd(1NM)
termeap(3X
termeap(3X
termeap(3X
termecap(3X
termeap(3X
tic(1M)
ttt(6)
timex(1)
time(1)
at(1)
cprofile(4)
deopy(IM)
time(2)
profil(2)
profile(4)
stime(2)
time(1)
time(2)
ctime(3C)
clock(3C)
tz(4)

tiop(7)
tmpfile(3S)
tmpnam(3S)
conv(3C)
toc(1G)
popen(3S)
conv(3C)
conv(3C)
tsort(1)

acct merg(1M)
touch(1)
conv(3C)
conv(3C)
tp(7)

database.

/tgetstr, tgoto,
characters.

ptrace: process

trpt: print protocol

ftp: file

DARPA Internet File
/DARPA Trivial File

/ _tolower, toascii:

tr:

ftw: walk a file

manage binary search
trk:

/asin, acos, atan, atan2:
Protocol/ tftpd: DARPA

constant-width text for
text for nroff or
typesetting view/ mv: a
tables for nroff or

trace.

truth values.

/u3b, udb5s, vax: provide
true, false: provide
system with/ Uutry:
twalk: manage binary/
terminal inteface, and/

terminal interface.
terminal.

name of a terminal.

in the utmp file of the/
terminal types by/

/a loadable driver for
/shutacet, startup,
tsearch, tfind, tdelete,
file: determine file

about your processor
getty: set terminal
uugetty: set terminal
/list of terminal

data types.

primitive system data
session. script: make
graphs, and/ mmt, mvt:
troff:

/troff macro package for

time/ /gmtime, asctime,
truth/ mc68k, pdpll,
mc68k, pdpll, u3b,
getpw: get name from

limits.

5/86

tplot: graphics filters. .
tput: query terminfo . .
tputs: terminal/
tr: translate
trace.
trace. <« . ¢ ¢ 0 0 e W
transfer program. . . .
Transfer Protocol/
Transfer Protocol/ . .
translate characters, . .
translate characters. . .
tree. « o < o ¢ o 0.
trees. /tdelete, twalk: .
trekkie game.
trigonometric functions.

Trivial File Transfer . .
trk: trekkie game. . . .
troff. /checkcw: prepare
troff. /mathematical .
troff macro package for

troff. tbl: format . . .
troff: typeset text. . . .
trpt: print protocol . .
true, false: provide . .
truth value about your/
truth values.
try to contact a remote

tsearch, tfind, tdelete, .
tset: set terminal, . . .
tsort: topological sort. .
ttt, cubic: tie-tac-toe. .
tty: controlling
tty: get the name of the

ttyname, isatty: find . . .

ttyslot: find the slot . .
ttytype:list of
tunable variables. . . .
turnacct: shell/
twalk: manage binary/ .
type.
type. /truth value . .
type, modes, speed, and/
type, modes, speed, and/
types by terminal/
types: primitive system
types. types:
typescript of terminal .
typeset documents, view

typeset text.
typesetting view graphs/
TZ: time zone file. . . .
tzset: convert date and .
u3b, udb5, vax: provide

u3b5, vax: provide truth/
UD.
ul: do underlining.
ulimit: get and set user

- 48 -

tplot(1G)
tput(1)
termeap(3X)
tr(1)
ptrace(2)
trpt(1NM)
ftp(1N)
ftpd(INM)
tftpd(INM)
conv(3C)
tr{1)
ftw(3C)
tsearch(3C)
trk(6)
trig(3M)
tftpd(1INM)
trk(6)
cw(1)
eqn(1)
mv(5)

tb1(1)
troff(1)
trpt(1NM)
true(1)
machid(1)
true(1)
Uutry(1M)
tsearch(3C)
tset(1)
tsort(1)
ttt(6)

ty(7)
tty(1)
ttyname(3C)
ttyslot(3C)
ttytype(4)
mktunedrv(1M)
acctsh(1M)
tsearch(3C)
file(1)
machid(1)
getty(1M)
uugetty(1M)
ttytype(4)
types(5)
types(5)
seript(1)
mmt(1)
troff(1)
mv(5)

tz(4)
ctime(3C)
machid(1)
machid(1)
getpw(3C)
ul(1)
ulimit(2)

creation mask.

mode mask.

dismount file/ mount,
system.

current CTIX system.
current CTIX system.
ul: do

an SCCS file. unget:
spaces, and/ expand,
get of an SCCS file.
back into input stream.
/lcong48: generate
lines in a file.

mktemp: make a
program.

and unlink system/ link,
entry.

/exercise link and
umount:

expand/ pack, peat,
modification/ touch:
groups/ make: maintain,
Ifind: linear search and
synchronization.

sync:

sync:

du: summarize disk
/statistical network
names. id: print
setuid, setgid: set
crontab -

login name of the

real/ /getegid: get real
environ:

protocol. telnet:
DARPA TFTP/ tftp:
ulimit: get and set
return login name of
/get real user, effective
super-user or another
utmp file of the current
write: write to another
of ex for casual

/rmail: send mail to
remote equivalent
wall: write to all
/identify processes
/and verify software
statistics.

gutil: graphical

and modification times.
formats. utmp, wtmp:
/utmpname: access
/find the slot in the
wtmp entry formats.
/setutent, endutent,
directories and/

5/86

umask: set and get file .
umask: set file-creation .
umount: mount and . .
umount: unmount a file
uname: get name of . .
uname: print name of .
underlining.
undo a previous get of .
unexpand: expand tabs to
unget: undo a previous .
ungete: push character .
uniformly distributed/ .
uniq: report repeated .
unique file name. . . .
units: conversion . . .
unlink: exercise link . .
unlink: remove directory
unlink system calls. . .
unmount a file system. .
unpack: compress and .
update accessand . . .
update, and regenerate .
update. lsearch,
update: provide disk . .
update super-block. .
update the super block.
USAGE. + o » o o o o o
useful with graphical/ .
user and group IDs and
user and group IDs. . .
user crontab file. ., . .
user. /get character . .
user, effective user, . .
user environment. . . .
user interface to TELNE
user interface to the . .
user limits.
user. logname:
user, real group, and/ .
user. su: become . . .
user. /the slot in the .
USET. o s o o o o o o =
users). /editor (variant
users or read mail. . . .
users. rhosts:
USEIS. o o s o o o o »
using a file or file/ . . .
using the mkfs(1) proto/
ustat: get file system . .
utilities.
utime: set file access . .
utmp and wtmp entry .
utmp file entry.
utmp file of the current/
utmp, wtmp: utmp and
utmpname: access utmp/
uucheck: check the UUCP

- 49 -

umnask(2)
umask(1)
mount(1M})
umount(2)
uname(2)
uname(1)
ul(1)
unget(1)
expand(1)
unget(1)
ungetc(3S)
drand48(3C)
uniq(1)
mktemp(3C)
units(1)
link (1M}
unlink(2)
link(1M)
umount(2)
pack(1)
touch(1)
make(1)
Isearch(3C)
update(1M)
syne(2)
sync(1)
du(1)
stat(1G)
id(1)
setuid(2)
crontab(1)
cuserid(3S)
getuid(2)
environ(5)
telnet(1N)
tftp(1N)
ulimit(2)
logname(3X)
getuid(2)
su(1)
ttyslot(3C)
write(1)
edit(1)
mail(1)
rhosts(4N)
wall(1M)
fuser(1M)
qinstall(1)
ustat(2)
gutil(1G)
utime(2)
utmp(4)
getut(3C)
ttyslot(3C)
utmp(4)
getut(3C)
uucheck(1M)

program for the UUCP/
directory clean-up.
/configuration file for
CTIX system copy.
uucheck: check the
uusub: monitor

uucpd: network
clean-up. uucleanup:
job control. uustat:
uuname: list

/program for the

the scheduler for the
server.

type, modes, speed, and/
information.

names.
CTIX-to-CTIX/ uuto,
for the UUCP system.
inquiry and job/
network.
CTIX-to-CTIX system/
remote system with/
command execution.
command requests.

val:

u3b5, vax: provide truth
return integer absolute
name. getenv: return
/remainder, absolute
putenv: change or add
/ntohl, ntohs: convert
machine-dependent/
false: provide truth
machine-dependent
/formatted output of a
argument list.

varargs: handle

driver for tunable

edit: text editor

mc68k, pdpll, u3b, u3bs,

letter from argument
assertion. assert:
qinstall: install and

tabs to spaces, and vice
ve

get: get a

scesdiff: compare two
print/ vprintf,

Volume Home Blocks
(visual) display editor/
tabs to spaces, and
/mvt: typeset documents,
/package for typesetting
/a terminal to use as the
vt:

5/86

uucico: copy-in/copy-out .
uucleanup: uucp spool . .
utcp communications/ . .
uucp: CTIX system to . .
UUCP directories and/ . .
uucp network.
UUCP ServVer. o« o« o &+ o« »
uucp spool directory . . .
uucp status inquiry and .
UUCP system names. . .
UUCP system. .+ « « . .
UUCP system. uusched: .
uucpd: network uucp . .
uugetty: set terminal . .
uulog: output logfile . . .
uuname: list UUCP system
uupick: public .«
uusched: the scheduler . .
uustat: wucp status . . .
uusub: monitor uuep . . .
uuto, uupick: public . . .
Uutry: try to contacta . .
uux: CTIX to CTIX remote
uuxqt: execute remote . .
val: validate SCCS file. .
validate SCCS file. . . .
value about your/ /u3b, .
value. abs: . . +
value for environment . .
value functions.
value to environment. . .
values between host and/

values: + ¢ v o o ¢ o .
values. true,
values. values:
varargs argument list. . .
varargs: handle variable .
variable argument list. . .
variables. /a loadable . .
(variant of ex for/
vax: provide truth value/ .
ve: version control. . . .
vector. /get option . . .
verify program
verify software using/ . .
versa. /unexpand: expand
version control.
version of an SCCS file. .
versions of an SCCS/ . .
viprintf, vsprintf:
(VHB). /manipulate . . .

uucico(1M)
uucleanup(1M)
Devices(5)
uucp(1C)
uucheck(1M)
uusub(1M)
uucpd(INM)
uucleanup(1M)
uustat(1C)
uuname(1C)
uucico(1M)
uusched(1M)
uucpd(1NM)
uugetty(1M)
uulog(1C)
uuname(1C)
uuto(1C)
uusched(IM)
uustat(1C)
uusub(1M)
uuto(1C)
Uutry(1M)
uux(1C)
uuxqt(1M)
val(1)

val(1)
machid(1)
abs(3C)
getenv(3C)
floor(3M)
putenv(3C)
byteorder(3N)
values(5)
true(l)
values(5)
vprintf(3S)
varargs(5)
varargs(5)
mktunedrv(iM)
edit(1)
machid(1)
ve(l)
getopt(3C)

. assert(3X)

vi: screen-oriented

vice versa. fexpand . . .
view graphs, and slides. .
view graphs and slides. . .
virtual system console. . .
virtual terminal.

- 50 -

ginstall(1)
expand(1)
ve(l)
get(1)
scesdiff(1)
vprintf(3S)
libdev(3X)
vi(1)
expand(1l)
mmt(1)
mv(5)
conlocate(1M)
vi(7)

Vvi: screen-oriented
vme:

file systems with label/
libdev: manipulate
initialize and maintain
vsprintf: print/
vprintf, viprintf,

of process.

to stop or/ wait:
process to stop or/
fiw:

users.

files.

of a/ signal: specify
whodo:

local network. rwho:
who:

system.

what.

/long lines for finite
primitives. window:
wm:

management primitives.

cd: change

chdir: change

/get path-name of current
pwd:

on disk. setenet:

swrite: synchronous

write:

entry. putpwent:

wall:

write:

user.
open for reading or
utmp, wtmp: utmp and
entry formats. utmp,
connect/ fwtmp,
hunt-the-wumpus.
argument list(s) and/
parameters for Xylogics/
strings in C programs.
/set drive parameters for
functions. j0, j1, jn,

10, j1, jn, y0,
compiler-compiler.

0, i1, jn, 0, y1,

TZ: time

5/86

(visual) display editor/ .
VME bus interface.
vme: VME bus interface.
volcopy, labelit: copy .
Volume Home Blocks/ .
volume. iv: . « . & . .
vprintf, vfprintf, . . .
vsprintf: print/
vt: virtual terminal. . .
wait: await completion .
wait for child process .
wait: wait for child . .
walk a file tree.
wall: write toall . . .
we: word count. .« . . .
what: identify SCCS . .
what to do upon receipt

who is doing what. . .
who is logged inon . .
who is on the system. .
who: who is on the . .
whodo: who is doing . .
width output device. . .
window management .
window management. .
window: window

v e .

wm: window management.

working directory. . . .
working directory. . . .
working directory. . . .
working directory name.
write Ethernet address .
write on a file.
write on a file.
write password file . .
write to all users. . . .
write to another user. .
write: write on a file. .
write: write to another .
writing. open:
wtmp entry formats. . .
wtmp: utmp and wtmp
wtmpfix: manipulate . .
wump: the game of . .
xargs: construct
xmset: set drive . , . .
xstr: extract and share .
Xylogics 772 half-inch/ .
¥0, y1, yn: Bessel
y1, yn: Bessel/
yacc: yet another . . .,
yn: Bessel functions. . .
zone file.

s s s s

- 51 -

vi1)
vme(7)
vme(7)
volcopy(1M)
libdev(3X)
iv(1)
vprintf(3S)
vprint{(3S)
vt(7)
wait(1)
wait(2)
wait(2)
ftw(3C)
wall(1IM)
we(l)
what(1)
signal(2)
whodo(1M)
rwho(1N)
who(1)
who(1)
whodo(1M)
fold(1)
window(7)
wm(1)
window(7)
wm(1)
cd(1)
chdir(2)
getewd(3C)
pwd(1)
setenet(1NM)
swrite(2)
write(2)
putpwent(3C)
wall(1M)
write(1)
write(2)
write(1)
open(2)
utmp(4)
utmp(4)
fwtmp(1M)
wump(6)
xargs(1)
xmset(1M)
xstr(1)
xmset{IM)
bessel(3M)
bessel(3M)
yace(1)
bessel(3M)
tz(4)

TABLE OF CONTENTS

2. System Calls

introintroduction to system calls and error numbers
acceptacceptaconnection on a socket
access . . .« . . .«determine accessibility of a file
acctenableor disable process accounting
alarmsetaprocess alarm clock
bindbind aname toa socket
brk.change data segment space allocation
¢chdirchange working directory
chmod « « . change mode of file
chown change owner and group of a file
chrootchangeroot directory
close L L L L e e .closeafile descriptor
connectinitlate a connection on a socket
creatcreate a new file or rewrite an existing one
dupduplicate an open file descriptor
EXEC « 4« 4 4 4 4 4 e 4 s e e s e s e 4 s s . . .execute afile
exitterminate process
fentl . . . o 00 oofile control
fork...................createanewprocess

getpeername « « . .get name of connected peer
getpid get process process group, and parent process IDs
getsockname « « « .get socket name

getsockopt get and set options on sockets
getwidgetuserandgroup IDs
loctle « « « +« « « .« o« .control device
kil send a s1gnal to a process or a group of processes
Iddrvaccess loadable drivers
link 0 .. « + « o o link to afile
listen llsten for connections on a socket
locking exclusxve access to regions of a file
lseekmoveread/write file pointer
mknod make adlrectory, or a special or ordinary file
mountmounta filesystem
msget!message control operations
msggetgetmessage queue
MSEOP + + « = « « = + « « « « + + « « « . Inessage operations
nice « « « « « .+« .. +.+..change priority of a process
OPen +. . « .+ « .« « .« .open for reading or writing
openiopena file specified by i-node
pause+suspend process until signal
PIPE v = « v ¢« v o ocreate an 1nterprocess channel
plock lock process, text, or data in memory
profilexecution time profile
ptraceprocess trace

5/86 S1-

read
TECV & 4 o v o o o &
semctl
semget .

Semop
send .

setpgrp ..
setud
shmetl . . .
shmget . . .

shmop

shutdown
signal

socket

stat
stime
swrite
SYNC '« & v o o &
syslocal
time
times

ulimit

umask .

umount .
Uname . « .« . . .
unlink .
ustat
utime .

walt

write

intro .
ab4l .
abort.
abs
assert
atof .
bessel
bsearch
byteorder

erypt « o v 0 0 .
ctermid .
ctime
ctype
curses
cuserid .
dial

5/86

. read from file
. receive a message from a socket
. . semaphore control operations
. get set of semaphores

. . semaphore operations

. send a message to a socket
. . set process group ID
. set user and group IDs
+ « « . .shared memory control operations
« « « « . get shared memory segment

. . .shared memory operations

. shut, down part of a full-duplex connection
. specify what to do upon receipt of a signal
. create an endpoint for communication
. get file status
. . set time
synchronous write on a file
. . update super-block
. . . special system requests

. . get time

.« . . get process and child process times
.. . get and set user limits

. set and get file creation mask

. . « .« . unmount a file system

get name of current CTIX system

. remove directory entry

. . get file system statistics
set file access and modification times

. wait for child process to stop or terminate
. write on a file

3. Subroutines and Libraries

. Introduction to subroutines and libraries

.. convert between long integer and base-64 ASCII string
« « « ¢ s« e o« o o+« .+ .generate an [IOT fault

. . . .return integer absolute value
. verify program assertion

convert ASCII string to floating-point number

e« « = « « « « o« o o« .Bessel functions
. binary search a sorted table

convert values between host and network byte order
clock.........
CONV v v v o o o o o &

+ + +» « o report CPU time used
. . translate characters
« « » . generate hashing encryption
. generate file name for terminal

. convert date and time to string

« « .« . classify characters

CRT screen handllng and optlmlzatlon package

. get character login name of the user

establxsh an out-going terminal line connection

drand48 . . generate uniformly distributed pseudo-random numbers
ecvtconvertfloating-point numbertostling
end « + « « « . .last locations in program
efferror functlon and complementary error function
eXP .+exponentlal, logarithm, power, square root functions
felose ocloseor flush astream

ferror « s « « « s « o« + o .stream status inquiries
floor floor ceiling, remainder, absolute value functions
fopen <« . . . 0 0 s e e e e e e e e e . open a stream
fread . . v o 0 e e e e e e e binary input/output

frexpmanipulate parts of floating-point numbers
fseekreposition a file pointer in a stream
ftw. « ¢ o v o o vt i s s s e e e e v v o . .walkafile tree
GAMMA = + « « « o 2 « o « « o « « « « « »log gamma function
gete oo L Lget character or word from a stream
getewdget path name of current working directory

getenv return value for environment name
getgrentgetgroup file entry
gethostent get network host entry
gethostnameget name of current host
getlogin v« v v v L h h e e s e e s e e e e get login name
getnetent « . .get network entry

getopt get opt]on letter from argument vector
getpass 4« 4 . 4 .+« « .+ -« « . «read a password

getprotoent 00 0 e e e . get protocol entry
getpbw . . . L . L 0 s e e . . « « « « »get name from UID
getpwent 00 e e 0 e e get password file entry
gets0 . « . «.getastring from a stream
getservent e+« « « . .getservice entry
getutaccessutmp file entry
hsearch « . manage hash search tables

hypotEuclidean distance function
netInternet address manipulation routines
183tol convert between 3-byte integers and long integers
ldahread . . read the archive header of a member of an archive file
ldclose close a common object file
ldthread read the flle header of a common object file
ldgetname retrieve symbol name for common object file

Idlread manipulate line number entries
ldlseek « « « .seek to line number entries of a section
ldohseek . seek to the optlonal file header of a common object file

ldopenopenacommon object file for reading
ldrseekseek to relocation entries of a section
ldshreadread an indexed/named section header
ldsseek . seek to an indexed/named section of a common object file
ldtbindex compute the index of a symbol table entry
ldtbread « . .read an indexed symbol table entry
ldtbseek seek to the symbol table of a common object file
libdevmanipulate Volume Home Blocks (VHB)
lockfrecord locking on files
lognamereturn iogin name of user

5/86 -3-

Isearchlnearsearch and update
malloc.main memory allocator
malloc.fast main memory allocator
matherrerror-handling function
MEMOIY « ¢« « + « o« « « « » « « « s« « « « . INemMoOry operations
mktempmakea unique file name
monitorDrepare execution profile
nlistgetentries from name list
OCUISE + + « o s+ « » « » &« « « » « .Optimized screen functions
PeITOr . = . + + « 4 4 +« « « « « « » . .System error messages
plotgraphics interface subroutines
popeninitiate pipe to/from a process
printfprintformatted output
putcputcharacter or word on a stream
putenv.change or add value to environment
putpwentwrite password file entry
putsputastring on astream
0=l o « « « « « « . quicker sort
rand81mple random-number generator
remdroutines for returning a stream to a remote command
regemp compile and execute regular expression
reXeC . .« « + « « « .+ « o oreturn stream to a remote command
scanfconvert formatted input
setbufassign buffering to a stream
setjmp .+ « v v + + < 4« 4+« s ¢ s e« .« . . .nonlocal goto
smhhyperbolic functions

sleepsuspend execution for interval
sput! . . access long 1nteger data in a machine-independent fashion.
ssignal « . .software signals
stdio standard buffered mput/output package
stdipc standard interprocess communication package
string e e e e e .strmg operations

strtod convert strlng to double-precision number
strtol . ©convertstring to integer
swab.......................swapbytes
systemissueashell command
termeap 0 . . e .. terrmnal independent operations
tmpfilecreatea temporary file
tmpnamcreate a name for a temporary file
trig « v v v v ¢ v 4 4 v v+« « . . .trigonometric functions
tsearchmanage binary search trees
ttyname find name of a terminal
ttyslot flnd the slot in the utmp file of the current user
ungetc « « .+ . push character back into input stream
vprintf prmt formatted output of a varargs argument list

4. File Formats

ntro « v . . 0 e 1introduction to file formats
aoutcommon assembler and link editor output
acctper-process accounting file format

5/86 -4

- . . . common archive file format
checklist llst of flle systems processed by fsck
COTE v v v v 4 o o o s o o o o = o = forma.tofcorerma.geflle
CPIO ¢ v 4 4 v 4 et e e e e e e e e e format of cpio archive
cprofile settmg upaCshell environment at login time
dir formatof directories

errfile . . L L L. L. L Lo error-log file format
filehdr.file header for common object files
fs v v i e e e e e e e e e . « . file system format
fspec00 ... format specification in text files

gettydefsspeed and terminal settings used by getty
gpsgraphical primitive string, format of graphical files

BIOUD v ¢ 4 v v e 4 o s o 4 s b s e e e e e e e e group file
hostslstof nodes on network
imittab Lo L L. L script for the init process
mode v v v vt e e e e e e e e e e e . format of an i-node
Issue « + + + « o « « »lssue 1dentification file
dfen common object file access routines

linenumline number entries in a common object file
mastermaster device information table
mnttabmounted file system table
networksnames and numbers for the internet

PassWd . . . v b i e e e h e e e e e e e e e password file
plot « « . . graphics interface
profile settmg up an envrronment at login time
protocols - . . list of Internet protocols
reloc. relocatlon 1nformatnon for a common object file
thosts « & v & v ¢ v v o « . . «remote equivalent users
scesfile « . . o « . . format of SCCS file
secnhdr sectron header for a common object file
SEIVICES . v 4 o & « o« . . « « « « o . list of Internet services
Syms . «common object flle symbol table format
SYysteIm « ¢ v 4 v s h e e e e e e e e system description file

termformat of compiled term file.
termeapterminal capability data base

terminfo terminal capability data base
ttytype hst of terminal types by terminal number
12 . time zone file

utmp, .. .utmpand wtmp entry formats

5. Miscellaneous Facilities

introintroduction to miscellany
ASCH &« 4 4 4 . . . « . . map of ASCII character set
Devices conflguratlon file for uucp communications lines
DialersACU/modem calling protocols

environ « . user environment
eqnchar specral character deflnltlons for eqn and neqn
fentl « « « « . file control options

manINacros for formattmg entries in this manual
mathmath functions and constants

5/86 -5-

mmthe MM macro package for formatting documents
mptxthe macro package for formatting a permuted index
mv . . a troff macro package for typesetting view graphs and slides
prof +. . .« . profile within a function
TegeXP .+ + .« . . r(-gular expreqsmn compile and match routines
statdatareturned by stat system call
term00 . 000 .conventional names for terminals
typesprimitive system data types
valuesmachine-dependent values
varargs « « handle vanable argument list

6. Games

introintroduction to games
adventexplore Colossal Cave
arithmeticprovidedrill in number facts
backthegameof backgammon
bj.thegameof black jack
CTAPS = + = « + & o o o« o s+ s o o » + o« « .the game of craps
fish « « « . .play “Go Fish”
fortune prmt arandom hopefully interesting, adage
hangman..................guesstheword
MAZE & & & « & « o« + o« « o o o« » « « » « » . generate a maze
MO0 v w4 v o o v e guessing gume
number convert Arablc numerals to English
QUIZ & « 4 4 4 e e e e e e s w o« « o+« o . test your knowledge
trtke o v v v v o o v o s . u s e o 4« 4w« . .trekkie game
917 e+ o . . tic-tac-toe
WUITID & o & & o o « o o o o o o the game of hunt- the wumpus

7. Special Files

intro.introduction to special files
console+consoleterminal
disk.,generaldisk driver
drivers+«loadable device drivers
€IT o o & & o o o & o o« » « « » « » « « oerror-logging interface
Ip o« . vparallel printer interface
MeM « + « o « + o = o« o o » « » « «System memory interface
null « « 0oL L o e e « « « o .thenull file
53 o operatlng system profiler
QC e o ¢ e v v s e s s« o« o o «interface for QIC tape
sxt v . o v i s e et e e v v v v« » o .pseudo-device driver
termiogeneral terminal interface
BIOD & v e e e e e e e e termmal accelerator interface
1% o T controllmg termlna] s local RS-232 channels
tty . . o .o . o vcontrolling terminal interface
VINE © + v « « « s o« s o« o« « o « « « « » « VME bus interface
2 /2 « + « » » «virtual terminal
window 0. wmdow management primitives

5/86 -6 -

INTRO (2)

NAME

intro — introduction to system calls and error numbers
SYNOPSIS

#include <errno.h>
DESCRIPTION

This section describes all of the system calls.

System call entries that are suffixed by (2N) are part of
the CTIX networking packages. The link editor searches
these calls under the —1 socket option. To use these
calls you must have the network protocols on your
system. See the CTIX Internetworking Manual for
further information.

Most of these calls have one or more error returns. An
error condition is indicated by an otherwise impossible
returned value. This is almost always —1; the individual
descriptions specify the details. An error number is also
made available in the external variable errno. Errno is
not cleared on successful calls, so it should be tested only
after an error has been indicated.

Each system call description attempts to list all possible
error numbers. The following is a complete list of the
error numbers and their names as defined in
<errno.h>.

1 EPERM Not super-user
Typically this error indicates an attempt to
modify a file in some way forbidden except to its
owner or super-user. It 1s also returned for
attempts by ordinary users to do things allowed
only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name or IPC
identifier is specified and the file or IPC
structure should exist but doesn’t, or when one
of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that
specified by pid in kil or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or
quit), which the user has elected to catch,
occurred during a system call. If execution is
resumed after processing the signal, 1t will
appear as if the interrupted system call returned
this error condition.

INTRO (2)

5 EIO 1/0 error
ome physical I/O error has occurred. This
error may in some cases occur on a call following
the one to which it actually applies.

6 ENXIO No such device or address

I/O on a special file refers to a subdevice which
does not exist, or beyond the limits of the
device. It may also occur when, for example, a
tape drive is not on-line or no disk pack is
loaded on a drive. On local terminals, it may
indicate that the host terminal lacks the
specified channel; for example, opening tpa256,
when tty256 refers to a Programmable Terminal,
not a Graphics Terminal.

7 E2BIG Arg list too long
An argument list longer than 10,240 bytes is
presented to a member of the ezec family.

8 ENOEXEC Exec format error
A request is made to execute a file which,
although it has the appropriate permissions, does
not start with a valid magic number (see
a.out(4)), or the executable file requires
hardware that does not exist (e.g., floating-
point).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a
read (respectively, write) request is made to a
file which is open only for writing (respectively,
reading).

10 ECHILD No child processes
A wait was executed by a process that had no
existing or unwaited-for child processes.

11 EAGAIN No more processes
A fork failed because the system’s process table
is full or the user is not allowed to create any
more processes, or an [PC call is made with the
IPC_NOWAIT option and the caller would
block.

12 ENOMEM Not enough space
During an ezec, brk, or sbrk, a program asks for
more space than the system is able to supply.

13 EACCES Permission denied
An attempt was made to access a file or IPC
structure in a way forbidden by the protection
system. From locking, an attempt to lock bytes
already under a checking lock.

-9.

14

15

16

17

18

19

20

21

22

24

INTRO (2)

EFAULT Bad address
The system encountered a hardware fault in
attempting to use an argument of a system call.

ENOTBLK Block device required
A non-block file was mentioned where a block
device was required, e.g., in mount.

EBUSY Device or resource busy

An attempt was made to mount a device that
was already mounted or an attempt was made to
dismount a device on which there is an active
file (open file, current directory, mounted-on file,
active text segment). It will also occur if an
attempt is made to enable accounting when it is
already enabled. The device or resource is
currently unavailable.

EEXIST File exists
An existing file or [PC structure was mentioned
in an inappropriate context, e.g., link.

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate
system call to a device; e.g., read a write-only
device.

ENOTDIR Not a directory
A non-directory was specified where a directory
is required, for example in a path prefix or as an
argument to chdir{2).

EISDIR Is a directory
An attempt was made to write on a directory.

EINVAL Invalid argument
Some invalid argument (e.g., dismounting a
non-mounted device; mentioning an undefined
signal in signal, or kil; reading or writing a file
for which lseek has generated a negative
pointer). Also set by the math functions
described in the (3M) entries of this manual.

ENFILE File table overflow
The system file table is full, and temporarily no
more opens can be accepted.

EMFILE Too many open files
No process may have more than 20 file
descriptors open at a time. When a record lock
is being created with fentl, there are too many
files with record locks on them.

-3

25

26

27

28

29

30

31

32

33

34

35

36

INTRO(2)

ENOTTY Not a character device
An attempt was made to roct{2) a file that is
not a special character device.

ETXTBSY Text file busy
An attempt was made to execute a pure-
procedure program that is currently open for
writing. Also an attempt to open for writing a
pure-procedure program that is being executed.

EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) or ULIMIT; see ulimit(2).

ENOSPC No space left on device
During a write to an ordinary file, there is no
free space left on the device. In fentl, the setting
or removing of record locks on a file cannot be
accomplished because there are no more record
entries left on the system. In an IPC call, no
IPC identifiers are available.

ESPIPE Illegal seek
An [seek was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was
made on a device mounted read-only.

EMLINK Too many links
An attempt to make more than the maximum
number of links (1000) to a file.

EPIPE Broken pipe
A write on a pipe for which there is no process
to read the data. This condition normally
generates a signal; the error is returned if the
signal is ignored.

EDOM Math argument
The argument of a function in the math package
(3M) is out of the domain of the function.

ERANGE Result too large
The value of a function in the math package
(3M) is not representable within machine
precision.

ENOMSG No message of desired type
An attempt was made to receive a message of a
type that does not exist on the specified message
queue; see msgop(2).

EIDRM Identifier Removed
This error is returned to processes that resume

5/86

37

38

39

40

41

42

43

44

45

46

50

51

52

53

54

55

INTRO (2)

execution due to the removal of an identifier
from the file system’s name space (see msgct!(2),
semctl(2), and shmctl(2)).

ECHRNG Channel number out of range
Not used; retatned for compatibility.

EL2NSYNC Level 2 not synchronized
Not used; retained for compatibility.

EL3HALT Level 3 halted
Not used; retained for compatibility.

EL3RST Level 3 reset
Not used; retained for compatibility.

ELNRNG Link number out of range
Not used; retained for compatibility.

EVNATCH Protocol driver not attached
Not used; retatned for compatibility.

ENOCSI No CSI structure available
Not used; retained for compatibility.

EL2HLT Level 2 halted
Not used; retained for compatibility.

EDEADLK Record locking deadlock
Call cannot be honored because of a potential
deadlock. See fentl(2).

ENOLCK No record locks available
No free entries are currently available in the
kernel lock array.

EBADE Invalid exchange
A user-specified exchange descriptor is out of
range or specifies an unallocated exchange.

EBADR Invalid request descriptor
An attempt has been made to reference a request
that is not outstanding.

EXFULL Exchange full
No request descriptors are currently available for
this exchange.

ENOANO No anode
Not used; retained for compatibility.

EBADRQC Invalid request code
No routing is currently available for this request
code.

EBADSLT Invalid slot
Not used; retained for compatibility.

5/86

INTRO(2)

56 EDEADLOCK Deadlock error
Call cannot be honored because of potential
deadlock or because lock table is full. See
locking(2).

57 EBFONT Bad font file format
Not used; retained for compatibility.

224 ENOHDW No hardware available for operation
The address specification exceeds the allowable

limits or the required hardware does not exist.
See ezec(2).

225 EBADFS Bit-mapped file system is marked dirty
An attempt to mount a bit-mapped file system
failed due to the dirty flag being set for that file
system.

226 EWOULDBLOCK Operation would block
An operation which would cause a process to
block was attempted on a object in non-blocking
mode.

227 EINPROGRESS Operation now in progress
An operation which takes a long time to
complete (such as a connect(2N)) was attempted
on a non-blocking object.

228 EALREADY Operation already in progress
An operation was attempted on a non-blocking
object which already had an operation in
progress.

229 ENOTSOCK Socket operation on non-socket
Self-explanatory.

230 EDESTADDRREQ Destination address required
A required address was omitted from an
operation on a socket.

231 EMSGSIZE Message too long
A message sent on a socket was larger than the
internal message buffer.

232 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support
the semantics of the socket type requested. For
example, you cannot use the ARPA Internet
UDP protocol with type SOCK_STREAM.

233 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the
system or no implementation for it exists.

234 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been

-6-

5/86

235

236

237

238

239

240

241

242

243

244

245

246

INTRO (2)

configured into the system or no implementation
for it exists.

EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a
datagram socket.

EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into
the system or no implementation for it exists.

EAFNOSUPPORT Address family not supported by
protocol
An address incompatible with the requested
protocol was used. For example, you shouldn’t
necessarily expect to be able to use PUP Internet
addresses with ARPA Internet protocols.

EADDRINUSE Address already in use
Only one usage of each address is normally
permitted.

EADDRNOTAVAIL Can’t assign requested address
Normally results from an attempt to create a
socket with an address not on this machine.

ENETDOWN Network is down
A socket operation encountered a dead network.

ENETUNREACH Network is unreachable
A socket operation was attempted to an
unreachable network.

ENETRESET Network dropped connection on reset

The host you were connected to crashed and
rebooted.

ECONNABORTED Software caused connection
abort
A connection abort was caused internal to your
host machine.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This

normally results from the peer executing a
shutdown (2) call.

ENOBUFS No buffer space available
An operation on a socket or pipe was not
performed because the system lacked sufficient
buffer space.

EISCONN Socket is already connected
A connect request was made on an already
connected socket; or, a sendlo or sendmsg
request on a connected socket specified a

-7 -

INTRO(2)

destination other than the connected party.

247 ENOTCONN Socket is not connected
An request to send or receive data was
disallowed because the socket is not connected.

248 ESHUTDOWN Can’t send after socket shutdown
A request to send data was disallowed because
the socket had already been shut down with a
previous shutdown(2) call.

249 ETOOMANYREFS Too many references: cant’ splice

250 ETIMEDOUT Connection timed out
A connect request failed because the connected
party did not properly respond after a period of
time. (The timeout period is dependent on the
communication protocol.)

251 ECONNREFUSED Connection refused
No connection could be made because the target
machine actively refused it. This usually results
from trying to connect to a service which is
inactive on the foreign host.

252 EHOSTDOWN Host is down
The host is down.

253 EHOSTUNREACH No route to host
The gateway does not recognize the requested
host via the route specified.

254 ENOPROTOOPT Protocol not available
A bad option was specified in a getsockopt(2N)
or setsockopt(2N) call.
DEFINITIONS
Process ID
Each active process in the system is uniquely identified

by a positive integer called a process ID. The range of
this ID is from 1 to 30,000.

Parent Process ID
A new process is created by a currently active process;
see fork(2). The parent process ID of a process is the
process ID of its creator.

Process Group ID
Each active process is a member of a process group that
is identified by a positive integer called the process
group ID. This ID is the process ID of the group leader.

This grouping permits the signaling of related processes;
see kill(2).

5/86 -8-

Tty

INTRO(2)

Group ID

Each active process can be a member of a terminal group
that is identified by a positive integer called the tty
group ID. This grouping is used to terminate a group of
related processes upon termination of one of the
processes in the group; see eztt(2) and signal(2).

Real User ID and Real Group ID

Each user allowed on the system is identified by a
positive integer called a real user ID.

Each user is also a member of a group. The group is
identified by a positive integer called the real group ID.

An active process has a real user ID and real group ID
that are set to the real user ID and real group ID,
respectively, of the user responsible for the creation of
the process.

Effective User ID and Effective Group ID

An active process has an effective user ID and an
effective group ID that are used to determine file access
permissions (see below). The effective user ID and
effective group ID are equal to the process’s real user ID
and real group ID respectively, unless the process or one
of its ancestors evolved from a process that had the set-
user-ID bit or set-group ID bit set; see ezec(2).

Super-user

A process is recognized as a super-user process and is
granted special privileges if its effective user ID is 0.

Special Processes

File

File

5/86

The processes with a process ID of 0 and a process ID of
1 are special processes and are referred to as proc0 and
procl.

Proc0 is the scheduler. Procl is the initialization
process (tnit). Procl is the ancestor of every other
process in the system and is used to control the process
structure.

Descriptor

A file descriptor is a small integer used to do 1/O on a
file. The value of a file descriptor is from 0 to 19. A
process may have no more than 20 file descriptors (0-19)
open simultaneously. A file descriptor is returned by
system calls such as open(2), or pipe(2). The file
descriptor is used as an argument by calls such as
read(2), write(2), foct2), and close(2).

Name

Names consisting of 1 to 14 characters may be used to
name an ordinary file, special file or directory.

-9-

INTRO(2)

These characters may be selected from the set of all
character values excluding \0 {null) and the ASCII code
for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part
of file names because of the special meaning attached to
these characters by the shell. See sh(l). Although
permitted, it is advisable to avoid the use of unprintable
characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string
starting with an optional slash (/L, followed by zero or
more directory names separated by slashes, optionally
followed by a file name.

More precisely, a path name is a null-terminated
character string constructed as follows:

< path-name > ::= < file-name >| <path-prefix > <file-
name>|/

< path-prefix >::= <rtprefix >| / <rtprefix >

<rtprefix > ::= < dirname > /| <rtprefix> < dirname >/

where <file-name> is a string of 1 to 14 characters
other than the ASCII slash and null, and <dirname> is
a string of 1 to 14 characters (other than the ASCII slash
and null) that names a directory. Any number of
consecutive slashes is equivalent to a single slash.

If a path name begins with a slash, the path search
begins at the root directory. Otherwise, the search
begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name
is treated as if it named a non-existent file.

Directory
Directory entries are called links. By convention, a
directory contains at least two links, . and .., referred to
as dot and dot-dot respectively. Dot refers to the
directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root
directory and a current working directory for the purpose
of resolving path name searches. The root directory of a
process need not be the root directory of the root file
system.

File Access Permissions
Read, write, and execute/search permissions on a file are
granted to a process if one or more of the following are

5/86 - 10 -

INTRO(2)

true:
The effective user ID of the process is super-user.

The effective user ID of the process matches the
user ID of the owner of the file and the
appropriate access bit of the “owner” portion
(0700) of the file mode is set.

The effective user ID of the process does not
match the user ID of the owner of the file, and
the effective group ID of the process matches the
group of the file and the appropriate access bit
of the “group” portion (070) of the file mode is
set.

The effective user ID of the process does not
match the user ID of the owner of the file, and
the effective group ID of the process does not
match the group ID of the file, and the
appropriate access bit of the ‘“‘other’ portion
(07) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier

5/86

A message queue identifier (msqid) is a unique positive
integer created by a msgget(2) system call. Each msqid
has a message queue and a data structure associated with
it. The data structure is referred to as msgid_ds and
contains the following members:

struct ipc_perm msg_perm;
/* operation permission struct */
ushort msg_gnum; /* number of msgs on q */
ushort msg_qgbytes; /* max number of bytes on q */
ushort msg_lspid; /#* pid of last msgsnd operation */
ushort msg_lrpid; /* pid of last msgrev operation */
time_t msg_stime; /* last msgsnd time */
time_t msg_rtime; /* last msgrev time */
time_t msg_ctime; /* last change time */
/* Times measured in secs since *
/* 00:00:00 GMT, Jan. 1, 1970 */

Msg_perm is an ipc_perm structure that specifies the
message operation permission (see below). This structure
includes the following members:

ushort cuid; /* creator user id */

ushort cgid; /* creator group id */

ushort uid; /* user id */

ushort gid; /* group id */

ushort mode; /* r/w permission */
- 11 -

INTRO(2)

Msg_qnum is the number of messages currently on the
queue. Msg_gbytes is the maximum number of bytes
allowed on the queue. Msg_lspid is the process id of
the last process that performed a msgsnd operation.
Msg_Irpid is the process id of the last process that
performed a masgrev operation. Msg_stime is the time
of the last msgsnd operation, msg_rtime is the time of
the last msgrcv operation, and msg_ctime is the time of
the last maget!(2) operation that changed a member of
the above structure.

Message Operation Permissions

In the msgop(2) and msgctl(2) system call descriptions,
the permission required for an operation is given as
"{token}”, where ”token” is the type of permission
needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
msg_perm.[c uid in the data structure
associated with msqid and the appropriate bit of
the “user” portion (0600) of msg_perm.mode
is set.

The effective user ID of the process does not
match msg_perm.[cJuid and the effective
group ID of the process matches
msg_perm.[c|gid and the appropriate bit of the
‘““group’ portion (060) of msg_perm.mode is
set.

The effective user ID of the process does not
match msg_perm.[c]Juid and the effective
group ID of the process does not match
msg_perm.|c|gid and the appropriate bit of the
“other’’ portion (06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier

5/86

A semaphore identifier (semid) is a unique positive
integer created by a semget(2) system call. Each semid
has a set of semaphores and a data structure associated
with it. The data structure is referred to as semid_ds
and contains the following members:

-12 -

INTRO (2)

struct ipc_perm sem_perm;

/* operation permission struct */
ushort sem_nsems; /* number of sems in set */
time_t sem_otime; /# last operation time */
time_t sem_ctime; /* last change time */

*Times measured in secs */
* since 00:00:00 GMT, */
/+Jan. 1, 1970 */

Sem_perm is an ipc_perm structure that specifies the
semaphore operation permission (see below). This
structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

ushort gid; /* group id */

ushort mode; /* r/a permission */

The value of sem_nsems is equal to the number of
semaphores in the set. Each semaphore in the set is
referenced by a positive integer referred to as a
sem_num. Sem_num values run sequentially from 0 to
the value of sem_nsems minus 1. Sem_otime is the
time of the last semop(2) operation, and sem_ctime is
the time of the last semctl(2) operation that changed a
member of the above structure.

A semaphore is a data structure that contains the
following members:

ushort semval; /* semaphore value */

short sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0 */

Semval is a non-negative integer. Sempid is equal to
the process ID of the last process that performed a
semaphore operation on this semaphore. Semnent is a
count of the number of processes that are currently
suspended awaiting this semaphore’s semval to become
greater than its current value. Semszent is a count of
the number of processes that are currently suspended
awaiting this semaphore’s semval to become zero.

Semaphore Operation Permissions

5/86

In the semop(2) and semctl(2) system call descriptions,
the permission required for an operation is given as
"{token}”, where “token” is the type of permission
needed interpreted as follows:

00400 Read by user
00200 Alter by user

- 13 -

INTRO (2)

00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
sem_perm.[c uid in the -data structure
associated with semid and the appropriate bit of
the ‘“‘user” portion (0600) of sem_perm.mode
is set.

The effective user ID of the process does not
match sem_perm.|[c]uid and the effective group
ID of the process matches sem_perm.[c]gid and
the appropriate bit of the “‘group” portion (060)
of sem_perm.mode is set.

The effective user ID of the process does not
match sem_perm.|[c]uid and the effective group
ID of the process does not match
sem_perm.|c|gid and the appropriate bit of the
““other”’ portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier

5/86

A shared memory identifier (shmid) is a unique positive
integer created by a shmget(2) system call. Each shmid
has a segment of memory (referred to as a shared
memory segment) and a data structure associated with
it. The data structure is referred to as shmid_ds and
contains the following members:

struct ipc_perm shm_perm;
/* operation permission struct */
int shm_segsz; /* size of segment */
ushort shm_cpid; /* creator pid */
ushort shm_lpid; /* pid of last operation */
short shm_nattch; /* number of current attaches */
time_t shm_atime; /* last attach time */
time_t shm_dtime; /* last detach time */
time_t shm_ctime; /* last change time */
/* Times measured in secs since */
/% 00:00:00 GMT, Jan. 1, 1970 */

Shm_perm is an ipc_perm structure that specifies the
shared memory operation permission (see below). This
structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

- 14 -

INTRO(2)

ushort gid; /* group id */
ushort mode; /* r/w permission */

Shm_segse specifies the size of the shared memory
segment. Shm_cpid is the process id of the process that
created the shared memory identifier. Shm_lpid is the
process id of the last process that performed a shmop(2)
operation. Shm_nattch is the number of processes that
currently have this segment attached. Shm_atime is
the time of the last shmat operation, shm_dtime is the
time of the last shmdt operation, and shm_ctime is the
time of the last shmectl(2) operation that changed one of
the members of the above structure.

Shared Memory Operation Permissions

In the shmop(2) and shmctl(2) system call descriptions,
the permission required for an operation is given as
"{token}”, where "token” is the type of permission
needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
shm_perm.[cJuid in the data structure
assoclated with shmid and the appropriate bit of
the “user” portion (0600) of shm_perm.mode
is set.

The effective user ID of the process does not
match shm_perm.[cjuid and the effective
group ID of the process matches
shm_perm.[c]gid and the appropriate bit of the
‘“‘group’’ portion (060) of shm_perm.mode is
set.

The effective user ID of the process does not
match shm_perm.[cJuid and the effective
group ID of the process does not match
shm_perm.|c|gid and the appropriate bit of the
“other” portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO

5/86

intro(3
CTIX Internetworking Manual.

close%?%, ioctl(2), open(2), pipe(2), read(2), write(2),

-15 -

NAME

ACCEPT(2N)

accept — accept a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

accept(s, addr, addrlen)
int s;

struct sockaddr *addr;
int *addrlen;

DESCRIPTION

Accept accepts a connection on a socket. The argument
s is a socket which has been created with socket(2),
bound to an address with 4ind(2), and is listening for
connections after a listen(2). Accept extracts the first
connection on the queue of pending connections, creates
a new socket with the same properties of s and allocates
a new file descriptor for the socket. If no pending
connections are present on the queue, and the socket is
not marked as non-blocking, accept blocks the caller
until a connection is present. If the socket is marked
non-blocking and no pending connections are present on
the queue, accept returns an error as described below.
The accepted socket, ns, may not be used to accept
more connections. The original socket s remains open.

The argument addr is a result parameter which is filled
in with the address of the connecting entity, as known to
the communications layer. The exact format of the addr
parameter is determined by the domain in which the
communication is occurring. The addrien is a value-
result parameter; it should initially contain the amount
of space pointed to by aeddr; on return i1t will contain the
actual length (in bytes) of the address returned. This
call is used with connection-based socket types, currently
with SOCK_STREAM.

RETURN VALUE

The call returns —1 on error. If it succeeds it returns a
non-negative integer which is a descriptor for the
accepted socket.

ERRORS

The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK] The descriptor references a file,

not a socket.

[EOPNOTSUPP] The referenced socket is not of
type SOCK_STREAM.

-1-

ACCEPT(2N)

[EFAULT] The addr parameter is not in a
writable part of the user address
space.

SEE ALSO

bind(2N), connect(2N), listen(2N), socket(2N).
CTIX Internetworking Manual.
NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

NAME

ACCESS(2)

access — determine accessibility of a file

SYNOPSIS

int access (path, amode)
char *path;
int amode;

DESCRIPTION

Path points to a path name naming a file. Access
checks the named file for accessibility according to the
bit pattern contained in emode, using the real user ID in
place of the effective user ID and the real group ID in
place of the effective group ID. The bit pattern
contained in amode is constructed as follows:

04 read

02 write

01 execute (search)

00 check existence of file

Access to the file is denied if one or more of the
following are true:

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] Read, write, or execute (search)
permission is requested for a null path
name.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a
component of the path prefix.

[EROFS) Write access is requested for a file on a
read-only file system.

[ETXTBSY]

Write access is requested for a pure
procedure (shared text) file that is being
executed.

[EACCES)

Permission bits of the file mode do not
permit the requested access.

[EFAULT]

Path points outside the allocated
address space for the process.

The owner of a file has permission checked with respect
to the ‘“‘owner” read, write, and execute mode bits.
Members of the file’'s group other than the owner have
permissions checked with respect to the “group” mode

ACCESS(2)

bits, and all others have permissions checked with
respect, to the “other” mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is
returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chmod(2), stat(2).

ACCT(2)

NAME
acct — enable or disable process accounting

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION

Acct is used to enable or disable the system process
accounting routine. If the routine is enabled, an
accounting record will be written on an accounting file
for each process that terminates. Termination can be
caused by one of two things: an eztt call or a signal; see
ezit(2) and signal(2). The effective user ID of the calling
process must be super-user to use this call.

Path points to a path name naming the accounting file.
The accounting file format is given in acct(4).

The accounting routine is enabled if path is non-zero and
no errors occur during the system call. It is disabled if
path is zero and no errors occur during the system call.

Acet will fail if one or more of the following are true:

[EPERM] The effective user of the calling process

is not super-user.
—)

[EBUSY] An attempt is being made to enable
accounting when it is already enabled.

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT)] One or more components of the
accounting file path name do not exist.

[EACCES] A component of the path prefix denies
search permission.

[EACCES) The file named by path is not an
ordinary file.

[EACCES] Mode permission is denied for the
named accounting file.

[EISDIR] The named file is a directory.

[EROFS] The named file resides on a read-only
file system.

[EFAULT) Path points to an illegal address.

—

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

ACCT(2)

SEE ALSO
exit(2), signal(2), acct(4).

ALARM(2)

NAME
alarm - set a process alarm clock
SYNOPSIS
unsigned alarm (sec)
unsigned sec;
DESCRIPTION

Alarm instructs the alarm clock of the calling process to
send the signal SIGALRM to the calling process after
the number of real time seconds specified by sec have
elapsed; see signal(2).

Alarm requests are not stacked; successive calls reset the
alarm clock of the calling process.

If sec is 0, any previously made alarm request is
canceled.
RETURN VALUE

Alarm returns the amount of time previously remaining
in the alarm clock of the calling process.

SEE ALSO
pause(2), signal(2).

BIND (2N)

NAME
bind — bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#finclude <sys/socket.h>

bind (s, name, namelen)
int s;

struct sockaddr *name;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a
socket is created with sockef(2N), it exists in a name
space (address family) but has no name assigned. Bind
requests that name be assigned to the socket.

NOTES
The rules used in name binding vary between
communication domains. Consult the manual entries in
section 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return
value of -1 indicates an error, which is further specified
in the global errno.

ERRORS
The bind call will fail if:
[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is not a socket.

[EADDRNOTAVAIL] The specified address is not

available from the local machine.

[EADDRINUSE] The specified address is already in
use.

[EINVAL] The socket is already bound to an
address.

[EACCESS] The requested address is

protected, and the current user
has inadequate permission to

access it.

[EFAULT) The name parameter is not in a
valid part of the user address
space.

SEE ALSO
connect(2N), getsockname(2N), listen(2N), socket(2N).
CTIX Internetworking Manual.

5/86 -1-

BIND (2N)

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

BRK (2)

NAME
brk, sbrk — change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION

Brk and sbrk are used to change dynamically the
amount of space allocated for the calling process’s data
segment; see ezec(2). The change is made by resetting
the process’s break value and allocating the appropriate
amount of space. The break value is the address of the
first location beyond the end of the data segment. The
amount of allocated space increases as the break value
increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the
allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the
allocated space accordingly. Incr can be negative, in
which case the amount of allocated space is decreased.

Brk and sbrk will fail without making any change in the
allocated space if one or more of the following are true:

[ENOMEM]
Such a change would result in more space
being allocated than is allowed by a system-
imposed maximum (see ultmit(2)). Note that
due to a lack of swap space this may be less
than what ulimit(2) reports.

[ENOMEM]|
Such a change would result in the break
value being greater than or equal to the start
address of any attached shared memory
segment (see shmop(2)).

RETURN VALUE
Upon successful completion, brk returns a value of 0 and
sbrk returns the old break value. Otherwise, a value of
~1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2).

CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path;
DESCRIPTION
Path points to the path name of a directory. Chdir
causes the named directory to become the current

working directory, the starting point for path searches
for path names not beginning with /.

Chdir will fail and the current working directory will be
unchanged if one or more of the following are true:

[ENOTDIR| A component of the path name is not a
directory.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any
component of the path name.

[EFAULT] Path points outside the allocated

address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned.

Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
chroot(2).

CHMOD (2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets
the access permission portion of the named file’s mode
according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000 Set user ID on execution.

02000 Set group ID on execution.

01000 Save text image after execution.

00400 Read by owner.

00200 Write by owner.

00100 Execute (search if a directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

The effective user ID of the process must match the
owner of the file or be super-user to change the mode of
a file.

If the effective user ID of the process is not super-user,
mode bit 01000 (save text image on execution) is cleared.

If the effective user ID of the process is not super-user
and the effective group ID of the process does not match
the group ID of the file, mode bit 02000 (set group ID on
execution) is cleared.

If an executable file is prepared for sharing then mode
bit 01000 prevents the system from abandoning the
swap-space 1mage of the program-text portion of the file
when its last user terminates. Thus, when the next user
of the file executes it, the text need not be read from the
file system but can simply be swapped in, saving time.

Chmod will fail and the file mode will be unchanged if
one or more of the following are true:

[ENOTDIR| A component of the path prefix is not a
directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a
component of the path prefix.

[EPERM] The effective user D does not match

the owner of the file and the effective

-1-

CHMOD (2)

user ID is not super-user.

[EROFS] The named file resides on a read-only
file system.
[EFAULT] Path points outside the allocated

address space of the process.
RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.
SEE ALSO
chown(2), mknod(2).

CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID
and group ID of the named file are set to the numeric
values contained in owner and group respectively.

Only processes with effective user ID equal to the file
owner or super-user may change the ownership of a file.

If chown is invoked by other than the super-user, the
set-user-ID and set-group-ID bits of the file mode, 04000
and 02000 respectively, will be cleared.

Chown will fail and the owner and group of the named
file will remain unchanged if one or more of the
following are true:

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] The named file does not exist.

[EACCES) Search permission is denied on a
component of the path prefix.

[EPERM]| The effective user ID does not match

the owner of the file and the effective
user ID is not super-user.

[EROFS] The named file resides on a read-only
file system.
[EFAULT) Path points outside the allocated

address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
chown(1), chmod(2).

NAME

CHROOT (2)

chroot — change root directory

SYNOPSIS

int chroot (path)
char *path;

DESCRIPTION

Path points to a path name naming a directory. Chroot
causes the named directory to become the root directory,
the starting point for path searches for path names
beginning with /. The user’s working directory is
unaffected by the chroot system call.

The effective user ID of the process must be super-user to
change the root directory.

The .. entry in the root directory is interpreted to mean
the root directory itself. Thus, .. cannot be used to
access files outside the subtree rooted at the root
directory.

Chroot will faill and the root directory will remain
unchanged if one or more of the following are true:

[ENOTDIR| Any component of the path name is not
a directory.

[ENOENT] The named directory does not exist.

[EPERM] The effective user ID i1s not super-user.

[EFAULT] Path points outside the allocated

address space of the process.

RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO

chdir(2).

CLOSE(2)

NAME
close — close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open,
dup, fentl, or pipe system call. Close closes the file
descriptor indicated by fildes. All outstanding record
locks owned by the process (on the file indicated fildes)
are removed.

[EBADF| Close will fail if fildes is not a valid open file
descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fentl(2), open(2), pipe(2).

CONNECT (2N)

NAME
connect — initiate a connection on a socket
) SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
connect (s, name, namelen)
int s;
struct sockaddr *name;
int namelen;
DESCRIPTION

Connect initiates a connection on a socket. The
parameter 8 is a socket. If it is of type SOCK_DGRAM,
then this call permanently specifies the peer to which
datagrams are to be sent; if it is of type
SOCK_STREAM, then this call attempts to make a
connection to another socket. The other socket is
specified by name; namelen is the length of name. which
is an address in the communications space of the socket.
Each communications space interprets the name
parameter in its own way.

RETURN VALUE

5/86

- If the connection or binding succeeds, then 0 is returned.
Otherwise a —1 is returned, and a more specific error
code is stored in errno.

ERRORS

The call fails if:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is a descriptor for a file, not a
socket.

[EADDRNOTAVAIL] The specified address is not
available on this machine.

[EAFNOSUPPORT]| Addresses in the specified address
family cannot be used with this
socket.

[EISCONN] The socket is already connected.

[ETIMEDOUT] Connection establishment timed
out without establishing a
connection.

—

[ECONNREFUSED] The attempt to connect was
forcefully rejected.

[ENETUNREACH] The network is not reachable from
this host.

CONNECT(2N)

[EADDRINUSE] The address is already in use.
[EFAULT] The name parameter specifies an
area outside the process address
space.
SEE ALSO

accept(2N), getsockname(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 _2.

NAME

CREAT(2)

creat — create a new file or rewrite an existing one

SYNOPSIS

int creat (path, mode)
char *path;
int mode;

DESCRIPTION

Creat creates a new ordinary file or prepares to rewrite
an existing file named by the path name pointed to by
path.

If the file exists, the length is truncated to 0 and the
mode and owner are unchanged. Otherwise, the file’s
owner ID is set to the effective user ID, of the process the
group ID of the process is set to the effective group ID, of
the process and the low-order 12 bits of the file mode are
set to the value of mode modified as follows:

All bits set in the process’s file mode creation
mask are cleared. See umask(2).

The “save text image after execution bit” of the
mode is cleared. See chmod(2).

Upon successful completion, the file descriptor is
returned and the file 1s open for writing, even if the
mode does not permit writing. The file pointer is set to
the beginning of the file. The file descriptor is set to
remain open across ezec system calls. See fentl(2). No
process may have more than 20 files open
simultaneously. A new file may be created with a mode
that forbids writing.

Creat will fail if one or more of the following are true:

[EACCES] Search permission is denied on a
component of the path prefix.
[EACCES] The file does not exist and the directory

in which the file is to be created does
not permit writing.

[EACCES] The file exists and write permission is
denied.

[ENOTDIR| A component of the path prefix is not a
directory.

[ENOENT] A component of the path prefix does
not exist.

[ENOENT)] The path name is null.

[EROFS] The named file resides or would reside

on a read-only file system.

-1 -

CREAT(2)

[ETXTBSY] The file is a pure procedure (shared
text) file that is being executed.

[EISDIR] The named file is an existing directory.

[EMFILE] Twenty (20) file descriptors are
currently open.

[EFAULT] Path points outside the allocated
address space of the process.

[ENFILE] The system file table is full.

[EDEADLOCK] A side effect of a previous locking(2)
call.

RETURN VALUE
Upon successful completion, a non-negative integer,
namely the file descriptor, is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the
error.

SEE ALSO

chmod(2), close(2), dup(2), fentl(2), locking(2), lseek(2),
open(2), read(2), umask(2), write(2).

NAME

DUP(2)

dup - duplicate an open file descriptor

SYNOPSIS

int dup (fildes)
int fildes;

DESCRIPTION

Fildes i1s a file descriptor obtained from a creat, open,
dup, fentl, or pipe system call. Dup returns a new file
descriptor having the following in common with the
original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share

one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec
system calls. See fent!(2).

The file descriptor returned is the lowest one available.
Dup will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file
descriptor.

[EMFILE] Twenty (20) file descriptors are
currently open.

RETURN VALUE

Upon successful completion a non-negative integer,
namely the file descriptor, is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the
error.

SEE ALSO

creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2).

NAME

EXEC(2)

execl, execv, execle, execve, execlp, execvp — execute a
file

SYNOPSIS

int execl (path, arg0, argl, ..., argn, 0)

char *path, *arg0, *argl, ..., sargn;

int execv (path, argv)

char *path, *argvﬁ;

int execle (path, arg0, argl, ..., argn, 0, envp)
char *path, *arg0, *argl, ..., *argn, *envp| |;
int execve (path, argv, envp)

char *path, *argv| |, *enva],

int execlp (file, arg0, argl, ..., argn, 0)

char *file, *arg0, *argl, ..., *argn;

int execvp (file, argv)

char *file, *argv| |;

DESCRIPTION

Ezec in all its forms transforms the calling process into a
new process. The new process is constructed {rom an
ordinary, executable file called the new process file.
This file consists of a header (see a.out(4)), a text
segment, and a data segment. The data segment
contains an initialized portion and an uninitialized
portion (bss). There can be no return from a successful
exec because the calling process is overlaid by the new
process.

When a C program is executed, it is called as follows:

main (arge, argv, envp)
int argc;
char **argv, **envp;

where arge is the argument count and argv is an array of
character pointers to the arguments themselves. As
indicated, arge is conventionally at least one and the
first member of the array points to a string containing
the name of the file.

Path points to a path name that identifies the new
process file.

File points to the new process file. The path prefix for
this file is obtained by a search of the directories passed
as the environment line "PATH =" (see environ(5)).
The environment is supplied by the shell (see sh(1)).

Arg0, argl, ..., argn are pointers to null-terminated
character strings. These strings constitute the argument

EXEC(2)

list available to the new process. By convention, at least
arg0) must be present and point to a string that is the
same as path (or its last component).

Argv is an array of character pointers to null-terminated
strings. These strings constitute the argument list
available to the new process. By convention, argv must
have at least one member, and it must point to a string
that is the same as path (or its last component). Argv is
terminated by a null pointer.

Envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the
new process. Envp is terminated by a null pointer. For
execl and ezecv, the C run-time start-off routine places
a pointer to the environment of the calling process in the
global cell:
extern char **environ;

and it is used to pass the environment of the calling
process to the new process.

File descriptors open in the calling process remain open
in the new process, except for those whose close-on-exec
flag is set; see fentl(2). For those file descriptors that
remain open, the file pointer is unchanged.

Signals set to terminate the calling process will be set to
terminate the new process. Signals set to be ignored by
the calling process will be set to be ignored by the new
process. Signals set to be caught by the calling process
will be set to terminate the new process; see signal(2).

If the set-user-ID mode bit of the new process file is set
(see chmod(2)), exzec sets the effective user ID of the new
process to the owner ID of the new process file.
Similarly, if the set-group-ID mode bit of the new process
file is set, the effective group ID of the new process is set
to the group ID of the new process file. The real user ID
and real group ID of the new process remain the same as
those of the calling process.

The shared memory segments attached to the calling
process will not be attached to the new process (see
shmop(2)).

Profiling is disabled for the new process; see profil(2).

The new process also inherits the following attributes
from the calling process:

nice value (see nice(2))
process ID
parent process ID

EXEC(2)

process group ID

semad] values (see semop(2))

tty group ID (see ezit(2) and signal(2))

trace flag (see ptrace(2) request 0)

time left wuntil an alarm clock signal (see
alarm(2))

current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see ulimit(2))

utime, stime, cutime, and cstime (see times(2))

Ezee will fail and return to the calling process if one or
more of the following are true:

[ENOENT]

[ENOTDIR]

[EACCES]

[EACCES)
[EACCES)

[ENOEXEC]

[ETXTBSY)|

[ENOMEM|

(E2BIG]

One or more components of the new
process path name of the file do not
exist.

A component of the new process path of
the file prefix is not a directory.

Search permission is denied for a
directory listed in the new process file’s
path prefix.

The new process file is not an ordinary
file.

The new process file mode denies
execution permission.

The exec is not an execlp or ezecvp,
and the new process file has the
appropriate access permission but an
invalid magic number in its header.

The new process file is a pure procedure
gshared text) file that is currently open
or writing by some process.

The new process requires more memory
than is allowed by the system-imposed
maximum. This limit is a configurable
quantity up to the limitations of the
hardware. It may be less due to
restrictions on swap space.

The number of bytes in the new
process’s argument list is greater than
the system-imposed limit of 10,240
bytes.

[EFAULT)

[EFAULT]

[ENOHDW]

[ENOEXEC]

[ENOEXEC]

[EPERM]

RETURN VALUE

EXEC(2)

The new process file is not as long as
indicated by the size values in its

header.

Path, argv, or envp point to an illegal
address.

The executable file requires hardware
that does not exist (such as floating-
point).

The file format does not correspond to
that expected as specified with the
magic number (such as a hole in the
file%

The virtual address specification in the
header(s) exceeds the allowed system
limits.

The process is being traced (see
ptrace(2)), but the file does not permit
reading.

If ezec returns to the calling process an error has
occurred; the return value will be —1 and errno will be
set to indicate the error.

SEE ALSO

sh(1), alarm(2),
signal(2), times(2), ulimit(2), umask(2
a.out(4), environ(5).

semop(2),

5/86

exit(2), fork(2), nice(2), ptrace22;,

?

EXIT(2)

NAME
exit, _exit — terminate process

SYNOPSIS
void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION

Ezit terminates the calling process with the following
consequences:

All of the file descriptors open in the calling
process are closed.

If the parent process of the calling process is
executing a wast, it is notified of the calling
process’s termination and the low order eight
bits (i.e., bits 0377) of status are made available
to it; see wait(2).

If the parent process of the calling process is not
executing a wait, the calling process is
transformed into a zombie process. A zombie
process is a process that only occupies a slot in
the process table. It has no other space
allocated either in user or kernel space. The
process table slot that it occupies 1s partially
overlaid with time accounting information (see
<sys/proc.h>) to be used by times.

The parent process ID of all of the calling
process’s existing child processes and zombie
processes is set to 1. This means that the
initialization process (see intro(2)) inherits each
of these processes.

Each attached shared memory segment is
detached and the value of shm_nattach in the
data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process
has set a semadj value (see semop(2)), that
semad] value is added to the semval of the
specified semaphore.

If the process has a process, text, or data lock,
an unlock is performed (see plock(2)).

An accounting record is written on the
accounting file 1f the system’s accounting routine
is enabled; see acct (2).

EXIT(2)

If the process ID, tty group ID, and process group
ID of the calling process are equal (i.e., it is a
process group leader), the SIGHUP signal is sent
to each process that has a process group ID equal
to that of the calling process.

If the process is a process group leader, all
processes in its group are made members of the
null group.

The C function ezft may cause cleanup actions before
the process exits. The function _ezit circumvents all
cleanup.

SEE ALSO

intro(2), acct(2), plock(2), semop(2), signal(2), wait(2).
WARNING

See WARNING in signal(2).

NAME

FCNTL(2)

fentl — file control

SYNOPSIS

#include <fentl.h>

int fentl (fildes, cmd, arg)
int fildes, emd, arg;

DESCRIPTION

Fentl provides for control over open files. Fildes is an
open file descriptor obtained from a creat, open, dup,
fentl, or pipe system call.

The commands available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL

F_GETLK

Return a new file descriptor as follows:

Lowest numbered available file
descriptor greater than or equal to arg.

Same open file (or pipe) as the original
file.

Same file pointer as the original file (i.e.,
both file descriptors share one file
pointer).

Same access mode (read, write or
read /write).

Same file status flags (i.e., both file
descriptors share the same file status
flags).

The close-on-exec flag associated with
the new file descriptor is set to remain
open across ezec(2) system calls.

Get the close-on-exec flag associated
with the file descriptor fildes. If the
low-order bit is O the file will remain
open across erec, otherwise the file will
be closed upon execution of ezec.

Set the close-on-exec flag associated with
fildes to the low-order bit of arg (0 or 1
as above).

Get file status {lags.
Set file status flags to arg. Only certain
flags can be set; see fentl(5).

Get the first lock which blocks the lock
description given by the variable of type
struct flock pointed to by arg (see
fentl(5)). The information retrieved

-1-

FCNTL(2)

overwrites the information passed to
fentl in the flock structure. If no lock is
found that would prevent this lock from
being created, then the structure is
passed back unchanged except for the
lock type which will be set to F_UNLCK.

F_SETLK Set or clear a file segment lock
according to the variable of type struct
flock pointed to by arg [see fentl(5)L
The emd F_SETLK is used to establis
read (F_RDLCK) and write (F_WRLCK)
locks, as well as remove either type of
lock (F _UNLCK). If a read or write lock
cannot be set, fentl will return
immediately with an error value of —1.

F_SETLKW This ¢md is the same as F_SETLK except
that if a read or write lock is blocked by
other locks, the process will sleep until
the segment is free to be locked.

A read lock prevents any process from write locking the
protected area. More than one read lock may exist for a
given segment of a file at a given time. The file
descriptor on which a read lock is being placed must
have been opened with read access.

A write lock prevents any process from read locking or
write locking the protected area. Only one write lock
may exist for a given segment of a file at a given time.
The file descriptor on which a write lock is being placed
must have been opened with write access.

The structure flock describes the type (l_typc), starting
offset ({_whence), relative offset (I_start), size ({_len), and
process id (I_pid) of the segment of the file to be
affected. The process id field is only used with the
F_GETLK e¢md to return the value for a block in lock.
Locks may start and extend beyond the current end of a
file, but may not be negative relative to the beginning of
the file. A lock may be set to always extend to the end
of file by setting {_len to zero (0). If such a lock also has
[_start set to zero (0), the whole file will be locked.
Changing or unlocking a segment from the middle of a
larger locked segment leaves two smaller segments for
either end. Locking a segment that is already locked by
the calling process causes the old lock type to be
removed and the new lock type to take effect. All locks
associated with a file for a given process are removed
when a file descriptor for that file is closed by that
process or the process holding that file descriptor

-2.

FCNTL(2)

terminates. Locks are not inherited by a child process in
a fork(2) system call.

Fentl will fail if one or more of the following are true:

[EBADF]
[EMFILE]
(EINFILE]

[EINVAL]

[EACCES]

[EMFILE]

[ENOSPC]

[EDEADLK]

RETURN VALUE

Fildes is not a valid open file
descriptor.

Cmd is F_DUPFD and 20 file descriptors
are currently open.

Cmd is F_DUPFD and arg is negative or
greater than 20.

Cmd is F_GETLK, F_SETLK, or
SETLKW and arg or the data it points
to is not valid.

Cmd is F_SETLK; the type of lock
I_type) is a read (F_RDLCK) or write
F_WRLCK lock, and the segment of a
ile to be locked is already write locked
by another process; or the type is a
write lock, and the segment of a file to
be locked is already read or write
locked by another process.

Cmd is F_SETLK or F_SETLKW, the
type of lock is a read or write lock and
there are no more file locking headers
available (too many files have segments

locked).

Cmd is F_SETLK or F_SETLKW, the
type of lock is a read or write lock and
there are no more file locking headers
available (too many files have segments
locked) or there are no more record

locks available (too many file segments
locked).

Cmd i1s F_SETLK, when the lock 1is
blocked by some lock from another
process and sleeping (waiting) for that
lock to become free, this causes a
deadlock situation.

Upon successful completion, the value returned depends
on ¢md as follows:

F_DUPFD A new file descriptor.

F_GETFD Value of flag (only the low-order

bit is defined).

FCNTL(2)

F_SETFD Value other than ~1.
F_GETFL Value of file flags.

F_SETFL Value other than -1.
F_GETLK Value other that —1.
F_SETLK Value other than -1.

F_SETLKW Value other than -1.

Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
close(2), exec(2), open(2), fentl(5).
BUGS

Two forms of file locking are available: locking(2) and
fentl{2). These two methods are not compatible; a lock
by one is not honored by the other.

FORK(2)

NAME
fork — create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process
child process) is an exact copy of the calling process
parent process). This means the child process inherits
the following attributes from the parent process:

environment
close-on-exec flag (see ezec(2))
signal handling settings (i.e., SIG_DFL,
SIG_IGN, function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice(2))
all attached shared memory segments (see
shmop(2))
process group ID
tty group ID (see ezit(2) and signal(2))
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see
alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ultmit(2))
The child process differs from the parent process in the
following ways:
The child process has a unique process ID.

The child process has a different parent process
ID (i.e., the process ID of the parent process).

The child process has its own copy of the
parent’s file descriptors. Each of the child’s file
descriptors shares a common file pointer with
the corresponding file descriptor of the parent.

All semadj values are cleared (see semop(2)).

Process locks, text locks and data locks are not
inherited by the child plock(2)).

The child process’s utime, stime, cutime, and
cstime are set to 0. The time left until an alarm
clock signal is reset to 0.

FORK (2)

Fork will fail and no child process will be created if one
or more of the following are true:

[EAGAIN] The system-imposed limit on the total
number of processes under execution
would be exceeded.

[EAGAIN] The system-imposed limit on the total
number of processes under execution by
a single user would be exceeded.

RETURN VALUE
Upon successful completion, fork returns a value of 0 to
the child process and returns the process ID of the child
process to the parent process. Otherwise, a value of -1
is returned to the parent process, no child process is
created, and errno is set to indicate the error.

SEE ALSO
exchanges(2), exec(2), nice(2), plock(2), ptrace(2),
semop(2), shmop(2), signal(2), times(2), ulimit(2
umask(2), wait(2).

b

GETPEERNAME (2N)

NAME

getpeername — get name of connected peer
SYNOPSIS

getpeername(s, name, namelen)

int s;

struct sockaddr *name;
int *namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to
socket 8. The namelen parameter should be initialized
to indicate the amount of space pointed to by name. On
return it contains the actual size of the name returned

(in bytes).
DIAGNOSTICS

A 0 is returned if the call succeeds, —1 if it fails.
ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid

descriptor.
[ENOTSOCK]| The argument s is a file, not a socket.
[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in
the system to perform the operation.

[EFAULT] The name parameter points to memory
not in a valid part of the process
address space.

SEE ALSO
bind(2N), socket(2N), getsockname(2N).
CTIX Internetworking Manual.

NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

GETPID (2)

NAME
getpid, getpgrp, getppid — get process, process group,
and parent process IDs

SYNOPSIS
int getpid ()
int getpgrp ()
int getppid ()

DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling
process.

Getppid returns the parent process ID of the calling
process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

GETSOCKNAME (2N)

NAME
getsockname — get socket name
SYNOPSIS
getsockname(s, name, namelen)
int s;

struct sockaddr *name;
int *namelen;

DESCRIPTION
Getsockname returns the current name for the specified
socket (s). The namelen parameter should be initialized
to indicate the amount of space pointed to by name. On
return namelen contains the actual size of the name
returned (in bytes).

RETURN VALUE
A 0 is returned if the call succeeds, —1 if it fails.

ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid
descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOBUFS] Insufficient resources were available in
the system to perform the operation.
[EFAULT] The name parameter points to memory
not in a valid part of the process
address space.
SEE ALSO

bind(2N), socket(2N).
CTIX Internetworking Manual.
NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

GETSOCKOPT(2N)

NAME
getsockopt, setsockopt — get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated
with a socket. Options may exist at multiple protocol
levels; they are always present at the uppermost
“socket” level.

When manipulating socket options the level at which the
option resides and the name of the option must be
specified. To manipulate options at the ‘“‘socket” level,
level is specified as SOL_SOCKET. To manipulate
options at any other level the protocol number of the
appropriate protocol controlling the option is supplied.
For example, to indicate an option is to be interpreted
by the TCP protocol, level should be set to the protocol
number of TCP; see getprotoent(3N).

The parameters optval and optlen are used to access
option values for setsockopt. For getsockopt they
identify a buffer in which the value for the requested
option(s) are to be returned. For getsockopt, optlen is a
value-result parameter, initially containing the size of
the buffer pointed to by optval, and modified on return
to indicate the actual size of the value returned. If no
option value is to be supplied or returned, optval may be
supplied as 0.

Optname and any specified options are passed
uninterpreted to the appropriate protocol module for
interpretation. The include file < sys/socket.h >
contains definitions for ‘‘socket” level options; see
socket(2N). Options at other protocol levels vary in
format and name, consult the appropriate entries in
(4N).
RETURN VALUE
A 0 is returned if the call succeeds, —1 if it fails.

-1-

GETSOCKOPT (2N)

ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid
descriptor.
[ENOTSOCK] The argument s is a file, not a o
socket.
[ENOPROTOOPT] The option is unknown.
[EFAULT)] The options are not in a valid
part of the process address space.
SEE ALSO

socket(2N), getprotoent(3N).
CTIX Internetworking Manual.
NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

GETUID(2)

NAME
getuid, geteuid, getgid, getegid — get real user, effective
user, real group, and effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()
unsigned short getgid ()
unsigned short getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteutd returns the effective user ID of the calling
process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling
process.

SEE ALSO
intro(2), setuid(2).

NAME

IOCTL(2)

ioctl — control device

SYNOPSIS

ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION

Toctl performs a variety of functions on character special

files (devices).

The write-ups of various devices in

Section 7 discuss how foctl applies to them.

Toctl will fail if one or more of the following are true:

[EBADF)
[ENOTTY]
[EINVAL]
[EINTR]
[EFAULT]

RETURN VALUE

Fildes is not a valid open file
descriptor.

Fildes is not associated with a character
special device.

Request or arg is not valid. See
Section 7.

A signal was caught during the doctl
system call.

The options are not in a valid part of
the process address space.

If an error has occurred, a value of -1 is returned and
errno 1s set to indicate the error.

SEE ALSO
termio(7).

5/86

NAME

KILL(2)

kill — send a signal to a process or a group of processes

SYNOPSIS

int kill (pid, sig)
int pid, sig;

DESCRIPTION

Kill sends a signal to a process or a group of processes.
The process or group of processes to which the signal is
to be sent is specified by pid. The signal that is to be
sent is specified by sig and is either one from the list
given in signal(2), or 0. If sig is O (the null signal), error
checking is performed but no signal is actually sent.
This can be used to check the validity of pid.

The real or effective user ID of the sending process must
match the real or effective user ID of the receiving
process, unless the effective user ID of the sending
process is super-user.

The processes with a process ID of 0 and a process ID of
1 are special processes (see ntro(2)) and will be referred
to below as proc0 and procl, respectively.

If pid is greater than zero, sig will be sent to the process
whose process ID is equal to pid. Pid may equal 1.

If pid is O, sig will be sent to all processes excluding
proc0O and procl whose process group ID is equal to the
process group ID of the sender.

If pid is —1 and the effective user ID of the sender is not
super-user, sig will be sent to all processes excluding
proc0 and proc! whose real user ID is equal to the
effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is
super-user, sig will be sent to all processes excluding
proc0 and procl.

If pid is negative but not -1, sig will be sent to all
processes whose process group ID is equal to the absolute
value of pid.

Kl will fail and no signal will be sent if one or more of
the following are true:

[EINVAL)] Sig is not a valid signal number.

[EINVAL)] Sig is SIGKILL and ptd is 1 (procl).

[ESRCH] No process can be found corresponding
to that specified by pid.

[EPERM] The user ID of the sending process is

not super-user, and its real or effective

-1-

KILL(2)

user ID does not match the real or
effective user ID of the receiving
process.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
kill(1), getpid(2), setpgrp(2), signal(2).

LDDRV (2)

NAME
drvalloc, drvbind — access loadable drivers

SYNOPSIS
#include <sys/types.h>
#include <syslocal.h>
#include <sys/drv.h>

syslocal (SYSL_ALLOCDRY, option, ds)
int option;
struct drvalloc *ds;

syslocal (SYSL_BINDDRY, option, ds)
int option;
struct drvbind *ds;

DESCRIPTION
These two functions accessed via syslocal(2) implement
the loadable driver functions of CTIX. They both require
super-user privilege.

Loading drivers consists of two phases: allocation of
virtual space, device numbers, and device IDs; and
binding. Fully relocating a driver into memory,
allocating physical space, plugging the device switch
tables, calling initialization routines, and unloading
require the same two phases in reverse.

SEE ALSO
lldrv(1M), syslocal(2).

NAME

LINK (2)

link - link to a file

SYNOPSIS

int link (pathl, path2)
char *pathl, *path2;

DESCRIPTION

Pathl points to a path name naming an existing file.
Path?2 points to a path name naming the new directory
entry to be created. Link creates a new link (directory
entry) for the existing file.

Link will fail and no link will be created if one or more
of the following are true:

[ENOTDIR|
[ENOENT]
[EACCES)

[ENOENT)
[EEXIST]
[EPERM]

[EXDEV]

[ENOENT]
(EACCES]
[EROFS]
[EFAULT
[EMLINK]

RETURN VALUE

A component of either path prefix is
not a directory.

A component of either path prefix does
not exist.

A component of either path prefix
denies search permission.

The file named by path!l does not exist.
The link named by path2 exists.

The file named by pathl is a directory
and the effective user ID is not super-
user.

The link named by path2 and the file
named by pathl are on different logical
devices (file systems).

Path?2 points to a null path name.

The requested link requires writing in a
directory with a mode that denies write
permission.

The requested link requires writing in a
directory on a read-only file system.

Path points outside the allocated
address space of the process.

The maximum number of links to a file
would be exceeded.

Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
unlink(2).

LISTEN(2N)

NAME
listen — listen for connections on a socket

SYNOPSIS
listen (s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with
socket(2N), a backlog for incoming connections is
specified with [listen, and then the connections are
accepted with accept(2N). The listen call applies only to
sockets of type SOCK_STREAM or
SOCK_PKTSTREAM.

The backlog parameter defines the maximum length to
which the queue of pending connections may grow. If a
connection request arrives with the queue full the client
will receive an error with an indication of

ECONNREFUSED.

RETURN VALUE
A O return value indicates success; -1 indicates an error.

ERRORS
The call fails if:
[EBADF] The argument s is not a valid
descriptor.
[ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that
supports the operation listen.

SEE ALSO
accept(2N), connect(2N), socket(2N).
CTIX Internetworking Manual.

BUGS
The backlog is currently limited (silently) to 5.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 -1-

LOCKING (2)

NAME

locking — exclusive access to regions of a file

SYNOPSIS
int locking (filedes, mode, size);
int fildes, mode;
long size;

DESCRIPTION

Locking places or removes a kernel-enforced lock on a
region of a file. The calling process has exclusive access
to regions it has locked. If another process uses read(2),
write(2), creat(2), or open(2) (with O_TRUNC) in a
way that reads or modifies part of the locked region, the
second process’s system call does not return until the
lock is released, unless deadlock or some other error is
detected. A process whose execution is suspended in
such a manner is said to be blocked.

Parameters specify the file to be locked or unlocked, the
kind of lock or unlock, and the region affected:

. Fiedes specifies the file to be locked or
unlocked; filedes is a file descriptor
returned by an open, create, pipe, fentl,
or dup system call.

° Mode specifies the action: 0 for lock
removal; 1 for blocking lock; 2 for
checking lock. Blocking and checking
locks differ only if the attempted lock is
itself locked out: a blocking lock waits
until the existing lock or locks are
removed; a checking lock immediately
returns an error.

. The region affected begins at the current
file offset associated with filedes and is
stze bytes long. If size is zero, the
region affected ends at the end of the
file.

Locking imposes no structure on a CTIX file. A process
can arbitrarily lock any unlocked byte and unlock any
locked byte. However, creating a large number of
noncontiguous locked regions can fill up the system’s
lock table and make further locks impossible. It is
advisable that a program’s use of locking segment the file
in the same way as does the program’s use of read and
write .

A process is said to be deadlocked if it is sleeping until
an unlocking which is indirectly prevented by that same

LOCKING (2)

sleeping process. The kernel will not permit a read,
write, ereat, open with O_TRUNC, or blocking locking
if such a call would deadlock the calling process. Errno
is set to EDEADLOCK. The standard response to such
a situation is for the program to release all its existing
locked areas and try again. If a locking call fails because
the kernel’s table of locked areas is full, again, errno is
set to EDEADLOCK and, again, the calling program
should release its existing locked areas.

Special files and pipes can be locked, but no
input/output is blocked.

Locks are automatically removed if the process that
placed the lock terminates or closes the file descriptor
used to place the lock.
SEE ALSO
create(2), close(2), dup(2), open(2), read(2), write(2).
RETURN VALUE

A return value of -1 indicates an error, with the error
value in errno.

|[EACCES] A checking lock on a region already
locked.
[EDEADLOCK] A lock that would cause deadlock or
overflow the system’s lock table.
WARNING
Do not apply any standard input/output library function
to a locked file: this library does not know about locking.
BUGS
Two forms of file locking are available: locking(2) and
fentl(2). These two methods are not compatible; a lock
by one is not honored by the other.

LSEEK(2)

NAME
Iseek — move read/write file pointer
SYNOPSIS
long lIseek (fildes, offset, whence)
int fildes;
long offset;
int whence;
DESCRIPTION
Fildes is a file descriptor returned from a creat, open,

dup, or fentl system call. Lseek sets the file pointer
associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current
location plus offset.

If whence is 2, the pointer is set to the size of
the file plus offset.

Upon successful completion, the resulting pointer
location, as measured in bytes from the beginning of the
file, is returned.

Lseek will fail and the file pointer will remain unchanged
if one or more of the following are true:

[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or fifo.
[

EINVAL and SIGSYS signal]
Whence 1s not 0, 1, or 2.

[EINVAL) The resulting file pointer would be
negative.

Some devices are incapable of seeking. The value of the
file pointer associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer
indicating the file pointer value is returned. Otherwise,
a value of —1 is returned and errno is set to indicate the
error.

SEE ALSO
creat(2), dup(2), fentl(2), open(2).

MKNOD (2)

NAME
mknod — make a directory, or a special or ordinary file

“— SYNOPSIS
int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
Mknod creates a new file named by the path name
pointed to by path. The mode of the new file is
initialized from mode. Where the value of mode is
interpreted as follows:
0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file
0004000 set user ID on execution
0002000 set, group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the
— following
0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of
the process. The group ID of the file is set to the
effective group ID of the process.

Values of mode other than those above are undefined
and should not be used. The low-order 9 bits of mode
are modified by the process’s file mode creation mask: all
bits set in the process’s file mode creation mask are
cleared. See umask(2). If mode indicates a block or
character special file, dev is a configuration-dependent
specification of a character or block 1/O device. If mode
does not indicate a block special or character special
device, dev is ignored.

Mknod may be invoked only by the super-user for file
— types other than FIFO special.

Mknod will fail and the new file will not be created if
one or more of the following are true:

[EPERM| The effective user ID of the process is
not super-user.

[ENOTDIR]
[ENOENT]
[EROFS]
[EEXIST]
[EFAULT)

RETURN VALUE

MKNOD (2)

A component of the path prefix is not a
directory.

A component of the path prefix does
not exist.

The directory in which the file is to be
created is located on a read-only file
system.

The named file exists.

Path points outside the allocated
address space of the process.

Upon successful completion a value of O is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO

mkdir(1), chmod(2), exec(2), umask(2), fs(4).

—

NAME

MOUNT(2)

mount — mount a file system

SYNOPSIS

int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION

5/86

Mount requests that a removable file system contained
on the block special file identified by spec¢ be mounted
on the directory identified by dir. Spec and dir are
pointers to path names.

Upon successful completion, references to the file dir will
refer to the root directory on the mounted file system.

The low-order bit of rwflag is used to control write
permission on the mounted file system; if 1, writing is
forbidden, otherwise writing is permitted according to
individual file accessibility.

Mount may be invoked only by the super-user.
Mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENT) Any of the named files does not exist.

[ENOTDIR| A component of a path prefix is not a
directory.

[ENOTBLK] Spec is not a block special device.

[ENXIO] The device associated with spec does
not exist.

[ENOTDIR| Dir is not a directory.

[EFAULT) Spec or dir points outside the allocated

address space of the process.

[EBUSY] Dir is currently mounted on, is
someone’s current working directory, or
is otherwise busy.

[EBUSY] The device associated with spec is
currently mounted.

[EBUSY] There are no more mount table entries.

[EROFS] The low-order bit of rwflag is zero and
the volume containing the file system is
physically write-protected.

[EBADFS] An attempt to mount a bit-mapped file
system failed due to the dirty flag being
set for that file system.

MOUNT(2)

[ENXIO] The device is a swap partition.

[ENXIO] The superblock found on the specified
device does not have a correct magic
number.

RETURN VALUE

Upon successful completion a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
umount(2).

5/86 -2-

NAME

MSGCTL(2)

msgctl — message control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipec.h>
#include <sys/msg.h>

int msgctl (msqid, emd, buf)
int msqid, cmd;

struct msqid_ds *buf;

DESCRIPTION

Msgctl provides a variety of message control operations
as specified by ¢md. The following emds are available:

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member
of the data structure associated with
msgid into the structure pointed to by
buf. The contents of this structure are
defined in ntro(2). {READ}

Set the value of the following members
of the data structure associated with
msgtd to the corresponding value found
in the structure pointed to by buf:

msg_perm.uid

msg_perm.gid

msg_perm.mode /* only low 9 bits */
msg_qgbytes

This e¢md can only be executed by a
process that has an effective user ID
equal to either that of super user or to
the value of msg_perm.uid in the data
structure associated with msqid. Only
super user can raise the value of
msg_qbytes.

Remove the message queue identifier
specified by msqid from the system and
destroy the message queue and data
structure associated with it. This emd
can only be executed by a process that
has an effective user ID equal to either
that of super user or to the value of
msg_perm.uid in the data structure
assoclated with msqid.

Msgetl will fail if one or more of the following are true:

[EINVAL)

[EINVAL]
[EACCES]

[EPERM)

[EPERM]

[EFAULT]
RETURN VALUE

MSGCTL(2)

Masqid is not a valid message queue
identifier.

Cmd is not a valid command.

Cmd is equal to IPC_STAT and
{READ} operation permission is denied
to the calling process (see intro(2)).

Cmd is equal to IPC_RMID or
IPC_SET. The effective user ID of the
calling process is not equal to that of
super user and it is not equal to the
value of msg_perm.uid in the data
structure associated with msgid.

Cmd is equal to IPC_SET, an attempt
is being made to increase to the value
of msg_qbytes, and the effective user
ID of the calling process is not equal to
that of super user.

Buf points to an illegal address.

Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO

intro(2), msgget(2), msgop(2).

MSGGET(2)

NAME
msgget — get message queue

SYNOPSIS
#finclude <sys/types.h>
#include <sys/ipe.h>
#include <sys/msg.h>

int msgget (key, msgflg)

key_t key;

int msgflg;
DESCRIPTION

Msgget returns the message queue identifier associated
with key.

A message queue identifier and associated message queue
and data structure (see intro(2)) are created for key if
one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a message queue
identifier associated with it, and (msgfly &
IPC_CREAT) is “true”.

Upon creation, the data structure associated with the
new message queue identifier is initialized as follows:

Msg perm.cuid, msg_perm.uid,
msg_perm.cgid, and msg_perm.gid are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are
set equal to the low-order 9 bits of msgflg.

Msg gnum, msg_lspid, msg_lrpid,
msg_stime, and msg_rtime are set equal to 0.

Msg_ctime is set equal to the current time.
Msg_gbytes is set equal to the system limit.
Msgget will fail if one or more of the following are true:

[EACCES) A message queue identifier exists for
key, but operation permission (see
intro(2)) as specified by the low-order 9
bits of msgflg would not be granted.

[ENOENT] A message queue identifier does not
exist for key and (msgfly &
IPC_CREAT) is ‘“false”’.

[ENOSPC] A message queue identifier i1s to be
created but the system-imposed limit on
the maximum number of allowed

MSGGET(2)

message queue identifiers system wide
would be exceeded.

[EEXIST] A message queue identifier exists for key
but ((msgflg & IPC_CREAT) & (msgflg
& IPC_EXCL)) is “‘true”.
RETURN VALUE
Upon successful completion, a non-negative integer,
namely a message queue identifier, is returned.

Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), msgctl(2), msgop(2).

NAME

MSGOP (2)

msgop — message operations

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

##include <sys/msg.h>

int msgsnd (msqid, msgp, msgse, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsg;

long msgtyp;

int msgflg;

DESCRIPTION

Msgsnd is used to send a message to the queue associated
with the message queue identifier specified by msqid.
{WRITE} Msgp points to a structure containing the
message. This structure is composed of the following
members:

long mtype; / * message type * /
char mtext[]; /* message text */

Mtype is a positive integer that can be used by the
receiving process for message selection (see msgrev
below). Mteat is any text of length msgsz bytes. Msgsz
can range from 0 to a system-imposed maximum.

Masgflg specifies the action to be taken if one or more of
the following are true:

The number of bytes already on the queue is
equal to msg_qbytes (see iniro(2)).

The total number of messages on all queues
system-wide is equal to the system-imposed
limit.

These actions are as follows:
If (msgfig & IPC_NOWAIT) is ‘“‘true”, the

message will not be sent and the calling process
will return immediately.

If (msgfly & IPC_NOWAIT) is ‘“false”, the
calling process will suspend execution until one
of the following occurs:

MSGOP (2)

The condition responsible for the
suspension no longer exists, in which
case the message is sent.

Magid is removed from the system (see
magctl(ZP. When this occurs, errno is
set equal to EIDRM, and a value of -1
is returned.

The calling process receives a signal
that is to be caught. In this case the
message is not sent and the calling
process resumes execution in the
manner prescribed in signal(2)).

Msgsnd will fail and no message will be sent if one or
more of the following are true:

[EINVAL) Masgid is not a valid message queue
identifier.

[EACCES] Operation permission is denied to the
calling process (see tntro(2)).

[EINVAL] Mtype is less than 1.

[EAGAIN] The message cannot be sent for one of

the reasons cited above and (msgfly &
IPC_NOWAIT) is “true”.

[EINVAL] Masgsz is less than zero or greater than
the system-imposed limit.
[EFAULT) Masgp points to an illegal address.

Upon successful completion, the following actions are
taken with respect to the data structure associated with
msqid (see intro (2)).

Msg_qnum is incremented by 1.

Msg_lspid is set equal to the process ID of the
calling process.

Msg_stime is set equal to the current time.

Msgrev reads a message from the queue associated with
the message queue identifier specified by msgid and
places it in the structure pointed to by msgp. {READ}
This structure is composed of the following members:

long mtype; /* message type */
char mtext[|; /* message text */

Mtype is the received message’s type as specified by the
sending process. Mtexzt is the text of the message. Masgs:z
specifies the size in bytes of mtezt. The received
message is truncated to msgsz bytes if it is larger than

MSGOP (2)

msgsz and (msgfly & MSG_NOERROR) is “true”. The
truncated part of the message is lost and no indication of
the truncation is given to the calling process.

Masgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the
queue is received.

If msgtyp is greater than 0, the first message of
type msgtyp is received.

If msgtyp is less than 0, the first message of the
lowest type that is less than or equal to the
absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the
desired type is not on the queue. These are as follows:

If (msgfly & IPC_NOWAIT) is “true”, the
calling process will return immediately with a
return value of —1 and errno set to ENOMSG.

If (msgfly & IPC_NOWAIT) is “false”, the
calling process will suspend execution until one
of the following occurs:

A message of the desired type is placed
on the queue.

Msqid is removed from the system.
When this occurs, errno is set equal to
EIDRM, and a value of -1 is returned.

The calling process receives a signal
that is to be caught. In this case a
message is not received and the calling
process resumes execution In the
manner prescribed in signal(2)).

Msgrev will fail and no message will be received if one or
more of the following are true:

[EINVAL] Msgid is not a valid message queue
identifier.

[EACCES] Operation permission is denied to the
calling process.

[EINVAL] Msgsz is less than 0.

[E2BIG] Mtext is greater than msgsz and (msgfly

& MSG_NOERROR) is “false”.

[ENOMSG] The queue does not contain a message

of the desired type and (msgtyp &
IPC_NOWAIT) is “true”.

MSGOP (2)

[EFAULT) Msgp points to an illegal address.

Upon successful completion, the following actions are
taken with respect to the data structure associated with
msgqid (see intro (2)).

Msg_qnum is decremented by 1.

Msg_lIrpid is set equal to the process ID of the
calling process.

Msg_rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrev return due to the receipt of a signal,
a value of —1 is returned to the calling process and errno
is set to EINTR. If they return due to removal of msgid
from the system, a value of -1 is returned and errno is
set to EIDRM.

Upon successful completion, the return value is as
follows:

Msgsnd returns a value of 0.

Msgrev returns a value equal to the number of
bytes actually placed into mtezt.

Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).

_—

NAME

NICE(2)

nice — change priority of a process

SYNOPSIS

int nice (incr)
int incr;

DESCRIPTION

Nice adds the value of tner to the nice value of the
calling process. A process’s nice value is a positive
number for which a more positive value results in lower
CPU priority.

The system allows nice values only from -8 to 39. The
nice system call grants nice values from -8 to ~1 only to
super-user processes. These negative nice values cause
the CPU priority of the process to be fixed
independently of CPU usage of the process. Nice values
from 0 to 39 allow the system to adjust dynamically the
actual CPU priority of the process, temporarily lowering
it in proportion to the process’s recent level of CPU
usage. If a super-user process requests a nice value
below -8, or if any other process requests a nice value
below 0, the system imposes a nice value of 0. If any
process requests a nice value above 39, the system
imposes a nice value of 39.

[EPERM] Nice will fail and not change the nice
value if tncr is negative or greater than
40 and the effective user ID of the
calling process is not super-user.

RETURN VALUE

Upon successful completion, nice returns the new nice
value minus 20. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

SEE ALSO

nice(1), exec(2).

NAME

5/86

OPEN(2)

open — open for reading or writing
SYNOPSIS

#include <fentl.h>
int open (path, oflag [, mode |)

char *path;

int oflag, mode;

DESCRIPTION
Path points to a path name naming a file. Open opens a
file descriptor for the named file and sets the file status
flags according to the value of oflag. Oflag values are
constructed by OR-ing flags from the following list (only
one of the first three flags below may be used):

O_RDONLY

O_WRONLY

O_RDWR
O_NDELAY

Open for reading only.

Open for writing only.
Open for reading and writing.

This flag may affect subsequent reads and
writes. See read(2) and write(2).

When opening a FIFO with O_RDONLY or
O_WRONLY set:

If O_NDELAY is set:

An open for reading-only will
return without delay. An open
for writing-only will return an
error if no process currently has
the file open for reading.

If O_NDELAY is clear:

An open for reading-only will
block until a process opens the file
for writing. An open for writing-
only will block until a process
opens the file for reading.

When opening a file associated with a
communication line:

If O_NDELAY is set:

The open will return without
waiting for carrier.

If O_NDELAY is clear:

The open will block until carrier is
present.

N

5/86

OPEN(2)

O_APPEND If set, the file pointer will be set to the

O_DIRECT

end of the file prior to each write.

If set, subsequent reads or writes that
satisfy the following criteria will be moved
directly to or from the user space to the
physical media:

The transfer must start on a 1K
byte boundary in the file, and it
must be in multiples of 1K byte
blocks.

This option applies only to regular files.
Note that direct implies synchronous.

O_NODIRECT

O_SYNC

O_CREAT

O_TRUNC

O_EXCL

Do not perform direct I/O for this file,
even if a transfer satisfies the system
default criteria.

If set, all writes will be synchronous. This
option applies only to regular files.

If the file exists, this flag has no effect.
Otherwise, the owner ID of the file is set
to the effective user ID of the process, the
group ID of the file is set to the effective
group ID of the process, and the low-order
10 bits of the file mode are set to the
value of mode modified as follows (see
creat(2)):

All bits set in the file mode

creation mask of the process are

cleared. See umask(2).

The ‘‘save text image after
execution bit”’ of the mode is
cleared. See chmod(2).

If the file exists, its length is truncated to
0 and the mode and owner are unchanged.

If O_EXCL and O_CREAT are set, open
will fail if the file exists.

The file pointer used to mark the current position within
the file is set to the beginning of the file.

The new file descriptor is set to remain open across ezxec
system calls. See fentl(2).

The named file is opened unless one or more of the
following are true:

[ENOTDIR]
[ENOENT]
[EACCES]
[EACCES]
[EISDIR]

[EROFS]

[EMFILE)

[ENXIO]

[ETXTBSY)

[EFAULT)
[EEXIST)

[ENXIO]

[EINTR]

[ENFILE
[EDEADLOCK)]

RETURN VALUE
Upon successful completion, the file descriptor is
returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chmodS2), close(2), creatSQ), dup(2), fentl(2), locking(2),

5/86

Iseek(2

, read(2), umask(2

OPEN(2)

A component of the path prefix is not a
directory.

O_CREAT is not set and the named file
does not exist.

A component of the path prefix denies
search permission.

Oflag permission is denied for the
named file.

The named file is a directory and oflag
is write or read/write.

The named file resides on a read-only
file system and oflag is write or
read /write.

Twenty (20) file descriptors are
currently open.

The named file is a character special or
block special file, and the device
associated with this special file does not
exist.

The file is a pure procedure (shared
text) file that is being executed and
oflag is write or read/write.

Path points outside the allocated
address space of the process.

O_CREAT and O_EXCL are set, and the
named file exists.

O_NDELAY is set, the named file is a
FIFO, O_WRONLY is set, and no process
has the file open for reading.

A signal was caught during the open
system call.

The system file table is full.

A side effect of a previous locking(2)
call, when applying O_TRUNC .

, write(2).

OPENI(2)

NAME
openi - open a file specified by i-node
SYNOPSIS

#include <sys/types.h>
#include <fentl.h>

int openi (dev, inode, oflag)
dev_t dev;

ino_t inode;

int oflag;

DESCRIPTION
Opent permits access to a file without reference to any
of its directory links. Because it doesn’t use the
directory hierarchy, openi doesn’t require any access
permission except from the file itself. Use of openi must
be authorized in advance by syslocal(2).

Dev specifies the device number of the file system that
contains the file. Inode is the i-number of the file.
Oflag is a set of open flags, identical to those used with
open(2). The return value is a file descriptor, like that
returned by open.

A file descriptor returned by openi has the same
properties as one returned by open. It counts against
the per-process limit of 20 file descriptors.

The specified file is opened unless one or more of the
following are true:

The specified inode is not allocated. |[ENOENT]

Oflag permission is denied for the named file.
[EACCES]

The named file is a directory. [EISDIR]

The named file resides on a read-only file system
and oflag is write or read/write. [EROFS]

Twenty (20) file descriptors are currently open.
[EMFILE]

The named file is a character special or block
special file. |ENXIO]

The file is a pure procedure (shared text) file
that is being executed and oflag is write or
read/write. [ETXTBSY]|

Path points outside the process’s allocated
address space. [EFAULT)]

O_CREAT and O_EXCL are set, and the named
file exists. [EEXIST)]

-1-

OPENI(2)

O_NDELAY is set, the file is a FIFO, O_WRONLY
is set, and no process has the file open for
reading. [ENXIO]
The specified file system is not mounted.
[ENXIO)
RETURN VALUE
On success, returns a file descriptor, a nonnegative
integer. On failure, returns —1 and sets errno.

SEE ALSO
creat(2), open(2), syslocal(2).

PAUSE(2)

NAME

pause — suspend process until signal
SYNOPSIS

pause ()
DESCRIPTION

Pause suspends the calling process until it receives a
signal. The signal must be one that is not currently set
to be ignored by the calling process.

If the signal causes termination of the calling process,
pause will not return.

If the signal is caught by the calling process and control
is returned from the signal-catching function (see
signal(2)), the calling process resumes execution from the
point of suspension; with a return value of —1 from
pause and errno set to EINTR.

SEE ALSO

alarm(2), kill(2), signal(2), wait(2).

PIPE(2)

NAME

pipe — create an interprocess channel
SYNOPSIS

int pipe (fildes)

int fildes|2];
DESCRIPTION

Pipe creates an I/O mechanism called a e and returns
two file descriptors, ledes[and fildes f Fildes|0
opened for reading and ftldea] is opened for wrlt,lng

Up to 9K bytes of data are buffered by the pipe before
the writing process is blocked. A read only file
descriptor fildes[0] accesses the data written to fildes|1]
on a first-in-first-out (FIFO) basis.

[EMFILE] Pipe will fail if 19 or more file
descriptors are currently open.
[ENFILE] The system file table is full.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
sh(1), read(2), write(2).

5/86 -1-

NAME

PLOCK (2)

plock — lock process, text, or data in memory

SYNOPSIS

#include <sys/lock.h>

int plock (op)
int op;

DESCRIPTION

Plock allows the calling process to lock its text segment
(text lock), its data and stack segments (data lock), or
both its text and data segments (process lock) into
memory. Locked segments are immune to all routine
swapping. Plock also allows these segments to be
unlocked. For 407 object modules TXTLOCK and
DATLOCK are identical. The effective user ID of the
calling process must be super-user to use this call. Op
specifies the following:

PROCLOCK lock text and data segments into
memory (process lock)

TXTLOCK lock text segment into memory (text

lock)

DATLOCK lock data segment into memory (data
lock)

UNLOCK remove locks

Shared regions (e.g., text) may be locked by anyone
using the text, but they may be unlocked only if the
caller is the last one using the region. Note that sticky-
bit text that is not explicitly unlocked will remain locked
in core even after the last process using it terminates.

Plock will fail and not perform the requested operation if
one or more of the following are true:

[EPERM] The effective user ID of the calling
process is not super-user.
[EINVAL)] Op is equal to PROCLOCK and a

process lock, a text lock, or a data lock
already exists on the calling process.

[EINVAL)J Op is equal to TXTLOCK and a text
lock, or a process lock already exists on
the calling process.

[EINVALJ Op is equal to DATLOCK and a data
lock, or a process lock already exists on
the calling process.

[EINVAL) Op is equal to UNLOCK and no type of
lock exists on the calling process.

-1-

PLOCK(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned to
the calling process. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2).

NAME

PROFIL (2)

profil — execution time profile

SYNOPSIS

void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION

Buff points to an area of core whose length (in bytes) is
given by bufsiz. After this call, the user’s program
counter (pc) is examined each clock tick (60th second);
offset is subtracted from it, and the result multiplied by
scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point
fraction with binary point at the left: 0177777 (octal)
ives a 1-1 mapping of pc’s to words in buff; 077777
%octal) maps each pair of instruction words together.
02(octal) maps all instructions onto the beginning of buff
(producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is
rendered ineffective by giving a bufsiz of 0. Profiling is
turned off when an ezec is executed, but remains on in
child and parent both after a fork. Profiling will be
turned off if an update in buff would cause a memory
fault.

RETURN VALUE

Not defined.

SEE ALSO

prof(1), monitor(3C).

PTRACE(2)

NAME
ptrace — process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION

Ptrace provides a means by which a parent process may
control the execution of a child process. Its primary use
is for the implementation of breakpoint debugging; see
sdb(1). The child process behaves normally until it
encounters a signal (see stgnal(2) for the list), at which
time it enters a stopped state and its parent is notified
via wait(2). When the child is in the stopped state, its
parent can examine and modify its ‘‘core 1mage’’ using
ptrace. Also, the parent can cause the child either to
terminate or continue, with the possibility of ignoring
the signal that caused it to stop.

The request argument determines the precise action to
be taken by ptrace and is one of the following:

0 This request must be issued by the child process if
it is to be traced by its parent. It turns on the
child’s trace flag that stipulates that the child
should be left in a stopped state upon receipt of a
signal rather than the state specified by func; see
signal(2). The pid, addr, and dats arguments are
ignored, and a return value is not defined for this
request. Peculiar results will ensue if the parent
does not expect to trace the child.

The remainder of the requests can only be used by the
parent process. For each, pid is the process ID of the
child. The child must be in a stopped state before these
requests are made.

1, 2 With these requests, the word at location addr in
the address space of the child is returned to the
parent process. If I and D space are separated (as
on PDP-11s), request 1 returns a word from I space,
and request 2 returns a word from D space. If I
and D space are not separated (as on Convergent
Technologies 68000-family processors), either
request 1 or request 2 may be used with equal
results. The data argument is ignored. These two
requests will fail if addr is not the start address of
a word, in which case a value of -1 is returned to
the parent process and the parent’s errno is set to -
EIO.

PTRACE(2)

With this request, the word at location addr in the
child’s USER area in the system’s address space (see
<sys/user.h>) is returned to the parent process.
Addresses in this area range from 0 to USIZE on
Convergent Technologies 68000-family processors.
The data argument is ignored. This request will
fail if addr is not the start address of a word or is
outside the USER area, in which case a value of -1
is returned to the parent process and the parent’s
errno is set to EIO.

With these requests, the value given by the data
argument is written into the address space of the
child at location addr. If I and D space are
separated (as on PDP-11s), request 4 writes a word
into 1 space, and request 5 writes a word into D
space. If I and D space are not separated (as on
Convergent Technologies 68000-family processors),
either request 4 or request 5 may be used with
equal results. Upon successful completion, the
value written into the address space of the child is
returned to the parent. These two requests will fail
if addr is a location in a pure procedure space and
another process is executing in that space, or addr
is not the start address of a word. Upon failure a
value of -1 is returned to the parent process and
the parent’s errno is set to EIO.

With this request, a few entries in the child’s USER
area can be written. Data gives the value that is
to be written and addr is the location of the entry.
The few entries that can be written are:

the general registers (i.e., registers 0 to 15
on Convergent Technologies 68000-family
processors).

all processor status bits except 8, 9, 10, 12,
and 13.

This request causes the child to resume execution.
If the data argument is 0, all pending signals
including the one that caused the child to stop are
canceled before it resumes execution. If the data
argument is a valid signal number, the child
resumes execution as if it had incurred that signal,
and any other pending signals are canceled. The
addr argument must be equal to 1 for this request.
Upon successful completion, the value of data is
returned to the parent. This request will fail if
data is not 0 or a valid signal number, in which
case a value of —1 is returned to the parent process

PTRACE(2)

and the parent’s errno is set to EIO.

This request causes the child to terminate with the
same consequences as eztt(2).

This request sets the trace bit in the Processor
Status Word of the child (i.e., bit 15 on
Convergent Technologies 68000-family processors)
and then executes the same steps as listed above
for request 7. The trace bit causes an interrupt
upon completion of one machine instruction. This
effectively allows single stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-id
facility on subsequent ezec(2) calls. If a traced process

calls

exec, it will stop before executing the first

instruction of the new image showing signal SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following

are true:
[EIO] Request is an illegal number.
[ESRCH] Pid identifies a child that does not exist

FILES

or has not executed a ptrace with
request 0.

/usr/include/sys/page.h
/usr/include/sys/user.h

SEE ALSO

exec(2), signal(2), wait(2).

5/86

NAME

READ(2)

read — read from file

SYNOPSIS

int read (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open,
dup, fentl, or pipe system call.

Read attempts to read nbyte bytes from the file
associated with fildes into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a
position in the file given by the file pointer associated
with fildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from
the current position. The value of a file pointer
associated with such a file is undefined.

Upon successful completion, read returns the number of
bytes actually read and placed in the buffer; this number
may be less than nbyte if the file is associated with a
communication line (see {oct!(2) and termio(7)), or if the
number of bytes left in the file is less than nbyte bytes.
A value of 0 is returned when an end-of-file has been
reached.

When attempting to read from an empty pipe (or FIFO):
If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until
data is written to the file or the file is no longer
open for writing.

When attempting to read a file associated with a tty
that has no data currently available:

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until
data becomes available.

Read will fail if one or more of the following are true:

|EBADF) Fildes is not a valid file descriptor open
for reading.

[EFAULT)] Buf points outside the allocated address
space.

READ(2)

[EINTR] A signal was caught during the read
system call.

[EDEADLOCK]| A side effect of a previous locking(2)
call.

RETURN VALUE
Upon successful completion a non-negative integer is
returned indicating the number of bytes actually read.
Otherwise, a —1 is returned and errno is set to indicate
the error.

SEE ALSO

creat(2), dup(2), fentl(2), ioctl(2), locking(2), open(2),
pipe(2), termio(7).

—_—

RECV (2N)

recv, recvfrom — receive a message from a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

recv(s, buf, len, flags)
int s;
char *buf;

int len, flags;

recvfrom(s, buf, len, flags, from, fromlen)
int s;

char *buf;

int len, flags;

struct sockaddr *from;

int *fromlen;

DESCRIPTION

Recv and recufrom are used to receive messages from a
socket.

The recv call may be used only on a connected socket
(see connect(2)), while recufrom may be used to receive
data on a socket whether it is in a connected state or
not.

If from is non-zero, the source address of the message is
filled in. Fromlen is a value-result parameter, initialized
to the size of the buffer associated with from, and
modified on return to indicate the actual size of the
address stored there. The length of the message is
returned in cc. If a message is too long to fit in the
supplied buffer, excess bytes may be discarded depending
on the type of socket the message is received from; see
socket(2).

If no messages are available at the socket, the receive
call waits for a message to arrive.

The flags argument to a send call is formed by or’ing
one or more of the values:

#defineMSG_PEEK 0x1

/* peek at incoming message */
#defineMSG_OOB 0x2

/* process out-of-band data */

~ RETURN VALUE

These calls return the number of bytes received, or -1 if
an error occurred.

ERRORS

The calls fail if:

[EBADF]

[ENOTSOCK]
[EINTR]

[EFAULT)

SEE ALSO

RECV(2N)

The argument s is an invalid
descriptor.

The argument s is not a socket.

The receive was interrupted by
delivery of a signal before any
data was available for the receive.

The data was specified to be
received into a non-existent or
protected part of the process
address space.

connect(2N), read(2), send(2), socket(2N).
CTIX Internetworking Manual.

NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

SEMCTL (2)

NAME
semct]l — semaphore control operations
SYNOPSIS
—_ #include <sys/types.h>

#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, c¢md, arg)
int semid, cmd;
int semnum;
union semun {
int val;
struct semid_ds *buf;
ushort *array;
} arg;
DESCRIPTION
Semctl provides a variety of semaphore control
operations as specified by emd.

The following emds are executed with respect to the
semaphore specified by semid and semnum:
GETVAL Return the value of semval (see tntro(2)).
{(READ)
— SETVAL Set the value of semval to arg.val.
{ALTER} When this cmd is successfully
executed, the semadj value corresponding

to the specified semaphore in all processes
is cleared.

GETPID Return the value of sempid. {READ}

GETNCNT Return the value of semnent. {READ}

GETZCNT Return the value of semzent. {READ}

The following cmds return and set, respectively, every

semval in the set of semaphores.

GETALL Place semvals into array pointed to by
arg.array. {READ}

SETALL Set semvals according to the array
pointed to by arg.array. {ALTER} When
this e¢md is successfully executed the
semadj values corresponding to each
specified semaphore in all processes are

— cleared.

The following emds are also available:

IPC_STAT Place the current value of each member
of the data structure associated with
semid into the structure pointed to by

-1-

IPC_SET

SEMCTL(2)

arg.buf. The contents of this structure
are defined in intro(2). {READ}

Set the value of the following members of
the data structure associated with semid
to the corresponding value found in the
structure pointed to by arg.buf:
sem_perm.uid

sem_perm.gid

sem_perm.mode /* only low 9 bits */

This ¢cmd can only be executed
by a process that has an effective
user ID equal to either that of
super-user or to the value of
sem_perm.uid in the data
structure associated with semid.

IPC_RMID Remove the semaphore
identifier specified by
semid from the system and
destroy the set of
semaphores and data
structure associated with
it. This cmd can only be
executed by a process that
has an effective user ID
equal to either that of
super-user or to the value
of sem_perm.uid in the
data structure associated
with semid.

Semetl will fail if one or more of the
following are true:

[EINVAL] Semsd is not a valid
semaphore identifier.

[EINVAL] Semnum is less than zero
or greater than
Sem_nsems.

[EINVAL] Cmd is not a wvalid
command.

[EACCES] Operation permission is

denied to the calling
process (see intro(2)).

[ERANGE] Cmd is SETVAL or
SETALL and the value
to which semval is to be
set is greater than the

SEMCTL(2)

system imposed
maximum.
[EPERM] Cmd is equal to

IPC_RMID or IPC_SET
and the effective user ID
of the calling process is
not equal to that of
super-user and it is not
equal to the value of
sem_perm.uid in the
data structure associated
with semid.

{EFAULT) Arg.buf points to an
illegal address.
RETURN VALUE

Upon successful completion, the value returned depends
on ¢md as follows:

GETVAL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzcent.
All others A value of 0.

Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), semget(2), semop(2).

NAME

SEMGET (2)

semget — get set of semaphores

SYNOPSIS

#tinclude <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION

Semget returns the semaphore identifier associated with

key.

A semaphore identifier and associated data structure and
set containing nsems semaphores (see tntro{2)) are
created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore
identifier associated with it, and (semfly &
IPC_CREAT) is “true”.

Upon creation, the data structure associated with the
new semaphore identifier is initialized as follows:

Sem_perm.cuid, sem_perm.uid,
sem_perm.cgid, and sem_perm.gid are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.

The low-order 9 bits of sem_perm.mode are
set equal to the low-order 9 bits of semflg.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is
set equal to the current time.

Semget will fail if one or more of the following are true:

[EINVAL] Nsems is either less than or equal to
zero or greater than the system-imposed
limit.

[EACCES] A semaphore identifier exists for key,

but operation permission (see intro(2))
as specified by the low-order 9 bits of
semflg would not be granted.

[EINVAL] A semaphore identifier exists for key,

but the number of semaphores in the
set associated with it is less than nsems
and nsems 1s not equal to zero.

SEMGET(2)

[ENOENT] A semaphore identifier does not exist
for key and (semfly & IPC_CREAT) is
“false”.

[ENOSP(] A semaphore identifier is to be created

but the system-imposed limit on the
maximum number of allowed semaphore
identifiers system wide would be
exceeded.

[ENOSPC] A semaphore identifier is to be created
but the system-imposed limit on the
maximum number of allowed
semaphores system wide would be
exceeded.

[EEXIST] A semaphore identifier exists for key
but J.Dscmﬂg & IPC_CREAT) and
(semflg&k IPC_EXCL)) is “‘true”.

RETURN VALUE
Upon successful completion, a non-negative integer,
namely a semaphore identifier, is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the
eITor.

SEE ALSO
intro(2), semctl(2), semop(2).

NAME

SEMOP (2)

semop — semaphore operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf **sops;

int nsops;

DESCRIPTION

Semop is used to atomically perform an array of
semaphore operations on the set of semaphores
associated with the semaphore identifier specified by
semid. Sops is a pointer to the array of semaphore-
operation structures. Nsops is the number of such
structures in the array. The contents of each structure
includes the following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op is
performed on the corresponding semaphore specified by
semid and sem_num.

Sem_op specifies one of three semaphore operations as
follows:

If sem_op is a negative integer, one of the
following will occur: {ALTER}

If semval (see fniro(2)) is greater than
or equal to the absolute value of
sem_op, the absolute value of sem_op
is subtracted from semval. Also, if
(sem_flg & SEM_UNDO) is “true”, the
absolute value of sem_op is added to
the calling process’s semadj value (see
exit(2)) for the specified semaphore.
All processes suspended waiting for
semval are rescheduled.

If semval is less than the absolute value
of sem_op and (sem_flg &
IPC_NOWAIT) is “true’”, semop will
return immediately.

If semval is less than the absolute value
of sem_op and (sem_flg &
IPC_NOWAIT) is ‘“false”, semop will

-1-

SEMOP (2)

increment the semncnt associated with
the specified semaphore and suspend
execution of the calling process until
one of the following conditions occurs:

Semval becomes greater than or
equal to the absolute value of
sem_op. When this occurs, the
value of semnent associated with the
specified semaphore is decremented,
the absolute value of sem_op is
subtracted from semval and, if
(sem_flg & SEM_UNDO) is “true’,
the absolute value of sem_op is
added to the calling process’s semadj
value for the specified semaphore,
and all the operations are tried
again.

The semid for which the calling
process is awaiting action is removed
from the system (see semctl(2)).
When this occurs, errno is set equal
to EIDRM, and a value of -1 1s
returned.

The calling process receives a signal
that is to be caught. When this
occurs, the wvalue of semncnt
associated with the specified
semaphore is decremented, and the
calling process resumes execution in
the manner prescribed in signal(2).
If sem_op is a positive integer, the value of
sem_op is added to semval and, if $scm_ﬂg &
SEM_UNDO) is “true”, the value of sem_op is
subtracted from the calling process’s semadj
value for the specified semaphore. {ALTER}

If sem_op is zero, one of the following will
occur: {READ}
If semval is zero, semop will return
immediately.

If semval is not equal to zero and
(sem_flg & IPC_NOWAIT) is ‘‘true”,
semop will return immediately.

If semval is not equal to zero and

SEMOP (2)

(sem_flg & TPC_NOWAIT) is “false”,
semop will increment the semzcnt
associated with the specified semaphore
and suspend execution of the calling
process until one of the following
occurs:

Semval becomes zero, at which time
the value of semzent associated with
the specified semaphore is
decremented.

The semid for which the calling
process is awaiting action is removed
from the system. When this occurs,
errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal
that is to be caught. When this
occurs, the value of semzcnt
associated ~ with the specified
semaphore is decremented, and the
calling process resumes execution in
the manner prescribed in stgnal(2).

Semop will fail if one or more of the following are true
for any of the semaphore operations specified by sops:

[EINVAL]

[EFBIG]

(E2BIG)
[EACCES]

[EAGAIN]

[ENOSPC]

[EINVAL)|

Semid is not a valid semaphore
identifier.

Sem_num is less than zero or greater
than or equal to the number of
semaphores in the set associated with
semid.

Nsops is greater than the system-
imposed maximum.

Operation permission is denied to the
calling process (see tniro(2)).

The operation would result in
suspension of the calling process but
(sem_flg & IPC_NOWAIT) is ‘“‘true”’.

The limit on the number of individual
processes requesting an SEM_UNDO
would be exceeded.

The number of individual semaphores
for which the calling process requests a
SEM_UNDO would exceed the hmit.

SEMOP (2)

[ERANGE] An operation would cause a semval to
overflow the system-imposed himit.

[ERANGE] An operation would cause a semad]
value to overflow the system-imposed
limit.

[EFAULT] Sops points to an illegal address.

Upon successful completion, the value of sempid for each
semaphore specified in the array pointed to by sops is set
equal to the process ID of the calling process.

RETURN VALUE
If semop returns due to the receipt of a signal, a value of
-1 is returned to the calling process and errno is set to
EINTR. If it returns due to the removal of a semid from
the system, a value of -1 is returned and errno is set to
EIDRM.

Upon successful completion, the value of semval at the
time of the call for the last operation in the array
pointed to by sops is returned. Otherwise, a value of —1
1s returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

SEND (2N)

NAME
send, sendto - send a message to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
send(s, msg, len, flags)
int s;
char *msg;
int len, flags;

sendto(s, msg, len, flags, to, tolen)
int s;

char *msg;

int len, flags;

struct sockaddr *to;

int tolen;

DESCRIPTION
Send and sendto are used to transmit a message to
another socket (s). Send may be used only when the
socket is in a connected state, while sendto may be used
at any time.

The address of the target is given by to with tolen
specifying its size. The length of the message is given by
len. If the message is too long to pass atomically
through the underlying protocol, then the error
EMSGSIZE is returned, and the message is not
transmitted.

No indication of failure to deliver is implicit in a send.
Return values of -1 indicate some locally detected
€TTOTS.

If no message space is available at the socket to hold the
message to be transmitted, then send blocks.

The flags parameter may be set to SOF_OOB to send
out-of-band data on sockets which support this notion
(e.g., SOCK_STREAM).

RETURN VALUE

The call returns the number of characters sent, or —1 if
an error occurred.

ERRORS
[EBADF) An invalid descriptor was
specified.
[ENOTSOCK] The argument s is not a socket.
[EFAULT] An invalid user space address was

specified for a parameter.

SEND (2N)

[EMSGSIZE] The socket requires that message
be sent atomically, and the size of
the message to be sent made this
impossible.

SEE ALSO

recv(2N), socket(2N).

CTIX Internetworking Manual.
NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

SETPGRP(2)

NAME

setpgrp — set process group ID
SYNOPSIS

int setpgrp ()
DESCRIPTION

Setpgrp sets the process group ID of the calling process to
the process ID of the calling process and returns the
process group ID.

RETURN VALUE

Setpgrp returns the value of the process group ID.

SEE ALSO

NOTE

5/86

exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

This function is incorrectly documented in the UNIX
System V Interface definition and other UNIX
documentation. The description here accurately
describes the system call.

NAME

SETUID(2)

setuid, setgid — set user and group IDs

SYNOPSIS

int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION

Setuid (setgid) is used to set the real user (group) ID and
effective user {group) ID of the calling process.

If the effective user ID of the calling process is super-
user, the real user (group) ID and effective user (group)
ID are set to uid (gid).

If the effective user ID of the calling process is not
super-user, but its real user (group) ID is equal to wuid
(gid), the effective user (group) ID is set to uid (gid).

If the effective user ID of the calling process is not
super-user, but the saved set-user (group) ID from ezec(2)
is equal to utd (g1d), the effective user (group) ID is set to
mdc%gta')

Setuid (setgid) will fail if the real user (group) ID of the
calling process is not equal to uid (gid) and its effective
user ID is not super-user. [EPERM]

The uid is out of range. [EINVAL]

RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO

getuid(2), intro(2).

SHMCTL (2)

NAME
shmet]l — shared memory control operations

SYNOPSIS
#tinclude <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmetl (shmid, emd, buf)
int shmid, emd;
struct shmid_ds *buf};

DESCRIPTION
Shmetl provides a variety of shared memory control

operations as specified by e¢md. The following e¢mds are
available:

IPC_STAT Place the current value of each member of
the data structure associated with shmid
into the structure pointed to by buf. The
contents of this structure are defined in
[EINVAL)] ntro(2). {READ}

IPC_SET Set the value of the following members of
the data structure associated with shmid to
the corresponding value found in the
structure pointed to by buf:
shm_perm.uid
shm_perm.gid
shm_perm.mode /* only low 9 bits */

This ¢md can only be executed by a process
that has an effective user ID equal to either
that of super-user or to the value of
shm_perm.uid in the data structure
associated with shmid.

SHM_LOCK Lock the shared memory segment
specified by shmtd in memory. This
emd can only be executed by a process
that has an effective user ID equal to
super user.

SHM_UNLOCK
Unlock the shared memory segment
specified by shmid. This ¢md can only
be executed by a process that has an
effective user ID equal to super user.

IPC_RMID Remove the shared memory identifier
specified by shmid from the system and
destroy the shared memory segment
and data structure associated with it.
This ¢md can only be executed by a

-1-

SHMCTL(2)

process that has an effective user ID
equal to either that of super-user or to
the value of shm_perm.uid in the
data structure associated with shmid.

Shmetl will fail if one or more of the following are true:

[EINVAL|

[EINVAL]
[EACCES]

[EPERM]

[EPERM|

[EINVAL]

[EFAULT]
RETURN VALUE

Shmid is not a valid shared memory
identifier.

Cmd is not a valid command.

Cmd is equal to IPC_STAT and
{READ} operation permission is denied
to the calling process (see tntro(2)).

Cmd is equal to IPC_RMID or
IPC_SET and the effective user ID of
the calling process is not equal to that
of super user and it is not equal to the
value of shm_perm.uid in the data
structure associated with shmid.

Cmd is equal to SHM_LOCK or
SHM_UNLOCK and the effective user
ID of the calling process is not equal to
that of super user.

Cmd is equal to SHM_UNLOCK and
the shared-memory segment specified
by shmid is not locked in memory.

Buf points to an illegal address.

Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO

intro(2), shmget(2), shmop(2).

SHMGET(2)

NAME
shmget — get shared memory segment

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION
Shmget returns the shared memory identifier associated
with key.

A shared memory identifier and associated data structure
and shared memory segment of size size bytes (see
intro(2)) are created for key if one of the following are
true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory
identifier associated with it, and (shmfly &
IPC_CREAT) is “true”.

Upon creation, the data structure associated with the
new shared memory identifier is initialized as follows:

Shm_perm.cuid, shm_perm.uid,
shm_perm.cgid, and shm_perm.gid are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are
set equal to the low-order 9 bits of shmfly.
Shm_segsz is set equal to the value of size.
Shm_lpid, shm_nattch, shm_atime, and
shm_dtime are set equal to 0.

Shm_ctime is set equal to the current time.
Shmget will fail if one or more of the following are true:

[EINVAL] Size is less than the system-imposed
minimum or greater than the system-
imposed maximum.

(EACCES] A shared memory identifier exists for
key but operation permission (see
tntro(2)) as specified by the low-order 9
bits of shmflg would not be granted.

[EINVAL] A shared memory identifier exists for
key but the size of the segment
associated with it is less than size and

-1-

SHMGET(2)

size is not equal to zero.

[ENOENT] A shared memory identifier does not
exist for key and (shmfly &

— IPC_CREAT) is “false”.
[ENOSPC| A shared memory identifier is to be

created but the system-imposed limit on
the maximum number of allowed shared
memory identifiers system wide would
be exceeded.

[ENOMEM] A shared memory identifier and
associated shared memory segment are
to be created but the amount of
available physical memory is not
sufficient to fill the request.

[EEXIST] A shared memory identifier exists for
key but ((shmflg & IPC_CREAT) and
(shmflyg & TIPC_EXCL)) is ‘““true”.

RETURN VALUE
Upon successful completion, a non-negative integer,
namely a shared memory identifier is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), shmetl(2), shmop(2).

—

SHMOP (2)

NAME
shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;

char *shmaddr

int shmflg;

int shmdt (shmaddr)
char *shmaddr

DESCRIPTION
Shmat attaches the shared memory segment associated
with the shared memory identifier specified by shmid to
the data segment of the calling process. The segment is
attached at the address specified by one of the following
criteria:

If shmaddr is equal to zero, the segment 1is
attached at the first available address as selected
by the system.

If shmaddr is not equal to zero and (shmfly &
SHM_RND) is ‘“‘true”, the segment is attached
at the address given by (shmaddr - (shmaddr
modulus SHMLBA)).

If shmaddr is not equal to zero and (shmfly &

SHM_RND) is “false”, the segment is attached
at the address given by shmaddr.

The segment is attached for reading if (shmfly &
SHM_RDONLY) is ‘“‘true” {READ}, otherwise it is
attached for reading and writing {READ/WRITE}.

Shmat will fail and not attach the shared memory
segment if one or more of the following are true:

[EINVAL] Shmid is not a valid shared memory
identifier.

[EACCES] Operation permission is denied to the
calling process (see tntro(2)).

[ENOMEM] The available data space is not large

enough to accommodate the shared
memory segment.

[EINVAL] Shmaddr is not equal to zero, and the

value of (shmaddr - (shmaddr modulus
SHMLBA)) is an illegal address.

SHMOP (2)

[EINVALJ Shmaddr is not equal to zero, (shmflg &
SHM_RND) is “false””, and the value of
shmaddr is an illegal address.

[EMFILE] The number of shared memory
segments attached to the calling process
would exceed the system-imposed limit.

[EINVAL] Shmdt detaches from the calling
process’s data segment the shared
memory segment located at the address
specified by shmaddr.

[EINVAL) Shmdt will fail and not detach the
shared memory segment if shmaddr is
not the data segment start address of a
shared memory segment.
RETURN VALUES

Upon successful completion, the return value is as
follows:

Shmat returns the data segment start address of
the attached shared memory segment.
Shmdt returns a value of 0.

Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmetl(2), shmget(2).

SHUTDOWN (2N)

NAME
shutdown — shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex
connection on the socket associated with s to be shut
down. If how is O, then further receives will be
disallowed. If how is 1, then further sends will be
disallowed. If how is 2, then further sends and receives

will be disallowed.

DIAGNOSTICS

A 0 is returned if the call succeeds, —1 if it fails.
ERRORS

The call succeeds unless:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] Sis a file, not a socket.
[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

—

NAME

SIGNAL(2)

signal — specify what to do upon receipt of a signal

SYNOPSIS

#include <signalh>

int (*signal (sig, func))()
int sig;
void (*func)();

DESCRIPTION

5/86

Signal allows the calling process to choose one of three
ways in which it is possible to handle the receipt of a
specific signal. Sig specifies the signal and func specifies
the choice.

Sig can be assigned any one of the following except
SIGKILL:

SIGHUP 01 hangup

SIGINT 02 interrupt

SIGQUIT 03* quit

SIGILL 04* illegal instruction (not reset when
caught)

SIGTRAP 05* trace trap (not reset when caught)

SIGIOT 06* IOT instruction

SIGEMT o7* EMT instruction

SIGFPE 08* floating point exception

SIGKILL 09 kill (cannot be caught or ignored)

SIGBUS 10* bus error

SIGSEGV 11* segmentation violation

SIGSYS 12* bad argument to system call

SIGPIPE 13 write on a pipe with no one to
read it

SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGUSR1 16 user-defined signal 1

SIGUSR2 17 user-defined signal 2

SIGCLD 18 death of a child (see WARNING
below)

SIGPWR 19 power fail (see WARNING below)

See SIG_DFL below for the significance of the asterisk
*) in the above list.)

5/86

SIGNAL(2)

Fune is assigned one of three values: SIG_DFL,
SIG_IGN, or a function address. The actions prescribed
by these values are as follows:

SIG_DFL - terminate process upon receipt of a

signal

Upon receipt of the signal sig, the receiving
process is to be terminated with all of the
consequences outlined in ezi#(2). In addition,
a ‘“‘core image’’ will be made in the current
working directory of the receiving process if
81g is one for which an asterisk (*) appears in
the above list and the following conditions
are met:

The effective user ID and the real
user ID of the receiving process are
equal.

An ordinary file named core exists
and is writable or can be created. If
the file must be created, it will have
the following properties:

a mode of 0666 modified by
the file creation mask (see
umask(2))

a file owner ID that is the
same as the effective user
ID of the receiving process

a file group ID that is the
same as the effective group
ID of the receiving process

SIG_IGN - ignore signal

The signal sig is to be ignored.
Note: the signal SIGKILL cannot be ignored.

function address — catch signal

Upon receipt of the signal sig, the receiving
process is to execute the signal-catching
function pointed to by fune. The signal
number stg will be passed as the only argument
to the signal-catching function. Before entering
the signal-catching function, the value of func
for the caught signal will be set to SIG_DFL
unless the signal is SIGILL, SIGTRAP, or
SIGPWR.

Upon return from the signal-catching function,
the receiving process will resume execution at
the point it was interrupted.

-92-

SIGNAL(2)

When a signal that is to be caught occurs
during a read, a write, an open, or an toctl
system call on a slow device (like a terminal;
but not a file), during a pause system call, or
during a watt system call that does not return
immediately due to the existence of a
previously stopped or zombie process, the signal
catching function will be executed and then the
interrupted system call may return a —1 to the
calling process with errno set to EINTR.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal stg except for a
pending SIGKILL signal.

Stgnal will fail if sig is an illegal signal number,
including SIGKILL. [EINVAL]

RETURN VALUE

Upon successful completion, signal returns the previous
value of funec for the specified signal stg. Otherwise, a
value of -1 is returned and errno is set to indicate the
error.

SEE ALSO

kill(1), kill(2), pause(2), ptrace(2), wait(2), setjmp(3C).

WARNING

5/86

Two other signals that behave differently than the
signals described above exist in this release of the
system; they are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fail {not reset when caught)

There is no guarantee that, in future releases of the CTIX
system or the UNIX system, these signals will continue to
behave as described below; they are included only for
compatibility with some versions of the UNIX system.

Their use in new programs is strongly discouraged by
Convergent and AT&T.

For these signals, func is assigned one of three values:
SIG_DFL, SIG_IGN, or a function address. The actions
prescribed by these values of are as follows:
SIG_DFL - ignore signal
The signal is to be ignored.
SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is
SIGCLD, the calling process’s child processes

will not create zombie processes when they
terminate; see ezit{2).

-3-

5/86

SIGNAL(2)

function address - catch signal

If the signal is SIGPWR, the action to be
taken is the same as that described above for
fune equal to function address. The same is
true if the signal is SIGCLD except, that
while the process is executing the signal-
catching function, any received SIGCLD
signals will be queued and the signal-catching
function will be continually reentered until
the queue 1s empty.

The SIGCLD affects two other system calls (wait(2),
and ez1t(2)) in the following ways:

watt If the func value of SIGCLD is set to
SIG_IGN and a wait is executed, the wazit
will block until all of the calling process’s
child processes terminate; it will then return
a value of —1 with errno set to ECHILD.

exit If in the exiting process’s parent process the
func value of SIGCLD is set to SIG_IGN, the
exiting process will not create a zombie
process.

When processing a pipeline, the shell makes the last
process in the pipeline the parent of the proceeding
processes. A process that may be piped into in this
manner {and thus become the parent of other
processes) should take care not to set SIGCLD to be
caught.

—

NAME

SOCKET (2N)

socket — create an endpoint for communication

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

socket (af, type, protocol)
int af, type, protocol;

DESCRIPTION

5/86

Socket creates an endpoint for communication and
returns a descriptor.

The af parameter specifies an address format with which
addresses specified in later operations using the socket
should be interpreted. These formats are defined in the
include file <sys/socket.h>. The currently
understood format is

AF_INET (ARPA Internet addresses).

The socket has the indicated fype which specifies the
semantics of communication. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable,
two-way connection-based byte streams with an out-of-
band data transmission mechanism. A SOCK_DGRAM
socket supports datagrams (connectionless, unreliable
messages of a fixed (typically small) maximum length).
SOCK_RAW sockets provide access to internal network
interfaces. The types SOCK_RAW, which is available
only to the super-user, and SOCK_SEQPACKET and
SOCK_RDM, which are planned, but not yet
implemented, are not described here.

The protocol specifies a particular protocol to be used
with the socket. Normally only a single protocol exists
to support a particular socket type using a given address
format. However, it is possible that many protocols may
exist in which case a particular protocol must be
specified in this manner. The protocol number to use is
particular to the communication domain in which
communication is to take place; see services(4N) and
protocols(4N).

Sockets of type SOCK_STREAM are full-duplex byte
streams, similar to pipes. A stream socket must be in a

-1-

5/86

SOCKET (2N)

connected state before any data may be sent or received
on it. A connection to another socket is created with a
connect(2N) call. Once connected, data may be
transferred using read(2) and write(2) calls or some
variant of the send(2N) and rccv(2N) calls. When a
session has been completed, a close(2) may be
performed. Out-of-band data may also be transmitted as
described in send(2N) and received as described in
recv(2N).

The communications protocols used to implement a
SOCK_STREAM insure that data is not lost or
duplicated. If a piece of data for which the peer protocol
has bulfer space cannot be successfully transmitted
within a reasonable length of time, then the connection
is considered broken and calls will indicate an error with
-1 returns and with ETIMEDOUT as the specific code
in the global variable errno. The protocols optionally
keep sockets warm by forcing transmissions roughly
every minute in the absence of other activity. An error
is then indicated if no response can be elicited on an
otherwise idle connection for a extended period (e.g., 5
minutes). A SIGPIPE signal is raised if a process sends
on a broken stream; this causes naive processes, which do
not handle the signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending
of datagrams to correspondents named in send(2N) calls.
It is also possible to receive datagrams at such a socket
with recv(2N).

An fentl(2) call can be used to specify a process group to
receive a SIGURG signal when the out-of-band data
arrives.

The operation of sockets is controlled by socket level
options. These options are defined in the file
<sys/socket.h> and explained below. Setsockopt and
getsockopt(2N) are used to set and get options,
respectively.

SO_DEBUG Turn on recording of debugging
information.

SO_REUSEADDR Allow local address reuse.
SO_KEEPALIVE Keep connections alive.
SO_DONTROUTE Do no apply routing on outgoing

messages.
SO_LINGER Linger on close if data present.
SO_DONTLINGER Do not linger on close.

SOCKET (2N)

SO_DEBUG enables debugging in the underlying
protocol modules. SO_REUSEADDR indicates that the
rules used in validating addresses supplied in a bind(2N)
call should allow reuse of local addresses.
SO_KEEPALIVE enables the periodic transmission of
messages on a connected socket. Should the connected
party fail to respond to these messages, the connection is
considered broken and processes using the socket are
notified via a SIGPIPE signal. SO_DONTROUTE
indicates that outgoing messages should bypass the
standard routing facilities. Instead, messages are
directed to the appropriate network interface according
to the network portion of the destination address.
SO_LINGER and SO_DONTLINGER control the
actions taken when unsent messages are queued on
socket and a close(2) is performed. If the socket
promises reliable delivery of data and SO_LINGER is
set, the system will block the process on the close(2)
attempt until it is able to transmit the data or until it
decides it is unable to deliver the information (a timeout
period, termed the linger interval, is specified in the
setsockopt call when SO_LINGER is requested). If
SO_DONTLINGER is specified and a close is issued, the
system will process the close in a manner which allows
the process to continue as quickly as possible.

RETURN VALUE

A -1 is returned if an error occurs, otherwise the return
value is a descriptor referencing the socket.

ERRORS

The socket call fails if:

[EAFNOSUPPORT] The specified address family is not
supported in this version of the
system.

[ESOCKTNOSUPPORT]
The specified socket type is not
supported in this address family.

[EPROTONOSUPPORT)
The specified protocol is not
supported.

[EMFILE] The per-process descriptor table is
full.

[ENOBUFS] No buffer space is available. The

socket cannot be created.

SEE ALSO

5/86

accept(2N), bind(2N), connect(2N), getsockname
getsockopt(2N), ioctl(2), listen(2N), recv(2N), send

2N),
oN

?

-3.

BUGS

NOTE

5/86

SOCKET (2N)

shutdown(2N), protocols(4N), services(4N).
“A 4.2BSD Interprocess Communication Primer.”
CTIX Internetworking Manual.

The use of keepalives is a questionable feature for this
layer.

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

STAT(2)

NAME
stat, fstat — get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int stat (path, buf)
char *path;
struct stat *buf;

int fstat (fildes, buf)
int fildes;
struct stat *buf;

DESCRIPTION
Path points to a path name naming a file. Read, write,
or execute permission of the named file is not required,
but all directories listed in the path name leading to the
file must be searchable. Stat obtains information about
the named file.

Similarly, fstat obtains information about an open file
known by the file descriptor fildes, obtained from a
successful open, creat, dup, fentl, or pipe system call.

Buf is a pointer to a stat structure into which
information 1s placed concerning the file.

The contents of the structure pointed to by buf include
the following members:

ushort st_mode; /* File mode; see
mknod(2) */
ino_t st_ino; /* Inode number */
dev_t st_dev; /% ID of device containing */
/* a directory entry for this file */
dev_t st_rdev; /* ID of device »/

/* This entry is defined only for */
/#* character special or block */
/* special files */

short st_nlink; /* Number of links */

ushort st_uid; /* User ID of the file’s owner */
ushort st_gid; /* Group ID of the file’s group */
off_t st_size; /* File size in bytes */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /% Time of last file status change */

/* Times measured in seconds #/
/* since 00:00:00 GMT, Jan. 1, 1970 */

st_atime Time when file data was last accessed.
Changed by the following system calls:

-1-

STAT(2)

creat(2), mknod(2), pipe(2), utime(2), and
read(2).
st_mtime Time when data was last modified. Changed
by the following system calls: creat(2),
mknod(2), pipe(2), utime(2), and write(2).
st_ctime Time when file status was last changed.
Changed by the following system calls:

chmod(2), chown(2), creat(2), Ilink(2),
mknod(2), pipe(2), unlink(2), uwtime(2), and
write(2).
Stat will fail if one or more of the following are true:
[ENOTDIR| A component of the path prefix is not a
directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission 1is denied for a
component of the path prefix.
[EFAULT) Buf or path points to an invalid
address.

Fstat will fail if one or more of the following are true:

[EBADF] Fildes is not a wvalid open file
descriptor.
[EFAULT) Buf points to an invalid address.

RETURN VALUE
Upon successful completion a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2),
read(2), syslocal(2), tlme(), unlink(2), utime(2), wr1te(2)

STIME (2)

NAME

stime — set time
SYNOPSIS

int stime (tp)

long *tp;
DESCRIPTION

Stime sets the system’s idea of the time and date. T

points to the value of time as measured in seconds from
00:00:00 GMT January 1, 1970.

[EPERM] Stime will fail if the effective user ID of

the calling process is not super-user.
RETURN VALUE
Upon successful completion, a value of 0 is returned.

Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
time(2).

SWRITE (2)

NAME
swrite — synchronous write on a file

SYNOPSIS
int swrite (fildes, buf, nbyte)
int fildes;
char *buf}
unsigned nbyte;

DESCRIPTION
Swrite has the same purpose and conventions as
write(2). The two differ solely in their handling of disk
input/output. Swrite, unlike write, does not give a
normal return before physical output is complete. A
program that executes an swrite can assume that the
data is on the disk, not waiting in a buffer pool.

SEE ALSO
creat(2), dup(2), 1seek(2), open(2), pipe(2), ulimit(2).

SYNC(2)

NAME
sync — update super-block
SYNOPSIS
void syne ()
DESCRIPTION
Sync causes all information in memory that should be on

disk to be written out. This includes modified super
blocks, modified i-nodes, and delayed block 1/0.

It should be used by programs which examine a file
system, for example fsck, df, etc. It is mandatory before
a boot.

The writing, although scheduled, is not necessarily
complete upon return from sync.

SYSLOCAL(2)

NAME
syslocal — special system requests
SYNOPSIS
#include <syslocal.h>
int syslocal (emd [, arg | ...)
int cmd;
DESCRIPTION

Syslocal executes certain special system calls. The
specific call is indicated by the first argument.
System Type
int syslocal(SYSL_SYSTEM);

Return SYSL_MINI for MiniFrame, SYSL_MITI for
MightyFrame.

Superblock Resynchronization

int syslocal(SYSL_RESYNC, devnum)
short devnum

Reread contents of superblock from disk. Devnum
specifies the file system: the high order byte contains the
major device number of the character special device; the
low order byte contains the minor device number. Only
the super-user may do this.

Enable Openi

syslocal(SYSL_OPENI, flag)
int flag

Enables or disables the opent system call. Flag is 1 for
enabling, 0 for disabling. Only the superuser can execute
this call, which affects every user on the system.

Maximum Number of Users

syslocal(SYSL_MAXUSERS)

Returns maximum number of concurrent logins on the
processor on which this process is executing.

Kernel Addresses

syslocal(SYSL_KADDR, arg)

Returns certain addresses of kernel data structures. This
allows certain programs Spa, killall) to run properly, even
if /unix is not currently running. Arg i1s one of the
following:

SLA_V return address of var structure

(sys/var.h)

SYSLOCAL(2)

SLA_PROC return address of proc structure
(sys/proc.h)

SLA_ERR return address of err structure
(sys/err.h)

SCA_TIME return address of int time

SLA_CDT return address of crash dump table

(CDT) = (sys/hardware.h)
SLA_GDUTAB return address of gdutab (sys/iobuf.h)
SLA_USRSTK return highest address of user stack

SLA_USIGN return signature of running UNIX (may
be compared with that of /unix to see
if they are identical)

SLA_MEM return number of bytes of physical
memory

SLA_BDEVCNT
return the number of slots in struct
bdevsw (sys/conf.h)

SLA_CDEVCNT

return the number of slots in struct
cdevsw (sys/conf.h)

Object Module Type

syslocal(SYSL_0413MAGIC)
Returns 1 if the kernel can support the —F option of

().
Read Real-Time Clock (MightyFrame Only)

syslocal(SYSL_RDRTC, arg)

Read current state of real-time (battery supported) clock.
Arg is a pointer to struct rtc (sys/rtc.h)

Write Real-Time Clock (MightyFrame Only)

syslocal(SYSL_WTRTC, arg)

Write new state of real-time clock. Arg is a pointer to a
struct rtc (sys/rte. (; EIO is returned if any of the
values are 1llegal nly the super-user may write the
real-time clock.

Reboot System

syslocal(SYSL_REBOOT)
Force a software reset. Only the superuser may reset.

SYSLOCAL(2)

Allocate a Loadable Driver

syslocal(SYSL_ALLOCDRY, option, arg)

Allocate/deallocate virtual space for a loadable driver.
See lddrv(2) for more information. Only the super-user
may do this.

Bind a Loadable Driver

syslocal(SYSL_BINDDRYV, option, arg)

Bind/unbind a loadable driver. See lddrv(2) for more
information. Only the super-user may do this.

Determine Processor Type

syslocal(SYSL_PROCESSOR)

Returns a value that may be used to determine on what
kind of processor (e.g., 68010 or 68020) is running and
whether floating-point hardware (e.g., (68881) is
available.

MightyFrame Hardware Configuration (MightyFrame
Only)
syslocal(SYSL_MITICFIG)

Returns a bit mask of the hardware that is present.
Values can be found in syslocal.h. A more convenient
way to get this information is via hinv(1M).

Syslocal will fail if one of the following is true:

[EINVAL] e¢md or any suboption is illegal.
[EFAULT)] An arg points outside the process’s
space.
SEE ALSO

fsck(1M), 1ddrv(2), openi(2).

MightyFrame Admintstrator’s Reference Manual.
WARNINGS

Kernel prints and the kernel debugger syslocal calls that

support them may disappear without notice. Use of

kernel prints degrades system performance. Use of the

kernel debugger halts normal processing.

TIME (2)

NAME
time — get time
SYNOPSIS
long time ((long *) 0)
long time (tloc)
long *tloc;
DESCRIPTION
Time returns the value of time in seconds since 00:00:00
GMT, January 1, 1970.

If tloc (taken as an integer) is non-zero, the return value
is also stored in the location to which tloc points.
[EFAULT| Time will fail if tloe points to an illegal
address.
RETURN VALUE

Upon successful completion, time returns the value of
time. Otherwise, a value of —1 is returned and errno is
set to indicate the error.

SEE ALSO
stime(2).

TIMES (2)

NAME
times — get process and child process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

long times (buffer)
struct tms *buffer;

DESCRIPTION
Times fills the structure pointed to by buffer with time-
accounting information. The following are the contents
of this structure:

struct tms {

time_t tms_utime;

time_t tms_stime;

time_t tms_cutime;
} time_t tms_cstime;
)
This information comes from the calling process and
each of its terminated child processes for which it has
executed a wait. All times are in 60ths of a second.

Tms_utime 1s the CPU time used while executing
instructions in the user space of the calling process.

Tms_stime is the CPU time used by the system on behalf
of the calling process.

Tms_cutime is the sum of the tms_utimes and
tms_cutimes of the child processes.

Tms_cstime 1s the sum of the t¢ms_stimes and
tms_cstimes of the child processes.

[EFAULT] Times will fail if buffer points to an illegal
address.

RETURN VALUE
Upon successful completion, fimes returns the elapsed
real time, in 60ths of a second, since an arbitrary point
in the past ([e.g., system start-up time). This point does
not change from one invocation of times to another. If
times fails, a —1 is returned and errno is set to indicate
the error.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

NAME

ULIMIT (2)

ulimit — get and set user limits

SYNOPSIS

long ulimit (cmd, newlimit)
int cmd;
long newlimit;

DESCRIPTION
This function provides for control over process limits.
The emd values available are:

1

3

Get the file size limit of the process. The limit is
in units of 512-byte blocks and is inherited by child
processes. Files of any size can be read.

Set the file size limit of the process to the value of
newltmit. Any process may decrease this limit, but
only a process with an effective user ID of super-
user may increase the limit. Ulimit will fail and
the limit will be unchanged if a process with an
effective user ID other than super-user attempts to
increase its file size limit. [EPERM]

Get the maximum possible break value. See

brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is
returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO

brk(2), write(2).

UMASK (2)

NAME
umask — set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION
Umask sets the process’s file mode creation mask to
c¢mask and returns the previous value of the mask. Only
the low-order 9 bits of e¢mask and the file mode creation
mask are used.

RETURN VALUE
The previous value of the file mode creation mask is
returned.

SEE ALSO
mkdir(1), sh(1), chmod(2), creat(2), mknod(2), open(2).

UMOUNT(2)

NAME
umount — unmount a file system

SYNOPSIS
int umount (spec)
char *spec;

DESCRIPTION
Umount requests that a previously mounted file system
contained on the block special device identified by spec
be unmounted. Spec is a pointer to a path name. After
unmounting the file system, the directory upon which
the file system was mounted reverts to its ordinary
interpretation.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

[EPERM] The process’s effective user ID is not
super-user.

[ENXIO] Spec does not exist.

[ENOTBLK] Spec is not a block special device.

[EINVAL] Spec is not mounted.

[EBUSY] A file on spec is busy.

[EFAULT) Spec points to an illegal address.

RETURN VALUE
Upon successful completion a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
mount(2).

UNAME (2)

NAME
uname — get name of current CTIX system

SYNOPSIS
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIPTION
Uname stores information identifying the current CTIX
system in the structure pointed to by name.

Uname uses the structure defined in
<sys/utsname.h> whose members are:

char sysname[9
char nodename
char release(9];
char version[9];
char machine[9];

!y

9;

Uname returns a null-terminated character string
naming the current CTIX system in the character array
sysname. Similarly, nodename contains the name that
the system is known by on a communications network.
Release and wversion further identify the operating
system. Machine contains a standard name that
identifies the hardware that the CTIX system is running
on.

[EFAULT| Uname will fail if name points to an invalid
address.

RETURN VALUE
Upon successful completion, a non-negative value is
returned. Otherwise, —1 is returned and errno is set to
indicate the error.

SEE ALSO
uname(1).

NAME

UNLINK (2)

unlink - remove directory entry

SYNOPSIS

int unlink (path)
char *path;

DESCRIPTION

Unlink removes the directory entry named by the path
name pointed to by path.

The named file is unlinked unless one or more of the
following are true:

[ENOTDIR| A component of the path prefix is not a
directory.

[ENOENT) The named file does not exist.

{EACCES)] Search permission is denied for a
component of the path prefix.

[EACCES] Write permission is denied on the
directory containing the link to be
removed.

[EPERM] The named file is a directory and the
effective user ID of the process is not
super-user.

[EBUSY] The entry to be unlinked is the mount
point for a mounted file system.

[ETXTBSY] The entry to be unlinked is the last link

to a pure procedure (shared text) file
that is being executed.

[EROFS| The directory entry to be unlinked is
part of a read-only file system.
[EFAULT)] Path points outside the process’s

allocated address space.

When all links to a file have been removed and no
process has the file open, the space occupied by the file
is freed and the file ceases to exist. If one or more
processes have the file open when the last link is
removed, the removal is postponed until all references to
the file have been closed.

RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO

5/86

rm(1), close(2), link(2), open(2).

USTAT(2)

NAME
ustat — get file system statistics
SYNOPSIS

#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
int dev;
struct ustat *buf;

DESCRIPTION
Ustat returns information about a mounted file system.
Dev is a device number identifying a device containing a
mounted file system. DBuf is a pointer to a ustat
structure that includes to following elements:

daddr_t f_tfree; /* Total free blocks */

ino_t f_tinode; /* Number of free inodes */

char f_fname{fi]; /* Filsys name */

char f_fpack[6]; /* Filsys pack name */

Ustat will fail if one or more of the following are true:

[EINVAL) Dev is not the device number of a
device containing a mounted file
system.

[EFAULT] Buf points outside the process’s

allocated address space.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
stat(2), fs(4).

NAME

UTIME (2)

utime — set file access and modification times

SYNOPSIS

#include <sys/types.h>
int utime (path, times)
char *path;

struct utimbuf *times;

DESCRIPTION

Path points to a path name naming a file. Utime sets
the access and modification times of the named file.

If times is NULL, the access and modification times of
the file are set to the current time. A process must be
the owner of the file or have write permission to use
ulime in this manner.

If times is not NULL, times is interpreted as a pointer
to a utimbuf structure and the access and modification
times are set to the values contained in the designated
structure. Only the owner of the file or the super-user
may use ulime this way.

The times in the following structure are measured in
seconds since 00:00:00 GMT, Jan. 1, 1970.

struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */

};

Utime will fail if one or more of the following are true:

[ENOENT) The named file does not exist.

[ENOTDIR| A component of the path prefix is not a
directory.

[EACCES] Search permission is denied by a
component of the path prefix.

[EPERM] The effective user ID is not super-user
and not the owner of the file and times
is not NULL.

[EACCES] The effective user ID is not super-user

and not the owner of the file and times
is NULL and write access is denied.

[EROFS| The file system containing the file is
mounted read-only.

[EFAULT) Times is not NULL and points outside
the process’s allocated address space.

[EFAULT] Path points outside the process’s

allocated address space.

-1-

UTIME (2)

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
stat(2).

—

NAME

WAIT(2)

wait — wait for child process to stop or terminate

SYNOPSIS

int wait (stat_loc)
int *stat_loc;

int wait ((int *)0)

DESCRIPTION

Wait suspends the calling process until one of the
immediate children terminates or until a child that is
being traced stops because it has hit a break point. The
wait system call will return prematurely if a signal is
received and if a child process stopped or terminated
prior to the call on wast, return is immediate.

If stat_loc (taken as an integer) is non-zero, 16 bits of
information called status are stored in the low order 16
bits of the location pointed to by staf_loc. Status can
be used to differentiate between stopped and terminated
child processes and if the child process terminated, status
identifies the cause of termination and passes useful
information to the parent. This is accomplished in the
following manner:

If the child process stopped, the high order 8 bits
of status will contain the number of the signal
that caused the process to stop and the low
order 8 bits will be set equal to 0177.

If the child process terminated due to an ezit
call, the low order 8 bits of status will be zero
and the high order 8 bits will contain the low
order 8 bits of the argument that the child
process passed to ezxit; see exit(2).

If the child process terminated due to a signal,
the high order 8 bits of status will be zero and
the low order 8 bits will contain the number of
the signal that caused the termination. In
addition, if the low order seventh bit (i.e., bit
200) is set, a ‘“core image” will have been
produced; see signal(2).

If a parent process terminates without waiting for its
child processes to terminate, the parent process ID of
each child process is set to 1. This means the
initialization process inherits the child processes; see
intro(2).

Wait will fail and return immediately if one or more of
the following are true:

WAIT (2)

[ECHILD] The calling process has no existing
unwaited-for child processes.
(EFAULT) Stat_loc points to an illegal address.

RETURN VALUE
If wait returns due to the receipt of a signal, a value of
-1 is returned to the calling process and errno is set to
EINTR. If wait returns due to a stopped or terminated
child process, the process ID of the child is returned to
the calling process. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2),
signal(2).

WARNING
See WARNING in signal(2).

—

NAME

WRITE (2)

write — write on a file

SYNOPSIS

int write (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open,
dup, fentl, or pipe system call.

Write attempts to write nbyte bytes from the buffer
pointed to by buf to the file associated with the fildes.

On devices capable of seeking, the actual writing of data
proceeds from the position in the file indicated by the
file pointer. Upon return from write, the file pointer is
incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes
place starting at the current position. The value of a file
pointer associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the
file pointer will be set to the end of the file prior to each
write.

Write will fail and the file pointer will remain
unchanged if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open
for writing.

[EPIPE and SIGPIPE signal
An attempt is made to write to a pipe
that 1s not open for reading by any
process.

[EFBIG] An attempt was made to write a file
that exceeds the process’s file size limit
or the maximum file size. See ulimit(2).

[EFAULT) Buf points outside the process’s
allocated address space.
[EINTR] A signal was caught during the write

system call.

[EDEADLOCK| A side effect of a previous locking(2)
call.

If a write requests that more bytes be written than there
is room for (e.g., the ulimit (see ultmit(2)) or the physical
end of a medium), only as many bytes as there is room
for will be written. For example, suppose there is space

-1-

WRITE (2)

for 20 bytes more in a file before reaching a limit. A
write of 512 bytes will return 20. The next write of a
non-zero number of bytes will give a failure return
(except as noted below).

If the file being written is a pipe (or FIFO) and the
O_NDELAY flag of the file flag word is set, then write to
a full pipe {(or FIFO) will return a count of 0. Otherwise
(O_NDELAY clear), writes to a full pipe (or FIFO) will
block until space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually
written is returned. Otherwise, —1 is returned and errno
is set to indicate the error.

SEE ALSO
creat(2), dup(2), lseek(2), locking(2), open(2), pipe(2),
ulimit(2).

INTRO(3)

NAME

intro — introduction to subroutines and libraries
SYNOPSIS

#include <stdio.h>

#include <math.h>
DESCRIPTION

This section describes functions found in various

libraries, other than those functions that directly invoke

CTIX system primitives, which are described in Section 2

of this volume. Certain major collections are identified

by a letter after the section number:

(3C) These functions, together with those of Section 2
and those marked (3S), constitute the Standard C
Library libe, which is automatically loaded by the
C compiler, c¢(1). The link editor {d(1) searches
this library under the —le option. Declarations for
some of these functions may be obtained from
#include files indicated on the appropriate
pages.

(3M) These functions constitute the Math Library,
Itbm. They are not automatically loaded by the
C compiler, ce¢(1); however, the link editor
searches this library under the —lm option.
Declarations for these functions may be obtained
from the #include file <math.h>.

(3N) These functions are for use with a special version
of the CTIX kernel that supports networking
protocols. The link editor searches these library
functions under the -1 socket option. For
further information, see the CTIX Internetworking
Manual.

(3S) These functions constitute the “standard 1/0
package” (see stdio(3S)). These functions are in
the library ltbc, already mentioned. Declarations
for these functions may be obtained from the
#include file <stdio.h>.

(3X) Various specialized libraries. The files in which
these libraries are found are given on the
appropriate pages.

DEFINITIONS

A character is any bit pattern able to fit into a byte on
the machine. The null character is a character with
value 0, represented in the C language as \0’. A
character array is a sequence of characters. null-
terminated character array is a sequence of characters,
the last of which is the null character. A string is a
designation for a null-terminated character array. The

-1-

INTRO (3)

null string is a character array containing only the null
character. A NULL pointer is the value that is obtained
by casting O into a pointer. The C language guarantees
that this value will not match that of any legitimate
pointer, so many functions that return pointers return it
to indicate an error. NULL is defined as O in
<stdio.h>; the user can include an appropriate
definition if he is not using <stdio.h>.

FILES
/lib/libe.a
/lib/libm.a
/lib/libsocket.a

SEE ALSO
ar(1), cc(1), 1d(1), nm(1), intro(2), stdio(3S).
CTIX Internetworking Manual.

DIAGNOSTICS
Functions in the C and Math Libraries (3M) may return
the conventional values 0 or tHUGE (the largest-
magnitude single-precision floating-point numbers;
HUGE is defined in the <math.A> header file) when the
function is undefined for the given arguments or when
the value is not representable. In these cases, the
external variable errno (see intro(2)) is set to the value
EDOM or ERANGE.

WARNING

Many of the functions in the libraries call and/or refer to
other functions and external variables described in this
section and in section 2 (System Calls). If a program
inadvertantly defines a function or external variable with
the same name, the presumed library version of the
function or external variable may not be loaded. The
linf(1) program checker reports name conflicts of this
ind as ‘“multiple declarations” of the names in question.
Definitions for sections 2, 3C, and 3S are checked
automatically. Other definitions can be included by
using the -1 option (for example, —lm includes
definitions for the Math Library, section 3M). Use of lint
is highly recommended.

NAME

A64L(3C)

ab4l, 164a — convert between long integer and base-64
ASCII string

. SYNOPSIS

long a84l (s)
char *s;

char *184a (I)
long |;

DESCRIPTION

BUGS

These functions are used to maintain numbers stored in
base-64 ASCII characters. This is a notation by which
long integers can be represented by up to six characters;
each character represents a ‘digit” in a radix-64
notation.

The characters used to represent ‘‘digits’ are . for O,
for 1, O through 9 for 2-11, A through Z for 12--37, and
a through g for 38-63.

A64l takes a pointer to a null-terminated base-64
representation and returns a corresponding long value.
If the string pointed to by s contains more than six
characters, a64l will use the first six.

L64a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is
0, l64a returns a pointer to a null string.

The value returned by [64a is a pointer into a static
buffer, the contents of which are overwritten by each
call.

ABORT(3C)

NAME
abort — generate an IOT fault

SYNOPSIS
int abort ()

DESCRIPTION
Abort first closes all open files if possible, then causes an
IOT signal to be sent to the process. This usually results
in termination with a core dump.

It is possible for abort to return control if SIGIOT is
caught or ignored, in which case the value returned 1s
that of the kdll(2) system call.

SEE ALSO
adb(1), sdb(1), exit(2), kill{2), signal(2).
DIAGNOSTICS
If SIGIOT 1is neither caught nor ignored, and the current

directory is writable, a core dump is produced and the
message ‘“‘abort — core dumped” is written by the shell.

ABS(3C)

NAME
abs — return integer absolute value

SYNOPSIS
int abs (i)
int i
DESCRIPTION
Abs returns the absolute value of its integer operand.

BUGS
In two’s-complement representation, the absolute value
of the negative integer with largest magnitude is
undefined. Some implementations trap this error, but
others simply ignore it.

SEE ALSO
floor(3M).

ASSERT (3X)

assert — verify program assertion

SYNOPSIS

#include <assert.h>

assert (expression)
int expression;

DESCRIPTION

This macro is useful for putting diagnostics into
rograms. When it is executed, if expresston is false
{)zero), assert prints

““Assertion failed: expression, file zyz, line nnn”

on the standard error output and aborts. In the error
message, zyz is the name of the source file and nnn the
source line number of the assert statement.

Compiling with the preprocessor option ~-DNDEBUG
(see epp (1)), or with the preprocessor control statement
‘“Jtdefine NDEBUG” ahead of the “#include
< assert.h>"’ statement, will stop assertions from being
compiled into the program.

SEE ALSO

cpp(1), abort(3C).

ATOF (3C)

atof — convert ASCII string to floating-point number

SYNOPSIS

double atof (nptr)
char *nptr;

DESCRIPTION

Atof converts a character string pointed to by npir to a
double-precision floating-point number. The first
unrecognized character ends the conversion. Atof
recognizes an optional string of white-space characters,
then an optional sign, then a string of digits optionally
containing a decimal point, then an optional e or E
followed by an optionally signed integer. If the string
begins with an unrecognized character, atof returns the
value zero.

DIAGNOSTICS

When the correct value would overflow, atof returns
HUGE, and sets errno to ERANGE. Zero is returned
on underflow.

SEE ALSO

scanf(3S).

BESSEL (3M)

jO, j1, jn, yO, y1, yn — Bessel functions

SYNOPSIS

#include <math.h>
double jO (x)
double x;
double j1 (x)
double x;
double jn (n, x)
int n;

double x;
double y0 (x)
double x;
double y1 (x)
double x;
double yn (n, x)
int n;

double x;

DESCRIPTION

JO and jI return Bessel functions of z of the first kind of
orders 0 and 1 respectively. Jn returns the Bessel
function of z of the first kind of order n.

Y0 and ylI return Bessel functions of z of the second
kind of orders 0 and 1 respectively. Yn returns the
Bessel function of z of the second kind of order n. The
value of z must be positive.

DIAGNOSTICS

Non-positive arguments cause y0, yI and yn to return
the value ~-HUGE and to set errno to EDOM. In
addition, a message indicating DOMAIN error is printed
on the standard error output.

Arguments too large in magnitude cause j0, jI, y0 and
yl to return zero and to set errno to ERANGE. In
addition, a message indicating TLOSS error is printed on
the standard error output.

These error-handling procedures may be changed with
the function matherr(3M).

SEE ALSO

matherr(3M).

BSEARCH (3C)

NAME
bsearch — binary search a sorted table

SYNOPSIS
#include <search.h>

char *bsearch ((char *) key, (char *) base, nel,
sizeof (*key), compar)

unsigned nel;

int (*compar)();

DESCRIPTION

Bsearch is a binary search routine generalized from
Knuth (6.2.1) Algorithm B. It returns a pointer into a
table indicating where a datum may be found. The
table must be previously sorted in increasing order
according to a provided comparison function. Key
points to a datum instance to be sought in the table.
Base points to the element at the base of the table. Nel
is the number of elements in the table. Compar is the
name of the comparison function, which is called with
two arguments that point to the elements being
compared. The function must return an integer less
than, equal to, or greater than zero as accordinly the
first argument is to be considered less than, equal to, or
greater than the second.

EXAMPLE
The example below searches a table containing pointers
to nodes consisting of a string and its length. The table
is ordered alphabetically on the string in the node
pointed to by each entry.

This code fragment reads in strings and either finds the
corresponding node and prints out the string and its
length, or prints an error message.

#include <stdio.h>
#include <search.h>

#define TABSIZE 1000

struct node { /* these are stored in the table */
char *string;
int length;

8

struct node table|TABSIZE|; /# table to be searched +/

struct node *node_ptr, node;

-1-

BSEARCH (3C)

int node_compare(); /# routine to compare 2 nodes */
char str_space|20|; /* space to read string into */

node.string = str_space;
while (scanf("%s”, node.string) != EOF) {
node_ptr = (struct node *)bsearch({char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);
if (node_ptr != NULL) {
(void)printf(”string = %20s, length = %d\n”,
node_ptr— >string, node_ptr— >length);

} else {

(void)printf("not found: %s\n", node.string);

}

/*
This routine compares two nodes based on an
alphabetical ordering of the string field.

*/

int

node_compare(nodel, node2)

struct node *nodel, *node2;

{

}

NOTES
The pointers to the key and the element at the base of
the table should be of type pointer-to-element, and cast
to type pointer-to-character.
The comparison function need not compare every byte,
so arbitrary data may be contained in the elements in
addition to the values being compared.
Although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

SEE ALSO
hsearch(3C), Isearch(3C), gsort(3C), tsearch(3C).
DIAGNOSTICS

A NULL pointer is returned if the key cannot be found in
the table.

return stremp(nodel~ >string, node2- >string);

BYTEORDER (3N)

NAME
htonl, htons, ntohl, ntohs — convert values between host
and network byte order

. SYNOPSIS
#include <sys/types.h>
#include <sys/in.h>
netlong = htonl(hostlong);
unsigned long netlong, hostlong;

netshort = htons(hostshort);
ushort netshort, hostshort;

hostlong = ntohl(netlong);
unsigned long hostlong, netlong;

hostshort = ntohs(netshort);
ushort hostshort, netshort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between
network byte order and host byte order. On machines
such as the MiniFrame these routines are defined as null
macros in the include file <sys/in.h>.

These routines are most often used in conjunction with
Internet addresses and ports as returned by
- gethostent(3N) and getservent(3N).
SEE ALSO
gethostent(3N), getservent(3N).
CTIX Internetworking Manual.
NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

NAME

CLOCK (3C)

clock — report CPU time used

SYNOPSIS

long clock ()

DESCRIPTION

Clock returns the amount of CPU time (in microseconds)
used since the first call to clock. The time reported is
the sum of the user and system times of the calling
process and its terminated child processes for which it
has executed wait(2) or system(3S).

The resolution of the clock is 16.667 milliseconds on
CTIX Processors.

SEE ALSO

BUGS

times(2), wait(2), system(3S).

The value returned by clock is defined in microseconds
for compatibility with systems that have CPU clocks
with much higher resolution. Because of this, the value
returned will wrap around after accumulating only 2147
seconds of CPU time (about 36 minutes).

o~

CONV (3C)

NAME
toupper, tolower, _toupper, _tolower, toascii ~ translate
characters

SYNOPSIS
#include <ctype.h>
int toupper (c)
int ¢;
int tolower (c)
int c;
int _toupper (¢)
int c;
int _tolower (c)
int c;
int toascii (¢)
int c;

DESCRIPTION
Toupper and tolower have as domain the range of
getc(3S): the integers from -1 through 255. If the
argument of toupper represents a lower-case letter, the
result is the corresponding upper-case letter. If the
argument of tolower represents an upper-case letter, the
result is the corresponding lower-case letter. All other
arguments in the domain are returned unchanged.
The macros _toupper and _tolower, are macros that
accomplish the same thing as toupper and tolower but
have restricted domains and are faster. _toupper
requires a lower-case letter as its argument; its result is
the corresponding upper-case letter. The macro _tolower
requires an upper-case letter as its argument; its result is
the corresponding lower-case letter. Arguments outside
the domain cause undefined results.
Toasest yields its argument with all bits turned off that
are not part of a standard ASCII character; it is intended
for compatibility with other systems.

SEE ALSO

ctype(3C), gete(3S).

CRYPT(3C)

NAME
crypt, setkey, encrypt — generate hashing encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, fake)
char *block;
int fake;

DESCRIPTION
Crypt is the password encryption function. It is based
on a one way hashing encryption algorithm with
variations intended (among other things) to frustrate use
of hardware implementations of a key search.

Key is a user’s typed password. Salt is a two-character
string chosen from the set [a-zA-Z0-9./]; this string is
used to perturb the hashing algorithm in one of 4096
different ways, after which the password is used as the
key to encrypt repeatedly a constant string. The
returned value points to the encrypted password. The
first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive)
access to the actual hashing algorithm. The argument of
setkey is a character array of length 64 containing only
the characters with numerical value 0 and 1. If this
string 1s divided into groups of 8, the low-order bit in
each group is ignored; this gives a 56-bit key which is set
into the machine. This is the key that will be used with
the hashing algorithm to encrypt the string block with
the function encrypt.

The argument to the encrypt entry is a character array
of length 64 containing only the characters with
numerical value 0 and 1. The argument array is
modified in place to a similar array representing the bits
of the argument after having been subjected to the
hashing algorithm using the key set by setkey. Fake is
not u(sied and is ignored, but should be present if lint(1)
is used.

SEE ALSO
login(1), passwd(1), getpass{3C), passwd(4).

BUGS
The return value points to static data that are
overwritten by each call.

NAME

CTERMID (3S)

ctermid — generate file name for terminal

SYNOPSIS

#include <stdio.h>

char *ctermid(s)
char x*s;

DESCRIPTION

NOTES

Ctermid generates the path name of the controlling
terminal for the current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal
static area, the contents of which are overwritten at the
next call to ctermid, and the address of which is
returned. Otherwise, s is assumed to point to a
character array of at least L_ectermid elements; the
path name is placed in this array and the value of s is
returned. The constant L_ctermid is defined in the
< stdio.h> header file.

The difference between ctermid and tiyname(3C) is that
ttyname must be handed a file descriptor and returns the
actual name of the terminal associated with that file
descriptor, while ctermid returns a string (/dev/tty)
that will refer to the terminal if used as a file name.
Thus ttyname is useful only if the process already has at
least one file open to a terminal.

SEE ALSO

ttyname(3C).

NAME

CTIME(3C)

ctime, localtime, gmtime, asctime, tzset — convert date
and time to string

SYNOPSIS

F#include <time.h>

char *ctime (clock)
long *clock;

struct tm *localtime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;
extern int daylight;
extern char *tzname[2];
void tzset ()

DESCRIPTION

Ctime converts a long integer, pointed to by clock,
representing the time in seconds since 00:00:00 GMT,
January 1, 1970, and returns a pointer to a 26-character
string in the following form. All the fields have constant
width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to ‘“‘tm”
structures, described below. Localtime corrects for the
time zone and possible Daylight Savings Time; gmtime
converts directly to Greenwich Mean Time (GMT), which
is the time the CTIX system uses.

Asclime converts a ‘‘tm’” structure to a 26-character
string, as shown in the above example, and returns a
pointer to the string.

Declarations of all the functions and externals, and the
“tm” structure, are in the <time.h> header file. The
structure declaration is:

struct tm {

int tm_sec; /* seconds (0 - 59) */

int tm_min; /* minutes (0 - 59) */

int tm_hour; /* hours (0 - 23) x/

int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year — 1900 *

int tm_wday; /* day of week (gunday = 0) ¥/

-1-

CTIME(3C)

int tm_yday; /* day of year (0 - 365) */

int tm_isdst;
Tm_isdst is non-zero if Daylight Savings Time is in
effect.

The external long variable timezone contains the
difference, in seconds, between GMT and local standard
time (in EST, timezone is 5%¥60%60); the external variable
daylight is non-zero if and only if the standard U.SA.
Daylhight Savings Time conversion should be applied.
The program knows about the peculiarities of this
conversion in 1974 and 1975; if necessary, a table for
these years can be extended.

If an environment variable named TZ is present, asctime
uses the contents of the variable to override the default
time zone. The value of TZ must be a three-letter time
zone name, followed by a number representing the
difference between local time and Greenwich Mean Time
in hours, followed by an optional three-letter name for a
daylight time zone. For example, the setting for New
Jersey would be ESTSEDT. The effects of setting TZ
are thus to change the values of the external variables
timezone and daylight; in addition, the time zone names
contained in the external variable

char *tzname[2] = { "EST", "EDT” };
are set from the environment variable TZ. The function
tzset sets these external variables from TZ; tzset is

called by esctime and may also be called explicitly by
the user.

Note that in most installations, TZ is set by default
when the user logs on, to a value in the local /etc/profile
file (see profile(4)).

SEE ALSO
time(2), getenv(3C), profile(4), environ(5).

BUGS

The return values point to static data whose content is
overwritten by each call.

CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum,
isspace, ispunct, isprint, isgraph, iscntrl, isascii — classify
characters

SYNOPSIS
#finclude <ctype.h>
int isalpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by
table lookup. Each is a predicate returning nonzero for
true, zero for false. Isasctt is defined on all integer
values; the rest are defined only where fsascei is true and
on the single non-ASCII value EOF (-1 - see stdio(3S)).

isalpha ¢ is a letter.

isupper ¢ is an upper-case letter.

tslower ¢ is a lower-case letter.

isdigst ¢ is a digit [0-9)].

tszdigit ¢ is a hexadecimal digit [0-9], [A-F] or
[a~f].

tsalnum ¢ is an alphanumeric (letter or digit).

1s8pace ¢ is a space, tab, carriage return, new-
line, vertical tab, or form-feed.

tspunct ¢ is a punctuation character (neither
control nor alphanumeric).

isprint ¢ is a printing character, code 040
(space) through 0176 (tilde).

1sgraph ¢ is a printing character, like isprint
except false for space.

wsentrl ¢ is a delete character (0177) or an
ordinary control character (less than
040).

1sascit ¢ 1s an ASCII character, code less than
0200.

DIAGNOSTICS

If the argument to any of these macros is not in the
domain of the function, the result is undefined.

SEE ALSO
ascii(5).

_—

CURSES (3X)

NAME

curses — CRT screen handling and optimization package
SYNOPSIS

#include <curses.h>

cc | flags | files —lcurses | libraries |
DESCRIPTION

5/86

These routines give the user a method of updating
screens with reasonable optimization. In order to
initialize the routines, the routine fnitscr() must be
called before any of the other routines that deal with
windows and screens are used. The routine endwin()
should be called before exiting. To get character-at-a-
time input without echoing, (most Interactive, screen
oriented-programs want this% after calling tnitscr() you
should call “nonl(); cbreak(); noecho();"’

The full curses interface permits manipulation of data
structures called windows which can be thought of as two
dimensional arrays of characters representing all or part
of a CRT screen. A default window called stdser is
supplied, and others can be created with newwin.
Windows are referred to by variables declared “WINDOW
*7 the type WINDOW is defined in curses.h to be a C
structure. These data structures are manipulated with
functions described below, among which the most basic
are move, and addch. (More general versions of these
functions are included with names beginning with ‘w’,
allowing you to specify a window. The routines not
beginning with ‘w’ affect stdser.) Then refresh() is
called, telling the routines to make the users CRT screen
look like stdscr.

Mini-Curses is a subset of curses which does not allow
manipulation of more than one window. To invoke this
subset, use —~DMINICURSES as a ce option. This level is
smaller and faster than full curses.

If the environment variable TERMINFO is defined, any
program using curses will check for a local terminal
definition before checking in the standard place. For
example, if the standard place is /usr/lib/terminfo,
and TERM is set to “vt100”", then normally the compiled
file is found in /usr/lib/terminfo/v/vt100. (The ‘“v”
is copied from the first letter of “vt100” to avoid
creation of huge directories.) However, if TERMINFO is
set to /usr/mark/myterms, curses will first check
/usr/mark/myterms/v/vt100, and if that fails, will
then check /usr/lib/terminfo/v/vt100. This is
useful for developing experimental definitions or when
write permission in /usr/lib/terminfo is not available.

-1-

SEE ALSO

terminfo(4).

FUNCTIONS

CURSES (3X)

Routines listed here may be called when using the full
curses. Those marked with an asterisk may be called
when using Mini-Curses.

addch(ch)*
addstr?str)*

attron(attrs)*

attroff| attrs{*
attrset(attrs)*

baudrate()*
beep()*

box(win, vert, hox(?

clear(

clearoz(win, bf)

clrtobot()
clrtoeol()
cbreak()*

add a character to stdscr (like putchar)
(wraps to next line at end of line)

calls addch with each character in str
turn off attributes named

turn on attributes named

set current attributes to atérs

current terminal speed

sound beep on terminal

raw a box around edges of win vert
and hor are chars to use for vert. and
hor. edges of box

clear stdscr

clear screen before next redraw of win
clear to bottom of stdscr

clear to end of line on stdscr

set cbreak mode

delay_output(ms)*

deleh()
deleteln()
delwin(win
doupdate(
echo(}*
endwin()*
erase()
erasechar()
fixterm()
flash()
flushinp()*
getch(g)*
getstr(str)
gettmode()

getyx(win, y, x)

has_ic
ha.s_il(()

idlok(win, bf)*

inch()
initser(

insch(c))

insert ms millisecond pause in output
delete a character

delete a line

delete win

update screen from all wnooutrefresh
set echo mode

end window modes

erase stdscr

return user’s erase character

restore tty to "in curses” state

flash screen or beep

throw away any typeahead

get a char from tty

get a string through stdscr

establish current tty modes

get (y, x) co-ordinates

true if terminal can do insert character
true if terminal can do insert line

use terminal’s insert/delete line if bf !=

get char at current (y, x) co-ordinates
initialize screens
insert a char

CURSES(3X)

insertln(insert a line

intrflushgwin, bf)
interrupts flush output if bf is TRUE
keypad(win, bf) enable keypad input
killchar() return current user’s kill character
leaveok(win, flag)
OK to leave cursor anywhere after
refresh if flag!=0 for win, otherwise
cursor must be left at current position.
longname(}l) return verbose name of terminal
ag

meta(win, * allow meta characters on input if flag
=0
move(y, x)* move to (y, x) on stdscr

mvaddch(y, x, ch)
move(y, x) then addch(ch)
mvaddstr(y, x, str)
similar...
mvcur(oldrow, oldeol, newrow, newcol)
low level cursor motion
mvdelch%y, ; like delch, but move(y, x) first
mvgetch ete.
mvgetstr y,
mvinch(y, x
mvinsch(y, x c)
mvprintw(y, x, fmt, args)
mvscanw(y, x, fmt, args
mvwaddch(win, y, x, ch
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x
mvwgetch(win, y, x
mvwgetstr(wm v, X
mvwin(win, by, bx
mvwinch(win, y, X
mvwinsch(win, y, x, ¢)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)
newpad(nlines, ncols)
create a new pad with given dimensions
newterm{type, {d)
set up new terminal of given type to
output on fd
newwin(lines, cols, begin_y, begin_x)
create a new window
nl({)* set newline mapping
nocbreak()* unset cbreak mode
nodelay(win, bf) enable nodelay input mode through
getch

noecho()* unset echo mode

CURSES(3X)

nonl()* unset newline mapping
noraw()* unset raw mode
overlay(winl, win2)

overlay winl on win2
overwrite(winl, win2)
overwrite winl on top of win2
pnoutrefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)
like prefresh but with no output until
doupdate called
prefresh(pad pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)
refresh from pad starting with given
upper left corner of pad with output to
given portion of screen
printw(fmt, argl, arg?2, ...)
printf on stdscr

raw()* set raw mode

refresh()* make current screen look like stdscr
resetterm()* set tty modes to "out of curses” state
resetty()* reset tty flags to stored value

saveterm()*

save current modes as "in curses” state
savetty()*

store current tty flags
scanw(fmt, argl, arg2, ...)

scanf through stdscr

seroll(win) scroll win one line
scrollok(win, flag)
allow terminal to scroll if flag != 0

set_term(new) now talk to terminal new
setscrreg(t, b) set user scrolling region to lines t
through b
setterm(type) establish terminal with given type
setupterm{term, filenum, errret)
standend()* clear standout mode attribute
standout()* set standout mode attribute
subwin(win, lines, cols, begin_y, begin_x)
create a subwindow
touchwin{win) change all of win
traceofT| turn off debugging trace output
traceon turn on debugging trace output
typeahead(fd) wuse file descriptor fd to check
typeahead
unctrl(ch)* printable version of ¢k
waddch(win, ch) add char to win
waddstr(win, str)
add string to win

CURSES (3X)

wattroff(win, attrs)

turn off attrs in win
wattron(win, attrs)

turn on attrs in win
wattrset(win, attrs)

set attrs in win to attrs
wclear(win) clear win
welrtobot{win) clear to bottom of win
welrtoeol(win) clear to end of line on win
wdelch(win, ¢) delete char from win

wdeleteln(win) delete line from win
werase(win) erase win

wgetch(win) get a char through win
wgetstr(win, str) get a string through win
winch(win) get char at current (y, x) in win

winschSwin, ¢) insert char into win
winsertln(win) insert line into win
wmove(win, y, x)

set current (y, x) co-ordinates on win
wnoutrefresh(win)

refresh but no screen output
wprintw(win, fmt, argl, arg2, ...)

printf on win
wrefresh(win) make screen look like win
wscanw(win, fmt, argl, arg2, ...)

scanf through win
wsetscrreg(win, t, b)

set, scrolling region of win
wstandend(win)

clear standout attribute in win
wstandout(win) set standout attribute in win

TERMINFO LEVEL ROUTINES
These routines should be called by programs wishing to
deal directly with the terminfo database. Due to the low
level of this interface, it is discouraged. Initially,
setupterm should be called. This will define the set of
terminal dependent variables defined in terminfo(4).
The include files < curses.h>> and <term.h> should be
included to get the definitions for these strings, numbers,
and flags. Parmeterized strings should be passed
through tparm to instantiate them. All terminfo strings
(including the output of tparm) should be printed with
tputs or putp . Before exiting, resetterm should be called
to restore the tty modes. (Programs desiring shell
escapes or suspending with control Z can call resetterm

before the shell is called and firterm after returning from
the shell.)

CURSES (3X)

fixterm() restore tty modes for terminfo use
(called by setupterm)

resetterm() reset tty modes to state before program
entry

setupterm(term, {d, rc)

read in database. Terminal type is the
character string term, all output is to
CTIX file descriptor fd. A status value
is returned in the integer pointed to by
re: 1 is normal. The simplest call
would be setupterm(0, 1, 0) which uses
all defaults.

tparm(str, p1, p2, ..., p9)
instantiate string str with parms p;-

tputs(str, affent, putc)
apply padding info to string str. affent
is the number of lines affected, or 1 if
not applicable. Putc is a putchar-like
function to which the characters are
passed, one at a time.

putp(str) handy function that calls tputs (str, 1,
putchar)

vidputs(attrs, putc)
output the string to put terminal in
video attribute mode attrs, which is any
combination of the attributes listed
below. Chars are passed to putchar-like
function pute.

vidattr(attrs) Like vidputs but outputs through
putchar

TERMCAP COMPATIBILITY ROUTINES
These routines were included as a conversion aid for
programs that use termcap. Their parameters are the
same as for termcap. They are emulated using the
terminfo database. They may go away at a later date.

tgetent(bp, name?
ook up termcap entry for name

tgetflag(id) get boolean entry for id
tgetnum(id) get numeric entry for id
tgetstr(id, area) get string entry for id

tgoto(cap, col, row)
apply parms to given cap

CURSES (3X)

tputs(cap, affcnt, fn)
apply padding to cap calling fn as
putchar

~~. ATTRIBUTES

The following video attributes can be passed to the
functions attron,attroff, attrset.

A_STANDOUT Terminal’s best highlighting mode

A_UNDERLINE

Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright

A_BOLD

FUNCTION KEYS

Extra bright or bold

A_ALTCHARSET
Alternate character set

The following function keys might be returned by getch
if keypad has been enabled. Note that not all of these
are currently supported, due to lack of definitions in
terminfo or the terminal not transmitting a unique code

— when the key is pressed.
KEY_BREAK 0401 break key (unreliable)
KEY_DOWN 0402 The four arrow keys ...
KEY_UP 0403
KEY_LEFT 0404
KEY_RIGHT 0405
KEY_HOME 0406 Home key (upward+left arrow)

KEY_BACKSPACE

KEY_Fo0
KEY_F(n)

KEY_DL
KEY_IL
— KEY_DC
KEY_IC
KEY_EIC

0410

(KEY_F0+(nP)

0510
0511
0512
0513
0514

0407
backspace (unreliable)

Function keys. Space for 64 is
reserved.

Formula for fn.

Delete line

Insert line

Delete character

Insert char or enter insert mode

Exit insert char mode

CURSES (3X)

KEY_CLEAR 0515 Clear screen

KEY_EOS 0516 Clear to end of screen
KEY_EOL 0517 Clear to end of line

KEY_SF 0520 Scroll 1 line forward

KEY_SR 0521 Scroll 1 line backwards (reverse)
KEY_NPAGE 0522 Next page

KEY_PPAGE 0523 Previous page

KEY_STAB 0524 Set tab

KEY_CTAB 0525 Clear tab

KEY_CATAB 0526 Clear all tabs

KEY_ENTER 0527 Enter or send (unreliable)
KEY_SRESET 0530 soft (partial) reset (unreliable)
KEY_RESET 0531 reset or hard reset (unreliable)
KEY_PRINT 0532 print or copy

KEY_LL 0533 home down or bottom (lower left)

WARNING
The plotting library plot(3X) and the curses library
curses(3X) both use the names erase() and move(). The
curses versions are macros. If you need both libraries,
put the plot(3X) code in a different source file than the
curses(3X) code, and/or #undef move() and erase() in
the plot(3X) code.

CUSERID(3S)

cuserid — get character login name of the user

SYNOPSIS

#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION

Cuserid gets the wuser’s login name as found in
/ete/utmp. If the login name cannot be found, cuserid
gets the login name corresponding to the user ID of the
process. If s is a NULL pointer, this representation is
generated in an internal static area, the address of which
is returned. Otherwise, s is assumed to point to an
array of at least L_cuserid characters; the
representation is left in this array. The constant
L_cuserid is defined in the <stdio.h> header file.

DIAGNOSTICS

If the login name cannot be found, cuserid returns a
NULL pointer; if s is not a NULL pointer, a null
character (\0) will be placed at s/0/.

SEE ALSO

getlogin(3C), getpwent(3C).

NAME

DIAL(3C)

dial - establish an out-going terminal line connection

SYNOPSIS

#include <dial.h>

int dial (call)
CALL *call;

void undial (fd)
int fd;

DESCRIPTION

5/86

Dial returns a file-descriptor for a terminal line open for
read/write. The argument to dial is a CALL structure
(defined in the <dial.h> header file).

When finished with the terminal line, the calling
program must invoke undial to release the semaphore
that has been set during the allocation of the terminal
device.

The definition of CALL in the <dial.h> header file is:

typedef struct {
struct termio *attr;
({* pointer to termio attribute struct */
int baud;
/* transmission data rate */
int speed;
/* 212A modem: low—300, high—1200
(unused) */
char *line;
/* device name for out-going line */
char *telno;
/* pointer to tel-no digits string */
int modem;
/* specify modem control for direct lines */
char *device;
/* Will hold the name of the device used
to make a connection (unused) */
int dev_len;
/* The length of the device used to
make connection (unused) */
} CALL;

The CALL element baud is for the desired transmission
baud rate. The rate must be one of those supported by
the operating system (134.5 is rounded to 134). If the
baud is less than 300, the line will be dialed at 300 baud
then switched to the desired rate (unless attr is non-null;
see below).

FILES

DIAL(3C)

If a particular terminal line is desired, a string pointer to
its device-name should be placed in the line element in
the CALL structure. Legal values for such terminal
device names are kept in /usr/lib/uucp/Devices. In
this case, if baud is 0, the speed used will be determined
by the line in the Devices file for the terminal device.

The telno element is for a pointer to a character string
representing the telephone number to be dialed.
Numbers consist of the following symbols:

0-9 dial 0-9
dial *
dial #

4-second delay for second dial tone
wait for secondary dial tone

[

On a smart modem, these symbols are translated to
modem commands using the modem description in
/usr/lib/uucp /Dialers.

If telno is specified, an ACU entry in the Devices file
will be used. If it is NULL, a Direct entry will be used.

The CALL element modem is used to specify modem
control for direct lines. This element should be non-zero
if modem control is required.

The CALL element atir is a pointer to a termio
structure, as defined in the termto.h header file. A NULL
value for this pointer element may be passed to the dial
function, but if such a structure is included, the elements
specified in it will be set for the outgoing terminal line
before the connection is established. This is often
important for certain attributes such as parity and
baud-rate. Values in this structure override the baud and
modem entries.

Information on 801 type dialing units is obtained from
the Devices file; thus the speed, device and dev_len
elements are no longer used.

/usr/lib/uucp/Devices
Jusr/lib/uucp/Dialers
/usr/spool /locks/LCK..tty-device

SEE ALSO

uucp(1C), alarm(2), read(2), write(2), Devices(5),
Dialers(5), termio(7).

DIAGNOSTICS

5/86

On failure, dial will return -1 and the external variable
Uerror will contain one of the error codes defined in the
<dial.h> header file.

-92.

DIAL (3C)

If the external variable Debug is set to a number between
1 and 9, information about the progress of the call will
be printed on the standard output.

5/86 -3-

DRAND48(3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48,
srand48, seed48, lcongd8 - generate uniformly
distributed pseudo-random numbers

SYNOPSIS

double drand48 ()

double erand48 (xsubi
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed18v|[3];

void lcong48 (param)
unsigned short param|7];

DESCRIPTION
This family of functions generates pseudo-random
numbers using the well-known linear congruential
algorithm and 48-bit integer arithmetic.

Functions drand4{8 and erand48 return non-negative
double-precision floating-point values uniformly
distributed over the interval [0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long
integers uniformly distributed over the interval [0, 2%).

Functions mrand4{8 and jrand48 return signed long
i[nte ers uniformly distributed over the interval
~ 981 931y,

Functions srand48, seed48 and lcong48 are initialization
entry points, one of which should be invoked before
either drand48, Irand48 or mrand48 is called. (Although
it is not recommended practice, constant default
initializer values will be supplied automatically if
drand48, lrand48 or mrand48 1s called without a prior
call to an initialization entry point.) Functions erand48,
nrand48 and jrand4{8 do not require an initialization
entry point to be called first.

All the routines work by generating a sequence of 48-bit
integer values, X, according to the linear congruential

-1-

DRAND48(3C)

formula
Xn+1 = (aXn + ¢)mod m n 20

The parameter m = 2*8; hence 48-bit integer arithmetic
is performed. Unless lcong48 has been invoked, the
multiplier value ¢ and the addend value ¢ are given by

a = 5DEECE66D [= 273673163155 4
¢c =B 16 — 13 8-

The value returned by any of the functions drand48,
erand48, lIrand48, nrand4{8, mrand4{8 or jrand48 is
computed by first generating the next 48-bit X; in the
sequence. Then the appropriate number of bits,
according to the type of data item to be returned, are
copied from the high-order (leftmost) bits of X; and
transformed into the returned value.

The functions drand48, lrand48 and mrand48 store the
last 48-bit X; generated in an internal buffer; that is
why they must be initialized prior to being invoked.
The functions erand48, nrand48 and jrand48 require the
calling program to provide storage for the successive X;
values in the array specified as an argument when the
functions are invoked. That is why these routines do not
have to be initialized; the calling program merely has to
place the desired initial value of X; into the array and
pass it as an argument. By using different arguments,
functions erand48, nrand48 and jrand48 allow separate
modules of a large program to generate several
tndependent streams of pseudo-random numbers, i.e., the
sequence of numbers in each stream will not depend
upon how many times the routines have been called to
generate numbers for the other streams.

The initializer function srand48 sets the high-order 32
bits of X; to the 32 bits contained in its argument. The
low-order 16 bits of X; are set to the arbitrary value
330E 4.

The initializer function seed48 sets the value of X; to
the 48-bit value specified in the argument array. In
addition, the previous value of X; is copied into a 48-bit
internal buffer, used only by seed48, and a pointer to
this buffer is the value returned by seed48 This
returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a
given point at some future time — use the pointer to get
at and store the last X; value, and then use this value to
reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to
specify the initial X;, the multiplier value e, and the

-9

DRANDA48(3C)

addend value c. Argument array elements param/0-2/
specify X;, param/[8-5] specify the multiplier a, and
param/[6] specifies the 16-bit addend c. After lcongf8
has been called, a subsequent call to either srand48 or
seed48 will restore the “standard’” multiplier and addend
values, ¢ and ¢, specified on the previous page.

SEE ALSO
rand(3C).

ECVT(3C)

NAME
ecvt, fevt, gevt — convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

DESCRIPTION
Ecvt converts value to a null-terminated string of ndigit
digits and returns a pointer thereto. The high-order
digit is non-zero, unless the value is zero. The low-order
digit is rounded. The position of the decimal point
relative to the beginning of the string is stored indirectly
through decpt (negative means to the left of the returned
digits). The decimal point is not included in the returned
string. If the sign of the result is negative, the word
pointed to by stgn is non-zero, otherwise it is zero.
Fevt is identical to ecwt, except that the correct digit has
been rounded for printf “%f” (FORTRAN F-format)
output of the number of digits specified by ndigit.
Gecvt converts the value to a null-terminated string in
the array pointed to by buf and returns buf. It attempts
to produce ndigit significant digits in FORTRAN F-
format if possible, otherwise E-format, ready for
printing. A minus sign, if there is one, or a decimal point
will be included as part of the returned string. Trailing
zeros are suppressed.

SEE ALSO
printf(3S).

BUGS

The values returned by ecvt and fevt point to a single
static data array whose content is overwritten by each
call.

NAME

END (3C)

end, etext, edata — last locations in program

SYNOPSIS

extern end;
extern etext;
extern edata;

DESCRIPTION

These names refer neither to routines nor to locations
with interesting contents. The address of etezt is the
first address above the program text, edata above the
initialized data region, and end above the uninitialized
data region.

When execution begins, the program break (the first
location beyond the data) coincides with end, but the
program break may be reset by the routines of brk(2),
malloc(3C), standard input/output (stdio(3S)), the
profile (—p) option of cc(1), and so on. Thus, the
current value of the program break should be determined

by sbrk(0) (see brk(2)).

SEE ALSO

brk(2), malloc(3C), stdio(3S).

ERF (3M)

NAME
erf, erfc - error function and complementary error
function

SYNOPSIS
#include <math.h>
double erf (x)
double x;
double erfec (x)
double x;

DESCRIPTION
Exf returns the error function of =z, defined as

2 fe“gdt.

Vr
Erfe, which returns 1.0 — erf(z), is provided because of
the extreme loss of relative accuracy if erf{z) is called for
large z and the result subtracted from 1.0 (e.g., for z =
5, 12 places are lost).

SEE ALSO

exp(3M).

EXP (3M)

NAME)
exp, log, logl0, pow, sqrt - exponential, logarithm,
power, square root functions

»~. SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Ezp returns e”.

Log returns the natural logarithm of z. The value of z
must be positive.

Log10 returns the logarithm base ten of z. The value of
— z must be positive.

Pow returns 2¥. If z is zero, y must be positive. If z is
negative, y must be an integer.

Sgrt returns the non-negative square root of z. The
value of z may not be negative.

DIAGNOSTICS
Ezp returns HUGE when the correct value would
overflow, or 0 when the correct value would underflow,
and sets errno to ERANGE.

Log and log10 return ~-HUGE and set errno to EDOM
when z is non-positive. A message indicating DOMAIN
error (or SING error when z is 0) is printed on the
standard error output.

Pow returns 0 and sets errno to EDOM when z is 0 and
y is non-positive, or when z is negative and y is not an
integer. In these cases a message indicating DOMAIN
error is printed on the standard error output. When the
correct value for pow would overflow or underflow, pow
returns +HUGE or 0 respectively, and sets errno to
ERANGE.

Sgrt returns 0 and sets errno to EDOM when z is
negative. A message indicating DOMAIN error is printed
on the standard error output.

-1-

EXP (3M)

These error-handling procedures may be changed with
the function matherr(3M).

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

FCLOSE (3S)

NAME

fclose, fflush ~ close or flush a stream
SYNOPSIS

#include <stdio.h>

int fclose (stream)
FILE #*stream;

int fflush (stream)
FILE #*stream;

DESCRIPTION
Felose causes any buffered data for the named stream to
be written out, and the stream to be closed.

Feclose 1s performed automatically for all open files upon
calling ex1t(2).

Fflush causes any buffered data for the named stream to
be written to that file. The stream remains open.

DIAGNOSTICS
These functions return O for success, and EOF if any
error (such as trying to write to a file that has not been
opened for writing) was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

FERROR (3S)

NAME
ferror, feof, clearerr, fileno — stream status inquiries
SYNOPSIS
#include <stdio.h>
int ferror (stream)
FILE *stream;
int feof (stream)
FILE #stream;
void clearerr (stream)
FILE #stream;
int fileno (stream)
FILE *stream;
DESCRIPTION
Ferror returns non-zero when an I/O error has
previously occurred reading from or writing to the
named stream, otherwise zero.
Feof returns non-zero when EOF has previously been
detected reading the named input siream, otherwise
zero.
Clearerr resets the error indicator and EOF indicator to
zero on the named stream.
Fileno returns the integer file descriptor associated with
the named stream; see open(2).
NOTE
All these functions are implemented as macros; they
cannot be declared or redeclared.
SEE ALSO

open(2), fopen(3S).

FLOOR (3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder,
absolute value functions

~=~ SYNOPSIS
#include <math.h>
double floor (x)

double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)

double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision
number) not greater than z.
Ceil returns the smallest integer not less than z.

Fmod returns the floating-point remainder of the
division of z by y: zero if y is zero or if z/y would
overflow; otherwise the number f with the same sign as

_— r, sIuch that z = iy + f for some integer ¢, and | f| <
vl.
Fabs returns the absolute value of z, | z | .
SEE ALSO
abs(3C).
—_—

FOPEN (3S)

NAME

fopen, freopen, fdopen ~ open a stream
SYNOPSIS

#include <stdio.h>

FILE *fopen (file-name, type)
char *file-name, *type;

FILE *freopen (file-name, type, stream)
char *file-name, *type;
FILE #stream;

FILE #*fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION
Fopen opens the file named by file-name and associates
a stream with it. Fopen returns a pointer to the FILE
structure associated with the stream.

File-name points to a character string that contains the
name of the file to be opened.

Type is a character string having one of the following

values:

o open for reading

"w" truncate or create for writing

"a” append; open for writing at end of
file, or create for writing

i & open for update (reading and writing)

w4 truncate or create for update

Ya+" append; open or create for update at
end-of-file

Freopen substitutes the named file in place of the open
stream. The original stream is closed, regardless of
whether the open ultimately succeeds. Freopen returns
a pointer to the FILE structure associated with stream.

Freopen 1is typically used to attach the preopened
streams associated with stdin, stdout and stderr to
other files.

Fdopen associates a stream with a file descriptor. File
descriptors are obtained from open(2), dup(2), creat(2),
or pipe(2), which open files but not return pointers to a
FILE structure stream. Streams are necessary arguments
for many of the section 3S library routines. The type of
stream must agree with the mode of the open file.

FOPEN(3S)

When a file is opened for update, both input and output
may be done on the resulting stream. However, output
may not be directly followed by input without an
intervening fseek or rewind, and input may not be
directly followed by output without an intervening fseek,
rewind, or an input operation which encounters end-of-
file.

When a file is opened for append (i.e., when type is "a”
or ”a+"), it is impossible to overwrite information
already in the file. Fseek may be used to reposition the
file pointer to any position in the file, but when output is
written to the file, the current file pointer is disregarded.
All output is written at the end of the file and causes the
file pointer to be repositioned at the end of the output.
If two separate processes open the same file for append,
each process may write freely to the file without fear of
destroying output being written by the other. The
output from the two processes will be intermixed in the
file in the order in which it is written.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S).

DIAGNOSTICS
Fopen and freopen return a NULL pointer on failure.

FREAD (3S)

NAME
fread, fwrite — binary input/output

SYNOPSIS
#include <stdio.h>
int fread (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE #stream;
int fwrite (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

DESCRIPTION
Fread copies, into an array pointed to by pir, nitems
items of data from the named input stream, where an
item of data is a sequence of bytes (not necessarily
terminated by a null byte) of length size. Fread stops
appending bytes if an end-of-file or error condition is
encountered while reading stream, or if nitems items
have been read. Fread leaves the file pointer in stream,
if defined, pointing to the byte following the last byte
read if there is one. Fread does not change the contents
of stream.
Fuwrite appends at most nitems items of data from the
array pointed to by pir to the named output stream.
Fuwrite stops appending when it has appended nitems
items of data or if an error condition is encountered on
stream. Fuwrite does not change the contents of the
array pointed to by ptr.
The argument size is typically sizeoff*ptr) where the
pseudo-function sizeof specifies the length of an item
pointed to by ptr. If ptr points to a data type other
than char it should be cast into a pointer to char.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S),
putc(3S), puts(3S), scanf(3S).

DIAGNOSTICS

Fread and fwrite return the number of items read or
written. If size or nitems is non-positive, no characters
are read or written and O is returned by both fread and
fwrite.

—

FREXP (3C)

NAME
frexp, ldexp, modf — manipulate parts of floating-point
numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION

Every non-zero number can be written uniquely as z *
2", where the ‘“mantissa’ (fraction) z is in the range 0.5
< |z | < 1.0, and the ‘“exponent” n is an integer.
Frexp returns the mantissa of a double value, and stores
the exponent indirectly in the location pointed to by
eptr. If value is zero, both results returned by frezp are
zero.

Ldezp returns the quantity value * 2°°F,

Modf returns the signed fractional part of walue and
stores the integral part indirectly in the location pointed
to by tptr.

DIAGNOSTICS
If ldezp would cause overflow, +HUGE is returned
(according to the sign of wvaelue), and errno is set to
ERANGE.
If ldexp would cause underflow, zero is returned and
errno is set to ERANGE.

FSEEK (3S)

NAME
fseek, rewind, ftell — reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE #stream;

long offset;

int ptrname;

void rewind (stream)
FILE #$stream;

long ftell (stream)
FILE #stream;

DESCRIPTION
Fseek sets the position of the next input or output
operation on the stream. The new position is at the
signed distance offset bytes from the beginning, from the
current position, or from the end of the file, according as
ptrname has the value 0, 1, or 2.

Rewind(stream) is equivalent to fseek(stream, OL, 0),
except that no value is returned.

Fseek and rewind undo any effects of ungetc(3S).

After fseek or rewind, the next operation on a file
opened for update may be either input or output.

Ftell returns the offset of the current byte relative to the
beginning of the file associated with the named stream.

SEE ALSO
lseek(2), fopen(3S) popen(3S), ungetc(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise
zero. An improper seek can be, for example, an fseek
done on a file that has not been opened via fopen; in
particular, fseek may not be used on a terminal, or on a
file opened via popen(3S).

WARNING
Although on the CTIX and other systems derived from
the UNIX system, an offset returned by ftell is measured
in bytes, and it is permissible to seek to positions relative
to that offset, portability to non-UNIX systems requires
that an offset be used by fseek directly. Arithmetic may
not meaningfully be performed on such an offset, which
is not necessarily measured in bytes.

—

FTW (3C)

ftw — walk a file tree

SYNOPSIS

#include <ftw.h>

int ftw (path, fn, depth)
char *path;

int (*fn) ();

int depth;

DESCRIPTION

Ftw recursively descends the directory hierarchy rooted
in path. For each object in the hierarchy, ftw calls fn,
passing it a pointer to a null-terminated character string
containing the name of the object, a pointer to a stat
structure (see stat(2)) containing information about the
object, and an integer. Possible values of the integer,
defined in the <ftw.h> header file, are FTW_F for a
file, FTW_D for a directory, FTW_DNR for a directory
that cannot be read, and FTW_NS for an object for
which stat could not successfully be executed. If the
integer is FTW_DNR, descendants of that directory will
not be processed. If the integer is FTW_NS, the stat
structure will contain garbage. An example of an object
that would cause FTW_NS to be passed to fn would be a
file in a directory with read but without execute (search)
permission.

Ftw visits a directory before visiting any of its
descendants.

The tree traversal continues until the tree is exhausted,
an invocation of frn returns a nonzero value, or some
error is detected within ftw (such as an /O error). If
the tree is exhausted, ftw returns zero. If fn returns a
nonzero value, ftw stops its tree traversal and returns
whatever value was returned by fn. If ftw detects an
error, it returns —1, and sets the error type in errno.

Ftw uses one file descriptor for each level in the tree.
The depth argument limits the number of file descriptors
so used. If depth is zero or negative, the effect is the
same as if it were 1. Depth must not be greater than the
number of file descriptors currently available for use.
Ftw will run more quickly if depth is at least as large as
the number of levels in the tree.

SEE ALSO

stat(2), malloc(3C).

BUGS

FTW(3C)

Because ftw is recursive, it is possible for it to terminate
with a memory fault when applied to very deep file
structures.

It could be made to run faster and use less storage on
deep structures at the cost of considerable complexity.
Ftw uses malloc(3C) to allocate dynamic storage during
its operation. If ftw is forcibly terminated, such as by
longgmp being executed by fn or an interrupt routine,
ftw will not have a chance to free that storage, so it will
remain permanently allocated. A safe way to handle
interrupts is to store the fact that an interrupt has
occurred, and arrange to have fn return a nonzero value
at its next invocation.

GAMMA (3M)

NAME
gamma — log gamma function

SYNOPSIS
#include <math.h>

double gamma (x)
double x;

extern int signgam;

DESCRIPTION
Gamma returns In(|T(z)]|), where I'(z) is defined as

fett*-'dt. The sign of I'(z) is returned in the
0

external integer signgam. The argument z may not be a
non-positive integer.
The following C program fragment might be used to
calculate I':

if ((y = gamma(x)) > LN_MAXDOUBLE)

error(};

y == signgam * exp(y);
where LN_MAXDOUBLE is the least value that causes
¢zp(3M) to return a range error, and is defined in the
< values.h> header file.

DIAGNOSTICS

For non-negative integer arguments HUGE is returned,
and errno is set to EDOM. A message indicating SING
error is printed on the standard error output.

If the correct value would overflow, gamma returns
HUGE and sets errno to ERANGE.

These error-handling procedures may be changed with
the function matherr(3M).

SEE ALSO
exp(3M), matherr(3M), values(5).

GETC(3S)

NAME

getc, getchar, fgetc, getw — get character or word from a
stream

SYNOPSIS
#include <stdio.h>

int getc (stream)
FILE #*stream;

int getchar ()

int fgetc (stream)
FILE #*stream;

int getw (stream)
FILE #*stream;

DESCRIPTION
Gete returns the next character (i.e., byte) from the
named input sfream, as an integer. It also moves the
file pointer, if defined, ahead one character in stream.
Getchar is defined as getc(stdin). Getc and getchar are
macros.

Fgete behaves like gete, but is a function rather than a
macro. Fgete runs more slowly than gete, but it takes
less space per invocation and its name can be passed as
an argument to a function.

Getw returns the next word (i.e., integer) from the
named input stream. GGetw increments the associated
file pointer, if defined, to point to the next word. The
size of a word is the size of an integer and varies from

machine to machine. Getw assumes no special
alignment in the file.
SEE ALSO

fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S),
putc(3S), scanf(3S

DIAGNOSTICS
These functions return the constant EOF at end-of-file
or upon an error. Because EOF is a valid integer,
ferror(3S) should be used to detect getw errors.

WARNING
If the integer value returned by getc, getchar, or fgeic is
stored into a character variable and then compared
against the integer constant EOF, the comparison may
never succeed, because sign-extension of a character on
widening to integer is machine-dependent.

BUGS
Because it is implemented as a macro, gefc treats
incorrectly a stream argument with side effects. In

-1-

GETC(3S)

particular, gete(*f++) does not work sensibly. Fyetc
should be used instead.

Because of possible differences in word length and byte
ordering, files written using putw are machine-

dependent, and may not be read using getw on a
different processor.

GETCWD (3C)

NAME
getewd — get path-name of current working directory

SYNOPSIS
char *getcwd (buf, size)
char *bufj
int size;

DESCRIPTION
Getewd returns a pointer to the current directory path-
name. The value of stze must be at least two greater
than the length of the path-name to be returned.

If buf is a NULL pointer, getewd will obtain size bytes of
space using malloc(3C). In this case, the pointer
returned by getewd may be used as the argument in a
subsequent call to free.

The function is implemented by using popen(3S) to pipe
the output of the pwd(1) command into the specified
string space.

EXAMPLE
char xewd, *getewd();

if ((cwd = getcwd((char ¥)NULL, 64)) == NULL) {
perror(“pwd’’);
exit(1);

printf(“%s\n”, cwd);
SEE ALSO
pwd(1), malloc(3C), popen(3S).

DIAGNOSTICS
Returns NULL with errno set if size is not large enough,
or if an error ocurrs in a lower-level function.

GETENV (3C)

NAME
getenv — return value for environment name

SYNOPSIS
char *getenv (name)
char *name;

DESCRIPTION
Getenv searches the environment list (see environ(5)) for
a string of the form name=value, and returns a pointer
to the value in the current environment if such a string
is present, otherwise a NULL pointer.

SEE ALSO
exec(2), putenv(3C), environ(5).

NAME

GETGRENT (3C)

getgrent, getgrgid, getgrnam, setgrent, endgrent,
fgetgrent — get group file entry

SYNOPSIS

#include <grp.h>
struct group *getgrent ()

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

void setgrent ()
void endgrent ()

struct group *fgetgrent (f)
FILE *f;

DESCRIPTION

5/86

Getgrent, getgrgid and getgrnam each return pointers to
an object with the following structure containing the
broken-out fields of a line in the /etc/group file. Each
line contains a ‘‘group’ structure, defined in the
<grp-h> header file.

struct group {
char *gr_name;
/* the name of the group */
char *gr_passwd;
/* the encrypted group password */
int gr_gid;
/* the numerical group ID */
char **gr_mem;
} /* vector of pointers to member names */
’
Getgrent when first called returns a pointer to the first
group structure in the file; thereafter, it returns a pointer
to the next group structure in the file; so, successive calls
may be used to search the entire file. Getgrgid searches
from the beginning of the file until a numerical group id
matching g¢¢d is found and returns a pointer to the
particular structure in which it was found. Getgrnam
searches from the beginning of the file until a group
name matching name is found and returns a pointer to
the particular structure in which it was found. If an
end-of-file or an error is encountered on reading, these
functions return a NULL pointer.

A call to setgreant has the effect of rewinding the group
file to allow repeated searches. Endgrent may be called

-1-

GETGRENT (3C)

to close the group file when processing is complete.

Fgetgrent returns a pointer to the next group structure
in the stream f, which matches the format of

/etc/group.

FILES
/ete/group

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them
to increase the size of programs, not otherwise using
standard I/O, more than might be expected.

BUGS

All information is contained in a static area, so it must
be copied if it is to be saved.

GETHOSTENT (3N)

NAME
gethostent, gethostbyaddr, gethostbyname, sethostent,
endhostent — get network host entry

SYNOPSIS
#include <netdb.h>

struct hostent *gethostent()

struct hostent *gethostbyname (name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)
char *addr; int len, type;

sethostent (stayopen)
int stayopen

endhostent ()

DESCRIPTION
Gethostent, gethostbyname, and gethostbyaddr each
return a pointer to an object with the following structure
containing the broken-out fields of a line in the network
host data base, /etc/hosts.

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list *
int h_addrtype; /* address type */
int h_length; /* length of address */
char *h_addr; /* address */

b

The members of this structure are:
h_name Official name of the host.

h_aliases A zero terminated array of alternate names
for the host.

h_addrtype The type of address being returned;
currently always AF_INET.

h_length The length, in bytes, of the address.

h_addr A pointer to the network address for the
host. Host addresses are returned in
network byte order.

Gethostent reads the next line of the file, opening the file
if necessary.

Sethostent opens and rewinds the file. If the stayopen
flag is non-zero, the host data base will not be closed
after each call to gethostent (either directly, or indirectly
through one of the other gethost calls).

5/86 -1-

FILES

GETHOSTENT (3N)

Endhostent closes the file.

Gethostbyname and gethostbyaddr sequentially search
from the beginning of the file until a matching host
name or host address is found, or until EOF is
encountered. Host addresses are supplied in network
order.

/etc /hosts

SEE ALSO

hosts(4N).
CTIX Internetworking Manual.

DIAGNOSTICS

BUGS

NOTE

5/86

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be
copied if it is to be saved. Only the Internet address
format is currently understood.

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

GETHOSTNAME (3N)

NAME
gethostname — get name of current host

SYNOPSIS
gethostname (name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the
current processor, as previously set by setuname(1M).
The parameter namelen specifies the size of the name
array. The returned name is null-terminated unless
insufficient space is provided.

RETURN VALUE
If the call succeeds, a value of 0 is returned. If the call
fails, then a value of —1 is returned and an error code is
placed in the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The naeme or namelen parameter gave
an invalid address.
[EPERM] The caller was not the super-user.
SEE ALSO
setuname(1M).
CTIX Internetworking Manual.
BUGS
Host names are limited to 9 characters.
NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 -1-

GETLOGIN(3C)

NAME
getlogin — get login name
SYNOPSIS
char *getlogin ();
DESCRIPTION
Getlogin returns a pointer to the login name as found in
/ete/utmp. It may be used in conjunction with
getpwnam to locate the correct password file entry when
the same user ID is shared by several login names.
If getlogin is called within a process that is not attached
to a terminal, it returns a NULL pointer. The correct
procedure for determining the login name is to call
cuserid, or to call getlogin and if it fails to call getpwuid.
FILES
/ete/utmp
SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).
DIAGNOSTICS
Returns the NULL pointer if name is not found.
BUGS

The return values point to static data whose content is
overwritten by each call.

NAME

GETNETENT (3N)

getnetent, getnetbyaddr, getnetbyname, setnetent,
endnetent — get network entry

SYNOPSIS

#include <netdb.h>
struct netent *getnetent ()

struct netent *getnetbyname (name)
char *name;

struct netent *getnetbyaddr (net)
long net;

setnetent (stayopen)
int stayopen

endnetent ()

DESCRIPTION

5/86

Getnetent, getnetbyname, and getnetbyaddr each return a
pointer to an object with the following structure
containing the broken-out fields of a line in the network
data base, /ete/networks.

struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net number type */
long n_net; /* net number */

b
The members of this structure are:

n_name The official name of the network.

n_aliases A zero-terminated list of alternate names
for the network.

n_addrtype The type of the network number returned;
currently only AF_INET.

n_net, The network number. Network numbers
are returned in machine byte order.

Getnetent reads the next line of the file, opening the file
if necessary.

Setnetent opens and rewinds the file. If the stayopen flag
is non-zero, the network data base will not be closed
after each call to getnetent (either directly, or indirectly
through one of the other getnet calls).

Endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from
the beginning of the file until a matching net name or

-1-

GETNETENT (3N)

net address is found, or until EOF is encountered.
Network numbers are supplied in host order.
FILES
/etc/networks
SEE ALSO
networks(4N).
CTIX Internetworking Manual.
DIAGNOSTICS
Null pointer (0) returned on EOF or error.
BUGS
All information is contained in a static area, so it must
be copied if it is to be saved. Only Internet network
numbers are currently understood. Expecting network
numbers to fit in no more than 32 bits is probably naive.
NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 .92

GETOPT (3C)

NAME
getopt — get option letter from argument vector

SYNOPSIS
int getopt (arge, argv, optstring)
int arge;
char **argv, *opstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPTION

Getopt returns the next option letter in argv that
matches a letter in optstring. Optstring is a string of
recognized option letters; if a letter is followed by a
colon, the option is expected to have an argument that
may or may not be separated from it by white space.
Optarg is set to point to the start of the option
argument on return from getopt.

Getopt places in optind the argv index of the next
argument to be processed. Because optind is external, it
is normally initialized to zero automatically before the
first call to getopt.

When all options have been processed (i.e., up to the
first non-option argument), getopt returns EOF. The
special option —— may be used to delimit the end of the
options; EOF will be returned, and —— will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a
question mark (?) when it encounters an option letter not
included in optstring. This error message may be
disabled by setting opterr to a non-zero value.

EXAMPLE
The following code fragment shows how one might
process the arguments for a command that can take the
mutually exclusive options a and b, and the options f
and o, both of which require arguments:

main (arge, argv)
Int arge;
char **argv;

int c;
extern char *optarg;
extern int optind;

while

GETOPT(3C)

((c = getopt(arge, argv, "abf:0:")) != EOF)
switch (¢) {

case 'a”:
f (bflg)
errflg++;
else
aflg++;
break;
case 'b':
if (aflg)
errflg++;
else
bproc();
break;
case 'f:
ifile = optarg;
break;
case 'o':
ofile = optarg;
break;
case 7'
errflg++;
if (errflg} {
prmthstderr, "usage: . . . ");
exit (2);
for (; optind < argc optmd++ {

if (access(argv [optmd

}

SEE ALSO
getopt(1).

NAME

GETPASS(3C)

getpass — read a password

SYNOPSIS

char *getpass (prompt)
char *prompt;

DESCRIPTION

Getpass reads up to a newline or EOF from the file
/dev /tty, after prompting on the standard error output
with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated
string of at most 8 characters. If /dev/tty cannot be
opened, a NULL pointer is returned. An interrupt will
terminate input and send an interrupt signal to the
calling program before returning.

FILES
/dev/tty

SEE ALSO
crypt(3C).

WARNING
The above routine uses <stdio.h>, which causes it to
increase the size of programs not otherwise using
standard I/O, more than might be expected.

BUGS

The return value points to static data whose content is
overwritten by each call.

NAME

GETPROTOENT (3N)

getprotoent, getprotobynumber, getprotobyname,
setprotoent, endprotoent — get protocol entry

SYNOPSIS

#include <netdb.h>
struct protoent *getprotoent ()

struct protoent *getprotobyname (name)
char *name;

struct protoent *getprotobynumber (proto)
int proto;

setprotoent (stayopen)
int stayopen

endprotoent ()

DESCRIPTION

FILES

5/86

Getprotoent, getprotobyname, and getprotobynumber
each return a pointer to an object with the following
structure containing the broken-out fields of a line in the
network protocol data base, /ete/protocols.

struct protoent {

char *p_name; /* official name of protocol */
char **p_aliases; /* alias list */
long p_proto; /* protocol number */

’

The members of this structure are:
p_name The official name of the protocol.

p_aliases A zero-terminated list of alternate names for
the protocol.

p_proto The protocol number.

Getprotoent reads the next line of the file, opening the
file if necessary.

Setprotoent opens and rewinds the file. If the stayopen
flag is non-zero, the network data base will not be closed
after each call to getprotoent (either directly, or
indirectly through one of the other getproto calls).

Endprotoent closes the file.

Getprotobyname and getprotobynumber sequentially
search from the beginning of the file until a matching
protocol name or protocol number is found, or until EOF
is encountered.

/ete/protocols

GETPROTOENT (3N)

SEE ALSO
protocols(4N).
CTIX Internetworking Manual.

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area, so it must
be copied if it is to be saved. Only the Internet
protocols are currently understood.

NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 -2-

GETPW (3C)

NAME
getpw — get name from UID

SYNOPSIS
int getpw (uid, buf)
int uid;
char *buf;

DESCRIPTION
Getpw searches the password file for a user id number
that equals uid, copies the line of the password file in
which uid was found into the array pointed to by buf,

and returns 0. Gelpw returns non-zero if uid cannot be
found.

This routine is included only for compatibility with prior
systems and should not be used; see getpwent(3C) for
routines to use instead.

FILES
/ete /passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING
The above routine uses <stdio.h>, which causes it to
increase, more than might be expected, the size of
programs, not otherwise using standard 1/0.

NAME

GETPWENT (3C)

getpwent, getpwuid, getpwnam, setpwent, endpwent,
fgetpwent — get password file entry

SYNOPSIS

#include <pwd.h>
struct passwd *getpwent ()

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

void setpwent ()
void endpwent ()

struct passwd *fgetpwent (f)
FILE *f;

DESCRIPTION

Getpwent, getpwuid and gelpwnam each returns a
pointer to an object with the following structure
containing the broken-out fields of a line in the
/etc/passwd file. Each line in the file contains a
“passwd’’ structure, declared in the <pwd.h> header
file:

struct passwd {
char *pw_name;
char *pw_passwd;
int pw_uid;
nt pw_gid;
char *pw_age;
char *pw_comment;
char *pW_gecos;
char *pw_dir;
| char *pw_shell;
b
This structure is declared in <pwd.h> so it is not
necessary to redeclare it.

The pw_comment field is unused; the others have
meanings described in passwd(4).

Getpwent when first called returns a pointer to the first
passwd structure in the file; thereafter, it returns a
pointer to the next passwd structure in the file; so
successive calls can be used to search the entire file.
Getpwuid searches from the beginning of the file until a
numerical user id matching uid is found and returns a
pointer to the particular structure in which it was found.
Getpwnam searches from the beginning of the file until a

-1-

GETPWENT (3C)

login name matching name is found, and returns a
pointer to the particular structure in which it was found.
If an end-of-file or an error is encountered on reading,
these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the
password file to allow repeated searches. Endpwent may
be called to close the password file when processing is
complete.

Fgetpwent returns a pointer to the next passwd structure
in the stream f, which matches the format of
/etc/passwd.

FILES
/ete/passwd
SEE ALSO
getlogin(3C), getgrent(3C), passwd(4).
DIAGNOSTICS
A NULL pointer is returned on EOF or error.
WARNING
The above routines use <stdio.h>, which causes them
to increase the size of programs, not otherwise using
standard I/O, more than might be expected.
BUGS

All information is contained in a static area, so it must
be copied if it is to be saved.

GETS(3S)

NAME
gets, fgets — get a string from a stream

SYNOPSIS
#finclude <stdio.h>

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;

int n;

FILE #stream;

DESCRIPTION
Gets reads characters from the standard input stream,
stdin, into the array pointed to by s, until a new-line
character is read or an end-of-file condition is
encountered. The new-line character is discarded and
the string is terminated with a null character.

Fgets reads characters from the stream into the array
pointed to by s, until n-1 characters are read, or a
new-line character is read and transferred to s, or an
end-of-file condition is encountered. The string is then
terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been
read, no characters are transferred to s and a NULL
pointer is returned. If a read error occurs, such as trying
to use these functions on a file that has not been opened
for reading, a NULL pointer is returned. Otherwise s is
returned.

NAME

GETSERVENT (3N)

getservent, getservbyport, getservbyname, setservent,
endservent — get service entry

SYNOPSIS

#finclude <netdb.h>
struct servent *getservent ()

struct servent *getservbyname (name, proto)
char *name, *proto;

struct servent *getservbyport (port, proto)
int port; char *proto;

setservent (stayopen)
int stayopen

endservent ()

DESCRIPTION

5/86

Getservent, getservbyname, and getservbyport each
return a pointer to an object with the following structure
containing the broken-out fields of a line in the network
services data base, /etc/services.

struct servent {
char *s_name; /* official name of service */
char **s_aliases; /* alias list */
long s_port; /* port service resides at */
char *s_proto; /* protocol to use */

)
The members of this structure are:
s_name The official name of the service.

s_aliases A zero-terminated list of alternate names for
the service.

s_port The port number at which the service resides.
Port numbers are returned in network byte
order.

s_proto The name of the protocol to use when
contacting the service.

Getservent reads the next line of the file, opening the file
if necessary.

Setservent opens and rewinds the file. If the stayopen
flag is non-zero, the network data base will not be closed
after each call to getservent (either directly, or indirectly
through one of the other getserv calls).

Endservent closes the file.

Getservbyname and gelservbyport sequentially search
from the beginning of the file until a matching protocol

-1-

GETSERVENT (3N)

name or port number is found, or until EOF is
encountered. If a protocol name is also supplied {non-
NULL), searches must also match the protocol.

FILES
/ete /services
SEE ALSO
getprotoent(3N), services(4N).
CTIX Internetworking Manual.
DIAGNOSTICS
Null pointer (0) returned on EOF or error.
BUGS
All information is contained in a static area, so it must
be copied if it is to be saved. Expecting port numbers to
fit in a 32-bit quantity is probably naive.
NOTE

5/86

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

GETUT(3C)

NAME
getutent, getutid, getutline, pututline, setutent,
endutent, utmpname — access utmp file entry

SYNOPSIS
f#finclude <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getutline (line)
struct utmp #*line;

void pututline (utmp)
struct utmp *utmp;

void setutent ()
void endutent ()

void utmpname (file)
char *file;

DESCRIPTION
Getutent, getutid and getutline each return a pointer to
a structure of the following type:

struct utmp {
char ut_user|8};
/* User login name */

char ut_id[4];
/* /etc/inittab id
* (usually line #) */
char ut_line(12};
* device name (console,
* Inxx) */
short ut_pid; /* processid */
short ut_type; /* type of entry */
struct exit_status
short e_termination;
/* Process termination status */
short e_exit;
/* Process exit status */
} ut_exit;
/* The exit status of a process
/* marked as DEAD_PROCESS. */
time_t ut_time;
} /* time entry was made */
Getutent reads in the next entry from a utmp-like file.
If the file is not already open, it opens it. If it reaches
the end of the file, it fails.

-1-

FILES

GETUT(3C)

Getutid searches forward from the current point in the
utmp file until it finds an entry with a uf_type matching
td->ut_type if the type specified is RUN_LVL,
BOOT_TIME, OLD_TIME or NEW_TIME. If the type
specified in ¢d is INIT_PROCESS, LOGIN_PROCESS,
USER_PROCESS or DEAD_PROCESS, then getutid will
return a pointer to the first entry whose type is one of
these four and whose ut_sd field matches td- >ut_sd. If
the end of file is reached without a match, it fails.

Getutline searches forward from the current point in the
utmp file until it finds an entry of the type
LOGIN_PROCESS or USER_PROCESS which also has a
ul_line string matching the line- > ut_line string. If the
end of file is reached without a match, it fails.

Pututline writes out the supplied utmp structure into the
utmp file. It uses getutid to search forward for the
proper place if it finds that it is not already at the
proper place. It is expected that normally the user of
pututline will have searched for the proper entry using
one of the getut routines. If so, pututline will not search.
If pututline does not find a matching slot for the new
entry, it will add a new entry to the end of the file.

Setutent resets the input stream to the beginning of the
file. This should be done before each search for a new
entry if it is desired that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file
examined, from /etc/utmp to any other file. It is most
often expected that this other file will be /etc/wtmp.
If the file does not exist, this will not be apparent until
the first attempt to reference the file is made.
Utmpname does not open the file. It just closes the old
file if it is currently open and saves the new file name.

/ete/utmp
/ete/wtmp

SEE ALSO

ttyslot(3C), utmp(4).

DIAGNOSTICS

A NULL pointer is returned upon failure to read,
whether for permissions or having reached the end of
file, or upon failure to write.

COMMENTS

The most current entry is saved in a static structure.
Multiple accesses require that it be copied before further

-9-

GETUT(3C)

accesses are made. Each call to either getutid or
getutline sees the routine examine the static structure
before performing more 1/O. If the contents of the static
structure match what it is searching for, it looks no
further. For this reason to use getutltne to search for
multiple occurrences, it would be necessary to zero out
the static after each success, or getutline would just
return the same pointer over and over again. There is
one exception to the rule about removing the structure
before further reads are done. The implicit read done by
pututline (if it finds that it is not already at the correct
place in the file) will not hurt the contents of the static
structure returned by the getutent, getutid or getutline
routines, if the user has just modified those contents and
passed the pointer back to pututline.

These routines use buffered standard I/O for input, but
pututline uses an unbuffered non-standard write to avoid
race conditions between processes trying to modify the
utmp and wtmp files.

HSEARCH (3C)

NAME
hsearch, hereate, hdestroy — manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY #*hsearch (item, action)
ENTRY item;
ACTION action;

int hereate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

Hsearch is a hash-table search routine generalized from
Knuth (6.4) Algorithm D. It returns a pointer into a
hash table indicating the location at which an entry can
be found. Item is a structure of type ENTRY (defined in
the <search.h > header file) containing two pointers:
item.key points to the comparison key, and ttem.data
points to any other data to be associated with that key.
(Pointers to types other than character should be cast to
pointer-to-character.) Action is a member of an
enumeration type ACTION indicating the disposition of
the entry if it cannot be found in the table. ENTER
indicates that the item should be inserted in the table at
an appropriate point. FIND indicates that no entry
should be made. Unsuccessful resolution is indicated by
the return of a NULL pointer.

Hereate allocates sufficient space for the table, and must
be called before hsearch is used. Nel is an estimate of
the maximum number of entries that the table will
contain. This number may be adjusted upward by the
algorithm in order to obtain certain mathematically
favorable circumstances.

Hdestroy destroys the search table, and may be followed
by another call to hcreate.

NOTES
Hsearch uses open addressing with a multiplicative hash
function. However, its source code has many other
options available which the user may select by compiling
the hsearch source with the following symbols defined to
the preprocessor:

DIV Use the rematnder modulo table size as the
hash function instead of the multiplicative
algorithm.

USCR Use a User Supplied Comparison Routine for
ascertaining table membership. The routine

-1-

HSEARCH (3C)

should be named hcompar and should behave

in a mannner similar to stremp (see
string(3C)).

CHAINED
Use a linked list to resolve collisions. If this
option is selected, the following other options
become available.

START Place new entries at the
beginning of the linked list
(default is at the end).

SORTUP Keep the linked list sorted by
key in ascending order.

SORTDOWN
Keep the linked list sorted by
key in descending order.

Additionally, there are preprocessor flags for obtaining
debugging printout (-DDEBUG) and for including a test
driver in the calling routine (—-DDRIVER). The source
code should be consulted for further details.

EXAMPLE
The following example will read in strings followed by
two numbers and store them in a hash table, discarding
duplicates. It will then read in strings and find the
matching entry in the hash table and print it out.

#include <stdio.h>
#include <search.h>

struct info {
/* this is the info stored in the table */
int age, room;
/# other than the key. */
¥
#define NUM_EMPL 5000
/* # of elements in search table /

main()
{
/* space to store strings */
char string_space[NUM_EMPL#*20|;
/* space to store employee info */
struct info info_space[NUM_EMPL];
/* next avail space in string_space */
char *str_ptr = string_space;
/* next avail space in info_space */
struct info *info_ptr = info_space;
ENTRY item, *found_item, *hsearch();

-9.

HSEARCH (3C)

/* name to look for in table s/
char name_to_find|30|;
int i = 0

/* create table =/
{void) hereate(NUM_EMPL);
while (scanf("%s%d%d”, str_ptr, &info_ptr— >age,
&info_ptr->room) !|= EOF && i++ < NUM_EMPL) {
/* put info in structure, and structure in item %/
item.key = str_ptr;
item.data = (char *)info_ptr;
str_ptr +== strlen(str_ptr) + 1,
info_ptr++;
/* put item into table /
(void) hsearch(item, ENTER);

/# access table =/
item.key = name_to_find;
while (scanf("%s”, item.key) != EOF) {
if ((found_item = hsearch(item, FIND)) != NULL) {
/* if item is in the table »/
(void)printf("found %s, age = %d, room = %d\n”,
found_item- > key,
((struct info =)found_item—>data)- >age,
((struet info *)found_item~ >data)- >room);
} else {
(void)printf("no such employee %s\n”,
name_to_find)

}
}

SEE ALSO
bsearch(3C), Isearch(3C), malloc(3C), malloc(3X),
string(3C), tsearch(3C).

DIAGNOSTICS
Hsearch returns a NULL pointer if either the action is
FIND and the item could not be found or the action is
ENTER and the table is full.
Hereate returns zero if it cannot allocate sufficient space
for the table.

WARNING
Hsearch and hereate use malloc(3C) to allocate space.

BUGS

Only one hash search table may be active at any given
time.

HYPOT (3M)

NAME

hypot ~ Euclidean distance function
SYNOPSIS

#include <math.h>

double hypot (x, y)

double x, y;
DESCRIPTION

Hypot returns

sqri(x * x +y * y),

taking precautions against unwarranted overflows.

DIAGNOSTICS

When the correct value would overflow, Aypot returns
HUGE and sets errno to ERANGE.

These error-handling procedures may be changed with
the function matherr(3M).

SEE ALSO
matherr(3M), exp(3M).

INET(3N)

NAME
inet_addr, inet_network, inet_ntoa, inet_makeaddr,
inet_lnaof, inet_netof — Internet address manipulation
routines

SYNOPSIS
#finclude <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

struct in_addr inet_addr(cp)
char *cp;

int inet_network(cp)
char *cp;

char *inet_ntoa(in)
struct inet_addr in;

struct in_addr inet_makeaddr(net, lna)
int net, Ina;

int inet_lnaof(in)
struct in_addr in;

int inet_netof(in)
struct in_addr in;

DESCRIPTION

The routines tnet_addr and inef_network each interpret
character strings representing numbers expressed in the
Internet standard dot notation, returning numbers
suitable for use as Internet addresses and Internet
network numbers, respectively. The routine inet_ntoa
takes an Internet address and returns an ASCII string
representing the address in dot notation. The routine
tnet_makeaddr takes an Internet network number and a
local network address and constructs an Internet address
from it. The routines tnet_netof and tnet_Ilnaof break
apart Internet host addresses, returning the network
number and local network address part, respectively.

All Internet address are returned in network order (bytes
ordered from left to right). All network numbers and
local address parts are returned as machine format
integer values.

INTERNET ADDRESSES
Values specified using the dot notation take one of the
following forms:
a.b.c.d
a.b.c
ab
a
When four parts are specified, each is interpreted as a

-1-

INET(3N)

byte of data and assigned, from left to right, to the four
bytes of an Internet address. Note that when an
Internet address is viewed as a 32-bit integer quantity on
the VAX the bytes referred to above appear as d.c.b.a.
That is, VAX bytes are ordered from right to left.

When a three part address is specified, the last part is
interpreted as a 16-bit quantity and placed in the right
most two bytes of the network address. This makes the
three part address format convenient for specifying Class
B network addresses as 128.net.host.

When a two part address is supplied, the last part is
interpreted as a 24-bit quantity and placed in the right
most three bytes of the network address. This makes
the two part address format convenient for specifying
Class A network addresses as net.host.

When only one part is given, the value is stored directly
in the network address without any byte rearrangement.

All numbers supplied as parts in a . notation may be
decimal, octal, or hexadecimal, as specified in the C
language (i.e., a leading Ox or 0X implies hexadecimal;
otherwise, a leading 0 implies octal; otherwise, the
number is interpreted as decimal).

SEE ALSO

gethostent(3N), getnetent(3N), hosts(4N), networks(4N).
CTIX Internetworking Manual.

DIAGNOSTICS

BUGS

NOTE

The value -1 is returned by snet_addr and tnet_network
for malformed requests.

The problem of host byte ordering versus network byte
ordering is confusing. A simple way to specify Class C
network addresses in a manner similar to that for Class
B and Class A is needed. The string returned by
tnet_ntoa resides in a static memory area.

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

L3TOL(3C)

NAME
13tol, 1tol3 — convert between 3-byte integers and long
integers
SYNOPSIS
void 13tol (Ip, ¢p, n)
long *Ip;
char *cp;
int n;
void 1tol3 (cp, lp, n)
char *cp;
long *lp;
int n;
DESCRIPTION
L8tol converts a list of n three-byte integers packed into
a character string pointed to by cp into a list of long
integers pointed to by Ilp.
Ltol8 performs the reverse conversion from long integers
(Ip) to three-byte integers (cp).
These functions are useful for file-system maintenance
where the block numbers are three bytes long.
SEE ALSO
fs(4).
BUGS

Because of possible differences in byte ordering, the
numerical values of the long integers are machine-
dependent.

LDAHREAD (3X)

NAME
ldahread — read the archive header of a member of an
archive file

S~ SYNOPSIS
#include <stdio.h>
#include <ar.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldahread (ldptr, arhead)
LDFILE *ldptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE(ldptr) is the archive file magic number,
ldahread reads the archive header of the common object
file currently associated with Ildpir into the area of
memory beginning at arhead.

Ldahread returns SUCCESS or FAILURE. Ldahread
will fail if TYPE(/dptr) does not represent an archive
file, or if it cannot read the archive header.
The program must be loaded with the object file access
— routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), 1dfen(4), ar(4).

NAME

LDCLOSE (3X)

ldclose, 1daclose — close a common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldclose (ldptr)
LDFILE *ldptr;

int ldaclose (ldptr)
LDFILE *ldptr;

DESCRIPTION

FILES

Ldopen(3X) and ldclose are designed to provide uniform
access to both simple object files and object files that are
members of archive files. Thus an archive of common
object files can be processed as if it were a series of
simple common object files.

If TYPE(Idptr) does not represent an archive file, ldclose
will close the file and free the memory allocated to the
LDFILE structure associated with ldptr. If TYPE(/dptr)
is the magic number of an archive file, and if there are
any more files in the archive, ldclose will reinitialize
OFFSET(ldptr) to the file address of the next archive
member and return FAILURE. The LDFILE structure
is prepared for a subsequent ldopen(3X). In all other
cases, [dclose returns SUCCESS.

Ldaclose closes the file and frees the memory allocated to
the LDFILE structure associated with {dptr regardless of
the value of TYPE(ldptr). Ldaclose always returns
SUCCESS. The function is often used in conjunction
with [daopen.

The program must be loaded with the object file access
routine library libld.a.

/usr/lib/libld.a

SEE ALSO

fclose(3S), ldopen(3X), 1dfen(4).

LDFHREAD (3X)

ldfhread — read the file header of a common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldfhread (1dptr, filehead)
LDFILE *ldptr;
FILHDR *filehead;

DESCRIPTION

FILES

Ldfhread reads the file header of the common object file
currently associated with ldptr into the area of memory
beginning at filehead.

Ldfhread returns SUCCESS or FAILURE. Ldfhread will
fail if it cannot read the file header.

In most cases the use of ldfhread can be avoided by using
the macro HEADER(!/dptr) defined in ldfen.h (see
ldfen(4)). The information in any field, fieldname, of the
file header may be accessed using
HEADER(ldptr).fieldname.

The program must be loaded with the object file access
routine library libld.a.

/usr/lib/libld.a

SEE ALSO

ldclose(3X), 1dopen(3X), 1dfcn(4).

LDGETNAME (3X)

NAME

ldgetname - retrieve symbol name for common object
file symbol table entry

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfen.h>

char *ldgetname (ldptr, symbol)
LDFILE *ldptr;
SYMENT #*symbol;

DESCRIPTION
Ldgetname returns a pointer to the name associated with
symbol as a string. The string is contained in a static
buffer local to ldgetname that is overwritten by each call
to ldgetname, and therefore must be copied by the caller
if the name is to be saved.

As of UNIX system release 5.0, which corresponds to the
first release of CTIX, the common object file format has
been extended to handle arbitrary length symbol names
with the addition of a “‘string table”’. Ldgetname will
return the symbol name associated with a symbol table
entry for either a pre-UNIX system 5.0 object file or a
UNIX system 5.0 object file. Thus, ldgetname can be
used to retrieve names from object files without any
backward compatibility problems. Ldgetname will
return NULL (defined in stdio.h) for a UNIX system 5.0
object file if the name cannot be retrieved. This
situation can occur:

- if the “string table’” cannot be found,

- if not enough memory can be allocated for the
string table,

- if the string table appears not to be a string
table (for example, if an auxiliary entry is
handed to ldgetname that looks like a reference
to a name in a non-existent string table), or

- if the name’s offset into the string table is past
the end of the string table.

Typically, ldgetname will be called immediately after a
successful call to Idtbread to retrieve the name associated
with the symbol table entry filled by ldtbread.

The program must be loaded with the object file access
routine library libld.a.

LDGETNAME (3X)

FILES

/usr/lib/libld.a

SEE ALSO
IdcloseS3X), ldopen(3X), ldtbread(3X), ldtbseek(3X),
Idfen(4).

LDLREAD (3X)

NAME
ldlread, 1dlinit, ldlitem — manipulate line number entries
of a common object file function

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <linenum.h>
#include <ldfen.h>

int ldlread(ldptr, fenindx, linenum, linent)
LDFILE *ldptr;

long fenindx;

unsigned short linenum;

LINENO linent;

int ldlinit(ldptr, fenindx)
LDFILE *ldptr;
long fenindx;

int ldlitem(ldptr, linenum, linent)
LDFILE *ldptr;

unsigned short linenum;

LINENO linent;

DESCRIPTION

Ldiread searches the line number entries of the common
object file currently associated with [dptr. Ldiread
begins its search with the line number entry for the
beginning of a function and confines its search to the line
numbers associated with a single function. The function
is identified by fenindz, the index of its entry in the
object file symbol table. Ldlread reads the entry with
the smallest line number equal to or greater than
ltnenum into linent.

Ldlinit and ldlitem together perform exactly the same
function as ldiread. After an initial call to ldiread or
ldiinit, ldlitem may be used to retrieve a series of line
number entries associated with a single function. Ldlinit
simply locates the line number entries for the function
identified by fentndz. Ldlitem finds and reads the entry
with the smallest line number equal to or greater than
linenum into ltnent.

Ldiread, [dlinst, and [dlitem each return either
SUCCESS or FAILURE. Ldlread will fail if there are
no line number entries in the object file, if fenindr does
not index a function entry in the symbol table, or if it
finds no line number equal to or greater than linenum.
Ldlinit will fail if there are no line number entries in the
object file or if fenindz does not index a function entry in

-1-

LDLREAD (3X)

the symbol table. Ldlitem will fail if it finds no line
number equal to or greater than linenum.

The programs must be loaded with the object file access
routine library libld.a.
FILES
/usr/lib/libld.a
SEE ALSO
ldclose(3X), 1dopen(3X), ldtbindex(3X), 1dfen(4).

NAME

LDLSEEK (3X)

ldlseek, ldnlseek - seek to line number entries of a
section of a common object file

SYNOPSIS

#finclude <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldlseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnlseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

DESCRIPTION

FILES

Ldlseek seeks to the line number entries of the section
specified by sectindz of the common object file currently
associated with ldptr.

Ldnlseek seeks to the line number entries of the section
specified by sectname.

Ldlseek and ldnlseek return SUCCESS or FAILURE.
Ldlseek will fail if sectindz is greater than the number of
sections in the object file; Idniseek will fail if there is no
section name corresponding with *sectname. Either
function will fail if the specified section has no line
number entries or if it cannot seek to the specified line
number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access
routine library libld.a.

/usr/lib/libld.a

SEE ALSO

ldclose(3X), 1dopen(3X), ldshread(3X), 1dfen(4).

NAME

LDOHSEEK (3X)

ldohseek — seek to the optional file header of a common
object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldohseek (ldptr)
LDFILE *ldptr;

DESCRIPTION

FILES

Ldohseek seeks to the optional file header of the common
object file currently associated with ldptr.

Ldohseek returns SUCCESS or FAILURE. Ldohseck
will fail if the object file has no optional header or if it
cannot seek to the optional header.

The program must be loaded with the object file access
routine library libld.a.

/usr/lib/libld.a

SEE ALSO

ldclose(3X), 1dopen(3X), ldfhread(3X), 1dfcn(4).

NAME

LDOPEN (3X)

ldopen, ldaopen - open a common object file for reading

SYNOPSIS

f#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

LDFILE *ldopen (filename, ldptr)
char *filename;
LDFILE *ldptr;

LDFILE *ldaopen (filename, oldptr)
char *filename;
LDFILE *oldptr;

DESCRIPTION

Ldopen and Idcloacﬁ:}X) are designed to provide uniform
access to both simple object files and object files that are
members of archive files. Thus an archive of common
object files can be processed as if it were a series of
simple common object files.

If ldptr has the value NULL, then [dopen will open
filename and allocate and initialize the LDFILE
structure, and return a pointer to the structure to the
calling program.

If ldptr is valid and if TYPE(ldptr) is the archive magic
number, /dopen will reinitialize the LDFILE structure for
the next archive member of filename.

Ldopen and ldclose(3X) are designed to work in concert.
Ldclose will return FAILURE only when TYPE(/dptr) is
the archive magic number and there is another file in the
archive to be processed. Only then should Idopen be
called with the current value of ldptr. In all other cases,
in particular whenever a new filename is opened, ldopen
should be called with a NULL Idptr argument.

The following is a prototype for the use of ldopen and
ldclose(3X).

FILES

LDOPEN (3X)

/* for each filename to be processed */
ldptr = NULL,;
do

{

if ((1dptr = ldopen(filename, ldptr)) != NULL)

/* check magic number */
/* process the file */

} while ()ldclose(ldptr) == FAILURE);

If the value of oldptr is not NULL, ldaopen will open
filename anew and allocate and initialize a new LDFILE
structure, copying the TYPE, OFFSET, and HEADER
fields from oldptr. Ldaopen returns a pointer to the new
LDFILE structure. This new pointer is independent of
the old pointer, oldptr. The two pointers may be used
concurrently to read separate parts of the object file.
For example, one pointer may be used to step
sequentially through the relocation information, while
the other is used to read indexed symbol table entries.

Both Idopen and Idaopen open filename for reading.
Both functions return NULL if filename cannot be
opened, or if memory for the LDFILE structure cannot
be allocated. A successful open does not insure that the

given file is a common object file or an archived object
file.

The program must be loaded with the object file access
routine library libld.a.

Jusr/lib/libld.a

SEE ALSO

fopen(3S), 1dclose(3X), 1dfen(4).

LDRSEEK (3X)

NAME
ldrseek, ldnrseek — seek to relocation entries of a section
of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>
int ldrseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;
int ldnrseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

DESCRIPTION
Ldrseek seeks to the relocation entries of the section
specified by sectindz of the common object file currently
associated with ldptr.
Ldnrseek seeks to the relocation entries of the section
specified by sectname.
Ldrseek and ldnrseek return SUCCESS or FAILURE.
Ldrseek will fail if sectindz is greater than the number of
sections in the object file; ldnraeek will fail if there is no
section name corresponding with sectname. FEither
function will fail if the specified section has no relocation
entries or if it cannot seek to the specified relocation
entries.
Note that the first section has an index of one.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO

ldclose(3X), 1dopen(3X), ldshread(3X), 1dfen(4).

LDSHREAD (3X)

NAME
ldshread, ldnshread - read an indexed/named section
header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <scnhdr.h>
#include <ldfen.h>
int ldshread (ldptr, sectindx, secthead)
LDFILE *ldptr;
unsigned short sectindx;
SCNHDR *secthead;
int ldnshread (ldptr, sectname, secthead)
LDFILE #*ldptr;
char *sectname;
SCNHDR #*secthead;

DESCRIPTION
Ldshread reads the section header specified by sectindz
of the common object file currently associated with ldptr
into the area of memory beginning at secthead.
Ldnshread reads the section header specified by sectname
into the area of memory beginning at secthead.
Ldshread and ldnshread return SUCCESS or FAILURE.
Ldshread will fail if sectindr is greater than the number
of sections in the object file; ldnshread will fail if there is
no section name corresponding with sectname. Either
function will fail if it cannot read the specified section
header.
Note that the first section header has an index of one.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO

ldclose(3X), 1dopen(3X), 1dfcn(4).

NAME

LDSSEEK (3X)

ldsseek, ldnsseek — seek to an indexed/named section of
a common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldsseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnsseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

DESCRIPTION

FILES

Ldsseek seeks to the section specified by sectindz of the
common object file currently associated with ldptr.

Ldnsseek seeks to the section specified by sectname.

Ldsseek and [dnsseek return SUCCESS or FAILURE.
Ldsseek will fail if sectindz is greater than the number of
sections in the object file; Idnsseek will fail if there is no
section name corresponding with sectname. Either
function will fail if there is no section data for the
specified section or if it cannot seek to the specified
section.

Note that the first section has an index of one.

The program must be loaded with the object file access
routine hbrary libld.a.

/usr/lib/libld.a

SEE ALSO

ldclose(3X), 1dopen(3X), ldshread(3X), 1dfen(4).

—~

NAME

LDTBINDEX (3X)

ldtbindex — compute the index of a symbol table entry
of a common object file

SYNOPSIS

#include <stdio.h>
#tinclude <filehdr.h>
#include <syms.h>
#include <ldfen.h>

long ldtbindex (ldptr)
LDFILE *ldptr;

DESCRIPTION

FILES

Ldtbindez returns the (long) index of the symbol table
entry at the current position of the common object file
associated with ldptr.

The index returned by Idthindez may be used in
subsequent calls to [dtbread(3X). However, since
ldtbindex returns the index of the symbol table entry
that begins at the current position of the object file, if
ldtbindez is called immediately after a particular symbol
table entry has been read, it will return the index of the
next entry.

Ldtbindex will fail if there are no symbols in the object
file, or if the object file is not positioned at the
beginning of a symbol table entry.

Note that the first symbol in the symbol table has an
index of zero.

The program must be loaded with the object file access
routine library libld.a.

/usr/lib/libld.a

SEE ALSO

ldclose(3X), 1dopen(3X), ldtbread(3X), ldtbseek(3X),
ldfen(4).

LDTBREAD (3X)

NAME
ldtbread — read an indexed symbol table entry of a
common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfen.h>

int ldtbread (ldptr, symindex, symbol)
LDFILE *ldptr;
long symindex;
SYMENT #*symbol;
DESCRIPTION
Ldtbread reads the symbol table entry specified by
symindex of the common object file currently associated
with [dptr into the area of memory beginning at symbol.

Ldtbread returns SUCCESS or FAILURE. Ldtbread will
fail if symindex is greater than the number of symbols in
the object file, or if it cannot read the specified symbol
table entry.

Note that the first symbol in the symbol table has an
index of zero.

The program must be loaded with the object file access
routine library libld.a.
FILES
/usr/lib/libld.a
SEE ALSO
1dclose(3X), 1dopen(3X), ldtbseek(3X), ldfen(4).

LDTBSEEX (3X)

NAME
ldtbseek — seek to the symbol table of a common object
file
SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#finclude <ldfen.h>
int ldtbseek (ldptr)
LDFILE *ldptr;
DESCRIPTION

Ldtbseek seeks to the symbol table of the object file
currently associated with ldptr.

Ldtbseek returns SUCCESS or FAILURE. Ldtbseek will
fail if the symbol table has been stripped from the object
file, or if it cannot seek to the symbol table.

The program must be loaded with the object file access
routine library libld.a.
FILES
/usr/lib/libld.a
SEE ALSO
ldclose(3X), 1dopen(3X), Idtbread(3X), ldfen(4).

NAME

LIBDEV (3X)

libdev — manipulate Volume Home Blocks (VHB)

SYNOPSIS

#finclude <sys/gdisk.h>

struct vhbd *vhbd;
short sl, *slp;

char

E
int fd;

8, *device;

int gdstrk(vhbd, sl
int gdftrk(vhbd, sl

int gdnsec(vhbd, sli

int gdnsze(vhbd)

int isdisk(fd)

struct vhbd *readvhb(s, sl)
struct vhbd "'sreadvhbédevice)

struct vhbd *freadvhb
char *adevname(fd)
char *bdevname

fd, sl)
s)

int dismnt(fd)

char *gdname(s, slp
char *fgdname(fd, slp)
int gdnlblk(fd)

DESCRIPTION

In each of the above subroutines the arguments denote:

vhbd

sl
slp

device

fd

A pointer to a disk volume home block, as
returned by readvhb, sreadvhb or freadvhb.

Slice number on the drive.

Pointer to a slice number. This argument is
actually used by the subroutine to return a slice
number.

The name of a special file in /dev/rdsk. This
filename 1s used to obtain a file descriptor to
access a VHB. The name need not be for slice
zero of the disk.

The name of a special file in /dev/rdsk. This
filename is used to obtain a file descriptor to
access a VHB. The name must be for slice zero
of a disk.

Open file descriptor for slice zero of a disk.

The subroutines in /usr/lib/libdev.a form a device and
machine independent interface to the VHB of CTIX

disks.
below.

The function of each subroutine is described

FILES

LIBDEV (3X)

Gdnsec returns the number of sectors in slice sl of the

VHB indicated by vhbd.

Gdstrk returns the starting track of slice s/ of the VHB
pointed to by vhbd.

Gdftrk returns 1 if slice 8l of the VHB pointed to by vhbd
extends to the end of the disk.

Gdnaszc returns the number of sectors per cylinder.

Isdisk returns 1 if the file descriptor fd is opened to a
special disk device.

Readvhb, Sreadvhd, and Freadvhd return a pointer to a
VHB for the device described by their arguments.

Adevname returns the character device name for the disk
drive that the file descriptor fd is opened to.

Bdevname returns the block device name for the disk
drive that the string s names. The filename S may be
either for any slice on either a raw or a block device.

Dismnt exercises the GDDISMNT ioctl call for the disk
drive that the file descriptor fd is opened to.

Gdname returns the file name for the character special
slice zero of a disk that the filename s name a slice of.
The value pointed to by slp is set to the slice number of
the filename s. Fgdname performs as does gdname, but
uses the file descriptor fd instead of the filename s.

Gdnlblk returns the number of logical blocks in the slice
that the file descriptor fd is opened to.

/dev/rdsk /c?d?s?
/dev/dsk /c?d?s?
/usr/lib/libdev.a

SEE ALSO

iv(1) disk(7).

NAME

LOCKF (3C)

lockf — record locking on files

SYNOPSIS

include <unistd.h>

lockf (fildes, function, size)
long size;
int fildes, function;

DESCRIPTION

The lockf call will allow sections of a file to be locked
(advisory write locks). (Mandatory or enforcement mode
record locks are not currently available.) Locking calls
from other processes which attempt to lock the locked
file section will either return an error value or be put to
sleep until the resource becomes unlocked. All the locks
for a process are removed when the process terminates.
[See fentl(2) for more information about record locking.]

Fildes is an open file descriptor. The file descriptor must
have O_WRONLY or O_RDWR permission in order to
establish lock with this function call.

Function is a control value which specifies the action to
be taken. The permissible values for function are
defined in <unistd.h> as follows:

#define F_ULOCK 0

/* Unlock a previously locked section */
#define F_LOCK 1

/* Lock a section for exclusive use */
#define F_TLOCK 2

/* Test and lock a section for exclusive use */
#define F_TEST 3

/* Test section for other processes locks */

All other values of function are reserved for future
extensions and will result in an error return if not
implemented.

F_TEST is used to detect if a lock by another process is
present on the specified section. F_LOCK and F_TLOCK
both lock a section of a file if the section is available.
F_UNLOCK removes locks from a section of the file.

Size 1s the number of contiguous bytes to be locked or
unlocked. The resource to be locked starts at the
current offset in the file and extends forward for a
positive size and backward for a negative size. If size is
zero, the section from the current offset through the
largest file offset is locked (i.e., from the current offset
through the present or any future end-of-file). An area

-1-

LOCKF (3C)

need not be allocated to the file in order to be locked, as
such locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in
whole or in part, contain or be contained by a previously
locked section for the same process. When this occurs,
or if adjacent sections occur, the sections are combined
into a single section. If the request requires that a new
element be added to the table of active locks and this
table is already full, an error is returned, and the new
section is not locked.

F_LOCK and F_TLOCK requests differ only by the action
taken if the resource is not available. F_LOCK will cause
the calling process to sleep until the resource is available.
F_TLOCK will cause the function to return a —1 and set
errno to [EACCESS] error if the section is already locked
by another process.

F_ULOCK requests may, in whole or in part, release one
or more locked sections controlled by the process. When
sections are not fully released, the remaining sections are
still locked by the process. Releasing the center section
of a locked section requires an additional element in the
table of active locks. If this table is full, an [EDEADLK]
error is returned and the requested section is not
released.

A potential for deadlock occurs if a process controlling a
locked resource is put to sleep by accessing another
process’s locked resource. Thus calls to lock or fentl scan
for a deadlock prior to sleeping on a locked resource. An
error return is made if sleeping on the locked resource
would cause a deadlock.

Sleeping on a resource is interrupted with any signal.
The alarm{2) command may be used to provide a
timeout facility in applications which require this

facility.
ERRORS

The lockf utility will fail if one or more of the following

are true:

[EBADF] Fildes is not a valid open descriptor.

[EACCESS) Cmd is F_TLOCK or F_TEST and the
section is already locked by another
process.

[EDEADLK] Cmd is F_LOCK or F_TLOCK and a

deadlock would occur. Also the c¢md is
either of the above or F_ULOCK and

-9.

LOCKF (3C)

the number of entries in the lock table
would exceed the number allocated on
the system. (Note that this differs from
EDEADLOCK.)

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

CAVEATS
Unexpected results may occur in processes that do
buffering in the user address space. The process may
later read/write data which is/was locked. The standard
I/O package is the most common source of unexpected
buffering.

SEE ALSO
close(2), creat(2), fentl(2), intro(2), open(2), read(2),
write(2).

5/86 -3-

LOGNAME (3X)

NAME

logname — return login name of user
SYNOPSIS

char *logname()
DESCRIPTION

Logname returns a pointer to the null-terminated login
name; it extracts the SLOGNAME variable from the
user’s environment.

This routine is kept in /lib/libPW.a.

FILES
/ete /profile
/usr/lib/libPW.a
SEE ALSO
env(1), login(1), profile(4), environ(5).
BUGS
The return values point to static data whose content is
overwritten by each call.
This method of determining a login name is subject to
forgery.

LSEARCH(3C)

NAME
Isearch, lfind - linear search and update

SYNOPSIS
#finclude < stdio.h>
#include <search.h>

char *lsearch ((char #*)key, (char *)base, nelp,
sizeof(*key), compar)

unsigned #*nelp;

int (*compar)();

char +#Ilfind ((char *)key, (char *)base, nelp,
sizeof(*key), compar)

unsigned #*nelp;

int (*compar)();

DESCRIPTION

Lsearch is a linear search routine generalized from
Knuth (6.1) Algorithm S. It returns a pointer into a
table indicating where a datum may be found. If the
datum does not occur, it is added at the end of the table.
Key points to the datum to be sought in the table.
Base points to the first element in the table. Nelp
points to an integer containing the current number of
elements in the table. The integer is incremented if the
datum is added to the table. Compar is the name of
the comparison function which the user must supply
(stremp, for example). It is called with two arguments
that point to the elements being compared. The
function must return zero if the elements are equal and
non-zero otherwise.

Lfind is the same as [search except that if the datum is
not found, it is not added to the table. Instead, a NULL
pointer is returned.

NOTES
The pointers to the key and the element at the base of
the table should be of type pointer-to-element, and cast
to type pointer-to-character.
The comparison function need not compare every byte,
so arbitrary data may be contained in the elements in
addition to the values being compared.
Although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

EXAMPLE
This fragment will read in < TABSIZE strings of length
< ELSIZE and store them in a table, eliminating
duplicates.

LSEARCH (3C)

#include <stdio.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

char line[ELSIZE|, tab|TABSIZE][ELSIZE),
*lsearch();

unsigned nel = 0;

int stremp();

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)

(void) lsearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

SEE ALSO

bsearch(3C), hsearch(3C), tsearch(3C).

DIAGNOSTICS

BUGS

If the searched for datum is found, both lsearch and
lfind return a pointer to it. Otherwise, Ifind returns
NULL and Isearch returns a pointer to the newly added
element.

Undefined results can occur if there is not enough room
in the table to add a new item.

NAME

MALLOC (3C)

malloc, free, realloc, calloc — main memory allocator

SYNOPSIS

char *malloc (size)
unsigned size;

void free (ptr)

char *ptr;

char *realloc (ptr, size)
char *ptr;

unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION

Malloc and free provide a simple general-purpose
memory allocation package. Malloc returns a pointer to
a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously
allocated by malloc; after free is performed this space is
made available for further allocation, but its contents are
left undisturbed.

Undefined results will occur if the space assigned by
malloc is overrun or if some random number is handed
to free.

Malloc allocates the first big enough contiguous reach of
free space found in a circular search from the last block
allocated or freed, coalescing adjacent free blocks as it
searches. It calls sbrk (see brk(2)) to get more memory
from the system when there is no suitable space already
free.

Realloc changes the size of the block pointed to by ptr
to size bytes and returns a pointer to the (possibly
moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If no free block of size
bytes is available in the storage arena, then realloc will
ask malloc to enlarge the arena by size bytes and will
then move the data to the new space.

Realloc also works if ptr points to a block freed since the
last call of malloc, realloc, or calloc; thus sequences of
free, malloc and realloc can exploit the search strategy
of malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of
size elsize. The space is initialized to zeros.

MALLOC(3C)

Each of the allocation routines returns a pointer to space
suitably aligned (after possible pointer coercion) for
storage of any type of object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS
Malloe, realloc and calloc return a NULL pointer if there
is no available memory or if the arena has been
detectably corrupted by storing outside the bounds of a
block. When this happens the block pointed to by ptr
may be destroyed.

NOTE
Search time increases when many objects have been
allocated; that is, if a program allocates but never frees,
then each successive allocation takes longer. For an
alternate, more flexible implementation, see malloc(3X).

MALLOC (3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - fast
main memory allocator

SYNOPSIS
#include <malloc.h>

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (emd, value)
int emd, value;

struct mallinfo mallinfo (max)
int max;

DESCRIPTION
Malloe and free provide a simple general-purpose
memory allocation package, which runs considerably
faster than the malloc(3C) package. It is found in the
library “malloc”, and is loaded if the option ‘‘—lmalloc”’
is used with cc(1) or 1d(1).

Malloc returns a pointer to a block of at least size bytes
suitably aligned for any use.

The argument to free is a pointer to a block previously
allocated by malloc; after free is performed this space is
made available for further allocation, and its contents
have been destroyed (but see mallopt below for a way to
change this behavior).

Undefined results will occur if the space assigned by
malloe is overrun or if some random number is handed
to free.

Realloe changes the size of the block pointed to by ptr
to size bytes and returns a pointer to the (possibly
moved) block. The contents will be unchanged up to the
lesser of the new and old sizes.

Calloc allocates space for an array of nelem elements of
size elsize. The space is initialized to zeros.

Mallopt provides for control over the allocation
algorithm. The available values for ¢md are:

MALLOC (3X)

M_MXFAST Set mazfast to wvalue. The algorithm
allocates all blocks below the size of
mazfast in large groups and then doles
them out very quickly. The default value
for maxfast is 0.

M_NLBLKS Set numlblks to wvalue. The above
mentioned ‘‘large groups” each contain
numlblks blocks. Numlblks must be
greater than 0. The default value for
numlblks 1s 100.

M_GRAIN Set grain to value. The sizes of all blocks
smaller than mazfast are considered to be
rounded up to the nearest multiple of
gratn. Grain must be greater than 0.
The default value of grasn is the smallest
number of bytes which will allow
alignment of any data type. Value will be
rounded up to a multiple of the default
when grain is set.

M_KEEP Preserve data in a freed block until the
next malloc, realloe, or calloc. This
option is provided only for compatibility
with the old version of malloc and is not
recommended.

These values are defined in the <malloc.h > header file.

Mallopt may be called repeatedly, but may not be called
after the first small block is allocated.

Mallinfo provides instrumentation describing space
usage. It returns the structure:

struct mallinfo {

int arena, /* total space in arena *

int ordblks; /* number of ordinary blocks */

int smblks; /* number of small blocks */

int hblkhd; /* space in holding block headers */
int hblks; /* number of holding blocks */

int usmblks; /* space in small blocks in use *
%

int fsmblks; space in free small blocks */

int uordblks; /* space in ordinary blocks in use *

int fordblks; /* space in free ordinary blocks */

int keepcost; /* space penalty if keep option */
/* is used */

}

This structure is defined in the <<malloc.h > header file.

Each of the allocation routines returns a pointer to space
suitably aligned (after possible pointer coercion) for

-92.

MALLOC (3X)

storage of any type of object.

SEE ALSO
brk(2), malloc(3C).

DIAGNOSTICS
Malloe, realloc and calloc return a NULL pointer if there
is not enough available memory. When realloc returns
NULL, the block pointed to by ptr is left intact. If
mallopt is called after any allocation or if emd or value
are invalid, non-zero is returned. Otherwise, it returns

Zero.

WARNINGS
This package usually uses more data space than
malloc(3C).

The code size is also bigger than malloc(3C).

Note that unlike mallo¢(3C), this package does not
preserve the contents of a block when it is freed, unless
the M_KEEP option of mallopt is used.

Undocumented features of malloc(3C) have not been
duplicated.

—

NAME

MATHERR (3M)

matherr — error-handling function

SYNOPSIS

#include <math.h>

int matherr (x)
struct exception #*x;

DESCRIPTION

Matherr is invoked by functions in the Math Library
when errors are detected. Users may define their own
procedures for handling errors, by including a function
named matherr in their programs. Matherr must be of
the form described above. When an error occurs, a
pointer to the exception structure z will be passed to the
user-supplied matherr function. This structure, which is
defined in the <math.h> header file, is as follows:

struct exception {
int type;
char *name;
) double argl, arg2, retval;
The element type is an integer describing the type of
error that has occurred, from the following list of
constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the
name of the function that incurred the error. The
variables argl and arg? are the arguments with which
the function was invoked. Retval is set to the default
value that will be returned by the function unless the
user’s matherr sets it to a different value.

If the user’s matherr function returns non-zero, no error
message will be printed, and errno will not be set.

If matherr is not supplied by the user, the default error-
handling procedures, described with the math functions
involved, will be invoked upon error. These procedures
are also summarized in the table below. In every case,
errno is set to EDOM or ERANGE and the program
continues.

MATHERR (3M)

EXAMPLE
#include <math.h>

int
matherr(x)
register struct exception #x;
{
switch (x- >type) {
case DOMAIN:
/* change sqrt to return sqrt(—argl), not 0 */
if (Istremp(x- >name, "sqrt”)) {
x- >