
CTIX™ OPERATING SYSTEM MANUAL

Version B
Vo lume 2

Specifications Subject to Change.

Convergent Technologies and N G E N are registered trademarks of
Convergent Technologies, Inc.

Convergent, CT-DBMS, CT-MAIL, CT-Net , CTIX, CTOS,
DISTRDC, Document Designer, The Operator,

AWS, CWS, IWS, MegaFrame, MiniFrame,
MightyFrame, and X-Bus , are trademarks

of Convergent Technologies, Inc.

CTIX is derived from UNIX System V by Convergent
Technologies under license from AT&T. UNIX is a trademark of
AT&T Bell Laboratories.

Material excerpted from the UNIX System V User Reference
Manual, Administrator Reference Manual, and Programmer
Reference Manual is Copyright 1984 by AT&T Technologies.
Reprinted by permission.

This software and documentation is based in part on the Fourth
Berkeley Software Distribution under license from the Regents of
the University of California.

This manual was prepared on a Convergent Technologies
MegaFrame Computer System and was printed on an Imagen
8 /300 Laser Printer.

First Edition (November 1985) B - 0 9 - 0 0 6 3 5 - 0 1

Copyright © 1985 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. Title to and ownership of the documentation
contained herein shall at all times remain in Convergent
Technologies, Inc., and/or its suppliers. The full copyright
notice may not be modified except with the express written
consent of Convergent Technologies, Inc.

HOW TO USE THIS MANUAL

The CTIX Operating System Manual, Version B, describes the
commands, system calls, libraries, data files, and device
interfaces that make up the CTIX Operating System on
MiniFrame Computer Systems and MightyFrame Computer
Systems. Only internal-use and unbundled software products are
excluded. This manual should always be your starting point
when you need to find the documentation for a CTIX feature
with which you are unfamiliar.

The manual consists of a large number of short entries,
sometimes called "the man pages," after the command which
accesses the entries when they are kept online. Each entry
briefly documents some feature of CTIX. Some features require
longer documentation than an entry in this manual; such features
have an entry that outlines the feature and cross-references the
manual that documents the feature fully. Entries that do not
refer to other manuals are self-contained and are the final word
on the features they describe.

O r g a n i z a t i o n o f t h e manua l . The entries are organized into
seven sections in two volumes:

Volume 1:
1. Commands and Application Programs.

Volume 2:
2. System Calls.
3. Subroutines and Libraries.
4. File Formats.
5. Miscellaneous Facilities.
6. Games.
7. Special files.

Within each section, entries are alphabetical by title, except for
an intro entry at the beginning of each section.

E n t r y T i t l e C o n v e n t i o n s . An entry title looks like this
example:

erf(3M)

I 11
Entry Type

Section Number

Name

5/86 - 10 -

Name is the name of the entry. Section Number indicates the
section that contains the entry. In this case, the entry is in
Section 3, which is in Volume 2. Entry Type is only on entries
that belong to special categories; refer to the section's intro entry
for an explanation. In this case, a reference to intro(3) would tell
you that er/(3M) describes functions from the Math Library,
which the C compiler does not load by default.

F ind ing t h e e n t r y y o u need. To find out which entry you
need, refer to the following guides:

• The Permuted Index. This indexes each significant word
in each entry's description. It is useful when you only
have a general notion what you're looking for. It is also
useful when you know the name of the command,
function, etc., that you are interested in, but there is no
entry by that name. To simplify its use, a complete
Permuted Index for both volumes is in each volume.

• The Table of Contents. This is a simple list of entries,
by section, together with the entry descriptions. Volume
1 has a Table of Contents for Section 1. Volume 2 has a
Table of Contents for Sections 2 through 7.

• The Table of Related Entries. For Volume 1 only. A
table of entries organized so that related entries are
grouped together.

Sec t ion organizat ion . Each section begins with an intro entry,
which provides important general information for that section.

Section 1, Commands and Application Programs, describes
programs intended to be invoked directly by the user or by
command language procedures, as opposed to subroutines, which
are intended to be called by the user's programs. Commands
generally reside in the directory / b i n (for binary programs).
Some programs also reside in / u s r / b i n , to save space in / b i n .
These directories are searched automatically by the command
interpreter called the shell. Commands that were not
transported from UNIX System V reside in / u s r / l o c a l / b i n ; this
directory is recommended for locally implemented programs.
Some administrative commands reside in / e t c and various other
places. The / e t c directory is searched automatically if you are
logged in as root; otherwise type out the full path name given
under SYNOPSIS or change the P A T H environment variable to
include the command's directory.

Section 2, System Calls, describes the entries into the CTEX
kernel, including the C language interfaces.

5/86 - 10 -

Section 3, Subroutines and Libraries, describes the available
library functions or subroutines. Their binary versions reside in
various system libraries in the directories / l i b and / u s r / l i b . See
intro(3) for descriptions of these libraries and the files in which
they are stored.

Section 4, File Formats, documents the structure of particular
kinds of files; for example, the format of the output of the link
editor is given in a.out{4). Excluded are files used by only one
command (for example, the assembler's intermediate files). In
general, the C language s t r u c t declarations corresponding to
these formats can be found in the directories / u s r / i n c l u d e and
/ u s r / i n c l u d e / s y s .

Section 5, Miscellaneous Facilities, contains a variety of things.
Included are descriptions of character sets, macro packages, etc.

Section 6, Games, describes the games and educational programs
that reside in the directory / u s r / g a m e s .

Section 7, Special Files, discusses the characteristics of files that
actually refer to input/output devices.

E n t r y organizat ion . All entries are based on a common
format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly
states its purpose.

The SYNOPSIS part summarizes the use of the program
being described. A few conventions are used, particularly in
Section 1 (Commands):

Boldface strings are literals and are to be typed just as
they appear.

Italic strings usually represent substitutable argument
prototypes and program names found elsewhere in the
manual (they are underlined in the typed version of the
entries).

Square brackets [] around an argument prototype
indicate that the argument is optional. When an
argument prototype is given as "name" or "file", it
always refers to a file name.

Ellipses . . . are used to show that the previous
argument prototype may be repeated.

A final convention is used by the commands themselves.
An argument beginning with a minus plus + , or
equal sign = is often taken to be some sort of flag

- 3 -

argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files
whose names begin with —, + , or = .

The D E S C R I P T I O N part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where
appropriate.

The FILES part gives the file names that are built into the
program.

The SEE ALSO part gives pointers to related information.

The D I A G N O S T I C S part discusses the diagnostic
indications that may be produced. Messages that are
intended to be self-explanatory are not listed.

The W A R N I N G S part points out potential pitfalls.

The B U G S part gives known bugs and sometimes
deficiencies. Occasionally, the suggested fix is also
described.

A table of contents and a permuted index derived from that
table precede Section 1. On each index line, the title of the
entry to which that line refers is followed by the appropriate
section number in parentheses. This is important because there
is considerable duplication of names among the sections, arising
principally from commands that exist only to exercise a
particular system call.

If the entries are online, they are available via the catman(1)
command.

- 4 -

PERMUTED INDEX

This index includes entries for all pages of both Volumes 1 and 2.
The entries themselves are based on the one-line descriptions or
titles found in the N A M E portion of each manual page; the
significant words (keywords) of these descriptions are listed
alphabetically down the center of the index.

The index is actually a keyword-in-context (KWIC) index that
has three columns. To use the index, read the center column to
look up specific commands by name or by subject topics. Note
that the entry may begin in the left column or wrap around and
continue into the left column. A period (.) marks the end of the
entry, and a slash (/) indicates where the entry has been
continued or truncated. The right column gives the manual page
where the command or subject is described.

/ functions of HP 2640 and 2621-series terminals. . . . hp(l)
/special functions of HP 2640 and 2621-series/ . . . hp(l)

special functions of / 300, 300s: handle 300(1)
/functions of DASI 300 and 300s terminals. . . 300(1)

functions of DASI/ 300, 300s: handle special 300(1)
/of DASI 300 and 300s terminals 300(1)

/ltol3: convert between 3-byte integers and long/ . . 13tol(3C)
comparison. diff3: 3-way differential file . . . diff3(l)

TEKTRONIX 4014/ 4014: paginator for the . . . 4014(1)
/ for the TEKTRONIX 4014 terminal 4014(1)
functions of the DASI/ 450: handle special 450(1)

functions of the DASI 450 terminal, /special . . . 450(1)
/parameters for Xylogics 772 half-inch t ape / xmset(lM)

between long integer/ a641, 164a: convert a641(3C)
fault, abort: generate an IOT . . abort(3C)

absolute value, abs: return integer abs(3C)
adb: absolute debugger adb(l)

abs: return integer absolute value abs(3C)
ceiling, remainder, absolute value/ /floor, . . . floor(3M)

tiop: terminal accelerator interface tiop(7)
socket, accept: accept a connection on a . . accept(2N)

connection on a socket, accept: accept a accept(2N)
allow/prevent L P / accept, reject: accept(lM)

times o f / touch: update access and modification . . touch(l)
times, utime: set file access and modification . . utime(2)

accessibility of a / access: determine access(2)
numerical/ graphics: access graphical and graphics(lG)

drvalloc, drvbind: access loadable drivers. . . . lddrv(2)
in a / sputl, sgetl: access long integer data . . sputl(3X)

sadp: disk access profiler sadp(lM)
common object file access routines, ldfcn: . . . ldfcn(4)

file systems for optimal access time, /copy dcopy(lM)

5 / 8 6 - 10 -

locking: exclusive access to regions of a / . . . locking(2)
/enduten t , utmpname: access utmp file entry. . . . getut(3C)

access: determine accessibility of a file access(2)
or disable process accounting, /enable acct(2)

acctcon2: connect-time accounting, acctconl, . . . acctcon(lM)
acctprc2: process accounting, acctprcl, . . . acctprc(lM)

shell procedures for accounting, / turnacct : . . . acctsh(lM)
acctwtmp: overview of accounting and / /accton, . acct(lM)

/and miscellaneous accounting commands. . . . acct(lM)
diskusg: generate disk accounting data by user/ . . diskusg(lM)

acct: per-process accounting file format acct(4)
/search and print process accounting file(s) acctcom(l)

/merge or add total accounting files acctmerg(lM)
/summary from per-process accounting records acctcms(lM)

/manipulate connect accounting records fwtmp(lM)
runacct: run daily accounting runacct(lM)

process accounting, acct: enable or disable . . . acct(2)
accounting file format, acct: per-process acct(4)

from per-process/ acctcms: command summary acctcms(lM)
print process/ acctcom: search and acctcom(l)
connect-time/ acctconl, acctcon2: acctcon(lM)

accounting, acctconl, acctcon2: connect-time . . . acctcon(lM)
accton, acctwtmp:/ acctdisk, acctdusg, acct(lM)

acctwtmp:/ acctdisk, acctdusg, accton acct(lM)
total accounting files, acctmerg: merge or add . . acctmerg(lM)

acctdisk, acctdusg, accton, acctwtmp:/ acct(lM)
process accounting, acctprcl , acctprc2: acctprc(lM)

accounting, acctprcl, acctprc2: process acctprc(lM)
/acctdusg, accton, acctwtmp: overview o f / . . acct(lM)
sin, cos, tan, asin, acos, atan, atan2:/ trig(3M)

killall: kill all active processes killall(lM)
sag: system activity graph sag(lG)

sa l , sa2, sadc: system activity report package. . . sar(lM)
sar: system activity reporter sar(l)

SCCS file editing activity, /pr in t current . . sact(l)
process data and system activity, / report timex(l)

protocols. Dialers: ACU/modem calling Dialers(5)
hopefully interesting, adage, /pr in t a random, . . fortune(6)

adb: absolute debugger. . . adb(l)
acctmerg: merge or add total accounting/ . . . acctmerg(lM)

putenv: change or add value to / putenv(3C)
/set DARPA Internet address from node name. . . setaddr(lNM)

/inet_netof: Internet address manipulation/ . . . inet(3N)
setenet: write Ethernet address on disk setenet(lNM)
administer SCCS files, admin: create and admin(l)

admin: create and administer SCCS files. . . . admin(l)
interface, swap: swap administrative swap(lM)

Cave, advent: explore Colossal . . advent(6)
alarm: set a process alarm clock alarm(2)

alarm clock, alarm: set a process alarm(2)
da ta segment space allocation, /change brk(2)

calloc: main memory allocator, /realloc, malloc(3C)
fast main memory allocator, /mallinfo: malloc(3X)

accept, reject: allow/prevent L P / accept(lM)
running process/ renice: alter priority of renice(l)

sort: sort and /or merge files sort(l)
and link editor output , a.out: common assembler . . a.out(4)

5/86 - 10 -

/ t o commands and application programs. . . . intro(l)
maintainer for portable/ ar: archive and library . . . ar(l)

format, ar: common archive file . . ar(4)
number: convert Arabic numerals to / number(6)
arithmetic/ be: arbitrary-precision bc(l)

maintainer for / ar: archive and library ar(l)
cpio: format of cpio archive cpio(4)

ar: common archive file format ar(4)
header of a member of an archive file, /archive . . . ldahread(3X)

/convert object and archive files to common/ . . convert(l)
ldahread: read the archive header of a / ldahread(3X)

tar: tape file archiver tar(l)
maintainer for portable archives, /and library . . . ar(l)

cpio: copy file archives in and out cpio(l)
varargs: handle variable argument list varargs(5)

/ou tpu t of a varargs argument list vprintf(3S)
xargs: construct argument list(s) and/ . . . xargs(l)

/get option letter from argument vector getopt(3C)
expr: evaluate arguments as an / expr(l)

echo: echo arguments echo(l)
be: arbitrary-precision arithmetic language bc(l)
drill in number facts, arithmetic: provide arithmetic(6)

expr: evaluate arguments as an expression expr(l)
as: assembler as(l)

/and detach serial lines as network interfaces. . . . slattach(lNM)
/locate a terminal to use as the virtual system/ . . . conlocate(lM)

asa: interpret ASA carriage control/ . . . asa(l)
carriage control/ asa: interpret ASA asa(l)

ascii: map of ASCII character set ascii(5)
hd: hexadecimal and ascii file dump M (l)

character set. ascii: map of ASCII ascii(5)
long integer and base-64 ASCII string, /between . . a641(3C)

atof: convert ASCII string to / atof(3C)
strings: extract the ASCII text strings in a / . . strings(l)

date/ /localtime, gmtime, asctime, tzset: convert . . . ctime(3C)
sin, cos, tan, asin, acos, atan, atan2:/ . . trig(3M)

help: ask for help help(l)
editor/ a.out: common assembler and link a.out(4)

as: assembler as(l)
assertion, assert: verify program . . . assert(3X)

assert: verify program assertion assert(3X)
setbuf, setvbuf: assign buffering to a / . . . setbuf(3S)

out the list of blocks associated with/ /pr int . . bcheck(lM)
commands at a later/ at, batch: execute at(l)

cos, tan, asin, acos, atan, atan2:/ sin trig(3M)
/ t an , asin, acos, atan, atan2: trigonometric/ . . . trig(3M)

string to/ atof: convert ASCII atof(3C)
strtod, atof: convert string to / . . . strtod(3C)

integer, strtol, atol, atoi: convert string to . . . strtol(3C)
string to / strtol, atol, atoi: convert strtol(3C)

slattach, sldetach: attach and detach serial/ . . slattach(lNM)
process, wait: await completion of wait(l)

and processing/ awk: pattern scanning . . . awk(l)
ungetc: push character back into input stream. . . ungetc(3S)

backgammon, back: the game of back(6)
back: the game of backgammon back(6)

fine: fast incremental backup finc(lM)

5/86 - 10 -

recover files from a

terminal capability data
terminal capability data

/between long integer and
/(visual) display editor

proto file; set links
deliver portions o f /
at a later time, at ,

arithmetic language,
list of blocks/

drvload: system/ brc,
copy.

cb: C program
jO, j l , jn, yO, y l , yn:

/install object files in
fread, fwrite:

table, bsearch:
/ tdelete, twalk: manage

bind:
socket,

jack.
bj: the game of

bcopy: interactive
sum: print checksum and

sync: update the super
/p r in t out the list of

number of free disk
manipulate Volume Home

powerfail, drvload:/
segment space/

sorted table,
stdio: standard

setbuf, setvbuf: assign
mknod:

vme: VME
between host and network

swab: swap
cc:

cflow: generate
cpp: the

includes: determine
cb:

lint: a
cxref: generate

ctrace:
and share strings in

cprofile: setting up a

dc: desk
cal: print

service,
system, cu:

returned by s ta t system
Dialers: ACU/modem

banner: make posters. . banner(l)
base, termcap:
base, terminfo:
base-64 ASCII string. . a641(3C)
based on ex • vi(l)
based on. /lists from . qlist(l)
basename, dirname: . . . basename(l)
batch: execute commands . a t (l)
be: arbitrary-precision . bc(l)
bcheck: print out the . bcheck(lM)
bcheckrc, rc, powerfail, . . brc(lM)
bcopy: interactive block . bcopy(lM)
bdiff: big diff

. cb(l)
Bessel functions. bessel(3M)
bfs: big file scanner. . . . bfs(l)

binary input /ou tpu t . . fread(3S)
binary search a sorted . bsearch(3C)
binary search trees. . . . tsearch(3C)
bind a name to a socket. . bind(2N)
bind: bind a name to a . . bind(2N)
bj: the game of black • bj(6)
black jack • bj(6)

block count of a file. . .
block
blocks associated with/ . bcheck(lM)
blocks, df: report df(lM)
Blocks (VHB). libdev: . . libdev(3X)
brc, bcheckrc, rc, brc(lM)
brk, sbrk: change data . . brk(2)
bsearch: binary search a . bsearch(3C)
buffered i npu t / ou tpu t / . stdio(3S)
buffering to a stream. . setbuf(3S)
build special file. . . .
bus interface
byte order, /values . . . byteorder(3N)

C compiler . cc(l)
C flowgraph
C language preprocessor. • cpp(l)
C language preprocessor/ . includes(l)
C program beautifier. . cb(l)
C program checker. . . . l int(l)
C program/
C program debugger. . ctrace(l)
C programs, /extract . xstr(l)
C shell environment a t / . cprofile(4)
cal: print calendar. . . . cal(l)
calculator . dc(l)
calendar . cal(l)
calendar: reminder . . .
call another computer . cu(lC)

calling protocols. . . .

5/86 - 10 -

malloc, free, realloc, calloc: main memory/ . . . malloc(3C)
malloc, free, realloc, calloc, mallopt,/ malloc(3X)

/introduction to system calls and error numbers. . . intro(2)
link and unlink system calls, /unlink: exercise . . . link(lM)
requests to an L P / lp, cancel: send/cancel lp(l)

termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base terminfo(4)
asa: interpret ASA carriage control/ asa(l)

(variant of ex for casual users), /editor . . . edit(l)
print files, cat: concatenate and cat(l)

catman: create the cat files for the / catman(l)
files for the manual, catman: create the cat . . . catman(l)

advent: explore Colossal Cave advent(6)
beautifier. cb: C program cb(l)

cc: C compiler cc(l)
directory, cd: change working cd(l)

commentary of an SCCS/ cdc: change the delta . . . cdc(l)
ceiling,/ floor, ceil, fmod, fabs: floor, . . . floor(3M)

/ceil, fmod, fabs: floor, ceiling, remainder,/ floor(3M)
flowgraph. cflow: generate C cflow(l)

delta: make a delta (change) to an SCCS/ . . . delta(l)
of running process by changing nice, /priority . . renice(l)
create an interprocess channel, pipe: pipe(2)

terminal's local RS-232 channels, /controlling . . . tp(7)
input / ungetc: push character back into ungetc(3S)
for / eqnchar: special character definitions eqnchar(5)
the user, cuserid: get character login name of . . cuserid(3S)

/fgetc, getw: get character or word from a / . getc(3S)
/ fputc , putw: put character or word on a/ . . putc(3S)

ascii: map of ASCII character set ascii(5)
ASA carriage control characters, / interpret . . . asa(l)

toascii: translate characters. /_tolower, . . . conv(3C)
isascii: classify characters, /iscntrl, ctype(3C)

tr: translate characters t r(l)
dodisk, lastlogin,/ chargefee, ckpacct, acctsh(lM)

directory, chdir: change working . . . chdir(2)
/file system consistency check and interactive/ . . . fsck(lM)

directories/ uucheck: check the UUCP uucheck(lM)
constant-width text/ cw, checkcw: prepare cw(l)

mathematical/ eqn, neqn, checkeq: format e<jn(l)
lint: a C program checker lint(l)

password/group file checkers, pwck, grpck: . . . pwck(lM)
file systems with label checking, /labelit: copy . . volcopy(lM)
systems processed by/ checklist: list of file checklist(4)

documents/ mm, osdd, checkmm: print/check . . . mm(l)
of a file, sum: print checksum and block count . sum(l)

group, chown, chgrp: change owner or . . chown(l)
times: get process and child process times times(2)

wait: wait for child process to stop or / . . wait(2)
chmod: change mode. . . . chmod(l)

file, chmod: change mode of . . chmod(2)
group of a file, chown: change owner and . chown(2)

owner or group, chown, chgrp: change . . . chown(l)
directory, chroot: change root chroot(2)

directory for a / chroot: change root chroot(lM)
lastlogin,/ chargefee, ckpacct, dodisk, acctsh(lM)

/iscntrl, isascii: classify characters ctype(3C)

5/86 - 10 -

uucp spool directory clean-up. uucleanup: . . . uucleanup(lM)
screen, clear: clear terminal clear(l)

clri: clear i-node clri(lM)
clear: clear terminal screen. . . . clear(l)

s ta tus / Terror, feof, clearerr, fileno: stream . . . ferror(3S)
interpreter) with C-like syntax, /(command . csh(l)

set a process alarm clock, alarm: alarm(2)
cron: clock demon cron(lM)
used, clock: report CPU time . . clock(3C)

ldclose, ldaclose: close a common object / . . ldclose(3X)
close: close a file descriptor. . . . close(2)

descriptor, close: close a file close(2)
fclose, fflush: close or flush a stream. . . . fclose(3S)

clri: clear i-node clri(lM)
cmp: compare two files. . . cmp(l)

line-feeds, col: filter reverse col(l)
advent: explore Colossal Cave advent(6)

deltas, comb: combine SCCS . . . comb(l)
comb: combine SCCS deltas. . . . comb(l)

lines common to two/ comm: select or reject . . . comm(l)
nice: run a command at low priority. . nice(l)

root directory for a command, chroot: change . chroot(lM)
env: set environment for command execution env(l)

rcmd: remote shell command execution rcmd(lN)
uux: CTIX to CTIX remote command execution uux(lC)

hangups/ nohup: run a command immune to . . . nohup(l)
with/ csh: a shell (command interpreter) . . . csh(l)

getopt: parse command options getopt(l)
executable file for command, path: locate . . pa th(l)

/ t he standard/restricted command programming/ . . sh(l)
a stream to a remote command, /for returning . rcmd(3N)

da ta a n d / timex: time a command; report process . . t imex(l)
uuxqt: execute remote command requests uuxqt(lM)

stream to a remote command, rexec: return . . rexec(3N)
per-process/ acctcms: command summary from . . acctcms(lM)

system: issue a shell command system(3S)
condition evaluation command, test: test(l)

time: time a command time(l)
list(s) and execute command, /argument . . . xargs(l)

miscellaneous accounting commands, /and acct(lM)
intro: introduction to commands and application/ intro(l)

at , batch: execute commands at a later/ . . . a t (l)
graphical and numerical commands, /access graphics(lG)

install: install commands install(lM)
mkhosts: make node name commands mkhosts(lNM)

useful with graphical commands, /network . . . s ta t (lG)
cdc: change the delta commentary of an SCCS/ . cdc(l)

format, ar: common archive file ar(4)
link editor/ a.out: common assembler and . . a.out(4)
and archive files to common formats, /object . convert(l)

access routines, ldfcn: common object file ldfcn(4)
ldopen, ldaopen: open a common object file for / . . ldopen(3X)

/line number entries of a common object file/ ldlread(3X)
/ldaclose: close a common object file ldclose(3X)

/ the file header of a common object file ldfhread(3X)
/of a section of a common object file ldlseek(3X)
/file header of a common object file ldohseek(3X)

5/86 - 10 -

/of a section of a common object file ldrseek(3X)
/section header of a common object file ldshread(3X)

/section of a common object file ldsseek(3X)
symbol table entry of a common object file. / a . . ldtbindex(3X)

/symbol table entry of a common object file ldtbread(3X)
/ t o the symbol table of a common object file ldtbseek(3X)
/line number entries in a common object file linenum(4)

nm: print name list of common object file nm(l)
/ information for a common object file reloc(4)

/section header for a common object file scnhdr(4)
/ information from a common object file strip(l)

/retrieve symbol name for common object file/ ldgetname(3X)
symbol table/ syms: common object file syms(4)

filehdr: file header for common object files filehdr(4)
Id: link editor for common object files 'd(l)

/p r in t section sizes of common object files size(l)
/select or reject lines common to two sorted/ . . comm(l)
/ repor t inter-process communication facilities/ . . ipcs(l)

/ s tandard interprocess communication package. . . stdipc(3C)
create an endpoint for communication, socket: . . socket(2N)

/file for uucp communications lines. . . . Devices(5)
diff: differential file comparator diff(l)

cmp: compare two files cmp(l)
an SCCS file, sccsdiff: compare two versions of . . sccsdiff(l)

3-way differential file comparison. diff3: diff3(l)
dircmp: directory comparison dircmp(l)

regular/ regcmp, regex: compile and execute regcmp(3X)
/regular expression compile and match/ regexp(5)
regular expression compile, regcmp: regcmp(l)

term: format of compiled term file term(4)
cc: C compiler c c (l)

tic: terminfo compiler tic(lM)
yacc: yet another compiler-compiler yacc(l)

/erfc: error function and complementary error/ . . . erf(3M)
wait: await completion of process. . . . wait(l)

pack, peat, unpack: compress and expand/ . . . pack(l)
symbol table/ ldtbindex: compute the index of a . . . ldtbindex(3X)

cu: call another computer system cu(lC)
files, cat: concatenate and print . . . cat(l)

command, test: condition evaluation test(l)
system, config: configure a CTIX . . config(lM)

uucp/ Devices: configuration file for Devices(5)
config: configure a CTIX system. . config(lM)

interface/ ifconfig: configure network ifconfig(lNM)
spooling/ lpadmin: configure the LP Ipadmin(lM)

terminal to use as the/ conlocate: locate a conlocate(lM)
/wtmpfix: manipulate connect accounting/ fwtmp(lM)

connection on a socket, connect: initiate a connect(2N)
getpeername: get name of connected peer getpeername(2N)

out-going terminal line connection, / a n dial(3C)
accept: accept a connection on a socket. . . accept(2N)

connect: initiate a connection on a socket. . . connect(2N)
par t of a full-duplex connection, / s h u t d o w n . . shutdown(2N)

listen: listen for connections on a socket. . . listen(2N)
acctconl, acctcon2: connect-time accounting. . . acctcon(lM)

fsck, dfsck: file system consistency check and/ . . . fsck(lM)
as the virtual system console, / t o use conlocate(lM)

5/86 - 10 -

terminal, console: console console(7)
console: console terminal console(7)

math: math functions and constants math(5)
cw, checkcw: prepare constant-width text for / . . cw(l)

mkfs: construct a file system. • . . mkfs(lM)
l i s t (s)and/ xargs: construct argument xargs(l)

/ tb l , and eqn constructs deroff(l)
wi th / Uutry: try to contact a remote system . . Uutry(lM)

Is: list contents of directory. . . . ls(l)
toe: graphical table of contents routines toc(lG)

csplit: context split csplit(l)
/ in terpret ASA carriage control characters asa(l)

ioctl: control device ioctl(2)
fcntl: file control fcntl(2)

init, telinit: process control initialization init(lM)
msgctl: message control operations msgctl(2)

semctl: semaphore control operations semctl(2)
shmctl: shared memory control operations shmctl(2)

fcntl: file control options fcntl(5)
s ta tus inquiry and job control, uustat: uucp . . . uusta t (lC)

vc: version control v c (l)
772 haJf-inch tape controller. /Xylogics xmset(lM)

interface, t ty: controlling terminal tty(7)
local RS-232/ tp: controlling terminal's . . . tp(7)

terminals, term: conventional names for . . . term(5)
units: conversion program units(l)

dd: convert and copy a file. . . dd(l)
to English, number: convert Arabic numerals . . number(6)
floating-point/ atof: convert ASCII string to . . atof(3C)
integers/ 13tol, ltol3: convert between 3-byte . . 13tol(3C)

integer and / a641, 164a: convert between long . . . a641(3C)
and archive files to / convert: convert object . . . convert(l)

/gmtime, asctime, tzset: convert date and time to / . ctime(3C)
ecvt, fevt, gcvt: convert floating-point/ . . . ecvt(3C)

scanf, fscanf, sscanf: convert formatted input. . . scanf(3S)
archive files/ convert: convert object and convert(l)

strtod, atof: convert string to / strtod(3C)
strtol, atol, atoi: convert string t o / strtol(3C)

/htons, ntohl, ntohs: convert values between/ . . byteorder(3N)
dd: convert and copy a file dd(l)

bcopy: interactive block copy bcopy(lM)
and out. cpio: copy file archives in cpio(l)

optimal access/ dcopy: copy file systems for dcopy(lM)
label/ volcopy, labelit: copy file systems with . . . volcopy(lM)

files, cp, In, mv: copy, link or move cp(l)
rep: remote file copy rcp(lN)

system to CTIX system copy, uucp: CTIX uucp(lC)
CTIX-to-CTIX system file copy, /uupick: public . . . uuto(lC)

for the U U C P / uucico: copy-in/copy-out program . uucico(lM)
image file, core: format of core core(4)

core: format of core image file core(4)
atan, atan2:/ sin, cos, tan, asin, acos trig(3M)

functions, sinh, cosh, tanh: hyperbolic . . . sinh(3M)
print checksum and block count of a file, sum: sum(l)

wc: word count wc(l)
or move files, cp, In, mv: copy, link . . . cp(l)

cpio: format of cpio archive cpio(4)

5/86 - 10 -

in and out. cpio: copy file archives . . . cpio(l)
archive, cpio: format of cpio cpio(4)

preprocessor, cpp: the C language cpp(l)
shell environment a t / cprofile: setting up a C . . . cprofile(4)

files in binary/ cpset: install object cpset(lM)
clock: report CPU time used clock(3C)

craps: the game of craps craps(6)
craps, craps: the game of craps(6)

images, crash: examine system . . . crash(lM)
or rewrite an existing/ creat: create a new file . . . creat(2)

tmpnam, tempnam: create a name for a / tmpnam(3S)
rewrite an / creat: create a new file or creat(2)

fork: create a new process. . . . fork(2)
ctags: create a tags file ctags(l)

tmpfile: create a temporary file. . . tmpfile(3S)
communication, socket: create an endpoint for . . . socket(2N)

channel, pipe: create an interprocess . . . pipe(2)
SCCS files, admin: create and administer . . . admin(l)

the manual, catman: create the cat files for . . . catman(l)
umask: set and get file creation mask umask(2)

cron: clock demon. cron(lM)
file, crontab - user crontab . . . crontab(l)

crontab - user crontab file. crontab(l)
generate C program cross-reference, cxref: . . . cxref(l)

optimization/ curses: C R T screen handling and . curses(3X)
generate hashing/ crypt, setkey, encrypt: . . . crypt(3C)
interpreter) with/ csh: a shell (command . . . csh(l)

csplit: context split csplit(l)
remote terminal, ct: spawn getty to a ct(lC)

file, ctags: create a tags ctags(l)
name for terminal, ctermid: generate file . . . ctermid(3S)

gmtime, asctime, tzset:/ ctime, localtime, ctime(3C)
software, ctinstall: install ctinstall(l)

execution, uux: CTDC to CTIX remote command . . uux(lC)
config: configure a CTIX system config(lM)

uucp: CTIX system to CTIX system copy uucp(lC)
system copy, uucp: CTIX system to CTIX . . . uucp(lC)

print name of current CTIX system, uname: . . . uname(l)
get name of current CTIX system, uname: . . . uname(2)

command execution, uux: CTIX to CTIX remote . . . uux(lC)
uuto, uupick: public CTIX-to-CTIX system file/ . uuto(lC)

debugger, ctrace: C program ctrace(l)
computer system, cu: call another cu(lC)

t t t , cubic: tic-tac-toe ttt(6)
uname: print name of current CTIX system. . . . uname(l)

uname: get name of current CTIX system. . . . uname(2)
gethostname: get name of current host gethostname(3N)

editing/ sact: print current SCCS file sact(l)
in the utmp file of the current user. / the slot . . . ttyslot(3C)

getcwd: get path-name of current working/ getcwd(3C)
handling and / curses: C R T screen curses(3X)

interpolate smooth curve, spline: spline(lG)
login name of the user, cuserid: get character . . . cuserid(3S)

fields of each line of / cut: cut out selected cut(l)
of each line of a / cut: cut out selected fields . . . cut(l)

constant-width text for/ cw, checkcw: prepare . . . cw(l)
program/ cxref: generate C cxref(l)

5/86 - 10 -

runacct: run daily accounting runacct(lM)
from node/ setaddr: set DARPA Internet address . . setaddr(lNM)

Transfer Protocol/ f tpd: DARPA Internet File . . . f tpd(lNM)
server, telnetd: DARPA TELNET protocol . telnetd(lNM)

/user interface to the DARPA T F T P protocol. . . t f tp (lN)
Transfer / t f tpd : DARPA Trivial File t f tpd(lNM)

/special functions of DASI 300 and 300s/ 300(1)
/special functions of the DASI 450 terminal 450(l)

command; report process data and system/ / t ime a . timex(l)
terminal capability data base, termcap: termcap(4)
terminal capability data base, terminfo: terminfo(4)

generate disk accounting data by user ID diskusg(lM)
access long integer data in a / sputl, sgetl: . . . sputl(3X)

lock process, text, or data in memory, plock: . . plock(2)
prof: display profile data prof(l)

system call, s tat : data returned by stat . . . stat(5)
brk, sbrk: change data segment space/ brk(2)

types: primitive system data types types(5)
join: relational database operator join(l)

the mkfs(l) proto file database, /using qinstall(l)
tpu t : query terminfo database tpu t (l)

/asctime, tzset: convert date and time to string. . . ctime(3C)
date: print and set the date date(l)

date, date: print and set the . . . date(l)
dc: desk calculator dc(l)

for optimal access/ dcopy: copy file systems . . dcopy(lM)
file, dd: convert and copy a . . . dd(l)

adb: absolute debugger adb(l)
ctrace: C program debugger ctrace(l)

fsdb: file system debugger fsdb(lM)
sdb: symbolic debugger sdb(l)

a remote system with debugging on. /contact . . Uutry(lM)
neqn. /special character definitions for eqn and . . . eqnchar(5)

basename, dirname: deliver portions of pa th / . . basename(l)
a file, tail: deliver the last part of . . . tail(l)

commentary of an SCCS delta, /change the delta . . cdc(l)
SCCS/ delta: make a delta (change) to an delta(l)

SCCS/ ede: change the delta commentary of an . . cdc(l)
rmdel: remove a delta from an SCCS file. . . rmdel(l)

(change) to an SCCS/ delta: make a delta delta(l)
comb: combine SCCS deltas comb(l)

cron: clock demon cron(lM)
errdemon: error-logging demon errdemon(lM)

the error-logging demon, / terminate errstop(lM)
mesg: permit or deny messages mesg(l)

nroff / t roff , tbl, and / deroff: remove deroff(l)
system: system description file system(4)

close: close a file descriptor close(2)
duplicate an open file descriptor, dup: dup(2)

dc: desk calculator dc(l)
/sldetach: attach and detach serial lines as/ . . . s lat tach(lNM)

of a file, access: determine accessibility . . . access(2)
preprocessor/ includes: determine C language . . . includes(l)

file: determine file type file(l)
drivers: loadable device drivers drivers(7)

for finite width output device, /fold long lines . . . fold(l)
table, master: master device information master(4)

5/86 - 10 -

ioctl: control device ioctl(2)
devnm: device name devnm(lM)

/ tekset , td: graphical device routines and/ gdev(lG)
file for uucp/ Devices: configuration . . . Devices(5)

devnm: device name devnm(lM)
free disk blocks, df: report number of df(lM)

consistency check/ fsck, dfsck: file system fsck(lM)
out-going terminal line/ dial: establish an dial(3C)

calling protocols. Dialers: ACU/modem . . . Dialers(5)
bdiff: big diff bdiff(l)

comparator, diff: differential file diff(l)
differential file/ diff3: 3-way diff3(l)

sdiff: side-by-side difference program sdiff(l)
files, diffmk: mark differences between diffmk(l)

comparator, diff: differential file diff(l)
diff3: 3-way differential file/ diff3(l)

between files, diffmk: mark differences . . diffmk(l)
directories, dir: format of dir(4)

comparison, dircmp: directory dircmp(l)
uucheck: check the UUCP directories and/ uucheck(lM)

object files in binary directories, /install cpset(lM)
dir: format of directories dir(4)

rmdir: remove files or directories, rm, r m (l)
cd: change working directory c d(l)

chdir: change working directory chdir(2)
chroot: change root directory chroot(2)

uucleanup: uucp spool directory clean-up uucleanup(lM)
dircmp: directory comparison. . . . dircmp(l)

unlink: remove directory entry unlink(2)
chroot: change root directory for a command. . . chroot(lM)
make a lost+found directory for fsck mklost+found(lM)
of current working directory, /path-name . . . getcwd(3C)
Is: list contents of directory ls(l)

mkdir, mkdirs: make a directory mkdir(l)
mvdir: move a directory mvdir(lM)
pwd: working directory name pwd(l)

or / mknod: make a directory, or a special . . . mknod(2)
portions of / basename, dirname: deliver basename(l)

LP printers, enable, disable: enable/disable . . . enable(l)
acct: enable or disable process/ acct(2)

modes, speed, and line discipline, / type, getty(lM)
modes, speed, and line discipline, / type uugetty(lM)

sadp: disk access profiler sadp(lM)
user/ diskusg: generate disk accounting data by . . diskusg(lM)

report number of free disk blocks, df: df(lM)
remove exchangeable disk, dismount: dismount(l)

disk: general disk driver disk(7)
driver, disk: general disk disk(7)

Ethernet address on disk, setenet: write setenet(lNM)
update: provide disk synchronization. . . . update(lM)

du: summarize disk usage du(l)
accounting data by user/ diskusg: generate disk . . . diskusg(lM)

mount, umount: mount and dismount file system. . . . mount(lM)
exchangeable disk, dismount: remove dismount(l)

/screen-oriented (visual) display editor based on/ . . vi(l)
prof: display profile data prof(l)

on local/ ruptime: display status of nodes . . . ruptime(lN)

5/86 - 10 -

hypot: Euclidean distance function hypot(3M)
generate uniformly distr ibuted/ /lcong48: . . . drand48(3C)

/checkmm: print/check documents formatted with/ . ram(l)
package for formatt ing documents, / the MM macro mm(5)

and / mmt, mvt: typeset documents, view graphs, . . mmt(l)
chargefee, ckpacct, dodisk, lastlogin,/ acctsh(lM)

whodo: who is doing what whodo(lM)
/a tof : convert string to double-precision number. . . strtod(3C)

ptdl: RS-232 terminal download, tdl, gtdl tdl(l)
lrand48, nrand48,/ drand48, erand48 drand48(3C)

graph: draw a graph graph(lG)
arithmetic: provide drill in number facts. . . . arithmetic(6)

Xylogics 772/ xmset: set drive parameters for xmset(lM)
disk: general disk driver disk(7)

sxt: pseudo-device driver sxt(7)
make a loadable driver for tunable variables. mktunedrv(lM)

drivers: loadable device drivers drivers(7)
/manage loadable drivers lddrv(lM)

drvbind: access loadable drivers, drvalloc lddrv(2)
drivers, drivers: loadable device . . drivers(7)

access loadable/ drvalloc, drvbind: lddrv(2)
drivers, drvalloc, drvbind: access loadable . . lddrv(2)

bcheckrc, rc, powerfail, drvload: system/ brc, . . . brc(lM)
usage, du: summarize disk duf 1)

parts of an object / dump: dump selected . . . dump(l)
s ta tus information from dump, /error records and . errdead(lM)

and ascii file dump, hd: hexadecimal . . hd(l)
od: octal dump °d(l)

an object file, dump: dump selected parts of . . . dump(l)
file descriptor, dup: duplicate an open . . . dup(2)

descriptor, dup: duplicate an open file . . . dup(2)
echo: echo arguments echo(l)

echo: echo arguments. . . . echo(l)
convert floating-point/ ecvt, fcvt, gcvt: ecvt(3C)

ed, red: text editor e d(l)
program, end, etext, edata: last locations in . . . end(3C)

(variant of ex for/ edit: text editor edit(l)
print current SCCS file editing activity, sact: . . . sact(l)

/(visual) display editor based on ex vi(l)
ed, red: text editor ed(l)

ex: text editor e *(l)
files. Id: link editor for common object . . ld(l)

ged: graphical editor ged(lG)
assembler and link editor output , /common . . a.out(4)

sed: stream editor sed(l)
for casual/ edit: text editor (variant of ex edit(l)

ldeeprom: load E E P R O M ldeeprom(lM)
/user, real group, and effective group IDs getuid(2)

/getegid: get real user, effective user, real/ getuid(2)
FORTRAN, ratfor, or efl files, /split fsplit(l)

file for a / grep, egrep, fgrep: search a . . . grep(l)
enable/disable L P / enable, disable: enable(l)

process/ acct: enable or disable acct(2)
enable, disable: enable/disable L P / enable(l)

hashing/ crypt, setkey, encrypt: generate crypt(3C)
generate hashing encryption, /encrypt: . . . crypt(3C)

locations in program, end, etext, edata: last . . . end(3C)

5/86 - 10 -

/getgrnam, setgrent, endgrent, fgetgrent: get / . . getgrent(3C)
host entry, /sethostent, endhostent: get network . . gethostent(3N)

/getnetbyname, setnetent, endnetent: get network/ . . getnetent(3N)
socket: create an endpoint for/ socket(2N)

protocol/ /setprotoent, endprotoent: get getprotoent(3N)
/getpwnam, setpwent, endpwent, fgetpwent: get / . getpwent(3C)

entry, /setservent, endservent: get service . . . getservent(3N)
/putut l ine, setutent, endutent, utmpname:/ . . . getut(3C)

Arabic numerals to English, /convert number(6)
nlist: get entries from name list. . . . nlist(3C)

linenum: line number entries in a common/ . . . linenum(4)
man, manprog: print entries in this manual. . . . man(l)

/macros for formatting entries in this manual. . . . man(5)
/manipulate line number entries of a common/ . . . ldlread(3X)
a / /seek to line number entries of a section of . . . ldlseek(3X)

a / /seek to relocation entries of a section of . . . ldrseek(3X)
wtmp: utmp and wtmp entry formats, utmp, . . . utmp(4)

get group file entry, /fgetgrent: getgrent(3C)
get network host entry, /endhostent: gethostent(3N)

endnetent: get network entry, /setnetent , getnetent(3N)
get protocol entry, /endprotoent: . . . getprotoent(3N)

get password file entry, / fgetpwent: getpwent(3C)
endservent: get service entry, /setservent, getservent(3N)

access utmp file entry, /u tmpname: getut(3C)
object file symbol table entry, /name for common . ldgetname(3X)

/index of a symbol table entry of a common object/ . ldtbindex(3X)
/an indexed symbol table entry of a common object / . ldtbread(3X)

write password file entry, putpwent: putpwent(3C)
unlink: remove directory entry unlink(2)

command execution, env: set environment for . . env(l)
environment, environ: user environ(5)

/set t ing up a C shell environment at login/ . . . cprofile(4)
profile: setting up an environment at login/ . . . profile(4)

environ: user environment environ(5)
execution, env: set environment for command . env(l)

getenv: return value for environment name getenv(3C)
change or add value to environment, putenv: . . . putenv(3C)
inteface, and terminal environment, / terminal . . tset(l)

definitions for eqn and neqn. /character . eqnchar(5)
nroff / t roff , tbl, and eqn constructs, /remove . . deroff(l)

format mathematical/ eqn, neqn, checkeq: eqn(l)
character definitions/ eqnchar: special eqnchar(S)

rhosts: remote equivalent users rhosts(4N)
nrand48,/ drand48, erand48, lrand48 drand48(3C)
td: graphical/ hpd, erase, hardcopy, tekset, . . gdev(lG)

function and / erf, erfc: error erf(3M)
complementary/ erf, erfc: error function and . . erf(3M)

interface, err: error-logging e r r (7)
records and s ta tus / errdead: extract error . . . errdead(lM)

demon, errdemon: error-logging . . errdemon(lM)
format, errfile: error-log file errfile(4)

sys_nerr:/ perror, errno, sys_errlist, perror(3C)
erf, erfc: error function and / erf(3M)

/and complementary error function erf(3M)
/sys_nerr: system error messages perror(3C)

/ t o system calls and error numbers intro(2)
errdead: extract error records and s ta tus / . . errdead(lM)

5/86 - 10 -

matherr: error-handling function. . . matherr(3M)
errfile: error-log file format errfile(4)

errdemon: error-logging demon errdemon(lM)
errstop: terminate the error-logging demon errstop(lM)

err: error-logging interface. . . . err(7)
a report of logged errors, errpt: process . . . errpt(lM)

hashcheck: find spelling errors, /spellin spell(l)
of logged errors, errpt: process a report . . . errpt(lM)

error-logging demon, errstop: terminate the . . . errstop(lM)
terminal line/ dial: establish an out-going . . . dial(3C)

setmnt: establish mount table. . . . se tmnt(lM)
loadable drivers, lddrv: manage lddrv(lM)

locations in / end, etext, edata: last end(3C)
disk, setenet: write Ethernet address on setenet(lNM)

function, hypot: Euclidean distance hypot(3M)
expression, expr: evaluate arguments as an . . expr(l)

test: condition evaluation command. . . . tes t(l)
/ t ex t editor (variant of ex for casual users) edit(l)

ex: text editor e x (l)
display editor based on ex. /(visual) vi(l)

crash: examine system images. . . crash(lM)
dismount: remove exchangeable disk dismount(l)

regions of a / locking: exclusive access to locking(2)
execve, execlp, execvp:/ execl, execv, execle, exec(2l

execvp:/ execl, execv, execle, execve, execlp, . . . exec(2)
/execv, execle, execve, execlp, execvp: execute/ . . exec(2)

command, path: locate executable file for path(l)
execve, execlp, execvp: execute a file, /execle, . . . exec(2)
/argument list(s) and execute command xargs(l)
later time, at, batch: execute commands at a . . a t (l)

regex: compile and execute regular/ regcmp, . . regcmp(3X)
requests, uuxqt: execute remote command . . uuxqt(lM)

environment for command execution, env: set env(l)
sleep: suspend execution for an / sleep(l)
sleep: suspend execution for interval. . . . sleep(3C)

monitor: prepare execution profile monitor(3C)
remote shell command execution, rcmd: rcmd(lN)

rexecd: remote execution server rexecd(lNM)
profil: execution time profile. . . . profil(2)

to CTIX remote command execution, uux: CTEX . . . uux(lC)
execlp, execvp:/ execl, execv, execle, execve, exec(2)

execl, execv, execle, execve, execlp, execvp:/ . . exec(2)
/execle, execve, execlp, execvp: execute a file. . . . exec(2)

system/ link, unlink: exercise link and unlink . . link(lM)
a new file or rewrite an existing one. /create creat(2)

process, exit, _exit: terminate exit(2)
process, exit, _exit: terminate exit(2)

sqrt: exponential,/ exp, log, loglO, pow, exp(3M)
unpack: compress and expand files. /peat , pack(l)

and / expand, unexpand: expand tabs to spaces, . . . expand(l)
tabs to spaces, and / expand, unexpand: expand . expand(l)

advent: explore Colossal Cave. . . . advent(6)
/log, loglO, pow, sqrt: exponential, logarithm,/ . . exp(3M)

as an expression, expr: evaluate arguments . . expr(l)
ma tch / regexp: regular expression compile and . . . regexp(5)

regcmp: regular expression compile regcmp(l)
evaluate arguments as an expression, expr: expr(l)

5/86 - 10 -

and execute regular expression, /compile regcmp(3X)
strings in C/ xstr: extract and share xstr(l)

and s ta tus / errdead: extract error records errdead(lM)
strings in a / strings: extract the ASCII text . . . strings(l)

floor, ceil, fmod, fabs: floor, ceiling,/ floor(3M)
factor: factor a number factor(l^

factor: factor a number. . . factor(l)
values, true, false: provide t ruth t rue(l)

in a machine-independent fashion., /integer data . . . sputl(3X)
fine: fast incremental backup. . . finc(lM)

/mallopt , mallinfo: fast main memory/ malloc(3X)
abort: generate an IOT fault abort(3C)

flush a stream, fclose, fflush: close or . . . fclose(3S)
fcntl: file control fcntl(2)

options, fcntl: file control fcntl(5)
floating-point/ ecvt, fevt, gcvt: convert ecvt(3C)

fopen, freopen, fdopen: open a stream. . . . fopen(3S)
stream s ta tus / ferror, feof, clearerr, fileno: ferror(3S)
fileno: stream s ta tus / ferror, feof, clearerr ferror(3S)

and statistics for a / ff: list file names ff(lM)
stream, fclose, fflush: close or flush a . . . fclose(3S)

getc, getchar, fgetc, getw: get / getc(3S)
/setgrent , endgrent, fgetgrent: get group/ . . . getgrent(3C)

/setpwent, endpwent, fgetpwent: get password/ . . getpwent(3C)
a stream, gets, fgets: get a string from . . . gets(3S)

a pattern, grep, egrep, fgrep: search a file for . . . grep(l)
modification/ utime: set file access and utime(2)

ldfcn: common object file access routines ldfcn(4)
accessibility of a file, access: determine . . . access(2)

tar: tape file archiver tar(l)
out. cpio: copy file archives in and cpio(l)

grpek: password/group file checkers, pwck pwck(lM)
chmod: change mode of file chmod(2)

owner and group of a file, chown: change chown(2)
diff: differential file comparator diff(l)

3-way differential file comparison. diff3: . . . diff3(l)
fcntl: file control fcntl(2)
fcntl: file control options fcntl(5)

rep: remote file copy rcp(lN)
CTDC-to-CTIX system file copy, /public uuto(lC)

format of core image file, core: core(4)
umask: set and get file creation mask umask(2)

crontab - user crontab file crontab(l)
ctags: create a tags file ctags(l)

fields of each line of a file, /cut out selected . . . cut(l)
using the mkfs(l) proto file database, /software . . qinstall(l)
dd: convert and copy a file dd(l)

(change) to an SCCS file, /make a delta delta(l)
close: close a file descriptor close(2)

dup: duplicate an open file descriptor dup(2)
type, file: determine file file(l)

hexadecimal and ascii file dump, hd: hd(l)
parts of an object file, / dump selected dump(l)

sact: print current SCCS file editing activity sact(l)
fgetgrent: get group file entry, /endgrent, . . . getgrent(3C)

fgetpwent: get password file entry, /endpwent, . . . getpwent(3C)
utmpname: access utmp file entry, /endutent , . . . getut(3C)

5/86 - 10 -

putpwent: write password' file entry putpwent(3C)
execvp: execute a file, /execve, execlp, exec(2)

/egrep, fgrep: search a file for a pattern grep(l)
path: locate executable file for command path(l)

/open a common object file for reading ldopen(3X)
Devices: configuration file for uucp/ Devices(5)
per-process accounting file format, acct: acct(4)

ar: common archive file format ar(4)
errfile: error-log file format errfile(4)

intro: introduction to file formats intro{4)
of a common object file function, /entries . . . ldlread(3X)

get a version of an SCCS file, get: get(l)
group: group file group(4)

object files, filehdr: file header for common . . . filehdr(4)
ldfhread: read the file header of a common/ . . ldfhread(3X)

/seek to the optional file header of a common/ . . ldohseek(3X)
split: split a file into pieces split(l)

issue identification file, issue: issue(4)
a member of an archive file, /archive header of . . ldahread(3X)

close a common object file, /ldaclose: ldclose(3X)
of a common object file, / t h e file header ldfhread(3X)
of a common object file, /of a section ldlseek(3X)
of a common object file, /file header ldohseek(3X)
of a common object file, /of a section ldrseek(3X)
of a common object file, /section header ldshread(3X)
of a common object file, /section ldsseek(3X)

entry of a common object file, /of a symbol table . . ldtbindex(3X)
entry of a common object file, /symbol table ldtbread(3X)
table of a common object file, / t o the symbol ldtbseek(3X)

in a common object file, /number entries . . . linenum(4)
link: link to a file link(2)

file;/ qlist: print out file lists from proto qlist(l)
access to regions of a file, /exclusive locking(2)

an ifile from an object file, mkifile: make mkifile(lM)
mknod: build special file mknod(lM)

or a special or ordinary file, /make a directory, . . mknod(2)
ctermid: generate file name for terminal. . . . ctermid(3S)

mktemp: make a unique file name mktemp(3C)
statistics/ ff: list file names and ff(lM)

the format of a text file, newform: change . . . newform(l)
list of common object file, nm: print name nm(l)

null: the null file null(7)
/ the slot in the utmp file of the current/ ttyslot(3C)

/processes using a file or file structure fuser(lM)
creat: create a new file or rewrite an / creat(2)

passwd: password file passwd(4)
subsequent lines of one file, /several files or paste(l)

soft-copy/ pg: file perusal filter for pg(l)
/ftell: reposition a file pointer in a / fseek(3S)

lseek: move read/write file pointer lseek(2)
prs: print an SCCS file prs(l)

read: read from file read(2)
for a common object file, / information reloc(4)

a delta from an SCCS file, rmdel: remove rmdel(l)
bfs: big file scanner bfs(l)

two versions of an SCCS file, sccsdiff: compare . . . sccsdiff(l)
sccsfile: format of SCCS file sccsfile(4)

5/86 - 10 -

for a common object file, /section header scnhdr(4)
/file lists from proto file; set links based/ qlist(l)

fsize: report file size fsize(l)
i-node. openi: open a file specified by openi(2)

stat , fstat: get file status stat(2)
ASCII text strings in a file, /extract the strings(l)
from a common object file, / information strip(l)

/using a file or file structure fuser(lM)
and block count of a file, /p r in t checksum . . . sum(l)

synchronous write on a file, swrite: swrite(2)
/name for common object file symbol table entry. . . . ldgetname(3X)

syms: common object file symbol table/ syms(4)
check and / fsck, dfsck: file system consistency . . . fsck(lM)

fsdb: file system debugger. . . . fsdb(lM)
and statistics for a file system, /file names . . ff(lM)

fs: file system format fs(4)
mkfs: construct a file system mkfs(lM)

mount and dismount file system, /umount : . . . mount(lM)
mount: mount a file system mount(2)

ustat: get file system statistics ustat(2)
mnt tab : mounted file system table. mnttab(4)

umount: unmount a file system umount(2)
system description file, system: system(4)

access/ dcopy: copy file systems for optimal . . dcopy(lM)
by/ checklist: list of file systems processed . . . checklist(4)
volcopy, labelit: copy file systems with label/ . . volcopy(lM)

the last part of a file, tail: deliver tail(l)
format of compiled term file., term: term(4)

create a temporary file, tmpfile: tmpfile(3S)
a name for a temporary file, / t empnam: create . . . tmpnam(3S)
modification times of a file, /update access and . . touch(l)

f tp: file transfer program. . . . f tp(lN)
f tpd: DARPA Internet File Transfer Protocol/ . . f tpd(lNM)
t f tpd: DARPA Trivial File Transfer Protocol/ . . t f tpd(lNM)

ftw: walk a file tree ftw(3C)
file: determine file type file(l)
TZ: time zone file tz(4)

previous get of an SCCS file, unget: undo a unget(l)
repeated lines in a file, uniq: report uniq(l)

and Permissions file. /UUCP directories . . uucheck(lM)
val: validate SCCS file val(l)

write: write on a file write(2)
umask: set file-creation mode mask. . . umask(l)

common object files, filehdr: file header for . . . filehdr(4)
ferror, feof, clearerr, fileno: stream s ta tus / . . . ferror(3S)

print process accounting file(s). /search and acctcom(l)
or add total accounting files, acctmerg: merge . . , acctmerg(lM)

and administer SCCS files, admin: create admin(l)
concatenate and print files, cat: cat(l)

cmp: compare two files cmp(l)
common to two sorted files, /or reject lines comm(l)

mv: copy, link or move files, cp, In, cp(l)
mark differences between files, diffmk: diffmk(l)

header for common object files, filehdr: file filehdr(4)
find: find files find(l)

catman: create the cat files for the manual catman(l)
tape, free: recover files from a backup frec(lM)

5/86 - 10 -

specification in text files, fspec: format fspec(4)
ratfor, or efl files, /split FORTRAN, . . fsplit(l)

format of graphical files, /string, gps(4)
cpset: install object files in binary/ cpset(lM)

preprocessor include files. /C language includes(l)
introduction to special files, intro: intro(7)

editor for common object files. Id: link ld(l)
lockf: record locking on files lockf(3C)

rm, rmdir: remove files or directories r m (l)
/ same lines of several files or subsequent/ paste(l)
compress and expand files, /peat , unpack: pack(l)

pr: print files pr(1)
sizes of common object files, /p r in t section size(l)
sort: sort and/or merge files sort(l)

/object and archive files to common formats. . . convert(l)
what: identify SCCS files what(l)

pg: file perusal filter for soft-copy/ pg(l)
greek: select terminal filter greek(l)

nl: line numbering filter nl(1)
line-feeds, col: filter reverse col(l)

device routines and filters. / t d : graphical . . . gdev(lG)
tplot: graphics filters tplot(lG)

backup, fine: fast incremental . . . finc(lM)
find: find files find(l)

find: find files find(l)
hyphen: find hyphenated words. . . hyphen(l)

t tyname, isatty: find name of a terminal. . . t tyname(3C)
for an object/ lorder: find ordering relation . . . lorder(l)

/spellin, hashcheck: find spelling errors. spell(l)
u tmp file of / ttyslot: find the slot in the ttyslot(3C)

/fold long lines for finite width o u t p u t / fold(l)
fish: play "Go Fish" fish(6)

fish: play "Go Fish". . . . fish(6)
tee: pipe fitting tee(l)

/convert ASCII string to floating-point number. . . . atof(3C)
/ fevt , gcvt: convert floating-point number to / . ecvt(3C)

/manipulate parts of floating-point numbers. . . frexp(3C)
floor, ceiling,/ floor, ceil, fmod, fabs: . . . floor(3M)

floor, ceil, fmod, fabs: floor, ceiling,/ floor(3M)
cflow: generate C flowgraph cflow(l)

fclose, fflush: close or flush a stream fclose(3S)
ceiling,/ floor, ceil, fmod, fabs: floor floor(3M)

for finite width ou tpu t / fold: fold long lines fold(l)
finite width / fold: fold long lines for fold(l)

open a stream, fopen, freopen, fdopen: . . . fopen(3S)
process, fork: create a new fork(2)

accounting file format, /per-process . . . acct(4)
ar: common archive file format ar(4)

errfile: error-log file format errfile(4)
fs: file system format fs(4)

for/ eqn, neqn, checkeq: format mathematical text . eqn(l)
newform: change the format of a text file newform(l)

inode: format of an i-node inode(4)
file., term: format of compiled term . . term(4)

file, core: format of core image core(4)
cpio: format of cpio archive. . . . cpio(4)

dir: format of directories. . . . dir(4)

5/86 - 10 -

/primitive string, format of graphical/ gps(4)
sccsfile: format of SCCS file. sccsfile(4)

text files, fspec: format specification in . . . fspec(4)
object file symbol table format, syms: common . . syms(4)

or troff. tbl: format tables for nroff . . . tbl(l)
nroff: format text nroff(l)

archive files to common formats, /object and . . . convert(l)
introduction to file formats, intro: intro{4)

utmp and wtmp entry formats, utmp, wtmp: . . . utmp(4)
fscanf, sscanf: convert formatted input, scanf, . . scanf(3S)

varargs/ /vsprintf: print formatted output of a . . . vprintf(3S)
/ fpr int f , sprintf: print formatted output printf(3S)

/pr int /check documents formatted with the MM/ . . mm(l)
/ t he macro package for formatting a permuted/ . . mptx(5)

/ t h e MM macro package for formatting documents. . . . mm(5)
this/ man: macros for formatting entries in man(5)
management, netman: form-based network netman(lNM)

efl/ fsplit: split FORTRAN, ratfor, or . . . fsplit(l)
hopefully interesting,/ fortune: print a random, . . fortune(6)

format ted / printf, fprintf , sprintf: print printf(3S)
putc, putchar, fputc , putw: p u t / putc(3S)
stream, puts, fputs: put a string on a . . puts(3S)
input /ou tput , fread, fwrite: binary fread(3S)

a backup tape, free: recover files from . . . frec(lM)
df: report number of free disk blocks df(lM)

main memory/ malloc, free, realloc, calloc: malloc(3C)
mallopt, / malloc, free, realloc, calloc, malloc(3X)

stream, fopen, freopen, fdopen: open a . . fopen(3S)
manipulate parts o f / frexp, ldexp, modf: frexp(3C)

free: recover files from a backup tape frec(lM)
/line number information from a common object/ . . strip(l)

/receive a message from a socket recv(2N)
get character or word from a stream, /getw: . . . getc(3S)

fgets: get a string from a stream, gets, gets(3S)
mkifile: make an ifile from an object file mkifile(lM)

rmdel: remove a delta from an SCCS file rmdel(l)
/get option letter from argument vector. . . . getopt(3C)

and status information from dump, /records . . . errdead(lM)
read: read from file read(2)

ncheck: generate names from i-numbers ncheck(lM)
nlist: get entries from name list nlist(3C)

DARPA Internet address from node name, /set . . . setaddr(lNM)
acctcms: command summary from per-process/ acctcms(lM)

/p r in t out file lists from proto file; set / qlist(l)
getpw: get name from UID getpw(3C)

fs: file system format. . . . fs(4)
formatted input, scanf, fscanf, sscanf: convert . . . scanf(3S)

systems processed by fsck. /list of file checklist(4)
make a lost+found directory for fsck mklost+found(lM)

consistency check and / fsck, dfsck: file system . . . fsck(lM)
debugger, fsdb: file system fsdb(lM)

reposition a file/ fseek, rewind, ftell: fseek(3S)
fsize: report file size fsize(l)

specification in text / fspec: format fspec(4)
ratfor, or efl files, fsplit: split FORTRAN, . . fsplit(l)

stat , fstat: get file status stat(2)
pointer/ fseek, rewind, ftell: reposition a file fseek(3S)

5/86 - 10 -

interprocess/ f tok: standard stdipc(3C)
program. f tp : file transfer f tp (lN)

File Transfer Protocol/ f tpd: DARPA Internet . . f tpd(lNM)
ftw: walk a file tree. . . . ftw(3C)

/ shu t down part of a full-duplex connection. . . shutdown(2N)
erf, erfc: error function and / . erf(3M)

. erf(3M) and complementary error function, /function . .

. erf(3M)

. erf(3M)
gamma: log gamma function . gamma(3M)
Euclidean distance function, hypot: hypot(3M)

of a common object file function, /entries ldlread(3X)
matherr: error-handling function . matherr(3M)

prof: profile within a function . prof(5)
math: math functions and constants. . math(5)

jn, yO, y l , yn: Bessel . bessel(3M)
power, square root functions, /logarithm, . . exp(3M)

absolute value functions, /remainder, . . floor(3M)
ocurse: optimized screen functions . ocurse(3X)

/300s: handle special functions of DASI 300/ . 300(1)
hp: handle special functions of HP 2640 and / • hp(l)

450/ 450: handle special functions of the DASI . 450(1)
cosh, tanh: hyperbolic functions, sinh, sinh(3M)

atan2: trigonometric functions, /acos, atan, . . trig(3M)
processes using a file/ fuser: identify
inpu t /ou tpu t , fread, fwrite: binary . fread(3S)
manipulate connect/ fwtmp, wtmpfix: fwtmp(lM)

moo: guessing game . moo(6)
back: the game of backgammon. . . back(6)

bj: the game of black jack. . . . bj(6)
craps: the game of craps . craps(6)

wump: the game of hunt-the-wumpus. . wump(6)
trk: trekkie game . trk(6)

intro: introduction to games
gamma: log gamma function. . . .

function. gamma: log gamma . . . gamma(3M)
ecvt, fcvt, gcvt: convert/

ged: graphical editor. . ged(lG)
maze: generate a maze. . . .
abort: generate an IOT fault. . . abort(3C)
cflow: generate C flowgraph. . cflow(l)

cross-reference, cxref: generate C program . . . cxref(l)
data by user/ diskusg: generate disk accounting . diskusg(lM)

terminal, ctermid: generate file name for . ctermid(3S)
crypt, setkey, encrypt: generate hashing/ crypt(3C)

i-numbers. ncheck: generate names from . . . ncheck(lM)
simple lexical/ lex: generate programs for . lex(l)

/seed48, lcong48: generate uniformly/ . . . drand48(3C)
simple random-number generator, rand, srand: . rand(3C)

stream, gets, fgets: get a string from a . . . gets(3S)
file, get: get a version of an SCCS • get(l)

getsockopt, setsockopt: get and set options on/ . getsockopt(2N)
ulimit: get and set user limits. . . ulimit(2)

of the user, cuserid: get character login name . cuserid(3S)
/getchar, fgetc, getw: get character or word/ . . getc(3S)

list, nlist: get entries from name . nlist(3C)
umask: set and get file creation mask. . umask(2)

stat , fstat: get file status
statistics, ustat: get file system

5/86 - 10 -

SCCS file, get: get a version of an . . . get(l)
/endgrent, fgetgrent: get group file entry getgrent(3C)

getlogin: get login name getlogin(3C)
logname: get login name logname(l)

msgget: get message queue msgget(2)
getpw: get name from UID getpw(3C)

peer, getpeername: get name of connected . . . getpeername(2N)
system, uname: get name of current CTIX . uname(2)

host, gethostname: get name of current gethostname(3N)
/setnetent , endnetent: get network entry getnetent(3N)

/sethostent, endhostent: get network host entry. . . gethostent(3N)
unget: undo a previous get of an SCCS file unget(l)

argument/ getopt: get option letter from . . . getopt(3C)
/endpwent , fgetpwent: get password file entry. . . getpwent(3C)

working/ getcwd: get path-name of current . . getcwd(3C)
process times, times: get process and child . . . times(2)

/getpgrp, getppid: get process, process/ getpid(2)
/endprotoent: get protocol entry getprotoent(3N)

user,/ /getgid, getegid: get real user, effective . . . getuid(2)
/setservent, endservent: get service entry getservent(3N)

semget: get set of semaphores. . . . semget(2)
segment, shmget: get shared memory shmget(2)

getsockname: get socket name getsockname(2N)
terminal, t ty: get the nAme of the t ty(l)

time: get time time(2)
getw: get character or / getc, getchar, fgetc, getc(3S)
get character or / getc, getchar, fgetc, getw: getc(3S)

current working/ getcwd: get path-name of . getcwd(3C)
getuid, geteuid, getgid, getegid: get real user,/ . . . getuid(2)

environment name, getenv: return value for . . getenv(3C)
getegid: get/ getuid, geteuid, getgid, getuid(2)

real/ getuid, geteuid, getgid, getegid: get getuid(2)
getgrnam, setgrent, / getgrent, getgrgid getgrent(3C)
setgrent, / getgrent, getgrgid, getgrnam, getgrent(3C)

getgrent, getgrgid, getgrnam, setgrent, / getgrent(3C)
gethostent, gethostbyaddr, / gethostent(3N)

/gethostbyaddr, gethostbyname,/ gethostent(3N)
gethostbyaddr, / gethostent, gethostent(3N)

current host, gethostname: get name of . gethostname(3N)
name, getlogin: get login getlogin(3C)

getnetent, getnetbyaddr, / getnetent(3N)
getnetent, getnetbyaddr, getnetbyname, setnetent , / . getnetent(3N)

getnetbyname,/ getnetent, getnetbyaddr, . . getnetent(3N)
letter from argument/ getopt: get option getopt(3C)

options, getopt: parse command . . getopt(l)
password, getpass: read a getpass(3C)

connected peer, getpeername: get name of . getpeername(2N)
process,/ getpid, getpgrp, getppid: get . . . getpid(2)

getppid: get process,/ getpid, getpgrp getpid(2)
getpid, getpgrp, getppid: get process,/ . . . getpid(2)

/getprotobynumber, getprotobyname,/ getprotoent(3N)
getprotoent, getprotobynumber, / getprotoent(3N)

getprotobynumber, / getprotoent getprotoent(3N)
UID. getpw: get name from . . . getpw(3C)

getpwnam, setpwent, / getpwent, getpwuid, getpwent(3C)
getpwent, getpwuid, getpwnam, setpwelit,/ . . . getpwent(3C)

setpwent, / getpwent, getpwuid, getpwnam, . . . getpwent(3C)

5/86 - 10 -

string from a stream, gets, fgets: get a gets(3S)
/getservbyport, getservbyname,/ getservent(3N)

getservent, getservbyport,/ getservent(3N)
getservbyport, / getservent getservent(3N)

name, getsockname: get socket . . getsockname(2N)
get and set options on / getsockopt, setsockopt: . . . getsockopt(2N)

settings used by getty. / and terminal . . . gettydefs(4)
type, modes, speed, and / getty: set terminal getty(lM)

terminal, ct: spawn getty to a remote ct(lC)
terminal settings used/ gettydefs: speed and gettydefs(4)
getegid: get real user,/ getuid, geteuid, getgid, . . . getuid(2)

getutline, pututl ine,/ getutent, getutid, getut(3C)
pututl ine,/ getutent, getutid, getutline, getut(3C)

getutent, getutid, getutline, pututline,/ . . . getut(3C)
getc, getchar, fgetc, getw. get character o r / . . . getc(3S)

ctime, localtime, gmtime, asctime, tzset:/ . . ctime(3C)
fish: play "Go Fish" fish(6)

longjmp: non-local goto, setjmp setjmp(3C)
string, format of / gps: graphical primitive . . gps(4)

graph: draw a graph. . . . graph(lG)
graph: draw a graph graph(lG)

sag: system activity graph sag(lG)
graphics: access graphical and numerical/ . . graphics(lG)

/network useful with graphical commands. . . . s ta t (lG)
hardcopy, tekset, td: graphical device/ /erase, . . gdev(lG)

ged: graphical editor ged(lG)
/str ing, format of graphical files gP s(4)

string, format o f / gps: graphical primitive gps(4)
contents routines, toe: graphical table of toc(lG)

gutil: graphical utilities gutil(lG)
graphical and numerical/ graphics: access graphics(lG)

tplot: graphics filters tplot(lG)
plot: graphics interface plot(4)

subroutines, plot: graphics interface plot(3X)
/ typeset documents, view graphs, and slides mmt(l)

/ for typesetting view graphs and slides mv(5)
filter, greek: select terminal . . . greek(l)

search a file for a / grep, egrep, fgrep: grep(l)
/effective user, real group, and effective/ . . . getuid(2)

/get process, process group, and parent / getpid(2)
chgrp: change owner or group, chown chown(l)

/endgrent , fgetgrent: get group file entry getgrent(3C)
group: group file group(4)

group: group file group(4)
setpgrp: set process group ID setpgrp(2)

id: print user and group IDs and names. . . . id(l)
group, and effective group IDs. /user, real . . . getuid(2)
setgid: set user and group IDs. setuid, setuid(2)

newgrp: log in to a new group newgrp(l)
chown: change owner and group of a file chown(2)

signal to a process or a group of processes, / a . . . kill(2)
/upda te , and regenerate groups of programs make(l)

file checkers, pwck, grpek: password/group . . . pwck(lM)
signals, ssignal, gsignal: software ssignal(3C)

/or relocate a P T or GT local printer mktpy(l)
terminal download, tdl, gtdl, ptdl: RS-232 tdl(l)

hangman: guess the word hangman(6)

5/86 - 10 -

moo: guessing game moo(6)
utilities, gutil: graphical gutil(lG)

/ for Xylogics 772 half-inch t ape / xmset(lM)
processing, shutdown, halt: terminate all shutdown(lM)

of DASI 300/ 300, 300s: handle special functions . . 300(1)
of HP 2640 and/ hp: handle special functions . . hp(l)

of the DASI 450/ 450: handle special functions . . 450(1)
list, varargs: handle variable argument . varargs(5)

curses: C R T screen handling and / curses(3X)
hangman: guess the word. . hangman(6)

/ run a command immune to hangups and quits nohup(l)
graphical/ hpd, erase, hardcopy, tekset, td: gdev(lG)

hinv: hardware inventory hinv(lM)
/hdestroy: manage hash search tables hsearch(3C)

/hashmake, spellin, hashcheck: find spelling/ . . spell(l)
/encrypt: generate hashing encryption crypt(3C)

hashcheck: find/ spell, hashmake, spellin, spell(l)
manage hash/ hsearch, hcreate, hdestroy: hsearch(3C)

ascii file dump, hd: hexadecimal and hd(1)
hsearch, hcreate, hdestroy: manage hash/ . . hsearch(3C)

object / scnhdr: section header for a common . . . scnhdr(4)
files, filehdr: file header for common object . filehdr(4)

ldfhread: read the file header of a common/ . . . ldfhread(3X)
to the optional file header of a common/ /seek ldohseek(3X)

indexed/named section header of a common/ /an . ldshread(3X)
/read the archive header of a member of a n / . ldahread(3X)

help: ask for help help(l)
help: ask for help help(l)

file dump, hd: hexadecimal and ascii . . . hd(l)
inventory, hinv: hardware hinv(lM)

/manipulate Volume Home Blocks (VHB) libdev(3X)
fortune: print a random, hopefully interesting,/ . . . fortune(6)
/convert values between host and network byte/ . . byteorder(3N)
endhostent: get network host entry, /sethostent, . . gethostent(3N)

get name of current host, gethostname: gethostname(3N)
network, hosts: list of nodes on . . . hosts(4N)

/special functions of HP 2640 and 2621-series/ . hp(l)
functions of HP 2640/ hp: handle special hp(l)
tekset, td: graphical/ hpd, erase, hardcopy, . . . gdev(lG)

hdestroy: manage hash/ hsearch, hcreate, hsearch(3C)
ntohs: convert values/ htonl, htons, ntohl, byteorder(3N)
convert values/ htonl, htons, ntohl, ntohs: byteorder(3N)

wump: the game of hunt-the-wumpus wump(6)
sinh, cosh, tanh: hyperbolic functions sinh(3M)

words, hyphen: find hyphenated . . hyphen(l)
hyphen: find hyphenated words hyphen(l)

distance function, hypot: Euclidean hypot(3M)
accounting data by user ID. generate disk diskusg(lM)

set or shared memory id. /queue, semaphore . . . ipcrm(l)
IDs and names, id: print user and group . . id(l)

set process group ID. setpgrp: setpgrp(2)
issue: issue identification file issue(4)

a file or file/ fuser: identify processes using . . fuser(lM)
what: identify SCCS files what(l)

id: print user and group IDs and names id(1)
and parent process IDs. /process group, getpid(2)
and effective group IDs. /user, real group, . . . getuid(2)

5/86 - 10 -

set user and group IDs. setuid, setgid: setuid(2)
network interface/ ifconfig: configure ifconfig(lNM)

file, mkifile: make an ifile from an object mkifile(lM)
core: format of core image file core(4)

crash: examine system images crash(lM)
nohup: run a command immune to hangups and / . . nohup(l)

/C language preprocessor include files includes(l)
language preprocessor/ includes: determine C . . . includes(l)

fine: fast incremental backup finc(lM)
/ tgoto, tputs: terminal independent operations. . . termcap(3X)
formatting a permuted index, /package for mptx(5)
ldtbindex: compute the index of a symbol table/ . . ldtbindex(3X)

ptx: permuted index ptx(l)
en t ry / ldtbread: read an indexed symbol table . . . ldtbread(3X)

/ldnshread: read an indexed/named section/ . . ldshread(3X)
o f / /ldnsseek: seek to an indexed/named section . . . ldsseek(3X)

inet_ntoa,/ inet_addr, inet_network, . . inet(3N)
Internet / / inet_makeaddr, inet_lnaof, inet_netof: . . . inet(3N)

/ inet_network, inet_ntoa, inet_makeaddr, / inet(3N)
address/ /inet_lnaof, inet_netof: Internet inet(3Nl

inet_addr, inet_network, inet_ntoa,/ . inet(3N)
inet_addr, inet_network, inet_ntoa, / inet(3N)

inittab: script for the init process inittab(4)
control initialization, init, telinit: process init(lM)

telinit: process control initialization, init init(lM)
/drvload: system initialization shell/ brc(lM)

volume, iv: initialize and maintain . . . iv(l)
a socket, connect: initiate a connection on . . connect(2N)

process, popen, pclose: initiate pipe to / f rom a . . . popen(3S)
init process, inittab: script for the . . . inittab(4)

clri: clear i-node clri(lM)
i-node. inode: format of an inode(4)

inode: format of an i-node inode(4)
open a file specified by i-node. openi: openi(2)
blocks associated with i-node(s). / the list of . . . bcheck(lM)

/ s t a r t and stop terminal input and output rsterm(lM)
convert formatted input, /fscanf, sscanf: . . . scanf(3S)

push character back into input stream, ungetc: . . . ungetc(3S)
fread, fwrite: binary inpu t /ou tpu t fread(3S)

stdio: standard buffered inpu t /ou tpu t package. . . . stdio(3S)
fileno: stream status inquiries, /clearerr, ferror(3S)
uustat : uucp status inquiry and job control. . . uustat(lC)
software/ qinstall: install and verify qinstall(l)

install: install commands install(lM)
commands, install: install install(lM)

binary/ cpset: install object files in cpset(lM)
or G T / mktpy, mvtpy: install or relocate a P T . . . mktpy(l)

ctinstall: install software ctinstall(l)
/set terminal, terminal inteface, and terminal/ . . . tset(l)

abs: return integer absolute value. . . . abs(3C)
/convert between long integer and base-64/ a641(3C)

/sgetl: access long integer data in a / sputl(3X)
atoi: convert string to integer, strtol, atol strtol(3C)

/convert between 3-byte integers and long/ 13tol(3C)
3-byte integers and long integers, /between 13tol(3C)

bcopy: interactive block copy. . . . bcopy(lM)
processing/ mailx: interactive message mailx(l)

5/86 - 10 -

/consistency check and interactive repair fsck(lM)
/ a random, hopefully interesting, adage fortune(6)

err: error-logging interface err(7)
qic: interface for QIC tape. . . . qic(7)

lp: parallel printer interface lp(7)
mem, kmem: system memory interface mem(7)

/configure network interface parameters. . . . ifconfig(lNM)
plot: graphics interface plot(4)
plot: graphics interface subroutines. . . . plot(3X)

swap administrative interface, swap: swap(lM)
termio: general terminal interface termio(7)

terminal accelerator interface, tiop: tiop(7)
protocol, telnet: user interface to TELNET . . . telnet(lN)

T F T P / t f tp : user interface to the DARPA . . t f tp (lN)
controlling terminal interface, t ty: tty(7)

vme: VME bus interface vme(7)
serial lines as network interfaces, / and detach . . s lat tach(lNM)

node/ setaddr: set DARPA Internet address from . . . setaddr(lNM)
/inet_lnaof, inet_netof: Internet address/ inet(3N)

Protocol/ f tpd: DARPA Internet File Transfer . . . f tpd(lNM)
and numbers for the internet, /names networks(4N)

protocols: list of Internet protocols protocols(4N)
services: list of Internet services services(4N)
curve, spline: interpolate smooth spline(lG)
control/ asa: interpret ASA carriage . . . asa(l)

csh: a shell (command interpreter) with C-like/ . . csh(l)
pipe: create an interprocess channel pipe(2)

ipcs: report inter-process/ ipcs(l)
ftok: standard interprocess/ stdipc(3C)

suspend execution for an interval, sleep: sleep(l)
suspend execution for interval, sleep: sleep(3C)

commands and / intro: introduction to . . . intro(l)
file formats, intro: introduction to . . . intro(4)

games, intro: introduction to . . . intro(6)
miscellany, intro: introduction to . . . intro(5)

special files, intro: introduction to . . . intro(7)
subroutines and / intro: introduction to . . . intro(3)

system calls and error/ intro: introduction to . . . intro(2)
and application/ intro: introduction to commands . intro(l)

formats, intro: introduction to file intro(4)
intro: introduction to games. . . . intro{6)

miscellany, intro: introduction to intro(5)
files, intro: introduction to special . . . intro(7)

subroutines and / intro: introduction to intro(3)
calls and error/ intro: introduction to system . . . intro(2)

generate names from i-numbers. ncheck: ncheck(lM)
hinv: hardware inventory hinv(lM)

ioctl: control device ioctl(2)
abort: generate an IOT fault abort(3C)

queue, semaphore set or/ ipcrm: remove a message . . ipcrm(l)
inter-process/ ipcs: report ipcs(l)

/isdigit, isxdigit, isalnum, isspace,/ ctype(3C)
islower, isdigit,/ isalpha, isupper, ctype(3C)
/ isgraph, iscntrl, isascii: classify/ ctype(3C)

terminal, t tyname, isatty: find name of a . . . ttyname(3C)
/ isprint , isgraph, iscntrl, isascii:/ ctype(3C)
/isupper, islower, isdigit, isxdigit,/ ctype(3C)

5/86 - 10 -

/ ispunct, isprint, isgraph, iscntrl,/ ctype(3C)
isalpha, isupper, islower, isdigit,/ ctype(3C)

/isspace, ispunct, isprint, isgraph,/ ctype(3C)
/isainum, isspace, ispunct, isprint,/ ctype(3C)
/isxdigit, isainum, isspace, ispunct,/ ctype(3C)

system: issue a shell command. . . . system(3S)
file, issue: issue identification issue(4)

identification file, issue: issue issue(4)
isdigit,/ isalpha, isupper, islower, ctype(3C)
/islower, isdigit, isxdigit, isainum,/ ctype(3C)

news: print news items news(l)
maintain volume, iv: initialize and iv(l)
Bessel functions. jO, j l , jn, yO, y l , yn: bessel(3M)

Bessel functions. jO, j l , jn, yO, y l , yn: bessel(3M)
bj: the game of black jack . bj(6)

functions. jO, j l , jn, yO, y l , yn: Bessel bessel(3M)
database operator, join: relational join(l)

/nrand48, mrand48, jrand48, srand48,/ drand48(3C)
processes, kitla.ll: kill all active killall(lM)

process or a group of / kill: send a signal to a . . . kill(2)
process, kill: terminate a kill(l)

processes, killa.ll: kill all active killatl(lM)
interface, mem, kmem: system memory . . . mem(7)

quiz: test your knowledge quiz(6)
between 3-byte integers/ 13tol, ltol3: convert 13tol(3C)

long integer and / a641, 164a: convert between . . . a641(3C)
/copy file systems with label checking volcopy(lM)
systems with/ volcopy, labelit: copy file volcopy(lM)
scanning and processing language, awk: pattern . . awk(l)

/ar i thmetic language bc(l)
cpp: the C language preprocessor. . . . cpp(l)

includes: determine C language preprocessor/ . . . includes(l)
/command programming language sh(l)

/ckpacct , dodisk, lastlogin, monacct,/ acctsh(lM)
shl: shell layer manager shl(l)

/srand48, seed48, lcong48: generate/ drand48(3C)
common object files. Id: link editor for 'd(l)

object file, ldclose, ldaclose: close a common . . ldclose(3X)
archive header of a / ldahread: read the ldahread(3X)

object file for/ ldopen, ldaopen: open a common . . . ldopen(3X)
a common object file, ldclose, ldaclose: close . . . ldclose(3X)

ldeeprom: load EEPROM. . ldeeprom(lM)
parts o f / frexp, ldexp, modf: manipulate . . frexp(3C)

file access routines, ldfcn: common object . . . ldfcn(4)
header of a common/ ldfhread: read the file . . . ldfhread(3X)

symbol name for common/ ldgetname: retrieve ldgetname(3X)
manipulate/ Idlread, ldlinit, ldlitem: ldlread(3X)

ldlread, ldlinit, ldlitem: manipulate line/ . . ldlread(3X)
ldlitem: manipulate/ ldlread, ldlinit, ldlread(3X)

to line number entries/ ldlseek, ldnlseek: seek . . . ldlseek(3X)
number entries/ ldlseek, ldnlseek: seek to line ldlseek(3X)

relocation/ ldrseek, Idnrseek: seek to ldrseek(3X)
ldshread, ldnshread: read an / ldshread(3X)

indexed/named/ ldsseek, ldnsseek: seek to an ldsseek(3X)
optional file header of / ldohseek: seek to the ldohseek(3X)
common object file for/ ldopen, ldaopen: open a . . ldopen(3X)

to relocation entries/ ldrseek, Idnrseek: seek . . . ldrseek(3X)

5/86 - 10 -

read an indexed/named/ ldshread, ldnshread: ldshread(3X)
to an indexed/named/ ldsseek, ldnsseek: seek . . . ldsseek(3X)

index of a symbol table/ ldtbindex: compute the . . ldtbindex(3X)
indexed symbol table/ ldtbread: read an ldtbread(3X)

symbol table of a / ldtbseek: seek to the ldtbseek(3X)
getopt: get option letter from argument/ . . . getopt(3C)
for simple lexical/ lex: generate programs . . . lex(l)

programs for simple lexical tasks. /generate . . lex(l)
update, lsearch, lfind: linear search and . . . lsearch(3C)

Volume Home Blocks/ libdev: manipulate libdev(3X)
to subroutines and libraries, / introduction . . intro(3)

relation for an object library, /f ind ordering . . . lorder(l)
ar: archive and library maintainer for/ . . . ar(l)

ulimit: get and set user limits ulimit(2)
/an out-going terminal line connection dial(3C)

/ type, modes, speed, and line discipline getty(lM)
/ type, modes, speed, and line discipline uugetty(lM)

line: read one line line(l)
common object / linenum: line number entries in a . . linenum(4)

/ldlitem: manipulate line number entries of a / . . ldlread(3X)
/ldnlseek: seek to line number entries of a / . . ldlseek(3X)

strip: strip symbol and line number information/ . strip(l)
nl: line numbering filter. . . . nl(l)

selected fields of each line of a file, / cu t out . . . cut(l)
/requests to an LP line printer lp(l)

lpset: set parallel line printer options lpset(lM)
lpr: line printer spooler lpr(l)

line: read one line line(l)
update, lsearch, lfind: linear search and lsearch(3C)

col: filter reverse line-feeds col(l)
entries in a common/ linenum: line number . . . linenum(4)

/a t tach and detach serial lines as network/ slattach(lNM)
comm: select or reject lines common to two/ . . . comm(l)

for uucp communications lines, /file Devices(5)
ou tpu t / fold: fold long lines for finite width fold(l)

head: give first few lines head(l)
uniq: report repeated lines in a file uniq(l)

/files or subsequent lines of one file paste(l)
o r / paste: merge same lines of several files paste(l)

link, unlink: exercise link and unlink system/ . . link(lM)
object files. Id: link editor for common . . . ld(l)

/common assembler and link editor output a.out(4)
link: link to a file link(2)

cp, In, mv: copy, link or move files cp(l)
link: link to a file link(2)

link and unlink system/ link, unlink: exercise link(lM)
from proto file; set links based on. /lists . . . qlist(l)

checker, lint: a C program lint(l)
directory. Is: list contents of ls(l)

statistics for a / ff: list file names and ff(lM)
get entries from name list, nlist: nlist(3C)
bcheck: print out the list of blocks/ bcheck(lM)
file, nm: print name list of common object . . . nm(l)

processed by/ checklist: list of file systems checklist(4)
protocols, protocols: list of Internet protocols(4N)

services, services: list of Internet services(4N)
network, hosts: list of nodes on hosts(4N)

5/86 - 10 -

by terminal/ t tytype: list of terminal types ttytype(4)
uuname: list UUCP system names. . . uuname(lC)

handle variable argument list, varargs: varargs(5)
of a varargs argument list, / format ted output . . vprintf(3S)

on a socket, listen: listen for connections . . . listen(2N)
connections on a / listen: listen for listen(2N)

/construct argument list(s) and execute/ xargs(l)
qlist: print out file lists from proto file;/ . . . qlist(l)

move files, cp, In, mv: copy, link or cp(l)
ldeeprom: load EEPROM ldeeprom(lM)

drivers: loadable device drivers. . . drivers(7)
mktunedrv: make a loadable driver for/ mktunedrv(lM)

lddrv: manage loadable drivers. Iddrv(lM)
drvbind: access loadable drivers lddrv(2)

asctime, tzset:/ ctime, localtime, gmtime ctime(3C)
as the / conlocate: locate a terminal to use . . conlocate(lM)

for command, path: locate executable file pa th(l)
end, etext, edata: last locations in program. . . . end(3C)

data in memory, plock: lock process, text, or plock(2)
files, lockf: record locking on . . lockf(3C)

access to regions of a / locking: exclusive locking(2)
lockf: record locking on files lockf(3C)

gamma: log gamma function gamma(3M)
newgrp: log in to a new group. . . . newgrp(l)

exponential,/ exp, log, loglO, pow, sqrt: exp(3M)
exponential,/ exp, log, loglO, pow, sqrt: exp(3M)

/pow, sqrt: exponential, logarithm, power, square/ . exp(3M)
uulog: output logfile information uulog(lC)

process a report of logged errors, errpt: errpt(lM)
network, rwho: who is logged in on local rwho(lN)

getlogin: get login name getlogin(3C)
logname: get login name logname(l)

cuserid: get character login name of the user. . . . cuserid(3S)
logname: return login name of user logname(3X)
passwd: change login password passwd(l)

rlogin: remote login rlogin(lN)
rlogind: remote login server rlogind(lNM)

login: sign on login(l)
a C shell environment at login time, /sett ing up . . . cprofile(4)

up an environment at login time, /sett ing profile(4)
logname: get login name. . . logname(l)

name of user, logname: return login . . . logname(3X)
/164a: convert between long integer and base-64/ . a641(3C)

sputl, sgetl: access long integer data in a / . . . sputl(3X)
3-byte integers and long integers, /between . . 13tol(3C)

width ou tpu t / fold: fold long lines for finite fold(l)
setjmp, longjmp: non-local goto. . . setjmp(3C)

relation for an object/ lorder: find ordering lorder(l)
make a lost+found directory for fsck mklost+found(lM)

nice: run a command at low priority nice(l)
requests to an LP line/ Ip, cancel: send/cancel . . . lp(l)

/requests to an LP line printer lp(l)
interface, lp: parallel printer lp(7)

disable: enable/disable LP printers, enable, enable(l)
/lpmove: s ta r t / s top the LP request scheduler and/ . lpsched(lM)

reject: allow/prevent LP requests, accept, accept(lM)
lpadmin: configure the LP spooling system lpadmin(lM)

5/86 - 10 -

lpstat: print LP status information. . . . lpstat(l)
LP spooling system, lpadmin: configure the . . . lpadmin(lM)

L P / lpsched, lpshut, lpmove: s ta r t / s top the . . . lpsched(lM)
spooler, lpr: line printer lpr(l)

s t a r t / s top the L P / lpsched, lpshut, lpmove: . . lpsched(lM)
printer options, lpset: set parallel line . . . lpset(lM)

s tar t / s top the / lpsched, lpshut, lpmove: lpsched(lM)
information, lpstat: print LP status . . . lpstat(l)

drand48, erand48, lrand48, nrand48,/ drand48(3C)
directory. Is: list contents of ls(l)

search and update, lsearch, lfind: linear lsearch(3C)
file pointer, lseek: move read/write . . . lseek(2)

3-byte integers/ 13tol, ltol3: convert between . . . 13tol(3C)
m4: macro processor. . . . m4(l)

values, values: machine-dependent values(5)
/long integer da ta in a machine-independent/ . . . sputl(3X)

formatting a / mptx: the macro package for mptx(5)
formatt ing/ mm: the MM macro package for mm(5)

typesetting/ mv: a troff macro package for mv(5)
m4: macro processor m4(l)

entries in this / man: macros for formatting . . . man(5)
formatted with the MM macros, /documents mm(l)

mail to users or read mail, mail, rmail: send . . . mail(l)
to users or read mail, mail, rmail: send mail . . . mail(l)

mail, mail, rmail: send mail to users or read mail(l)
message processing/ mailx: interactive mailx(l)
/ free, realloc, calloc: main memory allocator. . . malloc(3C)

/mallopt, mallinfo: fast main memory allocator. . . malloc(3X)
regenerate groups/ make: maintain, update, and . . . make(l)

iv: initialize and maintain volume iv(l)
ar: archive and library maintainer for portable/ . . ar(l)

an SCCS file, delta: make a delta (change) to . . delta(l)
mkdir, mkdirs: make a directory mkdir(l)

special o r / mknod: make a directory, or a . . . mknod(2)
mktunedrv: make a loadable driver/ . . mktunedrv(lM)

mklost+found: make a lost+found directory/ mklost+found(lM)
mktemp: make a unique file name. . . mktemp(3C)

object file, mkifile: make an ifile from an . . . mkifile(lM)
and regenerate groups/ make: maintain, update, . . make(l)

mkhosts: make node name commands. mkhosts(lNM)
banner: make posters banner(l)

terminal/ script: make typescript of script(l)
memory/ /calloc, mallopt, mallinfo: fast main malloc(3X)

calloc: main memory/ malloc, free, realloc malloc(3C)
calloc, mallopt,/ malloc, free, realloc, malloc(3X)

/free, realloc, calloc, mallopt, mallinfo: fast / . . malloc(3X)
formatting entries in/ man: macros for man(5)

entries in this manual, man, manprog: print man(l)
/ t f ind , tdelete, twalk: manage binary search/ . . . tsearch(3C)

/hcreate, hdestroy: manage hash search/ . . . hsearch(3C)
lddrv: manage loadable drivers. . . lddrv(lM)

form-based network management, netman: . . . netman(lNM)
window: window management primitives. . . window(7)

wm: window management wm(l)
shl: shell layer manager shl(l)

fwtmp, wtmpfix: manipulate connect/ fwtmp(lM)
/ldlinit, ldlitem: manipulate line number/ . . ldlread(3X)

5/86 - 10 -

frexp, ldexp, modf: manipulate parts o f / frexp(3C)
tables, route: manually manipulate the routing . . . route(lNM)

Blocks (VHB). libdev: manipulate Volume Home . libdev(3X)
/ Internet address manipulation routines. . . . inet(3N)

in this manual, man, manprog: print entries . . . man(l)
the cat files for the manual, catman: create . . catman(l)
print entries in this manual, man, manprog: . . man(l)

entries in this manual, / for formatting . . man(5)
routing tables, route: manually manipulate the . . route(lNM)

terminal input / rsterm: manually start and stop . . rsterm(lM)
set. ascii: map of ASCII character . . ascii(5)

files, diffmk: mark differences between . . diffmk(l)
set file-creation mode mask, umask: umask(l)

and get file creation mask, umask: set umask(2)
information/ master: master device master(4)

information table, master: master device . . . master(4)
expression compile and match routines, /regular . . regexp(5)

constants, math: math functions and math(5)
constants, math: math functions and . math(5)

/neqn, checkeq: format mathematical text for/ . . . eqn(l)
function, matherr: error-handling . . matherr(3M)

maze: generate a maze. . . . maze(6)
maze: generate a maze maze(6)

vax: provide t r u t h / mc68k, p d p l l , u3b, u3b5, . machid(l)
interface, mem, kmem: system memory mem(7)

memcpy, memset: memory/ memccpy, memchr, memcmp, memory(3C)
memset: memory/ memccpy, memchr, memcmp, memcpy, memory(3C)
memory/ memccpy, memchr, memcmp, memcpy, memset: memory(3C)
memccpy, memchr, memcmp, memcpy, memset: memory/ memory(3C)

realloc, calloc: main memory allocator, /free, . . malloc(3C)
/mallinfo: fast main memory allocator malloc(3X)

shmctl: shared memory control/ shmctl(2)
semaphore set or shared memory id. /queue ipcrm(l)

mem, kmem: system memory interface mem(7)
/memcmp, memcpy, memset: memory operations memory(3C)

shmop: shared memory operations shmop(2)
text, or da ta in memory, /lock process, . . plock(2)

shmget: get shared memory segment. shmget(2)
memchr, memcmp, memcpy, memset: memory/ memccpy, memory(3C)

sort: sort and/or merge files sort(l)
accounting/ acctmerg: merge or add total acctmerg(lM)
several files or / paste: merge same lines of paste(l)

messages, mesg: permit or deny . . . mesg(l)
operations, msgctl: message control msgctl(2)
/recvfrom: receive a message from a socket. . . . recv(2N)

msgop: message operations msgop(2)
mailx: interactive message processing/ mailx(l)

msgget: get message queue msgget(2)
set o r / ipcrm: remove a message queue, semaphore . ipcrm(l)

send, sendto: send a message to a socket send(2N)
mesg: permit or deny messages mesg(l)

sys_nerr: system error messages. /sys_errlist, . . . perror(3C)
directory, mkdir, mkdirs: make a . . . mkdir(l)

directory, mkdir, mkdirs: make a mkdir(l)
system, mkfs: construct a file . . . mkfs(lM)

/software using the mkfs(l) proto file/ qinstall(l)
commands, mkhosts: make node name . mkhosts(lNM)

5/86 - 10 -

from an object file, mkifile: make an ifile . . . mkifile(lM)
lost+found directory/ mklost+found: make a • . . mklost+found(lM)

file, mknod: build special mknod(lM)
or a special or / mknod: make a directory, . mknod(2)

file name, mktemp: make a unique . . mktemp(3C)
relocate a P T or G T / mktpy, mvtpy: install or . . mktpy(l)

driver for tunable/ mktunedrv: make a loadable mktunedrv(lM)
format t ing/ mm: the MM macro package for . . mm(5)

formatted with the MM macros, /documents . mm(l)
print/check documents/ mm, osdd, checkmm: . . . mm(l)

for formatt ing/ mm: the MM macro package mm(5)
documents, view graphs,/ mmt, mvt: typeset mmt(l)

system table, mnt tab: mounted file . . . mnttab(4)
chmod: change mode chmod(l)

umask: set file-creation mode mask umask(l)
chmod: change mode of file chmod(2)

/set terminal type, modes, speed, and line/ . . getty(lM)
/set terminal type, modes, speed, and line/ . . uugetty(lM)

o f / frexp, ldexp, modf: manipulate parts . . frexp(3C)
touch: update access and modification times of a / . . touch(l)

/set file access and modification times utime(2)
/dodisk, lastlogin, monacct, nulladm,/ acctsh(lM)
execution profile, monitor: prepare monitor(3C)

uusub: monitor uucp network. . . . uusub(lM)
moo: guessing game moo(6)

perusal, more, page: text more(l)
mount: mount a file system mount(2)

system, mount, umount: mount and dismount file . . mount(lM)
system, mount: mount a file mount(2)

setmnt: establish mount table setmnt(lM)
dismount file system, mount, umount: mount and mount(lM)

table, mnttab: mounted file system mnttab(4)
mvdir: move a directory mvdir(lM)

In, mv: copy, link or move files, cp, cp(l)
pointer, lseek: move read/write file lseek(2)

LP request scheduler and move requests, / t he lpsched(lM)
for formatting a / mptx: the macro package . . mptx(5)

/ lrand48, nrand48, mrand48, jrand48,/ drand48(3C)
operations, msgctl: message control . . msgctl(2)

queue, msgget: get message msgget(2)
operations, msgop: message msgop(2)

package for typesetting/ mv: a troff macro mv(5)
files, cp, In, mv: copy, link or move . . . cp(l)

mvdir: move a directory. . . mvdir(lM)
view graphs, and / mmt, mvt: typeset documents, . . mmt(l)

relocate a P T or / mktpy, mvtpy: install or mktpy(l)
from i-numbers. ncheck: generate names . . ncheck(lM)

mathematical text / eqn, neqn, checkeq: format . . . eqn(l)
definitions for eqn and neqn. /special character . . eqnchar(5)
network management, netman: form-based netman(lNM)

status, netstat: show network . . . nets tat(lN)
/values between host and network byte order byteorder(3N)

/endnetent : get network entry getnetent(3N)
/endhostent : get network host entry gethostent(3N)

hosts: list of nodes on network hosts(4N)
ifconfig: configure network interface/ ifconfig(lNM)

detach serial lines as network interfaces, / and . . slattach(lNM)

5/86 - 10 -

netman: form-based network management. . . . netman(lNM)
s ta tus of nodes on local network, /display ruptime(lN)

is logged in on local network, rwho: who rwho(lN)
netstat: show network status nets ta t (lN)

stat : statistical network useful with/ . . . s ta t (lG)
uucpd: network uucp server. . . . uucpd(lNM)

uusub: monitor uucp network uusub(lM)
numbers for the/ networks: names and . . . networks(4N)

format of a text file, newform: change the newform(l)
group, newgrp: log in to a new . . newgrp(l)

news: print news items news(l)
news: print news items. . . news(l)

a process, nice: change priority of . . . nice(2)
process by changing nice, /of running renice(l)

low priority, nice: run a command at . . nice(l)
filter, nl: line numbering nl(l)

name list, nlist: get entries from . . . nlist(3C)
common object file, nm: print name list of . . . nm(l)

mkhosts: make node name commands. . . . mkhosts(lNM)
Internet address from node name, /set DARPA . setaddr(lNM)

rwhod: node status server rwhod(lNM)
/display status of nodes on local network. . . ruptime(lN)

hosts: list of nodes on network hosts(4N)
immune to hangups and / nohup: run a command . . nohup(l)

setjmp, longjmp: non-local goto setjmp(3C)
/erand48, lrand48, nrand48, mrand48,/ drand48(3C)

nroff: format text nroff(l)
mathematical text for nroff or troff. / format . . . eqn(l)
tbl: format tables for nroff or troff tbl(l)
eqn/ deroff: remove nroff / t roff , tbl, and deroff(l)

values/ htonl, htons, ntohl, ntohs: convert byteorder(3N)
htonl, htons, ntohl, ntohs: convert values/ . . . byteorder(3N)

null: the null file null(7)
null: the null file null(7)

/lastlogin, monacct, nulladm, prctmp,/ acctsh(lM)
nl: line numbering filter n ' (l)

number: convert Arabic numerals to English number(6)
/access graphical and numerical commands. . . . graphics(lG)
to / convert: convert object and archive files . . . convert(l)

routines, ldfcn: common object file access ldfcn(4)
selected parts of an object file, dump: dump . . dump(l)

/ ldaopen: open a common object file for reading. . . . ldopen(3X)
/entries of a common object file function ldlread(3X)

ldaclose: close a common object file, ldclose ldclose(3X)
file header of a common object file, /read the . . . ldfhread(3X)

of a section of a common object file, /entries ldlseek(3X)
file header of a common object file, /optional . . . ldohseek(3X)

of a section of a common object file, /entries ldrseek(3X)
header of a common object file, /section ldshread(3X)

/section of a common object file ldsseek(3X)
table entry of a common object file, / a symbol . . . ldtbindex(3X)
table entry of a common object file, /symbol ldtbread(3X)

symbol table of a common object file, / t o the ldtbseek(3X)
entries in a common object file, /number linenum(4)

make an ifile from an object file, mkifile: mkifile(lM)
name list of common object file, nm: print . . . nm(l)

information for a common object file, /relocation . . . reloc(4)

5/86 - 10 -

header for a common object file, /section scnhdr(4)
/ f rom a common object file strip(l)

/symbol name for common object file symbol table/ . . ldgetname(3X)
format, syms: common object file symbol table . . syms(4)
file header for common object files, filehdr: filehdr(4)

cpset: install object files in binary/ . . . cpset(lM)
link editor for common object files. Id: ld(l)

section sizes of common object files, /pr in t size(l)
ordering relation for an object library, /find lorder(l)

od: octal dump od(l)
functions, ocurse: optimized screen . . ocurse(3X)

od: octal dump od(l)
file/ ldopen, ldaopen: open a common object . . . ldopen(3X)

i-node. openi: open a file specified by . . . openi(2)
fopen, freopen, fdopen: open a stream fopen(3S)

dup: duplicate an open file descriptor dup(2)
writing, open: open for reading or open(2)

or writing, open: open for reading . . . open(2)
specified by i-node. openi: open a file openi(2)

profiler, prf: operating system prf(7)
/prfdc, prfsnap, prfpr: operating system/ profiler(lM)

memcpy, memset: memory operations, /memcmp, . . . memory(3C)
msgctl: message control operations msgctl(2)

msgop: message operations msgop(2)
semaphore control operations, semctl: semctl(2)
semop: semaphore operations semop(2)

shared memory control operations, shmctl: shmctl(2)
shmop: shared memory operations shmop(2)

strcspn, strtok: string operations, /s trspn, string(3C)
terminal independent operations, / tpu ts : termcap(3X)

relational database operator, join: join(l)
/copy file systems for optimal access time dcopy(lM)

/ C R T screen handling and optimization package. . . . curses(3X)
functions, ocurse: optimized screen ocurse(3X)

argument / getopt: get option letter from getopt(3C)
a / ldohseek: seek to the optional file header of . . . ldohseek(3X)

fcntl: file control options fcntl(5)
stty: set the options for a terminal. . . . s t ty(l)

getopt: parse command options getopt(l)
parallel line printer options, lpset: set lpset(lM)

/setsockopt: get and set options on sockets getsockopt(2N)
object / lorder: find ordering relation for an . . lorder(l)

/or a special or ordinary file mknod(2)
pr in t /check/ mm, osdd, checkmm: mm(l)

dial: establish an out-going terminal line/ . . dial(3C)
and link editor output , /assembler a.out(4)

lines for finite width output device, /long . . . fold(l)
information, uulog: output logfile uulog(lC)

/p r in t formatted output of a varargs/ vprintf(3S)
sprintf: print formatted output , / fpr intf printf(3S)
stop terminal input and output , / s t a r t and rsterm(lM)

and / /accton, acctwtmp: overview of accounting . . . acct(lM)
file, chown: change owner and group of a . . . chown(2)

chown, chgrp: change owner or group chown(l)
compress and expand/ pack, peat, unpack: pack(l)

and optimization package, /handling curses(3X)
mptx: the macro package for formatting a/ . mptx(5)

5/86 - 10 -

mm: the MM macro package for formatt ing/ . . mm(5)
view/ mv: a troff macro package for typesetting . . mv(5)

system activity report package. /sa2, sadc: sar(lM)
buffered inpu t /ou tpu t package, /s tandard stdio(3S)

communication package, /interprocess . . . stdipc(3C)
more, page: text perusal more(l)

TEKTRONIX 4014/ 4014: paginator for the 4014(1)
options, lpset: set parallel line printer lpset(lM)

interface, lp: parallel printer lp(7)
772/ xmset: set drive parameters for Xylogics . . xmset(lM)

network interface parameters, /configure . . ifconfig(lNM)
/process group, and parent process IDs getpid(2)

getopt: parse command options. . . getopt(l)
password, passwd: change login . . . passwd(l)

passwd: password file. . . . passwd(4)
/endpwent, fgetpwent: get password file entry getpwent(3C)

putpwent: write password file entry putpwent(3C)
passwd: password file passwd(4)

getpass: read a password getpass(3C)
passwd: change login password passwd(l)

checkers, pwck, grpck: password/group file pwck(lM)
of several files or / paste: merge same lines . . paste(l)
file for command, path: locate executable . . . pa th(l)

deliver portions of path names, /dirname: . . basename(l)
working/ getcwd: get path-name of current . . . getcwd(3C)

search a file for a pattern, /egrep, fgrep: . . . grep(l)
processing/ awk: pattern scanning and . . . awk(l)

until signal, pause: suspend process . . . pause(2)
and expand files, pack, peat, unpack: compress . . pack(l)

to / f rom a / popen, pclose: initiate pipe popen(3S)
provide t r u th / mc68k, p d p l l , u3b, u3b5, vax: . . . machid(l)
get name of connected peer, getpeername: getpeername(2N)

the UUCP directories and Permissions file, /check . . uucheck(lM)
mesg: permit or deny messages. . . mesg(l)

package for formatting a permuted index, /macro . . mptx(5)
ptx: permuted index ptx(l)

file format, acct: per-process accounting . . . acct(4)
/command summary from per-process accounting/ . . acctcms(lM)

sys_errlist, sys_nerr:/ perror, errno, perror(3C)
soft-copy/ pg: file perusal filter for pg(l)

more, page: text perusal more(l)
for soft-copy/ pg: file perusal filter pg(l)

split: split a file into pieces split(l)
interprocess channel, pipe: create an pipe(2)

tee: pipe fitting tee(l)
popen, pclose: initiate pipe to / f rom a process. . . popen(3S)

fish: play "Go Fish" fish(6)
text, or da ta in/ plock: lock process plock(2)

interface, plot: graphics plot(4)
subroutines, plot: graphics interface . . . plot(3X)

/ftell: reposition a file pointer in a stream fseek(3S)
move read/write file pointer, lseek: lseek(2)

pipe to / f rom a process, popen, pclose: initiate . . . popen(3S)
library maintainer for portable archives, / and . . ar(l)

/dirname: deliver portions of path names. . . basename(l)
banner: make posters banner(l)

exp, log, loglO, pow, sqrt: exponential,/ . . exp(3M)

5/86 - 10 -

/exponential, logarithm, power, square root / exp(3M)
brc, bcheckrc, rc, powerfail, drvload:/ brc(lM)

pr: print files pr(l)
/monacct , nulladm, prctmp, prdaily,/ acctsh(lM)

/nulladm, prctmp, prdaily, pr tacct , / acctsh(lM)
text for / cw, checkcw: prepare constant-width . . cw(l)

profile, monitor: prepare execution monitor(3C)
cpp: the C language preprocessor cpp(l)

/determine C language preprocessor include/ . . . includes(l)
file, unget: undo a previous get of an SCCS . . unget(l)

profiler, prf: operating system . . . prf(7)
prfld, prfstat, prfdc, prfsnap, prfpr: / . . . profiler(lM)

prfsnap, prfpr: / prfld, prfstat , prfdc, profiler(lM)
/pr fs ta t , prfdc, prfsnap, prfpr: operating system/ . . profiler(lM)

prfld, prfstat , prfdc, prfsnap, prfpr: / profiler(lM)
prfpr: operating/ prfld, prfstat , prfdc, prfsnap, . . . profiler(lM)

o f / gps: graphical primitive string, format . . gps(4)
types, types: primitive system data . . . types(5)

window management primitives, window: window(7)
hopefully/ fortune: print a random, fortune(6)

prs: print an SCCS file prs(l)
date: print and set the date. . . . date(l)

cal: print calendar cal(l)
count of a file, sum: print checksum and block . sum(l)

editing activity, sact: print current SCCS file . . sact(l)
manual, man, manprog: print entries in this man(l)

cat: concatenate and print files cat(l)
pr: print files pr(l)

of / /vfpr intf , vsprintf: print formatted output . . vprintf(3S)
/ fpr int f , sprintf: print formatted output . . . printf(3S)

information, lpstat: print LP status lpstat(l)
common object file, nm: print name list of nm(l)

CTIX system, uname: print name of current . . . uname(l)
news: print news items news(l)

from proto file;/ qlist: print out file lists qlist(l)
blocks/ bcheck: print out the list of bcheck(lM)

acctcom: search and print process accounting/ . acctcom(l)
t rp t : print protocol trace. t rp t (lNM)

common object / size: print section sizes of size(l)
and names, id: print user and group IDs . . id(l)

mm, osdd, checkmm: print/check documents/ . . mm(l)
Ip: parallel printer interface lp(7)

requests to an LP line printer, /send/cancel . . . lp(l)
a P T o r G T l o c a l printer, /or relocate mktpy(l)

lpset: set parallel line printer options lpset(lM)
lpr: line printer spooler lpr(l)

enable/disable LP printers, /disable: enabie(l)
sprintf: pr int / printf, fprintf , printf(3S)

run a command at low priority, nice: nice(l)
nice: change priority of a process nice(2)

process/ renice: alter priority of running renice(l)
logged errors, errpt: process a report of errpt(lM)

acct: enable or disable process accounting acct(2)
acctprcl , acctprc2: process accounting acctprc(lM)

/search and print process accounting/ acctcom(l)
alarm: set a process alarm clock alarm(2)

process/ times: get process and child times(2)

5/86 - 10 -

/priority of running process by changing/ . . . renice(l)
init, telinit: process control/ init(lM)

/ t ime a command; report process data and system/ . timex(l)
exit, _exit: terminate process exit(2)

fork: create a new process fork(2)
/getppid: get process, process group, and / getpid(2)

setpgrp: set process group ID setpgrp(2)
group, and parent process IDs. /process . . . getpid(2)
script for the init process, inittab: inittab(4)

kill: terminate a process kill(l)
change priority of a process, nice: nice(2)

kill: send a signal to a process or a group of / . . . kill(2)
initiate pipe to / f rom a process, popen, pclose: . . . popen(3S)
/getpgrp, getppid: get process, process group,/ . . getpid(2)

ps: report process s tatus ps(l)
in memory, plock: lock process, text, or data . . . plock(2)

get process and child process times, times: . . . times(2)
wait: wait for child process to stop or / wait(2)

ptrace: process trace ptrace(2)
pause: suspend process until signal pause(2)

await completion of process, wait: wait(l)
/list of file systems processed by fsck checklist(4)

a process or a group of processes, / a signal to . . . kill(2)
killa.ll: kill all active processes killall(lM)

or file/ fuser: identify processes using a file fuser(lM)
/pa t t e rn scanning and processing language awk(l)

halt: terminate all processing, shutdown, . . . shutdown(lM)
/interactive message processing system mailx(l)

m4: macro processor. . m4(l)
t ru th value about your processor type, /provide . . machid(l)

data, prof: display profile prof(l)
function, prof: profile within a prof(5)

profile, profil: execution time . . . profil(2)
prof: display profile da ta prof(l)

prepare execution profile, monitor: monitor(3C)
profil: execution time profile profil(2)

environment at login/ profile: setting up an . . . profile(4)
function, prof: profile within a prof(5)

prf: operating system profiler P r t 7)
prfpr: operating system profiler, /prfsnap, profiler(lM)

sadp: disk access profiler sadp(lM)
/command programming language. . . sh(l)

/using the mkfs(l) proto file database qinstall(l)
/ ou t file lists from proto file; set links/ qlist(l)
/endprotoent : get protocol entry getprotoent(3N)

Internet File Transfer Protocol server. /DARPA . f tpd(lNM)
telnetd: DARPA TELNET protocol server telnetd(lNM)

Trivial File Transfer Protocol server. /DARPA . t f tpd(lNM)
user interface to TELNET protocol, telnet: telnet(lN)

to the DARPA T F T P protocol, /interface t f tp (lN)
t rpt : print protocol trace t rp t (lNM)

ACU/modem calling protocols. Dialers: Dialers(5)
Internet protocols, protocols: list of protocols(4N)

list of Internet protocols, protocols: protocols(4N)
update: provide disk/ update(lM)

facts, arithmetic: provide drill in number . . arithmetic(6)
/ p d p l l , u3b, u3b5, vax: provide t ru th value/ machid(l)

5/86 - 10 -

true, false: provide truth values. . . . true(l)
prs: print an SCCS file. . . prs(l)

/prc tmp, prdaily, prtacct, runacct,/ acctsh(lM)
status, ps: report process ps(l)

sxt: pseudo-device driver. . . . sxt(7)
/uniformly distributed pseudo-random numbers. . . drand48(3C)

/install or relocate a P T or GT local printer. . . mktpy(l)
download, tdl, gtdl, ptdl: RS-232 terminal . . . tdl(l)

ptrace: process trace. . . . ptrace(2)
ptx: permuted index. . . . ptx(l)

input stream, ungetc: push character back into . . ungetc(3S)
putw: put character or/ putc, putchar, fputc, putc(3S)
put character or / putc, putchar, fputc, putw: . . . putc(3S)

value to environment, putenv: change or add . . . putenv(3C)
file entry, putpwent: write password . putpwent(3C)

string on a stream, puts, fputs: put a puts(3S)
/getutid, getutline, pututline, setutent , / getut(3C)

putc, putchar, fputc, putw: put character or/ . . putc(3S)
password/group file/ pwck, grpck: pwck(lM)

name, pwd: working directory . . pwd(l)
tape, qic: interface for QIC . . . qic(7)

qic: interface for QIC tape qic(7)
verify software using/ qinstall: install and qinstall(l)
lists from proto file;/ qlist: print out file qlist(l)

qsort: quicker sort qsort(3C)
tput : query terminfo database. . . tput (l)

msgget: get message queue msgget(2)
ipcrm: remove a message queue, semaphore set or/ . . ipcrm(l)

qsort: quicker sort qsort(3C)
immune to hangups and quits, / run a command . . nohup(l)

knowledge, quiz: test your quiz(6)
random-number/ rand, srand: simple rand(3C)

fortune: print a random, hopefully/ fortune(6)
rand, srand: simple random-number generator. . rand(3C)

fsplit: split FORTRAN, ratfor, or efl files fsplit(l)
system/ brc, bcheckrc, rc, powerfail, drvload: . . . brc(lM)

command execution, rcmd: remote shell rcmd(lN)
ruserok: routines for/ rcmd, rresvport rcmd(3N)

rep: remote file copy. . . . rcp(lN)
getpass: read a password getpass(3C)

table entry/ ldtbread: read an indexed symbol . . ldtbread(3X)
ldshread, ldnshread: read an indexed/named/ . . ldshread(3X)

read: read from file read(2)
send mail to users or read mail, mail, rmail: . . . mail(l)

line: read one line line(l)
read: read from file read(2)

of a member/ ldahread: read the archive header . . ldahread(3X)
a common/ ldfhread: read the file header of . . . ldfhread(3X)

a common object file for reading, /ldaopen: open . . ldopen(3X)
open: open for reading or writing open(2)

lseek: move read/write file pointer. . . . lseek(2)
memory/ malloc, free, realloc, calloc: main malloc(3C)
mallopt,/ malloc, free, realloc, calloc, malloc(3X)

system, reboot: reboot the reboot(lM)
reboot: reboot the system reboot(lM)

/specify what to do upon receipt of a signal signal(2)
socket, recv, reevfrom: receive a message from a . . recv(2N)

5/86 - 10 -

lockf: record locking on files. . . . lockf(3C)
per-process accounting records, /summary from . . acctcms(lM)

errdead: extract error records and s ta tus / errdead(lM)
connect accounting records, /manipulate . . . fwtmp(lM)
backup tape, free: recover files from a frec(lM)
a message from a / recv, reevfrom: receive . . . recv(2N)

message from a / recv, reevfrom: receive a recv(2N)
ed, red: text editor e d(l)

and execute regular/ regcmp, regex: compile . . . regcmp(3X)
expression compile, regcmp: regular regcmp(l)

/maintain, update, and regenerate groups o f / . . . make(l)
execute regular/ regcmp, regex: compile and regcmp(3X)

expression compile and / regexp: regular regexp(5)
/exclusive access to regions of a file locking(2)

compile and / regexp: regular expression regexp(5)
compile, regcmp: regular expression regcmp(l)

/compile and execute regular expression regcmp(3X)
requests, accept, reject: allow/prevent LP . . accept(lM)

two/ comm: select or reject lines common to . . . comm(l)
lorder: find ordering relation for an object / . . . lorder(l)

operator, join: relational database join(l)
information for a / reloc: relocation reloc(4)

mktpy, mvtpy: install or relocate a P T or G T / . . . mktpy(l)
/Idnrseek: seek to relocation entries of a / . . . ldrseek(3X)

for a common/ reloc: relocation information . . . reloc(4)
/ fabs: floor, ceiling, remainder, absolute/ floor(3M)

calendar: reminder service calendar(l)
uux: CTEX to CTIX remote command/ uux(lC)

returning a stream to a remote command, /for . . . rcmd(3N)
uuxqt: execute remote command requests. . uuxqt(lM)

return stream to a remote command, rexec: . . rexec(3N)
rhosts: remote equivalent users. . . rhosts(4N)
rexecd: remote execution server. . . rexecd(lNM)

rep: remote file copy rcp(lN)
rlogin: remote login rlogin(lN)

rlogind: remote login server rlogind(lNM)
execution, remd: remote shell command . . . rcmd(lN)

rshd: remote shell server rshd(lNM)
Uutry: try to contact a remote system with/ Uutry(lM)

ct: spawn getty to a remote terminal ct(lC)
SCCS file, rmdel: remove a delta from an . . rmdel(l)

semaphore set o r / ipcrm: remove a message queue, . . ipcrm(l)
unlink: remove directory entry. . . unlink(2)

disk, dismount: remove exchangeable dismount(l)
directories, rm, rmdir: remove files or r m (l)

and eqn/ deroff: remove nroff / t roff , tbl, . . . deroff(l)
of running process by/ renice: alter priority renice(l)

check and interactive repair, /consistency fsck(lM)
file, uniq: report repeated lines in a uniq(l)

clock: report CPU time used. . . . clock(3C)
fsize: report file size fsize(l)

communication/ ipes: report inter-process ipcs(l)
disk blocks, df: report number of free . . . df(lM)
errpt: process a report of logged errors. . . . errpt(lM)

sadc: system activity report package. /sa2, . . . sar(lM)
timex: time a command; report process data and / . . t imex(l)

ps: report process status. . . . ps(l)

5/86 - 10 -

a file, uniq: report repeated lines in . . uniq(l)
sar: system activity reporter sar(l)
fseek, rewind, ftell: reposition a file/ fseek(3S)

move/ / s t a r t / s t op the LP request scheduler and . . . lpsched(lM)
reject: allow/prevent LP requests, accept accept(lM)

scheduler and move requests. /LP request . . . lpsched(lM)
syslocal: special system requests syslocal(2)
lp, cancel: send/cancel requests to an LP line/ . . . lp(l)

execute remote command requests, uuxqt: uuxqt(lM)
common/ ldgetname: retrieve symbol name for . . ldgetname(3X)

value, abs: return integer absolute . . . abs(3C)
user, logname: return login name of logname(3X)

remote command, rexec: return stream to a rexec(3N)
environment/ getenv: return value for getenv(3C)

call, s tat : data returned by stat system . . stat(5)
/ruserok: routines for returning a stream to a / . . rcmd(3N)

col: filter reverse line-feeds col(l)
reposition a / fseek, rewind, ftell: fseek(3S)
/create a new file or rewrite an existing one. . . creat(2)
a remote command, rexec: return stream to . . . rexec(3N)

server, rexecd: remote execution . . rexecd(lNM)
equivalent users, rhosts: remote rhosts(4N)

rlogin: remote login rlogin(lN)
server, rlogind: remote login rlogind(XNM)

or directories, rm, rmdir: remove files . . . rm(l)
users or read/ mail, rmail: send mail to mail(l)

from an SCCS file, rmdel: remove a delta . . . rmdel(l)
directories, rm, rmdir: remove files or . . . rm(l)

chroot: change root directory chroot(2)
command, chroot: change root directory for a chroot(lM)
/logarithm, power, square root functions exp(3M)

manipulate the routing/ route: manually route(lNM)
/ t d : graphical device routines and filters gdev(lG)

/rresvport, ruserok: routines for returning a / . . rcmd(3N)
address manipulation routines. / Internet inet(3N)

object file access routines, ldfcn: common . . ldfcn(4)
compile and match routines, /expression . . . regexp(5)

table of contents routines, /graphical toc(lG)
manually manipulate the routing tables, route: . . . route(lNM)

routines for / rcmd, rresvport, ruserok: rcmd(3N)
/ terminal 's local RS-232 channels tp(7)

tdl, gtdl, ptdl: RS-232 terminal/ tdl(l)
s tandard/res t r ic ted/ sh, rsh: shell, the s M l)

server, rshd: remote shell rshd(lNM)
and stop terminal input / rsterm: manually start . . . rsterm(lM)

priority, nice: run a command at low . . . nice(l)
hangups and / nohup: run a command immune to . nohup(l)

runacct: run daily accounting. . . . runacct(lM)
accounting, runacct: run daily runacct(lM)

/prdaily, prtacct, runacct, shutacct , / acctsh(lM)
/a l ter priority of running process by/ renice(l)

of nodes on local/ ruptime: display status . . . ruptime(lN)
rcmd, rresvport, ruserok: routines for/ . . . rcmd(3N)

on local network, rwho: who is logged in . . . rwho(lN)
server, rwhod: node status rwhod(lNM)

activity report / sa l , sa2, sadc: system . . . sar(lM)
activity report / sa l , sa2, sadc: system sar(lM)

5/86 - 10 -

file editing activity, sact: print current SCCS . . sact(l)
report / sa l , sa2, sadc: system activity sar(lM)

profiler, sadp: disk access sadp(lM)
graph, sag: system activity sag(lG)

reporter, sar: system activity sar(l)
segment space/ brk, sbrk: change data brk(2)

convert format ted / scanf, fscanf, sscanf: scanf(3S)
bfs: big file scanner bfs(l)

language, awk: pattern scanning and processing . . awk(l)
delta commentary of an SCCS delta, /change the . cdc(l)

comb: combine SCCS deltas comb(l)
a delta (change) to an SCCS file, delta: make . . delta(l)

sact: print current SCCS file editing/ sact(l)
get: get a version of an SCCS file get(l)

prs: print an SCCS file prs(l)
remove a delta from an SCCS file, rmdel: rmdel(l)

two versions of an SCCS file, /compare . . . sccsdiff(l)
sccsfile: format of SCCS file sccsfile(4)

a previous get of an SCCS file, unget: undo . . unget(l)
val: validate SCCS file val(l)

create and administer SCCS files, admin: admin(l)
what: identify SCCS files what(l)

versions of an SCCS/ sccsdiff: compare two . . . sccsdiff(l)
file, sccsfile: format of SCCS . . sccsfile(4)

/ t he LP request scheduler and move/ lpsched(lM)
system, uusched: the scheduler for the UUCP . . uusched(lM)
for a common object/ scnhdr: section header . . . scnhdr(4)

clear: clear terminal screen clear(l)
ocurse: optimized screen functions ocurse(3X)

curses: C R T screen handling and / . . . curses(3X)
display editor/ vi: screen-oriented (visual) . . . vi(l)

process, inittab: script for the init inittab(4)
of terminal session, script: make typescript . . . script(l)

initialization shell scripts, /system bre(lM)
sdb: symbolic debugger. . . sdb(l)

difference program, sdiff: side-by-side sdiff(l)
grep, egrep, fgrep: search a file for a / grep(l)

bsearch: binary search a sorted table. . . . bsearch(3C)
accounting/ acctcom: search and print process . . acctcom(l)

lsearch, lfind: linear search and update lsearch(3C)
hdestroy: manage hash search tables, /hcreate, . . hsearch(3C)

twalk: manage binary search trees, / tdelete, . . . tsearch(3C)
common object / scnhdr: section header for a scnhdr(4)
/read an indexed/named section header of a / ldshread(3X)
line number entries of a section of a common/ / t o . ldlseek(3X)

relocation entries of a section of a common/ / t o . ldrseek(3X)
/ t o an indexed/named section of a common/ . . . ldsseek(3X)

object / size: print section sizes of common . . size(l)
sed: stream editor sed(l)

/ j rand48, srand48, seed48, lcong48:/ drand48(3C)
ldsseek, ldnsseek: seek to an/ ldsseek(3X)
ldlseek, ldnlseek: seek to line number/ ldlseek(3X)

ldrseek, Idnrseek: seek to relocation/ ldrseek(3X)
file header/ ldohseek: seek to the optional ldohseek(3X)

of a common/ ldtbseek: seek to the symbol table . . ldtbseek(3X)
get shared memory segment, shmget: shmget(2)

brk, sbrk: change data segment space/ brk(2)

5/86 - 10 -

common to two/ comm: select or reject lines comm(l)
greek: select terminal filter greek(l)

line of a / cut: cut out selected fields of each . . . cut(l)
object file, dump: dump selected parts of an dump(l)

operations, semctl: semaphore control semctl(2)
semop: semaphore operations. . . . semop(2)

/remove a message queue, semaphore set or shared/ . . ipcrm(l)
semget: get set of semaphores semget(2)

control operations, semctl: semaphore semctl(2)
semaphores, semget: get set of semget(2)

operations, semop: semaphore semop(2)
socket, send, sendto: send a message to a send(2N)

process or a/ kill: send a signal to a kill(2)
read mail, mail, rmail: send mail to users or mail(l)

message to a socket, send, sendto: send a send(2N)
an LP line/ lp, cancel: send/cancel requests to . . lp(l)

to a socket, send, sendto: send a message . . . send(2N)
/a t tach and detach serial lines as network/ . . slattach(lNM)

File Transfer Protocol server. /DARPA Internet . f tpd(lNM)
rexecd: remote execution server rexecd(lNM)

rlogind: remote login server rlogind(lNM)
rshd: remote shell server rshd(lNM)

rwhod: node status server. rwhod(lNM)
DARPA TELNET protocol server, telnetd: telnetd(lNM)

File Transfer Protocol server. /DARPA Trivial . . t f tpd(lNM)
uucpd: network uucp server uucpd(lNM)
typescript of terminal session, script: make . . . script(l)

Internet address from/ setaddr: set DARPA setaddr(lNM)
buffering to a stream, setbuf, setvbuf: assign . . . setbuf(3S)

address on disk, setenet: write Ethernet . . . setenet(lNM)
group IDs. setuid, setgid: set user and setuid(2)

/getgrgid, getgrnam, setgrent, endgrent,/ getgrent(3C)
get/ /gethostbyname, sethostent, endhostent: . . . gethostent(3N)

non-local goto, setjmp, longjmp: setjmp(3C)
generate hashing/ crypt, setkey, encrypt: crypt(3C)

table, setmnt: establish mount . . setmnt(lM)
get/ /getnetbyname, setnetent, endnetent: . . . getnetent(3N)

group ID. setpgrp: set process setpgrp(2)
/getprotobyname, setprotoent,/ getprotoent(3N)

/getpwuid, getpwnam, setpwent, endpwent,/ . . . getpwent(3C)
get/ /getservbyname, setservent, endservent: . . . getservent(3N)

options on/ getsockopt, setsockopt: get and set . . . getsockopt(2N)
environment/ cprofile: setting up a C shell cprofile(4)

environment a t / profile: setting up an profile(4)
/speed and terminal settings used by getty. . . . gettydefs(4)

and group IDs. setuid, setgid: set user . . . setuid(2)
system, setuname: set name of . . . setuname(lM)

/getutline, pututline, setutent, endutent, / getut(3C)
buffering to a / setbuf, setvbuf: assign setbuf(3S)
integer data in/ sputl, sgetl: access long sputl(3X)

standard/restr icted/ sh, rsh: shell, the sh(l)
xstr: extract and share strings in C / xstr(l)

operations, shmctl: shared memory control . . . shmctl(2)
/queue, semaphore set or shared memory id ipcrm(l)

operations, shmop: shared memory shmop(2)
shmget: get shared memory segment. . . shmget(2)

rcmd: remote shell command execution. . rcmd(lN)

5/86 - 10 -

interpreter)/ csh: a shell (command csh(l)
system: issue a shell command system(3S)

cprofile: setting up a C shell environment a t / . . . cprofile(4)
shl: shell layer manager shl(l)

/ s t a r tup , turnacct: shell procedures for / acctsh(lM)
system initialization shell scripts, /drvload: . . . brc(lM)

rshd: remote shell server rshd(lNM)
sh, rsh: shell, t he / sh(l)

manager, shl: shell layer shl(l)
control operations, shmctl: shared memory . . shmctl(2)

memory segment, shmget: get shared shmget(2)
operations, shmop: shared memory . . . shmop(2)

full-duplex/ shutdown: shut down part of a shutdown(2N)
/pr tacct , runacct, shutacct, s ta r tup , / acctsh(lM)

terminate all/ shutdown, halt: shutdown(lM)
of a full-duplex/ shutdown: shut down part . shutdown(2N)

program, sdiff: side-by-side difference . . . sdiff(l)
login: sign on login(l)

suspend process until signal, pause: pause(2)
to do upon receipt of a signal, /specify what . . . signal(2)

do upon receipt of a / signal: specify what to . . . signal(2)
group of / kill: send a signal to a process or a . . . kill(2)

gsignal: software signals, ssignal, ssignal(3C)
/generate programs for simple lexical tasks lex(l)
generator, rand, srand: simple random-number . . . rand(3C)

acos, atan, atan2:/ sin, cos, tan, asin trig(3M)
hyperbolic functions, sinh, cosh, tanh: sinh(3M)

fsize: report file size fsize(l)
sizes of common object/ size: print section size(l)

size: print section sizes of common object/ . . size(l)
attach and detach/ slattach, sldetach: slattach(lNM)

detach serial/ slattach, sldetach: attach and slattach(lNM)
for an interval, sleep: suspend execution . . sleep(l)

for interval, sleep: suspend execution . . sleep(3C)
view graphs, and slides, /documents, mmt(l)
view graphs and slides, / for typesetting . . . mv(5)

the / ttyslot: find the slot in the utmp file of . . . ttyslot(3C)
spline: interpolate smooth curve spline(lG)

accept a connection on a socket, accept: accept(2N)
bind: bind a name to a socket bind(2N)

a connection on a socket, /initiate connect(2N)
endpoint for/ socket: create an socket(2N)

for connections on a socket, listen: listen listen(2N)
getsockname: get socket name getsockname(2N)

receive a message from a socket, recv, reevfrom: . . . recv(2N)
send a message to a socket, send, sendto: . . . send(2N)

get and set options on sockets, /setsockopt: . . . getsockopt(2N)
/file perusal filter for soft-copy terminals pg(l)

ctinstall: install software ctinstall(l)
ssignal, gsignal: software signals ssignal(3C)

/install and verify software using the / qinstall(l)
sort: sort and/or merge files. . . sort(l)

qsort: quicker sort qsort(3C)
files, sort: sort and/or merge . . sort(l)

tsort: topological sort tsort(l)
lines common to two sorted files, /or reject . . . comm(l)

bsearch: binary search a sorted table bsearch(3C)

5/86 - 10 -

change data segment space allocation, /sbrk: . . brk(2)
/unexpand: expand tabs to spaces, and vice versa. . . . expand(l)

terminal, ct: spawn getty to a remote . . ct(lC)
files, fspec: format specification in text fspec(4)

openi: open a file specified by i-node openi(2)
receipt of a / signal: specify what ta do upon . . signal(2)

terminal type, modes, speed, and line/ /set . . . getty(lM)
terminal type, modes, speed, and line/ /set . . . uugetty(lM)

settings/ gettydefs: speed and terminal gettydefs(4)
spellin, hashcheck:/ spell, hashmake, spell(l)

spell, hashmake, spellin, hashcheck: find/ . . spell(l)
/spellin, hashcheck: find spelling errors spell(l)

smooth curve, spline: interpolate spline(lG)
pieces, split: split a file into split(l)

csplit: context split csplit(l)
or efl files, fsplit: split FORTRAN, ratfor, . . fsplit(l)

pieces, split: split a file into split(l)
uucleanup: uucp spool directory/ uucleanup(lM)
lpr: line printer spooler lpr(l)

/configure the LP spooling system lpadmin(lM)
printf, fprintf, sprintf: print formatted/ . . printf(3S)

long integer data in a/ sputl, sgetl: access sputl(3X)
exp, log, loglO, pow, sqrt: exponential,/ exp(3M)

/logarithm, power, square root functions. . . . exp(3M)
random-number/ rand, srand: simple rand(3C)

/mrand48, jrand48, srand48, seed48,/ drand48(3C)
scanf, fscanf, sscanf: convert/ scanf(3S)

software signals, ssignal, gsignal: ssignal(3C)
input /ou tput / stdio: standard buffered stdio(3S)

communication/ ftok: standard interprocess . . . stdipc(3C)
sh, rsh: shell, the standard/restricted/ sh(l)

input/ rsterm: manually start and stop terminal . . rsterm(lM)
lpsched, lpshut, lpmove: s tar t /s top the L P / lpsched(lM)

/runacct, shutacct, startup, turnacct: shell/ . . acctsh(lM)
stat system call, stat: data returned by . . . stat(5)

status, stat , fstat: get file stat(2)
network useful with/ stat: statistical stat(lG)

stat: data returned by stat system call stat(5)
useful with/ stat: statistical network stat(lG)

/list file names and statistics for a file/ fr(lM)
ustat: get file system statistics ustat(2)

dump, /error records and status information from . . errdead(lM)
lpstat: print LP status information lpstat(l)

clearerr, fileno: stream status inquiries, /feof, . . . ferror(3S)
control, uustat: uucp status inquiry and job . . . uustat(lC)

communication facilities status, /inter-process . . . ipcs(l)
netstat: show network status netstat(lN)

ruptime: display status of nodes on local/ . . ruptime(lN)
ps: report process status ps(l)

rwhod: node status server rwhod(lNM)
stat, fstat: get file status stat(2)

input /output package, stdio: standard buffered . . stdio(3S)
stime: set time stime(2)

for child process to stop or terminate, /wait . . wait(2)
/manually start and stop terminal input and/ . . rsterm(lM)

strncmp, strcpy,/ strcat, strncat, strcmp, . . . string(3C)
/strcpy, strncpy, strlen, strchr, strrchr,/ string(3C)

5/86 - 10 -

strcat, strncat, strcmp, strncmp, strcpy,/ . string(3C)
/s t rcmp, strncmp, strcpy, strncpy, strlen,/ . . stringf3C)

/ s t rpbrk , strspn, strcspn, str tok: str ing/ . . . string(3C)
sed: stream editor sed(l)

fflush: close or flush a stream, fclose fclose(3S)
freopen, fdopen: open a stream, fopen fopen(3S)

a file pointer in a stream, /reposition fseek(3S)
character or word from a stream, /getw: get getc(3S)

get a string from a stream, gets, fgets: gets(3S)
character or word on a stream, /pu tw: put putc(3S)

fputs: put a string on a stream, puts, puts(3S)
assign buffering to a stream, /setvbuf: setbuf(3S)

/feof, clearerr, fileno: stream status inquiries. . . ferror(3S)
/routines for returning a stream to a remote/ rcmd(3N)
command, rexec: return stream to a remote rexec(3N)

back into input stream, /push character . . ungetc(3S)
and base-64 ASCII string, /long integer a641(3C)

convert date and time to string, /asctime, tzset: . . . ctime(3C)
floating-point number to string, /gcvt: convert . . . ecvt(3C)

gps: graphical primitive string, format o f / gps(4)
gets, fgets: get a string from a stream. . . . gets(3S)

puts, fputs: put a string on a stream puts(3S)
/s t rspn, strcspn, str tok: string operations. string(3C)

strtod, atof: convert string to / strtod(3C)
atof: convert ASCII string to floating-point/ . . atof(3C)
/atol, atoi: convert string to integer strtol(3C)

ASCII text strings in a / strings: extract the strings(l)
/extract the ASCII text strings in a file strings(l)
xstr: extract and share strings in C programs. . . . xstr(l)

line number information/ strip: strip symbol and . . . strip(l)
number/ strip: strip symbol and line . . . strip(l)

/strcpy, strncpy, strlen, strchr, strrchr,/ . . . string(3C)
strncmp,/ strcat, strncat, strcmp, string(3C)

strcat, strncat, strcmp, strncmp, strcpy,/ string(3C)
/s t rcmp, strncmp, strcpy, strncpy, strlen, strchr, / . . string(3C)

/strlen, strchr, strrchr, s trpbrk, strspn,/ string(3C)
/s trncpy, strlen, strchr, strrchr, s t rpbrk, / string(3C)

/strrchr, strpbrk, strspn, strcspn, str tok:/ . . string(3C)
string to / strtod, atof: convert strtod(3C)

strspn, strcspn, str tok: str ing/ / s t rpbrk, . . string(3C)
convert string to / strtol, atol, atoi: strtol(3C)
using a file or file structure, /processes . . . fuser(lM)

for a terminal, stty: set the options s t ty(l)
another user, su: become super-user or . . su(l)

intro: introduction to subroutines and / intro(3)
plot: graphics interface subroutines plot(3X)

/of several files or subsequent lines of one/ . . paste(l)
block count of a file, sum: print checksum and . . sum(l)

du: summarize disk usage. . . . du(l)
acctcms: command summary from per-process/ . acctcms(lM)

sync: update the super block sync(l)
sync: update super-block sync(2)

user, su: become super-user or another . . . su(l)
interval, sleep: suspend execution for an . . sleep(l)
interval, sleep: suspend execution for . . . sleep(3C)

signal, pause: suspend process until . . . pause(2)
swab: swap bytes swab(3C)

5/86 - 10 -

interface, swap: swap administrative swap(lM)
swab: swap bytes swab(3C)

administrative/ swap: swap swap(lM)
write on a file, swrite: synchronous swrite(2)

driver, sxt: pseudo-device sxt(7)
strip: strip symbol and line number/ . . strip(l)

ldgetname: retrieve symbol name for common/ . ldgetname(3X)
/for common object file symbol table entry ldgetname(3X)
/compute the index of a symbol table entry of a/ . . ldtbindex(3X)

common/ /read an indexed symbol table entry of a . . ldtbread(3X)
syms: common object file symbol table format syms(4)

ldtbseek: seek to the symbol table of a common/ . ldtbseek(3X)
sdb: symbolic debugger sdb(l)

symbol table format, syms: common object file . . syms(4)
super-block, sync: update sync(2)

block, sync: update the super . . . sync(l)
update: provide disk synchronization update(lM)

file, swrite: synchronous write on a . . swrite(2)
interpreter) with C-like syntax, /shell (command . . csh(l)
system/ perror, errno, sys_errlist, sys_nerr: perror(3C)

requests, syslocal: special system . . . syslocal(2)
/errno, sys_errlist, sys_nerr: system error/ . . . perror(3C)

binary search a sorted table, bsearch: bsearch(3C)
object file symbol table entry. /for common . ldgetname(3X)

/ the index of a symbol table entry of a common/ . ldtbindex(3X)
/read an indexed symbol table entry of a common/ . ldtbread(3X)

object file symbol table format, /common . . syms(4)
device information table, master: master . . . master(4)

mounted file system table, mnttab: mnttab(4)
/seek to the symbol table of a common object/ . ldtbseek(3X)

toe: graphical table of contents/ toc(lG)
setmnt: establish mount table setmnt(lM)

troff. tbl: format tables for nroff or tbl(l)
manage hash search tables, /hdestroy: hsearch(3C)

manipulate the routing tables, route: manually . . route(lNM)
tabs: set tabs on a terminal tabs(l)

terminal, tabs: set tabs on a tabs(l)
expand, unexpand: expand tabs to spaces, and vice/ . . expand(l)

ctags: create a tags file ctags(l)
part of a file, tail: deliver the last tail(l)

atan2:/ sin, cos, tan, asin, acos, atan, trig(3M)
functions, sinh, cosh, tanh: hyperbolic sinh(3M)
Xylogics 772 half-inch tape controller, /for xmset(lM)

tar: tape file archiver tar(l)
files from a backup tape, free: recover frec(lM)

qic: interface for QIC tape qic(7)
tar: tape file archiver. . . . tar(l)

for simple lexical tasks, /programs lex(l)
/remove nroff/ troff , tbl, and eqn constructs. . . deroff(l)

nroff or troff. tbl: format tables for . . . tbl(l)
/erase, hardcopy, tekset, td: graphical device/ gdev(lG)

binary/ tsearch, tfind, tdelete, twalk: manage . . . tsearch(3C)
terminal download, tdl, gtdl, ptdl: RS-232 . . . tdl(l)

tee: pipe fitting tee(l)
hpd, erase, hardcopy, tekset, td: graphical/ . . . gdev(lG)

4014: paginator for the TEKTRONIX 4014 terminal. 4014(1)
initialization, init, telinit: process control . . . init(lM)

5/86 - 10 -

telnetd: DARPA TELNET protocol server. . telnetd(lNM)
/user interface to TELNET protocol telnet(lN)

to TELNET protocol, telnet: user interface telnet(lN)
protocol server, telnetd: DARPA TELNET . telnetd(lNM)

for a temporary/ tmpnam, tempnam: create a name . . tmpnam(3S)
tmpfile: create a temporary Hie tmpfile(3S)

/create a name for a temporary file tmpnam(3S)
for terminals, term: conventional names . term(5)

term: format of compiled term file term(4)
term file., term: format of compiled . . term(4)

capability data base, termcap: terminal termcap(4)
for the TEKTRONIX 4014 terminal, /paginator . . . 4014(1)

of the DASI 450 terminal, /functions 450(1)
interface, tiop: terminal accelerator tiop(7)
base, termcap: terminal capability da ta . . termcap(4)
base, terminfo: terminal capability data . . terminfo(4)
console: console terminal console(7)

spawn getty to a remote terminal. ct: ct(lC)
generate file name for terminal, ctermid: ctermid(3S)
tdl, gtdl, ptdl: RS-232 terminal download tdl(l)

/ terminal inteface, and terminal environment. . . . tset(l)
greek: select terminal filter greek(l)

/ tgets t r , tgoto, tputs: terminal independent/ . . . termcap(3X)
/manually start and stop terminal input and / rsterm(lM)

tset: set terminal, terminal inteface, and / . . . tset(l)
termio: general terminal interface termio(7)
t ty: controlling terminal interface tty(7)

establish an out-going terminal line/ dial: dial(3C)
of terminal types by terminal number, /list . . . ttytype(4)

clear: clear terminal screen clear(l)
/make typescript of terminal session script(l)

by/ gettydefs: speed and terminal settings used . . . gettydefs(4)
set the options for a terminal, stty: s t ty(l)

tabs: set tabs on a terminal tabs(l)
inteface, and/ tset: set terminal, terminal tset(l)

conlocate: locate a terminal to use as t he / . . . conlocate(lM)
t ty: get the name of the terminal t ty(l)

isatty: find name of a terminal, t tyname, ttyname(3C)
speed, and / getty: set terminal type, modes, . . . getty(lM)

speed, and / uugetty: set terminal type, modes, . . . uugetty(lM)
t tytype: list of terminal types by/ ttytype(4)

vt: virtual terminal v t (7)
of DASI 300 and 300s terminals, / functions . . . 300(1)

HP 2640 and 2621-series terminals, / functions of . . hp(l)
tp: controlling terminal's local RS-232/ . . tp(7)

filter for soft-copy terminals, /file perusal . . pg(l)
conventional names for terminals, term: term(5)

kill: terminate a process kill(l)
shutdown, halt: terminate all/ shutdown(lM)

exit, _exit: terminate process exit(2)
error-logging/ errstop: terminate the errstop(lM)
child process to stop or terminate, /wait for wait(2)

tic: terminfo compiler tic(lM)
tput : query terminfo database tpu t (l)

capability data base, terminfo: terminal terminfo(4)
interface, termio: general terminal . . termio(7)

evaluation command, test: condition test(l)

5/86 - 10 -

quiz: test your knowledge quiz(6)
ed, red: text editor ed(l)

ex: text editor ex(l)
ex for casual/ edit: text editor (variant of . . . edit(l)

change the format of a text file, newform: newform(l)
format specification in text files, fspec: fspec(4)
/ format mathematical text for nroff or troff. . . . eqn(l)

/prepare constant-width text for troff cw(l)
nroff: format text nroff(l)

plock: lock process, text, or data in memory. . . plock(2)
more, page: text perusal more(l)

/extract the ASCII text strings in a file strings(l)
troff: typeset text troff(l)

manage binary/ tsearch, tfind, tdelete, twalk: tsearch(3C)
interface to the DARPA T F T P protocol, /user . . . t f tp (lN)

the DARPA T F T P / t f tp : user interface to . . . t f tp (lN)
File Transfer Protocol/ t f tpd: DARPA Trivial . . . t f tpd(lNM)

tgetflag, tgets tr , / tgetent, tgetnum termcap(3X)
tgetent, tgetnum, tgetflag, tgetstr , / termcap(3X)
tgetstr , / tgetent, tgetnum, tgetflag termcap(3X)

/ tge tnum, tgetflag, tgetstr, tgoto, tputs : / . . . termcap(3X)
/tgetflag, tgetstr, tgoto, tputs: terminal/ . . . termcap(3X)

tic: terminfo compiler. . . . tic(lM)
t t t , cubic: tic-tac-toe ttt(6)

process da ta and / timex: time a command; report . . timex(l)
time: time a command time(l)

commands at a later time, /batch: execute . . . a t (l)
environment at login time, / u p a C shell cprofile(4)

for optimal access time, /copy file systems . . dcopy(lM)
time: get time time(2)

profil: execution time profile profil(2)
an environment at login time, /sett ing up profile(4)

stime: set time stime(2)
time: time a command. . . . t ime(l)

time: get time time(2)
/ tzset: convert date and time to string ctime(3C)

clock: report CPU time used clock(3C)
TZ: time zone file tz(4)

child process times, times: get process and . . . times(2)
access and modification times of a file, /upda te . . touch(l)

and child process times. /get process times(2)
access and modification times, utime: set file . . . utime(2)

report process data and / timex: time a command; . . t imex(l)
accelerator interface, tiop: terminal tiop(7)

temporary file, tmpfile: create a tmpfile(3S)
a name for a temporary/ tmpnam, tempnam: create . tmpnam(3S)

/_toupper , _tolower, toascii: t ranslate/ conv(3C)
contents routines, toe: graphical table of . . . toc(lG)

/pclose: initiate pipe to / f rom a process popen(3S)
/tolower, _toupper, _tolower, toascii:/ conv(3C)

_tolower,/ toupper, tolower, _toupper conv(3C)
tsort: topological sort tsort(l)

acctmerg: merge or add total accounting files. . . . acctmerg(lM)
modification times of a / touch: update access and . . touch(l)

toupper, tolower, _toupper, _tolower,/ conv(3C)
_toupper, _t°l°\ver,/ toupper, tolower conv(3C)

terminal's local RS-232/ tp: controlling tp(7)

5/86 - 10 -

tplot: graphics filters. . . . tplot(lG)
database, tput : query terminfo tpu t (l)

/ tgets t r , tgoto, tputs: terminal/ termcap(3X)
characters, t r : translate t r (l)

ptrace: process trace ptrace(2)
t rp t : print protocol trace t rp t (lNM)

f tp: file transfer program f tp(lN)
DARPA Internet File Transfer Protocol/ f tpd: . . f tpd(lNM)
/DARPA Trivial File Transfer Protocol/ t f tpd(lNM)

/_tolower, toascii: translate characters conv(3C)
tr: translate characters t r (l)

f tw: walk a file tree ftw(3C)
manage binary search trees, / tdelete, twalk: . . . tsearch(3C)

trk: trekkie game trk(6)
/asin, acos, atan, atan2: trigonometric functions. . . trig(3M)

Protocol/ t f tpd: DARPA Trivial File Transfer t f tpd(lNM)
trk: trekkie game trk(6)

constant-width text for troff. /checkcw: prepare . . cw(l)
text for nroff or troff. /mathematical . . . eqn(l)

typesetting view/ mv: a troff macro package for . . mv(5)
tables for nroff or troff. tbl: format tbl(l)

troff: typeset text troff(l)
trace, t rpt : print protocol t rp t (lNM)

t ru th values, true, false: provide t rue(l)
/u3b, u3b5, vax: provide t ru th value about your / . . machid(l)

true, false: provide t ru th values true(l)
system wi th / Uutry: try to contact a remote . . Uutry(lM)

twalk: manage binary/ tsearch, tfind, tdelete, . . . tsearch(3C)
terminal inteface, and / tset: set terminal, tset(l)

tsort: topological sort. . . . tsort(l)
t t t , cubic: tic-tac-toe. . . . ttt(6)

terminal interface, t ty: controlling tty(7)
terminal, t ty: get the name of the . . t ty(l)

name of a terminal, t tyname, isatty: find t tyname(3C)
in the utmp file of the/ ttyslot: find the slot ttyslot(3C)

terminal types by/ t tytype: list of ttytype(4)
/ a loadable driver for tunable variables mktunedrv(lM)

/shutacct , s tar tup, turnacct: shell/ acctsh(lM)
tsearch, tfind, tdelete, twalk: manage binary/ . . . tsearch(3C)

file: determine file type file(l)
about your processor type, / t r u t h value machid(l)

getty: set terminal type, modes, speed, and / . . getty(lM)
uugetty: set terminal type, modes, speed, and / . . uugetty(lM)

/list of terminal types by terminal/ ttytype(4)
data types, types: primitive system . . types(5)

primitive system data types, types: types(5)
session, script: make typescript of terminal . . . script(l)

graphs, and / mmt, mvt: typeset documents, view . . mmt(l)
troff: typeset text t roff(l)

/ t roff macro package for typesetting view graphs/ . . mv(5)
TZ: time zone file tz(4)

t ime/ /gmtime, asctime, tzset: convert date and . . . ctime(3C)
t r u t h / mc68k, p d p l l , u3b, u3b5, vax: provide . . machid(l)

mc68k, p d p l l , u3b, u3b5, vax: provide t r u t h / . machid(l)
getpw: get name from UID getpw(3C)

ul: do underlining ul(l)
limits, ulimit: get and set user . . ulimit(2)

5/86 - 10 -

creation mask, umask: set and get file . . . umask(2)
mode mask, umask: set file-creation . . . umask(l)

dismount file/ mount, umount: mount and mount(lM)
system, umount: unmount a file . . umount(2)

current CTIX system, uname: get name of uname(2)
current CTEX system, uname: print name of . . . uname(l)

ul: do underlining ul(1)
an SCCS file, unget: undo a previous get of . . . unget(l)

spaces, and / expand, unexpand: expand tabs to . expand(l)
get of an SCCS file, unget: undo a previous . . . unget(l)

back into input stream, ungetc: push character . . . ungetc(3S)
/lcong48: generate uniformly distributed/ . . . drand48(3C)

lines in a file, uniq: report repeated . . . uniq(l)
mktemp: make a unique file name mktemp(3C)

program, units: conversion units(l)
and unlink system/ link, unlink: exercise link link(lM)

entry, unlink: remove directory . . unlink(2)
/exercise link and unlink system calls link(lM)

umount: unmount a file system. . . . umount(2)
expand/ pack, peat, unpack: compress and . . . pack(l)
modification/ touch: update access and touch(l)

groups/ make: maintain, update, and regenerate . . . make(l)
lfind: linear search and update, lsearch, lsearch(3C)

synchronization, update: provide disk update(lM)
sync: update super-block sync(2)
sync: update the super block. . . sync(l)

du: summarize disk usage du(l)
/statistical network useful with graphical/ . . . s tat(lG)

names, id: print user and group IDs and . . id(l)
setuid, setgid: set user and group IDs setuid(2)

crontab - user crontab file crontab(l)
login name of the user, /get character cuserid(3S)

real/ /getegid: get real user, effective user, getuid(2)
environ: user environment environ(5)

protocol, telnet: user interface to TELNET . telnet(lN)
DARPA T F T P / t f tp: user interface to the t f tp(lN)

ulimit: get and set user limits ulimit(2)
return login name of user, logname: logname(3X)

/ g e t real user, ef fect ive user, real group, a n d / . . . getuid(2)
super-user or another user, su: become s u (l)

utmp file of the current user, / the slot in the . . . ttyslot(3C)
write: write to another user write(l)

of ex for casual users), /editor (variant . . edit(l)
/rmail: send mail to users or read mail. mail(l)

remote equivalent users, rhosts: rhosts(4N)
wall: write to all users wall(lM)

/identify processes using a file or file/ fuser(lM)
/and verify software using the mkfs(l) proto/ . . qinstall(l)

statistics, ustat: get file system ustat(2)
gutil: graphical utilities gutil(lG)

and modification times, utime: set file access utime(2)
formats, utmp, wtmp: utmp and wtmp entry . . . utmp(4)

/u tmpname: access utmp file entry getut(3C)
/f ind the slot in the utmp file of the current/ . . ttyslot(3C)

wtmp entry formats, utmp, wtmp: utmp and . . utmp(4)
/setutent , endutent, utmpname: access u tmp/ . . getut(3C)

directories and/ uucheck: check the UUCP . uucheck(lM)

5/86 - 10 -

program for the U U C P / uucico: copy-in/copy-out . . uucico(lM)
directory clean-up. uucleanup: uucp spool . . . uucleanup(lM)

/configuration file for uucp communications/ . . . Devices(5)
CTIX system copy, uucp: CTIX system to . . . uucp(lC)
uucheck: check the UUCP directories and / . . . uucheck(lM)

uusub: monitor uucp network uusub(lM)
uucpd: network uucp server uucpd(lNM)

clean-up. uucleanup: uucp spool directory uucleanup(lM)
job control, uustat : uucp status inquiry and . . uusta t (lC)

uuname: list UUCP system names. . . . uuname(lC)
/program for the UUCP system uucico(lM)

the scheduler for the UUCP system, uusched: . . uusched(lM)
server, uucpd: network uucp . . . uucpd(lNM)

type, modes, speed, and / uugetty: set terminal . . . uugetty(lM)
information, uulog: output logfile uulog(lC)

names, uuname: list UUCP system . uuname(lC)
CTIX-to-CTIX/ uuto, uupick: public uuto(lC)
for the UUCP system, uusched: the scheduler . . . uusched(lM)

inquiry and job/ uustat: uucp status uustat(lC)
network, uusub: monitor uucp uusub(lM)

CTIX-to-CTIX system/ uuto, uupick: public uuto(XC)
remote system with/ Uutry: try to contact a . . . Uutry(lM)
command execution, uux: CTIX to CTIX remote . uux(lC)

command requests, uuxqt: execute remote . . . uuxqt(lM)
val: validate SCCS file. . . val(l)

val: validate SCCS file val(l)
u3b5, vax: provide t ruth value about your/ /u3b, . . machid(l)

return integer absolute value, abs: abs(3C)
name, getenv: return value for environment . . . getenv(3C)
/remainder, absolute value functions floor(3M)

putenv: change or add value to environment. . . . putenv(3C)
/ntohl , ntohs: convert values between host and / . byteorder(3N)

machine-dependent/ values: values(5)
false: provide truth values, true, t r u e (l)
machine-dependent values, values: values(5)

/ format ted output of a varargs argument list. . . . vprintf(3S)
argument list, varargs: handle variable . . varargs(5)

varargs: handle variable argument list. . . . varargs(5)
driver for tunable variables, / a loadable . . . mktunedrv(lM)

edit: text editor (variant of ex for/ edit(l)
mc68k, p d p l l , u3b, u3b5, vax: provide t ruth value/ . . machid(l)

vc: version control v c (l)
letter from argument vector, /get option getopt(3C)

assertion, assert: verify program assert(3X)
qinstall: install and verify software using/ . . . qinstall(l)

tabs to spaces, and vice versa, /unexpand: expand . expand(l)
vc: version control VCU)

get: get a version of an SCCS file. . . get(l)
sccsdiff: compare two versions of an SCCS/ . . . sccsdiff(l)

pr int / vprintf, vfprintf, vsprintf: vprintf(3S)
Volume Home Blocks (VHB). /manipulate libdev(3X)

(visual) display editor/ vi: screen-oriented vi(1)
tabs to spaces, and vice versa, /expand expand(l)

/mvt : typeset documents, view graphs, and slides. . . mmt(l)
/package for typesetting view graphs and slides. . . . mv(5)
/ a terminal to use as the virtual system console. . . . conlocate(lM)

vt: virtual terminal vt(7)

5/86 - 10 -

vi: screen-oriented (visual) display editor/ . . . vi(l)
vme: VME bus interface vme(7)

vme: VME bus interface. . . vme(7)
file systems with label/ volcopy, labelit: copy . . . volcopy(lM)

libdev: manipulate Volume Home Blocks/ . . . libdev(3X)
initialize and maintain volume, iv: iv(l)

vsprintf: pr int / vprintf, vfprintf vprintf(3S)
vprintf, vfprintf, vsprintf: pr int / vprintf(3S)

vt: virtual terminal VM7)
of process, wait: await completion . . . wait(l)

to stop or / wait: wait for child process . . . wait(2)
process to stop or / wait: wait for child wait(2)

ftw: walk a file tree ftw(3C)
users, wall: write to all wall(lM)

wc: word count wc(l)
files, what: identify SCCS what(l)

of a / signal: specify what to do upon receipt . . signal(2)
whodo: who is doing what whodo(lM)

local network, rwho: who is logged in on rwho(lN)
who: who is on the system. . . . who(l)

system, who: who is on the who(l)
what, whodo: who is doing whodo(lM)

/long lines for finite width output device fold(l)
primitives, window: window management . . . window(7)

wm: window management. . . . wm(l)
management primitives, window: window window(7)

wm: window management. . wm(l)
cd: change working directory c (i (l)

chdir: change working directory chdir(2)
/get path-name of current working directory getcwd(3C)

pwd: working directory name. . . pwd(l)
on disk, setenet: write Ethernet address . . . setenet(lNM)

swrite: synchronous write on a file swrite(2)
write: write on a file write(2)

entry, putpwent: write password file putpwent(3C)
wall: write to all users wall(lM)

write: write to another user. . . . write(l)
write: write on a file. . . . write(2)

user, write: write to another . . . write(l)
open for reading or writing, open: open(2)

utmp, wtmp: utmp and wtmp entry formats utmp(4)
entry formats, utmp, wtmp: utmp and wtmp . . utmp(4)

connect/ fwtmp, wtmpfix: manipulate fwtmp(lM)
hunt-the-wumpus. wump: the game of wump(6)

argument list(s) and / xargs: construct xargs(l)
parameters for Xylogics/ xmset: set drive xmset(lM)

strings in C programs, xstr: extract and share . . . xstr(l)
/se t drive parameters for Xylogics 772 half-inch/ . . . xmset(lM)

functions. jO, j l , jn, yO, y l , yn: Bessel bessel(3M)
jO, j l , jn, yO, y l , yn: Bessel/ bessel(3M)

compiler-compiler, yacc: yet another yacc(l)
jO, j l , jn, yO, y l , yn: Bessel functions bessel(3M)

TZ: time zone file tz(4)

5/86 - 10 -

TABLE OF CONTENTS

2. System Calls

intro introduction to system calls and error numbers
accept accept a connection on a socket
access determine accessibility of a file
acct enable or disable process accounting
alarm set a process alarm clock
bind bind a name to a socket
brk change data segment space allocation
chdir change working directory
chmod change mode of file
chown change owner and group of a file
chroot change root directory
close close a file descriptor
connect initiate a connection on a socket
creat create a new file or rewrite an existing one
dup duplicate an open file descriptor
exec execute a file
exit terminate process
fcntl file control
fork create a new process
getpeername get name of connected peer
getpid get process, process group, and parent process IDs
getsockname get socket name
getsockopt get and set options on sockets
getuid get user and group IDs
ioctl control device
kill send a signal to a process or a group of processes
Iddrv access loadable drivers
link link to a file
listen listen for connections on a socket
locking exclusive access to regions of a file
lseek move read/write file pointer
mknod make a directory, or a special or ordinary file
mount mount a file system
msgctl message control operations
msgget get message queue
msgop message operations
nice change priority of a process
open open for reading or writing
openi open a file specified by i-node
pause suspend process until signal
pipe create an interprocess channel
plock lock process, text, or data in memory
profil execution time profile
ptrace process trace

5/86 - 10 -

r e a ^ read from file
r e c v receive a message from a socket
semctl semaphore control operations
semget get set of semaphores
semop semaphore operations
send send a message to a socket
setpgrp set process group ID
setuid set user and group IDs
shmctl shared memory control operations
shmget get shared memory segment
shmop shared memory operations
shutdown shut down part of a full-duplex connection
signal specify what to do upon receipt of a signal
socket create an endpoint for communication
stat get file s tatus
st ime set t ime
swrite synchronous write on a file
sync update super-block
syslocal special system requests
t ime get time
t imes get process and child process t imes
ulimit get and set user limits
umask set and get file creation mask
umount unmount a file system
uname get name of current CTIX system
unlink remove directory entry
ustat get file system statistics
utime set file access and modification times
wai t wait for child process to stop or terminate
wri t e wr i te on a file

3. Subrout ines and Libraries

intro introduction to subroutines and libraries
a641 convert between long integer and base-64 ASCII string
abort generate an IOT fault
abs return integer absolute value
assert verify program assertion
atof convert ASCII string to floating-point number
bessel Bessel functions
bsearch binary search a sorted table
byteorder . . convert values between host and network byte order
clock report C P U time used
conv translate characters
crypt generate hashing encryption
ctermid generate file name for terminal
ctime convert date and time to string
ctype classify characters
curses C R T screen handling and optimization package
cuserid get character login name of the user
dial establish an out-going terminal line connection

5/86 - 10 -

drand48 . . generate uniformly distributed pseudo-random numbers
ecvt convert f loating-point number to string
end last locations in program
erf error function and complementary error funct ion
exp exponential , logarithm, power, square root funct ions
fclose close or flush a stream
ferror stream status inquiries
floor floor, ceiling, remainder, absolute value funct ions
fopen open a stream
fread binary i n p u t / o u t p u t
frexp manipulate parts of f loat ing-point numbers
fseek reposition a file pointer in a stream
ftw walk a file tree
g a m m a log g a m m a funct ion
getc get character or word from a stream
getcwd get path-name of current working directory
getenv return value for environment name
getgrent get group file entry
ge thos tent get network host entry
ge thos tname get name of current host
get login get login name
getnetent get network entry
getopt get option letter from argument vector
getpass read a password
getprotoent get protocol entry
getpw get name from UID
ge tpwent get password file ent iy
gets get a string from a stream
getservent get service entry
getut access u t m p file entry
hsearch manage hash search tables
h y p o t Euclidean distance funct ion
inet Internet address manipulat ion routines
13tol convert between 3-byte integers and long integers
ldahread . . read the archive header of a member of an archive file
ldclose close a common object file
ldfhread read the file header of a common object file
ldgetname retrieve symbol name for common object file
ldlread manipulate line number entries
ldiseek seek to line number entries of a section
ldohseek . . seek to the optional file header of a common object file
ldopen open a common object file for reading
ldrseek seek to relocation entries of a section
ldshread read an indexed /named section header
ldsseek . seek to an indexed /named section of a common object file
ldtbindex compute the index of a symbol table entry
ldtbread read an indexed symbol table entry
ldtbseek seek to the symbol table of a common object file
l ibdev manipulate Vo lume Home Blocks (VHB)
lockf record locking on files
logname return login name of user

5/86 - 3 -

lsearch linear search and update
malloc main memory allocator
malloc fast main memory allocator
matherr error-handling function
memory memory operations
mktemp make a unique file name
monitor prepare execution profile
nlist get entries from name list
ocurse optimized screen functions
perror system error messages
plot graphics interface subroutines
popen initiate pipe to / f rom a process
printf print formatted output
putc put character or word on a stream
putenv change or add value to environment
putpwent write password file entry
puts put a string on a stream
qsort quicker sort
rand simple random-number generator
rcmd routines for returning a stream to a remote command
regcmp compile and execute regular expression
rexec return stream to a remote command
scanf convert formatted input
setbuf assign buffering to a stream
setjmp non-local goto
sinh hyperbolic functions
sleep suspend execution for interval
sputl . . access long integer data in a machine-independent fashion.
ssignal software signals
s td io s t a n d a r d bu f f e r ed i n p u t / o u t p u t package
stdipc standard interprocess communication package
string string operations
strtod convert string to double-precision number
strtol convert string to integer
swab swap bytes
system issue a shell command
termcap terminal independent operations
tmpfile create a temporary file
tmpnam create a name for a temporary file
trig trigonometric functions
tsearch manage binary search trees
t tyname find name of a terminal
t tyslot find the slot in the utmp file of the current user
ungetc push character back into input stream
vprintf print formatted output of a varargs argument list

4. File Formats
intro introduction to file formats
a.out common assembler and link editor output
acct per-process accounting file format

5/86 - 4 -

ar common archive file format
checklist list of file systems processed by fsck
core format of core image file
cpio format of cpio archive
cprofile setting up a C shell environment at login time
dir format of directories
errfile error-log file format
filehdr file header for common object files
fs file system format
fspec format specification in text files
gettydefs speed and terminal settings used by getty
gps graphical primitive string, format of graphical files
group group file
hosts list of nodes on network
inittab script for the init process
inode format of an i-node
issue issue identification file
ldfcn common object file access routines
linenum line number entries in a common object file
master master device information table
mnttab mounted file system table
networks names and numbers for the internet
passwd password file
plot graphics interface
profile setting up an environment at login time
protocols list of Internet protocols
reloc relocation information for a common object file
rhosts remote equivalent users
sccsfile format of SCCS file
scnhdr section header for a common object file
services list of Internet services
syms common object file symbol table format
system system description file
term format of compiled term file.
termcap terminal capability data base
terminfo terminal capability data base
ttytype list of terminal types by terminal number
tz time zone file
utmp utmp and wtmp entry formats

5. Miscellaneous Facilities

intro introduction to miscellany
ascii map of ASCII character set
Devices configuration file for uucp communications lines
Dialers ACU/modem calling protocols
environ user environment
eqnchar special character definitions for eqn and neqn
fcntl file control options
man macros for formatting entries in this manual
math math functions and constants

5 / 8 6 - 10 -

mm the MM macro package for formatting documents
mptx the macro package for formatting a permuted index
mv . . a troff macro package for typesetting view graphs and slides
prof profile within a funct ion
regexp regular expression compile and match routines
stat data returned by stat system call
term conventional names for terminals
types primitive system data types
values machine-dependent values
varargs handle variable argument, list

0. Games

intro introduction to games
advent explore Colossal Cave
arithmetic provide drill in number facts
back the game of backgammon
bj the game of black jack
craps the game of craps
fish play "Go Fish"
fortune print a random, hopefully interesting, adage
hangman guess the word
maze generate a maze
moo guessing g;mie
number convert Arabic numerals to English
quiz test your knowledge
trk trekkie game
ttt tic-tac-toe
wump the game of hunt-the-wumpus

7. Special Files

intro introduction to special files
console console terminal
disk general disk driver
drivers loadable device drivers
err error-logging interface
lp parallel printer interface
mem system memory interface
null the null file
prf operating system profiler
qic interface for QIC tape
sxt pseudo-device driver
termio general terminal interface
tiop terminal accelerator interface
tp controlling terminal's local RS-232 channels
tty controlling terminal interface
vme VME bus interface
vt virtual terminal
window window management primitives

5 /86 - 6 -

INTRO (2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
^ i n c l u d e < e r r n o . h >

DESCRIPTION
This section describes all of the system calls.
System call entries that are suffixed by (2 N) are part of
the CTIX networking packages. The link editor searches
these calls under the —1 s o c k e t option. To use these
calls you must have the network protocols on your
system. See the CTIX Internetworking Manual for
further information.
Most of these calls have one or more error returns. An
error condition is indicated by an otherwise impossible
returned value. This is almost always - 1 ; the individual
descriptions specify the details. An error number is also
made available in the external variable errno. Errno is
not cleared on successful calls, so it should be tested only
after an error has been indicated.

Each system call description attempts to list all possible
error numbers. The following is a complete list of the
error numbers and their names as defined in
< e r r n o . h > .

1 EPERM Not super-user
Typically this error indicates an attempt to
modify a file in some way forbidden except to its
owner or super-user. It is also returned for
attempts by ordinary users to do things allowed
only to the super-user.

2 E N O E N T N o s u c h f i le or d i r e c t o r y
This error occurs when a file name or IPC
identifier is specified and the file or IPC
structure should exist but doesn't, or when one
of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that
specified by pid in kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or
quit), which the user has elected to catch,
occurred during a system call. If execution is
resumed after processing the signal, it will
appear as if the interrupted system call returned
this error condition.

- 1 -

I N T R O (2)

5 EIO I /O error
Some physical I / O error has occurred. This
error may in some cases occur on a call following
the one to which it actually applies.

6 ENXIO No such device or address
I /O on a special file refers to a subdevice which
does not exist, or beyond the limits of the
device. It may also occur when, for example, a
tape drive is not on-line or no disk pack is
loaded on a drive. On local terminals, it may
indicate that the host terminal lacks the
specified channel; for example, opening tpa256,
when tty256 refers to a Programmable Terminal,
not a Graphics Terminal.

7 E2BIG Arg list too long
An argument list longer than 10,240 bytes is
presented to a member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which,
although it has the appropriate permissions, does
not start with a valid magic number (see
a.out(4)), or the executable file requires
hardware that does not exist (e.g., floating-
point).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a
read (respectively, write) request is made to a
file which is open only for writing (respectively,
reading).

10 ECHILD N o child processes
A wait was executed by a process that had no
existing or unwaited-for child processes.

11 EAGAIN No more processes
A fork failed because the system's process table
is full or the user is not allowed to create any
more processes, or an IPC call is made with the
IPCLNOWAIT option and the caller would
block.

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for
more space than the system is able to supply.

13 EACCES Permission denied
An attempt was made to access a file or IPC
structure in a way forbidden by the protection
system. From locking, an attempt to lock bytes
already under a checking lock.

- 2 -

I N T R O (2)

14 EFAULT Bad address
The system encountered a hardware fault in
attempting to use an argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block
device was required, e.g., in mount.

16 EBUSY Device or resource busy
An attempt was made to mount a device that
was already mounted or an attempt was made to
dismount a device on which there is an active
file (open file, current directory, mounted-on file,
active text segment). It will also occur if an
attempt is made to enable accounting when it is
already enabled. The device or resource is
currently unavailable.

17 EEXIST File exists
An existing file or IPC structure was mentioned
in an inappropriate context, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate
system call to a device; e.g., read a write-only
device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory
is required, for example in a path prefix or as an
argument to chdir(2).

21 EISDIR Is a directory
A n a t t e m p t w a s m a d e t o w r i t e o n a d i r e c t o r y .

22 EINVAL Invalid argument
Some invalid argument (e.g., dismounting a
non-mounted device; mentioning an undefined
signal in signal, or kill; reading or writing a file
for which Iseek has generated a negative
pointer). Also set by the math functions
described in the (3M) entries of this manual.

23 ENFILE File table overflow
The system file table is full, and temporarily no
more opens can be accepted.

24 EMFILE Too many open files
N o process may have more than 20 file
descriptors open at a time. When a record lock
is being created with fcntl, there are too many
files with record locks on them.

- 3 -

I N T R O (2)

25 ENOTTY Not a character device
An attempt was made to ioctl(2) a file that is
not a special character device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-
procedure program that is currently open for
writing. Also an attempt to open for writing a
pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) or ULIMIT; see ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no
free space left on the device. In fcntl, the setting
or removing of record locks on a file cannot be
accomplished because there are no more record
entries left on the system. In an IPC call, no
IPC identifiers are available.

29 ESPIPE Illegal seek
An Iseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was
made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum
number of links (1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process
to read the data. This condition normally
generates a signal; the error is returned if the
signal is ignored.

33 EDOM Math argument
The argument of a function in the math package
(3M) is out of the domain of the function.

34 ERANGE Result too large
The value of a function in the math package
(3M) is not representable within machine
precision.

35 ENOMSG N o message of desired type
An attempt was made to receive a message of a
type that does not exist on the specified message
queue; see msgop(2).

36 EIDRM Identifier Removed
This error is returned to processes that resume

- 4 -

INTRO (2)

execution due to the removal of an identifier
from the file system's name space (see msgctl(2),
semctl(2), and shmctl(2)).

37 ECHRNG Channel number out of range
Not used; retained for compatibility.

38 EL2NSYNC Level 2 not synchronized
Not used; retained for compatibility.

39 EL3HALT Level 3 halted
Not used; retained for compatibility.

40 EL3RST Level 3 reset
Not used; retained for compatibility.

41 ELNRNG Link number out of range
Not used; retained for compatibility.

42 EVNATCH Protocol driver not attached
Not used; retained for compatibility.

43 ENOCSI N o CSI structure available
Not used; retained for compatibility.

44 EL2HLT Level 2 halted
Not used; retained for compatibility.

45 EDEADLK Record locking deadlock
Call cannot be honored because of a potential
deadlock. See fcntl(2).

46 ENOLCK No record locks available
N o free entries are currently available in the
kernel lock array.

50 EBADE Invalid exchange
A user-specified exchange descriptor is out of
range or specifies an unallocated exchange.

51 EBADR Invalid request descriptor
An attempt has been made to reference a request
that is not outstanding.

52 EXFULL Exchange full
N o request descriptors are currently available for
this exchange.

53 ENOANO N o anode
Not used; retained for compatibility.

54 EBADRQC Invalid request code
No routing is currently available for this request
code.

55 EBADSLT Invalid slot
Not used; retained for compatibility.

5 /86 - 5 -

INTRO (2)

56 EDEADLOCK Deadlock error
Call cannot be honored because of potential
deadlock or because lock table is full. See
locking(2).

57 EBFONT Bad font file format
Not used; retained for compatibility.

224 ENOHDW No hardware available for operation
The address specification exceeds the allowable
limits or the required hardware does not exist.
See exec (2).

225 EBADFS Bit-mapped file system is marked dirty
An attempt to mount a bit-mapped file system
failed due to the dirty flag being set for that file
system.

226 EWOULDBLOCK Operation would block
An operation which would cause a process to
block was attempted on a object in non-blocking
mode.

227 EINPROGRESS Operation now in progress
An operation which takes a long time to
complete (such as a conneci(2N)) was attempted
on a non-blocking object.

228 EALREADY Operation already in progress
An operation was attempted on a non-blocking
object which already had an operation in
progress.

229 ENOTSOCK Socket operation on non-socket
Self-explanatory.

230 EDESTADDRREQ Destination address required
A required address was omitted from an
operation on a socket.

231 EMSGSIZE Message too long
A message sent on a socket was larger than the
internal message buffer.

232 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support
the semantics of the socket type requested. For
example, you cannot use the A R P A Internet
UDP protocol with type SOCK_STREAM.

233 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the
system or no implementation for it exists.

234 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been

5 /86 - 6 -

INTRO (2)

configured into the system or no implementation
for it exists.

235 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a
datagram socket.

236 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into
the system or no implementation for it exists.

237 EAFNOSUPPORT Address family not supported by
protocol
An address incompatible with the requested
protocol was used. For example, you shouldn't
necessarily expect to be able to use P U P Internet
addresses with A R P A Internet protocols.

238 EADDRINUSE Address already in use
Only one usage of each address is normally
permitted.

239 EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a
socket with an address not on this machine.

240 ENETDOWN Network is down
A socket operation encountered a dead network.

241 ENETUNREACH Network is unreachable
A socket operation was attempted to an
unreachable network.

242 ENETRESET Network dropped connection on reset
The host you were connected to crashed and
r e b o o t e d .

243 ECONNABORTED Software caused connection
abort
A connection abort was caused internal to your
host machine.

244 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This
normally results from the peer executing a
shutdown (2) call.

245 ENOBUFS No buffer space available
An operation on a socket or pipe was not
performed because the system lacked sufficient
buffer space.

246 EISCONN Socket is already connected
A connect request was made on an already
connected socket; or, a sendto or sendmsg
request on a connected socket specified a

5 /86 - 7 -

INTRO (2)

destination other than the connected party.
247 ENOTCONN Socket is not connected

An request to send or receive data was
disallowed because the socket is not connected.

248 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because
the socket had already been shut down with a
previous shutdown(2) call.

249 ETOOMANYREFS Too many references: cant' splice

250 ETIMEDOUT Connection timed out
A connect request failed because the connected
party did not properly respond after a period of
time. (The timeout period is dependent on the
communication protocol.)

251 ECONNREFUSED Connection refused
N o connection could be made because the target
machine actively refused it. This usually results
from trying to connect to a service which is
inactive on the foreign host.

252 EHOSTDOWN Host is down
The host is down.

253 EHOSTUNREACH No route to host
The gateway does not recognize the requested
host via the route specified.

254 ENOPROTOOPT Protocol not available
A bad option was specified in a getsockopt(2N)
or set80ckopt(2N) call.

DEFINITIONS
Process ID

Each active process in the system is uniquely identified
by a positive integer called a process ID. The range of
this ID is from 1 to 30,000.

P a r e n t Process ID
A new process is created by a currently active process;
see fork(2). The parent process ID of a process is the
process ID of its creator.

Process Group ID
Each active process is a member of a process group that
is identified by a positive integer called the process
group ID. This ID is the process ID of the group leader.
This grouping permits the signaling of related processes;
see kill(2).

5 /86 - 8 -

INTRO (2)

Tty Group ID
Each active process can be a member of a terminal group
that is identified by a positive integer called the tty
group ID. This grouping is used to terminate a group of
related processes upon termination of one of the
processes in the group; see extt(2) and signal(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a
positive integer called a real user ID.
Each user is also a member of a group. The group is
identified by a positive integer called the real group ID.
An active process has a real user ID and real group ID
that are set to the real user ID and real group ID,
respectively, of the user responsible for the creation of
the process.

Effect ive User ID and Effect ive Group ID
An active process has an effective user ID and an
effective group ID that are used to determine file access
permissions (see below). The effective user ID and
effective group ID are equal to the process's real user ID
and real group ID respectively, unless the process or one
of its ancestors evolved from a process that had the set-
user-ID bit or set-group ID bit set; see exec (2).

Super-user
A process is recognized as a super-user process and is
granted special privileges if its effective user ID is 0.

Special Processes
The processes with a process ID of 0 and a process ID of
1 are special processes and are referred to as procO and
procl.
ProcO is the scheduler. Procl is the initialization
process (init). Procl is the ancestor of every other
process in the system and is used to control the process
structure.

File Descriptor
A file descriptor is a small integer used to do I/O on a
file. The value of a file descriptor is from 0 to 19. A
process may have no more than 20 file descriptors (0-19)
open simultaneously. A file descriptor is returned by
system calls such as open(2), or ptpe(2). The file
descriptor is used as an argument by calls such as
read(2), write(2), ioctl(2), and close(2).

File Name
Names consisting of 1 to 14 characters may be used to
name an ordinary file, special file or directory.

5/86 - 9 -

INTRO (2)

These characters may be selected from the set of all
character values excluding \ 0 (null) and the ASCII code
for / (slash).
Note that it is generally unwise to use * , ? , [, or] as part
of file names because of the special meaning attached to
these characters by the shell. See «A(l). Although
permitted, it is advisable to avoid the use of unprintable
characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string
starting with an optional slash (/) , followed by zero or
more directory names separated by slashes, optionally
followed by a file name.
More precisely, a path name is a null-terminated
character string constructed as follows:
< path-name > : : = < file-name > | < path-prefix > < file-
name > | /
<path-prefix > : : = < r t p r e f i x > | / <rtpref ix>
< rtprefix > : : = < dirname > / | < rtprefix > < dirname > /
where <f i l e -name> is a string of 1 to 14 characters
other than the ASCII slash and null, and < dirname > is
a string of 1 to 14 characters (other than the ASCII slash
and null) that names a directory. Any number of
consecutive slashes is equivalent to a single slash.
If a path name begins with a slash, the path search
begins at the root directory. Otherwise, the search
begins from the current working directory.
A slash by itself names the root directory.
Unless specifically stated otherwise, the null path name
is treated as if it named a non-existent file.

Directory
Directory entries are called links. By convention, a
directory contains at least two links, . and referred to
as dot and dot-dot respectively. Dot refers to the
directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root
directory and a current working directory for the purpose
of resolving path name searches. The root directory of a
process need not be the root directory of the root file
system.

File Access Permissions
Read, write, and execute/search permissions on a file are
granted to a process if one or more of the following are

5/86 - 10 -

INTRO (2)

true:
The effective user ID of the process is super-user.

The effective user ID of the process matches the
user ID of the owner of the file and the
appropriate access bit of the "owner" portion
(0700) of the file mode is set.

The effective user ID of the process does not
match the user ID of the owner of the file, and
the effective group ID of the process matches the
group of the file and the appropriate access bit
of the "group" portion (070) of the file mode is
set.

The effective user ID of the process does not
match the user ID of the owner of the file, and
the effective group ID of the process does not
match the group ID of the file, and the
appropriate access bit of the "other" portion
(07) of the file mode is set.

Otherwise, the corresponding permissions are denied.
Message Queue Ident i f ier

A message queue identifier (msqid) is a unique positive
integer created by a msgget(2) system call. Each msqid
has a message queue and a data structure associated with
it. The data structure is referred to as msqid_ds and
contains the following members:
struct ipc_perm msg_perm;

/ * operation permission struct * /
ushort msg_qnum; / * number of msgs on q * /
ushort msg_qbytes; / * max number of bytes on q * /
ushort msg_lspid; / * pid of last msgsnd operation */
ushort msg_lrpid; / * pid of last msgrcv operation * /
t ime_t msg_stime; / * last msgsnd time * /
t ime_t msg_rtime; / * last msgrcv time */
t ime_t msg_ctime; / * last change time */

/ * Times measured in sees since * /
/ * 00:00:00 GMT, Jan. 1, 1970 * /

M s g _ p e r m is an ipc_perm structure that specifies the
message operation permission (see below). This structure
includes the following members:
ushort cuid; / * creator user id * /
ushort cgid; / * creator group id * /
ushort uid; / * user id * /
ushort gid; / * group id * /
ushort mode; / * r /w permission * /

5 /86 - 11 -

INTRO (2)

M s g _ q n u m is the number of messages currently on the
queue. M s g _ q b y t e s is the maximum number of bytes
allowed on the queue. Msg_ l sp id is the process id of
the last process that performed a msgsnd operation.
Msg_ lrp id is the process id of the last process that
performed a msgrcv operation. M s g _ s t i m e is the time
of the last msgsnd operation, m s g _ r t i m e is the time of
the last msgrcv operation, and m s g _ c t i m e is the time of
the last msgctl(2) operation that changed a member of
the above structure.

Message Operation Permissions
In the msgop(2) and msgctl(2) system call descriptions,
the permission required for an operation is given as
"{token}", where "token" is the type of permission
needed interpreted as follows:

Read and Write permissions on a msqid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.
The effective user ID of the process matches
msg_perm.[c ju id in the data structure
associated with msqid and the appropriate bit of
the "user" portion (0600) of m s g _ p e r m . m o d e
is set.
The effective user ID of the process does not
match msg_perm.[c]uid and the effective
group ID of the process matches
msg_perm.[c]g id and the appropriate bit of the
"group" portion (060) of m s g _ p e r m . m o d e is
set.
The effective user ID of the process does not
match msg_perm.[c]u id and the effective
group ID of the process does not match
msg_perm.[c]g id and the appropriate bit of the
"other" portion (06) of m s g _ p e r m . m o d e is set.

Otherwise, the corresponding permissions are denied.
Semaphore Identifier

A semaphore identifier (semid) is a unique positive
integer created by a semget(2) system call. Each semid
has a set of semaphores and a data structure associated
with it. The data structure is referred to as semid_ds
and contains the following members:

00400
00200
00060
00006

Read by user
Write by user
Read, Write by group
Read, Write by others

5/86 - 12 -

INTRO (2)

struct ipc_perm sem_perm;
/ * operation permission struct */

ushort sem_nsems; / * number of sems in set */
time_t sem_otime; / * last operation time */
time_t sem_ctime; / * last change time */

/ •Times measured in sees * /
/ * since 00:00:00 GMT, */
/ •Jan. 1, 1970 */

S e m _ p e r m is an ipc_perm structure that specifies the
semaphore operation permission (see below). This
structure includes the following members:
ushort cuid; / * creator user id */
ushort cgid; / * creator group id */
ushort uid; / * user id */
ushort gid; / * group id */
ushort mode; /* r/a permission */
The value of s e m _ n s e m s is equal to the number of
semaphores in the set. Each semaphore in the set is
referenced by a positive integer referred to as a
sem_num. Sem_num values run sequentially from 0 to
the value of sem_nsems minus 1. S e m _ o t i m e is the
time of the last semop(2) operation, and s e m _ c t i m e is
the time of the last semctl(2) operation that changed a
member of the above structure.
A semaphore is a data structure that contains the
following members:
ushort semval; / * semaphore value */
short sempid; / * pid of last operation */
ushort semncnt; /* # awaiting semval > cval * /
ushort semzent; / * # awaiting semval = 0 * /
S e m v a l is a non-negative integer. Sempid is equal to
the process ID of the last process that performed a
semaphore operation on this semaphore. S e m n c n t is a
count of the number of processes that are currently
suspended awaiting this semaphore's semval to become
greater than its current value. S e m z e n t is a count of
the number of processes that are currently suspended
awaiting this semaphore's semval to become zero.

Semaphore Operation Permissions
In the semop(2) and semctl(2) system call descriptions,
the permission required for an operation is given as
"{token}", where "token" is the type of permission
needed interpreted as follows:

00400 Read by user
00200 Alter by user

5/86 - 13 -

INTRO (2)

00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.
The effective user ID of the process matches
sem_perm.[c lu id in the data structure
associated with semid and the appropriate bit of
the "user" portion (0600) of s e m _ p e r m . m o d e
is set.
The effective user ID of the process does not
match sem_perm.[c]uid and the effective group
ID of the process matches sem_perm.[cjg id and
the appropriate bit of the "group" portion (060)
of s e m _ p e r m . m o d e is set.
The effective user ID of the process does not
match sem_perm.[c]uid and the effective group
ID of the process does not match
sem_perm.[c]g id and the appropriate bit of the
"other" portion (06) of s e m _ p e r m . m o d e is set.

Otherwise, the corresponding permissions are denied.
Shared Memory Identifier

A shared memory identifier (shmid) is a unique positive
integer created by a shmget(2) system call. Each shmid
has a segment of memory (referred to as a shared
memory segment) and a data structure associated with
it. The data structure is referred to as shmid_ds and
contains the following members:
struct ipc_perm shm_perm;

/* operation permission struct */
int shm_segsz; / * size of segment */
ushort shm_cpid; / * creator pid */
ushort shm_lpid; / * pid of last operation */
short shm_nattch; / * number of current attaches */
time_t shm_atime; / * last attach time */
time_t shm_dtime; / * last detach time */
time_t shm_ctime; / * last change time */

/ * Times measured in sees since */
/ * 00:00:00 GMT, Jan. 1, 1970 */

S h m _ p e r m is an ipc_perm structure that specifies the
shared memory operation permission (see below). This
structure includes the following members:

ushort cuid; / * creator user id */
ushort cgid; / * creator group id */
ushort uid; / * user id */

5/86 - 14 -

INTRO (2)

ushort gid; / * group id */
ushort mode; / * r/w permission */

Shm_segsE specifies the size of the shared memory
segment. S h m _ c p i d is the process id of the process that
created the shared memory identifier. Shm_lpid is the
process id of the last process that performed a shmop(2)
operation. S h m _ n a t t c h is the number of processes that
currently have this segment attached. S h m _ a t i m e is
the time of the last ehmat operation, s h m _ d t i m e is the
time of the last shmdt operation, and s h m _ c t i m e is the
time of the last shmctl(2) operation that changed one of
the members of the above structure.

Shared Memory Operation Permissions
In the shmop(2) and shmctl(2) system call descriptions,
the permission required for an operation is given as
"{token}", where "token" is the type of permission
needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.
The effective user ID of the process matches
shm_perm. [c lu id in the data structure
associated with shmid and the appropriate bit of
the "user" portion (0600) of s h m _ p e r m . m o d e
i s s e t .

The effective user ID of the process does not
match shm_perm.[c]uid and the effective
group ID of the process matches
shm_perm.[c]g id and the appropriate bit of the
"group" portion (060) of s h m _ p e r m . m o d e is
set.
The effective user ID of the process does not
match shm_perm.[c]uid and the effective
group ID of the process does not match
shm_perm.[c]g id and the appropriate bit of the
"other" portion (06) of s h m _ p e r m . m o d e is set.

Otherwise, the corresponding permissions are denied.
SEE ALSO

close(2], ioctl(2), open(2), pipe(2), read(2), write(2),
intro(3).
CTIX Internetworking Manual.

5/86 - 15 -

ACCEPT(2N)

NAME
accept - accept a connection on a socket

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / s o c k e t . h >
accept(s , addr, addrlen)
int s;
s t r u c t sockaddr ""addr;
int ""addrlen;

DESCRIPTION
Accept accepts a connection on a socket. The argument
s is a socket which has been created with socket(2),
bound to an address with bind(2), and is listening for
connections after a listen(2). Accept extracts the first
connection on the queue of pending connections, creates
a new socket with the same properties of a and allocates
a new file descriptor for the socket. If no pending
connections are present on the queue, and the socket is
not marked as non-blocking, accept blocks the caller
until a connection is present. If the socket is marked
non-blocking and no pending connections are present on
the queue, accept returns an error as described below.
The accepted socket, na, may not be used to accept
more connections. The original socket a remains open.

The argument addr is a result parameter which is filled
in with the address of the connecting entity, as known to
the communications layer. The exact format of the addr
parameter is determined by the domain in which the
communication is occurring. The addrlen is a value-
result parameter; it should initially contain the amount
of space pointed to by addr; on return it will contain the
actual length (in bytes) of the address returned. This
call is used with connection-based socket types, currently
with SOCK_STREAM.

RETURN VALUE
The call returns - 1 on error. If it succeeds it returns a
non-negative integer which is a descriptor for the
accepted socket.

ERRORS
The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK] The descriptor references a file,

not a socket.
[EOPNOTSUPP] The referenced socket is not of

type SOCK_STREAM.

- 1 -

A C C E P T (2 N)

[EFAULT] The addr parameter is not in a
writable part of the user address
space.

SEE ALSO
bind(2N), connect(2N), listen(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 2 -

ACCESS (2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path , a m o d e)
char *path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access
checks the named file for accessibility according to the
bit pattern contained in amode, using the real user ID in
place of the effective user ID and the real group ID in
place of the effective group ID. The bit pattern
contained in amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the
following are true:
[ENOTDIR] A component of the path prefix is not a

directory.
[ENOENT] Read, write, or execute (search)

permission is requested for a null path
name.

[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a

component of the path prefix.
[EROFS] Write access is requested for a file on a

read-only file system.
[ETXTBSY]

[EACCES]

[EFAULT]

Write access is requested for a pure
procedure (shared text) file that is being
executed.

Permission bits of the file mode do not
permit the requested access.

Path points outside the allocated
address space for the process.

The owner of a file has permission checked with respect
to the "owner" read, write, and execute mode bits.
Members of the file's group other than the owner have
permissions checked with respect to the "group" mode

- 1 -

ACCESS (2)

bits, and all others have permissions checked with
respect to the "other" mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is
returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

SEE ALSO
chmod(2), stat(2).

- 2 -

A C C T (2)

NAME
acct - enable or disable process accounting

SYNOPSIS
in t a c c t (p a t h)
c h a r * p a t h ;

DESCRIPTION
Acct is used to enable or disable the system process
accounting routine. If the routine is enabled, an
accounting record will be written on an accounting file
for each process that terminates. Termination can be
caused by one of two things: an exit call or a signal; see
exit(2) and signal(2). The effective user ID of the calling
process must be super-user to use this call.

Path points to a path name naming the accounting file.
The accounting file format is given in acct(4).
The accounting routine is enabled if path is non-zero and
no errors occur during the system call. It is disabled if
path is zero and no errors occur during the system call.

Acct will fail if one or more of the following are true:
[EPERM] The effective user of the calling process

is not super-user.
[EBUSY] An attempt is being made to enable

accounting when it is already enabled.
[ENOTDIR] A component of the path prefix is not a

directory.
JENOENT] One or more components of the

accounting file path name do not exist.
[EACCES] A component of the path prefix denies

search permission.
[EACCES] The file named by path is not an

ordinary file.
[EACCES] Mode permission is denied for the

named accounting file.
[EISDIR] The named file is a directory.
[EROFS] The named file resides on a read-only

file system.
[EFAULT] Path points to an illegal address.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

- 1 -

ACCT(2)

SEE ALSO
exit(2), signal(2), acct(4).

- 2 -

ALARM (2)

NAME
alarm - set a process alarm clock

SYNOPSIS
uns igned a l a r m (sec)
uns igned sec;

DESCRIPTION
Alarm instructs the alarm clock of the calling process to
send the signal SIGALRM to the calling process after
the number of real time seconds specified by sec have
elapsed; see signal(2).
Alarm requests are not stacked; successive calls reset the
alarm clock of the calling process.
If sec is 0, any previously made alarm request is
canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining
in the alarm clock of the calling process.

SEE ALSO
pause(2), signal(2).

- 1 -

BIND (2 N)

NAME
bind - bind a name to a socket

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / s o c k e t . h >
b ind (s, n a m e , namelen)
int s;
s t r u c t sockaddr ' n a m e ;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a
socket is created with aocfce<(2N), it exists in a name
space (address family) but has no name assigned. Bind
requests that name be assigned to the socket.

NOTES
The rules used in name binding vary between
communication domains. Consult the manual entries in
section 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return
value of - 1 indicates an error, which is further specified
in the global errno.

ERRORS
The bind call will fail if:
[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is not a socket.
[EADDRNOTAVAIL] The specified address is not

available from the local machine.
[EADDRINUSE] The specified address is already in

use.
[EINVAL] The socket is already bound to an

address.
[EACCESS] The requested address is

protected, and the current user
has inadequate permission to
access it.

[EFAULT] The name parameter is not in a
valid part of the user address
space.

SEE ALSO
connect(2N), getsockname(2N), listen(2N), socket(2N).
CTIX Internetworking Manual.

5/86 - 1 -

BIND (2 N)

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 2 -

B R K (2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
i n t b r k (e n d d s)
c h a r * e n d d s ;
c h a r * s b r k (incr)
i n t incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the
amount of space allocated for the calling process's data
segment; see exec (2). The change is made by resetting
the process's break value and allocating the appropriate
amount of space. The break value is the address of the
first location beyond the end of the data segment. The
amount of allocated space increases as the break value
increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the
allocated space accordingly.
Sbrk adds incr bytes to the break value and changes the
allocated space accordingly. Incr can be negative, in
which case the amount of allocated space is decreased.
Brk and sbrk will fail without making any change in the
allocated space if one or more of the following are true:
[ENOMEM]

Such a change would result in more space
being allocated than is allowed by a system-
imposed maximum (see ulimit(2)). Note that
due to a lack of swap space this may be less
than what ulimit(2) reports.

[ENOMEM]
Such a change would result in the break
value being greater than or equal to the start
address of any attached shared memory
segment (see shmop(2)).

RETURN VALUE
Upon successful completion, brk returns a value of 0 and
sbrk returns the old break value. Otherwise, a value of
- 1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2).

CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
Path points to the path name of a directory. Chdir
causes the named directory to become the current
working directory, the starting point for path searches
for path names not beginning with / .
Chdir will fail and the current working directory will be
unchanged if one or more of the following are true:
[ENOTDIR] A component of the path name is not a

directory.
[ENOENT] The named directory does not exist.
[EACCES] Search permission is denied for any

component of the path name.
[EFAULTj Path points outside the allocated

address space of the process.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
chroot(2).

CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
int c h m o d (path , m o d e)
char *path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets
the access permission portion of the named file's mode
according to the bit pattern contained in mode.
Access permission bits are interpreted as follows:

04000 Set user ID on execution.
02000 Set group ID on execution.
01000 Save text image after execution.
00400 Read by owner.
00200 Write by owner.
00100 Execute (search if a directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

The effective user ID of the process must match the
owner of the file or be super-user to change the mode of
a file.
If the effective user ID of the process is not super-user,
mode bit 01000 (save text image on execution) is cleared.
If the effective user ID of the process is not super-user
and the effective group ID of the process does not match
the group ID of the file, mode bit 02000 (set group ID on
execution) is cleared.
If an executable file is prepared for sharing then mode
bit 01000 prevents the system from abandoning the
swap-space image of the program-text portion of the file
when its last user terminates. Thus, when the next user
of the file executes it, the text need not be read from the
file system but can simply be swapped in, saving time.
Chmod will fail and the file mode will be unchanged if
one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a

directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a

component of the path prefix.
[EPERMj The effective user ID does not match

the owner of the file and the effective

- 1 -

CHMOD (2)

user ID is not super-user.
[EROFS] The named file resides on a read-only

file system.
[EFAULT] Path points outside the allocated

address space of the process.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
chown(2), mknod(2).

- 2 -

CHOWN (2)

NAME
chown - change owner and group of a file

SYNOPSIS
int c h o w n (path , o w n e r , group)
char *path;
int o w n e r , group;

DESCRIPTION
Path points to a path name naming a file. The owner ID
and group ID of the named file are set to the numeric
values contained in owner and group respectively.
Only processes with effective user ID equal to the file
owner or super-user may change the ownership of a file.
If chown is invoked by other than the super-user, the
set-user-ID and set-group-ID bits of the file mode, 04000
and 02000 respectively, will be cleared.
Chown will fail and the owner and group of the named
file will remain unchanged if one or more of the
following are true:
[ENOTDIR] A component of the path prefix is not a

directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a

component of the path prefix.
[EPERM] The effective user ID does not match

the owner of the file and the effective
user ID is not super-user.

[EROFS] The named file resides on a read-only
file system.

[EFAULT] Path points outside the allocated
address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
chown(l), chmod(2).

CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int c h r o o t (path)
char *path;

DESCRIPTION
Path points to a path name naming a directory. Chroot
causes the named directory to become the root directory,
the starting point for path searches for path names
beginning with / . The user's working directory is
unaffected by the chroot system call.
The effective user ID of the process must be super-user to
change the root directory.
The .. entry in the root directory is interpreted to mean
the root directory itself. Thus, .. cannot be used to
access files outside the subtree rooted at the root
directory.
Chroot will fail and the root directory will remain
unchanged if one or more of the following are true:
[ENOTDIR] Any component of the path name is not

a directory.
(ENOENT] The named directory does not exist.
[EPERM] The effective user ID is not super-user.
[EFAULT] Path points outside the allocated

address space of the process.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
chdir(2).

- 1 -

C L O S E (2)

NAME
close - close a file descriptor

SYNOPSIS
i n t c lo se (Hides)
i n t f i ldes ;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open,
dup, fcntl, or pipe system call. Close closes the file
descriptor indicated by fildes. All outstanding record
locks owned by the process (on the file indicated fildes)
are removed.
[EBADF] Close will fail if fildes is not a valid open file

descriptor.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

CONNECT(2N)

NAME
connect - initiate a connection on a socket

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / s o c k e t . h >
c o n n e c t (s, n a m e , name len)
int s;
s t r u c t s o c k a d d r *name;
int namelen;

DESCRIPTION
Connect initiates a connection on a socket. The
parameter « is a socket. If it is of type SOCK_DGRAM,
then this call permanently specifies the peer to which
datagrams are to be sent; if it is of type
SOCK_STREAM, then this call attempts to make a
connection to another socket. The other socket is
specified by name; namelen is the length of name, which
is an address in the communications space of the socket.
Each communications space interprets the name
parameter in its own way.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned.
Otherwise a - 1 is returned, and a more specific error
code is stored in errno.

ERRORS
The call fails if:
[EBADF]
[ENOTSOCK]

[EADDRNOTAVAIL]

[EAFNOSUPPORT]

[EISCONN]
[ETIMEDOUT]

[ECONNREFUSED]

[ENETUNREACH]

S is not a valid descriptor.
5 is a descriptor for a file, not a
socket.
The specified address is not
available on this machine.
Addresses in the specified address
family cannot be used with this
socket.
The socket is already connected.
Connection establishment timed
out without establishing a
connection.
The attempt to connect was
forcefully rejected.
The network is not reachable from
this host.

5/86 - 1 -

CONNECT (2 N)

[EADDRINUSE] The address is already in use.
[EFAULT] The name parameter specifies an

area outside the process address
space.

SEE ALSO
accept(2N), getsockname(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5 /86 - 2 -

CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int c r e a t (p a t h , m o d e)
char *pa th ;
int m o d e ;

DESCRIPTION
Creat creates a new ordinary file or prepares to rewrite
an existing file named by the path name pointed to by
path.
If the file exists, the length is truncated to 0 and the
mode and owner are unchanged. Otherwise, the file's
owner ID is set to the effective user ID, of the process the
group ID of the process is set to the effective group ID, of
the process and the low-order 12 bits of the file mode are
set to the value of mode modified as follows:

All bits set in the process's file mode creation
mask are cleared. See umask(2).
The "save text image after execution bit" of the
mode is cleared. See chmod(2).

Upon successful completion, the file descriptor is
returned and the file is open for writing, even if the
mode does not permit writing. The file pointer is set to
the beginning of the file. The file descriptor is set to
remain open across exec system calls. See fcntl(2). No
process may have more than 20 files open
simultaneously. A new file may be created with a mode
that forbids writing.
Creat will fail if one or more of the following are true:
[EACCES] Search permission is denied on a

component of the path prefix.
[EACCES] The file does not exist and the directory

in which the file is to be created does
not permit writing.

[EACCES] The file exists and write permission is
denied.

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] A component of the path prefix does
not exist.

[ENOENT] The path name is null.
[EROFS] The named file resides or would reside

on a read-only file system.

- 1 -

C R E A T (2)

[ETXTBSY] The file is a pure procedure (shared
text) file that is being executed.

[EISDIR] The named file is an existing directory.
[EMFILE] Twenty (20) file descriptors are

currently open.
[EFAULT] Path points outside the allocated

address space of the process.
[ENFILE] The system file table is full.
[EDEADLOCK] A side effect of a previous locking(2)

call.
RETURN VALUE

Upon successful completion, a non-negative integer,
namely the file descriptor, is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the
error.

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), locking(2), lseek(2),
open(2), read(2), umask(2), write(2).

D U P (2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
i n t d u p (f i ldes)
i n t f i ldes ;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open,
dup, fcntl, or pipe system call. Dup returns a new file
descriptor having the following in common with the
original:

Same open file (or pipe).
Same file pointer (i.e., both file descriptors share
one file pointer).
Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec
system calls. See fcntl(2).
The file descriptor returned is the lowest one available.
Dup will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file

descriptor.
[EMFILE] Twenty (20) file descriptors are

currently open.
RETURN VALUE

Upon successful completion a non-negative integer,
namely the file descriptor, is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the
error.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2).

- 1 -

EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a
file

SYNOPSIS
int execl (path , argO, a r g l , argn, 0)
char *patn , *argO, * a r g l , *argn;
int execv (path , argv)
char *patn , *argv[];
int execle (path , argO, a r g l , argn, 0, envp)
char *path , *argO, * a r g l , *argn, *envp[];
int execve (path , argv , envp)
char *path , *argv[], *envp[];
int execlp (file, argO, a r g l , argn , 0)
char *file, *argO, * a r g l , ..., *argn;
int e x e c v p (file, argv)
char *file, *argv[];

DESCRIPTION
Exec in all its forms transforms the calling process into a
new process. The new process is constructed from an
ordinary, executable file called the new process file.
This file consists of a header (see a.out(4)), a text
segment, and a data segment. The data segment
contains an initialized portion and an uninitialized
portion (bss). There can be no return from a successful
exec because the calling process is overlaid by the new
process.
When a C program is executed, it is called as follows:

m a i n (argc, argv , envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. As
indicated, argc is conventionally at least one and the
first member of the array points to a string containing
the name of the file.
Path points to a path name that identifies the new
process file.
File points to the new process file. The path prefix for
this file is obtained by a search of the directories passed
as the environment line "PATH = " (see environ(5)).
The environment is supplied by the shell (see s/i(l)).
ArgO, argl, ..., argn are pointers to null-terminated
character strings. These strings constitute the argument

- 1 -

E X E C (2)

list available to the new process. By convention, at least
argO must be present and point to a string that is the
same as path (or its last component).
Argv is an array of character pointers to null-terminated
strings. These strings constitute the argument list
available to the new process. By convention, argv must
have at least one member, and it must point to a string
that is the same as path (or its last component). Argv is
terminated by a null pointer.
Envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the
new process. Envp is terminated by a null pointer. For
ex eel and exec v, the C run-time start-off routine places
a pointer to the environment of the calling process in the
global cell:

e x t e r n c h a r * * e n v i r o n ;
and it is used to pass the environment of the calling
process to the new process.
File descriptors open in the calling process remain open
in the new process, except for those whose close-on-exec
flag is set; see fcntl(2). For those file descriptors that
remain open, the file pointer is unchanged.
Signals set to terminate the calling process will be set to
terminate the new process. Signals set to be ignored by
the calling process will be set to be ignored by the new
process. Signals set to be caught by the calling process
will be set to terminate the new process; see signal(2).

If the set-user-ID mode bit of the new process file is set
(see chmod(2)), exec sets the effective user ID of the new
process to the owner ID of the new process file.
Similarly, if the set-group-ID mode bit of the new process
file is set, the effective group ID of the new process is set
to the group ID of the new process file. The real user ID
and real group ID of the new process remain the same as
those of the calling process.
The shared memory segments attached to the calling
process will not be attached to the new process (see
shmop(2)).
Profiling is disabled for the new process; see profil(2).
The new process also inherits the following attributes
from the calling process:

nice value (see nice(2))
process ID
parent process ID

- 2 -

EXEC (2)

see

process group ID
semadj values (see semop(2))
tty group ID (see exit(2) and signal(2))
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal
alarm{2))
current working directory
root directory
file mode creation mask (see umask{2))
file size limit (see ulimit(2))
utime, stime, cutime, and cstime (see times(2))

Exec will fail and return to the calling process if one or
more of the following are true:
[ENOENT]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

One or more components of the new
process path name of the file do not
exist.

A component of the new process path of
the file prefix is not a directory.
Search permission is denied for a
directory listed in the new process file's
path prefix.
The new process file is not an ordinary
file.
The new process file mode denies
execution permission.
The exec is not an execlp or execvp ,
and the new process file has the
appropriate access permission but an
invalid magic number in its header.
The new process file is a pure procedure
(shared text) file that is currently open
for writing by some process.
The new process requires more memory
than is allowed by the system-imposed
maximum. This limit is a configurable
quantity up to the limitations of the
hardware. It may be less due to
restrictions on swap space.

The number of bytes in the new
process's argument list is greater than
the system-imposed limit of 10,240
bytes.

- 3 -

E X E C (2)

[EFAULT] The new process file is not as long as
indicated by the size values in its
header.

[EFAULT] Path, argv, or envp point to an illegal
address.

[ENOHDW] The executable file requires hardware
that does not exist (such as floating-
point).

[ENOEXEC] The file format does not correspond to
that expected as specified with the
magic number (such as a hole in the
file).

[ENOEXEC] The virtual address specification in the
header(s) exceeds the allowed system
limits.

[EPERM] The process is being traced (see
ptrace(2)), but the file does not permit
reading.

RETURN VALUE
If exec returns to the calling process an error has
occurred; the return value will be - 1 and errno will be
set to indicate the error.

SEE ALSO
sh(l) , alarm(2), exit(2), fork(2), nice(2), ptrace(2),
semop(2), signal(2), times(2), ulimit(2), umask(2),
a.out(4), environ(5).

5 / 8 6 - 4 -

EXIT (2)

NAME
exit, _exit - terminate process

SYNOPSIS
v o i d ex i t (s ta tus)
int s ta tus ;
v o i d _ex i t (s ta tus)
int s ta tus ;

DESCRIPTION
Exit terminates the calling process with the following
consequences:

All of the file descriptors open in the calling
process are closed.
If the parent process of the calling process is
executing a wait, it is notified of the calling
process's termination and the low order eight
bits (i.e., bits 0377) of status are made available
to it; see wait(2).
If the parent process of the calling process is not
executing a wait, the calling process is
transformed into a zombie process. A zombie
process is a process that only occupies a slot in
the process table. It has no other space
allocated either in user or kernel space. The
process table slot that it occupies is partially
overlaid with time accounting information (see
< s y s / p r o c . h >) to be used by times.
The parent process ID of all of the calling
process's existing child processes and zombie
processes is set to 1. This means that the
initialization process (see in<ro(2)) inherits each
of these processes.
Each attached shared memory segment is
detached and the value of s h m _ n a t t a c h in the
data structure associated with its shared memory
identifier is decremented by 1.
For each semaphore for which the calling process
has set a semadj value (see semop(2)), that
semadj value is added to the semval of the
specified semaphore.
If the process has a process, text, or data lock,
an unlock is performed (see plock(2)).
An accounting record is written on the
accounting file if the system's accounting routine
is enabled; see acc<(2).

- 1 -

EXIT (2)

If the process ID, tty group ID, and process group
ID of the calling process are equal (i.e., it is a
process group leader), the SIGHUP signal is sent
to each process that has a process group ID equal
to that of the calling process.
If the process is a process group leader, all
processes in its group are made members of the
null group.

The C function exit may cause cleanup actions before
the process exits. The function _exit circumvents all
cleanup.

SEE ALSO
intro(2), acct(2), plock(2), semop(2), signal(2), wait(2).

WARNING
See WARNING in signal(2).

- 2 -

F C N T L (2)

NAME
fcntl - file control

SYNOPSIS
i n c l u d e < f c n t l . h >
in t f c n t l (f i ldes , c m d , a r g)
i n t f i ldes , c m d , a r g ;

DESCRIPTION
Fcntl provides for control over open files. Fildes is an
open file descriptor obtained from a creat, open, dup,
fcntl, or pipe system call.

The commands available are:
F_DUPFD Return a new file descriptor as follows:

Lowest numbered available file
descriptor greater than or equal to arg.
Same open file (or pipe) as the original
file.
Same file pointer as the original file (i.e.,
both file descriptors share one file
pointer).
Same access mode (read, write or
read/write).
Same file status flags (i.e., both file
descriptors share the same file status
flags).
The close-on-exec flag associated with
the new file descriptor is set to remain
open across exec (2) system calls.

F_GETFD Get the close-on-exec flag associated
with the file descriptor fildes. If the
low-order bit is 0 the file will remain
open across exec, otherwise the file will
be closed upon execution of exec.

F_SETFD Set the close-on-exec flag associated with
fildes to the low-order bit of arg (0 or 1
as above).

F.GETFL Get file status flags.
F_SETFL Set file status flags to arg. Only certain

flags can be set; see fcntl{5).
F_GETLK Get the first lock which blocks the lock

description given by the variable of type
struct flock pointed to by arg (see
fcntl(5)). The information retrieved

- 1 -

F C N T L (2)

overwrites the information passed to
fcntl in the flock structure. If no lock is
found that would prevent this lock from
being created, then the structure is
passed back unchanged except for the
lock type which will be set to FJJNLCK.

F_SETLK Set or clear a file segment lock
according to the variable of type struct
flock pointed to by arg [see fcntl(5)1.
The cmd F_SETLK is used to establish
read (FJIDLCK) and write (F_WRLCK)
locks, as well as remove either type of
lock (FJJNLCK). If a read or write lock
cannot be set, fcntl will return
immediately with an error value of - 1 .

FJ3ETLKW This cmd is the same as F_SETLK except
that if a read or write lock is blocked by
other locks, the process will sleep until
the segment is free to be locked.

A read lock prevents any process from write locking the
protected area. More than one read lock may exist for a
given segment of a file at a given time. The file
descriptor on which a read lock is being placed must
have been opened with read access.
A write lock prevents any process from read locking or
write locking the protected area. Only one write lock
may exist for a given segment of a file at a given time.
The file descriptor on which a write lock is being placed
must have been opened with write access.
The structure flock describes the type (l_type), starting
offset (I jwhence) , relative offset (l_start) , size (Men), and
process id (l_pid) of the segment of the file to be
affected. The process id field is only used with the
F_GETLK cmd to return the value for a block in lock.
Locks may start and extend beyond the current end of a
file, but may not be negative relative to the beginning of
the file. A lock may be set to always extend to the end
of file by setting M e n to zero (0). If such a lock also has
l_start set to zero (0), the whole file will be locked.
Changing or unlocking a segment from the middle of a
larger locked segment leaves two smaller segments for
either end. Locking a segment that is already locked by
the calling process causes the old lock type to be
removed and the new lock type to take effect. All locks
associated with a file for a given process are removed
when a file descriptor for that file is closed by that
process or the process holding that file descriptor

- 2 -

F C N T L (2)

terminates. Locks are not inherited by a child process in
a fork{2) system call.
Fcntl will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file
descriptor.

[EMFILE] Cmd is FJ)UPFD and 20 file descriptors
are currently open.

[EINFILE] Cmd is F_DUPFD and arg is negative or
greater than 20.

[EINVAL] Cmd is F.GETLK, FJ5ETLK, or
SETLKW and arg or the data it points
to is not valid.

[EACCES] Cmd is F_SETLK; the type of lock
l_type) is a read (F_RDLCK) or write
F_WRLCK lock, and the segment of a
ile to be locked is already write locked

by another process; or the type is a
write lock, and the segment of a file to
be locked is already read or write
locked by another process.

[EMFILE] Cmd is F.SETLK or F_SETLKW, the
type of lock is a read or write lock and
there are no more file locking headers
available (too many files have segments
locked).

[ENOSPC] Cmd is F.SETLK or F_SETLKW, the
type of lock is a read or write lock and
there are no more file locking headers
available (too many files have segments
locked) or there are no more record
locks available (too many file segments
locked).

(EDEADLK] Cmd is F_SETLK, when the lock is
blocked by some lock from another
process and sleeping (waiting) for that
lock to become free, this causes a
deadlock situation.

RETURN VALUE
Upon successful completion, the value returned depends
on cmd as follows:

F_DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order

bit is defined).

F C N T L (2)

F_SETFD Value other than - 1 .
F GETFL Value of file flags.
F_SETFL Value other than - 1 .
F_GETLK Value other that - 1 .
F_SETLK Value other than - 1 .
FJSETLKW Value other than - 1 .

Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
close(2), exec(2), open(2), fcntl(5).

BUGS
Two forms of file locking are available: locking(2) and
fcntl(2). These two methods are not compatible; a lock
by one is not honored by the other.

F O R K (2)

NAME
fork - create a new process

SYNOPSIS
in t f o r k ()

DESCRIPTION
Fork causes creation of a new process. The new process
child process) is an exact copy of the calling process
parent process). This means the child process inherits

the following attributes from the parent process:
environment
close-on-exec flag (see exec(2))
signal handling settings (i.e., SIG_DFL,
SIG_IGN, function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice(2))
all attached shared memory segments (see
shmop(2))
process group ID
tty group ID (see exit(2) and aignal(2))
trace flag (see ptrace{2) request 0)
time left until an alarm clock signal (see
alarm{ 2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimit(2))

The child process differs from the parent process in the
following ways:

The child process has a unique process ID.
The child process has a different parent process
ID (i.e., the process ID of the parent process).
The child process has its own copy of the
parent's file descriptors. Each of the child's file
descriptors shares a common file pointer with
the corresponding file descriptor of the parent.
All semadj values are cleared (see aemop{2)).
Process locks, text locks and data locks are not
inherited by the child plock(2)).
The child process's utime, stime, cutime, and
cstime are set to 0. The time left until an alarm
clock signal is reset to 0.

- 1 -

F O R K (2)

Fork will fail and no child process will be created if one
or more of the following are true:

[EAGAIN] The system-imposed limit on the total
number of processes under execution
would be exceeded.

jEAGAIN] The system-imposed limit on the total
number of processes under execution by
a single user would be exceeded.

RETURN VALUE
Upon successful completion, fork returns a value of 0 to
the child process and returns the process ID of the child
process to the parent process. Otherwise, a value of - 1
is returned to the parent process, no child process is
created, and errno is set to indicate the error.

SEE ALSO
exchanges(2), exec(2), nice(2), plock(2),
semop(2), shmop(2), signal(2), times(2),
umask(2), wait(2).

ptrace(2),
ulimit(2),

- 2 -

GETPEERNAME (2 N)

NAME
getpeername - get name of connected peer

SYNOPSIS
g e t p e e r n a m e (s , n a m e , namelen)
int s;
s t r u c t sockaddr ""name;
int ""namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to
socket a. The namelen parameter should be initialized
to indicate the amount of space pointed to by name. On
return it contains the actual size of the name returned
(in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, - 1 if it fails.

ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid

descriptor.
[ENOTSOCK] The argument a is a file, not a socket.
[ENOTCONN] The socket is not connected.
[ENOBUFS] Insufficient resources were available in

the system to perform the operation.
[EFAULT] The name parameter points to memory

not in a valid part of the process
address space.

SEE ALSO
bind(2N), socket(2N), getsockname(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 1 -

GETPID (2)

NAME
getpid, getpgrp, getppid - get process, process group,
and parent process IDs

SYNOPSIS
int ge tp id ()
int g e t p g r p ()
int ge tpp id ()

DESCRIPTION
Getpid returns the process ID of the calling process.
Getpgrp returns the process group ID of the calling
process.
Getppid returns the parent process ID of the calling
process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

- 1 -

GETSOCKNAME (2 N)

NAME
getsockname - get socket name

SYNOPSIS
g e t s o c k n a m e (s , n a m e , n a m e l e n)
in t s;
s t r u c t s o c k a d d r ""name;
in t * n a m e l e n ;

DESCRIPTION
Getsockname returns the current name for the specified
socket (s). The namelen parameter should be initialized
to indicate the amount of space pointed to by name. On
return namelen contains the actual size of the name
returned (in bytes).

RETURN VALUE
A 0 is returned if the call succeeds, - 1 if it fails.

ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid

descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOBUFS] Insufficient resources were available in

the system to perform the operation.
[EFAULT] The name parameter points to memory

not in a valid part of the process
address space.

SEE ALSO
bind(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTEX kernel that supports networking protocols.

GETSOCKOPT (2 N)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / s o c k e t . h >
g e t s o c k o p t (s , level, o p t n a m e , o p t v a l , opt len)
int s, level, o p t n a m e ;
char ""optval;
int *opt len;

s e t s o c k o p t (s , level , o p t n a m e , o p t v a l , opt len)
int s, level, o p t n a m e ;
char ""optval;
int opt len;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated
with a socket. Options may exist at multiple protocol
levels; they are always present at the uppermost
"socket" level.
When manipulating socket options the level at which the
option resides and the name of the option must be
specified. To manipulate options at the "socket" level,
level is specified as SOL_SOCKET. To manipulate
options at any other level the protocol number of the
appropriate protocol controlling the option is supplied.
For example, to indicate an option is to be interpreted
by the TCP protocol, level should be set to the protocol
number of TCP; see getprotoent(3N).
The parameters optval and optlen are used to access
option values for setsockopt. For getsockopt they
identify a buffer in which the value for the requested
option(s) are to be returned. For getsockopt, optlen is a
value-result parameter, initially containing the size of
the buffer pointed to by optval, and modified on return
to indicate the actual size of the value returned. If no
option value is to be supplied or returned, optval may be
supplied as 0.
Optname and any specified options are passed
uninterpreted to the appropriate protocol module for
interpretation. The include file < s y s / s o c k e t . h >
contains definitions for "socket" level options; see
«ocA:et(2N). Options at other protocol levels vary in
format and name, consult the appropriate entries in
(4N).

RETURN VALUE
A 0 is returned if the call succeeds, - 1 if it fails.

- 1 -

GETSOCKOPT (2 N)

ERRORS
The call succeeds unless:
[EBADF]

[ENOTSOCK]

[ENOPROTOOPT]
[EFAULT]

The argument a is a file, not a
socket.

The argument a is not a valid
descriptor.

The option is unknown.
The options are not in a valid
part of the process address space.

SEE ALSO
socket(2N), getprotoent(3N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 2 -

GETUID (2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective
user, real group, and effective group IDs

SYNOPSIS
uns igned s h o r t ge tu id ()
uns igned s h o r t ge teu id ()
u n s i g n e d s h o r t ge tg id ()
uns igned s h o r t ge teg id ()

DESCRIPTION
Getuid returns the real user ID of the calling process.
Geteuid returns the effective user ID of the calling
process.
Getgid returns the real group ID of the calling process.
Getegid returns the effective group ID of the calling
process.

SEE ALSO
intro(2), setuid(2).

- 1 -

IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
ioctl (f i ldes, request , arg)
int f i ldes , request;

DESCRIPTION
Ioctl performs a variety of functions on character special
files (devices). The write-ups of various devices in
Section 7 discuss how ioctl applies to them.
Ioctl will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file

descriptor.
[ENOTTY] Fildes is not associated with a character

special device.
[EINVAL] Request or arg is not valid. See

Section 7.
[EINTR] A signal was caught during the ioctl

system call.
[EFAULT] The options are not in a valid part of

the process address space.
RETURN VALUE

If an error has occurred, a value of - 1 is returned and
errno is set to indicate the error.

SEE ALSO
termio(7).

5/86 - 1 -

KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
i n t kill (p id , s ig)
in t p id , s ig ;

DESCRIPTION
Kill sends a signal to a process or a group of processes.
The process or group of processes to which the signal is
to be sent is specified by pid. The signal that is to be
sent is specified by sig and is either one from the list
given in aignal(2), or 0. If sig is 0 (the null signal), error
checking is performed but no signal is actually sent.
This can be used to check the validity of pid.
The real or effective user ID of the sending process must
match the real or effective user ID of the receiving
process, unless the effective user ID of the sending
process is super-user.
The processes with a process ID of 0 and a process ID of
1 are special processes (see intro (2)) and will be referred
to below as procO and procl, respectively.

If pid is greater than zero, sig will be sent to the process
whose process ID is equal to pid. Pid may equal 1.
If pid is 0, sig will be sent to all processes excluding
procO and procl whose process group ID is equal to the
process group ID of the sender.

If pid is - 1 and the effective user ID of the sender is not
super-user, sig will be sent to all processes excluding
procO and procl whose real user ID is equal to the
effective user ID of the sender.
If pid is - 1 and the effective user ID of the sender is
super-user, sig will be sent to all processes excluding
procO and procl.
If pid is negative but not - 1 , sig will be sent to all
processes whose process group ID is equal to the absolute
value of pid.
Kill will fail and no signal will be sent if one or more of
the following are true:
[EINVAL] Sig is not a valid signal number.
[EINVAL] Sig is SIGKILL and pid is 1 (procl).
[ESRCH] No process can be found corresponding

to that specified by pid.
[EPERM] The user ID of the sending process is

not super-user, and its real or effective

- 1 -

KILL(2)

user ID does not match the real or
effective user ID of the receiving
process.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
kill(l), getpid(2), setpgrp(2), signal(2).

- 2 -

LDDRV(2)

NAME
drvalloc, drvbind - access loadable drivers

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s l o c a l . h >
^ i n c l u d e < s y s / d r v . h >

sys local (S Y S L _ A L L O C D R V , opt ion , ds)
int opt ion;
s t r u c t drval loc *ds;

sys local (S Y S L _ B I N D D R V , opt ion , ds)
int opt ion;
s t r u c t drvb ind ""ds;

DESCRIPTION
These two functions accessed via syslocal(2) implement
the loadable driver functions of CTIX. They both require
super-user privilege.
Loading drivers consists of two phases: allocation of
virtual space, device numbers, and device IDs; and
binding. Fully relocating a driver into memory,
allocating physical space, plugging the device switch
tables, calling initialization routines, and unloading
require the same two phases in reverse.

SEE ALSO
lldrv(lM), syslocal(2).

- 1 -

LINK (2)

NAME
link - link to a file

SYNOPSIS
i n t l ink (p a t h l , p a t h 2)
c h a r * p a t h l , * p a t h 2 ;

DESCRIPTION
Pathl points to a path name naming an existing file.
PathS points to a path name naming the new directory
entry to be created. Link creates a new link (directory
entry) for the existing file.
Link will fail and no link will be created if one or more
of the following are true:
[ENOTDIR] A component of either path prefix is

not a directory.
[ENOENTj A component of either path prefix does

not exist.
[EACCES] A component of either path prefix

denies search permission.
[ENOENT] The file named by pathl does not exist.
[EEXIST] The link named by path2 exists.
[EPERM] The file named by pathl is a directory

and the effective user ID is not super-
user.

[EXDEV] The link named by pathZ and the file
named by pathl are on different logical
devices (file systems).

[ENOENT] Path2 points to a null path name.
[EACCES] The requested link requires writing in a

directory with a mode that denies write
permission.

[EROFS] The requested link requires writing in a
directory on a read-only file system.

[EFAULT] Path points outside the allocated
address space of the process.

[EMLINK] The maximum number of links to a file
would be exceeded.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
unlink(2).

- 1 -

LISTEN (2 N)

NAME
listen - listen for connections on a socket

SYNOPSIS
l i s t e n (s , b a c k l o g)
i n t 8, b a c k l o g ;

DESCRIPTION
To accept connections, a socket is first created with
socA;c<(2N), a backlog for incoming connections is
specified with listen, and then the connections are
accepted with accep<(2N). The listen call applies only to
sockets of type SOCKJ3TREAM or
SOCK_PKTSTREAM.

The backlog parameter defines the maximum length to
which the queue of pending connections may grow. If a
connection request arrives with the queue full the client
will receive an error with an indication of
ECONNREFUSED.

RETURN VALUE
A 0 return value indicates success; - 1 indicates an error.

ERRORS
The call fails if:
[EBADF] The argument s is not a valid

descriptor.
[ENOTSOCK] The argument s is not a socket.
[EOPNOTSUPP] The socket is not of a type that

supports the operation listen.
SEE ALSO

accept(2N), connect(2N), socket(2N).
CTIX Internetworking Manual.

BUGS
The backlog is currently limited (silently) to 5.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5 / 8 6 - 5 -

LOCKING (2)

NAME
locking - exclusive access to regions of a file

SYNOPSIS
i n t l o c k i n g (f i l edes , m o d e , s ize);
i n t f i lde s , m o d e ;
l o n g s ize;

DESCRIPTION
Locking places or removes a kernel-enforced lock on a
region of a file. The calling process has exclusive access
to regions it has locked. If another process uses read(2),
write{2), creat(2), or open(2) (with 0 _ T R U N C) in a
way tnat reads or modifies part of the locked region, the
second process's system call does not return until the
lock is released, unless deadlock or some other error is
detected. A process whose execution is suspended in
such a manner is said to be blocked.
Parameters specify the file to be locked or unlocked, the
kind of lock or unlock, and the region affected:

• Filedes specifies the file to be locked or
unlocked; filedes is a file descriptor
returned by an open, create, pipe, fcntl,
or dup system call.

• Mode specifies the action: 0 for lock
removal; 1 for blocking lock; 2 for
checking lock. Blocking and checking
locks differ only if the attempted lock is
itself locked out: a blocking lock waits
until the existing lock or locks are
removed; a checking lock immediately
returns an error.

• The region affected begins at the current
file offset associated with filedes and is
size bytes long. If size is zero, the
region affected ends at the end of the
file.

Locking imposes no structure on a CTIX file. A process
can arbitrarily lock any unlocked byte and unlock any
locked byte. However, creating a large number of
noncontiguous locked regions can fill up the system's
lock table and make further locks impossible. It is
advisable that a program's use of locking segment the file
in the same way as does the program's use of read and
write.
A process is said to be deadlocked if it is sleeping until
an unlocking which is indirectly prevented by that same

- 1 -

LOCKING (2)

sleeping process. The kernel will not permit a read,
write, creat, open with 0 _ T R U N C , or blocking locking
if such a call would deadlock the calling process. Errno
is set to E D E A D L O C K . The standard response to such
a situation is for the program to release all its existing
locked areas and try again. If a locking call fails because
the kernel's table of locked areas is full, again, errno is
set to E D E A D L O C K and, again, the calling program
should release its existing locked areas.
Special files and pipes can be locked, but no
input/output is blocked.
Locks are automatically removed if the process that
placed the lock terminates or closes the file descriptor
used to place the lock.

SEE ALSO
create(2), close(2), dup(2), open(2), read(2), write(2).

RETURN VALUE
A return value of - 1 indicates an error, with the error
value in errno.
[EACCES] A checking lock on a region already

locked.
[EDEADLOCK] A lock that would cause deadlock or

overflow the system's lock table.
WARNING

Do not apply any standard input/output library function
to a locked file: this library does not know about locking.

BUGS
Two forms of file locking are available: locking(2) and
fcntl(2). These two methods are not compatible; a lock
by one is not honored by the other.

- 2 -

LSEEK (2)

NAME
lseek - move read/write file pointer

SYNOPSIS
l o n g l s eek (f i ldes , o f f s e t , w h e n c e)
in t f i ldes ;
l o n g o f f s e t ;
in t w h e n c e ;

DESCRIPTION
Fildes is a file descriptor returned from a treat, open,
dup, or fcntl system call. Lseek sets the file pointer
associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.
If whence is 1, the pointer is set to its current

location plus offset.
If whence is 2, the pointer is set to the size of

the file plus offset.
Upon successful completion, the resulting pointer
location, as measured in bytes from the beginning of the
file, is returned.
Lseek will fail and the file pointer will remain unchanged
if one or more of the following are true:
[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or fifo.
[EINVAL and SIGSYS signal]

Whence is not 0, 1, or 2.
[EINVAL] The resulting file pointer would be

negative.
Some devices are incapable of seeking. The value of the
file pointer associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer
indicating the file pointer value is returned. Otherwise,
a value of - 1 is returned and errno is set to indicate the
error.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

M K N O D (2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
i n t m k n o d (p a t h , m o d e , d e v)
c h a r * p a t h ;
i n t m o d e , d e v ;

DESCRIPTION
Mknod creates a new file named by the path name
pointed to by path. The mode of the new file is
initialized from mode. Where the value of mode is
interpreted as follows:
0170000 file type; one of the following:

0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the
following

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of
the process. The group ID of the file is set to the
effective group ID of the process.
Values of mode other than those above are undefined
and should not be used. The low-order 9 bits of mode
are modified by the process's file mode creation mask: all
bits set in the process's file mode creation mask are
cleared. See umask(2). If mode indicates a block or
character special file, dev is a configuration-dependent
specification of a character or block I /O device. If mode
does not indicate a block special or character special
device, dev is ignored.
Mknod may be invoked only by the super-user for file
types other than FIFO special.
Mknod will fail and the new file will not be created if
one or more of the following are true:
[EPERM] The effective user ID of the process is

not super-user.

- 1 -

M K N O D (2)

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] A component of the path prefix does
not exist.

[EROFS] The directory in which the file is to be
created is located on a read-only file
system.

[EEXIST] The named file exists.
[EFAULT] Path points outside the allocated

address space of the process.
RETURN VALUE

Upon successful completion a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
mkdir(l), chmod(2), exec(2), umask(2), fs(4).

MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int m o u n t (spec, dir, rwf lag)
char *spec, *dir;
int rwf lag;

DESCRIPTION
Mount requests that a removable file system contained
on the block special file identified by spec be mounted
on the directory identified by dir. Spec and dir are
pointers to path names.
Upon successful completion, references to the file dir will
refer to the root directory on the mounted file system.
The low-order bit of rwflag is used to control write
permission on the mounted file system; if 1, writing is
forbidden, otherwise writing is permitted according to
individual file accessibility.
Mount may be invoked only by the super-user.
Mount will fail if one or more of the following are true:
[EPERM] The effective user ID is not super-user.
[ENOENT] Any of the named files does not exist.
[ENOTDIR] A component of a path prefix is not a

directory.
[ENOTBLK] Spec is not a block special device.
[ENXIO] The device associated with spec does

not exist.
[ENOTDIR] Dir is not a directory.
[EFAULT] Spec or dir points outside the allocated

address space of the process.
[EBUSY] Dir is currently mounted on, is

someone's current working directory, or
is otherwise busy.

[EBUSY] The device associated with spec is
currently mounted.

[EBUSY] There are no more mount table entries.
[EROFS] The low-order bit of rwflag is zero and

the volume containing the file system is
physically write-protected.

[EBADFS] An attempt to mount a bit-mapped file
system failed due to the dirty flag being
set for that file system.

5/86 - 1 -

MOUNT(2)

[ENXIO] The device is a swap partition.
[ENXIO] The superblock found on the specified

device does not have a correct magic
number.

RETURN VALUE
Upon successful completion a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
umount(2).

5/86 - 2 -

MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / i p c . h >
^ i n c l u d e < s y s / m s g . h >
int m s g c t l (msqid, cmd, buf)
int msqid, cmd;
s t r u c t msq id_ds *buf;

DESCRIPTION
Msgctl provides a variety of message control operations
as specified by cmd. The following cmds are available:
IPC_STAT Place the current value of each member

of the data structure associated with
msqid into the structure pointed to by
buf. The contents of this structure are
defined in intro(2). {READ}

IPC_SET Set the value of the following members
of the data structure associated with
msqid to the corresponding value found
in the structure pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode /* only low 9 bits */
msg_qbytes

This cmd can only be executed by a
process that has an effective user ID
equal to either that of super user or to
the value of m s g _ p e r m . u i d in the data
structure associated with msqid. Only
super user can raise the value of
msg_qbyte s .

IPC_RMID Remove the message queue identifier
specified by msqid from the system and
destroy the message queue and data
structure associated with it. This cmd
can only be executed by a process that
has an effective user ID equal to either
that of super user or to the value of
msg__perm.uid in the data structure
associated with msqid.

Msgctl will fail if one or more of the following are true:

- 1 -

MSGCTL(2)

[EINVAL]

[EINVAL]
[EACCES]

[EPERM]

Msqid is not a valid message queue
identifier.
Cmd is not a valid command.
Cmd is equal to IPC_STAT and
{READ} operation permission is denied
to the calling process (see intro(2)).
Cmd is equal to IPC_RMID or
IPCJSET The effective user ID of the
calling process is not equal to that of
super user and it is not equal to the
value of m s g _ p e r m . u i d in the data
structure associated with msqid.
Cmd is equal to IPC_SET, an attempt
is being made to increase to the value
of m s g _ q b y t e s , and the effective user
ID of the calling process is not equal to
that of super user.

[EFAULT] Buf points to an illegal address.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), msgget(2), msgop(2).

[EPERM]

- 2 -

MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
i n c l u d e < s y s / m s g . h >
int m s g g e t (key, msg f lg)
k e y _ t key;
int msgf lg ;

DESCRIPTION
Msgget returns the message queue identifier associated
with key.
A message queue identifier and associated message queue
and data structure (see intro(2)) are created for key if
one of the following are true:

Key is equal to IPC_PRIVATE
Key does not already have a message queue
identifier associated with it, and (msgflg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the
new message queue identifier is initialized as follows:

Msg_perm.cu id , msg_perm.u id ,
msg_perm.cg id , and m s g _ p e r m . g i d are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.
The low-order 9 bits of m s g _ p e r m . m o d e are
set equal to the low-order 9 bits of msgflg.
M s g _ q n u m , msg_lspid, msg_lrpid,
msg_s t ime , and m s g _ r t i m e are set equal to 0.
M s g _ c t i m e is set equal to the current time.
M s g _ q b y t e s is set equal to the system limit.

Msgget will fail if one or more of the following are true:
[EACCES] A message queue identifier exists for

key, but operation permission (see
intro(2)) as specified by the low-order 9
bits of msgflg would not be granted.

[ENOENT] A message queue identifier does not
exist for key and (msgflg &
IPC_CREAT) is "false".

[ENOSPC] A message queue identifier is to be
created but the system-imposed limit on
the maximum number of allowed

- 1 -

M S G G E T (2)

message queue identifiers system wide
would be exceeded.

[EEXIST] A message queue identifier exists for key
but ({magfig & IPC_CREAT) & (msgf lg
& IPC_EXCL)) is "true".

RETURN VALUE
Upon successful completion, a non-negative integer,
namely a message queue identifier, is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), msgctl(2), msgop(2).

- 2 -

MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
^ i n c l u d e < s y s / m s g . h >
int m s g s n d (msqid, m s g p , msgsz , msgf lg)
int msqid;
s t r u c t m s g b u f *msgp;
int msgsz , msgf lg ;
int m s g r c v (msqid, m s g p , msgsz , m s g t y p , msg f lg)
int msqid;
s t r u c t m s g b u f *msgp;
int msgsz;
long m s g t y p ;
int msgf lg ;

DESCRIPTION
Msgsnd is used to send a message to the queue associated
with the message queue identifier specified by msqid.
{WRITE} Msgp points to a structure containing the
message. This structure is composed of the following
members:

long mtype- /* message type */
char mtext[j; / * message text */

Mtype is a positive integer that can be used by the
receiving process for message selection (see msgrcv
below^. Mtext is any text of length msgsz bytes. Msgsz
can range from 0 to a system-imposed maximum.
Msgflg specifies the action to be taken if one or more of
the following are true:

The number of bytes already on the queue is
equal to m s g _ q b y t e s (see intro(2)).
The total number of messages on all queues
system-wide is equal to the system-imposed
limit.

These actions are as follows:
If (msgflg & IPC_NOWAIT) is "true", the
message will not be sent and the calling process
will return immediately.
If (msgflg & IPC_NOWAIT) is "false", the
calling process will suspend execution until one
of the following occurs:

- 1 -

M S G O P (2)

The condition responsible for the
suspension no longer exists, in which
case the message is sent.
Msqid is removed from the system (see
msgctl(2)). When this occurs, errno is
set equal to EIDRM, and a value of - 1
is returned.
The calling process receives a signal
that is to be caught. In this case the
message is not sent and the calling
process resumes execution in the
manner prescribed in signal(2)).

Msgsnd will fail and no message will be sent if one or
more of the following are true:
[EINVAL] Msqid is not a valid message queue

identifier.
[EACCES] Operation permission is denied to the

calling process (see intro (2)).
[EINVAL] Mtype is less than 1.
[EAGAIN] The message cannot be sent for one of

the reasons cited above and (msgj lg &
I P C . N O W A I T) is "true".

[EINVAL] Msgsz is less than zero or greater than
the system-imposed limit.

[EFAULT] Msgp points to an illegal address.
Upon successful completion, the following actions are
taken with respect to the data structure associated with
msqid (see intro (2)).

M s g _ q n u m is incremented by 1.
M s g _ l s p i d is set equal to the process ID of the
calling process.
M s g _ s t i m e is set equal to the current time.

Msgrcv reads a message from the queue associated with
the message queue identifier specified by msqid and
places it in the structure pointed to by msgp. {READ}
This structure is composed of the following members:

long mtype; / * message type * /
char mtext[]; / * message text * /

Mtype is the received message's type as specified by the
sending process. Mtext is the text of the message. Msgsz
specifies the size in bytes of mtext. The received
message is truncated to msgsz bytes if it is larger than

- 2 -

M S G 0 P (2)

msgsz and (m s g f l g & M S G _ N O E R R O R) is "true". The
truncated part of the message is lost and no indication of
the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:
If msgtyp is equal to 0, the first message on the
queue is received.
If msgtyp is greater than 0, the first message of
type msgtyp is received.
If msgtyp is less than 0, the first message of the
lowest type that is less than or equal to the
absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the
desired type is not on the queue. These are as follows:

If (m s g f l g & I P C _ N O W A I T) is "true", the
calling process will return immediately with a
return value of - 1 and errno set to ENOMSG.
If (m s g f l g & I P C _ N O W A I T) is "false", the
calling process will suspend execution until one
of the following occurs:

A message of the desired type is placed
on the queue.
Msqid is removed from the system.
When this occurs, errno is set equal to
EIDRM, and a value of - 1 is returned.
The calling process receives a signal
that is to be caught. In this case a
message is not received and the calling
process resumes execution in the
manner prescribed in signal(2)).

Msgrcv will fail and no message will be received if one or
more of the following are true:
[EINVAL] Msqid is not a valid message queue

identifier.
[EACCES] Operation permission is denied to the

calling process.
[EINVAL] Msgsz is less than 0.
[E2BIG] Mtext is greater than msgsz and (msgflg

& M S G _ N O E R R O R) is "false".
[ENOMSG] The queue does not contain a message

of the desired type and (msgtyp SL
I P C _ N O W A I T) is "true".

M S G O P (2)

[EFAULT] Msgp points to an illegal address.
Upon successful completion, the following actions are
taken with respect to the data structure associated with
msqid (see intro (2)).

M s g _ q n u m is decremented by 1.
M s g _ l r p i d is set equal to the process ID of the
calling process.
M s g _ r t i m e is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal,
a value of - 1 is returned to the calling process and errno
is set to EINTR. If they return due to removal of msqid
from the system, a value of - 1 is returned and errno is
set to EIDRM.

Upon successful completion, the return value is as
follows:

Msgsnd returns a value of 0.
Msgrcv returns a value equal to the number of
bytes actually placed into mtext.

Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).

- 4 -

NICE (2)

NAME
nice - change priority of a process

SYNOPSIS
i n t n i c e (incr)
i n t incr;

DESCRIPTION
Nice adds the value of incr to the nice value of the
calling process. A process's nice value is a positive
number for which a more positive value results in lower
CPU priority.
The system allows nice values only from - 8 to 39. The
nice system call grants nice values from - 8 to - 1 only to
super-user processes. These negative nice values cause
the GPU priority of the process to be fixed
independently of CPU usage of the process. Nice values
from 0 to 39 allow the system to adjust dynamically the
actual CPU priority of the process, temporarily lowering
it in proportion to the process's recent level of CPU
usage. If a super-user process requests a nice value
below - 8 , or if any other process requests a nice value
below 0, the system imposes a nice value of 0. If any
process requests a nice value above 39, the system
imposes a nice value of 39.

[EPERM] Nice will fail and not change the nice
value if incr is negative or greater than
40 and the effective user ID of the
calling process is not super-user.

RETURN VALUE
Upon successful completion, nice returns the new nice
value minus 20. Otherwise, a value of - 1 is returned
and errno is set to indicate the error.

SEE ALSO
nice(l) , exec(2).

- 1 -

OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
^ i n c l u d e < f c n t l . h >
int o p e n (path , o f lag [, m o d e])
char *patn;
int o f lag , mode;

DESCRIPTION
Path points to a path name naming a file. Open opens a
file descriptor for the named file and sets the file status
flags according to the value of oflag. Oflag values are
constructed by OR-ing flags from the following list (only
one of the first three flags below may be used):
0 _ R D 0 N L Y Open for reading only.
OJWRONLY

Open for writing only.
0 _ R D W R Open for reading and writing.
0 _ N D E L A Y This flag may affect subsequent reads and

writes. See read{2) and write(2).
When opening a FIFO with O.RDONLY or
0_WR0NLY set:
If 0_NDELAY is set:

An open for reading-only will
return without delay. An open
for writing-only will return an
error if no process currently has
the file open for reading.

If 0_NDELAY is clear:
An open for reading-only will
block until a process opens the file
for writing. An open for writing-
only will block until a process
opens the file for reading.

When opening a file associated with a
communication line:
If 0_NDELAY is set:

The open will return without
waiting for carrier.

If 0_NDELAY is clear:
The open will block until carrier is
present.

5/86 - 1 -

O P E N (2)

0 _ A P P E N D If set, the file pointer will be set to the
end of the file prior to each write.

0 _ D I R E C T If set, subsequent reads or writes that
satisfy the following criteria will be moved
directly to or from the user space to the
physical media:

The transfer must start on a IK
byte boundary in the file, and it
must be in multiples of IK byte
blocks.

This option applies only to regular files.
Note that direct implies synchronous.

0 _ N 0 D I R E C T
Do not perform direct I /O for this file,
even if a transfer satisfies the system
default criteria.
If set, all writes will be synchronous. This
option applies only to regular files.
If the file exists, this flag has no effect.
Otherwise, the owner ID of the file is set
to the effective user ID of the process, the
group ID of the file is set to the effective
group ID of the process, and the low-order
10 bits of the file mode are set to the
value of mode modified as follows (see
creat(2)):

All bits set in the file mode
creation mask of the process are
cleared. See umask(2).
The "save text image after
execution bit" of the mode is
cleared. See chmod(2).

If the file exists, its length is truncated to
0 and the mode and owner are unchanged.
If 0_EXCL and 0_CREAT are set, open
will fail if the file exists.

The file pointer used to mark the current position within
the file is set to the beginning of the file.
The new file descriptor is set to remain open across exec
system calls. See fcntl(2).
The named file is opened unless one or more of the
following are true:

0 _ S Y N C

O C R E A T

O . T R U N C

0 _ E X C L

5 /86 - 2 -

O P E N (2)

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] 0_CREAT is not set and the named file
does not exist.

[EACCES] A component of the path prefix denies
search permission.

[EACCES] Oflag permission is denied for the
named file.

[EISDIR] The named file is a directory and oflag
is write or read/write.

[EROFS] The named file resides on a read-only
file system and oflag is write or
re ad/write.

[EMFILE] Twenty (20) file descriptors are
currently open.

[ENXIO] The named file is a character special or
block special file, and the device
associated with this special file does not
exist.

[ETXTBSY] The file is a pure procedure (shared
text) file that is being executed and
oflag is write or read/write.

[EFAULT] Path points outside the allocated
address space of the process.

[EEXIST] 0_CREAT and 0_EXCL are set, and the
named file exists.

[ENXIO] 0_NDELAY is set, the named file is a
FIFO, 0_WR0NLY is set, and no process
has the file open for reading.

[EINTR] A signal was caught during the open
system call.

[ENFILE] The system file table is full.
[EDEADLOCK] A side effect of a previous locking(2)

call, when applying 0 _ T R U N C .
RETURN VALUE

Upon successful completion, the
returned. Otherwise, a value of -
errno is set to indicate the error.

SEE ALSO
chmod(2), close(2), creat(2), dup(2), fcntl(2), locking(2),
lseek(2), read(2), umask(2), write(2).

file descriptor is
1 is returned and

5 /86 - 2 -

OPENI (2)

NAME
openi - open a file specified by i-node

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
i n c l u d e < f c n t l . h >

int openi (dev, inode, o f lag)
d e v _ t dev;
ino_t inode;
int of lag;

DESCRIPTION
Openi permits access to a file without reference to any
of its directory links. Because it doesn't use the
directory hierarchy, openi doesn't require any access
permission except from the file itself. Use of openi must
be authorized in advance by sysIoeal(2).
Dev specifies the device number of the file system that
contains the file. Inode is the i-number of the file.
Oflag is a set of open flags, identical to those used with
open(2). The return value is a file descriptor, like that
returned by open.
A file descriptor returned by openi has the same
properties as one returned by open. It counts against
the per-process limit of 20 file descriptors.
The specified file is opened unless one or more of the
following are true:

The specified inode is not allocated. [ENOENT]
Oflag permission is denied for the named file.
[EACCES]
The named file is a directory. [EISDIR]
The named file resides on a read-only file system
and oflag is write or read/write. [EROFS]
Twenty (20) file descriptors are currently open.
[EMFILE]
The named file is a character special or block
special file. [ENXIO]
The file is a pure procedure (shared text) file
that is being executed and oflag is write or
read/write. [ETXTBSY]
Path points outside the process's allocated
address space. [EFAULT]
0_CREAT and 0_EXCL are set, and the named
file exists. [EEXIST]

- 1 -

OPENI (2)

0_NDELAY is set, the file is a FIFO, 0_WR0NLY
is set, and no process has the file open for
reading. [ENXIO]
The specified file system is not mounted.
[ENXIO]

RETURN VALUE
On success, returns a file descriptor, a nonnegative
integer. On failure, returns - 1 and sets errno.

SEE ALSO
creat(2), open(2), syslocal(2).

P A U S E (2)

NAME
pause - suspend process until signal

SYNOPSIS
p a u s e ()

DESCRIPTION
Pause suspends the calling process until it receives a
signal. The signal must be one that is not currently set
to be ignored by the calling process.
If the signal causes termination of the calling process,
pause will not return.
If the signal is caught by the calling process and control
is returned from the signal-catching function (see
signal(2)), the calling process resumes execution from the
point of suspension; with a return value of - 1 from
pause and errno set to EINTR

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

- 1 -

PIPE (2)

NAME
pipe - create an interprocess channel

SYNOPSIS
i n t p i p e I
i n t f i l d e s

f i l d e s)
2];

DESCRIPTION
Pipe creates an I / O mechanism called a pipe and returns
two file descriptors, fildes [0] and fildes\l\. Fildes [0] is
opened for reading and fildes\l] is opened for writing.
Up to 9K bytes of data are buffered by the pipe before
the writing process is blocked. A read only file
descriptor fildes[0] accesses the data written to fildes jl]
on a first-in-first-out (FIFO) basis.

[EMFILE] Pipe will fail if 19 or more file
descriptors are currently open.

[ENFILE] The system file table is full.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
sh(l) , read(2), write(2).

5 /86 - 1 -

PLOCK (2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
i n c l u d e < s y s / l o c k . h >
int p lock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment
(text lock), its data and stack segments (data lock), or
both its text and data segments (process lock) into
memory. Locked segments are immune to all routine
swapping. Plock also allows these segments to be
unlocked. For 407 object modules TXTLOCK and
DATLOCK are identical. The effective user ID of the
calling process must be super-user to use this call. Op
specifies the following:

PROCLOCK segments into

TXTLOCK

DATLOCK

UNLOCK
Shared regions
using the text,

memory (text

(data

lock text and data
memory (process lock)
lock text segment into
lock)
lock data segment into memory
lock)
remove locks
(e.g., text) may be locked by anyone
but they may be unlocked only if the

caller is the last one using the region. Note that sticky-
bit text that is not explicitly unlocked will remain locked
in core even after the last process using it terminates.
Plock will fail and not perform the requested operation if
one or more of the following are true:

The effective user ID of the calling
process is not super-user.
Op is equal to PROCLOCK and a
process lock, a text lock, or a data lock
already exists on the calling process.
Op is equal to TXTLOCK and a text
lock, or a process lock already exists on
the calling process.
Op is equal to DATLOCK and a data
lock, or a process lock already exists on
the calling process.
Op is equal to UNLOCK and no type of
lock exists on the calling process.

[EPERM]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

- 1 -

PLOCK(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned to
the calling process. Otherwise, a value of - 1 is returned
and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2).

- 2 -

PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
v o i d prof i l (buf f , bufsiz , o f f se t , scale)
char *buff;
int bufs iz , o f f se t , scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is
given by bufsiz. After this call, the user's program
counter (pc) is examined each clock tick (60th second);
offset is subtracted from it, and the result multiplied by
scale. If the resulting number corresponds to a word
inside buff, that word is incremented.
The scale is interpreted as an unsigned, fixed-point
fraction with binary point at the left: 0177777 (octal)
gives a 1-1 mapping of pc's to words in buff; 077777
(octal) maps each pair of instruction words together.
02(octal) maps all instructions onto the beginning of buff
(producing a non-interrupting core clock).
Profiling is turned off by giving a scale of 0 or 1. It is
rendered ineffective by giving a bufsiz of 0. Profiling is
turned off when an exec is executed, but remains on in
child and parent both after a fork. Profiling will be
turned off if an update in buff would cause a memory
fault.

RETURN VALUE
Not defined.

SEE ALSO
prof(l), monitor(3C).

- 1 -

P T R A C E (2)

NAME
ptrace - process trace

SYNOPSIS
i n t p t r a c e (r e q u e s t , p id , a d d r , d a t a) ;
i n t r e q u e s t , p id , a d d r , d a t a ;

DESCRIPTION
Ptrace provides a means by which a parent process may
control the execution of a child process. Its primary use
is for the implementation of breakpoint debugging; see
arf6(l). The child process behaves normally until it
encounters a signal (see signal(2) for the list), at which
time it enters a stopped state and its parent is notified
via wait(2). When the child is in the stopped state, its
parent can examine and modify its "core image" using
ptrace. Also, the parent can cause the child either to
terminate or continue, with the possibility of ignoring
the signal that caused it to stop.

The request argument determines the precise action to
be taken by ptrace and is one of the following:
0 This request must be issued by the child process if

it is to be traced by its parent. It turns on the
child's trace flag that stipulates that the child
should be left in a stopped state upon receipt of a
signal rather than the state specified by func; see
signal{2). The pid, addr, and data arguments are
ignored, and a return value is not defined for this
request. Peculiar results will ensue if the parent
does not expect to trace the child.

The remainder of the requests can only be used by the
parent process. For each, pid is the process ID of the
child. The child must be in a stopped state before these
requests are made.
1, 2 With these requests, the word at location addr in

the address space of the child is returned to the
parent process. If I and D space are separated (as
on PDP- l l s) , request 1 returns a word from I space,
and request 2 returns a word from D space. If I
and D space are not separated (as on Convergent
Technologies 68000-family processors), either
request 1 or request 2 may be used with equal
results. The data argument is ignored. These two
requests will fail if addr is not the start address of
a word, in which case a value of - 1 is returned to
the parent process and the parent's errno is set to -
EIO.

- 1 -

P T R A C E (2)

3 With this request, the word at location addr in the
child's USER area in the system's address space (see
< s y s / u s e r . h >) is returned to the parent process.
Addresses in this area range from 0 to USIZE on
Convergent Technologies 68000-family processors.
The data argument is ignored. This request will
fail if addr is not the start address of a word or is
outside the USER area, in which case a value of - 1
is returned to the parent process and the parent's
errno is set to EIO.

4 , 5 With these requests, the value given by the data
argument is written into the address space of the
child at location addr. If I and D space are
separated (as on PDP- l l s) , request 4 writes a word
into I space, and request 5 writes a word into D
space. If I and D space are not separated (as on
Convergent Technologies 68000-family processors),
either request 4 or request 5 may be used with
equal results. Upon successful completion, the
value written into the address space of the child is
returned to the parent. These two requests will fail
if addr is a location in a pure procedure space and
another process is executing in that space, or addr
is not the start address of a word. Upon failure a
value of - 1 is returned to the parent process and
the parent's errno is set to EIO.

6 With this request, a few entries in the child's USER
area can be written. Data gives the value that is
to be written and addr is the location of the entry.
The few entries that can be written are:

the general registers (i.e., registers 0 to 15
on Convergent Technologies 68000-family
processors).
all processor status bits except 8, 9, 10, 12,
and 13.

7 This request causes the child to resume execution.
If the data argument is 0, all pending signals
including the one that caused the child to stop are
canceled before it resumes execution. If the data
argument is a valid signal number, the child
resumes execution as if it had incurred that signal,
and any other pending signals are canceled. The
addr argument must be equal to 1 for this request.
Upon successful completion, the value of data is
returned to the parent. This request will fail if
data is not 0 or a valid signal number, in which
case a value of - 1 is returned to the parent process

P T R A C E (2)

and the parent's errno is set to EIO.
8 This request causes the child to terminate with the

same consequences as exit(2).
9 This request sets the trace bit in the Processor

Status Word of the child (i.e., bit 15 on
Convergent Technologies 68000-family processors)
and then executes the same steps as listed above
for request 7 . The trace bit causes an interrupt
upon completion of one machine instruction. This
effectively allows single stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-id
facility on subsequent exec(2) calls. If a traced process
calls exec, it will stop before executing the first
instruction of the new image showing signal SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following
are true:
[EIO] Request is an illegal number.
[ESRCH] Pid identifies a child that does not exist

or has not executed a ptrace with
request 0.

FILES
/usr / inc lude / sys /page .h
/usr / include/sys/user.h

SEE ALSO
exec (2), signal(2), wait(2).

5 / 8 6 - 3 -

R E A D (2)

NAME
read - read from file

SYNOPSIS
i n t r e a d (f i ldes , b u f , n b y t e)
in t fildes;
c h a r *buf ;
u n s i g n e d n b y t e ;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open,
dup, fcntl, or pipe system call.
Read attempts to read nbyte bytes from the file
associated with fildes into the buffer pointed to by buf.
On devices capable of seeking, the read starts at a
position in the file given by the file pointer associated
with fildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.
Devices that are incapable of seeking always read from
the current position. The value of a file pointer
associated with such a file is undefined.
Upon successful completion, read returns the number of
bytes actually read and placed in the buffer; this number
may be less than nbyte if the file is associated with a
communication line (see ioctl(2) and termio(7)), or if the
number of bytes left in the file is less than nbyte bytes.
A value of 0 is returned when an end-of-file has been
reached.

When attempting to read from an empty pipe (or FIFO):
If 0_NDELAY is set, the read will return a 0.
If 0_NDELAY is clear, the read will block until
data is written to the file or the file is no longer
open for writing.

When attempting to read a file associated with a tty
that has no data currently available:

If 0_NDELAY is set, the read will return a 0.
If 0_NDELAY is clear, the read will block until
data becomes available.

Read will fail if one or more of the following are true:
[EBADF] Fildes is not a valid file descriptor open

for reading.
[EFAULT] Buf points outside the allocated address

space.

- 1 -

R E A D (2)

[EINTR] A signal was caught during the read
system call.

[EDEADLOCK] A side effect of a previous locking(2)
call.

RETURN VALUE
Upon successful completion a non-negative integer is
returned indicating the number of bytes actually read.
Otherwise, a - 1 is returned and errno is set to indicate
the error.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctl(2), locking(2), open(2),
pipe(2), termio(7).

RECV(2N)

NAME
recv, recvfrom - receive a message from a socket

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / s o c k e t . h >
recv(s , buf , len, f lags)
int s;
char *buf;
int len, f lags;
r ecv from(s , buf , len, f lags , f r o m , f romlen)
int s;
char *buf;
int len, f lags;
s t ruc t sockaddr *from;
int * fromlen;

DESCRIPTION
Recv and recvfrom are used to receive messages from a
socket.
The recv call may be used only on a connected socket
(see connect(2)), while recvfrom may be used to receive
data on a socket whether it is in a connected state or
not.
If from is non-zero, the source address of the message is
filled in. Fromlen is a value-result parameter, initialized
to the size of the buffer associated with from, and
modified on return to indicate the actual size of the
address stored there. The length of the message is
returned in cc. If a message is too long to fit in the
supplied buffer, excess bytes may be discarded depending
on the type of socket the message is received from; see
socket(2).
If no messages are available at the socket, the receive
call waits for a message to arrive.
The flags argument to a send call is formed by or 'ing
one or more of the values:
#defineMSG_PEEK 0x1

/* peek at incoming message */
#defineMSG_OOB 0x2

/ * process out-of-band data */
RETURN VALUE

These calls return the number of bytes received, or - 1 if
an error occurred.

ERRORS
The calls fail if:

- 1 -

R E C V (2 N)

[EBADF]

[ENOTSOCK]
[EINTR]

[EFAULT]

The argument s is an invalid
descriptor.
The argument a is not a socket.
The receive was interrupted by
delivery of a signal before any
data was available for the receive.
The data was specified to be
received into a non-existent or
protected part of the process
address space.

SEE ALSO
connect(2N), read(2), send(2), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 2 -

SEMCTL (2)

NAME
semctl - semaphore control operations

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / i p c . h >
i n c l u d e < s y s / s e m . h >
int semct l (semid, s e m n u m , cmd, arg)
int semid, cmd;
int s e m n u m ;
un ion s e m u n {

int val;
s t ruc t s emid_ds *buf;
u s h o r t *array;

} arg;
DESCRIPTION

Semctl provides a variety of semaphore control
operations as specified by cmd.
The following cmds are executed with respect to the
semaphore specified by semid and semnum:
GETVAL Return the value of semval (see intro(2)).

{READ}
SETVAL Set the value of semval to arg.val.

{ALTER} When this cmd is successfully
executed, the semadj value corresponding
to the specified semaphore in all processes
is cleared.

GETPID Return the value of sempid. {READ}
G E T N C N T Return the value of semncnt. {READ}
GETZCNT Return the value of semzcnt. {READ}
The following cmds return and set, respectively, every
semval in the set of semaphores.
GETALL Place semvals into array pointed to by

arg. array. {READ}
SETALL Set semvals according to the array

pointed to by arg.array. {ALTER} When
this cmd is successfully executed the
semadj values corresponding to each
specified semaphore in all processes are
cleared.

The following cmds are also available:
IPC_STAT Place the current value of each member

of the data structure associated with
semid into the structure pointed to by

- 1 -

SEMCTL(2)

arg.buf. The contents of this structure
are defined in intro(2). {READ}

IPC_SET Set the value of the following members of
the data structure associated with semid
to the corresponding value found in the
structure pointed to by arg.buf:
s e m _ p e r m . u i d
s e m _ p e r m . g i d
s e m _ p e r m . m o d e / * only low 9 bi ts * /

This cmd can only be executed
by a process that has an effective
user ID equal to either that of
super-user or to the value of
s e m _ p e r m . u i d in the data
structure associated with semid.

IPC_RMID Remove the semaphore
identifier specified by
semid from the system and
destroy the set of
semaphores and data
structure associated with
it. This cmd can only be
executed by a process that
has an effective user ID
equal to either that of
super-user or to the value
of s e m _ p e r m . u i d in the
data structure associated
with semid.

Semctl will fail if one or more of the
following are true:
[EINVAL] Semid is not a valid

semaphore identifier.
[EINVAL] Semnum is less than zero

or greater than
sem_nsems .

[EINVAL] Cmd is not a valid
command.

[EACCES] Operation permission is
denied to the calling
process (see intro(2)).

[ERANGE] Cmd is SETVAL or
SETALL and the value
to which semval is to be
set is greater than the

- 2 -

SEMCTL(2)

[EPERM]

system imposed
maximum.
Cmd is equal to
IPC_RMID or I P C _ S E T
and the effective user ID
of the calling process is
not equal to that of
super-user and it is not
equal to the value of
s e m _ p e r m . u i d in the
data structure associated
with semid.

(EFAULT] Arg.buf points
illegal address.

to an

RETURN VALUE
Upon successful completion
on cmd as follows:

G E T V A L
G E T P I D
G E T N C N T
G E T Z C N T
All others

the value returned depends

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcnt.
A value of 0.

Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), semget(2), semop(2).

- 3 -

SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
^ i n c l u d e < s y s / s e m . h >
int s e m g e t (key, nsems , semf lg)
k e y _ t key;
int nsems , semflg;

DESCRIPTION
Semget returns the semaphore identifier associated with
key.
A semaphore identifier and associated data structure and
set containing nsems semaphores (see intro{ 2)) are
created for key if one of the following are true:

Key is equal to IPC_PRIVATE.
Key does not already have a semaphore
identifier associated with it, and (semflg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the
new semaphore identifier is initialized as follows:

Sem_perm.cu id , s em_perm.u id ,
sem_perm.cg id , and s e m _ p e r m . g i d are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.
The low-order 9 bits of s e m _ p e r m . m o d e are
set equal to the low-order 9 bits of semflg.
S e m _ n s e m s is set equal to the value of nsems.
S e m _ o t i m e is set equal to 0 and s e m _ c t i m e is
set equal to the current time.

Semget will fail if one or more of the following are true:
[EINVAL] Nsems is either less than or equal to

zero or greater than the system-imposed
limit.

[EACCES] A semaphore identifier exists for key,
but operation permission (see intro {2))
as specified by the low-order 9 bits of
semflg would not be granted.

[EINVAL] A semaphore identifier exists for key,
but the number of semaphores in the
set associated with it is less than nsems
and nsems is not equal to zero.

- 1 -

SEMGET (2)

[ENOENT] A semaphore identifier does not exist
for key and (semflg & I P C _ C R E A T) is
"false".

[ENOSPC] A semaphore identifier is to be created
but the system-imposed limit on the
maximum number of allowed semaphore
identifiers system wide would be
exceeded.

[ENOSPC] A semaphore identifier is to be created
but the system-imposed limit on the
maximum number of allowed
semaphores system wide would be
exceeded.

[EEXIST] A semaphore identifier exists for key
but ((semflg & I P C _ C R E A T) and
(semflgSi IPC_EXCL)) is "true".

RETURN VALUE
Upon successful completion, a non-negative integer,
namely a semaphore identifier, is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the
error.

SEE ALSO
intro(2), semctl(2), semop(2).

- 2 -

SHMOP (2)

NAME
semop - semaphore operations

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
^ i n c l u d e < s y s / s e m . h >
int s e m o p (semid , sops , n s o p s)
int s emid;
s t r u c t s e m b u f **sops ;
int n sops ;

DESCRIPTION
Semop is used to atomically perform an array of
semaphore operations on the set of semaphores
associated with the semaphore identifier specified by
semid. Sops is a pointer to the array of semaphore-
operation structures. Nsops is the number of such
structures in the array. The contents of each structure
includes the following members:

short sem_num; / * semaphore number * /
short sem_op; / * semaphore operation */
short sem_flg; / * operation flags */

Each semaphore operation specified by sem_op is
performed on the corresponding semaphore specified by
semid and sem_num.
Sem_op specifies one of three semaphore operations as
follows:

If sem_op is a negative integer, one of the
following will occur: {ALTER}

If semval (see intro(2)) is greater than
or equal to the absolute value of
sem_op, the absolute value of sem_op
is subtracted from semval. Also, if
(semjlg & SEM_UNDO) is "true", the
absolute value of sem_op is added to
the calling process's semadj value (see
exit(2)) for the specified semaphore.
All processes suspended waiting for
semval are rescheduled.
If semval is less than the absolute value
of sem_op and («em_flg &
IPC_NOWAIT) is "true", semop will
return immediately.
If semval is less than the absolute value
of sem_op and (sem _Jlg &
IPC_NOWAIT) is "false", semop will

- 1 -

SEMOP (2)

increment the semncnt associated with
the specified semaphore and suspend
execution of the calling process until
one of the following conditions occurs:

Semval becomes greater than or
equal to the absolute value of
sem_op. When this occurs, the
value of semncnt associated with the
specified semaphore is decremented,
the absolute value of sem_op is
subtracted from semval and, if
(semJig & S E M _ U N D O) is "true",
the absolute value of sem_op is
added to the calling process's semadj
value for the specified semaphore,
and all the operations are tried
again.

The semid for which the calling
process is awaiting action is removed
from the system (see semctl(2)).
When this occurs, errno is set equal
to EIDRM, and a value of - 1 is
returned.

The calling process receives a signal
that is to be caught. When this
occurs, the value of semncnt
associated with the specified
semaphore is decremented, and the
calling process resumes execution in
the manner prescribed in signal(2).

If sem_op is a positive integer, the value of
8em_op is added to semval and, if (sem_Jlg &
S E M _ U N D O) is "true", the value of sem_op is
subtracted from the calling process's semadj
value for the specified semaphore. {ALTER}
If sem_op is zero, one of the following will
occur: {READ}

If semval is zero, semop will return
immediately.
If semval is not equal to zero and
(semJig & IPCJSfOWAIT) is "true",
semop will return immediately.
If semval is not equal to zero and

- 2 -

SEMOP (2)

(semJig & I P C _ N O W A I T) is "false",
semop will increment the semzcnt
associated with the specified semaphore
and suspend execution of the calling
process until one of the following
occurs:

Semval becomes zero, at which time
the value of semzcnt associated with
the specified semaphore is
decremented.
The semid for which the calling
process is awaiting action is removed
from the system. When this occurs,
errno is set equal to EIDRM, and a
value of - 1 is returned.

The calling process receives a signal
that is to be caught. When this
occurs, the value of semzcnt
associated with the specified
semaphore is decremented, and the
calling process resumes execution in
the manner prescribed in signal(2).

Semop will fail if one or more of the following are true
for any of the semaphore operations specified by sops :
[EINVAL] Semid is not a valid semaphore

identifier.
[EFBIG] Sem_num is less than zero or greater

than or equal to the number of
semaphores in the set associated with
semid.
Nsops is greater than the system-
imposed maximum.
Operation permission is denied to the
calling process (see intro{2)).
The operation would result in
suspension of the calling process but
(semJig & I P C _ N O W A I T) is "true".
The limit on the number of individual
processes requesting an S E M _ U N D O
would be exceeded.
The number of individual semaphores
for which the calling process requests a
SEM U N D O would exceed the limit.

[E2BIG]

[EACCES]

[EAGAIN]

[ENOSPC]

[EINVAL]

- 3 -

SEMOP (2)

[ERANGE] An operation would cause a semval to
overflow the system-imposed limit.

[ERANGE] An operation would cause a semadj
value to overflow the system-imposed
limit.

[EFAULT] Sops points to an illegal address.
Upon successful completion, the value of sempid for each
semaphore specified in the array pointed to by sops is set
equal to the process ID of the calling process.

RETURN VALUE
If semop returns due to the receipt of a signal, a value of
- 1 is returned to the calling process and errno is set to
EINTR. If it returns due to the removal of a semid from
the system, a value of - 1 is returned and errno is set to
EIDRM.
Upon successful completion, the value of semval at the
time of the call for the last operation in the array
pointed to by sops is returned. Otherwise, a value of - 1
is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

- 4 -

SEND(2N)

NAME
send, sendto - send a message to a socket

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / s o c k e t . h >
send(s , msg , len, f lags)
int s;
char *msg;
int len, f lags;
sendto(s , msg , len, f lags , to , to len)
int s;
char '•'msg;
int len, f lags;
s t r u c t sockaddr *to;
int to len;

DESCRIPTION
Send and sendto are used to transmit a message to
another socket (s). Send may be used only when the
socket is in a connected state, while sendto may be used
at any time.
The address of the target is given by to with tolen
specifying its size. The length of the message is given by
len. If the message is too long to pass atomically
through the underlying protocol, then the error
EMSGSIZE is returned, and the message is not
transmitted.
No indication of failure to deliver is implicit in a send.
Return values of - 1 indicate some locally detected
errors.
If no message space is available at the socket to hold the
message to be transmitted, then send blocks.
The flags parameter may be set to SOF_OOB to send
out-of-band data on sockets which support this notion
(e.g., SOCKJ3TREAM).

RETURN VALUE
The call returns the number of characters sent, or - 1 if
an error occurred.

ERRORS
[EBADF]

[ENOTSOCK]
[EFAULT]

An invalid descriptor was
specified.
The argument s is not a socket.
An invalid user space address was
specified for a parameter.

- 1 -

S E N D (2 N)

[EMSGSIZE] The socket requires that message
be sent atomically, and the size of
the message to be sent made this
impossible.

SEE ALSO
recv(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 2 -

SETPGRP(2)

NAME
setpgrp - set process group ID

SYNOPSIS
int s e t p g r p ()

DESCRIPTION
Setpgrp sets the process group ID of the calling process to
the process ID of the calling process and returns the
process group ID.

RETURN VALUE
Setpgrp returns the value of the process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

NOTE
This function is incorrectly documented in the UNIX
System V Interface definition and other UNIX
documentation. The description here accurately
describes the system call.

5/86 - 1 -

SETUID (2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
i n t s e t u i d (u i d)
in t u id;
in t s e t g i d (g id)
i n t g id;

DESCRIPTION
Setuid (setgid) is used to set the real user (group) ID and
effective user (group) ID of the calling process.
If the effective user ID of the calling process is super-
user, the real user (group) ID and effective user (group)
ID are set to uid {gid).
If the effective user ID of the calling process is not
super-user, but its real user (group) ID is equal to uid
{gid), the effective user (group) ID is set to uid (gid).
If the effective user ID of the calling process is not
super-user, but the saved set-user (group) ID from exec(2)
i ' 'o uid (gid), the effective user (group) ID is set to

Setuid (setgid) will fail if the real user (group) ID of the
calling process is not equal to uid (gid) and its effective
user ID is not super-user. [EPERM]
The uid is out of range. [EINVAL]

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
getuid(2), intro(2).

- 1 -

SHMCTL(2)

NAME
shmctl - shared memory control operations

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
i n c l u d e < s y s / s h m . h >
int shmct l (shmid, cmd, buf)
int shmid , cmd;
s t r u c t s h m i d _ d s *buf;

DESCRIPTION
Shmctl provides a variety of shared memory control
operations as specified by cmd. The following cmds are
available:
IPC_STAT Place the current value of each member of

the data structure associated with shmid
into the structure pointed to by buf. The
contents of this structure are defined in
[EINVAL] intro (2). {READ}

IPC_SET Set the value of the following members of
the data structure associated with shmid to
the corresponding value found in the
structure pointed to by buf:
shm_perm.uid
shm_perm.gid
shm_perm.mode /* only low 9 bits */
This cmd can only be executed by a process
that has an effective user ID equal to either
that of super-user or to the value of
s h m _ p e r m . u i d in the data structure
associated with shmid.

SHM_LOCK Lock the shared memory segment
specified by shmid in memory. This
cmd can only be executed by a process
that has an effective user ID equal to
super user.

SHM_UNLOCK
Unlock the shared memory segment
specified by shmid. This cmd can only
be executed by a process that has an
effective user ID equal to super user.

IPC_RMID Remove the shared memory identifier
specified by shmid from the system and
destroy the shared memory segment
and data structure associated with it.
This cmd can only be executed by a

- 1 -

SHMCTL(2)

process that has an effective user ID
equal to either that of super-user or to
the value of s h m _ p e r m . u i d in the
data structure associated with shmid.

Shmctl will fail if one or more of the following are true:
[EINVAL]

[EINVAL]
[EACCES]

[EPERM]

[EPERM1

[EINVAL]

a valid shared memory Shmid is not
identifier.
Cmd is not a valid command.
Cmd is equal to I P C _ S T A T and
{READ} operation permission is denied
to the calling process (see »ntro(2)).
Cmd is equal to IPC_RMID or
I P C _ S E T and the effective user ID of
the calling process is not equal to that
of super user and it is not equal to the
value of s h m _ p e r m . u i d in the data
structure associated with shmid.

Cmd is equal to SHM_LOCK or
SHM_UNLOCK and the effective user
ID of the calling process is not equal to
that of super user.
Cmd is equal to SHM_UNLOCK and
the shared-memory segment specified
by shmid is not locked in memory.
Buf points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), shmget(2), shmop(2).

- 2 -

SHMGET(2)

NAME
shmget - get shared memory segment

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
^ i n c l u d e < s y s / s h m . h >
int s h m g e t (key , size, shmf lg)
k e y _ t key;
int size, shmf lg ;

DESCRIPTION
Shmget returns the shared memory identifier associated
with key.
A shared memory identifier and associated data structure
and shared memory segment of size size bytes (see
intro (2)) are created for key if one of the following are
true:

Key is equal to IPC_PRIVATE.
Key does not already have a shared memory
identifier associated with it, and (shmflg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the
new shared memory identifier is initialized as follows:

Shm_perm.cu id , shm_perm.u id ,
shm_perm.cg id , and s h m _ p e r m . g i d are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.
The low-order 9 bits of s h m _ p e r m . m o d e are
set equal to the low-order 9 bits of shmflg.
Shm_segsz is set equal to the value of size.
Shm_lpid, s h m _ n a t t c h , s h m _ a t i m e , and
s h m _ d t i m e are set equal to 0.
S h m _ c t i m e is set equal to the current time.

Shmget will fail if one or more of the following are true:
[EINVAL] Size is less than the system-imposed

minimum or greater than the system-
imposed maximum.

[EACCES] A shared memory identifier exists for
key but operation permission (see
intro(2)) as specified by the low-order 9
bits of shmflg would not be granted.

[EINVAL] A shared memory identifier exists for
key but the size of the segment
associated with it is less than size and

- 1 -

SHMGET(2)

size is not equal to zero.
A shared memory identifier does not
exist for key and (shmflg &
I P C _ C R E A T) is "false".
A shared memory identifier is to be
created but the system-imposed limit on
the maximum number of allowed shared
memory identifiers system wide would
be exceeded.

A shared memory identifier and
associated shared memory segment are
to be created but the amount of
available physical memory is not
sufficient to fill the request.
A shared memory identifier exists for
key but ((shmflg & I P C _ C R E A T) and
(shmflg & IPC_EXCL)) is "true".

RETURN VALUE
Upon successful completion, a non-negative integer,
namely a shared memory identifier is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), shmctl(2), shmop(2).

[ENOENT]

[ENOSPC]

[ENOMEM]

[EEXIST]

- 2 -

SHMOP (2)

NAME
shmop - shared memory operations

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
^ i n c l u d e < s y s / s h m . h >
char *shmat (shmid, s h m a d d r , shmf lg)
int shmid;
char *shmaddr
int shmflg;
int s h m d t (shmaddr)
char *shmaddr

DESCRIPTION
Shmat attaches the shared memory segment associated
with the shared memory identifier specified by shmid to
the data segment of the calling process. The segment is
attached at the address specified by one of the following
criteria:

If shmaddr is equal to zero, the segment is
attached at the first available address as selected
by the system.
If shmaddr is not equal to zero and (shmflg &
SHM_RND) is "true", the segment is attached
at the address given by (shmaddr - (shmaddr
modulus SHMLBA)).
If shmaddr is not equal to zero and (shmflg &
SHM_RND) is "false", the segment is attached
at the address given by shmaddr.

The segment is attached for reading if (shmflg &
SHM.RDONLY) is "true" {READ}, otherwise it is
attached for reading and writing {READ/WRITE}.
Shmat will fail and not attach the shared memory
segment if one or more of the following are true:
[EINVAL] Shmid is not a valid shared memory

identifier.
[EACCES] Operation permission is denied to the

calling process (see intro (2)).
[ENOMEM] The available data space is not large

enough to accommodate the shared
memory segment.

[EINVAL] Shmaddr is not equal to zero, and the
value of (shmaddr - (shmaddr modulus
SHMLBA)) is an illegal address.

- 1 -

SEMOP (2)

[EINVAL] Shmaddr is not equal to zero, (shmflg &
S H M _ R N D) is "false", and the value of
shmaddr is an illegal address.

[EMFILE] The number of shared memory
segments attached to the calling process
would exceed the system-imposed limit.

[EINVAL] Shmdt detaches from the calling
process's data segment the shared
memory segment located at the address
specified by shmaddr,

[EINVAL] Shmdt will fail and not detach the
shared memory segment if shmaddr is
not the data segment start address of a
shared memory segment.

RETURN VALUES
Upon successful completion, the return value is as
follows:

Shmat returns the data segment start address of
the attached shared memory segment.
Shmdt returns a value of 0.

Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2).

- 2 -

SHUTDOWN (2 N)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
s h u t d o w n (s , h o w)
i n t s , h o w ;

DESCRIPTION
The shutdown call causes all or part of a full-duplex
connection on the socket associated with « to be shut
down. If how is 0, then further receives will be
disallowed. If how is 1, then further sends will be
disallowed. If how is 2, then further sends and receives
will be disallowed.

DIAGNOSTICS
A 0 is returned if the call succeeds, - 1 if it fails.

ERRORS
The call succeeds unless:
[EBADF] S is not a valid descriptor.
[ENOTSOCK] 5 is a file, not a socket.
[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 1 -

SIGNAL(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
i n c l u d e < s i g n a l . h >
int (' s i gna l (sig, func)) ()
int sig;
v o i d (*func)();

DESCRIPTION
Signal allows the calling process to choose one of three
ways in which it is possible to handle the receipt of a
specific signal. Sig specifies the signal and fvnc specifies
the choice.
Sig can be
SIGKILL.

assigned any one of the following except

SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03* quit
SIGILL 04* illegal instruction (not reset when

caught)
SIGTRAP 05* trace trap (not reset when caught)
SIGIOT 06* IOT instruction
SIGEMT 07* EMT instruction
SIGFPE 08* floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV 11* segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to

read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSR1 16 user-defined signal 1
SIGUSR2 17 user-defined signal 2
SIGCLD 18 death of a child (see WARNING

below)
SIGPWR 19 power fail (see WARNING below)
See SIG_DFL below for the significance of the asterisk
*) in the above list.)

5/86 - 1 -

SIGNAL (2)

Func is assigned one of three values: SIG_DFL,
SIG_IGN, or a function address. The actions prescribed
by these values are as follows:

SIG_DFL - terminate process upon receipt of a
signal

Upon receipt of the signal sig, the receiving
process is to be terminated with all of the
consequences outlined in exit(2). In addition,
a "core image" will be made in the current
working directory of the receiving process if
sig is one for which an asterisk (*) appears in
the above list and the following conditions
are met:

The effective user ID and the real
user ID of the receiving process are
equal.
An ordinary file named c o r e exists
and is writable or can be created. If
the file must be created, it will have
the following properties:

a mode of 0666 modified by
the file creation mask (see
umask(2))
a file owner ID that is the
same as the effective user
ID of the receiving process
a file group ID that is the
same as the effective group
ID of the receiving process

SIG_IGN - ignore signal
The signal sig is to be ignored.
Note: the signal SIGKILL cannot be ignored.

function address - catch signal
Upon receipt of the signal sig, the receiving
process is to execute the signal-catching
function pointed to by func. The signal
number sig will be passed as the only argument
to the signal-catching function. Before entering
the signal-catching function, the value of func
for the caught signal will be set to SIG_DFL
unless the signal is SIGILL, SIGTRAP, or
S I G P W R

Upon return from the signal-catching function,
the receiving process will resume execution at
the point it was interrupted.

5 / 8 6 - 2 -

SIGNAL (2)

When a signal that is to be caught occurs
during a read, a write, an open, or an ioctl
system call on a slow device (like a terminal;
but not a file), during a pause system call, or
during a wait system call that does not return
immediately due to the existence of a
previously stopped or zombie process, the signal
catching function will be executed and then the
interrupted system call may return a - 1 to the
calling process with errno set to EINTR.
Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a
pending SIGKILL signal.
Signal will fail if sig is an illegal signal number,
including SIGKILL. [EINVAL]

RETURN VALUE
Upon successful completion, signal returns the previous
value of fune for the specified signal sig. Otherwise, a
value of - 1 is returned and errno is set to indicate the
error.

SEE ALSO
kill(l) , kill(2), pause(2), ptrace(2), wait(2), setjmp(3C).

WARNING
T w o other signals that behave differently than the
signals described above exist in this release of the
system; they are:
SIGCLD 18 death of a child (reset when caught)
S I G P W R 19 power fail (not reset when caught)
There is no guarantee that, in future releases of the CTIX
system or the UNIX system, these signals will continue to
behave as described below; they are included only for
compatibility with some versions of the UNIX system.
Their use in new programs is strongly discouraged by
Convergent and AT&T.
For these signals, fune is assigned one of three values:
SIG_DFL, SIG_IGN, or a function address. The actions
prescribed by these values of are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is
SIGCLD, the calling process's child processes
will not create zombie processes when they
terminate; see exit(2).

1 8 1 / 8 6 - 2 -

SIGNAL (2)

function address - catch signal
If the signal is SIGPWR, the action to be
taken is the same as that described above for
func equal to function address. The same is
true if the signal is SIGCLD except, that
while the process is executing the signal-
catching function, any received SIGCLD
signals will be queued and the signal-catching
function will be continually reentered until
the queue is empty.

The SIGCLD affects two other system calls (wait(2),
and exit(2)) in the following ways:
wait If the func value of SIGCLD is set to

SIG_IGN and a wait is executed, the wait
will block until all of the calling process's
child processes terminate; it will then return
a value of - 1 with errno set to ECHILD.

exit If in the exiting process's parent process the
func value of SIGCLD is set to SIG_IGN, the
exiting process will not create a zombie
process.

When processing a pipeline, the shell makes the last
process in the pipeline the parent of the proceeding
processes. A process that may be piped into in this
manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be
caught.

1 8 2 / 8 6 - 2 -

SOCKET (2 N)

NAME
socket - create an endpoint for communication

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / s o c k e t . h >
s o c k e t (af , t y p e , protoco l)
int af , t y p e , protoco l ;

DESCRIPTION
Socket creates an endpoint for communication and
returns a descriptor.
The af parameter specifies an address format with which
addresses specified in later operations using the socket
should be interpreted. These formats are defined in the
include file < s y s / s o c k e t . h > . The currently
understood format is

AF_INET (ARPA Internet addresses).
The socket has the indicated type which specifies the
semantics of communication. Currently defined types
are:

SO CK_STREAM
SOCK_DGRAM
SOCKJRAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable,
two-way connection-based byte streams with an out-of-
band data transmission mechanism. A SOCK_DGRAM
socket supports datagrams (connectionless, unreliable
messages of a fixed (typically small) maximum length).
SOCK_RAW sockets provide access to internal network
interfaces. The types SOCK_RAW, which is available
only to the super-user, and SOCK_SEQPACKET and
SOCK_RDM, which are planned, but not yet
implemented, are not described here.
The protocol specifies a particular protocol to be used
with the socket. Normally only a single protocol exists
to support a particular socket type using a given address
format. However, it is possible that many protocols may
exist in which case a particular protocol must be
specified in this manner. The protocol number to use is
particular to the communication domain in which
communication is to take place; see serwces(4N) and
pro<oeo/s(4N).
Sockets of type SOCKJSTREAM are full-duplex byte
streams, similar to pipes. A stream socket must be in a

5/86 - 1 -

SOCKET (2 N)

connected state before any data may be sent or received
on it. A connection to another socket is created with a
eonnee<(2N) call. Once connected, data may be
transferred using readi2) and write(2) calls or some
variant of the «en<f(2N) and reei>(2N) calls. When a
session has been completed, a e/ose(2) may be
performed. Out-of-band data may also be transmitted as
described in send(2N) and received as described in
recv(2N).

The communications protocols used to implement a
SOCK_STREAM insure that data is not lost or
duplicated. If a piece of data for which the peer protocol
has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection
is considered broken and calls will indicate an error with
- 1 returns and with ETIMEDOUT as the specific code
in the global variable errno. The protocols optionally
keep sockets warm by forcing transmissions roughly
every minute in the absence of other activity. An error
is then indicated if no response can be elicited on an
otherwise idle connection for a extended period (e.g., 5
minutes). A SIGPIPE signal is raised if a process sends
on a broken stream; this causes naive processes, which do
not handle the signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending
of datagrams to correspondents named in aenrf(2N) calls.
It is also possible to receive datagrams at such a socket
with recv (2N).

An fcntl(2) call can be used to specify a process group to
receive a SIGURG signal when the out-of-band data
arrives.
The operation of sockets is controlled by socket level
options. These options are defined in the file
< s y s / s o c k e t . h > and explained below. Setsockopt and
getsockopt(2N) are used to set and get options,
respectively.
SO_DEBUG Turn on recording of debugging

information.
SO_REUSEADDR Allow local address reuse.
SOJCEEPALIVE Keep connections alive.
S O _ D O N T R O U T E Do no apply routing on outgoing

messages.
SO_LINGER Linger on close if data present.
SO_DONTLINGER Do not linger on close.

5 /86 - 2 -

SOCKET (2 N)

SO_DEBUG enables debugging in the underlying
protocol modules. SO_REUSEADDR indicates that the
rules used in validating addresses supplied in a bind{2N)
call should allow reuse of local addresses.
SO_KEEPALIVE enables the periodic transmission of
messages on a connected socket. Should the connected
party fail to respond to these messages, the connection is
considered broken and processes using the socket are
notified via a SIGPIPE signal. S O _ D O N T R O U T E
indicates that outgoing messages should bypass the
standard routing facilities. Instead, messages are
directed to the appropriate network interface according
to the network portion of the destination address.
SO_LINGER and SO_DONTLINGER control the
actions taken when unsent messages are queued on
socket and a close(2) is performed. If the socket
promises reliable delivery of data and SO_LINGER is
set, the system will block the process on the close(2)
attempt until it is able to transmit the data or until it
decides it is unable to deliver the information (a timeout
period, termed the linger interval, is specified in the
setsockopt call when SO_LINGER is requested). If
SO_DONTLINGER is specified and a close is issued, the
system will process the close in a manner which allows
the process to continue as quickly as possible.

RETURN VALUE
A - 1 is returned if an error occurs, otherwise the return
value is a descriptor referencing the socket.

ERRORS
The socket call fails if:
[EAFNOSUPPORT] The specified address family is not

supported in this version of the
system.

[ESOCKTNOSUPPORT]
The specified socket type is not
supported in this address family.

[EPROTONOSUPPORT]
The specified protocol is not
supported.

[EMFILE] The per-process descriptor table is
full.

[ENOBUFS] N o buffer space is available. The
socket cannot be created.

SEE ALSO
accept(2N), bind(2N), connect(2N), getsockname(2N),
getsockopt(2N), ioctl(2), listen(2N), recv(2N), send(2N),

5 /86 - 2 -

SOCKET (2 N)

shutdown(2N), protocols(4N), services(4N).
"A 4.2BSD Interprocess Communication Primer."
CTIX Internetworking Manual.

BUGS
The use of keepalives is a questionable feature for this
layer.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5 /86 - 2 -

USTAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / s t a t . h >
int s t a t (path , buf)
char *path;
s t r u c t s t a t *buf;
int f s t a t (fi ldes, buf)
int f i ldes;
s t ruc t s t a t *buf;

DESCRIPTION
Path points to a path name naming a file. Read, write,
or execute permission of the named file is not required,
but all directories listed in the path name leading to the
file must be searchable. Stat obtains information about
the named file.
Similarly, fstat obtains information about an open file
known by the file descriptor fildes, obtained from a
successful open, creat, dup, fcntl, or pipe system call.
Buf is a pointer to a stat structure into which
information is placed concerning the file.
The contents of the structure pointed to by buf include
the following members:

ushort st_mode; j * File mode; see
mknod(2) */

* Inode number */
* ID of device containing * /
» a directory entry for this file * /
» ID of device */
» This entry is defined only for * /
* character special or block »/
» special files */
* Number of links * /
» User ID of the file's owner */
» Group ID of the file's group */
* File size in bytes * /
« Time of last access */
* Time of last da ta modification * /
» Time of last file s ta tus change */
* Times measured in seconds »/
* since 00:00:00 G M T , J a n . 1, 1 9 7 0 * /

s t _ a t i m e Time when file data was last accessed.
Changed by the following system calls:

ino_t st_ino;
dev_t s t_dev;

deY_t st_rdev;

short st_nlink;
ushort st_uid;
ushort st_gid;
of f_ t st_size;
t ime_t st_atime;
t ime_t s t_mtime;
t ime_t st_ctime;

- 1 -

S T A T (2)

creat(2), mknod(2), pipe(2), utime(2), and
read(2).

s t _ m t i m e Time when data was last modified. Changed
by the following system calls: creat{ 2),
mknod(2), pipe (2), utime(2), and write(2).

s t _ c t i m e Time when file status was last changed.
Changed by the following system calls:
chmod(2), chown(2), creat(2), link(2),
mknod\2), pipe(2), unlink(2), utime(2), and
write(2).

5<at will fail if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a

directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a

component of the path prefix.
[EFAULT] Buf or path points to an invalid

address.
Fstat will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file

descriptor.
[EFAULT] Buf points to an invalid address.

RETURN VALUE
Upon successful completion a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2),
read(2), syslocal(2), time(2), unlink(2), utime(2), write(2).

- 2 -

STIME (2)

NAME
stime - set time

SYNOPSIS
int s t ime (tp)
long *tp;

DESCRIPTION
Stime sets the system's idea of the time and date. Tp
points to the value of time as measured in seconds from
00:00:00 GMT January 1, 1970.

[EPERM] Stime will fail if the effective user ID of
the calling process is not super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
time(2).

- 1 -

SWRITE (2)

NAME
swrite - synchronous write on a file

SYNOPSIS
int swr i te (fi ldes, buf , n b y t e)
int f i ldes;
char *buf;
uns igned nbyte ;

DESCRIPTION
Swrite has the same purpose and conventions as
write(2). The two differ solely in their handling of disk
input/output. Swrite, unlike write, does not give a
normal return before physical output is complete. A
program that executes an swrite can assume that the
data is on the disk, not waiting in a buffer pool.

SEE ALSO
creat(2), dup(2), lseek(2), open(2), pipe(2), ulimit(2).

SYNC (2)

NAME
sync - update super-block

SYNOPSIS
v o i d s y n c ()

DESCRIPTION
Sync causes all information in memory that should be on
disk to be written out. This includes modified super
blocks, modified i-nodes, and delayed block I /O.
It should be used by programs which examine a file
system, for example fsck, d f , etc. It is mandatory before
a boot.
The writing, although scheduled, is not necessarily
complete upon return from sync.

SYSLOCAL(2)

NAME
syslocal - special system requests

SYNOPSIS
^ i n c l u d e < s v s l o c a I . h >
int sys local (c m d [, arg] . . .)
int cmd;

DESCRIPTION
Syslocal executes certain special system calls. The
specific call is indicated by the first argument.

System Type
int syslocal(SYSL_SYSTEM);

Return SYSL_MINI for MiniFrame, SYSL.MITI for
MightyFrame.

Superblock Resynchronization

int syslocal(SYSL_RESYNC, devnum)
short devnum

Reread contents of superblock from disk. Devnum
specifies the file system: the high order byte contains the
major device number of the character special device; the
low order byte contains the minor device number. Only
the super-user may do this.

Enable Openi

syslocal(SYSL_OPENI, flag)
int flag

Enables or disables the openi system call. Flag is 1 for
enabling, 0 for disabling. Only the superuser can execute
this call, which affects every user on the system.

Maximum Number of Users

syslocal(SYSL_MAXUSERS)
Returns maximum number of concurrent logins on the
processor on which this process is executing.

Kernel Addresses

syslocal(SYSL_KADDR, arg)
Returns certain addresses of kernel data structures. This
allows certain programs (ps, killall) to run properly, even
if / u n i x is not currently running. Arg is one of the
following:
SLA_V return address of var structure

(sys/var.h)

SYSLOCAL(2)

SLA_PROC return address of proc structure
(sys/proc.h)

SLA_ERR return address of err structure
(sys/err.h)

SCA_TIME return address of int time
SLA_CDT return address of crash dump table

(CDT) = (sys/hardware.h)
SLA_GDUTAB return address of gdutab (sys/iobuf.h)
SLA_USRSTK return highest address of user stack
SLA_USIGN return signature of running UNIX (may

be compared with that of / u n i x to see
if they are identical)

SLA_MEM return number of bytes of physical
memory

SLAJBDEVCNT
return the number of slots in struct
bdevsw (sys/conf.h)

SLA_CDEVCNT
return the number of slots in struct
cdevsw (sys/conf.h)

Object Module Type

sy sloe al(S YSL_0413MAGIC)
Returns 1 if the kernel can support the —F option of
IdQ.

Read Real-Time Clock (MightyFrame Only)

syslocal(SYSL_RDRTC, arg)
Read current state of real-time (battery supported) clock.
Arg is a pointer to struct rtc (sys/rtc.h)

Write Real-Time Clock (MightyFrame Only)

syslocal(SYSL_WTRTC, arg)
Write new state of real-time clock. Arg is a pointer to a
struct rtc (sys/rtc.h). EIO is returned if any of the
values are illegal. Only the super-user may write the
real-time clock.

Reboot System

syslocal(SYSLJREBOOT)
Force a software reset. Only the superuser may reset.

- 2 -

SYSLOCAL(2)

A l loca te a Loadable Driver

syslocal(SYSL_ALLOCDRV, option, arg)
Allocate/deallocate virtual space for a loadable driver.
See lddrv(2) for more information. Only the super-user
may do this.

B ind a Loadable Driver

syslocal(SYSL_BINDDRV, option, arg)
Bind/unbind a loadable driver. See Iddrv(2) for more
information. Only the super-user may do this.

Determine Processor T y p e

syslocal(SYSL_PROCESSOR)
Returns a value that may be used to determine on what
kind of processor (e.g., 68010 or 68020) is running and
whether floating-point hardware (e.g., (68881) is
available.

M i g h t y F r a m e Hardware Conf igurat ion (MightyFrame
Only)

syslocal(SYSL_MITICFIG)
Returns a bit mask of the hardware that is present.
Values can be found in s y s l o c a l . h . A more convenient
way to get this information is via /n'nv(lM).

Syslocal will fail if one of the following is true:
[EINVAL] cmd or any suboption is illegal.
[EFAULT] An arg points outside the process's

space.
SEE ALSO

fsck(lM), lddrv(2), openi(2).
Mightyrrame Administrator's Reference Manual.

WARNINGS
Kernel prints and the kernel debugger syslocal calls that
support them may disappear without notice. Use of
kernel prints degrades system performance. Use of the
kernel debugger halts normal processing.

- 3 -

TIME (2)

NAME
time - get time

SYNOPSIS
long t i m e ((long *) 0)
long t i m e (t loc)
long *tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00
GMT, January 1, 1970.
If tloc (taken as an integer) is non-zero, the return value
is also stored in the location to which tloc points.
[EFAULT] Time will fail if tloc points to an illegal

address.
RETURN VALUE

Upon successful completion, time returns the value of
time. Otherwise, a value of - 1 is returned and errno is
set to indicate the error.

SEE ALSO
stime(2).

- 1 -

TIMES (2)

NAME
times - get process and child process times

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / t i m e s . h >
l o n g t i m e s (b u f f e r)
s t r u c t t m s * b u f f e r ;

DESCRIPTION
Times fills the structure pointed to by buffer with time-
accounting information. The following are the contents
of this structure:
struct tms {

t ime_t tms_utime;
t ime_t tms_stime;
t ime_t tms_cutime;
t ime_t tms_cstime;

};
This information comes from the calling process and
each of its terminated child processes for which it has
executed a wait. All times are in 60ths of a second.

Tms_utime is the CPU time used while executing
instructions in the user space of the calling process.
Tms_stime is the CPU time used by the system on behalf
of the calling process.
Tms_cutime is the sum of the tms_utime s and
tms_cutimes of the child processes.
Tms_cstime is the sum of the tms_stime s and
tms_cstimes of the child processes.
[EFAULT] Times will fail if buffer points to an illegal

address.
RETURN VALUE

Upon successful completion, times returns the elapsed
real time, in 60ths of a second, since an arbitrary point
in the past (e.g., system start-up time). This point does
not change from one invocation of times to another. If
times fails, a - 1 is returned and errno is set to indicate
the error.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

- 1 -

ULIMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ul imit (cmd, new limit)
int cmd;
long new limit;

DESCRIPTION
This function provides for control over process limits.
The cmd values available are:
1 Get the file size limit of the process. The limit is

in units of 512-byte blocks and is inherited by child
processes. Files of any size can be read.

2 Set the file size limit of the process to the value of
newlimit. Any process may decrease this limit, but
only a process with an effective user ID of super-
user may increase the limit. Ulimit will fail and
the limit will be unchanged if a process with an
effective user ID other than super-user attempts to
increase its file size limit. [EPERM]

3 Get the maximum possible break value. See
brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is
returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

SEE ALSO
brk(2), write(2).

- 1 -

UMASK (2)

NAME
umask - set and get file creation mask

SYNOPSIS
int u m a s k (cmask)
int cmask;

DESCRIPTION
Umask sets the process's file mode creation mask to
cmask and returns the previous value of the mask. Only
the low-order 9 bits of cmask and the file mode creation
mask are used.

RETURN VALUE
The previous value of the file mode creation mask is
returned.

SEE ALSO
mkdir(l), sh(l), chmod(2), creat(2), mknod(2), open(2).

- 1 -

U M O U N T (2)

NAME
umount - unmount a file system

SYNOPSIS
in t u m o u n t (s p e c)
c h a r *spec;

DESCRIPTION
Umount requests that a previously mounted file system
contained on the block special device identified by spec
be unmounted. Spec is a pointer to a path name. After
unmounting the file system, the directory upon which
the file system was mounted reverts to its ordinary
interpretation.

Umount may be invoked only by the super-user.
Umount will fail if one or more of the following are true:
[EPERM] The process's effective user ID is not

super-user.
[ENXIO] Spec does not exist.
[ENOTBLK] Spec is not a block special device.
[EINVAL] Spec is not mounted.
[EBUSY] A file on spec is busy.
[EFAULT] Spec points to an illegal address.

RETURN VALUE
Upon successful completion a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
mount(2).

- 1 -

UNAME(2)

NAME
uname - get name of current CTEX system

SYNOPSIS
^ i n c l u d e < s y s / u t s n a m e . h >
int u n a m e (name)
s t ruc t u t s n a m e *name;

DESCRIPTION
Uname stores information identifying the current CTEX
system in the structure pointed to by name.
Uname uses the structure defined in
< s y s / u t s n a m e . h > whose members are:

char sysname[9l;
char nodename[9];
char release[9];
char version [9l;
char machine[9];

Uname returns a null-terminated character string
naming the current CTIX system in the character array
sysname. Similarly, nodename contains the name that
the system is known by on a communications network.
Release and version further identify the operating
system. Machine contains a standard name that
identifies the hardware that the CTIX system is running
on.
[EFAULT] Uname will fail if name points to an invalid

address.
RETURN VALUE

Upon successful completion, a non-negative value is
returned. Otherwise, - 1 is returned and errno is set to
indicate the error.

SEE ALSO
uname(l).

- 1 -

UNLINK (2)

NAME
unlink - remove directory entry

SYNOPSIS
int unl ink (pa th)
char *path;

DESCRIPTION
Unlink removes the directory entry named by the path
name pointed to by path.
The named file is unlinked unless one or more of the
following are true:

A component of the path prefix is not a
directory.
The named file does not exist.
Search permission is denied for a
component of the path prefix.
Write permission is denied on the
directory containing the link to be
removed.
The named file is a directory and the
effective user ID of the process is not
super-user.
The entry to be unlinked is the mount
point for a mounted file system.
The entry to be unlinked is the last link
to a pure procedure (shared text) file
that is being executed.
The directory entry to be unlinked is
part of a read-only file system.

[ENOTDIR]

[ENOENT]
[EACCES]

[EACCES]

[EPERM]

[EBUSY]

[ETXTBSY]

[EROFS]

[EFAULT] Path points outside the
allocated address space.

process s

When all links to a file have been removed and no
process has the file open, the space occupied by the file
is freed and the file ceases to exist. If one or more
processes have the file open when the last link is
removed, the removal is postponed until all references to
the file have been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
rm(l), close(2), link(2), open(2).

5/86 - 1 -

USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < u s t a t . h >

int u s t a t (dev , b u f)
int dev;
s t r u c t u s t a t *buf;

DESCRIPTION
Ustat returns information about a mounted file system.
Dev is a device number identifying a device containing a
mounted file system. Buf is a pointer to a ustat
structure that includes to following elements:
daddr_t f_tfree; / * Total free blocks */
ino_t f_tinode: / * Number of free inodes */
char f_fname[6]; / * Filsys name */
char f_fpack[6]; / * Filsys pack name */
Ustat will fail if one or more of the following are true:
[EINVAL] Dev is not the device number of a

device containing a mounted file
system.

(EFAULT] Buf points outside the process's
allocated address space.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
stat(2), fs(4).

- 1 -

UTIME (2)

NAME
utime - set file access and modification times

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
int u t i m e (path , t imes)
char *path;
s t r u c t u t i m b u f * t imes;

DESCRIPTION
Path points to a path name naming a file. Utime sets
the access and modification times of the named file.
If times is NULL, the access and modification times of
the file are set to the current time. A process must be
the owner of the file or have write permission to use
utime in this manner.
If times is not NULL, times is interpreted as a pointer
to a utimbuf structure and the access and modification
times are set to the values contained in the designated
structure. Only the owner of the file or the super-user
may use utime this way.
The times in the following structure are measured in
seconds since 00:00:00 GMT, Jan. 1, 1970.
struct utimbuf {

time_t actime; / * access time */
time t modtime; /* modification time */

};
Utime will fail if one or more of the following are true:
[ENOENT] The named file does not exist.
[ENOTDIR] A component of the path prefix is not a

directory.
[EACCES] Search permission is denied by a

component of the path prefix.
[EPERM] The effective user ID is not super-user

and not the owner of the file and times
is not NULL.

[EACCES] The effective user ID is not super-user
and not the owner of the file and times
is NULL and write access is denied.

[EROFS] The file system containing the file is
mounted read-only.

[EFAULT] Times is not NULL and points outside
the process's allocated address space.

[EFAULT] Path points outside the process's
allocated address space.

- 1 -

UTIME(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
stat(2).

- 2 -

WAIT (2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
i n t w a i t (s t a t _ l o c)
in t * s t a t _ l o c ;
i n t w a i t ((in t *)0)

DESCRIPTION
Wait suspends the calling process until one of the
immediate children terminates or until a child that is
being traced stops because it has hit a break point. The
wait system call will return prematurely if a signal is
received and if a child process stopped or terminated
prior to the call on wait, return is immediate.

If statjloc (taken as an integer) is non-zero, 16 bits of
information called status are stored in the low order 16
bits of the location pointed to by stat_loc. Status can
be used to differentiate between stopped and terminated
child processes and if the child process terminated, status
identifies the cause of termination and passes useful
information to the parent. This is accomplished in the
following manner:

If the child process stopped, the high order 8 bits
of status will contain the number of the signal
that caused the process to stop and the low
order 8 bits will be set equal to 0177.
If the child process terminated due to an exit
call, the low order 8 bits of status will be zero
and the high order 8 bits will contain the low
order 8 bits of the argument that the child
process passed to exit; see exit(2).
If the child process terminated due to a signal,
the high order 8 bits of status will be zero and
the low order 8 bits will contain the number of
the signal that caused the termination. In
addition, if the low order seventh bit (i.e., bit
200) is set, a "core image" will have been
produced; see signal(2).

If a parent process terminates without waiting for its
child processes to terminate, the parent process ID of
each child process is set to 1. This means the
initialization process inherits the child processes; see
intro(2).

Wait will fail and return immediately if one or more of
the following are true:

- 1 -

WAIT (2)

[ECHILD] The calling process has no existing
unwaited-for child processes.

(EFAULT] Stat_loc points to an illegal address.
RETURN VALUE

If wait returns due to the receipt of a signal, a value of
- 1 is returned to the calling process and errno is set to
EINTR. If wait returns due to a stopped or terminated
child process, the process ID of the child is returned to
the calling process. Otherwise, a value of - 1 is returned
and errno is set to indicate the error.

SEE ALSO
exec(2j, exit(2), fork(2), intro(2), pause(2), ptrace(2),
signal(2).

WARNING
See WARNING in signal(2).

- 2 -

WRITE (2)

NAME
write - write on a file

SYNOPSIS
i n t w r i t e (f i ldes , b u f , n b y t e)
in t f i ldes ;
c h a r *buf;
u n s i g n e d n b y t e ;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open,
dup, fcntl, or pipe system call.
Write attempts to write nbyte bytes from the buffer
pointed to by buf to the file associated with the fildes.
On devices capable of seeking, the actual writing of data
proceeds from the position in the file indicated by the
file pointer. Upon return from write, the file pointer is
incremented by the number of bytes actually written.
On devices incapable of seeking, writing always takes
place starting at the current position. The value of a file
pointer associated with such a device is undefined.
If the 0_APPEND flag of the file status flags is set, the
file pointer will be set to the end of the file prior to each
write.
Write will fail and the file pointer will remain
unchanged if one or more of the following are true:
[EBADF] Fildes is not a valid file descriptor open

for writing.
[EPIPE and SIGPIPE signal]

An attempt is made to write to a pipe
that is not open for reading by any
process.
An attempt was made to write a file
that exceeds the process's file size limit
or the maximum file size. See ulimit(2).
Buf points outside the process's
allocated address space.
A signal was caught during the write
system call.
A side effect of a previous locking(2)
call.

If a write requests that more bytes be written than there
is room for (e.g., the ulimit (see ulimit(2)) or the physical
end of a medium), only as many bytes as there is room
for will be written. For example, suppose there is space

[EFBIG]

[EFAULT]

[EINTR]

[EDEADLOCK]

- 1 -

WRITE (2)

for 20 bytes more in a file before reaching a limit. A
write of 512 bytes will return 20. The next write of a
non-zero number of bytes will give a failure return
(except as noted below).
If the file being written is a pipe (or FIFO) and the
0_NDELAY flag of the file flag word is set, then write to
a full pipe (or FIFO) will return a count of 0. Otherwise
(0_NDELAY clear), writes to a full pipe (or FIFO) will
block until space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually
written is returned. Otherwise, - 1 is returned and errno
is set to indicate the error.

SEE ALSO
creat(2), dup(2), lseek(2), locking(2), open(2), pipe(2),
ulimit(2).

- 2 -

I N T R O (3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < m a t h . h >

DESCRIPTION
This section describes functions found in various
libraries, other than those functions that directly invoke
CTIX system primitives, which are described in Section 2
of this volume. Certain major collections are identified
by a letter after the section number:

(3C) These functions, together with those of Section 2
and those marked (3S), constitute the Standard C
Library libc, which is automatically loaded by the
C compiler, ee(l) . The link editor W(l) searches
this library under the —lc option. Declarations for
some of these functions may be obtained from
i n c l u d e files indicated on the appropriate
pages.

(3M) These functions constitute the Math Library,
libra. They are not automatically loaded by the
C compiler, cc (1); however, the link editor
searches this library under the —Im option.
Declarations for these functions may be obtained
from the ^ i n c l u d e file < m a t h . h > .

(3N) These functions are for use with a special version
of the CTIX kernel that supports networking
protocols. The link editor searches these library
functions under the —1 s o c k e t option. For
further information, see the CTIX Internetworking
Manual.

(3S) These functions constitute the "standard I/O
package" (see stdio(3S)). These functions are in
the library libc, already mentioned. Declarations
for these functions may be obtained from the
^ i n c l u d e file < s t d i o . h > .

(3X) Various specialized libraries. The files in which
these libraries are found are given on the
appropriate pages.

DEFINITIONS
A character is any bit pattern able to fit into a byte on
the machine. The null character is a character with
value 0, represented in the C language as '\0'. A
character array is a sequence of characters. A null-
terminated character array is a sequence of characters,
the last of which is the null character. A string is a
designation for a null-terminated character array. The

- 1 -

I N T R O (3)

null string is a character array containing only the null
character. A NULL pointer is the value that is obtained
by casting 0 into a pointer. The C language guarantees
that this value will not match that of any legitimate
pointer, so many functions that return pointers return it
to indicate an error. NULL is defined as 0 in
< s t d i o . h > ; the user can include an appropriate
definition if he is not using < s t d i o . h > .

FILES
/ l ib / l ibc .a
/ l ib / l ibm.a
/ l ib/ l ibsocket .a

SEE ALSO
ar(l), cc(l) , ld(l) , nm(l) , intro(2), stdio(3S).
CTIX Internetworking Manual.

DIAGNOSTICS
Functions in the C and Math Libraries (3M) may return
the conventional values 0 or ± H U G E (the largest-
magnitude single-precision floating-point numbers;
H U G E is defined in the <math.h> header file) when the
function is undefined for the given arguments or when
the value is not representable. In these cases, the
external variable errno (see intro(2)) is set to the value
EDOM or ERANGE.

WARNING
Many of the functions in the libraries call and/or refer to
other functions and external variables described in this
section and in section 2 (S y s t e m Calls). If a program
inadvertantly defines a function or external variable with
the same name, the presumed library version of the
function or external variable may not be loaded. The
lint{ 1) program checker reports name conflicts of this
kind as "multiple declarations" of the names in question.
Definitions for sections 2, 3C, and 3S are checked
automatically. Other definitions can be included by
using the —1 option (for example, —1 m includes
definitions for the Math Library, section 3M). Use of lint
is highly recommended.

A64L (3C)

NAME
a64l, 164a - convert between long integer and base-64
ASCII string

SYNOPSIS
long a64I (s)
char *s;
char *I84a (1)
long 1;

DESCRIPTION
These functions are used to maintain numbers stored in
base-64 ASCII characters. This is a notation by which
long integers can be represented by up to six characters;
each character represents a "digit" in a radix-64
notation.
The characters used to represent "digits" are . for 0, /
for 1, 0 through 9 for 2 -11 , A through Z for 12-37, and
a through z for 38-63.
A64I takes a pointer to a null-terminated base-64
representation and returns a corresponding long value.
If the string pointed to by s contains more than six
characters, a6^l will use the first six.
L64a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is
0, 164a returns a pointer to a null string.

BUGS
The value returned by 164a is a pointer into a static
buffer, the contents of which are overwritten by each
call.

- 1 -

ABORT(3C)

NAME
abort - generate an IOT fault

SYNOPSIS
int a b o r t ()

DESCRIPTION
Abort first closes all open files if possible, then causes an
IOT signal to be sent to the process. This usually results
in termination with a core dump.
It is possible for abort to return control if SIGIOT is
caught or ignored, in which case the value returned is
that of the kill(2) system call.

SEE ALSO
adb(l), sdb(l), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current
directory is writable, a core dump is produced and the
message "abort - core dumped" is written by the shell.

- 1 -

ABS (3C)

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

BUGS
In two's-complement representation, the absolute value
of the negative integer with largest magnitude is
undefined. Some implementations trap this error, but
others simply ignore it.

SEE ALSO
floor(3M).

- 1 -

ASSERT(3X)

NAME
assert - verify program assertion

SYNOPSIS
^ i n c l u d e < a s s e r t . h >
asser t (express ion)
int express ion;

DESCRIPTION
This macro is useful for putting diagnostics into
programs. When it is executed, if expression is false
(zero), assert prints

"Assertion failed: expression, file xyz, line nnw"
on the standard error output and aborts. In the error
message, xyz is the name of the source file and nnn the
source line number of the assert statement.
Compiling with the preprocessor option - D N D E B U G
(see cpp (1)), or with the preprocessor control statement
" # d e f i n e NDEBUG" ahead of the " # i n c l u d e
< a s s e r t . h > " statement, will stop assertions from being
compiled into the program.

SEE ALSO
cpp(l), abort(3C).

- 1 -

ATOF(3C)

NAME
atof - convert ASCII string to floating-point number

SYNOPSIS
double a to f (nptr)
char *nptr;

DESCRIPTION
Atof converts a character string pointed to by nptr to a
double-precision floating-point number. The first
unrecognized character ends the conversion. Atof
recognizes an optional string of white-space characters,
then an optional sign, then a string of digits optionally
containing a decimal point, then an optional e or E
followed by an optionally signed integer. If the string
begins with an unrecognized character, atof returns the
value zero.

DIAGNOSTICS
When the correct value would overflow, atof returns
HUGE, and sets errno to ERANGE. Zero is returned
on underflow.

SEE ALSO
scanf(3S).

- 1 -

BESSEL (3M)

NAME
jO, j l , jn, yO, y l , yn - Bessel functions

SYNOPSIS
^ i n c l u d e < m a t h . h >
double jO (x)
double x;
double j l (x)
double x;
double j n (n, x)
int n;
double x;
double yO (x)
double x;
double y l (x)
double x;
double y n (n, x)
int n;
double x;

DESCRIPTION
JO and jl return Bessel functions of x of the first kind of
orders 0 and 1 respectively. Jn returns the Bessel
function of x of the first kind of order n.
YO and yl return Bessel functions of x of the second
kind of orders 0 and 1 respectively. Yn returns the
Bessel function of x of the second kind of order n. The
value of x must be positive.

DIAGNOSTICS
Non-positive arguments cause yO, yl and yn to return
the value - H U G E and to set errno to EDOM In
addition, a message indicating DOMAIN error is printed
on the standard error output.
Arguments too large in magnitude cause jO, j l , yO and
yl to return zero and to set errno to ERANGE In
addition, a message indicating TLOSS error is printed on
the standard error output.
These error-handling procedures may be changed with
the function matherr(3M).

SEE ALSO
matherr(3M).

BSEARCH(3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
^ i n c l u d e < s e a r c h . h >
char *bsearch ((char *) key , (char *) base , nel,
s izeof (*key) , compar)
uns igned nel;
int (*compar)();

DESCRIPTION
Bsearch is a binary search routine generalized from
Knuth (6.2.1) Algorithm B. It returns a pointer into a
table indicating where a datum may be found. The
table must be previously sorted in increasing order
according to a provided comparison function. Key
points to a datum instance to be sought in the table.
Base points to the element at the base of the table. Nel
is the number of elements in the table. Compar is the
name of the comparison function, which is called with
two arguments that point to the elements being
compared. The function must return an integer less
than, equal to, or greater than zero as accordinly the
first argument is to be considered less than, equal to, or
greater than the second.

EXAMPLE
The example below searches a table containing pointers
to nodes consisting of a string and its length. The table
is ordered alphabetically on the string in the node
pointed to by each entry.
This code fragment reads in strings and either finds the
corresponding node and prints out the string and its
length, or prints an error message.
#include < s t d i o . h >
include < s e a r c h . h >

#def ine TABSIZE 1000

struct node { / * these are stored in the table » /
char *string;
int length;

};
struct node table[TABSIZE|; / * table to be searched */

{
struct node *node_ptr, node;

BSEARCH (3C)

int node_compare(); / » routine to compare 2 nodes * /
char strjspace|20); / * space to read string into * /

node.string = str_space;
while (scanf("%s", node.string) ! = EOF) {

node_ptr = (struct node «)bsearch((char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr ! = NULL) {
(void)printf("string = %20s, length = %d\n",

node_ptr- >str ing , node_ptr- >length);
} else {

(void)printf("not found: %s\n", node.string);

}
}

} / *
This routine compares two nodes based on an
alphabetical ordering of the string field.

»/
int
node_compare(nodel, node2)
struct node *nodel , *node2;
{

return s trcmpfnode l - >str ing, node2 ->s tr ing) ;
}

NOTES
The pointers to the key and the element at the base of
the table should be of type pointer-to-element, and cast
to type pointer-to-character.
The comparison function need not compare every byte,
so arbitrary data may be contained in the elements in
addition to the values being compared.
Although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

SEE ALSO
hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in
the table.

- 2 -

BYTEORDER(3N)

NAME
htonl, htons, ntohl, ntohs - convert values between host
and network byte order

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i n . h >
ne t long = htonl (hos t long) ;
uns igned long ne t long , host long;
n e t s h o r t = h tons (hos t shor t) ;
u s h o r t ne t shor t , hos t short ;
h o s t l o n g = ntohl (net long) ;
uns igned long hos t long , net long;
h o s t s h o r t = n tohs (ne t shor t) ;
u s h o r t hos t shor t , ne t short ;

DESCRIPTION
These routines convert 16 and 32 bit quantities between
network byte order and host byte order. On machines
such as the MiniFrame these routines are defined as null
macros in the include file <ays/ in.h>.
These routines are most often used in conjunction with
Internet addresses and ports as returned by
gethostent(3N) and getservent(3N).

SEE ALSO
gethostent(3N), getservent(3N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 1 -

CLOCK(3C)

NAME
clock - report CPU time used

SYNOPSIS
l o n g c l o c k ()

DESCRIPTION
Clock returns the amount of CPU time (in microseconds)
used since the first call to clock. The time reported is
the sum of the user and system times of the calling
process and its terminated child processes for which it
has executed wait(2) or system(3S).
The resolution of the clock is 16.667 milliseconds on
CTIX Processors.

SEE ALSO
times(2), wait(2), system(3S).

BUGS
The value returned by clock is defined in microseconds
for compatibility with systems that have CPU clocks
with much higher resolution. Because of this, the value
returned will wrap around after accumulating only 2147
seconds of CPU time (about 36 minutes).

- 1 -

C O N V (3 C)

NAME
toupper, tolower, _toupper, _tolower, toascii - translate
characters

SYNOPSIS
^ i n c l u d e < c t y p e . h >
i n t t o u p p e r (c)
i n t c;
in t t o l o w e r (c)
in t c;
i n t _ t o u p p e r (c)
i n t c;
in t _ t o l o w e r (c)
in t c;
in t t o a s c i i (c)
i n t c;

DESCRIPTION
Toupper and tolower have as domain the range of
getc(3S): the integers from - 1 through 255. If the
argument of toupper represents a lower-case letter, the
result is the corresponding upper-case letter. If the
argument of tolower represents an upper-case letter, the
result is the corresponding lower-case letter. All other
arguments in the domain are returned unchanged.

The macros _toupper and Jtolower, are macros that
accomplish the same thing as toupper and tolower but
have restricted domains and are faster. Jtoupper
requires a lower-case letter as its argument; its result is
the corresponding upper-case letter. The macro _tolower
requires an upper-case letter as its argument; its result is
the corresponding lower-case letter. Arguments outside
the domain cause undefined results.
Toascii yields its argument with all bits turned off that
are not part of a standard ASCII character; it is intended
for compatibility with other systems.

SEE ALSO
ctype(3C), getc(3S).

CRYPT(3C)

NAME
crypt, setkey, encrypt - generate hashing encryption

SYNOPSIS
char *crypt (key , sa l t)
char *key, *salt;
v o i d s e t k e y (key)
char *key;
v o i d e n c r y p t (block, fake)
char *block;
int fake;

DESCRIPTION
Crypt is the password encryption function. It is based
on a one way hashing encryption algorithm with
variations intended (among other things) to frustrate use
of hardware implementations of a key search.
Key is a user's typed password. Salt is a two-character
string chosen from the set [a-zA-ZO-9./]; this string is
used to perturb the hashing algorithm in one of 4096
different ways, after which the password is used as the
key to encrypt repeatedly a constant string. The
returned value points to the encrypted password. The
first two characters are the salt itself.
The setkey and encrypt entries provide (rather primitive)
access to the actual hashing algorithm. The argument of
setkey is a character array of length 64 containing only
the characters with numerical value 0 and 1. If this
string is divided into groups of 8, the low-order bit in
each group is ignored; this gives a 56-bit key which is set
into the machine. This is the key that will be used with
the hashing algorithm to encrypt the string block with
the function encrypt.
The argument to the encrypt entry is a character array
of length 64 containing only the characters with
numerical value 0 and 1. The argument array is
modified in place to a similar array representing the bits
of the argument after having been subjected to the
hashing algorithm using the key set by setkey. Fake is
not used and is ignored, but should be present if lint(l)
is used.

SEE ALSO
login(l), passwd(l), getpass(3C), passwd(4).

BUGS
The return value points to static data that are
overwritten by each call.

- 1 -

CTERMID (3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
^ i n c l u d e < s t d i o . h >
char *ctermid(s)
char *s;

DESCRIPTION
Ctermid generates the path name of the controlling
terminal for the current process, and stores it in a string.
If s is a NULL pointer, the string is stored in an internal
static area, the contents of which are overwritten at the
next call to ctermid, and the address of which is
returned. Otherwise, s is assumed to point to a
character array of at least L_ctermid elements; the
path name is placed in this array and the value of s is
returned. The constant L_ctermid is defined in the
< stdio.h> header file.

NOTES
The difference between ctermid and ttyname(3C) is that
ttyname must be handed a file descriptor and returns the
actual name of the terminal associated with that file
descriptor, while ctermid returns a string (/ d e v / t t y)
that will refer to the terminal if used as a file name.
Thus ttyname is useful only if the process already has at
least one file open to a terminal.

SEE ALSO
ttyname(3C).

- 1 -

CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date
and time to string

SYNOPSIS
i n c l u d e < t i m e . h >
char * c t ime (clock)
long *clock;
s t r u c t t m *localt ime (clock)
long *cIock;
s t r u c t t m * g m t i m e (clock)
long *clock;
char * asc t ime (tm)
s t ruc t t m *tm;
e x t e r n long t imezone;
e x t e r n int dayl ight;
e x t e r n char *tzname[2];
v o i d t z se t ()

DESCRIPTION
Ctime converts a long integer, pointed to by clock,
representing the time in seconds since 00:00:00 GMT,
January 1, 1970, and returns a pointer to a 26-character
string in the following form. All the fields have constant
width.

Sun Sep 16 01:03:52 1973\n\0
Localtime and gmtime return pointers to "tm"
structures, described below. Localtime corrects for the
time zone and possible Daylight Savings Time; gmtime
converts directly to Greenwich Mean Time (GMT), which
is the time the CTIX system uses.
Asctime converts a "tm" structure to a 26-character
string, as shown in the above example, and returns a
pointer to the string.
Declarations of all the functions and externals, and the
"tm" structure, are in the <time.h> header file. The
structure declaration is:
struct tm {

int tm_sec; /* seconds (0 - 59) */
int tm_min; / * minutes (0 - 59) */
int tm_hour; / * hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year - 1900 */
int tm_wday; /* day of week (Sunday = 0) */

- 1 -

CTIME(3C)

int tm_yday; / * day of year (0 - 365) * /
int tm_isdst;

}>
Tm_isdst is non-zero if Daylight Savings Time is in
effect.
The external l o n g variable timezone contains the
difference, in seconds, between GMT and local standard
time (in EST, timezone is 5*60*60); the external variable
daylight is non-zero if and only if the standard U S A.
Daylight Savings Time conversion should be applied.
The program knows about the peculiarities of this
conversion in 1974 and 1975; if necessary, a table for
these years can be extended.

If an environment variable named TZ is present, asctime
uses the contents of the variable to override the default
time zone. The value of TZ must be a three-letter time
zone name, followed by a number representing the
difference between local time and Greenwich Mean Time
in hours, followed by an optional three-letter name for a
daylight time zone. For example, the setting for New
Jersey would be E S T 5 E D T The effects of setting TZ
are thus to change the values of the external variables
timezone and daylight; in addition, the time zone names
contained in the external variable

c h a r * t z n a m e [2] = { "EST", "EDT" };
are set from the environment variable TZ. The function
tzset sets these external variables from TZ; tzset is
called by asctime and may also be called explicitly by
the user.
Note that in most installations, TZ is set by default
when the user logs on, to a value in the local /etc /prof i le
file (see profile(4)).

SEE ALSO
time(2), getenv(3C), profile(4), environ(5).

BUGS
The return values point to static data whose content is
overwritten by each call.

- 2 -

C T Y P E (3 C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isainum,
isspace, ispunct, isprint, isgraph, iscntrl, isascii - classify
characters

SYNOPSIS
i n c l u d e < c t y p e . h >

i n t i s a l p h a (c)
i n t c;

DESCRIPTION
These macros classify character-coded integer values by
table lookup. Each is a predicate returning nonzero for
true, zero for false. Isascii is defined on all integer
values; the rest are defined only where isascii is true and
on the single non-ASCII value EOF (- 1 - see stdio(3S)).
isalpha c is a letter.
isupper c is an upper-case letter.
islower c is a lower-case letter.
isdigit c is a digit [0-9].
isxdigit c is a hexadecimal digit [0-9], [A-F] or

[a-f],
isainum c is an alphanumeric (letter or digit).
isspace c is a space, tab, carriage return, new-

line, vertical tab, or form-feed.
ispunct c is a punctuation character (neither

control nor alphanumeric).
isprint c is a printing character, code 040

(space) through 0176 (tilde).
isgraph c is a printing character, like isprint

except false for space.
iscntrl c is a delete character (0177) or an

ordinary control character (less than
040).

isascii c is an ASCII character, code less than
0200.

DIAGNOSTICS
If the argument to any of these macros is not in the
domain of the function, the result is undefined.

SEE ALSO
ascii(5).

- 1 -

CURSES (3 X)

NAME
curses - CRT screen handling and optimization package

SYNOPSIS
^ i n c l u d e < c u r s e s . h >
cc [flags] files — lcurses [libraries]

DESCRIPTION
These routines give the user a method of updating
screens with reasonable optimization. In order to
initialize the routines, the routine initscrf) must be
called before any of the other routines that deal with
windows and screens are used. The routine endwinf)
should be called before exiting. To get character-at-a-
time input without echoing, (most interactive, screen
oriented-programs want this) after calling tnitscrf) you
should call "nonlf); cbreakf); noechof);"
The full curses interface permits manipulation of data
structures called windows which can be thought of as two
dimensional arrays of characters representing all or part
of a CRT screen. A default window called s tdscr is
supplied, and others can be created with newwin .
Windows are referred to by variables declared "WINDOW
*", the type WINDOW is defined in curses.h to be a C
structure. These data structures are manipulated with
functions described below, among which the most basic
are m o v e , and addch. (More general versions of these
functions are included with names beginning with 'w',
allowing you to specify a window. The routines not
beginning with 'w' affect stdscr.) Then refreshf j is
called, telling the routines to make the users CRT screen
look like s tdscr .

Mini-Curses is a subset of curses which does not allow
manipulation of more than one window. To invoke this
subset, use -DMINICURSES as a cc option. This level is
smaller and faster than full curses.
If the environment variable TERMINFO is defined, any
program using curses will check for a local terminal
definition before checking in the standard place. For
example, if the standard place is / u s r / l i b / t e r m i n f o ,
and TERM is set to "vtlOO", then normally tne compiled
file is found in / u s r / l i b / t e r m i n f o / v / v t l O O . (The "v"
is copied from the first letter of "vtlOO" to avoid
creation of huge directories.) However, if TERMINFO is
set to / u s r / m a r k / m y t e r m s , curses will first check
/ u s r / m a r k / m y t e r m s / v / v t l O O , and if that fails, will
then check / u s r / l i b / t e r m i n f o / v / v t l O O . This is
useful for developing experimental definitions or when
write permission in / u s r / l i b / t e r m i n f o is not available.

5/86 - 1 -

CURSES (3 X)

SEE ALSO
terminfo(4).

FUNCTIONS
Routines listed here may be
curses. Those marked with
when using Mini-Curses.

called when using the full
an asterisk may be called

add a character to stdscr (like putchar)
(wraps to next line at end of line)
calls addch with each character in str
turn off attributes named
turn on attributes named
set current attributes to attrs
current terminal speed
sound beep on terminal

hor)
draw a box around edges of win vert
and hor are chars to use for vert, and
hor. edges of box
clear stdscr
clear screen before next redraw of win
clear to bottom of stdscr
clear to end of line on stdscr
set cbreak mode

delay_output(ms)*
insert ms millisecond pause in output
delete a character
delete a line
delete win
update screen from all wnooutrefresh
set echo mode
end window modes
erase stdscr
return user's erase character
restore tty to "in curses" state
flash screen or beep
throw away any typeahead
get a char from tty
get a string through stdscr
establish current tty modes
get (y, x) co-ordinates
true if terminal can do insert character
true if terminal can do insert line
use terminal's insert/delete line if bf ! =
0
get char at current (y, x) co-ordinates
initialize screens
insert a char

addch(ch)*

adds trf str)*
at troff (attrs)*
attron(attrs)*
attrset(attrs)*
baudrate()*
beep()*
box(win, vert,

clear()
clearok(win, bf)
clrtobot()
clrtoeol()
cbreak()*

delch()
deleteln()
delwin(win)
doupdate(J
echo()*
endwin()*
erase()
erasechar()
fixterm()
flash()
flushinp()*
getch()*
getstr(str)
gettmode()
getyx(win, y, x)
has_ic()
has_ i l ()
idlok(win, bf)*

inch()
initscr()*
insch(c)

CURSES (3 X)

insertln(1 insert a line
intrflush(win, bf)

interrupts flush output if bf is TRUE
keypad(win, bf) enable keypad input
killcharf) return current user's kill character
leaveok(win, flag)

OK to leave cursor anywhere after
refresh if f l a g ! = 0 for win, otherwise
cursor must be left at current position.

longname() return verbose name of terminal
meta(win, flag)* allow meta characters on input if flag

! = 0
move(y, x)* move to (y, x) on stdscr
mvaddch(y, x, ch)

move(y, x) then addch(ch)
mvaddstr(y, x, str)

similar...
mvcur(oldrow, oldcol, newrow, newcol)

low level cursor motion
mvdelchfy, x) like delch, but move(y, x) first
mvgetch(v, x) etc.
mvgetstrfy, x)
mvinch(y, x)
mvinsch(y, x, c)
mvprintw(y, x, fmt, args)
mvscanwfy. x, fmt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelchfwin, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, c)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)
newpad(nlines, ncols)

create a new pad with given dimensions
newterm(type, fd)

set up new terminal of given type to
output on fd

newwin(lines, cols, begin_y, begin_x)
create a new window

nl()* set newline mapping
nocDreak()* unset cbreak mode
nodelay(win, bf) enable nodelay input mode through

getch
noecho()* unset echo mode

- 3 -

CURSES (3 X)

nonl()* unset newline mapping
noraw()* unset raw mode
overlay(winl, win2)

overlay win l on win2
overwrite(winl, win2)

overwrite win l on top of win2
pnoutrefresh(pad, pminrow, pmincol, sminrow,

smincol, smaxrow, smaxcol)
like prefresh but with no output until
doupdate called

prefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)

refresh from pad starting with given
upper left corner of pad with output to
given portion of screen

printw(fmt, argl, arg2, ...)
printf on stdscr
set raw mode
make current screen look like stdscr
set tty modes to "out of curses" state
reset tty flags to stored value

save current modes as "in curses" state

store current tty flags
scanw(fmt, argl, arg2, ...)

scanf through stdscr
scroll(win) scroll win one line
scrollok(win, flag)

allow terminal to scroll if flag ! = 0
set_term(new) now talk to terminal new
setscrreg(t, b) set user scrolling region to lines t

through b
setterm(type) establish terminal with given type
setuptermfterm, filenum, errret)
standend()* clear standout mode attribute
standout()* set standout mode attribute
subwin(win, lines, cols, begin_y, begin_x)

create a subwindow
touchwin(win) change all of win
traceoff() turn off debugging trace output
traceonf) turn on debugging trace output
typeahead(fd) use file descriptor fd to check

typeahead
unctrl(ch)* printable version of ch
waddch(win, ch) add char to win
waddstr(win, str)

add string to win

raw()*
refresh()*
resetterm()*
resetty()*
saveterm()*

savetty()*

CURSES (3 X)

wattroff(win, attrs)
turn off attrs in win

wattron(win, attrs)
turn on attrs in win

wattrset(win, attrs)
set attrs in win to attrs

wclear(win) clear win
wclrtobot(win) clear to bottom of win
wclrtoeol(win) clear to end of line on win
wdelch(win, c) delete char from win
wdeleteln(win) delete line from win
werase(win) erase win
wgetch(win) get a char through win
wgetstr(win, str) get a string through win
winch(win) get char at current (y, x) in win
winsch(win, c) insert char into win
winsertln(win) insert line into win
wmove(win, y, x)

set current (y, x) co-ordinates on win
wnoutrefresh(win)

refresh but no screen output
wprintw(win, fmt, argl, arg2, ...)

printf on win
wrefresh(win) make screen look like win
wscanw(win, fmt, argl, arg2, ...)

scanf through win
wsetscrreg(win, t, b)

set scrolling region of win
wstandend(win)

clear standout attribute in win
wstandout(win) set standout attribute in win

TERMINFO LEVEL ROUTINES
These routines should be called by programs wishing to
deal directly with the terminfo database. Due to the low
level of this interface, it is discouraged. Initially,
setupterm should be called. This will define the set of
terminal dependent variables defined in terminfo(4).
The include files < c u r s e s . h > and < t e r m . h > should be
included to get the definitions for these strings, numbers,
and flags. Parmeterized strings should be passed
through tparm to instantiate them. All terminfo strings
(including the output of tparm) should be printed with
tputs or putp . Before exiting, resetterm should be called
to restore the tty modes. (Programs desiring shell
escapes or suspending with control Z can call resetterm
before the shell is called and fixterm after returning from
the shell.)

- 5 -

CURSES (3 X)

fixterm() restore tty modes for terminfo use
(called by setupterm)

resetterm() reset tty modes to state before program
entry

setupterm(term, fd, rc)
read in database. Terminal type is the
character string term, all output is to
CTIX file descriptor fd. A status value
is returned in the integer pointed to by
rc: 1 is normal. The simplest call
would be setuptermfO, 1, 0) which uses
all defaults.

tparm(str, p i , p2, ..., p9)
instantiate string str with parms pj.

tputs(str, affcnt, putc)
apply padding info to string str. affcnt
is the number of lines affected, or 1 if
not applicable. Putc is a putchar-like
function to which the characters are
passed, one at a time.

putp(str) handy function that calls tputs (str, 1,
putchar)

vidputs(attrs, putc)
output the string to put terminal in
video attribute mode attrs, which is any
combination of the attributes listed
below. Chars are passed to putchar-like
function putc.

vidattr(attrs) Like vidputs but outputs through
putchar

TERMCAP COMPATIBILITY ROUTINES
These routines were included as a conversion aid for
programs that use termcap. Their parameters are the
same as for termcap. They are emulated using the
terminfo database. They may go away at a later date.
tgetent(bp, name)

look up termcap entry for name
tgetflag(id) get boolean entry for id
tgetnum(id) get numeric entry for id
tgetstr(id, area) get string entry for id
tgoto(cap, col, row)

apply parms to given cap

CURSES (3 X)

tputs(cap, affcnt, fn)
apply padding
putchar

to cap calling fn as

ATTRIBUTES
The following video attributes can be passed to the
functions attron ,attroff,attract.
A J S T A N D O U T Terminal's best highlighting mode
A_UNDERLINE

Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright
A_BOLD Extra bright or bold
A_ALTCHARSET

Alternate character set
FUNCTION KEYS

The following function keys might be returned by getch
if keypad has been enabled. Note that not all of these
are currently supported, due to lack of definitions in
terminfo or the terminal not transmitting a unique code
when the key is pressed.
KEY_BREAK 0401 break key (unreliable)

The four arrow keys ... K E Y _ D O W N
KEY_UP
KEY_LEFT
KEY_RIGHT
K E Y HOME

0402
0403
0404
0405
0406

K E Y B A C K S P A C E

KEY_F0

KEY_F(n)

KEY_DL
KEY_IL
KEY_DC
KEY_IC
K E Y EIC

0410

Home key (upward+left arrow)
0407

backspace (unreliable)
Function keys. Space for 64 is
reserved.

(KEY_F0+(n))
Formula for fn.

0510 Delete line
0511 Insert line
0512 Delete character
0513 Insert char or enter insert mode
0514 Exit insert char mode

- 7 -

CURSES (3 X)

K E Y . C L E A R 0515
KEY_EOS 0516
KEY_EOL 0517
KEY_SF 0520
KEY_SR 0521
K E Y _ N P A G E 0522
K E Y _ P P A G E 0523
K E Y _ S T A B 0524
K E Y _ C T A B 0525
K E Y _ C A T A B 0526
K E Y _ E N T E R 0527
KEY_SRESET 0530
KEY_RESET 0531
K E Y _ P R I N T
K E Y LL

Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send (unreliable)
soft (partial) reset (unreliable)
reset or hard reset (unreliable)

0532
0533

print or copy
home down or bottom (lower left)

WARNING
The plotting library p/of(3X) and the curses library
curses(3X) both use the names erase() and move(). The
curses versions are macros. If you need both libraries,
put the plot(3X) code in a different source file than the
curses(3X) code, and/or # u n d e f move() and erase() in
the plot(3X) code.

CUSERID (3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
^ i n c l u d e < s t d i o . h >
char * cuserid (s)
char *s;

DESCRIPTION
Cuserid. gets the user's login name as found in
/ e t c / u t m p . If the login name cannot be found, cuserid
gets the login name corresponding to the user ED of the
process. If s is a NULL pointer, this representation is
generated in an internal static area, the address of which
is returned. Otherwise, s is assumed to point to an
array of at least L_cuser id characters; the
representation is left in this array. The constant
L_cuser id is defined in the < s t d i o . h > header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a
NULL pointer; if s is not a NULL pointer, a null
character (\ 0) will be placed at s[0j.

SEE ALSO
getlogin(3C), getpwent(3C).

- 1 -

DIAL(3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
^ i n c l u d e < d i a l . h >
int dial (call)
CALL ""call;
v o i d undial (fd)
int fd;

DESCRIPTION
Dial returns a file-descriptor for a terminal line open for
read/write. The argument to dial is a CALL structure
(defined in the < d i a l . h > header file).
When finished with the terminal line, the calling
program must invoke undial to release the semaphore
that has been set during the allocation of the terminal
device.
The definition of CALL in the < d i a l . h > header file is:
typedef struct {

struct termio *attr;
/ * pointer to termio attribute struct */

int baud;
/ * transmission data rate */

int speed;
/ * 212A modem: low=300, high=1200

(unused) */
char*line;

/ * device name for out-going line */
char *telno;

/ * pointer to tel-no digits string */
int modem;

/ * specify modem control for direct lines */
char*device;

/ * Will hold the name of the device used
to make a connection (unused) */

int dev_len;
/ * The length of the device used to

make connection (unused) */
} CALL;
The CALL element baud is for the desired transmission
baud rate. The rate must be one of those supported by
the operating system (134.5 is rounded to 134). If the
baud is less than 300, the line will be dialed at 300 baud
then switched to the desired rate (unless attr is non-null;
see below).

5/86 - 1 -

D I A L (3 C)

If a particular terminal line is desired, a string pointer to
its device-name should be placed in the line element in
the CALL structure. Legal values for such terminal
device names are kept in / u s r / l i b / u u c p / D e v i c e s . In
this case, if baud is 0, the speed used will be determined
by the line in the D e v i c e s file for the terminal device.
The telno element is for a pointer to a character string
representing the telephone number to be dialed.
Numbers consist of the following symbols:

0 - 9 dial 0-9
* dial *
dial #
— 4-second delay for second dial tone
= wait for secondary dial tone

On a smart modem, these symbols are translated to
modem commands using the modem description in
/ u s r / l i b / u u c p / D i a l e r s .
If telno is specified, an ACU entry in the D e v i c e s file
will be used. If it is NULL, a Direct entry will be used.
The CALL element modem is used to specify modem
control for direct lines. This element should be non-zero
if modem control is required.
The CALL element attr is a pointer to a termio
structure, as defined in the termio.h header file. A NULL
value for this pointer element may be passed to the dial
function, but if such a structure is included, the elements
specified in it will be set for the outgoing terminal line
before the connection is established. This is often
important for certain attributes such as parity and
baud-rate. Values in this structure override the baud and
modem entries.

Information on 801 type dialing units is obtained from
the D e v i c e s file; thus the speed, device and dev_len
elements are no longer used.

FILES
/usr / l ib /uucp /Dev ices
/usr / l ib /uucp/Dia lers
/ usr/spool/ locks/LCK.. tty-de vie e

SEE ALSO
uucp(lC) , alarm(2), read(2), write(2), Devices(5),
Dialers(5), termio(7).

DIAGNOSTICS
On failure, dial will return -1 and the external variable
Uerror will contain one of the error codes defined in the
< d i a l . h > header file.

5 / 8 6 - 2 -

DIAL(3C)

If the external variable Debug is set to a number between
1 and 9, information about the progress of the call will
be printed on the standard output.

5/86 - 2 -

DRAND48(3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48,
srand48, seed48, lcong48 - generate uniformly
distributed pseudo-random numbers

SYNOPSIS
double d r a n d 4 8 ()
double erand48

long lrand48 ()
long n r a n d 4 8 (xsubi)
uns igned shor t xsubi[3];
long m r a n d 4 8 ()
long j r a n d 4 8 (xsubi)
uns igned shor t xsubi[3];
v o i d s rand48 (seedval)
long seedval;
uns igned shor t *seed48 (seed l f lv)
uns igned shor t seedl8v[3] ;
v o i d l cong48 (param)
uns igned s h o r t param[7];

This family of functions generates pseudo-random
numbers using the well-known linear congruential
algorithm and 48-bit integer arithmetic.
Functions drand.48 and crand48 return non-negative
double-precision floating-point values uniformly
distributed over the interval [0.0, 1.0).
Functions lrand48 and nrand48 return non-negative long
integers uniformly distributed over the interval [0, 231).
Functions mrand48 and jrand48 return signed long
integers uniformly distributed over the interval
[- 2 , 231).
Functions srand48, aeed48 and lcong48 are initialization
entry points, one of which should be invoked before
either drand48, lrand48 or mrand48 is called. (Although
it is not recommended practice, constant default
initializer values will be supplied automatically if
drand48, Irand48 or mrand48 is called without a prior
call to an initialization entry point.) Functions erand48,
nrand48 and jrand48 do not require an initialization
entry point to be called first.
All the routines work by generating a sequence of 48-bit
integer values, X,-, according to the linear congruential

uns igned shor t

DESCRIPTION

- 1 -

DRAND48 (3 C)

formula

X»+\ = (a X n + «)mod m « > 0 .
The parameter m = 248; hence 48-bit integer arithmetic
is performed. Unless lcong48 has been invoked, the
multiplier value a and the addend value e are given by

a = 5DEECE66D u = 273673163155 8
c = B 16 = 13 8.

The value returned by any of the functions drand48,
erand48, lrand48, nrand48, mrand48 or jrand48 is
computed by first generating the next 48-bit X,- in the
sequence. Then the appropriate number of bits,
according to the type of data item to be returned, are
copied from the high-order (leftmost) bits of X{ and
transformed into the returned value.

The functions drand48, lrand48 and tnrand48 store the
last 48-bit X,\ generated in an internal buffer; that is
why they must be initialized prior to being invoked.
The functions erand48, nrand48 and jrand48 require the
calling program to provide storage for the successive X{
values in the array specified as an argument when the
functions are invoked. That is why these routines do not
have to be initialized; the calling program merely has to
place the desired initial value of Xi into the array and
pass it as an argument. By using different arguments,
functions erand48, nrand48 and jrand48 allow separate
modules of a large program to generate several
independent streams of pseudo-random numbers, i.e., the
sequence of numbers in each stream will not depend
upon how many times the routines have been called to
generate numbers for the other streams.

The initializer function srand48 sets the high-order 32
bits of X{ to the 32 bits contained in its argument. The
low-order 16 bits of X t are set to the arbitrary value
330E18 .
The initializer function seed48 sets the value of X,- to
the 48-bit value specified in the argument array. In
addition, the previous value of X{ is copied into a 48-bit
internal buffer, used only by seed48, and a pointer to
this buffer is the value returned by seed48. This
returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a
given point at some future time — use the pointer to get
at and store the last X{ value, and then use this value to
reinitialize via seed48 when the program is restarted.
The initialization function lcong48 allows the user to
specify the initial X;, the multiplier value a , and the

- 2 -

DRAND48 (3C)

addend value e. Argument array elements paramfO-Sj
specify X,-, param(8-5] specify the multiplier a, and
param[6j specifies the 16-bit addend c. After lcong48
has been called, a subsequent call to either srand48 or
seed48 will restore the "standard" multiplier and addend
values, a and e , specified on the previous page.

SEE ALSO
rand(3C).

- 3 -

ECVT(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit , decpt , s ign)
double va lue;
int ndigi t , * decpt , *sign;
char *fcvt (value , ndigit , decpt , s ign)
double value;
int ndig i t , *decpt , *sign;
char *gcvt (value , ndigi t , buf)
double value;
int ndig i t ;
char *buf;

DESCRIPTION
Ecvt converts value to a null-terminated string of ndigit
digits and returns a pointer thereto. The high-order
digit is non-zero, unless the value is zero. The low-order
digit is rounded. The position of the decimal point
relative to the beginning of the string is stored indirectly
through decpt (negative means to the left of the returned
digits). The decimal point is not included in the returned
string. If the sign of the result is negative, the word
pointed to by sign is non-zero, otherwise it is zero.

Fcvt is identical to ecvt, except that the correct digit has
been rounded for printf "%f" (FORTRAN F-format)
output of the number of digits specified by ndigit.
Gcvt converts the value to a null-terminated string in
the array pointed to by buf and returns buf. It attempts
to produce ndigit significant digits in FORTRAN F-
format if possible, otherwise E-format, ready for
printing. A minus sign, if there is one, or a decimal point
will be included as part of the returned string. Trailing
zeros are suppressed.

SEE ALSO
printf(3S).

BUGS
The values returned by ecvt and fcvt point to a single
static data array whose content is overwritten by each
call.

- 1 -

END(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
e x t e r n end;
e x t e r n e tex t ;
e x t e r n edata ;

DESCRIPTION
These names refer neither to routines nor to locations
with interesting contents. The address of etext is the
first address above the program text, edata above the
initialized data region, and end above the uninitialized
data region.
When execution begins, the program break (the first
location beyond the data) coincides with end, but the
program break may be reset by the routines of brk(2),
malloc(3C), standard input/output (stdio(3S)), the
profile (—p) option of ee(l) , and so on. Thus, the
current value of the program break should be determined
by sbrk(O) (see brk(2)).

SEE ALSO
brk(2), malloc(3C), stdio(3S).

- 1 -

ERF (3M)

NAME
erf, erfc - error function and complementary error
function

SYNOPSIS
^ i n c l u d e < m a t h . h >
double erf (x)
double x;
double erfc (x)
double x;

DESCRIPTION
Erf returns the error function of x, defined as

4-fe-'!dt.
Vn 0

Erfc, which returns 1.0 - erf(x), is provided because of
the extreme loss of relative accuracy if crf(x) is called for
large x and the result subtracted from 1.0 (e.g., for x =
5, 12 places are lost).

SEE ALSO
exp(3M).

EXP (3M)

NAME
exp, log, loglO, pow, sqrt - exponential, logarithm,
power, square root functions

SYNOPSIS
^ i n c l u d e < m a t h . h >
double exp (x)
double x;
double log (x)
double x;
double loglO (x)
double x;
double p o w (x, y)
double x, y;
double sqrt (x)
double x;

DESCRIPTION
Exp returns e .
Log returns the natural logarithm of x. The value of x
must be positive.
LoglO returns the logarithm base ten of x. The value of
x must be positive.
Pow returns xv. If x is zero, y must be positive. If x is
negative, y must be an integer.
Sqrt returns the non-negative square root of x. The
value of x may not be negative.

DIAGNOSTICS
Exp returns HUGE when the correct value would
overflow, or 0 when the correct value would underflow,
and sets errno to ERANGE.
Log and loglO return - H U G E and set errno to EDOM
when x is non-positive. A message indicating DOMAIN
error (or SING error when x is 0) is printed on the
standard error output.
Pow returns 0 and sets errno to EDOM when a; is 0 and
y is non-positive, or when x is negative and y is not an
integer. In these cases a message indicating DOMAIN
error is printed on the standard error output. When the
correct value for pow would overflow or underflow, pow
returns ±HUGE or 0 respectively, and sets errno to
ERANGE.
Sqrt returns 0 and sets errno to EDOM when x is
negative. A message indicating DOMAIN error is printed
on the standard error output.

- 1 -

E X P (3 M)

These error-handling procedures may be changed with
the function matherr(3M).

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
^ i n c l u d e < s t d i o . h >
int fc lose (s tream)
FILE * s t ream;
int f f lush (s t ream)
FILE * s t ream;

DESCRIPTION
Fclose causes any buffered data for the named stream to
be written out, and the stream to be closed.
Fclose is performed automatically for all open files upon
calling exit (2).
Fflush causes any buffered data for the named stream to
be written to that file. The stream remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any
error (such as trying to write to a file that has not been
opened for writing) was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

- 1 -

FERROR (3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
^ i n c l u d e < s t d i o . h >
int ferror (s tream)
FILE • s t r e a m ;
int f eof (s tream)
FILE • s t r e a m ;
v o i d clearerr (s t ream)
FILE • s t r e a m ;
int f i leno (s tream)
FILE • s t r e a m ;

DESCRIPTION
Ferror returns non-zero when an I/O error has
previously occurred reading from or writing to the
named stream, otherwise zero.
Feof returns non-zero when EOF has previously been
detected reading the named input stream, otherwise
zero.
Clearerr resets the error indicator and EOF indicator to
zero on the named stream.
Fileno returns the integer file descriptor associated with
the named stream; see open(2).

NOTE
All these functions are implemented as macros; they
cannot be declared or redeclared.

SEE ALSO
open(2), fopen(3S).

FLOOR(3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder,
absolute value functions

SYNOPSIS
^ i n c l u d e < m a t h . h >
double f loor (x)
double x;
double ceil (x)
double x;
double f m o d (x, y)
double x , y;
double f a b s (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision
number) not greater than x.
Ceil returns the smallest integer not less than x.
Fmod returns the floating-point remainder of the
division of i by y: zero if y is zero or if x/y would
overflow; otherwise the number / with the same sign as
x, such that x = iy + f for some integer t, and I / I <
I v l -
Fa.be returns the absolute value of x, | x \ .

SEE ALSO
abs(3C).

- 1 -

F 0 P E N (3 S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
^ i n c l u d e < s t d i o . h >
FILE • f o p e n (f i le -name, t y p e)
char * f i l e -name, H y p e ;
FILE • f r e o p e n (f i le -name, t y p e , s t r e a m)
char • f i l e -name, • t y p e ;
FILE • s t r e a m ;
FILE • f d o p e n (fi ldes, t y p e)
int f i ldes;
char • t y p e ;

DESCRIPTION
Fopen opens the file named by file-name and associates
a stream with it. Fopen returns a pointer to the FILE
structure associated with the stream.
File-name points to a character string that contains the
name of the file to be opened.
Type is a character string having one of the following
values:

"r" open for reading
"w" truncate or create for writing
"a" append; open for writing at end of

file, or create for writing
"r+" open for update (reading and writing)
"w+" truncate or create for update
"a+" append; open or create for update at

end-of-file
Freopen substitutes the named file in place of the open
stream. The original stream is closed, regardless of
whether the open ultimately succeeds. Freopen returns
a pointer to the FILE structure associated with stream.
Freopen is typically used to attach the preopened
streams associated with stdin, s t d o u t and s tderr to
other files.
Fdopen associates a stream with a file descriptor. File
descriptors are obtained from open(2), dup{2), creat(2),
or pipe (2), which open files but not return pointers to a
FILE structure stream. Streams are necessary arguments
for many of the section 3S library routines. The type of
stream must agree with the mode of the open file.

F 0 P E N (3 S)

When a file is opened for update, both input and output
may be done on the resulting stream. However, output
may not be directly followed by input without an
intervening fseek or rewind, and input may not be
directly followed by output without an intervening fseek,
rewind, or an input operation which encounters end-of-
file.
When a file is opened for append (i.e., when type is "a"
or "a-f"), it is impossible to overwrite information
already in the file. Fseek may be used to reposition the
file pointer to any position in the file, but when output is
written to the file, the current file pointer is disregarded.
All output is written at the end of the file and causes the
file pointer to be repositioned at the end of the output.
If two separate processes open the same file for append,
each process may write freely to the file without fear of
destroying output being written by the other. The
output from the two processes will be intermixed in the
file in the order in which it is written.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S).

DIAGNOSTICS
Fopen and freopen return a NULL pointer on failure.

- 2 -

FREAD (3 S)

NAME
fread, fwrite - binary input/output

SYNOPSIS
^ i n c l u d e < s t d i o . h >
in t f r e a d (p t r , s ize , n i t e m s , s t r e a m)
c h a r *ptr ;
in t s i ze , n i t e m s ;
FILE * s t r e a m ;
i n t f w r i t e (p t r , s ize , n i t e m s , s t r e a m)
c h a r *ptr ;
in t s i ze , n i t e m s ;
FILE * s t r e a m ;

DESCRIPTION
Fread copies, into an array pointed to by ptr, nitems
items of data from the named input stream, where an
item of data is a sequence of bytes (not necessarily
terminated by a null byte) of length size. Fread stops
appending bytes if an end-of-file or error condition is
encountered while reading stream, or if nitems items
have been read. Fread leaves the file pointer in stream,
if defined, pointing to the byte following the last byte
read if there is one. Fread does not change the contents
of stream.

Fwrite appends at most nitems items of data from the
array pointed to by ptr to the named output stream.
Fwrite stops appending when it has appended nitems
items of data or if an error condition is encountered on
stream. Fwrite does not change the contents of the
array pointed to by ptr.

The argument size is typically sizeof(*ptr) where the
pseudo-function sizeof specifies the length of an item
pointed to by ptr. If ptr points to a data type other
than char it should be cast into a pointer to char.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S),
putc(3S), puts(3S), scanf(3S).

DIAGNOSTICS
Fread and fwrite return the number of items read or
written. If size or nitems is non-positive, no characters
are read or written and 0 is returned by both fread and
fwrite.

- 1 -

FREXP(3C)

NAME
frexp, ldexp, modf - manipulate parts of floating-point
numbers

SYNOPSIS
double f r e x p (value , eptr)
double va lue;
int *eptr;
double ldexp (value , exp)
double value;
int exp;
double m o d f (value , iptr)
double va lue , *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as i *
2", where the "mantissa" (fraction) x is in the range 0.5
< | x | < 1.0, and the "exponent" n is an integer.
Frexp returns the mantissa of a double value, and stores
the exponent indirectly in the location pointed to by
eptr. If value is zero, both results returned by frexp are
zero.
Ldexp returns the quantity value * 2exp.
Modf returns the signed fractional part of value and
stores the integral part indirectly in the location pointed
to by iptr.

DIAGNOSTICS
If ldexp would cause overflow, ±HUGE is returned
(according to the sign of value), and errno is set to
ERANGE.
If ldexp would cause underflow, zero is returned and
errno is set to ERANGE.

- 1 -

FSEEK (3 S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
^ i n c l u d e < s t d i o . h >
int f seek (s t ream, o f f se t , p t r n a m e)
FILE * s t ream;
long of fset ;
int p t r n a m e ;
v o i d rewind (s t ream)
FILE *stream;
long ftel l (s t ream)
FILE • s t r e a m ;

DESCRIPTION
Fseek sets the position of the next input or output
operation on the stream. The new position is at the
signed distance offset bytes from the beginning, from the
current position, or from the end of the file, according as
ptrname has the value 0, 1, or 2.
Rewindistream) is equivalent to fseek(stream, 0L, 0),
except that no value is returned.
Fseek and rewind undo any effects of ungetc(3S).
After fseek or rewind, the next operation on a file
opened for update may be either input or output.
Ftell returns the offset of the current byte relative to the
beginning of the file associated with the named stream.

SEE ALSO
lseek(2), fopen(3S) popen(3S), ungetc(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise
zero. An improper seek can be, for example, an fseek
done on a file that has not been opened via fopen; in
particular, fseek may not be used on a terminal, or on a
file opened via popen (3S).

WARNING
Although on the CTIX and other systems derived from
the UNIX system, an offset returned by ftell is measured
in bytes, and it is permissible to seek to positions relative
to that offset, portability to non-UNIX systems requires
that an offset be used by fseek directly. Arithmetic may
not meaningfully be performed on such an offset, which
is not necessarily measured in bytes.

- 1 -

FTW(3C)

NAME
ftw - walk a file tree

SYNOPSIS
i n c l u d e < f t w . h >
int f t w (path , fn , depth)
char *path:
int (*fn) ();
int depth;

DESCRIPTION
Ftw recursively descends the directory hierarchy rooted
in path. For each object in the hierarchy, ftw calls fn,
passing it a pointer to a null-terminated character string
containing the name of the object, a pointer to a s t a t
structure (see stat(2)) containing information about the
object, and an integer. Possible values of the integer,
defined in the < f t w . h > header file, are FTW_F for a
file, FTW_D for a directory, FTW_DNR for a directory
that cannot be read, and FTW_NS for an object for
which stat could not successfully be executed. If the
integer is FTW_DNR, descendants of that directory will
not be processed, if the integer is FTW_NS, the s t a t
structure will contain garbage. An example of an object
that would cause FTW_NS to be passed to fn would be a
file in a directory with read but without execute (search)
permission.

Ftw visits a directory before visiting any of its
descendants.
The tree traversal continues until the tree is exhausted,
an invocation of fn returns a nonzero value, or some
error is detected within ftw (such as an I/O error). If
the tree is exhausted, ftw returns zero. If fn returns a
nonzero value, ftw stops its tree traversal and returns
whatever value was returned by fn. If ftw detects an
error, it returns - 1 , and sets the error type in errno.
Ftw uses one file descriptor for each level in the tree.
The depth argument limits the number of file descriptors
so used. If depth is zero or negative, the effect is the
same as if it were 1. Depth must not be greater than the
number of file descriptors currently available for use.
Ftw will run more quickly if depth is at least as large as
the number of levels in the tree.

SEE ALSO
stat(2), malloc(3C).

FTW (3 C)

BUGS
Because ftw is recursive, it is possible for it to terminate
with a memory fault when applied to very deep file
structures.
It could be made to run faster and use less storage on
deep structures at the cost of considerable complexity.
Ftw uses malloc(3C) to allocate dynamic storage during
its operation. If ftw is forcibly terminated, such as by
longjmp being executed by fn or an interrupt routine,
ftw will not have a chance to free that storage, so it will
remain permanently allocated. A safe way to handle
interrupts is to store the fact that an interrupt has
occurred, and arrange to have fn return a nonzero value
at its next invocation.

- 2 -

GAMMA (3 M)

NAME
gamma - log gamma function

SYNOPSIS
^ i n c l u d e < m a t h . h >
d o u b l e g a m m a (x)
d o u b l e x;
e x t e r n in t s i g n g a m ;

DESCRIPTION
Gamma returns ln(| T(x) |), where r (x) is defined as

fe~(tx~1dt. The sign of r (x) is returned in the
o
external integer signgam. The argument x may not be a
non-positive integer.
The following C program fragment might be used to
calculate T:

if ((y = gamma(x)) > LN_MAXDOUBLE)
error();

y = signgam * exp(y);
where LN_MAXDOUBLE is the least value that causes
exp(3M) to return a range error, and is defined in the
<1 ialues.h> header file.

DIAGNOSTICS
For non-negative integer arguments HUGE is returned,
and errno is set to EDOM. A message indicating SING
error is printed on the standard error output.
If the correct value would overflow, gamma returns
HUGE and sets errno to E R A N G E
These error-handling procedures may be changed with
the function matherr(3M).

SEE ALSO
exp(3M), matherr(3M), values(5).

- 1 -

GETC (3 S)

NAME
getc, getchar, fgetc, getw - get character or word from a
stream

SYNOPSIS
^ i n c l u d e < s t d i o . h >
i n t g e t c (s t r e a m)
FILE * s t r e a m ;
i n t g e t c h a r ()
in t f g e t c (s t r e a m)
FILE * s t r e a m ;
in t g e t w (s t r e a m)
FILE * s t r e a m ;

DESCRIPTION
Getc returns the next character (i.e., byte) from the
named input stream, as an integer. It also moves the
file pointer, if defined, ahead one character in stream.
Getchar is defined as getc(stdin). Getc and getchar are
macros.
Fgetc behaves like getc, but is a function rather than a
macro. Fgetc runs more slowly than getc, but it takes
less space per invocation and its name can be passed as
an argument to a function.
Getw returns the next word (i.e., integer) from the
named input stream. Getw increments the associated
file pointer, if defined, to point to the next word. The
size of a word is the size of an integer and varies from
machine to machine. Getw assumes no special
alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S),
putc(3S), scanf(3S).

DIAGNOSTICS
These functions return the constant EOF at end-of-file
or upon an error. Because EOF is a valid integer,
ferror{3S) should be used to detect getw errors.

WARNING
If the integer value returned by getc, getchar, or fgetc is
stored into a character variable and then compared
against the integer constant EOF, the comparison may
never succeed, because sign-extension of a character on
widening to integer is machine-dependent.

BUGS
Because it is implemented as a macro, getc treats
incorrectly a stream argument with side effects. In

- 1 -

GETC (3S)

particular, g e t c (* f + +) does not work sensibly. Fgetc
should be used instead.
Because of possible differences in word length and byte
ordering, files written using putw are machine-
dependent, and may not be read using getw on a
different processor.

- 2 -

GETCWD (3 C)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
c h a r * g e t c w d (b u f , s ize)
c h a r *buf;
in t s ize;

DESCRIPTION
Getcwd returns a pointer to the current directory path-
name. The value of size must be at least two greater
than the length of the path-name to be returned.
If buf is a NULL pointer, getcwd will obtain size bytes of
space using malloc(3C). In this case, the pointer
returned by getcwd may be used as the argument in a
subsequent call to free.
The function is implemented by using popen (3S) to pipe
the output of the pwd(l) command into the specified
string space.

EXAMPLE
char *cwd, *getcwd();

if ((cwd = getcwd((char *)NULL, 64)) = = NULL) {
perror("pwd");
exit(l); }
printf("%s\n", cwd);

SEE ALSO
pwd(l) , malloc(3C), popen(3S).

DIAGNOSTICS
Returns NULL with errno set if size is not large enough,
or if an error ocurrs in a lower-level function.

GETENV(3C)

NAME
getenv - return value for environment name

SYNOPSIS
char *getenv (name)
char *name;

DESCRIPTION
Getenv searches the environment list (see environ^5)) for
a string of the form name = value, and returns a pointer
to the value in the current environment if such a string
is present, otherwise a NULL pointer.

SEE ALSO
exec(2), putenv(3C), environ(5).

- 1 -

GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent,
fgetgrent - get group file entry

SYNOPSIS
^ i n c l u d e < g r p . h >
s t r u c t g r o u p * g e t g r e n t ()
s t r u c t g r o u p *getgrg id (gid)
int gid;
s t r u c t g r o u p * g e t g r n a m (name)
char *name;
v o i d s e t g r e n t ()
v o i d e n d g r e n t ()
s t r u c t g r o u p * fge tgrent (f)
FILE *f;

DESCRIPTION
Getgrent, getgrgid and getgrnam each return pointers to
an object with the following structure containing the
broken-out fields of a line in the / e t c / g r o u p file. Each
line contains a "group" structure, defined in the
< g r p . h > header file.
struct group {

char *gr_name;
/* the name of the group */

char *gr_passwd;
J* the encrypted group password */

int gr_gid;
/ * the numerical group ID */

char **gr_mem;
/* vector of pointers to member names */

Getgrent when first called returns a pointer to the first
group structure in the file; thereafter, it returns a pointer
to the next group structure in the file; so, successive calls
may be used to search the entire file. Getgrgid searches
from the beginning of the file until a numerical group id
matching gid is found and returns a pointer to the
particular structure in which it was found. Getgrnam
searches from the beginning of the file until a group
name matching name is found and returns a pointer to
the particular structure in which it was found. If an
end-of-file or an error is encountered on reading, these
functions return a NULL pointer.
A call to setgrent has the effect of rewinding the group
file to allow repeated searches. Endgrent may be called

5/86 - 1 -

GETGRENT(3C)

to close the group file when processing is complete.
Fgetgrent returns a pointer to the next group structure
in the stream / , which matches the format of
/ e t c / g r o u p .

FILES
/ etc / group

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use < s t d i o . h > , which causes them
to increase the size of programs, not otherwise using
standard I/O, more than might be expected.

BUGS
All information is contained in a static area, so it must
be copied if it is to be saved.

GETHOSTENT(3N)

NAME
gethostent, gethostbyaddr, gethostbyname, sethostent,
endhostent - get network host entry

SYNOPSIS
include < n e t d b . h >
s t r u c t h o s t e n t * g e t h o s t e n t ()
s t r u c t h o s t e n t * g e t h o s t b y n a m e (name)
char ' n a m e ;
s t r u c t h o s t e n t * g e t h o s t b y a d d r (addr, len, t y p e)
char *addr; int len, t ype ;
s e t h o s t e n t (s t a y o p e n)
int s t a y o p e n
e n d h o s t e n t ()

DESCRIPTION
Gethostent, gethostbyname, and gethostbyaddr each
return a pointer to an object with the following structure
containing the broken-out fields of a line in the network
host data base, / e t c / h o s t s .
struct hostent {

char *h_name; /* official name of host */
char **h_aliases; / * alias list * /
int h_addrtype; / * address type */
int h_length; / * length of address */
char *h_addr; /* address * /

};
The members of this structure are:
h_name Official name of the host.
h_aliases A zero terminated array of alternate names

for the host.
h_addrtype The type of address being returned;

currently always AF_INET.
h_length The length, in bytes, of the address.
h_addr A pointer to the network address for the

host. Host addresses are returned in
network byte order.

Gethostent reads the next line of the file, opening the file
if necessary.
Sethostent opens and rewinds the file. If the stayopen
flag is non-zero, the host data base will not be closed
after each call to gethostent (either directly, or indirectly
through one of the other gethost calls).

5/86 - 1 -

G E T H O S T E N T (3 N)

Endhostent closes the file.
Gethostbyname and gethostbyaddr sequentially search
from the beginning of the file until a matching host
name or host address is found, or until EOF is
encountered. Host addresses are supplied in network
order.

FILES
/ e t c / h o s t s

SEE ALSO
hosts(4N).
CTIX Internetworking Manual.

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be
copied if it is to be saved. Only the Internet address
format is currently understood.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5 / 8 6 - 2 -

GETHOSTNAME (3 N)

NAME
gethostname - get name of current host

SYNOPSIS
g e t h o s t n a m e (name , name len)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the
current processor, as previously set by setuname(1M).
The parameter namelen specifies the size of the name
array. The returned name is null-terminated unless
insufficient space is provided.

RETURN VALUE
If the call succeeds, a value of 0 is returned. If the call
fails, then a value of - 1 is returned and an error code is
placed in the global location errno.

ERRORS
The following errors may be returned by these calls:
[EFAULT] The name or namelen parameter gave

an invalid address.
[EPERM] The caller was not the super-user.

SEE ALSO
setuname(lM).
CTIX Internetworking Manual.

BUGS
Host names are limited to 9 characters.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 - 1 -

GETLOGIN (3 C)

NAME
getlogin - get login name

SYNOPSIS
c h a r * g e t l o g i n ();

DESCRIPTION
Getlogin returns a pointer to the login name as found in
/ e t c / u t m p . It may be used in conjunction with
getpwnam to locate the correct password file entry when
the same user ID is shared by several login names.
If getlogin is called within a process that is not attached
to a terminal, it returns a NULL pointer. The correct
procedure for determining the login name is to call
cuserid, or to call getlogin and if it fails to call getpwuid.

FILES
/ e t c / u t m p

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS
Returns the NULL pointer if name is not found.

BUGS
The return values point to static data whose content is
overwritten by each call.

- 1 -

GETHOSTENT(3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent,
endnetent - get network entry

SYNOPSIS
i n c l u d e < n e t d b . h >
s t r u c t n e t e n t ' g e t n e t e n t ()
s t r u c t n e t e n t ' g e t n e t b y n a m e (name)
char ' n a m e ;
s t r u c t n e t e n t ' g e t n e t b y a d d r (net)
long net ;
s e t n e t e n t (s t a y o p e n)
int s t a y o p e n
e n d n e t e n t ()

DESCRIPTION
Getnetent, getnetbyname, and getnetbyaddr each return a
pointer to an object with the following structure
containing the broken-out fields of a line in the network
data base, / e t c / n e t w o r k s .
struct netent {

/ * official name of net */
char **n_aliases; / * alias list * /
int n_addrtype; / * net number type */
long n_net; / * net number */

The members of this structure are:
n_name The official name of the network.
n_aliases A zero-terminated list of alternate names

for the network.
n_addrtype The type of the network number returned;

currently only AF_INET.
n_net The network number. Network numbers

are returned in machine byte order.
Getnetent reads the next line of the file, opening the file
if necessary.
Setnetent opens and rewinds the file. If the stayopen flag
is non-zero, the network data base will not be closed
after each call to getnetent (either directly, or indirectly
through one of the other getnet calls).
Endnetent closes the file.
Getnetbyname and getnetbyaddr sequentially search from
the beginning of the file until a matching net name or

5/86 - 1 -

GETHOSTENT(3N)

net address is found, or until EOF is encountered.
Network numbers are supplied in host order.

FILES
/ e tc /ne tworks

SEE ALSO
networks(4N).
CTIX Internetworking Manual.

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area, so it must
be copied if it is to be saved. Only Internet network
numbers are currently understood. Expecting network
numbers to fit in no more than 32 bits is probably naive.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5 / 8 6 - 2 -

G E T 0 P T (3 C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
i n t g e t o p t (a r g c , a r g v , o p t s t r i n g)
i n t argc ;
c h a r * * a r g v , * o p s t r i n g ;
e x t e r n c h a r * o p t a r g ;
e x t e r n i n t o p t i n d , o p t e r r ;

DESCRIPTION
Getopt returns the next option letter in argv that
matches a letter in optstring. Optstring is a string of
recognized option letters; if a letter is followed by a
colon, the option is expected to have an argument that
may or may not be separated from it by white space.
Optarg is set to point to the start of the option
argument on return from getopt.

Getopt places in optind the argv index of the next
argument to be processed. Because optind is external, it
is normally initialized to zero automatically before the
first call to getopt.
When all options have been processed (i.e., up to the
first non-option argument), getopt returns EOF. The
special option — may be used to delimit the end of the
options; EOF will be returned, and — will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a
question mark (?) when it encounters an option letter not
included in optstring. This error message may be
disabled by setting opterr to a non-zero value.

EXAMPLE
The following code fragment shows how one might
process the arguments for a command that can take the
mutually exclusive options a and b , and the options f
and o, both of which require arguments:
main (argc, argv)
int argc;
char **argv;

int c;
extern char *optarg;
extern int optind;

while

- 1 -

GETOPT(3C)

((c = getopt(argc, argv, "abf:o:")) ! = EOF)
switch (c) { t i
case a :

if (bflg)
errflg++;

else
a f lg++;

break;
case 'b':

if (aflg)
errflg++;

else
bproc();

break;
case 'f':

ifile = optarg;
break;

case 'o':
ofile = optarg;
break;

case '?':
errflg++;

if (errflg) {
fprintffstderr, "usage: . . . ") ;
exit (2);

}
for (; optind < argc- opt ind++) {

if (access(argv[optind], 4)) {

}
SEE ALSO

getopt(l).

- 2 -

GETPASS (3C)

NAME
getpass - read a password

SYNOPSIS
char *getpass (p r o m p t)
char *prompt;

DESCRIPTION
Getpass reads up to a newline or EOF from the file
/ d e v / t t y , after prompting on the standard error output
with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated
string of at most 8 characters. If / d e v / t t y cannot be
opened, a NULL pointer is returned. An interrupt will
terminate input and send an interrupt signal to the
calling program before returning.

FILES
/dev/ t ty

SEE ALSO
crypt(3C).

WARNING
The above routine uses < s t d i o . h > , which causes it to
increase the size of programs not otherwise using
standard I/O, more than might be expected.

BUGS
The return value points to static data whose content is
overwritten by each call.

GETPROTOENT(3N)

NAME
getprotoent, getprotobynumber, getprotobyname,
setprotoent, endprotoent - get protocol entry

SYNOPSIS
include < n e t d b . h >
s t r u c t p r o t o e n t ""getprotoent ()
s t r u c t p r o t o e n t * g e t p r o t o b y n a m e (name)
char "name;
s t r u c t p r o t o e n t * g e t p r o t o b y n u m b e r (pro to)
int proto ;
s e t p r o t o e n t (s t a y o p e n)
int s t a y o p e n
e n d p r o t o e n t ()

DESCRIPTION
Getprotoent, getprotobyname, and getprotobynumber
each return a pointer to an object with the following
structure containing the broken-out fields of a line in the
network protocol data base, / e t c / p r o t o c o l s .
struct protoent {

char *p_name; /* official name of protocol */
char **p_aliases; / * alias list */
long p_proto; / * protocol number */

}»

The members of this structure are:
p_name The official name of the protocol.
p_aliases A zero-terminated list of alternate names for

the protocol.
p_proto The protocol number.
Getprotoent reads the next line of the file, opening the
file if necessary.
Setprotoent opens and rewinds the file. If the stayopen
flag is non-zero, the network data base will not be closed
after each call to getprotoent (either directly, or
indirectly through one of the other getproto calls).
Endprotoent closes the file.
Getprotobyname and getprotobynumber sequentially
search from the beginning of the file until a matching
protocol name or protocol number is found, or until EOF
is encountered.

FILES
/etc/protocols

5/86 - 1 -

G E T P R O T O E N T (3 N)

SEE ALSO
protocols(4N).
CTIX Internetworking Manual.

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area, so it must
be copied if it is to be saved. Only the Internet
protocols are currently understood.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5 / 8 6 - 2 -

GETPW (3C)

NAME
getpw - get name from UID

SYNOPSIS
int g e t p w (uid, buf)
int uid;
char *buf;

DESCRIPTION
Getpw searches the password file for a user id number
that equals uid, copies the line of the password file in
which uid was found into the array pointed to by buf,
and returns 0. Getpw returns non-zero if uid cannot be
found.
This routine is included only for compatibility with prior
systems and should not be used; see getpwent(3C) for
routines to use instead.

FILES
/etc/passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING
The above routine uses < s t d i o . h > , which causes it to
increase, more than might be expected, the size of
programs, not otherwise using standard I/O.

GETPWENT (3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent,
fgetpwent - get password file entry

SYNOPSIS
i n c l u d e < p w d . h >
s t r u c t p a s s w d * g e t p w e n t ()
s t ruc t p a s s w d *getpwuid (uid)
int uid;
s t r u c t p a s s w d * g e t p w n a m (name)
char *name;
v o i d s e t p w e n t ()
v o i d e n d p w e n t ()
s t r u c t p a s s w d * fge tpwent (f)
FILE *f;

DESCRIPTION
Getpwent, getpwuid and getpwnam each returns a
pointer to an object with the following structure
containing the broken-out fields of a line in the
/ e t c / p a s s w d file. Each line in the file contains a
"passwd" structure, declared in the <pwd.h> header
file:

struct passwd {
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

This structure is declared in <pwd.h> so it is not
necessary to redeclare it.
The pw_comment field is unused; the others have
meanings described in passwd(4).
Getpwent when first called returns a pointer to the first
passwd structure in the file; thereafter, it returns a
pointer to the next passwd structure in the file; so
successive calls can be used to search the entire file.
Getpwuid searches from the beginning of the file until a
numerical user id matching uid is found and returns a
pointer to the particular structure in which it was found.
Getpwnam searches from the beginning of the file until a

- 1 -

GETPWENT (3 C)

login name matching name is found, and returns a
pointer to the particular structure in which it was found.
If an end-of-file or an error is encountered on reading,
these functions return a NULL pointer.
A call to setpwent has the effect of rewinding the
password file to allow repeated searches. Endpwent may
be called to close the password file when processing is
complete.

Fgetpwent returns a pointer to the next passwd structure
in the stream / , which matches the format of
/ e t c / p a s s w d .

FILES
/e tc /passwd

SEE ALSO
getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS
A NULL pointer is returned on E O F or error.

WARNING
The above routines use < s t d i o . h > , which causes them
to increase the size of programs, not otherwise using
standard I /O, more than might be expected.

BUGS
All information is contained in a static area, so it must
be copied if it is to be saved.

- 2 -

GETS (3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
^ i n c l u d e < s t d i o . h >
char *gets (s)
char *s;
char * f g e t s (s, n , s t r e a m)
char *s;
int n;
FILE • s t r e a m ;

DESCRIPTION
Gets reads characters from the standard input stream,
stdin, into the array pointed to by a, until a new-line
character is read or an end-of-file condition is
encountered. The new-line character is discarded and
the string is terminated with a null character.
Fgets reads characters from the stream into the array
pointed to by a, until n - 1 characters are read, or a
new-line character is read and transferred to a, or an
end-of-file condition is encountered. The string is then
terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been
read, no characters are transferred to a and a NULL
pointer is returned. If a read error occurs, such as trying
to use these functions on a file that has not been opened
for reading, a NULL pointer is returned. Otherwise s is
returned.

GETSERVENT (3 N)

NAME
getservent, getservbyport, getservbyname, setservent,
endservent - get service entry

SYNOPSIS
^ i n c l u d e < n e t d b . h >
s t r u c t s e r v e n t * g e t s e r v e n t ()
s t r u c t s e r v e n t * g e t s e r v b y n a m e (name , p r o t o)
char ""name, ""proto;
s t r u c t s e r v e n t ""getservbyport (port , proto)
int por t ; char ""proto;
s e t s e r v e n t (s t a y o p e n)
int s t a y o p e n
e n d s e r v e n t ()

DESCRIPTION
Getservent, getservbyname, and getservbyport each
return a pointer to an object with the following structure
containing the broken-out fields of a line in the network
services data base, / e t c / s e r v i c e s .
struct servent {

char *s_name; / * official name of service */
char **s_aliases; / * alias list */
long s_port; / * port service resides at */
char *s_proto; / * protocol to use */

The members of this structure are:
s_name The official name of the service.
s_aliases A zero-terminated list of alternate names for

the service.
s_port The port number at which the service resides.

Port numbers are returned in network byte
order.

s_proto The name of the protocol to use when
contacting the service.

Getservent reads the next line of the file, opening the file
if necessary.
Setservent opens and rewinds the file. If the stayopen
flag is non-zero, the network data base will not be closed
after each call to getservent (either directly, or indirectly
through one of the other getserv calls).
Endservent closes the file.
Getservbyname and getservbyport sequentially search
from the beginning of the file until a matching protocol

5/86 - 1 -

GETSERVENT (3 N)

name or port number is found, or until EOF is
encountered. If a protocol name is also supplied (non-
NULL), searches must also match the protocol.

FILES
/etc/services

SEE ALSO
getprotoent(3N), services(4N).
CTIX Internetworking Manual.

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area, so it must
be copied if it is to be saved. Expecting port numbers to
fit in a 32-bit quantity is probably naive.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 - 2 -

GETUT(3C)

NAME
getutent, getutid, getutline, pututline, setutent,
endutent, utmpname - access utmp file entry

SYNOPSIS
^ i n c l u d e < u t m p . h >
s t r u c t u t m p * g e t u t e n t ()
s t r u c t u t m p ' g e t u t i d (id)
s t r u c t u t m p ' i d ;
s t r u c t u t m p ' g e t u t l i n e (line)
s t r u c t u t m p ' l ine;
v o i d putut l ine (u t m p)
s t r u c t u t m p ' u t m p ;
v o i d s e t u t e n t ()
v o i d e n d u t e n t ()
v o i d u t m p n a m e (file)
char ' f i le ;

DESCRIPTION
Getutent, getutid and getutline each return a pointer to
a structure of the following type:
struct utmp {

char ut_user[8];
/ * User login name * /

char ut_id[4];
/ * /etc/inittab id
* (usually line #) * /

char ut_line[l2j;
/ * device name (console,
* lnxx) */

short ut_pid; /* process id * /
short ut_type; / * type of entry */
struct exit_status {

short e_termination;
/ * Process termination status */

short e_exit;
/ * Process exit status */

} ut_exit;
/ * The exit status of a process
/ * marked as DEAD_PROCESS. */

time_t ut_time;
/ * time entry was made */

}>
Getutent reads in the next entry from a wfmp-like file.
If the file is not already open, it opens it. If it reaches
the end of the file, it fails.

- 1 -

G E T U T (3 C)

Getutid searches forward from the current point in the
utmp file until it finds an entry with a ut_type matching
id- > utjtype if the type specified is RUN_LVL,
BOOT_TIME, OLD.TIME or NEW_TIME. If the type
specified in id is INIT_PROCESS, LOGIN.PROCESS,
USER_PROCESS or DEAD_PROCESS, then getutid will
return a pointer to the first entry whose type is one of
these four and whose u t_id field matches id->ut_id. If
the end of file is reached without a match, it fails.

Getutline searches forward from the current point in the
utmp file until it finds an entry of the type
LOGIN .PROCESS or USER_PROCESS which also has a
utjline string matching the line- > ut_line string. If the
end of file is reached without a match, it fails.
Pututline writes out the supplied utmp structure into the
utmp file. It uses getutid to search forward for the
proper place if it finds that it is not already at the
proper place. It is expected that normally the user of
pututline will have searched for the proper entry using
one of the getut routines. If so, pututline will not search.
If pututline does not find a matching slot for the new
entry, it will add a new entry to the end of the file.

Setutent resets the input stream to the beginning of the
file. This should be done before each search for a new
entry if it is desired that the entire file be examined.
Endutent closes the currently open file.
Utmpname allows the user to change the name of the file
examined, from / e t c / u t m p to any other file. It is most
often expected that this other file will be / e t c / w t m p .
If the file does not exist, this will not be apparent until
the first attempt to reference the file is made.
Utmpname does not open the file. It just closes the old
file if it is currently open and saves the new file name.

FILES
/ e t c / u t m p
/ e t c / w t m p

SEE ALSO
ttyslot(3C), utmp(4).

DIAGNOSTICS
A NULL pointer is returned upon failure to read,
whether for permissions or having reached the end of
file, or upon failure to write.

COMMENTS
The most current entry is saved in a static structure.
Multiple accesses require that it be copied before further

G E T U T (3 C)

accesses are made. Each call to either getutid or
getutline sees the routine examine the static structure
before performing more I/O. If the contents of the static
structure match what it is searching for, it looks no
further. For this reason to use getutline to search for
multiple occurrences, it would be necessary to zero out
the static after each success, or getutline would just
return the same pointer over and over again. There is
one exception to the rule about removing the structure
before further reads are done. The implicit read done by
pututline (if it finds that it is not already at the correct
place in the file) will not hurt the contents of the static
structure returned by the getutent, getutid or getutline
routines, if the user has just modified those contents and
passed the pointer back to pututline.

These routines use buffered standard I/O for input, but
pututline uses an unbuffered non-standard write to avoid
race conditions between processes trying to modify the
utmp and wtmp files.

- 3 -

HSEARCH(3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
^ i n c l u d e < s e a r c h . h >
E N T R Y • h s e a r c h (i t e m , a c t i o n)
E N T R Y i t e m ;
A C T I O N a c t i o n ;
in t h c r e a t e (ne l)
u n s i g n e d nel;
v o i d h d e s t r o y ()

DESCRIPTION
Hsearch is a hash-table search routine generalized from
Knuth (6.4) Algorithm D. It returns a pointer into a
hash table indicating the location at which an entry can
be found. Item is a structure of type ENTRY (defined in
the <search.h> header file) containing two pointers:
item.key points to the comparison key, and item.data
points to any other data to be associated with that key.
(Pointers to types other than character should be cast to
pointer-to-character.) Action is a member of an
enumeration type ACTION indicating the disposition of
the entry if it cannot be found in the table. E N T E R
indicates that the item should be inserted in the table at
an appropriate point. FIND indicates that no entry
should be made. Unsuccessful resolution is indicated by
the return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must
be called before hsearch is used. Nel is an estimate of
the maximum number of entries that the table will
contain. This number may be adjusted upward by the
algorithm in order to obtain certain mathematically
favorable circumstances.
Hdestroy destroys the search table, and may be followed
by another call to hcreate.

NOTES
Hsearch uses open addressing with a multiplicative hash
function. However, its source code has many other
options available which the user may select by compiling
the hsearch source with the following symbols defined to
the preprocessor:
DIV Use the remainder modulo table size as the

hash function instead of the multiplicative
algorithm.

U S C R Use a User Supplied Comparison Routine for
ascertaining table membership. The routine

- 1 -

HSEARCH (3C)

should be named hcompar and should behave
in a mannner similar to strcmp (see
afrmj(3C)).

CHAINED
Use a linked list to resolve collisions. If this
option is selected, the following other options
become available.
START Place new entries at the

beginning of the linked list
(default is at the end).

SORTUP Keep the linked list sorted by
key in ascending order.

SORTDOWN
Keep the linked list sorted by
key in descending order.

Additionally, there are preprocessor flags for obtaining
debugging printout (-DDEBUG) and for including a test
driver in the calling routine (—DDRIVER). The source
code should be consulted for further details.

EXAMPLE
The following example will read in strings followed by
two numbers and store them in a hash table, discarding
duplicates. It will then read in strings and find the
matching entry in the hash table and print it out.

#include < s t d i o . h >
include < s e a r c h . h >

struct info {
/* this is the info stored in the table * /

int age, room;
/» other than the key. * /

};
#def ine NUM_EMPL 5000

/* # of elements in search table * /

main()
{

/ * space to store strings * /
char string_space[NUM_EMPL*20|;

/ * space to store employee info * /
struct info info_space|NUM_EMPL];

/* next avail space in string_space * /
char »str_ptr = string^space;

/» next avail space in info_space * /
struct info *info_ptr = info_space;

ENTRY item, *found_item, *hsearch();

- 2 -

HSEARCH (3 C)

/ * name to look for in table » /
char name_to_find[30|;
int i = 0;

/» create table * /
(void) hcreate(NUMJJMPL);
while (scanf("%s%d%d", str_ptr, &info_ptr- >age ,

&info_ptr- >room) ! = EOF && i+-l- < NUM_EMPL) {
/* put info in structure, and structure in item * /
item.key = str_ptr;
item.data = (char *)info_ptr;
str_ptr + = strlen(str_ptr) + 1;
info_ptr++;
/ * put item into table */
(void) hsearch(item, ENTER);

}
/» access table * /

item.key = name_to_find;
while (scanf("%s\ item.key) !== EOF) {

if ((foundjtem = hsearch(item, FIND)) ! = NULL) {
/ * if item is in the table */
(void)printf('found %s, age = %d, room = %d\n",

f o u n d j t e m - > key,
((struct info *) found_i tem-> d a t a) - > age,
((struct info *) found_ i t em->data) ->room);

} else {
(void)printf("no such employee %s\n",

name to find)

}
}

}
SEE ALSO

bsearch(3C), lsearch(3C), malloc(3C), malloc(3X),
string(3C), tsearch(3C).

DIAGNOSTICS
Hsearch returns a NULL pointer if either the action is
FIND and the item could not be found or the action is
E N T E R and the table is full.
Hcreate returns zero if it cannot allocate sufficient space
for the table.

WARNING
Hsearch and hcreate use malloc (3C) to allocate space.

BUGS
Only one hash search table may be active at any given
time.

- 3 -

HYP0T(3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
^ i n c l u d e < m a t h . h >
double h y p o t (x, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt(x * x + y * y),
taking precautions against unwarranted overflows.

DIAGNOSTICS
When the correct value would overflow, hypot returns
HUGE and sets errno to ERANGE.
These error-handling procedures may be changed with
the function matherr(3M).

SEE ALSO
matherr(3M), exp(3M).

- 1 -

INET(3N)

NAME
inet_addr, inet_network, inet_ntoa, inet_makeaddr,
inet_lnaof, inet_netof - Internet address manipulation
routines

SYNOPSIS
^ i n c l u d e < s y s / s o c k e t . h >
i n c l u d e < n e t i n e t / i n . h >
^ i n c l u d e < a r p a / i n e t . h >
s t r u c t in_addr inet_addr(cp)
char *cp;
int ine t_ne twork(cp)
char ""cp;
char * inet_ntoa(in)
s t r u c t inet_addr in;
s t r u c t in_addr ine t_makeaddr (ne t , lna)
int net , lna;
int inet_ lnaof(in)
s t ruc t in_addr in;
int inet_netof (in)
s t r u c t in_addr in;

DESCRIPTION
The routines inet_addr and inet_network each interpret
character strings representing numbers expressed in the
Internet standard dot notation, returning numbers
suitable for use as Internet addresses and Internet
network numbers, respectively. The routine inet_ntoa
takes an Internet address and returns an ASCII string
representing the address in dot notation. The routine
inet_makeaddr takes an Internet network number and a
local network address and constructs an Internet address
from it. The routines tnet_netof and inet_lnaof break
apart Internet host addresses, returning the network
number and local network address part, respectively.
All Internet address are returned in network order (bytes
ordered from left to right). All network numbers and
local address parts are returned as machine format
integer values.

INTERNET ADDRESSES
Values specified using the dot notation take one of the
following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a

- 1 -

INET(3 N)

byte of data and assigned, from left to right, to the four
bytes of an Internet address. Note that when an
Internet address is viewed as a 32-bit integer quantity on
the V A X the bytes referred to above appear as d.c.b.a.
That is, V A X bytes are ordered from right to left.
When a three part address is specified, the last part is
interpreted as a 16-bit quantity and placed in the right
most two bytes of the network address. This makes the
three part address format convenient for specifying Class
B network addresses as 128.net.host.

When a two part address is supplied, the last part is
interpreted as a 24-bit quantity and placed in the right
most three bytes of the network address. This makes
the two part address format convenient for specifying
Class A network addresses as net.host.
When only one part is given, the value is stored directly
in the network address without any byte rearrangement.
All numbers supplied as parts in a . notation may be
decimal, octal, or hexadecimal, as specified in the C
language (i.e., a leading Ox or OX implies hexadecimal;
otherwise, a leading 0 implies octal; otherwise, the
number is interpreted as decimal).

SEE ALSO
gethostent(3N), getnetent(3N), hosts(4N), networks(4N).
CTIX Internetworking Manual.

DIAGNOSTICS
The value - 1 is returned by inet_addr and inet_network
for malformed requests.

The problem of host byte ordering versus network byte
ordering is confusing. A simple way to specify Class C
network addresses in a manner similar to that for Class
B and Class A is needed. The string returned by
inet_ntoa resides in a static memory area.

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

BUGS

NOTE

L3T0L(3C)

NAME
13tol, ltol3 - convert between 3-byte integers and long
integers

SYNOPSIS
v o i d 13tol (lp, cp, n)
long *lp;
char *cp;
int n;
v o i d l tol3 (cp, lp, n)
char *cp;
long *lp;
int n;

DESCRIPTION
LStol converts a list of n three-byte integers packed into
a character string pointed to by cp into a list of long
integers pointed to by lp.
LtolS performs the reverse conversion from long integers
(lp) to three-byte integers (cp).
These functions are useful for file-system maintenance
where the block numbers are three bytes long.

SEE ALSO
fs(4).

BUGS
Because of possible differences in byte ordering, the
numerical values of the long integers are machine-
dependent.

- 1 -

LDAHREAD(3X)

NAME
ldahread - read the archive header of a member of an
archive file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
i n c l u d e < a r . h >
^ i n c l u d e < f i l e h d r . h >
^ i n c l u d e < l d f c n . h >

int ldahread (ldptr, arhead)
LDFILE * ldptr;
ARCHDR * arhead;

DESCRIPTION
If TYPE(/rfp<r) is the archive file magic number,
ldahread reads the archive header of the common object
file currently associated with ldptr into the area of
memory beginning at arhead.
Ldahread returns SUCCESS or FAILURE. Ldahread
will fail if TYPE(/rfp<r) does not represent an archive
file, or if it cannot read the archive header.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4), ar(4).

- 1 -

LDCLOSE(3X)

NAME
ldclose, ldaclose - close a common object file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i l e h d r . h >
^ i n c l u d e < l d f c n . h >

int ldclose (ldptr)
LDFILE * ldptr;
int ldaclose (ldptr)
LDFILE *Idptr;

DESCRIPTION
Ldopen(3X) and ldclose are designed to provide uniform
access to both simple object files and object files that are
members of archive files. Thus an archive of common
object files can be processed as if it were a series of
simple common object files.
If TYPE (ldptr) does not represent an archive file, ldclose
will close the file and free the memory allocated to the
LDFILE structure associated with ldptr. If TYPE(Mpir)
is the magic number of an archive file, and if there are
any more files in the archive, ldclose will reinitialize
OFFSET (ldptr) to the file address of the next archive
member and return FAILURE. The LDFILE structure
is prepared for a subsequent ldopen(3X). In all other
cases, ldclose returns SUCCESS.
Ldaclose closes the file and frees the memory allocated to
the LDFILE structure associated with ldptr regardless of
the value of TYPE (ldptr). Ldaclose always returns
SUCCESS. The function is often used in conjunction
with ldaopen.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
fclose(3S), ldopen(3X), ldfcn(4).

- 1 -

LDFHREAD(3X)

NAME
ldfhread - read the file header of a common object file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i lehdr . h >
^ i n c l u d e < l d f c n . h >

int ld fhread (ldptr , f i lehead)
LDFILE * ldptr;
FILHDR * f i lehead;

DESCRIPTION
Ldfhread reads the file header of the common object file
currently associated with ldptr into the area of memory
beginning at filehead.
Ldfhread returns SUCCESS or FAILURE. Ldfhread will
fail if it cannot read the file header.
In most cases the use of ldfhread can be avoided by using
the macro HEADER(/rfpfr) defined in ldfcn.h (see
ldfcn(4)). The information in any field, fieldname, of the
file header may be accessed using
HEADER(ldptr).fleldname.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4).

- 1 -

LDGETNAME (3X)

NAME
ldgetname - retrieve symbol name for common object
file symbol table entry

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i l e h d r . h >
^ i n c l u d e < s y m s . h >
^ i n c l u d e < l d f c n . h >
char * ldge tname (ldptr, s y m b o l)
LDFILE *ldptr;
SYMENT * symbol ;

DESCRIPTION
Ldgetname returns a pointer to the name associated with
s y m b o l as a string. The string is contained in a static
buffer local to ldgetname that is overwritten by each call
to ldgetname, and therefore must be copied by the caller
if the name is to be saved.
As of UNIX system release 5.0, which corresponds to the
first release of CTIX, the common object file format has
been extended to handle arbitrary length symbol names
with the addition of a "string table". Ldgetname will
return the symbol name associated with a symbol table
entry for either a pre-UNIX system 5.0 object file or a
UNIX system 5.0 object file. Thus, ldgetname can be
used to retrieve names from object files without any
backward compatibility problems. Ldgetname will
return NULL (defined in stdio .h) for a UNIX system 5.0
object file if the name cannot be retrieved. This
situation can occur:

if the "string table" cannot be found,
- if not enough memory can be allocated for the

string table,
- if the string table appears not to be a string

table (for example, if an auxiliary entry is
handed to ldgetname that looks like a reference
to a name in a non-existent string table), or

- if the name's offset into the string table is past
the end of the string table.

Typically, ldgetname will be called immediately after a
successful call to Idtbread to retrieve the name associated
with the symbol table entry filled by Idtbread.
The program must be loaded with the object file access
routine library Iibld.a.

LDGETNAME (3 X)

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X),
ldfcn(4).

- 2 -

LDLREAD(3X)

NAME
ldlread, ldlinit, ldlitem - manipulate line number entries
of a common object file function

SYNOPSIS
i n c l u d e < s t d i o . h >
^ i n c l u d e < f i l e h d r . h >
i n c l u d e < l i n e n u m . h >
i n c l u d e < l d f c n . h >

int ldlread(ldptr , fcn indx,
LDFILE * ldptr;
long fcnindx;
uns igned shor t l inenum;
LINENO linent;
int ldl init(ldptr, fcn indx)
LDFILE *ldptr;
long fcnindx;
int ld l i tem(ldptr , l inenum, l inent)
LDFILE * ldptr;
uns igned shor t l inenum;
LINENO linent;

DESCRIPTION
Ldlread searches the line number entries of the common
object file currently associated with ldptr. Ldlread
begins its search with the line number entry for the
beginning of a function and confines its search to the line
numbers associated with a single function. The function
is identified by fcnindx, the index of its entry in the
object file symbol table. Ldlread reads the entry with
the smallest line number equal to or greater than
linenum into linent.
Ldlinit and ldlitem together perform exactly the same
function as ldlread. After an initial call to ldlread or
ldlinit, ldlitem may be used to retrieve a series of line
number entries associated with a single function. Ldlinit
simply locates the line number entries for the function
identified by fcnindx. Ldlitem finds and reads the entry
with the smallest line number equal to or greater than
linenum into linent.
Ldlread, ldlinit, and ldlitem each return either
SUCCESS or FAILURE. Ldlread will fail if there are
no line number entries in the object file, if fcnindx does
not index a function entry in the symbol table, or if it
finds no line number equal to or greater than linenum.
Ldlinit will fail if there are no line number entries in the
object file or if fcnindx does not index a function entry in

l inenum, l inent)

- 1 -

LDLREAD(3X)

the symbol table. Ldlitem will fail if it finds no line
number equal to or greater than linenum.
The programs must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldtbindex(3X), ldfcn(4).

- 2 -

LDLSEEK (3X)

NAME
ldlseek, ldnlseek - seek to line number entries of a
section of a common object file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
i n c l u d e < f i l e h d r . h >
i n c l u d e < l d f c n . h >
int ldlseek (ldptr, sec t indx)
LDFILE * ldptr 5
uns igned shor t sect indx;
int ldnlseek (ldptr , s e c t n a m e)
LDFILE * ldptr;
char * s ec tname;

DESCRIPTION
Ldlseek seeks to the line number entries of the section
specified by sectindx of the common object file currently
associated with ldptr.
Ldnlseek seeks to the line number entries of the section
specified by sectname.
Ldlseek and ldnlseek return SUCCESS or FAILURE
Ldlseek will fail if sectindx is greater than the number of
sections in the object file; ldnlseek will fail if there is no
section name corresponding with *sectname. Either
function will fail if the specified section has no line
number entries or if it cannot seek to the specified line
number entries.
Note that the first section has an index of one.
The program must be loaded with the object file access
routine library libld.a.

FILES
/ usr/lib/libld. a

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

- 1 -

LDOHSEEK (3X)

NAME
ldohseek - seek to the optional file header of a common
object file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i lehdr . h >
^ i n c l u d e < l d f c n . h >
int ldohseek (ldptr)
LDFILE * ldptr;

DESCRIPTION
Ldohseek seeks to the optional file header of the common
object file currently associated with ldptr.
Ldohseek returns SUCCESS or FAILURE. Ldohseek
will fail if the object file has no optional header or if it
cannot seek to the optional header.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldfhread(3X), ldfcn(4).

- 1 -

LDOPEN(3X)

NAME
ldopen, ldaopen - open a common object file for reading

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i l e h d r . h >
^ i n c l u d e < l d f c n . h >
LDFILE * ldopen (f i lename, ldptr)
char *f i lename;
LDFILE * ldptr;
LDFILE * ldaopen (f i lename, o ldptr)
char *f i lename;
LDFILE *oldptr;

DESCRIPTION
Ldopen and Idclosei3X) are designed to provide uniform
access to both simple object files and object files that are
members of archive files. Thus an archive of common
object files can be processed as if it were a series of
simple common object files.
If ldptr has the value NULL, then ldopen will open
filename and allocate and initialize the LDFILE
structure, and return a pointer to the structure to the
calling program.
If ldptr is valid and if TYPE (ldptr) is the archive magic
number, ldopen will reinitialize the LDFILE structure for
the next archive member of filename.
Ldopen and Idcloae(3X) are designed to work in concert.
Ldclose will return FAILURE only when TYPE (ldptr) is
the archive magic number and there is another file in the
archive to be processed. Only then should ldopen be
called with the current value of ldptr. In all other cases,
in particular whenever a new filename is opened, ldopen
should be called with a NULL ldptr argument.
The following is a prototype for the use of ldopen and
ldclose (3X).

- 1 -

L D O P E N (3 X)

/ * for each filename to be processed * /
ldptr = NULL;
do

if ((ldptr = ldopen(filename, ldptr)) ! = NULL)

If the value of oldptr is not NULL, Idaopen will open
filename anew and allocate and initialize a new LDFILE
structure, copying the T Y P E , O F F S E T , and H E A D E R
fields from oldptr. Ldaopen returns a pointer to the new
LDFILE structure. This new pointer is independent of
the old pointer, oldptr. The two pointers may be used
concurrently to read separate parts of the object file.
For example, one pointer may be used to step
sequentially through the relocation information, while
the other is used to read indexed symbol table entries.

Both Idopen and Idaopen open filename for reading.
Both functions return NULL if filename cannot be
opened, or if memory for the LDFILE structure cannot
be allocated. A successful open does not insure that the
given file is a common object file or an archived object

The program must be loaded with the object file access
routine library l ib ld .a .

/ * check magic number */
/ * process the file * /

} while r) = = FAILURE);

file.

FILES
/usr / l ib / l ib ld .a

SEE ALSO
fopen(3S), ldclose(3X), ldfcn(4).

- 2 -

LDRSEEK (3X)

NAME
ldrseek, Idnrseek - seek to relocation entries of a section
of a common object file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i l e h d r . h >
^ i n c l u d e < l d f c n . h >
int ldrseek (ldptr, sec t indx)
LDFILE * ldptr;
uns igned shor t sect indx;
int Idnrseek (ldptr, s ec tname)
LDFILE *ldptr;
char *sectname;

DESCRIPTION
Ldrseek seeks to the relocation entries of the section
specified by sectindx of the common object file currently
associated with ldptr.
Ldnrseek seeks to the relocation entries of the section
specified by sectname.
Ldrseek and Idnrseek return SUCCESS or FAILURE.
Ldrseek will fail if sectindx is greater than the number of
sections in the object file; Idnrseek will fail if there is no
section name corresponding with sectname. Either
function will fail if the specified section has no relocation
entries or if it cannot seek to the specified relocation
entries.
Note that the first section has an index of one.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

- 1 -

LDSHREAD(3X)

NAME
ldshread, ldnshread - read an indexed/named section
header of a common object file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i l e h d r . h >
^ i n c l u d e < s c n h d r . h >
^ i n c l u d e < l d f c n . h >
int ldshread (ldptr , sect indx, sec thead)
LDFILE * ldptr;
uns igned s h o r t sect indx;
SCNHDR *secthead;
int ldnshread (ldptr , s ec tname , sec thead)
LDFILE *ldptr;
char *sectname;
SCNHDR * sec thead;

DESCRIPTION
Ldshread reads the section header specified by sectindx
of the common object file currently associated with ldptr
into the area of memory beginning at secthead.
Ldnshread reads the section header specified by sectname
into the area of memory beginning at secthead.
Ldshread and ldnshread return SUCCESS or FAILURE.
Ldshread will fail if sectindx is greater than the number
of sections in the object file; ldnshread will fail if there is
no section name corresponding with sectname. Either
function will fail if it cannot read the specified section
header.
Note that the first section header has an index of one.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4).

- 1 -

LDSSEEK(3X)

NAME
ldsseek, ldnsseek - seek to an indexed/named section of
a common object file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i l e h d r . h >
^ i n c l u d e < l d f c n . h >
int ldsseek (ldptr, sect indx)
LDFILE * ldptr;
uns igned shor t sect indx;
int ldnsseek (ldptr, s ec tname)
LDFILE *ldptr;
char *sectname;

DESCRIPTION
Ldsseek seeks to the section specified by sectindx of the
common object file currently associated with ldptr.
Ldnsseek seeks to the section specified by sectname.
Ldsseek and ldnsseek return SUCCESS or FAILURE.
Ldsseek will fail if sectindx is greater than the number of
sections in the object file; ldnsseek will fail if there is no
section name corresponding with sectname. Either
function will fail if there is no section data for the
specified section or if it cannot seek to the specified
section.
Note that the first section has an index of one.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

LDTBINDEX (3 X)

NAME
ldtbindex - compute the index of a symbol table entry
of a common object file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i l e h d r . h >
^ i n c l u d e < s y m s . h >
^ i n c l u d e < l d f c n . h >
long ldtbindex (ldptr)
LDFILE *ldptrj

DESCRIPTION
Ldtbindex returns the (long) index of the symbol table
entry at the current position of the common object file
associated with ldptr.
The index returned by ldtbindex may be used in
subsequent calls to ldtbread(3X). However, since
ldtbindex returns the index of the symbol table entry
that begins at the current position of the object file, if
ldtbindex is called immediately after a particular symbol
table entry has been read, it will return the index of the
next entry.

Ldtbindex will fail if there are no symbols in the object
file, or if the object file is not positioned at the
beginning of a symbol table entry.
Note that the first symbol in the symbol table has an
index of zero.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X),
ldfcn(4).

- 1 -

LDTBREAD(3X)

NAME
Idtbread - read an indexed symbol table entry of a
common object file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i l e h d r . h >
^ i n c l u d e < s y m s . h >
^ i n c l u d e < l d f c n . h >
int Idtbread (ldptr , s y m i n d e x , s y m b o l)
LDFILE * ldptr;
long symindex;
SYMENT * symbol ;

DESCRIPTION
Ldtbread reads the symbol table entry specified by
symindex of the common object file currently associated
with ldptr into the area of memory beginning at symbol.
Ldtbread returns SUCCESS or FAILURE. Ldtbread will
fail if symindex is greater than the number of symbols in
the object file, or if it cannot read the specified symbol
table entry.
Note that the first symbol in the symbol table has an
index of zero.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldtbseek(3X), ldfcn(4).

- 1 -

LDTBSEEK (3X)

NAME
ldtbseek - seek to the symbol table of a common object
file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i l e h d r . h >
^ i n c l u d e < l d f c n . h >
int ldtbseek (ldptr)
LDFILE *ldptr;

DESCRIPTION
Ldtbseek seeks to the symbol table of the object file
currently associated with ldptr.
Ldtbseek returns SUCCESS or FAILURE. Ldtbseek will
fail if the symbol table has been stripped from the object
file, or if it cannot seek to the symbol table.
The program must be loaded with the object file access
routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldfcn(4).

- 1 -

LIBDEV(3X)

NAME
libdev - manipulate Volume Home Blocks (VHB)

SYNOPSIS
^ i n c l u d e < s y s / g d i s k . h >

s t ruc t v h b d *vhbd;
s h o r t si, *slp;
char ""s, *device;
int fd;

int g d n s e c f v h b d , sH
int g d s t r k f v h b d , si)
int gd f t rkrvhbd , si)
int gdnszc (vhbd)
int isdisk(fd)
s t r u c t v h b d *readvhb(s , si)
s t r u c t v h b d *sreadvhb(dev ice)
s t r u c t v h b d * freadvhb(fd , si)
char * a d e v n a m e (f d)
char * b d e v n a m e (s)
int d i smnt (fd)
char *gdname(s , sip)
char 4 , fgdname(fd , sip)
int gdnlblk(fd)

DESCRIPTION
In each of the above subroutines the arguments denote:
v h b d A pointer to a disk volume home block, as

returned by readvhb, sreadvhb or freadvhb.
si Slice number on the drive.
s ip Pointer to a slice number. This argument is

actually used by the subroutine to return a slice
number.

s The name of a special file in / d e v / r d s k . This
filename is used to obtain a file descriptor to
access a VHB. The name need not be for slice
zero of the disk.

device The name of a special file in / d e v / r d s k . This
filename is used to obtain a file descriptor to
access a VHB. The name must be for slice zero
of a disk.

fd Open file descriptor for slice zero of a disk.
The subroutines in / u s r / l i b / l i b d e v . a form a device and
machine independent interface to the VHB of CTIX
disks. The function of each subroutine is described
below.

LIBDEV(3X)

Gdnsee returns the number of sectors in slice si of the
VHB indicated by vhbd.
Gdstrk returns the starting track of slice si of the VHB
pointed to by vhbd.
Gdftrk returns 1 if slice si of the VHB pointed to by vhbd
extends to the end of the disk.
Gdnszc returns the number of sectors per cylinder.
Isdisk returns 1 if the file descriptor fd is opened to a
special disk device.
Readvhb, Sreadvhb, and Freadvhb return a pointer to a
VHB for the device described by their arguments.
Adevname returns the character device name for the disk
drive that the file descriptor fd is opened to.
Bdevname returns the block device name for the disk
drive that the string s names. The filename S may be
either for any slice on either a raw or a block device.
Dismnt exercises the GDDISMNT ioctl call for the disk
drive that the file descriptor fd is opened to.
Gdname returns the file name for the character special
slice zero of a disk that the filename s name a slice of.
The value pointed to by sip is set to the slice number of
the filename s. Fgdname performs as does gdname, but
uses the file descriptor fd instead of the filename s.
Gdnlblk returns the number of logical blocks in the slice
that the file descriptor fd is opened to.

FILES
/dev / rdsk /c?d?s?
/dev/dsk/c?d?s?
/usr / l ib / l ibdev.a

SEE ALSO
iv(l) disk(7).

- 2 -

LOCKF (3C)

NAME
lockf - record locking on files

SYNOPSIS
include < u n i s t d . h >

lockf (fi ldes, func t ion , s ise)
long sise;
int f i ldes, funct ion;

DESCRIPTION
The lockf call will allow sections of a file to be locked
(advisory write locks). (Mandatory or enforcement mode
record locks are not currently available.) Locking calls
from other processes which attempt to lock the locked
file section will either return an error value or be put to
sleep until the resource becomes unlocked. All the locks
for a process are removed when the process terminates.
[See fcntl(2) for more information about record locking.]
Fildes is an open file descriptor. The file descriptor must
have 0_WR0NLY or 0_RDWR permission in order to
establish lock with this function call.
Function is a control value which specifies the action to
be taken. The permissible values for function are
defined in < u n i s t d . h > as follows:

#define F J J L O C K 0
/» Unlock a previously locked section */

#define F J . O C K 1
/ * Lock a section for exclusive use »/

#define F_TLOCK 2
/» Test and lock a section for exclusive use */

#define F_TEST 3
/* Test section for other processes locks »/

All other values of function are reserved for future
extensions and will result in an error return if not
implemented.
F_TEST is used to detect if a lock by another process is
present on the specified section. F_LOCK and F_TLOCK
both lock a section of a file if the section is available.
F_UNLOCK removes locks from a section of the file.
Size is the number of contiguous bytes to be locked or
unlocked. The resource to be locked starts at the
current offset in the file and extends forward for a
positive size and backward for a negative size. If size is
zero, the section from the current offset through the
largest file offset is locked (i.e., from the current offset
through the present or any future end-of-file). An area

- 1 -

L O C K F (3 C)

need not be allocated to the file in order to be locked, as
such locks may exist past the end-of-file.
The sections locked with F_LOCK or F.TLOCK may, in
whole or in part, contain or be contained by a previously
locked section for the same process. When this occurs,
or if adjacent sections occur, the sections are combined
into a single section. If the request requires that a new
element be added to the table of active locks and this
table is already full, an error is returned, and the new
section is not locked.

F_LOCK and F_TLOCK requests differ only by the action
taken if the resource is not available. F_LOCK will cause
the calling process to sleep until the resource is available.
F_TLOCK will cause the function to return a - 1 and set
errno to [EACCESS] error if the section is already locked
by another process.

F_ULOCK requests may, in whole or in part, release one
or more locked sections controlled by the process. When
sections are not fully released, the remaining sections are
still locked by the process. Releasing the center section
of a locked section requires an additional element in the
table of active locks. If this table is full, an [EDEADLK]
error is returned and the requested section is not
released.

A potential for deadlock occurs if a process controlling a
locked resource is put to sleep by accessing another
process's locked resource. Thus calls to lock or fcntl scan
for a deadlock prior to sleeping on a locked resource. An
error return is made if sleeping on the locked resource
would cause a deadlock.
Sleeping on a resource is interrupted with any signal.
The alarm{2) command may be used to provide a
t imeout facility in applications which require this
facility.

ERRORS
The lockf utility will fail if one or more of the following
are true:

[EBADFj
[EACCESS]

[EDEADLK]

Fildes is not a valid open descriptor.
Cmd is F_TLOCK or F_TEST and the
section is already locked by another
process.
Cmd is F_LOCK or F_TLOCK and a
deadlock would occur. Also the cmd is
either of the above or F_ULOCK and

- 2 -

LOCKF(3C)

the number of entries in the lock table
would exceed the number allocated on
the system. (Note that this differs from
EDEADLOCK.)

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

CAVEATS
Unexpected results may occur in processes tha t do
buffering in the user address space. The process may
later read/write data which is/was locked. The standard
I /O package is the most common source of unexpected
buffering.

SEE ALSO
close(2), creat(2), fcntl(2), intro(2), open(2), read(2),
write(2).

5/86 - 3 -

LOGNAME (3X)

NAME
logname - return login name of user

SYNOPSIS
char * logname()

DESCRIPTION
Logname returns a pointer to the null-terminated login
name; it extracts the SLOGNAME variable from the
user's environment.
This routine is kept in / l i b / l i b P W . a .

FILES
/etc/profile
/usr/l ib/l ibPW.a

SEE ALSO
env(l), login(l), profile(4), environ(5).

BUGS
The return values point to static data whose content is
overwritten by each call.
This method of determining a login name is subject to
forgery.

- 1 -

LSEARCH (3C)

NAME
lsearch, lfind - linear search and update

SYNOPSIS
^ i n c l u d e < s td io .h >
^ i n c l u d e < s e a r c h . h >
char *lsearch ((char *)key, (char *)base, nelp,
s izeof(*key) , c o m p a r)
uns igned *nelp;
int (*compar)();
char *lfind ((char *)key, (char *)base, nelp,
s izeof (*key) , compar)
uns igned *nelp;
int (*compar)();

DESCRIPTION
Lsearch is a linear search routine generalized from
Knuth (6.1) Algorithm S. It returns a pointer into a
table indicating where a datum may be found. If the
datum does not occur, it is added at the end of the table.
K e y points to the datum to be sought in the table.
B a s e points to the first element in the table. Ne lp
points to an integer containing the current number of
elements in the table. The integer is incremented if the
datum is added to the table. C o m p a r is the name of
the comparison function which the user must supply
(strcmp, for example). It is called with two arguments
that point to the elements being compared. The
function must return zero if the elements are equal and
non-zero otherwise.
Lfind is the same as lsearch except that if the datum is
not found, it is not added to the table. Instead, a NULL
pointer is returned.

NOTES
The pointers to the key and the element at the base of
the table should be of type pointer-to-element, and cast
to type pointer-to-character.
The comparison function need not compare every byte,
so arbitrary data may be contained in the elements in
addition to the values being compared.
Although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

EXAMPLE
This fragment will read in < TABSIZE strings of length
< ELSIZE and store them in a table, eliminating
duplicates.

- 1 -

LSEARCH (3 C)

^include < s t d i o . h >
^include < s e a r c h . h >

d e f i n e TABSIZE 50
d e f i n e ELSIZE 120

char line [ELSIZE], tab [TABSIZE] [ELSIZE],
*lsearch();
unsigned nel = 0;
int strcmp();

while (fgets(line, ELSIZE, stdin) ! = NULL &&
nel < TABSIZE)

(void) lsearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

DIAGNOSTICS
If the searched for datum is found, both lsearch and
lfind return a pointer to it. Otherwise, lfind returns
NULL and lsearch returns a pointer to the newly added
element.

BUGS
Undefined results can occur if there is not enough room
in the table to add a new item.

- 2 -

MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
c h a r * m a l l o c (s ize)
u n s i g n e d s ize;
v o i d f r e e (p t r)
c h a r *ptr ;
c h a r *rea l loc (p t r , s ize)
c h a r *ptr ;
u n s i g n e d size;
c h a r *ca l loc (n e l e m , e l s ize)
u n s i g n e d n e l e m , els ize;

DESCRIPTION
Malloc and free provide a simple general-purpose
memory allocation package. Malloc returns a pointer to
a block of at least size bytes suitably aligned for any
use.
The argument to free is a pointer to a block previously
allocated by malloc; after free is performed this space is
made available for further allocation, but its contents are
left undisturbed.
Undefined results will occur if the space assigned by
malloc is overrun or if some random number is handed
to free .
Malloc allocates the first big enough contiguous reach of
free space found in a circular search from the last block
allocated or freed, coalescing adjacent free blocks as it
searches. It calls sbrk (see brk(2)) to get more memory
from the system when there is no suitable space already
free.
Realloc changes the size of the block pointed to by ptr
to size bytes and returns a pointer to the (possibly
moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If no free block of size
bytes is available in the storage arena, then realloc will
ask malloc to enlarge the arena by size bytes and will
then move the data to the new space.

Realloc also works if ptr points to a block freed since the
last call of malloc, realloc, or calloc; thus sequences of
free, malloc and realloc can exploit the search strategy
of malloc to do storage compaction.
Calloc allocates space for an array of nelem elements of
size elsize. The space is initialized to zeros.

- 1 -

MALLOC(3C)

Each of the allocation routines returns a pointer to space
suitably aligned (after possible pointer coercion) for
storage of any type of object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS
Malloc, realloc and calloc return a NULL pointer if there
is no available memory or if the arena has been
detectably corrupted by storing outside the bounds of a
block. When this happens the block pointed to by ptr
may be destroyed.

NOTE
Search time increases when many objects have been
allocated; that is, if a program allocates but never frees,
then each successive allocation takes longer. For an
alternate, more flexible implementation, see malloc(3X).

MALLOC (3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - fast
main memory allocator

SYNOPSIS
^ i n c l u d e < m a l l o c . h >
char *malloc (size)
uns igned size;
v o i d free (ptr)
char *ptr;
char *realloc (ptr , size)
char *ptr;
uns igned size;
char *calloc (nelem, elsize)
uns igned nelem, elsize;
int m a l l o p t (cmd, va lue)
int c m d , value;
s t r u c t mal l info mal l info (max)
int m a x ;

DESCRIPTION
Malloc and free provide a simple general-purpose
memory allocation package, which runs considerably
faster than the malloc(3C) package. It is found in the
library "malloc", and is loaded if the option "-lmalloc"
is used with cc(l) or ld(1).
Malloc returns a pointer to a block of at least size bytes
suitably aligned for any use.
The argument to free is a pointer to a block previously
allocated by malloc; after free is performed this space is
made available for further allocation, and its contents
have been destroyed (but see mallopt below for a way to
change this behavior).
Undefined results will occur if the space assigned by
malloc is overrun or if some random number is handed
to free.
Realloc changes the size of the block pointed to by ptr
to size bytes and returns a pointer to the (possibly
moved) block. The contents will be unchanged up to the
lesser of the new and old sizes.
Calloc allocates space for an array of nelem elements of
size elsize. The space is initialized to zeros.
Mallopt provides for control over the allocation
algorithm. The available values for cmd are:

- 1 -

MALLOC (3 X)

M_MXFAST Set maxfast to value. The algorithm
allocates all blocks below the size of
maxfast in large groups and then doles
them out very quickly. The default value
for maxfast is 0.

M_NLBLKS Set numlblks to value. The above
mentioned "large groups" each contain
numlblks blocks. Numlblks must be
greater than 0. The default value for
numlblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks
smaller than maxfast are considered to be
rounded up to the nearest multiple of
grain. Grain must be greater than 0.
The default value of grain is the smallest
number of bytes which will allow
alignment of any data type. Value will be
rounded up to a multiple of the default
when grain is set.

M_KEEP Preserve data in a freed block until the
next malloc, realloc, or calloc. This
option is provided only for compatibility
with the old version of malloc and is not
recommended.

These values are defined in the <malloc.h> header file.
Mallopt may be called repeatedly, but may not be called
after the first small block is allocated.
Mallinfo provides instrumentation describing space
usage. It returns the structure:
struct mallinfo {

int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;
int usmblks;
int fsmblks;
int uordblks;
int fordblks;
int keepcost;

/ * total space in arena * /
/ * number of ordinary blocks * /
/ * number of small blocks * /
/ * space in holding block headers * /
/ * number of holding blocks * /
/ * space in small blocks in use * /
/ * space in free small blocks * /
/ * space in ordinary blocks in use * /
/ * space in free ordinary blocks * /
/ * space penalty if keep option * /
/ * is used * /

}
This structure is defined in the <malloc.h> header file.
Each of the allocation routines returns a pointer to space
suitably aligned (after possible pointer coercion) for

- 2 -

MALLOC(3C)

storage of any type of object.
SEE ALSO

brk(2), malloc(3C).
DIAGNOSTICS

Malloc, realloc and calloc return a NULL pointer if there
is not enough available memory. When realloc returns
NULL, the block pointed to by ptr is left intact. If
mallopt is called after any allocation or if cmd or value
are invalid, non-zero is returned. Otherwise, it returns
zero.

WARNINGS
This package usually uses more data space than
malloc(3C).
The code size is also bigger than malloc(3C).
Note that unlike malloc(3C), this package does not
preserve the contents of a block when it is freed, unless
the M_KEEP option of mallopt is used.
Undocumented features of malloc(3C) have not been
duplicated.

MATHERR(3M)

NAME
matherr - error-handling function

SYNOPSIS
^ i n c l u d e < m a t h . h >
i n t m a t h e r r (x)
s t r u c t e x c e p t i o n *x;

DESCRIPTION
Matherr is invoked by functions in the Math Library
when errors are detected. Users may define their own
procedures for handling errors, by including a function
named matherr in their programs. Matherr must be of
the form described above. When an error occurs, a
pointer to the exception structure x will be passed to the
user-supplied matherr function. This structure, which is
defined in the <math.h> header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;

}>
The element type is an integer describing the type of
error that has occurred, from the following list of
constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the
name of the function that incurred the error. The
variables argl and argS are the arguments with which
the function was invoked. Retval is set to the default
value that will be returned by the function unless the
user's matherr sets it to a different value.

If the user's matherr function returns non-zero, no error
message will be printed, and errno will not be set.
If matherr is not supplied by the user, the default error-
handling procedures, described with the math functions
involved, will be invoked upon error. These procedures
are also summarized in the table below. In every case,
errno is set to EDOM or ERANGE and the program
continues.

MATHERR(3M)

EXAMPLE
#include < m a t h . h >

int
matherr(x)
register struct exception *x;
{

switch (x - > t y p e) {
case DOMAIN:

/ * change sqrt to return sqrt(-argl) , not 0 * /
if (! s t rcmp(x ->name , "sqrt")) {

x - > r e t v a l = s q r t (- x - > a r g l) ;
return (0); / * print message and set errno * /

}
case SING:

/ * all other domain or sing errors, print message and abort * /
fprintf(stderr, "domain error in %s\n", x - > n a m e) ;
abort();

case PLOSS:
/ * print detailed error message * /
fprintffstderr, ' loss of significance in %s(%g) = %g\n",

x - > n a m e , x - > a r g l , x - >retval) ;
return (1); / * take no other action */

}
return (0); / * all other errors, execute default procedure * /

- 2 -

MATHERR(3M)

DEFAULT ERROR HANDLING PROCEDURES
Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW TLOSS FLOSS

errno EDOM EDOM ERANGE ERANGE ERANGE ERANGE

BESSEL:

yo, yi. yn (arc < o) M, - H
- - - M, 0 *

EXP: - - H 0 - -

LOG, LOGIO:
(arg < 0)
(arg = 0)

M, - H
M, - H

- " - -

POW:
•eg •* non-lnt

0 «* non-pos
M, 0 :

±H 0
- -

3QFW: M, 0 - - - - -

GAMMA: - M, H H - - -

HYPOT: - - H - - -

SINK - - ±H - - -

OOSK - - H - - -

SIN, COS, TAN: - - - - M, 0 *

ASIN, ADOS, ATAN2: M, 0 - - - -

ABBREVIATIONS
* As much as possible of the value is returned.

M Message is printed (EDOM error)
H HUGE is returned.

-H -HUGE is returned
±H HUGE or -HUGE is returned.
0 0 is returned.

- 3 -

MEMORY (3C)

NAME
memccpy, memchr, memcmp, memcpy, memset -
memory operations

SYNOPSIS
^ i n c l u d e < m e m o r y . h >
char * m e m c c p y (s i , s2, c, n)
char * s l , *s2;
int c, n;
char »memchr (s, c, n)
char *s;
int c, n;
int m e m c m p (s i , s2, n)
char * s l , *s2;
int n;
char * m e m c p y (s i , s2, n)
char * s l , *s2;
int n;
char * m e m s e t (s, c, n)
char *s;
int c, n;

DESCRIPTION
These functions operate as efficiently as possible on
memory areas (arrays of characters bounded by a count,
not terminated by a null character). They do not check
for the overflow of any receiving memory area.
Memccpy copies characters from memory area s2 into
si, stopping after the first occurrence of character c has
been copied, or after n characters have been copied,
whichever comes first. It returns a pointer to the
character after the copy of c in si, or a NULL pointer if
c was not found in the first n characters of s2.
Memchr returns a pointer to the first occurrence of
character c in the first n characters of memory area s,
or a NULL pointer if c does not occur.
Memcmp compares its arguments, looking at the first n
characters only, and returns an integer less than, equal
to, or greater than 0, according as si is lexicographically
less than, equal to, or greater than s2.
Memcpy copies n characters from memory area s2 to si.
It returns si.
Memset sets the first n characters in memory area s to
the value of character c. It returns s .

MEMORY (3 C)

NOTE
For user convenience, all these functions are declared in
the optional < memory.h> header file.

BUGS
Memcmp uses native character comparison, which is
signed on some machines (including Convergent
Technologies 68000-family processors) but not on others.
Thus the sign of the value returned when one of the
characters has its high-order bit set is implementation-
dependent. ASCII values are always positive, so
programs that compare only ASCII values are portable.

Character movement is performed differently in different
implementations. Thus, overlapping moves may yield
surprises.

- 2 -

MKTEMP (3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char * m k t e m p (t empla te)
char * t e m p l a t e ;

DESCRIPTION
Mktemp replaces the contents of the string pointed to by
template by a unique file name, and returns the address
of template. The string in template should look like a
file name with six trailing Xs; mktemp will replace the
X s with a letter and the current process ID. The letter
will be chosen so that the resulting name does not
duplicate an existing file.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

MONITOR (3C)

NAME
monitor - prepare execution profile

SYNOPSIS
^ i n c l u d e < m o n . h >
v o i d m o n i t o r (lowpc, h ighpc, buf fer , bufsize , nfunc)
int (* lowpc)(), (*highpc)();
W O R D *buffer;
int bufs ize , nfunc;

DESCRIPTION
An executable program created by cc —p automatically
includes calls for monitor with default parameters;
monitor needn't be called explicitly except to gain fine
control over profiling.
Monitor is an interface to profit(2). Lowpc and highpc
are the addresses of two functions; buffer is the address
of a (user supplied) array of bufsize WORDs (defined in
the <mon.h> header file). Monitor arranges to record
a histogram of periodically sampled values of the
program counter, and of counts of calls of certain
functions, in the buffer. The lowest address sampled is
that of lowpc and the highest is just below highpc.
Lowpc may not equal 0 for this use of monitor. At most
nfunc call counts can be kept; only calls of functions
compiled with the profiling option —p of ec(l) are
recorded. (The C Library and Math Library supplied
when cc —p is used also have call counts recorded.)

For the results to be significant, especially where there
are small, heavily used routines, it is suggested that the
buffer be no more than a few times smaller than the
range of locations sampled.
To profile the entire program, it is sufficient to use

extern etext;

monitor ((int (*)())2, etext, buf, bufsize, nfunc);
Etext lies just above all the program text; see end(3C).
To stop execution monitoring and write the results on
the file m o n . o u t , use

monitor ((int (*)())0, 0, 0, 0, 0);
.Pro/(l) can then be used to examine the results.

FILES
mon.out
/l ib/libp/libc.a
/l ib/libp/libm.a

- 1 -

MONITOR (3C)

SEE ALSO
cc(l), prof(l), profil(2), end(3C).

- 2 -

NLIST (3 C)

NAME
nlist - get entries from name list

SYNOPSIS
i n c l u d e < n l i s t . h >
int nl ist (f i le -name, nl)
char *f i le-name;
s t r u c t nlist *nl;

DESCRIPTION
Nlist examines the name list in the executable file whose
name is pointed to by file-name, and selectively extracts
a list of values and puts them in the array of nlist
structures pointed to by nl. The name list nl consists of
an array of structures containing names of variables,
types and values. The list is terminated with a null
name; that is, a null string is in the name position of the
structure. Each variable name is looked up in the name
list of the file. If the name is found, the type and value
of the name are inserted in the next two fields. The
type field will be set to 0 unless the file was compiled
with the - g option. If the name is not found, both
entries are set to 0. See a.out(4) for a discussion of the
symbol table structure.

This function is useful for examining the system name
list kept in the file / u n i x . In this way programs can
obtain system addresses that are up to date.

NOTES
The < n l i s t . h > header file is automatically included by
< a . o u t . h > for compatability. However, if the only
information needed from < a . o u t . h > is for use of nlist,
then including < a . o u t . h > is discouraged. If
< a . o u t . h > is included, the line "#undef n_name" may
need to follow it.

SEE ALSO
a.out(4).

DIAGNOSTICS
All value entries are set to 0 if the file cannot be read or
if it does not contain a valid name list.
Nlist returns - 1 upon error; otherwise it returns 0.

5/86 - 1 -

0 C U R S E (3 X)

NAME
ocurse - optimized screen functions

SYNOPSIS
^ i n c l u d e < o c u r s e . h >

DESCRIPTION
Ocurse is the old Berkeley curses library that uses
termcap(4).
These functions optimally update the screen.
Each curses program begins by calling initscr and ends
by calling endwin.
Before a program can change a screen, it must specify
the changes. It stores changes in a variable of type
W I N D O W by calling curses functions with the variable
as argument. Once the variable contains all the changes
desired, the program calls wrefresh to write the changes
to the screen.
Most programs need only a single W I N D O W variable.
Ocurse provides a standard W I N D O W variable for this
case and a group of functions that operate on it. The
variable is called stdscr; its special functions have the
same names as the general functions minus the initial w.

/usr/ include/ocurse .h header file
/usr/ l ib/ l ibocurse.a curses library
/usr / l ib / l ibtermcap.a termcap library, used by curses

Ken Arnold. Screen Updating and Cursor Movement
Optimization: A Library Package. Berkeley, Calif.:
University of California.
stty(2), setenv(3), termcap(4).

FILES

SEE ALSO

FUNCTIONS

box(win,vert,hor)

addch(ch)
addstr(str)

Add a character to stdscr.
Add a string to stdscr.
Draw a box around a window.
Set cbreak mode.
Clear stdscr.
Set clear flag for scr.
Clear to bottom on stdscr.
Clear to end of line on stdscr.
Delete a character.
Delete a line.
Delete win.

crmodeQ
clearQ
clearok(scr,boolf)

deleteln()
delwin(win)

5 /86 - 1 -

OCURSE (3 X)

echo() Set echo mode.
endwinQ End window modes.
eraseQ Erase stdscr.
getchQ Get a char through stdscr.
getcap(name) Get terminal capability name.
getstr(str) Get a string through stdscr.
gettmodeQ Get tty modes.
getyx(win,y,x) Get (y,x) co-ordinates.
inch() Get char at current (y,x) co-

ordinates.
initscrQ Initialize screens.
insch(c) Insert a char,
inserting) Insert a line.
leaveok(win,boolf) Set leave flag for win.
longname(termbuf,name)

Get long name from termbuf.
move(y,x) Move to (y,x) on stdscr.
mvcur(lasty,lastx,newy,newx)

Actually move cursor.
newwin(lines,cols,begin _y,begin_x)

Create a new window.
nl() Set newline mapping.
nocrmodeQ Unset cbreak mode.
noecho() Unset echo mode.
nonlQ Unset newline mapping.
norawQ Unset raw mode.
overlay(winl,win2) Overlay winl on win2.
overwrite(winl,win2) Overwrite winl on top of win2.
printw(fmt,argl,arg2,.. .)

rrintf on stdscr.
raw() Set raw mode.
refresh() Make current screen look like

stdscr.
resettyQ Reset tty flags to stored value.
savettyQ Stored current tty flags,
sc an w(f mt, argl, arg2,...)

Scanf through stdscr.
scroll(win) Scroll win one line.
scrollok(win,boolf) Set scroll flag.
setterm(name) Set term variables for name.
standendQ End standout mode.
standoutQ Start standout mode.
subwin(win,lines,cols,begin_y,begin_x)

Create a subwindow.
touchwin(win) change all of win.
unctrl(ch) Printable version of ch.
waddch(win,ch) Add char to win.
waddstr(win,str) Add string to win.

OCURSE (3X)

wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winsch(win,c)
winsertln(win)
wmove(win,y,x)

wprintw(win,fmt

wrefresh(win)
wscanw(win,fmt,

wstandend(win)
wstandout(win)

Clear win.
Clear to bottom of win.
Clear to end of line on win.
Delete char from win.
Delete line from win.
Erase win.
Get a char through win.
Get a string through win.
Get char at current (y,x) in win.
Insert char into win.
Insert line into win.
Set current (y,x) co-ordinates i
win.

,argl,arg2,...)
Printf on win.
Make screen look like win.

argl,arg2,...)
Scanf through win.
End standout mode on win.
Start standout mode on win.

- 3 -

PERROR(3C)

NAME
perror, errno, sys_errlist, sys_nerr - system error
messages

SYNOPSIS
v o i d perror (s)
char *s;
e x t e r n int errno;
e x t e r n char *sys_errl ist[];
e x t e r n int sys_nerr;

DESCRIPTION
Perror produces a message on the standard error output,
describing the last error encountered during a call to a \
system or library function. The argument string s is
printed first, then a colon and a blank, then the message
and a new-line. To be of most use, the argument string
should include the name of the program that incurred
the error. The error number is taken from the external
variable errno, which is set when errors occur but not
cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of
message strings sys_errlxst is provided; errno can be
used as an index in this table to get the message string
without the new-line. Sys_nerr is the largest message
number provided for in the table; it should be checked
because new error codes may be added to the system
before they are added to the table.

SEE ALSO
intro(2).

- 1 -

PLOT(3X)

NAME
plot - graphics interface subroutines

SYNOPSIS
openpl ()
erase ()
label (s)
char *s;
line (x l , y l , x2 , y 2)
int x l , y l , x2 , y2 ;
circle (x, y , r)
int x, y , r;
arc (x, y , xO, yO, x l , y l)
int x, y , xO, yO, x l , y l ;
m o v e (x, y)
int x , y ;
con t (x, y)
int x, y ;
p o i n t (x, y)
int x , y;
l inemod (s)
char *s;
space (xO, yO, x l , y l)
int xO, yO, x l , y l ;
closepl ()

DESCRIPTION
These subroutines generate graphic output in a relatively
device-independent manner. Space must be used before
any of these functions to declare the amount of space
necessary. See plot(4). Openpl must be used before any
of the others to open the device for writing. Closepl
flushes the output.
Circle draws a circle of radius r with center at the point
(x, y).
Arc draws an arc of a circle with center at the point (x,
y) between the points (xO, yO) and (xl, yl).
String arguments to label and linemod are terminated by
nulls and do not contain new-lines.
See plot(4) for a description of the effect of the
remaining functions.
The library files listed below provide several flavors of
these routines.

- 1 -

PLOT(3X)

FILES
/usr/lib/libplot.a produces output for tplot(1G)

filters
/usr/lib/lib300.a for DASI 300
/usr/lib/lib300s.a for DASI 300s
/usr/lib/lib450.a for DASI 450
/usr/lib/lib4014.a for TEKTRONIX 4014

WARNINGS
In order to compile a program containing these functions
in ftle.c it is necessary to use "cc file.c - lplot".
In order to execute it, it is necessary to use "a.out |
tplot".
The above routines use < s t d i o . h > , which causes them
to increase the size of programs, not otherwise using
standard I/O, more than might be expected.

SEE ALSO
graph(lG), stat(lG), tplot(lG), plot(4).

- 2 -

POPEN (3S)

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
^ i n c l u d e < s t d i o . h >
FILE *popen (c o m m a n d , t y p e)
char * c o m m a n d , *type;
int pc lose (s tream)
FILE * s t ream;

DESCRIPTION
The arguments to popen are pointers to null-terminated
strings containing, respectively, a shell command line
and an I/O mode, either r for reading or w for writing.
Popen creates a pipe between the calling program and
the command to be executed. The value returned is a
stream pointer such that one can write to the standard
input of the command, if the I/O mode is w, by writing
to the file stream; and one can read from the standard
output of the command, if the I/O mode is r, by reading
from the file stream.
A stream opened by popen should be closed by pclose,
which waits for the associated process to terminate and
returns the exit status of the command.
Because open files are shared, a type r command may be
used as an input filter and a type w as an output filter.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS
Popen returns a NULL pointer if files or processes cannot
be created, or if the shell cannot be accessed.
Pclose returns - 1 if stream is not associated with a
"popen ed" command.

BUGS
If the original and "popen ed" processes concurrently
read or write a common file, neither should use buffered
I/O, because the buffering gets all mixed up. Problems
with an output filter may be forestalled by careful buffer
flushing, e.g. with fflush\ see fclose(3S).

- 1 -

PRINTF (3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
^ i n c l u d e < s t d i o . h >
int pr in t f (f o r m a t [, arg] . . .)
char * format ;
int fpr in t f (s t ream, f o r m a t [, arg] . . .)
FILE * s t ream;
char * format;
int spr int f (s, f o r m a t [, arg] . . .)
char *s, f o r m a t ;

DESCRIPTION
Printf places output on the standard output stream
stdout. Fprintf places output on the named output
stream. Svrintf places "output," followed by the null
character (\0) , in consecutive bytes starting at *s; it is
the user's responsibility to ensure that enough storage is
available. Each function returns the number of
characters transmitted (not including the \ 0 in the case
of sprintf), or a negative value if an output error was
encountered.

Each of these functions converts, formats, and prints its
args under control of the format. The format is a
character string that contains two types of objects: plain
characters, which are simply copied to the output
stream, and conversion specifications, each of which
results in fetching of zero or more args. The results are
undefined if there are insufficient args for the format. If
the format is exhausted while args remain, the excess
args are simply ignored.
Each conversion specification is introduced by the
character %. After the %, the following appear in
sequence:

Zero or more flags, which modify the meaning of
the conversion specification.
An optional decimal digit string specifying a
minimum field width. If the converted value has
fewer characters than the field width, it will be
padded on the left (or right, if the left-
adjustment flag ' - ' , described below, has been
given) to the field width. If the field width for
an s conversion is preceded by a 0, the string is
right adjusted with zero-padding on the left.

A precision that gives the minimum number of
digits to appear for the d, o, u, x, or X

- 1 -

PRINTF (3 S)

conversions, the number of digits to appear after
the decimal point for the e and f conversions,
the maximum number of significant digits for
the g conversion, or the maximum number of
characters to be printed from a string in s
conversion. The precision takes the form of a
period (.) followed by a decimal digit string; a
null digit string is treated as zero.

An optional 1 (ell) specifying that a following d,
o , u, x , or X conversion character applies to a
long integer arg. A 1 before any other
conversion character is ignored.
A character that indicates the type of conversion
to be applied.

A field width or precision may be indicated by an
asterisk (*) instead of a digit string. In this case, an
integer arg supplies the field width or precision. The
arg that is actually converted is not fetched until the
conversion letter is seen, so the args specifying field
width or precision must appear before the arg (if any) to
be converted.

The flag characters and their meanings are:
— The result of the conversion will be left-

justified within the field.
+ The result of a signed conversion will always

begin with a sign (+ or —).
blank If the first character of a signed conversion is

not a sign, a blank will be prefixed to the
result. This implies that if the blank and +
flags both appear, the blank flag will be
ignored.

This flag specifies that the value is to be
converted to an "alternate form." For c, d,
s, and u conversions, the flag has no effect.
For o conversion, it increases the precision to
force the first digit of the result to be a zero.
For x or X conversion, a non-zero result will
have Ox or OX prefixed to it. For e, E , f , g ,
and G conversions, the result will always
contain a decimal point, even if no digits
follow the point (normally, a decimal point
appears in the result of these conversions only
if a digit follows it). For g and G
conversions, trailing zeroes will not be
removed from the result (which they
normally are).

PRINTF (3S)

The conversion characters and their meanings are:
d,o ,u,x ,x The integer arg is converted to signed

decimal, unsigned octal, decimal, or
hexadecimal notation (x and X), respectively;
the letters abcdef are used for x conversion
and the letters ABCDEF for X conversion.
The precision specifies the minimum number
of digits to appear; if the value being
converted can be represented in fewer digits,
it will be expanded with leading zeroes. (For
compatibility with older versions, padding
with leading zeroes may alternatively be
specified by prepending a zero to the field
width. This does not imply an octal value for
the field width.) The default precision is 1.
The result of converting a zero value with a
precision of zero is a null string.

f The float or double arg is converted to
decimal notation in the style "[—jddd.ddd,"
where the number of digits after the decimal
point is equal to the precision specification.
If the precision is missing, six digits are
output; if the precision is explicitly 0, no
decimal point appears.

e ,E The float or double arg is converted in the
style "[—]d.ddde±dd," where there is one
digit before the decimal point and the
number of digits after it is equal to the
precision; when the precision is missing, six
digits are produced; if the precision is zero,
no decimal point appears. The E format
code will produce a number with E instead of
e introducing the exponent. The exponent
always contains at least two digits.

g ,G The float or double arg is printed in style f
or e (or in style E in the case of a G format
code), with the precision specifying the
number of significant digits. The style used
depends on the value converted: style e will
be used only if the exponent resulting from
the conversion is less than - 4 or greater than
the precision. Trailing zeroes are removed
from the result; a decimal point appears only
if it is followed by a digit.

c The character arg is printed.
s The arg is taken to be a string (character

pointer) and characters from the string are
printed until a null character (\0) is

- 3 -

PRINTF (3 S)

encountered or the number of characters
indicated by the precision specification is
reached. If the precision is missing, it is
taken to be infinite, so all characters up to
the first null character are printed. A NULL
value for arg will yield undefined results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause
truncation of a field; if the result of a conversion is wider
than the field width, the field is simply expanded to
contain the conversion result. Characters generated by
printf and fprintf are printed as if putc(3S) had been
called.

EXAMPLES
To print a date and time in the form "Sunday, July 3,
10:02," where weekday and month are pointers to null-
terminated strings:

printf("%s, %s %d, %d:%.2d",
weekday, month, day, hour, min);

To print 7r to 5 decimal places:
printf("pi = %.5f", 4 * atan(l.O));

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

PUTC (3 S)

NAME
putc, putchar, fputc, putw - put character or word on a
stream

SYNOPSIS
^ i n c l u d e < s t d i o . h >
i n t p u t c (c , s t r e a m)
i n t c;
FILE * s t r e a m ;
i n t p u t c h a r (c)
in t c;
in t f p u t c (c , s t r e a m)
in t c;
FILE * s t r e a m ;
i n t p u t w (w , s t r e a m)
i n t w ;
FILE * s t r e a m ;

DESCRIPTION
Putc writes the character c onto the output stream (at
the position where the file pointer, if defined, is
pointing). Putchar(c) is defined as putc(c, stdout).
Putc and putchar are macros.
Fputc behaves like putc, but is a function rather than a
macro. Fputc runs more slowly than putc, but it takes
less space per invocation and its name can be passed as
an argument to a function.
Putw writes the word (i.e. integer) w to the output
stream (at the position at which the file pointer, if
defined, is pointing). The size of a word is the size of an
integer and varies from machine to machine. Putw
neither assumes nor causes special alignment in the file.
Output streams, with the exception of the standard error
stream stderr, are by default buffered if the output
refers to a file and line-buffered if the output refers to a
terminal. The standard error output stream stderr is by
default unbuffered, but use of freopen (see fopen(3S))
will cause it to become buffered or line-buffered. When
an output stream is unbuffered, information is queued
for writing on the destination file or terminal as soon as
written; when it is buffered, many characters are saved
up and written as a block. When it is line-buffered, each
line of output is queued for writing on the destination
terminal as soon as the line is completed (that is, as soon
as a new-line character is written or terminal input is
requested). Setbuf(3S) may be used to change the
stream's buffering strategy.

- 1 -

PUTC (3 S)

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S),
puts(3S), setbuf(3S).

DIAGNOSTICS
Oil success, these functions each return the value they
have written. On failure, they return the constant E O F
This will occur if the file stream is not open for writing
or if the output file cannot be grown. Because EOF is a
valid integer, ferror(3S) should be used to detect putw
errors.

BUGS
Because it is implemented as a macro, putc treats
incorrectly a stream argument with side effects. In
particular, p u t c (c , * f + +) ; doesn't work sensibly. Fputc
should be used instead.
Because of possible differences in word length and byte
ordering, files written using putw are machine-
dependent, and may not be read using getw on a
different processor.

- 2 -

P U T E N V (3 C)

NAME
putenv - change or add value to environment

SYNOPSIS
in t p u t e n v (s t r i n g)
c h a r *s tr ing;

DESCRIPTION
String points to a string of the form "name = value."
Putenv makes the value of the environment variable
name equal to value by altering an existing variable or
creating a new one. In either case, the string pointed to
by string becomes part of the environment, so altering
the string will change the environment. The space used
by string is no longer used once a new string-defining
name is passed to putenv.

DIAGNOSTICS
Putenv returns non-zero if it was unable to obtain
enough space via malloc for an expanded environment,
otherwise zero.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(5).

WARNINGS
Putenv manipulates the environment pointed to by
environ, and can be used in conjunction with getenv.
However, envp (the third argument to main) is not
changed.
This routine uses malloc(3C) to enlarge the environment.
After putenv is called, environmental variables are not in
alphabetical order.
A potential error is to call putenv with an automatic
variable as the argument, then exit the calling function
while string is still part of the environment.

- 1 -

PUTP WENT (3C)

NAME
putpwent - write password file entry

SYNOPSIS
i n c l u d e < p w d . h >
int p u t p w e n t (p, f)
s t ruc t p a s s w d *p;
FILE •f;

DESCRIPTION
Putpwent is the inverse of getpwent(3C). Given a
pointer to a passwd structure created by getpwent (or
getpwuid or getpwnam), putpwent writes a line on the
stream / , which matches the format of / e t c / p a s s w d .

DIAGNOSTICS
Putpwent returns non-zero if an error was detected
during its operation, otherwise zero.

SEE ALSO
getpwent(3C).

WARNING
The above routine uses < s t d i o . h > , which causes it to
increase the size of programs, not otherwise using
standard I/O, more than might be expected.

- 1 -

PUTS (3 S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
^ i n c l u d e < s t d i o . h >
int p u t s (s)
char *s;
int f p u t s (s, s t r e a m)
char *s;
FILE * s t ream;

DESCRIPTION
Puts writes the null-terminated string pointed to by a,
followed by a new-line character, to the standard output
stream stdout.
Fputs writes the null-terminated string pointed to by s
to the named output stream.
Neither function writes the terminating null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if
the routines try to write on a file that has not been
opened for writing.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES
Puts appends a new-line character while fputs does not.

QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
v o i d qsort ((char *) base , nel, s izeof (*base) ,
c o m p a r)
uns igned nel;
int (*compar) ();

DESCRIPTION
Qsort is an implementation of the quicker-sort
algorithm. It sorts a table of data in place.
Base points to the element at the base of the table. Nel
is the number of elements in the table. Compar is the
name of the comparison function, which is called with
two arguments that point to the elements being
compared. The function must return an integer less
than, equal to, or greater than zero.

NOTES
The pointer to the base of the table should be of type
pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte,
so arbitrary data may be contained in the elements in
addition to the values being compared.
The order in the output of the two items which compare
as equal is unpredictable.

SEE ALSO
sort(l), bsearch(3C), lsearch(3C), string(3C).

RAND(3C)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()
v o i d s r a n d (seed)
uns igned seed;

DESCRIPTION
Rand uses a multiplicative ^ngruential random-number
generator with period 2 that returns successive
pseudo-random numbers in the range from 0 to 2 - 1 .
Srand can be called at any time to reset the random-
number generator to a random starting point. The
generator is initially seeded with a value of 1.

NOTE
The spectral properties of rand leave a great deal to be
desired. Drand48(3C) provides a much better, though
more elaborate, random-number generator.

SEE ALSO
drand48(3C).

- 1 -

RCMD (3 N)

NAME
rcmd, rresvport, ruserok - routines for returning a
stream to a remote command

SYNOPSIS
r c m d (ahos t , inport , locuser, remuser , cmd, fd2p);
char *"" ahos t ;
u n s i g n e d s h o r t inport;
char "Mocuser, *remuser , *cmd;
int * fd2p;
r r e s v p o r t (port) ;
int ""port;
ruserok (rhost , superuser , ruser , luser);
char ""rhost;
int superuser;
char ""ruser, ""luser;

DESCRIPTION
Rcmd is a routine used by the super-user to execute a
command on a remote machine using an authentication
scheme based on reserved port numbers. Rresvport is a
routine which returns a descriptor to a socket with an
address in the privileged port space. Ruserok is a
routine used by servers to authenticate clients requesting
service with rcmd. All three functions are present in the
same file and are used by the r«/trf(lNM) server (among
others).
Rcmd looks up the host *ahost using getnamehost(3N),
returning - 1 if the host does not exist. Otherwise *ahost
is set to the standard name of the host and a connection
is established to a server residing at the well-known
Internet port inport.
If the call succeeds, a socket of type SOCK_STREAM is
returned to the caller and given to the remote command
as stdin and stdout. If fdSp is non-zero, then an
auxiliary channel to a control process will be set up, and
a descriptor for it will be placed in *fd2p. The control
firocess will return diagnostic output from the command
unit 2) on this channel and will also accept bytes on this

channel as being CTIX signal numbers, to be forwarded
to the process group of the command. If fd2p is 0, then
the stderr (unit 2 of the remote command) will be made
the same as the stdout and no provision is made for
sending arbitrary signals to the remote process, although
you may be able to get its attention by using out-of-
band data.
The protocol is described in rsArf(lNM).

5/86 - 1 -

RCMD (3 N)

The rresvport routine is used to obtain a socket with a
privileged address bound to it. This socket is suitable
for use by rcmd and several other routines. Privileged
addresses consist of a port in the range 0 to 1023. Only
the super-user is allowed to bind an address of this sort
to a socket.
Ruserok takes a remote host's name, as returned by a
gethostent(3N) routine, two user names and a flag
indicating if the local user's name is the super-user. It
then checks the files / e t c / h o s t s . e q u i v and, possibly,
. r h o s t s in the current working directory (normally the
local user's home directory) to see if the request for
service is allowed. A 1 is returned if the machine name
is listed in the h o s t s . e q u i v file or if the host and remote
user name are found in the . r h o s t s file; otherwise
ruserok returns 0. If the superuser flag is 1, the checking
of the h o s t . e q u i v file is bypassed.

SEE ALSO
rlogin(lC), rcmd(lC), rexec(3N), rexecd(lNM),
rlogind(lNM), rshd(lNM)

BUGS
There is no way to specify options to the socket call
which rcmd makes.

5 / 8 6 - 2 -

REGCMP (3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
chap "regcmp (s t r i n g l [, s t r ing2 , . . .], (char *)0)
char * s t r i n g l , *s tr ing2, . . .;
char *regex (re, subject[, retO, . . .])
char *re, *subject , *retO, • . .;
e x t e r n char * l o c i ;

DESCRIPTION
Regcmp compiles a regular expression and returns a
pointer to the compiled form. Malloc(3C) is used to
create space for the vector. It is the user's responsibility
to free unneeded space so allocated. A NULL return
from regcmp indicates an incorrect argument.
Regcmp(1) has been written to generally preclude the
need for this routine at execution time.
Regex executes a compiled pattern against the subject
string. Additional arguments are passed to receive
values back. Regex returns NULL on failure or a pointer
to the next unmatched character on success. A global
character pointer loci points to where the match
began. Regcmp and regex were mostly borrowed from
the editor, erf(l); however, the syntax and semantics
have been changed slightly. The following are the valid
symbols and their associated meanings.
[] * .A These symbols retain their current meaning.
$ Matches the end of the string; \ n matches a

new-line.
— Within brackets the minus means through.

For example, [a— z] is equivalent to
[abed . . .xyzJ. The — can appear as itself
only if used as the first or last character. For
example, the character class expression []—]
matches the characters] and —.

+ A regular expression followed by + means one
or more timet. For example, [0—8]+ is
equivalent to [0 -9] [0-9]* .

{ m } { m , } { m , u }
Integer values enclosed in { } indicate the
number of times the preceding regular
expression is to be applied. The value m is
the minimum number and u is a number, less
than 256, which is the maximum. If only m is
present (e.g., {m}), it indicates the exact
number of times the regular expression is to be

- 1 -

REGCMP (3 X)

applied. The value {m,} is analogous to
{m,infinity}. The plus (+) and star (*)
operations are equivalent to {1 ,} and {0,}
respectively.

(. . .)$n The value of the enclosed regular expression is
to be returned. The value will be stored in the
(n + 1) th argument following the subject
argument. A t most ten enclosed regular
expressions are allowed. Regex makes its
assignments unconditionally.

(. . .) Parentheses are used for grouping. An
operator, e.g., *, + , { }, can work on a single
character or a regular expression enclosed in
parentheses. For example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special.
They must, therefore, be escaped to be used as
themselves.

EXAMPLES
Example 1:

char *cursor, *newcursor, *ptr;

newcursor = regex((ptr = regcmp("*\n", 0)), cursor);
free(ptr);
This example will match a leading new-line in the
subject string pointed at by cursor.

Example 2:

char ret0[9]; char *newcursor, *name;

name = regcmp("(|A-Za-z] [A-za -z0 -9_] {0 ,7 } }$0" , 0);
newcursor = regex(name, "123Testing321", retO);
This example will match through the string "Testing3"
and will return the address of the character after the last
matched character (cursor+11). The string "Testing3"
will be copied to the character array retO.
Example 3:

inc lude "file.i"
char *string, *newcursor;

newcursor = regex(name, string);
This example applies a precompiled regular expression in
f i le . i (see regcmp(1)) against string.

- 2 -

REGCMP (3X)

This routine is kept in /Hb/ l ibPW.a .
SEE ALSO

ed(l), regcmp(l), malloc(3C).
BUGS

The user program may run out of memory if regcmp is
called iteratively without freeing the vectors no longer
required. The following user-supplied replacement for
malloc(3C) reuses the same vector saving time and
space:
/* user's program */

char *
malloc(n)
unsigned n;

static char rebuf[512];
return (n < = sizeof rebuf) ? rebuf : NULL;

- 3 -

REXEC(3N)

NAME
rexec - return stream to a remote command

SYNOPSIS
rexec (ahos t , inport , user , p a s s w d , cmd, fd2p);
char **ahos t ;
uns igned s h o r t inport;
char *user, *pas swd , *cmd;
int * fd2p;

DESCRIPTION
Rexec looks up the host *ahost using getnamehost(ZN),
returning - 1 if the host does not exist. Otherwise *ahost
is set to the standard name of the host. If a user name
and password are both specified, then these are used to
authenticate to the foreign host; otherwise the
environment and then the user's .netrc file in his home
directory are searched for appropriate information. If all
this fails, the user is prompted for the information.
The port inport specifies which well-known DARPA
Internet port to use for the connection; it will normally
be the value returned from the call "getnameserv("exec",
"tcp")" (see getservent(3N)). The protocol for
connection is described in rexeca(lNM).
If the call succeeds, a socket of type SOCK_STREAM is
returned to the caller, and given to the remote command
as 8tdin and stdout. If fd2p is non-zero, then a auxiliary
channel to a control process will be set up, and a
descriptor for it will be placed in *fdSp. The control
process will return diagnostic output from the command
(unit 2) on this channel and will also accept bytes on this
channel as being CTIX signal numbers, to be forwarded
to the process group of the command. If fd2p is 0, then
the stderr (unit 2 of the remote command) will be made
the same as the stdout and no provision is made for
sending arbitrary signals to the remote process, although
you may be able to get its attention by using out-of-
band data.

SEE ALSO
rcmd(3N), rexecd(lNM).

BUGS
There is no way to specify options to the socket call
which rexec makes.

5/86 - 1 -

SCANF (3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
i n c l u d e < s t d i o . h >
int s canf (f o r m a t [, pointer J . . .)
char "format;
int f scanf (s t ream, f o r m a t [, pointer] . . .)
FILE "stream;
char "format;
int s scanf (s, f o r m a t [, pointer] . . .)
char "s, "format;

DESCRIPTION
Scanf reads from the standard input stream stdin.
Fscanf reads from the named input stream. Sscanf
reads from the character string s. Each function reads
characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as
arguments, a control string format described below, and
a set of pointer arguments indicating where the
converted input should be stored.
The control string usually contains conversion
specifications, which are used to direct interpretation of
input sequences. The control string may contain:
1. White-space characters (blanks, tabs, new-lines, or

form-feeds) which, except in two cases described
below, cause input to be read up to the next non-
white-space character.

2. An ordinary character (not %), which must match
the next character of the input stream.

3. Conversion specifications, consisting of the character
%, an optional assignment suppressing character *,
an optional numerical maximum field width, an
optional 1 (ell) or h indicating the size of the
receiving variable, and a conversion code.

A conversion specification directs the conversion of the
next input field; the result is placed in the variable
pointed to by the corresponding argument, unless
assignment suppression was indicated by *. The
suppression of assignment provides a way of describing
an input field which is to be skipped. An input field is
defined as a string of non-space characters; it extends to
the next inappropriate character or until the field width,
if specified, is exhausted. For all descriptors except [and
c, white space leading an input field is ignored.

- 1 -

SCANF (3 S)

The conversion code indicates the interpretation of the
input field; the corresponding pointer argument must
usually be of a restricted type. For a suppressed field,
no pointer argument is given. The following conversion
codes are legal:

% a single % is expected in the input at this point;
no assignment is done,

d a decimal integer is expected; the corresponding
argument should be an integer pointer,

u an unsigned decimal integer is expected; the
corresponding argument should be an unsigned
integer pointer,

o an octal integer is expected; the corresponding
argument should be an integer pointer,

x a hexadecimal integer is expected; the
corresponding argument should be an integer
pointer.

e , f , g a floating point number is expected; the next
field is converted accordingly and stored through
the corresponding argument, which should be a
pointer to a float. The input format for floating
point numbers is an optionally signed string of
digits, possibly containing a decimal point,
followed by an optional exponent field consisting
of an E or an e, followed by an optional + , - ,
or space, followed by an integer,

s a character string is expected; the corresponding
argument should be a character pointer pointing
to an array of characters large enough to accept
the string and a terminating \ 0 , which will be
added automatically. The input field is
terminated by a white-space character,

c a character is expected; the corresponding
argument should be a character pointer. The
normal skip over white space is suppressed in
this case; to read the next non-space character,
use % l s . If a field width is given, the
corresponding argument should refer to a
character array; the indicated number of
characters is read.

[indicates string data and the normal skip over
leading white space is suppressed. The left
bracket is followed by a set of characters, which
we will call the scanaet, and a right bracket; the
input field is the maximal sequence of input
characters consisting entirely of characters in the
scanset. The circumflex (*), when it appears as
the first character in the scanset, serves as a

- 2 -

SCANF (3 S)

complement operator and redefines the scanset
as the set of all characters not contained in the
remainder of the scanset string. There are some
conventions used in the construction of the
scanset. A range of characters may be
represented by the construct first-last, thus
[0123456789] may be expressed [0-9], Using this
convention, first must be lexically less than or
equal to last, or else the dash will stand for
itself. The dash will also stand for itself
whenever it is the first or the last character in
the scanset. To include the right square bracket
as an element of the scanset, it must appear as
the first character (possibly preceded by a
circumflex) of the scanset, and in this case it will
not be syntactically interpreted as the closing
bracket. The corresponding argument must
point to a character array large enough to hold
the data field and the terminating \ 0 , which will
be added automatically. At least one character
must match for this conversion to be considered
successful.

The conversion characters d, u, o, and x may be
preceded by 1 or h to indicate that a pointer to l o n g or
to s h o r t rather than to in t is in the argument list.
Similarly, the conversion characters e, f , and g may be
preceded by 1 to indicate that a pointer to d o u b l e rather
than to f l o a t is in the argument list. The 1 or h
modifier is ignored for other conversion characters.

Scanf conversion terminates at EOF, at the end of the
control string, or when an input character conflicts with
the control string. In the latter case, the offending
character is left unread in the input stream.
Scanf returns the number of successfully matched and
assigned input items; this number can be zero in the
event of an early conflict between an input character and
the control string. If the input ends before the first
conflict or conversion, EOF is returned.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf ("%d%f%s", &i, &x, name);

with the input line:
25 54 .32E-1 thompson

will assign to n the value 3, to i the value 25 , to x the
value 5 . 4 3 2 , and name will contain t h o m p s o n \ 0 . Or:

- 3 -

SCANF (3S)

int i; float x; char name[50l;
(void) scanf ("%2d%f%*d %[0-9] ' , &i, &x,
name);

with input:
56789 0123 56a72

will assign 56 to «, 789 .0 to x, skip 0123 , and place the
string 5 6 \ 0 in name. The next call to getchar (see
je<c(3S)) will return a.

SEE ALSO
getc(3S), printf(3S), strtod(3C), strtol(3C).

NOTE
Trailing white space (including a new-line) is left unread
unless matched in the control string.

DIAGNOSTICS
These functions return EOF on end of input and a short
count for missing or illegal data items.

BUGS
The success of literal matches and suppressed
assignments is not directly determinable.

- 4 -

SETBUF (3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
^ i n c l u d e < s t d i o . h >
v o i d se tbuf (s tream, buf)
FILE "stream;
char *buf;
int s e t v b u f (s t ream, buf , t y p e , size)
FILE "stream;
char "buf;
int t y p e , size;

DESCRIPTION
Setbuf may be used after a stream has been opened but
before it is read or written. It causes the array pointed
to by buf to be used instead of an automatically
allocated buffer. If buf is the NULL pointer input/output
will be completely unbuffered.
A constant BUFSIZ, defined in the < s t d i o . h > header
file, tells how big an array is needed:

char buf[BUFSIZ];
Setvbuf may be used after a stream has been opened but
before it is read or written. Type determines how
stream will be buffered. Legal values for type (defined
in stdio.h) are:
_IOFBF causes input/output to be fully buffered.
_IOLBF causes output to be line buffered; the

buffer will be flushed when a newline is
written, the buffer is full, or input is
requested.

_IONBF causes input/output to be completely
unbuffered.

If buf is not the NULL pointer, the array it points to will
be used for buffering, instead of an automatically
allocated buffer. Size specifies the size of the buffer to
be used. The constant BUFSIZ in < s t d i o . h > is
suggested as a good buffer size. If input/output is
unbuffered, buf and size are ignored.
By default, output to a terminal is line buffered and all
other input/output is fully buffered.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS
If an illegal value for type or size is provided, setvbuf

- 1 -

SETBUF(3S)

returns a non-zero value. Otherwise, the value returned
will be zero.

NOTE
A common source of error is allocating buffer space as an
"automatic" variable in a code block, and then failing to
close the stream in the same block.

- 2 -

S E T J M P (3 C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
^ i n c l u d e < s e t j m p . h >
i n t s e t j m p (e n v)
j m p _ b u f e n v ;
v o i d l o n g j m p (e n v , v a l)
j m p _ b u f e n v ;
i n t v a l ;

DESCRIPTION
These functions are useful for dealing with errors and
interrupts encountered in a low-level subroutine of a
program.
Setjmp saves its stack environment in env (whose type,
jmp_buf, is defined in the <setjmp.h> header file) for
later use by longjmp. It returns the value 0.
Longjmp restores the environment saved by the last call
of setjmp with the corresponding env argument. After
longjmp is completed, program execution continues as if
the corresponding call of setjmp (which must not itself
have returned in the interim) had just returned the value
val. Longjmp cannot cause setjmp to return the value
0. If longjmp is invoked with a second argument of 0,
setjmp will return 1. All accessible data had values as of
the time longjmp was called.

SEE ALSO
signal(2).

WARNING
If longjmp is called even though env was never primed
by a call to setjmp, or when the last such call was in a
function which has since returned, absolute chaos is
guaranteed.

SINH (3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
i n c l u d e < m a t h . h >
double s inh (x)
double x;
double cosh (x)
double x;
double t a n h (x)
double x;

DESCRIPTION
Sinh, cosh, and tanh return, respectively, the hyberbolic
sine, cosine and tangent of their argument.

DIAGNOSTICS
Sinh and cosh return HUGE (and sinh may return
- H U G E for negative x) when the correct value would
overflow and set errno to ERANGE.
These error-handling procedures may be changed with
the function mo(Aerr(3M).

SEE ALSO
matherr(3M).

- 1 -

SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
uns igned sleep (seconds)
uns igned seconds;

DESCRIPTION
The current process is suspended from execution for the
number of seconds specified by the argument. The
actual suspension time may be less than that requested
for two reasons: (1) Because scheduled wakeups occur at
fixed 1-second intervals, (on the second, according to an
internal clock) and (2) because any caught signal will
terminate the sleep following execution of that signal's
catching routine. Also, the suspension time may be
longer than requested by an arbitrary amount due to the
scheduling of other activity in the system. The value
returned by sleep will be the "unslept" amount (the
requested time minus the time actually slept) in case the
caller had an alarm set to go off earlier than the end of
the requested sleep time, or premature arousal due to
another caught signal.

The routine is implemented by setting an alarm signal
and pausing until it (or some other signal) occurs. The
previous state of the alarm signal is saved and restored.
The calling program may have set up an alarm signal
before calling sleep. If the sleep time exceeds the time
till such alarm signal, the process sleeps only until the
alarm signal would have occurred. The caller's alarm
catch routine is executed just before the sleep routine
returns. But if the sleep time is less than the time till
such alarm, the prior alarm time is reset to go off at the
same time it would have without the intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(2).

SPUTL(3X)

NAME
sputl, sgetl - access long integer data in a machine-
independent fashion.

SYNOPSIS
v o i d sput l (value, buffer)
long value;
char * buffer;
long sget l (buffer)
char * buffer;

DESCRIPTION
Sputl takes the four bytes of the long integer value and
places them in memory starting at the address pointed to
by buffer. The ordering of the bytes is the same across
all machines.
Sgetl retrieves the four bytes in memory starting at the
address pointed to by buffer and returns the long integer
value in the byte ordering of the host machine.
The combination of sputl and sgetl provides a machine-
independent way of storing long numeric data in a file in
binary form without conversion to characters.
A program which uses these functions must be loaded
with the object-file access routine library libld.a.

SSIGNAL (3 C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
^ i n c l u d e < s i g n a l . h >
in t (* s s i e n a l (s ig , a c t i o n)) ()
i n t s ig , (* a c t i o n) ();
i n t g s i g n a l (s ig)
i n t s ig;

DESCRIPTION
Ssignal and gsignal implement a software facility similar
to signal(2). This facility is used by the Standard C
Library to enable users to indicate the disposition of
error conditions, and is also made available to users for
their own purposes.
Software signals made available to users are associated
with integers in the inclusive range 1 through 15. A call
to ssignal associates a procedure, action, with the
software signal sig-, the software signal, sig, is raised by
a call to gsignal. Raising a software signal causes the
action established for that signal to be taken.

The first argument to ssignal is a number identifying the
type of signal for which an action is to be established.
The second argument defines the action; it is either the
name of a (user-defined) action function or one of the
manifest constants SIG_DFL (default) or SIG_IGN
(ignore). Ssignal returns the action previously
established for that signal type; if no action has been
established or the signal number is illegal, ssignal returns
SIG_DFL
Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig,
then that action is reset to SIG_DFL and the
action function is entered with argument sig.
Gsignal returns the value returned to it by the
action function.
If the action for sig is SIG_IGN, gsignal returns
the value 1 and takes no other action.
If the action for sig is SIG_DFL, gsignal returns
the value 0 and takes no other action.
If tig has an illegal value or no action was ever
specified for sig, gsignal returns the value 0 and
takes no other action.

SEE ALSO
signal(2).

- 1 -

SSIGNAL(3C)

NOTES
There are some additional signals with numbers outside
the range 1 through 15 which are used by the Standard
C Library to indicate error conditions. Thus, some
signal numbers outside the range 1 through 15 are legal,
although their use may interfere with the operation of
the Standard C Library.

- 2 -

STDIO (3 S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
^ i n c l u d e < s t d i o . h >
FILE * s t d i n , * s t d o u t , * s tderr ;

DESCRIPTION
The functions described in the entries of sub-class 3S of
this manual constitute an efficient, user-level I/O
buffering scheme. The in-line macros getc(3S) and
putc (3S) handle characters quickly. The macros getchar
and putchar, and the higher-level routines fgetc, fgets,
fprintf, fputc, fputs, fread, fscanf, fwrite, gets, getw,
printf, puts, putw, and scanf all use or act as if they use
getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream and is
declared to be a pointer to a defined type FILE.
Fopen(3S) creates certain descriptive data for a stream
and returns a pointer to designate the stream in all
further transactions. Normally, there are three open
streams with constant pointers declared in the
< s t d i o . h > header file and associated with the standard
open files:

s t d i n standard input file
s t d o u t standard output file
s t d e r r standard error file

A constant NULL (0) designates a nonexistent pointer.
An integer-constant E O F (- 1) is returned upon end-of-
file or error by most integer functions that deal with
streams (see the individual descriptions for details).
An integer constant BUFSIZ specifies the size of the
buffers used by the particular implementation.
Any program that uses this package must include the
header file of pertinent macro definitions, as follows:

^include < s t d i o . h >
The functions and constants mentioned in the entries of
sub-class 3S of this manual are declared in that header
file and need no further declaration. The constants and
the following "functions" are implemented as macros
(redeclaration of these names is perilous): getc, getchar,
putc, putchar, ferror, feof, clearerr, and fileno.

SEE ALSO
open(2), close(2), lseek(2), pipe(2), read(2), write(2|,
ctermia(3S), cuserid(3S), fclose(3S), ferror(3S), fopen(3S),
fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S),

- 1 -

STDIO (3 S)

printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S),
system(3S), tmpfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder,
possibly including program termination. Individual
function descriptions describe the possible error
conditions.

- 2 -

STDIPC (3 C)

NAME
ftok - standard interprocess communication package

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
k e y _ t f t o k (p a t h , id)
char "path;
char id;

DESCRIPTION
All interprocess communication facilities require the user
to supply a key to be used by the msgget(2), semget(2),
and shmget(2) system calls to obtain interprocess
communication identifiers. One suggested method for
forming a key is to use the ftok subroutine described
below. Another way to compose keys is to include the
project ID in the most significant byte and to use the
remaining portion as a sequence number. There are
many other ways to form keys, but it is necessary for
each system to define standards for forming them. If
some standard is not adhered to, it will be possible for
unrelated processes to unintentionally interfere with each
other's operation. Therefore, it is strongly suggested
that the most significant byte of a key in some sense
refer to a project so that keys do not conflict across a
given system.

Ftok returns a key based on path and id that is usable in
subsequent msgget, semget, and shmget system calls.
Path must be the path name of an existing file that is
accessible to the process. Id is a character which
uniquely identifies a project. Note that ftok will return
the same key for linked files when called with the same
id and that it will return different keys when called with
the same file name but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
Ftok returns (k e y _ t) —1 if path does not exist or if it is
not accessible to the process.

WARNING
If the file whose path is passed to ftok is removed when
keys still refer to the file, future calls to ftok with the
same path and id will return an error. If the same file is
recreated, then ftok is likely to return a different key
than it did the original time it was called.

STRING (3 C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strtok - string
operations

SYNOPSIS
^ i n c l u d e < s t r i n g . h >
char *strcat (s i , s2)
char * s l , *s2;
char *s trncat (s i , s2 , n)
char * s l , *s2;
int n;
int s t r c m p (s i , s2)
char * s l , *s2;
int s t r n c m p (s i , s2 , n)
char * s l ,
int n;
char *strcpy (s i , s2)
char * s l , *s2;
char *s trncpy (s i , s2, n)
char * s l , *s2;
int n;
int s tr len (s)
char *s;
char *strchr (s, c)
char *s;
int c;
char *strrchr (s, c)
char *s;
int c;
char "strpbrk (s i , s2)
char * s l , *s2;
int s t r s p n (s i , s2)
char * s l , *s2;
int s t rc spn (s i , s2)
char * s l , *s2;
char * s t r tok (s i , s2)
char * s l , *s2;

DESCRIPTION
The arguments si, s2 and « point to strings (arrays of
characters terminated by a null character). The
functions strcat, strncat, strcpy and strncpy all alter si.
These functions do not check for overflow of the array
pointed to by si.

- 1 -

STRING (3 C)

Strcat appends a copy of string s2 to the end of string
si. Strncat appends at most n characters. Each returns
a pointer to the null-terminated result.
Strcmp compares its arguments and returns an integer
less than, equal to, or greater than 0, according as si is
lexicographically less than, equal to, or greater than s2.
Strncmp makes the same comparison but looks at at
most n characters.
Strcpy copies string s2 to si, stopping after the null
character has been copied. Strncpy copies exactly n
characters, truncating s2 or adding null characters to si
if necessary. The result will not be null-terminated if
the length of s2 is n or more. Each function returns si.
Strlen returns the number of characters in s, not
including the terminating null character.
Strchr (strrchr) returns a pointer to the first (last)
occurrence of character c in string «, or a NULL pointer
if c does not occur in the string. The null character
terminating a string is considered to be part of the
string.
Strpbrk returns a pointer to the first occurrence in string
si of any character from string s2, or a NULL pointer if
no character from s2 exists in si.
Strspn (strcspn) returns the length of the initial segment
of string si which consists entirely of characters from
(not from) string s2.
Strtok considers the string si to consist of a sequence of
zero or more text tokens separated by spans of one or
more characters from the separator string s2. The first
call (with pointer si specified) returns a pointer to the
first character of the first token, and will have written a
null character into s i immediately following the
returned token. The function keeps track of its position
in the string between separate calls, so that subsequent
calls (which must be made with the first argument a
NULL pointer) will work through the string si
immediately following that token. In this way
subsequent calls will work through the string si until no
tokens remain. The separator string s2 may be different
from call to call. When no token remains in si, a NULL
pointer is returned.

NOTE
For user convenience, all these functions are declared in
the optional < s t r i n g . h > header file.

- 2 -

STRING (3 C)

BUGS
Strcmp and strncmp use native character comparison,
which is signed on Convergent Technologies 68000-
family processors. This means that characters are 8-bit
signed values; all ASCII characters have values of at
least 0; non-ASCII are negative. On some machines, all
characters are positive. Thus programs that only
compare ASCII values are portable; programs that
compare ASCII with non-ASCII values are not.
Character movement is performed differently in different
implementations. Thus, overlapping moves may yield
surprises.

- 3 -

S T R T O D (3 C)

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
d o u b l e s t r t o d (s t r , p t r)
c h a r *s tr , **ptr ;
d o u b l e a t o f (s t r)
c h a r *str;

DESCRIPTION
Strtod returns as a double-precision floating-point
number the value represented by the character string
pointed to by str. The string is scanned up to the first
unrecognized character.
Strtod recognizes an optional string of "white-space"
characters (as defined by isspace in ctype(3C)), then an
optional sign, then a string of digits optionally
containing a decimal point, then an optional e or E
followed by an optional sign or space, followed by an
integer.

If the value of ptr is not (char **)NULL, a pointer to the
character terminating the scan is returned in the location
pointed to by ptr. If no number can be formed, *ptr is
set to str, and zero is returned.
Atof(str) is equivalent to strtodfstr, (char **)NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, ±HUGE is
returned (according to the sign of the value), and errno
i s s e t t o E R A N G E .
If the correct value would cause underflow, zero is
returned and errno is set to ERANGE.

S T R T O L (3 C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
l o n g s t r t o l (s t r , p t r , b a s e)
c h a r *s tr , **ptr ;
i n t b a s e ;
l o n g a t o l (s t r)
c h a r *str;
i n t a t o i (s t r)
c h a r *str;

DESCRIPTION
Strtol returns as a long integer the value represented by
the character string pointed to by str. The string is
scanned up to the first character inconsistent with the
base. Leading "white-space" characters (as defined by
isspace in ctype(3C)) are ignored.

If the value of ptr is not (char **)NULL, a pointer to the
character terminating the scan is returned in the location
pointed to by ptr. If no integer can be formed, that
location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as
the base for conversion. After an optional leading sign,
leading zeros are ignored, and "Ox" or "OX" is ignored if
base is 16.

If base is zero, the string itself determines the base
thusly: After an optional leading sign a leading zero
indicates octal conversion, and a leading "Ox" or "OX"
hexadecimal conversion. Otherwise, decimal conversion
is used.
Truncation from long to int can, of course, take place
upon assignment or by an explicit cast.
Atol(str) is equivalent to strtolfstr, (char **)NULL, 10).
Atoi(str) is equivalent to (int) strtolfstr, (char **)NULL,
10).

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

BUGS
Overflow conditions are ignored.

- 1 -

SWAB (3 C)

NAME
swab - swap bytes

SYNOPSIS
v o i d s w a b (f r o m , t o , n b y t e s)
c h a r * f r o m , *to;
i n t n b y t e s ;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the
array pointed to by to, exchanging adjacent even and
odd bytes. It is useful for carrying binary data between
P D P - l l s and other machines. Nbytes should be even and
non-negative. If nbytes is odd and positive swab uses
nbytes-1 instead. If nbytes is negative, swab does
nothing.

SYSTEM (3S)

NAME
system - issue a shell command

SYNOPSIS
i n c l u d e < s t d i o . h >
int s y s t e m (str ing)
char *string;

DESCRIPTION
System causes the string to be given to a/»(l) as input,
as if the string had been typed as a command at a
terminal. The current process waits until the shell has
completed, then returns the exit status of the shell.

FILES
/bin/sh

SEE ALSO
sh(l), exec(2).

DIAGNOSTICS
System forks to create a child process that in turn exec's
/ b i n / s h in order to execute string. If the fork or exec
fails, system returns a negative value and sets errno.

TERMCAP (3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs -
terminal independent operations

SYNOPSIS
char P C ;
char *BC;
char *UP;
s h o r t ospeed;
t g e t e n t (b p , n a m e)
char *bp, "name;
t g e t n u m (i d)
char *id;
tge t f lag (id)
char *id;
char *
tge t s tr (id , area)
char *id, **area;
char *
t g o t o (c m s t r , destcol , destl ine)
char *cmstr;
t p u t s (c p , a f fcnt , ou tc)
regis ter char *cp;
int a f fcnt ;
int (*outc)() ;

DESCRIPTION
These functions extract and use information from
terminal descriptions that follow the conventions in
termcap(4). The functions only do basic screen
manipulation: they find and output specified terminal
function strings and interpret the c m string. Curses(3X)
describes a screen updating package built on termcap.
Tgetent finds and copies a terminal description. Name is
the name of the description; bp points to a buffer to hold
the description. Tgetent passes bp to the other termcap
functions; the buffer must remain allocated until the
program is done with the termcap functions.
Tgetent uses the T E R M and T E R M C A P environment
variables to locate the terminal description.
• If T E R M C A P isn't set or is empty, tgetent

searches for name in /etc/termcap.
• If T E R M C A P contains the full pathname of a

file (any string that begins with /), tgetent
searches for name in that file.

TERMCAP (3 X)

• If T E R M C A P contains any string that does
not begin with / and T E R M is not set or
matches name, tgetent copies the T E R M C A P
string.

• If T E R M C A P contains any string that does
not begin with / and T E R M does not match
name, tgetent searches for name in
/ etc/ termcap.

Tgetent returns - 1 if it couldn't open the terminal
capability file, 0 if it couldn't find an entry for name,
and 1 upon success.
Tgetnum returns the value of the numeric capability
whose name is id. It returns - 1 if the terminal lacks the
specified capability or it is not a numeric capability.
Tgetflag returns 1 if the terminal has boolean capability
whose name is id, 0 if it does not or it is not a boolean
capability.
Tgetstr copies and interprets the value of the string
capability named by id. Tgetstr expands instances in
the string of \ and \ It leaves the expanded string in
the buffer indirectly pointed to by area and leaves the
buffer's direct pointer pointing to the end of the
expanded string; for example,

tgetstr("cl", &ptr);

where ptr is a character pointer — not an array name!
Tgetstr returns a (direct) pointer to the beginning of the
string.
Tgoto interprets the % escapes in a c m string. It
returns cmstr with the % sequences changed to the
position indicated by destcol and destline. This function
must have the external variables BG and UP set to the
values of the b e and u p capabilities; if the terminal
lacks the capability, set the external variable to null. If
tgoto can't interpret all the % sequences in c m , it
returns "OOPS"
Tgoto avoids producing characters that might be
misinterpreted by the terminal interface. If expanding a
% sequence would produce a null, control-d, or null, the
function will, if possible, send the cursor to the next line
or column and use BC or UP to move to the correct
location. Note that tgoto does not avoid producing tabs;
a program must turn off the T A B 3 feature of the
terminal interface (termio(7)). This is a good idea
anyway: some terminals use the tab character as a

- 2 -

TERMCAP (3 X)

nondestructive space.
Tputs directs the output of a string returned by tgetstr
or tgoto. This function must have the external variable
PC set to the value of the p c capability; if the terminal
lacks the capability, set the external variable to null.
Tputs interprets any delay at the beginning of the string.
Cp is the string to be output; affcnt is the number of
lines affected by the action (1 if "number of lines
affected" doesn't mean anything); and outc points to a
function that takes a single c h a r argument and outputs
it, such as putchar.

FILES
/usr/ l ib/ l ibtermcap.a library
/ e tc / t ermcap data base

SEE ALSO
ex(l) , curses(3), termcap(5)

TMPFILE (3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
i n c l u d e < s t d i o . h >
FILE * tmpf i l e ()

DESCRIPTION
Tmpfile creates a temporary file using a name generated
by tmpnam(3S), and returns a corresponding FILE
pointer. If the file cannot be opened, an error message is
printed using perror(3C), and a NULL pointer is
returned. The file will automatically be deleted when
the process using it terminates. The file is opened for
update ("w+").

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C),
tmpnam(3S).

- 1 -

TMPNAM (3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
c h a r * t m p n a m (s)
c h a r *s;
c h a r " t e m p n a m (dir , p f x)
c h a r *dir , * p f x ;

DESCRIPTION
These functions generate file names that can safely be
used for a temporary file.
Tmpnam always generates a file name using the path-
prefix defined as P _ t m p d i r in the <stdio.h> header
file. If a is NULL, tmpnam leaves its result in an internal
static area and returns a pointer to that area. The next
call to tmpnam will destroy the contents of the area. If
s is not NULL, it is assumed to be the address of an
array of at least L _ t m p n a m bytes, where L _ t m p n a m
is a constant defined in <stdio.h> ; tmpnam places its
result in that array and returns a.

Tempnam allows the user to control the choice of a
directory. The argument dir points to the name of the
directory in which the file is to be created. If dir is
NULL or points to a string which is not a name for an
appropriate directory, the path-prefix defined as
P _ t m p d i r in the <stdio.h> header file is used. If that
directory is not accessible, / t m p will be used as a last
resort. This entire sequence can be up-staged by
providing an environment variable T M P D I R in the
user's environment, whose value is the name of the
desired temporary-file directory.

Many applications prefer their temporary files to have
certain favorite initial letter sequences in their names.
Use the pfx argument for this. This argument may be
NULL or point to a string of up to five characters to be
used as the first few characters of the temporary-file
name.
Tempnam uses malloc(3C) to get space for the
constructed file name, and returns a pointer to this area.
Thus, any pointer value returned from tempnam may
serve as an argument to free (see malloc(3C)). If
tempnam cannot return the expected result for any
reason, i.e. malloe(3C) failed, or none of the above
mentioned attempts to find an appropriate directory was
successful, a NULL pointer will be returned.

TMPNAM (3S)

NOTES
These functions generate a different file name each time
they are called.

Files created using these functions and either fopen(3S)
or creat(2) are temporary only in the sense that they
reside in a directory intended for temporary use, and
their names are unique. It is the user's responsibility to
use unlink (2) to remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C),
tmpfile(3S).

BUGS
If called more than 17,576 times in a single process, these
functions will start recycling previously used names.
Between the time a file name is created and the file is
opened, it is possible for some other process to create a
file with the same name. This can never happen if that
other process is using these functions or mktemp, and the
file names are chosen so as to render duplication by
other means unlikely.

- 2 -

TRIG (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric
functions

SYNOPSIS
^ i n c l u d e < m a t h . h >
double s in (x)
double x;
double cos (x)
double x;
double t a n (x)
double x;
double as in (x)
double x;
double acos (x)
double x;
double a t a n (x)
double x;
double a t a n 2 (y , x)
double y , x;

DESCRIPTION
Sin, cos and tan return respectively the sine, cosine and
tangent of their argument, x, measured in radians.
Asin returns the arcsine of x, in the range - TT/2 to TT/2.
Acos returns the arccosine of x, in the range 0 to ir.
Atan returns the arctangent of x, in the range - jr /2 to
t t / 2 .

AtanS returns the arctangent of y/x, in the range -TT to
7r, using the signs of both arguments to determine the
quadrant of the return value.

DIAGNOSTICS
Sin, cos, and tan lose accuracy when their argument is
far from zero. For arguments sufficiently large, these
functions return zero when there would otherwise be a
complete loss of significance. In this case a message
indicating TLOSS error is printed on the standard error
output. For less extreme arguments causing partial loss
of significance, a PLOSS error is generated but no
message is printed. In both cases, errno is set to
ERANGE.
If the magnitude of the argument of asin or acos is
greater than one, or if both arguments of atanS are zero,
zero is returned and errno is set to EDOM. In addition,
a message indicating DOMAIN error is printed on the

- 1 -

TRIG (3 M)

standard error output.
These error-handling procedures may be changed with
the function matherr(3M).

SEE ALSO
matherr(3M).

- 2 -

TSEARCH (3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search
trees

SYNOPSIS
i n c l u d e < s e a r c h . h >
char "tsearch ((char ") key , (char "") roo tp ,
c o m p a r)
int ("compar)();
char "tf ind ((char *) k e y , (char **) roo tp ,
c o m p a r)
int ("compar)();
char "tdelete ((char ») key , (char **) roo tp ,
c o m p a r)
int (*compar)();
v o i d t w a l k ((char *) root , act ion)
v o i d (*act ion)();

DESCRIPTION
Tsearch, tfind, tdelete, and twalk are routines for
manipulating binary search trees. They are generalized
from Knuth (6.2.2) Algorithms T and D. All
comparisons are done with a user-supplied routine. This
routine is called with two arguments, the pointers to the
elements being compared. It returns an integer less
than, equal to, or greater than 0, according to whether
the first argument is to be considered less than, equal to
or greater than the second argument. The comparison
function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the
values being compared.
Tsearch is used to build and access the tree. K e y is a
pointer to a datum to be accessed or stored. If there is a
datum in the tree equal to "key (the value pointed to by
key), a pointer to this found datum is returned.
Otherwise, "key is inserted, and a pointer to it returned.
Only pointers are copied, so the calling routine must
store the data. R o o t p points to a variable that points
to the root of the tree. A NULL value for the variable
pointed to by r o o t p denotes an empty tree; in this case,
the variable will be set to point to the datum which will
be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree,
returning a pointer to it if found. However, if it is not
found, tfind will return a NULL pointer. The arguments
for tfind are the same as for tsearch.

- 1 -

TSEARCH (3 C)

Tdelete deletes a node from a binary search tree. The
arguments are the same as for tsearch. The variable
pointed to by r o o t p will be changed if the deleted node
was the root of the tree. Tdelete returns a pointer to the
parent of the deleted node, or a NULL pointer if the node
is not found.
Twalk traverses a binary search tree. R o o t is the root
of the tree to be traversed. (Any node in a tree may be
used as the root for a walk below that node.) Action is
the name of a routine to be invoked at each node. This
routine is, in turn, called with three arguments. The
first argument is the address of the node being visited.
The second argument is a value from an enumeration
data type typedef enutn { preorder, postorder, endorder,
leaf } VISIT; (defined in the <search.h> header file),
depending on whether this is the first, second or third
time that the node has been visited (during a depth-first,
left-to-right traversal of the tree), or whether the node is
a leaf. The third argument is the level of the node in
the tree, with the root being level zero.

The pointers to the key and the root of the tree should
be of type pointer-to-element, and cast to type pointer-
to-character. Similarly, although declared as type
pointer-to-character, the value returned should be cast
into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures
containing a pointer to each string and a count of its
length. It then walks the tree, printing out the stored
strings and their lengths in alphabetical order.
#include < s e a r c h . h >
include < s t d i o . h >

struct node {
/ * pointers to these are stored in the tree */

char *string;
int length;

};
char string_space[lOOOO|; / * space to store strings » /
struct node nodes[500|; / » nodes to store * /
struct node »root = NULL;

/ * this points to the root * /

main()
{

char *strptr = string_space;
struct node *nodeptr = nodes;

- 2 -

TSEARCH (3 C)

void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) ! = NULL && i+-t- < 500) {
/ » set node * /
n o d e p t r - > s t r i n g = s t rp t r ;
n o d e p t r - > l e n g t h = str len(strptr) ;
/ * pu t node into the tree * /
(void) tsearch((char *)nodeptr, &root,

node_compare);
/ * ad jus t pointers,

so we don ' t overwrite tree * /
s t rp t r + = n o d e p t r - > l e n g t h + 1;
n o d e p t r + + ;

}
twalk(root, print node);

} / •
This routine compares two nodes, based on an
alphabetical ordering of the string field.

• /
int
node_compare(nodel , node2)
s t ruct node *nodel , *node2;
{

return s t r c m p (n o d e l - > s t r i n g , n o d e 2 - > s t r i n g) ;

}
/ *

This routine prints out a node, the first time
twalk encounters it.

void
print_node(node, order, level)
s t ruct node **node;
VISIT order;
int level;
{

if (order = = preorder || order = = leaf) {
(void)printf("string = %20s, length = % d \ n " ,

(*node)- >s t r ing , (*node)- > leng th) ;

}
}

SEE ALSO
bsearch(3C), hsearch(3C), lsearch(3C).

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not
enough space available to create a new node.
A NULL pointer is returned by tsearch, tfind and tdelete

- 3 -

TSEARCH (3 C)

if r o o t p is NULL oil entry.
If the datum is found, both tsearch and tjind return a
pointer to it. If not, tfind returns NULL, and tsearch
returns a pointer to the inserted item.

WARNINGS
The r o o t argument to twalk is one level of indirection
less than the r o o t p arguments to tsearch and tdelete.
There are two nomenclatures used to refer to the order
in which tree nodes are visited. Tsearch uses preorder,
postorder and endorder to respectively refer to visting a
node before any of its children, after its left child and
before its right, and after both its children. The
alternate nomenclature uses preorder, inorder and
postorder to refer to the same visits, which could result
in some confusion over the meaning of postorder.

BUGS
If the calling function alters the pointer to the root,
results are unpredictable.

- 4 -

TTYNAME (3 C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char " t t y n a m e (fi ldes)
int f i ldes;
int i sa t ty (fi ldes)
int f i ldes;

DESCRIPTION
Ttyname returns a pointer to a string containing the
null-terminated path name of the terminal device
associated with file descriptor fildes.
Isatty returns 1 if fildes is associated with a terminal
device, 0 otherwise.

FILES
/dev /*

DIAGNOSTICS
Ttyname returns a NULL pointer if fildes does not
describe a terminal device in directory / d e v .

BUGS
The return value points to static data whose content is
overwritten by each call.

TTYSLOT (3 C)

NAME
ttyslot - find the slot in the utmp file of the current
user

SYNOPSIS
int t t y s l o t ()

DESCRIPTION
Ttyslot returns the index of the current user's entry in
the / e t c / u t m p file. This is accomplished by actually
scanning the file / e t c / i n i t t a b for the name of the
terminal associated with the standard input, the
standard output, or the error output (0, 1 or 2).

FILES
/etc/ inittab
/e tc /utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered
while searching for the terminal name or if none of the
above file descriptors is associated with a terminal
device.

- 1 -

UNGETC (3 S)

NAME
ungetc - push character back into input stream

SYNOPSIS
^ i n c l u d e < s t d i o . h >
i n t u n g e t c (c , s t r e a m)
i n t c;
FILE " s t r e a m ;

DESCRIPTION
Ungetc inserts the character c into the buffer associated
with an input stream. That character, c, will be
returned by the next getc(SS) call on that stream.
Ungetc returns c, and leaves the file stream unchanged.

One character of pushback is guaranteed, provided
something has already been read from the stream and
the stream is actually buffered. In the case that stream
is stdin, one character may be pushed back onto the
buffer without a previous read statement.
If c equals EOF, ungetc does nothing to the buffer and
returns EOF.
Fseek(3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it cannot insert the character.

VPRINTF (3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a
varargs argument list

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < v a r a r g s . h >
int vpr in t f (f o r m a t , ap)
char * format ;
va_ l i s t ap;
int v f p r i n t f (s t ream, f o r m a t , ap)
FILE *s tream;
char * format;
va_ l i s t ap;
int v spr in t f (s, f o r m a t , ap)
char *s, * format;
va_ l i s t ap;

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as printf,
fprintf, and sprintf respectively, except that instead of
being called with a variable number of arguments, they
are called with an argument list as defined by
varargs(5).

EXAMPLE
The following demonstrates how vfprintf could be used to
write an error routine.
#include < s t d i o . h >
#include < v a r a r g s . h >

/•
» error should be called like
* error(function name, format, argl , arg2...);

/•VARARGSO*/
void
error(va_alist)
/* Note that the function_name and format arguments

» cannot be separately declared because of the
* definition of varargs.
* /

va del
{ ~

va_list args;
char *fmt;

- 1 -

VPRINTF (3 S)

va_start(args);
/ * print out name of function causing error * /

(void)fprintf(stderr, "ERROR in %s: va_arg(args, char *));
fmt = va_arg(args, char *);

/ * print out remainder of message * /
(void)vfprintf(stderr, fmt, args);
va_end(args);
(void)abort();

}
S E E A L S O

printf(3S), varargs(5).

- 2 -

INTRO (4)

NAME
intro - introduction to file formats

D E S C R I P T I O N
This section outlines the formats of various files. The C
s t r u c t declarations for the file formats are given where
applicable. Usually, these structures can be found in the
directories / u s r / i n c l u d e or / u s r / i n c l u d e / s y s .
Entries suffixed by (4 N) describe the configuration files
used with the CTIX networking packages. These files
can be manipulated directly (using a text editor) or with
nefman(lNM).

S E E A L S O
Internet Protocol Transition Workbook. Menlo Park, CA:
Network Information Center, SRI International, 1982.
CTIX Internetworking Manual.

- 1 -

A.OUT(4)

NAME
a.out - common assembler and link editor output

S Y N O P S I S
^ i n c l u d e < a . o u t . h >

D E S C R I P T I O N
The file name a.out is the output file from the
assembler as(l) and the link editor ld(1). Both programs
will make a.out executable if there were no errors in
assembling or linking and no unresolved external
references.
A common object file consists of a file header, a CTIX
system header, a table of section headers, relocation
information, (optional) line numbers, a symbol table, and
a string table. The order is given below.

File header.
CTIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts (line numbers, symbol table and
string table) may be missing if the program was linked
with the — s option of ld(1) or if they were removed by
«frtp(l). Also note that the relocation information will
be absent if there were no unresolved external references
after linking. The string table exists only if the symbol
table contains symbols with names longer than eight
characters.
The sizes of each section (contained in the header,
discussed below) are in bytes and are even.
When an a . o u t file is loaded into memory for execution,
three logical segments are set up: the text segment, the
data segment (initialized data followed by uninitialized,
the latter actually being initialized to all O's), and a
stack. The text segment begins at location 0x0000 in the

- 1 -

A . 0 U T (4)

core image. The header is never loaded, except for
magic 0413 files created with the —F option of ld(1). If
the magic number (the first field in the operating system
header) is 407 (octal), it indicates that the text segment
is not to be write-protected or shared, so the data
segment will be contiguous with the text segment. If the
magic number is 410 (octal), the data segment and the
text segment are not writable by the program; if other
processes are executing the same a .out file, the processes
will share a single text segment. Magic number 413
(octal) is the same as 410 (octal), except that 413 (octal)
permits demand paging. Both tne — z and —F options of
the loader /<f(1) create a.out files with magic numbers
0413. If the — z option is used, both the text and data
sections of the file are on 1024-byte boundaries. If the
—F option is used, the text and data sections of the file
are contiguous. Loading a single 4096-byte page into
memory requires 4 transfers of 1024 bytes each for — z,
and typically one transfer of 4096 bytes for —F. Thus
a.out files created with —F can load faster and require
less disk space.

The stack begins at the end of memory and grows
towards lower addresses. The stack is automatically
extended as required. The data segment is extended
only as requested by the brk(2) system call.
The value of a word in the text or data portions that is
not a reference to an undefined external symbol is
exactly the value that will appear in memory when the
file is executed. If a word in the text involves a reference
to an undefined external symbol, the storage class of the
symbol-table entry for that word will be marked as an
"external symbol", and the section number will be set to
0. When the file is processed by the link editor and the
external symbol becomes defined, the value of the
symbol will be added to the word in the file.

File Header
The format of the filehdr header is

- 2 -

A . 0 U T (4)

s t ruc t filehdr
{

unsigned short f_magic; /* magic number */
unsigned short f_nscns; /* number of sections * /
long f_ t imdat ; / * time and da te s tamp * /
long f_symptr ; 1* file ptr to symtab */
long f_nsyms; /• # symtab entries */
unsigned short f_opthdr ; /• sizeof(opt hdr) * /
unsigned short f_flags; /• flags */

};
CTEX System Header

The format of the CTIX system header is
typedef s t ruc t aouthdr
{

short magic; /* magic number */
short vs tamp; /* version s tamp */
long tsize; /» text size in bytes, padded » /
long dsize; /» initialized d a t a (.data) »/
long bsize; / * uninitialized d a t a (.bss) */
long entry; / * entry point * /
long text_s tar t ; / * base of text used for this file */
long da ta_s tar t ; / * base of da ta used for this file */

} AOUTHDR;

Section Header
The format of the sect ion header is
struct scnhdr
{

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_name[SYMNMLEN];/* section name * /
s_paddr;
s_vaddr;
s_size;
s_scnptr;
s_relptr;
s_lnnoptr;
s_n reloc;
s_nlnno;
s_

/ * physical address */
/ * virtual address »/
/ * section size */
/ * file ptr to raw da ta * /
/ * file ptr to relocation * /
/ * file ptr to line numbers */
/ » # reloc entries * /
/ * # line number entries «/
/ * Hags * /

- 3 -

A . 0 U T (4)

Re loca t ion
Object files have one relocation entry for each
relocatable reference in the text or data. If relocation
information is present, it will be in the following format:
struct reloc
{

long r_vaddr;/» (virtual) address of reference » /
long r j symndx; j * index into symbol table * /
short r type; / * relocation type » /

};
The start of the relocation information is s_relptr from
the section header. If there is no relocation information,
s_relptr is 0.

Symbol Table
The format of each symbol in the the symbol table is
d e f i n e SYMNMLEN 8
d e f i n e FILNMLEN 14
d e f i n e SYMESZ 18 / * the size of a S Y M E N T « /

struct syment
{

union
{

char
struct
{

long
long

} _n_n;
chax

}-n;
unsigned long
short
unsigned short
char
char

};

/ * get a symbol name » /

_n_name[SYMNMLEN]; / * name of symbol * /

_n_zeroes; / * = = 0L if in string table * /
_n_offset; / * location in string table * /

*_n_nptr(2|; / » allows overlaying » /

n_value; / * value of symbol * /
n_scnum; / * section number * /
n_type; / * type and derived type * /
n_sclass; / * storage class * /
n_numaux; / * number of aux entries * /

d e f i n e n_name _n._n_name
d e f i n e n_zeroes _n._n_n._n_zeroes
d e f i n e n_offset _n ._n_n._n_offset
d e f i n e n_nptr _n ._n_nptr[l]

Some symbols require more information than a single
entry; they are followed by auxiliary entries that are the
same size as a symbol entry. The format follows.

- 4 -

A.OUT(4)

union auxent {
struct {

long x_tagndx;
union {

struct {
unsigned short x j n n o ;
unsigned short xjsize;

} x j n s z ;
long x_fsize;

} x_misc;
union {

struct {
long x j n n o p t r ;
long x_endndx;

} x_fcn;
struct {

unsigned short x_dimen[DIMNUM|;
} x_ary;

} x_fcnary;
unsigned short x_tvndx;

} x_fsym;

struct {
char x_fname[FILNMLEN];

} x j i l e ;

struct {
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} xjscn;

struct {
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

} x_tv;
};
Indexes of symbol table entries begin at zero. The start
of the symbol table is f_symptr (from the file header)
bytes from the beginning of the file. If the symbol table
is stripped, f_aymptr is 0. The string table (if one exists)
begins at f_»ymptr + (f_nsyms * SYMESZ) bytes from
the beginning of the file.

S E E A L S O
as(l) , cc(l) , ld(.l), brk(2), filehdr(4), ldfcn(4), linenum(4),
reloc(4), scnhdr(4), syms(4).

- 5 -

A C C T (4)

NAME
acct - per-process accounting file format

SYNOPSIS
i n c l u d e < s y s / a c c t . h >

DESCRIPTION
Files produced as a result of calling aect(2) have records
in the form defined by < s y s / a c c t . h > , whose contents
are:
typedef ushort comp_t; / • " f l o a t i n g p o i n t " * /

/ * 13-bit fraction, 3-bit exponent »/

struct acct
{

char ac_flag; / * Accounting flag */
char ac_stat ; / » Exit s ta tus * /
ushort ac_uid; / • Accounting user ID */
ushort a-c gid; / * Accounting group ID * /
dev_t ac_tty; / * control typewriter */
t ime_t ac_btime; /* Beginning time */
comp_t ac_utime; /* acctng user time in clock ticks */
comp_t ac_stime; / * acctng system time in clock ticks */
comp_t ac_etime; / • acctng elapsed time in clock ticks * /
comp_t ac_mem; / * memory usage in clicks * /
comp_t ac_io; 1* chars t rnsfrd by read /wr i te */
comp_t ac_rw; / • number of block reads/wri tes * /
char ac_comm(8|; / * command name » /

};

extern struct acct acctbuf;
extern struct inode *acctp; / * inode of accounting file « /

#define AFORK 01 /* has executed fork, but no exec * /
#define ASU 02 / * used super-user privileges * /
#define ACCTF 0300 / * record type: 00 = acct »/

In ac_flag, the AFORK flag is turned on by each fork(2)
and turned off by an exec(2). The ac_comm field is
inherited from the parent process and is reset by any
exec. Each time the system charges the process with a
clock tick, it also adds to ac_mem the current process
size, computed as follows:

(data size) -I- (text size) / (number of in-core
processes using text)

The value of ac_mem / (ac_etime + ac_utime) can be
viewed as an approximation to the the resident-set size
(or mean process size), defined as the total number of
pages in memory. Note that this differs from the UNIX

- 1 -

A C C T (4)

System V formula, which is based on the current process
size; such a formula is inappropriate to a paging
environment.
The structure t a c c t . h , which resides with the source files
of the accounting commands, represents the total
accounting format used by the various accounting
commands:
/ •

* total accounting (for acct period), also for day
*/

struct tacct {
uid_t ta_uid; / * userid * /
char ta_name(8|; / * login name */
float ta_cpu[2]; / * cum. cpu time, p /np (mins) * j
float ta_kcore[2]; / * cum kcore-minutes, p /np » /
float ta_con[2|; / * cum. connect time, p/np, mins * /
float ta_du; / * cum. disk usage * /
long ta_pc; / * count of processes * /
unsigned short ta_sc; / * count of login sessions * /
unsigned short ta_dc; j* count of disk samples * /
unsigned short ta fee; /* fee for special services * /

};
SEE ALSO

acct(lM), acctcom(l) , acct(2), exec(2), fork(2).
BUGS

The ac_mem value for a short-lived command gives little
information about the actual size of the command,
because ac_mem may be incremented while a different
command (e.g., the shell) is being executed by the
process.

- 2 -

A R (4)

NAME
ar - common archive file format

DESCRIPTION
The archive command or(l) is used to combine several
files into one. Archives are used mainly as libraries to be
searched by the link editor ld(1).
Each archive begins with the archive magic string.

d e f i n e ARMAG " ! < a r c h > \ n "
/ * magic string * /

d e f i n e SARMAG 8
/ * length of magic string * /

Each archive which contains common object files (see
a.out(4)) includes an archive symbol table. This symbol
table is used by the link editor ld(1) to determine which
archive members must be loaded during the link edit
process. The archive symbol table (if it exists) is always
the first file in the archive (but is never listed) and is
automatically created and/or updated by ar.

Following the archive magic string are the archive file
members. Each file member is preceded by a file
member header which is of the following format:

#def ine ARFMAG " ' \ n " / * header trailer string » /

/ * file member header * /

/ * '/ ' terminated file member name */
/ * file member date * /
/ « file member user identification */
/ * file member group identification */
/ « file member mode (octal) * /
/ * file member size * /
/ * header trailer string * /

struct ar hdr
{

char ar_name[16|;
char ar_date[l2|;
char ar_uid[6];
char ar_gid[6];
char ar_mode[8|;
char ar_size[lO];
char ar_fmag[2];

};

All information in the file member headers is in printable
ASCII. The numeric information contained in the
headers is stored as decimal numbers (except for
ar_mode which is in octal). Thus, if the archive contains
printable files, the archive itself is printable.
The ar_name field is blank-padded and slash (/)
terminated. The ar_date field is the modification date
of the file at the time of its insertion into the archive.
Common format archives can be moved from system to

- 1 -

A R (4)

system as long as the portable archive command ar(l) is
used. Conversion tools such as arcv(l) and convert(l)
exist to aid in the transportation of non-common format
archives to this format.
Each archive file member begins on an even byte
boundary; a newline is inserted between files if
necessary. Nevertheless the size given reflects the actual
size of the file exclusive of padding.
Notice there is no provision for empty areas in an
archive file.
If the archive symbol table exists, the first file in the
archive has a zero length name (i.e., a r _ n a m e [0] = =
'/'). The contents of this file are as follows:
• The number of symbols. Length: 4 bytes.
• The array of offsets into the archive file.

Length: 4 bytes * "the number of symbols".
• The name string table. Length: ar_size - (4

bytes * ("the number of symbols" + 1)).
The number of symbols and the array of offsets are
managed with sgetl and aputl. The string table contains
exactly as many null terminated strings as there are
elements in the offsets array. Each offset from the array
is associated with the corresponding name from the
string table (in order). The names in the string table are
all the defined global symbols found in the common
object files in the archive. Each offset is the location of
the archive header for the associated symbol.

S E E A L S O
ar(l), arcv(l), convert(l), ld(l) , strip(l), sputl(3X),
a.out(4).

B U G S
Strip(1) will remove all archive symbol entries from the
header. The archive symbol entries must be restored via
the t s option of the ar(l) command before the archive
can be used with the link editor ld(l).

CHECKLIST (4)

NAME
checklist - list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory / e t c and contains a list of
at most 15 special file names. Each special file name is
contained on a separate line and corresponds to a file
system. Each file system will then be automatically
processed by the fsck(1M) command.

SEE ALSO
fsck(lM).

- 1 -

CORE(4)

NAME
core - format of core image file

DESCRIPTION
CTIX writes out a core image of a terminated process
when any of various errors occur. See signal (2) for the
list of reasons; the most common are memory violations,
illegal instructions, bus errors, and user-generated quit
signals. The core image is called core and is written in
the process's working directory (provided it can be;
normal access controls apply). A process with an
effective user ID different from the real user ID will not
produce a core image.

The first section of the core image is a copy of the
system's per-user data for the process, including the
registers as they were at the time of the fault. The size
of this section depends on the parameter USIZE, which
is defined in / u s r / i n c l u d e / s y s / p a g e . h . The
remainder represents the actual contents of the user's
core area when the core image was written. If the text
segment is read-only and shared, or separated from data
space, it is not dumped.
The format of the information in the first section is
described by the user structure of the system, defined in
/ u s r / i n c l u d e / s y s / u s e r . h . The important stuff not
detailed therein is the locations of the registers, which
are outlined in / u s r / i n c l u d e / s y s / r e g . h .

SEE ALSO
crash(lM), sdb(l), setuid(2), signal(2).

CPIO (4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the - c option of epj'o(l) is
not used, is:
struct {

short h_magic,
h_dev;

ushort h_ino,
h_mode,
h_uid,
h_gid;

short h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];

char h_name[h_namesize rounded to wordl;
}Hdr;
When the —c option is used, the header information is
described by:
sscanflfChdr,
" %6o%6o%6o%6o%6o%6o%6o%6o% 1 llo%6o% 1 llo%s",

&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino,
&Hdr.h_mode, &Hdr.h_uid, &Hdr.h_gid,
&Hdr.h_nlink, &Hdr.h_rdev, &Longtime,
&Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime
and Hdr.h_filesize, respectively. The contents of each
file are recorded in an element of the array of varying
length structures, archive, together with other items
describing the file. Every instance of h_magic contains
the constant 070707 (octal). The items h_dev through
hjmtime have meanings explained in stat(2). The length
of the null-terminated path name h_name, including the
null byte, is given by h_namesize.
The last record of the archive always contains the name
TRAILER!!!. Special files, directories, and the trailer are
recorded with h_filesize equal to zero.

SEE ALSO
cpio(l), find(l), stat(2).

- 1 -

CPROFILE (4)

NAME
cprofile - setting up a C shell environment at login time

DESCRIPTION
c p r o f i l e is for use with csh(1). For every user of csh the
system file / e t c / c p r o f i l e is executed immediately upon
login. If the user's login directory contains a file named
. c shrc , that file will then be executed, followed by
commands from the . log in file.

The following example is typical for a user's . c shrc file:

setenv PATH :$PATH:$HOME/bin
setenv MAIL /usr /mai l /myname
setenv TERM pt
umask 022

The system file / e t c / c p r o f i l e can be customized to set
the T E R M environment variable via tset(l) and to
automatically invoke u>m(l) on RS-422 terminals.
For further information about setting variables, see
c«A(l) and «A(1).

FILES
$HOME/.login
$HOME/.cshrc
$HOME/.logout
/ etc/cprofile

SEE ALSO
csh(l) , cprofile(4), env(l) , login(l), mail(l) , sh(l) , s t ty(l) ,
su(l) , tset(l) , wm(l) , ttytype(4), environ(5), term(5).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

- 1 -

DIR(4)

NAME
dir - format of directories

SYNOPSIS
i n c l u d e < s y s / d i r . h >

DESCRIPTION
A directory behaves exactly like an ordinary file, save
that no user may write into a directory. The fact that a
file is a directory is indicated by a bit in the flag word of
its i-node entry (see /«(4)). The structure of a directory
entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct

ino_t d_ino;
char d_name [DIRSIZ];

}>
By convention, the first two entries in each directory are
for . and . .. The first is an entry for the directory itself.
The second is for the parent directory. The meaning of
. . is modified for the root directory of the master file
system; there is no parent, so . . has the same meaning
as ..

SEE ALSO
fs(4).

- 1 -

ERRFILE (4)

NAME
errfile - error-log file format

S Y N O P S I S
^ i n c l u d e < s y s / e r e c . h >

D E S C R I P T I O N
When hardware errors are detected by the system, an
error record is generated and passed to the error-logging
daemon for recording in the error log for later analysis.
The default error log is / u s r / a d m / e r r f i l e .
The format of an error record depends on the type of
error that was encountered. Every record, however, has
a header with the following format:
struct errhdr {

short e_type; / * record type */
short e_len; / * bytes in record (inc hdr) */
time_t e_time; / * time of day */

}>
The permissible record types are as follows:
#def ine E.GOTS 010 / * start * /
#de f ine E_STOP 012 /• stop » /
#def ine E.TCHG 013 /• time change * /
#de f ine E_CCHG 014 /• configuration change * /
#def ine EJ3LK 020 /• block device error * /
#def ine E_STRAY 030 1* stray interrupt » /
#def ine E_PRTY 031 b memory parity »/
#def ine E_BUSFLT 032 b bus fault */
#def ine E.CONS 040 b console string »/
#def ine E_CONR 041 b console record »/
#def ine E_CONO 042 b console overflow */
#def ine E_SERIAL 043 b serial device driver error * /

Some records in the error file are of an administrative
nature. These include the startup record that is entered
into the file when logging is activated, the stop record
that is written if the daemon is terminated "gracefully",
and the time-change record that is used to account for
changes in the system's time-of-day. These records have
the following formats:

ERRFILE (4)

struct est art {
short e_cpu; /» CPU type * /
struct utsname e_name; / * system names « /
short e_mmr3; / * boot reason from CDT */
long e_syssize; / » system memory size * /
int e_fhole; / * 64K chunks of memory omitted * /
short e_bc°nf; / * block dev configuration * /
char e_panic; / * if reboot from panic, what was it */

#def ine eend errhdr /* record header * /

struct etimchg {
time t e ntime; / * new time « /

};
Stray interrupts cause a record with the following format
to be logged:

struct estray {
physadr e_saddr; /* stray loc or device addr »/
short e_sbacty; / * active block devices »/

};
Memory subsystem error causes the following record to
be generated:
For MiniFrame systems:
struct eparity {

ushort e_gsr; / * general status register */
ushort e_pte; / * pte for virtual address in BSR »/

};
For MightyFrame systems:
struct eparity {

uint e_gsr; / * general status register */
};
Error records for block devices have the following
format:

- 2 -

ERRFILE (4)

struct eblock {
dev_t e_dev;
physadr e_regloc;
short e_b»cty;
struct iostat {

long io_ops;
long io_misc;
ushort io_unlog;

} ejstats;
short e.bHags;
short e_trkoff;
daddr_t e_bnum;
ushort e_bytes;

/ * "true" major + minor dev no « /
/ « controller address « /
/ * other block I/O activity * /

/ » number read/writes » /
/ * number "other" operations * /
/ » number unlogged errors « /

/ * read/write, error, etc » /
/ * logical dev start trk * /
/ » logical block number « /
/ * number bytes to transfer * /

paddr_t e_memadd;/* buffer memory address » /
ushort e_rtry; / * number retries * /
short e_nreg; / * number device registers » /
short e_trks / * number of heads « /
short ejsecs / » number of physical sectors per track */
short e_ctlr / * controller type * /

};
The following values are used in the e_bflag« word:
d e f i n e E.WRITE
d e f i n e E_READ
d e f i n e E.NOIO
d e f i n e E_PHYS
d e f i n e E_MAP
d e f i n e E_ERROR
The error types

0 / * write operation * /
1 / * read operation * /
02 / * no I/O pending * /
04 / * physical I/O * /
010 / * Unibus map in use * /
020 / * I/O failed * /

CONS and CONO are flagged by
errdcmon(1M) and errdead and written to the console
log / e t c / l o g / c o n f i l e .
A bus fault generates the following record.

ebusflt {
e_type; / * kind of fault * /
e_vaddr / * virtual address of fault * /
e_bsr; / * combined bsrO and bsrl * /
e_pte; / * page frame of fault * /
e pid; / * pid * /
e_pc; / * PC at time of fault * /
e_rps; / * RPS at time of fault * /
e_regs[l6]; / * all the registers * /

struct
short
caddr_t
uint
ushort
ushort
uint
uint
uint

};
A serial driver error generates the following reports:
struct eserial {

ushort e_
ushort e

type
dev

/ * type of error */
/ * which physical port * /

- 3 -

ERRFILE (4)

};
The following types exist for e_type:
#def ine ECHLOS 0x1 / * character lost in input FIFO */
#de f ine E R X O R U N 0x2 / * receiver overrun */
#de f ine ENOCLIST 0x4 / * no ne-w clist available * /
#def ine ENORBUF 0x8 / » no receive buffer available * /

SEE ALSO
errdemon(lM).

- 4 -

FILEHDR (4)

NAME
filehdr - file header for common object files

SYNOPSIS
^ i n c l u d e < f i l e h d r . h >

DESCRIPTION
Every common object file begins with a 20-byte header.
The following C s t ruc t declaration is used:
struct filehdr

unsigned short f_magic;
unsigned short f_nscns;
long f_timdat;
long f_symptr;
long f_nsyms;
unsigned short f_opthdr;
unsigned short f_flags;

Fjsymptr is the byte offset into the file at which the
symbol table can be found. Its value can be used as the
offset in fseeki3S) to position an I/O stream to the
symbol table. The operating system optional header is
always 36 bytes. The valid magic numbers are given
below.
#define MC68KWRMAGIC 0520

/* writeable text segments */
#define MC68ICROMAGIC 0521

/* readonly shareable text segments */
#define MC68KPGMAGIC 0522

/* demand paged text segments */

/* magic number */
/* number of sections */
/* time & date stamp */
/* file ptr to symtab */
/* # symtab entries */
/* sizeof(opt hdr) */
/* flags */

The value in f_timdat is obtained from the time(2)
system call.
Flag bits currently defined are:
#define F_RELFLG 00001

/* relocation entries stripped */
00002
/* file is executable */
00004
/* line numbers stripped */
00010
/* local symbols stripped */
00020
/* minimal object file */
00040
/* update file, ogen produced */
00100

#define F_EXEC

#define F_LNNO

#defineF_LSYMS

#define F_MINMAL

#define FJJPDATE

#define F_SWABD

- 1 -

FILEHDR (4)

/* file is "pre-swabbed" */
#define F_AR32W 01000

/* non-DEC host,
including Convergent
Technologies systems */

define F_PATCH 02000
/* "patch" list in opt hdr */

The CPU type is encoded in bits 04000 and 010000. The
FPU (floating-point unit) type is encoded in bits
0100000, 040000, and 020000. Macros are defined to set
and extract the CPU and FPU values as follows:

SETFPU(flag, value)
SETCPUfflag, value)
GETFPU(flag)
GETCPU(flag)

Value values for CPU are:

#defineF_M68010 0
#define F_M68020 1

Valid values for FPU are:

#def ineF_NOFPU 0
#defme F_SOFT 1
#defineF_M68881 2
#define F_SIvY 4

S E E A L S O
time(2), fseek(3S), a.out(4).

F S (4)

NAME
fs - file system format

SYNOPSIS
^ i n c l u d e < s y s / f i l s y s . h >
i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / p a r a m . h >
^ i n c l u d e < s y s / f i l b i t m a p . h >

DESCRIPTION
Every file system storage volume has a common format
for certain vital information. Every such volume is
divided into a certain number of 512-byte long sectors.
Sector 0 is unused and is available to contain a bootstrap
program or other information.
Sector 1 is the super-block. The format of a super-block
is:
/*

» Structure of the super-block

struct filsys
{

ushort s. Jsize; / * size in blocks of i-list * /
daddr_t s. _fsize; / * size in blocks of entire volume */
short s. _nfree; / * number of addresses in s_free * /
daddr_t s. _free|NICFREE|; / * free block list * /
short s. _ninode; / * number of i-nodes in s_inode * /
ino_t s. _inode|NlCINODj; / * free i-node list * /
char s. .flock; / * lock during free list manipulation * /
char s. _ilock; / * lock during i-list manipulation */
char s. _fmod; / * super block modified flag * /
char s. _ronly; / * mounted read-only flag * /
time_t s. .time; / * last super block update * /
short s. _dinfo[4j; j* device information » /
daddr_t s. .tfree; / * total free blocks*/
ino_t s. .tinode; / * total free i-nodes * /
char s. _fname[6|; / * file system name */
char s. _fpack[6]; / * file system pack name */
sema_t s. .semflock;
sema_t s. .semi lock;
long s. .filejl];
short s. .fills; / * more adjust * /
short s. .bucnum; / * Bucket currently in use * /
daddr_t s. _buckets[2]; / * addresses of buckets for bitmap */
daddr_t s. .bitmap [2|; / * address of free bitmap */
char s. .fsbitmap; / * if set, file system has

a valid bitmap */
char s. _fsok; / * if set then file system clean */
short s. _fill2[3]; / * used to be used by pilf * /

F S (4)

long s_magic; / *

long s_type; /»
long s_fill3[2|; /*

magic number to denote new
file system */

type of new file system */
final ADMUSTMENT so

sizeof filsys is 512 */

#define FsMAGIC 0xfdl87e20 / * s_magic number */
#define Fs lb 1 / * 512 byte block */
#define Fs2b 2 / * 1024 byte block »/

CTEX recognizes two kinds of file systems, specified by
s_type:
• Oriented to 512-byte I /O. Identified by an

s_type equal to F s l b . This type is also assumed
if s_magic is not equal to F s M A G I C . (This
type was originally the only type supported by
UNIX Systems; CTIX does not support this type.)

• Oriented to 1024-byte I /O. Identified by an
s j y p e equal to F s 2 b . This is essentially the
standard file system for CTIX and UNIX System
V.

In the following description, the size of a logical block is
determined by the file system type. For the original
512-byte oriented file system, a block is 512 bytes. For
the 1024-byte oriented file system a block is 1024 bytes
or two sectors. The operating system takes care of all
conversions from logical block numbers to physical sector
numbers.
S_isize is the address of the first data block after the i-
list; the i-list starts just after the super-block, namely in
block 2; thus the i-list is s_isize-1 blocks long. S_fsizt
is the first block not potentially available for allocation
to a file. These numbers are used by the system to
check for bad block numbers; if an "impossible" block
number is allocated from the free list or is freed, a
diagnostic is written on the on-line console. Moreover,
the free array is cleared, so as to prevent further
allocation from a presumably corrupted free list.
The free list for each volume is maintained as follows.
The s_Jree array contains, in « free [l], . . .,
s_free[s n / r e e - l] , up to 49 numbers of free blocks.
S_free[0\ is the block number of the head of a chain of
blocks constituting the free list. The first long in each
free-chain block is the number (up to 50) of free-block
numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the

- 2 -

F S (4)

next member of the chain. To allocate a block:
decrement s_nfree, and the new block is s_free[s_nfree].
If the new block number is 0, no blocks remain, so give
an error. If s_nfree became 0, read in the block named
by the new block number, replace s_nfree by its first
word, and copy the block numbers in the next 50 longs
into the s_free array. To free a block, check if s_nfree
is 50; if so, copy s_nfree and the s_free array into it,
write it out, and set s_nfree to 0. In any event set
s_free[s_nfree] to the freed block's number and
increment s_nfree.

S_tfree is the total free blocks available in the file
system.
S_ninode is the number of free i-numbers in the s_inode
array. To allocate an i-node: if s_ninode is greater than
0, decrement it and return s_inode[s_ninode\. If it was
0, read the i-list and place the numbers of all free i-nodes
up to 100) into the a_inode array, then try again. To
ree an i-node, provided s_ninode is less than 100, place

its number into s_inode[s_ninode] and increment
s_ninode. If s_ninode is already 100, do not bother to
enter the freed i-node into any table. This list of i-nodes
is only to speed up the allocation process; the
information as to whether the i-node is really free or not
is maintained in the i-node itself.

S_tinode is the total free i-nodes available in the file
system.
S_Jlock and s_ilock are flags maintained in the core copy
of the file system while it is mounted and their values on
disk are immaterial. The value of s_fmod on disk is
likewise immaterial; it is used as a flag to indicate that
the super-block has changed and should be copied to the
disk during the next periodic update of file system
information.

S_ronly is a read-only flag to indicate write-protection.
S_time is the last time the super-block of the file system
was changed, and is the number of seconds that have
elapsed since 00:00 Jan. 1, 1970 (GMT). During a reboot,
the s_time of the super-block for the root file system is
used to set the system's idea of the time.
S_fname is the name of the file system and s_fpack is
the name of the pack.
I-numbers begin at 1, and the storage for i-nodes begins
in block 2. Also, i-nodes are 64 bytes long. I-node 1 is
reserved for future use. I-node 2 is reserved for the root
directory of the file system, but no other i-number has a

- 3 -

F S (4)

built-in meaning. Each i-node represents one file. For
the format of an i-node and its flags, see tnode(4).
The s_fsok flag indicates that the file system was
unmounted after the last use, or that fsck was run
successfully. The s_fsbitmap flag indicates that the file
system has a valid bitmap describing a number of blocks
that are omitted from the free list; these blocks are
placed on the bitmap (f i lb i tmap .h) . If both flags are
set, CTEX uses the bitmap; otherwise the old free list is
used and any blocks that were in the bitmap (not on the
free list) will be lost until fsck is run.
s_bnckets and s_bitmap are the disk addresses of the
filbitmap structure; each address is for a 1024-byte logical
block.
All allocations of blocks are made from the bitmap. If a
block being deallocated is in the section of the disk
represented by s_bucknum, it is put in the bitmap. If
the block is not in the area represented by the bitmap, it
is put on the free list.
The format of the file system bitmap and bucket list is:

struct filbitmap {
/ * list of buckets describing the free list * /
ushort fb_buckets[l024];
/* bitmap describing free blocks no on the free list * /
long fb bitmap[512l;

};
FILES

/usr / include/sys / f i l sys .h
/usr / inc lude /sys / s tat .h
/usr / include/sys / f i lb i tmap.h

SEE ALSO
fsck(lM), fsdb(lM), mkfs(lM), inode(4).

- 4 -

F S P E C (4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on CTIX
with non-standard tabs, (i.e., tabs which are not set at
every eighth column). Such files must generally be
converted to a standard format, frequently by replacing
all tabs with the appropriate number of spaces, before
they can be processed by CTIX commands. A format
specification occurring in the first line of a text file
specifies how tabs are to be expanded in the remainder
of the file.

A format specification consists of a sequence of
parameters separated by blanks and surrounded by the
brackets < : and : > . Each parameter consists of a
keyletter, possibly followed immediately by a value. The
following parameters are recognized:

ttabs The t parameter specifies the tab settings
for the file. The value of tabs must be one
of the following:

1. a list of column numbers separated by
commas, indicating tabs set at the
specified columns;

2. a — followed immediately by an
integer n, indicating tabs at intervals
of n columns;

3. a — followed by the name of a
"canned" tab specification.

Standard tabs are specified by t—8, or
equivalently, t l , f l , 1 7 , 2 5 , e t c . The canned
tabs which are recognized are defined by the
fafca(l) command.

ss ize The s parameter specifies a maximum line
size. The value of size must be an integer.
Size checking is performed after tabs have
been expanded, but before the margin is
prepended.

mmargin The m parameter specifies a number of
spaces to be prepended to each line. The
value of margin must be an integer.

d The d parameter takes no value. Its
presence indicates that the line containing
the format specification is to be deleted
from the converted file.

FSPEC(4)

e The e parameter takes no value. Its
presence indicates that the current format is
to prevail only until another format
specification is encountered in the file.

Default values, which are assumed for parameters not
supplied, are t - 8 and mO. If the s parameter is not
specified, no size checking is performed. If the first line
of a file does not contain a format specification, the
above defaults are assumed for the entire file. The
following is an example of a line containing a format
specification:

* < :t5,10,15 s72: > *
If a format specification can be disguised as a comment,
it is not necessary to code the d parameter.
Several CTIX commands correctly interpret the format
specification for a file.

SEE ALSO
ed(l), newform(l), tabs(l).

- 2 -

GETTYDEFS (4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The / e t c / g e t t y d e f s file contains information used by
ffetty(lM) to set up the speed and terminal settings for a
line. It supplies information on what the login prompt
should look like. It also supplies the speed to try next if
the user indicates the current speed is not correct by
typing a <break:> character.
Each entry in / e t c / g e t t y d e f s has the following format:

l abe l# initial-flags # final-flags # login-prompt
#next- label

Each entry is followed by a blank line. The various
fields can contain quoted characters of the form \ b , \ n ,
\ c , etc., as well as \ n n n , where nnn is the octal value of
the desired character. The various fields are:
label This is the string against which getty tries

to match its second argument. It is often
the speed, such as 1 2 0 0 , at which the
terminal is supposed to run, but it need
not be (see below).

initial-flags These flags are the initial ioctl(2) settings
to which the terminal is to be set if a
terminal type is not specified to getty.
The flags that getty understands are the
same as the ones listed in
/ u s r / i n c l u d e / s y s / t e r m i o . h (see
termio(7)). Normally only the speed flag
is required in the initial-flags. Getty
automatically sets the terminal to raw
input mode and takes care of most of the
other flags. The initial-flag settings
remain in effect until getty executes
login(l).

final-flags These flags take the same values as the
initial-flags and are set just prior to getty
executes login. The speed flag is again
required. The composite flag S A N E
takes care of most of the other flags that
need to be set so that the processor and
terminal are communicating in a rational
fashion. The other two commonly
specified final-flags are TAB3 , so that
tabs are sent to the terminal as spaces,
and HUPCL, so that the line is hung up
on the final close.

GETTYDEFS (4)

login-prompt This entire field is printed as the login-
prompt. Unlike the above fields where
white space is ignored (a space, tab or
new-line), they are included in the log in-
prompt field.

next-label If this entry does not specify the desired
speed, indicated by the user typing a
<break> character, then getty will
search for the entry with next-label as its
label field and set up the terminal for
those settings. Usually, a series of speeds
are linked together in this fashion, into a
closed set; for instance, 2 4 0 0 linked to
1 2 0 0 , which in turn is linked to 3 0 0 ,
which finally is linked to 2 4 0 0 .

If getty is called without a second argument, then the
first entry of / e t c / g e t t y d e f s is used, thus making the
first entry of / e t c / g e t t y d e f s the default entry. It is
also used if getty can not find the specified label. If
/ e t c / g e t t y d e f s itself is missing, there is one entry built
into the command which will bring up a terminal at
9 6 0 0 baud.

It is strongly recommended that after making or
modifying / e t c / g e t t y d e f s , it be run through getty with
the check option to be sure there are no errors.

FILES
/ e tc /ge t tyde f s

SEE ALSO
getty(lM), login(l), ioctl(2), termio(7).

- 2 -

G P S (4)

NAME
gps - graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several
routines have been developed to edit and display GPS
files on various devices. Also, higher level graphics
programs such as plot (in stat(1G)) and vtoc (in
toe (l G)) produce GPS format output files.

A GPS is composed of five types of graphical data or
primitives.

G P S PRIMITIVES
l ines The lines primitive has a variable number of

points from which zero or more connected
line segments are produced. The first point
given produces a move to that location. (A
move is a relocation of the graphic cursor
without drawing.) Successive points produce
line segments from the previous point.
Parameters are available to set color, weight,
and style (see below).

a r c The arc primitive has a variable number of
points to which a curve is fit. The first point
produces a move to that point. If only two
points are included, a line connecting the
points will result; if three points a circular arc
through the points is drawn; and if more than
three, lines connect the points. (In the
future, a spline will be fit to the points if
they number greater than three.) Parameters
are available to set color, weight, and style.

t e x t The text primitive draws characters. It
requires a single point which locates the
center of the first character to be drawn.
Parameters are color, font, textsize, and
textangle.

h a r d w a r e
The hardware primitive draws hardware
characters or gives control commands to a
hardware device. A single point locates the
beginning location of the hardware string.

c o m m e n t A comment is an integer string that is
included in a GPS file but causes nothing to
be displayed. All GPS files begin with a
comment of zero length.

- 1 -

GPS (4)

G P S P A R A M E T E R S
c o l o r

w e i g h t

s t y l e

Color is an integer value set for arc, lines,
and text primitives.

Weight is an integer value set for arc and
lines primitives to indicate line thickness.
The value 0 is narrow weight, 1 is bold, and
2 is medium weight.

Style is an integer value set for lines and arc
primitives to give one of the five different
line styles that can be drawn on TEKTRONIX
4010 series storage tubes. They are:

0 solid
1 dotted
2 dot dashed
3 dashed
4 long dashed

f o n t

t e x t s i z e

An integer value set for text primitives to
designate the text font to be used in drawing
a character string. (Currently font is
expressed as a four-bit weight value followed
by a four-bit style value.)

Textsize is an integer value used in text
primitives to express the size of the
characters to be drawn. Textsize represents
the height of characters in absolute universe-
units and is stored at one-fifth this value in
the size-orientation («o) word (see below).

t e x t a n g l e Textangle is a signed integer value used in
text primitives to express rotation of the
character string around the beginning point.
Textangle is expressed in degrees from the
positive x-axis and can be a positive or
negative value. It is stored in the size-
orientation («o) word as a value 256/360 of
it's absolute value.

O R G A N I Z A T I O N
GPS primitives are organized internally as follows:
l ines cw points sw
a r c cw points sw
t e x t cw point sw so [string]

cw point \string]
cw [atrinj]

Cw is the control word and begins all
primitives. It consists of four bits that
contain a primitive-type code and twelve bits
that contain the word-count for that

h a r d w a r e
c o m m e n t

- 2 -

G P S (4)

primitive.
p o i n t (s) Points) is one or more pairs of integer

coordinates. Text and hardware primitives
only require a single point. Po int (s) are
values within a Cartesian plane or universe
having 64K (- 3 2 K to +32K) points on each
axis.

s w Sw is the style-word and is used in lines, arc,
and text primitives. For all three, eight bits
contain color information. In arc and lines
eight bits are divided as four bits weight and
four bits style. In the text primitive eight bits
of sw contain the font.

s o So is the size-orientation word used in text
primitives. Eight bits contain text size and
eight bits contain text rotation.

s t r i n g String is a null-terminated character string.
If the string does not end on a word
boundary, an additional null is added to the
GPS file to insure word-boundary alignment.

SEE ALSO
graphics(lG), s tat(lG) , toc(lG) .

GROUP(4)

NAME
group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons;
each group is separated from the next by a new-line. If
the password field is null, no password is demanded.
This file resides in directory / e t c . Because of the
encrypted passwords, it can and does have general read
permission and can be used, for example, to map
numerical group ID's to names.

FILES
/ etc / group

SEE ALSO
newgrp(l), passwd(l), crypt(3C), passwd(4).

H O S T S (4 N)

NAME
hosts - list of nodes on network

DESCRIPTION
The file / e t c / h o s t s is a list of nodes that share the
network, including the local node. It is referred to by
programs which need to translate between node names
and DARPA Internet addresses. Each line in the file
describes a single node on the network and consists of
three fields separated by any number of blanks or tabs:

address name alias ...
where

address is the DARPA Internet address.
Unless another type of address is
required by some node on the
network, address should be a Class
A address, which takes the form
net.node, where net is the network
number from / e t c / n e t w o r k s (see
networks(4)), which must be betwen
0 and 127; and node is a value
which must be unique for each node
and be between 0 and 16777215.

name is the official name of the node. If
the node is a computer system
running CTIX , it must claim this
node name by executing
setuname (1M) when it is initializing
itself.

aliases... is a list of alternate names for the
node. Aliases can be used in
network commands in place of the
official name.

The routines which search this file ignore comments
(portions of lines beginning with #) and blank lines.
Internet addresses can actually take one of four forms:

A A is a simple 32-bit integer.
A.B A is an eight-bit quantity occupying

the high-order byte and B is a 24-bit
quantity occupying the remaining
bytes. This form is suitable for a
Class A address of the form
net.node.

A.B.C A is an eight-bit quantity occupying
the high-order byte; B is an eight-bit

- 1 -

H O S T S (4 N)

quantity occupying the next byte;
and C is a 16-bit quantiy occupying
the remaining bytes. This form is
suitable for a Class B address of the
form 128 .net.node.

EXAMPLE

1.12
1.10
1.16
1.17

FILES
/ etc /hosts

SEE ALSO
networks(4N).
CTIX Internetworking Manual.
For a discussion of network addresses, see "Address
Mappings," RFC 796 in the Internet Protocol Transition
Workbook, March 1982. Network Information Center,
SRI International, Menlo Park, CA 94025.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

A.BC.D The four parts each occupy a byte in
the address.

Engineering network

src net3 # Network Source Machine
test net2 # Network Test Machine
mifa # Software Development
mifb # Hardware Development

- 2 -

INITTAB (4)

NAME
inittab - script for the init process

DESCRIPTION
The inittab file is the script to init's role as a general
process dispatcher. The process that constitutes the
majority of init's process dispatching activities is the line
process / e t c / g e t t y that initiates individual terminal
lines. Other processes typically dispatched by init are
daemons and the shell.

The inittab file is composed of entries that are position
dependent and have the following format:

id:rstate:action:process
Each entry is delimited by a newline, however, a
backslash (\) preceding a newline indicates a
continuation of the entry. Up to 512 characters per
entry are permitted. Comments may be inserted in the
process field using the «A(1) convention for comments.
Comments for lines that spawn gettys are displayed by
the who(1) command. It is expected that they will
contain some information about the line such as the
location. There are no limits (other than maximum
entry size) imposed on the number of entries within the
inittab file. The entry fields are:

id This is one to four characters used to uniquely
identify an entry.

rstate This defines the run-level in which this entry is
to be processed. Run-levels effectively
correspond to a configuration of processes in
the system. That is, each process spawned by
init is assigned a run-level or run-levels in
which it is allowed to exist. The run-levels are
represented by a number ranging from 0
through 6. As an example, if the system is in
run-level 1, only those entries having a 1 in the
rstate field will be processed. When init is
requested to change run-levels, all processes
which do not have an entry in the rstate field
for the target run-level will be sent the warning
signal (SIGTERM) and allowed a 20-second
grace period before being forcibly terminated
by a kill signal (SIGKILL). The rstate field
can define multiple run-levels for a process by
selecting more than one run-level in any
combination from 0—8. If no run-level is
specified, then the process is assumed to be
valid at all run-levels 0—6. Three other values,

INITTAB (4)

a, b and c, can appear in the rstate field, even
though they are not true run-levels. Entries
which have these characters in the rstate field
are processed only when the telinit (see
«n«i(lM)) process requests them to be run
(regardless of the current run-level of the
system). They differ from run-levels in that
init can never enter run-level a, b or c. Also, a
request for the execution of any of these
processes does not change the current run-level.
Furthermore, a process started by an a, b or c
command is not killed when init changes levels.
They are only killed if their line in
/ e t c / i n i t t a b is marked o f f in the action field,
their line is deleted entirely from / e t c / i n i t t a b ,
or init goes into the SINGLE USER state.

action Key words in this field tell init how to treat the
process specified in the process field. The
actions recognized by init are as follows:
r e s p a w n If the process does not exist then

start the process, do not wait for
its termination (continue
scanning the inittab file), and
when it dies restart the process.
If the process currently exists
then do nothing and continue
scanning the inittab file.

w a i t Upon init's entering the run-level
that matches the entry's rstate,
start the process and wait for its
termination. All subsequent
reads of the inittab file while init
is in the same run-level will cause
init to ignore this entry.

o n c e Upon init's entering a run-level
that matches the entry's rstate,
start the process, do not wait for
its termination. When it dies, do
not restart the process. If upon
entering a new run-level, where
the process is still running from a
previous run-level change, the
program will not be restarted.

b o o t The entry is to be processed only
at init's boot-time read of the
inittab file. Init is to start the
process, not wait for its

- 2 -

INITTAB (4)

termination, and when it dies,
not restart the process. In order
for this instruction to be
meaningful, the rstate should be
the default or it must match
init's run-level at boot time.
This action is useful for an
initialization function following a
hardware reboot of the system.

b o o t w a i t The entry is to be processed only
at inif's boot-time read of the
inittab file. Init is to start the
process, wait for its termination
and, when it dies, not restart the
process.

p o w e r f a i l Execute the process associated
with this entry only when init
receives a power fail signal
(SIGPWR see signal{2)).

p o w e r w a i t Execute the process associated
with this entry only when init
receives a power fail signal
(SIGPWR) and wait until it
terminates before continuing any
processing of inittab.

o f f If the process associated with this
entry is currently running, send
the warning signal (SIGTERM)
and wait 20 seconds before
forcibly terminating the process
via the kill signal (SIGKILL). If
the process is nonexistent, ignore
the entry.

o n d e m a n d This instruction is really a
synonym for the r e s p a w n action.
It is functionally identical to
r e s p a w n but is given a different
keyword in order to divorce its
association with run-levels. This
is used only with the a, b or c
values described in the rstate
field.

i n i t d e f a u l t An entry with this action is only
scanned when init initially
invoked. Init uses this entry, if it
exists, to determine which run-

- 3 -

INITTAB (4)

level to enter initially. It does
this by taking the highest run-
level specified in the r s t a t e field
and using that as its initial state.
If the rstate field is empty, this is
interpreted as 0 1 2 3 4 5 6 and so
init will enter run-level 6. Also,
the in i tde fau l t entry cannot
specify that init start in the
SINGLE USER s t a t e .

Additionally, if init does not find
an in i tde fau l t entry in
/ e t c / i n i t t a b , then it will request
an initial run-level from the user
at reboot time.

sy s in i t Entries of this type are executed
before init tries to access the
console. It is expected that this
entry will be only used to
initialize devices on which init
might try to ask the run-level
question. These entries are
executed and waited for before
continuing.

process This is a sh command to be executed. The
entire p r o c e s s field is prefixed with exec and
passed to a forked sh as sh —c 'exec
command'. For this reason, any legal sh syntax
can appear in the process field. Comments can
be inserted with the ; # c o m m e n t syntax.

F I L E S
/etc / init tab

SEE ALSO
getty(lM), init(lM), sh(l), who(l), exec(2), open(2),
signal(2).

INODE (4)

NAME
inode - format of an i-node

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i n o . h >

DESCRIPTION
An i-node for a plain file or directory in a file system has
the following structure defined by < s y s / i n o . h > .
/ * Inode structure as it appears on a disk block. * /
struct
{

dinode

ushort di_mode; / *
short di_nlink; / *
ushort di_uid; /«
ushort di_gid; /»
off_t di_size; /»
char di_addr|40|;
time_t di_atime; / *
time_t di_mtime;/*
time_t di_ctime; / *

/ * disk block addresses */

}; /•
* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
• /

For the meaning of the defined types off_t and time_t
see types(5).

FILES
/usr/include/sys/ino.h

SEE ALSO
stat(2), fs(4), types(5).

ISSUE (4)

NAME
issue - issue identification file

DESCRIPTION
The file / e t c / i s s u e contains the issue or project
identification to be printed as a login prompt. This is an
A S C I I file which is read by program getty and then
written to any terminal spawned or respawned from the
/ e t c / i n i t t a b file.

FILES
/etc/issue

SEE ALSO
login(l).

5/86 - 1 -

LDFCN(4)

NAME
ldfcn - common object file access routines

SYNOPSIS
i n c l u d e
^ i n c l u d e
^ i n c l u d e

< s t d i o . h >
< f i l e h d r . h >
< l d f c n . h >

DESCRIPTION
The common object file access routines are a collection
of functions for reading an object file that is in common
object file form. Although the calling program must
know the detailed structure of the parts of the object file
that it processes, the routines effectively insulate the
calling program from knowledge of the overall structure
of the object file.
The interface between the calling program and the
object file access routines is based on the defined type
LDFILE, defined as s t ruc t ldfile, declared in the header
file ldfcn.h. The primary purpose of this structure is to
provide uniform access to both simple object files and to
object files that are members of an archive file.
The function Idopenf3X) allocates and initializes the
LDFILE structure and returns a pointer to the structure
to the calling program. The fields of the LDFILE
structure may be accessed individually through macros
defined in ldfcn.h and contain the following
information:
LDFILE *ldptr;
TYPE(ldptr)

OPTR(ldptr)

OFFSET(ldptr)

The file magic number, used to
distinguish between archive members
and simple object files.
The file pointer returned by fopen and
used by the standard input/output
functions.
The file address of the beginning of the
object file; the offset is non-zero if the
object file is a member of an archive
file.

HEADER(ldptr) The file header structure of the object
file.

The object file access functions themselves may be
divided into four categories:
(l) functions that open or close an object file

- 1 -

L D F C N (4)

ldopen(3X) and Idaopen
open a common object file

ldclose(3X) and Idaclose
close a common object file

(2) functions that read header or symbol table
information

ldahread(3X)
read the archive header of a member of
an archive file

ldfhread(ZX)
read the file header of a common object
file

ldshread(3X1 and ldnshread
reaa a section header of a common
object file

ldtbread(3X)
read a symbol table entry of a common
object file

ldgetname(3X)
retrieve a symbol name from a symbol
table entry or from the string table

(3) functions that position an object file at (seek to) the
start of the section, relocation, or line number
information for a particular section.

ldohseek(3X)
seek to the optional file header of a
common object file

ld8seek(3X) and Idnsseek
seek to a section of a common object file

ldrseek(3X) and Idnrseek
seek to the relocation information for a
section of a common object file

Idlseek(3X) and Idnlseek
seek to the line number information for
a section of a common object file

ldtbseek(ZX)
seek to the symbol table of a common
object file

(4) the function ldtbindex(3X) which returns the index of
a particular common object file symbol table entry.
These functions are described in detail on their
respective manual pages.
All the functions except Idopeni 3X), ldgetname(3X),
Idaopen (8X), and ldtbindex (SX), return either
S U C C E S S or FAILURE, both constants defined in
ld f cn .h . Ldopen and Idaopen both return pointers to a

- 2 -

LDFCN(4)

LDFILE structure.
Additional access to an object file is provided through a
set of macros defined in ldfcn.h. These macros parallel
the standard input/output file reading and manipulating
functions, translating a reference of the LDFILE
structure into a reference to its file descriptor field.
The following macros are provided:

GETC(ldptr)
FGETC(ldptr)
GETW(ldptr)
UNGETC(c, ldptr)
FGETS(s, n, ldptr)
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)
FEOF(ldptr)
FERROR(ldptr)
FILENO(ldptr)
SETBUF(ldptr, buf)
STROFFSET(ldptr)

The STROFFSET macro calculates the address of the
string table in an object file. See the manual entries for
the corresponding standard input/output library
functions for details on the use of the rest of the macros.
The program must be loaded with the object file access
routine library libld.a.

WARNING
The macro FSEEK defined in the header file ldfcn.h
translates into a call to the standard input/output
function faeek(3S). FSEEK should not be used to seek
from the end of an archive file since the end of an
archive file may not be the same as the end of one of its
object file members!

SEE ALSO
fseek(3S), ldahread(3X), ldclose(3X), ldgetname(3X),
ldfhread(3X), ldlread(3X), ldlseek(3X), ldohseek(3X ,
ldopen(3X), ldrseek(3X), ldlseek(3X), ldshread(3X),
ldtbindex(3X), ldtbread(3X), ldtbseek(3X).

- 3 -

LINENUM (4)

NAME
linenum - line number entries in a common object file

SYNOPSIS
^ i n c l u d e < l i n e n u m . h >

DESCRIPTION
Compilers based on pcc generate an entry in the object
file for each C source line on which a breakpoint is
possible (when invoked with the —g option; see ee (l l) .
Users can then reference line numbers when using the
appropriate software test system (see sdb(l l) . The
structure of these line number entries appears below.

struct lineno
{

union

long l_symndx ;
long l_paddr;

} l_addr;
unsigned short l_lnno ;

} ;
Numbering starts with one for each function. The initial
line number entry for a function has l_lnno equal to zero,
and the symbol table index of the function's entry is in
l_eymndx. Otherwise, Mnno is non-zero, and l_paddr is
the physical address of the code for the referenced line.
Thus the overall structure is the following:

l_addr l_lnno

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

SEE ALSO
cc(l) , sdb(l) , a.out(4).

- 1 -

MASTER(4)

NAME
master - master device information table

DESCRIPTION
This file is used by the config(1M) program to obtain
device information that enables it to generate the
configuration files. Do not modify it unless you fully
understand its construction. The file consists of 3 parts,
each separated by a line with a dollar sign ($) in column
1. Part 1 contains device information; part 2 contains
names of devices that have aliases; part 3 contains
tunable parameter information. Any line with an
asterisk (*) in column 1 is treated as a comment.
Part 1 contains lines consisting of 7 or 10 fields, with the
fields delimited by tabs and/or blanks:
Field 1: device name (8 chars, maximum).
Field 2: device mask (octal)-each "on" bit

indicates that the handler exists:
001000 has release handler for

downloadable drivers
tty header exists
initialization handler
power-failure handler
open handler
close handler
read handler
write handler
ioctl handler,

device type indicator (octal):
001000 cluster device

VME device
allow only one of these devices
suppress interrupt vector
required device
block device
character device
floating vector
fixed vector.

Field 4: handler prefix (4 chars, maximum).
Field 5: major device number for block-type

device.
Field 6: major device number for character-type

device.
Field 7: maximum number of devices on system.
Field 8: device vector size.
Field 9: device address type (VME modifier).
Field 10: device interrupt level.

Field 3:

000200
000100
000040
000020
000010
000004
000002
000001

000400
000200
000040
000020
000010
000004
000002
000001

MASTER(4)

Part 2 contains lines with 2 fields each:
Field 1: alias name of device (8 chars, maximum).
Field 2: reference name of device (8 chars.

maximum; specified in part 1).
Part 3 contains lines with 2 or 3 fields each:
Field 1: parameter name (as it appears in

description file; 20 chars, maximum)
Field 2: parameter name (as it appears in the

conf .c file; 20 chars, maximum)
Field 3: default parameter value (20 chars.

maximum; parameter specification is
required if this field is omitted)

FILES
/etc/master

SEE ALSO
config(lM).

- 2 -

MNTTAB (4)

NAME
mnttab - mounted file system table

SYNOPSIS
^ i n c l u d e < m n t t a b . h >

DESCRIPTION
Mnttab resides in directory / e t c and contains a table of
devices, mounted by the moun<(lM) command, in the
following structure as defined by < m n t t a b . h > :

Each entry is 70 bytes in length; the first 32 bytes are
the null-padded name of the place where the special file
is mounted; the next 32 bytes represent the null-padded
root name of the mounted special file; the remaining 6
bytes contain the mounted special file's read/write
permissions and the date on which it was mounted.
The maximum number of entries in mnttab is based on
the system parameter NMOUNT located in
/ u s r / s r c / u t s / c f / c o n f . c , which defines the number of
allowable mounted special files.

struct mnttab {
char
char
short

mt_dev[32];
mt_filsys[32];
mt_ro_flg;
mt_time; time t

SEE ALSO
mount(lM), setmnt(lM).

NETWORKS (4 N)

NAME
networks - names and numbers for the internet

DESCRIPTION
The file / e t c / n e t w o r k s lists networks on the internet.
Each line describes a single network and consists of the
following blank separated fields:

name number aliases ...
where

name is the official name of the network.
All nodes on the internet should use
the same official name for a given
network.

number is the network number, which
serves as part of the DARPA
Internet address for each node on
the internet. All nodes on the
internet must use the same number
for a given network.

aliases . . . is a blank-separated list of local
aliases for the network.
The routines which search this file
ignore comments (portions of lines
beginning with #) and blank lines.

EXAMPLE
Building 1 Internet
Engineering 1 # R & D
Production 2 ^Administration, etc.

SEE ALSO
hosts(4N).

CTIX Internetworking Manual.

/ e tc /networks
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

FILES

NOTE

- 1 -

PASSWD (4)

NAME
passwd - password file

DESCRIPTION
Passwd contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID
user name
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry
is separated from the next by a colon. Each user is
separated from the next by a new-line. If the password
field is null, no password is demanded; if the Shell field
is null, / b i n / s h is used.
This file resides in directory / e t c . Because of the
encrypted passwords, it can and does have general read
permission and can be used, for example, to map
numerical user IDs to names.
The encrypted password consists of 13 characters chosen
from a 64-character alphabet (., / , O-fl, A - Z , a - z) ,
except when the password is null, in which case the
encrypted password is also null. Password aging is
effected for a particular user if his encrypted password in
the password file is followed by a comma and a non-null
string of characters from the above alphabet. (Such a
string must be introduced in the first instance by the
super-user.)
The first character of the age, M say, denotes the
maximum number of weeks for which a password is
valid. A user who attempts to login after his password
has expired will be forced to supply a new one. The next
character, m say, denotes the minimum period in weeks
which must expire before the password may be changed.
The remaining characters define the week (counted from
the beginning of 1970) when the password was last
changed. (A null string is equivalent to zero.) M and m
have numerical values in the range 0 - 6 3 that correspond
to the 64-character alphabet shown above (i.e., / = 1
week; z = 63 weeks). If m = M = 0 (derived from the
string . or ..) the user will be forced to change his
password the next time he logs in (and the "age" will
disappear from his entry in the password file). If m >
M (signified, e.g., by the string . /) only the super-user
will be able to change the password.

- 1 -

PASSWD (4)

FILES
/etc/passwd

SEE ALSO
1641(30), login(l), passwd(l), a641(3C), crypt(3C),
getpwent(3C), group(4).

- 2 -

P L O T (4)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in
plot(3X) and are interpreted for various devices by
commands described in tplot(1G). A graphics file is a
stream of plotting instructions. Each instruction consists
of an ASCII letter usually followed by bytes of binary
information. The instructions are executed in order. A
point is designated by four bytes representing the x and
y values; each value is a signed integer. The last
designated point in an 1, m , n , or p instruction becomes
the "current point" for the next instruction.

Each of the following descriptions begins with the name
of the corresponding routine in plot(3X).
m move: The next four bytes give a new current point.
n cont: Draw a line from the current point to the point

given by the next four bytes. See tplot(1G).
p point: Plot the point given by the next four bytes.
1 line: Draw a line from the point given by the next

four bytes to the point given by the following four
bytes.

t label: Place the following ASCII string so that its
first character falls on the current point. The string
is terminated by a new-line.

e erase: Start another frame of output.
f linemod: Take the following string, up to a new-line,

as the style for drawing further lines. The styles are
"dotted", "solid", "longdashed", "shortdashed", and
"dotdashed". Effective only for the - T 4 0 1 4 and
- T v e r options of tplot{ 1G) (TEKTRONIX 4014
terminal and Versatec plotter).

s space: The next four bytes give the lower left corner
of the plotting area; the following four give the upper
right corner. The plot will be magnified or reduced
to fit the device as closely as possible.

Space settings that exactly fill the plotting area with
unity scaling appear below for devices supported by the
filters of tplot(1G). The upper limit is just outside the
plotting area. In every case the plotting area is taken to
be square; points outside may be displayable on devices
whose face is not square.

DASI 300 space(0, 0, 4096, 4096);

P L O T (4)

DASI 300s spacefO, 0, 4096, 4096
DASI 450 spacelO, 0, 4096, 4096'
TEKTRONIX 4014 spacelO, 0, 3120, 3120'
Versatec plotter space(0, 0, 2048, 2048'

SEE ALSO
graph(lG), tplot(lG), plot(3X), gps(4), term(5).

WARNING
The plotting library p/of(3X) and the curses library
eurae«(3X) both use the names erase() and moveQ. The
curses versions are macros. If you need both libraries,
put the plot(3X) code in a different source file than the
curses(SX) code, and/or # u n d e f move() and erase() in
the plot(3X) code.

- 2 -

PROFILE (4)

NAME
profile - setting up an environment at login time

DESCRIPTION
If the file / e t c / p r o f i l e exists, it will be executed for
every Bourne shell user immediately upon login. After
this, if the user's login directory contains a file named
.prof i l e , that file will be be executed (via . .prof i le)
before the user's session begins. The .pro f i l e is useful
for exporting environment variables and terminal modes.
The following example is typical for a user's .prof i l e file:

P A T H = : $PATH: $HOME/bin
M A I L = / u s r / m a i l / m y n a m e
T E R M = p t
export PATH MAIL TERM
umask 022

The system file / e t c / p r o f i l e can be customized to set
the T E R M environment variable via f«et(l) and to
automatically invoke wm(l) on RS-422 terminals.
Shell environment variables that can be set are described
in sh{ 1).

FILES
$HOME / .profile
/ e t c /profile

SEE ALSO
csh(l) , cprofile(4), env(l) , login(l), mail(l) , sh(l) , s t ty(l) ,
su(l) , tset(l) , wm(l) , ttytype(4), environ(5), term(5).
MtgntyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

PROTOCOLS (4 N)

NAME
protocols - list of Internet protocols

DESCRIPTION
The file / e t c / p r o t o c o l s lists known DARPA Internet
protocols. Each line describes a single protocol and
consists of the following blank separated fields:

name number aliases ...
where
name is the official name of the protocol.
number is the protocol number.
aliases . . . is a blank-separated list of local aliases for

the protocol.
The routines which search this file ignore comments
(portions of lines beginning with #) and blank lines.
Protocol names and numbers are specified by the SRI
Network Information Center. Do not change this file
unless you are familiar with DARPA Internet internals.

FILES
/e tc /protocols

SEE ALSO
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5 / 8 6 - 1 -

RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
^ i n c l u d e < r e l o c . h >

DESCRIPTION
Object files have one relocation entry for each
relocatable reference in the text or data. If relocation
information is present, it will be in the following format.
struct reloc
{

long r_vaddr ;

long r_symndx ;

} ;

/ * (virtual) address of reference */

/ * index into symbol table */
short r_type ; / * relocation type */

All generics
* reloc. already performed to symbol in the same section
* /

#define R_ABS 0
/**
•Motorola Processors 68000, 68010, and 68020

*

#define R_DIR24 04
#define R_REL24 05
#define R_OPTl6 014
#define RJND24 015
#define RJND32 016
#define R.RELBYTE 017
#define R_RELWORD 020
#define R.RELLONG 021
#define R_PCRBYTE 022
#define R_PCRWORD 023
#define R.PCRLONG 024

As the link editor reads each input section and performs
relocation, the relocation entries are read. They direct
how references found within the input section are
treated.

- 1 -

RELOC(4)

The reference is absolute, and no relocation
is necessary. The entry will be ignored.
A direct, 24-bit reference to a symbol's
virtual address.
A "PC-relative", 24-bit reference to a
symbol's virtual address. Relative
references occur in instructions such as
jumps and calls. The actual address used
is obtained by adding a constant to the
value of the program counter at the time
the instruction is executed.
An optimized, indirect, 16-bit reference
through a transfer vector. The instruction
contains the offset into the transfer vector
table to the transfer vector where the
actual address of the referenced word is
stored.
An indirect, 24-bit reference through a
transfer vector. The instruction contains
the virtual address of the transfer vector,
where the actual address of the referenced
word is stored.
An indirect, 32-bit reference through a
transfer vector. The instruction contains
the virtual address of the transfer vector,
where the actual address of the referenced
word is stored.

R_RELBYTE A direct 8-bit reference to a symbol's
virtual address.

R_RELWORD
A direct 16-bit reference to a symbol's
virtual address.

R_RELLONG A direct 32-bit reference to a symbol's
virtual address.

R_PCRBYTE A "PC-relative", 8-bit reference to a
symbol's virtual address.

R_PCRWORD
A "PC-relative", 16-bit reference to a
symbol's virtual address.

R_PCRLONG A "PC-relative", 32-bit reference to a
symbol's virtual address.

On the VAX processors relocation of a symbol index of -1
indicates that the relative difference between the current
segment's start address and the program's load address is

- 2 -

R^ABS

RJ5IR24

R_REL24

R_0PT16

R_IND24

RJND32

RELOC(4)

added to the relocatable address.
Other relocation types will be defined as they are
needed.
Relocation entries are generated automatically by the
assembler and automatically utilized by the link editor.
A link editor option exists for removing the relocation
entries from an object file.

SEE ALSO
ld(l), strip(l), a.out(4), syms(4).

RHOSTS (4 N)

NAME
rhosts - remote equivalent users

DESCRIPTION
These files grant permission for remote users to use local
user names without knowing the corresponding user
passwords. This is known as making the remote user
"equivalent" to the local user. This is convenient, for
example, when one person owns user names on more
than one node.
If a user's home directory contains a file named .rhosts ,
remote users specified in the file are equivalent to the
local user. Each user specification in the file consists of
the remote user node name and user name, separated by
a space. For security reasons, . rhosts must belong to
the user granting the equivalence or to root.
The file / e t c / h o s t s . e q u i v is a list of remote nodes with
matching-name equivalence. The file lists remote nodes
one per line. On each node listed in / e t c / h o s t s . e q u i v ,
a remote user with the same name as a local user is
equivalent to the local user. In effect, the users are the
same if the names are the same.

FILES
$HOME/. rhosts
/etc/hosts.equiv

SEE ALSO
rcmdflN), rcp(lN), rlogin(lN).
CTIX Internetworking Manual.

WARNINGS
When a system is listed in / e t c / h o s t s . e q u i v , its
security must be as good as local security.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 1 -

SCCSFILE(4)

NAME
sccsfile - format of SCCS file

DESCRIPTION
An SCCS file is an ASCII file. It consists of six logical
parts: the checksum, the delta table (contains
information about each delta), user names (contains
login names and/or numerical group IDs of users who
may add deltas), flags (contains definitions of internal
keywords), comments (contains arbitrary descriptive
information about the file), and the body (contains the
actual text lines intermixed with control lines).

Throughout an SCCS file there are lines which begin with
the ASCII SOH (start of heading) character (octal 001).
This character is hereafter referred to as the control
character and will be represented graphically as
Any line described below which is not depicted as
beginning with the control character is prevented from
beginning with the control character.

Entries of the form D D D D D represent a five-digit string
(a number between 00000 and 99999).
Each logical part of an SCCS file is described in detail
below.
Checksum

The checksum is the first line of an SCCS file.
The form of the line is:

@hDDDDD

The value of the checksum is the sum of all
characters, except those of the first line. The
@h provides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of
entries of the form:

@ s D D D D D / D D D D D / D D D D D
@ d < t y p e > < S C C S I D > yr/mo/da hr:mi:se

< p g m r > D D D D D D D D D D
@i D D D D D . . .
@ x D D D D D . . .
@ g D D D D D . . .
@m <MR number>

@c <comments>

SCCSFILE (4)

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The
second line (@d) contains the type of the delta
(currently, normal: D, and removed: R), the
SCCS ID of the delta, the date and time of
creation of the delta, the login name
corresponding to the real user ID at the time the
delta was created, and the serial numbers of the
delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial
numbers of deltas included, excluded, and
ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR
number associated with the delta; the @c lines
contain comments associated with the delta.

The @e line ends the delta table entry.
User names

The list of login names and/or numerical group
IDs of users who may add deltas to the file,
separated by new-lines. The lines containing
these login names and/or numerical group IDs
are surrounded by the bracketing lines @u and
@U. An empty list allows anyone to make a
delta. Any line starting with a ! prohibits the
succeeding group or user from making deltas.

Flags
Keywords used internally (see admin(l) for more
information on their use). Each flag line takes
the form:
@f < f l a g > < optional t e x t >

The following flags are defined:
@f t < t y p e of program >
@f v < program n a m e >
@f i < keyword string >
@f b
@f m < module n a m e >
@ f f < floor >
@f c <cei l ing >
@ f d < d e f a u l t - s i d >
@f n

- 2 -

SCCSFILE (4)

Of j
@f 1 < lock-releases >
@f q < u s e r defined >
@f z <reserved for use in interfaces>

The t flag defines the replacement for the %Y%
identification keyword. The v flag controls prompting
for MR numbers in addition to comments; if the optional
text is present it defines an MR number validity
checking program. The i flag controls the warning/error
aspect of the "No id keywords" message. When the i
flag is not present, this message is only a warning; when
the i flag is present, this message will cause a "fatal"
error (the file will not be gotten, or the delta will not be
made). When the b flag is present the —b keyletter may
be used on the get command to cause a branch in the
delta tree. The m flag defines the first choice for the
replacement text of the % M % identification keyword.
The f flag defines the "floor" release; the release below
which no deltas may be added. The c flag defines the
"ceiling" release; the release above which no deltas may
be added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag
causes delta to insert a "null" delta (a delta that applies
no changes) in those releases that are skipped when a
delta is made in a new release (e.g., when delta 5.1 is
made after delta 2.7, releases 3 and 4 are skipped). The
absence of the n flag causes skipped releases to be
completely empty. The j flag causes get to allow
concurrent edits of the same base SID. The 1 flag defines
a list of releases that are locked against editing (j e f f l)
with the —e keyletter}. The q flag defines the
replacement for the % Q % identification keyword. The
s flag is used in certain specialized interface programs.

Comments
Arbitrary text is surrounded by the bracketing
lines @t and @T. The comments section
typically will contain a description of the file's
purpose.

Body
The body consists of text lines and control lines.
Text lines do not begin with the control
character, control lines do. There are three
kinds of control lines: insert, delete, and end,
represented by:

®I D D D D D
@D D D D D D

SCCSFILE (4)

@E D D D D D

respectively. The digit string is the serial
number corresponding to the delta for the
control line.

SEE ALSO
admin(l) , delta(l) , getj l) , prs(l).
CTIX Programmer's Guide, Section 9.

- 4 -

SCNHDR(4)

NAME
scnhdr - section header for a common object file

S Y N O P S I S
^ i n c l u d e < s c n h d r . h >

D E S C R I P T I O N
Every common object file has a table of section headers
to specify the layout of the data within the file. Each
section within an object file has its own header. The C
structure appears below.
struct scnhdr
{

char s. _name[SYMNMLEN]; /* section name » /
long s. _paddr; /* physical address * /
long s. .vaddr; /* virtual address * /
long s. .size; / * section size * /
long s. .scnptr; /* file ptr to raw data * /
long s. .relptr; /* file ptr to relocation »/
long s. Jnnoptr; /* file ptr to line numbers * /
unsigned short s. .nreloc; /* # reloc entries * /
unsigned short s. .nlnno; /* # line number entries * /
long s. .flags; /* nags * /

} ;
File pointers are byte offsets into the file; they can be
used as the offset in a call to /see£(3S). If a section is
initialized, the file contains the actual bytes. An
uninitialized section is somewhat different. It has a size,
symbols defined in it, and symbols that refer to it. But
it can have no relocation entries, line numbers, or data.
Consequently, an uninitialized section has no raw data in
the object file, and the values for s_scnptr, s_relptr,
s_lnnoptr, s_nreloc, and s_nlnno are zero.

S E E A L S O
ld(l), fseek(3S), a.out(4).

SERVICES (4 N)

NAME
services - list of Internet services

DESCRIPTION
The file / e t c / s e r v i c e s lists known DARPA Internet
services. Each line describes a single service and consists
of the following blank separated fields:

name number/protocol aliases ...
where

name is the official name of the service.
number is the service number.
protocol is the name of the protocol (see

profoco/«(4N)) used by the service.
aliases . . . is a blank-separated list of local

aliases for the service.
The routines which search this file ignore comments
(portions of lines beginning with #) and blank lines.
Service names and numbers are specified by the SRI
Network Information Center. Do not change this file
unless you are familiar with DARPA Internet internals.

FILES
/etc /services

SEE ALSO
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 1 -

S Y M S (4)

NAME
syms - common object file symbol table format

S Y N O P S I S
^ i n c l u d e < s y m s . h >

D E S C R I P T I O N
Common object files contain information to support
symbolic software testing (see sdb(l)). Line number
entries, linenum(4), and extensive symbolic information
permit testing at the C source level. Every object file's
symbol table is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The
members of the structure hold the name (null padded),
its value, and other information. The C structure is
given below.
#def ine SYMNMLEN 8
#def ine FILNMLEN 14
#def ine DIMNUM 4

struct syment
{

union / * all ways to get symbol name * /
{

char _n_name[SYMNMLEN|; / * symbol name * /
struct|
{

long _n_zeroes; / * = = OL when in string table */
long _n_offset; /» location of name in table * /

} _n_n;

- 1 -

SYMS (4)

char _n_nptr[2]; /* allows overlaying */
}-n;
long n_value; /* value of symbol */
short n_scnum; /* section number »/
unsigned short n_type; /* type and derived type »/
char n_sclass; /« storage class */
ch ar n_numaux; f * number of aux entries */

};
#def ine n_name _n._n_name
#def ine n_zeroes _n._n_n._n_zeroes
#def ine n_offset _n._n_n._n_offset
#def ine n_nptr _n._n_nptr | l]

Meaningful values and explanations for them are given in
both s y m s . h and Common Object File Format. Anyone
who needs to interpret the entries should seek more
information in these sources. Some symbols require more
information than a single entry; they are followed by
auxiliary entries that are the same size as a symbol
entry. The format follows.

union auxent
{

struct

long x_tagndx;
union
{

struct

unsigned shortx_lnno;
unsigned shortx_size;

} x_lnsz;
ong x_fsize;

} x_misc;
union
{

struct

long x_lnnoptr;
long x_endndx;

} x_fcn;
struct

unsigned shortx_dimen[DIMNUM];
} x_ary;

} x_fcnary;
unsigned short x_tvndx;
x_sym;

- 2 -

SYMS (4)

struct

char x_fname [FILNMLEN];
} x_file;

struct
{

long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;

struct
{

long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

} x_tv;
I'
Indexes of symbol table entries begin at zero.

SEE ALSO
sdb(l) , a.out(4), linenum(4).

CAVEATS
CTIX C longs are equivalent to ints and are converted to
ints in the compiler to minimize the complexity of the
compiler code generator. Thus the information about
which symbols are declared as longs and which, as ints,
does not show up in the symbol table.

SYSTEM (4)

NAME
system - system description file

DESCRIPTION
The system description describes tunable variables and
hardware configuration to the CTIX system.
The file is formatted in sections. Each section begins
with a section header (a ! followed by a single word).
Each section varies in format, depending upon the
format required by the program that uses the data
provided by that section.
In the example file the 1VMESLOTS section describes
the VME boards for the EEPROM. The slot field is the
slot position in the VME bus. The type field is the board
type; board types may be:

1 CMC Ethernet board
2 Interphase SMD disk controller board
3 Xylogics 1/2-inch tape controller board

The address field is the location of the board. The
length field is the address space size of the board. The
optional initialization function name is an initialization
function that is called by the PROM at boot time.
The IVMECODE section consists of a list of files that
describe the executable code to be loaded into the
EEPROM. This section is required only if a bootable
initialization function was specified.

EXAMPLE
IFILENAMES
PROM_IFILE=/etc/lddrv/EEPROM.ifi le
EEPROM_FILE=/dev/vme/eeprom
INIT_CFILE=tunevar.c
IVMESLOTS
* The following section describes the VME boards
*

*slot type address length [Initialization
* function name]
*

0 2 C1000000 512 initVs32
1 2 C1000200 512
*one CMC Ethernet controller)
2 1 CODE0200 131072 *

IVMECODE
diskvs32.o

5/86 - 1 -

SYSTEM (4)

SEE ALSO
lddrv(lM), ldeeprom(lM), mktunedrv(lM), vme(7).
MightyFrame Administrator's Reference Manual.

FILES
/ e t c / s y s t e m
/ dev / vme / eeprom

5 /86 - 2 -

TERM (4)

NAME
term - format of compiled term file.

SYNOPSIS
t e r m

DESCRIPTION
Compiled terminfo descriptions are placed under the
directory / u s r / l i b / t e r m i n f o . In order to avoid a linear
search of a huge CTEX system directory a two-level
scheme is used: / u s r / l i b / t e r m i n f o / c / n a m e where
name is the name of the terminal, and c is the first
character of name. Thus, act4 can be found in the file
/ u s r / l i b / t e r m i n f o / a / a c t 4 . Synonyms for the same
terminal are implemented by multiple links to the same
compiled file.

The format has been chosen so that it will be the same
on all hardware. An 8 or more bit byte is assumed, but
no assumptions about byte ordering or sign extension are
made.
The compiled file is created with the tic (1M) program,
and read by the routine setupterm. Both of these pieces
of software are part of curses(3X). The file is divided
into six parts: the header, terminal names, boolean flags,
numbers, strings, and string table.
The header section begins the file. This section contains
six short integers in the format described below. These
integers are (1) the magic number (octal 0432); (2) the
size, in bytes, of the names section; (3) the number of
bytes in the boolean section; (4) the number of short
integers in the numbers section; (5) the number of offsets
(short integers) in the strings section; (6) the size, in
bytes, of the string table.
Short integers are stored in two 8-bit bytes. The first
byte contains the least significant 8 bits of the value,
and the second byte contains the most significant 8 bits.
(Thus, the value represented is 256*second+first.) The
value - 1 is represented by 0377, 0377; other negative
values are illegal. The - 1 generally means that a
capability is missing from this terminal. Note that this
format corresponds to the hardware of the VAX and
PDP-11. Machines where this does not correspond to the
hardware read the integers as two bytes and compute the
result.
The terminal names section comes next. It contains the
first line of the terminfo description, listing the various
names for the terminal, separated by the character.
The section is terminated with an ASCII NUL character.

5/86 - 1 -

TERM (4)

The boolean flags have one byte for each flag. This byte
is either 0 or 1 as the flag is present or absent. The
capabilities are in the same order as the file < t e r m . h > .

Between the boolean section and the number section, a
null byte will be inserted, if necessary, to ensure that the
number section begins on an even byte. All short
integers are aligned on a short word boundary.
The numbers section is similar to the flags section. Each
capability takes up two bytes, and is stored as a short
integer. If the value represented is - 1 , the capability is
taken to be missing.
The strings section is also similar. Each capability is
stored as a short integer, in the format above. A value
of - 1 means the capability is missing. Otherwise, the
value is taken as an offset from the beginning of the
string table. Special characters in "X or \ c notation are
stored in their interpreted form, not the printing
representation. Padding information $ < n n > and
parameter information %x are stored intact in
uninterpreted form.

The final section is the string table. It contains all the
values of string capabilities referenced in the string
section. Each string is null terminated.
Note that it is possible for setupterm to expect a
different set of capabilities than are actually present in
the file. Either the database may have been updated
since setupterm has been recompiled (resulting in extra
unrecognized entries in the file) or the program may
have been recompiled more recently than the database
was updated (resulting in missing entries). The routine
setupterm must be prepared for both possibilities - this
is why the numbers and sizes are included. Also, new
capabilities must always be added at the end of the lists
of boolean, number, and string capabilities.

As an example, an octal dump of the description for the
Microterm A C T 4 is included:

microterm|act4|microterm act iv,
cr=*M, c u d l = * J , ind=*J , b e l = * G , am, c u b l = * H ,
e d = * _ , e l= A A , c lear=*L, cup= A T%pl%c%p2%c,
co l s#80 , l ines#24, c u f I = * X , c u u l = * Z , home= A] ,

- 2 -

TERM (4)

000 032 001 \ 0 025 \ 0 \ b \ 0 212 \0 " \ 0 m i c r
020 o t e r m | a c t 4 | m i c r o
040 t e r m a c t i v \ 0 \0 001 \ 0 \0
060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
100 \0 \ 0 P \0 377 377 030 \ 0 377 377 377 377 377 377 377 377
120 377 377 377 377 \ 0 \0 002 \ 0 377 377 377 377 004 \ 0 006 \ 0
140 \b \ 0 377 377 377 377 \n \ 0 026 \0 030 \ 0 377 377 032 \ 0
160 377 377 377 377 034 \ 0 377 377 036 \ 0 377 377 377 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 *

520 377 377 377 377 \ 0 377 377 377 377 377 377 377 377 377 377
540 377 377 377 377 377 377 007 \ 0 \ r \ 0 \f \ 0 036 \ 0 037 \ 0
560 024 % p 1 % c % p 2 % c \ 0 \n \ 0 035 \ 0
600 \b \ 0 030 \ 0 032 \0 \n \0

Some limitations: total compiled entries cannot exceed
4096 bytes. The name field cannot exceed 128 bytes.

FILES
/usr/l ib/terminfo/*/* compiled terminal capability
data base

SEE ALSO
curses(3X), terminfo(4).

- 3 -

TERMCAP (4)

NAME
termcap - terminal capability data base

SYNOPSIS
/ e tc / t ermcap

DESCRIPTION
This entry describes terminal-independent programming
conventions that originate at UC Berkeley. UNIX System
V initially borrowed termcap but has since changed to
the terminfo(4) convention. CTIX continues to support
termcap so as to be compatible with the Berkeley version
of the UNIX System. But use terminfo in new programs.

Termcap programs work from information supplied
through the TERM and TERMCAP environment
variables. The location of the description depends on
the value of TERMCAP:
• If TERMCAP is not set or is empty, TERM

is the name of an description in / e t c / t e r m c a p .
• If TERMCAP has a value that begins with a / ,

TERM is the name of an description in the file
named by TERMCAP.

• If TERMCAP begins with any character
except / , TERMCAP contains the description.

A description begins with a list of its names, separated
by vertical bars. The rest of the description is a list of
capabilities, separated by colons. If you use more than
one line, precede each newline except the last with : \
Here's a simple example.

d5|vt50|dec vt50:\
: b s : c d = \ E J : c e = \ E K : c l = \ E H \ E J : c o # 8 0 : l i # 1 2 : \
: n d = \ E C : p t : u p = \ E A :

There are three kinds of capabilities:
• Boolean. These indicate the presence or absence

of a terminal feature by their presence or
absence. Boolean capabilities consist of two
characters (the capability name).

• Numeric. These indicate some numeric value
for the terminal, such as screen size or delay
required by a standard character. Numeric
capabilities consist of two characters (the
capability name), followed by a followed by a
decimal number.

• String. These indicate a sequence that is
performs some operation on the terminal. String

- 1 -

TERMCAP (4)

capabilities consist of two characters (the
capability name), optionally followed by a delay,
followed by a string.
The delay is the number of milliseconds the
program must wait after using the sequence;
specify no more than one decimal place. If the
delay is proportional to the number of lines
affected, end it with a *.
The string is a sequence of characters. The
following subsequences are specially interpreted.

Escape Character
Control- x
Newline
Return
Tab
Backspace
Formfeed
Octal value of xxx
: in string
null (\000 doesn't work)

must be three digits long.
Some strings are interpreted further, such as cm.
see something below.

You can follow any capability name with an to
indicate that the terminal lacks the capability. This is
only useful in conjunction with the t c capability; see
"Similar Terminals," below.
Here is a list of standard capabilities. (P) indicates a
string that might require padding; (P*) indicates a string
that might require proportional padding.

Name Type Pad? Description
ae str (P) Ends alternate character set.
al str (P*) Adds new blank line.
am bool

(P*)
Terminal has automatic margins.

as str (P) Starts alternate character set.
be str

(P)
Backspace if not control-h.

bs bool Terminal can backspace with
control-h.

bt str (P) Back tab.
bw bool

(P)
Backspace wraps from column 0
to last column.

CC str Command character in prototype
if terminal settable.

\ E
x

Y
$
\xxx
\072
\200

Octal numbers

- 2 -

TERMCAP (4)

cd str fP*)
ce str (P)
ch str (P)

cl str (P*)
cm str (P)

CO num
cr str (P*)
cs str fa
c v str (pi

da bool
dB num

db bool
dC num

da str (p*)
dF num

(p*)

dl str (p*)
dm str

(p*)

dN num

do str
dT num
ed str
ei str

eo str

ff str (p*)

he bool
hd str

ho str

hu str
hz str

ic' str (p)
if str

im bool

in bool

Clears to end of display.
Clears to end of line.
Moves cursor horizontally to
specified column.
Clears screen.
Moves cursor to specified row and
column.
Number of columns in a line.
Carriage return if not control-m.
Change scrolling region.
Moves cursor vertically to
specified row.
Display can be retained above.
Delay after backspace, in
milliseconds.
Display can be retained below.
Delay after carriage return, in
milliseconds.
Delete character.
Delay after form feed, in
milliseconds.
Deletes line.
Enters delete mode.
Delay after newline, in
milliseconds.
Goes down one line.
Delay after tab, in milliseconds.
Ends delete mode.
Ends insert mode; give an empty
string if you've defined ic.
Can erase overstrikes with a
blank.
Hardcopy terminal page eject if
not form feed.
Hardcopy terminal.
Half-line down (forward 1/2
linefeed).
Move cursor to upper left corner
(home).
Half-line up (reverse 1/2 linefeed).
Hazeltine or other terminal that
can't print "'s.
Insert character.
Name of file containing terminal
initialization.
Starts insert mode; give an empty
string if you've defined ic.
Insert mode distinguishes nulls on
display.

- 3 -

TERMCAP (4)

ip str
is str
kO--k9 str

kb str
J kd str

ke str
Jkh str
JkT str

kn num
ko str

J kf str
ks str

v/ku str
10- 19 str
li num

11 str
ma str

mi bool

ml str
ms bool

mu str

nc bool

i nd str
\

nl str (P*)
ns bool
os bool
pc str
pt bool

se str
sf str (P)
sg num

so str
sr str (P)
ta str (P)

Pad after insertion.
Terminal initialization.
Sent by special (usually numeric)
function keys. If programmable,
set with is, if, vs , or ti.
Sent by backspace key.
Sent by terminal down arrow key.
Ends keypad transmit mode.
Sent by home key.
Sent by terminal left arrow key.
Number of special function keys.
Terminal capabilities that have
keys.
Sent by terminal right arrow key.
Begin keypad transmit mode.
Sent by terminal up arrow key.
Labels on special function keys.
Number of lines on screen or
page.
Last line, first column.
Command key map; used by ex
version 2 (Convergent uses
version 3).
Safe to move while in insert
mode.
Memory lock on above cursor.
Safe to move while in standout
and underline mode.
Memory unlock (turn off memory
lock).
No correctly working carriage
return (DM2500,H2000).
Non-destructive space (cursor
right).
Begin a new line if not newline.
A video terminal that doesn't
scroll!
Terminal overstrikes.
Pad character if not null.
Has hardware tabs; if they need
to be set put sequence in is or if.
Ends stand out mode.
Scrolls forwards.
Number of blank chars left by so
or se.
Begins stand out mode.
Scroll reverse (backwards).
Tab if not control-i or with
padding.

- 4 -

TERMCAP (4)

tc str Name of terminal that has some
of the same capabilities; t c must
be the last capability,

te str Ends programs that do cursor
motion.

ti str Initializes programs that do
cursor motion.

uc str Underscores and moves past one
character.

ue str Ends underscore mode,
ug num Number of blank spaces that

surround underscore mode,
ul bool Terminal underlines

automatically even though it
can't overstrike

up str Upline (cursor up),
us str Start underscore mode,
vb str Visible bell (must not move

cursor).
ve str Ends open and visual modes,
vs str Initializes open and visual modes,
xb bool Beehive (f l = e s c a p e , f 2 = c t r l C).
xn bool Terminal ignores newline after

wrap (Concept),
xr bool Return clears to end of line and

goes to beginning of next line
(Delta Data).

xs bool Writing on standout mode text
produces standout mode text (HP
264?).

xt bool Destructive tabs, magic standout
character (Teleray 1061).

Po inters on Preparing Descript ions
• You may want to copy the description of a

similar terminal.
• Build up a description gradually, checking

partial descriptions with ex.
• Be aware that an unusual terminal may expose

bugs in ex. limitations in the termcap
convention.

Basic Capabi l i t i es
The following capabilities are common to most
terminals. The c o capability gives the number of
columns per line. The li gives the number of lines on a
video terminal. The a m capability indicates that
writing off the right edge takes the cursor to the
beginning of the next screen. The cl capability tells how

- 5 -

TERMCAP (4)

the terminal clears its screen. The bs indicates that the
terminal can backspace; but if the terminal doesn't use
control-h, specify be instead of bs. The o s capability
indicates that printing a character at an occupied
position doesn't destroy the existing character.
A couple of notes on moving off the edge. Programs
that use this convention never move the cursor off the
top or the left edge of the screen. On the other hand,
they assume that moving off the bottom edge scrolls the
display up.
These capabilities suffice to describe hardcopy and very
dumb terminals. For example, the Teletype Model 33
has this description.

t3 | 33 | tty33:co#72:os

This is LSI ADM3 (without the cursor addressing
option).

cl | adm3|3|lsi adm3:am:bs:cl=*Z:li#24:co#80
Cursor Addresses and Other Variables

If a string capability includes a variable value, use a %
escape to indicate the value. By default, programs take
these values to be zero origin (that is, the first possible
value is 0) and that the c m capability specifies two
values: row, then column. Use the %r or %i capability
if either assumption is incorrect.
These are the valid % escapes.

%d print the values as a decimal number
%2 print the values as a two-digit decimal number
%3 print the values as a three-digit decimal number
%. print the value in binary (but see below)
%+x add ASCII value of x to value, then print in

binary
%>xy if the next value is greater than the ASCII value

of x, add the ASCII value of y before using the
value's % escape

%r row is the first value in this c m
%i values are 1-origin
%% print a %
%n in this capability, exclusive or the values with

01400 before using the values' % escapes
(DM25001

%B change tne next value to binary coded decimal
((16*(ar/10)) + (x%10) where x is the value)
before interpreting it

- 6 -

TERMCAP (4)

%D The next value is reverse-coded (x-2*(x%16)
where x is the value; Delta Data)

A program should avoid using a c m sequence that
includes a tab, newline, control-d, or return, because the
terminal interface may misinterpret these characters. If
possible, use the c m sequence to move to the row or
column after the destination, then use local motion to
get to the destination.

Here are some examples of c m definitions. To position
the cursor of an HP2645 on row 3, column 12, you must
send the terminal " \E&al2c03Y", followed by a 6
millisecond delay: the HP2645 description includes
: c m = 6 \ E & % r % 2 c % 2 Y : . To position the cursor of
an ACT-IV, you send it a control-t, followed by the row
and column in binary; the ACT-IV description includes
:cm='T%.%.: The LSI ADM3a uses the set of
printable ASCII characters to represent row and column
values; its description includes s c m \ E = % - | - % - | - s -

Local and General Cursor Mot ions
Most terminals have short strings that trigger
commonly-used cursor motions. A non-destructive space
(BR nd) moves the cursor one position right. An upline
sequence (up) moves the cursor one position up. A home
sequence (ho) moves the cursor to the upper left hand
corner. A lower-left (11) goes to the other lefthand
corner. The 11 capability may be a sequence that moves
the cursor home, then up; but otherwise programs never
do this.

Area Clears
Some terminals have short sequences that clear all or
part of a display. Clear (cl) clears the screen and homes
the cursor; if clearing the screen does not restore the
terminal's normal modes, cl should include the strings
that do. Clear to end of line (ce) clears from the
current cursor position to the right. Clear to end of
display (cd) clears from the current cursor position to
the bottom of the display; programs always move the
cursor to the beginning of the line before using cd.

Inser t /De le te Line
Many terminals have strings that shift text starting at
the current cursor position. Programs always move the
cursor to the beginning of the line before using these
strings. Add line (al) shifts the current line and all
below it down a position leaving the cursor on the
newly-blanked line. Delete line (deletes the line the
cursor is on without moving the cursor. If a terminal
description has a a l capability, you do not really need to

- 7 -

TERMCAP (4)

specify sb.
If deleting a line might produce a non-blank line at the
bottom of the screen, specify db. If scrolling backwards
might produce a non-blank line at the top of the screen,
specify da.

Insert/Delete Character
The termcap convention recognizes two kinds of terminal
insert/delete string.
• The first convention is by far more common.

Using insert or delete modes only affect
characters on the current line. Inserting a single
character shifts all characters, including all
blanks, to the right; the character on the right
edge of the screen is lost. No special capability
is required to describe this kind of terminal.

• The second convention is rarer and more
complicated. The terminal distinguishes
between blank spaces created by output tabs
(Oil) or spaces (040) from all other blanks; other
blanks are known as nulls. Inserting a character
eliminates the first null to the right of the
cursor; deleting a character doubles the first
null. If there are no nulls on the current line
inserting a character inserts the line's rightmost
character at the beginning of the next line. Use
the in capability to describe this kind of
terminal.

Notably among the second type are the Concept 100 and
Perkin Elmer Owl.
A simple experiment shows what type you have. Set the
terminal to its "local" mode. Clear the screen, then
type a short sequence of text. Move the cursor to the
right several spaces without using the space or tab
characters. Type a second short sequence of text. Move
the cursor back to the beginning of the first text. Start
the terminal's insert mode and begin tapping the space
bar. If you have the first kind of terminal, both
sequences of text will move at once, at whatever
character is at the right edge of the screen will be lost.
If you have the second kind of terminal, at first only the
first sequence of text will move; when the first sequence
hits the second sequence, it will push the second onto the
next line.
A terminal can have either an insert mode or the ability
to insert a single character. Specify insert mode with im
and ei. To specify that the terminal can insert a single

- 8 -

TERMCAP (4)

character, specify ic and specify empty strings for im
and ei. If you must delay or output more control text
after inserting a single character, specify ip.
If a terminal has both an insert mode and the ability to
insert a single character, it is usually best not to specify
ic.
Some programs operate more quickly if they are allowed
to move the cursor around randomly while in insert
mode. For example, vi has to delete a character when
you insert a character before a tab. If your terminal
permits this, specify move on insert mi. Beware of
terminals that foul up in subtle ways when you do this
notably Datamedia's.
Delete mode (dm), end delete mode (ed), and delete
character (dc) work like im, ei, and ic.

Highlighting, Underlining, and Visible Bells
Specify the terminals most distinctive display mode with
so se. Half intensity is usually not a good choice unless
the terminal is normally in reverse video.
The convention provides for underline mode and for
single character underlining. Specify underline mode
with u s and ue. Specify a way to underline and move
past a character with uc; if your terminal can underline
a single character but doesn't automatically move on,
add a nondestructive space to the uc string.
Some terminals can't overstrike but still correctly
underline text without special help from the host
computer. If yours is one, specify ul.
If your terminal spaces before and after entering
standout and underline mode, specify ug.
Programs leave standout and underline mode before
moving the cursor or printing a newline.
If the terminal can flash the screen without moving the
cursor, specify v b (visual bell).
If the terminal needs to change working modes before
entering the open and visual modes of ex and vi, specify
v s and ve. respectively. These can be used to change,
e.g., from a underline to a block cursor and back.
If the terminal needs to be in a special mode when
running a program that addresses the cursor, specify t i
and te . This may be important if a terminal has more
than one page of memory. If the terminal has memory-
relative cursor addressing but not screen relative cursor
addressing, use t i to fix a screen-sized window into the

- 9 -

TERMCAP (4)

terminal.
If a terminal can overstrike, programs assume that
printable spaces don't destroy anything, unless you
specify eo.

Keypad
Some terminals have keypads that transmit special
codes. If the keypad can be turned on and off, specify
k s and ke; if you don't, programs assume that the
keypad is always on. Specify the codes sent by cursor
motion keys with kl, kr, ku, kd, and kh. If there are
function keys specify the codes they send with f l , f2 , f3 ,
f4 , f5, f8 , f7, f8, and ffl. If these keys have labels other
than the usual "fO through" "f9", specify the labels II,
12, 13, 14, 15, 16, 17, 18, and 19. If there are other keys
that transmit the same code that the terminal expects
for a function, such as clear screen, mention the affected
capabilities in the k o capability. For example,
":ko=cl,ll,sf,sb:" says that the terminal has clear, home
down, scroll down, and scroll up keys that transmit the
same thing as the cl, 11, sf, and sb capabilities.

Terminal Initialization
If a terminal must be initialized, on login for example,
specify a short string with is or a file containing
initialization strings with if. Other capabilities include
is, an initialization string for the terminal, and if, the
name of a file containing long initialization strings. If
both are given, is is printed before if. If the terminal
has tab stops, these strings should first clear all stops,
then set new stops at the 9 column and every 8 columns
thereafter.

Similar Terminals
If a new terminal strongly resembles an existing
terminal, you can write a description of the new terminal
that only mentions the old terminal and the capabilities
that differ. The t c capability describes the old terminal;
it must be the last capability in the description. If the
old terminal has capabilities that the new one lacks,
specify an @ after the capability name.
The different entries you create with t c need not
represent terminals that are actually different. They can
represent different uses for a single terminal, or user
preferences as to which terminal features are desirable.
The following example defines a describes a variant of
the 2621 that never turns on the keypad.

hn | 2621nl:ks@:ke@:tc=2621:

- 10 -

TERMCAP (4)

FILES
/etc/termcap standard data base

SEE ALSO
ex(l), more(l), tset(l), ul(l), vi(l), curses(3), termcap(3),
terminfo(4).

BUGS
Ex allows only 256 characters for string capabilities, and
the routines in termcap(3) do not check for overflow of
this buffer.
The total length of a single description (excluding only
escaped newlines) may not exceed 1024 characters. If
you use tc , the combined description may not exceed
1024 characters.
The vs , and v e entries are specific to the vi program.
Not all programs support all entries. There are entries
that are not supported by any program.
The m a capability is obsolete and serves no function in
our database; Berkeley includes it for the benefit of
systems that cannot run version 3 of vi.

- 11 -

TERMINFO (4)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr / l ib / t erminfo /* /*

DESCRIPTION
Terminfo is a data base describing terminals, used, e.g.,,
by (1) and curses(3X). Terminals are described in
terminfo by giving a set of capabilities which they have,
and by describing how operations are performed.
Padding requirements and initialization sequences are
included in terminfo.

Entries in terminfo consist of a number of ',' separated
fields. White space after each ',' is ignored. The first
entry for each terminal gives the names which are known
for the terminal, separated by characters. The first
name given is the most common abbreviation for the
terminal, the last name given should be a long name
fully identifying the terminal, and all others are
understood as synonyms for the terminal name. All
names but the last should be in lower case and contain
no blanks; the last name may well contain upper case
and blanks for readability.

Terminal names (except for the last, verbose entry)
should be chosen using the following conventions. The
particular piece of hardware making up the terminal
should have a root name chosen, thus "hp2621". This
name should not contain hyphens, except that synonyms
may be chosen that do not conflict with other names.
Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an
indicator of the mode. Thus, a vtlOO in 132 column
mode would be vtlOO-w. The following suffixes should
be used where possible:

S u f f i x M e a n i n g E x a m p l e
-w Wide mode (more than 80 columns) vt lOO-w
-am With auto, margins (usually default) vt lOO-am
-nam Without automatic margins vt lOO-nam
-n Number of lines on the screen a a a - 6 0
-na No arrow keys (leave them in local) clOO-na
-np Number of pages of memory c l 0 0 - 4 p
-rv Reverse video clOO-rv
CAPABILITIES

The variable is the name by which the programmer (at
the terminfo level) accesses the capability. The capname
is the short name used in the text of the database, and is
used by a person updating the database. The i.code is
the two letter internal code used in the compiled

- 1 -

TERMINFO (4)

database, and always corresponds to the old t e r m c a p
capability name.
Capability names have no hard length limit, but an
informal limit of 5 characters has been adopted to keep
them short and to allow the tabs in the source file caps
to line up nicely. Whenever possible, names are chosen
to be the same as or similar to the ANSI X3.64-1979
standard. Semantics are also intended to match those of
the specification.
(P) indicates that padding may be specified
(G) indicates that the string is passed through tparm

with parameters as given (#•).
(*) indicates that padding may be based on the

number of lines affected

(#j) indicates the t ^ parameter.

Variab le Cap- I. Description
Boo leans n a m e Code

auto_left_margin, bw bw cubl wraps from column 0 to last
column

auto_right_margin, am am Terminal has automatic margins
beehive_glitch, xsb xb Beehive (f l=escape , f 2 = c t r l C)
ceol_standout_glitch, xhp xs Standout not erased by overwriting

(l»P)
eat_newline_glitch, xenl xn newline ignored after 80 cols

(Concept)
erase_overstrike, eo eo Can erase overstrikes with a blank
generic_type, gn gn Generic line type (e.g.,, dialup,

switch).
hard_copy, he he Hardcopy terminal
has_function_line hfl hf Terminal has a function key label

has_meta_key, km km
line
Has a meta key (shift, sets parity
bit)

has_status_line, hs hs Has extra "status line"
insert_null_glitch, in in Insert mode distinguishes nulls
memory _above, da da Display may be retained above the

screen
memory_below, db db Display may be retained below the

screen
move_insert_mode, mir mi Safe to move while in insert mode
move_standout_mode, msgr ms Safe to move in standout modes
over_strike, OS OS Terminal overstrikes
status_line_esc_ok, eslok es Escape can be used on the status

line

5/86 - 2 -

TERMINFO (4)

teleray_glitch, xt xt Tabs ruin, magic so char (Teleray
1061)

tilde_glitch, hz hz Hazeltine; can not print ~'s
transparent_underline, ul ul underline character overstrikes
xon_xoff, xon XO Terminal uses xon/xoff handshaking

N u m b e r s :
columns, cols CO Number of columns in a line
init_tabs, it it Tabs initially every # spaces
line_attribute ldaat LA Line drawing character at tr ibute
lines, lines li Number of lines on screen or page
li n es_of_m e mory, lm lm Lines of memory if > lines. 0 means

varies
magic_cookie_glitch, xmc sg Number of blank chars left by smso

or rmso
padding_baud_rate, pb Pb Lowest baud where cr/nl padding is

needed
virtual_terminal, vt vt Virtual terminal number (UNIX

system)
width_status_line, wsl ws No. columns in status line

S t r i n g s !
back_tab, cbt bt Back tab (P)
bell, ~ bel bl Audible signal (bell) (P)
carriage_return, cr cr Carriage return (P*)
change_scroll_region, csr cs change to lines # 1 through # 2

(vtlOO) (PG)
clear_all_tabs, tbc ct Clear all tab stops (P)
clear jscreen, clear cl Clear screen and home cursor (P*)
clr_eol, el ce Clear to end of line (P)
clr_eos, ed cd Clear to end of display (P*)
column_address, hpa ch Set cursor column (PG)
command_character, cmdch CC Term. settable cmd char in

prototype
cursor _address, cup cm Screen rel. cursor motion row # 1 col

2 (PG)
cursor_down, cudl do Down one line
cursor_h°m e» home ho Home cursor (if no cup)
cursor .invisible, civis vi Make cursor invisible
cursor_left, cubl le Move cursor left one space
cursor_me m_ad dress, mrcup CM Memory relative cursor addressing
cursor_normal, cnorm ve Make cursor appear normal (undo

vs/vi)
cursor_right, cufl <& Non-destructive space (cursor right)
cursor_to_ll, 11 11 Last line, first column (if no cup)
cursor_up, cuul up Upline (cursor up)
cursor_visible, cvvis vs Make cursor very visible
delete_character, dchl dc Delete character (P*)

TERMINFO (4)

delete_line, dll dl Delete line (P*)
dis_status_line, dsl ds Disable s tatus line
down_half_line, hd hd Half-line down (forward 1/2

linefeed)
enter_alt_charset_mode, smacs as Start alternate character set (P)
enter_bl'nk_mode, blink mb Turn on blinking
enter_bold_mode, bold md Turn on bold (extra bright) mode
enter_ca_mode, smcup ti String to begin programs that use

cup
expand center; lw(1.4i) lw(.4i) lw(.4i)
lw(1.8i).

enter_delete_mode, smdc dm Delete mode (enter)
enter_dim_mode, dim mh Turn on half-bright mode
enter_insert_mode, smir im Insert mode (enter);
enter_protected_mode, prot mp Turn on protected mode
enter_reverse_mode, rev mr Turn on reverse video mode
enter_secure_mode, invis mk Turn on blank mode (chars

invisible)
enter_standout_mode, smso so Begin stand out mode
enter_underline_mode, smul us Start underscore mode
erase_chars ech ec Erase # 1 characters (PG)
exi t_al t_c h ars et_mod e, rmacs ae End alternate character set (P)
exit_attribute_mode, sgrO me Turn off all attributes
exit_ca_mode, rmcup te String to end programs tha t use cup
exit_delete_mode, rmdc ed End delete mode
exit_insert_mode, rmir (ei7 End insert mode
exit_standout_mode, rmso se End stand out mode
exit_underline_mode, rmul ue End underscore mode
flash_screen, flash vb Visible bell (may not move cursor)
form_feed, ff ff Hardcopy terminal page eject (P*)
from_status_line, fsl fs Return from status line
init_lstring, isl i l Terminal initialization string
init_2string, is2 i2 Terminal initialization string
init_3string, is3 i3 Terminal initialization string
init Tile, if if Name of file containing is
insert_character, ichl C ic ' Insert character (P)
insert_line, ill al Add new blank line (P*)
insert_p adding, >P ip Insert pad after character inserted (p*
key_backspace, kbs kb Sent by backspace key
key_catab, ktbc ka Sent by clear-all-tabs key
key_clear, kclr kC Sent by clear screen or erase key
key_ctab, kctab kt Sent by clear-tab key
key_dc, kdchl kD Sent by delete character key
key_dl, kdl l kL Sent by delete line key
key_down, kcudl Sent by terminal down arrow key
key_eic, krmir kM Sent by rmir or smir in insert mode
key_eol, kel kE Sent by clear-to-end-of-line key
key_eos, ked kS Sent by clear-to-end-of-screen key
key_fO, kfO kO Sent by function key fO

- 4 -

TERMINFO (4)

k e y j l , k f l k l Sent by function key f l
keyJIO, kflO ka Sent by function key flO
k e y J 2 , kf2 k2 Sent by function key f2
k e y J 3 , kf3 k3 Sent by function key f3
key_f4, kf4 k4 Sent by function key f4
key_f5, kf5 k5 Sent by function key f5
key_f6, kf6 k6 Sent by function key f6
k e y J 7 , kf7 k7 Sent by function key f7
key_f8, kf8 k8 Sent by function key f8
k e y J 9 , kf9 k9 Sent by function key f9
key j iome , khome , kh Sent by home key
k e y j c , kichl \ l Sent by ins char/enter ins mode key
k e y j l , kill kA Sent by insert line
k e y j e f t , kcubl kl Sent by terminal left arrow key
k e y j l , kll kH Sent by home-down key
key_npage, knp kN Sent by next-page key
key_ppage, kpp kP Sent by previous-page key
key_right, kcufl kr Sent by terminal right arrow key
key_sf, kind kF Sent by scroll-forward/down key
keyjsr , kri kR Sent by scroll-backward/up key
key_stab, khts kT Sent by set-tab key
key_up, keuul ku Sent by terminal up arrow key
keypad_local, rmkx ke Out of "keypad t ransmit" mode
keypad _xmit, smkx ks P u t terminal in "keypad transmit

mode
lab_fO, iro 10 Labels on function key fO if not fO
lab_fl , lfl 11 Labels on function key f l if not f l
lab_flO, lflO la Labels on function key flO if not flO
lab_f2, lf2 12 Labels on function key f2 if not f2
lab_f3, lf3 13 Labels on function key f3 if not f3
l a b J 4 , lf4 14 Labels on function key f4 if not f4
lab_f5, lf5 15 Labels on function key f5 if not f5
lab_f6, ire 16 Labels on function key f6 if not f6
lab_17, 117 17 Labels on function key f7 if not 17
lab_f8, ire 18 Labels on function key f8 if not f8
l a b J 9 , ire 19 Labels on function key f9 if not f9
ld_upleft ldul TL Upper left corner box character
ld_upright ldur T R Upper right corner box character
ld_botleft ldl l BL Bottom left corner box character
ld_botright Idbf i- BR Bottom right corner box character
ld_vertleft ldvl VL Left-hand side box character
ld_vertright ldvr VR Right-hand side box character
ld_hortop ldht TH Top side box character
ld_horbot ldhb BH Bottom horizontal box character
ld_upleft ldul TL Upper left corner box character v
ld_upleft ldul TL Upper left corner box character v
ld_upleft ldul TL Upper left corner box character y
meta_on, smm mm Turn on "meta mode" (8th bit)
meta_off, rmm mo Turn off "meta mode"

- 5

TERMINFO (4)

newline, nel nw Newline (behaves like cr followed by If)
pad_char, pad pc Pad character (rather than null)
parm_dch, dch DC Delete # 1 chars (PG*)
parm_delete_line, dl DL Delete # 1 lines (PG*)
parm_down_cursor, cud DO Move cursor down # 1 lines (PG*)
parm_ich, ich IC Insert # 1 blank chars (PG*)
parm_index, indn SF Scroll forward # 1 lines (PG)
parm_insert_line, il AL Add # 1 new blank lines (PG*)
parm_left_cursor, cub LE Move cursor left # 1 spaces (PG)
parm_right_cursor, cuf RI Move cursor right # 1 spaces (PG*)
parm_rindex, rin SR Scroll backward # 1 lines (PG)
parm_up_cursor, cuu UP Move cursor up # 1 lines (PG*)
pkey_key, pfkey pk Prog funct key # 1 to type string # 2
pkey_local, pfloc Pi Prog funct key # 1 to execute string # 2
pkey_xmit, pfx px Prog funct key # 1 to xmit string # 2
print_screen, mcO ps Print contents of the screen
prtr_off, mc4 pf Turn off the printer
prtr_on, mc5 po Turn on the printer
repeat_char, rep rp Repeat char # 1 # 2 times. (PG*)
reset_lstring, rs l r l Reset terminal completely to sane

modes.
reset_2string, rs2 r2 Reset terminal completely to sane

modes.
reset_3string, rs3 r3 Reset terminal completely to sane

modes.
reset_file, rf rf Name of file containing reset string
restore_cursor, rc rc Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute set row) (PG)
save_cursor, sc sc Save cursor position (P)
scroll_forward, ind sf Scroll text up (P)
scroll_reverse, ri sr Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9)
set_tab, hts St Set a tab in all rows, current column
set_window, wind wi Current window is lines # l - # 2

cols # 3 - # 4
tab, ht ta Tab to next 8 space hardware tab stop
to_status_line, tsl ts Go to status line, column # 1
underline_char, uc uc Underscore one char and move past it
up_half_line, hu hu Half-line up (reverse 1/2 linefeed)
init_prog, iprog iP Pa th name of program for init
key_al, ka l K1 Upper left of keypad
key_a3, ka3 K3 Upper right of keypad
key_b2, kb2 K2 Center of keypad
key_cl, kcl K4 Lower left of keypad
key_c3, kc3 K5 Lower right of keypad
prtr_non, mc5p po Turn on the printer for # 1 bytes

5/86 - 6 -

TERMINFO (4)

A Sample E n t r y
The following entry, which describes the Concept -100 , is
among the more complex entries in the terminfo file as of
this writing.

conceptlOO | cl00| concept | cl04 | c l00 -4p | concept 100,
am, bel=*G, b l a n k = \ E H , b l i n k = \ E C , c l e a r = " L $ < 2 * > , c n o r m = \ E w ,

cols#80, c r = * M $ < 9 > , c u b l = " H , c u d l = * J , c u f l = \ E = ,
c u p = \ E a % p l % ' ' % + % c % p 2 % ' ' % + % c ,
c u u l = \ E ; , c v v i s = \ E W , db, d c h l = \ E " A $ < 1 6 * > , d i m = \ E E , d l l = \ E " B $ < 3 * > ,
e d = \ E * C $ < 16*> , e l = \ E * U $ < 1 6 > , eo, f l a s h = \ E k $ < 2 0 > \ E K , h t = \ t $ < 8 > ,
i l l = \ E " R $ < 3 * > , in, i n d = " J , , i n d = * J $ < 9 > , i p = $ < 1 6 * > ,
i s 2 = \ E U \ E f \ E 7 \ E 5 \ E 8 \ E l \ E N H \ E K \ E \ 2 0 0 \ E o & \ 2 0 0 \ E o \ 4 7 \ E ,
k b s = " h , k c u b l = \ E > , k c u d l = \ E < , k c u f l = \ E = , k c u u l = \ E ; ,
k f l = \ E 5 , k f 2 = \ E 6 , k f 3 = \ E 7 , k h o m e = \ E ? ,
lines#24, mir, pb#9600, p r o t = \ E I , r e p = \ E r % p l % c % p 2 % ' ' % + % c $ < . 2 * > ,
r e v = \ E D , r m c u p = \ E v $ < 6 > \ E p \ r \ n , r m i r = \ E \ 2 0 0 , r m k x = \ E x ,
r m s o = \ E d \ E e , r m u l = \ E g , r m u l = \ E g , s g r 0 = \ E N \ 2 0 0 ,
s m c u p = \ E U \ E v 8p \Ep \ r , s m i r = \ E * P , s m k x = \ E X , s m s o = \ E E \ E D ,
s m u l = \ E G , tabs, ul, v t # 8 , xenl,

Entries may continue onto multiple lines by placing
white space at the beginning of each line except the first.
Comments may be included on lines beginning with
" # " . Capabilities in terminfo are of three types:
Boolean capabilities which indicate that the terminal has
some particular feature, numeric capabilities giving the
size of the terminal or the size of particular delays, and
string capabilities, which give a sequence which can be
used to perform particular terminal operations.

T y p e s of Capabi l i t i e s
All capabilities have names. For instance, the fact that
the Concept has automatic margins (i.e., an automatic
return and linefeed when the end of a line is reached) is
indicated by the capability a m . Hence the description of
the Concept includes a m . Numeric capabilities are
followed by the character ' # ' and then the value. Thus
cols , which indicates the number of columns the
terminal has, gives the value '80' for the Concept.
Finally, string valued capabilities, such as el (clear to
end of line sequence) are given by the two-character
code, an ' = ' , and then a string ending at the next
following ','. A delay in milliseconds may appear
anywhere in such a capability, enclosed in $ < . . >
brackets, as in e l = \ E K $ < 3 > , and padding characters
are supplied by tputs to provide this delay. The delay
can be either a number, e.g., '20', or a number followed
by an '*', i.e., '3*'. A '*' indicates that the padding
required is proportional to the number of lines affected

5 /86 - 7 -

TERMINFO (4)

by the operation, and the amount given is the per-
affected-unit padding required. (In the case of insert
character, the factor is still the number of lines affected.
This is always one unless the terminal has x e n l and the
software uses it.) When a '*' is specified, it is sometimes
useful to give a delay of the form '3.5' to specify a delay
per unit to tenths of milliseconds. (Only one decimal
place is allowed.)
A number of escape sequences are provided in the string
valued capabilities for easy encoding of characters there.
Both \ E and \ e map to an ESCAPE character, Ax maps
to a control-x for any appropriate x, and the sequences
\ n \1 \ r \ t \ b \ f \ s give a newline, linefeed, return,
tab, backspace, formfeed, and space. Other escapes
include \A for *, \ \ for \ , \ , for comma, \ : for :, and \ 0
for null. (\ 0 will produce \200, which does not terminate
a string but behaves as a null character on most
terminals.) Finally, characters may be given as three
octal digits after a \ .

Sometimes individual capabilities must be commented
out. To do this, put a period before the capability
name. For example, see the second i n d in the example
above.

Preparing Descr ipt ions
We now outline how to prepare descriptions of terminals.
The most effective way to prepare a terminal description
is by imitating the description of a similar terminal in
terminfo and to build up a description gradually, using
partial descriptions with vi to check that they are
correct. Be aware that a very unusual terminal may
expose deficiencies in the ability of the terminfo file to
describe it or bugs in vi. To easily test a new terminal
description you can set the environment variable
TERMINFO to a pathname of a directory containing the
compiled description you are working on and programs
will look there rather than in /usr/lib/terminfo. To get
the padding for insert line right (if the terminal
manufacturer did not document it) a severe test is to
edit / e t c /passwd at 9600 baud, delete 16 or so lines from
the middle of the screen, then hit the 'u' key several
times quickly. If the terminal messes up, more padding
is usually needed. A similar test can be used for insert
character.

Basic Capabi l i t i e s
The number of columns on each line for the terminal is
given by the c o l s numeric capability. If the terminal is
a CRT, then the number of lines on the screen is given

5 / 8 6 - 8 -

TERMINFO (4)

by the lines capability. If the terminal wraps around to
the beginning of the next line when it reaches the right
margin, then it should have the a m capability. If the
terminal can clear its screen, leaving the cursor in the
home position, then this is given by the clear string
capability. If the terminal overstrikes (rather than
clearing a position when a character is struck over) then
it should have the os capability. If the terminal is a
printing terminal, with no soft copy unit, give it both he
and os. (os applies to storage scope terminals, such as
TEKTRONIX 4010 series, as well as hard copy and APL
terminals.) If there is a code to move the cursor to the
left edge of the current row, give this as cr. (Normally
this will be carriage return, control M.) If there is a code
to produce an audible signal (bell, beep, etc) give this as
bel.

If there is a code to move the cursor one position to the
left (such as backspace) that capability should be given
as c u b l . Similarly, codes to move to the right, up, and
down should be given as c u f l , c u u l , and c u d l . These
local cursor motions should not alter the text they pass
over, for example, you would not normally use ' c u f l = '
because the space would erase the character moved over.
A very important point here is that the local cursor
motions encoded in terminfo are undefined at the left
and top edges of a CRT terminal. Programs should
never attempt to backspace around the left edge, unless
b w is given, and never attempt to go up locally off the
top. In order to scroll text up, a program will go to the
bottom left corner of the screen and send the ind (index)
string.
To scroll text down, a program goes to the top left
corner of the screen and sends the ri (reverse index)
string. The strings ind and ri are undefined when not
on their respective corners of the screen.
Parameterized versions of the scrolling sequences are
indn and r in which have the same semantics as ind and
ri except that they take one parameter, and scroll that
many lines. They are also undefined except at the
appropriate edge of the screen.
The a m capability tells whether the cursor sticks at the
right edge of the screen when text is output, but this
does not necessarily apply to a c u f l from the last
column. The only local motion which is defined from
the left edge is if bw is given, then a c u b l from the left
edge will move to the right edge of the previous row. If
b w is not given, the effect is undefined. This is useful

5/86 - 9 -

TERMINFO (4)

for drawing a box around the edge of the screen, for
example. If the terminal has switch selectable automatic
margins, the terminfo file usually assumes that this is on;
i.e., a m . If the terminal has a command which moves to
the first column of the next line, that command can be
given as ne l (newline). It does not matter if the
command clears the remainder of the current line, so if
the terminal has no cr and If it may still be possible to
craft a working n e l out of one or both of them.
These capabilities suffice to describe hardcopy and
glass-tty terminals. Thus the model 33 teletype is
described as
33 | tty33 | tty | model 33 teletype,
bel=AG, cols#72, cr=~M, cudl=AJ, he, ind=~J, os,
while the Lear Siegler ADM-3 is described as
adm3 | 3 | lsi adm3,
am, bel=AG, clear=AZ, cols#80, cr=AM, cubl=AH, cudl=AJ,
ind=AJ, lines#24,

Parameter ized Strings
Cursor addressing and other strings requiring parameters
in the terminal are described by a parameterized string
capability, with printf(3S) like escapes % x in it. For
example, to address the cursor, the c u p capability is
given, using two parameters: the row and column to
address to. (Rows and columns are numbered from zero
and refer to the physical screen visible to the user, not to
any unseen memory.) If the terminal has memory
relative cursor addressing, that can be indicated by
m r c u p .

The parameter mechanism uses a stack and special %
codes to manipulate it. Typically a sequence will push
one of the parameters onto the stack and then print it in
some format. Often more complex operations are
necessary.
The % encodings have the following meanings:

%%
%d
%2d
%3d
%02d
%03d
%c
%s

outputs '%'
print pop() as in printf
print pop() like %2d
print pop() like %3d

as in printf
print pop() gives %c
print pop() gives %s

push ith parm
set variable [a-z] to pop()

5 / 8 6 - 10 -

TERMINFO (4)

% g [a - z] get variable [a - z] and push it
%'c' char constant c
% { n n } integer constant nn

%+ %- %* %/ %m
arithmetic (% m is mod): push(pop()
op pop())

%Si %\ %" bit operations: push(pop() op pop())
% = % > % < logical operations: push(pop()

op pop())
%\ % ' unary operations push(op pop())
%i add 1 to first two parms (for A N S I

terminals)

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional
else-if's are possible ala Algol 68:
%? c . %t b %e c„ %t b„ %e c„
%tbl

3%ec4%tb^ %e%;
c• are conditions, d- are bodies,

l ' l

Binary operations are in postfix form with the operands
in the usual order. That is, to get x-5 one would use
"%gx%{5}%-".
Consider the HP2645, which, to get to row 3 and column
12, needs to be sent \ E & a l 2 c 0 3 Y padded for 6
milliseconds. Note that the order of the rows and
columns is inverted here, and that the row and column
are printed as two digits. Thus its c u p capability is
c u p = 6 \ E & % p 2 % 2 d c % p l % 2 d Y .
The Microterm ACT-IV needs the current row and
column sent preceded by a with the row and column
simply encoded in binary, c u p = * T % p l % c % p 2 % c .
Terminals which use %c need to be able to backspace
the cursor (c u b l) . and to move the cursor up one line on
the screen (c u u l) . This is necessary because it is not
always safe to transmit \ n *D and \ r , as the system
may change or discard them. (The library routines
dealing with terminfo set tty modes so that tabs are
never expanded, so \ t is safe to send. This turns out to
be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and
column offset by a blank character, thus
C U p = \ E = % p l % ' '%+%c%p2%' '%+%c. After
sending ' \ E = ' , this pushes the first parameter, pushes
the ASCII value for a space (32), adds them (pushing the
sum on the stack in place of the two previous values)

- 11 -

TERMINFO (4)

and outputs that value as a character. Then the same is
done for the second parameter. More complex arithmetic
is possible using the stack.
If the terminal has row or column absolute cursor
addressing, these can be given as single parameter
capabilities h p a (horizontal position absolute) and v p a
(vertical position absolute). Sometimes these are shorter
than the more general two parameter sequence (as with
the hp2645) and can be used in preference to cup . If
there are parameterized local motions (e.g., move n
spaces to the right) these can be given as cud, cub, cuf,
and c u u with a single parameter indicating how many
spaces to move. These are primarily useful if the
terminal does not have cup, such as the TEKTRONIX
4025.

Cursor Motions
If the terminal has a fast way to home the cursor (to
very upper left corner of screen) then this can be given
as home; similarly a fast way of getting to the lower
left-hand corner can be given as 11; this may involve
going up with c u u l from the home position, but a
program should never do this itself (unless 11 does)
because it can make no assumption about the effect of
moving up from the home position. Note that the home
position is the same as addressing to (0,0): to the top left
corner of the screen, not of memory. (Thus, the \EH
sequence on HP terminals cannot be used for home.)

Area Clears
If the terminal can clear from the current position to the
end of the line, leaving the cursor where it is, this should
be given as el. If the terminal can clear from the current
position to the end of the display, then this should be
given as ed. E d is only defined from the first column of
a line. (Thus, it can be simulated by a request to delete
a large number of lines, if a true ed is not available.)

Insert/delete line
If the terminal can open a new blank line before the line
where the cursor is, this should be given as i l l ; this is
done only from the first position of a line. The cursor
must then appear on the newly blank line. If the
terminal can delete the line which the cursor is on, then
this should be given as d l l ; this is done only from the
first position on the line to be deleted. Versions of i l l
and d l l which take a single parameter and insert or
delete that many lines can be given as il and dl. If the
terminal has a settable scrolling region (like the vtlOO)
the command to set this can be described with the csr

5/86 - 12 -

TERMINFO (4)

capability, which takes two parameters: the top and
bottom lines of the scrolling region. The cursor position
is, alas, undefined after using this command. It is
possible to get the effect of insert or delete line using this
command - the s c and rc (save and restore cursor)
commands are also useful. Inserting lines at the top or
bottom of the screen can also be done using ri or ind on
many terminals without a true insert/delete line, and is
often faster even on terminals with those features.

If the terminal has the ability to define a window as part
of memory, which all commands affect, it should be
given as the parameterized string w i n d . The four
parameters are the starting and ending lines in memory
and the starting and ending columns in memory, in that
order.

If the terminal can retain display memory above, then
the d a capability should be given; if display memory can
be retained below, then d b should be given. These
indicate that deleting a line or scrolling may bring non-
blank lines up from below or that scrolling back with ri
may bring down non-blank lines.

lere are two basic kinds of intelligent terminals with
respect to insert/delete character which can be described
using terminfo. The most common insert/delete
character operations affect only the characters on the
current line and shift characters off the end of the line
rigidly. Other terminals, such as the Concept 100 and
the Perkin Elmer Owl, make a distinction between typed
and untyped blanks on the screen, shifting upon an
insert or delete only to an untyped blank on the screen
which is either eliminated, or expanded to two untyped
blanks. You can determine the kind of terminal you
have by clearing the screen and then typing text
separated by cursor motions. Type abc def using local
cursor motions (not spaces) between the abc and the def.
Then position the cursor before the abc and put the
terminal in insert mode. If typing characters causes the
rest of the line to shift rigidly and characters to fall off
the end, then your terminal does not distinguish between
blanks and untyped positions. If the abc shifts over to
the def which then move together around the end of the
current line and onto the next as you insert, you have
the second type of terminal, and should give the
capability in, which stands for insert null. While these
are two logically separate attributes (one line vs.
multiline insert mode, and special treatment of untyped
spaces) we have seen no terminals whose insert mode

Insei D e l e t e Character

5 /86 - 13 -

TERMINFO (4)

cannot be described with the single attribute.
Terminfo can describe both terminals which have an
insert mode, and terminals which send a simple sequence
to open a blank position on the current line. Give as
smir the sequence to get into insert mode. Give as rmir
the sequence to leave insert mode. Now give as i c h l
any sequence needed to be sent just before sending the
character to be inserted. Most terminals with a true
insert mode will not give i c h l ; terminals which send a
sequence to open a screen position should give it here.
(If your terminal has both, insert mode is usually
preferable to i c h l . Do not give both unless the terminal
actually requires both to be used in combination.) If post
insert padding is needed, give this as a number of
milliseconds in ip (a string option). Any other sequence
which may need to be sent after an insert of a single
character may also be given in ip. If your terminal
needs both to be placed into an 'insert mode' and a
special code to precede each inserted character, then
both s m i r / r m i r and i c h l can be given, and both will be
used. The ich capability, with one parameter, n, will
repeat the effects of i c h l n times.

It is occasionally necessary to move around while in
insert mode to delete characters on the same line (e.g., if
there is a tab after the insertion position). If your
terminal allows motion while in insert mode you can give
the capability mir to speed up inserting in this case.
Omitting mir will affect only speed. Some terminals
(notably Datamedia's) must not have mir because of the
way their insert mode works.
Finally, you can specify d c h l to delete a single
character, d c h with one parameter, n, to delete n
characters, and delete mode by giving s m d c and r m d c
to enter and exit delete mode (any mode the terminal
needs to be placed in for d c h l to work).
A command to erase n characters (equivalent to
outputting n blanks without moving the cursor) can be
given as ech with one parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display
attributes, these can be represented in a number of
different ways. You should choose one display form as
standout mode, representing a good, high contrast, easy-
on-the-eyes, format for highlighting error messages and
other attention getters. (If you have a choice, reverse
video plus half-bright is good, or reverse video alone.)
The sequences to enter and exit standout mode are given

5/86 - 14 -

TERMINFO (4)

as s m s o and rmso , respectively. If the code to change
into or out of standout mode leaves one or even two
blank spaces on the screen, as the TVI 912 and Teleray
1061 do, then x m c should be given to tell how many
spaces are left.
Codes to begin underlining and end underlining can be
given as s m u l and r m u l respectively. If the terminal
has a code to underline the current character and move
the cursor one space to the right, such as the Microterm
Mime, this can be given as uc.
Other capabilities to enter various highlighting modes
include bl ink (blinking) bold (bold or extra bright) d im
(dim or half-bright) invis (blanking or invisible text)
p r o t (protected) rev (reverse video) sgrO (turn off all
attribute modes) s m a c s (enter alternate character set
mode) and r m a c s (exit alternate character set mode).
Turning on any of these modes singly may or may not
turn off other modes.

If there is a sequence to set arbitrary combinations of
modes, this should be given as sgr (set attributes),
taking 7 parameters. Each parameter is either 0 or 1, as
the corresponding attribute is on or off. The 7
parameters are, in order: standout, underline, reverse,
blink, dim, bold, alternate character set. Not all modes
need be supported by sgr, only those for which
corresponding separate attribute commands exist.
Terminals with the "magic cookie" glitch (xmc) deposit
special "cookies" when they receive mode-setting
sequences, which affect the display algorithm rather than
having extra bits for each character. Some terminals,
such as the HP 2621, automatically leave standout mode
when they move to a new line or the cursor is addressed.
Programs using standout mode should exit standout
mode before moving the cursor or sending a newline,
unless the m s g r capability, asserting that it is safe to
move in standout mode, is present.
If the terminal has a way of flashing the screen to
indicate an error quietly (a bell replacement) then this
can be given as f lash; it must not move the cursor.
If the cursor needs to be made more visible than normal
when it is not on the bottom line (to make, for example,
a non-blinking underline into an easier to find block or
blinking underline) give this sequence as cvvis . If there
is a way to make the cursor completely invisible, give
that as civis. The capability c n o r m should be given
which undoes the effects of both of these modes.

- 15 -

TERMINFO (4)

If the terminal needs to be in a special mode when
running a program that uses these capabilities, the codes
to enter and exit this mode can be given as s m c u p and
rmcup. This arises, for example, from terminals like
the Concept with more than one page of memory. If the
terminal has only memory relative cursor addressing and
not screen relative cursor addressing, a one screen-sized
window must be fixed into the terminal for cursor
addressing to work properly. This is also used for the
TEKTRONIX 4025, where s m c u p sets the command
character to be the one used by terminfo.
If your terminal correctly generates underlined characters
(with no special codes needed) even though it does not
overstrike, then you should give the capability ul. If
overstrikes are erasable with a blank, then this should be
indicated by giving eo.

Keypad
If the terminal has a keypad that transmits codes when
the keys are pressed, this information can be given. Note
that it is not possible to handle terminals where the
keypad only works in local (this applies, for example, to
the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as s m k x and
rmkx. Otherwise the keypad is assumed to always
transmit. The codes sent by the left arrow, right arrow,
up arrow, down arrow, and home keys can be given as
k c u b l , k c u f l , k c u u l , k c u d l , and k h o m e respectively.
If there are function keys such as fO, f l , ..., flO, the
codes they send can be given as kfO, k f l , ..., kf lO. If
these keys have labels other than the default fO through
flO, the labels can be given as lfO, l f l , ..., IflO. The
codes transmitted by certain other special keys can be
given: kll (home down), k b s (backspace), k t b c (clear all
tabs), k c t a b (clear the tab stop in this column), kclr
(clear screen or erase key), k d c h l (delete character),
k d l l (delete line), krmir (exit insert mode), kel (clear to
end oi line), ked (clear to end of screen), k i c h l (insert
character or enter insert mode), k i l l (insert line), k n p
(next page), k p p (previous page), k ind (scroll
forward/down), kri (scroll backward/up), k h t s (set a
tab stop in this column). In addition, if the keypad has
a 3 by 3 array of keys including the four arrow keys, the
other five keys can be given as k a l , ka3, kb2, k c l , and
kc3. These keys are useful when the effects of a 3 by 3
directional pad are needed.

Tabs and Initialization
If the terminal has hardware tabs, the command to
advance to the next tab stop can be given as h t (usually

- 16 -

TERMINFO (4)

control I). A "backtab" command which moves leftward
to the next tab stop can be given as cbt. By convention,
if the teletype modes indicate that tabs are being
expanded by the computer rather than being sent to the
terminal, programs should not use h t or cb t even if they
are present, since the user may not have the tab stops
properly set. If the terminal has hardware tabs which
are initially set every n spaces when the terminal is
powered up, the numeric parameter it is given, showing
the number of spaces the tabs are set to. This is
normally used by the tset command to determine
whether to set the mode for hardware tab expansion, and
whether to set the tab stops. If the terminal has tab
stops that can be saved in nonvolatile memory, the
terminfo description can assume that they are properly
set.

Other capabilities include i s l , is2, and is3, initialization
strings for the terminal, iprog, the path name of a
program to be run to initialize the terminal, and if, the
name of a file containing long initialization strings.
These strings are expected to set the terminal into modes
consistent with the rest of the terminfo description.
They are normally sent to the terminal, by the tset
program, each time the user logs in. They will be
printed in the following order: is l ; is2; setting tabs using
t b c and hts; if; running the program iprog; and finally
is3. Most initialization is done with is2. Special
terminal modes can be set up without duplicating strings
by putting the common sequences in is2 and special
cases in i s l and is3. A pair of sequences that does a
harder reset from a totally unknown state can be
analogously given as r s l , rs2, rf, and rs3, analogous to
is2 and if. These strings are output by the reset
program, which is used when the terminal gets into a
wedged state. Commands are normally placed in rs2
and rf only if they produce annoying effects on the
screen and are not necessary when logging in. For
example, the command to set the vtlOO into 80-column
mode would normally be part of is2, but it causes an
annoying glitch of the screen and is not normally needed
since the terminal is usually already in 80 column mode.

If there are commands to set and clear tab stops, they
can be given as t b c (clear all tab stops) and h t s (set a
tab stop in the current column of every row). If a more
complex sequence is needed to set the tabs than can be
described by this, the sequence can be placed in is2 or if.
Certain capabilities control padding in the teletype
driver. These are primarily needed by hard copy

- 17 -

TERMINFO (4)

terminals, and are used by the tset program to set
teletype modes appropriately. Delays embedded in the
capabilities cr, ind, c u b l , f f , and t a b will cause the
appropriate delay bits to be set in the teletype driver. If
p b (padding baud rate) is given, these values can be
ignored at baud rates below the value of pb.
Misce l laneous
If the terminal requires other than a null (zero) character
as a pad, then this can be given as pad. Only the first
character of the p a d string is used.
If the terminal has an extra "status line" that is not
normally used by software, this fact can be indicated. If
the status line is viewed as an extra line below the
bottom line, into which one can cursor address normally
(such as the Heathkit hl9's 25th line, or the 24th line of
a vtlOO which is set to a 23-line scrolling region), the
capability hs should be given. Special strings to go to
the beginning of the status line and to return from the
status line can be given as tsl and fsl. (fsl must leave
the cursor position in the same place it was before tsl. If
necessary, the sc and rc strings can be included in t s l
and fsl to get this effect.) The parameter tsl takes one
parameter, which is the column number of the status line
the cursor is to be moved to. If escape sequences and
other special commands, such as tab, work while in the
status line, the flag eslok can be given. A string which
turns off the status line (or otherwise erases its contents)
should be given as dsl. If the terminal has commands to
save and restore the position of the cursor, give them as
sc and rc. The status line is normally assumed to be the
same width as the rest of the screen, e.g., cols. If the
status line is a different width (possibly because the
terminal does not allow an entire line to be loaded) the
width, in columns, can be indicated with the numeric
parameter wsl.

If the terminal can move up or down half a line, this can
be indicated with h u (half-line up) and hd (half-line
down). This is primarily useful for superscripts and
subscripts on hardcopy terminals. If a hardcopy
terminal can eject to the next page (form feed), give this
as f f (usually control L).
If there is a command to repeat a given character a
given number of times (to save time transmitting a large
number of identical characters) this can be indicated
with the parameterized string rep. The first parameter
is the character to be repeated and the second is the
number of times to repeat it. Thus, tparm(repeat_char,

- 18 -

TERMINFO (4)

'x', 10) is the same as 'xxxxxxxxxx'.
If the terminal has a settable command character, such
as the TEKTRONIX 4025, this can be indicated with
c m d c h . A prototype command character is chosen
which is used in all capabilities. This character is given
in the c m d c h capability to identify it. The following
convention is supported on CTIX: The environment is to
be searched for a C C variable, and if found, all
occurrences of the prototype character are replaced with
the character in the environment variable.

Terminal descriptions that do not represent a specific
kind of known terminal, such as switch, dialup, patch,
and network, should include the g n (generic) capability
so that programs can complain that they do not know
how to talk to the terminal. (This capability does not
apply to virtual terminal descriptions for which the
escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow
control, give x o n . Padding information should still be
included so that routines can make better decisions
about costs, but actual pad characters will not be
transmitted.

If the terminal has a "meta key" which acts as a shift
key, setting the 8th bit of any character transmitted,
this fact can be indicated with k m . Otherwise, software
will assume that the 8th bit is parity and it will usually
be cleared. If strings exist to turn this "meta mode" on
and off, they can be given as s m m and r m m .
If the terminal has more lines of memory than will fit on
the screen at once, the number of lines of memory can be
indicated with lm. A value of l m # 0 indicates that the
number of lines is not fixed, but that there is still more
memory than fits on the screen.
If the terminal is one of those supported by the UNIX
virtual terminal protocol, the terminal number can be
given as v t .
Media copy strings which control an auxiliary printer
connected to the terminal can be given as mcO: print the
contents of the screen, m c 4 : turn off the printer, and
m c 5 : turn on the printer. When the printer is on, all
text sent to the terminal will be sent to the printer. It is
undefined whether the text is also displayed on the
terminal screen when the printer is on. A variation
m c 5 p takes one parameter, and leaves the printer on for
as many characters as the value of the parameter, then
turns the printer off. The parameter should not exceed

- 19 -

TERMINFO (4)

255. All text, including mc4 , is transparently passed to
the printer while an m c 5 p is in effect.
Strings to program function keys can be given as p fkey ,
pfloc, and pfx. Each of these strings takes two
parameters: the function key number to program (from 0
to 10) and the string to program it with. Function key
numbers out of this range may program undefined keys
in a terminal dependent manner. The difference between
the capabilities is that p fkey causes pressing the given
key to be the same as the user typing the given string;
pf loc causes the string to be executed by the terminal in
local; and p fx causes the string to be transmitted to the
computer.

If the terminal is capable of drawing solid line boxes,
possibly by changing to a special character set, this may
be specified. Eight single-line drawing characters may be
given. The eight eight characters that may be specified
represent the top left corner, top right corner, bottom
left corner, bottom right corner left side, right side, top
side, and bottom side of a solid line box. The four
corner are specified with ldul, ldur, ldbl, and ldbr.
The four sides may be specified with ldvl, ldvr, ldht,
and ldhb. If the terminal must be in a special mode to
draw the line characters, specify the necessary sequences
to enter and exit the mode as one of the six highlight
modes (alternate character set is usually a good choice);
then give the mode number as a numeric value to ldatt .
The correspondence of highlight modes and numeric
values is as follows:
1 underline
2 reverse
3 blink
4 dim
5 bold
6 alternate character set
7 standout.

Glitches and Braindamage
Hazeltine terminals, which do not allow characters to
be displayed should indicate hz.
Terminals which ignore a linefeed immediately after an
a m wrap, such as the Concept and vtlOO, should
indicate xenl.
If el is required to get rid of standout (instead of merely
writing normal text on top of it), x h p should be given.
Teleray terminals, where tabs turn all characters moved
over to blanks, should indicate x t (destructive tabs).
This glitch is also taken to mean that it is not possible
to position the cursor on top of a "magic cookie", that

- 20 -

TERMINF0(4)

to erase standout mode it is instead necessary to use
delete and insert line.
The Beehive Superbee, which is unable to correctly
transmit the escape or control C characters, has xsb,
indicating that the f l key is used for escape and f2 for
control C. (Only certain Superbees have this problem,
depending on the ROM.)
Other specific terminal problems may be corrected by
adding more capabilities of the form xz.

Similar Terminals
If there are two very similar terminals, one can be
defined as being just like the other with certain
exceptions. The string capability use can be given with
the name of the similar terminal. The capabilities given
before use override those in the terminal type invoked
by use. A capability can be cancelled by placing xx@ to
the left of the capability definition, where xx is the
capability. For example, the entry

2621-nl, smkx@, rmkx@, use=2621,
defines a 2621-nl that does not have the s m k x or r m k x
capabilities, and hence does not turn on the function key
labels when in visual mode. This is useful for different
modes for a terminal, or for different user preferences.

FILES
/usr/lib/terminfo/?/* files containing terminal

descriptions
SEE ALSO

tic(lM), curses (3X), printf(3S), termcap(4), term(5).

- 21 -

T T Y T Y P E (4)

NAME
ttytype - list of terminal types by terminal number

DESCRIPTION
Ttytype is a text file that contains, for each terminal
configured, the terminal type as described in termcap{4).
It is used by teet(ll when that program sets the T E R M
environment variable.
A line in ttytype consists of a terminal name (one of the
abbreviations from the first field of the termcap entry),
followed by a space, followed by the special file name of
the terminal without the initial / d e v / .

EXAMPLES
pt ttyOOO

FILES
/ e t c / t t y t y p e

SEE ALSO
tset(l) , termcap(4).

- 1 -

TZ (4)

NAME
TZ - time zone file

DESCRIPTION
The / e t c / T Z file describes the time zone for the locality
of the CTIX system. The file contains a single entry of
the form:

zSTn [zDT]
where 2ST is the standard three-letter abbreviation for
the standard time zone; n is the difference in hours from
Greenwich time; and zDT is the standard three-letter
abbreviation for daylight saving time, if observed in the
area.
The earth is divided into twenty-four (0 to 23)
longitudinal standard time zones. Adjacent time zones
are one hour (15 degrees) apart, beginning at Greenwich
(0 degrees), with some variations in local legal time.
For the meridians of North America the principal time
zones are:

AST4ADT

EST5EDT

CST6CDT

MST7MDT

PST8PDT

YST9YDT

HST10HDT

NST11NDT

FILES

/etc /TZ
SEE ALSO MightyFrame Administrator's Reference Manual.

Atlantic Standard Time/Daylight
Saving Time (60 degrees)
Eastern Standard Time/Daylight
Saving Time (75 degrees)
Central Standard Time/Day light Saving
Time (90 degrees)
Mountain Standard Time/Daylight
Saving Time (105 degrees)
Pacific Standard Time/Daylight Saving
Time (120 degrees)
Yukon Standard Time/Daylight Saving
Time (135 degrees)
Hawaiian Standard Time/Daylight
Saving Time (150 degrees)
Nome Standard Time/Daylight Saving
Time (165 degrees)

- 1 -

UTMP (4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < u t m p . h >

DESCRIPTION
These files, which hold user and accounting information
for such commands as who(l), wrtte(l), and login(1),
have the following structure as defined by < u t m p . h > :
#def ine U T M P J ' I L E " / e t c / u t m p "
#de f ine W T M P _ F I L E " / e t c / w t m p "
#de f ine u t_name ut_user

s t ruct u tmp {
char ut_user[8|;

/ » User login name * /
char ut_id[4];

/ * / e t c / in i t t ab id (usually line #) */
char ut_line[l2];

/ » device name (console, lnxx) */
short ut_pid;

/ » process id » /
short ut_type;

/ » type of entry * /
s t ruct exi t_status {

short e_termination;
/ * Process termination s ta tus */

short e_exit;
/ * Process exit s t a tus » /

} ut_exit;
/ * The exit s ta tus of a process
* marked as DEAD_PROCESS. */

t ime_t ut_t ime;
/ * time entry was made * /

};

- 1 -

UTMP (4)

/ * D e f i n i t i o n s fo r u t j y p e

d e f i n e E M P T Y 0
define R U N J . V L 1
d e f i n e B O O T _ T I M E 2
d e f i n e OLD_TIME 3
define N E W _ T I M E 4

d e f i n e I N I T _ P R O C E S S 5
/ • Process spawned by " in i t " • /

d e f i n e L O G I N J > R O C E S S 6

/ • A "ge t ty" process wai t ing for login
define U S E R J ' R O C E S S 7

/ * A user process • /
define D E A D _ P R O C E S S 8
define A C C O U N T I N G 9
d e f i n e U T M A X T Y P E ACCOUNTING

/ * Largest legal value of ut_type » /

j * Special strings or formats used in the " u t j i n e " field */
/* when accounting for something other than a process */
/* No string for the u t j i n e field can be more than 11 */
/ * chars + a NULL in length
#define RUNLVL_MS G
#define BOOT_MSG
#define OTIME.MSG
#def ine NTIME_MSG

"run-level %c"
"system boot"
"old time"
"new time"

FILES
/usr/include/utmp.h
/e tc /utmp
/e tc /wtmp

SEE ALSO
login(l), who(l), write(l), getut(3C).

- 2 -

INTRO (5)

NAME
intro - introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities such as
macro packages, character set tables, etc.

- 1 -

ASCII (5)

NAME
ascii - map of ASCII character set

SYNOPSIS
c a t / u s r / p u b / a s c i i

DESCRIPTION
Ascii is a map of the ASCII character set, giving both
octal and hexadecimal equivalents of each character, to
be printed as needed. It contains:

0 0 0 n u l 001 soh 002 s t x 003 e t x 004 e a t 006 enq 006 &ck 007 be 1
010 bs O i l h t 012 n l 013 v t 014 np 016 c r 016 s o 017 s i
020 d i e 021 d e l 022 dc2 023 d c 3 024 d c 4 026 nak 026 syn 027 e t b
0 3 0 can 031 em 032 s u b 033 e s c 034 f s 036 gs 036 r s 037 us
0 4 0 sp 041 ! 042 n 043 # 044 * 046 % 046 & 047 '

0 6 0 (061) 062 • 063 + 064 066 - 066 067 /
0 6 0 0 061 1 062 2 063 3 064 4 066 6 066 6 067 7
070 8 071 » 072 073 ; 074 < 076 = 076 > 077 ?

100 ffl 101 A 102 B 103 C 104 D 106 E 106 F 107 G
110 H U l I 112 J 113 K 114 L 116 M 116 N 117 O
120 P 121 Q 122 R 123 S 124 T 126 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 136] 136 - 137
140 \ 141 a 142 b 143 c 144 d 146 e 146 f 147 g
160 h 161 i 162 j 163 k 164 1 166 m 166 n 167 o
160 P 161 q 162 r 163 s 164 t 166 u 166 v 167 w
170 X 171 y 172 I 173 { 174 176 } 176 - 177 d e l

00 nu 1 01 s o h 02 s t x 03 e t x 04 e o t 06 enq 06 ack 07 be 1
08 bs 09 h t o» n l 0b v t 0c np Od c r Oe 8 o Of s i
10 d i e 11 d e l 12 dc2 13 d c 3 14 d c 4 16 nak 16 syn 17 e t b
18 can 19 em l a s u b l b e s c l c f s Id gs l e r s I f u s
20 sp 21 I 22 fi 23 # 24 t 26 % 26 & 27 '

28 (29) 2a • 2b + 2c , 2d - 2e 2 f /
30 0 31 1 32 2 33 3 34 4 36 6 36 6 37 7
38 8 39 9 3a 3b ; 3c < 3d = 3e > 3 f ?

40 a 41 A 42 B 43 C 44 D 46 E 46 F 47 G
48 H 49 I 4a J 4b K 4c L 4d M 4e N 4 f O
60 P 61 Q 62 R 63 S 64 T 66 U 66 V 67 W
68 X 69 Y 6a Z 6b I 6c \ 6d 1 5e - 6 f
60 61 a 62 b 63 c 64 d 66 e 66 f 67 g
68 h 69 i 6a i 6b k 6c 1 6d m 6e n 6 f o
70 P 71 q 72 r 73 8 74 t 76 u 76 V 77 w
78 X 79 y 7a i 7b { 7c 7d } 7e - 7 f d e l

FILES
/usr/pub/ascii

DEVICES (5)

NAME
Devices - configuration file for uucp communications
lines

SYNOPSIS
/ u s r / l i b / u u c p / D e v i c e s

DESCRIPTION
/ u s r / l i b / u u c p / D e v i c e s is a text file that contains
configuration specifications for communications devices,
such as modems or direct lines. Each line in the file
describes a single device and how it communicates with a
remote system. Comment lines begin with a pound sign
(#) . The UUCP system uses the
/ u s r / l i b / u u c p / D e v i c e s file in conjunction with the
/ u s r / l i b / u u c p / D i a l e r s file to place a call.
Each line containes five or more fields delimited by
spaces. The first field is the line type as specified in the
/ u s r / l i b / u u c p / S y s t e m s file; for direct lines, the first
field is the name of the remote system.
The remaining fields give the device name; the calling
device indicator (such as for 801 calling units), if used;
the speed, which may be specified as ANY; and the
name of the caller as specified in the
/ u s r / l i b / u u c p / D i a l e r s file. The last field, the name
of the caller, may be followed by a token format
(containing\D or \ T) ; pairs of these dialer name/token
format fields can De repeated if more than one dialer
must be used in succession to make the connection. If
no token format is specified, a \ D is used for a dialer
name that references the / u s r / l i b / u u c p / D i a l e r s file; a
\ T is used for internal dialer types such as 801. Unused
fields are replaced by a hyphen (—).

EXAMPLE
The following entry configures a 1200-baud intelligent
modem on device contty for use with UUCP:

ACU contty - 1200 penril
FILES

/usr/l ib/uucp/Devices
/ usr/lib/uucp/Dialers
/usr/l ib/uucp/Systems

SEE ALSO
uucp(lC), dial(3C), Dialers(5).
MightyFrame Administrator's Reference Manual.

5/86 - 1 -

DIALERS (5)

NAME
Dialers - ACU/modem calling protocols

SYNOPSIS
/ u s r / l i b / u u c p / D ialers

DESCRIPTION
Dialers describes the call-placing protocols for
intelligent modems, ACUs (automatic calling units), and
other serial switched devices such as data switches.
When a connection is requested via the UUCP system,
CTEX looks for a description of the called system in the
/ u s r / l i b / u u c p / S y s t e m s file, where the type of line is
specified for connection to that system. CTEX then
checks the / u s r / l i b / u u c p / D e v i c e s file for a
description of the line, its speed and its Dialers name.
The Dialers name given in the Dev ices file corresponds
to the first field of the Dialers file.

Dia lers is a text file that contains the dialing script for
the modems that are configured in the Dev ices file.
Each description begins on a new line and has three or
more fields, delimited by spaces.
The first field of the description is the name of the
modem or device as specified in the Dev ices file.
The second field specifies the codes used by that
particular modem for secondary dial tone (=) and pause
(-) ; this field enables CTEX to translate from the
standard 801 codes (= and —) to the special characters
used by that particular device.
The remaining fields are the chat script that is necessary
to establish communication with the modem.
The modem chat script is composed of command strings
to the modem and response strings expected in return
from the modem. The strings consist of ASCII and
control characters that are recognized by the individual
modem or device. Spaces delimit the end of a send or
receive sequence. The first string is an expect string.
Several modems and switches are already provided in the
Dia lers file. Additional devices can be configured by
studying the manufacturers' manuals to determine the
appropriate send/receive sequences for other modems.
In the string sequences of the send/receive fields the
following escape sequences represent control codes:
\ d d d Octal number.
\ c Suppress new line (valid only after \ r or at the

end of a field).

5/86 - 1 -

DIALERS (5)

\ d Delay (two seconds).
\ D Substitute the telephone number (from the

/ u s r / l i b / u u c p / S y s t e m s file or cu(lC)),
without character translation.

\ e Turn off echo checking.
\ E Turn on echo checking (for slow devices).
\ K Insert a BREAK.
\ n New-line.
\ p Pause (a slight delay of one-quarter to one-half

second).
\ r Carriage return.
\ T Substitute the telephone number (from the

/ u s r / l i b / u u c p / S y s t e m s file or cu(lC)), with
character translation. Character translation
interprets the 801 codes in the second field and
expands any symbols found in the
/ u s r / l i b / u u c p / D i a l c o d e s file.

Comments delimited by a pound sign (#) , spaces, or
tabs are ignored. Any line terminated by a backslash (\)
continues to the next line.

EXAMPLE
The following example establishes communication with a
Ventel modem:
ventel = & - % "" \ r \ p \ r \ c $ < K \ T % % \ r > \ c ONLINE!

The first field, "ventel," is the name of the modem that
corresponds to a "ventel" caller type in the fifth or
subsequent field of a Dev ices file entry. The second
field describes the modem's convention for the secondary
dial tone (&) and a pause (%) command. The
remaining fields consist of five strings separated by
spaces. The five strings are interpreted as follows:
1. The first expect string ("") is null.
2. Send to the modem a series of carriage returns to

elicit a prompt.
3. The modem should respond with a dollar sign ($).
4. Send the telephone number (\ T) to the modem.
5. Upon connection the modem should respond with the

string 'ONLINE!'.
FILES

/usr/l ib/uucp/Devices
/ usr/lib / uucp/Dialcodes
/ usr/lib/uucp/Systems

5/86 - 2 -

DIALERS (5)

SEE ALSO
uucp(lC), dial(3C), Devices(5).
MightyFrame Administrator's Reference Manual.

5/86 - 2 -

ENVIRON (5)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made
available by exec (2) when a process begins. By
convention, these strings have the form "name=va lue" .
The following names are used by various commands:
P A T H The sequence of directory prefixes that sA(l),

time(1), nj'ce(l), nohup(1), etc., apply in
searching for a file known by an incomplete path
name. The prefixes are separated by colons (:) .
Login(l) sets P A T H = : / b i n : / u s r / b i n .

H O M E Name of the user's login directory, set by
login(l) from the password file passwd(4).

T E R M The kind of terminal for which output is to be
prepared. This information is used by
commands, such as mm(l) , or tplot(1G), which
may exploit special capabilities of that terminal.

TZ Time zone information. The format is x x x n z z z
where x x x is standard local time zone
abbreviation, n is the difference in hours from
GMT, and zzz is the abbreviation for the
daylight-saving local time zone, if any; for
example, E S T 5 E D T .

Further names may be placed in the environment by the
export command and " n a m e = v a l u e " arguments in
«A(1), or by exec(2). It is unwise to conflict with certain
shell variables that are frequently exported by .pro f i l e
files: MAIL, P S l , PS2 , IFS.

SEE ALSO
env(l) , login(l), mm(l) , nice(l) , nohup(l) , t ime(l) ,
tplot(lG), sh(l) , exec(2), getenv(3C), profile(4), term(5).

EQNCHAR(5)

NAME
eqnchar - special character definitions for eqn and neqn

SYNOPSIS
eqn / u s r / p u b / e q n c h a r [files] | t r o f f [options]
neqn / u s r / p u b / e q n c h a r [files] | nrof f [options]

DESCRIPTION
Eqnchar contains troff(1) and nroff character definitions
for constructing characters that are not available on the
Wang Laboratories, Inc. C / A / T phototypesetter. These
definitions are primarily intended for use with egri(l)
and neqn; eqnchar contains definitions for the following
characters:

ciplus © II II square •
cilimes ® langle / circle O
wig — r angle / blot •
-wig = hbar n bullet •

> wig > ppd i prop :::

< Wig < < - > — empty 0

= wig = < = > member e
star * l< < nomem i
bigstar * > > cup u
= dot = ang L cap n
orsign V rang L ind c
andsign A 3dol subset c
= del A thf supset D

oppA V quarter % 'subset C

oppE 3 jquar/er 'supset D

angstrom A degree °

= = < = = < = = > = = >

FILES
/usr/pub/eqnchar

SEE ALSO
eqn(l), nroff(l), troff(l).

- 1 -

F C N T L (5)

NAME
fcntl - file control options

SYNOPSIS
i n c l u d e < f c n t l . h >

DESCRIPTION
The fcntl(2) function provides for control over open files.
The include- file describes requests and arguments to
fcntl and open(2).

/* Flag values accessible to open(2) and fcntl(2) */
/* (The first three can only be set by open) */
#define 0 _ R D 0 N L Y 0
#define 0 _ W R 0 N L Y 1
#define 0 _ R D W R 2
#define 0_NDELAY 04 j* Non-blocking I/O */
#def ine O ^APPEND 010 /* append

(writes guaranteed at the end) */
#define 0_SYNC 020 j* synchronous write option */
#define 0 _ D I R E C T 020000 / * perform direct I /O */
#def ine 0 _ N 0 D I R E C T 040000 / * disable direct I /O */

/ * Flag values accessible only to open(2) */
#def ine 0 _ C R E A T 00400 j* open with file create

(uses third open arg)*/
#def ine 0 _ T R U N C 01000 / * open with truncation */
#def ine 0_EXCL 02000 / * exclusive open */

/ * fcntl(2) requests */
#define F_DUPFD 0 /* Duplicate fildes */
#define F_GETFD 1 /* Get fildes flags */
#def ine F_SETFD 2 /* Set fildes flags */
#def ine F_GETFL 3 / * Get file flags */
#def ine F_SETFL 4 / * Set file flags */
#def ine F_GETLK 5 / * Get blocking file locks */
#define F_SETLK 6 / * Set or clear file locks and fail

on busy */
#define F_SETLKW 7 / * Set or clear file locks and wait

on busy */

/ * file segment locking control structure »/
struct flock {

short Ltype;
short l_whence;
long l_start;
long Men; / * if 0 then until EOF */
int)_pid; /* returned with F_GETLK */

5 /86 - 1 -

FCNTL(5)

/ * file segment locking types */
#define F J I D L C K 01
#define F_WRLCK 02
#define F_UNLCK 03

SEE ALSO
fcntl(2), open(2).

/* Read lock */
/ * Write lock */

/ * Remove locks »

5/86 - 2 -

M A N (5)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
n r o f f —man files

DESCRIPTION
These troff(l) macros are used to lay out the format of
the entries of this manual. A skeleton entry may be
found in the file / u s r / m a n / u _ m a n / m a n O / s k e l e t o n .
These macros are used by the man(l) command.
Any text argument below may be one to six "words".
Double quotes ("") may be used to include blanks in a
"word". If text is empty, the special treatment is
applied to the next line that contains text to be printed.
For example, .1 may be used to italicize a whole line, or
.SM followed by .B to make small bold text. By default,
hyphenation is turned off for nroff, but remains on for
troff.

Type font and size are reset to default values before each
paragraph and after processing font- and size-setting
macros, e.g., .1, .RB, .SM. Tab stops are neither used
nor set by any macro except .DT and .TH.
Default units for indents in are ens. When in is
omitted, the previous indent is used. This remembered
indent is set to its default value (7.2 ens in troff, 5 ens in
nroff-ihis corresponds to 0.5" in the default page size)
by .TH, .P, and .RS, and restored by .RE.

.TH t a c n Set the title and entry heading; t is the title,
8 is the section number, c is extra
commentary, e.g., "local", n is new manual
name. Invokes J) T (see below).

.SH text Place subhead text, e.g., SYNOPSIS , here.

.SS text Place sub-subhead text, e.g., O p t i o n s , here.

.B text Make text bold.

.1 text Make text italic.

.SM text Make text 1 point smaller than default point
size.

•RI a b Concatenate roman a with italic b, and
alternate these two fonts for up to six
arguments. Similar macros alternate
between any two of roman, italic, and bold:

.IR .RB .BR .IB .BI
.P Begin a paragraph with normal font, point

size, and indent. . P P is a synonym for .P.
.HP in Begin paragraph with hanging indent.
. T P in Begin indented paragraph with hanging tag.

The next line that contains text to be

- 1 -

M A N (5)

printed is taken as the tag. If the tag does
not fit, it is printed on a separate line.
Same as . T P in with tag t; often used to get
an indented paragraph without a tag.
Increase relative indent (initially zero).
Indent all output an extra in units from the
current left margin.
Return to the kth relative indent level
(initially, k=l; k= 0 is equivalent to k—1);
if k is omitted, return to the most recent
lower indent level.
Produces proprietary markings; where m
may be P for P R I V A T E , N for NOTICE,
B P for BELL L A B O R A T O R I E S
P R O P R I E T A R Y , or B R for BELL
L A B O R A T O R I E S R E S T R I C T E D .
Restore default tab settings (every 7.2 ens in
troff, 5 ens in nroff).
Set the interparagraph distance to v vertical
spaces. If v is omitted, set the
interparagraph distance to the default value
(0.4v in troff, l v in nroff).

The following strings are defined:
\ * R ® in troff, (R e g .) in nroff.
\ * S Change to default type size.
\ * (T m Trademark indicator.
The following number registers are given default values
by .TH:
IN Left margin indent relative to subheads

idefault is 7.2 ens in troff, 5 ens in nroff).
,ine length including IN.

P D Current interparagraph distance.
CAVEATS

In addition to the macros, strings, and number registers
mentioned above, there are defined a number of internal
macros, strings, and number registers. Except for names
predefined by troff and number registers d, m , and y , all
such internal names are of the form XA, where X is one
of),], and }, and A stands for any alphanumeric
character.

If a manual entry needs to be preprocessed by cw(l) ,
eqn(1) (or neqn), and/or <6/(1), it must begin with a
special line (described in man(l)) , causing the man
command to invoke the appropriate preprocessor(s).
The programs that prepare the Table of Contents and
the Permuted Index for this Manual assume the NAME

.IP t in

.RS in

.RE k

.PM m

.DT

.PD v

- 2 -

M A N (5)

section of each entry consists of a single line of input
that has the following format:

name[, name, name . . .] \ - explanatory text
The macro package increases the inter-word spaces (to
eliminate ambiguity) in the SYNOPSIS section of each
entry.
The macro package itself uses only the roman font (so
that one can replace, for example, the bold font by the
constant-width f o n t - s e e eu>(l)). Of course, if the input
text of an entry contains requests for other fonts (e.g., .1,
.RB, \ f l) , the corresponding fonts must be mounted.

FILES
/ usr / l ib / tmac / tmac.an
/ usr / l ib /macros/c mp. [nt] . [dt] .an
/usr / l ib /macros /uc mp. [ntj.an
/u sr /man / [ua]_man/manO/skeleton

SEE ALSO
man(l) , nroff(l) .

BUGS
If the argument to .TH contains any blanks and is not
enclosed by double quotes (""), there will be bird-
dropping-like things on the output.

- 3 -

MATH(5)

NAME
math - math functions and constants

SYNOPSIS
^ i n c l u d e < m a t h . h >

DESCRIPTION
This file contains declarations of all the functions in the
Math Library (described in Section 3M), as well as
various functions in the C Library (Section 3C) that
return floating-point values.
It defines the structure and constants used by the
matherr(3M) error-handling mechanisms, including the
following constant used as an error-return value:
HUGE The maximum value of a single-

precision floating-point number.
The following mathematical constants are defined for
user convenience:
M_E The base of natural logarithms

(0 -

M_LOG2E The base-2 logarithm of e.
M_LOGlOE The base-10 logarithm of e.
M_LN2 The natural logarithm of 2.
M_LN10 The natural logarithm of 10.
M_PI The ratio of the circumference of

a circle to its diameter. (There
are also several fractions of its
reciprocal and its square root.)

M_SQRT2 The positive square root of 2.
M_SQRTl_2 The positive square root of 1/2.
For the definitions of various machine-dependent
"constants," see the description of the Rvalues.h>
header file.

FILES
/usr/include/math.h

SEE ALSO
intro(3), matherr(3M), values(5).

- 1 -

MM(5)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
m m [options] [files]
n r o f f —mm [options] [files]
n r o f f —cm [options] [files]

DESCRIPTION
This package provides a formatting capability for a very
wide variety of documents. It is the standard package
used by the BTL typing pools and documentation
centers. The manner in which a document is typed in
and edited is essentially independent of whether the
document is to be eventually formatted at a terminal or
is to be phototypeset. See the references below for
further details.

The —mm option causes nroff and troff(1) to use the
non-compacted version of the macro package, while the
—cm option results in the use of the compacted version,
thus speeding up the process of loading the macro
package.

FILES
/ u s r / l i b / t m a c / t m a c . m

/usr / l ib /macros /mm[nt]

/usr/ l ib/macros/cmp.[nt] . [dt] .m

/usr / l ib /macros /ucmp.[nt] .m

SEE ALSO
mm(l) , mmt(l) , nroff(l) .
MM-Memorandum Macros by
Mashey.
Typing Documents with MM by
Piskorik.

pointer to the non-
compacted version of
the package
non-compacted
version of the package
compacted version of
the package
initializers for the
compacted version of
the package

D. W. Smith and J. R.

D. W. Smith and E. M.

- 1 -

MODEMCAP (5)

must be expressed as an octal sequence; see
below.) In a string capability, the following
sequences stand for single characters:

\xxx (where xxx is one to
three octal digits) the
character whose octal
value is xxx

\072 colon (:)
\200 null (\000 doesn't work)

\ E escape (\033)
\n newline (\012)
\r return (\015)
\ t tab (\011)
\ b backspace (\010)
\ f formfeed (\014)
"x control-®

There are four kinds of capabilities: the place call
capability, basic features capabilities, the send phone
number capability, and send/receive capabilities. Only
the place call capability is mandatory.

Place Call Capability
pi String capability. Controls the use of the other

capabilities. The value of the string is a procedure
made up of the other capabilities. A
communication program works through pi's value,
using each capability as it is encountered; a limited
control of execution flow is provided by some
special capabilities.

Basic Features Capabilities
Basic features capabilities specify strings used to
command basic features of the modem. These
capabilities never appear in the pi value, but are implied
by other capabilities. The capability descriptions
indicate which capabilities use basic features capabilities
and what happens when basic features capabilities are
undefined.
ps Primary command start; string capability. The ps

capability specifies the characters that precede
modem commands, if required. Used by sa:
capability.

es Primary command end; string capability. The es
capability specifies the characters that must follow
modem commands, if required. Used by sx
capability.

- 2 -

MODEMCAP (5)

e h End phone number; string capability. Used by ph
capability.

p a Pause in phone number; string capability. Used by
p h capability.

p w Pause in phone number and wait for dial tone;
string capability. Used by ph capability.

Send Phone Number Capability
p h String capability. In a single write(2), send a

string with three parts:
1. The ph ' s capability's own value.
2. The phone number as ASCII digits. Whenever

the modem should pause, send the value of the
p a capability, if defined. Whenever the
modem should pause and wait for a dial tone,
send the value of the p w capability, if defined.

3. The value of the eh capability, if defined.
Send/Receive Capabilities

Send/receive capabilities are different from other
capabilities in their naming convention. The first
character of the capability name tells the kind of
capability. The second character of the name is chosen
arbitrarily from the lowercase letters and digits and
identifies the particular capability from others of the
same kind.
tx String capability. Send the value to the modem.
ax String capability. In a single write, send a

command to the modem. The command has three
parts:
1. The value of the ps capability, if defined.
2. The ax's cpability's own value.
3. The value of the es capability, if defined.

da; Numeric capability. Delay for the number of
seconds specified in the value.

v/x String capability; value must be a single character.
Wisk through input from modem until the value is
read. Put input, up to but not including the
terminating character, in the wisk buffer, replacing
the previous contents.

cx String capability. Compare value with contents of
the wisk buffer. Set the comparison flag to
EQUAL if they match, NOT_EQUAL otherwise.
Do not modify the comparison flag until you
execute another cx.

- 3 -

MODEMCAP (5)

mx Numeric capability. Skip on EQUAL. If the
comparison flag is EQUAL the next n instructions
in the p i value are skipped, where n is the value of
m i .

nx Numeric capability. Skip on NOT_EQUAL. If the
comparison flag is NOT_EQUAL the next n
instructions in the pi value are skipped, where n is
the value of n i .

ax String capability. Abort on EQUAL. If the
comparison flag is EQUAL abort the phone call. If
debug output is specified, print the value of the a.x
capability.

bx String capability. Abort on NOT_EQUAL. If the
comparison flag is NOT_EQUAL abort the phone
call. If debug output is specified, print the value of
the bar capability.

EXAMPLE
The Bizcomp 1012 example above assumes that the
modem's switch 9 (configuration:
TERMINAL/COMPUTER) is down (COMPUTER).
With this setting, the modem has the following
characteristics:

• Commands to the modem must be
preceded by an STX (\002) and followed
by a CR (\r). This prevents normal data
transmissions from being taken for modem
commands.

• The modem's messages to the computer
are terse. The following two-character
sequences are diagnostics.

1 CR connection made
2 CR no connection or no answer
7 CR dial tone detected

A CR is a command prompt. A
communication program that uses the
Bizcom 1012 modemcap entry follows the
following procedure:

1. (szd5wpdl) Send an STX-Z-CR,
resetting the modem. Wait five
seconds, then read the resulting CR.
Wait another one second.

2. (svwpsqwpsxwpdl) Send an STX-V-CR
(select tone dialing); read the resulting
CR. Send an STX-Q-CR (toggle busy

- 4 -

MODEMCAP (5)

detection); read the resulting CR.
Send an STX-X-CR (select transparent
data mode); read the resulting CR.
Wait one second.

3. (ph) Send an STX-D, then the phone
number. The phone number should
include a colon (:) whenever the
modem should pause to listen for
another dial tone. The description
lacks a pa capability, so there is no
way to pause without waiting for a
dial tone.

4. (wpc7bl) Read until the next CR. If
the input isn't "7", abort with the
debug message "NO DIAL TONE".

5. (wpc2alclb2) Read until the next CR.
If the input is "2", abort with the
debug message "NO ANSWER".
Otherwise, if the input isn't "1", abort
with the debug message "NO
ANSWER".

6. (dl) Wait one second. The connection
is established.

SEE ALSO
dial(3C), uucp(lC).

- 5 -

MPTX(5)

NAME
mptx - the macro package for formatting a permuted
index

SYNOPSIS
nro f f —mptx [options] [files] [options] [files]

DESCRIPTION
This package provides a definition for the .xx macro
used for formatting a permuted index as produced by
ptx(1). This package does not provide any other
formatting capabilities such as headers and footers. If
these or other capabilities are required, the mptx macro
package may be used in conjuction with the MM macro
package. In this case, the —mptx option must be
invoked after the —mm call. For example:

nroff - cm - m p t x file
or

mm - mptx file
FILES

/usr/lib / tmac /tmac .ptx

/usr/lib/macros/ptx

pointer to the non-compacted
version of the package
non-compacted version of the
package

SEE ALSO
mm(l), nroff(l), ptx(l), mm(5).

- 1 -

MV(5)

NAME
mv - a troff macro package for typesetting view graphs
and slides

SYNOPSIS
m v t [- a] [options] [files]
t r o f f [- a] [—rXl] - m v [options] [files]

DESCRIPTION
This package makes it easy to typeset view graphs and
projection slides in a variety of sizes. A few macros
(briefly described below) accomplish most of the
formatting tasks needed in making transparencies. All of
the facilities of troff(l), eu>(l), eqn(l), and tbl(1) are
available for more difficult tasks.
The output can be previewed on most terminals, and, in
particular, on the Tektronix 4014, as well as on the
Versatec printer. For these two devices, specify the
—rXl option (this option is automatically specified by
the mvt c o m m a n d - q . v . - w h e n that command is invoked
with the — T 4 0 1 4 or —Tvp options). To preview output
on other terminals, specify the —a option.

The available macros are:
. V S [n] [•] {d\ Foil-start macro; foil size is to be

7 " x 7 " ; n is the foil number, t is the
foil identification, d is the date; the
foil-start macro resets all parameters
(indent, point size, etc.) to initial
default values, except for the values
of t and d arguments inherited from a
previous foil-start macro; it also
invokes the . A macro (see below).
The naming convention for this and
the following eight macros is that the
first character of the name (V or S)
distinguishes between view graphs and
slides, respectively, while the second
character indicates whether the foil is
square (S), small wide (w), small high
(h), big wide fW) , or big high (H).
Slides are skinnier" than the
corresponding view graphs: the ratio
of the longer dimension to the shorter
one is larger for slides than for view
graphs. As a result, slide foils can be
used for view graphs, but not vice
versa; on the other hand, view graphs
can accommodate a bit more text.

- 1 -

MV(5)

.Vw [»] [«] \d\

•Vh [»] [']
.vw [n] [«] [A

.VH [n] [«1 Id]

.Sw M [«] [d]

.Sh [n] ['] [d\

.SW [«] MM

.SH [«] MM
•A M

.B [m M]

.C [m [«]]

.D [m Ml

. T string

.1 [,»] [a [x]]

•S [p] [/]

Same as •VS, except that foil size is
7" wide X 5" high.
Same as .VS, except that foil size is
5 " X 7 " .

except

Same as .VS, except that foil size is
7" X 5 . 4 "

except

Same as '.VS, except that foil size is
7" X 9".

except

Same as .VS, except that foil size is
7 " X 5 " .

except

Same as .VS, except that foil size is
5" X 7".

.VS, except

Same as .VS, except that foil size is
7 " X 5 . 4 "

except

Same as '.VS, except that foil size is
7 " X 9 " .
Place text that follows at the first
indentation level (left margin); the
presence of x suppresses the % line
spacing from the preceding text.
Place text that follows at the second
indentation level; text is preceded by
a mark; m is the mark (default is a
large bullet); a is the increment or
decrement to the point size of the
mark with respect to the prevailing
point size (default is 0); if s is 100, it
causes the point size of the mark to
be the same as that of the default
mark.
Same as .B, but for the third
indentation level; default mark is a
dash.
Same as .B, but for the fourth
indentation level; default mark is a
small bullet.
String is printed as an over-size,
centered title.
Change the current text indent (does
not affect titles); in is the indent (in
inches unless dimensioned, default is
0); if in is signed, it is an increment
or decrement; the presence of a
invokes the . A macro (see below) and
passes x (if any) to it.
Set the point size and line length; p is
the point size (default is "previous");
if p is 100, the point size reverts to
the initial default for the current foil-

- 2 -

M V (5)

start macro; if p is signed, it is an
increment or decrement (default is 18
for .VS, . V H , and .SH, and 14 for
the other foil-start macros); I is the
line length (in inches unless
dimensioned; default is 4.2" for .Vh ,
3.8" for .Sh, 5" for .SH, and 6" for
the other foil-start macros).

. D F n f [n /...}
Define font positions; may not appear
within a foil's input text (i.e., it may
only appear after all the input text for
a foil, but before the next foil-start
macro); n is the position of font / ; up
to four "n / " pairs may be specified;
the first font named becomes the
prevailing font; the initial setting is
(H is a synonym for G):

•DF 1 H 2 I 3 B 4 S
. D V [a] \b] [c] [d\ Alter the vertical spacing between

indentation levels; a is the spacing for
.A, b is for .B, c is for .C, and d is
for .D; all non-null arguments must
be dimensioned; null arguments leave
the corresponding spacing unaffected;
initial setting is:

.DV .5v .5v .5v Ov
•U 8trl [strS] Underline strl and concatenate str2

(if any) to it.
The last four macros in the above list do not cause a
break; the .1 macro causes a break only if it is invoked
with more than one argument; all the other macros cause
a break.
The macro package also recognizes the following upper-
case synonyms for the corresponding lower-case troff
requests:

A D .BR .CE .Fl .HY .NA .NF .NH .NX .SO
.SP .TA .TI
The T m string produces the trademark symbol.
The input tilde (~) character is translated into a blank
on output.
See the user's manual cited below for further details.

FILES
/ usr/lib / tmac / tmac.v
/usr / l ib /macros /vmca

- 3 -

MV(5)

SEE ALSO
cw(l) , eqn(l) , mmt(l) , tbl(l) , troftf l) .
A Macro Package for View Graphs and Slides by
T. A. Dolotta and D. W. Smith.

BUGS
The . V W and . S W foils are meant to be 9" wide by 7"
high, but because the typesetter paper is generally only
8" wide, they are printed 7" wide by 5.4" high and have
to be enlarged by a factor of 9 /7 before use as view
graphs; this makes them less than totally useful.

PROF(5)

NAME
prof - profile within a function

SYNOPSIS
def ine MARK
^ i n c l u d e < p r o f . h >
v o i d MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be
treated the same as a function entry point. Execution of
the mark will add to a counter for that mark, and
program-counter time spent will be accounted to the
immediately preceding mark or to the function if there
are no preceding marks within the active function.
Name may be any combination of up to six letters,
numbers or underscores. Each name in a single
compilation must be unique, but may be the same as any
ordinary program symbol.
For marks to be effective, the symbol MARK must be
defined before the header file <prof.h> is included.
This may be defined by a preprocessor directive as in the
synopsis, or by a command line argument, i.e:

cc - p -DMARK foo.c

If MARK is not defined, the MARK(name) statements
may be left in the source files containing them and will
be ignored.

EXAMPLE
In this example, marks can be used to determine how
much time is spent in each loop. Unless this example is
compiled with MARK defined on the command line, the
marks are ignored.

^include < p r o f . h >

foo()

int i, j;

MARK(loopl);

for (i = 0; i < 2000; i + +) {
}

PROF(5)

MARK(loop2);

for (j = 0; j < 2000; j + +) {

) 1

SEE ALSO
prof(l), profil(2), monitor(3C).

- 2 -

REGEXP(5)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
d e f i n e INIT < declarations >
d e f i n e GETC(} <getc code>
d e f i n e PEEKC() <peekc code>
d e f i n e UNGETC(c) <ungetc code>
d e f i n e RETURN(pointer) < return code>
d e f i n e ERROR(val) < error code>
^ i n c l u d e < regexp . h >
char ^compile (instring, expbuf , endbuf , eof)
char * instring, *expbuf , *endbuf;
int eof;
int s t e p (str ing, e x p b u f)
char * s t n n g , *expbuf;
e x t e r n char * l o c l , *loc2, *locs;
e x t e r n int circf, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression
matching routines in the form of ed(1), defined in
/ u s r / i n c l u d e / r e g e x p . h . Programs such as ed(1),
sed(l), grep(1), bs(1), expr(l), etc., which perform
regular expression matching use this source file. In this
way, only this file need be changed to maintain regular
expression compatibility.
The interface to this file is unpleasantly complex.
Programs that include this file must have the following
five macros declared before the "^include <regexp .h>"
statement. These macros are used by the compile
routine.
GETC() Return the value of the next

character in the regular expression
pattern. Successive calls to
GETC() should return successive
characters of the regular
expression.

PEEKC() Return the next character in the
regular expression. Successive
calls to PEEKC() should return
the same character (which should
also be the next character
returned by GETC()).

UNGETC(e) Cause the argument c to be
returned by the next call to

- 1 -

REGEXP (5)

RETURN(poin<er)

ERROR(tml)

ERROR
11
16
25
36
41
42
43
44

45
46

49
50

GETC() (and PEEKC()). N o
more that one character of
pushback is ever needed and this
character is guaranteed to be the
last character read by GETC().
The value of the macro
UNGETC(c) is always ignored.
This macro is used on normal exit
of the compile routine. The value
of the argument pointer is a
pointer to the character after the
last character of the compiled
regular expression. This is useful
to programs which have memory
allocation to manage.

This is the abnormal return from
the compile routine. The
argument val is an error number
(see table below for meanings).
This call should never return.

MEANING
Range endpoint too large.
Bad number.
" \d ig i t" out of range.
Illegal or missing delimiter.
N o remembered search string.
\ (\) imbalance.
T o LOO many \ (.
More than 2 numbers given in
\ { \>-
} expected after \ .
Fi irst number exceeds second in

[| imiba
Reeular

balance.
;gular expression overflow.

The syntax of the compile routine is as follows:
compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by
the compile routine but is useful for programs that pass
down different pointers to input characters. It is
sometimes used in the INIT declaration (see below).
Programs which call functions to input characters or
have characters in an external array can pass down a
value of ((char *) 0) for this parameter.
The next parameter expbuf is a character pointer. It
points to the place where the compiled regular expression

- 2 -

R E G E X P (5)

will be placed.
The parameter endbuf is one more than the highest
address where the compiled regular expression may be

f laced. If the compiled expression cannot fit in
endbuf-expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end
of the regular expression. For example, in ed(1), this
character is usually a / .
Each program that includes this file must have a
d e f i n e statement for INIT. This definition will be
placed right after the declaration for the function
compile and the opening curly brace ({). It is used for
dependent declarations and initializations. Most often it
is used to set a register variable to point the beginning of
the regular expression so that this register variable can
be used in the declarations for GETC(), PEEKC() and
UNGETC(). Otherwise it can be used to declare external
variables that might be used by GETC(), PEEKC() and
UNGETC(). See the example below of the declarations
taken from grep(1).

There are other functions in this file which perform
actual regular expression matching, one of which is the
function step. The call to step is as follows:

step(string, expbuf)
The first parameter to step is a pointer to a string of
characters to be checked for a match. This string should
be null terminated.
The second parameter expbuf is the compiled regular
expression which was obtained by a call of the function
compile.
The function step returns non-zero if the given string
matches the regular expression, and zero if the
expressions do not match. If there is a match, two
external character pointers are set as a side effect to the
call to step. The variable set in step is loci. This is a
pointer to the first character that matched the regular
expression. The variable locS, which is set by the
function advance, points to the character after the last
character that matches the regular expression. Thus if
the regular expression matches the entire line, loci will
point to the first character of string and loc2 will point
to the null at the end of string.

Step uses the external variable circf which is set by
compile if the regular expression begins with If this is
set then step will try to match the regular expression to

REGEXP (5)

the beginning of the string only. If more than one
regular expression is to be compiled before the first is
executed the value of circf should be saved for each
compiled expression and circf should be set to that saved
value before each call to step.
The function advance is called from step with the same
arguments as step. The purpose of step is to step
through the string argument and call advance until
advance returns non-zero indicating a match or until the
end of string is reached. If one wants to constrain string
to the beginning of the line in all cases, step need not be
called; simply call advance.

When advance encounters a * or \ { \ } sequence in the
regular expression, it will advance its pointer to the
string to be matched as far as possible and will
recursively call itself trying to match the rest of the
string to the rest of the regular expression. As long as
there is no match, advance will back up along the string
until it finds a match or reaches the point in the string
that initially matched the * or \ { \ } . It is sometimes
desirable to stop this backing up before the initial point
in the string is reached. If the external character pointer
Iocs is equal to the point in the string at sometime
during the backing up process, advance will break out of
the loop that backs up and will return zero. This is used
by ed(l) and sed(1) for substitutions done globally (not
just the first occurrence, but the whole line) so, for
example, expressions like s / y * / / g do not loop forever.

The additional external variables sed and nbra are used
for special purposes.

The following is an example of how the regular
expression macros and calls look from grep(l):

inc lude < r e g e x p . h >

(void) compile(*argv, expbuf, &expbuf[ESIZE], '\0');

if (step(linebuf, expbuf))
succeed();

EXAMPLES

d e f i n e INIT
d e f i n e GETC()
d e f i n e PEEKC()

register char *sp = instring;
* s p + +)
*sp)
— sp)

return;
regerr()

- 4 -

REGEXP(5)

FILES
/usr/include/regexp.h

SEE ALSO
bs(l), ed(l), expr(l), grep(l), sed(l).

BUGS
The handling of circf is kludgy.
The actual code is probably easier to understand than
this manual page.

- 5 -

STAT(5)

NAME
stat - data returned by stat system call

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / s t a t . h >

DESCRIPTION
The system calls stat and fstat return data whose
structure is defined by this include file. The encoding of
the field st_mode is defined in this file also.
/*

* St ruc ture of the result of s ta t

7

s t ruc t
{

s ta t

dev_t
ino_t
ushort
short
ushort
ushort
dev_t
o f f_ t
t ime_t
t ime_t
t i m e t

st_dev;
st_ino;
s t_mode;
st_nlink;
s t_uid;
st_gid;
st_rdev;
st_size;
st_atime;
s t_mtime;
st_ctime;

#de f ine
#de f ine
#de f ine
#de f ine
#de f ine
#de f ine
#de f ine
#de f ine

FILES

S J F M T 0170000
S J F D I R 0040000
S_IFCHR 0020000
S J F B L K 0060000
S J F R E G 0100000
S J F I F O 0010000
S J S U I D 04000
S J S G I D 02000

#de f ine S J S V T X 01000

I* type of file */
/ » directory * /
/ * character special * /
/ » block special */
/ « regular * /
/ * fifo * /
/ » set user id on execution «/

/ » set group id on execution * /

/ * save swapped text even af ter use * /
/ » read permission, owner * / #de f ine S J R E A D 00400

#de f ine S J W R I T E
00200

#de f ine S J E X E C 00100
/» execute/search permission, owner */

/* write permission, owner */

/usr/include/sys/types.h
/usr/include/sys/stat.h

- 1 -

STAT(5)

SEE ALSO
stat(2), types(5).

- 2 -

TERM (5)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands (e.g.,
fa6s(l) , man(l) and are maintained as part of the shell
environment (see «A(1), profile(4), and environ(5)) in the
variable $TERM:
pt Convergent Technologies Programmable

Terminal
gt Convergent Technologies Graphics Terminal
freedom Liberty Freedom 100
1520 Datamedia 1520
1620 DIABLO 1620 and others using the HyType II

printer
1 6 2 0 - 1 2

same, in 12-pitch mode
2621 Hewlett-Packard HP2621 series
2631 Hewlett-Packard 2631 line printer
2 6 3 1 - c Hewlett-Packard 2631 line printer - compressed

mode
2 6 3 1 - e Hewlett-Packard 2631 line printer - expanded

mode
2640 Hewlett-Packard HP2640 series
2645 Hewlett-Packard HP264n series (other than the

2640 series)
300 DASI/DTC/GS1 300 and others using the

HyType I printer
3 0 0 - 1 2 same, in 12-pitch mode
300s DASI/DTC/GSI 300s
382 DTC 382
3 0 0 s - 1 2 same, in 12-pitch mode
3045 Datamedia 3045
33 TELETYPE Model 33 KSR
37 TELETYPE Model 37 KSR
4 0 - 2 TELETYPE Model 4 0 / 2
4 0 - 4 TELETYPE Model 4 0 / 4
4540 TELETYPE Model 4540
3270 IBM Model 3270
4000a Trendata 4000a
4014 TEKTRONIX 4014
43 TELETYPE Model 43 KSR
450 DASI 450 (same as Diablo 1620)
4 5 0 - 1 2 same, in 12-pitch mode
735 Texas Instruments TI735 and TI725
745 Texas Instruments TI745
dumb generic name for terminals that lack reverse

line-feed and other special escape sequences;
likely to work when the real terminal type is

- 1 -

TERM (5)

not known to the program
sync generic name for synchronous TELETYPE 4540-

compatible terminals
lp generic name for a line printer
Up to 8 characters, chosen from [- a - z 0 - 9] , make up a
basic terminal name. Terminal sub-models and
operational modes are distinguished by suffixes beginning
with a —. Names should generally be based on original
vendors, rather than local distributors. A terminal
acquired from one vendor should not have more than one
distinct basic name.

Commands whose behavior depends on the type of
terminal should accept arguments of the form —T term
where term is one of the names given above; if no such
argument is present, such commands should obtain the
terminal type from the environment variable $TERM,
which, in turn, should contain term.

SEE ALSO
man(l) , mm(l) , nroff(l) , tplot(lG), sh(l) , s t ty(l) , tabs(l) ,
profile(4), environ(5).

BUGS
This is a small candle trying to illuminate a large, dark
problem. Programs that ought to adhere to this
nomenclature do so somewhat fitfully.

TYPES(5)

NAME
types - primitive system data types

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >

DESCRIPTION
The data types defined in the include file are used in
CTIX code; some data of these types are accessible to
user code:

The form daddrjt is used for disk addresses except in an
i-node on disk, see /«(4). Times are encoded in seconds
since 00:00:00 GMT, January 1, 1970. The major and
minor parts of a device code specify kind and unit
number of a device. Offsets are measured in bytes from
the beginning of a file. The labeljt variables are used to
save the processor state while another process is running.

typedef struct { int r [l] ; p h y s a d r ;
typedef long
typedef char * caddr_t;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef ushort ino_t;
typedef short cnt_t;
typedef long time_t;
typedef int label_t[l3];
typedef short dev_t;
typedef long off_t;
typedef long paddr_t;
typedef long key_t;

typedef short
typedef long
typedef int
typedef short
typedef long
typedef long
typedef long

typedef ushort

SEE ALSO
fs(4).

- 1 -

VALUES(5)

NAME
values - machine-dependent values

SYNOPSIS
^ i n c l u d e < v a l u e s . h >

DESCRIPTION
This file contains a set of manifest constants,
conditionally defined for particular processor
architectures.
The model assumed for integers is binary representation
(one's or two's complement), where the sign is
represented by the value of the nigh-order bit.
BITS(type) The number of bits in a specified

type (e.g., int).
HIBITS The value of a short integer with

only the high-order bit set (in
most implementations, 0x8000).

HIBITL The value of a long integer with
only the high-order bit set (in
most implementations,
0x80000000).

HIBITI The value of a regular integer
with only the high-order bit set
(usually the same as HIBITS or
HIBITL).

MAXSHORT The maximum value of a signed
short integer (in most
implementations, 0x7FFF =
32767).

MAXLONG The maximum value of a signed
long integer (in most
implementations, 0x7FFFFFFF =
2147483647).

MAXINT The maximum value of a signed
regular integer (usually the same
as MAXSHORT or MAXLONG).

MAXFLOAT, LN_MAXFLOAT

MAXDOUBLE, LN.MAXDOUBLE

The maximum value of
a single-precision
floating-point number,
and its natural
logarithm.
The maximum value of
a double-precision
floating-point number,
and its natural

- 1 -

VALUES(5)

MINFLOAT, LN_MINFLOAT

MINDOUBLE, LN MINDOUBLE

FSIGNIF

DSIGNIF

FILES
/ usr/include/values.h

SEE ALSO
intro(3), math(5).

logarithm.
The minimum positive
value of a single-
precision floating-point
number, and its
natural logarithm.
The minimum positive
value of a double-
precision floating-point
number, and its
natural logarithm.

The number of significant bits in
the mantissa of a single-precision
floating-point number.
The number of significant bits in
the mantissa of a double-precision
floating-point number.

- 2 -

VARARGS(5)

NAME
varargs - handle variable argument list

SYNOPSIS
i n c l u d e < v a r a r g s . h >
va_a l i s t
va_dc l
v o i d v a _ s t a r t (p v a r)
va_ l i s t pvar ;
type v a _ a r g (p v a r , type)
va_ l i s t pvar ;
v o i d v a _ e n d (p v a r)
va_ l i s t pvar;

DESCRIPTION
This set of macros allows portable procedures that
accept variable argument lists to be written. Routines
that have variable argument lists (such as printf(3S)) but
do not use varargs are inherently nonportable, as
different machines use different argument-passing
conventions.
va_a l i s t is used as the parameter list in a function
header.
v a _ d c l is a declaration for va_alist. No semicolon
should follow va_dcl.
va__list is a type defined for the variable used to
traverse the list.
v a _ s t a r t is called to initialize pvar to the beginning of
the list.
v a _ a r g will return the next argument in the list pointed
to by pvar. Type is the type the argument is expected
to be. Different types can be mixed, but it is up to the
routine to know what type of argument is expected, as it
cannot be determined at runtime.
v a _ e n d is used to clean up.
Multiple traversals, each bracketed by va_start ...
va_end, are possible.

EXAMPLE
This example is a possible implementation of execl(2).
^include <varargs.h>
#define MAXARGS 100

/* execl is called by
execl(file, argl, arg2, ..., (char *)0);

- 1 -

V A R A R G S (5)

execl(va_alist)
va_dcl
{

va_list ap;
char *file;
char * args [MAXARG S];
int argno = 0;

va_start(ap);
file = va_arg(ap, char *);
while ((args[argno++] = va_arg(ap, char *))

! = (char *)0)

va_end(ap);
return execv(file, args);

SEE ALSO
exec(2), printf(3S).

BUGS
It is up to the calling routine to specify how many
arguments there are, since it is not always possible to
determine this from the stack frame. For example, execl
is passed a zero pointer to signal the end of the list.
Printf can tell how many arguments are there by the
format.
It is non-portable to specify a second argument of char,
short, or float to va_arg, since arguments seen by the
called function are not char, short, or float. C converts
char and short arguments to int and converts float
arguments to double before passing them to a function.

- 2 -

INTRO (5)

NAME
intro - introduction to games

DESCRIPTION
This section describes the recreational and educational
programs found in the directory / u s r / g a m e s . The
availability of these programs may vary from system to
system.

- 1 -

ADVENT(6)

NAME
advent - explore Colossal Cave

SYNOPSIS
/ usr / g a m e s / a d v e n t

DESCRIPTION
Advent is Adventure, the original computer-moderated
role-playing game. It accepts commands of one or two
English words and responds by describing situations and
how your commands affect them. The object of the
game is to retrieve the treasures from Colossal Cave,
placing them in the Well House.
Part of the game is figuring out the useful commands,
but the following are worth knowing in advance:
help Basic hints.
quit End the game and give final score.
s u s p e n d Save the game's current state in a file called

$HOME/adv . susp . The next time you play
the game will you automatically start from
where you left off instead of from the
beginning.

FILES
/usr/games / advf iles / *
$HOME/ad v .susp

WARNINGS
Kibitzing this sort of game properly is a fine art. People
who tell you about the shortcuts can spoil the game,
especially in the early stages.
Some movement verbs, such as fol low, work only well
enough to get you lost. Compass points are more (but
not completely) reliable.
Only the first five characters of an input word are
significant.
The command vocabulary and control of objects is
limited. But discovering limitations has become part of
the game.

- 1 -

ARITHMETIC (6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
/ u s r / g a m e s / a r i t h m e t i c [H—x/] [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and
waits for an answer to be typed in. If the answer is
correct, it types back "Right!", and a new problem. If
the answer is wrong, it replies "What?", and waits for
another answer. Every twenty problems, it publishes
statistics on correctness and the time required to answer.
To quit the program, type an interrupt (delete).
The first optional argument determines the kind of
problem to be generated; + , —, x , and / respectively
cause addition, subtraction, multiplication, and division
problems to be generated. One or more characters can
be given; if more than one is given, the different types of
problems will be mixed in random order; default is +—.
Range is a decimal number; all addends, subtrahends,
differences, multiplicands, divisors, and quotients will be
less than or equal to the value of range. Default range
is 10.
At the start, all numbers less than or equal to range are
equally likely to appear. If the respondent makes a
mistake, the numbers in the problem which was missed
become more likely to reappear.
As a matter of educational philosophy, the program will
not give correct answers, since the learner should, in
principle, be able to calculate them. Thus the program
is intended to provide drill for someone just past the first
learning stage, not to teach number facts de novo. For
almost all users, the relevant statistic should be time per
problem, not percent correct.

- 1 -

B A C K (6)

NAME
back - the game of backgammon

SYNOPSIS
/ usr / g a m e s / b a c k

DESCRIPTION
Back is a program which provides a partner for the game
of backgammon. It is designed to play at three different
levels of skill, one of which you must select. In addition
to selecting the opponent's level, you may also indicate
that you would like to roll your own dice during your
turns (for the superstitious players). You will also be
given the opportunity to move first. The practice of
each player rolling one die for the first move is not
incorporated.

The points are numbered 1 - 2 4 , with 1 being white's
extreme inner table, 24 being brown's inner table, 0
being the bar for removed white pieces and 25 the bar
for brown. For details on how moves are expressed, type
y when back asks "Instructions?" at the beginning of the
game. When back first asks "Move?", type ? to see a
list of move options other than entering your numerical
move.

When the game is finished, back will ask you if you want
the log. If you respond with y , back will attempt to
append to or create a file b a c k . l o g in the current
directory.

The only level really worth playing is "expert", and it
only plays the forward game.
Back will complain loudly if you attempt to make too
many moves in a turn, but will become very silent if you
make too few.
Doubling is not implemented.
Back will occasionally not allow a legal move when you
have a man on the bar.

FILES

BUGS

B J (6)

NAME
bj - the game of black jack

SYNOPSIS
/ usr / g a m e s / b j

DESCRIPTION
Bj is a serious attempt at simulating the dealer in the
game of black jack (or twenty-one) as might be found in
Reno. The following rules apply:
The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer
natural loses $2. Both dealer and player naturals is
a "push" (no money exchange).
If the dealer has an ace up, the player is allowed to
make an "insurance" bet against the chance of a
dealer natural. If this bet is not taken, play
resumes as normal. If the bet is taken, it is a side
bet where the player wins $2 if the dealer has a
natural and loses $1 if the dealer does not.
If the player is dealt two cards of the same value,
he is allowed to "double". He is allowed to play
two hands, each with one of these cards. (The bet
is doubled also; $2 on each hand.)
If a dealt hand has a total of ten or eleven, the
player may "double down". He may double the
bet ($2 to $4) and receive exactly one more card on
that hand.
Under normal play, the player may "hit" (draw a
card) as long as his total is not over twenty-one. If
the player "busts" (goes over twenty-one), the
dealer wins the bet.
When the player "stands" (decides not to hit), the
dealer hits until he attains a total of seventeen or
more. If the dealer busts, the player wins the bet.
If both player and dealer stand, the one with the
largest total wins. A tie is a push.

The machine deals and keeps score. The following
questions will be asked at appropriate times. Each
question is answered by y followed by a new-line for
"yes", or just new-line for "no".

? (means, "do you want a hit?")
Insurance?
Double down?

- 1 -

BJ(6)

Every time the deck is shuffled, the dealer so states and
the "action" (total bet) and "standing" (total won or
lost) is printed. To exit, hit the interrupt key (DEL) and
the action and standing will be printed.

C R A P S (6)

NAME
craps - the game of craps

SYNOPSIS
/ usr / g a m e s / c r a p s

DESCRIPTION
Craps is a form of the game of craps that is played in
Las Vegas. The program simulates the roller, while the
user (the player) places bets. The player may choose, at
any time, to bet with the roller or with the House. A
bet of a negative amount is taken as a bet with the
House, any other bet is a bet with the roller.
The player starts off with a "bankroll" of $2,000.
The program prompts with:

The bet can be all or part of the player's bankroll. Any
bet over the total bankroll is rejected and the program
prompts with b e t ? until a proper bet is made.
Once the bet is accepted, the roller throws the dice. The
following rules apply (the player wins or loses depending
on whether the bet is placed with the roller or with the
House; the odds are even). The first roll is the roll
immediately following a bet:

any other number is the point, roll again
(Rule 2 applies).

2. On subsequent rolls:

If a player loses the entire bankroll, the House will offer
to lend the player an additional $2,000. The program
will prompt:

marker?
A y e s (or y) consummates the loan. Any other reply
terminates the game.
If a player owes the House money, the House reminds the
player, before a bet is placed, how many markers are
outstanding.
If, at any time, the bankroll of a player who has
outstanding markers exceeds $2,000, the House asks:

bet?

1. On the first roll:
7 or 11
2, 3, or 12

wins for the roller;
wins for the House;

point
7
any other number

roller wins;
House wins;
roll again.

CRAPS(6)

Repay marker?
A reply of y e s (or y) indicates the player's willingness to
repay the loan. If only 1 marker is outstanding, it is
immediately repaid. However, if more than 1 marker are
outstanding, the House asks:

How many?
markers the player would like to repay. If an invalid
number is entered (or just a carriage return), an
appropriate message is printed and the program will
prompt with H o w m a n y ? until a valid number is
entered.
If a player accumulates 10 markers (a total of $20,000
borrowed from the House), the program informs the
player of the situation and exits.
Should the bankroll of a player who has outstanding
markers exceed $50,000, the total amount of money
borrowed will be automatically repaid to the House.
Any player who accumulates $100,000 or more breaks
the bank. The program then prompts:

New game?
to give the House a chance to win back its money.
Any reply other than y e s is considered to be a no
(except in the case of bet? or H o w many?) . To exit,
send an interrupt (break), DEL, or control-D. The
program will indicate whether the player won, lost, or
broke even.

MISCELLANEOUS
The random number generator for the die numbers uses
the seconds from the time of day. Depending on system
usage, these numbers, at times, may seem strange but
occurrences of this type in a real dice situation are not
uncommon.

- 2 -

FISH (6)

NAME
fish - play "Go Fish"

SYNOPSIS
/ u s r / g a m e s / f i sh

DESCRIPTION
Fish plays the game of Go Fish, a childrens' card game.
The Object is to accumulate 'books' of 4 cards with the
same face value. The players alternate turns; each turn
begins with one player selecting a card from his hand,
and asking the other player for all cards of that face
value. If the other player has one or more cards of that
face value in his hand, he gives them to the first player,
and the first player makes another request. Eventually,
the first player asks for a card which is not in the second
player's hand: he replies 'GO FISH!' The first player
then draws a card from the 'pool' of undealt cards. If
this is the card he had last requested, he draws again.
When a book is made, either through drawing or
requesting, the cards are laid down and no further action
takes place with that face value.

To play the computer, simply make guesses by typing a,
2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, or k when asked. Hitting
return gives you information about the size of my hand
and the pool, and tells you about my books. Saying 'p'
as a first guess puts you into 'pro' level; the default is
pretty dumb.

FORTUNE(6)

NAME
fortune - print a random, hopefully interesting, adage

SYNOPSIS
/ u s r / g a m e s / f o r t u n e [-] [- w s l a o]

DESCRIPTION
Fortune with no arguments prints out a random adage.
The flags mean:
—w Waits before termination for an amount of time

calculated from the number of characters in the
message. This is useful if it is executed as part of
the logout procedure to guarantee that the message
can be read before the screen is cleared.

—s Short messages only.
—1 Long messages only.
—o Choose from an alternate list of adages, often used

for potentially offensive ones.
—a Choose from either list of adages.

FILES
/ usr/games/lib / fortunes.dat

AUTHOR
Ken Arnold

- 1 -

HANGMAN (6)

NAME
hangman - guess the word

SYNOPSIS
/ u s r / g a m e s / h a n g m a n [arg]

DESCRIPTION
Hangman chooses a word at least seven letters long from
a dictionary. The user is to guess letters one at a time.
The optional argument arg names an alternate
dictionary.

FILES
/usr / l ib /w2006

BUGS
Hyphenated compounds are run together.

MAZE (6)

NAME
maze - generate a maze

SYNOPSIS
/ u s r / g a m e s / m a z e [seed [d] [n] [b]]

DESCRIPTION
Maze prints a maze. It uses the system clock as the
random number seed. If seed is specified, maze uses it
as the seed and shows the solution. An n suppresses the
solution, a b shows backouts, and a d provides
debugging information.

BUGS
Some mazes (especially small ones) have no solutions.

MOO(6)

NAME
moo - guessing game

SYNOPSIS
/ usr / g a m e s / m o o

DESCRIPTION
Moo is a guessing game imported from England. The
computer picks a number consisting of four distinct
decimal digits. The player guesses four distinct digits
being scored on each guess. A "cow" is a correct digit in
an incorrect position. A "bull" is a correct digit in a
correct position. The game continues until the player
guesses the number (a score of four bulls).

- 1 -

NUMBER (6)

NAME
number - convert Arabic numerals to English

SYNOPSIS
/ u s r / g a m e s / n u m b e r

DESCRIPTION
Number copies the standard input to the standard
output, changing each decimal number to a fully spelled
out version.

QUIZ (6)

NAME
quiz - test your knowledge

SYNOPSIS
/ u s r / g a m e s / q u i z [- i file] [- t] [category 1
category2]

DESCRIPTION
Quiz gives associative knowledge tests on various
subjects. It asks items chosen from categoryl and
expects answers from category2, or vice versa. If no
categories are specified, quiz gives instructions and lists
the available categories.
Quiz tells a correct answer whenever you type a bare
new-line. At the end of input, upon interrupt, or when
questions run out, quiz reports a score and terminates.
The —t flag specifies "tutorial" mode, where missed
questions are repeated later, and material is gradually
introduced as you learn.
The —i flag causes the named file to be substituted for
the default index file. The lines of these files have the
syntax:

line = category n e w - l i n e | category : line
category = alternate I category | alternate
alternate = empty | alternate primary
primary = character | [category] | option
option = { category }

The first category on each line of an index file names an
information file. The remaining categories specify the
order and contents of the data in each line of the
information file. Information files have the same syntax.
Backslash \ is used as with aA(l) to quote syntactically
significant characters or to insert transparent new-lines
into a line. When either a question or its answer is
empty, quiz will refrain from asking it.

FILES
/usr /games / l ib /quiz / index
/usr /games / l ib /qu iz /*

BUGS
The construct "al ab" does not work in an information
file. Use "a{b}".

TRK(6)

NAME
trk - trekkie game

SYNOPSIS
/ u s r / g a m e s / t r k [[—a] file]

DESCRIPTION
Trk is a game of space glory and war. Below is a
summary of commands. For complete documentation,
see Trek by Eric Allman.
If a filename is given, a log of the game is written onto
that file. If the —a flag is given before the filename,
that file is appended to, not truncated.
The game will ask you what length game you would like.
Valid responses are "short", "medium", and "long".
You may also type "restart", which restarts a previously
saved game. You will then be prompted for the skill, to
which you must respond "novice", "fair", "good",
"expert", "commadore", or "impossible". You should
normally start out as a novice and work up.
In general, throughout the game, if you forget what is
appropriate, the game will tell you what it expects if you
just type in a question mark.

COMMAND SUMMARY
a b a n d o n
capture
cloak up/down
computer request; ...
damages
des t ruc t
dock
he lp
impulse course distance
lrscan
move course distance
phasers automatic amount
phasers manual amtl coursel spreadl ...
torpedo course [yes] angle/no
r a m course distance
rest time
shell
shields up/down
srscan [yes/no]
status
t e r m i n a t e [yes/no]
undock
visual course
•warp warp_factor

T T T (6)

NAME
ttt, cubic - tic-tac-toe

SYNOPSIS
/ u s r / g a m e s / t t t
/ u s r / g a m e s / c u b i c

DESCRIPTION
Ttt is the X and O game popular in the first grade. This
is a learning program that never makes the same mistake
twice.
Although it learns, it learns slowly. It must lose nearly
80 games to completely know the game.
Cubic plays three-dimensional tic-tac-toe on a 4 X 4 X 4
board. Moves are specified as a sequence of three
coordinate numbers in the range 1-4.

FILES
/usr/games/ttt .k learning file

WUMP (6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
/ usr / g a m e s / w u m p

DESCRIPTION
Wump plays the game of "Hunt the Wumpus." A
Wumpus is a creature that lives in a cave with several
rooms connected by tunnels. You wander among the
rooms, trying to shoot the Wumpus with an arrow,
meanwhile avoiding being eaten by the Wumpus and
falling into Bottomless Pits. There are also Super Bats
which are likely to pick you up and drop you in some
random room.
The program asks various questions which you answer
one per line; it will give a more detailed description if
you want.
This program is based on one described in People's
Computer Company, 2, 2 (November 1973).

BUGS
It will never replace Adventure.

INTRO (7)

NAME
intro - introduction to special files

SYNOPSIS
^ i n c l u d e < s y s / s o c k e t . h >

/* internetworking only */
i n c l u d e < n e t / r o u t e . h >
^ i n c l u d e < n e t / i f . h >

DESCRIPTION
This section describes various special files that refer to
specific hardware peripherals and CTIX System device
drivers. The names of the entries are generally derived
from names for the hardware, as opposed to the names of
the special files themselves. Characteristics of both the
hardware device and the corresponding CTIX system
device driver are discussed where applicable.

INTERNETWORKING
Entries that describe network protocol use are marked
(7N) . These protocols are available only with a special
version of the CTIX kernel that supports
internetworking. For further information, see the CTIX
Inernetworking Manual.
All network protocols are associated with a specific
protocol-family. A protocol-family provides basic
services to the protocol implementation to allow it to
function within a specific network environment. These
services may include packet fragmentation and
reassembly, routing, addressing, and basic transport. A
protocol-family may support multiple methods of
addressing, though the current protocol implementations
do not. A protocol-family is normally comprised of a
number of protocols, one per «oefcef(2N) type. It is not
required that a protocol-family support all socket types.
A protocol-family may contain multiple protocols
supporting the same socket abstraction.
A protocol supports one of the socket abstractions
detailed in «ocfce<(2N). A specific protocol may be
accessed either by creating a socket of the appropriate
type and protocol-family, or by requesting the protocol
explicitly when creating a socket. Protocols normally
accept only one type of address format, usually
determined by the addressing structure inherent in the
design of the protocol-family/network architecture.
Certain semantics of the basic socket abstractions are
protocol specific. All protocols are expected to support
the basic model for their particular socket type, but
may, in addition, provide non-standard facilities or
extensions to a mechanism. For example, a protocol

5/86 - 1 -

INTRO (7)

supporting the SOCK_STREAM abstraction may allow
more than one byte of out-of-band data to be
transmitted per out-of-band message.
A network interface is similar to a device interface.
Network interfaces comprise the lowest layer of the
networking subsystem, interacting with the actual
transport hardware. An interface may support one or
more protocol families and/or address formats. The
SYNOPSIS section of each network interface entry gives
a sample specification of the related drivers for use in
providing a system description to the con}ig(1M)
program. The DIAGNOSTICS section lists messages
which may appear on the console and in the system error
log / u s r / a d m / m e s s a g e s due to errors in device
operation.

PROTOCOLS
The system currently supports only the DARPA Internet
protocols fully. Raw socket interfaces are provided to IP
protocol layer of the DARPA Internet, to the IMP link
layer (1822J, and to Xerox PUP-1 layer operating on top
of 3Mb/s Ethernet interfaces. Consult the appropriate
manual pages in this section for more information
regarding the support for each protocol family.

ADDRESSING
Associated with each protocol family is an address
format. The following address format is supported:

#def ine AF_INET 2
/ * internetwork: UDP, TCP, etc. */

ROUTING
The network facilities provide limited packet routing. A
simple set of data structures comprise a "routing table"
used in selecting the appropriate network interface when
transmitting packets. This table contains a single entry
for each route to a specific network or host. A user
process, the routing demon, maintains this data base
with the aid of two socket specific ioctl(2) commands,
SIOCADDRT and SIOCDELRT. The commands allow
the addition and deletion of a single routing table entry,
respectively. Routing table manipulations may only be
carried out by the superuser.

A routing table entry has the following form, as defined
in < n e t / r o u t e . h > :

5/86 - 2 -

I N T R O (7)

struct rtentry {
u_long rt_hash;
struct sockaddr rt_dst;
struct sockaddr rt_gateway;
short rt_flags;
short rt_refcnt;
u_long rt_use;
struct ifnet *rt ifp;

};
with rt_flags defined from,

d e f i n e R T F J J P 0x1
/ * route usable * /

d e f i n e R T F _ G A T E W A Y 0x2
/ * destination is a gateway * /

d e f i n e R T F _ H O S T 0x4
/ * host entry (net otherwise) * /

Routing table entries come in three types: for a specific
host, for all hosts on a specific network, for any
destination not matched by entries of the first two types
(a wildcard route). When the system is booted, each
network interface that is autoconfigured installs a
routing table entry when it wishes to have packets sent
through it. Normally the interface specifies the route
through it is a "direct" connection to the destination
host or network. If the route is direct, the transport
layer of a protocol family usually requests the packet be
sent to the same host specified in the packet. Otherwise,
the interface may be requested to address the packet to
an entity different from the eventual recipient (i.e., the
packet is forwarded).

Routing table entries installed by a user process may not
specify the hash, reference count, use, or interface fields;
these are filled in by the routing routines. If a route is
in use when it is deleted (rt_refcnt is nonzero), the
resources associated with it will not be reclaimed until
further references to it are released.

The routing code returns EEXIST if requested to
duplicate an existing entry, ESRCH if requested to delete
a nonexistant entry, or ENOBUFS if insufficient
resources were available to install a new route.

User processes read the routing tables through the
/ d e v / k m e m device.
The rt_use field contains the number of packets sent
along the route. This value is used to select among
multiple routes to the same destination. When multiple

5 /86 - 3 -

INTRO (7)

routes to the same destination exist, the least used route
is selected.
A wildcard routing entry is specified with a zero
destination address value. Wildcard routes are used only
when the system fails to find a route to the destination
host and network. The combination of wildcard routes
and routing redirects can provide an economical
mechanism for routing traffic.

INTERFACES
Each network interface in a system corresponds to a
path through which messages may be sent and received.
A network interface usually has a hardware device
associated with it.

At boot time each interface which has underlying
hardware support makes itself known to the system
during the autoconfiguration process. Once the interface
has acquired its address, it is expected to install a
routing table entry so that messages may be routed
through it. Most interfaces require some part of their
address specified with an SIOCSIFADDR ioctl before
they will allow traffic to flow through them. On
interfaces where the network-link layer address mapping
is static, only the network number is taken from the
ioctl; the remainder is found in a hardware-specific
manner. On interfaces which provide dynamic network-
link layer address mapping facilities (e.g. lOMb/s
Ethernets), the entire address specified in the ioctl is
used.

The following ioctl calls may be used to manipulate
network interfaces. Unless specified otherwise, the
request takes an ifreqvest structure as its parameter.
This structure has the form

struct ifreq {
char ifr_name[l6j;

/ * name of interface (e.g. "ecO") * /
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
short ifru_flags;

J ifr_ifru;
^def ine ifr_addrifr_ifru.ifru_addr

/ * address * /
^de f ine ifr_dstaddr ifr_ifru.ifru_dstaddr

/ * other end of p-to-p link * /
de fin e i f r_f 1 ags i f r_i f ru. if r u_f 1 ags

/ * flags * /

5 / 8 6 - 2 -

INTRO (7)

SIOCSIFADDR
Set interface address. Following the address
assignment, the "initialization" routine for the
interface is called.

SIOCGIFADDR
Get interface address.

SIO CSIFDSTADDR
Set point-to-point address for interface.

SIOCGIFDSTADDR
Get point-to-point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is
marked down, any processes currently routing
packets through the interface are notified.

SIOCGIFFLAGS
Get interface flags.

SIOCGIFCONF
Get interface configuration list. This request
takes an tfconf structure (see below) as a value-
result parameter. The tfc_len field should be
initially set to the size of the buffer pointed to
by ifcjbuf. On return it will contain the length,
in bytes, of the configuration list.

'1
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).

struct ifconf {
int ifc_len;

/ * size of associated buffer * /
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

) ifc_ifcu;
^def ine ifc_buf ifc_ifcu.ifcu_buf

/ * buffer address * /
d e f i n e ifc_req ifc_ifcu.ifcu_req
I; / * array of structures returned */

SEE ALSO
config(lM), ioctl(2), socket(2N), intro(7).

5 /86 - 2 -

C 0 N S 0 L E (7)

NAME
console - console terminal

DESCRIPTION
The special file / d e v / c o n s o l e designates a standard
destination for system diagnostics. The kernel writes its
diagnostics to this file, as does any user process with
messages of systemwide importance. Unless CTIX is
configured with the kernel debugger, console is not
associated with a terminal; console messages are written
to / e t c / l o g / c o n f i l e . If console is associated with a
physical terminal (configured with the kernel debugger),
then console messages appear on that terminal.

Note that inittab(4) does not normally post a getty on
conso le because it has no source for interactive input.
Console messages are saved in a circular buffer. Reading
console retrieves the messages and removes them from
the buffer.
If CTIX is configured with the kernel debugger (see
eon/ij/(lM)), then ttyOOO is associated with the console.
This means that console messages also go to ttyOOO and
that a Control-B on ttyOOO starts the kernel debugger.
The size of the console circular buffer is configured with
the config(iM) parameter cbufsz. The default is 4096
bytes.
The following ioctl(2) commands are acceptd:
ioctl(fd, CONERR);

Fd must De open to console. All console output
is to be duplicated in the error message queue.
See err (7).

ioctl(fd, CONBUF);
Fd must be open to console . No console output
is to be duplicated in the error message queue.
This is the initial condition.

ioctl(fd, CON_SET, port)
Fd must be open to console. Port is the minor
device number of the RS-232 line that will be
the new debugger console; port must be a valid
RS-232 channel. The function returns the
number of the new debugger console port.

ioctl(fd, CON_LOC)
Fd must be open to console. The function
returns the number of the current debugger
console port.

5/86 - 1 -

CONSOLE(7)

FILES
/dev/console
/etc/log/confile

SEE ALSO
conlocate(lM), syslocal(2).

WARNING
Normal system processing is suspended while the kernel
debugger is active.

5/86 - 2 -

DISK(7)

NAME
disk - general disk driver

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / g d i s k . h >
^ i n c l u d e < s y s / g d i o c t l . h >

DESCRIPTION
The files
/ d e v / r dsk /cO dOsO
through
/ d e v / r d s k / c z d z s x
and
/ d e v / d s k / c O d O s O
through
/ d e v / d s k / c x d x s x
refer to CTEX device names and slices, where cx is the
controller number, dx is the drive number, sx is the slice
number, and x is a hexadecimal digit. An r in the
name indicates the character (raw) interface,
MightyFrame and MiniFrame format a disk with 512-
byte physical sectors. Winchester disks have 17 physical
sectors per track. SMD drives have 33 to 65 physical
sectors per track.
Block input/output uses 1024-byte logical blocks.
Winchester disks have 8 logical blocks on each track,
with the leftover physical block available as an alternate
for a bad block. SMD disks have 16 to 32 logical blocks
on each track, with the leftover physical block available
as an alternate for a bad block.
Logical block zero contains the Volume Home Block,
which describes the disk. The following structure defines
the volume home block.
struct vhbd {

uint magic; /* Mitiframe disk format code */
int chksum; /* adjustment so 32 bit sum starting

from magic for IK bytes sums to - 1 */
struct gdswprt dsk; /* specific description of this disk * j
struct parti t partab[MAXSLICE];/* partition table */
struct resdes{ j * reserved area special files */

daddr_t blkstart; /* start logical block # */
ushort nblocks; /* length in logical blocks

(zero implies not present) * j
} resmap[8];

/ * resmap consists of the following entries:
* loader area
* bad block table

5/86 - 1 -

DISK (7)

*/

dump area
down load image file
Bootable program,
size determined by a.out format. nblocks= 1.

char fpulled;
long time;
struct gdswprt2 dsk2;
char minires[38|;

/* dismounted last time? */
/* time last came on line */
/* Drive specific parameters */
/* for future mini/miti frame
enhancements */

char sysres[292|; /* custom system area */
struct mntnam mntname[MAXSLICEj;

/* names for auto mounting; null
* string means no auto mount
* not used in mitiframe * j

/* user area */ char userres[256|;

struct gdswprt {
char name[6|;
ushort cyls;
ushort heads;
ushort psectrk;
ushort pseccyl;
char flags;
char step;

ushort sectorsz;

/* printf name */
/* the number of cylinders for this disk */
/* number of heads per cylinder */
/* number of physical sectors per track * j
/* number of physical sectors per cylinder */
/ * floppy density and high tech drive flags */
/ * stepper motor rate to controller -

ST506 only */
/* size of physical sectors (in bytes) * j

struct gdswprt2 {
short wpccyl;

ushort enetaddr[3|;

unchar gapl ;
unchar gap2;
char filler(28);

};

/ * value to program for R W C / W P C
ST506 only */
j * Ethernet station address -
* MiniFrame only */

j * Gap size on SMD drives */

/ * s tar t track number (new style) */

s truct parti t{
union {

uint strk;
struct {

ushort strk; j * s tar t track # */
ushort nsecs; / * # logical blocks available to user */

} old;
} sz;

};

5/86 - 2 -

D I S K (7)

If a volume home block is valid, magic is equal to
V H B M A G I C and the 32-bit sum of the volume home
block's bytes is OxFFFFFFFF (- 1) ; chksum is the
adjustment that makes the sum come out right.
Dsk describes the peculiarities of the disk, including
deliberate deviations from the system standard.
Dsk.flags the bitwise or of zero or more of the following
constants:
F P D E N S I T Y

F P M I X D E N S

H I T E C H

N E W P A R T T A B

R W C P W C

E X C H A N G E A B L E

F O R M A T E X T R A

(MiniFrame only) If on, the
disk is double density; if
off, the disk is single
density.
(MiniFrame only) If off,
F P D E N S I T Y specifies the
density of the first track; if
on, the first track is single
density regardless of
F P D E N S I T Y

(ST506 only) If on, head
select bit 3 is valid; if off,
reduced write current is
valid.
If off, the old style slice
(partition) table is in use; if
on, the new style slice table
is in use.
(ST506 only) If on, set
reduced write current/write
precompensation.
H I T E C H selects write
precompensation.
If on, the disk is a floppy
or removable hard disk
cartridge. If off, the disk is
a Winchester.
If on, the SMD drive is
formatted with an extra
sector on each track. (This
sector is ignored by CTIX
but is required for some
disk drives, notably the
Eagle-XP.)

Dsk.step specifies a stepper motor rate for the ST506;
use 14 in this field.

5 /86 - 3 -

D I S K (7)

Partab divides the disk into slices (partitions).
Fpulled indicates whether an exchangeable disk was
properly removed from the drive. The system sets this
field to 1 when the disk is inserted in the drive. To clear
fpulled, run dismount(IM); see that entry.
Mntname, minires, and userres are reserved for future
use.
Resmap describes the files that share Slice 0 with the
Volume Home Block. Provision is made for eight such
files, but only five have been assigned slots in resmap.
Each resmap entry gives the starting location (logical
block number) and length (logical blocks). A length of
zero indicates that the file is not provided. The first five
entries in resmap describe:

1. The loader. When the system is reset or turned
on, the boot prom loads the loader into the
loader address and jumps execution to it. The
function of the loader is to search for and load a
program that will boot the system.
On MightyFrame the loader searches the tape,
onboard Winchester disks 0, 1, and 2, and the
VME, in that order. On MiniPrame the loader
searches the tape, the floppy disk, and
Winchester disks 1 and 0, in that order.
On each disk, the loader first checks for a
standalone program. If the disk lacks a
standalone program, the loader checks for a
CTIX kernel, which must be a CTIX executable
object file called / u n i x in the file system in slice
1. When the loader locates an appropriate
program, it preserves the crash dump table,
loads the program it found at the address it was
linked at (0x0 if unknown) and executes it. If no
disk contains an appropriate file, the loader
continues searching until an appropriate disk is
inserted.

2. The bad block table, which always begins at
logical block 1 of the disk. Each logical block in
the bad block table consists of a four-byte
checksum followed by 127 bad block cells. The
checksum is a value that makes the 32-bit sum
of the logical block be OxFFFFFFFF (- 1) . A
bad block cell is defined by the following
structure.

5 /86 - 3 -

D I S K (7)

s t ruc t bbcell {
ushort cyl; /* the cylinder of the bad block * /
ushort badblk; / * the physical sector address of

the bad block within the cylinder cyl */
ushort altblk; / * track number of al ternate */
ushort nxtind; j * index into the cell array for next

bad block cell for this cylinder */

};
A single sequence of numbers, starting from zero,
identifies the checksums and cells. In each cell
in use, cyl identifies a cylinder that contains the
bad block; badblk physical block offset within
the cylinder of the bad block; altblk identifies
the track that contains the alternate block;
nextind (not used in MightyFrame) identifies the
next cell for a bad block on the same cylinder or
is zero if this is the last one.

3. The dump area. After Reset or Suicide, the
Boot prom dumps processor registers, the
memory map, a crash dump block, and the
contents of physical memory, until it runs out of
room in the dump area.

4. The down load image area. The down load
images are described by a table at the beginning
of the area. The area is described by the
following array.

s t ruct dldent {
short d_st r t ;
/ * block displacement from down load index */
short d_sz;
/* # of blocks for this entry * /

>;
The image number is the index for dldent.
D_strt is the offset in bytes of the image from
the beginning of the down load image area; d_sz
is the size in bytes of the image.

5. A bootable program, usually a diagnostic. This
is the program the loader considers a substitute
for the / u n i x file. The program must be in
a.out(4) format with magic number 407 or be a
simple memory image.
If the fifth entry in resmap has a zero address
but a nonzero length, the loader looks at the
beginning of slice 1 for the program.

5 /86 - 3 -

DISK(7)

Slice 0 is called the Reserved Area. Only the volume
home block and the files described by resmap can be in
the Reserved Area. A formatted disk used by a working
system certainly has at least one more slice.
Ioctl system calls use the following structure,
struct gdioctl {

/* status */
j * description of the disk */
/* more description of the disk * j
/* the type of disk controller */

ushort status;
struct gdswprt params;
struct gdswprt2 params2;
short ctrltyp;
short driveno;

};
Status is the bitwise or of the following constants.
VALID_VHB A valid Volume Header Block has been

read.
The disk is on line.
Last removal of disk from drive was not
preceded by proper dismount.

Params is a gdswprt structure, the same type used in the
volume header block.
Dsktype is equal to

DRV_READY
PULLED

G D W D 1 0 1 0

G D W D 2 0 1 0

G D W D 2 7 9 7

for Western
Controller
for Western
Controller

Digital

Digital

1010 ST506

2010 ST506

for Western Digital 2797 Floppy Disk
Controller

GD.RAMDISK for RAM Disk Emulator
GD_SMD3200 for Interphase SMD3200 disk controller
CTIX understands the following disk ioctl calls.
ioctl(fd, GDIOCTYPE, 0)

Returns GDIOC if fd is a file descriptor for a
disk special file.

ioctl(fd, GDGETA, gdctl_ptr)
Gdctljptr is a pointer to a gdioctl structure.
Ioctl fills the structure with information about
the disk.

ioctl(fd, GDSETA, gdctl_ptr)
Gdctl_ptr is a pointer to a gdioctl structure.
Ioctl passes the description of the disk to the
disk driver. This is primarily meant for reading
disks created by other kinds of computers.

5/86 - 3 -

D I S K (7)

ioctl(fd, GDFORMAT, ptr)
Ptr points to formating information. The disk
driver formats a track.

ioctl(fd, GDDISMNT)
Ioctl informs the driver that the user intends to
remove the disk from the drive. When this
system call successfully returns, the driver has
flushed all data in the buffer cache and waited
for all queued transfers to complete. The last
transfer is to write out the Volume Home Block
with the fpulled flag cleared. Once this call
returns the drive is inaccessible until a new disk
is inserted.

SEE ALSO
iv(l) , mknod(lM), ioctl(2).

5 /86 - 3 -

DRIVERS (7)

NAME
drivers - loadable device drivers

DESCRIPTION
A loadable driver is equivalent to a fixed, linked-in
device driver. It has access to all kernel subroutines and
global data. After it is loaded, it is effectively part of
the running kernel.
Differences between loadable and ordinary drivers
involve their driver ID, init routine, release routine, and
interrupt processing.

Init Routine
Loadable drivers may have an init routine that is
executed when the driver is bound, and a release routine
that is executed when the driver is unbound (see
/irfrv(lM) for a description of driver allocation and bind
operations). Init routines check for the existence of
hardware, initialize the hardware, put the interrupt
service routine for the hardware into the interrupt chain,
and do other similar tasks.

Release Routine
Release routines make sure the device or driver is idle,
turn off the device, take the interrupt service routine out
of the interrupt chain, and similar tasks. A typical action
for a release routine to take when the device is not idle is
to set an error code in u .u_error and return.

Driver ID
All drivers have a driver ID. Preloaded drivers have a
driver ID of 0. Loaded drivers are given an ID when
they allocate virtual space. The driver ID is
automatically set when the driver is linked. The ID
should never be modified by the driver itself; the ID is
used to identify the driver to the system when making
certain requests.

EXAMPLE
/ * init, release, interrupt service routines * j
/ * for loadable device xyzzy */
#include < s y s / d r v . h >
#def ine XYZ_VECNO 0x60
#def ine XYZ.BUSY 1
#def ine X Y Z . O P E N 2
int xyzzint();
extern int D F L T J D ;
static int D r v j d = & D F L T J D ;
int xy_base;
int xy_flags;

/* interrupt vector number */
/* nags */

/* interrupt service routine */

/* set drive ID */

- 1 -

DRIVERS (7)

xy_init()
{

if (set_vec(Drv_id, XYZ VECNO, xyzzyint) < 0)
{

u.u_error = EBUSY;
return;

}

< d o hardware initialization>

}
xy_release()
{

if (xy Hags & (XY_BUSY | XY_OPEN))
{

u.u_error = EBUSY;
return;

}

< t u r n off device>

reset_vec (Drv id, XYZ_VECNO);

}
xyzzyint()
{

<c lea r i n t e r rup t>

<process i n t e r rup t>

}
SEE ALSO

Writing MightyFrame Device Drivers.

5 /86 - 2 -

E R R (7)

NAME
err - error-logging interface

DESCRIPTION
Minor device 0 of the err driver is the interface between
a process and the system's error-record collection
routines. The driver may be opened only for reading by
a single process with super-user permissions. Each read
causes an entire error record to be retrieved and
removed; the record is truncated if the read request is for
less than the record's length.

An appropriate command to the console sends console
information to the error record queue. See console(l).

FILES
/dev/error special file

SEE ALSO
errdemon(lM), console(7).

L P (7)

NAME
lp - parallel printer interface

DESCRIPTION
Lp is an interface to the parallel printer channel. Bytes
written are sent to the printer. Opening and closing
produce page ejects. Unlike the serial interfaces
(termio(7)), the lp driver never prepends a carriage
return to a new line (line feed). The lp driver does have
options to filter output, for the benefit of printers with
special requirement. The driver also controls page
format. Page format and filter options are controlled
with ioctl(2):

^include < s y s / l p r i o . h >
ioctl(fildes, command, arg)

where command is one of the following constants:
LPRGET Get the current page format and put it

in the lpr io structure pointed to by
arg.

LPRSET Set the current page format from the
location pointed to by arg; this location
is a structure of type lpr io , declared in
the header file:

struct lprio {
short ind;
short col;
short line;

}i
Arg should be declared as follows:

struct lprio *arg;
Ind is the page indent in columns,
initially 4. Col is the number of
columns in a line, initially 132, Line is
the number lines on a page, initially 66.
A newline that extends over the end of
a page is output as a formfeed. Lines
longer than the line length minus the
indent are truncated.

L P (7)

LPRSOPTS

Constant

LPNOBS

LPRAW

LPCAP

Value

LPNOCR

LPNOFF

LPNONL

16

32

64

128

Set the filter options from arg, which
must be of type int . Arg should be the
logical or of one or more of the
following constants, defined in the
header file:

Meaning

N o back space. Set this bit if the
printer cannot properly interpret
backspace characters. The driver uses
carriage return to produce equivalent
overstriking.

Raw output. Set this bit if the driver
must not edit output in any way. The
driver ignores all other option bits.

Capitals. This option supports printers
with a "half-ASCII" character set.
Lowercase is translated to uppercase.
The following special character^ are

{ to } to -); v to - ; | to translated:
4 ; " to

N o Carriage Return. This option
supports printers that do not respond to
a carriage return (character OD
hexadecimal). Carriage returns are
changed to newlines. If No Newline is
also set, carriage returns are changed to
form feeds.

No Form Feed. This option supports
printers that do not respond to a form
feed (character OC hexadecimal). Form
Feeds are changed to newlines. If No
Newline is also set, form feeds are
changed to carriage returns.

N o Newline. This option supports
printers that do not respond to a
newline (character OA hexadecimal).
Newlines are changed to carriage
returns. If N o Carriage Return is also
set, newlines are changed to form feeds.

Setting all three of No Carriage Return, No New Line,
and No Form Feed has the same effect as setting none of
them.
LPRGOPTS Return the current state of the filter

options.

- 2 -

L P (7)

Note that once set, options will remain intact through
close.

FILES
/dev / lp?

SEE ALSO
l p r (l) , l p s e t (l) .

MEM(7)

NAME
mem, kmem - system memory interface

DESCRIPTION
Mem is a special file that is an image of the system
memory. It may be used, for example, to examine, and
even to patch the system.
Byte addresses in mem are interpreted as memory
addresses. References to non-existent locations cause
errors to be returned.
Examining and patching device registers is likely to lead
to unexpected results when read-only or write-only bits
are present.
The file kmem is the same as mem except that kernel
virtual memory rather than physical memory is accessed.
On the MightyFrame system accessing 0 to 24 megabytes
allows a process to read its own space. 0x7F800000 to
0x80000000 allows a process to read the kernel.
Nonvalid pages cause errors to be returned.

SEE ALSO
vme(7).

FILES
/ d e v / m e m
/ dev /kmem

- 1 -

NULL(7)

NAME
null - the null file

DESCRIPTION
Data written on a null special file is discarded.
Reads from a null special file always return 0 bytes.

FILES
/dev/null

P R F (7)

NAME
prf - operating system profiler

DESCRIPTION
The file prf provides access to activity information in
the operating system. Writing the file loads the
measurement facility with text addresses to be
monitored. Reading the file returns these addresses and
a set of counters indicative of activity between adjacent
text addresses.
The recording mechanism is driven by the system clock
and samples the program counter at line frequency.
Samples that catch the operating system are matched
against the stored text addresses and increment
corresponding counters for later processing.
The file prf is a pseudo-device with no associated
hardware.

FILES
/dev/prf

SEE ALSO
config(lM), profiler(lM).

QIC(7)

NAME
qic - interface for QIC tape

DESCRIPTION
This interface provides access to quarter-inch streaming
tape (QIC). QIC tape drives are supported only as
character devices. If the system has a default tape
device (such as the QIC on a MightyFrame system), the
rmtO and r m t 4 devices exist and are linked to the
appropriate real device names. To get the raw, rewind
on close device, use rmtO. To get the raw, no-rewind on
close device, use r m t 4 .
Tape files are separated by tape marks, also known as
EOFs. Closing a file open for writing writes one tape
mark; if the device was no-rewind, the tape is left
positioned just after the single QIC tape mark. Note
that it is not possible to overwrite a tape mark. Writing
must begin either at the beginning of the tape or after
any previously recorded data.
Each read or write reads or writes the next physical
block. A read must match the size of a normal tape
block. The size of a write determines the size of the next
block; Write sizes must be a multiple of 512.
Read/write buffers must begin on an even address; this
is the same alignment as short . Seeks are ignored.
Reading a tape mark produces a zero-length read and
leaves the tape positioned after the mark; the program
can, without closing the device, read the next tape file.
The following commands are supported for QIC tape via
i ' oe f / (2) :

i n c l u d e < s y s / t s i o c t l . h >
ioctl (f i ldes, c m d , arg)

where cmd is one of the following:
TPGETA Get the current status of the tape

controller. Arg must be a pointer to a
tpio struction defined as follows:

struct tpio {
unsigned status;
short under;

};
TPCMD Specify a command to the tape

controller as specified in arg. The
following are legal values of arg:

- 1 -

QIC (7)

SENSE Perform a read tape status.
The result may be read via
TPGETA.

TRESET Reset the tape controller.
REWIND

Issue a rewind command.
ERASE Issue an erase tape command.
RETEN Issue a retension tape

command.
TPIOCTYPE Return TPIOC if fildes is a file

descriptor for a tape special file.
FILES

/dev /rmt?
/ d e v / r q i c / *

WARNING
A nondata error cannot be recovered from except by
closing the device.
A QIC tape has no special mark for end of tape, as
opposed to end of file.

S X T (7)

NAME
sxt - pseudo-device driver

DESCRIPTION
Sxt is a pseudo-device driver that interposes a discipline
between the standard tty line disciplines and a real
device driver. The standard disciplines manipulate
virtual tty structures (channels) declared by the sxt
driver. Sxt acts as a discipline manipulating a real tty
structure declared by a real device driver. The sxt driver
is currently only used by the shl(1) command.

Virtual ttys are named by inodes in the subdirectory
/ d e v / s x t and are allocated in groups of up to eight. To
allocate a group, a program should exclusively open a file
with a name of the form / d e v / s x t / ? ? 0 (channel 0) and
then execute a SXTIOCLINK ioctl call to initiate the
multiplexing.
Only one channel, the controlling channel, can receive
input from the keyboard at a time; others attempting to
read will be blocked.
There are two groups of ioctl(2) commands supported by
sxt. The first group contains the standard ioctl
commands described in termio(7), with the addition of
the following:
TIOCEXCL Set exclusive use mode: no further opens are

permitted until the file has been closed.
TIOCNXCL Reset exclusive use mode: further opens are

once again permitted.
The second group are directives to sxt itself. Some of
these may only be executed on channel 0.
SXTIOCLINK Allocate a channel group and multiplex

the virtual ttys onto the real tty. The
argument is the number of channels to
allocate. This command may only be
executed on channel 0. Possible errors
include:

EINVAL The argument is out of
range.

ENOTTY The command was not
issued from a real tty.

ENXIO linesw is not configured
with sxt.

EBUSY An SXTIOCLINK
command has already
been issued for this real

- 1 -

SXT (7)

SXTIOCSWTCH

SXTIOCWF

SXTIOCTJBLK

SXTIOCSTAT

SXTIOCTRACE

tty.
ENOMEM There is no system

memory available for
allocating the virtual tty
structures.

EBADF Channel 0 was not
opened before this call.

Set the controlling channel. Possible
errors include:
EINVAL An invalid channel

number was given.
EPERM The command was not

executed from channel 0.
Cause a channel to wait until it is
the controlling channel. This
command will return the error,
EINVAL, if an invalid channel
number is given.
Turn off the lob lk control flag in the
virtual tty of the indicated channel.
The error EINVAL will be returned
if an invalid number or channel 0 is
given.
Get the status (blocked on input or
output) of each channel and store in
the sxtblock structure referenced by
the argument. The error EFAULT
will be returned if the structure
cannot be written.
Enable tracing. Tracing information
is written to / dev]osm. This
command has no effect if tracing is
not configured.

SXTIOCNOTRACE Disable tracing. This command has
no effect if tracing is not configured.

FILES
Virtual tty devices
Driver specific definitions.

/dev/sxt/??[0-7]
/ usr / include/sys /sxt .h

SEE ALSO
shl(l) , s t ty(l) , ioctl(2), open(2), termio(7).

- 2 -

TERMIO (7)

NAME
termio - general terminal interface

DESCRIPTION
CTIX systems use a single interface convention for all
RS-232 and cluster (RS-422) terminals, although cluster
terminals do not use all the features of the convention.
The convention is almost completely taken from the
UNIX System V interface for asynchronous terminals.
Three kinds of terminals use this convention:
• RS-232 terminals connected to channels on the

MightyFrame or MiniFrame itself.
• Cluster terminals. Generally a cluster channel

supports more than one terminal and some
terminals are indirectly connected through other
(daisy-chained) terminals. Cluster terminals use
the same interface as directly connected RS-232
terminals, except that hardware control
operations are meaningless on cluster terminals.
(Note that "cluster terminal" refers to the way
the terminal is used, not to the terminal itself; a
Convergent Technologies terminal can serve as
an RS-232 terminal or as a cluster terminal.)

• Local RS-232 terminals. These are connected to
RS-232 channels on cluster terminals. They
actually use the cluster terminal's RS-422
channel to communicate with the host computer
system, but work like regular RS-232 terminals.

A single naming convention applies to regular RS-232
and cluster terminals; a second, related, convention
applies to local RS-232 terminals. A direct RS-232 or
cluster terminal has a name of the form / d e v / t t y z z x ,
where xxx is the terminal's number expressed in three
digits. A local RS-232 terminal has a name of the form
/ d e v / t p / exxx where c is the RS-232 channel number (a
or b), and xxx is the accomodating cluster terminal's
terminal number expressed in three digits. A local RS-
232 terminal cannot be opened prior to the first open on
the associated RS-422 terminal since the last reboot of
the system.
When a terminal file is opened, it normally causes the
process to wait until a connection is established. In
practice, users' programs seldom open these files; they
are opened by getty and become a user's standard input,
output, and error files. The very first terminal file
opened by the process group leader of a terminal file not
already associated with a process group becomes the

- 1 -

TERMIO (7)

control terminal for that process group. The control
terminal plays a special role in handling quit and
interrupt signals, as discussed below. The control
terminal is inherited by a child process during a fork(2).
A process can break this association by changing its
process group using setpgrp(2).

A terminal associated with one of these files ordinarily
operates in full-duplex mode. Characters may be typed
at any time, even while output is occurring, and are only
lost when the system's character input buffers become
completely full, which is rare, or when the user has
accumulated the maximum allowed number of input
characters that have not yet been read by some program.
Currently, this limit is 256 characters. When the input
limit is reached, all the saved characters are thrown
away without notice.

Normally, terminal input is processed in units of lines.
A line is delimited by a newline (ASCII LF) character, an
end-of-file (ASCII EOT) character, or an end-of-line
character. This means that a program attempting to
read will be suspended until an entire line has been
typed. Also, no matter how many characters are
requested in the read call, at most one line will be
returned. It is not, however, necessary to read a whole
line at once; any number of characters may be requested
in a read, even one, without losing information.
During input, erase and kill processing is normally done.
By default, the character generated by a Programmable
Terminal BACK SPACE key (ASCII BS, Control-H on
most terminals) erases the last character typed, except
that it will not erase beyond the beginning of the line.
By default, the character @ kills (deletes) the entire
input line, and optionally outputs a newline character.
Both these characters operate on a key-stroke basis,
independently of any backspacing or tabbing that may
have been done. Both the erase and kill characters may
be entered literally by preceding them with the escape
character (\) . In this case the escape character is not
read. The erase and kill characters may be changed.

Certain characters have special functions on input.
These functions and their default character values are
summarized as follows:
INTR (Rubout or ASCII DEL; generated by a

Programmable Terminal DELETE key)
generates an interrupt signal which is sent to
all processes with the associated control
terminal. Normally, each such process is

- 2 -

TERMIO (7)

forced to terminate, but arrangements may be
made either to ignore the signal or to receive a
trap to an agreed-upon location; see signal(2).

QUIT (Control-| or ASCII FS; generated by a
Programmable Terminal CODE-CANCEL key)
generates a quit signal. Its treatment is
identical to the interrupt signal except that,
unless a receiving process has made other
arrangements, it will not only be terminated
but a core image file (called core) will be
created in the current working directory.

SWTCH ASCII NUL is used by the job control facility,
»hl, to change the current layer to the control
layer.
(Control-h or ASCII BS; generated by a
Programmable Terminal BACKSPACE key)
erases the preceding character. It will not
erase beyond the start of a line, as delimited
by a NL, EOF, or EOL character.
(@) deletes the entire line, as delimited by a
NL, EOF, or EOL character.
(Control-d or ASCII EOT; generated by a
Programmable Terminal FINISH key) may be
used to generate an end-of-file from a terminal.
When received, all the characters waiting to be
read are immediately passed to the program,
without waiting for a newline, and the EOF is
discarded. Thus, if there are no characters
waiting, which is to say the EOF occurred at
the beginning of a line, zero characters will be
passed back, which is the standard end-of-file
indication.
(ASCII LF) is the normal line delimiter. It can
not be changed or escaped.
(ASCII NUL) is an additional line delimiter, like
NL. It is not normally used.
(Control-s or ASCII DC3) can be used to
temporarily suspend output. It is useful with
CRT terminals to prevent output from
disappearing before it can be read. While
output is suspended, STOP characters are
ignored and not read.
(Control-q or ASCII DCl) is used to resume
output which has been suspended by a STOP
character. While output is not suspended,

ERASE

KILL

EOF

NL

EOL

STOP

START

- 3 -

TERMIO (7)

START characters are ignored and not read.
The start/stop characters can not be changed
or escaped.

The character values for INTR, QUIT, SWTCH, ERASE,
KILL, EOF, and EOL may be changed to suit individual
tastes. The ERASE, KILL, and EOF characters may be
escaped by a preceding \ character, in which case no
special function is done.
When the carrier signal from the data-set drops, a
hangup signal is sent to all processes that have this
terminal as the control terminal. Unless other
arrangements have been made, this signal causes the
processes to terminate. If the hangup signal is ignored,
any subsequent read returns with an end-of-file
indication. Thus, programs that read a terminal and test
for end-of-file can terminate appropriately when hung up
on.
When one or more characters are written, they are
transmitted to the terminal as soon as previously-written
characters have finished typing. Input characters are
echoed by putting them in the output queue as they
arrive. If a process produces characters more rapidly
than they can be typed, it will be suspended when its
output queue exceeds some limit. When the queue has
drained down to some threshold, the program is resumed.
Several ioctl(2) system calls apply to terminal files. The
primary calls use the following structure, defined in
< t e r m i o . h > :
#define NCC 8
struct termio {

unsigned short c_iflag; / * input modes * /
unsigned short c_oflag; / * output modes * /
unsigned short c_cflag; / * control modes */
unsigned short c_lflag; / * local modes */
char c_line; / * line discipline * /
unsigned char c_cc [NCC];

/ * control chars */
}>
The special control characters are defined by the array
c_cc. The relative positions and initial values for each
function are as follows:

0 VINTR DEL
1 VQUIT FS
2 VERASE BS
3 VKILL @
4 VEOF EOT

- 4 -

TERMIO (7)

5 VEOL NUL
6 reserved
7 VSWTCH NUL

The c_tflag field describes the basic terminal input
control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNPAR 0000004 Ignore characters with parity

errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map upper-case to lower-case on

input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart

output.
IXOFF 0010000 Enable start/stop input control.
If IGNBRK is set, the break condition (a character
framing error with data all zeros) is ignored, that is, not
put on the input queue and therefore not read by any
process. Otherwise if BRKINT is set, the break condition
will generate an interrupt signal and flush both the input
and output queues. If IGNPAR is set, characters with
other framing and parity errors are ignored.
If PARMRK is set, a character with a framing or parity
error which is not ignored is read as the three-character
sequence: 0377, 0, X, where X is the data of the
character received in error. To avoid ambiguity in this
case, if ISTRIP is not set, a valid character of 0377 is
read as 0377, 0377. If PARMRK is not set, a framing or
parity error which is not ignored is read as the character
NUL (0).
If INPCK is set, input parity checking is enabled. If
INPCK is not set, input parity checking is disabled. This
allows output parity generation without input parity
errors.
If ISTRIP is set, valid input characters are first stripped
to 7-bits, otherwise all 8-bits are processed.

- 5 -

TERMIO (7)

If INLCR is set, a received NL character is translated into
a CR character. If IGNCR is set, a received CR character
is ignored (not read). Otherwise if ICRNL is set, a
received CR character is translated into a NL character.
If IUCLC is set, a received upper-case alphabetic
character is translated into the corresponding lower-case
character.
If IXON is set, start/stop output control is enabled. A
received STOP character will suspend output and a
received START character will restart output. All
start /stop characters are ignored and not read. If IXANY
is set, any input character, will restart output which has
been suspended.

If IXOFF is set, the system will transmit START/STOP
characters when the input queue is nearly empty/ful l .
The initial input control value is all-bits-clear.
The c_oflag field specifies the system treatment of
output:
OPOST 0000001 Postprocess output.
OLCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column 0.
ONLRET 0000040 NL performs CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.
NLDLY 0000400 Select new-line delays:
NLO 0
NLl 0000400
CRDLY 0003000 Select carriage-return delays:
CRO 0
CRl 0001000
CR2 0002000
CR3 0003000
TABDLY 0014000 Select horizontal-tab delays:
TABO 0
TABl 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSO 0
BSl 0020000
VTDLY 0040000 Select vertical-tab delays:
VTO 0
VTl 0040000
FFDLY 0100000 Select form-feed delays:

TERMIO (7)

FFO 0
FFl OlOOOOO
If OPOST is set, output characters are post-processed as
indicated by the remaining flags, otherwise characters
are transmitted without change.
If OLCUC is set, a lower-case alphabetic character is
transmitted as the corresponding upper-case character.
This function is often used in conjunction with IUCLC.
If ONLCR is set, the NL character is transmitted as the
CR-NL character pair. If OCRNL is set, the CR character
is transmitted as the NL character. If ONOCR is set, no
CR character is transmitted when at column 0 (first
position}. If ONLRET is set, the NL character is assumed
to do tne carriage-return function; the column pointer
will be set to 0 and the delays specified for CR will be
used. Otherwise the NL character is assumed to do just
the line-feed function; the column pointer will remain
unchanged. The column pointer is also set to 0 if the CR
character is actually transmitted.
The delay bits specify how long transmission stops to
allow for mechanical or other movement when certain
characters are sent to the terminal. In all cases a value
of 0 indicates no delay. If OFILL is set, fill characters
will be transmitted for delay instead of a timed delay.
This is useful for high baud rate terminals which need
only a minimal delay. If OFDEL is set, the fill character
is DEL, otherwise NUL.
If a form-feed or vertical-tab delay is specified, it lasts
for about 2 seconds.
new-line delay lasts about 0.10 seconds. If ONLRET is
set, the carriage-return delays are used instead of the
new-line delays. If OFILL is set, two fill characters will
be transmitted.
Carriage-return delay type 1 is dependent on the current
column position, type 2 is about 0.10 seconds, and type 3
is about 0.15 seconds. If OFILL is set, delay type 1
transmits one or two fill characters, and type 2, four fill
characters.
Horizontal-tab delay type 1 is dependent on the current
column position. Type 2 is about 0.10 seconds. Type 3
specifies that tabs are to be expanded into spaces. If
OFILL is set, two fill characters will be transmitted for
any delay.
Backspace delay lasts about 0.05 seconds. If OFILL is
set, one fill character will be transmitted.

- 7 -

TERMIO (7)

The actual delays depend on line speed and system load.
The initial output control value is all bits clear.
The e_eflag field describes the hardware control of the
terminal:
CBAUD 0000017 Baud rate:

B0 OHang up
B50 000000150 baud
B75 000000275 baud
B110 0000003110 baud
B134 0000004134.5 baud
B150 0000005150 baud
B200 0000006200 baud
B300 0000007300 baud
B600 0000010600 baud
B1200 00000111200 baud
B1800 00000121800 baud
B2400 00000132400 baud
B4800 00000144800 baud
B9600 00000159600 baud
B19200 000001619200 baud
B38400 000001738400 baud

CSIZE 0000060 Character size:
CS5 05 bits
CS6 00000206 bits
CS7 00000407 bits
CS8 00000608 bits

CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.
PARENB 0000400 Parity enable.
PARODD 0001000 Odd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.
LOBLK 0010000 Block layer output.
The CBAUD bits specify the baud rate. The zero baud
rate, BO, is used to hang up the connection. If BO is
specified, the data-terminal-ready signal will not be
asserted. Normally, this will disconnect the line. For
any particular hardware, impossible speed changes are
ignored.
The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include
the parity bit, if any. If CSTOPB is set, two stop bits are
used, otherwise one stop bit. For example, at 110 baud,
two stops bits are required.
If PARENB is set, parity generation and detection is
enabled and a parity bit is added to each character. If

- 8 -

TERMIO (7)

parity is enabled, the PARODD flag specifies odd parity if
set, otherwise even parity is used.
If CREAD is set, the receiver is enabled. Otherwise, no
characters will be received.
If LOBLK is set, the output of a job control layer will be
blocked when it is not the current layer. Otherwise the
output generated by that layer will be multiplexed onto
the current layer.
If HUPCL is set, the line will be disconnected when the
last process with the line open closes it or terminates.
That is, the datarterminal-ready signal will not be
asserted.

If CLOCAL is set, the line is assumed to be a local, direct
connection with no modem control. Otherwise modem
control is assumed.
The initial hardware control value after open is B9600,
CS8, CREAD, HUPCL.
The e_lflag field of the argument structure is used by the
line discipline to control terminal functions. The basic
line discipline (0) provides the following:
ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (erase and kill

processing).
XCASE 0000004 Canonical upper/lower

presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS
ECHOK 0000040 Echo NL after kill character.
ECHONL 0000100 Echo NL.
NOFLSH 0000200 Disable flush after interrupt or

quit.
If ISIG is set, each input character is checked against the
special control characters INTR, SWTCH, and QUIT. If
an input character matches one of these control
characters, the function associated with that character is
performed. If ISIG is not set, no checking is done. Thus
these special input functions are possible only if ISIG is
set. These functions may be disabled individually by
changing the value of the control character to an
unlikely or impossible value (e.g., 0377).
If ICANON is set, canonical processing is enabled. This
enables the erase and kill edit functions, and the

TERMIO (7)

assembly of input characters into lines delimited by NL,
EOF, and EOL. If ICANON is not set, read requests are
satisfied directly from the input queue. The values of
VMIN and VTIME control how many and when
characters will be returned. If both are 0, reads come
back immediately if no characters are present. If VMIN
is greater than 0 and VTIME is equal to 0, the read will
wait until at least VMIN characters have been received.
If VMIN is equal to 0 and VTIME is greater than 0, the
read will return after VTIME tenths of a second,
regardless of whether any characters have been received.
Note that in this case a read may return 0, which is
indistinguishable from end-of-file. If VMIN is greater
than 0 and VTIME is greater than 0, the timeout period
starts after the first character has been received; thus a
read will always return greater than or equal to 1. This
allows fast bursts of input to be read efficiently while
still allowing single character input. The MIN and TIME
values are stored in the position for the EOF and EOL
characters, respectively. The time value represents
tenths of seconds.

If XCASE is set, and if ICANON is set, an upper-case
letter is accepted on input by preceding it with a \
character, and is output preceded by a \ character. In
this mode, the following escape sequences are generated
on output and accepted on input:

For example, A is input as \ a , \ n as \ \ n , and \ N as
\ \ \ n -
If ECHO is set, characters are echoed as received.
When ICANON is set, the following echo functions are
possible. If ECHO and ECHOE are set, the erase
character is echoed as ASCII BS SP BS, which will clear
the last character from a CRT screen. If ECHOE is set
and ECHO is not set, the erase character is echoed as
ASCII SP BS. If ECHOK is set, the NL character will be
echoed after the kill character to emphasize that the line
will be deleted. Note that an escape character preceding
the erase or kill character removes any special function.
If ECHONL is set, the NL character will be echoed even if
ECHO is not set. This is useful for terminals set to local

for-. use

- 10 -

TERMIO (7)

echo (so-called half duplex). Unless escaped, the EOF
character is not echoed. Because EOT is the default EOF
character, this prevents terminals that respond to EOT
from hanging up.
If NOFLSH is set, the normal flush of the input and
output queues associated with the quit, switch, and
interrupt characters will not be done.
The initial line-discipline control value is all bits clear.
The primary ioc</(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:
TCGETA Get the parameters associated with

the terminal and store in the
termio structure referenced by
arg .

TCSETA Set the parameters associated with
the terminal from the structure
referenced by a r g . The change is
immediate.

TCSETAW Wait for the output to drain before
setting the new parameters. This
form should be used when
changing parameters that will
affect output.

TCSETAF Wait for the output to drain, then
flush the input queue and set the
new parameters.

Additional ioctl(2) calls have the form:
ioctl (fildes, command, arg)
int arg;

The commands using this form are:
TCSBRK Wait for the output to drain. If

arg is 0, then send a break (zero
bits for 0.25 seconds).

TCXONC Start/stop control. If arg is 0,
suspend output; if 1, restart
suspended output; if 2, transmit
XOFF; if 3, transmit XON.

TCFLSH If arg is 0, flush the input queue; if
1, flush the output queue; if 2,
flush both the input and output
queues.

- 11 -

TERMIO (7)

FILES
/dev / t ty*
/ d e v / t p / *

SEE ALSO
stty(l), fork(2), ioctl(2), setpgrp(2), signal(2), tp(7),
tty(7).

WARNING
The default value for ERASE is backspace rather than
the historical

BUGS
Local RS-232 terminals do not currently provide hangup
(BO), draining, flushing, or delay.

- 12 -

T I O P (7)

NAME
tiop - terminal accelerator interface

SYNOPSIS
^ i n c l u d e < s y s / t i o p . h >

DESCRIPTION
The tiop driver provides loading and unloading functions
for the terminal accelerator. The open of device
! d e v / t i o p will fail if either a terminal accelerator board
is not present, or if it is already loaded. The only
allowable function after opening the tiop device is to
issue an ioctl to download the accelerator. The following
command is supported via ioctl:
IOPATTACH Download the IOP; arg must point to

an area in the caller's space where the
first 4 bytes are a count of the number
of bytes to be loaded into the
accelerator. The actual data must
follow the count field immediately.
The count bytes are copied into the
accelerator starting at memory location
0. After loading, the accelerator is reset
and begins execution at 0 in its
memory. After a successful
IOPATTACH all but two onboard RS-
232 ports will be controlled by the
accelerator.

TP (7)

NAME
tp - controlling terminal's local RS-232 channels

DESCRIPTION
The t p devices accesses the RS-232 channels on the
controlling terminal. The terminal must be a cluster
terminal configured to permit use of the local RS-232
channels (see termio(7). Just as / d e v / t t y permits a
process to conveniently access its process group's
controlling terminal (see tty(7)), / d e v / t p a and
/ d e v / t p b access the controlling terminal's RS-232
channels without reference to the terminal number. This
is convenient for accessing the user's local hardware,
such as a telephone with an RS-232 interface.

SEE ALSO
tty(7).

T T Y (7)

NAME
tty - controlling terminal interface

DESCRIPTION
The file / d e v / t t y is, in each process, a synonym for the
control terminal associated with the process group of
that process, if any. It is useful for programs or shell
sequences that wish to be sure of writing messages on the
terminal no matter how output has been redirected. It
can also be used for programs that demand the name of
a file for output, when typed output is desired and it is
tiresome to find out what terminal is currently in use.
If the terminal is under window management, a process
group is controlled by a specific window and I/O on
/ d e v / t t y is directed to that window. A terminal can
control one process group in each window. See
window(7).

FILES
/dev / t ty
/dev/ t ty*

SEE ALSO
tp(7), window(7).

VME (7)

NAME
vme - V M E bus interface

DESCRIPTION
Vme files are a set of special files that are images of the
V M E bus. They may be used, for example, to examine,
and to modify memory and registers on the V M E bus.
Byte addresses in vme are interpreted as memory
addresses. For a read, references to non-existent
locations cause errors to be returned; for a write, nothing
is written and no error is returned.
Examining and patching device registers is likely to lead
to unexpected results when read-only or write-only bits
are present.
The structure for ioctl calls is:

d e f i n e V M G E T R E G (V + 0)
d e f i n e V M S E T R E G (V + l)

struct vmeioctl {
unchar vm_mreg;
unchar mv_preg;
unchar vm_ireg;

}>
The standard VME interface EEPROM contents are:
d e f i n e V M E _ S L O T S 16

struct vmeeprom {

/ * Make the entire prom checksum to - 1 */
int checksum;

j * EEPROM flags (diag/unix) */
int flags;

/ * Offset into EEPROM from the s tar t of code */
ushort codeoffset;

/ * unused, reserved */
char unused[2|;

struct {
/ * Board identification for this slot */
char type;

/ * reserved for future use */
char unused[7|;

- 1 -

VME(7)

/* Address of the board; in MightyFrame I /O space */
uint address;

/ * Amount of address space taken up by the board */
uint length;

/* Pointer to an optional initialization function */
int (*initfp)();

} slots [VME_SLOTS];

/ * Reserve the rest for controller code */
char drivers[7860|;

};
#def ine VMEE_DIAG 0 /* Diag has cleared/set EEPROM */
#def ine VMEE_LOADED 1 / * unix has loaded driver information */

#def ine VMET_CMC 1 / * CMC Ethernet controller */
#def ine VMET_V3200 2 / * Interphase SMD controller */

/ d e v / v m e / a l 6 64K bytes of short address space
/ d e v / v m e / a 2 4 32M bytes of standard address

space
/ d e v / v m e / a 3 2 1 low 2 gigabytes of extended

address space
/ d e v / v m e / a 3 2 h high 2 gigabytes of extended

address space
/ d e v / v m e / e e p r o m 8K V M E interface EEPROM

SEE ALSO
ldeeprom(lM), system(4), mem(7).
MightyFrame VME Expansion Manual.

FILES

- 2 -

V T (7)

NAME
v t - virtual terminal

DESCRIPTION
A virtual terminal provides a terminal-like
communication channel between two processes. Each
virtual terminal consists of two devices: a slave device,
whose name is of the form /dev/ttypara: , where xx is the
virtual terminal number; and a master device, whose
name is of the form / d e v / v t a r x , where xx is the virtual
terminal number. The slave device responds to system
calls just like a real terminal (see termio(7)) so that it
can control interactive programs such as vi. But instead
of doing actual input/output, reads and writes on the
slave device are written and read on the corresponding
master device by another process. A typical use of a
virtual terminal is to put a network server on the master
device and login program on the slave.

The number of virtual terminals must be configured.
See config(lM).
The process on the master device can exercise flow
control on the slave device, much as a real terminal
would use XON/XOFF to exercise flow control on a
terminal device. The parameterless i'oc</(2) TIOCSTOP
stops output to the slave device as if with an XOFF
character; the parameterless ioctl(2) TIOCSTART restarts
output, as if with an XON character.

FILES
/dev/ t typ?? slave devices
/dev /vt?? master devices

SEE ALSO
config(lM), ttyname(3C), termio(7).

5 / 8 6 - 1 -

WINDOW (7)

NAME
window - window management primitives

SYNOPSIS
• inc lude < s y s / w i n d o w . h >

DESCRIPTION
Window managment (u>m(l)) provides a superset of
windowless terminal features. This entry describes
terminal file features special to window management.
Window management features are designed not to
interfere with programs that do not know about window
management. Such design includes simple extensions to
the UNIX System's standard concepts of file descriptor
and control terminal.

• Each terminal file descriptor has an associated
window number, a small positive integer that
identifies a window. A window number is the
most primitive way to refer to a window, and
should not be confused with the window ID used
by window management subroutines. A new
window gets the smallest window number not
already in use. Closing a window frees its
number for possible assignment to a later
window. Output and control calls on the file
descriptor apply only to the descriptor's window;
input calls succeed only when the window is
active.

A file descriptor created by a dup(2) or inherited
across a fork(2) inherits the original descriptor's
window number. All the file descriptors in such
a chain of inheritance, provided they belong to
processes in the same process group, are affected
when ioctl changes the window number of any of
them.

• When a process group's control terminal is under
window managment, the process group is
actually controlled by a particular window.
Such can have more than one process group,
each controlled by a different window.
Keyboard-generated signals (interrupt and quit)
go to the process group controlled by the active
window.

When the user creates a new window by using the SPLIT
key, the window manager forks a process for that
window. The new process inherits file descriptors for
standard input (0), standard output (1), and standard
error (2) that are associated with the new window. The

W I N D O W (7)

new process is leader of a process group controlled by the
new window. The new process also inherits the
environment of the parent process, which is the window
manager itself.

Programs that create and use windows use window
management ioctl(2) calls. Such calls take the form

ioctl (fildes, command, arg)
struct wioctl *arg;

Fildes is a file descriptor for terminal and window
affected, command is a window management command
(see below) arg is a pointer to the following structure,
declared in < s y s / - w i n d o w . h > :

d e f i n e NWCC 2

struct wioctl {
wndw_t wi_dfltwndw;
wndw_t wi_wndw;
slot_t wi_mycpuslot;
slot_t wi_destcpuslot;
port_t wi_bport;
char wi_dummy;
unsigned char wi_cc[NWCC];

}>
Window management ioctl calls get (WIOCGET) and set
(WIOCSET and WIOCSETP) terminal attributes described
in the wioctl structure:

wi_dfltwndw The window number for the
process's default window. If the
process does an open on
/ d e v / t t y , the new file
descriptor is associated with the
default window.

wi_wndw The window number for the
window that fildes (ioctl'8 first
parameter) is associated with.

wi_mycpuslot (This field is required for
historical reasons and is not
meaningful to the host.)

wi_destcpuslot (This field is required for
historical reasons; it is not
meaningful to the host
processor.)

wi_bport (This field is required for
historical reasons; it is not
meaningful to the host

- 2 -

WINDOW (7)

processor.)
wi_cc (This field is required for

historical reasons; it is not
meaningful to the host
processor.) Not used by the
CTIX kernel. A value supplied
by a WIOCSET or WIOCSETP is
stored in a place associated with
window wp_wndw. A
subsequent WIOCGET on the
same window retrieves the
information.

Here are the window management ioctl commands:
WIOCGET Get information on calling

process and file descriptor
fildes. Fill in arg.

WIOCSET Set values for calling
process and file descriptor
fildes from information in
arg. Has no effect on
process group-control
terminal relationship.

WIOCSETP Set values for calling
process and file descriptor
fildet from information in
arg. The window specified
in arg->wi_wndw becomes
the process's group's
controlling terminal
provided the following:

• The calling process
is the process group
leader.

• The process group is
not currently
controlled by
another window on
this or any other
terminal.

• The specified
window is not
already a control
window.

WIOCLRP Only valid executed by process
group leader. The process group

- 3 -

WINDOW (7)

ceases to have a control terminal
or window and the control
terminal/window ceases to control
any process group. The process
group is free to find another
control terminal/window, and the
old control terminal/window is
free to become the control
terminal/window for another
process group.

WIOCCLUSTER
Ioctl returns 1 if and only if the
terminal is a cluster terminal.

WIOCDIRECT Enable direct sending of terminal
IPC requests.

WIO CUNDIRECT
Disable direct sending of terminal
IPC requests.

An open on a terminal special file other than / d e v / t t y
(for example, /dev/t tyOOO) produces a file descriptor
for the lowest-numbered open window. Ioctl can move
this file descriptor to any window.
An open can also obtain a controlling terminal/window.
The requirements are the same as for WIOCSETP.

FILES
/dev / t ty - control terminal
/dev/tty??? - terminals

SEE ALSO
stty(l), wm(l), dup(2), fork(2), ioctl(2), open(2l,
wmgetid(3X), wmlayout(3X), wmop(3X), wmsetid(3X),
termio(7), tty(7).

WARNINGS
WIOCDIRECT and WIOCUNDIRECT are required by the
operating system. Their use by user programs is
inadvisable.

