
OPERATORS 
MANUAL 

CGC 7900 SERIES 
COLOR GRAPHICS COMPUTERS 

· .- - -.-;" - ....... 
--.:, 



CHROMATICS 

CGC 7988 COLOR GRAPHICS COMPUTER SYSTEM 

Operator's Manual 
TERMEM Version 1.4 

Copyright (C) 1983 by Chromatics, Inc. 
2558 Mountain Industrial Boulevard 

Tucker, Georgia 38884 

Phone (484) 493-7888 
TWX 818-766-8899 

Part Number 878281 Rev. B 
Printed 86 Sep 83 





CHROMATICS 

CGC 7900 SERIES COLOR GRAPHICS COMPUTERS 

OPERATOR'S MANUAL 

Document Number 070201B 

Printed May, 1981 

Copyright (C) 1981 by Chromatics, Inc. 
2558 Mountain Industrial Boulevard 

Tucker, Georgia 30084 

Telephone (404) 493-7000 
TWX 810-766-8099 

NO REPRODUCTIONS WITHOUT EXPRESS WRITTEN PERMISSION 
FROM CHROMATICS, INC. 

WARNING 

This equipment generates, uses, and can radiate 
radio frequency energy and if not installed and 
used in accordance with the instructions manual, 
may cause interference to radio communications. It 
has been tested and found to comply with the limits 
for a Class A computing device pursuant to Subpart 
J of Part 15 of FCC Rules, which are designed to 
provide reasonable protection against such 
interference when operated in a commercial 
environment. Operation of this equipment in a 
residential area is likely to cause interference in 
which case the user at his own expense will be 
required to take whatever measures may be required 
to correct the interference. 





Conventions used in this Manual 

1) Any keys which have labelled caps will be called by their 
full names, capitalized and underlined. For example, the 
carriage return key will be denoted by: 

RETURN 

2) The modifier keys, CTRL, SHIFT, Ml and M2, must be held down 
whil e str iking the key they are To modiTy. Note that these 
four keys do not generate any characters on their own, but 
simply modify the character which is struck simultaneously. 
This process of holding down a modifier key while striking 
another key will be denoted by the modifier AND the key being 
underlined together. For example, 

CTRL F 

would indicate that the CTRL key should be held down while 
striking the F key. If two or more modifiers are needed 
simultaneously, they will all be underlined together: 

CTRL SHIFT T 

would mean that BOTH modifiers, SHIFT and CTRL, should be 
held down while striking the T key. ----

For keys marked with names for these modifiers (CTRL or 
SHIFT only), the modifier will not be specified. For 
example, the View Sub-buffer command is generated by holding 
down the SHIFT key and pressing the key marked REDRAW and 
VIEW1 this is represented as: 

VIEW 

(This is a change from the previous manual.) Functions 
wi thout names marked on the key are still represented by 
including the modifier. For example, the command to move the 
cursor to the lower left-hand corner of the window is 
represented as: 

CTRL HOME 

since this function is not marked on the HOME key. 





3) Variable parameters will be enclosed in angle brackets, < >. 
Any items enclosed in these brackets will be explained in 
full in the text which immediately follows. 

4) Optional parameters will be enclosed in square brackets [ ]. 
Any items which may be repeated will be followed by an 
ellipsis (three dots). 

Example of (3) and (4): 

<X>, [ <Yl> , <Y2> , ••• ] 

The parameter <x> is required. The parameters <Yl>, <Y2>, 
and so on, are optional. Any number of these may be 
included. All three types of parameters would be explained 
immediately beneath the example which contained them. 

5) Zeros will be slashed (9)J alphabetic 0 will not be slashed. 





Table of Contents 

Preface 

Chapter 1 -- Introduction 

CGC 7999 Overview • 
Installation 

• • • • • • • • • • • • • • • • • • • • 

Booting Software • • • • • • 
Keyboard Description 

• • • • • • • • • • • • • • • 

Codes and Code Sequences • • • • • • • • • • • • • • • • • 
Escape Code Sequences 
User Code Sequences 
Plot Code Sequences 

· . . . . • • • • • • • 

Mode Code Sequences • • • • • • • • • • • • • • • • • • 
Code Hierarchy 

System Error and Recovery 
Reset, Boot, Soft Boot 
Convergence and Degaussing 

· . . . . . . . . . 
• • • • • • • • • 

Chapter 2 -- The Overlay 

· . · . . . . 
• • • • • • • 

Overlay Defaults • • • • • • • • • • • • • • • • • • • • • 

Overlay Operations • • • • • • • • • 
Entering and Exiting the Overlay 

Overlay Cursor Control •••• 
Overlay Cursor Blink ON/OFF 

Overlay Roll and Page • • • . . 
• • • 

• • • 

· . . . · . . . . . . 
• • • • • • • • • • • 

• • • • • • • • • • • 

Overlay Color and Blink • 
Set Foreground Color 
Set Background Color 
Overlay Blink ON 
Overlay Blink OFF • • 

· . . . . · . . . . . . . . . . . 
· . . 

• • • • • 

Modify Overlay Visible Attributes • 
Overlay Plotting Functions 

• • • • • • • • • • • • 

• • • • • • • • • • • • 

· . . . . • • • • • • • 

1-2 
1-5 
1-6 
1-7 

1-11 
1-12 
1-13 
1-13 
1-14 
1-14 

1-15 
1-16 
1-18 

2-2 

2-3 
2-3 

2-4 
2-6 

2-7 

2-8 
2-9 
2-19 
2-19 
2-19 

2-11 
2-13 





Table of Contents 

Chapter 3 

• Assigning Physical Devices 
Assign Output Device 
Assigning Input Devices • 

• 

• 

Systea COlUllands 

• • • • • • • • 

• • • • • • • • 

• • • • • • 

• • • • • • 

Select Character Set 
Delay 

• • • • • • • • • • • • • • • • • • • 

Function Keys • • • • 
Bezel Keys 
Defining Function 

•• •••• 

Keys from a Host 

• • • • 

• • • 

• • • Light Pen • 

Real-Time Clock • 
Set Clock 
Display Time 

• · . . . . . . 
• • • • • 

• • • • • 

Test • •• • • • 
Tone Generator 
Visible Control 
Warm Start 

Characters 

Windows • • • • • • • 
Set Window Limits 

• • 

• • • • • 

• • • • • 

• • • • • 

• • • • • 

• • • • • 

Scale Factors (Virtual Coordinates) 
Scaling ON/OFF 
Window and Scale • • • • • • • 

• • • • 

• • • • 

• • • 

• • • 

• • • • 

• • • 

• 

• • • • • • 

• • • • • 

• • • • • 

• • • • • • • 

• • • • • • • 

• • • • • • 

• • • • • • • 

• • • • • • • 

• • • • • • • 

• • • • 

Hardcopy • • • • • • • • • • • • • • • • • • • 

Chapter 4 -- Terminal Emulator (TERMEM) 

Restricted Terminal Emulator 
Local Mode 
Half Duplex Mode • • • • • 
Full Duplex Mode 
Keyboard Sync • • • • • • • 

Serial Communications • • • 
Serial Port Connectors 
Recommended Serial Port 
Set Serial Baud Rate 
Set Serial Parity, Word 

Reconfigure SPC Ports • 
Set Host EOL Sequence 
DMA Access • • • • • • 

• 

• 

Case Table • • • • • • • 
Swap Case Table Entry 
Set Case Table Entry 

• 

• 

• 

• • • • • • • • • • • 

• • • • • • • • • • • • • 

• • • • • • • • • • • • • • 

• • • • • • • • 

Wiring • • • • • • • 

Length, Stop Bits • • • 

• • • • • • • • • • • • 

• • • • • • • • • • • • • • 

• • • • • • • • • • • • • 

• • • • • • • • • • • • • 

• 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

3-2 
3-2 
3-4 

3-6 
3-7 

3-8 
3-10 
3-11 

3-13 

3-15 
3-15 
3-16 

3-17 
3-18 
3-20 
3-22 

3-23 
3-24 

3-27 
'3-31 
3-32 

3-34 

4-2 
4-3 
4-4 
4-5 
4-6 

4-7 
4-HJ 
4-10 
4-12 
4-14 

4-16 
4-17 
4-18 

4-19 
4-20 
4-20 





Table of Contents 

Chapter 5 -- The Create Buffer 

Create Buffer ON ••••• • • • • • • • • • • • • • • • • 
Create Buffer OFF 
Append to Create Buffer • • • • • • • • • • • • • • • • • • 
Redraw the Create Buffer 
Transmit the Create Buffer • • • • • • • • • • • • • • • • 
Define a Sub-Buffer 
Insert into Sub-Buffer • • • 
Kill a Sub-Buffer 

. . . . . • • • . . 
View a Sub-Buffer • • • • • • • • • • • • • • • • • • • • • 
Literal Create 

Chapter 6 -- Thaw and Me.ory Allocation 

Thaw Parameters • • • • • • • • • • • • • • • 
Thaw Parameters for Idris 
Default RAM Allocation ••••••••••• 

· . . . . . . 
• • • • • • • 

Chapter 7 -- Numerical Data and Window Variables 

Numerical Data . . . . . . . . . . . . . . . . . . . . . . 
Window Variables • • • • • • • • • • • • • • 

Operate on Window Variable 
Display and Transmit Window Variables •• 
Window Variable Uses 

· . . . . . . 
· . . . . . . 

Binary Mode • • • • • • • • • • • • • • 
Binary Mode (Escape Code Processor) 

• • • • • • • • • • 

5-2 
5-2 
5-3 
5-4 
5-4 
5-5 
5-6 
5-7 
5-8 
5-9 

6-1 
6-13 
6-15 

7-1 

7-2 
7-4 
7-5 
7-7 

7-8 
7-9 





Table of Contents 

Chapter 8 -- The Bitmap 

Bitmap Defaults • 
Bitmap Operations 

. . . . . . . . • • • • • • • • • • • • • 

Bitmap Blink • • • • • • 
Blink ON 

• • • • • • • • • 

Blink Off • • • • • • 
Select Blink Plane(s) 

• • • • • • • • • 

Set Bitmap Character Size • • • • • • 
Set Bitmap Intercharacter Spacing 
Load User-defined Character Set • 
Overstrike 

• • • 

· . . 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

8-2 
8-3 

8-5 
8-6 
8-6 
8-7 

8-8 
8-9 
8-10 
8-11 

Bitmap Color ••••••••••••••••••••••• 8-12 
Set Foreground Color 8-12 
Set Background Color ••••••••••••••••• 8-13 
Color Lookup Table 8-14 
Modifying the Color Lookup Table ••• • • • • • • •• 8-17 
Change Color Lookup Table Entry (RGB Units) 8-17 
Change Color Lookup Table Entry (HVS Units) • • • • •• 8-20 
Default Color Lookup Table 8-21 
Color swap • • • • • • • • • • • • • • • • • • • • • •• 8-22 
Colorset 8-22 

Bitmap Cursor Control 
Set Cursor Color 

• • • • • • • • • • • • • • • • • • • 

Fill Mode • • • • • • • • • • •• • • • • • • • • • • • • • 
Complex Fill Algorithms 
Area Fill • • • • • • • • • • • • • • • • • • • • • • • 
Edge Fill 

Joystick • • • • • • • • • • • • • • • • • • • • • • • • • 

Pan and Zoom • • • • • 
Absolute Pan 
Absolute Zoom • • • 

• • • • • 

• • • • • 

· ~ . . . . . . . . . . . 
· . . . . . . . . . . . . 

Bitmap Roll and Page 
Rubber Band 

• • • • • • • • • • • • • • • • • • • 

8-23 
8-25 

8-26 
8-27 
8-28 
8-29 

8-30 

8-31 
8-33 
8-34 

8-36 
8-37 





Table of Contents 

Chapter 9 Plot SubDlodes 

Arc • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
Circle 
Two-point Circle 
Curve 

• • • • • • • • • • • • • • • • • • • • • 

Dot ••• 
Incremental 
Incremental 
Incremental 

• • • • • •• •••••••••••••••• 
Vector 
X-Bar • 
Y-Bar 

• • • • • • • • • • • • • • • • • • • • 

Polygon. ••• 
Large Polygons 

Ray ••• 
Rectangle 
Triangle 

• • 

• • 

• 

• • 

• • 

• • 

• • 

• • • • • 

• • • • 

• • • • • 

Vector •••••••••••• 
Concatenated Vector 
Bold Vector • • • • • • • • 
Concatenated Bold Vector 
Set Vector Width ••••• 

Vector-Drawn Characters • 
Exiting Plot Submodes 

• • 

• 

• 

• 

• 

• 

• 

• 

• • • • • • • • • • 

• • • • • • • • • • • 

• • • • • • • • • 

• • • • 

• • • • • • · . • · . 
• • •• • • • • • 

• • • • • • • • • • 

Chapter 18 -- Raster Processor Graphics 

Define Source Raster 
Copy Raster 

• • • • 

Copy Raster with Overstrike • 
Set Raster Direction 
Patterned Vectors • • • • • • 

• • • • 

• • • • 

• • • • 

• • • • • • • • • 

• • • • • • • 

• • • • • • • • 

Chapter 11 -- Expanded Image Memories 

Select Image •• • • • • • • 
Plane/Video/Blink Select 
Writing to the Second Image • 
Plane Select 
Plane Video Switch • • • • • 

• • 

• • 

• • 

• • • • • • • • • • • 

• • • • • • • • • • • 

• • • • • • • • • • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

9-4 
9-5 
9-6 
9-7 
9-9 
9-18 
9-13 
9-15 

9-16 
9-17 

9-18 
9-19 
9-28 

9-21 
9-22 
9-23 
9-24 
9-25 

9-26 
9-28 

18-2 
18-3 
18-4 
18-5 
18-8 

11-1 
11-2 
11-3 
11-4 
11-5 





Table of Contents 

Appendix A -- Special Codes 

Control Codes • • • • 
Mode Codes 
Plot Codes 
Escape Codes 

• • • • • 

• 

• 

• User Codes ••••• 
Command Reference List 
Key Sequences • • • • • 
Inline Editor Commands 

• • • • • • • • • • • 

• • • • • • • • • • • 

• • • • • • • • • • • 

• • • • • • • • • • • 

• • 

• • 

• • 

• • 

Appendix B -- Color Display Scheaes 

The Color Cube 
The HVS Hexcone 

• • • • • • • • • • • • • • • • • 

Appendix C -- The Monitor 

• • • • • 

• • • • • 

• • • • • 

• • • • • 

• • • • • 

Monitor Operations 
The Inline Editor 

• • • • • • • • • • • • • • • • • • • • 

Monitor Commands 
Abort 

• • • • • 

Change Memory • • • • • 
Checksum Memory 
Compare Memory 
Disk Read 
Disk Write 
Dump Memory 

• • 

• • • • 

• • • • 

Evaluate Math Expression 
Examine Registers 
Fill Memory •• ••• 
Go (with Breakpoints) 
Load. ••• •• 
Move Memory 
Punch • • • 
End Punch 
Set Memory 
Trace 

• 

• • 

• • • • • 

Trace Display • • • • • 
Virtual Search 

• • • • • • 

• • • • • • • 

• • • • •• • 

• • • • •• • 

• • • • • 

• • • • • • • • 

• • • • • • • • 

· . . . 
• • • • • • • • 

• • • • • 

Appendix D -- Traps 

• • • • • • • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • 

• • • • •• • 

•• • • • • • 

• • · . . . 
• • • • • • • • 

• • • • • • • 

A-l 
A-3 
A-S 
A-7 
A-9 
A-ll 
A-17 
A-2l 

B-2 
B-3 

C-S 
C-S 
C-6 
C-7 
C-B 
C-9 
C-9 
C-HJ 
C-ll 
C-l2 
C-14 
C-lS 
C-16 
C-17 
C-IB 
C-IB 
C-19 
C-29 
C-21 
C-22 





Table of Contents 

Appendix E -- Custom Modules, Cursors and Character Sets 

Modules -- General 
The Linking Process 

• • • • • • • • • • • • • • • • • • • • 

Module Construction 0 0 0 0 0 • • • • • • • • • • • • • • • 
Boot Modules 
Input/Output Modules 0 0 • • • • • • • • • • • • • • • 
Argument Parsing 
Register Setup for Modules • • • • • • • • • • • • • • 

Mode Modules 0 0 0 0 0 

Example Mode Module 
• • • • • o • 0 000 • • • • • • • 

Plot Modules 0 0 0 0 0 

Example PLOT Module 
• • • • • • • • • • • • • • • • • • 

Escape and User Modules 0 0 0 0 

Example ESCAPE code Module 
• • • • • • • • • • • • • • 

Window Tables 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Window Status and ESCAPE Code Status 
• • • • • • • • • 

Custom Character Sets 0 0 00 0 0 0 

Vector-Drawn Character Format 
Algorithm Description 0 0 0 0 0 

• • • • • • • • • • • • 

. . . . . . . . . . . . 

E-2 
E-4 

E-5 
E-6 
E-7 
E-9 
E-ll 

E-12 
E-13 

E-14 
E-16 

E-17 
E-18 

E-19 
E-22 

E-23 
E-26 
E-28 

Installing a New Cursor • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E-3B 
TERMEM Jump Tables E-33 
Plotting Functions 0 0 0 0 0 0 0 0 • • • • 0 • 0 0 0 • E-44 
Inline Calling Sequences E-5B 

Appendix F -- ASCII Codes 

Standard ASCII Character Set ••• 0 0 • • 0 

Regular and Alternate (A7) Character Fonts 
• • • • • • • F-2 

F-3 





Preface 7900 Operator's Manual Preface 

Preface 

Bow to Use this Manual 

If you are not familiar with any Chromatics products, 
read Chapter 1, Chapter 2, Chapter4 and Chapter 7 through 
Chapter 9. Appendix A will be a good reference as you 
continue to learn the system. 

Once you have become familiar with the CGC 7900, you 
will want to read Chapter 3, Chapter 5, Chapter 6, Chapter 1B 
and Chapter 11. The Appendices will also be helpful. 

Advanced users will want to use this manual mainly as a 
supplement to the CGC 7900 Reference Card. The Reference 
Car d contains a compl ete 1 i st of CGC 7900 commands, and a 
very brief description of each one. This manual provides 
more detailed information. 

Changes fro. the Previous Manual 

The changes in this manual reflect in part the evolution 
of the 790 e. The manual has been completely reorganized to 
make it easier to read and to accommodate newer features. If 
you have the old 7900 manual, you may wish to skim through 
this one to note the differences. 

• A new table lists CGC 7900 commands in alphabetical 
order, rather than by Mode, Plot, etc. Another table 
lists the codes generated by each key. 

• Plot submodes, Raster Processor commands, Thaw 
parameters and other topics are now under their own 
chapter headings. 

• Operating systems are discussed to a small extent. 

• Descriptions of commands in the text are alphabetized 
where possible to make them easier to find. 

• A new Appendix, Appendix E, shows how to add 
user-defined commands to the 790e and provides some 
nhooksn into the firmware. 





Chapter 1 7900 Operator's Manual Introduction 

Chapter 1 -- Introduction 

This is the User's Manual for the Chromatics CGC 7900 Color 
Graphics Computer. It discusses how to operate the 7900. and 
gives examples of the system's capabilities. If you are just 
beginning to learn about the 7900, this is the first manual you 
should read. 

This manual is divided into eleven chapters and six appendices: 

Chapter 1 (this section) discusses the 7900 architecture. 
philosophy and installation. 

Chapter 2 explains philosophy and commands for the Overlay. 

Chapter 3 explains system commands which relate to the 7900 
as a whole. 

Chapter 4 discusses the Terminal Emulator (TERMEM). 

Chapter 5 discusses commands for the Create Buffer. 

Chapter 6 explains CMOS RAM and Thaw parameters. 

Chapter 7 discusses numerical data entry and calculation. 

Chapter B discusses Bitmap operations. These include color 
manipulation. Pan and Zoom. and cursor control. 

Chapter 9 explains the various 7900 plot submodes. 

Chapter 10 discusses Raster Processor commands. 

Chapter 11 discusses commands for systems with sixteen image 
planes. 

Appendix A lists commands alphabetically and by type. 

Appendix B discusses color display schemes. 

Appendix C discusses the CGC 7900 Monitor. 

Appendix D lists Trap codes. 

Appendix E is a "cookbook n for subj ects such as adding new 
commands to the 7900 repertoire and designing custom cursors 
and character sets. Also included in this appendix is a list 
of "hooksn into the TERMEM firmware. 

Appendix F is the mandatory ASCII code list. 

Version 1.4 Page 1-1 



Overview 7900 Operator I s Manual Chapter 1 

CGC 7908 Overview 

The CGC 7900 is the successor to Chromatics I CG series 
of color graphics computers. Many of the same philosophies 
have been retained in the development of the 7900, and a user 
who is familiar with the CG will quickly become accustomed to 
the 7900. 

The 7900 contains at least three processors: 

• Most system functions revolve around the MC68080 
processor, selected for its high speed (8 megahertz) 
and large memory addressing range (16 megabytes). 
This powerful processor gives the 790e outstanding 
capability for stand-alone computing applications. 
And when the 7900 is acting as a terminal (connected 
to a host system), the 7900's power relieves the host 
of many of the tasks normally required in a graphics 
environment. 

• The 790 fJ also includes a processor in the keyboard, 
and a Raster Processor to provide high performance and 
speed in graphics operations. 

• Optionally, the 790fJ may contain 
Controller with its own on-board Z-80 
optional Hardware Vector Generator 
considered a processor. 

a Ser ial Port 
processor. The 

can also be 

Many graphics systems suffer from one dr.awback: they 
require a separate character-or iented terminal for command 
level interact.ion between the system and the operator. The 
7900 addresses this need by providing a character-oriented 
"Overlay" display in addition to the high-resolution Bitmap 
graphics display. With eight standard colors and blink, the 
Overlay is a very effective tool for operator interaction. 
When not needed, the Overlay can become instantly 
"transparent" to reveal high-resolution graphics images in 
the Bitmap. 

The concept of logical and physical devices, used in the 
Chromatics CG series of computers, has been expanded and 
applied to the 7900. All programs in the 7900 communicate 
only through logical devices, which are numbered fJ through 4. 
7900 software associates each logical device to one or more 
physical devices. This association may be changed at any 
time, allowing total flexibility in programmed input/output. 
Any program can accept input from any physical device, and 
transmit output to any physical device. Some examples ·of 
physical devices are the keyboard, the serial ports, and the 
790e display screen. 

Page 1-2 Version 1.4 



Chapter 1 7999 Operator's Manual Overview 

The screen can be subdivided into several distinct areas 
known as windows. Each window is a separate physical device 
(emulated by software). Thus. each window can be used for a 
separate purpose. and independent simultaneous displays are 
possible. In some applications. one 7909 could replace up to 
16 separate terminals. 

All 7999 features discussed in this manual, and most 
currently available optional features. are contained in a 
single stand-alone package. Standard features include: 

• l28K or s12K bytes of buffer memory 

• One or four planes of Bitmap image memory 

• A keyboard with 151 keys (21 lighted) and 24 
user-definable function keys 

• 8 programmable bezel keys 

• Two serial ports 

• 19-inch color display screen with 1024 x 768 
resolution 

• A PROM firmware package which allows easy control of 
all system functions. 

Optional features currently include: 

• Lightpen and joystick for interactive use 

• A battery-backed Real-Time Clock and CMOS memory 

• Disk Operating System (DOS) much like that of the CG 
series ---

• Floppy and hard disk drives 

• Idris Multi-tasking Operating System 

• A Hardware Vector Generator (HVG) which can draw up 
to 27.099 short vectors per second 

• Extended graphics software features 

Version 1.4 Page 1-3 



Overview 7988 Operator's Manual Chapter 1 

• Parallel Input/Output and Direct Memory Access 
Interface 

• Serial Port Controller (SPC) with 4 RS-232 ports 

• Disk DMA (with Idris and DOS drivers available) 

• Numerous peripheral interfaces 

• Language support (FORTRAN, C, Pascal) 

Page 1-4 Version 1.4 



Chapter 1 7999 Operator's Manual Installation 

Installation 

Unpack the CGC 7999 according to the instructions 
supplied in the shipping carton. Retain the packing material 
so that it may be used for shipping the 7999 in the future. 

WARNING: 

If your 7999 system includes the optional Fixed 
Disk drive, REMOVE the locking screw and actuator 
lock which was used to secure the drive during 
shipment! See instructions on your unit for 
details. FAILURE TO REMOVE THESE LOCKS WILL 
DESTROY THE HARD DISK, AND VOID YOUR WARRANTY! 

Connect the 7999 power cord to a power source of 119 
volts AC, 69 hertz (229 VAC, 59 hertz optional), capable of 
supplying at least 19 amperes. For reliable operation, power 
should NOT come from a circuit with any heavy motors or 
industrial equipment connected which could create transients 
on the power lines. This includes equipment such as 
refrigerators and air conditioners. 

The 7999 has no strict environmental requirements. But, 
like any precision instrument, the 7999 will perform best if 
it is not subjected to excessive heat or dust. 7999 
ventilation removes heat from the unit through vents in the 
front and rear1 these vents should not be obstructed. The 
rear door (and floppy drives, if installed) should be CLOSED 
during normal operation to provide proper air flow through 
the 7999 chassis. 

7999 power is applied by pressing the square, lighted 
switch on the front of the unit (above the keyboard). The 
switch is lit whenever the system's five volt power supply is 
operating. When turning the 7999 on, observe the indicator 
light on the keyboard, just above the cursor keypad. It will 
glow green as the unit performs internal power-on 
diagnostics, and should extinguish aft~r one or two seconds 
(the time this takes is proportional to the amount of user 
memory). By this time, the picture tube should have warmed 
up, and a blinking cun;or should be visible on the screen. 

Your 7999 is now running! 

Version 1.4 Page 1-5 



Booting Software 7900 Operator's Manual Chapter 1 

Booting Software 

Currently, the CGC 7900 supports 
environments: 

four operating 

• The CbrOilatics Disk Operating System (DOS), a simple 
operating system1 

• Idris, a Unix-like multitasking operating system from 
Whitesmiths, Inc., 

• The Terminal Emulator (TERMEM)1 

• and the 7900 Monitor. 

Four keys are dedicated to starting these operating 
environments. These are marked DOS, IDRIS, TERMINAL and 
MONITOR. Pressing one of these keys:will boot the associated 
environment. 

Typing SHIFT DOS will enter DOS 
user password. SHIFT IDRIS enters 
Loader, which is normally used only 
Idris. 

without asking for a 
the Idris Bootstrap 
to install the full 

More information on DOS and Idris can be found in the 
DOS User's Manual and the Idris User's Manual, respectively. 
This manual describes all the TERMEM commands, and Monitor 
commands are discussed in Appendix C. 

Page 1-6 Version 1.4 



Chapter 1 79fHJ Operator's Manual Keyboard Descr iption 

Keyboard Description 

The 79fiJriJ system keyboard is divided into several areas. 
Each area is designed for a specific purpose, and the keys in 
each area are arranged and color-coded for ease of operation. 

In general, keys on the keyboard are marked three ways: 

• The marking on the top of the key is the pr imary 
function of that key. Pressing the key alone, without 
using any modifiers, will cause that code to be sent 
from the keyboard. 

• The marking on the front of the key (if marked in 
white) is the code which is output when the SHIFT 
modifier is used in conjunction with the key (see the 
Conventions page in the front of this manual) • 

• The marking on the front of the key (if marked in 
blue) is the code which is output when the CTRL 
modifier is used in conjunction with the key (see~ 
Conventions page in the front of this manual) • 

In the center of the keyboard, you will find a sculptured, 
typewriter-like set of keys. With few exceptions, these keys 
may be used just as if they were on a standard typewriter. 
On the right of this set are the control keys, RETURN 
(carriage return), LF (line feed), and BREAK (used to 
interrupt a running program). On the left are the modifiers, 
SHIFT, CTRL, MI, and M2. The high speed REPEAT key is also 
on the left. - -

Any key on the keyboard may be caused to repeat, at 
either low or high speed. To repeat a key at low speed, 
simply holQ the key down. To cause high speed repeat, hold 
down both the desired key and the REPEAT key. 

In the left of this area are the four "pref ix" keys 
which the system understands: ESC, USER, MODE, and PLOT. 
Pressing any of these keys is a signal that one-Qr more other 
keys will immediately follow, to complete a code sequence. 
To cause the keyboard to output a User code, hold down the 
modifier SHIFT and press the key marked ESC and USER. 
Similarly, for the code Plot, press the SHIFT key and the key 
marked MODE and PLOT. - -

Version 1.4 Page 1-7 



Keyboard Description 7988 Operator I s Manual Chapter 1 

To the far left are two special keys: QUIET LOCK and 
ALPHA LOCK. These two are alternate-action keys. Pressing 
one of these keys will lock it in the down (on) position1 
pressing it again will release it to the up (off) position. 

QUIET LOCK will disconnect the. buil t-in speaker when it 
is in the down (on) position. ALPHA LOCK will reverse the 
case of all letters typed from the typewriter section of the 
keyboard. When it is up (off), letters typed on the 
typewriter keyboard will be upper case when the shift key is 
not being used. They will come out in lower case when the 
shift key is used. (This is the opposite of a normal 
typewriter, but is useful when the unit is acting as a 
terminal.) To reverse this, and return to standard typewriter 
usage, press the ALPHA LOC~ key into the down (on) position. 
Now characters typed on the typewriter keyboard will be in 
lower case, and SHIFT will change them to upper case. This 
is most useful for text editing applications. 

To the right of the keyboard are two smaller, special 
purpose keypads. The cursor keypad is used to position the 
cursor, and for text editing functions such as inserting and 
deleting lines. The numeric keypad is a convenient way to 
input numeric data. The keys on the numeric keypad duplicate 
the functions of their counterparts on the typewriter 
keyboard. 

The special function keys on the upper half of the 
keyboard. are used to access most of the system I s features. 
Most of this manual is dedicated to explaining, in detail, 
what each of these keys will do. In general, the following 
comments apply: 

• The name on top of the key represents its 
primary function. 

• The name on the front of the key represents its 
secondary function, and is accessed by holding 
the SHIFT (or .£!:.!y!) modifier and pressing the 
key. 

Keys which have a built-in light are keys whose 
functions may be in one state or the opposite state. For 
example, the BLINK key has a light, and at any time, the 
"blink" attribute may either be on or off. The condition of 
the light will tell which state the system is in. (In some 
cases, it is possible for the keyboard lights to be "out of 
sync" with the rest of the system, in which case they will 
not present true information. See "Keyboard Sync" and 
"Assign" for the details.) 

Page 1-8 Version 1.4 



Chapter 1 7999 Operator's Manual Keyboard Description 

Lighted keys have an additional feature: Pressing a 
lighted key will turn a function on if it is off. and turn it 
off if it is currently on. Thus. repeatedly pressing a 
lighted key will toggle the light in that key on and off. 
The function produced by a key depends on whether the light 
in that key is currently on or off. (Using SHIFT with a 
lighted key will. however, always turn the function OFF.) 

The character Contro1-Z acts as a "flush" command. It 
will clear out the keyboard buffer. so that any keystrokes 
that have not yet been executed will no longer wait in the 
queue. 

To execute the "flush" command, hold down the CTRL 
modifier and press the Z key: 

CTRL Z 

The CALC MODE key is not currently defined. 

A two-color light-emitting diode (LED) is located near 
the cursor keypad. This LED glows green during Reset and 
power-on diagnostics. It will glow red in the event of a 
system failure. 

In addition to the special keys, all commands have a 
code sequence associated with them. If the 7999 is to run­
under the control of a host computer, these code sequences 
must be sent in lieu of a keystroke. Appendix A lists 
commands in alphabetical order. along with its code and 
associated key (if any). 

Version 1.4 Page 1-9 



Keyboard Description 7900 Operator's Manual Chapter 1 

Page 1-10 Version 1.4 



Chapter 1 7900 Operator's Manual Code Sequences 

Codes and Code Sequences 

The 7900 system is controlled through the keyboard, or 
through a communications port from a host system. The 7900 
software allows all important system functions to be accessed 
through ASCII characters, which make up codes or code 
sequences. A code is a single ASCII character typed on the 
keyboard, or received from a host. A code sequence is a set 
of such characters. 

Certain code sequences cause no immediate change in the 
visible state of the system. Commands such as nSet Color" 
have an effect on future displays, but do not alter anything 
currently being displayed. This can be disconcerting to an 
operator, since there is no feedback to indicate that the 
code sequence was accepted properly. It may be helpful to 
compare such code sequences to similar commands on a familiar 
office typewriter: the "set tab stopn function of a 
typewriter does not generate any feedback to indicate 
acceptance of this command. The command is silently 
accepted. 

The 7900 recognizes four nprefixn codes: Escape, User, 
Plot and Mode. When a prefix code is entered, it signals the 
system that one or more additional codes will follow as 
arguments, and that the entire code sequence should be taken 
together to perform a function. 

These prefix codes are NOT the same as the modifiers 
SHIFT, CTRL, Ml and M2. Modifiers do not generate codeS1 
they merely aIter thekey which is pressed simultaneously 
with the modifier. The prefix keys DO generate codes on 
their own, and thus the prefix key must be pressed and 
released before the next key is struck. 

Some of the named keys on the upper part of the keyboard 
cause actions which are equivalent to pressing more than one 
key on the lower keyboard. For example, pressing RECT to 
enter the nplot Rectangle n mode, is equivalent to eii't'ei:-ing 
the sequence PLOT R. This is simply an alternate way of 
entering commana8; and we will always use the simplest way to 
describe each command in this manual. See Appendix A for 
detailed information on which keys produce which codes. 

Version 1.4 Page 1-11 



Code Sequences 7999 Operator's Manual Chapter 1 

If you enter a code sequence which is not defined in the 
7999 software, a -bong- sCllnd will be produced from the 
speaker, as a warning. The same sound will be heard if you 
attempt to access an optional software feature which is not 
installed in your unit. 

Escape Code Sequences 

Format: 

ESC <char> [<argl> <arg2> ••• ] 

An Escape code sequence consists of the Escape character, 
CTRL [ ($lB), followed by a single character <char> which 
defines the type of Escape code sequence. This may be 
followed by one or more arguments, <arg>, depending on what 
the sequence requires. All arguments fall into one of two 
categories: 

Numbers: 

Characters: 

decimal or hexadecimal numbers which 
are delimited by a comma or 
semicolon. 

a single ASCII character. 

In addition, a few Escape code sequences will accept an 
arbitrary number of arguments. Details are described in each 
command where applicable. In these cases, a special 
delimiter character (usually the semicolon) is used to signal 
the end of the argument list. 

To produce an Escape code sequence, you would press and 
release the ESC key, then press whatever other keys are 
necessary to Complete. the sequence. The argument list is 
determined by the particular Escape code sequence you are 
executing, and examples will be found throughout this manual. 

Escape code sequences affect the entire machine. They 
control aspects of the operation such as pan and zoom, Color 
Lookup Table assignments, etc. 

Page 1-12 Version 1.4 



Chapter 1 7999 Operator's Manual Code Sequences 

User Code Sequences 

Format: 

USER <char> [<argl> <arg2> ••• ] 

The User character is produced by holding down the SHIFT key 
and pressing the key marked USER and ESC. The definitions of 
<char> and <arg> are identical to those for Escape code 
sequences. 

User code sequences cause execution of a program. or 
affect the configuration of the 7999 in some manner. Some 
examples of User codes are I/O assignments. duplex selection. 
user-defined function keys, and Create Buffer operations. 

Plot Code Sequences 

Format: 

PLOT <char> 

Where <char> is a single 
will place the window in 
Circle, Arc, etc. Plot 
currently assigned window. 

character. A Plot code sequence 
a Plot submode, such as Vector. 
code sequences affect only the 

The Plot character is produced by holding down the SHIFT 
modifier key and pressing the key marked PLOT and MODE. 

NOTE: 

The PLO~ key used in this context is the key 
labelled Plot and Mode, located in the typewriter 
area of the keyboard. It is NOT the same as the 
lighted PLOT key in the upper keyboard area. The 
lighted PLOT key is used ONLY to move between 
plotting and text entry (Alpha) functions. 

Version 1.4 Page 1-13 



Code Sequences 7999 Operator's Manual Chapter 1 

Mode Code Sequences 

Format: 

MODE <char> [<char>, <char>, ••• ] 

Mode code sequences also affect only the currently assigned 
window. They are used in a wide var iety of cases, from 
setting colors to scaling character size. Details on the 
available Mode code sequences are found throughout· this 
manual. 

Code Hierarchy 

The code sequences described on the previous pages are 
arranged in a prioritized structure. It is possible, and 
often desircble, to interrupt one sequence, enter a higher 
priority sequence, then resume the previous code sequence. 
The priorities are arranged as follows: 

Escape, User Highest Priority 

Mode Intermediate 

Plot Lowest Priority 

A common example would be: while entering coordinates 
to draw a rectangle, you decide to change the foreground 
color. Since coordinates belong to a Plot sequence, and 
colors are higher priority (Mode sequence), you may interrupt 
the coordinates at any time and set a color. Then, you may 
resume entering coordinate data with no lost information. 

Escape and User codes have identical priority, and they 
take higher priority than any other code sequence. ANY Mode, 
Plot, or text entry function may be interrupted by an Escape 
or User code, and the code sequence will be processed. This 
means that important aspects of system operation, controlled 
by Escape and User codes, may be changed at any time, even in 
the middle of coordinate data or text. 

Page 1-14 Version 1.4 



Chapter 1 7900 Operator1s Manual. Recovery 

System Error and Recovery 

The 7900 1s structure of code sequences is not designed 
to be totally "user-proof." It 1S possible to enter a 
sequence which will force the system into an undefined state. 
However. the RESET key will usually allow recovery from 
errors without losing the work in progress (not true for 
Idris) • This problem should not exist if important code 
sequences are being tr ansmitted only from a host or from an 
applications program (assuming such programs do not contain 
errors) • 

The high priority of Escape and User codes can result in 
confusion under certain conditions. The key point is 
this: when an Escape or User code sequence is begun, it MUST 
be completed. For example, the Escape code sequence which 
changes entries in the Color Lookup Table requires four 
arguments: color, red component, green component, and blue 
component. If this sequence is begun by pressing the CHANGE 
key. the system will ignore all other commands until the four 
arguments required by the CHANGE command are satisfied. If 
the system appears to be suddenly unresponsive to commands. 
chances are good that an Escape or User code sequence has 
begun but has not been completed. Typing several commas, to 
satisfy any pending arguments. will usually regain control of 
the system. 

Version 1.4 Page 1-15 



Reset/Boot 7988 Operator's Manual Chapter 1 

Reset, Boot, Soft Boot 

The 7988 recognizes several types of initialization 
procedures. At power-up time, a special type of 
initialization occurs, which erases all memory in the system 
(except CMOS). The image memory is erased, and all of user 
memory is zeroed. 

Pressing the RESET key initializes all hardware to 
default states. All I/O ports are initialized, and all 
buffers are flushed. Any operations in progress are 
immediately hal ted. (In fact, Reset may be the only way out 
of some operations.) Following. Reset, the Terminal Emulator 
program is executed by default (this may be altered with the 
THAW command) • Reset leaves the contents of memory 
essentially unchanged. The Reset command may not be stor ed 
in the Create Buffer, since it is a hardware function and 
does not generate any code sequence. The most common use of 
the RESET key is to halt a process, such as a picture being 
drawn from the Create Buffer. 

WARNING: 

Onder Idris, do NOT press RESET unless you are 
shutting down the system or if it cannot respond to 
any other stimuli! If you are shutting Idris down, 
perform the "sync" command before hitting RESET. 
Fail ure to observe these warnings may result in a 
cor rupted hard disk! After a reset, Idris will 
have to be rebooted. 

After pressing the RESET key, it may be necessary to 
wait several seconds before the system will again respond to 
input. When the system acknowledges RESET, the green 
indicator near the cursor keypad will light briefly. 

Boot is designed to cold-start the system. It is 
executed by holding down the CTRL key while pressing the key 
marked SOFT BOOT and BOOT. This key is found directly to the 
right of the RESET key:- Boot initializes most of the 7988 
system, based on default parameters (either in PROM or in the 
optional battery-powered CMOS memory). After Boot, the 
Terminal Emulator is executed unless CMOS contains orders to 
execute a different program. BOOT is the simplest way to 
reload most of the default parameters in the 7988 system. 
The Boot command may not be stored in the Create Buffer, and 
is ignored while running under Idris. 

It is possible to simulate most of a power-up reset 
sequence, by pressing the three keys CTRL SHIFT RESET 
simultaneously (and releasing RESET before releasing the 
other keys). This sequence is equivalent to a Reset followed 
by a Boot, and also erases any image in memory. This 

Page 1-16 Version 1.4 



Chapter 1 7999 Operator's Manual Reset/Boot 

sequence takes longer to execute than the normal RESET, and 
is not usually needed. (It may be required if a user program 
writes into system memory and the RESET key will not recover 
control of the system.) 

CMOS memory (optional) retains information concerning how 
the system is configured at Boot time. CMOS is set up using 
the Thaw command, to define buffer sizes and other defaults. 
As long as the data in CMOS remains intact, it continues to 
be used at Boot time. It is possible for a user to 
sufficiently scramble CMOS data so that the system cannot 
boot; in this case, the keys CTRL SHIFT Ml M2 RESET should be 
pressed simultaneously (releasing RESET first) to clear out 
CMOS and force the system to boot from PROM data instead. 
This sequence destroys any defaults entered by Thaw, so it is 
not recommended unless absolutely necessary. See "Thaw" for 
details. 

NOTE: 

The preceding two sequences (Ml M2 CTRL SHIFT 
RESET and CTRL SHIFT RESET) should be used only 
when necessary. Do not get into the habit of using 
these sequences, since they will destroy any work 
in progress. 

SOFT BOOT initializes only the window receiving the 
command. It reloads all default window parameters, such as 
color, character size, and other values associated with a 
window. It may be used to seta window to a known state at 
any time. Soft Boot is executed by pressing the SOFT BOOT 
key, and this command may be stored in the Create Buffer. It 
may be used at any time under Idris without disturbing the 
operating system. 

Besides reloading the default window parameters, the 
SOFT BOOT key also erases the Overlay. To reload the window 
parameters without erasing the Overlay, enter the sequence: 

MODE = 

This performs the same functions as the SOFT BOOT key, but 
without erasing anything. 

When beginning a new process on the 7999 system, it is 
usually sufficient to press the SOFT BOOT key. To interrupt 
a process, pressing RESEl' followed by SOFT BOOT will usually 
suffice. Neither of these key sequences will affect the 
Bitmap image. 

Version 1.4 Page 1-17 



Convergence 7900 Operator's Manual Chapter 1 

Convergence and Degaussing 

The 7900 analog circuitry requires periodic adjustment 
for best performance. Convergence adjusts the red, blue and 
green portions of the picture so that they join properly 
without "fringes" around the edges of the display. 
Degaussing demagnetizes the screen, removing residual 
magnetic fields which can affect color purity. 

Controls for convergence and degaussing are located 
behind the door on the right side of the CRT (picture tube). 
These controls are located so that these operations may be 
conveniently performed whenever necessary. 

The "DE-GAUSS" switch is located at the top of the 
recessed area behind the door. To determine whether the 7900 
needs degaussing, perform the following steps: 

1) Hold down the SHIFT key and press the key marked 2!!. 
The!!! key is located above the "5" key. 

2) Release SHIFT and press the blank red key. This key 
is to the right of the ~ key. 

3) Now press the grey key marked ERASE PAGE. This key is 
the top left of the cluster of grey keys to the right 
of the typewriter keyboard. The screen will be filled 
with red. 

If the screen is not uniformly red (the red may tend toward 
green or purple in some areas), the 7900 should be degaussed. 

To degauss the screen, press the DE-GAUSS button. After 
pressing the button, degaussing proceeds automatically for 
several seconds. Colors on the screen will shimmer for a 
moment as the degaussing is performed. 

NOTE: 

You must wait at least 15 minutes after turning on 
the 7900 before degaussing will function. Once 
degaussing is complete, it may not be restarted for 
15 minutes. If you press the switch again before 
15 minutes have elapsed, nothing happens and you 
must wait another 15 minutes before trying again. 

It is generally necessary to degauss the screen after moving 
the 7900, even if it has been moved across a room. A weekly 
degaussing is also beneficial. 

Page 1-18 Version 1.4 



Chapter 1 7999 Operator's Manual Convergence 

Before converging the 7999, perform degaussing first. 
Then proceed with the steps below. 

Below the DE-GAUSS button, there are nine groups of 
three small potentiometers (variable resistors1 they look 
like set screws). These are the convergence adjustments. 
Each "pot" adjusts either red, green or blue, and each group 
adjusts one of nine sectors of the screen. For example, the 
upper left group adjusts convergence for the upper left 
corner of the screen. 

NOTE: 

Use a small screwdriver (a jeweler's screwdriver 
is ideal) and BE GENTLE when adjusting convergence. 
The "pots· are fragile. 

Wait at least 15 minutes after turning on the 799g 
to perform convergence, since it may drift until 
the 79gg is completely warmed up. 

To set up a test pattern for convergence, perform the 
following steps: 

1) Press the key marked SOFT BOOT. This key is next to 
the red RESET key at the upper left corner of the 
keyboard. 

2) Press the key marked TEST. This key is adjacent to 
the SOFT BOOT key. Now press the period (.) key. 

This produces a pattern of white dots on a black background. 

Beginning with the center group, turn the screws until 
the dots in the center of the screen are solid white (with no 
colored fringes). Proceed to the other eight groups 
according to the numbers in the following diagram. 

Version 1.4 Page 1-19 



Convergence 

Page 1-28 

I 
I 

7900 Operator's Manual 

lfe\ 
i ~ 
I DE-GAUSS I 
I . 

Chapter 1 

I CONVERGENCE I __ --~ 
i +----- 0 Red 

: G 8 81 IOjslue 
I I--___ ~ Green 

i GOG: 
I i 

i G G 81 
.~ 

INTENSITY 

lO 
Convergence and 

Degaussing Controls 

Version 1.4 



Chapter 2 7900 Operator's Manual Overlay 

Chapter 2 -- The Overlay 

The Overlay screen is a powerful feature of the 7900. It was 
designed to relieve the high-resolution Bitmap screen from 
time-consuming operations associated with text manipulation. The 
Overlay provides an area where messages to and from the operator 
may be displayed. It is compatible with several menu selection 
techniques, including the Light Pen and the Bezel Keys. 

The Overlay also provides an environment which is isolated 
from the Bitmap screen, so drawings in the Bitmap will not be 
obliterated by prompts or error messages in the Overlay. 

As an illustration, imagine the Overlay as being a screen in 
FRONT of the high-resolution Bitmap screen. The Overlay is 
organized as a set of character cells, arranged 85 hor izontally 
and 48 vertically. 

Each cell of the Overlay has the following attributes: 

• Foreground Color (Foreground and Background color 

• Background Color may be selected by any color key) 

• Foreground Blink (on or off) 

• Foreground Transparency 

• Background Transparency 

• Hardware cursor (available at each cell) 

All 96 standard ASCII characters are available in the Overlay. 
The 32 control characters defined in ASCII may also be displayed, 
in "Visibl e Control-Character" mode. An additional set of 128 
characters is available, and may be selected with the "Select 
Character Set" command, described in section 1. This set 
contains Greek characters and other special symbols. 

All characters in the Overlay are formed from a 6 by 8 dot 
matrix. The ASCII character set falls into a 5 x 7 grid within 
this matrix. 

A low resolution plotting mode is available in the Overlay, 
which allows any cell to display a group of eight pixels, two 
horizontally and four vertically. This provides a plotting 
capability which, in the Overlay alone, exceeds- the resolution 
available on many other computers! The resolution of the Overlay 
plot mode is 170 (horizontal) by 192 (vertical). Some of the 
plotting features of the Bitmap screen are also available in the 
Overlay, such as drawing vectors. 

Version 1.4 Page 2-1 



Overlay Defaults 7900 Operator's Manual Chapter 2 

Overlay Defaults 

When the system is powered up, or when the ~ or SOFT 
BOOT keys are struck, the Overlay is initialized with ,certain 
attributes as follows: 

• Background Black 

• Foreground White 

• Cursor visible in upper left corner ("home" 
position) 

• Visible (not transparent) Foreground and 
Background 

SOFT BOOT and BOOT do not affect the high-resolution Bitmap 
screen. However;- since the Overlay is not transparent at 
this time, any picture on the Bitmap screen will not be 
visible ,(see "Modify Overlay Visible Attributes"). If the 
system has just been powered up, no picture will be present 
on the Bitmap screen anyway. 

Page 2-2 Version 1.4 



Chapter 2 7900 Operator's Manual Overlay Operations 

Overlay Operations 

When the system is initially powered up, or booted, you 
will be addressing the Overlay. This section discusses the 
types of commands" accepted by the Overlay. 

The Overlay is designed for easy communication with a 
host computer or other remote device. Its main purpose is to 
display alphanumerics 1 it can do this much faster than the 
Bitmap. Most messages to and from the operator will be 
displayed in the Overlay. For this reason, the Overlay is 
the default mode of operation when ~ is executed. 

When you are addressing the Overlay, the OVERLAY key 
will be lighted. Note that this light is on when the system 
is booted. When this key is extinguished, you are addressing 
the Bitmap, which is discussed in later sections. 

Entering and Exiting the Overlay 

If you are addressing the Overlay, and want to address 
the Bitmap, press: 

SHIFT OVERLAY 

Hold the SHIFT key and press the lighted key marked OVERLAY. 
The light wi!! go out. 

When you want to talk to the Overlay again, press 

OVERLAY 

The OVERLAY key produces the following code: 

MODE 0 1 

MODE V 3 

SHIFT OVERLAY produces the following code: 

MODE 0 0 

MODE V 0 

The MODE 0 command tells the 7900 whether the Overlay or 
Bitmap is to be addressed. The MODE V command is discussed 
later in this chapter. 

Version 1.4 Page 2-3 



Cursor Control 7900 Operator's Manual Chapter 2 

Overlay Cursor Control 

The Overlay cursor is a flashing white overscore and 
underscore. It is initially located in the upper left corner 
of the window, which is termed its "home" position. Pressing 
the HOME key on the cursor keypad will always return the 
curso~ this position. 

Two keys on the typewriter section of the keyboard have 
an effect on the cursor. RETURN (carriage return) moves the 
cursor to the beginning of the current line. LF (line feed) 
moves the cursor down one line. --

Tab stops are located every four character cells in the 
Overlay. Pressing the CTRL modifier with the I key will 
generate a Tab character-;--and will move the cursor to the 
next tab stop. 

CTRL I 

The other keys on the cursor keypad are used to position the 
cursor in the Overlay, and to perform text editing functions: 

• The four arrow keys move the cursor in their 
respective directions. Simultaneously pressing two 
adjacent arrow keys moves the cursor diagonally •. 

• HOME moves the cursor to the upper left corner of the 
window. CTRL HOME moves the cursor to the LOWER left 
corner of the window ("home lower"). 

• ERASE PAGE clears the Overlay window to whatever 
background color is in effect (initially black). 

• CLEAR LINE erases the line at which the cursor is 
currently positioned. 

• The RECALL key is only active when you are enter ing 
input to the Disk Operating System, the Monitor, or 
some other controlling program. See the description 
of INLINE (the Inline Editor), in Appendix C. 

Page 2-4 Version 1.4 



Chapter 2 7900 Operator's Manual Cursor Control 

The functions labelled in blue on the front of the 
cursor control keys are also text editing features. They are 
accessed by holding down the· CTRL modifier and pressing the 
required key. -- . 

• ERASE EOS erases from the current cursor position to 
the end of the screen (the current window). 

• CLEAR EOL clears from the cur rent cursor position to 
the end of the same line. 

• DEL LINE deletes the line at which the cursor is 
positioned. All lines below this one move up to fill 
in the gap. 

• DEL CHAR deletes one character at the current cursor 
position. All characters to the right of the deleted 
character move left one position. 

• INS CHAR moves all characters to the right of the 
cursor, one position to the right. One character may 
now be inserted in the gap. 

• INS LINE moves all lines below the cursor, down one 
line. One line may now be inserted in the gap. 

Several other commands are involved with the cursor: 

CURSOR ON turns the cursor on, while using the SHIFT 
modifier with CURSOR ON turns the cursor off. 

MOVE X-Y positions the cursor absolutely. 

Format: 

MOVE X-Y <X>,<Y>, 

Where: 

<x> is a decimal number between 0 and 84 

<Y> is between 0 and 47 

The cursor is moved immediately to the required coordinates. 
The coordinate system is arranged with 0, 0 in the upper left 
corner. X increases from left to right. Y increases going 
down. 

Version 1.4 Page 2-5 



Cursor Control 79SS Operator's Manual Chapter 2 

It is possible, using MOVE X-Y, to move the cursor 
outside the limits of the current window. Pressing ~ will 
bring it back inside the window. 

The following command moves the cursor relative to its 
current screen location. 

Format: 

MODE m <dX>, <dY>, 

Where: 

<dX> and <dY> are each decimal numbers, followed 
by a comma. 

The parameters <dX> and <dY> are added to the current cursor 
position. Note that a lower case m must be entered, and this 
may require use of the SHIFT key (depending on the state of 
ALPHA LOCK) • 

Overlay Cursor Blink ON/OFF 

Format: 

ESC q <S or 1> 

NOTE: 

This command requires entering a lower case 
letter, q. If the ALPHA LOCK key is in its normal 
(up) position, it is necessary to use the SHIFT key 
with the nQn key to produce a lower case q. 

The character S disables Overlay cursor blink, and 
character 1 enables it (the default condition). If more 
one Overlay cursor is in use, all are affected by 
command: all Overlay cursors will blink, or none of 
will. 

the 
than 
this 
them 

Page 2-6 Version 1.4 



Chapter 2 79~~ Operator's Manual Roll & Page 

Overlay Roll and Page 

The Overlay defaults to Page operation. In Page, no 
lines of the window are ever moved. When the last line of 
t~e window is completed, the cursor moves to the first line 
of the window. If additional text is entered, it will 
overwrite the first lines of the window. Page is primarily 
useful for plotting applications, where it is imperative that 
output be fixed at a particular screen location. 

In Roll, as the last line in the window is compl eted, 
the cursor remains on that line. The first line in the 
window is "rolled" off the top of the window, and is lost. 
All other lines in the window move up one line. Roll is 
standard for computer terminal applications. 

To enter Roll, press the ROLL key: 

ROLL 

The light in the ROLL key will illuminate. The window is in 
Roll. 

To leave Roll and return to Page, press 

SHIFT ROLL 

The ROLL key will extinguish. The window is back in Page. 

Remember that each window has an Overlay part and a 
Bitmap part, and that the Roll command affects a window. 
This means that if a window is in Roll operation, both its 
Overlay and Bitmap parts are in Roll. If your application 
requires Overlay to be in Roll, and simultaneously requires 
that Bitmap be in Page, then you have two options: 

1. Always transmit the Roll On/Off code whenever 
you move between Overlay and Bitmap 

2. Use two windows, and leave one in Roll and one 
in Page. 

Version 1.4 Page 2-7 



Color & Blink 7gee Operator1s Manual Chapter 2 

Overlay Color and Blink 

Each cell of the Overlay has a foreground and a 
background color. The available color s are the eight color 
keys on the keyboard, black through white. Additionally, 
each cell may be specified to blink. If blink is on, the 
character in the cell will blink from its normal foreground 
color to the background color of the same cell. 

Each cell may also be transparent, in foreground or 
background or both. If part of a cell is transparent, the 
image in Bitmap may be seen behind the Overlay image. See 
"Modify Overlay Attributes" for details. 

All of the commands in this section affect the future 
contents of the Overlay. The present color and 
attr ibutes of the Overlay are unaffected by SET or 
commands. You must remember to specify color--and 
before entering information into the Overlay. 

NOTE: 

Only the foreground color is allowed to blink in 
the Overlay. The foreground color will toggle 
between its normal color and the current background 
color. The background color of the character cell 
will never blink. 

blink 
BLINK 
blink 

Page 2-8 Version 1.4 



Chapter 2 7900 Operator's Manual Color & Blink 

Set Foreground Color 

Format: 

SET <color> 

<color> may be anyone of the eight color keys. The Overlay 
foreground color is now set to the same color as the key. 

Alternatively, a color number may be specified. 
numbers 0 through 7 in the Overlay correspond to the 
color keys, black through white. This form would most 
be used from a host computer. 

Alternate format: 

SET <n>, 

Color 
eight 
often 

<n> is the color number, and must be terminated by a comma. 
The eight color keys correspond to the following color 
numbers: 

Example: 

~ 7, 

Color Key 

Black 
Blue 
Green 
Cyan 
Red 
Magenta 
Yellow· 
White 

Color Number 

o 
1 
2 
3 
4 
5 
6 
7 

Set foreground to white (default) 

These eight colors are the. only colors available in the 
Overlay. These colors remain available in the Overlay, 
regardless of the color configuration of the Bitmap. (The 
Bitmap allows a selection from over 16 million colors. It is 
discussed in Chapter B.) 

Version 1.4 Page 2-9 



Color & Blink 7999 Operator's Manual Chapter 2 

Set Background Color 

Format: 

SHIFT SET <color> 

Hold down the SHIFT modifier while striking the SET key to 
set background color. Foreground color is not affected. 

As above, a color number may be used instead of a color key: 

SHIFT SET <n>, 

Overlay Blink ON 

Format: 

BLINK 

The BLINK key will light up. The blink attribute is now on. 
Any characters now entered into the Overlay will have a 
blinking foreground. (Overlay background color cannot 
blink. ) 

Overlay Blink OFF 

Format: 

SHIFT BLINK 

Holding Qown the SHIFT modifier while pressing the BLINK key 
will turn off the blink attribute. The light in the BLINK 
key will go out. Future characters entered into the Overlay 
will have a non-blinking fcreground color. This is the 
default condition. 

Page 2-19 Version 1.4 



Chapter 2 79aa Operator's Manual 

Modify Overlay Visible Attributes 

Format: 

MODE V <n> Modify Present Attributes 

MODE v <n> Modify Future Attributes 

Where <n> is interpreted as follows: 

o Foreground and Background Transparent 
1 Foreground Transparent (Visible Background) 
2 Background Transparent (Visible Foreground) 
3 Foreground and Background Visible 

Attributes 

Modify Present Attributes will immediately cause the entire 
window to assume the attributes set by <n>. 

• If <n>=0, the window will immediately become totally 
transparent (except for the Overlay cursor, if it is 
currently visible). The Bitmap image will be fully 
visible. 

• If <n>=l, the entire window will assume a visible 
background, transparent foreground condition. The 
Bitmap screen will only be visible through the 
characters in the Overlay window. 

• If <n>=2, the entire window will assume a visible 
foreground, transparent background condition. The 
Bitmap screen will be visible everywhere except where 
characters exist in the Overlay. This condition is 
useful for superimposing titles (in the Overlay) onto 
pictures (in Bitmap). . 

• If <n>=3, the enti re window will be visible 
(foreground and background) and no Bitmap image will 
be seen through the window. Only Overlay material 
will be visible. This is the default condition at 
power-up. 

Example: 

MODE V 2 will cause lettering in the window to be 
visible over a picture in Bitmap. 

MODE V 3 will cause the window to be entirely visible 
(non-transparent) • This is the default 
condition when the system is booted or reset. 

Version 1.4 Page 2-11 



Attributes 7900 Operator's Manual Chapter 2 

Modify Future Attributes will cause no immediate change 
in the Overlay window. However, any further characters sent 
to that window will be affected by the command. The 
interpretation of <n> is basically the same as above: 

• If <n>=0, future characters sent to the window will 
not be visible at all. 

• If <n)=l, future characters sent to the window will 
have a visible background and transparent foreground. 

• If <n>=2, future characters sent to the window will 
have a transparent background and visible foreground, 
and will be superimposed over the image in Bitmap. 

• If <n>=3, future characters sent to the window 
have a visible foreground and background, and 
completely block out the Bitmap image where 
appear. 

will 
will 
they 

Example: 

MODE v 0 will inhibit all characters sent into the 
Overlay window from being seen. 

MODE v 2 will cause characters sent into the Overlay 
window to be superimposed over the image in 
Bitmap. 

If a character in the Overlay has been specified to blink, 
and has visible foreground and transparent background, that 
character will blink from visible to transparent. For 
example, an important part of a drawing (in the Bitmap) could 
be labelled by lettering (in the Overlay) and if the 
lettering was specified to blink, the drawing could be seen 
in full whenever the characters blinked to transparent. (All 
7900 blink functions occur at a rate of 1.9 Hertz, with a 50% 
duty cycle. This means a letter will be visible for 0.26 
seconds and transparent for the next 0.26 seconds.) 

Page 2-12 Version 1.4 



Chapter 2 7900 Operator's Manual Plot Functions 

,Overlay Plotting Functions 

Overlay plotting functions are extensions of plotting 
features available in the Bitmap. Each of the Plot Submodes 
is discussed in detail in Section 9. If you are not familiar 
wi th Bitmap plotting features, please read Sections 8 and 9 
before attempting to use the Overlay for plotting. 

The Overlay can produce many of the same kinds of 
figures available in the high-resolution Bitmap. All Plot 
Submodes operate in the Overlay (see Chapter 9). The Overlay 
resolution is 170 by 192 (as opposed to 1024 by 768 in the 
Bitmap) • 

Plotting in the Overlay works much like Bitmap plotting. 
Here are the differences: 

• Scale factors are not allowed. All coordinate data 
should be entered as numbers between 0 and 169 for X, 
and 0 to 191 for Y. 

• The cursor position may not be used to enter 
coordinates using the decimal point. 

• The Overlay handles primitive filled figures. The 
optional Complex Area Fill and Edge Fill routines will 
not work, however. 

• Pixels in the Overlay are 3 x 2, compared to 1 x 1 
square pixels in the Bitmap. This causes circles to 
come out as ovals. 

All currently defined foreground attributes are applied to 
the plotted figure, including transparency. You can plot a 
"transparent" figure and view the Bitmap through an 
irregularly shaped area. 

Plotting in the Overlay is slow, and it is easy to 
accidentally switch to the Overlay from the Bitmap and end up 
drawing a large figure, say, a circle with a 500-pixel 
radius. This circle would wrap around, enveloping the 
Overlay; while the figure is being drawn, the system would 
appear to hang. 

NOTE: 

If the MODE V command is used to change the 
backgrouncr-visibility, a filled area may change. 
This is intentional and is required to allow 
multiple colored lines to be drawn at full 
resolution. Filled areas are filled using 
background character cells. 

Version 1.4 Page 2-13 





Chapter 3 7gee Operator's Manual System Commands 

Chapter 3 -- System Commands 

This section describes commands which affect the entire 
system. Unlike Mode or Plot commands (described in following 
chapters), these commands by themselves do not immediately change 
anything on the screen. Commands covered in this chapter 
include: 

• Assign Devices 

• Select Character Set 

• Delay 

• Function Keys 

• Light Pen 

• Real-Time Clock 

• Test Mode 

• Tone Generator 

• Visible Control Characters 

• Warmstart 

• Windows 

• Scaling 

• Hardcopy 

Version 1.4 Page 3-1 



Assign Devices 7900 Operator's Manual Chapter 3 

Assigning Physical Devices 

Assign Output Device 

Format: 

ASSIGN OUTPUT <n> <dev> <dev> <dev> <dev> 

Where: 

<n> 

<dev> 

is the Logical Device number (0 through 3) 

is the letter cor responding to a physical 
device (see table 3-1) 

Each Logical Output Device may access up to four physical 
devices. This allows transmitting commands to more than one 
window, or sending to a window and a peripheral device 
simul taneously. 

All four physical devices must be specified. If less 
than four are required, you must enter dummy devices using 
the character z. 
Examples: 

ASSIGN OUTPUT 1 A B Z Z 

Logical Output Device number 1 has been connected to 
physical devices A and B ·(the first two windows). Two dummy 
devices are used. 

ASSIGN OUTPUT 0 A K Z Z 

Logical Output Device 0 has been connected to physical 
device A (the first window), and the keyboard lights (see 
below). No other physical devices are connected to Logical 
Output Device 0. This is the default condition. 

Physical Output Device K is the keyboard lights. The 
keyboard handler inte·rprets all codes it receives, and 
decides which lights should be on or off. For example, when 
the FILL key is pressed, the "Fill" attribute is turned on. 
The keyboard recognizes the code sequence produced by the 
FILL key and turns on the light in that key. 

Page 3-2 Version 1.4 



Chapter 3 7900 Operator's Manual Assign Devices 

It is possible to assign other Logical Output Devices to 
the keyboard lights, or to arrange the assignments so that 
the keyboard lights receive no information at all. If this 
is done, the keyboard lights may not reflect the cur rent 
state of the system. 

Example: 

ASSIGN OUTPUT 0 A K T Z 

Logical Output Device 0 has been connected to window A, to 
the keyboard lights (K), and to the tone generator (T). 
Physical output device T is a special configuration of the 
tone generator. When assigned in this manner, it will sound 
a "click R every time a key is pressed. Some users appreciate 
this feedback, especially if they are not used to typing on a 
computer keyboard. We have maintained a connection to the 
keyboard lights in this assignment. 

The ASSIGN OUTPUT command can be used to change both the 
current window and the current Logical Device. For example, 

ASSIGN OUTPUT 1 B K Z Z 

makes window B the current window and changes the output to 
Logical Device 1. To' return to Logical Device 0, send 
another Assign Output command. 

Under Idris, change to a different Logical Device by 
typing: 

Ml M2 <num> 

Where <num> is 0 through 3, corresponding to a Logical 
Device number. This avoids having to remember which Physical 
Devices are associated with each Logical Device. 

Example: 

ASSIGN OUTPUT 0 A K Z Z 
WINDOW 0,0, 511,383, 
ASSIGN OUTPUT 1 B K Z Z 
WINDOW 511,0, 1023,383, 
ASSIGN OUTPUT 2 C K Z Z 
WINDOW 0,383, 1023,767, 
Ml M2 0 ... 
Ml M2 2 

Version 1.4 

(Logical Device 0 -> Window A) 
(Window A is upper left corner) 
(Logical Device 1 -> Window B) 
(Window B is upper right corner) 
(Logical Device 2 -> Window C) 
(Window C is bottom half of screen) 
(Send output to Window A) 
(Commands to Window A) 
(Send output to Window C) 

Page 3-3 



Assign Devices 7900 Operator's Manual Chapter 3 

Assigning Input Devices 

Format: 

ASSIGN INPUT <n> <dev> 

Input devices are assigned using the SHIFT modifier with the 
ASSIGN key. Only one physical input device is assigned to a 
Logical Input Device. 

WARNING: 

Logical Input Device 0 is normally assigned to the 
keyboard. Most programs will read from Logical 
Input Device 0 to receive thei r input. If you 
connect Logical Input Device 0 to another physical 
device, or to a dummy device, the system could 
hang. Recovery will only be possible via RESET. 

This can be useful for disabling the keyboard while under 
control of a host system. RESET, however, will still 
function. 

Page 3-4 Version 1.4 



Chapter 3 

Version 1.4 

7900 Operator's Manual Assign Devices 

Table 3-1. Physical Device Assignment List 

OUTPUT DEVICES 

A window A 
B window B 
C window C 
D window D 
E window E 
F window F 
G window G 
H window H 

K keyboard lights 

L RS-232 serial port 
M RS-449 serial port 

P parallel port 

S Serial Port Controller port #1 
T Serial Port Controller port #2 

Tone Generator (if SPC is not installed) 
U Serial Port Controller port #3 
V Serial Port Controiler port #4 

Z dummy 

INPUT DEVICES 

K keyboard 

L RS-232 serial port 
M RS-449 serial port 

P parallel port 

S Serial Port Controller port #1 
T Serial Port Controller port #2 
U Serial Port Controller port #3 
V Ser ial Port Controller port #4 

Z dummy 

Page 3-5 



Character Set 7gee Operator's Manual Chapter 3 

Select Character Set 

Two character sets are supplied in the 7gee. The 
standard character set contains 96 printable ASCII 
characters, plus 32 visible control characters. The standard 
character set is selected by default when the system is 
booted. 

Format: 

CTRL 0 ("A7 off" - standard character set) 

CTRL N ("A7 on" - alternate character set) 

The alternate character set is called the "A7" set. It 
contains graphics figures, Greek characters, and other 
special symbols. It may be selected at any time by pressing 
CTRL N (hold down the CTRL key and press N). Only the window 
which receives the command will switch to the alternate 
character set. 

To return to the standard character set, hold down the 
CTRL key and press O. 

The al temate character set is available in both Overlay 
and Bitmap. 
fonts. Note 
and this is 
are used for 

Page 3-6 

See Appendix F for the available character 
that the Overlay also has a Plot Dot capability, 
not related to the character fonts. Plot dots 
Overlay plotting features.· 

Version 1.4 



Chapter 3 

Delay 

Format: 

ESC D <n>, 

Where: 

7999 Operator's Manual 

<n> is the number of 69ths of a second to delaY1 
-1 < n < 32767. 

Delay 

Delay is often used in corijunction with pictures drawn in 
the Create Buffer (see Chapter 5). Delay allows time for a 
user to examine a drawing or read text. Delays may be 
specified to the nearest 69th of a second. 

Example: 

ESC D 129, Delay two seconds 

If <n> is -1, the system w.ill wait until a key is pressed on 
the keyboard: 

ESC D -1, 

ESC D 9, 

Delay until a key is pressed 

Wait for next vertical retrace 

NOTE: 

The Delay command polls the vertical retrace bit. 
If the processor is interrupting on vertical 
retrace (e.g., while running Idris), the delay time 
may be inaccurate. Also, the keyboard wait 
function assumes that the 7999 firmware has control 
of the keyboard interrupt vector (not t'rue while 
running Idris). The system may hang if the vector 
was used earlier by another program. Therefore, do 
not use this command with Idris. 

Version 1.4 Page 3-7 



Function Keys 7900 Operator's Manual 

Function Keys 

Format: 

DEFINE <Fn> <command sequence> <Fn> 

Where: 

Chapter 3 

<Fn> is a function key, Fl through 
F24 -

<command sequence> is any set of characters and/or 
commands 

The twenty-four function keys, Fl through F24, are 
user-definable. You may program these-keys to perform any 
sequence of commands, and once programmed, the keys will 
remember their definitions until the definitions are changed. 
If your system is equipped with battery-powered CMOS memory 
(optional), then the user-defined keys will remain defined 
even while system power is off. 

The function keys F13 through F24 are accessed by 
holding down the SHIFT key while preSSIng the appropr iate 
function key. Thus, 

SHIFT FI 

is the same as 

F13 

To define a function key, press DEFINE, followed by the 
function key you wish to define. To program the Fl key, type 

DEFINE Fl 

The light on top of the function key will come on to remind 
you that a function key is being defined. Then type any 
sequence of commands or characters. The keys you press will 
not have any ef fect on the display, but they will each be 
acknowledged by a "hissing" sound from the speaker. 

NOTE: 

Page 3-8 

The function key lights will NOT come on while any 
of F13-F24 are being defined1 however, the speaker 
wilr-strrr hiss during the definition. 

Version 1.4 



Chapter 3 7900 Operator's Manual Function Keys 

When you have typed all the keystrokes you wish to enter 
into this function key definition, hit the function key again 
(the same key you started with). This will be acknowledged 
by a "gong" sound from the speaker, and the function key 
definition is now complete. Pressing the same function key 
at any future time will produce the stream of characters (or 
commands) which you entered as the definition. 

Example to define function key Fl: 

DEFINE Fl T HIS SPACE I S SPACE A SPACE T EST Fl 

Example to define function key F24: 

DEFINE F24 1 2 3 4 5 6 7 8 9 0 F24 

Note that to CLOSE the def ini tion of F24, you must be sure 
to hold down the SHIFT key at the end of the def ini tion. 
This is because a function key is allowed to "call" other 
function keys: 

DEFINE F2 Fl Fl Fl Fl F2 

Pressing F2 is now equivalent to pressing Fl four times. 

Storage for function key definitions is dynamically 
allocated. A key will use only as much space as it needs. 
This means the available storage may be used all by one key, 
spread evenly among many keys, or distributed in any other 
way. The default function key buffer allocation is 768 
bytes, in CMOS (if present) or in static RAM. The "Thaw" 
command may be used to alter this allocation. 

If function key storage overflows while defining a key, 
the normal "gong" sound for closing the definition is 
produced, and no more characters are accepted. It is then 
necessary to "un-def ine" some keys (def ine them to be null) 
to provide space for future definitions. Since definitions 
are stored in battery-powered CMOS memory (if installed), it 
is possible for function key definitions to remain in the 
system long after their usefulness has ended. 

Example to delete the definition for Fl: 

DEFINE Fl Fl 

Version 1.4 Page 3-9 



Function Keys 7900 Operator's Manual Chapter 3 

Bezel Keys 

Eight bezel keys are located on the bottom of the frame 
surrounding the 7900 screen. They are defined and used in 
the same way as the function keys described above. 

Format: 

DEFINE <bezel> <command sequence> <bezel> 

Where: 

<bezel> is anyone of the eight bezel keys 

<command sequence> is any stream of characters or 
commands 

See the previous section for more information on 
user-defined keys. The SHIFT key may not be used with bezel 
keys to generate unique codes. If SHIFT is depressed whi1 e 
pressing a bezel key, it is ignored. 

Overflows are handled the same way for bezel keys as for 
the other function keys~ 

The bezel keys 
assembly language 
description. 

Page 3-10 

have an 
programs. 

additional use when debugging 
See Appendix C for a 

Version 1.4 



Chapter 3 79~~ Operator's Manual Function Keys 

Defining Function Keys from a Host 

Obviously, a host computer or a controlling program 
cannot push buttons to define function keys. There are three 
ways, however, that the function keys can be modified without 
touching the keyboard: 

• Directly load the entire Function Key buffer. 
The function keys normally reside in CMOS RAM 
from hex address $E4~9~~ to $E4~BFF. These 
boundaries can be changed with Thaw (see 
Chapter 6). Note that this method loads all 32 
function keys, wiping out any old definitions. 

• From a program running under Idris, individual 
function keys can be modified using drivers 
/dev/fkeyl through /dev/fkey32. The driver 
/dev/fkeys accesses the entire buffer. 

• Use USER J and USER j commands to define 
individual function keys from a host or 
internal program. This is the easiest method 
to use from a host, and is discussed below. 

To def ine a function key from a host or internal program, 
the proper input port must be assigned. as the pr imary input 
device rather than the keyboard. Assuming your host is 
connected to the RS-232 port, the proper command would be: 

ASSIGN INPUT ~L 

- OR -

USER I~L 

This code can be sent from the host or the keyboard. 

The function keys can now be defined. Assuming that Fl 
is the desired key, the following sequence will define it: 

USER j 

USER JA 

<command sequence> 

USER JA 

(Code for the DEFINE key) 

(Code for function key Fl) 

(Close the definitio~) 

If you do this from the keyboard (get out of Idris or DOS 
first), you will see Fl light up after you type USER JA the 
first time. The systentwill nbong n as usual and tlililoff the 
function key light after the second USER JA is sent. 

Version 1.4 Page 3-11 



Function Keys 7900 Operator's Manual Chapter 3 

After defining the function keys, reconnect the keyboard 
with -the following code: 

USER I0K 

Function keys can be "nested" in this manner, also: 

USER j (Code for DEFINE) 

USER JB (Code for function key F2) 

USER JA USER JA (Enter Fl twice) 

USER JB (Close F2) 

Now, pressing F2 will have the same effect as pressing Fl 
twice. 

To execute function key Fl, simply send USER JA. Codes 
for the other keys are shown below. 

Key Char Key Char 
------------------------------------------

Fl A F19 S 
F2 B F20 T 
F3 C F21 U 
F4 D F22 V 
FS E F23 W 
F6 F F24 X-
F7 G 
FB H Bezel 1 (underline) 
F9 I Bezel 2 " (accent g-rave) 
F10 J Bezel 3 ] 
Fll K Bezel 4 A 

F12 L Bezel 5 [ 
F13 M Bezel 6 \ 
F14 N Bezel 7 y 
FIS 0 Bezel B Z 
F16 P 
F17 Q 
FIB R 

For exarnpl e, USER JI corresponds to function key F9. 

Page 3-12 Version 1.4 



Chapter 3 79~~ Operator's Manual Light Pen 

Light Pen 

The (optional) light pen is housed on the right side of 
the CGC 79~~ display behind the tall, thin door. It is held 
in place by a clip behind the door. While the light pen is 
in use, the clip can be used to hold the pen in a convenient 
position. 

To use the pen, hold its barrel in your right hand, and 
touch the pen's tip with your index finger. The finger makes 
electr i cal contact across the black insulating ring, and 
causes an interrupt in the 79~" system. Aim the pen at the 
screen, holding it at a right angle to the screen and about 
one inch away. 

To enable the pen, use the following command: 

USER I <fl> <f2> <n> 

Where: 

<fl> and <f2> are single characters, A through Z 

<n> is a single digit, " through 4 (see below) 

The character 
backslash, \. 

is located on the same key with the 

<fl> and <f2> are specifiers which indicate function 
keys to execute, before and after the light pen hit. The 
characters A through X are used to designate function keys Fl 
through F24 (see page 3-12). Enter a character outside thIS 
range to-aIsable either or both of the function keys. 

<n> is a flag which determines the state of the light pen: 

<n> Function 

" Disable light pen. 

1 Enable light pen, using Bitmap coordinates, 
with blue flood. 

2 Enable light pen, using Bitmap coor dina tes, 
wi thout bl ue flood. 

3 Enable light pen, using Overlay coordinates, 
with blue flood. 

4 Enable light pen, using Overlay coord ina tes , 
without blue flood. 

Blue flood occurs only in areas of the Overlay which are 
defined to be "foreground visible." See "Modify Overlay 
Visible Attributes" (in Chapter 2). If blue flood is 

Version 1.4 Page 3-13 



Light Pen 79~~ Operator's Manual Chapter 3 

disabled, only bright blue or white areas of the screen will 
be recognized by the light pen • 

. Examples: 

DEFINE Fl INC VECTOR Fl Define key Fl to be a 
Incremental Vector command. The 
INC VECTOR key is directly below 
function key Fl~; you have to 
hold down the--SHIFT key while 
pressing INC VECTOR. 

DEFINE F2 @CC@@cc@ F2 Def ine F2 to hold arguments to 
Incremental Vector. 

USER A B 1 Activate light pen with function 
keys A (Fl) and B (F2), use 
Bitmap coordinates, and enable 
blue flood. 

SHIFT OVERLAY Send the results to the Bitmap. 

Now, each time the light pen is detected on the screen, a 
small rectangle will be drawn. 

Note that the light pen produces coordinates from 0 to 
l~23, if <n> is 1 or 2; it produces coordinates from 0 to 84 
if <n> is 3 or 4. In either case, the Overlay foreground 
must be visible if blue flood is desired. The command MODE V 
2 will make the Overlay window have a visible foregrouna:--

Other examples: 

USER 

USER 

Page 3-14 

0~~ Disable the pen. 

001 Enable the pen to simply output coordinates 
each time a hit is detected. This is useful 
for ftfreehand ft drawings (using Concatenated 
Vectors) • 

Version 1.4 



Chapter 3 7900 Operator's Manual Real-Time Clock 

Real-Time Clock 

The Real-Time Clock (optional) keeps tr ack of months, 
days, the day of the week, hours, minutes, seconds, and 
fractions of seconds. Several commands are provided to set 
and display the time and date information. 

Set Clock 

Format: 

USER q MM DD N hh mm , 

Where: 

MM is the two-digit month code (01 through 12) 

DD is the two-digit day code (01 through 31) 

N is the day-of-week code (l=Sunday through 7=Saturday) 

hh is the two-digit hours code (00 through 23) 

mm is the two-digit minutes code (00 through 59) 

NOTE: 

This command requires entry of a lower case 
letter, q. If the ALPHA LOCK key is in its normal 
(up) position, you must use the SHIFT modifier with 
the nQ" key to produce a lower case q. 

All of the above parameters are set simultaneously, by a 
single entry to the Real-Time Clock. It is not possible to 
set the parameters individually. 

Either a comma or semicolon may be used to terminate 
this command. 

Version 1.4 Page 3-15 



Real-Time Clock 7900 Operator's Manual Chapter 3 

Examples: 

~ q 010110235, (January 1, Sunday, 2:35 AM) 

USER q 112141745, (November 21, Wednesday, 5:45 PM) 

When setting the clock to an exact time, use the following 
procedure: Enter the date and time information as above. 
Enter the minutes as being one or two minutes ahead of exact 
time. Wait until the time you entered equals the exact time, 
THEN enter the comma. 

NOTE: 

Entering too many characters without the delimiter 
can cause a stack overflow. 

Display Time 

Format: 

USER Q <0 or 1> 

Use the character 1 to enable the time display, or 0 to 
disable it. 

This commmd causes time and date information 
continuously displayed in the upper right corner 
Overlay. The information is updated once per second. 

to be 
of the 

Entering a 0 prevents the displayed time from being 
updated, but does not remove the last displayed time from the 
Overlay screen. It is necessary to erase the Overlay, or 
make it transparent, to completely remove the clock display. 

NOTE: 

Page 3-16 

If your system is not equipped with the Real-Time 
Clock option, this command will cause the system to 
hang. Press RESET to recover. 

This function will work under Idris, but the last 
digit will sometimes be obscured by the disk access 
indicator. 

Version 1.4 



Chapter 3 79~~ Operator's Manual Test Mode 

Test 

Format: 

TEST <character> 

Where <character> is any displayable character. 

The TEST command will fill the window in use with the 
specified character. TEST is available in both Overlay and 
Bitmap. Whichever winOo'W'""is currently being addressed will 
be filled with the character. (Either the Overlay window OR 
the Bitmap window -- not both -- will be filled with the 
character. ) 

In the Overlay, all currently defined attributes will be 
applied to the test character. This includes foreground and 
background color, foreground and background transparency, and 
blink. 

In the Bitmap, the currently defined attributes will 
also be applied. Remember that these attributes may not be 
the same as the currently defined attributes of the Overlay. 
The currently defined foreground and background colors, 
blink, and character size, will be applied to the test 
character. 

Following completion of the TEST function,· the cursor 
will be placed in the Rhome R posit~of the window. 

Version 1.4 Page 3-17 



Tone Generator 7900 Operator's Manual Chapter 3 

Tone Generator 

Format: 

TONE <A),<B),<C),<L), 

Where: 

<A),<B),<C) 

<L) 

are the frequencies (in hertz) of 
each of the three voices from the 
tone generator. 

is the tone duration (in 
milliseconds) • 

The TONE command is located on the same key as TEST. Typing 
SHIFTITEST begins the Tone command. ----

The tone generator is programmable from the keyboard. 
You may program the frequency of each of the three voices and 
the duration of the tone. When programming from the 
keyboard, the envelope is fixed and causes the amplitude to 
decay steadily over the duration of the tone. 

NOTE: 

The QUIET LOCK key on the keyboard must be in its 
normal (up) position, or the speaker is disabled 
and no tones can come out! 

The tone generator can produce tones covering nearly the 
entire audible range. The range of useful values for <A), 
<B) and <C) is from 30 to 15000 (hertz). 

NOTE: 

Selecting a frequency of 0 on any channel turns 
that channel off. 

The duration of the tone may be set to any value up to 
approximately 9300 (milliseconds). This would produce a tone 
9.3 seconds long. 

Page 3-18 Version 1.4 



Chapter 3 7900 Operator's Manual Tone Generator 

Example: (to select voice A to be "middle A" on the piano, 
or 440 Hz) 

<A> = 440 

If we want voice B to be one octave higher, then let <B> = 
8813. Then, we could let voice C could be one octave above 
that, which would make <C> = 1760. 

Finally, select a duration of 1 second. Then <L> = 1000. 
Our finished command then becomes: 

TONE 440,880,1760,1000, 

The following list shows approximate frequencies for 
different notes. Some of them may be slightly "out of tune n 

because of roundoff error • 

Note . Fres· Note Freg. Note Freg. Note Freg. 

C 1 33 C 3 131 C 5 523 C 7 2093 
C# 1 35 C# 3 139 C# 5 554 C# 7 2218 
D 1 37 D 3 147 D 5 587 D 7 2349 
D# 1 39 D# 3 156 D# 5 622 D# 7 2489 
E 1 41 E 3 169 E 5 659 E 7 2637 
F 1 44 F 3 175 F 5 699 F 7 2794 
F# 1 46 F# 3 185 F# 5 740 F# 7 2960 
G 1 49 G 3 196 G 5 784 G 7 3136 
G# 1 52 G# 3 208 G# 5 8.31 G# 7 3322 
A 1 55 A 3 220 A 5 880 A 7 3520 
A# 1 58 A# 3 233 A# 5 932 A# 7 3729 
B 1 62 B 3 247 B 5 988 B 7 3951 

C 2 65 C 4 262 C 6 1047 C 8 4186 
C# 2 69 C# 4 277 C# 6 1109 C# 8 4435 
D 2 73 D 4 294 D 6 1175 D 8 4698 
D# 2 78 D# 4 311 D# 6 1245 D# 8 4978 
E 2 82 E 4 330 E 6 1319 E 8 5274 
F 2 87 F 4 349 F 6 1397 F 8 5588 
F# 2 93 F# 4 370 F# 6 1480 Fi 8 5920 
G 2 98 G 4 392 G 6 1568 G 8 6272 
G# 2 104 Gi 4 415 G# 6 1661 G# 8 6645 
A 2 110 A 4 440 A 6 1760 A 8 7040 
Ai 2 117 A# 4 466 A# 6 1867 Ai 8 7459 
B 2 124 B 4 494 B 6 1976 B 8 79132 

Version 1.4 Page 3-19 



Control Characters 7999 Operator's Manual ~hapter 3 

Visible Control Characters 

The 7999 ·has the .capacity to make control characters 
visibl e. Control characters are normally non-pr inting 
symbols which have an effect on the state of the system, such 
as Break or Return. For debugging purposes, it is sometimes 
useful to observe the characters themselves without letting 
them actually function. 

Format: 

ESC V <window> <9 or 1> 

Where: 

<window> is the name of the window where visible 
control characters are desired. This will 
usually be the default window, named A. 

<9 or 1> is the character 9 or 1. 9 turns visible 
control characters off (the default condition) 
and 1 turns them on. 

After visible control characters are turned on, all ASCII 
control characters sent to the window will be displayed in 
abbreviated form. 

Example: 

ESC V A 1 

Visible control characters are now ON in window A. Now, if 
we strike the RETURN key, we see the symbol: 

C 
R 

which is the abbreviation for Carriage Return. .Other control 
characters may be displayed in the same way. 

NOTE: 

Escape and User codes will be executed (and not 
displayed) whether or not visible control 
characters are active. 

Alternatively, a visible control character can be 
displayed by holding down the Ml and M2 keys and striking a 
control character. This is usef:ul for-quickly examining the 
symbol produced by a particular control character. Ml and M2 
'will always display a visible control character, regardless 
of whether the ESC V commend was given. 

Page 3-29 Version 1.4 



Chapter 3 7900 Operator's Manual 

Example: 

Ml M2 ERASE PAGE 

displays the abbreviation: 

F 
F 

Control Characters 

which stands for Form Feed, the standard ASCII erase-page 
code. 

To examine a control character which does not have a 
separate key assigned to it, you must hold the Ml and M2 keys 
and the CTRL modifier, and press the desired keY: 

Example: 

Ml M2 CTRL D 

displays 

E 
T 

which is the abbreviation for EOT, or End Of Transmission. 

Note that some keys (especially the labelled keys in the 
upper part of the keyboard) produce several codes for each 
keystroke. This is normal. Appendix A provides a complete 
list of code sequences, and the advanced user will want to 
memorize many of these sequences. 

Version 1.4 Page 3-21 



Warm Start 7999 Ope r ator 's Manual Chapter 3 

Warm Start 

Programs which interact with the user and take over 
control of the 7999 system may be re-entered after an 
interruption, if set up properly. To re-enter an interrupted 
program, execute the Warm Start sequence: 

USER W 

The "warmstart vector" is located at $9C8E (hex), and is 
four bytes long. Programs which use this feature must load 
the warmstart vector with some "warmstart address" so that 
typing ~ W will cause the proper action to occur. 

If a program is in a "runaway" condition, such as a very 
long listing that will not terminate, it is generally 
possible to stop the program by pressing RESET, followed by 
USER W. In a properly designed program, this will interrupt 
~current process but not destroy any data in memory. 

The details of warm-starting a program will depend on 
the program itself. Consult the instructions for the program 
in question. 

Page 3-22 Version 1.4 



Chapter 3 7999 Operator's Manual Windows 

Windows 

A window is -one of the system's pr imary output devices. 
It may occupy the full screen, or any rectangular subset of 
the screen. Its limits may be defined in the Overlay, or in 
Bitmap. It may have different dimensions in each. 

A window is handled in the same manner as other physical 
devices. When characters or commands are sent to a window, 
it will take some action based on the data it receives (and 
on previous data). For example, if a window receives a n set 
color" command, all future text sent to that window will be 
affected by that command, until another n set color" command 
arrives. 

The system will handle up to eight windows. When the 
system is initialized, only window "An is assigned, so the 
existence of the other windows is not immediately apparent. 
Other windows are assigned with the "Assign Input n command 
(see page 3-4). Unless otherwise assigned, all primary 
output from the system is directed to window A. 

The 7900 defaults to four active windows, named A, B, C, 
and D. The number of active windows may be set by Thaw, up 
to eight maximun. 

Window A is termed the master window. In some cases it 
is necessary for the system to reference a known window, in 
order to properly execute a command. (For example, Pan and 
Zoom make reference to the current cursor position. Since 
each window may have its own cursor, the system must choose a 
particular window. The master window is always chosen in 
these cases.) 

Version 1.4 Page 3-23 



Windows 7999 Operator's Manual Chapter 3 

Set Window Limits 

The dimensions of the window you are currently addressing 
may be set with the WINDOW command. 

Format: 

WINDOW <Xl>, <YI>, <X2>, <Y2>, 

Where <Xl> and <Yl> are the coordinates of one corner of the 
window, and <X2> and <Y2> are the coordinates of the 
diagonally opposite corner. 

Following the WINDOW command, the cursor will be moved to 
the "home" position (upper left corner) of the newly defined 
window. 

An al ternate form of the WINDOW command may be used when 
the new dimensions are located inside the previous 
dimensions: 

WINDOW •• 

To use this form of the command, first press the WINDOW key. 
Move the cursor to where one of the corners of the window 
will be. Press the "period" (decimal point) key. Move the 
cursor diagonally opposite to the corner of the desired 
window and press the period key again. The cursor will move 
to its "home" position and the limits of the window have now 
been defined. The cursor control keys will not be able to 
move the cursor outside the window limits. Any text written 
into the window will remain inside the established limits. 

Windows may be· def ined and redef ined at any time dur ing 
the execution of a user program. Text or figures may be 
created inside a window; then, the limits of the window may 
be redef ined so as to protect that text from being- al tered. 
Text editing commands, such as ERASE PAGE, will not affect 
areas outside the window to which they are sent. In fact, 
nearly all Mode and Plot code sequences affect only the 
window to which they are sent. Thus, such attr ibutes as 
color, transparency, plot submodes, blink, fill, character 
size, and many others, are specific to a window. Only the 
window receiving such commands will act upon them. 

Window dimensions are defined differently in Overlay and 
in the Bitmap. A WINDOW command given while addressing the 
Bitmap will define limits only for Bitmap operation. A 
WINDOW command given while addressing the Overlay will define 
limits for the window only in Overlay operation. Thus a 
single window can have different limits in Overlay and in 
Bitmap. 

Page 3-24 Version 1.4 



Chapter 3 7999 Operator's Manual Windows 

The possible ranges for window limits are as follows: 

Overlay: 9 <= X <= 84 
9 <= Y <= 47 

Bitmap: 9 <= X <= 1923 
9 <= Y <= 1923 

Where X is either <Xl> or <X2>, and Y is either <Yl> or 
<Y2>, in the WINDOW command format shown above. 

One alternate form of the WINDOW command is available to 
reset a window's limits to the maximum size possible. This 
relieves the operator of remembering what the maximum limits 
are for each type of window. 

WINDOW 9,9,-1,-1, 

or, SHIFT WINDOW 

This will reset an Overlay window to 0, 9, 84, 47, or a 
Bitmap window to 9, 9, 1023, 1923, depending on whether you 
are addressing the Overlay or Bitmap. The SHIFT WINDOW 
command may only be used from the keyboard; the other version 
may be used from a host or a program as well. 

Example: (in the Overlay) 

WINDOW 9,9,84,23, 

The window size has been set to the upper half of the 
overlay screen. The cursor control keys will not move the 
cursor outside this area. 

Example: (in the Bitmap) 

WINDOW 9,9,511,383, 

The window size has been set to the upper left-hand corner 
of the visible Bitmap screen. 

You can easily see the limits of the current window by 
changing the background color and erasing the window to that 
color: . 

SHIFT SET GREEN (set background color to green) 

ERASE PAGE (clear the window to green) 

Version 1.4 Page 3-25 



Windows 7900 Operator's Manual Chapter 3 

NOTE: 

only control the coordinate 
movements when used with 

Character cells will not 
forced across an edge with 

Window restrictions 
location of cursor 
character operations. 
clip on window edges if 
a Move Cursor operation. 

On all commands 
coordina tes are 
currently scaled 
the values still 
may be clipped to 

that reference a coordinate, 
expected to lie within the 

limits. If clipping is active, 
should lie within this area but 
a smaller window. 

r;::;" and ~ ;~p"~~~ ~--:-:-~--~----~ i n dow s w i l-l~~ t"l 
! ~:A~lxed ln a wlndow. "n interfere with 
I ' ' 

I 0 /:- LJ one onothec. i 

/ /" I L--I/ ! , ! 
L-__ ---' 

----.-... -----------

Any window.may be used for text. 
Text will not overrun the top windows. 
Windows need not be arranged like this: 
take up as much screen as they need 
and even overlap. 

they can 

I 

l 
~-----------

Example of CGC 7900 Window Usage 

Page 3-26 Version 1.4 



Chapter 3 7900 Operator's Manual Scale Factors 

Scale Factors (Virtual Coordinates) 

Format: 

SCALE <Xl>,<Yl>, <X2>,<Y2>, 

Where: 

<Xl>,<Yl>, are the desired coordinates of the upper 
left corner of the window 

<X2>,<Y2>, are the desired coordinates of the lower 
right corner 

All numbers must be between -16384 and +16383. 

The SCALE command forces a window to assume a set of 
coordinates. After the command, any coordinates sent to the 
window are scaled according to the coordinates given. SCALE 
is an easy way to adjust the size or aspect ratio of a plot, 
or to plot data which was formatted for a different device. 

NOTE: 

Scaling out of range, or meaningless scaling (such 
as scaling down to one pixel) may produce 
unexpected results. 

Press BOOT before each example in this section to avoid 
interaction between the examples. 

Example: 

BOOT 

SHIFT OVERLAY 

WINDOW 0,0,1023,767, 

SCALE -1000,1000, 1000,-1000, 

The upper left corner of the window now has coordinates 
-UJ00, 1000. The lower right corner of the window now has 
coordinates H100, -1000. The center of the window now has 
coordinates 0, 0. This would be handy for plotting data 
points which are symmetric about the origin. You can easily 
see the effect of this command now by performing some MOVE 
X-Y instructions. MOVE X-Y to 0, 0 will place the cursor-In 
the center of the window, rather than the upper left corner. 

Version 1.4 Page 3-27 



Scale Factors 7900 Operator's Manual Chapter 3 

NOTE: 

In this example we have caused the entire width of 
the screen (1024 pixels) to have a coordinate 
distance of 2000. The entire height of the screen 
(768 pixels) also has a coordinate distance of 
2000. Our coordinate system now does not have a 
square aspect ratio. One unit of travel in the X 
direction is 4/3 as many pixels as one unit of 
travel in the Y direction. 

To overcome this problem, we should make our scaling data 
have the same aspect ratio as the CRT, which is 4 horizontal 
to 3 vertical. 

Example: 

BOOT 

SHIFT OVERLAY 

WINDOW 0,0, 1023,767, 

SCALE -2000,1500, 2000,-1500, 

Now the upper left corner has coordinates -2000, 1500, and 
the lower right corner has coordinates 2000, -1500. The 
coordinate system encompasses 4000 units of X and 3000 units 
of Y, so our aspect ratio is preserved at 4 to 3 (assuming 
the window is the full screen -- see below.) 

CIRCLE 0,0,1000, 

After giving the SCALE command above, we can draw a circle 
with center 0, 0, and radius 1000, and it fits neatly onto 
the center of the window. 

SCALE can also be used to reflect or mirror-image a 
plot. 

Example: 

BOOT 

SHIFT OVERLAY 

WINDOW 0,0,1023,767, 

SCALE 1023,767, 0,0, 

Page 3-28 Version 1.4 



Chapter 3 7900 Operator's Manual Scale Factors 

Since the normal coordinates for the upper left corner 
of the screen are 0, 0, and the normal coordinates for the 
lower right corner for the screen are 1023, 767, the above 
example reverses them. Any figure drawn now will be 
reflected about a line from the upper left to lower right. 
It would also be possible to flip only the X coordinate, or 
only the Y coordinate. 

It is important to remember that SCALE causes coordinate 
data to be scaled before it is processed by the window. It 
is as if your program performed scaling and translation 
before sending coordinates to the window. ONLY coordinate 
data are scaled; relative data (such as cursor key movements) 
are unaffected. 

It is possible for different scale factors to be used in 
the X and Y directions. 

Example: 

BOOT 

SHIFT OVERLAY 

WINDOW 0,0, 1023,767, 

SCALE 0,0, 10230,767, 

In this case, only one change has been made: the X axis is 
now labelled 0 to 10230 instead of 0 to 1023. We have 
introduced a scale factor of HI in the X direction. The Y 
scale factor is unchanged. This kind of scaling can produce 
a problem. Using the scale factors above, suppose we try to 
draw a circle. We supply the center X and Y coordinates and 
the radius, as usual: 

CIRCLE 5110,383, 200, 

The given X coordinate (5110) is adjusted by the current 
scale factor (10) to decide that the X coordinate of the 
circle's center is at pixel 511. The Y coordinate is 
adjusted similarly, but since its scale factor is 1, the Y 
coordinate remains 383. In "absolute" coordinates then, the 
circle is centered at 511, 383, which is the center of the 
screen. 

Version 1.4 Page 3-29 



Scale Factors 7900 Operator's Manual Chapter 3 

But the radi us of the circle must be adj usted by one of 
these scale factors as well. In this situation, where it is 
ambiguous which factor should be used, the X scale factor is 
always chosen. The given radius of 200 is adjusted by the X 
scale factor of 10, and a circle is drawn with a radius of 20 
pixels. 

NOTE: 

Page 3-30 

Most of the examples in this manual assume that no 
scale factors are in use. You may get quite 
interesting (and unexpected) results if you use the 
SCALE command pr ior to executing the examples in 
other sections of this manual. 

Extr erne scal e 
scaling. 

changes can cause inaccurate 

Version 1.4 



Chapter 3 7999 Operator's Manual Scaling 

Scaling ON/OFF 

Format: 

MODE S <9 or 1> 

Use the character 0 to disable scaling, or 1 to re-enable 
it. 

After establishing scale factors with the SCALE command, 
you can disable scaling with MODE S 0. Later, if you wish, 
you can enable scaling again with MODE S 1. 

MODE S 1 will re-enable scaling, using the same factors 
you ~up when you gave the SCALE command. Note that SCALE 
automatically turns scaling on when it executes. 

From the keyboard, you may also disable scaling by the 
command 

SHIFT SCALE 

which is equivalent to MODE S 0. 

You may want to disable scaling when defining window 
limits, or when performing other actions that need absolute 
coordinate references. See the example below, concerning the 
possible conflicts between WINDOW and SCALE. 

Version 1.4 Page 3-31 



Window and Scale 7900 Operator's Manual Chapter 3 

Window and Scale 

A potential problem arises when using both the WINDOW 
and SCALE commands. The results depend on which command is 
used first. 

Example: 

WINDOW 0,O, 511,383, 

SCA~E -1000,1000, 1000,-1000, 

The window limits have been set to the upper left quarter of 
the screen. Then, the coordinate space of the window has 
been defined to be from -10'OO to +1000 in both X and Y 
directions. The window limits are still confined to the 
upper left quadrant of the screen, however. You can see this 
by the command sequence 

SHIFT SET ~ (Set background color to Blue) 

ERASE PAGE (Clear the window to background color) 

If we do the same steps in a different order, we get an 
entirely different result. 

Example: 

SHIFT SCALE 

SHIFT WINDOW 

SCALE -1000,1000, 1000,-1000, 

WINDOW 0,0, 511,383, 

(Turn off scaling) 

(Set window size to full screen to 
undo the above example) 

First, the SCALE command causes the screen corners to assume 
coordinates of -1000, 1000, and 1000, -1000. Then the WINDOW 
command, acting within these new coordinates, defines the 
window limits to be 0, ° (the center of the screen) to 511, 
383 (a point not far from the center). Now try the same 
sequence: 

SHIFT SET BLUE 

ERASE PAGE 

The window limits of 0, ° to 511, 
a coordinate space of plus and 
covering the upper left quarter 
background now covers only a small 

Page 3-32 

383 are now acting within 
minus 1000. Instead of 
of the screen, the blue 
area near the center. 

Version 1.4 



Chapter 3 7900 Operator's Manual Window and Scale 

Defining a window, and then scaling it, can be very 
useful. A window can be defined and then scaled to the full 
screen coordinates. 

Example: 

WINDOW ~,~, 511,511, 
SCALE ~,0, 1023,1023, 

<full-scale drawing> 

SHIFT SCALE 
WINDOW 5l2,~,1023,5ll, 
SCALE 0,~, 1~23,1~23, 

<another full-scale drawing> 

This is an easy way to put two (normally) full-sized 
drawings on the screen at once. Up to four drawings can be 
drawn at this size; scaling smaller windows will allow more 
simultaneous displays. 

NOTE: 

The easiest way to set both window size and scale 
factor s to default is to enter SHIFT SCALE and 
SHIFT WINDOW (in that order). 

Version 1.4 Page 3-33 



Hardcopy 7999 Operator's Manual Chapter 3 

Hardcopy 

The CGC 7999 can interface to several hardcopy devices, 
including the ACTl printer and the Versatec V-89 
printer/plotter. 

Software for these drivers are shipped either on DOS 
disks or in PROM. Depending on the driver, the .Bitmap (or 
the visible image) can be copied to the device by pressing: 

SHIFT COPY 

- OR -

USER h 

Complete instructions are shipped with the interface. 

Page· 3-34 Version 1.4 



Chapter 4 7900 Operator's Manual Terminal Emulator 

Chapter 4 -- Terminal Emulator (TERMEM) 

The Terminal Emulator (TERMEM) is a program which executes 
automatically when the 7900 is booted. It configures the system 
to act like a communications terminal. The pr imary function of 
the Terminal Emulator is to read characters from input devices 
and transmit these characters to output devices. 

The default input devices are the keyboard (device K), and 
RS232 serial port (device L). The default output devices are 
Window A (device A), and the RS232 serial port (device L). As is 
the case with most of the 7900's defaults, these assignments may 
easily be changed. 

TERMEM may run in local, half duplex or full duplex modes, 
with a wide variety of baud rates to suit many peripheral or host 
devices. This section describes each configuration, and options 
available in TERMEM. 

NOTE: 

Local, half duplex, and full duplex modes have no 
meaning except within a program such as the Terminal 
Emulator. Other programs may al so communicate with 
external devices, but they do so through the logical 
device assignment system. See "Assigning Physical 
Devices" in this chapter. 

If another program is running, the Terminal Emulator may be 
re-entered by pressing the key marked TERMINAL. (This key is 
disabled while running Idris.) 

The code sequence structure of the CGC 7900 is affected by 
the configuration (half duplex, full duplex or local) of TERMEM. 
Escape and User code sequences are processed on the input stream, 
so typing an Escape or User code sequence will always result in 
immediate processing, regardless of the system configuration. 

On the other hand, Mode and Plot codes are not processed 
until they reach an output device which recogni zes them (the 
windows) • If the 7 900 is operating as a full duplex terminal, 
the host system must echo Mode and Plot codes or they will not be 
executed by the 7900. 

If it is necessary to transmit an Escape or User code to the 
host system, and NOT have this code trapped by the 7900 code 
processor, you must hit Escape or User twice in a row: 

ESC ESC transmit ONE Esc to the host 

Version 1.4 Page 4-1 



Te~minal Emulator .7gee Operator's Manual Chapter 4 

Restricted Terminal Emulator 

A restricted version· of TERMEM is available by typing 
the command: 

USER " 

The restricted Terminal Emulator is similar to the normal 
TERMEM, except that control codes from a host system are 
trapped. This prevents the host from putting the system in 
an unknown state. 

The following control codes are accepted by the 
restricted TERMEM: 

• Return • Backspace 
• Linefeed • Tab 
• Bell • Erase Page 

Other control codes sent from the host are displayed as 
visible control-characters for diagnosis. 

All Escape and User sEquences will be executed normally 
from the 7gee keyboard. Mode and Plot codes will execute 
from the 7gee keyboard normally ONLY if the system is not in 
Full Duplex mode. (In full duplex, Mode and Plot codes are 
not executed until they are echoed from the host, and the 
restricted TERMEM traps them). 

Page 4-2 Version 1.4 



Chapter 4 7900 Operator's Manual Communications 

Local Mode 

Local operation is one of the three communications 
arrangements which are provided. In Local operation, Logical 
Input Device 0 (normally the keyboard) is connected to 
Logical Output Device 0 (normally a window). The external 
device is ignored. This is the default arrangement, and must 
be used whenever a host or peripheral device is not 
connected. 

Format: 

USER L (Local operation) 

Hold down the SHIFT modifier and press the USER key. Then 
press the L key. 

r----------------l 
! LogInOev 0 
i (Keyboard) l'~ 
L _____________ -' ., 

r- ""I 
I LogInOev 1 I 
1 (Serial Port) I 
L_ .. __________ --I 

"-.. 
"-'-. 

"" ~G ·-l 
~ LogOutDev 0 : 

. (Window) I ______ . ___ ~ 

(The device 
assignments. 

assignments in parentheses are default 
These may be altered with the ASSIGN key.) 

Version 1.4 Page 4-3 



Communications 79~B Operator's Manual Chapter 4 

Balf Daplex Mode 

In half duplex mode, Logical Input Device B is connected 
to Logical Output Devices Band 1. This is the only case 
where one Logical Input Device is connected to more than one 
Logical Output Device (see ftAssigning Physical Devices ft ). 
Also, in half duplex, Logical Input Device 1 is connected to 
Logical Output Device B. 

Format: 

USER H (Half duplex operation) 

The following figure illustrates the connections def ined in 
Half duplex. 

I ~ j Log I nDev 0 _____ . 
~_yboard) I -

LogOutDev 1 
(Serial Port) 

I LoglnDev 1 I __ ~ LogOutDev 0 

~Serial portJ L __ ~_~_~_do_w_)_~ 

(The device 
assignments. 

assignments in parentheses are default 
These may be altered with the ASSIGN key.) 

Half duplex is used when it is necessary to transmit 
keyboard data to an external device and simultaneously 
display it on the screen. 

Page 4-4 Version 1.4 



Chapter 4 7999 Operator's Manual Commun i ca ti ons 

Full Duplex Mode 

If the external device is a host computer, or other 
intelligent interface, full duplex mode may be required. 
Full duplex is similar to half duplex, in that it defines a 
path to an external device. However, in full duplex mode, 
the external device is required to echo back the characters 
it receives. Thus, anything typed on the keyboard will be 
received back from the external device as an echo, and the 
double assignment shown above is not required. 

All data received from the host will be displayed, 
whether it originated as data from the 7999 or was originated 
by the host. 

Format: 

USER F (Full duplex operation) 

The following figure illustrates the connections defined in 
full duplex. 

I LoglnOev 0 
( Key boa rd~_-.J 

',. 
" 

~ 

LogOutDev 1 
(Serial Port) 

I Log r nO e v 1"~. Log 0 u tOe v 0 

L~S e r_i_a_l_p_o_r_t_):-----;l~'_ __ (._w_i_n_d_o_w._) _ ___' 

(The device 
assignments. 

assignments in parentheses are default 
These may be altered using the ASSIGN key.) 

Version 1.4 Page 4-5 



Keyboard Sync 7900 Operator's Manual Chapter 4 

Keyboard Sync 

The keyboard sync command forces the lighted keys on the 
keyboard to accurately reflect the status of the cur rent 
window (the window receiving the Keyboard Sync command). 

Format: 

MODE? 

Remember that most Mode code sequences al ter only the state 
of the window which receives them, and consider the following 
set of events: 

1) The system is addressing window A (the default 
window), and the user presses one of the lighted keys. 

2) The key lights up to indicate the window has changed 
states. For example, assume the user has turned on 
the "Blink" attribute, and the BLINK key is now lit. 
(Appendix A tells us that· the "Blink" command is a 
Mode code sequence, and will only affect the window 
which receives it.) 

Now, suppose the use r assigns the output to window B (using 
the "Assign" command above). Window B has not received a 
"Blink On" command, so it does not have its "Blink" attribute 
turned on. But the keyboard lights still reflect the status 
of window A! This can result in considerable confusion. To 
avoid these problems, always perform two steps whenever 
assigning output to a window: 

Page 4-6 

1) Remember to assign the keyboard lights (device K) 
whenever assigning output to a new window. 

2) Immediately after assigning output to a new window, 
perform a Keyboard Sync (MODE ?) command. 

Version 1.4 



Chapter 4 

Serial Communications 

7900 Operator's Manual Ser ial Ports 
• 

The 7900 is equipped with two serial ports, for 
communication to a host computer or other device. One of 
these ports is RS-232, the other is RS-449. (RS-232 has been 
the "industry standard ll interface for data communications for 
many years, and RS-449 is a new standard now coming into 
use.) A Case Table provides translation of characters to and 
from the host system. 

Each port uses an interrupt-driven input and output 
buffer. The default size of each buffer is 2048 bytes. Each 
port defaults to 7 bits, even parity, one stop bit, 9600 
baud. All of these defaults may be altered using the IIThaw ll 

command. 

Often, it will not be possible to transmit data 
continuously into or out of the 7900, due to delays in 
processing data. The interrupt-driven buffers allow the 
system to handle a certain amount of delay, but if the 
buffers become full, some form of handshaking is required so 
that the receiving system may tell the transmitting system to 
pause. The 7900 recognizes two types of handshake: software 
handshake (also known as X-On / X-Off protocol), and hardware 
handshake. 

When connecting the serial ports for software handshake 
(or if no handshake will be required), the ports should be 
connected according to the diagram on the following page. 
Since many systems use non-standard wiring on serial ports, 
you should study this diagram carefully and connect ONLY 
those pins required for your application. RS-232 
communication generally requires only 3 wires. 

If hardware handshake is required, you must connect 
other signals: 

DTR Data Terminal Ready, and the equivalent 
RS-449 signal, indicates that the port is able 
to receive data. 

DSR Data Set Ready, and the equivalent RS-449 
signal, determines whether the host is 
prepared to accept data. 

Version 1.4 Page 4-7 



Serial Ports 
$ 

7900 Operator's Manual Chapter 4 

Use these two signals only if hardware handshaking is 
specified. For software handshaking, the 7900 asserts DTR 
always true, and ignores DSR. Note that RS-449 has two 
signal s which cor respond to Data Set Ready; these are DM 
(Data Mode) and TM (Test Mode). If either of these signals 
are true, they indicate a "ready" condition. 

The diagrams also show how an RS-449 port may be used to 
communicate with an RS-232 device. This arrangement will 
often work, but success will be determined by the exact 
nature of the equipment at each end. It is important to 
realize that an RS-449 receiver will withstand signals up to 
plus or minus 15 volts, but some RS-232 drivers will produce 
up to 25 volts and could damage the RS-449 receiver. (There 
is no danger if you are interfacing between Chromatics CG 
Series and/or 7 9fHJ Series computers, since the maximum 
voltage used in these systems is 12 volts.) 

RS-232 communications cables, or cables between RS-232 
and RS-449 ports, should be kept under 50 feet in length. A 
cable between RS-449 devices may be up to 2000 feet in 
length. 

The 7900 asserts RTS (Request To Send) always TRUE. 

Page 4-8 Version 1.4 



Chapter 4 7900 Operatorrs Manual 

Table 4-1. Serial Port Pinouts 

RS-232 (25-pin connector) 

Pin:fl: Signal 

2 TxD 

3 RxD 

4 RTS 

5 CTS 

6 DSR 

7 Gnd 

20 DTR 

Description 

Transmitted Data (output) 

Received Data (input) 

Request To Send (output) 

Clear To Send (input) 

Data Set Ready (input) 

Signal Ground 

Data Terminal Ready (output) 

Serial Ports 

Other pins are not connected in the 7900. 

RS-449 (37-pin connector) 

Pin:fl: Signal 

4 SD-A 
22 SD-B 

6 RD-A 
24 RD-B 

7 RS-A 
25 RS-B 

9 CS-A 
27 CS-B 

11 DM-A 
29 DM-B 

13 RR-A 
31 RR-B 

18 Tl>l 
20 RC 

19 Gnd 

Description 

Send Data (output: equiv. to TxD) 

Receive Data (input: equiv. to RxD) 

Request to Send (output: equiv. to RTS) 

Clear to Send (input: equiv. to CTS) 

Data Mode (input: equiv. to DSR) 

Receiver Ready (output: equiv. to DTR) 

Test Mode (input: equiv. to DSR) 
Receiver Common (used for TM only) 

Signal Ground 

Other pins are not connected in the 7900. 

Version 1.4 Page 4-9 



Connectors 7900 Operator's Manual Chapter 4 

Serial Port Connectors 

The two serial port connectors are located on the rear 
edge of the CPU card, on the right side of the chassis (see 
the figure below). After connecting your cables, the rear 
door of the 7900 should be closed to maintain proper 
ventilation. Sufficient clearance exists under the door to 
allow a serial port cable to exit. 

Recommended Serial Port Wiring 

The connections below are recommended for applications 
where software handshaking (X-On / X-Off) will be used •. If a 
modem is used (instead of a terminal), the def ini tions of 
"transmit" and "receive" must be reversed at the modem 
connector. 

Table 4-2. Serial Port Connections (for software handshake) 

RS-232 Terminal RS-232 Terminal 

TxD 2 ------------ 3 RxD 

RxD 3 ------------ 2 TxD 

Gnd 7 ------------ 7 Gnd 

RS-232 Terminal RS-449 Terminal 

TxD 2 ------------ 24 RD-B 
Gnd 7 ------------ 6 RD-A 

RxD 3 ------------ 22 SD-B 

RS-449 Terminal RS-449 Terminal 

SD-A 4 ------------ 6 RD-A 
SD-B 22 ------------ 24 RD-B 

RD-A 6 ------------ 4 SD-A 
RD-B 24 ------------ 22 SD-B 

Gnd 19 ------------ 19 Gnd (see text) 

Page 4-10 Version 1.4 



Chapter 4 7900 Operator's Manual Connectors 

If hardware handshaking is required, the following wires 
will also need to be connected (in addition to the wires 
listed above): 

Table 4-3. Serial Port Connections (for hardware handshake) 

RS-232 Terminal RS-232 Terminal 

DTR 20 ------------ 6 DSR 

DSR 6 ------------ 20 DTR 

RS-232 Terminal RS-449 Terminal 

DTR 20 ------------ 29 DM-B 
Gnd 7 ------------ 11 DM-A 

DSR 6 ------------ 31 RR-B 

RS-449 Terminal RS-449 Terminal 

RR-A 13 ------------ 11 DM-A 
RR-B 31 ------------ 29 DM-B 

DM-A 11 ------------ 13 RR-A 
DM-B 29 ------------ 31 RR-B 

Version 1.4 Page 4-11 



Set Baud Rate 79~0 Operator's Manual 

Set Serial Baud Rate 

Format: 

USER S <port #>, <baud rate>, 

Where: 

Chapter 4 

<port :It> is the identifyin9 number of th~ 
serial port 

<baud rate> is the baud rate to which the port 
will be set 

Two serial ports· are installed in the standard CGC 7900 
system. They are identified by number as follows: 

RS-232 serial port: 0 

RS-449 serial port: 1 

Sixteen standard baud rates are provided: 

Page 4-12 

50 
75 

110 
134.5 
150 
300 
600 

1200 
1800 
2000 
2400 
3600 
4800 
7200 
9600 

19200 

Version 1.4 



Chapter 4 

NOTE: 

7900 Operator's Manual Set Baud Rate 

To set the baud rate to 134.5. you must enter the 
number 134 as <baud rate>. Decimal fractions are 
not accepted. 

If an unrecognized baud rate is entered, no action will be 
taken. 

Examples: 

USER S 0.300, (set RS-232 port to 300 baud) 

USER S 1.1200, (set RS-449 port to 1200 baud) 

The system defaults to 9600 baud for both serial ports. This 
may be changed using the "Thaw" command. 

Version 1.4 Page 4-13 



Serial Parity 7900 Operator's Manual Chapter 4 

Set Serial Parity, Word Length, Stop Bits 

Format: 

USER s <port #>, <bits> <parity> <stop> 

Where: 

<port #> is the identifying number of the serial port 

<bits> specifies the number of bits per character 

NOTE: 

(5,6,7, or 8) 

<parity> specifies EVEN, ODD, or NO parity (E, 0, 

<stop> specifies the number of stop bits 
character (see below) 

Each of the three parameters <bits>, <parity>, and 
<stop> is entered as a single character. No commas 
are used to separate them. 

or N) 

'per 

Two serial ports are installed in the standard CGC 7900 
system. They are identified by number as follows: 

RS-232 serial port: 0 

RS-449 serial port: 1 

<bits> is a single character. It may be either the character 
5, 6, 7, or 8. <bits> determines the number of data bits 
transmitted for each character sent out the serial port 
(excluding parity bits) • 

<parity> is the single character E, 0 or N. 
even or odd parity, or no parity. 

It determines 

<stop> is the single character 1, 2 or 3. If <stop> = 1, one 
stop bit is transmitted after each character. If <stop> = 2. 
two stop bits are transmitted. <stop> = 3 is a special case 
and produces 1.5 stop bits per character. 

Page 4-14 Version 1.4 



Chapter 4 7900 Operator's Manual Serial Parity 

Examples: 

USER s 0, 7Nl 7 bits, no parity. one stop bit. 

USER s 1, 5E2 5 bits, even parity, two stop bits. 

Both serial ports default to 7 bits, even parity. one stop 
bit. This corresponds to standard ASCII transmission. (This 
can be changed using the "Thaw" command.) 

The three parameters may be entered in any order; thus, 
7El is the same as l7E or E17. 

NOTE: 

Entering an invalid 
<bits>, <parity>, or 
port. 

Version 1.4 

sequence of characters for 
<stop> may hang the serial 

Page 4-15 



SPC Ports 7999 Operator's Manual Chapter 4 

Reconfigure SPC Ports 

The Chromatics Serial Port Controller (SPC) is an 
optional plug-in board. It adds four RS-232 serial ports to 
the 7999. The ports are numbered S, T, 0 and V (see Table 
3-l) • All SPC ports have the same pinouts as shown in 
previous diagrams. 

All four ports default to software handshaking 
(X-ON/X-OFF), 7 bits, even parity and one stop bit. The 
default baud rates are 9699 baud for devices Sand T (ports 9 
and 1), 1299 for device.U (port 2)- and 399 for device V (port 
3) • 

A "reconfigure". command allows you to alter these 
default settings. 

Format: 

USER r <p>,<h>,<b>, <bits><parity><stop>; 

Where: 

<p> is the port number on the SPC board (9 to 3) 

<h> is the handshaking code for the port (9 to 3) 

<b> is the baud rate. The available baud rates are 
the same as those for the CPU RS-232 port. 

<bits> is the number of bits per character (5 to 8) 

<parity> is the parity type (E, 0 or N) 

<stop> is the number of stop bits (1 to 3 
produces 1.5 stop bits per character) 

Handshaking codes are as follcws: 

9 No handshaking 
1 Software handshake (X-ON/X-OFF) 
2 Hardware handshake (using DTR and DSR) 
3 Both software and hardware handshaking) 

Example: 

USER r 9,2,4899,8N2; 

3 

This example would set device S (port 9) to hardware 
handshake, 4899 baud, 8 bits per character, no parity and 2 
stop bits. 

Page 4-16 Version 1.4 



Chapter 4 79~~ Operator's Manual Host EOL Sequence 

Set Host EOL Sequence 

The Set Host EOL (End-Of-Line) Sequence command is used 
in conjunction with other commands, to allow a host system to 
read data from the 79~~ system. The commands which transmit 
the values of Window Variables also transmit the EOL 
Sequence. 

Format: 

USER z <n>,<n>,<n>,<n>,<n>,<n>,<n>,<n>, 

Where: 

<n> is the decimal eq~ivalent of an ASCII character. 

NOTE: 

This command requires entering a lower case 
character, z. If the ALPHA LOCK key is in its 
normal (up) position, press the SHIFT key with the 
nzn key to produce a lower case z. 

The Host EOL Sequence may contain up to eight characters. 
Each character is entered as a decimal number. Refer to 
Appendix F for the decimal equivalents of ASCII characters. 
If your required EOL Sequence includes less than eight 
characters, zeros must be entered to bring the total number 
of characters to eight. 

Examples: 

USER z 4,~,~,~,~,~,~,~, 

The Host EOL Sequence is now a Control-D, required by some 
systems as an End-Of-Text marker. 

USER z l3,1~,~,~,~,~,~,~, 

This sets the Host EOL Sequence to a Carriage Return/Line 
Feed. This is the default condition. 

Version 1.4 Page 4-17 



DMA Access 7900 Operator's Manual Chapter 4 

DMA Access 

This command requires the PIO/DMA card, an optional 
plug-in card available from Chromatics. The PIO/DMA card 
must have its base address set to $FF8400. 

Format: 

~ D <addr>, <words>, <0 or 1> 

Where: 

addr is the hexadecimal base address of memory 
to be affected. This value MUST be even. 

words is the number of words to be transferred. 

o or 1 determines the direction of transfer: 

Examples: 

0: DMA from host to 7900 
1: DMA from 7900 to host 

USER D A99909. 32768, 1 

Send 32768 words starting at address A99099 (hex) to the 
host from the 7990. 

USER D 19999. 4709, 9 

Send 4799 words from the host to address 10900 (hex) in the 
7990. 

Page 4-18 Version 1.4 



Chapter 4 79~~ Operator's Manual Case Table 

Case Table 

The 79~~ is a highly flexible terminal for any host 
computer system, in addition to its stand-alone computing 
ability. Since several characters (Mode, Plot, Escape and 
User) are reserved by the 79~~ software for control 
sequences, these characters would not normally be available 
for use by a host system. If the host system assigns a 
special meaning to one of these characters, a conflict could 
occur. The Case Table translates craracters transmitted or 
received through a serial port into whatever characters the 
host system requires. 

The Case Table is a list of 256 eight-bit values. 
Whenever a character is transmitted or received through 
EITHER of the serial ports on the CPU. it is first translated 
through the Case Table. A separate Case Table is not 
provided for each port. 

The Case Table is loaded with the values ° through 255. 
so that no translation occurs. For example, an ASCII 'A' 
indexes into location 65 in the table and finds the value 65. 
The val ue from the Case Table would be tr ansmit ted, which 
causes the Case Table to appear transparent. 

NOTE: 

DEL (rubout) is not filtered by the Case Table by 
the Terminal Emulator in versions 1.2 and later. 
This was changed to allow easier use of Binary Mode 
in coordinate data (Binary Mode uses DEL 
characters). The default Case Table is now 
transparent to all characters. 

To return to the arrangement provided in TERMEM 1.1. use the 
following commands: 

USER v 127,O. 

USER v 255.~, 

Version 1.4 

(translate DEL to null) 

(a-bit DEL likewise) 

Page 4-19 



Case Table 7999 Operator' s Manual Chapter 4 

Swap Case Table Entry 

The following command allows swapping any two characters 
in the Case Table: 

USER w <Nl>, <N2>, 

Where <Nl> and <N2> are decimal numbers between 9 and 255. 
and are the decimal equivalents of ASCII characters to be 
translated. 

NOTE: 

This command requires entering a lower case 
letter, w. If the ALPHA LOCK key is in its normal 
(up) position, press the SHIFT key with the nWn key 
to produce a lower case w. 

This command provides a way to resolve the nhost conflict II 
problem described above. For example, if the host system 
used Control-A (the 7990 Mode character) as a system 
interrupt code, it would not be possible to use this 
character in programs. The command 

~ w 1, 5, 

would interchange CTRL A with CTRL. E every time ei ther of 
these characters went through the 7900 serial ports. (We are 
assuming here that CTRL E would be an unused character in the 
vocabulary of the host system.) This translation would allow 
the host system to use CTRL E as a Mode character in 
transmission to the 7900. 

Set Case Table Entry 

This routine sets a single entry in the Case Table 
instead of swapping two entries. 

Format: 

USER v <entry>,<value>, 

Where <entry> is the number of the entry in the Case Table 
and <value> is the value to be placed in that entry. 

Example: 

USER v 13,10. 

will change the Carriage Return. character to a Linefeed 
(NewLine) • 

Page 4-20 Version 1.4 



Chapter 5 7900 Operator's Manual Create Buffer 

Chapter 5 -- The Create Buffer 

The Create Buffer is an area of system memory used to store 
commands and characters. When the Create Buffer is active, any 
characters or commands typed will be executed normally. They 
will also be stored in the Create Buffer. After a set of 
instructions has been stored in the Create Buffer, it may be 
repeated using the REDRAW key. Commands also allow editing the 
contents of the Create Buffer. 

If the Create Buffer fills up, characters are no longer 
stored in the Create Buffer. The system says "Bong, n and the 
light in the CREATE key goes out. (In practice, the Create 
Buffer seldom fills up. The Create Buffer is normally allocate:1 
a larger portion of system memor y than any other buffer in the 
7900. ) 

Create Buffer processing occurs at the same point as Escape 
and User code processing. All input from Logical Input Device 0 
is trapped for the Crea te Buffer, and if the system is in Half or 
Full duplex, all input from Logical Input Device 1 is also 
trapped. This results in all characters typed on the keyboard or 
received through the serial port being inserted into the Create 
Buffer when it is active. 

Version 1.4 Page 5-1 



Create ON/OFF 7900 Operator1s Manual Chapter 5 

Create Buffer ON 

Format: 

CREATE 

Pressing the CREATE key causes that key to light up, 
indicating that the Create Buffer is ON. This action 
initializes the buffer, so if there was any information in it 
previously, it is now gone. All characters or commands typed 
at this point will enter the Create Buffer. 

Create Buffer OFF 

Format: 

SHIFT CREATE 

Holding down the SHIFT modifier and pressing CREATE will 
turn off the Create Buffer. Anything typed after this 
command will not be stored in the Create Buffer. The lamp in 
the CREATE key will go out. This command is also used to 
terminate the Append and Insert functions described on the 
following pages. 

If Create is on, simply pressing CREATE will also turn 
off the Create Buffer. 

Page 5-2 Version 1.4 



Chapter 5 7900 Operator's Manual Append 

Append to C~eate Buffer 

Format: 

USER A 

The Create Buffer is turned back on, but is not initialized. 
Anything typed will be appended to the end of the Create 
Buffer. The previous contents of the Create Buffer are still 
intact. 

NOTE: 

This command should NOT be used if there is 
nothing in the Create Buffer (as would be the case 
after power-up). Append will not work properly if 
the Create Buffer has not been initialized using 
Create On. 

The Append function is terminated using SHIFT CREATE. 

Version 1.4 Page 5-3 



Redraw/Transmit 7900 Operator's Manual Chapter 5 

Redraw the Create Buffer 

Format: 

REDRAW 

The contents of the Create Buffer are transmitted to Logical 
Output Device 0. Under default conditions, this will cause 
the Create Buffer contents to be transmitted to the screen. 
Only RESET can interrupt a REDRAW. If the Create Buffer is 
not already off when REDRAW is executed, REDRAW turns it off. 

Transmit the Create Buffer 

Format: 

XMIT 

The contents of the Create Buffer are transmitted to Logical 
Output Device 1. Under default conditions, this is the 
RS-232 serial port. 

Page 5-4 Version 1.4 



Chapter 5 7900 Operator's Manual Sub-Buffers 

Define a Sub-Buffer 

In many cases, you will want to set up a very complex 
sequence of commands in the Create Buffer. It is useful to 
be able to define Sub-Buffers, which can be manipulated 
individually. A Sub-Buffer is established by inserting a 
CTRL X into the Create Buffer. Up to 32767 sub-buffers may 
exist. 

Format: 

CTRL X 

(Hold down the CTRL modifier and type an X.) Sub-Buffers may 
be accessed individually with the following commands. 
(REDRA\v and XMIT will always operate on the entire Create 
Buffer, regardless of any Sub-Buffers which may exist.) 

NOTE: 

CTRL X will be transmitted to a host system like a 
normal ASCII character. Make sure that this will 
not interfere with the host. 

Version 1.4 Page 5-5 



Sub-Buffers 79gg Operator's Manual Chapter 5 

Insert into Sub-Buffer 

Format: 

USER" <n>, 

Where: 

<n> is a decimal number, telling which sub-buffer to 
insert into. 

A search is performed for the start of Sub-Buffer <n>. At 
the completion of the search, the Create Buffer is turned on. 
Any characters or commands typed from that point on will be 
stored, beginning at the front of Sub-Buffer <n> •. 

If Sub-Buffer <n> is not found, the insertion takes 
place at the end of the Create Buffer. This is the same as 
the "Append to Sub-Buffer" function. 

Examples: 

. USER " 0, 

Characters typed in will now be stored at the front of 
Sub-Buffer 0, which means they will be at the front of the 
Create Buffer. Even if no Sub-Buffer markers are being used, 
this is a handy way to insert something at the beginning of. 
the Create Buffer. 

USER" 2, 

Characters typed in will now be stored at the front of 
Sub-Buffer 2. When a REDRAW is perf ormed, they will occur 
after the contents of Sub-Buffer l, but before the present 
contents of Sub-Buffer 2. 

NOTE: 

Page 5-6 

If you are inserting near the front of the Create 
Buffer, and the Create Buffer contains a large 
amount of data, there may be a noticeable delay 
while the insertion is performed. 

This command should not be used if there is 
nothing in the Create Buffer (as would be the case 
after power-up). See the warning under "Append to 
Create Buffer." The Insert function is terminated 
by SHIFT CREATE. 

Version 1.4 



Chapter 5 7900 Operator's Manual Sub-Buffers 

Kill a Sub-Buffer 

Format: 

USER K <n>, 

Where: 

<n> is a decimal number corresponding to the Sub-Buffer 
you wish to eliminate. 

The Sub-Buffer numbered <n>, if it exists, will be 
eliminated. All Sub-Buffers with numbers greater than <n> 
will move down one number. All Sub-Buffers with numbers less 
than <n> will be untouched. 

Examples: 

USER K 0, 

Sub-Buffer 0 (the first one) will be killed. Sub-Buffer 1 
will become Sub-Buffer 0, 2 becomes 1, and so on. If no 
Sub-Buffer markers exist, the entire Create Buffer is killed. 
(This can also be accomplished by typing CREATE, followed by 

SHIFT CREATE.) 

USER K 4, 

Sub-Buffer 4 will be killed, if it exists. (If fewer than 
four Sub-Buffers exist, no action is taken.) Sub-Buffers 0 
through 3 are unchanged. Sub-Buffer 5 will become 4, 6 will 
be 5, and so on. 

Version 1.4 Page 5-7 



Sub-Buffers 7999 Operator's Manual 

View a Sub-Buffer 

Format: 

VIEW <n>, 

Where: 

<n> is a decimal number, corresponding 
Sub-Buffer you wish to view. 

Chapter 5 

to the 

Sub-Buffers are numbered consecutively, beginning with the 
number 0. To view any Sub-Buffer, hold down the SHIFT 
modifier and press the key marked REDRAW and VIEW. Then 
enter the number of the Sub-Buffer you want tosee. The 
contents of that Sub-Buffer will be redrawn to Logical Output 
Device 0 (normally the screen). 

Examples: 

~9, 

The first Sub-Buffer will pe redrawn. If no Sub-Buffer 
markers exist, this will permrm the same function as REDRAW. 

~3, 

The fourth Sub-Buffer will be redrawn. If the system cannot 
find three Sub-Buffer markers, it will assume a fourth 
Sub-Buffer does not exist, and no action will occur. 

Page 5-8 . Version 1.4 



Chapter 5 7900 Operator's Manual Literal Create 

Litera1 Create 

Format: 

USER 

Literal Create is used to allow inserting Escape 
sequences into the Create Buffer. Escape code sequences 
normally not allowed in the Create Buffer, since they 
cause undesired changes in the system configuration. If 
wish to insert Escape codes into the Create Buffer, 
should go through the following steps: 

1) Turn on Create with one of 
"Append to Create Buffer" or 
Sub-Buffer" 

2) Turn on Literal Create with USER [ 

"Create 
"Insert 

On," 
Into 

code 
are 
can 
you 
you 

Now, any Escape code sequences entered will be executed AND 
stored in the Create Buffer for future redrawing. 

Literal Create remains in effect until the Create Off 
command is given. Normal codes will still go into the Create 
Buffer while Literal Create is turned on. 

NOTE: 

Many of the keys on the upper half of the keyboard 
produce Escape code sequences. It is not always 
obvious which ones will, or will not, be put into 
the Create Buffer. If Literal Create is NOT on, 
commands such as Zoom and Pan, or Change Color 
Lookup Table Entry, will be executed but will NOT 
be stored in the Create Buffer. Consult Appendix A 
to see which keys produce Escape code sequences. 

Under no circumstances are User code sequences 
allowed in the Create Buffer. 

Version 1.4 Page 5-9 





Chapter 6 7900 Operator's Manual Thaw Parameters 

Chapter 6 -- Thaw and Memory Allocation 

Thaw Parameters 

The THAW command allows you to configure various aspects 
of the 7900 system, such as buffer sizes and default baud 
rates. The information supplied to Thaw is stored in 
optional CMOS RAM (with battery backup while power is down), 
or in static RAM memory. If CMOS is installed, parameters 
set up by Thaw are remembered during power outages, and used 
the next time the system is powered up. If the CMOS option 
is not installed, information given to Thaw is only 
remembered until the system is shut off. 

Format: 

THAW 

Thaw also -displays some important system variables, which 
are not stored in CMOS, but may be of -interest to the systems 
programmer. It is possible (but not recommended) to al ter 
these variables as well; however, the values of items not in 
CMOS will not be remembered when the system is turned off or 
Booted. 

Using Thaw, it is possible to allocate system RAM so 
that it serves your purposes efficiently. It is also 
possible to allocate more RAM than your system contains. In 
this case, the system will attempt to recover by reverting to 
PROM default values. 

NOTE: 

To erase CMOS completely, and return to the 
defaults your system was shipped with, press Ml M2 
CTRL SHIFT RESET. Release RESET before releasing 
the other keys. 

Thaw takes you through a list of system parameters. For 
each parameter, it displays a brief description, followed by 
the cur rently assigned val ue for that parameter. It then 
displays a colon (:) to ask whether you want to change that 
parameter. You may hit RETURN to leave the value unchanged, 
or enter a new val ue, followed by RETURN. You MUST hit 
RETURN after enter ing a val ue, or the val ue you enter will 
not be accepted. If you press DELETE (instead of RETURN), 
the system will ignore your input even if you did enter a 
value. 

Version 1.4 Page 6-1 



Thaw Parameters 7900 Operator's Manual Chapter 6 

All numerical values supplied to Thaw are in 
hexadecimal. DO NOT enter the dollar sign to ~ndicate a hex 
number. Thaw displays an a-bit, 16-bit. or 32-bit number, 
depending on the legal range of values for the entry. 

After stepping through all entries. Thaw begins again 
from the start. Once you have changed all the entr ies you 
need to change, press RESET. (RESET is the ONLY way to exit 
from Thaw. After pressing RESET. you will note the green 
light on the keyboard turns ~m. then goes off.) If you had 
changed any of the "buffer size" parameters, you should also 
press BOOT. This will re-configure the system according to 
the new defaults you have entered. 

CAUTION: 

Page 6-2 

If you alter any of the "buffer size" parameters 
using Thaw, and then exit Thaw WITHOUT executing 
Boot, the system may become confused and fail! 

Version 1.4 



Chapter 6 7999 Operator's Manual Thaw Parameters 

The following abbreviations are used by Thaw: (nZn 
generally indicates a buffer size description.) 

DOSTranZ Size of DOS transient program area 

DOSBuffZ DOS buffer size 

iWindows Number of windows 

KeyBuffZ Keyboard buffer size 

Fnk Nest Function key stack size (for nesting) 

232 InZ RS-232 Input buffer size 

232 OutZ RS-232 Output buffer size 

449 InZ RS-449 Input buffer size 

449 OutZ RS-449 Output buffer size 

Esc ArgZ Escape code argument stack size 

StackZ System stack size 

UpperRAM System upper memory limit 

FnkStart Starting address of function key buffer 

FnkEnd Ending address of function key buffer 

CaseTble Case table address 

DefltPrg Default program to execute at Reset 

RAM MDLE Address of RAM modules to be linked 

232 Mode RS-232 USART mode command 

449 Mode RS-449 USART mode command 

232HandS RS-232 Handshake flags 

449HandS RS-449 Handshake flags 

232 Baud RS-232 Baud rate flag 

449 Baud RS-449 Baud rate flag 

Planes Image planes in system 

WinTable Base address of Window Tables 

Version 1.4 Page 6-3 



Thaw Parameters 7900 Operator's Manual 

StackTop Top of system stack 

StackBta Bottom of system stack 

CreaStrt Starting address of Create Buffer 

CreatEnd Ending address of Create Buffer 

Boot$ String to execute at Boot time 

Reset$ String to execute at Reset time 

Chapter 6 

IDnbufs Number of block buffers used by Idris to cache 
disk I/O 

IDclists Number of lists used by Idris to buffer 
character I/O 

IDchar 

IDheap 

IDbase 

IDrswap 

IDtop 

IDroodev 

IDpipdev 

IDswpdev 

IDswapa 

IDnswap 

IDcsw 

Controls disk I/O indicator (at top right 
corner for Idris) 

Stack+heap size used by Idris 

Base address for Idris execution 

Space used by Idris swap cache 

Top of Idris user memory 

Idris root device flags 

Idris pipe device flags 

Idris swap device flags 

Beginning block of Idris swapping area 

Size (in blocks) of Idris swapping area 

Idris "console switch register" 

These parameters are discussed on the following pages. 

Page 6-4 Version 1.4 



Chapter 6 7900 Operator's Manual 

DOSTranZ: defau~t $4000 bytes (16K bytes) 
DOSBuffZ: default $lA00 bytes 

Range: 0 to $7FFE bytes (even numbers only) 

Thaw Parameters 

The DOS transient area and buffer are allocated 
consecutively in memory. Generally, programs run in the 
transient area, and use the buffer area for any large 
data storage needs. These two areas may be combined and 
used as a single DOS area in some applications. 

The size of the DOS buffer determines how much 
memory is available for disk operations such as COpy or 
COMPRESS. The larger this area is, the faster such 
operations will run. Making this area very small will 
result in excessive wear to the disk media during these 
operations. 

#Windows: default 3 

Range: 0 to 7 

The system may have from one to eight windows 
active. The "#Windows" parameta: contains a number ONE 
LESS than the number of active windows. 

KeyBuffZ: default $40 bytes (64 bytes) 

Range: 0 to $7FFE bytes (even numbers only) 

This buffer provides "type-ahead" capability. 
Characters typed on the keyboard are stored here until 
read by a program. 

Fnk Nest: default $80 bytes (128 bytes) 

Range: $10 to $7FFE bytes (even numbers only) 

This area is a stack, used to provide "nesting" when 
one Function Key is used to execute another Function Key. 
Each level of nesting requires 8 bytes. A minimum of $10 
bytes (16 bytes) is recommended. 

Version 1.4 Page 6-5 



Thaw Parameters 7900 Operator's Manual ,Chapter 6 

232 
232 
449 
449 

Esc 

InZ: default $800 bytes (2K bytes) 
Outz: def~ult $800 bytes (2K bytes) 

InZ: default $800 bytes (2K bytes) 
Outz: default $800 bytes (2K bytes) 

Range: $10 to $7FFE bytes (even numbers only) 

Each buffer is used by the serial port routines to 
handle incoming and outgoing characters. Do not set 
buffer sizes below $10 bytes (16 bytes). 

ArgZ: default $400 bytes (IK bytes) 

Range: $10 to $7FFE bytes (even numbers only) 

Escape and User codes accept arguments, and these 
arguments are stored temporarily in this area. Do not 
set the buffer size below $10 bytes (16 bytes). 

StackZ: default $800 bytes (2K bytes) 

Range: $800 to $7FFE bytes (even numbers only) 

The system stack is used for subroutine calls and 
for tempor ary stor age in many system programs. It is 
used especially during the Complex Fill routines to store 
screen coordinate data. The system stack size should not 
be reduced below $800 bytes (2K bytes) • 

UpperRAM: default $lF000 

Range: depends on system hardware 

Page 6-6 

The system allocates RAM among all of the buffers 
listed in this section. Whatever RAM is left over, up to 
the limit set by UpperRAM. is allocated to the Create 
Buffer. In a standard 7900 system. only one Buffer 
Memory card is installed, and the physical end of Buffer 
Memory is at address $lFFFF. If you have purchased 
additional Buffer Memory cards, you may wish to move 
UpperRAM to a higher address so that the Create Buffer 
can use more memory. 

The system defaults to $lF000 for UpperRAM so that 
the area between $lF000 and $lFFFF may be used for small 
user programs. UpperRAM may be moved down to provide 
more room for user programs. 

See also RAM MDLE on page 6-8. 

Version 1.4 



Chapter 6 7999 Operator's Manual 

FnkStart: default $E49999 
FnkEnd: default $E49BFF 

Thaw Parameters 

Range: may be moved to Buffer Memory (see below) 

Function Key definitions, including Bezel Key 
definitions, are normally stored in CMOS memory between 
addresses $E49900 and $E40BFF. This provides 768 bytes 
of storage. If your application requires more room for 
Function Key definitions, you may choose to move these 
addresses into Buffer Memory. For example, you could set 
FnkStart to $lF000, and FnkEnd to $lFFFF, to provide 4K 
of storage for Function Keys. Note that this removes 
Function Keys from CMOS, so thei r def ini tions would be 
lost when the system is turned off. 

Memory addresses $E40C00 to $E40CFF are reserved for 
the Inline Editor (used in Thaw, DOS, and the Monitor). 
The Function Key buffer may not be expanded into this 
area. 

CaseTble: default $E40890 

Range: may be moved to Buffer Memory (see below) 

This is the address of the Case 
.Ports. ") It may be moved to Buffer 
However, the information contained 
would then be lost when system power 
Case Table is 256 bytes long. 

DefltPrg: default $80200S 

Table (see "Serial 
Memory if desired. 
in the Case Table 
is turned off. The 

Range: may be any address in PROM or RAM 

Defl tPrg contains 
will jump after Reset 
that of the Terminal 
addresses are: 

Monitor: $80A00S 
DOS: $80C00S 
Idris: $S9 E098 

NOTE: 

the address to which the system 
or Boot. The default address is 
Emulator program. Other useful 

These addresses are valid for TERMEM 1.4, but 
may change in future firmware releases. 

If this location is set to an address where a valid 
program does not exist, the system will crash. 

Version 1.4 Page 6-7 



Thaw Parameters 7999 Operator's Manual Chapter 6 

RAM MOLE: default $lF999 

Range: may be any RAM address 

When the 7999 Boots, it RlinksR all system routines 
together and enters them into "dispatch tables" for 
processing via code sequences. User routines may be 
linked as well, if they conform to the requirements of 
the 7999. User routines to be linked must be loaded at 
address RAM MDLE. See Appendix E for details on adding 
commands to the 7999. 

232 Mode: default $7A 
449 Mode: default $7A 

Range: any value from the table below 

The RS-232 ports and RS-449 ports are initialized 
with a RMode Select" byte, which determines the number of 
bits per word, number of stop bits, and parity. The Mode 
Select byte is fed to the 8251 USART on the CPU card. 
You can determine the proper Mode Select for your 
application from the following table: 

Upper 4 Bits 

1 stop bit, no parity: 4 
1 stop bit, odd parity: 5 
1 stop bit, even parity: 7 

1 • 5 st op bit s , no pa r it y : 8 
1.5 stop bits, odd parity: 9 
1.5 stop bits, even parity: B 

2 stop bits, no parity: C 
2 stop bits, odd parity: D 
2 stop bits, even parity: F 

Lower 4 Bits 

5 bits: 2 
6 bits: 6 
7 bits: A 
8 bits: E 

For example, the defaul t Mode Select is $7A. This 
corresponds to 1 stop bit and even parity (7), and 7 bits 
(A) • 

Further details are available in Intel ·literature 
describing the 8251 USART. 

Page 6-8 Version 1.4 



Chapter 6 7900. Operator's Manual Thaw Parameters 

232HandS: default $01 
449HandS: default $01 

Range: $00 to $03 

These flags set the handshaking characteristics of 
the serial ports, according to the following table: 

00: No handshaking 

01: Software handshaking (X-on, X-off) 

02: Hardware handshaking (DTR and DSR signals) 

03: Both software and hardware handshaking 

232 Baud: d-efaul t $0E 
449 Baud: default $0E 

Range: $00 to $0F 

These val ues set the default baud rates of the 
serial ports, according to the following table: 

00 : 50 baud 08 : 1800 
01: 75 09: 2f!HJ0 
02: 110 0A: 2400 
03: 134.5 0B: 3600 
04: 150 0C: 4800 
05: 300 0D: 7200 
06: 600 0E: 9600 
07 : 1200 0F: 19200 

Planes: default $0001, $0087 or $00FF (typical systems) 

NOT CMOS! 

The number of Image Memory planes installed in your 
7900 determines the val ue of this entry. This is a 
16-bit number, and each bit which is SET corresponds to 
an existing plane. Bits which are ZERO cor respond to 
planes which are not installed. A four-plane system, 
containing planes numbered 0, 1, 2 and 7, would display 
the value $0087 for Planes. 

This item is displayed for 
should not be altered with Thaw. 
determined by testing each Image 
system is booted. 

Version 1.4 

information only. It 
The value of Planes is 
Memory plane when the 

Page 6-9 



Thaw Parameters 7900 Operator's Manual Chapter 6 

WinTable: default $763C 

NOT CMOS! 

WinTable is the base address of the Window Tables, 
the system memory areas used to define the attributes of 
each window. 

This item is displayed for information only. It 
should not be altered using Thaw. WinTab1e will vary 
depending on buffer allocations. 

StackTop: default $AAFC 
StackBtm: default $A2FC 

NOT CMOS! 

The top and bottom of the area reserved for the 
system stack are displayed here. The system loads the 
Stack Pointer (SP) with StackTop at boot time. 

These items are displayed for information only. They 
should not be altered using Thaw. StackTop and StackBtm 
will vary depending on buffer allocations. 

CreaStrt: default $AAFC 
CreatEnd: default $lEFF8 

NOT CMOS! 

addresses of the Create 
The Create Buffer is 
memory. after all other 
The Create Buffer ends 

The starting and ending 
Buffer are displayed here. 
allocated most of the system's 
buffers have been allocated. 
slightly belowUpperRAM (a few 
are provided). 

bytes of margin for EOF 

These items are displayed for information only. 
CreaStrt and CreatEnd will vary depending on other system 
parameters. 

Page 6-10 Version 1.4 



Chapter 6 7988 Operator's Manual Thaw Parameters 

Boot $: default USER IlL USER OIL Z Z Z 

Range: any 75 characters 

The "Boot String" is executed at power-up and when 
Boot is executed. It acts just as if you had typed in 
these characters from the keyboard. The Boot String and 
Reset String' (described below) provide a very flexible 
way to establish system defaults. Virtually any system 
function may be executed by default, simply by including 
it in the Boot String or Reset String. 

The Boot String is stored in CMOS. The default Boot 
Str ing, listed above, assigns Logical Input Device 1 to 
the serial port, and assigns Logical Output Device 1 to 
the Serial Port and three dummy devices. 

User and Escape code sequences may be entered into 
the Boot Str ing. The "User" character is abbreviated 
with a "UR," and the "Escape" character is abbreviated 
with an "EC." 

It is not useful to enter alphabetic characters, or 
Mode and Plot codes, into the Boot String. This is 
because the window for Logical Output Device 0 has not 
yet been assigned: this occurs during execution of the 
Reset String (see below). The Boot String is primarily 
useful for executing commands such as "Clock On," "Half 
Duplex," or setting Logical Device Assignments as shown 
above. 

All of the character-or iented text editing features 
labelled on the cursor keypad may be used to edit the 
Boot String. This includes Insert/Delete Character, 
Clear EOL, and the arrow keys. See Appendix C for a 
complete discussion of the Inline Editor • 

. 
Version 1.4 Page 6-11 



Thaw Parameters 7999 Operator's Manual Chapter 6 

Reset $: default USER I 9 K USER 0 9 A K Z Z MODE J 1 

Range: any 75 characters 

The "Reset String" is executed after a Reset, and 
also after a Boot. (At Boot or power-up time, the Boot 
String executes first, followed by the Reset String). 
The Reset String is stored in CMOS. 

The default Reset Str ing, listed above, assigns the 
keyboard and window A as the default Logical Devices. It 
also turns on the cursor with a Mode code sequence. Mode 
and Plot characters may be included in this string, and 
they will be displayed in abbreviated form. 

See the discussion of Boot String above for more 
details • 

. 
Page 6-12 Version 1.4 



Chapter 6 7900 Operator's Manual Thaw Parameters 

Thaw Parameters for Idris 

IDnbufs This is the number of 512-byte block buffers used 
by Idris to cache disk I/O. Idris will run, albeit 
slowly, with only 2 buffers. An incredibly huge 
number will also slow Idris down due to the search 
overhead. By the mean value theorem, therefore, 
there must be happy medium. For normal 
applications, the default value of 15 (0x0f), 
consuming 8.5K, works well. 

IDclists Clists are data structures used by Idris to buffer 
tty-type character I/O. Each clist can hold 12 
characters, and the clists are shared among all 
tty-type devices. Fully burdened, a tty-type 
character device can consume up to 512 characters 
worth of clists. A safe position would be to 
provide 512 bytes worth of clists for each actively 
used tty-type device. As it turns out, the default 
value of 55 provides only 660 bytes worth of 
clists. This is adequate for one tty, but not so 
good for more than one. A better default might be 
512*2/12 = 85 to support two fully loaded ttys. 

IDchar This parameter controls the funny little character 
that winks on and off dur ing disk I/O. You can 
completely eliminate it by setting IDchar to zero. 
The upper byte sets the foreground and background 
transparency attributes, while the lower byte is 
the actual ASCII character. 

IDheap 

IDbase 

IDrswap 

Version 1.4 

This is the stack+ heap size used by Idr is. 
default is 5000 bytes which is a good guess. 

The 

This is the address to which the boot prom 
relocates Idris for execution. The default is 
0x20000, which is the second l28K bank of memory. 
At the expense of the create buffer, you can move 
Idris downward and recover at least 64K of often 
unused memory. To do this, first set UpperRAM to 
0xF000, then set IDbase to 0x10000. 

This is the amount of space allocated to the Idris 
swap cache. The swap cache is another one of those 
avoid-going-to-disk techniques which is extremely 
effective. A value of 64K is usually sufficient. 
If IDrswap is zero, Idris goes looking for a bank 
of memory following the first l28K gap. This 
implies changing around the address select switches 
on the memory boards in order to make them 
non-contiguous. We recommend using IDrswap 
instead. 

Page 6-13 



Thaw Parameters 7900 Operator's Manual Chapter 6 

IDtop 

IDroodev 
IDpipdev 
IDswpdev 

IDswapa 
IDnswap 

IDcsw 

Page 6-14 

If non-zero, IDtop places a maximum memory 
restriction upon Idris. This can be used if a 
section of upper RAM is to be devoted to some other 
purpose. 

These parameters al ter Idris' s idea of the device 
containing the root file system, the device on 
which to perform piping, and the device on which to 
perform swapping. They only become valid, however, 
if the 0x10000 bit is set in IDcsw (below). 
Otherwise, the compile-time values within Idris are 
used. The default Thaw values are coincidentally 
the same as the compiled-in values. The defaults 
are 0x0402 (major device 4, minor device 2, alias 
/dev/hard00) for the root device and the piping 
device, and 0x0406 (alias /dev/hard0l) for 
swapping. 

These two values instruct Idris as to the starting 
block address and size (in blocks) of the swapping 
area on the swap device. IDswapa must not be zero, 
due to the swap space allocation scheme. As with 
the device parameters above, these parameters are 
not effective unless the 0x10000 bit is set in 
IDcsw. 

This is the console switch register (what ever 
happened to the good ole days of switches and 
lights?) • Programs can read its value using the 
getcsw function, which is erroneously documented as 
csw in the Idris Programmers Manual. The upper 16 
bits are reserved for Chromatics use, whil e the 
lower 16 are all yours. The only bit currently 
dedicated is the 0x10000 bit as described above. 

Version 1.4 



Chapter 6 7900 Operator1s Manual Thaw Parameters 

Default RAM Allocation 

The following chart describes default RAM allocation in 
version 1.4 of 7900 system software. The sizes of buffers 
marked with asterisks (*) may be altered with Thaw, which may 
alter the starting addresses of other buffers. 

To the right of the table are the addresses of pointers. 
These pointers contain long-word addresses which will always 
indicate where buffers start, regardless of Thaw. For 
example, $C28 always holds the address of the RS-232 Input 
Buffer. 

All addresses between $0 and $lC3C are fixed in this 
versiop of firmware, and cannot be changed with Thaw. 

Version 1.4 Page 6-15 



Thaw Parameters 

Page 6-16 

7gee Operator's Manual Chapter 6 

Default 
Address 

$8 

$488 

$69C 

$C88 

$1411111 

$1688 

$1C3C 

$5C3C 

$763C 

$7E3C 

$7'E:7C 

$7m:: 

$86FC 

$8EFC 

$96FC 

$9EFC 

$1§'f8 

$lF888 

$lFFFF 

CCntents 

Interrupt 
Vectcxs 

Scratch Pad !WI 
Used by Mcnitcx 

'l'E\IMEJI Pointers 

RI.tlber Band aD 
save Area 

'l'ERIBI 
Dispatch Tables 

DOS Transient 
Proqr.llll Area 
($411188 bytes.) 

DOS Buffer 
($W8 bytes.) 

Win3cw Table 8 

Win3cw Table 1 

WWow Table 2 

Win3cw Table 3 

Keyboard Buffer 
($48 bytes.) 

P1.I\Ctim Key 
Stack 

($88 bytes.) 

RS-232 Ir;luI: 
Buffer 

($888 bytes.) 

RS-232 ru:put 
Buffer 

($888 bytes.) 

RS-449 Ir;luI: 
Buffer 

($888 bytes.) 

RS-449 ru:put 
Buffer 

($888 bytes.) 

Esc Processor 
ArCJ.lllll!l1t Buffer 

($4811 bytes.) 

Systan Stack 
($8811 bytes.) 

Create Buffer 
(gets the rest 
of memory) 

Urusecl BAM 

Pointer Location 

+- ($C88) 

+- ($(54) 

+- ($C3C) 

+- ($018) 

Each Win3cw Table takes 512 bytes. 

They are allocated amsecut:ively. 

+- ($CII4) 

+- ($CIC) 

+- ($C28) 

+- ($C2C) 

+- ($08) 

+- ($C34) 

+- ($08) 

+- ($CI8) 

+- ($CI4) 

+- ($CIC) 

+- ($(58) 

+- ($E48l2A) 

Additional Buffer Menary 
may be installed above $lFFFF. 

. 
Version 1.4 



Chapter 7 7900 Operator's Manual Numerical Data 

Chapter 7 -- Numerical Data and Window Variables 

Numerical Data 

In an earlier chapter, we mentioned briefly that the 7900 
expects decimal numbers to be delimited by a comma or 
semicolon. This chapter discusses the various forms in which 
numerical data may be accepted by the 7900. Some advanced 
features of the 7900 are mentioned in this chapter, but are 
not described in detail until later chapters. 

Numerical data is used to enter coordinates for 
plotting, for window limit definition, for color numbers, and 
to set up many other system features. The numerical data 
will usually have a value between -32768 and +32767, or 
between 0 and +65535. Numerical data may be accepted in one 
of several forms, depending on the current state of the 
system: 

1) A decimal number. Decimal numbers are entered as you 
would normally type a number on the keyboard. A decimal 
number ALWAYS ends with a comma or semicolon. Failure to 
provide the comma or semicolon will usually cause the 
system to continue accepting characters until a comma or 
a semicolon IS found. This will almost certainly enter 
erroneous data into the system. 

A decimal number may have a leading + or - sign. If, 
whil e entering a decimal number, you discover that you 
have entered a wrong digit (BEFORE striking the 
terminating comma), you may press the + or key to 
cancel that entry and then re-enter the cor rect data. 
Pressing the + or - key resets the "argument collector" 
so that it begins parsing that entry again. 

Examples of decimal numbers: 

17, 
+17, 
13+17 , 

(Each of these numbers 
evaluates to seventeen.) 

2) If Binary mode is on, each number must be entered in a 
special binary form. Binary mode is discussed later in 
this chapter. 

3) If Binary mode is NOT active, the system will accept a 
Window Variable anywhere a decimal number is allowed. 
Window Variables are discussed next. 

Version 1.4 Page 7-1 



Window Variables 7900 Operator's Manual Chapter 7 

Window Variables 

Each window has a number of variables which may be used 
to store temporary data. These variables are referenced by 
alphabetic names, A through z, and the names of variables may 
be used anywhere a decimal number may be used in any system 
command. Each variable is allocated 16 bits (1 word) of 
storage, so a variable can store numbers from -32768 to 
32767. 

The Window Variables named A through W, and [, \, ], A, 

_, " are completely available for the user. Variables X, Y 
and Z are also available if the optional Digitizer Pad is not 
being used. Var iables named a through z. provide access to 
certain items in the "window table" (the set of data defining 
the current status of the window). These variables should be 
modified with caution. 

The values of most Window Variables are lost when the 
"Soft Boot" command is executed. Only the current cursor 
positions are preserved. 

Since the names of Window Variables are alphabetic 
characters, and entering a Window Variable name is equivalent 
to entering a decimal number, you are cautioned against 
entering text while the system is in Plot mode. The text 
would be interpreted as Window Variable names, causing 
unpredictable numbers to be plotted. 

Page 7-2 Version 1.4 



Chapter 7 7900 Operator's Manual Window Variables 

Table 7-1. Window Variable Assignments 

Variable Usage 

A 
B 
• 
• 
W 

x 
Y 
Z 

[ 
\ 
] 
A 

-

User-defined 
n 

• 
• n 

Used by optional Digitizer Pad 
Used by optional Digitizer Pad 
Used by optional Digitizer Pad 

User-defined 
" 
n 
n 

" , " 

a Overlay cursor X position 
b Overlay cursor y position 
c Bitmap cursor X position 
d Bitmap cursor Y position 

e Overlay window Xl position 
f Overlay window Yl position 
g Overlay window X2 position 
h Overlay window Y2 position 
i Bitmap window Xl position 
j Bitmap window Yl position 
k Bitmap window X2 position 
1 Bitmap window Y2 position 

m Bitmap character raster size (X) 
n Bitmap character raster size (Y) 
o Bitmap intercharacter spacing (X) 
p Bitmap intercharacter spacing (Y) 
q Bitmap character X multiplier 
r Bitmap character Y multiplier 

s 
t 

u 

v 

w 
x 

y 

z 

Version 1.4 

Virtual coord X m~n~mum 
Virtual coord Y minimum 

Tab stop spacing 

Vector width 

Background color 
Foreground color 

Plane select value 

(Not used, reserved) 

Page 7-3 



Window Variables 7900 Operator's Manual Chapter 7 

Operate on Window Variable 

Format: 

MODE ] <var> <op> <N> 

Where: 

<var> 

<op> 

is one of the window variables, A through z 

is an arithmetic, logical, or assignment operator 
in the set = + - * / & 1 

<N> is a decimal number followed by a comma, or 
another Window Variable 

This command assigns a value to a Window Variable, or 
modifies it in some way. 

The = operator assigns the value <N> to the variable 
<var>. The arithmetic operators +, -, * and / perform 
addition, subtraction, multiplication and division. The 
logical operators & and ! perform a l6-bit logical AND and 
OR, respectively. 

Examples: 

MODE 

MODE 

A = 1, set variable A equal to 1 

A + 1, increment the variable A 

MODE] A + B let A = A + B 

MODE A & 7, let A = A AND 7 

NOTE: 

Page 7-4 

Do NOT put spaces in any of these command 
sequences. Spaces are shown here for readabil i ty 
ONLY. 

Version 1.4 



Chapter 7 7900 Operator's Manual Window Variables 

Display and Transmit Window Variables 

Commands are provided to display the val ue of a Window 
Variable or transmit this value to a host system. They 
operate identically except that the Display command sends the 
value to Logical Output Device 0 (normally a window), and the 
Transmi\: command sends the val ue to Logical Output Device 1 
(normally the RS-232 serial port). 

Each command also sends the nHost EOL sequencen after 
sending the variable value. The default EOL sequence is a 
carriage return and line feed. 

These commands always send values as decimal, -32768 to 
+32767. 

Format: 

USER x <win> <var> (Transmit variable) 

USER y <win"> <var> (Display variable) 

Where: 

<win> is the desired window, A through H 

<var> is the name of a Window Variable, A through z 

NOTE: 

Each of these commands requires entering a lower 
case character. x or y. If the ALPHA LOCK key is 
in its normal (up) position,· hold down the SHIFT 
key and press the nXn or "y" key to produce a lower 
case x or y. 

These commands point out that the value of a Window 
Var iable is specific to a window. You must specify which 
window you are interested in, when requesting the value of a 
Window Variable. Windows are named A through H. Often 
window A (the "Master Windown) is the only window in use; 
however, its name must still be specified. 

Example: 

USER Y A v display the currently specified vector width 
for window A. 

Version 1.4 Page 7-5 



Window Variables . 7900 Operator's Manual Chapter 7 

Example of variable operations and display: 

DEFINE Fl 

USER Y A A 

MODE 1 A + 1. 

Fl 

Define Function Key Fl to be: 

display variable A (window A), 

and increment variable A.I 

End of Fl definition. 

Now. pressing Fl repeatedly displays the integers, 1. 2. 3. 
and so on. 

Page 7-6 Version 1.4 



Chapter 7 7999 Operator's Manual Window Variables 

Window Variable Uses 

Window Variables give the user direct access to many of 
the attr ibutes which def ine a window. They are especially 
useful to alter some window attributes which are not otherwise 
accessible. 

Example: 

MODE] u = 8. 

This example sets the tab stops in a window to 8, producing a 
stop every eight columns. There is no Mode code sequence 
assigned to perform this function, so the Window Variable 
operator is the only means available for setting tab stops. 

Example: 

SHIFT OVERLAY 

RECT 

i j k 1 

The four Window Var iables i, j. k and 1 def ine the 
coordinates of a· window in the Bitmap. This example draws a 
rectangle with those coordinates, producing a rectangle 
surrounding the current window. 

Version 1.4 Page 7-7 



Binary Mode 7999 Operator's Manual Chapter 7 

Binary Mod~ 

Binary mode is provided so that a host system, or user 
program, can transmit coordinate data more efficiently. When 
Binary mode is on, all numbers which are normally entered in 
decimal must be entered in a special binary fashion. This 
includes all arguments to MODE and PLOT codes, except for 
flags «9 or 1> type arguments). ----

Format: 

MODE B <9 or 1> 

Using the character 9 will turn off Binary mode (the default 
state), the character 1 will turn it on. 

NOTE: 

Binary mode is NOT recommended for use from the 
keyboard! In Binary mode, color keys and many 
other keys on the upper half of the keyboard will 
not operate normally. 

In Binary mode, each number entering the system must be 
encoded into two 8-bit bytes. The bits are arranged as 
follows: 

First Byte: 

Bit # 7 6 5 4 3 2 1 
+---+---+-----------------------+ 
I X I 1 I ••••••• low 6 bits •••••• 1 

+---+---+-----------------------+ 

Second Byte: 

Bit # 7 6 5 4 3 2 1 
+---+---+---+-------------------+ 
I X I 1 I ~ I •••• high 5 bits •••• 1 
+---+---+---+-------------------+ 

i 
Sign bit 

Page 7-8 Version 1.4 



Chapter 7 7900 Operator's Manual Binary Mode 

In each byte. bit 7 is ignored and bit 6 must be a 1. 
This insures that only printing ASCII characters will be 
used. Bits 5 through ~ of the first byte make up the 
low-order 6 bits of the resulting value, and bits 5 through ~ 
of the second byte make up the high 6 bits. Binary mode thus 
limits arguments to being signed II-bit numbers. 

If bit 5 of the second byte is a 1, the number will be 
negative. 

Example: 

MODE B 1 

MOVE X-Y PC PC 

(Turn on Binary mode) 

(Move cursor to location 2~0.200 -­
Bina ry mode val ue II PC II ) 

Binary Mode (Escape Code Processor) 

Binary Mode can be confusing since it can. be ON or OFF 
for each window. The Escape Code Processor can also work in 
Binary Mode; it operates on all ESC and USER codes without 
regard to windows. 

Format: 

ESC B <0 or 1> 

Usually. you will want to set Binary Mode for the Escape 
Code Processor AND the windows you will work in. 

Version 1.4 Page 7-9 





Chapter B 7900 Operato,r I s Manual Bitmap 

Chapter 8 -- The Bitmap 

The 7900 Bitmap screen is designed for the creation of very 
high resolution images. It is arranged as a square set of square 
pixels, 1024 hor izontally by 1024 vertically. Because of the 
dimensions of the display CRT. an area of 1024 hor izontally by 
76B vertically is the maximum viewable at any time (see Figure 
B~l on the next page). The remaining pixels are normally held 
offscreen below the viewable CRT area. 

The Bitmap can display images in up to 256 colors, depending 
on the hardware installed in your unit •. The basic·model 7900 
contains enough Bitmap memory to allow simultaneous display' of 16 
colors. As each additional Bitmap memory plane is added, the 
number of displayable colors doubles. 

-Regardless of the number of Bitmap memory planes in your 
system. the 7900 always has a "palette" of 16 million colors 
(actually 16,777.216). Your selection of colors may always be 
chosen from the full palette. 

A second set of Bitmap planes can be added to the 7900. This 
second set does not increase the number of available colors, but 
instead allows you to create two independent images. This second 
image memory must contain the same number of Bitmap planes as the 
first image, allowing the two separate images to each display the 
same colors. A maximum of sixteen Bitmap memory planes (eight in 
each of two image memories) may be installed. 

The term "Bitmap" refers to the way in which pixels are 
addressed in the 7900 hardware memory circuits. In a 
conventional memory arrangement, the units or "bits" of memory 
are not individually addressable. It is not possible to alter a 
single bit of memory without reading a group, or "word," of such 
bits, altering one of them, and writing the entire word back into 
memory. Since each bit of memory is associated with a single 
pixel, it is much faster to write to a single pixel without 
disturbing its neighbors • . 

The 7900 does just that. The Bitmap hardware and software 
can write or read the value of any individual pixel on the Bitmap 
screen. If only one Bitmap memory plane was installed, it would 
be . necessary to read only a single bit for each pixel. If 
several planes are installed, the Bitmap operates on one bit OF 
EACH PLANE every time a pixel is altered. 

If your system contains four Bitmap memory planes, four bits 
are responsible for the color of each pixel. These four bits are 
added in a binary fashion to produce a number. The number refers 
to an entry in the Color Lookup Table, and this entry determines 
the color of that pixel. (The Color Lookup Table is explained 
later in this section.) 

Version 1.4 Page 8-1 



Bitmap Defaults 7900 Operator's Manual Chapter 8 

BitaapDefaults 

When the 7900 is powered up, or booted with the !QQ! key, 
the Bitmap is initialized as follows: 

• Alpha (not Plot) 

• Page (not Roll) 

• Cursor at upper left corner of screen (0,0) 

• Color Lookup Table loaded with default values (see 
page 8-15) 

• Bitmap image is NOT erased (except at power-up) 

Remember that when the system is booted, the Overlay is 
not transparent. You cannot see the Bitmap image after a 
Boot until you press SHIFT OVERLAY (see nBitmap Operations") 
or until you make the Overlay transparent (see nModify 
Overlay Visible Attributes"). 

The Bitmap image is not erased when the system is 
booted. If an error occurs while you are creating an image 
on the Bitmap screen, in most cases you will be able to 
recover without losing the image. (The Color Lookup Table 
may have to be reloaded if rou have altered it.) 

After a Boot, a new cursor is installed at the nhome n 
location of the screen. If a cursor had been on the screen 
when Boot was executed, the old cursor will still be at its 
old location after the Boot and you will have to remove it. 

Page 8-2 

o.o~ ______ _ ---, , 
I 
i 

0.717 ,,/. / / 1028.7117 

~/ /;;;%~ Thle ....... Ie ' /, / / / / / 
u.u .. lly InYlelbll~r· W;;·, /~L~ 

unl ••• p .. nnld / / / / / 
0" zaa •• d. ~_ . 1023.1023' 

Figura 8-1. Scraan Layout (Bi~.ap) 

Version 1.4 



Chapter 8 7999 Operator's Manual Bitmap Operations 

Bitmap Operations 

This section discusses the types of commands accepted by 
the Bitmap. Before you can talk to the Bitmap, you have to 
get its attention. This is accomplished by the important 
command: 

SHIFT OVERLAY 

Hold the SHIFT key and press the lighted key marked OVERLAY. 
The light will go out. The Overlay window will become· 
immediately transparent. foreground and background, to allow 
you to see the Bitmap. Any commands or characters entered 
will now be processed (or, if illegal, ignored) by the 
Bitmap. 

When you want to talk to the Overlay again, press 

OVERLAY 

The light in the key will light up, and you are again 
addressing the Overlay. This action causes the Overlay 
window to become non-transparent, so that any messages in the 
Overlay will now be visible~ 

NOTE: 

When switching back and forth between Overlay and 
Bitmap, be aware of the light in the PLOT key. If 
you are plotting in the Bitmap and then return to 
the Overlay to enter text, you will still be in 
Plot (as indicated by the lighted PLOT key). To 
return to Alpha for entering text~ress SHIFT 
PLOT. See "Exiting Plot Submodes" on page 9-28 for 
details. 

If you want to address the Overlay or the Bitmap, 
without disturbing the Overlay transparency attr ibutes, use 
the. following commands: 

MODE 0 rcl (Overlay "off" - addresses Bitmap) 

MODE 0 1 (Overlay "on" - addresses Overlay) 

These commands will not affect the present attributes of the 
Overlay, but they will determine whether the Overlay or the 
Bitmap will process future commands. 

Versio·n 1.4 Page 8-3 



Bitmap Operations 7900 Operator's Manual Chapter 8 

As an illustration, remember that the 7900 uses 
"windowsn as its primary output devices. A window can 
display characters, perform graphics functions, and handle 
other actions. Each window is allowed to perform functions 
in the Overlay and in the Bitmap. For example, when a window 
receives a character, it may place this character into an 
Overlay character cell, or it may generate a series of Bitmap 
pixels to form the character. 

The command MODE 0 <0 or 1> determines which part of the 
window software~ll handle an incoming character, and 
whether the resulting display will occur in the Overlay or 
the Bitmap. Then, the Overlay transparency attributes will 
determine whether this character will be visible or not. 

The OVERLAY key produces the following code: 

MODE 0 1 

MODE V 3 

SHIFT OVERLAY produces the following code: 

MODE 0 0 

MODE V 0 -
NOTE: . 

Page 8-4 

Each example in this section is independent. Every 
example assumes that it will not be affected by any 
prior example (unless noted). To insure that each 
example executes independently, it is advisable to 
execute the command sequence: 

RESET BOOT SHIFT OVERLAY 

before beginning each example. In addition, to 
insure a nclean n screen for each example, you may 
wish to erase the screen. 

Version 1.4 



Chapter 8 7900 Operator's Manual Bitmap Blink 

Bitmap Blink 

In the ,Bitmap, the Blink attribute occupies one Ref~esh 
Plane of 1mage memory. The highest numbered plane is 
normally used for blink, so the "blink plane" will normally 
be plane 7. (Regardless of how many planes your system has, 
one of the planes may be configured to be number 7.) If a bit 
is ON in the "blink plane," it means the pixel corresponding 
to that bit will blink. If the bit is OFF, the pixel will 
not blink. 

Refer to the Color Lookup Table (page 8 -15). The upper 
half of the Table, beginning at entry number 128, will be 
accessed by a pixel whose seventh bit is ON. If bit 7 is 
OFF, the lower half of the Table is accessed. 

Now, if we allow that seventh bit to blink on and off, 
we are alternating between the upper and lower halves of the 
Color Lookup Table. The Table is default-loaded with full 
intensity color in the first eight entries, and 
half-intensity of the same colors in the first eight entries 
of the upper half. So any pixel which has the blink bit set 
will blink between full- and half-intensity color. (Black is 
the exception: since half-intensity black would be black, 
the Table defaults to grey in its place. White and black 
will both blink to half-intensity white, which is grey.) 

Since blink occupies one Refresh Plane. it cuts the 
number of available colors in half. In a four-plane system, 
you have a choice: 

1) eight colors and blink 

2) sixteen colors without blink 

Actually, you always have 16 colors even with blink: the 
second eight colors are only seen if the color is blinking. 
For example, under default conditions, an object might be 
specified to be "blinking red." It would be blinking between 
full-intensity and half-intensity red, entries 4 and 132 in 
the Color Lookup Table. If we alter entry 132 to be brown, 
then the "blinking red" object will blink between red and 
brown. This technique allows any obj ect on the screen to 
blink between any two colors. 

Version 1.4 Page 8-5 



Bitmap Blink 7900 Operator's Manual Chapter 8 

Blink ON 

Format: 

BLINK 

The BLINK key will light up. Future SET commands will 
reference the upper half of the Color Lookup Table, and will 
cause foreground or background color to blink. 

If you want the foreground color of characters or 
fig~res to blink, turning on the blink attribute is 
sufficient. Any figures drawn while the BLINK key is lit 
will have a blinking foreground. 

If you want the background to blink, the procedure is a 
bit more involved. First, turn on blink. Set the background 
color using SHIFT SET <color>, and turn off blink. The 
background, not the foreground, of a character entered into 
the Bitmap will now blink. (This procedure is only relevant 
to characters, since graphics figures do not use background 
color. ) 

NOTE: 

When Blink is ON, the 7th bit of any color number 
entered will be set. Color numbers will not be 
modified when Blink is OFF. 

Blink Off 

Format: 

SHIFT BLINK 

The BLINK key will go out. Future SET commands will 
reference the lower half of the Color Lookup Table, and will 
not cause blink. 

NOTE: 

Page 8-6 

Use of the BLINK key requi res that the defaul t 
blink plane be in effect (plane 7). If the "Select 
Blink Plane" command has been used to alter the 
blink plane number, the BLINK key may not produce 
normal results. 

Version 1.4 



Chapter 8 7900 Operator's Manual Bitmap Blink 

Select Blink Plane(s) 

Format: 

ESC b <n>, 

Where <n> is a decimal number, 0 to 255. The plane or planes 
specified by bits in <n> will blink. Other planes will not. 

Blink means to alternate between ndata n and "0" for that 
plane's contribution to the CLU indexing. 

NOTE: 

This command requires entry of a lower case 
letter. b. When the ALPHA LOCK key is in its 
normal (up) position, use the SHIFT modifier with 
the nB n key to produce a lower case b. 

Examples: 

ESC b 0, 

No bits are set non" in the number 0, so no planes will 
blink. This is necessary for applications requiring all 
available colors (16 in a 4-plane system). Blink in the 
Bitmap is now completely inhibited. 

ESC b 128, 

The number 128 is examined as a binary number. Only the 
highest bit (bit 7) is found to be "on," so only plane 7 will 
blink. This is the default condition. 

ESC b 255. 

The number 255 has all eight bits set. All planes will 
blink. This is not a terribly useful condition. 

Version 1.4 Page 8-7 



Character Size 7900 Operator's Manual Chapter 8 

Set Bitmap Character Size 

Format: 

SIZE <X>,<Y>, 

Where: 

<x> is the character multiplication factor in the 
horizontal direction 

<Y> is the vertical factor 

The limit for <x> is 170, and the limit for <Y> is 96. This 
size (170 by 96) corresponds to a size where one character 
fills the entire Bitmap screen. 

Example: 

SIZE 1,1, 

This sets the smallest available character size on the 7900. 
You can now fit 170 characters on a line, and 96 lines on the 
CRT. With this character size you have the abil i ty to put 
16320 characters on the Bitmap screen. 

SIZE 2,2, 

The Bitmap character size is now exactly equal to the size 
of Overlay characters. This is the default condition. 

SIZE 10.30. 

Note that the <x> and <Y> factors need not be equal. 

Page 8-8 Versioh 1.4 



Chapter 8 7900 Operator's Manual Character Size 

Set Bitmap Intercharacter Spacing 

Format: 

MODE I <X>, <Y>, 

Where: 

<x> is the pixel spacing in the horizontal direction. 

<Y> is the vertical spacing. 

Each time a character is entered into the Bitmap, the cursor 
is automatically updated to prepare for a new character. 
When a line is complete, or when the LINE FEED key is 
pressed, the cursor is moved down to prepare for the next 
line. 

The spacing between characters on a line, and between 
lines, is set by this command. The default values are 6 for 
<X>, and 8 for <Y>, since the standard character font is 6 by 
8 pixels. 

The spacings entered for <X> and <Y> are always 
mul tiplied by the cur rent character size befor e use. This 
allows proper spacing regardless of the current Bitmap 
character size. 

Example: 

MODE I 6. 8. This is default spacing. 

For bold characters, use the following command: 

MODE I 8. 12. 

NOTE: 

This command only affects the cursor movement and 
has no bearing on the size of the background field 
of a character cell. 

Version 1.4 Page 8-9 



User Char. Set 7999 Operator's Manual Chapter 8 

Load User-defined Character Set 

Format: 

MODE i <x>, <y> , <addr>, 

Where: 

<x> is the horizontal character raster size 

<y> is the vertical character raster size 

<addr> is the memory address of the character set 

<x> and <y> are decimal numbers. <x> is a positive integer 
from 1 to 16, and <y> ranges from 1 to 256. 

<addr> is a hexadecimal number. It must be a legal 
memory address, or the system will Trap. <addr> must also be 
an even number. If <addr> is zero, the normal character set 
is loaded. 

Example: 

MODE i 8, 19, 19999, 

This command would install a user-defined character set (8 
by 19 pixel font) which has been loaded into RAM at address 
19999 (hex). 

To return to the normal character set, use SOFT BOOT or 
enter the command: 

MODE i 6, 8, f(J, 

This loads the normal character set and sets the raster 
sizes to normal (6 by 8). 

There should be <y> words of memory for each of 128 
character definitions. Characters should be in ASCII. format. 
See Appendix E for an example of the character set format. 

Page 8-19 Version 1.4 



Chapter 8 7gee Operator's Manual Overstrike 

Overstrike 

Format: 

MODE \ <e or 1> 

Using the character 1 will turn Overstrike on, and " will 
turn it off. 

NOTE: 

This command requires entering a backwards slash, 
the character \. The backslash is located in the 
upper right corner of the typewriter area of the 
keyboard, near the RETURN key. It should not be 
confused with the standard slash, I, which is 
located on the question-mark key. 

With Overstr ike off (the default condition), writing a 
character to the Bitmap causes a rectangular block of pixels 
to be written. Some of these pixels will form the character, 
and will be written in the current foreground color. The 
other pixels in the rectangular block are written in the 
current background color. 

When Overstr ike is on, only the pixels which form the 
foreground of the character are written. The background is 
not altered. This allows multiple characters to be written 
to the same screen location without having each character 
obliterate the previous one. Overstrike can be used to 
create custom characters or symbols, or for underlines, 
accent marks, or other punctuation. 

Example: 

MODE \ I 

RETURN T EST RETURN _ _ _ _ 

Press the RETURN key to move the cursor to the left edge of 
the window, if it is not already there. Then type the word 
"TEST." Press RETURN again, and while holding the SHIFT key 
down, press the underline key four times. (The underline key 
is on the right side of the typewriter area of the keyboard, 
and is marked with a horizontal line and the name "DEL.") In 
this example, the word "TEST" was underlined without 
disturbing the characters in the word. Now type the sequence 
MODE \ " (Overstrike off) and try the same example again. 

Version 1.4 Page 8-11 



Bitmap Color 7999 Operator's Manual Chapter 8 

Bitmap Color 

In the Bitmap, pressing a color key g~nerates a number. 
This number is a reference to a value in the Color Lookup 
Table. The BLACK key, for example, generates the number 9, 
which refers to entry 9 in the Lookup Table. Normally, entry 
9 is loaded with components of zero red, zero green, and zero 
blue, which gives black. 

Set Foreground Color 

Format: 

SET <color> 

Where: 

<color> may be one of the eight color keys, or a 
number, 9 to 255. 

The current foreground color will be set to the specified 
color number in the Color Lookup Table. Any figures or text 
which are entered into the Bitmap will have this foreground 
color. 

If a color key is used, and the BLINK attribute is off, 
then the number generated by the color key will be in the 
range 9 - 7. BLACK generates 9, BLUE generates 1, and so on. 
If the BLINK attribute is currently on, then the color 
numbers generated will be in the upper half of the Lookup 
Table, and will be in the range 128 to 135. This arrangement 
assumes that plane 7 is the Blink Plane, and allows you to 
specify blinking colors without concern for plane numbers. 

Example: 

SET RED ---
The foreground color has been set to red, which is color 
number 4 in the Lookup Table. If BLINK is turned on, the 
foreground color would be set to blinking red, which is color 
number 132. 

Example: 

.§!! 4, 

The foreground color has been set to color number 4 in the 
Lookup Table. This approach bypasses the question of whether 
blink is on or off. This format would most often be used 
from a host computer. 

Page 8-12 Version 1.4 



Chapter 8 79~~ Operator1s Manual Bitmap Color 

Set Background Color 

Format: 

SHIFT SET <color> 

Where: 

<color> is a color key, or a number between ~ and 255. 

All of the comments concerning foreground color apply to 
background color as well. The background color will be set 
to the specified number in the Color Lookup Table. If BLINK 
is on, the upper half of the Table will be referenced by the 
color keys. 

Version 1.4 Page 8-13 



Color Lookup Table 7988 Operator's Manual Chapter 8 

Color Lookup Table 

The 7988 Bitmap has a color palette of 16,777,216 
colors. At any time, a subset of these colors is available. 
The number of available colors is determined by the number of 
Refresh Planes (Bitmap memory boards) installed in your 
system. 

In the standard system, with four Refresh Planes, 
sixteen colors are available at any time. Each additional 
board doubles the number of available colors. In a fully 
expanded system with eight Refresh Planes, 256 color s are 
available at any time. 

With sixteen million colors to choose from, which ones 
do you use? 

Color selection in Bitmap memory is performed through an 
indirect technique called the Color Lookup Table. Each pixel 
on the Bitmap screen is associated with a bit in each plane 
of Bitmap memory. The sum of these bits is a number, from 8 
to 255, which references a particular entry in the Color 
Lookup Table. Thus, each pixel "points to" some entry in the 
Color Lookup Table, and the information in" that entry will 
determine the color of that pixel. The Color Lookup Table 
has 256 entries, enough to accommodate a configuration having 
eight planes (per image memory). The colors are numbered 
from 8 to 255. 

Each entry in the Color Lookup table contains three 
8-bit numbers, one for R (the Red component of the color), 
one for G (the Green component), and one for B (the Blue 
component). The intensity of each of these components may be 
altered from 8 (totally off) to 255 (full intensity in the 
color). For example, pure red is 255 R, zero G, and zero B. 
Black is zero, zero, zero. White is 255, 255, 255. Colors 
with less than full saturation (such as greys) will contain 
intermediate numbers between 0 and 255. Neutral grey is 128, 
128,128 (half intensity of each component). 

Page 8-14 Version 1.4 



Chapter 8 79~~ Operator's Manual Color Lookup Table 

The following chart shows default assignments in the Color· 
Lookup Table. 

Version 1.4 

Color 

255 

254 

• 

135 

134 

133 

132 

131 

13~ 

129 

128 

• 
• 
• 

7 

6 

5 

4 

3 

2 

1 

o 

# R G B 
1--------1--------1--------1 
1 1 1 1 
1--------1--------1--------1 
1 1 1 1 
1--------1--------1--------1 
1 1 1 1 - - - -

1 1 
-------- --------1--------1 

128 128 1 128 
-------- --------1--------

128 128 I ~ 

-------- --------1--------
128 ~ I 128 

-------- --------1--------
128 0 1 0 

-------- --------1--------
~ 128 1 128 

-------- --------1--------
o 128 1 0 

-------- --------1--------o 0 1 128 
-------- --------1--------

128 128 1 128 
-------- --------1--------

1 -
-------- -------- --------

255 255 255 
-------- -------- --------

255 255 ~ 
-------- -------- --------

255 0 255 
-------- -------- --------

255 0 0 
-------- -------- --------

0 255 255 
-------- -------- --------

0 255 0 
-------- -------- --------

~ 0 255 
-------- -------- --------

0 0 0 
-------- -------- --------

Page 8-15 



Color Lookup Table 7900 Operator's Manual Chapter 8 

The lowest eight entr ies in the table (0 through -7) 
correspond to the eight color keys on the keyboard: 0 is 
Black, 1 is Blue, etc. Halfway up the chart, beginning at 
entry 128, another eight entr ies are def ined to be 
half-intensity of the same eight colors. Only sixteen colors 
are assigned in the default Color Lookup Table because only 
sixteen colors are available in the basic 7900 system. 

Pixels on the Bitmap screen do not have a color, but 
they have a color value which points to some location in the 
Color Lookup Table. The Color Lookup Table is the mechanism 
by which each pixel is given a color. 

Page 8-16 Version 1.4 



Chapter 8 7900 Operator's Manual Color Lookup Table 

Modifying the Color Lookup Table 

Change Color Lookup Table Entry (RGB Units) 

CHANGE is the most immediate way to change colors on the 
Bitmap screen. No actual change to the contents of Bitmap 
memory takes place. Each pixel in the Bitmap references some 
entry in the Color Lookup Table, so changing an entry in the 
Table will immediately change the color of each pixel 
referencing that entry. 

Format: 

CHANGE <color>,<R>,<G>,<B>, 

Where: 

<color> is an entry in the Color Lookup Table, 0 to 
255. or a color key. (If a color key is 
used, the comma after <color> must not be 
entered. ) 

<R>,<G>,<B> are components of Red, Green, and Blue, 
respectively, to be entered into the Color 
Lookup Table. Each must be between 0 and 
255. 

The entry in the Color Lookup Table corresponding to 
<color> will be changed to have the components <R>, <G>, and 
<B>. The former components of that entry of the Lookup Table 
are gone. 

Example: 

CHANGE 0,255.255.255. 

Color 0 (the first entry in the Color Lookup Table) has been 
changed to white. 'Since the background color defaults to 
color 0, pressing ERASE PAGE will now erase the screen to 
white. (This is not the normal way to change background 
color: see page 8-13.) 

After this change is made, both the BLACK key (which 
normally references color 0) and the WHITE key (which 
normally references color 7) will cause white to be put on 
the screen. This is because our example above has eliminated 
black from the Color Lookup Table. Unless other changes are 
made, there is no entry of the CLU which will produce the 
color black. 

Version 1.4 Page 8-17 



Color Lookup Table 7900 Operator's Manual Chapter 8 

This points out an important consideration when using 
the Change command: since the Change command alters entries 
in the Color Lookup Table, it is possible to create a 
situation where the color keys have no meaning. The example 
above will change the BLACK key to mean white. If you change 
entries in the Color Lookup Table, it is your responsibility 
to keep track of those entries and what the color keys now 
mean. 

NOTE: 

The Overlay colors are unaffected by the CLU. 
Thus, the color keys will always have their proper 
meanings in the Overlay. 

The relationship between the color keys and the Color 
Lookup Table is now apparent. In the Bitmap, the color keys 
reference numbers· in the Color Lookup Table. Under default 
conditions, these numbers are set up to produce the colors 
designa ted on the color key. For example, pressing BLUE 
generates the number 1. Entry number 1 in the Color Lookup 
Tabl e is d.ef aul t-loaded with zero red, zero gr een, and 255 
blue, which produces full intensity blue. If, however, you 
change entry number 1 in the Lqokup Table to be some color 
other than blue, the BLUE key will still reference that 
color. Pressing a colO'rkey is equivalent to entering a 
number from 0 to 71 the shifted versions produce numbers from 
8 to 15. These numbers are followed by a comma. 

Example: 

CHANGE 0,0,0,0, 

Color number 0 in the Color Lookup Table has been changed to 
black. This is the default condition. 

If you try to change an entry in the Color Lookup Table 
which is not accessible in your system, no visible changes 
will take place on the screen. 

Page 8-18 Version 1.4 



Chapter 8 7980 Operator's Manual Color Lookup Table 

If you change an entry which is accessible in your 
system, but which is not currently referenced by any pixel on 
the screen, you will not be able to detect a change until you 
use that color again. 

Example: 

SET WHITE (set foreground color to white - color 

SHIFT SET BLACK 

ERASE PAGE 

(set background to black - color 8) 

(clear the screen to background color) 

CHANGE 7.255.0.0. (change entry 7 - which used 

The screen is 
anywhere on the 
typed will now 
foreground color 

to be white - to red) 

still black, since entry 7 is 
screen at the present time. But 
appear in red, even though the 

is number 7, which should be white. 

not used 
anything 
current 

The primary use for the Change ccrnmand is to produce new 
colors, which are not normally present in the Color Lookup 
Table. In most cases, minor changes in color will be desired 
which will not grossly affect the meaning of the color keys. 
Here are a few possibilities: 

CHANGE BLUE 0.140.240. 

The BLUE key now produces a "sky blue" composed of no red, 
140 green, and 240 blue. 

CHANGE YELLOW 255.178.120. 

The YELLOW key now produces a shade of brown. 

As mentioned, when entering a color NUMBER to be changed 
(as in the earlier examples), the number was terminated by a 
comma. When using CHANGE with a color key, no comma is 
entered after the color key. Color keys simply generate the 
digits 0-7 followed by a comma. Shifted color keys generate 
the digits 8-15 followed by a comma. 

In each case, the Color Lookup Table is changed. This 
changes the color of every pixel in Bitmap memory which 
references that color. If no images· had been drawn in the 
color, no change will be apparent. 

Version 1.4 Page 8-19 

7) 



Color Lookup Table 7900 Operator's Manual Chapter 8 

Change Color Lookup Table Entry (HVS Units) 

Format: 

SHIFT CHANGE <color>, <hue>,<value>,<saturation>, 

Where: 

<color> is an entry in the Color Lookup Table, 0 to 
255, or a color key. (If a color key is 
used, the comma after <color> must not be 
entered. ) 

<hue> are the HVS units which describe 
<value> the desired color (see below) • 
<saturation> Each must be between 0 and 255. 

The entry in the Color Lookup Table corresponding to <color> 
will be changed. The parameters <hue>, <value>, and 
<saturation> will be converted to RGB units and placed in the 
Color Lookup Table. 

The HVS color model is described in Appendix B. Except 
for the HVS-to-RGB conversion, this command acts exactly like 
the Change command on the previous page. 

Examples: 

SHIFT CHANGE WHITE 0,128,0, 

The WHITE key now produces 50% grey (hue is undefined, value 
is 128 or 50%, saturation is zero). 

SHIFT CHANGE ~ 171,255,128, 

The BLUE key now produces a pastel blue (hue is 171, blue; 
valuers 255, full brightness; saturation is 128, or 50%, 
which adds some white to the color). 

Page 8-20 Version 1.4 



Chapter 8 7999 Operator's Manual Color Lookup Table 

Default Color Lookup Table 

Format: 

ESC 1 <c> 

Where: 

<c> is a single character. 

NOTE: 

Thi s command 
letter, 1. If 
(up) position, 
the nLIt key to 

requires entering a lower case 
the ALPHA LOCK key is in its normal 
hold down the SHIF~ key and press 

produce a lower case 1. 

This command will load the Color Lookup Table, based on 
a defaul t arrangement of color s. If <c> is the character 
n9,n the Color Lookup Table is loaded with the values it had 
when the system was Booted. Pressing the BOOT key also 
reloads the Color Lookup Table. ----

Example: 

ESC 1 9 

Other defaul t arrangements of the Color Lookup Table, for 
imaging and other applications, are planned for future 
expansion. 

Version 1.4 Page 8-21 



Color swap!Color set 

Color swap 

Format: 

7999 Operator's Manual 

COLORSWAP <color 1>, <color 2>, 

Where: 

Chapter 8 

<color 1> and <color 2> are each a color key or a 
decimal number (terminated by a comma). 

Color swap exchanges pixel colors in the Bitmap. Any pixels 
which were <color 1> are changed to <color 2>, and any pixels 
which were <color 2> are changed to <color 1>. Other colors 
are not altered. 

Color swap affects all pixels in the window receiving the 
command. 

Contrast this command with the CHANGE command: CHANGE 
alters data in the Color Lookup Table to produce a color 
change, but does not alter Bitmap pixel data. Colorswap 
al ters only pixel data. This takes considerably longer if 
the window is large. 

Colorswap is useful for altering Bitmap data to suit the 
requirements of a hardcopy device, or other peripheral, which 
may require Bitmap data to be configured in a certain way. 

Example: 

COLORSWAP RED BLACK 

Any pixels which were red are changed to black, and vice 
versa. 

Colorset 

Format: 

SHIFT COLORSWAP <color I>, <color 2>, 

This command acts exactly like Colorswap, except that pixel 
data is al tered from <color 1> to <color 2> only. Pixels 
which are <color 2> are NOT changed to <color 1>. 

Page 8-22 Version 1.4 



Chapter 8 7900 Operator's Manual Cursor Control 

Bitmap Cursor Control 

The Bitmap has two cursors: an overscore/underscore for 
Alphanumeric use (similar to the Overlay cursor), and a cr·oss 
hair for plotting. Only one of the cursors is present in a 
window at any time. If more than one window is in use, more 
than one cursor may be visible. Unless otherwise noted, the 
following information applies to both Alpha and Plot cursors. 

The cursor control keys: 

RETURN LF 
CTRL HOME ERASE PAGE 
RECALL ERASE EOS 
the four arrow keys 

HOME 
CLEAR LINE 
CLEAR EOL 

have the same meanings they had in the Overlay. Pressing two 
adjacent arrow keys simultaneously will move the cursor 
diagonally. Since the Bitmap allows variable size characters 
(see "Set Bitmap Chara::ter Size"), some functions may depend 

on the currently specified character size. ·For example. the 
right arrow will always move the cursor one character width 
to the right, regardless of how wide the characters are 
currently defined to be. 

WARNING: 

ERASE PAGE will clear out the image in the current 
window in Bitmap. There is NO WAY to recover this 
image unless it can be reconstructed from the 
Create Buffer or some other source. 

The four text editing functions are also available in the 
Bitmap. These functions are Insert Line, Delete Line. Insert 
Character. and Delete Character. They operate in the same 
manner as their counterparts in the Overlay. 

The arrow keys have an additional meaning in the 
Bitmap: using the SHIFT modifier with an arrow key moves the 
cursor one pixel in the specified direction. Holding down 
SHIFT while pressing two adjacent arrow keys will move the 
cursor diagonally, one pixel at a time. 

SHIFT left-arrow 
SHIFT right-arrow 
SHIFT up-arrow 
SHIFT down-arrow 

Version 1.4 

Dot Left 
Dot Right 
Dot Up 
Dot Down 

Page 8-23 



Cursor Control 7999 Operator's Manual Chapter 8 

The CURSOR ON key works the same way as it did in the 
Overlay: pressing the key alone turns the cursor on, and 
using SHIFT with the key turns the cursor off. 

NOTE: 

If you turn the cursor off while in the Overlay, 
then switch to Bitmap, the cursor is still off. 
Both cursors are handled by the same command. 

When you switch from Overlay to .Bitmap, the 
Overlay cursor disappears and the Bitmap cursor 
appears. Only one of the two cursors will ever be 
visible in a window, depending on whether you are 
currently talking to the Overlay·or the Bitmap. 

MOVE X-Y positions the cursor absolutely, as it did in the 
Overlay. 

Format: 

MOVE X-Y <X>,<Y>, 

Where: 

<x> is a decimal number between 9 and 1923, 
<Y> is between 9 and 767. 

This is identical to the form used in the Overlay except 
that the limits for <x> and <Y> are adjusted to the Bitmap. 
The 9, 9 position is in the upper left corner. X increases 
from left to right, and Y increases going down. The Relative 
Move command is also present in Bitmap: 

MODE m <dX>, <dY>, 

This command moves the cursor relative to its current 
position, by <dX> pixels horizontally, and <dY> vertically. 
<dX> and <dY> are each decimal numbers terminated by a comma. 

Tab stops are located 
Pressing the CTRL modifier 
cursor to the ~ tab stop. 

every four character cells. 
and the character I moves the 

CTRL I -
NOTE: 

Page 8-24 

Tab stops can be changed using 
Window Variable command, ~ 1. 
details. 

the Operate on 
See page 7-7 for 

Version 1.4 



Chapter 8 7999 Operator's Manual Cursor Control 

Set Cursor Color 

Format: 

MODE Q <color key> 

The Bitmap cursor will assume the color specified by the 
color key. If the Blink attribute is currently on, the 
cursor will blink. 

Alternate format: 

MODE Q <n>, 

Where <n> is the number of an entry in the Color Lookup 
Table, 9 through 255. This format would most often be used 
from a host computer. 

The default cursor color is blinking white, which may be 
established by either of the commands 

MODE Q 135. 

MODE Q -1, 

NOTE: 

The bitmap cursor is software generated and is 
subject to being written over and destroyed. 
Internal precautions are taken to avoid this, but 
using multiple windows makes it possible to damage 
the cursor. The MODE Q command can be used to 
repair the cursor if this happens. 

Version 1.4 Page 8-25 



Fill Mode 7900 Operator's Manual Chapter 8 

Fill Mode 

Many of the "primitive" figures supported by the 
plotting software are Dfillable,D that is, they can be filled 
as they are drawn. The fillable primitives are: arcs, 
circles, rectangles, triangles, incremental X-bar and Y-bar, 
and the optional polygon (tiler) algorithm. 

To specify that the figure is to be filled as it is 
drawn, the DFillD attribute must be turned on. 

Format: 

!ill 
The light in the FILL key will illuminate, and the DFill" 
attribute will be turned on. Whenever the "Fill D attribute 
is on (signified by the lighted key), a figure which is 
fillable will be drawn and filled in the currently specified 
foreground color. 

To turn off the DFill" attribute, use the command: 

SHIFT FILL 

Page 8-26 Version 1.4 



Chapter 8 7900 Operator's Manual Complex Fill 

Complex Fill Algorithms 

The software described in this section is optional, and 
mayor may not be installed in your system. 

Complex Fill algorithms are used to fill, or "paint," an 
area with a color. In some cases this area must be enclosed 
by a boundary of pixels, as described below. Complex Fill 
may be used on ANY types of figures, not only the figures 
supported by the plotting routines. 

There are, however, some limitations: 

• Complex Fill is a routine which demands a great deal 
of resources from the 7900 processor. An area ~s 
filled by drawing horizontal vectors, and whenever the 
algorithm encounters a "problem" in the area (such as 
a corner), it must remember the location of the 
"problem" and return to that location later to "solve" 
it. Each location that must be remembered requires a 
certain amount of space in the system's memory stack, 
and trying to fill an extremely complex area can 
overflow the available stack space. If this occurs, 
the fill routine will stop. If the fill routine stops 
before completing a fill of a very complex area, an 
overflow has probably occurred. The StackZ parameter 
in Thaw can be enlarged to remedy this problem; see 
page 6-6. 

• Another point to remember when using Complex Fill is 
this: the area to be filled MUST be bounded. The 
boundary color must be the same as the color being 
used to fill (Edge Fill) or different from the color 
being used to fill (Area Fill). If a proper boundary 
is not present, the fill algorithm may "leak" and the 
color being used to fill may fill the entire screen. 
Or, if no border exists between the filled area and 
the top of the screen, the fill routine may stop 
filling at some apparently random location. 

Version 1.4 Page 8-27 



Complex Fill 7999 Operator's Manual Chapter 8 

Area Fill 

Format: 

AREA FILL <color> <X>,<Y>, 

Where: 

<color> is one of the eight color keys, or a number 
corresponding to an entry in the Color Lookup 
Table (9 to 255). If a number is used, it must 
be delimited by a comma. 

<X>,<Y>, are the coordinates of a point INSIDE the area 
which is to be filled. 

The area containing the point <X>, <Y> will be filled with 
the color specified. The fill will stop at any edge 
containing a color other than the color specified. 

Example: 

CIRCLE 511,383,199, 

AREA FILL RED 511,383, 

AREA FILL ~ 511.383, 

(draw a circle) 

(fill it with red) 

(now fill it with blue) 

In this example, we drew a white circle, and filled it with 
red. Note that the border of the circle is still white. The 
fill routine terminated when it reached the white edge of the 
circle. Note also that we can re-fill the area with another 
color (in this case, blue). 

Alternate Format: 

AREA FILL <color> • 

The cursor position may also be used to specify coordinates. 
In this case, the cursor should be moved inside the area to 
be filled, and then the AREA FILL command may be executed 
using the cursor position to specify the <X> and <Y> 
coordinates. 

Page 8-28 Version 1.4 



Chapter 8 79~~ Operator's Manual Complex Fill 

Edge Fill 

Format: 

SHIFT AREA FILL <color> <X>,<Y>. 

Where: 

<color> is one of tpe eight color keys, or a number 
cor responding to an entry in the Color Lookup 
Table (~ to 255). If a number is used, it must 
be delimited by a comma. 

<X>.<Y>, are the coordinates of a point INSIDE the area 
which is to be filled. 

Edge Fill is very similar to Area Fill, except that Edge 
Fill will fill an area until it reaches a boundary of the 
SAME color it is using to fill. Area Fill would stop at any 
dissimilar boundary. 

Example of Area Fill and Edge Fill: 

RECT ~,~, 511,383, 

SET RED 

FILL 

CIRCLE 256.l92.7~ 

MOVE X-Y 2~.2ra. 

AREA FILL BLUE • 

(rectangle around 1/4 of screen) 

(set foreground color to red) 

(turn on the "fill" attribute) 

(circle inside the rectangle) 

(move cursor inside rectangle) 

(fill the area with blue) 

At this point (see illustration), the upper left quarter of 
the screen contains a white rectangle, filled with blue, and 
a filled red circle. The Area Fill command did not cover the 
red circle, nor did it cover the rectangle's white border. 

SHIFT AREA FILL WHITE. (edge fill with white) 

This time. the Edge Fill command filled until it reached the 
rectangle's white border. It covered the red circle, since 
it does not stop at anything except the color it is filling 
with (white). 

Version 1.4 Page 8-29 



Joystick 7999 Operator's Manual Chapter 8 

Joystick 

The CGC 7900 joystick (optional) is a three-axis input 
device. It generates an interrupt to the system whenever it 
is moved off its rest position, in anyone of the three axes. 

Format: 

illR \ <0 or 1> 

Use the character 0 to disable the joystick, or 1 to enable 
it. 

When the joystick is enabled, it controls cursor 
movement and zoom. The cursor may be moved in the X or Y 
direction by moving the joystick in the appropriate 
direction. Holding the SHIFT key while moving the joystick 
will move the cursor one pixel at a time, for exact 
positioning. The Z-axis of the joystick is used to zoom in 
and out: twist the top knob clockwise to zoom in, 
counterclockwise to zoom out. 

In addition, the joystick allows selection of color. 
Once the cursor is positioned over an area whose color is to 
be changed, hold down the Ml key and use the joystick to 
modify the color of the area:- This "Joy-Color" mode allows 
you to change the red component of a color by moving the 
joystick in the X-direction; Y cor responds to green, and Z 
(twist) corresponds to blue. Once the color is satisfactory, 
release the joystick and the chosen color will remain. The 
SHIFT key may be used for slow color changes. 

At the moment the joystick is enabled, the system reads 
values from all three axes, to establish the "zero" position. 
It is important that the joystick be at rest when the 
"enable" command is given. . 

NOTE: 

Page 8-30 

Since the joystick operates at the interrupt 
level, nothing done with the joystick may be stored 
in the Create Buffer. 

Version 1.4 



Chapter 8 79~~ Operator's Manual Pan and Zoom 

Pan and Zoom 

The CGC 79~~ includes hardware facilities to zoom or pan 
a high-resolution image in the Bitmap. These functions do 
not affect the contents of Bitmap memory; they alter the way 
in which the information in the Bitmap is displayed on the 
CRT screen. 

Zoom is performed by magnifying each pixel in memory. 
The system will zoom in any integer multiple from 1 to 16 
times. Commands described below allow setting the X and Y 
zoom levels simultaneously, or independent of one another. 

Pan is performed by altering the address of the pixel 
being displayed in the upper left corner or the screen. When 
the zoom level is higher than 1 (default), pan allows viewing 
different areas of the image at high magnification. Pan is 
also used to allow viewing the bottom 256 lines of Bitmap 
memory, which are normally hidden offscreen below the 
viewable area. 

Note that all pan and zoom functions apply to Bitmap 
memory only. The Overlay cannot be panned or zoomed. This 
allows menus, or other information in the Overlay to remain 
stationary while the Bitmap image may be examined with pan or 
zoom. 

Pan and zoom are manipulated using the cursor control 
keys (the four arrows and HOME), and the ERASE PAGE, CLEAR 
LINE. and RECALL keys, allU'Sed in conj unction with the M2 
modifier key. --

Pan Left M2 left-arrow 

Pan Right M2 right-arrow 

Pan Up M2 uE-arrow 

Pan Down M2 down-arrow 

Reset Pan M2 HOME 

You can use the REPEAT key to speed up any of the panning 
operations. 

The two following commands "always zoom towards (or away 
from) the Bitmap cursor in window A (the "Master Window"): 

Zoom Up 

Zoom Down 

Version 1.4 

M2 ERASE PAGE 

M2 RECALL 

Page 8-31 



Pan and Zoom 7900 Operator's Manual Chapter 8 

The following command adj usts the Pan registers so that the 
cursor is visible. The cursor is not moved. 

Pan to Cursor Location M2 CLEAR LINE 

See the Joystick description for other ways of controlling 
zoom and pan. 

NOTE: 

Page 8-32 

Joystick zoom and pan always tries to keep the 
cursor centered on the screen without causing the 
image to wrap. This is an aesthetic judgement and 
can only be overridden by using Absolute Zoom and 
Pan. 

Version 1.4 



Chapter 8 7999 Operator's Manual Pan and Zoom 

Absolute Pan 

Format: 

PAN X-Y <X>,<Y>, 

Where <X>, <Y> are the desired coordinates of the upper left 
corner of the screen. The pan registers will be aligned to 
place the point <X>, <Y> in the upper left corner of the 
viewable screen. (Only absolute coordinates are allowed in 
this command: any scale factors in use will not be 
recognized. ) 

NOTE: 

PAN X-Y is a single key. This label is on the 
front of the key marked MOVE X-Y. 

Examples: 

PAN X-Y 511,383, 

The point 511. 383, which is normally the center of the 
screen, will be moved to the upper left corner of the screen. 

PAN X-Y 9.9. 

This command will reset pan to its default state, and is 
equivalent to M2 HOME. 

Version 1.4 Page 8-33 



Pan and Zoom 7900 Operator's Manual Chapter 8 

Absolute Zoom 

Format: 

ESC Z <ZX> <Zy> 

Where <ZX> and <ZY> are each single characters. Note that no 
commas are used to separate <ZX> and <ZY>. 

The binary composition of the ASCII characters <ZX> and 
<ZY> will set the zoom registers. Since the zoom factor can 
vary from 1 to 16, the contents of the zoom registers may 
also take on 16 different values. Each of the two zoom 
registers may be set to any value from 0 to 15 (0 corresponds 
to a zoom factor of 1, or default conditions) •. The X zoom 
and Y zoom registers may be set to different val ues, if 
desired. 

The lowest 4 bits of the ASCII characters <ZX> and <ZY> 
are used to set the zoom registers. Any printing ASCII 
characters can be used. The following table provides a 
sample list of characters which will produce good results. 

Zoom Factor ASCII Character 

1 (default) @ 
2 A 
3 B 
4 C 
5 D 
6 E 
7 F 
8 G 
9 H 

10 I 
11 J 
12 K 
13 L 
14 M 
15 N 
16 (maximum) 0 

Page 8-34 Version 1.4 



Chapter 8 7999 Operator's Manual Pan and Zoom 

Examples: 

ESC Z B B 

Horizontal and vertical zoom factors are now set to 3. 

ESC Z @ @ 

Horizontal and vertical zoom factors are now set to 1. This 
is the default condition. 

ESC Z @ D 

Horizontal zoom is now 1, and vertical zoom is now set to 5. 
The image on the CRT is "stretched" vertically. 

Version 1.4 Page 8-35 



Roll & Page 7900 Operator's Manual Chapter 8 

Bitmap Roll and Page 

The Bitmap defaults to Page. This is most suitable for 
drawing images, since no part of the window is ever moved as 
new items are added to the image. 

If the Bitmap is to be used for extensive alphanumerics, 
Roll may be desirable. Roll is most suited for computer 
terminal applications. In Roll, as the last line of the 
window is filled with text, the top line nroll s • off the top 
of the window and is lost'. To enter Roll, press the ROLL 
key: 

ROLL 

The key will illuminate, and the window is in Roll. 

To leave Roll and return to Page, use the SHIFT modifier 
with the ~ key: 

SHIFT ROLL 

The lighted key will extinguish and the window is .in Page 
mode again • 

. The Bitmap is considerably slower than the Overlay when 
rolling data, since there are over a million pixels in Bitmap 
memory; a roll may move most of these pixels. Only the 
pixels within a given window are affected by a roll, however, 
so the smaller the window is defined to be, the faster the 
roll will occur (usually). 

The exception to this rule is when the window is defined 
to be the full Bitmap memory, 0, 0 to HJ23, 1023. (This is 
the default window size at power-up.) When the window is this 
size, a fast hardware roll circuit is used to roll the 
Bitmap. However, this hardware roll takes place when text 
moves past the BOTTOM of Bitmap memory, and this area is 
normally invisible (unless Pan is being used). See nOverlay 
Roll and Pagen for.more comments on this subject. 

Page 8-36 Version 1.4 



Chapter 8 7900 Operator's Manual Rubber Band 

Rubber Band 

Format: 

RUBBER BAND 

When the RUBBER BAND key is pressed, several things happen. 
The current cursor position, and the current foreground 
color, are memor ized. The upper half of the Color Lookup 
Table (which contains all blinking color information) is 
saved, and reloaded with the current foreground color. Blink 
is disabled. The RUBBER BAND key ~ights up. 

While Rubber Band is on, moving the cursor will cause a 
vector to be drawn from a previous cursor position to the 
current position. One end of this vector appears to follow 
the cursor, and "stretches" to meet the cursor; thus the 
name, "Rubber Band." The "rubber vector" is always drawn in 
whatever foreground color was in effect when Rubber Band was 
entered. (You may set a new foreground color while in Rubber 
Band, but this will affect the color of the figures you draw, 
NOT the color of the "rubber vector.") 

While Rubber Band is on, you may be in any Plot Submode, 
or in Alpha. Rubber Band will simply continue to draw 
vectors wherever the cursor goes. Every time a coordinate 
argument is entered, Rubber Band memorizes the cursor 
position and begins drawing the "rubber vector" from this new 
location. 

To leave Rubber Band, press: 

SHIFT RUBBER BAND 

The key will extinguish. The upper half of the Color Lookup 
Table is restored, and Blink is re-enabled. 

NOTE: 

Rubber Band requires that your image memory 
contain a plane number 7. If plane 7 does not 
exist in your system, Rubber Band cannot operate. 

Plane 7 is also the default Blink plane. It is not 
possible to use Rubber Band and Blink at the same 
time, unless Blink is assigned to another plane. 
Rubber Band may destroy any parts of a picture that 
were drawn with blinking colors. 

Version 1.4 Page 8-37 





Chapter 9 79~~ Operator's Manual Plot Submodes 

Chapter 9 -- Plot Submodes 

This section describes the different Plot Submodes available 
for generating primitive figures. 

Each Submode is entered by pressing a key, such as CIRCLE, 
or entering a Plot code sequence. After entering a Submode, you 
may draw as many figures of that type as you wish, without 
retyping the original Submode key. 

Each figure will require that you enter a certain number of 
coordinates or parameters. For example, each circle requires a 
set of X, Y coordinates for the center and a radius. After the 
first three parameters have been entered, the system has 
sufficient information to draw one circle, and it will proceed to 
do so. If three more numbers are entered, they will be 
interpreted as instructions to draw another circle. This process 
continues until the Submode is exited, by entering another 
Submode or by leaving Plot altogether (and returning to Alpha). 

As you will see in the examples, each argument given to a 
Plot Submode must be delimited. The delimiter may be a comma or 
a semicolon; either character is recognized as a valid delimiter. 
(The exception is for Polygons; you must use commas to separate 
each argument and terminate the argument list with a semicolon.) 
We suggest that a comma be used to separate numbers in a group 
(such as the three arguments which determine a circle), but that 
the semicolon be used to end the group. When organizing large 
volumes of numeric data, the group separators will be very 
useful. 

For the sake of simplicity, in our examples, we have used a 
comma everywhere as a delimiter. The semicolon will be most 
useful when entering large amounts of data from a host device. 

Version 1.4 Page 9-1 



Plot Submodes 

." ..... 
<..C 

C ..., 
f'O 

c.c 
I 

....-
• 

(J) 

C 
0-
a 
o 
0.. 
f'O 
(J) 

...... 
a ...... 
..... 
< 
ro 
CJ) 

'-' 

. Page 9-2 

7900 Operator's Manual 

.. 
0 ,.. ... .. .. 
'"' 

/~ 
/~ I ':--lJi 

I i 
i 

I 

I 

> 
;:0 
n 

w 
o . 
a 

co 
o . 

Chapter 9 

D 
._------_._-......+---------

;:0 
m 
Ci 
-i 

-i 
;:0 ..... 
> 
z 
C1 
r 
m 

Ci 
C 
;0 

< 
m 

i 
i 

n 
I ! 

U 
-r--

~' '",,-

' ",> 

1,/ 
V 

i 

I 

-0 
r 
a 
-i 

a 

n ..... 
;:0 
n 
r 
rn 

w 
0 . 

r. 

t:J 
a 
-I <> 

---~-.---.------ .. --.------
! 

• 
;:0 
:> 
-< 

w 
o . 
a . 

< 
rn 
n 
-i 
a 
;:0 

\ 
Version 1.4 



Chapter 9 7900 Operator's Manual 

· 0 -C\J 

· 0 
m 
· 0 

co 
C\J 

· 0 
m -· 0 
..q-

n C\J 

· 
il 

0 
0 .... 

; I ! I n · I ! 

I i 
0 
0 I .... 

I 0:: 
I < 
I III , 

X 

U 
Z 
..... 

! --;-------------

1m 
(,) 

"-
1m 
1m 
U 
u 
1m 
1m 

I( 
u L __ 

0:: 
0 
I- 0:: ,-U 0 
UJ I-
> u 

w 
I- > 
< 
u U 
Z Z 
0 ...... 
u 

Version 1.4 

~ 

Plot Submodes 

"U > C 

I- a 
0 
....J 
a. 

· 0 .... 
..... 
· 0 

..q-.... 
· 0 

r--.. .... 
· 0 

co 
· 0 

co .... 
· 0 

0 .... 
· 0 

0 -
0:: 
< 
al , 
>-

u 
z 
...... 

. 

. 
• 
l-
0 
....J 
a. 

(J) 

OJ 
-0 
o 
E 

..0 
::l 

U') 

a... 

'­
OJ 

..c:. 
.a,..) 

<::) 

• 
N 

I 
en 

OJ 
'­
::l 
en 

u.. 

Page 9-3 



Arc 

Arc 

79gg Operator's Manual Chapter 9 

Format: 

ARC <X>,<Y>, <R>, <start>, <delta>, 

Where: 

<X>,<Y>, are the coordinates of the center of the arc 

<R> is the radius of the arc 

<start> is the starting angle of the arc (degrees) 

<delta> is the number of degrees of arc to plot 

This software is optional, and mayor may not be installed 
in your system. 

Arc submode will dra~ a part of a circle. The circle (of 
which the arc would be a part) is centered at <X>, <Y>. The 
arc is drawn from the angle specified by <start>, and will 
proceed for <delta> degrees. (The zero degree position for 
<start> is toward the right.) 

If the "Fill" attribute is currently on, the arc w~ll be 
filled. This provides a quick way to draw "pie-chart" 
displays. 

Example: 

SET YELLOW 
rnL 
ARC 511,383, 3g, 3g, 3gg, 

An arc will be drawn at the center of the screen, with 
radius H'Jg. It will start at the zero-degree angle and 
proceed for 9g degrees (ending directly above the center). 
This example draws a quarter of a circle. 

<start> and <delta> are a~ays entered as integer degree 
values, and are unaffected by any scale factors in use. 

NOTE: 

This algorithm sacrifices accuracy for speed. Arc 
is accurate to one degree. 

Page 9-4 Version 1.4 



Chapter 9 7900 Operator's Manual Circle 

Circle 

Format: 

CIRCLE <X>, <Y>, <R>, 

Where: 

<X>,<Y>, are the coordinates of the center of the 
circle 

<R> is the radius 

A circle will be drawn at the specified center coordinate 
<X>, <Y>, with radius <R>. The circle will be drawn in the 
currently specified foreground color. If the "Fill" 
attribute is currently on, the circle will be filled with the 
foreground color. 

Example: 

CIRCLE 511,383,100, 

would draw a circle centered at 
center of the visible Bitmap area. 

Alternate Format: 

CIRCLE. <R>, 

511, 383, which is the 
The radius will be 100. 

A circle will be drawn at the current cursor position 
("Circle at this Point") with radius <R>. 

Version 1.4 Page 9-5 



Circle 7900 Operator's Manual Chapter 9 

Two-point Circle 

Format: 

PLOT 0 <x>,<y>, <Xl>,<Yl>, 

Where: 

<X>,<Y>, are the coordinates of the circle's center 

<Xl>,<Yl>, are used to set the radius of the circle 
(see below) 

NOTE: 

The PLOT key used in this command is the key 
label"I"e<rMODE and PLOT, in the typewriter area of 
the keyboard. It is NOT the illuminated PLOT key 
in the upper keyboard area. 

The character "On used in this function is the 
alphabetic, upper-case letter 0 and not the 
character zero. 

Two-Point Circle operates exactly like Circle, except that 
the radius is determined by the absolute value of either 
IX-XII or IY-YII, whichever is greater. The smaller number 
is ignored. 

The Two-Point Circle is most useful with certain input 
devices, like the Light Pen, which always send pairs of 
numbers. The Light Pen does not work with Circle since 
Circle requires three arguments. Two-Point Circle requires 
four arguments for each figure it draws, like most other Plot 
SUbmodes. 

If the Fill attribute is on, the Two-Point Circle will 
be filled. 

Page 9-6 Version 1.4 



Chapter 9 7gee Operator's Manual Curve 

Curve 

Format: 

CURVE <Xl>,<Yl>, <X2>,<Y2>, <X3>,<Y3>, <X4>,<Y4>, 

This software is optional, and mayor may not be installed 
in your system. 

The Curve algor i thm draws a figure called a Four-Point 
Bezier Curve. Each curve requires that four coordinates be 
entered. The four coordinates describe the curve as follows: 

<Xl>, <Yl> (point 1) is the starting point for the 
curve, and the curve will pass through this point. 

<X4>, <Y4> (point 4) is the ending point for the 
curve, and the curve will pass through this point. 

<X2>, <Y2>, (point 2) and <X3>, <Y3> (point 3) are 
points which exert an Rinfluence" on the curve. 
The curve will tend to be "pulled" toward these 
points, but will not usually pass through either of 
them. The curve is well-behaved, however, since 
the curve will always lie entirely within the 
polygon formed by drawing a line between the four 
points. 

At point 1, the curve will be tangent to the line 
from point 1 to point 2. 

At point 4, the curve will be tangent to the line 
from point 3 to point 4. 

Example: 

CURVE e,e, e,767, le23,e, le23,767, 

This example draws a curve which begins at the upper left 
corner of the screen and ends at the lower right corner. The 
other two corners "pull" the curve into an S-shape. 

Ver si-on 1.4 Page 9-7 



Curve 7999 Operator's Manual Chapter 9 

Alternate Format: 

CURVE • • • 

The cursor position may be used to specify coordinates. For 
each coordinate pair, move the cursor to the desired location 
and strike the period (decimal point) key. 

The curve function is well suited to human interaction. 
Very complex figures can be designed by linking together some 
simple curves. Since the curve is always well~defined at its 
end points, it is possible to join two or more curves 
perfectly. This is done by arranging point 4 of one curve to 
be the same as point 1 of the next, and making points 3 and 4 
of one curve collinear with point 2 of the next. 

NOTE: 

Page 9-8 

Since Curve uses a recursive algorithm, points may 
not always join perfectly due to roundoff error. 
This could be disastrous when using a Complex Fill 
mode. 

Curve points MUST always lie within the scaled 
screen boundaries. 

Version 1.4 



Chapter 9 79BB Operator's Manual Dot 

Dot 

Format: 

DOT <X>,<Y>, 

To initiate the Dot submode, hold down the SHIFT key and 
press the key labelled DOT and VECTOR. After each pair of 
coordinates is entered, a single dot will be placed on the 
screen, in the currently specified foreground color. 

Example: 

DOT 511,383, 

This will place a dot in the center of the visible Bitmap 
screen. A single dot is very small, and may be difficult to 
see. 

As with all Plot Submodes, now that we have entered the 
Submode we can enter more information and additional figures 
will be drawn. In DOT Submode, a single dot will be placed 
on the screen every"Ume we enter another pair of <X>, <Y>. 
coordinates. 

Alternate Format: 

DOT. 

A single dot will be placed on the screen under the cursor. 
It will be necessary to move- the cursor in order to see the 
dot. 

Version 1.4 Page 9-9 



Inc. Vector 7900 Operator's Manual Chapter 9 

Incrementa1 Vector 

Format: 

INC VECTOR <X>,<Y>, [<dX><dY> ••• ] 

Where: 

<X>, <Y>, are the starting coordinates for the set of 
short vectors, 

<dX><dY> are single characters (NOT numbers) which 
determine the displacement in the X and Y 
directions. Note that no commas are used to 
separate <dX> and <dY>. 

Incremental vector draws a short vector from the point <X>, 
<Y>. The length and direction are determined by the 
characters <dX> and <dY>. The bits of <dX> determine a 
displacement in the X direction, up to plus or minus 31 
pixels. <dY> does the same in the Y direction. 

If more <dX> and <dY> characters are entered, more short 
vectors will be drawn and will be concatenated with previous 
short vectors. 

The bits in <dX> and <dY> are interpreted as follows: 

7 6 5 4 3 2 1 
+---+---+---+---+---+---+---+---+ 
IxllISI*I* 1* 1* 1* 1 
+---+---+---+---+---+---+---+---+ 

••••• magnitude ••••• 

The state of bit 7 is igno~d. Bit 6 must be a 1. Bit 5 is 
a sign bit, 0 for a positive displacement and 1 for a 
negative displacement. Bits 4 through 0 are used as a 5-bit 
magnitude, capable of specifying numbers up to 31. Negative 
numbers are NOT interpreted in two's complement form. 

Page 9-10 Version 1.4 



Chapter 9 7900 Operator's Manual Inc. Vector 

The following table illustrates the displacement 
corresponding to each ASCII character. Note that since bit 6 
is always set to 1, the characters used for <dX> and <dY> 
will always be in the printable ASCII set. No 
control-characters are used (except DEL). 

Binary ASCII displacement Binary ASCII displacement 

1000000 @ 0 1100000 " 0 
1000001 A 1 1100001 a -1 
1000010 B 2 1100010 b -2 
1000011 C 3 1100011 c -3 
1000100 D 4 1100100 d -4 
1000101 E 5 1100101 e -5 
1000110 F 6 1100110 f -6 
1000111 G 7 1100111 g -7 
1001000 H 8 1101000 h -8 
1001001 I 9 1101001 i -9 
1001010 J 10 1101010 j -10 
1001011 K 11 1101011 k -11 
1001100 L 12 1101100 1 -12 
1001101 M 13 1101101 m -13 
1001110 N 14 11011HJ n -14 
1001111 0 15 1101111 0 -15 
1010000 P 16 1110000 P -16 
1010001 Q 17 1110001 q -17 
1010010 R 18 1110010 r -18 
1010011 S 19 1110011 s -19 
1010100 T 20 1110100 t -20 
Hll0101 U 21 1110101 u -21 
1010110 V 22 1114110 v -22 
1010111 W 23 1110111 w -23 
1011000 X 24 1111000 x -24 
1011001 Y 25 1111001 Y -25 
1011010 Z 26 1111010 z -26 
1011011 [ 27 1111011 { -27 
1011100 \ 28 1111100 I -28 
1011101 ] 29 1111101 } -29 
1011110 .... 30 1111110 -30 
HH1111 31 1111111 DEL -31 

Version 1.4 Page 9-11 



Inc. Vector 7999 Operator's Manual Chapter 9 

Examples: 

INC VECTOR 511,383,D E 

The displacements for ASCII characters D and E are +4 and 
+5, respectively. A vector will be drawn from the point 511, 
383, to a point 4 pixels to the right and 5 pixels below the 
original point. Note that a positive Y-displacement moves 
DOWN the screen since the Y=9 line is at the top. 

INC VECTOR 699,499,D E D e 

This set of short vectors begins at the point 699, 499. The 
first vector will be drawn from this point, 4 pixels to the 
right, and 5 down. A second vector will follow, 4 to the 
right and 5 up (the displacement for the e character is -5). 
So the end point of the set has the same Y coordinate it had 
at the beginning, but its X coordinate is shifted 8 to the 
right. 

INC VECTOR • J A 

The cursor position may be used t9 enter the initial 
coordinate of the set. To use this format, position the 
cursor to the desired location and strike the decimal point 
key to enter the cursor position as a coordinate pair. Then 
enter the ASCII character displacements as before. 

Page 9-12 Version 1.4 



Chapter 9 79~~ Operator's Manual Inc. X-Bar 

Incremental X-Bar 

Format: . 

INC X-BAR <X~>,<Y~>,<Xl>, [<X2>,<X3>, ••• ] 

Where: 

<X~>,<Y~> 

<Xl> 

are the coordinates of one endpoint of 
the first bar 

is the X-coordinate of the other endpoint 
of the first bar (the previous 
Y-coordinate is used as a reference -- see 
below) 

<X2>,<X3>,... are X-coordinates of the endpoints of 
subsequent bars (see below) 

A horizontal bar (actually a rectangle) is drawn, with 
corners located at <X~>, <Y~>, and <Xl>, <Y~>+<w>. The 
default value of <w> is 3. The value of <w> may be altered 
by the "8etVector Width" command. If the "Fill" attribute 
is currently on, the bar will be filled. 

After the first bar is drawn, more X-coordinates may be 
entered. Additional bars will be drawn adjacent to the 
existing ones. The effective coordinates for the corners of 
each bar are: 

<X~>, <Y~> + (n-l)<w> for one corner, 
<Xn>, <Y~> + (n)<w> for the diagonally opposite corner, 

where n is the bar number (n=l for the first bar). 

Version 1.4 Page 9-13 



Inc. X-Bar 7900 Operator's Manual Chapter 9 

Example: 

INC X-BAR 511,100, 611, 711, 811, 

Three bars are drawn. Each will be drawn from the vertical 
line X=5l1 to the required X-coordinate. The first bar will 
begin at the horizontal line Y=100, and will extend to the 
line Y=104. The next bar will be drawn from Y=105 to Y=109. 
As many additional X-coordinates may be entered as you 
require. 

INC X-BAR 511,400, 611, 411, 711, 311, 

This time four bars are drawn. Notice that the bars may be 
drawn either to the right or left of the original Y=<Y0> 
line. 

If desired, the decimal point may be used to enter the 
cursor position for each point. The first time the decimal 
point is pressed, it will enter the initial <X0>, <Y0> 
position. Each subsequent time the decimal point is pressed, 
the X-coordinate will be taken from the current cursor 
position (the Y-coordinate will be discarded). 

Page 9-14 Versi6n 1.4 



Chapter 9 79BB Operator's Manual Inc. Y-Bar 

Incremental Y-Bar 

Format: 

INC Y-BAR <XB>,<YB>,<Yl>, [<Y2>,<Y3>, ••• ] 

Where: 

<XB>,<YB> 

<Yl> 

are the coordinates of one endpoint of 
the first vector 

is the Y-coordinate of the other endpoint 
of the first vector (the previous 
X-coordinate is used as a reference -- see 
below) 

<Y2>,<Y3>, ••• are Y-coordinates of the endpoints of 
subsequent vectors (see below) 

Operation is identical to Incremental X-Bar. Vertical bars 
are drawn with width <w>, set by the "Set Vector Width" 
command. The defaul t val ue of <w> is 3. If the "F ill" 
attribute is currently on, the bar will be filled. 

The diagonal coordinates of the first bar are <XB>, <YB> 
and <XB>+<w>, <Yl>. If additional Y-coordinates are entered, 
more bars will be drawn. The effective coordinates for each 
bar are: 

for one corner, <XB> + (n-l)<w>, <YB> 
<X0> + (n)<w>, <Yn> for the diagonally opposite corner. 

where n is the bar number (n=l for the first bar). 

Example: 

INC Y-BAR 0,383, 300, 200, 10B, 200, 3BB, 

Five vertical bars will be drawn, in a histogram-type 
format. 

If desired, the decimal point may be used to enter the 
cursor position for each point. The first time the decimal 
point is pressed, it will enter the initial <X0>, <Y0> 
position. Each subsequent time the decimal point is pressed, 
the Y-coordinate will be taken from the current cursor 
position (the X-coordinate will be discarded). 

Version 1.4 Page 9-15 



Polygon 7900 Operator I s Manua,l Chapter 9 

Polygon 

Format: 

POLYGON <Xl>,<Yl>,<X2>,<Y2>, [<Xn>,<Yn>, ••• ] 1 

This software is optional, and mayor may not be installed 
in your 7900 system. If Polygon is not installed, a polygon 
may be drawn with concatenatErl vectors and filled with AREA 
FILL, if needed. 

Polygon draws a set of concatenated vectors, defined by 
the coordinate pairs <Xl>, <Yl>, through <Xn>, <Yn>. The 
endpoint of the last vector is joined to the first vector, to 
form a closed polygon. Up to 30 coordinate pai rs may be 
entered. (If you need more than 30 points, use "Large 
Polygon," described on the next page.) 

The semicolon MUST be entered after the final coordinate 
pai r, to signal that all the coordinates have been entered 
and that drawing should now begin. NOTHING' IS DRAWN until 
the semicolon is entered. 

When entering coordinates in standard decimal form, as 
in the format above, the last coordinate pair must be 
terminated by a comma and then by the required semicolon. 

Example: 

POLYGON 0,0, 511,383, 1023,O, 511,767, 1 

The polygon is drawn from the or igin (upper left corner of 
the screen) to the center of the screen, to the upper right 
corner, to the center of the bottom. The final vector 
connects the center bottom to the origin. 

Note that the final product is very similar to a set of 
concatenated vectors. But since all the coordinates are 
entered before drawing begins, the object appears to be drawn 
much faster. 

Alternate Format: 

POLYGON. • • • . .. ; 

The cursor position may also be used to specify coordinates. 
The cursor should be moved to each point where a vertex of 
the polygon is desired. The decimal point key should then be 
struck at each point. After all points have been entered in 
this manner, the final semicolon must be entered. 

Page 9-16 Version 1.4 



Chapter 9 7900 Operator's Manual Polygon 

The polygon will be filled if the Fill attribute is 
active. Filled polygons are drawn somewhat differently than 
unfilled figures, but the result is the same. 

Large Polygons 

Format: 

ESC P <Xl>,<Yl>, <X2>,<Y2>, ••• ; 

The Large Polygon command must be used for figures with more 
than 30 points. It is independent of windows and assignable 
devices. It can be used the same way as the normal POLYGON 
command, except that the dot ( .) cannot be used to enter 
coordinates. 

The default size limit for Large Polygon is 250 
coordinates. The Thaw parameter EscArgZ controls this limit 
and may be altered using THAW. Allow 4 bytes per coordinate 
plus room for 1 extra coordinate. 

NOTE: 

The fill attribute of window 0 is used with Large 
Polygon. 

Version 1.4 Page 9-17 



Ray 

Ray 

7900 Operator's Manual 

Format: 

RAY <X>,<Y>, <R>, <angle>, 

Where: 

Chapter 9 

<X>,<Y>, are the coordinates of one end of the ray 

<R> is the length of the ray 

<angle> is the angle from <X>,<Y> at which the ray is 
drawn. 

This software is optional, and mayor may not be installed 
in your system. 

Ray submode draws a vector in polar form. The origin of 
the vector is specified as an <X>, <Y> coordinate pair. The 
length and direction are then specified, which determine the 
other end point of the vector. 

Example: 

~ 511,383, 100, 45, 

A ray will be drawn from the center of the screen, toward 
the upper right quadrant, at an angle of 45 degrees. If this 
example is executed after the Arc example in the previous 
section, it will divide the 90 degree arc into two 45 degree 
segments. 

One application for Ray is the development of 
"pie-chart" graphs. Ray allows the programmer to subdivide a 
circle into any desired segments, simply by entering the 
angle in degrees. (The <angle> is alw~s entered in integer 
degrees, and is not affected by any scale factors in use.) 

Page 9-18 Version 1.4 



Chapter 9 7 ga 0 Operator I s Manual Rectangle 

Rectangle 

Format: 

RECT <Xl>,<Yl>, <X2>,<Y2>, 

A rectangle will be drawn whose opposite corners are located 
at <Xl>, <Yl>, and <X2>, <Y2>, in the cur rently specif ied 
foreground color. If the "Fill" attribute is currently on, 
the rectangle will be filled with the foreground color. 

Example: 

RECT 0,0, 511,383, 

would draw a rectangle around the upper left quarter of the 
screen. 

Alternate Format: 

RECT •• 

The cursor position is used to specify the opposite corners 
of the rectangle. The cursor should be moved to the desired 
locations and the decimal point struck at each location 
("Rectangle from this Point to this Point"). 

Version 1.4 Page 9-19 



Triangle 7999 Operator's Manual Chapter 9 

Triangle 

Format: 

TRIANGLE <Xl>,<Yl>, <X2>,<Y2>, <X3>,<Y3>, 

A triangle will be drawn between the three specified points, 
in the currently specified foreground color. If the "Fill" 
attribute is currently on, the triangle will be filled with 
the foreground color. 

Example: 

TRIANGLE 9,9, 9,383, 511,383, 

will draw a triangle from the upper left corner, vertically 
halfway down the screen, to the center of the screen, and 
return to the starting point. 

Alternate Format: 

TRIANGLE • • • 

The cursor position may be used to specify coordinates. The 
cursor should be moved to each location where a vertex of the 
triangle is desired, and the decimal point struck at each 
location ("Triangle from this Point to this Point to this 
Point"). 

NOTE: 

Page 9-29 

For filled tr iangles, use POLYGON if your system 
has it. It is faster and more accurate. 

Version 1.4 



Chapter 9 79""'''"' Operator's Manual Vector 

Vector 

Format: 

VECTOR <Xl>,<Yl>, <X2>,<Y2>, 

Where: 

<Xl>,<Yl>, are the coordinates of one end of the vector 
<X2>,<Y2>, are the coordinates of the other end 

A vector will be drawn from point <Xl>, <Yl>, to point <X2>, 
<Y2>, in the currently specified foreground color. 

If additional pairs of points are entered, a new vector 
will be drawn between them. The new vector will not be 
connected to the first one (see Concatenated Vector) • 

Example: 

VECTOR "",,,,",,511,383, 

A vector will be drawn from the ""', "",, position (the upper 
left corner) to the center of the visible screen. 

Alternate Format: 

VECTOR •• 

The decimal point may be used to enter coordinates. The 
cursor control keys should be used to move the cursor to the 
desired end points of the vector, and the decimal point 
should be struck once at each point ("Vector from this Point 
to this Point"). 

Version 1.4 Page 9-21 . 



Concat. Vector 7900 Operator's Manual Chapter 9 

Concatenated Vector 

Format: 

CON CAT VECTOR <Xl>,<Yl>, <X2>,<Y2>, [<X3>,<Y3>, ••• ] 

Where: 

<Xl> ,<Yl>, are the starting coordinates of. the set of 
concatenated vectors 

<X2> ,<Y2>, are the coordinates of the endpoint of the 
first vector in the set 

<X3>,<Y3>, and all other coordinates, are endpoints of 
subsequent vectors in the set 

A vector will be drawn from <Xl>, <Yl>, to <X2>, <Y2>, and 
another connected vector from <X2>, <Y2>, to <X3>, <Y3>, and 
so on. Each additional coordinate entered will cause a new 
vector to be drawn from the endpoint .of the previous vector. 

Example: 

CONCAT VECTOR 0,0, 511,383, 1023,0, 1023,767, 

A vector will be drawn from the upper left corner, to the 
center, to the upper right corner, to the lower right corner. 
Any number of additional points could be added. 

Alternate Format: 

CONCAT VECTOR ••• •••• 

The decimal point may be used to enter coordinates •. The 
cursor should be moved to each location where a vector 
endpoint should lie, and the decimal point struck at each 
location. ("Concatenated Vector from this Point to this 
Point to this Point ••• ") 

NOTE: 

Page 9-22 

If you wish to terminate one set of concatenated 
vectors and begin another set, you must hit the 
CONCAT VECTOR key again. 

Version 1.4 



Chapter 9 7 9i"~ Ope r ator I s Manual Bold Vector 

Bold Vector 

Format: 

PLOT v <XI>,<YI>, <X2>,<Y2>, 

This software is optional, and mayor may not be installed 
in your 790~ system. 

NOTE: 

The PLOT key used in this command is the key 
labelled MODE and PLOT in the typewriter area of 
the keyboard. It is NOT the lighted PLOT key in 
the upper keyboard area. ----

This command requires entering a lower case 
letter, v. If the ALPHA LOCK key is in its normal 
(up) position, hold down the SHIFT key while 
pressing the "V" key to produce a lower case v. 

Operation is identical to Vector, except that a bold vector 
is drawn whose width is determined by the "Set Vector Width" 
command. The bold vector has rounded ends, produced by 
drawing small circles at each end of the vector. This makes 
connected bold vectors smoother (see "Concatenated Bold 
Vector" on the next page). 

The value of <w> given by the "Set Vector Width" command 
is used as a radius for the circle at each end of the bold 
vector. Thus, the actual width of the bold vector is twice 
<w> plus one. If <w> is zero, a normal (not bold) vector is 
drawn. 

Version 1.4 Page 9-23 



Concat. Bold Vector 791iHJ Operator's Manual Chapter 9 

Concatenated Bold Vector 

Format: 

PLOT w <XI>,<YI>,<X2>,<Y2>,[<Xn>,<Yn>, ••• ] 

This software is optional, and mayor may not be installed 
in your 7900 system. 

NOTE: 

The PLOT key used in this command is the key 
labelTe'O'MODE and PLOT, in the typewriter area of 
the keyboara7 It is NOT the illuminated PLOT key 
in the upper keyboard area. ----

This command requires entering a lower case 
letter, w. If the ALPHA LOCK key is in its normal 
(up) position, hold down the SHIFT key while 
pressing the "W" key to produce a lower case w. 

Operation is identical to Concatenated Vector, except that a 
series of bold vectors is drawn. See the description of Bold 
Vector on the previous page. 

Page 9-24 Version 1.4 



Chapter 9 79~~ Operator's Manual Vector Width 

Set Vector Width 

Format: 

V. WIDTH <w>, 

Where: 

<w> is a decimal number, ~ to 65535 

NOTE: 

V. WIDTH is a single key. The name "V. WIDTH" is 
printed on the front of the SIZE key. 

This command affects the Incremental X-Bar and 
Incremental Y-Bar Plot Submodes. It also sets the vector 
width for the optional "Bold Plotting n software routines. 

When a wide vector is required, the most recently 
specified value of <w> is used. The default value of <w> is 
3. If <w> is 0, normal (thin) lines will be drawn. 

The value of <w> is specific to a window; each window 
may have its own vector width defined. If <w> has not been 
defined in a window, the default value will be used. 

Version 1.4 Page 9-25 



Drawn Characters 7909 Operator's Manual Chapter 9 

Vector-Drawn Characters 

Format: 

PLOT E <angle>, <flag> 

Where: 

<angle> is a decimal angle, in degrees 

<flag> is the character 1, or 0 , to indicate whether 
proportional spacing should be used 

NOTE: 

The PLOT key used in this command is the key marked 
with MODE and PLOT labels, on the typewriter area 
of th~yboard:--It is NOT the lighted PLOT key in 
the upper keyboard area. ----

This software is optional, and mayor may not be installed 
in your system. 

Vector-drawn characters may be drawn at any angle. The 
characters are drawn using bold vectors. After entering the 
command to begin this Plot Submode, you may enter characters 
normally and they will be plotted on the Bitmap screen. 

The "Set Character Size" and "Set Vector Width" commands 
may be used to set up the characters for your application. 
In addition, since the vector-drawn characters use an 8 by 12 
matr ix (instead of the normal 6 by 8) , the "Set 
Intercharacter Spacing", command may be used to adjust the 
system for a larger character font. An appropriate setting 
is ~ I 8, 12, when proportional spacing is NOT in use. 

The vector-drawn characters are always in "overstr ike" 
mode. There is no way to backspace, erase, or otherwise 
perform text editing functions on these characters. It is 
recommended that this character set be used primarily from a 
program or . a host system, so that backspacing will not be 
required. 

Page 9-26 Version 1.4 



Chapter 9 7900 Operator's Manual Drawn Characters 

Example: 

PLOT E 0, 1 Plotted characters, angle of zero 
degrees (horizontal) , proportional 
spacing ON 

SIZE 4, 4, Character size 4 X 

MOVE X-Y 10, 10, Move cursor out in the open 

This is a test Type in some text. 

If you wish the text to come out nmirrored n upside-down 
or backwards, you can specify a negative number in the SIZE 
command. The arrow keys will move backwards too, depending 
on whether X or Y size is negative. See the example below. 

Example of vactor-drawn c~s 
using fCSll"lY numbQrs for Slzsz. Each 
string was typed os ''RATS'' 

Size 3.3. 

RRTS 

t:5812 
Size 3.-3 

Version 1.4 

Size -3.3. 

2TR~ 

S18(j 
Size -3.-3 

Page 9-27 



Exiting Plot 7900 Operator's Manual Chapter 9 

Exiting Plot Submodes 

Any time you enter a Plot Submode, the light on the PLOT 
key will come on. This light indicates you are in a PI'O't 
Submode. Pressing a different Plot Submode key will change 
the Submode you are in, but the lighted PLOT key will remain 
lit whenever you are in a Plot Submode. -

To return to Alpha (text entry), type 

SHIFT PLOT 

Hold down the key marked SHIFT, and press the lighted key 
marked PLOT. The light will go out, and you are out of 
whatever~t Submode you were in. You are back to Alpha. 

To resume plotting, you may simply press any Plot 
Submode key, as you or iginally did to begin plotting. You 
can also re-enter the last Plot Submode you were using, by 
pressing the lighted ~ key (without the SHIFT modifier). 

Page 9-28 Version 1.4 



Chapter 10 7900 Operator's Manual Raster Processor 

Chapter 10 -- Raster Processor Graphics 

The software described in this section is optional, and may 
or may not be installed in your 7900 system. 

The Raster Processor is a special circuit in the 7900 
hardware. Its main function is to move pixels from one area of 
the Bitmap screen to another. The functions described in this 
section make use of some of the capabilities of the Raster 
Processor. 

Besides the "block move" capability of the Raster Processor, 
you can use the text editing commands on the four arrow keys (INS 
LINE, DEL LINE, INS CHAR, DEL CHAR) to move parts of the screen 
around. For example, if you did not leave enough room at the top 
of the screen to draw something, you could move the cursor into 
this area and use the INS LINE key to push everything below the 
cursor down. 

For the purposes of this chapter, we define a "raster" to be 
a block of Bitmap pixels. 

Version 1.4 Page 10-1 



Define Raster 79~~ Operator's Manual Chapter l~ 

Define Source Raster 

Format: 

MODE [ <Xl>, <Yl>, <X2>, <Y2>, 

Where: 

<Xl>,<Yl>, are the coordinates of one corner of the 
desired source raster 

<X2> ,<Y2>, are the coordinates of the diagonally 
opposite corner 

A "raster" is a rectangular area of the Bitmap screen. The 
Raster Processor operates only on these rectangular areas. A 
"source raster" is defined exactly as you would enter the 
corner points of a rectangle, and all the pixels within this 
area are used in the commands which are discussed later in 
this section. 

The source raster definition is specific to a window. 
Each window may have its own source raster def ined to be a 
different area of the screen. 

Note that the offscreen Bitmap area (the pixels not 
normally visible unless Zoom and Pan are in effect) may be 
used to store source rasters. 

The definition of a source raster contains only· the 
screen location of the raster, not the pixels within it. If 
a source raster is defined, and the pixels within that area 
are altered, the source ~aster is also altered. 

Alternate Format: 

~ [. • 

The current cursor position may be used to enter the X-Y 
coordinates of the source raster, by moving the cursor to 
each corner and striking the period (decimal point) key. 

Page 1~-2 Version 1.4 



Chapter 10 7900 Operator's Manual Copy Raster 

Copy Raster 

Format: 

COpy <X>, <Y>, 

Where: 

<X>, <Y> are the coordinates to which the raster 
should be copied. 

A copy of the source raster is made at screen position <X>, 
<Y>. This may be thought of as a "rubber stamp" operation. 
The cursor position may be used instead of <X> and <Y>: 

COpy • 

This command copies the source raster to the current cursor 
position. 

Example: 

SHIFT OVERLAY (look at Bitmap) 

HOME ABC D RETURN LINE FEED 

E F G H 

MODE [ 0, 0, 48, 32, 

COpy 511, 383, 

Version 1.4 

(put some characters in 
upper left corner of screen) 

(define the source raster to 
be these characters) 

(copy raster to the center 
of the screen) 

Page 10-3 



Copy Raster 7900 Operator's Manual Chapter 10 

Copy Raster with Overstrike 

Format: 

MODE u <X>, <Y>, 

Where: 

<X>, <Y> are the coordinates to which the raster 
should be copied. 

NOTE: 

This command requires entering a lower case 
character, u. If the ALPHA LOCK key is in· its 
normal (up) position, press the SHIFT key with the 
RU R key to produce a lower case u. 

This command is identical to the RCopy Raster R command, 
except that any pixels in the source raster matching the 
current background color are not written. 

The cursor position may be used instead of <X> and <Y>: 

MODE u • 

This command copies the source raster to the current cursor 
position, using overstrike. It is slower than copying 
without overstrike, since the CPU gets involved. 

Page 10-4 Version 1.4 



Chapter l~ 79~~ Operator's Manual Set Direction 

Set Raster Direction 

Format: 

MODE { <n>, 

Where: 

<n> is a decimal number, 27 through 31 

NOTE: 

This command is only applicable to the Copy Raster 
commands. 

The Raster Processor uses a "control byte" to set the 
attributes of the source and destination rasters. This 
command allows you to modify the attributes of the source 
raster definition. Internally, the Raster Processor defines 
a raster by using a coordinate pair (calleCi the "operating 
point"), a value for delta-X, and a value for delta-Yo 
Whenever the Raster Processor copies a raster, it begins at 
the operating point and performs operations determined by 
delta-X, delta-Y, and the control byte. 

The bits in the control byte are defined as follows: 

Bit No. 4 3 2 1 
+----+----+----+----+----+ 
I EC I ES I XS I YS I XF I 
+----+----+----+----+----+ 

All other bits are unused. 

XS is X Sign. If SET, the raster is scanned from 
left to right. 

YS is Y Sign. If SET, the raster is scanned from 
top to bottom. 

XF is X Fine. If SET, X is incremented first as 
the raster is scanned. When X overflows (becomes 
greater than delta-X), Y is incremented and X is 
set to its original value from the operating point. 
If this bit is CLEAR, Y is fine and is incremented 
first. 

Version 1.4 Page 1~-5 



Set Direction 7999 Operator's Manual Chapter 19 

EC and ES are Enable Carry and Enable Step, 
respectively. If these bits are CLEAR, the Raster 
Processor does not increment certain registers. 
This prevents the entire raster from being scanned. 
This is not a useful condition, since the same 
effect can be achieved by defining the source 
raster to be one line (or one pixel). When using 
the Set Raster Direction command, you should leave 
these two· bits SET. 

The default value fa: <n> is 31. This corresponds to. all 
bits SET, resulting in normal upright raster copies. 

The illustration on the following page should help to 
clarify use of the Set Raster Direction command. Assume we 
have created a test pattern, consisting of a square 
containing a letter, and defined it to be the source raster. 
We chose the 1 etter R because it is not symmetr ic about any 
axis, and rotation can b~ easily observed.) 

Now if a Copy Raster command is executed, the square will 
be copied to the specified location. The control byte is now 
31 (default), so an upright copy is generated. 

If the X Fine bit is now cleared by performing a MODE { 
39, the copy will be reflected about the 45 degree axis. 
(For this to work properly, the source raster MUST be 
square! ) 

If the Y Sign bit is now cleared by performing a MODE { 
29, (this also SETS the X Fine bit), the raster wrrr-be 
copied upside-down and backwards. 

Other combinations of these three bits will produce the 
other raster copies shown. 

Page 19-6 Version 1.4 



Chapter 10 7900 Operator's Manual Set Direction 

I d 100 I IN 
~dj In· 

~ 

LnJ C\J 

c 
~ 0 

Iy-'fl ~ I I ]1 
C .-
0 .,a...) 

IJ') a.. U r~1 C\J 

~I: :>.... OJ 

~ a.. ....... 
0 • u ~ 

OJ 
c:::: 

• -0 
C 
0 Itjl c I . , 

LbJ 
a 0 
(T) .-

.,a...) , 0 
. .,a...) IR co 0 

C\J c:::: 

I I "-
OJ 

.,a...) 

102 
CJ) 

C 0 
0 ..... c:::: ..... 
~ 

(T) 

QI L ..... 
(J QI C • ! 

l~ 
L ~ ..... 
::l (f) 4-
o 0 QI 

["-.. (f)a:::o 
C\J 

(f) ..... 

! I ~ ! 
!iV" 

CUJ 
QlCJ 
EO I . I ::l::::£ 

iii i 0) 

I I L 0 
I i <~ 

Version 1.4 Page 10-7 



Patterned Vectors 7900 Operator's Manual Chapter 10 

Patterned Vectors 

Format: 

MODE T <pattern> <clip> 

This command enables patterned vectors with or without 
clipping. Both <pattern> and <clip> can be either 1 or 0. 

For <pattern>, if a 1 is entered, patterned 
vectors are used for ALL Bitmap graphics functions, 
including vectors, circles, arcs, etc. The current 
source raster is used as a source for the pattern. 
While patterned vectors are active, the pattern is 
used INSTEAD of the cur rent foreground color for 
all graphics operations. Entering a 0 disables 
patterned vectors. 

When <clip> is 1, all lines and points drawn will 
be clipped to lie within the boundaries of the 
current window. 

This command can be cancelled by the command MODE 0 1 
(Overlay ON) or by hitting the OVERLAY key. 

Example: 

SHIFT OVERLAY 

HOME ABC D RETURN LINE FEED 

E F G H 

MODE [ 0, 0, 48, 32, 

MODE T 1 0 

CIRCLE FILL 511, 383, 300, 

Page 10-8 

(look at Bitmap) 

(put some characters in 
upper left corner of screen) 

(define the source raster to 
be these characters) 

(patterns ON, clipping OFF) 

(draw patterned circle) 

Version 1.4 



Chapter 11 7900 Operator's Manual Expanded Images 

Chapter 11 -- Expanded Image Memories 

The commands in this section apply to CGC 7900 systems 
containing two banks of image memory planes. 

As mentioned in the introduction to Section 3, the 7900 may 
be equipped with up to 16 planes of image memory. 'Only 8 planes 
at one time may feed the Color Lookup Table to form an image, but 
two independent images may be kept in memory simultaneously. The 
commands in this section provide access to the second set of 
image planes. 

Select Image 

Format: 

ESC s <0 or 1> 

Use the character 0 to select planes 0 through 7 for display 
(the defaul t condition), or the character 1 to select the 
second image, planes 8 through 15. 

NOTE: 

This command requires entry of a lower case 
letter, s. If the ALPHA LOCK key is up, use the 
SHIFT modifier with the "S" key to produce a lower 
case s. 

If planes 8 through 15 are not installed 
selecting planes 8 through 15 will cause 
screen to go blank. 

Version 1.4 

in your system, 
the the Bitmap 

Page 11-1 



Expanded Images 7900 Operator's Manual Chapter 11 

Plane/Video/Blink Select 

These commands are 
take on new meanings 
installed. They are: 
Blink Select. 

described later in this chapter, but 
when more than 8 image planes are 

Plane Select, Plane Video Switch, and 

Each of these commands requires entering a decimal 
number to enable selected image planes in a particular 
function. With only 8 image planes, the useful range of 
numbers is 0 to 2551 this allows writing to any or all of the 
8 planes. (255 is the highest decimal number possible from 
an 8 bit, or 8 plane, system.) 

With up to 16 planes installed, the useful range of 
numbers for these commands increases to a l6-bit number. 
This allows values from 0 to 65535. 

Examples: 

MODE : 255, 

MODE: 65280, 

ESC b 32896, 

ESC S 771, 

Planes 0 through 7 are selected 
(write-enabled) 

Planes 8 through 15 are selected 
(65535 - 255 = 65280) 

Planes 7 and 15 are specified to 
blink (2 A 15 + 2 A 7 = 32896) 

Video from planes 0, 1, 8 and 9 
is enabled for display 
(2 A 0 + 2 A l + 2 A 8 + 2 A 9 = 771) 

Obviously, the numbers can get out of hand quickly. 
Calculation of plane numbers in a l6:"plane system is more 
suited to an applications program. 

The decimal number -1 may still be entered, and it will 
always enable all planes in the system. 

Page 11-2 Version 1.4 



Chapter 11 7900 Operator's Manual Expanded Images 

Writing to the Second Image 

The following example demonstrates how to create two 
independent images. 

ESC s 0 

MODE: 255, 

View the first image (planes 0-7) 

Write-enable the first image 

CIRCLE FILL SET BLUE 511,383,300, Draw a blue circle 
in the first image 

ESC s 1 

MODE : 65280, 

View the second image (planes 8-l5) 

Write-enable the second image 

Draw a red rectangle 
in the second image 

Now, the command ESC s 0 displays a blue circle, and ESC s 1 
displays a red reCt.angle. 

Note that the default cursor color is color 135 
(blinking white), so the Bitmap cursor will not be visible 
when planes 8 through 15 are being displayed. To make the 
cursor appear in all planes, and thus in both images, use 

~ Q -1, 

NOTE: 

When using a· second image, be sure to set the 
Plane/Video/Blink select latches to the appropriate 
configuration before use. 

Version 1.4 Page 11-3 



Plane Select 7900 Operator's Manual Chapter 11 

Plane Select 

Format: 

MODE: <n>, 

Where <n> is a number, 0 to 255, or -1. 

<n> is examined as a binary number. Any bits in <n> 
which are set to one represent planes of Bitmap memory which 

·will be write-enabled. Any bits in <n> which are zero 
represent planes which are not write-enabled, and cannot be 
altered until the next Plane Select command is given. This 
command only affects the window which receives it. 

Examples: 

MODE: 0, 

Since all bits 
Bitmap memory 
altered. 

MODE: 6, 

of the number 0 are zero, all 
are now write-disabled. They 

planes of 
cannot be 

The number 6 is converted to a binary number, and examined 
as follows: 

Plane # 7 6. 5 4 3 2 .1 
+---+---+---+---+---+---+---+---+ 
101 0 I 0 101 0 I 1 I I I 0 I 
+--~+---+---+---+---+---+---+---+ 

Since bits I and 2 are ones, only planes 1 and 2 of Bitmap 
memory can now be altered. The other planes will be 
unaffected by any commands or characters sent to the window. 

Example: 

MODE: -1, 

Negative numbers are treated in ntwo's complement" form. 
Negative one is treated as a binary word of all ones, so all 
planes are now write-enabled. This is the default condition 
when the system is booted. 

Page 11-4 Version 1.4 



Chapter 11 79~~ Operator's Manual Plane Video Switch 

Plane Video Switch 

Format: 

ESC S <n>, 

Where <n> is a number, ~ to 65535, or -1. 

<n> is examined as a binary number. Any bits in <n> 
which are set to one represent planes of Bitmap memory which 
will be allowed to feed the Color Lookup Table. Any bits in 
<n> which are set to zero will prevent thei r cor resPQnding 
planes of Bitmap from feeding the CLU. 

NOTE: 

This command affects ALL images from Bitmap 
memory. It is NOT specific to a window. 

Example: 

ESC S ~, 

All bits in the number ~ are zero. All planes of Bitmap 
memory will not be fed to the Color Lookup Table (their bits 
will be masked to zero). Thus, the only color of the CLU 
which will be accessed is color zero (normally black). We 
have just shut off all image from Bitmap memory. 

Example: 

ESC.S 5, 

The number 5 is examined as follows: 

Plane # 7 6 5 4 3 2 1 
+---+---+---+---+---+---+---+---+ 
I ~ I ~ I ~ I ~ I ~ I 1 I ~ I 1 I 

+---+---+---+---+---+---+---+---+ 

Version 1.4 Page 11-5 



Plane Video Switch 79fHlJ Operator' s Manual Chapter 11 

Since bits 8 and 2 are set to one, only planes 8 and 2 
will be allowed to feed the Color Lookup Table. All other 
planes will be masked to zero before being used to select 
colors. This configuration allows the following color 
choices: 

Color 8 (all bits off) 

Color r (bit 8 on) 

Color 4 (bit 2 on) 

Color 5 (bits 8 and 2 on) 

Under default conditions, these four colors would correspond 
to Black, Blue, Red, and Magenta, respectively. 

It can be seen from this example that the Plane Video 
Switch command limits the available color choices. The total 
number of choices which are available is 2 raised to the 
power <b>, where <b> is the number of bits set to one in the 
number <n>. In the example above, <n> is 5, which contains 
two bits «b» set to one. Two to the power two is four, the 
total number of colors we have made available. 

Example: 

ESC S -1, 

Negative numbers are interpreted in ntwo's complement n form. 
Negative one is a binary word of all bits set to one, so this 
command will set all planes to feed the Color Lookup Table. 
This is the default condition when the system is booted. 

A primary use for the Plane Video Switch command would 
be animation. Different pictures could be written to the 
v:arious planes (using Plane Select, previously described), 
and then the system could quickly switch from one picture to 
another with Plane Video Select. The Color Lookup Table 
might have to be modified for best results. 

Another use would be the layout of multiple-layer 
printed circuit boards. Each layer could be written into a 
single plane ·of Bitmap memory. Areas which overlapped would 
reference different areas ·of the Color Lookup Table, and 
would be displayed as different color s. The Plane Video 
Switch command would allow viewing each layer of the board 
separately. 

Page 11-6 Version 1.4 



Appendix A 7900 Operator's Manual Special Codes 

Appendix A -- Special Codes 

For the sake of clarity, the names of modifier keys are not 
underlined in this section. Remember, however. that 
control-codes are always generated by holding the CTRL key and 
simultaneously pressing the indicated key. 

Control Codes 

CTRL @ Null 
CTRL A Mode 
CTRL B Plot 
CTRL C 
CTRL D 
CTRL E Dot Up 
CTRL F 
CTRL G Bell 
CTRL H Backspace 
CTRL I Tab 
CTRL J Linefeed 
CTRL K Cursor Up (Line) 
CTRL L Erase Page 
CTRL M Carriage Return 
CTRL N A7 On (Alternate Character Set) 
CTRL a A7 Off (Standard Character Set) 
CTRL P 
CTRL Q X-On 
CTRL R 
CTRL S X-Off 
CTRL T 
CTRL U User 
CTRL V Dot Down 
CTRL W 
CTRL X End Of Record (Sub-Buffer marker) 
CTRL y Dot Left 
CTRL Z Cancel (Flush input buffer) 
CTRL [ Escape 
CTRL \ Home 
CTRL ] Cursor Right (Char) 
CTRL 

,.. 
End Of File 

CTRL Dot Right 

Version 1.4 Page A-I 



Special Codes 7900 Operator's Manual Appendix A 

Mode, Escape and User code sequences may have one or more 
arguments. The type of argument required is indicated as 
follows: 

t· a decimal number terminated by a comma, or a 
binary number (if in binary mode) 

XY an X-Y coordinate pair. It may be either the 
period (.) or two decimal numbers (ntt n as 
described above) 

F the character 1, or ~, used as an on/off flag 

n a single digit (~ through 9) 

C a single character (details depend on the 
command) 

Color s are described as t, since they may be entered as 
numbers. 

Page A-2 Version 1.4 



Appendix A 

Mode Codes 

Mode codes 
91 hex. 

MODE # 
MODE 1 
MODE < 1 
MODE < 2 
MODE = 
MODE > 1 
MODE > 2 
MODE ? 

MODE @ 
MODE A 
MODE B F 
MODE C # 
MODE D 
MODE E F 
MODE F F 
MODE G 
MODE H 
MODE I ## 
MODE J F 
MODE K F 
l<10DE L 
MODE M XY 

MODE N 
MODE 0 F 
MODE P F 
MODE Q # 
MODE R F 
MODE S F 
MODE T nn 
MODE U XY 
MODE V n 
MODE W XY XY 
MODE X ## 
MODE y :It:lt 
MODE Z 
MODE [ Xy XY 
MODE \ F 
MODE] CC# 
MODE A :It XY 

MODE ' 
MODE a 
MODE b 
MODE c :It 
MODE d 
MODE e 
MODE f 

Version 1.4 

7999 Operator's Manual Special Codes 

always begin with the MODE character, 

Plane Select 

Delete Character 
Delete Line 
Soft Boot 
Insert Character 
Insert Line 
Keyboard Sync 

Clear line 

Binary Mode (MODE and PLOT codes) 
Set Foreground color 

Rubber Band on/off 
FilIon/off 

Set Bitmap intercharacter 
Cursor on/off 
Blink on/off 

Move cursor to 

Overlay on/off 
Plot on/off 

X-y 

Set Cursor color 
Roll on/off 
Scale on/off 
Set vector type 
Copy raster to X-y 

spacing 

Set Overlay present visibility 
Define Window limits 
Set character size (X, Y factor) 
Color swap X and Y 

Define source raster 
Overstrike on/off 
Operate on variable • 
Area Fill (color, X, Y) 

Clear to end of line 

Set Background color 

CTRL A, 

Page A-3 



Special Codes 

MODE g 
MODE h 
MODE i iii 
MODE j 
MODE k 
MODE 1 
MODE m ## 
MODE n 
MODE 0 
MODE P 
MODE q 
MODE r 
MODE s Xy XY 
MODE t C 
MODE u XY 
MODE v n 
MODE w 
MODE x # 
MODE Y ## 
MODE z 
MODE { i 
MODE I 
MODE } 
MODE - # XY 
MODE DEL C 

Page A-4 

7900 Operator's Manual 

Load User Character Set 

Erase to end of screen 
Move Cursor relative 

Set Scale Factors 
Test window 
Copy raster to X-Y with overstrike 
Set Overlay future visibility 

Set vector width 
Set colors (X to Y) 

Set Source Raster direction 
Home lower (lower left corner) 

Edge Fill (color, X, Y) 
Ignore argument (undefined keys) 

Appendix A 

Version 1.4 



Appendix A 79~9 Operator's Manual Special Codes 

Plot Codes 

Plot codes will accept repeated arguments. 
require an initial set of arguments, as in 
Incremental plot submodes. In this list, 
arguments are shown in braces {}, and initial 
any) precede the braces. 

They may also 
the case of 
the repeated 
arguments (if 

Plot codes always begin with the PLOT character, CTRL B, 
92 hex. 

PLOT @ 
PLOT A 
PLOT B 
PLOT C 
PLOT D 
PLOT E 
PLOT F 
PLOT G 
PLOT H 
PLOT I 
PLOT J 
PLOT K 
PLOT L 
PLOT M 
PLOT N 
PLOT 0 
PLOT P 
PLOT Q 
PLOT R 
PLOT S 
PLOT T 
PLOT U 
PLOT V 
PLOT W 
PLOT X 
PLOT Y 
PLOT Z 
PLOT { 
PLOT \ 
PLOT } 
PLOT '" 

PLOT " 
PLOT a 
PLOT b 
PLOT c 
PLOT d 
PLOT e 
PLOT f 
PLOT g 
PLOT h 
PLOT i 
PLOT j 
PLOT k 

Version 1.4 

Arc: {X, Y, radius, start, delta,} 

Circle: {X,· Y, radius,} 
Dot: {X, Y,} 
Vector-drawn characters,: angle, F, {char} 

Incremental Vector: X, Y, {dXdY} 

Two-point Circle: {x, Y, Xl, Yl,} 
Polygon: {X, Y,} ; 

Rectangle: {Xl, Yl, X2, Y2,} 

Triangle: {Xl, Yl, X2, Y2, X3, Y3,} 
Curve: {Xl,Yl, X2,Y2, X3,Y3, X4,Y4.} 
Vect or: {Xl, Yl, X2, Y2,} 
Concatenated Vector: X, Y, {X, Y,} 
Incremental X-bar: X9,Y~. {X,} 
Incremental Y-bar: X0,Y9, {Y,} 

Ray: {X, Y, radius, angle,} 

Page A-5 



Special Codes 

PLOT 1 
PLOT m 
PLOT n 
PLOT 0 
PLOT P 
PLOT q 
PLOT r 
PLOT s 
PLOT t 
PLOT u 
PLOT v 
PLOT w 
PLOT x 
PLOT Y 
PLOT z 
PLOT { 
PLOT I 
PLOT } 
PLOT -
PLOT DEL 

Page A-6 

7900 Operator's Manual 

Bold Vector: {Xl, Yl, X2. Y2,} 
Bold Concat. Vector: X, Y, {X, Y,} 

Appendix A 

Version 1.4 



Appendix A 7900 Operator's Manual Special Codes 

Escape Codes 

Escape codes always begin with the ESC character, CTRL [, 1B 
hex. 

ESC @ 
ESC A 
ESC B F 
ESC C #### 
ESC D # 
ESC E 
ESC F 
ESC G 
ESC H 
ESC I 
ESC J 
ESC K 
ESC L 
ESC M XY 
ESC N 
ESC 0 
ESC P XY ••• XY ~ 
ESC Q 
ESC R 
ESC S # 
ESC T #### 
ESC U 
ESC V C F 
ESC W 
ESC X 
ESC Y 
ESC Z CC 
ESC [ 
ESC \ 
ESC] 
ESC .... 

ESC .. 
ESC a 
ESC b 
ESC c 
ESC d 
ESC e 
ESC f 
ESC g 
ESC h 
ESC i 
ESC j 
ESC k 

# 
#### 

ESC 1 n 
ESC m 
ESC n 
ESC 0 
ESC P 
ESC q F 

Version 1.4 

Align Pan to Cursor 
Binary Mode (ESC and USER codes)' 
Change color (color, R, G, B) 
Delay <#> retraces (or till keypress) 

Zoom up 
Zoom down 

Pan to X-Y 

Polygon ( >30 points) 

Plane Video Switch 
Tone (Hz, Hz, Hz, milliseconds) 

Visible control-chars in window on/off 

Absolute Zoom 

Blink Select 
Change color ( co lor, H , V, S) 

Pan left 

Pan down 
Pan up 
Load default color table 

Overlay cursor blink on/off 

Page A-7 



Special Codes 

ESC r 

ESC s F 
ESC t 
ESC u 
ESC v 41: 

ESC w 
ESC x 
ESC Y 
ESC z 
ESC { 
ESC I 
ESC } 
ESC -
ESC DEL 

Page A-a 

79~~ Operator's Manual Appendix A 

Select image 

View sub-buffer 

Pan right 

Version 1.4 



Appendix A 7900 Operator's Manual Special Codes 

User Codes 

User codes always begin with the USER character, CTRL U. 15 
hex. 

USER @ 
USER A 
USER B 
USER C 
USER D addr,:II=n 
USER E 
USER F 
USER G 
USER H 
USER I nC 
USER J C 
USER K :11= 

USER L 
USER M 
USER N 
USER 0 nCCCC 
USER P 
USER Q F 
USER R 
USER S :11=:11= 

USER T 
USER U 
USER V 
USER W 
USER X 
USER Y 
USER Z 
USER [ 
USER \ F 
USER ] 
USER A :11= 

USER ... 
USER a 
USER b 
USER c 
USER d 
USER e 
USER f 
USER g 
USER h 
USER i 
USER j C ••••• 
USER k 
USER 1 
USER m 
USER n 
USER 0 
USER P 
USER q nnnnnnnnn; 

Version 1.4 

Execute Terminal Emulator 
Append to Create Buffer 

Create On 
DMA Access 

Full Duplex 

Half Duplex 
Assign Input Device 
Execute Function Key 
Kill Sub-Buffer 
Local Duplex 
Execute Monitor 

Assign Output 

Clock display on/off 
Redraw the Create Buffer 
Set Serial baud rate: port, baud 
Execute THAW routine 

Warm-start (re-enter program) 
Transmit the Create Buffer 

Literal Create On 
Enable Joystick 

Insert into Sub-Buffer 

Restricted Terminal Emulator 
Boot Idris (normal) 
Boot the system 
Create Off 
Execute Disk Operating System (DOS) 

Hardcopy 
Idris Boot Routine 
Define Function Key 

Boot DOS (no password entry) 
Set time clock 

Page A-9 



Special Codes 

USER r ###nnn; 

USER s #CCC 
USER t 
USER u 
USER v #t 
USER w ## 
USER x CC 
USER Y CC 
USER z ######## 
USER { 
USER I CCn 
USER } 
USER -
USER DEL 

Page A-l~ 

79~~ Operator's Manual Appendix A 

Modify SPC port 

Set Serial stop bits, parity, word length 

Change Case Table entry 
Swap Case Table entry 
Transmit window variable 
Display window variable 
Set EOL sequence 

Enable light pen 

Version 1.4 



Appendix A 7900 Operator's Manual Command List 

Coamand Reference List 

This section is a brief guide to the operation of the 
CGC 7900. Commands are listed here by name. For details on 
any command, consul t the detailed descriptions in the main 
body of this manual. 

Version 1.4 . Page A-11 



Command List 7900 Operator's Manual Appendix A 

Function Code Sequence Key Page I 

----------------------------+-------------------+---------------+------------------
Arc I PLOT A XI 1,1,1, ARC 9-4 

----------------------------+------------------~--------------+------------------Area Fill , MODE" I, XI AREA FILL 8-28 
----------------------------+-------------------+---------------+------------------
Assign Input Device , USER I nC I ASSIGN INPUT 3-4 

----------------------------+--------~---------+---------------+---------------~--Assign Output Device , USER 0 nCCCC I ASSIGN OUTPUT 3-2 

---------------------------~-----------------~--~----------~-----------------Background Color I MODE c I, SHIFT SET 2-10, 8-13 
----------------------------+-------------------+---------------+------------------
Boot , USER b BOOT j-16 
----------------------------+-------------------+---------------+------------------
Binary Mode: 

ESC and USER 
mDE and PLOT 

ESC B F 
MODE B F 

7-9 
7-8 

----------------------------+-------------------+---------------+------------------
Blink , MODE K F BLINK 2-10, 8-6 
----------------------------+-------------------+---------------+------------------
Bold Vector PLOT v XI XI 9-23 
----------------------------+-------------------+---------------+------------------
Case Table: 

Change entry 
Swap entries 

USER v 1,1, 
USER w 1,1, 

4-20 
4-20 

----------------------------+-------------------+---------------+------------------
"' "'Ir"cter Set: 

"ault 
'qfined 

MODE i 6,8.0, 
MODE i 1.I,addr, 

8-10 

.-----------~-----+-------------------+---------------+------------------Character Size , MODE X 1.1, SIZE 8-8 
----------------------------+-------------------+---------------+------------------
Circle: 

Normal 
Two-Point 

PLOT C XY I, 
PLOT 0 XI XI 

CIRCLE 9-5 
9-6 

----------------------------+-------------------+---------------+------------------
Colorset I MODE Y 1,1, 'SHIFT COLORSWAP I 8-22 
----------------------------+-------------------+---------------+------------------
Color swap I MODE Y 1,1, COLORSWAP 8-22 
----------------------------+-------------------+---------------+------------------
Color Lookup Table: 

Change Entry (HVS) 
Change Entry (RGB) 
Default 

ESC c 1,1.1.1, 
ESC C 1.1,1.1. 
ESC 1 I, 

SHIFT CHANGE 
CHANGE 

8-20 
8-17 
8-21 

----------------------------+-~-----------------+---------------+------------------Communications: 
Full Duplex 
Half Duplex 
Host EOL Sequence 
Local 
Serial Baud Rate 
Serial Parity, 

Word Length, 
Stop Bits 

USER F 
USER H 
USER z 
USER L 
USER S 
USER s 

1,1,1,1,1,1.1.1, 

I, I, 
I,C C C 

(port. baud,) 

4-5 
4-4 
4-17 
4-3 
4-12 
4-14 

----------------------------+-------------------+---------------+------------------

Page A-12 Version 1.4 



Appendix A 7900 Operator's Manual Command List 

Function Code Sequence Key Page I 
----------------------------+-------------------+---------------+------------------
Concatenated Bold Vector : PLOT w XY XY ••• 9-24 

----------------------------+-------------------+---------------+------------------
Concatenated Vector : PLOT W XY XY ••• : CONCAT VECTOR : 9-22 

----------------------------+-------------------+---------------+------------------
Create Buffer: 

Append 
Define Sub-Buffer 
Insert in Sub-Buffer 
Kill Sub-Buffer 
Literal Create 
Redraw 
Transmit 
View Sub-Buffer 

USER C (ON) 
USER c (OFF) 
USER A 
CTRL X 
USER ,. I, 
USER K I, 
USER [ 
USER R 
USER X 
ESC v I, 

CREATE 
SHIFT CREATE 

SHIFT VIEW 

5-2 
5-2 
5-3 
5-5 
5-6 
5-7 
5-9 
5-4 
5-4 
5-8 

----------------------------+-------------------+---------------+------------------
Cursor Color : MODE Q I, 8-25 

----------------------------+-------------------+---------------+------------------
Cursor ON/OFF : MODE J F CURSOR ON 2-5 

----------------------------+-------------------+---------------+------------------
Curve : PLOT U XY XY XY XY: CURVE 9-7 
----------------------------+-------------------+---------------+------------------
Delay : ESC D I, 3-7 

----------------------------+-------------------+---------------+------------------
DMA Access : USER D addr,l,n 4-18 

----------------------------+-------------------+---------------+------------------
DOS: 

Normal 
No Password Entry 

I 
I 

: USER d 
: USER p 

DOS 
SHIFT DOS 

1-6 

----------------------------+-------------------+---------------+------------------
Dot : PLOT D XY DOT 9-9 

----------------------------+-------------------+-----~---------+------------------
Edge Fill : MODE - I, XY :SHIFT AREA FILL: 8-29 

----------------------------+-------------------+---------------+------------------
Editing Commands: 

Clear to End of Line MODE" CLEAR EOL 2-5 
Clear Line MODE @ CLEAR LINE 2-4 
Delete Character MODE < 1 DEL CHAR 2-5 
Delete Line MODE < 2 DEL LINE 2-5 
Erase to End of Screen MODE 1 ERASE EOS 2-5 
Erase Page CTRL L ERASE PAGE 2-4 
Insert Character MODE> 1 INS CHAR 2-5 
Insert Line MODE> 2 INS LINE 2-5 

----------------------------+-------------------+---------------+------------------
FILL Mode . : MODE F F FILL 8-26 

----------------------------+-------------------+---------------+------------------
Foreground Color : MODE C I, SET 2-9. 8-12 

----------------------------+-------------------+---------------+------------------
Function Keys: : 3-8 

Define : USER j DEFINE 
Execute : USER J C 

------------------~---------+-------------------+---------------+------------------
Hardcopy : USER h SHIFT COpy 

----------------------------+-------------------+---------------+------------------

Version 1.4 Page A-13 



Command List 1900 Oper a tor's Manual Appendix A 

Function Code Sequence Key Page # 

----------------------------+-------------------+---------------+------------------
Idris: 

Normal 
Special Monitor 

I 
I USER a 
I USERi 

IDRIS 
SHIFT IDRIS 

1-6 

-----------------------~----+-------------------+---------------+------------------
Incremental Vector I PLOT I XI 1,1, ••• I INC VECTOR 9-10 
----------------------------+-------------------+---------------+------------------
Incremental X-Bar I PLOT X XI 1, ••• 1, I INC X-BAR 9-13 
----------------------------+-------------------+---------------+------------------
Incremental Y-Bar I PLOT Y XI " ••• " I INC Y-BAR 9-15 
----------------------------+-------------------+---------------+------------------
Intercharacter Spacing I MODE I 1,1, 8-9 
----------------------------+-------------------+---------------+------------------
Joystick I USER \ F 8-30 

----------------------------+-------------------+---------------+------------------
Keyboard Syno I MODE? 4-16 

----------------------------+-------------------+---------------+------------------
Light Pen I USER I CCn 3-13 
----------------------------+-------------------+---------------+------------------
Monitor I USER M MONITOR 1-6, C-1 

----------------------------+-------------------+---------------+------------------
Move Cursor: 

Absolute 
Relative 
Cursor Up 
Cursor Down 

.. Cursor Left 
Cursor Right 
Dot Up 
i:)ot Down 
Dot Left 
Dot Right 
Home 
Home Lower 
Tab 

MODE M XI 
MODE m XI 
CTRL K 
CTRL J 
CTRL H 
CTRL J 
CTRL E 
CTRL V 
CTRLY 
CTRL _ 
CTRL \ 
MODE I 
CTRL I 

MOVE X-Y 

up-arrow 
down-arrow 
left-arrow 
right-arrow I 

HOME 
CTRL HOME 

2-5, 8-24 
2-6. 8-24 

2-4 
2-4 
2-4 
2-4 
8-23 
8-23 
8-23 
8-23 
2-4 
2-4 
2-4 

----------------------------+-------------------+---------------+------------------
Overlay: 

Cursor Blink 
Visible Attributes 

MODE 0 F 
ESC q F 
MODE V n 
MODE v n 

I 
I 

I 
(present) I 
(future) I 

OVERLAY 2-3, 8-3 
2-6 
2-11 
2-11 

----------------------------+--------------~----+---------------+---------------~--Overstrike I MODE \ F 8-11 

----------------------------+-------------------+---------------+------------------
Pan: 

Absolute ESC M XI PAN X-Y 8-33 
Pan Left ·ESC h M2 left-arrow 8-31 
Pan Right ESC } M2 right-arrow 8-31 
Pan Up ESC k M2 up-arrow 8-31 
Pan Down ESC j M2 down-arrow 8-31 
Reset Pan ESC M 0,0. M2 HOME 8";31 
Align Pan to Cursor ESC A M2 CLEAR LINE 8-32 

---------------~------------+-------------------+---------------+------------------

Page A-14 Version 1.4 



Appendix A 7900 Operator's Manual Command List 

Function Code Sequence Key Page' 

----------------------------+-------------------+---------------+------------------
Patterned Vectors, Clip I MODE T nn 10-8 

----------------------------+-------------------+---------------+------------------
Plane Select I MODE " 11-4 

----------------------------+-------------------+---------------+------------------
Pl-ane V ideo Switch I ESC S " 11-5 

----------------------------+-------------------+---------------+------------------
Plot Mode ON/OFF I MODE P F PLOT 9-28 

----------------------------+-------------------+---------------+------------------
Polygon: 

Large ( >30 points ) 
Normal 

ESC P XY ••• XY; 
PLOT P XY ••• XY; POLYGON 

9-17 
9-16 

----------------------------+-------------------+---------------+------------------
Raster Processor: 

Define Source Raster 
Copy Raster 
Copy with Overstrike 
Set Raster Direction 

MODE [ XY XY 
MODE U XY 
MODE u XY 
MODE { " 

COpy 
10-2 
10-3 
10-4 
10-5 

----------------------------+-------------------+---------------+------------------
Ray PLOT \ XY " " RAY 9-18 

----------------------------+-------------------+---------------+------------------
Recall: 

Forward 
Backward 

MODE DEL 1 
MODE DEL 2 

RECALL 
SHIFT RECALL 

C-3 
C-3 

----------------------------+-------------------+---------------+------------------
Reset RESET 1-17 

CTRL SHIFT RESET 
CTRL SHIFT M1 M2 RESET 

----------------------------+-------------------+---------------+------------------
Real-Time Clock: 

Display Time 
Set Time 

USER Q F 
USER q nnnnnnnnn; 

3-16 
3-15 

----------------------------+-------------------+---------------+------------------
Rectangle PLOT R XY XY RECT 9-19 
----------------------------+-------------------+---------------+------------------
Roll I MODE R F ROLL 2-7, 8-36 
----------------------------+-------------------+---------------+------------------
Rubber Band I MODE E F RUBBER BAND 8-37 

----------------------------+-------------------+---------------+------------------
Scaling ON/OFF I MODE S F 3-31 
----------------------------+-------------------+---------------+------------------
Scale Factors I MODE s ',',', II, I SCALE I 3-27 
----------------------------+-------------------+---------------+------------------
Serial Port Controller I USER r ',',',nnn; 4-16 

----------------------------+-------------------+---------------+------------------
Soft Boot I MODE = SOFT BOOT 1-17 
----------------------------+-------------------+---------------+------------------
Select Blink Plane(s) ESC b " 8-7 

----------------------------+-------------------+---------------+------------------
Select Character Set: 

Alternate 
Standard 

CTRL N 
CTRL 0 

3-6 
3-6 

----------------------------+-------------------+---------------+------------------

Version 1.4 Page A-15 



Command List ?'900 Operator t s Manual ·Appendix A 

Function Code Sequence Key Page I 

----------------------------+-------------------+---------------+------------------
Select Image 1 ESC s F 11-1 
----------------------------+-------------------+---------------+------------------
Termem: 

Normal 
Restricted 

USER @ 
USER ... 

TERMINAL 4-1 
4-2 

----------------------------+-------------------+---------------+------------------
Test I MODE t C TEST 3-17 
----------------------------+-------------------+---------------+------------------
Thaw Parameters I USER T THAW 6-1 

----------------------------+-------------------+---------------+------------------
Tone Generator -I ESC T 1,I,i,l, TONE 3-18 
----------------------------+-------------------+---------------+------------------
Triangle PLOT T XI XI XI TRIANGLE 9-20 

----------------------------+-------------------+---------------+------------------
Vector PLOT V XI XI VECTOR 9-21 

----------------------------+-------------------+---------------+------------------
Vector-Drawn Characters PLOT E I, F chars 9-26 

----------------------------+-------------------+---------------+------------------
Vector Width I MODE x I, V. WIDTH 9-25 

----------------------------+-------------------+---------------+------------------
Visible Control Characters ESC V C F 3-20 
----------------------------+-------------------+---------------+------------------
Warm Start 1 USER W 3-22 

----------------------------+-------------------+-------------~-+------------------
Window Limits 1 MODE W XI XI WINDOW 3-24 
----------------------------+-------------------~--------------+------------------Window Variables: 

Display 
Operate 
Transmit 

USER Y C C 
MODE ] C C I, 
USER x C C 

7-S-
7-4 
7-5 

----------------------------+-------------------+---------------+------------------
Zoom: 

Absolute 
Zoom Down 
Zoom Up 

ESC Z C C 
ESC K 
ESC J 

M2 RECALL 
M2 ERASE PAGE 

8-34 
8-31 
8-31 

----------------------------+-------------------+---------------+------------------

Page A-16 Version 1.4 



Appendix A 7900 Operator's Manual Key Sequences 

Key Sequences 

All the keys in the top four rows of the 7900 keyboard 
generate multiple codes when struck (except RESET and CALC 
MODE). The keys on the cursor keypad (between the 
alphanumeric keyboard and the numeric keypad) also generate 
one or mor e codes when struck. The following list shows 
which keystrokes produce sequences of characters. Function 
key sequences are also described on page 3-12. 

Keystroke Seguence 

ARC PLOT A 
AREA FILL MODE A 

ASSIGN INPUT USER I 
ASSIGN OUTPUT USER 0 
BLINK MODE K 1 
BOOT USER b 
CHANGE ESC C 
CIRCLE PLOT C 
COLORSWAP MODE Y 
CON CAT VECTOR PLOT W 
COpy MODE U 
CREATE USER C 
CURSOR ON MODE J 1 
CURVE PLOT U 
DEFINE USER j 
DOS USER d 
DOT PLOT D 
FILL MODE F 1 
IDRIS USER a 
INC VECTOR PLOT I 
INC X-BAR PLOT X 
INC Y-BAR PLOT Y 
MONITOR USER M 
MOVE X-Y MODE M 
OVERLAY MODE 0 1 MODE V 3 
PAN X-Y ESC M 
PLOT MODE P 1 
POLYGON PLOT P 
RAY PLOT \ 
RECT PLOT R 
ROLL MODE R 1 
RUBBER BAND MODE E 1 

Version 1.4 Page A-17 



Key Sequences 7900 Operator's Manual Appendix A 

Keystroke Sequence 

SCALE MODE s 
SET MODE C 
SHIFT AREA FILL MODE -
SHIFT BLINK MODE K 0 
SHIFT CHANGE ESC c 
SHIFT COLORSWAP MODE Y 
SHIFT COPY USER h 
SHIFT CREATE USER c 
SHIFT CURSOR ON MODE J 0 
SHIFT DOS USER P 
SHIFT FILL MODE F 0 
SHIFT IDRIS USER i 
SHIFT OVERLAY MODE 0 0 MODE V 0 
SHIFT PLOT MODE P 0 
SHIFT ROLL MODE R 0 
SHIFT RUBBER BAND MODE E 0 
SHIFT SCALE MODE S 0 
SHIFT SET MODE c 
SHIFT WINDOW MODE W,,-l.-l. 
SIZE MODE X 
SOFT BOOT MODE = CTRL L 
TERMINAL USER @ 
TEST MODE t 
THAW USER T 
TONE ESC T 
TRIANGLE PLOT T 
V. WIDTH . MODE x 
VECTOR PLOT V 
VIEW ESC v 
WINDOW MODE W 

Page A-18 Version 1.4 



Appendix A 

Cursor Keypad codes 

down-arrow 
left-arrow 
right-arrow 
up-arrow 
SHIFT down-arrow 
SHIFT left-arrow 
SHIFT right-arrow 
SHIFT up-arrow 

-CLEAR EOL 
CLEAR LINE 
CTRL HOME 
DEL CHAR 
DEL LINE 
ERASE EOS 
ERASE PAGE 
HOME 
INS CHAR 
INS LINE 
RECALL 
SHIFT RECALL 

M2 CLEAR LINE 
M2 ERASE PAGE 
M2 HOME 
M2 RECALL 
M2 down-arrow 
M2 left-arrow 
M2 right-arrow 
M2 up-arrow 

Function Key codes 

FI USER J A 
F2 USER J B _ 
F3 USER J C 
F4 USER J D 
F5 USER J E 
F6 USER J F 
F7 USER J G 
Fa USER J H 
F9 USER J I 
FH) USER J J 
FII USER J K 
Fl2 USER J L 

Bezel I 
Bezel 2 
Bezel 3 
Bezel 4 

Version 1,.4 

USER J 
USER J " 
USER J ] 
USER J .... 

7900 Operator's Manual 

CTRL J 
CTRL H 
CTRL ] 
CTRL K 
CTRL V 
CTRL Y 
CTRL _ 
CTRL E 

MODE " 
MODE @ 
MODE I 
MODE < I 
MODE < 2 
MODE I 
CTRL L 
CTRL \ 
MODE > I 
MODE > 2 
MODE DEL I 
MODE DEL 2 

ESC A 
ESC J 
ESC M 0,0, 
ESC K 
ESC j 
ESC h 
ESC } 
ESC k 

Fl3 USER J 
Fl3 USER J 
Fl3 USER J 
Fl3 USER J 
Fl3 USER J 
FI3 USER J 
Fl3 USER J 
Fl3 USER J 
Fl3 USER J 
Fl3 USER J 
Fl3 USER J 
Fl3 USER J 

M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
W 
X 

Bezel 5 USER J 
Bezel 6 USER J 
Bezel 7 USER J 
Bezel a USER J 

Key Sequences 

[ 
\ 
Y 
Z 

Page A-19 



Key Sequences 7900 Operator's Manual Appendix A 

Color Ke:l codes 

BLACK 0. SHIFT BLACK 8 , 
BLUE 1. SHIFT BLUE 9. 
GREEN 2. SHIFT GREEN 10. 
CYAN 3, SHIFT CYAN 11, 
RED 4. SHIFT RED 12. 
MAGENTA 5, SHIFT MAGENTA 13, 
YELLOW 6, SHIFT YELLOW 14, 
WHITE 7, SHIFT WHITE 15. 

Page A-20 Version 1.4 



Appendix A 7900 Operator's Manual In1ine Editor 

In1ine Editor Commands 

To date, the In1ine Editor is used in the following 
Chromatics software: 

• DOS (including Editor) 

• CGC 7900 Monitor 

• Idris Editor nne n 

Command I Key Sequence 
--------------------------------+----------------------------

Clear Line I CLEAR LINE 
Clear to Beginning of Line I CTRL SHIFT CLEAR LINE 
Clear to End of Line I CTRL CLEAR EOL 
Delete Character I CTRL DEL CHAR 
Delete Word I CTRL SHIFT ERASE PAGE 
Insert Characters I CTRL INS CHAR 
Literal Mode I CTRL G 
Move Cursor I <left arrow> <right arrow> 
Move to Beginning of Line I HOME 
Recall Back I SHIFT RECALL 
Recall Forward I RECALL 

--------------------------------+----------------------------

Version 1.4 Page A-21 





Appendix B 7900 Operator's Manual Color Display 

Appendix B -- Color Display Schemes 

The human eye is a remarkable instrument for distinguishing 
color. It can adjust to an enormous variety of lighting 
conditions and int"ensities, and interpret extremely subtle shades 
of color. No present method of generating a color graphics 
display can produce the enti re range, or "gamut," of color s the 
eye is aple to interpret. All present methods must employ some 
sort of model, representing a certain subset of the eye's color 
gamut. 

The way in which most color graphics systems (including the 
CGC 7900) produce color is to provide three color "guns" in a 
Cathode-Ray Tube, or CRT. The three guns each produce a primary 
color. One gun is assigned to red, one to green, and one to 
blue. If the intensities of each gun can be independently 
varied, a good color gamut can be represented. 

The 7900 allows each gun to vary from "full off" to "full 
on" in 256 discrete steps. Studies have shown that this 8-bit 
resolution in the intensity scale is necessary to produce the 
appearance of continuous shading. A change in intensity of one 
part in 256 is not detectable by the eye. 

Version 1.4 Page B-1 



Color Display 7900 Operator's Manual Appendix B 

The Color Cube 

Since we use three guns in this system, one for each of 
three primary colors, we can represent this system by a set 
of three-dimensional axes. Assume the X-axis represents red, 
Y represents green, and Z represents blue. If we allow 'the 
intensity of each gun to vary between zero (completely dark) 
to 255 (maximum brightness), then we must label each axis 
with numbers from 0 to 255. (The limit 255 is,. for now, an 
arbitrary limit. We could just as well have defined limits 
to be from zero to one, or any other pair of numbers.) 

The or igin of this three-dimensional space is at the 
pOint 0,0,0, which is black (no intensity in any gun). The 
point of maximum intensity in all three guns is labelled 255, 
255, 255, and is white. A point along any of the three axes 
will represent a color with only one component: for example, 
any point along the nred n axis will have a component of red, 
but no green or bl ue. Greys have equal intensity of all 
three guns, so all grey levels fall along a diagonal line 
between 0, 0, 0 and 255, 255, 255. 

We restr ict each axis of this system to numbers between 
o and 255. In doing so, we define a nboxn or "cuben-shaped 
area. Any possible color in the gamut of our CRT system may 
be represented by some point within this cube. Any points 
outside the cube represent colors which might exist in the 
eye's color gamut, but cannot be represented on the CRT. 

What we have just described is known as the Color Cube 
model, or RGB model. A set of three-dimensional axes may be 
used to represent R; G, and B, and any color displayable on 
the CRT may be described as a pOint in the space defined by 
these axes. The upper limit of intensity must be defined, of 
course~ in the 7900, the upper limit is 255 units of 
intensity along each axis. 

The RGB model is useful. It accurately describes the 
gamut of colors we have available on the 7900 (or any other 
CRT device). Its drawback is that it is not easily related 
to the colors we see in the .real world. 

Page B-2 Version 1.4 



Appendix B 7900 Operator's Manual Color Display 

The HVS Hexcone 

A second model has been developed that 
describes the CRT color gamut. The Hexcone is 
units which are more appealing for humans to work 
Value and Saturation. 

accurately 
defined in 

with: Hue, 

Hue is the quality we most often refer to when we talk 
about Rcolor.R Hue defines the dominant wavelength of a 
color: red, blue, green, or some combination. A spectrum 
seen emerging from a prism displays a stream of colors, 
changing in Hue only. 

Value is the quality we refer to as Rbrightness" or 
"energyR in a color. When Value approaches zero, the color 
becomes black and Hue no longer has meaning. As Value 
increases, the subjective brightness of the color increases. 
A decrease in Value may be thought of as an increase in the 
amount of Rblack" in a color. 

Saturation is the quality that distinguishes a weak, or 
pastel color, from a strong, vibrant one. (For example. pink 
is the name we give a color "'hose main component is red, but 
which has low Saturation.) If Saturation approaches zero, the 
color becomes grey. (How bright a grey? Holding Saturation 
a t zero, if Val ue changes from zero to maximum. the color 
changes from black to white.) When Saturation is zero, Hue 
has no meaning. Saturation is always maximum at the primarY 
colors, red, green, and blue. 

The Hexcone model shows many of the features we have 
described above. Every point on the Hexcone, or inside it, 
can be found in the gamut of a color CRT. Thus, the Hexcone 
is simply an alternate mapping of the same information 
contained in the Color Cube. And, in fact, there are 
mathematical functions which can translate RGB coordinates to 
HVS and vice versa. 

The top- of the Hexcone has six corners: the three 
primary colors, red, green, and blue, and the three secondary 
colors formed by adding pairs of primaries: magenta, yellow, 
and cyan. White is located at the top of the center plane. 
Black is at the bottom vertex of the Hexcone. It follows 
that all shades of grey lie on the vertical axis which passes 
through the center of the Hexcone. 

Hue is seen to be an angle; it is always measured by 
drawing a vector from the center axis of the Hexcone. Hue 
equals zero when this vector points to the red vertex, 
increases toward green, and increases still more toward blue. 
Hue reaches its maximum when it returns to its starting 
point, red. 

Version 1.4 Page B-3 



Color Display 7900 Operator's Manual Appendix B 

Value is vertical height on the Hexcone. Value is zero 
at the b~ack vertex, and reaches its maximum at any point" on 
the top plane of the Hexcone. 

Saturation is measured by drawing a vector from the 
center axis of the Hexcone, through the point at which 
Saturation is to measured, to the edge of the Hexcone. (Note 
that the total length of this vector will vary. depending on 
the cross-sectional width of the Hexcone at the point of 
interest.) The total length of this vector always represents 
a Saturation of 100%, regardless of" its actual length; and 
the Saturation at any point P along the vector is defined to 
be the distance from P to the center axis, divided by the 
total length of the vector to the Hexcone edge. Saturation 
is thus a relative measure, which interacts with Hue and 
Value. 

Until now, we have carefully avoided using any absolute 
units for Hue, Value and Saturation. Units of measure for 
color have not been fully standardized; some systems define 
all RGB and HVS units to fall between zero and one. In the 
CGC 7900 we prefer to manipulate only integer numbers, so we 
use a range of zero to 255 for all numbers in the Hue, Value, 
Saturation system. 

Using this range (0 to 255), here are some examples of 
colors defined in both RGB and HVS units: 

Color 

Red 
Green 

Blue 

Yellow 
Cyan 

Magenta 

White 
50% grey 

Black 

Red 
Pink 

Light Orange 
Brown 

Page B-4 

R 

255 
o 
o 

255 
o 

255 

255 
128 

o 

255 
255 

255 
144 

G 

o 
255 

o 

255 
255 

o 

255 
128 

o 

o 
128 

190 
95 

B 

o 
o 

255 

o 
255 
255 

255 
128 

o 

o 
128 

128 
64 

H 

o 
85 

171 

43 
128 
213 

* 
* 
* 

V 

255 
255 
255 

255 
255 
255 

255 
128 

o 

S 

255 
255 
255 

255 
255 
255 

* = undefined 

o 
o 

21 
21 

255 
255 

255 
128 

255 
128 

128 
128 

Version 1.4 



Appendix B 7900 Operator's Manual Color Display 

Changing from red to pin~ requires a change in both the 
green and blue components, but only changes Saturation in the 
HVS system. Similarly. the change from light orange to brown 
involves altering all three of the three RGB components, but 
only changes one of the HVS components (Value). These types 
of color changes would be relatively difficult to calculate 
if we were forced to use RGB, but they are easy to comprehend 
in HVS. 

Despite the lengthy definitions above, HVS units are 
generally very we11-behared and easy for an operator to work 
with. The CGC 7900 allows the user to vary a color by 
adjusting Hue, Value and Saturation. Users quickly become 
accustomed to using this method of color selection, much as 
they would mix paints by eye: select a Hue by mixing primary 
colors, then add white (reduce Saturation) to lighten or mute 
the color, or add black (reduce Value) to darken it. 

Version 1.4 Page B-5 



Color Display 7900 Operator's Manual Appendix B 

The Color Cube 

.A-';;"O';'-------------....,. Y ell 0 W 

c Y Cl n fI'---------+-------rW HIT E 

8 LAC K:.,..&-_____ -+-_______ --,I Red 

Blue MClgentCl 

Page B-6 Version 1.4 



Appendix B 7900 Operator's Manual Color Display 

The HVS Bexcone 

Hue-128 

Saturation 

Hue-213 

255 

Value 

black o 

Version 1.4 Page B-7 





Appendix C 790~ Operator's Manual The Monitor 

Appendix C -- The Monitor 

The Monitor is a program which provides primitive facilities 
for manipulating memory, registers, and input/output devices 
within the 7 9~ ~. Its main use is debugging machine language 
programs. 

It is not necessary to understand this section before 
learning to use the rest of the CGC 79~~ system. 

The Monitor is not designed to be used by beginners! 
Properly used, it can be a great aid for programmers working in 
68~~~ code, whether they are experienced with this particular 
processor or not. But the user who is totally unfamiliar with 
assembly level programming may find the Monitor quite baffling. 

This section describes the utilities available in the 
Monitor. To enter the Monitor, press the labelled key: 

MONITOR 

Version 1.4 Page C-l 



Monitor Operations 7999 Operator's Manual Appendix C 

Monitor Operations 

Some general comments are presented here concerning the 
commands accepted by the Monitor. 

Most commands consist of one or two characters, followed 
by the arguments to the command. Each command is terminated 
by the carriage return character (RETURN). The arguments to 
the command are separated by delimiters. 

The characters space, comma. and colon are all 
recognized as delimiters. They may be used interchangeably 
in the commands except where noted. In the format for each 
command we will use the comma for convenience. 

When the Monitor is displaying ini"ormation. such as a 
list of the contents of memory. the display may be stopped by 
entering CTRL S (hold down the CTRL modifier and type an S). 
Pressing another key will continue the display. The display 
may be interrupted at any time with the DELETE key. which 
will return you immediately to the Monitor prompt. 

Page C-2 Version 1.4 



Appendix C 7900 Operator's Manual Inline Editor 

The Inline Editor 

When entering a command line to the Monitor, the text 
editing functions labelled on the cursor keypad may be used 
to edit an input line. These functions include Insert and 
Delete Character, Cursor Left and Right, Clear Line, Clear 
EOL, and Recall Last Line. (The functions labelled in bl ue 
are accessed by holding the CTRL modifier while pressing the 
indicated key.) ----

The left and right arrows move the cursor around on the 
input line. The HOME key moves the cursor to the first 
character of the input line. 

CLEAR LINE del etes the enti re input 1 ine. CLEAR EOL 
(Clear to End Of Line) deletes all characters from the cursor 
posi tion to the end of the input line. DEL CHAR (Delete 
Character) deletes one character at the current cursor 
position. 

INS CHAR (Insert Character) begins the Insert Character 
input mode. After entering Insert Character, the character 
under the cursor begins flashing. Any characters typed in 
this mode will be inserted into the input line at the current 
cursor position. To leave this mode, use the left or right 
arrow key to move the cursor. Now, any characters entered 
will overwrite the character und:rneath the cursor. (This is 
the default input mode.) 

CTRL SHIFT CLEAR LINE deletes all characters from the 
cursor to the beginning of the 1 ine. CTRL SHIFT ERASE PAGE 
deletes a word from the input line. These two functions are 
not labelled on the cursor keys. 

The Recall function brings back a copy of a line 
previously entered. This is useful for repeating a command 
several times, without having to retype the entire command. 
Press RECALL to bring back a copy of the last line entered. 
Press the key several times to bring back earl ier lines, 
moving backward in the Recall buffer. If you go too far 
back, press SHIFT RECALL to move forward in the buffer. The 
number of lines in the buffer is limited by the size of the 
buffer and the length of the lines. 

When the. RETURN key is pressed, the entire visible input 
line is entered as a command to the Monitor, regardless of 
the current cursor position within that line. This means 
that it is not sufficient to "backspace" over characters to 
delete them: the unwanted characters must be physically 
deleted from the line with the Delete Character, Clear Line, 
or Clear EOL functions. 

If you need to execute special code sequences while in 
the Monitor, simply enter the desired sequence. Escape and 
User code sequences will be immediately executed. Mode and 

Version 1.4 Page C-3 



In1ine Editor 7900 Operator's Manual Appendix C 

P1ot·codes will be displayed on the input line (using special 
characters), and will be executed when the RETURN key is 
pressed. This allows you to enter a Mode code sequence, edit 
it using In1ine. then execute it. Similarly, if you ~ish to 
execute an Erase Page or other special control function, type 
it in and it will appear using special characters. It may be 
edited in the standard manner, and when RETURN is pressed, it 
will be executed. 

Pressing CTRL G (the "bell" code) causes In1ine to enter 
Literal mode. In Literal mode, ALL control-characters may be 
entered into the In1ine editor, including the carriage return 
code. Thus, once Literal mode is in effect, you are unable 
to press RETURN and have the system execute your input line. 
Literal mode is designed for text editors and other advanced 
programs, and it is not normally used in the Monitor. If you 
do enter Literal mode, typing a second CTRL G will exit this 
mode. 

Page C-4 Version 1.4 



Appendix C 7900 Operator's Manual Abort 

Monitor Commands 

Abort 

If a machine language program is executed using the 
Monitor, it may be aborted at any time by pressing any Bezel 
Key. All registers are displayed, and control returns to the 
Monitor. 

NOTE: 

After entering the Monitor. the Bezel Keys will 
ONLY perform this Abort function. Re-entering the 
Terminal Emulator and trying to define a Bezel Key 
will result in aborting the Terminal Emulator 
program! If the Bezel Keys are to be used as 
user-defined keys after leaving the Monitor, the 
system must be Booted. 

Version 1.4 Page C-S 



Change Memory 7999 Operator's Manual Appendix C 

Change Memory 

Format: 

CB <addr> RETURN 

CW <addr> RETURN 

CL <addr> RETURN 

The Change command allows you to modify memory. starting at 
address <addr>. You may modify bytes, words, or long words, 
using the CB, CW or CL form of the command. 

Change displays an address, and the contents of memory 
at that address, then asks for input. You have four options: 

Page C-6 

• Enter a hex number and press RETURN. to enter 
a value into that address and examine the next 
address. 

• Press RETURN. to skip that address without 
modification. 

• 
• 

Enter a carat (A) and press RETURN. to examine 
the previous address. 

Press DELETE. to terminate the Change command 
and return to the Monitor prompt. 

Version 1.4 



Appendix C 7900 Operator's Manual Checksum 

Checksum Memory 

Format: 

+ <addrl>, <addr2> RETURN 

Where: 

<addrl> and <addr2> are hex numbers delimiting the 
memory range to be summed. 

The memory locations between <addrl> and <addr2> , inclusive, 
are summed, and the result displayed. The sum is a 
sixteen-bit number, obtained by summing either all of the 
EVEN bytes, or all of the ODD bytes, in the memory range 
specified. If <addrl> is even, the even bytes are summed. 
If not, the odd bytes are summed. 

Example: 

+4099,SFFE RETURN sum all EVEN bytes 4000 - SFFE 

Version 1.4 Page C-7 



Compare Memory 7900 Operator's Manual 

Compare Memory 

Format: 

K <addrl>, <addr2>, <addr3> RETURN 

Where: 

<addrl>, <addr2>, <addr3> are hex numbers 
specifying the memory ranges to be compared. 

Appendix C 

The contents of memory between locations <addrl> and 
<addr2>, inclusive, are compared to consecutive locations 
beginning at <addr3>. Any locations which do not match are 
displayed. During this display, you may press CTRL S to 
pause, or DELETE to stop. 

Example: 

K4000.4FFF,5000 RETURN 

The contents of memory locatwns 4000 through 4FFF (hex) are 
compared to locations 5000 through 5FFF. 

Page C-8 Version 1.4 



Appendix C 7900 Operator's Manual Disk Read/Write 

Disk Read 

Format: 

R <disk#>, <block>, <#blks> <addr> RETURN 

Where: 

<diski> 

<block> 

<iblks> 

<addr> 

is the disk you want to read from. Values of 0 
and 1 refer to the left and right floppy 
drives, respectively. Values of 2 and 3 refer 
to the internal and remote hard disks. 

is the first block to read from. Legal values 
depend on particulars of each disk. 

is the number of blocks to read. 
256 bytes long, except blocks on 
floppy disks. These blocks are 
long. 

Each block is 
track 0 of the 
only 128 bytes 

is the starting address of the block of memory 
receiving the disk data. 

The contents of the specified disk blocks are read into 
memory starting at <addr>. 

Example: 

R0,100,2,10000 RETURN 

Blocks 100 and 101 of the left-hand floppy disk are read 
into memory starting at location $10000. 

Disk Write 

Format: 

W <disk#>, <block>, <#blks> <addr> RETURN 

The parameters for Disk Write are the same as those for Disk 
-Read, above. The contents of memory starting at <addr> are 
written to the specified disk blocks. 

Example: 

W0,100,2,10000 RETURN 

The memory block starting at location $10000 is written to 
blocks 100 and 101 of the left-hand floppy disk. 

Version 1.4 Page C':"'"9 



Dump Memory 7900 Operator's Manual 

Dump Memory 

Format: 

D <addrl> [,<addr2>1 RETURN 

Where: 

<addrl> and <addr2> are hexadecimal numbers 
specifying the range of memory to be dumped. 

Appendix C 

The Dump command outputs the contents of memory to the 
screen. The information is displayed in hexadecimal and 
ASCII. Sixteen bytes are displayed on each line of the 
screen. 

<addr2> is optional. If included, it must be separated 
from <addrl> by a delimiter, such as the comma shown above. 
As mentioned earlier, a space or a colon are also valid 
delimiters. 

If <addr2> is greater than <addrl>, then the range of 
memory will end at location <addr2>. Since sixteen bytes are 
always displayed on each line, a few bytes past <addr2> may 
also be displayed. 

If <addr2> is less than <addrl>, then <addr2> is taken 
as the number of bytes to display, rather than the last 
address to display. 

Examples: 

D4~HH!J RETURN 

dumps sixteen bytes, beginning at address 4000 (hex). 

D4000,4FFF RETURN 

dumps all bytes between addresses 4000 and 4FFF, inclusive. 

D4000,20 RETURN 

dumps 32 (20 hex) bytes, beginning at address 4000 hex. 

Page C-10 Version 1.4 



Appendix C 7900 Operator's Manual Evaluate Math 

Evaluate Math Expression 

Format: 

? <integer expression> RETURN 

This command parses an integer math expression and returns 
the resul t in decimal and hexadecimal. All numbers in the 
expression are assumed to be in decimal, unless they are 
preceded by the dollar-sign character ($), in which case they 
are interpreted as hex. 

Examples: 

?10 * (147/3 -5) + 19 RETURN 

?1900 - $FE06 RETURN 

?$14A60 & $lFFF RETURN 

?(32+756) ! 1024 RETURN 

?'HI' + 'ABC' RETURN 

NOTE: 

In the examples above, spaces have been included 
for clarity. Spaces must NOT be entered when 
typing expressions ·into the Monitor. since a space 
is a delimiter. and evaluation will terminate when 
the space is reached. 

In the third example, the Logical And operator (&) is 
used. This operator performs a 32-bit logical AND. The 
fourth example contains the 32-bit logical OR operator (!). 

The last example shows that strings may be used as 
operands. Up to four characters may be used in a str ing 
constant. since the maximum number size in this system is 32 
bits. 

NOTE: 

All decimal' numbers, as well as any multiplies and 
divides, must be limited to l6-bitaccuracy. 

Version 1.4 Page C-ll 



Examine Registers 7900 Operator's Manual 

Examine Registers 

Format: 

x [<Reg>] [,<value>] RETURN 

Where: 

Appendix C 

<Reg> is the name of a register, or a question m~rk 

<value> is a hex number, up to 32 bits 

This command allows you to examine or modify the contents of 
the 681iJ00 processor registers. These are the names of the 
registers: 

DIiJ Data register 0 
Dl Data register 1 
• 
• 
D7 Data register 7 

AIiJ Address register 0 
Al Address register 1 

• 
A7 Address register 7 

PC Program counter 
US User stack pointer 
SR Status Register 

If the command X is used with no arguments, the values of 
all registers are displayed. 

If the name of a register is given, only the value of 
that register is displayed. 

If the name of a register is given.. and a value is 
specified, the register is loaded with that value. 

If the question mark is used in'stead of a register name, 
a list is printed of the registers designated for Trace (see 
Trace Display] • 

Page C-12 Version 1.4 



Appendix C 79~~ Operator's Manual Examine Registers 

NOTE: 

These registers are "pseudo-registers" used by the 
Monitor during trace and breakpoint operation. The 
values in these registers are not initialized 
unless a breakpoint is reached, or unless 
specifically loaded using the X command. 

Examples: 

X RETURN displays all registers 

XDI RETURN displays the value of Dl 

XDl,3E4F RETURN loads Dl with hex value 3E4F 

X? RETURN displays registers designated 
for trace 

Version 1.4 Page C-13 



Fill Memory 7900 Operator's Manual 

Fill Memory 

Format: 

F <addrl>, <addr2>, <value> RETURN 

Where: 

<addrl> and <addr2> are hex numbers specifying 
the memory range to fil11 

<value> is the hex number (8 bits or less) to 
fill with. 

Appendix C 

Memory locations between addresses <addrl> and <addr2>, 
inclusive, are filled with <value>. 

Example: 

F4000.4FFF,AS RETURN 

This example fills locations 4000 through 4FFF (hex) with 
the value AS (hex). 

Page C-14 Version 1.4 



Appendix C 7900 Operator's Manual 

Go (with Breakpoints) 

Format: 

G [<addr>] [,<bkp1>] [,<bkp2>] RETURN 

Where: 

<addr> are each 32-bit hex addresses 
<bkp1> 
<bkp2> 

Go 

Go causes execution to begin at address <addr>. If <addr> is 
omitted, execution begins at the current value of PC. 

Up to two breakpoint addresses may be specified, and 
they must be separated by delimiters (commas, spaces, or 
colons). Execution will continue until anyone of the 
breakpoints is hit. At that time, the registers designated 
by Trace Display will be listed, and control is returned to 
the Monitor. 

When either breakpoint is encountered, BOTH breakpoints 
are removed from memory. 

If no breakpoint addresses are specified, the program 
will not return to the Monitor (unconditional Go). 

Examples: 

G4502 RETURN Go at address 4502 hex. 

GE6A2,E6B0 RETURN Go at address E6A2, with a breakpoint 
at E6Br2J. 

G,16FF0 RETURN 

G RETURN 

Version 1.4 

Go at current PC, with a breakpoint at 
16FFr2J. 

Unconditional Go. 

Page C-15 



Load 7900 Operator's Manual Appendix C 

Load 

Format: 

L [<optional offset>] RETURN 

The Load command accepts input from Logical Input Device 1, 
normally the RS-232 serial port. The input is expected to'be 
Motorola 68000 object ~ode in the standard format. See the 
68000 processor literature for format details. 

The code is loaded at its normal address in memory, unless 
an offset address is specified in the load command. If 
specified, this offset is added to the memory addresses. 

Examples: 

L RETURN 

LI000 RETURN 

Page C-16 Version 1.4 



Appendix C 7900 Operator's Manual 

Move Memory 

Format: 

M <addrl>, <addr2>, <addr3> RETURN 

Where: 

<addrl>, <addr2>, <addr3> are hex numbers 
specifying memory addresses. 

Move Memory 

The contents of memory 
<addr2>, inclusive, are 
beginning at <addr3>. 

between locations <addrl> and 
copied to consecutive locations 

Example: 

M4000,4FFF,5000 RETURN 

The contents of memory locations 4000 through 4FFF (hex) are 
copied to locations 5000 through 5FFF. 

Version 1.4 Page C-17 



Punch 7900 Operator's Manual Appendix C 

Punch 

Format: 

P <addrl>, <addr2> RETURN 

The Punch command transmits output to Logical Output Device 
1, normally the RS-232 serial port. The output is in 
Motorola 68000 object code format. It contains all bytes 
between addresses <addrl> and <addr2>, inclusive. 

Example: 

P1000,2FFF RETURN 

NOTE: 

The Punch command does NOT produce the standard 
end-of-record marker on its output. See the End 
Punch command below. 

End Punch 

Format: 

E RETURN 

The Punch command produces output records in standard 
f.lotorola 68000 object code format. The Punch command does 
not produce the required end-of-record mark. To properly 
close out the object code, use the End Punch command. 

Example: 

E RETURN 

This command is provided separately so that you may Punch 
several different portions of memory to your output device, 
keeping them all as part of a single file, then terminate the 
entire set with one end-of-record using End Punch. The 
resul ting obj ect code can all be read in with one Load 
command, even though parts of it may be loaded into 
non-contiguous areas of memory. The Load command continues 
to read until it reads the end-of-record provided by End 
Punch. 

Page C-18 Version 1.4 



Appendix C 79~~ Operator's Manual Set Memory 

Set Memory 

Format: 

SB <addr>, <string of values> RETURN 

SW <addr>, <string of values> RETURN 

SL <addr>, <string of values> RETURN 

Where: 

<addr> is the first location to set 

<string of values> is a list of hex values separated 
by commas, or an ASCII string in 
single quotes (SB command only) 

Use the SB command to set bytes, SW for words (16 bits), and 
SL for long words (32 bits). You can set consecutive 
locations by entering several values. The only limit is that 
the enti re command must f it on one line of the screen (85 
characters). 

The string of values may be an ASCII character string, 
when using the SB command. The SW and SL commands will only 
accept hex arguments, separated by commas., 

Examples: 

SB4~~~,lE RETURN 

SW4~1~,12AE,lB67,FF,9C~~ RETURN 

SL6F~~,E34F~1,~,2E,A5A5A5 RETURN 

SB5~2l,'This string goes into memory.' RETURN 

The apostrophe character (single quote) is used to delimit 
an ASCI I str ing. It is possible to insert a single quote 
into memory by entering two of them: 

SB49~~,'It' 's eaS¥ to do that!' RETURN 

A single apostrophe will be inserted between the t and s. 

Version 1.4 Page C-19 



Trace 7999 Operator's Manual Appendix C 

Trace 

Format: 

T [<addr>] RETURN 

The Trace command execut.es one instruction in the program. 
The current instruction is pointed to by the register PC 
(program counter). After executing one instruction, the 
designated registers are displayed. 

Before using Trace, it is necessary to set PC using the 
"X" command (unless PC already contains a value, from a 
previous command). 

If <addr> is specified, tracing continues until that 
address is reached. The registers are printed after each 
instruction executes. The process may be interrupted at any 
time by pressing DELETE or by pressing any Bezel Key. 
Pressing CTRL S will pause the display, and pressing another 
key will resume tracing. 

Examples: 

T RETURN 

T4lE2 RETURN 

After using the Trace command, the next Monitor prompt you 
receive will be "TM" to indicate that you are still in trace 
mode. When you receive the "TM" prompt, you may press the 
RETURN key to execute a single instruction. Entering any 
other command will remove you from trace mode, and the "TM" 
prompt will no longer be presented. 

See also Trace Display. 

Page C-29 Version 1.4 



Appendix C 7900 Operator's Manual Trace Display 

Trace Display 

Format: 

<list of registers> RETURN 

[ 1 RETURN 

[ 0 RETURN 

Trace Display defines which registers will be displayed 
during Trace or Breakpoint execution. 

Each register in the <list of registers> must be in the 
following form: 

Reg • Length 

Where Reg is the name of a register, and Length is the type 
of display desired: B for byte, W for word, L for long word. 

The second format given above causes a listing of all 
registers to be pr inted at each break in execution. The 
third format turns off all register listing. 

Examples: 

[D0.B,Al.L,A2.L RETURN 

[PC.L,Dl.W RETURN 

[1 RETURN 

[0 RETURN 

(display all registers) 

(display none) 

A list of the registers currently specified for tracing may 
be obtained with the command: 

X? RETURN 

Version 1.4 Page C-21 



Virtual Search 7900 Operator's Manual Appendix C 

Virtual Search 

Format: 

V <addrl>, <addr2>, <string of values> RETURN 

Where: 

<addrl> is the start of the memory range to search 
<addr2> is the end of the range 
<string of values> is what to look for (hex or ASCII) 

The range of memory between <addrl> and <addr2>, inclusive, 
is searched for the string. If a match is found, the 
locations containing the match are displayed. 

Examples: 

V0,1000,FF RETURN 

V4000,8000,0,0,0,0 RETURN 

V0,FFFF,'Find me' RETURN 

In the first example, a search is performed for all 
occurrences of the value FF hex between addresses 0 and 1000 
hex. In the second example, the range 4000 hex to 8000 hex 
is searched for four consecutive zero bytes. In the third 
example, the command searches the entire first 64K of memory 
(addresses 0 to FFFF) for the ASCII string nFind me. n As with 
the S (Set Memory) command, an apostrophe may be entered in 
the ASCII string by typing two apostrophes. 

The Virtual Search command may be used to determine the 
revision level of the PROM software in your 7900 system. 
Execute the Monitor, and type the following command: 

V800000 80FFFF 'VERi' 

This command searches addresses $800000 through $80FFFF (all 
PROMs) for the character string. 'VERi'. PROM software 
versions 1.1' and later contain this character string, 
followed by the version number, for each major program in the 
system. In version 1.4, the following would be displayed: 

VERi TERMEM 1.4 
VERi Monitor 1.3 

This indicates that the system contains version 1.4 of 
TERMEM (the Terminal Emulator) and version 1.3 of the 
Monitor. These are the latest versions. 

Page C-22 Version 1.4 



Appendix 0 7900 Operator's Manual Traps 

Appendix 0 -- Traps 

The MC68000 processor used in the CGC 79(iJ0 will detect a 
number of error conditions which may occur during a program. If 
a severe error occurs, the processor discontinues normal program 
execution and "traps." This causes the 7900 software to display 
information relating to the trap, and the system halts. A 
"crash" sound indicates that the program .has crashed. The red 
indicator above the cursor keypad is illuminated. 

Traps should not be encountered during normal operation. 
Users running preliminary or un-debugged software are more likely 
to encounter traps. 

When the system traps, the bottom line of the Overlay 
displays the type of trap, the address at which the trap 
occurred, and seven words of data from the stack. These data may 
be helpful in determining the reason for the trap. When 
contacting Chromatics for assistance regarding a trap problem. 
please include all of the data displayed at the time the trap 
occurred. 

After a trap, the system stops and does not acknowledge 
interrupts. The only way to recover from a trap is to press 
RESET. Pressing RESET turns off the red indicator on the 
keyboard; however, the trap message remains on the screen until 
erased. Pressing RESET followed by SOFT BOOT will clear the 
screen and recover from most traps. 

If the program damaged any system data before trapping, it 
may be necessary to force a power-up Boot by pressmg CTRL SHIFT 
RESET. 

Traps are explained in more detail in the Motorola MC68(iJ00 
User's Manual (available from Chromatics). 

Version 1.4 Page 0-1 



Traps 7900 Operator's Manual Appendix D 

Traps are referenced by a number or a letter: 

TraE t~Ee 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

G 

H 

P 

* 

Page D-2 

Explanation 

Bus Error (non-existent memory was accessed). 

Address Error (attempt to fetch word data from an 
odd memory address). 

Illegal Instruction. 

Division By Zero. 

CHK Instruction. 

TRAP V Instruction. 

Privilege Violation (attempt to execute privileged 
instruction while in User state). 

Trace. 

Line 1010 Emulator (illegal instruction). 

Line 1111 Emulator (illegal instruction). 

Spurious Interrupt. 

Level 1 Interrupt Autovector. 

Level 2 Interrupt Autovector. 

Level 3 Interrupt Autovector. 

Level 4 Interrupt Autovector. 

Level 5 Interrupt Autovector. 

Level 6 Interrupt Aut ovect or • 

Level 7 Interrupt Autovector (power-up interrupt) • 

Buffer Memory Parity Error. 

Undefined Trap. 

Version 1.4 



Customization 7900 Operator's Manual Appendix E 

Appendix E -- Custoa Modules, Cursors and Character Sets 

This section discusses how to add custom features to the CGC 
7900: modules, cursors and character sets. 

Modules are commands which are loaded into memory (RAM or 
EPROM) • When the system is booted, all ,modules are "linked" 
together in a fashion which allows any of them to be executed by 
ASCI I code sequences. All of the features implemented in the 
7900 are written as modules: this includes I/O drivers, Plot 
submodes, Mode, Escape and User codes. Using the information in 
this section, the user can write modules which perform custom 
functions, and link them into the CGC 7900 system. 

Version 1.4 Page E-l 



Modules 7900 Operator's Manual Appendix E 

Modules -- General 

A module is a sub-program, written according to a list 
of guidelines so that it may be linked into the CGC 7900 
firmware. There are seven types of modules: 

B: Boot only. This module contains code 
which is executed at 'boot time, but not 
otherwise used by the system. 

I: Input device. This is a driver which 
i~terfaces a physical input device to the 
system. Currently defined RIR modules 
include the keyboard and serial ports. 

0: Output device. This is a 
interfaces a physical output 
system. Currently defined 
include the serial ports, 
keyboard lights. 

driver which 
device to the 

ROR modules 
windows, and 

Mode: Mode code. This module performs functions 
which modify the attr ibutes of a window. 
The window software calls Mode modules 
when it receives a Mode code sequence. 

Plot: Plot submode. This module describes a 
Plot submode, and is called when a window 
receives a Plot code sequence. 

Escape: Escape code. This module is called by the 
Escape code processor when an Escape code 
sequence is received. Escape codes 
generally alter the status of the entire 
system. 

Us~r: User code. This module is called by the 
Escape code processor when a User code 
sequence is received. User codes 
generally alter the status of the entire 
system, or cause execution of a 
controlling program (such as DOS or 
Idris). . 

Page E-2 Version 1.4 



Appendix E 7900 Operator's Manual Modules 

Modules may exist in EPROM or in RAM. Most of the EPROM 
firmware in the 7900 consists of modules. For each Mode, 
Plot, Escape and User code sequence recognized by the 7900, 
there is a module in firmware which defines the actions taken 
by that code sequence. All modules in the system are 
"linked" whenever: 

• the system is powered-up; 

• CTRL SHIFT RESET is pressed; 

• or when ~ is pressed. 

The process of "linking" means that the system is 
scanned for modules, the addresses of all modules are loaded 
into dispatch tables, and any necessary initialization is 
performed. Note that this "linking" is done sequentially, 
through EPROM, then through any RA~l modules which may have 
been loaded by the user. This means that two or more modules 
may def ine the same code sequence, and the LAST one 1 ink ed 
will be the one in the dispatch table after linking is 
complete. This makes it easy for a user module to re-define 
a system function, with the module replacing the firmware 
module which has the same identifying code at its beginning. 

Mode, Plot, Escape and User modules may accept 
arguments. The required arguments are defined by the module, 
and the system automatically parses arguments before passing 
control to the module. This relieves the user from writing 
argument parsing routines, and insures that all arguments are 
parsed in a consistent manner. 

A module must save any registers it modifies, and 
restore the registers before exiting. As described below, 
several registers are pre-loaded before the module is 
executed and provide the module with system status 
information. 

Version 1.4 Page E-3 



Linking Process 7999 Operator's Manual Appendix E 

The Linking Process 

The system scans two areas for modules when linking is 
performed: first, each EPROM pair on the 7999 Raster 
Processor Board is checked. If a ROM Expander card is 
installed and its address is consecutive with the Raster 
Processor, firmware in the ROM Expander will also be checked. 
If an EPROM pair is installed, and if a valid module is found 
at the start of the EPROM, linking proceeds through the 
EPROM. Linking terminates when an invalid length descriptor 
or an invalid module type code (one not in the set B, I, 0, 
etc.) is found. Linking then proceeds to the start of the 
next EPROM pair. 

After all EPROM modules have been linked, the system 
checks for RAM modules. RAM modules, if they exist, must be 
loaded into system RAM at the address pointed to by RAMMDLE. 
(RAMMDLE is a pointer in CMOS memory, and its contents may be 
altered with the "Thaw" command. See Chapter 6 for details.) 
The default address for RAM modules is $lF9991 this allows 4K 
of space for modules, when a single Buffer Memory card is 
installed. 

If RAM modules exist, they must follow all the rules 
described in this section, with an additional provlslon: to 
indicate the presence of RAM modules, the bytes 'MOLE' must 
be loaded into RAM at the start of the first RAM module: 

ORG.L 
OC.L 

etc. 

$lF999 
, MOLE' 

Org where Thaw wants us to be 
Indicate RAM modules here 

The bytes I MOLE' must NOT be included if a module is being 
put into EPROM. 

Modules are expected to be "back to back," existing 
consecutively through memory. Thus, any tables or other data 
used by a module must be WITHIN the module, not after it. 

The last module should end with the following statement: 

DC.L -1,-1 

This indicates to the linker that no more modules follow. 

Page E-4 Version 1.4 



Appendix E 7900 Operator's Manual Module Construction 

Module Construction 

Each module begins with a length descriptor. The length 
is used to determine where one module ends, and where the 
next one begins. The address of each module is determined at 
boot time during the linking process, and loaded into a 
dispatch table for future reference. 

Next, a module contains one of the characters B, I, 0, 
Mode (CTRL A), Plot (CTRL B), Escape (CTRL [), or User 
(CTRL U), to define the type of module. This is immediately 
followed by a character which uniquely identifies that 
module. 

The makeup of the remainder of the module depends on the 
type of module you are writing. All of the seven types of 
modules are discussed in this section, and examples are 
provided. 

Version 1.4 Page E-S 



Boot Modules 7900 Operator's Manual Appendix E 

Boot Modules 

A Boot module is executed upon power-up, when the system 
RESET key is pressed, or when the system is booted (by 
pressing ~). A Boot module might be written to initialize 
a piece of hardware, or to pre-load the Case Table for 
interfacing to a certain host computer. 

'The Boot module contains a length descriptor (word), the 
character 'B' followed by a dummy character, and the code to 
be executed. It ends with a RTS instruction. 

ORG.L $lF000 Org where Thaw says-to Org 
DC.L 'MDLE' Required for RAM modules 

DC.W Md1eEnd-IPC This is our length 
DC.B 'B' ,0 Identify a Boot module 

* 
* Boot code begins here ••• 
* • 
* • 
* and ends here. 
* 

RTS 

Md1eEnd EQU IPC 
DC.L -1,-1 Make sure linking ends here 
END 

Page E-6 Version 1.4 



Appendix E 79~~ Operator's Manual I/O Modules 

Input/Output Modules 

I/O modules define the interface between a physical 
device, such as a printer, and the logical device assignment 
structure in the 79~~. The I or 0 module must be responsible 
for handling all transfers to or from the device, checking 
the status of the device (if applicable), and booting the 
device (if necessary). Note that the Boot section of an I or 
o module performs the function of a B module. 

The I or 0 module begins with a length descriptor 
(word). This is followed. by the character I or 0, defining 
an input or output module, and a character between A and Z to 
identify this particular I/O module. This character (A-Z) is 
used in the "Assign" command to identify the physical device 
which is being assigned. 

Two words of code must follow the identifying character. 
These must be either SHORT branches to Boot and Status 
sections of the module, or RTS instructions. The Status 
section is used in an I module to see whether a character is 
ready to be read. The Status code should return the Z flag 
SET if no character is available, or clear it if a character 
is available. If the Status code returns Z set, the system 
will not execute the main code. (The Boot and Status 
portions of the module must also terminate with aRTS.) 

In an input module (type I), if input is being buffered, 
the Status code may return a "snapshot" of the oldest 
character in the buffer in D~.B. This feature is used by the 
STATIN routine in TERMEM, and is called by DOS to check for 
X-ON and X-OFF commands (to suspend output). Note that the 
character snapshot must not remove the character from the 
input buffer; the character should remain in the buffer until 
read by the main code of the I module. 

The Status section is not used in an 0 module. An 0 
module must not return until it has completed processing a 
character. 

The main body of the module follows, terminated by a 
RTS. The system passes a character to an Output module in 
register D0, and expects an Input module to return a 
character in D~. The low 8 bits of the register are used. 

Note that a single device capable of both input and 
output requires two modules, one I and one o. (Our device 
1 QI below may have an I module and an 0 module associated 
with it.) 

Version 1.4 Page E-7 



I/O Modules 7900 Operator's Manual Appendix E 

* 
* 
* 

Sample Input module (type 'I') for a device named O. 

* 

ORG.L 
DC.L 

DC.W 
DC.B 

BRA.S 
BRA.S 

$lF000 
'MOLE' 

MdleEnd-IPC 
'I','O' 

Oboot 
Ostat 

Org where Thaw says to Org 
Required for RAM modules 

Our length 
Input module for device '0' 

* Main code for inputting a character from device O. 
* 

* 
* Code 
* 
Oboot 

MOVE.B 
BSR 
RTS 

for booting 

MOVE.B 
MOVE.B 
MOVE.L 
RTS 

Obuffer,D0 Get input data 
Stompbuf Remove this data from buffer 

device O. (Executed at Boot time. ) 

#0,OCtrlPort Initialize device Q. 
#$FF,QCtrlPort 
#OISR,Ovector Load interrupt vector 

* 
* 
* 

Code for checking status of Q. 

Ostat TST.W 
MOVE.B 
RTS 

MdleEnd EOU 
DC.L 
END 

Page E-8 

Obufstat 
Obuffer,D0 

IPC 
-1,-1 

Check buffer status 
Snapshot oldest character 

No more modules here 

Version "1.4 



Appendix E 7900 Operator's Manual Argument Parsing 

Argument Parsing 

The module types discussed below may have arguments 
associated with them. An argument is a set of characters or 
numbers which is passed to the module. Mode, Plot, Escape 
and User modules may accept arguments. The arguments 
required by a module are defined by that module, and are 
parsed by the system before the module is called. The module 
then simply picks up its arguments and processes them. 

The system will parse ten types of arguments: 

Arg type 

B: 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8 : 

9: 

A: 

Description 

No argument, just a placeholder. 

A single character. 

A string of characters, delimited by a space, 
comma, or semicolon. 

A string of characters, 
semicolon ONLY. 

delimited by a 

A signed 16-bit decimal number (or a number in 
Binary Coordinate form, if the system is in 
Binary Mode). 

A l6-bit hexadecimal number. 

A decimal number, or the X component of a 
coordinate defined by the cursor. 

A decimal number, or the Y component of a 
coordinate defined by the cursor. 

An X-Y coordinate pair (combination of 6 and 
7; will accept a period for cursor position). 

Any number of coordinate pairs, delimited by a 
semicolon. 

A decimal number, 
tr anslation. 

scaled but without 

Argument types 6 through 9 are 
coordinate data. Each of these will 
arguments according to the scale factors 
which executed the module. 

designed to parse 
scale and translate 
in use in the window 

Version 1.4 Page E-9 



Argument Parsing 7900 Operator's Manual Appendix E 

In defining arguments, the system looks for two words 
immediately following the module's name. Up to eight 
argument types may be placed in these words. If no arguments 
are to be processed, fill both words with zero. 

Peculiarities of each type of module are discussed 
below. 

Page E-10 Version 1.4 



Appendix E 7999 Operator's Manual Registers 

Register Setup for Modules 

When a module is executed, several registers are 
pre-loaded for convenience. The following table defines what 
each register is used for, when each type of module is 
entered. 

Module 

B (boot) 

I (input) 

o (output) 

Mode, Plot 

Escape, User 

Version 1.4 

Register Usage 

No registers pre-loaded. 

No registers pre-loaded. 

No registers pre-loaded. 

A9: Points to base of Window Table for 
the window which called the module 
(see Window Table description). 

AI: Points to Mode arguments (parsed 
before module execution begins). 

A3: Points to Plot arguments (parsed 
before module execution begins). 

D7: Contains window status for the 
winc;low which called the module (see 

. Window Table description). 

A9: Points to base of the Window Table 
for window A (the Master Window) • 

AI: Points to arguments (parsed before 
module execution begins) • 

D7: Contains window status for window A 
and Escape code status. 

Page E-ll 



Mode Modules 7900 Operator's Manual Appendix E 

Mode Modules 

A Mode module is executed when a window receives the 
Mode code sequence identifying that module. Mode modules are 
expected to affect only the window which called them, 
although nothing in the system will prevent a Mode module 
from affecting other windows or other aspects of the system. 

A Mode module consists of a length descriptor (word), 
followed by the MODE character (CTRL A, decimal 1), and a 
character which uniquely identifies the module. This 
character may be any ASCII character above '0' (hex $30). 

The next long word in the Mode module defines a list of 
arguments, to be parsed and passed to the module. Each 
nybble (4 bits) of the long word specif ies one of the ten 
argument types listed above. 

The argument list in this long word is right-justified, 
and the least-significant nybble def ines the FIRST argument 
to be parsed. The long word must be left-filled with zeros 
to indicate the end of the argument list. Up to 8 arguments 
may be defined in this long word. 

Example: 

DC.W 
DC.B 
DC.L 

MdleEnd-IPC 
Mode, ILl 
$00000144 . 

Length Descriptor 
. Name of Mode modul e 

Argument list 

This list would specify that the module requires two decimal 
numbers, followed by a single character. 

Arguments to a Mode module are put onto the "AI stack." 
That is, the Mode module may assume that its arguments are 
waiting for it at the address pointed to by (AI), and 
successive bytes. The stack may contain up to 16 long words. 
MODE codes are processed when they reach the screen (or other 
physical device). 

Page E-12 Version 1.4 



Appendix E 7999 Operator's Manual Mode Modules 

Example Mode Module 

**************************************************** 
* * * This sample Mode module does the same thing as 
* the TERMEM FilION/OFF command (MODE F 1/0) 
* 

* 
* 
* 

********************************************-******* 

ORG.L $lF099 Org where Thaw says to Org 
DC.L ' MDLE' Required for RAM modules 

DC.W FillEnd-IPC Length descriptor 

DC.B Mode, 'f' Name of module 
Mode EQU 1 (Mode is Control-A) 
FilIon EQU 8 Bit 8 in D7 

DC.W $9099 Our arg list 
DC.W $9991 (just one character) 

* 
* Code for module II MODE fll begins here. 
* 
* The user would type MODE f <n> 
* 
* where <n> is either 0 or 1. 
* 
* 

CMP.B #'0',(Al) Get the flag 

BEQ.S FillOff If it equals zero, kill Fill 
BSET #Fillon,D7 Else turn it on 
RTS Then quit 

FillOff BCLR #Fillon,D7 Turn off Fill mode 
RTS 

FillEnd EQU IPC 
DC.L -1,-1 Only if no more modules 
END 

Version 1.4 Page E-13 



Plot Modules 7999 Operator's Manual Appendix E 

Plot Modules 

A Plot module performs 'a graphics function. All but one 
of the plotting features in the 7999 firmware are written as 
Plot modules. Plot modules generally accept coordinate data 
as arguments, and perform some plotting function based on 
this data. The DlinkingD procedure used for all modules 
means that you can write your own Plot modules, link them in 
to add new features to the 7909 firmware, or replace any 
existing features. Plot codes, like Mode codes, are 
processed when they reach the current output device. 

Plot modules begin with a length descriptor (word). This 
is followed by the PLOT character (CTRL B, decimal 2) and a 
character which identifies the module. The identifier may be 
any character above ASCII D@D (hex $49). 

The next two words specify arguments to be passed to the 
Plot module. The FIRST time a Plot module is entered, it may 
need to execute a special sequence of instructions to 
initialize itself. A status bit tells the module whether it 
is being entered for the first time, or on subsequent calls. 

The second word of the argument list is used toO select 
arguments for the first call. The first word selects 
arguments for subsequent calls. 

Once a Plot code sequence has been entered, execution of 
the Plot module begins. The module can then be repeatedly 
called1 it will be executed automatically when it has enough 
arguments. 

Example: 

DC.W 
DC.B 

DC.W 
DC.W 

ModEnd-IPC 
Plot, 'z I 

$9911 
$9998 

Two chars for repeated calls 
Coord arg for first call 

In this example, the Plot module requires a' coordinate 
argument when it is first executed. After the coordinates 
have been entered, the system will accept two single 
characters before entering the module (this is the argument 
scheme used by Incremental Vector). 

This process continues until another Plot submode is 
entered or until the user turns Plot mode off. 

Page E-14 Version 1.4 



Appendix E 79~~ Operator's Manual Plot Modules 

On entry to the Plot module (and other modules), certain 
registers are set up for convenience. One of these is D7, 
which contains the window status. The "Submode" bit of D7 
(bit 17) is set when a Plot module is first entered, to 
indicate that "this Plot Submode was just entered." If a Plot 
module cares about whether the submode has just been entered, 
it must check. this bit and perform any necessary 
initialization if the bit is set. Then, it must clear the 
"Submode" bit. 

If the Plot module does not do anything special when it 
is first entered, duplicate the argument list in the first 
and second word: 

DC.W 
DC.B 

DC.W 
DC.W 

ModEnd-IPC 
Plot, I Z I 

A coord for repeated calls 
and also for the first call. 

Note that Plot modules may only parse FOUR arguments before 
execution begins; Mode modules could have up to eight. 

To prevent conflicts between Plot code and Mode code 
arguments, Plot arguments are stacked on the "A3 Stack" and 
may be picked up from the addresses pointed to by A3. The 
module must not alter A3 or any other registers. Up to 32 
long words are allocated for Plot module arguments. 

Remember that more than one window at a time may be in 
the same Plot Submode. A Plot module should not store any 
local data which could interfere with another window calling 
the Plot module. Local data should be stored in the window 
table, or otherwise be localized to the window. 

Version 1.4 Page E-15 



Plot Modules 7900 Operator's Manual Appendix E 

Example PLOT Module 

* * An example of how a Plot module should be set up. 
* ORG.L $lF0riHl 

DC.L 'MDLE' 

DC.W ModEnd-IPC 
DC.B Plot, , Z' 

Plot EQU 2 (Plot is Control-B) 

DC.W $000a One coordinate pair normally, 
DC.W $0088 Two pairs the first time through. 

Submode EQU 17 

* 
* 
* 
* 
* 

BTST #Submode,D7 Did we just enter 
BEQ.S Norm No, it's a normal 

Submode was just entered. We can set up 
in this block of code if necessary. 

the submode? 
entry 

BCLR #Submode,D7 Prepare for next entry 

* (Setup code goes here) 
* 

* 
* 
* 
* 
* 
Norm 

* 
* 
* 
* 

RTS 

Come here if submode was NOT just entered. 

MOVEM.L D0-D2/A3,-{SP) 
MOVE.W (A3)+,D0 
MOVE.W (A3) ,D1 

Save registers 
Get X argument into D0 
Get Y argument into D1 

Now, do something with the arguments here •••• 
Maybe plot a vector or something. 

MOVEM.L (SP)+,D0-D2/A3 Restore registers 
RTS 

Page E-16 Version 1.4 



Appendix E 7999 Operator's Manual Escape/User Modules 

Escape and User Modules 

Escape and User modules are identical to each other, and 
are similar to the Mode modules discussed earlier. An Escape 
or User module begins with a length descriptor (word), 
followed by the ESC ($lB hex) or USER ($15 hex) character, 
and a single ASCiT character which identifies the module. 
The identifier may be any character above ASCII ' @' ($49 
hex). 

The next two words define an argument list, exactly like 
a Mode module. All arguments (up to eight) are parsed by the 
Escape Code Processor and are passed to the Escape or User 
module. Arguments are found on the AI stack (pointed to by 
AI). This does not conflict with the stack of Mode arguments 
because Escape and User codes are processed by a different 
routine than Mode codes. 

Remember that Escape and User codes have identical 
priority in the 7999 code processing scheme. Escape and User 
modules are not specific to a window, so they should be used 
to implement functions affecting the entire machine. Escape 
and User codes are trapped and processed by the Escape. Code 
Processor. ' 

Version 1.4 Page E-17 



Escape/User Modules 7900 Operator's Manual Appendix E 

Example ESCAPE code Module 

* 
* 
* 
'* 
* 

A sample Escape code module to play with the 
lights on the keyboard. This could also have 
been written as a User module. 

ORG.L 
DC.L 

DC.W 
DC.B 

Esc EOU 

DC.W 
DC.W 

MOVE.W 
Keybrd EOU 

RTS 

MdleEnd EOU 
DC.L 

END 

Page E-18 

$lF000 
'MDLE' 

MdleEnd-IPC 
Esc, 'X, 
$lB 

$0000 
$0004 

(Al) ,Keybrd 
$FF8080 

IPC 
-1,"'-1 

Identify a module is here 

Length descriptor 
Escape X is our sequence 

We want one decimal # 

Send it to the keyboard 
(Keyboard address) 

Version 1.4 



Appendix E 7900 Operator's Manual Window Tables 

Window Tables 

512 bytes of data are allocated as a Window Table for 
each active window. These bytes hold the current status of 
the window, including such items as color, blink, scale, 
window limits, and most other window attributes. Window 
attributes are usually set by Mode code sequences, and Mode 
modules will often want to alter items in a Win~ow Table. 

The following chart lists the location of each item in 
the window table, by giving an offset into the table where 
each item may be found. An item can be altered by a module 
by using the listed offset as a displacement from (A0) , since 
A0 is pre-loaded with the base of the Window Table. 

Example: 

FrgCol EQU $8E Offset in table 
for Foreground color 

MOVE.W FrgCol(A0) ,00 Get color into 00 

In this table, entries are marked with .B, .W, or .L, 
indicate the appropriate data size (where possible). 

$00 .L TVALUE: Temporary storage area (reserved) 
$04 .L Arglst: Mode argument list 
$08 .L Parglst: Plot argument list 
$0C .L STATUS: copy of 07 status long word 
$10 .L .... Argstk: pointer to Mode argument stack 
$14 .L Argdsp: Mode dispatch address 
$18 .L .... Prgstk: pointer to Plot argument stack 
$lC .L Prgdsp: Plot dispatch address (submode) 

Window variables are stored beginning here 
and occupy one word each. 

$20 .W 
$22 .W 

• 

$5C .W 
$5E .W 

Window Variable A 
Window Variable B 

Window Variable 
Window Variable ' 

to 

Version 1.4 Page E-19 



Window Tables 7999 Operator's Manual Appendix E 

Page E-29 

The following items are also Window Variables a-z 
but are used for system data as well. 

$69 .W 
$62 .W 
$64 .W 
$66 .w 
$68 .W 
$6A .W 
$6C .W 
$6E .W 
$70 .W 
$72 .W 
$74 .W 
$76 .W 
$78 .W 
$7A .W 
$7C .W 
$7E .W 
$80 .W 
$82 .W 
$84 .W 
$86 .W 
$88 .W 
$8A .W 
$8C .W 
$8E .W 
$90 .W 
$92 .W 

$94 .W 
$96 .W 
$98 .W 
$9A .W 
$9C .L 
$A0 .L 
$A4 ~L 
$A8 .L 

AcursX: 
AcursY: 
CursX: 
CursY: 
AwindX9: 
AwindY9: 
AwindXl: 
AwindYl: 
WindX0: 
WindY9: 
WindXl: 
WindYl: 
CharXZ: 
CharYZ: 
CharDX: 
CharDY: 
CharXM: 
CharYM: 
XVmin: 
YVmin: 
Tabcol: 
Vecwid: 
BkgCol: 
FrgCol: 
PlaneE: 
CursCol: 

Overlay cursor X position 
Overlay cursor Y position 
Bitmap cursor X posttion 
Bitmap cursor Y position 
Overlay window upper left corner X 
Overlay window upper left corner Y 
Overlay window lower right corner X 
Overlay window lower right corner Y 
Bitmap window upper left corner X· 
Bitmap window upper left corner Y 
Bitmap window lower right corner X 
Bitmap window lower right corner Y 
Character X raster size 
Character Y raster size 
Character delta X after write 
Character delta Y after write 
Character X multiplier 
Character Y multiplier 
Virtual X minimum value 
Virtual Y minimum value 
Tab stop spacing 
Vector width 
Background color 
Foreground color 
Planes enabled 
Cursor color (not used, reserved) 

Some miscellaneous items ••• 

OldX: 
OldY: 
Xscl: 
YScl: 
Charadr: 
Endbuf: 
Plotdot: . 
Plotvect: 

Rubber band X position 
Rubber band Y position 
Virtual X Scale value 
Virtual Y Scale value 
Character set base address 
End of arguments for virtual coordinate 
Dispatch address for dot plotting 
Dispatch address for vectors 

Version 1.4 



Appendix E 7gee Operator's Manual Window Tables 

The following five items are used for 
raster processor operations in the window. 

$AC .W WXsrc: X source raster operating point 
$AE .w WYsrc: Y source raster operating point 
$Be .w WDXsrc: Delta X for source raster 
$B2 .W WDYsrc: Delta Y for source raster 

.. $B4 .W Wctr1: Control bytes for rasters 

The next three items are for argument storage. 

$B6-$F5 Curstg: 
$F6-$135 Argstk: 
$136-$lB9 Pargstk: 

32 words for cursor pixel storage 
Argument stack for Mode args (32 words) 
Argument stack for Plot args (64 words) 

The following four bytes contain the current 
Overlay color, blink and transparency attributes. 

$lBA 
$lBB 
$lBC 
$lBD 

$lBE-$lFF 

Version 1.4 

AentSt: 
AentBC:· 
AentFC: 
AentCh: 

Transparency 
Background color 
Foreground color 
ASCII character position 

Reserved for future expansion 

Page E-21 



Window Status 7900 Operator's Manual Appendix E 

Window Status and ESCAPE Code Status 

As shown before, register D7 is pre-loaded with status 
information when certain types of modules are executed. The 
bits in D7 are defined as follows: 

Bit 

", 

1 
2 
3 
4 
5 
6 
7 
8 
9 

H' 
11 
12 
15 
16 
17 
18 
19 
2", 
21 
23 
24 
25 
26 
27 
28 
29 
3", 
31 

Name 

modeF: 
plotF: 
Moredat: 
Negnum: 
visctrl: 
Pltmode: 
Overlay: 
Curson: 
Fillon: 
Blinkon: 
Rollon: 
OvrStrk: 
Binmode: 
Rubron: 
Patton: 
Submode": 
Cursin: 
BinTwo: 
VScale: 
A70n: 
Local: 
Full: 
Escflg: 
Usrflg: 
Create: 
LitP'" : 
LitPl: 
Literal: 
Escdone: 

Meaning 

Mode flag used by window proces~or 
Plot flag used by window processor 
Control bit used by argument scanners 
Control bit used by argument scanners 
SET when visible ctrls are on 
SET when in a plot submode (not alpha) 
SET when Overlay on (not Bitmap) 
SET when cursor is ori 
SET when fill is on 
SET when blink is on 
SET when roll is on 
SET when overstrike is on 
SET when binary mode is on 
SET when rubber band is on 
SET when patterns are on 
SET when Plot submode just entered 
SET when Bitmap cursor in screen RAM 
Flag for binary coordinate parser 
SET when scaling is on 
SET when A7 character set active 
SET in LOCAL mode 
SET in FULL duplex 
Escape code processor flag 
Escape code processor flag 
SET if Create is on 
Escape code processor flag 
Escape code processor flag 
SET if Literal Create is on 
Escape code processor flag 

Bit ", is the least significant bit. 
reserved. 

Unused bits are 

Page E-22 Version 1.4 



Appendix E 7900 Operator's Manual Custom Characters 

Custom Character Sets 

The 7900 allows user-defined character sets to be used 
in the Bitmap in place of the two character sets supplied 
with the system. An entry in each Window Table (Charadr) 
points to the base of the character set for that window, and 
the size of the font (X by Y pixels) may also be defined for 
each window. The character font dimensions may be up to 16 
in the X direction, and 256 in the Y direction. 

Since the character set address for a window is stored 
in the Window Table, it will default back to the normal 
character set whenever BOOT or SOFT BOOT is executed. 

The character set for the Overlay is stored in 
high-speed PROM, and is not alterable through software. 

The following program is a module, designed to be linked 
into the 7900 system software. It will install a custom 
character set in any window which receives a MODE i command. 
This program is an example ONLY. It does not include a 
complete character set definition. The data set which should 
accompany this program would be too long to fit into the 
standard 7900 memory, unless you do one of the following: (1) 
change the ORG address, which requires changing address 
RAMMDLE with the Thaw command, (2) change the height of the 
character set to reduce the data required, or (3) install 
additional memory above address $20000. 

Version 1.4 Page E-23 



Custom Characters 7900 Operator's Manual Appendix E 

* 
* Sample module to install a new character set. 
* The set is installed in a window by the command: 
* 
* 
* 

MODE i X, Y, <addr> 

* To return to the standard set, use SOFT BOOT. 
* ***************************************************************** 
* * What follows is the character font definition. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

It is arranged as 128 regular characters, followed by 128 
A7 characters. All 256 characters should be defined. 

Assume the font is set in a field X by Y. (Default is 
X = 6 and Y = 8.) Then each character requires 8 words 
of data, one for each Y scan; and 6 bits of each word 
are used. The active 6 bits are left-justified in the 
l6-bit word. 

* Example: the character "A" 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

bit # 

111111 
5432109876543210 

1 .xxx ............ 
2 x ... x ........... 
3 X ••• X ••••••••••• 

Word # 4 XXXXX ••••••••••• 
(one per Y scan) 5 X •• • x ••••••••••• 

6 x ... x ... ' ........ 
7 X •• • x ........... 
8 •••••••••••••••• 

The X by Y field must include any necessary 
spacing between characters or between lines. 

Memory requirements: 

This module will require 256 * Y words. 
This much memory must exist between address 
"RAMMDLE" and the physical end of memory. 

Hex value 

$7000 
$8800 
$8800 
$F800 
$8800 
$8800 
$8800 
$0000 

If necessary, use Thaw to alter the address of "RAMMDLE" (be 
sure to put it where nothing will stomp on itl) 

Page E-24 Version 1.4 



Appendix E 7900 Operator's Manual Custom Characters 

* 
* 
* 
* 
* 
* 
* 
S 

* 
* 
BASE 
* 
* 
* 

* 
* 
* 

* 
* 
* 
* 
* 
* 

* 
* 
* 

* 
* 

* 
* 

This Scale Factor will left-justify a 6-bit number in a 
16-bit field, by shifting 10 bits. All of the numbers in 
this database are 6-bit for convenience, and S justifies 
them properly. 

EQU 1024 

ORG.L <known address> This is where it all begins. 

This is the regular character set. 

DC.W 
DC.W 

• 
• 
• 

DC.W 
DC.W 

$24*S,$34*S,$3C*S,$2C*S,$24*S,$04*S,$04*S,$07*S A@ 
$0C*S,$10*S,$08*S,$05*S,$lD*S,$07*S,$05*S,$05*S AA 

etc. for regular set. 

$01*S,$0E*S,$10*S,$00*S,$00*S,$00*S,$00*S,$00*S 
$0A*S,$15*S,$0A*S,$15*S,$0A*S,$15*S,$0A*S,$00*S DEL 

Alternate (A7) character set begins here. 

DC.W 
DC.W 

• 
• 
• 

DC.W 
DC.W 

END 

$lF*S,$15*S,$15*S,$lF*S,$15*S,$15*S,$lF*S,$00*S A@ 
$08*S,$15*S,$02*S,$08*5,$15*5,$02*S,$00*S,$00*S AA 

etc. for A7 set. 

$01*5,$02*S,$02*5,$04*5,$08*5,$10*S,$10*S,$20*5 
$00*5,$00*5,$00*5,$00*5,$00*5,$00*5,$00*5,$3F*5 DEL 

Version 1.4 Page E-25 



Custom Characters 7900 Operator's Manual Appendix E 

Vector-Drawn Character Format 

The command format for vector-drawn characters is on 
page 9-26. These characters are formed by a vector list, 
which is an arbitrary number of short (bold) vectors. All 
printable characters from the exclamation point ($21 hex) 
through the tilde (-, $7E hex) are described by entries in a 
vector list. The list is pointed to by a long word in CMOS 
called VChrset, address $E4021E. VChrset will normally point 
to the default vect9r list in PROM, but it can be altered to 
point to a custom set. 

Each vector-drawn character lies within a 16 x 16 
matrix. The cursor is assumed to be at the upper left corner 
of the matrix, so the matrix points are numbered (in 
hexadecimal) : 

0123456789ABCDEF 
o 
1 
2 
• 
• 
E 
F 

Within the vector list, each 16-bit word defines one vector 
of the character. Four bits each are used for Xl, Yl, X2 and 
Y2 for that vector. For example, consider the letter H: 

0123456789ABCDEF 
0X ••••••••• X ••••• 
1X ••••••••• x •.••• 
2X ••••••••• X ••••• 
3X ••••••••• X ••••• 
4X ••••••••• X ••••• 
5XXXXXXXXXXX ••••• 
6X ••••••••• X ••••• 
7X ••••••••• X ••••• 
8X ••••••••• X ••••• 
9X ••••••••• X ••••• 
AX ••••••••• x ..... 
B •••••••••••••••• 
C •••••••••••••••• 
D •••••••••••••••• 
E •••••••••••••••• 
F •••••••••••••••• 

Page E-26 Version 1.4 



Appendix E 7900 Operator's Manual Custom Characters 

In the diagram, XS correspond to points to be drawn in 
the character. Three vectors are needed: from 0,0 to 0,A; 
from 0,5 to A,S; and from A,0 to A,A. The vector list for 
this character would be: 

$000A 
$0SA5 
$A0AA 
$0000 

The zero word signals the end of the list for that 
character. The definition for each character may contain an 
arbitrary number of vectors. 

The default character set only uses part of the 
available 16 by 16 matrix. Most characters in the default 
set fit within an 8 by 12 matrix, including lower-case 
descenders. If you use a "non-standard" size, the Set 
Intercharacter Spacing command will force the proper spacing. 

Version 1.4 Page E-27 



Custom Characters 7999 Operator's Manual Appendix E 

Algorithm Description 

When told to produce a character, TERMEM scans the 
vector list starting at the address in VChrset. It assumes 
that the description for the exclamation point character ($21 
hex) is at the start of this list. Then it scans forward, 
looking for the zero words that separate the character 
descriptions, until the correct character is reached. 

Each data word describing the character is separated 
into the four-bit values for Xl, Yl, X2 and Y2. These values 
are multiplied by. the current X and Y character size 
parameters in the Window Table. Then, the coordinate data is 
rotated according to the angle given in the Vector-Drawn 
Character command. The current cursor position is added to 
these rotated XY values, and a bold vector is drawn in the 
current foreground color and vector width. This process is 
repeated until the terminating zero word is found in the 
vector list. 

Next, the cursor location is updated. If proportional 
spacing is ON, the largest X value in the character list plus 
2 is used (this implies that the characters must be 
left-justified in the 16 by 16 matrix for proportional 
spacing to work properly). If proportional spacing is OFF, 
the cur rent X intercharacter spacing is used. In either 
case, this value is multiplied by the cur rent X character 
size, rotated and added to the current cursor position. 

The Space character does not have a descriptor in the 
vector list, so the current intercharacter spacing is used to 
update the cursor position. 

Page E-2B Version 1.4 



Appendix E 7999 Operator's Manual Custom Characters 

The following DOS program fragment will load a custom 
vector-drawn character set. Since VChrs~t is in CMOS and the 
vector list is .in RAM, you will have to either save the 
default value of VChrset and restore it at the end of the 
program, or press CTRL SHIFT Ml M2 RESET to return to the 
default character set. 

****************************************************************** 

VChrset 

Start 

Table 

* 

EQU 

ORG.L 

$E492lE 

$lC3C 

MOVE.L VChrset,-(SP) 
MOVE.L iTable, VChrset 

(program goes here) 

MOVE.L 
CLR.L 
CLR.L 
RTS 

DC.W 
DC.W 

DC.W 
DC.W 

(SP) +, VChrset 
DO 
Dl 

xxxx,xxxx ••• 
9 

xxxx,xxxx ••• 
9 

* And so forth, for all ASCII characters 
* 

Version 1.4 

DC.W 
DC.W 

END 

xxxx,xxxx ••• 
9 

Start 

pOinter to data set 

run in DOS area 

save default pointer 
load the new pointer 

reload default pointer 

return to DOS 

data for ! 
terminator 

data for " 

data for tilde (-) 

execute at label "Start" 

Page E-29 



Custom Cursors 7900 Operator's Manual Appendix E 

Installing a New Cursor 

~he 7900 Bitmap cursors, 
described by - a set of data. 
pointers in the CMOS area, one 
and one for the Alpha cursor. 

Plot· and Alpha, are each 
This set is pointed to by 
pointer for the Plot cursor 

Plotcur 
Alphcur 

EQU 
EQU 

$E40l6A 
$E40l6E 

The cursor descriptor data is a list of up to 32 long 
words. Each long word descr ibes the displacement of one 
pixel of the cursor, with respect to the center pixel of the 
cursor. The list is terminated with a zero word. Since this 
zero word is part of the descriptor, the center pixel of the 
cursor is always ON. 

The displacements are given as addresses in Bitmap 
memory. Each pixel in Bitmap memory cor responds to a word 
(two bytes) of memory, so an X displacement of one pixel is 
produced by an address displacement of two. (Positive X 
displacement is to the right.) Similarly, a Y displacement of 
one pixel cor responds to an address change of 2048 bytes 
(1024 pixels per Y line of the screen, times two bytes per 
pixel. A positive Y displacement is in the down direction. 

A sample cursor might look like this, where X's 
correspond to pixels included in the cursor: 

X 
XXX 

X 

The data list for this cursor would be: 

+2 
-2 

+2048 
-2048 

o 

(the pixel to the right of center) 
(the pixel to the left of center) 
(the pixel below center) 
(the pixel above center) 
(the center pixel, and end of the list) 

To install a new cursor, first define it in the form 
above. Store this data in memory. Then, alter the pointer 
.in CMOS (either Plotcur or Alphcur) so that it points to your 
data. Note that if you store your cursor in RAM other than 
CMOS, the description will vanish when system power is turned 
off, but the CMOS pointer will remain! This will cause you to 
have NO cursor at all. To reload CMOS defaults, use CTRL 
SHIFT Ml M2 RESET. 

Page E-30 Version 1.4 



Appendix E 7900 Operator's Manual Custom Cursors 

***************************************************************** 
* 

Sample program PUTCURS * 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Installs a new cursor as the Bitmap plot cursor. 

This program stores its cursor descriptor in upper CMOS 
memory, unused by current 7900 software. This may not be 
compatible with future 7900 releases. 

ORG.L 

PUTCURS MOVE.L 
MOVE.L 

PUTloop MOVE.L 
TST.L 
BNE.S 

$lC3C 

#HiCMOS,A2 
#Cursor ,A3 

(A3)+,(A2)+ 
-4(A2) 
PUT100p 

We run in DOS area 

Point to some unused CMOS 
Point to our new cursor descriptor 

Copy a long word into CMOS 
Was it zero? 
No, continue copying 

MOVE.L #HiCMOS,P1otcur Set up pointer to new cursor 

CLR.L 
CLR.L 
RTS 

HiCMOS EQU 
P10tcur EQU 

Cursor DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

Version 1.4 

D0 
D1 

$E40E00 
$E4016A 

-4*1024 
-4*1024+2 
-4*1024-2 
-2*1024-4 
-2*lfiJ24+4 
-4 
+4 
+6 
+8 
-2*lfiJ24+8 
-2*lfiJ24+10 
-2*HJ24+12 
-2*lfiJ24+14 
-4*lfiJ24+10 
-4*lfiJ24+12 
-4*1024+14 
-4*1024+16 
4*1024 

Flag no error occurred 
(We don't check for colon on line) 
Return to DOS 

CMOS area (unused in TERMEM 1.4) 
Plot cursor pointer 

New cursor descriptor 

Page E-31 



Custom Cursors 

DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

END 

Page E-32 

7999 Operator's Manual 

4*H'24+2 
4*1924-2 
2*1924-4 
2*1924+4 
2*1924+8 
2*1924+19 
2*1924+12 
2*1924+14 
4*1924+19 
4*1924+12 
4*1924+14 
4*1924+16 
9 

PUTCURS 

(end of list) 

Appendix E 

Version 1.4 



Appendix E 7900 Operator's Manual Jump Tables 

TERMEM Jump Tables 

This section describes the utilities available in CGC 
7900 PROM firmware. Each of these routines may be accessed 
through a subroutine call (JSR) to the appropriate address. 
BSR will not work, because the jump tables will be located 
beyond a l6-bit displacement from your program. 

Registers used in each routine are defined in this 
section. Unless noted, the routine only alters registers as 
necessary to return values to the caller. The notation 
"Ol.W" means that the low word (16 bits) of 01 are used by 
the routine, 00.B means the low byte of 00, and so on. 

Name: 
BOOT 

Address: 
$80004C 

BOOT boots the system. It does not return to the caller. 
One reason for calling BOOT would be to link in any RAM 
modules you have loaded into system memory. 

Name: 
CBARIN 

Address: 
$80000C 

Entry: 
Ol.W = logical device number to read from 

Exit: 
Zero flag SET if no character was available. 
Zero flag CLEAR and character in 00.B if available 

CHARIN is the system character-in routine. It reads a 
character from a logical input device. Reading from device 0 
will get a character from the keyboard (if available), device 
1 will be the serial port (these are the default 
connections). 

To wait for a character from CHARIN, use a loop on the EQ 
condition: 

Loop JSR 
BEQ.S 

CHARIN 
Loop 

Get a character, if any 
No character yet 

Escape and User codes are not processed by CHARIN, but are 
treated as normal characters. See CTRLOUT, CTRLIN and 
ESCPROC below. 

Version 1.4 Page E-33 



Jump Tables 

Name: 
CHAROOT 

Address: 
$899998 

Entry: 

7999 Operator's Manual 

D9.B = character to pass to logical device. 

Appendix E 

Dl.W = logical device number (9 to 4 are defined). 

CHAROUT· is the system character-out routine. It passes a 
character to a logical output device. The system's device 
assignment structure will then pass the character on to a 
physical device, if possible. Logical output device 9 is 
normally used to put characters on the screen, and device 1 
is normally connected to the serial port. If the character 
is part of a Mode or Plot code sequence, it will be processed 
when it reaches a Window (physical device). Escape and User 
codes are NOT processed by CHAROUT, but are treated as normal 
characters. To process Escape and User codes, see CTRLOUT, 
CTRLIN and ESCPROC below. 

Name: 
CTRLIH 

Address: 
$899914 

Entry: 
Dl.W = logical device number to read from. 

Exit: 
Zero flag SET if no character was available. 
Zero flag CLEAR and character in D9.B if available. 

CTRLIN is like CHARIN, but processes Escape and User codes 
before returning a character. It does this by calling CHARIN 
and then ESCPROC. If an Escape or User code was entered, it 
will be "eaten" by ESCPROC and the zero flag will be set, 
indicating that no character was available. 

Page E-34 Version 1.4 



Appendix E 

Name: 
CTRLOUT 

Address: 
$800010 

Entry: 

7900 Operator's Manual 

00.B = character to pass to logical device. 
Ol.N = logical device number. 
Zero flag MUST be cleared. 

Jump Tables 

CTRLOUT is like CTRLIN, but processes Escape and User codes 
before passing the character on to the logical output device. 
It does this by calling ESCPROC (see below), then calling 
CHAROUT. 

NOTE: 

00 not call CTRLOUT if the zero flag is set -­
your character will be ignored. 

Name: 
ESCPROC 

Address: 
$8001H8 

Entry: 
00.B = character to process. 
Zero flag MUST be cleared. 

Exit: 
Zero flag SET if character was "eaten" by ESCPROC. 
Zero flag CLEAR if character is still available. 

ESCPROC handles Escape and User code processing. It is used 
by CTRLIN and CTRLOUT, and may also be called directly. 
ESCPROC detects Escape and User codes, and processes them by 
setting the zero flag to indicate that the character was 
processed (and thus should not be considered available). 
After the Escape or User code is detected, ESCPROC will 
process subsequent characters to satisfy the argument list of 
that particular Escape or User function, then execute the 
function. This will normally be transparent to the user. 

Note that ESCPROC also processes the Create Buffer. 
Characters must flow through ESCPROC (or CTRLIN, or CTRLOUT), 
or they will not be put into the Create Buffer. 

Version 1.4 Page E-35 



Jump Tables 

Name: 
. Keystuff 

Address: 
$890088 

Entry: 

7999 Operator1s Manual 

D0.W = character to put into keyboard buffer 

Appendix E 

Keystuff puts 8-bit characters into the keyboard input 
buffer. These characters will be read from the buffer along 
with any characters which were actually typed. Keystuff also 
checks if the Ml and/or M2 keys are active (signified by bits 
10 and 11 being set), and performs translations if so. To 
insert a normal 8-bit character into the keyboard buffer 
using Keystuff, mask off these bits: 

AND.W 
JSR 

#$FF,D0 
Keystuff 

Make 8-bit only 
And put into buffer 

If the keyboard buffer is full, the character is discarded. 

Page E-36 Version 1.4 



Appendix E 

Name: 
NOISE 

Address: 
$800054 

Entry: 

7900 Operator's Manual Jump Tables 

A0 points to a tone descriptor block (14 bytes). 

Exit: 
A0 is incremented past block. 

NOISE feeds data to the sound generator. 14 bytes are loaded 
sequentially into the tone chip. These bytes go into 
registers 0 through 13 of the tone chip (a General 
Instruments AY-3-89l0), and control the following attributes: 

Register 

0 
1 
2 
3 

4 
5 
6 
7 

8 
9 
10 
11 
12 

13 

Version 1.4 

* Purpose 

Fine Tune A (8 bits) 
Coarse Tune A (4 bits) 
Fine Tune B (8 bits) 
Coarse Tune B (4 bits) 

Fine Tune C (8 bits) 
Coarse Tune C (4 bits) 
Noise Period (5 bits) 
Output Enabl e 

A Amplitude (5 bits) 
B Amplitude (5 bits) 
C Amplitude (5 bits) 
Envelope Period Fine (8 bits) 
Envelope Period Coarse (8 bits) 

Envelope Shape/Cycle Controi (4 bits) 

Page E-37 



Jump Tables 7900 Operator's Manual Appendix E 

The tone generator has three voices, A, B, and C, each 
of which can be programmed to produce tone or noise. If a 
given voice is programmed for both tone and noise, noise will 
usually dominate. Tone and/or noise are enabled by register 
7: 

7 6 5 4 3 2 1 
+---+---+----+----+----+----+----+----+ 
I X I X I An I Bn I Cn I At I Bt I Ct I 
+---+---+----+----+----+----+----+----+ 

A zero on 
channel, and a 
that channel. 
in the desired 

any of the "nn bits enables noise from that 
zero on any of the "t" bits enables tone from 
Unused channels are turned off by writing ones 
bits. 

Registers 8, 9 and 10 control the output amplitudes: 

7 6 5 4 3 2 1 
+---+---+---+---+-------------------+ 
I X I X I X I A I manual level ctrl I 
+---+---+---+---+-------------------+ 

A one in bit 4 specifies the channel's amplitude to be 
controlled by the envelope generator (Auto mode). If bit 4 
is a zero, the amplitude is fixed by the value in bits 0-3. 

The envelope generator is controlled by register 13: 

7 6 5 4 3 2 1 
+---+---+---+~--+----+----+----+----+ 
I X I X I X I X Icontlattkl altlholdl 
+---+---+---+---+----+----+----+----+ 

Bits 0-3 describe the envelope with "continue," 
"attack," "alternaten and "hold." See General Instruments 
literature for the envelope waveforms. The 7900 Hardware 
Reference Manual also has more information on the sound 
generator. 

Page E-38 Version 1.4 



Appendix E 

Name: 
PLRRCT 

Address: 
$800068 

Entry: 
D0.W = 
Dl.W = 

Exit: 
D0.W = 
Dl.W = 

7900 Operator's Manual Jump Tables 

radius 
angle in integer degrees 

X 
Y 

PLRRCT performs polar to rectangular conversion, using SIND0 
and a technique similar to the one described in SIND0, below. 

Name: 
READJOY 

Address: 
$800070 

Entry: 
Al.L = pointer to joystick X, Y or Z axis. 

Exit: 
D0.W = value read from joystick. 

READJOY returns the current value of a joystick axis as a 
l0-bit number in the range 0 to 1023. A1 must be set to the 
address of one of the joystick axes, as follows: 

X $FF80C6 
Y $FF80CA 
Z $FF80CC 

Version 1.4 Page E-39 



Jump Tables 

Name: 
PRTDEC 

Address: 
$8/iH'958 

Entry: 

7999 Operator's Manual 

DS.W = decimal number to convert to ASCII. 
AI.L = pointer to buffer where ASCII goes. 

Exit: 
Al is incremented past the string. 

Appendix E 

PRTDEC prints a decimal number as an ASCII string. The 
string is placed into memory at (AI)+. 

Name: 
Scankey 

Address: 
$8£3£3£398 

Entry: 
D9.W = character to be converted and buffered. 

Scankey converts an 8-bit code (produced by the upper half 
of the keyboard) into a stream of 7-bit codes, then stuffs 
them into the keyboard input buffer. See Keystuff, described 
above. 

Page E-4£3 Version 1.4 



Appendix E 

Name: 
SIND0 

Address: 
$800064 

Entry: 

7900 Operator's Manual 

00.W = angle in integer degrees. 

Exit: 
00.W = sine of that angle. 

Jump Tables 

SIN00 takes the sine of an angle and returns the value as a 
l4-bit fraction. The form of the fraction is: 

+---------------------------------+ ISM F F F F F F F F F F F F F F I 
+---------------------------------+ 

i 
Binary point 

Where: 

S is the sign of the value (1 is negative). 

M is the mantissa (zero except if the value is one or 
negative) • 

F are the fractional bits. 

The following example uses SIN00 to compute 
Y*SIN(Theta). 00 is the angle Theta, and Y is in the lower 
word of 01. The value is returned in 01. 

JSR 
MULS 
ASL.L 
SWAP 
EXT.L 

Version 1.4 

SIN00 
00,01 
#2,01 
01 
01 

Get sine of theta 
Y=Y*SIN(theta) 
Adjust for l4-bit fraction 

Clear garbage from high word 

Page E-4l 



Jump Tables 

Name: 
STATIR 

Address: 
$80008C 

Entry: 

7900 Operator's Manual 

DI.W = logical device number to read from. 

Exit: 

Appendix E 

D0.B = snapshot of oldest character (see below) • 
Zero flag CLEAR if character available, SET if not. 

STATIN is similar to CHARIN and CTRLIN, in that it returns 
the status of an input device ·reflected in the zero flag. 
STATIN will also return a snapshot of the oldest character in 
the input buffer (if possible; some devices are not 
buffered). STATIN does not actually remove a character from 
a buffer. A character returned by STATIN will be returned 
again by subsequent calls to STATIN, and will also be 
returned by a call to CHARIN. Only after CHARIN or CTRLIN 
have been called, is the character removed from the device's 
input buffer. 

Name: 
TERMEM 

Address: 
$800040 

TERMEM is the entry point for the Terminal Emulator, the 
main operating program in the CGC 7900. Programs can jump to 
this address to terminate execution without returning to· DOS. 
TERMEM does not return to the caller. When entering TERMEM, 
it remains in the same status it was last in (half duplex, 
full duplex, or local). 

Page E-42 Version 1.4 



Appendix E 

Name: 
TCRSON 

Address: 
$8~"'9A4 

79~~ Operator's Manual Jump Tables 

TCRSON will turn the cursor on in the currently specified 
cursor color. It determines whether the 7 9~ ~ is addressing 
the Overlay or Bitmap and which mode it is in (Plot or Alpha) 
and turns on the appropriate cursor. 

Name: 
TCRSOFF 

Address: 
$8~~~A8 

TCRSOFF determines whether the 79~~ is addressing the 
Overlay or Bitmap and which mode it is in (Plot or Alpha) and 
turns off the appropriate cursor. 

Version 1.4 Page E-43 



Plot Functions 7900 Operator's Manual Appendix E 

Plotting Functions 

Many of the plotting primitives in the 7909 may be 
accessed through jump tables. Plot functions are specific to 
a window, which means the system must know which window to 
use for executing the plot routine. Data from the Window 
Table determines such things as the color of the plotted 
figure, and whether or not the figure will be filled. 

Before calling any ·of these plot routines, the data to 
be plotted must be scaled to screen coordinates, between 9 
and 1923 • Data outside this range will be plotted 
unpredictably unless clipping is enabled. If clipping is 
enabled, out-of-range data will not be plotted. 

All of the plot routines discussed below need register 
A9 to point to the base address of the current Window Table. 
This will be done automatically if your program is linked as 
a module, but if you are writing a transient, you must load 
A9 in your program. If plotting .in window A is desired, you 
may set up A9 by this code: 

BtmGWin EQU $C40 
MOVE.L BtmGWin,A9 

Pointer to W table base 
Get pointer 

Each Window Table occupies 512 bytes. If D9.L contains 
the window number (9 through 7, for windows named A through 
H), the following code would point A9 to the base of any 
Window Table: 

MOVE.L 
ASL.L 
ASL.L 
ADD.L 

BtmGWin,A9 
i5,D9 
i4,D9 
D9,A9 

Get pointer 

00=512*09 
Add to base 

Some of the functions described below require an 
argument list, which is passed on the "A3 stack." The values 
passed to the routine are pointed to by (A3), and the words 
following (A3). An area of the Window Table called Pargstk 
(Plot Argument Stack) is normally used to pass arguments, or 
your program can use other RAM for this purpose. To load the 
Pargstk area with four values for a vector, use the code on 
the next page. 

Page E-44 Version 1.4 



Appendix E 7900 Operator's Manual Plot Functions 

Pargstk EQU $136 Offset in W table for plot args 

LEA Pargstk (A0) ,A3 Point to Pargstk 
MOVE.W Xl, (A3) 
MOVE.W Yl,2(A3) Load XY values on A3 stack 
MOVE.W X2,4(A3) 
MOVE.W Y2,6(A3) 
JSR FVECT Draw a vector 

Before calling any of these plot routines, the data to 
be plotted must be scaled to screen coordinates, between 0 
and 1023. Data outside this range will be plotted 
unpredictably. 

Version 1.4 Page E-45 



Plot Functions 7900 Operator's Manual Appendix E 

These four routines plot figures according to the 
attributes of the Window Table pointed to by A0. Plotting 
will occur in . the Overlay or Bitmap, with or without 
patterns, according to the current status of the window. 

Name: 
ARC 

Address: 
$80007C 

Entry: 
A3.L = pointer to X, Y, radius, start, delta (words) 
A0.L = pointer to Window Table 
D7~L = Window Table status 

Name: 
BVECT (Bold Vectors) 

Address: 
$800074 

Entry: 
A3.L = pointer to Xl, YI, X2, Y2 (words) and 4 scratch words 
A0.L = pointer to Window Table 
D7.L = Window Table status (see section A.10) 

Name: 
CIRCLE 

Address: 
$800078 

Entry: 
A3.L = pointer to X, Y, radius (words) 
A0.L = pointer to Window Table 
D7.L = Window Table status 

Name: 
CURVE 

Address: 
$800084 

Entry: 
A3.L = pointer to Xl, YI,X2, Y2, X3, Y3, X4, Y4 (words) 
A0.L = pointer to Window Table 
D7.L = Window Table status 

Page E-46 Ver"sion I. 4 



Appendix E 

Name: 
FVECT 

Address: 
$8~~~6~ 

Entry: 

79~~ Operator's Manual 

A3.L = pointer to Xl, Yl, X2, Y2 (words) 
A~.L = pointer to Window Table 

Plot Functions 

FVECT plots a vector in the Overlay or Bitmap, from (Xl, Yl) 
to (X2, Y2). FVECT vectors through the Window Table entry 
called Plotvect, which holds the address of a routine to plot 
a vector in the Overlay or Bitmap (see the discussion of 
Plotdot above). The address in Plotvect is loaded by any of 
the "MODE 0" or "MODE T" commands. The current foreground 
color or- the wind~(stored in the window table) is used 
unless patterns are active, OR UNLESS THE VECTOR IS 
HORIZONTAL. If Yl=Y2, a special fast vector routine is used 
which writes part of the vector through propr ietary Color 
Status hardware. The color produced by Color Status is 
determined by loading the Color Status Foreground latch, a 
word at address $E4~~16. To use FVECT properly, you must 
load the Window Table and the Color Status latch with your 
desired color. 

Name: 
PLOTXY 

Address: 
$8~~~5C 

Entry: 
D~.W = X value 
Dl.W = Y value 
A~.L = pointer to Window Table 

PLOTXY plots a single dot in the Overlay or Bitmap, at the 
XY coordinate specified by D~ and Dl. PLOTXY vectors through 
the Window Table entry called Plotdot, which holds the 
address of a routine to plot a dot in the Overlay or Bitmap. 
Plotdot also holds the address of a routine which plots 
patterns in the Bitmap, if patterns have been enabled. This 
address is loaded by the "Mode 0" or "Mode T" commands. The 
current foreground color of the window is used unless 
patterns are active. 

NOTE: 

Both FVECT and PLOTXY make use of the optional 
Hardware Vector Generator, if one is installed in 
your system. 

Version 1.4 Page E-47 



Plot Functions 

Name: 
POLYG 

Address: 
$800080 

Entry: 

7900 Operator's Manual 

A3.L = pointer to coordinate pairs (words) 
A0.L = pointer to Window Table 
D7.L = Window Table status 

Appendix E 

POLYG is similar to the other plot routines described above, 
except that it can accept a variable-length argument list. 
The beginning of the list is pointed to by A3.L, and the end 
of the list is pointed to by an entry in the Window Table 
named Endbuf. Endbuf is a long word, and it holds the 
address of the word PAST the last coordinate in the polygon 
argument list. 

1------------
1 BB 
1------------
1 BB 
1------------BB 

BB 

(A3) -> Xl 

Yl 

X2 

Y2 

X3 

Y3 

.... 
Xn 

Yn 

Endbuf(A0)-> EE 

EE 

Page E-48 

Each item in this 
table is one word. 

Version 1.4 



Appendix E 7999 Operator's Manual Plot Functions 

Pairs of words before and after the list (marked BB and 
EE above) are used as scratch areas by POLYG, and your 
program should allow room for them. 

The following code might be used to call POLYG: 

Pargstk EQU $136 Offsets in W t~ble 
Endbuf EQU $A9 

LEA Pargstk (MJ) ,A3 Point to arg stack 
MOVE.L A3,- (SP) Save pointer 
MOVE.W Xl, (A3) + 
MOVE.W Yl, (A3) + Load coordinates 
MOVE.W X2,(A3)+ onto A3 stack 
MOVE.W Y2, (A3) + 

• 

• 
MOVE.W Xn,(A3)+ Put last values 
MOVE.W Yn,{A3)+ 
MOVE.L A3 , Endbuf (AIil) Set up end of list 
MOVE.L (SP)+,A3 Retrieve pointer to 

start of list 
JSR POLYG Do polygon 

Version 1.4 Page E-49 



Jump Tables 7999 Operator's Manual Appendix E 

Inline Calling Sequences 

Name: 
IEIHE 

Address: 
$89AIi}Ii}C 

Entry: 
Al.L = pointer to input buffer to be used 

(must be at least 84 characters long). 
Dl.W = Logical Input Device number to read from. 
D7.B = control bits (see below). 

Exit: 
Zero flag SET if the user hit DELETE. 
Zero flag CLEAR if the user hit RETURN. 

INLINE is the 7999' s general-purpose input routine, used by 
DOS, the Monitor, and Thaw. It reads a line of up to 83 
characters from the user, allowing character editing, Recall 
Last Line, etc. Bits in D7 control INLINE as follows: 

Bit Meaning if SET 

5: Treat line-feeds as logical line separators. 
(newline character). 

3: Echo the i.nput line to the screen after 
RETURN is pressed (in expanded form, Modes 
and tabs executed normally) • 

2: Process Escape and User codes as they are 
entered. 

1: Use "A7 n character set for control­
characters displayed in compressed form. 

9: Do not display the characters as they are 
entered (you can't see what you type). The 
line will NOT be put into the Recall Buffer. 

DOS uses D7 equal to $Ii}E, Dl equal to zero, and Al pointing 
to the DOS input buffer in low RAM. The end of the user's 
input line is indicated by a RETURN character ($Ii}D) in the 
buffer. Note that INLINE does not echo a RETURN/LINEFEED 
when the user enters RETURN. 

Page E-51i} Version 1.4 



Appendix E 7900 Operator's Manual Jump Tables 

Name: 
IRLIREI 

Address: 
$80A0l8 

Entry: 
Al.L = pointer to input buffer to be used. 
Dl.W = Logical Input Device number to read from. 
D2.L = length of input buffer. 
D7.B = control bits as described for the INLINE routine. 
A4.L = pointer to table of line termination characters. 

Exit: 
Zero flag CLEAR if user hit RETURN: D0.L undefined. 

Zero flag SET if the user entered a line delete 
character sequence. D0.L = index into termination table 
of characters causing delete (i.e. the instruction MOVE.L 
o (A4 ,D0 .L) ,D0 will put the terminating characters into 
D0) • 

INLINEI is used to read lines of non-standard length. The 
length of the input buffer is given in D2.L. INLINEI will 
read up to length-l characters into the buffer, with the end 
of the line being flagged by the RETURN character ($0D). 
INLINEI also provides for changing the list of characters 
which delete an input line (DELETE, BREAK and CTRL C are the 
standard line termination characters). 

Note that lines longer than 255 characters will not be 
stored in the Recall Buffer. 

As an example, suppose you are writing an editor. You 
want to be able to edit lines of up to 150 characters. 
Furthermore, you want the characters CTRL X, INS LINE and DEL 
LINE to cause INLINE to abort input. The following isa 
program fragment to accomplish this. 

Version 1.4 Page E-5l 



Jump Tables 7900 Operator's Manual Appendix E 

* 
* define input buffer storage 
* 
LINELEN EQU 
INPBUF DS.B 

* 

150+1 
LINELEN 

* define termination table 

150 characters + CR 
Input buffer 

* (you must ensure that it is on an even boundaryl) 
* 
TRMTBL DC.L 

DC.L 
DC.L 
DC.L 

* 
* read a line 
* 

MOVEQ.L 
MOVEQ.L 
LEA 
LEA 
MOVE.L 
JSR 
BEQ 
BRA 
• 
• 
• 

trmnB ed CMP. L 
BEQ 
CMP.L 
BEQ 

Page E-52 

$18 
$00013E32 
$00013C32 
0 

#0,Dl 
#$0E,D7 
*+(TRMTBL-(IPC+2»,A4 
*+(INPBUF-(IPC+2»,Al 
#LINELEN,D2 
INLINEl 
trmn8ed 
retin 

#4,D0 
••• 
#8,D0 
••• 

CTRL-X 
Insert line (MODE > 2) 
Delete line (MODE < 2) 
End of table marker 

Read from Device 0 
Control bits 
Pointer to termination table 
Pointer to input buffer 
Line Length 
Read line 
If LINE DELETE char entered 
Return entered 

See if INSERT LINE entered 
If yes 
See if DELETE LINE entered 
If yes 

Version 1.4 



Appendix E 

Name: 
IRLIRE2 

Address: 
$80A01C 

Entry: 

7900 Operator's Manual Jump Tables 

Registers as set up by INITINL (routine described below) 

Exit: 
Same as INLINEI 

INLINE2 is a low level routine used to get characters from 
the specified device and process them until RETURN or a line 
termination character is entered. Its use will be 
demonstrated in the INLINE3 example below. 

Name: 
IRLIRE3 

Address: 
$SeAe20 

Entry: 
Registers as set up by INITINL or returned by INLINE3. 
D0.B = character to process. 

Exit: 
If D0.B was not a line termination character or RETURN, 
then D2.L=0; Zero flag is SET. Registers are updated for 
another character. 

If D0.B was RETURN, then D2.L=1, Zero flag CLEAR. 

If D0.B was a line termination character, then D2 .L=2; 
Zero flag is CLEAR; D0.L=index into termination table. 

Important! Between calls to INLINE3, the only registers that 
may be altered are D0, Al and AS. Changing any other 
registers will most likely crash the system. Also, INLINE3 
will destroy D0, Al and AS. 

INLINE3 is the workhorse of the INLINE system. It 
accepts characters one at a time and processes them, 
performing all editing functions. 

As an example of how these routines tie together, see 
the program fragment below. It shows how the DOS editor 
(should) display lines for editing. Assume that AS points to 
the line to be edited and that it is terminated by a RETURN. 
The code on the following page will display the line, then 
let the user modify it: 

Version 1.4 Page E-S3 



Jump Tables 7900 Operator's Manual Appendix E 

* * save pointer to char as INLINE3 eats things 
* 

MOVE.L A5,-(SP} 

* * set up inline for a new line: 
* 

* 

MOVEQ.L 
MOVEQ.L 
LEA 
LEA 
MOVE.L 
JSR 

4HJ ,01 
#$0E,07 
*+(TRMTBL-(IPC+2)},A4 
*+(INPBUF-(IPC+2»,Al 
#LINELEN,02 
INITINL 

Read from device 0 
Control bits 
Pointer to termination table 
Pointer to input buffer 
Length of input buffer 
Initialize the INLINE system 

* get characters from EDIT buffer and feed to INLINE 
* 
Xl MOVE.L (SP)+,A5 Get pointer to char 

MOVE.B (A5)+,00 Get the character 
CMP.B #CR,00 End of the line? 
BEQ.S X2 If it is •••• 
MOVE.L A5,-(SP) Remember: INLINE3 munches reg's 
JSR INLINE3 Feed char to INLINE3 
BRA.S Xl 

* 
* let user edit the line 
* 

X2 JSR INLINE2 

* 
* INLINE2 returns EO/NE. Take appropriate action •••• 
* 

Page E-54 Version 1.4 



Appendix E 7900 Operator's Manual Jump Tables 

Name: 
IRITIRL 

Address: 
$80MJ24 

Entry: 
Al.L = pointer to input buffer to be used. 
Dl.W = Logical Input Device number to read from. 
D2.L = length of input buffer. 
D7.B = control bits. 
A4.L = pointer to table of line termination characters. 

Exit: 
Registers as required by INLINE3. 

INITINL is used to initialize all information as required by 
the INLINE system. 

Name: 
IRLHOME 

Address: 
$80MJ28 

Entry: 
Registers as set up by INITINL. 

Exit: 
Cursor moved to home position of line. 

After a line has been output (see INLINE3 example), INLHOME 
could be used to put the cursor on the first character of the 
line before allowing the user to edit the line. The 
Chromatics editors using INLINE put the cursor at the end, 
but it is only a matter of taste. 

Version 1.4 Page E-55 





Appendix F 79aa Operator's Manual ASCII Codes 

Appendix F -- ASCII Codes 

This section includes a chart of the ASCII (American Standard 
Cqde for Information Interchange) characters, and a chart of the 
character fonts provided in the 790a. 

The 7 9a a uses some control-codes in ways not def ined by 
ASCII. See Appendix A for the 79aa's allocation of 
control-codes. 

Version 1.4 Page F-l 



~ .... 
• 

H r-1 .... Value Code Character Value Char Value Char Value Char 
"0 o $88 CTRL @ Null 32 $20 64 $40 @ 96 $60 

, c c 0 
cu 1 $01 CTRL A Start of Heading 33 $21 1 65 $41 A 97 $61 a .... 
8: rQ 

2 $02 CTRL B Start of Text 34 $22 • 66 $42 B 98 $62 b ..., 
< 3 $03 CTRL C End of Text 35 $23 # 67. $43 C 99 $63 c ~ 

4 $04 CTRL 0 End of Transmission 36 $24 $ 68 $44 0 100 $64 d 
5 $05 CTRL E Enquiry 37 $25 % 69 $45 E 101 $65 e 
6 $06 CTRL F Acknowledge 38 $26 & 70 $46 F 102 $66 f 
7 $07 CTRL. G Bell 39 $27 • 71 $47 G 103 $67 9 
8 $08 CTRL H Backspace 40 $28 ( 72 $48 H 104 $68. h 
9 $09 CTRL I Tab 41 $29 ) 73 $49 I 185 $69 i 

r-1 10 $0A CTRL J Linefeed 42 $2A * 74 $4A J 106 $6A j 
III 11 $0B CTRL K Cursor Up 43 $2B + 75 $4B K 107 $6B k ::s 
~ 12 $0C CTRL L Form Feed .44 $2C , 76 $4C L 108 $6C 1 
:Ii: 13 $00 CTRL M Return 45 $20 - 77 $40 M 109 $60 m 
rQ 14 $0E CTRL N Shift Out 46 $2E • 78 $4E N 110 $6E n - 15 $0F CTRL 0 Shift In 47 $2F / 79 $4F 0 111 $6F 0 ..., 
0 16 $18 CTRL P Data Link Escape 48 $30 0 80 $50 P 112 $70 p .... 
III 17 $11 CTRL Q Device Control 1 49 $31 1 81 $51 Q 113 $71 q ..., 

18 $12 CTRL R Device Control 2 50 $32 2 82 $52 R 114 $72 r cu p.. .... 19 $13 CTRL S Device Control 3 51 $33 3 83 $53 S 115 $.73 s 
0 ., 20 $14 CTRL T Device Control 4 52 $34 4 84 $54 T 116 $74 t fIl lSI 21 $15 CTRL U Negative Acknow1ege 53 $35 5 85 $55 U 117 $75 u lSI 
0\ ... 22 $16 CTRL V Synchronous Idle 54 $36 6 86 $56 V 118 $76 v ., ..... .... 23 $17 CTRL W End Trans. Block 55 $37 7 87 $57 W 119 $77 u w 

1\1 24 $18 CTRL X Cancel 56 $38 8 88 $58 X 120 $78 x ... 25 $19 CTRL Y End of Medium 57 $39 9 89 $59 Y 121 $79 y • .Q 26 $lA CTRL Z Substitute 58 $3A · 90 $5A Z 122 $7A z u · 27 $lB CTRL [ Escape 59 $3B · 91 $5B [ 123 $7B { .... , 
.... 28 $lC CTRL \ File Separator 60 $3C < 92 $5C \ 124 $7C I u 29 $10 CTRL 1 Group Separator 61 $30 = 93 $50 ] 125 $70 } 

rQ 

= 
cu 38 $lE CTRL .... Record Separator 62 $3E > 94 $5E ... 126 $7E .. 
"0 
0 "0 31 $lF CTRL Unit Separator 63 $3F ? 95 $5F 127 $7F DEL N u ... I 

t'd ~ 
1-1 '" H a cu u 1\1 ." 

~ ..... 1\1 
fIl ell 



~ 
t1 
OJ .... 
o ", 
::s 
..... "A 

• .. ". 
"c 

AD 

AI 

A p 

AO 

AU 

A( 

A.., 

"It 

"L 

,"M 

.... 
"0 

". 
"0 

~ 

J: ". ID 
I'Jj "8 

I 
W " ... 

"u 

m 
' ... . ' ... . . ... . 
v 
<Co 

~ 

.0-
f­

» 
·l· 
i" 
fj. 
J 
it' 
-
it' 

+ -
.. -" 
£ 
'11 

'*: 

"y 

.... 

". 
AI 

". 
AI 

A\ 

.. ) 

• 

• 
• , 
• 

• 

• 

[] 

t 

I 
~ 
F-'. 
-t 

* ----

• 4 
if 
A 

I 
I 
I 

J 

1 

I 

• 
1 

2 

J 

4 

5 

I 

., 

• , 

< 

> 

., 
, 

" 

I 

I -
~.: .. 
.... :: 
):-:. 
:::::: ... ... ... ... ., 
loA 
---
III 
·f 
i 
• •• • 
"' ... 'II '" ,., .'. 
~.~. 

T 
+ 
L 

• a,a , 
...... 

1 

':-: 

A1 Set 

• 
c 

D 

~ 

p 

o 

U 

( 

.., 

It 

I. 

M 

II 

o 

• 
o 

• 
8 

'I' 

u 

y 

w 

~ 
c 
a 
s 
'*, 
.". 
v 

't\ 
L 

9 
.~ 
.. 
1"\ 

IJ. 
' .. ) 
,) 

l[ 

q 
F' 
f.1, 

T 

't' 
;~ 

(.) 

• 
I 

• 

\ 

• 
b 

c 

d 

• 
f 

9 

h 

1 

j 

II 

1 

.. 

~ .. 
IJ 
'7 

" 
r 
\ 
t 
z 
...... 
1\ 

I 
I 

.:: 
--, --
-. -. 
..... .­.-
.,'" 

I, • 

1'1 

L 
J 

n 

o 

p 

CJ 

r 

• 
t 

u 

v 

" 
• 
r 

I 

PEL 

r 
l 
t· ... 
l1 
II 
.... J 
(. 

--'I 

I 
'--
) 
\1 
_.I, 

... 
L 
-y 
... 
[ 

I . , 
] 

... 
l 

'f tt 
'" 
'. 
'c 

'0 

'I 

'p 

'0 

-U 

"I 

-.., 

", 
-L 

-.. 
All 

AD 

" . 

~ 
S .• 
II 

~: 
r, 
~ 
~: 
\ 
E;. 

j 

I\-
1r 
I~ 

rr 
~~ .-
1) 

;:1 

It 
"Q . [~ 

". 
". 

.~'I' 

[~, .. 
[i. 

j 

[~ 

'''U 'ti: 

~ 
"y "N 

~: 
~ 

"I fH 

A .. 

". 
". 
"I 

.. , 

.. ) 

• 

• 
• 
, 
• 

• 

• 

\: 
~: 
rs' 
.­
'S 
~~ 
Ij. 
J. 

II 

I 
$ 
., ,'. 
s: 
/ 

( 
) 
'l' 
·t· 

+ 

I 

• 
1 

2 

J 

4 

5 

I 

., 

• 
t 

< 

• 

) 

., 

• 
A 

Regular Set 

} 

/ 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

I 

< 
) 
? . 
I~ 

• 
c 

o 

I 

p 

G 

• 
I 

.., 

I 

L 

M 

.. 
o 

• 
o 

• 
8 

'I' 

u 

y 

B 
C 
o 
E 
F 
G 
H 
I 
J 
K 
L 
til 
N 
f J 
P 
Q 
R 
r­.:a 

T 
U 
v 

A II ,la] 

• 
I 

• 

\ 

• 
b 

c 

d 

• 
r 

9 

b 

1 

j 

II 

1 

.. 

'.' t .. 

" z 
[ , 
] 
/'\ 

, 
.:t 

b 
c 
d 
e 
f' 
9 
h 

. 
.. I 

k 

ria 

n 

o 

p 

II 

r 

• 
t 

u 

v 

." 

• 
r 

• 

~ 

~ 
n ~ 

I» 
o ... 
p [ 

q ~ 
rt 

r ~ ::s 
C' I» _. rt 

rID ->' 
u~ 
\1 n ·tr 

I» 

t·, ~ 
n 

..,rt 

..... ID ... 
Id I'IQ 

o 
z:::' 
• DI 
{ 

" 
I 

,... 

~~ 
DEL .:., 

)01 

:g 
ID 
::s 
a. .... 
~ 

1'1] 

..... 
\0 
lSI 
lSI 

o 
~ 
t1 
PI 
rt' 
o .., 
OJ 

3: 
PI 
::s 
c 
PI ...... 

~ 
(') 
H 
H 

(') 
o 
a. 
ID 
OJ 




