60494800

G2 CORFORATION:

SCED USER GUIDE
FOR INTERCOM 4
MULTI-USER JOB CAPABILITY

CONTROL DATA®

CYBER 170 SERIES

CYBER 70 MODELS 72, 73, 74
6000 SERIES COMPUTER SYSTEMS

ii

REVISION RECORD

REVISION

A

DESCRIPTION

—————ee————

Original printing.

(11-01-75)

Publication No.
60494800

REVISION LETTERS |, O, Q@ AND X ARE NOT USED

© 1975

Control Data Corporation
Printed in the United States of America back of this manual

Address comments concerning
this manual to:

'CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the

LIST OF EFFECTIVE PAGES

New féatures, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

Page

Revision

Software
Feature Change

Page

Revision

Software
Feature Change

Cover

Title Page

ii thru viii
1-1, 12

2-1 thru 2-7
3-1 thru 3-21
4-1 thru 4-4
A-1, A2
B-1, B2
Cmt Sheet
Return Env
Back Cover

I 3> >0 |

0494800 A

iiifiv

PREFACE

his manual describes the SCED interface routines
vailable for programming COBOL 4 multi-user jobs
1at operate under INTERCOM 4.5 and NOS/BE 1
n CONTROL DATA® CYBER 170, CYBER 70
lodels 72, 73, and 74, and 6000 Series computers.

Publication

INTERCOM 4
Reference Manual

COBOL 4
Reference Manual

INTERCOM 4 Multi-User Job Capability
Reference Manual

NOS/BE 1 Operating System
Reference Manual

)494800 A

This manual is intended for use by an experienced
COBOL application programmer who is not exper-
ienced in programming multi-user jobs. Other man-
uals that might be of interest to the user are listed
below:

Publication Number

60494600
60496800
60494700

60493800

vivi

CONTENTS

1. INTRODUCTION

Concepts of a Multi-User Job
System/Multi-User Job Interface

2. PRINCIPLES OF WRITING A COBOL
MUJ PROGRAM USING SCED

SCED/COBOL Muj Program Interface
Organizing a COBOL Muj Program
Initialization
Terminal Session Processing
Wrap-Up Processing
Entering and Exiting a COBOL
Muj Program
Data Area Organization
Unprotected Data Areas
Protected Data Areas
Interlocks
Terminal Input/Qutput Buffers
Input/Output Files
COBOL Muj Program Flowchart

3. COBOL MUJ PROGRAM CODING
REQUIREMENTS

A Standard CDC Character Sets

1-1 Muj Program Interface

2-1 COBOL Muyj Program Execution
2-2 COBOL Muyj Program Flowchart
3-1 INIT Call Use

3-2 CONNECT Call Use

3-3 GETINT Call and RETINT Call Use
34 IOWAIT Call Use

3-5 TERMIN Call Use

60494800 A

1-1 Specifying SCED Calls
INIT
1-1 CONNECT
1-1 GETINT and RETINT
IOWAIT
TERMIN
2-1 TERMOUT
DISCON
-1 EXITMUJ
2-2 Placement of SCED Calls
2-2 Procedure Linkage in COBOL
22 File Assignment
gnmen
22 Sample COBOL Muj Program
Environment Division
2-3 D .
ata Division
2-3 Procedure Division
2-4
2-4
2.5 4. TESTING THE COBOL MUJ
2-6 PROGRAM
2-6 Debugging a COBOL Muj Program
2-6 Program Testing with DUMMUJ
SCED Installation Requirements
Error Conditions and Codes
3-1 Recovery Techniques for Terminal
Communication Problems
APPENDIXES
A-1 B Glossary
FIGURES
1-2 3-6 TERMOUT Call Use
2-3 3-7 DISCON Call Use
2-7 3-8 EXITMUIJ Call Use
3-1 3-9 Placement of SCED Calls
3-2 3-10 COMPASS Subroutines to ATTACH
3-3 and RETURN a Permanent File
3-3 3-11 Sample COBOL Muj Program
3-4

[R U N |
N A WWNN = -

wwwwwwwtlnwwwwwwww

]
e e T T S S SRS, TR, |

4-1
4-1
4-2
4-3

3-6
3-7
3-8
3-9

vii

viii

Terminal Messages from Program
Example PSRCN

Partial Listing of IOFILE

Printout of User’s Terminal Input/
Output

INTERCOM 4 Teletype and CRT
Carriage Control Characters

3-15
3-17
3-18 4-1
3-19
TABLES
4-1
3-5

Dayfile Generated by Sample
Program

Methods for Testing Muj Program
with DUMMUJ

Error Codes and Conditions

3-21

4-2

4-3

60494800 A

INTRODUCTION 1

CONCEPTS OF A MULTI-USER JOB

A multi-user job (muj) is a program that can be shared
by a number of terminal users. The muj program is
loaded into central memory and activated when a user
types the program name as an INTERCOM command.
Once a copy of the muj program is loaded into central
memory, any other users who enter the name of the
program are linked to the existing program.

One advantage of muj program processing is that the
use of computer resources, such as central memory
and disk storage, might be reduced because only one
copy of a muj program is in execution at one time.
The muj program differs from current INTERCOM
programs, such as TEACH, which have a separate pro-
gram in execution for each user requesting the program.
If five users were executing TEACH at the same time,
five copies of TEACH would be loaded into central
memory; if five users were executing a muj program at
the same time, only one copy of the muj program
would be loaded into central memory.

Another advantage of muj program processing is that
users can expect faster response time. A muj program
is loaded into central memory when the first user en-
ters the program name as an INTERCOM command; it
is terminated when the last user executing in the pro-
gram is disconnected. During the time a muj program
is executing, it may be either swapped in or swapped
out of central memory. A muj program that is widely
used by a large number of terminals can stay swapped
in for large periods of time. If the muj program is al-
ready swapped in at the time a user requests the pro-
gram, the response time is greatly reduced.

SYSTEM/MULTI-USER
JOB INTERFACE

Multi-user job subroutines are a set of INTERCOM
library subroutines that provide the standard interface
between INTERCOM and a muj program. Muj subrou-
tines perform such tasks as scheduling, issuing system
requests for input/output, and monitoring waiting users;
muj subroutines can be called from COBOL, COMPASS,

60494800 A

and FORTRAN Extended programs. A detailed
discussion of these subroutines is contained in the
INTERCOM 4 Multi-User Job Capability reference
manual.

SCEDiis a set of interface routines that provide a higher-
level interface between COBOL programs and muj sub-
routines. SCED contains a set of entry points that are
called by a COBOL muj program. The COBOL muj
program is written as though it were to service only.
one terminal; therefore, the author of the program does
not have to be aware of, or program for, the individual
identities of users of the program. SCED provides the
mechanism for sharing the program by performing the
appropriate functions when the COBOL muj program
issues SCED calls. The SCED functions are:

Scheduling users for processing and returning
each user to the program at the point where the
user last stopped executing.

Maintaining and allocating buffers for terminal
input/output.

Communicating status information (and terminal
input/output requests) to and from the muj sub-
routines through subroutine calls.

Scheduling the execution of initialization and
termination code in the muj program.

Figure 1-1 shows the organization of muj programs and
the interface of the programs with the system. A
COBOL muj program can communicate with SCED;
SCED communicates with the muj program and muj
subroutines; muj subroutines communicate with SCED
and INTERCOM; and INTERCOM communicates with
muj subroutines and the terminal users. The other muj
programs shown communicate directly with muj sub-
routines.

1-1

/—Tr;(INTERCOM
User A j j
- cMR routines [SCEO [SO
Buffers s s program
- A A
Terminal
User B
COMPASS COBOL
Torminal muj > muj
ermina
program program
User C
Y.
FORTRAN
Terminal EXTENDED
User D muj
program
Figure 1-1. Muj Program Interface
1-2 60494800 A

PRINCIPLES OF WRITING A
COBOL MUJ PROGRAM USING SCED 2

SCED/COBOL MUJ
PROGRAM INTERFACE

SCED is a set of interface routines that provide the
mechanism for sharing a COBOL muj program among
terminal users. The COBOL muj program calls SCED
to perform nine functions. The place in the COBOL
muj program where a SCED function is called is known
as a SCED point. The SCED calls are listed below.

SCED Call Function

INIT Initializes the muj program
for execution.

CONNECT Connects a user to the muj
program.

TERMIN Performs a terminal input
operation.

TERMOUT Performs a terminal out-
put operation.

GETINT Reserves an interlock.

RETINT Releases an interlock.

IOWAIT Relinquishes control of

the muj program for a user
when an input/output op-
eration is initiated with the
SEEK verb.

DISCON Disconnects a user from
the muj program.

EXITMUJ Terminates the muj
program.

SCED is designed to allow other users to execute in the
muj program while some of the SCED functions are be-
ing performed for a given user. Program sharing is es-
pecially significant for SCED functions that are entered
for terminal and disk input/output operations, which
slow execution of a program considerably.

60494800 A

The first user to request execution of a COBOL muj
program causes the program to be loaded into central
memory and begin executing. As soon as the first user
arrives at a SCED point that can relinquish control of
the program, SCED stops processing for that user and
starts processing for any ready users. Each ready user
is connected in turn and advanced to a SCED point
where program control is relinquished.

SCED maintains a table of users connected to the
program and knows the stage of processing of each
user at all times. When more than one user is con-
nected to the program and the user executing reaches
one of the SCED points where program control can be
relinquished, SCED advances all ready users to their
next SCED points before control returns to the origi-
nal user. SCED schedules each ready user to continue
processing in the program from the point at which the
user last stopped processing, even though any number
of users might have executed in the same or different
areas of the program in the meantime. Thus, a general
pattern of sharing emerges.

Most of the time each user is connected to the program,
SCED is waiting for an input/output activity to be com-
pleted for the user. Input/output operations, such as
terminal input, which must wait for the terminal user

to enter data, can take an indeterminate amount of
time for completion. Any number of ready users can
advance to their next respective SCED points during

the time it takes a terminal input operation to be com-
pleted, since processing time required to proceed along
a path from SCED point to SCED point is typically no
more than a few milliseconds.

SCED overlaps the functions of terminal input/output
for one user with processing for other users by main-
taining buffers for terminal input/output operations.
Since the actual receipt or transmittal of terminal input/
output takes place in the SCED buffers, the program can
continue in execution for other users during the time it
takes the terminal input/output operation to be completed.

SCED is designed primarily for applications that require
on-line program access to a data base. All accesses to

a data base in a muj environment are essentially random,
even if one user requires sequential access to part of a
file. A call to the SCED function IOWAIT can be made
immediately after random file access is initiated with
the SEEK verb. This SCED call allows other users to
execute in the muj program while the SCED function

is being performed for a user.

The SCED interface does not provide a facility for
creating or attaching files. All files accessed through a
COBOL muj program by terminal users must be at-
tached and returned by calls to subroutines that are
written in languages that can reference RA+1. The
files must reside on nonallocatable devices.

ORGANIZING A COBOL
MUJ PROGRAM

The Procedure Division of a COBOL muj program can
be divided into three operational parts for discussing
the program’s general sharing techniques: initialization,
terminal session, and wrap-up. The initialization code
initiates processing of a COBOL muj program; the ter-
minal session code contains all the instructions that are
to be shared by users of a muj program; and the wrap-
up code terminates processing of a muj program.

" INITIALIZATION

The initialization section is the first section of a
COBOL muj program. The code in this section is ex-
ecuted when the first user calls the program through
an INTERCOM command. Users connecting to a run-

ning muj program do not execute the initialization section.

Housekeeping functions that are executed only once for
each activation of the program are performed in this
section. The housekeeping functions should include at-
taching and opening files, initializing counters, and any
other functions that are necessary to ready the pro-
gram for processing.

TERMINAL SESSION PROCESSING

The terminal session section, the second section of a

COBOL muj program, is the only section that is shared.
Any user connecting to a program already in execution
begins processing at the beginning of this section. The

section must therefore include all elements normally
contained in the Procedure Division of a single user job
except those operations, such as opening and closing
shared files, that are executed only once for each acti-
vation of a muj program.

Individual user housekeeping or end-of-session
processing is coded in the terminal session section.
For example, a muj program could be structured to
maintain and display counts of transactions processed
for individual users. The code to initialize the data
areas for the counts would be placed in the beginning
of the section, or in an area that the user executes the
first time through the section, before terminal input/
output processing begins. The code to display the
counts would be placed in a segment of the terminal
session section that is branched to when a user is ready
to leave the program. :

Individual user housekeeping and end-of-session
processing are possible because of the way the pro-
gram can be structured. The path the user takes while
processing the terminal session section of the program
is determined by the input from the user’s terminal.
By placing the initialization code ahead of the code for
terminal input/output, the user can avoid branching
back to the initialization code. When the user is ready
to leave the program and inputs the data that signals
this request, the program can branch out to do individ-
ual end~-of-session processing, such as displaying the
counts maintained for that user, before disconnecting
the user from the program.

WRAP-UP PROCESSING

The wrap-up section is the last section of a COBOL
muj program; SCED causes the wrap-up section to be
entered after the last user executing in the program is
disconnected. The code for wrap-up, or a branch to
the code, must follow the call to disconnect users from
the program. End-of-job processing, such as closing
and detaching files and displaying job counts, is coded
in the wrap-up section of the program.

The wrap-up code, similar to the initialization code, is
executed only once for each activation of a muj pro-
gram. This code is ignored when a user is disconnected
while other users are still in execution in the program,
and execution continues for active users.

60494800 A

ENTERING AND EXITING A
COBOL MUJ PROGRAM

The sections of a COBOL muj program that are
executed for each terminal user when three terminal
users request processing of the program simultaneously
are shown in figure 2-1. Terminal user A, the first
user acknowledged by the system, causes the program
to begin executing at the beginning of the initialization
section, #1. Terminal users B and C, whose requests
are acknowledged after the program is in execution,
connect to the program at the beginning of the termi-
nal session section, #2.

In the figure the users leave the program in the order
in which they entered the program; however, the order
in which a user leaves the program depends on several
factors, such as the amount of activity the user has and
the paths the user executes within the terminal session
section. Terminal users A and B leave the program at
the end of the terminal session section, #3; terminal
user C, the last user to leave the program, causes the
wrap-up code to be executed and, in effect, leaves the
program at #4. (All users are connected and discon-
nected at the same points in the program, #2 and #3
respectively.)

DATA AREA ORGANIZATION

Special organization of some data areas is required in
the Data Division of the COBOL muj program to en-
sure that these areas can be accessed as desired by
several users. One of the problems that can arise if
data is not organized correctly in the Data Division of
a muj program is described in the following example:
two users are waiting at the same SCED point for a
terminal input operation. The statement at that point
requests SCED to read data from the terminal into data
area A. Both users will read data into the same area.
The second user’s data could overwrite the first user’s
data unless the data is protected in some way.

Certain data areas associated with one user must be

kept independent of the data areas associated with

other users; other data areas can be shared, either freely

or under SCED control, among users. With this in mind,
all data areas can be classified as either unprotected data
areas or protected data areas.

Terminal
User A

Terminal
User B

Terminal #1
User A
Initialization
Terminal
User B Terminal
Session
User C Wrap-up

Terminal
User C

terminal users
entering muj
program

muj program

terminal users
leaving muj
program

Figure 2-1. COBOL Muj Program Execution

60494800 A

2-3

UNPROTECTED DATA AREAS

Unprotected data areas are those data areas that can be
referenced by all users as needed. Unprotected data
areas can be classified as constants, common data areas,
and local data areas.

Constants

Constants are data areas that remain unchanged
throughout program execution. These areas are initial-
ized to a value during program load and can be refer-
enced freely by users executing in any part of the
program.

Common Data Areas

Common data areas are areas that do not belong to a
single user. These areas are intended either for func-
tions common to all users, such as maintaining a count
of all transactions processed by the muj program, or as
a record area for an output transaction file of all trans-
actions processed by the program. Common data areas
are usually rare in a muj program.

Local Data Areas

Local data areas are data areas that are utilized only in
a path between SCED points, where no user conflicts
can occur. These data areas are considered to be local
to that path and do not need protection from destruc~
tion by other users. For example, a record is both
read into an area from a file or terminal and processed

within that area before the next SCED point is reached.

No other user can overwrite the area because the first
user does not relinquish control of the program. It is
important to remember that the only time SCED can
change execution from one user to another is when the
user who is executing reaches a SCED point.

PROTECTED DATA AREAS

Protected data areas are data areas that allow individual
users full control of the contents over a number of
SCED points. Protection of the data areas is accomp-

24

lished in two ways, both under SCED control: by as-
signing each user a private user area, or by allowing the
user to control a data area for a certain period of time.
The two types of protected data areas that result are
called user areas, and common data areas protected by
interlock, respectively.

User Area

The user area is a data area whose data is protected
across SCED points. The muj subroutines maintain a
separate copy of this data area for each user connected
to a muj program. SCED copies the user area of an
individual user into the defined user area of the pro-
gram whenever that user is scheduled for executing;
thus, data in the user area can be considered universally
protected from overwrite by all users except the one
assigned to the copy of that user area.

The user area is defined in the Working-Storage Section
of the program. All the data in working storage can be
defined within the user area of a muj program; however
the user area should be kept as small as possible for
maximum efficiency. Terminal output buffers and
other data areas that require a separate copy to be
maintained for each user must be defined within the
user area.

Terminal output buffers must be defined within the
user area because the transfer of terminal output might
not be completed for one user before another user is
scheduled for processing. When the SCED call for
terminal output is issued, the content of the user’s ter-
minal output buffer is copied to a SCED buffer, from
which it is transmitted to the user’s terminal. If all the
SCED buffers are full, however, the user’s terminal
output buffer cannot be copied to the SCED buffer
until space is available. Since a second user can be
scheduled for processing in the same part of the pro-
gram during the time the first user is waiting for a
SCED buffer, the second user can overwrite the termi-
nal output area of the first user if it is not protected.
Placing the terminal output area in the user area pro-
vides this protection because SCED saves the first user’s
copy of the user area before scheduling the second user
for processing. Whenever a SCED buffer is available,
SCED can copy the first user’s terminal output area
from the saved user area to the SCED buffer.

60494800 A

The following guidelines should be considered when
coding the user area:

The terminal output buffers must be defined
within the user area.

The terminal input buffers do not have to be
defined within the user area because terminal
input is not written to the specified area from

the SCED buffer until immediately before the
user corresponding to the input is scheduled for
processing. If the content of a terminal input
buffer is to be saved across SCED points, either
the terminal input buffer can be defined in the
user area, or the data can be moved to a save area
defined in the user area.

Data cannot be preset in the user area. For
example, the VALUE IS clause is prohibited.

Data areas that are referenced by CYBER Record
Manager while a user is at a SCED point, such as
record and key areas, cannot be defined in the
user area. Since these data areas must be defined
in specific sections of the program, they require
another type of protection that is provided by
interlocks.

Common Data Areas Protected by
Interlocks

Common data areas protected by interlocks are data
areas that do not belong to a particular user; any user
can gain exclusive access to these areas for a period of
time. Protection for such areas is provided through
the assignment of an interlock, a SCED feature de-
signed to ensure that only one user executes in a spec-
ified part of the program at one time. An interlock
does not protect the data areas directly; protection is
accomplished by disallowing access to the instructions
that reference the data areas to all users except the
user assigning the interlock.

Record areas of files accessed randomly in a COBOL
muj program must be protected by interlocks because
each user needs to ensure that these areas remain un-
changed during record processing. The data areas can-
not be protected by definition in the user area because
they are referenced by CYBER Record Manager and
must be defined in specific sections of the Data Division.

60494800 A

Some of the uses of common data areas protected by
interlock are:

To protect mass storage file record areas.

To protect records that are to be used for
on-line file updating.

To protect areas into which overlays are to
be loaded.

INTERLOCKS

Interlocks are defined in the Working-Storage Section
of a COBOL muj program as 77-level elementary items,
with unique data names and values. The values assigned
to the interlocks must not exceed the maximum num-
ber of interlocks specified at installation time minus
one. For example, if the installation parameter allows
for five interlocks within the muj program, the inter-
locks defined and referenced in the muj program must
have a value O through 4.

Interlocks are reserved and released during program
execution. All interlocks reserved by a user must be
released by that user before the user can disconnect
from the program.

- A unique interlock should be associated with each

random file. Each time a random file is to be accessed,
the interlock associated with that file must be reserved.
When record processing is complete, the interlock must
be released.

All references to a data area protected by an interlock
must fall within the range of the interlock. The range
of the interlock includes all parts of the program that
lie between the statements reserving and releasing the
interlock. The range of the interlock is not necessarily
a contiguous part of the program; it can be a complex
network of code entered and left at a number of dif-
ferent SCED points.

For example, a file can be accessed many times in a
program for different functions such as adding records,
deleting records, or updating existing records. The code
to accomplish each of these functions can be in differ-
ent parts of the program. Before the code for each
function is executed, the interlock assigned to that file
must be reserved; the interlock must be released by the

2-5

user reserving the interlock before another user can exe-
cute the code for any of the functions for that file.

The code for all references to that file is therefore
protected by the interlock, or falls within the range of
the interlock.

TERMINAL INPUT/OUTPUT
BUFFERS

Transmission of data to and from the terminal occurs
through SCED buffers; SCED, in turn, copies data to
and from areas defined in the COBOL muj program
after a terminal input/output operation is initiated.

For each terminal output operation, the COBOL muj
program must indicate the size of the SCED buffer re-
quired for data transmission by attaching a buffer
identification number to the output buffer. The buf-
fer identification number is a unique number, beginning
with zero, assigned to each different SCED output buf-
fer size during installation to distinguish one buffer size
from another. The buffer identification number is as-
signed to the buffers in the order in which the buffers
are specified in the installation deck. For example, the
first buffer specified in the installation deck is assigned
the buffer identification number of 0.

SCED uses the buffer identification number to
determine which SCED buffer to use for copying the
output buffer from the program. The programmer
must ensure that the buffer type identification number
attached to the output buffer defines a SCED buffer
large enough to accommodate the output buffer that
is to be transmitted to the terminal.

Output buffers can be contained either in one group
item or in different group items within the user area.

Input buffers do not have a buffer type identification
number; however, the size of the input buffer must be
indicated within the terminal input area. Input buf-
fers specified within the program receive terminal in-
put from SCED buffers. SCED truncates data received
from a user terminal that cannot be accommodated in
the input buffer within the program.

INPUT/OUTPUT FILES

Only files that reside on nonallocatable devices can be
accessed by a COBOL muj program that interfaces with
SCED; these files can be thought of as being common to
all users. Most files used in a muj program are accessed
randomly from many different terminals. Random file
access in a muj program is practical because a SCED

function can be entered immediately after file access is
initiated with the SEEK verb, and the time required
for file access is utilized in program sharing.

The following procedure should be used for random
access of indexed sequential and direct access files:

Initiate file access with the SEEK verb.

Issue a call to the SCED function IOWAIT to
relinquish program control while the file record
is being located by the SEEK operation.

Using the above procedure for accessing indexed
sequential and direct access files allows SCED to
share the file access time for one user with processing
time for other users. The sharing is possible because
the SEEK verb allows access time and processing time
to overlap. :

It is sometimes desirable to process a sequential file in
a COBOL muj program. Processing of a sequential file
cannot, and need not, involve a SCED function. There
is no need to make the access of a sequential file into
a SCED function because no significant time is involvec
in file manipulation; therefore, there is no advantage to
sharing the access time involved.

A situation where it might be desirable to use a
sequential file in a muj program is one in which all
transactions input from the terminals are logged. The
transactions are written to the log file in the order in
which they are processed by the program. The disk
operation of the sequential WRITE function can easily
keep up with the relatively slow terminal input oper-
ation, which limits the overall execution speed of the
program.

An individual user processing in a COBOL muj program
built with SCED cannot create or attach any permanen
or local files. All file manipulation must be handled
within the program itself. For example, if a program
is to access a permanent file, the file must be attached

_ during program initialization, prior to opening the file,

and detached during program wrap-up, after closing
the file.

COBOL MUJ PROGRAM
FLOWCHART

Figure 2-2 shows a COBOL muj program flowchart
that includes most of the principles of writing a
COBOL muj program discussed in section 2. The
three parts of the program — initialization, terminal
session, and wrap-up — are identified, along with the
types of functions that are performed in each part.

60494800 ¢

‘ Start ,

INITIALIZATION

/

Enter SCED
to initialize
muj program

'

Attach and
open files

Reset job
counters

TERMINAL SESSION

|
 J

Enter SCED
to connect user

'

Reset user
counters

=

Enter SCED
for terminal
input

End of
session?

Enter SCED
to reserve
interlock

Initiate
record
access

Enter SCED
for random
file access

!

Update
record

Y

Enter SCED
to release
interlock

Accumulate
job counts

!

Accumulate
user counts

\

Branch to
1

WRAP-

Display
user
counts

Enter SCED to
disconnect user

UP

Display
job
counts

Return and
close files

l

Enter SCED
to terminate
muj program

60494800 A

Figure 2-2. COBOL Muj Program Flowchart

COBOL MUJ PROGRAM CODING REQUIREMENTS 3

SPECIFYING SCED CALLS

The SCED calls used to write a COBOL muj program
are presented by the sections in which they are called,
as indicated below.

INITIALIZATION
INIT

TERMINAL SESSION
CONNECT
GETINT
RETINT
IOWAIT
TERMIN
TERMOUT
DISCON

WRAP-UP
EXITMUJ

The discussions of GETINT and RETINT are combined
because of the interaction of these two calls.

Parameters specified on the SCED calls are required and
must be in the order shown.

INIT

ENTER INIT USING user-area, paragraph-name,
paragraph-name,.

user-area The data-name of the user
area. SCED ensures that
the appropriate user area
is copied into the program
for each user scheduled for
program execution.

paragraph-name; The paragraph name of the
initialization section.

60494800 A

paragraph-namey The paragraph name of
the routine that is to be
executed if the user is ab-
normally disconnected at
any time during processing.
This can be the same rou-
tine the user executes to
disconnect from the muj
program when terminal
processing is completed.

The INIT call initializes the program for execution and

sets up the linkages to disconnect code. The call speci-
fies the location of a number of parts of a muj program
and must be issued somewhere in the initialization sec-

tion, before the call to connect users.

A fatal muj error occurs during program execution if
INIT is not the first SCED call executed by the program.

Figure 3-1 shows an example of the use of the INIT call.
USER-AREA is the name of the user area; STARTAD is
the name of the first paragraph of the initialization sec-
tion; and DISCNT is the name of the paragraph that is
to be executed for abnormal disconnects from the pro-
gram.

L IDATA DIVISTEN 1|1

L0l SeR-AREA-; 1 1l
T T T T Ly

L PRgcE DY DINISTOMN. | |
LISTARTAD . o [v ooy
Lml\‘»'ﬂllll'lll L1

Ll €NTER [ONTT WSING| ;i
Ll WseR-AREA;, | STARTIAD,
1l i PLSCNTey g 1 v i1
LT T T T i L
LDTSCNT e it
Ll PeRFERIM WRAP- .
i TN ww T = NN BN

Figure 3-1. INIT Call Use

3-1

CONNECT
ENTER CONNECT.

This call connects a user to a muj program and is the
first statement in the terminal session section. All users
connecting to a running muj program begin execution
at the ENTER CONNECT statement. When the state-
ment is executed, a copy of the user area is created for
the user, a user terminal identification number is gen-
erated and added to the table that SCED maintains for
tracking users, and the user is scheduled for program
execution.

Figure 3-2 shows an example of the use of the CONNECT
call. When the statement ENTER CONNECT is exe-
cuted, a user is connected to the muj program.

€0 » el L1111y

STAGTAD.) + |1 v a1
AT T i L
L1 BPEN TI-8 MASTER-FLLE .,
L1 ENTER CONNECT e 1 |00 10
—]

L T Tt a1

rrrrr

Figure 3-2. CONNECT Call Use

GETINT AND RETINT

ENTER GETINT USING interlock-id.
ENTER RETINT USING interlock-id.

interlock-id ~ The name of an independent
item whose value identifies an
interlock. Each interlock must
be a 77 level, COMP-1 integer
that is initialized to a unique
value,

3-2

The call to GETINT reserves the named interlock. When
the call is executed, one of the following actions occurs:

If the interlock is not already reserved, the user
reserves the interlock and all other users are
denied access to the instructions that fall within
the range of the interlock.

If the interlock is already reserved, the user
cannot advance beyond this statement until the
interlock is released.

Program control does not return to the user requesting
the reservation of an interlock until the interlock is
reserved for that user.

The call to RETINT releases the named interlock. If
the interlock specified in a call to RETINT was not
previously reserved by the user requesting the release of
the interlock, a fatal muj program error occurs.

The interlock values should be assigned consecutively,
beginning with zero. If the program has ten interlocks,
the values should range from 0 through 9.

Figure 3-3 shows an example of the use of the GETINT
and the RETINT calls. The common data area FILE~
REC is protected by an interlock. The statement
ENTER GETINT reserves interlock INT-4, and the
statement ENTER RETINT releases INT-4. Once a

- user executes the statement ENTER GETINT reserving

the interlock, no other user can advance beyond this
statement until the first user releases the interlock
INT-4 by executing the statement ENTER RETINT.

60494800 A

| |ALLE SEGTL o|-|||||| r!l
VB ALLEL | |
—_— S ———

1T T 1 T T v o B I

L0l ALLE-REC | 1 111 |

T N —]
I T T T N O O D . Y G O O Y O O

LDATY IIM-IIIIIIII

LT T T v b
77 TNT-% Pr¢ 3.(16): 1 |1
L_LJ_MM/I'III MHILIM | JS 1‘9.1 1.
NI T T |0
V. L
L O T T T i g
L1 EMTER GETIMT Ui ING
o LM i
L T T i
1 |||/?£ﬂ|01 FLLEL TMVALID.
lllz/ﬁ&ﬁﬁlél'ﬁlﬁnun L
| 11|£ﬂ@f01f7|ﬂ16.1|1111 L1
T T N T v L
Ll ETEL ST LA USIWG
J |||Mﬁ"'|%.t|uul|| 11

T NN——]
1 T | {100 I O O Y O P

y—

r

Figure 3-3. GETINT Call and RETINT Call Use

IOWAIT

ENTER IOWAIT USING file-name.

file-name The name of a file for which an
input/output operation was initi-
ated with the SEEK verb.

The call to IOWAIT causes the user in execution to
relinquish program control while a SEEK operation is
performed on the specified file. Control does not re-
turn to the user until the SEEK operation is completed.
This call must always fall within the range of an inter-
lock.

Figure 3-4 shows an example of the use of the [OWAIT
call. When the statement ENTER IOWAIT USING
RANDOM-FILE is executed, the user executing the
statement relinquishes program control while the SEEK
operation is performed on RANDOM-FILE using KEY-1.

60494800 A

L DA |DI|I/11’|,§]_'|M.| Lty

T TN T L L
L@_MMLAL&L&HHIHH
D T T T T L

LMM’LM&C.[!III!III L1t
Ll 02 KegAL L AL 999,
L T T T T 1 |
J__LZL_MH"JQ Are 31.0) |
|||C|@mlol’lll /IAlLlUlﬁl LS Qler 111
T TN b
JRaCEDUke DIVISTIN. |\ \
T T T i |
1 EMTER GETINT USING 1
o LAT=0

/‘\/—\
LT I T T L

|

1]

!

L]

1

|

Ll SiEeK LAMDOA-FrLel.
L

1]

|

:LEMIOI|IIIIII
111 _Mﬂvfnﬂ‘ﬂﬁﬂ_’ﬁﬁﬁﬁ““
Lo TAVALID KESerara i |4 11
T T T T o
Ll EMTER RETTMT USTMG
il TMO=0e i i

T —
AT T N T o e L

Figure 3-4. IOWAIT Call Use

TERMIN

ENTER TERMIN USING input-area.

input-area The data name of the terminal
input buffer area.

The call to TERMIN causes the user in execution to
stop processing in the muj program until terminal input
is received from the user’s terminal. The input data is
placed in the named input buffer area.

The first word of the terminal input buffer area must
be a COMP-1 variable that is set to the size of the
input buffer, in words, before the area is referenced in

a SCED call. If the line of data received from the user’s
terminal is larger than the input buffer, the excess data
is dropped.

Processing continues for the user at the statement
following the call to TERMIN when the user enters
at least one line of input at the terminal.

Figure 3-5 shows an example of the use of the TERMIN
call. INPUT-AREA is the name of the terminal input
buffer area, which is a common data area. INBUF-
SIZE, the first word of the terminal input buffer area,

is set to 9, which is the size of the input buffer INBUF.
Setting INBUF-SIZE to 9 allows nine words of input
data to be received at one time.

LpATA DENCS|EAM 0101]
T T i
I_QlLLEMAMﬁ-I/’RIﬁ/’M Ll
L1 02 ZAMRYA-SL2E |) |
! lllllp/xﬁd |(Ll|0|)| ICM/"‘JI.
L OR TEME T

L lllllfléﬁxléﬁﬂ).ulu L

| T T I I 1 O O T O

LW&MQM&M_‘J__LL

1 mmlllll L1

L_IJ_M_IZI_?IIIILJIJI
L._.I_IMK’.ISIEHIIIIIII
Ll EMTER TERMIN dsTMG
Ll INAUT-ARREA e 1 |1
i P ST e -« AR TR RN N

Figure 3-5. TERMIN Call Use

TERMOUT -

ENTER TERMOUT USING output-area.

output-area The data name of a terminal
output buffer area that is de-
fined in the user area.

The TERMOUT call transmits terminal output from the
named terminal output buffer area. The terminal out~
put buffer area must contain three elements: the buffer
type, the buffer size, and the output buffer.

3-4

The buffer type, which is the first word of the terminal
output buffer area, must be defined as a COMP-1 inte-
ger and set to the buffer type identification number
before terminal output is performed. The buffer type
identification number must specify a SCED buffer that
is large enough to accommodate the output buffer area.

The buffer size, which is the second word of the
terminal output buffer area, must be defined as a
COMP-1 integer and set to the size of the output buf-
fer in words before terminal output is performed.

The remainder of the terminal output buffer area, the
output buffer, contains the data that is to be trasmitted
to the terminal. Any number of lines can be sent to
the terminal with one call to TERMOUT. Each line
must begin with an INTERCOM carriage control char-
acter and terminate with a 12-bit byte of binary zeros
in bits O through 11, as required by INTERCOM to
define end-of-line.

The INTERCOM carriage control characters that can
be specified are explained in the discussion of inter-
active output, below, and in table 3-1.

A muj program can be organized to transmit different
output buffers from the same terminal output buffer
area; however, each time a different type of output
buffer is to be transmitted, the buffer type, the buffer
size, and possibly the carriage control character must
be changed to correspond to the output buffer that

is to be transmitted to the terminal.

Fatal muj errors occur during terminal output operations
if the terminal output area is not formatted correctly.

Interactive Output

Carriage control characters should be specified for all
terminal output. The carriage control character used
depends on whether the terminal is a Teletype or a
display terminal. Table 3-1 illustrates the effect of
carriage control characters before and after print action
at Teletype or display terminals. The letters CR specify
a Carriage return to beginning-of-line; the letters LF
specify a line feed to the next line.

60494800 A

TABLE 3-1. INTERCOM 4 TELETYPE AND CRT CARRIAGE CONTROL CHARACTERS
Teletype ' crrtf
Character Before Qutput After Output Before Output After Output
1 CR3LF None CLEAR WRITE'T New line
* CR,3LF None RESET WRITE - New line
+ CR None None New line
0 CR,LF,CR,LF None New line New line
- CR,LF,CR,LF,CR,LF None New line, new line New line
blank CR,LF None None New line

TINTERCOM retumns an LF (line feed) after an input line from a Teletype; this effectively adds an additional
LF for each of the carriage control characters for an output line that immediately follows an input line.

HOutput to a CRT causes the cursor to be positioned at the beginning of the next line. CLEAR WRITE
causes the screen to be cleared, and output starts at the top of the screen. RESET WRITE does not cause
the screen to be cleared; output starts at the top of the screen and overwrites the existing display.

When the character Q or R is used for carriage control,
no output takes place, the remainder of the line is ig-
nored, and the following action is specified:

Q Clear auto page wait.

R Select auto page wait.

These actions apply to a ’display terminal only.

INTERCOM normally enters page wait at a display
terminal if a full screen of information has been output
since the last input was entered from the terminal, or
if a CLEAR WRITE or RESET WRITE is followed im-
mediately by an output to the terminal. The character
Q causes INTERCOM to suspend an automatic page
wait temporarily, until either the character R reselects
automatic page wait, or the end of the program is
reached.

Figure 3-6 shows an example of the use of the
TERMOUT call. The terminal output buffer area
OUTPUT-AREA is capable of transmitting up to 10
lines of data with one call to TERMOUT. Each data
line is nine words long, with the last word containing
a 12-bit byte of binary zeros in bits O through 11.
Each different size of output buffer that is formatted
and transmitted from this terminal output buffer area
must have a unique buffer type.

60494800 A

The Procedure Division shows the instructions for
formatting one output buffer. This output buffer is
18 words (two lines of data) long and has the buffer
type identification number of zero.

The statement MOVE CHAR10 to CHARI, or its
equivalence, is required prior to executing the state-
ment MOVE ALL-ZERO-BITS TO LINE-TERM (1).
Execution of the MOVE statement ensures that the
COMP-1 item CONST-ZERO is set to an unpacked
integer (a 12-bit byte of binary zeros).

BUFFER-TYPE is set to zero, the buffer type
identification number, to indicate the output buffer
type that is to be transmitted.

BUFFER-SIZE is set to 18 to indicate the size of the
output buffer.

CARR-CONT is set to zero. This causes a new line
of output to be written to the CRT output screen with-
out clearing the screen or overwriting existing data.

The first character of the second line in the output buffer
is set to a minus to provide for triple spacing of the sec-
ond line terminal output.

When the statement ENTER TERMOUT is executed,
the first 18 words of the output buffer OUTBUF are
transmitted to the user’s terminal; this causes two lines
of data to be displayed upon the user’s screen.

LM&H&E@M”IIIII 1 T N T N N N T O Y I O B O | I I I O S B | I I T Y I
Tt s b b b Lt
10|l||rﬂjMfﬁMﬁ—1filﬁx.|lnl Pt vy et i
L1 102 BuUFFER- Y e, P (140 [CﬂMI‘IIl-I RN NN RN R RN
1] ~ / Q |ii‘|[|Qi)| wmﬂ'l!lol | | N Y I O | [
L_L_L_QgI_WITIA(/IfIIIIIl/I 1)(1(17101Q)m Lot b by v v el
L1104 nlflll@'ﬁﬁfﬂmwn ¢U|7_uﬁlﬁﬁo| RN R
||||||n0|3|Mfl’lb/lﬂ/ﬁﬁl&&dfﬁl/ld.u| prv vt b i
llllllllllo%lm 'ﬁlﬂzélxlﬂl {1 I T T o v [I I O I I I I § i .
|||11|||||0f'1lmlﬁﬂ'nlnﬁméuﬁfﬁl111(|7|7)m||11||| AEEEEEENE RN EEE
1||1|11|||0‘%|,(1/|/’/£|'|ﬁm IA.EGI)G(]IIO)!.!IIIIIII AN ENE NN
L T T i e e
L f'Zi(ﬂ/ﬂGlﬂ(!Jﬂ)lMﬁ_j_]_M&O.l EEEEEEEEE TN
1] - - ﬁﬁ{él@ﬁﬁﬂ.ﬂﬂ:m.u RSN NN
|||10|Z||C¢é’v4|/f[1|/|[16|)(|,|‘||||||||| trr b v e b
1_||1Qﬁ|ﬁﬂéi|ﬁ¢:£g|x|<!z PN NN A RN
L_LMMJMA vt eren brer i v ey
LT T N s b e L
1] A[IEIDIIMZLSIE,JA(.I N T T O O | 1 T O I | I T T I O O | [
Ilml\%llllll I T O T T O | S O T O Y O N T I O I I O I | 1111t
J__I_I_A_MVIZHC#MIIOHKJ/ All.llljl L b e e et i
|m%ll||ll I T I T I T T T I | N 1O O O I | I
1JllIm;ﬂ%al‘alllW@IMIKIK‘fG/ﬂMT]I/III\I.Illllllll Lrrr e ey
! 1:aﬂﬂnl/u&|"—1'|lfQICAKK-négdﬂlﬂu}naéu1|1||1||1 NEEEEE RN AR
. T AR “ T DATA-LIME (L) oo | v {1
1|11,|ﬂﬂ|/|£|1“bll~£l|rd¢_’1_ TA- HEE NN EE NN NN
I Huﬂﬂﬁfy Ln—'lZfAdﬂ&I 5 1d LA TE8M |(|11)|; |Mﬂ(&jm_@29g4
|1||V'7MVJ£;|Omﬁfﬂyﬁéx‘lﬁﬁffﬁnnl v el b
l11|/%AVI&131173015017M£35L@6.1|1 Lve e Pyl
1...6M7ME‘XMWW-HH RN NE N RN
LT T i st et b e frr e

3-6

Figure 3-6. TERMOUT Call Use

60494800 A

DISCON
ENTER DISCON.

This call disconnects a user from the muj program.
Individual end-of-session processing must be completed
before the call is executed.

When the call to DISCON is executed, one of the
following actions occurs:

If the user executing the statement is the last user
connected to the program and no interlocks are
reserved for that user, the wrap-up code is
executed.

If the user executing the statement has ihterlocks
reserved, a fatal muj program error occurs.

If the user executing the statement is not the last
user connected to the program and has no inter-
locks reserved, the user is disconnected from the
program, the wrap-up code is ignored, and pro-
gram execution continues for active users.

The wrap-up code must follow the call to DISCON and
should be as brief as possible because the last user can-
not execute any further INTERCOM or operating sys-
tem commands until wrap-up is finished.

Figure 3-7 shows an example of the use of the DISCON
call. A terminal user must enter END at the terminal
to disconnect from the program.

EXITMUJ
ENTER EXITMUJ.

This call terminates a muj program. It replaces STOP
RUN, the normal COBOL statement for program ter-
mination.” The call to EXITMUJ must be the last state-
ment in the wrap-up section of the program. The
statement is executed after the last user processing the
program is disconnected from the program.

60494800 A

DATA, IM/ISEMUHH L1
0l INPMT";A‘K@/’NHIH L1 L1
1110 ZABUASEEE | 1 |10 10
Lo A ﬂ(llld)lCJMﬁ;L_d_l_u
L 102 TMBUF e 0 L
L1103 IW-TAAE L

nl||||||nlonC||X|/a3\)l.|1 LLi1]
|1||||0L3||fIL|4|ZJz|||1 L1111
11111:11”[&1)6/317|21(.: Ll

e DULE ULSTAMe | 11 11
%%nul 111
L1y ENTER TERMIM USIME |
L IMPar -\ A
L LA (TM-ITIRAE = ENR)
IIIIIIIIMlIIJllllll

ol | I T O O o | (111

_LJ_L_LéMéIﬁ_MoIH 111

111 11 | I T T T N O I I I |

CErrrrrrCEr

I o

Figure 3-7. DISCON Call Use

Figure 3-8 shows an example of the use of the
EXITMUJ call. After the statement ENTER EXITMUJ
is executed, the program is terminated unless a new user
requests the muj program during program wrap-up. If
a new user requests the muj program during wrap-up,
SCED returns control to the initialization section,
STARTAD, and reinitializes the program.

PLACEMENT OF SCED CALLS

SCED calls should be placed in the COBOL muj
program in a manner that ensures the fastest response
time possible for all users, if efficient program sharing
is to be a reality. The following guidelines should

be used in writing the program:

1. INIT must be the first SCED call in a muj
program,; it appears only once.

—

PATA DLAILS

IIM'IIIIII

p—

./_\/\
| T T O |

~ T L

o, IMPUITI-A

IAAIIJII

-

> W1,
_J__|_L_|_|_££Q_
| 02 oMby

ASLEE | 1

ﬁ-]ll]llll

9010} CpMlli 1,

—_

11103 AL

11||||0|3|1Z|Mﬁﬁ£é_1@g_

ZIZIIIIIIII

f—

|H|||/l£6'

XD Yer 111 |

T

‘t’\(llll-ll

J_WLI?|DU|&'

\ STARTAD. |

EVlLStE¢M-|

1 I I B I |

—_— S —]
T T O I I

Nl

Ll EMTER

L LMAuTA

TEMIM 45T
REA o1 1111

MG L 1

Lo A T

L
|

042 lfn EM

DLS-C il |
\r{l‘—lllll

J_Qlﬁlﬂgéﬂm 1
1
l

I O O T I O |

L ENTER

T]
I O A A I

o] | |

I I

lal&ﬂlfxénﬁ

XIET/R“JL 1t

3-8

Figure 3-8. EXITMUJ Call Use

CONNECT must be the second SCED call in a
muj program; it appears only once.

GETINT and RETINT can appear any number of

times in the terminal session section of a muj

program.

TERMIN and TERMOUT can appear any number
of times in a muj program, but these calls should

not be placed within the range of an interlock.

IOWAIT can appear any number of times in a

muj program. The call to IOWAIT must be pre-

ceded by a SEEK operation and fall within the
range of an interlock.

The call to DISCON must be the last statement

executed by users in the terminal session section.

If the call to DISCON is coded more than once
in the muj program, it must be followed by the
wrap-up code or a branch to the wrap-up code
each time it appears.

7. The call to EXITMUJ must be the last statement
in the wrap-up section.

Special care should be taken in the placement of
TERMIN, TERMOUT, GETINT, and RETINT to keep
response time to a minimum. Calls to TERMIN and
TERMOUT should not be placed within the range of
an interlock because terminal input and output oper-
ations are time-consuming, and improper placement of
the calls can defeat the purpose of efficient program
sharing. For example, if a call to TERMIN were placed
within the range of an interlock and the terminal user
was unable to respond to a request for input at once,
that portion of the program that falls within the range
of the interlock might be tied up for a long time.
Other users would be denied access to the instructions
that fall within the range of the interlock.

Figure 3-9 shows two segments of flowcharts that have
identical functions charted. If a muj program were
coded to include segment A, sections of the program
could be tied up in execution for one user for indefi-
nite time periods by the improper placement of the
calls to TERMIN and TERMOUT. Segment B shows
the proper placement of the SCED calls to TERMIN
and TERMOUT.

For each call to GETINT executed to reserve an
interlock in a muj program, a call to RETINT must

be executed to release the interlock. This does not
mean, however, that the program must contain the same
number of calls to RETINT and GETINT. One call
could be made to reserve an interlock in the program,
but any number of calls could be issued to release the
interlock; and the converse is true. For example, when
different functions are possible for a file, the program-
mer can perform the following operations: the inter-
lock can be set, the file record can be read into the
record area of the program, and the program can branch
to one of a number of routines to perform the required
function. It might be desirable to issue a call to re-
lease the interlock in each routine where a file function
is performed, rather than to branch to a common rou-
tine to release the interlock. If the program were coded
in this manner, more calls would be coded to release
the interlock than to reserve the interlock, but the
number of executions of the calls to release and re-
serve the interlock would maintain a one-to-one ratio.

60494800 A

Segment
A

GETINT

TERMIN

!

ACCESS
DATA BASE

Y

EDIT DATA
FOR
SCREEN

!

TERMOUT

|

RETINT

Improper placement of SCED
calls TERMIN and TERMOUT

Segment
B

TERMIN

GETINT

!

ACCESS
DATA BASE

Y

EDIT DATA
FOR
SCREEN

RETINT

TERMOUT

Proper placement of SCED
calls TERMIN and TERMOUT

60494800 A

Figure 3-9. Placement of SCED Calls

PROCEDURE LINKAGE IN COBOL

COBOL procedures called by a PERFORM statement

that can be executed from more than one path should
not contain a SCED call because the procedure return
information COBOL stores in central memory for one
user can be destroyed by another user. For example,
the first user’s procedure return information would be
destroyed if the following conditions exist:

® A user executes a procedure with a PERFORM
statement and reaches a SCED point where SCED
schedules other users for program execution

® Another user performs the procedure from a
different path before control is returned to the
first user

The COBOL reference manual contains a complete
discussion of the execution of procedures by means of
the PERFORM statement.

FILE ASSIGNMENT

Files referenced in a COBOL muj program must be
attached and returned in the program by calls to sub-
routines coded in a language that can reference RA+1.
Examples of COMPASS subroutines that can be used

to attach and return permanent files are shown in

figure 3-10. These subroutines are entered by including
the statements ENTER ATTACH and ENTER DETACH
in the COBOL muj program.

Execution of the ATTACH subroutine causes the per-
manent file, whose logical and permanent file name is
IOFILE and whose permanent file ID is SCEDF1, to be
attached to the muj program. ATTACH must be entered
in the initialization section of the program before
IOFILE is opened. IOFILE must also be named in a
SELECT clause in the FILE-CONTROL paragraph of
the muj program.

IOENT ATTACH
ENTRY ATTACH

ATTACH £En ¥+1S17
ATTACH ICFILE,RC
£n ATTACH

INDFILE FNB

END

IDENT DETACH
EMTRY DETACH

- DETACH £Q *+1S517
se1 =YIOFILE
SA1 R1+1
SAL X1
RJ =XCPC
€A DETACH
END

PROGRAM ATTACH — Subroutine to Attach Permanent File IOFILE

IOFILELIOFILE,ID=SCEDF1 SPECIFIES PERMANENT FILE

PROGRAM DETACH — Subroutine to Return Permanent File IOFILE

VFD 18/741/341/71,.40/71748B DEFINES VARIABLE FIFLDS FOR

USTD FOR DEBUGGING
ISSUES AN ATTACH REQUEST
RETURNS TO CALLING PROGRAM

PARAMETERS

USED FOR DEBUGGING

GETS ADNRESS 0OF THE FIT
FETCHES ADDRESS OF THE FET
FETCHES FIRST WORD OF THE FET
CALLS CPC TO RETURN THE FILE

~ CALL TO CPC
RETURNS TO CALLING PROGRAM

Figure 3-10. COMPASS Subroutines to Attach and Return a Permanent File

3-10

60494800 A

Execution of the subroutine DETACH causes the file
named IOFILE to be detached from the system.
DETACH must be entered in the wrap-up section of
the program, after the file is closed.

Each permanent file referenced in the COBOL muj
program must be attached and returned by calls to
subroutines.

SAMPLE COBOL MUJ
PROGRAM

The COBOL programmer should now have some idea
of how to write a COBOL muj program that interfaces
with SCED. The new programming concepts that are
presented in this manual are (1) establishing SCED
points, and (2) protecting data areas.

"The COBOL muj program shown in figure 3-11
illustrates the incorporation of the concepts of estab-
lishing SCED points and protecting data areas for inter-
face with SCED. The program updates a file from
information entered by users at various terminals and
accepts five different types of input transactions as
listed below:

Type Function
1 Add a record to the file.
2 Add the amount entered to an

existing file record.

3 Subtract the amount entered from
an existing file record.

4 Delete an existing record from the file.

E(ND) Disconnect a user from the program.

The file that is updated during processing of the
COBOL muj program contains 28~character records,
which have the following fields:

ACCOUNT NUMBER PIC 9(3).
FILLER PIC 9(15).
BALANCE PIC 9(10).

60494800 A

SCED installation parameters used to install the sample
program are listed below:

SCED Installation

Parameters Specification
MAXUSR 10 The maximum number of users

that can be connected to the
program at one time is 10.

USAREA 2,15 Two user areas are to be
allocated in central memory;
each user area is 15 central

memory words in length.

NUMINT 10 The maximum number of
interlocks that can be referenced
in the program is ten. Inter-
locks referenced in the program
must be assigned a value in the

range 0 through 9.

DEFBUF Output buffers defined by
OUTBUF are included in the
program.

OUTBUF 4,12 An output buffer type that is 12
central memory words in length

is specified. Four buffers of this
type are allocated in central mem-
ory. The buffer type identifica-

tion of this buffer is O.

The sample program is compiled with the E option of
the COBOL compiler, where E=PSRCN; consequently,
PSRCN is the name entered at a terminal to call the
muj program.

The discussion of the program is presented by divisions;
a discussion of the IDENTIFICATION DIVISION is
omitted.

ENVIRONMENT DIVISION

The SPECIAL-NAMES paragraph is included so that
CONSOLE can be equated to the mnemonic name
SCREEN, and output can be written to the dayfile by
referencing SCREEN in a DISPLAY statement.

IDENTIFICATIUN UIVISIUN.
PROGRAM=TID. MJISCED .
ENVIRONMENT DIVISION.
CONF IGURATION SECTION.
SOURCE=COMPUTER. 6600,
UBJECT=COMPUTERS 6600
SPECIAL~-NAMES,
CONSOLE IS SCREEN.
INPUT=-0UTPUT SECTION.
FILE-CONTKUL
SELECT MASTER=-FILE ASLIuw U 10FI1ILE
ORGANIZATLION IS INDEAED
ACCESS [S RANDUM:
SYMBOL IC KEY IS 1-0U=-KEY
INDEX-BLOCK CONTALNS 1U230 CLHARACTEKRS
"RECUORD=BLUCK CONTAINS 10230 CHRARKACIEKS
INDEX=PADDING IS 15 PERCENT
DATA=-FPADDING IS 5u PERCENT.

DATA DIVISION.
FILE SECTLION.
FO MASTER=FILE
LABEL RECORDS OMITTED
DATA RECORLD IS l~-)=KEtui.
Ul I’O"RLC. .

02 ACCT PIC 9(3).
N2 FILLER PIC 9415).
02 BAL PIC Y(10).

WORK ING=STORAGE SECTION.
77 INT-1 PIC 9(10) CUMF=1 VALUE 1.
77 1-0-KEY PIC 9(3) USAGE COMP. -

77 IN=CNT PIC 9(3),

77 DEL-CNT PIC 9(3).

77 NEN=CNT PIC 9(3).

77 suB-} PIC 99

77 susB-2 PIC 99.

J1 MSGl PIC X(32) VALUE #NUMBEKR OF TRANSACTIUN APPLIED
01 ™MSG2 PIC X(32) VALUE #NUMBER OF RECORDS DELETED
01 MSG3 PIC Xx(32) VALUE zNUMBER OF RECORUS ADDED

t X
2o
Ze

Figure 3-11. Sample COBOL Muj Program (Sheet 1 of 5)

3-12

60494800 A

vl

)]

INPUT=AKEA.

N2 InBSIZE PIC 9(1l0) CumP-1.
e IN=BUF .
03 In=T1YPrE PLC X,
03 FIlLLER FIC Xx.
03 Liv=ACCT PLC x(3).
03 FlLLER PIC Xe v
03 In=AMI=-1 PIC X(1U) .

03 IN-AMT=2 KEDEf INES 1N=-AMT=1,
04 [IN=AMT UCLURS 10 TIMES FIC X
03 FILLER PLIC X(4).

92 JUUTPUT=-ARFA.

U3 O1=-BUF-=1 - PLC 9(10) CUNP=1.
33 OT=-bBuF-=5% PiC 9(19) COMb=},
03 Or=BuF,

08 FURMAT=CAHAR PIiC A

04 OT=ACCT FIC 2(3).

04 DT=M50 PIC X(57).

04 OF=-baAL £ IC x(10).

04 FILLER CIC X(30).

U3 OT-BUF=END PLIC 9(10) CUMP=1 vVALUE ZERO.

03 OT=ZFRO PEDEFINES OT=bUF=EinDe
04 CHAK=ZE FIC 4.
04 FILLEk PIC x(8),
04 MOVE=ZE FIC x.
092 SAVE-AREA,

03 S-ACCT CPLIC 9(3) .
n3 S=TYPE PIC Y.
03 S=AMT PiC 9(iv).

I3 53-AMT=2 KEDEFINES S-aMl.
04 S=AMT=1 UCCURS 10 TIMES PIC Y.
03 S-BAL PIC 9(10).

PROCEDURE DIVISIOi,
INITEALIZE.

MOVE ZEROS TO IN=CNT. DeL=CNTy NEW=CNT.
MOVE 2 TO INBSIZE.

ENTER INIT USING USER=AwEAs INITIALIZEy DIS=CUN.

ENTEr ATTACH.

OPEN 1=0 MASTER-FILE.

ENTER CONNECT.

60494800 A

Figure 3-11. Sample COBOL Muj Program (Sheet 2 of 5)

MOVE MUVE-Zt TO CHAR-ZE.,

MOVE 12 TO OT-sUF-S.

MOVE <£EROS TO 0V=sUF=-T, FORMAT=-CHAR.
AOVE SPACES T OT-8UF. ‘
MOVE #MJSCED PrUuRAM rREADY.x TO OT-=BUF.

InN=PROC=1.
' ENTER TERMOUT USING OUTHUT=AKEA.
MOVE SPACES TU UT-BUF .

MOVE #ENTER NEXT UPDATE IN FURMAT TYPE+ACCOUNT 9 AMOUNT o
#END TO TermMINATEZ Tu UT-BUF.

ENTER TERMOUT USING OUTFUT-AREA.

MOVE SPACES TG UT=-BUF «

MOVE SPACES TO IN-BUF.

qOve £EROS TUu S=amT.

ENTER TERMIN USInG INPUT-AREA.

IF IN=TYPE = #t#
Gu I'O l)} 3"’(:0*‘1:
IF InN-TYPE = #1%#
OR IN=TYPE = #£4%
60 TOUO bBY=-PASS,
IF IN-TYPE = #2%#
O IN=-TYPE = #£3%
GU TO Fuxmal cbSE .
MOVE 2INvALID TYPE COLEZ2 TU OT-guUF .
60 T0 IN-PROC-1.

FORMAT o -
MOVE 1 TU SUs~1e.
LOOP=-1.
IF In=AMT (Supi=1) = #e¢# 00 TU LUOP=C.
ADU 1 FO SuB-l.
IF SuUp-1 LESS Thamn 12 GO 70 LOUP=1. :
MOVE #INVALLID AMT, = TYPE 2 OK 3 TRANSACTIONZ TO OT-MSG.
- 60 TO IN=-PROC-1.
LOOP=2.
IF SUB=1 LESS THAN 2
G0 TQ HBY-PASS,
MOVE 10 Ty Sus-Z2.
LOOP"3¢ .
SUSTRACT 1 FROM Sup=1l.
MOVE InN=-AMT (SuB=1) TU S=-amMT=-1 (5uUB=2).
IF Sub=1 = 1 GO 1O BY=rPASS.
SUBTRACT 1 FrOM 5UB=-2.
20 TO LOOP=3.

OR

3-14

Figure 3-11. Sample COBOL Muj Program (Sheet 3 of 5)

60494800 A

3Y=PASS.
MOVE IN=TYFE TU S-TYPLt.
OVE Lin=ACCT TO 5=ACCl.
ENTER GETINT USING INT-1,.

MOVE S=ACCT TO [=0-KEY.
SEEK MASTER=FILE =ECORU.

CENTER TOWAIT USING MASTER=-FILE.

READ MASTER=FILE INVALLIL KEY 6O TU TYPE-le

[F.5S=TYPE = 4 GU 10 DeLETE~KEC
[F S=TYPE = & ALY S=-AmMl TuU bALs
IF 5=TYPE = 3 SUSTRACI S-AMT FRUM BAL.

REWRITE [-0-REC INVALLD KEY
MOVE #UNABLE TO wWRITE MASTEK FILE RECURD. #
TO OT-BUF
GO TO RELEASE-INTERLOCKS

ADD 1 TO IN=CnNT.

JPDATE-COMPLETE .

MOVE BAL TU 5-8AL. ,

MOVE S=aCCT TO UT=-ACCl1.

MOVE # = TRAMNSACTIUN APPLLIEU. BALANCE ISz TU OT-MS50e
A0VE S-dAL TO OT-wAL.

RELEASE=INTERLOCK. _
ENTER RETINT USING INI-l.
50 TO IN=-PROC-1.

TYPE-I .

IF S=TYPE = 1 NEXT StEiNTENCE
ELSE MOVE S=ACCT T OT-aAcCCT :
MOVE # = INVALIU ACCOUNT NUe # Tu OT=MSO
MOVE SPACES Tu Of=-sAL
GO TO RELEASE-INTERLOCK.

MOVE ZERO TO I-U=-REC.

MOVE S=ACCT TO ACCT.

MOVE S-AMT TO BAL.

WRITE [-0-REC INVALID KEY
4OVE #UNABLE TO wrITE RECORD. ¥ 10
OT=BUF
00 TO RELEASE-INTERLUCKS

ADD 1 TG NEW-CNT,

GO TG UPODATE-CUMPLETE.

Figure 3-11. Sample COBOL Muj Program (Sheet 4 of 5)

60494800 A

DELETE-REC.
"~ MOVE BAL TO S-BAL.

DELETE RECORD FROM MASTER-FILE INVALID KEY
MOVE #UNABLE TO DELETE RECORD., # TO OT=-8UF
GO TO RELEASE-INTERLOCK.

ADD 1 TO DEL-CN1.

MOVE S=ACCT TO OT-ACCT.

MOVE # - DELETEL FROM F1LE. BALANCE WAS# TO 0T=MSG.

MOVE S=-BAL Tu 0T-BAL.

GO TO RELEASE-INTERLOCK.,

DIS‘CON.
ENTER UDISCUN,.
D1ISPLAY M5G1 IN-CNT UPON SCREEN.
DISPLAY MSG2 DEL=-CNT UPOIN SCKEEN,
DISPLAY MSG3 NEW=-CNT UPUN SCREEN.
CLOSE MASTER-FILE.
ENTER DETACH. :

ENTER EXITMUJ.
7/8/79

TOENT ATTACH
ENTRY ATTACH

ATTACH EQ #+1517 ENTRY/ZEXITeue
ATTACH TOFILESRC
£Q ATTACH

IOFILE FDB TIOFILESs IOF 1LE s JUSSCEDF 1
£ND
IDENT OETACH
ENTRY OETACH v

RETURN EQ #41517 ENTRY/EXITeo
S81 =XI0OF1LE ADURESS uF THE FIT
SAl Bl+l FETCH ADDRESS OF THE FET
3A1 X1 FETCH FIRST WORD OF THE FET
RJ =xXCrC '
VFD 18/7+1/7091/1+40/7174B
EQ DETACH RETURNe
END

Figure 3-11. Sample COBOL Muj Program (Sheet 5 of 5)
3-16 60494800 A

DATA DIVISION

MASTER-FILE is an indexed sequential file that is
accessed randomly with the symbolic key I-O-KEY.
The record description entry I-O-REC, a common data
area, is protected by an interlock.

INT-1 is a constant that is used as the interlock that
disallows all but one user access to the data in
[-O-REC for a period of time.

IN-CNT, DEL-CNT, and NEW-CNT are common data
areas used to maintain counts of records processed by
the program.

SUB-1 and SUB-2 are local data areas used as subscripts
in the program.

MSG1, MSG2, and MSG3 are constants that identify
counts of records processed in the program. These
counts are displayed during program wrap-up.

INPUT-AREA is a terminal input buffer area. In this
program, the terminal input buffer is a common data
area.

USER-AREA is the user area, a copy of which is
maintained by SCED and the muj subroutine for each
user connected to the program. OUTPUT-AREA is the
terminal output area, and SAVE-AREA is a hold area
for input transactions. Data is moved into SAVE-
AREA from the input buffer IN-BUF, with the amount
field being reformatted in the process, so that the data
:an be saved across SCED points.

PROCEDURE DIVISION

INITIALIZE, the first paragraph in the program, begins
vith the initialization code. The first SCED call,
ENTER INIT, specifies that the user area is USER-
AREA; the paragraph that is to be executed for pro-
sram restart is INITIALIZE; and the paragraph that is
‘0 be executed if a user is disconnected abnormally
rom the program is DIS~CON. The subroutines to
ittach the file and the OPEN statement are executed
n the initialization section because MASTER-FILE
nust be opened only once for each activation of the
yrogram.

the SCED call ENTER CONNECT signals the beginning
)f the sharable terminal session section. Users con-
iecting to a running program begin executing at this
nstruction.

50494800 A

The five statements following ENTER CONNECT are
executed only once for each user connecting to the
program. Since only one output buffer is formatted
and transmitted from the terminal output buffer area
OUTPUT-AREA, the buffer size, buffer type identi-
fication number, and carriage control character can be
set in the terminal output buffer area once for each
user connecting to the program. These five statements
can be regarded as individual user housekeeping code.

IN-PROC-1, the second paragraph, begins the loop of
code that is executed for each transaction input by
users. Two messages are displayed each time the loop
is entered: the first message tells the user the proc-
essing just completed for the last transaction, if any,
and the second message instructs the user to enter a
transaction or the signal to disconnect from the pro-
gram. The first time a user executes IN-PROC-1, the
messages shown in figure 3-12 are transmitted to the
user’s terminal.

MJSCED PROGRAM READY

ENTER NEXT UPDATE IN FORMAT
TYPE,ACCOUNT,AMOUNT, OR END
TO TERMINATE

Figure 3-12. Terminal Messages from
Program Example PSRCN

In each subsequent execution of the loop, the first
message is replaced by a message that shows the status
of the last transaction processed for the user. The
second message is always the same as the second mes-
sage shown above.

The program must now be readied for terminal input,
and the SCED call ENTER TERMIN is executed to re-
ceive the data that is input by the user.

Once the terminal input operation is completed, the
transaction type code IN-TYPE is checked, with the
following results:

If the code is E(ND), the program branches to
DIS-CON, the name of the paragraph that is exe-
cuted to disconnect users from the program.

If the code is 1 or 4, the paragraph that
reformats the amount field, FORMAT, is
bypassed because type 1 and 4 transactions
do not have amount fields.

If the code is invalid, the appropriate message
is formatted, and the program branches to the
beginning of the loop, IN-PROC-1.

If the code is 2 or 3, the code that reformats the
amount field is executed. This code begins at
paragraph FORMAT.

FORMAT is the first paragraph of the code that
reformats the amount field. The amount field is
reformatted because the amount can be entered by
the user without leading zeros. If the amount field
is blank or invalid, a message is formatted and the
program branches to IN-PROC-1.

BYPASS is the paragraph that accesses the file for
updating. The remainder of the input data that is to
be saved across SCED points is moved to SAVE-AREA,
which is in the user area. The interlock is then re-
served, and the file is accessed on the symbolic key
I-O-KEY that is set to the account number of the
transaction.

The amount fields are applied when a type 2 or 3
transaction account number matches the account num-
ber of a record on the file. The program branches to
the appropriate routines to delete and add records for
type 1 and 4 transactions.

For all transactions, the record is counted, the output
message indicating the status of the transaction is for-
matted, and the program advances to the routine to
release the interlock, RELEASE-INTERLOCK.

TYPE-1 is executed when a transaction whose account
number does not match an existing file record is entered
by the user. A type 1 transaction causes a new record
to be added to the file. After reformatting the appro-
priate message, the program advances to the section of
the program that released the interlock.

DELETE-REC is executed when a type 4 transaction
whose account number matches an existing file record
is entered. A type 4 transaction causes the corres-
ponding record to be deleted from the file. A mes-
sage is formatted and the program branches to the
routine to release the interlock.

The paragraphs TYPE-1 and DELETE-REC both fall
within the range of the interlock. The program is
structured so that the interlock is reserved and released
once in establishing the range of the interlock; however,
the program could have been written so that the inter-
lock was released within these paragraphs and the sub-
sequent branches from these paragraphs were made
directly to IN-PROC-1.

3-18

DIS-CON is executed when a user is disconnected
abnormally or enters END at a terminal. The user
branching to DIS-CON executes the first statement if
other users are connected to the program. The first
statement in DIS-CON, ENTER DISCON, signals the
end of the terminal session section and is followed by
the wrap-up code. '

When the last user executing in the program branches

to this paragraph, the wrap-up code is executed. Wrap-
up includes displaying counts and returning and closing
MASTER-FILE. The final statement ENTER EXITMUJ
terminates the program.

ATTACH, the COMPASS subroutine that attaches
MASTER-FILE, is entered in the initialization section
prior to opening the file.

DETACH, the COMPASS subroutine that returns the
file, is entered in the wrap-up section of the program
after closing the file.

Figure 3-13 shows a portion of IOFILE, the file that
is updated during processing of the sample program
shown in figure 3-11.

6100603500625 0007303N2C00C9505
£2000030205630002080020000001¢€
03CC0032660200233020011C000015
£43000700046C90063032700735¢C23
0500000C2063C000030033400506025
G60600000C0C3002C0020203043072030
670000000030 0400300320000G335
030308¢€39000050U090730000040
Jg93dn454000206020C0000C390000045
10860040060200005033C0N020C05T
113000603023C9260200C03502G0855

523:005572037008009504306008260
5300600¢200279300503063306000265

Figure 3-13. Partial Listing of [OFILE

Figure 3-14 shows a copy of the Teletype output that
logs terminal input/output activity for a user executing
the COBOL muj program. All activity, including the
transactions input by the user and the output messages
generated by the program, is shown.

60494800 A

lo1/22775 LOGGED IN AT 23.48,10

WITH USER- ID R1
EQUIP/PORT 61/03
[coMMAND- PSRCN

1MJSGED PROGRAM READY,

ENTER NEXT UPDATE IN FORMAT

010 - TRANSACTION APPLIED. RALANCE IS

[ENTER NEXT UPDATE IN FORMAT

INVALID AMT, = TYPE 2 OR 3 TRANSACTION
[ENTER NEXT UPDATE IN FORMAT

[02C - TRANSACTION APPLIZD., RALANCE IS

ENTER NEXT UPNATE IN FORMAT

025 - INVALID ACCOUNT NO,

ENTERP NEXT UPDATE IN FORMAT
1,025,

(25 - TRANSACTION APPLIED. RALANCE IS

ENTER NEXT UPDATE IN FORMAT

025 - TRANSACTION APPLIFEN, BALANCE IS

ENTER NEXT UPDATE IN FORMAT
4,630,
030 - DELETED FROM FILE, RALANCE WAS

ENTER NEXT UPDATE IN FORMAT

030 - INVALID ACCOUNT NO.

ENTER NEXT UPDATE IN FORMAT
44,060,

TYPE ACCOUNT, AMOUNT,
2+0104100¢C,

TYPE yACCOUNT, AMOUNT,
3902043

TYPE y ACCOUNT,AMOUNT,
3402043,

TYPE , ACCOUNT, AMOUNT,
2+525,100,

TYPE yACCOUNT, AMCUNT,

TYPE yACCOUNT, AMOUNT,
2,025,555,

TYPE ACCOUNT y AMOUNT,

TYPE , ACCOUNT,AMOUNT,
2,030,99,

TYPE yACCOUNT, AMOUNT

OR

NR

OR

0R

OR

or

OR

OR

OR

END

END

END

END

END

END

END

END

END

TO TERMINATE

TO TERMINATE

6500901005

TO TERMINATE

2060066207

TO TERMINATE

TO TERMINATE

Ggoooocango

TO TERMINATE

003038806555

TO TERMINATE

c003000015

TO TERMINATE

TO TERMINATE

Figure 3-14. Printout of User’s Terminal Input/Output (Sheet 1 of 2)

60494800 A

3-19

060 - DELETED FROM FILE. RALANCE WAS 00060000 30|

ENTER NEXT UPDATE IN FORMAT TYPE,ACCOUNT,AMOUNT, OR END TO TERMINATE
20804222,
080 - TRANSACTION APPLIED. BALANCE IS .0000000262

ENTER NEXT UPDATE IN FORMAT TYPE,ACCOUNT,AMOUNT, OR END TO TERMINATE
- 1,085,
085 - TRANSACTION APPLIED. BALANGE IS 0000000000

ENTER NEXT UPDATE IN FORMAT TYPE,ACCOUNT,AMOUNT, OR END TO TERMINATE
: 2408549999999999, '
085 -~ TRANSACTION APPLIED. BALANCE IS .999999999¢

ENTER NEXT UPDATE IN FORMAT TYPE,ACCOUNT,AMOUNT, OR END TO TERMINATE
: 4,100,

100 - DELETED FROM FILF, BALANCE WAS 0000000050

ENTER NEXT UPDATE IN FORMAT TYPE,ACCOUNT,AMOUNT, OR END TO TERMINATE
END : ;

|GOMMAND- LOGOUT

CPA «685 SEC, +5685 ADJ.
SYS TIME «348
CONNECT TIME 0 HRS. 8 MIN.

01722/75 LOGGED OUT AT 23.56.32.

Figure 3-14. Printout of User’s Terminal Input/Output (Sheet 2 of 2)

Figure 3-15 shows the dayfile produced by execution
of the sample muj program. The entries for the job
count messages were generated by the COBOL muj
program; all other entries in the dayfile were generated
by INTERCOM and the operating system. The message
REQUEST(SWAPIOF,*AX) was generated as a result
of loading the muj program into the system; the mes-
sages JOB KILLED and JOB REPRIEVED were gener-
ated as a result of terminating the muj program.

3-20

The job counts reflect the total transactions processed
by the muj program; they are routed to the dayfile

each time the muj program is terminated. No trans-
action is counted twice. For example, if a transaction
is counted as a deletion, it is not included in the applied
count; likewise, a transaction that is included in the
count of records added is not included in the applied
count, although the message generated indicates that

the record was applied.

60494800 A

23‘45. 30.
23.48,31.
23.48.31.
23.48,32,
23.52.13.
23.56420.
23.56420.
23.56420.,
23.56.22.,
23.564.22,
2356422,
23.56.22.
23.56.23,
23¢56423.
23.56423.
23.56.22,
23.56,23.
23.56.23.
2356423,
23456423

'P.PI. P.
P.PT.P,
«P.PI.P,
81B11I81.

SYSTEM,
«PPI.P,
.POPIOPO
PePI P,
B1B11I81,
P.PIP,
PPI.P,
.P.PI. p.

PSRCN.,
REQUEST (SWAPIOF 4*AX)

{ SWAPIOF ASSIGNED TO EST 01)
PSRCN,

MT21 STAT = 22(°"

NUMBER OF TRANSACTIONS APPLIED 205
NUMBER OF RECORDNS DELETED ig3
NUMBER OF RECORDS ADDED co2

FXTT.sPSRCN,
J0B KTILLED
JOB REPRIEVED
(PREVINUS ERROR CONDITION RESET)

+PePT.Pe3JOB KILLFD

P oPI.PeBMS J WORDS (6L C MAX USFD)
PPT.P.ICPA «626 SEC. «626 ADJ.
PePT.PL,FIN + 315 SEC,. +315 ADJ.
PePI.P.,SCM 23.932 KHS, 1.460 ADJ.
PePT.P,FSS 2.433
PPI.P.FPP 7.664 SFC,

PoPI.P.REY END OF JOR, **

DAYE (1722775

60494800 A

Figure 3-15. Dayfile Generated by Sample Program

3-21

TESTING THE COBOL MUJ PROGRAM 4

DEBUGGING A COBOL
MUJ PROGRAM

A COBOL muj program can be initially tested with
SCED, or with DUMMUIJ, a program included in the
SCED package for debugging the program. DUMMUJ
contains the same entry points as SCED, but SCED
calls to DUMMUIJ other than TERMIN, TERMOUT,
and EXITMUIJ are treated as dummy calls.

To test the program with DUMMUJ, the program must
be loaded with DUMMUIJ. The user must also enter
the INTERCOM command CONNECT,INPUT OUTPUT
to equate these files to the user’s terminal. (This com-
mand is not required after the program has been in-
stalled with SCED and the muj subroutines.) - File ac-
cess, terminal language, screen input/output formats,
and most of the program logic can be debugged running
under DUMMUJ.

Once the debug of the program has been completed
using DUMMUJ, the program is installed without ad-
ditional modification with SCED and the muj subrou-
tines, and the program segments are stored on the
system library using the EDITLIB utility program. The
remaining program logic, which comprises the protec-
tion of data areas through interlocks and user assign-
ments, can then be checked.

SCED causes a full field length dump, along with error
messages and codes, to be routed to the output file if
the program aborts after it is installed.

Testing a COBOL muj program with DUMMUYJ is not
necessary, although it is practical. If the program is
initially debugged with SCED, the program must be
reinstalled each time a correction is required.

PROGRAM TESTING
WITH DUMMUJ

Two methods of combining DUMMUIJ and the muj
program are shown in figure 4-1.

Program A in figure 4-1 shows a job deck that can be

used to combine the binaries of the COBOL muj pro-
gram, of the COMPASS subroutines needed to attach

60494800 A

and return the files, and of DUMMUJ. (It is assumed
that DUMMU]J has been extracted from the INTERCOM
program library and assembled, and the binary output

has been placed on a user library, cataloged as DUMMUI.)
The combined binaries are finally cataloged as permanent
file SCEDPF. Once the job deck in Program A is run,
the user can test the program at the terminal by enter-
ing the following INTERCOM commands:

ATTACH,SCEDPF,ID=SCED
CONNECT,INPUT,OUTPUT
SCEDPF

The next response from the user depends upon
information generated by the program.

Program B in figure 4-1 shows the INTERCOM
commands necessary to compile, load, and test a muj
program from a terminal. The example assumes the
DUMMUTJ binaries and the source programs for the
COBOL compile and COMPASS assembly have been
placed on the user library and cataloged.

A problem with the output buffer size can occur when
the user is debugging a COBOL muj program with
DUMMUIJ. If the output buffer size indicator is set to
a value less than the number of words in the output
buffer during a terminal output operation, the output
message is not displayed upon the user’s screen because
the message is dropped by INTERCOM for not being
in the proper format; however, program processing
continues. Terminal output normally prompts the
action the user must take. If no output messages are
displayed, the user has no way of knowing when a re-
sponse is required. When this happens, the user should
enter the signal to disconnect from the program, cor-
rect the program, and test again.

4-1

PROGRAM A — Sample Job Deck for Muj Program Assembly

DUMMUJ yMT1 ,T100,
ATTACH , DUMMUJ, IN=SCEN,
REQUEST,SCEDPF,*PF,

COBOL,B=MUJBIN,
COMPASS,S=CPCTEXT yB=MUJBIN,
COPY,DUMMUJ, MUJBIN,
LOAD,MUJBIN.

NOGO ,SCEDPF.
CATALOG,SCEDPF,TD=SGED,
77879 |

COBOL SOURGCE PROGRAM
77879
COMPASS SOURCE PROGRAM T

7/78/9
6/7/8/9

ATTACH DUMMUJ BINARIES
REQUEST PERMANENT FILE FOR
COMBINED BINARIES
COMPILE COBOL SOURCE PROGRAM
ASSEMBLE COMPASS SOURCE SUBROUTINES
STACK DUMMUJ BINARIES
LOAD COMBINED BINARIES
COMPLETE LOAD LINKAGES
CATALOG COMBINED RINARIES

O ATTACH AND RETURN PERMAMENT FTILES

PROGRAM B — Muj Program Assembly Using INTERCOM Commands -

ATTACH,DUMMUY, TD=SCFDPF,
ATTACH ,,PFSCD1,ID=SCEDPF,
ATTACH,PFSCD2,IN=SCENPF.
COBOL,I=PFSCD1,8=MUJRIN,
COMPASS,I=PFSCD2,B8=MUJBIN,

ATTACH DUMMUJ BINARIES

ATTACH COBOL SOURCE PROGRAM
ATTACH COMPASS SOURCE SUBROUTINES
COMPILE COBOL PROGRAM

ASSEMBLE COMPASS SURROUTINES

SCED INSTALLATION REQUIREMENTS

The

through SCED installation parameters when the COBOL
muj program is installed with SCED and muj subroutines:

4-2

COPY yDUMMUJ, MUJBIN, STACK DUMMUJ BINARIES

CONNECT,INPUT,0UTPUT, ASSIGN I/0 FILES TO TERMINAL

MUJBIN. LOAD AND EXECUTE MUJ PROGRAM
Figure 4-1. Methods for Testing Muj Program with DUMMUJ

following information must be supplied to SCED

The size of the user area, in central memory
words, and the number of buffers to be allocated
in central memory for the user area. The larger
the number of buffers allocated in central mem-
ory, the better the muj program can perform
multi-user processing.

The maximum number of users that can be
connected to the program at any time.

The number (n) of interlocks that the program
requires. The maximum value that can be as-
signed to an interlock in the program is n-1.

The size of each output buffer and the number
of each size to be allocated in central memory.
The maximum value that can be assigned to a
buffer identification number in the program is
the number of output buffer types specified
minus one.

60494800 A

SCED installation requirements are discussed in detail
in the INTERCOM 4 Multi-User Job Capability refer-
ence manual.

ERROR CONDITIONS AND CODES

All fatal errors generated by a COBOL muj program
installed with SCED are identified by a code number.
Error codes in the range 00 through 49 are produced
by muj subroutines as a result of system errors gener-
ated by muj subroutines or SCED; these codes are
described in the INTERCOM 4 Multi-User Job Capa-
bility reference manual.

Error codes 50 and higher are generated by SCED as
the result of errors encountered in the program. These
SCED errors are coded by types, and are shown below.

Type Codes -
SCED call sequence errors 50-5x
Interlock assignment errors 60-6x
Terminal output errors 70-7x

Errors caused by a user
overwriting sections of
SCED or muj subroutines 80-8x

Errors represented by codes 80-8x are possible because
SCED and the muj subroutines are contained within
the field length of the muj program and are not pro-
tected from overwrite. Table 4-1 lists the error codes
and the associated conditions that cause the errors.

RECOVERY TECHNIQUES FOR TERMI-
NAL COMMUNICATION PROBLEMS

SCED performs the following procedures for recovery
from typical situations that can arise during terminal
processing. (BREAK refers to those cases where the
user either is temporarily disconnected from
INTERCOM or enters %ABORT.)

BREAK DURING TERMINAL INPUT — If a
break occurs during terminal input, a situation
that is commonly caused by a temporary discon-
nect of a user’s terminal from INTERCOM.
SCED reissues the input request that was pending
at the time of the break. That is, SCED returns
to the waiting-for-input state.

60494800 A

TABLE 4-1.

ERROR CODES AND CONDITIONS

Error Codes

Error Condition

S0
51
52

53
54

60

61

62

63

64

70

71

72

80
81

82
83

84

INIT was called out of sequence.
CONNECT was called out of sequence.

Terminal session section function was
called out of sequence.

DISCON was called out of sequence.

EXITMUJ was called out of se-
quence.

Interlock number specified by
GETINT call is outside range spec-
ified during installation.

Interlock specified by GETINT call
is already in use.

Interlock number specified by
RETINT call is outside range spec-
ified during installation.

Interlock number specified by
RETINT call is an unreserved
interlock.

Disconnect is not allowed while
interlock is still reserved.

Buffer type identification number
is outside range specified during
installation.

Word count is greater than size

specified for buffer type requested.

TIO error occurred. This error is
usually caused by incorrectly format-
ted terminal output. For example,
failure to terminate the buffer with a
12-bit zero byte in the low-order
word position causes this error con-
dition.

TIO error occurred on read.

No free user ordinal is available for
new user.

Identification of new user is already
in use.

Muj subroutines returned identification
unknown to SCED,

Muj subroutines status code is not
recognizable by SCED.

4-3

PERMANENT DISCONNECT FROM THE MUJ —
If a user is permanently disconnected from the
muj program abnormally, SCED releases the inter-
locks and user area assigned to the user and passes
control to the paragraph name specified in the
INIT call for disconnect processing. The SCED
call to DISCON must be included in the discon-
nect processing.

BREAK DURING TERMINAL OUTPUT — If a
break occurs during terminal output, SCED pro-
ceeds as if the output were successfully completed
and returns to the program after the TERMOUT
call that initiated the output.

60494800 A

STANDARD CDC CHARACTER SETS

CONTROL DATA operating systems offer the follow-
ing variations of a basic character set:

CDC 64-character set
CDC 63-character set
ASCII 64-character set
ASCII 63-character set

The set in use at a particular installation was specified
when the operating system was installed.

Depending on another installation option, the system
assumes an input deck has been punched either in
026 or in 029 mode (regardless of the character set
in use). Under NOS/BE 1, the alternate mode can be
specified by a 26 or 29 punched in columns 79 and
80 of the job statement or any 7/8/9 card. The
specified mode remains in effect through the end of
the job unless it is reset by specification of the alter-
nate mode on a subsequent 7/8/9 card.

Graphic character representation appearing at a termi-
nal or printer depends on the installation character set
and the terminal type. Characters shown in the CDC
Graphic column of the standard character set table

60494800 A

are applicable to BCD terminals; ASCII graphic char-
acters are applicable to ASCII-CRT and ASCII-TTY
terminals.

NOTE

In the following chart, characters identified
by the heading CDC GRAPHIC are appli-
cable to BCD-CRT models 214-11, 214-12,
217-11, 217-12, 731-12, and 732-12.

Characters identified by the heading ASCII
GRAPHIC are applicable to ASCII (CRT
and TTY) as follows:
ASCII-CRT
217-13, 217-14, 731-12, 732-12
711-10
714
733-10

ASCII-TTY
Model 33, 35, or 38 Teletype
713-10

*Ajuo induy 1oy pardedde ase sayound (6Z0) [1IDSV PUE (9Z0) YHJBIIOH areussije ayL,

.Awmmv jueiq e pjalA % 01@083/110SVY Woiy suoliejsuel) pue Isixd J0u Op S8pod pied pare|al
pue oiydes 9 ay] "(yound g-g) uUo|0d ay3 SI £9 9pod Ae|dsip (9pod pJed 10 d1ydelB pajerdosse ou sey OQ pod Aejdsip ‘1es dlydesB-gg e Buisn suollejjeisul uj 11

'2€91 Qo9
|EUJBIX® O} PAYIBAUOD S| HJEW 8UI|-JO-puU3 ‘SUOJOD OMI UBY] JBUIES HJEW BUI|-JO-PUR SB PSIBICIEIU] BiE PIOM HQ-09 € 4O PUS 3yl Je SHG 0J9Z BIO0W IO BABML |

ac 981l L (-8l LL {uojooiwss) ! | (uojodiwas) ! SE S 50 S ov g g
3s L8l 9L 9821 9L {xa1wnaud)~ o ve v v0 4 (£ v v
0§ 80 SL 581 SL \ < €€ € €0 € 9¢ € €
oy ¥8 S 58 YL ® > ze 4 20 z S¢ z z
3g 9-80 LS L8t 74 < < (4 L 10 i ve l L
144021 1442821 ot 0 zL o €¢ 0 0
fo}> 1o 821 cL 10 0-ZL zL > > Vs 60 1 60 ze z z
4e L-80 96 g8l 1L é t 65 80 oe 80 1 A A
Lz 58 o1} §8LlL oL (aydoansode) , { 86 L0 Lz L0 ot X X
9z 4 L€ L-80 L9 L v LS 90 9 90 X4 M M
11011 1142811 9g S0 [°74 50 9 A A
1z 10 £-8CL zS 0011 99 i B A g5 ¥0 1 74 ¥0 74 n n
45 §-8-0 SE 580 69 (aunjsapun) <« ¥s €0 tord £0 24 1 1
A4 L8 vl v8 ¥9 (aronb) #* €5 AL z2 z0 ford S S
14 80 9L 98 €9 1% % zs 611 15 611 ze d d
as 8Ll ze 280 z9 [{ 1S 81l 0s 811l 1z o] 0
as 8zt Ll L8 19 |] 0§ Lt LY L1 0z d d
€ €8 9g 9-8-0 09 # = BN 9ll oy -39} LL o o
3z €8zl €L €8zl LS (pouiad) - (poriad) v Gl Sv St <] N N
oz €80 €€ €80 9§ (ewwod) (ewwod) ar vt 1474 AN Gt W]
0c yound ou oz yound ou =1} jueiq jueiq ov €1l 4 1l vi g| 1
ac 98 €L €8 ¥S = = 214 FAIN! 44 zit el) b
v 8Ll €5 8Ll €9 $ $ v -t I [zL r r
62 5811 vL -8l zs ((6% 6Zl I\ 621 1 1 |
8¢ [-X: YA ve ¥-8-0 15)) 8t 8-zl oL gzl oL H H
£4 -0 1z 1-0 0S / / Ly Lzl L9 A L0 o 5}
ve 8L ¥S 81l Ly - . ot 9zl 99 9Z1 90 4 4
ac L (1] Lt 9v - - SP Szl 59 ¥4 S0 3 3
j:14 9-8-Zl 09 zL =14 + + 144 ZA! ¥9 vzl +0 a a
6€ 6 1L 6 1274 6 6 (%74 ezl €9 €zl €0 o} 0
8e 8 oL 8 £y 8 8 47 FA4) z9 zzlL z0 9 a
LE L L0 L A4 L L 34 1-zL 19 -zl 10 v v
9e 9 90 9 Iy 9 9 ve 8 00 z8 100 : 1
8po) (620) apo)d (9z0) 8poYd 195Qng aydesn 8po) | (620) 8poo (920) 2po) 1esgng | owydesn
11OSVY yound aosg yaung Aeldsig oydesn folale) 1108V | young aog yound Aeidsig | dwdei 240
HOSY jewsaix3 | yiuajjoH 1108V 1108V | leusaax3 | yiseyoH 1108V

$13S H3LOVHVHOI 00D QYVANVLS

60494800 A

A-2

GLOSSARY B

BUFFER TYPE IDENTIFICATION NUMBER - A
unique number assigned by SCED to distinguish
one buffer size from another. SCED assigns the
numbers consecutively, beginning with zero, at
installation time. SCED uses the number to al-
locate SCED output buffers used in terminal out-
put operations. Users must ensure that a buffer
type of a size large enough to hold the output
is specified in the terminal output buffer area
in the program before issuing the call to SCED
for a terminal output operation.

COMMON DATA AREA — A data area that can be
used by all users executing in a COBOL muj pro-
gram at any time or place in the program. Com-

mon data areas are rare in a COBOL muj program.

COMMON DATA AREA PROTECTED BY INTER-
LOCK — A data area that does not belong to a
single user, although any user can gain exclusive
access to the area for a given period of time
through the use of an interlock.

CONSTANT — A data area that is initialized to a
value during program load and remains unchanged
throughout program execution.

DUMMUI — A program designed for the debug of a
multi-user job as a single-user task. DUMMUJ
contains the same entry points as SCED; however,
all calls to entry points other than TERMIN,
TERMOUT, or EXITMUJ are treated as dummy
calls.

INITIALIZATION SECTION — The first section of a
COBOL muj program. The initialization section
contains functions that are common to all users.
The section is executed when the first user con-
necting to a COBOL muj program causes the
program to be loaded into central memory, and
during program restart.

60494800 A

INTERLOCK — A SCED feature designed to protect
data areas by allowing only one user at a time to
execute in specified sections of a COBOL muj
program. An interlock is either reserved or re-
leased during program execution. When an inter-
lock is reserved, no user can proceed beyond a
statement reserving the interlock until the inter-
lock is released by the user for whom it is
reserved.

LOCAL DATA AREA — A data area that is fully
utilized between SCED points. No special pro-
tection is required of this data area because it is
normally initialized to some value before it is used.

MUJ SUBROUTINES — A set of INTERCOM library
subroutines that interface between INTERCOM
and SCED. These subroutines handle such func-
tions as task scheduling, CIO request for input/
output, and monitoring waiting users.

MULTI-USER JOB — A program that can have a single
copy in execution for any number of users at one
time.

RANGE OF THE INTERLOCK - The sections of a
COBOL muj program that lie between the state-
ments reserving and releasing an interlock. This
range can be a complex area of code because each
interlock can be reserved and released a number
of times in the program.

SCED — A program that provides a set of COBOL
entry points that can be called by a COBOL muj
program to interface with muj subroutines.

SCED POINT — A point in a COBOL muj program
where an ENTER call is made to one of the
SCED functions. When a SCED point is entered,
SCED can schedule other users for processing
while the SCED function is being completed for
the user issuing the call.

TERMINAL INPUT — Data entered at a terminal and
transmitted over communication channels to a
COBOL muj program where it is processed as
input data.

TERMINAL OUTPUT — Data generated by a COBOL
muj program and transmitted over communication
channels to a terminal, where it is displayed upon
a screen or printed.

TERMINAL SESSION SECTION — The sharable section
of a COBOL muj program.

B-2

- USER AREA - A special data area, a copy of which

is maintained by SCED for each user connected
to a COBOL muj program. Each user has com-
plete control over the information contained in
this private user area.

WRAP-UP SECTION — The last section of a COBOL
muj program. The wrap-up section is executed
when the last user executing in the program is-
sues the call to disconnect. This section is com~
mon in the same way that the initialization sec-
tion is common to all users.

60494800 A

INDEX

Accessing files 2-5 Common data areas protected by interlocks 2-4
Advantages of muj program processing 1-1 Communication problem recovery techniques 4-3
Applications for SCED 2-2 COMPASS subroutine examples 3-10
Area (see Buffer, Data, Record, User area) CONNECT call 3-2, 3-8
Assignment Constants 2-4

buffer type 2-6 Carriage Control characters 3-4

file 3-10

interlock value 3-2
Attaching files 3-10, 4-1 Data

area 2-3, 2-5
transmission 2-6

Breaks during input/output 4-3 Dayfile example 3-20

Buffer Debugging COBOL muj program 4-1
definition 2-4 Direct access file access procedure 2-6
identification number 2-6 DISCON call 3-7
specification 2-6, 3-4, 4-1 Disconnecting from muj program 4-4

Display terminal carriage control characters 34
DUMMUIJ debugging 4-1

Calls to SCED 2-1, 3-1 (see also individual calls)

Carriage control characters 3-4

Cataloging permanent files 4-1 Entering a COBOL muj program 2-3
CDC character sets A-1 Error codes 4-3
COBOL muj program - Exiting a COBOL muj program 2-3
coding requirements 3-1 EXITMUJ call 3-7
connection to user 3-2
debugging 4-1 ;
disconnection 3-7, 4-4 Fatal errors 4-3
entry and exit 2-3 File
flowchart 2-6 access 2-5
initialization 3-7 ’ assignment 3-10
interface 2-1 ; manipulation 2-6
organization 2-2 return 3-10
procedure linkage 3-10) Formatting an output buffer 3-5
sample 3-11 Functions of SCED 1-1, 2-1
testing 4-1
termination 3-7
Code
error 4-3 GETINT call 3-2, 3-8

initialization 2-2
terminal session 2-2

user area 2-5 Housekeeping 2-2
wrap-up 2-2
Coding requirements for COBOL program 3-1
Commands through INTERCOM 4-1 Identifying buffers 2-6
Common data areas 2-4 Indexed sequential file access procedure 2-6

60494800 A Index-1

INIT call 3-1, 3-7
Initialization section 2-2, 3-1
Input
buffer definition 2-5
files 2-6
Installation
parameters 3-11
SCED requirements 4-2
Interactive output 3-4
INTERCOM
carriage control characters 3-5
commands 4-1
Interface
SCED/COBOL muj program 2-1
System/multi~user job 1-1
Interlocks 2-5, 3-2
IOWAIT call 3-3, 3-8

Hne spacing 3-4
Linking COBOL procedures 3-10
Local data areas 2-4

Muyj
program (see COBOL muj program)
subroutines 1-1

Organization
COBOL muj program 2-2
data area 2-3

Output
breaks 4-4
buffer 2-6, 3-4, 4-1
files 2-6

interactive 3-4
Teletype example 3-13
terminal 2-4

Overlapping
access and processing time 2-6
functions 2-1

Page wait 3-5
Permanent
disconnection from muj program 4-4
file attachment and return 3-10
Placing SCED calls 3-7
Procedure linkage in COBOL 3-10

Index-2

Processing 2-2, 2-6

COBOL 2-2
data areas 2-4
files 2-6

Protected data areas 2-4

Q carriage control character 3-5

R carriage control character 3-5

Random access 2-6

Range of interlocks 2-5

Record areas 2-5

Recovery techniques for terminal communication
problems 4-3

Releasing interlocks 2-5, 3-2

Reserving interlocks 2-5, 3-2

RETINT call 3-2, 3-8

Returning permanent files 3-10

Sample COBOL muj program 3-~11
SCED

applications 2-2

buffer size 2-6,3-4

calls 2-1, 3-7

functions 1-1, 2-1,3-11

points 2-1
Sections of COBOL muj program 2-2
SEEK operation 3-3
Sequential file processing 2-6
Specifying SCED calls 3-1
Standard CDC character sets A-1
System/muj program interface 1-1

Teletype
carriage control characters 3-5
output example 3-13
Terminal
communication problems 4-3
input
breaks 4-3
buffers 2-6
description 3-3
output
breaks 4-4
buffers 2-4, 2-6
transmission 3-4
session processing 2-2

60494800 A

Terminating a muj program 3-7 User
TERMOUT call 3-4, 3-8 _ area 24
Testing a COBOL muj program 4-1
Values for interlocks 3-2

Unprotected data areas 2-4 Wrap-up processing 2-2

60494800 A Index-3

COMMENT SHEET

SCED User Guide for INTERCOM 4
TITLE: Multi-User Job Capability

PUBLICATION NO. 60494800 REVISION A

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY
NAME:

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FOLD FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

E—

BUSINESS REPLY MAIL —
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. —
E—

E—

POSTAGE WILL BE PAID BY —
CONTROL DATA CORPORATION SE—
Publications and Graphics Division —
215 Moffett Park Drive SEE——
Sunnyvale, California 94086 —
SE——

T

E——

E—

-~ ¥ T T T T T T T T/ 77 TFowp

STAPLE STAPLE

CORPORATE HEADQUARTERS, P.0.BOX O, MINNEAPOLIS, MINNESOTA 55440 LITHO IN U.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G

CONTROL DATA CORPORATION

JORG30YOE

