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About This Manual 

This manual describes the math functions available in the CONTROL DATA® Common 
Modules Mathematical Library (CMML), referred to in this manual as the Math 
Library. 

These math functions can be accessed by programs written in Ada, APL, Assembler, 
BASIC, C, CYBIL, FORTRAN Version 1, FORTRAN Version 2, LISP, Pascal, and 
Prolog. The Math Library is available under Control Data's Network Operating 
System/Virtual Environment (NOSIVE) operating system and can also be accessed from 
Control Data's UNIX1 Virtual Environment (VXlVE) operating system. See the C for 
NOSIVE Usage manual for information about the CIVE Math Library. 

Audience 

To use the information in this manual, you should be familiar with the programming 
language from which you plan to call Math Library functions and with the NOSIVE® 
or VXlVE® operating system. In addition, you should have a basic knowledge of 
exponentiation, logarithms, trigonometry, and other functional areas depending upon 
how you plan to use the Math Library. 

1. UNIX is a registered trademark of AT&T. 
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Manual Organization 
This manual is organized into the following chapters: 

• Chapter 1 - Introduction 

Introduces the Math Library and its mathematical and exponential functions. 
Defines the Math Library and its uses. Discusses strengths and limitations. 
Categorizes the functions. Explains entry points. 

• Chapter 2 - Number Types 

Describes the number types used by the Math Library: integer, single precision 
floating-point, double precision floating-point, and complex. 

• Chapter 3 - Calling Routines 

Describes the call-by-reference and call-by-value calling routines. 

• Chapter 4 - Calls From Languages 

Provides examples of how these functions can be accessed by Ada, Assembler, C, 
and CYBIL programs. Also discusses other languages such as FORTRAN Version 1, 
FORTRAN Version 2, Pascal, APL, BASIC, COBOL, LISP, and Prolog. 

• Chapter 5 - Error Handling 

Describes error handling for scalar processing including errors caused by bad input 
and inaccuracy caused by computer approximations. Contrasts call-by-reference and 
call-by-value error handling. 

• Chapter 6 - Scalar Classification Tables 

Provides classification tables for easy identification of types of arguments, type of 
results, input domains, output ranges, and other detailed information. 

e Chapter 7 - Vector Processing 

Describes vector processing and how it is used including hardware selection and 
error handling. Provides tables that summarize specific vector processing features. 

• Chapter 8 - Function Descriptions 

Presents the functions in alphabetical order with specific information about the 
purpose of each function, the handling of the calling routines, and applicable 
algorithmic or error handling information. Short examples are provided to illustrate 
the required number of arguments and number types. 

o Chapter 9 - Auxiliary Routines 

Presents detailed information on auxiliary routines that are called only by other 
math functions (for example, most of the computation for DTANH is performed in 
function DEULER). 
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Additional information is available in the following appendixes: 

Appendix A - Glossary 

Defines commonly-used terms and phrases. 

Appendix B - Related Manuals 

Lists manuals related to the Math Library including NOSNE manuals and 
applicable language manuals. 

Appendix C - ASCII Character Set 

Provides the standard ASCII character set. Additional character sets are available 
in the applicable language manuals. 

Appendix D - Bibliography 

Lists mathematical reference works that were used as sources for algorithms or 
provide related background information. 
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Typographical Conventions 

This manual uses the following typographical conventions: 

In formulas, a horizontal ellipsis indicates that the preceding item can be 
repeated as necessary. 

* In formulas, an asterisk indicates multiplication. 

** In formulas, two successive asterisks indicate exponentiation. 

I I In formulas, vertical bars indicate the absolute value of the quantity. 

( ) In intervals, parentheses indicate an open interval (the end points are not 
included). 

[ ] In intervals, brackets indicate a closed interval (the end points are included). 

( ] In intervals, closure by a left parenthesis and a right bracket includes the 
right end point, but not the left end point. 

[ ) In intervals, closure by a left bracket and a right parenthesis includes the 
left end point, but not the right end point. 

italic U sed for special emphasis (for example, to highlight C data types and C 
type statement names). 

Mathematical Conventions 

This manual uses the following mathematical conventions: 

• All numbers used in this manual are decimal unless otherwise indicated. Other 
number systems are indicated by a notation after the number (for example, FA34 
hexadecimal) . 

• All references to logarithm (log) are base e unless otherwise indicated. 

• All references to infinite values include positive and negative infinity unless 
otherwise indicated. 

For rules about standard and nonstandard floating-point numbers, see Floating-Point 
Computation Rules in chapter 2, Number Types. 
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Submitting Comments 

The last page of this manual is a comment sheet. Please use it to give us your opinion 
of the manual's usability, to suggest specific improvements, and to report technical or 
typographical errors. If the comment sheet has already been used, you can mail your 
comments to: 

Control Data Corporation 
Technical Publications 
P. O. Box 3492 
Sunnyvale, California 94088-3492 

Please indicate whether· you would like a written response. 

Also, if you have access to SOLVER, an online facility for reporting problems, you can 
use it to submit comments about the manual. For example, use FN8 as the product 
identifier for problems that are related to FORTRAN Version 1 and FV8 as the 
product identifier for problems related to FORTRAN Version 2. 

In Case You Need Assistance 

Control Data's CYBER Software Support maintains a hotline to assist you if you have 
trouble using our products. If you need help beyond that provided in the documentation 
or find that the Math Library for NOSIVE does not perform as described, call us at 
one of the following numbers and a support analyst will work with you. 

From the USA and Canada: (800) 345-9903 

From other countries: (612) 851-4131 

The preceding numbers are for help on product usage. Address questions about the 
physical packaging and/or distribution of printed manuals to Literature and Distribution 
Services at the following address: 

Control Data CorPoration 
Literature and Distribution Services 
308 North Dale Street 
St. Paul, Minnesota 55103 

or you can call (612) 292-2101. If you are a Control Data employee, call 
CONTROLNET@ 243-2100 or (612) 292-2100. 
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Introduction 1 

This manual describes the mathematical functions available in Control Data's Common 
Modules Mathematical Library (CMML). CMML, referred to as the Math Library in 
this manual, contains a wide assortment of mathematical functions. 

These functions can be accessed by programs written in Ada, APL, Assembler, BASIC, 
C, CYBIL, FORTRAN Version 1, FORTRAN Version 2, LISP, Pascal, and Prolog. See 
chapter 4, Calls From Languages, for detailed information and examples of how to call 
Math Library functions from various languages. 
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Introduction 

Figure 1-1 shows the relationship of the Math Library to the NOSNE operating 
system. The NOSNE Math Library environment, in addition to the compilers listed 
above, includes the System Command Language (SCL), the NOSNE block-structured 
interpreter, LIB99, a library of subroutines and functions that can be called from 
FORTRAN (or Ada through FORTRAN), and the Debug utility. 

Math 
Library 

1-2 Math Library 

System 
Command 
Language 

Compiler 

Executable 
Object Program 

System 
Command 
Language 

LlB99 Debug 
Utility 

Figure 1-1. NOS/VE Math Library Environment 

Printed 
Output 
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Functions Available 

Functions Available 
The Math Library provides approximately 100 math functions. In order to provide an 
overview, the NOSNE Math Library functions are categorized in this manual as 
follows: 

• Exponential 

• Logarithmic 

• Trigonometric 

• Hyperbolic 

• Conversion and maximum/minimum 

• Bit manipulation 

• Random number 

• Error 

The above categories are not precisely defined (for example, exponentiation is used in 
many of the trigonometric algorithms), but these categories are provided so you can 
more easily understand the contents of the Math Library. 

See chapter 6, Scalar Classification Tables, for tables that categorize the available 
functions according to the above list. See chapter 8, Function Descriptions, for an 
alphabetical presentation of each function including a description, a discussion of the 
calling routines, algorithmic and error analysis information, and the effects of 
argument error, if applicable. 

Additional FORTRAN for NOSNE LIB99 functions can be called from FORTRAN 
Version 1 or FORTRAN Version 2. These functions in turn can be accessed by any 
language that can interface with FORTRAN (for example, Ada and CYBIL can make 
calls to FORTRAN). LIB99 can perform the following tasks: 

• Perform basic vector arithmetic 

• Perform basic matrix algebra 

• Solve linear systems of equations 

• Compute Fast Fourier Transforms 

• Sort lists 

• Compute eigenvalues and eigenvectors 
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Functions Available 

Exponential Functions 

The exponential functions are as follows: 

Function 

CEXP 
CSQRT 

DEXP 
DSQRT 
DTOD 

DTOI 
DTOX 
DTOZ 

EXP 

ITOD 
ITO I 
ITOX 
ITOZ 

SQRT 

XTOD 
XTOI 
XTOX 
XTOZ 

ZTOD 
ZTOI 
ZTOX 
ZTOZ 

Description 

Complex exponential (base e) 
Complex square root 

Double precision exponential (base e) 
Double precision square root 
Exponentiation with double precision base and double precision 
exponent 
Exponentiation with double precision base and integer exponent 
Exponentiation with double precision base and real exponent 
Exponentiation with double precision base and complex exponent 

Exponential (base e) 

Exponentiation with integer base and double precision exponent. 
Exponentiation with integer base and integer exponent 
Exponentiation with integer base and real exponent 
Exponentiation with integer base and complex exponent 

Square root 

Exponentiation with real base and double precision exponent 
Exponentiation with real base and integer exponent 
Exponentiation with real base and real exponent 
Exponentiation with real base and complex exponent 

Exponentiation with complex base and double precision exponent 
Exponentiation with complex base and integer exponent 
Exponentiation with complex base and real exponent 
Exponentiation with complex base and complex exponent 

Chapters 6 and 8 provide detailed information about each of these functions. Chapter 6 
provides two tables with exponentiation information including the number types of the 
results of the exponentiation functions. 

Logarithmic Functions 

The logarithmic functions are as follows: 

Function 

ALOG 
ALOGI0 

CLOG 

DLOG 
DLOGI0 

Description 

Natural logarithm (base e) 
Common logarithm (base 10) 

Complex natural logarithm (base e) 

Double precision natural logarithm (base e) 
Double precision common logarithm (base 10) 

Chapters 6 and 8 provide detailed information about each of these functions. 
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Functions Available 

Trigonometric Functions 

The trigonometric functions return values in radians except for COSD, SIND, and 
TAND which return values in degrees. The trigonometric functions are as follows: 

Function 

ACOS 
ASIN 
ATAN 
ATAN2 

CCOS 
COS 
COSD 
COTAN 
CSIN 

DACOS 
DASIN 
DATAN 
DATAN2 
DCOS 
DSIN 
DTAN 

SIN 
SIND 

TAN 
TAND 

Description 

Inverse cosine 
Inverse sine 
Inverse tangent 
Inverse tangent of the ratio of two arguments 

Complex cosine 
Cosine 
Cosine in degrees 
Cotangent 
Complex sine 

Double precision inverse cosine 
Double precision inverse sine 
Double precision inverse tangent 
Double precision inverse tangent of the ratio of 2 arguments 
Double precision cosine 
Double precision sine 
Double precision tangent 

Sine 
Sine in degrees 

Tangent 
Tangent in degrees' 

Chapters 6 and 8 provide detailed information about each of these functions. 

Hyperbolic Functions 

The hyperbolic functions are as follows: 

Function 

ATANH 

COSH 

DCOSH 
DSINH 
DTANH 

SINH 

TANH 

Description 

Inverse hyperbolic tangent 

Hyperbolic cosine 

Double precision hyperbolic cosine 
Double precision hyperbolic sine 
Double precision hyperbolic tangent 

Hyperbolic sine 

Hyperbolic tangent 

Chapters 6 and 8 provide detailed information about each of these functions. 
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Functions Available 

Conversion and Maximum/Minimum Functions 

The conversion and maximumlminimum functions are as follows: 

Function 

ABS 
AIMAG 
AINT 
AMOD 
ANINT 

CABS 
CONJG 

Description 

Absolute value 
Imaginary part of a complex argument 
Truncation 
Returns the remainder of a ratio (uses real numbers) 
Nearest whole number 

Complex absolute value 
Conjugate 

Double precision absolute value 
Double precision positive difference 
Positive difference 
Double precision truncation 

DABS 
DDIM 
DIM 
DINT 
DMOD 
DNINT 
DPROD 
DSIGN 

Returns the remainder of a ratio (uses double precision numbers) 
Double precision nearest whole number 

lABS 
IDIM 
IDNINT 
ISIGN 

MOD 

NINT 

SIGN 

Double precision product 
Double precision transfer of sign 

Integer absolute value 
Integer positive difference 
Double precision nearest integer 
Integer transfer of sign 

Returns the remainder of a ratio (uses integers) 

Nearest integer 

Transfer of sign 

Chapters 6 and 8 provide detailed information about each of these functions. 
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Bit Manipulation Functions 

The bit manipulation functions are as follows: 

Function 

EXTB 

INSB 

SUMIS 

NOTE 

Description 

Extract bits 

Insert bits 

Sum of 1 bits in one word 

The number of bits in a CYBER 180 word is always 64. 

Functions Available 

Chapters 6 and 8 provide detailed information about each of these functions. 

Random Number Functions 

The random number functions are as follows: 

Function 

RANF 
RANGET 
RANSET 

Description 

Generates the next random number in a series 
Returns the· current random number seed of a task 
Sets the seed of the random number generator 

Chapters 6 and 8 provide detailed information about each of these functions. 

Error Functions 

The error functions are as follows: 

Function 

ERF 
ERFC 

Description 

Computes the error function 
Computes the complementary error function 

Chapters 6 and 8 provide detailed information about each of these functions. 
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Entry Point ' 

Entry Point 

Depending upon the language you use, you may want to call a Math Library function 
by an entry point other than its function name. (Assembly language calls cannot be 
made to function names.) Math Library functions have two types of entry point: 
call-by-reference and call-by-value. For example, the function ABS can be called by the 
call-by-reference entry point MLP$RABS (or ABS) or by the call-by-value entry point 
MLP$VABS. (See chapter 4, Calls From Languages, for an example.) 

NOTE 

The function name (for example, ABS) is also a call-by-reference entry point. 

Figure 1-2 shows the naming conventions for entry points. 

Call-by-Reference Pattern 

M LP$ i~AB S 

Stand~r~ion 
Prefix f Name 

or 
Reference 

Call-by-Value Pattern 

M LP$ V~ABS 

Stand~Y~ion 
~efix V Name 

for 
Value 

Figure 1-2. Pattern Diagram for Entry Points 
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N urn her Types 

This chapter discusses how the Math Library functions perform computations on the 
following number types: 

• Integer 

• Single precision floating-point (real) 

• Double precision floating-point (long real) 

• Complex 

The following paragraphs describe how these number types are used by the Math 
Library. 

2 
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Integer 

. Integer 

An integer is a one-word, right-justified, two's complement 64-bit representation of all 
integers from -(2**63) through (2**63)-1. See figure 2-1 for an illustration of 8-byte 
integer format. All 8-byte integers up to the absolute value of 9,223,372,036,854,775,807 
are accepted by the Math Library. 

The implementation of type integer varies across languages. The C language, for 
example, has a 32-bit integer (short int) and a 64-bit long integer (int). (For an 
explanation of how to use the left-bit-shift « <) operator to left justify short int, see C 
Calling the Math Library in chapter 4, Calls From Languages.) 

o 

s 

t 
Sign 
bit 

2·2 Math Library 

63 

INTEGER 

64-bit 

Figure 2-1. Bit Diagram of 8-Byte Integer Format 
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Single Precision Floating-Point Numbers 

Single Precision Floating-Point Numbers 
A single precision floating-point number consists of a sign bit, S, which is the sign of 
the fraction, a signed biased exponent (15 bits),. and a fraction (48 bits) which is also 
called a coefficient or a mantissa. Figure 2-2 illustrates the internal representation of 
this format. 

o 1 

S 

t 
Sign 
bit 

EXPONENT 
(15 bits) 

16 63 

FRACTION 
(48 bits) 

64-bit 

Figure 2-2. Bit Diagram of Single Precision Floating-Point Format 

Single precision floating-point numbers consist of two types: standard and nonstandard. 

Single Precision Standard Numbers 

Standard numbers are numbers that have exponents in the range of 3000 hexadecimal 
through 4FFF hexadecimal, inclusive, and have a nonzero fraction or O. Standard 
numbers can be normalized or unnormalized. A normalized standard number has a 1 
(one) in bit position 16 (the most significant bit of the fraction), where bit position zero 
is the leftmost bit. 

The range in magnitude, M, covered by standard, normalized single precision numbers 
is as follows: 

-1* (1 -2** -48) * 2** 4095 <= M <= -2** -4097 
o 
2** - 4097 <= M <= (1 -2** -48)*2**4095 

The above range provides approximately 14.4 decimal digits of precision. 
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Single Precision Floating-Point Numbers 

Single Precision Nonstandard Numbers 

Nonstandard floating-point numbers have the following representations: 

• A nonzero unnormali~ed floating-point number with a zero fraction and a standard 
exponent 

• A floating-point number with an exponent in the range 5000 through 6FFF 
hexadecimal (+ infinite) and DODO through EFFF hexadecimal (-infinite) 

• A floating-point number with an exponent in the range 7000 through 7FFF 
hexadecimal (+ indefinite) and FOOD through FFFF (-indefinite) 

• A nonzero floating-point number with an exponent in the range 0000 through OFFF 
hexadecimal (+ Zl) and 8000 through 8FFF (-Zl) 

• A floating-point number with an exponent in the range 1000 through 2FFF 
hexadecimal (+Z2) and 9000 through AFFF (-Z2) 

The last item includes a sign bit followed by 63 zero bits. Nonstandard numbers are 
not used in computations, but some are returned as default error values as described 
later in this chapter under Default Error Values. 
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Double Precision Floating-Point Numbers 

Double Precision Floating-Point Numbers 

A double· precision floating-point number. consists of two words, each a single precision 
floating-point number. The coefficient of the second word is considered to be an 
extension of the fraction of the first word, yielding a 96-bit fraction. The exponent of 
the second word following an arithmetic operation is identical to that of the first word. 
The number type of the first word determines the type of the second word. 

See figure 2-3 for an illustration of the internal representation of a double precision 
floating-point format. 

o 

S 

t 
Sign 
bit 

16 

EXPONENT 
(15 bits) 

64 79 80 

(not used as 
input but 

provided on output) 

LEFT HALF OF FRACTION 
(48 bits) 

64-bit 

RIGHT HALF OF FRACTION 
(48 bits) 

63 

127 

Figure 2-3. Bit Diagram of Double Precision Floating-Point Format 

The range in magnitude, M, covered by standard, normalized double precision numbers 
is: 

-1* (1 -2** -96) * 2** 4095 <= M <= -2** -4097 
o 
2** - 4097 <= M <= (1 -2** -96)*2**4095 
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Double Precision Floating-Point Numbers 

The above range yields approximately 28.9 decimal digits of precision. See figure 2-4 
for a summary of NOSNE floating-point representation. 

Hexadecimal Exponent Including Coefficient Sign 

Actual Exponent (To The Base 2) 

Input Arguments 

Results 

7XXX ---- Indefinite 7000.0 ----'0 

6FFF 212.287 

t t Overflow Mask = 0 : 5000.0 ~O 
Overflow Mask = 1 : As Shown 

5000 24,096 Infinite 

Coefficient 4FFF 24.095 
Sign Equal t 1 To 0 
(Positive 
Numbers) 4000 20 Standard As Shown 

3FFF 2-1 

• • 3000 2.01,096 

2FFF 2-4,097 

~ • Zero 
Underflow Mask = 0: 0000.0--"0 
Underflow Mask = 1 : As Shown 

1000 2-12.288 

OXXX ----- Zero Not Applicable 
8XXX 

9000 2-12.288 

t t Underflow Mask = 0: 0000.0--"0 
Zero Underflow Mask = 1 : As Shown 

AFFF 2.01,097 

BOOO 2.01,096 
Coefficient t t Sign Equal 
To 1 

BFFF 2-1 Standard As Shown (Negative 
COOO 20 

Numbers) 

~ • CFFF 24,095 

0000 24.096 

~ ~ Infinite 
Overflow Mask = 0 : 0000.0 ~ 0 
Overflow Mask = 1 : As Shown 

EFFF 212,287 

, FXXX --- Indefinite 7000.0 ----'0 

Figure 2-4. Summary of NOS/VE Floating-Point Representation 

2-6 Math Library 60486513 H 



Complex Numbers 

Complex Numbers 

A complex number consists of two words, each a single precision floating-point number. 
The first word represents the real part of the complex number; the second word 
represents the imaginary part. 

A complex number is considered to be indefinite if either the real or imaginary part is 
indefinite. Similarly, a complex number is considered to be infinite if either the real or 
imaginary part is infinite. 

Floating-Point Computation Rules 

Throughout this manual, unless otherwise documented, the following rules apply to 
floating-point computation: 

1. If a standard form of a number type is used in a computation, a standard form of 
the same type results, unless the answer computed exceeds the range of values for 
standard numbers or if a mathematically invalid operation is attempted. 

2. If a nonstandard number other than zero is used in a computation, or if the limits 
to a standard form of a number type are exceeded, error handling occurs, unless 
various nonstandard numbers are within the domain of the function. 

Default Error Values 

The Math Library uses the following default error values: 

• Positive indefinite (+ IND) 

• Negative indefinite (-IND) 

• Zero (0) 

• Positive infinity (+ INF) 

• Negative infinity (-INF) 

Most of the Math Library functions have a default error value of positive indefinite. 
The following functions have a default error value of zero: CCOS, DEXP, ERFC, EXP, 
IDIM, IDNINT, ITOI, MOD, and NINT. 
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Calling Routines 3 

Routines and Calls 

The Math Library functions are predefined functions that can be called from Ada, APL, 
Assembler, BASIC, CYBIL, FORTRAN Version 1, FORTRAN Version 2, LISP, Pascal, 
or Prolog programs according to the attributes of the calling language. Some functions 
are not available to every language; see chapter 4, Calls From Languages, for 
information about specific languages. 

The Math Library provides two types of calling routines: 

• Call-by-reference 

• Call-by-value 

These calling routines are discussed in the following paragraphs. 

NOTE 

This chapter deals with scalar processing only. For a discussion of vectors, see 
chapter 7, Vector Processing. 
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Call-by-Reference 

Call-by-Reference 
A call to a call-by-reference routine consists of the following process: 

1. The user program sets up a parameter list (argument list) in memory. 

2. The call to the instruction causes the first-word address to be stored in register A4 
as the routine is invoked. 

3. The call-by-reference routine is called through one of two entry points (for example, 
ABS or MLP$RABS). Argument error processing is set up in this routine. 

4. If the argument list is valid, the routine calls or branches to the call-by-value 
routine, depending on the function. 

5. The call-by-value routine performs the appropriate computation and returns a result. 

If the argument list is invalid, the call-by-value routine is not executed and an error 
message is returned. See the appropriate language manual (printed or online) for 
information about a compilation message. See the NOSNE Diagnostic Messages manual 
(printed or online) for information about a runtime message. 

Figure 3-1 is a Nassi-Shneiderman chart1 illustrating the logical flow of the 
call-by-reference routine. 

NOTE 

Call-by-reference is synonymous with call-by-address. 

1. Nassi-Shneiderman charts (also called Chapin charts) are read like flow charts: a rectangle indicates a 
process, an inverted isosceles triangle indicates a decision, and a right triangle indicates a branch from a 
decision. 
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Valid 

Entry Point 

Call-by-Value 

Routine 

Algorithm 

Computation 

Result 

Return 

Call-by-Reference 
Argument List 

Stored in Register A4 

ERROR 

Call-by-Reference 

Invalid 

MESSAGE 

Analyze 

Return 

Figure 3-1. Call-by-Reference Logic Diagram (Scalar) 
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Call-by-Value 

Call-by-Value 
A call to a call-by-value routine consists of the following process: 

1. The user program sets up a parameter list (argument list) directly into the X 
registers before the routine is invoked. 

2. The call to the instruction causes the first word of the first argument to be entered 
into register X2; the remaining words of each argument are entered into the 
registers successively. 

For example, the calling procedure for the exponentiation function ITOD 
(exponentiation with integer base and double precision exponent) uses registers X2, 
X3, and X4. Register X2 holds the integer base, and registers X3 and X4 hold the 
double precision exponent. 

The first and second words of a complex argument contain the real and imaginary 
parts, respectively. The first and second words of a double precision argument 
contain the high-order and low-order bits, respectively. 

3. The call-by-value routine performs the appropriate computation, and when valid 
computations occur, returns a result. The result is returned in registers XE and 
XF. 

One-word results (type integer and single precision) are returned in register XF. 
Two-word results (type double precision and complex) are returned in registers XE 
and XF; the second word is stored in register XF. 

If the call-by-value routine is called directly and the arguments are out-of-range, the 
job aborts during the computation and an error message is returned. See the NOSNE 
Diagnostic Messages manual (printed or online) for information about a runtime 
message. 

Figure 3-2 is a N assi-Shneiderman chart2 illustrating the logical flow of the 
call-by-value routine. 

2. Nassi-Shneiderman charts (also called Chapin charts) are read like flow charts: a rectangle indicates a 
process, an inverted isosceles triangle indicates a decision, and a right triangle indicates a branch from a 
decision. 
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Register 
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Figure 3-2. Call-by-Value Logic Diagram (Scalar) 
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Call-by-Reference Versus Call-by-Value Matrix 

Call-by-Reference Versus Call-by-Value Matrix 
Some languages, such as FORTRAN and Pascal, can access the Math Library through 
call-by-reference or call-by-value routines. Other languages can use only one type of 
routine. 

The language matrix provided as table 3-1 outlines the distinction between 
call-by-reference (addresses of arguments are passed) and call-by-value (values of 
arguments are passed) across the supported languages. 

Transparency is defined as the apparent invisibility of the Math Library. APL, BASIC, 
LISP, and Prolog programmers do not need to know that the Math Library exists 
unless they get a range or type error, or need to perform error analysis. 

FORTRAN and Pascal programmers have compile option EXPRESSION_ 
EVALUATION = REFERENCE which selects call-by-reference over call-by-value, but the 
functioning of the Math Library is essentially transparent. Ada, Assembler, C, and 
CYBIL programmers have a few programming options which are discussed in the 
following sections. 

Table 3-1. Language Matrix 

Languages (Providing Interfaces) Call-by-Reference Call-by-Value 

Ada Yes No 

Assembler Yes Yes 

C Yes Yes 

CYBIL Yes Yes 

Languages (With Transparent Access) Call-by-Reference Call-by-Value 

APL No Yes 

BASIC No Yes 

FORTRAN Version 1 Yes Yes 

FORTRAN Version 2 Yes Yes 

LISP Yes No 

Pascal Yes Yes 

Prolog Yes No 

Language (With No Access) Call-by-Reference Call-by-Value 

COBOL No No 
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Inline Versus Out-of-Line Routines 

Inline Versus Out-of-Line Routines 

Several of the NOSIVE compilers such as FORTRAN Version 1, FORTRAN Version 2, 
and Pascal have added some of the Math Library algorithms to their code generators; 
this inline process improves execution time significantly, but may slow down 
compilation slightly. 

The following functions are available to the FORTRAN and Pascal compilers as inline 
routines: 

ACOS 
ALOG 
ALOG10 
ASIN 

ATAN 
COS 
EXP 

SIN 
SQRT 
TAN 

See chapter 4, Calls From Languages, for information about specific languages calling 
the Math Library. 
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Calls From Languages 4 

This chapter provides examples and explanations of how to call the Math Library from 
the supported languages. The Math Library functions can be called from the following 
languages: 

• Ada 

• APL 

• Assembler 

• BASIC 

• C 

• CYBIL 

• FORTRAN Version 1 

• FORTRAN Version· 2 

• LISP 

• Pascal 

• Prolog 

Many of these calls are transparent to the end user, but a working knowledge of the 
calling options could improve program design, performance, or accuracy. 
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Calls From Languages 

APL, BASIC, FORTRAN, LISP, Pascal, and Prolog provide interfaces to the Math 
Library that are transparent to the user. COBOL has no direct access to the Math 
Library. Table 4-1 summarizes how each language calls the Math Library. 

Table 4-1. Language Summary 

Languages 
(Providing Interfaces) Description 

Ada Calls the Math Library through pragma MATH_ 
LIBRARY; also provides an interface to FORTRAN 
Version 1 or 2. Uses call-by-reference. See figure 4-1. 

Assembler Allows call-by-reference and call-by-value. See figure 
4-2. 

C Allows call-by-reference and call-by-value. See figures 
4-3 and 4-4. 

CYBIL Some functions can call with call-by-reference or 
call-by-value. Double precision functions can be called 
with call-by-reference only. See figure 4-5. 

Languages 
(With Transparent Access) Description 

APL No knowledge of the Math Library is necessary. 

BASIC No knowledge of the Math Library is necessary. 

FORTRAN Version 1 Use EXPRESSION_EVALUATION = REFERENCE for 
call-by-reference on the FORTRAN command; otherwise, 
call-by-value is used. See table 4-4 for a summary of 
FORTRAN functions. 

FORTRAN Version 2 Use EXPRESSION_EVALUATION = REFERENCE for 
call-by-reference on the VFORTRAN command; 
otherwise, call-by-value is used. Has array-processing 
intrinsic functions. See table 4-4 for a summary of 
FORTRAN functions. 

LISP No knowledge of the Math Library is necessary. 

Pascal Use the EXPRESSION_EVALUATION=REFERENCE 
parameter for call-by-reference on the PASCAL 
command; otherwise, call-by-value is used. 

Prolog No knowledge of the Math Library is necessary. 

Language 
(With No Access) Description 

COBOL The language cannot return a value from a function. 
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Ada Calling the Math Library 

Ada Calling the Math Library 
Ada supports calls to the Math Library functions. For each Math Library subroutine to 
be called from Ada, the Ada program must provide the following: 

• Ada Subprogram Declaration: 

subprogram_specification :: = 
function identifier (formal_parameter _specifications) 
return type_mark 

• Ada Interface Specification: 

subprogram_body ::= pragma INTERFACE (MATH_LIBRARY, identifier) 

The Ada subprogram declaration provides: 

• The name of the Math Library function in the function identifier field 

• The types of the formal parameters (in formal_parameter _specifications) 

• The subtype of the returned value (the result subtype) in the type_mark field 

The name of the Math Library function must also appear as the identifier in the Ada 
interface specification. The name must be one of the Math Library function names. See 
table 4-1 for a summary of the input and output data types. 

The next section provides an Ada example. 
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Ada Calling the Math Library 

Ada Subprogram Declaration and Interface Specification 

To use the Math Library function RANF (random number generator), enter the 
following Ada subprogram declaration and interface specification: 

function RANF return FLOAT; 
pragma INTERFACE (MATH_LIBRARY, RANF); 

The subprogram declaration tells the following: 

• RANF is the name of the Math Library function. 

• RANF has no formal input parameters (parameters of mode in). 

o The result is of type FLOAT (single precision real number). 

NOTE 

If an incorrect data type is passed to a Math Library function (for example, an 
INTEGER instead of a FLOAT), an incorrect value may be returned. Your program 
should check that the correct data type is passed. 

Figure 4-1 illustrates how to implement the Ada MATH_LIBRARY pragma interface 
(interface specification). Procedure CALL_MATHLIB has a pragma interface to the 
Math Library function SQRT. SQRT has one formal input parameter (parameter of 
mode in), x of type FLOAT. 

with TEXT_IO; use TEXT_IO; 

proced ure CALL_MATHLIB is 

function SQRT(x : in FLOAT) return FLOAT; 
pragma INTERFACE (MATH_LIBRARY, SQRT); 
package FLT_IO is new FLOAT_IO (FLOAT); 
use FLT_IO; 
y : FLOAT; 

begin - CALL_MATHLIB 

PUT_LINE ("Start Ada"); 
y : = SQRT(225.0); 
PUT ("The square root of 225 is: "); 
PUT (y, fore = > 2, aft = > 2, exp = > 0); 
NEW_LINE; 
PUT_LINE ("End Ada"); 

end CALL_MATHLIB; 

Figure 4-1. Ada Program Calling the Math Library 
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Ada Calling the Math Library 

With the Ada MATH_LIBRARY pragma interface, you can access the Math Library 
functions. Table 4-2 summarizes the Ada MATH_LIBRARY functions and their 
input-output data types. The table lists the following for each function: 

• Function name 

• Precision type 

• Description of the function 

• Input type 
• Output type 

• 
Table 4-2. Data Types for Ada MATH_LIBRARY Functions 

Function Precision Description Input Type Output Type 

ACOS Single Inverse circular cosine FLOAT FLOAT 
AINT Single Integer part FLOAT FLOAT 
ALOG Single Natural logarithm FLOAT FLOAT 
ALOGIO Single Common logarithm FLOAT FLOAT 
ANINT Single Nearest integer FLOAT FLOAT 

ASIN Single Inverse circular sine FLOAT FLOAT 
ATAN Single Inverse circular tangent FLOAT FLOAT 
ATANH Single Inverse hyperbolic FLOAT FLOAT 

tangent 
ATAN2 Single Inverse circular tangent FLOAT FLOAT 

of a ratio of two 
arguments 

COS Single Circular cosine FLOAT FLOAT 
COSD Single Circular cosine in FLOAT FLOAT 

degrees 
COSH Single Hyperbolic cosine FLOAT FLOAT 
COTAN Single Circular cotangent FLOAT FLOAT 

DACOS Double Inverse circular cosine LONG_FLOAT LONG_FLOAT 
DASIN Double Inverse circular sine LONG_FLOAT LONG_FLOAT 
DATAN Double Inverse circular tangent LONG_FLOAT LONG_FLOAT 
DATAN2 Double Inverse circular tangent LONG_FLOAT LONG_FLOAT 

of a ratio of two 
arguments 

DCOS Double Circular cosine LONG_FLOAT LONG_FLOAT 

DCOSH Double Hyperbolic cosine LONG_FLOAT LONG_FLOAT 
DDIM Double Positive difference LONG_FLOAT LONG_FLOAT 
DEXP Double Exponentiation function LONG_FLOAT LONG_FLOAT 
DIM Single Positive difference FLOAT FLOAT 
DINT Double Integer part LONG_FLOAT LONG_FLOAT 

DLOG Double Natural logarithm LONG_FLOAT LONG_FLOAT 
DLOGIO Double Common logarithm LONG_FLOAT LONG_FLOAT 
DNINT Double Nearest whole number LONG_FLOAT LONG_FLOAT 
DPROD Double Product LONG_FLOAT LONG_FLOAT 
DSIGN Double Transfer of sign LONG_FLOAT LONG_FLOAT 

DSIN Double Circular sign LONG_FLOAT LONG_FLOAT 
DSINH Double Hyperbolic sine LONG_FLOAT LONG_FLOAT 

(Continued) 
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Ada Calling the Math Library 

Table 4-2. Data Types for Ada MATH_LIBRARY Functions (Continued) 

Function Precision Description Input Type Output Type 

DSQRT Double Square root LONG_FLOAT LONG_FLOAT 
DTAN Double Circular tangent LONG_FLOAT LONG_FLOAT 
DTANH Double Hyperbolic tangent LONG_FLOAT LONG_FLOAT 

ERF Single Error function FLOAT FLOAT 
ERFC Single Error function FLOAT FLOAT 

complement 
EXP Single Exponentiation FLOAT FLOAT 
EXTB Extract bits INTEGER INTEGER 

IDIM Positive difference of INTEGER INTEGER 
two integers 

IDNINT Double Nearest whole number LONG_FLOAT INTEGER 
INSB Insert bits INTEGER INTEGER 
ISIGN Integer transfer of sign INTEGER INTEGER 

NINT Single Nearest whole number FLOAT INTEGER 

RANF Single Random number None FLOAT 
generator 

RAN GET Single Returns random number None FLOAT 
seed 

RAN SET Single Sets random number FLOAT FLOAT 
seed 

SIGN Single Transfer of sign FLOAT FLOAT 
SIN Single Circular sine FLOAT FLOAT 
SIND Single· Circular sine in degrees FLOAT FLOAT 
SINH Single Hyperbolic sine FLOAT FLOAT 
SQRT Single Square root FLOAT FLOAT 

TAN Single Circular tangent FLOAT FLOAT 
TAND Single Circular tangent in FLOAT FLOAT 

degrees 
TANH Single Hyperbolic tangent FLOAT FLOAT 

Ada Uses Call-by-Reference 

The call-by-reference interface is supported by NOSNE Ada for the Math Library. The 
NOSNE Ada compiler appends the call-by-reference prefix (MLP$R) to the abbreviated 
Math Library function name. 

In a call-by-reference computation, a parameter list is formed in memory and the 
first-word-address of this list is stored in register A4 before the routine is invoked. 

Additional Ada Functions 

Ada provides several other language defined functions. For example, exponentiation is 
provided with the exponentiation operator (**). Other functions such as mod (modulus) 
and rem (remainder) are provided as reserved words. See the Ada for NOSNE 
reference or usage manual for additional information. 
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Ada Calling the Math Library 

Calling FORTRAN and the Math Library Froni Ada' 

Ada supports calls .to FORTRAN Version 1 and Version 2 subprograms. For each 
FORTRAN subprogram, the following Ada interface must be provided: 

Formal Grammar: 

subprogram_specification :: = 
procedure identifier (formal_parameter _specifications) 
I function identifier (formal_parameter _specifications) 

return type_mark 

subprogram_ body :: = 
pragma INTERFACE (FORTRAN, identifier) 

Through the pragma INTERFACE (FORTRAN, identifier), an Ada program can call a 
FORTRAN Version 1 or Version 2 intrinsic function or a Math Library function. 

For example, figure 4-1 could be modified to call SQRT through FORTRAN: 

pragma INTERFACE (MATH_LIBRARY, SQRT); 

The Ada FORTRAN interface has the following characteristics: 

• FORTRAN subroutines and functions expect parameters to be passed by reference. 

• The Ada compiler passes scalar parameters by value but array and string 
parameters by reference. 

• When calling a FORTRAN subprogram, the Ada compiler passes, for scalar 
parameters, pointers to a copy of the value; for other types of parameters, the 
compiler passes pointers to the actual values. 

• The NOSNE Ada compiler does not check the modes and types of the Ada actual 
parameters and FORTRAN formal parameters for agreement. 

Since in Ada the length of an array or a string parameter is always known at the 
time of the subprogram call, the Ada compiler can, when passing an address, pass the 
length of a string with a string address and the array descriptor with an array 
address. This allows parameters of type array or string to be declared in FORTRAN as 
either fixed or assumed size. 

Exponentiation Using Ada 

Ada provides the exponentiation operator (**), which is predefined for INTEGER, 
FLOAT, and LONG_FLOAT. Unlike FORTRAN, however, the right operand (the 
exponent) must be an integer for Ada exponentiation. The left operand (the base) can 
be any integer type or floating-point type, but not a fixed-point type. 

Calls to FORTRAN can be made if exponents of different types are required. For a 
summary of the exponentiation functions, see table 6-3 (in chapter 6). 
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Assembler Calling the Math Library 

Assembler Calling the Math Library 

The program illustrated in figure 4-2 calls the Math Library with assembly language. 
This program, identified as MATHEXM, illustrates both the call-by-reference and the 
call-by-value calling routines. 

mathexm ident 

sinr 

sinv 
data 

wseg 
pi 
one 
two 

This program shows both methods of calling the Math Library 
functions, call-by-reference and call-by-value. 

The binding section contains the links to external code and data. 
Its entries are set by the loader and the Object Code Utilities. 

use 
ref 

binding 
mlp$rsin 

address c,mlp$rSin 
ref mlp$vsin 
address c,mlp$vsin 
address p,wseg 

use working 
align 0,8 
float 3.141592654 
float 1.00 
float 2.00 

· select the binding section 
define links to the SIN function 

· set the call-by-reference version 

set the call-by-value version 
the link to the working section 

select working storage 
· ensure start at word boundary 

result 1 bssz 8 
result2 bssz 8 

starting procedure 
use code 
def prog 

prog al ign 0,8 
la a5,a3,data 
addaQ aO,aO,16 
lx xa,a5,pi 
lx xb,a5, two 
cpyxx xC,xa 
divf xc,xb 
sx xc,a1,O 
sa a1,a1,B 
addaQ a4,a1,B 
ente xO,OaSc(16) 
ca llseg sinr,a3,a4 
sx xf ,a5, result 1 
lx x2,a5,one 
ente xO,Oa5c(16) 
callseg sinv,a3,af 
sx xf ,a5,result2 
return 
end prog 

A5 gets address of working section 
· allocate space for the parameter list 

XA is loaded with the value of pi 
XB is loaded with the value of 2.0 
XA is copied to XC 
XC <= pi/2 
store the result in the stack 

· and its address one word later 
set A4 to the address of the parameter list 
save AO-AS, XA-XC on the stack 
call MLP$RSIN 

· XF contains result of SIN(pi/2.0) 
load x2 with the value of 1.0 

· save AO-A5, XA-XC on the stack 
· parameter list not used 
· XF contains result of SIN(1.0) 

Figure 4-2. Assembler Program Calling the Math Library 
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C Calling the Math Library 

C Calling the Math Library 
The C language programmer has access to both the NOSIVE Math Library and the 
CIVE Math Library. See the C for NOSIVE Usage Manual for information on how to 
call the CIVE Math Library. 

The following C program (figure 4-3) calls the NOSIVE Math Library SIND function to 
compute a full sine wave. 

The SIND function uses call-by-reference, which means the function expects an address. 
Since this program is calling the Math Library and not a specific C function, the SIND 
function expects left-justified addresses. This program· uses the left-bit-shift « <) 
operator to left-justify the addresses. 

/* This C program uses the SIND function to compute a full sine wave. 
*/ 

#define MAX_DEGREES 360 

main() 
{ 

int count = 0, 
address_deg; 

float degree, 

/* loop counter 
/* left-justified address of the degree 

/* 0 to 360 degrees 

*/ 
*/ 

*/ 
Sin_of_degree, /* Sine of degree */ 

SIND(); /* declaration of the Math Library function */ 

/* declaration must be capitalized */ 

for (count=1; count <= MAX_DEGREES; ++count) 
{ 

/* Get the address of DEGREE. Then use the left bit-shift operator «<) 
to left justify the address 16 bits. This is necessary because C 

*/ 

} 

uses a 48-bit right-justified pOinter and NOS/VE expects left-justified 
addresses. 

degree = count; 

address_deg = (int) &degree « 16; 

printf("The sine of %3.0f is %f.\n", degree, sin_of_degree); 

} /* end for loop */ 

Figure 4-3. C Program Calling the Math Library Using Call-by-Reference 
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C Calling the Math Library 

Figure 4-4 illustrates how to call the Math Library using call-by-value. The C #define 
statement declares VMOD as a call-by-value routine. The call-by-reference Math 
Library function name is also illustrated. 

NOTE 

A Math Library function call from C must be capitalized. 

f* This C program names VMOD as an alias to the call-by-value entry point 
of MLP$VMOD. 

*f 
Hdefine VMOD MLP$VMOD 
main() 
{ 

i nt 83; 
i nt j 8; 
int k; 

printf (N The size of short int is %d\~", sizeof(short int»; 
printf (N The size of int is %d\n ", sizeof(int»; 
printf (" The size of long int is %d\n ", sizeof(long int»; 

f* Call MOD by reference. 

k = MOD«int)(&i)«16,(int) (&j)«16); 
printf (" The modulus of %d\n is", k); 

f* Call MOD by value. 

} 

k = VMOD (i, j); 
printf (" The Mod of %d\n is", k); 
exit (0); 

Figure 4-4. C Program Calling the Math Library Using Call-by-Value 
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CYBIL Calling the Math Library 
CYBIL can call the Math Library with either a call-by-reference or a call-by-value 
entry point. Double precision functions can only be called with call-by-reference entry 
points. 

NOTE 

CYBIL parameters to Math Library routines must be VAR parameters. 

The following example (figure 4-5) illustrates a call-by-reference hyperbolic sine (SINH) 
function. 

MODULE math_example; 

{ The following "*copyc" can be expanded by the following corrmand: 
{ EXPAND_SOURCE_FILE .. 
{ file ALTERNATE_BASE=$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE 

*COpyc mlp$rsinh 

FUNCTION hyperbolic_sine 
VAR x: real ): real; 

{ Parameters to Math Library routines are VAR parameters 

hyperbolic_sine := mlp$rsinh ( x ); 

FUNCEND hyperbolic_sine; 

MODEND math_example; 

Figure 4-5. CYBIL Program Calling the Math Library Using Call-by-Reference 
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CYBIL Calling the Math Library 

CYBIL programs can call complex numbers only if they are defined as type 
MLT$COMPLEX. Figure 4-6 illustrates how to call a complex function from CYBIL. 

MODULE cmml_complex_example; 
*copyc mlp$rccos 

{ This module shows how to handle complex numbers in CYBIL. 
{ Complex numbers are defined as type MLT$COMPLEX, which is 
{ a two-word record. CYBIL will not accept functions which 
{ return a record. Hence, the complex functions are defined 
{ as returning longreal. To convert a longreal to an mlt$complex, 
{ use the CYBIL intrinsic UUNCHECKED_CONVERSION. This example 
{ calls the complex cosine routine. 

PROCEDURE complex_cosine 
(VAR z_in: mlt$complex; 

VAR z_out: mlt$complex); 

VAR 
d: longrea 1 ; 

d := mlp$rccos (z_in); 
UUNCHECKED_CONVERSION (d, z_out); 

PROCEND complex_cosine; 

PROGRAM example; 

{ A FORTRAN program to print a complex value using FORTRAN I/O 

PROCEDURE [XREF] complex_print 
(VAR value: mlt$complex); 

VAR 
z, 
result: mlt$complex; 

z.real_ := 3.4; 
z. imag := -2.1; 
complex_cosine (z, result); 
complex_print (result); 

PROCEND example; 
MODEND cmml_complex_example; 

Figure 4·6. CYBIL Program Calling Complex Function CCOS Using 
MLT$COMPLEX 
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CYBIL Calling the Math Library 

Figure 4-7 illustrates the FORTRAN program COMPLEX_PRINT which prints the 
complex result to the screen. 

C 

SUBROUTINE complex_print (value) 

COMPLEX value 
PRINT *, value 
END 

Figure 4-7. FORTRAN Program COMPLEX_PRINT 

Figure 4-8 illustrates the NOSIVE commands needed to expand the source file and run 
the CYBIL and FORTRAN object code in order to print the CCOS result. 

/expand_source_file $user.cmml_complex_example .. 
.. /alternate_base=$system.psf$external_interface_source 
/cybil compile b=cybil_binary 
/fortran $user.complex_print b=fortran_binary 
/execute_task (cybil_binary fortran_binary) 

Figure 4-8. NOS/VE Commands To Run CYBIL and FORTRAN Object Code 

Figure 4-9 illustrates the output from this program. 

(-4.006714482636,-1.027749704085) 

Figure 4-9. CYBIL CCOS Output 

For Better Performance 

The Afterburner can eliminate call and return instructions and improve execution time. 

The AFTERBURN _ OBJECT_ TEXT command optimizes FORTRAN and CYBIL 
programs by inlining subprograms. Inlining a subprogram places the subprogram 
statements where they are called, thus eliminating call and return instructions. This 
reduces the overhead associated with passing parameters, saving registers, and 
branching to and from the subprogram. See the section Improving Execution Time in 
the NOSIVE Object Code Management manual for additional information. 
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FORTRAN Version 1 Calling the Math Library 

FORTRAN Version I supports calls to the Math Library and provides several 
language-specific intrinsic functions. 

A FORTRAN Version I intrinsic function is a compiler-defined procedure that returns 
a single value. Intrinsic functions are referenced in the same way as user-written 
(external) function subprograms. If, in a particular program unit, a variable, array, or 
statement function is declared with the same name as an intrinsic function, the name 
cannot refer to the intrinsic function within that program unit. If a function 
subprogram is written with the same name as an intrinsic function, use of the name 
references the intrinsic function, unless the name is declared as the name of an 
external function with the EXTERNAL statement. (This is described in chapter 3 of 
the FORTRAN Version I for NOSNE Language Definition manual.) 

Intrinsic functions are typed by default and need not appear in any explicit type 
statement in the program. Explicitly typing a generic intrinsic function name does not 
remove the generic properties of the name. If you attempt to type an intrinsic function 
as something other than its default type, a warning message is displayed and the type 
statement is disregarded. 

A function accepting integer, byte, real, complex, or double precision type arguments 
also accepts boolean arguments. A boolean argument is converted to integer, if integer 
is an allowable argument type, or to real, if real is an allowable argument type; 
otherwise, it is converted to double precision or complex, before computation. An 
IMPLICIT NONE statement does not affect the type of the results of any intrinsic 
functions. 

Inlined Functions 

The following functions are available for inlining by the FORTRAN Version I compiler: 

ACOS 
ALOG 
ALOGIO 
ASIN 
ATAN 
COS 
EXP 
SIN 
SQRT 
TAN 
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FORTRAN Version 1 Uses Call-by-Value or Call-by-Reference 

Most of the FORTRAN Version 1 intrinsic functions are in the Math Library and are 
accessed through the call-by-value routine. FORTRAN Version 1 calls Math Library 
functions with call-by-value unless call-by-reference is explicitly declared. To access an 
intrinsic function through the call-by-reference calling procedure, specify 
EXPRESSION_EVALUATION=REFERENCE (EE=R) on the FORTRAN command. 

If an execution error occurs, the use of call-by-reference causes internal FORTRAN 
routines to generate descriptive error messages. If call-by-reference is not selected, the 
operating system produces error messages which generally provide less information. 

NOTE 

Always use normalized standard floating-point form for real, double precision, and 
complex arguments to intrinsic functions; unnormalized or nonstandard arguments can 
cause undefined results. FORTRAN automatically normalizes all real, double precision, 
and complex constants. Results of all floating-point operations (with standard 
normalized or zero operands) are normalized or zero. However, it is possible to 
generate unnormalized or nonstandard operands by means of boolean expressions, 
equivalencing, or various input operations. 

The FORTRAN Version 1 intrinsic functions are summarized in table 4-3 (FORTRAN 
Version 2, as discussed in the following section, supports the same functions as well as 
a set of array-processing functions.) The functions are listed in alphabetical order by 
generic name or, where no generic name exists, by specific name. An asterisk in the 
Generic Name column indicates that the function is a Control Data extension. For 
specific names, the types of the arguments and results are shown. Boolean arguments 
are not listed in the table, but follow the conversion rules described above. Integer 
denotes 8-byte integer. Real denotes 8-byte real. Double· precision denotes I6-byte real. 
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Table 4-3. FORTRAN Intrinsic Functions 

Generic Specific Type of Type of 
Name Names Argument Function Description 

ABS lABS Integer (2-byte) Integer Absolute value 
Integer (4-byte) Integer 
Integer Integer 
Byte Integer 

ABS Real Real 
DABS Double Double 
CABS Complex Real 

ACOS ACOS Real Real Arccosine 
DACOS Double Double 

None AIMAG Complex Real Imaginary part of complex 
argument 

AINT AINT Real Real Truncation 
DINT Double Double 

None AMAXO Integer Real Maximum value 

None AMINO Integer Real Minimum value 

None AND Any type but Boolean Boolean product 
character 

ANINT ANINT Real Real Nearest whole number 
DNINT Double Double 

ASIN ASIN Real Real Arcsine 
DASIN Double Double 

ATAN ATAN Real Real Arctangent 
DATAN Double Double 

ATAN2 ATAN2 Real Real Arctangent (two arguments) 
DATAN2 Double Double 

None* ATANH Real Real Hyperbolic arctangent 

BOOL* Any type but Boolean Conversion to boolean 
logical 

None CHAR Integer (2-byte) Character Integer conversion to 
Integer (4-byte) Character character 
Integer Character 
Byte Character 

None* COMPL Any type but Boolean Complement 
character 

Integer denotes full word (8-byte) integers. An asterisk indicates a Control Data 
extension. 

(Continued) 
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FORTRAN Version 1 Calling the Math Library 

Table 4-3. FORTRAN Intrinsic Functions (Continued) 

Generic Specific Type of Type of 
Name Names Argument Function Description 

None* COTAN Real Real Cotangent (argument in 
radians) 

CMPLX Integer (2-byte) Complex Conversion to complex 
Integer (4-byte) Complex 
Integer Complex 
Byte Complex 
Real Complex 
Double Complex 
Complex Complex 

COS COS Real Real Cosine, argument 
DCOS Double Double in radians 
CCOS Complex Complex 

None* COSD Real Real Cosine, argument in degrees 

COSH COSH Real Real Hyperbolic cosine 
DCOSH Double Double 

None CONJG Complex Complex Negation of imaginary part 

DBLE Integer (2-byte) Double Conversion to double 
Integer (4-byte) Double precision 
Integer Double 
Byte Double 
Real Double 
Double Double 
Complex Double 

DIM IDIM Integer (2-byte) Integer Positive difference 
Integer (4-byte) Integer 
Integer Integer 
Byte Integer 

DIM Real Real 
DDIM Double Double 

None DPROD Real Double Double precision product 

None* EQV Any type but Boolean Equivalence 
character 

None* ERF Real Real Error function 

None* ERFC Real Real Complementary error 
function. 

Integer denotes full word (8-byte) integers. An asterisk indicates a Control Data 
extension. 

(Continued) 
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Table 4-3. FORTRAN Intrinsic Functions (Continued) 

Generic Specific Type of Type of 
Name Names Argument Function Description 

EXP EXP Real Real Exponential function 
DEXP Double Double 
CEXP Complex Complex 

EXTB None al: Any type but Boolean Extract a string of bits 
character a2,a3: 
Integer 

None ICHAR Character Integer Character conversion to 
integer 

None INDEX Character Integer Index of a substring 

INSB None al,a4: Any type Boolean Insert a string of bits 
but character 
a2,a3: Integer 

INT INT Integer (2-byte) Integer Conversion to integer 
Integer (4-byte) Integer 
Integer Integer 
Byte Integer 

INT Real Integer 
IFIX Real Integer 
IDINT Double Integer 

Complex Integer 

None LEN Character Integer Length of character string 

None LGE Character Logical Lexically greater than or 
equal 

None LGT Character Logical Lexically greater than 

None LLE Character Logical Lexically less than or equal 

None LLT Character Logical Lexically less than 

LOG ALOG Real Real Natural logarithm 
DLOG Double Double 
CLOG Complex Complex 

LOGlO ALOGlO Real Real Common logarithm 
DLOGlO·.:. Double Double 

None* MASK Integer or Boolean Mask 
Boolean 

Integer denotes full word (8-byte) integers. An asterisk indicates a Control Data 
extension. 

(Continued) 
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Table 4-3. FORTRAN Intrinsic Functions (Continued) 

Generic Specific Type of Type of 
Name Names Argument Function Description 

MAX MAXO Integer (2-byte) Integer Largest value 
Integer (4-byte) Integer 
Integer Integer 
Byte Integer 

AMAXI Real Real 
DMAXI Double Double 

None MAXI Real Integer Largest value 

MIN MINO Integer (2-byte) Integer Smallest value 
Integer (4-byte) Integer 
Integer Integer 
Byte Integer 

AMINI Real Real 
DMINI Double Double 

None MINI Real Integer Smallest value 

MOD MOD Integer (2-byte) Integer Remaindering 
Integer (4-byte) Integer 
Integer Integer 
Byte Integer 

AMOD Real Real 
DMOD Double Double 

None* NEQV Any type but Boolean N onequivalence 
character 

NINT NINT Real Integer Nearest integer 
IDNINT Double Integer 

None* OR Any type but Boolean Boolean sum 
character 

PTR* Any type Boolean Parameter address; used only 
when passing parameters to 
C or CYBIL routines 

None* RANF None Real Random number generator 

Integer denotes full word (8-byte) integers. An asterisk indicates a Control Data 
extension. 

(Continued) 
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Table 4-3. FORTRAN Intrinsic Functions (Continued) 

Generic Specific Type of Type of ( 
Name Names Argument Function Description 

REAL FLOAT Integer (2-byte) Real Conversion to real 
Integer (4-byte) Real 
Integer Real 
Byte Real 

REAL Integer Real 
Real Real 
Complex Real 

SNGL Double Real 

None* SHIFT Any type but Boolean Shift 
character for al; 
integer or Boolean 
for a2 

SIGN ISIGN Integer (2-byte) Integer Transfer of sign 
Integer (4-byte) Integer 
Integer Integer 
Byte Integer 

SIGN Real Real 
DSIGN Double Double 

SIN SIN Real Real Sine (argument in radians) 
DSIN Double Double 
CSIN Complex Complex 

None* SIND Real Real Sine (argument in degrees) 

SINH SINH Real Real Hyperbolic sine 
DSINH Double Double 

SQRT SQRT Real Real Square root 
DSQRT Double Double 
CSQRT Complex Complex 

SUMIS Integer Integer Sum of 1 bits that are set 
Real Integer in a word 
Double Integer 
Complex Integer 

TAN TAN Real Real Tangent (argument in 
DTAN Double Double radians) 

None* TAND Real Real Tangent (argument in 
degrees) 

TANH TANH Real Real Hyperbolic tangent 
DTANH Double Double 

None* XOR Any type but Boolean Exclusive OR 
character 

Integer denotes full word (8-byte) integers. An asterisk indicates a Control Data 
extension. 
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FORTRAN Version 1 Calling the Math Library 

Table 6-2 (in chapter 6) shows the domain and range for a subset of the Math Library 
functions. 

For Better Performance 

The Mterburner can eliminate call and return instructions and improve execution time. 

The AFTERBURN_OBJECT_TEXT command optimizes FORTRAN and CYBIL 
programs by inlining subprograms. Inlining a subprogram places the subprogram 
statements where they are called, thus eliminating call and return instructions. This 
reduces the overhead associated with passing parameters, saving registers, and 
branching to and from the subprogram. See Improving Execution Time in the NOSIVE 
Object Code Management manual for additional information. 
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FORTRAN Version 2 Calling the Math Library 
FORTRAN Version 2 supports calls to the Math Library and provides the same 
language-specific intrinsic functions as FORTRAN Version 1. FORTRAN Version 2 also 
provides several array-processing functions in addition to the functions handled by the 
Math Library. FORTRAN Version 2 arguments can be array-valued. 

Inlined Functions 

The following functions are available for inlining by the FORTRAN Version 2 compiler: 

ACOS 
ALOG 
ALOGIO 
ASIN 
ATAN 
COS 
EXP 
SIN 
SQRT 
TAN 

The primary Math Library interface difference between FORTRAN Version 1 and 
FORTRAN Version 2 is that the arguments can be array-valued and the programs can 
be vectorized. Refer to chapter 7, Vector Processing, for a discussion of array-valued 
arguments. 

For Better Performance 

The Mterburner can eliminate call and return instructions and improve execution time. 

The AFTERBURN _ OBJECT_ TEXT command optimizes FORTRAN and CYBIL 
programs by inlining subprograms. Inlining a subprogram places the subprogram 
statements where they are called, thus eliminating call and return instructions. This 
reduces the overhead associated with passing parameters, saving registers, and 
branching to and from the subprogram. See Improving Execution Time in the NOSNE 
Object Code Management manual for additional information. 

4·22 Math Library 60486513 H 



FORTRAN Function Summary 

FORTRAN Function Summary 

Table 4-4 lists the FORTRAN Version 1 and FORTRAN Version 2 intrinsic functions. 
For multiple-argument functions, al indicates argument 1, a2 indicates argument 2, 
and so forth. The generic and specific names are listed in alphabetical order. See the 
FORTRAN Version 1 or FORTRAN Version 2 manual for complete descriptions. 

Table 4-4. FORTRAN Function Summary 

Name 

ABS 
ACOS 
AIMAG 
AI NT 

ALL 

ALLOCATED 

ALOG 
ALOGIO 

AMAXO 
AMAXI 
AMINO 
AMINI 

AMOD 

AND 

ANINT 

ANY 

ASIN 
AT AN 
ATANH 
ATAN2 

BOOL 

CABS 
CCOS 
CEXP 

CHAR 

60486513 H 

Source 

Math Library 
Math Library 
Math Library 
Math Library 

FORTRAN Version 2 

FORTRAN Version 2 

Math Library 
Math Library 

FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 

Math Library 

FORTRAN Versions 1 

Math Library 

FORTRAN Version 2 

Math Library 
Math Library 
Math Library 
Math Library 

and 2 

FORTRAN Versions 1 and 2 

Math Library 
Math Library 
Math Library 

FORTRAN Versions 1 and 2 

Description 

Absolute value 
Arccosine 
Imaginary part of complex argument 
Truncation 

True if every element of aI, along 
the optional dimension specification 
a2, has the logical value true 

Scalar logical value indicating 
whether or not an allocatable array 
is allocated 

Natural logarithm 
Common logarithm (base 10) 

Maximum value 
Largest value 
Minimum value 
Smallest value 

Remainder of a ratio (uses real 
numbers) 

Boolean product 

Nearest whole number 

Logical value true is one or more 
elements of aI, along the optional 
dimension specification a2, has the 
logical value true 

Arcsine 
Arctangent 
Hyperbolic arctangent 
Arctangent (two arguments) 

Conversion to boolean 

Absolute value 
Cosine, argument in radians 
Exponential function 

Integer conversion to character 

(Continued) 
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Table 4-4. FORTRAN Function Summary (Continued) 

Name 

CLOG 

CMPLX 
COMPL 

CONJG 
COS 
COSD 
OSH 
COTAN 

COUNT 

CSIN 
CSQRT 
DABS 
DACOS 

DASIN 
DATAN 
DATAN2 

DBLE 

DCOS 
DCOSH 
DDIM 
DEXP 

DIM 
DINT 
DLOG 
DLOGIO 

DMAXI 
DMINI 

DMOD 

DNINT 

DOTPRODUCT 

DPROD 
DSIGN 
DSIN 
DSINH 
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Source 

Math Library 

FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 

Math Library 
Math Library 
Math Library 
Math Library 
Math Library 

FORTRAN Version 2 

Math Library 
Math Library 
Math Library 
Math Library 

Math Library 
Math Library 
Math Library 

FORTRAN Versions 1 and 2 

Math Library 
Math Library 
Math Library 
Math Library 

Math Library 
Math Library 
Math Library 
Math Library 

FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 

Math Library 

Math Library 

FORTRAN Version 2 

Math Library 
Math Library 
Math Library 
Math Library 

Description 

Natural logarithm 

Conversion to complex 
Complement 

Negation of imaginary part 
Cosine, argument in radians 
Cosine, argument in degrees 
Hyperbolic cosine 
Cotangent (argument in radians) 

N umber of true elements in al along 
the optional dimension specification 
a2 

Sine (argument in radians) 
Square root 
Absolute value 
Arccosine 

Arcsine 
Arctangent 
Arctangent (two arguments) 

Conversion to double precision 

Cosine, argument in radians 
Hyperbolic cosine 
Positive difference 
Exponential function 

Positive difference 
Truncation 
Natural logarithm 
Common logarithm 

Largest value 
Smallest value 

Remainder of a ratio (uses double 
precision numbers) 
Nearest whole number 

Dot product of al and a2 

Double precision product 
Transfer of sign 
Sine (argument in radians) 
Hyperbolic sine 

(Continued) 
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Table 4-4. FORTRAN Function Summary (Continued) 

Name 

DSQRT 
DTAN 
DTANH 

EQV 

FLOAT 

ERF 
ERFC 
EXP 
EXTB 
lABS 

ICHAR 

IDIM 

IDINT 

IDNINT 

IFIX 
INDEX 

INSB 

INT 

ISIGN 

LBOUND 

LEN 
LGE 
LGT 
LLE 

LLT 
LOG 
LOGIO 
MASK 

MATMUL 

MAX 

MAXVAL 
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Source 

Math Library 
Math Library 
Math Library 

FORTRAN Versions 1 and 2 

FORTRAN Versions 1 and 2 

Math Library 
Math Library 
Math Library 
Math Library 
Math Library 

FORTRAN Versions 1 and 2 

Math Library 

FORTRAN Versions 1 and 2 

Math Library 

FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 

Math Library 

FORTRAN Versions 1 and 2 

Math Library 

FORTRAN Version 2 

FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 

FOR,!'RAN Versions 1 and 2 
FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 

FORTRAN Version 2 

FORTRAN V ~rsions 1 and ~. 

FORTRAN Version 2 

Description 

Square root 
Tangent (argument in radians) 
Hyperbolic tangent 

Equi valence 

Conversion to real 

Error function 
Complementary error function 
Exponential function 
Extract a string of bits 
Absolute value 

Character conversion to integer 

Positive difference 

Conversion to integer 

Nearest integer 

Conversion to integer 
Index of a substring 

Insert a string of bits 

Conversion to integer 

Transfer of sign 

Lower bound of dimension a2 of al 

Length of character string 
Lexically greater than or equal 
Lexically greater than 
Lexically less than or equal 

Lexically less than 
Natural logarithm 
Common logarithm 
Boolean result 

Product of arguments al and a2 

Largest value 

Maximum element of al along 
dimension a2 corresponding to true 
elements of a3 

(Continued) 
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Table 4-4. FORTRAN Function Summary (Continued) 

Name 

MAXO 
MAXI 

MERGE 

MIN 

MINVAL 

MINO 
MINI 

MOD 

NEQV 

NINT 

OR 

PACK 

PRODUCT 

PTR 

RANF 

RANK 

REAL 

SEQ 

SHIFT 
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Source 

FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 

FORTRAN Version 2 

FORTRAN Versions 1 and 2 

FORTRAN Version 2 

FORTRAN Versions 1 and 2 
FORTRAN Versions 1 and 2 

Math Library 

FORTRAN Versions 1 and 2 

Math Library 

FORTRAN Versions 1 and 2 

FORTRAN Version 2 

Description 

Largest value 
Largest value 

Result containing the values of al 
corresponding to true elements of a3, 
and the values of a2 corresponding to 
false elements of a3 

Smallest value 

Minimum element of al along 
dimension a2 corresponding to true 
elements of a3 

Smallest value 
Smallest value 

Remainder of a ratio 

N one qui valence 

Nearest integer 

Boolean sum 

One-dimensional array consisting of 
all elements of al corresponding to 
true elements of a2 

FORTRAN Version 2 Product of elements in argument al 
along dimension a2 corresponding to 
.TRUE. elements of a3 

FORTRAN Versions 1 and 2 Parameter address; used only when 
passing parameters to C or CYBIL 
routines 

Math Library Random number generator 

FORTRAN Version 2 Number of dimensions in al 

FORTRAN Versions 1 and 2 Conversion to real 

FORTRAN Version 2 Returns a one-dimensional array 

FORTRAN Versions 1 and 2 Shift 

(Continued) 
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FORTRAN Function Summary 

Table 4·4. FORTRAN Function Summary (Continued) 

Name 

SIGN 
SIN 
SIND 
SINH 

SIZE 

SNGL 

SQRT 

SUM 

SUMIS 
TAN 
TAND 
TANH 

UNBOUND 
UNPACK 

XOR 

60486513 H 

Source 

Math Library 
Math Library 
Math Library 
Math Library 

FORTRAN Version 2 

FORTRAN Versions 1 and 2 

Math Library 

FORTRAN Version 2 

Math Library 
Math Library 
Math Library 
Math Library 

FORTRAN Version 2 
FORTRAN Version 2 

FORTRAN Versions 1 and 2 

Description 

Transfer of sign 
Sine (argument in radians) 
Sine (argument in (degrees) 
Hyperbolic sine 

Size of an array 

Conversion to real 

Square root 

Sum of elements in argument a1 
along dimension a2 corresponding to 
.TRUE. elements in a3 

Sum of 1 bits that are set in a word 
Tangent (argument in radians) 
Tangent (argument in degrees) 
Hyperbolic tangent 

Upper bound of dimension a2 of a1 
Array with the same shape as a3 
and the same type as a1 

Exclusive OR 
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Pascal Calling the Math Library 

Pascal Calling the Math Library 

The Pascal compiler provides a transparent interface to several Math Library functions. 
The language also provides several predefined functions. Pascal makes no distinction 
between Math Library functions and predefined functions. In some cases Pascal uses a 
different name for a function actually provided by the Math Library (for example, the 
Pascal ARCTAN, ARCTAN2, and ARCTANH are different names for the Math Library 
functions ATAN, ATAN2, and ATANH, respectively). 

The following functions are available to the Pascal programmer: 

ABS 
ACOS 
AMOD 
ANINT 
ARCTAN 
ARCTAN2 
ARCTANH 
ASIN 
COS 
COSH 

COTAN 
DIM 
ERF 
ERFC 
EXP 
IDIM 
ISIGN 
LN 
LNIO 
NINT 

POWER 
RANF 
SIGN 
SIN 
SINH 
SQR 
SQRT 
TAN 
TANH 

The Pascal function POWER combines the Math Library functions ITOI, ITOX, XTOI, 
and XTOX. POWER accepts integer or real arguments. 

In NOSNE Pascal, most math functions are called from the Math Library; except ABS 
and SQR are implemented directly by Pascal generated code. All Pascal function calls 
are transparent to the user. 

Inlined Functions 

At the user's option, the Pascal compiler generates inline code structures for the 
following functions: 

ACOS 
LN (ALOG) 
LN (ALOGIO) 
ASIN 
ARCTAN (ATAN) 
COS 
EXP 
SIN 
SQRT 
TAN 

Pascal Calling Routines 

When you call Pascal functions, the compile time of your program is affected by the 
EXPRESSION_EVALUATION parameter on the PASCAL command. If you specify 
EXPRESSION _EVALUATION = REFERENCE, the compiler selects call-by-reference, 
which does more argument checking and may be slower. The default is EXPRESSION_ 
EVALUATION = NONE, where the compiler selects call-by-value, which does less 
argument checking. 
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Pascal Calling the Math Library 

Pascal Math Function Attributes 

Table 4-5 lists the domain and range for applicable Pascal math functions. 

Table 4-5. Mathematical Intrinsic Functions 

Function 

ACOS(a) 

ARCTAN(a) 

ARCTAN2(a1,a2) 

ARCTANH(a) 

ASIN(a) 

COS(a) 

COSH(a) 

COTAN(a) 

ERF(a) 

ERFC(a) 

EXP(a) 

LN(a) 

LN10(a) 

SIN (a) 

SINH(a) 

SQRT(a) 

TAN (a) 

TANH(a) 

60486513 H 

Domain 

/a/~l 

-infini ty ~ a ~ infinity 

a2<0, a1 <0 
a2<0, a1~0 
a2=0, a1 <0 
a2=0, a1>0 
a2>0, a1<0 
a2>0, a1~0 
a2 = 0, a1 = 0 (error) 

/a/~l 

/a/~l 

/a/<2**47 

/a/ < 4095*log(2) 

/a/<2**47 

-infinity ~ a ~ infinity 

-infinity ~ a ~ 25.923 

a < 4095*LOG(2) 

a>O 

a>O 

/a/<2**47 

/a/ < 4095*log(2) 

/a/<2**47 

All valid real quantities 

Range 

o ~ ACOS(a) ~ pi 

-pi/2 ~ ARCTAN (a) ~ pi/2 

-pi < ARCTAN2(a1 ,a2) < -pi/2 
pi/2 ~ ARCTAN2(a1 ,a2) ~ pi 
ARCTAN2(a1 ,a2) = -pi/2 
ARCTAN2(a1 ,a2) = pi/2 
-pi/2 <ARCTAN2(a1,a2) < 0 
o ~ARCTAN2(a1,a2) <pi/2 

All valid real quantities 

-pi/2 ~ASIN(a) ~pi/2 

-1 ~COS(a) ~ 1 

COSH(a)~l 

All valid real quantities 

-1 ~ERF(a) ~ 1 

o ~ ERFC(a) ~ 2 

All valid real quantities 

/LN(a)/ <4095*LN(a) 

/LN10(a)/<4095*LN(2) base 10 

-l~SIN(a)~l 

All valid real quantities 

SQRT(a)~O 

All valid real quantities 

-l~TANH(a)~l 
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Error Handling 

This chapter discusses two different kinds of errors: 

• Processing errors (algorithm error and machine round-off error) 

• Input errors (arguments that are out of range) 

This chapter also discusses accuracy measurement and NOSNE condition handling. 
Understanding how the Math Library handles errors and how the NOS/VE operating 
system handles conditions may improve your ability to use the Math Library as a 
resource. 

NOTE 

This chapter discusses Math Library error handling in general. See chapter 7, Vector 
Processing, for additional information on vector error handling. 

5 
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Processing Error 

Processing Error 

Processing error is defined as the computed value of a function minus the true value. 

A certain amount of processing error occurs during the computation of the Math 
Library functions, and is composed of two parts: 

• Algorithm error 

• Machine round-off error 

Algorithm Error 

Algorithm error is caused by inaccuracies inherent in the mathematical process used to 
compute the result. It includes error in coefficients used in the algorithm. 

A curve representing the algorithm error is usually smooth with discontinuities at 
breaks in the range reduction technique. Error in the coefficients that are involved in 
range reduction can also occur. Usually, a good algorithm which uses good coefficients 
will not have an error greater than one-half in the last bit of the result. 

Machine Round-Off Error 

Machine round-off error is caused by the finite nature of the computer. Because only a 
finite number of bits can be represented in each word of memory, some precision is 
lost. 

Round-off error is difficult to predict or graph. A graph of round-off error is extremely 
discontinuous, but maximum and minimum error over small intervals can be shown. 
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Input Error 

Input Error 

Input error is handled differently by the call-by-reference and call-by-value routines. 
Error handling takes place when the argument or result is outside the range of the 
function. 

If you are accessing the Math Library from a language other than FORTRAN, you can 
establish a condition handler to be used in conjunction with the error handling 
mechanism under the call-by-reference routine. The Math Library automatically 
establishes this condition handler for FORTRAN programs. 

Call-By-Reference Error Handling 

When the argument or result is out-of-range in a call-by-reference routine, an error 
message is displayed and the corresponding default error value is placed in the result 
registers XE and XF. Figure 5-1 is a Nassi-Shneiderman chart1 illustrating the logical 
flow of call-by-reference error handling. 

Call-By-Value Error Handling 

If the call-by-value routine is called directly, that is, if the call-by-reference routine is 
not called, the job aborts if either of the following situations occurs: 

o An out-of-range argument is passed to the call-by-value routine. 

o The result of the computation in a call-by-value routine is out-of-range. 

The call-by-value routine does not guarantee any other type of error handling, and the 
val ues in registers XE and XF are undefined unless otherwise specified. 

1. Nassi-Shneiderman charts (also called Chapin charts) are read like flow charts: a rectangle indicates a 
process, an inverted isosceles triangle indicates a decision, and a right triangle indicates a branch from a 
decision. 

60486513 H Error Handling 5-3 



Input Error 

Call-by-Reference Argument List 

~nRe~ Valid Invalid 

Abnormal status set 

Entry Point in global variable 
MLV$STATUS (of type OST$ST ATUS) 

Call-by-Value Register XE Register XE 

Routine Register XF 

Register A4 
Algorithm 

Pointer to parameter list 

Computation 
Register XD 

Number of parameters (1 or 2) 

Result User Condition Register 

Cleared of all arithmetic errors 

Return Ungated routine 
MLP$ERROR_PROCESSOR is called 

All registers are saved in the save 
area 

MLP$ERROR_PROCESSOR calls 
PMP$CAUSE_CONDITION with user 
condition MATH_LIBRARY _ERROR 

Pointer is set to the previous save 
area (the registers saved by the call-
by-reference routine) 

Normal Abnormal 

Exit PMP$ABORT 

Condition No Condition 
Handler Handler 

Status returned MLV$STATUS 
from PMP$CAUSE_ 
CONDITION 

Return I Return I Return 

Figure 5-1. Logical Flow of Call-by-Reference Error Handling 
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Accuracy Measurements 

Accuracy Measurements 

When performance improvements are made to Math Library functions, the following 
accuracy measurements are calculated: 

• Relative error 

• Root mean square relative error 

The Taylor series of a Math Library function is sometimes used in the calculation of 
relative error and root mean square relative error. For a discussion of Taylor series, 
refer to any calculus text (for example, Calculus and Analytic Geometry by G. B. 
Thomas). The following paragraphs discuss these accuracy measurements. 

Relative Error 

Relative error is the processing error divided by the true value. The magnitude of 
relative error can be analyzed in two ways: 

• Using the relative error formula 

• Examining bit error 

Using the Relative Error Formula 

Relative error can be calculated by using the following formula: 

Relative Error = (Function Value - Exact Value) / Exact Value 

This method is used for single precision algorithms accurate to less than 2E-15, and 
round-off errors less than IDE-15. 

Changing the last bit in a single precision number produces a relative change between 
3.5E-15 for a large mantissa and 7.IE-15 for a small but normalized mantissa. This 
method is used for the error analysis of the Math Library functions. 

Examining Bit Error 

The second method of analyzing relative error is finding out how many bits the routine 
differs from the exact value. This is called bit error. 

To determine how many bits off a routine is, a function is evaluated in double 
precision and rounded to single precision. Then, assuming the exponents are the same, 
the mantissas are subtracted and the integer difference is the bit error. 

Root Mean Square Relative Error 

. Root mean square error is the square root of the average of the squares of the relative 
errors of all the arguments. 
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NOSNE Condition Handler 

NOSNE Condition Handler 
Under call-by-reference, the Math Library generates the special software condition 
MATH_LIBRARY_ERROR. The language under which you are executing ordinarily 
handles the processing of this condition. If no condition handler for MATH_LIBRARY_ 
ERROR has been established, NOSNE handles the processing of this condition. 

You can also write your own condition handler. NOSNE provides two mechanisms for 
specifying the action to be taken when an abnormal condition occurs: 

• Error processing 

• Condition handling 

Error Processing 

Error processing is available when the STATUS parameter is included in a NOSNE 
command and the command terminates with an abnormal status. 

All NOSNE commands have an optional parameter called STATUS. When you specify 
the STATUS parameter, you must supply a previously declared variable of type 
STATUS as its value. This variable is used by the System Command Language (SCL) 
interpreter to hold the completion status of the command. 

If you include the STATUS parameter on a command, the SCL interpreter proceeds to 
the next command even if an abnormal condition is encountered. Most commands do 
not inform you of an error if you include the STATUS parameter, but succeeding 
commands may check the contents of the status variable and alter the flow of 
statements based on abnormal conditions. 

If you do not include a value for the STATUS parameter and an error occurs, the SCL 
interpreter skips succeeding commands in the current input block as described in the 
NOSNE System Usage manual. 

Condition Handling 

When you specify the STATUS parameter on a command, you can alter the command 
stream based on the completion status of the command. You can also provide condition 
handlers to alter the command stream in the event of certain system conditions. 

Condition handling is activated when a condition exists for a command. that does not 
contain a STATUS parameter, or is beyond the scope of STATUS variable error 
processing. When condition handling is activated, your batch or interactive job is 
usually terminated. If you receive a condition handling error, see the NOSNE 
Diagnostic Messages manual for a description of the error and a recommended action. 

The following information defines the interface between the Math Library and the 
operating system, whether or not a condition handler has been established. For detailed 
information on the procedures used in establishing a user-defined condition handler, see 
the NOSNE System Usage manual. 
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NOSIVE Condition Handler 

When an error occurs in a Math Library function under a call-by-reference routine, the 
following events occur: 

1. An appropriate abnormal status is set into global variable MLV$STATUS (of type 
OST$STATUS). 

2. The appropriate default error value is placed in the result register(s) XE and/or XF. 
Register A4 contains the pointer to the parameter list passed to the 
call-by-reference routine. Register XD contains the number of parameters for the 
call-by-reference routine. For example, register XD will contain a 1 for the 
call-by-reference routine MLP$RSIN, and a 2 for MLP$RZTOZ. The User Condition 
Register is cleared of all arithmetic errors. 

3. Ungated routine MLP$ERROR_PROCESSOR is called with all registers saved in 
the save area so that they can be accessed by a condition handler. 

4. MLP$ERROR_PROCESSOR calls the PMP$CAUSE_CONDITION procedure with 
user condition MATH_LIBRARY_ERROR and a pointer to the previous save area 
(the registers saved by the call-by-reference routine) as the condition descriptor. 

5. Upon return from the PMP$CAUSE_CONDITION procedure, MLP$ERROR_ 
PROCESSOR is exited if the returned status is normal. If the return status is not 
normal, the PMP$ABORT procedure is called with one of two conditions: 

• If no established condition handler exists for MATH_LIBRARY_ERROR, then 
status MLV$STATUS is used. 

• If an established condition handler does exist for MATH_LIBRARY_ERROR, 
then the status returned from the PMP$CAUSE_ CONDITION procedure is used. 

6. The call-by-reference routine immediately returns to the calling program if it is 
returned to from MLP$ERROR_PROCESSOR. 

Refer to chapter 7, Vector Processing, for a discussion of vector error handling. 
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Scalar Classification Tables 6 

This chapter provides a series of tables that categorize the Math Library functions 
according to various classifications and provide information such as domains and ranges 
and types of results. 

Table 6-1 gives a summary of the math functions, grouping the functions by related 
generic and specific function names (alphabetized by generic name). COSD, SIND, and 
TAND are grouped with COS, SIN, and TAN, respectively. COSD, SIND, and TAND 
are not related to the generic functions because they return results in degrees. 

The functions in table 6-1 are grouped as follows: 

• Absolute value (ABS, CABS, DABS, lABS) 
• Inverse cosine (ACOS, DACOS) 
• Imaginary part of a complex argument (AIMAG) 
• Truncation (AINT, DINT) 
• Natural logarithm (ALOG, CLOG, DLOG) 
• Common logarithm (ALOGI0, DLOGI0) 
• Remaindering (AMOD, DMOD, MOD) 
• Nearest whole number (ANINT, DNINT) 
• Inverse sine (ASIN, DASIN) 
• Inverse tangent (ATAN, ATAN2, DATAN, DATAN2) 
• Cosine (CCOS, COS, DCOS) 
• Conjugate (CONJG) 
• Cotangent (COTAN) 
• Exponential (CEXP, DEXP, EXP) 
• Hyperbolic cosine (COSH, DCOSH) 
• Sine (CSIN, DSIN, SIN, SIND) 
• Square root (CSQRT, DSQRT, SQRT) 
• Inverse hyperbolic tangent (ATANH) 
• Positive difference (DDIM, DIM, IDIM) 
• Product (DPROD) 
• Transfer of sign (DSIGN, ISIGN, SIGN) 
• Hyperbolic sine (DSINH, SINH) 
• Tangent (DTAN, TAN) 
• Hyperbolic tangent (DTANH, TANH) 
• Error function (ERF) 
• Complementary error function (ERFC) 
• Extract bits (EXTB) 
• Nearest integer (IDNINT, NINT) 
• Insert bits (INSB) 
• Random number generator (RANF) 
• Returns random number seed (RANGET) 
• Sets seed for random number generator (RAN SET) 
• Sum of 1 bits in one word (SUMIS) 

Table 6-2 shows the input domain 1 and output range for all of the math functions, 
except the exponentiation functions. For the exponentiation functions, table 6-3 lists the 
bases, exponents, and results and table 6-4 summarizes the domains and ranges. 

1. Indefinite and infinite are not in the input domain unless specifically stated. This applies to tables 6-2 
and 6-4. 
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Summary of Math Functions 

Summary of Math Functions 

Table 6·1. Mathematical Functions 

Function Type of Number of Type of 
Description Definition Name Argument Arguments Result 

Absolute value Ixl; if x is complex, ABS Real 1 Real 
square root of CABS Complex Real 
{{real x)**2 + DABS Double Double 
(imag x)**2) lABS Integer Integer 

Inverse cosine arccos{x) ACOS Real 1 Real 
DACOS Double Double 

Imaginary Imaginary part of AIMAG Complex 1 Real 
part of a (xr,xi) = xi 
complex 
argument 

Truncation int{x) AINT Real 1 Real 
DINT Double Double 

Natural log e (x) ALOG Real 1 Real 
logarithm CLOG Complex Complex 

DLOG Double Double 

Common log 10 (x) ALOGI0 Real 1 Real 
logarithm DLOGI0 Double Double 

Remain- x - int{xly)*y AMOD Real 1 Real 
dering DMOD Double Double 

MOD Integer Integer 

Nearest whole int{x + 0.5), if x ANINT Real 1. Real 
number ~ 0 

int{x - 0.5), if x DNINT Double Double 
< 0 

Inverse sine arcsin{x) ASIN Real 1 Real 
DASIN Double Double 

(Continued) 
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Summary of Math Functions 

Table 6-1. Mathematical Functions (Continued) 

Function Type of Number of Type of 
Description Dermition Name Argument Arguments Result 

Inverse arctan(x) ATAN Real 1 Real 
tangent DATAN Double Double 

arctan(y/x) ATAN2 Real 2 Real 
DATAN2 Double Double 

Cosine cos(x), where x is CCOS Complex 1 Complex 
in radians COS Real Real 

DCOS Double Double 
cos(x), where x is COSD Real 1 Real 
in degrees 

Conjugate Negation of CONJG Complex 1 Complex 
imaginary part 
(xr,-xi) 

Cotangent cotan(x), where x COTAN Real 1 ' Real 
is in radians 

Exponential e**x CEXP Complex 1 Complex 
DEXP Double Double 
EXP Real Real 

Hyperbolic cosh(x) COSH Real 1 Real 
cosine DCOSH Double Double 

Sine sin(x), where x is CSIN Complex 1 Complex 
in radians DSIN Double Double 

SIN Real Real 
sin(x), where x is SIND Real 1 Real 
in degrees 

Square root x**(1I2) CSQRT Complex 1 Complex 
DSQRT Double Double 
SQRT Real Real 

Inverse arctanh(x) ATANH Real 1 Real 
hyperbolic 
tangent 

(Continued) 
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Summary of Math Functions 

Table 6-1. Mathematical Functions (Continued) 

Function 
Description Deimition Name 

Positive x - y, if x > y DDIM 
difference 0, if x ~ y DIM 

IDIM 

Product x*y DPROD 

Transfer of lxi, if y ~ 0 DSIGN 
sign -lxi, if y < 0 ISIGN 

SIGN 

Hyperbolic sinh(x) DSINH 
sine SINH 

Tangent tan(x), where x is DTAN 
in radians TAN 
tan(x), where x is TAND 
in degrees 

Hyperbolic tanh(x) DTANH 
tangent TANH 

Error function erf(x) ERF 

Complemen- 1 - erf(x) ERFC 
tary error 
function 

Extract bits extb(x, iI, i2); EXTB 
extracts bits from 
x starting with 
position il with 
length of i2 

6-4 Math Library 

Type of 
Argument 

Double 
Real 
Integer 

Real 

Double 
Integer 
Real 

Double 
Real 

Double 
Real 
Real 

Double 
Real 

Real 

Real 

x: 
Boolean 
Complex 
Double 
Integer 
Logical 
Real 
iI: Integer 
i2: Integer 

Number of 
Arguments 

2 

2 

2 

1 

1 

1 

1 

1 

1 

3 

Type of 
Result 

Double 
Real 
Integer 

Double 

Double 
Integer 
Real 

Double 
Real 

Double 
Real 
Real 

Double 
Real 

Real 

Real 

Boolean 

(Continued) 
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Summary of Math Functions 

Table 6-1. Mathematical Functions (Continued) 

Function Type of Number of Type of 
Description Definition Name Argument Arguments Result 

Nearest int(x + 0.5), if x IDNINT Double 1 Integer 
integer ~ 0 

int(x - 0.5), if x NINT Real Integer 
< 0 

Insert bits insb(x, il, i2, y); INSB x,y: 4 Boolean 
inserts bits from x Boolean 
starting with Complex 
position i1 with Double 
length of i2 into Integer 
copy of y Logical 

Real 
il: Integer 
i2: Integer 

Random Random number in RANF None 0 Real 
number range (0,1) 
generator 

Returns Seed is in range RANGET Real 1 Real 
random (0,1) 
number seed 

Sets seed for ranset(x) RANSET Real 1 Real 
random 
number 
generator 

Sum of 1 bits sumls(x) SUM1S Boolean 1 Integer 
in one word Complex 

Double 
Integer 
Real 
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Input Domains and Output Ranges 

Table 6-2. Input Domains and Output Ranges 

Function 

ACOS(x) 
DACOS(x) 

ALOG(x) 
CLOG(xr ,xi) 

DLOG(x) 

ALOGI0(x) 
DLOGI0(x) 

ASIN(x) 
DASIN(x) 

ATAN(x) 
DATAN(x) 

ATAN2(x,y) 

DATAN2(x,y) 

ATANH(x) 

COS(x) 
CCOS(xr ,xi) 

DCOS(x) 

COSD(x) 

COSH(x) 
DCOSH(x) 

6-6 Math Library 

Input Domain 

Ixl ~ 1 
Ixl ~ 1 

x > 0 
(xr, xi) ;;j:. (0,0) 
(xr**2 + xi**2)**112 
in machine range 
x > 0 

x > 0 
x > 0 

Ixl ~ 1 
Ixl ~ 1 

- infini ty ~ x ~ infini ty 
-infinity ~ x ~ infinity 

y < 0, x < 0 
y < 0, x ~ 0 
y = 0, x < 0 
y = 0, x > 0 
y > 0, x < 0 
y > 0, x ~ 0 
y < 0, x < 0 
y < 0, x ~ 0 
y = 0, x < 0 
y = 0, x > 0 
y > 0, x < 0 
y > 0, x ~ 0 

Ixl < 1 

Ixl < 2**47 
Ixrl < 2**47 
Ixil < 4095*log(2) 
Ixl < 2**47 

Ixl < 2**47 

Ixl < 4095*log(2) 
Ixl < 4095*log(2) 

Output Range 

o ~ ACOS(x) ~ pi 
o ~ DACOS(x) ~ pi 

IALOG(x)1 < 4095*log(2) 
-pi < CLOG(xi) ~ pi 

IDLOG (x)1 < 4095*log(2) 

IALOGl0(x)1 < 4095*log(2) base 10 
IDLOGl0(x)1 < 4095*log(2) base 10 

-piJ2 ~ ASIN (x) ~ piJ2 
-piJ2 ~ DASIN(x) ~ piJ2 

-piJ2 ~ AT AN (x) ~ piJ2 
-piJ2 ~ DATAN(x) ~ piJ2 

-pi < ATAN2(x,y) < - piJ2 
piJ2 ~ ATAN2(x,y) ~ pi 
ATAN2(x,y) = -piJ2 
ATAN2(x,y) = piJ2 
-piJ2 < ATAN2(x,y) < 0 
o ~ ATAN2(x,y) < piJ2 
-pi < DATAN2(x,y) < - piJ2 
piJ2 ~ DATAN2(x,y) ~ pi 
DATAN2(x,y) = -piJ2 
DATAN2(x,y) = piJ2 
-piJ2 < DATAN2(x,y) < 0 
o ~ DATAN2(x,y) < piJ2 

The set of valid real quantities. 

-1 ~ COS(x) ~ 1 
-1 ~ CCOS(x) ~ 1 

-1 ~ DCOS(x) ~ 1 

-1 ~ COSD(x) ~ 1 

COSH(x) ~ 1 
DCOSH(x) ~ 1 

(Continued) 
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Input Domains and Output Ranges 

Table 6·2. Input Domains and Output Ranges (Continued) 

Function 

COTAN(x) 

ERF(x) 

ERFC(x) 

EXP(x) 

CEXP(xr ,xi) 

DEXP(x) 

SIN (x) 
CSIN(xr,xi) 

DSIN(x) 

SIND(x) 

SINH(x) 
DSINH(x) 

SQRT(x) 
CSQRT(xr ,xi) 

DSQRT(x) 

TAN (x) 
DTAN(x) 

TAND(x) 

TANH (x) 

60486513 H 

Input Domain 

o < Ixl < 2**47 

-infinity ~ x ~ infinity 

-infinity ~ x ~ infinity 

x < 4095*log(2) and 
x ~ -4097*log(2) 
xr < 4095*log(2) and 
xr > -4097*log(2) 
xi < 2**47 
xi ~ -4097*log(2) 
x < 4095*log(2) & 

x ~ -4097*log(2) 

Ixl < 2**47 
Ixrl < 2**47 
Ixil < 4095*log(2) 
Ixl < 2**47 

Ixl < 2**47 

Ixl < 4095*log(2) 
Ixl < 4095*log(2) 

x ~ 0 
(xr**2 + xi**2)**112 + 
Ixrl in machine range 

x ~ 0 

Ixl < 2**47 
Ixl < 2**47 

Ixl < 2**47 
x cannot be exact odd 
multiple of 90 

-infinity ~ x ~ infinity 

Output Range 

The set of valid real quantities. 

o ~ ERF(x) ~ 1 

o ~ ERFC(x) ~ 2 

o < EXP(x) 

The set of valid complex quantities. 

The set of valid double precision 
quantities. 

-1 ~ SIN (x) ~ .1 

-1 ~ DSIN(x) ~ 1 

-1 ~ SIND(x) ~ 1 

SQRT(x) ~ 0 
Value in right half of plane 
CSQRT(xr) ~ 0) 

The set of valid double precision 
quantities. 

The set of valid real quantities. 
The set of valid double precision 
quantities. 

The set of valid real quantities. 

-1 ~ TANH (x) ~ 1 
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Exponentiation Functions 

Exponentiation Functions 

Table 6-3 illustrates that the result type of an exponentiation function is determined by 
the order of precedence of the two input arguments. The result of exponentiation 
always takes the type of the argument with the higher precedence according to the 
following hierarchy: 

1. Integer (the lowest precedence) 

2. Single precision floating-point 

3. Double precision floating-point 

4. Complex (the highest precedence) 

Table 6-3 lists the bases, exponents, and result types of the exponentiation functions by 
order of precedence. Table 6-4 summarizes the input domains and output ranges of the 
exponentiation functions. 
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Exponentiation Functions 

Table 6-3. Arguments and Results of the Exponentiation Functions 

Name Base Exponent Result Type1 

ITOI Integer Integer Integer 

ITO X Integer Single precision Single precision floating-point 
floating-point 

ITOD Integer Double precision Double precision floating-point 
floating-point 

ITOZ Integer Complex Complex 

XTOI Single Integer Single precision floating-point 
precision 
floating-point 

XTOX Single Single precision Single precision floating-point 
precision floating-point 
floating-point 

XTOD Single Double precision Double precision floating-point 
precision floating-point 
floating-point 

XTOZ Single Complex Complex 
precision 
floating-point 

DTOI Double Integer Double precision floating-point 
precision 
floating-point 

DTOX Double Single precision Double precision floating-point 
precision floating-point 
floating-point 

DTOD Double Double precision Double precision floating-point 
precision floating-point 
floating-point 

DTOZ Double Complex Complex 
precision 
floating-point 

ZTOI Complex Integer Complex 

ZTOX Complex Single precision Complex 
floating-point 

ZTOD Complex Double precision Complex 
floating-point 

ZTOZ Complex Complex Complex 

1. The argument (base or exponent) with the higher precedence always determines the 
number type of the result. 
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Exponentiation Functions 

Table 6-4. Domains and Ranges of the Exponentiation Functions 

Name 

ITOI 

ITOX 

ITOD 

ITOZ 

XTOI 

XTOX 

XTOD 

XTOZ 

DTOI 

DTOX 

DTOD 

DTOZ 

Type of 
Argument 

Integer 
Integer 

Integer 
Real 

Integer 
Double 

Integer 
Complex 

Real 
Integer 

Real 
Real 

Real 
Double 

Real 
Complex 

Double 
Integer 

Double 
Real 

Double 
Double 

Double 
Complex 

6-10 Math Library 

Input Domain 

Ix**yl < 2**63; if x = 0, then y > 0 

x ~ 0; if x = 0, then y > 0 

x ~ 0; if x = 0, then y > 0 

x ~ 0; if x = 0, then yr > 0, yi = 0 

if x = 0, then y > 0 

x ~ 0; if x = 0, then y > 0 

x ~ 0; if x = 0, then y > 0 

if x = 0, then yr >0, yi = 0 

if x 0, then y > 0 

x ~ 0; if x 0, then y > 0 

x ~ 0; if x = 0, then y > 0 

if x = 0, then yr > 0, yi = 0 

Output Range 

The set of valid 
integer 
quantities 

x**y ~ 0 

x**y ~ 0 

x**y ~ 0 

The set of valid 
real quantities 

x**y ~ 0 

x**y ~ 0 

The set of valid 
complex 
quantities 

The set of valid 
double precision 
quantities 

x**y ~ 0 

x**y ~ 0 

The set of valid 
.double precision 
quantities 

(Continued) 
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Exponentiation Functions 

Table 6-4. Domains and Ranges of the Exponentiation Functions (Continued) 

Type of 
Name Argument Input Domain Output Range 

ZTOI Complex if (xr,xi) = (0,0), then y > 0 The set of valid 
Integer complex 

quantities 

ZTOX Complex if (xr,xi) = (0,0) then y > 0 The set of valid 
Real complex 

quantities 

ZTOD Complex if (xr,xi) (0,0) then y > 0 The set of valid 
Double complex 

quantities 

ZTOZ Complex if (xr,xi) = (0,0) then y > 0, yi = 0 The set of valid 
Complex complex 

quantities 
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Vector .Processing 7 

This chapter discusses the vector processing capabilities of the Math Library, including 
both single argument and double argument vector math functions. This chapter also 
discusses vector error handling. 

Vector Functions 

Vector math functions accept vectors as arguments and return vectors as results. A 
vector is a one-dimensional set of numbers. 

While the vector math functions are available and can be referenced on any CYBER 
180 mainframe model, they perform array-processing only on models which include 
vector hardware facilities, currently limited to the CYBER 990/995 Series running 
FORTRAN Version 2. 

If a vector math function is called on a non-vector machine, an unimplemented 
instruction trap (hardware condition) may occur (the vectorization is not implemented). 

The FORTRAN Version 2 compiler guarantees that the length (L) of the vector sent to 
the Math Library will be within the range 0 ~ L ~ 512 words. When the vector 
length is not within this valid range, an error message is displayed. See the section in 
this chapter entitled Vector Error Handling. When the length of the vector argument 
sent to the Math Library vector routine is zero, no operation occurs and the contents of 
the vector are returned without any values changed. 

Vector Function Calling Routines 

Scalar functions (depending upon the calling language) can be called by a 
call-by-reference or a call-by-value calling routine (linkage). Vector routines always use 
the call-by-reference linkage. 

Under call-by-reference, register A4 points to the actual parameter list. Vector routines 
can have four different parameter lists as described in tables 7-1 through 7-4. 

The calling sequence for all vector functions has one entry point defined for each 
function. In all cases, register A4 contains the Process Virtual Address (PVA) to the 
first entry in the parameter list. 

The Math Library provides two types of vector processing functions: 

• Single Argument Vector Math Functions 

• Double Argument Vector Math Functions 

The following sections discuss these types of functions. 
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Vector Functions 

Single Argument Vector Math Functions 

The Math Library provides the following single argument vector processing functions: 

ACOS 
ALOG 
ALOGIO 
ASIN 
ATAN 
ATANH 
CCOS 
CEXP 
CLOG 
COS 
COSD 
COSH 
COTAN 

CSIN 
CSQRT 
DACOS 
DASIN 
DATAN 
DCOS 
DCOSH 
DEXP 
DLOG 
DLOG10 
DSIN 
DSINH 
DSQRT 

DTAN 
DTANH 
ERF 
ERFC 
EXP 
SIN 
SIND 
SINH 
SQRT 
TAN 
TAND 
TANH 

Table 7-1 describes the internal representation of the parameter list for real, double 
precision, and complex single argument vector math functions. Single valued vector 
routines always follow this format. Each word is a decimal value. 

Table 7-1. Parameter List for Single Argument Vector Math Functions 

Word Description of Contents 

Word 1 Pointer to the result array. 

Word 2 Pointer to the source array. 

Word 3 Pointer to the result array descriptor. 

Word 4 Pointer to the source array descriptor. 
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Vector Functions 

Double Argument Vector Math Functions 

The Math Library provides the following double argument vector processing functions: 

ATAN2 
DATAN2 
DTOD 
DTOI 
DTOX 

DTOZ 
ITOZ 
XTOD 
XTOI 
XTOX 

XTOZ 
ZTOD 
ZTOI 
ZTOX 
ZTOZ 

The double argument vector math functions are divided into three categories: 

function_ name(scalar , vector) 

function_ name( vector, scalar) 

function_ name( vector, vector) 

See table 7-2 for a (scalar, vector) parameter list. 

See table 7-3 for a (vector, scalar) parameter list. 

See table 7-4 for a (vector, vector) parameter list. 

where function_name is a double argument function name, such as ATAN2. 

Double Argument Vector Math Functions (Scalar, Vector) 

Table 7-2 provides the internal representation of the parameter list for double 
argument vector math functions where argument 1 is scalar and argument 2 is vector. 
Each word is a decimal value. 

Table 7-2. Parameter List for (Scalar, Vector) Functions 

Word 

Word 1 

Word 2 

Word 3 

Word 4 

Word 5 

Word 6 

60486513 H 

Description of Contents 

Pointer to the result array. 

Pointer to the source scalar (argument 1). 

Pointer to the source array (argument 2). 

Pointer to the result array descriptor. 

o 

Pointer to the source array descriptor (argument 2). 
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Vector Functions 

Double Argument Vector Math Functions (Vector, Scalar) 

Table 7-3 provides the internal representation of the parameter list for double 
argument vector math functions where argument 1 is vector and argument 2 is scalar. 
Each word is a decimal value. 

Table 7-3. Parameter List for (Vector, Scalar) Functions 

Word Description of Contents 

Word 1 Pointer to the result array. 

Word 2 Pointer to the source array (argument 1). 

Word 3 Pointer to the source scalar (argument 2). 

Word 4 Pointer to the result array descriptor. 

Word 5 Pointer to the source array descriptor (argument 1). 

Word 6 o 

Double Argument Vector Math Functions (Vector, Vector) 

Table 7-4 provides the internal representation of the parameter list for double 
argument vector math functions where argument 1 is vector and argument 2 is vector. 
Each word is a decimal value. 

Table 7-4. Parameter List for (Vector, Vector) Functions 

Word Description of Contents 

Word 1 Pointer to the result array. 

Word 2 Pointer to the source array (argument 1). 

Word 3 Pointer to the source array (argument 2). 

Word 4 Pointer to the result array descriptor. 

Word 5 Pointer to the source array descriptor (argument 1). 

Word 6 Pointer to the source array descriptor (argument 2). 
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Vector Functions 

Result Array and Source Array Descriptors 

Table 7-5 provides the internal representation of the result array descriptor and the 
source array descriptor for all vector math functions. 

Table 7-5. Result Array and Source Array Data Locations 

Word 

Word 1 

Word 2 

Word 3 
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Description of Contents 

N umber of elements in vector. 

Distance (or stride) measured in terms of array elements between two 
consecutive elements of the same dimension. Always equal to one for 
the Math Library. 

Lower bound of array. Always zero for the Math Library. 
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Vector Error Handling 

Vector Error Handling 
The vector math functions use call-by-reference error handling. For example, if an 
argument within a set of arguments is illegal or produces an out-of-range value, an 
error message is displayed for that argument. The first a~gument in error is supplied 
in the error message. The default error value (usually an indefinite value indicated by 
+ IN D) is placed in the result location corresponding to the argument in error within 
the set. 

Processing continues and correct results are generated for all arguments which are not 
in error. However, once an argument is found to be in error, further arguments which 
are in error are not detected and results are not guaranteed. 

NOTE 

For all vector routines, only the first illegal or out-of-range-producing argument 
produces an error message. 
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Function Descriptions 

This chapter provides a summary of each Math Library function. The functions are 
organized alphabetically. Each function description includes the following: 

8 

• A description including the entry points for the function and the input domains and 
output ranges for the arguments in each function 

• The call-by~reference routine 

• The call-by-value routine 

• An example call from Ada, C, FORTRAN, or Pascal 

The following additional information is included, if applicable: 

• Conditions that cause an argument to be invalid, resulting in an error 

• The vector routine 

• Formulas used to compute the result 

• Error analysis and the effect of argument error 

Entry points to the call-by-reference and call-by-value routines are places in the 
routines where execution can begin. Some routines can evaluate more than one function 
(for example, one algorithm may calculate a generic function and a specific function). 
Some routines call auxiliary routines (as described in chapter 9, Auxiliary Routines) to 
compute a portion of the function. 

NOTE 

If a category of information is not applicable (for example, Vector Routine, Error 
Analysis, or Effect of Argument Error), it is omitted from the function description. 
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Generic and Specific Names 

Generic and Specific Names 

Some functions have a generic name and one or more specific names. For example, 
ABS is a generic name; CABS, DABS, and lABS are specific names. For these 
functions, either the generic name or one of the specific names can be used. The 
generic name provides more flexibility because it can be used with any of the valid 
data types; except for functions performing type conversion, nearest integer, and 
absolute value with a complex argument, the type of the argument determines the type 
of the result. 

A 2-byte or 4-byte integer or byte value, used as an argument to a function, is 
converted to a full word (8-byte) integer before being used as an argument. The 
conversion does not change the sign of the argument. A function accepting integer, 
real, complex or double precision type arguments also accepts boolean arguments. A 
boolean argument is converted to integer if it is an allowable argument type; 
otherwise, it is converted to real before computation. However, only a specific name 
can be used as an actual argument when passing the function name to a user-defined 
subprogram. Using a specific name requires a specific argument type. 

For example, the generic function LOG computes the natural logarithm of an 
argument. Its argument can be real, double precision, complex or boolean (converted to 
real). The type of the result is the same as the type of the argument. Specific functions 
ALOG, DLOG, and CLOG also compute the natural logarithm. The specific function 
ALOG computes the log of a real or boolean argument and returns the result. The 
specific function DLOG is for double precision (or boolean) arguments and double 
precision results and the specific function CLOG is for complex (or boolean) arguments 
and complex results. 
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ABS 
ABS computes the absolute value of an argument. It accepts a real argument and 
returns a real result. 

ABS 

The call-by-reference entry points are MLP$RABS and ABS, and the call-by-value entry 
point is MLP$VABS. 

The input domain is the collection of all valid real quantities. The output range is 
included in the set of nonnegative real quantities. 

Call-By-Reference Routine 

No errors are generated by ABS. The call-by-reference routine branches to the 
call-by-value routine. 

Call-By-Value Routine 

The argument is returned with its sign bit forced positive. The rightmost 63 bits 
remain the same. 

Example of ABS Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM ABS_EXAMPLE 

EXTERNAL ABS 
REAL r,t 
r=-88.9 
t=ABS(r) 
PRINT * 'Absolute value ' t 
END 

Absolute value = 88.9 
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ACOS 

ACOS 
ACOS computes the inverse cosine function. It accepts a real argument and returns a 
real result. 

The call-by-reference entry points are MLP$RACOS and ACOS, the call-by-value entry 
point is MLP$VACOS, and the vector entry point is MLP$ACOSV. 

The input domain is the collection of all valid real quantities in the interval [-1.0,1.0]. 
The output range is included in the set of nonnegative real quantities less than or 
equal to pi. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than 1.0. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

Formulas used in the computation are: 

arcsin(x) 
arcos(x) 

-arcsin(-x), x < -.5 
pi - arcos(-x), x < -.5 

arcsin(x) x + x··3·s·«w + Z -j)·w + a + mICe - x**2», 
where -.5 < x < .5 

arcos(x) = pi/2 - arcsin(x), -.5 <= X < .5 
arcsin(x) = pi/2 - arcos(x), .5 <= X < 1.0 
arcos(x) = arcos(l-ITER«l - x),n»/2**n, .5 <= X < 1.0 
arcsin( 1) pi/2 
arcos(l) = 0 

where: 

w = (x**2 - c)*z + k 
z (x**2 + r)x**2 + i 

ITER(y,n) = n iterations of y = 4*y - 2*y**2 

The constants used are: 

r = 3.173 170 078 537 13 
e = 1.160 394 629 739 02 
m = 50.319 055 960 798 3 
c = -2.369 588 855 612 88 

8.226 467 970 799 17 
j -35.629 481 597 455 5 
k 37.459 230 925 758 2 
a = 349.319 357 025 144 
s = .746 926 199 335 419*10**-3 
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ACOS 

The approximation of arcsin(-.5,.5) is an economized approximation obtained by varying 
r,e,m, ... ,s. 

The algorithm used is: 

a. If ACOS entry, go to step g. 

b. If Ixl > = .5, go to step h. 

c. n = 0 (Loop counter). 
Q = x 
y x**2 
u = 0, if ASIN entry. 
u.= p1/2, if ACOS entry. 

d. Z = (y + r)*y + 1 
w = (y - c )*Z + k 

p= Q +·S*Q*Y*«w + Z - j)*w + a + mlfe - y» 
p = u - P 

Yl = p/2**n 

e. If ASIN entry, go to step k. 

f. If xis in (-.5,1.0), return. 
XF = 2*u - (yl) 

Return. 

g. If Ixl < .5, go to step ..c. 

h. If x = 1.0 or -1.0, go to step 1. 
If x is invalid, go to step m. 

n = 0 (Loop counter). 
y = 1.0 - lxi, and normalize 

i. h = 4*y - 2*y**2 
n = n + 1.0 

y. 

If 2*y < 2 - sQrt(3) = .267949192431, Y h, and go to step i. 

j. Q 1.0 - h, and normalize Q. 
y Q**2 
u pi/2 
Go to step d. 

k. Yl = u - (Y1) , and normalize Y1. 
Affix sign of x to Yl = XF. 
Return. 

1. XF = pi/2, if x = 1. o. 
XF = -pi/2, if x = -1.0. 
If ASIN entry, return. 
XF = 0, if x = 1.0. 
XF = pi , if x = -1.0. 
Return. 

m. Return. 
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ACOS 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than 1.0. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The maximum absolute value of relative error of the ACOS approximation over (-.5,.5) 
is 1.996*E-15. 

The function ACOS was tested against the Taylor series. Groups of 2,000 arguments 
were chosen randomly from given intervals. Statistics on relative error were observed. 
Table 8-1 shows a summary of these statistics. 

Table 8-1. Relative Error of ACOS 

Root Mean 
Interval From Interval To Maximum Square 

-.1250E+00 .1250E+00 .4916E-14 .3233E-14 
-.1000E+01 -.7500E+00 .5875E-14 .2068E-14 

.7500E+00 .1OOOE+Ol .1987E-13 .7749E-14 
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Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result is given 
approximately by e/(1.0 - x**2)** .5. 

Example of ACOS Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM ACOS_EXAMPLE 

x=0.5 
PRINT * 'Inverse cosine of x is:' 
PRINT * ACOS(x) 
END 

Inverse cosine of x is: 
1.047197551197 

ACOS 
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AIMAG 

AIMAG 

AIMAG returns the imaginary part of an argument. It accepts a complex argument and 
returns a real result. 

The call-by-reference entry points are MLP$RAIMAG and AIMAG, and the call-by-value 
entry point is MLP$VAIMAG. 

The input domain is the collection of all valid complex quantities. The output range is 
included in the set of valid real quantities. 

Call-By-Reference Routine 

No errors are generated by AIMAG. The call-by-reference routine branches to the 
call-by-value routine. 

Call-By-Value Routine 

The imaginary part of the complex argument is returned. The real part of the 
argument is not used. 

Example of AIMAG Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM AIMAG_EXAMPLE 

EXTERNAL AIMAG 
COMPLEX xray 
xray=(3.14159, -1.0) 
PRINT * 'The imaginary part of xray is:' 
PRINT *, AIMAG (xray) 
END 

The imaginary part of xray is: 
-1. 

NOTE 

AIMAG accepts a complex argument and returns a real result. 
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AINT 
AINT returns an integer part of an argument after truncation. It accepts a real 
argument and returns a real result. 

AINT 

The call-by-reference entry points are MLP$RAINT and AINT, and the call-by-value 
entry point is MLP$VAINT. 

The input domain is the collection of all valid real qgantities. The output range is 
included in the set of valid integer quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is branched to, and the result of the computation is returned 
to the calling program. 

Call-By-Value Routine 

The argument is added to a special floating-point zero that forces truncation. The 
result is returned. 

Example of AINT Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM AI NT_EXAMPLE 

EXTERNAL AINT 
x=1234.567890 
PRINT· 'The integer part of x is:' 
PRINT ., AINT(x) 
END 

The integer part of x is: 
1234. 

60486513 H Function Descriptions 8·9 



ALOG 

ALOG 

ALOG computes the natural logarithm function. It accepts a real argument and returns 
a real result. 

The call-by-reference entry points are MLP$RALOG and ALOG, the call-by-value entry 
point is MLP$VALOG, and the vector entry point is MLP$ALOGV. 

The input domain is the collection of all valid, positive real quantities. The output 
range is included in the set of valid real quantities whose absolute value is less than 
4095*log(2). 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is equal to zero. 

It is less than zero. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is branched to, and the result of the computation is returned 
to the calling program. 

Call-By-Value Routine 

If x is valid, let y be a real number in [1, 2) and n an integer such that x = y*2**n. 
Log(x) is evaluated by: 

10g(x) = 10g(y) + n*10g(2) 

To evaluate log(y), the interval [1, 2) is divided into 33 subintervals such that on each 
the abs(t) < 11129 where t = (y - c)/(y + c). To achieve this, the subintervals are 
offset by 1164. The subintervals are: 

[1, 65/64) 
[65/64, 67/64) 

[125/64, 127,64) 
[127/64, 2) 

Log(y) is then computed using the identity: 

10g(y) = log(c) + 10g«1 + t)/(1 - t» 

and the center point c is chosen close to the midpoint of the subinterval containing y, 
except for the first and last subintervals, where the center points are 1 and 2, 
respectively. By selecting these center points, it ensures that abs(t) < 11129. 
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ALOG 

Log «1 + t)/(I - t)) is approximated with a 7th degree minimax polynomial of the 
form: 

2*t + c3*t**3 + c5*t**5 + c7*t**7 

The coefficients are: 

c3 = .6666666666667 
c5 .3999999995486 
c7 = .2857343176917 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is equal to zero. 

It is less than zero. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on 
relative error were observed. Table 8-2 shows a summary of these statistics. 

Table 8-2. Relative Error of ALOG 

Test Interval From Interval To Maximum 

ALOG(x) against .707IE+00 .9375E+00 .I782E-I3 
ALOG(I7x1I6)-
ALOG(17/16) 

ALOG(x*x) against .I600E+02 .2400E+03 .7082E-I4 
2*LOG(x) 

ALOG(x) against Taylor 1-.1526E-04 1+.1526E-04 .1417E-13 
series expansion of 
ALOG(I + y) 

Root Mean 
Square 

.5463E~I4 

.2035E-14 

.5197E-14 
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ALOG 

Total Error 

The final calculation of log(x) is done by adding the following terms in the order below 
to achieve maximum precision: 

10g(x) n*(10g(2) - factor) + 
«(c7*t2 + cS)*t2 + c3)*t2)*t + 

t + 

t + 
(10g(c)/2) + (factor/2)*n + 

(10g(c)/2) + (factor/2)*n 

The values of c and log(c)/2 for each subinterval are stored in· a· table. Factor is the 
nearest floating-point value with 8 bits of precision to log(2). Thus, the single precision 
representation of log(2) - factor is accurate to 56 bits of precision. The sum log(c) + 
factor*n is split into two equal parts to provide extra precision during the accumulation 
of the sum of terms. 

Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result is given 
approximately bye/x. 
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Example of ALOG Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM ALOG_EXAMPLE 

x=100.0 
PRINT * 'The natural logarithm of x is:' 
PRINT * ALOG(x) 
END 

The natural logarithm of x is: 
4.605170185988 
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ALOG10 

ALOGIO 
ALOGIO computes the common logarithm function. It accepts a real argument and 
returns a real result. 

The call-by-reference entry points are MLP$RALOGIO and ALOGlO, the call-by-value 
entry point is MLP$VALOGlO, and the vector entry point is MLP$ALOGIOV. 

The input domain is the collection of all valid, positive real quantities. The output 
range is included in the set of valid real quantities whose absolute value is less than 
4095*log(2) base 10. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is equal to zero. 

It is less than zero. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is branched to, and the result of the computation is returned 
to the calling program. 
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ALOGI0 

Call-By-Value Routine 

If x is valid, let y be a real number in [1, 2) and n an integer such that x = y*2**n. 
Log10(x) is evaluated by: 

10g10(x) = 10g10(y) + n*10g10(2) 

To evaluate log10(y), the interval [1, 2) is divided into 33 subintervals such that on 
each the abs(t) < 11129 where t = (y - c)/(y + c). To achieve this, the subintervals 
are offset by 1164. The subintervals are: 

[1, 65/64) 
[65/64, 67/64) 

[125/64, 127,64) 
[127/64, 2) 

Log10(y) is then computed using the identity: 

10g10(y) = 10g10(c) + 10g10«1 + t)/(1 - t» 

and the center point c is chosen close to the midpoint of the subinterval containing y, 
except for the first and last subintervals, where the center points are 1 and 2, 
respectively. By selecting these center points, it ensures that abs(t) < 11129. 

Log10«1 + t)/(l - t)) is approximated with a 7th degree minimax polynomial of the 
form: 

C1*t + c3*t**3 + c5 + t**5 + c7**t**7 

The coefficients are: 

c1 .8685889638065 
c3 .2895296546022 
c5 .1737177925653 
c7 .1240928374639 
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ALOGI0 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is equal to zero. 

It is less than zero. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The function ALOGIO was tested against ALOGlO(llxllO) - ALOGlO(11ll0). Groups of 
2,000 arguments were chosen randomly from the interval [.3l62E + 00,.9000E + 00]. 
Statistics on relative error were observed: maximum relative error was .30llE-13, root 
mean square relative error was .8l25E-14. 

Total Error 

The final calculation of loglO(x) is done by adding the following terms in the order 
below to achieve maximum precision: 

logl0(x) = n*(logl0(2) - factor) + 
«(c7*t2 + c5)*t2 + c3)*t2 + (cl - l»*t + 
t + 
(logl0(c) + factor*n) 

The values of c and loglO(c) for each subinterval are stored in a table. Factor is the 
nearest floating-point value with 8 bits of precision to loglO(2). Thus, the single 
precision representation of loglO(2) - factor is accurate to 56 bits of precision. The 
leading coefficient of the approximation is split into 1 and (cl - 1) to provide extra 
precision to the minimax polynomial approximation. 
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Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result is given 
approximately bye/x. 

Example of ALOGIO Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM ALOG10_EXAMPLE 

x=100.0 
PRINT * 'The common logarithm of x is:' 
PRINT * ALOG10(x) 
END 

The common logarithm of x is: 
2. 

ALOG10 
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AMon 
AMOD returns the remainder of the ratio of two arguments. It accepts two real 
arguments and returns a real result. 

The call-by-reference entry points are MLP$RAMOD and AMOD, and the call-by-value 
entry point is MLP$VAMOD. 

The input domain is the collection of all valid real pairs (x,y) such that xJy is a valid 
real quantity, and y is not equal to o. The output range is included in the set of valid 
real quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

y is equal to zero. 

xJy is infinite. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is branched to, and the result of the computation is 
returned to the calling program. 

Call-By-Value Routine 

Given the argument pair (x,y) , the formula used for the AMOD computation is: 

x - aint(x/y)*y 

The quotient xJy is added to a special floating-point zero that forces truncation, to get 
n = aint(xJy); then the product of nand y is formed in double precision and subtracted 
from x in double precision. The most significant word of the result is returned. If the 
result is nonzero, it has the sign of x. 
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Example of AMOn Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM AMOD_EXAMPLE 

EXTERNAL AMOD 
x=750.0 
y=140.0 
PRINT * 'The AMOD of x and y is:' 
PRINT * AMOD(x,Y) 
END 

The AMOD of x and y is: 
50. 

Example of AMOn Called From Pascal 

Source Code: 

program AMOD_EXAMPLE (output); 
var x, y~ Z : REAL; 

begin 
x := 750.0; 
y := 140.0; 
z := AMOD (x, y); 

writeln ( , The AMOD of x and y is " Z :1:1); 
end. 

Output: 

The AMOD of x and y is 50.0 
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ANI NT 

ANI NT 

ANINT returns the nearest whole number to an argument. It accepts a real argument 
and returns a real result. 

The call-by-reference entry points are MLP$RANINT and ANINT, and the call-by-value 
entry point is MLP$VANINT. 

The input domain is the collection of all valid real quantities. The output range is 
included in the set of valid integer quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

I t is infinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is branched to, and the result of the computation is returned 
to the calling program. 

Call-By-Value Routine 

If the argument is ~ 0, .5 is added to it, and the result is added to a special 
floating-point zero that forces truncation. If the argument is < 0, -.5 is added to it, 
and the result is added to a special floating-point zero that forces truncation. 
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Example of ANINT Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM ANINT_EXAMPLE 

EXTERNAL ANINT 
x=1234.1234 
y=12.12 
PRINT *, 'The nearest whole number to x is:' 
PRINT * ANINT(x) 
PRINT * 'The nearest whole number to y is:' 
PRINT * ANINT(y) 
END 

The nearest whole number to x is: 
1234. 
The nearest whole number to y is: 
12. 
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ASIN 

ASIN computes the inverse sine function. It accepts a real argument and returns a real 
result. 

The call-by-reference entry points are MLP$RASIN and ASIN, the call-by-value entry 
point is MLP$VASIN, and the vector entry point is MLP$ASINV. 

The input domain is the collection of all valid real quantities in the interval [-1.0,1.0]. 
The output range is included in the set of valid real quantities in the interval 
[-piJ2,piJ2] . 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than 1.0. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

Formulas used in the computation are: 

arcsin(x) = -arcsin(-x), x < -.5 
arcos(x) = pi - arcos(-x), x < -.5 
arcsin(x) = x + x**3*s*«w + z -j)*w + a + miCe - x**2», 

where -.5 < x < .5 
arcos(x) = pi/2 - arcsin(x), -.5 <= X < .5 
arcsin(x) = pi/2 - arcos(x), .5 <= X < 1.0 
arcos(x) = arcos(1-ITER«1 - x),n»/2**n, .5 <= X < 1.0 
arcsi n( 1) 

arcos(1) 
pi/2 

= 0 

where: 

w = (x**2 - c)*z + k 
z = (x**2 + r)x**2 + i 

ITER(Y,n) = n iterations of Y = 4*y - 2*y**2 

The constants used are: 

r = 3.173 170 078 537 13 
e = 1.160 394 629 739 02 
m = 50.319 055 960 798 3 
c = -2.369 588 855 612 88 

8.226 467 970 799 17 
j -35.629 481 597 455 5 
k 37.459 230 925 758 2 
a = 349.319 357 025 144 
s = .746 926 199 335 419*10**-3 
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ASIN 

The approximation of arcsin(-.5,.5) is an economized approximation obtained by varying 
r,e,m, ... ,s. 

The algorithm used is: 

a. If ACOS entry, go to step g. 

b. If Ixl > .5, go to step -

c. n = a (Loop counter). 
Q = x 
y x**2 
u = 0, if ASIN entry. 
u = pi/2, if ACOS entry. 

d. z = (y + r)*y + i 
W = (y - c )*z + k 

h. 

P Q + S*Q*Y*«w + z - j)*w + a + m/(e - y» 
p u - P 

Yl = p/2**n 

e. If ASIN entry, go to step k. 

f. If x is in (-.5,1.0), return. 

g. 

h. 

XF = 2*u - (Y1) 

Return. 

If Ixl < .5, go to step c. 

If x = 1.0 or -1. 0, go to step 
If x is i nva 1 i d, go to step m. 

n a (Loop counter). 

1. 

y = 1.0 - lxi, and normalize 

i. h = 4*y - 2*y**2 
n = n + 1.0 

y. 

If 2*y ~ 2 - sQrt(3) = .267949192431, Y h, and go to step i. 

j. Q 1.0 - h, and normalize Q. 
y Q**2 
u pi/2 
Go to step d. 

k. Yl = u - (y1) , and normalize Y1. 
Affix sign of x to Yl = XF. 
Return. 

1. XF = pi/2, if x = 1.0. 
XF = -pi/2, if x = -1.0. 
If ASIN entry, return. 
XF = 0, if x = 1.0. 
XF = pi, if x = -1.0. 
Return. 

m. Return. 
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ASIN 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than 1.0. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The maximum absolute value of relative error of the ASIN approximation over (-.5,.5) 
is 1.996*E-15. 

The function ASIN was tested against the Taylor series. Groups of 2,000 arguments 
were chosen randomly from given intervals. Statistics on relative error were observed. 
Table 8-3 shows a summary of these statistics. 

Table 8-3. Relative Error of ASIN 

In terval From 

-.1250E+00 
.7500E+00 

Interval To 

.1250E+00 

.1000E+Ol 

Effect of Argument Error 

Maximum 

.7101E-14 

.8378E-14 

Root Mean 
Square 

.2763E-14 

.3462E-14 

If a small error e occurs in the argument x, the error in the result is given 
approximately by e/(1.0 - x**2)** .5. 
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Example of ASIN Called From FORTRAN 

Source Code: 

Output: 

PROGRAM ASIN_EXAMPLE 
x=O.5 
PRINT * 'The inverse sine of x is:' 
PRINT * ASIN(x) 
END 

The inverse sine of x is: 
.5235987755983 
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ATAN 

ATAN computes the inverse tangent function. It accepts a real argument and returns a 
real result. 

The call-by-reference entry points are MLP$RATAN and ATAN, the call-by-value entry 
point is MLP$VATAN, and the vector entry point is MLP$ATANV. 

The input domain is the collection of all valid real quantities. The output range is 
included in the set of valid real quantities in the interval [-piJ2,piJ2]. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if it is indefinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

The argument x is transformed into an argument y in the interval [0,1116] by the 
range reduction formulas: 

arctan(u) -arctan(-u), if u < 0 
arctan(u) pi/4 + (pi/4 - arctan(1/u», if u ~ 1.0 
arctan(u) arctan(k/16) + arctan«u - k/16)/(1.0 + u*k/16», 

if 0 ~ u < 1.0, and k is the greatest integer not 
exceeding 16*u. 

Finally, arctan(y) (for y in [0,1116]) is computed by the polynomial approximation: 

arctan(y) = y + a(1)*y**3 + a(2)*y**5 + a(3)*y**7 + a(4)*y**9 

where: 

a(1) -.333 333 333 333 128 45 
a(2) .199 999 995 801 446 4 
a(3) -.142 854 130 508 745 0 
a(4) .110 228 161612 614 9 

The coefficients of this polynomial are those of the minimax polynomial approximation 
of degree 3 to the function f over (0,114), where f(u**2 = (arctan(u) - u)/u**3.1 

Vector Routine 

The argument is checked upon entry. It is invalid if it is indefinite. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

1. Algorithm and Constants, Copyright 1970 by Krzysztof Frankowski, Computer Information and Control 
Science, University of Minnesota. 
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ATAN 

Error Analysis 

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on 
relative error were observed. Table 8-4 shows a summary of these statistics. 

Table 8-4. Relative Error of ATAN 

Root Mean 
Test Interval From Interval To Maximum Square 

ATAN(x) against -.6250E-01 .6250E-01 .7102E-14 .3647E-14 
truncated Taylor series 

2* ATAN(x) against .2679E+00 .4142E+00 .1355E-13 .4023E-14 
ATAN(2X/(1 - x*x)) .4142E+00 .1000E+01 .1763E-13 .5931E-14 

ATAN(x) against .6250E-01 .2679E+00 .7117E-14 .2605E-14 
ATAN(1I16) + ATAN((x 
- 1116)/(1 + x/16)) 

Effect of Argument Error 

If a small error e occurs in the argument, the error in the result y is given 
approximately by e/(1 +y**2). 

Example of ATAN Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM ATAN_EXAMPLE 

x=0.5 
PRINT * 'The inverse tangent of x is:' 
PRINT * ATAN(x) 
END 

The inverse tangent of x is: 
.4636476090008 
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ATANH 

ATANH computes the inverse hyperbolic tangent function. It accepts a real argument 
and returns a real result. 

The call-by-reference entry points are MLP$RATANH and ATANH, the call-by-value 
entry point is MLP$VATANH, and the vector entry point is MLP$ATANHV. 

The input domain is the collection of all valid real quantities whose absolute value is 
less than 1.0. The output range is included in the set of valid real quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 1.0. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

The argument range can be reduced to the interval [0,1.0] by the identity atanh(-x} = 
-atanh(x). The expression atanh(x) = .5*ln((1.0 + x)/(1.0 - x)) is formed by using the 
definition tanh(x) = (e**x - e**-x)/(e**x + e**-x). 

The argument range of the log can be reduced to the interval [.75,1.5] by using the 
property In(a*b) = In(a) + In(h), and extracting the appropriate multiple of In(2): 

atanh(x) = .5*n*ln(2) + .5*ln(2**-(n)*(1.0 + x)/(1.0 - x» 

The argument range is reduced to the interval [- .2,.2] by writing the argument of log 
in the form (1.0 + y)/(1.0 - y), and substituting atanh(y): 

atanh(x) = .5*n*ln(2) + atanh[2**-n*(1.0 + x) - (1.0 - x) ] 
2**-n*(1.0 + x) + (1.0 - x) 

The value of n such that 2**-n*(1.0 + x)/(1.0 - x) is in the interval [.75,1.5] is the 
same as the value of n such that 2**-n*(1.0 + x)/(.75*(1.0 - x)) is in the interval 
[1.0,2.0]. If .75*(1.0 - x) is written as a*2**m, where a is in interval [1.0,2.0], then 
2**(-n - m)*(1.0 + x)/a must be in interval [1.0,2.0]. If (1.0 + x) ~ a, then -n - m 
= 0 and n = -m. If (1.0 + x) < a, then -n - m = 1.0 and n = 1.0 - m. 

The function atanh(z) in the interval [-.2,.2] is approximated by z + z**3*p/q, where p 
and q are 4th order even polynomials. For atanh(z), the coefficients of p and q were 
derived from the (7th order odd)/(4th order even) minimax (relative error) rational form 
in the interval [- .2,.2]. 
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ATANH 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 1.0. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

For abs(x) < .2, n equals zero, and the expected bound of the error is 4.8E-15. 

For abs(x) ~ .5, the term n*(ln(2)/2) dominates. This term is computed as n*(ln(2)/2 -
.125) - n*.125 - n*.125 because the rounding error in representing In(2)/2 is large; the 
above form makes the rounding error relatively small. Since n*.125 is exact and the 
dominating form, the two additions in (other)n*.125 + n*.125 dominate the error, and 
the expected relative error is 8.3E-15 in this region. 

For .2 ~ abs(x) < .5, n equals one, and the term z = (.5*(1.0 + x) - (1.0 -
x))/(.5*(1.0 + x) + (1.0 - x)) may be relatively large. For abs(x) < 0.25, the 
subtraction 1.0 - x = .5 - x + .5 loses two bits of the original argument. Also, z is 
negative in this range, and some cancellation occurs in the final combination of terms, 
costing about one unit in the last place (ulp). The expected upper bound in the region 
.2 < abs(x) < 0.25 is 19.4E-15. 

A group of 10,000 arguments was chosen randomly from the interval [-1.0,1.0]. The 
maximum relative error of these arguments was found to be .3304E-13. 

Effect of Argument Error 

For small errors in the argument x, the amplification of absolute error is 1.0/(1.0 -
x**2), and that of relative error is xI((1.0 - x**2)*atanh(x)). This increases from 1 at 0 
and becomes arbitrarily large near 1.0. 

Example of ATANH Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM ATANH_EXAMPLE 

x=0.5 
PRINT * 'The inverse hyperbolic tangent of x is:' 
PRINT * ATANH(x) 
END 

The inverse hyperbolic tangent of x is: 
.5493061443341 
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ATAN2 

ATAN2 computes the inverse tangent function of the ratio of two arguments. It accepts 
two real arguments and returns a real result. 

The call-by-reference entry points are MLP$RATAN2 and ATAN2, and the call-by-value 
entry point is MLP$VATAN2. 

The ATAN2 vector math function is divided into three routines having three separate 
entry points defined as follows: 

ATAN2(scalar,vector) = MLP$ATAN2SV 
ATAN2(vector,scalar) = MLP$ATAN2VS 
ATAN2(vector,vector) = MLP$ATAN2VV 

The input domain is the collection of all valid real pairs (x,y) such that both quantities 
are not equal to zero. The output range is included in the set of valid real quantities 
greater than -pi and less than or equal to pi. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x and yare infinite. 

x and yare equal to zero. 

x/y is infinite (positive or negative) and y is not equal to zero. 

x is not equal to zero and y is infinite (positive or negative). 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite 
and y does not equal zero, it is invalid, and a diagnostic message is displayed. If the 
result is valid, it is returned to the calling program. 
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Call-By-Value Routine 

The function ATAN2(y,x) is defined to be the angle, in the interval [-pi,piJ, subtended 
at the origin by the point (x,y) and the first coordinate axis. 

The argument (y,x) is reduced to the first quadrant .by the range reductions: 

-atan2(-y,x), y < 0 atan2(y,x) 
atan2(y,x) pi - atan2(y,-x), x < 0, y > 0 

The argument (y,x) is then reduced to the sector: 

(U,v): u > 0, v < U, and v > 0 

by the range reduction: 

atan2(y,x) = pi/2 - atan2(x,Y), x > 0 or y > 0 
- -

The routine calls ATAN to evaluate atan2(y,x) as arctan(y/x).2 

Vector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x and yare infinite. 

x and yare equal to zero. 

xly is infinite (positive or negative) and y is not equal to zero. 

x is not equal to zero and y is infinite (positive or negative). 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

2. Algorithm and Constants, Copyright 1970 by Krzysztof Frankowski, Computer Information and Control 
Science, University of Minnesota. 
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Error Analysis 

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on 
relative error were observed. Table 8-4 shows a summary of these statistics. 

Effect of Argument Error 

If small errors e(x) and e(y) occur in x and y, respectively, the error in the result is 
given approximately by (y*e(x) - x*e(y))/(x**2 + y**2). 
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Example of ATAN2 Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM ATAN2_EXAMPLE 

x=O.5 
y=O.6 
PRINT * 'The inverse tangent of the ratio of x,y is:' 
PRINT * ATAN2(x,y) 
END 

The inverse tangent of the ratio of x,y is: 
.6947382761967 
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CABS 
CABS computes the absolute value of an argument. It accepts a complex argument and 
returns a real result. 

The call-by-reference entry points are MLP$RCABS and CABS, and the call-by-value 
entry point is MLP$VCABS. 

The input domain is the collection of all valid complex quantities z, where Z = x + 
i*y, and (x**2 + y**2)**.5 is a valid real quantity. The output range is included in the 
set of valid, nonnegative real quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

The real or imaginary part is indefinite. 

The real or imaginary part is infinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
call-by-reference routine. The result is checked. If the result is positive infinite, it is 
invalid, and a diagnostic message is displayed. If the result is valid, it is returned to 
the calling program. 

Call-By-Value Routine 

Let x + i*y be the argument. The algorithm used is: 

a. u = max(lxl,lyl). 
v = min(lxl,lyl). 

b. If u is zero, return zero to the calling program. 

c. r = v/u 
w = 1.0 + r**2 

where t = w**.5 = (1.0 + r**2)**.5 is computed inline using the same 
algorithm as used 1n SQRT. 

d. Return u*t to the calling program. 

Formulas used are: 

Ix + 1*yl = SQrt(x + l*y) 
= max(lxl.lyl)*(1 + r**2)**.5 
= u*t 

where r = min(lxl,\yl)/max(lxl,lyj) 
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Error Analysis 

A group of 10,000 arguments was chosen randomly from the interval of complex 
numbers ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these arguments was 
found to be .1401E-13. 

Effect of Argument Error 

CABS 

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x + i*y, the error in 
the result u is given by e(u) = (x*e(x) + y*e(y))/u. 

Example of CABS Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM CABS_EXAMPLE 

COMPLEX xi 
xi = ( -40.0, -1) 

PRINT * 'The CABS of xi is:' 
PRINT *, CABS(xi) 
END 

The CABS of xi is: 
40.01249804748 

NOTE 

CABS accepts a complex argument and returns a real result. 
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ccos 
CCOS computes the complex cosine function. It accepts a complex argument and 
returns a complex result. 

The call-by-reference entry points are MLP$RCCOS and CCOS, the call-by-value entry 
point is MLP$VCCOS, and the vector entry point is MLP$CCOSV. 

The input domain is the collection of all valid complex quantities z, where z = x + 
i*y; Ixl is less than 2**47 and Iyl is less than 4095*log(2). The output range is included 
in the set of valid complex quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. The argument is invalid if: 

The real or imaginary part is indefinite. 

The real or imaginary part is infinite. 

The absolute value of the real part is greater than or equal to 2**47. 

The imaginary part is greater than or equal to 4095*log(2). 

The imaginary part is less than or equal to -4095*log(2). 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

Let x + i*y be the argument. The formula used for computation is: 

cos(x + i*Y) = cos(x)*cosh(y) - i*sin(x)*sinh(y) 

The routine evaluates COSSIN inline to simultaneously compute the sine and cosine of 
the real part of the argument. The routine evaluates HYPERB inline to simultaneously 
compute the hyperbolic sine and hyperbolic cosine of the imaginary part of the 
argument. See the descriptions of routines COSSIN and HYPERB in chapter 9, 
Auxiliary Routines, for detailed information. 

Vector Routine 

The argument is checked upon entry. The argument is invalid if: 

The real or imaginary part is indefinite. 

The real or imaginary part is infinite. 

The absolute value of the real part is greater than or equal to 2**47. 

The imaginary part is greater than or equal to 4095*log(2). 

The imaginary part is less than or equal to -4095*log(2). 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

8-36 Math Library 60486513 H 



ccos 

Error Analysis 

See the descriptions of HYPERB and COSSIN in chapter 9, Auxiliary Routines, for 
details. If z = x + i*y is the argument, then the modulus of the error in the routine 
does not exceed: 1.276E-13 + 1.241E-13*exp(abs(y». 

A group of 10,000 arguments was chosen randomly from the interval 
([ -1.0,1.0],[ -1.0,1.0]). The maximum relative error of these arguments was found to be 
.7665E-13. 

Effect of Argument Error 

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x + i*y, the error in 
the result is given approximately by -sin(z)*e(z). 

Example of CCOS Called From FORTRAN 

Source Code: 

e 

Output: 

PROGRAM eeOS_EXAMPLE 

COMPLEX xi 
xi = ( -40 . 0, -1) 

PRINT *, 'The complex cosine of xi is:' 
PRINT *,eeOS(xi) 
END 

The complex cosine of Xl 1S: 

(-1.029139207557,-.875657875595) 
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CEXP 
CEXP computes the complex exponential function. It accepts a complex argument and 
returns a complex result. 

The call-by-reference entry points are MLP$RCEXP and CEXP, the call-by-value entry 
point is MLP$VCEXP, and the vector entry point is MLP$CEXPV. 

The input domain is the collection of all valid complex quantities z, where Z = x + 
i*y; x is less than 4095*log(2) and x is greater than -4097*log(2), and Iyl is less than 
2**47. The output range is included in the set of valid complex quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

The real or imaginary part is indefinite. 

The real or imaginary part is infinite. 

The real part is greater than or equal to 4095*log(2) or less than or equal to 
-4097*log(2). 

The absolute value of the imaginary part is greater than or equal to 2**47. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is branched to, and the result of the computation is returned 
to the calling program. 

Call-By-Value Routine 

Let x + i*y be the argument. The formula used for computation is: 

exp(x + i*Y) = exp(x)*cos(y) + i*exp(x)*sin(y) 

The routine evaluates COSSIN inline to compute cos(y) and sin(y), and calls EXP to 
compute exp(x). 

Vector Routine 

The argument is checked upon entry. The argument is invalid if: 

The real or imaginary part is indefinite. 

The real or imaginary part is infinite. 

The real part is greater than or equal to 4095*log(2) or less than or equal to 
-4097*log(2). 

The absolute value of the imaginary part is greater than or equal to 2**47. 

See Vector Error Handling in chapter 7, Vector Processing, for further information . 
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Error Analysis 

See the descriptions of EXP in this chapter and COSSIN in chapter 9, Auxiliary 
Routines, for details. If z = x + i*y is the argument, then the modulus of the error in 
the routine does not exceed: 1.378E-13 + 1.378E-13*exp(abs(x)). If the real part of the 
argument is large, the error in the routine will be significant. 

The function CEXP was tested. A group of 10,000 arguments was chosen randomly 
from given intervals. Statistics on maximum relative error were observed. Table 8-5 
shows a summary of these statistics. 

Table 8-5. Relative Error of CEXP 

Interval 

([ -1.0,1.0],[ -1.0,1.0]) 
([ 1.0,.6700E+ 03],[1.0,.IIE + 15]) 

Effect of Argument Error 

Maximum 

.5462E-13 

.9182E-13 

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x + i*y, the error in 
the result w is given approximately by w*e(z). 

Example of CEXP Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM CEXP_EXAMPLE 

COMPLEX xi 
xi = ( -4 . 0, -1) 

PRINT * 'The CEXP of xi is:' 
PRINT *. CEXP(xi) 
END 

The CEXP of Xl 15: 

(.009895981925031,-.01541207869309) 
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CLOG 
CLOG computes the complex natural logarithm function. It accepts a complex argument 
and returns a complex result. 

The call-by-reference entry points are MLP$RCLOG and CLOG, the call-by-value entry 
point is MLP$VCLOG, and the vector entry point is MLP$CLOGV. 

The input domain is the collection of all valid complex quantities z, where z = x + 
i*y, and (x**2 + y**2)**.5 is a valid, positive real quantity. The output range is 
included in the set of valid complex quantities z, such that the real part of z is a valid 
real quantity, and the imaginary part is greater than -pi and less than or equal to pi. 

Call-By-Reference Routine 

The argument is checked upon entry. The argument is invalid if: 

The real or imaginary part is indefinite. 

The real or imaginary part is infinite. 

Both the real part and the imaginary part are zero. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
call-by-reference routine. The result is checked. If the result is infinite, it is invalid, 
and a diagnostic message is displayed. If the result is valid, it is returned to the 
calling program. 

Call-By-Value Routine 

The formula used for computation is: 

10g(z) = 10g(lzl) + i*arg(z) 

where Izl is the modulus of z. The routine calls CABS to evaluate the absolute value of 
z and calls ALOG to compute the logarithm. Then the routine calls ATAN2 to evaluate 
the function arg(z). When z is nonzero, and in-range, arg(z) is in the interval [-pi,pi]. 

Vector Routine 

The argument is checked upon entry. The argument is invalid if: 

The real or imaginary part is indefinite. 

The real or imaginary part is infinite. 

Both the real part and the imaginary part are zero. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

A group of 10,000 arguments was chosen randomly from the interval 
([ -1.0,1.0],[ -1.0,1.0]). The maximum relative error of these arguments was found to be 
.4346E-12. 
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Effect of Argument Error 

If a small error e(z) = e(x) + i*e(y) occurs in the argument z 
the result is given approximately by e(z)/z. 

Example of CLOG Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM CLOG_EXAMPLE 

COMPLEX xi 
xi = ( -4 . 0, -1) 

PRINT * 'The CLOG of xi is:' 
PRINT *, CLOG(xi) 
END 

The CLOG of Xl lS: 

(1.416606672028,-2.896613990463) 

NOTE 

One of the real or imaginary parts for CLOG must be nonzero. 
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CONJG 
CONJG returns the conjugate of an argument. It accepts a complex argument and 
returns a complex result. 

The call-by-reference entry points are MLP$RCONJG and CONJG, and the 
call-by-value entry point is MLP$VCONJG. 

The input domain is the collection of all valid complex quantities. The output range is 
included in the set of valid complex quantities. 

Call-By-Reference Routine 

No errors are generated by CONJG. The call-by-reference routine branches to the 
call-by-value routine. 

Call-By-Value Routine 

The argument is returned with its imaginary part negated. 
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Example of CONJG Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM CONJG_EXAMPLE 

EXTERNAL CONJG 
COMPLEX xi 
xi=(-40000.0, -1) 
PRINT *, 'The conjugate of xi is:' 
PRINT *, CONJG(xi) 
END 

The conjugate of xi is: 
( -40000. , 1. ) 
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cos 
COS computes the cosine function. It accepts a real argument and returns a real 
result. 

The call-by-reference entry points are MLP$RCOS and COS, the call-by-value entry 
point is MLP$VCOS, and the vector entry point is MLP$COSV. 

The input domain is the collection of all valid real quantities whose absolute value is 
less than 2**47. The output range is included in the set of valid real quantities in the 
interval [-1.0,1.0]. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

If x is valid, then COS(x) or SIN (x) is calculated by using the periodic properties of the 
cosine and sine functions to reduce the task to finding a cosine or sine of an 
equivalent angle y within [-pil4, pil4] as follows: 

If N + K is even 
then 

Z = sin(y) 
else 

Z = cos(y) 
If MOD(N + K, 4) is 0 or 1 (that is, the second last bit of N + K is even) 
then 

S = 0 
else 

S = mask( 1) 

where K is 0, 1, or 2 according to whether the SIN of a positive angle, the COS of 
any angle, or the SIN of a negative angle is to be calculated. N is the nearest integer 
to 2/pi*x, and y is the nearest single precision floating-point number to x - n*pil2. The 
argument x is the absolute value of the angle. The desired SIN or COS is the 
exclusive or of Sand .Z. 

Once the angle has been reduced to the range [-pil4, pil4], the following 
approximations are used to calculate either the cosine or the sine of the angle, 
providing 48 bits of precision. 
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If the cosine of the angle is required, the approximation used is 

cosine(y) = 1 y*y*P(y*y) 

where y is the angle and P(w) is the quintic polynomial: 

P(w) = PO + Pl*w + P2*w**2 + P3 + w**3 + P4*w**4 + P5*w**5 

such that P(y*y) is a minimax polynomial approximation to the function (1 -
cos(y»/y**2. 

The coefficients are: 

P5 -2.070062305624629462E-9 
P4 2.755636997406588778E-7 
P3 -2.480158521206426671E-5 
P2 1.388888888727866775E-3 
Pl -4. 166666666666468116E-2 
PO 5.000000000000000000E-l 

If the sine of the angle is required, the approximation used is 

sine(y) = y - y*y*y*Q(y*y) 

where y is the angle and Q(w) is the quintic polynomial: 

Q(w) = QO + Ql*w + Q2*w**2 + Q3*w**3 + Q4*w**4 + Q5*w**5 

such that Q(y*y) is a minimax polynomial approximation to the function (y -
sin(y»/y**3. 

The coefficients are: 

Q5 -1.591814257033005283E-l0 
Q4 2.505113204973767698E-8 
Q3 -2.755731610365754733E-6 
Q2 1.984126983676100911E-4 
Ql -8.333333333330950363E-3 
QO 1.666666666666666463E-l 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

cos 
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Error Analysis 

The function COS was tested against 4*COS(xl3)**3 - 3*COS(xl3). Groups of 2,000 
arguments were chosen randomly from the interval [,2199E + 02,.2356E + 02]. Statistics 
on relative error were observed: maximum relative error was .1404E-13, and root 
mean square relative error was .3245E-14. 

Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result is given 
approximately by e*cos(x) for sin(x) and -e*sin(x) for cos(x). 

Example of COS Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM COS_EXAMPLE 

x=0.5 
PRINT * 'The cosine of x is:' 
PRINT * COS(x) 
END 

The cosine of x is: 
.8775825618904 
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Example of COS Called From Pascal 

Source Code: 

program COS_EXAMPLE (output); 
var x, Y : REAL; 

begin 
x := 0.5; 
Y := COS (x); 

writeln (' The cosine of x is' Y :1:13); 
end. 

Output: 

The cosine of x is 0.8775825618904 
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COSD 
COSD computes the cosine function for an argument in degrees. It accepts a real 
argument and returns a real result. 

The call-by-reference entry points are MLP$RCOSD and COSD, the call-by-value entry 
point is MLP$VCOSD, and the vector entry point is MLP$COSDV. 

The input domain is the collection of all valid real quantities whose absolute value is 
less than 2**47. The output range is included in the set of valid real quantities in the 
interval [-1.0,1.0]. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

The result is put in the interval [-45,45] by finding the nearest integer, n, to x190, and 
subtracting n*90 from the argument. The reduced argument is then multiplied by 
pi/I80. The appropriate sign is copied to the value of the appropriate function, sine or 
cosine, as determined by these identities: 

sin(x + 360 degrees) = sin(x) 
sin(x + 180 degrees) -sin(x) 
sin(x + 90 degrees) cos(x) 
sin(x - 90 degrees) -cos(x) 
cos(x + 360 degrees) cos(x) 
cos(x + 180 degrees) -cos(x) 
cos(x + 90 degrees) -sin(x) 
cos(x - 90 degrees) sin(x) 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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Error Analysis 

The reduction to (-45,+45) is exact; the constant pi/ISO has relative error 1.37E-15, 
and multiplication by this constant has a relative error 5.33E-15, and a total error of 
6.7E-:-15. Since errors in the argument of SIN and COS contribute only pil4 of their 
value to the result, the error due to the reduction and conversion is, at most, 5.26E-15 
plus the maximum error in SINCOS over (-pil4, +pi/4). 

A group of 10,000 arguments was chosen at random from the interval [0,360]. The 
maximum relative error of these arguments was found to be .7105E-14 for COSD and 
.1403E-13 for SIND. 

Effect of Argument Error 

Errors in the argument x are amplified by xltan(x) for SIND and x*tan(x) for COSD. 
These functions have a maximum value of pil4 in the interval (-45,+45) but have 
poles at even (SIND) or odd (COSD) multiples of 90 degrees, and are large between 
multiples of 90 degrees if x is large. 

Example of COSD Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM COSO_EXAMPLE 

x=180.0 
PRINT * 'The COSO of x is:' 
PRINT * COSO(x) 
END 

The COSO of x is: 
-1. 
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COSH 

COSH computes the hyperbolic cosine function. It accepts a real argument and returns 
a real result. 

The call-by-reference entry points are MLP$RCOSH and COSH, the call-by-value entry 
point is MLP$VCOSH, and the vector entry point is MLP$COSHV. 

The input domain is the collection of all valid real quantities whose absolute value is 
less than 4095*log(2). The output range is included in the set of valid real quantities 
greater than or equal to 1.0. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 4095*log(2). 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

The formula used to compute cosh(x) is: 

cosh(x) = (exp(x) + exp(-x»/2 

The routine calls EXP to compute exp(x) and computes 1.0/exp(x) to obtain exp(-x). 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

I t is infinite. 

Its absolute value is greater than or equal to 4095*10g(2). 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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Error Analysis 

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on 
relative error were observed. Table 8-6 shows a summary of these statistics. 

Table 8-6. Relative Error of COSH 

Test In terval From 

COSH(x) against Taylor O.OOOOE + 00 
series expansion of 
COSH(x) 

COSH(x) against .3000E+Ol 
c*(COSH(x + 1) + 
COSH(x - 1)) 

Effect of Argument Error 

Interval To Maximum 

.5000E+00 .1382E-13 

.2838E + 04 .2296E-13 

Root Mean 
Square 

.6875E-14 

.8260E-14 

If a small error e occurs in the argument x, the resulting error in cosh(x) is given 
approximately by sinh(x)*e. 

Example ,of COSH Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM COSH_EXAMPLE 

x=180.0 
PRINT *, 'The COSH of x is:' 
PRINT * COSH(x) 
END 

The COSH of x is: 
7.446921003909E+77 
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COTAN 

COTAN computes the trigonometric circular cotangent of an argument in radians. It 
accepts a real argument and returns a real result. 

The call-by-reference entry points are MLP$RCOTAN and COTAN, the call-by-value 
entry point is MLP$VCOTAN, and the vector entry point is MLP$COTANV. 

The input domain is the collection of all valid real quantities whose absolute value is 
greater than 0 and less than 2**47. The output range is included in the set of valid 
real quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is o. 

Its absolute value is greater than or equal to 2**47. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

The evaluation is reduced to the interval [-.5,.5] by using the identities: 

1. cotan(x) = cotan(x + k*pi/2), if k is even 

2. cotan(x) = -1.0/cotan(x + pi/2) 

in the form: 

3. cotan(x)=1/tan(x)=1/tan«pi/2)*(x*2/pi + k», if k is even 

4. cotan(x)=1/tan(x)=tan«pi/2)*(x*2/pi + 1.0»/-1.0 

In effect, the original algorithm for TAN (x) is used to find COTAN(x). The result for 
COTAN (x) is the reciprocal of TAN (x). 

An approximation of tan(piJ2*y) is used. The argument is reduced to the interval 
[- .5,.5] by subtracting a multiple of piJ2 from x in double precision. 

The rational form is used to compute the tangent of the reduced value. The function 
tan((piJ2)*y) is approximated with a rational form (7th order odd)/(6th order even), 
which has minimax relative error in the interval [-.5,.5]. The rational form is 
normalized to make the last numerator coefficient 1 + e, where e is chosen to 
minimize rounding error in the leading coefficients. -

Identity 4 is used if the integer subtracted is odd. The result is negated and inverted 
by dividing -P/Q instead of Q/P. 
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Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is O. 

Its absolute value is greater than or equal to 2**47. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The function COTAN was tested against (COTAN(xJ2)**2-1)/(2*COTAN(x/2)). Groups of 
2,000 arguments were chosen randomly from the interval (.1885E + 02, .1963E + 02). 
Statistics on relative error were observed: maximum relative error was .2297E-13, and 
root mean square relative error was .7847E-14. 

Effect of Argument Error 

For small errors in the argument x, the amplification of absolute error is sec(x)**2, 
and that of relative error is xJ(sin(x)*cos(x)), which is at least 2x and can be arbitrarily 
large near a multiple of pi/2. . 

Example of COTAN Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM COTAN_EXAMPLE 

x=180.0 
PRINT· 'The COTAN of x is:' 
PRINT * COTAN(x) 
END 

The COTAN of x is: 
.746998814414 
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CSIN 
CSIN computes the complex sine function. It accepts a complex argument and returns a 
complex result. 

The call-by-reference entry points are MLP$RCSIN and CSIN, the call-by-value entry 
point is MLP$VCSIN, and the vector entry point is MLP$CSINV. 

The input domain is the collection of all valid complex quantities z, where Z = x + 
i*y; Ix I is less than 2**47, and Iy I is less than 4095*log(2). The output range is 
included in the set of valid complex quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

The real or imaginary part is indefinite. 

The real or imaginary part is infinite. 

The absolute value of the real part is greater than or equal to 2**47. 

The absolute value of the imaginary part is greater than or equal to 4095*log(2). 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

Let x + i*y be the argument. The formula used for computation is: 

sin(x + i*Y) = sin(x)*cosh(y) + i*cos(x)*sinh(y) 

The routine evaluates COSSIN inline to simultaneously compute sine and cosine, and 
evaluates HYPERB inline to simultaneously compute hyperbolic sine and hyperbolic 
cosine. See the descriptions of routines COSSIN and HYPERB in chapter 9, Auxiliary 
Routines, for detailed information. 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

The real or imaginary part is indefinite. 

The real or imaginary part is infinite. 

The absolute value of the real part is greater than or equal to 2**47. 

The absolute value of the imaginary part is greater than or equal to 4095*log(2). 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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Error Analysis 

If z = x + i*y is the argument, then the modulus of the error in the routine does not 
exceed: 1.276E-13 + 1.297E-13*exp(abs(y». See the description of HYPERB and 
COSSIN for details in chapter 9, Auxiliary Routines. 

Effect of Argument Error 

If a· small error e(z) = e(x) + i*e(y) occurs in the argument z = x + i*y, the error in 
the result is given approximately by cos(z)*e(z). 

Example of CSIN Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM CSIN_EXAMPLE 

COMPLEX xi 
xi = ( -40.0, -1) 

PRINT * 'The CSIN of xi is:' 
PRINT *, CSIN(xi) 
END 

The CSIN of Xl 15: 

(-1.149769688682,.7837864061402) 

60486513 H Function Descriptions 8·55 



CSQRT 

CSQRT 
CSQRT computes the complex square root function that maps to the right half of the 
complex plane. It accepts a complex argument and returns a complex result. 

The call-by-reference entry points are MLP$RCSQRT and CSQRT, the call-by-value 
entry point is MLP$VCSQRT, and the vector entry point is MLP$CSQRTV. 

The input domain is the collection of all valid complex quantities z, where z = x + 
i*y, and (x**2 + y**2)**.5 + Ixl is a valid real quantity. If the argument is zero, zero 
is returned. The output range is included in the set of valid complex quantities z such 
that the real part of z is nonnegative and the imaginary part of z is a valid complex 
quantity. 

Call-By-Reference Routine 

The argument is checked upon entry. The argument is invalid if: 

The real or imaginary part is indefinite. 

The real or imaginary part is infinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
call-by-reference routine. The result is checked. If the result is positive infinite, it is 
invalid, and a diagnostic message is displayed. If the result is valid, it is returned to 
the calling program. 

For this computation, values returned by the routine will lie in the right half of the 
complex plane. 

Call-By-Value Routine 

Let x + i*y be the argument. The formulas used for computation are: 

u (.5*(lxl + l(x,y)I»**.5 
v = .5*(y/u) 

If x is nonnegative, then csqrt(x,y) = u + i*v. If x is negative, then csqrt(x,y) = 
sign(y)*(v + i*u). 

The result of this routine always lies in the first or fourth quadrant of the complex 
plane. The routine takes complex quantities lying on the axis of the negative reals, to 
the axis of the positive imaginaries. 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

The real or imaginary part is indefinite. 

The real or imaginary part is infinite. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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Error Analysis 

The function CSQRT was tested. A group of 10,000 arguments was chosen randomly 
from given intervals. Statistics on maximum relative error were observed. Table 8-7 
shows a summary of these statistics. 

Table 8-7. Relative Error of CSQRT 

Interval 

([ 0,0] ,[100,100]) 
([0,0] ,[1.0E + 100,1.0E + 100]) 

Effect of Argument Error 

Maximum 

.1600E-13 

.1499E-13 

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x + i*y, the error in 
the result w = u + i*v is given approximately by e(z)/(2*w**0.5) = (e(x) + i*e(y))/2(u 
+ i*v)**0.5. 

Example of CSQRT Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM CSQRT_EXAMPLE 

COMPLEX xi 
xi = ( -40.0, -1) 

PRINT * 'The CSQRT of xi is:' 
PRINT *, CSQRT(xi) 
END 

The CSQRT of xi is: 
(.07905076686887,-6.325049329748) 
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DABS 
DABS computes the absolute value of an argument. It accepts a double precision 
argument and returns a double precision result. 

The call-by-reference entry points are MLP$RDABS and DABS, and the call-by-value 
entry point is MLP$VDABS. 

The input domain is the collection of all valid double precision quantities. The output 
range is included in the set of valid, nonnegative double precision quantities. 

Call-By-Reference Routine 

No errors are generated in DABS. The call-by-reference routine branches to the 
call-by-value routine. 

Call-By-Value Routine 

The argument is returned with the sign bits of both its upper and lower words forced 
positive. . 
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Example of DABS Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DABS_EXAMPLE 

EXTERNAL DABS 
DOUBLE PRECISION x 
x=-1000.1234dO 
PRINT * 'The DABS of x is:' 
PRINT *, DABS(x) 
END 

The DABS of x is: 
1000.1234 
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DACOS 
DACOS computes the inverse cosine function. It accepts a double precision argument 
and returns a double precision result. 

The call-by-reference entry points are MLP$RDACOS and DACOS, and the call-by-value 
entry point is MLP$VDACOS. 

The input domain is the collection of all valid double precision quantities in the 
interval [-1.0,1.0]. The output range is included in the set of valid, nonnegative double 
precision quantities less than or equal to pi. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

I t is infinite. 

Its absolute value exceeds 1.0. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 
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Call-By-Value Routine 

The following identities are used to move the interval of approximation to [0,sqrt(.5)]: 

arcsin(-x) = -arcsin(x) 
arccos(x) = pi/2-arcsin(x) 
arcsin(x) = arccos(sQrt(1.0 - x**2», if x > 0 -
arccos(x) = arcsin(sQrt(1.0 - x**2», if x > 0 

The reduced value is called y. If y < = .09375, no further reduction is performed. If 
not, the closest entry to y in a table of values (z, arcsin(z), sqrt(1.0 - x**2), Z = .14, 
.39, .52, .64) is found, and the following formula used is: 

arcsin(x) = arcsin(z) + arcsin(w) 

where w = x(sqrt(1.0 - z**2) - z*sqrt(1.0 - x**2). The value of w is in (-.0792, 
.0848). 

The arcsin of the reduced argument is then found using a 15th order odd polynomial 
with quotient: 

x + x**3(c(3) + x**2(c(5) + x**2(c(7) + x**2(c(11) + x**2(c(13) + 
x**2(c(15) + a/(b - x**2»»») 

where all constants and arithmetic operations before c(ll) are double. precision and the 
rest are single precision. The addition of c(ll) has the form single + single = double. 
The polynomial is derived from a minimax rational form (denominator is (b - x**2» 
for which the critical points have been modified slightly to make c(1l) fit in one word. 

To this value, arcsin(z) is added from a table if the last reduction above was done and 
the sum is conditionally negated. Then 0, -pi/2, + pi/2, or pi is added to complete the 
unfolding. 
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Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value exceeds 1.0. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The region of worst error is (.9895,.9966). In this region, the final addition is of 
quantities of almost equal magnitude and opposite sign, and cancellation of about one 
bit occurs. 

The function DACOS was tested against the Taylor series. Groups of 2,000 arguments 
were chosen randomly from given intervals. Statistics on relative error were observed. 
Table 8-8 shows a summary of these statistics. 

Table 8-8. Relative Error of DACOS 

Root Mean 
Interval From Interval To Maximum Square 

-.1250D+00 .1250D+00 .27940-27 .23430-27 
-.1000D+01 -.7500D+00 .33390-27 .2853D-27 

.75000+00 .10000+01 .75730-28 .22570-28 
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Effect of Argument Error 

If a small error e occurs in the argument x, the resulting error in DACOS is 
approximately -e/(1.0 - x**2)** .5. The amplification of the relative error is 
approximately xI(f(x)*(1.0 - x**2)** .5), where f(x) is DACOS. The error is attenuated 
for x > -.44 but can become serious near -1.0. If the argument is generated as 1.0 -
y or y - 1.0, then the following identities can be used to get the full significance of y: 

asin(x) = acos(sqrt(1.0 - x**2» 
acos(x) = asin(sqrt(1.0 - x**2» 
asin(-x) -asin(x) 
acos(-x) = pi + asin(x) 

Example of DACOS Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DACOS_EXAMPLE 

DOUBLE PRECISION x 
x=0.5dO 
PRINT * 'The DACOS of x is:' 
PRINT * DACOS(x) 
END 

The DACOS of x is: 
1.04719755119659774615421446 
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DASIN 
DASIN computes the inverse sine function. It accepts a double precision argument and 
returns a double precision result. 

The call-by-reference entry points are MLP$RDASIN and DASIN, the call-by-value 
entry point is MLP$VDASIN, and the vector entry point is MLP$DASINV. 

The input domain is the collection of all valid double precision quantities in the 
interval [-1.0,1.0]. The output range is included in the set of valid double precision 
quantities in the interval [-pil2,pil2]. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value exceeds 1.0. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 
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Call-By-Value Routine 

The following identities are used to move the interval of approximation to [O,sqrt(.5)]: 

arcsin(-x) 
arccos(x) 
arcsin(x) 
arccos(x) 

-arcsin(x) 
pi/2-arcsin(x) 
arccos(sqrt(1.0 - x**2», if x > 0 -
arcsin(sqrt(1.0 - x**2», if x > 0 

The reduced value is called y. If y < = .09375, no further reduction is performed. If 
not, the closest entry to y in a table of values (z, arcsin(z), sqrt(1.0 - x**2), z = .14, 
.39, .52, .64) is found, and the formula used is: 

arcsin(x) = arcsin(z) + arcsin(w) 

where w = x(sqrt(1.0 - z**2) - z*sqrt(1.0 - x**2). The value of w is in (-.0792, 
.0848). 

The arcsin of the reduced argument is then found using a 15th order odd polynomial 
with quotient: 

x + x**3(c(3) + x**2(c(5) + x**2(c(7) + x**2(c(11) + x**2(c(13) + 
x**2(c(15) + a/(b x**2»»») 

where all constants and arithmetic operations before c(11) are double precision and the 
rest are single precision. The addition of c(ll) has the form single + single = double. 
The polynomial is derived from a minimax rational form (denominator is (b - x**2)) 
for· which the critical points have been perturbed slightly to make c(ll) fit in one word. 

To this value, arcsin(z) is added from a table if the last reduction above was done and 
the sum is conditionally negated. Then 0, -piJ2, + piJ2, or pi is added to complete the 
unfolding. 
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Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value exceeds 1.0. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The region of worst error is (.09375,.1446). In this region, the final addition is of 
quantities of almost equal magnitude and opposite sign, and cancellation of about one 
bit occurs, the worst case being .1451-.0629. For DASIN, the polynomial range was 
extended to cover the region (.0821,.09375), where the worst error occurs. 

The function DASIN was tested against the Taylor series. Groups of 2,000 arguments 
were chosen randomly from given intervals. Statistics on relative error were observed. 
Table 8-9 shows a summary of these statistics. 

Table 8-9. Relative Error of DASIN 

Interval From 

-.1250D+00 
.7500D+00 

8·66 Math Library 

Interval To 

.1250D+00 

.1000D+01 

Maximum 

.1017D-27 

.4761D-27 

Root Mean 
Square 

.2246D-28 

.3575D-27 
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Effect of Argument Error 

If a small error e occurs in the argument x, the resulting errors in DASIN are 
approximately e/(l - x**2)** .5. The amplification of the relative error is approximately 
xI(f(x)*(l - x**2)**.5), where f(x) is DASIN. The error is attenuated for abs(x) < .75 
but can become serious near -1.0 or + 1.0. If the argument is generated as 1 - y or y 
- 1, then the following identities can be used to get the full significance of y: 

asin(x) 
acos(x) 
asin(-x) 

= acos(sQrt(1.0 - x**2» 
= asin(sQrt(1.0 - x**2» 

-asin(x) 
acos(-x) = pi + asin(x) 

Example of DASIN Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM DASIN_EXAMPLE 

DOUBLE PRECISION x 
x=0.5dO 
PRINT * 'The DASIN of x is:' 
PRINT * DASIN(x) 
END 

The DASIN of x is: 
.523598775598298873077107231 
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DATAN 

DATAN computes the inverse tangent function. It accepts a double precision argument 
and returns a double precision result. 

The call-by-reference entry points are MLP$RDATAN and DATAN, the call-by-value 
entry point is MLP$VDATAN, and the vector entry point is MLP$DATANV. 

The input domain is the collection of all valid double precision quantities. The output 
range is included in the set of valid double precision quantities in the interval 
[ -pil2,pil2] . 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if it is indefinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

Register pair (X4,X5) holds the absolute value of the argument. 

B4 = (X9) = sign mask for the argument. (B4 holds a mask for the result's sign.) 

If Ixl < 1.0, then: 

83 = (XA) = O. 
87 = (XB) = O. (B7 will hold the closest multiple of pi/2 to the absolute 
value of the result.) 
Branch to DATCOM at label DIN to complete processing. 

If Ixl ~ 1.0, then: 

83 = (XA) = 1 in high order bit. 
B7 = (XB) = 1. 0 . 
Branch to DATCOM at label DATCOM to complete processing. 

At labels DATCOM and DTN: 

(X9) = 84 = mask MS = sign of final result. 
(XA) = B3 = mask MI. 
(XB) = B7 = closest multiple of pi/2 to the absolute value of the result. 

At label DATCOM: 

Register pair (X7.X8) = DU. 
Register pair (X4.XS) = DV. 

At label DTN: 

Register pair (X7.X8) = DU. 
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Label ATNU is the start of an 18-word table containing atan(nJ8) (0 ~ n ~ 8) in 
double precision. Label DATCOM corresponds to step a, and label DTN corresponds to 
step b. 

Constants used in the algorithm are: 

d3 -.333 333 333 333 333 333 333 333 285 915 
d5 .199 999 999 999 999 999 999 673 046 526 
d7 -.142 857 142 857 142 856 280 180 055 289 
d9 .111 111 111 111 109 972 932 035 508 119 
cll -.090 909 090 908 247 503 
c13 .001 351 201 845 778 152 
a -.085 666 743 757 593 089 
b -1.133 579 709 202 919 6 

where d3, d5, d7, and d9 are double precision constants, and cll, c13, a, and bare 
real constants. Arithmetic operations with d subscripts are done in double precision, 
and operations with u subscripts are done in single precision. For example, d3 + (d) q 
indicates that the addition is in double precision. Boolean operations have B subscripts. 

The algorithm used is: 

a. DQ = DU/DV computed in double precision. 

b. (DQ = DA-DU at DTN) (Note that 0 < DQ < 1.0.) 

c. n = nearest multiple of 1/8 to DQ. 

d. If n = 0, go to step f. 

e. DA = (DQ - n/8)/(1.0 + n/8*DA), computed in double precision. 

f. Z 0 
DC 0 
If (DA)(u) = 0, go to step i. 

g. xx = DA(u)*DA(u) 
DC = XX*(d)(d3 +(d) XX*(d)(d5 +(d) XX*(d) (d7 +(d) XX*(d)(d9 +(d) 

XX*(d)(dll +(d) XX*(u)(c13 +(u) a/(b -(u) XX»»») 

h. w = DA +(d) DC*DA 

i. DB = 0 
If (XB)not= 0 DB = ATN(9)*2*(XB) 

j. BBAR (B7*pi/2) - (B)B3 (upper and lower) 

k. CBAR BBAR + (D)ATN(n/8). ATN(n/8) is obtained as a double precision 
quantity from a table of precomputed values. 

1. Result = (CBAR + (D) w) - (B) (B3 - (B)B4). 

At the end of processing, register pair (XE,XF) contains the DATAN result. 
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DATAN 

Vector Routine 

The argument is checked upon entry. It is invalid if it is indefinite. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The maximum absolute value of relative error in the algorithm is 1.622E-29. 

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on 
relative error were observed. Table 8-10 shows a summary of these statistics. 

Table 8-10. Relative Error of DATAN 

Test 

DATAN(x) against 
truncated Taylor series 

2*DATAN(x) against 
DATAN(2xJ(1 - x*x» 

DATAN(x) against 
DATAN(1I16) + 
DATAN((x - 1116)/(1 + 
xJ16» 

Total Error 

Interval From 

-.6250D-01 

.2697D+00 

.4142D+OO 

.6250D-01 

Root Mean 
Interval To Maximum Square 

.6250D-01 .2556D-28 .1343D-28 

.4142D+00 .4821D-28 .2027D-28 

.1000D+01 .5992D-28 .2449D-28 

.2679D+OO .3388D-28 .1557D-28 

Most of the errors can be traced back to errors in double precision addition. 
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DATAN 

Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result is given by e/(1.0 
+ x**2). 

Example of DATAN Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DATAN_EXAMPLE 

DOUBLE PRECISION x 
x=0.5dO 
PRINT * 'The DATAN of x is:' 
PRINT * DATAN(x) 
END 

The DATAN of x is: 
.463647609000806116214256231 
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DATAN2 

DATAN2 

DATAN2 computes the inverse tangent function of the ratio of two arguments. It 
accepts two double precision arguments and returns a double precision result. 

The call-by-reference entry points are MLP$RDATAN2 and DATAN2, and the 
call-by-value entry point is MLP$VDATAN2. 

The DATAN2 vector math function is divided into three routines having three separate 
entry points defined as follows: 

OTAN2(scalar,vector) = MLP$OATAN2SV 
OTAN2(vector,scalar) = MLP$OATAN2VS 
OTAN2(vector,vector) = MLP$OATAN2VV 

The input domain is the collection of all valid double precision pairs (x,y) such that 
both quantities are not zero. The output range is included in the set of double precision 
quantities greater than -pi and less than or equal to pi. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x and yare infinite. 

x and yare equal to zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the calling program. 

Call-By-Value Routine 

Register pair (X4,X5) holds the absolute value of the first argument. Register pair 
(X7,X8) holds the absolute value of the second argument. 

B4 = (X9) 

B3 = (XA) 
argument. 
B7 = (XB) 

sign mask of the first word of the first argument. 
complement of the sign mask of the first word of the second 

closest multiple of pl/2 to the result value. 

If (X4) > (X7) , then: 

B7 = (XB) = 1.0. 
Branch to label OAT COM to complete processing. 
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If (X4) ~ (X7), then: 

Exchange (X7) and (X4) and (X8) and (X5). 
Complement contents of B3. 
B7 = (XB) = 0, if the first word of the second argument is positive. 
B7 = (XB) = 2, if the first word of the second argument is negative. 
Branch to label DATCOM to complete processing. 

At label DATCOM: 

(X9) B4 = mask MS = sign of the final result. 
(XA) B3 = mask MI. 
(XB) B7 = closest multiple of pi/2 to the absolute value of the result. 
Register pair (X7,X8) DU smaller of DU and DB = min(x,Y). 
Register pair (X4,X5) = DV = larger of DU and DV = max(x,Y). 

At label DATCOMIO: 

Register pair (X7,X8) = DQ = DU/DV, which is < 1.0. 

DATAN2 

ATNU is the start of an 18-word table containing atan(n/8) (0 ~ n ~ 8) in double 
precision. Label DATCOM corresponds to step a (on the following page). 

Constants used in the algorithm are: 

d3 -.333 333 333 333 333 333 333 333 285 915 
d5 .199 999 999 999 999 999 999 673 046 526 
d7 -.142 857 142 857 142 856 280 180 055 289 
d9 .111 111 111 111 109 972 932 035 508 119 
cl1 -.090 909 090 908 247 503 
c13 .001 351 201 845 778 152 
a -.085 666 743 757 593 089 
b -1.133 579 709 202 919 6 

where d3, d5, d7, and d9 are double precision constants, and cll, c13, a, and bare 
real constants. Arithmetic operations with d subscripts are done in double precision, 
and operations with u subscripts are done in single precision. For example, d3 + (d) q 
indicates that the addition is in double precision. Boolean operations have B subscripts. 
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DATAN2 

The algorithm used is: 

a. DQ = DU/DV in double precision. 

b. If both DU and DV are zero, error exit occurs. 

c. n = nearest multiple of 1/8 to DQ. 

d. If n = 0, go to step f. 

e. DA (DQ - n/8)/(1 + n/8*DA), computed in double precision. 

f. Z 0 
DC 0 
If (DA)(u) = 0, go to step i. 

g. XX 
DC 

DA(u)*DA(U) 
XX*(d)(d3 +(d) XX*(d)(dS +(d) XX-Cd) (d7 +(d) XX*(d)(d9 +(d) 
XX*(d)(d11 +(d) XX*(u)(c13 +(u) a/(b -(u) XX»»») 

h. w = DA + (d) DC*DA 

i. DB = 0 
If (XB) not= 0 DB = ATN(9)*2*(XB) 

j. BBAR (B7*pl/2) - (B)B3 (upper and lower) 

k. CBAR BBAR + (D)ATN(n/8). ATN(n/8) is obtained as a double precision 
quantity from a table of precomputed values. 

1. Result = (CBAR + (D) w) - (B) (B3 - (B)B4). 

At the end of processing, register pair (XE,XF) contains DATAN2 result. 

Vector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is infinite. 

x and yare infinite. 

x and yare equal to o. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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DATAN2 

Error Analysis 

The maximum absolute value of relative error in the algorithm is 1.622E-29. 

Effect of Argument Error 

If small errors e(x) and e(y) occur in the arguments x and y, respectively, the error in 
the result is given approximately by: 

(x*e(y) - y*e(x»/(x**2 + y**2) 

Example of DATAN2 Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DATAN2_EXAMPLE 

DOUBLE PRECISION x, Y 
x=0.5dO 
y=5.0dO 
PRINT * 'The DATAN2 of X,y is:' 
PRINT * DATAN2(x,y) 
END 

The DATAN2 of x,y is: 
.0996686524911620273784461199 
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DCOS 

DCOS 
DCOS computes the cosine function. It accepts a double precision argument and returns 
a double precision result. 

The call-by-reference entry points are MLP$RDCOS and DCOS, the call-by-value entry 
point is MLP$VDCOS, and the vector entry point is MLP$DCOSV. 

The input domain is the collection of all valid double precision quantities whose 
absolute value is less than 2**47. The output range is included in the set of valid 
double precision quantities in the interval [-1.0,1.0]. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

Upon entry, the argument x is made positive and is multiplied by 2/pi in double 
precision, and the nearest integer n to x*2/pi is computed. At this stage, x*2/pi is 
checked to see that it does not exceed 2**47. If it does, a diagnostic message is 
returned. Otherwise, y = x - n*pil2 is computed in double precision as the reduced 
argument, and y is in the interval [-pil4,pil4]. The value of mod(n,4), the entry point 
called, and the original sign of x determine whether a sine polynomial approximation 
p(x) or a cosine polynomial approximation q(x) is to be used. A flag is set to indicate 
the sign of the final result. 

For x in the interval [-pil4,pil4], the sine polynomial approximation is: 

p(x) = a(1)x + a(3)x**3 + a(5)x**5 + a(7)x**7 + a(9)x**9 + a(11)x**11 + 

a(13)x**13** + a(15)x**15 + a(17)x**17 + a(19)x**19 + a(21)x**21 

and the cosine polynomial approximation is: 

q(x) = b(O) + b(2)x**2 + b(4)x**4 + b(6)x**6 + b(8)x**8 + b(10)x**10 + 

b(12)x**12 + b(14)x**14 + b(16)x**16 + b(18)x**18 + b(20)x**20 
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The coefficients are: 

a(l) .999 999 999 999 999 999 999 999 999 99 
a(3) -.166 666 666 666 666 666 666 666 666 52 
a(5) .833 333 333 333 333 333 333 332 709 57*10**-2 
a(7) -.198 412 698 412 698 412 698 291344 78*10**-3 
a(9) .275 573 192 239 858 906 394 406 844 01*10**-5 
a(ll) -.250 521 083 854 417 101 138 076 473 5*10**-7 
a(13) .160 590 438 368 179 411 271 194 064 61*10**-9 
a(15) -.764 716 373 079 886 084 755 348 748 91*10**-12 
a(11) .281 145 706 930 018*10**-14 
a(19) -.822 042 461 317 923*10**-17 
a(21) .194 362 013 130 224*10**-19 
b(O) .999 999 999 999 999 999 999 999 999 99 
b(2) -.499 999 999 999 999 999 999 999 999 19 
b(4) .416 666 666 666 666 666 666 666 139 02 
b(6) -.138 888 888 888 888 888 888 755 436 28*10**-2 
b(8) .248 015 873 015 813 015 699 922 737 30*10**-4 
b(10) -.275 513 192 239 858 775 558 669 957 11*10**-6 
b(12) .208 767 569 878 619 214 898 747 461 35*10**-8 
b(14) -.114 707 455 958 584 315 495 950 765 75*10**-10 
b(16) .477 947 696 822 393 115 933 106 267 21*10**-13 
b(18) -.156 187 668 345 316*10**-15 
b(20) .408 023 947 777 860*10**-18 

DCOS 

These polynomials are evaluated from right to left in double precision. The sign flag is 
used to give the result the correct sign before returning to the calling program. 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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DCOS 

Error Analysis 

The maximum absolute value of the error of approximation of p(x) to sin (x) over 
(-pil4,pil4) is .2570E-28, and of q(x) to cos(x) is .3786E-28. 

The function DCOS was tested against 4*DCOS(xJ3)**3 - 3*DCOS(xJ3). Groups of 2,000 
arguments were chosen randomly from the interval [.2199D + 02,.2356D + 02]. Statistics 
on relative error were observed: maximum relative error was .2057D-23; root mean 
square relative error was .4606D-25. 

Effect of Argument Error 

If a small error e occurs in the argument x, the resulting error in cos is given 
approximately by -e*sin(x). If the error e becomes significant, the addition formulas for 
sin and cos should be used to compute the error in the result. 
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Example of DCOS Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DCOS_EXAMPLE 

DOUBLE PRECISION x 
x=0.5dO 
PRINT * 'The DCOS of x is:' 
PRINT * DCOS(x) 
END 

The DCOS of x is: 
.877582561890372716116281583 
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DCOSH 

DCOSH computes the hyperbolic cosine function. It accepts a double precision argument 
and returns a double precision result. 

The call-by-reference entry points are MLP$RDCOSH and DCOSH, the call-by-value 
entry point is MLP$VDCOSH, and the vector entry point is MLP$DCOSHV. 

The input domain is the collection of all valid double precision quantities whose 
absolute value is less than 4095*log(2). The output· range is included in the set of valid 
double precision quantities greater than or equal to 1.0. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

I t is indefinite. 

I t is infinite. 

Its absolute value is greater than or equal to 4095*log(2). 

If the argument is invalid, a diagnostic message is displayed. If the argument pair is 
valid, the call-by-value routine is called, and the result of the computation is returned 
to the calling program. 

Call-By-Value Routine 

The formulas used for computation are: 

u = exp(x)*.5 
v = exp(-x)*.5 
Cosh(x) = u + v 

The routine calls DEXP to compute exp(x). 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 4095*log(2). 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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DCOSH 

Error Analysis 

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on 
relative error were observed. Table 8-11 shows a summary of these statistics. 

Table 8-11. Relative Error of DCOSH 

Test Interval From 

DCOSH(x) against O.OOOOD + 00 
Taylor series expansion 
of DCOSH(x) 

DCOSH(x) against .3000D + 01 
c*(DCOSH(x + 1) + 
DCOSH(x - 1)) 

Effect of Argument Error 

Interval To Maximum 

.5000D + 00 .2524D-28 

.2838D+04 .1023D-27 

Root Mean 
Square 

.1739D-28 

.4548D-28 

If a small error e occurs in the argument x, the error in cosh(x) is approximately 
sinh(x)*e. 

Example of DCOSH Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DCOSH_EXAMPLE 

DOUBLE PRECISION x 
x=0.5dO 
PRINT· 'The DCOSH of x is:' 
PRINT· DCOSH(x) 
END 

The DCOSH of x is: 
1.12762596520638078522622516 
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DDIM 
DDIM computes the positive difference between two arguments. It accepts two double 
precision arguments and returns a double precision result. 

The call-by-reference entry points are MLP$RDDIM and DDIM, and the call-by-value 
entry point is MLP$VDDIM. 

The input domain is the collection of all valid double precision pairs (x,y) such that x 
- y is a valid double precision quantity. The output range is included in the set of 
valid, nonnegative double precision quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x - y is infinite. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is branched to, and the result of the computation is 
returned to the calling program. 

Call-By-Value Routine 

Upon entry, the difference between the two arguments is formed, and the sign bit of 
the difference is extended across another word to form < a mask. The boolean product of 
the mask's complement and the upper and lower word of the difference is formed. 

Given arguments (x,y): 

result x - y if x > y 

result 0 if x ~ y. 
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Example of DDIM Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DDIM_EXAMPLE 

EXTERNAL DDIM 
DOUBLE PRECISION x,y 
x=999999.99dO 
y=99.0dO 
PRINT *, 'The DDIM of x,y is:' 
PRINT *,DDIM(x,Y) 
END 

The DDIM of x,y is: 
999900.99 
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DEXP 

DEXP 
DEXP computes the exponential function. It accepts a double precision argument and 
returns a double precision result. 

The call-by-reference entry points are MLP$RDEXP and DEXP, the call-by-value entry 
point is MLP$VDEXP, and the vector entry point is MLP$DEXPV. 

The input domain is the collection of all valid double precision quantities whose value 
is greater than or equal to -4097*log(2) and less than or equal to 4095*log(2). The 
output range is included in the set of valid double precision quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is greater than 4095*log(2). 

It is less than -4097*log(2). 

If the argument is invalid, a diagnostic message is displayed. If the argument pair is 
valid, the call-by-value routine is called, and the result of the computation is returned 
to the call-by-reference routine. The result is checked. If the result is infinite, it is 
invalid, and a diagnostic message is displayed. If the result is valid, it is returned to 
the calling program. 

Call-By-Value Routine 

The argument reduction performed is: 

x = argument 
y = x - n*10g(2) 

where y = is in [-112 log(2), 112 log(2)] and n is an integer. 

Constants used in the algorithm are: 

1.0/10g(2) 
10g(2) (in double precision) 
d3 .166 666 666 666 666 666 666 666 666 709 
d5 .833 333 333 333 333 333 333 331 234 953*10**-2 
d7 .198 412 698 412 698 412 700 466 386 658*10**-3 
d9 .275 573 192 239 858 897 408 325 908 796*10**-5 
pc -.474 970 880 178 988*10**-10 
pa .566 228 284 957 811*10**-7 
pb 272.110 632 903 710 
c11 .250 521 083 854 439*10**-7 

Arithmetic operations with d subscripts are done in double precision, and operations 
with u subscripts are done in single precision. For example, d3 + (d) q indicates that 
the addition is in double precision. An operand with a u or I subscript denotes the first 
or second word, respectively, of the double precision pair of words containing the 
operand. 
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On input, the argument is in register pair X2-X3, and on ,output, the result is in 
register pair XE-XF. 

The algorithm used is: 

a. x = argument. If x = 0, set OEXP 1.0. Return. 

b. If x not= 0, 
n = nearest integer to x/log(2),· 
y = x - n*10g(2). 
Then y is in [-1/2*10g(2),1/2*10g(2)]. 

c. q = (y)(u)*(u)(y)(u) 

d. p = q*(d)(d3 +(d) q*(d)(d5 +(d) q*(d)(d7 +(d) q*(d)(d9 +(d) 
q*(d)(c11 +(d) q*(d)(pa/(pb - Q) + pc»»» 

e. s = (y)(u) +(d) (y)(u)*(d)p 

f. Compute hm = sqrt(1.0 + s**2). 
hi = 3*q + «s)(u»**2 in real. 
hj hi + hi 
hk = 2*(1.0 + hj) 
hl = «y)(u)*(u)(y)(u) - hj)/hk - hi 
hm = hj +(u) (hk -(u) hl)*(u)(hl/hk) 

(hm now carries cosh - 1.0 in single precision.) 

g. OS = s + (d)«(y)(l) + (r)(y)(l)*(u)hm) + (r)«s)(l) + 
(r)«y)(u)* (l)(p)(u) + (r)(y)(u)*(r)(p)(l»» 
(OS now contains sinh(y) in' double precision.) 

h. DC hm +(d) (OS*OS - 2*hm - hm*hm)/(2(1.0 + hm» computed in 
double precision. 

i. OX = OS + DC 

j. Clean up OS, ~C, OX with (X7) = n. 
Register pair XA-XB OS = sinh(y). 
Register pair X8-X9 DC = cosh(y) 1. O. 
Register pair X4-X5 OX = exp(y). 

k. Increase the exponents of exp(y) by n. 

1. Return. 

DEXP 
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DEXP 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is greater than 4095*log(2). 

It is less than -4097*log(2). 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on 
relative error were observed. Table 8-12 shows a summary of these statistics. 

Table 8-12. Relative Error of DEXP 

Test 

DEXP(x - 2.8125) 
against DEXP(x) / 
DEXP(2.8125) 

DEXP(x - .0625) 
against DEXP(x) / 
DEXP(.0625) 

DEXP(x - 2.8125) 
against DEXP(x) / 
DEXP(2.8125) 

Interval From 

-.3466D+01 

-.2841D+00 

.6931D+01 

Effect of Argument Error 

Interval To Maximum 

-.2772D+04 .9240D-28 

.3466D+00 .6449D-28 

.2838D + 04 .9262D-28 

If a small error e occurs in the argument the error in the result y is given 
approximately by y*e. 

8-86 Math Library 

Root Mean 
Square 

.2956D-28 

.1680D-28 

.2907D-28 
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Example of DEXP Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DEXP_EXAMPLE 

. DOUBLE PRECISION x 
x=3.0dO 
PRINT *, 'The DEXP of x is:' 
PRINT *,DEXP(x) 
END 

The DEXP of x is: 
20.0855369231876677409285297 
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DIM 

DIM 
DIM computes the positive difference between two arguments. It accepts two real 
arguments and returns a real result. 

The call-by-reference entry points are MLP$RDIM and DIM, and the call-by-value entry 
point is MLP$VDIM. 

The input domain is the collection of all valid real quantities (x,y), such that x - :y is 
a valid real quantity. The output range is included in the set of valid real quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x - y is infinite. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is branched to, and the result of the computation is 
returned to the calling program. 

Call-By-Value Routine 

Upon entry, the difference between the two arguments is formed, and the sign bit is 
extended across another word to form a mask. The boolean product of the mask's 
complement and the difference is formed. 

Given arguments (x,y): 

result 
result 

x - Y if x > Y 
o if x ~ y 

Example of DIM Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM DIM_EXAMPLE 

EXTERNAL DIM 
x=30.0 
y=3000.0 
PRINT * 'The positive difference between y and x is: 
END 

The positive difference between y and x is: 2970. 

DIM(y,x) 

8·88 Math Library 60486513 H 



DINT 
DINT returns the integer part of an argument after truncation. It accepts a double 
precision argument and returns a double precision result. 

DINT 

The call-by-reference entry points are MLP$RDINT and DINT, and the call-by-value 
entry point is MLP$VDINT. 

The input domain for this function is the collection of all valid double precision 
quantities. The output range is included in the set of valid double precision quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is branched to, and the result of the computation is returned 
to the calling program. 

Call-By-Value Routine 

The argument is added to a special floating-point zero with an exponent value that 
forces the argument's fraction bits to be shifted off when it is added to the argument. 
The result is returned. 

Example of DINT Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM DINT_EXAMPLE 

EXTERNAL DINT 
DOUBLE PRECISION x 
x=333.333dO 
PRINT *, 'The integer part of double precision x is:' 
PRINT *,DINT(x) 
END 

The integer part of double precision x is: 
333. 
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DLOG 

DLOG 
DLOG computes the natural logarithm function. It accepts a double precision argument 
and returns a double precision result. 

The call-by-reference entry points are MLP$RDLOG and DLOG, the call-by-value entry 
point is MLP$VDLOG, and the vector entry point is MLP$DLOGV. 

The input domain for this function is the collection of all valid, positive double 
precision quantities. The output range is included in the set of double precision 
quantities whose absolute value is less than 4095*log(2). 

Call-By-Reference Routine 

The argument is checked upon entry. The argument is invalid if: 

It is indefinite. 

It is infinite. 

It is equal to zero. 

It is negative. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

Upon entry, the argument x is put into the form x = 2**k*w, where k is an integer, 
and 2**-1/2 ~ w ~ 2** 112. Then log(x) is computed from: 

log(x) = k*log(2) + log(w) 

and k*log(2) is computed in double precision. A polynomial approximation u is 
evaluated in single precision using: 

u = c(l)*t + c(3)*t**3 + c(5)*t**5 + c(7)*t**7 

where t = (w - 1.0)/(1.0 + w) 
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DLOG 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is equal to zero. 

It is negative. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

The coefficients c(l), c(3), c(5), and c(7) are: 

C(1) 1.999 999 993 734 000 
c(3) .666 669 486 638 944 
c(5) .399 657 811 051 126 
c(7) .301 005 922 238 712 

This approximates log with a relative error of absolute value at most 3.133*10**-8 
over (2**-112,2**-112). Newton's rule for finding roots3 is then applied in two stages to 
the function exp(x) - w to yield the final approximation to log(w). The two stages are 
algebraically combined to yield the final approximation v: 

v = u - (1.0 - x*exp(-u» - (1.0 - x*exp(-u - (1.0 - x*exp(-u»» 

z is made to be less than 1.0 by writing z = 1.0 - x*exp(-u), and v is computed 
using: 

v = u - z(u) - z(l) - (z{u»**2*(.5 + z(u)/3) 

where z = z(u) + z(l). This formula is obtained by neglecting terms that are not 
significant for double precision; exp( -u) is evaluated in double precision by the 
polynomial of degree 17. If entry was made at MLP$VDLOG10, after k*log(2) + log(w) 
has been evaluated, the result is multiplied by log(e) base 10 in double precision. 

3. For a discussion of Newton's rule for finding roots, refer to any calculus text (for example, Calculus and 
Analytic Geometry by G. B. Thomas). 
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DLOG 

Error Analysis 

The maximum absolute value of the error of approximation of the algorithm to log(x) is 
1.555E-29 over the interval (2**(-.5),2**.5). 

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on 
relative error were observed. Table 8-13 shows a summary of these statistics. 

Table 8-13. Relative Error of DLOG 

Root Mean 
Test Interval From Interval To Maximum Square 

DLOG(x*x) against .1600D+02 .2400D+03 .4479D-28 .1528D-28 
2*DLOG(x) 

DLOG(x) against .7071D+00 .9375D+OO .9041D-27 .1478D-27 
DLOG(17x116) -
DLOG(17116) 
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Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result is given 
approximately by e/x. 

Example of DLOG Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM DLOG_EXAMPLE 

DOUBLE PRECISION x 
x=0.5dO 
PRINT * 'The natural logarithm of x is:' 
PRINT * DLOG(x) 
end 

The natural logarithm of x is: 
-.693147180559945309417232121 

DLOG 
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DLOGIO 

DLOGIO 
DLOG10 computes the common logarithm function. It accepts a double precision 
argument and returns a double precision result. 

The call-by-reference entry points are MLP$RDLOG10 and DLOG10, the call-by-value 
entry point is MLP$VDLOG10, and the vector entry point is MLP$DLOG10V. 

The input domain for this function is the collection of all valid, positive double 
precision quantities. The output range is included in the set of double precision 
quantities whose absolute value is less than 4095*Iog(2) base 10. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is equal to zero. 

It is negative. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 
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DLOG10 

Call-By-Value Routine 

Upon entry, the argument x is put into the form x = 2**k*w, where k is an integer, 
and 2**~112 ~ w ~ 2**112. Then log(x) is computed from: 

10g(x) = k*10g(2) + log(w) 

and k*log(2) is computed in double precision. A polynomial approximation u is 
evaluated in single precision using: 

u = c(l)*t + c(3)*t**3 + c(5)*t**5 + c(7)*t**7 

where t = (w - 1.0)/(1.0 + w) 

The coefficients c(l), c(3), c(5), and c(7) are: 

C(l) 1.999 999 993 734 000 
c(3) .666 669 486 638 944 
c(5) .399 657 811 051 126 
c(7) .301 005 922 238 712 

This approximates log with a relative error absolute value at most 3.133*10**-8 over 
(2**-1/2,2**-112). Newton's rule for finding roots4 is then applied in two stages to the 
function exp(x) - w to yield the final approximation to log(w). The two stages are 
algebraically combined to yield the final approximation v: 

v = u - (1.0 - x*exp(-u» - (1.0 - x*exp(-u - (1.0 - x*exp(-u»» 

z is made to be less than 1.0 by writing z = 1.0 - x*exp(-u), and v is computed 
using: 

v = u - z(u) - z(l) - (z(u»**2*(.5 + z(u)/3) 

where z = z(u) + z(l). This formula is obtained by neglecting terms that are not 
significant for double precision; exp(-u) is evaluated in double precision by the 
polynomial of degree 17. If entry was made at MLP$VDLOG10, after k*log(2) + log(w) 
has been evaluated, the result is multiplied by log(e) base 10 in double precision. 

4. For a discussion of Newton's rule for finding roots, refer to any calculus text (for example, Calculus and 
Analytic Geometry by G. B. Thomas). 
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DLOGI0 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is equal to zero. 

It is negative. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The function DLOGI0 was tested against DLOGI0(11xJI0) - DLOGI0(11110). Groups of 
2000 arguments were chosen randomly from the interval [.3162D+00,.9000D+00]. 
Statistics on relative error were observed: maximum relative error was .5417D-27; root 
mean square relative error was .8117D-28. 

Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result is given 
approximately by e/x. 
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Example ofDLOGlO Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DLOG10_EXAMPLE 

DOUBLE PRECISION x 
x=0.5dO 
PRINT * 'The common logarithm of x is:' 
PRINT * DLOG10(x) 
END 

The common logarithm of x is: 
-.301029995663981195213738895 
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DMOD 

DMOD 
DMOD returns the remainder of the ratio of two arguments. It accepts two double 
precision arguments and returns a double precision result. 

The call-by-reference entry points are MLP$RDMOD and DMOD, and the call-by-value 
entry point is MLP$VDMOD. 

The input domain for this function is the collection of all valid double precision pairs 
(x,y), where y is nonzero and xly is a valid quantity. The output range is included in 
the set of valid double precision quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

y is equal to zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is branched to, and result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 

Call-By-Value Routine 

The function computed by DMOD(x,y) is: 

x - (x/Y)*Y 

where parentheses denote truncation. The result of x/y is found and then added to a 
special floating-point zero that forces truncation. 
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Example of DMOD Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DMOD_EXAMPLE 

EXTERNAL DMOD 
DOUBLE PRECISION x, Y 
y=750.0dO 
x=140.0dO 
PRINT * 'The remainder of the ratio of y and x is:' 
PRINT *, DMOD(y,x) 
END 

The remainder of the ratio of y and x is: 
50. 
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DNINT 

DNINT 
DNINT returns the nearest whole number to an argument. It accepts a double 
precision argument and returns a double precision result. 

The call-by-reference entry points are MLP$RDNINT and DNINT, and the call-by-value 
entry point is MLP$VDNINT. 

The input domain for this function is the collection of all valid double precision 
quantities. The output range is included in the set of valid integer quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by.;value routine is branched to, and the result is returned to the 
calling program. 

Call-By-Value Routine 

If the argument is ~ 0, .5 is added to it and the result is added to a special 
floating-point zero that forces truncation. If the argument is < 0, -.5 is added to it 
and the result is treated as above. 

Example of DNINT Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DNINT_EXAMPLE 

EXTERNAL DNINT 
DOUBLE PRECISION x 
.x=99.99dO 
PRINT *. 'The DNINT of x is:' 
PRINT-. ONINT(x) 
END 

The DNINT of x is: 
100. 
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DPROD 

DPROD 
DPROD computes the product of two arguments. It accepts two real arguments and 
returns a double precision result. 

The call-by-reference entry points are MLP$RDPROD and DPROD, and the 
call-by-value entry point is MLP$VDPROD. 

The input domain for this function is the collection of all valid real pairs (x,y) such 
that x*y is a valid double precision quantity. The output range is included in the set of 
valid double precision quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is branched to, and the result is returned to the 
call-by-reference routine. The result is checked. If the result is infinite, it is invalid, 
and a diagnostic message is displayed. If the result is valid, it is returned to the 
calling program. 

Call-By-Value Routine 

Given argument pair (x,y), the result of x*y is found. 

Example of DPROD Called From FORTRAN 

Source Code: 

PROGRAM DPROD_EXAMPLE 
EXTERNAL DPROD 

C Accepts two real arguments. Returns a double precision result. 
x=140.0 

Output: 

y=750.0 
PRINT * 'The DPROD of x and y is:' 
PRINT * DPROD(x,Y) 
END 

The DPROD of x and y is: 
105000. 
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DSIGN 

DSIGN 
DSIGN transfers the sign of the second argument to the sign of the first. It accepts 
two double precision arguments and returns a double precision result. 

The call-by-reference entry points are MLP$RDSIGN and DSIGN, and the call-by-value 
entry point is MLP$VDSIGN. 

The input domain for this function is the collection of all valid double precision pairs 
(x,y). The output range is included in the set of valid double precision quantities. 

Call-By-Reference Routine 

No errors are generated by DSIGN. The call-by-reference routine branches to the 
call-by-value routine. 

Call-By-Value Routine 

The sign bit of the second argument is isolated by a mask with all other bits zero. The 
sign bits of the upper and lower words of the first argument are cleared by a boolean 
AND mask and replaced by the sign of the second argument by a boolean inclusive OR 
with the complement of the mask. . 

Given arguments (x,y): 

result Ixl if y is nonnegative 
result -Ixl if y is negative 
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Example of DSIGN Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DSIGN_EXAMPLE 

EXTERNAL DSIGN 
DOUBLE PRECISION x, Y 
x=-140.0dO 
y=750.0dO 
PRINT * 'The DSIGN of x,Y is:' 
PRINT *, DSIGN(x,Y) 
END 

The DSIGN of X,Y is: 
140. 
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DSIN 

DSIN 
DSIN computes the sine function. It accepts a double precision argument and returns a 
double precision result. 

The call-by-reference entry points are MLP$RDSIN and DSIN, the call-by-value entry 
point is MLP$VDSIN, and the vector entry point is MLP$DSINV. 

The input domain for this function is the collection of all valid double precision 
quantities whose absolute value is less than 2**47. The output range is included in the 
set of valid double precision quantities in the interval [-1.0,1.0]. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result is returned to the calling program. 

Call-By-Value Routine 

Upon entry, the argument x is made positive and is multiplied by 2/pi in double 
precision, and the nearest integer n to x*2/pi is computed. At this stage, x*2/pi is 
checked to see that it does not exceed' 2**47. If it does, a diagnostic message is 
returned. Otherwise, y = x - n*pil2 is computed in double precision as the reduced 
argument, and y is in the interval [-pil4,pil4]. The value of mod(n,4), the entry point 
called, and the original sign of x determine whether a sine polynomial approximation 
p(x) or a cosine polynomial approximation q(x) is to be used. A flag is set to indicate 
the sign of the final result. 

For x in the interval [-pil4,pil4], the sine polynomial approximation is: 

p(X) = a(1)x + a(3)x**3 + a(5)x**5 + a(7)x**7 + a(9)x**9 + a(11)x**11 + 

a(13)x**13** + a(15)x**15 + a(17)x**17 + a(19)x**19 + a(21)x**21 

and the cosine polynomial approximation is: 

Q(x) = b(O) + b(2)x**2 + b(4)x**4 + b(6)x**6 + b(8)x**8 + b(10)x**10 + 

b(12)x**12 + b(14)x**14 + b(16)x**16 + b(18)x**18 + b(20)x**20 
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The coefficients are: 

a( 1) 

a(3) 

a(5) 

a(7) 

a(9) 

a( 11) 

a( 13) 
a( 15) 
a( 17) 

a( 19) 
a(21) 

b(O) 

b(2) 
b(4) 
b(6) 
b(8) 
b(10) 
b(12) 
b( 14) 
b( 16) 
b(18) 
b(20) 

.999 999 999 999 999 999 999 999 999 99 
-.166 666 666 666 666 666 666 666 666 52 

.833 333 333 333 333 333 333 332 709 57*10**-2 
-.198 412 698 412 698 412 698 291344 78*10**-3 

.275 573 192 239 858 906 394 406 844 01*10**-5 
-.250 521 083 854 417 101 138 076 473 5*10**-7 

.160 590 438 368 179 417 271 194 064 61*10**-9 
-.764 716 373 079 886 084 755 348 748 91*10**-12 

.281 145 706 930 018*10**-14 
-.822 042 461 317 923*10**-17 

.194 362 013 130 224*10**-19 

.999 999 999 999 999 999 999 999 999 99 
-.499 999 999 999 999 999 999 999 999 19 

.416 666 666 666 666 666 666 666 139 02 
-.138 888 888 888 888 888 888 755 436 28*10**-2 

.248 015 873 015 873 015 699 922 737 30*10**-4 
-.275 573 192 239 858 775 558 669 957 11*10**-6 

.208 767 569 878 619 214 898 747 461 35*10**-8 
-.114 707 455 958 584 315 495 950 765 75*10**-10 

.477 947 696 822 393 115 933 106 267 21*10**-13 
-.156 187 668 345 316*10**-15 

.408 023 947 777 860*10**-18 

DSIN 

These polynomials are evaluated from right to left in double precision. The sign flag is 
used to give the result the correct sign before returning to the calling program. 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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DSIN 

Error Analysis 

The maximum absolute value of the error of approximation of p(x) to sin(x) over 
(-pil4,pil4) is .2570E-28, and of q(x) to cos (x) is .3786E-28. 

The function DSIN was tested against the 3*DSIN(x/3) - 4*DSIN(x/3)**3. Groups of 
2,000 arguments were chosen randomly from given intervals. Statistics on relative error 
were observed. Table 8-14 shows a summary of these statistics. 

Table 8-14. Relative Error of DSIN 

In terval From 

O.OOOOD+OO 
.1885D+02 

Interval To 

.1571D+Ol 

.2042D+02 

Effect of Argument Error 

Maximum 

.5153D-28 

.2764D-23 

Root Mean 
Square 

.1254D-28 

.6188D-25 

If a small error e occurs in the argument x, the resulting error in sin is given 
approximately by e*cos(x). If the error e becomes significant, the addition formulas for 
sin and cos should be used to compute the error in the result. 
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Example of DSIN Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM DSIN_EXAMPLE 

DOUBLE PRECISION x 
x=0.5dO 
PRINT * 'The DSIN of x is:' 
PRINT * DSIN(x) 
END 

The DSIN of x is: 
.479425538604203000273287935 
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DSINH 
DSINH computes the hyperbolic sine function. It accepts a double precision argument 
and returns a double precision result. 

The call-by-reference entry points are MLP$RDSINH and DSINH, the call-by-value 
entry point is MLP$VDSINH, and the vector entry point is MLP$SINHV. 

The input domain for this function is the collection of all valid double precision 
quantities whose absolute value is less than 4095*10g(2). The output range is included 
in the set of valid double precision quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 4095*log(2). 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result is returned to the calling program. 

Call-By-Value Routine 

Most of the computation is performed in routine DEULER, and the constants used are 
listed there. The argument reduction performed in DEULER is: 

x = argument 
y = reduced argument 
y = x - n*10g(2) 

where n is an integer, and y is in the interval [-1I2*10g(2),1/2*log(2)]. 

The formula used for computation is: 

sinh(y + n*10g(2» = (cosh(y) + sinh(y»*2**(n-l.0) - (cosh(y) -
sinh(y»*2**(-n-l.0) 

where 

cosh(y) = DC, and sinh(y) = OS as computed in routine DEULER. 

On input, the argument is in register pair (X2,X3), and on output, the result is in 
register pair (XE,XF). 

See the description of routine DEULER in chapter 9, Auxiliary Routines, for detailed 
information. 

8-108 Math Library 60486513 H 



DSINH 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 4095*log(2). 

See Vector Error Handling in chapter 7 , Vector Processing, for further information. 

Error Analysis 

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on 
relative error were observed. Table 8-15 shows a summary of these statistics. 

Table 8-15. Relative Error of DSINH 

Test 

DSINH(x) against 
Taylor series expansion 
of DSINH(x) 

DDINH(x) against 
c*(DSINH(x + 1) + 
DSINH(x - 1)) 

Interval From 

O.OOOOD+OO 

.3000D+01 

Effect of Argument Error 

Interval To Maximum 

.5000D+00 .1184D-27 

.2838D+04 .1178D-27 

Root Mean 
Square 

.3084D-28 

.4582D-28 

If a small error e occurs in the argument x, the error in sinh(x) is approximately 
cosh(x)*e. 

Example of DSINH Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM DSINH_EXAMPLE 

DOUBLE PRECISION x 
x=0.5dO 
PRINT * 'The DSINH of x is:' 
PRINT * DSINH(x) 
END 

The DSINH of x is: 
.521095305493747361622425626 
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DSQRT 

DSQRT 
DSQRT computes the square root. It accepts a double precision argument and returns a 
double precision result. 

The call-by-reference entry points are MLP$RDSQRT and DSQRT, the call-by-value 
entry point is MLP$VDSQRT, and the vector entry point is MLP$DSQRTV. 

The input domain for this function is the collection of all valid, nonnegative double 
precision quantities. The output range is included in the set of valid double precision 
quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is negative. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

An initial approximation to sqrt(y) is obtained by evaluating, inline, the sqrt of y(u) in 
single precision. 

One Heron's iteration is performed in double precision using. y and the initial 
approximation of sqrt(y), giving the double precision result. 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is negative. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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DSQRT 

Error Analysis 

The algorithm error is at most 2.05E-31, and is always positive. 

The function DSQRT was tested against DSQRT(x*x) - x. Groups of 2,000 arguments 
were chosen randomly from given intervals. Statistics on relative error were observed. 
Table 8-16 shows a summary of these statistics. 

Table 8-16. Relative Error of DSQRT 

In terval From 

.1000D+01 

.7071D+00 

Interval To 

.1414D+01 

.1000D+01 

Effect of Argument Error 

Maximum 

.OOOOD+OO 

.1785D-28 

Root Mean 
Square 

.OOOOD+OO 

.9981D-29 

For a small error e in the argument y, the amplification of absolute error is 
e/2*sqrt(y». 

Example of DSQRT Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DSQRT_EXAMPLE 

DOUBLE PRECISION x 
x=49.0dO 
PRINT * 'The DSQRT of x is:' 
PRINT *. DSQRT(x) 
END 

The DSQRT of x is: 
7. 
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DTAN 

DTAN 
DTAN is a function that computes the tangent function. It accepts a double precision 
argument and returns a double precision result. 

The call-by-reference entry points are MLP$RDTAN and DTAN, the call-by-value entry 
point is MLP$VDTAN, and the vector entry point is MLP$DTANV. 

The input domain for this function is the collection of all valid double precision 
quantities whose absolute value is less than 2**47. The output range is included in the 
set of valid double precision quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

The argument reduction is performed in two steps: 

1. A pil2 reduction is performed first. If the argument is outside the interval 
[-pil4,pil4], a signed integer multiple n of pil2 is computed such that, after adding 
it to the argument, the result z falls in the interval [-pil4,pil4]. 

2. A 118 reduction is performed next. A signed integer m, which is a multiple of 118, 
is subtracted from z such that the result is in the interval [-1116,1116]. A small 
number e(m) is also subtracted from z. The value of e(m) is constant such that the 
tangent of ml8 + e(m) can be represented to double precision accuracy in a single 
precision word. The lower word is zero. Therefore, the original argument y is 
reduced to x as follows: 

x = y - (n*pi/2) - (m/8 + e(m» 

The following quantities are computed from the reduced argument x and from the 
range reduction values. The functions U and L represent "upper of' and "lower of' 
functions. 

t = tan(m/8 + e(m» 
r = L(U(x)**2)/2U(x) + L(x) 
a L(U(x)**2) + 2L(x)U(x) 
b = U(U(x)**2) 
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Since: 

tan(x) tan(sQrt(x**2» 
tan(sQrt(U(U(x)**2 + L(U(x)**2) + 2L(x)U(x») 
tan(sQrt(b + a» 
tan(sQrt(b) + a/2b) 
tan(sQrt(b) + r) 

Then s = sqrt(b) = U(x) - L(U(x)**2)/2U(x) 

The value of the original argument y is: 

tan(y) = tan(x + n*pi/2 + m/8 + e(m» 

The effect of the n*pi/2 term on the final result is: 

tan(y) 
tan(y) 

tan(x +m/8 + e(m», if n is even 
1/tan(x + m/8 + e(m», if n is odd 

Applying the tangent addition formula gives: 

tan(x + m/8 + e(m» = tan(s + r + (m/8 + e(m» 

tan(s) + tan(r) + t - tan(s)*tan(r)*t 

1.0 - tan(s)*tan(r) - tan(r)*t - t*tan(s) 

tan(s) + r + t - tan(s)*r*t 

1.0 - tan(s)*r - r*t - t*tan(s) 

Tan(s) is computed by using the general polynomial form: 

x + x**3/3 + x**5*2/315 ... 

Mter Chebyshev is applied to the coefficients, the form is: 

tan(s) = s + s*(c(1)s**2 + c(2)s**4 + c(3)s**6 + c(4)s**8 + 

(a/(b - s**2»s**10) 

where a = .0218 ... and b = 2.467 ... 

The quotient is inverted if n is odd. 
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DTAN 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The algorithm error has a negligible effect on the total error. The worst relative error 
of the algorithm is 1.032E-29. There is a negligible error introduced by the pi/2 range 
reduction except for points close to nonzero multiples of pi/2. Near pi/2, the pi/2 
reduction relative error is bounded by 2**(n-155) where n is the number of bits of 
precision to which the argument represents pi/2. At larger multiples of pi/2, similar 
problems occur. 

The function DTAN was tested against 2*DTAN(xl2)/(1 - DTAN(xl2)**2). Groups of 
2,000 arguments were chosen randomly from given intervals. Statistics on relative error 
were observed. Table 8-17 shows a summary of these statistics. 

Table 8-17. Relative Error of DTAN 

Root Mean 
Interval From Interval To Maximum Square 

.OOOOD+OO .7854D+00 .1946D-27 .4491D-28 

.1885D+02 .1963D+02 .1729D-27 .4480D-28 

.2749D+01 .3534D+01 .2008D-27 .5363D-28 
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DTAN 

Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result is e*sec(x)**2. 

Example of DTAN Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DTAN_EXAMPLE 

DOUBLE PRECISION x 
x=0.5dO 
PRINT * 'The DTAN of x is:' 
PRINT * DTAN(x) 
END 

The DTAN of x is: 
.546302489843790513255179466 
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DTANH 
DTANH computes the hyperbolic tangent function. It accepts a double precision 
argument and returns a double precision result. 

The call-by-reference entry points are MLP$RDTANH and DTANH, the call-by-value 
entry point is MLP$VDTANH, and the vector entry point is MLP$DTANHV. 

The input domain for this function is the collection of all valid double precision 
quantities. The output range is included in the set of valid quantities in the interval 
[ -1.0,1.0]' 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if it is indefinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

Most of the computation is performed in routine DEULER, and the constants used are 
listed there. The argument reduction performed is: 

1. For argument in [-47*log(2),47*log(2)] but not in [-1I2*log(2),1I2*log(2)]: 

x = argument 
y = reduced argument 
y = 2x - n*10g(2) 

where n is an integer, and y is in [-1I2*log(2), 1I2*log(2)] 

tanh(x) = u/v where 

u = 1.0 - 2**-n - 2**-n*(OC - OS) 
v = 1.0 - 2**-n + 2**-n*(OC - OS) 

2. For argument in [-1I2*log(2), 1I2*log(2)]: 

x = argument 
y = reduced argument 
y = x 

tanh(x) = OS(2*+DC) 

3. For argument outside [-47*log(2),47*log(2)]: 

x = argument 
y = reduced argument 

tanh(x) = 1.0 - 2«1.0 + DC - OS)*2**-n - «1.0 + DC - OS)*2**-n)**2) 

In steps 1, 2, and 3, DC = cosh(y) - 1.0 and DS = sinh(y), where DC + DS are 
computed in DEULER. 

On input, the argument is in register pair (X2-X3), and on output, the result is in 
register pair (XE-XF). 
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DTANH 

Vector Routine 

The argument is checked upon entry. It is invalid if it is indefinite. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The function DTANH was tested against (DTANH(x - liS) + DTANH(lIS))/(1 + 
DTANH(x - liS) * DTANH (liS)). Groups of 2,000 arguments were chosen randomly from 
given intervals. Statistics on relative error were observed. Table S-IS shows a summary 
of these statistics. 

Table 8-18. Relative Error of DTANH 

Interval From 

.1250D+00 

.6743D+00 

Algorithm Error 

Interval To 

.5493D+00 

.3431D+02 

Maximum 

.9403D-28 

.3282D-27 

Root Mean 
Square 

.2612D-28 

.2348D-2S 

The algorithm error is insignificant. It is predominated by the error in the sinh 
expression in DEULER, but by various folding actions, the error is reduced even 
further. 

Effect o~ Argument Error 

If a small error e occurs in the argument x, the error in the result is given by 
e*sech(x)**2. 

Example of DTANH Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM DTANH_EXAMPLE 

DOUBLE PRECISION x 
x=0.5dO 
PRINT * 'The DTANH of x is:' 
PRINT * DTANH(x) 
END 

The DTANH of x is: 
.462117157260009758502318484 
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DTOD 
DTOD performs exponentiation for program statements that raise double precision 
quantities to double precision exponents. It accepts two double precision arguments and 
returns a double precision result. DTOD also accepts compiler-generated calls (for 
example, the FORTRAN and Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RDTOD and DTOD, and the call-by-value 
entry point is MLP$VDTOD. 

The DTOD vector math function is divided into three routines having three separate 
entry points defined as follows: 

DTOD(scalar,vector) = MLP$DTODV 
DTOD(vector,scalar) = MLP$DVTOD 
DTOD(vector,vector) = MLP$DVTODV 

The input domain for this function is the collection of all valid double precision pairs 
(x,y), where x is positive and x**y is a valid quantity. If x is equal to zero, then y 
must be greater than zero. The output range is included in the set of valid, positive 
double precision quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

x is negative. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 
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Call-By-Value Routine 

The formula used for computation is: 

x**y = exp(y*log(x», where x > o. 

Upon entry, the routine calls DLOG to compute log(x), and DEXP to compute 
exp(y*log(x)). 

V ector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

x is negative. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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DTOD 

Error Analysis 

The function DTOD was tested. Groups of 2,000 arguments were chosen randomly from 
given intervals. Statistics on relative error were observed. Table 8-19 shows a summary 
of these statistics. 

Table 8-19. Relative Error DTOD 

Test 

x**y against x**2**(y/2) 

x**2**1.5 
against 
x**2*x 

x**1.O against x 

Interval From 

x interval 
.1000D-01 

y interval 
-.6167D+03 

.1000D+01 

.5000D+00 

.5000D+00 

Effect of Argument Error 

Root Mean 
Interval To Maximum Square 

.1000D+02 .5172D-25 .9207D-26 

.6167D+03 

.8053+411 .1133D-24 .4805D-25 

.1000D+01 .1143D-27 .3978D-28 

.1000D+01 .7133D-28 .3195D-28 

If a small error e(b) occurs in the base b and a small error e(p) occurs in the exponent 
p, the error in the result r is given approximately by: 

r*(lo9(b)*e(p) + p*e(b)/b) 
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Example of DTOD Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DTOD_EXAMPLE 

DOUBLE PRECISION x, y, DTOD 
x=20.0dO 
y=140.0dO 
PRINT * 'The DTOD of x and y is:' 
PRINT *, DTOD(x,Y) 
END 

The DTOD of x and Y is: 
1.39379657490816394634598238E+182 
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DTOI 

DTOI performs exponentiation for program statements that raise double precision 
quantities to double precision exponents. It accepts two double precision arguments and 
returns a double precision result. DTOI also accepts compiler-generated calls (for 
example, the FORTRAN and Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RDTOI and DTOI, and the call-by-value 
entry point is MLP$VDTOI. 

The DTOI vector math function is divided into three routines having three separate 
entry points defined as follows: 

DTOI(scalar,vector) = MLP$DTOIV 
DTOI(vector,scalar) = MLP$DVTOI 
DTOI(vector,vector) = MLP$DVTOIV 

The input domain for this function is the collection of all valid pairs (x,y), where x is 
a double precision quantity and y is an integer quantity. If x is equal to zero, then y 
must be greater than zero. The output range is included in the set of valid double 
precision quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

x infinite. 

x is equal to zero and y is less than or equal to zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 

Call-By-Value Routine 

An x represents the base, and a y represents the exponent. If y is nont:legative and has 
the binary representation OOO ... 0i(n)i(n-1) .. .i(1)i(O), where each i(j)(O ~ j ~ n) is 0 or 
1, then: 

y = i(n)*2**n + i(n-1)*2**(n-1) + ... + i(1)*2**1 + i(0)*2**0 

and n = (log(2)y) = greatest integer not exceeding log(2)y. Then: 

x**y = prod[x**2**j : 0.:: j < nand i{j) = 11. 
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DTOI 

The numbers x = X**O, x**2**O, x**2, x**4, ... , x**2n are generated by successive 
squarings, and the coefficients i(n), ... , i(O) are obtained as the sign bits of successive 
circular left shifts of y within the computer. A running product is formed during the 
computation so that smaller powers of x and earlier coefficients i(j) can be discarded. 
Thus, the computation becomes an iteration of the algorithm: 

x**y 1, if Y = 0 and x not= O. 
(x**2)**(y/2), if y > 0 and y is even. 
x*(x**2)**«y - 1)/2), if y > 0 and y is odd. 

Upon entry, if the exponent y is negative, the following steps are performed with R(k) 
representing the running product after k iterations: 

1. y is replaced by -y. 

2. Y is shifted right (end-off) by 1. 

This effectively divides y by 2 and the final multiplications are completed after the 
running product, R(n-I) is replaced by IIR(n-l) in the case of exponent overflow for 
very large negative exponents. 

3. The algorithm continues as if the exponent was positive with the above formula for 
(n-I) iterations. 

4. Either of the following two methods produces the final result R(n): 

a. If the final multiplication (depending on iln and the last bit of the power) 
R(n-I) ** 2 * (x ** i(j)) gives exponent overflow, then the running product after 
(n-I) iterations is inverted and the result is: 

R(n) = (1/(R(n-1» * (l/(x ** i(j»), j = n 

b. If there is no exponent overflow in the final multiplication, the result is: 

R(n) = (l/(R(n-l) ** 2 * (x ** ;(j») 

In the routine, double precision quantities a = a(u)*a(l) and b = b(u)*b(l) are 
multiplied according to: 

a*b = (a*b)(u)*(a*b)(l) 

where: 

(a*b)(u) «(~(U)*b(l» + (a(l)*b(u») + (a(u)*(l)b(u») + (a(u)*b(u» 

and 

(a*b)(l) «(a(u)*b(l» + (a(l)*b(u») + (a(u)*(l)b(u») + (l)(a(u)*b(u» 
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Vector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 
) 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Effect of Argument Error 

If a small error e occurs in the base b, the error in the result will be given 
approximately by n*b**(n-l)*e, where n is the exponent given to the routine. 
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Example of DTOI Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM OTOI_EXAMPLE 

INTEGER i 
DOUBLE PRECISION d, dtoi 
i=2 

d=10.0dO 
PRINT *, 'The OTOI of d and is:' 
PRINT *, OTOI(d,i) 
END 

The OTOI of and dis: 
100. 

DTOI 
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DTOX 
DTOX performs exponentiation for program statements that raise double precision 
quantities to double precision exponents. It accepts two double precision arguments and 
returns a double precision result. DTOX also accepts compiler-generated calls (for 
example, the FORTRAN and Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RDTOX and DTOX, and the call-by-value 
entry point is MLP$VDTOX. 

The DTOX vector math function is divided into three routines having three separate 
entry points defined as follows: 

DTOX(scalar,vector) = MLP$DTOXV 
DTOX(vector,scalar) = MLP$DVTOX 
DTOX(vector,vector) = MLP$DVTOXV 

The input domain for this function is the collection of all valid pairs (x,y), where x is 
a nonnegative double precision quantity and y is a real quantity. If x is equal to zero, 
then y must be greater than zero. The output range is included in the set of valid, 
positive double precision quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

x is negative. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is va,lid, it is returned 
to the calling program. 

Call-By-Value Routine 

The formula used for computation is: 

x**y = exp(y*log(x», where x > 0 

Upon entry, the routine calls DLOG to compute log(x), and DEXP to compute 
exp(y*log(x)) . 
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Vector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

x is negative. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

See the description of function DTOD. 

Effect of Argument Error 

If a small error e(b) occurs in the base b and a small error e(p) occurs in the exponent 
p, the error in the result r is given approximately by: 

r*(e(p)*log(b) + p*e(b)/b) 

Example of DTOX Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DTOX_EXAMPLE 

REAL x 
DOUBLE PRECISION d, dtox 
x=2.0 
d=10.0dO 
PRINT * 'The DTOX of d and x is:' 
PRINT *, DTOX(d,x) 
END 

The DTOX of d and x is: 
100. 
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DTOZ 
DTOZ performs exponentiation for I program statements that raise double precision 
quantities to double precision exponents. It accepts two double precision arguments and 
returns a double precision result. DTOZ also accepts compiler-generated calls (for 
example, the FORTRAN and Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RDTOZ and DTOZ, and the call-by-value 
entry point is MLP$VDTOZ. 

The DTOZ vector math function is divided into three routines having three separate 
entry points defined as follows: 

DTOZ(scalar,vector) = MLP$DTOZV 
DTOZ(vector,scalar) = MLP$DVTOZ 
DTOZ(vector,vector) = MLP$DVTOZV 

The input domain for this function is the collection of all valid pairs (x,y), where x is 
a double precision quantity and y is a complex quantity. If x is equal to zero, then the 
real part of y must be greater than zero, and the imaginary part must be equal to 
zero. The output range is included in the set of valid double precision quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero, and the real part of y is less than or; equal to zero, or the 
imaginary part of y is not equal to zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 

Call-By-Value Routine 

If the base is real and the exponent is complex, then: 

base**exponent = x + i*y 

Upon entry, the double precision base, x, is converted to complex, and the routine calls 
ZTOZ to compute the result. 
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Vector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

y is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero, and the real part of y is less than or equal to zero, or the 
imaginary part of y is not equal to zero. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

A group of 10,000 arguments was chosen randomly from the interval 
([-1.0,1.0],[-1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these 
arguments was found to be 1.7431E-11. 

Effect of Argument Error 

DTOZ 

If a small error e(b) occurs in the base b and a small error e(z) occurs in the exponent 
z, the error in the result w is given approximately by: 

w*(e(z)*log(b) + z*e(b)/b) 

Example of DTOZ Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM DTOZ_EXAMPLE 

COMPLEX zeta, dtoz 
DOUBLE PRECISION d 
zeta = (5.0, -1) 
d=10.0dO 
PRINT * 'The OTOZ of d and zeta is:' 
PRINT *, DTOZ(d,zeta) 
END 

The DTOZ of d and zeta is: 
(-66820.15101903, -74398.03369575) 
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ERF 
ERF computes the error function. It accepts a real argument and returns a real result. 

The call-by-reference entry points are MLP$RERF and ERF, the call-by-value entry 
point is MLP$VERF, and the vector entry point is MLP$ERFV. 

The input domain for this function is the collection of all valid real quantities. The 
output range is included in the set of real quantities in the interval [-1.0,1.0]. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if it is indefinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is branched to, and the result of the computation is returned 
to the calling program. 

Call-By-Value Routine 

The routine calculates the smaller of erf(abs(x» and erfc(abs(x». The final value, which 
is the sum of a signed function and a constant, is computed by using the identities: 

erf(-x) = -erf(x) 
erf(x) = 1.0 - erfc(x) 

The forms used in ERF (y = ABS(x» are given in table 8-20. 

Table 8-20. Forms Used in ERF 

Range ERF ERFC 

[-INF ,-5.625] -1.0 +2.0 
(-5.625,-.477) -1.0+p2(y) +2.0-p2(y) 
[ -.477,0) -pl(y) +1.0+pl(y) 
[0,+.477] +pl(y) +1.0-pl(y) 
[.477,5.625) + 1.0-p2(y) p2(y) 
[5.625,8.0) +1.0 p2(y) 
[8.0,53.0] +1.0 p3(y) 
(53.0, + INF) +1.0 underflow 
+INF +1.0 0.0 

The constants .477 and 53.0 are inverse erf(.5) and inverse erfc(2**-975), which are 
approximately .47693627620447 and 53.0374219959898. 

The function pI is a (5th order odd)/(8th order even) rational form. The functions p2 
and p3 are exp(-x**2)*(rational form), where p2 is (7th order)/(8th order) and p3 is 
(4th order)/(5th order). Since exp(-x**2) is ill-conditioned for large x, exp(-x**2) is 
calculated bJ exp(u + e) = exp(u) + e*exp(u), where u = -x**2 upper and e = 
-x**2 lower.5 

5. The coefficients for p2 and p3 are from Hart, Cheney, Lawson, et aI., Computer Approximations, New 
York, 1968, John Wiley and Sons. 
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Vector Routine 

The argument is checked upon entry. It is invalid if it is indefinite. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The function ERF was tested against 1 - e**(-x**2)*p(x)/q(x),. A group of 10,000 
arguments was chosen randomly from the interval (0.0,8.0). The maximum relative 
error of these arguments was found to be .2050E-13. 

Effect of Argument Error 

ERF 

For small errors in the argument x, the amplification of absolute error is 
(2/sqrt(pi))*exp(-x**2) and that of relative error is (2/sqrt(pi»*x*exp(-x**2)/f(x) where f 
is erf or erfc. The relative error is attenuated for ERF everywhere and for ERFC when 
x < .53. For x > .53, the relative error for ERFC is amplified by approximately 2x. 

Example of ERF Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM ERF_EXAMPLE 

REAL x 
x=100000.0 
PRINT * 'The error function of x is:' 
PRINT *. ERF(x) 
ENO 

The error function of x is: 
1. 
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ERFC 
ERFC computes the complementary error function. It accepts a real argument and 
returns a real result. 

The call-by-reference entry points are MLP$RERFC and ERFC, the call-by-value entry 
point is MLP$VERFC, and the vector entry point is MLP$ERFCV. 

The input domain for this function is the collection of all valid real quantities less 
than 53.037, but not equal to infinity. The output range is included in the set of valid, 
nonnegative real quantities less than or equal to 2.0. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is greater than 53.037, but not equal to infinity. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is branched to, and the result of the computation is returned 
to the calling program. 

Call-By-Value Routine 

The routine calculates the smaller of erf(abs(x» and erfc(abs(x». The final value, which 
is the sum of a signed function and a constant, is computed by using the identities: 

erf(-x) = -erf(x) 
erf(x) = 1.0 - erfc(x) 

The forms used are given in table 8-20. 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is greater than 53.037, but not equal to infinity. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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Error Analysis 

The functionERFC was tested against e**(-x**2)*p(x)/q(x)'. A group of 10,000 
arguments was chosen randomly from the interval (0.0,8.0). The maximum relative 
error of these arguments was found to be .9531E-11. 

Effect of Argument Error 

ERFC 

For small errors in the argument x, the amplification of absolute error is 
(2/sqrt(pi))*exp( -x**2) and that of relative error is (2/sqrt(pi))*x*exp( -x**2)/f(x) where f 
is erf or erfc. The relative error is attenuated for ERF everywhere and for ERFC when 
x < .53. For x > .53, the relative error for ERFC is amplified by approximately 2x. 

Example of ERFC Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM ERFC_EXAMPLE 

REAL x 
x=53.036 
PRINT * 'The complementary error function of x is:' 
PRINT *, ERFC(x) 
END 

The complementary error function Of x is: 
2.727387727515E-1224 
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EXP 

EXP 
EXP computes the exponential function. It accepts a real argument and returns a real 
result. 

The call-by-reference entry points are MLP$REXP and EXP, the call-by-value entry 
point is MLP$VEXP, and the vector entry point is MLP$EXPV. 

The input domain for this function is the collection of all valid real quantities whose 
value is greater than or equal to -4097*10g(2) and less than or equal to 4095*10g(2). 
The output range is included in the set of valid positive real quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is greater than 4095*log(2). 

It is less than -4097*log(2). 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
call-by-reference routine. The result is checked. If the result is infinite, it is invalid, 
and a diagnostic message is displayed. If the result is valid, it is returned to the 
calling program. 
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EXP 

Call-By-Value Routine 

If x is valid, EXP(x) is calculated by reducing it to the simpler task of approximating 
e**g*2**(NL/32). This reduction is derived as follows: 

exp(x) = e**(g + (32*NH + NL)*(ln(2)/32» 
= e**(g + NH*ln(2) + (NL/32)*ln(2» 
= e**g*2**NH*2**(NL/32) 
= (e**g*2**(NL/32»*2**NH 

where 

n is the nearest integer to 32*x/1n(2). 
9 is a real number such that x = 9 + n*(ln(2)/32). Thus. 
abs(g) is less than or equal to 1n(2)/64. 
NH is f1oor(n/32). 
NL is greater than or equal to O. 1ess'than or equal to 31. 
and is the integer such that n = 32~NH + NL. 

The reduction: 

e**g*2**(NL/32) 

is approximated to 48 bits of precision using the following minimax approximation: 

Z = Q(NL, g) + Qbias(NL) 

where for each of the 32 values of NL, Qbias(NL) is a number that is represented 
exactly in binary f1oating-point and which is slightly less than 2**( -1I64)*2**(NL/32), 
which is the minimum value of e**g*2**(NL/32). 

Q(NL, g) denotes the 32 quintic polynomials in g which approximate e**g*2**(NL/32) -
Qbias(NL) with the lowest maximum relative error for abs(g) ~ In(2)/64. Z is evaluated 
with almost no error since the low bits of Q(NL, g), which may be inaccurate due to 
truncation errors, are insignificant with respect to Qblas(NL). Thus, Z*2**NH, which is 
evaluated simply by adding NH to the exponent of Z, is an accurate approximation to 
EXP(x). 
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EXP 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is greater than 4095*log(2). 

It is less than -4097*log(2). 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on 
relative error were observed. Table 8-21 shows a summary of these statistics. 

Table 8·21. Relative Error EXP 

Root Mean 
Test Interval From Interval To Maximum Square 

EXP(x - 2.8125) -.3466E+01 -.2805E+04 .7335E-14 .3766E-14 
against 
EXP(x)IEXP(2.8125) 

EXP(x - .0625) against -.2841E+00 .3466E+00 .7557E-14' .3945E-14 
EXP(x)IEXP(.0625) 

EXP(x - 2.8125) .6931E+01 .2838E+04 .7384E-14 .3850E-14 
against 
EXP(x)IEXP(2.8125) 
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EXP 

Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result y is given be y*e. 

Example of EXP Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM EXP_EXAMPLE 

REAL x 
x=1000.0 
PRINT * 'The EXP of x 1S:' 

PRINT *, EXP(x) 
END 

The EXP of x 15: 
1.970071114017E+434 
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EXTB 
EXTB extracts bits from the first argument, x, as specified by the second and third 
arguments, i1 and i2; that is, EXTB(x, il, i2) extracts bits from x starting with 
position il with length of i2. It accepts any type except character for argument x and 
accepts integer for arguments i1 and i2. The result is boolean. 

If x is of type double precision or complex, only the first word is used. The result is 
returned with a zero-filled second word. The following example FORTRAN program 
uses function EXTB with double precision arguments to illustrate the zero-filled second 
word. 

Source Code: 

C 

Output: 

PROGRAM EXTB_EXAMPLE 

EXTERNAL EXTB 
DOUBLE PRECISION d1,d2 
BOOLEAN x(2),y(2) 
EQUIVALENCE (x(1),d1),(y(1),d2) 
x(1)=Z"1234567890ABCDEF" 
x(2)=Z"FEDCBA0987654321" 
y(1)=Z"1111111111111111" 
y(2)=Z"2222222222222222" 
d2=EXTB(d1,0,32) 
PRINT *,x(1),x(2) 
PRINT *,y(1),y(2) 
END 

Z"1234567890ABCDEF" Z"FEDCBA0987654321" 
Z"12345678" Z"O" 

Argument x must be byte aligned and be at least 64 bits in length. The argument used 
is the leftmost 64 bits of x. Argument i1 indicates the first bit to be extracted 
numbering from bit 0 on the left. Argument i2 indicates the number of bits to be 
extracted. The extracted bits occupy the rightmost bits of the result, with 0 bits as fill 
on the left. 

The call-by-reference entry points are MLP$REXTB and EXTB, and the call-by-value 
entry point is MLP$VEXTB. 

The input domain for this function is such that i1 is greater than or equal to 0 and 
less than 64; i2 is greater than or equal to 0; and il + i2 is less than or equal to 64. 
If i2 = 0, the result is 0 (all 0 bits). The data type of argument x is not significant to 
the processing of this function. The output range is iricluded in the set of valid boolean 
quantities. 
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EXTB 

Call-By-Reference Routine 

The arguments i1 and i2 are checked upon entry. They are invalid if: 

i1 is less than zero. 

i2 is less than zero. 

i1 is greater than or equal to 64. 

i1 + i2 is greater than 64. 

If the arguments are invalid, a diagnostic message is displayed. If the arguments are 
valid, the call-by-value routine is branched to, and the result of the function is 
returned to the calling program. 

Call-By-Value Routine 

The extracted bits from the first argument, x, as specified by the second and third 
arguments, i1 and i2, are returned. The leftmost 64. bits of x are used. 

Example of EXTB Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM EXTB_EXAMPLE 

EXTERNAL EXTB 
REAL x 
INTEGER i 1, i2 
x=Z"4321FEDCBA987654" 
i1=1 
i2=48 
PRINT * 'The EXTB of x is:' 
PRINT * EXTB(x,i1,i2) 
END 

The EXTB of x is: 
Z"4321FEDCBA98" 

60486513 H Function Descriptions 8-139 



lABS 

lABS 
lABS computes the absolute value of an argument. It accepts an integer argument and 
returns an integer result. 

The call-by-reference entry points are MLP$RIABS and lABS, and the call-by-value 
entry point is MLP$VIABS. 

The input domain for this function is the collection of all valid integer quantities. The 
output range is included in the set of valid, nonnegative integer quantities. 

Call-By-Reference Routine 

No errors are generated by lABS. The call-by-reference routine branches to the 
call-by-value routine. 

Call-By-Value Routine 

The sign bit of the argument is extended throughout a word to form a mask. The 
argument is subtracted from the exclusive OR of the mask and the argument to form 
the result. 

Example of lABS Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM lABS_EXAMPLE 

EXTERNAL lABS 
INTEGER i 
i=-40.0 
PRINT· 'The absolute value of is:' 
PRINT· IABS(;) 
END 

The absolute value of is: 
40 
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IDIM 

IDIM computes the positive difference between two arguments. It accepts two integer 
arguments and returns an integer result. 

The call-by-reference entry points are MLP$RIDIM and IDIM, and the call-by-value 
entry point is MLP$VIDIM. 

The input domain for this function is the collection of all valid integer pairs (x,y) such 
that x - y is less than 2**63. The output range is included in the set of valid, 
nonnegative integer quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

x - y is greater than or equal to 2**63. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is branched to, and the result of the computation is returned 
to the calling program. 

Call-By-Value Routine 

Upon entry, the difference between the two arguments is formed, and the sign bit is 
extended across another word to form a mask. The boolean product of the mask's 
complement and the difference is formed. 

Given arguments (x,y): 

result x - y if x > y 
result 0 if x ~ y. 

Example of IDIM Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM 101M_EXAMPLE 

EXTERNAL 101M 
INTEGER i 1, i2 
i1=1988 
i2=1929 
PRINT • 
PRINT • 
END 

'The 101M of i1,i2 is:' 
IOIM(i 1, i2) 

The 101M of i1,i2 is: 
59 

60486513 H Function Descriptions 8-141 



IDNINT 

IDNINT 
IDNINT returns the nearest integer to an argument. It accepts a double precision 
argument and returns an integer result. 

The call-by-reference entry points are MLP$RIDNINT and IDNINT, and the 
call-by-value entry point is MLP$VIDNINT. 

The input domain for this function is the collection of all valid double precision 
quantities. The output range is included in the set of valid integer quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is branched to, and the result of the computation is returned 
to the calling program. 

Call-By-Value Routine 

If the argument is ~ 0, .5 is added to it, and the result is added to a special 
floating-point zero that forces truncation. If the argument is < 0, -.5 is added to it, 
a.nd the result is added to a special floating-point zero that forces truncation. 

If the value of the argument is not in the range [-2**63 - 2**15,2**63 - 2**15], then 
the high order bits of the resulting integer are lost (the result is truncated in its 
leftmost position). 
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Example of IDNINT Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM IDNINT_EXAMPLE 

EXTERNAL IDNINT 
DOUBLE PRECISION x 
x=999.999dO 
PRINT *, 'The nearest integer to x is:' 
PRINT *, IDNINT(x) 
END 

The nearest integer to x is: 
1000 
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INSB 
INSB inserts bits from the first argument, x, into a copy of the fourth argument, y, as 
specified by the second and third arguments, il and i2; that is, INSB(x, il, i2, y) 
inserts bits from x starting with position il with length of i2 into a copy of y. It 
accepts any type except character for arguments x and y, and accepts integer for 
arguments il and i2. The result is boolean. 

If x or y is of type double precision or complex, only the first word is used. The result 
is returned with a zero-filled second word; however, for double precision the first 4 
bytes of the first word are duplicated in the second word. This duplication preserves 
the exponent in the second word. The following FORTRAN example uses function INSB 
with double precision arguments to illustrate the zero-filled second word and the 
duplication of the exponent 1111 in the second word. 

Source Code: 

C 

Output: 

PROGRAM INSB_EXAMPLE 

EXTERNAL INSB 
DOUBLE PRECISION dl.d2.d3 
BOOLEAN x(2).y(2).z(2) 
EQUIVALENCE (x(1).dl).(y(1).d2).(z(1).d3) 
x(l)=Z" l234567890ABCDEF" 
x(2)=Z"FEDCBA098765432l" 
y(l)=Z"llllllllllllllll" 
y(2)=Z"2222222222222222" 
d3=lnsb(dl,16,16,d2) 
PRINT ·,x(1),x(2),y(1),y(2) 
PRINT ·,z(1),z(2) 
END 

Z"1234567890ABCDEF" Z"FEDCBA098765432l" Z"llllllllllllllll" Z"2222222222222222" 
Z"1111CDEFllll1lll" Z"11ll000000000000" 

Arguments x and y must be byte aligned and be at least 64 bits in length. The 
argument used is the leftmost 64 bits of each x and y. Argument i1 indicates first bit 
position in y for insertion. Argument i2 indicates the rightmost number of bits taken 
from x to be inserted into y. . 

The call-by-reference entry points are MLP$RINSB and INSB, and the call-by-value 
entry point is MLP$VINSB. 

The input domain for this function is such that il is greater than or equal to 0 and 
less than 64; i2 is greater than or equal to 0; and il + i2 is less than or equal to 64. 
If i2 = 0, the result is the value of y. The data type of arguments x and y is not 
significant to the processing of this function. The output range is included in the set of 
valid boolean quantities. 
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INSB 

Call-By-Reference Routine 

The arguments i1 and i2 are checked upon entry. They are invalid if: 

i1 is less than zero. 

i2 is less than zero. 

i1 is greater than or equal to 64. 

i1 + i2 is greater than 64. 

If the arguments are invalid, a diagnostic message is displayed. If the arguments are 
valid, the call-by-value routine is branched to, and the result of the function is 
returned to the calling program. 

Call-By-Value Routine 

The inserted bits from the first argument, x, into a copy of the fourth argument, y, as 
specified by the second and third arguments, i1 and i2, are returned. The leftmost 64 
bits of x and yare used. 

Example of INSB Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM INSB_EXAMPLE 

EXTERNAL INSB 
REAL X,Y 
INTEGER i 1, i 2 
x=Z"4321FEDCBA987654" 
y=Z"O" 
i1=0 
i2=48 
PRINT * 'The inserted bits from x, as specified by , 
PRINT * i1 and i2, into a copy of yare: ' 
PRINT * INSB(x,i1,i2,Y) 
END 

The inserted bits from x, as specified by 
i1 and i2, into a copy of yare: 

Z"FEDCBA9876540000" 
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ISIGN 
ISIGN transfers the sign of one argument to another argument. It accepts two integer 
arguments and returns an integer result. The result is a copy of the first argument 
with the sign of the second argument. 

The call-by-reference entry points are MLP$RISIGN and ISIGN, and the call-by-value 
entry point is MLP$VISIGN. 

The input domain for this function is the collection of all valid integer quantities. The 
output range is incl,uded in the set of valid integer quantities. 

Call-By-Reference Routine 

No errors are generated by ISIGN. The call-by-reference routine branches to the 
call-by-value routine. 

Call-By-Value Routine 

The exclusive OR of the first argument, along with the second argument, is shifted to 
extend its sign bit across a word to produce a mask. The mask is then subtracted from 
the exclusive OR of the mask and argument to form the result. 
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Example of ISIGN Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM ISIGN_EXAMPLE 

EXTERNAL ISIGN 
INTEGER i 1, i2 
i1=-140 
i2=750 
PRINT * 'The ISIGN of i1, i2 is:' 
PRINT * ISIGN(i1,i2) 
END 

The ISIGN of i1, i2 is: 
140 

60486513 H 

ISIGN 

Function Descriptions 8·147 



ITOD 

ITon 
ITOD performs exponentiation for program statements that raise double precision 
quantities to double precision exponents. It accepts two double precision arguments and 
returns a double precision result. ITOD also accepts compiler-generated calls (for 
example, the FORTRAN and Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RITOD and ITOD, and the call-by-value 
entry point is MLP$VITOD. 

The input domain for this function is the collection of all valid pairs (x,y), where x is 
a nonnegative integer quantity and y is a double precision quantity. If x is equal to 
zero, then y must be greater than zero. The output range is included in the set of 
valid double precision quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. The argument pair is invalid if: 

y is indefinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

x is negative. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 

Call-By-Value Routine 

The formula used for computation is: 

x**y = exp(y*log(x», where x > o. 

Upon entry, the integer argument is converted to double precision, and the routine 
calls DLOG to compute log(x), and DEXP to compute exp(y*log(x)). 
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Error Analysis 

See the description of function DTOD. 

Effect of Argument Error 

If a small error e occurs in the exponent, the error in the result r is given 
approximately by r*e*log(b), where b is the base. 

Example of ITOD Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM ITOO_EXAMPLE 

INTEGER i 
OOUBLE PRECISION d. dl. itod 
i=2 
d=10.0(lO 
dl=ITOD(i.d) 
PRINT *. 'The ITOO of and dis:' 
PRINT *. dl 
END 

The ITOO of and dis: 
1024. 

ITOD 
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ITOI 

ITOI performs exponentiation for program statements that raise double precision 
quantities to double precision exponents. It accepts two double precision arguments and 
returns a double precision result. ITO I also accepts compiler-generated calls (for 
example, the FORTRAN and Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RITOI and ITOI, and the call-by-value 
entry point is MLP$VITOI. 

The input domain for this function is the collection of all valid integer pairs (x,y) such 
that the absolute value of x**y is less than 2**63. If x is equal to zero, then y must 
be greater than zero. The output range is included in the set of valid integer 
quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. The argument pair is invalid if: 

x is zero and y is zero or negative. 

If the argument pair is invalid, zero is returned, and 'a diagnostic. message is displayed. 
If the argument pair is valid, the call-by-value routine is called, and the :t:esult of the 
computation is returned to the call-by-reference routine. The result is checked. If the 
result is infinite, it is invalid, and a diagnostic message is displayed. If the result is 
valid, it is returned to the calling program. 

Call-By-Value Routine 

The arguments are checked to determine whether the exponentiation conforms to a 
special case. If it does, the proper value is immediately returned, or if the special case 
is an error condition, a hardware exception condition is forced. The special cases are: 

0**0 = error 
O**J error if J < 0 
1**J 

-1**J +1 or -1 (J even or odd) 
1**0 1 
1**J 0 if J < 0 

If the expoIl:entiation does not fit any special case, the algorithm listed below is used 
for the computation. 

An x represents the base and a y represents the exponent. If x has binary 
representation 000 .... 000i(n)i(n-1) .. .i(i)i(0), where each i(j)(O ~ j ~ n) is 0 or 1, then: 

y i(0)*2**0 + i(1)*2**1 + ... + i(n)*2**n 
n = (log(2)y) = greatest integer not exceeding 10g(2)y 

Then: 

x**y prod[x**2**j 0 ~ j < nand i(j) 1] 
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The numbers x = X**O, x**2**O, x**2, x**4, ... , x**(2)**n are generated during the 
computation by successive squarings, and the coefficients i(O), .... , i(n) are obtained as 
sign bits of successive right shifts of y within the computer. A running product is 
formed during the computation so that smaller powers of x can be discarded. The 
computation then becomes an iteration of the algorithm: 

x**y 1, if Y = 1, and x not= 0 
(x*x)**(y/2), if y > 0 and y is even 
(x*x)**«y-1)/2)*x, if y > 0 and y is odd 

Example of ITOI Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM ITOI_EXAMPLE 

INTEGER 11, i 2. 1 x 
11=2 
i2=8 
i x = I TO I( i 1 • i 2 ) 
PRINT * 'The ITOI of i1 and 12 is:' 
PRINT *. ix 
END 

The ITOI of i1 and i2 is: 
256 
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ITOX 

ITOX performs exponentiation for program statements that raise integer quantities to 
real exponents. It accepts an integer argument and a real argument and returns a real 
result. ITOX also accepts compiler-generated calls (for example, the FORTRAN and 
Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RITOX and ITOX, and the call-by-value 
entry point is MLP$VITOX. 

The input domain for this function is the collection of all valid pairs (x,y), where x is 
a nonnegative integer quantity, y is a real quantity, and x**y is a valid quantity. If x 
is equal to zero, then y must be greater than zero. The output range is included in the 
set of valid, nonnegative real quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. The argument pair is invalid if: 

y is indefinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

x is negative. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 

Call-By-Value Routine 

The formula used for computation is: 

x**y = exp(y*log(x», where x ~ 1 

Upon entry, x is converted to real, and the routine calls XTOX to compute the result. 
Zero is returned if the base is zero and the exponent is positive. 

Error Analysis 

See the description of function XTOX. 

Effect of Argument Error 

If a small error e occurs in the exponent x, the error in the result r is given 
approximately by r*e*log(n), where n is the base. 
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Example of ITOX Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM ITOX_EXAMPLE 

INTEGER 
REAL x, r, itox 
i=2 
x=8.8 
r=ITOX(i,x) 
PRINT *, 'The ITOX of and x is:' 
PRINT *,r 
END 

The ITOX of i and x is: 
445.7218884076 
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ITOZ 
ITOZ performs exponentiation for program statements that raise integer quantities to 
real exponents. It accepts an integer argument and a real argument and returns a real 
result. ITOZ also accepts compiler-generated calls (for example, the FORTRAN and Ada 
compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RITOZ and ITOZ, and the call-by-value 
entry point is MLP$VITOZ. 

The ITOZ vector math function is divided into three routines having th:ree separate 
entry points defined as follows: . 

ITOZ(scalar.vector) = MLP$ITOZV 
ITOZ(vector,scalar) = MLP$IVTOZ 
ITOZ(vector,vector) = MLP$IVTOZV 

, . 

The input domain for this function is the collection of all valid pairs (x,y), where x is 
a nonnegative nonzero integer quantity and y is a complex quantity. If x is' equal to 
zero, then the real part of y must be greater than zero, and the imaginary ·part must 
be equal to zero. The output range is included in the set of valid complex quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

y is indefinite. 

y is infinite. 

x is equal to zero, and the real part of y is zero or negative, or the imaginary part 
of y is not equal to zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 

Call-By-Value Routine 

If n is a positive integer, and x and yare real, then: 

n**(x + i*y) = exp(x*log(n»*cos(y*log(n» + i*exp(x*log(n»*sin(y*log(n» 

Upon entry, n is converted to complex, and the routine calls ZTOZ to compute the 
result. 
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Vector Routine 

The argument pair _ (x,y) is checked upon entry. It is invalid if: 

y is indefinite. 

y is infinite. 

x is equal to zero, and the real part of y is zero or negative, or the imaginary part 
of y is not equal to zero. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

A group of 10,000 arguments was chosen randomly from the interval 
([-1.0,1.0],[ -1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these 
arguments was found to be 1.7431E-l1. 

Effect of Argument Error 

If a small error e(z) = e(x) + i*e(y) occurs in the exponent z, the error in the result 
w is given approximately by w*log(n)*e(z). 

Example of ITOZ Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM ITOZ_EXAMPLE 

INTEGER i 
COMPLEX z, zeta, itoz 
i = 50 
z = (5.0, -1) 

zeta = ITOZ(i,z) 
PRINT * 'The ITOZ of and z is:' 
PRINT *, zeta 
END 

The ITOZ of i and z is: 
(-224253443.769,217638790.1035) 
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'MOD 

MOD 
MOD computes the remainder of the ratio of two arguments. It accepts two integer 
arguments and returns an integer result. 

The call-by-reference entry points are MLP$RMOD and MOD, and the call-by-value 
entry point is MLP$VMOD. 

The input domain for this function is the collection of all valid integer pairs (x,y), 
where x is an integer quantity and y is a nonzero integer quantity. The output range 
is included in the set of valid integer quantities. 

Call-By-Reference Routine 

Upon entry, the argument pair (x,y) is checked. It is invalid if: 

y is equal to zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is branched to, and the result is returned. 

Call-By-Value Routine 

Upon entry, the arguments x and yare converted to real, the quotient x/y is formed, 
and the result is multiplied by y and then subtracted from x. 
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Example of MOD Called From C 

Source Code: 

main() 
{ 

int 83; 
int j 8; 
int k; 

/* Use the left bit-shift operator «<) to left justify the address 
16 bits. This is necessary because the MOD Math Library function 
expects left-justified addresses. 

*/ 
k = MOD«int)(&i)«16,(int) (&j)«16); 
printf (" The Mod of 83 and 8 is: %d", k); 

exit (0); 

Output: 

The Mod of 83 and 8 is: 
3 

Example of MOD Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM MOD_EXAMPLE 

INTEGER i 1, i2 
i1=83 
i2=8 
PRINT * 'The MOD of i1 and i2 is:' 
PRINT * MOD(i1,i2) 

The MOD of i1 and i2 is: 
3 

MOD 
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NINT 

NINT 

NINT finds the nearest integer to an argument. It accepts a real argument and returns 
an integer result. 

The call-by-reference entry points are MLP$RNINT and NINT, and the call-by-value 
entry point is MLP$VNINT. 

The input domain for this function is the collection of all valid real quantities. The 
output range is included in the set of valid integer quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is branched to, and the result of the computation is returned 
to the calling program. 

Call-By-Value Routine 

If the argument is ~ 0, .5 is added to it, or if the argument is < 0, -.5 is added to 
it. This sum is converted from floating-point to integer and returned. 

Example of NINT Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM NINT_EXAMPLE 

EXTERNAL NINT 
INTEGER i 1, i2 
REAL X,Y 
x=100.1234 
y=12.12 
i1=NINT(x) 
i2=NINT(y) 
PRINT * 'The nearest integers to x and yare:' 
PRINT * NINT(x) 
PRINT * NINT(Y) 
END 

The nearest integers to x and yare: 
100 
12 
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RANF 

RANF 
RANF generates the next random number in a series of random numbers. It accepts a 
dummy argument and returns a real result. 

The call-by-reference entry points are MLP$RRANF and RANF, and the call-by-value 
entry point is MLP$VRANF. 

There is no input domain to this function. The output range is included in the set of 
positive real quantities less than 1.0. 

Call-By-Reference Routine 

No errors are generated in RANF. The call-by-reference routine branches to the 
call-by-value routine. 

Call-By-Value Routine 

RANF uses the multiplicative congruential method modulo 2**48. The formula is: 

x(n + 1.0) = a*x(n) (mod 2**48) 

The library holds a random seed (mlv$initial_seed) and a multiplier (mlv$random_ 
multiplier). The random seed can be changed to any valid seed value prior to calling 
RANF by use of the function RAN SET (described later in this chapter). Upon entry at 
RANF, the random seed is multiplied in double precision by mlv$random_multiplier to 
generate a 96-bit product, which is the new seed partially normalized by one bit. This 
result is then denormalized. The lower 48 bits are formed with an exponent that yields 
a result between 0 and 1.0 to become the new random seed (mlv$random_seed). The 
current seed for the task is updated with the newly formed unnormalized seed. The 
seed is used to generate subsequent random numbers. The default initial value of 
mlv$initial_seed is 40002BC68CFE166D hexadecimal. The new random seed is 
normalized and returned as the random number. 

The multiplier (mlv$random_ multiplier) is constant and has a value of 
40302875A2E7B175 hexadecimal. This multiplier passes the Coveyou-MacPherson test, 
the auto-correlation test with lag ~ 100, the pair triplet test, and other statistical tests 
for randomness.6 

6. Algorithm and Constants, Copyright 1970 by Krzysztof Frankowski. Computer Information and Control 
Science, University of Minnesota. 

60486513 H Function Descriptions 8-159 



RANF 

Example of RANF Called From Ada 

Source Code: 

package RANDOM_LIBRARY is 

function RANF return FLOAT; 
pragma INTERFACE (MATH_LIBRARY, RANF); 

procedure RANGET (RESULT: in out FLOAT); 
pragma INTERFACE (MATH_LIBRARY, RANGET); 

procedure RANSET (VALUE : in out FLOAT); 
pragma INTERFACE (MATH_LIBRARY, RANSET); 

end RANDOM_LIBRARY; 

with RANDOM_LIBRARY; use RANDOM_LIBRARY; 
with TEXT_IO; use TEXT_IO; 

procedure RANDOM is 

xl : FLOAT; 
x2 : FLOAT; 

package FLT_IO is new FLOAT_IO (FLOAT); 
use FLT_IO; 

begin 

PUT_LINE ("Begin"); 
xl := 0.7777; 
PUT ("Call RANSET with : "); PUT (xl); NEW_LINE; 
RAN SET (xl); 
RANGET (x2); 
PUT ("RANGET returned: "); PUT (x2); NEW_LINE; 
xl := RANF; 
x2 := RANF; 
PUT ("RANF returned: "); PUT (xl); NEW_LINE; 
PUT ("RANF returned: "); PUT (x2); NEW_LINE; 
PUT_LINE ("End"); 

end RANDOM; 

Output: 

Begin 
Call RANSET with: 7.777000000000E01 
RANGET returned: 7.777000000000E01 
RANF returned 
RANF returned 
End 
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8.022426980171E-01 
5.003749989168E-02 
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Example of RANF Called From C 

Source Code: 

/* This C program uses the RANF function to compute 10 random numbers 
between 0 and 1. 

*/ 

Udefine MAX 10 

main() 
{ 

int count = 0; /* loop counter 

int random_number; /* Random number generated by RANF. */ 

for (count=O; count < MAX; ++count) 
{ 

random_number = RANF(); 

*/ 

printf("Random number "d is "f.\n", count, random_number); 

} 

Output: 

Random number 0 is 0.580114. 
Random number 1 is 0.950513. 
Random number 2 is 0.786371. 
Random number 3 is 0.297620. 
Random number 4 is 0.453700. 
Random number 5 is 0.006262. 
Random number 6 is 0.275736. 
Random number 7 is 0.305651. 
Random number 8 is 0.689101. 
Random number 9 is 0.382662. 

-- Program exit code value was 10. 

RANF 
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RANGET 

RANGET 
RANGET is a callable program procedure that returns the current random number 
seed of a task. It accepts a real argument. 

The call-by-reference entry points are MLP$RRANGET and RANGET. There is no 
call-by-value routine for RANGET. 

The result is returned through parameter n and is a positive real quantity in the 
interval (0,1.0). 

Call-By-Reference Routine 

RANGET returns the current seed, between 0 and 1, of the random number generator. 
The value returned might not be normalized. This seed can be used to restart the 
random sequence at exactly the same point. The current seed is mlv$random_seed. 

Call-By-Value Routine 

There are no call-by-value entry points for RANGET. 

Example of RANGET 

See the example Ada program in· the RANF description' in this chapter for an example 
of a RANGET call. 
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RANSET 

RANSET 
RAN SET is a callable program procedure that sets the seed of the random number 
generator. It accepts a real argument and returns a real result. 

The call-by-reference entry points are MLP$RRANSET and RANSET. There is no 
call-by-value routine. 

The input domain for this procedure is the collection of all possible full word bit 
patterns. There is no output. 

Call-By-Reference Routine 

RANSET uses the value passed to it to form a valid seed for the random number 
generator. If the argument is zero, the seed is set to its initial value (mlv$initial_seed) 
at load time. Otherwise, the value passed has its exponent set to 4000 hexadecimal, 
and the coefficient is made odd. This value is then saved and becomes the new seed 
(mlv$random_seed) for the task. 

Example of RANSET 

See the example Ada program in the RANF description in this chapter for an example 
of a RANSET call. 
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SIGN' 

SIGN 
SIGN transfers the sign from one argument to another argument. It accepts two real 
arguments and returns a real result. The result is a copy of the first argument with 
the sign of the second argument. 

The call-by-reference entry points are MLP$RSIGN and SIGN, and the call-by-value 
entry point is MLP$VSIGN. . 

The input domain for this function is the collection of all valid real quantities. The 
output range is included in the set of valid real quantities. 

Call-By-Reference Routine 

No errors are generated by SIGN. The call-by-reference routine branches to the 
call-by-value routine. 

Call-By-Value Routine 

The sign bit of the second argument is inserted into the sign bit of the first argument. 
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Example of SIGN Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM SIGN_EXAMPLE 

EXTERNAL SIGN 
REAL x, Y 
x=-180.0 
y=90.0 
PRINT * 'The SIGN of x, y is:' 
PRINT * SIGN(x,Y) 
ENO 

The SIGN of x, Y is: 
180. 
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SIN 

SIN 

SIN computes the sine function. It accepts a real argument and returns a real result. 

The call-by-reference entry points are MLP$RSIN and SIN, the call-by-value entry 
point is MLP$VSIN, and the vector entry point is MLP$SINV. 

The input domain for this function is the collection of all valid real quantities whose 
absolute value is less than 2**47. The output range is included in the set of valid real 
quantities in the interval [-1.0,1.0]. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

See the description of function COS. 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The function SIN was tested against 3*SIN(xl3) - 4*SIN(xl3)**3. Groups of 2,000 
arguments were chosen randomly from given intervals. Statistics on relative error were 
observed. Table 8-22 shows a summary of these statistics. 

Table 8-22. Relative Error of SIN 

Interval From 

O.OOOOE+OO 
.1885E+02 

8-166 Math Library 

Interval To 

.1571E+Ol 

.2042E+02 

Maximum 

.8305E-14 

.1355E-13 

Root Mean 
Square 

.2874E-14 

.3168E-14 
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Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result is given 
approximately by e*cos(x) for sin(x) and -e*sin(x) for cos(x). 

Example of SIN Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM SIN_EXAMPLE 

REAL x 
x=0.5 
PRINT *, 'The SIN of x is:' 
PRINT * SIN(x) 
END 

The SIN of x is: 
.4794255386042 

SIN 
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SIND 
SIND computes the sine function of an argument in degrees. It accepts a real argument 
and returns a real result. 

The call-by-reference entry points are MLP$RSIND and SIND, the call-by-value. entry 
point is MLP$VSIND, and the vector entry point is MLP$SINDV. 

The input domain for this function is the collection -of all valid real quantities whose 
absolute value is less than 2**47. The output range is included in the set of valid real 
quantities in the interval [-1.0,1.0]. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

The result is put in the interval [-45,45] by finding the nearest integer, n, to xJ90, and 
subtracting n*90 from the argument. The reduced argument is then multiplied by 
pi/I80. The appropriate sign is copied to the value of the appropriate function, sine or 
cosine, as determined by these identities: 

sin(x + 360 degrees) sin(x) 
sin(x + 180 degrees) -sin(x) 
sin(x + 90 degrees) cos(x) 
sin(x - 90 degrees) -cos(x) 
cos(x + 360 degrees) cos(x) 
cos(x + 180 degrees) -cos(x) 
cos(x + 90 degrees) -sin(x) 
cos(x - 90 degrees) sin(x) 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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SIND 

Error Analysis 

The reduction to (-45,+45) is exact; the constant piJISO has relative error 1.37E-15, 
and multiplication by this constant has a relative error 5.33E-15, and a total error of 
6.7E-15. Since errors in the argument of SIN and COS contribute only pi/4 of their 
value to the result, the error due to the reduction and conversion is at most 5.26E-15 
plus the maximum error in SINCOS over (-piJ4,+piJ4). The maximum relative error 
observed for a group of 10,000 arguments chosen randomly in the interval [0,360] was 
.1403E-13 for SIND and .7105E-14 for COSD. 

Effect of Argument Error 

Errors in the argument x are amplified by xltan(x) for SIND and x*tan(x) for COSD. 
These functions have a maximum value of pi/4 in the interval (-45, + 45) but have 
poles at even (SIND) or odd (COSD) multiples of 90 degrees, and are large between 
multiples of 90 degrees if x is large. 

Example of SIND Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM SIND_EXAMPLE 

REAL x 
x=0.5 
PRINT * 'The SIND of x is:' 
PRINT * SIND(x) 
END 

The SIND of x is: 
.008726535498374 
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SINH 

SINH 
SINH computes the hyperbolic sine function. It accepts a real argument and returns a 
real result. 

The call-by-reference entry points are MLP$RSINH and SINH, the call-by-value entry 
point is MLP$VSINH, and the vector entry point is MLP$SINHV. 

The input domain for this function is the collection of all valid real quantities whose 
absolute value is less than 4095*log(2). The output range is included in the set of all 
valid real quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

I t is infinite. 

Its absolute value is greater than or equal to 4095*log(2). 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

The formulas used to compute sinh(x) are: 

x = n*10g(2) + a, where lal ~ 1/2*10g(2) 

sinh(x) 
sinh(x) 
sinh(x) 

where: 

and n is an integer 
(cosh(a) + sinh(a»*2**(n-1), when n > 25 
sinh(a), when n = 0, otherwise, 
(c - s)*2**(n-1) + (c + s)*2**(-n-1) 

s = sinh(a) = a + s(3)*a**3*(s(5) + TOP/(BDT - a**2» 
c = cosh(a) = 1.0 + a**2*(.5 + a**2*(c(4) + a**2*(c(6) + 

c(10)*a**2*(c(8) + a**2»» 

Constants used in the algorithm are: 

s(3) .166 666 666 666 935 58 
s(5) -.005 972 995 665 652 368 
TOP 1.031 539 921 161 
BOT 72.103 746 707 22 
c(4) .041 666 666 666 488 081 
c(6) .001 388 888 895 231 804 5 
c(8) 89.754 738 973 150 22 
c(10) 2.763 250 805 803*10**-7 
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The algorithm used is: 

a. u = Ixl 

b. n = (u/10g(2) + .5) = nearest integer to u/log(2) R 
w = u - n*10g(2), where the right-hand expression is evaluated in double 
precision 

c. s = w + w**3(s(3) + w**2(s(5) + TOP/(BOT - w**2») 
d = w**2(1/2 + w**2(c(4) + w**2(c(6) + w**2(c(8) + w**2)*c(10»» 
a (1.0 + d - s)*2**(-n-1) 
b = d + S 

d. c (1/4 + (1/4 + b»*2**(n-1) + (2**(n-3) + (2**(n-3) - a» 
XF c with the sign of x 

e. Return 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 4095*log(2). 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

SINH 
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SINH 

Error Analysis 

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on 
relative error were observed. Table 8-23 shows a summary of these statistics. 

Table 8-23. Relative Error of SINH 

Test 

SINH(x) against 
Tay lor series 
expansion of SINH(x) 

SINH(x) against 
c*(SINH (x + 1) + 
SINH(x - 1) 

Interval From 

O.OOOOE+OO 

.3000E+01 

Effect of Argument Error 

Interval To Maximum 

.5000E + 00 .3374E-13 

.2838E + 04. .2894E-13 

Root Mean 
Square 

.9969E-14 

.9979E-14 

If a small error e occurs in the argument x, the resulting error in sinh(x) is given 
approximately by cosh(x)*e. 
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Example of SINH Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM SINH_EXAMPLE 

REAL x 
x=0.5 
PRINT ., 'The SINH of x is:' 
PRINT ., SINH(x) 
END 

The SINH of x is: 
.5210953054938 
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SQRT 

SQRT 
SQRT computes the square root function. It accepts a real argument and returns a real 
result. 

The call-by-reference entry points are MLP$RSQRT and SQRT, the call-by-value entry 
point is MLP$VSQRT, and the vector entry point is MLP$SQRTV. 

The input domain for this function is the collection of all valid, nonnegative real 
quantities. The output range is included in the set of valid, nonnegative real quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is negative. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 
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Call-By-Value Routine 

_ If x is valid, let y be a real number in [0.5, 2) and n an integer such that x = 
y*2**(2*n). Then SQRT(x) is evaluated by: 

SQRT(x) = SQRT(y)*2**n 

SQRT 

Then SQRT(y) is approximated to 48 bits of precision by applying one iteration of 
Heron's rule to an initial approximation which is accurate to at least 24 bits of 
precision. The initial approximation is computed by dividing the interval [0.5, 2) into 
the following 64 subintervals: 

[32/64, 33/64) 

[63/64, 64/64) 
[32/32, 33/32) 

[63/32, 64/32) 

The coefficients of these 64 minimax approximations are stored in three tables -pO, pI, 
and p2 such that: 

z1 = pOri] + p1[i]*y + p2[i]*y**2 

is the quadratic minimax approximation to the square root of y over the subinterval 
whose index is i. The required initial approximation is obtained by calculating the 
index i of the subinterval that contains y and then evaluating the above quadratic 
polynomial so that zl approximates SQRT(y) to at least 24 bits of precision. 

U sing Heron's rule, the computation: 

twoz2 = z1 + y/z1 

approximates SQRT(y) to 48 bits precision followed by the computation: 

SQRT(X) = twoz2*2**(n - 1) 

which approximates SQRT(x) to 48 bits of precision. 
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SQRT 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

It is negative. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The function SQRT was tested in the form SQRT(x*x) - x. Groups of 2,000 arguments 
were chosen randomly from given intervals. Statistics on relative error were observed. 
Table 8-24 shows a summary of these statistics. 

Table 8-24. Relative Error of SQRT 

In terval From 

.1000E+Ol 

.7071E+00 

Interval To 

.1414E+Ol 

.1000E+Ol 

Effect of Argument Error 

Maximum 

.7099E-14 

.5023E-14 

Root Mean 
Square 

.5677E-14 

.4106E-14 

For a small error e in the argument y, the amplification of absolute error is 
e/(2*sqrt(y». 
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Example of SQRT Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM SQRT_EXAMPLE 

REAL x, xe 
x=22500.0 
xe=SQRT(x·x)- x 
PRINT· 'The SQRT of x is:' 
PRINT· SQRT(x) 
PRINT· 'The calculated error of the SQRT of x is:' 
PRINT ., xe 
END 

The SQRT of x is: 

150. 
The calculated error of the SQRT of x is: 

O. 
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SUMIS 

SUMIS 
SUMIS returns the sum (or number) of 1 bits in a word. (The number of bits in a 
NOSNE word is always 64.) It accepts any type of argument except character and 
logical and returns an integer result. If the argument is of type double precision or 
complex, only the first word is used. 

The call-by-reference entry points are MLP$RSUMIS and SUMlS, and the call-by-value 
entry point is MLP$VSUMIS. 

The input domain for this function is the collection of all valid boolean, real, complex, 
integer, or double precision quantities. Character and logical arguments are not 
allowed. The output range is included in the set of valid integer quantities. 

Call-By-Reference Routine 

No errors are generated by SUMIS. The call-by-reference routine branches to the 
call-by-value routine. 

Call-By-Value Routine 

The number of bits in a word is returned. The argument can be any type except 
character and logical. 
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Example of SUMlS Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM SUM1S_EXAMPLE 

REAL x 
x=Z"4321FEDCBA987654" 
PRINT * 'The SUM1S of x is:' 
PRINT *, SUM1S(x) 
END 

The SUM1S of x is: 
33 
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TAN 

TAN 
TAN computes the trigonometric circular tangent function. It accepts a real argument 
and returns a real result. 

The call-by-reference entry points are MLP$RTAN and TAN, the call-by-value entry 
point is MLP$VTAN, and the vector entry point is MLP$TANV. 

The input domain for this function is the collection of all valid real quantities whose 
absolute value is less than 2**47. The output range is included in the set of valid real 
quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

The evaluation is reduced to the interval [-.5,.5] by using the identities: 

1. tan(x) tan(x + k*pi/2), if k is even 

2. tan(x) -1.0/tan(x + pi/2) 

in the form: 

3. tan(x) tan«pi/2)*(x*2/pi + k», if k is even 

4. tan(x) -1.0/tan«pi/2)*(x*2/pi + 1.0» 

An approximation of tan(pil2*y) is used. The argument is reduced to the interval 
[-.5,.5] by subtracting a multiple of pil2 from x in double precision. . 

The rational form is used to compute the tangent of the reduced value. The function 
tan«pil2)*y) is approximated with a rational form (7th order odd)/(6th order even), 
which has minimax relative error in the interval [- .5,.5]. The rational form is 
normalized to make the last numerator coefficient 1 + e, where e is chosen to 
minimize rounding error in the leading coefficients. 

Identity 4 is used if the integer subtracted is odd. The result is negated and inverted 
by dividing -QIP instead of P/Q. 
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Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

The range reduction, the final add in each part of the rational form, the final multiply 
in P, and the divide dominate the error. Each of these operations contributes directly 
to the final error, and each is accurate to about 112 ulp. 

The function TAN was tested against 2*TAN(xJ2)J(1 - TAN(xJ2)**2). Groups of 2,000 
arguments were chosen randomly from given intervals. Statistics on relative error were 
observed. Table 8-25 shows a summary of these statistics. 

Table 8-25. Relative Error of TAN 

Root Mean 
In terval From Interval To Maximum Square 

O.OOOOE+OO .7854E+00 .2177E-13 .5613E-14 
.1885E+02 .1963E+02 .1993E-13 .5617E-14 
.2749E+Ol .3534E+Ol .2190E-13 .7286E-14 

Effect of Argument Error 

For small errors in the argument x, the amplification of absolute error is sec(x)**2, 
and that of relative error is xJ(sin(x)*cos(x)), which is at least 2x and can be arbitrarily 
large near a multiple of pi/2. 

Example of TAN Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM TAN_EXAMPLE 

REAL x 
x=0.5 
PRINT * 'The TAN of x is:' 
PRINT * TAN(x) 
END 

The TAN of x is: 
.54630224898438 
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TAND 
TAND computes the trigonometric tangent for an argument in degrees. It accepts a 
real argument and returns a real result. 

The call-by-reference entry points are MLP$RTAND and TAND, the call-by-value entry 
point is MLP$VTAND, and the vector entry point is MLP$TANDV. 

The input domain for this function is the collection of all valid real arguments whose 
absolute value is less than 2**47, excluding odd multiples of 90. The output range is 
included in the set of valid real quantities. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
call-by-reference routine. The result is checked. If the result is infinite, it is invalid, 
and a diagnostic message is displayed. If the result is valid, it is returned to the 
calling program. 

Call-By-Value Routine 

The result is put in the interval [-45,45] by finding the nearest integer n to xl90, and 
subtracting n*90 from the argument. The reduced argument is then multiplied by 
pi/180. The routine calls TAN to compute the tangent, and if the multiple n of 90 is 
odd, the result is negated and inverted by using the identities: 

tan(x + 180 degrees) = tan(x) 
tan(x + 90 degrees) = -1/tan(x) 

Vector Routine 

The argument is checked upon entry. It is invalid if: 

It is indefinite. 

It is infinite. 

Its absolute value is greater than or equal to 2**47. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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Error Analysis 

The reduction to (-45, + 45) is exact; the constant pi/ISO has a relative error of 
1.37E-15, and multiplication by this constant has a relative error of 5.33E-15, so the 
total error is 6.7E-15. The maximum relative error observed for 10,000 arguments 
chosen randomly in the interval [0,360], was .2130E-13. 

Effect of Argument Error 

Errors in the argument x are amplified at most by xI(sin(x)*cos(x)). This function has a 
maximum of pi/2 within (-45, + 45) but has poles at all multiples of 90 degrees except 
zero. 

Example of TAND Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM TAND_EXAMPLE 

REAL x 
x=O.5 
PRINT * 'The TAND of x is:' 
PRINT * TAND(x) 
END 

The TAND of x is: 
.008726867790759 
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TANH 

TANH computes the hyperbolic tangent function. It accepts a real argument and 
returns a real result. 

The call-by-reference entry points are MLP$RTANH and TANH, the call-by-value entry 
point is MLP$VTANH, and the vector entry point is MLP$TANHV. 

The input domain for this function is the collection of all valid real quantities. The 
output range is included in the set of valid real quantities in the interval [-1.0,1.0]. 

Call-By-Reference Routine 

The argument is checked upon entry. It is invalid if it is indefinite. 

If the argument is invalid, a diagnostic message is displayed. If the argument is valid, 
the call-by-value routine is called, and the result of the computation is returned to the 
calling program. 

Call-By-Value Routine 

The argument range is reduced to: 

tanh(x) = 1.0 - 2*(0 - p)/«o - p) + 2**n*(0 + p» 

by the identities: 

tanh(-x) 
tanh(x) 
tanh(x) 
exp(2*x) 
exp(2*x) 

-tanh(x) for x < 0 
p(x)/O(x) approximately, in the interval [0,.55] 
1.0 - 2/(exp(2*x) + 1.0) 
(1.0 + tanh(x»/(1.0 - tanh(x» 
2**n*exp(2*(x - n*ln(2)/2» 

where n is chosen to be nint(x*2/ln(2)) and p and q are evaluated on x - n*ln(2)/2. 
This choice of n minimizes abs(x - n*ln(2)/2). 

When abs(x) ~ .55 = atanh(.5), the approximation p(x)/q(x) is used. When abs(x) > 
.55, the above range reduction is used. For abs(x) > 17.1, tanh(x) = sign(1.0,x). 

The approximation p/q is a minimax (relative error) rational form (5th order odd)/(6th 
order even). The range reduction is simplified by scaling the coefficien~s so that 
(x*2/ln(2) - n) can be used instead of (x - n*ln(2)/2). The coefficients are further scaled 
by an amount sufficient to reduce truncation error in the leading coefficients without 
otherwise affecting accuracy. 

Vector Routine 

The argument is checked upon entry. It is invalid if it is indefinite. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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Error Analysis 

The algorithm error due to finite approximation and coefficient truncation is 1.7E-15. 
For abs(x) < .55, the form p(x)/q(x) is used. The final operations z= x*2!ln(2) and 
tanh(z*(pO+small))/(qO+small) dominate the error. For abs(x) > 1.25 the final 
subtraction (1.0 - small) dominates. 

For .55 ~ abs(x) ~ 1.25, the final operation is 1-R, where R becomes smaller as x 
approaches 1.25. Thus, the worst relative error is near .55, namely, (contribution from 
R) + (error in final sum), where R = 2*(q - p)/«q - p) + 4*(q + p)). 

The function TANH was tested against (TANH(x - 118) + TANH(1I8))/(1 + TANH(x -
1I8)*TANH(1I8)). Groups of 2,000 arguments were chosen randomly from given 
intervals. Statistics on relative error were observed. Table 8-26 shows a summary of 
these statistics. 

Table 8-26. Relative Error of TANH 

Interval From 

.1250E+00 

.6743E+00 

Interval To 

.5493E+00 

.1768E+02 

Effect of Argument Error 

Maximum 

A091E-13 
.2842E-13 

Root Mean 
Square 

.1085E-13 

.3730E-14 

For small errors in the argument x, the amplification of the absolute error is 
lIcosh**(x) and of relative error is xI(sinh(x)*cosh(x)). Both have maximum values of 
1.0 at zero and approach zero as x gets large. 

Example of TANH Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM TANH_EXAMPLE 

REAL x 
x=O.5 
PRINT * 'The TANH of x is:' 
PRINT * TANH(x) 
END 

The TANH of x is: 
.46211715726 
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XTOD 
XTOD performs exponentiation for program statements that raise integer quantities to 
real exponents. It accepts an integer argument and a real argument and returns a real 
result. XTOD also accepts compiler-generated calls (for example, the FORTRAN and 
Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RXTOD and XTOD, and the call-by-value 
entry point is MLP$VXTOD. 

The XTOD vector math function is divided into three routines having three separate 
entry points defined as follows: 

XTOD(scalar,vector) = MLP$XTODV 
XTOD(vector,scalar) = MLP$XVTOD 
XTOD(vector,vector) = MLP$XVTODV 

The input domain for this function is the collection of all valid pairs (x,y), where x is 
a nonnegative real quantity and y is a double precision quantity. If x is equal to zero, 
then y must be greater than zero. The output range is included in the set of valid 
double precision quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

x is negative. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result if valid, it is returned 
to the calling program. 

Call-By-Value Routine 

The formula used for computation is: 

x**y = exp(y*log(x», where x > 0 

Upon entry, the argument x is converted to double precision, and all operations are 
carried out in double precision. The routine calls DLOG to compute log(x), and DEXP 
to compute exp(y*log(x)). 
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Vector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

x is negative. 

See Vector Error Handling in chapter 7 , Vector Processing, for further information. 

Error Analysis 

See the description of function DTOD. 

Effect of Argument Error 

If a small error e(b) occurs in the base b and a small error e(p) occurs in the exponent 
p, the error in the result r is given approximately by: 

r*(e(p)*lo9(b) + p*e(b)/b) 

Example of XTOD Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM XTOD_EXAMPLE 

REAL x 
DOUBLE PRECISION y, z, XTOD 
x=20.0 
y=140.0dO 
z=XTOD(x,Y) 
PRINT * 'The XTOD of x and y is:' 
PRINT *, Z 

END 

The XTOD of x and y is: 
1.39379657490816394634598238E+182 
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XTOI 
XTOI performs exponentiation for program statements that raise integer quantities to 
real exponents. It accepts an integer argument and a real argument and returns a real 
result. XTOI also accepts compiler-generated calls (for example, the FORTRAN and 
Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RXTOI and XTOI, and the call-by-value 
entry point is MLP$VXTOI. 

The XTOI vector math function is divided into three routines having three separate 
entry points defined as follows: 

XTOI(scalar,vector) = MLP$XTOIV 
XTOI(vector,scalar) = MLP$XVTOI 
XTOI(vector,vector) = MLP$XVTOIV 

The input domain for this function is the collection of all valid pairs (x,y) , where x is 
a real quantity and y is an integer quantity. If x is equal to zero, then y must be 
greater than zero. The output range is included in the set of valid real quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

x is infinite. 

x is equal to zero and y is less than or equal to zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 

8-188 Math Library 60486513 H 



Call-By-Value Routine 

The arguments are checked to see whether the exponentiation conforms to a special 
case. If it does, the proper value is immediately returned. If the special case is an 
error condition, an error message is displayed. The special cases are: 

x indefinite = error 
x infinite = error 
0**0 = error 
x**i = 1.0 if i = 0 and x > 0 
x**i = 1.0/x**-i if i < 0 
x = 0 = error if i < 0 

If the exponentiation is not a special case, the following algorithm is used. 

XTOI 

Starting with the second most significant bit, the binary representation of i is scanned 
from left to right. The result is initialized to x. For each scanned bit, the result is 
squared. If the scanned bit is 1, the result is multiplied by x. 

Effect of Argument Error 

If a small error e occurs in the base b, the error in the result will be given 
approximately by n*b**(n-1)*e, where n is the exponent (integer argument of the 
function). 

Example of XTOI Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM XTOI_EXAMPLE 

INTEGER 
REAL x, XTOI 
i=3 
x=10.0 
PRINT * 
PRINT * 
END 

'The XTOI of x and 
XTOI(x, i} 

The XTOI of x and is: 
1000. 

is: ' 
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XTOX 
XTOX performs exponentiation for program statements that raise integer quantities to 
real exponents. It accepts an integer argument and a real argument and returns a real 
result. XTOX also accepts compiler-generated calls (for example, the FORTRAN and 
Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RXTOX and XTOX, and the call-by-value 
entry point is MLP$VXTOX. 

The XTOX vector math function is divided into three routines having three separate 
entry points defined as follows: 

XTOX(scalar,vector) = MLP$XTOXV 
XTOX(vector,scalar) = MLP$XVTOX 
XTOX(vector,vector) = MLP$XVTOXV 

The input domain for this function is the collection of all valid real pairs (x,y), where 
x is a nonnegative quantity and x**y is a valid quantity. If x is equal to zero, then y 
must be greater than zero. The output range is included in the set of valid, 
nonnegative real quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

x is negative. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 
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Call-By-Value Routine 

The formula used for computation is: 

x**y = exp(y*log(x». where x > 0 

Upon entry, the routine calls ALOG to compute log(x), and EXP to compute 
exp(y*log(x» . 

V ector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

x is negative. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 
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Error Analysis 

The function XTOX was tested. Groups of 2,000 arguments were chosen randomly from 
given intervals. Statistics on relative error were observed. Table 8-27 shows a summary 
of these statistics. 

Table 8-27. Relative Error of XTOX 

Test In terval From 

x interval 
x**y against x**2**(y/2) .1000E-01 

x**2**1.5 against 
x**2*x 

x**l.O against x 

y interval 
-.6167E+03 

.1000E+01 

.5000E+00 

.5000E+00 

Effect of Argument Error 

Interval To Maximum 

.1000E+02 .3547E-12 

.6167E+03 

.8053+411 
.1000E+01 

.1000E+01 

.1360E-13 

.1360E-i3 

.6802E-14 

Root Mean 
Square 

.6352E-13 

.5687E-14 

.5715E-14 

.3442E-14 

If a small error e(b) occurs in the base b, and a small error e(p) occurs in the 
exponent p, the error in the result r is given approximately by: 

r*(log(b)*e**p + p*(e(b»/b) 
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Example of XTOX Called From FORTRAN 

Source Code: 

c 

Output: 

PROGRAM XTOX_EXAMPLE 

REAL x, y, XTOX 
x=2.0 
y=10.0 
PRINT * 'The XTOX of x and y is:' 
PRINT * XTOX(x,Y) 
END 

The XTOX of x and y is: 
1024. 
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XTOZ 
XTOZ performs exponentiation for program statements that raise integer quantities to 
real exponents. It accepts an integer argument and a real argument and returns a real 
result. XTOZ also accepts compiler-generated calls (for example, the FORTRAN and 
Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RXTOZ and XTOZ, and the call-by-value 
entry point is MLP$VXTOZ: 

The XTOZ vector math function is divided into three routines having three separate 
entry points defined as follows: 

XTOZ(scalar,vector) = MLP$XTOZV 
XTOZ(vector,scalar) = MLP$XVTOZ 
XTOZ(vector,vector) = MLP$XVTOZV 

The input domain for this function is the collection of all valid pairs (x,y) , where x is 
a real quantity, y is a complex quantity, and x**y is a valid quantity. If x is zero, the 
real part of y must be greater than zero, and the imaginary part must be equal to 
zero. The output range is included in the set of valid complex quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero, and the real part of y is less than or equal to zero, or the 
imaginary part of y does not equal zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 

Call-By-Value Routine 

Upon entry, the real argument x is converted to complex, and the routine calls ZTOZ 
to compute the result. 
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Vector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

x is negative. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

A group of 10,000 arguments was chosen randomly from the interval 
([ -1.0,1.0],[ -1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these 
arguments was found to be 1.7 431E-11. 

Effect of Argument Error 

XTOZ 

If a small error e(x) occurs in the base x, and a small error e(z) (e(x) + i*e(y» occurs 
in the exponent z, the error in the result w is given approximately by: 

w*(log(x)* e(z) + z*e(x)/x) 

Example of XTOZ Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM XTOZ_EXAMPLE 

REAL x 
COMPLEX zeta, omega, xtoz 
x = 5.0 
zeta = (5.0, 0) 
omega = XTOZ (x, zeta) 
PRINT * 'The XTOZ of x and zeta is:' 

PRINT *, omega 
END 

The XTOZ of x and zeta is: 

(3125. ,0. ) 
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ZTOD 
ZTOD performs exponentiation for program statements that raise integer quantities to 
real exponents. It accepts an integer argument and a real argument and returns a real 
result. ZTOD also accepts compiler-generated calls (for example, the FORTRAN and 
Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RZTOD and ZTOD, and the call-by-value 
entry point is MLP$VZTOD. 

The ZTOD vector math function is divided into three routines having three separate 
entry points defined as follows: 

ZTOD(scalar,vector) = MLP$ZTODV 
ZTOD(vector,scalar) = MLP$ZVTOD 
ZTOD(vector,vector) = MLP$ZVTODV 

The input domain for this function is the collection of all valid pairs (x,y), where x is 
a complex quantity, y is a double precision quantity, and x**y is a valid quantity. If 
the real and imaginary parts of x are equal to zero, then y must be greater than zero. 
The output range is included in the set of valid complex quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 

Call-By-Value Routine 

Upon entry, the double precision argument y is converted to complex, and the routine 
calls ZTOZ to compute the result. 
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Vector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

A group of 10,000 arguments was chosen randomly from the interval 
([ -1.0,1.0],[ -1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these 
arguments was found to be 1.7431E-11. 

Effect of Argument Error 

ZTOD 

If a small error e(z) occurs in the base z and a small error e(e) occurs in the exponent 
e, the error in the result w is given approximately by: 

w*(e(e)*log(z) + e*e(z)/z) 

Example of ZTOD Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM ZTOD_EXAMPLE 

COMPLEX zeta~ omega, ztod 
DOUBLE PRECISION Y 
zeta = (5.0, -1) 
y=140.0dO 
omega = ZTOD(zeta,Y) 
PRINT * 'The ZTOD of zeta and y is:' 
PRINT *, omega 
END 

The ZTOD of zeta and y is: 
(-8.968048508414E+98,-6.662556718066E+98) 
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ZTOI 
ZTOI performs exponentiation for program statements that raise integer quantities to 
real exponents. It accepts an integer argument and a real argument and returns a real 
result. ZTOI also accepts compiler-generated calls (for example, the FORTRAN and Ada 
compilers provide the exponentiation operator **). 

The call-by-reference entry points are MLP$RZTOI and ZTOI, and the call-by-value 
entry point is MLP$VZTOI. 

The ZTOI vector math function is divided into three routines having three separate 
entry points defined as follows: 

ZTOI(scalar,vector) = MLP$ZTOIV 
ZTOI(vector,scalar) MLP$ZVTOI 
ZTOI(vector,vector) = MLP$ZVTOIV 

The input domain for this function is the collection of all valid pairs (x,y), where x is 
a complex quantity, y is a integer quantity, and x**y is a valid quantity. If the real 
and imaginary parts of x are equal to zero, then y must be greater than zero. The 
output range is included in the set of valid complex quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

x is infinite. 

x is equal to zero and y is less than or equal to zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 

Call-By-Value Routine 

Let x represent the base and y represent the exponent. If y has binary representation 
000 .... 000i(n)i(n-l) .. .i(1)i(O), where each i(j)(O ~ j ~ n) is 0 or 1, then: 

y i(0)*2**0 + i(1)*2**1 + ... + i(n)*2**n 
n = (log(2)y) = greatest integer not exceeding log(2)y 

Then: 

x**y prod[x**2**j 0 < j < nand i(j) 1] 
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The numbers x**O, x = x**2**O, x**2, x**4, ... , x**(2)**n are generated during the 
computation by successive squarings, and the coefficients i(O), .... , i(n) are obtained as 
sign bits of successive circular right shifts of y within the computer. A running product 
is formed during the computation so that smaller powers of x can be discarded. The 
computation then becomes an iteration of the algorithm: 

x**y 1, if Y = 0 and x is not= 0 
(x*x)**(y/2), if y > 0 and y is even 
(x*x)**«y-1)/2)*x, if y > 0 and y is odd 

Upon entry, if the exponent y is negative, y is replaced by -y and a sign flag is set. 
x**y is computed according to this algorithm, and if the sign flag was set, the result is 
reciprocated before being returned to the calling program. 

Vector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

x is infinite. 

x is equal to zero and y is less than or equal to zero. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Effect of Argument Error 

If a small error e occurs in the base b, the error in the result will be given 
approximately by n*b**(n-l)*e, where n is the exponent given to the routine. 

Example of ZTOI Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM ZTOI_EXAMPLE 

INTEGER i 
COMPLEX zeta, omega, ztoi 
i = 12 
zeta = (2.0, -1) 
omega= ZTOI (zeta,i) 
PRINT * 'The ZTOI of zeta and is:' 
PRINT *, omega 
END 

The ZTOI of zeta and is: 
( 11753. , 10296. ) 
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ZTOX 

ZTOX 
ZTOX performs exponentiation for program statements that raise integer quantities to 
real exponents. It accepts an integer argument and a real argument and returns a real 
result. ZTOX also accepts compiler-generated caIls (for example, the FORTRAN and 
Ada compilers provide the exponentiation operator **). 

The caIl-by-reference entry points are MLP$RZTOX and ZTOX, and the call-by-value 
entry point is MLP$VZTOX. 

The ZTOX vector math function is divided into three routines having three separate 
entry points defined as foIlows: 

ZTOX(scalar,vector) = MLP$ZTOXV 
ZTOX(vector,scalar) = MLP$ZVTOX 
ZTOX(vector,vector) = MLP$ZVTOXV 

The input domain for this function is the coIlection of all valid argument pairs (x,y), 
where x is a complex quantity, y is a real quantity, and x**y is a valid quantity. If 
the real and imaginary parts of x are equal to zero, then y must be greater than zero. 
The output range is included in the set of valid complex quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the caIl-by-value routine is caIled, and the result of the computation is 
returned to the caIl-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the caIling program. 

Call-By-Value Routine 

Upon entry, the real argument is converted to a complex argument, and the routine 
caIls ZTOZ to compute the result. 

8-200 Math Library 60486513 H 



Vector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

A group of 10,000 arguments was chosen randomly from the interval 
([-1.0,1.0],[-1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these 
arguments was found to be 1.7431E-11. 

Effect of Argument Error 

If a small error e(zl) occurs in the base zl and a small error e(z2) occurs in the 
exponent z2, the error in the result w is given approximately by: 

w*(e(z2)*10g(Z1) + z2*e(z1)/z1) 

Example of ZTOX Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM ZTOX_EXAMPLE 

REAL x 
COMPLEX zeta, omega, ztox 
x = 12.0 
zeta = (2.0, -1) 
omega= ZTOX (zeta,x) 
PRINT * 'The ZTOX of zeta and x is:' 
PRINT * ZTOX (zeta,x) 
PRINT *, omega 
END 

The ZTOX of zeta and x is: 
(11753.,10296. ) 

ZTOX 
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ZTOZ 

ZTOZ 
ZTOZ performs exponentiation for program statements that raise integer quantities to 
real exponents. It accepts an integer argument and a real argument and returns a real 
result. ZTOZ also accepts compiler-generated calls (for example, the FORTRAN and 
Ada compilers provide the exponentiation operator **). 

The call-by-reference entry points- are MLP$RZTOZ and ZTOZ, and the call-by-value 
entry point is MLP$VZTOZ. 

The ZTOZ vector math function is divided into three routines having three separate 
entry points defined as follows: 

ZTOZ(scalar,vector) = MLP$ZTOZV 
ZTOZ(vector,scalar) = MLP$ZVTOZ 
ZTOZ(vector,vector) = MLP$ZVTOZV 

The input domain is the collection of all valid complex pairs (x,y). If the real and 
imaginary parts of x are equal to zero, then the real part of y must be greater than 
zero, and the imaginary part must be equal to zero. The output range is included in 
the set of valid complex quantities. 

Call-By-Reference Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero, and the real part of y is less than or equal to zero, and the 
imaginary part of y does not equal zero. 

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair 
is valid, the call-by-value routine is called, and the result of the computation is 
returned to the call-by-reference routine. The result is checked. If the result is infinite, 
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned 
to the calling program. 

Call-By-Value Routine 

The formula used for computation is: 

x**y = exp(y*10g(x», where x > o. 

Upon entry, argument checking is performed. If the arguments are valid, the routine 
calls CLOG to compute log(x), and CEXP to compute exp(y*log(x)). 
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Vector Routine 

The argument pair (x,y) is checked upon entry. It is invalid if: 

x is indefinite. 

y is indefinite. 

x is infinite. 

y is infinite. 

x is equal to zero and y is less than or equal to zero. 

See Vector Error Handling in chapter 7, Vector Processing, for further information. 

Error Analysis 

A group of 10,000 arguments was chosen randomly from the interval 
([ -1.0,1.0],[ -1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these 
arguments was found to be 1.7431E-11. 

Effect of Argument Error 

If a small error e(zl) occurs in the base zl and a small error e(z2) occurs in the 
exponent z2, the error in the result w is given approximately by: 

w*(e(z2)*log(Z1) + z2*e(z1)/z1) 

Example of ZTOZ Called From FORTRAN 

Source Code: 

C 

Output: 

PROGRAM ZTOZ_EXAMPLE 

COMPLEX alpha, zeta, omega, ztoz 
alpha = (12.0, 0) 
zeta = (2.0, -1) 
omega= ZTOZ (alpha, zeta) 
PRINT * 'The ZTOZ of alpha and zeta is:' 
PRINT *, omega 
END 

The ZTOZ of alpha and zeta is: 
(-114.0508449541,-87.91134605528) 

ZTOZ 
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Auxiliary Routines 9 

The auxiliary routines cannot be called by their Math Library names. As the following 
list indicates, these routines are algorithmic modules that are called by Math Library 
functions: 

• ACOSIN (called by ACOS and ASIN) 

• COSSIN (called by CSIN and CCOS) 

• DASNCS (called by DCOS and DSIN) 

• DEULER (called by DEXP and DTANH) 

• DSNCOS (called by DCOS and DSIN) 

• HYPERB (called by COSH and SINH) 

• SINCOS (called by SIN and COS) 

o SINCSD (called by SIND and COSD) 

Most of these routines can be called by their call-by-value entry points from assembler 
programs, but this is not recommended. These routines are described in this manual 
for algorithmic and error analysis. 

60486513 H Auxiliary Routines 9-1 



ACOSIN 

ACOSIN 
ACOSIN is an auxiliary routine that computes the inverse sine or inverse cosine 
function. It accepts a -real argument and returns a real result. 

There are no call-by-reference entry points for ACOSIN. The call-by-value entry points 
are MLP$VACOS and MLP$VASIN. 

The input domain is the collection of all valid real quantities in the interval [-1.0,1.0]. 
The output range is included in the set of valid, nonnegative real quantities less than 
or equal to pi. 

Call-By-Value Routine 

Formulas used in the computation are: 

-arcsin(-x), x < -.5 
pi - arcos(-x), x < -.5 

arcsin(x) 
arcos(x) 
arcsin(x) 

where -.5 
arcos(x) 
arcsin(x) 
arcos(x) 
arcsin(l) 
arcos(l) 

x + x**3*s*«w + Z - j)*w + a + miCe - x**2», 
< x < .5 

where: 

pi/2 - arcsin(x), -.5 < x < .5 
pi/2 - arcos(x), .5 < x < 1.0 
arcos(l-ITER«l - x),n»/2**n, 
pi/2 
o 

w = (x**2 - c)*z + k 

z 
ITER(Y,n) 

(x**2 + r)x**2 + i 
n iterations of y = 4*y - 2*y**2 

The constants used are: 

r = 3.173 170 078 537 13 
e = 1.160 394 629 739 02 
m = 50.319 055 960 798 3 
c = -2.369 588 855 612 88 

8.226 467 970 799 17 
j -35.629 481 597 455 5 
k 37.459 230 925 758 2 
a = 349.319 357 025 144 
s = .746 926 199 335 419*10**-3 

.5 < x < 1.0 

The approximation of arcsin (-.5,.5) is an economized approximation obtained by 
varying r,e,m, ... ,s. 
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The algorithm used is: 

a. If ACOS entry, go to step g. 

b. If Ix ~ .5, go to step h. 

c. n = 0 (Loop counter). 
q = x 
y x**2 
u = 0, if ASIN entry. 
u = pi/2, if ACOS entry. 

d. z (y + r)*y + i 
w = (y - c)*z + k 

p q + s*q*y*«w + z - j)*w + a + mICe - y» 
p u - P 

Y1 p/2**n 

e. If ASIN entry, go to step k. 

f. If x is in (-.5,1.0), return. 

g. 

h. 

XF = 2*u - (Y1) 
Return. 

If Ix I < .5, go to step c. 

If x = 1.0 or -1.0, go to step 
If x is i nva 1 i d, go to step m. 

n = 0 (Loop counter). 

1. 

y = 1.0 - I xl, and normalize 

i. h = 4*y - 2*y**2 
n = n + 1.0 

y. 

ACOSIN 

If 2*y ~ 2 - sqrt(3) = .267949192431, y h, and go to step i. 

j. q 1.0 - h, and normalize q. 
y q**2 
u pi/2 
Go to step d. 

k. Y1 = u - (y1) , and normalize 
Affix sign of x to Y1 = XF. 

Return. 

1. XF = pi /2, if x = 1.0. 
XF = -pi/2, if x = -1.0. 
If ASIN entry, return. 
XF = 0, if x = 1.0. 
XF = pi, if x = -1.0. 
Return. 

m. Return. 
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ACOSIN 

Error Analysis 

See the descriptions of functions ACOS and ASIN. 

Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result is given 
approximately by e/(1.0 - x**2)** .5. 
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COSSIN 
COSSIN is an auxiliary routine that accepts calls from other math functions that 
require simultaneous computation of the sine and cosine of the same argument. 
COSSIN accepts a real argument and returns two real results. 

See the descriptions of functions CSIN and CCOS for additional information. 

Call-By-Value Routine 

The argument is reduced to the interval [-piJ4,piJ4]. Polynomials p(x) and q(x) of 
degrees 11 and 12 are used to compute sin(x) and cos(x) over that interval. Upon 

COSSIN 

entry, the argument x is multiplied by 2/pi. Then, the nearest integer n to 2/pi*x is 
computed. The upper and lower halves of the result are added. The value of y is in the 
interval (-piJ4,piJ4). y = x - n*piJ2 is computed in double precision as the reduced 
argument for input to p(y) and q(y). Then sin(x) and cos(x) are cOlJlPuted fron1 these as 
indicated by the value k = modenA), where k = 0, 1, 2, 3. The formula used to 
compute sine(x) is: 

sin(x) sin(y + n*p/2) = sin(y +' k*pi/2) 
sin(y)*cos*(k*pi/2) + cos(y)*sin(k*pi/2) 

A similar formula is used for the computation of cosine(x). Depending upon k, either 
the sine(k = 0,1) or cosine(k = 2,3) of y is evaluated and complemented, if necessary. 

The polynomials p(x) and q(x) are: 

p(x) = s(O)x + 5(1) x**3 + s(2)x**5 + s(3)x**7 + s(4)x**9 + 

s(5)x**11 

q(x) c(O) + c(1)x**2 + c(2)x**4 + c(3)x**6 + c(4)x**8 + 

c(5)x**10 + c(6)x**12 

where the coefficients are: 

5(0) 
s( 1) 

5(2) 
5(3) 
s(4) 
5(5) 
c(O) 
c( 1) 

c(2) 
c(3) 
c(4) 
c(5) 
c(6) 
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.999 999 999 999 972 
-.166 666 666 665 404 

.833 333 331 696 029*10**-2 
-.198 426 073 537 90*10**-3 

.275 548 564 509 884*10**-5 
-.247 320 720 952 463*10**-7 

.999 999 999 999 996 
-.499 999 999 999 991 

.041 666 666 666 470 5 
-.138 888 888 888 159*10**-2 

.248 015 784 673 257*10**-4 
-.275 552 187 277 097*10**-6 

.206 291 063 476 645*10**-8 
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COSSIN 

The coefficients were obtained as follows. The polynomials of degrees 15 and 14, 
obtained by truncating the Maclaurin series1 for sin(x) and cos(x), were telescoped to 
form the polynomials p(x) and q(x) of degrees 11 and 12. The telescoping is done by 
removing the leading term of the polynomial. This is accomplished by subtracting an 
appropriate multiple of T(n)(a(x - x(O))) of the same degree n; 2/a is the length of the 
interval of approximation, and x(O) is I its center. 

The Chebyshev folynomial of degree n, T(n)(x), is defined by T(n)(x) = 
cos(n*arccos(x)). The absolute value of x is no greater than one and satisfies the 
recurrence relation: 

T(O)(x) 
T(1)(x) 

T(n + 1)(x) 

where n ~ 1. 

x 
2xT(n)(x) - T(n - 1)(x) 

For n ~ 1.0, T(n)(x) is the unique polynomial 2(n - 1.0)*x**n + ... of degree n whose 
maximum absolute value over the interval [-1.0,1.0] is minimal. This maximum 
absolute value is one. 

The formulas used for the range reduction are: 

sin(x) = (-1)**n*sin(y) 
cos(x) = (-1)**n*cos(y) 

if x = y + n*pi, n an integer 

sin(x) = cos(x - pi/2) 
cos(x) = -sin(x - pi/2) 

if pi/4 < x < pi/2 

Error Analysis 

The maximum absolute error in the approximation of sin (x) by p(x) in the interval 
(-piJ4,piJ4) is .1893E-14. The maximum absolute error in the approximation of cos(x) 
by q(x) is .3687E-14. 

Effect of Argument Error 

Not applicable, since this routine is not called directly by the user's program. 

1. For a ~iscussion of Maclaurin series, refer to any calculus text (for example, Calculus and Analytic 
Geometry by G. B. Thomas). 

2. For a discussion of the Chebyshev polynomial, see any analysis text (for example, Introduction to 
Numerical Analysis by F. B. Hildebrand). 

9-6 Math Library 60486513 H 



DASNCS 

DASNCS 
DASNCS is an auxiliary routine that computes the inverse sine or inverse cosine 
function. It accepts a double precision argument and returns a double precision result. 

There are no call-by-reference entry points for DASNCS. The call-by-value entry points 
are MLP$VDACOS and MLP$VDASIN. 

The input domain is the collection of all valid double precision quantities in the 
interval [-1.0,1.0]. The output range at entry point MLP$VDACOS is included in the 
set of valid, nonnegative double precision quantities less than or equal to pi. The 
output range at entry point MLP$VDASIN is included in the set of valid double' 
precision quantities in the interval [-piJ2,piJ2]. 

Call-By-Value Routine 

The following identities are used to move the interval of approximation to [0,sqrt(.5)]: 

arcsin(-x) 
arccos(x) 
arcsin(x) 
arccos(x) 

-arcsin(x) 
pi/2-arcsin(x) 
arccos(SQrt(1.0 - x**2», if x > 0 -
arcsin(sQrt(1.0 - x**2», if x > 0 

The reduced value is called y. If y ~ .09375, no further reduction is performed. If not, 
the closest entry to y in a table of values (z,arcsin(z),sqrt(1.0 - z**2), Z = .14, .39, .52, 
.64) is found, and the formula used is: 

arcsin(x) = arcsin(z) + arcsin(w) 

where w = x*sqrt(1.0 - z**2) - z*sqrt(1.0 - x**2). The value of w is in the open 
interval (-.0792,.0848). 

The arcsin of the reduced argument is then found using a 15th order odd polynomial 
with quotient: 

x + x**3(c(3) + x**2(c(5) + x**2(c(7) + x**2(c(11) + x**2(c(13) + 
x**2(c(15) + a/(b-x**2»»») 

where all constants and arithmetic operations before c(ll) are double precision and the 
rest are single precision. The addition of c(ll) has the form single + single = double. The 
polynomial is derived from a minimax rational form (denominator is (b - x**2)) for 
which the critical points have been perturbed slightly to make c(ll) fit in one word. 

To this value, arcsin(z) is added from a table if the last reduction above was done and 
the sum is conditionally negated. Then 0, -piJ2, + pi/2, or pi is added to complete the 
unfolding. 

Error Analysis 

See the descriptions of functions DACOS and DASIN. 

Effect of Argument Error 

See the descriptions of functions DACOS and DASIN. 
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DEULER 

DEULER 
DEULER is an auxiliary routine that accepts calls from other math functions. It 
performs computations that are common among these routines. 

The input and output ranges are described in the DEXP and DTANH function 
descriptions. 

Call-By-Value Routine 

Constants used in the algorithm are: 

1.0/109(2) 
109(2) (in double precision) 
d3 .166 666 666 666 666 666 666 666 666 709 
d5 .833 333 333 333 333 333 333 331 234 953*10**-2 
d7 .198 412 698 412 698 412 700 466 386 658*10**-3 
d9 .275 573 192 239 858 897 408 325 908 796*10**-5 
pc -.474 970 880 178 988*10**-10 
pa .566 228 284 957 811*10**-7 
pb 272.110 632 903 710 
c11 .250 521 083 854 439*10**-7 

Arithmetic operations with d subscripts are done in doubl~ precision, and operations 
with u subscripts are done in single precision. For example, d3 + (d) q indicates that 
the addition is in double precision. An operand with a u or 1 subscript denotes the first 
or second word, respectively, of the double precision pair of words containing the 
operand. 

9-8 Math Library 60486513 H 



The algorithm used is: 

a. n = nearest integer to x/l0g(2), 
y = x - n*10g(2), 
Then y is in [-1/2*10g(2),1/2*10g(2)]. 

b. Q = (y)(u)*(u)(y)(u) 

c. p = Q*(d)(d3 +(d) Q*(d)(d5 +(d) Q*(d)(d7 +(d) Q*(d)(d9 +(d) 
Q*(d)(c11 +(d) Q*(d)(pa/(pb - Q) + pc»»» 

d. s = (y)(u) + (d)(y)(u)*(d)p 

e. Compute hm = sQrt(1.0 + s**2). 
hi = 3*Q + «s)(u»**2 computed in single precision. 
hj = hi + hi 
hk = 2*(1.0 + hj) 
hl = «y)(u)*(u)(y)(u) - hj)/hk - hi 
hm = hj + (u)(hk - (u)hl)*(U)(hl/hk) 

(hm now carries cosh-1.0 in single precision.) 

f. OS = s + (d)«(y)(l) + (r)(y)(l)*(u)hm) + (r)«s)(l) + 
(r)«y)(u)* (l)(p)(u) + (r)(y)(u)*(r)(p)(l»» 
(OS now contains sinh(y) in double precision.) 

g. DC = hm + (d)(DS*OS - 2*hm - hm*hm)/(2(1.0 + hm» computed 'in double 
precision. 

h. OX = OS + OC 

i. Clean up OS, DC, OX with (X7) = n. 
Register pair XA-XB = OS = sinh(y). 
Register pair X8-X9 = OC = cosh(y) - 1.0. 
Register pair X4-X5 = OX = exp(y). 

j. Return. 

Error Analysis 

See the descriptions of functions DEXP and DTANH. 

Effect of Argument Error 

See the descriptions of functions DEXP and DTANH. 

DEULER 
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DSNCOS 

DSNCOS 
D$NCOS is an auxiliary routine that computes the trigonometric sine or trigonometric 
cosine function. It accepts a double precision argument and returns a double precision 
result. 

There are no call-by-reference entry points for DSNCOS. The call-by-value entry points 
are MLP$VDCOS and MLP$VDSIN. 

The input domain for this routine is the collection of aU valid double precision 
quantities whose absolute value is less than 2**47. The output range is included in the 
set of valid double precision quantities in the interval [-1.0,1.0]. 

Call-By-Value Routine 

Upon entry, the argument x is made positive and is multiplied by 2/pi in double 
precision, and the nearest integer n to x*2/pi is computed. At this stage, x*2/pi is 
checked to see that it does not exceed 2**47. If it does, a diagnostic message is 
returned. Otherwise, y = x - n*pil2 is computed in double precision as the reduced 
argument, and y is in the interval [-pil4,pil4]. The value of mod(n,4),. the entry point 
called, and the original sign of x determine whether a sine polynomial approximation 

I' p(x) or a cosine polynomial.approximation q(x) is to be used. A flag is set to indicate 
the si"gn of the final result. . 

For x in the interval [-pil4,pil4], the sine polynomial approximation is: 

p(x) = a(1)x + a(3)x**3 + a(5)x**5 + a(7)x**7 + a(9)x**9 + a(11)x**11 + 

a(13)x**13** + a(15)x**15 + a(17)x**17 + a(19)x**19 + a(21)x**21· 

and the cosine polynomial approximation is: 

q(x) = b(O) + b(2)x**2 + b(4)x**4 + b(6)x**6 + b(8)x**8 + b(10)x**10 + 

b(12)x**12 + b(14)x**14 + b(16)x**16 + b(18)x**18 + b(20)x**20 
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The coefficients are: 

a( 1) 

a(3) 

a(5) 
a(7) 
a(9) 

a( 11) 

a( 13) 
a(15) 
a(17) 
a( 19) 
a(21) 

b(O) 

b(2) 
b(4) 
b(6) 
b(8) 
b(10) 
b(12) 
b( 14) 
b( 16) 
b(18) 
b(20) 

.999 999 999 999 999 999 999 999 999 99 
-.166 666 666 666 666 666 666 666 666 52 

.833 333 333 333 333 333 333 332 709 57*10**-2 
-.198 412 698 412 698 412 698 291344 78*10**-3 

.275 573 192 239 858 906 394 406 844 01*10**-5 
-.250 521 083 854 417 101 138 076 473 5*10**-7 

.160 590 438 368 179 417 271 194 064 61*10**-9 
-.764 716 373 079 886 084 755 348 748 91*10**-12 

.281 145 706 930 018*10**-14 
-.822 042 461 317 923*10**-17 

.194 362 013 130 224*10**-19 

.999 999 999 999 999 999 999 999 999 99 
-.499 999 999 999 999 999 999 999 999 19 

.416 666 666 666 666 666 666 666 139 02 
-.138 888 888 888 888 888 888 755 436 28*10**-2 

.248 015 873 015 873 015 699 922 737 30*10**-4 
-.275 573 192 239 858 775 558 669 957 11*10**-6 

.208 767 569 878 619 214 898 747 461 35*10**-8 
-.114 707 455 958 584 315 495 950 765 75*10**-10 

.477 947 696 822 393 115 933 106 267 21*10**-13 
-.156 187 668 345 316*10**-15 

.408 023 947 777 860*10**-18 

DSNCOS 

These polynomials are evaluated from right to left in double precision. The sign flag is 
used to give the result the correct sign before returning to the calling program. 

Error Analysis 

See the descriptions of functions DeOS and DSIN. 

Effect of Argument Error 

See the descriptions of functions DeOS and DSIN. 
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HYPERB 

HYPERB 
HYPERB is an auxiliary routine that accepts calls from other math functions that 
require the simultaneous hyperbolic sine and hyperbolic cosine of the same argument. 
HYPERB accepts a real argument and returns two real results. 

The entry points and input and output ranges for this routine are described in in the 
CSIN and CCOS function descriptions. 

Call-By-Value Routine 

Upon entry, the routine computes e**x = exp(x) , where x, is the angle passed to 
HYPERB. The hyperbolic cosine is computed by: 

cosh(x) = O.5*(exp(x) + exp(-x» 

If Ixl ~ .22, the hyperbolic sine is computed by: 

sinh(x) = O.5*(exp(x) - exp(-x» 

For Ixl < 0.22, the Maclaurin series3 for sinh is truncated after the term x**9/9! and 
the resulting polynomial is taken as the approximation: 

sinh(x) = x + x**3/3! + x**5/5! + x**7/7! + x**9/9! 

Error Analysis 

See the descriptions of functions COSH and SINH. 

Effect of Argument Error 

See the descriptions of functions COSH and SINH. 

\ 

3. For a discussion of Maclaurin series, refer to any calculus text (for example, Calculus and Analytic 
Geometry by G. B. Thomas). 
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SINCOS 
SINCOS is an auxiliary routine that computes the trigonometric sine and cosine 
functions. It accepts a real argument and returns a real result. 

SINCOS 

There are no call-by-reference entry points for SINCOS. The call-by-value entry points 
are MLP$VCOS and MLP$VSIN. 

The input domain for this routine is the collection of all valid real quantities whose 
absolute value is less than 2**47. The output range is included in the set of valid real 
quantities in the interval [-1.0,1.0]. 

Call-By-Value Routine 

If x is valid, then COS(x) or SIN (x) is calculated by using the periodic properties of the 
cosine and sine functions to reduce the task to finding a cosine or sine of an 
equivalent angle y within [-pil4, pil4] as follows: 

If N + K is even 
then 

Z sin(y) 
else 

z cos(y) 
If MOD(N + K, 4) is 0 or 1 (that is, the second last bit of N + K is even) 
then 

S 0 
else 

S = mask( 1) 

where K is 0, 1, or 2 according to whether the SIN of a positive angle, the COS of 
any angle, or the SIN of a negative angle is to be calculated. N is the nearest integer 
to 2/pi*x, and y is the nearest single precision floating-point number to x - n*pil2. The 
argument x is the absolute value of the angle. The desired SIN or COS is xor(S, Z). 

Once the angle has been reduced to the range [-pil4, pil4] , the following 
approximations are used to calculate either the cosine or the sine of the angle, 
providing 48 bits of precision. 

If the cosine or the angle is required, the approximation used is 

cosine(y) = 1 - y*y*P(y*y) 

where y is the angle and pew) is the quintic polynomial: 

P(w) = PO + P1*w + P2*w**2 +P3 + w**3 + P4*w**4 + P5*w**5 

such that P(y*y) is a minimax polynomial approximation to the function (1 -
cos(y))/y**2. 

The coefficients are: 

P5 -2.070062305624629462E-9 
P4 2.755636997406588778E-7 
P3 -2.480158521206426671E-5 
P2 1.388888888727866775E-3 
P1 -4. 166666666666468116E-2 
PO 5.000000000000000000E-1 
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SINCOS 

If the sine of the angle is required, the approximation used is 

sine(y) = y - y*y*y*Q(y*y) 

where y is the angle and Q(w) is the quintic polynomial: 

Q(w) = QO + Q1*w + Q2*w**2 +Q3*w**3 + Q4*w**4 + Q5*w**5 

such that Q(y*y) is a minimax polynomial approximation to the function (y -
sin(y))/y**3. . 

The coefficients are: 

Q5 -1.591814257033005283E-10 
Q4 2.505113204973767698E-8 
Q3 -2.755731610365754733E-6 
Q2 1.984126983676100911E-4 
Q1 -8.333333333330950363E-3 
QO 1.666666666666666463E-1 

Error Analysis 

The function SINCOS was tested against 4*COS(xl3)**3 - 3*COS(xl3). Groups of 2,000 
arguments were chosen randomly from the interval [.2199E + 02,.2356E + 02]. Statistics 
on relative error were observed: maximum relative error was .1404E-13, and root 
mean square relative error was .3245E-14. -

Effect of Argument Error 

If a small error e occurs in the argument x, the error in the result is given 
approximately by e*cos(x) for sin(x) and -e*sin(x) for cos(x). 
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SINCSD 

SINCSD 
SINCSD computes the sine and cosine functions for arguments in degrees. It accepts a 
real argument and returns a real result. 

There are no call-by-reference entry points for SINCSD. The call-by-value entry points 
are MLP$VCOSD and MLP$VSIND. 

The input domain for this routine is the collection of all valid real quantities whose 
absolute value is less than 2**47. The output range is included in the set of valid real 
quantities in the interval [-1.0,1.0]. 

Call-By-Value Routine 

The result is put in the interval [-45,45] by finding the nearest integer, n, to xl90, and 
subtracting n*90 from the argument. The reduced argument is then multiplied by 
pi/ISO. The appropriate sign is copied to the value of the appropriate function, sine or 
cosine, as determined by these identities: 

sln(x + 360 degrees) sln(x) 
sln(x + 180 degrees) -sln(x) 
sln(x + 90 degrees) cos(x) 
sln(x - 90 degrees) -cos(x) 
cos(x + 360 degrees) cos(x) 
cos(x + 180 degrees) -cos(x) 
cos(x + 90 degrees) -sln(x) 
cos(x - 90 degrees) = sin(x) 

Error Analysis 

The reduction to (-45,+45) is exact; the constant piJlSO has relative error 1.37E-15, 
and multiplication by this constant has a relative error 5.33E-15, and a total error of 
6.7E-15. Since errors in the argument of SIN and COS contribute only piJ4 of their 
value to the result, the error due to the reduction and conversion is, at most, 5.26E-15 
plus the maximum error in SINCOS over (-piJ4, +piJ4). 

A group of 10,000 arguments was chosen at random from the interval [0,360]. The 
maximum relative error of these arguments was found to be .7l05E-14 for COSD and 
.1403E-13 for SIND. 

Effect of Argument Error 

Errors in the argument x are amplified by xltan(x) for SIND and x*tan(x) for COSD. 
These functions have a maximum value of piJ4 in the interval (-45,+45) but have 
poles at even (SIND) or odd (COSD) multiples of 90 degrees, and are large between 
multiples of 90 degrees if x is large. 
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Algorithm Error Dummy Argument 

Glossary A 

A 

Algorithm Error 

Error caused by inaccuracies inherent in the mathematical process used to compute the 
result. It includes error in coefficients used in the algorithm. 

Argument 

A variable or constant that is passed to a routine and used by that routine to compute 
a function. The actual value of the variable is passed when a routine is called by 
value; the address of the variable is passed when the routine is called by reference. 

Argument Set 

An ordered list of one or more arguments. 

Auxiliary Routine 

A math routine which is not directly called from program code, but assists in the 
computation of a Math Library function. 

'c 

Call-by-Address 

See call-by-reference. 

Call-by-Reference 

A method of referencing a subprogram in which the addresses of the arguments are 
passed. Synonymous with call-by-address. 

Call-by-Value 

A method of referencing a subprogram in which the values of the arguments are 
passed. 

D 

Data Descriptor 

Describes data by pointing to one or more contiguous data locations. 

Domain 

The collection of argument lists for which an entry point (function call) has been 
designed to return meaningful results without generating an error condition. 

Dummy Argument 

A variable or constant that is passed to a routine, but is not used by the routine to 
compute a function. 
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Entry Point Machine Round-Off Error 

E 

Entry Point 

A statement within a math routine at which execution can begin. There may be more 
than one entry point into a math routine. 

Error 

The computed value of a function minus the true value. 

Exponentiation Routine 

A math routine which accepts compiler-generated calls from a source program to 
perform exponentiation. These calls are generated when a program statement involves 
exponentiation of certain number types. Exponentiation routines are not called directly 
using their function names. 

External Routine 

A predefined subprogram that accepts calls from program code to compute certain 
mathematical functions. 

F 

Function N arne 

A symbolic name that appears in a program and causes a math routine to be executed 
(for example, ABS). 

I 

Indeimite Value 

A value that results from a mathematical operation that cannot be resolved, such as a 
division where the dividend and divisor are both zero. Indefinite numbers are 
nonstandard floating-point numbers with exponents in the range of 7000 hexadecimal to 
7FFF hexadecimal or FOOO hexadecimal to FFFF hexadecimal. 

Inimite Value 

A value that results from a computation whose result exceeds the capacity of the 
computer. 

Input Range 

A collection of argument sets for which a given math routine will return a valid result. 

Intrinsic Function 

A compiler-defined FORTRAN procedure that returns a single value. 

M 

Machine Round-Off Error 

Machine round-off error is caused by the finite nature of the computer. Because only a 
finite number of bits can be represented in each word of memory, some precision is 
lost. 
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Number Types 

N 

Number Types 

A classification of the numbers processed by the math routines. The math routines 
perform computations on four number types: integer, single precision floating-point, 
double precision floating-point, and complex floating-point. 

o 

Output Range 

Stride 

The collection of results obtained by using the arguments in the input domain of each 
math routine for computation of the function or routine. 

Q 

Quintic 

An algebraic function of the· fIfth degree. A quintic polynomial is a polynomial· equation 
of the fIfth degree. 

R 

Range 

The collection of results obtained by entering members of the domain into an entry 
point. 

Relative Error 

The error of a function, divided by the true value. The maximum relative error 
approximates the worst-case behavior of the function in the given interval. 

Root Mean Square Relative Error 

The square root of the average of the squares of the relative errors of all the 
arguments. 

Routine 

A computer subprogram that computes commonly occurring math functions and 
performs other tasks such as input and output. A method of referencing a subprogram, 
that is, either by values or by address. 

s 

Scalar 

A constant, variable, array element, or substring of any type. 

Stride 

The distance measured in terms of array elements between two consecutive elements of 
the same dimension. For the Math Library, the stride is always equal to one. 
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Units in the Last Place (ulp) Vectorization 

u 

Units in the Last Place (ulp) 

A mathematical concept used to describe the accuracy of an algorithm. 

v 

Vector 

One-dimensional array of up to 512 elements. 

Vectorization 

The manipulation of object code to reduce execution time taking advantage of the 
vector processing capabilities of the CYBER 180/990 Series running FORTRAN Version 
2. 
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Related Manuals B 

Table B-1 lists all manuals that are referenced in this manual or that contain 
background information. A complete list of NOSIVE manuals is given in the NOSIVE 
System Usage manual. If your site has installed the online manuals, you can find an 
abstract for each NOSIVE manual in the online System Information manual. To access 
this manual, enter: 

explain 

Table B-1 also lists a few VXJVE manuals. Additional VXlVE manuals are listed in 
the VXlVE Programmer Reference Manual. 

Ordering Printed Manuals 

You can order Control Data manuals through Control Data sales offices or through: 

Control Data Corporation 
Literature and Distribution Services 
308 North Dale Street 
St. Paul, Minnesota 55103 

Accessing Online Manuals 
To access an online manual, log in to NOSIVE and specify the online manual title 
(listed in table B-1) on the EXPLAIN command. For example, to read the FORTRAN 
Version 1 Quick Reference online manual, enter: 

explain manual=fortran 
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Accessing Online Manuals 

Table B-1. Related Manuals 

Pu blication Online 
Manual Title Number Title 

Ada for NOSIVE Usage 60498113 ADA 

APL for NOSNE Usage 60485813 

BASIC for NOSIVE Usage 60486313 BASIC 

C for NOSNE Usage 60469830 C 

CYBIL Language Definition Usage 60464113 

Debug for NOSNE Usage 60488213 

FORTRAN for NOSNE LIB99 60485915 

FORTRAN Version 1 Language Definition Usage 60485913 

FORTRAN Version 1 Quick Reference L60485918 FORTRAN 

FORTRAN Version 2 Language Definition Usage 60487113 

FORTRAN Version 2 Quick Reference L60487118 VFORTRAN 

LISP for NOSNE Language Definition Usage 60486213 

NOSNE Diagnostic Messages 60484613 MESSAGES 

NOSNE System Usage 60464014 

Pascal for NOSNE Usage 60485613 PASCAL 

Prolog for NOSNE Usage 60486713 PROLOG 

VXlVE Programmer Reference Manual 60469820 

VXlVE User Guide 60469780 
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ASCII Character Set C 

Table C-l gives the ASCII character set with the hexadecimal character code for each 
ASCII character. 

See the appropriate language manual as listed in appendix B for additional ASCII 
character set tables. 
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ASCII Character Set 

Table C-l. ASCII Character Set and Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic N arne or Meaning 

0 00 NULL Null 
1 01 SOH Start of heading 
2 02 STX Start of text 
3 03 ETX End of text 
4 04 EOT End of transmission 
5 05 ENQ Enquiry 
6 06 ACK Acknowledge 
7 07 BEL Bell 
8 08 BS Backspace 
9 09 HT Horizontal tabulation 

10 OA LF Line feed 
11 OB VT Vertical tabulation 
12 OC FF Form feed 
13 OD CR Carriage return 
14 OE SO Shift out 
15 OF SI Shift in 
16 10 DLE Data link escape 
17 11 DCl Device control 1 
18 12 DC2 Device control 2 
19 13 DC3 Device control 3 

20 14 DC4 Device control 4 
21 15 NAK Negative acknowledge 
22 16 SYN Synchronous idle 
23 17 ETB End of transmission block 
24 18 CAN Cancel 
25 19 EM End of medium 
26 lA SUB Substitute 
27 IB ESC Escape 
28 lC FS File separator 
29 ID GS Group separator 

30 IE RS Record separator 
31 IF US U nit separator 
32 20 SP Space 
33 21 Exclamation point 
34 22 " Quotation marks 
35 23 # Number sign 
36 24 $ Dollar sign 
37 25 % Percent sign 
38 26 & Ampersand 
39 27 Apostrophe 

(Continued) 
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ASCII Character Set 

Table C-l. ASCII Character Set and Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic N arne or Meaning 

40 28 ( Opening parenthesis 
41 29 ) Closing parenthesis 
42 2A * Asterisk 
43 2B + Plus 
44 2C Comma 
45 2D Hyphen 
46 2E Period 
47 2F / Slant 
48 30 0 Zero 
49 31 1 One 

50 32 2 Two 
51 33 3 Three 
52 34 4 Four 
53 35 5 Five 
54 36 6 Six 
55 37 7 Seven 
56 38 8 Eight 
57 39 9 Nine 
58 3A Colon 
59 3B Semicolon 

60 3C < Less than 
61 3D = Equal to 
62 3E > Greater than 
63 3F ? Question mark 
64 40 @ Commercial at 
65 41 A Uppercase A 
66 42 B Uppercase B 
67 43 C Uppercase C 
68 44 D Uppercase D 
69 45 E Uppercase E 

70 46 F Uppercase F 
71 47 G Uppercase G 
72 48 H Uppercase H 
73 49 I Uppercase I 
74 4A J Uppercase J 
75 4B K Uppercase K 
76 4C L Uppercase L 
77 4D M Uppercase M 
78 4E N Uppercase N 
79 4F 0 Uppercase 0 

(Continued) 
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ASCII Character Set 

Table C-l. ASCII Character Set and Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic N arne or Meaning 

80 50 P Uppercase P 
81 51 Q Uppercase Q 
82 52 R Uppercase R 
83 53 S Uppercase S 
84 54 T Uppercase T 
85 55 U Uppercase U 
86 56 V Uppercase V 
87 57 W Uppercase W 
88 58 X Uppercase X 
89 59 y Uppercase Y 

90 5A Z Uppercase Z 
91 5B [ Opening bracket 
92 5C \ Reverse slant 
93 5D ] Closing bracket 
94 5E Circumflex 
95 5F Underline 
96 60 Grave accent 
97 61 a Lowercase a 
98 62 b Lowercase b 
99 63 c Lowercase c 

100 64 d Lowercase d 
101 65 e Lowercase e 
102 66 f Lowercase f 
103 67 g Lowercase g 
104 68 h Lowercase h 
105 69 i Lowercase i 
106 6A j Lowercase j 
107 6B k Lowercase k 
108 6C 1 Lowercase 1 
109 6D m Lowercase m 

110 6E n Lowercase n 
111 6F 0 Lowercase 0 

112 70 p Lowercase p 
113 71 q Lowercase q 
114 72 r Lowercase r 
115 73 s Lowercase s 
116 74 t Lowercase t 
117 75 u Lowercase u 
118 76 v Lowercase v 
119 77 w Lowercase w 

(Continued) 
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ASCII Character Set 

Table C-l. ASCII Character Set and Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

120 78 x Lowercase x 
121 79 .y Lowercase y 
122 7A z Lowercase z 
123 7B { Opening brace 
124 7C I Vertical line 
125 7D } Closing brace 
126 7E Tilde 
127 7F DEL Delete 

ASCII codes 80 through FF hexadecimal (not listed in this table) are ordered as equal 
to the space (ASCII code 20 hexadecimal). 
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Call-by-value 3-4; A-I 
Call-by-value logic diagram (scalar) 3-5 
Calling FORTRAN and the Math Library 

from Ada 4-7 
Calling routines 3-1 
Calls 3-1 
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CCOS function 8-36 
CEXP function 8-38 
CLOG function 8-40 
Complex numbers 2-7 
CONJG function 8-42 
COS function 8-44 
COSD function 8-48 
COSH function 8-50 
COSSIN routine 9-5 
COTAN function 8-52 
CSIN function 8-54 
CSQRT function 8-56 
CYBIL example 4-11; B-2 
CYBIL program using 

MLT$COMPLEX 4-12 

D 
DABS function 8-58 
DACOS function 8-60 
DASIN function 8-64 
DASNCS routine 9-7 
Data descriptor A-I 
Data types for Ada MATH_LIBRARY 

functions 4-5 
DATAN function 8-68 
DATAN2 function 8-72 
DCOS function 8-76 
DCOSH function 8-80 
DDIM function 8-82 
Debug utility 1-2; B-2 
Default error values 2-7 
DEULER routine 9-8 
DEXP function 8-84 
Diagnostic messages 3-2; B-2 
DIM function 8-88 
DINT function 8-89 
DLOG function 8-90 
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DLOG10 function 

DLOG10 function 8-94 
DMOD function 8-98 
DNINT function 8-100 
Domain A-I 
Double precision floating-point 

numbers 2-5 
DPROD function 8-101 
DSIGN function 8-102 
DSIN function 8-104 
DSINH function 8-108 
DSNCOS routine 9-10 
DSQRT function 8-110 
DTAN function 8-112 
DTANH function 8-116 
DTOD function 8-118 
DTOI function 8-122 
DTOX function 8-126 
DTOZ function 8-128 
Dummy argument A-I 

E 
Entry point 1-8; A-2 
ERF function 8-130 
ERFC function 8-132 
Error A-2 
Error handling 5-1; 7-6 
EXP function 8-134 
Exponentiation functions 

Arguments and results 6-11 
Domains and ranges 6-8 

Exponentiation routine (see also 
routine) A-2 

Exponentiation using Ada 4-7 
EXTB function 8-138 
External routine A-2 

F 
Floating-point computation rules 2-7 
For better performance 

CYBIL 4-13 
FORTRAN Version 1 4-21 
FORTRAN Version 2 4-22 

FORTRAN function summary 4-23 
FORTRAN Version 1 calling the Math 

Library 4-14; B-2 
FORTRAN intrinsic functions 4-14; 

A-2 
Uses call-by-value or 

call-by-reference 4-14 
FORTRAN Version 2 calling the Math 

Library 
Function descriptions 8-1 

ABS 8-3 
ACOS 8-4 
AIMAG 8-8 
AINT 8-9 
ALOG 8-10 
ALOG10 8-14 
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AMOD 8-18 
ANINT 8-20 
ASIN 8-22 
ATAN 8-26 
ATANH 8-28 
ATAN2 8-30 
CABS 8-34 
CCOS 8-36 
CEXP 8-38 
CLOG 8-40 
CONJG 8-42 
COS 8-44 
COSD 8-48 
COSH 8-50 
COTAN 8-52 
CSIN 8-54 
CSQRT 8-56 
DABS 8-58 
DACOS 8-60 
DASIN 8-64 
DATAN 8-68 
DATAN2 8-72 
DCOS 8-76 
DCOSH 8-80 
DDIM 8-82 
DEXP 8-84 
DIM 8-88 
DINT 8-89 
DLOG 8-90 
DLOG10 8-94 
DMOD 8-98 
DNINT 8-100 
DPROD 8-101 
DSIGN 8-102 
DSIN 8-104 
DSINH 8-108 
DSQRT 8-110 
DTAN 8-112 
DTANH 8-116 
DTOD 8-118 
DTOI 8-122 
DTOX 8-126 
DTOZ 8-128 
ERF 8-130 
ERFC 8-132 
EXP 8-134 
EXTB 8-138 
lABS 8-140 
IDIM 8-141 
IDNINT 8-142 
INSB 8-144 
ISIGN 8-146 
ITOD 8-148 
ITOI 8-150 
ITOX 8-152 
ITOZ 8-154 
MOD 8-156 
NINT 8-158 
RANF 8-159 
RANGET 8-162 
RANSET 8-163 
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Function name 

SIGN 8-164 
SIN 8-166 
SIND 8-168 
SINH 8-170 
SQRT 8-174 
SUM1S 8-178 
TAN 8-180 
TAND 8-182 
TANH 8-184 
XTOD 8-186 
XTOI 8-188 
XTOX 8-190 
XTOZ 8-194 
ZTOD 8-196 
ZTOI 8-198 
ZTOX 8-200 
ZTOZ 8-202 

Function name A-2 
Functions available 1-3 

Bit manipulation 1-7 
Conversion and 

G 

maximum/minimum 1-6 
Error 1-7 
Exponential 1-4 
Hyperbolic 1-5 
Logarithmic 1-4 
Random number 1-7 
Trigonometric 1-5 

Generic and specific names . 8-2 
Glossary A-I 

H 
HYPERB routine 9-12 

I 
lABS function 8-140 
IDIM function 8-141 
IDNINT function 8-142 
In case you need assistance 11 
Indefinite value A-2 
Infinite value A-2 
Inline versus out-of-line routines 3-7 
Inlined functions 4-14, 28 
Input domains and output ranges 6-6 
Input errors 

Call-by-reference error handling 5-3 
Call-by-value error handling 5-3 

Input range A-2 
INSB function 8-144 
Integer number types 2-2 
Introduction 1-1 
ISIGN function 8-146 
ITOD function 8-148 
ITOI function 8-150 
ITOX function 8-152 
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ITOZ function 8-154 

L 
Language matrix 3-6 
LIB99 1-2; B-2 
LISP 4-1; B-2 

Quintic 

Logical flow of call-by-reference error 
handling 5-4 

M 
Machine round-off error 5-2; A-2 
Manual organization 8 
Mathematical conventions 10 
MOD function 8-156 

N 
NINT function 8-158 
NOSNE condition handler 

Condition handling 5-6; B-2 
Error processing 5-6 

NOSNE math library environment 1-2 
Number types 2-1; A-3 

o 

Complex numbers 2-7 
Double precision floating-point 

numbers 2-5 
Integer 2-2 
Single precision floating-point 

numbers 2-3 

Ordering printed manuals B-1 
Output range 6-6; A-3 

p 

Parameter list 7-2 
For single argument vector math 

functions 7-2 
Scalar, vector 7-3 
Vector, scalar 7-4 
Vector, vector 7-4 

Pascal calling the Math Library 
Pascal calling routines 4-28; B-2 

Pascal math function attributes 4-29 
Pascal predefined functions 4-28 
Processing error 5-2 
Prolog 4-1; B-2 

Q 
Quintic A-3 
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RANF function 

R 
RANF function 8-159 
Range A-3 
RANGET functionfunction 8-162 
RANSET function 8-163 
Related manuals B-1 
Relative error A-3 
Result array and source -array 

descriptors 7-5 
Root mean square relative error A-3 
Routine A-3 
Routines 3-1 
Routines and calls 3-1 

S 
Scalar A-3 
Scalar classification tables 6-1 
SIGN function 8-164 
SIN function 8-166 
SINCOS routine 9-13 
SINCSD routine 9-15 
SIND function 8-168 
Single precision floating-point 

numbers 2-3 
Nonstandard 2-4 
Standard 2-3 

SINH functionfunction 8-170 
SQRT function 8-174 
Stride A-3 
Submitting comments 11 
Summary of math functions 6-2 
Summary of NOSNE floating-point 

representation 2-5 
SUM1S function 8-178 

Index-4 Math Library 

T 
TAN function 8-180 
TAND function 8-182 
TANH function 8-184 
Types of processing errors 

Algorithm 5-2 
Machine round-off 5-2 

Typographical conventions 10 

U 

ZTOZ function 

Units in the last place (ulp) A-4 

V 
Vector A-4 
Vector error handling 7-6 
Vector function calling routines 7-1 
Vector functions 7-1 

Double argument vector math 
functions 7 -3, 4 

Single argument vector math 
functions 7-2 

Vector processing 7-1 
Vectorization A-4 
VXNE 7; B-2 

X 
XTOD function 8-186 
XTOI function 8-188 
XTOX function 8-190 
XTOZ function 8-194 

Z 
ZTOD function 8-196 
ZTOI function 8-198 
ZTOX function 8-200 
ZTOZ function 8-202 
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We would like your comments on this manual to help us improve it. Please take a few minutes to fill out 
this form. 

Who are you? How do you use .this manual? 

o Manager o As an overview 

o Systems analyst or programmer o To learn the product or system 

o Applications programmer o For comprehensive reference 

o Operator o For quick look-up 
o Other ________________________________ ___ o Other ___________________________________ __ 

What programming languages do you use? 
-------------------------------------------------------

How do you like this manual? Answer the questions that apply. 

Yes Somewhat No 
0 0 0 Does it tell you what you need to know about the topic? 

0 0 0 Is the technical information accurate? 

0 0 0 Is it easy to understand? 

0 0 0 Is the order of topics logical? 

0 0 0 Can you easily find what you want? 

0 0 0 Are there enough examples? 

0 0 0 Are the examples helpful? (0 Too simple? o Too complex?) 

0 0 0 Do the illustrations help you? 

0 0 0 Is the manual easy to read (print size, page layout, and so on)? 

0 0 0 Do you use this manual frequently? 

Comments? If applicable, note page and paragraph. Use other side if needed. 

Check here if you want a reply: 0 

Name Company 

Address Date 

Phone 

Please send program listing and output if applicable to your comment. 



Quick Index 

The following quick index summarizes the math functions and their Math Library 
names, describes each function, and provides a page reference to the complete 
description in chapter 8. 

Function Description Page Number 

ABS 
ACOS 
AIMAG 
AI NT 
ALOG 

ALOGI0 
AMOD 
ANINT 
ASIN 
ATAN 

ATANH 
ATAN2 

CABS 
CCOS 
CEXP 
CLOG 
CONJG 

COS 
COSD 
COSH 
COTAN 
CSIN 

CSQRT 

DABS 
DACOS 
DASIN 
DATAN 
DATAN2 

DCOS 
DCOSH 
DDIM 
DEXP 
DIM 

Absolute value 
Inverse cosine 
Imaginary part of a complex argument 
Truncation 
Natural logarithm 

Common logarithm (base 10) 
Returns the remainder of a ratio (uses real numbers) 
Nearest whole number 
In verse sine 
Inverse tangent 

Inverse hyperbolic tangent 
Inverse tangent of the ratio of two arguments 

Complex absolute value 
Complex cosine 
Complex exponential (base e) 
Complex natural logarithm 
Conjugate 

Cosine 
Cosine in degrees 
Hyperbolic cosine 
Cotangent 
Complex sine 

Complex square root 

Double precision absolute value 
Double precision inverse cosine 
Double precision inverse sine 
Double precision inverse tangent 
Double precision inverse tangent of the ratio of two 
arguments 

Double precision cosine 
Double precision hyperbolic cosine 
Double precision positive difference 
Double precision exponential (base e) 
Positive difference 

8-3 
8-4 
8-8 
8-9 

8-10 

8-14 
.- 8-18 

8-20 
8-22 
8-26 

8-28 
8-30 

8-34 
8-36 
8-38 
8-40 
8-42 

8-44 
8-48 
8-50 
8-52 
8-54 

8-56 

8-58 
8-60 
8-64 
8-68 
8-72 

8-76 
8-80 
8-82 
8-84 
8-88 



Function 

DINT 
DLOG 
DLOG10 
DMOD 

DNINT 

DPROD 
DSIGN 
DSIN 
DSINH 

DSQRT 
DTAN 
DTANH 
DTOD 

DTOI 

DTOX 

DTOZ 

ERF 
ERFC 
EXP 
EXTB 

lABS 
IDIM 
IDNINT 
INSB 
ISIGN 

ITOD 

ITOI 
ITOX 
ITOZ 

MOD 

NINT 

RANF 
RANGET 
RANSET 

Description 

Double precision truncation 
Double precision natural logarithm 
Double precision common logarithm (base 10) 
Returns the remainder of a ratio (uses double 
precision numbers) 
Double precision nearest whole number 

Double precision product 
Double precision transfer of sign 
Double precision sine 
Double precision hyperbolic sine 

Double precision square root 
Double precision tangent 
Double precision hyperbolic tangent 
Exponentiation with double precision base and double 
precision exponent 

Exponentiation with double precision base and integer 
exponent 
Exponentiation with· double precision base and real 
exponent 
Exponentiation with double precision base. and complex 
exponent 

Computes the error function 
Computes the complementary error function 
Exponential (base e) 
Extract bits 

Integer absolute value 
Integer positive difference 
Double precision nearest integer 
Insert bits 
Integer transfer of sign 

Exponentiation with integer base and double precision 
exponent 
Exponentiation with integer base and integer exponent 
Exponentiation with integer base and real exponent 
Exponentiation with integer base and complex 
exponent 

Returns the remainder of a ratio (uses integers) 

Nearest integer 

Generates the next random number in a series 
Returns the current random number seed of a task 
Sets the seed for the random number generator 

Page Number 

8-89 
8-90 
8-94 
8-98 

8-100 

8-101 
8-102 
8-104 
8-106 

8-110 
8-112 
8-116 
8-118 

8-122 

8-126 

8-128 

8-130 
8-132 
8-134 
8-138 

8-140 
8-141 
8-142 
8-144 
8-146 

8-148 

8-150 
8-152 
8-154 

8-156 

8-158 

8-159 
8-162 
8-163 



Function Description Page Number 

SIGN Transfer of sign 8-164 
SIN Sine 8-166 
SIND Sine in degrees 8-168 
SINH Hyperbolic sine 8-170 
SQRT Square root 8-174 
SUM1S Sum of 1 bits in one word 8-178 

TAN Tangent 8-180 
TAND Tangent in degrees 8-182 
TANH Hyperbolic tangent 8-184 

XTOD Exponentiation with real base and double precision 8-186 
exponent 

XTOI Exponentiation with real base and integer exponent 8-188 
XTOX Exponentiation with real base and real exponent 8-190 
XTOZ Exponentiation with real base and complex exponent 8-194 

ZTOD Exponentiation with complex base and double precision 8-196 
exponent 

ZTOI Exponentiation with complex base and integer 8-198 
exponent 

ZTOX Exponentiation with complex base and real exponent 8-200 
ZTOZ Exponentiation with complex base and complex 8-202 

exponent 
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