
Math Library
for NOS/VE

Usage

(52)
CONT"OL

DATA

60486513

Math. Library

for NOSNE

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60486513

Manual History

Revision System Version PSR Level Product Version Date

A 1.0.2 598 1.0 October 1983
B 1.1.2 630 1.0 April 1985
C 1.1.4 649 1.0 January 1986
D 1.2.1 664 1.0 October 1986
E 1.2.2 678 1.0 April 1987
F 1.2.3 688 1.0 September 1987
G 1.3.1 700 1.0 April 1988
H 1.4.1 716 1.0 January 1989

Revision H documents the Math Library for NOSNE at release level 1.4.1, PSR level
716. This revision obsoletes all previous editions.

This revision documents the following new features:

• C language support.

• Enhanced CYBIL support.

• Performance improvements to the following math functions:

ACOS
ALOG
ALOG10
ASIN
ATAN
COS
EXP
SIN
SQRT
TAN

• Algorithm changes to functions DTOI and XTOI.

This revision also includes the following organizational changes:

• N umber types, calling routines, error handling, scalar classification tables, calls
from supported languages, and vector processing modules have been restructured as
separate chapters.

• Short examples of each function have been added to. illustrate the required number
of arguments and number types.

• A bibliography has been added.

Changes are not marked with vertical bars in this revision because this manual has
been reorganized.

©1983, 1985, 1986, 1987, 1988, 1989 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 ~ath Library 60486513 H

Contents

About This Manual 7

Audience 7
Manual Organization 8
Typographical Conventions 10
Mathematical Conventions 10
Submitting Comments 11
In Case You Need Assistance 11

Introduction 1-1

Functions Available 1-3
Entry Point 1-8

Number Types 2-1

Integer .. 2-2
Single Precision Floating-Point

Numbers. .. 2-3
Double Precision Floating-Point

Numbers. .. 2-5
Complex Numbers 2-7
Floating-Point Computation

Rules 2-7
Default Error Values 2-7

Calling Routines 3-1

Routines and Calls 3-1
Call-by-Reference 3-2
Call-by-Value 3-4
Call-by-Reference Versus

Call-by-Value Matrix 3-6
Inline Versus Out-of-Line

Routines 3-7

Calls From Languages 4-1

Ada Calling the Math Library 4-3
Assembler Calling the Math

Library. .. 4-8
C Calling the Math Library 4-9
CYBIL Calling the Math Library 4-11
FORTRAN Version 1 Calling the

Math Library. 4-14
FORTRAN Version 2 Calling the

Math Library.. 4-22
FORTRAN Function Summary ... 4-23
Pascal Calling the Math Library. 4-28

60486513 H

Error Handling 5-1

Processing Error 5-2
Input Error 5-3
Accuracy Measurements 5-5
NOS/VE Condition Handler 5-6

Scalar Classification Tables 6-1

Summary of Math Functions 6-2
Input Domains and Output

Ranges. 6-6
Exponentiation Functions 6-8

Vector Processing 7-1

Vector Functions 7-1
Vector Error Handling 7-6

Function Descriptions 8-1

Generic and Specific Names 8-2
ABS 8-3
ACOS 8-4
AIMAG 8-8
AINT 8-9
ALOG 8-10
ALOGI0 8-14
AMOD 8-18
ANINT 8-20
ASIN 8-22
ATAN 8-26
ATANH 8-28
ATAN2 8-30
CABS ' 8-34
CCOS 8-36
CEXP 8-38
CLOG 8-40
CONJG 8-42
COS 8-44
COSD 8-48
COSH 8-50
COTAN 8-52
CSIN 8-54
CSQRT 8-56
DABS 8-58
DACOS 8-60
DASIN 8-64

Contents 3

DATAN 8-68 SIGN 8-164
DATAN2 8-72 SIN , 8-166
DCOS 8-76 SIND 8-168
DCOSH 8-80 SINH 8-170
DDIM 8-82 SQRT 8-174
DEXP 8-84 SUMIS 8-178
DIM 8-88 TAN 8-180
DINT 8-89 TAND 8-182
DLOG 8-90 TANH 8-184
DLOGI0 8-94 XTOD 8-186
DMOD 8-98 XTOI 8-188
DNINT 8-100 XTOX 8-190
DPROD 8-101 XTOZ 8-194
DSIGN 8-102 ZTOD 8-196
DSIN 8-104 ZTOI 8-198
DSINH 8-108 ZTOX 8-200
DSQRT 8-110 ZTOZ 8-202
DTAN 8-112
DTANH 8-116 Auxiliary Routines 9-1
DTOD 8-118
DTOI 8-122
DTOX 8-126
DTOZ 8-128
ERF 8-130
ERFC 8-132
EXP 8-134
EXTB 8-138
lABS 8-140

ACOSIN 9-2
COSSIN 9-5
DASNCS 9-7
DEULER 9-8
DSNCOS 9-10
HYPERB 9-12
SINCOS 9-13
SINCSD 9-15

IDIM 8-141
IDNINT 8-142 Glossary , A-I

INSB 8-144
ISIGN 8-146 Related Manuals B-1

ITOD 8-148 Ordering Printed Manuals B-1
ITOI 8-150 Accessing Online Manuals B-1
ITOX 8-152
ITOZ 8-154 ASCII Character Set C-I
MOD 8-156
NINT 8-158
RANF 8-159

Bibliography D-I

RANGET 8-162
RANSET 8-163

Index Index-I

Figures

1-1. NOSNE Math Library 2-1. Bit Diagram of 8-Byte Integer
Environment 1-2 Format 2-2

1-2. Pattern Diagram for Entry 2-2. Bit Diagram of Single Precision
Points , 1-8 Floating-Point Format 2-3

4 Math Library 60486513 H

2-3. Bit Diagram of Double
Precision Floating-Point Format. 2-5

2-4. Summary of NOSNE
Floating-Point Representation 2-6

3-1. Call-by-Reference Logic
Diagram (Scalar) 3-3

3-2. Call-by-Value Logic Diagram
(Scalar) .. 3-5

4-1. Ada Program Calling the Math
Library. .. 4-4

4-2. Assembler Program Calling the
Math Library.................. 4-8

4-3. C Program Calling the Math
Library Using Call-by-Reference 4-9

Tables

3-1. Language Matrix 3-6
4-1. Language Summary 4-2
4-2. Data Types for Ada MATH_

LIBRARY Functions. 4-5
4-3. FORTRAN Intrinsic Functions . 4-16
4-4. FORTRAN Function Summary . 4-23
4-5. Mathematical Intrinsic

Functions. 4-29
6-1. Mathematical Functions 6-2
6-2. Input Domains and Output

Ranges 6-6
6-3. Arguments and Results of the

Exponentiation Functions 6-9
6-4. Domains and Ranges of the

Exponentiation Functions. 6-10
7-1. Parameter List for Single

Argument Vector Math Functions ... 7-2
7 -2. Parameter List for (Scalar,

Vector) Functions... 7-3
7 -3. Parameter List for (Vector,

Scalar) Functions.... 7-4
7 -4. Parameter List for (Vector,

Vector) Functions.. 7-4
7-5. Result Array and Source Array

Data Locations 7-5
8-1. Relative Error of ACOS 8-6
8-2. Relative Error of ALOa 8-11
8-3. Relative Error of ASIN 8-24
8-4. Relative Error of ATAN 8-27

60486513 H

4-4. C Program Calling the Math
Library Using Call-by-Value 4-10

4-5. CYBIL Program Calling the
Math Library Using
Call-by-Reference 4-11

4-6. CYBIL Program Calling
Complex Function CCOS Using
MLT$COMPLEX 4-12

4-7. FORTRAN Program
COMPLEX_PRINT 4-13

4-8. NOSNE Commands To Run
CYBIL and FORTRAN Object
Code 4-13

4-9. CYBIL CCOS Output 4-13
5-1. Logical Flow of

Call-by-Reference Error Handling ... 5-4

8-5. Relative Error of CEXP 8-39
8-6. Relative Error of COSH 8-51
8-7. Relative Error of CSQRT 8-57
8-8. Relative Error of DACOS 8-62
8-9. Relative Error of DASIN 8-66
8-10. Relative Error of DATAN 8-70
8-11. Relative Error of DCOSH 8-81
8-12. Relative Error of DEXP 8-86
8-13. Relative Error of DLOa 8-92
8-14. Relative Error of DSIN 8-106
8-15. Relative Error of DSINH 8-109
8-16. Relative Error of DSQRT 8-111·
8-17. Relative Error of DTAN 8-114
8-18. Relative Error of DTANH 8-117
8-19. Relative Error DTOD " 8-120
8-20. Forms Used in ERF 8-130
8-21. Relative Error EXP 8-136
8-22. Relative Error of SIN 8-166
8-23. Relative Error of SINH 8-172
8-24. Relative Error of SQRT 8-176
8-25. Relative Error of TAN 8-181
8-26. Relative Error of TANH 8-185
8-27. Relative Error of XTOX 8-192
B-1. Related Manuals B-2
C-1. ASCII Character Set and

Collating Sequence. C-2

Contents 5

About This Manual

This manual describes the math functions available in the CONTROL DATA® Common
Modules Mathematical Library (CMML), referred to in this manual as the Math
Library.

These math functions can be accessed by programs written in Ada, APL, Assembler,
BASIC, C, CYBIL, FORTRAN Version 1, FORTRAN Version 2, LISP, Pascal, and
Prolog. The Math Library is available under Control Data's Network Operating
System/Virtual Environment (NOSIVE) operating system and can also be accessed from
Control Data's UNIX1 Virtual Environment (VXlVE) operating system. See the C for
NOSIVE Usage manual for information about the CIVE Math Library.

Audience

To use the information in this manual, you should be familiar with the programming
language from which you plan to call Math Library functions and with the NOSIVE®
or VXlVE® operating system. In addition, you should have a basic knowledge of
exponentiation, logarithms, trigonometry, and other functional areas depending upon
how you plan to use the Math Library.

1. UNIX is a registered trademark of AT&T.

60486513 H About This Manual 7

Manual Organization
This manual is organized into the following chapters:

• Chapter 1 - Introduction

Introduces the Math Library and its mathematical and exponential functions.
Defines the Math Library and its uses. Discusses strengths and limitations.
Categorizes the functions. Explains entry points.

• Chapter 2 - Number Types

Describes the number types used by the Math Library: integer, single precision
floating-point, double precision floating-point, and complex.

• Chapter 3 - Calling Routines

Describes the call-by-reference and call-by-value calling routines.

• Chapter 4 - Calls From Languages

Provides examples of how these functions can be accessed by Ada, Assembler, C,
and CYBIL programs. Also discusses other languages such as FORTRAN Version 1,
FORTRAN Version 2, Pascal, APL, BASIC, COBOL, LISP, and Prolog.

• Chapter 5 - Error Handling

Describes error handling for scalar processing including errors caused by bad input
and inaccuracy caused by computer approximations. Contrasts call-by-reference and
call-by-value error handling.

• Chapter 6 - Scalar Classification Tables

Provides classification tables for easy identification of types of arguments, type of
results, input domains, output ranges, and other detailed information.

e Chapter 7 - Vector Processing

Describes vector processing and how it is used including hardware selection and
error handling. Provides tables that summarize specific vector processing features.

• Chapter 8 - Function Descriptions

Presents the functions in alphabetical order with specific information about the
purpose of each function, the handling of the calling routines, and applicable
algorithmic or error handling information. Short examples are provided to illustrate
the required number of arguments and number types.

o Chapter 9 - Auxiliary Routines

Presents detailed information on auxiliary routines that are called only by other
math functions (for example, most of the computation for DTANH is performed in
function DEULER).

8 ~ath Library 60486513 H

Additional information is available in the following appendixes:

Appendix A - Glossary

Defines commonly-used terms and phrases.

Appendix B - Related Manuals

Lists manuals related to the Math Library including NOSNE manuals and
applicable language manuals.

Appendix C - ASCII Character Set

Provides the standard ASCII character set. Additional character sets are available
in the applicable language manuals.

Appendix D - Bibliography

Lists mathematical reference works that were used as sources for algorithms or
provide related background information.

60486513 H About This Manual 9

Typographical Conventions

This manual uses the following typographical conventions:

In formulas, a horizontal ellipsis indicates that the preceding item can be
repeated as necessary.

* In formulas, an asterisk indicates multiplication.

** In formulas, two successive asterisks indicate exponentiation.

I I In formulas, vertical bars indicate the absolute value of the quantity.

() In intervals, parentheses indicate an open interval (the end points are not
included).

[] In intervals, brackets indicate a closed interval (the end points are included).

(] In intervals, closure by a left parenthesis and a right bracket includes the
right end point, but not the left end point.

[) In intervals, closure by a left bracket and a right parenthesis includes the
left end point, but not the right end point.

italic U sed for special emphasis (for example, to highlight C data types and C
type statement names).

Mathematical Conventions

This manual uses the following mathematical conventions:

• All numbers used in this manual are decimal unless otherwise indicated. Other
number systems are indicated by a notation after the number (for example, FA34
hexadecimal) .

• All references to logarithm (log) are base e unless otherwise indicated.

• All references to infinite values include positive and negative infinity unless
otherwise indicated.

For rules about standard and nonstandard floating-point numbers, see Floating-Point
Computation Rules in chapter 2, Number Types.

10 Math Library 60486513 H

Submitting Comments

The last page of this manual is a comment sheet. Please use it to give us your opinion
of the manual's usability, to suggest specific improvements, and to report technical or
typographical errors. If the comment sheet has already been used, you can mail your
comments to:

Control Data Corporation
Technical Publications
P. O. Box 3492
Sunnyvale, California 94088-3492

Please indicate whether· you would like a written response.

Also, if you have access to SOLVER, an online facility for reporting problems, you can
use it to submit comments about the manual. For example, use FN8 as the product
identifier for problems that are related to FORTRAN Version 1 and FV8 as the
product identifier for problems related to FORTRAN Version 2.

In Case You Need Assistance

Control Data's CYBER Software Support maintains a hotline to assist you if you have
trouble using our products. If you need help beyond that provided in the documentation
or find that the Math Library for NOSIVE does not perform as described, call us at
one of the following numbers and a support analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address questions about the
physical packaging and/or distribution of printed manuals to Literature and Distribution
Services at the following address:

Control Data CorPoration
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee, call
CONTROLNET@ 243-2100 or (612) 292-2100.

60486513 H About 'fhis Manual 11

Introduction 1

Functions Available .. 1-3
Exponential Functions ... 1-4
Logarithmic Functions ... 1-4
Trigonometric Functions ... 1-5
Hyperbolic Functions .. 1-5
Conversion and MaximurnlMinimum Functions ... " '" .. 1-6
Bit Manipulation Functions .. 1-7
Random Number Functions .. 1-7
Error Functions ... 1-7

Entry Point. .. 1-8

Introduction 1

This manual describes the mathematical functions available in Control Data's Common
Modules Mathematical Library (CMML). CMML, referred to as the Math Library in
this manual, contains a wide assortment of mathematical functions.

These functions can be accessed by programs written in Ada, APL, Assembler, BASIC,
C, CYBIL, FORTRAN Version 1, FORTRAN Version 2, LISP, Pascal, and Prolog. See
chapter 4, Calls From Languages, for detailed information and examples of how to call
Math Library functions from various languages.

60486513 H Introduction 1-1

Introduction

Figure 1-1 shows the relationship of the Math Library to the NOSNE operating
system. The NOSNE Math Library environment, in addition to the compilers listed
above, includes the System Command Language (SCL), the NOSNE block-structured
interpreter, LIB99, a library of subroutines and functions that can be called from
FORTRAN (or Ada through FORTRAN), and the Debug utility.

Math
Library

1-2 Math Library

System
Command
Language

Compiler

Executable
Object Program

System
Command
Language

LlB99 Debug
Utility

Figure 1-1. NOS/VE Math Library Environment

Printed
Output

604865i3 H

Functions Available

Functions Available
The Math Library provides approximately 100 math functions. In order to provide an
overview, the NOSNE Math Library functions are categorized in this manual as
follows:

• Exponential

• Logarithmic

• Trigonometric

• Hyperbolic

• Conversion and maximum/minimum

• Bit manipulation

• Random number

• Error

The above categories are not precisely defined (for example, exponentiation is used in
many of the trigonometric algorithms), but these categories are provided so you can
more easily understand the contents of the Math Library.

See chapter 6, Scalar Classification Tables, for tables that categorize the available
functions according to the above list. See chapter 8, Function Descriptions, for an
alphabetical presentation of each function including a description, a discussion of the
calling routines, algorithmic and error analysis information, and the effects of
argument error, if applicable.

Additional FORTRAN for NOSNE LIB99 functions can be called from FORTRAN
Version 1 or FORTRAN Version 2. These functions in turn can be accessed by any
language that can interface with FORTRAN (for example, Ada and CYBIL can make
calls to FORTRAN). LIB99 can perform the following tasks:

• Perform basic vector arithmetic

• Perform basic matrix algebra

• Solve linear systems of equations

• Compute Fast Fourier Transforms

• Sort lists

• Compute eigenvalues and eigenvectors

60486513 H Introduction 1-3

Functions Available

Exponential Functions

The exponential functions are as follows:

Function

CEXP
CSQRT

DEXP
DSQRT
DTOD

DTOI
DTOX
DTOZ

EXP

ITOD
ITO I
ITOX
ITOZ

SQRT

XTOD
XTOI
XTOX
XTOZ

ZTOD
ZTOI
ZTOX
ZTOZ

Description

Complex exponential (base e)
Complex square root

Double precision exponential (base e)
Double precision square root
Exponentiation with double precision base and double precision
exponent
Exponentiation with double precision base and integer exponent
Exponentiation with double precision base and real exponent
Exponentiation with double precision base and complex exponent

Exponential (base e)

Exponentiation with integer base and double precision exponent.
Exponentiation with integer base and integer exponent
Exponentiation with integer base and real exponent
Exponentiation with integer base and complex exponent

Square root

Exponentiation with real base and double precision exponent
Exponentiation with real base and integer exponent
Exponentiation with real base and real exponent
Exponentiation with real base and complex exponent

Exponentiation with complex base and double precision exponent
Exponentiation with complex base and integer exponent
Exponentiation with complex base and real exponent
Exponentiation with complex base and complex exponent

Chapters 6 and 8 provide detailed information about each of these functions. Chapter 6
provides two tables with exponentiation information including the number types of the
results of the exponentiation functions.

Logarithmic Functions

The logarithmic functions are as follows:

Function

ALOG
ALOGI0

CLOG

DLOG
DLOGI0

Description

Natural logarithm (base e)
Common logarithm (base 10)

Complex natural logarithm (base e)

Double precision natural logarithm (base e)
Double precision common logarithm (base 10)

Chapters 6 and 8 provide detailed information about each of these functions.

1-4 Math Library 60486513 H

Functions Available

Trigonometric Functions

The trigonometric functions return values in radians except for COSD, SIND, and
TAND which return values in degrees. The trigonometric functions are as follows:

Function

ACOS
ASIN
ATAN
ATAN2

CCOS
COS
COSD
COTAN
CSIN

DACOS
DASIN
DATAN
DATAN2
DCOS
DSIN
DTAN

SIN
SIND

TAN
TAND

Description

Inverse cosine
Inverse sine
Inverse tangent
Inverse tangent of the ratio of two arguments

Complex cosine
Cosine
Cosine in degrees
Cotangent
Complex sine

Double precision inverse cosine
Double precision inverse sine
Double precision inverse tangent
Double precision inverse tangent of the ratio of 2 arguments
Double precision cosine
Double precision sine
Double precision tangent

Sine
Sine in degrees

Tangent
Tangent in degrees'

Chapters 6 and 8 provide detailed information about each of these functions.

Hyperbolic Functions

The hyperbolic functions are as follows:

Function

ATANH

COSH

DCOSH
DSINH
DTANH

SINH

TANH

Description

Inverse hyperbolic tangent

Hyperbolic cosine

Double precision hyperbolic cosine
Double precision hyperbolic sine
Double precision hyperbolic tangent

Hyperbolic sine

Hyperbolic tangent

Chapters 6 and 8 provide detailed information about each of these functions.

60486513 H Introduction 1-5

Functions Available

Conversion and Maximum/Minimum Functions

The conversion and maximumlminimum functions are as follows:

Function

ABS
AIMAG
AINT
AMOD
ANINT

CABS
CONJG

Description

Absolute value
Imaginary part of a complex argument
Truncation
Returns the remainder of a ratio (uses real numbers)
Nearest whole number

Complex absolute value
Conjugate

Double precision absolute value
Double precision positive difference
Positive difference
Double precision truncation

DABS
DDIM
DIM
DINT
DMOD
DNINT
DPROD
DSIGN

Returns the remainder of a ratio (uses double precision numbers)
Double precision nearest whole number

lABS
IDIM
IDNINT
ISIGN

MOD

NINT

SIGN

Double precision product
Double precision transfer of sign

Integer absolute value
Integer positive difference
Double precision nearest integer
Integer transfer of sign

Returns the remainder of a ratio (uses integers)

Nearest integer

Transfer of sign

Chapters 6 and 8 provide detailed information about each of these functions.

1-6 Math Library 60486513 H

Bit Manipulation Functions

The bit manipulation functions are as follows:

Function

EXTB

INSB

SUMIS

NOTE

Description

Extract bits

Insert bits

Sum of 1 bits in one word

The number of bits in a CYBER 180 word is always 64.

Functions Available

Chapters 6 and 8 provide detailed information about each of these functions.

Random Number Functions

The random number functions are as follows:

Function

RANF
RANGET
RANSET

Description

Generates the next random number in a series
Returns the· current random number seed of a task
Sets the seed of the random number generator

Chapters 6 and 8 provide detailed information about each of these functions.

Error Functions

The error functions are as follows:

Function

ERF
ERFC

Description

Computes the error function
Computes the complementary error function

Chapters 6 and 8 provide detailed information about each of these functions.

60486513 H Introduction 1-7

Entry Point '

Entry Point

Depending upon the language you use, you may want to call a Math Library function
by an entry point other than its function name. (Assembly language calls cannot be
made to function names.) Math Library functions have two types of entry point:
call-by-reference and call-by-value. For example, the function ABS can be called by the
call-by-reference entry point MLP$RABS (or ABS) or by the call-by-value entry point
MLP$VABS. (See chapter 4, Calls From Languages, for an example.)

NOTE

The function name (for example, ABS) is also a call-by-reference entry point.

Figure 1-2 shows the naming conventions for entry points.

Call-by-Reference Pattern

M LP$ i~AB S

Stand~r~ion
Prefix f Name

or
Reference

Call-by-Value Pattern

M LP$ V~ABS

Stand~Y~ion
~efix V Name

for
Value

Figure 1-2. Pattern Diagram for Entry Points

1-8 Math Library 60486513 H

Number Types 2

Integer .. 2-2

Single Precision Floating-Point Numbers .. 2-3
Single Precision Standard Numbers .. 2-3
Single Precision Nonstandard Numbers ... 2-4

Double Precision Floating-Point Numbers ... 2-5

Complex Numbers ... 2-7

Floating-Point Computation Rules .. 2-7

Default Error Values ... 2-7

N urn her Types

This chapter discusses how the Math Library functions perform computations on the
following number types:

• Integer

• Single precision floating-point (real)

• Double precision floating-point (long real)

• Complex

The following paragraphs describe how these number types are used by the Math
Library.

2

60486513 H Number Types 2-1

Integer

. Integer

An integer is a one-word, right-justified, two's complement 64-bit representation of all
integers from -(2**63) through (2**63)-1. See figure 2-1 for an illustration of 8-byte
integer format. All 8-byte integers up to the absolute value of 9,223,372,036,854,775,807
are accepted by the Math Library.

The implementation of type integer varies across languages. The C language, for
example, has a 32-bit integer (short int) and a 64-bit long integer (int). (For an
explanation of how to use the left-bit-shift « <) operator to left justify short int, see C
Calling the Math Library in chapter 4, Calls From Languages.)

o

s

t
Sign
bit

2·2 Math Library

63

INTEGER

64-bit

Figure 2-1. Bit Diagram of 8-Byte Integer Format

60486513 H

Single Precision Floating-Point Numbers

Single Precision Floating-Point Numbers
A single precision floating-point number consists of a sign bit, S, which is the sign of
the fraction, a signed biased exponent (15 bits),. and a fraction (48 bits) which is also
called a coefficient or a mantissa. Figure 2-2 illustrates the internal representation of
this format.

o 1

S

t
Sign
bit

EXPONENT
(15 bits)

16 63

FRACTION
(48 bits)

64-bit

Figure 2-2. Bit Diagram of Single Precision Floating-Point Format

Single precision floating-point numbers consist of two types: standard and nonstandard.

Single Precision Standard Numbers

Standard numbers are numbers that have exponents in the range of 3000 hexadecimal
through 4FFF hexadecimal, inclusive, and have a nonzero fraction or O. Standard
numbers can be normalized or unnormalized. A normalized standard number has a 1
(one) in bit position 16 (the most significant bit of the fraction), where bit position zero
is the leftmost bit.

The range in magnitude, M, covered by standard, normalized single precision numbers
is as follows:

-1* (1 -2** -48) * 2** 4095 <= M <= -2** -4097
o
2** - 4097 <= M <= (1 -2** -48)*2**4095

The above range provides approximately 14.4 decimal digits of precision.

60486513 H N umber Types 2-3

Single Precision Floating-Point Numbers

Single Precision Nonstandard Numbers

Nonstandard floating-point numbers have the following representations:

• A nonzero unnormali~ed floating-point number with a zero fraction and a standard
exponent

• A floating-point number with an exponent in the range 5000 through 6FFF
hexadecimal (+ infinite) and DODO through EFFF hexadecimal (-infinite)

• A floating-point number with an exponent in the range 7000 through 7FFF
hexadecimal (+ indefinite) and FOOD through FFFF (-indefinite)

• A nonzero floating-point number with an exponent in the range 0000 through OFFF
hexadecimal (+ Zl) and 8000 through 8FFF (-Zl)

• A floating-point number with an exponent in the range 1000 through 2FFF
hexadecimal (+Z2) and 9000 through AFFF (-Z2)

The last item includes a sign bit followed by 63 zero bits. Nonstandard numbers are
not used in computations, but some are returned as default error values as described
later in this chapter under Default Error Values.

2-4 Math Library 60486513 H

Double Precision Floating-Point Numbers

Double Precision Floating-Point Numbers

A double· precision floating-point number. consists of two words, each a single precision
floating-point number. The coefficient of the second word is considered to be an
extension of the fraction of the first word, yielding a 96-bit fraction. The exponent of
the second word following an arithmetic operation is identical to that of the first word.
The number type of the first word determines the type of the second word.

See figure 2-3 for an illustration of the internal representation of a double precision
floating-point format.

o

S

t
Sign
bit

16

EXPONENT
(15 bits)

64 79 80

(not used as
input but

provided on output)

LEFT HALF OF FRACTION
(48 bits)

64-bit

RIGHT HALF OF FRACTION
(48 bits)

63

127

Figure 2-3. Bit Diagram of Double Precision Floating-Point Format

The range in magnitude, M, covered by standard, normalized double precision numbers
is:

-1* (1 -2** -96) * 2** 4095 <= M <= -2** -4097
o
2** - 4097 <= M <= (1 -2** -96)*2**4095

60486513 H Number Types 2-5

Double Precision Floating-Point Numbers

The above range yields approximately 28.9 decimal digits of precision. See figure 2-4
for a summary of NOSNE floating-point representation.

Hexadecimal Exponent Including Coefficient Sign

Actual Exponent (To The Base 2)

Input Arguments

Results

7XXX ---- Indefinite 7000.0 ----'0

6FFF 212.287

t t Overflow Mask = 0 : 5000.0 ~O
Overflow Mask = 1 : As Shown

5000 24,096 Infinite

Coefficient 4FFF 24.095
Sign Equal t 1 To 0
(Positive
Numbers) 4000 20 Standard As Shown

3FFF 2-1

• • 3000 2.01,096

2FFF 2-4,097

~ • Zero
Underflow Mask = 0: 0000.0--"0
Underflow Mask = 1 : As Shown

1000 2-12.288

OXXX ----- Zero Not Applicable
8XXX

9000 2-12.288

t t Underflow Mask = 0: 0000.0--"0
Zero Underflow Mask = 1 : As Shown

AFFF 2.01,097

BOOO 2.01,096
Coefficient t t Sign Equal
To 1

BFFF 2-1 Standard As Shown (Negative
COOO 20

Numbers)

~ • CFFF 24,095

0000 24.096

~ ~ Infinite
Overflow Mask = 0 : 0000.0 ~ 0
Overflow Mask = 1 : As Shown

EFFF 212,287

, FXXX --- Indefinite 7000.0 ----'0

Figure 2-4. Summary of NOS/VE Floating-Point Representation

2-6 Math Library 60486513 H

Complex Numbers

Complex Numbers

A complex number consists of two words, each a single precision floating-point number.
The first word represents the real part of the complex number; the second word
represents the imaginary part.

A complex number is considered to be indefinite if either the real or imaginary part is
indefinite. Similarly, a complex number is considered to be infinite if either the real or
imaginary part is infinite.

Floating-Point Computation Rules

Throughout this manual, unless otherwise documented, the following rules apply to
floating-point computation:

1. If a standard form of a number type is used in a computation, a standard form of
the same type results, unless the answer computed exceeds the range of values for
standard numbers or if a mathematically invalid operation is attempted.

2. If a nonstandard number other than zero is used in a computation, or if the limits
to a standard form of a number type are exceeded, error handling occurs, unless
various nonstandard numbers are within the domain of the function.

Default Error Values

The Math Library uses the following default error values:

• Positive indefinite (+ IND)

• Negative indefinite (-IND)

• Zero (0)

• Positive infinity (+ INF)

• Negative infinity (-INF)

Most of the Math Library functions have a default error value of positive indefinite.
The following functions have a default error value of zero: CCOS, DEXP, ERFC, EXP,
IDIM, IDNINT, ITOI, MOD, and NINT.

60486513 H Number Types 2-7

C aIling Routines 3

Routines and Calls ... 3-1

Call-by-Reference .. 3-2

Call-by-Value .. 3-4

Call-by-Reference Versus Call-by-Value Matrix 3-6

Inline Versus Out-of-Line Routines .. 3-7

Calling Routines 3

Routines and Calls

The Math Library functions are predefined functions that can be called from Ada, APL,
Assembler, BASIC, CYBIL, FORTRAN Version 1, FORTRAN Version 2, LISP, Pascal,
or Prolog programs according to the attributes of the calling language. Some functions
are not available to every language; see chapter 4, Calls From Languages, for
information about specific languages.

The Math Library provides two types of calling routines:

• Call-by-reference

• Call-by-value

These calling routines are discussed in the following paragraphs.

NOTE

This chapter deals with scalar processing only. For a discussion of vectors, see
chapter 7, Vector Processing.

60486513 H Calling Routines 3-1

Call-by-Reference

Call-by-Reference
A call to a call-by-reference routine consists of the following process:

1. The user program sets up a parameter list (argument list) in memory.

2. The call to the instruction causes the first-word address to be stored in register A4
as the routine is invoked.

3. The call-by-reference routine is called through one of two entry points (for example,
ABS or MLP$RABS). Argument error processing is set up in this routine.

4. If the argument list is valid, the routine calls or branches to the call-by-value
routine, depending on the function.

5. The call-by-value routine performs the appropriate computation and returns a result.

If the argument list is invalid, the call-by-value routine is not executed and an error
message is returned. See the appropriate language manual (printed or online) for
information about a compilation message. See the NOSNE Diagnostic Messages manual
(printed or online) for information about a runtime message.

Figure 3-1 is a Nassi-Shneiderman chart1 illustrating the logical flow of the
call-by-reference routine.

NOTE

Call-by-reference is synonymous with call-by-address.

1. Nassi-Shneiderman charts (also called Chapin charts) are read like flow charts: a rectangle indicates a
process, an inverted isosceles triangle indicates a decision, and a right triangle indicates a branch from a
decision.

3-2 Math Library 60486513 H

60486513 H

Valid

Entry Point

Call-by-Value

Routine

Algorithm

Computation

Result

Return

Call-by-Reference
Argument List

Stored in Register A4

ERROR

Call-by-Reference

Invalid

MESSAGE

Analyze

Return

Figure 3-1. Call-by-Reference Logic Diagram (Scalar)

Calling Routines 3-3

Call-by-Value

Call-by-Value
A call to a call-by-value routine consists of the following process:

1. The user program sets up a parameter list (argument list) directly into the X
registers before the routine is invoked.

2. The call to the instruction causes the first word of the first argument to be entered
into register X2; the remaining words of each argument are entered into the
registers successively.

For example, the calling procedure for the exponentiation function ITOD
(exponentiation with integer base and double precision exponent) uses registers X2,
X3, and X4. Register X2 holds the integer base, and registers X3 and X4 hold the
double precision exponent.

The first and second words of a complex argument contain the real and imaginary
parts, respectively. The first and second words of a double precision argument
contain the high-order and low-order bits, respectively.

3. The call-by-value routine performs the appropriate computation, and when valid
computations occur, returns a result. The result is returned in registers XE and
XF.

One-word results (type integer and single precision) are returned in register XF.
Two-word results (type double precision and complex) are returned in registers XE
and XF; the second word is stored in register XF.

If the call-by-value routine is called directly and the arguments are out-of-range, the
job aborts during the computation and an error message is returned. See the NOSNE
Diagnostic Messages manual (printed or online) for information about a runtime
message.

Figure 3-2 is a N assi-Shneiderman chart2 illustrating the logical flow of the
call-by-value routine.

2. Nassi-Shneiderman charts (also called Chapin charts) are read like flow charts: a rectangle indicates a
process, an inverted isosceles triangle indicates a decision, and a right triangle indicates a branch from a
decision.

3-4 Math Library 60486513 H

Value
in Range

X Registers

First

Word

Second

Word

Third

Word

Result

(first word)

Result

One word

(or second word)

Return

Call-by-Value
Argument List

Stored in· X Registers

JOB

Register

X2

Value
out of Range

ABORTS

Register Check

X3 Argument

List
Register

X4

Register

XE

Register Return

XF

Call-by-Value

Figure 3-2. Call-by-Value Logic Diagram (Scalar)

60486513 H Calling Routines 3-5

Call-by-Reference Versus Call-by-Value Matrix

Call-by-Reference Versus Call-by-Value Matrix
Some languages, such as FORTRAN and Pascal, can access the Math Library through
call-by-reference or call-by-value routines. Other languages can use only one type of
routine.

The language matrix provided as table 3-1 outlines the distinction between
call-by-reference (addresses of arguments are passed) and call-by-value (values of
arguments are passed) across the supported languages.

Transparency is defined as the apparent invisibility of the Math Library. APL, BASIC,
LISP, and Prolog programmers do not need to know that the Math Library exists
unless they get a range or type error, or need to perform error analysis.

FORTRAN and Pascal programmers have compile option EXPRESSION_
EVALUATION = REFERENCE which selects call-by-reference over call-by-value, but the
functioning of the Math Library is essentially transparent. Ada, Assembler, C, and
CYBIL programmers have a few programming options which are discussed in the
following sections.

Table 3-1. Language Matrix

Languages (Providing Interfaces) Call-by-Reference Call-by-Value

Ada Yes No

Assembler Yes Yes

C Yes Yes

CYBIL Yes Yes

Languages (With Transparent Access) Call-by-Reference Call-by-Value

APL No Yes

BASIC No Yes

FORTRAN Version 1 Yes Yes

FORTRAN Version 2 Yes Yes

LISP Yes No

Pascal Yes Yes

Prolog Yes No

Language (With No Access) Call-by-Reference Call-by-Value

COBOL No No

3-6 Math Library 60486513 H

Inline Versus Out-of-Line Routines

Inline Versus Out-of-Line Routines

Several of the NOSIVE compilers such as FORTRAN Version 1, FORTRAN Version 2,
and Pascal have added some of the Math Library algorithms to their code generators;
this inline process improves execution time significantly, but may slow down
compilation slightly.

The following functions are available to the FORTRAN and Pascal compilers as inline
routines:

ACOS
ALOG
ALOG10
ASIN

ATAN
COS
EXP

SIN
SQRT
TAN

See chapter 4, Calls From Languages, for information about specific languages calling
the Math Library.

60486513 H Calling Routines 3-7

Calls From Languages 4

Ada Calling the Math Library .. 4-3
Ada Subprogram Declaration and Interface Specification 4-4
Ada Uses Call-by-Reference .. 4-6
Additional Ada Functions .. 4-6
Calling FORTRAN and the Math Library From Ada .. 4-7
Exponentiation Using Ada ... 4-7

Assembler Calling the Math Library .. 4-8

C Calling the Math Library .. 4-9

CYBIL Calling the Math Library .. 4-11

FORTRAN Version 1 Calling the Math Library 4-14

FORTRAN Version 2 Calling the Math Library 4-22

FORTRAN Function Summary. .. 4-23

Pascal Calling the Math Library .. 4-28
Pascal Calling Routines .. 4-28
Pascal Math Function Attributes .. 4-29

Calls From Languages 4

This chapter provides examples and explanations of how to call the Math Library from
the supported languages. The Math Library functions can be called from the following
languages:

• Ada

• APL

• Assembler

• BASIC

• C

• CYBIL

• FORTRAN Version 1

• FORTRAN Version· 2

• LISP

• Pascal

• Prolog

Many of these calls are transparent to the end user, but a working knowledge of the
calling options could improve program design, performance, or accuracy.

60486513 H Calls From Languages 4-1

Calls From Languages

APL, BASIC, FORTRAN, LISP, Pascal, and Prolog provide interfaces to the Math
Library that are transparent to the user. COBOL has no direct access to the Math
Library. Table 4-1 summarizes how each language calls the Math Library.

Table 4-1. Language Summary

Languages
(Providing Interfaces) Description

Ada Calls the Math Library through pragma MATH_
LIBRARY; also provides an interface to FORTRAN
Version 1 or 2. Uses call-by-reference. See figure 4-1.

Assembler Allows call-by-reference and call-by-value. See figure
4-2.

C Allows call-by-reference and call-by-value. See figures
4-3 and 4-4.

CYBIL Some functions can call with call-by-reference or
call-by-value. Double precision functions can be called
with call-by-reference only. See figure 4-5.

Languages
(With Transparent Access) Description

APL No knowledge of the Math Library is necessary.

BASIC No knowledge of the Math Library is necessary.

FORTRAN Version 1 Use EXPRESSION_EVALUATION = REFERENCE for
call-by-reference on the FORTRAN command; otherwise,
call-by-value is used. See table 4-4 for a summary of
FORTRAN functions.

FORTRAN Version 2 Use EXPRESSION_EVALUATION = REFERENCE for
call-by-reference on the VFORTRAN command;
otherwise, call-by-value is used. Has array-processing
intrinsic functions. See table 4-4 for a summary of
FORTRAN functions.

LISP No knowledge of the Math Library is necessary.

Pascal Use the EXPRESSION_EVALUATION=REFERENCE
parameter for call-by-reference on the PASCAL
command; otherwise, call-by-value is used.

Prolog No knowledge of the Math Library is necessary.

Language
(With No Access) Description

COBOL The language cannot return a value from a function.

4-2 Math Library 60486513 H

Ada Calling the Math Library

Ada Calling the Math Library
Ada supports calls to the Math Library functions. For each Math Library subroutine to
be called from Ada, the Ada program must provide the following:

• Ada Subprogram Declaration:

subprogram_specification :: =
function identifier (formal_parameter _specifications)
return type_mark

• Ada Interface Specification:

subprogram_body ::= pragma INTERFACE (MATH_LIBRARY, identifier)

The Ada subprogram declaration provides:

• The name of the Math Library function in the function identifier field

• The types of the formal parameters (in formal_parameter _specifications)

• The subtype of the returned value (the result subtype) in the type_mark field

The name of the Math Library function must also appear as the identifier in the Ada
interface specification. The name must be one of the Math Library function names. See
table 4-1 for a summary of the input and output data types.

The next section provides an Ada example.

60486513 H Calls From Languages 4-3

Ada Calling the Math Library

Ada Subprogram Declaration and Interface Specification

To use the Math Library function RANF (random number generator), enter the
following Ada subprogram declaration and interface specification:

function RANF return FLOAT;
pragma INTERFACE (MATH_LIBRARY, RANF);

The subprogram declaration tells the following:

• RANF is the name of the Math Library function.

• RANF has no formal input parameters (parameters of mode in).

o The result is of type FLOAT (single precision real number).

NOTE

If an incorrect data type is passed to a Math Library function (for example, an
INTEGER instead of a FLOAT), an incorrect value may be returned. Your program
should check that the correct data type is passed.

Figure 4-1 illustrates how to implement the Ada MATH_LIBRARY pragma interface
(interface specification). Procedure CALL_MATHLIB has a pragma interface to the
Math Library function SQRT. SQRT has one formal input parameter (parameter of
mode in), x of type FLOAT.

with TEXT_IO; use TEXT_IO;

proced ure CALL_MATHLIB is

function SQRT(x : in FLOAT) return FLOAT;
pragma INTERFACE (MATH_LIBRARY, SQRT);
package FLT_IO is new FLOAT_IO (FLOAT);
use FLT_IO;
y : FLOAT;

begin - CALL_MATHLIB

PUT_LINE ("Start Ada");
y : = SQRT(225.0);
PUT ("The square root of 225 is: ");
PUT (y, fore = > 2, aft = > 2, exp = > 0);
NEW_LINE;
PUT_LINE ("End Ada");

end CALL_MATHLIB;

Figure 4-1. Ada Program Calling the Math Library

4-4 Math Library 60486513 H

Ada Calling the Math Library

With the Ada MATH_LIBRARY pragma interface, you can access the Math Library
functions. Table 4-2 summarizes the Ada MATH_LIBRARY functions and their
input-output data types. The table lists the following for each function:

• Function name

• Precision type

• Description of the function

• Input type
• Output type

•
Table 4-2. Data Types for Ada MATH_LIBRARY Functions

Function Precision Description Input Type Output Type

ACOS Single Inverse circular cosine FLOAT FLOAT
AINT Single Integer part FLOAT FLOAT
ALOG Single Natural logarithm FLOAT FLOAT
ALOGIO Single Common logarithm FLOAT FLOAT
ANINT Single Nearest integer FLOAT FLOAT

ASIN Single Inverse circular sine FLOAT FLOAT
ATAN Single Inverse circular tangent FLOAT FLOAT
ATANH Single Inverse hyperbolic FLOAT FLOAT

tangent
ATAN2 Single Inverse circular tangent FLOAT FLOAT

of a ratio of two
arguments

COS Single Circular cosine FLOAT FLOAT
COSD Single Circular cosine in FLOAT FLOAT

degrees
COSH Single Hyperbolic cosine FLOAT FLOAT
COTAN Single Circular cotangent FLOAT FLOAT

DACOS Double Inverse circular cosine LONG_FLOAT LONG_FLOAT
DASIN Double Inverse circular sine LONG_FLOAT LONG_FLOAT
DATAN Double Inverse circular tangent LONG_FLOAT LONG_FLOAT
DATAN2 Double Inverse circular tangent LONG_FLOAT LONG_FLOAT

of a ratio of two
arguments

DCOS Double Circular cosine LONG_FLOAT LONG_FLOAT

DCOSH Double Hyperbolic cosine LONG_FLOAT LONG_FLOAT
DDIM Double Positive difference LONG_FLOAT LONG_FLOAT
DEXP Double Exponentiation function LONG_FLOAT LONG_FLOAT
DIM Single Positive difference FLOAT FLOAT
DINT Double Integer part LONG_FLOAT LONG_FLOAT

DLOG Double Natural logarithm LONG_FLOAT LONG_FLOAT
DLOGIO Double Common logarithm LONG_FLOAT LONG_FLOAT
DNINT Double Nearest whole number LONG_FLOAT LONG_FLOAT
DPROD Double Product LONG_FLOAT LONG_FLOAT
DSIGN Double Transfer of sign LONG_FLOAT LONG_FLOAT

DSIN Double Circular sign LONG_FLOAT LONG_FLOAT
DSINH Double Hyperbolic sine LONG_FLOAT LONG_FLOAT

(Continued)

60486513 H Calls From Languages 4·5·

Ada Calling the Math Library

Table 4-2. Data Types for Ada MATH_LIBRARY Functions (Continued)

Function Precision Description Input Type Output Type

DSQRT Double Square root LONG_FLOAT LONG_FLOAT
DTAN Double Circular tangent LONG_FLOAT LONG_FLOAT
DTANH Double Hyperbolic tangent LONG_FLOAT LONG_FLOAT

ERF Single Error function FLOAT FLOAT
ERFC Single Error function FLOAT FLOAT

complement
EXP Single Exponentiation FLOAT FLOAT
EXTB Extract bits INTEGER INTEGER

IDIM Positive difference of INTEGER INTEGER
two integers

IDNINT Double Nearest whole number LONG_FLOAT INTEGER
INSB Insert bits INTEGER INTEGER
ISIGN Integer transfer of sign INTEGER INTEGER

NINT Single Nearest whole number FLOAT INTEGER

RANF Single Random number None FLOAT
generator

RAN GET Single Returns random number None FLOAT
seed

RAN SET Single Sets random number FLOAT FLOAT
seed

SIGN Single Transfer of sign FLOAT FLOAT
SIN Single Circular sine FLOAT FLOAT
SIND Single· Circular sine in degrees FLOAT FLOAT
SINH Single Hyperbolic sine FLOAT FLOAT
SQRT Single Square root FLOAT FLOAT

TAN Single Circular tangent FLOAT FLOAT
TAND Single Circular tangent in FLOAT FLOAT

degrees
TANH Single Hyperbolic tangent FLOAT FLOAT

Ada Uses Call-by-Reference

The call-by-reference interface is supported by NOSNE Ada for the Math Library. The
NOSNE Ada compiler appends the call-by-reference prefix (MLP$R) to the abbreviated
Math Library function name.

In a call-by-reference computation, a parameter list is formed in memory and the
first-word-address of this list is stored in register A4 before the routine is invoked.

Additional Ada Functions

Ada provides several other language defined functions. For example, exponentiation is
provided with the exponentiation operator (**). Other functions such as mod (modulus)
and rem (remainder) are provided as reserved words. See the Ada for NOSNE
reference or usage manual for additional information.

4-6 Math Library 60486513 H

Ada Calling the Math Library

Calling FORTRAN and the Math Library Froni Ada'

Ada supports calls .to FORTRAN Version 1 and Version 2 subprograms. For each
FORTRAN subprogram, the following Ada interface must be provided:

Formal Grammar:

subprogram_specification :: =
procedure identifier (formal_parameter _specifications)
I function identifier (formal_parameter _specifications)

return type_mark

subprogram_ body :: =
pragma INTERFACE (FORTRAN, identifier)

Through the pragma INTERFACE (FORTRAN, identifier), an Ada program can call a
FORTRAN Version 1 or Version 2 intrinsic function or a Math Library function.

For example, figure 4-1 could be modified to call SQRT through FORTRAN:

pragma INTERFACE (MATH_LIBRARY, SQRT);

The Ada FORTRAN interface has the following characteristics:

• FORTRAN subroutines and functions expect parameters to be passed by reference.

• The Ada compiler passes scalar parameters by value but array and string
parameters by reference.

• When calling a FORTRAN subprogram, the Ada compiler passes, for scalar
parameters, pointers to a copy of the value; for other types of parameters, the
compiler passes pointers to the actual values.

• The NOSNE Ada compiler does not check the modes and types of the Ada actual
parameters and FORTRAN formal parameters for agreement.

Since in Ada the length of an array or a string parameter is always known at the
time of the subprogram call, the Ada compiler can, when passing an address, pass the
length of a string with a string address and the array descriptor with an array
address. This allows parameters of type array or string to be declared in FORTRAN as
either fixed or assumed size.

Exponentiation Using Ada

Ada provides the exponentiation operator (**), which is predefined for INTEGER,
FLOAT, and LONG_FLOAT. Unlike FORTRAN, however, the right operand (the
exponent) must be an integer for Ada exponentiation. The left operand (the base) can
be any integer type or floating-point type, but not a fixed-point type.

Calls to FORTRAN can be made if exponents of different types are required. For a
summary of the exponentiation functions, see table 6-3 (in chapter 6).

60486513 H Calls From Languages 4-7

Assembler Calling the Math Library

Assembler Calling the Math Library

The program illustrated in figure 4-2 calls the Math Library with assembly language.
This program, identified as MATHEXM, illustrates both the call-by-reference and the
call-by-value calling routines.

mathexm ident

sinr

sinv
data

wseg
pi
one
two

This program shows both methods of calling the Math Library
functions, call-by-reference and call-by-value.

The binding section contains the links to external code and data.
Its entries are set by the loader and the Object Code Utilities.

use
ref

binding
mlp$rsin

address c,mlp$rSin
ref mlp$vsin
address c,mlp$vsin
address p,wseg

use working
align 0,8
float 3.141592654
float 1.00
float 2.00

· select the binding section
define links to the SIN function

· set the call-by-reference version

set the call-by-value version
the link to the working section

select working storage
· ensure start at word boundary

result 1 bssz 8
result2 bssz 8

starting procedure
use code
def prog

prog al ign 0,8
la a5,a3,data
addaQ aO,aO,16
lx xa,a5,pi
lx xb,a5, two
cpyxx xC,xa
divf xc,xb
sx xc,a1,O
sa a1,a1,B
addaQ a4,a1,B
ente xO,OaSc(16)
ca llseg sinr,a3,a4
sx xf ,a5, result 1
lx x2,a5,one
ente xO,Oa5c(16)
callseg sinv,a3,af
sx xf ,a5,result2
return
end prog

A5 gets address of working section
· allocate space for the parameter list

XA is loaded with the value of pi
XB is loaded with the value of 2.0
XA is copied to XC
XC <= pi/2
store the result in the stack

· and its address one word later
set A4 to the address of the parameter list
save AO-AS, XA-XC on the stack
call MLP$RSIN

· XF contains result of SIN(pi/2.0)
load x2 with the value of 1.0

· save AO-A5, XA-XC on the stack
· parameter list not used
· XF contains result of SIN(1.0)

Figure 4-2. Assembler Program Calling the Math Library

4-8 Math Library 60486513 H

C Calling the Math Library

C Calling the Math Library
The C language programmer has access to both the NOSIVE Math Library and the
CIVE Math Library. See the C for NOSIVE Usage Manual for information on how to
call the CIVE Math Library.

The following C program (figure 4-3) calls the NOSIVE Math Library SIND function to
compute a full sine wave.

The SIND function uses call-by-reference, which means the function expects an address.
Since this program is calling the Math Library and not a specific C function, the SIND
function expects left-justified addresses. This program· uses the left-bit-shift « <)
operator to left-justify the addresses.

/* This C program uses the SIND function to compute a full sine wave.
*/

#define MAX_DEGREES 360

main()
{

int count = 0,
address_deg;

float degree,

/* loop counter
/* left-justified address of the degree

/* 0 to 360 degrees

*/
*/

*/
Sin_of_degree, /* Sine of degree */

SIND(); /* declaration of the Math Library function */

/* declaration must be capitalized */

for (count=1; count <= MAX_DEGREES; ++count)
{

/* Get the address of DEGREE. Then use the left bit-shift operator «<)
to left justify the address 16 bits. This is necessary because C

*/

}

uses a 48-bit right-justified pOinter and NOS/VE expects left-justified
addresses.

degree = count;

address_deg = (int) °ree « 16;

printf("The sine of %3.0f is %f.\n", degree, sin_of_degree);

} /* end for loop */

Figure 4-3. C Program Calling the Math Library Using Call-by-Reference

60486513 H Calls From Languages 4-9

C Calling the Math Library

Figure 4-4 illustrates how to call the Math Library using call-by-value. The C #define
statement declares VMOD as a call-by-value routine. The call-by-reference Math
Library function name is also illustrated.

NOTE

A Math Library function call from C must be capitalized.

f* This C program names VMOD as an alias to the call-by-value entry point
of MLP$VMOD.

*f
Hdefine VMOD MLP$VMOD
main()
{

i nt 83;
i nt j 8;
int k;

printf (N The size of short int is %d\~", sizeof(short int»;
printf (N The size of int is %d\n ", sizeof(int»;
printf (" The size of long int is %d\n ", sizeof(long int»;

f* Call MOD by reference.

k = MOD«int)(&i)«16,(int) (&j)«16);
printf (" The modulus of %d\n is", k);

f* Call MOD by value.

}

k = VMOD (i, j);
printf (" The Mod of %d\n is", k);
exit (0);

Figure 4-4. C Program Calling the Math Library Using Call-by-Value

4-10 Math Library 60486513 H

CYBIL Calling the Math Library

CYBIL Calling the Math Library
CYBIL can call the Math Library with either a call-by-reference or a call-by-value
entry point. Double precision functions can only be called with call-by-reference entry
points.

NOTE

CYBIL parameters to Math Library routines must be VAR parameters.

The following example (figure 4-5) illustrates a call-by-reference hyperbolic sine (SINH)
function.

MODULE math_example;

{ The following "*copyc" can be expanded by the following corrmand:
{ EXPAND_SOURCE_FILE ..
{ file ALTERNATE_BASE=$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE

*COpyc mlp$rsinh

FUNCTION hyperbolic_sine
VAR x: real): real;

{ Parameters to Math Library routines are VAR parameters

hyperbolic_sine := mlp$rsinh (x);

FUNCEND hyperbolic_sine;

MODEND math_example;

Figure 4-5. CYBIL Program Calling the Math Library Using Call-by-Reference

60486513 H Calls From Languages 4·11

CYBIL Calling the Math Library

CYBIL programs can call complex numbers only if they are defined as type
MLT$COMPLEX. Figure 4-6 illustrates how to call a complex function from CYBIL.

MODULE cmml_complex_example;
*copyc mlp$rccos

{ This module shows how to handle complex numbers in CYBIL.
{ Complex numbers are defined as type MLT$COMPLEX, which is
{ a two-word record. CYBIL will not accept functions which
{ return a record. Hence, the complex functions are defined
{ as returning longreal. To convert a longreal to an mlt$complex,
{ use the CYBIL intrinsic UUNCHECKED_CONVERSION. This example
{ calls the complex cosine routine.

PROCEDURE complex_cosine
(VAR z_in: mlt$complex;

VAR z_out: mlt$complex);

VAR
d: longrea 1 ;

d := mlp$rccos (z_in);
UUNCHECKED_CONVERSION (d, z_out);

PROCEND complex_cosine;

PROGRAM example;

{ A FORTRAN program to print a complex value using FORTRAN I/O

PROCEDURE [XREF] complex_print
(VAR value: mlt$complex);

VAR
z,
result: mlt$complex;

z.real_ := 3.4;
z. imag := -2.1;
complex_cosine (z, result);
complex_print (result);

PROCEND example;
MODEND cmml_complex_example;

Figure 4·6. CYBIL Program Calling Complex Function CCOS Using
MLT$COMPLEX

4-12 Math Library 60486513 H

CYBIL Calling the Math Library

Figure 4-7 illustrates the FORTRAN program COMPLEX_PRINT which prints the
complex result to the screen.

C

SUBROUTINE complex_print (value)

COMPLEX value
PRINT *, value
END

Figure 4-7. FORTRAN Program COMPLEX_PRINT

Figure 4-8 illustrates the NOSIVE commands needed to expand the source file and run
the CYBIL and FORTRAN object code in order to print the CCOS result.

/expand_source_file $user.cmml_complex_example ..
.. /alternate_base=$system.psf$external_interface_source
/cybil compile b=cybil_binary
/fortran $user.complex_print b=fortran_binary
/execute_task (cybil_binary fortran_binary)

Figure 4-8. NOS/VE Commands To Run CYBIL and FORTRAN Object Code

Figure 4-9 illustrates the output from this program.

(-4.006714482636,-1.027749704085)

Figure 4-9. CYBIL CCOS Output

For Better Performance

The Afterburner can eliminate call and return instructions and improve execution time.

The AFTERBURN _ OBJECT_ TEXT command optimizes FORTRAN and CYBIL
programs by inlining subprograms. Inlining a subprogram places the subprogram
statements where they are called, thus eliminating call and return instructions. This
reduces the overhead associated with passing parameters, saving registers, and
branching to and from the subprogram. See the section Improving Execution Time in
the NOSIVE Object Code Management manual for additional information.

60486513 H Calls From Languages 4·13

FORTRAN Version 1 Calling the Math Library

FORTRAN Version 1 Calling the Math Library

FORTRAN Version I supports calls to the Math Library and provides several
language-specific intrinsic functions.

A FORTRAN Version I intrinsic function is a compiler-defined procedure that returns
a single value. Intrinsic functions are referenced in the same way as user-written
(external) function subprograms. If, in a particular program unit, a variable, array, or
statement function is declared with the same name as an intrinsic function, the name
cannot refer to the intrinsic function within that program unit. If a function
subprogram is written with the same name as an intrinsic function, use of the name
references the intrinsic function, unless the name is declared as the name of an
external function with the EXTERNAL statement. (This is described in chapter 3 of
the FORTRAN Version I for NOSNE Language Definition manual.)

Intrinsic functions are typed by default and need not appear in any explicit type
statement in the program. Explicitly typing a generic intrinsic function name does not
remove the generic properties of the name. If you attempt to type an intrinsic function
as something other than its default type, a warning message is displayed and the type
statement is disregarded.

A function accepting integer, byte, real, complex, or double precision type arguments
also accepts boolean arguments. A boolean argument is converted to integer, if integer
is an allowable argument type, or to real, if real is an allowable argument type;
otherwise, it is converted to double precision or complex, before computation. An
IMPLICIT NONE statement does not affect the type of the results of any intrinsic
functions.

Inlined Functions

The following functions are available for inlining by the FORTRAN Version I compiler:

ACOS
ALOG
ALOGIO
ASIN
ATAN
COS
EXP
SIN
SQRT
TAN

4-14 Math Library 60486513 H

FORTRAN Version 1 Calling the Math Library

FORTRAN Version 1 Uses Call-by-Value or Call-by-Reference

Most of the FORTRAN Version 1 intrinsic functions are in the Math Library and are
accessed through the call-by-value routine. FORTRAN Version 1 calls Math Library
functions with call-by-value unless call-by-reference is explicitly declared. To access an
intrinsic function through the call-by-reference calling procedure, specify
EXPRESSION_EVALUATION=REFERENCE (EE=R) on the FORTRAN command.

If an execution error occurs, the use of call-by-reference causes internal FORTRAN
routines to generate descriptive error messages. If call-by-reference is not selected, the
operating system produces error messages which generally provide less information.

NOTE

Always use normalized standard floating-point form for real, double precision, and
complex arguments to intrinsic functions; unnormalized or nonstandard arguments can
cause undefined results. FORTRAN automatically normalizes all real, double precision,
and complex constants. Results of all floating-point operations (with standard
normalized or zero operands) are normalized or zero. However, it is possible to
generate unnormalized or nonstandard operands by means of boolean expressions,
equivalencing, or various input operations.

The FORTRAN Version 1 intrinsic functions are summarized in table 4-3 (FORTRAN
Version 2, as discussed in the following section, supports the same functions as well as
a set of array-processing functions.) The functions are listed in alphabetical order by
generic name or, where no generic name exists, by specific name. An asterisk in the
Generic Name column indicates that the function is a Control Data extension. For
specific names, the types of the arguments and results are shown. Boolean arguments
are not listed in the table, but follow the conversion rules described above. Integer
denotes 8-byte integer. Real denotes 8-byte real. Double· precision denotes I6-byte real.

60486513 H Calls From Languages 4-15

FORTRAN Version 1 Calling the Math Library

Table 4-3. FORTRAN Intrinsic Functions

Generic Specific Type of Type of
Name Names Argument Function Description

ABS lABS Integer (2-byte) Integer Absolute value
Integer (4-byte) Integer
Integer Integer
Byte Integer

ABS Real Real
DABS Double Double
CABS Complex Real

ACOS ACOS Real Real Arccosine
DACOS Double Double

None AIMAG Complex Real Imaginary part of complex
argument

AINT AINT Real Real Truncation
DINT Double Double

None AMAXO Integer Real Maximum value

None AMINO Integer Real Minimum value

None AND Any type but Boolean Boolean product
character

ANINT ANINT Real Real Nearest whole number
DNINT Double Double

ASIN ASIN Real Real Arcsine
DASIN Double Double

ATAN ATAN Real Real Arctangent
DATAN Double Double

ATAN2 ATAN2 Real Real Arctangent (two arguments)
DATAN2 Double Double

None* ATANH Real Real Hyperbolic arctangent

BOOL* Any type but Boolean Conversion to boolean
logical

None CHAR Integer (2-byte) Character Integer conversion to
Integer (4-byte) Character character
Integer Character
Byte Character

None* COMPL Any type but Boolean Complement
character

Integer denotes full word (8-byte) integers. An asterisk indicates a Control Data
extension.

(Continued)

4-16 Math Library 60486513 H

FORTRAN Version 1 Calling the Math Library

Table 4-3. FORTRAN Intrinsic Functions (Continued)

Generic Specific Type of Type of
Name Names Argument Function Description

None* COTAN Real Real Cotangent (argument in
radians)

CMPLX Integer (2-byte) Complex Conversion to complex
Integer (4-byte) Complex
Integer Complex
Byte Complex
Real Complex
Double Complex
Complex Complex

COS COS Real Real Cosine, argument
DCOS Double Double in radians
CCOS Complex Complex

None* COSD Real Real Cosine, argument in degrees

COSH COSH Real Real Hyperbolic cosine
DCOSH Double Double

None CONJG Complex Complex Negation of imaginary part

DBLE Integer (2-byte) Double Conversion to double
Integer (4-byte) Double precision
Integer Double
Byte Double
Real Double
Double Double
Complex Double

DIM IDIM Integer (2-byte) Integer Positive difference
Integer (4-byte) Integer
Integer Integer
Byte Integer

DIM Real Real
DDIM Double Double

None DPROD Real Double Double precision product

None* EQV Any type but Boolean Equivalence
character

None* ERF Real Real Error function

None* ERFC Real Real Complementary error
function.

Integer denotes full word (8-byte) integers. An asterisk indicates a Control Data
extension.

(Continued)

60486513 H Calls From Languages 4-17

FORTRAN Version 1 Calling the Math Library

Table 4-3. FORTRAN Intrinsic Functions (Continued)

Generic Specific Type of Type of
Name Names Argument Function Description

EXP EXP Real Real Exponential function
DEXP Double Double
CEXP Complex Complex

EXTB None al: Any type but Boolean Extract a string of bits
character a2,a3:
Integer

None ICHAR Character Integer Character conversion to
integer

None INDEX Character Integer Index of a substring

INSB None al,a4: Any type Boolean Insert a string of bits
but character
a2,a3: Integer

INT INT Integer (2-byte) Integer Conversion to integer
Integer (4-byte) Integer
Integer Integer
Byte Integer

INT Real Integer
IFIX Real Integer
IDINT Double Integer

Complex Integer

None LEN Character Integer Length of character string

None LGE Character Logical Lexically greater than or
equal

None LGT Character Logical Lexically greater than

None LLE Character Logical Lexically less than or equal

None LLT Character Logical Lexically less than

LOG ALOG Real Real Natural logarithm
DLOG Double Double
CLOG Complex Complex

LOGlO ALOGlO Real Real Common logarithm
DLOGlO·.:. Double Double

None* MASK Integer or Boolean Mask
Boolean

Integer denotes full word (8-byte) integers. An asterisk indicates a Control Data
extension.

(Continued)

4-18 Math Library 60486513 H

FORTRAN Version 1 Calling the Math Library

Table 4-3. FORTRAN Intrinsic Functions (Continued)

Generic Specific Type of Type of
Name Names Argument Function Description

MAX MAXO Integer (2-byte) Integer Largest value
Integer (4-byte) Integer
Integer Integer
Byte Integer

AMAXI Real Real
DMAXI Double Double

None MAXI Real Integer Largest value

MIN MINO Integer (2-byte) Integer Smallest value
Integer (4-byte) Integer
Integer Integer
Byte Integer

AMINI Real Real
DMINI Double Double

None MINI Real Integer Smallest value

MOD MOD Integer (2-byte) Integer Remaindering
Integer (4-byte) Integer
Integer Integer
Byte Integer

AMOD Real Real
DMOD Double Double

None* NEQV Any type but Boolean N onequivalence
character

NINT NINT Real Integer Nearest integer
IDNINT Double Integer

None* OR Any type but Boolean Boolean sum
character

PTR* Any type Boolean Parameter address; used only
when passing parameters to
C or CYBIL routines

None* RANF None Real Random number generator

Integer denotes full word (8-byte) integers. An asterisk indicates a Control Data
extension.

(Continued)

60486513 H Calls From Languages 4-19

FORTRAN Version 1 Calling the Math Library

Table 4-3. FORTRAN Intrinsic Functions (Continued)

Generic Specific Type of Type of (
Name Names Argument Function Description

REAL FLOAT Integer (2-byte) Real Conversion to real
Integer (4-byte) Real
Integer Real
Byte Real

REAL Integer Real
Real Real
Complex Real

SNGL Double Real

None* SHIFT Any type but Boolean Shift
character for al;
integer or Boolean
for a2

SIGN ISIGN Integer (2-byte) Integer Transfer of sign
Integer (4-byte) Integer
Integer Integer
Byte Integer

SIGN Real Real
DSIGN Double Double

SIN SIN Real Real Sine (argument in radians)
DSIN Double Double
CSIN Complex Complex

None* SIND Real Real Sine (argument in degrees)

SINH SINH Real Real Hyperbolic sine
DSINH Double Double

SQRT SQRT Real Real Square root
DSQRT Double Double
CSQRT Complex Complex

SUMIS Integer Integer Sum of 1 bits that are set
Real Integer in a word
Double Integer
Complex Integer

TAN TAN Real Real Tangent (argument in
DTAN Double Double radians)

None* TAND Real Real Tangent (argument in
degrees)

TANH TANH Real Real Hyperbolic tangent
DTANH Double Double

None* XOR Any type but Boolean Exclusive OR
character

Integer denotes full word (8-byte) integers. An asterisk indicates a Control Data
extension.

4-20 Math Library .60486513 H

FORTRAN Version 1 Calling the Math Library

Table 6-2 (in chapter 6) shows the domain and range for a subset of the Math Library
functions.

For Better Performance

The Mterburner can eliminate call and return instructions and improve execution time.

The AFTERBURN_OBJECT_TEXT command optimizes FORTRAN and CYBIL
programs by inlining subprograms. Inlining a subprogram places the subprogram
statements where they are called, thus eliminating call and return instructions. This
reduces the overhead associated with passing parameters, saving registers, and
branching to and from the subprogram. See Improving Execution Time in the NOSIVE
Object Code Management manual for additional information.

60486513 H Calls From Languages 4-21

FORTRAN Version 2 Calling the Math Library

FORTRAN Version 2 Calling the Math Library
FORTRAN Version 2 supports calls to the Math Library and provides the same
language-specific intrinsic functions as FORTRAN Version 1. FORTRAN Version 2 also
provides several array-processing functions in addition to the functions handled by the
Math Library. FORTRAN Version 2 arguments can be array-valued.

Inlined Functions

The following functions are available for inlining by the FORTRAN Version 2 compiler:

ACOS
ALOG
ALOGIO
ASIN
ATAN
COS
EXP
SIN
SQRT
TAN

The primary Math Library interface difference between FORTRAN Version 1 and
FORTRAN Version 2 is that the arguments can be array-valued and the programs can
be vectorized. Refer to chapter 7, Vector Processing, for a discussion of array-valued
arguments.

For Better Performance

The Mterburner can eliminate call and return instructions and improve execution time.

The AFTERBURN _ OBJECT_ TEXT command optimizes FORTRAN and CYBIL
programs by inlining subprograms. Inlining a subprogram places the subprogram
statements where they are called, thus eliminating call and return instructions. This
reduces the overhead associated with passing parameters, saving registers, and
branching to and from the subprogram. See Improving Execution Time in the NOSNE
Object Code Management manual for additional information.

4·22 Math Library 60486513 H

FORTRAN Function Summary

FORTRAN Function Summary

Table 4-4 lists the FORTRAN Version 1 and FORTRAN Version 2 intrinsic functions.
For multiple-argument functions, al indicates argument 1, a2 indicates argument 2,
and so forth. The generic and specific names are listed in alphabetical order. See the
FORTRAN Version 1 or FORTRAN Version 2 manual for complete descriptions.

Table 4-4. FORTRAN Function Summary

Name

ABS
ACOS
AIMAG
AI NT

ALL

ALLOCATED

ALOG
ALOGIO

AMAXO
AMAXI
AMINO
AMINI

AMOD

AND

ANINT

ANY

ASIN
AT AN
ATANH
ATAN2

BOOL

CABS
CCOS
CEXP

CHAR

60486513 H

Source

Math Library
Math Library
Math Library
Math Library

FORTRAN Version 2

FORTRAN Version 2

Math Library
Math Library

FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2

Math Library

FORTRAN Versions 1

Math Library

FORTRAN Version 2

Math Library
Math Library
Math Library
Math Library

and 2

FORTRAN Versions 1 and 2

Math Library
Math Library
Math Library

FORTRAN Versions 1 and 2

Description

Absolute value
Arccosine
Imaginary part of complex argument
Truncation

True if every element of aI, along
the optional dimension specification
a2, has the logical value true

Scalar logical value indicating
whether or not an allocatable array
is allocated

Natural logarithm
Common logarithm (base 10)

Maximum value
Largest value
Minimum value
Smallest value

Remainder of a ratio (uses real
numbers)

Boolean product

Nearest whole number

Logical value true is one or more
elements of aI, along the optional
dimension specification a2, has the
logical value true

Arcsine
Arctangent
Hyperbolic arctangent
Arctangent (two arguments)

Conversion to boolean

Absolute value
Cosine, argument in radians
Exponential function

Integer conversion to character

(Continued)

Calls From Languages 4·23

FORTRAN Function Summary

Table 4-4. FORTRAN Function Summary (Continued)

Name

CLOG

CMPLX
COMPL

CONJG
COS
COSD
OSH
COTAN

COUNT

CSIN
CSQRT
DABS
DACOS

DASIN
DATAN
DATAN2

DBLE

DCOS
DCOSH
DDIM
DEXP

DIM
DINT
DLOG
DLOGIO

DMAXI
DMINI

DMOD

DNINT

DOTPRODUCT

DPROD
DSIGN
DSIN
DSINH

4-24 Math Library

Source

Math Library

FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2

Math Library
Math Library
Math Library
Math Library
Math Library

FORTRAN Version 2

Math Library
Math Library
Math Library
Math Library

Math Library
Math Library
Math Library

FORTRAN Versions 1 and 2

Math Library
Math Library
Math Library
Math Library

Math Library
Math Library
Math Library
Math Library

FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2

Math Library

Math Library

FORTRAN Version 2

Math Library
Math Library
Math Library
Math Library

Description

Natural logarithm

Conversion to complex
Complement

Negation of imaginary part
Cosine, argument in radians
Cosine, argument in degrees
Hyperbolic cosine
Cotangent (argument in radians)

N umber of true elements in al along
the optional dimension specification
a2

Sine (argument in radians)
Square root
Absolute value
Arccosine

Arcsine
Arctangent
Arctangent (two arguments)

Conversion to double precision

Cosine, argument in radians
Hyperbolic cosine
Positive difference
Exponential function

Positive difference
Truncation
Natural logarithm
Common logarithm

Largest value
Smallest value

Remainder of a ratio (uses double
precision numbers)
Nearest whole number

Dot product of al and a2

Double precision product
Transfer of sign
Sine (argument in radians)
Hyperbolic sine

(Continued)

60486513 H

FORTRAN Function Summary

Table 4-4. FORTRAN Function Summary (Continued)

Name

DSQRT
DTAN
DTANH

EQV

FLOAT

ERF
ERFC
EXP
EXTB
lABS

ICHAR

IDIM

IDINT

IDNINT

IFIX
INDEX

INSB

INT

ISIGN

LBOUND

LEN
LGE
LGT
LLE

LLT
LOG
LOGIO
MASK

MATMUL

MAX

MAXVAL

60486513 H

Source

Math Library
Math Library
Math Library

FORTRAN Versions 1 and 2

FORTRAN Versions 1 and 2

Math Library
Math Library
Math Library
Math Library
Math Library

FORTRAN Versions 1 and 2

Math Library

FORTRAN Versions 1 and 2

Math Library

FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2

Math Library

FORTRAN Versions 1 and 2

Math Library

FORTRAN Version 2

FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2

FOR,!'RAN Versions 1 and 2
FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2

FORTRAN Version 2

FORTRAN V ~rsions 1 and ~.

FORTRAN Version 2

Description

Square root
Tangent (argument in radians)
Hyperbolic tangent

Equi valence

Conversion to real

Error function
Complementary error function
Exponential function
Extract a string of bits
Absolute value

Character conversion to integer

Positive difference

Conversion to integer

Nearest integer

Conversion to integer
Index of a substring

Insert a string of bits

Conversion to integer

Transfer of sign

Lower bound of dimension a2 of al

Length of character string
Lexically greater than or equal
Lexically greater than
Lexically less than or equal

Lexically less than
Natural logarithm
Common logarithm
Boolean result

Product of arguments al and a2

Largest value

Maximum element of al along
dimension a2 corresponding to true
elements of a3

(Continued)

Calls From Languages 4·25

FORTRAN Function Summary

Table 4-4. FORTRAN Function Summary (Continued)

Name

MAXO
MAXI

MERGE

MIN

MINVAL

MINO
MINI

MOD

NEQV

NINT

OR

PACK

PRODUCT

PTR

RANF

RANK

REAL

SEQ

SHIFT

4-26 Math Library

Source

FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2

FORTRAN Version 2

FORTRAN Versions 1 and 2

FORTRAN Version 2

FORTRAN Versions 1 and 2
FORTRAN Versions 1 and 2

Math Library

FORTRAN Versions 1 and 2

Math Library

FORTRAN Versions 1 and 2

FORTRAN Version 2

Description

Largest value
Largest value

Result containing the values of al
corresponding to true elements of a3,
and the values of a2 corresponding to
false elements of a3

Smallest value

Minimum element of al along
dimension a2 corresponding to true
elements of a3

Smallest value
Smallest value

Remainder of a ratio

N one qui valence

Nearest integer

Boolean sum

One-dimensional array consisting of
all elements of al corresponding to
true elements of a2

FORTRAN Version 2 Product of elements in argument al
along dimension a2 corresponding to
.TRUE. elements of a3

FORTRAN Versions 1 and 2 Parameter address; used only when
passing parameters to C or CYBIL
routines

Math Library Random number generator

FORTRAN Version 2 Number of dimensions in al

FORTRAN Versions 1 and 2 Conversion to real

FORTRAN Version 2 Returns a one-dimensional array

FORTRAN Versions 1 and 2 Shift

(Continued)

60486513 H

FORTRAN Function Summary

Table 4·4. FORTRAN Function Summary (Continued)

Name

SIGN
SIN
SIND
SINH

SIZE

SNGL

SQRT

SUM

SUMIS
TAN
TAND
TANH

UNBOUND
UNPACK

XOR

60486513 H

Source

Math Library
Math Library
Math Library
Math Library

FORTRAN Version 2

FORTRAN Versions 1 and 2

Math Library

FORTRAN Version 2

Math Library
Math Library
Math Library
Math Library

FORTRAN Version 2
FORTRAN Version 2

FORTRAN Versions 1 and 2

Description

Transfer of sign
Sine (argument in radians)
Sine (argument in (degrees)
Hyperbolic sine

Size of an array

Conversion to real

Square root

Sum of elements in argument a1
along dimension a2 corresponding to
.TRUE. elements in a3

Sum of 1 bits that are set in a word
Tangent (argument in radians)
Tangent (argument in degrees)
Hyperbolic tangent

Upper bound of dimension a2 of a1
Array with the same shape as a3
and the same type as a1

Exclusive OR

Calls From Languages 4·27

Pascal Calling the Math Library

Pascal Calling the Math Library

The Pascal compiler provides a transparent interface to several Math Library functions.
The language also provides several predefined functions. Pascal makes no distinction
between Math Library functions and predefined functions. In some cases Pascal uses a
different name for a function actually provided by the Math Library (for example, the
Pascal ARCTAN, ARCTAN2, and ARCTANH are different names for the Math Library
functions ATAN, ATAN2, and ATANH, respectively).

The following functions are available to the Pascal programmer:

ABS
ACOS
AMOD
ANINT
ARCTAN
ARCTAN2
ARCTANH
ASIN
COS
COSH

COTAN
DIM
ERF
ERFC
EXP
IDIM
ISIGN
LN
LNIO
NINT

POWER
RANF
SIGN
SIN
SINH
SQR
SQRT
TAN
TANH

The Pascal function POWER combines the Math Library functions ITOI, ITOX, XTOI,
and XTOX. POWER accepts integer or real arguments.

In NOSNE Pascal, most math functions are called from the Math Library; except ABS
and SQR are implemented directly by Pascal generated code. All Pascal function calls
are transparent to the user.

Inlined Functions

At the user's option, the Pascal compiler generates inline code structures for the
following functions:

ACOS
LN (ALOG)
LN (ALOGIO)
ASIN
ARCTAN (ATAN)
COS
EXP
SIN
SQRT
TAN

Pascal Calling Routines

When you call Pascal functions, the compile time of your program is affected by the
EXPRESSION_EVALUATION parameter on the PASCAL command. If you specify
EXPRESSION _EVALUATION = REFERENCE, the compiler selects call-by-reference,
which does more argument checking and may be slower. The default is EXPRESSION_
EVALUATION = NONE, where the compiler selects call-by-value, which does less
argument checking.

4-28 Math Library 60486513 H

Pascal Calling the Math Library

Pascal Math Function Attributes

Table 4-5 lists the domain and range for applicable Pascal math functions.

Table 4-5. Mathematical Intrinsic Functions

Function

ACOS(a)

ARCTAN(a)

ARCTAN2(a1,a2)

ARCTANH(a)

ASIN(a)

COS(a)

COSH(a)

COTAN(a)

ERF(a)

ERFC(a)

EXP(a)

LN(a)

LN10(a)

SIN (a)

SINH(a)

SQRT(a)

TAN (a)

TANH(a)

60486513 H

Domain

/a/~l

-infini ty ~ a ~ infinity

a2<0, a1 <0
a2<0, a1~0
a2=0, a1 <0
a2=0, a1>0
a2>0, a1<0
a2>0, a1~0
a2 = 0, a1 = 0 (error)

/a/~l

/a/~l

/a/<2**47

/a/ < 4095*log(2)

/a/<2**47

-infinity ~ a ~ infinity

-infinity ~ a ~ 25.923

a < 4095*LOG(2)

a>O

a>O

/a/<2**47

/a/ < 4095*log(2)

/a/<2**47

All valid real quantities

Range

o ~ ACOS(a) ~ pi

-pi/2 ~ ARCTAN (a) ~ pi/2

-pi < ARCTAN2(a1 ,a2) < -pi/2
pi/2 ~ ARCTAN2(a1 ,a2) ~ pi
ARCTAN2(a1 ,a2) = -pi/2
ARCTAN2(a1 ,a2) = pi/2
-pi/2 <ARCTAN2(a1,a2) < 0
o ~ARCTAN2(a1,a2) <pi/2

All valid real quantities

-pi/2 ~ASIN(a) ~pi/2

-1 ~COS(a) ~ 1

COSH(a)~l

All valid real quantities

-1 ~ERF(a) ~ 1

o ~ ERFC(a) ~ 2

All valid real quantities

/LN(a)/ <4095*LN(a)

/LN10(a)/<4095*LN(2) base 10

-l~SIN(a)~l

All valid real quantities

SQRT(a)~O

All valid real quantities

-l~TANH(a)~l

Calls From Languages 4-29

.Error Handling 5

Processing Error ... 5-2
Algorithm Error .. 5-2
Machine Round-Off Error .. 5-2

Input Error 5-3
Call-By-Reference Error Handling .. 5-3
Call-By-Value Error Handling .. 5-3

Accuracy Measurements .. 5-5
Relative Error ... 5-5

Using the Relative Error Formula ... 5-5
Examining Bit Error .. 5-5

Root Mean Square Relative Error .. 5-5

NOSNE Condition Handler. .. 5-6
Error Processing .. 5-6
Condition Handling 5-6

Error Handling

This chapter discusses two different kinds of errors:

• Processing errors (algorithm error and machine round-off error)

• Input errors (arguments that are out of range)

This chapter also discusses accuracy measurement and NOSNE condition handling.
Understanding how the Math Library handles errors and how the NOS/VE operating
system handles conditions may improve your ability to use the Math Library as a
resource.

NOTE

This chapter discusses Math Library error handling in general. See chapter 7, Vector
Processing, for additional information on vector error handling.

5

60486513 H Error Handling 5·1

Processing Error

Processing Error

Processing error is defined as the computed value of a function minus the true value.

A certain amount of processing error occurs during the computation of the Math
Library functions, and is composed of two parts:

• Algorithm error

• Machine round-off error

Algorithm Error

Algorithm error is caused by inaccuracies inherent in the mathematical process used to
compute the result. It includes error in coefficients used in the algorithm.

A curve representing the algorithm error is usually smooth with discontinuities at
breaks in the range reduction technique. Error in the coefficients that are involved in
range reduction can also occur. Usually, a good algorithm which uses good coefficients
will not have an error greater than one-half in the last bit of the result.

Machine Round-Off Error

Machine round-off error is caused by the finite nature of the computer. Because only a
finite number of bits can be represented in each word of memory, some precision is
lost.

Round-off error is difficult to predict or graph. A graph of round-off error is extremely
discontinuous, but maximum and minimum error over small intervals can be shown.

5-2 Math Library 60486513 H

\,

Input Error

Input Error

Input error is handled differently by the call-by-reference and call-by-value routines.
Error handling takes place when the argument or result is outside the range of the
function.

If you are accessing the Math Library from a language other than FORTRAN, you can
establish a condition handler to be used in conjunction with the error handling
mechanism under the call-by-reference routine. The Math Library automatically
establishes this condition handler for FORTRAN programs.

Call-By-Reference Error Handling

When the argument or result is out-of-range in a call-by-reference routine, an error
message is displayed and the corresponding default error value is placed in the result
registers XE and XF. Figure 5-1 is a Nassi-Shneiderman chart1 illustrating the logical
flow of call-by-reference error handling.

Call-By-Value Error Handling

If the call-by-value routine is called directly, that is, if the call-by-reference routine is
not called, the job aborts if either of the following situations occurs:

o An out-of-range argument is passed to the call-by-value routine.

o The result of the computation in a call-by-value routine is out-of-range.

The call-by-value routine does not guarantee any other type of error handling, and the
val ues in registers XE and XF are undefined unless otherwise specified.

1. Nassi-Shneiderman charts (also called Chapin charts) are read like flow charts: a rectangle indicates a
process, an inverted isosceles triangle indicates a decision, and a right triangle indicates a branch from a
decision.

60486513 H Error Handling 5-3

Input Error

Call-by-Reference Argument List

~nRe~ Valid Invalid

Abnormal status set

Entry Point in global variable
MLV$STATUS (of type OST$ST ATUS)

Call-by-Value Register XE Register XE

Routine Register XF

Register A4
Algorithm

Pointer to parameter list

Computation
Register XD

Number of parameters (1 or 2)

Result User Condition Register

Cleared of all arithmetic errors

Return Ungated routine
MLP$ERROR_PROCESSOR is called

All registers are saved in the save
area

MLP$ERROR_PROCESSOR calls
PMP$CAUSE_CONDITION with user
condition MATH_LIBRARY _ERROR

Pointer is set to the previous save
area (the registers saved by the call-
by-reference routine)

Normal Abnormal

Exit PMP$ABORT

Condition No Condition
Handler Handler

Status returned MLV$STATUS
from PMP$CAUSE_
CONDITION

Return I Return I Return

Figure 5-1. Logical Flow of Call-by-Reference Error Handling

5-4 Math Library 60486513 H

Accuracy Measurements

Accuracy Measurements

When performance improvements are made to Math Library functions, the following
accuracy measurements are calculated:

• Relative error

• Root mean square relative error

The Taylor series of a Math Library function is sometimes used in the calculation of
relative error and root mean square relative error. For a discussion of Taylor series,
refer to any calculus text (for example, Calculus and Analytic Geometry by G. B.
Thomas). The following paragraphs discuss these accuracy measurements.

Relative Error

Relative error is the processing error divided by the true value. The magnitude of
relative error can be analyzed in two ways:

• Using the relative error formula

• Examining bit error

Using the Relative Error Formula

Relative error can be calculated by using the following formula:

Relative Error = (Function Value - Exact Value) / Exact Value

This method is used for single precision algorithms accurate to less than 2E-15, and
round-off errors less than IDE-15.

Changing the last bit in a single precision number produces a relative change between
3.5E-15 for a large mantissa and 7.IE-15 for a small but normalized mantissa. This
method is used for the error analysis of the Math Library functions.

Examining Bit Error

The second method of analyzing relative error is finding out how many bits the routine
differs from the exact value. This is called bit error.

To determine how many bits off a routine is, a function is evaluated in double
precision and rounded to single precision. Then, assuming the exponents are the same,
the mantissas are subtracted and the integer difference is the bit error.

Root Mean Square Relative Error

. Root mean square error is the square root of the average of the squares of the relative
errors of all the arguments.

60486513 H Error Handling 5·5

NOSNE Condition Handler

NOSNE Condition Handler
Under call-by-reference, the Math Library generates the special software condition
MATH_LIBRARY_ERROR. The language under which you are executing ordinarily
handles the processing of this condition. If no condition handler for MATH_LIBRARY_
ERROR has been established, NOSNE handles the processing of this condition.

You can also write your own condition handler. NOSNE provides two mechanisms for
specifying the action to be taken when an abnormal condition occurs:

• Error processing

• Condition handling

Error Processing

Error processing is available when the STATUS parameter is included in a NOSNE
command and the command terminates with an abnormal status.

All NOSNE commands have an optional parameter called STATUS. When you specify
the STATUS parameter, you must supply a previously declared variable of type
STATUS as its value. This variable is used by the System Command Language (SCL)
interpreter to hold the completion status of the command.

If you include the STATUS parameter on a command, the SCL interpreter proceeds to
the next command even if an abnormal condition is encountered. Most commands do
not inform you of an error if you include the STATUS parameter, but succeeding
commands may check the contents of the status variable and alter the flow of
statements based on abnormal conditions.

If you do not include a value for the STATUS parameter and an error occurs, the SCL
interpreter skips succeeding commands in the current input block as described in the
NOSNE System Usage manual.

Condition Handling

When you specify the STATUS parameter on a command, you can alter the command
stream based on the completion status of the command. You can also provide condition
handlers to alter the command stream in the event of certain system conditions.

Condition handling is activated when a condition exists for a command. that does not
contain a STATUS parameter, or is beyond the scope of STATUS variable error
processing. When condition handling is activated, your batch or interactive job is
usually terminated. If you receive a condition handling error, see the NOSNE
Diagnostic Messages manual for a description of the error and a recommended action.

The following information defines the interface between the Math Library and the
operating system, whether or not a condition handler has been established. For detailed
information on the procedures used in establishing a user-defined condition handler, see
the NOSNE System Usage manual.

5-6 Math Library 60486513 H

(

NOSIVE Condition Handler

When an error occurs in a Math Library function under a call-by-reference routine, the
following events occur:

1. An appropriate abnormal status is set into global variable MLV$STATUS (of type
OST$STATUS).

2. The appropriate default error value is placed in the result register(s) XE and/or XF.
Register A4 contains the pointer to the parameter list passed to the
call-by-reference routine. Register XD contains the number of parameters for the
call-by-reference routine. For example, register XD will contain a 1 for the
call-by-reference routine MLP$RSIN, and a 2 for MLP$RZTOZ. The User Condition
Register is cleared of all arithmetic errors.

3. Ungated routine MLP$ERROR_PROCESSOR is called with all registers saved in
the save area so that they can be accessed by a condition handler.

4. MLP$ERROR_PROCESSOR calls the PMP$CAUSE_CONDITION procedure with
user condition MATH_LIBRARY_ERROR and a pointer to the previous save area
(the registers saved by the call-by-reference routine) as the condition descriptor.

5. Upon return from the PMP$CAUSE_CONDITION procedure, MLP$ERROR_
PROCESSOR is exited if the returned status is normal. If the return status is not
normal, the PMP$ABORT procedure is called with one of two conditions:

• If no established condition handler exists for MATH_LIBRARY_ERROR, then
status MLV$STATUS is used.

• If an established condition handler does exist for MATH_LIBRARY_ERROR,
then the status returned from the PMP$CAUSE_ CONDITION procedure is used.

6. The call-by-reference routine immediately returns to the calling program if it is
returned to from MLP$ERROR_PROCESSOR.

Refer to chapter 7, Vector Processing, for a discussion of vector error handling.

60486513 H Error Handling 5·7

I
I
\

Scalar Classification Tables 6

Summary of Math Functions ... 6-2

Input Domains and Output Ranges ... 6-6

Exponentiation Functions ... " 6-8 .

Scalar Classification Tables 6

This chapter provides a series of tables that categorize the Math Library functions
according to various classifications and provide information such as domains and ranges
and types of results.

Table 6-1 gives a summary of the math functions, grouping the functions by related
generic and specific function names (alphabetized by generic name). COSD, SIND, and
TAND are grouped with COS, SIN, and TAN, respectively. COSD, SIND, and TAND
are not related to the generic functions because they return results in degrees.

The functions in table 6-1 are grouped as follows:

• Absolute value (ABS, CABS, DABS, lABS)
• Inverse cosine (ACOS, DACOS)
• Imaginary part of a complex argument (AIMAG)
• Truncation (AINT, DINT)
• Natural logarithm (ALOG, CLOG, DLOG)
• Common logarithm (ALOGI0, DLOGI0)
• Remaindering (AMOD, DMOD, MOD)
• Nearest whole number (ANINT, DNINT)
• Inverse sine (ASIN, DASIN)
• Inverse tangent (ATAN, ATAN2, DATAN, DATAN2)
• Cosine (CCOS, COS, DCOS)
• Conjugate (CONJG)
• Cotangent (COTAN)
• Exponential (CEXP, DEXP, EXP)
• Hyperbolic cosine (COSH, DCOSH)
• Sine (CSIN, DSIN, SIN, SIND)
• Square root (CSQRT, DSQRT, SQRT)
• Inverse hyperbolic tangent (ATANH)
• Positive difference (DDIM, DIM, IDIM)
• Product (DPROD)
• Transfer of sign (DSIGN, ISIGN, SIGN)
• Hyperbolic sine (DSINH, SINH)
• Tangent (DTAN, TAN)
• Hyperbolic tangent (DTANH, TANH)
• Error function (ERF)
• Complementary error function (ERFC)
• Extract bits (EXTB)
• Nearest integer (IDNINT, NINT)
• Insert bits (INSB)
• Random number generator (RANF)
• Returns random number seed (RANGET)
• Sets seed for random number generator (RAN SET)
• Sum of 1 bits in one word (SUMIS)

Table 6-2 shows the input domain 1 and output range for all of the math functions,
except the exponentiation functions. For the exponentiation functions, table 6-3 lists the
bases, exponents, and results and table 6-4 summarizes the domains and ranges.

1. Indefinite and infinite are not in the input domain unless specifically stated. This applies to tables 6-2
and 6-4.

60486513 H Scalar Classification Tables 6-1

Summary of Math Functions

Summary of Math Functions

Table 6·1. Mathematical Functions

Function Type of Number of Type of
Description Definition Name Argument Arguments Result

Absolute value Ixl; if x is complex, ABS Real 1 Real
square root of CABS Complex Real
{{real x)**2 + DABS Double Double
(imag x)**2) lABS Integer Integer

Inverse cosine arccos{x) ACOS Real 1 Real
DACOS Double Double

Imaginary Imaginary part of AIMAG Complex 1 Real
part of a (xr,xi) = xi
complex
argument

Truncation int{x) AINT Real 1 Real
DINT Double Double

Natural log e (x) ALOG Real 1 Real
logarithm CLOG Complex Complex

DLOG Double Double

Common log 10 (x) ALOGI0 Real 1 Real
logarithm DLOGI0 Double Double

Remain- x - int{xly)*y AMOD Real 1 Real
dering DMOD Double Double

MOD Integer Integer

Nearest whole int{x + 0.5), if x ANINT Real 1. Real
number ~ 0

int{x - 0.5), if x DNINT Double Double
< 0

Inverse sine arcsin{x) ASIN Real 1 Real
DASIN Double Double

(Continued)

6-2 Math Library 60486513 H

Summary of Math Functions

Table 6-1. Mathematical Functions (Continued)

Function Type of Number of Type of
Description Dermition Name Argument Arguments Result

Inverse arctan(x) ATAN Real 1 Real
tangent DATAN Double Double

arctan(y/x) ATAN2 Real 2 Real
DATAN2 Double Double

Cosine cos(x), where x is CCOS Complex 1 Complex
in radians COS Real Real

DCOS Double Double
cos(x), where x is COSD Real 1 Real
in degrees

Conjugate Negation of CONJG Complex 1 Complex
imaginary part
(xr,-xi)

Cotangent cotan(x), where x COTAN Real 1 ' Real
is in radians

Exponential e**x CEXP Complex 1 Complex
DEXP Double Double
EXP Real Real

Hyperbolic cosh(x) COSH Real 1 Real
cosine DCOSH Double Double

Sine sin(x), where x is CSIN Complex 1 Complex
in radians DSIN Double Double

SIN Real Real
sin(x), where x is SIND Real 1 Real
in degrees

Square root x**(1I2) CSQRT Complex 1 Complex
DSQRT Double Double
SQRT Real Real

Inverse arctanh(x) ATANH Real 1 Real
hyperbolic
tangent

(Continued)

60486513 H Scalar Classification Tables 6-3

Summary of Math Functions

Table 6-1. Mathematical Functions (Continued)

Function
Description Deimition Name

Positive x - y, if x > y DDIM
difference 0, if x ~ y DIM

IDIM

Product x*y DPROD

Transfer of lxi, if y ~ 0 DSIGN
sign -lxi, if y < 0 ISIGN

SIGN

Hyperbolic sinh(x) DSINH
sine SINH

Tangent tan(x), where x is DTAN
in radians TAN
tan(x), where x is TAND
in degrees

Hyperbolic tanh(x) DTANH
tangent TANH

Error function erf(x) ERF

Complemen- 1 - erf(x) ERFC
tary error
function

Extract bits extb(x, iI, i2); EXTB
extracts bits from
x starting with
position il with
length of i2

6-4 Math Library

Type of
Argument

Double
Real
Integer

Real

Double
Integer
Real

Double
Real

Double
Real
Real

Double
Real

Real

Real

x:
Boolean
Complex
Double
Integer
Logical
Real
iI: Integer
i2: Integer

Number of
Arguments

2

2

2

1

1

1

1

1

1

3

Type of
Result

Double
Real
Integer

Double

Double
Integer
Real

Double
Real

Double
Real
Real

Double
Real

Real

Real

Boolean

(Continued)

60486513 H

/

,

/

\

(

\

I

\

(

(

\

Summary of Math Functions

Table 6-1. Mathematical Functions (Continued)

Function Type of Number of Type of
Description Definition Name Argument Arguments Result

Nearest int(x + 0.5), if x IDNINT Double 1 Integer
integer ~ 0

int(x - 0.5), if x NINT Real Integer
< 0

Insert bits insb(x, il, i2, y); INSB x,y: 4 Boolean
inserts bits from x Boolean
starting with Complex
position i1 with Double
length of i2 into Integer
copy of y Logical

Real
il: Integer
i2: Integer

Random Random number in RANF None 0 Real
number range (0,1)
generator

Returns Seed is in range RANGET Real 1 Real
random (0,1)
number seed

Sets seed for ranset(x) RANSET Real 1 Real
random
number
generator

Sum of 1 bits sumls(x) SUM1S Boolean 1 Integer
in one word Complex

Double
Integer
Real

60486513 H Scalar Classification Tables 6-5

Input Domains and Output Ranges

Input Domains and Output Ranges

Table 6-2. Input Domains and Output Ranges

Function

ACOS(x)
DACOS(x)

ALOG(x)
CLOG(xr ,xi)

DLOG(x)

ALOGI0(x)
DLOGI0(x)

ASIN(x)
DASIN(x)

ATAN(x)
DATAN(x)

ATAN2(x,y)

DATAN2(x,y)

ATANH(x)

COS(x)
CCOS(xr ,xi)

DCOS(x)

COSD(x)

COSH(x)
DCOSH(x)

6-6 Math Library

Input Domain

Ixl ~ 1
Ixl ~ 1

x > 0
(xr, xi) ;;j:. (0,0)
(xr**2 + xi**2)**112
in machine range
x > 0

x > 0
x > 0

Ixl ~ 1
Ixl ~ 1

- infini ty ~ x ~ infini ty
-infinity ~ x ~ infinity

y < 0, x < 0
y < 0, x ~ 0
y = 0, x < 0
y = 0, x > 0
y > 0, x < 0
y > 0, x ~ 0
y < 0, x < 0
y < 0, x ~ 0
y = 0, x < 0
y = 0, x > 0
y > 0, x < 0
y > 0, x ~ 0

Ixl < 1

Ixl < 2**47
Ixrl < 2**47
Ixil < 4095*log(2)
Ixl < 2**47

Ixl < 2**47

Ixl < 4095*log(2)
Ixl < 4095*log(2)

Output Range

o ~ ACOS(x) ~ pi
o ~ DACOS(x) ~ pi

IALOG(x)1 < 4095*log(2)
-pi < CLOG(xi) ~ pi

IDLOG (x)1 < 4095*log(2)

IALOGl0(x)1 < 4095*log(2) base 10
IDLOGl0(x)1 < 4095*log(2) base 10

-piJ2 ~ ASIN (x) ~ piJ2
-piJ2 ~ DASIN(x) ~ piJ2

-piJ2 ~ AT AN (x) ~ piJ2
-piJ2 ~ DATAN(x) ~ piJ2

-pi < ATAN2(x,y) < - piJ2
piJ2 ~ ATAN2(x,y) ~ pi
ATAN2(x,y) = -piJ2
ATAN2(x,y) = piJ2
-piJ2 < ATAN2(x,y) < 0
o ~ ATAN2(x,y) < piJ2
-pi < DATAN2(x,y) < - piJ2
piJ2 ~ DATAN2(x,y) ~ pi
DATAN2(x,y) = -piJ2
DATAN2(x,y) = piJ2
-piJ2 < DATAN2(x,y) < 0
o ~ DATAN2(x,y) < piJ2

The set of valid real quantities.

-1 ~ COS(x) ~ 1
-1 ~ CCOS(x) ~ 1

-1 ~ DCOS(x) ~ 1

-1 ~ COSD(x) ~ 1

COSH(x) ~ 1
DCOSH(x) ~ 1

(Continued)

60486513 H

I

(

I

Input Domains and Output Ranges

Table 6·2. Input Domains and Output Ranges (Continued)

Function

COTAN(x)

ERF(x)

ERFC(x)

EXP(x)

CEXP(xr ,xi)

DEXP(x)

SIN (x)
CSIN(xr,xi)

DSIN(x)

SIND(x)

SINH(x)
DSINH(x)

SQRT(x)
CSQRT(xr ,xi)

DSQRT(x)

TAN (x)
DTAN(x)

TAND(x)

TANH (x)

60486513 H

Input Domain

o < Ixl < 2**47

-infinity ~ x ~ infinity

-infinity ~ x ~ infinity

x < 4095*log(2) and
x ~ -4097*log(2)
xr < 4095*log(2) and
xr > -4097*log(2)
xi < 2**47
xi ~ -4097*log(2)
x < 4095*log(2) &

x ~ -4097*log(2)

Ixl < 2**47
Ixrl < 2**47
Ixil < 4095*log(2)
Ixl < 2**47

Ixl < 2**47

Ixl < 4095*log(2)
Ixl < 4095*log(2)

x ~ 0
(xr**2 + xi**2)**112 +
Ixrl in machine range

x ~ 0

Ixl < 2**47
Ixl < 2**47

Ixl < 2**47
x cannot be exact odd
multiple of 90

-infinity ~ x ~ infinity

Output Range

The set of valid real quantities.

o ~ ERF(x) ~ 1

o ~ ERFC(x) ~ 2

o < EXP(x)

The set of valid complex quantities.

The set of valid double precision
quantities.

-1 ~ SIN (x) ~ .1

-1 ~ DSIN(x) ~ 1

-1 ~ SIND(x) ~ 1

SQRT(x) ~ 0
Value in right half of plane
CSQRT(xr) ~ 0)

The set of valid double precision
quantities.

The set of valid real quantities.
The set of valid double precision
quantities.

The set of valid real quantities.

-1 ~ TANH (x) ~ 1

Scalar Classification Tables 6-7

Exponentiation Functions

Exponentiation Functions

Table 6-3 illustrates that the result type of an exponentiation function is determined by
the order of precedence of the two input arguments. The result of exponentiation
always takes the type of the argument with the higher precedence according to the
following hierarchy:

1. Integer (the lowest precedence)

2. Single precision floating-point

3. Double precision floating-point

4. Complex (the highest precedence)

Table 6-3 lists the bases, exponents, and result types of the exponentiation functions by
order of precedence. Table 6-4 summarizes the input domains and output ranges of the
exponentiation functions.

6-8 Math Library 60486513 H

(

(

I

\.

(

Exponentiation Functions

Table 6-3. Arguments and Results of the Exponentiation Functions

Name Base Exponent Result Type1

ITOI Integer Integer Integer

ITO X Integer Single precision Single precision floating-point
floating-point

ITOD Integer Double precision Double precision floating-point
floating-point

ITOZ Integer Complex Complex

XTOI Single Integer Single precision floating-point
precision
floating-point

XTOX Single Single precision Single precision floating-point
precision floating-point
floating-point

XTOD Single Double precision Double precision floating-point
precision floating-point
floating-point

XTOZ Single Complex Complex
precision
floating-point

DTOI Double Integer Double precision floating-point
precision
floating-point

DTOX Double Single precision Double precision floating-point
precision floating-point
floating-point

DTOD Double Double precision Double precision floating-point
precision floating-point
floating-point

DTOZ Double Complex Complex
precision
floating-point

ZTOI Complex Integer Complex

ZTOX Complex Single precision Complex
floating-point

ZTOD Complex Double precision Complex
floating-point

ZTOZ Complex Complex Complex

1. The argument (base or exponent) with the higher precedence always determines the
number type of the result.

60486513 H Scalar Classification Tables 6·9

Exponentiation Functions

Table 6-4. Domains and Ranges of the Exponentiation Functions

Name

ITOI

ITOX

ITOD

ITOZ

XTOI

XTOX

XTOD

XTOZ

DTOI

DTOX

DTOD

DTOZ

Type of
Argument

Integer
Integer

Integer
Real

Integer
Double

Integer
Complex

Real
Integer

Real
Real

Real
Double

Real
Complex

Double
Integer

Double
Real

Double
Double

Double
Complex

6-10 Math Library

Input Domain

Ix**yl < 2**63; if x = 0, then y > 0

x ~ 0; if x = 0, then y > 0

x ~ 0; if x = 0, then y > 0

x ~ 0; if x = 0, then yr > 0, yi = 0

if x = 0, then y > 0

x ~ 0; if x = 0, then y > 0

x ~ 0; if x = 0, then y > 0

if x = 0, then yr >0, yi = 0

if x 0, then y > 0

x ~ 0; if x 0, then y > 0

x ~ 0; if x = 0, then y > 0

if x = 0, then yr > 0, yi = 0

Output Range

The set of valid
integer
quantities

x**y ~ 0

x**y ~ 0

x**y ~ 0

The set of valid
real quantities

x**y ~ 0

x**y ~ 0

The set of valid
complex
quantities

The set of valid
double precision
quantities

x**y ~ 0

x**y ~ 0

The set of valid
.double precision
quantities

(Continued)

60486513 H

Exponentiation Functions

Table 6-4. Domains and Ranges of the Exponentiation Functions (Continued)

Type of
Name Argument Input Domain Output Range

ZTOI Complex if (xr,xi) = (0,0), then y > 0 The set of valid
Integer complex

quantities

ZTOX Complex if (xr,xi) = (0,0) then y > 0 The set of valid
Real complex

quantities

ZTOD Complex if (xr,xi) (0,0) then y > 0 The set of valid
Double complex

quantities

ZTOZ Complex if (xr,xi) = (0,0) then y > 0, yi = 0 The set of valid
Complex complex

quantities

60486513 H Scalar Classification Tables 6·11

Vector Processing 7

Vector Functions .. 7-1
Vector Function Calling Routines .. 7-1
Single Argument Vector Math Functions 7-2
Double Argument Vector Math Functions .. 7-3

Double Argument Vector Math Functions (Scalar, Vector) 7-3
Double Argument Vector Math Functions (Vector, Scalar) 7-4
Double Argument Vector Math Functions (Vector, V ector) 7-4
Result Array and Source Array Descriptors 7-5

Vector Error Handling ... 7-6

Vector .Processing 7

This chapter discusses the vector processing capabilities of the Math Library, including
both single argument and double argument vector math functions. This chapter also
discusses vector error handling.

Vector Functions

Vector math functions accept vectors as arguments and return vectors as results. A
vector is a one-dimensional set of numbers.

While the vector math functions are available and can be referenced on any CYBER
180 mainframe model, they perform array-processing only on models which include
vector hardware facilities, currently limited to the CYBER 990/995 Series running
FORTRAN Version 2.

If a vector math function is called on a non-vector machine, an unimplemented
instruction trap (hardware condition) may occur (the vectorization is not implemented).

The FORTRAN Version 2 compiler guarantees that the length (L) of the vector sent to
the Math Library will be within the range 0 ~ L ~ 512 words. When the vector
length is not within this valid range, an error message is displayed. See the section in
this chapter entitled Vector Error Handling. When the length of the vector argument
sent to the Math Library vector routine is zero, no operation occurs and the contents of
the vector are returned without any values changed.

Vector Function Calling Routines

Scalar functions (depending upon the calling language) can be called by a
call-by-reference or a call-by-value calling routine (linkage). Vector routines always use
the call-by-reference linkage.

Under call-by-reference, register A4 points to the actual parameter list. Vector routines
can have four different parameter lists as described in tables 7-1 through 7-4.

The calling sequence for all vector functions has one entry point defined for each
function. In all cases, register A4 contains the Process Virtual Address (PVA) to the
first entry in the parameter list.

The Math Library provides two types of vector processing functions:

• Single Argument Vector Math Functions

• Double Argument Vector Math Functions

The following sections discuss these types of functions.

60486513 H Vector Processing 7-1

Vector Functions

Single Argument Vector Math Functions

The Math Library provides the following single argument vector processing functions:

ACOS
ALOG
ALOGIO
ASIN
ATAN
ATANH
CCOS
CEXP
CLOG
COS
COSD
COSH
COTAN

CSIN
CSQRT
DACOS
DASIN
DATAN
DCOS
DCOSH
DEXP
DLOG
DLOG10
DSIN
DSINH
DSQRT

DTAN
DTANH
ERF
ERFC
EXP
SIN
SIND
SINH
SQRT
TAN
TAND
TANH

Table 7-1 describes the internal representation of the parameter list for real, double
precision, and complex single argument vector math functions. Single valued vector
routines always follow this format. Each word is a decimal value.

Table 7-1. Parameter List for Single Argument Vector Math Functions

Word Description of Contents

Word 1 Pointer to the result array.

Word 2 Pointer to the source array.

Word 3 Pointer to the result array descriptor.

Word 4 Pointer to the source array descriptor.

7-2 Math Library 60486513 H

/
\

Vector Functions

Double Argument Vector Math Functions

The Math Library provides the following double argument vector processing functions:

ATAN2
DATAN2
DTOD
DTOI
DTOX

DTOZ
ITOZ
XTOD
XTOI
XTOX

XTOZ
ZTOD
ZTOI
ZTOX
ZTOZ

The double argument vector math functions are divided into three categories:

function_ name(scalar , vector)

function_ name(vector, scalar)

function_ name(vector, vector)

See table 7-2 for a (scalar, vector) parameter list.

See table 7-3 for a (vector, scalar) parameter list.

See table 7-4 for a (vector, vector) parameter list.

where function_name is a double argument function name, such as ATAN2.

Double Argument Vector Math Functions (Scalar, Vector)

Table 7-2 provides the internal representation of the parameter list for double
argument vector math functions where argument 1 is scalar and argument 2 is vector.
Each word is a decimal value.

Table 7-2. Parameter List for (Scalar, Vector) Functions

Word

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

60486513 H

Description of Contents

Pointer to the result array.

Pointer to the source scalar (argument 1).

Pointer to the source array (argument 2).

Pointer to the result array descriptor.

o

Pointer to the source array descriptor (argument 2).

Vector Processing 7 -3

Vector Functions

Double Argument Vector Math Functions (Vector, Scalar)

Table 7-3 provides the internal representation of the parameter list for double
argument vector math functions where argument 1 is vector and argument 2 is scalar.
Each word is a decimal value.

Table 7-3. Parameter List for (Vector, Scalar) Functions

Word Description of Contents

Word 1 Pointer to the result array.

Word 2 Pointer to the source array (argument 1).

Word 3 Pointer to the source scalar (argument 2).

Word 4 Pointer to the result array descriptor.

Word 5 Pointer to the source array descriptor (argument 1).

Word 6 o

Double Argument Vector Math Functions (Vector, Vector)

Table 7-4 provides the internal representation of the parameter list for double
argument vector math functions where argument 1 is vector and argument 2 is vector.
Each word is a decimal value.

Table 7-4. Parameter List for (Vector, Vector) Functions

Word Description of Contents

Word 1 Pointer to the result array.

Word 2 Pointer to the source array (argument 1).

Word 3 Pointer to the source array (argument 2).

Word 4 Pointer to the result array descriptor.

Word 5 Pointer to the source array descriptor (argument 1).

Word 6 Pointer to the source array descriptor (argument 2).

7·4 Math Library 60486513 H

Vector Functions

Result Array and Source Array Descriptors

Table 7-5 provides the internal representation of the result array descriptor and the
source array descriptor for all vector math functions.

Table 7-5. Result Array and Source Array Data Locations

Word

Word 1

Word 2

Word 3

60486513 H

Description of Contents

N umber of elements in vector.

Distance (or stride) measured in terms of array elements between two
consecutive elements of the same dimension. Always equal to one for
the Math Library.

Lower bound of array. Always zero for the Math Library.

Vector Processing 7·5

Vector Error Handling

Vector Error Handling
The vector math functions use call-by-reference error handling. For example, if an
argument within a set of arguments is illegal or produces an out-of-range value, an
error message is displayed for that argument. The first a~gument in error is supplied
in the error message. The default error value (usually an indefinite value indicated by
+ IN D) is placed in the result location corresponding to the argument in error within
the set.

Processing continues and correct results are generated for all arguments which are not
in error. However, once an argument is found to be in error, further arguments which
are in error are not detected and results are not guaranteed.

NOTE

For all vector routines, only the first illegal or out-of-range-producing argument
produces an error message.

7-6 Math Library 60486513 H

Function Descriptions 8

Generic and Specific Names .. 8-2

ABS ... 8-3

ACOS ... 8-4

AIMAG .. 8-8

AINT .. 8-9

ALOG 00000 •• 0 o. 0 0.0 ••• 0.0. 0 •••• 0.0.0 •• 00 •••• 0 •••••••••••• 0 0 0 0 0 •••• 0 •• 00 8-10

ALOG10 . 0 0 •••• o. 0 0 ••••• 0000 ••• 0 0', 0 0 •••• 0 o. 0 0 000 ••• 0 •••••••••••• 0 •••• 0 ••••••••• 8-14

AMOD 0 ••• 0 •••••••••••••••••••••••• 0 •• 0 •••••• 0. 8-18

ANINT ... 0 •••••• 0 ••••••••• 0 ••• 0 •• 0 •••• 0 •••• 0. 0 ••••••••••• 000 •• 0 •• 0 ••• 0000 •••••• 8-20

ASIN 0 •••••••••••••••••••• 0 ••••• 0 ••••••••••• 0 ••••••••••• 0 ••• 0 0 ••••••••• 0.0 ••••• 0 8-22

AT AN .. 0. 0 ••••••••••••••••••••• ' •••••••••••• 00 •••••••• 0 ••••• 0 0 0 ••• 0 •••••• 0 •••••• 8-26

ATANH. 0.0 •••••••••••• 0 •• 0 •••••• 0 ••• 000000. 0 0 ••••• 0 •••• 00 ••••••• 00 ••• 0 •••• 0.00. 8-28

ATAN2 .. 0 0 ••• 0 0 ••• 0 ••• 0 0 0 0 0 ••• 0 ••• 0 0 0 0 0 • 0 0 0 •• 0 •••• 0 • 0 •• 0 0 0 ••• 0 •• 0 0 • ~ • 0 • 0 • 0 0 •• 0 0 8-30

CABS 0 ••• 0.0000000 ••• 000000.0. 0.00.0.00000000 •• 0 0.000 •• 0. 0 0 0.00000000000.0000 •• 8-34

CCOS 0 0 0 0 0 0 • 0 0·, 0 04 0 0 0 0 0 • 0 0 ••• 0 • 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 •• 0 • 0 0 0 0 0 0 • 0 0 0 0 0 • 0 • 0 0 0 0 •• 0 0 0 o. 8-36

CEXP . 0 0 0 0 ••• 0 0 0 0 0 • ~ 0 0 0 0 0 0 0 ••• 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 ••• 0 0 0 0 • 0 0 • 0 0 0 0 •••••• 0 0 • 0 0 • 0 0 0 o. 8-38

CLOG. 0 0 0 0000000.0000000000 •• 0000000000000.00000 •• 0000.000 •• 0 0 0 0.00000.00000000 8-40

CONJG 00000.00. 00 •• o. 0 000.0 •• 0 0 o. 0.0000000.000. 0 0 •• 00 •••• o. 0.' 0.000 •• 00 •• 0 0 00000 8-42

COS 0.0.00000.000 ••••••• 0000.0000. 0 0 0.' 0 0 0 0 0 0 0.00 ••• 00, 0 0 0 0 •• 0000000000000000000 8-44

COSD 0 0 0 0 0 0 0 0 0 0 0 _ 0 0 • 0 0 • 0 0 0 0 ••• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8-48

COSH 000000000. o. 0 00 0 0 00000000.000000000000000000. 00.0000. 0 0 0 0 0 0 0 0 0 0 000.00000. 00 8-50

COTAN .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 • 0 0 0 0 • 0 •. 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 8-52.

CSIN 00. 0 0 0 00, 0 0 0000000. 0 0 0.0000. 0 0 0 0 0 0 00.000000·000000000000.00.0000000000000000 8-54

CSQRT 00000000000000000000 •• 00.00 •• 0 0 0 0 0 •••• 000 ••• 0.000. 0 00.000.00. 0 0 00' 0 0 00000 8-56

DABS 000.000000.000000000. 0 0.00 •• 0 0 0 0 ... 000000000000000000000.00 •• 0 0 0 0 0.00.00000 8-58

DACOS 00000000000. 0 0 0 000000000 ••• 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000000000000000000.000000 ••• 000 8-60

DASIN 0.000.0000 •• 0000.000 ••• 0.00 •• 0 0 0 0 0 0 o. 00000 •••• 00000.00.0 •• 000. 0 0 0 0 0.0000. 8-64

DATAN 000.00 •• 00000.0000000 ••• 0 o. 0000 ••• 0 0 0 0 ••• 00.00. 0.0.0.00000. 0 0 0 0 0.0 •• 0 •• 0 0 8-68

DATAN2 .. 0 • 0 • 0 ••••••••• 0 • 0 0 •• 0 0 0 • 0 0 • 0 • 0 ••• 0 0 • 0 •••••• 0 0 0 0 0 •• 0 0 •• 0 •• 0 • 0 0 0 • 0 • 0 • 0 0 0 8-72

DCOS ... 8-76

DCOSH ... 8-80

DDIM .. 8-82

DEXP .. 8-84

DIM .. 8-88

DINT ... 8-89

DLOG .. 8-90

DLOG10 .. 8-94

DMOD ... 8-98

DNINT .. 8-100

DPROD .. 8-101

DSIGN , .. 8-102

DSIN .. 8-104

DSINH .. 8-108

DSQRT ... : 8-110

DTAN .. 8-112

DTANH ... 8-116

DTOD ... 8-118

DTOI ... 8-122

DTOX ... 8-126

DTOZ ... 8-128

ERF ... 8-130

ERFC ... 8-132

EXP ... 8-134

EXTB ... 8-138

lABS .. 8-140

IDIM .. 8-141

IDNINT ... 8-142

INSB .. 8-144

ISIGN ... 8-146

ITOD ... 8-148

ITOI ... 8-150

ITO X .. 8-152

ITOZ .. 8-154

MOD .. 8-156

NINT .. 8-158

RANF ... 8-159

RANGET .. 8-162

RANSET .. 8-163

SIGN .. 8-164

SIN .. 8-166

SIND .. 8-168

SINH .. 8-170

SQRT ... 8-174

SUM1S .. 8-178

TAN ... 8-180

TAND ... 8-182

TANH ... 8-184

XTOD ... 8-186

XTOI 0 ••••••••••••••••••••••••••••••••••• 8-188

XTOX ... 8-190

XTOZ ... 8-194

ZTOD ... 8-196

ZTOI .. 8-198

ZTOX ... 8-200

ZTOZ .. 8-202

Function Descriptions

This chapter provides a summary of each Math Library function. The functions are
organized alphabetically. Each function description includes the following:

8

• A description including the entry points for the function and the input domains and
output ranges for the arguments in each function

• The call-by~reference routine

• The call-by-value routine

• An example call from Ada, C, FORTRAN, or Pascal

The following additional information is included, if applicable:

• Conditions that cause an argument to be invalid, resulting in an error

• The vector routine

• Formulas used to compute the result

• Error analysis and the effect of argument error

Entry points to the call-by-reference and call-by-value routines are places in the
routines where execution can begin. Some routines can evaluate more than one function
(for example, one algorithm may calculate a generic function and a specific function).
Some routines call auxiliary routines (as described in chapter 9, Auxiliary Routines) to
compute a portion of the function.

NOTE

If a category of information is not applicable (for example, Vector Routine, Error
Analysis, or Effect of Argument Error), it is omitted from the function description.

60486513 H Function Descriptions 8-1

Generic and Specific Names

Generic and Specific Names

Some functions have a generic name and one or more specific names. For example,
ABS is a generic name; CABS, DABS, and lABS are specific names. For these
functions, either the generic name or one of the specific names can be used. The
generic name provides more flexibility because it can be used with any of the valid
data types; except for functions performing type conversion, nearest integer, and
absolute value with a complex argument, the type of the argument determines the type
of the result.

A 2-byte or 4-byte integer or byte value, used as an argument to a function, is
converted to a full word (8-byte) integer before being used as an argument. The
conversion does not change the sign of the argument. A function accepting integer,
real, complex or double precision type arguments also accepts boolean arguments. A
boolean argument is converted to integer if it is an allowable argument type;
otherwise, it is converted to real before computation. However, only a specific name
can be used as an actual argument when passing the function name to a user-defined
subprogram. Using a specific name requires a specific argument type.

For example, the generic function LOG computes the natural logarithm of an
argument. Its argument can be real, double precision, complex or boolean (converted to
real). The type of the result is the same as the type of the argument. Specific functions
ALOG, DLOG, and CLOG also compute the natural logarithm. The specific function
ALOG computes the log of a real or boolean argument and returns the result. The
specific function DLOG is for double precision (or boolean) arguments and double
precision results and the specific function CLOG is for complex (or boolean) arguments
and complex results.

8-2 Math Library 60486513 H

ABS
ABS computes the absolute value of an argument. It accepts a real argument and
returns a real result.

ABS

The call-by-reference entry points are MLP$RABS and ABS, and the call-by-value entry
point is MLP$VABS.

The input domain is the collection of all valid real quantities. The output range is
included in the set of nonnegative real quantities.

Call-By-Reference Routine

No errors are generated by ABS. The call-by-reference routine branches to the
call-by-value routine.

Call-By-Value Routine

The argument is returned with its sign bit forced positive. The rightmost 63 bits
remain the same.

Example of ABS Called From FORTRAN

Source Code:

c

Output:

PROGRAM ABS_EXAMPLE

EXTERNAL ABS
REAL r,t
r=-88.9
t=ABS(r)
PRINT * 'Absolute value ' t
END

Absolute value = 88.9

60486513 H Function Descriptions 8-3

ACOS

ACOS
ACOS computes the inverse cosine function. It accepts a real argument and returns a
real result.

The call-by-reference entry points are MLP$RACOS and ACOS, the call-by-value entry
point is MLP$VACOS, and the vector entry point is MLP$ACOSV.

The input domain is the collection of all valid real quantities in the interval [-1.0,1.0].
The output range is included in the set of nonnegative real quantities less than or
equal to pi.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than 1.0.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

Formulas used in the computation are:

arcsin(x)
arcos(x)

-arcsin(-x), x < -.5
pi - arcos(-x), x < -.5

arcsin(x) x + x··3·s·«w + Z -j)·w + a + mICe - x**2»,
where -.5 < x < .5

arcos(x) = pi/2 - arcsin(x), -.5 <= X < .5
arcsin(x) = pi/2 - arcos(x), .5 <= X < 1.0
arcos(x) = arcos(l-ITER«l - x),n»/2**n, .5 <= X < 1.0
arcsin(1) pi/2
arcos(l) = 0

where:

w = (x**2 - c)*z + k
z (x**2 + r)x**2 + i

ITER(y,n) = n iterations of y = 4*y - 2*y**2

The constants used are:

r = 3.173 170 078 537 13
e = 1.160 394 629 739 02
m = 50.319 055 960 798 3
c = -2.369 588 855 612 88

8.226 467 970 799 17
j -35.629 481 597 455 5
k 37.459 230 925 758 2
a = 349.319 357 025 144
s = .746 926 199 335 419*10**-3

8-4 Math Library 60486513 H

ACOS

The approximation of arcsin(-.5,.5) is an economized approximation obtained by varying
r,e,m, ... ,s.

The algorithm used is:

a. If ACOS entry, go to step g.

b. If Ixl > = .5, go to step h.

c. n = 0 (Loop counter).
Q = x
y x**2
u = 0, if ASIN entry.
u.= p1/2, if ACOS entry.

d. Z = (y + r)*y + 1
w = (y - c)*Z + k

p= Q +·S*Q*Y*«w + Z - j)*w + a + mlfe - y»
p = u - P

Yl = p/2**n

e. If ASIN entry, go to step k.

f. If xis in (-.5,1.0), return.
XF = 2*u - (yl)

Return.

g. If Ixl < .5, go to step ..c.

h. If x = 1.0 or -1.0, go to step 1.
If x is invalid, go to step m.

n = 0 (Loop counter).
y = 1.0 - lxi, and normalize

i. h = 4*y - 2*y**2
n = n + 1.0

y.

If 2*y < 2 - sQrt(3) = .267949192431, Y h, and go to step i.

j. Q 1.0 - h, and normalize Q.
y Q**2
u pi/2
Go to step d.

k. Yl = u - (Y1) , and normalize Y1.
Affix sign of x to Yl = XF.
Return.

1. XF = pi/2, if x = 1. o.
XF = -pi/2, if x = -1.0.
If ASIN entry, return.
XF = 0, if x = 1.0.
XF = pi , if x = -1.0.
Return.

m. Return.

60486513 H Function Descriptions 8·5

ACOS

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than 1.0.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The maximum absolute value of relative error of the ACOS approximation over (-.5,.5)
is 1.996*E-15.

The function ACOS was tested against the Taylor series. Groups of 2,000 arguments
were chosen randomly from given intervals. Statistics on relative error were observed.
Table 8-1 shows a summary of these statistics.

Table 8-1. Relative Error of ACOS

Root Mean
Interval From Interval To Maximum Square

-.1250E+00 .1250E+00 .4916E-14 .3233E-14
-.1000E+01 -.7500E+00 .5875E-14 .2068E-14

.7500E+00 .1OOOE+Ol .1987E-13 .7749E-14

8-6 Math Library 60486513 H

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result is given
approximately by e/(1.0 - x**2)** .5.

Example of ACOS Called From FORTRAN

Source Code:

C

Output:

PROGRAM ACOS_EXAMPLE

x=0.5
PRINT * 'Inverse cosine of x is:'
PRINT * ACOS(x)
END

Inverse cosine of x is:
1.047197551197

ACOS

60486513 H Function Descriptions 8·7

AIMAG

AIMAG

AIMAG returns the imaginary part of an argument. It accepts a complex argument and
returns a real result.

The call-by-reference entry points are MLP$RAIMAG and AIMAG, and the call-by-value
entry point is MLP$VAIMAG.

The input domain is the collection of all valid complex quantities. The output range is
included in the set of valid real quantities.

Call-By-Reference Routine

No errors are generated by AIMAG. The call-by-reference routine branches to the
call-by-value routine.

Call-By-Value Routine

The imaginary part of the complex argument is returned. The real part of the
argument is not used.

Example of AIMAG Called From FORTRAN

Source Code:

C

Output:

PROGRAM AIMAG_EXAMPLE

EXTERNAL AIMAG
COMPLEX xray
xray=(3.14159, -1.0)
PRINT * 'The imaginary part of xray is:'
PRINT *, AIMAG (xray)
END

The imaginary part of xray is:
-1.

NOTE

AIMAG accepts a complex argument and returns a real result.

8-8 Math Library 60486513 H

AINT
AINT returns an integer part of an argument after truncation. It accepts a real
argument and returns a real result.

AINT

The call-by-reference entry points are MLP$RAINT and AINT, and the call-by-value
entry point is MLP$VAINT.

The input domain is the collection of all valid real qgantities. The output range is
included in the set of valid integer quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is branched to, and the result of the computation is returned
to the calling program.

Call-By-Value Routine

The argument is added to a special floating-point zero that forces truncation. The
result is returned.

Example of AINT Called From FORTRAN

Source Code:

c

Output:

PROGRAM AI NT_EXAMPLE

EXTERNAL AINT
x=1234.567890
PRINT· 'The integer part of x is:'
PRINT ., AINT(x)
END

The integer part of x is:
1234.

60486513 H Function Descriptions 8·9

ALOG

ALOG

ALOG computes the natural logarithm function. It accepts a real argument and returns
a real result.

The call-by-reference entry points are MLP$RALOG and ALOG, the call-by-value entry
point is MLP$VALOG, and the vector entry point is MLP$ALOGV.

The input domain is the collection of all valid, positive real quantities. The output
range is included in the set of valid real quantities whose absolute value is less than
4095*log(2).

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is less than zero.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is branched to, and the result of the computation is returned
to the calling program.

Call-By-Value Routine

If x is valid, let y be a real number in [1, 2) and n an integer such that x = y*2**n.
Log(x) is evaluated by:

10g(x) = 10g(y) + n*10g(2)

To evaluate log(y), the interval [1, 2) is divided into 33 subintervals such that on each
the abs(t) < 11129 where t = (y - c)/(y + c). To achieve this, the subintervals are
offset by 1164. The subintervals are:

[1, 65/64)
[65/64, 67/64)

[125/64, 127,64)
[127/64, 2)

Log(y) is then computed using the identity:

10g(y) = log(c) + 10g«1 + t)/(1 - t»

and the center point c is chosen close to the midpoint of the subinterval containing y,
except for the first and last subintervals, where the center points are 1 and 2,
respectively. By selecting these center points, it ensures that abs(t) < 11129.

8-10 Math Library 60486513 H

ALOG

Log «1 + t)/(I - t)) is approximated with a 7th degree minimax polynomial of the
form:

2*t + c3*t**3 + c5*t**5 + c7*t**7

The coefficients are:

c3 = .6666666666667
c5 .3999999995486
c7 = .2857343176917

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is less than zero.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 8-2 shows a summary of these statistics.

Table 8-2. Relative Error of ALOG

Test Interval From Interval To Maximum

ALOG(x) against .707IE+00 .9375E+00 .I782E-I3
ALOG(I7x1I6)-
ALOG(17/16)

ALOG(x*x) against .I600E+02 .2400E+03 .7082E-I4
2*LOG(x)

ALOG(x) against Taylor 1-.1526E-04 1+.1526E-04 .1417E-13
series expansion of
ALOG(I + y)

Root Mean
Square

.5463E~I4

.2035E-14

.5197E-14

60486513 H Function Descriptions 8-11

ALOG

Total Error

The final calculation of log(x) is done by adding the following terms in the order below
to achieve maximum precision:

10g(x) n*(10g(2) - factor) +
«(c7*t2 + cS)*t2 + c3)*t2)*t +

t +

t +
(10g(c)/2) + (factor/2)*n +

(10g(c)/2) + (factor/2)*n

The values of c and log(c)/2 for each subinterval are stored in· a· table. Factor is the
nearest floating-point value with 8 bits of precision to log(2). Thus, the single precision
representation of log(2) - factor is accurate to 56 bits of precision. The sum log(c) +
factor*n is split into two equal parts to provide extra precision during the accumulation
of the sum of terms.

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result is given
approximately bye/x.

8-12 Math Library 60486513 H

Example of ALOG Called From FORTRAN

Source Code:

c

Output:

PROGRAM ALOG_EXAMPLE

x=100.0
PRINT * 'The natural logarithm of x is:'
PRINT * ALOG(x)
END

The natural logarithm of x is:
4.605170185988

60486513 H

ALOG

Function Descriptions 8·13

ALOG10

ALOGIO
ALOGIO computes the common logarithm function. It accepts a real argument and
returns a real result.

The call-by-reference entry points are MLP$RALOGIO and ALOGlO, the call-by-value
entry point is MLP$VALOGlO, and the vector entry point is MLP$ALOGIOV.

The input domain is the collection of all valid, positive real quantities. The output
range is included in the set of valid real quantities whose absolute value is less than
4095*log(2) base 10.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is less than zero.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is branched to, and the result of the computation is returned
to the calling program.

8-14 ~ath Libra~ 60486513 H

ALOGI0

Call-By-Value Routine

If x is valid, let y be a real number in [1, 2) and n an integer such that x = y*2**n.
Log10(x) is evaluated by:

10g10(x) = 10g10(y) + n*10g10(2)

To evaluate log10(y), the interval [1, 2) is divided into 33 subintervals such that on
each the abs(t) < 11129 where t = (y - c)/(y + c). To achieve this, the subintervals
are offset by 1164. The subintervals are:

[1, 65/64)
[65/64, 67/64)

[125/64, 127,64)
[127/64, 2)

Log10(y) is then computed using the identity:

10g10(y) = 10g10(c) + 10g10«1 + t)/(1 - t»

and the center point c is chosen close to the midpoint of the subinterval containing y,
except for the first and last subintervals, where the center points are 1 and 2,
respectively. By selecting these center points, it ensures that abs(t) < 11129.

Log10«1 + t)/(l - t)) is approximated with a 7th degree minimax polynomial of the
form:

C1*t + c3*t**3 + c5 + t**5 + c7**t**7

The coefficients are:

c1 .8685889638065
c3 .2895296546022
c5 .1737177925653
c7 .1240928374639

60486513 H Function Descriptions 8-15

ALOGI0

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is less than zero.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The function ALOGIO was tested against ALOGlO(llxllO) - ALOGlO(11ll0). Groups of
2,000 arguments were chosen randomly from the interval [.3l62E + 00,.9000E + 00].
Statistics on relative error were observed: maximum relative error was .30llE-13, root
mean square relative error was .8l25E-14.

Total Error

The final calculation of loglO(x) is done by adding the following terms in the order
below to achieve maximum precision:

logl0(x) = n*(logl0(2) - factor) +
«(c7*t2 + c5)*t2 + c3)*t2 + (cl - l»*t +
t +
(logl0(c) + factor*n)

The values of c and loglO(c) for each subinterval are stored in a table. Factor is the
nearest floating-point value with 8 bits of precision to loglO(2). Thus, the single
precision representation of loglO(2) - factor is accurate to 56 bits of precision. The
leading coefficient of the approximation is split into 1 and (cl - 1) to provide extra
precision to the minimax polynomial approximation.

8-16 Math Library 60486513 H

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result is given
approximately bye/x.

Example of ALOGIO Called From FORTRAN

Source Code:

c

Output:

PROGRAM ALOG10_EXAMPLE

x=100.0
PRINT * 'The common logarithm of x is:'
PRINT * ALOG10(x)
END

The common logarithm of x is:
2.

ALOG10

60486513 H Function Descriptions 8·17

AMOD

AMon
AMOD returns the remainder of the ratio of two arguments. It accepts two real
arguments and returns a real result.

The call-by-reference entry points are MLP$RAMOD and AMOD, and the call-by-value
entry point is MLP$VAMOD.

The input domain is the collection of all valid real pairs (x,y) such that xJy is a valid
real quantity, and y is not equal to o. The output range is included in the set of valid
real quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

y is equal to zero.

xJy is infinite.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is branched to, and the result of the computation is
returned to the calling program.

Call-By-Value Routine

Given the argument pair (x,y) , the formula used for the AMOD computation is:

x - aint(x/y)*y

The quotient xJy is added to a special floating-point zero that forces truncation, to get
n = aint(xJy); then the product of nand y is formed in double precision and subtracted
from x in double precision. The most significant word of the result is returned. If the
result is nonzero, it has the sign of x.

8-18 Math Library 60486513 H

Example of AMOn Called From FORTRAN

Source Code:

c

Output:

PROGRAM AMOD_EXAMPLE

EXTERNAL AMOD
x=750.0
y=140.0
PRINT * 'The AMOD of x and y is:'
PRINT * AMOD(x,Y)
END

The AMOD of x and y is:
50.

Example of AMOn Called From Pascal

Source Code:

program AMOD_EXAMPLE (output);
var x, y~ Z : REAL;

begin
x := 750.0;
y := 140.0;
z := AMOD (x, y);

writeln (, The AMOD of x and y is " Z :1:1);
end.

Output:

The AMOD of x and y is 50.0

60486513 H

AMOD

Function Descriptions 8-19

ANI NT

ANI NT

ANINT returns the nearest whole number to an argument. It accepts a real argument
and returns a real result.

The call-by-reference entry points are MLP$RANINT and ANINT, and the call-by-value
entry point is MLP$VANINT.

The input domain is the collection of all valid real quantities. The output range is
included in the set of valid integer quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

I t is infinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is branched to, and the result of the computation is returned
to the calling program.

Call-By-Value Routine

If the argument is ~ 0, .5 is added to it, and the result is added to a special
floating-point zero that forces truncation. If the argument is < 0, -.5 is added to it,
and the result is added to a special floating-point zero that forces truncation.

8-20 Math Library 60486513 H

Example of ANINT Called From FORTRAN

Source Code:

c

Output:

PROGRAM ANINT_EXAMPLE

EXTERNAL ANINT
x=1234.1234
y=12.12
PRINT *, 'The nearest whole number to x is:'
PRINT * ANINT(x)
PRINT * 'The nearest whole number to y is:'
PRINT * ANINT(y)
END

The nearest whole number to x is:
1234.
The nearest whole number to y is:
12.

60486513 H

ANINT

Function Descriptions 8-21

ASIN

ASIN

ASIN computes the inverse sine function. It accepts a real argument and returns a real
result.

The call-by-reference entry points are MLP$RASIN and ASIN, the call-by-value entry
point is MLP$VASIN, and the vector entry point is MLP$ASINV.

The input domain is the collection of all valid real quantities in the interval [-1.0,1.0].
The output range is included in the set of valid real quantities in the interval
[-piJ2,piJ2] .

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than 1.0.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

Formulas used in the computation are:

arcsin(x) = -arcsin(-x), x < -.5
arcos(x) = pi - arcos(-x), x < -.5
arcsin(x) = x + x**3*s*«w + z -j)*w + a + miCe - x**2»,

where -.5 < x < .5
arcos(x) = pi/2 - arcsin(x), -.5 <= X < .5
arcsin(x) = pi/2 - arcos(x), .5 <= X < 1.0
arcos(x) = arcos(1-ITER«1 - x),n»/2**n, .5 <= X < 1.0
arcsi n(1)

arcos(1)
pi/2

= 0

where:

w = (x**2 - c)*z + k
z = (x**2 + r)x**2 + i

ITER(Y,n) = n iterations of Y = 4*y - 2*y**2

The constants used are:

r = 3.173 170 078 537 13
e = 1.160 394 629 739 02
m = 50.319 055 960 798 3
c = -2.369 588 855 612 88

8.226 467 970 799 17
j -35.629 481 597 455 5
k 37.459 230 925 758 2
a = 349.319 357 025 144
s = .746 926 199 335 419*10**-3

8-22 Math Library 60486513 H

ASIN

The approximation of arcsin(-.5,.5) is an economized approximation obtained by varying
r,e,m, ... ,s.

The algorithm used is:

a. If ACOS entry, go to step g.

b. If Ixl > .5, go to step -

c. n = a (Loop counter).
Q = x
y x**2
u = 0, if ASIN entry.
u = pi/2, if ACOS entry.

d. z = (y + r)*y + i
W = (y - c)*z + k

h.

P Q + S*Q*Y*«w + z - j)*w + a + m/(e - y»
p u - P

Yl = p/2**n

e. If ASIN entry, go to step k.

f. If x is in (-.5,1.0), return.

g.

h.

XF = 2*u - (Y1)

Return.

If Ixl < .5, go to step c.

If x = 1.0 or -1. 0, go to step
If x is i nva 1 i d, go to step m.

n a (Loop counter).

1.

y = 1.0 - lxi, and normalize

i. h = 4*y - 2*y**2
n = n + 1.0

y.

If 2*y ~ 2 - sQrt(3) = .267949192431, Y h, and go to step i.

j. Q 1.0 - h, and normalize Q.
y Q**2
u pi/2
Go to step d.

k. Yl = u - (y1) , and normalize Y1.
Affix sign of x to Yl = XF.
Return.

1. XF = pi/2, if x = 1.0.
XF = -pi/2, if x = -1.0.
If ASIN entry, return.
XF = 0, if x = 1.0.
XF = pi, if x = -1.0.
Return.

m. Return.

60486513 H Function Descriptions 8·23

ASIN

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than 1.0.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The maximum absolute value of relative error of the ASIN approximation over (-.5,.5)
is 1.996*E-15.

The function ASIN was tested against the Taylor series. Groups of 2,000 arguments
were chosen randomly from given intervals. Statistics on relative error were observed.
Table 8-3 shows a summary of these statistics.

Table 8-3. Relative Error of ASIN

In terval From

-.1250E+00
.7500E+00

Interval To

.1250E+00

.1000E+Ol

Effect of Argument Error

Maximum

.7101E-14

.8378E-14

Root Mean
Square

.2763E-14

.3462E-14

If a small error e occurs in the argument x, the error in the result is given
approximately by e/(1.0 - x**2)** .5.

8·24 Math Library 60486513 H

Example of ASIN Called From FORTRAN

Source Code:

Output:

PROGRAM ASIN_EXAMPLE
x=O.5
PRINT * 'The inverse sine of x is:'
PRINT * ASIN(x)
END

The inverse sine of x is:
.5235987755983

60486513 H

ASIN

Function Descriptions 8·25

AT AN

ATAN

ATAN computes the inverse tangent function. It accepts a real argument and returns a
real result.

The call-by-reference entry points are MLP$RATAN and ATAN, the call-by-value entry
point is MLP$VATAN, and the vector entry point is MLP$ATANV.

The input domain is the collection of all valid real quantities. The output range is
included in the set of valid real quantities in the interval [-piJ2,piJ2].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if it is indefinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

The argument x is transformed into an argument y in the interval [0,1116] by the
range reduction formulas:

arctan(u) -arctan(-u), if u < 0
arctan(u) pi/4 + (pi/4 - arctan(1/u», if u ~ 1.0
arctan(u) arctan(k/16) + arctan«u - k/16)/(1.0 + u*k/16»,

if 0 ~ u < 1.0, and k is the greatest integer not
exceeding 16*u.

Finally, arctan(y) (for y in [0,1116]) is computed by the polynomial approximation:

arctan(y) = y + a(1)*y**3 + a(2)*y**5 + a(3)*y**7 + a(4)*y**9

where:

a(1) -.333 333 333 333 128 45
a(2) .199 999 995 801 446 4
a(3) -.142 854 130 508 745 0
a(4) .110 228 161612 614 9

The coefficients of this polynomial are those of the minimax polynomial approximation
of degree 3 to the function f over (0,114), where f(u**2 = (arctan(u) - u)/u**3.1

Vector Routine

The argument is checked upon entry. It is invalid if it is indefinite.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

1. Algorithm and Constants, Copyright 1970 by Krzysztof Frankowski, Computer Information and Control
Science, University of Minnesota.

8-26 Math Library 60486513 H

ATAN

Error Analysis

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 8-4 shows a summary of these statistics.

Table 8-4. Relative Error of ATAN

Root Mean
Test Interval From Interval To Maximum Square

ATAN(x) against -.6250E-01 .6250E-01 .7102E-14 .3647E-14
truncated Taylor series

2* ATAN(x) against .2679E+00 .4142E+00 .1355E-13 .4023E-14
ATAN(2X/(1 - x*x)) .4142E+00 .1000E+01 .1763E-13 .5931E-14

ATAN(x) against .6250E-01 .2679E+00 .7117E-14 .2605E-14
ATAN(1I16) + ATAN((x
- 1116)/(1 + x/16))

Effect of Argument Error

If a small error e occurs in the argument, the error in the result y is given
approximately by e/(1 +y**2).

Example of ATAN Called From FORTRAN

Source Code:

c

Output:

PROGRAM ATAN_EXAMPLE

x=0.5
PRINT * 'The inverse tangent of x is:'
PRINT * ATAN(x)
END

The inverse tangent of x is:
.4636476090008

60486513 H Function Descriptions 8-27

ATANH

ATANH

ATANH computes the inverse hyperbolic tangent function. It accepts a real argument
and returns a real result.

The call-by-reference entry points are MLP$RATANH and ATANH, the call-by-value
entry point is MLP$VATANH, and the vector entry point is MLP$ATANHV.

The input domain is the collection of all valid real quantities whose absolute value is
less than 1.0. The output range is included in the set of valid real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 1.0.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

The argument range can be reduced to the interval [0,1.0] by the identity atanh(-x} =
-atanh(x). The expression atanh(x) = .5*ln((1.0 + x)/(1.0 - x)) is formed by using the
definition tanh(x) = (e**x - e**-x)/(e**x + e**-x).

The argument range of the log can be reduced to the interval [.75,1.5] by using the
property In(a*b) = In(a) + In(h), and extracting the appropriate multiple of In(2):

atanh(x) = .5*n*ln(2) + .5*ln(2**-(n)*(1.0 + x)/(1.0 - x»

The argument range is reduced to the interval [- .2,.2] by writing the argument of log
in the form (1.0 + y)/(1.0 - y), and substituting atanh(y):

atanh(x) = .5*n*ln(2) + atanh[2**-n*(1.0 + x) - (1.0 - x)]
2**-n*(1.0 + x) + (1.0 - x)

The value of n such that 2**-n*(1.0 + x)/(1.0 - x) is in the interval [.75,1.5] is the
same as the value of n such that 2**-n*(1.0 + x)/(.75*(1.0 - x)) is in the interval
[1.0,2.0]. If .75*(1.0 - x) is written as a*2**m, where a is in interval [1.0,2.0], then
2**(-n - m)*(1.0 + x)/a must be in interval [1.0,2.0]. If (1.0 + x) ~ a, then -n - m
= 0 and n = -m. If (1.0 + x) < a, then -n - m = 1.0 and n = 1.0 - m.

The function atanh(z) in the interval [-.2,.2] is approximated by z + z**3*p/q, where p
and q are 4th order even polynomials. For atanh(z), the coefficients of p and q were
derived from the (7th order odd)/(4th order even) minimax (relative error) rational form
in the interval [- .2,.2].

8-28 Math Library 60486513 H

ATANH

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 1.0.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

For abs(x) < .2, n equals zero, and the expected bound of the error is 4.8E-15.

For abs(x) ~ .5, the term n*(ln(2)/2) dominates. This term is computed as n*(ln(2)/2 -
.125) - n*.125 - n*.125 because the rounding error in representing In(2)/2 is large; the
above form makes the rounding error relatively small. Since n*.125 is exact and the
dominating form, the two additions in (other)n*.125 + n*.125 dominate the error, and
the expected relative error is 8.3E-15 in this region.

For .2 ~ abs(x) < .5, n equals one, and the term z = (.5*(1.0 + x) - (1.0 -
x))/(.5*(1.0 + x) + (1.0 - x)) may be relatively large. For abs(x) < 0.25, the
subtraction 1.0 - x = .5 - x + .5 loses two bits of the original argument. Also, z is
negative in this range, and some cancellation occurs in the final combination of terms,
costing about one unit in the last place (ulp). The expected upper bound in the region
.2 < abs(x) < 0.25 is 19.4E-15.

A group of 10,000 arguments was chosen randomly from the interval [-1.0,1.0]. The
maximum relative error of these arguments was found to be .3304E-13.

Effect of Argument Error

For small errors in the argument x, the amplification of absolute error is 1.0/(1.0 -
x**2), and that of relative error is xI((1.0 - x**2)*atanh(x)). This increases from 1 at 0
and becomes arbitrarily large near 1.0.

Example of ATANH Called From FORTRAN

Source Code:

c

Output:

PROGRAM ATANH_EXAMPLE

x=0.5
PRINT * 'The inverse hyperbolic tangent of x is:'
PRINT * ATANH(x)
END

The inverse hyperbolic tangent of x is:
.5493061443341

60486513 H Function Descriptions 8-29

ATAN2

ATAN2

ATAN2 computes the inverse tangent function of the ratio of two arguments. It accepts
two real arguments and returns a real result.

The call-by-reference entry points are MLP$RATAN2 and ATAN2, and the call-by-value
entry point is MLP$VATAN2.

The ATAN2 vector math function is divided into three routines having three separate
entry points defined as follows:

ATAN2(scalar,vector) = MLP$ATAN2SV
ATAN2(vector,scalar) = MLP$ATAN2VS
ATAN2(vector,vector) = MLP$ATAN2VV

The input domain is the collection of all valid real pairs (x,y) such that both quantities
are not equal to zero. The output range is included in the set of valid real quantities
greater than -pi and less than or equal to pi.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x and yare infinite.

x and yare equal to zero.

x/y is infinite (positive or negative) and y is not equal to zero.

x is not equal to zero and y is infinite (positive or negative).

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite
and y does not equal zero, it is invalid, and a diagnostic message is displayed. If the
result is valid, it is returned to the calling program.

8·30 Math Library 60486513 H

ATAN2

Call-By-Value Routine

The function ATAN2(y,x) is defined to be the angle, in the interval [-pi,piJ, subtended
at the origin by the point (x,y) and the first coordinate axis.

The argument (y,x) is reduced to the first quadrant .by the range reductions:

-atan2(-y,x), y < 0 atan2(y,x)
atan2(y,x) pi - atan2(y,-x), x < 0, y > 0

The argument (y,x) is then reduced to the sector:

(U,v): u > 0, v < U, and v > 0

by the range reduction:

atan2(y,x) = pi/2 - atan2(x,Y), x > 0 or y > 0
- -

The routine calls ATAN to evaluate atan2(y,x) as arctan(y/x).2

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x and yare infinite.

x and yare equal to zero.

xly is infinite (positive or negative) and y is not equal to zero.

x is not equal to zero and y is infinite (positive or negative).

See Vector Error Handling in chapter 7, Vector Processing, for further information.

2. Algorithm and Constants, Copyright 1970 by Krzysztof Frankowski, Computer Information and Control
Science, University of Minnesota.

60486513 H Function Descriptions 8-31

ATAN2

Error Analysis

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 8-4 shows a summary of these statistics.

Effect of Argument Error

If small errors e(x) and e(y) occur in x and y, respectively, the error in the result is
given approximately by (y*e(x) - x*e(y))/(x**2 + y**2).

8-32 Math Library 60486513 H

Example of ATAN2 Called From FORTRAN

Source Code:

c

Output:

PROGRAM ATAN2_EXAMPLE

x=O.5
y=O.6
PRINT * 'The inverse tangent of the ratio of x,y is:'
PRINT * ATAN2(x,y)
END

The inverse tangent of the ratio of x,y is:
.6947382761967

60486513 H

ATAN2

Function Descriptions 8-33

CABS

CABS
CABS computes the absolute value of an argument. It accepts a complex argument and
returns a real result.

The call-by-reference entry points are MLP$RCABS and CABS, and the call-by-value
entry point is MLP$VCABS.

The input domain is the collection of all valid complex quantities z, where Z = x +
i*y, and (x**2 + y**2)**.5 is a valid real quantity. The output range is included in the
set of valid, nonnegative real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is positive infinite, it is
invalid, and a diagnostic message is displayed. If the result is valid, it is returned to
the calling program.

Call-By-Value Routine

Let x + i*y be the argument. The algorithm used is:

a. u = max(lxl,lyl).
v = min(lxl,lyl).

b. If u is zero, return zero to the calling program.

c. r = v/u
w = 1.0 + r**2

where t = w**.5 = (1.0 + r**2)**.5 is computed inline using the same
algorithm as used 1n SQRT.

d. Return u*t to the calling program.

Formulas used are:

Ix + 1*yl = SQrt(x + l*y)
= max(lxl.lyl)*(1 + r**2)**.5
= u*t

where r = min(lxl,\yl)/max(lxl,lyj)

8-34 Math Library 60486513 H

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval of complex
numbers ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these arguments was
found to be .1401E-13.

Effect of Argument Error

CABS

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x + i*y, the error in
the result u is given by e(u) = (x*e(x) + y*e(y))/u.

Example of CABS Called From FORTRAN

Source Code:

C

Output:

PROGRAM CABS_EXAMPLE

COMPLEX xi
xi = (-40.0, -1)

PRINT * 'The CABS of xi is:'
PRINT *, CABS(xi)
END

The CABS of xi is:
40.01249804748

NOTE

CABS accepts a complex argument and returns a real result.

60486513 H Function Descriptions 8-35

ccos

ccos
CCOS computes the complex cosine function. It accepts a complex argument and
returns a complex result.

The call-by-reference entry points are MLP$RCCOS and CCOS, the call-by-value entry
point is MLP$VCCOS, and the vector entry point is MLP$CCOSV.

The input domain is the collection of all valid complex quantities z, where z = x +
i*y; Ixl is less than 2**47 and Iyl is less than 4095*log(2). The output range is included
in the set of valid complex quantities.

Call-By-Reference Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

The absolute value of the real part is greater than or equal to 2**47.

The imaginary part is greater than or equal to 4095*log(2).

The imaginary part is less than or equal to -4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

Let x + i*y be the argument. The formula used for computation is:

cos(x + i*Y) = cos(x)*cosh(y) - i*sin(x)*sinh(y)

The routine evaluates COSSIN inline to simultaneously compute the sine and cosine of
the real part of the argument. The routine evaluates HYPERB inline to simultaneously
compute the hyperbolic sine and hyperbolic cosine of the imaginary part of the
argument. See the descriptions of routines COSSIN and HYPERB in chapter 9,
Auxiliary Routines, for detailed information.

Vector Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

The absolute value of the real part is greater than or equal to 2**47.

The imaginary part is greater than or equal to 4095*log(2).

The imaginary part is less than or equal to -4095*log(2).

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8-36 Math Library 60486513 H

ccos

Error Analysis

See the descriptions of HYPERB and COSSIN in chapter 9, Auxiliary Routines, for
details. If z = x + i*y is the argument, then the modulus of the error in the routine
does not exceed: 1.276E-13 + 1.241E-13*exp(abs(y».

A group of 10,000 arguments was chosen randomly from the interval
([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these arguments was found to be
.7665E-13.

Effect of Argument Error

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x + i*y, the error in
the result is given approximately by -sin(z)*e(z).

Example of CCOS Called From FORTRAN

Source Code:

e

Output:

PROGRAM eeOS_EXAMPLE

COMPLEX xi
xi = (-40 . 0, -1)

PRINT *, 'The complex cosine of xi is:'
PRINT *,eeOS(xi)
END

The complex cosine of Xl 1S:

(-1.029139207557,-.875657875595)

60486513 H Function Descriptions 8-37

CEXP

CEXP
CEXP computes the complex exponential function. It accepts a complex argument and
returns a complex result.

The call-by-reference entry points are MLP$RCEXP and CEXP, the call-by-value entry
point is MLP$VCEXP, and the vector entry point is MLP$CEXPV.

The input domain is the collection of all valid complex quantities z, where Z = x +
i*y; x is less than 4095*log(2) and x is greater than -4097*log(2), and Iyl is less than
2**47. The output range is included in the set of valid complex quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

The real part is greater than or equal to 4095*log(2) or less than or equal to
-4097*log(2).

The absolute value of the imaginary part is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is branched to, and the result of the computation is returned
to the calling program.

Call-By-Value Routine

Let x + i*y be the argument. The formula used for computation is:

exp(x + i*Y) = exp(x)*cos(y) + i*exp(x)*sin(y)

The routine evaluates COSSIN inline to compute cos(y) and sin(y), and calls EXP to
compute exp(x).

Vector Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

The real part is greater than or equal to 4095*log(2) or less than or equal to
-4097*log(2).

The absolute value of the imaginary part is greater than or equal to 2**47.

See Vector Error Handling in chapter 7, Vector Processing, for further information .

8-38 Math Library . 60486513 H

CEXP

Error Analysis

See the descriptions of EXP in this chapter and COSSIN in chapter 9, Auxiliary
Routines, for details. If z = x + i*y is the argument, then the modulus of the error in
the routine does not exceed: 1.378E-13 + 1.378E-13*exp(abs(x)). If the real part of the
argument is large, the error in the routine will be significant.

The function CEXP was tested. A group of 10,000 arguments was chosen randomly
from given intervals. Statistics on maximum relative error were observed. Table 8-5
shows a summary of these statistics.

Table 8-5. Relative Error of CEXP

Interval

([-1.0,1.0],[-1.0,1.0])
([1.0,.6700E+ 03],[1.0,.IIE + 15])

Effect of Argument Error

Maximum

.5462E-13

.9182E-13

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x + i*y, the error in
the result w is given approximately by w*e(z).

Example of CEXP Called From FORTRAN

Source Code:

C

Output:

PROGRAM CEXP_EXAMPLE

COMPLEX xi
xi = (-4 . 0, -1)

PRINT * 'The CEXP of xi is:'
PRINT *. CEXP(xi)
END

The CEXP of Xl 15:

(.009895981925031,-.01541207869309)

60486513 H Function Descriptions 8-39

CLOG

CLOG
CLOG computes the complex natural logarithm function. It accepts a complex argument
and returns a complex result.

The call-by-reference entry points are MLP$RCLOG and CLOG, the call-by-value entry
point is MLP$VCLOG, and the vector entry point is MLP$CLOGV.

The input domain is the collection of all valid complex quantities z, where z = x +
i*y, and (x**2 + y**2)**.5 is a valid, positive real quantity. The output range is
included in the set of valid complex quantities z, such that the real part of z is a valid
real quantity, and the imaginary part is greater than -pi and less than or equal to pi.

Call-By-Reference Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

Both the real part and the imaginary part are zero.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is infinite, it is invalid,
and a diagnostic message is displayed. If the result is valid, it is returned to the
calling program.

Call-By-Value Routine

The formula used for computation is:

10g(z) = 10g(lzl) + i*arg(z)

where Izl is the modulus of z. The routine calls CABS to evaluate the absolute value of
z and calls ALOG to compute the logarithm. Then the routine calls ATAN2 to evaluate
the function arg(z). When z is nonzero, and in-range, arg(z) is in the interval [-pi,pi].

Vector Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

Both the real part and the imaginary part are zero.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these arguments was found to be
.4346E-12.

8-40 Math Library 60486513 H

Effect of Argument Error

If a small error e(z) = e(x) + i*e(y) occurs in the argument z
the result is given approximately by e(z)/z.

Example of CLOG Called From FORTRAN

Source Code:

C

Output:

PROGRAM CLOG_EXAMPLE

COMPLEX xi
xi = (-4 . 0, -1)

PRINT * 'The CLOG of xi is:'
PRINT *, CLOG(xi)
END

The CLOG of Xl lS:

(1.416606672028,-2.896613990463)

NOTE

One of the real or imaginary parts for CLOG must be nonzero.

60486513 H

CLOG

x + i*y, the error in

Function Descriptions 8-41

CONJG

CONJG
CONJG returns the conjugate of an argument. It accepts a complex argument and
returns a complex result.

The call-by-reference entry points are MLP$RCONJG and CONJG, and the
call-by-value entry point is MLP$VCONJG.

The input domain is the collection of all valid complex quantities. The output range is
included in the set of valid complex quantities.

Call-By-Reference Routine

No errors are generated by CONJG. The call-by-reference routine branches to the
call-by-value routine.

Call-By-Value Routine

The argument is returned with its imaginary part negated.

8-42 Math Library 60486513 H

Example of CONJG Called From FORTRAN

Source Code:

C

Output:

PROGRAM CONJG_EXAMPLE

EXTERNAL CONJG
COMPLEX xi
xi=(-40000.0, -1)
PRINT *, 'The conjugate of xi is:'
PRINT *, CONJG(xi)
END

The conjugate of xi is:
(-40000. , 1.)

60486513 H

CONJG

Function Descriptions 8-43

cos

cos
COS computes the cosine function. It accepts a real argument and returns a real
result.

The call-by-reference entry points are MLP$RCOS and COS, the call-by-value entry
point is MLP$VCOS, and the vector entry point is MLP$COSV.

The input domain is the collection of all valid real quantities whose absolute value is
less than 2**47. The output range is included in the set of valid real quantities in the
interval [-1.0,1.0].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

If x is valid, then COS(x) or SIN (x) is calculated by using the periodic properties of the
cosine and sine functions to reduce the task to finding a cosine or sine of an
equivalent angle y within [-pil4, pil4] as follows:

If N + K is even
then

Z = sin(y)
else

Z = cos(y)
If MOD(N + K, 4) is 0 or 1 (that is, the second last bit of N + K is even)
then

S = 0
else

S = mask(1)

where K is 0, 1, or 2 according to whether the SIN of a positive angle, the COS of
any angle, or the SIN of a negative angle is to be calculated. N is the nearest integer
to 2/pi*x, and y is the nearest single precision floating-point number to x - n*pil2. The
argument x is the absolute value of the angle. The desired SIN or COS is the
exclusive or of Sand .Z.

Once the angle has been reduced to the range [-pil4, pil4], the following
approximations are used to calculate either the cosine or the sine of the angle,
providing 48 bits of precision.

8-44 ~athLibrary 60486513 H

If the cosine of the angle is required, the approximation used is

cosine(y) = 1 y*y*P(y*y)

where y is the angle and P(w) is the quintic polynomial:

P(w) = PO + Pl*w + P2*w**2 + P3 + w**3 + P4*w**4 + P5*w**5

such that P(y*y) is a minimax polynomial approximation to the function (1 -
cos(y»/y**2.

The coefficients are:

P5 -2.070062305624629462E-9
P4 2.755636997406588778E-7
P3 -2.480158521206426671E-5
P2 1.388888888727866775E-3
Pl -4. 166666666666468116E-2
PO 5.000000000000000000E-l

If the sine of the angle is required, the approximation used is

sine(y) = y - y*y*y*Q(y*y)

where y is the angle and Q(w) is the quintic polynomial:

Q(w) = QO + Ql*w + Q2*w**2 + Q3*w**3 + Q4*w**4 + Q5*w**5

such that Q(y*y) is a minimax polynomial approximation to the function (y -
sin(y»/y**3.

The coefficients are:

Q5 -1.591814257033005283E-l0
Q4 2.505113204973767698E-8
Q3 -2.755731610365754733E-6
Q2 1.984126983676100911E-4
Ql -8.333333333330950363E-3
QO 1.666666666666666463E-l

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

cos

60486513 H Function Descriptions 8-45

cos

Error Analysis

The function COS was tested against 4*COS(xl3)**3 - 3*COS(xl3). Groups of 2,000
arguments were chosen randomly from the interval [,2199E + 02,.2356E + 02]. Statistics
on relative error were observed: maximum relative error was .1404E-13, and root
mean square relative error was .3245E-14.

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result is given
approximately by e*cos(x) for sin(x) and -e*sin(x) for cos(x).

Example of COS Called From FORTRAN

Source Code:

C

Output:

PROGRAM COS_EXAMPLE

x=0.5
PRINT * 'The cosine of x is:'
PRINT * COS(x)
END

The cosine of x is:
.8775825618904

8-46 Math Library 60486513 H

Example of COS Called From Pascal

Source Code:

program COS_EXAMPLE (output);
var x, Y : REAL;

begin
x := 0.5;
Y := COS (x);

writeln (' The cosine of x is' Y :1:13);
end.

Output:

The cosine of x is 0.8775825618904

60486513 H

cos

Function Descriptions 8-47

COSD

COSD
COSD computes the cosine function for an argument in degrees. It accepts a real
argument and returns a real result.

The call-by-reference entry points are MLP$RCOSD and COSD, the call-by-value entry
point is MLP$VCOSD, and the vector entry point is MLP$COSDV.

The input domain is the collection of all valid real quantities whose absolute value is
less than 2**47. The output range is included in the set of valid real quantities in the
interval [-1.0,1.0].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

The result is put in the interval [-45,45] by finding the nearest integer, n, to x190, and
subtracting n*90 from the argument. The reduced argument is then multiplied by
pi/I80. The appropriate sign is copied to the value of the appropriate function, sine or
cosine, as determined by these identities:

sin(x + 360 degrees) = sin(x)
sin(x + 180 degrees) -sin(x)
sin(x + 90 degrees) cos(x)
sin(x - 90 degrees) -cos(x)
cos(x + 360 degrees) cos(x)
cos(x + 180 degrees) -cos(x)
cos(x + 90 degrees) -sin(x)
cos(x - 90 degrees) sin(x)

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8-48 Math Library 60486513 H

COSD

Error Analysis

The reduction to (-45,+45) is exact; the constant pi/ISO has relative error 1.37E-15,
and multiplication by this constant has a relative error 5.33E-15, and a total error of
6.7E-:-15. Since errors in the argument of SIN and COS contribute only pil4 of their
value to the result, the error due to the reduction and conversion is, at most, 5.26E-15
plus the maximum error in SINCOS over (-pil4, +pi/4).

A group of 10,000 arguments was chosen at random from the interval [0,360]. The
maximum relative error of these arguments was found to be .7105E-14 for COSD and
.1403E-13 for SIND.

Effect of Argument Error

Errors in the argument x are amplified by xltan(x) for SIND and x*tan(x) for COSD.
These functions have a maximum value of pil4 in the interval (-45,+45) but have
poles at even (SIND) or odd (COSD) multiples of 90 degrees, and are large between
multiples of 90 degrees if x is large.

Example of COSD Called From FORTRAN

Source Code:

C

Output:

PROGRAM COSO_EXAMPLE

x=180.0
PRINT * 'The COSO of x is:'
PRINT * COSO(x)
END

The COSO of x is:
-1.

60486513 H Function Descriptions 8-49

COSH

COSH

COSH computes the hyperbolic cosine function. It accepts a real argument and returns
a real result.

The call-by-reference entry points are MLP$RCOSH and COSH, the call-by-value entry
point is MLP$VCOSH, and the vector entry point is MLP$COSHV.

The input domain is the collection of all valid real quantities whose absolute value is
less than 4095*log(2). The output range is included in the set of valid real quantities
greater than or equal to 1.0.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

The formula used to compute cosh(x) is:

cosh(x) = (exp(x) + exp(-x»/2

The routine calls EXP to compute exp(x) and computes 1.0/exp(x) to obtain exp(-x).

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

I t is infinite.

Its absolute value is greater than or equal to 4095*10g(2).

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8·50 Math Library 60486513 H

COSH

Error Analysis

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 8-6 shows a summary of these statistics.

Table 8-6. Relative Error of COSH

Test In terval From

COSH(x) against Taylor O.OOOOE + 00
series expansion of
COSH(x)

COSH(x) against .3000E+Ol
c*(COSH(x + 1) +
COSH(x - 1))

Effect of Argument Error

Interval To Maximum

.5000E+00 .1382E-13

.2838E + 04 .2296E-13

Root Mean
Square

.6875E-14

.8260E-14

If a small error e occurs in the argument x, the resulting error in cosh(x) is given
approximately by sinh(x)*e.

Example ,of COSH Called From FORTRAN

Source Code:

C

Output:

PROGRAM COSH_EXAMPLE

x=180.0
PRINT *, 'The COSH of x is:'
PRINT * COSH(x)
END

The COSH of x is:
7.446921003909E+77

60486513 H Function Descriptions 8·51

COTAN

COTAN

COTAN computes the trigonometric circular cotangent of an argument in radians. It
accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RCOTAN and COTAN, the call-by-value
entry point is MLP$VCOTAN, and the vector entry point is MLP$COTANV.

The input domain is the collection of all valid real quantities whose absolute value is
greater than 0 and less than 2**47. The output range is included in the set of valid
real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is o.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

The evaluation is reduced to the interval [-.5,.5] by using the identities:

1. cotan(x) = cotan(x + k*pi/2), if k is even

2. cotan(x) = -1.0/cotan(x + pi/2)

in the form:

3. cotan(x)=1/tan(x)=1/tan«pi/2)*(x*2/pi + k», if k is even

4. cotan(x)=1/tan(x)=tan«pi/2)*(x*2/pi + 1.0»/-1.0

In effect, the original algorithm for TAN (x) is used to find COTAN(x). The result for
COTAN (x) is the reciprocal of TAN (x).

An approximation of tan(piJ2*y) is used. The argument is reduced to the interval
[- .5,.5] by subtracting a multiple of piJ2 from x in double precision.

The rational form is used to compute the tangent of the reduced value. The function
tan((piJ2)*y) is approximated with a rational form (7th order odd)/(6th order even),
which has minimax relative error in the interval [-.5,.5]. The rational form is
normalized to make the last numerator coefficient 1 + e, where e is chosen to
minimize rounding error in the leading coefficients. -

Identity 4 is used if the integer subtracted is odd. The result is negated and inverted
by dividing -P/Q instead of Q/P.

8-52 Math Library 60486513 H

COTAN

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is O.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The function COTAN was tested against (COTAN(xJ2)**2-1)/(2*COTAN(x/2)). Groups of
2,000 arguments were chosen randomly from the interval (.1885E + 02, .1963E + 02).
Statistics on relative error were observed: maximum relative error was .2297E-13, and
root mean square relative error was .7847E-14.

Effect of Argument Error

For small errors in the argument x, the amplification of absolute error is sec(x)**2,
and that of relative error is xJ(sin(x)*cos(x)), which is at least 2x and can be arbitrarily
large near a multiple of pi/2. .

Example of COTAN Called From FORTRAN

Source Code:

C

Output:

PROGRAM COTAN_EXAMPLE

x=180.0
PRINT· 'The COTAN of x is:'
PRINT * COTAN(x)
END

The COTAN of x is:
.746998814414

60486513 H Function Descriptions 8·53

CSIN

CSIN
CSIN computes the complex sine function. It accepts a complex argument and returns a
complex result.

The call-by-reference entry points are MLP$RCSIN and CSIN, the call-by-value entry
point is MLP$VCSIN, and the vector entry point is MLP$CSINV.

The input domain is the collection of all valid complex quantities z, where Z = x +
i*y; Ix I is less than 2**47, and Iy I is less than 4095*log(2). The output range is
included in the set of valid complex quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

The absolute value of the real part is greater than or equal to 2**47.

The absolute value of the imaginary part is greater than or equal to 4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

Let x + i*y be the argument. The formula used for computation is:

sin(x + i*Y) = sin(x)*cosh(y) + i*cos(x)*sinh(y)

The routine evaluates COSSIN inline to simultaneously compute sine and cosine, and
evaluates HYPERB inline to simultaneously compute hyperbolic sine and hyperbolic
cosine. See the descriptions of routines COSSIN and HYPERB in chapter 9, Auxiliary
Routines, for detailed information.

Vector Routine

The argument is checked upon entry. It is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

The absolute value of the real part is greater than or equal to 2**47.

The absolute value of the imaginary part is greater than or equal to 4095*log(2).

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8·54 Math Library 60486513 H

CSIN

Error Analysis

If z = x + i*y is the argument, then the modulus of the error in the routine does not
exceed: 1.276E-13 + 1.297E-13*exp(abs(y». See the description of HYPERB and
COSSIN for details in chapter 9, Auxiliary Routines.

Effect of Argument Error

If a· small error e(z) = e(x) + i*e(y) occurs in the argument z = x + i*y, the error in
the result is given approximately by cos(z)*e(z).

Example of CSIN Called From FORTRAN

Source Code:

C

Output:

PROGRAM CSIN_EXAMPLE

COMPLEX xi
xi = (-40.0, -1)

PRINT * 'The CSIN of xi is:'
PRINT *, CSIN(xi)
END

The CSIN of Xl 15:

(-1.149769688682,.7837864061402)

60486513 H Function Descriptions 8·55

CSQRT

CSQRT
CSQRT computes the complex square root function that maps to the right half of the
complex plane. It accepts a complex argument and returns a complex result.

The call-by-reference entry points are MLP$RCSQRT and CSQRT, the call-by-value
entry point is MLP$VCSQRT, and the vector entry point is MLP$CSQRTV.

The input domain is the collection of all valid complex quantities z, where z = x +
i*y, and (x**2 + y**2)**.5 + Ixl is a valid real quantity. If the argument is zero, zero
is returned. The output range is included in the set of valid complex quantities z such
that the real part of z is nonnegative and the imaginary part of z is a valid complex
quantity.

Call-By-Reference Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is positive infinite, it is
invalid, and a diagnostic message is displayed. If the result is valid, it is returned to
the calling program.

For this computation, values returned by the routine will lie in the right half of the
complex plane.

Call-By-Value Routine

Let x + i*y be the argument. The formulas used for computation are:

u (.5*(lxl + l(x,y)I»**.5
v = .5*(y/u)

If x is nonnegative, then csqrt(x,y) = u + i*v. If x is negative, then csqrt(x,y) =
sign(y)*(v + i*u).

The result of this routine always lies in the first or fourth quadrant of the complex
plane. The routine takes complex quantities lying on the axis of the negative reals, to
the axis of the positive imaginaries.

Vector Routine

The argument is checked upon entry. It is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8-56 Math Library 60486513 H

)

'\
)

CSQRT

Error Analysis

The function CSQRT was tested. A group of 10,000 arguments was chosen randomly
from given intervals. Statistics on maximum relative error were observed. Table 8-7
shows a summary of these statistics.

Table 8-7. Relative Error of CSQRT

Interval

([0,0] ,[100,100])
([0,0] ,[1.0E + 100,1.0E + 100])

Effect of Argument Error

Maximum

.1600E-13

.1499E-13

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x + i*y, the error in
the result w = u + i*v is given approximately by e(z)/(2*w**0.5) = (e(x) + i*e(y))/2(u
+ i*v)**0.5.

Example of CSQRT Called From FORTRAN

Source Code:

C

Output:

PROGRAM CSQRT_EXAMPLE

COMPLEX xi
xi = (-40.0, -1)

PRINT * 'The CSQRT of xi is:'
PRINT *, CSQRT(xi)
END

The CSQRT of xi is:
(.07905076686887,-6.325049329748)

60486513 H Function Descriptions 8·57

DABS

DABS
DABS computes the absolute value of an argument. It accepts a double precision
argument and returns a double precision result.

The call-by-reference entry points are MLP$RDABS and DABS, and the call-by-value
entry point is MLP$VDABS.

The input domain is the collection of all valid double precision quantities. The output
range is included in the set of valid, nonnegative double precision quantities.

Call-By-Reference Routine

No errors are generated in DABS. The call-by-reference routine branches to the
call-by-value routine.

Call-By-Value Routine

The argument is returned with the sign bits of both its upper and lower words forced
positive. .

8-58 Math Library 60486513 H

/

/

/
(

Example of DABS Called From FORTRAN

Source Code:

C

Output:

PROGRAM DABS_EXAMPLE

EXTERNAL DABS
DOUBLE PRECISION x
x=-1000.1234dO
PRINT * 'The DABS of x is:'
PRINT *, DABS(x)
END

The DABS of x is:
1000.1234

60486513 H

DABS

Function Descriptions 8-59

DACOS

DACOS
DACOS computes the inverse cosine function. It accepts a double precision argument
and returns a double precision result.

The call-by-reference entry points are MLP$RDACOS and DACOS, and the call-by-value
entry point is MLP$VDACOS.

The input domain is the collection of all valid double precision quantities in the
interval [-1.0,1.0]. The output range is included in the set of valid, nonnegative double
precision quantities less than or equal to pi.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

I t is infinite.

Its absolute value exceeds 1.0.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

8-60 Math Library 60486513 H

(

DACOS

Call-By-Value Routine

The following identities are used to move the interval of approximation to [0,sqrt(.5)]:

arcsin(-x) = -arcsin(x)
arccos(x) = pi/2-arcsin(x)
arcsin(x) = arccos(sQrt(1.0 - x**2», if x > 0 -
arccos(x) = arcsin(sQrt(1.0 - x**2», if x > 0

The reduced value is called y. If y < = .09375, no further reduction is performed. If
not, the closest entry to y in a table of values (z, arcsin(z), sqrt(1.0 - x**2), Z = .14,
.39, .52, .64) is found, and the following formula used is:

arcsin(x) = arcsin(z) + arcsin(w)

where w = x(sqrt(1.0 - z**2) - z*sqrt(1.0 - x**2). The value of w is in (-.0792,
.0848).

The arcsin of the reduced argument is then found using a 15th order odd polynomial
with quotient:

x + x**3(c(3) + x**2(c(5) + x**2(c(7) + x**2(c(11) + x**2(c(13) +
x**2(c(15) + a/(b - x**2»»»)

where all constants and arithmetic operations before c(ll) are double. precision and the
rest are single precision. The addition of c(ll) has the form single + single = double.
The polynomial is derived from a minimax rational form (denominator is (b - x**2»
for which the critical points have been modified slightly to make c(1l) fit in one word.

To this value, arcsin(z) is added from a table if the last reduction above was done and
the sum is conditionally negated. Then 0, -pi/2, + pi/2, or pi is added to complete the
unfolding.

60486513 H Function Descriptions 8-61

DACOS

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value exceeds 1.0.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The region of worst error is (.9895,.9966). In this region, the final addition is of
quantities of almost equal magnitude and opposite sign, and cancellation of about one
bit occurs.

The function DACOS was tested against the Taylor series. Groups of 2,000 arguments
were chosen randomly from given intervals. Statistics on relative error were observed.
Table 8-8 shows a summary of these statistics.

Table 8-8. Relative Error of DACOS

Root Mean
Interval From Interval To Maximum Square

-.1250D+00 .1250D+00 .27940-27 .23430-27
-.1000D+01 -.7500D+00 .33390-27 .2853D-27

.75000+00 .10000+01 .75730-28 .22570-28

8·62 Math Library 60486513 H

DACOS

Effect of Argument Error

If a small error e occurs in the argument x, the resulting error in DACOS is
approximately -e/(1.0 - x**2)** .5. The amplification of the relative error is
approximately xI(f(x)*(1.0 - x**2)** .5), where f(x) is DACOS. The error is attenuated
for x > -.44 but can become serious near -1.0. If the argument is generated as 1.0 -
y or y - 1.0, then the following identities can be used to get the full significance of y:

asin(x) = acos(sqrt(1.0 - x**2»
acos(x) = asin(sqrt(1.0 - x**2»
asin(-x) -asin(x)
acos(-x) = pi + asin(x)

Example of DACOS Called From FORTRAN

Source Code:

C

Output:

PROGRAM DACOS_EXAMPLE

DOUBLE PRECISION x
x=0.5dO
PRINT * 'The DACOS of x is:'
PRINT * DACOS(x)
END

The DACOS of x is:
1.04719755119659774615421446

60486513 H Function Descriptions 8·63

DASIN

DASIN
DASIN computes the inverse sine function. It accepts a double precision argument and
returns a double precision result.

The call-by-reference entry points are MLP$RDASIN and DASIN, the call-by-value
entry point is MLP$VDASIN, and the vector entry point is MLP$DASINV.

The input domain is the collection of all valid double precision quantities in the
interval [-1.0,1.0]. The output range is included in the set of valid double precision
quantities in the interval [-pil2,pil2].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value exceeds 1.0.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

8·64 Math Library 60486513 H

DASIN

Call-By-Value Routine

The following identities are used to move the interval of approximation to [O,sqrt(.5)]:

arcsin(-x)
arccos(x)
arcsin(x)
arccos(x)

-arcsin(x)
pi/2-arcsin(x)
arccos(sqrt(1.0 - x**2», if x > 0 -
arcsin(sqrt(1.0 - x**2», if x > 0

The reduced value is called y. If y < = .09375, no further reduction is performed. If
not, the closest entry to y in a table of values (z, arcsin(z), sqrt(1.0 - x**2), z = .14,
.39, .52, .64) is found, and the formula used is:

arcsin(x) = arcsin(z) + arcsin(w)

where w = x(sqrt(1.0 - z**2) - z*sqrt(1.0 - x**2). The value of w is in (-.0792,
.0848).

The arcsin of the reduced argument is then found using a 15th order odd polynomial
with quotient:

x + x**3(c(3) + x**2(c(5) + x**2(c(7) + x**2(c(11) + x**2(c(13) +
x**2(c(15) + a/(b x**2»»»)

where all constants and arithmetic operations before c(11) are double precision and the
rest are single precision. The addition of c(ll) has the form single + single = double.
The polynomial is derived from a minimax rational form (denominator is (b - x**2))
for· which the critical points have been perturbed slightly to make c(ll) fit in one word.

To this value, arcsin(z) is added from a table if the last reduction above was done and
the sum is conditionally negated. Then 0, -piJ2, + piJ2, or pi is added to complete the
unfolding.

60486513 H Function Descriptions 8·65

DASIN

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value exceeds 1.0.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The region of worst error is (.09375,.1446). In this region, the final addition is of
quantities of almost equal magnitude and opposite sign, and cancellation of about one
bit occurs, the worst case being .1451-.0629. For DASIN, the polynomial range was
extended to cover the region (.0821,.09375), where the worst error occurs.

The function DASIN was tested against the Taylor series. Groups of 2,000 arguments
were chosen randomly from given intervals. Statistics on relative error were observed.
Table 8-9 shows a summary of these statistics.

Table 8-9. Relative Error of DASIN

Interval From

-.1250D+00
.7500D+00

8·66 Math Library

Interval To

.1250D+00

.1000D+01

Maximum

.1017D-27

.4761D-27

Root Mean
Square

.2246D-28

.3575D-27

60486513 H

DASIN

Effect of Argument Error

If a small error e occurs in the argument x, the resulting errors in DASIN are
approximately e/(l - x**2)** .5. The amplification of the relative error is approximately
xI(f(x)*(l - x**2)**.5), where f(x) is DASIN. The error is attenuated for abs(x) < .75
but can become serious near -1.0 or + 1.0. If the argument is generated as 1 - y or y
- 1, then the following identities can be used to get the full significance of y:

asin(x)
acos(x)
asin(-x)

= acos(sQrt(1.0 - x**2»
= asin(sQrt(1.0 - x**2»

-asin(x)
acos(-x) = pi + asin(x)

Example of DASIN Called From FORTRAN

Source Code:

c

Output:

PROGRAM DASIN_EXAMPLE

DOUBLE PRECISION x
x=0.5dO
PRINT * 'The DASIN of x is:'
PRINT * DASIN(x)
END

The DASIN of x is:
.523598775598298873077107231

60486513 H Function Descriptions 8·67

DATAN

DATAN

DATAN computes the inverse tangent function. It accepts a double precision argument
and returns a double precision result.

The call-by-reference entry points are MLP$RDATAN and DATAN, the call-by-value
entry point is MLP$VDATAN, and the vector entry point is MLP$DATANV.

The input domain is the collection of all valid double precision quantities. The output
range is included in the set of valid double precision quantities in the interval
[-pil2,pil2] .

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if it is indefinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

Register pair (X4,X5) holds the absolute value of the argument.

B4 = (X9) = sign mask for the argument. (B4 holds a mask for the result's sign.)

If Ixl < 1.0, then:

83 = (XA) = O.
87 = (XB) = O. (B7 will hold the closest multiple of pi/2 to the absolute
value of the result.)
Branch to DATCOM at label DIN to complete processing.

If Ixl ~ 1.0, then:

83 = (XA) = 1 in high order bit.
B7 = (XB) = 1. 0 .
Branch to DATCOM at label DATCOM to complete processing.

At labels DATCOM and DTN:

(X9) = 84 = mask MS = sign of final result.
(XA) = B3 = mask MI.
(XB) = B7 = closest multiple of pi/2 to the absolute value of the result.

At label DATCOM:

Register pair (X7.X8) = DU.
Register pair (X4.XS) = DV.

At label DTN:

Register pair (X7.X8) = DU.

8-68 Math Library 60486513 H

DATAN

Label ATNU is the start of an 18-word table containing atan(nJ8) (0 ~ n ~ 8) in
double precision. Label DATCOM corresponds to step a, and label DTN corresponds to
step b.

Constants used in the algorithm are:

d3 -.333 333 333 333 333 333 333 333 285 915
d5 .199 999 999 999 999 999 999 673 046 526
d7 -.142 857 142 857 142 856 280 180 055 289
d9 .111 111 111 111 109 972 932 035 508 119
cll -.090 909 090 908 247 503
c13 .001 351 201 845 778 152
a -.085 666 743 757 593 089
b -1.133 579 709 202 919 6

where d3, d5, d7, and d9 are double precision constants, and cll, c13, a, and bare
real constants. Arithmetic operations with d subscripts are done in double precision,
and operations with u subscripts are done in single precision. For example, d3 + (d) q
indicates that the addition is in double precision. Boolean operations have B subscripts.

The algorithm used is:

a. DQ = DU/DV computed in double precision.

b. (DQ = DA-DU at DTN) (Note that 0 < DQ < 1.0.)

c. n = nearest multiple of 1/8 to DQ.

d. If n = 0, go to step f.

e. DA = (DQ - n/8)/(1.0 + n/8*DA), computed in double precision.

f. Z 0
DC 0
If (DA)(u) = 0, go to step i.

g. xx = DA(u)*DA(u)
DC = XX*(d)(d3 +(d) XX*(d)(d5 +(d) XX*(d) (d7 +(d) XX*(d)(d9 +(d)

XX*(d)(dll +(d) XX*(u)(c13 +(u) a/(b -(u) XX»»»)

h. w = DA +(d) DC*DA

i. DB = 0
If (XB)not= 0 DB = ATN(9)*2*(XB)

j. BBAR (B7*pi/2) - (B)B3 (upper and lower)

k. CBAR BBAR + (D)ATN(n/8). ATN(n/8) is obtained as a double precision
quantity from a table of precomputed values.

1. Result = (CBAR + (D) w) - (B) (B3 - (B)B4).

At the end of processing, register pair (XE,XF) contains the DATAN result.

60486513 H Function Descriptions 8·69

DATAN

Vector Routine

The argument is checked upon entry. It is invalid if it is indefinite.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The maximum absolute value of relative error in the algorithm is 1.622E-29.

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 8-10 shows a summary of these statistics.

Table 8-10. Relative Error of DATAN

Test

DATAN(x) against
truncated Taylor series

2*DATAN(x) against
DATAN(2xJ(1 - x*x»

DATAN(x) against
DATAN(1I16) +
DATAN((x - 1116)/(1 +
xJ16»

Total Error

Interval From

-.6250D-01

.2697D+00

.4142D+OO

.6250D-01

Root Mean
Interval To Maximum Square

.6250D-01 .2556D-28 .1343D-28

.4142D+00 .4821D-28 .2027D-28

.1000D+01 .5992D-28 .2449D-28

.2679D+OO .3388D-28 .1557D-28

Most of the errors can be traced back to errors in double precision addition.

8·70 Math Library 60486513 H

DATAN

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result is given by e/(1.0
+ x**2).

Example of DATAN Called From FORTRAN

Source Code:

C

Output:

PROGRAM DATAN_EXAMPLE

DOUBLE PRECISION x
x=0.5dO
PRINT * 'The DATAN of x is:'
PRINT * DATAN(x)
END

The DATAN of x is:
.463647609000806116214256231

60486513 H Function Descriptions 8-71

DATAN2

DATAN2

DATAN2 computes the inverse tangent function of the ratio of two arguments. It
accepts two double precision arguments and returns a double precision result.

The call-by-reference entry points are MLP$RDATAN2 and DATAN2, and the
call-by-value entry point is MLP$VDATAN2.

The DATAN2 vector math function is divided into three routines having three separate
entry points defined as follows:

OTAN2(scalar,vector) = MLP$OATAN2SV
OTAN2(vector,scalar) = MLP$OATAN2VS
OTAN2(vector,vector) = MLP$OATAN2VV

The input domain is the collection of all valid double precision pairs (x,y) such that
both quantities are not zero. The output range is included in the set of double precision
quantities greater than -pi and less than or equal to pi.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x and yare infinite.

x and yare equal to zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the calling program.

Call-By-Value Routine

Register pair (X4,X5) holds the absolute value of the first argument. Register pair
(X7,X8) holds the absolute value of the second argument.

B4 = (X9)

B3 = (XA)
argument.
B7 = (XB)

sign mask of the first word of the first argument.
complement of the sign mask of the first word of the second

closest multiple of pl/2 to the result value.

If (X4) > (X7) , then:

B7 = (XB) = 1.0.
Branch to label OAT COM to complete processing.

8-72 Math Library 60486513 H

If (X4) ~ (X7), then:

Exchange (X7) and (X4) and (X8) and (X5).
Complement contents of B3.
B7 = (XB) = 0, if the first word of the second argument is positive.
B7 = (XB) = 2, if the first word of the second argument is negative.
Branch to label DATCOM to complete processing.

At label DATCOM:

(X9) B4 = mask MS = sign of the final result.
(XA) B3 = mask MI.
(XB) B7 = closest multiple of pi/2 to the absolute value of the result.
Register pair (X7,X8) DU smaller of DU and DB = min(x,Y).
Register pair (X4,X5) = DV = larger of DU and DV = max(x,Y).

At label DATCOMIO:

Register pair (X7,X8) = DQ = DU/DV, which is < 1.0.

DATAN2

ATNU is the start of an 18-word table containing atan(n/8) (0 ~ n ~ 8) in double
precision. Label DATCOM corresponds to step a (on the following page).

Constants used in the algorithm are:

d3 -.333 333 333 333 333 333 333 333 285 915
d5 .199 999 999 999 999 999 999 673 046 526
d7 -.142 857 142 857 142 856 280 180 055 289
d9 .111 111 111 111 109 972 932 035 508 119
cl1 -.090 909 090 908 247 503
c13 .001 351 201 845 778 152
a -.085 666 743 757 593 089
b -1.133 579 709 202 919 6

where d3, d5, d7, and d9 are double precision constants, and cll, c13, a, and bare
real constants. Arithmetic operations with d subscripts are done in double precision,
and operations with u subscripts are done in single precision. For example, d3 + (d) q
indicates that the addition is in double precision. Boolean operations have B subscripts.

60486513 H Function Descriptions 8-73

DATAN2

The algorithm used is:

a. DQ = DU/DV in double precision.

b. If both DU and DV are zero, error exit occurs.

c. n = nearest multiple of 1/8 to DQ.

d. If n = 0, go to step f.

e. DA (DQ - n/8)/(1 + n/8*DA), computed in double precision.

f. Z 0
DC 0
If (DA)(u) = 0, go to step i.

g. XX
DC

DA(u)*DA(U)
XX*(d)(d3 +(d) XX*(d)(dS +(d) XX-Cd) (d7 +(d) XX*(d)(d9 +(d)
XX*(d)(d11 +(d) XX*(u)(c13 +(u) a/(b -(u) XX»»»)

h. w = DA + (d) DC*DA

i. DB = 0
If (XB) not= 0 DB = ATN(9)*2*(XB)

j. BBAR (B7*pl/2) - (B)B3 (upper and lower)

k. CBAR BBAR + (D)ATN(n/8). ATN(n/8) is obtained as a double precision
quantity from a table of precomputed values.

1. Result = (CBAR + (D) w) - (B) (B3 - (B)B4).

At the end of processing, register pair (XE,XF) contains DATAN2 result.

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is infinite.

x and yare infinite.

x and yare equal to o.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8-74 Math Library 60486513 H

DATAN2

Error Analysis

The maximum absolute value of relative error in the algorithm is 1.622E-29.

Effect of Argument Error

If small errors e(x) and e(y) occur in the arguments x and y, respectively, the error in
the result is given approximately by:

(x*e(y) - y*e(x»/(x**2 + y**2)

Example of DATAN2 Called From FORTRAN

Source Code:

C

Output:

PROGRAM DATAN2_EXAMPLE

DOUBLE PRECISION x, Y
x=0.5dO
y=5.0dO
PRINT * 'The DATAN2 of X,y is:'
PRINT * DATAN2(x,y)
END

The DATAN2 of x,y is:
.0996686524911620273784461199

60486513 H Function Descriptions 8-75

DCOS

DCOS
DCOS computes the cosine function. It accepts a double precision argument and returns
a double precision result.

The call-by-reference entry points are MLP$RDCOS and DCOS, the call-by-value entry
point is MLP$VDCOS, and the vector entry point is MLP$DCOSV.

The input domain is the collection of all valid double precision quantities whose
absolute value is less than 2**47. The output range is included in the set of valid
double precision quantities in the interval [-1.0,1.0].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

Upon entry, the argument x is made positive and is multiplied by 2/pi in double
precision, and the nearest integer n to x*2/pi is computed. At this stage, x*2/pi is
checked to see that it does not exceed 2**47. If it does, a diagnostic message is
returned. Otherwise, y = x - n*pil2 is computed in double precision as the reduced
argument, and y is in the interval [-pil4,pil4]. The value of mod(n,4), the entry point
called, and the original sign of x determine whether a sine polynomial approximation
p(x) or a cosine polynomial approximation q(x) is to be used. A flag is set to indicate
the sign of the final result.

For x in the interval [-pil4,pil4], the sine polynomial approximation is:

p(x) = a(1)x + a(3)x**3 + a(5)x**5 + a(7)x**7 + a(9)x**9 + a(11)x**11 +

a(13)x**13** + a(15)x**15 + a(17)x**17 + a(19)x**19 + a(21)x**21

and the cosine polynomial approximation is:

q(x) = b(O) + b(2)x**2 + b(4)x**4 + b(6)x**6 + b(8)x**8 + b(10)x**10 +

b(12)x**12 + b(14)x**14 + b(16)x**16 + b(18)x**18 + b(20)x**20

8-76 Math Library 60486513 H

The coefficients are:

a(l) .999 999 999 999 999 999 999 999 999 99
a(3) -.166 666 666 666 666 666 666 666 666 52
a(5) .833 333 333 333 333 333 333 332 709 57*10**-2
a(7) -.198 412 698 412 698 412 698 291344 78*10**-3
a(9) .275 573 192 239 858 906 394 406 844 01*10**-5
a(ll) -.250 521 083 854 417 101 138 076 473 5*10**-7
a(13) .160 590 438 368 179 411 271 194 064 61*10**-9
a(15) -.764 716 373 079 886 084 755 348 748 91*10**-12
a(11) .281 145 706 930 018*10**-14
a(19) -.822 042 461 317 923*10**-17
a(21) .194 362 013 130 224*10**-19
b(O) .999 999 999 999 999 999 999 999 999 99
b(2) -.499 999 999 999 999 999 999 999 999 19
b(4) .416 666 666 666 666 666 666 666 139 02
b(6) -.138 888 888 888 888 888 888 755 436 28*10**-2
b(8) .248 015 873 015 813 015 699 922 737 30*10**-4
b(10) -.275 513 192 239 858 775 558 669 957 11*10**-6
b(12) .208 767 569 878 619 214 898 747 461 35*10**-8
b(14) -.114 707 455 958 584 315 495 950 765 75*10**-10
b(16) .477 947 696 822 393 115 933 106 267 21*10**-13
b(18) -.156 187 668 345 316*10**-15
b(20) .408 023 947 777 860*10**-18

DCOS

These polynomials are evaluated from right to left in double precision. The sign flag is
used to give the result the correct sign before returning to the calling program.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

60486513 H Function Descriptions 8-77

DCOS

Error Analysis

The maximum absolute value of the error of approximation of p(x) to sin (x) over
(-pil4,pil4) is .2570E-28, and of q(x) to cos(x) is .3786E-28.

The function DCOS was tested against 4*DCOS(xJ3)**3 - 3*DCOS(xJ3). Groups of 2,000
arguments were chosen randomly from the interval [.2199D + 02,.2356D + 02]. Statistics
on relative error were observed: maximum relative error was .2057D-23; root mean
square relative error was .4606D-25.

Effect of Argument Error

If a small error e occurs in the argument x, the resulting error in cos is given
approximately by -e*sin(x). If the error e becomes significant, the addition formulas for
sin and cos should be used to compute the error in the result.

8·78 Math Library 60486513 H

Example of DCOS Called From FORTRAN

Source Code:

C

Output:

PROGRAM DCOS_EXAMPLE

DOUBLE PRECISION x
x=0.5dO
PRINT * 'The DCOS of x is:'
PRINT * DCOS(x)
END

The DCOS of x is:
.877582561890372716116281583

60486513 H

DCOS

Function Descriptions 8·79

DCOSH

DCOSH

DCOSH computes the hyperbolic cosine function. It accepts a double precision argument
and returns a double precision result.

The call-by-reference entry points are MLP$RDCOSH and DCOSH, the call-by-value
entry point is MLP$VDCOSH, and the vector entry point is MLP$DCOSHV.

The input domain is the collection of all valid double precision quantities whose
absolute value is less than 4095*log(2). The output· range is included in the set of valid
double precision quantities greater than or equal to 1.0.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

I t is indefinite.

I t is infinite.

Its absolute value is greater than or equal to 4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If the argument pair is
valid, the call-by-value routine is called, and the result of the computation is returned
to the calling program.

Call-By-Value Routine

The formulas used for computation are:

u = exp(x)*.5
v = exp(-x)*.5
Cosh(x) = u + v

The routine calls DEXP to compute exp(x).

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8·80 Math Library 60486513 H

DCOSH

Error Analysis

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 8-11 shows a summary of these statistics.

Table 8-11. Relative Error of DCOSH

Test Interval From

DCOSH(x) against O.OOOOD + 00
Taylor series expansion
of DCOSH(x)

DCOSH(x) against .3000D + 01
c*(DCOSH(x + 1) +
DCOSH(x - 1))

Effect of Argument Error

Interval To Maximum

.5000D + 00 .2524D-28

.2838D+04 .1023D-27

Root Mean
Square

.1739D-28

.4548D-28

If a small error e occurs in the argument x, the error in cosh(x) is approximately
sinh(x)*e.

Example of DCOSH Called From FORTRAN

Source Code:

C

Output:

PROGRAM DCOSH_EXAMPLE

DOUBLE PRECISION x
x=0.5dO
PRINT· 'The DCOSH of x is:'
PRINT· DCOSH(x)
END

The DCOSH of x is:
1.12762596520638078522622516

60486513 H Function Descriptions 8-81

DDIM

DDIM
DDIM computes the positive difference between two arguments. It accepts two double
precision arguments and returns a double precision result.

The call-by-reference entry points are MLP$RDDIM and DDIM, and the call-by-value
entry point is MLP$VDDIM.

The input domain is the collection of all valid double precision pairs (x,y) such that x
- y is a valid double precision quantity. The output range is included in the set of
valid, nonnegative double precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x - y is infinite.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is branched to, and the result of the computation is
returned to the calling program.

Call-By-Value Routine

Upon entry, the difference between the two arguments is formed, and the sign bit of
the difference is extended across another word to form < a mask. The boolean product of
the mask's complement and the upper and lower word of the difference is formed.

Given arguments (x,y):

result x - y if x > y

result 0 if x ~ y.

8-82 Math Library 60486513 H

Example of DDIM Called From FORTRAN

Source Code:

C

Output:

PROGRAM DDIM_EXAMPLE

EXTERNAL DDIM
DOUBLE PRECISION x,y
x=999999.99dO
y=99.0dO
PRINT *, 'The DDIM of x,y is:'
PRINT *,DDIM(x,Y)
END

The DDIM of x,y is:
999900.99

60486513 H

DDIM

Function Descriptions 8·83

DEXP

DEXP
DEXP computes the exponential function. It accepts a double precision argument and
returns a double precision result.

The call-by-reference entry points are MLP$RDEXP and DEXP, the call-by-value entry
point is MLP$VDEXP, and the vector entry point is MLP$DEXPV.

The input domain is the collection of all valid double precision quantities whose value
is greater than or equal to -4097*log(2) and less than or equal to 4095*log(2). The
output range is included in the set of valid double precision quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is greater than 4095*log(2).

It is less than -4097*log(2).

If the argument is invalid, a diagnostic message is displayed. If the argument pair is
valid, the call-by-value routine is called, and the result of the computation is returned
to the call-by-reference routine. The result is checked. If the result is infinite, it is
invalid, and a diagnostic message is displayed. If the result is valid, it is returned to
the calling program.

Call-By-Value Routine

The argument reduction performed is:

x = argument
y = x - n*10g(2)

where y = is in [-112 log(2), 112 log(2)] and n is an integer.

Constants used in the algorithm are:

1.0/10g(2)
10g(2) (in double precision)
d3 .166 666 666 666 666 666 666 666 666 709
d5 .833 333 333 333 333 333 333 331 234 953*10**-2
d7 .198 412 698 412 698 412 700 466 386 658*10**-3
d9 .275 573 192 239 858 897 408 325 908 796*10**-5
pc -.474 970 880 178 988*10**-10
pa .566 228 284 957 811*10**-7
pb 272.110 632 903 710
c11 .250 521 083 854 439*10**-7

Arithmetic operations with d subscripts are done in double precision, and operations
with u subscripts are done in single precision. For example, d3 + (d) q indicates that
the addition is in double precision. An operand with a u or I subscript denotes the first
or second word, respectively, of the double precision pair of words containing the
operand.

8·84 Math Library 60486513 H

On input, the argument is in register pair X2-X3, and on ,output, the result is in
register pair XE-XF.

The algorithm used is:

a. x = argument. If x = 0, set OEXP 1.0. Return.

b. If x not= 0,
n = nearest integer to x/log(2),·
y = x - n*10g(2).
Then y is in [-1/2*10g(2),1/2*10g(2)].

c. q = (y)(u)*(u)(y)(u)

d. p = q*(d)(d3 +(d) q*(d)(d5 +(d) q*(d)(d7 +(d) q*(d)(d9 +(d)
q*(d)(c11 +(d) q*(d)(pa/(pb - Q) + pc»»»

e. s = (y)(u) +(d) (y)(u)*(d)p

f. Compute hm = sqrt(1.0 + s**2).
hi = 3*q + «s)(u»**2 in real.
hj hi + hi
hk = 2*(1.0 + hj)
hl = «y)(u)*(u)(y)(u) - hj)/hk - hi
hm = hj +(u) (hk -(u) hl)*(u)(hl/hk)

(hm now carries cosh - 1.0 in single precision.)

g. OS = s + (d)«(y)(l) + (r)(y)(l)*(u)hm) + (r)«s)(l) +
(r)«y)(u)* (l)(p)(u) + (r)(y)(u)*(r)(p)(l»»
(OS now contains sinh(y) in' double precision.)

h. DC hm +(d) (OS*OS - 2*hm - hm*hm)/(2(1.0 + hm» computed in
double precision.

i. OX = OS + DC

j. Clean up OS, ~C, OX with (X7) = n.
Register pair XA-XB OS = sinh(y).
Register pair X8-X9 DC = cosh(y) 1. O.
Register pair X4-X5 OX = exp(y).

k. Increase the exponents of exp(y) by n.

1. Return.

DEXP

60486513 H Function Descriptions 8-85

DEXP

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is greater than 4095*log(2).

It is less than -4097*log(2).

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 8-12 shows a summary of these statistics.

Table 8-12. Relative Error of DEXP

Test

DEXP(x - 2.8125)
against DEXP(x) /
DEXP(2.8125)

DEXP(x - .0625)
against DEXP(x) /
DEXP(.0625)

DEXP(x - 2.8125)
against DEXP(x) /
DEXP(2.8125)

Interval From

-.3466D+01

-.2841D+00

.6931D+01

Effect of Argument Error

Interval To Maximum

-.2772D+04 .9240D-28

.3466D+00 .6449D-28

.2838D + 04 .9262D-28

If a small error e occurs in the argument the error in the result y is given
approximately by y*e.

8-86 Math Library

Root Mean
Square

.2956D-28

.1680D-28

.2907D-28

60486513 H

Example of DEXP Called From FORTRAN

Source Code:

C

Output:

PROGRAM DEXP_EXAMPLE

. DOUBLE PRECISION x
x=3.0dO
PRINT *, 'The DEXP of x is:'
PRINT *,DEXP(x)
END

The DEXP of x is:
20.0855369231876677409285297

60486513 H

DEXP

Function Descriptions 8-87

DIM

DIM
DIM computes the positive difference between two arguments. It accepts two real
arguments and returns a real result.

The call-by-reference entry points are MLP$RDIM and DIM, and the call-by-value entry
point is MLP$VDIM.

The input domain is the collection of all valid real quantities (x,y), such that x - :y is
a valid real quantity. The output range is included in the set of valid real quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x - y is infinite.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is branched to, and the result of the computation is
returned to the calling program.

Call-By-Value Routine

Upon entry, the difference between the two arguments is formed, and the sign bit is
extended across another word to form a mask. The boolean product of the mask's
complement and the difference is formed.

Given arguments (x,y):

result
result

x - Y if x > Y
o if x ~ y

Example of DIM Called From FORTRAN

Source Code:

c

Output:

PROGRAM DIM_EXAMPLE

EXTERNAL DIM
x=30.0
y=3000.0
PRINT * 'The positive difference between y and x is:
END

The positive difference between y and x is: 2970.

DIM(y,x)

8·88 Math Library 60486513 H

DINT
DINT returns the integer part of an argument after truncation. It accepts a double
precision argument and returns a double precision result.

DINT

The call-by-reference entry points are MLP$RDINT and DINT, and the call-by-value
entry point is MLP$VDINT.

The input domain for this function is the collection of all valid double precision
quantities. The output range is included in the set of valid double precision quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is branched to, and the result of the computation is returned
to the calling program.

Call-By-Value Routine

The argument is added to a special floating-point zero with an exponent value that
forces the argument's fraction bits to be shifted off when it is added to the argument.
The result is returned.

Example of DINT Called From FORTRAN

Source Code:

c

Output:

PROGRAM DINT_EXAMPLE

EXTERNAL DINT
DOUBLE PRECISION x
x=333.333dO
PRINT *, 'The integer part of double precision x is:'
PRINT *,DINT(x)
END

The integer part of double precision x is:
333.

60486513 H Function Descriptions 8·89

DLOG

DLOG
DLOG computes the natural logarithm function. It accepts a double precision argument
and returns a double precision result.

The call-by-reference entry points are MLP$RDLOG and DLOG, the call-by-value entry
point is MLP$VDLOG, and the vector entry point is MLP$DLOGV.

The input domain for this function is the collection of all valid, positive double
precision quantities. The output range is included in the set of double precision
quantities whose absolute value is less than 4095*log(2).

Call-By-Reference Routine

The argument is checked upon entry. The argument is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is negative.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

Upon entry, the argument x is put into the form x = 2**k*w, where k is an integer,
and 2**-1/2 ~ w ~ 2** 112. Then log(x) is computed from:

log(x) = k*log(2) + log(w)

and k*log(2) is computed in double precision. A polynomial approximation u is
evaluated in single precision using:

u = c(l)*t + c(3)*t**3 + c(5)*t**5 + c(7)*t**7

where t = (w - 1.0)/(1.0 + w)

8-90 Math Library 60486513 H

DLOG

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is negative.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

The coefficients c(l), c(3), c(5), and c(7) are:

C(1) 1.999 999 993 734 000
c(3) .666 669 486 638 944
c(5) .399 657 811 051 126
c(7) .301 005 922 238 712

This approximates log with a relative error of absolute value at most 3.133*10**-8
over (2**-112,2**-112). Newton's rule for finding roots3 is then applied in two stages to
the function exp(x) - w to yield the final approximation to log(w). The two stages are
algebraically combined to yield the final approximation v:

v = u - (1.0 - x*exp(-u» - (1.0 - x*exp(-u - (1.0 - x*exp(-u»»

z is made to be less than 1.0 by writing z = 1.0 - x*exp(-u), and v is computed
using:

v = u - z(u) - z(l) - (z{u»**2*(.5 + z(u)/3)

where z = z(u) + z(l). This formula is obtained by neglecting terms that are not
significant for double precision; exp(-u) is evaluated in double precision by the
polynomial of degree 17. If entry was made at MLP$VDLOG10, after k*log(2) + log(w)
has been evaluated, the result is multiplied by log(e) base 10 in double precision.

3. For a discussion of Newton's rule for finding roots, refer to any calculus text (for example, Calculus and
Analytic Geometry by G. B. Thomas).

60486513 H Function Descriptions 8-91

DLOG

Error Analysis

The maximum absolute value of the error of approximation of the algorithm to log(x) is
1.555E-29 over the interval (2**(-.5),2**.5).

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 8-13 shows a summary of these statistics.

Table 8-13. Relative Error of DLOG

Root Mean
Test Interval From Interval To Maximum Square

DLOG(x*x) against .1600D+02 .2400D+03 .4479D-28 .1528D-28
2*DLOG(x)

DLOG(x) against .7071D+00 .9375D+OO .9041D-27 .1478D-27
DLOG(17x116) -
DLOG(17116)

8-92 Math Library 60486513 H

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result is given
approximately by e/x.

Example of DLOG Called From FORTRAN

Source Code:

c

Output:

PROGRAM DLOG_EXAMPLE

DOUBLE PRECISION x
x=0.5dO
PRINT * 'The natural logarithm of x is:'
PRINT * DLOG(x)
end

The natural logarithm of x is:
-.693147180559945309417232121

DLOG

60486513 H Function Descriptions 8·93

DLOGIO

DLOGIO
DLOG10 computes the common logarithm function. It accepts a double precision
argument and returns a double precision result.

The call-by-reference entry points are MLP$RDLOG10 and DLOG10, the call-by-value
entry point is MLP$VDLOG10, and the vector entry point is MLP$DLOG10V.

The input domain for this function is the collection of all valid, positive double
precision quantities. The output range is included in the set of double precision
quantities whose absolute value is less than 4095*Iog(2) base 10.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is negative.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

8-94 Math Library 60486513 H

DLOG10

Call-By-Value Routine

Upon entry, the argument x is put into the form x = 2**k*w, where k is an integer,
and 2**~112 ~ w ~ 2**112. Then log(x) is computed from:

10g(x) = k*10g(2) + log(w)

and k*log(2) is computed in double precision. A polynomial approximation u is
evaluated in single precision using:

u = c(l)*t + c(3)*t**3 + c(5)*t**5 + c(7)*t**7

where t = (w - 1.0)/(1.0 + w)

The coefficients c(l), c(3), c(5), and c(7) are:

C(l) 1.999 999 993 734 000
c(3) .666 669 486 638 944
c(5) .399 657 811 051 126
c(7) .301 005 922 238 712

This approximates log with a relative error absolute value at most 3.133*10**-8 over
(2**-1/2,2**-112). Newton's rule for finding roots4 is then applied in two stages to the
function exp(x) - w to yield the final approximation to log(w). The two stages are
algebraically combined to yield the final approximation v:

v = u - (1.0 - x*exp(-u» - (1.0 - x*exp(-u - (1.0 - x*exp(-u»»

z is made to be less than 1.0 by writing z = 1.0 - x*exp(-u), and v is computed
using:

v = u - z(u) - z(l) - (z(u»**2*(.5 + z(u)/3)

where z = z(u) + z(l). This formula is obtained by neglecting terms that are not
significant for double precision; exp(-u) is evaluated in double precision by the
polynomial of degree 17. If entry was made at MLP$VDLOG10, after k*log(2) + log(w)
has been evaluated, the result is multiplied by log(e) base 10 in double precision.

4. For a discussion of Newton's rule for finding roots, refer to any calculus text (for example, Calculus and
Analytic Geometry by G. B. Thomas).

60486513 H Function Descriptions 8·95

DLOGI0

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is negative.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The function DLOGI0 was tested against DLOGI0(11xJI0) - DLOGI0(11110). Groups of
2000 arguments were chosen randomly from the interval [.3162D+00,.9000D+00].
Statistics on relative error were observed: maximum relative error was .5417D-27; root
mean square relative error was .8117D-28.

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result is given
approximately by e/x.

8-96 Math Library 60486513 H

Example ofDLOGlO Called From FORTRAN

Source Code:

C

Output:

PROGRAM DLOG10_EXAMPLE

DOUBLE PRECISION x
x=0.5dO
PRINT * 'The common logarithm of x is:'
PRINT * DLOG10(x)
END

The common logarithm of x is:
-.301029995663981195213738895

60486513 H

DLOG10

Function Descriptions 8·97

DMOD

DMOD
DMOD returns the remainder of the ratio of two arguments. It accepts two double
precision arguments and returns a double precision result.

The call-by-reference entry points are MLP$RDMOD and DMOD, and the call-by-value
entry point is MLP$VDMOD.

The input domain for this function is the collection of all valid double precision pairs
(x,y), where y is nonzero and xly is a valid quantity. The output range is included in
the set of valid double precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

y is equal to zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is branched to, and result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

Call-By-Value Routine

The function computed by DMOD(x,y) is:

x - (x/Y)*Y

where parentheses denote truncation. The result of x/y is found and then added to a
special floating-point zero that forces truncation.

8-98 Math Library 60486513 H

Example of DMOD Called From FORTRAN

Source Code:

C

Output:

PROGRAM DMOD_EXAMPLE

EXTERNAL DMOD
DOUBLE PRECISION x, Y
y=750.0dO
x=140.0dO
PRINT * 'The remainder of the ratio of y and x is:'
PRINT *, DMOD(y,x)
END

The remainder of the ratio of y and x is:
50.

60486513 H

DMOD

Function Descriptions 8·99

DNINT

DNINT
DNINT returns the nearest whole number to an argument. It accepts a double
precision argument and returns a double precision result.

The call-by-reference entry points are MLP$RDNINT and DNINT, and the call-by-value
entry point is MLP$VDNINT.

The input domain for this function is the collection of all valid double precision
quantities. The output range is included in the set of valid integer quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by.;value routine is branched to, and the result is returned to the
calling program.

Call-By-Value Routine

If the argument is ~ 0, .5 is added to it and the result is added to a special
floating-point zero that forces truncation. If the argument is < 0, -.5 is added to it
and the result is treated as above.

Example of DNINT Called From FORTRAN

Source Code:

C

Output:

PROGRAM DNINT_EXAMPLE

EXTERNAL DNINT
DOUBLE PRECISION x
.x=99.99dO
PRINT *. 'The DNINT of x is:'
PRINT-. ONINT(x)
END

The DNINT of x is:
100.

8-100 Math Library 60486513 H

DPROD

DPROD
DPROD computes the product of two arguments. It accepts two real arguments and
returns a double precision result.

The call-by-reference entry points are MLP$RDPROD and DPROD, and the
call-by-value entry point is MLP$VDPROD.

The input domain for this function is the collection of all valid real pairs (x,y) such
that x*y is a valid double precision quantity. The output range is included in the set of
valid double precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is branched to, and the result is returned to the
call-by-reference routine. The result is checked. If the result is infinite, it is invalid,
and a diagnostic message is displayed. If the result is valid, it is returned to the
calling program.

Call-By-Value Routine

Given argument pair (x,y), the result of x*y is found.

Example of DPROD Called From FORTRAN

Source Code:

PROGRAM DPROD_EXAMPLE
EXTERNAL DPROD

C Accepts two real arguments. Returns a double precision result.
x=140.0

Output:

y=750.0
PRINT * 'The DPROD of x and y is:'
PRINT * DPROD(x,Y)
END

The DPROD of x and y is:
105000.

60486513 H Function Descriptions 8·101

DSIGN

DSIGN
DSIGN transfers the sign of the second argument to the sign of the first. It accepts
two double precision arguments and returns a double precision result.

The call-by-reference entry points are MLP$RDSIGN and DSIGN, and the call-by-value
entry point is MLP$VDSIGN.

The input domain for this function is the collection of all valid double precision pairs
(x,y). The output range is included in the set of valid double precision quantities.

Call-By-Reference Routine

No errors are generated by DSIGN. The call-by-reference routine branches to the
call-by-value routine.

Call-By-Value Routine

The sign bit of the second argument is isolated by a mask with all other bits zero. The
sign bits of the upper and lower words of the first argument are cleared by a boolean
AND mask and replaced by the sign of the second argument by a boolean inclusive OR
with the complement of the mask. .

Given arguments (x,y):

result Ixl if y is nonnegative
result -Ixl if y is negative

8-102 ~ath Library 60486513 H

Example of DSIGN Called From FORTRAN

Source Code:

C

Output:

PROGRAM DSIGN_EXAMPLE

EXTERNAL DSIGN
DOUBLE PRECISION x, Y
x=-140.0dO
y=750.0dO
PRINT * 'The DSIGN of x,Y is:'
PRINT *, DSIGN(x,Y)
END

The DSIGN of X,Y is:
140.

60486513 H

DSIGN

Function Descriptions 8·103

DSIN

DSIN
DSIN computes the sine function. It accepts a double precision argument and returns a
double precision result.

The call-by-reference entry points are MLP$RDSIN and DSIN, the call-by-value entry
point is MLP$VDSIN, and the vector entry point is MLP$DSINV.

The input domain for this function is the collection of all valid double precision
quantities whose absolute value is less than 2**47. The output range is included in the
set of valid double precision quantities in the interval [-1.0,1.0].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result is returned to the calling program.

Call-By-Value Routine

Upon entry, the argument x is made positive and is multiplied by 2/pi in double
precision, and the nearest integer n to x*2/pi is computed. At this stage, x*2/pi is
checked to see that it does not exceed' 2**47. If it does, a diagnostic message is
returned. Otherwise, y = x - n*pil2 is computed in double precision as the reduced
argument, and y is in the interval [-pil4,pil4]. The value of mod(n,4), the entry point
called, and the original sign of x determine whether a sine polynomial approximation
p(x) or a cosine polynomial approximation q(x) is to be used. A flag is set to indicate
the sign of the final result.

For x in the interval [-pil4,pil4], the sine polynomial approximation is:

p(X) = a(1)x + a(3)x**3 + a(5)x**5 + a(7)x**7 + a(9)x**9 + a(11)x**11 +

a(13)x**13** + a(15)x**15 + a(17)x**17 + a(19)x**19 + a(21)x**21

and the cosine polynomial approximation is:

Q(x) = b(O) + b(2)x**2 + b(4)x**4 + b(6)x**6 + b(8)x**8 + b(10)x**10 +

b(12)x**12 + b(14)x**14 + b(16)x**16 + b(18)x**18 + b(20)x**20

8-104 Math Library 60486513 H

The coefficients are:

a(1)

a(3)

a(5)

a(7)

a(9)

a(11)

a(13)
a(15)
a(17)

a(19)
a(21)

b(O)

b(2)
b(4)
b(6)
b(8)
b(10)
b(12)
b(14)
b(16)
b(18)
b(20)

.999 999 999 999 999 999 999 999 999 99
-.166 666 666 666 666 666 666 666 666 52

.833 333 333 333 333 333 333 332 709 57*10**-2
-.198 412 698 412 698 412 698 291344 78*10**-3

.275 573 192 239 858 906 394 406 844 01*10**-5
-.250 521 083 854 417 101 138 076 473 5*10**-7

.160 590 438 368 179 417 271 194 064 61*10**-9
-.764 716 373 079 886 084 755 348 748 91*10**-12

.281 145 706 930 018*10**-14
-.822 042 461 317 923*10**-17

.194 362 013 130 224*10**-19

.999 999 999 999 999 999 999 999 999 99
-.499 999 999 999 999 999 999 999 999 19

.416 666 666 666 666 666 666 666 139 02
-.138 888 888 888 888 888 888 755 436 28*10**-2

.248 015 873 015 873 015 699 922 737 30*10**-4
-.275 573 192 239 858 775 558 669 957 11*10**-6

.208 767 569 878 619 214 898 747 461 35*10**-8
-.114 707 455 958 584 315 495 950 765 75*10**-10

.477 947 696 822 393 115 933 106 267 21*10**-13
-.156 187 668 345 316*10**-15

.408 023 947 777 860*10**-18

DSIN

These polynomials are evaluated from right to left in double precision. The sign flag is
used to give the result the correct sign before returning to the calling program.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

60486513 H Function Descriptions 8-105

DSIN

Error Analysis

The maximum absolute value of the error of approximation of p(x) to sin(x) over
(-pil4,pil4) is .2570E-28, and of q(x) to cos (x) is .3786E-28.

The function DSIN was tested against the 3*DSIN(x/3) - 4*DSIN(x/3)**3. Groups of
2,000 arguments were chosen randomly from given intervals. Statistics on relative error
were observed. Table 8-14 shows a summary of these statistics.

Table 8-14. Relative Error of DSIN

In terval From

O.OOOOD+OO
.1885D+02

Interval To

.1571D+Ol

.2042D+02

Effect of Argument Error

Maximum

.5153D-28

.2764D-23

Root Mean
Square

.1254D-28

.6188D-25

If a small error e occurs in the argument x, the resulting error in sin is given
approximately by e*cos(x). If the error e becomes significant, the addition formulas for
sin and cos should be used to compute the error in the result.

8-106 Math Library 60486513 H

Example of DSIN Called From FORTRAN

Source Code:

c

Output:

PROGRAM DSIN_EXAMPLE

DOUBLE PRECISION x
x=0.5dO
PRINT * 'The DSIN of x is:'
PRINT * DSIN(x)
END

The DSIN of x is:
.479425538604203000273287935

60486513 H

DSIN

Function Descriptions 8-107

DSINH

DSINH
DSINH computes the hyperbolic sine function. It accepts a double precision argument
and returns a double precision result.

The call-by-reference entry points are MLP$RDSINH and DSINH, the call-by-value
entry point is MLP$VDSINH, and the vector entry point is MLP$SINHV.

The input domain for this function is the collection of all valid double precision
quantities whose absolute value is less than 4095*10g(2). The output range is included
in the set of valid double precision quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result is returned to the calling program.

Call-By-Value Routine

Most of the computation is performed in routine DEULER, and the constants used are
listed there. The argument reduction performed in DEULER is:

x = argument
y = reduced argument
y = x - n*10g(2)

where n is an integer, and y is in the interval [-1I2*10g(2),1/2*log(2)].

The formula used for computation is:

sinh(y + n*10g(2» = (cosh(y) + sinh(y»*2**(n-l.0) - (cosh(y) -
sinh(y»*2**(-n-l.0)

where

cosh(y) = DC, and sinh(y) = OS as computed in routine DEULER.

On input, the argument is in register pair (X2,X3), and on output, the result is in
register pair (XE,XF).

See the description of routine DEULER in chapter 9, Auxiliary Routines, for detailed
information.

8-108 Math Library 60486513 H

DSINH

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

See Vector Error Handling in chapter 7 , Vector Processing, for further information.

Error Analysis

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 8-15 shows a summary of these statistics.

Table 8-15. Relative Error of DSINH

Test

DSINH(x) against
Taylor series expansion
of DSINH(x)

DDINH(x) against
c*(DSINH(x + 1) +
DSINH(x - 1))

Interval From

O.OOOOD+OO

.3000D+01

Effect of Argument Error

Interval To Maximum

.5000D+00 .1184D-27

.2838D+04 .1178D-27

Root Mean
Square

.3084D-28

.4582D-28

If a small error e occurs in the argument x, the error in sinh(x) is approximately
cosh(x)*e.

Example of DSINH Called From FORTRAN

Source Code:

c

Output:

PROGRAM DSINH_EXAMPLE

DOUBLE PRECISION x
x=0.5dO
PRINT * 'The DSINH of x is:'
PRINT * DSINH(x)
END

The DSINH of x is:
.521095305493747361622425626

60486513 H Function Descriptions 8-109

DSQRT

DSQRT
DSQRT computes the square root. It accepts a double precision argument and returns a
double precision result.

The call-by-reference entry points are MLP$RDSQRT and DSQRT, the call-by-value
entry point is MLP$VDSQRT, and the vector entry point is MLP$DSQRTV.

The input domain for this function is the collection of all valid, nonnegative double
precision quantities. The output range is included in the set of valid double precision
quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is negative.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

An initial approximation to sqrt(y) is obtained by evaluating, inline, the sqrt of y(u) in
single precision.

One Heron's iteration is performed in double precision using. y and the initial
approximation of sqrt(y), giving the double precision result.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is negative.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8·110 Math Library 60486513 H

DSQRT

Error Analysis

The algorithm error is at most 2.05E-31, and is always positive.

The function DSQRT was tested against DSQRT(x*x) - x. Groups of 2,000 arguments
were chosen randomly from given intervals. Statistics on relative error were observed.
Table 8-16 shows a summary of these statistics.

Table 8-16. Relative Error of DSQRT

In terval From

.1000D+01

.7071D+00

Interval To

.1414D+01

.1000D+01

Effect of Argument Error

Maximum

.OOOOD+OO

.1785D-28

Root Mean
Square

.OOOOD+OO

.9981D-29

For a small error e in the argument y, the amplification of absolute error is
e/2*sqrt(y».

Example of DSQRT Called From FORTRAN

Source Code:

C

Output:

PROGRAM DSQRT_EXAMPLE

DOUBLE PRECISION x
x=49.0dO
PRINT * 'The DSQRT of x is:'
PRINT *. DSQRT(x)
END

The DSQRT of x is:
7.

60486513 H Function Descriptions 8·111

DTAN

DTAN
DTAN is a function that computes the tangent function. It accepts a double precision
argument and returns a double precision result.

The call-by-reference entry points are MLP$RDTAN and DTAN, the call-by-value entry
point is MLP$VDTAN, and the vector entry point is MLP$DTANV.

The input domain for this function is the collection of all valid double precision
quantities whose absolute value is less than 2**47. The output range is included in the
set of valid double precision quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

The argument reduction is performed in two steps:

1. A pil2 reduction is performed first. If the argument is outside the interval
[-pil4,pil4], a signed integer multiple n of pil2 is computed such that, after adding
it to the argument, the result z falls in the interval [-pil4,pil4].

2. A 118 reduction is performed next. A signed integer m, which is a multiple of 118,
is subtracted from z such that the result is in the interval [-1116,1116]. A small
number e(m) is also subtracted from z. The value of e(m) is constant such that the
tangent of ml8 + e(m) can be represented to double precision accuracy in a single
precision word. The lower word is zero. Therefore, the original argument y is
reduced to x as follows:

x = y - (n*pi/2) - (m/8 + e(m»

The following quantities are computed from the reduced argument x and from the
range reduction values. The functions U and L represent "upper of' and "lower of'
functions.

t = tan(m/8 + e(m»
r = L(U(x)**2)/2U(x) + L(x)
a L(U(x)**2) + 2L(x)U(x)
b = U(U(x)**2)

8·112 Math Library 60486513 H

Since:

tan(x) tan(sQrt(x**2»
tan(sQrt(U(U(x)**2 + L(U(x)**2) + 2L(x)U(x»)
tan(sQrt(b + a»
tan(sQrt(b) + a/2b)
tan(sQrt(b) + r)

Then s = sqrt(b) = U(x) - L(U(x)**2)/2U(x)

The value of the original argument y is:

tan(y) = tan(x + n*pi/2 + m/8 + e(m»

The effect of the n*pi/2 term on the final result is:

tan(y)
tan(y)

tan(x +m/8 + e(m», if n is even
1/tan(x + m/8 + e(m», if n is odd

Applying the tangent addition formula gives:

tan(x + m/8 + e(m» = tan(s + r + (m/8 + e(m»

tan(s) + tan(r) + t - tan(s)*tan(r)*t

1.0 - tan(s)*tan(r) - tan(r)*t - t*tan(s)

tan(s) + r + t - tan(s)*r*t

1.0 - tan(s)*r - r*t - t*tan(s)

Tan(s) is computed by using the general polynomial form:

x + x**3/3 + x**5*2/315 ...

Mter Chebyshev is applied to the coefficients, the form is:

tan(s) = s + s*(c(1)s**2 + c(2)s**4 + c(3)s**6 + c(4)s**8 +

(a/(b - s**2»s**10)

where a = .0218 ... and b = 2.467 ...

The quotient is inverted if n is odd.

60486513 H

DTAN

Function Descriptions 8·113

DTAN

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The algorithm error has a negligible effect on the total error. The worst relative error
of the algorithm is 1.032E-29. There is a negligible error introduced by the pi/2 range
reduction except for points close to nonzero multiples of pi/2. Near pi/2, the pi/2
reduction relative error is bounded by 2**(n-155) where n is the number of bits of
precision to which the argument represents pi/2. At larger multiples of pi/2, similar
problems occur.

The function DTAN was tested against 2*DTAN(xl2)/(1 - DTAN(xl2)**2). Groups of
2,000 arguments were chosen randomly from given intervals. Statistics on relative error
were observed. Table 8-17 shows a summary of these statistics.

Table 8-17. Relative Error of DTAN

Root Mean
Interval From Interval To Maximum Square

.OOOOD+OO .7854D+00 .1946D-27 .4491D-28

.1885D+02 .1963D+02 .1729D-27 .4480D-28

.2749D+01 .3534D+01 .2008D-27 .5363D-28

8-114 Math Library 60486513 H

DTAN

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result is e*sec(x)**2.

Example of DTAN Called From FORTRAN

Source Code:

C

Output:

PROGRAM DTAN_EXAMPLE

DOUBLE PRECISION x
x=0.5dO
PRINT * 'The DTAN of x is:'
PRINT * DTAN(x)
END

The DTAN of x is:
.546302489843790513255179466

60486513 H Function Descriptions 8·115

DTANH

DTANH
DTANH computes the hyperbolic tangent function. It accepts a double precision
argument and returns a double precision result.

The call-by-reference entry points are MLP$RDTANH and DTANH, the call-by-value
entry point is MLP$VDTANH, and the vector entry point is MLP$DTANHV.

The input domain for this function is the collection of all valid double precision
quantities. The output range is included in the set of valid quantities in the interval
[-1.0,1.0]'

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if it is indefinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

Most of the computation is performed in routine DEULER, and the constants used are
listed there. The argument reduction performed is:

1. For argument in [-47*log(2),47*log(2)] but not in [-1I2*log(2),1I2*log(2)]:

x = argument
y = reduced argument
y = 2x - n*10g(2)

where n is an integer, and y is in [-1I2*log(2), 1I2*log(2)]

tanh(x) = u/v where

u = 1.0 - 2**-n - 2**-n*(OC - OS)
v = 1.0 - 2**-n + 2**-n*(OC - OS)

2. For argument in [-1I2*log(2), 1I2*log(2)]:

x = argument
y = reduced argument
y = x

tanh(x) = OS(2*+DC)

3. For argument outside [-47*log(2),47*log(2)]:

x = argument
y = reduced argument

tanh(x) = 1.0 - 2«1.0 + DC - OS)*2**-n - «1.0 + DC - OS)*2**-n)**2)

In steps 1, 2, and 3, DC = cosh(y) - 1.0 and DS = sinh(y), where DC + DS are
computed in DEULER.

On input, the argument is in register pair (X2-X3), and on output, the result is in
register pair (XE-XF).

8-116 Math Library 60486513 H

DTANH

Vector Routine

The argument is checked upon entry. It is invalid if it is indefinite.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The function DTANH was tested against (DTANH(x - liS) + DTANH(lIS))/(1 +
DTANH(x - liS) * DTANH (liS)). Groups of 2,000 arguments were chosen randomly from
given intervals. Statistics on relative error were observed. Table S-IS shows a summary
of these statistics.

Table 8-18. Relative Error of DTANH

Interval From

.1250D+00

.6743D+00

Algorithm Error

Interval To

.5493D+00

.3431D+02

Maximum

.9403D-28

.3282D-27

Root Mean
Square

.2612D-28

.2348D-2S

The algorithm error is insignificant. It is predominated by the error in the sinh
expression in DEULER, but by various folding actions, the error is reduced even
further.

Effect o~ Argument Error

If a small error e occurs in the argument x, the error in the result is given by
e*sech(x)**2.

Example of DTANH Called From FORTRAN

Source Code:

c

Output:

PROGRAM DTANH_EXAMPLE

DOUBLE PRECISION x
x=0.5dO
PRINT * 'The DTANH of x is:'
PRINT * DTANH(x)
END

The DTANH of x is:
.462117157260009758502318484

60486513 H Function Descriptions 8-117

DTOD

DTOD
DTOD performs exponentiation for program statements that raise double precision
quantities to double precision exponents. It accepts two double precision arguments and
returns a double precision result. DTOD also accepts compiler-generated calls (for
example, the FORTRAN and Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RDTOD and DTOD, and the call-by-value
entry point is MLP$VDTOD.

The DTOD vector math function is divided into three routines having three separate
entry points defined as follows:

DTOD(scalar,vector) = MLP$DTODV
DTOD(vector,scalar) = MLP$DVTOD
DTOD(vector,vector) = MLP$DVTODV

The input domain for this function is the collection of all valid double precision pairs
(x,y), where x is positive and x**y is a valid quantity. If x is equal to zero, then y
must be greater than zero. The output range is included in the set of valid, positive
double precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

8·118 ~ath Library 60486513 H

DTOD

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x», where x > o.

Upon entry, the routine calls DLOG to compute log(x), and DEXP to compute
exp(y*log(x)).

V ector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

60486513 H Function Descriptions 8-119

DTOD

Error Analysis

The function DTOD was tested. Groups of 2,000 arguments were chosen randomly from
given intervals. Statistics on relative error were observed. Table 8-19 shows a summary
of these statistics.

Table 8-19. Relative Error DTOD

Test

x**y against x**2**(y/2)

x**2**1.5
against
x**2*x

x**1.O against x

Interval From

x interval
.1000D-01

y interval
-.6167D+03

.1000D+01

.5000D+00

.5000D+00

Effect of Argument Error

Root Mean
Interval To Maximum Square

.1000D+02 .5172D-25 .9207D-26

.6167D+03

.8053+411 .1133D-24 .4805D-25

.1000D+01 .1143D-27 .3978D-28

.1000D+01 .7133D-28 .3195D-28

If a small error e(b) occurs in the base b and a small error e(p) occurs in the exponent
p, the error in the result r is given approximately by:

r*(lo9(b)*e(p) + p*e(b)/b)

8-120 Math Library 60486513 H

Example of DTOD Called From FORTRAN

Source Code:

C

Output:

PROGRAM DTOD_EXAMPLE

DOUBLE PRECISION x, y, DTOD
x=20.0dO
y=140.0dO
PRINT * 'The DTOD of x and y is:'
PRINT *, DTOD(x,Y)
END

The DTOD of x and Y is:
1.39379657490816394634598238E+182

60486513 H

DTOD

Function Descriptions 8·121

DTOI

DTOI

DTOI performs exponentiation for program statements that raise double precision
quantities to double precision exponents. It accepts two double precision arguments and
returns a double precision result. DTOI also accepts compiler-generated calls (for
example, the FORTRAN and Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RDTOI and DTOI, and the call-by-value
entry point is MLP$VDTOI.

The DTOI vector math function is divided into three routines having three separate
entry points defined as follows:

DTOI(scalar,vector) = MLP$DTOIV
DTOI(vector,scalar) = MLP$DVTOI
DTOI(vector,vector) = MLP$DVTOIV

The input domain for this function is the collection of all valid pairs (x,y), where x is
a double precision quantity and y is an integer quantity. If x is equal to zero, then y
must be greater than zero. The output range is included in the set of valid double
precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

x infinite.

x is equal to zero and y is less than or equal to zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

Call-By-Value Routine

An x represents the base, and a y represents the exponent. If y is nont:legative and has
the binary representation OOO ... 0i(n)i(n-1) .. .i(1)i(O), where each i(j)(O ~ j ~ n) is 0 or
1, then:

y = i(n)*2**n + i(n-1)*2**(n-1) + ... + i(1)*2**1 + i(0)*2**0

and n = (log(2)y) = greatest integer not exceeding log(2)y. Then:

x**y = prod[x**2**j : 0.:: j < nand i{j) = 11.

8-122 Math Library 60486513 H

DTOI

The numbers x = X**O, x**2**O, x**2, x**4, ... , x**2n are generated by successive
squarings, and the coefficients i(n), ... , i(O) are obtained as the sign bits of successive
circular left shifts of y within the computer. A running product is formed during the
computation so that smaller powers of x and earlier coefficients i(j) can be discarded.
Thus, the computation becomes an iteration of the algorithm:

x**y 1, if Y = 0 and x not= O.
(x**2)**(y/2), if y > 0 and y is even.
x*(x**2)**«y - 1)/2), if y > 0 and y is odd.

Upon entry, if the exponent y is negative, the following steps are performed with R(k)
representing the running product after k iterations:

1. y is replaced by -y.

2. Y is shifted right (end-off) by 1.

This effectively divides y by 2 and the final multiplications are completed after the
running product, R(n-I) is replaced by IIR(n-l) in the case of exponent overflow for
very large negative exponents.

3. The algorithm continues as if the exponent was positive with the above formula for
(n-I) iterations.

4. Either of the following two methods produces the final result R(n):

a. If the final multiplication (depending on iln and the last bit of the power)
R(n-I) ** 2 * (x ** i(j)) gives exponent overflow, then the running product after
(n-I) iterations is inverted and the result is:

R(n) = (1/(R(n-1» * (l/(x ** i(j»), j = n

b. If there is no exponent overflow in the final multiplication, the result is:

R(n) = (l/(R(n-l) ** 2 * (x ** ;(j»)

In the routine, double precision quantities a = a(u)*a(l) and b = b(u)*b(l) are
multiplied according to:

a*b = (a*b)(u)*(a*b)(l)

where:

(a*b)(u) «(~(U)*b(l» + (a(l)*b(u») + (a(u)*(l)b(u») + (a(u)*b(u»

and

(a*b)(l) «(a(u)*b(l» + (a(l)*b(u») + (a(u)*(l)b(u») + (l)(a(u)*b(u»

60486513 H Function Descriptions 8-123

DTOI

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.
)

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Effect of Argument Error

If a small error e occurs in the base b, the error in the result will be given
approximately by n*b**(n-l)*e, where n is the exponent given to the routine.

8·124 Math Library 60486513 H

Example of DTOI Called From FORTRAN

Source Code:

C

Output:

PROGRAM OTOI_EXAMPLE

INTEGER i
DOUBLE PRECISION d, dtoi
i=2

d=10.0dO
PRINT *, 'The OTOI of d and is:'
PRINT *, OTOI(d,i)
END

The OTOI of and dis:
100.

DTOI

60486513 H Function Descriptions 8-125

DTOX

DTOX
DTOX performs exponentiation for program statements that raise double precision
quantities to double precision exponents. It accepts two double precision arguments and
returns a double precision result. DTOX also accepts compiler-generated calls (for
example, the FORTRAN and Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RDTOX and DTOX, and the call-by-value
entry point is MLP$VDTOX.

The DTOX vector math function is divided into three routines having three separate
entry points defined as follows:

DTOX(scalar,vector) = MLP$DTOXV
DTOX(vector,scalar) = MLP$DVTOX
DTOX(vector,vector) = MLP$DVTOXV

The input domain for this function is the collection of all valid pairs (x,y), where x is
a nonnegative double precision quantity and y is a real quantity. If x is equal to zero,
then y must be greater than zero. The output range is included in the set of valid,
positive double precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is va,lid, it is returned
to the calling program.

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x», where x > 0

Upon entry, the routine calls DLOG to compute log(x), and DEXP to compute
exp(y*log(x)) .

8-126 Math Library 60486513 H

DTOX

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

See the description of function DTOD.

Effect of Argument Error

If a small error e(b) occurs in the base b and a small error e(p) occurs in the exponent
p, the error in the result r is given approximately by:

r*(e(p)*log(b) + p*e(b)/b)

Example of DTOX Called From FORTRAN

Source Code:

C

Output:

PROGRAM DTOX_EXAMPLE

REAL x
DOUBLE PRECISION d, dtox
x=2.0
d=10.0dO
PRINT * 'The DTOX of d and x is:'
PRINT *, DTOX(d,x)
END

The DTOX of d and x is:
100.

60486513 H Function Descriptions 8·127

DTOZ

DTOZ
DTOZ performs exponentiation for I program statements that raise double precision
quantities to double precision exponents. It accepts two double precision arguments and
returns a double precision result. DTOZ also accepts compiler-generated calls (for
example, the FORTRAN and Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RDTOZ and DTOZ, and the call-by-value
entry point is MLP$VDTOZ.

The DTOZ vector math function is divided into three routines having three separate
entry points defined as follows:

DTOZ(scalar,vector) = MLP$DTOZV
DTOZ(vector,scalar) = MLP$DVTOZ
DTOZ(vector,vector) = MLP$DVTOZV

The input domain for this function is the collection of all valid pairs (x,y), where x is
a double precision quantity and y is a complex quantity. If x is equal to zero, then the
real part of y must be greater than zero, and the imaginary part must be equal to
zero. The output range is included in the set of valid double precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero, and the real part of y is less than or; equal to zero, or the
imaginary part of y is not equal to zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

Call-By-Value Routine

If the base is real and the exponent is complex, then:

base**exponent = x + i*y

Upon entry, the double precision base, x, is converted to complex, and the routine calls
ZTOZ to compute the result.

8-128 Math Library 60486513 H

(

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

y is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero, and the real part of y is less than or equal to zero, or the
imaginary part of y is not equal to zero.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
([-1.0,1.0],[-1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these
arguments was found to be 1.7431E-11.

Effect of Argument Error

DTOZ

If a small error e(b) occurs in the base b and a small error e(z) occurs in the exponent
z, the error in the result w is given approximately by:

w*(e(z)*log(b) + z*e(b)/b)

Example of DTOZ Called From FORTRAN

Source Code:

C

Output:

PROGRAM DTOZ_EXAMPLE

COMPLEX zeta, dtoz
DOUBLE PRECISION d
zeta = (5.0, -1)
d=10.0dO
PRINT * 'The OTOZ of d and zeta is:'
PRINT *, DTOZ(d,zeta)
END

The DTOZ of d and zeta is:
(-66820.15101903, -74398.03369575)

60486513 H Function Descriptions 8·129

ERF

ERF
ERF computes the error function. It accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RERF and ERF, the call-by-value entry
point is MLP$VERF, and the vector entry point is MLP$ERFV.

The input domain for this function is the collection of all valid real quantities. The
output range is included in the set of real quantities in the interval [-1.0,1.0].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if it is indefinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is branched to, and the result of the computation is returned
to the calling program.

Call-By-Value Routine

The routine calculates the smaller of erf(abs(x» and erfc(abs(x». The final value, which
is the sum of a signed function and a constant, is computed by using the identities:

erf(-x) = -erf(x)
erf(x) = 1.0 - erfc(x)

The forms used in ERF (y = ABS(x» are given in table 8-20.

Table 8-20. Forms Used in ERF

Range ERF ERFC

[-INF ,-5.625] -1.0 +2.0
(-5.625,-.477) -1.0+p2(y) +2.0-p2(y)
[-.477,0) -pl(y) +1.0+pl(y)
[0,+.477] +pl(y) +1.0-pl(y)
[.477,5.625) + 1.0-p2(y) p2(y)
[5.625,8.0) +1.0 p2(y)
[8.0,53.0] +1.0 p3(y)
(53.0, + INF) +1.0 underflow
+INF +1.0 0.0

The constants .477 and 53.0 are inverse erf(.5) and inverse erfc(2**-975), which are
approximately .47693627620447 and 53.0374219959898.

The function pI is a (5th order odd)/(8th order even) rational form. The functions p2
and p3 are exp(-x**2)*(rational form), where p2 is (7th order)/(8th order) and p3 is
(4th order)/(5th order). Since exp(-x**2) is ill-conditioned for large x, exp(-x**2) is
calculated bJ exp(u + e) = exp(u) + e*exp(u), where u = -x**2 upper and e =
-x**2 lower.5

5. The coefficients for p2 and p3 are from Hart, Cheney, Lawson, et aI., Computer Approximations, New
York, 1968, John Wiley and Sons.

8-130 Math Library 60486513 H

Vector Routine

The argument is checked upon entry. It is invalid if it is indefinite.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The function ERF was tested against 1 - e**(-x**2)*p(x)/q(x),. A group of 10,000
arguments was chosen randomly from the interval (0.0,8.0). The maximum relative
error of these arguments was found to be .2050E-13.

Effect of Argument Error

ERF

For small errors in the argument x, the amplification of absolute error is
(2/sqrt(pi))*exp(-x**2) and that of relative error is (2/sqrt(pi»*x*exp(-x**2)/f(x) where f
is erf or erfc. The relative error is attenuated for ERF everywhere and for ERFC when
x < .53. For x > .53, the relative error for ERFC is amplified by approximately 2x.

Example of ERF Called From FORTRAN

Source Code:

c

Output:

PROGRAM ERF_EXAMPLE

REAL x
x=100000.0
PRINT * 'The error function of x is:'
PRINT *. ERF(x)
ENO

The error function of x is:
1.

60486513 H Function Descriptions 8-131

ERFC

ERFC
ERFC computes the complementary error function. It accepts a real argument and
returns a real result.

The call-by-reference entry points are MLP$RERFC and ERFC, the call-by-value entry
point is MLP$VERFC, and the vector entry point is MLP$ERFCV.

The input domain for this function is the collection of all valid real quantities less
than 53.037, but not equal to infinity. The output range is included in the set of valid,
nonnegative real quantities less than or equal to 2.0.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is greater than 53.037, but not equal to infinity.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is branched to, and the result of the computation is returned
to the calling program.

Call-By-Value Routine

The routine calculates the smaller of erf(abs(x» and erfc(abs(x». The final value, which
is the sum of a signed function and a constant, is computed by using the identities:

erf(-x) = -erf(x)
erf(x) = 1.0 - erfc(x)

The forms used are given in table 8-20.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is greater than 53.037, but not equal to infinity.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8·132 Math Library 60486513 H

Error Analysis

The functionERFC was tested against e**(-x**2)*p(x)/q(x)'. A group of 10,000
arguments was chosen randomly from the interval (0.0,8.0). The maximum relative
error of these arguments was found to be .9531E-11.

Effect of Argument Error

ERFC

For small errors in the argument x, the amplification of absolute error is
(2/sqrt(pi))*exp(-x**2) and that of relative error is (2/sqrt(pi))*x*exp(-x**2)/f(x) where f
is erf or erfc. The relative error is attenuated for ERF everywhere and for ERFC when
x < .53. For x > .53, the relative error for ERFC is amplified by approximately 2x.

Example of ERFC Called From FORTRAN

Source Code:

C

Output:

PROGRAM ERFC_EXAMPLE

REAL x
x=53.036
PRINT * 'The complementary error function of x is:'
PRINT *, ERFC(x)
END

The complementary error function Of x is:
2.727387727515E-1224

60486513 H Function Descriptions 8-133

EXP

EXP
EXP computes the exponential function. It accepts a real argument and returns a real
result.

The call-by-reference entry points are MLP$REXP and EXP, the call-by-value entry
point is MLP$VEXP, and the vector entry point is MLP$EXPV.

The input domain for this function is the collection of all valid real quantities whose
value is greater than or equal to -4097*10g(2) and less than or equal to 4095*10g(2).
The output range is included in the set of valid positive real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is greater than 4095*log(2).

It is less than -4097*log(2).

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is infinite, it is invalid,
and a diagnostic message is displayed. If the result is valid, it is returned to the
calling program.

8-134 Math Library 60486513 H

EXP

Call-By-Value Routine

If x is valid, EXP(x) is calculated by reducing it to the simpler task of approximating
e**g*2**(NL/32). This reduction is derived as follows:

exp(x) = e**(g + (32*NH + NL)*(ln(2)/32»
= e**(g + NH*ln(2) + (NL/32)*ln(2»
= e**g*2**NH*2**(NL/32)
= (e**g*2**(NL/32»*2**NH

where

n is the nearest integer to 32*x/1n(2).
9 is a real number such that x = 9 + n*(ln(2)/32). Thus.
abs(g) is less than or equal to 1n(2)/64.
NH is f1oor(n/32).
NL is greater than or equal to O. 1ess'than or equal to 31.
and is the integer such that n = 32~NH + NL.

The reduction:

e**g*2**(NL/32)

is approximated to 48 bits of precision using the following minimax approximation:

Z = Q(NL, g) + Qbias(NL)

where for each of the 32 values of NL, Qbias(NL) is a number that is represented
exactly in binary f1oating-point and which is slightly less than 2**(-1I64)*2**(NL/32),
which is the minimum value of e**g*2**(NL/32).

Q(NL, g) denotes the 32 quintic polynomials in g which approximate e**g*2**(NL/32) -
Qbias(NL) with the lowest maximum relative error for abs(g) ~ In(2)/64. Z is evaluated
with almost no error since the low bits of Q(NL, g), which may be inaccurate due to
truncation errors, are insignificant with respect to Qblas(NL). Thus, Z*2**NH, which is
evaluated simply by adding NH to the exponent of Z, is an accurate approximation to
EXP(x).

60486513 H Function Descriptions 8-135

EXP

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is greater than 4095*log(2).

It is less than -4097*log(2).

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 8-21 shows a summary of these statistics.

Table 8·21. Relative Error EXP

Root Mean
Test Interval From Interval To Maximum Square

EXP(x - 2.8125) -.3466E+01 -.2805E+04 .7335E-14 .3766E-14
against
EXP(x)IEXP(2.8125)

EXP(x - .0625) against -.2841E+00 .3466E+00 .7557E-14' .3945E-14
EXP(x)IEXP(.0625)

EXP(x - 2.8125) .6931E+01 .2838E+04 .7384E-14 .3850E-14
against
EXP(x)IEXP(2.8125)

8-136 Math Library 60486513 H

EXP

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result y is given be y*e.

Example of EXP Called From FORTRAN

Source Code:

c

Output:

PROGRAM EXP_EXAMPLE

REAL x
x=1000.0
PRINT * 'The EXP of x 1S:'

PRINT *, EXP(x)
END

The EXP of x 15:
1.970071114017E+434

60486513 H Function Descriptions 8-137

EXTB

EXTB
EXTB extracts bits from the first argument, x, as specified by the second and third
arguments, i1 and i2; that is, EXTB(x, il, i2) extracts bits from x starting with
position il with length of i2. It accepts any type except character for argument x and
accepts integer for arguments i1 and i2. The result is boolean.

If x is of type double precision or complex, only the first word is used. The result is
returned with a zero-filled second word. The following example FORTRAN program
uses function EXTB with double precision arguments to illustrate the zero-filled second
word.

Source Code:

C

Output:

PROGRAM EXTB_EXAMPLE

EXTERNAL EXTB
DOUBLE PRECISION d1,d2
BOOLEAN x(2),y(2)
EQUIVALENCE (x(1),d1),(y(1),d2)
x(1)=Z"1234567890ABCDEF"
x(2)=Z"FEDCBA0987654321"
y(1)=Z"1111111111111111"
y(2)=Z"2222222222222222"
d2=EXTB(d1,0,32)
PRINT *,x(1),x(2)
PRINT *,y(1),y(2)
END

Z"1234567890ABCDEF" Z"FEDCBA0987654321"
Z"12345678" Z"O"

Argument x must be byte aligned and be at least 64 bits in length. The argument used
is the leftmost 64 bits of x. Argument i1 indicates the first bit to be extracted
numbering from bit 0 on the left. Argument i2 indicates the number of bits to be
extracted. The extracted bits occupy the rightmost bits of the result, with 0 bits as fill
on the left.

The call-by-reference entry points are MLP$REXTB and EXTB, and the call-by-value
entry point is MLP$VEXTB.

The input domain for this function is such that i1 is greater than or equal to 0 and
less than 64; i2 is greater than or equal to 0; and il + i2 is less than or equal to 64.
If i2 = 0, the result is 0 (all 0 bits). The data type of argument x is not significant to
the processing of this function. The output range is iricluded in the set of valid boolean
quantities.

8-138 Math Library 60486513 H

EXTB

Call-By-Reference Routine

The arguments i1 and i2 are checked upon entry. They are invalid if:

i1 is less than zero.

i2 is less than zero.

i1 is greater than or equal to 64.

i1 + i2 is greater than 64.

If the arguments are invalid, a diagnostic message is displayed. If the arguments are
valid, the call-by-value routine is branched to, and the result of the function is
returned to the calling program.

Call-By-Value Routine

The extracted bits from the first argument, x, as specified by the second and third
arguments, i1 and i2, are returned. The leftmost 64. bits of x are used.

Example of EXTB Called From FORTRAN

Source Code:

C

Output:

PROGRAM EXTB_EXAMPLE

EXTERNAL EXTB
REAL x
INTEGER i 1, i2
x=Z"4321FEDCBA987654"
i1=1
i2=48
PRINT * 'The EXTB of x is:'
PRINT * EXTB(x,i1,i2)
END

The EXTB of x is:
Z"4321FEDCBA98"

60486513 H Function Descriptions 8-139

lABS

lABS
lABS computes the absolute value of an argument. It accepts an integer argument and
returns an integer result.

The call-by-reference entry points are MLP$RIABS and lABS, and the call-by-value
entry point is MLP$VIABS.

The input domain for this function is the collection of all valid integer quantities. The
output range is included in the set of valid, nonnegative integer quantities.

Call-By-Reference Routine

No errors are generated by lABS. The call-by-reference routine branches to the
call-by-value routine.

Call-By-Value Routine

The sign bit of the argument is extended throughout a word to form a mask. The
argument is subtracted from the exclusive OR of the mask and the argument to form
the result.

Example of lABS Called From FORTRAN

Source Code:

c

Output:

PROGRAM lABS_EXAMPLE

EXTERNAL lABS
INTEGER i
i=-40.0
PRINT· 'The absolute value of is:'
PRINT· IABS(;)
END

The absolute value of is:
40

8-140 Math Library 60486513 H

101M

IDIM

IDIM computes the positive difference between two arguments. It accepts two integer
arguments and returns an integer result.

The call-by-reference entry points are MLP$RIDIM and IDIM, and the call-by-value
entry point is MLP$VIDIM.

The input domain for this function is the collection of all valid integer pairs (x,y) such
that x - y is less than 2**63. The output range is included in the set of valid,
nonnegative integer quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

x - y is greater than or equal to 2**63.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is branched to, and the result of the computation is returned
to the calling program.

Call-By-Value Routine

Upon entry, the difference between the two arguments is formed, and the sign bit is
extended across another word to form a mask. The boolean product of the mask's
complement and the difference is formed.

Given arguments (x,y):

result x - y if x > y
result 0 if x ~ y.

Example of IDIM Called From FORTRAN

Source Code:

c

Output:

PROGRAM 101M_EXAMPLE

EXTERNAL 101M
INTEGER i 1, i2
i1=1988
i2=1929
PRINT •
PRINT •
END

'The 101M of i1,i2 is:'
IOIM(i 1, i2)

The 101M of i1,i2 is:
59

60486513 H Function Descriptions 8-141

IDNINT

IDNINT
IDNINT returns the nearest integer to an argument. It accepts a double precision
argument and returns an integer result.

The call-by-reference entry points are MLP$RIDNINT and IDNINT, and the
call-by-value entry point is MLP$VIDNINT.

The input domain for this function is the collection of all valid double precision
quantities. The output range is included in the set of valid integer quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is branched to, and the result of the computation is returned
to the calling program.

Call-By-Value Routine

If the argument is ~ 0, .5 is added to it, and the result is added to a special
floating-point zero that forces truncation. If the argument is < 0, -.5 is added to it,
a.nd the result is added to a special floating-point zero that forces truncation.

If the value of the argument is not in the range [-2**63 - 2**15,2**63 - 2**15], then
the high order bits of the resulting integer are lost (the result is truncated in its
leftmost position).

8·142 Math Library 60486513 H

Example of IDNINT Called From FORTRAN

Source Code:

C

Output:

PROGRAM IDNINT_EXAMPLE

EXTERNAL IDNINT
DOUBLE PRECISION x
x=999.999dO
PRINT *, 'The nearest integer to x is:'
PRINT *, IDNINT(x)
END

The nearest integer to x is:
1000

60486513 H

IDNINT

Function Descriptions 8-143

INSB

INSB
INSB inserts bits from the first argument, x, into a copy of the fourth argument, y, as
specified by the second and third arguments, il and i2; that is, INSB(x, il, i2, y)
inserts bits from x starting with position il with length of i2 into a copy of y. It
accepts any type except character for arguments x and y, and accepts integer for
arguments il and i2. The result is boolean.

If x or y is of type double precision or complex, only the first word is used. The result
is returned with a zero-filled second word; however, for double precision the first 4
bytes of the first word are duplicated in the second word. This duplication preserves
the exponent in the second word. The following FORTRAN example uses function INSB
with double precision arguments to illustrate the zero-filled second word and the
duplication of the exponent 1111 in the second word.

Source Code:

C

Output:

PROGRAM INSB_EXAMPLE

EXTERNAL INSB
DOUBLE PRECISION dl.d2.d3
BOOLEAN x(2).y(2).z(2)
EQUIVALENCE (x(1).dl).(y(1).d2).(z(1).d3)
x(l)=Z" l234567890ABCDEF"
x(2)=Z"FEDCBA098765432l"
y(l)=Z"llllllllllllllll"
y(2)=Z"2222222222222222"
d3=lnsb(dl,16,16,d2)
PRINT ·,x(1),x(2),y(1),y(2)
PRINT ·,z(1),z(2)
END

Z"1234567890ABCDEF" Z"FEDCBA098765432l" Z"llllllllllllllll" Z"2222222222222222"
Z"1111CDEFllll1lll" Z"11ll000000000000"

Arguments x and y must be byte aligned and be at least 64 bits in length. The
argument used is the leftmost 64 bits of each x and y. Argument i1 indicates first bit
position in y for insertion. Argument i2 indicates the rightmost number of bits taken
from x to be inserted into y. .

The call-by-reference entry points are MLP$RINSB and INSB, and the call-by-value
entry point is MLP$VINSB.

The input domain for this function is such that il is greater than or equal to 0 and
less than 64; i2 is greater than or equal to 0; and il + i2 is less than or equal to 64.
If i2 = 0, the result is the value of y. The data type of arguments x and y is not
significant to the processing of this function. The output range is included in the set of
valid boolean quantities.

8·144 Math Library 60486513 H

INSB

Call-By-Reference Routine

The arguments i1 and i2 are checked upon entry. They are invalid if:

i1 is less than zero.

i2 is less than zero.

i1 is greater than or equal to 64.

i1 + i2 is greater than 64.

If the arguments are invalid, a diagnostic message is displayed. If the arguments are
valid, the call-by-value routine is branched to, and the result of the function is
returned to the calling program.

Call-By-Value Routine

The inserted bits from the first argument, x, into a copy of the fourth argument, y, as
specified by the second and third arguments, i1 and i2, are returned. The leftmost 64
bits of x and yare used.

Example of INSB Called From FORTRAN

Source Code:

C

Output:

PROGRAM INSB_EXAMPLE

EXTERNAL INSB
REAL X,Y
INTEGER i 1, i 2
x=Z"4321FEDCBA987654"
y=Z"O"
i1=0
i2=48
PRINT * 'The inserted bits from x, as specified by ,
PRINT * i1 and i2, into a copy of yare: '
PRINT * INSB(x,i1,i2,Y)
END

The inserted bits from x, as specified by
i1 and i2, into a copy of yare:

Z"FEDCBA9876540000"

60486513 H Function Descriptions 8-145

ISIGN

ISIGN
ISIGN transfers the sign of one argument to another argument. It accepts two integer
arguments and returns an integer result. The result is a copy of the first argument
with the sign of the second argument.

The call-by-reference entry points are MLP$RISIGN and ISIGN, and the call-by-value
entry point is MLP$VISIGN.

The input domain for this function is the collection of all valid integer quantities. The
output range is incl,uded in the set of valid integer quantities.

Call-By-Reference Routine

No errors are generated by ISIGN. The call-by-reference routine branches to the
call-by-value routine.

Call-By-Value Routine

The exclusive OR of the first argument, along with the second argument, is shifted to
extend its sign bit across a word to produce a mask. The mask is then subtracted from
the exclusive OR of the mask and argument to form the result.

8-146 Math Library 60486513 H

Example of ISIGN Called From FORTRAN

Source Code:

c

Output:

PROGRAM ISIGN_EXAMPLE

EXTERNAL ISIGN
INTEGER i 1, i2
i1=-140
i2=750
PRINT * 'The ISIGN of i1, i2 is:'
PRINT * ISIGN(i1,i2)
END

The ISIGN of i1, i2 is:
140

60486513 H

ISIGN

Function Descriptions 8·147

ITOD

ITon
ITOD performs exponentiation for program statements that raise double precision
quantities to double precision exponents. It accepts two double precision arguments and
returns a double precision result. ITOD also accepts compiler-generated calls (for
example, the FORTRAN and Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RITOD and ITOD, and the call-by-value
entry point is MLP$VITOD.

The input domain for this function is the collection of all valid pairs (x,y), where x is
a nonnegative integer quantity and y is a double precision quantity. If x is equal to
zero, then y must be greater than zero. The output range is included in the set of
valid double precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. The argument pair is invalid if:

y is indefinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x», where x > o.

Upon entry, the integer argument is converted to double precision, and the routine
calls DLOG to compute log(x), and DEXP to compute exp(y*log(x)).

8·148 Math Library 60486513 H

I

\

Error Analysis

See the description of function DTOD.

Effect of Argument Error

If a small error e occurs in the exponent, the error in the result r is given
approximately by r*e*log(b), where b is the base.

Example of ITOD Called From FORTRAN

Source Code:

C

Output:

PROGRAM ITOO_EXAMPLE

INTEGER i
OOUBLE PRECISION d. dl. itod
i=2
d=10.0(lO
dl=ITOD(i.d)
PRINT *. 'The ITOO of and dis:'
PRINT *. dl
END

The ITOO of and dis:
1024.

ITOD

60486513 H Function Descriptions 8-149

ITOI

ITOI

ITOI performs exponentiation for program statements that raise double precision
quantities to double precision exponents. It accepts two double precision arguments and
returns a double precision result. ITO I also accepts compiler-generated calls (for
example, the FORTRAN and Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RITOI and ITOI, and the call-by-value
entry point is MLP$VITOI.

The input domain for this function is the collection of all valid integer pairs (x,y) such
that the absolute value of x**y is less than 2**63. If x is equal to zero, then y must
be greater than zero. The output range is included in the set of valid integer
quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. The argument pair is invalid if:

x is zero and y is zero or negative.

If the argument pair is invalid, zero is returned, and 'a diagnostic. message is displayed.
If the argument pair is valid, the call-by-value routine is called, and the :t:esult of the
computation is returned to the call-by-reference routine. The result is checked. If the
result is infinite, it is invalid, and a diagnostic message is displayed. If the result is
valid, it is returned to the calling program.

Call-By-Value Routine

The arguments are checked to determine whether the exponentiation conforms to a
special case. If it does, the proper value is immediately returned, or if the special case
is an error condition, a hardware exception condition is forced. The special cases are:

0**0 = error
O**J error if J < 0
1**J

-1**J +1 or -1 (J even or odd)
1**0 1
1**J 0 if J < 0

If the expoIl:entiation does not fit any special case, the algorithm listed below is used
for the computation.

An x represents the base and a y represents the exponent. If x has binary
representation 000 000i(n)i(n-1) .. .i(i)i(0), where each i(j)(O ~ j ~ n) is 0 or 1, then:

y i(0)*2**0 + i(1)*2**1 + ... + i(n)*2**n
n = (log(2)y) = greatest integer not exceeding 10g(2)y

Then:

x**y prod[x**2**j 0 ~ j < nand i(j) 1]

8-150 Math Library 60486513 H

ITOI

The numbers x = X**O, x**2**O, x**2, x**4, ... , x**(2)**n are generated during the
computation by successive squarings, and the coefficients i(O), , i(n) are obtained as
sign bits of successive right shifts of y within the computer. A running product is
formed during the computation so that smaller powers of x can be discarded. The
computation then becomes an iteration of the algorithm:

x**y 1, if Y = 1, and x not= 0
(x*x)**(y/2), if y > 0 and y is even
(x*x)**«y-1)/2)*x, if y > 0 and y is odd

Example of ITOI Called From FORTRAN

Source Code:

c

Output:

PROGRAM ITOI_EXAMPLE

INTEGER 11, i 2. 1 x
11=2
i2=8
i x = I TO I(i 1 • i 2)
PRINT * 'The ITOI of i1 and 12 is:'
PRINT *. ix
END

The ITOI of i1 and i2 is:
256

60486513 H Function Descriptions 8-151

ITOX

ITOX

ITOX performs exponentiation for program statements that raise integer quantities to
real exponents. It accepts an integer argument and a real argument and returns a real
result. ITOX also accepts compiler-generated calls (for example, the FORTRAN and
Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RITOX and ITOX, and the call-by-value
entry point is MLP$VITOX.

The input domain for this function is the collection of all valid pairs (x,y), where x is
a nonnegative integer quantity, y is a real quantity, and x**y is a valid quantity. If x
is equal to zero, then y must be greater than zero. The output range is included in the
set of valid, nonnegative real quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. The argument pair is invalid if:

y is indefinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x», where x ~ 1

Upon entry, x is converted to real, and the routine calls XTOX to compute the result.
Zero is returned if the base is zero and the exponent is positive.

Error Analysis

See the description of function XTOX.

Effect of Argument Error

If a small error e occurs in the exponent x, the error in the result r is given
approximately by r*e*log(n), where n is the base.

8-152 Math Library 60486513 H

Example of ITOX Called From FORTRAN

Source Code:

c

Output:

PROGRAM ITOX_EXAMPLE

INTEGER
REAL x, r, itox
i=2
x=8.8
r=ITOX(i,x)
PRINT *, 'The ITOX of and x is:'
PRINT *,r
END

The ITOX of i and x is:
445.7218884076

60486513 H

ITOX

Function Descriptions 8-153

.ITOZ

ITOZ
ITOZ performs exponentiation for program statements that raise integer quantities to
real exponents. It accepts an integer argument and a real argument and returns a real
result. ITOZ also accepts compiler-generated calls (for example, the FORTRAN and Ada
compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RITOZ and ITOZ, and the call-by-value
entry point is MLP$VITOZ.

The ITOZ vector math function is divided into three routines having th:ree separate
entry points defined as follows: .

ITOZ(scalar.vector) = MLP$ITOZV
ITOZ(vector,scalar) = MLP$IVTOZ
ITOZ(vector,vector) = MLP$IVTOZV

, .

The input domain for this function is the collection of all valid pairs (x,y), where x is
a nonnegative nonzero integer quantity and y is a complex quantity. If x is' equal to
zero, then the real part of y must be greater than zero, and the imaginary ·part must
be equal to zero. The output range is included in the set of valid complex quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

y is indefinite.

y is infinite.

x is equal to zero, and the real part of y is zero or negative, or the imaginary part
of y is not equal to zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

Call-By-Value Routine

If n is a positive integer, and x and yare real, then:

n**(x + i*y) = exp(x*log(n»*cos(y*log(n» + i*exp(x*log(n»*sin(y*log(n»

Upon entry, n is converted to complex, and the routine calls ZTOZ to compute the
result.

8·154 Math Library 60486513 H

ITOZ

Vector Routine

The argument pair _ (x,y) is checked upon entry. It is invalid if:

y is indefinite.

y is infinite.

x is equal to zero, and the real part of y is zero or negative, or the imaginary part
of y is not equal to zero.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
([-1.0,1.0],[-1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these
arguments was found to be 1.7431E-l1.

Effect of Argument Error

If a small error e(z) = e(x) + i*e(y) occurs in the exponent z, the error in the result
w is given approximately by w*log(n)*e(z).

Example of ITOZ Called From FORTRAN

Source Code:

C

Output:

PROGRAM ITOZ_EXAMPLE

INTEGER i
COMPLEX z, zeta, itoz
i = 50
z = (5.0, -1)

zeta = ITOZ(i,z)
PRINT * 'The ITOZ of and z is:'
PRINT *, zeta
END

The ITOZ of i and z is:
(-224253443.769,217638790.1035)

60486513 H Function Descriptions 8·155

'MOD

MOD
MOD computes the remainder of the ratio of two arguments. It accepts two integer
arguments and returns an integer result.

The call-by-reference entry points are MLP$RMOD and MOD, and the call-by-value
entry point is MLP$VMOD.

The input domain for this function is the collection of all valid integer pairs (x,y),
where x is an integer quantity and y is a nonzero integer quantity. The output range
is included in the set of valid integer quantities.

Call-By-Reference Routine

Upon entry, the argument pair (x,y) is checked. It is invalid if:

y is equal to zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is branched to, and the result is returned.

Call-By-Value Routine

Upon entry, the arguments x and yare converted to real, the quotient x/y is formed,
and the result is multiplied by y and then subtracted from x.

8·156 Math Library 60486513 H

Example of MOD Called From C

Source Code:

main()
{

int 83;
int j 8;
int k;

/* Use the left bit-shift operator «<) to left justify the address
16 bits. This is necessary because the MOD Math Library function
expects left-justified addresses.

*/
k = MOD«int)(&i)«16,(int) (&j)«16);
printf (" The Mod of 83 and 8 is: %d", k);

exit (0);

Output:

The Mod of 83 and 8 is:
3

Example of MOD Called From FORTRAN

Source Code:

c

Output:

PROGRAM MOD_EXAMPLE

INTEGER i 1, i2
i1=83
i2=8
PRINT * 'The MOD of i1 and i2 is:'
PRINT * MOD(i1,i2)

The MOD of i1 and i2 is:
3

MOD

60486513 H Function Descriptions 8-157

NINT

NINT

NINT finds the nearest integer to an argument. It accepts a real argument and returns
an integer result.

The call-by-reference entry points are MLP$RNINT and NINT, and the call-by-value
entry point is MLP$VNINT.

The input domain for this function is the collection of all valid real quantities. The
output range is included in the set of valid integer quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is branched to, and the result of the computation is returned
to the calling program.

Call-By-Value Routine

If the argument is ~ 0, .5 is added to it, or if the argument is < 0, -.5 is added to
it. This sum is converted from floating-point to integer and returned.

Example of NINT Called From FORTRAN

Source Code:

c

Output:

PROGRAM NINT_EXAMPLE

EXTERNAL NINT
INTEGER i 1, i2
REAL X,Y
x=100.1234
y=12.12
i1=NINT(x)
i2=NINT(y)
PRINT * 'The nearest integers to x and yare:'
PRINT * NINT(x)
PRINT * NINT(Y)
END

The nearest integers to x and yare:
100
12

8-158 Math Library 60486513 H

RANF

RANF
RANF generates the next random number in a series of random numbers. It accepts a
dummy argument and returns a real result.

The call-by-reference entry points are MLP$RRANF and RANF, and the call-by-value
entry point is MLP$VRANF.

There is no input domain to this function. The output range is included in the set of
positive real quantities less than 1.0.

Call-By-Reference Routine

No errors are generated in RANF. The call-by-reference routine branches to the
call-by-value routine.

Call-By-Value Routine

RANF uses the multiplicative congruential method modulo 2**48. The formula is:

x(n + 1.0) = a*x(n) (mod 2**48)

The library holds a random seed (mlv$initial_seed) and a multiplier (mlv$random_
multiplier). The random seed can be changed to any valid seed value prior to calling
RANF by use of the function RAN SET (described later in this chapter). Upon entry at
RANF, the random seed is multiplied in double precision by mlv$random_multiplier to
generate a 96-bit product, which is the new seed partially normalized by one bit. This
result is then denormalized. The lower 48 bits are formed with an exponent that yields
a result between 0 and 1.0 to become the new random seed (mlv$random_seed). The
current seed for the task is updated with the newly formed unnormalized seed. The
seed is used to generate subsequent random numbers. The default initial value of
mlv$initial_seed is 40002BC68CFE166D hexadecimal. The new random seed is
normalized and returned as the random number.

The multiplier (mlv$random_ multiplier) is constant and has a value of
40302875A2E7B175 hexadecimal. This multiplier passes the Coveyou-MacPherson test,
the auto-correlation test with lag ~ 100, the pair triplet test, and other statistical tests
for randomness.6

6. Algorithm and Constants, Copyright 1970 by Krzysztof Frankowski. Computer Information and Control
Science, University of Minnesota.

60486513 H Function Descriptions 8-159

RANF

Example of RANF Called From Ada

Source Code:

package RANDOM_LIBRARY is

function RANF return FLOAT;
pragma INTERFACE (MATH_LIBRARY, RANF);

procedure RANGET (RESULT: in out FLOAT);
pragma INTERFACE (MATH_LIBRARY, RANGET);

procedure RANSET (VALUE : in out FLOAT);
pragma INTERFACE (MATH_LIBRARY, RANSET);

end RANDOM_LIBRARY;

with RANDOM_LIBRARY; use RANDOM_LIBRARY;
with TEXT_IO; use TEXT_IO;

procedure RANDOM is

xl : FLOAT;
x2 : FLOAT;

package FLT_IO is new FLOAT_IO (FLOAT);
use FLT_IO;

begin

PUT_LINE ("Begin");
xl := 0.7777;
PUT ("Call RANSET with : "); PUT (xl); NEW_LINE;
RAN SET (xl);
RANGET (x2);
PUT ("RANGET returned: "); PUT (x2); NEW_LINE;
xl := RANF;
x2 := RANF;
PUT ("RANF returned: "); PUT (xl); NEW_LINE;
PUT ("RANF returned: "); PUT (x2); NEW_LINE;
PUT_LINE ("End");

end RANDOM;

Output:

Begin
Call RANSET with: 7.777000000000E01
RANGET returned: 7.777000000000E01
RANF returned
RANF returned
End

8-160 Math Library

8.022426980171E-01
5.003749989168E-02

60486513 H

Example of RANF Called From C

Source Code:

/* This C program uses the RANF function to compute 10 random numbers
between 0 and 1.

*/

Udefine MAX 10

main()
{

int count = 0; /* loop counter

int random_number; /* Random number generated by RANF. */

for (count=O; count < MAX; ++count)
{

random_number = RANF();

*/

printf("Random number "d is "f.\n", count, random_number);

}

Output:

Random number 0 is 0.580114.
Random number 1 is 0.950513.
Random number 2 is 0.786371.
Random number 3 is 0.297620.
Random number 4 is 0.453700.
Random number 5 is 0.006262.
Random number 6 is 0.275736.
Random number 7 is 0.305651.
Random number 8 is 0.689101.
Random number 9 is 0.382662.

-- Program exit code value was 10.

RANF

60486513 H Function Descriptions 8-161

RANGET

RANGET
RANGET is a callable program procedure that returns the current random number
seed of a task. It accepts a real argument.

The call-by-reference entry points are MLP$RRANGET and RANGET. There is no
call-by-value routine for RANGET.

The result is returned through parameter n and is a positive real quantity in the
interval (0,1.0).

Call-By-Reference Routine

RANGET returns the current seed, between 0 and 1, of the random number generator.
The value returned might not be normalized. This seed can be used to restart the
random sequence at exactly the same point. The current seed is mlv$random_seed.

Call-By-Value Routine

There are no call-by-value entry points for RANGET.

Example of RANGET

See the example Ada program in· the RANF description' in this chapter for an example
of a RANGET call.

8-162 Math Library 60486513 H

RANSET

RANSET
RAN SET is a callable program procedure that sets the seed of the random number
generator. It accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RRANSET and RANSET. There is no
call-by-value routine.

The input domain for this procedure is the collection of all possible full word bit
patterns. There is no output.

Call-By-Reference Routine

RANSET uses the value passed to it to form a valid seed for the random number
generator. If the argument is zero, the seed is set to its initial value (mlv$initial_seed)
at load time. Otherwise, the value passed has its exponent set to 4000 hexadecimal,
and the coefficient is made odd. This value is then saved and becomes the new seed
(mlv$random_seed) for the task.

Example of RANSET

See the example Ada program in the RANF description in this chapter for an example
of a RANSET call.

60486513 H Function Descriptions 8·163

SIGN'

SIGN
SIGN transfers the sign from one argument to another argument. It accepts two real
arguments and returns a real result. The result is a copy of the first argument with
the sign of the second argument.

The call-by-reference entry points are MLP$RSIGN and SIGN, and the call-by-value
entry point is MLP$VSIGN. .

The input domain for this function is the collection of all valid real quantities. The
output range is included in the set of valid real quantities.

Call-By-Reference Routine

No errors are generated by SIGN. The call-by-reference routine branches to the
call-by-value routine.

Call-By-Value Routine

The sign bit of the second argument is inserted into the sign bit of the first argument.

8·164 Math Library 60486513 H

Example of SIGN Called From FORTRAN

Source Code:

c

Output:

PROGRAM SIGN_EXAMPLE

EXTERNAL SIGN
REAL x, Y
x=-180.0
y=90.0
PRINT * 'The SIGN of x, y is:'
PRINT * SIGN(x,Y)
ENO

The SIGN of x, Y is:
180.

60486513 H

SIGN

Function Descriptions 8-165

SIN

SIN

SIN computes the sine function. It accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RSIN and SIN, the call-by-value entry
point is MLP$VSIN, and the vector entry point is MLP$SINV.

The input domain for this function is the collection of all valid real quantities whose
absolute value is less than 2**47. The output range is included in the set of valid real
quantities in the interval [-1.0,1.0].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

See the description of function COS.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The function SIN was tested against 3*SIN(xl3) - 4*SIN(xl3)**3. Groups of 2,000
arguments were chosen randomly from given intervals. Statistics on relative error were
observed. Table 8-22 shows a summary of these statistics.

Table 8-22. Relative Error of SIN

Interval From

O.OOOOE+OO
.1885E+02

8-166 Math Library

Interval To

.1571E+Ol

.2042E+02

Maximum

.8305E-14

.1355E-13

Root Mean
Square

.2874E-14

.3168E-14

60486513 H

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result is given
approximately by e*cos(x) for sin(x) and -e*sin(x) for cos(x).

Example of SIN Called From FORTRAN

Source Code:

c

Output:

PROGRAM SIN_EXAMPLE

REAL x
x=0.5
PRINT *, 'The SIN of x is:'
PRINT * SIN(x)
END

The SIN of x is:
.4794255386042

SIN

60486513 H Function Descriptions 8-167

SIND
SIND computes the sine function of an argument in degrees. It accepts a real argument
and returns a real result.

The call-by-reference entry points are MLP$RSIND and SIND, the call-by-value. entry
point is MLP$VSIND, and the vector entry point is MLP$SINDV.

The input domain for this function is the collection -of all valid real quantities whose
absolute value is less than 2**47. The output range is included in the set of valid real
quantities in the interval [-1.0,1.0].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

The result is put in the interval [-45,45] by finding the nearest integer, n, to xJ90, and
subtracting n*90 from the argument. The reduced argument is then multiplied by
pi/I80. The appropriate sign is copied to the value of the appropriate function, sine or
cosine, as determined by these identities:

sin(x + 360 degrees) sin(x)
sin(x + 180 degrees) -sin(x)
sin(x + 90 degrees) cos(x)
sin(x - 90 degrees) -cos(x)
cos(x + 360 degrees) cos(x)
cos(x + 180 degrees) -cos(x)
cos(x + 90 degrees) -sin(x)
cos(x - 90 degrees) sin(x)

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8-168 Math Library 60486513 H

SIND

Error Analysis

The reduction to (-45,+45) is exact; the constant piJISO has relative error 1.37E-15,
and multiplication by this constant has a relative error 5.33E-15, and a total error of
6.7E-15. Since errors in the argument of SIN and COS contribute only pi/4 of their
value to the result, the error due to the reduction and conversion is at most 5.26E-15
plus the maximum error in SINCOS over (-piJ4,+piJ4). The maximum relative error
observed for a group of 10,000 arguments chosen randomly in the interval [0,360] was
.1403E-13 for SIND and .7105E-14 for COSD.

Effect of Argument Error

Errors in the argument x are amplified by xltan(x) for SIND and x*tan(x) for COSD.
These functions have a maximum value of pi/4 in the interval (-45, + 45) but have
poles at even (SIND) or odd (COSD) multiples of 90 degrees, and are large between
multiples of 90 degrees if x is large.

Example of SIND Called From FORTRAN

Source Code:

c

Output:

PROGRAM SIND_EXAMPLE

REAL x
x=0.5
PRINT * 'The SIND of x is:'
PRINT * SIND(x)
END

The SIND of x is:
.008726535498374

60486513 H Function Descriptions 8-169

SINH

SINH
SINH computes the hyperbolic sine function. It accepts a real argument and returns a
real result.

The call-by-reference entry points are MLP$RSINH and SINH, the call-by-value entry
point is MLP$VSINH, and the vector entry point is MLP$SINHV.

The input domain for this function is the collection of all valid real quantities whose
absolute value is less than 4095*log(2). The output range is included in the set of all
valid real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

I t is infinite.

Its absolute value is greater than or equal to 4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

The formulas used to compute sinh(x) are:

x = n*10g(2) + a, where lal ~ 1/2*10g(2)

sinh(x)
sinh(x)
sinh(x)

where:

and n is an integer
(cosh(a) + sinh(a»*2**(n-1), when n > 25
sinh(a), when n = 0, otherwise,
(c - s)*2**(n-1) + (c + s)*2**(-n-1)

s = sinh(a) = a + s(3)*a**3*(s(5) + TOP/(BDT - a**2»
c = cosh(a) = 1.0 + a**2*(.5 + a**2*(c(4) + a**2*(c(6) +

c(10)*a**2*(c(8) + a**2»»

Constants used in the algorithm are:

s(3) .166 666 666 666 935 58
s(5) -.005 972 995 665 652 368
TOP 1.031 539 921 161
BOT 72.103 746 707 22
c(4) .041 666 666 666 488 081
c(6) .001 388 888 895 231 804 5
c(8) 89.754 738 973 150 22
c(10) 2.763 250 805 803*10**-7

8-170 Math Library 60486513 H

The algorithm used is:

a. u = Ixl

b. n = (u/10g(2) + .5) = nearest integer to u/log(2) R
w = u - n*10g(2), where the right-hand expression is evaluated in double
precision

c. s = w + w**3(s(3) + w**2(s(5) + TOP/(BOT - w**2»)
d = w**2(1/2 + w**2(c(4) + w**2(c(6) + w**2(c(8) + w**2)*c(10»»
a (1.0 + d - s)*2**(-n-1)
b = d + S

d. c (1/4 + (1/4 + b»*2**(n-1) + (2**(n-3) + (2**(n-3) - a»
XF c with the sign of x

e. Return

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

See Vector Error Handling in chapter 7, Vector Processing, for further information.

SINH

60486513 H Function Descriptions 8-171

SINH

Error Analysis

Groups of 2,000 arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 8-23 shows a summary of these statistics.

Table 8-23. Relative Error of SINH

Test

SINH(x) against
Tay lor series
expansion of SINH(x)

SINH(x) against
c*(SINH (x + 1) +
SINH(x - 1)

Interval From

O.OOOOE+OO

.3000E+01

Effect of Argument Error

Interval To Maximum

.5000E + 00 .3374E-13

.2838E + 04. .2894E-13

Root Mean
Square

.9969E-14

.9979E-14

If a small error e occurs in the argument x, the resulting error in sinh(x) is given
approximately by cosh(x)*e.

8-172 ~ath Libra~ 60486513 H

Example of SINH Called From FORTRAN

Source Code:

c

Output:

PROGRAM SINH_EXAMPLE

REAL x
x=0.5
PRINT ., 'The SINH of x is:'
PRINT ., SINH(x)
END

The SINH of x is:
.5210953054938

60486513 H

SINH

Function Descriptions 8-173

SQRT

SQRT
SQRT computes the square root function. It accepts a real argument and returns a real
result.

The call-by-reference entry points are MLP$RSQRT and SQRT, the call-by-value entry
point is MLP$VSQRT, and the vector entry point is MLP$SQRTV.

The input domain for this function is the collection of all valid, nonnegative real
quantities. The output range is included in the set of valid, nonnegative real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is negative.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

8-174 Math Library 60486513 H

Call-By-Value Routine

_ If x is valid, let y be a real number in [0.5, 2) and n an integer such that x =
y*2**(2*n). Then SQRT(x) is evaluated by:

SQRT(x) = SQRT(y)*2**n

SQRT

Then SQRT(y) is approximated to 48 bits of precision by applying one iteration of
Heron's rule to an initial approximation which is accurate to at least 24 bits of
precision. The initial approximation is computed by dividing the interval [0.5, 2) into
the following 64 subintervals:

[32/64, 33/64)

[63/64, 64/64)
[32/32, 33/32)

[63/32, 64/32)

The coefficients of these 64 minimax approximations are stored in three tables -pO, pI,
and p2 such that:

z1 = pOri] + p1[i]*y + p2[i]*y**2

is the quadratic minimax approximation to the square root of y over the subinterval
whose index is i. The required initial approximation is obtained by calculating the
index i of the subinterval that contains y and then evaluating the above quadratic
polynomial so that zl approximates SQRT(y) to at least 24 bits of precision.

U sing Heron's rule, the computation:

twoz2 = z1 + y/z1

approximates SQRT(y) to 48 bits precision followed by the computation:

SQRT(X) = twoz2*2**(n - 1)

which approximates SQRT(x) to 48 bits of precision.

60486513 H Function Descriptions 8-175

SQRT

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is negative.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The function SQRT was tested in the form SQRT(x*x) - x. Groups of 2,000 arguments
were chosen randomly from given intervals. Statistics on relative error were observed.
Table 8-24 shows a summary of these statistics.

Table 8-24. Relative Error of SQRT

In terval From

.1000E+Ol

.7071E+00

Interval To

.1414E+Ol

.1000E+Ol

Effect of Argument Error

Maximum

.7099E-14

.5023E-14

Root Mean
Square

.5677E-14

.4106E-14

For a small error e in the argument y, the amplification of absolute error is
e/(2*sqrt(y».

8-176 ~ath Library 60486513 H

Example of SQRT Called From FORTRAN

Source Code:

c

Output:

PROGRAM SQRT_EXAMPLE

REAL x, xe
x=22500.0
xe=SQRT(x·x)- x
PRINT· 'The SQRT of x is:'
PRINT· SQRT(x)
PRINT· 'The calculated error of the SQRT of x is:'
PRINT ., xe
END

The SQRT of x is:

150.
The calculated error of the SQRT of x is:

O.

60486513 H

SQRT

Function Descriptions 8·177

SUMIS

SUMIS
SUMIS returns the sum (or number) of 1 bits in a word. (The number of bits in a
NOSNE word is always 64.) It accepts any type of argument except character and
logical and returns an integer result. If the argument is of type double precision or
complex, only the first word is used.

The call-by-reference entry points are MLP$RSUMIS and SUMlS, and the call-by-value
entry point is MLP$VSUMIS.

The input domain for this function is the collection of all valid boolean, real, complex,
integer, or double precision quantities. Character and logical arguments are not
allowed. The output range is included in the set of valid integer quantities.

Call-By-Reference Routine

No errors are generated by SUMIS. The call-by-reference routine branches to the
call-by-value routine.

Call-By-Value Routine

The number of bits in a word is returned. The argument can be any type except
character and logical.

8-178 Math Library 60486513 H

Example of SUMlS Called From FORTRAN

Source Code:

C

Output:

PROGRAM SUM1S_EXAMPLE

REAL x
x=Z"4321FEDCBA987654"
PRINT * 'The SUM1S of x is:'
PRINT *, SUM1S(x)
END

The SUM1S of x is:
33

60486513 H

SUMIS

Function Descriptions 8-179

TAN

TAN
TAN computes the trigonometric circular tangent function. It accepts a real argument
and returns a real result.

The call-by-reference entry points are MLP$RTAN and TAN, the call-by-value entry
point is MLP$VTAN, and the vector entry point is MLP$TANV.

The input domain for this function is the collection of all valid real quantities whose
absolute value is less than 2**47. The output range is included in the set of valid real
quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

The evaluation is reduced to the interval [-.5,.5] by using the identities:

1. tan(x) tan(x + k*pi/2), if k is even

2. tan(x) -1.0/tan(x + pi/2)

in the form:

3. tan(x) tan«pi/2)*(x*2/pi + k», if k is even

4. tan(x) -1.0/tan«pi/2)*(x*2/pi + 1.0»

An approximation of tan(pil2*y) is used. The argument is reduced to the interval
[-.5,.5] by subtracting a multiple of pil2 from x in double precision. .

The rational form is used to compute the tangent of the reduced value. The function
tan«pil2)*y) is approximated with a rational form (7th order odd)/(6th order even),
which has minimax relative error in the interval [- .5,.5]. The rational form is
normalized to make the last numerator coefficient 1 + e, where e is chosen to
minimize rounding error in the leading coefficients.

Identity 4 is used if the integer subtracted is odd. The result is negated and inverted
by dividing -QIP instead of P/Q.

8·180 Math Library 60486513 H

TAN

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

The range reduction, the final add in each part of the rational form, the final multiply
in P, and the divide dominate the error. Each of these operations contributes directly
to the final error, and each is accurate to about 112 ulp.

The function TAN was tested against 2*TAN(xJ2)J(1 - TAN(xJ2)**2). Groups of 2,000
arguments were chosen randomly from given intervals. Statistics on relative error were
observed. Table 8-25 shows a summary of these statistics.

Table 8-25. Relative Error of TAN

Root Mean
In terval From Interval To Maximum Square

O.OOOOE+OO .7854E+00 .2177E-13 .5613E-14
.1885E+02 .1963E+02 .1993E-13 .5617E-14
.2749E+Ol .3534E+Ol .2190E-13 .7286E-14

Effect of Argument Error

For small errors in the argument x, the amplification of absolute error is sec(x)**2,
and that of relative error is xJ(sin(x)*cos(x)), which is at least 2x and can be arbitrarily
large near a multiple of pi/2.

Example of TAN Called From FORTRAN

Source Code:

c

Output:

PROGRAM TAN_EXAMPLE

REAL x
x=0.5
PRINT * 'The TAN of x is:'
PRINT * TAN(x)
END

The TAN of x is:
.54630224898438

60486513 H Function Descriptions 8-181

TAND

TAND
TAND computes the trigonometric tangent for an argument in degrees. It accepts a
real argument and returns a real result.

The call-by-reference entry points are MLP$RTAND and TAND, the call-by-value entry
point is MLP$VTAND, and the vector entry point is MLP$TANDV.

The input domain for this function is the collection of all valid real arguments whose
absolute value is less than 2**47, excluding odd multiples of 90. The output range is
included in the set of valid real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is infinite, it is invalid,
and a diagnostic message is displayed. If the result is valid, it is returned to the
calling program.

Call-By-Value Routine

The result is put in the interval [-45,45] by finding the nearest integer n to xl90, and
subtracting n*90 from the argument. The reduced argument is then multiplied by
pi/180. The routine calls TAN to compute the tangent, and if the multiple n of 90 is
odd, the result is negated and inverted by using the identities:

tan(x + 180 degrees) = tan(x)
tan(x + 90 degrees) = -1/tan(x)

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8·182 Math Library 60486513 H

TAND

Error Analysis

The reduction to (-45, + 45) is exact; the constant pi/ISO has a relative error of
1.37E-15, and multiplication by this constant has a relative error of 5.33E-15, so the
total error is 6.7E-15. The maximum relative error observed for 10,000 arguments
chosen randomly in the interval [0,360], was .2130E-13.

Effect of Argument Error

Errors in the argument x are amplified at most by xI(sin(x)*cos(x)). This function has a
maximum of pi/2 within (-45, + 45) but has poles at all multiples of 90 degrees except
zero.

Example of TAND Called From FORTRAN

Source Code:

c

Output:

PROGRAM TAND_EXAMPLE

REAL x
x=O.5
PRINT * 'The TAND of x is:'
PRINT * TAND(x)
END

The TAND of x is:
.008726867790759

60486513 H Function Descriptions 8-183

TANH

TANH

TANH computes the hyperbolic tangent function. It accepts a real argument and
returns a real result.

The call-by-reference entry points are MLP$RTANH and TANH, the call-by-value entry
point is MLP$VTANH, and the vector entry point is MLP$TANHV.

The input domain for this function is the collection of all valid real quantities. The
output range is included in the set of valid real quantities in the interval [-1.0,1.0].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if it is indefinite.

If the argument is invalid, a diagnostic message is displayed. If the argument is valid,
the call-by-value routine is called, and the result of the computation is returned to the
calling program.

Call-By-Value Routine

The argument range is reduced to:

tanh(x) = 1.0 - 2*(0 - p)/«o - p) + 2**n*(0 + p»

by the identities:

tanh(-x)
tanh(x)
tanh(x)
exp(2*x)
exp(2*x)

-tanh(x) for x < 0
p(x)/O(x) approximately, in the interval [0,.55]
1.0 - 2/(exp(2*x) + 1.0)
(1.0 + tanh(x»/(1.0 - tanh(x»
2**n*exp(2*(x - n*ln(2)/2»

where n is chosen to be nint(x*2/ln(2)) and p and q are evaluated on x - n*ln(2)/2.
This choice of n minimizes abs(x - n*ln(2)/2).

When abs(x) ~ .55 = atanh(.5), the approximation p(x)/q(x) is used. When abs(x) >
.55, the above range reduction is used. For abs(x) > 17.1, tanh(x) = sign(1.0,x).

The approximation p/q is a minimax (relative error) rational form (5th order odd)/(6th
order even). The range reduction is simplified by scaling the coefficien~s so that
(x*2/ln(2) - n) can be used instead of (x - n*ln(2)/2). The coefficients are further scaled
by an amount sufficient to reduce truncation error in the leading coefficients without
otherwise affecting accuracy.

Vector Routine

The argument is checked upon entry. It is invalid if it is indefinite.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

8·184 Math Library 60486513 H

TANH

Error Analysis

The algorithm error due to finite approximation and coefficient truncation is 1.7E-15.
For abs(x) < .55, the form p(x)/q(x) is used. The final operations z= x*2!ln(2) and
tanh(z*(pO+small))/(qO+small) dominate the error. For abs(x) > 1.25 the final
subtraction (1.0 - small) dominates.

For .55 ~ abs(x) ~ 1.25, the final operation is 1-R, where R becomes smaller as x
approaches 1.25. Thus, the worst relative error is near .55, namely, (contribution from
R) + (error in final sum), where R = 2*(q - p)/«q - p) + 4*(q + p)).

The function TANH was tested against (TANH(x - 118) + TANH(1I8))/(1 + TANH(x -
1I8)*TANH(1I8)). Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 8-26 shows a summary of
these statistics.

Table 8-26. Relative Error of TANH

Interval From

.1250E+00

.6743E+00

Interval To

.5493E+00

.1768E+02

Effect of Argument Error

Maximum

A091E-13
.2842E-13

Root Mean
Square

.1085E-13

.3730E-14

For small errors in the argument x, the amplification of the absolute error is
lIcosh**(x) and of relative error is xI(sinh(x)*cosh(x)). Both have maximum values of
1.0 at zero and approach zero as x gets large.

Example of TANH Called From FORTRAN

Source Code:

c

Output:

PROGRAM TANH_EXAMPLE

REAL x
x=O.5
PRINT * 'The TANH of x is:'
PRINT * TANH(x)
END

The TANH of x is:
.46211715726

60486513 H Function Descriptions 8-185

XTOD

XTOD
XTOD performs exponentiation for program statements that raise integer quantities to
real exponents. It accepts an integer argument and a real argument and returns a real
result. XTOD also accepts compiler-generated calls (for example, the FORTRAN and
Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RXTOD and XTOD, and the call-by-value
entry point is MLP$VXTOD.

The XTOD vector math function is divided into three routines having three separate
entry points defined as follows:

XTOD(scalar,vector) = MLP$XTODV
XTOD(vector,scalar) = MLP$XVTOD
XTOD(vector,vector) = MLP$XVTODV

The input domain for this function is the collection of all valid pairs (x,y), where x is
a nonnegative real quantity and y is a double precision quantity. If x is equal to zero,
then y must be greater than zero. The output range is included in the set of valid
double precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result if valid, it is returned
to the calling program.

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x», where x > 0

Upon entry, the argument x is converted to double precision, and all operations are
carried out in double precision. The routine calls DLOG to compute log(x), and DEXP
to compute exp(y*log(x)).

8-186 Math Library 60486513 H

XTOD

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

See Vector Error Handling in chapter 7 , Vector Processing, for further information.

Error Analysis

See the description of function DTOD.

Effect of Argument Error

If a small error e(b) occurs in the base b and a small error e(p) occurs in the exponent
p, the error in the result r is given approximately by:

r*(e(p)*lo9(b) + p*e(b)/b)

Example of XTOD Called From FORTRAN

Source Code:

C

Output:

PROGRAM XTOD_EXAMPLE

REAL x
DOUBLE PRECISION y, z, XTOD
x=20.0
y=140.0dO
z=XTOD(x,Y)
PRINT * 'The XTOD of x and y is:'
PRINT *, Z

END

The XTOD of x and y is:
1.39379657490816394634598238E+182

60486513 H Function Descriptions 8-187

· XTOI

XTOI
XTOI performs exponentiation for program statements that raise integer quantities to
real exponents. It accepts an integer argument and a real argument and returns a real
result. XTOI also accepts compiler-generated calls (for example, the FORTRAN and
Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RXTOI and XTOI, and the call-by-value
entry point is MLP$VXTOI.

The XTOI vector math function is divided into three routines having three separate
entry points defined as follows:

XTOI(scalar,vector) = MLP$XTOIV
XTOI(vector,scalar) = MLP$XVTOI
XTOI(vector,vector) = MLP$XVTOIV

The input domain for this function is the collection of all valid pairs (x,y) , where x is
a real quantity and y is an integer quantity. If x is equal to zero, then y must be
greater than zero. The output range is included in the set of valid real quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

x is infinite.

x is equal to zero and y is less than or equal to zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

8-188 Math Library 60486513 H

Call-By-Value Routine

The arguments are checked to see whether the exponentiation conforms to a special
case. If it does, the proper value is immediately returned. If the special case is an
error condition, an error message is displayed. The special cases are:

x indefinite = error
x infinite = error
0**0 = error
x**i = 1.0 if i = 0 and x > 0
x**i = 1.0/x**-i if i < 0
x = 0 = error if i < 0

If the exponentiation is not a special case, the following algorithm is used.

XTOI

Starting with the second most significant bit, the binary representation of i is scanned
from left to right. The result is initialized to x. For each scanned bit, the result is
squared. If the scanned bit is 1, the result is multiplied by x.

Effect of Argument Error

If a small error e occurs in the base b, the error in the result will be given
approximately by n*b**(n-1)*e, where n is the exponent (integer argument of the
function).

Example of XTOI Called From FORTRAN

Source Code:

c

Output:

PROGRAM XTOI_EXAMPLE

INTEGER
REAL x, XTOI
i=3
x=10.0
PRINT *
PRINT *
END

'The XTOI of x and
XTOI(x, i}

The XTOI of x and is:
1000.

is: '

60486513 H Function Descriptions 8-189

XTOX

XTOX
XTOX performs exponentiation for program statements that raise integer quantities to
real exponents. It accepts an integer argument and a real argument and returns a real
result. XTOX also accepts compiler-generated calls (for example, the FORTRAN and
Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RXTOX and XTOX, and the call-by-value
entry point is MLP$VXTOX.

The XTOX vector math function is divided into three routines having three separate
entry points defined as follows:

XTOX(scalar,vector) = MLP$XTOXV
XTOX(vector,scalar) = MLP$XVTOX
XTOX(vector,vector) = MLP$XVTOXV

The input domain for this function is the collection of all valid real pairs (x,y), where
x is a nonnegative quantity and x**y is a valid quantity. If x is equal to zero, then y
must be greater than zero. The output range is included in the set of valid,
nonnegative real quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

8-190 Math Library 60486513 H

XTOX

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x». where x > 0

Upon entry, the routine calls ALOG to compute log(x), and EXP to compute
exp(y*log(x» .

V ector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

60486513 H Function Descriptions 8-191

XTOX

Error Analysis

The function XTOX was tested. Groups of 2,000 arguments were chosen randomly from
given intervals. Statistics on relative error were observed. Table 8-27 shows a summary
of these statistics.

Table 8-27. Relative Error of XTOX

Test In terval From

x interval
x**y against x**2**(y/2) .1000E-01

x**2**1.5 against
x**2*x

x**l.O against x

y interval
-.6167E+03

.1000E+01

.5000E+00

.5000E+00

Effect of Argument Error

Interval To Maximum

.1000E+02 .3547E-12

.6167E+03

.8053+411
.1000E+01

.1000E+01

.1360E-13

.1360E-i3

.6802E-14

Root Mean
Square

.6352E-13

.5687E-14

.5715E-14

.3442E-14

If a small error e(b) occurs in the base b, and a small error e(p) occurs in the
exponent p, the error in the result r is given approximately by:

r*(log(b)*e**p + p*(e(b»/b)

8-192 Math Library 60486513 H

Example of XTOX Called From FORTRAN

Source Code:

c

Output:

PROGRAM XTOX_EXAMPLE

REAL x, y, XTOX
x=2.0
y=10.0
PRINT * 'The XTOX of x and y is:'
PRINT * XTOX(x,Y)
END

The XTOX of x and y is:
1024.

60486513 H

XTOX

Function Descriptions 8·193

XTOZ

XTOZ
XTOZ performs exponentiation for program statements that raise integer quantities to
real exponents. It accepts an integer argument and a real argument and returns a real
result. XTOZ also accepts compiler-generated calls (for example, the FORTRAN and
Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RXTOZ and XTOZ, and the call-by-value
entry point is MLP$VXTOZ:

The XTOZ vector math function is divided into three routines having three separate
entry points defined as follows:

XTOZ(scalar,vector) = MLP$XTOZV
XTOZ(vector,scalar) = MLP$XVTOZ
XTOZ(vector,vector) = MLP$XVTOZV

The input domain for this function is the collection of all valid pairs (x,y) , where x is
a real quantity, y is a complex quantity, and x**y is a valid quantity. If x is zero, the
real part of y must be greater than zero, and the imaginary part must be equal to
zero. The output range is included in the set of valid complex quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero, and the real part of y is less than or equal to zero, or the
imaginary part of y does not equal zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

Call-By-Value Routine

Upon entry, the real argument x is converted to complex, and the routine calls ZTOZ
to compute the result.

8-194 Math Library 60486513 H

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
([-1.0,1.0],[-1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these
arguments was found to be 1.7 431E-11.

Effect of Argument Error

XTOZ

If a small error e(x) occurs in the base x, and a small error e(z) (e(x) + i*e(y» occurs
in the exponent z, the error in the result w is given approximately by:

w*(log(x)* e(z) + z*e(x)/x)

Example of XTOZ Called From FORTRAN

Source Code:

C

Output:

PROGRAM XTOZ_EXAMPLE

REAL x
COMPLEX zeta, omega, xtoz
x = 5.0
zeta = (5.0, 0)
omega = XTOZ (x, zeta)
PRINT * 'The XTOZ of x and zeta is:'

PRINT *, omega
END

The XTOZ of x and zeta is:

(3125. ,0.)

60486513 H Function Descriptions 8-195

ZTOD

ZTOD
ZTOD performs exponentiation for program statements that raise integer quantities to
real exponents. It accepts an integer argument and a real argument and returns a real
result. ZTOD also accepts compiler-generated calls (for example, the FORTRAN and
Ada compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RZTOD and ZTOD, and the call-by-value
entry point is MLP$VZTOD.

The ZTOD vector math function is divided into three routines having three separate
entry points defined as follows:

ZTOD(scalar,vector) = MLP$ZTODV
ZTOD(vector,scalar) = MLP$ZVTOD
ZTOD(vector,vector) = MLP$ZVTODV

The input domain for this function is the collection of all valid pairs (x,y), where x is
a complex quantity, y is a double precision quantity, and x**y is a valid quantity. If
the real and imaginary parts of x are equal to zero, then y must be greater than zero.
The output range is included in the set of valid complex quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

Call-By-Value Routine

Upon entry, the double precision argument y is converted to complex, and the routine
calls ZTOZ to compute the result.

8-196 ~ath Library 60486513 H

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
([-1.0,1.0],[-1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these
arguments was found to be 1.7431E-11.

Effect of Argument Error

ZTOD

If a small error e(z) occurs in the base z and a small error e(e) occurs in the exponent
e, the error in the result w is given approximately by:

w*(e(e)*log(z) + e*e(z)/z)

Example of ZTOD Called From FORTRAN

Source Code:

C

Output:

PROGRAM ZTOD_EXAMPLE

COMPLEX zeta~ omega, ztod
DOUBLE PRECISION Y
zeta = (5.0, -1)
y=140.0dO
omega = ZTOD(zeta,Y)
PRINT * 'The ZTOD of zeta and y is:'
PRINT *, omega
END

The ZTOD of zeta and y is:
(-8.968048508414E+98,-6.662556718066E+98)

60486513 H Function Descriptions 8·197

ZTOI

ZTOI
ZTOI performs exponentiation for program statements that raise integer quantities to
real exponents. It accepts an integer argument and a real argument and returns a real
result. ZTOI also accepts compiler-generated calls (for example, the FORTRAN and Ada
compilers provide the exponentiation operator **).

The call-by-reference entry points are MLP$RZTOI and ZTOI, and the call-by-value
entry point is MLP$VZTOI.

The ZTOI vector math function is divided into three routines having three separate
entry points defined as follows:

ZTOI(scalar,vector) = MLP$ZTOIV
ZTOI(vector,scalar) MLP$ZVTOI
ZTOI(vector,vector) = MLP$ZVTOIV

The input domain for this function is the collection of all valid pairs (x,y), where x is
a complex quantity, y is a integer quantity, and x**y is a valid quantity. If the real
and imaginary parts of x are equal to zero, then y must be greater than zero. The
output range is included in the set of valid complex quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

x is infinite.

x is equal to zero and y is less than or equal to zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

Call-By-Value Routine

Let x represent the base and y represent the exponent. If y has binary representation
000 000i(n)i(n-l) .. .i(1)i(O), where each i(j)(O ~ j ~ n) is 0 or 1, then:

y i(0)*2**0 + i(1)*2**1 + ... + i(n)*2**n
n = (log(2)y) = greatest integer not exceeding log(2)y

Then:

x**y prod[x**2**j 0 < j < nand i(j) 1]

8-198 Math Library 60486513 H

ZTOI

The numbers x**O, x = x**2**O, x**2, x**4, ... , x**(2)**n are generated during the
computation by successive squarings, and the coefficients i(O), , i(n) are obtained as
sign bits of successive circular right shifts of y within the computer. A running product
is formed during the computation so that smaller powers of x can be discarded. The
computation then becomes an iteration of the algorithm:

x**y 1, if Y = 0 and x is not= 0
(x*x)**(y/2), if y > 0 and y is even
(x*x)**«y-1)/2)*x, if y > 0 and y is odd

Upon entry, if the exponent y is negative, y is replaced by -y and a sign flag is set.
x**y is computed according to this algorithm, and if the sign flag was set, the result is
reciprocated before being returned to the calling program.

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

x is infinite.

x is equal to zero and y is less than or equal to zero.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Effect of Argument Error

If a small error e occurs in the base b, the error in the result will be given
approximately by n*b**(n-l)*e, where n is the exponent given to the routine.

Example of ZTOI Called From FORTRAN

Source Code:

C

Output:

PROGRAM ZTOI_EXAMPLE

INTEGER i
COMPLEX zeta, omega, ztoi
i = 12
zeta = (2.0, -1)
omega= ZTOI (zeta,i)
PRINT * 'The ZTOI of zeta and is:'
PRINT *, omega
END

The ZTOI of zeta and is:
(11753. , 10296.)

60486513 H Function Descriptions 8-199

ZTOX

ZTOX
ZTOX performs exponentiation for program statements that raise integer quantities to
real exponents. It accepts an integer argument and a real argument and returns a real
result. ZTOX also accepts compiler-generated caIls (for example, the FORTRAN and
Ada compilers provide the exponentiation operator **).

The caIl-by-reference entry points are MLP$RZTOX and ZTOX, and the call-by-value
entry point is MLP$VZTOX.

The ZTOX vector math function is divided into three routines having three separate
entry points defined as foIlows:

ZTOX(scalar,vector) = MLP$ZTOXV
ZTOX(vector,scalar) = MLP$ZVTOX
ZTOX(vector,vector) = MLP$ZVTOXV

The input domain for this function is the coIlection of all valid argument pairs (x,y),
where x is a complex quantity, y is a real quantity, and x**y is a valid quantity. If
the real and imaginary parts of x are equal to zero, then y must be greater than zero.
The output range is included in the set of valid complex quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the caIl-by-value routine is caIled, and the result of the computation is
returned to the caIl-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the caIling program.

Call-By-Value Routine

Upon entry, the real argument is converted to a complex argument, and the routine
caIls ZTOZ to compute the result.

8-200 Math Library 60486513 H

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
([-1.0,1.0],[-1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these
arguments was found to be 1.7431E-11.

Effect of Argument Error

If a small error e(zl) occurs in the base zl and a small error e(z2) occurs in the
exponent z2, the error in the result w is given approximately by:

w*(e(z2)*10g(Z1) + z2*e(z1)/z1)

Example of ZTOX Called From FORTRAN

Source Code:

C

Output:

PROGRAM ZTOX_EXAMPLE

REAL x
COMPLEX zeta, omega, ztox
x = 12.0
zeta = (2.0, -1)
omega= ZTOX (zeta,x)
PRINT * 'The ZTOX of zeta and x is:'
PRINT * ZTOX (zeta,x)
PRINT *, omega
END

The ZTOX of zeta and x is:
(11753.,10296.)

ZTOX

60486513 H Function Descriptions 8-201

ZTOZ

ZTOZ
ZTOZ performs exponentiation for program statements that raise integer quantities to
real exponents. It accepts an integer argument and a real argument and returns a real
result. ZTOZ also accepts compiler-generated calls (for example, the FORTRAN and
Ada compilers provide the exponentiation operator **).

The call-by-reference entry points- are MLP$RZTOZ and ZTOZ, and the call-by-value
entry point is MLP$VZTOZ.

The ZTOZ vector math function is divided into three routines having three separate
entry points defined as follows:

ZTOZ(scalar,vector) = MLP$ZTOZV
ZTOZ(vector,scalar) = MLP$ZVTOZ
ZTOZ(vector,vector) = MLP$ZVTOZV

The input domain is the collection of all valid complex pairs (x,y). If the real and
imaginary parts of x are equal to zero, then the real part of y must be greater than
zero, and the imaginary part must be equal to zero. The output range is included in
the set of valid complex quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero, and the real part of y is less than or equal to zero, and the
imaginary part of y does not equal zero.

If the argument pair is invalid, a diagnostic message is displayed. If the argument pair
is valid, the call-by-value routine is called, and the result of the computation is
returned to the call-by-reference routine. The result is checked. If the result is infinite,
it is invalid, and a diagnostic message is displayed. If the result is valid, it is returned
to the calling program.

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*10g(x», where x > o.

Upon entry, argument checking is performed. If the arguments are valid, the routine
calls CLOG to compute log(x), and CEXP to compute exp(y*log(x)).

8-202 Math Library 60486513 H

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

See Vector Error Handling in chapter 7, Vector Processing, for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
([-1.0,1.0],[-1.0,1.0]) and ([-1.0,1.0],[-1.0,1.0]). The maximum relative error of these
arguments was found to be 1.7431E-11.

Effect of Argument Error

If a small error e(zl) occurs in the base zl and a small error e(z2) occurs in the
exponent z2, the error in the result w is given approximately by:

w*(e(z2)*log(Z1) + z2*e(z1)/z1)

Example of ZTOZ Called From FORTRAN

Source Code:

C

Output:

PROGRAM ZTOZ_EXAMPLE

COMPLEX alpha, zeta, omega, ztoz
alpha = (12.0, 0)
zeta = (2.0, -1)
omega= ZTOZ (alpha, zeta)
PRINT * 'The ZTOZ of alpha and zeta is:'
PRINT *, omega
END

The ZTOZ of alpha and zeta is:
(-114.0508449541,-87.91134605528)

ZTOZ

60486513 H Function Descriptions 8-203

A uxiliary Routines 9

ACOSIN 00 0 00000000000000000000 9-2
Call-By-Value Routine 00 0 0 0 0 0 9-2
Error Analysis 0 9-4
Effect of Argument Error 00 00 9-4

COSSIN 00 0 00000000000000000000 9-5
Call-By-Value Routine 0 9-5
Error Analysis 0 9-6
Effect of Argument Error 0 9-6

DASNCS 00 0 9-7
Call-By-Value Routine 00000000000000000000000000.0000. 0 000000000.0.0000.0 •• 0 0 0 0 9-7
Error Analysis 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 •• 0 • 0 • 0 0 • 0 •• 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 • 0 0 0 0 9-7
Effect of Argument Error 0.000.000 •• 0.0.0000. 0 0 •• 00 •• 0.0000000000 •• 0 0 0 0 0 0 • 0 •• 00 9-7

DEULER 0.000000.00.0000.00000000000000. o. 0 0 0 0000. 0 0.0000.000000.00000000 •• 00000 9-8
Call-By-Value Routine 0.00 •• 0.00. 0 0 0 0 o. 0 • 0 o. 0000.0 ••••• 0 •• 00000 •• 00000000.00000 9-8
Error Analysis . 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 • 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 • 0 • 0 0 • 0 0 •• 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9-9
Effect of Argument Error 0 •• 0 0 0 0 •• 0 0 0 •• 0 • 0 0 0 0 0 0 0 • 0 •• 0 •• 0 • 0 0 0 0 0 ••• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9-9

DSNCOS o. 0 0 • 0 • 0 • 0 0 0 •• 0 •• 0 0 • 0 0 • 0 0 •• 0 • 0 0 • 0 0 0 0 0 • 00 •• 0 • 0 • 0 0 • 0 0 0 ••• 0 • 0 0 0 0 0 0 0 0 0 • 0 • 0 0 9-10
Call-By-Value Routine 0000.00.00.00 •••• 0 •• 0 0 •• 0 0.0.000000.0000 •• 0 •• 0 0 0 0 0 0 •• 000 9-10
Error Analysis 0 0 0 0 •• 0 •• 0 0 • 0 0 0 • 0 •• 0 •••• 0 ••• 0 • 0 0 0 • 0 • 0 • 0 0 •• 0 0 ••• 0 • 0 0 • 0 0 0 0 •• 0 0 •• 0 9-11
Effect of Argument Error o. 0 0 0 0 0 •••• 0 • 0 •• 0 • 0 0 0 0 •••• 0 • 0 0 • 0 0 0 • 0 0 0 • 0 0 • 0 0 0 0 0 0 • 0 • 0 0 9-11

HYPERB 0 0 0 0 • 0 •• 0 0 0 ••• 0 •• 0 0 • 0 • 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 •• 0 •• 0 0 • 0 •• 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 9-12
Call-By-Value Routine .. 0 0 0 0 • 0 0 • 0 0 • 0 0 0 •• 0 0 0 0 • 0 00.00. 0 •• 0 0 0 0 00000000 •• 0 0 0 0 0 0 • 0 0 9-12
Error Analysis 0 •• 0.000. 0 0 0 0 0 0 0 •• 0 0 0 0 •••• 0 0 0 0 0 0 0 .0 •• 0 •• 0 0 • 000000.000.000000000 9-12
Effect of Argument Error 0000000. 0 0 0 0 0 .0.00.000 •• 0 •• 0 • 000000000 •• 0.00000000000 9-12

SINCOS 0" 0 •• 0 • 0 0 0 0 0 • 0 0 • 0 0 0 • 0 0 •• 0 • 0 0 • 0 ••• 0 •• 0 • 0 0 •• 0 0 0 •• 0 0 0 0 0 ••••• 0 0 • 0 0 0 0 0 • 0 0 0 0 0 9-13
Call-By-Value Routine .000.000 •• 0. 0 • 0 ••••• 00. 00 •• 0 • 0 • 0 0 0 •• 0 • 0 •• 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 9-13
Error Analysis 0000 •• 0 •• 0 0 • 0 • 0 0 0 0 0 •• 0 0 •• 0000.00 •• 0 0 ••• 0 0 0 0 • 0 0 ••• 0 0 00.000. 0 0 0 0 0 9-14
Effect of Argument Error 0000000. 0 • 0 o. 0 •• 0000000.00.0 •• 0000.0000000 •• 000. 0 0 0 0 0 9-14

SINCSD 00' 0 0 0 0 0 0 0 0.00000.00.00000.00000.000000000.00.00000.000000000. 0 0 0 0 0 0 0 0 0 0 9-15
Call-By-Value Routine .. 00.000000000 ••• 0 •• 00.00 •• 0.0000000000000000.0.00000.00 9-15
Error Analysis 0000000 •• 0 0 • 0 00.0000.0.0.0000.00 •• 0 • 0 • 0 0 0 0 0 0000000"00000000.0000 9-15
Effect of Argument Error 00000.0.000000000000000.00.00. 0 0 0 0 000000000. 0 0 0 • 0 • 000 9-15

Auxiliary Routines 9

The auxiliary routines cannot be called by their Math Library names. As the following
list indicates, these routines are algorithmic modules that are called by Math Library
functions:

• ACOSIN (called by ACOS and ASIN)

• COSSIN (called by CSIN and CCOS)

• DASNCS (called by DCOS and DSIN)

• DEULER (called by DEXP and DTANH)

• DSNCOS (called by DCOS and DSIN)

• HYPERB (called by COSH and SINH)

• SINCOS (called by SIN and COS)

o SINCSD (called by SIND and COSD)

Most of these routines can be called by their call-by-value entry points from assembler
programs, but this is not recommended. These routines are described in this manual
for algorithmic and error analysis.

60486513 H Auxiliary Routines 9-1

ACOSIN

ACOSIN
ACOSIN is an auxiliary routine that computes the inverse sine or inverse cosine
function. It accepts a -real argument and returns a real result.

There are no call-by-reference entry points for ACOSIN. The call-by-value entry points
are MLP$VACOS and MLP$VASIN.

The input domain is the collection of all valid real quantities in the interval [-1.0,1.0].
The output range is included in the set of valid, nonnegative real quantities less than
or equal to pi.

Call-By-Value Routine

Formulas used in the computation are:

-arcsin(-x), x < -.5
pi - arcos(-x), x < -.5

arcsin(x)
arcos(x)
arcsin(x)

where -.5
arcos(x)
arcsin(x)
arcos(x)
arcsin(l)
arcos(l)

x + x**3*s*«w + Z - j)*w + a + miCe - x**2»,
< x < .5

where:

pi/2 - arcsin(x), -.5 < x < .5
pi/2 - arcos(x), .5 < x < 1.0
arcos(l-ITER«l - x),n»/2**n,
pi/2
o

w = (x**2 - c)*z + k

z
ITER(Y,n)

(x**2 + r)x**2 + i
n iterations of y = 4*y - 2*y**2

The constants used are:

r = 3.173 170 078 537 13
e = 1.160 394 629 739 02
m = 50.319 055 960 798 3
c = -2.369 588 855 612 88

8.226 467 970 799 17
j -35.629 481 597 455 5
k 37.459 230 925 758 2
a = 349.319 357 025 144
s = .746 926 199 335 419*10**-3

.5 < x < 1.0

The approximation of arcsin (-.5,.5) is an economized approximation obtained by
varying r,e,m, ... ,s.

9-2 Math Library 60486513 H

The algorithm used is:

a. If ACOS entry, go to step g.

b. If Ix ~ .5, go to step h.

c. n = 0 (Loop counter).
q = x
y x**2
u = 0, if ASIN entry.
u = pi/2, if ACOS entry.

d. z (y + r)*y + i
w = (y - c)*z + k

p q + s*q*y*«w + z - j)*w + a + mICe - y»
p u - P

Y1 p/2**n

e. If ASIN entry, go to step k.

f. If x is in (-.5,1.0), return.

g.

h.

XF = 2*u - (Y1)
Return.

If Ix I < .5, go to step c.

If x = 1.0 or -1.0, go to step
If x is i nva 1 i d, go to step m.

n = 0 (Loop counter).

1.

y = 1.0 - I xl, and normalize

i. h = 4*y - 2*y**2
n = n + 1.0

y.

ACOSIN

If 2*y ~ 2 - sqrt(3) = .267949192431, y h, and go to step i.

j. q 1.0 - h, and normalize q.
y q**2
u pi/2
Go to step d.

k. Y1 = u - (y1) , and normalize
Affix sign of x to Y1 = XF.

Return.

1. XF = pi /2, if x = 1.0.
XF = -pi/2, if x = -1.0.
If ASIN entry, return.
XF = 0, if x = 1.0.
XF = pi, if x = -1.0.
Return.

m. Return.

60486513 H

Y1.

Auxiliary Routines 9·3

ACOSIN

Error Analysis

See the descriptions of functions ACOS and ASIN.

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result is given
approximately by e/(1.0 - x**2)** .5.

9·4 Math Library 60486513 H

COSSIN
COSSIN is an auxiliary routine that accepts calls from other math functions that
require simultaneous computation of the sine and cosine of the same argument.
COSSIN accepts a real argument and returns two real results.

See the descriptions of functions CSIN and CCOS for additional information.

Call-By-Value Routine

The argument is reduced to the interval [-piJ4,piJ4]. Polynomials p(x) and q(x) of
degrees 11 and 12 are used to compute sin(x) and cos(x) over that interval. Upon

COSSIN

entry, the argument x is multiplied by 2/pi. Then, the nearest integer n to 2/pi*x is
computed. The upper and lower halves of the result are added. The value of y is in the
interval (-piJ4,piJ4). y = x - n*piJ2 is computed in double precision as the reduced
argument for input to p(y) and q(y). Then sin(x) and cos(x) are cOlJlPuted fron1 these as
indicated by the value k = modenA), where k = 0, 1, 2, 3. The formula used to
compute sine(x) is:

sin(x) sin(y + n*p/2) = sin(y +' k*pi/2)
sin(y)*cos*(k*pi/2) + cos(y)*sin(k*pi/2)

A similar formula is used for the computation of cosine(x). Depending upon k, either
the sine(k = 0,1) or cosine(k = 2,3) of y is evaluated and complemented, if necessary.

The polynomials p(x) and q(x) are:

p(x) = s(O)x + 5(1) x**3 + s(2)x**5 + s(3)x**7 + s(4)x**9 +

s(5)x**11

q(x) c(O) + c(1)x**2 + c(2)x**4 + c(3)x**6 + c(4)x**8 +

c(5)x**10 + c(6)x**12

where the coefficients are:

5(0)
s(1)

5(2)
5(3)
s(4)
5(5)
c(O)
c(1)

c(2)
c(3)
c(4)
c(5)
c(6)

60486513 H

.999 999 999 999 972
-.166 666 666 665 404

.833 333 331 696 029*10**-2
-.198 426 073 537 90*10**-3

.275 548 564 509 884*10**-5
-.247 320 720 952 463*10**-7

.999 999 999 999 996
-.499 999 999 999 991

.041 666 666 666 470 5
-.138 888 888 888 159*10**-2

.248 015 784 673 257*10**-4
-.275 552 187 277 097*10**-6

.206 291 063 476 645*10**-8

Auxiliary Routines 9-5

COSSIN

The coefficients were obtained as follows. The polynomials of degrees 15 and 14,
obtained by truncating the Maclaurin series1 for sin(x) and cos(x), were telescoped to
form the polynomials p(x) and q(x) of degrees 11 and 12. The telescoping is done by
removing the leading term of the polynomial. This is accomplished by subtracting an
appropriate multiple of T(n)(a(x - x(O))) of the same degree n; 2/a is the length of the
interval of approximation, and x(O) is I its center.

The Chebyshev folynomial of degree n, T(n)(x), is defined by T(n)(x) =
cos(n*arccos(x)). The absolute value of x is no greater than one and satisfies the
recurrence relation:

T(O)(x)
T(1)(x)

T(n + 1)(x)

where n ~ 1.

x
2xT(n)(x) - T(n - 1)(x)

For n ~ 1.0, T(n)(x) is the unique polynomial 2(n - 1.0)*x**n + ... of degree n whose
maximum absolute value over the interval [-1.0,1.0] is minimal. This maximum
absolute value is one.

The formulas used for the range reduction are:

sin(x) = (-1)**n*sin(y)
cos(x) = (-1)**n*cos(y)

if x = y + n*pi, n an integer

sin(x) = cos(x - pi/2)
cos(x) = -sin(x - pi/2)

if pi/4 < x < pi/2

Error Analysis

The maximum absolute error in the approximation of sin (x) by p(x) in the interval
(-piJ4,piJ4) is .1893E-14. The maximum absolute error in the approximation of cos(x)
by q(x) is .3687E-14.

Effect of Argument Error

Not applicable, since this routine is not called directly by the user's program.

1. For a ~iscussion of Maclaurin series, refer to any calculus text (for example, Calculus and Analytic
Geometry by G. B. Thomas).

2. For a discussion of the Chebyshev polynomial, see any analysis text (for example, Introduction to
Numerical Analysis by F. B. Hildebrand).

9-6 Math Library 60486513 H

DASNCS

DASNCS
DASNCS is an auxiliary routine that computes the inverse sine or inverse cosine
function. It accepts a double precision argument and returns a double precision result.

There are no call-by-reference entry points for DASNCS. The call-by-value entry points
are MLP$VDACOS and MLP$VDASIN.

The input domain is the collection of all valid double precision quantities in the
interval [-1.0,1.0]. The output range at entry point MLP$VDACOS is included in the
set of valid, nonnegative double precision quantities less than or equal to pi. The
output range at entry point MLP$VDASIN is included in the set of valid double'
precision quantities in the interval [-piJ2,piJ2].

Call-By-Value Routine

The following identities are used to move the interval of approximation to [0,sqrt(.5)]:

arcsin(-x)
arccos(x)
arcsin(x)
arccos(x)

-arcsin(x)
pi/2-arcsin(x)
arccos(SQrt(1.0 - x**2», if x > 0 -
arcsin(sQrt(1.0 - x**2», if x > 0

The reduced value is called y. If y ~ .09375, no further reduction is performed. If not,
the closest entry to y in a table of values (z,arcsin(z),sqrt(1.0 - z**2), Z = .14, .39, .52,
.64) is found, and the formula used is:

arcsin(x) = arcsin(z) + arcsin(w)

where w = x*sqrt(1.0 - z**2) - z*sqrt(1.0 - x**2). The value of w is in the open
interval (-.0792,.0848).

The arcsin of the reduced argument is then found using a 15th order odd polynomial
with quotient:

x + x**3(c(3) + x**2(c(5) + x**2(c(7) + x**2(c(11) + x**2(c(13) +
x**2(c(15) + a/(b-x**2»»»)

where all constants and arithmetic operations before c(ll) are double precision and the
rest are single precision. The addition of c(ll) has the form single + single = double. The
polynomial is derived from a minimax rational form (denominator is (b - x**2)) for
which the critical points have been perturbed slightly to make c(ll) fit in one word.

To this value, arcsin(z) is added from a table if the last reduction above was done and
the sum is conditionally negated. Then 0, -piJ2, + pi/2, or pi is added to complete the
unfolding.

Error Analysis

See the descriptions of functions DACOS and DASIN.

Effect of Argument Error

See the descriptions of functions DACOS and DASIN.

60486513 H Auxiliary Routines 9-7

DEULER

DEULER
DEULER is an auxiliary routine that accepts calls from other math functions. It
performs computations that are common among these routines.

The input and output ranges are described in the DEXP and DTANH function
descriptions.

Call-By-Value Routine

Constants used in the algorithm are:

1.0/109(2)
109(2) (in double precision)
d3 .166 666 666 666 666 666 666 666 666 709
d5 .833 333 333 333 333 333 333 331 234 953*10**-2
d7 .198 412 698 412 698 412 700 466 386 658*10**-3
d9 .275 573 192 239 858 897 408 325 908 796*10**-5
pc -.474 970 880 178 988*10**-10
pa .566 228 284 957 811*10**-7
pb 272.110 632 903 710
c11 .250 521 083 854 439*10**-7

Arithmetic operations with d subscripts are done in doubl~ precision, and operations
with u subscripts are done in single precision. For example, d3 + (d) q indicates that
the addition is in double precision. An operand with a u or 1 subscript denotes the first
or second word, respectively, of the double precision pair of words containing the
operand.

9-8 Math Library 60486513 H

The algorithm used is:

a. n = nearest integer to x/l0g(2),
y = x - n*10g(2),
Then y is in [-1/2*10g(2),1/2*10g(2)].

b. Q = (y)(u)*(u)(y)(u)

c. p = Q*(d)(d3 +(d) Q*(d)(d5 +(d) Q*(d)(d7 +(d) Q*(d)(d9 +(d)
Q*(d)(c11 +(d) Q*(d)(pa/(pb - Q) + pc»»»

d. s = (y)(u) + (d)(y)(u)*(d)p

e. Compute hm = sQrt(1.0 + s**2).
hi = 3*Q + «s)(u»**2 computed in single precision.
hj = hi + hi
hk = 2*(1.0 + hj)
hl = «y)(u)*(u)(y)(u) - hj)/hk - hi
hm = hj + (u)(hk - (u)hl)*(U)(hl/hk)

(hm now carries cosh-1.0 in single precision.)

f. OS = s + (d)«(y)(l) + (r)(y)(l)*(u)hm) + (r)«s)(l) +
(r)«y)(u)* (l)(p)(u) + (r)(y)(u)*(r)(p)(l»»
(OS now contains sinh(y) in double precision.)

g. DC = hm + (d)(DS*OS - 2*hm - hm*hm)/(2(1.0 + hm» computed 'in double
precision.

h. OX = OS + OC

i. Clean up OS, DC, OX with (X7) = n.
Register pair XA-XB = OS = sinh(y).
Register pair X8-X9 = OC = cosh(y) - 1.0.
Register pair X4-X5 = OX = exp(y).

j. Return.

Error Analysis

See the descriptions of functions DEXP and DTANH.

Effect of Argument Error

See the descriptions of functions DEXP and DTANH.

DEULER

60486513 H Auxiliary Routines 9·9

DSNCOS

DSNCOS
D$NCOS is an auxiliary routine that computes the trigonometric sine or trigonometric
cosine function. It accepts a double precision argument and returns a double precision
result.

There are no call-by-reference entry points for DSNCOS. The call-by-value entry points
are MLP$VDCOS and MLP$VDSIN.

The input domain for this routine is the collection of aU valid double precision
quantities whose absolute value is less than 2**47. The output range is included in the
set of valid double precision quantities in the interval [-1.0,1.0].

Call-By-Value Routine

Upon entry, the argument x is made positive and is multiplied by 2/pi in double
precision, and the nearest integer n to x*2/pi is computed. At this stage, x*2/pi is
checked to see that it does not exceed 2**47. If it does, a diagnostic message is
returned. Otherwise, y = x - n*pil2 is computed in double precision as the reduced
argument, and y is in the interval [-pil4,pil4]. The value of mod(n,4),. the entry point
called, and the original sign of x determine whether a sine polynomial approximation

I' p(x) or a cosine polynomial.approximation q(x) is to be used. A flag is set to indicate
the si"gn of the final result. .

For x in the interval [-pil4,pil4], the sine polynomial approximation is:

p(x) = a(1)x + a(3)x**3 + a(5)x**5 + a(7)x**7 + a(9)x**9 + a(11)x**11 +

a(13)x**13** + a(15)x**15 + a(17)x**17 + a(19)x**19 + a(21)x**21·

and the cosine polynomial approximation is:

q(x) = b(O) + b(2)x**2 + b(4)x**4 + b(6)x**6 + b(8)x**8 + b(10)x**10 +

b(12)x**12 + b(14)x**14 + b(16)x**16 + b(18)x**18 + b(20)x**20

9·10 Math Library 60486513 H

The coefficients are:

a(1)

a(3)

a(5)
a(7)
a(9)

a(11)

a(13)
a(15)
a(17)
a(19)
a(21)

b(O)

b(2)
b(4)
b(6)
b(8)
b(10)
b(12)
b(14)
b(16)
b(18)
b(20)

.999 999 999 999 999 999 999 999 999 99
-.166 666 666 666 666 666 666 666 666 52

.833 333 333 333 333 333 333 332 709 57*10**-2
-.198 412 698 412 698 412 698 291344 78*10**-3

.275 573 192 239 858 906 394 406 844 01*10**-5
-.250 521 083 854 417 101 138 076 473 5*10**-7

.160 590 438 368 179 417 271 194 064 61*10**-9
-.764 716 373 079 886 084 755 348 748 91*10**-12

.281 145 706 930 018*10**-14
-.822 042 461 317 923*10**-17

.194 362 013 130 224*10**-19

.999 999 999 999 999 999 999 999 999 99
-.499 999 999 999 999 999 999 999 999 19

.416 666 666 666 666 666 666 666 139 02
-.138 888 888 888 888 888 888 755 436 28*10**-2

.248 015 873 015 873 015 699 922 737 30*10**-4
-.275 573 192 239 858 775 558 669 957 11*10**-6

.208 767 569 878 619 214 898 747 461 35*10**-8
-.114 707 455 958 584 315 495 950 765 75*10**-10

.477 947 696 822 393 115 933 106 267 21*10**-13
-.156 187 668 345 316*10**-15

.408 023 947 777 860*10**-18

DSNCOS

These polynomials are evaluated from right to left in double precision. The sign flag is
used to give the result the correct sign before returning to the calling program.

Error Analysis

See the descriptions of functions DeOS and DSIN.

Effect of Argument Error

See the descriptions of functions DeOS and DSIN.

60486513 H Auxiliary Routines 9-11

HYPERB

HYPERB
HYPERB is an auxiliary routine that accepts calls from other math functions that
require the simultaneous hyperbolic sine and hyperbolic cosine of the same argument.
HYPERB accepts a real argument and returns two real results.

The entry points and input and output ranges for this routine are described in in the
CSIN and CCOS function descriptions.

Call-By-Value Routine

Upon entry, the routine computes e**x = exp(x) , where x, is the angle passed to
HYPERB. The hyperbolic cosine is computed by:

cosh(x) = O.5*(exp(x) + exp(-x»

If Ixl ~ .22, the hyperbolic sine is computed by:

sinh(x) = O.5*(exp(x) - exp(-x»

For Ixl < 0.22, the Maclaurin series3 for sinh is truncated after the term x**9/9! and
the resulting polynomial is taken as the approximation:

sinh(x) = x + x**3/3! + x**5/5! + x**7/7! + x**9/9!

Error Analysis

See the descriptions of functions COSH and SINH.

Effect of Argument Error

See the descriptions of functions COSH and SINH.

\

3. For a discussion of Maclaurin series, refer to any calculus text (for example, Calculus and Analytic
Geometry by G. B. Thomas).

9-12 Math Library 60486513 H
)

SINCOS
SINCOS is an auxiliary routine that computes the trigonometric sine and cosine
functions. It accepts a real argument and returns a real result.

SINCOS

There are no call-by-reference entry points for SINCOS. The call-by-value entry points
are MLP$VCOS and MLP$VSIN.

The input domain for this routine is the collection of all valid real quantities whose
absolute value is less than 2**47. The output range is included in the set of valid real
quantities in the interval [-1.0,1.0].

Call-By-Value Routine

If x is valid, then COS(x) or SIN (x) is calculated by using the periodic properties of the
cosine and sine functions to reduce the task to finding a cosine or sine of an
equivalent angle y within [-pil4, pil4] as follows:

If N + K is even
then

Z sin(y)
else

z cos(y)
If MOD(N + K, 4) is 0 or 1 (that is, the second last bit of N + K is even)
then

S 0
else

S = mask(1)

where K is 0, 1, or 2 according to whether the SIN of a positive angle, the COS of
any angle, or the SIN of a negative angle is to be calculated. N is the nearest integer
to 2/pi*x, and y is the nearest single precision floating-point number to x - n*pil2. The
argument x is the absolute value of the angle. The desired SIN or COS is xor(S, Z).

Once the angle has been reduced to the range [-pil4, pil4] , the following
approximations are used to calculate either the cosine or the sine of the angle,
providing 48 bits of precision.

If the cosine or the angle is required, the approximation used is

cosine(y) = 1 - y*y*P(y*y)

where y is the angle and pew) is the quintic polynomial:

P(w) = PO + P1*w + P2*w**2 +P3 + w**3 + P4*w**4 + P5*w**5

such that P(y*y) is a minimax polynomial approximation to the function (1 -
cos(y))/y**2.

The coefficients are:

P5 -2.070062305624629462E-9
P4 2.755636997406588778E-7
P3 -2.480158521206426671E-5
P2 1.388888888727866775E-3
P1 -4. 166666666666468116E-2
PO 5.000000000000000000E-1

60486513 H Auxiliary Routines 9-13

SINCOS

If the sine of the angle is required, the approximation used is

sine(y) = y - y*y*y*Q(y*y)

where y is the angle and Q(w) is the quintic polynomial:

Q(w) = QO + Q1*w + Q2*w**2 +Q3*w**3 + Q4*w**4 + Q5*w**5

such that Q(y*y) is a minimax polynomial approximation to the function (y -
sin(y))/y**3. .

The coefficients are:

Q5 -1.591814257033005283E-10
Q4 2.505113204973767698E-8
Q3 -2.755731610365754733E-6
Q2 1.984126983676100911E-4
Q1 -8.333333333330950363E-3
QO 1.666666666666666463E-1

Error Analysis

The function SINCOS was tested against 4*COS(xl3)**3 - 3*COS(xl3). Groups of 2,000
arguments were chosen randomly from the interval [.2199E + 02,.2356E + 02]. Statistics
on relative error were observed: maximum relative error was .1404E-13, and root
mean square relative error was .3245E-14. -

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result is given
approximately by e*cos(x) for sin(x) and -e*sin(x) for cos(x).

9-14 Math Library 60486513 H

SINCSD

SINCSD
SINCSD computes the sine and cosine functions for arguments in degrees. It accepts a
real argument and returns a real result.

There are no call-by-reference entry points for SINCSD. The call-by-value entry points
are MLP$VCOSD and MLP$VSIND.

The input domain for this routine is the collection of all valid real quantities whose
absolute value is less than 2**47. The output range is included in the set of valid real
quantities in the interval [-1.0,1.0].

Call-By-Value Routine

The result is put in the interval [-45,45] by finding the nearest integer, n, to xl90, and
subtracting n*90 from the argument. The reduced argument is then multiplied by
pi/ISO. The appropriate sign is copied to the value of the appropriate function, sine or
cosine, as determined by these identities:

sln(x + 360 degrees) sln(x)
sln(x + 180 degrees) -sln(x)
sln(x + 90 degrees) cos(x)
sln(x - 90 degrees) -cos(x)
cos(x + 360 degrees) cos(x)
cos(x + 180 degrees) -cos(x)
cos(x + 90 degrees) -sln(x)
cos(x - 90 degrees) = sin(x)

Error Analysis

The reduction to (-45,+45) is exact; the constant piJlSO has relative error 1.37E-15,
and multiplication by this constant has a relative error 5.33E-15, and a total error of
6.7E-15. Since errors in the argument of SIN and COS contribute only piJ4 of their
value to the result, the error due to the reduction and conversion is, at most, 5.26E-15
plus the maximum error in SINCOS over (-piJ4, +piJ4).

A group of 10,000 arguments was chosen at random from the interval [0,360]. The
maximum relative error of these arguments was found to be .7l05E-14 for COSD and
.1403E-13 for SIND.

Effect of Argument Error

Errors in the argument x are amplified by xltan(x) for SIND and x*tan(x) for COSD.
These functions have a maximum value of piJ4 in the interval (-45,+45) but have
poles at even (SIND) or odd (COSD) multiples of 90 degrees, and are large between
multiples of 90 degrees if x is large.

60486513 H Auxiliary Routines 9·15

Appendixes

Glossary .. A-I

Related Manuals ... B-1

ASCII Character Set ... C-I

Bibliography .. D-I
,I

Algorithm Error Dummy Argument

Glossary A

A

Algorithm Error

Error caused by inaccuracies inherent in the mathematical process used to compute the
result. It includes error in coefficients used in the algorithm.

Argument

A variable or constant that is passed to a routine and used by that routine to compute
a function. The actual value of the variable is passed when a routine is called by
value; the address of the variable is passed when the routine is called by reference.

Argument Set

An ordered list of one or more arguments.

Auxiliary Routine

A math routine which is not directly called from program code, but assists in the
computation of a Math Library function.

'c

Call-by-Address

See call-by-reference.

Call-by-Reference

A method of referencing a subprogram in which the addresses of the arguments are
passed. Synonymous with call-by-address.

Call-by-Value

A method of referencing a subprogram in which the values of the arguments are
passed.

D

Data Descriptor

Describes data by pointing to one or more contiguous data locations.

Domain

The collection of argument lists for which an entry point (function call) has been
designed to return meaningful results without generating an error condition.

Dummy Argument

A variable or constant that is passed to a routine, but is not used by the routine to
compute a function.

60486513 H Glossary A·l

Entry Point Machine Round-Off Error

E

Entry Point

A statement within a math routine at which execution can begin. There may be more
than one entry point into a math routine.

Error

The computed value of a function minus the true value.

Exponentiation Routine

A math routine which accepts compiler-generated calls from a source program to
perform exponentiation. These calls are generated when a program statement involves
exponentiation of certain number types. Exponentiation routines are not called directly
using their function names.

External Routine

A predefined subprogram that accepts calls from program code to compute certain
mathematical functions.

F

Function N arne

A symbolic name that appears in a program and causes a math routine to be executed
(for example, ABS).

I

Indeimite Value

A value that results from a mathematical operation that cannot be resolved, such as a
division where the dividend and divisor are both zero. Indefinite numbers are
nonstandard floating-point numbers with exponents in the range of 7000 hexadecimal to
7FFF hexadecimal or FOOO hexadecimal to FFFF hexadecimal.

Inimite Value

A value that results from a computation whose result exceeds the capacity of the
computer.

Input Range

A collection of argument sets for which a given math routine will return a valid result.

Intrinsic Function

A compiler-defined FORTRAN procedure that returns a single value.

M

Machine Round-Off Error

Machine round-off error is caused by the finite nature of the computer. Because only a
finite number of bits can be represented in each word of memory, some precision is
lost.

A-2 Math Library 60486513 H

Number Types

N

Number Types

A classification of the numbers processed by the math routines. The math routines
perform computations on four number types: integer, single precision floating-point,
double precision floating-point, and complex floating-point.

o

Output Range

Stride

The collection of results obtained by using the arguments in the input domain of each
math routine for computation of the function or routine.

Q

Quintic

An algebraic function of the· fIfth degree. A quintic polynomial is a polynomial· equation
of the fIfth degree.

R

Range

The collection of results obtained by entering members of the domain into an entry
point.

Relative Error

The error of a function, divided by the true value. The maximum relative error
approximates the worst-case behavior of the function in the given interval.

Root Mean Square Relative Error

The square root of the average of the squares of the relative errors of all the
arguments.

Routine

A computer subprogram that computes commonly occurring math functions and
performs other tasks such as input and output. A method of referencing a subprogram,
that is, either by values or by address.

s

Scalar

A constant, variable, array element, or substring of any type.

Stride

The distance measured in terms of array elements between two consecutive elements of
the same dimension. For the Math Library, the stride is always equal to one.

60486513 H Glossary A-3

Units in the Last Place (ulp) Vectorization

u

Units in the Last Place (ulp)

A mathematical concept used to describe the accuracy of an algorithm.

v

Vector

One-dimensional array of up to 512 elements.

Vectorization

The manipulation of object code to reduce execution time taking advantage of the
vector processing capabilities of the CYBER 180/990 Series running FORTRAN Version
2.

A-4 Math Library 60486513 H

Related Manuals B

Table B-1 lists all manuals that are referenced in this manual or that contain
background information. A complete list of NOSIVE manuals is given in the NOSIVE
System Usage manual. If your site has installed the online manuals, you can find an
abstract for each NOSIVE manual in the online System Information manual. To access
this manual, enter:

explain

Table B-1 also lists a few VXJVE manuals. Additional VXlVE manuals are listed in
the VXlVE Programmer Reference Manual.

Ordering Printed Manuals

You can order Control Data manuals through Control Data sales offices or through:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

Accessing Online Manuals
To access an online manual, log in to NOSIVE and specify the online manual title
(listed in table B-1) on the EXPLAIN command. For example, to read the FORTRAN
Version 1 Quick Reference online manual, enter:

explain manual=fortran

60486513 H Related Manuals B·1

Accessing Online Manuals

Table B-1. Related Manuals

Pu blication Online
Manual Title Number Title

Ada for NOSIVE Usage 60498113 ADA

APL for NOSNE Usage 60485813

BASIC for NOSIVE Usage 60486313 BASIC

C for NOSNE Usage 60469830 C

CYBIL Language Definition Usage 60464113

Debug for NOSNE Usage 60488213

FORTRAN for NOSNE LIB99 60485915

FORTRAN Version 1 Language Definition Usage 60485913

FORTRAN Version 1 Quick Reference L60485918 FORTRAN

FORTRAN Version 2 Language Definition Usage 60487113

FORTRAN Version 2 Quick Reference L60487118 VFORTRAN

LISP for NOSNE Language Definition Usage 60486213

NOSNE Diagnostic Messages 60484613 MESSAGES

NOSNE System Usage 60464014

Pascal for NOSNE Usage 60485613 PASCAL

Prolog for NOSNE Usage 60486713 PROLOG

VXlVE Programmer Reference Manual 60469820

VXlVE User Guide 60469780

B·2 Math Library 60486513 H

ASCII Character Set C

Table C-l gives the ASCII character set with the hexadecimal character code for each
ASCII character.

See the appropriate language manual as listed in appendix B for additional ASCII
character set tables.

60486513 H ASCII Character Set C-1

ASCII Character Set

Table C-l. ASCII Character Set and Collating Sequence

Collating Graphic
Sequence ASCII Code or
Position (Hexadecimal) Mnemonic N arne or Meaning

0 00 NULL Null
1 01 SOH Start of heading
2 02 STX Start of text
3 03 ETX End of text
4 04 EOT End of transmission
5 05 ENQ Enquiry
6 06 ACK Acknowledge
7 07 BEL Bell
8 08 BS Backspace
9 09 HT Horizontal tabulation

10 OA LF Line feed
11 OB VT Vertical tabulation
12 OC FF Form feed
13 OD CR Carriage return
14 OE SO Shift out
15 OF SI Shift in
16 10 DLE Data link escape
17 11 DCl Device control 1
18 12 DC2 Device control 2
19 13 DC3 Device control 3

20 14 DC4 Device control 4
21 15 NAK Negative acknowledge
22 16 SYN Synchronous idle
23 17 ETB End of transmission block
24 18 CAN Cancel
25 19 EM End of medium
26 lA SUB Substitute
27 IB ESC Escape
28 lC FS File separator
29 ID GS Group separator

30 IE RS Record separator
31 IF US U nit separator
32 20 SP Space
33 21 Exclamation point
34 22 " Quotation marks
35 23 # Number sign
36 24 $ Dollar sign
37 25 % Percent sign
38 26 & Ampersand
39 27 Apostrophe

(Continued)

C-2 Math Library 60486513 H

ASCII Character Set

Table C-l. ASCII Character Set and Collating Sequence (Continued)

Collating Graphic
Sequence ASCII Code or
Position (Hexadecimal) Mnemonic N arne or Meaning

40 28 (Opening parenthesis
41 29) Closing parenthesis
42 2A * Asterisk
43 2B + Plus
44 2C Comma
45 2D Hyphen
46 2E Period
47 2F / Slant
48 30 0 Zero
49 31 1 One

50 32 2 Two
51 33 3 Three
52 34 4 Four
53 35 5 Five
54 36 6 Six
55 37 7 Seven
56 38 8 Eight
57 39 9 Nine
58 3A Colon
59 3B Semicolon

60 3C < Less than
61 3D = Equal to
62 3E > Greater than
63 3F ? Question mark
64 40 @ Commercial at
65 41 A Uppercase A
66 42 B Uppercase B
67 43 C Uppercase C
68 44 D Uppercase D
69 45 E Uppercase E

70 46 F Uppercase F
71 47 G Uppercase G
72 48 H Uppercase H
73 49 I Uppercase I
74 4A J Uppercase J
75 4B K Uppercase K
76 4C L Uppercase L
77 4D M Uppercase M
78 4E N Uppercase N
79 4F 0 Uppercase 0

(Continued)

60486513 H ASCII Character Set C-3

ASCII Character Set

Table C-l. ASCII Character Set and Collating Sequence (Continued)

Collating Graphic
Sequence ASCII Code or
Position (Hexadecimal) Mnemonic N arne or Meaning

80 50 P Uppercase P
81 51 Q Uppercase Q
82 52 R Uppercase R
83 53 S Uppercase S
84 54 T Uppercase T
85 55 U Uppercase U
86 56 V Uppercase V
87 57 W Uppercase W
88 58 X Uppercase X
89 59 y Uppercase Y

90 5A Z Uppercase Z
91 5B [Opening bracket
92 5C \ Reverse slant
93 5D] Closing bracket
94 5E Circumflex
95 5F Underline
96 60 Grave accent
97 61 a Lowercase a
98 62 b Lowercase b
99 63 c Lowercase c

100 64 d Lowercase d
101 65 e Lowercase e
102 66 f Lowercase f
103 67 g Lowercase g
104 68 h Lowercase h
105 69 i Lowercase i
106 6A j Lowercase j
107 6B k Lowercase k
108 6C 1 Lowercase 1
109 6D m Lowercase m

110 6E n Lowercase n
111 6F 0 Lowercase 0

112 70 p Lowercase p
113 71 q Lowercase q
114 72 r Lowercase r
115 73 s Lowercase s
116 74 t Lowercase t
117 75 u Lowercase u
118 76 v Lowercase v
119 77 w Lowercase w

(Continued)

C-4 ~ath Library 60486513 H

ASCII Character Set

Table C-l. ASCII Character Set and Collating Sequence (Continued)

Collating Graphic
Sequence ASCII Code or
Position (Hexadecimal) Mnemonic Name or Meaning

120 78 x Lowercase x
121 79 .y Lowercase y
122 7A z Lowercase z
123 7B { Opening brace
124 7C I Vertical line
125 7D } Closing brace
126 7E Tilde
127 7F DEL Delete

ASCII codes 80 through FF hexadecimal (not listed in this table) are ordered as equal
to the space (ASCII code 20 hexadecimal).

60486513 H ASCII Character Set C-5

Bibliography

Abramowitz, A. and Stegun I., Handbook of Mathematical Functions, AMS 55.

Carnahan, Luther, and Wilkes Applied Numerical Methods John Wiley & Sons, Inc.,
1969.

D

Fike, C. T., Computer Evaluation of Mathematical Functions Prentice-Hall, Inc., 1968.

Frankowski, K., Algorithm and Constants, Computer Information and Control Science,
University of Minnesota.

Hart, Cheney, Lawson, et al. Computer Approximations, John Wiley and Sons, 1968.

Hastings, Approximations for Digital Computers, Princeton University Press, 1955.

Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill, 1956.

James, G., ed., Mathematics Dictionary, Van Nostrand Reinhold Company, 1976.

Lanczos, Cornelius Applied Analysis, Prentice-Hall.

National Bureau of Standards, Handbook of Mathematical Functions, 1964.

Selby, S. M., Standard Mathematical Tables, CRC, 1971.

Ralston, A., and Herbert Wilf, ed. Mathematical Methods for Digital Computers, John
Wiley & Sons, 1967.

Thomas, G. B., Calculus and Analytic Geometry, 1972.

Wall, H. S., Analytic Theory of Continued Fractions, D. Van Nostrand Co. Inc., 1948.

Wilkinson, J. H., Rounding Errors in Algebraic Processes, Prentice-Hall, 1963.

60486513 H Bibliography D·l

About this manual

Index

A
About this manual 7
ABS function 8-3
Accessing online manuals B-1
Accuracy measurements

Root mean square relative error 5-5
U sing the relative error formula 5-5

ACOS function 8-4
ACOSIN routine 9-2
Ada calling the Math Library 4-3; B-2
Ada example 4-4
Ada subprogram declaration and

interface specification 4-4
Ada uses call-by-reference 4-6
Additional Ada functions 4-6
AIMAG function 8-8
AINT function 8-9
Algorithm error 5-2; A-I
ALOG function 8-10
ALOGI0 function 8-14
AMOD function 8-18
ANINT function 8-20
APL 4-1; B-2
Argument A-I
Argument set A-I
ASCII character set and collating

sequence C-2
ASIN function 8-22
Assembler calling the Math Library 4-8
Assembler example using

call-by-reference and call-by-value 4-8
ATAN function 8-26
ATANH function 8-28
ATAN2 function 8-30
Audience 7
Auxiliary routines 9-1; A-I

ACOSIN 9-2
COSSIN 9-5
DASNCS 9-7
DEULER 9-8
DSNCOS 9-10
HYPERB 9-12
SINCOS 9-13
SINCSD 9-15

B
BASIC 4-1; B-2
Bibliography D-l
Bit diagram of double precision

floating-point format 2-5

60486513 H

DLOG function

c
C calling the Math Library 4-9; B-2

C example using call-by-reference 4-9
C example using call-by-value 4-10
CABS function 8-34
Call-by-address A-I
Call-by-reference 3-2; A-I
Call-by-reference logic diagram

(scalar) 3-3
Call-by-reference versus call-by-value

matrix 3-6
Call-by-value 3-4; A-I
Call-by-value logic diagram (scalar) 3-5
Calling FORTRAN and the Math Library

from Ada 4-7
Calling routines 3-1
Calls 3-1
Calls from languages 4-1
CCOS function 8-36
CEXP function 8-38
CLOG function 8-40
Complex numbers 2-7
CONJG function 8-42
COS function 8-44
COSD function 8-48
COSH function 8-50
COSSIN routine 9-5
COTAN function 8-52
CSIN function 8-54
CSQRT function 8-56
CYBIL example 4-11; B-2
CYBIL program using

MLT$COMPLEX 4-12

D
DABS function 8-58
DACOS function 8-60
DASIN function 8-64
DASNCS routine 9-7
Data descriptor A-I
Data types for Ada MATH_LIBRARY

functions 4-5
DATAN function 8-68
DATAN2 function 8-72
DCOS function 8-76
DCOSH function 8-80
DDIM function 8-82
Debug utility 1-2; B-2
Default error values 2-7
DEULER routine 9-8
DEXP function 8-84
Diagnostic messages 3-2; B-2
DIM function 8-88
DINT function 8-89
DLOG function 8-90

Math Library Index-l

DLOG10 function

DLOG10 function 8-94
DMOD function 8-98
DNINT function 8-100
Domain A-I
Double precision floating-point

numbers 2-5
DPROD function 8-101
DSIGN function 8-102
DSIN function 8-104
DSINH function 8-108
DSNCOS routine 9-10
DSQRT function 8-110
DTAN function 8-112
DTANH function 8-116
DTOD function 8-118
DTOI function 8-122
DTOX function 8-126
DTOZ function 8-128
Dummy argument A-I

E
Entry point 1-8; A-2
ERF function 8-130
ERFC function 8-132
Error A-2
Error handling 5-1; 7-6
EXP function 8-134
Exponentiation functions

Arguments and results 6-11
Domains and ranges 6-8

Exponentiation routine (see also
routine) A-2

Exponentiation using Ada 4-7
EXTB function 8-138
External routine A-2

F
Floating-point computation rules 2-7
For better performance

CYBIL 4-13
FORTRAN Version 1 4-21
FORTRAN Version 2 4-22

FORTRAN function summary 4-23
FORTRAN Version 1 calling the Math

Library 4-14; B-2
FORTRAN intrinsic functions 4-14;

A-2
Uses call-by-value or

call-by-reference 4-14
FORTRAN Version 2 calling the Math

Library
Function descriptions 8-1

ABS 8-3
ACOS 8-4
AIMAG 8-8
AINT 8-9
ALOG 8-10
ALOG10 8-14

Index-2 Math Library

AMOD 8-18
ANINT 8-20
ASIN 8-22
ATAN 8-26
ATANH 8-28
ATAN2 8-30
CABS 8-34
CCOS 8-36
CEXP 8-38
CLOG 8-40
CONJG 8-42
COS 8-44
COSD 8-48
COSH 8-50
COTAN 8-52
CSIN 8-54
CSQRT 8-56
DABS 8-58
DACOS 8-60
DASIN 8-64
DATAN 8-68
DATAN2 8-72
DCOS 8-76
DCOSH 8-80
DDIM 8-82
DEXP 8-84
DIM 8-88
DINT 8-89
DLOG 8-90
DLOG10 8-94
DMOD 8-98
DNINT 8-100
DPROD 8-101
DSIGN 8-102
DSIN 8-104
DSINH 8-108
DSQRT 8-110
DTAN 8-112
DTANH 8-116
DTOD 8-118
DTOI 8-122
DTOX 8-126
DTOZ 8-128
ERF 8-130
ERFC 8-132
EXP 8-134
EXTB 8-138
lABS 8-140
IDIM 8-141
IDNINT 8-142
INSB 8-144
ISIGN 8-146
ITOD 8-148
ITOI 8-150
ITOX 8-152
ITOZ 8-154
MOD 8-156
NINT 8-158
RANF 8-159
RANGET 8-162
RANSET 8-163

Function descriptions

60486513 H

Function name

SIGN 8-164
SIN 8-166
SIND 8-168
SINH 8-170
SQRT 8-174
SUM1S 8-178
TAN 8-180
TAND 8-182
TANH 8-184
XTOD 8-186
XTOI 8-188
XTOX 8-190
XTOZ 8-194
ZTOD 8-196
ZTOI 8-198
ZTOX 8-200
ZTOZ 8-202

Function name A-2
Functions available 1-3

Bit manipulation 1-7
Conversion and

G

maximum/minimum 1-6
Error 1-7
Exponential 1-4
Hyperbolic 1-5
Logarithmic 1-4
Random number 1-7
Trigonometric 1-5

Generic and specific names . 8-2
Glossary A-I

H
HYPERB routine 9-12

I
lABS function 8-140
IDIM function 8-141
IDNINT function 8-142
In case you need assistance 11
Indefinite value A-2
Infinite value A-2
Inline versus out-of-line routines 3-7
Inlined functions 4-14, 28
Input domains and output ranges 6-6
Input errors

Call-by-reference error handling 5-3
Call-by-value error handling 5-3

Input range A-2
INSB function 8-144
Integer number types 2-2
Introduction 1-1
ISIGN function 8-146
ITOD function 8-148
ITOI function 8-150
ITOX function 8-152

60486513 H

ITOZ function 8-154

L
Language matrix 3-6
LIB99 1-2; B-2
LISP 4-1; B-2

Quintic

Logical flow of call-by-reference error
handling 5-4

M
Machine round-off error 5-2; A-2
Manual organization 8
Mathematical conventions 10
MOD function 8-156

N
NINT function 8-158
NOSNE condition handler

Condition handling 5-6; B-2
Error processing 5-6

NOSNE math library environment 1-2
Number types 2-1; A-3

o

Complex numbers 2-7
Double precision floating-point

numbers 2-5
Integer 2-2
Single precision floating-point

numbers 2-3

Ordering printed manuals B-1
Output range 6-6; A-3

p

Parameter list 7-2
For single argument vector math

functions 7-2
Scalar, vector 7-3
Vector, scalar 7-4
Vector, vector 7-4

Pascal calling the Math Library
Pascal calling routines 4-28; B-2

Pascal math function attributes 4-29
Pascal predefined functions 4-28
Processing error 5-2
Prolog 4-1; B-2

Q
Quintic A-3

Math Library Index-3

RANF function

R
RANF function 8-159
Range A-3
RANGET functionfunction 8-162
RANSET function 8-163
Related manuals B-1
Relative error A-3
Result array and source -array

descriptors 7-5
Root mean square relative error A-3
Routine A-3
Routines 3-1
Routines and calls 3-1

S
Scalar A-3
Scalar classification tables 6-1
SIGN function 8-164
SIN function 8-166
SINCOS routine 9-13
SINCSD routine 9-15
SIND function 8-168
Single precision floating-point

numbers 2-3
Nonstandard 2-4
Standard 2-3

SINH functionfunction 8-170
SQRT function 8-174
Stride A-3
Submitting comments 11
Summary of math functions 6-2
Summary of NOSNE floating-point

representation 2-5
SUM1S function 8-178

Index-4 Math Library

T
TAN function 8-180
TAND function 8-182
TANH function 8-184
Types of processing errors

Algorithm 5-2
Machine round-off 5-2

Typographical conventions 10

U

ZTOZ function

Units in the last place (ulp) A-4

V
Vector A-4
Vector error handling 7-6
Vector function calling routines 7-1
Vector functions 7-1

Double argument vector math
functions 7 -3, 4

Single argument vector math
functions 7-2

Vector processing 7-1
Vectorization A-4
VXNE 7; B-2

X
XTOD function 8-186
XTOI function 8-188
XTOX function 8-190
XTOZ function 8-194

Z
ZTOD function 8-196
ZTOI function 8-198
ZTOX function 8-200
ZTOZ function 8-202

60486513 H

Comments (continued from other side)

Please fold on dotted line;
seal edges with tape only.

FOLD

BUSINESS REPLY MAIL
First-Class Mail Permit No. 8241 Minneapolis, MN

POSTAGE WILL BE PAID BY ADDRESSEE

CONTROL DATA
Technical Publications
SVLI04
P.O. Box 3492
Sunnyvale, CA 94088-3492

11.1 ••• 1 •• 111 ••• 1 •• 1.1 •• 1 ••• 11 •• 1 •• 11.1 •••• 1.1 •• 11.1

NO POSTAGE
NECESSARY
IF MAILED

FOLl

FOLI

IN THE
UNITED STATES

Math Library 60486513 H

We would like your comments on this manual to help us improve it. Please take a few minutes to fill out
this form.

Who are you? How do you use .this manual?

o Manager o As an overview

o Systems analyst or programmer o To learn the product or system

o Applications programmer o For comprehensive reference

o Operator o For quick look-up
o Other ________________________________ ___ o Other ___________________________________ __

What programming languages do you use?

How do you like this manual? Answer the questions that apply.

Yes Somewhat No
0 0 0 Does it tell you what you need to know about the topic?

0 0 0 Is the technical information accurate?

0 0 0 Is it easy to understand?

0 0 0 Is the order of topics logical?

0 0 0 Can you easily find what you want?

0 0 0 Are there enough examples?

0 0 0 Are the examples helpful? (0 Too simple? o Too complex?)

0 0 0 Do the illustrations help you?

0 0 0 Is the manual easy to read (print size, page layout, and so on)?

0 0 0 Do you use this manual frequently?

Comments? If applicable, note page and paragraph. Use other side if needed.

Check here if you want a reply: 0

Name Company

Address Date

Phone

Please send program listing and output if applicable to your comment.

Quick Index

The following quick index summarizes the math functions and their Math Library
names, describes each function, and provides a page reference to the complete
description in chapter 8.

Function Description Page Number

ABS
ACOS
AIMAG
AI NT
ALOG

ALOGI0
AMOD
ANINT
ASIN
ATAN

ATANH
ATAN2

CABS
CCOS
CEXP
CLOG
CONJG

COS
COSD
COSH
COTAN
CSIN

CSQRT

DABS
DACOS
DASIN
DATAN
DATAN2

DCOS
DCOSH
DDIM
DEXP
DIM

Absolute value
Inverse cosine
Imaginary part of a complex argument
Truncation
Natural logarithm

Common logarithm (base 10)
Returns the remainder of a ratio (uses real numbers)
Nearest whole number
In verse sine
Inverse tangent

Inverse hyperbolic tangent
Inverse tangent of the ratio of two arguments

Complex absolute value
Complex cosine
Complex exponential (base e)
Complex natural logarithm
Conjugate

Cosine
Cosine in degrees
Hyperbolic cosine
Cotangent
Complex sine

Complex square root

Double precision absolute value
Double precision inverse cosine
Double precision inverse sine
Double precision inverse tangent
Double precision inverse tangent of the ratio of two
arguments

Double precision cosine
Double precision hyperbolic cosine
Double precision positive difference
Double precision exponential (base e)
Positive difference

8-3
8-4
8-8
8-9

8-10

8-14
.- 8-18

8-20
8-22
8-26

8-28
8-30

8-34
8-36
8-38
8-40
8-42

8-44
8-48
8-50
8-52
8-54

8-56

8-58
8-60
8-64
8-68
8-72

8-76
8-80
8-82
8-84
8-88

Function

DINT
DLOG
DLOG10
DMOD

DNINT

DPROD
DSIGN
DSIN
DSINH

DSQRT
DTAN
DTANH
DTOD

DTOI

DTOX

DTOZ

ERF
ERFC
EXP
EXTB

lABS
IDIM
IDNINT
INSB
ISIGN

ITOD

ITOI
ITOX
ITOZ

MOD

NINT

RANF
RANGET
RANSET

Description

Double precision truncation
Double precision natural logarithm
Double precision common logarithm (base 10)
Returns the remainder of a ratio (uses double
precision numbers)
Double precision nearest whole number

Double precision product
Double precision transfer of sign
Double precision sine
Double precision hyperbolic sine

Double precision square root
Double precision tangent
Double precision hyperbolic tangent
Exponentiation with double precision base and double
precision exponent

Exponentiation with double precision base and integer
exponent
Exponentiation with· double precision base and real
exponent
Exponentiation with double precision base. and complex
exponent

Computes the error function
Computes the complementary error function
Exponential (base e)
Extract bits

Integer absolute value
Integer positive difference
Double precision nearest integer
Insert bits
Integer transfer of sign

Exponentiation with integer base and double precision
exponent
Exponentiation with integer base and integer exponent
Exponentiation with integer base and real exponent
Exponentiation with integer base and complex
exponent

Returns the remainder of a ratio (uses integers)

Nearest integer

Generates the next random number in a series
Returns the current random number seed of a task
Sets the seed for the random number generator

Page Number

8-89
8-90
8-94
8-98

8-100

8-101
8-102
8-104
8-106

8-110
8-112
8-116
8-118

8-122

8-126

8-128

8-130
8-132
8-134
8-138

8-140
8-141
8-142
8-144
8-146

8-148

8-150
8-152
8-154

8-156

8-158

8-159
8-162
8-163

Function Description Page Number

SIGN Transfer of sign 8-164
SIN Sine 8-166
SIND Sine in degrees 8-168
SINH Hyperbolic sine 8-170
SQRT Square root 8-174
SUM1S Sum of 1 bits in one word 8-178

TAN Tangent 8-180
TAND Tangent in degrees 8-182
TANH Hyperbolic tangent 8-184

XTOD Exponentiation with real base and double precision 8-186
exponent

XTOI Exponentiation with real base and integer exponent 8-188
XTOX Exponentiation with real base and real exponent 8-190
XTOZ Exponentiation with real base and complex exponent 8-194

ZTOD Exponentiation with complex base and double precision 8-196
exponent

ZTOI Exponentiation with complex base and integer 8-198
exponent

ZTOX Exponentiation with complex base and real exponent 8-200
ZTOZ Exponentiation with complex base and complex 8-202

exponent

<S ~ CONT"OL DATA

