
FORTRAN for NOS/VE

Keyed-File and Sort/Merge Interfaces'

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60485917

MSlDl.usl History

AAM
System Product

Revision Version Level

A 1.4.1 1.7
B 1.5.1 1.8

This revision documents:

Sort/Merge
Product
Level

1.3
1.3

PSR
Level

716
739

Date

December 1988
December 1989

• A new file-spanning parcel feature, which allows you to group a series of update
operations that apply to more than one keyed file.

• Miscellaneous technical and editorial changes.

<01988, 1989 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

°2 FORTRAN for NOS/VE Keyed-File and SortJMerge Interfaces 60485917 B

Con ten ts

About This Manual 5

Audience 5
Organization 6
Conventions 7
Ordering Printed Manuals 8
Submitting Comments 8
In Case You Need Assistance 9

Keyed-File Interface Concepts 1-1

General Keyed-File Concepts 1-2
FORTRAN Keyed-File Interface

Concepts. .. 1-16

Alternate Keys 2-1

What Are Alternate Keys? 2-1
How to Use Alternate Keys in

FORTRAN Programs 2-15

Sharing Keyed Files 3-1

When Does Sharing Keyed Files
Require Locks? 3-2

What Are Access and Share
Modes? 3-3

What Are Locks? 3-9

Parcels 4-1

File-Spanning Parcels 4-1
How to Use Parcels in

FORTRAN Programs...... 4-2
File-Level Parcels 4-10
Parcel Program Example 4-11

Result Sets 5-1

What Are Result Sets? 5-1
How to Use Result Sets in

FORTRAN Programs.... 5-2

Keyed-File Interface Calls 6-1

How to Use Keyed-File Interface
Calls in FORTRAN Programs..... 6-2

Keyed-File Interface Calls: Quick
Reference. .. 6-5

60485917 B

File Information Tables 7-1

How to Use FIT Keywords in
FORTRAN Programs.. 7-3

FIT Keywords and Values: Quick
Reference. .. 7-4

Sort/Merge Interface 8-1

What SortJMerge Does 8-1
Sort Keys 8-2
Defining Sort Keys 8-3
Specifying the Record Length 8-10
Performance Considerations 8-15
SortlMerge Procedure Calls 8-16.1
Owncode Procedures 8-52
Owncode 1: Processing Input

Records. .. 8-56
Owncode 2: Processing Input

Files 8-58
Owncode 3: Processing Output

Records. .. 8-59
Owncode 4: Processing the

Output File. 8-61
Owncode 5: Processing Records

With Equal Keys.... 8-62
U sing FORTRAN Procedure

Calls. 8-64
Creating an Object Library 8-70
Summing Records 8-72
Defining Your Own Collating

Sequence. .. 8-73

Glossary A-I

Related Manuals B-1

Ordering Printed Manuals B-1
Accessing Online Manuals B-1

ASCII Character Set and
Collating Weight Tables C-l

Creating a Collation Table D-l

Predefined Collation Tables D-l
Creating Your Own Collation

Table D-2
Collation Table Example D-3

Contents 3

Creating a Collation Weight
Table D-I0

Differences Between NOS/VE
FORTRAN and FORTRAN 5 E-l

CYBER Record Manager (AAM)
Subprograms E-l

Figures

1-1. Minimal Indexed-Sequential
Structure 1-4

1-2. Data Block Split 1-6
1-3. Index Block Split (Part a) 1-8
1-4. Index Block Split (Part b) 1-9
8-1. Internal Data Representation 8-4
8-2. When Owncode Procedures are

Called .. 8-53

Tables

2-1. Data Records With Duplicate
Alternate-Key Values 2-1

2-2. Data Record With Several
Alternate Keys 2-1

2-3. Ordered by Primary Key 2-4
2-4. Ordered by First-In-First-Out ... 2-4
3-1. When the Lock Request is

From the Same Instance of Open.. 3-17
3-2. When the Lock Request is

From Another Instance of Open. . .. 3-17
3-3. When the Lock Request is

From the Same Instance of Open.. 3-18
3-4~ When the Lock Request is

From Another Instance of Open 3-18
6-1. FIT Keywords That Can Be

Fetched on a Closed File. 6-20
8-1. Maximum Key Field Sizes 8-3
8-2. Numeric Data Formats 8-6
8-3. Sign Overpunch Representation . 8-9
8-4. Result Array Format 8-34
B-1. Related Manuals B-2
C-l. ASCII Character Set and

Collating Sequence C-2

Default Collating Sequence E-4
Other Collating Sequence

Differences E-4
Sor~erge E-4

Index Index-l

8-3. Output From the FORTRAN
Program. .. 8-67

8-4. Output From Program
INMEMORYSORT 8-69

D-1. Creation Program D-3
D-2. Creation Program Output D-8
D-3. Collation Weight Table D-ll

C-2. OSV$ASCII6 _FOLDED
Collating Sequence C-6

C-3. OSV$ASCII6 _STRICT
Collating Sequence C-8

C-4. OSV$COBOL6_FOLDED
Collating Sequence C-I0

C-5. OSV$COBOL6 _STRICT
Collating Sequence C-12

C-6. OSV$DISPLAY63_FOLDED
Collating Sequence C-14

C-7. OSV$DISPLAY63_STRICT
Collating Sequence C-16

C-8. OSV$DISPLAY64_FOLDED
Collating Sequence C-18

C-9. OSV$DISPLAY64 _STRICT
Collating Sequence C-20

C-I0. OSV$EBCDIC Collating
Sequence C-22

C-l1. OSV$EBCDIC6_FOLDED
Collating Sequence C-29

C-12. OSV$EBCDIC6_STRICT
Collating Sequence C-31

4 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B

About This Manual

This manual describes the CONTROL DATA® FORTRAN procedures that NOSNE
provides to use the keyed-file and SortlMerge interfaces.

This manual is a usage manual. It is functionally organized to describe how to use the
keyed-file and Sort/Merge Interfaces within a FORTRAN program.

To use the keyed-file and SortiMerge interfaces from the NOSNE command level, see
the NOSNE Advanced File Management manual.

Audience

You should be familiar with the FORTRAN language as described in the FORTRAN
for NOSNE Version 1 or Version 2 Language Definition manuals. In addition, you
should know how to create and run jobs under the NOSNE operating system. These
concepts are described in the Introduction to NOSNE manual and, in more detail, in
the NOSNE System Usage manual.

You should be familiar with keyed files and sort/merge procedures. Although this
manual discusses general concepts of keyed files and sort/merge procedures, it is not a
tutorial.

Revision A About This Manual 5

Organization

The FORTRAN manual set consists of the following manuals:

FORTRAN for NOS/VE Tutorial

This manual is intended for the programmer who has no previous FORTRAN
experience. It presents a tutorial introduction to the FORTRAN language, beginning
with the basic elements of the language and proceeding through more complex
features.

FORTRAN for NOS/VE Topics for Programmers

This manual is intended for experienced FORTRAN programmers who are new to
NOSNE. It presents introductory topics intended to help FORTRAN programmers
use the NOSNE operating system and NOSNE FORTRAN effectively. Topics
covered include System Command Language, debugging, input/output, optimization,
virtual memory, and object libraries.

FORTRAN for NOS/VE Summary

This manual presents a concise pocket-size summary of the FORTRAN language. It
presents a complete list of FORTRAN statements in alphabetical order and shows
the parameters for each statement. It does not include detailed parameter
descriptions.

FORTRAN Version 1 for NOS/VE Quick Reference (Online)

This manual provides an online quick reference for the FORTRAN Version 1
commands, statements, functions, and subprograms. Parameter descriptions and
examples are included. This manual also explains all compilation diagnostics. To
access this manual, enter

/help m=fortran

FORTRAN Version 1 for NOS/VE Language Definition Usage

This manual presents detailed descriptions and definitions of all the statements and
features of the NOSNE FORTRAN Version 1 language. Examples of statements and
programs are included.

FORTRAN Version 2 for NOS/VE Quick Reference (Online)

This manual provides an online quick reference for the FORTRAN Version 2
commands, statements, functions, and subprograms. Parameter descriptions and
examples are included. This manual also explains all compilation diagnostics. To
access this manual, enter

/help m=vfortran

FORTRAN Version 2 for NOS/VE Language Definition Usage

This manual presents detailed descriptions and definitions of all the statements and
features of the NOSNE FORTRAN Version 2 language. FORTRAN Version 2 can
use the vectorization capabilities of the CYBER 990 or 995 class mainframes to
improve a program's execution time. Examples of statements and programs are
included.

6 FORTRAN for NOSNE Keyed-File and SorVMerge Interfaces Revision A

FORTRAN for NOS/VE LIB99 Usage

This manual presents a library of subroutines and functions that can be called from
both FORTRAN Version 1 and FORTRAN Version 2. With LIB99 routines, you can
perform vector arithmetic and matrix algebra, solve linear systems of equations,
compute Fast Fourier Transforms, compute eigenvalues and eigenvectors, and sort
lists.

Conventions

All numbers used in this manual are decimal unless otherwise indicated. Other number
systems are indicated by a notation after the number. For example, 177 octal, FA34
hex.

Certain notations are used throughout the manual with consistent meaning. The
notations are:

Integer

UPPERCASE

lowercase

computer font

Boldface

Italics

Unless otherwise specified, the term integer indicates an 8-byte
integer.

In language syntax, uppercase indicates a statement keyword or
character that is to be written as shown. Although lowercase letters
are interpreted the same as uppercase characters when used in
FORTRAN keywords and symbols, uppercase is used for consistency.
In occasional examples, keywords and symbols are shown in
lowercase for illustrative purposes.

In language syntax, lowercase indicates a name, number, symbol, or
entity that you must supply.

Indicates text of examples.

In language syntax, boldface type indicates a required keyword,
parameter, or symbol.

In language syntax, optional keywords, parameters, and symbols are
shown in italics.

In language syntax, a horizontal ellipsis indicates that the preceding
optional item can be repeated as necessary.

In program examples, a vertical ellipsis indicates that other
FORTRAN statements or parts of the program have not been shown
because they are not relevant to the example.

Space character. This symbol is used wherever there might
otherwise be doubt as to how many spaces are intended.

Vertical bars in the margin indicate changes or additions to the text from the previous
revision. An example of a change bar is shown in the margin next to this paragraph.

60485917 B About This Manual 7

I

I

Ordering Printed Manuals

Control Data manuals are available through your local Control Data sales offices. Sites
within the U.S. can also order manuals directly from Control Data Literature
Distribution Services at the following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

When ordering a manual, please specify the complete title, publication number, revision
level, and whether you want the complete manual or the latest revision packet.

Submitting Comments

The last page of this manual is a comment sheet. Please use it to give us your opinion
of the manual's usability, to suggest specific improvements, and to report technical or
typographical errors. If the comment sheet has already been used, you can mail your
comments to:

Control Data Corporation
Technical Publications
5101 Patrick Henry Drive
Santa Clara, California 95054-1111

Please indicate whether you would like a written reply.

Be sure to include the following information with your comment:

FORTRAN for NOSIVE Keyed-File and SortJMerge Interfaces Usage manual
Publication number 60485917
Current revision letter (from the Manual History)

Also, if you have access to SOLVER, the Control Data online facility for reporting
problems, you can use it to submit comments about this manual. When it prompts you
for a product identifier for your report, please specify AA8 when commenting on the
keyed-file interface and SM8 when commenting on the SortJMerge interface.

8 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 60485917 B

In Case You Need Assistance

Control Data's CYBER Software Support maintains a hotline to assist you if you have
trouble using our products. If you need help beyond that provided in the documentation
or find that the product does not perform as described, call us at one of the following
numbers and a support analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address questions about the
physical packaging and/or distribution of printed manuals to Literature and Distribution
Services at the following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee, call
CONTROLNET@ 243-2100 or (612) 292-2100.

Rovinion A About This Manual 9

Keyed-File Interface Concepts 1

General Keyed-File Concepts ... 1-2
What Is a Keyed File? .. 1-2
How Are Keyed Files Organized? .. 1-2

Indexed-Sequential File Organization 1-3
Indexed-Sequential File Structure .. 1-3
Data-Block Split .. 1-6
Index Levels .. 1-8
Indexed-Sequential Primary Keys ... 1-10

Direct Access File Organization .. 1-11
Direct Access File Structure .. 1-12
Hashing Procedure ... 1-14
Direct Access Primary Keys .. 1-15

FORTRAN Keyed-File Interface Concepts .. 1-16
How to Use Keyed Files in FORTRAN Programs 1-16

Using File Information Tables .. 1-16
Creating a Keyed File .. 1-17

Keyed-File Attributes .. 1-18
Using an Existing Keyed File .. 1-19
Processing Errors .. 1-20

Jl

The keyed-file interface is a group of subprogram calls that use the NOSNE keyed-file
interface to operate on keyed files. The following section, General Keyed-File Concepts,
describes keyed-file structure. This information applies when using keyed files within
or outside of programs. The next section, FORTRAN Keyed-File Concepts, describes
concepts unique to the FORTRAN keyed-file interface.

Revision A Keyed-File Interface Concepts 1-1

General Keyed-File Concepts

General Keyed-File Concepts

This section describes concepts of keyed files that are not specific to FORTRAN or
NOSNE. The discussion is limited to indexed-sequential and direct-access keyed files.
For information on other types of files, such as sequential files, see the FORTRAN for
NOSNE Version 1 or Version 2 Language Definition manuals.

What Is a Keyed File?

A keyed file is a file whose organization allows you to access records by their key
values.

Keyed files are similar to sequential files and byte-addressable files in that the data in
the files is contained in records.

A record is a collection of data that is read and written as a unit. The record could
contain several fields of data, some of which have a fixed length while others vary in
length. Thus, the records as a whole could have a fixed length or be variable in
length.

For example, a record could contain three data items of different types: an integer, a
floating point number, and a string of characters. To write a record, a program writes
all three data items together as a record; when the record is later read, all three data
items are delivered to the program.

The records in a sequential or byte-addressable file are stored as a simple sequence.
The records in a keyed file are stored within a file structure.

How Are Keyed Files Organized?

NOSNE keyed files are organized as indexed sequential or direct access. Therefore, a
file is a keyed file if its file_organization attribute is either indexed_sequential or
direct_ access.

You can display a file's organization with the NOSNE command DISPLAY_FILE_
ATTRIBUTES. This example displays the organization of a file named INDEXSEQ:

Idisplay_file_attributes file=indexseq display_options=file_organization

File_Organization : indexed_sequential

A keyed-file organization allows you to read any record in the file directly by
specifying its key value. The key value for a record is determined when the record is
written to the file.

To allow you to access each record by a key value, the file organization must relate
each key value to the location of the record in the file. The keyed-file interface
performs all processing required to relate a key value to a record location; beyond
choosing the file organization, the user does not specify how this is done. The method
of relating a key value to a record location differs for each keyed-file organization as
described in the following sections.

1-2 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A

General Keyed-File Concepts

Indexed-Sequential File Organization

An indexed-sequential file stores records in sequential order, sorted by primary-key
values. If you read an indexed-sequential file sequentially, the records are returned in
order. This method is more efficient than direct-access files for sequential reads when
you want the records returned in primary-key value order.

An indexed-sequential file always has a primary key. It can also have one or more
alternate keys as described in the Alternate Keys section of this chapter.

Each primary-key value is unique within the file; there can be no duplicate
primary-key values in a file.

The indexed-sequential file organization is used only when you can assign a unique
value to each record stored in the file. This unique value is usually a field of data
within the record (an embedded key), although it can be a value assigned to the record
and not included in the record data (a nonembedded key).

For example, the primary key for an employee file could be the employee's name.
However, because two employees could have the same name, it is better to assign a
unique identification number to each employee and use that number as the primary
key for the file.

You should use the indexed-sequential file organization if you need to read records both
sequentially and randomly. For example, the records in an employee file could be read
sequentially to produce a listing of all employees or read randomly to update individual
records.

When an indexed-sequential file is read sequentially, its records are accessed in
ascending order by key value. The order is kept even when new records are added to
the file. For example, if an employee file is read sequentially using its primary key
(the employee identification number) the records are read in ascending order by their
identification number.

Indexed-Sequential File Structure

This subsection gives a general description of the indexed-sequential structure. You can
use indexed-sequential files without knowing their structure. However, if you
understand the indexed-sequential structure and how it grows, you can create more
efficient indexed-sequential files by specifying appropriate values for structural
parameters.

The internal structure of an indexed-sequential file is designed to provide both random
and sequential access to the data records in the file. File space is divided into blocks
of equal size.

Revision A Keyed-File Interface Concepts 1-3

General Keyed-File Concepts

A block contains a block header and one of the following:

• Internal tables

• Data records (a data block)

• Index records (an index block)

Each index record points to a data block. The index record contains the location of the
data block and the range of key values of the data records stored in that block.

You can display the contents of all components of an indexed-sequential file, the
internal tables and index blocks as well as the data blocks, using the DISPLAY_
KEYED_FILE command described in the NOSNE Advanced File Management Usage
manual.

As you might expect, the actual internal index mechanism is complex. The simplified
examples in this part, however, provide the level of detail you need in order to use
indexed-sequential files.

To see how an index works, let's look at a very small file that contains one index
block and two data blocks. As shown in figure 1-1, the index block contains two index
records. Each index record points to a data block in the file.

Data Block

2

Index Block 4

-
5 -

Data Block

5

6

Figure 1-1. Minimal Indexed-Sequential Structure

1·4 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A

General Keyed-File Concepts

Let's suppose you request to read the record with key value 6. To find the record,
these steps are performed:

1. The index records are searched to find the index record whose range of key values
includes the key value 6.

2. Mter the correct index record (the second one) is found, the search for the record
continues with the data block pointed to by the second index record.

3. The second data block is searched for the record with key value 6. When the
record is found, its data is returned to the requester.

N ext, suppose you request to sequentially read all records in the file. These steps are
performed:

1. The first index record is read to find the first data block.

2. The records from the first data block are read in order.

3. The second index record is read to find the second data block.

4. The records from the second data block are read in order.

5. The sequential read ends because there are no more index records and therefore
no more data blocks to read.

This process reads the records in key-value order because both the index records and
the data records are kept in key-value order.

Revision A Keyed-File Interface Concepts 1·5

General Keyed-File Concepts

Data-Block Split

Usually, a block has some empty space, called padding, that was left empty so that
additional records could later be written to the block. Suppose, as shown in figure 1-2,
a new record is to be written, and its key value is within the range of key values of
the records in a full data block. For the file structure to be maintained, the data block
must be split.

Before the Data-Block Split:

Keyed File

New Record Index Block Data Block

3

4

5

6

After the Data-Block Split:

Keyed File

Data Block

-
2

Index Block

-
3 -

Data Block

3

4

5

6

Figure 1-2. Data Block Split

1-6 FORTRAN for NOSNE Keyed-File and SortfMerge Interfaces Revision A

General Keyed-File Concepts

When a data-block split occurs, records in the data block whose key values are less
than the key value of the new record remain in the existing block. All records in the
existing block that come after the new record are moved to the newly created block.

The new record is put into either the new block or the existing block, depending on
the relative amount of empty space in the blocks and the size of the new record. If
the new record does not fit in either block, a second new block is created and the
new record is put into that block.

Revision A Keyed-File Interface Concepts 1·7

General Keyed-File Concepts

Index Levels

As with data blocks, index blocks may be initially created with some empty space
known as index-block padding. However, for each new data block created due to a
data-block split, another index record must be created. With the addition of many data
records, the initial index block becomes full. When the index block is full, the next
data-block split causes an index-block split.

As shown in figure 1-3, when the initial index block splits, it causes the creation of
another index level.

Before the Data-Block Split:

Keyed File

New Record Data Block

5 1
Data Block -----------

2
~ 7 -----------

----------- 3

4

Index Block -----------
6

1 ------------
7 - Data Block

8 , 8

---------------------- Data Block
9

----------- 9
10 ~ -----------

Data Block

10

Figure 1-3. Index Block Split (Part a)

1·8 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A

General Keyed-File Concepts

After the Index-Block Split:

Keyed File

Data Block
Index Block

U 1
~ 1 Data Block -----------

Index Block ----------- 2
6 6 -----------

~

----------- ----------- 3
1 - ---------------------- 4
7 - ---------------------- 5

Data Block

7
-----------Index Block Data Block

~ 7 - r 8
----------- -----------

8

9

10 !"-"-

Data Block

r 9

Data Block

~ 10

Figure 1-4. Index Block Split (Part b)

Revision A Keyed-File Interface Concepts 1·9

General Keyed-File Concepts

The index levels are numbered as index level 0, index level 1, and so forth. Index level
o always has only one index block; it is always the starting point for an index search.

The index block at an upper level contains an index record for each index block at
the next lower level. For example, the index block at level 0 contains an index record
for each index block at level 1.

A search for a data record requires an index-block search at each index level. For
example, the level-O search finds the index record that points to the appropriate
level-1 index block. If the file has only two index levels, the level 1 search finds the
index record that points to the appropriate data block.

As you can see, the addition of another index level increases the time required to
find an individual data record.

Index levels can be added up to the index-level limit of 15 levels. This sets a limit
on the number of records in the file.

The index-level limit is reached when addition of another record to the file would
require creation of another index level, but 15 index levels already exist in the file.
When this happens, the index-level-overflow flag is set and no more records can be
added to the file.

Indexed-Sequential Primary Keys

The primary key for an indexed-sequential file is defined when the file is created. The
primary-key value must be unique for each record in the file.

A primary-key definition requires you to specify these attributes:

• Embedded or nonembedded key (the default is embedded)

• Key position (if the key is embedded)

• Key length

• Key type (the default is uncollated)

• Collate-table name (if the key type is collated)

A key is embedded if the key value is part of the data in the record. An embedded key
value is returned as part of the record data when the record is read; a nonembedded
key value is not.

You must specify the key position in the record if the key is embedded. The first
byte position in a record is byte o. If the key is nonembedded, you do not specify a
key position.

You must specify the key length whether the key is embedded or nonembedded. It
indicates the number of bytes in the key.

1-10 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A

General Keyed-File Concepts

The key type describes the data in the key. These are the possible key types:

Integer key

The key value is a signed integer; it is sorted in numerical order.

Uncollated key

The key value is a string of characters; it is sorted byte-by-byte according to the
ASCII collating sequence.

Collated key

The key value is a string of characters; it is sorted byte-by-byte according to a
collating sequence that you specify.

If the key is a collated key, you must specify the collating sequence to be used to sort
the key values. The collating sequence is specified by its name. NOSNE provides
several predefined collating sequences (listed in appendix C, ASCII Character Set and
Collating Weight Tables). You can also create your own collating sequence as described
in appendix D, Creating a Collation Table.

Direct Access File Organization

The direct-access file organization is like the indexed-sequential file organization in its
use of a primary key. You define the primary key for the file when you create the file.
It can be a field embedded in the record or a nonembedded value. Each primary-key
value in the file must be unique.

Like an indexed-sequential file, a direct-access file can have alternate keys. An
alternate key for a direct-access file is the same as an alternate key for an
indexed-sequential file. Alternate keys are described later in this chapter.

Like indexed-sequential file records, you must specify the primary-key value when
writing or deleting a direct-access file record. Similarly, you must specify either a
primary-key value or an alternate-key value to read a direct access file record.

Direct access and indexed-sequential files differ in the ordering of records in the file:

• When records are read sequentially from an indexed-sequential file, the records
are returned in order, sorted by primary-key value.

• When records are read sequentially from a direct-access file, the records are
returned unordered.

In general, random record access is faster for the direct-access file organization than
the indexed-sequential file organization. This is because the direct-access file
organization determines the location of a record directly from its primary-key value. In
indexed-sequential files, a record can be found only after a search at each index level.

Revision A Keyed-File Interface Concepts 1·11

General Keyed-File Concepts

Direct Access File Structure

A direct-access file does not store records in primary-key value order like an
indexed-sequential file. It uses an algorithm, called a hashing procedure, to determine
where to write the records in a file. However, direct-access files are more efficient than
indexed-sequential files at retrieving records in random order.

The direct-access file structure is designed to locate each record directly by its
primary-key value. The primary-key value directly specifies the file block containing
the record.

File space in a direct-access file is divided into equal-size blocks. Initially, all blocks
in the file are home blocks. When a home block fills with records, records are
written to overflow blocks.

When a record is written to a direct-access file, its primary-key value is hashed to
produce the number of the home block in which the record is written. If the home
block does not contain enough empty space for the new record, the record is written
to an overflow block.

Assuming the hashing procedure produces a uniform distribution of numbers from the
primary-key values in the file, the records are uniformly distributed among the home
blocks of the file. Thus, each record can be found by a single search of its home
block without additional searches of overflow blocks.

You specify the initial number of home blocks when you create the file. By default, a
system hashing procedure is used to distribute the records among the home blocks,
although you can provide another hashing procedure for the file if you like.

As an illustration of a small direct-access file, suppose you define a direct access file
as having five home blocks.

Home
Blocks

o 2 3 4

DDDDD
The first record written to the file has primary-key value XYZ. Assume that hashing of
this primary-key value produces the block number 2. The record is then written in
home block 2.

Home
Blocks

o 2 3 4

DDLJDD
Assume you want to read the record with primary-key value XYZ. The value XYZ is
hashed and, as before, produces the block number 2. The keyed-file interface searches
for the record with primary-key value XYZ in home block 2. (The records in a block
are ordered by primary-key value so each record can be found quickly.)

1-12 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A

General Keyed-File Concepts

Suppose that many records have been written to the file and home block 2 has been
filled.

Home
Blocks

o 2 3 4

At this point, a record is to be written with primary-key value ABC. Hashing of the
value ABC produces block number 2, but there is insufficient space for the record in
home block 2 so it is written in an overflow block.

Home
Blocks

Overflow
Block

o 2 3 4

Later, to read the record with primary-key value ABC, the primary-key value is
hashed to produce block number 2. Home block 2 is searched for primary-key value
ABC. When it is not found in the home block, the search continues in the overflow
block until the record is found.

For Better Performance

An ideal direct-access file structure has these characteristics:

• Sufficient home blocks are allocated and records are uniformly distributed among
the home blocks to avoid overflow.

• Each block contains a limited number of records to minimize the search time in
each block.

• The number of home blocks is not so large that the file contains excessive unused
space.

• The number of home blocks is prime to provide for a more even distribution of
records.

These characteristics are determined by the file attributes you values specify when the
file is created.

One other characteristic to be considered when selecting the number of home blocks
is the loading factor. The loading factor is the percentage of block space used. To
allow for less-than-uniform distribution of records in the home blocks, the loading
factor should be no greater than 90%.

You can use the following equations to determine the minimum home block count for
a given loading factor if the number of bytes of data in the file and the block size
are known.

Revision A Keyed-File Interface Concepts 1·13

General Keyed-File Concepts

If the file has fixed-length records, reduce the block size by 39 bytes~ as follows:

loading_factor x (block_size - 39)

If the file has variable-length records, reduce the block size by 36 bytes and use the
average record length plus 3 as the record length, as follows:

loading_factor x (block_size - 36)

To illustrate, suppose the direct-access file is to contain 10,000 80-byte records (800,000
bytes of record data). Using a block size of 4096 bytes and a loading factor of 90%, the
equation appears as follows:

10000 x 80

.90 x (4096 - 39)

The equation gives 220 blocks as the minimum home block count for the file. However,
it is recommended that the home block count be a prime number so 223 would be a
better home block count for the file in this example.

Hashing Procedure

The system provides a default hashing procedure named AMP$SYSTEM_HASHING_
PROCEDURE. However, you may specify your own hashing procedure that produces a
uniform distribution of numbers from the primary-key values in your file.

The system executes the hashing procedure each time a record is requested by key
value from the direct-access file. The hashing procedure is not stored with the file so
the system must be able to load the procedure each time the direct-access file is
opened.

For Better Performance

Although any ring attributes value is valid for the object library containing the
hashing procedure, you should store the hashing procedure in a ring 4 object library.
This improves performance because otherwise the hashing procedure is loaded by an
asynchronous task. (Ring 4 object libraries are usually maintained by site personnel.)

A hashing procedure receives a primary-key value as its input and produces an integer
as its output. It must always produce the same output from a given input.

A hashing procedure must be written in the CYBIL language. For information on
how to write a hashing procedure, see the CYBIL Keyed-File and Sort/Merge
Interfaces manual.

1-14 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A

General Keyed-File Concepts

The system divides the value it receives from the hashing procedure by the number of
home blocks and uses the remainder as the home block number. For example, if the
number of blocks is 97, it divides the hashed value by 97 and uses the remainder (an
integer from 0 through 96) as the home block number. A more uniform distribution of
records can be expected if the number of home blocks is a prime number.

Direct Access Primary Keys

In general, the primary key of a direct-access file has the same characteristics as the
primary key of an indexed-sequential file. You specify whether the primary key is
embedded or nonembedded, its position (if the key is embedded), and the key length.
However, the key type for a direct access file is always uncollated; a key type specified
for a direct-access file is ignored.

Unlike an indexed-sequential file, sequential access calls to a direct access file while
the primary-key is selected do not return the file records sorted by primary-key
value. The calls return records according to their physical location in the direct-access
file. Records within each block are ordered according to the default ASCII collating
sequence, but the blocks are not ordered by primary-key values.

Direct access file records can be accessed in order if one or more alternate keys are
defined for the file. The alternate index keeps the alternate-key values in sorted
order. Sequential access calls while an alternate key is selected return records in the
order provided by the alternate index.

If appropriate, you could define an alternate key for the same field as an embedded
primary key. In this way, you could access direct-access file records in primary-key
val ue order.

Revision A Keyed-File Interface Concepts 1-15

FORTRAN Keyed-File Interface Concepts

FORTRAN Yr{eyed·File Interface Concepts

The keyed-file interface is a group of subprogram calls that use the NOSIVE keyed-file
interface to operate on keyed files.

How to Use Keyed Files in FORTRAN Programs

This section describes how to use the keyed-file interface in FORTRAN programs. You
can also use the keyed-file interface through NOSIVE. See the manual NOSIVE
Advanced File Management Usage for more information. You can also use the
keyed-file interface through any language, such as COBOL, that uses the standard
calling sequence.

Do not use more than one I/O method to process the same file. In particular, do not
process the same file using both language statements and keyed-file interface calls.

If you have used CYBER 170 Advanced Access Methods Version 2 (AAM 2), you may
want to read about the differences between NOSIVE AAM 2 and the NOSIVE
keyed-file interface. These differences are described in appendix E, Differences
Between NOSIVE FORTRAN and FORTRAN 5.

U sing File Information Tables

The File Information Table (FIT) is a table of values maintained by the FORTRAN
keyed-file interface. The values represent file attributes for an instance of open of a
file. The FORTRAN keyed-file interface uses values in a FIT to determine how to
process a keyed file.

To use a keyed file in your FORTRAN program, first call the FILEIS or FILEDA
procedure to create a FIT for the file. (FILEIS for an indexed-sequential file; FILEDA
for a direct-access file.) NOSIVE allocates system space for the File Information
Table; your program does not need to reserve space for it.

Specify the file's attributes with pairs of FIT keywords and FIT values. For example,
this FILEIS call creates a FIT for an indexed-sequential file with a local file name of
NEW_IS_FILE, a key length of 5, a maximum record length of 80, and a minimum
record length of 5.

CALL FILEIS (fit_ptr,
'$LOCAL_FILE_NAME', 'new_is_file',
'$KEY_LENGTH', 5,
'$MAXIMUM_RECORD_LENGTH', 80,
'$MINIMUM_RECORD_LENGTH', 5)

The FILEIS or FILEDA call stores a pointer to the FIT in a variable you specify on
the call. Each subsequent keyed-file interface call for the file specifies the FIT pointer
variable as its first parameter.

You can set FIT values using STOREF calls and fetch FIT values using IFETCH
calls. FIT values are described in detail in chapter 7, File Information Table
Keywords and Values.

1·16 FORTRAN for NOSNE Keyed-File nnd SortJMerge Interfaces Revision A

FORTRAN Keyed-File Interface Concepts

This figure illustrates how your program can access keyed-file data.

FORTRAN
internally

CYBll
reads

Your calls calls or
FORTRAN Keyed Keyed Keyed
Program

, File File ,
File

Interface Interface writes

references

FIT

Creating a Keyed File

A FORTRAN program to create a keyed file must perform these steps using the
indicated keyed-file interface call:

1. Create a FIT with FILEIS or FILEDA.

2. Open the file with OPENM.

3. Optionally, write records to the file with PUT.

4. Close the file with CLOSEM.

Keyed-file interface calls are described individually in chapter 6, Keyed-File Interface
Calls.

You specify the keyed-file attribute values before opening the new keyed file. The file
attributes can be specified by one or more of the following:

o The FILEIS or FILEDA call that creates the FIT for the file

• One or more STOREF calls after the FILEIS or FILEDA call

o One or more NOSIVE SET_FILE_ATTRIBUTE commands executed before the
program creating the file is executed. (Values specified by a SET_FILE_
ATTRIBUTE command override values specified by FILEIS, FILEDA, and STOREF
calls.)

If you do not specify a keyed-file attribute by one of these means, a default value is
used when the file is opened.

Revision A Keyed-File Interface Concepts 1·17

FORTRAN Keyed-File Interface Concepts

Keyed-File Attributes

You can specify keyed-file attributes as FIT values. The individual FIT value
descriptions are in chapter 7, File Information Table Keywords and Values. The
keyed-file attributes are as follows:

• File organization attribute:

$FILE_ ORGANIZATION

• Record attributes:
$RECORD_ TYPE (default is undefined)

. $MAXIMUM_RECORD_LENGTH (required)
$MINIMUM_RECORD_LENGTH (recommended if the record length is
variable)

• Primary-key attributes:

$EMBEDDED_KEY (default is embedded)
$KEY_ LENGTH (required)
$KEY_POSITION (default is 0)
$KEY_ TYPE (default is uncollated)
$COLLATE_ TABLE_NAME (required if the key type is collated)

• File structure attributes:
$RECORD _ LIMIT
$MAXIMUM_BLOCK_LENGTH

• Indexed-sequential structure attributes:
$DATA_PADDING (default is 0%)
$INDEX_PADDING (default is 0%)

• Direct access structure attributes:

$INITIAL_HOME_BLOCK_COUNT
$HASHING_PROCEDURE_NAME

• Block-length guideline attributes (specify instead of $MAXIMUM_BLOCK_
LENGTH):

$AVERAGE_RECORD_LENGTH
$ESTIMATED_RECORD_ COUNT
$INDEX_LEVELS
$RECORDS_PER_BLOCK

• Processing attributes:

$COMPRESSION _PROCEDURE_NAME
$ERROR_LIMIT (default is 0)
$LOCK_EXPIRATION _ TIME (default is 60,000 milliseconds)
$MESSAGE_CONTROL (default is only fatal and catastrophic error messages)

• Recovery attributes:

$FORCED_ WRITE (default is unforced)
$LOG_RESIDENCE (default is none)
$LOGGING_OPTIONS (default is none)

The keyed-file attributes are described in the NOSNE Advanced File Management
U sage manual. The complete NOSNE SET_FILE_ATTRIBUTES command description
is in the NOSNE Commands and Functions manual.

1-18 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A

FORTRAN Keyed-File Interface Concepts

NOTE

Besides the required keyed-file attributes, a FORTRAN program must also set the
$LOCAL_FILE_NAME value in the FIT. If the $LOCAL_FILE_NAME value has not
been specified, the OPENM call returns a fatal error.

U sing an Existing Keyed File

A FORTRAN program to process an existing keyed file must perform these steps using
the indicated keyed-file interface call:

1. Create a FIT with FILEIS or FILEDA.

2. Open the file with OPENM.

3. Perform the intended operations on the file (described next).

4. Close the file with CLOSEM.

Only temporary file attributes can be specified for an existing keyed file. Preserved file
attributes are stored with the file and copied to the FIT by the OPENM call.

The calls listed in parentheses in this list are described individually in chapter 6,
Keyed-File Interface Calls.

These operations can be performed on an open keyed file:

• Fetch and store FIT values (lFETCH, STOREF).

• Position the file (REWND, SKIP, STARTM).

• Read records (GET, GETN).

• Write records (PUT, PUTREP).

• Replace records (REPLC, PUTREP).

• Delete records (DLTE).

• Flush modified file blocks to disk (FLUSHM).

• Request locks (LOCKF, LOCKK).

• Clear locks (UNLOCKF, UNLOCKK).

• Use parcels when updating records (PBEGIN, PCOMMIT, PABORT, PDETERM). ~~~

• Create alternate keys (RMKDEF).

• Select keys and nested files (STOREF).

• Fetch alternate key information (KLCOUNT, KEYLIST, KLSPACE).

• Build and use result sets to read records (RSBUILD, RSCLEAR, RSCLOSE,
RSCOMB, RSDLTE, RSGETN, RSINFO, RSOPEN, RSPUT, RSREWND, RSSKIP,
and RSSTART).

60485917 B Keyed-File Interface Concepts 1-19

FORTRAN Keyed-File Interface Concepts

ProcessUng Errors

When a keyed-file interface call (other than the FILEIS or FILEDA call) detects an
error, it performs these steps:

1. Sets the $ERROR _STATUS value in the FIT to the status condition code of the
error.

2. Sets the fatal/nonfatal (FNF) flag in the FIT to indicate whether the severity of the
error is fatal or nonfatal.

3. Writes the error message to the $ERRORS file (if indicated by the $MESSAGE_
CONTROL value).

(If the status severity is warning or informational, the keyed-file interface performs
only step 3, writing the message.)

4. For a nonfatal error, it increments the $ERROR_COUNT value in the FIT and
compares the $ERROR_COUNT value and the $ERROR_LIMIT value.

If it finds that the $ERROR_COUNT value is equal to the $ERROR_LIMIT value,
it changes the $ERROR_STATUS value to the fatal error code AA3255 (error limit
reached) and processes the new error (starting at step 2).

5. If an error-exit procedure is specified in the FIT, it calls the procedure.

The error-exit procedure should fetch the FNF flag to determine if the error is
fatal. If the error is fatal, it should close the file because further file processing is
not allowed after a fatal error. (Any calls, except CLOSEM or FLUSHM, issued
after a fatal error cause a catastrophic error.)

In general, nonfatal errors detected by the keyed-file interface calls are returned in the
status variable defined by the STATUS parameter. However, there are two exceptions:

1. If the trivial error limit is exceeded, the status variable contains the "trivial error
limit exceeded" error, rather than the error that caused the condition.

2. There are some conditions that permit the keyed-file interface to continue detecting
errors. In these cases, the last error detected is the one returned in the status
variable. These conditions are:

aae$enable _altkey _duplicates
aae$sparse _key _beyond _eor _first
aae$msg _key _delimiter _first

1-20 FORTRAN for NOSIVE Keyed-File and SortJMerge Interfaces 60485917 B

FORTRAN Keyed-File Interface Concepts

A FORTRAN program can specify an error-exit procedure by these methods:

o By specifying the error-exit procedure as the $ERROR_EXIT_NAME value before
the file is opened.

o By specifying the error-exit procedure as the $ERROR_EXIT_PROCEDURE_
NAME value (before or after the file is opened).

o By specifying the error-exit procedure as a parameter on a keyed-file interface
call.

If the error-exit procedure is specified by the $ERROR_EXIT_NAME value, it becomes
effective only when the file is opened. Otherwise, the error-exit procedure becomes
effective when it is specified.

If no error-exit procedure has been specified, the keyed-file interface does not call an
error-exit procedure when it detects an error. It stores the $ERROR_STATUS value
in the FIT, but the program must check the $ERROR_STATUS value after each call.

To check for an error, the program calls IFETCH to check the $ERROR_ STATUS
value. If IFETCH returns a nonzero value, it indicates that the call did not complete
successfully, and the program should take the appropriate action.

The error-exit procedure or the program can fetch the FNF value from the FIT to
determine if the error severity was fatal or nonfatal. It can also use the $ERROR_
STATUS value to determine the exact status condition returned.

In one instance, the keyed-file interface clears the $ERROR_STATUS value when it
returns from an error-exit procedure.

If a call specifies a working storage area, key area, or primary-key area that is not
in a common block, the keyed-file interface detects the error and begins the error
processing steps described earlier.

It writes an error message to the $ERRORS file (if requested by the $MESSAGE_
CONTROL value) and calls the error-exit procedure (if one is specified in the FIT). If
the error-exit procedure fetches the $ERROR_STATUS value, IFETCH returns the
value AA2535.

However, unlike other errors, when it finishes processing this error, the keyed-file
interface clears the $ERROR_STATUS value so that the get or put operation can
complete.

Revision A Keyed-File Interface Concepts 1-21

Alternate Keys 2

What Are Alternate Keys? ... 2-1
Alternate-Key Characteristics .. 2-1
The Alternate Index ... 2-2
Alternate-Key Definition ... 2-2

Duplicate Key Values ... 2-3
Duplicate-Key Value Error Processing 2-4
Null Suppression ... 2-4
Sparse-Key Control .. 2-5
Concatenated Keys .. 2-6
Repeating Groups ... 2-7
Variable-Length Keys ... 2-8
Attributes Incompatible With Variable-Length Keys 2-12
Using a Variable-Length Key ... 2-12

Nested Files .. 2-13

How to Use Alternate Keys in FORTRAN Programs 2-15
Alternate Key Creation ... 2-15
Alternate-Key Use .. 2-15

Selecting a Key .. 2-15
Key Selection by Name .. 2-16

Specifying an Alternate-Key Value .. 2-16
Key Values Returned ... 2-17

Collated Key Values ... 2-17
Fetching Information From the Alternate Index 2-18

Alternate Keys

What Are Alternate Keys?

A record within a keyed file can always be accessed by its primary-key value. An
alternate key provides an additional way to access records.

An alternate key defines a value in the data record by which the record can be
accessed. An alternate key is defined as a field or group of fields in the record.

Although a program can use alternate keys to read records or to position a file,
alternate keys cannot be used to write, replace, or delete records. The primary-key
value must be used to identify a record to be written, replaced, or deleted.

Alternate-Key Characteristics

Alternate-key fields can overlap each other and the primary key. For example, the
primary-key field could be bytes 0 through 9 and two alternate-key fields bytes 0
through 19 and bytes 4 through 14.

2

Unlike a primary-key value, one alternate-key value can be associated with several
records in a file. This is because an alternate-key value does not need to be unique.
The same alternate-key value can occur in several records. For example, the same job
title can be associated with many names as follows:

Table 2-1. Data Records With Duplicate Alternate-Key Values

Record
Number

2

3

Primary-Key Field

Hanson
Jones
Smith

Alternate-Key Field

Computer Programmer
Computer Programmer
Computer Programmer

A record can contain more than one alternate-key value if the alternate key is defined
as a field that repeats in the record; thus, a single record could contain several
alternate-key values. For example, the license numbers of several cars owned by one
person as follows:

Table 2-2. Data Record With Several Alternate Keys

Record
Number

Revision A

Primary-Key
Field

R. Petty

Alternate-Key
Field 1

1 LB AU

Alternate-Key
Field 2

2ASM451

Alternate-Key
Field 3

ELK 592

Alternate Keys 2·1

What Are Alternate Keys?

The Alternate Index

The index for the primary key was described in chapter 1, Keyed-File Interface
Concepts. Each alternate key defined for a file has its own index.

An alternate index contains index records, each of which associates an alternate-key
value with the primary-key values of the records containing that alternate-key value.
The list of primary-key values associated with an alternate-key value is the key list
for that alternate-key value.

When you select an alternate key and then specify an alternate-key value, the system
searches for the value in the alternate index. If it finds the alternate-key value, it
uses the primary-key values in the key list for the alternate-key value to access the
data records.

For Better Performance

When one or more alternate keys are defined for a file, file updates require more
time because the alternate indexes must also be updated. Alternate keys should be
used only when the additional record access capability offsets the cost of increased
time spent for file updates.

Alternate-Key Definition

The attributes of an alternate key are specified by its alternate-key definition.

These attributes are required to define an alternate key:

• Key name

o Key position

o Key length

An alternate key has a name so that it can be selected for use. The alternate-key
position and length define the alternate-key field within the record.

These optional attributes define how the alternate key is processed:

G Key type

• Collate table name (if the key type is collated)

e Duplicate key values

• Null suppression

• Sparse-key control

• Repeating groups

• Concatenated key

• Variable-length key

2·2 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A

What Are Alternate Keys?

The key type of an alternate key determines the order of the alternate-key values in
the alternate index, and therefore, the order in which records are accessed sequentially
when you use the alternate key. The key types for an alternate key are the same as
the key types for the primary key as described in chapter 1, Keyed-File Interface
Concepts.

If the key type is collated, you can explicitly specify a collation table for the
alternate key or use, as the default, the collation table for the primary key (if one
has been specified).

Duplicate Key Values

By default, duplicate values for an alternate key are not allowed. However, if you want
to allow duplicate key values, you can specify whether the records having the same
alternate-key value are accessed in primary-key-value order or in first-in-first-out order.

In a key list ordered by primary-key value, the primary-key values are stored in
sorted order according to the primary-key type. New values are added to the key list
so that the primary-key-value order is kept.

In a key list ordered first-in-first-out, the primary-key values are stored in the key
list in the order the values are added to the key list, instead of in primary-key-value
order. New values are always added to the end of the key list.

For Better Performance

When alternate-key values are frequently duplicated in a file, the key lists should be
ordered by primary-key value. First-in-first-out ordering of key lists requires that
delete and replace operations sequentially search the key list to find the primary-key
value of the updated record; a sorted key list provides faster access to a primary-key
value.

For example, suppose you write three records to the file in this order:

Record Primary-Key Alternate-Key
Number Field Field

1 McDarrels Hamburgers
2 Burger Duke Hamburgers
3 Wi llys Hamburgers

Revision A Alternate Keys 2·3

What Are Alternate Keys?

The following shows the resulting key list in primary-key order and in first-in-first-out
order:

Table 2-3. Ordered by Primary Key

Record Primary-Key Alternate-Key
Number Field Field

2 Burger Duke Hamburgers
1 McDarrels Hamburgers
3 Wi llys Hamburgers

Table 2-4. Ordered by First-In-First-Out

Record Primary-Key Alternate-Key
Number Field Field

1 McDarrels Hamburgers
2 Burger Duke Hamburgers
3 Wi llys Hamburgers

Duplicate-Key Value Error Processing

If duplicate values are not allowed and a duplicate is found in a record about to be
written to the file, the record is not written to the file and a nonfatal error (status
AA2100) is returned.

A nonfatal error (status AA2865) also occurs if a duplicate value is found while a
new alternate index is being created. However, the record containing the duplicate
value cannot be discarded, as it is already in the file. Subsequent processing depends
on whether incrementing the nonfatal-error count causes the count to exceed the
nonfatal-error limit a set by the user.

• If the nonfatal-error limit is not exceeded, the apply operation redefines the
alternate key to allow duplicates, ordered by primary-key value, discards the
partially built index, and builds the redefined index.

o If the nonfatal-error limit is reached, the apply operation returns AA2870 and
removes all alternate indexes it has created. (Deleted indexes are not restored.)

In either case, a message describing the action taken is written to the $ERRORS file.

Null Suppression

By default, if an alternate-key field contains a null value, the null value is stored as
the alternate-key value for the record. The null_suppression file attribute allows you to
exclude null values from an alternate index.

Null suppression excludes any record with a null alternate-key value from the
alternate index. Null suppression can save space, access time, and update time
because the index is smaller when null alternate-key values are excluded. (Null
suppression does not remove the null value from the data record.)

2-4 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A

What Are Alternate Keys?

The null value depends on the key type as follows:

Key Type Null Value

Zero
Spaces

Integer
Uncollated
Collated Spaces (before collation)

If null suppression is not specified, records containing a null value in the alternate-key
field are indexed by the null value. The records can later be accessed by specifying the
null value as the alternate-key value.

For example, suppose a membership file has an alternate key of the spouse's name.
Unmarried members would have a null value for the alternate-key field. Therefore,
the key list for the null value lists all unmarried members. The following shows the
alternate index with and without null suppression:

Without Null Suppression

Spouse's Name

Diana Sinmons
Mark Ramsey
Shelly Gable

Sparse-Key Control

Member's ID

1626736
8273648
4872672
7726184
2673651

With Null Suppression

Spouse's Name

Diana Sinmons
Mark Ramsey
Shelly Gable

Member's ID

4872672
2673651
7726184

You can use sparse-key control to create an alternate index that includes or excludes
records depending on the character in a specific position in the record.

For example, suppose a student file has a one-character code indicating the student's
class. To get a mailing list for juniors and seniors only, you could defme an alternate
index controlled by the class code.

To specify sparse-key control, you specify three values:

Value

Sparse-key control position

Sparse-key control characters

Sparse-key control effect
(Indicates whether the
alternate-key value should be
incl uded or excluded if the
sparse-key character matches)

Example

Position of the class code in the record

Junior and senior class code characters

Included if the class code indicates a junior or
senior record

Assume that the sparse-key control position is the first character after the name field
and that the junior and senior class codes are 3 and 4. If the following records are
copied to the file, the first three records are included in the alternate index, but not
the last record.

Louis Skolnik 4
Gilbert Sullivan 4
Elliot Wermzer 3
Judy Manhasset 2

Revision A Alternate Keys 2·5

What Are Alternate Keys?

The sparse-key control position must be within the minimum record length. If you
specify sparse-key control for an alternate key, the alternate-key field or fields need
not be within the minimum record length.

A nonfatal (trivial) error (status AA2875) is returned if both of these conditions are
true for a record:

G The character at the sparse_key _control_position indicates that the record should
be included in the alternate index.

o The record has no alternate-key value because the record is too short to contain
the entire alternate-key value.

When an apply or write operation detects this error, it does not include the record in
the alternate index. (A write operation does write the record to the file.)

Concatenated Keys

A concatenated key is an alternate key formed from several fields, or pieces, in the
record. A concatenated key can comprise up to 64 pieces.

The concatenated pieces can be noncontiguous and can be concatenated in any order.
Each piece can be a different key type. All collated-key pieces use the same collation
table.

To create a concatenated key in a FORTRAN program, use the SCLCMD call to
execute the CREATE_ALTERN ATE_INDEXES utility. The CREATE_ALTERN ATE_
INDEXES utility is described in the NOSNE Advanced File Management Usage
manual.

The first piece you specify is the leftmost piece of the key . You specify it the same
as you specify a nonconcatenated key. The pieces to be concatenated to the leftmost
field are defined by individual ADD_PIECE subcommands. The subcommand order
specifies the order of the concatenated pieces.

A concatenated key can use sparse-key control and/or null suppression. A
concatenated key is considered to have a null value if the values in all fields of the
key are null (before collation for collated keys).

For example, suppose you decide to define an alternate key consisting of the initials
of the member's name. The first piece of the key value would be the first letter of
the member's first name, the second piece would be the first letter of the member's
middle name, and the third piece would be the first letter of the member's last name.
Consider this data record:

o 20 40

I Kennedy I John I Fitzgerald

The alternate-key value is JFK, assuming the concatenated-key pieces are defined as:

First piece:

Second piece:

Third piece:

2-6 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A

What Are Alternate Keys?

Repeating Groups

The repeating_groups file attribute allows a data record to contain more than one
value for the same alternate key. This allows a primary-key value to be associated
with more than one alternate-key value.

To specify an alternate-key field within a repeating group:

1. Specify the first alternate-key field by its key position, key length, and key type.
All subsequent alternate-key fields have the same length and type as the first.

2. Specify repeating groups for the alternate key by specifying the repeating group
length, that is, the distance from the beginning of the first instance of the
alternate key to the beginning of the second instance of the alternate key in the
record.

3. Specify the repeating-group count, which is the number of times the alternate-key
field repeats in the record.

You can specify that the repeating group repeats a fixed number of times or that it
repeats until the end of the record.

• If the alternate-key field repeats a fixed number of times, all alternate-key fields
must be within the minimum record length.

• If the alternate-key field repeats to the end of the record, the minimum record
length imposes no restriction. The system stores as many alternate-key values as
the record length allows.

Repeating groups cannot be used with concatenated keys or when duplicate-key values
are allowed and ordered first-in-first-out.

For example, suppose each record in a membership file lists the sports the member
enjoys and his years of experience as follows (columns are counted from zero):

Field: Sports and Sports Experience

Columns: Variable number of 2-field pairs beginning at column 75

Type:

The Sports field is 10 characters followed by a 2-digit Sports Experience
field
ASCII characters

You could define an alternate key for the Sports values (without the Sports-Experience
values) as follows:

CREATE_KEY_DEFINITION parameters:

Key_Pos1tion=75, Key_Length=10, Key_Type=uncollated, Repeating_Group_Length=-
12,
Repeating_Group_Count=repeat_to_end_record,
Duplicate_Key_Values=ordered_by_prlmary_key

RMKDEF call:

CALL RMKDEF(fit, 0, 75, 10, 0, 'UNCOLLATED', 'ORDERED_BY_PRIMARY_KEY', 12, 0)

Revision A Alternate Keys 2·7

What Are Alternate Keys?

The key list for an alternate-key value would list the identification numbers of all
members that enjoy that sport.

The following shows the primary keys for three records and their contents from
column 75 to the end of the record:

Primary Key

1662876
6166287
0027840

Record Contents Beginning at Column 75

Vol leybal 102Running 03Basketball02
Bicycling 10Volleyball01
Running 15Running 15Running 15

If these were the only records in the file, the alternate index would appear as follows:

Alternate Key Value

Basketball
Bicycling
Running
Volleyball

Primary Key Value

1662876
6166287
0027840 1662876
1662876 6166287

Notice that the key type is the default (uncollated) and the duplicate-key values
specification is ordered_by _primary _key. Thus, each key list is sorted according to the
default ASCII collating sequence.

Notice also, as shown by the Running key list, each primary-key value is listed only
once in a key list, regardless of the number of times the alternate-key value occurs
in the record.

Variable-Length Keys

A variable-length alternate key is an alternate key whose value varies in length. The
definition of a variable-length alternate key specifies the key's starting position,
maximum length, and set of delimiter characters.

The end of a variable-length key value is marked by a delimiter character, the end of
the key field, or the end of the record, whichever is found first starting at the key_
position.

By defining the key as a variable-length key, you can use the following values as
alternate keys:

" The first value beginning at a certain position of each record.

" The last field in a variable-length record.

o All data in a variable-length record.

By defining the key as a variable-length key with the repeating groups attribute, you
can use the following values as alternate keys:

f) A value found anywhere in a fixed-length field (if all other characters in the field
are in the set of delimiter characters for the alternate key).

2·8 FORTRAN for NOSIVE Keyed·File and SortJMerge Interfaces Revision A

What Arc Alternate Keys?

• Each value in a sequence of values, separated by one or more consecutive
delimiter characters. The sequence of values can be within:

- A fixed-length field

- A variable-length field at the end of the record

- The entire record

For Better Performance

Define a key as a variable-length key only when necessary. The requirement to scan
the key field for delimiter characters adds processing time when the alternate index
is built and when the file is updated.

The following examples each specify a variable-length alternate key.

Example 1:

The alternate key is to be the first sequence of up to 80 non-blank characters in each
record.

o EOR
I~--Fi-r-n-t-o-k-e-n-in--e-a-Ch--re-c-o-r-d-.~

......"....,

Key Value

To define the alternate key, specify the key position as 0, the key length as 80, and
the variable-length key attribute with the blank character as the delimiter, as follows:

CREATE_KEY_DEFINITION parameters:

RMKDEF Call:

CALL RMKOEF(fit,O,O,80,O,O,O,O,O,O,O,O,O,' '}

Example 2:

Assume that each record consists of a required 20-byte portion followed by an
optional variable-length portion of up to 120 bytes.

~O ___________________ 2_0 ________ ~EOR

: Variable portion I Fixed portion

Revision A

'- / V'

Key Value

Alternate Keys 2·9

What Are Alternate Keys?

To define the variable-length portion as the alternate key, specify the key position as
20, the key length as 120, and the variable-length key attribute with an empty
delimiter set.

The statements to define the key are the same as for example 1 except for the
following:

CREATE_KEY_DEFINITION parameters:

RMKDEF Call:

CALL RMKDEF(fit,O,20,120,O,O,O,O,O,o,o,O,O,")

Example 3:

Assume a 100-byte field that contains a value at byte 5 that is the alternate key.
The value is from 0 through 95 bytes long, right-justified and blank-filled within the
field.

o 5 99 .
right-justified :

Key Value

To define the alternate key, specify the key position as 5, the key length as 95, the
variable-length key attribute with the blank character as the delimiter, and the
repeating_groups attribute.

The repeating_groups attribute is required because the value is right-justified in the
field; thus, the search for the value must not end at the first delimiter; it should
continue to the end of the field. For a repeating variable-length key, the repeating_
group_length value can be any integer greater than zero; the repeating_group_count
is the length of the alternate-key field.

CREATE_KEY_DEFINITION parameters:

Key_Pos1t1on=5, Key_Length=95, Variable_Length_Key=' ,
Repeating_Group_Length=1, Repeating_Group_Count=95

RMKDEF Call:

CALL RMKDEF(fit,O,5,95,O,O,O,1,95,O,O,O,O,' ,)

2-10 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A

What Are Alternate Keys?

Example 4:

Each string of letters in the data is to be defined as a value for the alternate key.

o EOR

~------------------------------~
Each word, in this record, is a key value

yyy~~yyyy

Key Value

To define the alternate key, specify the key position as 0, the key length as the
maximum record length (80), the variable-length key attribute, and the repeating_
groups attribute. Notice that the delimiter set is defined as all characters except the
letters.

CREATE_KEY_DEFINITION commands:

/var
var/key_dellmiters: string = ..
var .. /' 1234567890-=!@#$%-&*()_+[]'{}";"\:"!,./<>?' ..
var .. /$CHAR(000)//$CHAR(001)//$CHAR(002)//$CHAR(003)//
var .. /$CHAR(004)//$CHAR(005)//$CHAR(006)//$CHAR(007)//
var .. /$CHAR(008)//$CHAR(009)//$CHAR(010)//$CHAR(011)//
var .. /$CHAR(012)//$CHAR(013)//$CHAR(014)//$CHAR(015)//
var .. /$CHAR(016)//$CHAR(017)//$CHAR(018)//$CHAR(019)//
var .. /$CHAR(020)//$CHAR(021)//$CHAR(022)//$CHAR(023)//
var .. /$CHAR(024)//$CHAR(025)//$CHAR(026)//$CHAR(027)//
var .. /$CHAR(028)//$CHAR(029)//$CHAR(030)//$CHAR(031)//
var .. /$CHAR(127); varend

create_key_deflnition, key_name=words,
key_position=O, key_length=80, ..
variable_length_key=key_dellmiters, ..
repeatlng_group_length=1, ..
repeating_group_count=repeat_to_end_of_record

RMKDEF Call:

va 1 ue=' 1234567890-= !@#$%-&*O_+[]' {}" ; "\: " I , ./<>?'
+ //$CHAR(OOO)//$CHAR(001)//$CHAR(002)//$CHAR(003)
+ //$CHAR(004)//$CHAR(OOS)//$CHAR(006)//$CHAR(007)
+ //$CHAR(008)//$CHAR(009)//$CHAR(010)//$CHAR(011)
+ //$CHAR(012)//$CHAR(013)//$CHAR(014)//$CHAR(01S)
+ //$CHAR(016)//$CHAR(017)//$CHAR(018)//$CHAR(019)
+ //$CHAR(020)//$CHAR(021)//$CHAR(022)//$CHAR(023)
+ //$CHAR(024)//$CHAR(02S)//$CHAR(026)//$CHAR(027)
+ //$CHAR(028)//$CHAR(029)//$CHAR(030)//$CHAR(031)
+ //$CHAR(127)

CALL RMKDEF(flt,O,O,80,O,O,O,1,O,O,O,O,O,value)

Revision A Alternate Keys 2-11

What Are Alternate Keys?

Attributes Incompatible With Variable-Length Keys

The following alternate-key attributes are not supported for variable-length keys:

• Integer key type

• Ordering duplicate-key values chronologically (First_In_First_Out)

• Concatenation

• Null suppression

• Sparse-key control

Using a Variable-Length Key

Using a variable-length alternate key differs from using a flXed-Iength key in the
following ways:

• On a call using a variable-length key, you must specify the length of the key
value as well as its location. The length of the key value is specified using the
appropriate major-key length parameter.

• When a call returns a variable-length key value, it returns the value padded with
delimiter characters to the full key length. (It pads using the character with the
lowest ASCII value in delimiter set.)

• The key value specified on the call is compared with the full key value stored in
the index, not only the leftmost bytes.

Key value comparison is illustrated by the following example that contrasts the use of
a variable-length key value with the use of an equivalent major-key value for a
fixed-length key. The key value used is the leftmost two bytes Cab'):

File Position in the Alternate Index

Parameter Specifications

Key Value: 'abb'
Key_Relation: 'Equal'
Major_Key_Length: 2

Fixed-length

aab
--.. ab

aba
abd
ac

2·12 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces

Variable-Length

aab
ab
aba
abd
ac

Revision A

What Are Alternate Keys?

As shown, when the Key_Relation is 'Equal', the positioning is the same.

However, the positioning can differ if the Key _Relation is 'Greater_Than':

File Position in the Alternate Index

Parameter Specifications

Key Value: 'abp'
Key_Relation: 'Equal'
Major_Key_Length: 2

Fixed-Length

aab
ab
aba
abd

~ ac

The file positioning differs because:

Variable-Length

aab
ab
aba
abet
ac

• The two-byte major-key value is compared with the leftmost two bytes of the
fixed-length alternate-key values. So, the file is positioned at the first key value
whose leftmost two bytes are greater than 'ab', that is, 'ac'.

• The two-byte variable-length key value is compared with the full variable-length
alternate-key value, not just the leftmost two bytes. So, the file is positioned at
the first key value greater than 'ab', that is, 'aba'.

Nested Files

A nested file is a file structure defined within a NOSNE file cycle. It is recognized
and used by the keyed-file interface; it is not recognized or used by the NOSNE file
system.

The keyed-file interface provides nested files to extend the NOSNE limit on the
number of files a task can use. All nested files defined in a file share the same
memory segment. This provides effective memory use when the nested files are much
smaller than the segment size limit (232 bytes).

All nested files in a file share the same NOSNE catalog entry. Thus, if one nested
file is damaged, the entire file is damaged and requires recovery.

The keyed-file interface creates the initial nested file (named $MAIN _FILE) when it
creates the keyed file. It uses $MAIN _FILE as the default nested file; other nested
files are used only when explicitly selected.

No FORTRAN keyed-file interface call exists to create a nested file. However, a
FORTRAN PFogram can create a nested file (other than $MAIN _FILE) by:

• Calling the CYBIL subprogram AMP$CREATE_NESTED_FILE

• Calling the NOSNE command COPY_KEYED_FILE

• Copy an existing nested file

• Calling the CREATE_KEYED_FILE utility

Revision A Alternate Keys 2·13

What Are Alternate Keys?

(The AMP$CREATE_NESTED_FILE call is described in the CYBIL Keyed-File and
SortlMerge Interfaces manual. The COPY_KEYED_FILE command and the CREATE_
KEYED_FILE utility are described in the NOSIVE Advanced File Management
manual.)

A FORTRAN program selects a nested file by storing its name in the FIT using the
keyword $NESTED_FILE_NAME (or $NFN). To re-select the default nested file, it
stores the name $MAIN_FILE.

Each alternate-key definition applies to only one nested file. To define an alternate
key for a nested file other than the default nested file ($MAIN _FILE), you first
select the nested file and then define the alternate key. Similarly, to select an
alternate key for a nested file other than the default nested file ($MAIN_FILE), you
first select the nested file and then select the alternate key.

A task can perform operations only on the currently selected nested file. However,
the file position, key selection, and locks for a nested file are not lost when another
nested file is selected. For example, consider this sequence of events:

1. A task is issuing GETN calls while NESTED_FILE_l and ALTERNATE_KEY_l
are selected.

2. The task selects and uses NESTED_FILE_2.

3. The task selects NESTED_FILE_l again. It can continue reading records
sequentially from the file position at which it stopped reading when it selected
NESTED_FILE_2. The same key, ALTERNATE_KEY_l, remains selected.

2-14 FORTRAN for NOSNE Keyed-File and SortfMerge Interfaces Revision A

How to Use Alternate Keys in FORTRAN Programs

How to Use Alternate Keys in FORTRAN Programs

Alternate Key Creation

The recommended method for creating alternate keys is to use the NOSNE utility
CREATE_ALTERNATE_INDEXES. In general, using the utility is easier and more
efficient than writing a program especially when creating In.ore than one alternate key.

You can execute the utility from a FORTRAN program using the SCLCMD call. The
SCLCMD call is described in chapter 6, Keyed-File Interface. CREATE_
ALTERNATE_INDEXES is described in the NOSNE Advanced File Management
U sage manual.

The RMKDEF call both defines the alternate key and applies the definition to the
keyed file to build the alternate index.

The RMKDEF call can be issued for a keyed file that has been created before or
during program execution. Both a FILEIS (or FILEDA) call and an OPENM call must
be executed before the RMKDEF call. The RMKDEF call uses the FIT pointer
returned by the FILEIS (or FILEDA) call.

The alternate key created by the RMKDEF call remains as part of the keyed file for
the life of the file or until the alternate key is explicitly deleted. You can delete an
alternate key using the NOSNE utility CREATE_ALTERNATE_INDEXES.

Alternate-Key Use

You can use an alternate key to position or read a keyed file. (Calls to write to a
keyed file must specify primary-key values, not alternate-key values.)

While an alternate key is selected, the file is positioned and records are read in the
logical record order defined by the alternate index. For example, each GETN call
reads the next record in alternate-key order, instead of in primary-key order.

Selecting a Key

To indicate that the key values on subsequent STARTM, GET, and GETN calls are
alternate-key values, you must call STOREF to select the alternate key. The key
selection takes effect when the next START, REWND, or GET (but not GETN) call is
issued.

Use the STOREF call to specify a key by its name.

Revision A Alternate Keys 2·15

How to Use Alternate Keys in FORTRAN Programs

Key Selection by Name

The STOREF call can select a key by storing the key name in the FIT.

For example, the following STOREF call selects alternate key ALTERNATE_567 _9_
250.

To change the key selection, you call STOREF again, specifying another alternate key
or the primary key. The primary key name is $PRIMARY_KEY. For example, the
following call selects the primary key:

CALL STOREF(fit,'$KEY_NAME','$PRIMARY_KEY')

Selection by key name is the only way to select a nonembedded primary key.

Specifying an Alternate-Key Value

You can specify an alternate-key value in the working storage area.

If you specify the value in the working storage area, you must store the value in the
alternate-key position in the working storage area. If the alternate key is a
concatenated key, each piece must be stored in its field in the record.

For example, suppose you define your working storage area as an 80-integer array
named WSA. If the alternate-key field is the fifth integer (that is, the alternate-key
field begins at byte 32 [counting from zero] and is 8 bytes long), you could store the
integer alternate-key value 1374 as follows:

WSA(5)=1374

The file-position values returned, and their meanings, differ when using an alternate
key, instead of the primary key, as follows:

$FILE_
POSITION
Value

1

8

16

64

Meaning

The file is positioned at the beginning of the alternate index. (It is
positioned to read the record with the lowest alternate-key value.)

The file is positioned at the end of the key list for the current
alternate-key value. (It is positioned to read the first record having
the next alternate-key value.)

The file is positioned at the end of a record, but not at the end of
the key list. (It is positioned to read the next record having the
current alternate-key value.)

The file is positioned at the end of the alternate index. (It cannot
read a record at this position.)

When reading a file sequentially, you should call IFETCH to fetch the file position and
then check the returned value after each get call.

To get all records containing the same alternate-key value, the program issues GETN
calls until a file position of 8 (end-of-key-list) is returned.

2-16 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A

How to Use Alternate Keys in FORTRAN Programs

When a GET or GETN call returns a file position of 64, it has positioned the file at
its end-of-information and no GETN calls should be issued until the file is
repositioned.

A GETN call issued after a call that positions the file at the end-of-information is an
attempt to read beyond the end-of-information. It returns non-fatal error $ERROR_
STATUS value AA2635.

Key Values Returned

You can fetch both the alternate-key value and the primary-key value from the FIT
while an alternate key is selected.

• A GETN call issued while an alternate key is selected returns the alternate-key
value of the record read in the key area, instead of the primary-key value.

• A GETN (or GET or STARTM) call issued while an alternate key is selected can
return the primary-key value of the record read in a primary-key area.

Before a call can return a value in a primary-key area, the program must store in the
FIT the location of the primary-key area.

For example, this call specifies the variable PRIKEY as the primary-key area:

CALL STOREF(fit,'$PRIMARY_KEY_ADDRESS' ,prikey)

NOTE

Like the key area and the working-storage area, the primary-key area should be in a
common block.

The primary-key area is used only while an alternate key is selected; no value is
returned in the primary-key area while the primary key is selected.

Collated Key Values

If the key type of the key is COLLATED, the key value returned may no longer be the
key value input with the record. This can occur if the collation table assigns the same
collation weight to more than one character code.

The process is as follows:

1. Each character of a collated key value is stored in the index as the lowest
character code having the same collating weight.

2. When the key value is returned, the key value is decollated to its original form.
However, if more than one character code is collated as the same value, the value
returned is the lowest character code with the same collation weight.

Because of this process, your program may not be able to fetch a nonembedded
primary-key value in its original form. (It can always fetch an alternate-key or
embedded primary-key value in its original form from the record data.)

For example, if lowercase letters are collated as equal to the corresponding uppercase
letters (each lowercase letter is given the same collating weight as the corresponding
uppercase letter), the alternate-key value is returned using only uppercase letters.

Revision A Alternate Keys 2·17

How to Use Alternate Keys in FORTRAN Programs

As another example, consider the OSV$xxxx collation tables predefined by NOSNE
and listed in appendix C, ASCII Character Set and Collating Weight Tables. These
collation tables assign collation weight 0 to all unprintable characters and to the
space character. Thus, all unprintable characters and all space characters are
returned as the lowest character code value with collation weight 0, which is the
NULL character (00 hexadecimal).

Fetching Information From the Alternate Index

Your program can fetch information from the alternate index using the KLCOUNT,
KEYLIST, and KLSPACE calls.

• The KLCOUNT call returns the number of primary-key values for a range of
alternate-key values in the alternate index.

• The KEYLIST call returns the actual primary-key values for a range of
alternate-key values.

• The KLSPACE call returns the alternate-index block count for a range of
alternate-key values.

These calls differ from the other keyed-file interface calls in these ways:

• Values must be specified for all parameters. (The valid values are listed in the
parameter descriptions.)

• The only values that these calls update in the FIT are the file position, the last
operation, and the error status. The calls do not use FIT values as default
parameter values.

2·18 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A

Sharing Keyed Files 3

When Does Sharing Keyed Files Require Locks? 3-2
When to Specify MODIFY Share Mode ~ 3-2

What Are Access and Share Modes? .. 3-3
About Access Modes ... 3-3
About Share Modes ... , 3-4

U sing Access and Share Modes to Share a File 3-5
The Relationship Between Access Modes, Share Modes, FIT Keywords, 3-5

Three Steps to Set Access and Share Modes 3-6
Two Steps to Set Access and Share Modes .. 3-6

Specifying an Open_option Parameter on the OPENM Call 3-7

What Are Locks? .. 3-9
Reasons for Locks 3-9
Lock Intents .. 3-11

Exclusive_Access Lock Intent .. 3-11
Preserve_Access_and_Content Lock Intent 3-11
Preserve _Content Lock Intent .. 3-12
Lock Renewal and Lock_Intent Changing 3-12

File Locks .. 3-12
Waiting for a Lock ... 3-13
Lock Expiration and Clearing ... 3-14

How a Lock Expires ... 3-14
Expired Lock Conditions .. 3-15

Lock Deadlock .. 3-16
Lock Conflict Tables .. 3-16

60485917 B

Sharing Keyed Files

A keyed file is shared when it is opened more than once and the occurrences overlap.
The file can be opened more than once by the same task, job, or by multiple tasks or
jobs. Every time the file is opened by an entity, the period of time during which it is
open is called an instance of open.

NOTE

The period of time during which a file is open is called an instance of open. It
describes a time interval that is initiated and controlled by an entity.

3

A task can have more than one instance of open of a file that overlap. One example of
when a task might want to have concurrent instances of open of a file is when a task
wants to, in parallel, read successive records from two or more nested files that in the
same keyed file.

60485917 B Sharing Keyed Files 3-1

When Does Sharing Keyed Files Require Locks?

When Does Sharing Keyed Files Require Locks?

Sharing occurs when instances of open for a keyed file overlap. Generally, you need to
use locks whenever sharing may occur, unless the first instance of open specifies
exclusive access to the file so no other instance of open can access the file, even for
read access.

To have exclusive access to a file, specify a share mode of NONE. For example, this
STOREF call stores an access mode of read and a share mode of NONE in the file
information table pointed to by FITPTR:

call STOREF(fitptr, '$ACCESS_AND_SHARE_MODES', '«READ),(NONE»')

Or, you can specify exclusive access to a file by specifying an open_option parameter
on the OPENM call.

For Better Performance

Specify exclusive access to a file whenever possible. When you have exclusive access,
there is no need to lock records so keyed file processing is more efficient.

For example, this OPENM call specifies an open_option parameter of 'NEW', so the
access modes are set to read and write, and the share mode is set to none:

call OPENM(fitptr, 'NEW', 0)

For more information on the access and share modes set when specifying an open_
option parameter on the OPENM call, see Specifying an Open _option Parameter on the
OPENM Call later in this chapter.

When to Specify MODIFY Share Mode

When sharing a keyed file, you may want to specify MODIFY access for other users.
MODIFY access allows statistics for the file to be kept, which you can access by using
a utility such as DISPLAY_KEYED_FILE_PROPERTIES. The statistics include
information such as the number of times the file has been accessed, the number of
times information has been replaced in the file, and the number of times information

...
:

: :i :!:: :~!.: ::: ::::::a:::: O:eD:::LAY_KEYED_FlLE_PROPERTIES and file statistics, see Displaying, Copying, and Creating Keyed Files in the Advanced File Management
manual.

For Better Performance

.:.

1 ... : :11 : ;:; ::t::r~e::m:::e ::=~i:e~.nir ~::r~~,f~~io:h:~ s~!::eo:::e fi%~des allowed
Access and share modes, reasons for using locks, and how to use locks are described in
detail in the following pages.

3·2 FORTRAN for NOSNE Keyed.File and SortiMerge Interfaces 60485917 B

What Are Access and Share Modes?

What Are Access and Share Modes?

To share files and use locks effectively, you need to understand access and share
modes. Access and share modes determine how you and other users can use a file.

About Access Modes

The access mode of a file specifies what you can do with the file. Access modes include
read, modify, shorten, append, write, and execute. They are defined as follows:

Access Mode

Read

Modify

Shorten

Append

Write

Execute

All

What You Can Do With the File

Read the data in the file.

Change the data in the file. Modify access does not allow a file to
change its size1. Modify access also means that statistics are kept
for the file.

Delete data from the file.

Add data to the file or change data in the file.

Change data, delete data, and add data to the file. Equivalent to
modify, shorten, and append access modes.

Specify the file in an EXECUTE _TASK command or as an SCL
procedure.

Equivalent to read, modify, shorten, append, and execute access
modes.

1 Modify access alone is generally insufficient if you are changing data in a file. For
example, if you change data that forces a data block split, the file must be able to
expand to accomodate the new block.

60485917 B Sharing Keyed Files 3·3

What Are Access and· Share Modes?

About Share Modes

The share mode of a file specifies what access modes other users of the file must
specify if they want to use it at the same time. Share modes are similar to access
modes, except they apply only to how other users can use the file. They are defined as
follows:

Share Mode

None

Read

Modify

Shorten

Append

Write

Execute

All

What Other Users Can Do With the File

Nothing.

Read the data in the file.

Change the data in the file. Modify access does not allow a file to
change its size1.

Delete data from the file.

Add data to the file or change data in the file.

Change data, delete data, and add data to the file. Equivalent to
modify, shorten, and append share modes.

Specify the file in an EXECUTE_TASK command or as an SCL
procedure.

Equivalent to read, modify, shorten, append, and execute share
modes.

1 Modify access alone is generally insufficient if you are going to allow others to change
data in a file. For example, if another user changes data that forces a data block split,
the file must be able to expand to accomodate the new block.

In addition to these access and share modes, there are three special modes you can
specify with the File Information Table (FIT) keyword $ACCESS _AND _SHARE _
MODES. These modes are:

• permitted _access _modes

• required _share _modes

• determine _from _access _modes

These modes use combinations of the previously discussed modes, depending on specific
circumstances. For more information, see $ACCESS _AND _SHARE _MODES in chapter
7, File Information Tables.

3-4 FORTRAN for NOSIVE Keyed-File and SortJMerge Interfaces 60485917 B

What Are Access and Share Modes?

U sing Access and Share Modes to Share a File

When more than one person uses a file at the same time, their access to the file is
restricted by access and share modes specified by previous concurrent users.

In other words, when you try to open a file that other users have already opened, your
success at opening the file depends on each user's access and share modes.

In order to be successful, the access and share modes that you specify must satisfy
these conditions:

• Your requested access modes must have been specified as share modes by each user
who has the file open.

• Your requested share modes cannot restrict the access mode of any user who has
the file open.

The Relationship Between Access Modes, Share Modes, FIT
Keywords, and File Interface Calls

Some FIT keywords and file interface calls affect the access and share modes of a file.
The FIT keywords store and fetch information from a file information table. A file
information table is maintained for every instance of open of a file. The keywords that
affect access and share modes are:

FIT Keyword

$ACCESS_MODE

Purpose

Sets the access and share modes in the file
information table.

Sets the access modes in the file
information table. Also sets the share modes
to DETERMINE_FROM_ACCESS_MODE8.

Fetches the access modes from the file
information table.

Fetches the share modes from the file
information table.

Sets the share modes in the file information
table applicable to other instances of open
within the same job. $OPEN _SHARE _
MODE is different than share modes of
$ACCESS_AND _SHARE _MODES, where
the share modes are applicable to any other
instance of open.

For more detailed information about these FIT keywords, see chapter 7, File
Information Tables.

60485917 B Sharing Keyed Files 3-5

What Are Access and Share Modes?

File interface calls that use access and share modes are:

Call Purpose

FILEIS Creates a file information table for an indexed-sequential file and,
optionally, initializes values in the table.

FILEDA Creates a file information table for a direct-access file and, optionally,
initializes values in the table.

STOREF

IFETCH

OPENM

Stores values in a file information table.

Fetches values from a file information table.

Opens a keyed file.

For more detailed information about these calls, see chapter 6,Keyed-File Interface
Calls.

To set the access and share modes of file, use one of these methods:

Three Steps to Set Access and Share Modes

1. Use the FILEIS or FILEDA call to create a file information table.

2. Use the STOREF call to set the access and share mode values in the table.

3. Use the OPENM call, specifying the open _option parameter as 0, to open the keyed
file.

Two Steps to Set Access and Share Modes

1. Use the FILEIS or FILEDA call to create a file information table and to set the
access and share mode values in the table.

2. Use the OPENM call, specifying the open _option parameter as 0, to open the keyed
file.

You can also use the NOSNE commands SET_FILE_ATTRIBUTES to set the access
and share modes for a file. For more information on using these commands, see
NOSNE File Attributes in chapter 4, Catalog and File Management, in the System
Usage manual.

There are two important points to remember:

• The OPENM call redefines the access and share mode values in a file information
table unless you specify the open _option parameter as O.

• Any time you use STOREF to store access and share mode values in a file
information table, the values are used the next time the file is opened. If you use
STOREF after an OPENM call, the access and share mode values are not used for
the current instance of open of the file. However, they are used for the next
OPENM call as long as you specify the open_option parameter as O.

3·6 FORTRAN for NOSNE Keyed·File and SortJMerge Interfaces 60485917 B

What Are Access and Share Modes?

Specifying an Open _option Parameter on the OPENM Call

If you do not specify 0 for the open _option parameter on the OPENM call, the access
and share modes for the file are determined by the value for the open _option
parameter that you specify as follows:

Sample OPENM Call Access Modes Set Share Modes Set

OPENM(fit, 'NEW', 0) Read, modify, shorten,
append

None

Read Read OPENM(fit, 'INPUT', 0)

OPEN(fit, 'OUTPUT', 0)

OPENM(fit, '10', 0)

Modify, shorten, append None

Read, modify, shorten,
append

None

Here are some examples of specifying access and share modes for a file.

• This example creates a file information table, stores access and share mode values
in the table, and opens the file:

integer fitptr

call FILEIS(fitptr,
+ '$LOCAL_FILE_NAME', 'my_file',
+ '$KEY_LENGTH', 15,
+ '$MAXIMUM_RECORD_LENGTH', 80,
+ '$MINIMUM_RECORD_LENGTH', 15)

call STOREF(fitptr,
+ '$ACCESS_AND_SHARE_MODES',
+ '«READ,EXECUTE),(NONE»')

call OPENM(fitptr, 0, 0)

Pointer to the file information
table.

Create a file information table
for an indexed-sequential file.

Define the key length.
Define the max record length.
Define the min record length.

Store the access and share modes
in the file information table.

Access modes = read and execute
Share modes = none
Open the file.

• This example creates a file information table, stores the access and share modes,
stores the open share mode, and opens the file.

i nt eger fit pt r

call FILEIS(fitptr,
+ '$LOCAL_FILE_NAME', 'new_file',
+ '$KEY_LENGTH', 15,
+ '$MAXIMUM_RECORD_LENGTH', 80,
+ '$MINIMUM_RECORD_LENGTH', 15)
+ '$ACCESS_MODE', '(ALL)',

+ '$OPEN_SHARE_MODE',
+ '(READ,MODIFY)'

call OPENM(fitptr)

60485917 B

Pointer to the file information
table.

Create a file information table
for an indexed-sequential file.

Define the key length.
Define the max record length.
Define the min record length.
Access modes = all,

share mode = none.
Open share modes = read and modify

(Open share modes apply only to
open requests within the job.)

Open the file. By default, the
open_option and file_position
parameters are O.

Sharing Keyed Files 3·7

What Are Access and Share Modes?

• This example stores access and share mode values in a file information table, and
then opens a keyed file specifying 'NEW' for the open_option parameter. When the
access and share modes are fetched, they have been changed because the open_
option parameter did not specify o.

integer fitptr, mode

call STOREF(fitptr,
+ '$AASM', ' «ALL), (ALL»')

call OPENM(fitptr, 'NEW', 0)

call IFETCH(fitptr,
+ 'GLOBAL_ACCESS_MODE', mode)

call IFETCH(fitptr,
+ 'GLOBAL_SHARE_MODE', mode)

Pointer to the file information
table and the mode returned
from the table

Access modes = all
Share modes = all

Open the file as a new file.

Mode = 3, which is read, modify,
shorten, and append.

Mode = 0, which is no sharing.

• This example shows how to allow the first open request to update the file and to
restrict successive open requests to read access. To do this, specify more than one
set of access and share modes using the $ACCESS _AND _SHARE _MODES
keyword. When an open request occurs, the first set of access and share modes are
evaluated to see if they are valid for this request. If they are not, the next set of
access and share modes are evaluated. This process continues until a set of access
and share modes that are valid are found.

In this example, the first open request will be granted read and write access to the
file. The share modes are set to read and modify. Successive requests will not be
allowed to use the first set of access and share modes so the second set, read and
modify access modes and read and write share modes, will be granted.

integer fitptr,
+ mode

call FILEIS(fitptr,
+ '$LOCAL_FILE_NAME', 'a_file',
+ '$KEY_LENGTH', 7,
+ '$MAXIMUM_RECORD_LENGTH', 132,
+ '$MINIMUM_RECORD_LENGTH', 80,
+ '$ACCESS_AND_SHARE_MODES',
+ '«READ,WRITE),(READ,MODIFY)

call OPENM(fitptr)

call IFETCH(fitptr,
+ ~$GLOBAL_ACCESS_MODE', mode)

call IFETCH(fitptr,
+ '$GLOBAL_SHARE_MODE', mode)

Pointer to the file information table.
Access and share modes returned.

Create a file information table
for an indexed-sequential file.

Define key length.
Define max record length.
Define min record length.
Define two sets of access, share modes.

, (READ,MODIFY),(READ,WRITE»')

Open the file. For the 1st request,
access modes = read, write;
share modes = read, modify.

IFETCH returns an access mode of 3.
IFETCH returns a share mode of 7.

3·8 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 60485917 B

(
\
'.

(

(

I
\

What Are Locks?

What Are Locks?

Keyed-file sharing is coordinated through the use of locks. A lock is a mechanism by
which a task can restrict use of a keyed file or individual primary-key values in keyed
files. The lock is owned by a particular instance of open for the file.

The part of the NOSNE system software that manages locks is called the lock
manager. In general, lock processing follows this pattern:

1. The lock manager receives a request for a lock on a nested file or record.

2. The lock manager determines whether the lock can be granted.

a. If no conflicting lock exists, the lock manager grants the lock and notifies the
requesting task.

b. If a conflicting lock exists, the lock manager checks if the request specified
waiting.

1) If the request specified no waiting, the lock manager notifies the task
requesting the lock that the record or file is currently locked.

2) If the request specified waiting, the task is suspended until either:

a) The lock is available (assuming no potential deadlock as described later
under Lock Deadlock), or

b) The timeout period elapses. The default timeout period is 60 seconds.

The lock manager also processes requests to clear locks and keeps track of locks that
have expired (as described under Lock Expiration and Clearing).

NOTE

In general, when the Locks discussion describes two or more tasks requesting locks, the
two or more tasks could actually be the same task with two or more instances of open
of the same file. A lock belongs to a particular instance of open, and one task can
request locks for more than one instance of open.

Reasons for Locks

Locks are recommended for effective sharing of a keyed file. In fact, when more than
one instance of open exists for a keyed file, NOSNE requires that a task lock the
record before it can replace or delete the record.

Locks ensures that:

• Requests are processed in the sequence in which requests are issued.

• The operation is performed on the most up-to-date version.

To illustrate the need for locks, the following sequence of events describes two tasks
using the same nested file without locks.

60485917 B Sharing Keyed Files 3·9

What Are Locks?

1. Two tasks both read the same record containing the value 1.

File Task A Task B

CJ CJ CJ
2. One task adds 2 to the value and replaces the record, containing the value 3, in

the file.

File Task A Task B

D D CJ
3. The other task adds 1 to the value and replaces the record, containing the value 2,

in the file.

File Task A Task B

D D D
The work of one of the tasks has been overwritten.

Next, consider the alternative in which locks are used.

1. A task locks and reads a record.

File Task A

CJ CJ
2. A second task attempts to lock and read the record but cannot because the record

is already locked. It waits until the record is unlocked.

File Task A Task B

CJ CJ
3. The first task adds 2 to the value, and replaces the record containing the value 3,

in the file. It then unlocks the record.

File Task A Task B

D D
4. The second task can now lock and read the record. It adds 1 to the value, and

replaces the record, containing the value 4, in the file.

File Task A Task B

D D D
3-10 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B

What Are Locks?

Lock Intents

Each lock has a lock intent. The lock intent indicates why the task is requesting the
lock.

When more than one instance of open exists for a keyed file, only the owner of an
Exclusive_Access or Preserve_Access_and_Content lock on the record (or the file) can
replace or delete the record. However, the replace or delete operation does not take
place until no unexpired Preserve _Content locks exist for the record.

Lock intents for file locks are described later under File Locks. The following lists
describe the lock intents for record locks.

Exclusive _Access Lock Intent

Use the Exclusive _Access lock intent when:

• The task intends to issue write or delete requests for the locked primary-key value.
The instance of open must have shorten or append access to the file.

• The task intends to deny all requests by other tasks to read, write, update, or
delete the record or lock its primary-key value.

Preserve _Access _and _Content Lock Intent

Preserve_Access_and_Content lock intent is also known as write intent. Use this lock
intent when:

• The task might issue write or delete requests for the locked primary-key value.
Only one Preserve_Access_and_Content lock is allowed at a time for a key value.

• The task intends to allow positioning and read requests by other tasks, but denies
their attempts to write, replace, or delete using the locked key value.

• The task intends to allow Preserve _Content lock requests by other tasks, but
denies their requests for an Exclusive _Access or Preserve _Access _and _Content
lock on the primary-key value.

• The owner of the Preserve _Access _and _Content lock can request a write, replace,
or delete operation, but:

The write, replace, or delete operation does not begin until the conditions for an
Exclusive _Access lock are met:

All read operations in progress for the record have completed.

All Preserve _Content locks for the record have expired or been cleared.

No read operations for the record can begin until the write, replace, or delete
operation completes.

60485917 B Sharing Keyed Files 3·11

What Are Locks?

Preserve _Content Lock Intent

Preserve _Content lock intent is also known as read intent. Use the Preserve _Content
lock intent when:

• The task does not intend to issue write, replace, or delete requests for the locked
primary-key value.

• More than one instance of open exists, and the task intends to prevent all update
attempts, including those of the lock owner. However, if the Preserve_Content lock
owner is the only existing instance of open, the lock does not prevent updates.

• The task intends to allow positioning and read requests by other tasks, but denies
their write, replace, and delete requests.

• The task intends to allow Preserve _Content and Preserve _Access _and _Content
locks by other tasks, but denies their Exclusive _Access lock requests.

Multiple Preserve _Content locks are allowed at a time, but only one Preserve_
Access _and _Content lock. Thus, multiple tasks can be reading the record, but only
one task can be waiting to write, replace, or delete the record.

Lock Renewal and Lock _Intent Changing

The owner of a lock can renew the lock by issuing a lock request without an
intervening unlock request. The lock renewal restarts the expiration time for the lock.

The lock renewal can also change the lock _intent from Preserve _Access _and _Content
to Exclusive _Access and vice versa.

An instance-of-open owning a Preserve_Content key lock or file lock cannot be granted
an Exclusive_Access or Preserve_Access_and_Content file lock until it unlocks its
Preserve _Content lock.

Depending on the lock _intents, a request for a lock that you already hold may result
in an error. To see the possible outcomes, see Lock Conflict Tables at the end of this
locking discussion.

File Locks

Your program should request a file lock when it needs locks on many key values at
the same time. A file lock is a lock on all prima~y-key values for a nested file.

In general, the rules for using file locks are the same as those for locks on individual
primary-key values.

The effect of the lock intent of a file lock is as follows:

• Exclusive _Access

U sed when the nested file is to be updated.

Allows access to records in the nested file only by the instance of open holding the
file lock; all requests by other instances of open are denied including all lock
requests.

3·12 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B

(

(

(

Wha t Are Locks?

• Preserve _Access _and _Content

U sed when the instance of open intends to read records in the nested file and may
update records later. It allows the holder to do updates, but prevents all other
instances of open from updating.

Allows all instances of open to read the file and allows Preserve _Content locks for
records in the file or the file as a whole, but denies all Exclusive _Access and
Preserve _Access _and _Content locks (except a file lock for the nested file by the
same instance of open).

• Preserve _Content

Used to prevent file updates if the file is shared. (The lock owner can update the
file if no other instance of open exists.)

Allows any number of Preserve _Content locks and one Preserve _Access _and_
Content lock for each primary-key value and for the file as a whole, but denies all
Exclusive _Access lock requests.

For further details on the file and key-value locks that can co-exist, see Lock Conflict
Tables.

A file lock is required when your program needs more than 1024 locks at a time
because 1024 is the maximum number of locks allowed for an instance of open. An
attempt to exceed this limit returns the nonfatal $ERROR_STATUS value AA2115.

The number of locks allowed also depends on the FILE _LIMIT attribute value. The
lock manager tracks all locks for a file in another file called the lock file. The lock file
size cannot exceed 90% of the FILE _LIMIT value and, if an operation would cause the
lock file to be more than 50% full, the operation is not allowed to begin and the fatal
$ERROR_STATUS value AA6010 is returned.

Waiting for a Lock

When a conflicting lock exists, but no deadlock, a call requesting a lock waits for the
lock if the $WAIT_FOR_LOCK value in the FIT is TRUE.

A lock request waits until the lock is available or the lock timeout period has passed.
If the lock request times out, the call returns the $ERROR_STATUS value AA2055.

The default timeout period is 60 seconds. However, each task can specify how long it
waits for a lock by creating and initializing an NOSIVE integer variable named
AAV$RESOLVE_TIME_LIMIT. The value assigned to the variable is the new lock
timeout period in seconds. Do not set the lock timeout period so that it is longer than
the LOCK_EXPIRATION _TIME attribute value. The default LOCK_EXPIRATION_
TIME is 60 seconds.

For example, the following call executes the NOSIVE statement VARIVAREND to
change the timeout period to 45 seconds:

call sclcmd ('var AAV$RESOLVE_TIME_LIMIT: integer=45; varend')

60485917 B Sharing Keyed Files 3-13

What Are Locks?

Lock Expiration and Clearing

An expired lock and a cleared lock are not the same:

• A cleared lock no longer exists; the lock manager has discarded it.

• An expired lock is no longer effective in preventing access by other tasks. However,
an expired lock prevents file access by its owner (except IFETCH and STOREF
calls and an UNLOCKF or UNLOCKK call that clears the expired lock). This is
done so that the owner of the lock is notified of its expiration.

A lock is cleared when one of these events occurs:

• The task with the lock issues an unlock request for the lock.

• The task closes the instance of open to which the lock applies.

• The request for the record lock specified automatic unlock, and the task issues any
request for the instance of open (other than an IFETCH or STOREF call).

In general, the automatic unlock occurs when the request is issued. The exception
is for an update request for the locked record for which the lock is kept until the
update operation completes.

For example, if a task issues a lock on record 1 and then issues a request to
replace record 1, the lock manager automatically clears the lock on record 1 after
the replace operation. Similarly, if a task issues a lock on record 1 and then issues
a request to position the file at record 2, the lock manager automatically clears the
lock on record 1, before positioning the file at record 2.

The expiration of a lock granted during a parcel aborts the parcel. It aborts the parcel
for the instance of open to which the parcel applies. For more information on lock
expiration during a parcel, see chapter 4, Parcels.

How a Lock Expires

A lock expires when the following sequence of events occurs:

1. Its expiration time has passed since the lock was granted.

2. Another task issues a request specifying waiting that would be denied if the lock
was effective. (The request is granted.)

The number of milliseconds in the lock expiration time is specified by the file
attribute, LOCK _EXPIRATION _TIME. The default value is 60,000 milliseconds (60
seconds). To set an unlimited expiration time so that locks do not expire, set the
attribute value to O.

An expired lock is no longer effective in preventing access to the file or record by
other tasks. However, it does prevent the task holding the expired lock from accessing
records in the file.

The task holding the expired lock is prevented from accessing any record in the file
until it clears the expired lock. This notifies the task that a lock has expired.

3-14 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B

What Are Locks?

For example, consider the following sequence of events:

1. Task 1 requests a Preserve _Access _and _Content lock on record 1 in nested file 1
without automatic unlock. The lock is granted.

2. The expiration time" passes.

3. Task 1 reads record 1 from nested file 1. The read request restarts the expiration
time count.

(The lock has not yet expired because no other task has issued a request for the
record that a Preserve _Access _and _Content lock should prevent. The lock is not
unlocked because automatic unlock was not requested for the lock.)

4. The expiration time passes again.

5. Task 2 requests a Preserve _Content lock on record 1 in nested file 1. (The Task 1
lock does not expire because a Preserve _Access _and _Content lock does not prevent
Preserve _Content locks.)

6. Task 3 requests, with waiting, a Preserve _Access _and _Content lock on record 1 in
nested file 1. (The Task 1 lock expires because a Preserve _Access _and _Content
lock should prevent additional Preserve _Access _and _Content locks.)

7. Task 1 attempts to read record 2 in nested file 1, but instead the request
terminates with a nonfatal error, notifying Task 1 that it has an expired lock. Task
1 must clear the expired lock before it can successfully request any record in nested
file 1.

A task is notified of lock expiration for the currently selected nested file only. The
expiration of locks in a previously selected nested file does not affect the task unless it
re-selects the nested file and attempts a file operation.

Expired Lock Conditions

These are the nonfatal $ERROR _STATUS values returned for an expired lock:

AA2790
The sequential read (get _next) failed due to an expired lock.

AA2805

The primary-key value or file could not be locked due to an expired lock.

60485917 B Sharing Keyed Files 3-15

What Are Locks?

Lock Deadlock

A deadlock is a situation in which two or more tasks need a lock already held by
another task in the group of tasks. For example, the following situation is a deadlock:

• Task 1 has a lock on record 1 and needs a lock on record 2.

• Task 2 has a lock on record 2 and needs a lock on record 3.

• Task 3 has a lock on record 3 and needs a lock on record 1.

If none of the tasks releases the lock it holds, none of the tasks can complete.

A deadlock can occur either when tasks are waiting for a lock or when tasks are each
repeatedly reql,1esting a lock. The lock manager can detect the deadlock when the tasks
are actually waiting for a lock; it cannot detect a deadlock when tasks are repeatedly
requesting locks.

When the lock manager receives a lock request indicating that the task wants to wait
until the lock is available, it checks for a possible deadlock. To do so, it checks
whether other tasks are waiting for locks held by the requesting task. If it detects a
potential deadlock, it terminates the request with a nonfatal error.

If the deadlock is with another task, it returns error AA2040. If the deadlock is a
self-deadlock (the requesting task already has the requested lock), it returns error
AA2045.

To prevent a deadlock that the lock manager cannot detect, a task should limit the
number of times it repeatedly requests a lock without waiting. Mter a fixed number of
attempts, it should do one of the following:

• Issue a lock request with waiting in which case the lock manager can notify it that
a potential deadlock exists.

• Assume that a potential deadlock exists and clear the locks it holds.

Lock Conflict Tables

The outcome of a request for a lock that has already been granted depends on:

• The lock intents of the existing and requested locks.

• Whether the request is from the same instance of open holding the lock.

• Whether the conflicting locks are key-value locks or file locks.

3-16 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B

(
\

(

(

(

Wha t Are Locks?

Tables 3-1 and 3-2 give the outcomes when the requested and existing locks are either
both key-value locks or both file locks.

Table 3-1. When the Lock Request is From the Same Instance of Open

Existing
Lock Intent

Preserve_
Content

Preserve_
Access _and_
Content

Exclusive_
Access

Requesting
Preserve _Content
Lock Intent

Renews

Rejects

Rejects

Requesting
Preserve _Access
and Content
Lock Intent

Rejects

Renews

Renews

Requesting
Exclusive _Access
Lock Intent

Rejects

Renews

Renews

Table 3-2. When the Lock Request is From Another Instance of Open

Existing
Lock Intent

Preserve_
Content

Preserve_
Access _and_
Content

Exclusive_
Access

Requesting
Preserve _ Content
Lock Intent

Grants

Grants

Depends

Requesting
Preserve _Access _
and Content
Lock Intent

Grants

Depends

Depends

Requesting
Exclusive _Access
Lock Intent

Depends

Depends

Depends

Definition of Results

Grants
Renews

Rejects
Depends

60485917 B

Grants the lock.
Renews the lock, restarting its lock expiration time and changing the lock
intent if requested.
Rejects the request and returns nonfatal status AA2080.
The result depends on whether waiting is requested:

• No waiting requested: Rejects request and returns nonfatal status
AA2075

• Waiting requested: Grants the lock unless:
Opens belong to the same task: Rejects request and returns
nonfatal status AA2045
Opens belong to different tasks: Grants the lock unless:

Deadlock detected and returns nonfatal status AA2040
Timeout period elapses and returns nonfatal status AA2055

Sharing Keyed Files 3-17

What Are Locks?

Tables 3-3 and 3-4 give the outcomes when the existing and requested locks are not
the same kind of lock (file locks or key-value locks).

Table 3-3. When the Lock Request is From the Same Instance of Open

Existing
Lock Intent

Preserve_
Content

Preserve_
Access _and_
Content

Exclusive_
Access

Requesting
Preserve _ Con ten t
Lock Intent

Grants

Grants

Self-Deadlock

Requesting
Preserve _Access _
and Content
Lock Intent

Grants

Self-Deadlock

Self-Deadlock

Requesting
Exclusive _Access
Lock Intent

Self-Deadlock

Self-Deadlock

Self-Deadlock

Table 3-4. When the Lock Request is From Another Instance of Open

Existing
Lock Intent

Preserve_
Content

Preserve_
Access _and_
Content

Exclusive_
Access

Requesting
Preserve _ Content
Lock Intent

Grants

Grants

Depends

Requesting
Preserve _Access _
and Content
Lock Intent

Grants

Depends

Depends

Requesting
Exclusive _Access
Lock Intent

Depends

Depends

Depends

Definition of Results

Grants
Renews

Self-Deadlock
Depends

Grants the lock.
Renews the lock, restarting its lock expiration time and changing the
lock intent if requested.
Rejects the request and returns nonfatal status AA2045.
The result depends on whether waiting is requested:

• No waiting requested: Rejects request and returns nonfatal status
AA2075

• Waiting requested: Grants the lock unless:
Opens belong to the same task: Rejects request and returns
nonfatal status AA2045
Opens belong to different tasks: Grants the lock unless:

Deadlock detected and returns nonfatal status AA2040
Timeout period elapses and returns nonfatal status AA2055

3·18 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 60485917 B

Parcels 4

File-Spanning Parcels 4-1

How to Use Parcels in FORTRAN Programs .. 4-2
Required Attribute. .. 4-2
Parcel Processing Outline .. 4-2
Record Access During a Parcel .. 4-4
FIT Values Affecting Parcels ... 4-5
Lock Expiration During a Parcel 4-6
Using the Parcel Log .. '" .. , 4-7
Calls Dissallowed During a Parcel ... 4-9

File-Level Parcels ... 4-10

Parcel Program Example .. 4-11

60485917 B

Parcels 4

This chapter describes parcels and how to use them in FORTRAN programs.

Two types of parcels are available: a file-spanning parcel and a file-level parcel that
applies only to a single keyed file. The first section describes the file-spanning parcel;
the differences between file-spanning parcels and file-level parcels are described later in
this chapter under File-Level Parcels.

File-Spanning Parcels

A file-spanning parcel is a series of update operations that form a logical group. The
update operations can apply to more than one instance of open and to more than one
keyed file, but the operations must all be performed by the same task.

Mter a program signals the beginning of a parcel and specifies the instances of open to
which the parcel applies, all update operations to those instances of open belong to the
parcel. The parcel ends when the program chooses to commit or abort the parcel.
Committing a parcel causes its update operations to become permanent. Aborting a
parcel discards the updates in the parcel, leaving the keyed files as they were before
the parcel began.

U sing parcels requires some system overhead because the system must record each
parcel update operation in temporary system space so that if the parcel is aborted, all
records in the update operation are restored.

U sing parcels offers advantages when logical update operations affect more than one
record. For example, parcel use enables:

• Easy implementation of an interactive veto option to undo a set of update requests.

• File recovery such that the damaged file is recovered to a point before or after a
logical update, not before or after an individual update request. (The file recovery
requires that an update recovery log be maintained for the file. See Protecting Your
Keyed Files in the NOSIVE Advanced File Management manual.)

60485917 B Parcels 4-1

How to Use Parcels in FORTRAN Programs

How to Use Parcels in FORTRAN Programs

You can use parcels in FORTRAN programs with keyed-file interface calls. See chapter
6, Keyed-File Interface Calls, for a description of the calls referred to in this chapter.
This section describes how to use" parcels and the calls you need to perform parcel
processing.

Required Attribute

The system allows use of parcels to update a keyed file only if the logging _options
attribute for the file includes the option enable _parcels. The logging _options attribute
value is set when the keyed file is first created. It can be changed later using the
NOSNE command CHANGE_FILE_ATTRIBUTES.

NOTE

~~~ While the logging _options attribute of a file includes enable _parcels, each instance of 
open must request modify access if it allows write concurrency. In other words, if the 
open request allows no sharing or read-only sharing, it does not need to specify modify 
access; otherwise, it must specify modify access. 

Parcel Processing Outline 

l!! Each task can have only one file-spanning parcel in progress at a time. The following 
is an outline of the steps involved in processing a parcel. 

lil 1. The program should check that the file (or files) to which the parcel is to apply is 
a keyed file and has parcels enabled. A file is a keyed file when its file_ 
organization attribute is indexed _sequential or direct _access. Parcels are enabled 
when the file's logging _options attribute includes enable _parcels. 

~~~ 

I
m :.:

2.

3.

4.

The task opens the file (or files) to which the parcel is to apply.

To signal the beginning of the parcel, the task calls PBEGIN.

The parcel applies to all keyed files that are open and have parcels enabled. Or, if
desired, the call can limit the parcel to a set of keyed files. (A file-level parcel is
created for each file.)

The task issues the update requests that belong to the parcel. These can include
put, replace, and delete requests. Each update request is processed as follows:

a. The system requests an Exclusive _Access lock for the specified primary-key
value. The lock prevents all other instances of open from reading or updating
the record until the parcel completes. This includes attempts to read the record
by an alternate key.

b. The update request is processed as appropriate for a put, replace, or delete as
follows:

• For a put request, the system saves the key of the record to be added, puts
the primary-key value in the primary index, and puts its alternate-key
values in the alternate indexes.

4-2 FORTRAN for NOSNE Keyed-File and SorUMerge Interfaces 60485917 B

('

How to Use Parcels in FORTRAN Programs

• For a delete request, the system saves the record to be deleted. It then
deletes the record data and the primary-key value from the file. However,
any alternate-key values remain in the alternate indexes until the parcel is
committed.

• For a replace request, the system saves the record to be replaced. It then
replaces the record data in the file. Any new alternate-key values are added
immediately to the alternate indexes, but the existing alternate-key values
remain in the alternate indexes until the parcel is committed.

5. The task can fetch the status of any parcel at any time by calling PDETERM. The
call also returns the message written by the last parcel call that included a
message for the parcel, if any. (Each parcel call can store a message in the parcel
log.)

6. The parcel is committed or aborted.

a. A parcel is aborted by a PABORT call issued by the system or by the task that
began the parcel.

NOTE

The system aborts a file-level parcel if the instance of open to which the parcel
applies is closed before the parcel is committed. A subsequent attempt to commit
the file-spanning parcel will abort any other file-level parcels.

The abort _parcel call performs the following restoration:

• Deletes records put by the parcel, restores records replaced by the parcel,
and restores deleted records to the primary index.

• Restores the nested-file selection and alternate-key selection to those in effect
when the parcel began.

• Repositions the file to its position when the parcel began.

• Writes an abort record for the parcel to the parcel log. It also stores the
message, if any, specified on the call in the log.

b. The· task that began the parcel can commit the parcel by calling PCOMMIT. A
successful commit performs the following:

• Removes the alternate-key values of deleted and replaced records from the
alternate indexes.

• Records the parcel updates in the log if an update recovery log is maintained
for the keyed file. (The parcel is recorded as a unit so that a recovery
restores the parcel as a unit.)

• Writes a commit record for the parcel to the parcel log. It also stores the
message, if any, specified on the call in the log.

If the commit fails, the system transforms it to an abort and performs the abort
processing listed under step 6a.

7. Mter completing the commit or abort processing, the system releases all locks set
for the instances of open that were included in the parcel. j~j

60485917 B Parcels 4-3

How to Use Parcels in FORTRAN Programs

Record Access During a Parcel

The locks granted in a parcel determine the access that each instance of open has to
the records locked during the parcel. All locks granted during a parcel remain in effect
until the end of the parcel.

Because the lock granted to· parcel update requests is for Exclusive _Access and the
lock is granted to only one instance of open, only that instance of open can read or
update the record. All other instances of open are prevented from reading or updating
the locked record during the parcel.

For example, suppose, as part of a parcel, an instance of open replaces a record with
alternate-key value XYZ:

• The instance of open holding the lock can read all records with alternate-key value
XYZ.

• Any other instance of open cannot read the replaced record. It can read other
records having alternate-key value XYZ, but an attempt to read the replaced record

~~~ returns a nonfatal status AAE$KEY _FOUND _LOCK _NO _WAIT indicating that 
the record is locked. 

Locks do not prevent calls that rewind the file or skip records. Therefore, during the 
parcel, any instance of open can issue those calls. However, the effects of the update 
calls in the parcel could affect a file positioning call so that it is ineffective. 

A Preserve _Content lock granted before or during a parcel prevents updating of its 
record during the parcel. This is because a Preserve _Content lock does not allow 
updating of the record, and the Preserve _Content lock cannot be released during the 
parcel. (It is released at the end of the parcel with all other locks.) 

While the record is being updated by a parcel, other tasks cannot read the record 
because its primary-key value is locked. Other tasks also cannot write a record whose 
alternate-key value is the same as that of a record added or deleted by the parcel. 
(This applies only to alternate keys that do not allow duplicate values.) 

For example, assuming the alternate key does not allow duplicate values, if a record 
with alternate-key value XYZ is deleted by a parcel, another task cannot write a new 
record with alternate-key value XYZ to the file by another instance of open until the 
parcel is committed. 

4·4 FORTRAN for NOSIVE Keyed-File and SortJMerge Interfaces 60485917 B 



How to Use Parcels in FORTRAN Programs 

FIT Values Affecting Parcels 

In general, the FORTRAN parcel calls, themselves, do not use FIT values as defaults 
or store information in the FIT. However, the effects of the following FIT values should 
be noted: 

$LOGGING _OPTIONS 

To be able to use parcels for a file, its logging _options attribute must include 
enable _parcels. Thus, the call that creates the FIT should store the value 'EP' as 
the $LOGGING _OPTIONS FIT value so that the attribute is validated when the 
file is opened. 

While the logging _options attribute of a file includes enable _parcels, each instance ~l~ 
of open must request modify access if it allows write concurrency. In other words, if 
the open request allows no sharing set or read-only sharing, it does not need to 
specify modify access, otherwise; it must specify modify access. 

$AUTOMATIC _UNLOCK 

This value is ignored by calls inside a parcel. Inside a parcel, no lock can be 
released. All locks granted inside a parcel are released when the parcel ends. 

$LOCK _INTENT 

Because locks cannot be released inside a parcel, a Preserve _Content lock prevents 
updates to its record during the parcel. This is because a Preserve _Content lock 
prevents updating of the record and locks cannot be released inside a parcel. 

60485917 B Parcels 4-5 



How to Use Parcels in FORTRAN Programs 

Lock Expiration During a Parcel 

A file-spanning parcel is a collection of file-level parcels. The expiration of a lock 
granted in one keyed file aborts that file-level parcel. The task is notified if it 
attempts any update on that keyed file. Access to other keyed files included in the 
file-spanning parcel continues normally until a file-spanning parcel commit is 
attempted. Then the file-spanning parcel is aborted. 

NOTE 

To ensure that locks will not expire during a parcel, either open the file for exclusive 
access (no sharing), allow one instance of open for the file, or ensure that the LOCK_ 
EXPIRATION _TIME attribute for the file is o. For more information about lock 
expiration, see Lock Expiration and Clearing in chapter 3. 

~~~ If one of the file-level parcels is aborted, the task is notified when it issues a request 
~~~ specifying the instance of open to which the file-level parcel applies. The request 

!;.::II.: returns a status describing why the parcel was aborted. 

To continue using the instances of open for which a parcel was aborted, the task must: 

1. Check for the parcel_abort status after each request in the parcel, and 

l:~ 2. For a file-level parcel: 

When a request returns the parcel_abort status, either call PABORT for the parcel 
or CLOSEM for the instance of open to which the expired lock belonged. This 
notifies the system that the parcel_abort status was received. 

(The call issued in response to the parcel_abort status does not abort the parcel; 
the purpose of the call is to acknowledge the lock expiration so you can continue; 
the lock expiration has already aborted the parcel.) 

For a file-spanning parcel: 

Call PABORT to abort each of the file-level parcels in the file-spanning parcel. 

4-6 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



How to Use Parcels in FORTRAN Programs 

Using the Parcel Log 

The system stores information about a parcel in a log. The PBEGIN call specifies the 
log to be used for the parcel. The default is the log specified by the SeL variable 
AAV$LOG _SELECTION, which is initially set by the system prolog, or the default 
system log, $SYSTEM.AAM.SHARED _RECOVERY _LOG. (If both logs exist, the log 
specified by the SCL variable AAV$LOG _SELECTION is used.) However, you can 
specify another log. The log must have been created by the Administer _Recovery _Log 
utility (described in the NOSNE Advanced File Management manual). 

Each parcel call (begin, abort, and commit) writes a record to the parcel log. It 
identifies the parcel and the action taken (begin, abort, or commit). The call can also 
store an optional message in the log. 

The message stored in a parcel log is a string of data, up to the maximum length of a 
keyed-file record. A FORTRAN parcel call specifies the message by the name of the 
character variable containing the data. 

A task can call PDETERM to determine the state of a file-spanning parcel and fetch 
the most recent message, if any, stored in the parcel log record. The task can call 
PDETERM at any time to fetch information about any file-spanning parcel for which it 
has the user parcel name, the catalog path of the parcel log, and the file-spanning 
parcel name. The task that calls PDETERM does not have to be the one that called 
PBEGIN. 

For Better Performance 

The log to be used for the parcel can be the same as the recovery log; however it is 
more efficient to specify a separate log for a parcel whenever possible. This creates a 
smaller log for the PDETERM call to search through to retrieve the status and the 
messages. 

60485917 B Parcels 4-7 



How to Use Parcels in FORTRAN Programs 

I ~;~:~RM r~~c~;l :;~~~~r:~~:aoo ~;::;~~:~~d f:ll~~:grecord for the parcel on fue 

1 

2 

3 

4 

5 

Parcel committed. 

Parcel aborted by 
system. 

Parcel aborted by 
user. 

Parcel not found. 

Parcel 
indeterminate. 

log, but no commit or abort record. The call returns 
the message it finds in the begin record, if any. 

The call found a commit record for the parcel on 
the log. The call returns the message it finds in the 
commit record, if any. If no message is found, the 
call returns the message, if any, from the begin 
record. 

The call found an abort record for the parcel on the 
log. The call returns the message it finds in the 
abort record, if any. If no message is found, the call 
returns the message, if any, from the begin record. 

The call found an abort record for the parcel on the 
log. The call returns the message it finds in the 
abort record, if any. 

The call found no records for the specified parcel in 
the log. Check to make sure that the correct log is 
specified. 

The call may have found a begin record for the 
parcel, but also found indication of a catastrophic, 
unrecoverable error that prevented completion of the 
parcel. Check to make sure that a log exists or that 
the task has access to the log. 

4-8 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



How to Use Parcels in FORTRAN Programs 

Calls Dissallowed During a Parcel 

During a parcel, the following calls are not allowed for the instances of open to which 
the parcel applies; the calls are allowed for any other instances of open. 

Call 

LOCKF 

UNLOCKF 

PBEGIN 

CLOSEM 

RMKDEF 

KEYLIST , 
KLCOUNT 

RSBUILD 
RSCOMB 
RSPUT 
RSDLTE 

60485917 B 

Reason 

A lock intent of 'PAC' or 'PC' cannot be granted during a parcel. 

The program can explicitly request locks during a parcel, but it 
cannot explicitly unlock locks. (All locks granted before or 
during the parcel are unlocked at the end of the parcel.) 

Each task can have only one parcel in progress at a time so 
PBEGIN is disallowed inside a parcel. 

Closing an instance of open to which a file-level parcel applies 
aborts that file-level parcel. 

The alternate-key selection can change during a parcel, but the 
alternate-key definitions must not change. 

The alternate-key values in a key list cannot be counted or 
returned during a parcel. 

Result sets cannot be created during a parcel, but result 
sets can be used to read records during a parcel. 

Parcels 4·9 



File-Level Parcels 

File-Level Parcels 
The previous sections describe the use of file-spanning parcels. A second, more 
restricted, type of parcel is also available, the file-level parcel. 

A file-level parcel is like a file-spanning parcel with the following restrictions: 

• The parcel can apply to only one instance of open. 

• The parcel log cannot be selected or accessed. 

• You cannot store messages for a parcel or fetch the parcel state. 

For Better Performance 

If the parcel is to apply to only one instance of open, use a file-level parcel, not a 
file-spanning parcel. A file-spanning parcel requires more system overhead. 

Each instance of open is allowed to have only one file-level parcel in progress. 

File-level parcels use the following calls: 

PABORT 

PBEGIN 

PCOMMIT 

For a description of these calls, and the parameter requirements for keyed-file parcels, 
see chapter 6, Keyed-File Interface Calls. 

4-10 FORTRAN for NOSIVE Keyed-File and SortfMerge Interfaces 60485917 B 



Parcel Program Example 

Parcel Program Example 

The following FORTRAN program uses a parcel to write a record to a master file and 
its shadow file; the default parcel log is used. A parcel abort causes the parcel to be 
restarted; the program attempts the parcel no more than five times. 

PROGRAM parcel 

INTEGER 
+ fitl, 
+ fit2, 
+ fit 1 i st ( 2) , 
+ attempt, 

Pointer to the File Information Table 
Pointer to the File Information Table 
Array of FIT pOinters for processing parcels 
Number of attempts for the parcel 
Condition code returned as error status + condition_code, 

+ length Length of condition_name returned from CONDSYM 

CHARACTER*31 
+ prclnam 

CHARACTER*8 
+ wsa, 
+ condition_name 

I Parcel name 

Working storage area 
Condition name returned by CONDSYM, deciphered 
From the condition_code 

C Create FIT for existing file MASTER_FILE and check for reQuired 
C logging option. 

CALL fileis (fitl, 
+ '$local_file_name', 'MASTER_FILE', 
+ '$key_length', 3, 
+ '$maximum_record_length', 8, 
+ '$min1mum_record_length', 8, 
+ '$logging_options', 'enable_parcels') 

C Create FIT for existing file SHADOW_FILE and check for reQuired 
C logging option. 

CALL fileis (fit2, 
+ '$local_file_name', 'SHADOW_FILE', 
+ '$key_length', 3,' 
+ '$max1mum_record_length', 8, 
+ '$minimum_record_length', 8, 
+ '$logging_options', 'enable_parcels') 

C Create the files (NEW) and position them at rewind (R). 

60485917 B 

CALL openm (fitl, 'NEW', 'R') 
CALL openm (fit2, 'NEW', 'R') 

Parcels 4·11 



Parcel Program Example 

C Fetch the error status of OPENM and decipher it with the FORTRAN 
C error-processing routine CONDSYM. 

CALL ifetch (fit1, '$error_status', condition_code) 
CALL condsym (condition_code, condition_name, length) 

IF (condition_code .NE. 0) THEN 
print ·,'Error encountered. Condition name is' condition_name 
STOP 

END IF 

CALL ifetch (fit2, '$error_status', condition_code) 
CALL condsym (condition_code, condition_name, length) 

IF (condition_code .NE. 0) THEN 
print ·,'Error encountered. Condition name is 
STOP 

END IF 

condition_name 

C Create the list of FITs to which the parcel applies. 

fitlist(1) fit1 
fitlist(2) fit2 

C Assign data to the working storage area so the record can be 
C written to the file. 

wsa = 'KEY/DATA' 

C Attempt the parcel no more than 5 times. 

+ 

DO 20 attempt = 1, 5 

CALL pbegin ('my_parcel', fitlist, 2, condition_code, prclnam) 
CALL condsym (condition_code, condition_name, length) 

IF (condition_code .NE. 0) THEN 
print * 'Error encountered. Condition name is 

condition_name 
STOP 

END IF 

4-12 FORTRAN for NOSIVE Keyed-File and Sort/Merge Interfaces 60485917 B 



Parcel Program Example 

C Write record. 

CALL put (fitl, wsa, 8, 0, 0, 0, 0) 

CALL ifetch (fitl, '$error_status', condition_code) 
CALL condsym (condition_code, condition_name, length) 

IF (condition_code .NE. 0) THEN 
IF (condition_name .EQ. 'AA 2075') THEN 

CALL pabort (prclnam, condition_code) pabort (prclnam) 
IF (condition_code .NE. 0) THEN 

CALL condsym (condition_code, condition_name, length) 
print -,'Error encountered. Condition name is ' 

+ condition_name 
STOP 

END IF 
GO TO 20 ! Go to the end of the DO Loop and retry parcel. 

ELSE 
print -,'Error encountered. Condition name is ' 

+ condition_name 
STOP 

END IF 
END IF 

CALL put (fit2, wsa, 8, 0, 0, 0, 0) 

CALL ifetch (fit2, '$error_status', condition_code) 
CALL condsym (condition_code, condition_name, length) 

IF (condition_code .NE. 0) THEN 
IF (condition_name .EQ. 'AA 2075') THEN 

CALL pabort( prclnam, condition_code) 
IF (condition_code .NE. 0) THEN 

CALL condsym (condition_code, condition_name, length) 
print -,'Error encountered. Condition name is ' 

+ condition_name 
STOP 

END IF 
GO TO 20 ! Go to the end of the DO Loop and retry parcel 

ELSE 
print -,'Error encountered. Condition name is ' 

+ condition_name 
STOP 

END IF 
END IF 

60485917 B Parcels 4-13 



Parcel Program Example 

C If put was successful, commit parcel and Quit. 

20 

CALL pcommit (prclnam, condition_code) 
IF (condition_code .EO. 0) THEN 

CALL c 1 osem (f it 1, ,·U') 
CALL closem (fit2, 'U') 
print * 'Parcel committed. ' 
print * 'Program ended with a normal condition code.' 
STOP 

END IF 

CONTINUE ! End of DO loop. 

CALL closem(fit1, 'U') 
CALL closem(fit2, 'U') 
STOP 
END 

4-14 FORTRAN for NOSNE Keyed-File and SortfMerge Interfaces 60485917 B 



Result Sets 5 

What Are Result Sets? ........................................................... 5-1 

How to Use Result Sets in FORTRAN Programs .................................. 5-2 
Result Set Validity ............................................................ 5-3 

Keeping the Result Set Accurate ............................................ 5-3 
Keeping the Result Set Accurate Within a Single Instance of Open . . . . . . . .. 5-3 
Keeping the Result Set Accurate Within a Single Job . . . . . . . . . . . . . . . . . . . . .. 5-3 
Keeping the Result Set Accurate Across Jobs .............................. 5-3 

Recovering from Result Set Read Errors ..................................... 5-4 
Result Set Files ............................................................... 5-4 
Combining Result Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-4 

Combination Operations ..................................................... 5-5 
Placement of the Combined Result Set ....................................... 5-5 

Adding Or Deleting Key Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-6 





What Are Result Sets? 

A result set is a set of primary-key values. It provides a means of reading a logical set 
of records from a keyed file. 

A result set begins as a list of primary-key values, retrieved using a key-value range 
for the currently selected key. The range is specified in the same way as the range 
on an KLCOUNT call. However, unlike a simple key list, a result set can be 
combined and modified. 

A result set can be combined with other result sets using the logical operations AND, 
OR, and XOR. It can be modified by adding and deleting values from the result set. 
Also, the result set can be used to read either the set of records referenced in the 
result set or (for indexed-sequential files) all records not referenced in the result set. 

Revision A Result Sets 5-1 



How to Use Result Sets in FORTRAN Programs 

I-Iovv to Use Result Sets in FORTRAN Programs 

The following is a general outline of the steps by which a FORTRAN program creates 
and uses a result set to read a set of records: 

1. Open the keyed file by calling OPENM. If the result set is for a nested file other 
than the default nested file ($MAIN _FILE), specify the nested file by storing the 
nested file as the FIT value for $NESTED_FILE_NAME. 

2. Open the result set file by calling RSOPEN. RSOPEN returns the result_set_id, 
which is used by subsequent calls to reference the open result set. 

3. If the existing result set in the result set file is to be discarded, clear the result 
set by calling RSCLEAR. 

4. Change the result set by calling: 

RSBUILD 

RSCOMB 

RSPUT 

RSDLTE 

Gets the set of primary-key values specified on the call and 
combines the new set with an existing result set. 

(If you want to use an alternate key, it must be stored as the 
$KEY_NAME FIT value before the RSBUILD call. You must use 
alternate keys for a direct-access file. A range of primary-key 
values cannot be specified for a direct-access file because the 
primary-key values are not ordered in a direct-access file.) 

Combines two existing result sets. 

Adds a primary-key value to a result set. 

Deletes a primary-key value from a result set. 

5. If an alternate key is currently selected, select the primary key by calling 
STOREF to store the value $PRIMARY_KEY as the $KEY_NAME FIT value. 

6. Read records from the keyed file by calling RSGETN. RSGETN allows you to do 
either of these actions: 

• Read the records that are in the result set. 

• Read the records that are not in the result set (indexed-sequential files only). 

7. Fetch information about the result set at any time while the result set is open by 
calling RSINFO. 

8. Reposition the result set (if appropriate) using the following calls: 

Position the result set at its beginning. 

Position the result set at the specified record. 

RSREWND 

RSSTART 

RSSKIP Position the result set forward or backward a specified number of 
key values. This can be done only after the result set position 
has been established by a get, rewind, or start result set call. 

9. Close the result set by calling RSCLOSE. 

10. Close the keyed file by calling CLOSEM. 

5·2 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revh:ion A 



How to Use Result Sets in FORTRAN Programs 

Result Set Validity 

You can use a result set only for the file for which it was built. This restriction exists 
because the result set stores the global file name and the currently selected nested file 
when the result set is first opened. 

A result set cannot be used with a copy of the original data file or another cycle of 
the file or another nested file in the data file. For example, if a result set is built for 
a temporary file, the result set cannot be used to read a permanent copy of the file. 
This is because the permanent copy has a different global file name. 

Result sets to be combined must apply to the same nested file and file cycle. 
However, more than one key for the nested file can be used to build a result set. For 
example, the result set could be started while the primary key is selected and then 
added to after selection of an alternate key. 

The accuracy of a result set is ensured only until the nested file is updated. At that 
time, key values of records referenced by the result set could be changed. When 
writing a program that uses result sets, you must determine whether the result set 
must be accurate when it is used to read records. If accuracy is not required, updates 
to the data file can continue while result sets are built and used. 

Keeping the Result Set Accurate 

If a program using a result set requires that the result set be accurate, it must ensure 
that the data file is not updated from the time you start using the result set until you 
are finished with the result set. How this is done depends on whether the result set is 
created and used within a single instance of open, within a single job, or across jobs. 

Keeping the Result Set Accurate Within a Single Instance of Open 

When the result set is created and used within a single instance of open, updates can 
be prevented by calling LOCKF before beginning to create the result set. The LOCKF 
call should request a Preserve_ Content file lock to allow the nested file to be read, but 
not updated. The lock should be held until all use of the result set has been completed. 

Keeping the Result Set Accurate Within a Single Job 

When the result set is created and used within a single job, data file updates can be 
prevented by attaching the data file so that the specified access modes and share 
modes do not include append or shorten access modes. This prevents updating of the 
file while it is attached to the job. 

Keeping the Result Set Accurate Across Jobs 

When the result set is to be created and used across jobs, data file updates can be 
prevented by creating a permit for the data file that applies to all users (a public 
permit) that omits the append and shorten permissions. Also, to be used across jobs, 
the result set file must be a file in a permanent file catalog. 

Revision A Result Sets 5·3 



How to Use Result Sets in FORTRAN Programs 

Recovering from Result Set Read Errors 

If the file could be updated between the time the result set is built and the time it is 
used, the program should check for possible errors returned by RSGETN calls. Calls to 
read a record could fail because a primary-key value is locked or because the record 
for the primary-key value has been deleted. Because the errors are nonfatal, they do 
not terminate the program so the sequence of reads can continue. 

To recover from a lock conflict while the file is shared, the program could retry 
reading the record. The retry method used depends on the result_set_not parameter 
value. The result_set_not parameter determines whether the call gets a record that 
is referenced in the result set or a record that is not referenced in the result set. 

To retry a get call (result_set_not is 'NO'), call RSSKIP to move the result set back 
one value and then retry the read. Or, the program could call RSINFO to get the 
previous_key value. The program could then call GET using the previous_k.ey value. 
With $GET_AND_LOCK and $WAIT_FOR_LOCK set, the GET call waits for the 
record until it can read it. 

To retry a get_not call (result_set_not is 'YES'), no repositioning is necessary. The 
program can retry the read by calling RSGETN again. 

Result Set Files 

Result sets reside in sequential files, called result set files. The RSOPEN call specifies 
the result set file. If the specified file does not exist, RSOPEN creates the file. 

The first RSOPEN call for a result set stores file attribute values that identify the 
file as a result set file. If the result set exists already, the RSOPEN call checks that 
the specified file is a result set file. 

NOTE 

To preserve the integrity of the result set, do not perform any operations except 
result set operations on result set files. 

Combining Result Sets 

The RSBUILD and RSCOMB calls can combine result sets. 

o An RSCOMB call combines two existing result sets. 

• An RSBUILD call combines an existing result set (called its source result set) 
with a new result set. 

5-4 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



How to Use Result Sets in FORTRAN Programs 

Combination Operations 

Result sets can be combined by one of these three operations as specified by the 
logical_operation parameter on the call. The parameter can specify one of these integer 
values: 

o (AND) 

The combined result set is the intersection of the result sets. It contains only 
those key values that belong to both of the sets. 

1 (OR) 

The combined result set is the union of the result sets. It contains all key values 
from both result sets. 

2 (XOR) 

The combined result set is the union of the result sets without the intersection of 
the result sets. It contains all key values from each of the result sets that do not 
belong also to the other result set. 

Placement of the Combined Result Set 

On the RSBUILD and RSCOMB calls, you specify the source result set as an existing 
result set. The combined result set can overwrite the source result set or be written to 
another result set file called the target result set. 

The placement of the combined result set is determined by the value of the new_ 
result_placement parameter on the call. The parameter can specify one of these 
integer values: 

o (Result in Source) 

The combined result set overwrites the source result set. For RSCOMB, the result 
set overwritten is always the second of the source result sets specified. Use this 
value only when the source result set is no longer needed. It can also be used by 
an RSBUILD call when the source and target result sets are the same. (The 
source and target result sets cannot be the same for an RSCOMB call.) 

1 (Result in Target) 

The combined result set is written to the target result set. Use this value when 
the source_result_set is to be saved for later use. It is also used on the initial 
RSBUILD call for a new result set. 

2 (Result in Fastest Place) 

The placement of the combined result set is chosen to provide the fastest 
performance. The location chosen is returned in the variable specified by the 
actual_result_set placement parameter on the call. Use this value when the 
source result set is no longer needed and the source and target result sets differ. 

Revision A Result Sets 5·5 



How to Use Result Sets in FORTRAN Programs 

Adding Or Deleting Key Values 

The RSPUT and RSDLTE calls add or delete a primary-key value in the result set. 
These calls are for specifying a single primary-key value, instead of the range of 
values specified by an RSBUILD call. 

For Better Performance 

In cases where several scattered primary-key values are to be added or deleted in a 
result set and the result set is large, calls to directly add or delete individual values 
are not the most efficient method of producing the target result set. 

It is more efficient to form a temporary result set containing the individual 
primary-key values and combine the temporary result set with the source result set 
to form the target result set. 

If possible, put the primary-key values into the result set in ascending order. This 
builds the result set more efficiently. 

To add several individual primary-key values to a large result set: 

1. Call RSPUT to put each primary-key value to be added into a temporary result 
set. 

2. Combine the result sets using an OR (1) operation. 

To delete several individual primary-key values from a large result set: 

1. Call RSPUT to put each primary-key value to be deleted into a temporary result 
set. 

2. Call RSCOMB specifying the original result set as the first_source_result_set 
and the temporary result set as the second_source_result_set. Combine the result 
sets using an XOR (2) operation; specify result_in_source (0) to overwrite the 
temporary result set. 

3. Combine the temporary result set created by step 2 with the original result set 
using an AND (0) operation. (This step is required only when a record to be 
deleted may not have been in the original result set.) 

5-6 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Keyed-File Interface Calls 6 

How to Use Keyed-File Interface Calls in FORTRAN Programs ................... 6-2 
Processing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-3 
Using FORTRAN Keyed-File Interface Calls in Other Languages ................ 6-4 

Keyed-File Interface Calls: Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-5 
CLOSEM Call ................................................................. 6-6 
DLTE Call ............................................... " .................... 6-7 
FILEDA Call ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-9 
FILEIS Call .................................................................. 6-10 
FLUSHM Call ................................................................ 6-12 
GET Call .................................................................... 6-13 
GETN Call ................................................................... 6-17 
IFETCH Call .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-20 
KEYLIST Call ............................................................... 6-22 
KLCOUNT Call .............................................................. 6-26 
KLSPACE Call ............................................................... 6-29 
LOCKF Call ................................................................. 6-33 
LOCKK Call ................................................................. 6-35 
OPENM Call ................................................................. 6-38 
PABORT Call ................................................................ 6-41 
PBEGIN Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-42 
PCOMMIT Call .............................................................. 6-42.2 
PDETERM Call ............................................................. 6-42.3 
PUT Call .................................................................... 6-43 
PUTREP Call ................................................................ 6-45 
REPLC Call ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-47 
REWND Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-49 
RMKDEF Call ............................................................... 6-50 
RSBUILD Call ............................................................... 6-51 
RSCLEAR Call ............................................................... 6-55 
RSCLOSE Call ............................................................... 6-56 
RSCOMB Call ................................................................ 6-57 
RSDLTE Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-59 
RSGETN Call ................................................................ 6-60 
RSINFO Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-63 
RSOPEN Call ................................................................ 6-65 
RSPUT Call ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-67 
RSREWND Call .............................................................. 6-68 
RSSKIP Call ................................................................. 6:"69 
RSSTART Call ............................................................... 6-70 
SKIP Call .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-71 
STARTM Call ................................................................ 6-74 
STOREF Call ................................................................ 6-76 
UNLOCKF Call .............................................................. 6-78 
UNLOCKK Call .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-79 

60485917 B 





Keyed-File Knterface Calls 

This chapter summarizes how to use keyed-file interface calls and includes a quick 
reference section of all keyed-file interface calls. 

Use keyed-file interface calls to operate on keyed files. Five of the calls use FIT 
keywords and values to store information in a FIT and to retrieve information in a 
FIT. The calls are: IFETCH, FILEIS, FILEDA, OPENM, and STOREF. For more 
information on FIT keywords and values, see chapter 7, File Information Table 
Keywords and Values. 

60485917 B Keyed-File Interface Calls 6-1 



I 

How to Use Keyed-File Interface Calls in FORTRAN Programs 

How to Use Keyed-File Interface Calls in FORTRAN 
Programs 

This table summarizes the keyed-file interface calls and their purposes: 

Call 

CLOSEM 
DLTE 
FILEDA 
FILEIS 
FLUSHM 

GET 
GETN 
IFETCH 
KEYLIST 
KLCOUNT 

KLSPACE 

LOCKF 
LOCKK 
OPENM 
PABORT 

PBEGIN 
PCOMMIT 
PDETERM 
PUT 
PUTREP 

REPLC 
REWND 
RMKDEF 
RSBUILD 
RSCLEAR 

RSCLOSE 
RSCOMB 
RSDLTE 
RSGETN 
RSINFO 

RSOPEN 
RSPUT 
RSREWND 
RSSKIP 
RSSTART 

Purpose 

Closes an open file 
Deletes a record 
Creates a FIT for a direct-access file 
Creates a FIT for an indexed-sequential file 
Copies the file in memory to disk 

Reads a record by its key value 
Reads the next record in sequential order 
Fetches a FIT value 
Fetches primary-key values from an alternate index 
Fetches the number of primary-key values within a range in the 
alternate index 

Fetches the number of alternate-index blocks that contain the specified 
al terna te-key value range 
Locks a file 
Locks a primary-key value 
Opens a keyed file 
Aborts a parcel 

Begins a parcel 
Commits a parcel 
Determines the state of a parcel 
W ri tes a record 
Writes or replaces a record 

Replaces a record 
Positions the file at the lowest key value 
Creates an alternate key 
Builds a result set 
Clears a result set 

Closes an open result set 
Combines two result sets 
Deletes a key value from a result set 
Uses the result set to get a record from the data file 
Returns information about the result set 

Opens a result set 
Adds a key value to a result set 
Positions the result set at its beginning 
Positions the result set forward or backward 
Positions the result set at a key value 

6·2 FORTRAN for NOSNE Keyed-File and SorUMerge Interfaces 60485917 B 



How to Use Keyed-File Interface Calls in FORTRAN Programs 

Call Purpose 

SKIP 
STARTM 
STOREF 
UNLOCKF 
UNLOCKK 

Repositions the file forward or backward a specified number 
Positions the file by a key value 
Stores a value in the FIT 
Clears a file lock 
Clears either a single primary-key value lock or all locks for the 
instance of open 

If you are migrating a CYBER 170 FORTRAN program that uses GETNR or SEEKF 
calls, see appendix E, Differences Between NOSNE FORTRAN and FORTRAN 5, for 
more information. 

Each keyed-file interface call description lists the parameters for the call. The 
parameters must be specified in the indicated order. 

Standard FORTRAN requires that all parameters be explicitly specified on a call. 
However, the keyed-file interface allows you to omit parameters whose values have 
been specified on previous calls. 

To omit a parameter between two specified parameters, specify a zero (0) in the 
parameter position. To actually specify zero as a parameter value, you must store zero 
in a variable and specify the variable name on the call. 

Unless indicated otherwise in the call description, a parameter value specified on a call 
is stored in the FIT so that it becomes the default value for subsequent calls. 

Processing Errors 

No type checking is performed on the values passed by a call. Passing an improper 
value could re~ult in an internal routine detecting a computational fault such as an 
arithmetic overflow. To find the line that caused the error, use Debug to trace back 
the call chain. 

To process errors, use IFETCH to retrieve the condition code from the FIT and then 
use CONDSYM to translate the condition code into the condition name. 

In this example, the OPENM call attempts to open a new file. Assume the file exists 
so you receive an error whose condition code is 280263396310. CONDSYM translates 
the condition code to AA 3030. 

CALL OPENM(fit_ptr, 'NEW', 'R') 
CALL IFETCH(fit_ptr, '$ERROR_STATUS', condition_code) 
IF (CONDITION_CODE .NE. 0) THEN 

CALL CONDSYM(condition_code, condition_name, length) 
PRINT *, 'Error encountered. Condition name is ',condition_name 

ENDIF 

For more information on translating the $ERROR_STATUS value, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and Values. 

For more information on a condition name, enter the online Diagnostic Messages 
manual and use the INDEX function on the condition name. This example shows how 
to enter the Diagnostic Messages manual: 

/help manual=messages 

60485917 B Keyed-File Interface Calls 6-3 



How to Use Keyed-File Interface Calls in FORTRAN Programs 

Using FORTRAN Keyed-File Interface Calls in Other Languages 

When a program written in a language other than FORTRAN or COBOL uses 
FORTRAN keyed-file interface calls, you must add the following object library to the 
program library list before executing the program: 

I AAF$4DD_LIBRARY 

For example, the following SET _PROGRAM _ATTRIBUTES command adds the object 
library to the program library list. 

For more information about the program library list, see the manual NOSNE Object 
Code Management Usage. 

6·4 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



Keyed-File Interface Calls: Quick Reference 

Keyed-File Interface Calls: Quick Reference 

The following section describes all of the keyed-file interface calls in quick reference 
format. 

You can check the status of any call (except for the PABORT, PBEGIN, PCOMMIT, 
and PDETERM calls) by retrieving the value of $ERROR _STATUS from the FIT for 
the specified call. 

60485917 B Keyed-File Interface Calls 6-5 



I 

Keyed-File Interface Calls: Quick Reference 

CLOSEM Call 

Purpose Closes an open keyed file. 

Format CALL CLOSEM (fit, close _flag) 

Parameters fit 

Remarks 

Examples 

Variable containing the FIT pointer returned by the call that created the 
FIT. 

close_flag 

Close flag handling. Options are: 

'U' or 'RET' 

Detach the file. 

'R' 

Rewind the file. This option is provided for compatibility with earlier 
versions of the keyed file interface and is ignored. Use the OPENM call 
for file positioning. 

'N' 

Do not rewind or detach the file. This option is provided for 
compatibility with earlier versions of the keyed file interface and is 
ignored. Use the OPENM call for file positioning. 

No default value is stored in the FIT for this parameter. 

• When a program finishes processing a keyed file, it should immediately 
call CLOSEM to close the file. Close processing copies any data or 
index blocks in memory to the mass storage file, updates internal 
tables, and writes statistics to the $ERRORS file (if requested by the 
$MESSAGE _CONTROL value). It also clears all locks for the instance 
of open. 

• All files are closed at task termination. This is true whether the task 
terminates normally or abnormally. 

• A CLOSEM call does not discard the FIT. The same FIT pointer 
variable can be specified on a subsequent OPENM call to open the 
same file again. 

• CLOSEM should not be called for an instance of open that has a parcel 
in progress. Closing an instance of open to which a parcel applies 
aborts the parcel. For a description of parcels, see chapter 4, Parcels. 

This call closes and detaches a keyed file, preventing its further use in the 
program. The IFETCH call checks that the CLOSEM call completed 
successfully. 

CALL CLOSEM (fit. 'U') 
CALL IFETCH ('$ERROR_STATUS'. status) 
IF (status .NE. 0) CALL err_report 

6-6 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 60485917 B 



Keyed-File Interface Calls: Quick Reference 

DLTE Call 

Purpose Removes a record from a keyed file. 

Format CALL DLTE (fit, key _area, 0, 0, error _exit_procedure) 

Parameters fit 

Remarks 

Revision A 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

key_area 

Location of the primary-key value of the record to be deleted. 

NOTE 

The key area should be in a common block. If it is not, your program 
could execute incorrectly after being compiled with high optimization. 

o 
For FORTRAN 5 compatibility. New programs should set this parameter 
to zero. 

o 
Reserved position for unused parameter. 

error _exit_procedure 

Name of the error-exit procedure. 

• A DLTE call requires append, shorten, and modify access to the file. 
Otherwise, DLTE returns a nonfatal error. 

• If the file could be shared (more than one instance of open could be 
changing the file at the same time), a record can be deleted only if 
the instance of open has a Preserve_Access_and_ Content or 
Exclusive_Access lock on the primary-key value. 

A task can lock a primary-key value by calling LOCKK, GET, or 
GETN. To read about locks, see chapter 3, Sharing Keyed Files. 

o You cannot delete a record by specifying its alternate-key value. You 
must specify its primary-key value. The key value specified on a 
DLTE call is processed as a primary-key value even if an alternate 
key is currently selected. A DLTE call deletes the primary-key value 
from all alternate indexes that reference it. 

• DLTE searches for the primary-key value only in the nested file 
currently selected. 

• If DLTE cannot find a record with the specified primary-key value, it 
returns a nonfatal error. 

• A DLTE call does not change the file position or change the currently 
selected key or nested file. 

Keyed-File Interface Calls 6-7 



Keyed-File Interface Calls: Quick Reference 

Examples 

For Better Performance 

When deleting a sequence of records, it is most efficient to delete the 
records in order from the highest primary-key value to the lowest 
primary-key value. By working backwards, you can avoid relocation of 
records to be subsequently deleted. 

• If a data block or index block contains no records as a result of the 
delete request, it is linked into a chain of empty blocks. These blocks 
are reused when new blocks are required for file expansion. 

The DLTE call deletes the record with primary-key value ABCD. The 
IFETCH call checks that the DLTE call completed successfully. 

key = 'ABCD' 
CALL DLTE (fit, key) 
CALL IFETCH (fit,'$ERROR_STATUS' ,status) 
IF (status .NE. 0) CALL err_report 

6·8 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 

( 

( 



Keyed-File Interface Calls: Quick Reference 

FILEDA Call 

Purpose Creates a file information table (FIT) for a direct-access file and, 
optionally, initializes FIT values. 

Format CALL FILEDA (fit, fit_keyword, fit_value, ... , fit_keyword, fit_value) 

Parameters fit 

Remarks 

Examples 

Revision A 

Integer variable in which the FIT pointer is returned. 

fit_keyword 

Character expression specifying a FIT keyword (must be followed by an 
allowable value for the attribute). The keyword must be a character 
expression (for example, '$KEY_LENGTH'). 

fit_ value 

FIT value to be stored for the preceding keyword. The applicable values 
are listed in the individual keyword description. 

• FIT keywords and values are described in chapter 7, File Information 
Table Keywords and Values. 

• The FILEDA call must be the first call for a direct-access file because 
it creates the FIT for the file and sets the $FILE_ ORGANIZATION 
value to DIRECT_ACCESS. 

All other calls for the file must specify the FIT pointer variable 
returned by the FILEDA call. 

• Except for the $FILE_ ORGANIZATION value, FILEDA call 
processing is the same as FILEIS call processing. 

• This call creates a FIT for an existing direct-access file named MY_ 
DA_FILE. It stores two FIT values: the local file name and the 
access modes. 

CALL FILEDA( fitptr, '$LOCAL_FILE_NAME', 'my_da_file', 
+ '$ACCESS_MODE', 'READ,MODIFY') 

• This call creates a FIT for a new direct-access file, specifying the 
minimum required attributes: 

CALL FILEDA( fitptr, '$LOCAL_FILE_NAME', 'my_da_file', 
+ '$INITIAL_HOME_BLOCK_COUNT', 23, 
+ '$KEY_LENGTH' , 15, 
+ '$MAXIMUM_RECORD_LENGTH' , 80, 
+ '$MINIMUM_RECORD_LENGTH', 15) 

Keyed-File Interface Calls 6·9 



Keyed-File Interface Calls: Quick Reference 

FILEIS Call 

Purpose Creates a file information table (FIT) for an indexed-sequential file and, 
optionally, initializes FIT values. 

Format CALL FILEIS (fit, fit_keyword, fit_value, ... , fit_keyword, fit_value) 

Parameters fit 

Remarks 

Integer variable in which the FIT pointer is returned. 

fit_keyword 

Character expression specifying a FIT keyword (must be followed by an 
allowable value for the attribute). The keyword must be a character 
expression (for example, '$KEY_LENGTH'). 

fit_ value 

FIT value to be stored for the preceding keyword. The applicable values 
are listed in the individual keyword description. 

• For more information about FIT keywords and values, see chapter 7, 
FIT Keywords and Values. 

o The FILEIS call must be the first call for an indexed-sequential file 
because it creates the FIT for the file and initializes the $FILE_ 
ORGANIZATION value to INDEXED_SEQUENTIAL. All subsequent 
keyed-file interface calls must specify the variable containing the FIT 
pointer returned by the FILEIS call. 

o The FILEIS call can specify any number of fit keyword and value 
pairs in any order . You can change FIT values specified by the 
FILEIS call using STOREF calls. 

o FILEIS returns a nonfatal error ($ERROR_STATUS value AA2510) 
when it does not recognize a specified keyword. It also returns a 
nonfatal error ($ERROR_STATUS value AA2505) if a specified value 
is outside of the range applicable for the parameter. 

• The FILEIS call associates the FIT with a local file name using the 
$LOCAL_FILE_NAME keyword. The old/new (ON) value indicates 
whether the file is a new or existing file. 

o File attribute values specified by SET_FILE_ATTRIBUTE commands 
before program execution override corresponding attribute values 
specified by FILEIS calls. 

• Attribute values in the FIT are checked for validity and consistency 
when the file is opened. 

6-10 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Examples 

Keyed-File Interface Calls: Quick Reference 

• This call creates a FIT for an existing indexed-sequential file named 
MY_IS_FILE. It stores two FIT values: the local file name and the 
access modes. 

CALL FILEIS(fitptr, '$LOCAL_FILE_NAME', 'my_is_file', 
+ '$ACCESS_MODE','READ,MODIFY') 

• This call creates a FIT for a new indexed-sequential file, specifying 
the minimum required attributes: 

CALL FILEIS(fitptr, '$LOCAL_FILE_NAME', 'my_new_is_file', 
+ '$KEY_LENGTH' , 15, 
+ '$MAXIMUM_RECORD_LENGTH', 80, 
+ '$MINIMUM_RECORD_LENGTH' , 15) 

Revision A Keyed-File Interface Calls 6-11 



Keyed-File Interface Calls: Quick Reference 

FLUSHM Call 

Purpose Writes all modified blocks to mass storage. 

Format CALL FLUSHM (fit) 

Parameters fit 

Remarks 

Examples 

Variable containing the FIT pointer returned by the call FILEIS or 
FILEDA that created the FIT. 

• A FLUSHM call requires append, shorten, or modify access to the 
file. 

• A FLUSHM call ensures that the disk copy of the file contains the 
latest changes to the file. FLUSHM does not reposition or close the 
file. Blocks in memory are not disturbed. 

• If the $FORCED_ WRITE value in the FIT is TRUE, a data or index 
block is copied to disk immediately after the block is changed. 
However, a FLUSHM call also copies all internal file tables to disk, 
providing a complete backup copy. 

The STOREF call specifies the error-exit procedure to be called if the 
FL USHM call detects an error. (The program has previously declared the 
ERREXIT subprogram as EXTERNAL.) 

CALL STOREF (fit, '$ERROR_EXIT_PROCEDURE', errexit) 
CALL FLUSHM (fit) 

6-12 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

GET Call 

Purpose Reads a record by its key value from an open keyed file. 

Format CALL GET (fit, working_storage_area, key _area, 0, major _key_ 
length, 0, error _exit_procedure) 

Parameters fit 

Remarks 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

working _ storage _ area 

Working storage area (location to which the record data is copied). 

NOTE 

The working storage area and the key area should be in common blocks. 
If they are not, your program could execute incorrectly after being 
compiled with high optimization. 

key_area 

Location of the key value of the record to be read. 

o 
For CYBER 170 compatibility. New programs should set this parameter 
to zero. 

major _key _length 

Major key length (in bytes); defaults to zero. It is reset to zero after the 
call. 

When using a variable_length alternate key, a nonzero major key length 
value is required because it specifies the key-value length. 

The parameter is ignored if the file is a direct-access file and its primary 
key is currently selected. 

o 
Reserved position for unused parameter. 

error _exit_procedure 

Error-exit procedure name. 

• A GET call requires at least read access to the file. To update file 
statistics, it also requires modify access. 

• A GET call requires that a working storage area be specified on the 
call or in the FIT. 

• GET searches for the specified key value in the currently selected 
nested file only. 

• GET uses the primary or alternate key specified by the $KEY_NAME 
value in the FIT. The $KEY_NAME value is initially set to the 
primary key ($PRIMARY_KEY). 

Revision A Keyed-File Interface Calls 6-13 



Keyed-File Interface Calls: Quick Reference 

o When the primary key is selected, a key_area value must be specified 
on the call or in the FIT. 

o When an alternate key is selected and the key _area values on the call 
and in the FIT are both zero, GET assumes that the alternate key 
value is in the working storage area at the position of the alternate 
key in the record. 

For example, if the alternate key is bytes 5 through 10 of the record, 
GET uses the contents of bytes 5 through 10 of the working storage 
area as the alternate-key value. 

o The meaning of the major key length value depends on whether the 
selected key is fixed-length or variable-length. 

For a fixed-length key, a nonzero major key length value specifies 
that GET is to search for the key using a major key. This means 
that, starting from the left of the key value, only major _key _length 
bytes of the key values are compared. 

For a variable-length key, the major key length value specifies the 
key-value length. The key value is compared with the full key 
values stored in the index. 

A major key length value specified on a call is not stored in the FIT. 
A $MAJOR_KEY_LENGTH value specified in the FIT is cleared after 
it is used, so the program must specify a major key length value for 
each call that is to use a major key or a variable-length key value. 
(Major-key use is valid only while either the primary key of a 
indexed-sequential file or any alternate key is selected.) For more 
information, see the $MAJOR_ KEY_ LENGTH FIT keyword description. 

o If an alternate key has been selected and the key is a concatenated 
key, the values for the pieces of the key must be assembled in the key 
area or the working storage area. 

In the key area, the pieces must be concatenated in the order defined 
for the alternate key. 

In the working storage area, the pieces must be stored in their fields in 
the record. 

For example, suppose the first piece of the alternate key is the third 
byte of the record and the second piece of the alternate key is the first 
byte of the record. To get the record whose first byte is an A and 
whose third byte is an *, either: 

store A in the first byte of the working storage area and * in the 
third byte, or 

store * A in the key area. 

6-14 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 

( 

( 

( 



Revision A 

Keyed-File Interface Calls: Quick Reference 

• GET searches for the first key value that satisfies the relation specified 
by the $KEY_RELATION value in the FIT. 

- If the relation is EQUAL_KEY and an equal key value does not 
exist in the file, GET returns a nonfatal error. The file is left 
positioned to read the next record (the record that would follow the 
specified record if it existed). 

- If the $KEY_RELATION value is GREATER_ OR_EQUAL_KEY or 
GREATER_KEY and no key value in the file satisfies the relation, 
the data-exit (DX) procedure is called, if one is specified in the FIT. 
The file is left positioned at the end of information. 

• If the $GET_AND_LOCK value in the FIT is -1 (YES), the GET call 
requests a lock on the primary-key value of the record to be read. The 
lock request uses the $AUTOMATIC_UNLOCK, $LOCK_INTENT, and 
$WAIT_r'OR_LOCK values in the FIT. To read about locks, see 
chapter 3, Sharing Keyed Files. 

When an alternate key is selected, the GET call requests a lock on the 
first primary-key value in the key list only. 

If the GET call fails for any reason, it terminates without a lock on 
the primary-key value. 

• The GET call reads data from the record until it reaches the end of the 
record or it has read the number of bytes specified as the working 
storage length in the FIT. (GET does not overwrite space following the 
working storage area with excess data.) 

If the record being read is longer than the working storage length, GET 
returns a nonfatal error. 

• A successful GET call sets the record length value in the FIT to the 
actual length of the record. The record length value is not defined for 
an unsuccessful GET call. 

• File positioning by a GET call differs depending on the file organization 
and the selected key: 

For a direct-access file with its primary key selected, the following 
statements are true: 

- GET does not change the file position used by GETN calls. 

- The only file position GET returns is end-of-record (16). 

- The only calls that can reposition the file are REWND and GETN. 
(STARTM is not valid.) 

- The $MAJOR_KEY_LENGTH and $KEY_RELATION values are 
not used. 

A GET call for a direct-access file with an alternate key selected is 
processed the same as a call to. an indexed-sequential file with an 
alternate key selected. 

Keyed-File Interface Calls 6-15 



Keyed-File Interface Calls: Quick Reference 

Examples 

• For an alternate key or an indexed-sequential file, the following 
statements are true: 

- At completion of a successful GET call, the file is positioned to 
read the record with the next highest key value. The file position 
returned can be end-of-record ($FILE_POSITION value 16) or, for 
an alternate key, end-of-key-list ($FILE_POSITION value 8). 

- An unsuccessful GET call returns a $FILE_POSITION value of 64 
(end-of-information) in these cases: 

The specified $KEY_RELATION was GREATER_THAN _ OR_ 
EQUAL and the key value was greater than all key values in 
the file. 

The specified $KEY_RELATION was GREATER_THAN and 
the key value is the greatest in the file. 

• A GET call that requests an unavailable lock leaves the file 
positioned to read the requested record. 

• The program should call IFETCH to return the file position after a 
successful GET call. 

When the $FILE_POSITION value returned is 64 (end-of-information), 
the file is positioned at the end of the file and no GETN calls should 
be issued before file repositioning. 

• GET can return the primary-key value of a record it found using an 
alternate-key value. If the $PRIMARY_ KEY_ADDRESS value in the 
FIT is nonzero, GET returns the primary-key value in the 
$PRIMARY_KEY_ADDRESS location. 

This sequence of calls reads a record by major key value. 

C Gets the first record whose key value begins with AB. 

KEY1 = 'ABCD' 
CALL GET (fit, record1, key1, 0, 2, 0, errexit) 

C Gets the current file position and calls subroutine NOREC 
C if no key value in the file begins with AB. (The file 
C would be left positioned at its end-of-information.) 

IF (IFETCH (fit, '$FILE_POSITION') .EQ. 64) THEN 
CALL. norec 

ELSE 

C Fetches the record length of record read and passes the 
C record and its length to subroutine PROCDTA. 

CALL IFETCH (fit, '$RECORD_LENGTH', recleng) 
CALL procdta (record1, recleng) 

ENOIF 

6·16 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 

( 



Keyed-File Interface Calls: Quick Reference 

GETN Call 

Purpose 

Format 

Reads the next record at the current file position. 

CALL GETN (fit, working_storage_area, key _area, error _exit_ 
procedure) 

Parameters fit 

Remarks 

Revision A 

Variable containing the FIT pointer returned by the call that created the 
FIT. 

working _ storage _ area 

Working storage area (location to which the record data is copied). 

NOTE 

The working storage area and the key area should be in common blocks. 
If they are not, your program could execute incorrectly after being 
compiled with high optimization. 

key_area 

Variable in which GETN returns the key value of the record. 

For a variable-length alternate key, the key value is written to the 
variable followed by padding characters up to the maximum key length. 
The padding character used is the lowest character in the key-delimiter 
set. 

For example, if the variable is 80 bytes long, the key value is 12 bytes, 
and the maximum key length is 31 bytes, the call first writes the 12-byte 
key value and then 19 padding characters. The GETN call does not write 
to the last 49 bytes. 

error _exit_procedure 

Error-exit procedure name. 

• A GETN call requires at least read access to the file. To update file 
statistics, it also requires modify access. 

• A GETN call requires that a working storage area be specified on the 
call or in the FIT. 

• If the $GET_AND_LOCK value in the FIT is -1 (YES), GETN 
requests a lock on the primary-key value of the record to be read. 
The lock request uses the $AUTOMATIC_ UNLOCK, $LOCK_ 
INTENT, and $WAIT_FOR_LOCK values in the FIT. To read about 
locks, see chapter 3, Sharing Keyed Files. 

If the GETN call fails for any reason, it terminates without a lock on 
the primary-key value. 

• The GETN call reads data from the record until it reaches the end of 
the record or it has read the number of bytes specified as the 
working-storage length in the FIT. GETN cannot copy more data than 
the working-storage-area length. 

Keyed-File Interface Calls 6-17 



Keyed-File Interface Calls: Quick Reference 

• A successful GETN call sets the record-length value in the FIT to the 
actual length of the record. The record-length value is not defined for 
an unsuccessful GETN call. 

• When an alternate key is selected, GETN calls return records in the 
key-value order provided by the alternate index. 

When the primary key of an indexed-sequential file is selected, GETN 
returns records in the key-value order provided by the primary index. 

However, no index exists for the primary key of a direct-access file so 
GETN does not return records in key-value order. It returns records 
in physical order by their location in the file. 

A GETN call that requests an unavailable lock leaves the file 
positioned to read the requested record. 

o When a GETN call reads a record from the file, it returns a $FILE_ 
POSITION value of 16 (or 8 if an alternate key is selected). 

Mter the GETN call that reads the last record in the file, the next 
GETN call returns a $FILE_POSITION of 64 (end-of-information). It 
returns an $ERROR_STATUS of 0 (no error), but no data or key 
values. 

A GETN call issued after a $FILE_POSITION value of 64 is 
returned, and before the file is repositioned, is an attempt to read 
beyond the end-of-information. 

o The key value returned to the key _area location is the value of the 
currently selected key. If the selected key is an alternate key, the 
value returned is the alternate-key value. 

The length of the value returned is the key _length specified when the 
key was created. A variable-length alternate-key value is padded to 
its right with delimiter characters up to the maximum length for the 
key. (The padding character is the lowest character in the 
key-delimiter set.) 

o GETN can also return the primary-key value when an alternate key 
is selected. If the $PRIMARY_KEY_ADDRESS value in the FIT is 
nonzero, GETN returns the primary-key value in the $PRIMARY_ 
KEY_ADDRESS location. 

6-18 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Examples 

60485917 B 

Keyed-File Interface Calls: Quick Reference 

This sequence of calls reads all records whose alternate key value is ABC 
into a very long character variable named $WORKING _STORAGE_ 
ADDRESS. 

CALL STOREF (fit, '$KEY_NAME', 'ALT1') 
key = 'ABC' 
n = 1 
CALL GET (fit, working_storage_area(n), key, 0, 0, errexit) 

IF (IFETCH(fit, '$FILE_POSITION') .EO. 8) THEN 
CONTINUE 

ELSEIF (IFETCH(fit, '$FILE_POSITION') .EQ. 16) THEN 
10 n = n + IFETCH(fit,'$RECORD_LENGTH') 

CALL GETN (fit, working_storage_area(n), 0, 0) 
IF (IFETCH(fit, '$FILE_POSITION') .EQ. 16) GO TO 10 

ELSE 
CALL nodata 

ENDIF 

n = n + IFETCH(fit, '$RECORD_LENGTH') 
CALL procdta (working_storage_area, n) 

Keyed-File Interface Calls 6-19 



Keyed-File Interface Calls: Quick Reference 

IFETCH Call 

Purpose 

Format 

Retrieves a FIT value. 

NOTE 

IFETCH can be called as a function or as a subroutine. 

IFETCH (fit, fit _keyword) 
or 
CALL IFETCH (fit, fit _keyword, variable) 

Parameters fit 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

fit _keyword 

Character expression specifying the FIT value to be fetched (such as, 
'$FILE _POSITION'). 

The keyword can be specified using uppercase and/or lowercase letters. 
Keywords are listed in chapter 7, File Information Table Keywords and 
Values. 

variable 

Variable to receive the FIT value. 

Remarks • Before a FIT is used to open a file, the only values that IFETCH can 
fetch from the FIT are those that have been stored in the FIT by the 
FILEIS or FILEDA call that created the FIT or by a STOREF call. 

• While the file is open, IFETCH can fetch any value from the FIT. 
However, after the file is closed, IFETCH can only fetch certain values. 
The following is a list of the values that it can fetch. 

Table 6-1. FIT Keywords That Can Be Fetched on a Closed File 

$AUTOMATIC _UNLOCK 
DX (data exit routine) 
$ERROR _EXIT _PROCEDURE 
$ERROR _STATUS 
$FILE _ORGANIZATION 
$FILE _POSITION 
FNF (fatal/nonfatal flag) 
$GET _AND _LOCK 
$GLOBAL_ACCESS_MODES 
$GLOBAL_SHARE_MODES 
$KEY _ADDRESS 
$KEY _POSITION 

$KEY _RELATION 
$ LAST _OPERATION 
$LOCAL _FILE _NAME 
$LOCK _INTENT 
$MAJOR_KEY_LENGTH 
OC (opened/closed flag) 
ON (old/new flag) 
$PRIMARY _KEY _ADDRESS 
$WAIT _FOR_LOCK 
$WORKING _STORAGE _ADDRESS 
$WORKING _STORAGE _LENGTH 

6-20 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 60485917 B 



Remarks 

Revision A 

Keyed-File Interface Calls: Quick Reference 

end_of_primary _key _list 

Integer variable in which KEYLIST returns a value indicating whether 
the working storage area was long enough to contain all values in the 
requested range. 

o KEYLIST could not return all values in the requested range. 

1 KEYLIST returned all values in the requested range. 

transferred _ byte _ count 

Integer variable which receives the total length, in bytes, of the 
primary-key values KEYLIST returned in the working storage area. 

transferred _ key _ count 

Integer variable which receives the number of primary-key values 
KEYLIST fetched. 

file_pos 

Integer variable in which the file position at completion of the KEYLIST 
call is returned. 

Value 

8 

16 

64 

Meaning 

The file is positioned at the end of a key list (positioned to 
fetch the first value in the next list). 

The file is positioned at the end of a record, but not at the end 
of a key list (positioned to fetch the next value in the same 
key list). 

The file is positioned at the end of the alternate index. (It 
cannot fetch any more values at this position.) 

condition _ code 

Integer variable in which the condition code is returned. A zero value 
returned indicates successful completion. 

For information on translating the condition code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

• You must specify values for all KEYLIST parameters. KEYLIST does 
not use FIT values as default values. 

• The program must select an alternate key before issuing a KEYLIST 
call. 

Keyed-File Interface Calls 6·23 



Keyed-File Interface Calls: Quick Reference 

• The high_key parameter value specifies the upper bound of the range 
of keys to be returned. The high_key _relation parameter indicates 
whether the primary-key values for the high_key value itself are 
returned. 

For example, suppose the high_key value is SMITH. 

If you specify 'GREATER_KEY' as the high_key_relation value, 
KEYLIST returns the primary-key values for SMITH. 

If you specify 'EQUAL_KEY' as the high_key_relation, KEYLIST 
does not return the primary-key values for SMITH. (It stops 
fetching values at the SMITH alternate-key value.) 

• A major key consists of the leftmost bytes of a key. For a fixed-length 
key, a nonzero major _high_key parameter specifies the number of 
bytes of the high_key value KEYLIST is to use as a major key. A 
major key search compares only the leftmost bytes of the key values 
on the call and in the index. 

For example, suppose the high_key value is ABCDEF and the 
major _high_key parameter value is 2. The major key used is AB. 
KEYLIST returns primary-key values until it finds an alternate-key 
value beginning with the characters AB or higher. Whether it returns 
the primary-key values for the AB value depends on the high_key_ 
relation parameter value. 

Major _key use is invalid when the primary key of a direct-access file 
is selected. 

• The KEYLIST call could return the same primary-key value more 
than once if the primary-key value is associated with more than one 
alternate-key value. This is possible if the repeating-groups attribute 
is defined for the alternate key. 

o KEYLIST returns primary-key values until it reaches the end of the 
specified range or until it cannot fit another value into the working 
storage area. By checking the end_of_primary_key_list value, the 
program can determine if all requested values were returned and, if 
not, call KEYLIST again to fetch the rest of the values. 

G KEYLIST repositions the file as it fetches key values. At completion 
of the call, the file is positioned at the end of the last key value 
returned and positioned to continue fetching values at that point if 
KEYLIST is called again. 

• KEYLIST cannot be called for an instance of open that has a parcel 
in progress. For a description of parcels, see chapter 4, Parcels. 

6-24 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Examples 

Keyed-File Interface Calls: Quick Reference 

• These calls fetch all primary-key values in the alternate index. The 
STOREF call selects alternate key ALT_KEY_l and positions the file 
at the beginning of the alternate index. The subroutine KEYPROC 
processes the key values fetched. The KEYLIST call is repeated until 
all primary-key values are fetched. 

10 CALL KEYLIST(fit, 0, 0, 'HIGHEST_KEY', working_storage_area, 
+ LEN(working_storage_area), keyend, length, keycnt, 
+ filpos, ccode) 

IF (ccode .NE. 0) THEN 
CALL errprog 

ELSE 
CALL keyproc(working_storage_area, 

+ LEN(working_storage_area), length, keycnt) 
ENDIF 

IF (keyend .EQ. 0) GO TO 10 

• The STARTM call positions the alternate index at alternate-key value 
ABCD. The KEYLIST call then fetches the primary-key values for 
that alternate-key value. 

keyval='ABCD' 
CALL STARTM(fit, keyvalue) 
CALL KEYLIST(fit, keyvalue, 0, 'GT', big_array, LEN(b1g_array) , 

+ keyend. length. keycount, file_pos, ccode) 
IF (ccode .NE. 0) CALL errprog 

Revision A Keyed-File Interface Calls 6-25 



Keyed-File Interface Calls: Quick Reference 

KLCOUNT Call 

Purpose Counts the number of primary-key values associated with the specified 
range of alternate-key values in the alternate index. 

Format CALL KLCOUNT (fit, low _key, major _low _key, low _key _relation, 
high _ key, major _ high _ key, high _ key _ relation, list _ coun t _limit, 
list_ count, condition _ code) 

Parameters fit 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

low_key 

Alternate-key value at which the range begins. The value must be valid 
for the key type (integer for an integer key, characters for a collated or 
uncollated key). 

major _low _key 

For a fixed-length key, a nonzero value indicates that the low end of the 
range is to be found by a major _key search. The specified value is the 
number of leftmost bytes of the low _key value to be used as the major 
key. A zero value indicates that the full low_key value is to be used. 

For a variable-length alternate key, a nonzero value is required because 
it specifies the length of the key value. 

low _key _relation 

Indicates where KLCOUNT is to start counting primary-key values. 
Options are: 

'GREATER_KEY' or 'GK' or 'GT' 

Start at the lowest alternate-key value greater than the low _key 
value. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Start at the lowest alternate-key greater than or equal to the low-key 
value. 

'LOWEST_KEY' or 'LK' 

Start counting at the beginning of the alternate index. (The low_key 
and major_low_key values are ignored when 'LOWEST_KEY' is 
specified.) 

high_key 

Alternate-key value at which the range ends. The value must be valid for 
the key type (integer for an integer key, character for a collated or 
uncollated key). 

major _high_key 

For a fixed-length key, a nonzero value indicates that the' high end of the 
range is to be found by a major-key search. The specified value is the 
number of leftmost bytes of the high_key value to be used as the major 
key. A zero value indicates that the full high_key value is to be used. 

6-26 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Remarks 

Revision A 

Keyed-File Interface Calls: Quick Reference 

For a variable-length alternate key, a nonzero value is required because 
it specifies the length of the key value. 

high_key _relation 

Indicates when KLCOUNT is to stop counting primary-key values. 
Options are: 

'GREATER_KEY' or 'GK' or 'GT' 

Stop at the lowest alternate-key value greater than the high-key 
value. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Stop at the lowest alternate-key value greater than or equal to the 
high-key value. 

'HIGHEST_KEY' or 'HK' 

Stop at the end of the alternate index. (The high_key and major_ 
high_key values are ignored when 'HIGHEST_KEY' is specified.) 

list_ count_limit 

Maximum number of primary-key values counted. If you specify zero for 
the parameter, no limit is set. 

list_count 

Integer variable in which the primary-key value count is returned. 

condition code 

Integer variable in which the condition code is returned. A zero value 
returned indicates successful completion. 

For information on deciphering the condition_code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

To determine the meaning of a nonzero condition code, see the 
Diagnostics Messages for NOSNE manual. 

• You must specify values for all KLCOUNT parameters. KLCOUNT 
does not use default FIT values. 

• The program must select an alternate key before issuing a KLCOUNT 
call. 

• The low_key and high_key parameter values specify the lower and 
upper bounds, respectively, of the range to be counted. 

• The low _key _relation and high_key _relation parameters indicate 
whether the primary-key values for the low _key values are included 
in the count, and whether the primary_key values for the high_key 
values are excluded from the count. 

For example, suppose the low_key value is JONES and the high_key 
value is SMITH. 

- If you specify 'GREATER_KEY' as the low_key_relation value, 
KLCOUNT does not count the primary-key values for JONES. 

Keyed-File Interface Calls 6-27 



Keyed-File Interface Calls: Quick Reference 

Examples 

If you specify 'EQUAL_KEY' as the low_key_relation value, 
KLCOUNT counts the primary-key values for JONES. 

If you specify 'GREATER_KEY' as the high_key _relation value, 
KLCOUNT counts the primary-key values for SMITH. 

If you specify 'EQUAL_KEY' as the high_key_relation value, 
KLCOUNT does not count the primary-key values for SMITH. 

• A major key consists of the leftmost bytes of a key. For a fixed-length 
key, a nonzero major_high_key or the major_low_key parameter 
specifies the number of bytes of the high_key or low _key value, 
respectively, that KLCOUNT is to use as a major key. A major key 
search compares only the leftmost bytes of the key values on the call 
and in the index. 

For example, suppose the low_key value is ABCDEF. If the major_ 
low_key parameter value is 2, the major key used is AB. KLCOUNT 
would then search for the lowest alternate-key value whose first two 
characters are greater than or equal to AB. 

• The KLCOUNT call could count the same primary-key value more 
than once if the primary-key value is associated with more than one 
alternate-key value. This is possible if the repeating-groups attribute 
is defined for the alternate key. 

o The list_count_limit parameter can minimize the processing required 
for the call. 

For example, if you call KLCOUNT to determine whether the number 
of primary-key values is 0, 1, or more than 1, you should set the 
list_count_limit to 2. 

• KLCOUNT cannot be called for an instance of open for which a 
parcel is in progress, For a description of parcels, see chapter 4, 
Parcels. 

o These calls return the number of primary-key values for alternate key 
ALT_KEY_l in the integer variable KEYCOUNT. The completion 
code is returned in the integer variable CONDITION _CODE. 

CALL STOREF(fit, '$KEY_NAME', 'ALT_KEY_1') 
CALL KLCOUNT(fit, 0, 0, 'LOWEST_KEY', 

+ 0, 0, 'HIGHEST_KEY', 0, keycount, 
+ condition_code) 

IF (condition_code .NE. 0) CALL errprog 

• These calls return the number of primary-key values associated with 
alternate-key values that begin with 'C' (the major-key value). 

CALL STOREF(fit, '$KEY_NAME', 'ALT_KEY_1') 
CALL KLCOUNT(fit, 'C', 1, 'EQ', 'C', 1, 'GT', 0, 

+ keycount, condition_code) 
IF (condition_code .NE. 0) CALL errprog 

6·28 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

KLSPACE Call 

Purpose Returns the number of alternate-index blocks that contain the specified 
range of alternate-key values. 

Format CALL KLSPACE (fit, low _key, major _low _key, low _key _relation, 
high_key, major _high_key, high_key _relation, block_count, block_ 
space, condition _ code) 

Parameters fit 

Revision A 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

low_key 

Alternate-key value at which the range begins. The value must be valid 
for the key type (integer for an integer key, characters for a collated or 
uncollated key). 

major _low _key 

For a fixed-length key, a nonzero value indicates that the low end of the 
range is to be found by a major-key search. The specified value is the 
number of leftmost bytes of the low _key value to be used as the major 
key. A zero value indicates that the full low_key value is to be used. 

For a variable-length alternate key, a nonzero value is required because 
it specifies the length of the key value. 

low _key _relation 

Indicates whether the low_key value is included in the range. Options 
are: 

'GREATER_KEY' or 'GK' or 'GT' 

Exclude the low _key value from the range. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Include the low_key value in the range. 

'LOWEST_KEY' or 'LK' 

The range starts at the beginning of the alternate index. (The low_ 
key and major _low _key values are ignored when 'LOWEST_KEY' is 
specified.) 

high_key 

Alternate-key value at which the range ends. The value must be valid for 
the key type (integer for an integer key, character for a collated or 
uncollated key). 

major _high_key 

For a fixed-length key, a nonzero value indicates that the high end of the 
range is to be found by a major-key search. The specified value is the 
number of leftmost bytes of the high_key value to be used as the major 
key. A zero value indicates that the full high_key value is to be used. 

For a variable-length alternate key, a nonzero value is required because 
it specifies the length of the key value. 

Keyed-File Interface Calls 6-29 



Keyed-File Interface Calls: Quick Reference 

Remarks 

high_key _relation 

Indicates where the range ends in relation to the highest value in the 
range. Options are: 

'GREATER_KEY' or 'GK' or 'GT' 

Include the high_key value in the range. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Exclude the high_key value from the range. 

'HIGHEST_KEY' or 'HK' or 'HIGHEST_KEY' 

The range ends at the end of the alternate index. (The high_key and 
major_high_key values are ignored when 'HIGHEST_KEY' is 
specified.) 

block count 

Integer variable in which the block count is returned. 

block_space 

Integer variable in which the combined length of the blocks (in bytes) is 
returned (the block count multiplied by the block size). 

condition code 

Integer variable in which the condition code is returned. A zero value 
returned indicates successful completion. 

For information on deciphering the $ERROR_STATUS value, see the 
$ERROR_STATUS description in chapter 7, File Information Table 
Keywords and Values. 

You can look up the meaning of any nonzero condition code in the 
Diagnostic Messages manual. 

o You must specify values for all KLSPACE parameters. KLSPACE does 
not use FIT values as default values. 

• An alternate key must be the currently selected key when KLSPACE 
is called. 

• The low_key, major_low_key, low_key_relation, high_key, major_ 
high_key, and high_key_relation parameters specify the range of 
alternate-key values. Their use on a KLSPACE call is the same as on 
a KLCOUNT call. For details, see the Remarks in the KLCOUNT 
call description. 

e A KLSPACE call does not actually find the specified alternate-key 
values in the alternate index. Rather, it searches the index to 
determine the number of blocks at the lowest level that would contain 
the specified range of alternate-key values. 

(An alternate index is an indexed-sequential structure with one or 
more index levels. The lowest level of blocks actually contain the 
alternate-key values and their corresponding primary-key values.) 

6·30 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



Revision A 

Keyed-File Interface Calls: Quick Reference 

• KLSPACE returns a value even if the specified low_key and high_ 
key values are not in the alternate index. It returns the number of 
blocks that would contain the range if the values existed in the index. 

o An accurate primary-key value count (such as that returned by 
KLCOUNT) cannot be derived from the block count that KLSPACE 
returns. The block counts for ranges containing the same number of 
primary-key values could differ because the ranges can span blocks. 

For example, suppose a range contains only one alternate-key value. 
If the record for the alternate-key value spans two blocks, the block 
count returned is 2, not 1. 

• Because a KLSPACE call is faster than a KLCOUNT call, it can be 
used for a quick comparison of the relative lengths of primary-key 
lists (see the KLSPACE Example). 

• The block_length value that KLSPACE returns can be used when 
comparing primary-key lists for files with different block sizes. Larger 
blocks require longer searches. 

Keyed-File Interface Calls 6-31 



Keyed-File Interface Calls: Quick Reference 

Examples Assume that a program is to find a set of records in response to this 
query: 

Find the Jones on Madison Avenue with more than two dependents. 

Assume that Jones is a value for alternate key ALT_KEY_l and Madison 
Avenue is a value for alternate key ALT_KEY_2. The number of 
dependents is not an alternate key so the program must read the data 
records to find that information. 

The program could read the set of records for either Jones or Madison 
Avenue. To minimize the number of records read, the program first 
issues KLSPACE calls to compare the two primary-key value lists. 

The following call sequence gets the block count values, compares them, 
and then stores the alternate-key name and value to be used. 

CALL KLSPACE(fit, 'Jones', 0, 'EQ', 'Jones', 
+ 0, 'GT', block_count 1 , block_length, condition_code) 

IF (condition_code .NE. 0) CALL errprog 

CALL KLSPACE(fit, 'Madison Avenue', 0, 'EQ', 
+ 'Madison Avenue', 0, 'GT', block_count2, block_length, 
+ condition_code) 

IF (cond1tion_code .NE. 0) CALL errprog 

IF (block_count1 .GE. block_count2) THEN 
keyval='Madison Avenue' 

ELSE 
keyval='Jones' 
CALL STOREF(fit, '$KEY_NAME', 'ALT_KEY_1') 

END IF 

6-32 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

LOCKF Call 

Purpose Requests a file lock. 

Format CALL LOCKF (fit, wait _for _lock, lock _intent) 

Parameters fit 

60485917 B 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. It specifies the instance of open to be locked. 

wait _for _lock 

Specifies whether the task waits if the lock is not immediately available. 
Options are: 

'YES' 

Task waits until either the lock is available or a time period has 
passed. The default is 60 seconds. When the time period has passed, 
LOCKF returns a nonfatal condition code. 

'NO' 

LOCKF terminates, and the lock is unavailable. 

If 0 is specified as the wait_for _lock value on the call, the FIT value 
$WAIT_FOR_LOCK is used. The default $WAIT_FOR_LOCK value is 
YES. 

The task does not wait if a deadlock exists. 

lock _intent 

Specifies the lock intent. You can specify the lock intent using uppercase 
and/or lowercase letters. For more information, see Lock Intents in chapter 
3, Sharing Keyed Files. Options are: 

'Exclusive _Access' or 'EA' 

Only the instance of open can access records in the nested file. All 
other requests by other instances of open are denied. 

'Preserve_Access_and_Content' or 'PAC' 

Only the instance of open can update records in the nested file. All 
instances of open can read the file. All instances of open can have 
Preserve _Content locks, but all instances of open are denied 
Exclusive_Access or Preserve_Access_and_Content locks. 

'Preserve _Content' or 'PC' 

If the file is not shared, the lock owner can update the records in the 
nested file. No other updates are allowed. All instances of open can 
have Preserve _Content locks, and one Preserve _Access _and_Content 
lock can exist for each primary-key value and for the file as a whole. 
All Exclusive _Access lock requests are denied. 

If you specify the lock intent as 0, the default FIT value for $LOCK_ 
INTENT, Preserve_Access_and_Content, is used. 

Keyed-File Interface Calls 6-33 



Keyed-File Interface Calls: Quick Reference 

Remarks 

Examples 

• The lock applies to the current nested file only, as specified by the 
$NESTED_FILE_NAME value. 

• You can change the maximum waiting period for the lock. The default 
value is 60 seconds. 

To change the waiting period, create a NOSNE integer variable named 
AAV$RESOLVE _TIME _LIMIT and assign it the waiting period value 
in seconds. The timeout period should not exceed the LOCK_ 
EXPIRATION _TIME attribute value. 

For example, this call executes a NOSNE command that sets the 
waiting period at 45 seconds. 

CALL SCLCMD ('create_variable, name=AAV$RESOLVE_TIME_LIMIT, 
+ kind=integer, value=45') 

Be aware of the scope of the AAV$RESOLVE_TIME_LIMIT variable. 
The default scope is LOCAL. If the time limit change should apply to 
all tasks in the job, specify SCOPE =JOB on the CREATE _VARIABLE 
command. 

• Assuming the LOCK_EXPIRATION _TIME file attribute is nonzero, the 
lock could expire. LOCKF returns a nonfatal condition code value if the 
expired lock prevents granting of the requested lock. To read about lock 
expiration, see Lock Expiration and Clearing in chapter 3, Sharing 
Keyed Files. 

• File locks cannot be automatically unlocked. To clear a single file lock, 
call UNLOCKF. To clear all file locks for an instance of open, call 
CLOSEM or UNLOCKK with the 'ALL' option. 

• LOCKF cannot be used to request a lock intent of 'PAC' or 'PC' for an 
instance of open for which a parcel is in progress. For a description of 
parcels, see chapter 4, Parcels. 

This call requests a file lock. The wait _for _lock and lock _intent 
parameter values are supplied by the default $WAIT_FOR_LOCK and 
$LOCK_INTENT FIT values. The default value for $WAIT_FOR_LOCK is 
YES and the default value for $LOCK_INTENT is Preserve_Access_and_ 
Content. 

CALL LOCKF (fit) 

6-34 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



Keyed-File Interface Calls: Quick Reference 

LOCKK Call 

Purpose Requests a lock on a primary-key value. 

Format CALL LOCKK (fit, key _area, wait_for _lock, automatic _unlock, 
lock _intent) 

Parameters fit 

60485917 B 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

key _area 

Location containing the primary-key value to be locked. 

NOTE 

The key area should be in a common block. If it is not, your program 
could execute incorrectly after being compiled with high optimization. 

wait _for _lock 

Indicates ~hether the task waits if another task has a conflicting lock on 
the primary-key value and no deadlock exists. Options are: 

'YES' 

Task waits until either the lock is available or the wait time period 
has passed. The default is 60 seconds. When the time period has 
passed, LOCKK returns a nonfatal condition code. 

'NO' 

LOCKK terminates, returning a nonfatal condition code, indicating that 
the lock is unavailable. 

If you specify the wait_for _lock value as 0, the default FIT value for 
$WAIT_FOR_LOCK is YES. 

automatic _unlock 

Indicates whether automatic unlock is used for this lock. Options are: 

'YES' 

Automatic unlock is used. The lock is cleared when one of the following 
occurs: 

• The task issues a request for another record. 

• The task issues a non-update request for the same record. 

• The task completes an update request specifying the locked key 
value. 

'NO' 

Automatic unlock is not used. 

If you specify the automatic_unlock value as 0, the default FIT value for 
$AUTOMATIC _UNLOCK (YES) is used. 

Keyed-File Interface Calls 6-35 



Keyed-File Interface Calls: Quick Reference 

Remarks 

NOTE 

Automatic unlock cannot be used with Preserve _Content lock intent. 

lock _in ten t 

Lock intent. You can specify lock intent using uppercase and/or lowercase 
letters. Options are: 

'Exclusive _Access' or 'EA' 

Only the instance of open can access records in the nested file. All 
other requests by other instances of open are denied. 

'Preserve _Access _and _Content' or 'PAC' 

Only the instance of open can update records in the nested file. All 
instances of open can read the file. All instances of open can have 
Preserve _Content locks, but all instances of open are denied 
Exclusive_Access or Preserve_Access_and_Content locks. 

'Preserve _Content' or 'PC' 

If the file is not shared, the lock owner can update the records in the 
nested file. No other updates are allowed. All instances of open can 
have Preserve_Content locks, and one Preserve_Access_and_Content 
lock can exist for each primary-key value and for the file as a whole. 
All Exclusive _Access lock requests are denied. 

For more information, see Lock Intents in chapter 3, Sharing Keyed Files. 
If you specify the lock intent value as 0, the default FIT value for 
$LOCK _INTENT (Preserve _Access _and _Content) is used. 

• LOCKK only locks primary-key values. Even if an alternate key is 
currently selected, the key value in the specified key area is assumed 
to be a primary-key value. 

• A LOCKK call can reserve a presently unused primary-key value for 
subsequent use by the task. 

• A LOCKK call does not verify that the key value is valid, nor does it 
check whether the key value is already in the file. The key value is 
verified by a subsequent call that uses the key value. 

• Assuming the LOCK _EXPIRATION _TIME file attribute is nonzero, the 
lock could expire. LOCKK returns a nonfatal condition code value if the 
expired lock prevents granting of the requested lock. To read about lock 
expiration, see Lock Expiration and Clearing in chapter 3, Sharing 
Keyed Files. 

6-36 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



Examples 

60485917 B 

Keyed-File Interface Calls: Quick Reference 

• You can change the maximum waiting period for the lock. The default 
is 60 seconds. 

To change the waiting period, create a NOS/Ve integer variable named 
AAV$RESOLVE _TIME _LIMIT and assign it the waiting period value 
in seconds. 

For example, this call executes a NOSIVE statement that sets the 
waiting period at 45 seconds. 

CALL SCLCMD ('var AAV$RESOLVE_TIME_LIMIT: integer=45; varend') 

Be aware of the scope of the AAV$RESOLVE_TIME_LIMIT variable. 
The default scope is LOCAL. If the time limit change should apply to 
all tasks in the job, specify JOB as the scope on the VARIVAREND 
statement. 

• LOCKK returns a nonfatal error if the requested lock could cause a 
deadlock. A potential deadlock can be detected only if the wait _for _ 
lock value for the call is YES. 

To clear the deadlock situation, the task should clear its locks. It can 
then request the locks again. 

• Besides the automatic unlock, a task can unlock a key value by calling 
UNLOCKK or by closing the instance of open. 

• This call requests a lock on a key value. The key _area, wait _for _lock, 
automatic_unlock, and lock_intent values are supplied by these default 
FIT values: 

FIT Keyword 

$KEY_ADDRESS 

$WAIT _FOR _LOCK 

$AUTOMATIC _UNLOCK 

$LOCK _INTENT 

CALL LOCKK(fit) 

Default FIT Value 

No default. 

YES 

YES 

Preserve _Access _and _Content 

• This call requests a lock on the key value in variable KEYl. The next 
call writes the record. The lock is automatically unlocked at completion 
of the write request. 

CALL LOCKK(fit, key1, 'YES', 'YES', 'Exclusive_Access') 
CALL PUTREP(fit, array1, 15, key1) 

Keyed-File Interface Calls 6-37 



Keyed-File Interface Calls: Quick Reference 

OPENM Call 

Purpose Opens a keyed file. 

Format CALL OPENM (fit, open _option, rIle _position) 

Parameters fit 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

open _option 

Type of processing. This parameter is optional. If you omit the open _option 
parameter, the default is O. Options are: 

o 
Open the file using the access and share modes specified in the FIT. If 
no access and share modes have been stored in the FIT, the file is 
opened with read access and no sharing. If you omit the open _option 
parameter, the default is O. 

'INPUT' 

Open the file for reading only. File statistics are not kept. 

'OUTPUT' 

Open the file for writing only. 

'1-0' or '10' 

Open the file for reading and writing. 

'NEW' 

A new file is being created. The $ACCESS_MODE FIT value is set to 
'OUTPUT' and the old/new (ON) FIT value is set to 'NEW'. 

If you specify 'INPUT', 'OUTPUT', '10', '1-0', or 'NEW' on the OPENM call, 
the access and share mode values in the FIT are ignored. The access and 
share modes set by these options are: 

Open _option Access Modes Set Share Modes Set 

'INPUT' Read Read 

'OUTPUT' Modify, shorten, append None 

'10' Read, modify, shorten, None 
append 

'NEW' Read, modify, shorten, None 
append 

6-38 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



Remarks 

60485917 B 

Keyed-File Interface Calls: Quick Reference. 

file _position 

File positioning when the file is opened. This parameter is optional. If you 
omit the file _position parameter, the default is O. Options are: 

o 
Use the $OPEN _POSITION value in the FIT. 

'R' 

Rewind the file (position the file to read the record with the lowest key 
value). This is the default if the $OPEN _POSITION value in the FIT 
is zero. 

'E' 

Position the file after the record with the highest key value. (A GETN 
call at this position would return end-of-information (EO!) status.) 

• The OPENM call to open a keyed file must precede all other keyed-file 
interface calls except FILEDA, FILEIS, IFETCH, and STOREF calls. 

• When opening an existing file, the old/new (ON) value in the FIT or on 
the call must be 'OLD'. Similarly, when opening a new file, the old/new 
(ON) value in the FIT or on the call must be 'NEW'. 

• The access modes requested when the file is opened determine the 
processing allowed on the file. For example, if you specify 'INPUT' on 
the OPENM call, you cannot call PUT to write a record to the file. 

• An existing file must be attached with the appropriate usage mode set 
for the type of processing (read permission for 'INPUT', write 
permissions for 'OUTPUT', or read and write permissions for '1-0'). 

• Multiple instances of open are allowed for a file. Each instance of open 
must have its own FIT. So before the program attempts to open an 
already open file, it must call FILEIS or FILEDA to create another 
FIT. 

• An OPENM call performs these steps: 

1. OPENM checks the old/new (ON) flag in the FIT to determine if the 
file is a new file or an existing file. 

a. If the file is a new file, OPENM creates the file using the file 
name specified by the $LOCAL _FILE _NAME value in the FIT. 

b. If the file is an existing file, OPENM searches for the file in the 
current working catalog using the file name specified by the 
$LOCAL _FILE _NAME in the FIT. 

Keyed-File Interface Calls 6·39 



Keyed-File Interface Calls: Quick Reference 

2. OPENM initializes file attribute values in the FIT as follows: 

a. If the file is an existing file, OPENM verifies attribute values 
stored in the FIT against the corresponding attribute values 
preserved with the file. If the program has not stored a FIT 
value for a preserved attribute, OPENM copies the attribute 
value preserved with the file to the FIT. 

b. If SET _FILE _ATTRIBUTES commands specified one or more 
attribute values for the file before the program began, OPENM 
overwrites the corresponding values in the FIT. Only temporary 
attribute values can be specified for an existing file. 

3. OPENM checks that the FIT contains appropriate values for the 
keyed-file organization. It also checks that the values are consistent. 

4. OPENM positions the file according to the $OPEN _POSITION 
value. 

5. OPENM loads the collation-table module if the $KEY _TYPE value 
is COLLATED. The entry point name used is the $COLLATE_ 
TABLE_NAME FIT value. 

6. It also loads the error-exit procedure if a value has been stored for 
$ERROR_EXIT _PROCEDURE _NAME. 

7. OPENM sets the open/closed (OC) flag in the FIT to open. 

6-40 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



Keyed-File Interface Calls: Quick Reference 

PABORT Call 

Purpose Aborts a file-spanning parcel or a file-level parcel. 

Format CALL PABORT (system _parcel_name, condition _code, message_ 
area) 

Parameters system _parcel_name 

Remarks 

Character variable containing the name returned by the PBEGIN call that 
began the parcel. The system _parcel_name is 31 characters. 

If the system_parcel_name is the name of a file-level parcel, no messages 
are stored in the parcel log. In this case, you cannot access the parcel log 
or fetch the parcel state, and the message _area parameter is ignored. 

condition _code 

Integer variable in which the condition code is returned. A zero value 
indicates successful completion. 

For information on translating the condition code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

message _area 

Character variable containing data to be stored in the parcel log record 
written by this call. It can be fetched later by a PDETERM call. 

The length of the character variable determines the length of the message. 

If this parameter is omitted, no message is stored in the parcel log. If the 
system_parcel_name specifies a file-level parcel, this parameter is ignored. 

• Only the task that began the parcel or the system can abort the parcel 
with PABORT. 

• A parcel commit is transformed into a parcel abort if the commit is not 
successful. 

• When an instance of open to which the parcel applies is closed, any 
file-level parcel in progress for that instance of open is immediately 
aborted. The abort of the file-level parcel. causes the entire file-spanning 
parcel to abort when the task attempts to commit the parcel. 

• The call stores no information in any FIT. The program must check the 
condition_code returned to determine if the call completed successfully. 

• For more information, see the description of Parcels in chapter 4, 
Parcels. 

60485917 B Keyed-File Interface Calls 6-41 



Keyed-File Interface Calls: Quick Reference 

PBEGIN Call 

Purpose Marks the beginning of a file-spanning parcel or a file-level parcel. 

Format CALL PBEGIN (user _parcel_name, fit_list, number _of_fits, 
condition _code, system _parcel_name, log, message _area) 

Parameters user _parcel_name 

Character variable containing the user-defined name for the new parcel. 
The user _parcel_name is 1 to 31 characters. 

If the user _parcel_name is to be used later to reference the parcel, the 
~:: name should be unique for all parcels recorded on the parcel log. The 

program could call the CYBIL system procedure PMP$GENERATE_ 
UNIQUE _NAME to create the parcel name (see the CYBIL System 
Interface manual). 

I 

fit_list 

Integer array of FIT pointers specifying the instances of open to which the 
parcel applies. 

To begin a file-level parcel, you must specify only one pointer. 

(The FIT pointer is returned by the call that created the FIT. The pointer 
must have been specified previously on an OPENM call that opened a 
keyed file.) 

number _of_fits 

Number of FIT pointers specified by the fit_list parameter. 

If a 1 is specified, and the log and message _data parameters are not 
specified, PBEGIN begins a file-level parcel instead of a file-spanning 
parcel. 

If a 0 is specified, PBEGIN begins a file-spanning parcel and specifies that 
the parcel applies to all keyed files that have parcels enabled and are open 
when the parcel is begun. When 0 is specified, the fit _list parameter is 
ignored. 

condition _code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on translating the integer returned, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

system _parcel_name 

Character variable in which the name the system assigns to the parcel is 
returned. The system _parcel_name is 31 characters. This name should be 
specified on later calls for the parcel. 

6-42 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



Remarks 

60485917 B 

Keyed-File Interface Calls: Quick Reference 

log 

Character variable containing the catalog path name of the log to be used 
for this parcel. This parameter is used only for file-spanning parcels, not 
for file-level parcels. 

If the specified character v'ariable contains only blanks, the default log is 
used. The default parcel log is the log specified by the SCL variable 
AAV$LOG _SELECTION, which is initially set by the system prolog, or the 
default system log, $SYSTEM.AAM.SHARED _RECOVERY_LOG. 

If this parameter is omitted, the default parcel log is used. 

message _area 

Character variable containing data to be stored in the parcel log record 
written by this call. It can be fetched later by a PDETERM call. This 
parameter is used only for file-spanning parcels, not for file-level parcels. 

The length of the character variable determines the maximum length of 
the message returned. Longer messages are truncated. 

If this parameter is omitted, no message is stored in the parcel log. 

• To begin a file-level parcel, specify only the first five parameters of 
this call, and specify the value of 1 for the number _of _fits parameter. 

Otherwise, a file-spanning parcel is begun. 

• A FORTRAN task can have only one file-spanning parcel in progress at 
a time. Therefore, a second PBEGIN call cannot be issued until the 
current parcel has been committed or aborted, unless the second call is 
for a file-level parcel for an instance of open not included in a 
file-spanning parcel. 

• The call stores no information in the FIT. The program must check the 
condition code returned to determine if the call completed successfully. 

• For more information, see chapter 4, Parcels. 

Keyed-File Interface Calls 6-42.1 



Keyed-File Interface Calls: Quick Reference 

PCOMMIT Call 

~l~ Purpose Commits a file-spanning parcel or a file-level parcel, making its update 
operations permanent. 

Format CALL PCOMMIT (system _parcel_name, condition _code, message_ 
area) 

Parameters system _parcel_name 

Remarks 

Character variable containing the name returned by the PBEGIN call that 
began the parcel. The system parcel name is 31 characters. 

If the system_parcel_name is the name of a file-level parcel, no messages 
are stored in the parcel log. In this case, you cannot access the parcel log 
or fetch the parcel state, and the message _area parameter is ignored. 

condition _code 

Integer variable in which the condition code is returned. A zero value 
indicates successful completion. 

For information on translating the integer returned, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

message _area 

Character variable containing data to be stored in the parcel log record 
written by this call. It can be fetched later by a PDETERM call. 

The length of the character variable determines the length of the message. 

If this parameter is omitted, no message is stored in the parcel log. If the 
system _parcel_name parameter specifies a file-level parcel, this parameter 
is ignored. 

• If the parcel commit is not successful, the system calls PABORT to 
abort the parcel. An appropriate status is returned as the condition_ 
code and the specified message (if any) is stored in the abort record in 
the parcel log. 

• The call stores no information in the FIT. The program must check the 
condition code returned to determine if the call completed successfully. 

• For more information, see chapter 4, Parcels. 

6-42.2 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



Keyed-File Interface Calls: Quick Reference 

PDETERM Call 

Purpose Returns information on the current state of a file-spanning parcel. 

Format CALL PDETERM (parcel_name, name _type, state, condition _code, 
log, direction, days, hours, minutes, message _area, returned _length) 

Parameters parcel_name 

60485917 B 

Character variable containing the parcel name. It can be the 
system-defined name or the user-defined name. 

NOTE 

Use the system-defined name whenever it is available. This is because the 
user-defined name may not be a unique name. 

name_type 

Integer indicating whether the parcel specified on the call is the 
system-defined name for a file-spanning parcel, the user-defined name for a 
file-spanning parcel, or the name of a file-level parcel, as follows: 

o System-defined name for a file-spanning parcel. 

1 User-defined name for a file-spanning parcel. 

2 Name of a file-level parcel. 

state 

Integer variable in which the call returns one of the following values: 

o 

1 

2 

3 

4 

5 

Parcel active. The call found a begin record for the parcel on the 
log, but no commit or abort record. The call returns the message 
it finds in the begin record, if any. 

Parcel committed. The call found a commit record for the parcel 
on the log. The call returns the message it finds in the commit 
record, if any. If no message is found, the call returns the 
message, if any, from the begin record. 

Parcel aborted by system. The call found an abort record for the 
parcel on the log. The call returns the message it finds in the 
abort record, if any. If no message is found, the call returns the 
message, if any, from the begin record, 

Parcel aborted by user. The call found an abort record for the 
parcel on the log. The call returns the message it finds in the 
abort record, if any. 

Parcel not found. The call found no records for the specified parcel 
in the log. Check to make sure the correct log is specified. 

Parcel indeterminate. The call may have found a begin record for 
the parcel, but also found indication of a catastrophic, 
unrecoverable error that prevented completion of the parcel. Check 
to make sure that a log exists or th:at the task has access to the 
log. 

Keyed-File Interface Calls 6-42.3 



Keyed-File Interface Calls: Quick Reference 

condition _code 

Integer variable in which the condition code is returned. A zero value 
indicates successful completion. 

For information on translating the integer returned, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

log 

Character variable containing the catalog path name of the log to be 
searched. The name must be the same name specified on the log parameter 
on the PBEGIN call. 

If the specified character variable contains only blanks, the default log is 
used. The default parcel log is the log specified by the SCL variable 
AAV$LOG _SELECTION, which is initially set by the system prolog, or the 
default system log, $SYSTEM.AAM.SHARED _RECOVERY_LOG. 

direction 

Integer specifying the direction in which the log is searched. Options are: 

'BACKWARD' 
or 'B' 

'FORWARD' or 
'F' 

The log is searched backward from the time specified by 
this call. 

The log is searched forward from the time specified by 
this call. 

If this parameter is omitted, the log is searched backward. 

days 

N umber of days subtracted from the current time when determining the 
initial time for the log search (integer from 0 through 31). 

The default is O. 

hours 

Number of hours subtracted from the current time when determining the 
initial time for the log search (integer from 0 through 23). 

The default is o. 

minutes 

Number of minutes subtracted from the current time when determining the 
initial time for the log search (integer from 0 through 59). 

The default is O. 

message _area 

Character variable in which the message stored in the log record is 
returned. The message returned is the last message that was written to 
the parcel log. The message could have been written by a PABORT, 
PBEGIN, or PCOMMIT call. 

The length of the character variable determines the maximum length of 
the message returned. Longer messages are truncated. 

This parameter can be omitted only if the returned _length parameter is 
omitted. If omitted, no message is returned. 

6-42.4 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 

( 



Remarks 

Keyed-File Interface Calls: Quick Reference 

returned _length 

Integer variable in which the call returns the length (in bytes) of the 
message actually returned in the message _area variable. If the message in 
the record is longer than the message _area variable, an error is returned. 

If this parameter is omitted, no message length is returned. 

• Any task can get information about a parcel if it: 

Knows the parcel name, and 

Knows the catalog path name to be searched, and 

Is running in a ring at least as privileged as the ring from which 
the PBEGIN call was issued. 

• The call searches the specified parcel log to find the commit, abort, or 
begin record for the parcel. It returns the message stored in the log 
record, if any. 

• The specified days, hours, and minutes are subtracted from the current 
time to set the starting point of the log search. 

For e~ample, if 2 days, 2 hours, and 30 minutes are specified and the 
current time is 1:02 p.m. on August 28, the starting point is 10:32 a.m. 
on August 26. The search proceeds in the direction specified by the 
direction parameter. 

• If you believe the parcel record is after the specified time, specify 
'FORWARD' for the search _direction so the search is from the specified 
time forward to the current time. 

Otherwise, if you believe the parcel record is before the specified time, 
specify 'BACKWARD' for the direction so the search is from the 
specified time backward. 

• If the name-type parameter contains the value of 2, only the states 0 or 
4 are returned. 

• For more information, see chapter 4, Parcels. 

• The call stores no information in the FIT. The program must check the 
condition code returned to determine if the call completed successfully. 

60485917 B Keyed-File Interface Calls 6-42.5 



Keyed-File Interface Calls: Quick Reference 

This page intentionally left blank. 

6-42.6 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 60485917 B 



Keyed-File Interface Calls: Quick Reference 

PUT Call 

Purpose Writes a record to a keyed file. 

Format CALL PUT (fit, working_storage_area, record_length, key _area, 0, 
0, error _exit_procedure) 

Parameters fit 

Remarks 

Revision A 

Variable containing the FIT pointer. returned by the FILEIS or FILEDA 
call that created the FIT. 

working _ storage _ area 

Location from which data is copied to the file. 

NOTE 

The working storage area and the key area should be in common blocks. 
If they are not, your program could execute incorrectly after being 
compiled with high optimization. 

record _length 

Record length in bytes. The parameter is used if the record type is 
variable length; it is ignored if the record type is fixed-length. 

key_area 

Location containing the primary key value of the new record. This 
parameter is ignored for files with embedded keys. 

o 
For CYBER 170 compatibility. New programs should set this parameter 
to zero. 

o 
Reserved position for an unused parameter. 

error _ exit_procedure 

Error-exit procedure name. 

• A PUT call requires at least append access as indicated by the 
$ACCESS_MODE or $ACCESS_AND_SHARE_MODES value in the 
FIT. If alternate keys are defined in the file, a PUT call requires 
append, shorten, and modify access in order to update the alternate 
indexes. 

• Before the program calls PUT, it must store the record data in the 
working-storage area. If the primary key is nonembedded, it must also 
store the key value in the key area. 

• The specified primary-key value must not already exist in the file. 

• You always specify a primary-key value on a PUT call, not an 
alternate-key value, even if an alternate key is currently selected. 

Keyed-File Interface Calls 6-43 



Keyed-File Interface Calls: Quick Reference 

• The PUT call updates each alternate index that is to include the new 
record. If the new record contains an alternate-key value that 
duplicates a value already in the alternate index and the alternate 
key does not allow duplicates, the PUT call returns a nonfatal error. 

• If the file has fixed-length records, the record_length value on the 
call (and in the FIT) is ignored. The length of the record written is 
always the fixed record length for the file. 

A warning message is issued for the first PUT, PUTREP, or REPLCE 
call whose record_length value differs from the fixed record length 
for the file. If the record_length is less than the fixed record length, 
data is not padded so unknown data could be written as the last part 
of the record. If the record_length is longer, excess data is truncated. 

For Better Performance 

When writing to an indexed-sequential file, the program should write 
records in order by ascending key values. This results in faster 
execution and a more efficient file structure. Your program could 
write the records to a sequential file and then call SortlMerge to sort 
and write the records to an indexed-sequential file. 

• A PUT call returns an error when it cannot write the record because 
the file has reached a limit. Limits on the file include: 

- The number of records in the file cannot exceed the $RECORD_ 
LIMIT value. 

In an indexed-sequential file, the number of index levels cannot 
exceed 15. 

The number of bytes of file space cannot exceed the FILE_LIMIT 
value. (The file structure is ruined.) 

• A PUT call does not reposition the file. 

• When the file can be shared (more than one instance of open could 
change the file at the same time), the task should take one of these 
actions: 

Call LOCKK to lock the key value before it calls PUT. 

Be prepared to process the $ERROR_STATUS value AA2075 
returned if the key value is locked by another task. 

6-44 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

PUTREP Call 

Purpose Replaces an existing record or writes a new record to a keyed file. 

Format CALL PUTREP (fit, working_storage_area, record_length, key _area, 
0, 0, error _exit_procedure) 

Parameters fit 

Remarks 

Revision· A 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

working _ storage _ area 

Location from which data is copied. 

NOTE 

The working storage area and the key area should be in common blocks. 
If they are not, your program could execute incorrectly after being 
compiled with high optimization. 

record _length 

Record length in bytes. The value is used only if the record type is 
variable length; it is ignored if the record type is fixed-length. 

key_area 

Variable containing the key value of the record to be written or replaced. 

o 
For CYBER 170 compatibility only. New programs should set this 
parameter to zero. 

o 
Reserved position for an unused parameter. 

error _exit_procedure 

Error-exit procedure name. 

• A PUTREP call requires at least append and shorten access as 
indicated by the $ACCESS_MODE or $ACCESS_AND_SHARE_ 
MODES value in the FIT. If alternate keys are defined in the file, a 
PUTREP call requires append, shorten, and modify access in order to 
update the alternate indexes. 

• You always specify a primary-key value on a PUTREP call, not an 
alternate-key value, even if an alternate key is currently selected. 

• The PUTREP call updates each alternate index that is to include the 
new record. If the new record contains an alternate-key value that 
duplicates a value already in the alternate index and the alternate 
key does not allow duplicates, the PUTREP call returns a nonfatal 
error. 

• PUTREP executes a put request if the specified primary key does not 
match any existing primary key. It executes a replace request if a 
matching primary key is found in the file. 

Keyed-File Interface Calls 6-45 



Keyed-File Interface Calls: Quick Reference 

• If the file has variable-length (U or V) records, the length of the 
record written is the record_length value specified on the call. If 
omitted, the default is $WORKING_STORAGE_LENGTH value in the 
FIT. 

For a file with variable-length (U or V) records, the new record need 
not be the same length as the existing record; however, the new 
record length must be within the minimum and maximum record 
lengths for the file. 

• If the file has fixed-length (F) records, the record_length value on the 
call is ignored. The fixed record length is always the length of each 
record written to the file. 

A warning message is issued for the first PUT, PUTREP, or REPLCE 
call whose record_length value differs from the fixed record length 
for the file. If the record_length is less than the fixed record length, 
the data is not padded so unknown data could be written at the end 
of the record. If the record_length is more than the fixed record 
length, the excess data is truncated. 

• A PUTREP call does not reposition the file. 

• Unlike a REPLC call, a PUTREP call does not require the task to 
own a Preserve_Access_and_Content or Exclusive_Access lock on 
the record. 

However, when the file is shared (more than one instance of open 
could exist), the task should either: 

Call LOCKK to lock the key value before it calls PUTREP, or 

Be prepared to process the abnormal status code AA2075 returned 
if the key value is locked by another task. 

6-46 FORTRAN for NOSIVE Keyed-File and SorUMerge Interfaces Revision A 



Keyed·File Interface Calls: Quick Reference 

REPLC Call 

Purpose Replaces an existing record in a keyed file. 

Format CALL REPLC (fit, working_storage_area, record_length, key _area, 
0, 0, error _exit_procedure) 

Parameters fit 

Remarks 

Revision A 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

working _ storage _ area 

Variable from which data is copied. 

NOTE 

The working storage area and the key area should be in common blocks. 
If they are not, your program could execute incorrectly after being 
compiled with high optimization. 

record _length 

Record length in bytes. This parameter is used only if the record type is 
U or V; it is ignored if the record type is F. 

key_area 

Primary key value of the record to be replaced. 

o 
For CYBER 170 compatibility only. New programs should set this 
parameter to zero. 

o 
Reserved position for an unused parameter. 

error _exit_procedure 

Error-exit procedure name. 

• A REPLC call requires at least append and shorten access as 
indicated by the $ACCESS_MODE or $ACCESS_AND_SHARE_ 
MODES value in the FIT. If alternate keys are defined in the file, a 
REPLC call requires append, shorten, and modify access in order to 
update the alternate indexes. 

• If the file could be shared (more than one instance of open could 
change the file at the same time), a record can be replaced only by 
the owner of a Preserve_Access_and_Content or Exclusive_Access 
lock on the record. 

The task should lock the primary-key value by calling GET, GETN, 
or LOCKK before the REPLC call. 

To read about locks, see chapter 3, Sharing Keyed Files. 

• A REPLC call always specifies a primary-key value, not an 
alternate-key value, even if an alternate key is currently selected. 

Keyed-File Interface Calls 6-47 



Keyed-File Interface Calls: Quick Reference 

• The new record must have the same primary-key value as the record 
being replaced. If REPLC cannot find a record with a matching 
primary-key value, it returns a nonfatal error. 

• The REPLC call updates each alternate index that is to include the 
new record. 

If the new record contains an alternate-key value that duplicates a 
value already in the alternate index and the alternate key does not 
allow duplicates, the REPLC call returns a nonfatal error. 

• A REPLC call does not reposition the file. 

a If the record type for the file is variable (U or V), the record length 
is the $WORKING_STORAGE_LENGTH value in the FIT. 

For a file with variable (U or V) records, the new record need not be 
the same length as the existing record; however, the new record 
length must be within the minimum and maximum record lengths for 
the file. 

• If the file has fixed-length (F) records, the record_length value on the 
call is ignored; the fixed record length for the file is always used. 

A warning message is issued for the first PUT, PUTREP, or REPLC 
call whose record_length value differs from the fixed record length 
for the file. If the record_length is less than the fixed record length 
for the file, the data is not padded so unknown data may be written 
at the end of the record. If the record_length is more than the fixed 
record length, excess data is truncated. 

6-48 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

REWND Call 

Purpose Rewinds the file. 

Format CALL REWND (fit) 

Parameters fit 

Remarks 

Revision A 

Variable containing the FIT pointer returned by the FILE IS or FILEDA 
call that created the FIT. 

• When the primary key is selected, REWND positions an 
indexed-sequential file at its lowest primary-key value and a 
direct-access file at the beginning of its first block. 

• If the currently selected key is an alternate key, REWND positions 
the file to read the record with the lowest value for that alternate 
key. 

• The $FILE_POSITION value after a successful REWND call is 
always 16 (end-of-record). It is not 1 (beginning-of-information). 

• The file must be open when you issue the rewind request. 

For Better Performance 

Rewinding a file is more efficient than extensive backward skipping of 
records. 

Keyed-File Interface Calls 6·49 



Keyed-File Interface Calls: Quick Reference 

RMKDEF Call 

Purpose Creates an alternate key in a keyed file. 

NOTE 

The NOSNE RMKDEF call is provided for compatibility when migrating 
CYBER 170 programs that contain RMKDEF calls. When writing a new 
NOSNE program, you should call the NOSNE utility CREATE_ 
ALTERNATE_INDEXES using the SCLCMD call. The CREATE_ 
ALTERNATE_INDEXES utility is described in the NOSNE Advanced File 
Management Usage manual. 

6-50 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

RSBUILD Call 

Purpose Gets primary-key values from a keyed file and combines them with a 
result set. 

Format CALL RSBUILD (fit, source_result_set, target_result_set, low _key, 
major _low _key, low _key _relation, high_key, major _high_key, 
high_key _relation, logical_operation, new _result_placement, actual_ 
result _ set _placement, condition _ code) 

Parameters fit 

Revision A 

N arne of the variable containing the FIT pointer for the keyed file. 

source _result _ set 

Identifier of the result set to be combined (as returned by its RSOPEN 
call). 

target_result_set 

Identifier of the target result set (as returned by its RSOPEN call). 

low_key 

Key value at which the range begins. The value must be valid for the 
key type (integer for an integer key, characters for a collated or 
uncollated key). 

major _low _key 

For a fixed-length key, a nonzero value indicates that the low end of the 
range is to be found by a major-key search. The specified value is the 
number of leftmost bytes of the low_key value to be used as the major 
key. A zero value indicates that the full low _key value is to be used. 

For a variable-length alternate key, a nonzero value is required because 
it specifies the length of the low_key value. 

low _key _relation 

Indicates where the range begins in relation to the lowest key value in 
the range. Options are: 

'GREATER_KEY' or 'GK' or 'GT' 

Exclude the lowest key value. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Include the lowest key value. 

'LOWEST_KEY' or 'LK' 

Start at the beginning of the index. (Ignore the low_key and major_ 
low_key values.) 

high_key 

Key value at which the range ends. The value must be valid for the key 
type (integer for an integer key, characters for a collated or uncollated 
key). 

If the high_key value is less than the low_key value, RSBUILD returns 
a nonfatal condition code value. 

Keyed-File Interface Calls 6-51 



Keyed-File Interface Calls: Quick Reference 

major _high_key 

For a fixed-length key, a nonzero value indicates that the high end of the 
range is to be found by a major-key search. The specified value is the 
number of leftmost bytes of the high_key value to be used as the major 
key. A zero value indicates that the full high_key value is to be used. 

For a variable-length alternate key, a nonzero value is required because 
it specifies the length of the high_key value. 

high_key _relation 

Indicates where the range begins in relation to the highest key value in 
the range. Options are: 

'GREATER_KEY' or 'GK' or 'GT' 

Include the highest key value. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Exclude the highest key value. 

'HIGHEST_KEY' or 'HK' 

Stop at the end of the index. (Ignore the high_key and major _high_ 
key values.) 

logical_ operation 

Integer specifying the logical operation performed to combine the source 
result set with the new range of key values. Options are: 

o Logical AND. The combined result set is the intersection of the 
original result sets. It contains only those key values that belong to 
both of the original sets. 

1 Logical OR. The combined result set is the union of the original 
result sets. It contains all key values from both original result sets. 

2 Logical XOR. The combined result set is the union of the original 
result sets without the intersection of the original result sets. It 
contains all key values from each of the original result sets that do 
not belong also to the other result set. 

new _result_placement 

Integer specifying the result set file to which the combined result set is 
written. Options are: 

o The combined result set overwrites the source result set. Use this 
value when the source result set is no longer needed. 

1 The combined result set is written to the target result set. Use this 
value when the source_result_set is to be saved for later use. It is 
also used on the initial AMP$BUILD_RESULT_SET call for a new 
result set. 

6-52 FORTRAN for NOSIVE Keyed-File and SortJMerge Interfaces Revision A 



Remarks 

Revision A 

Keyed-File Interface Calls: Quick Reference 

2 The placement of the combined result set is chosen to provide the 
fastest performance. The location chosen is returned in the variable 
specified by the actual_result_set_placement parameter on the call. 
Use this value when the source result set is no longer needed and the 
source and target result sets differ. 

actual_result _ set _placement 

Integer variable in which the call indicates the result set file to which 
the combined result set has been written. Options are: 

o The source result set has been overwritten. 

1 The combined result set has been written to the target result set; the 
source result set has been preserved. 

condition _ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. For information on translating the 
condition_code, see the $ERROR_STATUS description in chapter 7, File 
Information Table Keywords and Values. 

• RSBUILD adds a range of key values to a result set. It can be used 
to: 

- Add primary-key values to an empty result set. 

For this use, the call specifies the same result set as the source_ 
result_set and as the target_result_set, but the new _result_ 
placement value should be 1 (result_in_target). The logical_ 
operation value should be 1 (logical OR). 

- Add primary-key values to an existing result set. The combined 
result set can overwrite the source result set or be written to the 
target result set. 

When the source result set is to be overwritten, the call specifies 
the same result set as the source_result_set and as the target_ 
result_set. The new _result_placement value should be 0 (result_ 
in_ source). 

When the source result set is to be kept, the call specifies 
different result sets as the source result set and as the target 
result set and the new result placement value 1 (result in target). 

- When two result sets are specified, but it does not matter whether 
the source_result_set is overwritten, specify the new _result_ 
placement value 2 (result_in_fastest_place). 

• The specified data file, source result set, and target result set must 
be open. The data file is opened by an OPENM call; the result set is 
opened by an RSOPEN call. 

The data file and nested file identification in the result set files must 
match the data file cycle opened using the FIT and the nested file 
specified in the FIT. The file identification is stored in the result set 
when the result set is first opened. 

Keyed-File Interface Calls 6·53 



Keyed-File Interface Calls: Quick Reference 

The currently selected nested file for the data file must be the nested 
file specified on the RSOPEN call. The nested file selected when the 
file is opened is the default nested file, $MAIN_FILE. To select 
another nested file, store the nested file name as the $NESTED_ 
FILE_NAME value in the FIT. 

o The currently selected key must be the key whose index is to be 
searched for the range specified on the call. The key selected when 
the file is opened is the primary key ($PRIMARY_KEY); to select 
another key, call STOREF to store the key name in the FIT. 

NOTE 

For a direct-access file, the selected key must be an alternate key. 
RSBUILD cannot use the primary key of a direct-access file. 

• The search for the range specified on the call is the same as the 
range search performed by KLCOUNT. For more information, see the 
KLCOUNT call description. 

• After finding the specified range in the index, the call gets the 
primary-key values from the index. If the index is for an alternate 
key which allows duplicate values, the call gets the list of 
primary-key values for each alternate-key value in the range. 

o RSBUILD cannot be called for an instance of open for which a parcel 
is in progress. For a description of parcels, see chapter 4, Parcels. 

6·54 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

RSCLEAR Call 

Purpose Discards the existing result set in the result set file. 

Format Call RSCLEAR (result_set_id, condition_code) 

Parameters result_set_id 

Remarks 

Revision A 

Identifier of the result set to be cleared (as returned by its RSOPEN 
call). 

condition _ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on deciphering the condition_code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

Use the RSCLEAR call to erase the existing result set in a result set file 
after it has been opened by an RSOPEN call. After the file is cleared, it is 
equivalent to a new result set file. 

Keyed-File Interface Calls 6·55 



Keyed-File Interface Calls: Quick Reference 

RSCLOSE Call 

Purpose Closes an open result set. 

Format Call RSCLOSE (result_set_id, condition_code) 

Parameters result_set_id 

Remarks 

Result set identifier (as returned by its RSOPEN call). 

condition code 

Integer variable in which the error status value is returned. Return of a 
zero value indicates successful completion. 

For information on translating the condition_code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

• Closing a result set prevents further operations using the result set 
until it is opened again. 

• If an RSCLOSE call is not issued for an open result set, the result 
set is closed at task termination. 

• A closed result set continues to exist until its file is deleted. 

6·56 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

RSCOMB Call 

Purpose Combines two result sets. 

Format CALL RSCOMB (first_result_set, second_result_set, target_result_ 
set, logical_operation, new _result_placement, actual_result_set_ 
placement, condition_code) 

Parameters first _ result _ set 

Revision A 

Identifier of the first result set to be combined (as returned by its 
RSOPEN call). 

second _result _ set 

Identifier of the second result set be combined (as returned by its 
RSOPEN call). 

If the new _result_placement parameter specifies 0 (result in source), the 
second source_result_set is overwritten. 

target _ result _ set 

Identifier of the target result set (as returned by its RSOPEN). 

logical_ operation 

Integer specifying the logical operation performed to combine the two 
source result sets. 

o Logical AND. The combined result set is the intersection of the 
original result sets. It contains only those key values that belong to 
both of the original sets. 

1 Logical OR. The combined result set is the union of the original 
result sets. It contains all key values from both original result sets. 

2 Logical XOR. The combined result set is the union of the original 
result sets without the intersection of the original result sets. It 
contains all key values from each of the original result sets that are 
not in both of the original result sets. 

new _result_placement 

Integer specifying the result set file to which the combined result set is 
written. 

o The combined result set overwrites the second source result set. Use 
this value only when the second source result set is no longer needed 
or the second source result set and the target result set are the same. 

1 The combined result set is written to the target result set. Use this 
value when the second source result set is to be saved for later use. 

2 The placement of the combined result set is chosen to provide the 
fastest performance. The location chosen is returned in the actual_ 
result_set_placement variable. Use this value when the second source 
result set is no longer needed and the second source result set and 
target result set differ. 

Keyed-File Interface Calls 6-57 



Keyed-File Interface Calls: Quick Reference 

Remarks 

actual_ result _ set _placement 

Integer variable in which the call indicates the result set file to which 
the combined result set has been written. 

o Result in source. The second source result set has been overwritten. 

1 Result in target. The combined result set has been written to the 
target result set file; the second source result set has been preserved. 

condition code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on translating the condition_code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

• The RSCOMB call performs the same combination operations that can 
be performed by an RSBUILD call. When possible, use RSBUILD to 
perform the combination at the same time the key values are taken 
from the data file. 

• All result sets specified on the call must be open. However, the data 
file to which the result set applies need not be open. 

If the data file is open, its selected nested file need not be the nested 
file to which the result set applies. This is because the RSCOMB call 
does not require any information from the data file. 

• All result sets specified on the call must apply to the same keyed file 
cycle and nested file in the keyed file. (The first RSOPEN call for a 
result set stores the identification of the data file cycle and nested file 
to which the result set file applies in the result set.) 

• RSCOMB cannot be called for an instance of open for which a parcel 
is in progress. For a description of parcels, see chapter 4, Parcels. 

6·58 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

RSDLTE Call 

Purpose Deletes a primary-key value from a result set. 

Format CALL RSDLTE (target_result_set, key _location, condition_code) 

Parameters target _ result _ set 

Remarks 

Revision A 

Identifier of the result set from which the primary-key value is deleted 
(as returned by its RSOPEN call). 

key _location 

Location of the primary-key value to be deleted from the result set. 

condition _ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on translating the condition_code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

• If the key value is not in the result set, the call does nothing and no 
message is issued. 

• Use this call when only a few scattered primary-key values need to 
be deleted from the result set. 

When several primary-key values need to be deleted, it is more 
efficient to create a temporary result set containing those values and 
combine it with the original result set. 

For more information, see Adding and Deleting Key Values in the 
Result Sets description in chapter 5, Result Sets. 

• This call can only specify a primary-key value. It cannot specify an 
alternate-key value. 

However, you can delete the primary-key values associated with an 
alternate-key value from the result set. To do so, perform the 
following steps: 

1. Select the alternate key. 

2. Call RSBUILD specifying the logical XOR (2) operation to remove 
the key values. It specifies the key values to be removed as a 
range containing only the one alternate-key value. (The low _key 
and high_key values of the range are the same.) 

3. If any of the primary-key values in the alternate key list might 
not be in the original result set, combine the target result set 
again with the original result set using a logical AND (0) 
operation. 

• RSDLTE cannot be called for an instance of open for which a parcel 
is in progress. For a description of parcels, see chapter 4, Parcels. 

Keyed-File Interface Calls 6-59 



Keyed-File Interface Calls: Quick Reference 

RSGETN Call 

Purpose Reads a record from a keyed file using a result set. 

Format CALL RSGETN (fit, source_result_set, result_set_not, working_ 
storage_area, key _area, error _exit_procedure) 

Parameters fit 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

source _ result _ set 

Identifier of the result set used to read the record (as returned by its 
RSOPEN call). 

result_set_not 

Indicates whether the call reads the next record that is in the result set or 
the next record that is not in the result set. 

'NO' 

Reads the next record in the result set. 

'YES' 

Reads the next record NOT in the result set. 

working _ storage _ area 

Location to which the record data is copied. The default is the 
$WORKING_STORAGE_AREA value in the FIT. 

key_area 

Variable in which the primary-key value of the record is returned. (The 
default is the $KEY_AREA value in the FIT. 

error _exit_procedure 

Error exit procedure name. The default is the $ERROR_EXIT_ 
PROCEDURE_NAME value in the FIT. 

6·60 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



Remarks 

Revision A 

Keyed-File Interface Calls: Quick Reference 

• Use RSGETN to read a sequence of records. The sequence of records 
can be the records in the result set or all records in the data file that 
are not in the result set. 

To read the records in the result set, specify 'NO' for the result_set_ 
not parameter on each RSGETN call. To read the records NOT in the 
result set, specify 'YES' for the result_set_not parameter on each 
RSGETN call. 

NOTE 

For a direct-access file, RSGETN can read the sequence of records in 
the result set, but it cannot read the sequence of records not in the 
result set. In other words, the NOT operator is invalid so each 
RSGETN call for a direct-access file must specify 'NO' for the result_ 
set_ not parameter. 

• The data file must be open. The selected nested file must be the 
nested file specified when the result set was first opened. The selected 
key for the nested file must be its primary key. 

• The RSOPEN call establishes the result set position at its beginning. 
(The result set is also positioned at its beginning by any of the calls 
that change the result set.) 

Each RSGETN call without the NOT operator repositions the result 
set forward one primary-key value. RSGETN calls with the NOT 
operator position the result set forward as needed. 

RSREWND, RSSTART, and RSSKIP calls explicitly reposition the 
result set. 

• Other calls can intervene between RSGETN calls. However, calls that 
reposition the data file must not intervene between RSGETN calls. 

G An RSGETN call without the NOT operator issues a GET call using 
the primary-key value at the current result set position. It then 
advances the result-set position one primary-key value. 

o RSGETN calls with the NOT operator get the records that are not in 
the result set. The first get_not call establishes the starting data file 
position. 

It does so by reading the primary-key value at the current result set 
position and then positioning the data file at that record. The first 
get_not call then reads a record, the same as subsequent get_not 
calls, as follows: 

• Each get_not call performs the following steps: 

1. Calls GETN to read the record at the current data file position. 
(GETN reads a record and advances the data file position one 
record.) 

Keyed-File Interface Calls 6-61 



Keyed-File Interface Calls: Quick Reference 

2. Compares the primary-key value returned by the GETN call and 
the primary-key value at the current position of the result set. 

a. If the values match, it: 

Discards the record read, advances the result set position 
forward one value, and continues at step 1. 

b. If the values do not match, it: 

Terminates, leaving the record read in the working storage 
area. 

• Each call that returns a record, including the last record in the 
sequence, returns the $FILE_POSITION value 16 in the FIT. The 
next RSGETN call after the call that returns the last record returns 
the value 64, indicating that the end of the sequence has been 
reached. The call that returns 64 copies no data to the working 
storage area. 

A $FILE_POSITION value of 64 returned by a get call indicates that 
the result set is positioned at its end, and so all records in the result 
set have been read. 

A $FILE_POSITION value of 64 returned by a get_not call, indicates 
that the data file, as well as the result set, is positioned at its end, 
and so all records not in the result set have been read. 

6-62 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

RSINFO Call 

Purpose Returns current information about a result set. 

Format Call RSINFO (result_set_id, previous_key, next_key, key _count, 
keys _remaining, position, condition _code) 

Parameters result _set _id 

60485917 B 

Identifier of the result set for which information is returned (as returned 
by its RSOPEN call). 

previous _key 

Variable in which the call returns the preceding primary-key value in the 
result set. Use an integer variable for an integer primary key; use a 
character variable for a collated or uncollated primary key. (A previous_ 
key value is returned only when the position returned is 1 or 2.) 

next_key 

Variable in which the call returns the next primary-key value in the result 
set. Use an integer variable for an integer primary key; use a character 
variable for a collated or uncollated primary key. (A next_key value is 
returned only when the position returned is 0 or 1.) 

key _count 

Integer variable in which the call returns the number of primary-key 
values in the result set. ~~~ 

keys _remaining 

Integer variable in which the call returns the number of primary-key 
values from the current position to the end of the result set. 

position 

Integer variable in which the call returns the relative position of the result 
set. Options are: 

o Positioned at its beginning (previous_key undefined). 

1 Positioned somewhere between its beginning and end. (Both the 
previous_key and the next_key values are defined.) 

2 Positioned at its end (next_key undefined). 

3 The result set is empty. (The previous_key and next_key values are 
both undefined.) 

condition _code 

Integer variable in which the condition code is returned. A zero value 
indicates successful completion. 

For information on translating the condition _code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

Keyed-File Interface Calls 6·63 



Keyed-File Interface Calls: Quick Reference 

Remarks • The following figure illustrates the count and position values returned. 

801 (0) • 

SULT -

EOI (2) ~ 

Result Set 

- Current 

Position 

Keys 
Count 

•. Assuming the result set has not been repositioned since the call, the 
previous _key value is the primary _key value used by the last 
RSGETN call and the next_key value is the primary-key value that 
will be used by the next RSGETN call. 

• The key _count value returned is the number of primary-key values in 
the result set and therefore, the number of records that a series of get 
calls could fetch using the result set. 

However, to determine the number of records that series of get_not 
calls could fetch, your program must know the total number of records 
in the nested file and subtract the key _count value from that number. 
The record count for a nested file is not available from the keyed-file 
interface although you can display it using the DISPLAY _KEYED_ 
FILE _PROPERTIES command. 

• RSINFO calls do not change the result set position or the data file 
position and so do not disrupt a sequence of RSGETN calls. 

6-64 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



Keyed-File Interface Calls: Quick Reference 

RSOPEN Call 

Purpose Opens a result set and positions it at its beginning. 

Format CALL RSOPEN (result_set_file, data_file, nested_file, result_set_id, 
condition _ code) 

Parameters result _ set _ file 

Remarks 

Revision A 

File name of the result set file to be opened. The result set file name is 
a 1- to 256-character string. If you do not specify a file path, the file is 
assumed to be in the working catalog. If an existing result set file is to 
be used, it must be attached with at least read access. Otherwise, if the 
result set file does not exist, RSOPEN creates it. 

data_file 

File name of the keyed file to which the result set applies. The file name 
is a 1- to 31-character string. If you do not specify a file path, the file is 
assumed to be in the working catalog. The file must be attached with at 
least read access. 

nested _file 

Name of a nested file in the data file. The nested file name is a 1- to 
31-character string. To specify the default nested file, specify either the 
name $MAIN_FILE or all blanks. 

result _ set _id 

Integer variable in which the result set identifier is returned. It is used 
by later result set calls to identify the open result set. 

condition _ code 

Integer variable in which the condition code is returned. A zero value 
indicates successful completion. 

For information on translating the condition_code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

• A result set must be opened by an RSOPEN call before it can be 
used for any purpose. The result set remains open until it is closed 
by an RSCLOSE call or by the termination of the task. 

• If the specified result set file does not exist or is not attached, 
RSOPEN creates a new temporary file and records in its file 
attributes that it is a result set. It also stores the identification of the 
specified data file and nested file in the result set. 

• If the specified result set file is in the $LOCAL catalog, RSOPEN 
checks its attributes to ensure that it is a result set file. It also 
checks that the data file and nested-file identification in the result set 
file matches that of the data file and nested file specified on the call. 

• The RSOPEN returns the identifier that all subsequent result set 
calls use to specify the result set. 

Keyed-File Interface Calls 6-65 



Keyed-File Interface Calls: Quick Reference 

NOTE 

Do not change the contents of the result_set_id variable while the 
result set is open; any change would invalidate the identifier. 

o The same result set identifier can be used with different instances of 
open of the data file. However, the result set may no longer be 
correct after the data file is updated. For more infOi'mation, see 
Result Set Validity in chapter 5, Result Sets. 

• A result set file can have only one instance of open at a time. 

6-66 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

RSPUT Call 

Purpose Adds a primary-key value to the result set. 

Format CALL RSPUT (target_result_set, key _location, condition_code) 

Parameters target _ resul t _ set 

Remarks 

Identifier of the result set to which the primary-key value is added (as 
returned by its RSOPEN call). 

key _location 

Location of the primary-key value to be added to the result set. 

condition code 

Integer variable in which the condition code is returned. A zero value 
indicates successful completion. 

For information on translating the condition_code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

• Use RSPUT to perform either of these actions: 

Directly add a few scattered primary-key values to the result set. 

Create a temporary result set of scattered primary-key values to 
be added or deleted from the result set. 

o When several primary-key values need to be added, it is more 
efficient to create a temporary result set containing those values and 
combine it with the original result set. For more information, see 
Adding and Deleting Key Values in the Result Sets description in 
chapter 5, Result Sets. 

For Better Performance 

If possible, put primary-key values into a result set in ascending 
order. 

• This call can specify a primary-key value only. It cannot specify an 
alternate-key value. 

However, you can add the primary-key values associated with an 
alternate-key value to the result set. To do so, perform the following 
steps: 

1. Select the alternate key. 

2. Call RSBUILD specifying the logical OR (1) operation to add the 
key values. The specified key-value range should contain only the 
one alternate-key value. (The low_key and high_key values of the 
range are the same value.) 

• RSPUT cannot be called for an instance of open for which a parcel is 
in progress. For a description of parcels, see chapter 4, Parcels. 

Revision A Keyed-File Interface Calls 6-67 



Keyed-File Interface Calls: Quick Reference 

RSREWND Call 

Purpose Repositions a result set at its beginning. 

Format CALL RSREWND (source_result_set, condition_code) 

Parameters source_result_set 

Remarks 

Identifier of the result set to be rewound (as returned by its RSOPEN 
call). 

condition _ code 

Integer variable in which the condition code is returned. A zero value 
indicates successful completion. 

For information on translating the condition_code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

The result set is also positioned at its beginning by an RSOPEN call and 
by any result set call that changes the result set. 

6-68 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

RSSKIP Call 

Purpose Repositions a result set forward or backward. 

Format CALL RSSKIP (source_result_set, count, condition_code) 

Parameters source result_set 

Remarks 

Revision A 

Identifier of the result set to be repositioned (as returned by its RSOPEN 
call). 

count 

Number of primary-key values to be skipped. A positive integer causes a 
skip forward (toward the end of the result set); a negative integer causes 
a skip backward (toward the beginning of the result set). 

condition _ code 

Integer variable in which the condition code is returned. A zero value 
indicates successful completion. 

For information on translating the condition_code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

• A skip forward that encounters the end of the result set does not 
return an error. The result set is left positioned at its end. The next 
RSGETN call returns no data and a $FILE_POSITION value of 64 in 
the FIT. 

• Similarly, a skip backward that encounters the beginning of the result 
set does not return an error. The result set is left positioned at its 
beginning. 

• If necessary, the program can call RSINFO to get the result set 
position after a skip. 

Keyed-File Interface Calls 6-69 



Keyed-File Interface Calls: Quick Reference 

RSSTART Call 

Purpose Positions a result set using a primary-key value. 

Format CALL RSSTART <source_result_set, key _location, major _key_ 
length, key _relation, condition _ code) 

Parameters source _ result _ set 

Remarks 

Identifier of the result set to be repositioned (as returned by its RSOPEN 
call). 

key _location 

Location containing the primary-key value at which the result set is to 
be positioned. 

major _key _length 

Indicates whether the primary-key value is to be located by major key. A 
zero value specifies that a major key is not used; a nonzero value 
specifies the number of bytes in the major key. 

key _relation 

Indicates whether the primary-key value in the file must match the 
primary-key value specified on the call. 

o The primary-key values must match. 

1 If a matching primary-key value is not found, the next greater 
primary-key value is used. 

2 The first primary-key value found that is greater than the specified 
primary-key value is used. 

condition _ code 

Integer variable in which the condition code is returned. A zero value 
indicates successful completion. 

For information on translating the condition_code, see the $ERROR_ 
STATUS description in chapter 7, File Information Table Keywords and 
Values. 

• The RSSTART call establishes the result set position at the 
primary-key value specified by the call. Subsequent get or get_not 
calls use only the result set values from the start position to the end 
of the result set. 

6·70 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

SKIP Call 

Purpose Repositions a keyed file either forward or backward the specified number 
of records. 

Format CALL SKIP (fit, count) 

Parameters fit 

Remarks 

Revision A 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

count 

Number of records to be skipped. A positive integer causes a skip 
forward (toward the end-of-information); a negative integer causes a skip 
backward (toward the beginning-of-information). 

If zero is specified for the count parameter, the $SKIP _COUNT value in 
the FIT is used. If it is also 0, no skipping is done. 

o A SKIP call requires read access to the file. 

o A SKIP call skips records in order by key value. This is because it 
actually skips key values in the index for the key. 

SKIP calls are valid only when an index exists for the selected key. 
Thus, SKIP calls are not valid while the primary key of a 
direct-access file is selected. 

If the currently selected key is an alternate key, it skips records in 
order by alternate-key value. 

The same record may be skipped more than once if it contains more 
than one alternate-key value. For example, suppose a record with 
primary-key value XYZ contains two integer alternate-key values, 123 
and 124. Assume that the file is positioned to read the record with 
alternate-key value 123 as follows: 

File Alternate Index 

position 1 Data Record 
123 XYZ 

}-I XYZ 123 Skip 
124 XYZ 

A SKIP call to skip one record forward skips forward one 
alternate-key value in the alternate index. The file is then positioned 
to read the data record for alternate-key value 124, which is also the 
data record for alternate-key value 123. 

For Better Performance 

A skip call should be used for skipping a few records only, because 
each intervening record is read and counted, which increases 
execution time. A random read request takes less time than a lengthy 
skip request. 

Keyed-File Interface Calls 6·71 

124 



Keyed-File Interface Calls: Quick Reference 

• The $FILE_POSITION value after a SKIP call is always 16, 
end-of-record unless: 

- The SKIP reaches a file boundary. Then the $FILE_POSITION 
value is 1, beginning-of-information, or 64, end-of-information. 

- An alternate key is selected. Then the $FILE_POSITION value is 
8, end-of-key-list. 

• A SKIP reaches a file boundary only when it cannot skip the 
requested number of records in the requested direction. 

For example, suppose the primary key is selected and the file is 
positioned to read the third record (the $FILE_POSITION is 16): 

BOI •• record 1 .• record2 •. record3 .• EOI 

t 
If a SKIP skips backward two records, the SKIP does not reach a file 
boundary and the $FILE_POSITION value is still 16: If the SKIP 
skips backward another record, it reaches the file boundary and the 

BOI •. recordl •• record2 •• record3 •• EOI 

t 
$FILE_POSITION value is 1. (The first record can be read from this 
position or the preceding position.) 

BO I •• record 1 .• record2 •. record3 •. EO I 

t 
A SKIP now skips forward three records and the $FILE_POSITION 
value is 16. 

BOI •• recordl •• record2 •• record3 •• EO I 

t 
A read at this position or one more skip forward reaches the file 
boundary, and the $FILE_POSITION value is 64. 

BOI •• recordl •• record2 •• record3 •• EOI 

t 
A skip backward one record positions the file to read the last record 
and the $FILE_POSITION value is 16. 

BO I •• record 1 .• record2 •• record3 •• EOI 

t 

6-72 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

o When a skip encounters the end-of-information or the 
beginning-of-information, it returns a nonfatal error. 

In either case, SKIP calls the DX procedure if one is specified in the 
FIT. 

If the program immediately calls SKIP again to skip in the same 
direction, SKIP calls the error-exit procedure (if one is specified in 
the FIT). 

• If the skip reaches a file boundary and cannot be completed, the 
$SKIP _COUNT value in the FIT is the number of records that could 
not be skipped. The number of records actually skipped can be 
calculated by subtracting the residual skip count from the requested 
skip count. 

Revision A Keyed-File Interface Calls 6-73 



Keyed-File Interface Calls: Quick Reference 

STARTM Call 

Purpose Positions a keyed file using the specified key value and key relation. 

Format CALL STARTM (fit, key _area, 0, major _ley _length, error _exit_ 
procedure) 

Parameters fit 

Remarks 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

key_area 

Key value used to position the file. 

o 
For CYBER 170 compatibility only. New programs should set this 
parameter to zero. 

major _key _length 

For a fixed-length key, it is the length of the major key in bytes. A zero 
value indicates that the full key value is used. 

For a variable-length key, a nonzero value is required because it specifies 
the length, in bytes, of the specified key value. 

If the major _key _length is zero, the $MAJOR_KEY_LENGTH value in 
the FIT is used. However, the $MAJOR_KEY_LENGTH value is always 
reset to zero after any call with an major _key _length parameter. 

error _exit_procedure 

Error-exit procedure name. 

o A STARTM call requires read access to the file. 

• STARTM searches for the key value in the index of the selected key 
in the selected nested file only. 

A STARTM call is valid only when an index exists for the selected 
key. Thus, STARTM calls are invalid while the primary key of a 
direct-access file is selected. 

• If an alternate key has been selected and the key is a concatenated 
key, the values for the pieces of the concatenated key are assembled 
in the key area. The pieces must be concatenated in the key area in 
the order defined for the alternate key. 

For example, if the key is the last 3 bytes of the record followed by 
the first 3 bytes of the record, the value in the key area must be the 
value of last 3 bytes followed by the value of the first 3 bytes. 

6-74 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



60485917 B 

Keyed-File Interface Calls: Quick Reference 

• STARTM searches for the first key value that satisfies the relation 
specified by the $KEY _RELATION value in the FIT. 

If the relation is EQUAL_KEY and an equal key value does not 
exist in the file, STARTM returns a nonfatal error. The file is left 
positioned to read the next record (the record that would follow the 
specified record if it existed). 

If the $KEY_RELATION value is GREATER_OR_EQUAL_KEY or 
GREATER_KEY and no key value in the file satisfies the relation, 
the data-exit (DX) procedure is called, if one is specified in the FIT. 
The file is left positioned at the end-of-information. 

• STARTM cannot return a file position of 1 (beginning-of-information). 
When the key value to be found is less than any key value in the file, 
STARTM returns a file position value of 8 or 16 (end-of-key-list or 
end-of-record). 

• If the major _key _length is 0, the $MAJOR_KEY _LENGTH value in 
the FIT is used. The $MAJOR_KEY_LENGTH value in the FIT is 
cleared after any call having a major _key _length parameter. For more 
information, see the $MAJOR_KEY_LENGTH FIT value description in 
chapter 7, File Information Table Keywords and Values. 

A nonzero major _key _length value is required while a variable-length 
alternate key is selected. Otherwise, a nonzero value is specified only 
when a major-key search is to be used. 

• A STARTM call does not return a record to the working storage area. 

• When an alternate key is selected and a primary-key area is specified 
in a FIT, a STARTM call returns the primary-key value of the record 
at which the file is positioned. The value is returned in the 
primary-key area. 

Keyed-File Interface Calls 6·75 



Keyed-File Interface Calls: Quick Reference 

STOREF Call 

Purpose Stores a value in the FIT, which applies to the file the next time the file 
is opened. 

Format CALL STOREF ·(fit, fit_keyword, fit_value) 

Parameters fit 

Remarks 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

fit _keyword 

Character expression specifying a FIT keyword. The keyword can be 
specified using uppercase and/or lowercase letters. For more information on 
FIT keywords, see chapter 7, File Information Table Keywords and Values. 

fit_value 

FIT value to be stored for the preceding keyword. The applicable values 
are listed in the individual keyword description in chapter 7, File 
Information Table Keywords and Values. Character values can be specified 
using uppercase and/or lowercase letters. 

• You can call STOREF any time after the FILEIS or FILEDA call that 
returns FIT pointer. 

• To clear a FIT value, specify the keyword and a 0 on a STOREF call. 

For example, suppose you previously specified a primary-key area, but 
now no longer want any primary-key values returned. To prevent this, 
you clear the $PRIMARY _KEY _ADDRESS value as follows: 

CALL STOREF(fit, '$PRIMARY_KEY_ADDRESS', 0) 

• Preserved file attribute values cannot be changed after the file has 
been first opened. These include: 

$EMBEDDED _KEY 

$FILE _ORGANIZATION 

$KEY_LENGTH 

$KEY _POSITION 

$KEY_TYPE 

$MAXIMUM _BLOCK _LENGTH 

$MAXIMUM _RECORD _LENGTH 

$MINIMUM _RECORD _LENGTH 

$RECORD _TYPE 

Specifying a value for $KEY _LENGTH or $KEY _POSITION after the 
file is first opened does not change the preserved attributes (the 
primary key length and position). Instead, the $KEY_LENGTH and 
$KEY _POSITION values can be used to select an alternate key or to 
specify the sparse-key control position for an RMKDEF call. 

6-76 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 60485917 B 



Examples 

Revision A 

Keyed-File Interface Calls: Quick Reference 

• This call specifies that the key value is to be returned in the variable 
RETKEY. (RETKEY should be in a common block.) 

CALL STOREF(fit, '$KEY_ADDRESS', retkey) 

• This call specifies the primary-key starting position as the beginning 
of the record. 

CALL STOREF(fit, '$KEY_POSITION', 0) 

• This call clears the error-exit procedure specification. 

CALL STOREF(fit, '$ERROR_EXIT_PROCEDURE', 0) 

Keyed-File Interface Calls 6-77 



Keyed-File Interface Calls: Quick Reference 

UNLOCKF Call 

Purpose Clears a file lock for the currently selected nested file. 

Format CALL UNLOCKF (fit) 

Parameters fit 

Remarks 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

• An UNLOCKF call clears only the file lock for the nested file 
specified by the $NESTED_FILE_NAME value in the FIT. It clears 
only the lock belonging to the instance of open. 

An UNLOCKF call clears only one nested file lock. It does not clear 
any other file locks or any key-value locks. To clear individual 
key-value locks or all locks, use UNLOCKK. 

• When a lock expires, the task must clear the lock before it can 
perform any more operations on the instance of open. To clear all 
locks belonging to the instance of open (both file and key locks), call 
UNLOCKK with the 'ALL' parameter value specified. 

• To read about lock expiration, see Lock Expiration and Clearing in 
chapter 3, Sharing Keyed Files. 

• UNLOCKF cannot be called for an instance of open for which a 
parcel is in progress. For a description of parcels, see chapter 4, 
Parcels. 

6-78 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Keyed-File Interface Calls: Quick Reference 

UNLOCKK Call 

Purpose Clears either a single key-value lock or all locks for the currently selected 
nested file. 

Format CALL UNLOCKK (fit, key _area, 'ALL') 

Parameters fit 

Remarks 

Revision A 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

key_area 

Location containing the primary-key value to be unlocked. Specify 0 for 
this parameter if 'ALL' is specified. 

NOTE 

The key area should be in a common block. If it is not, your program 
could execute incorrectly after being compiled with high optimization. 

'ALL' 

Requests clearing of all locks for this instance of open. If you specify 
'ALL' as the third parameter value, specify 0 as the key _area parameter. 

o An UNLOCKK call performs one of two operations depending on 
whether the third parameter value CALL') is specified: 

- If 'ALL' is specified, UNLOCKK clears all locks for the currently 
selected nested file (both the file lock, if any, and all key-value 
locks, if any). 

- If 'ALL' is omitted, UNLOCKK clears only the lock for the 
primary-key value at the specified key location (key_area). 

o A key value lock can be cleared without an UNLOCKK call: 

It is cleared when the instance of open is closed. 

- If automatic unlock was requested for the lock, it is cleared when 
the task issues another call for the instance of open (other than 
an IFETCH or STOREF). (The lock is unlocked even if the request 
fails.) 

NOTE 

Do not call UNLOCKK to clear a key-value lock requested with 
automatic unlock. Such a call would first perform the automatic 
unlock and then the UNLOCKK operation. The second unlock 
operation would find no lock on the key value and issue a nonfatal 
error. 

• When 'ALL' is specified and no locks exist for the nested file, no 
error is returned. However, if 'ALL' is omitted and the instance of 
open does not own a lock on the key value, UNLOCKK returns a 
nonfatal error. 

Keyed-File Interface Calls 6-79 



Keyed-File Interface Calls: Quick Reference 

Examples 

• When a lock expires, the task must clear the expired lock before it 
can perform any more operations on the instance of open. 

The task is notified that a lock has expired by the status returned by 
the next operation attempted. However, it is not notified as to which 
lock has expired. 

When notified that an expired lock exists, the task can either clear 
all locks or clear each lock individually. It can clear all locks by 
calling UNLOCKK with the 'ALL' option. An UNLOCKF call clears 
an individual file lock; UNLOCKK calls can clear individual key 
locks. 

• To read about lock expiration, see Lock Expiration and Clearing in 
chapter 3, Sharing Keyed Files. 

• UNLOCKK cannot be called for an instance of open for which a 
parcel is in progress. For a description of parcels, see chapter 4, 
Parcels. 

• This call clears the lock on the key value in the variable specified by 
the $KEY_ADDRESS value in the FIT: 

CALL UNLOCKK (fit) 

• This call clears the lock on the key value in variable KEYl (and 
stores KEYl as the $KEY_ADDRESS in the FIT): 

CALL UNLOCKK (fit, key1) 

• This call clears all key-value and file locks for the currently selected 
nested file. 

CALL UNLOCKK (fit, 0, 'ALL') 

6-80 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



File Information Tables 7 

How to Use FIT Keywords in FORTRAN Programs ............................... 7-3 
FIT Keywords .................................................................. 7-3 
Abbreviations for FIT Keywords and Values .................................... 7-3 

FIT Keywords and Values: Quick Reference ....................................... 7-4 
$ACCESS_AND_SHARE_MODES or $AASM .................................. 7-5 
$ACCESS_MODE or $AM ..................................................... 7-8 
$AUTOMATIC_UNLOCK or $AU ............................................. 7-11 
$AVERAGE_RECORD_LENGTH or $ARL .................................... 7-12 
$COLLATE_TABLE or $CT .................................................. 7-13 
$COLLATE_TABLE_NAME or $CTN ......................................... 7-14 
$COMPRESSION_PROCEDURE_NAME or $CPN ............................. 7-15 
$DATA_PADDING or $DP .................................................... 7-17 
$DELETE_DATA or $DD .................... ' ................................. 7-18 
DX (Data Exit Procedure) ..................................................... 7-19 
$EMBEDDED_KEY or $EK .................................................. 7-20 
$ERROR_COUNT or $EC .................................................... 7-21 
$ERROR_EXIT_PROCEDURE_NAME or $ERROR_EXIT_NAME or $EEPN 

or $EEN ..................................................................... 7-22 
$ERROR_EXIT_PROCEDURE or $EEP ....................................... 7-23 
$ERROR_LIMIT or $EL ...................................................... 7-24 
$ERROR_ STATUS or $ES .................................................... 7 -25 
$ESTIMATED_RECORD_COUNT or $ERC ................................... 7-27 
$FILE_IDENTIFIER or $FI .................................................. 7-28 
$FILE_ORGANIZATION or $FO ............................................... 7-29 
$FILE_POSITION or $FP .................................................... 7-30 
$FORCED_ WRITE or $FW ................................................... 7-31 
FNF (FatallNonfatal Flag) .................................................... 7-32 
$GET_AND_LOCK or $GAL ................................................. 7-33 
$GLOBAL_ACCESS_MODES or $GAM ....................................... 7-34 
$GLOBAL_SHARE_MODES or $GSM ........................................ 7-35 
$HASHING_PROCEDURE_NAME or $HPN .................................. 7-36 
$INDEX_LEVELS or $INDEX_LEVEL or $IL ................................ 7-37 
$INDEX_PADDING or $IP ................................................... 7-38 
$INITIAL_HOME_BLOCK_COUNT or $IHBC ................................ 7-39 
$KEY_ADDRESS or $KA ................................................... " 7-40 
$KEY_LENGTH or $KL ...................................................... 7-41 
$KEY_NAME or $KN .................... ~ ................................... 7-42 
$KEY_POSITION or $KP .................................................... 7-43 
$KEY_RELATION or $KR .................................................... 7-44 
$KEY_ TYPE or $KT ............................................. . . . . . . . . . . .. 7 -45 
$LAST_OPERATION or $LO ................................................. 7-46 
$LOCAL_FILE_NAME or $LFN ............................................. 7-47 
$LOCK_EXPIRATION_TIME or $LET ........................................ 7-48 
$LOCK_INTENT or $LI ............................... ~ ...................... 7-49 
$LOG_RESIDENCE or $LR .................................................. 7-50 
$LOGGING_OPTIONS ........................................................ 7-51 
$MAJOR_KEY_LENGTH or $MKL ......................................... " 7-52 
$MAXIMUM_BLOCK_LENGTH or $MAXBL ................................. 7-53 
$MAXIMUM_RECORD_LENGTH or' $MAXRL ................................ 7-54 
$MESSAGE_CONTROL or $MC .............................................. 7-55 
$MINIMUM_RECORD_LENGTH or $MINRL ................................. 7-56 
$NESTED_FILE_NAME or $NFN ............................................ 7-57 



OC (Open/Close Flag) ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7-58 
ON (OldlN"ew Flag) ............. ' .............................................. 7-59 
$OPEN_POSITION or $OP ......................... ; ......................... 7-60 
$OPEN_SHARE_MODES or $OSM ........................................... 7-61 
$PASSWORD or $P .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 -63 
$PRIMARY_KEY_ADDRESS or $PKA ........................................ 7-64 
RL (Record Length) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 -65 
$RECORD_LIMIT or $RL .................................................... 7-66 
$RECORD _ TYPE or $RT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-67 
$RECORDS_PER_BLOCK or $RPB .......................................... 7-68 
$SKIP _ COUNT or $SC ....................................................... 7 -69 
$WAIT_FOR_ATTACHMENT or $WFA ....................................... 7-70 
$WAIT_FOR_LOCK or $WFL ................................................ 7-71 
$WORKING_STORAGE_ADDRESS or $WSA ................................. 7-72 
$WORKING_STORAGE_LENGTH or $WSL .................................. 7-73 

/ 
( 

/' 



File ][nformation Tables 

These are the keywords used to store and fetch values from a File Information Table 
(FIT). You specify FIT keywords and values on the keyed-file interface calls FILEIS, 
FILEDA, IFETCH, STOREF, and OPENM. 

Most FIT keywords refer to file attributes. Other FIT keywords refer to information 
used only by the FORTRAN keyed-file interface. 

FIT Keyword 

$ACCESS_AND_SHARE_MODES 
$ACCESS_MODE 
$AUTOMATIC_ UNLOCK 
$AVERAGE_RECORD_LENGTH 
$COLLATE_ TABLE 

Abbreviation 

$AASM 
$AM 
$AU 
$ARL 
$CT 

$COLLATE_ TABLE_NAME $CTN 
$COMPRESSION _PROCEDURE_NAME $CPN 
$DATA_PADDING $DP 
$DELETE_DATA $DD 
DX DX 

$EMBEDDED_KEY 
$ERROR_COUNT 
$ERROR_EXIT_PROCEDURE_NAME 
$ERROR_EXIT_PROCEDURE 
$ERROR_LIMIT 

$ERROR_STATUS 
$ESTIMATED_RECORD_COUNT 
$FILE_IDENTIFIER 
$FILE_ORGANIZATION 
$FILE_POSITION 

FNF 
$FORCED_ WRITE 
$GET_AND_LOCK 
$GLOBAL_ACCESS_MODES 
$GLOBAL_SHARE_MODES 

$HASHING_PROCEDURE_NAME 
$INDEX_LEVELS 
$INDEX_PADDING 
$INITIAL_HOME_BLOCK_ COUNT 
$KEY_ADDRESS 

$EK 
$EC 
$EEPN 
$EEP 
$EL 

$ES 
$ERC 
$FI 
$FO 
$FP 

FNF 
$FW 
$GAL 
$ GAM 
$GSM 

$HPN 
$IL 
$IP 
$IHBC 
$KA 

'7 

Revision A File Information Tables 7·1 



File Information Tables 

FIT Keyword Abbreviation 

$KEY_LENGTH $KL 
$KEY_NAME $KN 
$KEY_POSITION $KP 
$KEY_RELATION $KR 
$KEY_TYPE $KT 

$LAST_OPERATION $LO 
$LOCAL_FILE_NAME $LFN 
$LOCK_EXPIRATION _ TIME $LET 
$LOCK_INTENT $LI 
$LOG_RESIDENCE $LR 

$LOGGING_OPTIONS (N 0 abbreviation) 
$MAJOR_KEY_LENGTH $MKL 
$MAXIMUM_BLOCK_LENGTH $MAXBL 
$MAXIMUM_RECORD_LENGTH $MAXRL 
$MESSAGE_CONTROL $MC 

$MINIMUM_RECORD_LENGTH $MINRL 
$NESTED_FILE_NAME $NFN 
OC OC 
ON ON 
$OPEN _POSITION $OP 

$OPEN _SHARE_MODES $OSM 
$PASSWORD $P 
$PRIMARY_KEY_ADDRESS $PKA 
$RECORD_LIMIT $RL 
$RECORD_TYPE $RT 

$RECORDS_PER_BLOCK $RPB 
RL RL 
$SKIP_COUNT $SC 
$WAIT_FOR_ATTACHMENT $WFA 
$WAIT_FOR_LOCK $WFL 

$WORKING_STORAGE_ADDRESS $WSA 
$WORKING_STORAGE_LENGTH $WSL 

7-2 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



How to Use FIT Keywords in FORTRAN Programs 

How to Use FIT Key\vords in FORTRAN Programs 

Unless indicated otherwise in the following section, a FIT value specified on a 
keyed-file interface call is stored in the FIT. 

The values for a FIT can be set by four different methods. When a keyed file is 
opened and a FIT is created, the values for the FIT are set by one of these methods. 
The methods, in their order of precedence, are: 

1. Attribute values specified on a NOSNE SET_FILE_ATTRIBUTES command. 

2. For existing files, the attribute values stored with the file. 

3. The attribute values specified by the FILEIS or FILEDA call or a STOREF call 
before the OPENM call. 

4. The default values for the attributes. 

NOSNE file attributes fall into three categories: returned attributes, temporary 
attributes, and preserved attributes. 

o Returned attributes are attributes whose values can be fetched but cannot be 
specified. 

o Temporary attributes are attributes that are not stored with the file and may be 
changed each time the file is opened. 

o Preserved attributes are attributes that are stored with the file when it is first 
opened and are preserved for the lifetime of the file. 

In general, you cannot change a preserved file attribute after the file has been first 
opened. However, you can specify a preserved file attribute value in the FIT of an 
existing file to verify that the correct file is being used. For example, if you set the 
$FILE_ORGANIZATION value to indexed-sequential in the FIT, the OPENM call 
checks that the preserved $FILE_ ORGANIZATION attribute is indexed-sequential. If it 
is not, OPENM returns an error. 

FIT Keywords 

To specify or fetch a FIT value, you specify the keyword for that value. 

You can specify FIT keywords and character values using uppercase and/or lowercase 
letters. 

Abbreviations for FIT Keywords and Values 

Most FIT keywords and valuss can be abbreviated. For example, the abbreviation for 
$ACCESS_AND_SHARE_MODES is $AASM. Abbreviations are indicated with the 
word or. For example, the description of the $ACCESS_AND_SHARE_MODES 
keyword is titled $ACCESS_AND_SHARE_MODES or $AASM. 

Abbreviations for FIT values are indicated in the same way. For example, one of the 
value descriptions for $AUTOMATIC_ UNLOCK is titled 'TRUE' or 'T' or 'Yes' or 'Y' 
or 'ON'. 

Revision A File Information Tables 7-3 



FIT Keywords and Values: Quick Reference 

FIT Keywords and Values: Quick Reference 
The following section describes all of the file information table keywords in quick 
reference format. 

The Input section describes the values that you supply when you specify the 
associated FIT keyword on an FILEIS, FILEDA, STOREF, or OPENM call. 

The Output section describes the values you can receive when you specify the 
associated FIT keyword on an IFETCH call. 

The Default section describes the default value for the FIT keyword. 

7-4 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Purpose 

Input 

60485917 B 

FIT Keywords and Values: Quick Reference 

Defines the set of access and share modes for this instance of open 
(temporary attribute). 

A string of paired sets of keywords. Each set specifies the share mode and 
access mode respectively. The list has the form 

'«access mode), (share mode», ... , ((access mode), (share mode))' 

The access mode keywords are: 

READ 

Read access. 

SHORTEN 

Shorten access. 

APPEND 

Append access. 

MODIFY 

Modify permission (file statistics are kept). 

WRITE 

Shorten, append, and modify access. 

EXECUTE 

Execute access. 

ALL 

Read, shorten, append, modify, write, and execute access. If you specify 
ALL, no other access mode keyword can be specified. 

PERMITTED _ACCESS_MODES 

The access modes granted to the requested attach depend on the 
conditions of the attachment described in the Remarks. 

The share mode keywords are: 

NONE 

The instance of open does not allow sharing. 

READ 

Sharing is allowed for read access. 

SHORTEN 

Sharing is allowed for shorten access. 

APPEND 

Sharing is allowed for append access. 

MODIFY 

Sharing is allowed for modify access. 

File Information Tables 7·5 



FIT Keywords and Values: Quick Reference 

Output 

Default 

Remarks 

WRITE 

Sharing is allowed for shorten, append, and modify access. 

EXECUTE 

Sharing is allowed for execute access. 

ALL 

Sharing is allowed for read, shorten, append and modify access. If you 
specify ALL, no other value can be selected. 

REQUIRED _SHARE _MODES 

Sharing requirements depend on the conditions of attachment described 
in the remarks. 

DETERMINE _FROM _ACCESS _MODES 

If the access modes include append, modify, or shorten, no sharing is 
allowed; otherwise, read and execute sharing is allowed. 

A FORTRAN program should not fetch the $ACCESS _AND _SHARE_ 
MODES value from the FIT. It is stored as an address which the program 
cannot use. 

'((PERMITTED _ACCESS _MODES),(DETERMINE _FROM _ACCESS_ 
MODES))' 

• To set the access and share modes for a file, you must store the values 
in the FIT before the file is opened because the values only take effect 
for the next instance of open. Also, the OPENM call that opens the file 
must specify the open _option parameter as 0 or omit the open _option 
parameter for the access and share mode values in the FIT to be used. 
If the OPENM call specifies a value other than 0 for the open_option 
parameter, the access and share mode values in the FIT are ignored. 

• For PERMITTED_ACCESS_MODES, the access modes are as follows: 

If the file is created by a FILEISor FILEDA call, this value causes 
the file to be attached for all modes of access. 

If the file is not currently attached within the job, this value causes 
attachment for only those modes of access currently in the file's 
access control entry. These access modes are qualified by the share 
requirements of other jobs that have the file cycle attached and by 
the value of the validation _ring attachment option. 

If the file is already attached within the job but not currently open, 
this value causes the modes of access specified by the attachment to 
be used. These access modes are qualified by the value specified in 
the validation_ring attachment option. 

If the file is already open within the job, this value causes the 
access modes specified by the attachment of the file within the job 
to be used. These access modes are qualified by the values specified 
in the open _share _modes and validation _ring attachment options. 

7-6 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 60485917 B 



Examples 

60485917 B 

FIT Keywords and Values: Quick Reference 

• For REQUIRED _SHARE _MODES, the share modes are as follows: 

If the file is created by the request, this value causes the file to be 
attached for exclusive access. 

If the file exists but is not currently attached within the job, this 
value causes the file to be attached for the modes of sharing that 
consist of the union of the share requirement in the file's access 
control entry and the outstanding access modes specified by other 
jobs that have the file cycle attached. After the file is opened, your 
task may need to validate its toleration of the modes of sharing 
imposed by this value. Call IFETCH with the $GLOBAL _SHARE_ 
MODES keyword to obtain the file's share mode values. 

If the file is already attached within the job, this value causes the 
share modes specified by the attachment of the file cycle within the 
job to be used. After the file is opened, your task may need to 
validate its toleration of the modes of sharing imposed by this 
value. Call IFETCH with the $GLOBAL _SHARE _MODES keyword 
to obtain the file's share mode values. 

• If you specify more than one set of access and share modes, the first 
set is considered the preferred value, and the remaining sets are 
considered alternatives. Each set is considered in order until one is 
found that satisfies the requirements of the request. 

• This FIT value is used by the FILEIS, FILEDA, and STOREF calls. 
The associated file must not be open. 

• When you specify this FIT value, it replaces the current value for 
$ACCESS_MODE or $ACCESS_AND_SHARE_MODES in the file 
information table. The new FIT value takes effect for the next instance 
of open. 

The following call specifies read and modify access and read and modify 
sharing: 

CALL STOREF (fitptr, '$AASM', '«READ, MODIFY), (READ, MODIFY»') 

The following call specifies read access with no sharing if possible; 
otherwise it specifies read access with any mode of sharing: 

CALL STOREF (fitptr, '$AASM', '«READ),(NONE»,«READ),(ALL»') 

File Information Tables 7-7 



FIT Keywords and Values: Quick Reference 

$ACCESS _MODE or $AM 

Purpose Defines the set of access modes allowed for this instance of open 
(temporary attribute). 

For an existing file, all modes in the set must be in the usage mode set 
specified when you attached the file. 

Input Options are: 

Output 

I Default 

'READ' 

Read access 

'APPEND' 

Append access 

'SHORTEN' 

Shorten access 

'MODIFY' 

Modify permission (file statistics are kept) 

Integer as follows: 

1 Read access only (file statistics are not kept) 
2 Modify, shorten, and append access 
3 Read, modify, shorten, and append access 
4 Modify access only 
5 Append access only 
6 Shorten access only 
7 Read and modify access 
8 Read and append access 
9 Read and shorten access 
10 Modify and shorten access 
11 Modify and append access 
12 Shorten and append access 
13 Read, modify, and shorten access 
14 Read, modify, and append access 
15 Read, shorten, and append access 

If the access modes are not specified using $ACCESS _AND _SHARE _ 
MODES or $ACCESS _MODE, the default is '«PERMITTED _ACCESS_ 
MODES),(DETERMINE_FROM_ACCESS_MODES))'. 

7-8 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



Remarks 

60485917 B 

FIT Keywords and Values: Quick Reference 

• To set the access for a file, you must store the value in the FIT before 
the file is opened because the value only takes effect for the next 
instance of open. Also, the OPENM call that opens the file must specify 
the open_option parameter as 0 for the access mode value in the FIT 
to be used. If the OPENM call does not specify 0 as the open _option 
parameter, the access mode value in the FIT is ignored. 

• These are the access modes to the keyed file required for each call. 

Call 

CLOSEM 
DLTE 
FILEDA 
FILEIS 
FLUSHM 
GET 
GETN 
IFETCH 
KEYLIST 
KLCOUNT 
KLSPACE 
LOCKF 
LOCKK 
OPENM 
PUT 
PUTREP 
REPLC 
REWND 
RMKDEF 
RSBUILD 
RSGETN 
SKIP 
STARTM 
STOREF 
UNLOCKF 
UNLOCKK 

Access Modes 

None 
Append, shorten, and modify 
None 
None 
Append, shorten, or modify 
Read1 

Read1 
None 
Read 
Read 
Read 
Any1 
Any1 
Any 
Append2 
Append and shorten2 

Append and shorten2 

Any 
Append, shorten, and modify 
Read 
Read 
Any 
Read 
None 
Any 
Any 

1 If an Exclusive _Access lock is requested, shorten or append access is 
required. 
2If one or more alternate keys are defined in the file, append, shorten, 
and modify access modes are required to update the alternate indexes. 

• You can specify two or more values by enclosing the values in a single 
pair of apostrophes and separating the values with a comma. 

NOTE 

No spaces can separate the values, only a comma. 

For example, the following STOREF call specifies read and modify 
access: 

CALL STOREF (fitptr, '$AM', 'READ,MODIFY') 

File Information Tables 7·9 



FIT Keywords and Values: Quick Reference 

• Specifying a string of blanks requests no access modes. But, if you 
request no access modes, you cannot open the file. 

• Although you can store another $ACCESS_MODE value while the file 
is open, the new value does not take effect until the next open. 

• You can also use the $ACCESS_AND_SHARE_MODES FIT value to 
specify access modes for an instance of open. This FIT value gives you 
more flexibility and also allows you to specify share modes for an 
instance of open. 

• The access modes you specify with $ACCESS _MODE replace any 
previous specification of access modes with the $ACCESS _MODE or 
$ACCESS_AND_SHARE_MODE FIT values. 

If you specify $ACCESS_MODE, the share mode used is 
DETERMINE _FROM _ACCESS _MODES. 

7-10 FORTRAN for NOSNE Keyed-File and SortJMeige Interfaces 60485917 B 



FIT Keywords and Values: Quick Reference 

$AUTOMATIC _ UNLOCK or $AU 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Indicates whether a lock should be cleared automatically. This value is 
used when a lock is requested. 

Options are: 

'TRUE' or 'T' or 'YES' or 'Y' or 'ON' 

The lock is cleared when the task issues a request for the instance of 
open (other than an IFETCH or STOREF call). 

'FALSE' or 'F' or 'NO' or 'N' or 'OFF' 

The lock is not cleared automatically. The lock is cleared by an 
UNLOCK call for the key value or when the instance of open closes. 

Integer as follows: 

-1 Automatic unlock is requested (YES). 

o Automatic unlock is not requested (NO). 

'YES' 

• This FIT value may be used by LOCKK, GET, and GETN calls as 
follows: 

U sed by LOCKK if the automatic_ unlock parameter is omitted 
from the call. 

U sed when a GET or GETN call requests a lock, that is, when 
the FIT value $GET_AND_LOCK is YES (-1). 

NOTE 

Automatic unlock cannot be used with Preserve_ Content lock intent. 

• For an update request for the locked record, the automatic unlock 
does not occur until the operation completes. For all other requests, 
the automatic unlock occurs as soon as the request is issued. 

File Information Tables 7-11 



FIT Keywords and Values: Quick Reference 

$AVERAGE_RECORD_LENGTH or $ARL 

Purpose 

Input 

Output 

Default 

Remarks 

Defines the estimated median record length, in bytes, of the data records 
to be stored in the file. (The length should not include the primary-key 
length if the primary key is nonembedded.) 

NOSNE uses this value to select the block size for a new file if the 
maximum block length for the file is not specified. This file attribute 
value is not preserved with the file because it is used only when the file 
is opened for the first time. 

Integer from 1 through 65497. 

A FORTRAN program should not fetch the $AVERAGE_RECORD_ 
LENGTH value from the FIT. It is stored as an address which the 
program cannot use. 

None. If the FIT value is zero when a new file is opened, NOSNE uses 
the arithmetic mean of the minimum and maximum record lengths as the 
average record length when selecting the block size for the new file. 

• When the file contains variable-length records, you should choose the 
average record length value as follows: 

If almost all records in the file are nearly the same length, use 
that length. 

If the record lengths are well-distributed, use the median record 
length. 

7-12 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$COLLATE _ TABLE or $CT 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Defines the collation table for the primary key. 

The value is used only when a new file is opened for the first time; it is 
not preserved with the file. 

256-character variable. Each character in the variable is the collating 
weight for the corresponding ASCII character. For example, the first 
character in the variable is the collating weight for the first ASCII 
character [code 00]. 

A FORTRAN program should not fetch the $COLLATE_ TABLE value from 
the FIT. It is stored as an address which the program cannot use. 

None. A collation table must be specified if the primary key type is 
collated. The collation table can be specified by the $COLLATE_ TABLE or 
$COLLATE_ TABLE_NAME value. 

OPENM copies the table from the variable to the internal entry point 
AAV$DCT. It then stores AAV$DCT as the collation table name and the 
collation table at AAV$DCT as the collation table for the new file. 

File Information Tables 7-13 



FIT Keywords and Values: Quick Reference 

$COLLATE _ TABLE _NAME or $CTN 

Purpose 

Input 

Output 

Default 

Remarks 

Defines the collation table for the primary key specified as the name of an 
entry point (preserved attribute). The value is used only when a new file is 
opened for the first time. 

1- to 31-character string specifying the entry point name of the collation 
table. 

The first 8 characters of the entry point name. The name is returned 
left-justified, blank-filled, and in uppercase letters. 

None. A collation table must be specified if the primary-key type is 
collated. The collation table can be specified by the $COLLATE_ TABLE or 
$COLLATE_TABLE_NAME value. 

• The collation table can be one of the NOSNE predefined collation 
tables. The predefined collation tables are listed in appendix D, 
Creating a Collation Table. 

• The COLSEQ routine can be used to create a table named 
FTV$USER_ COLLATE_ TABLE which can be specified as the 
$COLLATE_ TABLE_NAME. For information on creating a collation 
table, see appendix D, Creating a Collation Table. 

• The entry point can be in a module already loaded with the 
FORTRAN program or in a module in an object library in the 
program-library list. For a module to be loaded from an object library, 
it must be in the program-library list. For more information, see the 
NOSNE Object Code Management Usage manual. 

7-14 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$COMPRESSION_PROCEDURE_NAME or $CPN 

Purpose 

Input 

Output 

Default 

Remarks 

Defines the data compression or encryption procedure (preserved attribute). 

1- to 31-character string specifying an entry point name in an object 
library in the current program library list. 

The name must be enclosed in apostrophes ('name'). 

First 8 characters of the entry point name. The name is returned 
left-justified, blank-filled, and in uppercase letters. 

None. Unless a procedure is specified when the file is created, no 
compression procedure is used. 

o This FIT value can be specified only before the file is opened for the 
first time. The value is stored as a preserved attribute when the file 
is first opened. 

o The compression procedure is not stored with the file. It must be 
loaded each time the file is opened. Therefore, the object library 
containing the compression procedure must be in the program library 
list. 

For example, this command adds a library to the library list: 

o A compression procedure name AMP$RECORD_COMPRESSION is 
provided with the system. It compresses strings of consecutive ASCII 
spaces, ASCII zeros, binary zeros, and nulls. 

When records are fetched from the file, AMP$RECORD_ 
COMPRESSION decompresses the record data to its original length 
and content. 

(The system-defined procedure is on a system library so you do not 
need to add it to your program library list.) 

For Better Performance 

Usually a compression procedure individually processes each byte of 
data for each record operation. This significantly increases the time 
required for each record operation. Therefore, you should specify a 
compression procedure only when the special processing it performs is 
worth the extra processing time. 

• If you specify a compression procedure, you should consider its effect 
when specifying the file structure attributes. If you specify an 
$AVERAGE_RECORD_LENGTH value, it should be the average 
record length after data compression. Similarly, when creating a 
direct-access file, you should choose the INITIAL_HOME_BLOCK_ 
COUNT value based on the size of the compressed file data. 

Revision A File Information Tables 7·15 



FIT Keywords and Values: Quick Reference 

• User-defined compression procedures can be written, but the 
procedures must be written in the CYBIL language. For more 
information, see the CYBIL Keyed-File and SortlMerge Interfaces 
manual. 

• The NOSNE compression procedure performs both compression and 
decompression. 

• The primary-key field can be anywhere in the record. 

7·16 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$DATA_PADDING or $DP 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Percentage of block space left empty as each data block is created during 
the first instance of open of an indexed-sequential file (preserved attribute). 

Integer from 0 through 99. The padding percentage must allow at least one 
maximum-length record to be written to each block. 

A FORTRAN program should not fetch the $DATA_PADDING value from 
the FIT. It is stored as an address which the program cannot use. 

o (no data block padding). 

Data block padding leaves space for insertion of additional data in the 
future without the need for additional index levels. Fewer index levels 
mean less access time to find a record. However, data block padding could 
result in unused file space. 

File Information Tables 7·17 



FIT Keywords and Values: Quick Reference 

$DELETE _DATA or $DD 

Purpose 

Input 

Output 

Default 

Remarks 

Specifies whether or not the data in the file is deleted as a result of the 
instance of open. 

Options are: 

'TRUE', 'T', 'YES', 'Y', 'ON' 

Deletes contents of the file. 

'FALSE', 'F', 'NO', 'N', 'OFF' 

Saves contents of the file. 

A FORTRAN program should not fetch the $DELETE_DATA value from 
the FIT. It is stored as an address which the program cannot use. 

'FALSE' 

• Data is deleted from your file cycle at the time it is opened if a 
value of TRUE (or alias) is specified and if the following conditions 
are met: 

1. The file must be currently attached to the job for exclusive access 
(no sharing) either by a previous attachment or by the current 
request. 

2. The access modes specified for the instance of open must include 
shorten. 

3. The file must be currently unopened within the job. 

4. The file must be opened at its beginning-of-information position. 

• Mter the data in a file is deleted, the file's access control entry and 
file's mass storage space are not released. Also, the file cycle remains 
registered in the appropriate catalog. 

7-18 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

DX (Data Exit Procedure) 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

End-of-data exit procedure. 

Name of a subroutine that is declared as EXTERNAL. 

A FORTRAN program should not fetch the DX value from the FIT. It is 
stored as an address which the program cannot use. 

None. 

o If a DX value has been stored in the FIT, a GETN or SKIP call calls 
the specified subroutine when the GETN or SKIP call encounters the 
beginning-of-information or end-of-information. 

o The data-exit routine can determine whether the file is at its BOI or 
EOI by fetching the $FILE_POSITION value. 

File Information Tables 7·19 



FIT Keywords and Values: Quick Reference 

$EMBEDDED_KEYM$EK 

Purpose 

Input 

Output 

Default 

Indicates whether the primary key is embedded or nonembedded (preserved 
attribute). 

Options are: 

'YES' or 'Y' or 'TRUE' or 'T' or 'ON' 

Embedded key. (The key value is part of the record data.) 

'NO' or 'N' or 'FALSE' or 'F' or 'OFF' 

Nonembedded key. (The key value is separate from the record data.) 

Integer as follows: 

-1 Embedded key. (The key value is part of the record data.) 

o Nonembedded key. (The key value is separate from the record data.) 

'YES' 

7·20 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$ERROR_COUNT or $EC 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Number of nonfatal errors that have been returned by keyed-file interface 
calls since the OPENM call. 

You can only fetch information with this FIT keyword. You cannot store 
information with it. 

Integer. The value is limited by a nonzero $ERROR_LIMIT value. 

Initialized to 0 when the file is opened. 

This attribute can be fetched only while the file is open. 

File Information Tables 7-21 



FIT Keywords and Values: Quick Reference 

$ERROR_EXIT_PROCEDURE_NAME or $ERROR_EXIT_NAME 
or $EEPN or $EEN 

Purpose 

Input 

Output 

Default 

Remarks 

Error-exit procedure (temporary attribute). 

1- to 31-character string specifying the entry point name of the error _exit 
procedure name. The name must be enclosed in apostrophes ('name'). 

The first 8 characters of the entry point name. The name is left-justified, 
blank-filled, and in uppercase letters. 

None. If you do not specify a name before opening the file, the system does 
not load an error-exit procedure. 

• The error-exit entry point may be an entry point already loaded with 
the program or an entry point in an object library. For a module to 
be loaded from an object library, it must be in the program library 
list. For more information on program libraries and the SET_ 
PROGRAM_ATTRIBUTES command, see the NOSNE Object Code 
Management Usage manual. 

• You can clear the $ERROR_EXIT_PROCEDURE_NAME value by 
calling STOREF with a string of blanks. For example: 

CALL STOREF (FITPTR, '$ERROR_EXIT_PROCEDURE_NAME',' ') 

• The OPENM call gets the address of the $ERROR_EXIT_ 
PROCEDURE_NAME procedure and stores it as the $ERROR_EXIT_ 
PROCEDURE value in the FIT. Therefore, if you specify two 
error-exit procedures before opening the file: one using the $ERROR_ 
EXIT_PROCEDURE_NAME keyword and the other, the $ERROR_ 
EXIT_PROCEDURE keyword, the procedure specified using 
$ERROR_EXIT_PROCEDURE_NAME is used. 

• Storing an $ERROR_EXIT_PROCEDURE_NAME value after the file 
is open has no effect; the value is used only if the file is re-opened 
using the same FIT. 

To change the error-exit procedure for the current open, specify an 
error-exit procedure parameter on a keyed-file interface call or specify 
the $ERROR_EXIT_PROCEDURE value on a STOREF call. 

7-22 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$ERROR_EXIT_PROCEDURE or $EEP 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Error-exit procedure. 

Name of a subroutine that is declared as EXTERNAL in the calling 
program. 

A FORTRAN program should not fetch the $ERROR_EXIT_PROCEDURE 
value from the FIT. It is stored as an address which the program cannot 
use. 

None. The error-exit procedure specified by the $ERROR_EXIT_ 
PROCEDURE_NAME attribute before the file was opened (if any) is used. 

o Specifying a value using the $ERROR_EXIT_PROCEDURE keyword 
changes the effective error-exit procedure immediately. (Specifying a 
value using the $ERROR_EXIT_PROCEDURE_NAME keyword 
changes the procedure only when the file is opened.) 

o A nonzero value specified with the $ERROR_EXIT_PROCEDURE 
keyword is stored as the default error-exit procedure value in the FIT. 
It becomes the default eep parameter value until another eep value is 
specified on a call. 

o To clear the $ERROR_EXIT_PROCEDURE value, call STOREF to 
store a value of zero as the $ERROR_EXIT_PROCEDURE value. 

File Information Tables 7·23 



FIT Keywords and Values: Quick Reference 

$ERROR_LIMIT or $EL 

Purpose 

Input 

Output 

Default 

Remarks 

Nonfatal error limit (temporary attribute). When the limit is reached, a 
fatal error is returned. 

Integer between 0 and 65535. 0 allows unlimited trivial errors. 

A FORTRAN program should not fetch the $ERROR_LIMIT value from 
the FIT. It is stored as an address which the program cannot use. 

o (no limit). 

ERROR_LIMIT is compared to ERROR_COUNT to determine when the 
error limit has been reached. For more information on error processing, see 
chapter 1, Keyed-File Interface Concepts. 

7-24 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$ERROR_STATUS or $ES 

Purpose 

Input 

Output 

Default 

Revision A 

Condition code returned by the previous keyed-file interface call. 

You can only fetch information with this FIT keyword. You cannot store 
information with it. 

Integer condition code. A zero value indicates the previous keyed-file 
interface call completed successfully, without error. 

The condition code for an abnormal status consists of the two-byte 
product identifier (such as AA or AM) and a three-byte value specifying 
the particular error condition for that product. 

To translate the condition code to a string, use the CONDSYM 
subprogram. Specify the condition code as the first parameter and 
CONDSYM returns the translated string as the second parameter and the 
length of the string as the third parameter. 

For example: 

C Call FILEIS and induce an error by not 
C specifying the $MAXIMUM_RECORD_LENGTH 
C FIT keyword, which is required. 
C 

C 

CALL FILEIS (FIT_PTR, 
+'$LOCAL_FILE_NAME', 
+'$KEY_LENGTH' , 

'NEW_IS_FILE' , 
5) 

C Call OPENM to open the file. 
C 

CALL OPENM(FIT_PTR, 'NEW', 'R') 
C 
C Call IFETCH to retrieve the condition 
C code. 
C 

C 

CALL IFETCH(FIT_PTR, 
+'$ERROR_STATUS' , CONDITION_CODE) 

C Call CONDSYM to translate CONDITION_CODE 
C to a string CONDITION_NAME and 
C pr i nt it. 
C 

C 

CALL CONDSYM(CONDITION_CODE, 
+CONDITION_NAME, LENGTH) 

PRINT *, CONDITION_NAME 

C The condition name AA 3210 is printed. 
C 

The CONDSYM subprogram is described under NOSNE Status 
Subprograms in the FORTRAN Version 1 or Version 2 Language Definition 
manuals. 

Initialized to 0 before each keyed-file interface call. 

File Information Tables 7-25 



FIT Keywords and Values: Quick Reference 

Remarks • If an error-exit procedure has not been specified, the program should 
fetch the error status value after each keyed-file interface call. A 
nonzero value returned indicates that the call did not complete 
successfully. 

• The NOSNE Diagnostic Messages manual lists the meaning of each 
condition name. To access the manual online, enter: 

/help manual=messages 

Then use the INDEX function on the condition name. 

7-26 FORTRAN for NOSNE Keyed-File and SorUMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$ESTIMATED_RECORD_COUNT or $ERC 

Purpose 

Input 

Output 

Default 

Revision A 

Estimated number of data records to be stored in the file. 

NOSNE uses this value to select the block size for a new file if the 
maximum block length for the file is not specified. This file attribute 
value is not preserved with the file because it is used only when the file 
is opened for the first time. 

Integer from 1 through 4398046511103 (2**42 - 1). 

A FORTRAN program should not fetch the $ESTIMATED_RECORD_ 
COUNT value from the FIT. It is stored as an address which the program 
cannot use. 

The $RECORD_LIMIT value, if specified. If no $RECORD_LIMIT value is 
specified, an estimate of 100,000 records is used. 

File Information Tables 7·27 



FIT Keywords and Values: Quick Reference 

$FILE _IDENTIFIER or $FI 

Purpose 

Input 

Output 

Remarks 

Returns the CYBIL file identifier for the current open of the file. 

You can only fetch information with this FIT keyword. You cannot store 
information with it. 

Integer. 

• An IFETCH call can fetch the file identifier only while the file is 
open. The file identifier cannot be fetched before the OPENM call or 
after the CLOSEM call. 

• A FORTRAN program fetches the file identifier so that it can pass it 
to a CYBIL procedure. The CYBIL procedure requires the file 
identifier so that it can issue file interface calls for the open file. 

• To receive the file identifier value as a parameter, a CYBIL 
procedure declaration specifies a VAR declaration of type AMT$FILE_ 
IDENTIFIER. For example: 

PROCEDURE cybil_proc (VAR fi: amt$file_identifier); 

• The CYBIL procedure must not close a file opened in the FORTRAN 
program. A file opened by an OPENM call must be closed by a 
CLOSEM call (or by program termination). Otherwise, the results of 
the file operations are undefined. 

• File interface calls made outside the FORTRAN program do not 
update the FIT. The CYBIL subprogram should not call AMP$STORE 
to change file attribute values because the changed values are not 
copied to the FIT. Subsequent calls to IFETCH would then return 
out-of-date information. 

7-28 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$FILE_ORGANIZATION or $FO 

Purpose 

Input 

Output 

Default 

Rovision A 

File organization (preserved attribute). The file organization determines the 
method of storing and accessing file data. 

Options are: 

'INDEXED_SEQUENTIAL' or 'IS' 

Indexed-sequential file organization 

'DIRECT_ACCESS' or 'DA' 

Direct access file organization 

Integer as follows: 

3 Indexed-sequential file organization 

5 Direct access file organization 

Set by the call that created the FIT. FILEIS sets the file organization to 
indexed-sequential; FILEDA sets the file organization to direct access. 

File Information Tables 7·29 



FIT Keywords and Values: Quick Reference 

$FILE _POSITION or $FP 

Purpose 

Input 

Output 

Default 

Indicates the position of the file after the last keyed-file interface call 
(returned attribute). 

You can only fetch information with this FIT keyword. You cannot store 
information with it. 

Integer as follows: 

1 File is positioned at the beginning-of-information (BOl). 

S File is positioned at the end of a key list (returned only if an 
alternate key is currently selected). 

16 File is positioned at the end of a record (EOR), but not at the end of 
a key list (returned only if an alternate key is currently selected.) 

64 File is positioned at the end-of-information (EOI). 

When the file is opened, but before any records are processed, $FILE_ 
POSITION has the same value as $OPEN_POSITION. The default 
$OPEN _POSITION value is $BOI. 

7-30 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$FORCED _ WRITE or $FW 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Indicates when modified blocks of the file are to be written to mass 
storage (preserved attribute). 

Options are: 

'TRUE' or 'T' or 'YES' or 'Y' or 'ON' 

The system writes each modified block to mass storage immediately 
after the modification. 

'FORCED_IF_STRUCTURE_CHANGE' or 'FISC' 

The system writes modified blocks to mass storage immediately if the 
change affects more than one block. 

'FALSE' or 'F' or 'NO' or 'N' or 'OFF' 

The system determines when modified blocks are copied to mass 
storage. Modified blocks can remain in memory without a 
mass-storage backup copy. 

Integer as follows: 

-1 The system writes each modified block to mass storage immediately 
after the modification (TRUE). 

o The system writes modified blocks to mass storage immediately if the 
change affects more than one block (FORCED_IF_STRUCTURE_ 
CHANGE). 

+ 1 The system determines when modified blocks are copied to mass 
storage. Modified blocks can remain in memory without a 
mass-storage backup copy (FALSE). 

'FALSE'. (The system determines when modified blocks are copied to mass 
storage. Modified blocks can remain in memory without a mass-storage 
backup copy.) 

o You can request that the entire file be copied to disk by calling 
FLUSHM. FLUSHM copies internal tables as well as data and index­
blocks. (A $FORCED_ WRITE copy does not copy internal tables.) 

o If the file could be shared and the $FORCED_ WRITE value is either 
-lor 0, the block size of the file should be a multiple of the system 
page size. 

This ensures that multiple opens are not updating blocks in the same 
page. Otherwise, a forced-write operation could write a page that 
contains partially-altered blocks. (A warning message is issued if this 
possibility exists.) 

File Information Tables 7-31 



FIT Keywords nnd V nlues: Quick Reference 

FNF (FatallNonfatal Flag) 

Purpose 

Input 

Output 

Remarks 

Indicates the severity of the last error for the file as fatal or nonfatal. 

You can only fetch information with this FIT keyword. You cannot store 
information with it. 

Integer values as follows: 

o The error severity is nonfatal. 

-1 The error severity is fatal. 

This value is not defined outside the FORTRAN keyed-file interface. No 
NOSNE keyword is defined for the FIT value. 

7-32 FORTRAN for NOSNE Keyed-File nnd Sort/Merge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$GET _AND _LOCK or $GAL 

Purpose 

Input 

Output 

Default 

Remarks 

60485917 B 

Indicates whether a GET or GETN call issues a lock request for the key 
value before reading the record. 

Options are: 

'YES' or 'Y' or 'TRUE' or 'T' or 'ON' 

A GET or GETN call requests a lock. 

'NO' or 'N' or 'FALSE' or 'F' or 'OFF' 

A GET or GETN call does not request a lock. 

Integer as follows: 

-1 A GET or GETN call requests a lock (YES). 

o A GET or GETN call does not request a lock (NO). 

'NO' (a GET or GETN call does not request a lock). 

These FIT values are used as parameter values for the lock if the $GET_ 
AND _LOCK value is YES (-1): 

$AUTOMATIC _UNLOCK 
$LOCK_INTENT 
$WAIT _FOR _LOCK 

For more information on locks, see chapter 3, Sharing Keyed Files. 

File Information Tables 7·33 



FIT Keywords and Values: Quick Reference 

$GLOBAL_ACCESS_MODESor$GAM 

Purpose 

Input 

Output 

Remarks 

Returns the set of access modes in effect for the instance of attach of an 
existing file (returned attribute). 

You can only fetch information with this FIT keyword. You cannot store 
information with it. 

Integer as follows: 
o No access 
1 Read access only (file statistics are not kept) 
2 Modify, shorten, and append access 
3 Read, modify, shorten, and append access 
4 Modify access only 
5 Append access only 
6 Shorten access only 
7 Read and modify access 
8 Read and append access 
9 Read and shorten access 
10 Modify arid shorten access 
11 Modify and append access 
12 Shorten and append access 
13 Read, modify, and shorten access 
14 Read, modify, and append access 
15 Read, shorten, and append access 
16 Execute access only 
17 Read and execute access (file statistics are not kept) 
18 Modify, shorten, append, and execute access 
19 Read, modify, shorten, append, and execute access 
20 Modify and execute access 
21 Append and execute access 
22 Shorten and execute access 
23 Read, modify, and execute access 
24 Read, append, and execute access 
25 Read, shorten, and execute access 
26 Modify, shorten, and execute access 
27 Modify, append, and execute access 
28 Shorten, append, and execute access 
29 Read, modify, shorten, and execute access 
30 Read, modify, append, and execute access 
31 Read, shorten, append, and execute access 

• If the file is open, $GLOBAL _ACCESS _MODES returns the access 
modes that were specified when the file was opened. If you specified 
more than one set of access modes, $GLOBAL_ACCESS_MODES 
returns the access modes that actually took effect. 

• If the file is an unopened permanent file, $GLOBAL _ACCESS _MODES 
returns the access modes for which the file may be opened. 

• If the file is an unopened temporary file, $GLOBAL _ACCESS _MODES 
returns 19, all access modes. 

7-34 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



FIT Keywords and Values: Quick Reference 

$GLOBAL_SHARE_MODESor$GSM 

Purpose 

Input 

Output 

Remarks 

Returns the share mode set in effect for the current instance of attach on 
an existing file (returned attribute). 

You can only fetch information with this FIT keyword. You cannot store 
information with it. 

Integer as follows: 
o No sharing. 
1 Sharing for read access only (file statistics are not kept) 
2 Sharing for modify, shorten, and append access 
3 Sharing for read, modify, shorten, and append access 
4 Sharing for modify access only 
5 Sharing for append access only 
6 Sharing for shorten access only 
7 Sharing for read and modify access 
8 Sharing for read and append access 
9 Sharing for read and shorten access 
10 Sharing for modify and shorten access 
11 Sharing for modify and append access 
12 Sharing for shorten and append access 
13 Sharing for read, modify, and shorten access 
14 Sharing for read, modify, and append access 
15 Sharing for read, shorten, and append access 
16 Sharing for execute access only 
17 Sharing for read and execute access (file statistics are not kept) 
18 Sharing for modify, shorten, append, and execute access 
19 Sharing for read, modify, shorten, append, and execute access 
20 Sharing for modify and execute access 
21 Sharing for append and execute access 
22 Sharing for shorten and execute access 
23 Sharing for read, modify, and execute access 
24 Sharing for read, append, and execute access 
25 Sharing for read, shorten, and execute access 
26 Sharing for modify, shorten, and execute access 
27 Sharing for modify, append, and execute access 
28 Sharing for shorten, append, and execute access 
29 Sharing for read, modify, shorten, and execute access 
30 Sharing for read, modify, append, and execute access 
31 Sharing for read, shorten, append, and execute access 

• If the file is open, $GLOBAL_SHARE_MODES returns the share 
modes that were specified when the file was opened. If you specified 
more than one set of share modes, $GLOBAL _SHARE _MODES returns 
the share modes that actually took effect. 

• If the file is an unopened permanent file, $GLOBAL_SHARE_MODES 
returns the share modes for which the file may be opened. 

• If the file is an unopened temporary file, $GLOBAL _SHARE _MODES 
returns 0, no share modes. 

60485917 B File Information Tables 7-35 



FIT Keywords and Values: Quick Reference 

$HASHING _PROCEDURE _NAME or $HPN 

Purpose 

Input 

Output 

Default 

Remarks 

N arne of the hashing procedure used to hash primary-key values for the 
direct access file (preserved attribute). 

1- to 31-character string specifying an entry point in an object library in 
the current program library list. The name must be enclosed in 
apostrophes ('name'). 

First 8 characters of the entry point name. The name is left-justified, 
blank-filled, and in uppercase letters. 

AMP$SYSTEM _HASHING _PROCEDURE (the system default hashing 
procedure). 

• This FIT value can be specified only before the file is opened for the 
first time. The value is stored as a preserved attribute when the file is 
first opened. 

• A user-defined hashing procedure must be written in the CYBIL 
language only. For more information, see the CYBIL Keyed-File and 
SortJMerge Interfaces manual. 

• The hashing procedure is not stored with the file. It must be loaded 
each time the file is opened. Thus, the object library containing the 
hashing procedure must be in the program library list. 

For Better Performance 

Although any ring-attributes value is valid for the object library 
containing the hashing procedure, you should store the hashing 
procedure in a ring 4 object library. 

This improves performance because hashing procedures are executed as 
asynchronous tasks. (Usually, site personnel maintain the ring 4 object 
libraries.) 

• A hashing procedure can be specified by name only; it cannot be 
specified by address. 

7-36 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



FIT Keywords and Values: Quick Reference 

$INDEX_LEVELS or $INDEX_LEVEL or $IL 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

For a new indexed-sequential file, the target number of index levels or, for 
an existing indexed-sequential file, the current number of index levels. 

Target number of index levels (integer from 0 through 15). The system 
uses this value as a guideline in its selection of the block size for a new 
file. 

Current number of index levels (integer from 0 through 15). An empty file 
has 0 index levels. 

For a new file, 2 index levels. 

• If specified before the file is created, NOSNE uses the INDEX_ 
LEVELS value when selecting the block size for a new file if the 
maximum block length for the file is not specified. The specified value 
is not preserved with the file because it is used only when the file is 
opened for the first time. 

• For an existing file, the value returned is the current number of 
levels of indexing in the indexed-sequential file. 

• The current number of index levels can be fetched only while the file 
is open. 

File Information Tables 7·37 



FIT Keywords and Values: Quick Reference 

$INDEX_PADDING or $IP 

Purpose 

Input 

Output 

Default 

Percentage of block space left empty in each index block created during 
the first instance of open of the file (preserved attribute). 

Integer from 0 to 99. The padding percentage must allow at least three 
index records to be written to the block. (The index record length is the 
primary key length plus 4 bytes.) 

A FORTRAN program should not fetch the $INDEX_PADDING value from 
the FIT. It is stored as an address which the program cannot use. 

o (no index block padding). 

7-38 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Purpose 

Input 

Output 

Default 

Remarks 

FIT Keywords and Values: Quick Reference 

N"umber of home blocks in the direct access file (preserved attribute). 

Integer from 1 through 4387945511193 (2**42 - 1). 

A FORTRAN program should not fetch the $INITIAL_HOME_BLOCK_ 
COUNT value from the FIT. It is stored as an address which the program 
cannot use. 

None. You must specify a value for this attribute when defining a new 
direct-access file. 

o This value specifies the number of blocks allocated for the new direct 
access file. The blocks should accommodate all records expected to be 
written to the file. The addition of more records would require 
allocation of overflow blocks, slowing access to the overflow records. 

• The initial_home_block_count should allow for a loading factor of no 
more than 90%. In other words, allocate at least 10% extra space in 
the file because the hashing procedure may not uniformly distribute 
records among the home blocks. 

• For best results, the initial_home_block_count should be a prime 
number. 

• For more information, see the discussion of direct-access files in 
chapter 1, Keyed-File Interface Concepts. 

Revision A File Information Tables 7·39 



FIT Keywords and Values: Quick Reference 

$KEY_ADDRESS or $KA 

Purpose 

Input 

Output 

Remarks 

Location of the key value. 

Variable name. 

NOTE 

The key area should be in a common block. If it is not, your program 
could execute incorrectly after being compiled with high optimization. 

A FORTRAN program should not fetch the $KEY_ADDRESS value from 
the FIT. It is stored as an address which the program cannot use. 

• A key address is required in these cases: 

- When a PUT call writes a record with a nonembedded key. 

- When a GET call reads a record by its primary-key value. 

- For any STARTM or LOCKK call. 

• A key address is optional for a GET call when an alternate key is 
selected. GET reads the alternate-key value from the key address if a 
key _area value is specified on the call or in the -FIT. 

• The $KEY_ADDRESS value in the FIT is used when 0 is specified as 
the $KEY_ADDRESS parameter on a call. 

• If a keyed-file interface call specifies a $KEY_ADDRESS value, the 
value is copied to the FIT. It becomes the default value for 
subsequent calls. 

7-40 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$KEY_LENGTH or $KL 

Purpose 

Input 

Output 

Default 

Revision A 

Key length (preserved attribute). It is the primary-key length for a new 
file. For an existing file, it is the key length when selecting a key by 
position and length. 

For an embedded key (primary or alternate), an integer from 1 through 
255, but not greater than the minimum record length. 

For a nonembedded primary key, an integer from 1 through 255. 

For an integer key, an integer from 1 through 8. 

A FORTRAN program should not fetch the $KEY_LENGTH value from 
the FIT. It is stored as an address which the program cannot use. 

None. You must specify the primary-key length before calling OPENM for 
a new file. 

File Information Tables 7-41 



FIT Keywords and Values: Quick Reference 

$KEY_NAME or $KN 

Purpose 

Input 

Output 

Default 

Remarks 

N arne of the selected key. 

1- to 31-character string specifying the key name. The name of the 
primary key is $PRIMARY_KEY. 

The first 8 characters of the key name. The name is returned left-justified, 
blank-filled, and in uppercase letters. 

The primary key ($PRIMARY_KEY). 

• A key name can be specified by the OPENM call or by a STOREF 
call while the file is open. It cannot be specified by the FILEIS or 
FILEDA call or by a STOREF call before the OPENM call or after 
the CLOSEM call. 

• The name of an alternate key is defined when the key is defined. For 
more information, see chapter 2, Alternate Keys. 

7·42 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$KEY_POSITION or $KP 

Purpose Byte position at which the key begins (preserved attribute). 

It is the position of the primary key for a new file. For an existing file, 
it is the key position used when selecting a key by position and length. 

Input Integer from zero to the maximum record length for the file. However, the 
key position value added to the key length value must not exceed the 
minimum record length. 

Output 

Default 

Revision A 

The byte positions in a record are numbered from the left, beginning 
with zero. 

A FORTRAN program should not fetch the $KEY_POSITION value from 
the FIT. It is stored as an address which the program cannot use. 

Zero. If the key is embedded, the key is assumed to begin at the leftmost 
byte of the record. If the key is nonembedded, the key position value is not 
used. 

File Information Tables 7-43 



FIT Keywords and Values: Quick Reference 

$KEY_RELATION or $KR 

Purpose 

Input 

Output 

Default 

Remarks 

Relation between the key value in the record and the key value at the 
$KEY_ADDRESS location. 

Options are: 

'EQUAL_KEY' or 'EK' 

The record key value must be equal to the specified key value. 

'GREATER_OR_EQUAL_KEY' or 'GOEK' 

The record key value must be greater than or equal to the specified 
key value. 

'GREATER_KEY' or 'GK' 

The record key value must be greater than the specified key value. 

Integer as follows: 

1 The record key value must be equal to the specified key value. 

3 The record key value must be greater than or equal to the specified 
key value. 

6 The record key value must be greater than the specified key value. 

EQUAL_KEY. (The key value in the record must be equal to the specified 
key value.) 

• The $KEY_RELATION value is used only by GET and STARTM 
calls. A GET call reads the first record that satisfies the relation. A 
STARTM call positions the file at the first record that satisfies the 
relation. 

o The $KEY_RELATION FIT value is not used by calls to a 
direct-access file while its primary key is selected (because no index 
with ordered key values exists for the key). 

7-44 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$KEY _TYPE or $KT 

Purpose 

Input 

Output 

Primary key type for a new indexed-sequential file (preserved attribute). 

Options are: 

'COLLATED' or 'C' 

A key value is a string of characters; it is sorted byte-by-byte according 
to a user-specified collating sequence. 

'INTEGER' or'!, 

A key value is a signed integer (8 bytes long); it is sorted in ascending 
numerical order. 

'UNCOLLATED' or 'U' 

A key value is a string of characters; it is sorted byte-by-byte according 
to the default ASCII collating sequence. 

Integer as follows: 

1 A key value is a string of characters; it is sorted byte-by-byte according 
to a user-specified collating sequence. 

2 A key value is a signed integer (8 bytes long); it is sorted in ascending 
numerical order. 

3 A key value is a string of characters; it is sorted byte-by-byte according 
to the default ASCII collating sequence. 

Default Uncollated keys CU'). 

Remarks The primary-key type for a direct access file is always uncollated, 
regardless of the specified value. (The primary-key values are not sorted so 
a sort-order specification is irrelevant.) 

60485917 B File Information Tables 7-45 



FIT Keywords and Values: Quick Reference 

$LAST _OPERATION or $LO 

Purpose 

Input 

Output 

Remarks 

Most recent keyed-file interface call for the file (returned attribute). 

You can only fetch information with this FIT keyword. You cannot store 
information with it. 

One of the following integers: 

o FILEIS (FIT created for an indexed-sequential file) 
1 OPENM (open request) 
2 CLOSEM (close request) 
3 GET (random read request) 
4 GETN (sequential read request) 
5 PUT (write request) 
8 DLTE (delete request) 
9 REPLC (replace request) 
10 REWND (rewind request) 
11 PUTREP (put/replace request) 
12 SKIP (skip forward request) 
13 SKIP (skip backward request) 
14 STARTM (start request) 
19 RMKDEF (alternate-key definition request) 
20 KLCOUNT (key-list count request) 
21 KLSPACE (key-list block count request) 
22 KEYLIST (key list request) 
23 LOCKF (lock file request) 
24 LOCKK (key value lock request) 
25 UNLOCKF (clear file lock request) 
26 UNLOCKK (clear key value lock request) 
27 FILEDA (FIT created for a direct-access file) 
28 FILESK (not implemented yet) 
29 RSBUILD (result set build request) 
30 RSGETN (result set get next request) 

The following calls do not change the $LAST_OPERATION value in the 
FIT. Mter one of these calls, IFETCH returns the value of the preceding 
keyed-file interface call. 

• IFETCH, FLUSHM, and STOREF 

• The parcel calls (PBEGIN, PABORT, PCOMMIT, PDETERM, and 
PPUTMSG) 

• The result set calls (other than RSBUILD and RSGETN) 

7-46 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 60485917 B 



FIT Keywords and Values: Quick Reference 

$LOCAL_FILE_NAME or $LFN 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Name of the file in the $LOCAL catalog. 

File name. For a new file, the file cannot already exist. For an existing 
file, the file must exist. (It can be a temporary file or an attached 
permanent file.) 

The first 8 characters of the file name. The name is returned left-justified, 
blank-filled, and in uppercase letters. 

N one. This is a required parameter; it must be specified by the FILEIS or 
FILEDA call that creates the FIT or a STOREF call before the file is 
opened. 

" If the old/new flag (ON) is set to 'OLD', OPENM searches for a file 
with the specified name in the working catalog. If the old/new flag 
(ON) is set to 'NEW', OPENM attempts to create a file with the 
specified name in the working catalog. 

• A FORTRAN program must set the $LOCAL_FILE_NAME (LFN) 
value in the FIT before calling OPENM. If the $LOCAL_FILE NAME 
value has not been specified, the OPENM call returns a fatal error. 

• The LOCAL_FILE_NAME value cannot be changed while the file is 
open. 

File Information Tables 7-47 



FIT Keywords and Values: Quick Reference 

$LOCK_EXPIRATION _ TIME or $LET 

Purpose 

Input 

Output 

Default 

Remarks 

N umber of milliseconds between the time a lock is granted and the time 
that it could expire (preserved attribute). 

Integer from 0 through 604,800,000. (0 specifies an unlimited expiration 
time.) 

A FORTRAN program should not fetch the $LOCK_EXPIRATION _ TIME 
value from the FIT. It is stored as an address which the program cannot 
use. 

60,000 milliseconds (60 seconds). 

• An expired lock prevents further access to the file by the owner of 
the lock. To remove an expired lock, the owner must call UNLOCKK 
or close the instance of open. 

• Although the lock expiration time is an attribute preserved with the 
file after its first open, the attribute value can be changed by the 
NOSNE command, CHANGE_FILE_ATTRIBUTE. 

• To read about lock expiration, see Lock Expiration and Clearing in 
chapter 3, Sharing Keyed Files. 

7-48 FORTRAN for NOSNE Keyed-File and SorUMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$LOCK_INTENT or $LI 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Purpose of the lock. 

Options are: 

'PRESERVE_CONTENT' or 'PC' 

Preserve_Content for reading. 

'PRESERVE_ACCESS_AND_CONTENT' or 'PAAC' or 'PAC' 

Preserve_Access_and_ Content for reading and possibly updating. 

'EXCLUSIVE_ACCESS' or 'EA' 

Exclusive_Access for updating (requires shorten or append access). 

Integer as follows: 

o PRESERVE_CONTENT 

1 PRESERVE_ACCESS_AND_CONTENT 

2 EXCLUSIVE_ACCESS 

PRESERVE_ACCESS_AND_CONTENT. 

• This FIT value is used when: 

- A GET or GETN call requests a lock, that is, when the FIT value 
$GET_AND_LOCK is YES (-1). 

- A LOCKF and LOCKK if the Ii parameter is omitted from the 
call. 

• A PRESERVE_CONTENT lock cannot be automatically unlocked. 
Also, a PRESERVE_CONTENT lock must be cleared before the lock_ 
intent for the lock can be changed to PAC or EA. 

• An EXCLUSIVE_ACCESS lock is allowed only if the instance of open 
has shorten and/or append access to the file. 

File Information Tables 7-49 



FIT Keywords and Values: Quick Reference 

$LOG _RESIDENCE or $LR 

Purpose 

Input 

Output 

Default 

Rema4"ks 

Catalog in which the update recovery log for the keyed file is written 
(preserved attribute). 

Variable containing the path to the log catalog. 

First 8 characters of the log catalog path. The path is returned 
left-justified, blank-filled, and in uppercase letters. 

None if the $LOGGING_OPTIONS value does not include M (enabling 
media recovery); otherwise, the default is $SYSTEM.AAM.SHARED_ 
RECOVERY_LOG. 

• The specified log must have been previously created using the 
Administer _Recovery _Log utility. (The default log is created during 
system installation.) 

• Whenever you change the log residence attribute of an existing file to 
a log other than the default log, you should immediately backup the 
keyed file. Otherwise, if the file is damaged, the RECOVER_FILE_ 
MEDIA option of the Recover _Keyed_File utility cannot execute 
successfully for the file. 

• The Administer _Recovery _Log utility and Recover _Keyed_File 
utility descriptions are in the NOSNE Advanced File Management 
Usage manual. 

7-50 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$LOGGING _OPTIONS 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Options enabling use of parcels and keyed-file recovery options (preserved 
attribute). 

Options are: 

'ENABLE_PARCELS' or 'EP' 

Allows use of parcels when updating keyed files (see description of 
Parcels in chapter 4). 

'ENABLE_MEDIA_RECOVERY' or 'EMR' 

The system maintains an update recovery log for the keyed file. 
(Update recovery logs are described in the NOSNE Advanced File 
Management Usage manual.) 

'ENABLE_REQUEST_RECOVERY' or 'ERR' 

When a task aborts, the automatic close removes any 
partially-completed update operation. 

'ALL' 

All logging options are specified. 

A FORTRAN program should not fetch the $LOGGING_OPTIONS value 
from the FIT. It is stored as an address which the program cannot use. 

No logging options selected. 

• Multiple options can be specified in any order. 

• While the logging options include ENABLE_PARCELS, an attempt to 
open the keyed file allowing write concurrency must include modify 
access in its access mode set. If no sharing is allowed or only read 
sharing, modify access is not required. 

File Information Tables 7-51 



FIT Keywords and Values: Quick Reference 

$MAJOR_KEY_LENGTH or $MKL 

Purpose 

Input 

Output 

Default 

Remarks 

Length of the key value to be used by the next STARTM or GET call. The 
location of the key value is given by the $KEY_ADDRESS value. 

For a fixed-length key, the value is the major-key length, the number of 
leftmost key-value bytes compared. 

For a variable-length key, the value is the length of the key specified by 
the call. 

Integer from 0 through the key length value. 

A FORTRAN program should not fetch the $MAJOR_KEY_LENGTH 
value from the FIT. It is stored as an address which the program cannot 
use. 

For a fixed-length key, 0 (the full key value is used). 

For a variable-length key, the key length is required so a nonzero value 
must be specified. 

o The $MAJOR_KEY_LENGTH FIT value is not used by calls to a 
direct-access file while its primary key is selected (because no index 
with ordered key values exists for the key). 

• When using a major key for a fixed-length key, the call compares 
only the leftmost bytes of the key value. 

• For a variable-length alternate key, the key value is compared with 
the full alternate-key value stored in the index, not just the leftmost 
bytes. 

• The $MAJOR_KEY_LENGTH value is reset to zero after execution 
of the STARTM or GET call that uses the value. 

• Major-key use with an integer key is not recommended. The leftmost 
bytes of an integer value are seldom meaningful beyond indicating the 
sign of the value. 

7·52 FORTRAN for NOSNE Keyed-File antI SortlMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$MAXIMUM_BLOCK_LENGTH or $MAXBL 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Block length, in bytes, for a new file (preserved attribute). 

Integer from 1 through 65,536. If the value is less than the maximum 
record length, it is increased to that value. Then, it is increased, if 
necessary, to the next power of 2 from 2,048 through 65,536. 

If the specified value is less than the maximum record length, it is 
increased to that value. Then, if the value is not a power of 2 between 
2048 and 65536, it is changed as follows: 

o A value less than 2048 is increased to 2048 (the minimum allocation 
unit). 

o A value between 2048 and 65536, but not a power of 2, is increased 
to the next power of 2 (4096, 8192, 16384, 32768, or 65536). 

o A value greater than 65536 is decreased to 65536. 

A FORTRAN program should not fetch the $MAXIMUM_BLOCK_ 
LENGTH value from the FIT. It is stored as an address which the 
program cannot use. 

The system selects the block length using the AVERAGE_RECORD_ 
LENGTH, ESTIMATED_RECORD_COUNT, INDEX_LEVELS, and 
RECORDS_PER_BLOCK values, if specified. The minimum block length 
selected by the system is 1 page. 

o If the file could be changed by more than one instance of open at the 
same time and forced-writing will be used (the $FORCED_ WRITE 
attribute is -1 [TRUE] or 0 [FORCED_IF_STRUCTURE_CHANGE]), 
the block size should be a multiple of the system page size. 

o This ensures that more than one instance of open is not updating 
blocks in the same page; otherwise, a forced-write operation could 
write a page to mass storage that contains partially-altered blocks. (A 
warning message is issued if this situation exists.) 

File Information Tables 7-53 



FIT Keywords and Values: Quick Reference 

$MAXIMUM_RECORD_LENGTH or $MAXRL 

Purpose 

Input 

Output 

Default 

Maximum record length, in bytes, for a new file (preserved attribute). 

Integer from 1 through 65497. 

A FORTRAN program should not fetch the $MAXIMUM_RECORD_ 
LENGTH value from the FIT. It is stored as an address which the 
program cannot use. 

None. You must specify the maximum record length when creating a new 
keyed file. 

7 ·54 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$MESSAGE_CONTROL or $MC 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Indicates the additional information written to the $ERRORS file 
(temporary attribute). 

Options are: 

'MESSAGES' or 'M' 

Informative messages. 

'STATISTICS' or'S' 

Statistic messages. 

'TRIVIAL_ERRORS' or 'T' 

Trivial (nonfatal) error messages. 

, , (one or more blanks) 

No additional information (fatal and catastrophic messages only). 

Integer as follows: 

o (no additional information). Only fatal and catastrophic error messages 
are written to the $ERRORS file. 

o It is recommended that you request at least informative and trivial 
(nonfatal) error messages. 

• To specify two or more values, enclose the values in a single pair of 
apostrophes; a comma is required between values. (Spaces are also 
allowed between values.) 

File Information Tables 7-55 



FIT Keywords and Values: Quick Reference 

$MINIMUM_RECORD_LENGTH or $MINRL 

Purpose 

Input 

Output 

Default 

Remarks 

Minimum record length, in bytes, for a new file (preserved attribute). 

Integer from 0 through 65497 bytes. The value must be less than or equal 
to the maximum record length. 

A FORTRAN program should not fetch the $MINIMUM_RECORD_ 
LENGTH value from the FIT. It is stored as an address which the 
program cannot use. 

For fixed-length records, the default value is 0; however, the length of each 
fixed-length record must be the $MAXIMUM_RECORD_LENGTH value. 

For variable-length records with an embedded primary key, the default 
value is the sum of the key position and key length values. For 
variable-length records with a nonembedded primary key, the default 
value is 1 byte. 

For variable-length records, it is recommended that you explicitly specify 
the minimum record length. The minimum record length must include the 
primary-key field and any alternate-key fields (or corresponding sparse-key 
control characters). 

7-56 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$NESTED _FILE _NAME or $NFN 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Name of the selected nested file. 

Name of an existing nested file in the file. (The FORTRAN keyed-file 
interface cannot create a new nested file.) 

First 8 characters of the nested-file name. The name is returned 
left-justified, blank-filled, and in uppercase letters. 

$MAIN _FILE (the default nested file). 

o Storing a nested-file name in the FIT selects that nested file for use. 
All following calls operate on the selected nested file until another 
nested-file name is stored. 

o A nested-file name can be specified only while the file is open. It 
cannot be specified by the FILEIS or FILEDA call or by a STOREF 
call before the OPENM call or after the CLOSEM call. 

o When a nested file is selected for the first time during an 
instance-of-open, its open position is specified by the $OPEN_ 
POSITION a,ttribute of the file. 

Later re-selection of the nested file during the instance-of-open 
positions the file at its last position during its prior selection. Thus, a 
task can sequentially access records in one nested file, select another 
nested file, re-select the first nested file, and continue the sequential 
access. 

o The first time a nested file is selected during an instance-of-open, the 
first key selected is the primary key. 

Later, when a nested file is re-selected during the instance-of-open, 
the selected key is set to the last key selected during the previous 
selection of the nested file. Thus, a task can select an alternate key, 
select another nested file, re-select the first nested file and continue 
use of the previously selected alternate key. 

• Selection of another nested file does not release any locks. 

An expired lock status is not returned when locks expire for nested 
files other than the nested file currently selected. However, an expired 
lock status is returned if the task re-selects the nested file and 
attempts an operation on that nested file. 

• The FORTRAN keyed-file interface cannot create additional nested 
files in a keyed file. To do so, use the CREATE_KEYED_FILE 
utility, the NOSNE command COPY_KEYED_FILE, or a CYBIL 
program. 

File Information Tables 7·57 



FIT Keywords and Values: Quick Reference 

OC (Open/Close Flag) 

Purpose Indicates whether a file is open or closed (returned attribute). 

Input You can only fetch information with this FIT keyword. You cannot store 
information with it. 

Output Integer as follows: 

o The file has never been opened. 

1 The file is open. 

2 The file is closed. 

7·58 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

ON (OldlNew Flag) 

Purpose 

Input 

Output 

Default 

Revision A 

Indicates whether the next OPENM call is to create a new file or open an 
existing file. 

Options are: 

'OLD' 

The file exists. 

'NEW' 

The file is being created. 

Integer as follows: 

o The file exists. 

-1 The file is being created. 

Set to 'NEW' if the $ACCESS_MODES value is 'NEW'. Reset to 'OLD' by 
a CLOSEM call. 

File Information Tables 7.59 



FIT Keywords and Values: Quick Reference 

$OPEN _POSITION or SOP 

Purpose Position at which the file is opened (temporary attribute). 

Input Options are: 

'$BOI' 

Open at beginning-of-information (BOI). 

'$ASIS' 

Open without changing the file position. 

'$EOI' 

Open at end-of-information (EOI). 

Output Integer as follows: 

1 Open at beginning-of-information (BOI). 

3 Open at end-of-information (EOI). 

4 Open without changing the file position. 

Default Open at beginning-of-information (,BOI'). 

Remarks If an existing file is opened for append access only, the only valid open 
position is EO!. 

7-60 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$OPEN _SHARE _MODES or $OSM 

Purpose 

Input 

Output 

Default 

Remarks 

60485917 B 

Set of access modes that can be granted to open requests within a job. 

A string of one or more lists of keywords. The list has the form: 

'(access mode), ... , (access mode)' 

The access mode keywords are: 

READ 

Read access. 

SHORTEN 

Shorten access. 

APPEND 

Append access. 

MODIFY 

Modify permission (file statistics are kept). 

EXECUTE 

Execute access. 

WRITE 

Selects SHORTEN, APPEND, and MODIFY 

ALL 

Selects READ, SHORTEN, APPEND, MODIFY, and EXECUTE 

NONE 

No sharing by concurrent instances of open within the tasks. 

A FORTRAN program should not fetch the $OPEN _SHARE _MODES 
value from the FIT. It is stored as an address which the program cannot 
use. 

'(NONE)' 

• To set the share mode for a file, you must store the value in the FIT 
before the file is opened because the value only takes effect for the 
next instance of open. 

• This FIT value is used by the FILEIS, FILEDA, and STOREF calls if 
the associated file is not open. 

• When you specify this FIT value, it replaces any prior specification of 
$OPEN _SHARE_MODES. 

• This FIT value controls sharing of a file within a job. When specified 
by the first of several concurrent instances of open, this option 
constrains the access modes of subsequent concurrent instances of open. 

File Information Tables 7-61 



FIT Keywords and Values: Quick Reference 

• If you specify more than one value, the first one is considered the 
preferred value and the remaining values are considered alternatives. 
When there are no outstanding instances of open, the preferred value is 
used to constrain the modes of access granted to subsequent concurrent 
instances of open. The alternatives are used only when there is another 
outstanding instance of open and the preferred value does not include 
the modes of access specified by other concurrent instances of open. 

7-62 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



FIT Keywords and Values: Quick Reference 

$PASSWORD or $P 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Password that is compared with the password of an existing file. If the file 
is being created, the password is assigned to the file. 

1- to 31-character string indicating the password. 

A FORTRAN program should not fetch the $PASSWORD value from the 
FIT. It is stored as an address which the program cannot use. 

None 

You must use the password on some NOSNE commands, such as 
ATTACH_FILE and DELETE_FILE. 

File Information Tables 7-63 



FIT Keywords and Values: Quick Reference 

$PRIMARY_KEY_ADDRESSor$PKA 

Purpose 

Input 

Output 

Default 

Remarks 

Location to which the primary-key value is returned. 

Variable name. 

NOTE 

The primary-key area should be in a common block. If it is not, your 
program could execute incorrectly after being compiled with high 
optimiza tion. 

A FORTRAN program should not fetch the $PRIMARY_KEY_ADDRESS 
value from the FIT. It is stored as an address which the program cannot 
use. 

o (the primary-key value is not returned). 

If the $PRIMARY_KEY_ADDRESS value in the FIT is nonzero, get calls 
issued while an alternate key is selected return the primary-key value of 
the record read to the specll1ed location. 

7-64 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

RL (Record Length) 

Purpose 

Input 

Output 

Default 

Revision A 

Either the number of bytes written by a PUT call or the number of bytes 
read by the last GET or GETN call (parameter). 

Integer from 1 through the maximum record length. 

A FORTRAN program should not fetch the RL value from the FIT. It is 
stored as an address which the program cannot use. 

When writing a variable-length (U or V) record, the record length must be 
specified. When writing a fixed-length (F) record, the maximum record 
length is used as the record length value. 

File Information Tables 7-65 



FIT Keywords and Values: Quick Reference 

$RECORD_LIMIT or $RL 

Purpose 

Input 

Output 

Default 

Remarks 

Maximum number of records in the file (preserved attribute). 

Integer from 1 through 4398046511103 ([2**42] - 1). 

A FORTRAN program should not fetch the $RECORD_LIMIT value from 
the FIT. It is stored as an address which the program cannot use. 

4398046511103 ([2**42] - 1) 

Mter the file is first opened, the RECORD_LIMIT attribute value is stored 
with the file. However, you can change the RECORD_LIMIT attribute 
value of an existing file with the NOSNE command CHANGE_FILE_ 
ATTRIBUTES. 

7-66 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$RECORD _ TYPE or $RT 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Record type (preserved attribute). 

Options are: 

'VARIABLE' or 'V' 

Variable-length records. 

'FIXED' or 'F' 

Fixed-length records. 

'UNDEFINED' or 'U' 

Undefined-length records. 

'TRAILING_CHARACTER_DELIMITED' or 'TRAILING' or 'TCD' or 
'T' 

Trailing_ character _ delimited records. 

Integer as follows: 

o Variable-length (V) records. 

1 Fixed-length (F) records. 

7 Undefined-length CU) records. 

Undefined-length CU) records. 

• The keyed-file interface processes record types U and V the same. 

• The keyed-file interface does not support the trailing_character_ 
delimited record type. 

File Information Tables 7-67 



FIT Keywords and Values: Quick Reference 

Purpose 

Input 

Output 

Default 

Estimated number of records to be stored in each data block of a new file. 

NOSNE uses this value to select the block size for a new file if the 
maximum block length for the file is not specified. This file attribute 
value is not preserved with the file because it is used only when the file 
is opened for the first time. 

Integer from 1 through 65535. 

A FORTRAN program should not fetch the $RECORDS_PER_BLOCK 
value from the FIT. It is stored as an address which the program cannot 
use. 

Two records per block. 

7-68 FORTRAN for NOSIVE Keyed-File and SortlMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$SKIP _COUNT or $SC 

Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

Either the number of records to be skipped by the next SKIP call 
(parameter) or the residual skip count from the last SKIP call. 

Integer. If the skip count is positive, a SKIP call skips forward the 
specified number of records. If the skip count is negative, a SKIP call 
skips backward the specified number of records. 

A zero skip count indicates that the skip operation completed. A nonzero 
value indicates that the skip operation did not complete. 

A nonzero value returned is the residual skip count. A residual skip 
count is the difference between the requested skip count and the actual 
number of records skipped. 

o (no file repositioning). 

The returned skip count is nonzero when the SKIP call encounters the BOI 
or EOI of the file before it completes the skip. To determine the file 
position, call IFETCH to return the $FILE_POSITION value. 

File Information Tables 7-69 



FIT Keywords and Values: Quick Reference 

$WAIT_FOR_ATTACHMENT or $WFA 

Purpose 

Input 

Output 

Default 

Remarks 

Number of milliseconds to wait for the attachment of a file. 

Integer 

A FORTRAN program should not fetch the $WAIT_FOR_ATTACHMENT 
value from the FIT. It is stored as an address which the program cannot 
use. 

o (Do not wait) 

• If you do not specify a wait time, the abnormal status PFE$CYCLE_ 
BUSY is returned if the requested file cycle is busy. A file cycle is 
busy if the attach request specifies a usage selection set or share 
selections set that is incompatible with the current attaches of the 
file. 

• If you specify a wait time for a file that is currently busy, other 
attach requests for the file cycle can be processed while your task 
waits for the file. 

• This FIT value is used by the FILEIS, FILEDA, and STOREF calls if 
the associated file is not open. 

7-70 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Purpose 

Input 

Output 

Default 

Remarks 

Revision A 

FIT Keywords and Values: Quick Reference 

Indicates whether the lock request should wait until the lock is available 
or the time limit has been reached. 

Options are: 

'YES' or 'Y' or 'TRUE' or 'T' or 'ON' 

The request waits for the lock. 

'NO' or 'N' or 'FALSE' or 'F' or 'OFF' 

The request does not wait for the lock. 

Integer as follows: 

-1 The request waits for the lock (YES). 

o The request does not wait for the lock (NO). 

YES (the request waits for the lock). 

o This FIT value may be used by GET, GETN, LOCKF, and LOCKK 
calls as follows: 

- Used by GET and GETN calls when the FIT value $GET_AND_ 
LOCK is YES (-1). 

- U sed by LOCKF and LOCKK if the wfl parameter is omitted from 
the call. 

• When waiting is requested, the call checks for a possible deadlock. If 
a deadlock exists with another task, it immediately returns a nonfatal 
error status. 

o If the lock is owned by another instance-of-open of the same task, a 
self-deadlock exists and the call immediately returns a nonfatal error 
status. 

o You can change the maximum waiting period for the lock (used if wfl 
is YES). The default value is 60 seconds. To change the waiting 
period, create an NOSNE integer variable named AAV$RESOLVE_ 
TIME_LIMIT and initialize it to the new waiting period value in 
seconds. For example, this call executes an NOSNE command that 
sets the waiting period at 45 seconds: 

CALL SCLCMD ('var AAV$RESOLVE_TIME_LIMIT_: integer=45;varend') 

Be aware of the scope of the AAV$RESOLVE_ TIME_LIMIT variable. 
The default scope is LOCAL. If the time limit change should apply to 
all tasks, specify the scope as JOB within the VAR VAREND 
structure. 

File Information Tables 7-71 



FIT Keywords and Values: Quick Reference 

$WORKING_STORAGE_ADDRESS or $WSA 

Purpose 

Input 

Output 

Remarks 

Location to which data is read and from which data is written (parameter). 
I 

Variable name. 

NOTE 

The working storage area should be in a common block. If it is not, your 
program could execute incorrectly after being compiled with high 
optimization. 

A FORTRAN program should not fetch the $WORKING_STORAGE_ 
ADDRESS value from the FIT. It is stored as an address which the 
program cannot use. 

• You can specify the $WORKING_STORAGE_ADDRESS location 
either on a STOREF call or on a get or put call. When you specify a 
$WORKING_STORAGE_ADDRESS location on a call, the 
$WORKING_STORAGE_ADDRESS location is stored in the FIT and 
used by all subsequent get or put calls until another $WORKING_ 
STORAGE_ADDRESS location is specified. 

• The length of the working-storage area is stored in the FIT as the 
$WORKING_STORAGE_LENGTH value. 

7-72 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



FIT Keywords and Values: Quick Reference 

$WORKING _STORAGE _LENGTH or $WSL 

Purpose 

Input 

Output 

Length, in bytes, of the working storage area. 

Integer less than or equal to the maximum record length value. 

A FORTRAN program should not fetch the $WORKING _STORAGE_ 
LENGTH value from the FIT. It is stored as an address which the 
program cannot use. 

Default For read requests, the maximum record length value; for write requests, 
the record length value. 

Remarks For read requests, $WORKING _STORAGE _LENGTH may be used to 
restrict the portion of a record that is read. When $WORKING_ 
STORAGE _LENGTH is less than the actual record length, a portion of the 
record is read and a condition is returned to indicate a partial read. 

60485917 B File Information Tables 7·73 





Sort/Merge Interface 8 

What SorUMerge Does ........................................................... 8-1 

Sort Keys ....................................................................... 8-2 
Multiple Keys .................................................................. 8-2 

Defining Sort Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-3 
Key Length and Position ...................................................... 8-3 
Key Type ..................................................................... 8-4 

Collating Sequences ......................................................... 8-5 
Numeric Data Formats ...................................................... 8-5 

Sort Order .................................................................... 8-9 

Specifying the Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-10 
Short Records ................................................................ 8-10 

Exception Processing for Partial Numeric Key Sum Fields ................... 8-11 
Exception Processing for Partial Sum Fields ................................ 8-11 

Zero-Length Records .......................................................... 8-12 
Invalid Records ............................................................... 8-13 

Exception Processing for Invalid Key Data .................................. 8-14 
Exception Processing for Summing Errors ................................... 8-14 

Performance Considerations ..................................................... 8-15 
Limiting Memory Usage ...................................................... 8-15 
Page _Aging _Interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-16 

SorUMerge Procedure Calls ..................................................... 8-16.1 
Attaching the SorUMerge Object Library ..................................... 8-16.1 
Order of the Procedure Calls ................................................. 8-16.1 
Characteristics of SorUMerge Files ........................................... 8-16.2 
Specifying Input and Output Files ............................................ 8-16.2 
Owncode Procedures ......................................................... 8-16.2 
SM5CC ....................................................................... 8-18 
SM5DUCT ........................... ;....................................... 8-19 
SM5E ........................................................................ 8-20 
SM5EL .......................... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-21 
SM5END ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-22 
SM5ENR .................................................................. . .. 8-23 
SM5ERF ..................................................................... 8-24 
SM5FMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-25 
SM5FROM ................................................................... 8-26 
SM5KEY ..................................................................... 8-27 
SM5LCT ..................................................................... 8-30 
SM5LIST ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-31 
SM5LO ....................................................................... 8-32 
SM5MERG ................................................................... 8-33 
SM50FL ..................................................................... 8-35 
SM50MIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-36 
SM50MRL ................................................................... 8-37 
SM50WN n ................................................................... 8-38 
SM5RETA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-39 
SM5SEQA .................................................................... 8-40 
SM5SEQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-41 
SM5SEQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-42 

60485917 B 



SM5SEQS .................................................................... 8-43 
SM5S0RT .................................................................... 8-44 
SM5ST ................................................................... " .... 8-45 
SM5SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-46 
SM5TMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-47 
SM5TO ....................................................................... 8-48 
SM5VER ..................................................................... 8-50 
SM5ZLR ..................................................................... 8-51 

Owncode Procedures ............................................................. 8-52 
Owncode Procedure Parameters ............................................... 8-54 
Owncode Procedure Record Length ............................................ 8-55 

Owncode 1: Processing Input Records ............................................ 8-56 
One or More Input Files Specified.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-56 
Input Files Not Specified ..................................................... 8-57 

Owncode 2: Processing Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-58 
One or More Input Files Specified............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-58 
Input Files Not Specified ..................................................... 8-58 

Owncode 3: Processing Output Records ........................................... 8-59 
Output File Specified ......................................................... 8-59 
Output File Not Specified ..................................................... 8-60 

Owncode 4: Processing the Output File .......................................... 8-61 
Output File Specified ......................................................... 8-61 
Output File Not Specified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-61 

Owncode 5: Processing Records With Equal Keys ........................ " ........ 8-62 

Using FORTRAN Procedure Calls ............................................... 8-64 
Example 1: Sorting the Dean's List ........................................... 8-64 
Example 2: An In-Memory Sort ............................................... 8-68 

Creating an Object Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-70 

Summing Records ............................................................... 8-72 

Defining Your Own Collating Sequence .......................................... 8-73 

60485917 B 



§ orctfMI ercge linterface 

SortlMerge is a set of procedures that NOSNE provides so you can sort and merge 
data. SortlMerge can be used with NOSNE commands, or with procedure calls from 
within a program written in COBOL, CYBIL, or FORTRAN. 

This chapter introduces the functions and features of SortlMerge using FORTRAN 
procedure calls. 

What Sort/Merge Does 

§ 

The purpose of sorting is to arrange items in order. The purpose of merging is to 
combine two or more sets of preordered items. Ordered information makes reports more 
meaningful and suggests critical relationships. Searches for information are faster with 
ordered lists. 

The purpose of Sort/Merge is to arrange records in the sequence you specify . You 
describe the records you want to sort or merge and how SortlMerge is to order them. 

SortlMerge can: 

• Sort or merge records from as many as 100 files with one call to SortlMerge. 

o Sort character and noncharacter key types. 

o Read input records with variable-length (V), fixed-length (F), or 
trailing-character-delimited (T) record type. 

o Read input records from sequential, indexed-sequential, or direct-access files. It 
can write output records to sequential or indexed-sequential files. 

o Read input records from and write output records to memory areas, mass storage 
files, and magnetic tape files. 

o Sort according to 12 predefined collating sequences, 13 numeric formats, and one 
or more user-defined collating sequences. 

• Sum fields in records that have equivalent key values. 

o Use owncode procedures to insert, substitute, modify, or delete records during 
Sort/Merge processing. 

o Be called from any language that matches the calling sequence although some 
restrictions may apply (described later). 

Merge capabilities are more restricted than sort capabilities. Merge input records 
cannot be supplied by owncode procedures. Records to be merged must be presorted. 
Records to be merged and summed must be pre-sorted and pre-summed. 

FORTRAN sorts are initiated with the SM5S0RT procedure call and merges are 
initiated with the SM5MERG procedure call. You specify processing requirements for 
the sort or merge with various procedure calls. 

Revision A Sort/Merge Interface 8·1 



Sort Keys 

Sort Keys 
Sort or merge operations are based on the ordering of fields assigned to the data to be 
sorted or merged. These fields are called sort keys. This section discusses what sort 
keys are and how a key is defined. 

A sort key is a field of data within each input record. SortlMerge uses the contents 
of the sort key to determine the position of the record within the sorted sequence of 
records. 

Data must be aligned correctly in a sort key field. Character data must be 
left-justified in the field, and numeric data must be right-justified in the field. 

Multiple Keys 

A file can be sorted on more than one sort key. The combined length of all key fields 
in a record cannot exceed 1023 bytes. 

The first key you specify is the most important key and is called the major sort key. 
This key is sorted or merged first. The keys you specify after the first key are of 
lesser importance and are called minor sort keys. The minor keys are numbered in 
the order they are specified. 

For example, if three sort keys are specified, the first key is the major sort key (key 
number 1), the next key listed is a minor key (key number 2), and the third key is 
another minor key (key number 3). 

When two or more records have an equal major key, SortJMerge determines the order 
by looking at the subsequent minor keys in the following order: key number 2, key 
number 3, and so on. SortJMerge compares the minor keys until either an unequal 
key is found, or until there are no more keys. 

For example, university student records could be sorted using multiple sort keys. 
Assume each record includes the last name and first and middle initials, the student 
number, the date of birth, the field of study, the grade point average, and a code 
representing class (freshman, sophomore, junior, senior); all the fields are written 
with character data. The file could be maintained with the student number as the 
major key since records are normally retrieved by specifying the student number. The 
file can be sorted by the name in alphabetic order when a list of student names is 
needed. 

When a university department needs to know which students are majoring in fields 
within the department, the file can be sorted on the field of study. The same sort can 
specify the name as a minor key so that records with the same field of study are 
also sorted in alphabetic order by the name. The file can be sorted by the class code 
as the major key and by the grade point average in descending numeric order as a 
minor key. This would produce a list of students sorted by class code with the 
students having the highest grade point average at the beginning of the list. 

8·2 FORTRAN for NOSIVE Keyed-File and Sort/M:erge Interfaces Revision A 



Defining Sort Keys 

Defining Sort Keys 

You must describe to SortlMerge every field of data that you want used as a sort key. 
Sort key descriptions include the following information: 

• Starting location of the key within the record 

• Key length 

o Type of data in the key field 

• Sort order 

You can define sort keys with SM5KEY procedure calls. The options and assumed 
values for describing sort keys are discussed in the following paragraphs. 

Key Length and Position 

You define key field length and position by specifying the first byte of the field and 
either the number of bytes in the field (length of the field) or the last byte of the field. 
The leftmost byte in a record is counted as number 1. For character data, each 
character is 8 bits and occupies 1 byte. For example, if you want to specify the name 
of the university student file as a sort key, and the name field is the leftmost field in 
the record, you specify the first byte as 1. If the name field is 20 characters long, you 
specify the length as 20. 

SortlMerge interprets the integers you specify for key length and position as bit 
numbers when the key type (discussed later in this chapter) specifies bits; otherwise, 
byte numbers are assumed. The first bit is numbered 1. Table 8-1 lists the maximum 
key field lengths for each key type. SortlMerge allows key fields to overlap other key 
fields, except for the following: 

o Key fields that are ordered by collating sequences defined with the alter option 
cannot overlap other key fields. 

o Key fields cannot overlap sum fields. 

Table 8-1. Maximum Key Field Sizes 

Maximum Size (in Maximum Size (in 
Key Type Bytes) Key Type Bytes) 

Character 1023 BINARY 8 
NUMERIC_FS 1023 BINARY_BITS 8184 (bits) 
NUMERIC_La 38 INTEGER 8 
NUMERIC_LS 38 INTEGER_BITS 8184 (bits) 
NUMERIC_NS 38 PACKED 19 
NUMERIC_TO 38 PACKED_NS 19 
NUMERIC_TS 38 REAL 8 or 16 

Revision A Sort/Merge Interface 8·3 



Defining Sort Keys 

Key Type 

You specify the type of data in a key field with the name of a collating sequence or 
with the name of a numeric data format. The data in a key field can be character or 
noncharacter. Character data is represented in the computer as ASCII code values. To 
indicate the key type for character data, you specify the name of a collating sequence; 
for numeric character data, you specify the name of a numeric data format. 
Noncharacter data is represented in the computer as binary values, in packed decimal 
format, or in floating-point format. 

The difference between the internal representation of character and noncharacter data 
is shown in figure 8-1. 

Character Data Noncharacter Data 

I - I 2 3 4 -1234 

Hexadecimal equivalent of ASCII code character Hexadecimal equivalent of binary value 

39 31 23 1S 7 0 63 o 

I 31 I 32 I 33 IFFF B2E I 
Figure 8-1. Internal Data Representation 

If a sort key field contains any characters that are not meaningful for the key type 
you specify (an alphabetic character in a field defined as a numeric key, for example), 
the key field is considered to contain invalid data and so the record is invalid. The 
processing of invalid records is described later in this chapter. 

The collating sequences and numeric data formats you can specify are discussed in 
the following paragraphs. 

8·4 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Defining Sort Keys 

Collating Sequences 

A collating sequence determines the precedence given to each character in relation to 
the other characters. You use a collating sequence for character data to determine the 
sort order. Character data must be in ASCII code characters. 

Twelve predefined collating sequences are available to you as a SortlMerge user. Six 
of the twelve predefined collating sequences are: ASCII, ASCII6, COBOL6, DISPLAY, 
EBCDIC, and EBCDIC6. If you do not specify a collating sequence, ASCII code is 
used. The predefined collating sequences are listed in appendix C, ASCII Character 
Set and Collating Weight Tables. 

For Better Performance 

SortlMerge sorts fastest when using the ASCII collating sequence. 

Numeric Data Formats 

Numeric data can appear in a key field in one of the formats listed in table 8-2, 
Numeric Data Formats. 

For Better Performance 

For numeric data, the most efficient numeric data formats are INTEGER, BINARY, 
and REAL. 

Except for the BINARY_BITS and INTEGER_BITS formats, each field must start and 
stop on character (byte) boundaries. 

Numeric data can be signed or unsigned. For character numeric data that is signed, 
the sign can be a floating sign, an overpunch representation over the leading 
(leftmost) digit, a leading separate character, an overpunch representation over the 
trailing (rightmost) digit, or a trailing separate character. 

Revision A SortJMerge Interface 8·5 



Defining Sort Keys 

Table 8-2. Numeric Data Formats 

Name 

BINARY 

BINARY_ 
BITS 

INTEGER 

INTEGER_ 
BITS 

NUMERIC_ 
FS 

Data Type 

Binary integer 

Binary integer 

Two's 
complement 
binary integer 

Two's 
complement 
binary integer 

Leading blanks, 
numeric 
characters 

Sign 

None 

None 

Positive if 
leftmost bit is 0; 
negative if 
leftmost bit is 1 

Positive if 
leftmost bit is 0; 
negative if 
leftmost bit is 1 

- sign for 
negative values; a 
+ character is 
not allowed 

8-6 FORTRAN for NOSNE Keyed-File nnd SortJMerge Interfaces 

Comments 

The field starts and ends on 
character boundaries. Data is 
ordered according to numeric 
value. 

The field does not start or end 
on character boundaries. Data 
is ordered according to 
numeric value. 

The field starts and ends on 
character boundaries. Data is 
ordered according to numeric 
value. 

The field does not start or end 
on character boundaries. Data 
is ordered according to 
numeric value. 

The field contains leading 
blanks (leading zeros must be 
converted to blanks before 
calling SortJMerge); if the 
value is negative, the 
rightmost leading blank must 
be converted to a minus sign. 
If the field contains no leading 
blanks or does not begin with 
a negative sign, the value 
must be positive. This format 
is equivalent to the FORTRAN 
I format, or the COBOL 
picture clause for zero 
suppressed editing of numeric 
item. Data is ordered 
according to numeric value. 

(Continued) 

Revision A 



Table 8·2. Numeric Data Formats (Continued) 

Name 

NUMERIC_ 
LO 

NUMERIC_ 
LS 

NUMERIC_ 
NS 

NUMERIC_ 
TO 

NUMERIC_ 
TS 

Revision A 

Data Type 

Numeric 
characters 

Numeric 
characters 

Numeric 
characters 

Numeric 
characters 

Numeric 
characters 

Sign 

Leading 
overpunch 

Leading separate 

None 

Trailing 
overpunch 

Trailing separate 

Defining Sort Keys 

Comments 

All characters are decimal 
digits except the leading 
character, which indicates a 
sign by an overpunch. Data is 
ordered according to numeric 
value with all forms of zero 
ordered equally. 

All characters are decimal 
digits except the leading 
character, which is a negative 
or positive sign. Specifying a 
field that is not at least two 
characters in length causes a 
fatal error. Data is ordered 
according to numeric value 
with all forms of zero ordered 
equally. 

All characters are decimal 
digits. Data is ordered 
according to numeric value. 

All characters are decimal 
digits except the trailing 
character, which indicates a 
sign by an overpunch. Data is 
ordered according to numeric 
value with all forms of zero 
ordered equally. 

All characters are decimal 
digits except the trailing 
character, which is a negative 
or positive sign. Specifying a 
field that is not at least two 
characters in length causes a 
fatal error. Data is ordered 
according to numeric value 
with all forms of zero ordered 
equally. 

(Continued) 

SortlMerge Interface 8·7 



Defining Sort Keys 

Table 8-2. Numeric Data Formats (Continued) 

Name 

PACKED 

REAL 

Data Type Sign 

Packed decimal Signed 

Unsigned packed Unsigned 
decimal 

Normalized 
floating-point 
number, either 
single-precision 
(8 bytes) or 
double-precision 
(16 bytes) 

Signed 

Comments 

Data is ordered according to 
numeric value. 

Data is ordered according to 
numeric value. PACKED_NS 
is the same as COBOL 
COMPUTATIONAL-3 with no 
sign. 

All forms of zero are ordered 
equally. The order of 
indefinite values is undefined. 
The order of infinite values is 
ordered as if its value were 
infinity (can be signed 
infinity). 

A floating sign is a negative sign embedded between leading blanks and the numeric 
characters. A floating sign can also be a negative sign followed by numeric 
characters. Leading zeros must be converted to blanks. Positive values in this format 
are not signed. The following examples are valid floating sign formats: 

AA-l 
AAAI 
AA-O 
L\AAO 
-123 
1234 

The following examples are invalid floating sign formats: 

AAOI 
A-Ol 
+123 
AAAA 

Leading zero not allowed 
Leading zero not allowed 
Positive sign not allowed 
All-blank field not allowed 

Diagnostic messages are issued for invalid floating sign formats or invalid overpunches. 

A negative sign overpunch is equivalent to overstriking a digit with a - , which is a 
punch in row 11 of a punched card. A positive sign overpunch is equivalent to 
over striking a digit with a + , which is a punch in row 12 of a punched card. When 
a signed overpunch digit is received as input, the digit is punched as indicated in the 
second column of table 8-3. When a signed overpunch digit is entered from a 
terminal or displayed as output, the digit appears as indicated in the third column of 
table 8-3. The hexadecimal value is in the fourth column. 

8-8 FORTRAN for NOSNE Keyed-File and SorUMerge Interfaces Revision A 



Defining Sort Keys 

Table 8-3. Sign Overpunch Representation 

Sign and Input Input/Output Hexadecimal 
Digit Punch Represen tation Value 

+0 0 0 30 
+1 1 1 31 
+2 2 2 32 
+3 3 3 33 
+4 4 4 34 
+5 5 5 35 
+6 6 6 36 
+7 7 7 37 
+8 8 8 38 
+9 9 9 39 
+0 12-0 { 7B 
+1 12-1 A 41 
+2 12-2 B 42 
+3 12-3 C 43 
+4 12-4 D 44 
+5 12-5 E 45 
+6 12-6 F 46 
+7 12-7 G 47 
+8 12-8 H 48 
+9 12-9 I 49 
-0 11-0 } 7D 
-1 11-1 J 4A 
-2 11-2 K 4B 
-3 11-3 L 4C 
-4 11-4 M 4D 
-5 11-5 N 4E 
-6 11-6 0 4F 
-7 11-7 P 50 
-8 11-8 Q 51 
-9 11-9 R 52 
+0 12-8-4 < 3C 
+0 12 & 26 
-0 12-8-7 21 
-0 11 2D 

Sort Order 

SortlMerge can sort a key in ascending or descending order. If you do not specify a 
sort order, SortlMerge sorts the key in ascending order. 

When sorting a numeric key in ascending order, SortlMerge sorts the key values in 
numeric order from least to greatest. When sorting a numeric key in descending 
order, SortlMerge sorts the key values in numeric order from greatest to least. 

A character key is sorted according to the collating sequence you specify for the key. 
When sorting a character key in descending order, SortlMerge sorts the key values in 
reverse order of the collating sequence you specify. 

Revision A SortlMerge Interface 8-9 



Specifying the Record Length 

Specifying the Record Length 

SortlMerge can sort records up to 65,535 bytes long. SortlMerge determines the 
maximum and minimum record lengths for a file by its MAXIMUM_RECORD_ 
LENGTH and MINIMUM_RECORD_LENGTH file attributes. The record length 
attributes are set when the file is created 

The default sort key begins with the first byte in the record and extends to the 
smallest minimum record length value for all input files. If the minimum 
MINIMUM_RECORD_LENGTH attribute for all input files is 0, SortlMerge uses 1 
as the key length. If the minimum MINIMUM_RECORD_LENGTH attribute for all 
input files is greater than 1023, SortlMerge uses 1023 as the key length. 

When the SortlMerge specification specifies an owncode 1 procedure and an owncode 3 
procedure, but no input or output file, SortlMerge expects all input records to be 
provided by the owncode 1 procedure and all output processing to be performed by 
the owncode 3 procedure. In this case you must specify the record length SM50FL or 
SM50MRL call. 

Short Records 

A short record is a record that does not contain all the key and sum fields defined for 
the sort or merge. SortlMerge determines that a record is short when it reads the 
record frOln the input source. 

NOTE 

Records can become short when the system strips off all trailing blanks from 
variable-length (V) records. For example, when a variable-length (V) record containing 
all spaces is displayed by the NOSNE command DISPLAY_FILE, the spaces are 
stripped from the record, leaving a zero-length record. 

When SortlMerge attempts to use a field in a record and finds that the field is entirely 
beyond the end of the record, it uses a default value for the field. For character keys, 
the default value is all spaces. For numeric keys and sum fields, the default value is 
zero in the appropriate format. 

SortlMerge uses the default value only when using the key value or the sum field 
value. It does not pass the default value to an owncode procedure or store it in the 
output record. 

SortlMerge processing differs when the field it attempts to use is only partially 
beyond the end of the record. If the partial field is a character key field, SortlMerge 
pads it with spaces, but if the partial field is a numeric key field or a sum field, 
SortlMerge processes it as an exception. 

8-10 FORTRAN for NOSNE Keyed-File and SortiMerge Interfaces Revision A 



Specifying the Record Length 

Exception Processing for Partial Numeric Key Sum Fields 

Exception processing for partial numeric key fields is as follows: 

1. The record is written to the exception records file if one is specified for the sort 
or merge. 

2. If an exception records file exists, the record is removed from the sort or merge; 
otherwise, its order is left undefined. 

3. The count of partial numeric key fields or sum fields is incremented. A warning 
error message gives the count at the end of the sort or merge. 

Exception Processing for Partial Sum Fields 

Exception processing for partial sum fields differs if an exception records file is 
specified: 

1. If an exception records file is specified: 

a. SortlMerge writes the record with the partial sum field to the exception 
records file. It writes the record with its original data as it was read from the 
input source. 

b. It then removes the record from the sort or merge. 

2. If an exception records file is not specified: 

a. SortlMerge keeps the record with the partial sum field in the sort or merge. 

b. Later, if SortlMerge finds other records whose key values are equivalent to the 
record, it sums the records as if the partial sum field contains a valid value; 
it does not process the partial sum field as invalid data. However, because the 
results of summing with a partial field are undefined, the resulting contents of 
the sum field are undefined. 

If SortlMerge reads any records with partial sum fields, it returns a summary 
diagnostic at the end of the sort or merge, giving the number of records with partial 
sum fields. 

Revision A SortlMerge Interface 8-11 



Specifying the Record Length 

Zero-Length Records 

A zero-length record is a record that contains no data and so its record length is o. 
The processing of zero-length records read from input files depends on the SM5ZLR call 
in the Sort&lerge specification. 

By default, if the SM5ZLR call is omitted, SortlMerge deletes all zero-length records 
from the sort or merge. This is the DELETE option. 

However, instead of a DELETE specification, SM5ZLR can specify one of these 
processing options for zero-length records: 

PAD 

Assign default values to key fields and sum fields in zero-length records (as it 
would short records) and keep the zero-length records in the sort or merge. 

LAST 

Write all zero-length records at the end of the output file or memory area. 

Zero-length records are never written to the exception records file if the DELETE 
option is selected. Zero-length records are written to the exception records file if the 
PAD option is selected and either of the following situations exist: 

• If merge order verification is requested and the input files contain zero-length 
records which are not pre-sorted on the merge keys. 

• If AMP$PUT_NEXT detects an error while writing a zero-length record. (In 
general, attempts to write zero-length records to an indexed-sequential file cause 
errors.) 

If duplicate records are to be omitted (as specified by an SM50MIT call) and the PAD 
option is specified for zero-length records, only one zero-length record is included in the 
sort or merge. 

Zero-length records are passed to owncode procedures only if the PAD option is 
selected. When passing a zero-length record to an owncode procedure, SortJMerge 
passes an empty array of the maximum record length and the record length 
parameter set to zero. 

8·12 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Specifying the Record Length 

The counts kept in the result array for the sort or merge may differ depending on the 
SM5ZLR specification: 

Word 2, number of records read 

Zero-length records are always included in the count. 

Word 6, number of records sorted or merged 

Zero-length records are included only if the PAD option is selected. 

Words 13, 14, and 15; number of records written, the minimum record length, and the 
average record length 

Zero-length records are included in the computation of these values only if the 
PAD or LAST option is selected. 

Word 17, the number of zero-length records deleted from the sort or merge 

This count is kept only if the DELETE option is selected. 

Invalid Records 

SortIMerge checks that all key fields contain data that is valid for the key type. It 
determines whether a sum field contains valid data only when it attempts to use the 
data. It does not validate any fields other than key fields and sum fields. 

A record can also be determined to be invalid when it is written. SortJMerge writes 
records to the output file using the system procedure AMP$PUT_NEXT. A record is 
considered invalid if AMP$PUT_NEXT returns an error when it attempts to write 
the record. For example, when writing an indexed-sequential file, AMP$PUT_NEXT 
returns an error if the primary-key value for the record is already in the file. 

Invalid records are processed as exceptions. The processing performed depends on 
whether the invalid data is in a key field or a sum field. 

Revision A So~erge Interface 8·13 



Specifying the Record Length 

Exception Processing for Invalid Key Data 

A warning error is issued if a key field contains invalid data. The warning error 
results in the following actions: 

1. The record is written to the exception records file if an exception records file was 
specified. 

2. The record is deleted from the sort or merge if an exception file was specified. If 
an exception records file was not specified, the record remains in the sort or 
merge, but its place in the sort order is undefined. 

3. A diagnostic message is issued, as controlled by the list options specification. 

4. The sort or merge continues normally. 

Exception Processing for Summing Errors 

SortlMerge detects summing errors only when it attempts to sum fields. Only one error 
is detected per sum field. The summing error is processed as an exception. If the 
LIST_OPTIONS requests detailed error reporting (DE), Sort/Merge issues a diagnostic 
for each summing error. 

The exception processing performed for summing errors depends on the error detected 
and on whether an exception records file is specified for the sort or merge. 

If an exception records file is specified: 

1. SortlMerge restores all sum fields of both records so their contents is the same as 
it was before summing of the two records began. 

2. If the error is due to invalid data or an indefinite real, SortlMerge knows that at 
least one of the sum fields in the record is in error; it does not know if the same 
sum fields in the other record is also in error. Therefore, it writes the record it 
knows to be in error to the exception records file and removes it from the sort or 
merge, but it leaves the other record in the sort or merge. 

3. If SortlMerge detects an arithmetic overflow or underflow error or finds that each 
record has invalid data in different sum fields, it knows that both records are in 
error. Therefore, it writes both records to the exception records file and removes 
both from the sort or merge. 

If an exception records file is not specified: 

1. SortlMerge deletes one of the records. If one record is longer than the other, the 
shorter is deleted. Otherwise, either record could be deleted. 

2. The other record remains in the sort or merge with undefined data in the sum 
field for which the error was detected. Summing is completed for the other sum 
fields. 

8-14 FORTRAN for NOSIVE Keyed-File and SortlMerge Interfaces Revision A 



Performance Considerations 

Performance Considerations 

To improve the performance of SortiMerge in your programs, consider the following: 

o Do not use owncode procedures except when necessary. Allow SortlMerge to read 
the input records from files and write the output records to a file. 

o Ensure that all key fields and sum fields are within the minimum record length 
for all input records. Additional processing is required for short records. 

o If possible, use a fixed record length instead of a variable record length. 

o SortlMerge sorts fastest when using the ASCII collating sequence. For numeric 
data, the most efficient numeric data formats are INTEGER, BINARY, and REAL. 

o SortlMerge can read and write files faster if the files use the following default 
attributes: 

Sequential file organization 

F record type 

System-specified blocking 

No error-exit procedure 

No file access procedure (FAP) 

- The padding character is space 

o Use the optimum page_aging interval for your sort, as described under Page_ 
Aging_Interval in this chapter. 

SortJMerge also executes faster when your site uses a larger page size. 

Limiting Memory Usage 

By default, SortlMerge limits the memory assigned to its sorting array to 262,144 
(256K) bytes. However, you can change this limit by defining a NOSNE integer 
variable named SMV$MEMORY_USAGE_LIMIT. The integer you assign to the 
variable is used as the memory usage limit for subsequent sorts within the scope of 
the variable. 

NOTE 

The SMV$MEMORY_USAGE_LIMIT value is not used to specify limit memory usage 
for merges; it is used only for sorts (including the internal merge performed as part 
of a sort). 

The integer assigned to the SMV$MEMORY_ USAGE_LIMIT variable is the memory 
limit in 1024-byte (lK) units. 

The minimum limit is 64. If you specify an integer less than 64, SortlMerge uses the 
minimum limit of 64. 

The maximum limit is 16,383. If you specify an integer greater than 16,383, 
SortJMerge uses the maximum limit of 16,383. 

Revision A SortlMerge Interface 8·15 



Performance Considerations 

A warning error is issued when you specify a value outside the range from 64 to 
16,383. 

Increasing the memory usage limit improves sort performance when: 

• The file to be sorted is too large to be sorted in memory all at once (greater than 
1,048,576 [1024K] bytes). 

• The SMV$MEMORY_ USAGE_LIMIT value is set to at least the size of the file to 
be sorted (up to 16,383K bytes). This allows the file to be sorted in memory all at 
once. 

• The records in the file to be sorted are considerably disordered. If the records are 
already mostly sorted, increasing the memory usage limit has little effect on sort 
performance. 

If you increase the memory usage limit for your sorts, you should also increase your 
page_aging_interval to prevent system thrashing. (The page_aging_interval job 
attribute is described in the next section.) 

As an example of creating the variable, the SCL statement VARIVAREND is used to 
create the SMV$MEMORY_ USAGE_LIMIT variable and assign it the value 64. 

call sclcmd ('var smv$memory_usage_limit: (local) integer = 64; varend') 

Page _Aging _Interval 

Page_aging_interval is the job attribute that controls how quickly pages are aged from 
the working set of a task. If you increase the memory usage limit for your sorts using 
the SMV$MEMORY_ USAGE_LIMIT variable, you should also increase your page_ 
aging_interval value. 

The optimum page_aging_interval depends on the CYBER 180 model you use. A 
smaller value is appropriate for the faster models. For example, when the default 
memory usage limit of 256 pages is used, the optimum page_aging_interval for a 
CYBER 180/830 is about 500,000 microseconds, while, for a CYBER 180/860, the 
optimum value is about 100,000 microseconds. 

To see your current page_aging_interval attribute value', enter the following NOSNE 
command: 

To change your page_aging_interval value, use the CHANGE_JOB_ATTRIBUTE 
command. For example, the following command changes the page_aging_interval to 
500,000 microseconds: 

8-16 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



SortfMerge Procedure Calls 

Sort/Merge Procedure Calls 

FORTRAN SortiMerge procedure calls must follow the same coding rules as other 
FORTRAN call statements. The SortiMerge calls can be used by other languages that 
use the standard calling sequence. 

Attaching the SortlMerge Object Library 

To use the SortiMerge calls described in this chapter, you must add the following 
object library to the program library list before executing the program: 

SMF$LIBRARY 

Th~ system attaches the file when you login, but you must add it to your library list 
so that modules can be loaded from the file. 

For example, the following SET _PROGRAM _ATTRIBUTE command adds the object 
library to the program library list: 

/set_program_attribute add_library=smf$library 

Or, you can specify the object library on the EXECUTE _TASK command. This 
example specifies the object file LGO and the sortJmerge object library SMF$LIBRARY: 

/execute_task file=lgo library=smf$library 

To read more about the program library list, see the NOSNE Object Code Management 
Usage manual. 

Order of the Procedure Calls 

The procedures can be called in any order with two exceptions: 

• SM5S0RT or SM5MERG must be the first procedures called. 

• SM5END must be the last procedure called. 

SortJMerge collects processing information until SM5END is called; the sort or merge is 
then performed. 

Unless stated otherwise, a procedure can be called only once during a sort or merge. 

60485917 B Sort/Merge Interface 8,;16.1 



SorUMerge Procedure Calls 

Character~stics of SortlMerge Files 

SortJMerge requires a value for the maximum record length for all procedure calls. You 
must specify a value for MAXRL on the SET _FILE _ATTRIBUTE command if the 
system default (MAXRL=256) is too small for your files. 

By default, NOSIVE files have these characteristics: 

• Block _type = system _specified (BT = SS) 

• Record _type = variable (RT = V) 

For files with other block types and record types, you must execute the SET _FILE _ 
ATTRIBUTE command before the file is created and before the sort or merge. 

SortJMerge also attaches the input file or files with an acess mode of. read and a share 
mode of read. To share the input file, other attaches to the input must also specify 
access and share modes of read. 

For example, this shows opening the input file with access and share modes of read: 

CALL SCLCMD('attach_f11e f11e=1npf11e access_mode=read share_mode=read') 
OPEN (un1t=10, file='1npf11e', err=100, end=120) 

For more information on sharing files and access and share modes, see chapter 3, 
Sharing Keyed Files. 

Specifying Input and Output Files 

Input files are named by the SM5FROM procedure; output files are named by the 
.:. SM5TO procedure. You can enter the SortJMerge parameter and user-defined values in 

uppercase, lowercase, or a combination, because SortJMerge treats lowercase letters as 
being equal to uppercase letters, except for owncode procedure names and collating 

I 

sequences. 

Owncode Procedures 

Since some compilers convert procedure names to uppercase letters, you should specify 
owncode procedure names in all uppercase letters. 

8-16.2 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



SortJMerge Procedure Calls 

This page intentionally left blank. 

60485917 B SortJMerge Interface 8-17 



SortJMerge Procedure Calls 

SM5CC 

Purpose Specifies whether lowercase letters in owncode procedure names are to be 
converted to uppercase letters. 

Format CALL SM5CC( option) 

Parameters option 

Remarks 

Examples 

Options are: 

'TRUE', 'T', 'YES', lye, 'ON' 

SortJMerge converts any lowercase letters in owncode procedure names 
to uppercase letters. 

'FALSE', 'F', 'NO', 'N', 'OFF' 

SortJMerge does not convert lowercase letters in owncode procedure 
names. 

If the SM5CC call is omitted, lowercase letters in owncode procedure 
names are not converted. 

• When SortJMerge attempts to load an owncode procedure, it passes the 
procedure name as you have specified it on the SM50WNn call. If you 
specify the name with lowercase letters, SortJMerge passes the 
lowercase letters unless an SM5CC call requests conversion. 

• The system stores entry point names using uppercase letters only. 
Therefore, if the loader is given a procedure name containing lowercase 
letters, it cannot find that name in the program library list and so it 
cannot to load the requested procedure. 

This example calls SM5CC and specifies TRUE so owncode procedure 
names will be converted to uppercase letters: 

CALL SM5CC('True') 

8-18 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



SortJMerge Procedure Calls 

SM5DUCT 

Purpose Specifies a user-defined collation table. 

Format CALL SM5DUCT (key _type, collating_table_name) 

Parameters key _ type 

Remarks 

Revision A 

N arne you choose to call the collating sequence defined by the weight 
table. It is specified as the key type on the SM5KEY calls that use this 
collating sequence. 

collating _ table _name 

Name of the 256-character string containing the collating weights. 

• SortlMerge does not distinguish between lowercase and uppercase 
letters in the specified names. 

o A SortlMerge call sequence can include more than one SM5DUCT 
call. 

• The total number of SM5SEQN, SM5LCT, and SM5DUCT calls in a 
SortlMerge call sequence cannot exceed 100. 

o The name SM5DUCT assigns to the collating sequence cannot be the 
name of a predefined collating sequence or another collating sequence 
already defined for the sort or merge. 

• The weight table must already be loaded as part of the program. It 
must be a string declared by CHARACTER USER*256. Each 
character specifies the collating weight of the corresponding ASCII 
character. 

• For more information, see the Collation Tables appendix in this 
manual. 

SortJMerge Interface 8-19 



SortlMerge Procedure Calls 

SM5E 

Purpose Specifies the file to which diagnostic messages for this sort or merge are 
written. 

Format CALL SM5E (file) 

Parameters file 

Remarks 

Character expression specifying the file reference of the file. File names 
referenced without a file path are assumed to be in the working catalog 
unless the file name is for a standard system file. Standard system files, 
such as $INPUT or $NULL are assumed to be in the $LOCAL catalog. 

If SM5E call is omitted, error messages are written to file $ERRORS. 

• SortlMerge writes the error file only if it detects errors of at least the 
severity specified by the SM5EL call. 

• SortlMerge does not rewind the error file before or after it uses it. 

• If you specify $NULL as the error file, diagnostic messages are not 
written. 

• If you specify 'the same file as the listing file and as the error file 
(SM5E and SM5LIST), each diagnostic message is written only once to 
the file. (Otherwise, each message is written twice, once to the error 
file and once to the listing file.) 

• The error level reported to the error file is specified by the SM5EL 
call. 

8-20 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



SortlMerge Procedure Calls 

SM5EL 

Purpose Specifies the minimum severity level to be reported on the error file. 

Format CALL SM5EL (severity _level) 

Parameters severity _level 

Options are: 

Remarks 

Examples 

Revision A 

'I' or 'i' 

All informational, warning, fatal, and catastrophic errors. 

'W' or 'w' 

All warning, fatal, and catastrophic errors. 

'F' or 'f' 

All fatal and catastrophic errors. 

'C' or 'c' 

Only catastrophic errors. 

'NONE' or 'none' 

No errors are written to the error file. 

If the SM5EL call is omitted, all diagnostics are reported regardless of 
severity. 

The error file is specified by the SM5E call. 

This SM5EL call specifies that all warning, fatal, and catastrophic errors 
are reported to the error file: 

CALL SM5EL ('w') 

SortlMerge Interface 8-21 



SortlMerge Procedure Calls 

SM5END 

Purpose 

Format 

Remarks 

Terminates a sort or merge specification and initiates SortlMerge 
processing. 

CALL SM5END 

The SM5END call is required. It must be the last in the sequence of 
SortlMerge calls. 

8·22 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Sort/Merge Procedure Calls 

SM5ENR 

Purpose Allows compatibility with NOS SortlMerge 5. NOSNE does not use the 
specified value. 

Format CALL SM5ENR (value) 

Parameters value 

Revision A 

An integer value indicating the estimated number of records to be sorted. 
The value can be from 1 through 16,777,215. 

Sort/Merge Interface 8·23 



SortlMerge Procedure Calls 

SM5ERF 

Purpose Specifies the file to which invalid records are written. 

Format CALL SM5ERF (file) 

Parameters file 

Remarks 

Character expression specifying the file reference of the exception records 
file. File names referenced without a file path are assumed to be in the 
working catalog unless the file name is for a standard system file. 
Standard system files, such as $INPUT or $NULL are assumed to be in 
the $LOCAL catalog. 

If the SM5ERF call is omitted, exception records are not removed from the 
sort or merge. The order of records with invalid keys is undefined. The 
contents of sum fields for which summing errors are detected is also 
undefined. 

• The exception records file cannot also be the output file or an input 
file. Its file organization must be sequential; it cannot be a keyed file. 

• If you specify $NULL as the exception records file, each exception 
record is deleted as it is written to the file. 

• All records written to the exception records file are deleted from the 
sort or merge. 

• The records written to the exception records file include: 

Records containing invalid key data. 

Records containing invalid sum data if SortlMerge attempts to sum 
the data. 

Records that caused an arithmetic overflow or underflow when 
their sum fields were summed. 

Short records in which SortlMerge found a partial numeric key 
field or partial sum field. 

Out-of-order merge input records if merge order checking was 
requested by an SM5VER call. 

Records for which the system procedure AMP$PUT_NEXT 
returned an error when it attempted to write the record to the 
output file for the sort or merge. 

• A summary of the records written to the exception records file is 
written to the errors file and to the list file. 

8-24 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



SortJMerge Procedure Calls 

SM5FMA 

Purpose Specifies a memory area to be read as a source of input records. 

Format CALL SM5FMA (variable, 'FIXED', max _record _length, number _of _ 
records) 

Parameters variable 

Remarks 

60485917 B 

N arne of the memory location at which SortJMerge begins reading input 
records. 

'FIXED' 

String expression specifying that each input record read from the memory 
area is the fixed length specified by the third parameter on the call. 

max _record _length 

Integer giving the fixed record length in bytes. The maximum input record 
size is 65,536. 

number _of _records 

Integer giving the number of records SortJMerge is to read from the 
memory area. 

If the SM5FMA call is omitted, all input records are read from files or 
supplied by owncode procedures. 

• A SortJMerge specification can specify up to 100 sources of input 
records. These sources can be files or memory area; the sources are 
read in the order you specify them. Files are specified by SM5FROM 
calls; memory areas are specified by SM5FMA calls. 

• When a memory area is used as an input record source, a sort cannot 
use an owncode 1 or owncode 2 procedure. 

• The record order is undefined when a memory area specified by an 
SM5FMA call overlaps the memory area specified by the SM5TMA call. 

• For an example of using SM5FMA in an in-memory sort, see Using ~~~ 
FORTRAN Procedure Calls later in this chapter. ~!~ 

SortJMerge Interface 8·25 



Sort/Merge Procedure Calls 

SM5FROM 

Purpose Specifies one or more files from which input records are read. 

Format CALL SM5FROM (file, ... , file) 

Parameters iIle 

Remarks 

Character expression specifying the file reference of an input file. The files 
are read in the order specified on the call. File names referenced without a 
file path are assumed to be in the working catalog unless the file name is 
for a standard system file. Standard system files, such as $INPUT or 
$NULL are assumed to be in the $LOCAL catalog. 

If the SM5FMA call is omitted, input records are read from the specified 
memory area. Or, if SM50WNI is called, input records could be supplied 
by the owncode 1 procedure. Otherwise, SortlMerge attempts to open and 
read file $LOCAL.OLD as the source of input records. 

• A SortlMerge specification can specify up to 100 sources of input 
records. These sources can be files or memory areas; the sources are 
read in the order you specify them. Files are specified by SM5FROM 
calls; memory areas are specified by SM5FMA calls. 

• All instances of open of the input files must be closed before the sort 
or merge begins. SortJMerge opens each file before it reads it and 
closes it when it has finished reading it. 

• SortlMerge does not read past an end-of-partition delimiter embedded in 
an input file. 

• The input files for a merge must be pre-sorted on the same keys used 
for the merge. For a merge with summing, the input files must also be 
pre-summed using the same sum fields specified for the merge. 

• A SortJMerge input file can reside on either mass storage or magnetic 
tape. 

• The SortlMerge output file can have sequential, direct-access, or 
indexed-sequential file organization and its record type can be variable 
(V), fixed-length (F), or trailing-character-delimited (T). 

8-26 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



SortJMerge Procedure Calls 

SM5KEY 

Purpose Specifies a key field to be used by the sort or merge. 

Format CALL SM5KEY (first, length, key _type, order) 

Parameters first 

Revision A 

Integer expression specifying the first position of the key field. Bit 
positions are used for the BINARY_BITS and INTEGER_BITS key types, 
byte positions for all others. Positions are numbered from the left 
beginning with 1. 

length 

Integer expression specifying the number of positions in the key field. 
The number of bits are given for the BINARY_BITS and INTEGER_ 
BITS key types, byte positions for all others. 

To see the maximum key field sizes, see table 8-1. 

key_type 

Character expression specifying the numeric data format or, for character 
data, the collating sequence. 

You can define a collating sequence name with an SM5DUCT, SM5LCT, 
or SM5SEQN call or use a predefined collating sequence. Options are: 

'ASCII' 

ASCII collating sequence. 

'ASCII6' 

OSV$ASCII6_FOLDED collating sequence. 

'COBOL6' 

OSV$COBOL6_FOLDED collating sequence. 

'DISPLAY' 

OSV$DISPLAY64_FOLDED collating sequence. 

'EBCDIC' 

OSV$EBCDIC collating sequence. 

'EBCDIC6' 

OSV$EBCDIC6_FOLDED collating sequence. 

Appendix C, ASCII Character Set and Collating Weight Tables, lists the 
predefined collating sequence. 

The following are the available numeric data formats: 

'BINARY' 

Binary integer starting and ending on byte boundaries. 

'BINARY_BITS' 

Binary integer not required to start or end on byte boundaries. 

SortJMerge Interface 8·27 



SortJMerge Procedure Calls 

'INTEGER' 

Two's complement binary integer starting and ending on byte 
boundaries. 

'INTEGER_BITS' 

Two's complement binary integer not required to start or end on byte 
boundaries. 

'NUMERIC_FS' 

Numeric characters with floating sign (FORTRAN I format or COBOL 
zero-suppressed editing item). 

'NUMERIC_LO' 

Numeric characters with leading overpunch sign. 

'NUMERIC_LS' 

Numeric characters with leading separate sign. 

'NUMERIC_NS' 

Numeric characters with no sign. 

'NUMERIC_ TO' 

Numeric characters with trailing overpunch sign. 

'NUMERIC_ TS' 

Numeric characters with trailing separate sign. 

'PACKED' 

Signed packed decimal. 

'PACKED_NS' 

Unsigned packed decimal. 

'REAL' 

Normalized floating-point number, single-precision (8 bytes) or 
double-precision (16 bytes). 

order 

Character expression specifying the order of the sort or merge operation. 
Options are: 

'A' or 'a' 

Ascending order 

'D' or 'd' 

Descending order 

If the SM5KEY call is omitted, the only key field used begins at position 1 
and extends through the smallest minimum record length of the input 
sources. However, the minimum key length used is 1 and the maximum 
key length used is 1023. 

The key is sorted by the ASCII collating sequence in ascending order. 

8-28 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Remarks 

SortlMerge Procedure Calls 

• SortiMerge treats lowercase letters in parameter values as being equal 
to uppercase letters. 

• The combined length of all key fields defined for a sort or merge 
cannot exceed 1023 bytes. 

• The total number of SM5KEY calls in a SortlMerge call sequence 
cannot exceed 106. 

• The significance of multiple keys corresponds to the order in which 
the keys are defined. 

• Sort key fields can overlap other sort key fields with the following 
exceptions: 

Key fields that are ordered by collating sequences defined with an 
SM5SEQA call cannot overlap other key fields. 

Key fields cannot overlap sum fields. 

• For more information, see the description of Short Records and 
Zero-Length Records earlier in this chapter. 

Revision A SortlMerge Interface 8·29 



SortJMerge Procedure Calls 

SM5LCT 

Purpose Loads a collation table, that is, a weight table that defines a collating 
sequence. The table may be a NOSNE predefined collation table or a 
user-defined collation table in an object library. 

Format CALL SM5LCT (key _type, collation_table_name) 

Parameters key _ type 

Remarks 

Name you choose to call the collating sequence defined by the weight 
table. It is specified as the key type on the SM5KEY calls that use this 
collating sequence. 

The name cannot be the name of a predefined collating sequence or the 
name of a collating sequence you have already defined. 

collation _ table _name 

Name of a predefined weight table or an object library module defining a 
collating sequence. 

• SortJMerge treats lowercase letters as being equal to uppercase 
letters. 

• The total number of SM5DUCT, SM5LCT, and SM5SEQN calls in a 
SortJMerge specification cannot exceed 100. 

• The weight table must be loadable by PMP$LOAD and have 256 
weight values. 

• For more information, see the collation table in Appendix C, ASCII 
Character Set and Collating Weight Tables. 

8-30 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



SortlMerge Procedure Calls 

SM5LIST 

Purpose Specifies the name of the list file. 

Format CALL SM5LIST (file) 

Parameters fIle 

Remarks 

Revision A 

Character expression specifying the file reference of the listing 
information file. File names referenced without a file path are assumed 
to be in the working catalog unless the file name is for a standard 
system file. Standard system files, such as $INPUT or $NULL are 
assumed to be in the $LOCAL catalog. 

If the SM5LIST call is omitted, the default list file is $LIST. 

o Listing information includes the SortlMerge version and level 
numbers, time and date, diagnostics, and statistics such as the 
number of records sorted or merged. 

o If you specify the same file as the listing file and as the error file 
(SM5E and SM5LIST), each diagnostic message is written only once to 
the file. Otherwise, each message is written twice, once to the error 
file and once to the listing file. 

SortlMerge Interface 8·31 



Sort1Merge Procedure Calls 

SM5LO 

Purpose Specifies the information written to the listing file. 

Format CALL SM5LO (option) 

Parameters option 

Remarks 

Options are: 

'OFF' 

All listing information is suppressed. 

'NONE' 

Same as OFF keyword. 

'DE' 

Detailed exception information (valid only if SM5ERF is called). 

'RS' 

Record statistics for those records sorted or merged. 

'MS' 

Merge statistics for the records merged. 

• The minimum information SortlMerge writes to the listing file is the 
page heading, error messages, the exception file summary, and the 
number of records sorted or merged. 

.. You can specify only one option with each SM5LO call, but the 
SortlMerge specification can include more than one SM5LO call. 

8-32 FORTRAN for NOSNE Keyed-File and Sort1Merge Interfaces Revision A 



SortlMerge Procedure Calls 

SM5MERG 

Purpose Signals the beginning of a sequence of SortlMerge calls for a merge 
operation. 

Format CALL SM5MERG (array) 

Parameters array 

Remarks 

Name of a one-dimensional array of 1 through 18 integers in which 
SortlMerge returns statistics about the merge. Or, if you specify 0, 
SortlMerge returns no statistics. 

NOTE 

The specified result array should be declared inside a common block. 
FORTRAN optimization requires that variables specified on a call, but 
modified after return from the call, occur only in common blocks. 

• SM5MERG must be the first procedure called for a merge operation. 

• In the first word of the array, you must specify the number of values 
(0 through 17) you want returned. Values are returned in words 2 
through 18. The array must be long enough to contain the number of 
values you request in the first word. 

• The result array format is listed in table 8-4. 

Revision A SortlMerge Interface 8·33 



Sort/Merge Procedure Calls 

Table 8-4. Result Array Format 

Array 
Element 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Contents 

Number of elements of results you want returned in the array (0 
through 17) 

N umber of records read from input files or memory areas 

N umber of records deleted by an owncode 1 procedure 

Number of records inserted by an owncode 1 procedure 

N umber of records inserted by an owncode 2 procedure 

Number of records sorted or merged. The count does not include 
records written to the exception records file or zero-length records 
(unless the SM5ZLR call selects the PAD option.) 

N umber of records deleted by an owncode 3 procedure 

Number of records inserted by an owncode 3 procedure 

N umber of records inserted by an owncode 4 procedure 

Number of records written to the exception file 

N umber of records deleted by an owncode 5 procedure 

N umber of records combined by summing 

N umber of records written to the output file or memory area 

Actual minimum record length of all input records 

Average record length (total record length divided by the total number 
of input records) 

Actual maximum record length of all input records 

Number of zero-length records removed from the sort or merge 
because the default SM5ZLR option (DELETE) is selected. 

Number of records with equivalent key values (duplicates) removed 
from the sort or merge as requested by an SM50MIT call. 

8·34 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



SortlMerge Procedure Calls 

SM50FL 

Purpose Specifies the length of each fixed-length record entering the sort or merge 
from an owncode procedure. 

Format CALL SM50FL (fixed _length) 

Parameters fixed _length 

Remarks 

Revision A 

Integer expression specifying the fixed length in bytes. Valid values are 
from 1 through 65,535. 

If SM50WNI and SM50WN3 are called, but SM5FROM and SM5TO are 
not, an SM50FL or SM50MRL call is required. Otherwise, if SM50FL and 
SM50MRL are omitted, the record length is the largest MAXIMUM_ 
RECORD_LENGTH attribute for the input and output files used by the 
sort. 

o A fatal error occurs if a owncode procedure supplies a record of any 
other length. 

• You cannot call both SM50FL and SM50MRL for the same sort 
operation. 

SortlMerge Interface 8·35 



Sort/Merge Procedure Calls 

SM50MIT 

Purpose Specifies whether SortlMerge outputs only one record in each set of records 
with equivalent key values. 

Format SM50MIT (option) 

Parameters option 

Remarks 

Options are: 

'TRUE', 'T', 'YES', 'Y', 'ON' 

Duplicates are omitted. 

'FALSE', 'F', 'NO', 'N', 'OFF' 

Duplicates are not omitted. 

If the SM50MIT call is omitted, duplicates are not omitted. The processing 
of records with equivalent key values depends on whether SM50WN5, 
SM5RETA, or SM5SUM is called. If all of these calls are omitted, records 
with equivalent key values remain in the sort or merge, but their relative 
order is undefined. 

• Each sort or merge can specify only one method of processing records 
with equivalent key values. Therefore, the SM50MIT, SM50WN5, 
SM5RETA, and SM5SUM calls are mutually exclusive. 

• When duplicates are omitted, SortlMerge removes the shorter 
duplicate records from the sort or merge. When the duplicates have 
the same length, any of the duplicates could be the one that is kept. 

• A count is kept in word 18 of the result array of the number of 
duplicate records deleted from the sort or merge due to an SM50MIT 
call. (The result array is specified on the SM5MERG or SM5S0RT 
call.) 

• Duplicates omitted by an SM50MIT call are not written to the 
exception records file. 

• Zero-length records are processed as duplicates only if the SM5ZLR 
call specifies the PAD option. 

8-36 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



SortlMerge Procedure Calls 

SM50MRL 

Purpose Specifies the maximum length of any record entering the sort or merge 
from an owncode procedure. 

Format CALL SM50MRL (maximum_length) 

Parameters maximum_length 

Remarks 

Revision A 

Integer expression specifying the maximum length in bytes. 

If SM50WNI and SM50WN3 are called, but SM5FROM and SM5TO are 
not, an SM50FL or SM50MRL call is required. Otherwise, if SM50FL and 
SM50MRL are omitted, the record length is the largest MAXIMUM_ 
RECORD_LENGTH attribute for the input and output files used by the 
sort. 

• SM50MRL need not be called if Sort/Merge has an input or output 
file with a maximum record length at least as long as the maximum 
record length of the user-supplied records. 

o You cannot call both the SM50FL and SM50MRL procedures for the 
same sort operation. If all records supplied by owncode procedures 
have the same length, SM50FL should be called instead of 
SM50MRL. 

SortlMerge Interface 8-37 



SortJMerge Procedure Calls 

SM50WNn 

Purpose 

Format 

Specifies a user-written (owncode) procedure to be executed each time a 
certain event occurs during the sort or merge. 

CALL SM50WNl(name) 

CALL SM50WN2(name) 

CALL SM50WN3(name) 

CALL SM50WN4(name) 

CALL SM50WN5(name) 

Specifies the name of the owncode 1 
procedure executed each time a sort reads an 
input record. 

Specifies the name of the owncode 2 
procedure executed each time a sort finishes 
reading an input file. 

Specifies the name of the owncode 3 
procedure executed each time a sort or merge 
is ready to write an output record. 

Specifies the name of the owncode 4 
procedure executed each time a sort or merge 
finishes writing its output records. 

Specifies the name of the owncode 5 
procedure executed each time a sort or merge 
finds two records with equivalent key values. 

Parameters name 

Remarks 

Character expression specifying the name of an owncode procedure. 

The name must be specified using all uppercase letters unless the sort or 
merge calls SM5CC with the true option. 

Owncode procedures are executed only if they are specified. 

• Merge specifications cannot call SM50WNl or SM50WN2. 

• SortJMerge specifications that call SM5FMA cannot call SM50WNl or 
SM50WN2. SortJMerge specifications that call SM5TMA cannot call 
SM50WN3 or SM50WN4. 

• Each sort or merge can specify only one method of processing records 
with equivalent key values. Therefore, the SM50MIT, SM50WN5, 
SM5RETA, and SM5SUM calls are mutually exclusive. 

• For further information about owncode procedures, see the discussion 
later in this chapter. 

8·38 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



SortJMerge Procedure Calls 

SM5RETA 

Purpose Specifies whether input records having equal keys are to be output in the 
same order they are input. 

Format CALL SM5RETA (option) 

Parameters option 

Remarks 

Options are: 

'YES' 

Records with equal keys retain their original order. 

'NO' 

Records with equal keys may not retain their original order. 

If this argument is omitted (no argument list specified), the default is 
YES. 

o Each sort or merge can specify only one method of processing records 
with equivalent key values. Therefore, the SM50MIT, SM50WN5, 
SM5RETA, and SM5SUM calls are mutually exclusive. 

• If you select the 'YES' option and specify more than one input source, 
the order in which you specify the input sources is the order in which 
records with equal keys will be written. 

• Maintaining the original order of records with equal key values 
increases the required processing time because SortlMerge must keep 
track of the input order. 

Revision A SortJMerge Interface 8-39 



SortJMerge Procedure Calls 

SM5SEQA 

Purpose U sed with the SM5SEQS call to specify whether characters are altered in 
the output. If characters are altered, all characters in the value step 
specified by the preceding SM5SEQS call are output as the first character 
in the value step. 

Format CALL SM5SEQA (option) 

Parameters option 

Remarks 

Options are: 

'TRUE', 'T', 'YES', 'Y', 'ON' 

Alters the equated characters. 

'FALSE', 'F', 'NO', 'N', 'OFF' 

Does not alter the equated characters. 

If the SM5SEQA call is omitted, characters are not altered. 

SM5SEQA is used in a sequence of calls that define a user-defined 
collating sequence. The other calls are SM5SEQN, SM5SEQS, and 
SM5SEQR. 

Examples The sequence of calls below converts all commas and semicolons to spaces: 

CALL SM5SEQN ('ALTERSQ') 
CALL SM5SEQS (, " ',', ';') 
CALL SM5SEQA ('YES') 

8-40 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



SortJMerge Procedure Calls 

SM5SEQN 

Purpose Specifies the name of the collating sequence specified by the following 
SM5SEQS, SM5SEQR, and SM5SEQA calls. 

Format CALL SM5SEQN (name) 

Parameters name 

Remarks 

Examples 

Revision A 

Character expression specifying the name of the user-defined collating 
sequence. 

o The end of the collating sequence definition is indicated by any 
statement other than an SM5SEQS, SM5SEQR, and SM5SEQA call. 

o The specified name cannot be the same as that of any predefined 
collating sequence or user-defined collating sequence that you have 
already defined for the sort or merge. 

o The specified name is used as the key type on SM5KEY calls defining 
key fields to be ordered by the user-defined collating sequence. 

This statement names a user-defined collating sequence: 

CALL SM5SEQN ('MYSEQ') 

This statement defines a key field that uses the user-defined collating 
sequence: 

CALL SM5KEY(1, 10, 'MYSEQ', 'A') 

SortJMerge Interface 8·41 



SortlMerge Procedure Calls 

SM5SEQR 

Purpose Defines the position of the remainder value step in the collating sequence 
being defined. The remainder value step consists of all characters that 
have not been included in value steps defined by SM5SEQS calls. 

Format CALL SM5SEQR (option) 

Parameters option 

Remarks 

Examples 

Options are: 

'TRUE', 'T', 'YES', 'Y', 'ON' 

The remainder value step is defined at this position. 

'FALSE', 'F', 'NO', 'N', 'OFF' 

The remainder value step is not defined. 

If the SM5SEQR call is omitted, the last value step in the collating 
sequence is defined as the remainder value step. 

SM5SEQR is used in a sequence of calls that define a user-defined 
collating sequence. The other calls are SM5SEQN, SM5SEQS, and 
SM5SEQA. 

The sequence below defines a collating sequence with two value steps: all 
nondigits followed by all digits. 

CALL SM5SEQN ('DIGITS') 
CALL SM5SEQR ('YES') 
CALL SM5SEQS ('0','1','2' ,'3' ,'4' ,'5' ,'6' ,'7' ,'8' ,'9') 

8-42 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



SortlMerge Procedure Calls 

SM5SEQS 

Purpose Specifies a value step in the collating sequence being defined. 

A value step consists of one or more characters that are to have the 
same collating weight in the sequence. 

The first CALL SM5SEQS statement specifies the first value step, the 
second SM5SEQS statement specifies the second value step, and so on 
until the collating sequence is completely defined. 

Format CALL SM5SEQS (char, ... , char) 

Parameters char 

Remarks 

Examples 

Revision A 

Character expression specifying a character in the value step. 

SM5SEQS is used in a sequence of calls that define a user-defined collating 
sequence. The other calls are SM5SEQN, SM5SEQR, and SM5SEQA. 

o This statement defines a value step consisting of one character: 

CALL SM5SEQS ('A') 

" This statement defines a value step consisting of several characters: 

CALL SM5SEQS (, 1 " ' 2', ' 3', ' 4' ) 

SortlMerge Interface 8-43 



SortJMerge Procedure Calls 

SM5S0RT 

Purpose Signals the beginning of a sequence of SortlMerge calls for a sort 
operation. 

Format CALL SM5S0RT (array) 

Parameters array 

Remarks 

N arne of an integer array in which SortlMerge returns statistics about 
the merge. Or, if you specify 0, SortlMerge returns no statistics. 

NOTE 

The specified result array should be declared inside a common block. 
FORTRAN optimization requires that variables specified on a call, but 
modified after return from the call, occur only in common blocks. 

• SM5S0RT must be the first procedure called for a sort operation. 

• In the first word of the array, you must specify the number of values 
(0 through 17) you want returned. Values are returned in words 2 
through 18. The array must be long enough to contain the number of 
values you request in the first word. 

• To see the result array format, see table 8-4. 

8-44 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 

( 



SortlMerge Procedure Calls 

SM5ST 

Purpose Returns the severity level of the most severe error encountered during the 
sort or merge operation. 

Format CALL SM5ST (severity _level) 

Parameters severity _level 

Variable in which SortlMerge returns an integer indicating the highest 
severity level of all errors detected during the sort or merge: 

o No errors 

10 Informational errors 

20 Warning errors 

30 Fatal errors 

40 Catastrophic errors 

Revision A SortlMerge Interface 8·45 



Sort/Merge Procedure Calls 

SM5SUM 

Purpose Specifies that summing is to be performed on the specified fields. 

Format CALL SM5SUM (first, length, type, repeat) 

Parameters first 

Remarks 

Integer expression specifying the first byte or bit of the sum field 
(numbered from the left starting with 1). 

length 

Integer expression specifying the number of bytes or bits in the sum 
field. 

type 

Character expression specifying the numeric data format. The numeric 
data formats are listed in table 8-2. 

repeat 

Integer greater than zero specifying the number of times the field repeats 
in the record. 

• Each sort or merge can specify only one method of processing records 
with equivalent key values. Therefore, the SM50MIT, SM50WN5, 
SM5RETA, and SM5SUM calls are mutually exclusive. 

• Sum fields cannot overlap one another. Sum fields cannot overlap key 
fields. 

• SM5SUM can be called up to 100 times for each sort or merge. 

• If SM5SUM is called, SortJMerge processes records with equivalent 
values by combining the records into one output record. The sum 
fields contain the sums of the values in the corresponding sum fields 
in the input records. The rest of the record is taken from the longest 
of the original input records. 

• To read about exception processing for partial sum fields, see the 
discussion under short records in this chapter. 

8-46 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 

( 



SortJMerge Procedure Calls 

SM5TMA 

Purpose Specifies a memory area to used as the destination of output records. 

Format CALL SM5TMA (variable, 'FIXED', max _record _length) 

Parameters variable 

Remarks 

60485917 B 

N arne of the memory location at which SortiMerge begins writing output 
records. 

'FIXED' 

String expression specifying that each input record written to the memory 
area is the fixed length specified by the third parameter on the call. 

max _record _length 

Integer giving the fixed record length in bytes. The maximum input record 
size is 65,536. 

If the SM5TMA call is omitted, all output records are written to an output 
file or processed by an owncode 3 procedure. 

• A SortiMerge specification can specify only one destination for output 
records. The destination can be a file or a memory area, but not both. 
A file is specified by an SM5TO call; a memory area is specified by an 
SM5TMA call. 

• When a memory area is used as the destination for output records, the 
sort or merge cannot use owncode 3 or owncode 4 procedures. 

• The record order is undefined when a memory area specified by an 
SM5FMA call overlaps the memory area specified by the SM5TMA call. 

• A count of the records written to the memory area is kept in word 13 
of the result array. (The result array is specified on the SM5S0RT or 
SM5MERG call.) 

• For an example of using SM5TMA in an in-memory sort, see Using ~~~ 
FORTRAN Procedure Calls later in this chapter. 1[1 

SortJMerge Interface 8-47 



SortlMerge Procedure Calls 

SM5TO 

Purpose Specifies the file to receive the sorted· or merged output records. 

Format CALL SM5TO (file) 

Parameters file 

Remarks 

Character expression specifying the file reference of the file. File names 
referenced without a file path are assumed to be in the working catalog 
unless the file name is for a standard system file. Standard system files, 
such as $INPUT or $NULL are assumed to be in the $LOCAL catalog. 

If the SM5TMA call is omitted, output records are written to the specified 
memory area. Or, if SM50WN3 is called, output records are processed by 
an owncode 3 procedure. Otherwise, SortJMerge writes the output records to 
file $LOCAL.NEW. 

• The output file cannot also be an input file or the exception records file 
or the error. file or the list file. 

• The file must be closed when the sort or merge begins. SortlMerge 
closes the file when it completes the sort or merge. 

• The SortlMerge output file can reside on either mass storage or 
magnetic tape. 

• The SortlMerge output file can have either sequential or 
indexed-sequential file organization and its record type can be variable 
(V), fixed-length (F), or trailing-character-delimited (T). 

• The SortlMerge output file cannot use the direct-access file organization. 

• If the output file is an indexed-sequential file with a nonembedded 
primary key, the primary-key value is removed from the beginning of 
the record when it is written to the output file. 

The removed primary-key value is stored in the primary index of the 
file. The record data stored is shortened by key _length characters. 

• If the output file is an indexed-sequential file, the major sort key must 
be the primary key defined for the output file. 

The indexed-sequential file organization requires that each primary-key 
value be unique. Therefore, the value in the major sort key field must 
be unique for each output record. This can be ensured by specifying the 
OMIT _DUPLICATES = YES parameter or using an owncode 5 procedure. 

8-48 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



Revision A 

SortJMerge Procedure Calls 

• If the output (TO) file is an indexed-sequential file, SortJMerge checks 
the KEY_POSITION, KEY_LENGTH, and KEY_TYPE attributes: 

- If the major sort key position does not match the KEY_POSITION 
attribute value, SortlMerge issues a fatal error and terminates. 

- If the major sort key length does not match the KEY_LENGTH 
attribute value, SortJMerge issues a warning error and changes the 
major sort key length to match the primary key length. 

- If the major sort key type does not match the KEY_TYPE 
attribute value, SortlMerge issues a warning error and changes the 
major sort key type if the KEY_TYPE value is UNCOLLATED or 
INTEGER. (It does not issue a warning or change the key type if 
the KEY_TYPE value is COLLATED.) 

If the KEY_TYPE is UNCOLLATED, the major sort key type 
is changed to ASCII. 

If the KEY_TYPE is INTEGER, the major sort key type is 
changed to INTEGER. 

SortJMerge Interface 8-49 



Sort/Merge Procedure Calls 

SM5VER 

Purpose Specifies whether SortlMerge checks that the input records to a merge are 
in sorted order. 

Format CALL SM5VER (option) 

Parameters option 

Remarks 

Options are: 

'TRUE', 'T', 'YES', 'Y', 'ON' 

The order of merge input records is verified. 

'FALSE', 'F', 'NO', 'N', 'OFF' 

The order of merge input records is not verified. 

If the SM5VER call is omitted, the order of merge input records is not 
verified. Out-of-order input records remain in the merge. Their order in the 
output file is undefined. 

• If merge order verification is requested and Sort/Merge finds an input 
record out of order, it issues a warning message. 

If an exception records file has been specified (SM5ERF), any 
out-of-order input records are written to the exception records file and 
then deleted from the merge. 

• If you include an SM5VER call is a sort specification, SortlMerge 
issues a warning message, but otherwise ignores the call. 

8·50 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



SM5ZLR 

Purpose 

SortlMerge Procedure Calls 

Specifies the disposition of zero-length records. 

NOTE 

The SM5ZLR option applies only to records read from input files; it does 
not apply to records read from memory areas or supplied by owncode 
procedures. 

Format CALL SM5ZLR (keyword) 

Parameters keyword 

Remarks 

Revision A 

Options are: 

'DELETE' 

Each zero-length record is deleted from the sort or merge. (The 
deleted records are not written to the exception records file.) 

'PAD' 

Each zero-length record is processed as a short record. Key fields are 
assigned default values (spaces for character keys; zero for numeric 
keys). 

'LAST' 

Each zero-length record is written at the end of the output. 

If the SM5ZLR call is omitted, each zero-length record is deleted from the 
sort or merge. 

For more information about zero-length records, see the discussion earlier 
in this chapter. 

SortlMerge Interface 8·51 



Owncode Procedures 

Owncode Procedures 

You can write subprograms to insert, substitute, modify, or delete input and output 
records during SortlMerge processing. Such a subprogram, called an owncode procedure, 
is executed each time the sort or merge reaches a certain point in SortlMerge 
processing. Figure 8-2 illustrates the points at which SortlMerge can call owncode 
procedures. 

SortlMerge passes a record to the owncode procedure, which processes the record. 
When the record is returned to SortlMerge from the owncode procedure, SortlMerge 
processes the record according to a code passed by the owncode procedure. 

Owncode procedures can also supply the records to be sorted. When SortlMerge is 
ready for a record, it calls the owncode procedure, which then passes a record to 
SortlMerge. 

8-52 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Revision A 

Inputto 
a Sort: 

Yes 

Record Key 
Comparison: 

Output from a 
Sort or Merge: 

Owncode2 
routine 

Owncode Procedures 

Figure 8-2. When Owncode Procedures are Called 

SortlMerge Interface 8-53 



Owncode Procedures 

An SM50WNn call specifies the name of an owncode procedure SortlMerge is to use; n 
is an integer from 1 through 5 that tells SortlMerge at which point in processing the 
procedure is executed. The SM50WNn call is described earlier in this chapter. 

Owncode procedures 1 and 2 can be called for a sort only; owncode procedures 3, 4, 
and 5 can be called for a sort or a merge. 

SM50WN n calls are optional. Each SM50WN n call in the SortlMerge sequence of 
calls must specify a different procedure name. 

NOTE 

When SortlMerge calls PMP$LOAD to load the owncode procedure, it must pass it a 
name that uses only uppercase letters. Otherwise, PMP$LOAD cannot find the name 
in the program library list. Therefore, the user must either specify all owncode 
procedure names using only uppercase letters or call SM5CC with the TRUE option 
to convert the names, if necessary. 

You can write an owncode procedure using any NOSNE programming language, 
including FORTRAN (subprocedure subprograms), COBOL (subprograms compiled with 
COBOL SP=TRUE option), or CYBIL. The owncode procedure must be compiled and 
stored as a module in an object library. 

Owncode procedures must either be loaded with the main program or be loadable 
from the program library list. To load an owncode procedure, SortlMerge calls 
PMP$LOAD to load the procedure. PMP$LOAD then searches for the specified 
owncode procedure name in the directories of the object libraries in the program 
library list. 

CYBIL owncode procedures must be declared XDCL procedures. 

For SortlMerge to use an object library containing one or more owncode procedures, 
the object library file must be in the program library list. To add a file to the 
program library list before executing the CYBIL program, execute a SET_ 
PROGRAM_ATTRIBUTES command. 

For detailed information on creating object libraries, see the NOSNE Object Code 
Management Usage manual. The example at the end of this chapter stores an 
owncode procedure in an object library. 

Owncode Procedure Parameters 

SortlMerge communicates with an owncode procedure via the procedure parameter list. 
SortlMerge passes record data to the procedure and the procedure returns record data 
and a code indicating how SortlMerge is to process the record ~ata. 

The following lists the required CYBIL procedure parameter list for owncode 1, 
owncode 2, owncode 3, and owncode 4 procedures: 

(VAR return_code: integer; 
VAR reca: string(*); 
VAR rIa: integer); 

8-54 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 

( 



Owncode Procedures 

The following lists the required CYBIL procedure parameter list for owncode 5 
procedures: 

(VAR return_code: integer; 
VAR reca: string(*); 
VAR rIa: integer; 
VAR recb: string(*); 
VAR rIb: integer); 

The return_ code parameter passes an integer code back to SortlMerge specifying how 
Sort/Merge is to process the returned records. Sort/Merge always initializes the return_ 
code value to 0 when it calls an owncode procedure. The owncode procedure can leave 
the return_code value unchanged or change it to one of the valid values for the 
owncGde procedure. (The valid values are listed in the individual owncode procedure 
description later in this chapter.) If an invalid return_code value is returned, 
SortlMerge returns a fatal error. 

The subsequent parameters are used to pass one or two records to the owncode 
procedure. For an owncode 1 through owncode 4 procedure, SortlMerge passes only 
one record, the current record being input or output. The record data is passed in the 
reca variable and the record length in bytes is passed in the rIa variable. 

When calling an owncode 5 procedure, SortlMerge passes two records having equal 
keys. The record data is passed in the reca and recb variables and the corresponding 
record lengths in the rIa and rIb variables. 

An owncode procedure can change the record data and record length values passed to 
it. The procedure must ensure that the record length value returned is correct for the 
record data returned. However, SortlMerge does check that the record length returned 
does not exceed the maximum record length for the sort or merge. 

Owncode Procedure Record Length 

Sort/Merge checks the length of each record returned to it by an owncode procedure. If 
a record is too long, SortlMerge issues an error. 

The SortlMerge specification can explicitly specify the owncode record length. 
Otherwise, by default, the maximum record length is the largest MAXIMUM_ 
RECORD_LENGTH file attribute value of the input files or output file specified for 
the sort or merge. 

To explicitly specify the owncode record length, you must call SM50FL or SM50MRL. 
If the sort or merge specifies no input or output files, a call to specify the owncode 
record length is required. 

If you call SM50FL, the length of each record returned by an owncode procedure 
must exactly match the specified record length value. 

If you call SM50MRL, the length of each record returned by an owncode procedure 
cannot exceed the specified record length value. 

Revision A So~erge Interface 8·55 



Owncode 1: Processing Input Records 

Owncode 1: Processing Input Records 

You specify an owncode 1 procedure to process or supply the input records for a sort. 
An owncode 1 procedure is used only with a sort request; specifying an owncode 1 
procedure with a merge request returns a fatal error. 

An owncode 1 procedure cannot be used when SMP$FROM_MEMORY is called. 

Owncode 1 procedure processing differs depending on whether input files are specified 
tor the sort. 

One or More Input Files Specified 

If you specify one or more input files for a sort (even if the input file is $NULL), 
SortlMerge calls the owncode 1 procedure each time it reads an input record. 
SortlMerge passes the input record to the procedure in the reca variable, the record 
length (in bytes) in the rIa variable, and the return_code variable initialized to O. 

Mter owncode processing of the record, control returns to SortlMerge, which processes 
the record passed back in reca according to the return_ code value set by the owncode 
1 procedure. The contents of the reca and rIa variables can differ from those 
originally passed to the procedure. 

The following are the valid return_code values and their meanings: 

o SortlMerge sorts the record passed back in reca and reads the next input record. 

1 SortlMerge does not sort the record in reca and reads the next input record. 

2 SortlMerge sorts the record passed back in reca, but does not read the next 
input record. Instead, SortlMerge calls the owncode 1 procedure again so 
additional records can be added to the sort. The owncode 1 procedure should 
continue to specify return_code 2 until all records to be inserted at this point 
have been passed; it should then set the return_code to O. 

3 SortlMerge does not sort the record passed back in reca, closes the current input 
file, and calls the owncode 2 procedure if one has been specified. Mter owncode 
2 processing has completed, SortlMerge opens the next input file, if any, and 
reads the next input record. 

For example, to insert one record after the current input record, the owncode 1 
procedure performs the following steps: 

1. Checks that the record passed in reca is the record after which the new record is 
to be inserted. 

2. Sets the return_code value to 2 and returns control to SortlMerge. 

3. When called again, it stores the new record in reca, stores the length of the new 
record in rIa, sets the return_code value to 0, and returns control to SortlMerge. 

8-56 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Owncode 1: Processing Input Records 

Input Files Not Specified 

If you do not specify any input files for the sort (SM5FROM is not called), SortlMerge 
calls the owncode 1 procedure as the source of input records. SortlMerge passes reca as 
an empty array of the maximum record length, rIa set to 0, and the return_code 
variable initialized to 0. 

The following are the valid return_code values and their nleanings: 

° Sort/Merge sorts the record passed back in reca, clears the reca array, sets the 
rIa and return_code variables to 0, and calls the owncode 1 procedure again. 

2 Sort/Merge sorts the record passed back in reca, leaves the data in reca and the 
record length in rIa, initializes the return_code to 0, and calls the owncode 1 
procedure again. 

3 SortlMerge does not sort the record passed back in reca and calls the owncode 2 
procedure if one has been specified; otherwise, terminates the input process. 

Revision A SortJMerge Interface 8-57 



Owncode 2: Processing Input Files 

Owncode 2: Processing Input Files 

You specify an owncode 2 procedure to supply input records at the end of each input 
file. An owncode 2 procedure is used only with a sort request; specifying an owncode 2 
procedure with a merge request returns a fatal error. 

An owncode 2 procedure cannot be used when SM5FMA is used. 

Owncode 2 procedure processing differs depending on whether input files are specified 
for the sort. 

One or More Input Files Specified 

If you specify one or more input files for the sort (even if the input file is $NULL), 
SortlMerge calls the owncode 2 procedure when it terminates input from an input file. 
It terminates input when it reads an end-of-partition delimiter or the end-of-information 
or receives a return_code value of 3 from an owncode 1 procedure. 

SortlMerge passes reca as an empty array of the maximum record length, rIa set to 
0, and the return_code variable initialized to O. 

The following are the valid return_code values and their meanings: 

o Owncode 2 processing ends; SortlMerge opens the next input file, if any, and 
reads the next input record. 

1 SortIMerge sorts the record passed back in reca, and calls the owncode 2 
procedure again. 

For example, to insert one record at the end of an input file, the owncode 2 procedure 
performs the following steps: 

1. Stores the record in reca, stores the record length in rIa, sets the return_code to 
1, and returns control. 

2. When called again, leaves the return_code value set to 0, and returns control to 
SortlMerge. 

Input Files Not Specified 

If you do not specify any input files for the sort (SM5FROM is not called), SortlMerge 
calls the owncode 2 procedure after the owncode 1 procedure returns a return_code 
value of 3. 

SortlMerge passes reca as an empty array of the maximum record length, rIa set to 
0, and the return_code variable initialized to O. 

The following are the valid return_code values and their meanings: 

o Owncode 2 processing ends, signaling the end of the input records for the sort. 

1 SortlMerge sorts the record passed back in reca, and calls the owncode 2 
procedure again. 

8·58 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Owncode 3: Processing Output Records 

Owncode 3: Processing Output Records 

You specify an owncode 3 procedure to process output records from a sort or merge. 

An owncode 3 procedure cannot be used when SM5TMA is called. 

Owncode 3 procedure processing differs depending on whether an output file is 
specified for the sort or merge. 

Output File Specified 

If you specify an output file for the sort or merge (even if it is $NULL), SortlMerge 
calls the owncode 3 procedure each time an output record is ready to be written. 
SortlMerge passes the output record to the procedure in the reca variable, the record 
length in bytes in the rIa variable, and the return_code variable initialized to o. 

Mter owncode processing of the record, control returns to SortlMerge, which processes 
the record passed back in reca according to the return_code value set by the owncode 
3 procedure. The contents of the reca and rIa variables can differ from those 
originally passed to the procedure. 

The following are the valid return_code values and their meanings: 

o SortlMerge writes the record passed back in reca to the output file. It then 
passes the next output record, if any, to the owncode 3 procedure. 

1 SortlMerge does not write the record passed back in reca to the output file. It 
then passes the next output record, if any, to the owncode 3 procedure. 

2 SortlMerge writes the record passed back in reca to the output file, leaves the 
data in reca and the record length in rIa, initializes the return_code to 0, and 
calls the owncode 3 procedure again. 

3 Sort/Merge does not write the record passed back in reca. It calls the owncode 4 
procedure if one is specified; otherwise, it terminates the sort or merge. 

For example, to insert one record after the current output record, the owncode 3 
procedure performs the following steps: 

1. Checks that the record passed in reca is the record after which the new record is 
to be inserted. 

2. Sets the return_code value to 2 and returns control to SortlMerge. 

3. When called again, stores the new record in reca, stores the length of the new 
record in rIa, sets the return_code value to 0, and returns control to SortlMerge. 

Revision A SortJMerge Interface 8·59 



Owncode 3: Processing Output Records 

Output File Not Specified 

If you do not specify an output file (you do not call SM5TO call for the sort or merge), 
the owncode 3 procedure performs all output processing. Sort/Merge passes each output 
record to the owncode 3 procedure, but it does not process any record returned by the 
procedure. It does not write any output records. 

SortlMerge passes the output record to the procedure in the reca variable, the record 
length in bytes in the rIa variable, and the return_code variable initialized to O. 

The following are the valid return_code values and their meanings: 

o SortlMerge calls the procedure again, passing the next output record. 

1 SortlMerge calls the procedure again, passing the next output record. 

2 SortlMerge calls the procedure again, passing the same output record. 

3 SortlMerge terminates the output process, even if it has additional output 
records. It then calls the owncode 4 procedure if one is specified; otherwise, the 
sort or merge is terminated. 

8·60 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



Owncode 4: Processing the Output File 

Owncode 4: Processing the Output File 

You specify an owncode 4 procedure to write additional output records to the end of 
the output file. An owncode 4 procedure can be used with a sort or merge. 

An owncode 4 procedure cannot be used when SM5TMA is called. 

Owncode 4 procedure processing differs depending on whether an output file is 
specified for the sort or merge. 

Output File Specified 

If you specify an output file for the sort or merge (even if it is $NULL), SortlMerge 
calls the owncode 4 procedure after it has written its last output record to the output 
file. 

SortlMerge passes reca as an empty array of the maximum record length, rla set to 
0, and the return_code variable initialized to O. 

The following are the valid return_code values and their meanings: 

o SortlMerge terminates the sort or merge without writing the record passed back 
in reca. 

1 SortlMerge writes the record passed back in reca and calls the owncode 4 
procedure again. ' 

Output File Not Specified 

An owncode 4 procedure cannot supply additional output records when no output file 
has been specified. Still, if you specify an owncode 4 procedure for a sort or merge 
without an output file, SortlMerge calls the owncode 4 procedure after the owncode 3 
procedure (if any) has terminated output. 

SortlMerge passes reca as an empty array of the maximum record length, rIa set to 
0, and the return_code variable initialized to O. 

The following are the valid return_code values and their meanings: 

o SortlMerge terminates the sort or merge. 

1 SortlMerge terminates the sort or merge. 

Revision A SortJMerge Interface 8-61 



Owncode 5: Processing Records With Equal Keys 

Owncode 5: Processing Records With Equal Keys 

When an owncode 5 procedure is specified, SortlMerge calls the owncode 5 procedure 
each time it compares the key values of two records and finds that the values are 
equivalent. It passes both records to the owncode 5 procedure for processing. An 
owncode 5 procedure is specified by an SM50WN5 call. 

NOTE 

SortlMerge can interpret character key values as equivalent that are not identical. 
When the collating sequence used for the key assigns the same collating weight to 
more than one character, those characters are equivalent key values. 

An owncode 5 procedure cannot be used when the SM5SUM, SM5RETA, or SM50MIT 
call is used. A sort or merge can use only one method of processing records, with 
equivalent key values. 

For a given number (n) of records with equivalent key values, each record is passed 
to the owncode 5 procedure log n times (assuming that duplicate records are not 
deleted). The order in which the records are passed is not defined. 

NOTE 

An owncode 5 procedure can change the record data passed to it, but it must not 
change the data in the key fields of the record. If it does so, the sort order of the 
modified key field is undefmed. 

8-62 FORTRAN for NOSNE Keyed-File and SorUMerge· Interfaces Revision A 



Owncode 5: Processing Records With Equal Keys 

The following are the valid return _code values for an owncode 5 procedure and the 
meaning of each: 

o SortJMerge accepts the first rIa bytes of reca as the first record and the first 
rIb bytes of recb as the second record. 

1 SortJMerge accepts the first rla bytes of reca as the first record and deletes 
recb from the sort or merge. 

2 SortJMerge accepts the first rIb bytes of recb as the first record and the first 
rIa bytes of reca as the second record. 

3 SortJMerge accepts the first rlb bytes of recb as the first record and deletes 
reca from the sort or merge. 

4 SortJMerge deletes both records from the sort or merge. 

5 SortJMerge does not read the record data returned by the procedure; it 
processes the two records in their original order (reca before recb). 

6 SortJMerge does not read the record data returned by the procedure, but it 
deletes the second record (recb) from the sort or merge. 

7 SortJMerge does not read the record data returned by the procedure, but it 
reverses the order of the two records (recb before reca). 

8 SortJMerge does not read the record data returned by the procedure, but it 
deletes the first record (reca) from the sort or merge. 

For Better Performance 

When the owncode 5 procedure does not change the record data, it should use return_ 
code values 5, 6, 7, or 8 instead of return_code values 0, 1, 2, or 3. Performance is 
improved because SortJMerge does not read the returned record data. 

Do not use return _code 0 to reverse the order of the two records by exchanging the 
contents of reca and recb. Performing an exchange sort is both incompatible with and 
much slower than the SortJMerge sorting algorithm. 

If the owncode 5 procedure sorts the two records using one or more keys in addition to 
those specified for the sort or merge, the procedure should use return_code values 5 
and 7 only. (Return_code values 0 and.2 could also be used, but performance would be 
slower.) 

60485917 B SortlMerge Interface 8-63 



Using FORTRAN Procedure Calls 

Using FORTRAN Procedure Calls 

This section shows two examples of using SortJMerge procedure calls in FORTRAN 
programs. The first example reads a file, selects certain records for processing, sorts 
them, and writes them to a file. The second example uses an in-memory sort to sort 
character strings. 

Example 1: Sorting the Dean's List 

A FORTRAN program DLIST containing the SortJMerge procedure calls is shown 
below. File UNIVERSITY_STUDENTS is read, and student records with grade point 
average of 3.50 or better are written to an intermediate file (INTI). SortJMerge is 
called to sort the file on grade point average in descending order (highest grade point 
average to lowest grade point average). 

NOTE 

File names referenced without a file path are assumed to be in the working catalog 
unless the file name is for a standard system file. Standard system files, such as 
$INPUT or $OUTPUT, are assumed to be in the $LOCAL catalog. 

8-64 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



Using FORTRAN Procedure Calls 

C 
PROGRAM DLIST 

C 
C This program calls Sort/Merge using FORTRAN procedure 
C calls. The purpose of the program is to prepare a 
C list of students with grade point averages of 3.50 
C or better, sort the file on grade point averages in 
C descending order, replace the class code number with 
C the class level, and output the completed report to a 
C new file. 
C 
C 

C 
C 

C 

C 

C 

C 

C 

C 

C 

INTEGER gpa 
CHARACTER sname*14, major*8, code*1, class*12 
DIMENSION iarray(16) 

OPEN (1,FILE='university_students') 
REWI ND (UNIT= 1) 

OPEN (2,FILE='completed_deans_list') 
OPEN (4,FILE='int1') 

READ (1,100,END=10) sname, major, gpa, code 
IF (gpa .GE. 350) WRITE (4,200) sname, major, gpa, code 
GO TO 1 

10 CONTINUE 
CLOSE (UNIT=4,STATUS='KEEP') 

IARRAY(1)=15 
CALL SM5S0RT (iarray) 
CALL SM5LIST ('$OUTPUT') 
CALL SM50MRL (80) 
CALL SM5FROM ('int1') 
CALL SM5KEY (33,3,'NUMERIC_NS','D') 
CALL SM5OWN1 ('CCODE') 
CALL SM5TO ('int2') 
CALL SMSEND 

OPEN (3,FILE='int2') 
REWIND (3) 

WRITE (2,400) 
15 READ (3,300,END=20) sname, major, gpa, class 

WRITE (2,500) sname, major, class, gpa 
GO TO 15 

100 FORMAT (A14,12X,A8,I3,A1) 
200 FORMAT (A14,5X,A8,5X,I3,5X,A1,39X) 
300 FORMAT (A14,5X,A8.5X,I3,5X,A12,28X) 
400 FORMAT (36X,'DEANS LIST' II 15X, 'STUDENT', 

* 12X,'MAJOR',8X,'CLASS',12X,'GPA',65X /) 
500 FORMAT (15X,A14,5X,A8,5X,A12,5X,I3,59X) 

20 STOP 
END 

60485917 B Sort/Merge Interface 8-65 



Using FORTRAN Procedure Calls 

The SM50WNI call specifies that an owncode 1 procedure named CCODE is to be 
executed after Sort/Merge reads each record from INTI. Records are passed to the 
procedure by SortiMerge. The FORTRAN owncode procedure is shown below. 

C 
C This is the FORTRAN own code procedure that is executed 
C after Sort/Merge reads a record. This procedure 
C replaces the number class code with the class 
C level in words. 
C SUBROUTINE CCODE (retcode,rec,rl) 

INTEGER retcode, rl 

C 

C 

C 

CHARACTER code*1, class*12, rec*(*) 

code = rec(41:41) 
IF (code .EO. '1') THEN 

class = 'SENIOR' 
ELSE IF (code .EO. '2') THEN 

class = 'JUNIOR' 
ELSE IF (code .EO. '3') THEN 

class = 'SOPHOMORE' 
ELSE IF (code .EO. '4') THEN 

class = 'FRESHMAN' 
ELSE IF (code .EO. 'SA) THEN 

class = 'UNCLASSIFIED' 
ELSE 

PRINT *, code 

END IF 
rec(41:53) = class 

C Set the record length lor extra length of class level. 

C 
RL = 53 

RETURN 
END 

The SUBROUTINE statement names the procedure and the parameters passed by 
SortiMerge. Parameter RETCODE is the return_code passed as 0, REC is an array 
containing the record, and RL is the record length in characters. The procedure 
converts the class code in each record to the class name. 

8·66 FORTRAN for NOSNE Keyed-File and' SortJMerge Interfaces 60485917 B 



Using FORTRAN Procedure Calls 

The records are returned to SortJMerge in array REC. The return_code value is left as 
o because each record in this example is to be sorted. The record received by the 
owncode procedure is lengthened (RL = 53) because the class code is converted into a 
word and needs more space. SortJMerge then sorts the record to file INT2. The sorted 
file is returned to the FORTRAN program to be written out in a formatted report. The 
content of the intermediate files, INTI and INT2, is shown below. Figure 8-3 shows the 
output from the job, which is the completed dean's list report. 

TERRELL T H ENG 386 
SUGARMAN B T SOC 350 
SMITH C R MATH 379 
SHIELDS L E COMPSCI 390 
DAVIS D A ENR 354 ; 
FRANKLIN R H PHIL 370 2 

CLARK D N ECON 378 2 

TIEMaN H R LNGUIS 376 3 
HANSEN R P BUS 358 3 
SMITH F R PHIL 385 3 
HORNE D N COMPSCI 389 4 

SHIELDS L E COMPSCI 390 SENIOR 
HORNE D N COMPSCI 389 FRESHMAN 
TERRELL T H ENG 386 SENIOR 
SMITH F R PHIL 385 SOPHOMORE 
SMITH C R MATH 379 SENIOR 
CLARK D N ECON 378 JUNIOR 
TIEMON H R LNGUIS 376 SOPHOMORE 
FRANKLIN R H PHIL 370 JUNIOR 
HANSEN R P BUS 358 SOPHOMORE 
DAVIS D A ENR 354 SENIOR 
SUGARMAN B T SOC 350 SENIOR 

DEANS LIST 

STUDENT MAJOR CLASS GPA 

SHIELDS L E COMPSCI SENIOR 390 
HORNE D N COMPSCI FRESHMAN 389 
TERRELL T H ENG SENIOR 386 
SMITH C R PHIL SOPHOMORE 385 
SMITH C R MATH SENIOR 379 
CLARK D N ECON JUNIOR 378 
TIEMON H R LNGUIS SOPHOMORE 376 
FRANKLIN R H PHIL JUNIOR 370 
HANSEN R P BUS SOPHOMORE 358 
DAVIS D A ENR SENIOR 354 
SUGARMAN B T SOC SENIOR 350 

Figure 8-3. Output From the FORTRAN Program 

60485917 B SortJMerge Interface 8-67 



Using FORTRAN Procedure Calls 

Example 2: An In-Memory Sort 

-This example sorts character strings that are stored in two arrays. It uses the 
SM5FMA call (sort from memory area) and the SM5TMA (sort to memory area) to 
specify the arrays. 

C 
PROGRAM INMEMORYSORT 

C 
C Do an in-memory sort using sort/merge calls SM5FMA and SM5TMA. 
C An array of character strings is filled with font names, and 
C the names are sorted in ASCII order and written to another array 
C of character strings. 
C 

C 

C 

INTEGER sortstats(18) 
CHARACTER fontsin(20)*15, 

+ fontsout(20)*15 

array to hold sort statistics 
memory area, contains unsorted fonts 
memory area for sorted fonts 

DATA fontsin/'Utopia','Garamond','ITC Galliard','ITC Garamond', 
+ 'Stempel Garamond','Garamond 3' ,'Goudy Old Style','Palatino', 
+ 'Trump Medieval' ,'Weiss' ,'Americana' ,'Caslon' ,'New Baskerville', 
+ 'Century Old St','Jan?on Text','ITC Clearface','Times*Ten', 
+ 'Stone Serif','ITC Tiffany','Bodoni'/ 

C Specify the number of sort statistics desired. The statistics will 
C be stored in elements 2 through 18 of the array. 
C 

C 

C 

C 

C 

C 

sortstats(1) = 17 

CALL SM5S0RT(sortstats) 
CALL SM5LIST('$OUTPUT') 
CALL SM5FMA(fontsin, 'FIXED', 15, 20) 
CALL SM5KEY(1,15,'ASCII','A') 
CALL SM5TMA(fontsout, 'FIXED', 15) 
CALL SM5END 

write (* , *) sortstats 

write (* , '(/,A12)') , Old order ... ' 
write (*, ' ( , , , , A16)') (fontsin(i) , , 

write (* , '(/,A12)') , New order ... , 

write (* , ' ( , , , , A16)') (fontsout(i), , 

STOP 
END 

i = 1, 20) 

i = 1, 20) 

This example shows how to add the required SortlMerge library to your program 
attributes, and compile and execute the program: 

/set_program_attributes add_library=smf$library 
/ftn lnmemorysort 
/lgo 

8-68 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



The output of this program is as follows: 

SORT/MERGE STATUS 
1989-08-02 08.37.44,10 

20 records sorted. 

NO DIAGNOSTICS 

Using FORTRAN Procedure Calls 

NOS/VE SORT V1.3 88277 
PAGE 1 

17 20 0 0 0 20 0 0 0 0 0 0 20 15 15 15 0 0 

Old order .. 
Utopia 
Garamond 
ITC Ga 11 i ard 
ITC Garamond 
Stempel Garamon 
Garamond 3 
Goudy Old Style 
Palatino 
Trump Medieval 
Weiss 
Americana 
Caslon 
New Baskerville 
Century Old St 
Janson Text 
ITC Clearface 
Times*Ten 
Stone Serif 
ITC Tiffany 
Bodoni 

New order .. 
Americana 
Bodoni 
Caslon 
Century Old St 
Garamond 
Garamond 3 
Goudy Old Style 
ITC Clearface 
ITC Galliard 
ITC Garamond 
ITC Tiffany 
Janson Text 
New Baskerville 
Palatino 
Stempel Garamon 
Stone Serif 
Times*Ten 
Trump Medieval 
Utopia 
Weiss 

Figure 8-4. Output From Program INMEMORYSORT 

60485917 B SortIMerge Interface 8·69 



Creating an Object Library 

Creating an Object Library 

You must place an owncode procedure into an object library when using command 
calls. A FORTRAN owncode 3 procedure named OWNCODE is shown below. The 
procedure OWNCODE will delete the first record in a file. The variable COUNT keeps 
track of the number of times the owncode procedure is entered. 

SUBROUTINE OWNCODE (retcode,reca,r1a) 
INTEGER retcode, r1a, count 
CHARACTER reca*38 
DATA count /0/ 

count = count +1 

IF (count.eQ.1) THEN 
ret code 1 

ELSE 
ret code 0 

ENDIF 

RETURN 
END 

For detailed information on placing a procedure into a library, see the NOSNE Object 
Code Management Usage manual. The commands to place OWNCODE into a library 
named OWN _LIBRARY are shown below. 

/ftn i=owncode 
/create_object_1ibrary 
COL/add_module 1ibrarY=$10ca1. 19o 
COL/generate_library 1ibrary=$10cal .own_1ibrary 
COL/Quit 
/display_object_library librarY=$local.own_library 
.. /disp1ay_option=entry_point 

OWNCODE - load module 

entry points 

OWNCODE 

8-70 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



Creating an Object Library 

Mter executing these conlmands, the procedure OWNCODE can be called from a 
FORTRAN program. A FORTRAN program calling OWNCODE is shown below. 

PROGRAM OWN 

Call sm5sort(O) 
Call sm5from('univer2') 
Call sm5to('results') 
Call sm5key(1,10,'ascii' ,'a') 
Call sm50wn3('OWNCODE') 
Call sm5end 

STOP 
END 

Mter the FORTRAN program is executed, the file UNIVERSITY_STUDENTS is sorted, 
with the first record deleted. The sorted records are written to the file RESULTS as 
shown below. 

BILLINGS C Y 101579111855MUS 2965 
BRISCOE J H 102343121157ENVIRO 2544 
CARLSON M K 102126022355ENGIR 3454 
CHARLES S H 101418032459ANTHRO 2453 
CLARK D N 101400102954ECON ~782 

CLARK D V 101023101956ENG 2083 
COCHRAN G L 100725111857BIO 3011 
DAVIES E D 100812080656JOURN 2031 
DAVIS D A 100972071650ENR 3541 

WALLIN G E 101056041659POLISCI 3151 
WARNES D V 102116060861POLISCI 2814 
WILSON W L 101967010261MATH 3454 
WONG S T 101001012755PSYCH 2152 
WOO R M 101315100159BUS 3223 
WOODSTOCK C T 101497030160CHEM 3483 
YEH F L 102005120645Art 2764 
YOST D L 100880111158ENG 2582 
ZEITZ F K 100963111858MATH 2612 
ZIMMERS C A 101075063059MATH 2992 

Note that the owncode procedure has deleted the first record in the file. 

NOTE 

File names referenced without a file path are assumed to be in the working catalog 
unless the file name is for a standard system file. Standard system files, such as 
$INPUT or $OUTPUT, are assumed to be in the $LOCAL catalog. 

60485917 B SortlMerge Interface 8-71 



Summing Records 

Summing Records 

The record layout of a university student file named STUDENTS is shown below. 

11 13 15 21 27 36 39 42 4S , 
STUDENT 

LAST NAME NO. 
DOB STUDY 

14 I. 4 4 
FIRST INITIAL ~ L MIDDLE INITIAL UNITS ---1 LGRADE 

ATTEMPTED POINT S 

UNITS COMPLETED 

Each record contains three numeric fields. They are: number of units attempted, 
number of units completed, and grade points. The file STUDENTS is shown below with 
multiple records for each student. 

GREENWOOD M R 102168101961EDU 002002000 
IRVING W R 101750111855ENG 004004016 
GREENWOOD M R 102168101961EDU 003003009 
IRVING W R 101750111855ENG 098095375 
QUINTERA L S 9D1541012538IO 003000000 
ALLEN M G 102D56012561LNGUIS 005000000 
ALLEN M G 102056012561LNGUIS 025020077 
ALLEN M G 102056012561LNGUIS 004004012 

Records are to be sorted according to the student number. Using the SM5SUM 
procedure, records with the same student number are combined into one record by 
adding the numeric fields together. The new record will give the total number of units 
attempted, total number of units completed, and the total number of grade points. 

The procedure to sort and sum the file STUDENTS is as follows: 

CALL SM5S0RT (0) 
CALL SM5FROM ('students') 
CALL SM5TO ('summed_file') 
CALL SM5KEY (15,6,'ascii','a') 
CALL SM5SUM (36,3,'numeric_ns',3) 
CALL SM5END 

The input file STUDENTS is named, and the output file SUMMED _FILE will contain 
the results of the summing. The student number (positions 15 through 20) is specified 
as the sort key. The SUM procedure specifies that a three-position numeric field of 
type NUMERIC _NS begins in position 36 in each record. The repetition indicator 
specifies that three contiguous fields are to be summed. The output from the sort is 
shown below. Each record ends with nine digits: the first three digits are the total 
units attempted, the next three are the total units completed, and the final three are 
the total grade points. 

QUINTERA L S 90154101253810 003000000 
IRVING 
ALLEN 

W R 101750111855ENG 102099391 
M G 102056012561LNGUIS 034024089 

GREENWOOD M R 102168101961EDU 005005009 

The output file contains one record for each student. The numeric fields are the totals 
of the units attempted, units completed, and grade points. 

8-72 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



Defining Your Own Collating Sequence 

Defining Your Own Collating Sequence 

The file BIRTHDATES, ordered according to the student name, is shown below. The 
file contains the students' last names, students' first and middle initials, and the 
students' dates of birth. 

ALLEN M G 10-09-61 
ANDERSEN C R 05-01-60 
EBERHARD N I 06 05 58 
GREENWOOD M R 09-12-61 
IRVING W R 01/07/55 
KING M L 11 11 48 
QUINTERA L S 08/12/53 
WALLACE S T 12/09/55 

You can standardize the separators in the students' birthdate by defining your own 
collating sequence. 

The FORTRAN procedure to define your own collating sequence is as follows: 

CALL SM5S0RT (0) 
CALL SM5FROM ('birthdates') 
CALL SM5KEY (25,2,'mysequence','a') 
CALL SM5KEY (19,3,'mysequence','a') 
CALL SM5KEY (22,3,'mysequence' ,'a') 
CALL SM5SEQN ('mysequence') 
CALL SM5SEQS ('0','1','2') 
CALL SM5SEQS ('-',' , ,'I') 
CALL SM5SEQA ('yes') 
CALL SM5TO ('dates_sorted') 
CALL SM5END 

The procedure defines a collating sequence named MYSEQUENCE. The first SEQS 
procedure specifies the digits 0, 1, and 2, all of which will collate equally. The next 
SEQS parameter specifies one step consisting of hyphens, blanks, and slashes. This 
defines the hyphen, blank, and slashes as equal values. The SEQA procedure specifies 
that blanks and slashes are to be output as hyphens. The file is sorted according to, the 
date of birth. 

The file DATES_SORTED output from the sort is shown below. 

KING M L 11-11-48 
QUINTERA L S 08-12-53 
IRVING W R 01-07-55 
WALLACE S T 12-09-55 
EBERHARD N I 06-05-58 
ANDERSEN C R 05-01-60 
GREENWOOD M R 09-12-61 
ALLEN M G 10-09-61 

The file BIRTHDATES has been sorted in numeric order according to dates of birth, 
and the separators in the dates have been changed to hyphens in all records. 

60485917 B SortlMerge Interface 8·73 





Appendixes 

Glossary ........................................................................ A-I 

Related Manuals ............................................................... B-1 

ASCII Character Set and .Collating Weight Tables ............................. C-l 

Creating a Collation Table ..................................................... D-I 

Differences Between NOS/VE FORTRAN and FORTRAN 5 ................... E-I 



( 



Glossary 

This section presents a list of definitions of terms used in this manual. Terms are 
listed in alphabetical order. 

A 

Access Modes 

A 

A file attribute that determines what you can do with the file. Access modes include 
read, modify, shorten, append, write, execute, and all. Contrast with Share Modes and 
Open Share Modes. 

Advanced Access Methods (AAM) 

File manager that. processes keyed files. 

Alternate Index 

Index built in a keyed file for an alternate key. The index associates each alternate 
key value with a key list of one or more primary-key values. 

Alternate Key 

Optional key defined in addition to the primary key. An alternate key provides another 
method of directly accessing records in a keyed file. Unlike the primary key, an 
alternate key can be defined to allow duplicate values so that more than one record 
can have the same alternate-key value. 

Alternate-Key Definition 

Set of attributes that specify alternate-key characteristics. The alternate-key definition 
is used to build the alternate index for the key. 

Ascending Sort Order 

U sed with the SortJMerge interface, the order of sorting keys where the record has 
either a numeric or a non-numeric key and the highest value is written last on the 
output file. For non-numeric, the first item in the sequence has the lowest value. See 
Sort Order. 

B 

Basic Access Methods (BAM) 

File manager that processes sequential and byte-addressable files. 

Block 

In a keyed file, blocks are units of file space linked by pointers. 

Byte-Addressable File Organization 

File organization in which records are accessed by their byte address in the file. 

60485917 B Glossary A-I 



Collated Key Duplicate Key Value Control 

c 

Collated Key 

Key type that orders key values according to a user-specified collation table. Contrast 
with Uncollated Key and Integer Key. 

Collating Sequence 

Set of values defining the collation weights of the 256 ASCII characters. The collation 
weights determine the sequence in which characters are ordered and their relative 
values when compared. 

Collation Table 

Data structure defining a collating sequence. 

Collation Weight 

Value assigned to a character that determines the position of that character when 
ordered using the collating sequence. 

D 

Data Block 

Keyed-file block in which indexed-sequential data records are stored. Contrast with 
Index Block. 

Data Block Padding 

Additional space deliberately left in a data block so more data records can be written 
to the file without a data block split. See Data Block and Data Block Split. 

Data Block Split 

Process of creating two or three data blocks from an existing data block when a record 
to be written does not fit into the remaining space of the existing block. 

Descending Sort Order 

U sed with the sort/merge interface, the order of sorting keys where the record has 
either a numeric or a non-numeric key and the lowest value is written last on the 
output file. For non-numeric, the first item in the sequence has the highest value. See 
Sort Order. 

Direct Access Input/Output 

Method of input/output in 'which records can be read or written in any order. 

Duplicate Key Value 

Situation detected when a record to be written to the file has a key value that matches 
a key value already in the file (or another value for the alternate key in the same 
record). It can also be detected during application of a new alternate-key definition to a 
file. 

Duplicate Key Value Control 

Alternate-key attribute that indicates whether duplicate values are allowed for the key 
and, if so, how the duplicates are ordered. 

A-2 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



Embedded Key Index-Block Padding 

E 

Embedded Key 

Key that is part of the data in each record. (Alternate keys are always embedded.) 
Contrast with Nonembedded Key. 

F 

F Record Type 

Fixed-length records, as defined by the ANSI standard. 

File Information Table (FIT) 

Internal table maintained by the FORTRAN keyed-file interface that stores the 
attributes for an instance of open for a keyed file. 

File-Level Parcel 

A limited type of parcel that can apply to only one keyed file. Contrast with 
File-Spanning Parcel. 

File Organization 

File attribute that determines the record access method for the file. See Sequential File 
Organization, Byte-Addressable File Organization, and Keyed-File Organization. 

File-Spanning Parcel 

The type of parcel that can apply to more than one keyed file. Contrast with 
File-Level Parcel. 

FIT 

See File Information Table. 

H 

Hashing Procedure 

Procedure used to relate a primary-key value to a home block number in a 
direct-access file. 

Home Block 

Unit of space in a direct-access file that can be accessed directly. Initially, a 
direct-access file is composed of home blocks. Contrast with Overflow Blocks. 

I 

Index Block 

Indexed-sequential file block in which index records are stored. Contrast with Data 
Block. 

Index-Block Padding 

Additional space deliberately left in an index block so more records can be written to 
the file without an index-block split. See Index Block and Index-Block Split. 

60485917 B Glossary A-3 

I 



Index-Block Split Key List 

Index-Block Split 

Process of creating two index blocks from an existing index block when a record to be 
written does not fit into the remaining space of the existing block. 

Index Level 

Rank in the index block hierarchy in an indexed-sequential file. To find the pointer to 
a data record, an index block must be searched at each index level. 

Index Level Overflow 

Condition when a record cannot be written to a file because writing the record would 
require addition of another index level and the file already has 15 index levels. 

Index Record 

Record in an 'index block that associates a key value with a pointer to either a data 
block or an index block in the next-lower level of the index hierarchy. 

Indexed-Sequential File Organization 

Keyed-file organization in which records can be read sequentially, ordered by key 
value, or read randomly by a key value. 

Instance of Open 

Period of time that a task has a file open. A task may have multiple instances of 
open. See Task. 

Integer Key 

Key type that orders key values numerically. The key values can be positive or 
negative integers. Contrast with Collated Key and Uncollated Key. 

J 

Job 

Set of tasks executed for a user name. See Task. 

K 

Key 

Significant part of a data record. 

For SortJMerge, a key is a part of a record used to determine the position of the 
record within a sorted sequence of records. 

In a keyed file, a key is a part of a record whose value is defined as a means of 
accessing records. See Primary Key and Alternate Key. 

Key List 

Sequence of primary-key values associated with an alternate key value in an alternate 
index. If the alternate key does not allow duplicate values, each key list contains only 
one value. Otherwise, each key list contains a primary key value for each record that 
contains the alternate-key value. 

A-4 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



Key Type Nonembedded Key 

Key Type 

Kind of data in a key. 

For SortJMerge, a key type is the name of a numeric data format or collating sequence. 

For a keyed file, the possible key types are uncollated, collated, and integer. 

Keyed-File Organization 

File organization that provides for record access by a key value. Currently, the only 
keyed-file organizations are indexed-sequential and direct-access. 

Keyword 

Word within a format that must be entered exactly as shown. 

L 

Lock 

Mechanism that makes a primary-key value (or, for a file lock, all primary-key values) 
inaccessible to other instances of the file. 

Log 

Entries recording a chronological series of events. The keyed-file interface uses two 
kinds of logs: parcel logs and update recovery logs. See also Parcel Log and Update 
Recovery Log. 

M 

Major Key 

Leftmost part of a key. The number of bytes to be used is specified as the major key 
length. A major key can be used to position or read a keyed file. 

Major Sort Key 

U sed with the SortJMerge interface, a sort key that is the most important and is 
specified first. 

Merge 

Process of combining two or more presorted files. 

Minor Sort Key 

U sed with the SortJMerge interface, a sort key that is specified after the major sort 
key on a SORT or MERGE command or in a procedure call. Minor keys are sorted 
after the major sort key. 

N 

Nonembedded Key 

Primary key that is not part of the record data. Contrast with Embedded Key. 

60485917 B Glossary A·5 



Open Random File Organization 

o 

Open Share Modes 

A file attribute that determines what other instances of open within the same job can 
do with the file. Open share modes include read, modify, shorten, append, write, 
execute, and all. Contrast with Access Modes and Share Modes. 

Overflow Block 

U nit of space in a direct-access file where data is written after a home block fills up. 
Initially, a direct-access file is composed of home blocks. Contrast with Home Blocks. 

Owncode 

User-written routine, executed by SortiMerge, that inserts, substitutes, modifies, or 
deletes records. 

p 

Padding 

Space deliberately left unused in each block created during the initial open of a keyed 
file. 

Also used to refer to the non-data characters appended to a fixed-length (F) record if 
the data is shorter than the record length. 

Parcel 

Series of update operations forming a logical unit. By grouping its update operations 
into logical units, a program can commit or abort each set of operations as a unit. 

Parcel Log 

Log in which the system records information from each call to begin, commit, or abort 
a file-spanning parcel. The program can later fetch the information recorded on the 
parcel log. 

Partition 

Unit of data on a sequential or byte-addressable file, delimited by end-of-partition 
separators or the beginning-of-information or the end-of-information. 

Primary Key 

Required key in a keyed file. Each primary-key value must be unique in the file. See 
also Alternate Key. 

R 

Random Access 

Process of reading or writing a record in a file without having to read or write the 
preceding records; applies only to mass storage files. Contrast with Sequential Access. 

Random File Organization 

File organization in which records can be accessed by the value of their keys. Random 
files are processed by direct access READ and WRITE statements, file interface 
subprograms, and the mass storage subroutines. 

A-6 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 60485917 B 

( 



Recovery Task 

Recovery 

Actions taken after damage occurs to alleviate the effects of the damage. Keyed~file 
recovery actions include reloading a backup copy and restoring the copy with an update 
recovery log. See also Update Recovery Log. 

Repeating Groups 

Alternate~key attribute indicating that each data record can contain more than one 
value for the alternate key. 

s 

Sequential Access 

Access mode in which records are processed in the order (physical or logical) in which 
they occur on a storage device. Contrast with Random Access. 

Sequential File Organization 

File organization in which records can only be processed in physical order. Records are 
always read in the order that they were written to the file. 

Share Modes 

A file attribute that determines what other instances of open can do with the file. 
Share modes include read, modify, shorten, append, write, execute, and all. Contrast 
with Access Modes and Open Share Modes. 

Sort 

Process of arranging records in a specified order. 

Sort Key 

Used with the SortJMerge interface, a field of information within each record in a sort 
or merge input file that is used to determine the order in which records are written to 
the output file. 

Sort Order 

Ordering of data according to key fields, either ascending or descending. 

Sparse-Key Control 

Alternate-key attribute that allows only certain records to be included in the alternate 
index. Inclusion or exclusion of a record is determined by the character at the 
sparse-key control position of the record. 

T 

Task 

Instance of execution of a program. Contrast with Job. 

60485917 B Glossary A·7 



U Record Type V Record Type 

u 

U Record Type 

Records for which the record structure is undefined. 

Un collated Key 

Key consisting of 1 to 255 8-bit characters. These keys are sorted by the magnitude of 
~:l their binary ASCII code values. Contrast with Collated Key and Integer Key. 

Update Recovery Log 

Log on which each backup or update operation to a keyed file is recorded so that, if 
the file is damaged, a backup file copy can be reloaded and updated using the 
information on the log. 

v 

V Record Type 

Variable-sized record; system default record type. Each V -type record has a record 
header. The header contains the record length and the length of the preceding record. 

A·8 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 

( 

( 
\ 

( 

( 



Related Manuals B 

Table B-1 lists all manuals that are referenced in this manual or that contain 
background information. A complete list of NOSNE manuals is given in the NOSNE 
System Usage manual. If your site has installed the online manuals, you can find an 
abstract for each NOSNE manual in the online System Information manual. To access 
this manual, enter: 

lexplain 

Ordering Printed Manuals 

You can order Control Data manuals through Control Data sales offices or through: 

Control Data Corporation 
Literature and Distribution Services 
308 North Dale Street 
St. Paul, Minnesota 55103 

Accessing Online Manuals 

To access an online manual, log in to NOSNE and specify the online manual title 
(listed in table B-1) on the EXPLAIN command. For example, to read the FORTRAN 
online manual, enter: 

Ihelp manual=fortran 

Revision A Related Manuals B-1 



Accessing Online Manuals 

Table B-l. Related Manuals 

Manual Title 

FORTRAN Manuals: 

FORTRAN Version 1 for NOSNE Language 
Definition Usage 

FORTRAN Version 1 for NOSNE Quick Reference 

FORTRAN for NOSNE Summary 

FORTRAN for NOSNE Tutorial 

FORTRAN for NOSNE Topics for FORTRAN 
Programmers Usage 

FORTRAN Version 2 for NOSNE Language 
Definition Usage 

FORTRAN Version 2 for NOSNE Quick Reference 

NOS/VE Manuals: 

NOSNE Advanced File Management Usage 

NOSNE System Usage 

NOSNE Commands and Functions 

NOSNE Source Code Management Usage 

NOSNE Object Code Management Usage 

Additional References: 

NOSNE Diagnostic Messages 

Math Library for NOSNE Usage 

Debug for NOSNE Usage 

Debug for NOSNE Quick Reference 

Migration From NOS to NOSNE Tutorial/U sage 

Programming Environment for NOSNE Usage 

Professional Programming Environment Usage 

Professional Programming Environment Quick 
Reference 

B-2 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 

Publication 
Number 

60485913 

60485919 

60485912 

60485916 

60487113 

60486413 

60464014 

60464018 

60464313 

60464413 

60464613 

60486513 

60488213 

60489503 

60486613 

Online Title 

FORTRAN 

FORTRAN_T 

VFORTRAN 

AFM 

SCL 

MESSAGES 

DEBUG 

ENVIRONMENT 

PPE 

Revision A 



ASCII Character Set and Collating Weight 
Tables C 

Tables C-l through C-12 give the ASCII character set, the hexadecimal character code 
for each ASCII character, and the weight tables for the following collating sequences: 

• ASCII: FORTRAN default collating sequence 

• OSV$ASCII6_FOLDED and OSV$ASCII6_STRICT: NOS FORTRAN 5 default 
collating sequence. 

• OSV$COBOL6_FOLDED and OSV$COBOL6_STRICT: NOS COBOL 5 default 
collating sequence. 

• OSV$DISPLAY63_FOLDED and OSV$DISPLAY63_STRICT: NOS 63-character 
display code collating sequence. 

• OSV$DISPLAY64_FOLDED and OSV$DISPLAY64_STRICT: NOS 64-character 
display code collating sequence. 

• OSV$EBCDIC: Full EBCDIC collating sequence. 

• OSV$EBCDIC6_FOLDED and OSV$EBCDIC6_STRICT: EBCDIC 6-bit subset 
collating sequence supported by NOS COBOL 5 and SORT 5. 

The collation table variants FOLDED and STRICT indicate different mapping of the 
characters not in the 63 or 64 characters of the original NOS collating sequence. A 
strict mapping maps all characters not in the original 64- or 63-character set to the 
ordinal for the space character. A folded mapping maps some characters into ordinals 
of the original characters and the others into the ordinal value for the space character 
as shown in the listing of the collating sequence. 

The following table shows the COLSEQ call parameter values and their corresponding 
weight table selection: 

COLSEQ Call 
Parameter 
Value 

ASCII 
ASCII6 
ASCII6S 
COBOL6 
COBOL6S 
DISPLAY 
DISPLAYS 
DISPLAY63 
DISPLAY63S 
EBCDIC 
EBCDIC6 
EBCDIC6S 
INSTALL 

Revision A 

Selected Collating Weight Table 

Standard ASCII 
OSV$ASCII6_FOLDED 
OSV$ASCII6_STRICT 
OSV$COBOL6_FOLDED 
OSV$COBOL6_STRICT 
OSV$DISPLAY64_FOLDED 
OSV$DISPLAY64_ STRICT 
OSV$DISPLAY63_FOLDED 
OSV$DISPLAY63_ STRICT 
OSV$EBCDIC 
OSV$EBCDIC6_FOLDED 
OSV$EBCDIC6_ STRICT 
OSV$COBOL6_FOLDED 

ASCII Character Set and Collating Weight Tables C-l 



ASCII Character Set and Collating Weight Tables 

Table C-l. ASCII Character Set and Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

0 00 NULL Null 
1 01 SOH Start of heading 
2 02 STX Start of text 
3 03 ETX End of text 
4 04 EOT End of transmission 
5 05 ENQ Enquiry 
6 06 ACK Acknowledge 
7 07 BEL Bell 
8 08 BS Backspace 
9 09 HT Horizontal tabulation 

10 OA LF Line feed 
11 OB VT Vertical tabulation 
12 OC FF Form feed 
13 OD CR Carriage return 
14 OE SO Shift out 
15 OF SI Shift in 
16 10 DLE Data link escape 
17 11 DC1 Device control 1 
18 12 DC2 Device control 2 
19 13 DC3 Device control 3 

20 14 DC4 Device control 4 
21 15 NAK Negative acknowledge 
22 16 SYN Synchronous idle 
23 17 ETB End of transmission block 
24 18 CAN Cancel 
25 19 EM End of medium 
26 1A SUB Substitute 
27 1B ESC Escape 
28 1C FS File separator 
29 1D GS Group separator 

30 IE RS Record separator 
31 IF US U nit separator 
32 20 SP Space 
33 21 Exclamation point 
34 22 " Quotation marks 
35 23 # Number sign 
36 24 $ Dollar sign 
37 25 % Percent sign 
38 26 & Ampersand 
39 27 Apostrophe 

(Continued) 

C-2 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-l. ASCII Character Set and Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 28 ( Opening parenthesis 
41 29 ) Closing parenthesis 
42 2A * Asterisk 
43 2B + Plus 
44 2C Comma 
45 2D Hyphen 
46 2E Period 
47 2F / Slant 
48 30 0 Zero 
49 31 1 One 

50 32 2 Two 
51 33 3 Three 
52 34 4 Four 
53 35 5 Five 
54 36 6 Six 
55 37 7 Seven 
56 38 8 Eight 
57 39 9 Nine 
58 3A Colon 
59 3B Semicolon 

60 3C < Less than 
61 3D = Equal to 
62 3E > Greater than 
63 3F ? Question mark 
64 40 @ Commercial at 
65 41 A Uppercase A 
66 42 B Uppercase B 
67 43 C Uppercase C 
68 44 D Uppercase D 
69 45 E Uppercase E 

70 46 F Uppercase F 
71 47 G Uppercase G 
72 48 H Uppercase H 
73 49 I Uppercase I 
74 4A J Uppercase J 
75 4B K Uppercase K 
76 4C L Uppercase L 
77 4D M Uppercase M 
78 4E N Uppercase N 
79 4F 0 Uppercase 0 

(Continued) 

Revision A ASCII Character Set and Collating Weight Tables C-3 



ASCII Character Set and Collating Weight Tables 

Table C-l. ASCII Character Set and Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

80 50 P Uppercase P 
81 51 Q Uppercase Q 
82 52 R Uppercase R 
83 53 S Uppercase S 
84 54 T Uppercase T 
85 55 U Uppercase U 
86 56 V Uppercase V 
87 57 W Uppercase W 
88 58 X Uppercase X 
89 59 Y Uppercase Y 

90 5A Z Uppercase Z 
91 5B [ Opening bracket 
92 5C \ Reverse slant 
93 5D ] Closing bracket 
94 5E Circumflex 
95 5F Underline 
96 60 Grave accent 
97 61 a Lowercase a 
98 62 b Lowercase b 
99 63 c Lowercase c 

100 64 d Lowercase d ( 
101 65 e Lowercase e 
102 66 f Lowercase f 
103 67 g Lowercase g 
104 68 h Lowercase h 
105 69 i Lowercase i 
106 6A j Lowercase j 
107 6B k Lowercase k 
108 6C I Lowercase I 
109 6D m Lowercase m 

( 
110 6E n Lowercase n 
111 6F 0 Lowercase 0 

112 70 P Lowercase p 
113 71 q Lowercase q 
114 72 r Lowercase r 
115 73 s Lowercase s 
116 74 t Lowercase t 
117 75 u Lowercase u 
118 76 v Lowercase v 
119 77 w Lowercase w 

(Continued) 

( 

( 

C-4 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-l. ASCII Character Set and Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

120 78 x Lowercase x 
121 79 y Lowercase y 
122 7A z Lowercase z 
123 7B { Opening brace 
124 7C I Vertical line 
125 7D } Closing brace 
126 7E Tilde 
127 7F DEL Delete 

ASCII codes 80 through FF hexadecimal (not listed in this table) are ordered as equal 
to the space (ASCII code 20 hexadecimal). 

Revision A ASCII Character Set and Collating Weight Tables C-5 



ASCII Character Set and Collating Weight Tables 

Table C-2. OSV$ASCII6_FOLDED Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 21 Exclamation point 
02 22 " Quotation marks 
03 23 # Number sign 
04 24 $ Dollar sign 
05 25 % Percent sign 
06 26 & Ampersand 
07 27 Apostrophe 
08 28 ( Opening parenthesis 
09 29 ) Closing parenthesis 

10 2A * Asterisk 
11 2B + Plus 
12 2C Comma 
13 2D Hyphen 
14 2E Period 
15 2F / Slant 
16 30 0 Zero 
17 31 1 One 
18 32 2 Two 
19 33 3 Three 

20 34 4 Four 
21 35 5 Five 
22 36 6 Six 
23 37 7 Seven 
24 38 8 Eight 
25 39 9 Nine 
26 3A Colon 
27 3B Semicolon 
28 3C < Less than 
29 3D = Equals 

( 
30 3E > Greater than 
31 3F ? Question mark 
32 40,60 @," Commercial at, grave accent 
33 41,61 A,a Uppercase A, lowercase a 
34 42,62 B,b Uppercase B, lowercase b 
35 43,63 C,c Uppercase C, lowercase c 
36 44,64 D,d Uppercase D, lowercase d 
37 45,65 E,e Uppercase E, lowercase e 
38 46,66 F,f Uppercase F, lowercase f 
39 47,67 G,g Uppercase G, lowercase g 

(Continued) 

( 

( 

C-6 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-2. OSV$ASCII6_FOLDED Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 48,68 H,h Uppercase H, lowercase h 
41 49,69 I,i Uppercase I, lowercase i. 
42 4A,6Ai J,j Uppercase J, lowercase j 
43 4B,6B K,k Uppercase K, lowercase k 
44 4C,6C L,l Uppercase L, lowercase 1 
45 4D,6D M,m Uppercase M, lowercase m 
46 4E,6E N,n Uppercase N, lowercase n 
47 4F,6F 0,0 Uppercase 0, lowercase 0 
48 50,70 P,p Uppercase P, lowercase p 
49 51,71 Q,q Uppercase Q, lowercase q 

50 52,72 R,r Uppercase R, lowercase r 
51 53,73 S,s Uppercase S, lowercase s 
52 54,74 T,t Uppercase T, lowercase t 
53 55,75 U,u Uppercase U, lowercase u 
54 56,76 V,v Uppercase V, lowercase v 
55 57,77 W,w Uppercase W, lowercase w 
56 58,78 X,x Uppercase X, lowercase x 
57 59,79 Y,y Uppercase Y, lowercase y 
58 5A,7A Z,Z Uppercase Z, lowercase z 
59 5B,7B [,{ Opening bracket, opening brace 

60 5C,7C \,1 Reverse slant, vertical line 
61 5D,7D ],} Closing bracket, closing brace 
62 5E,7E Circumflex, tilde 
63 5F Underline 

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 7F through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision A ASCII Character Set and Collating Weight Tables C-7 



ASCII Character Set and Collating Weight Tables 

Table C-3. OSV$ASCII6_STRICT Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic N aiDe or Meaning 

00 20 SP Space 
01 21 Exclamation point 
02 22 " Quotation marks 
03 23 # Number sign 
04 24 $ Dollar sign 
05 25 % Percent sign 
06 26 & Ampersand 
07 27 Apostrophe 
08 28 ( Opening parenthesis 
09 29 ) Closing parenthesis 

10 2A * Asterisk 
11 2B + Plus 
12 2C Comma 
13 2D Hyphen 
14 2E Period 
15 2F / Slant 
16 30 0 Zero 
17 31 1 One 
18 32 2 Two 
19 33 3 Three 

20 34 4 Four 
21 35 5 Five 
22 36 6 Six 
23 37 7 Seven 
24 38 8 Eight 
25 39 9 Nine 
26 3A Colon 
27 3B Semicolon 
28 3C < Less than 
29 3D = Equals 

30 3E > Greater than 
31 3F ? Question mark 
32 40 @ Commercial at 
33 41 A Uppercase A 
34 42 B Uppercase B 
35 43 C Uppercase C 
36 44 D Uppercase D 
37 45 E Uppercase E 
38 46 F Uppercase F 
39 47 G Uppercase G 

c-s FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 

(Continued) 

Revision A 

( 

( 

( 

( 



ASCII Character Set and Collating Weight Tables 

Table C-3. OSV$ASCII6_STRICT Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 48 H Uppercase H 
41 49 I Uppercase I 
42 4A J Uppercase J 
43 4B K Uppercase K 
44 4C L Uppercase L 
45 4D M Uppercase M 
46 4E N Uppercase N 
47 4F 0 Uppercase 0 
48 50 P Uppercase P 
49 51 Q Uppercase Q 

50 52 R Uppercase R 
51 53 S Uppercase S 
52 54 T Uppercase T 
53 55 U Uppercase U 
54 56 V Uppercase V 
55 57 W Uppercase W 
56 58 X Uppercase X 
57 59 Y Uppercase Y 
58 5A Z Uppercase Z 
59 5B [ Opening bracket 

60 5C \ Reverse slant 
61 5D ] Closing bracket 
62 5E Circumflex 
63 5F Underline 

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 60 through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision A ASCII Character Set and Collating Weight Tables C·9 



ASCII Character Set and Collating Weight Tables 

Table C-4. OSV$COBOL6_FOLDED Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 40,60 @," Commercial at, grave accent 
02 25 % Percent sign 
03 5B,7B [,{ Opening bracket, opening brace 
04 5F Underline 
05 23 # Number sign 
06 26 & Ampersand 
07 27 Apostrophe 
08 3F ? Question mark 
09 3E > Greater than 

10 5C,7C \,1 Reverse slant, vertical line 
11 5E,7E Circumflex, tilde 
12 2E Period 
13 29 Closing parenthesis 
14 3B Semicolon 
15 2B + Plus 
16 24 $ Dollar sign 
17 2A * Asterisk 
18 2D Hyphen 
19 2F / Slant 

20 2C Comma 
21 28 Opening parenthesis 
22 3D = Equals 
23 22 " Quotation marks 
24 3C < Less than 
25 41,61 A,a Uppercase A, lowercase a 
26 42,62 B,b Uppercase B, lowercase b 
27 43,63 C,c Uppercase C, lowercase c 
28 44,64 D,d Uppercase D, lowercase d 
29 45,65 E,e Uppercase E, lowercase e 

30 46,66 F,f Uppercase F, lowercase f 
31 47,67 G,g Uppercase G, lowercase g 
32 48,68 H,h Uppercase H, lowercase h 
33 49,69 I,i Uppercase I, lowercase i 
34 21 ! Exclamation point 
35 4A,6A J,j Uppercase J, lowercase j 
36 4B,6B K,k Uppercase K, lowercase k 
37 4C,6C L,l Uppercase L, lowercase I 
38 4D,6D M,m Uppercase M, lowercase m 
39 4E,6E N,n Uppercase N, lowercase n 

(Continued) 

C-IO FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-4. OSV$COBOL6_FOLDED Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 4F,6F 0,0 Uppercase 0, lowercase 0 
41 50,70 P,p Uppercase P, lowercase p 
42 51,71 Q,q Uppercase Q, lowercase q 
43 52,72 R,r Uppercase R, lowercase r 
44 5D,7D ],} Closing bracket, closing brace 
45 53,73 S,s Uppercase S, lowercase s 
46 54,74 T,t Uppercase T, lowercase t 
47 55,75 U,u Uppercase U, lowercase u 
48 56,76 V,v Uppercase V, lowercase v 
49 57,77 W,w Uppercase W, lowercase w 

50 58,78 X,x Uppercase X, lowercase x 
51 59,79 Y,y Uppercase Y, lowercase y 
52 5A,7A Z,z Uppercase Z, lowercase z 
53 3A Colon 
54 30 0 Zero 
55 31 1 One 
56 32 2 Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 7F through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision A ASCII Character Set and Collating Weight Tables C-ll 



ASCII Character Set and Collating Weight Tables 

Table C-5. OSV$COBOL6_STRICT Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 40 @ Commercial at 
02 25 % Percent sign 
03 5B [ Opening bracket 
04 5F Underline 
05 23 # Number sign 
06 26 & Ampersand 
07 27 Apostrophe 
08 3F ? Question mark 
09 3E > Greater than 

10 5C \ Reverse slant 
11 5E Circumflex 
12 2E Period 
13 29 Closing parenthesis 
14 3B Semicolon 
15 2B + Plus 
16 24 $ Dollar sign 
17 2A * Asterisk 
18 2D Hyphen 
19 2F / Slant 

20 2C Comma ( 
21 28 Opening parenthesis 
22 3D = Equals 
23 22 " Quotation marks 
24 3C < Less than 
25 41 A Uppercase A 
26 42 B Uppercase B 
27 43 C Uppercase C 
28 44 D Uppercase D 
29 45 E Uppercase E 

( 
30 46 F Uppercase F 
31 47 G Uppercase G 
32 48 H Uppercase H 
33 49 I Uppercase I 
34 21 Exclamation point 
35 4A J Uppercase J 
36 4B K Uppercase K 
37 4C L Uppercase L 
38 4D M Uppercase M 
39 4E N Uppercase N 

(Continued) 

C-12 FORTRAN for NOSNE Keyed-File and SortfMerge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-5. OSV$COBOL6_STRICT Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 4F 0 Uppercase 0 
41 50 P Uppercase P 
42 51 Q Uppercase Q 
43 52 R Uppercase R 
44 5D ] Closing bracket 
45 53 S Uppercase S 
46 54 T Uppercase T 
47 55 U Uppercase U 
48 56 V Uppercase V 
49 57 W Uppercase W 

50 58 X Uppercase X 
51 59 y Uppercase Y 
52 5A Z Uppercase Z 
53 3A Colon 
54 30 0 Zero 
55 31 1 One 
56 32 2 Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 60 through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision A ASCII Character Set and Collating Weight Tables C·13 



ASCII Character Set and Collating Weight Tables 

Table C-6. OSV$DISPLAY63_FOLDED Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

01 41,61 A,a Uppercase A, lowercase a 
02 42,62 B,b Uppercase B, lowercase b 
03 43,63 C,c Uppercase C, lowercase c 
04 44,64 D,d Uppercase D, lowercase d 
05 45,65 E,e Uppercase E, lowercase e 
06 46,66 F,f Uppercase F, lowercase f 
07 47,67 G,g Uppercase G, lowercase g 
08 48,68 H,h Uppercase H, lowercase h 
09 49,69 I,i Uppercase I, lowercase i 
10 4A,6A J,j Uppercase J, lowercase j 

11 4B,6B K,k Uppercase K, lowercase k 
12 4C,6C L,l Uppercase L, lowercase I 
13 4D,6D M,m Uppercase M, lowercase m 
14 4E,6E N,n Uppercase N, lowercase n 
15 4F,6F 0,0 Uppercase 0, lowercase 0 
16 50,70 P,p Uppercase P, lowercase p 
17 51,71 Q,q Uppercase Q, lowercase q 
18 52,72 R,r Uppercase R, lowercase r 
19 53,73 S,s Uppercase S, lowercase s 
20 54,74 T,t Uppercase T, lowercase t 

21 55,75 U,u Uppercase U, lowercase u ( 
22 56,76 V,v Uppercase V, lowercase v 
23 57,77 W,w Uppercase W, lowercase w 
24 58,78 X,x Uppercase X, lowercase x 
25 59,79 Y,y Uppercase Y, lowercase y 
26 5A,7A Z,z Uppercase Z, lowercase z 
27 30 0 Zero 
28 31 1 One 
29 32 2 Two 
30 33 3 Three 

( 
31 34 4 Four 
32 35 5 Five 
33 36 6 Six 
34 37 7 Seven 
35 38 8 Eight 
36 39 9 Nine 
37 2B + Plus 
38 2D Hyphen 
39 2A * Asterisk 
40 2F / Slant 

(Continued) 

( 

( 

C-14 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-6. OSV$DISPLAY63 _FOLDED Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

41 28 ( Opening parenthesis 
42 29 ) Closing parenthesis 
43 24 $ Dollar sign 
44 3D = Equals 
45 20 SP Space 
46 2C Comma 
47 2E Period 
48 23 # Number sign 
49 5B,7B [,{ Opening bracket, opening brace 
50 5D,7D ],} Closing bracket, closing brace 

51 3A Colon 
52 22 " Quotation marks 
53 5F Underline 
54 21 Exclamation point 
55 26 & Ampersand 
56 27 Apostrophe 
57 3F ? Question mark 
58 3C < Less than 
59 3E > Greater than 
60 40,60 @,' Commercial at, grave accent 

61 5C,7C \,1 Reverse slant, vertical line 
62 5E,7E Circumflex, tilde 
63 3B Semicolon 

Any ASCII codes not listed in this table (ASCII codes 0 through IF, 25, and 7F 
through FF hexadecimal) are ordered as equal to the space (ASCII code 20 
hexadecimal) . 

Revision A ASCII Character Set and Collating Weight Tables C-15 



ASCII Character Set and Collating Weight Tables 

Table C-7. OSV$DISPLAY63_STRICT Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic N arne or Meaning 

01 41 A Uppercase A 
02 42 B Uppercase B 
03 43 C Uppercase C 
04 44 D Uppercase D 
05 45 E Uppercase E 
06 46 F Uppercase F 
07 47 G Uppercase G 
08 48 H Uppercase H 
09 49 I Uppercase I 
10 4A J Uppercase J 

11 4B K Uppercase K 
12 4C L Uppercase L 
13 4D M Uppercase M 
14 4E N Uppercase N 
15 4F 0 Uppercase 0 
16 50 P Uppercase P 
17 51 Q Uppercase Q 
18 52 R Uppercase R 
19 53 S Uppercase S 
20 54 T Uppercase T 

21 55 U Uppercase U 
22 56 V Uppercase V 
23 57 W Uppercase W 
24 58 X Uppercase X 
25 59 Y Uppercase Y 
26 5A Z Uppercase Z 
27 30 0 Zero 
28 31 1 One 
29 32 2 Two 
30 33 3 Three 

31 34 4 Four 
32 35 5 Five 
33 36 6 Six 
34 37 7 Seven 
35 38 8 Eight 
36 39 9 Nine 
37 2B + Plus 
38 2D Hyphen 
39 2A * Asterisk 
40 2F / Slant 

(Continued) 

C-16 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-7. OSV$DISPLAY63_STRICT Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

41 28 ( Opening parenthesis 
42 29 ) Closing parenthesis 
43 24 $ Dollar sign 
44 3D = Equals 
45 20 SP Space 
46 2C Comma 
47 2E Period 
48 23 # Number sign 
49 5B [ Opening bracket 
50 5D ] Closing bracket 

51 3A Colon 
52 22 " Quotation marks 
53 5F Underline 
54 21 Exclamation point 
55 26 & Ampersand 
56 27 Apostrophe 
57 3F ? Question mark 
58 3C < Less than 
59 3E > Greater than 
60 40 @ Commercial at 

61 5C \ Reverse slant 
62 5E Circumflex 
63 3B Semicolon 

Any ASCII codes not listed in this table (ASCII codes 0 through IF, 25, and 60 
through FF hexadecimal) are ordered as equal to the space (ASCII code 20 
hexadecimal) . 

Revision A ASCII Character Set and Collating Weight Tables C-17 



ASCII Character Set and Collating Weight Tables 

Table C-8. OSV$DISPLAY64_FOLDED Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 3A Colon 
01 41,61 A,a Uppercase A, lowercase a 
02 42,62 B,b Uppercase B, lowercase b 
03 43,63 C,c Uppercase C, lowercase c 
04 44,64 D,d Uppercase D, lowercase d 
05 45,65 E,e Uppercase E, lowercase e 
06 46,66 F,f Uppercase F, lowercase f 
07 47,67 G,g Uppercase G, lowercase g 
08 48,68 H,h Uppercase H, lowercase h 
09 49,69 I,i Uppercase I, lowercase i 

10 4A,6A J,j Uppercase J, lowercase j 
11 4B,6B K,k Uppercase K, lowercase k 
12 4C,6C L,l Uppercase L, lowercase I 
13 4D,6D M,m Uppercase M, lowercase m 
14 4E,6E N,n Uppercase N, lowercase n 
15 4F,6F 0,0 Uppercase 0, lowercase 0 

16 50,70 P,p Uppercase P, lowercase p 
17 51,71 Q,q Uppercase Q, lowercase q 
18 52,72 R,r Uppercase R, lowercase r 
19 53,73 S,s Uppercase S, lowercase s 

20 54,74 T,t Uppercase T, lowercase t 
21 55,75 U,u Uppercase U, lowercase u 
22 56,76 V,v Uppercase V, lowercase v 
23 57,77 W,w Uppercase W, lowercase w 
24 58,78 X,x Uppercase X, lowercase x 
25 59,79 Y,y Uppercase Y, lowercase y 
26 5A,7A Z,z Uppercase Z, lowercase z 
27 30 0 Zero 
28 31 1 One 
29 32 2 Two 

30 33 3 Three 
31 34 4 Four 
32 35 5 Five 
33 36 6 Six 
34 37 7 Seven 
35 38 8 Eight 
36 39 9 Nine 
37 2B + Plus 
38 2D Hyphen 
39 2A * Asterisk 

(Continued) 

C·18 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-S. OSV$DISPLAY64_FOLDED Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 2F I Slant 
41 28 ( Opening parenthesis 
42 29 ) Closing parenthesis 
43 24 $ Dollar sign 
44 3D = Equals 
45 20 SP Space 
46 2C Comma 
47 2E Period 
48 23 # Number sign 
49 5B,7B L{ Opening bracket, opening brace 

50 5D,7D ],} Closing bracket, closing brace 
51 25 % Percent sign 
52 22 " Quotation marks 
53 5F Underline 
54 21 Exclamation point 
55 26 & Ampersand 
56 27 Apostrophe 
57 3F ? Question mark 
58 3C < Less than 
59 3E > Greater than 

60 40,60 @,' Commercial at, grave accent 
61 5C,7C \,1 Reverse slant, vertical line 
62 5E,7E Circumflex, tilde 
63 3B Semicolon 

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 60 through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision A ASCII Character Set and Collating Weight Tables C-19 



ASCII Character Set and Collating Weight Tables 

Table C-9. OSV$DISPLAY64_STRICT Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic N arne or Meaning 

00 3A Colon 
01 41 A Uppercase A 
02 42 B Uppercase B 
03 43 C Uppercase C 
04 44 D Uppercase D 
05 45 E Uppercase E 
06 46 F Uppercase F 
07 47 G Uppercase G 
08 48 H Uppercase H 
09 49 I Uppercase I 

10 4A J Uppercase J 
11 4B K Uppercase K 
12 4C L Uppercase L 
13 4D M Uppercase M 
14 4E N Uppercase N 
15 4F 0 Uppercase 0 
16 50 P Uppercase P 
17 51 Q Uppercase Q 
18 52 R Uppercase R 
19 53 S Uppercase S 

20 54 T Uppercase T 
21 55 U Uppercase U 
22 56 V Uppercase V 
23 57 W Uppercase W 
24 58 X Uppercase X 
25 59 Y Uppercase Y 
26 5A Z Uppercase Z 
27 30 0 Zero 
28 31 1 One 
29 32 2 Two 

30 33 3 Three 
31 34 4 Four 
32 35 5 Five 
33 36 6 Six 
34 37 7 Seven 
35 38 8 Eight 
36 39 9 Nine 
37 2B + Plus 
38 2D Hyphen 
39 2A * Asterisk 

(Continued) 

C-20 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-9. OSV$DISPLAY64_STRICT Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 2F / Slant 
41 28 ( Opening parenthesis 
42 29 ) Closing parenthesis 
43 24 $ Dollar sign 
44 3D = Equals 
45 20 SP Space 
46 2C Comma 
47 2E Period 
48 23 # Number sign 
49 5B [ Opening bracket 

50 5D Closing bracket 
51 25 % Percent sign 
52 22 " Quotation marks 
53 5F Underline 
54 21 Exclamation point 
55 26 & Ampersand 
56 27 Apostrophe 
57 3F ? Question mark 
58 3C < Less than 
59 3E > Greater than 

60 40 @ Commercial at 
61 5C \ Reverse slant 
62 5E Circumflex 
63 3B Semicolon 

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 60 through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision A ASCII Character Set and Collating Weight Tables C-21 



ASCII Character Set and Collating Weight Tables 

Table C·10. OSV$EBCDIC Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

000 00 NUL Null 
001 01 SOH Start of heading 
002 02 STX Start of text 
003 03 ETX End of text 
004 9C Unassigned 
005 09 HT Horizontal tabulation 
006 86 Unassigned 
007 7F DEL Delete 
008 97 Unassigned 
009 8D Unassigned 

010 8E Unassigned 
011 OB VT Vertical tabulation 
012 OC FF Form feed 
013 OD CR Carriage return 
014 OE SO Shift out 
015 OF SI Shift in 
016 10 DLE Data link escape 
017 11 DC1 Device control 1 
018 12 DC2 Device control 2 
019 13 DC3 Device control 3 

020 9D Unassigned 
021 85 Unassigned 
022 08 BS Backspace 
023 87 Unassigned 
024 18 CAN Cancel 
025 19 EM End of medium 
026 92 Unassigned 
027 8F Unassigned 
028 lC FS File separator 
029 1D GS Group separator 

030 IE RS Record separator 
031 IF US Unit separator 
032 80 Unassigned 
033 81 Unassigned 
034 82 Unassigned 
035 83 Unassigned 
036 84 Unassigned 
037 OA LF Line feed 
038 17 ETB End of transmission block 
039 1B ESC Escape 

(Continued) 

C-22 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-IO. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

040 88 Unassigned 
041 89 Unassigned 
042 8A Unassigned 
043 8B Unassigned 
044 8C Unassigned 
045 05 ENQ Enquiry 
046 06 ACK Acknowledge 
047 07 BEL Bell 
048 90 Unassigned 
049 91 Unassigned 

050 16 SYN Synchronous idle 
051 93 Unassigned 
052 94 Unassigned 
053 95 Unassigned 
054 96 Unassigned 
055 04 EOT End of transmission 
056 98 Unassigned 
057 99 Unassigned 
058 9A Unassigned 
059 9B Unassigned 

060 14 DC4 Device control 4 
061 15 NAK Negative acknowledge 
062 9E Unassigned 
063 lA SUB Substitute 
064 20 SP Space 
065 AO Unassigned 
066 Al Unassigned 
067 A2 Unassigned 
068 A3 Unassigned 
069 A4 Unassigned 

070 A5 Unassigned 
071 A6 Unassigned 
072 A7 Unassigned 
073 A8 Unassigned 
074 5B Opening bracket 
075 2E Period 
076 3C < Less than 
077 28 ( Opening parenthesis 
078 2B + Plus 
079 21 Exclamation point 

(Continued) 

Revision A ASCII Character Set and Collating Weight Tables C-23 



ASCII Character Set and Collating Weight Tables 

Table C-IO. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

080 26 & Ampersand 
081 A9 Unassigned 
082 AA Unassigned 
083 AB Unassigned 
084 AC Unassigned 
085 AD Unassigned 
086 AE Unassigned 
087 AF Unassigned 
088 BO Unassigned 
089 B1 Unassigned 

090 5D ] Closing bracket 
091 24 $ Dollar sign 
092 2A * Asterisk 
093 29 Closing parenthesis 
094 3B Semicolon 
095 5E Circumflex 
096 2D Hyphen 
097 2F / Slant 
098 B2 Unassigned 
099 B3 Unassigned 

100 B4 Unassigned 
101 B5 Unassigned 
102 B6 Unassigned 
103 B7 Unassigned 
104 B8 Unassigned 
105 B9 Unassigned 
106 7C Vertical line 
107 2C , Comma 
108 25 % Percent sign 
109 5F Underline 

110 3E > Greater than 
111 3F ? Question mark 
112 BA Unassigned 
113 BB Unassigned 
114 BC Unassigned 
115 BD Unassigned 
116 BE Unassigned 
117 BF Unassigned 
118 CO Unassigned 
119 C1 Unassigned 

(Continued) 

C-24 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-I0. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

120 C2 Unassigned 
121 60 Grave accent 
122 3A Colon 
123 23 # Number sign 
124 40 @ Commercial at 
125 27 Apostrophe 
126 3D = Equals 
127 22 " Quotation marks 
128 C3 Unassigned 
129 61 a Lowercase a 

130 62 b Lowercase b 
131 63 c Lowercase c 
132 64 d Lowercase d 
133 65 e Lowercase e 
134 66 f Lowercase f 
135 67 g Lowercase g 
136 68 h Lowercase h 
137 69 i Lowercase i 
138 C4 Unassigned 
139 C5 Unassigned 

140 C6 Unassigned 
141 C7 Unassigned 
142 C8 Unassigned 
143 C9 Unassigned 
144 CA Unassigned 
145 6A j Lowercase j 
146 6B k Lowercase k 
147 6C I Lowercase I 
148 6D m Lowercase m 
149 6E n Lowercase n 

150 6F 0 Lowercase 0 

151 70 P Lowercase p 
152 71 q Lowercase q 
153 72 r Lowercase r 
154 CB Unassigned 
155 CC Unassigned 
156 CD Unassigned 
157 CE Unassigned 
158 CF Unassigned 
159 DO Unassigned 

(Continued) 

Revision A ASCII Character Set and Collating Weight Tables C-25 



ASCII Character Set and Collating Weight Tables 

Table C-IO. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

160 D1 Unassigned 
161 7E Unassigned 
162 73 s Lowercase s 
163 74 t Lowercase t 
164 75 u Lowercase u 
165 76 v Lowercase v 
166 77 w Lowercase w 
167 78 x Lowercase x 
168 79 y Lowercase y 
169 7A z Lowercase z 

170 D2 Unassigned 
171 D3 Unassigned 
172 D4 Unassigned 
173 D5 Unassigned 
174 D6 Unassigned 
175 D7 Unassigned 
176 D8 Unassigned 
177 D9 Unassigned 
178 DA Unassigned 
179 DB Unassigned 

180 DC Unassigned 
181 DD Unassigned 
182 DE Unassigned 
183 DF Unassigned 
184 EO Unassigned 
185 E1 Unassigned 
186 E2 Unassigned 
187 E3 Unassigned 
188 E4 Unassigned 
189 E5 Unassigned 

190 E6 Unassigned 
191 E7 Unassigned 
192 7B { Opening brace 
193 41 A Uppercase A 
194 42 B Uppercase B 
195 43 C Uppercase C 
196 44 D Uppercase D 
197 45 E Uppercase E 
198 46 F Uppercase F 
199 47 G Uppercase G 

(Continued) 

C-26 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C·I0. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

200 48 H Uppercase H 
201 49 I Uppercase I 
202 E8 Unassigned 
203 E9 Unassigned 
204 EA Unassigned 
205 EB Unassigned 
206 EC Unassigned 
207 ED Unassigned 
208 7D } Closing brace 
209 4A J Uppercase J 

210 4B K Uppercase K 
211 4C L Uppercase L 
212 4D M Uppercase M 
213 4E N Uppercase N 
214 4F 0 Uppercase 0 
215 50 P Uppercase P 
216 51 Q Uppercase Q 
217 52 R Uppercase R 
218 EE Unassigned 
219 EF Unassigned 

220 FO Unassigned 
221 F1 Unassigned 
222 F2 Unassigned 
223 F3 Unassigned 
224 5C \ Reverse slant 
225 9F Unassigned 
226 53 S Uppercase S 
227 54 T Uppercase T 
228 55 U Uppercase U 
229 56 V Uppercase V 

230 57 W Uppercase W 
231 58 X Uppercase X 
232 59 Y Uppercase Y 
233 5A Z Uppercase Z 
234 F4 Unassigned 
235 F5 Unassigned 
236 F6 Unassigned 
237 F7 Unassigned 
238 F8 Unassigned 
239 F9 Unassigned 

(Continued) 

Revision A ASCII Character Set and Collating Weight Tables C-27 



ASCII Character Set and Collating Weight Tables 

Table C-10. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

240 30 0 Zero 
241 31 1 One 
242 32 2 Two 
243 33 3 Three 
244 34 4 Four 
245 35 5 Five 
246 36 6 Six 
247 37 7 Seven 
248 38 8 Eight 
249 39 9 Nine 

250 FA Unassigned 
251 FB Unassigned 
252 FC Unassigned 
253 FD Unassigned 
254 FE Unassigned 
255 FF Unassigned 

C·28 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-l1. OSV$EBCDIC6_FOLDED Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 2E Period 
02 3C < Less than 
03 28 ( Opening parenthesis 
04 2B + Plus 
05 21 Exclamation point 
06 26 & Ampersand 
07 24 $ Dollar sign 
08 2A * Asterisk 
09 29 Closing parenthesis 

10 3B Semicolon 
11 5E,7E Circumflex, tilde 
12 2D Hyphen 
13 2F / Slant 
14 2C , Comma 
15 25 % Percent sign 
16 5F Underline 
17 3E > Greater than 
18 3F ? Question mark 
19 3A Colon 

20 23 # Number sign 
21 40,60 @," Commercial at, grave accent 
22 27 Apostrophe 
23 3D = Equals 
24 22 " Quotation marks 
25 5B,7B [,{ Opening bracket, opening brace 
26 41,61 A,a Uppercase A, lowercase a 
27 42,62 B,b Uppercase B, lowercase b 
28 43,63 C,c Uppercase C, lowercase c 
29 44,64 D,d Uppercase D, lowercase d 

30 45,65 E,e Uppercase E, lowercase e 
31 46,66 F,f Uppercase F, lowercase f 
32 47,67 G,g Uppercase G, lowercase g 
33 48,68 H,h Uppercase H, lowercase h 
34 49,69 I,i Uppercase I, lowercase i 
35 5D,7D ],} Closing bracket, closing brace 
36 4A,6A J,j Uppercase J, lowercase j 
37 4B,6B K,k Uppercase K, lowercase k 
38 4C,6C L,l Uppercase L, lowercase 1 
39 4D,6D M,m Uppercase M, lowercase m 

(Continued) 

Revision A ASCII Character Set and Collating Weight Tables C·29 



ASCII Character Set and Collating Weight Tables 

Table C-11. OSV$EBCDIC6_FOLDED Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic N arne or Meaning 

40 4E,6E N,n Uppercase N, lowercase n 
41 4F,6F 0,0 Uppercase 0, lowercase 0 
42 50,70 P,p Uppercase P, lowercase p 
43 51,71 Q,q Uppercase Q, lowercase q 
44 52,72 R,r Uppercase R, lowercase r 
45 5C,7C \,1 Reverse slant, vertical line 
46 53,73 S,s Uppercase S, lowercase s 
47 54,74 T,t Uppercase T, lowercase t 
48 55,75 U,u Uppercase U, lowercase u 
49 56,76 V,v Uppercase V, lowercase v 

50 57,77 W,w Uppercase W, lowercase w 
51 58,78 X,x Uppercase X, lowercase x 
52 59,79 Y,y Uppercase Y, lowercase y 
53 5A,7A Z,z Uppercase Z, lowercase z 
54 30 0 Zero 
55 31 1 One 
56 32 2 Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 7F through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

C-30 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Revision A 



ASCII Character Set and Collating Weight Tables 

Table C-12. OSV$EBCDIC6_STRICT Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 2E Period 
02 3C < Less than 
03 28 ( Opening parenthesis 
04 2B + Plus 
05 21 Exclamation point 
06 26 & Ampersand 
07 24 $ Dollar sign 
08 2A * Asterisk 
09 29 Closing parenthesis 

10 3B Semicolon 
11 5E Circumflex 
12 2D Hyphen 
13 2F / Slant 
14 2C , Comma 
15 25 % Percent sign 
16 5F Underline 
17 3E > Greater than 
18 3F ? Question mark 
19 3A Colon 

20 23 # Number sign 
21 40 @ Commercial at 
22 27 Apostrophe 
23 3D = Equals 
24 22 " Quotation marks 
25 5B [ Opening bracket 
26 41 A Uppercase A 
27 42 B Uppercase B 
28 43 C Uppercase C 
29 44 D Uppercase D 

30 45 E Uppercase E 
31 46 F Uppercase F 
32 47 G Uppercase G 
33 48 H Uppercase H 
34 49 I Uppercase I 
35 5D ] Closing bracket 
36 4A J Uppercase J 
37 4B K Uppercase K 
38 4C L Uppercase L 
39 4D M Uppercase M 

(Continued) 

Revision A ASCII Character Set and Collating Weight Tables C-31 



ASCII Character Set and Collating Weight Tables 

Table C-12. OSV$EBCDIC6 _ STRICT Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 4E N Uppercase N 
41 4F 0 Uppercase 0 
42 50 P Uppercase P 
43 51 Q Uppercase Q 
44 52 R Uppercase R 
45 5C \ Reverse slant 
46 53 S Uppercase S 
47 54 T Uppercase T 
48 55 U Uppercase U 
49 56 V Uppercase V 

50 57 W Uppercase W 
51 58 X Uppercase X 
52 59 Y Uppercase Y 
53 5A Z Uppercase Z 
54 30 0 Zero 
55 31 1 One 
56 32 2 Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 60 through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal), 

C-32 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



C Treating a C oliliatioJl1 T ablie 

One of the key types supported by the keyed-file interface is collated keys. The order 
in which collated keys are sorted is determined by a collation table. If you specify this 
key type, you must supply an explicit collation table; there is no system-supplied 
default collation table. A fatal error occurs if the KEY_TYPE attribute for a file is 
collated and the file is opened without a collation table supplied. 

You can specify a collation table using the $COLLATE_ TABLE_NAME keyword or the 
$COLLATE_ TABLE keyword. You specify the keywords on a CALL STOREF statement 
before the file is opened for its creation run. NOSNE supplies eleven predefined 
collation tables; you can specify a predefined collation table or a collation table that 
you have created. 

Predefined Collation Tables 

You specify a predefined collation table by specifying its name on a CALL STOREF 
statement with the $COLLATE_ TABLE_NAME keyword. For example, the following 
statement specifies OSV$ASCII6_FOLDED as the collation table name in ISFIT. 

CALL STOREF(ISFIT,'$COLLATE_TABLE_NAME' ,'OSV$ASCII6_FOLDED') 

A collation table name should be entered using only uppercase letters. 

The collating sequences of the predefined collation tables are listed in appendix C, 
ASCII Character Set and Collating Weight Tables. 

Revision A Creating a Collation Table D·I 



Creating Your Own Collation Table 

Creating Your Own Collation Table 

The easiest way to create your own collation table within a FORTRAN program is to 
use the subprograms described under Collating Sequence Control in chapter 9 of the 
FORTRAN for NOSIVE Version 1 or Version 2 Language Definition manuals. These 
subprograms create a collation table from a string of characters. 

NOTE 

For these subprograms to be effective, you must include a $C COLLATE(USER) 
directive in your program or specify DEFAULT_COLLATION = USER on the FORTRAN 
command that compiles the program. 

To create a collation table, you assign a character to each position within a 
256-character string. The characters assigned must comprise the ASCII character set 
listed in appendix C, ASCII Character Set and Collating Weight Tables. Nonprintable 
characters are indirectly assigned to their position in the string using the CHAR 
function. (Before using the CHAR function, specify ASCII on a COLSEQ call as shown 
in the collation table example.) 

The order in which you assign characters to the string is the order in which you want 
the characters collated. For example, to collate in reverse order, you would assign the 
characters in reverse order from the order in which the characters are listed in 
appendix C, ASCII Character Set and Collating Weight Tables. Mter assigning 256 
characters to the string, you call the CSOWN subprogram described in the FORTRAN 
for NOSIVE Version 1 or Version 2 Language Definition manuals to define the string 
as the user-specified collating sequence. 

The user-specified collating sequence within a FORTRAN program is referenced by the 
name FTV$USER_ COLLATE_ TABLE. Therefore, to assign the collating sequence you 
defined to the $COLLATE_ TABLE_NAME file attribute, you specify FTV$USER_ 
COLLATE_ TABLE as the collation table name on the STOREF call. For example, the 
following statement specifies the $COLLATE_ TABLE_NAME value for ISFIT. 

CALL STOREF (ISFIT,'$COLLATE_TABLE_NAME','FTV$USER_COLLATE_TABLE') 

NOTE 

The name FTV$USER_COLLATE_ TABLE must be in uppercase letters because it 
must match a corresponding internal entry point in the FORTRAN run-time routine 
that handles collation control. 

The CALL STOREF statement must appear before the file is first opened for its 
creation run. When the CALL OPENM statement opens the file, the value of the 
$COLLATE_ TABLE_NAME attribute becomes permanent. Subsequent jobs that read or 
update the file cannot change the collation table stored with the file. A CALL STOREF 
statement that attempts to change the collation table is diagnosed as an error. 

D-2 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



Collation Table Example 

Collation Table Example 

The program in figure D-l creates and uses a collation table. Note the placement and 
use of the C$ COLLATE, CALL STOREF, and CALL TABLE statements. 

Output from the program is shown in figure D-2. The first part of the output prints 
each record and key as records are written to the file. Mter the records are written to 
the file, the file is closed, opened, and read sequentially. The second part of the output 
shows the result of the sequential read. The records are in order according to the 
collating sequence defined in the collation table. 

Program CTABLE 

C ***************************************************** 

C 
C 

* 
* 

This program creates an indexed seQuential file 
(IS_FILE) from a seQuential file (DATA_FILE). 

* 
* 

C * Also, this program shows how to set up and use a * 
C * collation table through a FORTRAN program. * 
C ***************************************************** 

C Issue directive telling the compiler that the collation table 
C is user specified. 
C$ Collate (user) 
C Declare variables. 

Integer isfit, reclg, stat 
COI1IOOn iswsa 
Character * 65 iswsa 

C Call subroutine to create the collation table. 
Call Table 

C Set file attributes before opening IS_FILE. 
Call Fileis (isfit,'$LOCAL_FILE_NAME' ,'IS~FILE', 

+ '$MAXIMUM_RECORD_LENGTH',65,'$RECORD_TYPE','FIXED', 
+ '$KEY_LENGTH',20,'$KEY_TYPE','C', 
+ 
+ 
+ 

'$KEY_POSITION' ,O,'$EMBEDDED_KEY' ,'YES', 
'$INDEX_PADDING' ,1D,'$DATA_PADDING' ,15, 
'$ESTIMATED_RECORD_COUNT',30) 

C Store the name of the collate table in $COLLATE_TABLE_NAME attribute. 
Call Storef (isfit,'$COLLATE_TABLE_NAME','FTV$USER_COLLATE_TABLE') 

C Open DATA_FILE and IS_FILE. Check for error on IS_FILE open. 
Open (2,file='DATA_FILE') 
Call Openm (isfit,'NEW') 
Call IFETCH (isfit,'$ERROR_STATUS', stat) 
If (stat.ne.O) go to 90 

C Read each record from DATA_FILE into the working storage area (iswsa), 
C and then put record into IS_FILE. After put, check for error. If no 
C error occurred, print the record. 

Figure D-l. Creation Program 
(Continued) 

Revision A Creating a Collation Table D·3 



Collation Table Example 

(Continued) 

10 Continue 
Read (2,'(A65)' ,End=30) iswsa 
Call Put (isfit,iswsa) 
Call IFETCH (isfit,'$ERROR_STATUS' ,stat) 
If (stat.ne.O) go to 90 
Print '(1X,A65)', iswsa 
Go to 10 

C When all records in DATA_FILE have been read, close IS_FILE and 
C check whether error occurred during CLOSE. 

30 Continue 
Call Closem (isfit) 
Call IFETCH (isfit,'$ERROR_STATUS', stat) 
If (stat.eq.O) Go to 40 
Print 900, stat 
Stop 

C Now read IS_FILE. 
40 Continue 

Call Openm (isfit,'input') 
Call Storef (isfit,'$WORKING_STORAGE_ADDRESS' ,iswsa) 
Call Storef (isfit,'$WORKING_STORAGE_LENGTH' ,80) 

50 Continue 
Call Getn (isfit) 
Call IFETCH (isfit,'$ERROR_STATUS', stat) 
If (stat.ne.O) Go to 90 
Call IFETCH (isf1t,'$FILE_POSITION', filepos) 
If (filpos.eq.64) Go to 70 
Print ,(" Record = ",A65)',iswsa 
Go to 50 

C Close IS_FILE and stop. 
70 Continue 

Call Closem (isfit) 
Call IFETCH (isfit,'$ERROR_STATUS', stat) 
If (stat.ne.O) Print '(1X,I6)', stat 
Stop 

C If error occurs during OPEN or PUT, control transfers to this point 
C in program. The error number is printed and the file is closed. 

90 Continue 
Print 900, stat 
Call Closem (isfit) 
Stop 

900 Format (1X,I6) 
End 

C The following section contains subroutine TABLE. 
Subroutine Table 

Figure D-l. Creation Program 

D-4 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 

(Continued) 

Revision A 



Collation Table Example 

(Continued) 

C *********************************************************************** 
C * This subroutine sets up the collation table. The user MUST specify * 
C * a collation table if the key type is collated. * 
C *********************************************************************** 
C$ collate (user) 

Character user*256 
C The following section puts all ascii characters into a string structure. 
C Symbols and numbers on the far right show the ascii graphics (or their 
C abbreviations) and corresponding 
C characters have to be indirectly 
C the CHAR function (which MUST be 

Revision A 

Call colseQ ('ascii') 
User( 1: 1) 
User(2:2) 
User(3:3) 
User(4:4) 
User(5:5) 
User(6:6) 
User(7:7) 
User(8:8) 
User(9:9) 
User(10:10) 
User ( 11 : 11 ) 
User(12:12) 
User ( 13: 13) 
User ( 14: 14) 
User(15:15) 
User (16: 16) 
User (17: 17) 
User(18:18) 
User(19:19) 
User(20:20) 
User(21 :21) 
User(22:22) 
User(23:23) 
User(24:24) 
User(25:25) 
User(26:26) 
User(27:27) 
User(28:28) 
User(29:29) 
User(30:30) 
User(31 :31) 
User(32:32) 
User(33:33) 
User(34:34) 
User(35:35) 

'$' 
'R' 
char(9) 
'<' 

'F' 
'd' 
char(127) 
'+' 

'%' 
'x' 
char(13) 
'3' 
'#' 

char(26) 
'V' 
'm' 
'0' 
char(18) 
, . , 
,-, 

'r' 
char(21) 
,*, 

'K' 
'{' 
'c' 
'6' 
'w' 
'p' 

char(16) 

'A' 
char(3) 
'h' 
'H' 

Figure D-l. 

decimal representations. Nonprintable 
assigned into the string by referencing 
operating in ASCII mode by COLSEQ). 

$ 36 
R 65 

HT 9 
< 60 
F 82 
d 100 

RO 127 
+ 43 

" 37 
x 129 

CR 13 
3 51 
# 35 

CUP 26 
V 86 
m 109 
0 48 

OC2 18 
58 
94 

r 114 
SKIP 21 

* 42 
K 75 
{ 123 
c 99 
6 54 
w 119 
P 80 

OLE 16 
95 

A 70 
ETX 3 

h 104 
H 72 

Creation Program 
(Continued) 

Creating a Collation Table D·5 



Collation Table Example 

(Continued) 

User(36:36) = '0' 0 68 
User(37:37) = char(2) STX 2 
User(38:38) = 'M' M 77 
User(39:39) = char(29) GS 29 
User(40:40) , , 44 , 
User (41 : 41) 'a' a 97 
User(42:42) 126 
User(43:43) 'k' k 107 
User(44:44) , 1 ' 49 
User(45:45) , . ' 59 , 
User(46:46) = char(23) ETB 23 
User(47:47) 92 
User(48:48) 'u' u 117 
User(49:49) '5' 5 53 
User(50:50) 'B' B 66 
User(51 :51) 'f' f 102 
User(52:52) = char(5) ENQ 5 
User(53:53) , ( , ( 40 
User(54:54) '7' 7 55 
User(55:55) '&' & 38 
User(56:56) 'T' T 84 
User(57:57) 'b' b 98 
User(58:58) 'z' Z 90 
User(59:59) '0' 0 111 
User( 60 : 60) 32 
User(61 :61) = char(27) ESC 27 
User(62:62) = char(7) BEL 7 
User(63:63) , ] , ] 93 
User(64:64) = ' X' X 88 
User(65:65) = '2' 2 50 
User(66:66) = char(31) US 31 
User(67 :67) 'N' N 78 
User(68:68) = ", 96 
User( 69: 69) = ' Q' Q 113 
User(70:70) = char( 11) VT 11 
User (71 : 71) , ) , ) 41 
User(72:72) = ' J' J 74 
User(73:73) = '}' } 125 
User(74:74) = char(19) OC3 19 
User(75:75) '2' 2 131 
User(76:76) '5' 5 115 
User(77:77) 'Q' Q 81 
User(78:78) '?' ? 63 
User(79:79) '9' 9 57 
User(80:80) = char(12) FF 12 
User(81 : 81) 'e' e 101 
User(82:82) 'G' G 71 
User(83:83) '=' 61 

Figure D·1. Creation Program 
(Continued) 

D-6 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



Collation Table Example 

(Continued) 

User(84:84) char(6) ACK 6 
User(85:85) 'u' U 85 
User(86:86) 39 
User(87:87) '@I' @I 64 
User(88:88) 'E' E 69 
User(89:89) '4' 4 52 
User(90:90) 34 
User(91 :91) char(30) RS 30 
User(92:92) = char(4) EaT 4 
User(93:93) = '9' 9 103 
User(94:94) = 'I' I 47 
User(95:95) = charCO) NUL 0 
User(96:96) '-' 45 
User(97:97) 'I' I 73 
User(98:98) , [ , [ 91 
User(99:99) , I ' I 124 
User( 100: 100) = char(28) FS 28 
User( 101: 101) 'j' j 106 
User( 102: 102) 'v' v 118 
User (103: 103) char( 1) SOH 
User ( 104: 104) , , 46 
User ( 105: 105) 'y' y 130 
User(106:106) char(8) BS 8 
User( 107: 107) '>' > 62 
User(108:108) 'w' W 67 
User( 109: 109) , i ' 105 
User(110:110) 's' S 83 
User(111:111) , ! ' 33 
User(112:112) = char(24) CLR 24 
User(113:113) , 1 ' 108 
User( 114: 114) = 'L' L 76 
User( 115: 115) = 't' t 116 
User(116:116) = char(22) LCLR 22 
User(117:117) = 'n' n 110 
User(118:118) = '0' a ,79 
User( 119: 119) = char( 17) DC1 17 
User( 120: 120) = char(25) RSET 25 
User( 121: 121) = 'c' C 87 
User( 122: 122) = char(15) SI 15 
User(123:123) = 'y' Y 89 
User( 124: 124) = char(10) LF 10 
User(125:125) = 'p' p 112 
User( 126: 126) char(14) SO 14 
User (127: 127) char(20) DC4 20 
User(128:128) '8' 8 56 

Figure D-l. Creation Program 
(Continued) 

Revision A Creating a Collation Table D·7 



Collation Table Example 

(Continued) 

C Complete the table using a loop that assigns the leftover characters 
C in reverse order filling the remaining 128 positions. 

Do 5 I = 129,256 
5 User (1:1) = char (256-1+128) 

Call Csown (user) 
Return 
End 

Algeria 
Australia 
Austria 
Belguim 
Canada 
China 
Denmark 
England 
France 
India 
Ireland 
Italy 
Ivory Coast 
Japan 
Mexico 
Spain 
Sweden 
Switzerland 
Tanzania 
Turkey 
USSR 
United States 
Venezuela 
West Germany 

Figure D-l. Creation Program 

19709000 
14796000 
74760000 

9875000 
24336000 

1053788000 
5157000 

55717000 
53844000 

700734000 
3349000 

57513000 
8513000 

11878300 
70143000 
38686000 

8335000 
63000000 
18744000 
47284000 

269302000 
225195000 

15771000 
60948000 

919591 Algiers 
2967895 Canberra 

32374 Vienna 
11781 Brusse 1 s 

3851791 Ottawa 
3705390 Beijing 

16629 Copenhagen 
94226 London 

211207 Paris 
1269340 New Delhi 

27136 Dublin 
116303 Rome 
124503 Abidjan 
143750 Tokyo 
761601 Mexico City 
194897 Madrid 
173731 Stockholm 

15941 Bern 
364898 Zanzibar 
301381 Ankara 

8649498 Moscow 
3615105 Washington 

352143 Caracas 
95976 Bonn 

o DELETE_KEYs done since last open. 
o GET_KEYs done since last open. 

Africa 
Australia 
Europe 
Europe 
NAmerica 
Asia 
Europe 
Europe 
Europe 
Asia 
Europe 
Europe 
Africa 
ASia 
SAmerica 
Europe 
Europe 
Europe 
Africa 
Asia 
Asia 
NAmerica 
SAmerica 
Europe 

o GET_NEXT_KEYs done since last open. 

File IS_FILE 
File IS_FILE 
File IS_FILE 
File IS_FILE 
File IS_FILE 
File IS_FILE 

24 PUT_KEYs (and PUTREPs->put) Since last open. 
o PUTREPs done since last open. 
o REPLACE_KEYs (and PUTREPs->replace) since last "open. 

Record France 
Record Venezuela 
Record Australia 

53844000 211207 Paris Europe 
15771000 
14796000 

352143 Caracas 
2967895 Canberra 

Figure D-2. Creation Program Output 

D-S FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 

SAmerica 
Austral ia 

(Continued) 

Revision A 



Collation Table Example 

(Continued) 

Record Austria 74760000 32374 Vienna 
Record Algeria 19709000 919591 Algiers 
Record Denmark 5157000 16629 Copenhagen 
Record Mexico 70143000 761601 Mexico City 
Record Belguim 9875000 11781 Brussels 
Record Tanzania 18744000 364898 Zanzibar 
Record Turkey 47284000 301381 Ankara 
Record Japan 11878300 143750 Tokyo 
Record USSR 269302000 8649498 Moscow 
Record United States 225195000 3615105 Washington 
Record England 55717000 94226 London 
Record Ireland 3349000 27136 Dublin 
Record Ivory Coast 8513000 124503 Abidjan 
Record Italy 57513000 116303 Rome 
Record India 700734000 1269340 New Delhi 
Record = West Germany 60948000 95976 Bonn 

Europe 
Africa 
Europe 
SAmerica 
Europe 
Africa 
Asia 
Asia 
Asia 
NAmerica 
Europe 
Europe 
Africa 
Europe 
Asia 
Europe 
Europe 
Europe 
Europe 
Asia 
NAmerica 

Record Sweden 8335000 173731 Stockholm 
Record Switzerland 63000000 15941 Bern 
Record Spain 38686000 194897 Madrid 
Record China 1053788000 3705390 Beijing 
Record Canada 24336000 3851791 Ottawa 

Fi le IS_FILE AMP$GET_NEXT_KEY has reached a file boundary: EOI. 
Fi le IS_FILE o DELETE_KEYs done since last open. 
File IS_FILE o GET_KEYs done since last open. 
File IS_FILE 24 GET_NEXT_KEYs done since last open. 
Fi le IS_FILE o PUT_KEYs (and PUTREPs->put) since last open. 
File IS_FILE o PUTREPs done Since last open. 
Fi le IS_FILE o REPLACE_KEYs (and PUTREPs->replace) since last open. 

Figure D-2. Creation Program Output 

Revision A Creating a Collation Table D-9 



Creating a Collation Weight Table 

Creating a Collation Weight Table 

It is also possible to create a collation table to be specified by address using the nCT 
keyword. The collation table must be in the form of a collation weight table. (The 
CSOWN subprogram generates a collation weight table from a character string.) 

A collation weight table is 256 contiguous bytes (32 words) with each byte containing 
an integer value. The 256 bytes within the table correspond to the 256 character codes 
in the ASCII character set. The collation weight, or ordinal, for each character is the 
value stored in the byte corresponding to the character within the table. 

Figure D-3 illustrates the collation weight table for the ASCII collation sequence with 
the weights in hexadecimal. Weights are assigned in ascending order just as the 
characters are ordered in the set. The character codes from 80 through FF hexadecimal 
do not have graphic characters associated with them. However, each character code is 
assigned a collating weight within the table. 

As illustrated, the weights for the uppercase letters are in bytes 41 through 5A 
hexadecimal of the string and the weights for the lowercase letters are in bytes 61 
through 7A. 

Suppose you want the lowercase letters to be collated the same as the uppercase letters 
(case insensitive). You would then assign the collating weight of each uppercase letter 
to the corresponding lowercase letter. The following is a listing of words 12 through 15 
of the collation weight table showing the changed values for the lowercase letters. 

_~~-.£..~~_f_~ 
60 41 42 43 44 45 46 47 

~_-.L~_~~~ 
48 49 4A 4B 4C 4D 4E 4F 

~--.9...-_r_~_t_~~~ 
50 51 52 53 54 55 56 57 

2- -L. 2.. _{ __ 1 __ }_ __ DEL 
58 59 SA 7B 7C 7D 7E 7F 

To create a collation table, you declare a 32-word integer array and then assign a 
hexadecimal constant to each word in the array. For example, the following statement 
declares an array named TABLE with bounds 0 and 31. 

INTEGER TABLE (0:31) 

You then assign a hexadecimal constant to each of the 32 words in the array. For 
example, when creating a case insensitive collation table, you would assign the 
following hexadecimal constants to words 12 through 15 of the array. 

TABLE(12) Z"6041424344454647" 

TABLE(13) Z"48494A4B4C4D4E4F" 

TABLE(14) Z"5051525354555657" 

TABLE(15) = Z"58595A7B7C7D7E7F" 

D·lO FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 

( 

( 



Creating a Collation Weight Table 

Word 
NUL SOH STX ETX EOT ENQ ACK BEL --------o 0 2 3 4 5 6 7 

BS HT LF VT FF CR SO SI --------
8 9 ABC 0 E F 

OLE OC1 OC2 OC3 OC4 NAK SYN ETB --------
2 10 11 12 13 14 15 16 17 

CAN EM SUB ESC FS GS RS US --------
3 18 19 1A 1B 1C 10 1E 1F 

SP # $ % & --------
4 20 21 22 23 24 25 26 27 

_( __ ) __ *_ ~ _, ____ 0_ ...L 
5 28 29 2A 2B 2C 20 2E 2F 

o 1 234 5 6 7 --------
6 30 31 32 33 34 35 36 37 

~~_o __ ,_~_~~ 
7 38 39 3A 3B 3C 3D 3E 3F 

~ ABC 0 E F G --------
8 40 41 42 43 44 45 46 47 

H I J K L M N 0 --------
9 48 49 4A 4B 4C 40 4E 4F 

P Q R STU V W --------
10 50 51 52 53 54 55 56 57 

~~2._[_~_] ___ = 
11 58 59 5A 5B 5C 50 5E 5F 

_~~~~~_f_-.JL 
12 60 61 62 63 64 65 66 67 

~_i _ _.L~_l_~~~ 
13 68 69 6A 6B 6C 60 6E 6F 

p q r stu v w --------
14 70 71 72 73 74 75 76 77 

x y z { I } - DEL --------
15 78 79 7A 7B 7C 70 7E 7F 

Figure D-3. Collation Weight Table 
(Continued) 

Revision A Creating a Collation Table D-ll 



Creating a Collation Weight Table 

(Continued) 

Word 

16 80 81 82 83 84 85 86 87 

17 88 89 8A 8B 8C 80 8E 8F 

18 90 91 92 93 94 95 96 97 

19 98 99 9A 9B 9C 90 9E 9F 

20 AD A1 A2 A3 A4 A5 A6 A7 

21 A8 A9 AA AB AC AO AE AF 

22 BO B1 B2 B3 B4 B5 B6 B7 

23 B8 B9 BA BB BC BO BE BF 

24 CO C1 C2 C3 C4 C5 C6 C7 

25 C8 C9 CA CB CC CO CE CF 

26 00 01 02 03 04 05 06 07 

27 08 09 OA OB DC 00 OE OF 

28 EO E1 E2 E3 E4 E5 E6 E7 

29 E8 E9 EA EB EC EO EE EF 

30 FO F1 F2 F3 F4 F5 F6 F7 

31 F8 F9 FA FB FC FO FE FF 

Figure D-3. Collation Weight Table ( 

D-12 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



Differcermces Between NO§NJE FORTRAN 
and FORTRAN 5 JE 

This appendix presents the differences between FORTRAN 5 and the first released 
version of NOSNE FORTRAN, and is intended as an aid to converting programs from 
FORTRAN 5 to NOSNE FORTRAN. 

NOSNE FORTRAN is designed to be compatible with FORTRAN 5. However, the new 
operating system and hardware have resulted in several areas of incompatibility. Other 
incompatibilities are the result of FORTRAN 5 features which are not currently 
supported under NOSNE FORTRAN but for which future support is anticipated. 

In some cases, language incompatibilities may necessitate program modification; in 
other cases, statements using incompatible features can remain in the program but will 
not be processed. 

Coding that depends on the internal representation of data (floating-point layout, 
number of characters per word, and so forth) should be checked. Because of differences 
in word size and internal representations, these uses nearly always require 
modifica tion. 

Data manipulations based on the binary representation of the data should be checked. 
FORTRAN 5 programs that manipulate characters as octal display-coded values or as 
6-bit binary digits must be modified before being compiled and executed under NOSNE 
FORTRAN. 

File structure and naming conventions differ significantly under NOSNE, and default 
file positioning has changed. All usages that depend on any of these properties should 
be checked. 

CYBER Record Manager (AAM) Subprograms 

The capabilities provided by CYBER Record Manager (CRM) are provided by the file 
interface routines under NOSNE. As with CRM, all FORTRAN 110 is performed 
through the file interface, and a set of FORTRAN subprogram calls provides direct 
communication with the file interface. 

Currently, NOSNE supports only sequential, indexed-sequential, direct access, and 
byte-addressable file organizations. Only indexed-sequential and direct access files can 
be accessed by direct FORTRAN calls. Actual-key file organization is not supported. 
The Basic Access Methods word addressable organization has been replaced by the new 
byte-addressable organization. 

You should check all uses of CRM Advanced Access Methods (AAM) subprogram calls 
in your FORTRAN programs. The NOSNE keyed file interface calls offer only a subset 
of the features offered by the CRM AAM calls. The following paragraphs describe the 
feature differences. 

File Organization 

Currently, the only file organizations available via the keyed file interface calls are 
indexed-sequential and direct access. 

Revision A Differences Between NOSNE FORTRAN and FORTRAN 5 E·l 



CYBER Record Manager (AAM) Subprograms 

Record Type 

The record types available are fixed-length (F) and variable-length (U or V). NOSNE 
does not support the AAM Version 2 record types D, R, S, T, and Z. 

File Information Table 

User programs do not need to reserve 35 words for the file information table. All that 
is needed is room for a one-word pointer. If the program does reserve 35 words, only 
the first word will be used. 

Values can be stored or fetched from the file information table in standard ways, Le., 
CALL FILEIS, CALL FILEDA, CALL STOREF, CALL IFETCH, and IFETCH. Values 
in the file information table can only be modified through the file processing calls 
because the file information table is an internal table which cannot be accessed directly 
by a program. 

Any attempt to read from the table without using IFETCH returns an undefined value. 
If a value is stored in an unconventional manner, the value cannot be returned. 

Keywords must be enclosed in apostrophes; for example, 'WSA'. The boolean form 
L"WSA", used in FORTRAN 5 programs, does not work. 

The following CYBER Record Manager file information fields do not have equivalents 
in the file interface to FORTRAN: 

BAL BBH BFF BFS BS BT 

BZF B8F CDT CL CM CNF 

CP CPA Cl DCA DFLG DKI 

EFC EO EOFWA EXD FPB FWB 

HB HL HRL IBL IRS KNE 

KR LA LAC LBL LCR LGX 

LL LNG LOP5 LP LT LVL 

LX MFN MNB MUL NDX NOFCP 

ORG OVF PC PEF PKA PM 

PNO POS PTL RC RDR RMK 

SB SBF SDS SES SOL SPR 

TL TRC ULP VF VNO WA 

WPN XBS XN 

Field FL, although not applicable to the file interface to FORTRAN, will be recognized 
as a synonym of field MRL. 

E·2 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 

( 



CYBER Record Manager (AAM) Subprograms 

Other keywords from Advanced Access Methods Version 2 and their meanings for the 
file interface to FORTRAN: 

DX Data exit. Although NOSIVE does not support data exit, the FORTRAN keyed 
file interface saves the subroutine address and calls the subroutine when the 
appropriate file position (BOI or EO!) is returned from an access operation. 

OC Open/closed flag. Although NOSIVE system requests tell whether the file is 
opened or closed, the file information table will also contain this information 
so you can read it by a IFETCH operation. 

FNF Fatal error flag. To allow you to read the information with a fetch request, 
the FORTRAN interface maintains this information in the file information 
table. 

ON Old/new flag. The file information table maintains a value of ON which can be 
set to OLD (default) or NEW by a FILEIS or FILEDA call. When a CALL 
OPENM statement is issued, the FORTRAN interface first finds out from the 
system whether the file already exists. If the answer to this question conflicts 
with the setting of ON, a fatal error occurs. 

KP Key position. This keyword, although it has no meaning in AAM NOSIVE, is 
accepted by the FORTRAN interface as a keyword in the CALL FILEIS or 
CALL FILEDA statement or as a parameter in the CALL STARTM, CALL 
STOREF, and CALL GET statements. KP is added to KA to determine the 
position of the k~y. 

RKW Relative key word. If RKW is specified in a CALL FILEIS or CALL FILEDA 
statement, the keyed-file interface multiplies the value by 10 and adds it to 
RKP. This may be a problem because NOSIVE has a word size of 8 bytes and 
not 10 bytes (NOS and NOSIBE). Users should visually inspect the program to 
ensure that the correct value is specified. 

Reserving Space for WSA 

Check whether your FORTRAN 5 program uses an INTEGER or REAL array for WSA. 
Because NOS and NOSIBE use a 10-byte word and NOSNE uses an 8-byte word, the 
number of characters that can be stored in an INTEGER or REAL array differs. 

For example, in NOSNE FORTRAN, coding a statement like RECORD (8) reserves 
only 64 characters of space (as opposed to 80 characters in FORTRAN 5), and the first 
time a record is read into the area, the record overwrites the next item in memory. 

To write a FORTRAN program in which the same number of characters can be stored 
in the WSA when the program is executed by NOS, NOSIBE, or NOSIVE, declare the 
WSA using the CHARACTER data type. 

Optimization 

FORTRAN optimization (OL= HIGH) can cause unpredictable results when WSA, KA or 
PKA are not in common. If OL=HIGH is to be used, WSA, PKA and KA should be 
declared as COMMON. 

Revision A Differences Between NOSNE FORTRAN and FORTRAN 5 E-3 



Default Collating Sequence 

Embedded Keys 

The default for EMK in Advanced Access Methods Version 2 was NO (nonembedded 
keys). The default for the NOSNE keyed file interface is YES (embedded keys). 

CALL GETNR Statement 

For purposes of compatibility, CALL GETNR statement is allowed. CALL GETNR is 
treated as a CALL GETN. 

CALL SEEKF Statement 

The SEEK function does not exist in the file interface to FORTRAN. If a CALL 
SEEKF is encountered, the FORTRAN interface copies parameters to the file 
information table, sets the FILE_POSITION field to end-of-information (EOR), and 
returns control to the program. 

Default Collating Sequence 

The default collating sequence established when the DEFAULT_COLLATION parameter 
is omitted from the FORTRAN command has been changed from USER to FIXED. 
Under NOSNE FORTRAN, the USER and FIXED collating sequences are defined as 
the 'ASCII' and 'DISPLAY' collating sequences, respectively. Under FORTRAN 5, USER 
and FIXED are defined as 'DISPLAY' and 'ASCII6', respectively. 

See also Other Collating Sequence Differences in this section. 

Other Collating Sequence Differences 

NOSNE FORTRAN uses standard system-defined collating sequences for th~ 
NOS-compatible 'ASCII6' and 'COBOL6' collating sequences. The 'STANDARD' sequence 
of FORTRAN 5 has been eliminated, and an 'INSTALL' sequence, equivalent to 
'COBOL6', has been added. 

SortlMerge 

NOSNE SortIMerge is compatible only with SortlMerge Version 5; it does not attempt 
compatibility with any other SortlMerge version. NOSNE SortIMerge can only access 
NOSNE disk files. 

The File Management Utility (FMU) can convert NOS files into equivalent NOSNE 
files. This utility converts the differences in byte size, collating sequence, record type, 
and block type. See the NOSNE Advanced File Management Usage manual for more 
details. 

The following paragraphs list the major differences between NOSNE SortlMerge and 
NOS SortIMerge Version 5. 

Byte Size 

Under NOSNE SortlMerge, the byte size is equal to 8-bits rather than 6-bits which is 
the case under NOS SortlMerge 5. 

E-4 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Revision A 



SortJMerge 

Character Codes 

Character data is internally represented in 8-bit ASCII character codes under NOSNE 
Sort/Merge rather than 6-bit display codes which is the case under NOS Sort/Merge 5. 

Character Sets 

NOSNE Sort/Merge supports only the 256-character ASCII character set. NOSNE 
Sort/Merge does not support the 63- and 64-character sets. 

Collating Sequences 

There are now six predefined collating sequences under NOSNE SortlMerge: ASCII, 
ASCII6, COBOL6, DISPLAY, EBCDIC, and EBCDIC6. ASCII is assumed if a sequence 
is not specified. 

Under NOSNE a user-defined collating sequence has 256 positions. (NOSNE can use 
the SEQR procedure to fill the rest). 

Direct Processing 

NOSNE Sort/Merge does not support direct processing (all records are read and written 
through the access method). NOS Sort/Merge 5 reads and writes directly (instead of 
through CYBER Record Manager) if so specified ?y the SM5FAST procedure. 

Error File 

The default error file is $ERRORS under NOSNE SortlMerge. 

Error Messages 

NOSNE SortlMerge error numbers and message text follow NOSNE error message 
conventions. 

The NOSNE SortlMerge error messages are listed in the NOSNE Diagnostic Messages 
manual. 

Estimated Number of Records 

For NOSNE SortlMerge, the value can be specified on the SM5ENR procedure call. 

Exception File Processing 

NOSNE SortlMerge performs exception file processing if an exception file is specified 
for the sort or merge. 

File Attributes 

The NOS default file attributes are valid for a sort or merge. 

The NOSNE default value for the minimum record length attribute could cause a fatal 
error if no key field was specified for the sort or merge. 

Revision A Differences Between NOSNE FORTRAN and FORTRAN 5 E·5 



SortiMerge 

File Manipulation 

Files are not rewound by NOSNE SortlMerge. The open position of a NOSNE file is 
determined by the value of its open_position attribute. 

Interactive Prompting 

Interactive prompting is not currently implemented on NOSNE SortlMerge. 

Listing File 

NOSNE SortlMerge provides the SM5LIST procedure to specify the listing file. The 
default listing file is file $LIST. 

Messages 

For NOSNE SortlMerge, messages are written to the list and error files. 

Messages are written to the dayfile for NOS SortlMerge 5. 

Owncode Procedures 

For NOSNE SortIMerge, any owncode procedures specified for a sort or merge must be 
accessible from an object library in the current object library list. If you enter an 
owncode procedure name in lowercase letters, SortlMerge does not convert the name to 
uppercase letters. Uppercase letters must be used when naming an owncode procedure. 

Procedures for NOSNE Only 

New procedures for NOSNE Sort/Merge include: SM5DUCT, SM5LCT, and SM5LO 
procedure calls. 

Signed Overpunches 

34 overpunches are defined for NOSNE SortlMerge; 20 overpunches are defmed for 
NOS SortlMerge 5. 

SM5EL Procedure 

The maximum error level can only be specified as a letter for NOSNE SortlMerge. 

SM50WNn Procedures 

For NOSNE SortlMerge, an owncode procedure is specified by the entry point name. If 
you enter the owncode routine name in lowercase letters, NOSNE Sort/Merge will not 
convert the name to uppercase letters. Uppercase letters must be used to name an 
owncode procedure. 

SM5ST Procedure 

The NOSNE SM5ST procedure specifies a status variable in which the completion 
status of the command or procedure is returned. 

E-6 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces Revision A 



Zero Comparison 

Positive and negative zero are ordered equally for NOSNE SortJMerge. 

Negative zero is ordered before positive zero for NOS SortJMerge 5. 

SortJMerge 

Revision A Differences Between NOSNE FORTRAN and FORTRAN 5 E-7 





A 
$AASM FIT keyword 7-5 
Abbreviations for FIT Keywords and 

Values 7-3 
Aborting a parcel, with PABORT 6-41 
About this manual 5 
Access and share modes 

About access modes 3-3 
About share modes 3-4 
$ACCESS_AND_SHARE_MODES 

FIT keyword 7-5 
$ACCESS_MODE FIT keyword 7-8 
Example of storing modes in a 

FIT 3-7, 8 
File interface calls that use access and 

share modes 3-6 
FIT keywords that affect access and 

share modes 3-5 
Glossary definition of access 

modes A-I 
Glossary definition of share 

modes A-7 
How OPENM call affects access and 

share modes 3-6 
How to set access and share 

modes 3-6 
Overview 3-3 
Set by the open _option parameter of 

an OPENM call 3-7 
Accessing records, during a parcel 4-4 
Accuracy of result sets 5-3 
Actual_result _set _placement parameter 

RSBUILD call 6-51 
RSCOMB call 6-57 

ADA, using keyed-file interface calls in 
other languages 6-4 

Adding a primary-key value to a result 
set, RSPUT call 6-67 

Adding or deleting key values from 
resul t sets 5-6 

Advanced Access Methods, glossary 
definition A-I 

Alternate index 
Description 2-2 
Fetching information from 2-18 
Glossary definition A-I 

Alternate-index blocks with specified 
values, KLSPACE call 6-29 

Alternate-key definition 
Description 2-2 
Glossary definition A-I 

Alternate keys 
Characteristics 2-1 
Collated key values 2-17 
Concatenated keys 2-6 
Creating with RMKDEF 6-50 
Creatings 2-15 

Duplicate values 2-3 
Duplicate values, processing errors 

for 2-4 
General 2-1 
Glossary definition A-I 
Null suppression 2-4 
Repeating groups 2-7 
Selecting 2-15 
Sparse-key control 2-5 
Specifying values 2-16 
Variable lengths 2-8 

$AM FIT keyword 7-8 
$ARL FIT keyword 7-12 
Array parameter 

SM5MERGE call 8-33 
SM5S0RT call 8-44 

Ascending sort order, glossary 
definition A-I 

ASCII Character Set 
Collating Weight Tables C-l, 2 

Assistance, in case you need help 9 
Attributes 

Of keyed files 1-18 
Required for parcels 4-2 

$AU FIT keyword 7-11 
Audience, for this manual 5 
$AUTOMATIC_UNLOCK 

Using IFETCH to retrieve the 
value 6-20 

$AUTOMATIC_UNLOCK FIT 
keyword 7 -11 

Automatic_unlock parameter, LOCKK 
call 6-35 

$AVERAGE _RECORD _LENGTH FIT 
keyword 7-12 

B 
Basic Access Methods, glossary 

definition A-I 
BASIC, using keyed-file interface calls in 

other languages 6-4 
Beginning a parcel, with PBEGIN 6-42 
BINARY_BITS numeric data format, in 

SortJMerge 8-5 
BINARY numeric data format, in 

SortJMerge 8-5 
Block_count parameter, KLSPACE 

call 6-29 
Block, glossary definition A-I 
Block_space parameter, KLSPACE 

call 6-29 
Building a result set, RSBUILD 

call 6-51 
Byte-addressable file organization, 

glossary definition A-I 

60485917 B FORTRAN for NOSIVE Keyed-File and Sort/Merge Interfaces Index-1 



C, using keyed-file interface calls in other languages 

c 
C, using keyed-file interface calls in 

other languages 6-4 
Call, COLSEQ Parameter C-1 
CALL, STOREF statement D-1 
Calls 

Disallowed during a parcel 4-9 
In SortJMerge 8-16.1 
Keyed-file interface calls 6-1 

Char parameter, SM5SEQS call 8-43 
Character key type, sort keys in 

SortJMerge 8-3 
Clearing a file lock, UNLOCKF 

call 6-78 
Clearing a key lock, UNLOCKK 

call 6-79 
Clearing expired locks 3-14 
Close _flag parameter, CLOSEM call 6-6 
CLOSEM call 

Description 6-6 
Disallowed during a parcel 4-9 

Closing a keyed-file, CLOSEM call 6-6 
Closing a result set, RSCLOSE call 6-56 
COBOL, using keyed-file interface calls 

in other languages 6-4 
$COLLATE _TABLE FIT keyword 7-13 
$COLLATE_TABLE_NAME FIT 

keyword 7-14 
$COLLATE TABLE NAME keyword D-1 
Collated alternate key values 2-17 
Collated keys 

General D-1 
Glossary definition A-2 

Collated primary keys 
In direct-access keyed files 1-15 
In indexed-sequential keyed files 1-10 

Collating sequences 
Defining your own 8-73 
Glossary definition A-2 
In SortJMerge 8-5 
List of C-1 

Collating _table _name parameter, 
SM5DUCT call 8-19 

Collating Weight Tables 
General C-1 
OSV$ASCII6 _FOLDED C-6 
OSV$ASCII6 _STRICT C-8 
OSV$COBOL6_FOLDED C-10 
OSV$COBOL6 _STRICT C-12 
OSV$DISPLAY63_FOLDED C-14 
OSV$DISPLAY63_STRICT C-16 
OSV$DISPLAY64_FOLDED C-18 
OSV$DISPLAY64 _STRICT C-20 
OSV$EBCDIC C-22 
OSV$EBCDIC6 _FOLDED C-29 
OSV$EBCDIC6 _STRICT C-31 
Standard ASCII C-2 

Creating a collation weight table 

Collation table 
Creating your own D-2 
Example D-3 
Glossary definition A-2 
Specifying a predefined D-1 

Collation _table _name parameter, 
SM5LCT call 8-30 

Collation weight, glossary definition A-2 
Collation weight tables, creating D-10 
COLSEQ Parameter C-1 
Combining result sets 

Description 5-4 
Using the RSCOMB call 6-57 

Comments, how to submit 8 
Committing a parcel, with 

PCOMMIT 6-42.2 
$COMPRESSION _PROCEDURE _NAME 

FIT keyword 7 -15 
Computing home blocks, for direct-access 

keyed files 1-14 
Concatenated keys, in alternate keys 2-6 
Concepts 

About FORTRAN keyed-file 
interface 1-16 

About the keyed-file interface 1-1 
Condition _code parameter 

KEYLIST call 6-22 
KLCOUNT call 6-26 
KLSPACE call 6-29 
PABORT call 6-41 
PBEGIN call 6-42 
PCOMMIT call 6-42.2 
PDETERM call 6-42.4 
RSBUILD call 6-51 
RSCLEAR call 6-55 
RSCLOSE call 6-56 
RSCOMB call 6-57 
RSDLTE call 6-59 
RSGETN call 6-60 
RSINFO call 6-63 
RSOPEN call 6-65 
RSPUT call 6-67 
R$SKIP call 6-69 
RSSTART call 6-70 

CONDSYM, using CONDSYM to process 
errors 6-3 

Conflict tables, for locks 3-17 
Conventions, of this manual 7 
Converting programs from FORTRAN 5 

to NOSNE FORTRAN E-1 
Count parameter 

RSSKIP call 6-69 
SKIP call 6-71 

Counting alternate-index blocks with 
specified values, KLSPACE call 6-29 

Counting the number of primary-key 
values, KLCOUNT call 6-26 

$CPN FIT keyword 7 -15 
Creating a collation table D-l 
Creating a collation weight table D-IO 

Index-2 FORTRAN for NOSfVE Keyed-File and Sort/Merge Interfaces 60485917 B 



Creating a FIT 

Creating a FIT 
For a direct-access file, FILEDA 

call 6-9 
For an indexed-sequential file, FILEIS 

call 6-10 
Creating a keyed file 1-17 
Creating alternate keys 

General 2-15 
U sing a RMKDEF call 6-50 

Creating an object library 8-70 
$CT FIT keyword 7-13 
$CTN FIT keyword 7-14 
CYBER Record Manager (AAM) 

subprograms E-l 
CYBER Software Support 9 

D 
Data blocks 

Data-block split 
Glossary definition A-2 
In an indexed-sequential keyed 

file 1-6 
Glossary definition A-2 
Padding, glossary definition A-2 

Data Exit Procedure FIT keyword 7-19 
Data _file parameter, RSOPEN call 6-65 
$DATA_PADDING FIT keyword 7-17 
Data records, in indexed-sequential keyed 

files 1-4 
Days parameter, PDETERM call 6-42.4 
DCT Keyword D-l 
$DD FIT keyword 7-18 
Deadlock, when using locks 3-16 
Debug for NOSNE manual B-2 
Defining an alternate key 2-2 
Defining sort keys, in SortlMerge 8-3 
Defining your own collating 

sequence 8-73 
$DELETE_DATA FIT keyword 7-18 
Deleting a primary-key value from a 

result set, RSDLTE call 6-59 
Deleting a record, DLTE call 6-7 
Deleting (or adding) key values from 

result sets 5-6 
Descending sort order, glossary 

definition A-2 
Determine _from _access _modes, a 

special access and share mode 3-4 
Diagnostic Messages manual, looking up 

condition names 6-3 
Differences between NOSNE FORTRAN 

and FORTRAN 5 E-l 
Direct access input/output, glossary 

definition A-2 
Direct-access keyed files 

Computing home blocks 1-14 
Creating a FIT with FILEDA 6-9 
General 1-11 
Hashing procedures 1-14 

Home blocks 1-12 
Overflow block 1-13 
Primary keys 1-15 

Direction parameter, PDETERM 
call 6-42.4 

Discarding existing result set, RSCLEAR 
call 6-55 

DLTE call 6-7 
$DP FIT keyword 7-17 
Duplicate key value control, glossary 

definition A-2 
Duplicate key values 

Glossary definition A-2 
In alternate keys 2-3 

Processing errors 2-4 
DX 

E 

FIT keyword 7-19 
Using IFETCH to retrieve the 

value 6-20 

$EC FIT keyword 7-21 
$EEN FIT keyword 7 -22 
$EEP FIT keyword 7 -23 
$EEPN FIT keyword 7 -22 
$EK FIT keyword 7-20 
$EL FIT keyword 7-24 
$EMBEDDED _KEY FIT keyword 7 -20 
Embedded key, glossary definition A-3 
End _of _primary _key _list parameter, 

KEYLIST call 6-22 
$ERC FIT keyword 7 -27 
$ERROR_COUNT FIT keyword 7-21 
$ERROR_EXIT_NAME FIT 

keyword 7-22 
$ERROR_EXIT_PROCEDURE FIT 

keyword 7-23 
$ERROR_EXIT _PROCEDURE _NAME 

FIT keyword 7 -22 
Error _exit _procedure parameter 

DLTE call 6-7 
GET call 6-13 
GETN call 6-17 
PUT call 6-43 
PUTREP call 6-45 
REPLC call 6-47 
STARTM call 6-74 

Error-exit procedures, in the FORTRAN 
keyed-file interface 1-21 

$ERROR_LIMIT FIT keyword 7-24 
$ERROR _STATUS 

FIT keyword 7-25 
Using $ERROR _STATUS to process 

errors 6-3 
Using IFETCH to retrieve the 

value 6-20 
Using to process errors 1-20 

60485917 B FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Index-3 



Errors FORTRAN keyed-file interface calls disallowed during a parcel 

Errors 
Processing errors for keyed-file 

interface calls 6-3 
Recovering from result set errors 5-4 

$ES FIT keyword 7 -25 
$ESTIMATED _RECORD _COUNT FIT 

keyword 7 -27 
Example 

Of using sortJmerge 8-64, 68 
Parcel program 4-11 
Storing access and share modes in a 

FIT 3-7, 8 
Exception processing 

in SortJMerge 8-11 
Invalid key data 8-14 
Summing errors 8-14 

Exclusive _access lock intent 
File lock 3-12 
Key lock 3-11 

Expired locks 
Description 3-14 
During a parcel 4-6 

F 
F Record type, glossary definition A-3 
FatallNonfatal Flag FIT keyword 7-32 
Fetching, from the alternate index 2-18 
Fetching primary-key values from 

alternate index, KEYLIST call 6-22 
$FI FIT keyword 7 -28 
$FILE _IDENTIFIER FIT keyword 7 -28 
File Information Table 

Description 1-16 
Glossary definition A-3 
Keywords and values 7-3 

File interface calls that use access and 
share modes 3-6 

File-level parcels 
Description 4-10 
Glossary definition A-3 

File locks 
Clearing with UNLOCKF 6-78 
Description 3-12 
Requesting with LOCKF 6-33 

$FILE _ORGANIZATION 
Using IFETCH to retrieve the 

value 6-20 
$FILE_ORGANIZATION FIT 

keyword 7 -29 
File organization, glossary definition A-3 
File parameter 

SM5E call 8-20 
SM5ERF call 8-24 
SM5FROM call 8-26 
SM5LIST call 8-31 
SM5TO call 8-48 

$FILE _POSITION 
FIT keyword 7 -30 
Using IFETCH to retrieve the 

value 6-20 
File _position parameter 

KEYLIST call 6-22 
OPENM call 6-38 

File-spanning parcel 
Glossary definition A-3 
Using PDETERM to retrieve 

information about 6-42.3 
FILEDA call 6-9 
FILEIS call 6-10 
Files 

Characteristics of sortJmerge 
files 8-16.2 

Result set 5-4 
First parameter 

SM5KEY call 8-27 
SM5SUM call 8-46 

First_result_set parameter, RSCOMB 
call 6-57 

FIT 
Description 1-16 
FIT values affecting parcels 4-5 

FIT, also see File Information Table A-3 
Fit _keyword parameter 

FILEDA call 6-9 
FILEIS call 6-10 
IFETCH call 6-20 
STOREF call 6-76 

FIT Keywords 7-3 
Fit _list parameter, PBEGIN call 6-42 
Fit _value parameter 

FILEDA call 6-9 
FILEIS call 6-10 
STOREF call 6-76 

Fixed _length parameter, SM50FL 
call 8-35 

FLUSHM call 6-12 
FNF 

FIT keyword 7 -32 
lJ sing IFETCH to retrieve the 

value 6-20 
$FO FIT keyword 7 -29 
For better performance 

Specify exclusive access to a file 3-2 
Specify minimal share modes to a 

file 3-2 
Using file-level parcels 4-10 
U sing parcel logs 4-7 

$FORCED_WRITE FIT keyword 7-31 
FORTRAN keyed-file interface 

Concepts 1-16 
Processing errors 1-20 
Using error-exit procedures 1-21 

FORTRAN keyed-file interface calls 
disallowed during a parcel 4-9 

Index-4 FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces 60485917 B 



FORTRAN manuals 

FORTRAN manuals 
FORTRAN for NOSNE Summary B-2 
FORTRAN for NOSNE Topics for 

FORTRAN Programmers B-2 
FORTRAN for NOSNE Tutorial B-2 
FORTRAN manual set description 6 
FORTRAN Version 1 for NOSNE 

Language Definition Usage B-2 
FORTRAN Version 2 for NOSNE 

Language Definition Usage B-2 
FORTRAN programs, how to use result 

sets in 5-2 
FORTRAN 5, converting FORTRAN 5 

programs to NOSNEFORTRAN E-1 
$FP FIT keyword 7 -30 
$FW FIT keyword 7-31 

G 
$GAL FIT keyword 7 -33 
$GAM FIT keyword 7 -34 
$GET _AND_LOCK 

FIT keyword 7 -33 
Using IFETCH to retrieve the 

value 6-20 
GET call 6-13 
GETN call 6-17 
$GLOBAL_ACCESS_MODES 

FIT keyword 7 -34 
Using IFETCH to retrieve the 

value 6-20 
$GLOBAL_SHARE_MODES 

FIT keyword 7 -35 
Using IFETCH to retrieve the 

value 6-20 
$GSM FIT keyword 7-35 

H 
Hashing procedure 

Glossary definition A-3 
In direct-access keyed files 1-14 

$HASHING_PROCEDURE_NAME FIT 
keyword 7 -36 

Help, from CYBER Software Support 9 
High _key parameter 

KEYLIST call 6-22 
KLCOUNT call 6-26 
KLSPACE call 6-29 
RSBUILD call 6-51 

High _key _relation parameter 
KEYLIST call 6-22 
KLCOUNT call 6-26 
KLSPACE call 6-29 
RSBUILD call 6-51 

Home blocks 
Computing for direct-access keyed 

files 1-14 
For direct-access keyed files 1-12 
Glossary definition A-3 

INTEGER numeric data format, in SortJMerge 

Hotline, to CYBER Software Support 9 
Hours parameter, PDETERM call 6-42.4 
How to use FIT keywords in FORTRAN 

programs 7-3 
$HPN FIT keyword 7 -36 

I 
IFETCH 

Description of IFETCH call 6-20 
Using IF ETCH to process errors 6-3 

$IHBC FIT keyword 7 -39 
$IL FIT keyword 7 -37 
In case you need assistance 9 
In-memory sort, example of 8-68 
Index, alternate 2-2 
Index blocks 

Alternate-index blocks with specified 
values, KLSPACE call 6-29 

For indexed-sequential keyed files 1-4 
Glossary definition A-3 
Index-block padding, glossary 

definition A-3 
Index-block split, glossary 

definition A-4 
Index levels 

Glossary definition A-4 
In indexed-sequential keyed files 1-8 
Index level overflow, glossary 

definition A-4 
$INDEX_LEVELS FIT keyword 7-37 
$INDEX_PADDING FIT keyword 7-38 
Index record A-4 
Indexed-sequential file 

Creating a FIT with FILE IS 6-10 
Data-block split 1-6 
Data records 1-4 
General 1-3 
Index blocks 1-4 
Index levels 1-8 
Indexed-sequential file organization, 

glossary definition A-4 
Internal tables 1-4 
Primary key types 1-10 
Primary keys 1-10 
Reading an indexed-sequential file 1-5 

$INITIAL_HOME_BLOCK_COUNT FIT 
keyword 7 -39 

Input and output files, in 
sortJmerge 8-16.2 

Instance of open 
Description 3-1 
Glossary definition A-4 

INTEGER_BITS numeric data format, in 
SortlMerge 8-5 

Integer key, glossary definition A-4 
INTEGER numeric data format, in 

SortlMerge 8-5 

60485917 B FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Index-5 



Integer primary keys 

Integer primary keys 
In direct-access keyed files 1-15 
In indexed-sequential keyed files 1-10 

Internal tables, for indexed-sequential 
keyed files 1-4 

Invalid key data, in SortlMerge 8-14 
Invalid records, in SortJMerge 8-13 
$IP FIT keyword 7 -38 

J 
Job, glossary definition A-4 

K 
$KA FIT keyword 7 -40 
$KEY_ADDRESS 

FIT keyword 7 -40 
Using IF ETCH to retrieve the 

value 6-20 
Key _area parameter 

DLTE call 6-7 
GET call 6-13 
GETN call 6-17 
LOCKK call 6-35 
PUT call 6-43 
PUTREP call 6-45 
REPLC call 6-47 
RSGETN call 6-60 
STARTM call 6-74 
UNLOCKK call 6-79 

Key _count parameter, RSINFO 
call 6-63 

Key, glossary definition A-4 
$KEY_LENGTH FIT keyword 7-41 
Key length, sort keys in SortlMerge 8-3 
Key list, glossary definition A-4 
Key _location parameter 

RSDLTE call 6-59 
RSPUTcall 6-67 
RSSTART call 6-70 

Key locks, clearing with 
UNLOCKK 6-79 

$KEY_NAME FIT keyword 7-42 
$KEY _POSITION 

FIT keyword 7-43 
Using IFETCH to retrieve the 

value 6-20 
Key position, sort keys in 

SortlMerge 8-3 
$KEY _RELATION 

FIT keyword 7-44 
Using IFETCH to retrieve the 

value 6-20 
Key _relation parameter, RSSTART 

call 6-70 
Key.:.Type attribute D-l 
$KEY _TYPE FIT keyword 7 -45 

$LAST _OPERATION 

Key _type parameter 
SM5DUCT call 8-19 
SM5KEY call 8-27 
SM5LCT call 8-30 

Key types 
Glossary definition A-5 
In SortlMerge 8-4 

Key values, adding or deleting from 
resul t sets 5-6 

Keyed file 
Attributes 1-18 
Collated keys in keyed files D-l 
Creating one with the FORTRAN 

keyed-file interface 1-17 
Definition 1-2 
Organization· 1-2 
Organization, glossary definition A-5 
Positioning using a key value with 

STARTM 6-74 
Repositioning with SKIP 6-71 
Sharing 3-1 
Storing a value in a FIT with 

STOREF 6-76 
Using an existing .one with the 

FORTRAN keyed-file interface 1-19 
Keyed-File Interface Calls 

General 6-1 
Processing errors 6-3 
Summary of calls 6-2 

Keyed-file interface concepts, 
general 1-2 

KEYLIST call 
Description 6-22 
Disallowed during a parcel 4-9 

Keys, alternate 
Characteristics 2-1 
General 2-1 

Keys, for sorts, in SortlMerge 8-2 
Keys _remaining parameter, RSINFO 

call 6-63 
Keyword, glossary definition A-5 
Keyword parameter, SM5ZLR 8-51 
$K~ FIT keyword 7 -41 
KLCOUNT call 

Description 6-26 
Disallowed during a parcel 4-9 

KLSPACE call 6-29 
$KN FIT keyword 7 -42 
$KP FIT keyword 7 -43 
$KR FIT keyword 7 -44 
$KT FIT keyword 7 -45 

L 
$LAST _OPERATION 

FIT keyword 7-46 
Using IFETCH to retrieve the 

value 6-20 

Index-6 FORTRAN for NOSNE Keyed-File and Sort/Merge Interfaces 60485917 B 



Length parameter 

Length parameter 
SM5KEY call 8-27 
SM5SUM call 8-46 

$LET FIT -keyword 7 -48 
$LFN FIT keyword 7 -4 7 
$LI FIT keyword 7 -49 
LISP, using keyed-file interface calls in 

other languages 6-4 
List _count _limit parameter, KLCOUNT 

call 6-26 
List _count parameter, KLCOUNT 

call 6-26 
$LO FIT keyword 7 -46 
$LOCAL _FILE _NAME 

FIT keyword 7 -47 
Using IFETCH to retrieve the 

value 6-20 
$LOCK_EXPIRATION _TIME FIT 

keyword 7 -48 
$LOCK _INTENT 

FIT keyword 7 -49 
Using IFETCH to retrieve the 

value 6-20 
Lock _intent parameter 

LOCKF call 6-33 
LOCKK call 6-35 

Lock manager, NOSNE 3-9 
LOCKF call 

Description 6-33 
Disallowed during a parcel 4-9 

LOCKK call 6-35 
Locks 

Conflict tables 3-17 
Deadlock 3-16 
Defmition 3-9 
Example 3-10 
Expiration and clearing 3-16 
Expiration during a parcel 4-6 
File locks 3-12 
Glossary definition A-5 
Lock intents 3-11 
Lock renewal 3-12 
Reasons for 3-9 
Sharing keyed files 3-9 
Waiting for a lock 3-13 
When does sharing keyed files require 

locks? 3-2 
Log, glossary definition A-5 
Log parameter, PDETERM call 6-42.4 
$LOG_RESIDENCE FIT keyword 7-50 
$LOGGING _OPTIONS FIT 

keyword 7-51 
Logical_relation parameter 

RSBUILD call 6-51 
RSCOMB call 6-57 

Low_key parameter 
KLCOUNT call 6-26 
KLSPACE call 6-29 
RSBUILD call 6-51 

Multiple sort keys, in SortJMerge 

Low _key _relation parameter 
KLCOUNT call 6-26 
KLSPACE call 6-29 
RSBUILD call 6-51 

$LR FIT keyword 7 -50 

M 
Major _high _key parameter 

KEYLIST call 6-22 
KLCOUNT call 6-26 
KLSPACE call 6-29 
RSBUILD call 6-51 

$MAJOR_KEY_LENGTH 
FIT keyword 7 -52 
Using IFETCH to retrieve the 

value 6-20 
Major _key _length parameter 

GET call 6-13 
RSSTART call 6-70 
STARTM call 6-74 

Major _low _key parameter 
KLCOUNT call 6-26 
KLSPACE call 6-29 
RSBUILD call 6-51 

Major sort key, glossary definition A-5 
Manual history 2 
Manual set, FORTRAN 6 
Manuals, how to order 8 
Math Library for NOSNE B-2 
Max _record _length parameter 

SM5FMA call 8-25 
SM5MA call 8-47 

$MAXBL FIT keyword 7 -53 
$MAXIMUM_BLOCK_LENGTH FIT 

keyword 7 -53 
Maximum _length parameter, SM50MRL 

call 8-37 
$MAXIMUM _RECORD _LENGTH FIT 

keyword 7 -54 
$MAXRL FIT keyword 7 -54 
$MC FIT keyword 7-55 
Merge, glossary definition A-5 
Message_area parameter, PDETERM 

call 6-42.4 
$MESSAGE _CONTROL FIT 

keyword 7-55 
Messages manual, looking up condition 

names 6-3 
Migration from NOS to NOSNE B-2 
$MINIMUM _RECORD _LENGTH FIT 

keyword 7-.56 
Minor sort key, glossary definition A-5 
$MINRL FIT keyword 7 -56 
Minutes parameter, PDETERM 

call 6-42.4 
$MKL FIT keyword 7-52 
Modify share mode, when to specify 3-2 
Multiple sort keys, in SortJMerge 8-2 

60485917 B FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces Index-7 



Name parameter 

N 
N arne parameter 

SM50WN call 8-38 
SM5SEQN call 8-41 

N arne _type parameter, PDETERM 
call 6-42.3 

$NESTED_FILE_NAME FIT 
keyword 7-57 

Nested _file parameter, RSOPEN 
call 6-65 

Nested files 2-13 
New _result_placement parameter 

RSBUILD call 6-51 
RSCOMB call 6-57 

N ext _key parameter, RSINFO call 6-63 
$NFN FIT keyword 7 -57 
N onembedded key, glossary 

definition A-5 
NOSIVE FORTRAN and FORTRAN 5 

differences E-l 
NOSIVE lock manager 3-9 
NOSIVE Manuals 

Description B-2 
NOSIVE Advanced File Management 

Usage B-2 
NOSIVE Commands and 

Functions B-2 
NOSIVE Diagnostic Messages B-2 
NOSIVE Object Code Management 

Usage B-2 
NOSIVE Source Code Management 

Usage B-2 
NOSIVE System Usage B-2 

Null suppression, in alternate keys 2-4 
Number _of_fits parameter, PBEGIN 

call 6-42 
Number _of_records parameter, SM5FMA 

call 8-25 
NUMERIC_FS 

Key type; sort keys in SortiMerge 8-3 
Numeric data format, in 

SortiMerge 8-5 
NUMERIC_LO 

Key type, sort keys in SortiMerge 8-3 
Numeric data format, in 

SortiMerge 8-6 
NUMERIC_LS 

Key type, sort keys in SortiMerge 8-3 
Numeric data format, in 

SortiMerge 8-6 
NUMERIC_NS 

Key type, sort keys in SortiMerge 8-3 
Numeric data format, in 

SortiMerge 8-6 
NUMERIC_TO 

Key type, sort keys in SortiMerge 8-3 
Numeric data format, in 

SortiMerge 8-6 

OSV$ Collating Weight Tables 

NUMERIC_TS 

o 

Key type, sort keys in SortiMerge 8-3 
Numeric data format, in 

SortlMerge 8-6 

Object library 
Adding the sort/merge object 

library 8-16.1 
Creating 8-70 

OC 
FIT keyword 7 -58 
Using IFETCH to retrieve the 

value 6-20 
OldlNew Flag FIT keyword 7-59 
ON 

FIT keyword 7 -59 
Using IFETCH to retrieve the 

value 6-20 
$OP FIT keyword 7 -60 
Open/Close Flag FIT keyword 7 -58 
Open _option parameter, OPENM 

call 6-38 
$OPEN _POSITION FIT keyword 7-60 
$OPEN _SHARE_MODES FIT 

keyword 7-61 
Open share modes, glossary 

definition A-6 
Opening a keyed file with OPENM 6-38 
Opening a result set, RSOPEN call 6-65 
OPENM call 

Description 6-38 
How it affects access and share 

modes 3-6 
How the open_option parameter sets 

access and share modes 3-7 
Option parameter 

SM5CC call 8-18 
SM5LO call 8-32 
SM50MIT call 8-36 
SM5RETA call 8-39 
SM5SEQA call 8-40 
SM5SEQR call 8-42 
SM5VER call 8-50 

Order parameter, SM5KEY call 8-27 
Ordering manuals 8 
Organization 

Of direct-access keyed files 1-11 
Of indexed-sequential keyed files 1-3 
Of keyed files 1-2 
Of this manual 6 

$OSM FIT keyword 7-61 
OSV$ Collating Weight Tables 

OSV$ASCII6 _FOLDED C-6 
OSV$ASCII6 _STRICT C-8 
OSV$COBOL6_FOLDED C-I0 
OSV$COBOL6_STRICT C-12 
OSV$DISPLAY63 _FOLDED C-14 
OSV$DISPLAY63 _STRICT C-16 

Index-8 FORTRAN for NOSIVE Keyed-File and Sort/Merge Interfaces 60485917 B 



Overflow blocks 

OSV$DISPLAY64 _FOLDED C-18 
OSV$DISPLAY64_STRICT C-20 
OSV$EBCDIC C-22 
OSV$EBCDIC6 _FOLDED C-29 
OSV$EBCDIC6_STRICT C-31 

Overflow blocks 
For direct-access keyed files 1-13 
Glossary definition A-6 

Owncode, glossary definition A-6 
Owncode procedures, writing your own 

for Sor~erge 8-52 
Owncode1, in Sor~erge 8-56 
Owncode2, in Sort/Merge 8-57 
Owncode3, in Sort/Merge 8-58 
Owncode4, in Sort/Merge 8-59 
Owncode5, in Sort/Merge 8-60 

P 
$P FIT keyword 7 -63 
PABORT call 6-41 
PACKED _NS numeric data format, in 
Sor~erge 8-7 

PACKED numeric data format, in 
Sor~erge 8-7 

Padding, glossary definition A-6 
Page aging interval, in Sor~erge 8-16 
Parcel log 

Glossary definition A-6 
Using 4-7 

Parcel_name parameter, PDETERM 
call 6-42.3 

Parcel states, returned by 
PDETERM 4-8 

Parcels 
Aborting with PABORT 6-41 
Beginning with PBEGIN 6-42 
Calls disallowed during a parcel 4-9 
Committing with PCOMMIT 6-42.2 
File-spanning parcels 4-1 
FIT values affecting parcels 4-5 
Glossary definition A-6 
How to use parcels 4-2 
Lock expiration during a parcel 4-6 
Parcel processing outline 4-2 
Parcel states returned by 

PDETERM 4-8 
Program example 4-11 
Record access during a parcel 4-4 
Required attributes for parcels 4-2 
Using PDETERM for a file-spanning 

parcel 6-42.3 
U sing the parcel log 4-7 
What are parcels? 4-1 

Partial numeric sum fields, in 
Sor~erge 8-11 

Partial sum fields, in SortJMerge 8-11 
Partition, glossary definition A-6 
Pascal, using keyed-file interface calls in 

other languages 6.;.4 

PUTREP call 

$PASSWORD FIT keyword 7 -63 
PBEGIN call 

Description 6-42 
Disallowed during a parcel 4-9 

PCOMMIT· call 6-42.2 
PDETERM call 6-42.3 
Performance considerations in 
Sor~erge 8-15 

Permitted _access _modes, a special 
access and· share mode 3-4 

$PKA FIT keyword 7 -64 
Position parameter, RSINFO call 6-63 
Positions a keyed file using a key value, 

STARTM call 6-74 
Positions a result set using a 

primary-key value, RSSTART call 6-70 
Preserve _access _and _content lock intent 

File lock 3-13 
Key lock 3-12 

Preserve _content lock intent 
File lock 3-13 
Key lock 3-12 

Previous _key parameter, RSINFO 
call 6-63 

$PRIMARY _KEY_ADDRESS 
FIT keyword 7 -64 
Using IFETCH to retrieve the 

value 6-20 
Primary keys 

Glossary definition A-6 
In direct-access keyed files 1-15 
In indexed-sequential keyed files 1-10 
Types, in indexed-sequential 

keyed-files 1-10 
Values 

Counting number of primary-key 
values, KLCOUNT call 6-26 

Fetching from alternate index, 
KEYLIST call 6-22 

Lock, requesting with LOCKK 6-35 
Procedure calls in SortJMerge 8-16.1 
Processing errors for duplicate values in 

alternate keys 2-4 
Processing errors, in the FORTRAN 

keyed-file interface 1-20 
Professional Programming Environment 

for NOSNE B-2 
Programming Environment for 

NOSNE B-2 
PROLOG, using keyed-file interface calls 

in other languages 6-4 
PUT call 6-43 
PUTREP call 6-45 

60485917 B FORTRAN for NOSIVE Keyed-File and SortJMerge Interfaces Index-9 



Random access, glossary definition 

R 
Random access, glossary definition A-6 
Random file organization, glossary 

definition A-6 
Reading 

A record by key value, GET call 6-13 
A record using a result set, RSGETN 

call 6-60 
An indexed-sequential keyed file 1-5 
Current information about a result set, 

RSINFO call 6-63 
The next record, GETN call 6-17 

REAL numeric data format, in 
SorUMerge 8-7 

Record access, during a parcel 4-4 
Record length 

FIT keyword 7 -65 
In SorUMerge 8-10 

Record _length parameter 
PUT call 6-43 
PUTREP call 6-45 
REPLC call 6-47 

$RECORD _LIMIT FIT keyword 7 -66 
Record type F, glossary definition A-3 
$RECORD _TYPE FIT keyword 7 -67 
$RECORDS_PER_BLOCK FIT 

keyword 7 -68 
Recovery, glossary definition A-7 
Renewal, locks 3-12 
Repeat parameter, SM5SUM call 8-46 
Repeating groups 

Glossary definition A-7 
In alternate keys 2-7 

Replacing a record 
PUTREP call 6-45 
REPLC call 6-47 

REPLC call 6-47 
Repositions a keyed file, SKIP call 6-71 
Repositions a result set, RSSKIP 

call 6-69 
Requesting a file lock, LOCKF call 6-33 
Requesting a primary-key value lock, 

LOCKK call 6-35 
Required _share _modes, a special access 

and share mode 3-4 
Result _set _file parameter 

RSOPEN call 6-65 
Result _set _id parameter 

RSCLEAR call 6-55 
RSCLOSE call 6-56 
RSINFO call 6-63 
RSOPEN call 6-65 

Result _set _not parameter 
RSGETN call 6-60 

Result sets 
Adding a primary-key value with 

RSPUT 6-67 
Adding or deleting key values 5-6 
Building with RSBUILD 6-51 
Closing with RSCLOSE 6-56 

Sequential file organization, glossary definition 

Combining result sets 5-4 
Combining with RSCOMB 6-57 
Deleting a primary-key value with 

RSDLTE 6-59 
Discarding current with 

RSCLEAR 6-55 
Files 5-4 
Keeping accurate 5-3 
Opening with RSOPEN 6-65 
Outline of how to use result sets 5-2 
Positioning using a primary-key value 

with RSSTART 6-70 
Reading a record with RSGETN 6-60 
Reading current information with 

RSINFO 6-63 
Recovering from read errors 5-4 
Repositioning with RSSKIP 6-69 
Validity 5-3 
What are result sets? 5-1 

Returned _length parameter, PDETERM 
call 6-42.5 

Rewinding a file, REWND call 6-49 
REWND call 6-49 
$RL FIT keyword 7 -66 
RL FIT keyword 7 -65 
RMKDEF call 

Description 6-50 
Disallowed during a parcel 4-9 

. $RPB FIT keyword 7 -68 
RSBUILD call 

Description 6-51 
Disallowed during a parcel 4-9 

RSCLEAR call 6-55 
RSCLOSE call 6-56 
RSCOMB call 

Description 6-57 
Disallowed during a parcel 4-9 

RSDLTE call 
Description 6-59 
Disallowed during a parcel 4-9 

RSGETN call 6-60 
RSINFO call 6-63 
RSOPEN call 6-65 
RSPUT call 

Description 6-67 
Disallowed during a parcel 4-9 

RSSKIP call 6-69 
RSSTART call 6-70 
$RT FIT keyword 7 -67 

S 
$SC FIT keyword 7 -69 
Second _result _set parameter, RSCOMB 

call 6-57 
Selecting alternate keys 2-15 
Sequential access, glossary 

definition A-7 
Sequential file organization, glossary 

definition A-7 

Index-lO FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 



Severity _level parameter 

Severity _level parameter 
SM5EL call 8-21 
SM5ST call 8-45 

Share modes 
Description 3-4 
Glossary definition A-7 

Sharing keyed files 
Description 3-1 
U sing access and share modes 3-5 
When does sharing require locks? 3-2 

Sign overpunch table, for SortiMerge 8-9 
SKIP call 6-71 
$SKIP _COUNT FIT keyword 7-69 
SM5 SortiMerge procedure calls 

SM5CC 8-18 
SM5DUCT 8-19 
SM5E 8-20 
SM5EL 8-21 
SM5END 8-22 
SM5ENR 8-23 
SM5ERF 8-24 
SM5FMA 8-25 
SM5FROM 8-26 
SM5KEY 8-27 
SM5LCT 8-30 
SM5LIST 8-31 
SM5LO 8-32 
SM5MERG 8-33 
SM50FL 8-35 
SM50MIT 8-36 
SM50MRL 8-37 
SM50WN 8-38 
SM5RETA 8-39 
SM5SEQA 8-40 
SM5SEQN 8-41 
SM5SEQR 8-42 
SM5SEQS 8-43 
SM5S0RT 8-44 
SM5ST 8-45 
SM5SUM 8-46 
SM5TMA 8-47 
SM5TO 8-48 
SM5VER 8-50 
SM5ZLR 8-51 

Sort, glossary definition A-7 
Sort keys 

Glossary definition A-7 
In SortiMerge 8-2 

SortiMerge 
Adding the sort/merge object 

library 8-16.1 
Collating sequences 8-5 
Example 8-64, 68 
General 8-1 
Input and output files 8-16.2 
Invalid records 8-13 
Key types 8-4 
Limiting memory usagee 8 .. 15 
Page aging interval 8-16 
Performance considerations 8-15 
Procedure calls 8-16.1 

Record length 8-10 
Sort keys 8-2 
Sort order 8-9 
Summing records 8-72 
Zero-length records 8-12 

Sort order 
Glossary definition A-7 
In SortiMerge 8-9 

Source _result _set parameter 
RSBUILD call 6~51 
RSGETN call 6-60 
RSSKIP call 6-69 
RSSTART call 6-70 

Sparse-key control 
Glossary definition A-7 
In alternate keys 2-5 

UNLOCKK call 

Specifying alternate-key values 2-16 
STARTM call 6-74 
State parameter, PDETERM call 6-42.3 
STOREF 

Call 6-76 
Statement D-1 

Storing a value in a FIT, STOREF 
call 6-76 

Submitting comments 8 
Subprograms, CYBER Record 

Manager E-l 
Summing errors, in SortiMerge 8-14 
Summing records, in SortiMerge 8-72 
System _parcel_name parameter 

T 

PABORT call 6-41 
PBEGIN call 6-42 
PCOMMIT call 6-42.2 

Target _result _set parameter 
RSBUILD call 6-51 
RSCOMB call 6-57 
RSDLTE call 6-59 
RSPUT call 6-67 

Task, glossary definition A-7 
Transferred _byte _count parameter, 

KEYLIST call 6-22 . 
Transferred _key _count parameter, 

KEYLIST call 6-22 
Type parameter, SM5SUM call 8-46 

u 
U record type, glossary definition A-8 
U ncollated keys 

Glossary definition A-8 
hl direct-access keyed files 1-15 
In indexed-sequential keyed files 1-10 

UNLOCKF call 
Description 6-78 
Disallowed during a parcel 4-9 

UNLOCKK call 6-79 

60485917 B FORTRAN for NOSNE Keyed-File and SortlMerge Interfaces Index-ll 



Update recovery log, glossary definition 

Update recovery log, glossary 
definition A-8 

User _parcel_name parameter, PBEGIN 
call 6-42 

U sing access and share modes, to share 
a file 3-5 

Using an existing keyed file 1-19 

v 
V record type, glossary definition A-8 
Validity of result sets 5-3 
Value parameter, SM5ENR call 8-23 
Variable-lengths, in alternate keys 2-8 
Variable parameter 

W 

IFETCH call 6-20 
SM5FMA call 8-25 
SM5MA call 8-47 

$WAIT _FOR_ATTACHMENT FIT 
keyword 7 -70 

$WAIT _FOR_LOCK 
FIT keyword 7 -71 
Using IFETCH to retrieve the 

value 6-20 
Wait_for _lock parameter 

LOCKF call 6-33 
LOCKK call 6-35 

Waiting for a lock 3-13 
$WFA FIT keyword 7 -70 

Zero-length records, in SortJMerge 

$WFL FIT keyword 7 -71 
$WORKING _STORAGE _ADDRESS 

FIT keyword 7 -72 
Using IFETCH to retrieve the 

value 6-20 
Working _storage _area parameter 

GET call 6-13 
GETN call 6-17 
KEYLIST call 6-22 
PUT call 6-43 
PUTREP call 6-45 
REPLC call 6-47 
RSGETN call 6-60 

$WORKING _STORAGE _LENGTH 
FIT keyword 7-73 
Using IFETCH to retrieve the 

value 6-20 
Working _storage _length parameter 

KEYLIST call 6-22 
Writing a record 

PUT call 6-43 
PUTREP call 6-45 

Writing modified blocks to a file, 
FLUSHM call 6-12 

Writing owncode procedures, for 
SortlMerge 8-52 

$WSA FIT keyword 7 -72 
$WSL FIT keyword 7-73 

z 
Zero-length records, in SortlMerge 8-12 

Index-12 FORTRAN for NOSNE Keyed-File and SortJMerge Interfaces 60485917 B 

( 

( 



Comments (continued from other side) 

)lease fold on dotted line; 
leal edges with tape only. 

[i'OLD 

BUSINESS REPLY MAIL 
First-Class Mail Permit No. 8241 Minneapolis, MN 

POSTAGE WILL BE PAID BY ADDRESSEE 

CONTROL DATA 
Technical Publications 
SVLF45 
5101 Patrick Henry Drive 
Santa Clara, CA 95054-1111 

11.111.1.1. ~I.I •• I •• I ••• II ••• IIII.II ••• II •• II.I 

NO POSTAGE 
NECESSARY 
IF MAILED 

FOLD 

FOLD 

IN THE 
UNITED STATES 



FORTRAN for NOS/VE Keyed-File and Sort/Merge Interfaces 60485917 B 

We would like your comments on this manual to help us improve it. Please take a few minutes to fill out 
this form. 

Who are you? How do you use this manual? 

o Manager o As an overview 

o Systems analyst or programmer o To learn the product or system 

o Applications programmer o For comprehensive reference 

o Operator o For quick look-up 

o Other ------------------------------- o Other ________________________________ _ 

What programming languages do you use? ____________________________________________ _ 

How do you like this manual? Answer the questions that apply. 

Yes Somewhat No 
0 0 0 Does it tell you what you need to know about the topic? 

0 0 0 Is the technical information accurate? 

0 0 0 Is it easy to understand? 

0 0 0 Is the order of topics logical? 

0 0 0 Can you easily find what you want? 

0 0 0 _ Are there enough examples? 

0 0 0 Are the examples helpful? (0 Too simple? o Too complex?) 

0 0 0 Do the illustrations help you? 

0 0 0 Is the manual easy to read (print size, page layout, and so on)? 

0 0 0 Do you use this manual frequently? 

Comments? If applicable, note page and paragraph. Use other side if needed. 

Check here if you want a reply: 0 

Name Company 

Address Date 

Phone 

Please send program listing and output if applicable to your comment. 





€: ~ CONTI\.OL DATA 


