60454300

@ CONTROL DATA
CORPORATION

NOS VERSION 1
INTERNAL
MAINTENANCE
SPECIFICATION

VOLUME 1 OF 3

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70 |

MODELS 71, 72, 73, 74

6000 SERIES

SW-39

REVISION RECORD

REVISION DESCRIPTION

A Manual released. Manual reflects NOS 1.3.
(06/26/78)

B Revised to update manual to NOS 1.4 and to make
(08/03/79)| typographical and technical corrections. New

features documented in this manual include: extended

character set/print train support; expanded ECS

status; on-line ECS diagnostic support; retry on

time/SRU limit; IAF enhancements; deadstart from mass

storage; CYBER 170 Model 176 support; extended TIM

function; 885 Disk Storage Subsystem support; task

initiated K.DUMP; TAF internal XJP trace; LIBTASK

enhancements; TAF CYBER Record Manager support; and

TAF/COBOL interface enhancements. This revision

obsoletes all previous editions.

Publicatiom 'Mo.
60454300

Address comments concerning this
manual to:

REVISION LETTERS I, O, @ AND X ARE NOT USED

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

© 1978, 1979
Control Data Corporation or use Comment Sheet in the back
Printed in the United States of America of this manual

ii

PREFACE

The Network Operating System (NOS) was developed by Control Data
Corporation to provide network capabilities for time-sharing and
transaction processing, in addition to LlLocal -and remote batch
processing, on CONTROL DATA CYBER 170 Series Computer Systems;
CDC CYBER 70 Series, Models 71, 72, 73, and 74 Computer Systems;
and CDC 6000 Series Computer Systems.

AUDIENCE

This internal maintenance specification (IMS) provides the
systems analyst with detailed internal documentation of NOS.
Included are detailed descriptions of system routines and the
system interfaces, tables, and flowcharts of these routines.

Some user interfaces are mentioned, but these are fully described
in other NOS manuals.

CONVENTIONS

Extended memory for the CYBER 170 Models 171, 172, 173, 174, 175,
720, 730, 750, and 760 is extended core storage (ECS). Extended
memory for CYBER 170 Model 176 is Llarge central memory (LCM) or
lLarge central memory extended (LCME). ECS and LCM/LCME are
functionally equivalent, except as follows:

e LCM/LCME cannot link mainframes and does not have a
distributive data path (DDP)capability.

e LCM/LCME transfer errors initiate an error exit, not a
half exit. Refer to the COMPASS Reference Manual for
complete information.

The Model 176 supports direct LCM/LCME transfer COMPASS
instructions (octal codes 014 and 015). Refer to the COMPASS
Reference Manual for complete information.

In this manual the acronym ECS refers to all forms of extended
memory on .the CYBER 170 Series. However, in the context of a
multimainframe environment or DDP access, the Madel 176 1is
excluded.

In this manual, the order of importance of headings is denoted as
follows.

LEVEL 1 HEADINGS ARE FULL CAPS AND UNDERLINED

LEVEL 2 HEADINGS ARE FULL CAPS

Level 3 Headings are First-Capped and Underlined

Level 4 Headings are First-Capped

Conventions for central memory word formats are as follows:

60454300 B i

@ Cross—hatching indicates a field is not used by or is
However,

not applicable to a function processor.

CcdC

reserves the right to assign these fields to system use

in the future.

o Fields reserved for system use are so labeled.

e Fields labeled with mnemonics indicate a specific

parameter must be inserted (generally described after

the word format).

e Fields with numeric identifiers indicate the actual
value that is used or returned for a particular function.

RELATED PUBLICATIONS

For further information concerning CYBER 170, CYBER 70,
Series Computer Systems, the NOS time-sharing systems,

user interface for NOS, consult the following manuals.

Control Data Publication

Publication No.

CYBER 170 Computer Systems Reference Manual
CYBER 170 Computer Systems

Models 720, 730, 750, and 760

Model 176 (Level B)

CYBER 70/Model 71 Computer System Reference
Manual

CYBER 70/Model 72 Computer System Reference
-Manual

CYBER 70/Model 73 Computer System Reference
Manual '

CYBER 70/Model 74VComputer System Reference
Manual

Modify Reference Manual

Network Products
Interactive Facility Version 1 Reference Manual

Network Products
Transaction Facility Version 1 Reference Manual

Network Products
Transaction Facility Version 1 User's Guide

Network Products

Transaction Facility Version 1
Data Manager Reference Manual

60454300 B

60420000

60456100

60453300

60347000

60347200

60347400

60450100

60455250

60455340

60455360

60455350

and 6000
and the

iv

Control Data Pubticétion Publication No.

Network Products

Transaction Facility Version 1

CYBER Record Manager

Data Manager Reference Manual , 60456710

Network Products , .
Network Access Method Version 1 Reference Manual 60499500

Network Products
Network Access Method Version 1

Internal Maintenance Specification 60490110
Network Products _ .

Remote Batch Facility Version 1 Reference Manual 60499600
NOS Version 1 Installation Handbook - . 60435700
NOS Version 1 Operator's Guide 60435600
NOS Version 1 Reference ManuaL.VoLUmé 1 60435400
NOS Version 1 Reference MénuaL‘VoLume s ‘ 60445300

NOS Version 1 System Maintenance. Reference Manual 60455380
NOS Version 1 System Programmer's Instant 60449200

NOS Version 1 Time—-Sharing User's Reference Manual 60435500

NOS Version 1 Export/Import Reference Manual 60436200
TAF/TS Version 1 Reference Manual 60453000
TAF/TS Version 1 User's Guide 60436500
TAF/TS Version 1‘Data Manager Reference Manual 60453100
TAF/TS Version 1 CYBER Record Manager 60456700
Data Manager Reference Manual

6400/6500/6600 Computer System Reference 60100000

Manual

DISCLAIMER

This product is intended for use only as described

in this document. Control Data cannot be responsible
for the proper functioning of undescribed features or
undefined parameters.

60454300 B

CONTENTS

W G S D D S MDD S P - - - - W S R W W R W U W G GRS GBS G WP AR TR G M P G WS WR WE R S W D WD WD S W W P @D = e

SECTION 1 INTRODUCTION
Hardware Overview
Central Processor Unit
Peripheral Processors
Central Memory
Extended Core Storage
Software Overview
Central Memory Organization
Control Points
Control Point Concepts
Subcontrol Points
Special Control Points
Job Rollout
Storage Moves
Job Field Length
Program/System Communication

N N N S T QA i S QT QA G Y
| I D I A |
= D L0 NNOCOPRPFPPUHUWNWSD @A

Program Recall -10
Periodic Recall -10
Automatic Recall -10
SECTION 2 CENTRAL MEMORY AND TABLES 2-1
' Central Memory Resident 2-2
Central Memory Layout 2-2
Pointers and Constants 2-4
Control Point Area 2-11
PP Communication Area 2-18
Dayfile Buffer Pointers 2-18
Central Memory Tables 2-19
Equipment Status Table (EST) 2-19
Formats
Mass Storage Devices 2-19
Nonmass Storage Device 2-19
(3000 Type Equipment)
Equipment Codes 2-21
File Name/File Status (FNT/FST) 2-22
Entry
File in Input Queue - 2=22
File in Print Queue 2-22
File in Punch Queue 2-22
File in Rollout Queue 2-22
File in Timed/Event Rollout 2-22
Queue ‘ '
Mass Storage Files Not in - 2-23
Input, Print, Punch, or
Rollout Queue
Magnetic Tape Files 2-23
Fast Attach Permanent Files 2-23
File Types 2-25
Files in Queues 2-25
Special Queue Files 2-25
Other Files 2-25
Job Origin Codes 2-25
Mass Storage Allocation Area 2-26
Mass Storage Table (MST) 2-27
Track Reservation Table (TRT) 2-30
Word Format 2-30

60454300 B vi

SECTION 3

60454300 B

Job

Track Link Byte (Format 1)
Track Link Byte (Format 2)
Machine Recovery Table (MRT)
Word Format
Job Control Area (JCB)
Libraries/Directories
Resident CPU Library (RCL)
Resident PPU Library (RPL)
PPU Library Directory (PLD)
CPU Library Directory (CLD)
User Library Directory (LBD)
System Sector Format
Standard Format
Direct Access File System Sector
Format '
ECS Direct Access Chain
Rollout File
System Sector
File Format
Communication Area

Exchange Package Area
Error Flags ‘
Mass Storage Label Format

PPU

Device Label Track Format
Device Label- Sector Format

- Multimainframe Tables

Intermachine Communication Area

MMF Environment Tables

MMF DAT Track Chain (ECS)

MMF ECS Flag Register Format

Device Access Tahle (DAT) Entry

Fast Attach Table (FAT) Entry -
Global ‘ .

PFNL Entry Format - Global

Memory Layout

PPO - System Monitor (PPU Portion)

PP1 - System Display Driver (DSD)

Pool Processors

Disk Deadstart Sector Format

MTR/CPUMTR
CPU and PP Monitors
MTR Functions : _
" CCHM (3) - Check Channel
DCHM (4) - Drop Channel
DEQM (5) = Drop Equipment
DFMM (6) - Process Dayfile Message

SEQM (10) - Set Equipment Parameters
PRLM (11) - Pause for Storage

. Relocation '

RCHM (12) - Request Channel

‘REMM (13) - Request Exit Mode

REQM (14) - Request Equipment

ROCM (15) - Rollout Control Point

RPRM (16) - Request Priority

RJSM (17) - Request Job Sequence
Number . ' i

2-30
2-30
2=31
2=31
2-32
2-32
2-32
2-33
2-33
2-33
2=34
2=35
2-35
2-37

2-39
2=-40
2-40
2=41
2-42
2=43
2~46
2-47
2=47
2-47
2-43
2-48
2-49
2=-50
2-51
2-51

2=-52
2=52
2-53
2-53
2=54

NN
[]
wu1
o

WWWWWW HWWUWHWUWWWWW
| I RO B I | [T R B |

P G A 'Y O IRV Ve IR o IR o o JE Q8

OO0 O000 o

vii

60454300 B

RSTM (21) - Request Storage

DSRM (23) - DSD Requests

ECXM (24) - ECS Transfer

TGPM (25) - IAF/TELEX Get Pot

TSEM (26) - Process IAF/TELEX Request

DEPM (27) - Disk Error Processor

DRCM (30) - Driver Recall CPU

SCPM (31) - Select CPUs Allowable
for Job Execution

EATM (32) - Enter/Access System
Event Table

CPUMTR Functions

MTR

ABTM (36) - Abort Control Point

CCAM (37) - Change Control Point
Assignment

CEFM (40) - Change Error Flag

DCPM (41) - Drop CPU

SFIM (42) - Set FNT Interlock

DTKM (43) - Drop Tracks

DPPM (44) - Drop PP

ECSM (45) - ECS Transfer

RCLM (46) - Recall CPU

RCPM (47) - Request CPU

RDCM (50) - Request Data Conversion

IAUM (51) - Interlock and Update

ACTM (52) - Accounting Functions

RPPM (53) - Request PP

RSJM (54) - Request Job Scheduler

RTCM (55) - Request Track Chain

SFBM (56) - Set File Busy

STBM (57) - Set Track Bit

UADM (60) - Update Accounting and
Drop

SPLM (61) - Search Peripheral Library

JACM (62) - Job Advancement Control

DLKM (63) - Delink Tracks

TDAM (64) - Transfer Data Between
Message Buffer, Job

TIOM (65) - Tape 1/0 Processor

RTLM (66) - Request CPU Time Limit

LCEM (67) - Load Central Program

CSTM (70) - Clear Storage

CKSM (71) - Checksum Specified Area

LDAM (72) - Load Disk Address

VMSM (73) - Validate Mass Storage

~PIOM (74) - PP 10 Via CPU

MXFM (76) - Maximum function Number
Functions to CPUMTR '
(0) - RA Request

ARTF (1) - Advance Running Times

IARF (2) - Injtiate Autorecall

EPRF (3) - Enter Program Mode
Reqgquest

MRAF (&) - Modify RA

MFLF (S5) - Modify FL

SCSF (6) - Set (Restore) CPU Status

SMSF (7) - Set Monitor Step

WNWWULWUWHWHWHWWHWWWW
I

{
e e e 2 - S
[\ JEE QU S Sr T G G §

WWWWWWWuW
]

(V]
i
JREY
N

[|
-
N NN

1

L U T R T R B |
N N A A I P (A A P G N N
PEPFPPEPPUHUNUUNUWWNUINDNNN

WHWWHWWUWHWHWHWHWHWHHUTWWWWW W WwW
1

WWWW
LI T I | I I |
D e
Vi o

1t

1
G N N N N N G Y
N~N~NOoOcCOCrOCOOCOO O NI

WL W
1
-— o D
0 00~

3-18

vidii

SECTION 4

SECTION 5

60454300 B

CMSF (10) = Clear Monitor Step

ROLF (11) - Set Rollout Flag and
Check Job Advance. :

ACSM (12) ‘- Advance CPU Job Switch

PCXF (13) - Process CPU Exchange
Request '

ARMF (14) - Advance Running. Time and
MMF Processing .

MREF (15) = Modify ECS RA

MFEF (16) - Modify ECS FL

CPUMTR Structure.

- MTR Structure

Starting MTR at Deadstart Time
CPUMTR/MTR Flowcharts
Real-time Clock
Time Keeping
IDL, IDLT - CPUO and CPU1 Idte Loops
CPUMTR Segmentation
Exchange Jumps :
Central Processor Monitor
Monitor Address Register (MA)
Monitor Flag Bit
Central and Monitor Exchange
Jump Instructions
Programming Notes
Flow of Exchanges
Subcontrol Points (SCP).
Transaction Executive
Transact1on SubcontroL Points

PERIPHERAL PROCESSOR RESIDENT (PPR)

PPR/System Interaction
PPR Subroutine Descriptions
NOS PP Naming Convent1ons
Error Messages
Direct Cells
Routine Residence

100 and 1RP-

7SE

7EP

PP Resident Flowcharts

Dayfile Message Options
Mass Storage Driver Resident Area

JOB PROCESSING
General -Job Processing
Job Flow
Priority Ag1ng
Queues
RolLlout Scheduling
Scheduler ;
Control Statements
Special File INPUTx*
Timed/Event Rollout Processing
EESET Macro
DSD and DIS Commands
Description of Timed/Event
Rollout

3-20

3-21
3-22
3-22
3-22
3-25
3-25
3-47
3-47
3-438
3~48
3-49
3-49
3-49

3-50

- 3=53

3-71

B I N N N N R A
)

NN 2200000000~ O = =

NN OO

viuviuonutvauoau o
|
R U P P NI\ QD QL QY

ix

SECTION 6

60454300 B

ROLLOUT Macro
FNT Interlocking and Scheduling

Individual FNT Interlock

Global FNT Interlock

FNT Entry Interlock

Job Advancement

Transition State Scheduling

Special Processing

Subsystems
Subsystem Startup

Special Entry Points
ARG= Special Entry Point
DMP= Special Entry Point
RFL= Special Entry Point
MFL= Special Entry Point
SDM= Special Entry Point
$SJ= Special Entry Point
VAL= Special Entry Point
SSM= Special Entry Point

Special RA+1 Requests
Special PP Calls
Intercontrol Point

Communication
SIC Reguest
RSB Request

JOB FLOW
Job Scheduler - 1SJ
Set Control Point Status (SCS)
Set Job Control (sSJC)
Determine Disk Activity (DDA)
Search for Job (SFJ)
Commit Field Length (CFL)
Commit Control Point (CCP)
Assign Job (ASJ)
Schedule Special Subsystem (SSS)
Priority Evaluator - 1SP
Adjust Job Priorities (AJP)
Advance Time Increments (ATI)
Adjust File Priorities (AFP)
Check Event Table (CET)
Check Mass Storage (CMS)
Check if Checkpoint Needed (CDV)
Process Overflow Flags (POF)
Advance Job Status - 1AJ
Begin Job (3AA)
Process Error Flag (3AB)
Transtate Control Statement (TCS)
Issue Statement to Dayfle (IST)
Search for Special Format (SSF)
Search for Program Fle (SPF)
Search Central Library (SCL)
Begin Central Program (BCP)
Assemble Keyword (AKW)
Enter Arguments (ARG)
Check for Special Entry Points
(CSE)
Check valid boMP= Call (CVD)
Process Error (ERR)

5-21
5-24
5-24.1
5-24.1
5=24.2
5-24.2
5-24.2
5~-24.3
5-24.3
5-25
5-28
5-32
5-32
5-33
5-33
5-33
5-43
5-44
5-45
5-45
5-45
5-46

vl W
1
P
© o

[R
—_ 23200000000 000

[N O TR R T N |
- a2
00 00 00

?000\00000\00\000\00\0‘00\0\0
1

S W

W

SECTION 7

60454300 B

Interrogate.-One Character (IO0C)
Initialize Program. Load. (IPL)
Request Storage (RQS):
Search Library Table (SLT)

~Set System Call (SSC).
Skip to. Keyword (STK)
Translate SCOPE Parameter (TSS)
Initialize Direct Cells C(INT)
Advance to Exit Statement (ATX)
Check Statement Limit (CSL)

Read Control Statement to Address

(RCAD

Read Next Control Statement (RNC)
- Search Peripheral Library --3AC

Load Central Program = LDR
Search for Overlay - 3AD

Load Copy Routines - 3AE

“Load Central Program (LDC).
Copy MS Resident. Program (CMS)
Set- Load Parameters. (SLP) .

~Load CM/AD (ECS) Resident Programs

(ccm v
Mass. Storage. Read Error Processor
-(MSR)

- ..Set Program Format (SPF)

Check Program Format (CPF)
Check SYSEDIT Activity (CSA)

Special Entry Point Processing - 3AF
Restore Control Point Fields (RCF)

Initialize DMP= Load on RA+1 Call
(IDP)

Process Specwal Processor Request
-(PSR) .

Reset Former Job (RFJ)

Start-up DMP= Job. (SDE)

Set Priorities (SPR) .

Transfer Control Point Area Fields
(TCA)

Termination Process1ng - 3AG

Send Response to Subsystem (SRS)
Check Subsystem Connection (CSC)
Calculate Subsystem Index Positian

ccse)
End User Jobs (EUJ)
User File Privacy Processing = 3AH
Complete Job - 1CJ |
Job Rollout Routine ~ 1RO
Common Deck COMSJRO
Rollout File System Sector

Job Rollin - 1RI

SYSTEM I1/0 (MASS STORAGE)

‘Tab:le Linkage

Table Content o
Mass Storage ALLocat1on
File Linkage.

Disk Sector

6-72
6-72
6-72
6-72
6-72
6-72
6-73
6-73

. 6=73

6-73
6-78

6-78
6-78

X

SECTION 8

60454300 B

System Sector _
Disk I/0 From PPs

60P

MASS STORAGE INITIALIZATION AND RECOVERY

Initialize I/0 Operation Via SETMS
Macro
1/0 Operation and Error Processing
End Mass Storage Operation
General Programming Considerations
Storage Move
Random 1/0
Switching Equipments
SETMS, ENDMS Sequences Al lowed
bual, Shared, and Multiple Access
Seek Overlap - 6DI Driver
MMF Operation of Seek Overlap
Non-MMF Operation of Seek Overlap
Flowcharts from 6D0I Driver
DDP/ECS Driver

Mass Storage Manager
Initialization and Recovery Routines

MSM

MSM

Recover Mass Storage (RMS)
Preset
Read Device Labels
Check and Recover Devices
Call REC into Execution
Check Mass Storage (CMS)
Preset)
Read Device Labels
Check and Recover Devices
Check for Initialization
Requests
Count Active Families
System Recovery Processor (REC)
Mass Storage Recovery in MMF
Environment
Overlays
Overlay 4DA/RDA
Overlay 4DB
Overlay 40DC
Overlay 4DD
Overlay 4DE
Overlay &4DF
Overlay 4DG
Overlay 4DH
Overlay Load Addresses

Device Checkpoint
On-Line Reconfiguration of RMS

Routine RDM

Function 1 - Search for
Qutstanding Requests
Function 2 - Replace Unit

Function 3 - Add Unit
Function 4 - Delete Unit
Function 5 - Clear Reqguest
Function 6 - Ignore Processing
of Dbevice
Device Redefinition Logic Flow

00 00 00 00 00 00 OO0 00 OO
]
N =2 O

xii

SECTION 9

SECTION 10

SECTION 11

SECTION 12

SECTION 13

60454300 B

COMBINED INPUT/QUTPUT

User/CIO0 Interface

CI0 Memory Allocation

CI0O Initialization Routines

CI0O Error Messages and Routines
2CA Subroutines’ .

- 2CB Subroutines :

Position Mass Storage Routine

CIO Termination Routines:

: Terminal Input/OQutput Routine TIO
2CI Subroutines

CONTROL POINT MANAGEMENT
Function Process1ng

CPM 0rgan1zat1on

LOCAL FILES

File Types

Local File Manager

LFM Overlays :
3LA - Error Processor
3LB =~ Local File Functions
3LC - Equipment Requests
3LD - Common File Functions
3LE - File Disposal Fnctions

" 3LF - Control Statement File

- Functions
3LG - GETFNT and Pr1mary Funct1ons

RESOURCE CONTROL
Overcommitment
Deadlock Prevention
Overcommitment ALgorithm
Resource Files
Resource: Sat1sfact1on
Resource Assignment Counts
Resource Executive
Control Statement Processing
Assignment Statements
Resource DecLarat1on
VSN Association ’
External Calls
Resource Assignment
Removable Packs
Magnetic Tape
‘COM Subroutine
Preview Display
« Reprieve Processing
Routine QORF E
RESEX Organization -

MAGNET/1MT

MAGNET/1MT Structure

MAGNET - Control Point Initialization
MAGNET Initialization
AMT Initjalization

MAGNET Run-Time Executive *
Routine 1MT

1 1 1 L I U I |
N 00 O

1
AR PFPUNAYW
N W

O 0 O 00000V
[}

9-49

10-1
10-5
10-5

11-1
11-2

11-5

11-10
11-10
11-10
11-11
11-12
11-12
11-13

11-14

xiii

SECTION 14

SECTION 15

60454300 B

Tape Monitoring
Residency of 1MT

PERMANENT FILE MANAGER

PFM Communication

Permanent File Types

User Numbers Containing Asterisks

Master Devices
Direct Access File Processing
Indirect Access File Processing
File Creation, Deletion
Accessing Files
Catalog/Permit Entries

PFM Structure
Routine PFM
3PA - Main Command Processing
3PB - Save/Replace Processing
3PC - Append Processor
3PD - Attach Processor
3PE - Catalog List Routines
3PF - Define Processor
3PG - Permit/Purge Processor

3PH - Error Processing Routines
3P1 - Auxiliary Routines
3PJ - Change Processor

3PK - Device-to-Device Transfer

3PL - Append - Original File
Transfer

3PM - Define Auxiliary Routine

TELEX TIME-SHARING SUBSYSTEM
Introduction
Terminal Operation
Terminal Job Initiation
Terminal Job Interaction-Qutput
Terminal Job Interaction-Input
TELEX Interactive Job Names
Interactive COMPASS Program
Example
TELEX Initialization
TELEX1 - Main Program
Driver Request Queue(s)
Monitor Request Queue(s)
VDPO - Drop Pots (TELEX Routine
DRT)
VASO - Assign OQutput (TELEX
Routine ASO)
VSCS = Set Character Set Mode
(TELEX Routine SCS) ‘
VPTY - Set Parity (TELEX Routine
PTY)
VSBS - Set Subsystem (TELEX
Routine SBS)
VMSG - Assign Message (TELEX
Routine DSD)
VSDT and VCDT TSEM Requests
TGPM Request

- 13-21

13-30

14-1
14-1

14-5

14-7

14=-7

14=10
14-10
14=11
14-12
14-13
14=-17
14=-20
14-20
14=24
14=-25
14=-25
14-26
14-27
14-28
14-29
14=-29
14-30
14-30
14=-30

14-31

15-1
15-1
15-3
15-4
15-6
15-7
15-10
15-10

15-11
15-17
15-21
15-23

15-24.

15-24

15-24

15-25

15-25

15-25

15-26
15-26

SECTION 16

60454300 B

"Terminal Table '
Transaction Word TabLe
Pot Link Queue
Internal Queues (TRQT)
Reentry Table '
Table of Reentry ‘Routine Parameters
(TRRT) ' S
Queue Processing
TELEX Routines '
TELEX2 - Termination Overlay
Multiplexer Driver
Driver Initialization (17TD)
Reentrant Routine’ Returns
Process Subroutines
1TA TELEX Auxiliary Rout1ne
Group Reguest ’
Single Request
1T0 = TTY Input/Output Routine
Additional Considerations
SALVARE - TELEX Recovery File

TRANSACTION FACILITY (TAF)
TAF Overview
TAF Initialization
Subcontrol Point Table
Communication Blocks
Active Transaction List
Terminal Status Table
TOTAL Data Manager Initialization
TAF CRM Data Manager Initialization
Task Library Director
Files Used by the Transaction
-Subsystem
NETWORK File
DBID/TDBID/CDBID Files
Procedure Files SYPR, xxPR"
xxJ File
EDT/DPMOD Files
TASKLIB/xxTASKL Libraries
Journal Files
ERPF File
Trace Files
xxTLOG File
Special Reserved Files:
Transaction Executive
Subcontrol Point Program Requests
SCT - Schedule Task
PBA - Data Base Access
TOT - Enter Request into Total
Data Manager Queue
AAM - Enter Request Into TAF CRM AAM
" Queue
CTI - Caltl Transact1on Subsystem
Interface:
Send Terminal OQutput
Task Journal Request
Check for Task Chain in System
Request Code 3 - Terminal Argument
Operation

15=-27
15-32
15-34
15-35
15-36
15-36

15-39
15-40
15=-41
15-42
15=45
15-51
15-51
15=-59
15-60
15-60
15-66
15-74
15-74

16-1

16-1

16-3

16-11
16-13
16-16
16-16
16-18
16-18
16-18

16=-19
16-19
16-19
16-19
16-19
16-20
16-20
16-20
16-20
16-20
16-20
16-20
16-21
16-31
16-31
16-32
16-33

16-32
16-33
16-34
16-34

16-35
16-35

.1

© XV

- 60454300 B

Request Code 6 - Return Terminal
Status

CMDUMP

DSDUMP

KPOINT -~ Terminal K-Display Command

Set K-Display To Run from Task
Submit Job To Batch
ITL - Increase Time Limit
I10 - Increase I/0 Limit
Send Terminal Status Function to
Communication Executive
LOADCB - Read Multiple
Communication Block Input
TIM - Request System Time
MSG - Place Message on Line One
RA+1 Request Processing
Task Scheduling
RTL - Requested Task List
CCC - Task Load Request Stack
Transaction Executive Recovery/
Termination
Transaction Subsystem Control Point
TAFTS/Time-Sharing Executive
Interface
Transaction Subsystem/NAM Interface
Transaction Communication Flow

Terminal Connection To Transaction

Subsystem
Time-Sharing Executive to TAF
Login .
NAM to TAF Login
Input Message Sequence ‘for
Time-Sharing Executive to TAFTS
Communications
Input Message Sequence for NAM to
TAF Communications
Task Execution For Input Message
Downline Message Processing
Data Manager Communication
TAF Data Manager
TAF CRM Data Manager
Internal Task XJP Trace
Installation Modification of
Internal Trace
TAF Trouble~Shooting
LIBTASK Utility
PRS - Preset Routine
PCR - Process Create Option
Task Library Directory
PTT - Process Tell TAF Option
PIT - Purge Inactive Tasks
PNP - Process No Parameters
Product Set Support Monitor Requests
SFP DOO Request
CPM (27B) - Get Job Origin
END - End CPU Program

16-35

16-36
16-37
16=-37
16-37
16-38
16-38
16-38
16-38

16-39

16-39
16-641
16-41
16-41
16-42
16=42
16-43

16-45
16-47

16-438
16-49
16=49

16-49

16-50
16-51

16=54

16-55
16-56
16-62
16-63
16-64
16-64
16-66

16=-67

16-70
16-70
16-73
16-73
16=75
16-75
16-76
16-83
16-83
16-83
16-84

xvi

SECTION 17

60454300 B

ABT - Abort CPU Program
SCT - Buffer WAITINP
CTI - TPSTATUS
CTI - BEGIN

BATCHIO

Introduction
BATCHIO Control Point
BATCHIO Communication
BATCHIO Overview
BATCHIO Manager - 110
CFF - Check for File
CPR - Check Pending Request
CSR - Check for Storage Release
MSG - Process Control Point
Message
REQ - Request Equipment
SFF - Search for File
31D - 110 Preset BATCHIO
3IA - 110 Auxiliary Subroutines
ABF - Assign Buffer
ADR - Assign Driver
ANB =~ Add New Buffer
EBP -~ Enter Buffer Point
Information
EFP - Enter File Parameters
EFT - Enter FET Information
FFB - Find Free Buffer
3IB - Load Image Memory
3IC - Error Processor
BATCHIO Combined Driver - 1CD
Psinter Driver Characteristics
Card Punch Driver Characteristics
Card Reader Driver -
- Characteristics
1CD - BATCHIO Peripheral Driver
DSD Operator Request
SEA - Set Equipment Assignment
POF =~ Process Operator flag
LPD - Line Printer Driver
CPD - Card Punch Driver
CRD - Card Reader Driver
ACT - Process Accounting
Information
CIB - Check Input Buffer
CO0B - Check Output Buffer
CPS ~ Call PP Service Program
CUL - Check User Limit Reached
PMR - Process Message Request
RCB - Read Coded Buffer
TOF - Terminate Output File
TOP - Terminate Operation
QAP - BATCHIO Auxiliary Processor
IIF -~ Initiate Input File (WTIF,
WRIF, WFIF)
LPR - Load Print Data (GBPF, PFCF)
TPF. - Terminate Print File

16-85
16-85
16-85
16-86

17-1
17-1
17-5
17-5
17-10
17-11
17-16
17-16
17-16
17-16

17-16
17-17
17-17
17-18
17-18
17-18
17-18
17-18

17-18
17-18
17-19
17-19
17-19
17-19
17-20
17-23
17-23

17-25
17-28
17-29
17-29
17-29
17-30
17-30
17-31

17-31
17-31
17-32
17-32
17-32
17-32
17-32
17-32
17-33
17-34

17-34
17-35

AR

SECTION 18

SECTION 19

60454300 B

PDF - Process Dayfile Messages
(PDMF)

PLE - Process Limit Exceeded

ACT - Accounting (ACTF)

PHD - Generate Lace Card (GLCF)

POR - Process Operator Requests
(PORF) o

CEC - Channel Error ClLteanup (CECF)

BCAX - Exit

Error Processing

SYSTEM CONTROL POINT FACILITY
Introduction
CALLSS Macro
Parameter Block
Macro Format
SFCALL Macro
Macro Format
Parameter Block
SFCALL Function Codes
CALLSS Processing
Subsystem/UCP Communications Path
Connection State Table
End Processing
End UCP
End Subsystem
Abort Processing
Hostile User
Communication Ends and Aborts
CPUMTR Processing of SSC Calls
SSF Call Processing
SF.ENDT (06)
SF.READ (10), SF.WRIT (14)
SF.XRED (40), SF.XWRT (44)
SF.EXIT (16)
SF.SLTC (30), SF.CLTC (32)
SF.SLTC - Set Long-Term
Connection
SF.CLTC - Clear Long-Term
Connection
SF.STAT (12)
SF.SWPO (24)
SF.REGR (02)
SF.LIST (34), SF.XLST (42)
SF.SWPI (26)

QUEUE PROTECT, QFM UTILITIES
Preserved Files
Queued Files
IQFT Entry
Queued File Entrance
Queued File Removal
Queued File Recovery
Dayfile Recovery
Recovery Processing
Equipment Section
Queue File Manager (QFM)
Queue File Supervisor (QFSP)

17-35

17-35
17-35
17-35
17-35

17-36
17-36
17-36

18-1
18-1
18-1
18-2
18-3
18-4
18-4
18-5
18-6
18-7
18~7
18-8
18-9
18-10
18-10
18-11
18-14
18-14
18-15
18-17
18-17
18-18
18-18
18-19
18-20
18-20

18-20

18-20
18-21
18-22
18-22
18-25

19-1
19-1
19-1
19-2
19-2
19-3
19-3
19-4
19-5
19-5
19-6
19-10

xviii)

SECTION 20

SECTION 21

60454300 B

QDUMP/QLOAD Utility Control Words
Queue Recovery (QREC) Utility

QLIST Utility
QMOVE Utility
QLOAD Utility

LDLIST Utility

QADUMP Utility

DFTERM Util

DFLIST Utility
FNTLIST Utility
QALTER Utility

ity

ACCOUNTING AND VALIDATION

SRU Algorithm
AAD Routine
AIO Routine
CPT Routine
SRU Routine

Accounting CPUMTR Functions
ACTM - Accounting Ffunctions

ABBF
ABSF
ABCF
ABEF
ABVF
ABIF

Account dayfile

“
(2)
3)
4)
(5)
6)

RLMN - Request

TIOM - Tape 1I/0 Processor
UADM -~ Update Control Point Area

Validation Files
Tree-Structure Files

COMSSFS

MODVAL and Validation Files

VALINDs File
VALIDUs File

User Number Validation Block

Function
Function
Function
Function

Function

Function
Limit

Deleted User Numbers

ACCFAM Program
Routine Q0AV

SUN - Search for User Number
UVF - Update Validation File
IVF - Initialize Validation File

Validation Limits

PROFILE and Project Profile F1Les

Access to PROFILa
PROFILa File

beleted Charge and Project Numbers

CHARGE Routine

Routine 0AU

Data Base Errors from PROFILE

MULTIMAINFRAME"

MMF Overview

MMF Environment
System Flow

Deadstart

Shared Mass Storage

20-5
20-6
20-6
20-6
20-6
20-6
20-6
20-7
20-8
20-9
20-10
20-10
20-10
20-14
20-18
20-18
20-19
20-21
20-21
20=-21
20-22
20-23
20-23
20-24
20-30
20-30
20-30
20-34

21-1
21-1
21-2
21-2
21-2
21-3

SECTION 22

60454300 B

Mass Storage Recovery Tables 21-4

TRT Interlocking 21-5
Device Initialization 21-5
Device Unload 21=6
Device Recovery 21-7
Device Checkpoint 21-11
Fast Attach Files 21-12
Permanent File Utilities 21-12
I/0 Queue Protect 21-13
CPUMTR Considerations 21-14
Segmentation 21-14
ECS Interlocks 21-14
TRTI Interlock 21-14
PRSI Interlock 21-14
BTRI Interlock 21-15
MRUI Interlock 21-15
CIRI Interlock 21-15
DATI Interlock 21-15
FATI/PFNI Interlocks 21-15
IFRI Interlock 21-15
COMI Interlock 21-15
CMR Interlock Tables 21-15
PFNL Table 21-15
MST Table 21-16
Interlock Reject Handling 21-16
Inter-Mainframe Function Requests 21-17
Parity Error Processing 21-20
Reporting of ECS Errors 21-22
Operator Interface - DSD 21-23
Machine Recovery - MREC/1MR 21-23
CYBER 170 RAM , 22-1
S/C Register Deadstart Display 22-1
List Hardware Registers in Deadstart
Dump 22-1
Routine EDD , 22-1
DSDI 22-8
S/C Register Error Logging 22-10
CYBER 170 Fatal Mainframe Errors 22-11
Group I Errors 22-11
Group Il Errors 22-12
CYBER 170 Power Faijlure and Environmental
Bits 22-13
System Flow 22-14
SCR Bit 37 Only Set 22-14
SCR Bit 36 or ILR Bit 0O Set 22-14
Unhangable I/0 Channel code 22-15
Drivers 22-15
Routine 1ED 22-16
Routine 1TD 22-16
Routines DSD, 1DL 22-16
Output Channel Parity Error
Detection/Logging 22-16
65x Equipment 22-16
MTS Equipment 22-17
BATCHIO - Unit Record Equipment 22-17

XX

SECTION 23

SECTION 24

60454300 B

SECURITY
System Access
Secondary User Statements
Security Count
Other User Number Protections
Special User Numbers
User Access Premissions
Special Console Modes
Special Entry Points
$S8SJ= Entry Point
$SM= Entry Point
SDM= Entry Point
VAL= Entry Point
Secure System Memory
Prohibit Dumping
Clearing Memory
Other Data Protections
File Access
System File Access

. STIMULATORS

Introduction
Calling STIMULA
STIMULA Control Statement
ASTIM Control Statement
NSTIM Control Statement
Functional Overview
STIMULA
1TS and 1TE
DEMUX
STIMOUT File Format
EST Entries Used for Stimulations
STIMULA EST Entry
ASTIM Entries
NSTIM Entries

-Tables Used for CPU/PP Communication

TSCR - Scratch Table

TTER - Terminal Table

TSTX - Session Text Table

TASK - Task Table ‘ '

TSPT - Session Pointers

RA Locations (Stimulator Usage)

TCWD - Table of Control Words
STIMULA Routines

PRS - Preset Routine

TSF - Translate Session File

RSP - Request Sessjon Parameters

RMP - Request Mixed Parameter Input

SSA - Set Session Addresses

STA - Set Task Addresses

IOR - Injtialize Qutput Recovery

BSM - Begin. Stimulation

RCO - Recover OQutput ,
Description of 1TS/1TE -Routines

PRS - Preset Routine

CTS - Check TELEX Status

ICT - Initialize Control Table

SCP - Start Central Program

XX

SECTION 25

SECTION 26

60454300 B

SSL -
LGI -
REJ -
TTD -
WTC -
EOL -
EOS -~
SLI -
GNT -
PET -
oTT -
SAN -
RTC -
HNU -
INI -
REG -
Data Flow

Line Speed (LS K-Display Parameter)
Input Speed (IS K-Display Parameter)
Logout Delay (LD K-Display Directive)
Think Time (TT K-Display Parameter)
Think Time Increment (TI K-Display

Par
Activa
Dir
Activa
Dir

Repeat Count (RC K-Display Directive)
Loop On Session File (LF K-Display

Par
Recove
Dir

CHECKPOIN
Checkpoin
Checkpoin
RESTART

DEADSTART
Hardware
Software
Startu
osB
DIO
SET
System
SYSEDI
MS Recove
PPR Initi
Recovery
Checkpoin
Disk Dead
INSTAL
Routin
Func

- Func
Func

Stimulation Service Loop
Process Login ’
Reject Character

Think Time Delay

Write Terminal Character
Process End-of-Line
Process End of Script
Source Line Input

Get Next Task

Process End of Task
Optional Think Time

Set Account Number

Read Terminal Character
Hung Up Phone

Initiate Input

Process Regulation

ameter
tion Count (AC K-Display
ective)
tion Delay (AD K=Display
ective)

ameter)
r Output (RO K-Display
ective)

T/RESTART
t File
t - CKP

Deadstart
Deadstart
p

Loading
T

ry Operations
alization '

t File
start File
L

e 1IS

tion 1 - Validate Install

File
tion 2 - Initialize SDF
tion 3 - Complete SDF

24-28
24-28
24-28
24-28
24-29
24-29
24-30
24-30
24-30
24-30
24-31
24-31
24-31
24-31
24-32
24-32
24~32
24-32
24-33
24-33
24-34

24=35
24-35

24-35
24=-36

24=36
24-36

25-1
25-1
25-7
25-15

26-1
26-1
26-2
26-2
26-4
26-4 -
26-4
26-6
26-7
26-8
26-9
26-10
26-11
26-11
26-11
26-12

26-13
26-14

xx1ii

Function 3 - Complete SDF

Installation 26-14
Function 4 - Process Mass Storage
Error ‘ 26-15
SECTION 27 DISPLAY ROUTINES DSD, DIS 27-1
Dynamic System Display (DSD) 27-1
Structure of DSD : 27-3
Programming Consideration 27-6
Routine 1DS 27-6
DIS Display Program : ' 27-15
Structure of DIS | 27-18
Overlay Residency and 1DL 27-20
SECTION 28 CENTRAL PROGRAMMABLE K DISPLAY 28-1
Console Communication 28-1
Display Screen 28-2
Display Programming 28-5
Keyboard Input . 28-6
K=Display Standards - ‘ 28-8
K-Display Entries ‘ 28-8
K-bisplay Format 28-9
Sample Program 28-10
SECTION 29 LOCATION-FREE ROUTINES 29-1
Common Deck COMPREL : 29-1
Common Deck COMPRLI 29-2
Loading Zero-Level Overlays 29-3
SECTION 30 PRODUCT SET INTERFACE 30-1
SCOPE Function Processor ‘ , 30-1
SFP Structure 30-2
STS Request = , 30-2
Function 01 30-2
Function 02 ‘ 30-4
Function 03 : 30-5
MSD Request 30-6
PFE Request ' ’ 30-7
ACE Request ; 30-8
PRM Request 30-8
Special Request Processing 30-10
Error Processor 30-12
Monitor Call Errors 30-13
DOO Request 30-13
FIN Request ' 30-15
SECTION 31 NETWORK VALIDATION FACILITY 31-1
' (Transferred to NAM IMS)
SECTION 32 KRONREF, COMMON DECKS, AND SYSLIB 32-1
KRONREF 32-1
Common Decks 32-2
Common Deck Usage 32-3
SYSLIB 32-13
SECTION 33 EXPORT/IMPORT o 33-1
Introduction ‘ 33-1
E/XI 200 Programs: 33-1

60454300 B xxiii []

SECTION 34

60454300 B

E/I 20Q Overview
Export/Import Communication Areas
Function/Status Table
Message Buffer
Login Information Table
CPU Interlock Table
Drop Job Table
Password Table
Family Name Table
Export/Import FETs
Program E200CP
INP - Input Data Processor
OUT - Output File Processor
1LS - Export/Import Executive Routine
XSP - Service Processor
Validate User Number (VUN)
Make Initial Job File Entry (MJE)
1ED - Multiplexer Driver

FILE ROUTING AND QUEUE MANAGEMENT
Introduction
Queued File Controls
Disposed OQutput Validation
Deferred Batch Validation
Security Count Validation
Queued File System Sector
Input File Equivalences
Output File Equivalences

Common Input/Output File Equivalences

Queued File FNT/FST
Deferred Route
File Routing Concepts
Terminal Addressing
Alternate Routings
Special File ID Codes
Device Specification
Forms Code
Queued Management Equivalences
Creating a Queued File
Queue Management Routines
COMPUSS
USS - Update System Sector
WAS - Write Queued File System
Sector
Callers of COMPUSS
DSP - Dispose File to I/0 Queue
QAC - Queue Access
QAC Preset
Function 0 - ALTER
Send to Central Site
(Output Files)
Change Terminal ID (TID)
Change Priority (Output
Files)
Change Forms Code (Output
Files)
Change Repeat Count
Change Spacing Code

33-2

33-9-
33-9

33-12
33-12
33-13
33-13
33-14
33-14
33-14
33-16
33-17
33-18
33-21
33-23
33-23
33-24
33-29

34-1
34-1
34-1
34-1
34=-2
34-2
34-3
34=4
34-4
34-5
34-6
34-6
34-7
34-7
34-7
34-8
34-8
34-9
34-9
34-11
34-11
34-11
34-12

34-19.
34-19
34-19
34-25
34-33
34-33
34-33

34-34
34-34

34-34
34-34
34-34

xxiv

SECTION 35

SECTION 36

60454300 B

QAC

F
F

F
- Key Resident Subroutines

S

S
v

v

Abort Job -

Evict File
unction 1 - GET
unction 2 - PEEK
unction 3 - COUNT

EJ - Search for Executing Job
FF - Search for File

CI - Validate Central Memory
Information

MI - Validate Mass Storage
Information

REPRIEVE PROCESSING (RPV)
Reprieve Overview
RA+1 Call
Reprieve Functions
Parameter Block
Control Point Area Use
Setup Function
Resume Function
Reset Function
Interrupt Processing for Extended RPV
Terminal Input Requested
Interrupt Flow

PERMANENT FILE UTILITIES
Introduction
PFS - Permanent Ffile Superv1sor

POC - Process Overlay Call
KIP - Keyboard Processor
CDT - Convert Date and Time
DDE - Determine Default Equipment
O0CK - Option Check
OCP - Option Combination Processor
PIE ~ Process Initial Entry
SVO - Set Valid Options
PFU - PF Utility Processor
PFU Structure
CAU - Clear PFU Active Flag
CCA - Check Central Address
CFA - Compute FET Address
CFS - Complete FET Status
DCH. - Drop Channel if Reserved
FAR - Force Autorecall
FFE - Final FNT Entry
LDB - Load Buffer
PAR - Pause and Reset Addresses
PDA - Process Direct Access File
RCH. - Request Channel if Not
Reserved
RPP - Recall PP
SAP - Set Addresses for Dump and Load
SAU - Set PFU Active Flag
SBA - Set Buffer Arguments
SCT - Set Catalog. Track
SFC - Set File Complete
.SFF. - Store File Name and FET Address

34-34
34-34
34~35
34-35
34-39
34-39
34-39
34-40

34-40
34-41

35-1
35-1
35~1
35-1
35-2
35=5
35-6
35-8
35-9
35-10
35-11
35-12

36-1
36-1

- 36-10

36-10
36-10
36-10
36-11
36-11
36-11
36=-11
36-11
36-15
36-15
36-15
36-15
36-15
36-16
36=16
36-16
36=-17
36-17
36-17

36-17
36=-17
36-18
36-18
36-18
36-18
36-18
36-18

XXV

60454300 B

PF

SFT
SOC
STS
UFP
VCA
VME
WIF
PFU
OPN
ACF
RRD
LML

STU
cLu
RCF
CHF
SFL
SEC
cLC
SES
LCT
IAC
DAC
TSU

Set File Type

Store One Character
Store String

Update FET Pointers
Validate Central Address

Validate Mass Storage Equipment

Write Interlock Flag

Common Decks

Open File

Advance Catalog File

Read Data List

Load Main Loop

CATS Position

CATS Write

CATS Read

PETS Position

PETS Write

DATA Position

DATA Write

EMB - Empty Buffer

Set PF Utility Interlock
Clear PF Utility Interlock
Rewind Catalog File

Change File Name

Set File length

Set Catalog Track Interlock
Clear Catalog Track Interlock
Set Error Idle Status
Locate Catalog Track
Increment PF Activity Count
Decrement PF Activity Count
Test PFU Interlock

Utility Programs
Interlocks

Permanent File Activity Count
Permanent File Utility
Interlock

Total PF Interlock

Catalog Track Interlock

PFATC Utility
PFCAT Utility
PFCOPY Utility
PFDUMP Utility

Obtaining the File

Device Selection

File Selection

Selecting a Device to Dump

Writing the Archive File
Archive File Control Words
Archive File Label
Catalog Image Record
Writing the Permanent File
Archive File Termination
Purge After Dump

Interlocking

Error Processing
Reading Catalog Entries
Reading Permit Entries

36-18
36-18
36-19
36-19
36=-19
36-19
36-19
36-19
36-20
36=-21
36=-21
36-25
36-28
36-28
36-29
36=-29
36-30
36-30
36-31
36-33
36=34
36=35
36-36
36=-36
36=-37
36-37
36-38
36-38
36-39
36-40
36=-40
36-41
36-41
36-42
36-42
36-42

36-42
36-43
36-43
36-46
36-48
36-50
36-54
36-54
36-56
36=-57
36-58
36-60
36=-61
36-63
36=-63
36-66
36-67
36-67
36-68
36-68
36=-69

XXVi

SECTION 37

60454300 B

Reading PF Data
Writing the Archive/Verify
File .
PFLOAD Utility
Loading the File
File Selection
Permits -Processing
Data Processing
Catalog
End-of-Load
Archive File Assignment
Transferring Files to Mass
Storage
Interlocking
Activating PFU for Loading
Error Processing
Reading the Archive
File
Errors Reading Control
Words
Writing the Permanent
File

INTERACTIVE FACILITY (IAF)
Introduction
Terminal Operation
Terminal Job Initiation
Terminal Job Interaction - Qutput
Terminal Job Interaction - Input
Interactive Job Names
Interactive COMPASS Program Example
IAFEX Initialization
IAFEX1T - Main Program
Driver Request Queue(s)
Monitor Request Queue(s)
VDPO - Drop Pots (IAFEX1
Routine DRT)
VASO - Assign Output C(IAFEX1
Routine ASO)
VSCS - Set Character Set Mode
(IAFEX1 Routine SCS)
VSBS - Set Sybsystem (IAFEX1
Routine SBS)
VMSG - Assign Message (IAFEX1
Routine DSD)
VSDT and VCDT TSEM Requests
TGPM Request
Terminal Table
Network Tables
Pot Link Table
Internal Queues (TRQT)
Reentry Table (VRAP)
Table of Reentry Routine Parameters
(TRRT)
Queue Processing
IAFEX Routines
IAFEX2 - Termination Overlay
IAFEX4 - IAF/NAM Interface
Connection Establishment

36-70

36=-71
36-71
36-76
36-76
36-77
36-78
36=79
36-80
36-381

36-82
36-83
36-83
36-84
36-84

36-84
36-84

37-1
37-1
37-3
37-4
37-6
37-7
37-10
37-10
37-11
37-16
37-21
37-23

37-24
37-24
37-24
37-25

37-25
37-26
37-26
37-27
37-32
37-33
37-35
37-36

37-36
37-38
37-40
37-41
37-42
37-45

XXvii

60454300 B

Command Line Entry
Source Line Entry
Input to a Running Program
OQutput Processing ’
Session Termination
1TA IAFEX Auxiliary Routine
Group Request
Single Request
1T0 - Terminal Input/Output Routine
Additional Considerations
SALVARE - IAFEX Recovery File

37-45
37-46
37-46
37-46
37=47
37-48
37-48
37-49
37-54
37-62
37-62

Xxviii

FIGURES

1-1 System Equipment Configuration 1-2
1-1.1 Central Memory Storage Layout ExampLe 1-5
1-2 RA+1 CI0 and Request Calls: ‘ 1-12
1-3 Graph of CM Time Slice and CPU Time Slice 1-15
3-1 System Interaction 3-1
3-2 System Interaction 3-2
3-3 Monitors Interaction 3-3
3-4 CPUMTR Entry Points From Exchange Packages 3-4
3-5 Main Loop for MTR 3-23
3-6 Process Time Dependent Scanners 3-24
3-7 AVC Advance Running Times 3-26
3-8 JSW - Process CPU Job Sw1tch1ng (CPU Slot
, Time) 3-27

3-9 PPL - Process PP Recalls _ 3-28
3-10 DSD PP Function Request i 3-29
3-11 HNG - Hang PP and Display Message 3-31
3-12 FTN - Process Monitor Function 3-32
3-13 CCP - Check Central Program 3-33
3-14 CPR - CPUMTR Request Processor 3-36
3-15 XCHG - The CPU with CEJ/MEJ Not Available 3-38
3-16 CPUMTR Return Points 3-39
3-17 MTR - Exchange Entry From A CPU Program 3-40
3~18 CHECK - For System CP Request _ 3-42
3-19 Process — RA+1 Requests ' 3-43
3-20 PMN - Exchange Entry From MTR 3-44
3-21. PPR - Exchange Entry for Pool PPs 3-45
3-22 PRG - Exchange Entry for System CP (Program »

Mode CPUMTR) _ } 3-46
3-23 Pool PP Request g 3-57
3-24 PP MTR 3-58
3-25 Program Request ' 3-59°
3-26 System CP Program Mode v 3-60
3-27 CPUMTR Running in MM Activates CP12 3-61
3-28 PP3 Requesting Function from CPUMTR 3-62
3-29 CPUMTR Processing PP Request Activates ;

Control Point 14 3-63
3-30 MTR Switches Control Po1nts ' 3-64
3-31 CPUMTR Activates Control Point 10 3-65
3-32 Control Point 10 Calls CIO 3-66
3-33 CPUMTR Calls CIO, Activates Control Point 16 3-66
3-34 CI0 Runs to Completion and MXNs to Mon1tor 3-67
3-35 PP4 Issues DTKM via MXN . ‘ 3-68
3-36 System Control Point Processing 3-69
3-37 System Control Point XJ (MA) to CPUMTR 3-70
3-38 Subcontrol Point Field Length , 3-74
4 -1 System Interaction - PPR 4=3
4-2 1RP - Restore PPR 4-10
4-3 PP Resident (PPR) 4-11
L=4 Peripheral Library Loader (PU) 4-12
4-5 Process Monitor Function (FTN) 4-14
4-6 Reserve Channel (RCH) ‘ 4=17
4=7 Send Dayfile Message (DFM) 4-18
4-8 Execute Routine (EXR) 4-20
4-~9 Set Mass Storage (SMS) 4-21

60454300 B ‘ xxix L

FIGURES (Continued)

General System Flow

Read Card Reader

1SJ Prepares a CP for the Job
1AJ Starts the Job

Job Creates Local File

Job is Rolled Out

Job is Rolled In (From Rollout)

(LR, RV RV, RV RV RV RV IRV RY |
§
= =22 YOO UMWN

CEVEVEV RV RV RV RV NV RV EV RV, RV, RV,
1
BN S a0 NV WN -

- Job Completes -10
- Typical Queue Priority Scheme -13
-10 Control Statement Processing -17
-11 Field Length of Loaded CPU Request Processor 5-31
-12 DMP= Processing (1AJ Calls 1RQ) 5-34
-13 1AJ Calls LDR to Load DMP= Program 5-35
-14 1AJ Calls 1RI to Restore the Job 5-36
5-15 General Flow 5-37
5-16 Pass 1 (Job Flow Has Come to a DMP Control
Statement) 5-38
5-17 Pass 2 5-39
5-18 Pass 3 5-40
5-19 Pass 4 5-41
5-20 Pass 5 5-42
6-1 18J Main Loop SCJ 6-5
6-2 SFJ - Search For Job 6-10
6-3 1SP - Main Program 6-16
6-4 1AJ Interaction 6-21
6-5 1AJ Major Overlay Memory Layout 6-22
6-6 1AJ - Advance Job 6-23
6-7 3AA - Begin Job 6-36
6-8 3AB - Process Error Flag 6-45
6-9 TCS - Main Routine 6-55
6-10 IST - Issue Statement 6-59
6-11 SCL - Search Central Library ' 6-61
6-12 BCP - Begin Central Program 6-66
6-13 ERR - Error Processor 6-71
6-14 INT - Initialize Direct Cells 6-74
6-15 1CJ - Complete Job : 6-85
6-16 TR0 - Rollout Job 6-92
6-17 1RI - Rollin Job 6-97
7-1 RMS File Structure 7-9
7-2 Rollout File System Sector 7-10
7-3 Dual-, Shared- and Multiple-Access
Configurations 7-17
7-4 MS Driver Core Map 7-22
7-5 PRS - Preset ' 7-23
7-6 LDA - Load Address 724
7-7 DSW - Driver Seek Wait 7-25
7-8 EMS - End Mass Storage 7-26
7-9 RDS - Read Sector 7-27
7-10 WDS - Write Sector 7-28
7-11 FNC - Issue Function ‘ 7-29
7-12 DST - Check Drive Status 7-30
7-13 6DP - DDP/ECS Driver 7-32

60454300 B XX X

.
-

]
PN AaAa DO NOWN -

00 00 00 00 00 00 OO0 00 00 00 00 00 O0 Co O
|
VIS WWN -0

OO OV O0OVYOYWOVO VOO
[}
- ed DV NO VS NN

PUAUMN2O

O O
1

-
[o V)]

9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-25
9-26
9-27
9-28

60454300 B

FIGURES (Continued)

Recover Mass Storage (RMS)
Read Device Labels’ (RDL)

Check
Check

Active Devices
Device Status (CDS)

Recover Devices (RCD)

Check
Check
Clear
Check
Check

Mass Storage

Active Devices (CAD)

Inactive Devices (CID)
Unavailable Devices (CUD)
Initialization Requests (CIR)

Overlay 4DA/RDA

Initialize Dayfiles (IDF)
Initialize Device Status (IDS)
MSM Load Map '

Write

TRT (WTT)

User/CIO0 Interface
CI0 PP Memory Allocation

cio -

Main Overlay

CIOT/IRQ - CIO Initialization
SAF- Search for Assigned F1Le

EFN -
SFS -
CFA -
cBP -
PFN -
ERR -
ERR -
ISR -

EVF/EPF = 2CA Subroutines to Evict a Mass

Enter File Name

Set File Status

Check File Access

Check Buffer Parameters
Process Function

Process Error

Error Processor (2CK)

Identify Special Request (2CA)

Storage or Permanent File

2CB -
LDB -
WwcB -
EOF -
EOR -
CPR -

Read Mass Storage
Load CM Buffer

Write Central Buffer
Process EOF

Process EOR

Complete Read

PMS and Function Processor Return

UFS -
IOF -
CFN -
TiI0 -
PMT -
MER -
ubT -

Update File Status

Set IN = OUT = FIRST

Complete Function '

Terminal Input/OQutput

Magnetic Tape Operation

Magnetic Tape Executive Request
Unit Descriptor Table Read/Write

ONaaNOWMNO

s Ve Ve Ve JiVe Vo JRVo JRYo Vo JRVe BEVo It Yo B o)
1
NN =2 a2 OO0 0=

O O
[}

W W
WO

9-35
9-37
9-38
9-39
9-40
9-41

S 9-44

9-45
9-46
9-47
9-50
9-52
9-53

XX X1

FIGURES (Continued)

12-1 BRE - Build Resource Environment 12-4
12-2 O0CA - Overcommitment Algorithm 12-12
12-3 Resource Demand File Entry (RSXVid) 12-15
12-4 VSN File Entry (RSXVid) 12-16
12-5 DDS - Determine Demand Satisfaction 12-18
12-6 ASSIGN/LABEL/REQUEST - Assignment Control

Statement 12-23
12-7 RESOURC Control Statement ’ 12-28
12-8 VSN Control Statement 12-31
12-9 LFM External Call Processor 12-33
12-10 REQ External Call Processor 12-35
12-11 PFM - PFM External Call Processor and RRP

- Request Removable Pack 12-37
12-12 RMT - Request Magnetic Tape 12-40
12-13 Request Block (RQ) 12=44
12-14 RESEX/MAGNET Call Block 12=-46
12-15 cCoMm 12-50
12-16 ORF - Update Resource Files 12-56
13-1 ICAW Word 13-3
13-2 Unit Descriptor Table Format 13-4
13-3 Overview of MAGNET After Initialization 13-10
13-4 Detailed Map of MAGNET Low Core 13-11
13-5 XREQ Format 13-12
13-6 Interlock Request Word 13-12
13=-7 Channel Status Word 13-13
13-8 MAGNET-1MT Interlock Words 13-13
13-9 Field Length Status Word 13-13
13-10 1MT Function Table Entries 13-14
13-11 MAB and FNH Function Requests 13-15
13-12 RESEX-MAGNET Call Block 13-16
13-13 Preview Display Buffer 13-17
13-14 Table of Processor Strings 13-18
13-15 FST Entry for Tapes 13-22
13-16 EST Entry for Magnetic Tapes 13-23
13-17 1MT Direct Cell Allocation 13-24
14-1 PFM Overlay Load Map 14-19
15-1 TELEX Interactive Subsystem 15-2
15-2 Terminal Mass Storage Data Flow 15-3
15-3 Terminal Job Initiation 15-5
15-4 Terminal Job Interaction (Qutput) 15-8
15-5 Terminal Job Interaction (Input) 15=-9
15-6 Pointer Addresses 15-12
15-~7 TELEX1 Control Loop 15-18
15-8 TELEX1 Processing Modules 15-19
15-9 TELEX1 Memory Map 15-20
15-10 Driver Request Queue Stack 15-21
15-11 Table Relationships 15-38
15-12 Multiplexer Servicing Concept 15-44
15-13 1TD/2TD Memory Maps 15-46
15=14 MAIN and PRESET Overview 15-48
15-15 . Input/Output Buffers 15-49

60454300 B XX X7 °

"FIGURES (Continued)

15=16 2TD Memory Map ™ = o o 15=-50
15-17 MGR Flowchart e 15=55
15-18 Read Mode Processing Subrout1nes ; ‘ 15-57
15-19 Write Mode Processing Subrout1nes 15-58
15-20 1TA Control Loop: - ’ : 15-62
15-21. Time-Sharing Job- RoLLout Fite -~ 15=-65"
15-22 1T0 1/0 Rout1ne S ' 15-68
16-1 INIT - Initialize Transact1on Executive C 16-8
16-2 Transaction Subsystem Memory Map -TAFTS 16-22
16-3 Transaction Subsystem Memory Map ~TAFNAM 16=-23
16-4 Transactijon Main Loop 16-26"
16-5 TSSC Loop - Task Slicing Co ' ' 16-28
16-6 REC - Recovery/Termination B 16-44
16=-7 - TAFTS Control Point » 16=-45
16-8 TAFNAM Control Point » 16-46
16-9 TAFTS/Time-Sharing Executive Relationship 16-47
16-10 Transaction Executive: Us1ng Network Access

- Method : : 16-48
16-11 Trace Buffer Layout ‘ 16~68
16-12 LIBTASK Main Flow . 16=71
16-13 PRS - Preset Routine : 16=-72
16=-14 PCR - Process Create Option. : 16=-77 .
16-15 Library Format o 16=78
16-16 PTT - Process Tell TAF Option 16-79
16-17 Task Library Format. : o 16-80
16-18 PIT - Purge Inactive Tasks ‘ - 16-81
16-19 PNP - Process No Parameters 16-82 -
17-1- BATCHIO Overview 17-2
17-2 BATCHIO Central Memory Layout 17-7
17-3 110 - BATCHIO Main Loop ' : 17-13
17-3.1 1CD Layout 17-25.1
17-4 1CD Manager « 17-26
20-1 VALIDUs Level-0 Block" : ~ ‘ 20-11
20-2 VALIDUs Level-1 Block 20-12
20-3 - VALIDUs Level-2 Data Block : 20-13
20-4 User Number Validation Block ' 20-15
20-5 Routine QAV : 20-20
20-6 PROFILa Level-0 Block Format 20-25
20-7 PROFILa Level-1 Block Format ‘ 20=-26
20-8 PROFILa Level-2 ' Block Format ' 20-27
20-9 PROFILa Level-3 Block Format 20-28
20-10 PROFILa Level-3 Overflow Block Format 20~-29
20-11 Routine QAU - S ' 20-31
22-1 Dump Tape Header Label 22-6
22=-2 - Dump Tape Record Format ‘ Ce 22-7
22=-3 PP Dump Header Label C 22-8
22=4 - PP Dump Format ; 22-8 "

22-5 cM Dump Header LabeL e : 22-~9

60454300 B : xxxiii °

22-6
22-7
22-8

24-1
24-2
24-3
24-4
24-5
24-6 .
24-~7
24-8
24-9
24-10
24-11

25-1
25-2
25-3
25-4
25-5
25-6
25-7
25-8

27-1
27-2
27-3
27-4
27=5

28-1
28-2
28-3
28-4
28=-5

33-1
33-2
33-3
33-4
33-5
33-6
33-7
33-8
33-9
33-10

34-1
34-2
34-3
34-4
34-5

60454300 B

FIGURES (Continued)

CPU Hardware Register Contents
ECS Header Label
Dump Formats

Relationship of Stimulator Modules
Hardware Configuration for STIMULA
Hardware Configuration for ASTIM
Hardware Configuration for NSTIM
TTER Table

RA Location Table

STIMULA Flow

BSM Memory Control

RCO - Output Recovery

1TS/1TE Initialization.

1TS/1TE Main Loop

CKP Format

Checkpoint File Structure
Checkpoint Overview

CKP - Checkpoint Main Loop
PRS - Checkpoint Preset
RESTART Overview .
RESTART - Restart Main Loop
PRS - Restart Preset

DSD Overview

DSD Main Loop ‘

DSD Release/Request Channel Loop
DIS Release/Request Channel Loop
DIS Main Loop

Sample Keyboard Main Loop

B Display

K Display, Left Screen

K Display, Left and Right Screen

Small Characters, Left and Right Screens

E/I 200 Interaction

E/I 200 Operation

Port Table Layout
Export/Import FETs

E200CP Control Scanner

1LS - Executive Main Control
Function Table Processor

XSP - Main Entry

6671 Port Data Word

1ED Main Loop

COMPUSS -~ Subroutine USS

DSP Main Routines

QAC Search

VCI - Validate Control Point Information
VMI - Validate Mass Storage Information

XXxXiv

35-1
35-2
35-3
35-4

36-1
36=-2
36-3
36-4
36-5
36-6
36-7
36-8
36-9

37-1
37-2
37-3
37-4
37-5
37-6
37-7
37-8
37-9
37-10
37-11
37-12
37-13
37-14
37-15
37-16

60454300 B

FIGURES (Continued)

Interrupt Processing

1AJ Interrupt Processing
1RO Interrupt Processing
1RI Interrupt Processing

PF Utilities Memory Map
PFS Argument Process1ng
PF Utility FET

PFATC

PFCAT

PFCOPY

PFDUMP

Tape Label Fformat

PFLOAD

IAF Interactive Subsystem
Terminal Mass Storage Data Flow
Terminal Job Initiation

Terminal Job Interaction (Output)

Terminal Job Interaction (Input)
Pointer Addresses

IAFEXT1 Control Loop

IAFEX1 Processing Modutes
IAFEX1 Memory Map

Driver Request Queue Stack
Table ReLat1onsh1ps

IAFEX4 Overlay.

IAFEX Control Point

1TA Control Loop

Time~Sharing Job Rollout File
1TO 1I/0 Routine

35-13
35-15
35-18
35-20

36-6

36-7

3614
36-44
36=47
36-49
36=51
36-62
36-73

37=-2
37-3
37-5
37-8
37-9
37-12
37-18
37-19
37-20
37-21
37-39
37-43
37-44
37-50"
37-53
37-56

XXXV

TABLES

1-1 System Resource Times - 1-14
1-2 Job Origins 1-14
3-1 Values of MTR Functions 3-5
3-2 Values of CPUMTR Functions 3-6
3-3 MTR Functions Processed by CPUMTR in

Monitor Mode 3-7
3-4 MTR-CPUMTR Program Mode Requests 3-7
3-5 RA+1 Requests Processed by CPUMTR 3-8
3-6 Exchange Instruction Difference : 3-51
3-7 Control Point/Exchange Package Correspondence 3-53
3-8 System Exchange Packages 3-54
3-9 Monitor, Pool PP, Control Point Relationships 3-56
4-1 Pool PP Memory Map L-4
4-2 Direct Location Assignments 4-9
4-3 Symbols Used With Mass Storage Drivers 4-25
6-1 1SJ Tables 6-2
7-1 TRT Lengths 7-3
7-2 Sector Header Byte Contents 7-8
8-1 Recovery of Shared Device Errors 8-35
8-2 Mass Storage Device Recovery During

Deadstart 8-36
8-3 MSM Cross Reference 8-53
9-1 Origin Addresses 9-4
9-2 TRDO - Table of Read Processors 9-18
9-3 TWTO - Table of Write Processors 9-18
9~4 TFCN - Table of Function Processors 9-19
9-5 Overlay 2CK 9-20
9-6 TREQ 9-31
10-1 CPM Functions 10-2
11-1 LFM Overlays 11-6
13-1 MAGNET Processing Options 13-25.
14-1 Mode Relationships 14-14
14-2 PFM Functions and Processes 14-15
14-3 Overlays 3Px Caled by 3PA 14-24
15-1 TELEX Constants 15-15
15-2 Driver Request Numbers (Issued to TELEX) 15-22
15-3 TSEM Monitor Request Functions 15-23
15-4 Terminal Table Entry Summary 15-32
15=5 Translation Tables Overlays v 15-43
15-6 USE Block Lengths 15-45
15-7 Addresses and Words 15-51
15-8 Control Subroutines 15-58
15-9 Process Functions 15-59

60454300 B XX XVi °

60454300 B

TABLES (Continued)

Table and Buffer Pointers
Buffers and Tables
Buffers and Length

Format Control Characters

Connection State Table
UCP/Subsystem Checks
Check User Job Table

Device Access Status
Mass Storage Device Recovery

CHKPT Common Decks
Buffer Assignments

RESTART Common Decks
RESTART Buffer Assignments

Table of Requests
1DS Request

E/I CM Layout

Information Bits

RPV Error Codes, CLasses, Flags

Parameters and Utilities
PFU Function Usage

IAFEX Constants

Driver Request Numbers (Issued to IAFEX1)
TSEM Monitor Request Functions

Terminal Table Entry Summary
Process Functions

16-5
16-10
16-24

17-21

18-9
18-16
18-17

21-8
21-10

25-14
25-14
25-18
25-18

27-11
27-13

33-2
34=36
35-5

36-2
36-13

37-15
37-22
37-23
37-32
37-48

Xxxxvii

INTRODUCTION 1

The Network Operating System (NOS) is a group of programs and
subprograms that monitors the input, compilation, assembly,
loading, execution, and output of all jobs submitted to the
computer. NOS accepts jobs in four ways: time-sharing, local
batch, remote batch, and system console input. NOS controls
CYBER 170 Series Computer Systems, CYBER 70 Series, Model 71,
72, 73, and 74 Computer Systems, and 6000 Series Computer
Systems. ' '

Efficient processing of user jobs is the prime objective of the
.operating system. This section describes the inherent hardware
characteristics, the basic software elements, and how they work
together to accomplish the prime objective. Figure 1-1 shows the
NOS system equipment configuration.

HARDWARE OVERVIEW

NOS uses peripheral processors (PP) for system and input/output
tasks and one or two central processor units (CPU) to execute

user and system jobs. Central.memory (CM) contains user programs;
system software areas are located at the Llower end of central
memory. Extended core storage (ECS) may also be used by NOS.

CENTRAL PROCESSOR UNIT

The CPU performs tasks of a computational nature; it has no
input/output capability. It communicates with other system
components through central memory. Under NOS, the CPU 1is used
almost exclusively for program compilations, assemblies, and
executions. The CPU makes system requests through a CPU request
register Located at the reference address plus one (RA+1) of the
current program in execution. However, system work that can be
done more efficiently in the CPU is processed there.

PERIPHERAL PROCESSORS

The system may have up to 20 peripheral processors. The
peripheral processors (identified as PPQO, PP1, ..., PPn) are
identical and perform many tasks for requesting programs in
central memory. Each PP consists of 4K, 12-bit, 1-byte words of
memory.

A PP can control input/output, job scheduling, control statement
interpreting, system housekeeping, and other tasks as required.
Tasks are assigned one at a time to each PP by the CPU monitor
(CPUMTR). When an assigned task is completed, the PP signals
the system. CPUMTR waits for this signal before assigning
another task to the PP.

60454300 B 1-1

Each PP is assigned a block of eight words in central memory
resident through which communication with the system is
conducted. This area is referred to as the PP communications
area. Each block contains an input register, an output register,
and a message buffer.

CENTRAL PROCESSOR UNIT(S)
(SOME CDC MODELS HAVE 2)

CENTRAL
MEMORY
49k!
OR MORE
T
F_T“—‘F‘_‘T"“T"L"T'—“T"“"—r'—“r‘—‘"i
1 { 1 1 fl 1 | 1 [} 1
MTR| |DSD
prol |PPi PP2| |PP3 PrP4| |PPs PrPe| |PP7| |PPIO]| [PP11
! v L I 1] I T T

rd_ -t = = 4r

6506606006066

l | ! ' | '
|‘ 1 ‘ |
DEAD- | | ' | o [er H
START | | DOP : I Toisk | | |
PANEL ECS | |
| | | - =
|
I i Y

— 6676 2550 O p
MUX HCP

CONSOLE
+ * DISPLAY
TO NETWORK

64 TTY APPLICATIONS

LINES

tSpecial consideration is needed for NOS to execute with 49K of
central memory (refer to the NOS Installation Handbook).

Figure 1-1. System Equipment Configuration

60454300 B 1-2

CENTRAL MEMORY
Central memory words are 60 bits long; each is composed of five

12-bit bytes. Each 12-bit byte in a CM word is numbered 0O
through 4, from the left, as follows.

59 47 ‘ 3 s 23 X 0

byte O . byte | bytenz byte .3 byte 4

One or more user programs may be in some state of execution
concurrently under NOS. These programs are stored in central
memory in an assigned user area called control points; a set of
system components necessary for the operation of the system is.
also stored in central memory, forming central memory resident
(CMR). Central memory is accessible by all PPs and CPU(s) and
forms the communication Link between all processor units in the
computer system.

CMR contains system communication areas, system tables, CPU
resident routines, the library directory, and information about
each job currently in execution. ' : '

EXTENDED CORE STORAGE

Extended core storage (ECS) is a high-speed peripheral storage
device. It is used by the multimainframe software for storage
of common tables since ECS can be accessed by two or more
mainframes. ECS is also used to retain system routines and
compilers that are called frequently. It is often used by the
system to move blocks of central memory.. This is known as a
storage move of control points and is described Later. ECS may
also be used for rolling jobs out of central memory, and

usér created files, and for direct access of lLarge data arrays
by using the read/write ECS instructions.

SOFTWARE OVERVIEW

Under NOS all processing of user jobs is controlled in.central
memory. NOS consists of PP programs, CPU programs, macro
definitions, and symbol definitions. The entire system is .
contained on a magnetic tape file produced by the :NOS utility
Modify. Programs in the Library file are in source language
form. Installation options are provided to permit flexible
selection of system features during. the assembly and creation of
an NOS deadstart (system initialization) medium. The most
frequently used options are selected during deadstart.

A system monitor is in complete supervisory control of the
hardware system. The system monitor is composed of PP routine
MTR (PP monitor) which operates in PPO, and CPUMTR (CPU monitor)
which is loaded as part of central memory resident (CMR).

60454300 B 1-3

CENTRAL MEMORY ORGANIZATION

The allocation of central memory is as follows.

low core CMR
CPUMTR
CM library

assigned 1o
control points
{system/user programs)

v
high core

Low core is allocated to the central memory resident portion of
NOS and executable system programs. The remaining area is
assigned to control points.

CONTROL POINTS

The system can control execution of several jobs at one time.
When placed into CM before execution, each job is assigned a
control point number. Jobs at control points are assigned to a
processor for execution. Each control point area in CMR
contains all the information necessary to process the assigned
job. ° :

Control Point Concepts

Blocks of central ‘memory storage not allocated for system use are
ordered by control point number and assigned to jobs. Each
control point number has a corresponding table in CMR called the
control point ‘area. A control point is not a physical entity,
but rather a concept used to facilitate bookkeeping. The control
point number and the control point area, however, are physical
quantities that do appear in the system.

Under NOS up to 23 (27 octal) control points are possible. In an
installation with n control points for user jobs they are
numbered from 1 to n. A job assigned to a control point is
identified by its control point number; only one job can be
assigned to a control point at any one time. Once a job is
assigned to a control point, system resources such as central
memory, ECS, channels, equipment, and processors may be assigned
to the control point for use by the job.

60454300 A 1-4

The amount of CM/ECS words assigned to a single control point

is contiguous and an integer multiple of 100B for CM and 10008
for ECS; storage for all control points:is not‘necessarijly
contiguous. The central memory storage block assigned to the job
at control point 2 is higher than the block for the job at
control point 1, and storage for control po1nt ‘3 'is higher than
that for control po1nt 2 and S0 on.)

In the Figure 1-1.1 no storage is assigned to control :
points 3 and 5; unassigned storage appears between assigned
storage.

low core CMR

: CPUMTR
CM library

control point 1

control point 2

/////////////////// /

control point 4

conirol point &

v

control point 7

\/
high core

Figure 1-1.1. Central Memory Storage Layout Example

60454300 B 1-5

Subcontrol Points

Another feature of NOS is subcontrol points. Basically, the
memory of a regular control point is divided into a number of
distinct blocks. Various applications programs are loaded and
executed in these blocks under the control of an executive
program. The executive manages the subprograms and assigns the
CPU according to priorities it establishes. The executive
program and each subprogram is protected from other subprograms.
This protection is accomplished by the CPU as explained in
section 3. Currently, the transaction subsystem (TAF) uses

this feature.

Special Control Points

In addition to the n control points defined for running jobs,
there are two special control points used for system control:
control point zero and control point n+1.

Control point zero is essentially CPU monitor (CPUMTR) which
controls the memory of the entire machine. Also, some peripheral
equipment can be assigned by control point zero to jobs at other
control points and later returned to the system. Thus, the
control point number associated with an equipment determines
whether the system or the user has control. Similarly, Llogical
files are associated with user jobs or the system via the control
point number. Files belonging to the system (those assigned to
control point zero) include:

e System dayfile

® Account dayfile

e Error lLog dayfile

e Jobs in the input queue

e Jobs in the rollout queue

e Jobs in the output gqueue
CPUMTR uses control point n+1 for certain monitor functions that
might require a large amount of CPU time. For example, the
delinking of tracks in a mass storage allocation table may
require a significant amount of CPU time. Thus, this function
is best done at control point n+1. While running at control
point n+1, CPUMTR is in program mode, not monitor mode, and can
be interrupted by PP exchange jumps (MXN). However, the CPU

priority of control point n+1 is 100 octal, which is the highest
available.

60454300 A 1-6

Job Rollout

buring the course of execution, a job might not remain
continuously at the same control point. It is possible for the
job to be rolled out while it is only partially executed, thus
making CM avaijlable for higher priority jobs. When a job is
rolled out, it is not associated with a control point. When it
is rolled back in, it is probably associated with a control
point other than its previous control point.

During the time a job is rolled out, the only table in CMR that
contains information about the job 1is the file name table entry
(file type rollout). The system periodically updates the
priorities of rolled out jobs and eventually reschedules the job
to a control point.

Storgge Moves

When a job begins or finishes processing, or as jobs are rolled
in and out, CM storage must be reallocated and jobs must be

moved. If a job at a control point requests additional storage,
it may be necessary to move jobs to obtain the required storage.

A request for a reduced field Length (FL or FLE) resets the
FL/FLE size in the control point area; no storage move takes
place, unless the field lLength reduction takes place at the last
control point. A request for an increased field Length, when
unallocated storage is available and adjacent to the control
point, results in resetting the FL/FLE size in the control point
area; no storage move is required. ‘ o

If it is necessary to take unallocated .storage adjacent to other
control points to satisfy a request for increased field Llength,
control points above and below the requesting control point will
be scanned. This scan locates the combination of unallocated
storage blocks that will result in a move of the least amount of
storage.

In figure 1-1.1, if control point 1 needs more storage, it will
be necessary to move caontrol point 2. 1If control point é needs
storage, sufficient unallocated storage may be available to make
a control point move unnecessary. If, however, control point 7
needs additional storage, control points 4, 6, and 7 may be moved
to provide the storage. Added storage always extends the field
Length upward. ‘ ' '

Storage moves are determined by MTR and are performed by CPUMTR.
There are three possible methods used by CPUMTR:

e Use compare/move unit (CMU) if available

60454300 B . 1-7

e Use ECS block transfers if ECS is available

e Use CPU if previously mentioned hardware is unavailable

Job Fie[d Length

When a user program is assigned a control point, the system
allocates a certain amount of CM to the control point. This
storage is contiguous in memory and is a multiple of 100 octal
words. The block of CM assigned is defined by a starting address

called the reference address (RA) and a word count field Length
(FL).

RA user/syste_rh
RA+100 communication
FL (CM block assigned)
user
program
RA+FL

The user program is loaded at location RA+100, with the first 100
octal words (RA through RA+77) reserved for system communication.
Once loaded, a user program cannhot access memory beyond its
boundaries of RA and RA+FL. The CPU uses the RA to convert
addresses to absolute. If the program attempts to read or write
beyond its boundaries, the CPU detects the error and aborts the
job.. Since the user program cannot access memory outside its FL,
any area reserved for system communication must be within the FL
of the job. Thus, the first 100 octal lLocations of each job's

FL are reserved for this purpose (refer to section 2).

PROGRAM/SYSTEM COMMUNICATION

ALl communication with the system is performed by entering a
system request in location RA+1 of the field length. ' A user
program may communicate -with the system as described in the
following examples.

e The CPU does not peform input/output. Therefore the user
program sends I/0 requests to the system. This is most
often a request for the PP program CIO. :

e When a user program terminates, it must advise the system
that it may process the next control statement.

.

60454300 B 1-8

If a CPU program wishes to call a PP program it places the PP
program name and arguments in RA+1. If autorecall is desired,
bit 40 is set. If the central exchange jump (CEJ) instruction is
avajlable, the program should use it immediately after placing a
call in RA+1. This causes CPUMTR to begin execution immediately.
If CPUMTR determines that the RA+1 call should be assigned to a
PP, CPUMTR writes the -RA+1 word into the PP input register in
CMR. The name and any .parameters in bits 35 through 0 appear in
the input register exactly as they did in RA+1. Parameters are
passed from a CPU program to a PP program through this parameter
field. The format for the PP communication area is shown in
section 2. ‘ :

For example, if the PP program CIO is called, CIO finds the

relative address of the file environment table (FET) to be used

in the operation by reading its input register. It can.find the

RA of the control point field length by reading the control point
number from its input register, computing the address of the control
point area, and reading the value of RA from the control point area.
By adding the RA to the - relative FET address, C]O obtains the
absolute address of the start of the FET. CIO then reads the
parameters for the I/0 operation from the FET.

MTR continually scans RA+1, in the event that the user's program
does not use the central exchange jump, or the instruction is
not available (CEJ/MEJ disabled). When-an RA+1 call is found,
MTR initiates CPUMTR. ' ; .

The following iLLustrates’an RA+1 call with the FET address
specified.

59 40 7 0

ANAN
o

FET address

RA+1 XXX

A system—forced autorecall without the FET éddress is_as:foLLows.

59 40 17 0

ANRN

RA+1 xxx 1| 0 : ‘ 0

60454300 B 1-9

Program Recall

The recall program status is provided to enable efficjent use of
the central processor and to capitalize on the multiprogramming
capability of NOS. Often, a CPU program must wait for an I/0
operation to be completed before more computation can be
performed. To eliminate the CPU time wasted if the CPU program
were placed in a loop to await I/0 completion, a CPU program
requests the control point be put into recall status until a
Later time; the CPU may be assigned to execute a program at some
other control point. If there is nothing to do, the CPU executes
an idle loop in CPUMTR.

Recall may be automatic or periodic. Autorecall should be used
when ‘a program requests I/0 or other system action and cannot
proceed until the request is completed. NOS does not return
control until the specific request has been satisfied. Periodic
recall can be used when the program is waiting for any one of
several requests to be completed. The program will be activated
periodically so that it can determine which request has been
satisfied and whether or not it can proceed.

Periodic Recall

To enter periodic recall, a CPU program puts the characters RCL
left-justified into RA+1. On encountering the RCL request, the
system assigns the CPU to some other control point. After a
certain interval of time has elapsed, the control point 1is
restarted and the CPU is again assigned to execute the program at
the control point.

Automatic Recall

If a CPU program makes a request in RA+1 and bit 40 of RA+1 is
set to 1, the control point will be put into automatic recall
after the request has been initiated. Again, the CPU is assigned
to another control point as in periodic recall. 1In this case,
however, the program in recall will be restarted by CPUMTR after
the PP has dropped or issued the RCPM functions. The completion
bit in the FET is never statused. The only criterion for CPU
startup is the RCPM or PP drop (DPPM).

Recall and autorecall are most often used while waiting for CIO
to process an 1/0 request. However, any time a PP program is
called from RA+1, with bit 40 of RA+1 set to 1, the control point
will be put into autorecall.

60454300 B 1-10

If bit 40 is set, bits 17 through 0 of RA+1 must contain the
address of a word in the program's field lLength called a reply
word. When the PP has completed its function, it will set the
completion bit (lLow-order bit) in the reply word, and drop or
issue an RCPM. The completion has no basic significance to NOS.

For a call tb cIo, the feply word is the first word of a FET.
For other programs the reply word need not be part of a FET.

A CPU program can put itself into autorecall without calling a PP
program by putting RCL left-justified in RA+1 and setting bit 40
of RA+1 to 1. Bits 17 through 0 of RA+1 must contain the
address of a reply word. A program which has already initiated
one or more 1/0 operations might go into autorecall in this way,
using the first word of the FET associated with one of the I/0
operations as the reply word. Figure 1-2 shows the formats of
RA+1 for: a normal CIO call; a request for periodic autorecall;
a CIO call with autorecall bit set; and an RCL call with
autorecall bit set. For periodic recall, a user must issue a
normal CIO call followed by an RCL request. For autorecall,
only one request is required.

Any CPU program making a call to a PP program using autorecall
needs to be restarted by the PP program unless the PP program
intends to drop before the CPU program is started up. Just
setting the completion bit in the pseudoFET word is not enough to
get the CPU program restarted. In addition, the PP routine must
issue the monitor function RCPM (request CPU) to get the CPU
program restarted. Unless a CPU program has queue priority
greater than MXPS 7760B), all calls to PP programs, with the
exception of CIO, are forced into auto-recall by CPUMTR.

Autorecall initiated by the RECALL macro is treated as follows.
CPUMTR checks the completion bit and if set takes the CPU

out of autorecall. If not set, CPUMTR leaves the recall
request (RCLP) in RA+1 and exits. - This request is detected
Later by MTR, and CPUMTR dis called.

Normally, CPU programs use autorecall for convenience, but only
one request involving autorecall can be processed at one time.
For example, to initiate I/0 action on several files at once, a
user must employ the periodic recall technigque. ALl requests

are issued without recall (using a separate FET for each request)
and then periodic recall is begun. Each time the CPU program is
restarted by the system, it can check all the files for
completion and go back into periodic recall if any are still
incomplete.

60454300 B ‘ 1-11

CIO call

59 40 17 0]
i
RA+1 CIO jo//////////// FET address
£
CI0O call with autorecall
59 40 17 0
RA+1 CIO ;1//////////// FET address
' /)
Request for periodic recall
59 41 0
e
i
Request for autorecall
59 40 17 0
Wz
[pseudo
i
Figure 1-2. RA+1 CI10 and Request Calls
60454300 A 1-12

Periodic recall may be used also when a CPU program can initiate
an I/0 request and then perform some computation. In some cases,
the I/0 is completed before the computation; in others, the
computation is done first. The user enters recall only when the
computation is done, and then only if the I/0 is still in
process. . e e _ o

Peﬁiodic recaLL.shouLd ast be used, if possible, to continue
processing while only part of the. data buffer has been read or
written by the I1/0 driver.

The definitions in tables 1-1 and 1-2 are used extensively in
NOS. A graph of CPU and CM time slice (figure 1-3) is provided
to illustrate the relationships between these two concepts.

60454300 B : Ny 1

1
=y
W

TABLE 1~1. SYSTEM RESOURCE TIMES

Queue priority| The priority that governs entry to a control
point from the INPUT or ROLLOUT queue and also

governs disposition to a printer.

CPU priority
the CPU will access the CPU.
CPU time slot The time period when the CPU is shifted from
one candidate to another.

CPU time slice| The total time period that a control point can
use the CPU without being penalized.

The total time period a job can reside at
a control point without being penalized.

|

|

[

|

|

|

|

|

|

The priority that governs which candidate for %
|

|

|

|

|

|

|

CM time slice }

I
|Penalized means that the gqueue priority in the control point |
larea is reduced to the lLower gqueue priority (LQP) for the |
lorigin type specified. |

l

TABLE 1-2. JOB ORIGINS

| |
| Source | Origin Type |
| | |
| ==—mmmmrm e m—————- |
syoT	System
BCOT	Local batch
EIOT	Remote batch
I	
TXOT	Time-sharing
mTOT _I Multi-terminal]	

60454300 B 1-14

time
slice

CM / when either the CM or the CPU
time <+ ; time slice occurs, the job is
slice / \ penalized.
penalize job if CPU
/ time slice has not
’ occurred
CcPU)
time - ‘
slice .. penalize job if CM time slice
has not occurred
time
- — CM time
CPU time
CM time increases Linearly with time as long as the job is at a

control point without respect to the use of the CPU.

CPU time increases as a step function with a linear relation only
while the job is actually using the CPU.

Figure 1-3. Graph of CM Time Slice and CPU Time Slice

60454300 B

CENTRAL MEMORY AND TABLES 2

Central memory resident (CMR) is the low end of central memory.
It is reserved by NOS and provides the major coordinating area
for system operation. CMR. contains pointers, tables, CPU monitor
(CPUMTR), Libraries, and library directories.
The tength of CMR is dependent upon several factors, including
the number of peripheral processors, the number of control
points, the number of mass storage devices, and others. This
secton gives an overview of the layout of CMR giving the
relative positions of the various parts of CMR, in addition to
other system defined tables, symbols, and codes. The CMR part
details:

e Central memory layout

e Pointers and constants

e Control point area

e PP communication area

e Dayfile buffer pointers

¢ Central memory tables

e System sector format

e Rollout file
The following descriptions are also provided:

e Job communication area

® Exchange package area

@ Error flags

@ File types

e Equipment codes

¢ Multimainframe tables

e PP memory Llayout

60454300 B 2-1

CENTRAL MEMORY RESIDENT

CENTRAL MEMORY LAYOUT

000

077
100
[
(R}
122
123

L]
126
127
(K-}
142
177
200
(n+1)200

(n+2)*200

60454300 A

system pointers and
control words

channe! status table

status /control registers

miscelianeous pointers and data

reserved

channel release table

control point areas

system control point

PP communication area
(pointer in word 002, byte 4)

60454300 B

.dayfile buffer pointers

~(pointer iin word 003, bvyt,é’ C)

equipme‘n_t- status table (EST)
(pointer inword Q05, byte O)

“file name/file stotus table

. {pointer in word 004, byte Q)

~ FNT interlock table
(pointer in word 004, byte)

.CDC CYBER 176
exchange package area

mass storage
allocation area

mass stofoge’ tables (MST)

job control area

dayfile buffers

daoyfiie dump buffer

ECS/PP buffer .

CPUMTR,

resident peripheral librory (RPL) ‘

resident centrallibrary (RCL)

peripherai library directory (PLD)

central library directory (CLD)

§ystem user library dirécfofy (LBD)’

2-3

POINTERS AND CONSTANTS

59 47 35 29 23 17 Il 5 0
Q00 zeros
fwa resident number memory RPLP,PPUL,
folo] PP _library of PPUs t size /100 |CPUL,MFLL
fwa PP library number of | PP comm |PLDP,NCPL,
002 directory //////// ctrl pts |area adr | PPCP'
dayfile fwa dayfile 1 no. excess
003 n’{r fwa dump buf fer ‘2 dayfiles |DFPP
fwa iwa+ | fwa job control
004 FNT FNT ///M areg FNTP,JUBCP
fwa twa+| Iwa+| ms twa ECS/PP -
005 EST EST equipment buffer ESTP
f fwa user libra V,
006| Maifocation o° A A R
fwa CPU library fwa COS format 3
007 directory CPU lib directory // 1° fcLop
OIO INOL ,INSL
installation area .
OI7 INTL
CMR size
020 //////////////////////////// T8 Jowne

021 system name //////
022 7777777 A, oiabes-ssiiis // oL
03 ////A.&sss.ﬁffu///////////////)18 | acwi aect

job CPU PP/auto job

024 | scheduier |recall -| recall swnch MSCL
Ts ECS first [user IOOO H

025 user track ,wor ECRL

026 /////// / ;ulm date (yyddd) JDAL

0277//////////// A (yr- ISTSC;Q:dgfgremn sc) PDTL

030 time of day (Ahh.mm. ss.) TIML
03l date (Ayy/mm /dd.) DTEL
032

: system title line
035
036

system version name
037

i i Rl

041 |+—=fe7] 1cK recall time 1SP recall time

60454300 B

Ref Bit No.
f1 23-20
19-18
17
16
15
14
13
12
t2 23-12
$3 5-0
t4 5-3
2-0
t5 59-48
6 59

60454300 B

Description

Unused.
CDC CYBER 176 CPU type:

0 = Not a CDC CYBER 178.

1 = CDC CYBER 176 Model A.
2 = CDC CYBER 176 Model B.
3 = CDC CYBER 176 Model C.

Set if 2x PPs are selected,

Set if machine type is CDC CYBER
170. _

Set if CMU is present.

Set if CEJ/MEJ option is available.
Set if CPUO has an instruction
stack.

Set if CPUl is present.

Nonzero if dayflle dump is
disabled.

ACCFAM FL/100.
LIBDECK number.

- Recovery mode.

Reserved.

Scheduler active flag.

60454300 A

042
043
044
045
046
047
050

0s1

0s2
053
054
055

056

057
060
osl
062
063
064
065

067
078
076
o77

59 47 35 23 17 1 (o]
t IPRL
t2 SSTL
TeLex/1aF| EXPORY | satcHio | maoneT | TaF [sscuL
STIMULATOR| i ok | REF cDes MCS
'MASS STOR] TRANSACTION
AGE CONTROLISTIMULATOR reserved
' reserved
reserved Eestaggb PPAL
idle time
load code MSEL
for MS
error processors
reserved
°"" ,%°iv"e' internal to MTR cMCL
T 27 V) CPO ctrl CPO exchange
~7T3//,/,////// pt assig address ACPL
’ CPl ctri CPl excha
1T4WW//pt assig address
, address of PPO
7777777 A eseninss suckage | Pree
first word of PP exchange package
reserved
zeros ZERL
reserved
CPUMTR exchange
reserved address for MTR® MTRL
EQ CPSL PS 0 CPSL

Ref

Bit No.

T1

12

3

T4

60454300 B

59-54
53-48
47-36
35
34-25
24

23-12

11-6

Description

- Index for CPUI ,multiplie'r.

Index for CPUO multiplier.
Secondary rollout sector threshold.

~ Keypunch mode (0=026, 1=029).

Unused.

“System character set mode (0=63,

1=64 character set),
Assumed conversion mode (2=
ASCII/USASI, 3=EBCDIC).

- Assumed 9-track tape density

(3=800, 4=1600, 5=6250).
Assumed tape type (7-track=0,
9-track=1).

Assumed 7-track density (1=200,
2=556, 3=800).

Reserved for CDC use.

Disable user ECS, . '

Disable PF validation..

Disable MS wvalidation,

Ignore USER statement.

Disable account verification.
Disable BATCHIO. =

Disable TELEX/IAF.

Disable EI200, :

Disable MAGNET.,

Disable TAF/TS.

Disable removable device checkmg
Disable queue protect.

Disable secondary user statements.
Disable SCP fac111ty

.Disable TAF.

Disable NAM,

Disable RBF.

Disable subcontrol. pomts
Disable MCS.

Disable CDCS,

" Reserved for CDC use.
" ENGINEERING switch.-

Console initial lock status.

DEBUG switch.

Reserved for installation use (local).
Set if CPUO is off.

Set if CPU1 is off.

60454300 B

100
101

102
103
104
105
106
107

110

ha

13
14
s
e
"z
120
121

122
123

124
125
126

127.

130
131
132
133
134

135.

162

163

177

59 47 35 23 17 I 0
CHO CHI CH2 CH3 CH4 cTIL M
CHS CHE CH7 CHIO CHII
CHI2 CHI3 CH!4 CHIS CHI6
(uﬁmzd) CH20 CH2! CH22 CH23
CHZ4 CH28 CH26 CH27 CH30
CH3I CH32 CH33 (ut?r?e%) (usgsaes)d)
seconds milliseconds RTCL
reserved
T2 PFNL
s i
ta SCRL
4 3 2 ! 0 sieL 15
9 8 7 6 5
14 13 12 I 10
i/ s
4 3 2 I 0 s36L 16
9 8 7 6 5
14 13 12 I 10
Hpp /e 5
MID k¢ machine |MMFL
reserved
reserved
reserved flag register {EFRL
te INWL
reserved MXN time Hﬂg‘cﬂ’ﬁ’:‘. °‘€Y‘;'|:'t'i‘_’::§- SDoL
count of ECS moves count of CM moves SDIL
rollout count count of sectors roiled sD2L
reserved “‘,‘l‘;c:"":'i':‘;':u;’;l:i"“‘ count of time slices | SD3L
reserved T e e, | spaL

reserved

DSD - 1DS communication area

Ref

Bit No.

T1

T2

13

T4

60454300 B

59-56
55

54
53-48
47-18
17-12
11-6
5-1

59-48
47-36

59

58

57

56
55-36
35-24

23-12
11-0

Description

‘Channel status table; one byte per

channel, each with the following
bit descriptions,

Bit Description
11 Set if channel requested.
10-7 PP number of requesting
PP.
8 " Set if channel not
, available.
5-0 PP assigned.
Reserved.,

Total PF system interlock.

Request total PF system interlock.

PF activity count.
Reserved.

Default family equipment number.

Alternate family count.
Reserved. .
Word interlock.

‘Seconds left until label check.

Seconds left until devices check~
pointed. ‘

Set to inhibit MTR from calling
1MB for S/C register error pro-
cessing,

Set if error processing ignored at
deadstart.

Set to allow MTR to accept DSRM
function for emergency step from
1MB, and to prevent DSD from

allowing UNSTEP command to be

entered. :
Set to indicate MTR has set step
mode on request from 1MB -
(emergency step).

Unused,

Real-time clock from RTCL, in
seconds/1000,, at which the last
threshold count or time interval
was exceeded for single SECDED
errors.

SECDED count,

Threshold count.

Ref

60454300 B

T5

t6

7

47-42
41-36
35

34-30
29-24

23-20
19-16
15-12

59-15
14

13

12
11-2

Description

The channel 16 S/C register con-
tents, words 0 through 16 (bits 0-
203). -
The channel 36 S/C register con-
tents, words 0 through 16 (bits 0-
203).

Reserved.

Equipment number of link device.
Set if this machine has DATI
recovery interlock.

Unused.

Count of devices with initialize
pending that have not been check-
pointed.

Machines active,

Machines down.

Machine mask.

Unused.

Disable priority evaluation.
Disable job scheduler,

Disable autoroll.

Unused.

Fatal mainframe error flag.
System control point (SCP) sub-
system abort interlock.

000

017
020
021
022
023

024

025
026
027
030

034
035
036
037
040

047

050
051

052
053
054
085
056
057
060

60454300 B

CONTROL POINT AREA

59 .47 41 35 29 23 17 | 5 0
exchange package area
i
t1 [error flags | CtIvVity | Ra/1008 | FL/100B [STSW
job name ' dian | e omant |INMW,0AEW
CPU queue
orvarity | perorey 12 /] cpus allowabie [scIw
CM residence time limit T3 CPU time siice limit TSCW
time entered X stut‘us CPCW
- ECS ECS '
T4 reserved _RA710008] FL/I0008 |ECSW, CPIW
PP recall register RLPW
. snse V,
s swchs /A SNSW
MS1W
message -1 area
MS2W
message 2 area
INOW
*
installation area .
IN7W
‘te SRU accumulator(micro units ¥10) ACTW,SRUW
CP accumulator CPTW
MS accumulator | MT accumulator PF accumulator |[IOQAW
4
MA3=Mi*M3 | M14=M1*Ma [//] adder accumuiator |MP 1W,ADAW
M {* 1000 M12=M1* M2 reserved ACTWE,MP2W
I CPM (SRU=SRU + - ”»
il—TT CPM*CP I10M (SRL‘J_SRU'O- IOM™I0) |[MP3W
ﬁ!‘i‘cfcﬁ%‘{" computed SRU job step limit STLW -
reserved 2&% iﬁg‘" SRU at beginning of job step | SRUW
reserved %re;i'?fmigb ’CP time at beginning of job stepfCPJW

2-11

Ref

Bit No.

F1

2

+3

T4

+5

6

$7

60454300 B

59
58
57
56
55-54
53
52-48

35-33
32-25
24

35
34-30

59-51
50
49
48
47

59
58
57

56-36
35-24
23-15
14
13
12

Limit flags:
59

58

57

56

55

54-48

Description

CPU W status.

CPU X status.

CPU auto recall (I status).

CPU subcontrol point active status.
Unused,

Job advancement flag.

Number of PPs assigned to job.

CPU status for rollout.
Unused.
Set if rollout is requested.

Set if CPU time slice is active,
Queue control (0=input, 1=rollout).

Job control flags (reserved).
Return private user files.

Set privacy ID on new files.,
Preserve ECS over job steps.
FNT interlock.

Reserved.

026/029 punch mode.

Set if OVERRIDE required to drop
job.

Unused.

Reserved for installation use.
Reserved.

Subsystem idledown flag.

NOGO flag.

PPU pause flag.

Time validation limit.
Time limit.

SRU validation limit.
SRU limit.

Control statement limit.
Reserved.

Overflow flags:

47
46
45
44
43-42

59

MS accumulator,
MT accumulator.
PF accumulator.
AD accumulator.
Reserved,

Disable SRU accumulation if set.

60454300 B

061

062
063
064
065
(o]-15]
067
070
071

072

Q73

074
075
076
077
100
101
102
103
104
105
106
107
10

11

12
113
1a

127
130

177

59 53 47 - 35 29 23 17 1 0
- i FPFW
. . ; FL increase| g{
t2 roilin FL request FLCW
rollin ESC FL
t3 v ECS FL |increase req |E-CW
t4 ‘ SSCW
list of files TTY interrupt . TXSW,TIOW
TXOT address address 15 output pointer |TTAw’ GFW'
auxiliary pack name 16 PFCW
user number Ts\ -I~T7 user index |UIDW
) termingl input error exit 710
_ Ta T“ ointer '] return address |EECW, TINW
input FST [primary FST(/ event descriptor r?i.rlnc’:f TFSW,TERW
tiz contr%loitr?'temem v nr:::"s::;:; Jimit index |CSPW
eq Lo current current half sector
113 | num | first track track sector lag cSsw
job sequence control statement demand file
number address (TCS) random index RFCW
reserved | tla ALMW
dayfile msg| control mass storage
reserved count stmt count | T15] "PRU count ACLW
each bit has a special meaning AACW
bu'gf:ngO buffer O address| bf:;g;m buffer 1 address |ICAW
special entry point word 116 SEPW
system processor call word {17 SPCW
EFG R1G CCL data reserved JCDW
EF R3 R2 Rt JCRW
input buffer right screen left screen
118 address buffer address buffer address DBAW
LB1W
loader control words TI9 LB2W
> ‘ LB3W
//////A 120 FWA of dump |PPOW
) reserved r2i sSsow
computed CP job step limit CPLW
reserved
csSBw
control statement buffer

2=13

60454300 A

Ref Bit No.

1

2

13

T4

5

16

t7

59

58
57-48
47-36
35-24
23-12
11-0
59-48

47-36
35-24
59-48
47-36

35-24

59-48

47-0

35-17

17-12
11-0
11-9
5-3

2-0

17

Description

Set when first charge processed.
Set if second entry in level-3 block,
Reserved.

SRU validation limit,

FNT ordinal of PROFILE file,
Track of level-3 block,

Sector of level-3 block,

Maximum field length (MFL) for
current job step,

Initial running field length; always
less than or equal to MFL (value

of zero indicates system field
length control),

Maximum field length for entire job;
MAX FL is upper bound on MFL,

Maximum ECS field length (MFL)
for current job step.

Initial running ECS field length;
always less than or equal to MFL
(value of zero indicates system
ECS field length control),
Maximum ECS field length for en-
tire job; MAX FL is upper bound
on MFL.

Rollout indicators (one bit per ,
subsystem) indicating the user job
is a candidate for normal rollout.
Connection indicators (four bits
per subsystem) representing par-
ticular subsystem the user job is
communicating with.

Previous error flag value if bit 58
set in word EECW indicating ex-
tended RPV mode.

Family EST ordinal.

Indexes into tables of limits,

Limit for size of direct access files.
Limit for number of permanent files.
Limit for cumulative size of indirect
access files.

Limit for size of indirect access
files.

Set if charge statement is required.

60454300 A

Ref Bit No.

18

19

10

t11
12

T13

50
58

57

56
55-48
47
46-36
47-36
17
17-0
30
59-54
53-48
47

59

58

57-54

o Description
No exit flag.
Extended RPV mode.
Interrupt handler in progress flag
(extended RPV mode only).
Set if one-time error previously
entered (extended RPV mode only).
Unused.
For nonextended RPV mode, set if
bits 46-36 are error flag instead of
reprieve error option.

Error flag or reprieve error option

for nonextended RPV mode.
Mask bits for extended RPV mode.

Job reprieved.

RPV parameter block address (ex-
tended RPV mode only).

Valid event descriptor present.

Job class,

Reserved.

Set if EOR is on control statement
file,

Set if information is for INPUT
file.
Skip to EXIT flag.

- Unused,

15

60454300 A

Ref

Bit No.

t14

t15

T16

T17

47-45
44-42
41-39
38-36
35-30
29-24
23-18
17-12
11-6

For input:
59-42

41
40
39
38
37

36
35-0

For output:

59-36
35-24
23-0

Description

Magnetic tapes.
Removable packs,
Deferred batch jobs.
Local files,

Time limit.

SRU limit.

Field length.

ECS field length,
Lines printed.
Cards punched.

Disposed output count.

Set indicates presence of entry
points.

Reserved.

Set if ARG= entry point present.

Set if DMP= entry point present.
Set if SDM= entry point present.

Set if SSJ= entry point present.

Set if VAL= entry point present.

Set if SSM= entry point present.
Reserved.

Restart flag,

Reserved. -
Suppress DMP= if control statement
call.

Create DM* file only flag,

Dump FNTs with control point area,
Leave DM* file unlocked,

DMP= FL/100 (if field is O, dump
entire FL).

SSJ= parameter block address,

Entry point if RA+1 request,
770000B if control statement call,
Special program request active
(1AJ only).

Clear RA+1 upon completion.

If set, parameter list is in bits
35-0; if clear, address of param-
eter list is in bits 17-0.

Does not start CPU at completion
of control statement call (1AJ only).
DMP-= initiation in progress.
Unused.

Refer to description of bit 39,

Unused.
Status return.
Unused.

2=16

60454300 B

Ref Bit No.

18

19

20

t21

59
58-56

Description

Disable dumps.
Unused.

ECS common memory manager flag,
CM common memory manager flag.

Use default map options if not set.
Reserved.

Local map option X,

Local map option E,

Local map option B.

Local map option S,

Reduce flag.

Reserved.

CDC CYBER Interactive Debug
control byte.

Global library set indicators
(6-bit fields):

00 End of library set.

‘01-76 LBD ordinal of system
library.

7 User library; logical file

name of first user library
in LB3W; logical file name
of second user library in
LB2W.

LB2W, LB3W: .

59-0

47-36

35-24

23-18

12
11-0

. ‘Either logical file name of second

(LB2W) or first (LB3W) user
library, or a collection of 6-bit
global library set indicators,

ECS FL of program making DMP=
call.

Field length of program making
DMP= call.

Dump word count.

Swap out (SF.SWPO) in progress.

Subsystem outstanding connection
count.

2=-17

60454300 A

PP COMMUNICATION AREA

59 4741 35
ggg PP"°$Zq?§m T parameters
QUT |monitor
REG [fnct code parameters

message buffer

(6 words)

DAYFILE BUFFER POINTERS

59 a7 35 23 1
fwa dayflie buffer 'l‘no :u:gsr Ieng;?fecraf T2
t t ©
eano | N8 [“feet | wews! UV
Ref Bit No. Description
T1 41 Set if called with auto recall.
40-36 Control point assignment.
2 11-0 Interlock byte (0 = no dump in

IA
0A
MA

progress, 1 = dump in progress).

2-18

CENTRAL MEMORY TABLES

Equipment Status Table (EST) Formats

" Mass Storage Device

60454300 B

59

47

41

35 23 11 0

t t2

'3

H

B dev |address/10
14 'S type|" of MST

Nonmass Storage Dévice"(f’)OOO Type Kquipment)

35 23 I 0

59 52 47 41
te a°s°s'gb chB | cnA 17 |75 e t8

Ref Bit No. Description

1 59 Set to indicate mass storage device.
58 Set if device has copy of system.
57 Set if shared device.
56 Set if removable device.
55 Set if 844/885 disk type equipment.
54 - Set if device is not currently avail-

able for access.

53 Set if equipment is down.
52-48 Reserved.,

T2 47 Channel down bit.
46-42 Alternate channel.

3 41 Channel down bit.
40-36 Primary channel,

t4 For 844/885 disk type equipment:
35-24 Zero., :
For other equipment types:
35-33 Physical equipment number,
32-30 Zero,
29-27 Device selection for connect code.
26-24 First physical unit for device.

t5 23 ON/OFF flag (set if access not

allowed).

2=19

60454300 B

Ref Bit No. ‘Description
t6 59 Unused.
58 Allocatable device.
57-56 Unused.
55 Set if 580 PFC printer,.
54 Set if V carriage control processed.
53 Set if equipment is down.
+7 For unit record equipment:
35-24 Forms code.
For other equipment:
35-30 - Channel D.
29-24 Channel C,
T8 For magnetic tape equipment:
11-9 Equipment number.
8-4 Flags:
01 GCR (1600/6250) tape unit.
02 Disable block-ID (66x only).
04 Reserved.
10 67x tape unit.
20 66x tape unit.
3-0 Unit number.

For other equipment types:

11-9 Controller number.
8-6 Print train (if applicable).
5-0 Unit number,

For unit record equipment:
5-0 ID number.

Equipment Codes

Code

CP
CR
DE
DI-n"~

DI-n

DK-n
DL.-n
DM-n
DP

DQ-n

DS
LP
LR
LS

LT

- MS
MT
NE
NP

ST

TT

Description

Card punch (3446/3644-415),

Card reader (3447/3649-405).
Extended core storage. T |

Disk storage subsystem (7x54-844-21).

Disk storage subsystem (7x5x-844-4x/
44), :

Disk storage subsystem (7154-844-21).
Disk storage subsystem (715x-844-4x).
Disk storage subsystem (7155-885).
Distributive data path to ECS.

Full-track disk storage subsystem
(7155-885).

Display console.

Line printer.

Line printer (580-12).

Line printer (580-16).

Line printer (580-20).

Mass storage deviée.

Magnetic tape drive (7-tréck).

Null equipment.

255x Host Communications Processor.
Magnetic tape drive (9-track).

Remote batch multiplexer (6676 or
2550-100).

Time-sharing multiplexer (6676,
6671, or 2550-100).

T ECS subequipment values exist in associated MST.
The values are in word DILL (byte 3) and further
define the type of ECS equipment. '

60454300 B

File Name/File Status Table (FNT/FST) Entry

File in Input Queue

59 53 47 35 23 17 |1 5]
. job |type] | t
job name org |INFT|T

1d aq first binary card fleid queue
code | no track sequence nol length priority

File in Print Queue

59 53 47 35 17 1 5 (0]
. job [type | |
job name org |PRFT -—I—H

first queue
T2 gg track 13 priority

[File in Punch Queue

59 53 47 ‘ 35 17 11 S 0
, ob [type
job name f-,,-g PUFT -}—ll
) eq first queue
t2 | no track t3 priority

File in Rollout Queue

59 53 47 35 23 17 I 5]
o name o [T

id eq first ECS field queue

code| no track FL/1I00OB| length priority

File in Timed/Event Rollout Queue

59 53 47 35 23 7 1 5 0
. ob [type [
job name érg TyEFT T4

event| eq first event field rollout

des | no track descriptor length time pd

60454300 A

60454300 A

Mass Storage liles
Not in Input, Print, Punch, or Rollout Queue

59 53 47 35 23 17 ' 5 Q
file name ts \;"ee ‘__tclp
id eq first current current i 16
code| no track track sector

Magnetic Tape Files

59 53 47 35 29 7 1 5 0
) fi
file name t7 f;ylpee 0l cp
Td UDT add VSN T
c<')de 53 assig atp | te random eanddrryess T'g 16
FFast Attach Permanent Files
59 53. 47 35 23 17 Il 5 0
tile name tio FYKE:‘ ¢p
eq first user ¢t |us ct Jus ct :
| no track READMD_{RDAP |READ 12
Rel Bit No. : Description
T1 5 Set if system sector contains control
information.
t2- 59-57 ‘ Device selection field.
56-54 External characteristics.
3 ~ 35-33 Forms code. .
32-12 Terminal identification (TID).
t4 5 : Set if user job has subsystem connection
) (either long term connection or wait
response).
15 17 Unused.
18 Set if extend-only file.
15 Set if alter-only file.
14 Set if execute-only file.
13 Unused.
12 Write lockout.
T6 10 . Unused.,
9 Indicates the track interlock status
of LIFT files (mass storage only).
8 Set if file is opened.
7 Set if file is written since last open.
6 Set if file is written on.
5-4 Unused,
3-2 Read status (0 = incomplete read,

1 = EOR, 2= EOF, 3 = EQI).
. Set if last operation write,
Clear if busy status.

O =

Ref Bit No. Description

7 0 17-14 Unused.
.13 Set if opened.
12 Write lockout.
78 35-32 Data format:
0 I
1 SI
2 F
3 S
4 L
31-30 Reserved.
9 11 Set if labeled tape.
t10 17 Unused.
16 Set if modify.
15 Set if append.
14 Set if execute.
13 Set if write.
12 Set if read.
+11 59-54 Fast attach entry index in ECS (if

globally fast attach), 0 if local fast
attach file.

t12 11-9 Write attach mode (7 = write,
3 = modify, 1 = append).
8-1 Unused.
0 Clear if busy status.

60454300 A

File Types

Files in Queues

Type Value Description
INFT 0 Input.
ROFT 1 Rollout.
PRFT -2 Print.
PHFT 3 Punch.
TEFT 4 Timed/event rollout,

Special Queue Files

Type Value . Description

S1FT 5 Special file type 1.
S2FT 6 Special file type 2,
S3FT 7 Special file type 3,

Other Files

Type Value Description

LIFT 10 Library,

PTFT 11 Primary terminal,

PMFEFT 12 Direct access
permanent file,

FAFT 13 Fast attach file,

SYFT 14 System.

LOFT 15 - Local.

Job Origin Codes

Type Value Description
SYOT 0 System.,

BCOT 1 Local batch.
EIOT 2 Remote batch.,
TXOT 3 Time-sharing.
MTOT 4 M ultiterminal.

60454300 A 2-25

Mass Storage Allocation (MSA) Area

59 47

000 ',,I\“ps'eq temporary devicest

T input file devices!

002 | outpureq output file devicest

003 | rollomeq roliout file devicest

004 do,‘,;’ﬁ;,q user doyfile devicesT

005 p,mlgﬁ;,q primary file devices?

o0& ,ogﬁlq local file devices!

007 ul;%s',q LGO file devices?

008 Io's;ﬁg‘tj?nggry secondary rollout file devices?

TBit 47-eq is set for each equipment with the
allocation type selected.,

60454300 B

Mass Storage Table (MST)

59 51 40 35 23 17 K] 5 O

ooof ti ////// TRT length| 2 | "9 @vail dypg
001 t3 fiser ECS | tile count TQFT ta ACGL
002] ECS address of MST/TRT ECS MST/TRT update cnt Ts |socL
003] TUREF | Tomel | Phemer |raert] Rad Ao
004 family or pack name DN // Te |PFGL
005 user number for private pack 17 PUGL
006 £ driver | sector | vpgL
OO7////////////////////////////// 7 ARen
010 installation area (global) ISGL
J //////////////////////////////// I26L
012 °€L'J’J§’ mteriocks ;g;:ﬁ%'n mh?‘eTrr?ol orror# DALL
013 te DILL
DAYFILE | ACCOUNT | ERRLOG Jsystem table

Otaf ™4 qck track track . | track Tio |DuLL
015 tn user count ti2 STILL
016 T3 oDLL
017 instailation area ISLL
Ref Bit No. Description
1 59-48 Number of tracks on device.
T2 23 NOS format MST.

22-12 First available track word pointer,
T3 59 CTI present.

58 System deadstart file present.

57-52 Reserved.

51-48 Global interlock (machine mask).
T4 11 Redefinition requested flag.

10-7 Redefinition reply bits (machine

masks).
6 Set if sector of local areas is
present.
5 Unload (all machines).
4 Device error idle status:
0 No error,
1 Error detected on device.
3-0 Permanent file utility active

(machine mask).

60454300 B ' 2-27

60454300 B

Ref

t5

16

+7

8

+ 9

55-48

44-36

59-48
47

46-42
41
40-36

35-24
23-22

20-18

Description

Reserved.
Interlock (machine mask).

Relative unit in multiunit device.
Number of units in multiunit device.

Catalog track contiguous with label
track.

Catalog track overflow (O).
Secondary device mask.

Device mask.

Removable (R).

Auxiliary permanent file device (X).
Sixteen-word PFC device.

Device last checkpointed on MMF
system (in label section only).
DAT entry index.

Half track status (1=half, 0=full)
Release reservation when channel
released.

Reserved.

Single-unit sector limit.

Mass storage allocation flags.
715x controller present on second
channel.

Second channel in CMRDECK in
definition of EQ.

715x controller present on first
channel, :

First channel in CMRDECK in
definition of EQ.

Unused.

Reserved.

Maintenance mode set (ECS).
Memory type:

0 No CPU.
1 ECS .

2 ECS II.

3 LCME.
4-7 Reserved.

60454300 B

Ref

Bit No.

10

11

12

13

17-15

14-12

11-6

11
10-0

58
57-54
53-48
47-0

Description |

CPU type:
0 No CPU path.
1 ECS.
2 LLCME.
3 Reserved.

PP path type:
0 No DDP.
1 DC145 parity enhanced DDP.

2 DC135 DDP.
3-7 Reserved,.
Unused.

Algorithm index for 844/885 disk
monitor function.

Family idle down status.
Family activity count.

Format pack (844/885 disk
equipment).

Half/full track initial requeues.
Initialize permanent files (I).
Initialize IQFT (I).

Initialize DAYFILE (I).
Initialize ACCOUNT (I).
Initialize ERRLOG (I).
Initialization (HT/FT) (I).
Unloaded in this machine (L).
Checkpoint requested (C).
TEMP (T).

Alternate system device (A).
Reserved.

Error status.

A 2-character machine identification.

Multiple equipment link.
Original number of units.
Device in use.

Local utility interlock.
Local area interlock.

Redefinition in progress (drive
reserved).

Null equipment indicator.
Reserved.

Number of units minus 1.

Unit list, ordered right to left,
6 bits per unit.

2-29

60454300 B

Track Reservation Table (TRT)

Word Format

59 47 35 23 1 o]
track track track track t
link link link link
Ref Bit No. Description
1 11-8 Each bit set indicates correspond-

ing byte (0 through 3) is first track
of a preserved file, '

-4 Track interlock bits.

3-0 Track reservation bits,

Track Link Byte (Format 1)

Bit Contents
11 Set .,
10~-0 Next track in track chain.

Track Link Byte (Format 2)

Bit Contents
11 Clear.
10-0 End of chain (EOIl sector in file).

2-30

60454300 B

Machine Recovery Table (MRT)

Word Format

59 31 0
unused 1
Ref Bit No. Description
T1 31-0 Each bit represents one logical

track (bits 10-5 of the logical

track number denote the word
number in the MRT and bits 4-0

are the bit numbers within the word).

The meaning of the MRT bit depends upon the state
of the track interlock bit in the TRT.

Track Inter- MRT

lock Bit Bit Description

0 0 Track is not interlocked or it
is local to another machine.

0 1 First track of a file is local
to this machine.

1 0 Track is interlocked by
another machine.

1 1 Track is interlocked by this
machine,

2-31

59 47 35 23 1 0
in. queue ifower upper priority cur. intvl
priority bound bound age intvl count INQT
One in. queue lower upper priority cur, intvi
priority bound bound age infvi count ROQT
for in. queue iower upper priority cur. intvl
each priority bound bound age intvl count oTaT
i o] init. CPU | CPU ti CM ti
origin ';:'iorify .'.lic'eme slic‘ame W///////SVJT
type max jobs max FL max FL [maxECS FL | max ECSFU
and or users any job all jobs any job all jobs
job ti reserved
class PFCT
reserved ETB
777777777
Ref Bit No. Description
t1 59-48 Index into tables of limits,
59-57 Index a table of limits for size of
cach direct access file. -
56-54 Index a table of limits for number
: of permanent files,
53-51 Index a table of limits for cumulative
sizc of indirect access files,
50-48 Index a table of limits for size of

60454300 B

Job

Contro‘l Area (JCB)

cach indirect access file,

Libraries/Directories

Resident CPU L.ibrary (RCL.)

Type OVI.
program name ":",?;Qt(I&c‘;;rum)
Tvype ABS
5

17

0

7777777

length (links
to next program)

2-32

Resident PPU Library (RPL)

59 4| 35 23 1 Q
load 7 length
package name //A address //////// (links)
PPU l.ibrary Directory (PLD)
CM Resident
59 4| 35 23 | 0]
package name |lRPL address length od',‘,’,".",,
Non-CM Resident
59 4| 35 23 i]
package name 1 track sector od?raegs
CPU Library Directory (CLD)
Type OVL
59 47 23 17 I 5 Q

‘ © program name te ////
/////// t3 track sector

Tvpe ABS
59 47 23 |7 11 5 Q
) no.
name of first entry point te epts
ta 13 track sector

A G 77/,

Tvpe PROC

59 23 17

procedure name l}é%////j
///////////////////////A random address bias

<

60454300 B

60454300 B

Type REL

59 47 23 17 I 5 0
program name T2 eg?i
7/////A 13 track sector

additional entry point names (one per word) / ////M

User Library Directory (LBD)

Type ULIB

59

23 17 0

library nome ! I/I///////

0070022227 rondom adirass bias

Ref Bit No.
1 41-36
+2 17-15

14

13

12

11-6
13 47-24
t4 59-48
5 17

Description

Alternate device or system device
equipment number.

Unused. ,

Relocatable record flag.
NOS/BE record flag,

Unused.

Alternate device equipment num-
ber, :

If program is CM resident, field
contains the absolute address in
RCL. If program is assigned tc
alternate system device, field has
mass storage address of copy on
system device,

FL required (use of bits 59 and
58 indicate MFL= entry point).

Set if CCL procedure.

SYSTEM SECTOR FORMAT
Standard Format

o] e S—

ol jess/lcss jess - - crss k 7/////4
2 012 rcss riss rbss 22?%325%:”
Iss

013 otss prss miss f
o1 4 icss ecss fcss dvss dcss
ois ‘ dass
016 ‘ fdss , odss
o7 diss Y2224
020) : fsss
021) fmss © 00SS$
022 S acss
023 cdss
024) jnss
025 ohss
026 dhss ‘
027 frss
030
: vass
. !
046
- 047 reserved
050
051
. ubss

° (user data block)

062

N = @

t 1 For print/punch files, pfss (bits 47-36), rass (bits
35-12); for input files, jsss (bits 59-36), bits 35-24
unused, jtss (bits 23-12).

T 2 For input files, bits 59-18 are defined as terminal
name (tnss).

60454300 B R 2=35

The following apply to all system sectors.

fnss
eqgss
ftss

nsss
fass
dtss

FNT entry.

Equipment number,

First track.

Next sector,

Address of FST entry.

Last modification date and time
(packed format).

The following apply to input files only,

jsss
jtss

jfss

jcss
jess
crss
tnss

Job sequence number.

Job time limit.

Job flags.

Job statement CM field length.
Job statement ECS field length.
Cards read.

Terminal name.

The following apply to print/punch files only.

pfss
rass
scss
lcss
rcss
rtss
rbss

Punch format,

Random address of dayfile.
Spacing code for 580 PFC support.
Lines or statement limit index.
Repeat count.

Random index.

Requeue number.

The following apply to all queued files.

otss
prss
miss
flss
icss
ecss
fcss
dvss
dcss
dass
fdss
odss
diss
fsss
fmss
00SSs
acss
cdss
jnss
ohss
dhss
frss
vass
ubss

60454300 B

Origin type.

Priority.

Machine ID.

File size (sectors/10g).

Internal characteristics.

External characteristics.

Forms code.

Device code.

NOS/BE device code,

Destination user number.
Destination family name.

Family ordinal of destination (future).
Destination terminal identification (TID),
FST entry.

Family name of creator.

Family ordinal of creator (future).
User number of creator.

Queued file creation date and time,
Job statement name,

Origination host name (future),
Destination host name (future),
File routing control.

Account file validation block.

User block.

2-36

Direc

t Access File System Sector Format

59 53 47 4! 35 23 \7 I 5 (]

000

PMFTL

file name

% v
001 eqss . ftss _ nsss W///////A
002 _%I 7/////] p‘ucked énte and time
oér / / / ////// |
(O30 filev Ie‘nqih ////// in rrrrrrrr first sector
0:: % /m/o/d/.////////ﬁ/A comro‘:s:n:::::oﬁ::d:o ::::etime
016 [PR BR] 35S % wtility control dgtn and time ‘
o017 % file possyord ‘ W
025 ; / S ‘ ///
w1777,
SN W Rfa RA R

036
.

°
072
073

.

reserve d for instailation

°
o7e

60454300 B

CTss

ucss

=37

Ref

eqgss
ftss
ucss

Bit No.

1

t 2

3

4

60454300 B

59-49
48

59-54
53
52
51
50
49

48

47-36

47-37
36

Equipment number,

First track.

Current user counts:
RM READMD users.
RA READAP users.

R READ users.
Description
Zero.

Set if enhanced EQI sector preserit.

Reserved.
File has been purged.
File can be shortened (W mode).

File can be rewritten (W or M mode).

Zero.

File can be extended (W, M, or A
mode).

Zero.

Fast attach (40xx); upper bit set
indicates file is in fast attach
mode and lower 6 bits (41-36) con-
tain index into ECS tables if file

is global fast attach.

Zero, .
Local write flag (file attached in
W, M, or A mode).

ECS Direct Access Chain

000
Q0!
002
003
004
005
006
007

cgss
ftss
dtss

mid

ft

In

ra
At

- 60454300 B

59 47 38 23 17] 5

*% DECS. et ///
s | wss 7

///////////// diss
)77 707

Equipment number,
First track.

Last modification date and time (packed
format). .

Machine ID.

First track of subchain.
Length of ECS bhlock.
RAE of ECS block.

Last track of subchain.

2-39

ROLLOUT FiLE

System Sector

000

057
080

o077

60454300 B

dayfile buffer pointer

input file FNT entry

list of equipment ossigned to job
(terminated by zaro word)

SSJ= parametar block

terminal table contents
at last rollout

terminal table contents
for recovery

File Format

control point area

dayfile buffer

FNT entries
terminated by logical record

1

terminal output

terminated by logical record

o(cmy
central
memory
FL-MCMX/2-1 (CM)
O(ECS)
extended
core
storage
FL-1(ECS)
FL~MCMX/2 (CM)
central
memory

JFL=1 (CM)

T This part of the rollout file is used only for TXOT
jobs.

60454300 B 2-41

JOB COMMUNICATION AREA

59 55 47 40 |7 14 1) 5 0
sense [/
W /////////////////// M=
package arguments
RA +1 name 72--*
RA +2 ARGR
parameters from the program
. call statement
. (aveilable to user during job execution)
RA$27 | " -~~~ -~~~ —" -~~~ - - -7 7—~% SPPR
RA;)-47 special program parameter areag
¢ number of
RA + 64 name parameters PGNR,ACTR
r? ta. next word avail
RA+65 [T~ '3 reserved 4 7] for loading _ [CMUR,LWPR
| b Tst d of
RA+66 |15 reserved "yoe ? | 16 |objact program Fwpr OPR
RA+67 |=— 17 reserved -8 reserved Eg:’;g
RA+70
CCDR
control statement image
(may be replaced by operator message)
RA+77
RA+100
: loader area
RA+110
Ref Bit No. Description
F1 14 CFO bit if console forced operator
command is allowed.
13 Subsystem idledown flag.
12 Pause flag.
T2 40 Auto recall.
T3 59 Set if compare/move unit (CMU)
: is present.
T4 18 Set if load from system library.
5 59 Set if CEJ/MEJ option is available.
+6 23-20 Reserved.
19 Set if program called from DIS.
18 RSS bit.
F7 59 Set indicates system is in 64-
character set mode.
18 29 Set if load has completed.
60454300 B 2-42

EXCHANGE PACKAGE AREA

Exchange package area for CDC CYBER 170 Series,
Models 171, 172, 173, 174, 175, 720, 730, 750, and
760; CDC CYBER 70 Series, Models 71, 72, 73, and
74; and CDC 6000 Series Computer Systems,

59 53 47 4l 35 17 0
000 V//A P AO B8O
7 Al 8l
v A A2 B2
003 | EM RAE//////// A3 B3
omé// i | A4 B4
005 [AS 8S
006 % MA A6 B6
007 00000000 AT 87
010 ~ _Xo
ol X!

012 x2
013 X3
014 X4
015 XS
016 X6
017 X7

60454300 8B

43

Fxchange package area for CDC CYBFR 170 Series,
Model 176 Computer Systems.

59 53 33 17 0
000 ///A P AO B8O
001 7//; RA Al BI
YA FL A2 82
003 [/ /) PSD A3 83
004 7/ RAE A4 B4
cos VA FLE AS ' 85
006 /A NEA (MA) A6 86
007 ///, EEA A7 87
010 X0

o1l X | .

ot2 X2

013 X3

014 X4

0158 xs

ole X6

017 X7

60454300 B

‘The exchange package area fields apply to all NOS
computer systems unless otherwise noted.

T
Tt

Field ‘Description
P Program address,
Ai Address registers.
Bi Increment registers.
RA Reference address for central memory.
FL Field length for central memory.
EMY} Exit modes. An exit mode is selected

by setting the appropriate bit and dis-
abled by clearing the appropriate bit.

Bit Description

59 CM data error.t7

58 CMC input error. {f

57 ECS flag register operation

parity error. ¥t
56-53 Not used.
52-51 Hardware error exit status

bits. ¥+
50 Indefinite operand.
49 Operand out of range.
48 Address out of range.
PSD{1ff Program status designator (PSD)
"~ register.
Bit Description
53 Exit mode flag.
52 Monitor mode flag.
51 Step mode flag.
50 Indefinite mode flag,
49 Overflow mode flag.
48 Underflow mode flag.
47 LCME (ECS) error condition.
46 CM error condition,
45 LCME block range condition.
44 CM block range condition.
43 LCME direct range condition.
42 CM direct range condition.
41 Program range condition.
40 Not used. ' :
39 Step condition.
38 Indefinite condition.
37 Overflow condition.
36 Underflow condition,

Does not apply to CDC CYBER 170 Series, Model 176.

CDC CYBER 170 Series, Models 171, 172, 173,
174, 175, 720, 730, 750, and 760 only.
CDC CYBER 70 Series, Model 74 only.

Tt
11t CDC CYBER 170 Series, Model 176 only.

60454300 B

45

Field Description

RAE Reference address for ECS.
FLE Field length for ECS.

MA Monitor address.

NEAT Normal exit address.

EEAYT Error exit address.

Xi Operand registers.

ERROR FLAGS

Error flag Mnemonic Description
1 ARET Arithmetic error.
2 PSET Program stop.
3 PPET PP abort.
4 CPET CPU abort.
] PCET PP call error.
6 TLET Time limit,
7 FLET File limit,
10B TKET Track limit.
118 SRET SRU limit.
128 FSET Forced error.
13B : ODET Operator drop.
14B RRET Operator rerun.
15B OKET Operator kill.
168 SSET Subsystem abort.
17B ECET ECS parity error.
20B ' PEET CPU parity error.
21B SYET System abort.
22B ORET Override error condition.

t CDC CYBER 170 Series, Model 176 only.

60454300 B

MASS STORAGE LABEL FORMAT

60454300 B

DEVICE LABEL TRACK FORMAT

000
001

012
IE
ol4
0I5
016
017

label sector

track reservation table

sector of iocal information (2-word entries)

device information sector

intermachine communication area (ECS labei track only)

MMF environment tables (ECS labei track only)

CPUMTR storage move area for ECS (ECS label track only)

DEVICE LABEL SECTOR FORMAT

000
001

002
003
004
005
006
oo7
o010

.

027
030

or7

reserved
label equipment
level type reserved
reserved
NOS MST
unused

MULTIMAINFRAME TABLES

INTERMACHINE COMMUNICATION AREA

000

006
007

015
Qle

oe7

070

076

communication area O

communication area |

communication area 10

trach communication area has the following format.

000
00!

002
003
004
005
006

60454300 B

59 47 35 23 1 0
G
FN MI MP M
% 77 D
message word |
message word 2
message word 3
message word 4
message word 5
message word 6
FN Intermachine function number.
MI Muachine initiating request.
MP Machines to process request.
MD Machines done processing request.

MMF ENVIRONMENT TABLES

Sector 168 of the ECS label track is defined as follows:

: 59 47 1 0
000 MMFL for mainframe |

o]o)} MMFL for mainframe 2

002 . MMFL for mainframe 3

003 - MMFL for mainframe 4

004 . multi-mainframe | system time

005 multi -mainframe 2 system time

006 muylti - mainframe 3 system time

007 multi-mainframe 4 system time

o0 | R /7] oaT caun
O L A AT s

012 One word per flag register bit. Each
word contgins the MMFL word of the

L]
: machine which currentiy has the cor-
responding flag register interlock.

033 .
034 machine | requests
035 machine 2 requests
036 ' machine 3 requests
037 "machine 4 requests
040 | machine | requests
041 machine 2 requests
042 machine 3 requests
043 machine 4 requests
044

L 2
e unused

[]
067
070

[]

. : ‘installation area

*
or7

60454300 B

MMF - DAT TRACK CHAIN (ECS)

Track N

0000

L]
.

o777

device access table (DAT)

1000

fast attach table (FAT)

Track M (same format for each device)

0000
. MST for shared device
o (global area)
0011
0012
: local area for machine index |
00i7
0020
: local area for machine index 2
0025
0026
. local area for machine index 3
0033
0034 .
M local area for machine index 4
0041
0042
: unused
0077
0100
®
. TRT for device
1077
1100
N MRT1
. (machine recovery table)
77
1200
L]
. MRT2
1277
1300
L]
. MRT3
1377
1400
. MRT4
L]
1477

60454300 B

2-50

MMF - ECS FLAG REGISTER FORMAT

flag register

59
B1t Set o Name
1 77-, 12 . . T
11 ‘ COMI
10 CIRI
FATI,
PFNI
8 IFRI
7 BTRI
6 PRSI
5 DATI
4 TRTI
3-0 -——

Description

Reserved.

CPUMTR intermachine
communication request present.
CPUMTR interlock recovery.
FAT and PFNL interlock.

Intermachine function request
interlock.

Block transfer in progress.
Deadstart ECS preset in progress.
Device access table interlock.
TRT interlock; machine.

specified by bits 3-0 is requesting
a TRT interlock.

- Machine mask indicating which

machine has TRT interlock bit
set.

DEVICE ACCESS TABLE (DAT) ENTRY.

59 i7 I 0
. MST
000 famlly_name/‘pock name dn pointer
‘001 0 status
dn Device number.

MST pointer
status |

© 60454300 B

If zero, device is not shared.
Bits 11-5 are reserved, bit 4

is set if recovery is in progress,
and bits 3-0 are machine mask
of machines accessing device.

FAST ATTACH TABLE (FAT} ENTRY - GLOBAL

59 47 35 23 17 1

000 fast attach file name 7//////////
001 W/ first trk RM RA W
002 |mach. | ID % RM Ré R

004 [mach.3 10 /77771 RM Ra | R V///////
005 [mach. 4 ID /////// RM RA | R ///////

007 0

RM RIZADMD users.
RA READAP users.
R Read/write users.
dn Device number.

PFNL ENTRY FORMAT . GLOBAL

000 0

00l . PFNL (global)
002 PFNL for mainframe |
003 PFNL for mainframe 2
004 PFNL for mainframe 3
005 PFNL for mainframe 4
006 o

007 0

The first entry of the FAT is an 8-word entry of
PFNL words in the preceding format,

60454300 B 2=-52

PPU MEMORY LAYOUT

PPO . SYSTEM MONITOR (PPU PORTION)

0000
DIRECT CELLS
. 0100
SYSTEM
MONITOR
PP PORTION
7777

60454300 B

PP1 . SYSTEM DISPLAY DRIVER (DSD)

0000

DIRECT CELLS

0100

SYSTEM
DISPLAY
DRIVER

COMMAND QR SYNTAX OVERLAY

LEFT SCREEN OVERLAY

RIGHT SCREEN OVERLAY

717

60454300 B 2-54

POOL PROCESSORS

(PP2 through PP11 on 10 PP machines; PP2 through
PP11 and PP20 through PP31 on 20 PP machines.)t

- 0000
DIRECT CELLS

0070 ’

L READ ONLY CONSTANTS
0073
0074 CONTROL ROINT ADDRESS
0075

.
0077 COMMUNICATION AREA ADDRESS
0100 ;

.

° PPU RESIDENT

° AND

- MASS STORAGE ORIVER

a .
1073

PROGRAM
AND
'OVERLAYS /BUFFERS

7777

T PP numbers are in octal notation.
60454300 B

DISK DEADSTART SECTOR FORMAT

59 a7 35 23 n 0

o

initial program load (IPL) executoble code

067 |

000060003000

o7o common test and initiglization (CTI) pointer area
071

072 maintenance softwars (MSL/CMSE) pointer area
073

074 deadstart diagnostic sequencer (DDS) pointer area
ors

076 ' operating system (NOS) pointer area

or7 T

T = IPL transfer address —1 (7420g)

60454300 B 2-56

MTR/CPUMTR 3

CPU AND PP MONITORS

NOS utilizes two monitors: CPUMTR (central processor monitor)
which controls CPU monitor mode execution and CPU scheduling; and
MTR (peripheral processor monitor) which is in general control of
the system and operates in PPO.

These two monitors work together, yet independently to allow the
system to run smoothly and effectively.

Figure 3-1 is an overview of system interaction showing both
'monitqrs as a controlling entity. PPs communicate with the CPU
and vice versa through MTR by means of input registers (IR),
output registers (OR), and RA+1 calls.

Figure 3-2 shows the interaction between th1s mon1tor concept and
PP resident using the PP IR and OR.

Figure 3-3 shows the monitor interaction between the CPU, PP, and
each monitor using the exchange jump feature. With the central
exchange jump/monitor exchange jump (CEJ/MEJ) option, the CPU
program can either wait for MTR to call CPUMTR by finding RA+1
nonzero, or the CPU program can directly call CPUMTR. PP routines
may either wait for MTR to call CPUMTR by finding the OR nonzero
or call CPUMTR directly. Without the CEJ/MEJ option, CPU routines
and PP routines must wait for MTR to call CPUMTR for them.

Figure 3-4 shows the entry points for CPUMTR, while tables 3-1,
3-2, and 3-3 show the monitor functions processed by CPUMTR.

¢

. User
PP : Control
Communications - o Point
Area ' ‘
: RA
: ‘pool input reg. both
procsssor output reg.’ ' monitors F RA*T
message
buffer .
RA+100
]
user
program

Figure 3-1. System Interaction

60454300 A 3-1

monitor

PP resident

PP communications area

idle loop
e rmn————————

PP available
control point
number

program name

assign PP to this > load parameters | —— >

contral point message buffer

| T

) J

load and
execute the
requested program
l \
monitor checks @‘—MW‘ <—— | inform
this PP's monitor of
output register end of operation

'~

\

y
clear IR and OR 0---=---- 0

and indicate > [0—-_-__"0

this PP is free

l

Figure 3-2. System Interaction

60454300 A 3-2

CEJ/MEJ
- option present

no
CEJ/MEJ
option

60454300 A

control
point

/—M\\L, MXN X4
PP |

resident —> CPUMTR <

PP output
register

control
point

PP
resident

~— == =—| cPUMTR |- — = ———

PP output
register

Figure 3-3. Monitors Interaction

Entry

Name

MTR

PMN

PPR

PRG

IDL
IDL1

Figure 3-4.

60454300 A

related
routine

Description

From CPU program

From PP monitor

From pool PP program

Address where system control point begins
execution in program mode. When system
control point exchanges to the CPUMTR, CPUMTR

begins execution at MTR

From CPUMTR. These are idle Loops for CPO
and CP1 respectively

CPUMTR Entry Points from Exchange Packages

ALl system interaction is effected using the exchange jump
instructions. ' ‘ '

The executable code of CPUMTR begins at the end of the dayfile
dump buffer.

Functions pfoéessed by MTR for pool PPs enter CPUMTR at PPR (the
value determines that the function is intended for MTR).

TABLE 3-1. VALUES OF MTR FUNCTIONS

} Name | Value | Description :
--] 1	Unassigned	
=-- 2	Unassigned	
CCHM	3	check channel
DCHM	4	prop channel
peaM	S	Drop equipment v
pDFMM	6	Issue dayfile message
== 7	Unassigned 7	
seam	10	Set equipment parameters
PRLM	11	Pause for storage relocation]
RCHM	12	Reserve channel
REMM	13	Request exit mode
REQM	14	Request equipment
rOCM	15	Rollout control point
RPRM	16	Request priority
] RJISM	17	Request job sequence number
=--	20	uUnassigned
RSTM	21	Request storage
-- 22	Unassigned	
DSRM	23	DSD requests
ECXM 24	ECS transfer	
TéPm	25	IAF/TELEX get pot
TSEM	26	IAF/TELEX request
pEPM	27	Disk error processor
DRCM	30	bpriver recall CPU
scpm	31	Select CPU(s) allowable for job
		execution ,]
EATM	32	Enter access system event table
pSwM	33	priver seek wait
==	34-35	uUnassigned

60454300 B ' 3-5

Functions processed by CPUMTR, enter CPUMTR at PPR.

60454300 B

TABLE 3-2.

VALUES OF CPUMTR FUNCTIONS

Abort control point

Change CP assignment

Change error flag

Drop CPU

Set FNT dinterlock

Drop tracks

Drop PP

ECS transfer

Recall CPU

Request CPU

Request data conversiaon

Interlock and update fields in
CMR/ECS

Accounting functions

Request PP

Request job scheduler

Reserve track chain

Set file busy

Set track bit

Update accounting and drop PP

Search peripheral library

Job advancement control

pPelink track chain

Transfer data

Tape 1I/Q processor

Request time or SRU limit

Load central program

Clear storage

Checksum specified area

Load disk address

Validate mass storage

PP I0 via the CPU

Unassigned

Maximum number of functions

- S S - - - - - W W TS L A A WD W W A WS P D MW W S W A Gh WS WS W WR W WS e e e -

Functions issued by MTR (only) ‘and processed by CPUMTR enter
CPUMTR at PMN.

TABLE 3-3. MTR FUNCTIONS PROCESSED BY CPUMTR
‘ MONITOR MODE

{ Name | Value | Description

[ARTF | 1 | Update running time

| IARF | 2 | Initiate auto recall

| EPRF | 3 | Enter program mode request

| MRAF | 4 | Modify RA

| MFLF | 5 | Modify FL-

| scsF | 6 | Reset CPU I status

| sMSF | 7 | Set monitor step

| CMSF | 10 | Clear monitor step

! ROLF | 11 | Set rollout required

| ACSF | 12 | Advance CPU switch

| PCXF | 13 | Process alternate CPU exchange
| ARMF | 14 | Advance running time MMF mode
| MREF | 15 | Modify ECS RA

| MFEF | 16 | Modify ECS FL

- s - D = - D . - . WP - D WD WD D D G - . P - - - . WS G - -

MTR functions processed by CPUMTR in program mode enter CPUM
at MNR (table 3-4). Table 3-5 Lists RA+1 requests processed
CPUMTR. : ‘

TABLE 3-4. MTR-CPUMTR PROGRAM MODE REQUESTS

Storage move

| | |

| PDMF | 1 | Process down machine

| PMRF | 2 | Process intermachine function
| | | request

| MECF | 3 | Move ECS storage

60454300 B o 3-7

IN

TR
by

60454300 B

TABLE 3-5. RA+1 REQUESTS PROCESSED BY CPUMTR

END
LDR
LoV
LOD
MEM
MSG
PFL
RCL
RFL
RSB
SIC

SPC
TIM
XJP
XJR

Abort control point |
Resident CPM functions: |
16 Read error exit |
24 Read job control word |
25 Write job control word |
32 Return user number |
33 Read FL control word |
37 Read TELEX subsystem |
43 Read special entry point word |
45 Read first loader control word |
50 Read machine ID word |
55 Read ECS FL control word |
61 Read list of files pointer |
62 Set Llist of files pointer |
Terminate current CPU program |
Request overlay Lload]
Request Lloader action]
Request autoload of relocatable File |
Request memory |
Send message to system |
Set (P) and change field length |
PlLace program on recall |
Request field Llength |
Read subsystem program block *2 |
Send intercontrol point block to subsystem]|
*1 |
Process special PP requests *3 |
Request system time |
Initiate subcontrol point #*4 |
Process exchange jump request |

Honored for jobs with QP Less than MXPS, SSJ= or
access bit (CSTP) set

Honored for jobs with QP greater than MXPS or SSJ=
Honored for jobs with QP greater than MXPS

Allowed only when subcontrol points are enabled
(SUBCP block is Lloaded)

3-8

MTR FUNCTIONS

The following paragraphs describe the MTR functions. The format
for the calls are contained in the NOS Systems Instant and the
external documentation of MTR and CPUMTR us1ng the control
statement DOCMENT.

CCHM (3) - CHECK CHANNEL

This function allows a PP to have a channel checked for
availability. If the channel is free, it is assigned; if not,
the channel requested bit (bit 1) in the CST is set. Control is
returned to the PP immediately (compare with RCHM).

DCHM (4) - DROP CHANNEL

Sets assignment for this channel in the CST bits 10-7 to zero.

It is used to release the channel reserved with RCHM or CCHM.
This function is used by the PPR routine DCH. This also does a
release unit reserve function when the device is MS and the R
option is set for a dual access controller. Refer to the CMRDECK
mass storage EST entry in the NOS Installation Handbook.

DEQM (5) - DROP EQUIPMENT

This function releases the equipment by setting bits 52-47 of the
EST entry to zero. It is used to release equipment reserved with
the ‘AEQM or REQM. ' '

DFMM (6) - PROCESS DAYFILE MESSAGE

This function allows a PP to send a dayfile message to any of the
system or control point dayfiles. Used by the PPR routine DFM.

SEQM (10) -~ SET EQUIPMENT PARAMETERS

Depending upon subfunct1on code, this function performs one of the
following. N ~

ON equipment (set bit 23 of EST)
OFF equipment (clear bit 23 of EST)
Set channels for access in EST

Set equipment mnemonic in EST

Set byte 0 of EST

Set byte of EST

Set byte of EST

Set byte of EST

Set byte of EST

O~NOWVPHFWN-20

-
BUWN -

60454300 B ' 3-9

PRLM (11) - PAUSE FOR STORAGE RELOCATION

Any PP which determines that its control point has a storage move
request pending (CMCL word 57 byte 0) must issue this function.
MTR will not move the control point until all PP activity for
that control point has recognized the requested move via PRLM,
DSWM, or DFMM. This function is used by the PPR routine PRL.

RCHM (12) - REQUEST CHANNEL

This function sets the CST bits 10-7 to the control point number,
thereby assigning the channel for the up to four channels
available. The RCHM will not return control to the PP until the
channel can be reserved. Compare with the CCHM which returns
control whether the channel can be assigned or not.

REMM (13) - REQUEST EXIT MODE

This function sets the exit mode in the exchange package to the
specified 12 bits.

REQM (14) - REQUEST EQUIPMENT

This function allows the PP to request an equipment. Control is
returned whether the equipment is available or not.

ROCM (15) - ROLLOUT CONTROL POINT

This function sets the rollout requested bit (bit 24 in word JCIW
of the control point area). A PP routine cannot force a job to
rollout immediately; it must request rollout action. CPUMTR
determines when the job may be rolled out and 1AJ is then called.
RPRM (16) - REQUEST PRIORITY

This function sets the CPU or queue priority in the control point
area (word JCIW).

RJSM (17) - REQUEST JOB SEQUENCE NUMBER

This function returns the current job sequence number from
central memory word JSNL, and increases it by one.

60454300 B 3-10

RSTM (21),- REQUEST STORAGE

This funct1on allows a PP rout1ne to change the FL/FLE at a
control. po1nt. -The request is. the amount of FL desired at the
control point. If the request is for the same amount of FL or
Less than that aLready assigned, then the request is honored
:1mmed1ately (unless for the last controL point). If the request
is for an increase, storage moves may be necessary. Control is
returned ﬁmmediatety in any case. I1f a PP wishes to reduce FL it
should make this request. If it wishes to increase FL it should
use the common routine COMPRSI to make increase storage requests.

NOTE

The control point may’be moved while this function is
pending.

DSRM (23) - DSD REQUESTS

This function is only accepted from DSD; any other PP will be
hung. When the operator types in STEP, UNSTEP, DATE, or TIME,
DSD issues this function. STEP mode forces MTR ta accept only one
function at a time under direction of DSD. MTR steps CPUMTR and
controls the processing of those functions (refer to SMSF). DSD
can specify whether to step the system or only one control point.
MTR reissues all CPUMTR functions that were stepped when an
unstep is issued from DSD. The subfunct1on to set emergency

step i1s also allowed from 1MB.

ECXM (24) - ECS TRANSFER

Thfs function is used to transfer data between ECS and CM. The
transfer is between a relative address in CM to/from a relative
address in ECS. The function also allows the specification of
an alternate response address. This allows the calling PP to
overlap other monitor functions with this function.

TGPM (25) - IAF/TELEX GET POT

This is used to get a pot chain from IAF/TELEX. It is useful
because the PP does not need to interrupt or start up IAF/TELEX
for the request.

TSEM (26) - PROCESS IAF/TELEX REQUEST

Used to fequest various procedures from IAF/TELEX.

DEPM (27) - DISK ERROR PROCESSOR
Used for mass storage error processihg.‘

DRCM (30) - DRIVER RECALL CPU

60454300 B 3-11

Used to issue an RCLM if the CPU is in periodic recall status.
This function allows the PP to request MTR to determine the CPU
status and issue an RCLM rather than do it itself. This request
does not require an exchange jump; therefore the PP needs only
to place the request in its OR and does not need to wait for it
to be processed. This is critical for mass storage or tape
drivers, that could lose a revolution or tape speed if it needed
to wait for a CPUMTR request. However, the routine must wait for
OR to clear before again issuing this function. Thus, mass
storage drivers must wait for OR to clear.

SCPM (31) - SELECT CPUS ALLOWABLE FOR JOB EXECUTION

Sets byte 4 of the JCIW word of the control point area to zero
for any CPU, one for CPU O only, and two for CPU 1 only. A
selection of CPU 1 is ignored if user ECS is assigned.

EATM (32) - ENTER/ACCESS SYSTEM EVENT TABLE

Enter or read events to or from system event table.

CPUMTR FUNCTIONS

ABTM (36) - ABORT CONTROL POINT

Abort the control point to which this PP is assigned. Sets PPET
error flag and performs a DPPM.

CCAM (37) - CHANGE CONTROL POINT ASSIGNMENT

Used to change the control point assignment for this PP. It
reduces the PP count in the control point at STSW bits 52-48 in
the old control point assignment, and increases it by one for
the new control point assignment.

CEFM (40) - CHANGE ERROR FLAG

Replaces bits 47-36 in STSW word of the control point area. It
is used to set or clear the error flag.

DCPM (471) - DROP CPU

If control point is in W status it is placed in zero status.
Since there is PP activity the control point will not be
advanced.

SFIM (42) - SET FNT INTERLOCK

Sets or clears an interlock bit for a particular FNT entry. The
interlock bit for each FNT entry is kept in the FNT interlock
table which is appended to the FNT. The interlock on an
individual FNT entry should be held for the shortest time
possible to avoid performance degradation.

60454300 A 3-12

This technique is used in the following circumstances.
® Bringing an input file jnto execution
e Performing a job advance
e Rolling in or rolling out a job
® Terminating a job
e Altering the FNT or system sector of a queued file
e Moving a file from one queue to another
e Assigning a queue file to a control point
DTKM (43) - DROP TRACKS

This is executed in program mode and is used to drop trailing
tracks from @ track chain.

DPPM (44) - DROP PP

This is the last function issued before a PP jumps to its idle
Loop. It signifies that this PP routine is done and the PP is
available for other assignments.

ECSM (45) - ECS TRANSFER

Used to get from 1 to 100B words transferred from ECS to/from
absolute or relative CM. Also used to set/clear flag register
and read display information for DSD/DIS.

RCLM (46) - RECALL CPU

Used to change the control point status from periodic recall to
CPU candidate; that is, X status to W status.

vvRCPM (47) - REQUEST CPU

Used to start the CPU for this control point and set the control
point status to W. This function is also used by a PP program
called with autorecall to bring the CPU back into execution to
its control point. ‘

RDCM (50) - REQUEST DATA CONVERSION

Used to convert 30-bit integer to FORTRAN F10.3
display code format.

IAUM (51) - INTERLOCK AND UPDATE
Used to interlock and update fields in CMR or ECS.

ACTM (52) - ACCOUNTING FUNCTIONS

60454300 B - 3-13

Performs the following accounting functions.
e Begin account block
o Compute SRU multipliers
® Accounting block change
e Compute and convert elapsed SRUs
o Compute accumulators
e Increment accumulator
RPPM (53) - REQUEST PP

Used to start a PP routine in some other PP. The response
indicates whether the PP was assigned or none available. A PP
can read PPAL and determine in advance if a PP is available.
This saves time and overhead. ;

RSJM (54) -~ REQUEST JOB SCHEDULER

This function is used to interlock scheduler calls, so that only
one copy of 18SJ is running at one time in the system.

RTCM (55) - REQUEST TRACK CHAIN

This is executed in program mode. Allows the PP routine to
request a specified number of sectors and reserve the proper
track chain. When no equipmet is specified one is selected based
upon the allocation parameter in the call.

SFBM (56) ~ SET FILE BUSY

Used to interlock the FNT/FST entry for a specific file. A PP
issues this function to reserve the file and when done releases
the file by setting bit 0 of the FST to one. SFBM sets bit O of
the FST to zero. This function is used to interlock any word in
CM, such as PFNL, or any word in the MST. If SFBM is issued for
an FNT/FST, the file name word must also be provided to check
that another PP has not dropped the file just after the PP
issuing SFBM found it. In both the FST and the FET, the file is
busy when bit 0 is clear.

STBM (57) - SET TRACK BIT

This is executed in monitor mode unless the system control point
is active; then it is done in program mode. Used to set the w,
d, or i bits in the TRT.

UADM (60) - UPDATE ACCOUNTING AND DROP

SPLM (61) - SEARCH PERIPHERAL LIBRARY

Used to search PLD for a PP routine.

60454300 A : 3-14

JACM (62) - JOB ADVANCEMENT CONTROL

Options 1, 2, 3, and 4 are used to set or clear the job
advancement flag at a control point with implied DPPM if desired.
PP routines should not call 1AJ directly for job advancement.
CPUMTR will decide when a job needs to be advanced and call 1AJ
to the job. 1AJ then decides if the control point needs
advancement or rollout.

DLKM (63) - DELINK TRACKS

This is executed in program mode. DLKM is used to drop
intervening tracks on an existing file chain and relink the file
chain properly. An example is PFM delinking an indirect access
file chain in response to a user issuing a PURGE on a file which
is long enough to completely cover several tracks. PFM attempts
to keep the indirect access file chain to a minimum size when
possible.

TDAM (64) - TRANSFER DATA BETWEEN MESSAGE BUFFER, JOB

Aliows a PP to transfer up to 6 words from/to the message buffer
to/from a job. The address to transfer to/from is a relative
address. The transfer must be to/from a subsystem. It
alleviates the problem of a PP finding the subsystem and deciding
if it is ready for reception of data. This is equivalent to the
SIC/RSB facility except no intercontrol point communication area
is necessary.

TIOM (65) - TAPE 1/0 PROCESSOR

This function updates the tape accounting information; that is,
the number of blocks transferred in MTUW word 53 of the control
point area. Exit from this function is to CCAM to change the PP
assignment to MAGNET's control point. If the completion code is
nonzero, the specified UDT word is cleared, the FET is set
complete, and the tape activity count is decremented in STSW
‘word, byte 2. Routine 1MT uses this function when it completes a
read/write request on a tape. Since the UDT and the FET must be
changed, and they are at two different control points, this
function prevents any problem by keeping the control point and
MAGNET from interfering with each other. UDT must be cleared
before the FET is set complete or an I/0 sequence error could
occur.

RTLM (66) - REQUEST CPU TIME LIMIT

Used to change the CPU time Limit in CTLW word, bytes 2, 3, and &
in the control point area. The time Limit exceeded flag in ACTW
word, byte 0 is cleared. '

LCEM (67) - LOAD CENTRAL PROGRAM

This is executed in program mode. Used to load an ECS or CM
resident routine into the control point field Length.

60454300 B ' : '3-15

CSTM (70) - CLEAR STORAGE

Used to clear a specified amount of CM or ECS. When clearing an
FNT/FST entry, CSTM can also be used to set the control point
area FNT interlock (ECSW word, bit 47).

CKSM (71) - CHECKSUM SPECIFIED AREA

Checksum area from FWA to LWA+1 and compare to checksum in
message buffer (MB).

LDAM (72) - LOAD DISK ADDRESS

Used to convert from logical to physical addresses for 844
equipments.

VMSM (73) - VALIDATE MASS STORAGE

This function validates a mass storage device's MST and TRT by
checking track reservation and preserved file track count
against the count in the MST. Also, critical track chains are
validated.

PIOM (74) - PP 10 VIA CPU

This function is used by the 6DE driver to transfer data to/from
ECS via the PP buffers immediately preceding CPUMTR.

MXFM (76) - MAXIMUM FUNCTION NUMBER

This is used by a PP when it desires to hang itself for some
reason it considers catastrophic. CPUMTR will see that is is out
of range and will hang the PP. Whenever a PP dissues this
function it should allow the analyst to clear the PP's output
register and complete its operation gracefully.

A PP is hung when one of the monitors determines that a function
is illegal. Ffor example, function out of range, or RCHM on some
nonexistent channel. If CPUMTR hangs a PP the message PP HUNG is
displayed at the system control point.

If MTR hangs a PP the message is HUNG PP.

In any case the packed date and time of the hang is placed in
MB+5.

MTR FUNCTIONS TO CPUMTR

These are special functions and the request is transmitted via
the X0 register instead of MTR's output register.

(0) - RA REQUEST
This function tells CPUMTR that some control point has an RA+1

request. This is used for systems where the XJ is not available
or the user's program is not doing an XJ. Upon entry X0 is zero.

60454300 B 3-16

ARTF (1) - ADVANCE RUNNING TIMES

Update running times. Updates RTCL in CMR and ACTW in the
control point area and sets time Limit exceeded flag if time
Limit has been exceeded. It also checks for P equal to 0O and
program stop. CPUMTR checks the active control point and the
instruction P points to.

59 3 17 0

entry (XO) .: 0 ARTF

IARF (2) - INITIATE AUTORECALL

MTR while in the routine PPL (process PP recalls) checks RA+1 of
-a c¢ontrol point in autorecall and if RA+1 is set with autorecall
requested, it reissues the PP request.

If a PP routine who is called with autorecall finds that it
cannot process the request it was called for at this time, it can
copy its IR back to RA+1 if the control point is in R status.
When MTR goes through its PPL routine it will find the request
and have CPUMTR reissue it to a PP.

59 35 23 17 0

entry (XO) 0 cpa fwa 0 IARF

EPRF (3) - ENTER PROGRAM MODE REQUEST

59 ‘ 3B 23 17 0

entry (X0) 0 pr 0 MSTF

pr. Program mode request number as defined in
COMSMTR

MRAF (4) - MODIFY RA

CPUMTR changes RA in STSW and the entry point by the specified
amount. : _) ,

59 a7 35 17 0

entry (X0) in/100 0 | cpa fwa MRAF

in Value to change RA

60454300 B ' 3-17

MFLF (5) = MODIFY FL

CPUMTR changes FL in STSW and the entry point by the specified
amount.

59 47 35 17 0

entry (X0) in/100 0 cpa fwa MFLF

SCSF (6) - SET (RESTORE) CPU STATUS

CPUMTR places the specified status in the STSW word. This is used
when MTR issues the DCPM function. The status is returned to MTR
to be restored after the control point is storage moved. When
MTR is ready to restart the CPU it issues this function restoring
the former status.

Functions EPRF, MRAF, and SCSF may all be used when a control
point needs to have its FL changed via the RSTM function. If MTR
has to move the control point it issues the DCPM and saves the
status, then issues the EPRF for the move. If no storage move is
required, then the MRAF is used.

Finally, it issues SCSF to restore the former status. When a
control point is going to be moved, the only criterion for that
move is no PP activity, so the control point could be in any
status when MTR is ready to make the move, and after the maove,
the proper status must be restored.

59 47 35 17 0

entry (XO) status 0 cpa fwa SCSF

SMSF (7) - SET MONITOR STEP

This allows CPUMTR to disable its automatic processing of monitor
functions and to wait for MTR to indicate which function to
process. SMSF and CMSF are used to set and clear the system STEP
mode. Refer to DSRM.

59 17 0

entry (XO) , 0 SMSF

60454300 B 3-18

CMSF (10) - CLEAR MONITOR STEP

Reenables automatic processing of monitor functions.

59 ' 17 0

entry (X0) 0 ‘ CMSF

ROLF (11) - SET ROLLOUT FLAG AND CHECK JOB ADVANCE

This dual timing is used to set the rollout flag and check for
job advancement.

59 35 ' 17 - ' 0

entry (X0) 0 cpa fwa ROLF

ACSM (12) - ADVANCE CPU JOB SWITCH

Used to change the control point assignment of the CPU. It is
used 'in the MTR routine JSW to process CPU job switching. This
involves exchanging the CPU from one control point to another
(slot time exceeded processing).

59 35 17 0

entry (x0) 0 cpa fwa ACSM

PCXF (13) - PROCESS CPU EXCHANGE REQUEST

If CPUMTR is executing in one CPU and needs to be in the other
CPU it will inform MTR via the CX words and XJ. MTR then issues
this request to the other CPU. This is done in the AVC advance
clock routine, which is the one section of MTR that must execute
at least every 4 milliseconds. For example, consider function
ABTM. PPR cannot distinguish which CPU its control point is in,
so it starts CPUMTR up in CPO. If the control point to be aborted
is .in CP1, then CPUMTR must get itself into CP1 in order to get
the control point out of CP1. '

MTR processes pool PP OR requests as foLLous;

nel
If the CEJ/MEJ is available or is disabled, MTR checks all OR
requests. If a request is for CPUMTR, MTR jumps to its CPR routi
CPR exchanges in CPUMTR for that PP.

60454300 B 3-19 |

If the CEJ/MEJ
since the PP must
crP1,

is available, MTR ignores any CPUMTR request,
issue its own MXN; that is, CP0O cannot stop
so the PCXF alternate exchange request is made.

59 17 0

entry (X0) 0 PCXF

ARMF(14) ~ ADVANCE RUNNING TIME AND MMF PROCESSING

This function is called once every second by MTR to:
e¢ Status flag register bits
® MWrite real-time clock to ECS

e Read other mainframe clocks in ECS (every two seconds)

59 35 23 17 0

entry (XO) o s 0 ARMF

MREF (15) - MODIFY ECS RA

CPUMTR changes the ECS RA
amount specified.

in ECSW and the exchange package by the

59

47

35

23

17

entry (XO)

in/1000

CPA FWA

0

MREF

MFEF (16) -~ MODIFY ECS FL

CPUMTR changes the ECS FL in ECSW and

the amount specified.

the exchange package by

entry (XO0)

59

47

35

23

17

0

in/1000

CPA FWA

0

MFEF

60454300 B

3-20

CPUMTR STRUCTURE

During deadstart, CPUMTR is lLoaded into CMR with the appropriate
blocks for a particular environment. For instance, if ECS fis
available, the block of code pertaining to ECS is loaded; if
multimainframe has been selected, the associated MMF code is
Loaded. Since unnecessary blocks of code are not loaded, the size
of CMR is optimally maintained. Optional blocks of code which
might be Lloaded include the following.

Block Purpose

cMU Move storage with compare/move unit
(single CPU system, only)

ocmu Move storage with registers (for
non-CMU machines)

CMUMTR Monitor mode CMU move

OCMUMTR Monitor mode move storage with
registers

CP176 Code to process CYBER 170 Model 176
hardware

DCP pual CPU operations

MMF Multimainframe processing routines

OMMF Processing routines without MMF

SCP System control point facility

SUBCP Subcontrol point processing

UEC ‘User ECS routines

VMS Validate mass storage

ECS ECS processing routines

ECSBUF ECS buffer space

MMFBUF MMF buffer space

EXPACS Exchange packages

CEJ Central exchange enabled

XP176 Exchange packages for the CYBER 170
Model 176

OCEF CEJ disabled

PRESET Preset CPUMTR (overltaid by PPU

exchange packages)

CPUMTR has the following structure.
e MTR main program. Entry point from CPU program.
e Utility subroutines

e CPR - CPU program request processing. Requests are passed
through RA+1 (refer to table 3-5).

e PMN - MTR request processor (refer to MTR Functions to
CPUMTR) .

60454300 B 3-21

® PPR - PPU request processor (functions Listed lLater in
this section).

® Program mode subroutines.

e MNR - Monitor request processor. Program mode
processors not initiated by PP functions.

e Tables:
TPMN PPU monitor requests

TPPR PPU request table

MTR STRUCTURE

MTR is loaded into PPO at deadstart time and
remains there for the duration of system execution.

MTR performs the following functions:
® Processes certain PP requests
e Allocates central memory and user ECS
e Maintains the real-time clock
@ Checks (RA+1) of active CPU programs for system requests
o Checks OR of each pool PP

e Checks the SCR (CYBER 170) or ILR (CYBER 70 or 6000) for
errors which require 1MB processing.

STARTING MTR AT DEADSTART TIME
MTR is Lloaded in PPO. The first location of the code is:
TO CON PRS-1
This forces the constant PRS-1 to fall into TO. At the end of
the load, (P) is set to (TO0)+1 which will be (P)=PRS, the MTR

preset routine. PRS presets all tables and constants.

PRS overlays itself with tables and buffers.

CPUMTR/MTR FLOWCHARTS

~Figures 3-5 through 3-22 flowchart the main routines used by MTR
and CPUMTR.

60454300 B ‘ 3=-22

check PPs| 2 through n

*1

n=n+1

yes n<

no. of PPs

MTR). N\
1 Yy no

write *9 cce
channel | ___. check .@
table central _

program

*1 This simulated loop is a DUP statement in MTR code.

*2 When MTR releases a channel, it sets a flag. At this time,
the reservation byte in the channel table in CMR is cleared.

Figure 3-5. Main Loop for MTR

60454300 A

time to
switch CPU

time to
check PP
recall

no

select
new job
(SNJ)

60454300 A

check PP
recall PPL

Figure 3-6. Process

check
program
recall

{x) status
queue

MTR

Time Dependent Scanners

REAL-TIME CLOCK

The real-time clock starts with power on and runs continuously.
It may be read by any peripheral processor with an input to A
(70) dinstruction from channel 14B. This channel is separate from
the data channels.

The clock period is 4096 (10000B) micro seconds. It is a 12-bit
register that is advanced each microsecond from 0 through 7777B.
When it reaches 7777B, it starts over at 0. It must, therefore,
be read at least every 4.096 milliseconds for accurate timing.

TIME KEEPING

MTR controls all time—-keeping activities with routines TIM, AVC,
and AVT.

Routine TIM reads the real-time clock and updates RTCL (the
central memory real-time clock). This routine must be entered
at lLeast once every millisecond. When one second has elapsed,
the calls to AVT, ARTF, or ARMF are enabled in routine AVC.

Routine AVC has no time—keeping activity until one second has
elapsed. The calls to AVT, ARMF, or ARTF are then enabled by
TIM. .

‘Routine AVT advances the time of day and date in words JDAL,
PDTL, TIML, and DTEL in CMR.

60454300 A ' 3=-25

Exit, unless time-
keeping enabled
by TIM detects
one-second elapse

Y

advance
second count
and store in
RTC1

y

AVT O\

read scan times
from MSCL

a

i

CPR \

(A) = ARTF |
CAJ=ARMF (MME)

/
CPR

CPU 1
(A) = ARTF

/

\

/\

N

read scan
times from
MSCL

\

return

*1 Advance CPU 0O time. Accumulated control point time for

active control point at CPU O.

ART reads

*2 MSCL can be dynamically set from the console.

every second.

Figure 3-7. AVC Advance Running Times

60454300 A

/ _CPR

N\
ho (A) ='ACSF
advance CPU
switch .
oid
job idle
yes.

e

/____CPR
(A) = ACSF +
100008 advance
CPU switch

‘ return '

read job
control word
(Jciw)

Y

read CPUO
status from
(ACPL)

" CPUT
active on this
cP

read CPU1
status from
(ACPL +1)

cPUl
active on this
cp

yes

*] CPU O active job CPU priority greater than this control point
priority.

*2 CPU 1 active job CPU priority greater than this control point
priority.
Figure 3-8. JUSW - Process CPU Job Switching (CPU Slot Time)

60454300 A 3-27

job
advancement

yas

all CPs
checked

read joh
control
JCIW

rollout
flag set

get CP
status

cp read
requesting (RA +1)
auto recall of CP

Figure 3-9.

60454300 A

set

read PP
recall register
RLPW

return

n

FTN

/[0 N\ o
\ RPPM /

/ CPR

AN

PP
auto recall (A) = IARF
request initiate
auto recall
/
return)

PPL - Process PP Recalls

3-28

PP function requests are made to MTR by placing the function code
in byte O of the PP's OR. When the request is complete, MTR

clears byte 0 of the OR.

()

read DSDs IR
and set CP
assignment

has
function
.been previousiy
processed

yes

move
in progress

indicate
storage move
in progress

CPUMTR
request

/ CPR

\ process request

*1 When DSD wants to do an action for a control point (such as
n.XXX), it temporarily attaches itself to that control point
by placing the control point number in its IR; it then makes

the request. L

*2 If this control point is moving, the status must be set.

Figure 3-10. DSD PP Function Request

50454300 A $3-29

not MTR
request

set
appropriate
processor

]

exit to
proper processor

return from processor

FNZ — if successful
@ FNR — if unsuccessful

clear OR
(w)—
/ ccP

check central
PGM
FI;IB >
MTR

*1 If request illegal then effectively hang PP since OR is never
cleared, this will not display PP hung at system PP.

Figure 3-10. DSD PP Function Request (Continued)

60454300 A 3-30

If any of the functions requested desire an illegal operation
(for example, DCHM drop channel wishes to drop a channel which
does not exist) then it will jump to this routine.

* set packed
time and date
in MB+6

y

display
message
HUNG PP

14 *4
FNR

*1 Do not clear OR and thereby hang this PP.

Figure 3-11. HNG - Hang PP and Display Message

60454300 A ‘ 3-31

set

request ~ CM Entry: (A) = function number

(CM+1,...,CM+4) = parameters
{CP) = CTR. pt.area address

+ Exit: {cm,..., CM +4) = response
se} g_?N":T_hf' CM is FTN request word.
CN is:CPR request word.
Y
store MTR IR

y

(CM,..., CM +4)
-MTR OR

y

CPR
request PP
function

1 4
AVC

/ AN
\ advance clock]

return)

read OR

Figure 3-12. FTN - Process Monitor Function

60454300 A 3-32

check storage|move status

any
move in
progress

read status

'

move
complete

no
cr1:P v check CPU status

[/ Ave \

\ / set error flag,
"y

clear CPU status

y B l————J
‘d * \
advance
CPU number L WST A\
process
completion

all
CPUs checked

The contents of the RA+1 for the control point at this CPU are

checked and CPUMTR is requsted to process the request. The

program address (P) is. checked and if = 0, CPUMTR is requested.

* 1 Check active control point in CPU 0O; then CPU 1 gets control
point number in CPU O. '

Figure 3-13. CCP - Check Central Program

60454300 A , 3-33

read active
CPU address
(ACPL)

Y

get CP
address and
read CP
status (STSW)

&

no

system
CP request

time
limit for
subcontrol
point

subcontrol
point

getRA+1 t RA +
from CP got RA +1

subcontrol point

yes

*#1 A user control point is running; that is, this is not

CPUMTR.
*2 If CEJ/MEJ available, go to CCP1; if not, go to XJ1.
*3 If (RA) = 0, this is CPUMTR and is ignored.

Figure 3-13. CCP - Check Central Program (Continued)

60454300 A 3-34

request CPUMTR
to process
(RA + 1) request

no CEJ/MEJ option
clear request
word ~ CN,
CN+1,CN+2

T .
R , , | read program

request RA + 1 ' mode status
check » CPR l

CPR XCHG
request set
. request is null
check next CPU

*1 No if (PX)=0; 'yes if (PX) nonzero. PX is defined in CPUMTR.
*2 Use PR defined in CPUMTR. '

Figure 3-13. CCP - Check Central Program (Continued)

60454300 A 3-35

O O

t t
S ?':ecﬁiu:s set up MXN inst

to correct CPU

¥

wait exchange y
package, (WXP),

enter request (l(\/?T)'F:) I;PP%
y
*1
store P = PMN (A0))
(BO) #0
in exchange package MXN
exchange to
Y CPUMTR
. *2
store (X0) =
(CN, CN +4) Y

read P, AD, BO
. | from PP EPA
\

set exchange
wait timer

MXN

*1 This request will be processed by CPUMTR at PMN.
*2 PMN expects the request in XO0.
*3 If CEJ/MEJ option available, use code on this page.

Figure 3-14. CPR-CPUMTR Request Processor

60454300 A 3-36

Entry: (A) bits 0-11 = request
12-17 = CPU number
(CN, . . ., CN+2) = parameters

yes check (MA)
A in PP EPA
, *1
(RA+1)
check ves A
\i *2

CPUMTR
completed

has
exchange

wait timed
out

] yes

have CPUMTR
note exchange
request

*1 Was this an RA+1 check. If no and exchange occurred, CPUMTR

is now running and it will automatically process this
request. If not, reissue the exchange.
*2 There is a delay Lloop. '

CPR-CPUMTR Request Processor (Continued)
3-37

Figure 3-14.

60454300 A

set EXN insts.
to reflect the
correct CPU

!

A = PPO
exchange package
address

Y

EXN -
XCHG to
CPUMTR

>

check
on CPUMTR

*1

¥

read MTR/
CPUMTR
interlock word

Y

set (A) = exchange
address
from MTRL

Y

EXN
XCHG to
new job

return

MTRL = 768 in CMR

*1 When CPUMTR has completed, it places the exchange address of
the control point to be started in MTRL and jumps to a
one-word idle lLoop at CPSL = 778 in CMR, which is a zero
word; that is, a PS. MTR is doing an RPN 0O and waiting for

(P) = CPSL.

Figure 3-15. XCHG - The CPU with CEJ/MEJ Not Available

60454300 A 3-33

copy reply
into PPs OR

Xd B2
" exchange to a
control point

MTRP entry: (X7) =

MTRX entry: (B2) =

exit: (P) = MTR

reply word to be set
into calling PPs

output register

address of exchange
package for control
point to he exchanged
into CPU

Figure 3-16. CPUMTR Return Points

60454300 A

MTR

get RA from EP

and read RA
Entry: (A0) = CPU number (0 or 1)
(B1) = 1
PP (B2) = address of caller’s EP
exchange (B7) = control point area address

requested

| If CPn exchanged itself, then (B2) = (B7)
place control and EP will be in CPA. If CPn was exchanged
point in X by MTR or some other pool PP, then (B2) =
status queue the address of the PP EPA which performed
the exchange and (B7) = CPA.

y

hegin new job

Figure 3-17. MTR - Exchange Entry From A CPU Program

60454300 A 3-40

read
RA +1

Check for monitor request. Is this exchange a CPUMTR
EP or a CP EP.

Process the RA + 1 request,

read P (B2)
=Pin EP, .
set (X7) = 2

Exchange CP back in. CP wanted a short pause.

Set error flag CPU detected on ARITH error. Uses
(B7) = CPA, (X7) = error code. SEF will abort the
CP program on ARITH error.

Figure 3-17. MTR‘ - Exchange Entry From A CPU Program (Continued)

60454300 A

PX is FWA of CPUMTR code and is the program mode exit
read PX request. It is set when program mode portion of CPUMTR
has determined that this CP job is complete.

yes
This is to determine if a CP or if the
system CP (CPUMTR program mode)
o was interrupted.

check special
request for
program mode
monitor

(PP request)

read PR PR is a pointer to a stack of requests
set (PX) = 0 ' for program mode execution (that is,
system CP queue).

L J
yes
W Let system CP continue running.
no
(Xx0)=0
ECP end central program.
¥ Uses (B7) = control point area address
(X0) = status bits
ECP By setting (X0) = 0 we set CP status = 0 or not active.

Figure 3-18. CHECK - For System CP Request

60454300 A 3-42

|

Entry: (B3) = RA
(B7) = CPA
(X8) = (RA+1)
(A2) = address of RA in EP
(AB) = RA+1

read subcontrol.
point status (SCPS)
from bit 56

of STSW in CPA

Figure 3-19.

60454300 A

| BCE begin control point executive

process reguest

| APJ

process CPU call error

Process — RA+1 Requests

{X0)+0
did MTR send a
request

yes

was PP type yes oM
requester request y
‘the system
Y read OR and
get address *2 get request
of appropriate
PP request
(RA+1)=0
processor unpack
of requestor e
Y
exit to !
\ proper processor PPR
0

*1 MXPF is maximum number a MTR request can be, so test is (X0)
- MXPF > 0, then go to PMN2.

*2 Those processors which require program mode CPUMTR will exit
via EPR. EPR will check to see if the system control point
was interrupted for this request and if so, will exit to
MTRX. If control point n was interrupted, then it will
exit to BCP1, which will place this now deactivated control
point into W status, and then exit to MTRX.

Figure 3-20. PMN - Exchange Entry From MTR

60454300 A 3-44

Entry: (ADH)
PPR (B2)

address of calling PPs OR
address of calling PPs EP

read QR -

\

unpack
request

PPR
ﬂ

- Each processor will exit:

request select to MTRP with reply word in (X7)
legal appropriate for PPUs OR if necessary,

processor

I - 0R -
if no reply word necessary, then

(;I::'rmP“I;e . exit to MTRX.

request

status

exit to proper
processor

If the processor requires program mode CPUMTk, the macro PPR will
generate a queue entry and set up the exchange package, then
jumps to PRG, sees no request, and jumps to PRG1.

*1 Check to see if request (which is a number) is larger than

the maximum.

*2 Hang PP by not clearing OR, and display message PP HUNG at
system control point.

'Figure 3-21. PPR - Exchange Entry for Pool PPs

60454300 A ' 3-45

PRG CPUMTR starts the program mode portion
1 at PRG in program mode. This is the

standard exit for program mode CPUMTR.

. e

Yy

set request
exit PX=1

Exchange to CPUMTR in monitor mode. This
will force (P) = PRG in EP in the system CP
CPA, so that the next time CPUMTR starts up
the system CP, execution in program mode

@ will begin at PRG.

get request
word PR

request
(PR) #0

monitor
request

no, hence, it is a PP request.

select
appropriate
processor

exit to

proper
processor

figure 3-22. PRG - Exchange Entry for System CP (Program Mode
CPUMTR)

60454300 A 3-46

IDL, IDLT - CPUO AND CPU1 IDLE LOOPS

The exchange package for IDL is Lloaded at the end of CPUMTR

IDL1‘and its exchange package are located in the .dual CPU block.

Py =2 N
| (RA) = location of IDL in CPUMTR |
| CFL) =.5 |
| (MA) = location of this EP |
| CEM) = 7007 |

|

I

- o D - - - - - ——— . W em v W WA WS WE W wm WS me e -

| Py =2 o v |
| C(RA) = location of IDL1 in CPUMTR]
| DCP block |
| ¢CFLY = 5 |
] (MA) = Location of this EP |
| CEM) = 7007 : |
I : |
Jatl other register = 0 |
Program IDL Program IDL1
0000 IDL CON O (RA) for idle IDL1 CON O
routines
0001 CON O (RA+1=0) for - CON O
idle routine
never any
requests
0002 EQ 2 jump to-itself EQ 2

Program IDL and IDL?1 runs until a PP or MTR interrupts them and
exchanges CPUMTR into the CPU, If CPUMTR finds no other jobs to
run, it exchanges IDL or IDL1 back into the CPU.

CPUMTR SEGMENTATION

A significant amount of code is required in CPUMTR to support a
multimainframe environment which is not needed by sites not
utilizing this feature. Since CPUMTR resides in central memory,
it is desirable to provide a mechanism whereby code associated
with a particular feature (in this case multimainframe) may be
optionally loaded or discarded at system deadstart time.

60454300 A 3-47

CPUMTR accomodates blocks of code that may be optionally loaded.
These blocks of code are placed into labeled common by USE cards.
Blocks come in two types. One type always requires the presence
of an associated block and one of the two blocks will always be
Loaded. The other type of block has no associated block and with
either be loaded or discarded by CPUMLD. For example, if OMMF is
the name of an associated block which is lLoaded when MMF
processing is desired, then OMMF is loaded in its place if MMF
processing is not desired. The convention therefore is to place
a zero in front of the block name for the option-not-present
block. Any given feature may have as many blocks associated with
it as is necessary with any number of them being loaded.

A CPU program, CPUMLD, lLoads the desired CPUMTR blocks. CPUMLD
is a simple relocating Loader which reads in and lLoads the
segments required to utilize any optional feature selected during
the pre-deadstart process. This covers the case of wanting one
set of code for environment A and another set for environment B.
STL loads CPUMLD and CPUMLD issues requests to STL to read in
CPUMTR from the deadstart tape.

EXCHANGE JUMPS

An installation may make use of the optional hardware
instructions MXN (monitor exchange) and XJ (exchange jump) or EXN
(exchange). NOS requires either the combination of MXN/XJ or
EXN.

Exchange jumps use an exchange package (refer to section 2).
CENTRAL PROCESSOR MONITOR

System functions are normally handled by the monitor located in a
peripheral processor. The CYBER 170/70 computer systems are
equipped with certain hardware capabilities to effectively
implement monitor activities in the central processor. Since the
central processor can reference extended core storage directly
for service routines, programs, and data, a central processor
monitor program to handle these and other functions is faster and
more efficient than a monitor residing in a peripheral processor.

60454300 A 3

48

The hardware ‘elements of the CYBER 170/70 system which provide
the essential capabilities for implementing a central processor
monitor are described in the following -paragraphs.

Monitor Address Register (MA) -

Contained in the exchange jump package (bits 53 through 36 of
word 6) is an 18-bit monitor address. Just as other central
processor operational registers are loaded during an exchange
operation, so is the monitor address register lLoaded with the
18-bit monitor address. This monitor address is the starting
address of the exchange package for an ensuing central exchange
jump instruction (except when the monitor flag bit is set).

Monitor Flag Bit

The central processor has, in the central memory control section,
a monitor flag bit. A master clear (deadstart) clears the
monitor flag bit. Any action thereafter on this bit is via the
monitor exchange or the central exchange jump instructions.
(There is no instruc¢tion with which to sample the status of this
bit directly and/or independently of these instructions.)

Mode Flag Bit CPU
Monitor mode 1 Not dinterruptable

Program mode - -0 ' Interruptable

Central and Monitor Exchénge”dump Instructions

With the CEJ/MEJ option two instructions exist for central
processor monitor implementation. The first, XJ, is executable
by the central processor and the second, MXN, is executable by
the peripheral processors. These instructions are as detailed in
the COMPASS Reference Manual.-

The XJ instruction unconditionally exchange jumps the central
processor, regardless of the state of the monitor flag bit. The
instruction action differs, however, depending on whether the
monitor flag is set or clear. Operation is as follows:

e Monitor flag bit clear

The starting address for the exchange is taken from the
18-bit monitor address register. This starting address 1is
an absolute address. During the exchange, the monitor
flag bit is set (MF=1)

e Monitor flag bit set
The starting address for the exchange is the 18-bit
result formed by adding K to the content of register Bj.

This starting address is an absolute address. During the
exchange, the monitor flag is cleared.

60454300 A - 3-49

The MXN instruction, typically used to initiate central processor
monitor activity, is a conditional exchange jump to the central
processor. If the monitor flag bit is set, this instruction acts
as a pass instruction. The starting address for this exchange is
the 18-bit address held in the peripheral processor A register.
(The peripheral processor program must have loaded A with an
appropriate address prior to executing this instruction.) This
starting address is an absolute address.

In an installation without the MXN/XJ instruction set, the EXN is
the only exchange instruction available. It is a PP initiated
exchange jump which occurs independently of the mode of the CPU
and has no effect on the CPU mode. MTR is the only PP program
that may perform an EXN; it must simulate the MXN for all PPs in
the system and simulate XJ for the central processor. When MTR
detects a request for CPUMTR in a PP output register, it will EXN
to the exchange package for the pool PP which desires the
exchange jump.

NOTE

PP memory instruction layout is the same
as MXN.

Programming Notes

Any exchange to the exchange package loads the
contents of word 6 into the monitor address

register (other operational registers are similarly
loaded). Thus, any ensuing XJ instruction using the
contents of the monitor address register as a
starting address uses those contents as loaded.

The exchange packages for entering the central processor monitor
should usually have the reference address (RA) equal to 000000
and the field length equal to central memory size. :

Since the monitor flag bit cannot be directly sampled, a program
cannot directly determine its state; hence, success in performing
a peripheral processor monitor exchange cannot readily be
predicted. Further, program control always is given to the next
instruction, whether or not the exchange is honored.

Table 3-6 summarizes the operational differences between the

normal exchange jump dinstruction EXN and the monitor and central
exchange jump, MXN and XJ.

60454300 A 3-50

TABLE 3-6. EXCHANGE INSTRUCTION DIFFERENCE

| |

| |

| {Effect | FWA of |

| lon |Exchange |

| |Conditiconal/ |Monitor |Package |

{Instruction [Unconditional|Flag Bit lin. CM %

| EXN lUnconditional|No effect on|Peripheral |

No |260 (normal | | flag |processor |
CEJ/ |peripheral | | |A register

MEJ |processor | | ! |

lexchange | | | |

l jump) | | | |

| =~ | === f=mmm e [==mmmm————— |

IMXN |Conditional |Sets flag |Peripheral |

|261 fCoccurs only | . lprocessor |

| (peripheral [if monitor | |A register |

lprocessor |flag bit is | | |

|monitor lclear; passes| | |

lexchange |if flag is | | |

| jump) |set) I | |

| =m o P B | = mmmmmmm e |

With I xJ lUnconditional|Sets flag |[Central |

CEJ/ |013 (central] | |processor |

MEJ |lexchange | | |monitor |

| jump) with | | laddress |

Imonitor flag] | lregister |

| |

|bit clear |

Unconditional|Clears flag |Address

| jump) with
[monitor flag
Ibit set

[XJ K+(Bj) |
|013 | | |formed by
| (central | IK+(Bj)
|lexchange | :

|

|

To determine whether the MXN took place:

1. Set BO (bits 0-17 of word O0) in the exchange package to
7777.

2. Initiate the monitor exchange (261).
3. Read BO from the exchange package in central memory. If
the monitor exchange was honored, BO in the exchange

package will equal 000000. 1If the instruction passed,
this location still holds 7777.

60454300 A 3

51

Different exchange packages should be used for central processor
exchanges and peripheral processor exchanges. This aids software
determination of which of two jumps (central or monitor exchange)
was executed when both were initiated at approximately the same
time.

Simultaneous exchange requests are resolved in favor of the
central processor.

The state of the monitor flag bit has no effect on the operation
of the normal PP exchange jump (260); nor has this instruction
any effect on the flag.

In addition, there may be CPUMTR requests which require more CPU
time than it is feasible for CPUMTR to use in monitor mode and
still ensure smooth system flow. For these requests, such as
DTKM (drop tracks), CPUMTR will queue them at the system control
point and exchange jump to this control point. The system
control point operates in program mode and is treated as any
other user program. If the system control point is interrupted
with another Long request, the request is placed in the system
control point queue and the system control point is restarted.
The system control point can be interrupted by any MXN from a PP.
However, because its CPU priority is the highest in the system
(100), it will always get the CPU back immediately. No other
control point will get the CPU if the system control points wants
it. '

Table 3-7 shows the correspondence between a control point,
control point address, and the exchange package MA for a system
configured to have 17B control points.

Table 3-8 shows all the system exchange packages and the entry
points into CPUMTR.

A control point will always have (MA) equal to its exchange
package address. Additional exchange packages are provided for
the two idle routines, subcontrol points, disabled central
exchange, return package, disabled central exchange program, and
a simulated exchange exit to monitor mode. These packages are
generated at the end of the CPUMTR code. PPO, MTR's exchange
package, is not contiguous with the other PP exchange packages.

60454300 A » 3-52

FLOW OF EXCHANGES
The flow of exchanges are-illustrated and expiained in Figures
3-25 through 3-28. The four types of exchanges are:

e Pool PP

e MTR

o Control point'prdgram

e System control point

TABLE 3-7. CONTROL POINT/EXCHANGE PACKAGE
CORRESPONDENCE '

- e WS G G - G - G - TR W W n R W M D - WP T W TR A e . - -

4000

| Control Point | Address | Exchange Package MA |
s e T TR T |
I 1 | 200 | 200 |
{ 2 = 400 ": 400 :
{ 3 '} 1600 { 600 :
: 4 : 1000 : 1000 ;
} 5 3 } 1200 : 1200 ;
l 6 : { 1400 { 1400 }
I 7 : 1600 _: 1600 }
I 10 : 2000 { 2000 {
{ 11 ‘,f 2200 { 2200 ;
{ 12 { 2400 }} 2400 {
{ 13 } 2600 } 2600 {
{ 14 } 3000 } 3000 ;
} 15 } 3200 : 3200 :
} 16 } 3400 { 3400 {
l 17 } 3600 { 3600 :
l | I |
| I | |
| | | |

- 20 (System)

60454300 A 3-53

TABLE 3-8. SYSTEM EXCHANGE PACKAGES

| ' I |Subcontrol]

| | |

| | | [Control - |Control |Points and|
| | |PPU |Point |[Points |Idle |
I |PPUs*2 |[Monitor |n+1 [1 thru n |Programs =
| == e e e e mmme—cmemem—m— e ee e ———————— —e— e ————
| [| I | [scx sub CP|
| | I | | |EPY I
	I				
	PXP PPU	MXP PPU	SXP Systenm	200B Control	SCX1 Sub
	CcPP2)	Monitor	Control Point	Point 1 lcP EP2	
	Exchange	Exchange	n+1 Exchange	Exchange	
	Package	Package	Package	Package	
		¢cPPOD	o	I	
	°			°	
Graphic	°			®	IXP IDLE
Repre-	°			°	cPUO
senta-	I	I			
tion I			I		
	PPUCPPNR)]	n*2008 Control	IXP1 IDLE	
7	Exchange			Point n	crPu1
	Package			[Exchange	
’				Package	:
signi~-	P=PPR	P=PMN	P=PRG	P=CP Prog	sub cP P=
ficant	MA=zero	MA=zero	MA=System	P address	MTR
Content	B2=address	B2=MXP	Control	MA=This	MA=SCX
J]of PPi EP		Point	Control	SCX1	
	(PXP+(i=2)		Area	Point	B2=SCX,
[*218B)		Address	Area	SCX1
			=SXP	Address	IDLE P=
				=addr. of	didle I
				CPi XJPKG	Loop addr.
				Ci*x2008B1]	czpL,I0L1)
				IMA=1XP, l	
!					IXP1 :
Isize, 121 words	20 words	First 20 of	First 20 words	20 words	
Numbers	per pkg.	for this	system]of each	for each	
and	lup to 18	pkg.This	control point	control point	package.
l	Loca-	pkgs.These	is at thelarea in CMR	area in CMR	
[tion	start at	end of			
lend of	CPUMTR				
]	CPUMTR				
:	codex I			;	
Symbol=-	CPUMTR	CPUMTR	CPUMTR	2008B	CPUMTR
lic jaddress	address	address	4008	address	
address	PXP	MXP	sxpP	.	sCX and
		I	.	I1xP	
	I I [[scx1 1xP1				
			In*x2008		

* The 21B words spaces the packages so that no bank conflicts
will arise when PPs access them.

60454300 A 3

54

In figure 3-23, assume the CPU is active with control point n and

monitor flag zero. If monitor flag is equal to 1, then the
exchange does not take place. PPn builds a CPUMTR exchange
package in its exchange package area.

Note

CPUMTR Wwill exit to MTRX by executing an XJ B2.
MTR follows MTRX; therefore, after the

exchange (P)=MTR in the CPUMTR and exchange
package in the PPn exchange package area.

Figure 3-24 is the same as the pool PP request except that
(P)=PMN ‘and (X0) equals the request in the MTR exchange package
area.

In figure 3-25, control point n is running in the CPU (monitor
flag zero), the monitor address is the address of control point
n, and the control point address equaLs the exchange package
first word address.

Figure 3-26, is the system control point program mode.
Note

The system control point can be interrupted by
a PP program. In this case the PPn exchange

" package area contains the system control point
exchange package of which (P) equals the
address of -the next instruction to execute (not
PRG).

Table 3-9 illustrates the relationships of the monitors, pool
PPs, and control points. .

60454300 A 3

55

TABLE 3-9. MONITOR, POOL PP, CONTROL POINT RELATIONSHIPS

I Type | i | |Reason |Location]| |
| of |Initiated]| |Request| for | of |Final |
|Exchange]| by |Action | to |Request |Request IDispositionl
| | I

R et e LT |
IControl |Control |Request |CPUMTR |Needs |RA+1 |CPUMTR/PP |
|Point |Point | | |help | | |
! [Program | | | | | {
System	Program	Request	CPUMTR	Needs	PX	CPUMTR/PP
Control	Mode		lactijon			
Point	CPUMTR			from		
}				CPUMTR		}
Pool PP	Pool PPs/	Request	CPUMTR	Needs	oR	CPUMTR/PP
land MTR	MTR			help or		
				inter-		
		I	Lock		I	
]				function]		
}		I [35-71.		:		
Pool PP	Pool PPs	Request	MTR	Needs	OR	MTR
and MTR			lhelp or]	
			linter-			
				Lock I		
				function]		
{		I [1-34.		{		
MTR {MTR	Special	CPUMTR	Needs	X0 in EP	CPUMTR	
		[Request		help		}

60454300 A

CPAN PPn EPA

EPA FWA
- CPUMTR CPUNMTR
EP MF=0
. (P)=PPR
{P)=MTR, (B2)=EPA FWA
o CPn
Same as above,] - EP
no- change - MF=1 Addrs of
(P)= Next Inst.
S ‘ b i CPUMTR
ame as above, ME=0 EP
no change (P)=MTR

1. PP sets word zero of exchange package. (P)=PPR, (BO)#0
(B2)=EP address for the PP issuing MXN.

2. CPUMTR starts executing at PPR. 'When complete, it issues
XJ BZ2.

3. (P)=MTR since this Location follows MTRX in CPUMTR. The
next time this PP calls CPUMTR, it will reset (P)=PPR.

Figure 3-23. Pool PP Request

60454300 A 3=-57

CPAnN

CPUMTR
EP
(P)=MTR

Same as above,
no change

Same as above,
no change

1. MTR sets up P, BO,
the MTR issues MXN.

2. CPUMTR starts

3. Same as pool PP.

60454300 A

B2.

executing

Figure 3-24.

MTR EP

MTR EP FWA CPUMTR
EP

MF=0 (P)=PMN

(X0)=request

(B2)=MTR EPA FWA

CPn

MF=1 EP

MF

The request

next instr.

Addrs of (P)=

CPUMTR

0 EP

(P)=MTR

is stored

at PMN and exits at MTRX.

PP MTR

in (X0) and

CPAnRN

CPUMTR
EP
(P)=MTR
(B2)=EP FWA

MF="

CPn EP
(P)=addr of
next instr. |
(MA)=EP FWA"

MF=1 CPUMTR

CPUMTR
EP
(P)=MTR
(B2)=EP FWA

MF=0

Control point n places the request in RA+1, and will either
XJ(MA) (where MA is the hardware register in the CPU), or
wait for MTR to notice the request.

CPUMTR processes the RA+1 request and (unless recall is
requested) reactivates control point n by XJ B2. (Note:
(B2)=EP FWA)

CPUMTR exits at MTRX which sets (P)=MTR in control point n
control point area.

Figure 3-25. Program Request

60454300 A 3-59

60454300 A

CPAn+1

SYS CP EP
{P)=PRG
(MA)=SYS EP FWA

CPUMTR
EP
(P)= MTR
(B2)=EP FWA

SYS CP EP
(P)=addr of
next instr.
(PRG)
(MA)=SYS EP FWA

setting (P)=MTR
When the system
will XJ (MA) back to CPUMTR.
System control point has finished and exchanges to CPUMTR.

CPUMTR will now start the highest priority control point n.

MF=

MF=

MF=

Figure 3-26.

0

EP FWA

0

CPn EP

CPn EP
(P)=addr of

next inst.
(MA)=EP FWA

for CPn

Same as above,
no change

Same as above,
no change

CPn EP

CPUMTR EP
(P)=MTR
(B2)=EP FWA
for CPn

is an XJ),

System CP Program Mode

CPUMTR will add this request to the system control point
It then exits to MTRX (which
in the exchange package.
control point has exhausted

thereby

its queue, it

A probable sequence of system interaction is illustrated and
explained in figures 3-27 through 3-37..

In figure 3-27, assume CPUMTR is running in MM, and it decides to
activate control point 12; ‘that

is, 'give the CPU to control point
12.
CP12 CPA
2400 cP12
EP
MF=1
CP12 CPA
2300 CPUMTR
EP
MF=0

PTX . CPUMTR EP in CPU
~ " (MA)=2400

CPUMTR issues
XJ B2 (B2=2400)

ATX CP12 EP in CPU
CPUMTR EP in CP12 EPA

Figure 3-27. CPUMTR Running in MM Activates CP12

60454300 A

Figure 3-28 assumes that PP3 asks CPUMTR to perform a function.
PP3 must build a CPUMTR exchange package in exchange package area
PP3. Note that RA is 0, FL equals machine field Length, and P
equals PPR, the FWA of CPUMTR PP function processor. PP3 issues
an MXN. Since MF is 0, this exchange will occur.

CPUMTR CPUMTR
EP EP
MF=0
2400
cPi2 CPUMTR
EP EP
MF=1

PTX CP12 EP in CPU
PP3 issues MXN
ATX CPUMTR has CPU

Figure 3-28. PP3 Requesting Function from CPUMTR

W
)

60454300 A 62

In Figure 3-29,
determines from C

activated.

PTX

Copy to
CP12
EP

ATX

Figure 3-29.

Control point area 14 may exist from a previous
XJ by MIR or may have been built due to a
request by the scheduler or the advancement

Note

routines. . -Since control point 12 will not be

activated,

it is necessary for CPUMTR to move

‘control point 12 from the PP3 exchange package
area to the control point 12 exchange package
area before issuing XJ=3000.

PP3

cP12
(MA)=CP12
CPA FWA
(2400)

PP3 EP.

CP12 EP
(MA)=2400

Restore
PP3 EP
(MA)=0

Restore
PP3 EP
(MA)=0

60454300 A

MF=1

2400

_Copy PP3 EPA to CP12 EPA

—

MF=1

MF=1

MF=0

CP12

CPUMTR

CP12 EP

CP12 EP

CP12 EP

3000

3000

CPUMTR processes the PP request and then
PU priorities ‘that control point 14 should be

CP14

CP14 EP

CcP14

CP14 EP

cP14

CP14 EP

CPUMTR EP

CPUMTR Processing PP Request Activates Control
Point 14

In figure 3-30, MTR decides to switch control points (that is,
stop control point 14 and start control point 10) and issues an
ACSF (switch job request) to the CPUMTR. MTR must build a CPUMTR
exchange package in its exchange package area and issue MXN.

MTR EPA CP14 EP
3000 | cpymTR
EP
PTX CPLéI‘\)ﬂTR MF=0 CP14 running in CPU
3000
cPi4 Same as ahove, :
ATX EP MF=1 no change CPUMTR in CPU

Figure 3-30. MTR Switches Control Points

60454300 A : . 3-64

In figure 3-31 CPUMTR activates control point 10.
which control point to start, and CPUMTR starts it.

PTX

ATX

MTR EPA

CP14 EP
(MA)=CP14
CPA
FWA=3000

Same as above,
no change

Restored
MTR EP
(MA)=0

Same as above,
no change -

Figurgj

MTR decides

.CP10 CPA CP14 CPA
2000 cP10 30001 cpymTR
EP EP
MF=1
‘ 3000 cPia
_ Same as above, EP
MF=1.. no change
= Same as above, Same as above,
MF=1
‘ no chaqge no change
2000 couymTR 3000
. EP Same as above,
MF'_'VO‘ no change
3-31." CPUMTR Activates Control Point 10
3-65

60454300 A

In figure 3-32 control point 10 needs to call CIO., It places the
call in RA+1 and issues an XJ. Since the monitor flag is zero,
the exchange will store the CPU exchange package value in
Llocation (MA). Now, whenever CPUMTR builds the control point 10
exchange package, it sets (MA)=2000 and (P)=MTR, the FWA of
CPUMTR control point request processor.

CP10 CPA
2000
CPUMTR
EP
PTX MF=0 RA+1 |CIOP //A FET address
2000
CP10
\ EP
ATX f MF=1 RA+1 0

Figure 3-32. Control Point 10 Calls CIO

CPUMTR places control point 10 into autorecall, calls CIO to a
pool processor (for example, PP6), and searches for the highest
CPU priority job to activate which is control point 16 (figure
3-33).

* CP16 CPA
2000 3400
CP16
Same as above EP
PTX MF=1 ’
no change

CPUMTR XJ
B2=3400

CPUMTR
EP

ATX ME=0 Same as above,
no change

Figure 3-33. CPUMTR Calls CIO, Activates Control Point 16

w
i

60454300 A 66

CIO0O runs to completion,

sets the status of

its operation to

complete, and prepares to drop.. In order to drop, CIO will MXN
to monitor with a DPPM (drop PP request).

PP6 EPA

PTX EPA FWA

(B2)=PP6 EPA
~ FWA

ATX

CP16
EP

CPUMTR
- EP

(B2)=PP6
EPA FWA

Figure 3-34,

60454300 A

MF=1

MF=0

Refer to figure 3-34.

CP16 CPA
3400 CPUMTR
EP
3400

Jame as above,
no change

CI0 Runs to Completion and MXNs to

CPUMTR takes CP10
out of auto-recall and

makes it a candidate
for the CPU.

CPUMTR XJ B2
(=addr of PP6 EPA)

interrupted CP16
continues.

Monitor

In figure 3-35 PP4 issues a DTKM (drop track function) via an
MXN.

PP4 EPA CP16 CPA
EPA FWA
PTX CPUMTR) 3400 CPUMTR
EP EP
(B2)=PP4 EPA | MF=0
FWA
ATX CP16 3400
EP
(MA)=CP16 ME=1 Same as above,
CPA no change
FWA (3400)

Figure 3-35. PP4 Issues DTKM Via MXN

60454300 A 3

68

‘Now PP4 idles on its OR until monitor satisfies its request.

DTKM is a request which takes too long a CPU time-slice;
therefore, it is processed by CPUMTR 4in program mode via the
system control point. The system control point is treated as any
other control point except that it has the highest priority.
CPUMTR begins processing this request by queuing the request and
executing XJ B2=4000, thereby activating the system control
point. If the system control point is interrupted, CPU/MTR
processes the interrupting request.

If it is a request which is also processed by the system control
point, CPUMTR queue, this request and reactivates the system
control point. In this way, all these types of requests are
handled in a first come, first served order.

Before the exchange can occur, however, CPUMTR must copy the
control point 16 exchange package from PP4 exchange package area
as shown 1n figure 3- 36.

PP4 EPA | - CP16 CPA System CPA

PTX cP16 CPUMTR 4000 sYs
cp : co . EP EP
{MA)=CP16 MF=1 , (P)=PRG
CPA FWA ’ '
(3400)

4000
3400 CP16
Same as above, MF=1 ’ ' EP | Same as above,
no change no change
3400 4000
R:;:“Eg MF=1 Same as above, ‘Same as above,
(MA)=0 no change no change
Same as above, MF=0 Same as above, CPLéII\’IITR
no change no change (P)=MTR

Figure 3-36. System Control Point Processing

60454300 A 3-69

When the system control point completes all the requests in its
queue, it will XJ (MA) to the CPUMTR.

For system control point (MA)Y=4000, CPUMTR sets (P)=MTR in the

CPUMTR exchange package at system control point area. When the
system control point exchanges, CPUMTR begins at MTR. However,
the system control point begins executing at PRG (figure 3-37).

CPUMTR
PTX 4000 (P)=MTR MF=0

SYS CPA

SYS
EP
ATX 4000 (P)=PRG MF=1

Figure 3-37. System Control Point XJ (MA) to CPUMTR

60454300 A 3-70

SUBCONTROL POINTS (SCP)

Subcontrol points are divisions of a central memory control
point. A user can set up‘'a control point to contain two or more
programs; one of these is designated as the executive, and
monitors the other program(s) or subcontrol points.

The executive controls its subcontrol points in much the same
manner that the system monitor controls the control points. When
a control point makes a system request or exceeds its time limit
or makes an error, control is given back to the system monitor.
Similarly, when a subcontrol point makes a system request or
exceeds its time Limit or makes-a CPU error, control is given
back to the executive. The executive sets up each subcontrol
point so that, within the field length of the control point, each
subcontrol point has its own RA and field lLength and cannot go
outside its boundaries. The executive is thus protected from
access by the subcontrol points, whereas the executive's RA and
FLL. define the full control point so the executive can watch over
and control all subcontrol points within the field Llength.

The subcontrol point concept depends on the executive program's
handling of the subcontrol points. This involves starting,
stopping, error processing, and other functions similar to those
of the system monitor.

Just as the system monitor keeps track:-of each control point
through its exchange package, the executive can control the
subcontrol points through their exchange packages.

It is the responsibility of the executive to set up an exchange
package for each subcontrol point; each exchange package must
have the appropriate RA, FL, and so on, for the subcontrol point.
These exchange packages must be set up somewhere within the
executive's field Length, but probably not within the field
length of the subcontrol point. To start execution of a
subcontrol point, the executive uses an XJP RA+1 request
indicating the address of the exchange package area of the
subcontrol point to be activated. When CPUMTR picks up the
request, it terminates the '‘executive and activates the subcontrol
point described in the exchange package area indicated on the XJP
request. CPUMTR also sets a flag in the control point area
showing that at this control point .a subcontrol point is now
active. Once activated a subcontrol point runs until:

1. It makes a CPU error
2. It exceeds its time Limit

3. It makes an RA+1 request

60454300 A

W
1

71

Under any of these three conditions, control is given back to the
executive.

The executive can thus monitor error processing for the
subcontrol points. Errors can be noted and examined without
termination of the control point. Upon returning control to the
executive, certain information is set up in the X registers:

(X2) = msec before this subcontrol point began
(X6) = error flag (12 bits) and RA of this subcontrol point
(X7) = msec used by this subcontrol point

One of the parameters on the XJP request is the time for the
subcontrol point. When this time Limit is passed, control goes
back to the executive.

When a subcontrol point makes an RA+1 request, control is
returned to the executive; the executive can then decide whether
to:

1. Ignore the request
2. Handle the request itself

3. Pass the request on to CPUMTR using RA+1 of the control
point (executive)

Subcontrol points can be set up by any CPU programmer using any
programming language; some features are only usable by COMPASS
programs. The structure of the executive is flexible within the
limits we have discussed so far., As an example, consider the
transaction subsystem using subcontrol points.

TRANSACTION EXECUTIVE

The transaction executive is designed to Let many different users
use one system; each user needs transaction processing. Users
can set up their own programs for transaction processing and all
transactions can be handled through the transaction executive,

The transaction executive uses subcontrol points so that it can
maintain complete control over each task to be performed. Within
its field length is needed a protected area for the executive;
the remaining field length can be used by up to 31 subcontrol
points. The tasks to be performed require different programs
that do not need to be in memory simultaneously; rather than
using traditional overlays which have no protected area for the
executive, each task or transaction program can be set up as a
subcontrol point which can be activated as necessary by the
executive.

60454300 A ... 3=72

Transaction programs can be written in any programming language.
In order to make the programs more useful, the first 100 words of
each program should be allocated for communication between
subcontrol points; this can be done by using Labeled common which
is always at the beginning of the field lLength, for example:

(FTN) COMMON /CCOMMON/ AC100)
(COMPASS) USE /CCOMMON/
BsSs. - 100
(coBoL) ~COMMON STORAGE SECTION.
77 A OCCURS 100 TIMES.
. NOTEVV

RA+0 through RA+100 is normally not easily
available to higher level languages, therefore
the technique of Llabeled common allows, an easy
method of access to RA+101 through RA+201.

The user programs should be compiled and then lLoaded to create a
(0,0) overlay from each transaction program.

Each transaction to be processed must give enough information to
indicate the proper transaction program to be brought in for
processing. This information could include: :

1. User's name (code)
2. Type of transaction
3. Data to be used in the transaction

The executive then brings in the appropriate transaction program
into its field Length and sets up the program as a subcontrol
point. Since the user program is an absolute (0,0) overlay the
Loader cannot be used to load it*, so the executive has to use a
CI0 function to bring in the program. The executive also has to_
set up an exchange package for the subcontrol point and put any
necessary information into the 100 word communication area in the
subcontrol point's field Length. If the transaction requires
another program to complete the task, a request must be made to
the executive to bring in the other program. The executive’
always checks to see if the program is available in memory
already and brings in a copy if necessary; then the executive
copies the appropriate data from the communications block of the
calling subcontrol point to the communications block of the
called subcontrol point.

* LDR always gives control directly to the (0,0) overlay after
Loading; this does not allow the executive to start the
subcontrol point.

60454300 A _ 3-73

The transaction executive's job sets up the fjeld Llength
most efficient way. The field lLength must contain:

e The executive's code
e Tables
e Subcontrol points

@ Exchange package areas for each subcontrol point

The field length could be set up as shown in figure 3-38.

in the |

~ free FL to aid
in storage moves

by the exective

JJ

RASCP1—100 tables
wn-100 L
veen-100 0
Flscp3s
Figure 3-38. Subcontrol Point Field Length
60454300 B

The area RA scp =100 through RA scp. can be used for the exchange
package area for the subcontrol point. The executive can fill in
this area as it reads in the program; it gets P from the S50 table
~of the (0,0) overlay binary, it can set up values for the
registers for COMPASS programs, it sets up RA and FL depending on
where the program was read into memory and how many words were
read in..

The executive always checks through its tables to see if the
program is already at a subcontrol point; if it is already at a
subcontrol point, the executive checks to see if it is a reusable
program if the program is not in memory or not reusable, the
executive will read in another copy of it. The executive Llooks
for the next available place inmemory to put the program and
brings it in using READR (READSKP) and updates its tables. The
executive must set up the exchange package area. When CPUMTR
picks up the request it exchanges in the subcontrol point and
sets the flag in the control point area to indicate that there is
a subcontrol point at the control point.

Transaction Subcontrol Points

Transaction subcontrol points are all (0,0) absolute overlays.
These programs are loaded by the executive using a CIO0 function.
The executive alsoc sets up an exchange package for each
subcontrol point so that each subcontrol point can use only
memory within its own RA through RA+FL=-1.

The transaction executive has set up one subcontrol point (ITASK)
which decides which other program needs to be brought in to
handle a transaction. ITASK can Look at the transaction code from
the user and find the name of the program to do the task. Since
ITASK is a subcontrol point itself and cannot go outside its own
field Length, ITASK must ask the executive to activate the
appropriate transaction program at a subcontrol point.

When a subcontrol point needs assistance from the executive, it
puts a request in its own RA+1; this causes an exchange back to
the executive. The executive looks at the request and can:

1. Ignore the request

2. Process the request itself

3. Pass the request on to CPUMTR

After the request has been handled, the executive can give
control back to the subcontrol point if its is appropriate.

60454300 A : 3-75

An example of a request would be a subcontrol point requiring the
Loading of another subcontrol point to complete a task. When the
first subcontrol point puts the request in its RA+1, the
executive is exchanged in; the executive brings in a copy of the
program if necessary and copies the communications block from the
calling program to the called program. The RA+1 of the subcontrol
point is within the FL of the executive who can read the request.

60454300 A 3-76

PERIPHERAL PROCESSOR RESIDENT (PPR) 4

PPR/SYSTEM INTERACTION

Each PP functions independently of the CPU and other PPs. . To
enable the PP to communicate with and work for the system, PPR
provides the necessary.links between the PPs and the CPs. PPR
serves as a PP idle program, the loader of PP programs, and a
source of commonly used subroutines for other programs and
routines. PPR is lLoaded into pool PPs :at deadstart time by STL
and is never changed. A dedicated PP program such as 1TD (the
multiplexer driver) overlays PPR and restores it via 1RP prior to
dropping back to pool PP status. MTR (PP monitor) and DSD
(display driver) are two other dedicated PP programs which do
not contain a copy of PPR.

Initially, PPs can be lLoaded only at deadstart time by
transferring data across their respective channels (refer to
section 26)., This method of loading PP routines during normal
system operation is unacceptable because other peripheral
equipment may be on the channels. The alternative is to have
each PP execute an idle Loop which checks the status of a word
in CM. This is accomplished through the PP communication area
in CMR. There is one entry for each available PP, and each
entry is 10B words in length (refer to section 2).

The first word of each entry is the input register (IR), the
second word is the output register (OR), and the remaining six
words are used as a message buffer. A sample entry is as
follows.

IR input register

OR output register

MB+0
° six—word N
« message —
° buffer

MB+5

The CM addresses for each PP input register, output register, and
message buffer are stored in direct cells named IA, 0OA, and MA

in each PP. These are 12-bit absolute CM addresses and,
therefore, the PP communication area must reside below address
100008B.

60454300 A , 4-1

Figure 4-1 jllustrates the interaction between CP monitor
(CPUMTR) and a pool PP to activate a PP program. CPUMTR checks
for an available PP and places the PP routine name (three
characters) and arguments (36 bits) in the pool PP input
register. The pool PP is cycling through an idle lLoop waiting
for its IR to become nonzero. When the IR is nonzero, PPR calls
subroutine PLL (peripheral library loader) to load the requested
routine. If the requested routine is not found, the SCOPE
function processor (SFP) is loaded. If the requested routine is
found, execution of that routine begins after calling the pause
routine (PRL). As the routine executes, it can communicate with
the system by monitor requests utilizing the FTN (process monitor
function) subroutine in PPR. FTN places the monitor request in
the PP OR. Monitor responds to the request and completes it by
setting byte 0 of OR equal to 0. When the PP routine terminates,
it informs monitor of this condition via a monitor function DPPM
and jumping to the idle loop in PPR.

60454300 A 4L=2

- PP
Communication
PP Resident) Area CP Monitor

PP no
1R xx%xX available
OR 0
ves

<j message
buffer

assign PP
‘ L:; to this
/ PLL ‘\ control
load peripheral point
library routine
XXX

load and
execute
requested
program

inform
monitor of

end of

operation

XXX monitor
{1 DPPM checks PP

E> output
| register

Q clear IR

0 <j and OR i
and indicate

PP is free

Figure 4-1.- System Interaction - PPR

60454300 A

Table 4-1 represents a pool PP memory map. The address to the
left is the first word address of the functional area. Direct
cells are memory lLocations 0 through 77B. The mass storage
buffer is normally located at address BFMS for those routines
requiring mass storage I1/0. The first executable instruction
begins at PPFW (1100B) with a one CM-word library table entry
preceding it at 1073B. Mass storage drivers are lLoaded at MSFW.

TABLE 4-1. POOL PP MEMORY MAP

- - - . =S - . S M D - -n - S O W TN D T R R e e GW S WY T A R D WD WS WS WD wE D —e o W - -

0000 - 0077 |Direct cells

0100 - 1100 |PP resident routines and mass
|storage driver area

| | |
[| |
	Idle Loop	PPR
	Peripheral Llibrary Loader	PLL
	[Load MS error processor	LEP
	Process monitor function	FTN
	Pause for relocation	PRL
	Reserve channel	RCH
	Release channel	pcH
I		
	Send dayfilte message	oFm
	Execute routine	EXR
	Set mass storage	sms
[
IMass storage driver designator	MSD	

60454300 A _ 4=4

60454300 B

TABLE 4-1. POOL PP MEMORY MAP (CONTINUED)

| |
FWA of mass storage drivers	MSFW
Read sector	RAS
,	
Write sector	wos
‘	
End mass storage	EMS
operation	
' _	
[Library entry of current PP	
routine	-
First word of PP routine	PPFW
’	
Mass storage buffer (502B	BFMS
words)	
MS error processor	EPFW
[Last word of PP | 7777 |

' I |

PPR SUBROUTINE DESCRIPTIONS

Whenever a pool PP is waiting to be assigned, it executes the
idle loop, PPR. This routine reads the input register in CM
every 128 microseconds (for both 1X and 2X modes). That is, if
byte 0 of IR is zero, the PP delays 128 microseconds before
reading IR again. If IR is nonzero, then the name of the
requested PP program is in IR, and that routine is Loaded and
executed.

In order to load a PP program or overlay, subroutine PLL is used.
This routine requests monitor to search the PLD for the requested
routine (monitor function SPLM). If the overlay is found, it is
loaded; if it is not found, overlay SFP is loaded. If SFP does
not recognize the PP overlay named in IR, the error message xxX
NOT IN PP LIBRARY is issued and the control point is aborted.

The PP then reenters the idle loop.

Subroutine LEP is used to load the mass storage error processing
overlays from CM.

Subroutine FTN is called to issue monitor requests. The
function is stored in the output register. If this is a CPUMTR
request, FTN executes a monitor exchange instruction (MXN). If
not a CPUMTR function, FTN waits for the completion of the
function. Completion is indicated by byte 0 of OR being set to
zero by monitor. FTN then returns control to :.the calling
routine.

If a PP is assigned and executing at a control point, that
control point cannot be moved by monitor. To enable a storage
move, the PP must pause by using subroutine PRL. If a move
takes place, CM addresses being used by the PP routine will have
to be adjusted because RA has changed. Do not use PRL with
nondedicated channels reserved.

Subroutines RCH and DCH dissue monitor functions RCHM and DCHM to
reserve and release a channel or pseudochannel.

When a PP issues a dayfile message, subroutine DFM is used. The
appropriate dayfile is selected and the message is passed in 40-
character blocks through the PP message buffers. Again, do not
use DFM with nondedicated channels reserved.

For a PP program to lLoad an overlay, subroutine EXR is used. Do
not use EXR with nondedicated channels reserved.

Subroutine SMS is called to load the proper mass storage
driver into PPR. SMS must be called prior to a request for
positioning or I/0 (P0OS, RDS, and WDS).

60454300 A 4=6

NOS PP NAMING CONVENTIONS

The following PP naming convention is used by NOS.

X X X
Oxx

1xx
2xX
3xx
Axx
5xx

byy
Tyy

8xx

9 xx

In the preceding Llist,

Three alphabetical characters, used for RA+1
callable overlays (for example, CIO).

Zero Level overlay,
routine (for example, 0AV).

Reserved
Reserved
Reserved
Reserved

Reserved

for
for
for
for

for

Mass storage
SMS in PPR.

system
system
system

system

also known as location-free

programs.
programs.
programs.

programs.

diagnostic programs.

driver

(for example, 6DI); callable by

MS error processor (for example, 7DI); called by LEP

in PPR.

Unused

Syntax and disptay type overlays used by DSD, DIS,

17D, and 1LS.

x refers to any alphabetic character and

yy is a mass storage driver mnemonic (DE, DI, or DP).

‘NOTE

User programs can call a PP routine only if its name
begins with an alphabetic character. Routine names
beginning with a numeral character are callable by the
system, other PP routines, subsystems, or special system

jobs.

60454300 A

ERROR MESSAGES

ALL error messages from PPR are issued by the routine SFP. The
dayfile messages are as follows.

Message Description
xxx NOT IN PP LIB. PP package xxx was not found in
the PP library directory.
xxx NOT IN PP LIB. - PP overlay/program xxx was not
CALLED BY yyy. found in the PP Library directory

and was called by package yyy.
SFP/xxx PARAMETER ERROR. Parameter address outside FL.

SFP/xxx ILLEGAL ORIGIN Function iLLégaL for user's job
CODE. origin. '

SFP CALL ERROR. SFP ‘'not loaded by default.

DIRECT CELLS

Table 4-2 shows the direct lLlocation assignments available for PP
routines. Cells ON, HN, TH, TR, 1A, OA, and MA must not be
changed by the PP routine. AlL others may be used. However,
remember that TO is used to hold the P register for the CRM, CWM,
IAM, and 0AM instructions and, therefore, is subject to change.

ROUTINE RESIDENCE

ALL PP routines reside in either the resident peripheral Llibrary
(RPL) in central memory or on mass storage, and are pointed to
by the peripheral Llibrary directory (PLD). System performance
can be affected by the residence of frequently used routines.
Further, the following routines must reside in CM in the RPL:
imMB, 1MC, 100, SFP, ODF, 7SE, 7EP, and all the mass storage
drivers and error processors. Other routines recommended to be
in the RPL are contained in the default LIBDECK released with
NOS.

10D AND 1RP

Two routines associated with PPR are 10D and 1RP. Routine 10D
is called by DFM when a dayfile buffer is full and requires
flushing to the disk. Routine 1RP is called by a PP routine to
restore that PP's copy of PPR. For instance, 1TD (the
multiplexer driver) calls 1RP to restore PPR when TELEX 1is
dropped. This is done by passing a copy of PPR from another PP
through the message buffer.

60454300 B 4-8

TABLE 4-2. DIRECT LOCATION ASSIGNMENTS

| |
| Symbol Name | Location (Octal) | Description |
| I : I |
l e ot i e e v e e A e e e . e o e N B8 W P P o 4D . - - o o " - " - " v - I
T0	0	Temporary storage
T1	1	
o	I	
T2	2	I
T3	3	
	l	
T4	4	
TS5	5	
‘		
T6	6 I	
l		
T?	7	
CM	10	CM word buffer (five
		Llocations)
LA	15	Package load address
Rl bt i Dl D e i Eh b Lt bl etk		
	Set by PP resident before entry to program	
	———rmmm e e e e c e e e e s e e s e ————	
IR	50	Input register (five
		locations)
RA	55	Reference address/100
		,
FL	56	Fieltd Length/100
	== e	
	Read-only constants	
e e et b DL LD DD D LS L bt ittt by		
ON	70	Constant 1
HN	71	Constant 1008
TH	72	Constant 1000B
	'	
TR	73	Constant 3
I l ——————————————————— - - - o . - — - - - - . S W W B wm wm e m I		
	Set by PP resident before entry to program	
I_-_-_-...,_-——...'-'.._—_--.---'. l		
cP	74	Control point address
1	=mmmmm e me O L T ST e	
	Read-only constants	
	= m e e e e	
IA	75	Input register address
] 0A	76	Output register address
MA	77	Message buffer address

- T W D T D M WD WP P D WP WE WD S D am S R - D D G N D D MR R R S S WS AT M D S D R A D S S - . D W SN WS WS m D s w- > e -

60454300 A ' 4-9

In figure 4-2, 1TD is running in PP2 and needs to restore PPR
prior to dropping. Routine 1TD requests 1RP via RPPM. CPUMTR
assigns an available pool PP (say PP4) to execute 1RP. Next
CPUMTR informs PP2 which PP was assigned. Now that both PPs
acknowledge each other, PP4 can pass its copy of PPR to PP2.

This is done
is marked by a short (less than six words) transfer.

Completion

7SE

Routine 7SE

in six-word blocks using PP2's message buffer.

is called by routine PLL in PPR when an error occurs

loading a routine from mass storage. If the routine was on an
alternate system device, the Llibrary entry is changed to point
to the routine on the system device. Routine 7SE then returns
to PLL to retry the lLload from a system device. :

TEP

Routine 7EP is called after a DEPM monitor function to further
process the disk error. Routine 7EP issues the dayfile messages,
processes unrecovered errors and return and retry operations.

Routine 7EF

is also called after recovered disk errors to issue

a message to the error Log indicating the recovery status.

IR 1TD 1RP RB ia
OR IA FE
MB
six words
of
PPR
PP2 PP4

IA

ia

FE

RB

60454300 B

Input register address for 1RP (byte 1).
Input register address for 1TD (byte 4).

Full/empty flag (1TD sets FE=0 to indicate empty
buffer and 1RP sets FE=1 to indicate full buffer).

Ready byte (byte 2). When 1RP is ready to transmit,
byte 2 of 1RP's IR is set to 7777B. 1RP then waits
for RB=0 before the next transmit. If this does not
take place within 1 second, 1RP exits, thus aborting
the load.

Figure 4-2. 1RP - Restore PPR

10

o~
]

PP RESIDENT FLOWCHARTS

Figures 4-3 through 4-9 illustrate the PP resident routines.

control point
Entry 59 40 35 0o
)

IR | program name 1 arguments

PPR
delay
128
micro seconds
read IR
address

and IR

program

set control.
point _
address .. *1
in CP enter
— program

load
program
name

*1 LJM 5,LA
LA contains the program load address. The first 5
words of the program are lLoader information.

Figure 4-3. PP Resident (PPR)

60454300 B | 4=11

store
program
name

Entry (A)

= program name

(LA) = Load address for zero level overlay

reset input
register

set load

address

return
from
7SE

Figure 4-4.

60454300 B

load from
RPL into
PP memory
(CRM)
set equipment
track and sector
from output pause
register
perform
SETMS with (return)
READSYS
option

Peripheral Library Loader (PU)

no
yes
reset next
sector read sector
=O) .
process
error on set up
‘system
device for next
sector

pause

return

Figure 4-4, Peripheral Library Loader (PU) (Continued)

60454300 B 4-13

Entry (A) =
(cpPl=

Exit
(A) =0

FTN

(r—

store
function
in CM

yes

no

read CMCL
from CMR

this
control point
moving

yes

set PRLM
in A

Figure 4-5.

60454300 B

MTR function
(CM+1 through CM+4) =

parameters

Control point number

(CM through CM+4) = OR

write CM
through CM+4
in OR

CEJ/MEJ
available

load
function

function
<368

exchange
package
ready

Process Monitor Function (FTN)

4-14

store P, AD,
BO in PP
exchange
package
no timed
out
- exchange yes
cPuU
MXN d have CPUMTR
note exchange

request
CPUMTR \[
initiated
set
timer

decrement
timer

Note: (P), (AO) and (BO) are from PXPP+1 in CPUMTR

Figure 4-5. Process Monitor Function (FTN) (Continued)

60454300 B 4-15

request

yes

reieV

no

Figure 4-5,

60454300 B

delay 128
seconds

\]/ .

read OR

read control
point RA+FL,
set IN direct
cells RA+FL

reread OR

\
‘ return ’

Process Monitor Function (FTN)

delay 1
millisecond

reset function

in CM
for retry

(Continued)

Entry

Exit

Entry

NOTE
Storage move
may occur while
this function
is pending.

(A) = 1 or 2 channel numbers *2

(CM+2) =

(CM+1) =

store

channel

numbers
in CM+1

return

(A) = ghannel

additional channel numbers
(if more than 2 needed)

assigned channel

/ \ Reserve channel function
RCH

&

store
channel
number
(CM+1)

/ \ Release channel
< > function

‘ return ’

*1 RCHM will assign one of the channels requested if it can. A
and (CM+2) are used for optional channels.

*2 This entry point will not be supported

NOS.

Figure &4-6.

60454300 B

in future versions of

Reserve Channel (RCH)

4-17

Entry (A) = FWA of message (0-11)
message code (12-17)

store message
address/code

Z : l save cells 2-110B,

place message MS driver, MS

in message error processor,
buffer (up to & program
40 characters)

@

call 1DD
to dump
dayfile

store
message code,
in CM+1

(-

*1 Dayfile message function

Figure 4-7. Send Dayfile Message (DFM)

60454300 B

4-18

FTN

day-
file dump
required

PAUSE

pause for
relocation/

yes

Figure 4-7. Send Dayfile Message (DFM) (Continued)

60454300 B , 4=-19

60454300 A

Entry (A) =

Routine name

(LA) = Load address for Llocation-
free routines
Exit Exit to called routine via simulated

return jump from caller

Example: Call overlay 2XY

PLL

load
routine

set return

address
from caller
-»(LA) + 6

Figure 4-8.

(A) = 2XY
(LA) = lLoad address
RJM EXR

then core from (LA) to (LA) + 7 is

(LA) + 0 2X

Y-

load address

0

length

0100 LIM

return address from

caller of EXR

7 lst executable state-
ment address

Ve WN

program 2XY at completion does a
RETURN, which is a LJM (LA) + 5,
which will LIM (return address
from caller).

Execute Routine (EXR)

Entry (T5) =
Exit (CM+1)
Driver
Driver

Est ordinal (refer to section 2 for description
of EST entry)

The address of the initialize routines for all
drivers begins at MSFW. These routines set the
appropriate preset information for that
equipment.

through (CM+4) = EST entry bytes 1 to 4
loaded if necessary
initialized ‘

read EST, , load
MST word -t proper
MDGL driver

s, FTN
proper
driver SPLM

in

A
© jump to - set device

driver R e type in
preset MSD

*1 ESTS = FWA of EST

*2 SMS has stored the driver name in MSD when that driver was
loaded, so that it can compare new driver requirement against
the loaded driver.

Figure 4-9. Set Mass Storage (SMS)

60454300 B

4=-21

DAYFILE MESSAGE OPTIONS

A normal dayfile message is sent to the master dayfile, control
point dayfile, and control point message area. The job name is
defined in the control point area. Following are the dayfile
message options.

Option Description
(00000) Normal message

NMSN (10000) Normat message with no message at control
point

JNMN (20000 Message to master dayfile only, with job
name

CPON (30000) Message to control point dayfile only

ACFN (40000 Message to accoﬁnt dayfile only

AJNN (50000 Message to account dayfile with job name

ERLN (60000) Message to error Log only

EJNN (70000) Message to errbr Log only with job name

FLIN (400000) Flush and interlock dayfile

The FLIN option flushes the dayfile buffer and leaves the
dayfile pointers interlocked. It is used in conjunction with
any of the preceding dayfile options. 1If the message is issued
to more than one dayfile, each is flushed and left interlocked.
FLIN is used by SFM to terminate an active account, error log,
or system dayfile.

MASS STORAGE DRIVER RESIDENT AREA

Mass storage drivers are overlays loaded by PP resident in an
area between PP resident and the first word address of PP
programs. Mass storage drivers are coded such that the entry
points remain constant between all drivers.

Parameters passed to the driver are:

(T4) = channel

(T5) = equipment number
(Té6) = track

(T?) = sector

60454300 A . 4=22

The rules are:

Name is the character 6 followed by the equipment
mnemonic. :

Origin is MSFW.

First word is the address of the driver initialization
routine. This entry is used by SMS to cause
initialization of the driver. . Exit from initialization
is to SMSX. SMS enters the initialization routine with
CM to CM+4 = EST parameters, SLM-4 to SLM = MDGL word
of MST.

The entries for read, write, and position originated
at the appropriate symbolic names (RDS, WDS, EMS).
These entries are entered via return jump.

The driver must not use any direct locations except
T1, T2, CM to CM+4,

The driver and its associated error processor must

reside in RPL.

ALl drivers use the following three entry points.

RDS

Read sector

Entry driver initialized (SMS called)

(T4) = channel (if driver previously
called)

(T5) = equipment

(Té6) = track

(T?7) = sector

(A) = FWA of data buffer (502 word buffer
needed)

Exit (A) = -0, if unrecoverable error

60454300 B 4=23

WDS Write sector

Entry driver initialized (SMS called)

Exit (A)

A

EMS End mass

Entfy

ALl drivers begin at

(T4) = channel (if driver previously
called)

(T5) = equipment

(T6) = track

(T7) = sector

(A) = FWA of data buffer (502 word
buffer needed) + WCSF for WLSF

(WDSE) = Write error processing buffer

address (502 word buffer)

-0, if unrecoverable error

-1, if recovered error on previous sector;
current sector data and linkage bytes
must be regenerated and reissued

storage operation

(T4) = channel, if RDS/WDS previously
called
(TS) = equipment

location MSFW.

Use of mass storage drivers is described in detail in section 7.
Refer to table 4-3 for a list of symbols used with mass storage

drivers.

60454300 B

4-24

TABLE 4-3. SYMBOLS USED WITH MASS STORAGE DORIVERS

Mass storage driver
identification

|

|

|

|

| | |

| | |

| | |

| | |

= MSFW ‘ } FWA of mass. storage drivers

| RDS | MSFW+1 | Read sector

| I |

| WDS | MSFW+4 | Write sector

| | |

| EMS | MSFW+7 | End mass storage

| | |

| | =mmmmmmmmmmme mmmmmeee- mmmmmmoee- wmmmmmeeee |
| | Other mass storage processing constants |
| memetmeoeeo s mmmmoooeoe- et |
| BFMS | i | Sector buffer address |
| | | |
| FSMS | ‘ First data sector of file %
| | '

| | == B S ————m—— e ———————— R |
| | System sector addresses |
| = e indateda et cemmm——— mm—m———— -—=]
FNSS	BFMS+2	FNT entry (five bytes)
EQSS	BFMS+2+5	Equipment number
FTSS	BFMS+2+6	First track
FASS	BFMS+2+11	Address of FST entry
DTSS	BFMS+2+12	Packed time/date
[I I		

Whenever a PP program desires to read or write mass storage,
the program always executes a SETMS macro with the appropriate
option selected. A flowchart of SMS is illustrated in figure
4-9,

60454300 B ' 4=25

JOB PROCESSING 5

ALL jobs which flow through the system are processed from start
to finish by PP routines 1SJ, 1AJ, 1CJ, 1RO, 1RI, and (in the
case of time-sharing origin jobs) 1TA. Flow is controlled by
the queue priorities and CPU priorities, in association with
time and equipment Llimits. Depending on the resources needed by
the job, all action is-initiated, controlled, and eventually
error— or end-processed by these routines.

ALL jobs are one of the following origin types.

Origin

Type Value : _ Description

SYOT 0 System origin includes all jobs

‘ entered by the operator at the system
console, such as DIS, FST, MY1, and
so on. :

BCOT 1 Local batch origin jobs are entered
from all Local batch devices.

EIOT 2 Remote batch origin jobs are entered
from the remote lLow speed batch
terminals.

TXOT 3 ALL jobs entered via the IAF
executive (IAFEX) or time-sharing
executive (TELEX) are TXOT origin
types. .

MTOT 4 Multi-terminal origin includes jobs

which do one specific task for many
terminals while only being scheduled
into the system once.

Figure 5-1 illustrates the general system flow for jobs.

GENERAL JOB PROCESSING

The priorities are controlled dynamically at the operators
console and updated by routine 1SP. The job control (JCB) area
in CMR contains the current values of these priorities for the
system. Each job can be further restricted by the VALIDUs file,
PROFILa file, or job statement parameters, but no job can be
less restricted than the JCB. Routine 1SP also updates queue
priorities in the input and rollout queues, checks central
memory time slices, periodically calls 1CK to checkpoint all
mass storage devices and CMS to initialize or recover mass
storage devices online, issues dayfile messages for mass storage
drivers that are unable to do so, and calls OAU to process the
accounting accumulator.

60454300 A . 5-1

INPUT QUEUE
list of jobs to be processed

CARD
READER I S >
JOB CONTROL POINT
DECK
Y v
_____’,/
- - 5
STORAGE
DEVICE |-
e d .
_____/
LISTABLE ¥ /
OUTPUT
LINE / J
PRINTER < « -

OUTPUT QUEUE
list of jobs to be disposed

Figure 5-1. General System Flow

60454300 A - 5-2

Jobs enter the system at the initial (original) queue priority
for their origin type (figure 5-2). As they wait in the input
queue, they are aged. The queue priority is increased until it
reaches the upper bound priority, at which point the priority
cannot be raised, At any time, the scheduler, 1SJ, may determine
that this job is the best candidate (best job) for a control
point by an algorithm that takes into account queue priority and
resources desired (FL, etc.). It then attempts to schedule or
assign it to a control point.

scotr\
EIOT

\

. JOBNAME - INFT (O

Input queue entry

<

*1 TXOT/MTOT are started by IAFEX or TELEX and SYOT is initiated
by DSD.

Figure 5-2. Read Card Reader

The job selection proceeds in the following order.

1. The highest priority job that will fit in unassigned or
rolling memory with the service constraints FL/FLE
(individual job field lLength) and AM (maximum amount of
memory available) for the candidate's origin type.

2. If candidates of equal priority are found, the job
selected is the one residing on the mass storage device
Wwith the Lleast amount of activity. The amount of disk
activity includes no free channel, channel being
requested, and first unit reserved.

60454300 A 5-3

3. If the mass storage activity is also equal, the job with
the Largest field length is selected.

4. If no job is selected, but one was rejected due to
service constraints, it may be scheduled if no jobs have
to be rolled out. 1If this is done, its priority is set
to the lower bound priority (LP). This prevents
resources from being idle during periods of Low
activity.

When 1SJ assigns the best .job to a control point, it gets the
required FL, rolling out other jobs if necessary. It selects a
control point according to the following criteria.

1. Exact fit
2. Smallest hole that is larger than needed
3. Largest hole if none is big enough

If no control points are available or are not in the process of
rolling out, the first control point encountered with a Lower
priority than the candidate is selected to be rolled out. 1If
all control points have higher priority than the candidate or
control points are not available or are rolling out, no control
point is selected.

Once a control point has been identified, its queue priority is
set to the upper bound priority (UP) of the job's origin type
and its CPU and CM time slices are initialized.

If the job is being scheduled from the input queue, 1AJ is

called to begin the job; if the job is being scheduled from the
rollout queue, 1RI is called to roll in the job (figure 5-3).

60454300 A 5=4

JOBNAME INFT [0

Input queue

INFT [P

JOBNAME JNMW

FL area
of CM

Figure 5-3. 1SJ Prepares a CP for the Job

The job advancement routine, 1AJ, knows it has been called by
the scheduler and will call overlay 3AA (figure 5-4) to start
this job up. The job can at any time create local files, and
if the name is QUTPUT, PUNCH, PUNCHB, or P8 it is treated
special at job completion time (figure 5-5).

60454300 A 5=5

CPA FL

c
o INPUT INFT ng
CPA
Reads first control
statement, loads
first routine,
starts job
Figure 5-4. 1AJ Starts the Job
OPTIONAL
CPA FL INPUT INFT |0
@ PRFT or
PHfT
OUTPUT voee

Figure 5-5. Job Creates Local File

As the job progresses, CPUMTR and MTR periodically check all the

jobs running at control points and call 1AJ if no ac
detected (W, X, and I status zero). 1If the error fl
1AJ processes the error. 1If the error is nonfatal,
to the next control statement. If the error is fatal
statement exists, 1AJ advances to the statement foll
CPUMTR and MTR also monitor the CPU time slice, and

tivity 1is

ag is set,
1AJ advances
but an EXIT
owing EXIT,
if the job

exceeds jits time slice, its queue priority is dropped to the
lowest queue priority (lp) of that origin type. This does not

mean that the job LlLoses its control point. If 1SJ fi

60454300 A

nds a best

job in the input or rollout queues, then Low priority jobs are
candidates for rollout. Also, 1SP monitors all the contol
points, and if it detects that the CPU time slice is exceeded
before either monitor does, it lowers the queue priority to LP.
An interlock 1is provided in bit 35 (CPU time slice active bit)
of TSCW in the control point area so its queue priority is only
dropped once.

Routine 1RO may be called by 1AJ, 1SJ, DIS, and other routines
(figure 5-6). It dumps the job according to the rollout file
format, sets W, X, and I status to zero, requests the control
point be made available, and releases all FL, nonallocatable
equipment (tapes are not released, but the control point number
in the EST is set to 37B), and all files assigned to this
control-point. The job is then placed into the rollout queue
with whatever queue priority the job had when rollout was
initiated. If 1RO is called as part of special entry point
processing by 1AJ, the rollout file is called DM* and Left as-
signed to this control point. Then 1RO releases everything else
except the input and control statement file, and calls 1AJ to
advance the job. In this way FNT space is not wasted while a
job is rolled out. '

Routine 1RI reads the rollout file and reestablishes all the
files, equipment, and so on, to allow the job to continue
(figure 5-7). It sets W, X, and I status to its former values.
The control point is now a candidate for the CPU. A job always
gets a fresh time slice when it is rolled in.

When 1AJ detects ‘an end-of-job card stream, a fatal error with
no recovery, an illegal control statement, or some other fatal
condition, it calls 1CJ :to complete the job. If any of the job
flow routines ever detect an origin type which is not defined
(type not SYOT, BCOT, EIOT, TXOT, or MTOT), it calls 1CJ
immediately to end the job. This is protective coding.

Routine 1CJ locates the Local file QUTPUT assigned to this job,
if it exists (figure 5-8). It then appends the job dayfile to
the end, writes an EOI, and moves the file to the output queue
by setting the control point field to zero and setting the queue
priority to the output queue entry priority (OP)> for the origin
type. : . :

60454300 A | | 5-7

CPA FL

1AJ

INPUT INFT[SB

Release FL
and CPA L

1RO

optional

OUTPUT

JOBNAME

*2

*1 And any other local files
*2 This is the same FNT entry

Figure 5-6. Job Is Rolled Out

60454300 A 5-8

18J

1R

CPA FL

*1 And any other Llocal files

JOBNAME ROFT | O
*3

INPUT INFT (<P
%3

OUTPUT LOFT |SB
A 4

*2 Not necessarily same control point area and field lLength as

figure 5-6

*3 This is the same FNT/FST entry

Figure 5-7. Job Is Rolled In (From Rollout)

60454300 A

5-9

CPA FL

JACM
| INPUT INFT |8
s ‘ A
- v
1AJ Release input file
OUTPUT LOFT %i
Release
CPA and FL
1CJ

JOBNAME

*1 Same FNT/FST entry as local OUTPUT file.

Change OUTPUT file name to JOBNAME and file type from LOFT to
PRFT. Append dayfile onto end of OUTPUT file.

1CJ also returns all files associated with this job except
OQUTPUT type files.

Figure 5-8. Job Completes

60454300 A 5-10

JOB FLOW

This section provides an overview of priority aging, rollout,
scheduling, queues, and control statements. The details for the
routines that do the actual. processing (1AJ, 1RI, 1RO, 1SJ, 1SP,
~1CJ) are presented in another section. .

PRIORITY AGING

A job of a pérticuLar job origin type waiting in the input,
rollout, or output queue is aged if its current priority falls
between the lLower priority and the upper priority Llimits.

A job is aged by the scheduler in conjunction with the job
-control area parameters in CMR. The job control area word
is illustrated in section 2. ' ‘

For each cycle of the priority increment routine (1SP), the
counter (byte 4 of JCB) is incremented by one. This continues
until the counter is greater than or equal to the age increment
(byte 3 of JCB). At that time, the job queue priority is aged in
the. FST entry by one. Refer to the NOS Installation Handbook

for the IPRDECK entries used to establish the JCB values for

each job origin type, and the NOS Operator's Guide for the DSD
commands to dynamically alter them.

QUEUES

The queues (input, output, rollout, for example) are FNT/FST
entries in the FNT/FST table area of CMR. When a routine checks
a queue, it searches the FNTs for entries with the appropriate
file type which are not assigned to a control point.

When a job is moved from the input or rollout queues to a
control point, the file name field of the FNT word .contains
INPUT instead of JOBNAME. The control point assignment field is
set to the control point number and the queue priority is set
accordingly (input or raollout UP).

When a job is sent to the rollout queue, the FNT name contains
JOBNAME instead of INPUT. The file type is set to rollout
(ROFT), the control point assignment field is set to zero, and
the queue priority is set to whatever the control point area held
at rollout time.

When a job completes, the special FNT name OUTPUT, if one exists,
is changed to JOBNAME. The file type is changed from local
(LOFT) to output (PRFT), the control point assignment field is
set to zero, and the queue priority is set accordingly (output
OP). This is also done for special files named PUNCH, PUNCHB,

or P8 Wwith the exception that their file type is changed to

punch (PHFT).

60454300 A 5-11

ROLLOUT SCHEDULING

When a job is scheduled for rollout, the rollout-request flag,
bit 24 in word JCIW of the control point area, is set and 1RO
may or may not be called. When 1R0 is called (by ROCM) it sets
the rollout-in-progress flag, bit 27 in JCIW. When 1RO has
rolled the job out, it resets these bits to zero. Also, if 1RO
was called by a special entry point routine, 1R0 sets these
flags to zero. A special entry point job can also be scheduled
to be rotled out. In this case, when 1R0 is called it is a
regular rollout, not a response to a special entry point job.
Many copies of 1RO and 1RI can be run simultaneously.

SCHEDULER

Only one copy of 1SJ may run at any one time, and it can only be
called by the monitor function RSJM. RSJM checks the scheduler
active flag in JSCL+1 (bit 59) and if the bit is set, the
scheduler is already active. 1If the bit is not set, monitor
places a call to 1SJ in the next available PPU.

Any time the status of the system changes, 15J should assess the
status and modify system flow as needed. The scheduler selects
candidates as described earlier. It continues to select
candidates until mass storage activity reaches a given limit or
until no more candidates are found. 1In a normal job mixture,
all jobs are eventually scheduled and any minor delay in the
scheduling of one particular job is inconsequential to the total
throughput of the system.

Figure 5-9 illustrates a typical queue priority scheme.

60454300 A _ 5-12

vV 00£%S%09

gL-s

aWayog A3jLJolug ananp jesidAy

*6-6 @unbi 4

. 6000 -
1 }5000 B

4000 -

2000 -

Queue
Priority

7000 1

30(?04.

1000 -

0000

SYOT

UP+

0P+

BCOT EIOT TXOT

UP+

oPd

LP

Input Queue

UP+

OP

UP 1

LP-

OP A

MTOT

up

opP
LP

~ Rollout Queue

SYOT BCOT EIOT TXOT MTOT

UP

- LP-

UP+
UPy UPq OP-
LP-
~ OP-
0P
Lpd
oP{ LP-
LP

UP 1
oP -

UP -

oP-

< UP 4

LP-

OP-

Output Queue
SYOT BCOT EIOT TXOT MTOT

UP 1

OP+

UP -

OP-

0P~

UP

CONTROL STATEMENTS

An overlay in 1AJ called TCS can be called directly from a CPU
routine or by 1TAJ. TCS (translate control statement) cracks a
control statement and tests it for validity. Each control
statement is a call to the system to lLoad a routine whose entry
point is the statement name (such as MODIFY and COPYBR). TCS
disassembles the arguments, if any, on the control statement and
makes them available to the routine. Then a search is made to
Locate the routine. First, the FNTs locally assigned to this
control point are scanned, then the central library directory
(CLD), and then the resident central Library (RCL). If the
routine is found in any of these, the first occurrence of the
routine is loaded, the arguments are sent to it, and it begins
executing. Thus, a programmer can define a program-'or routine
local to his control point which may exist in the system already.
If the control statement is preceded by a dollar sign ($MODIFY or
$COPYBF, for example), the Local FNT scan is bypassed.

If the entry point name is not found, the peripheral Llibrary
directory (PLD) is scanned. If found, the routine is lLoaded into
a PP (set IR equal to the routine name and argument) and TCS
terminates.

If no match is found, an appropriate error message is issued to
the dayfile and error procedures are initiated by setting the
error flags and returning to 1AJ.

Before a CPU program is given control, TCS places the control
statement image which called this overlay into central memory
Locations RA+70 through RA+77. Also, the control statement
which was cracked by TCS and parameters are placed in locations
RA+2 through RA+62 terminated by a zero word. If the control
statement is preceded by a slash, the parameters are cracked in
operating system format; otherwise they are cracked in product
set format. ALL compiler (FTN and COBOL, for example) binaries
expect control statements to be cracked in product set format.

e Operating system format (6-bit ID code):
59 17 5 0

parameter (7 characters) 0 id

id 0 for all separators except = and /, and
in those cases the character is placed in
the 6 bits.

@ Product set format (4-bit ID code):
59 17 30

parameter (7 characters) 0 id

parameter String of characters up to the
separator

60454300 A 5-14

id Separator equivalence:

iﬂ Separator®
0 Continuation (for Literals)
1
3 /
4 (
5 +
6 -
7 Space
10 ;- '
17 Termination) or .

For example, the control statement
MODIFY(I,P=0,N=FILE,A,NR,X,CL)

would be passed as follows: PGNR = RA + 64B = MODIFY 118

Operating System Product Set
42 12 6 42 14 4
Rav2 |1 R Y B A R

3 59101 i ip """""" |"o'?‘£"i
4 | 0 Il 0| I | 0 I 0o |1 l
5 { N | 0 = ! { N I ol 2 |
o | rre 1 o1 }'FIEE"'"""T"B'T?"i
7 } A | 0| = { A I ol 1 |
S R N S N
S R B NI
I P R R R R P
11 atnary zeres | etnary zeres |

6-bit code is display 4-bit code is binary

character when used number.

and binary zeros when

blank. One word of zeros preceded

by other than a code 17
_ implies another control
Full word of zeros statement.
terminates control
statement.

60454300 A 5-15

The flow chart in figure 5-10 shows the flow of control statement
processing. Routine 1AJ processes CTIME, RTIME, and STIME
directly.

Local absolute files with multiple entry points cannot be loaded.
However, local relocatable files with multiple entry points can
be loaded.

The type of automatic parameter cracking depends upon whether
the load is from a system or local file. If a system load, the
default is operating system format unless *SC is specified in
LIBPECK. If a local load, default is product set format unless
a slash (/) precedes the control statement.

60454300 B 5-16

60454300 B

Figure 5-10.

I
-

read
control
statement

y

control statement
processor
searches

for special control
statement name

1

process
special
‘request

yes

no

$
present
before control
statement
name

= ®

/
present
hefore control
statement
name

yes

use operating
system format
for processing
parameters

_search FNT
for file
assigned to
this job

Control Statement Processing

found yes

(i)

| No

Figure 5-10.

60454300 A

\

search CPU
library for
control statement

Y

yes

no

search PP
library for
name, if name
is legal PP
program name

yes

no

declare
control
statement
illegal

®<_

process field
length control

Y

load program
to central
memory

L

store control
statement and
control statement
arguments in user’s
job communication
area

\J

execute
program

place name

with up to two
octal arguments
as a PP request

exit to‘
program
(no FL change)

Control Statement Processing (Continued)

5-18

SPECIAL FILE INPUT*

When the user returns the fiLg‘INPUT, file INPUT* is set up to
point to the input file, but the user cannot access it.

When a procedure file call is encodntered, the procedure file is
expanded on file INPUTx*, '

When a procedure file from the éystem is encountered, a dummy
call is generated to the CPU routine CONTROL or BEGIN (if a CCL
procedure) and the expanded file is pointed to by INPUT*.

When any combination of the preceding occurs, INPUT* is used to
Link up the several files.

NOTE

The file INPUT* may not explicitly exist for
precedure file calls. Thus there is no FNT/FST
entry, but INPUT* is pointed to by CSPW in the
control point area (bit 59 in word CSSW).

TIMED/EVENT ROLLOUT PROCESSING

When a CPU program goes into timed/event rollout, it uses the
ROLLOUT macro and specifies an event and/or a time. Routine 1RO
is called to roll the job out and create an FNT/FST with file
type TEFT (refer to section 2).

When 1SP is called by 1SJ it checks each entry in the TEFT queue
and if the rollout time period has expired it changes the entry
to a regular ROFT entry. If the time period has not expired,
1SP uses the EATM monitor function to read the event table from
MTR's field Length. It compares the events with this 18-bit
event descriptor and if there is a match 1SP changes the entry
to a regular ROFT entry (refer to section 2).

60454300 A 5-19

EESET Macro

Only PP programs may access the event table via the EATM MTR
request. Therefore, the macro EESET allows a previously set
event to be matched by an event set by a CPU program. The
format of the EESET macro is as follows.

LOCATION OPERATION VARIABLE SUBFIELDS
EESET event

event 18-bit event descriptor

The event is an 18-bit value that has the following format.

17 11 0

eq condition

eq EST ordinal of equipment on which the
system is waiting for condition to occur.

condition Variable event condition.

EESET calls CPM to enter an event descriptor into the event
table. A job must have SYOT origin to use the EESET macro.

The only PP routines currently using the EATM function are the
following. :
e CPM for EESET enter event.

¢ IMS and MSM to specify when a removable pack has been'
initialized or recovered (for missing pack name event).

e ORP to specify when a write mode permanent file is no
longer busy and to specify when a removable pack has been
returned and has no more users (for overcommitment event).

@ OFA to specify when a write mode fast attach file is not
busy.

e 1DS to specify when the operator has supplied a VSN.
@ 1MT to specify when a VSN has been mounted (for missing

VSN event) or when a tape unit has been returned (for
overcommitment event).

60454300 A 5-20"

DSD and DIS Commands’

In all DSD file displays the timed/event rollout files are
displayed as TEFT file types. In addition, the Q display has
all TEFT rollout files flagged by *%*.

The DSD command, ROLLIN,xx. may be used to roll in a TEFT job.

For a job at control point n, the DSD command n.ROLLOUT,xxxx.
will roll the job out for xxxx seconds.

~The following command to roll a Job out for a time period may
~also be used under DIS

ROLLOUT , xxXxXx.

Description of Timed/Event Rollaout

‘The timed/event rollout feature allows jobs to access system
resources as they become available. Through use of the ROLLOUT
macro, the user may request to be rolled out until an event
occurs or time period expires. If the desired event does not
occur within the specified time period, the job is scheduled to
rotl in for further processing anyway.

To determine when a specified event has occurred, a system event
table is maintained in MTR's memory. System programs can make
entries to this table to indicate occurrence of events. Routine
1SP compares the requested event with the system events recorded
in this table to determine if any matches have occurred. If a
match occurs, 1SP initiates roll in. If no one is waiting for
the system events they are cleared from the table.

ROLLOUT Macro

The format of the ROLLOUT macro is as follows.

LOCATION OPERATION VARIABLE -SUBFIELDS

ROLLOUT |addr

addr Optional address conta1n1ng
further parameters

60454300 A 5-21

If addr is not specified, the job rolls out until the operator
initiates rollin. If addr is specified, the job is rolled out
for the specified time and event description. The format of
addr is as follows.

59 29 11 0

cddr 0 evd rtp

rtp Rollout time period in job scheduler
delay intervals (0<rtp<7777B). If rtp =
0O the job rolls out for a time determined
by the system to insure that the job
will roltl in if the event for which it is
waiting for is lost or never occurs.

evd Event descriptor

If evd is nonzero, the event descriptor and rollout time period,
rtp, are placed in the control point area (TERW). When the job
rolls out it waits for the occurrence of the event in evd or

the specified time period (rtp) to elapse before becoming
eligible for roll in.

If evd is 0, the event is taken from the control point area if
bit 30 in TERW is set to indicate a valid event descriptor and
only the rollout time period is taken from addr. This option
allows the user to roLL out waiting for events that the system
specifies.

If evd equals 7700xxB, then extended timed rollout is made.
(Assume the job scheduler delay is 1 second.) Since the maximum
time rtp can specify is approximately 1 hour and 8 minutes, the
extended time rollout allows the user to roll out for any length
of time. This is a strict time rollout with no event dependency.
The job rolls out for (4096*xx+rtp) seconds.

The ROLLOUT macro calls CPM to read the rollout time and event
from the users field Length and store it into control point area
address TERW. CPM then does a ROCM and control is returned to
the user. The user then can execute until the rollout bit is
detected by MTR who initiates 1AJ, who calls 1RO0. 1In order to
insure the rollout, the user must issue a PP request, since
CPUMTR will not honor a PP request for a control point scheduled
for rollout. CPUMTR places the control point in I autorollout
status with an outstanding RA+1 request. The simplest method is
to build a dummy FET and issue the RETURN macro. This issues an
RA+1 request to CIO.

MTR detects that this control point is in I status and is
scheduled for rollout and calls 1AJ, who calls 1RO.

Routine 1RO rolts the job out and then checks control point area
address TERW. If it is zero, this is a regular rollout. If it
is nonzero, then 1RO builds a TEFT type FNT and places the event
and time Limit from UPCW into the FST. Routine 1RO then clears
TERW.

60454300 B 5-22

When the job rolls in, MTR finds the control point in I status,
and an RA+1 request. MTR calls CPUMTR with a zero request and
CPUMTR then honors the RA+1 request. " In the case of the RETURN
dummy, CIO treats it as a null operation (file does not

exist) and terminates. Then the control point can continue.

Example 1

An attempted attach results in file busy status.

Assume error processing is set. Upon restarting the job, use of
the ROLLOUT macro with evd equals 0 roltls the job out for the
time specified by rtp, waiting for the event (file ready to be
accessed) to occur. Routine ORP enters this event in the system
event table when the file becomes not busy. PFM stored the
descriptor for this event in the control point area (TERW) when
it found the file busy but it did not set the rollout flag,
allowing the user to choose whether to rollout immediately, or to
process some other function first. »

If error processing is not set the job is autdmaticaLLy rolled
out, waiting for the file to be ready to be accessed. When the
job rolls back in, the ATTACH request is retried.

The event for example 1 is as follows.

17 11 0

1st track

unit of file

When a user attempts to access files that are interlocked, the
system automatically sets the error flag and terminates the job
step until the file becomes avaijlable (unless the user is doing
his own error processing).

The user may bypass this automatic job step abort, by specifying
the NA option on the ATTACH control statement, so that the job
step is not aborted if the file is busy.

The user calling PFM via the macros provided, can avcid job step
abort by specifying error processing. If error processing is
specified, the system returns control to the user with error
status reflecting file busy. :

Example 2

Suppose that before JOB1 continues processing that it wants JOB2
(a system origin type job) to execute a certain function. Assume
JOB1 uses the rollout macro with evd = 1300 and rtp = 600. The
rollout flag will be set for JOB1 to rollout for 600 seconds or
until event 1300 takes place. Before the 600 seconds has
elapsed, suppose JOB2 makes the macro call EESET 1300, entering
the event 1300 in the system event table. JO0B1 will then be
scheduled for rollin to resume processing. If 600 seconds
elapse because event 1300 has not occurred (or the event was
cleared from the table before JOB1 rolled out), JOB1 will be
scheduled for rollin.

60454300 A 5-23

In any case, JOB1 does not know if it was rolled in because of
time or event occurrence. Hence, it is necessary for JOB2 to do
something; for example, write a code word on a permanent file
which JOB1 can check to see if the event occurred.

This job dependency can be accomplished by JOB2 attaching a
direct access file in write mode and then JOB1 doing the same.
JOB1 will wait as in example 1 for JOB2 to release the file.
However, if JOB1 gets the file first, it must release the file
for JOB2 and then attempt to attach it again. In order to use
EESET effectively, an installation must change CPM to accept
other origin types that issue EESET. This solution may cause
the filling of the event stack. So, a change to CPM warrants
careful consideration by the installation to limiting the number
of EESET requests per origin type.

Example 3

A user requests a magnetic tape with a specified volume serial
number (VSN) or a removable pack with a specified pack name.
RESEX, the resource executive which is called to allocate
magnetic tape and removable pack resources, will effect a
timed/event rollout if it does not find the specified tape or
pack mounted. The event used is the sum of the bytes in the VSN
or pack name, truncated to 12 bits. The equipment portion of
the event descriptor is 76B, which is equivalent to the
timed/event EST entry.

When 1MT reads the VSN from the tape or IMS and MSM initialize

or recover a removable pack, the matching event is entered into
the event table in MTR via the EATM function. Routine 1SP then
detects a match and has the job scheduled for rollin.

FNT INTERLOCKING AND SCHEDULING

A transition state is defined to be the state in which a job may
be in the process of rolling in or rolling out. The concept of
the individual FNT dinterlock provides better protection for jobs
and files that are in a transition state than was previously
provided by the technique of disabling job scheduling. The
following paragraphs describe the various FNT interlock
mechanisms, how they are used to protect jobs and files that are
in the transition state, and the impact they have on scheduling.

60454300 B ' 5-24

INDIVIDUAL FNT INTERLOCK

Interlocking an individual FNT entry is accomplished through the
monitor function SFIM (set FNT.dinterlock). This function sets
or clears an interlbck bit for a particular FNT entry. The
interloc¢ck bit for each FNT entry is kept in the FNT interlock
table which is appended to the FNT. The interlock on an
individual FNT entry should be held for the shortest time
possible to avoid performance degradation.

This technique is used‘in the following cifcumétances:
@ Bringing an input file into execution.
e Performing a job advance.
e Rolling in or rolling out a job.
e Terminating a job. |
e Altering the FNT or systém sector of a queued file.
e Moving a file from one queue to another.
e Assigning a queue file to a control point.

The format of the SFIM monitor function 1is described in the NOS
Systems Programmer's Instant.

GLOBAL FNT INTERLOCK

The FNT may be globally interlocked by the reservation of the
FNT pseudo—-channel (FNCT). The use of this mechanism is to
avoid conflicts which may occur when more than one system
routine attempts to update the FST entry of a queued file. The
global interlock is only used when the contents of queued file
FSTs are to be altered. This interlock should be used with
caution as the priority evaluation scheme is disabled by it.

In cases where the individual FNT interlock (SFIM) and global
interlock (FNCT) are both required, the SFIM interlock should be
obtained first and then the FNCT channel reserved. This order
must be maintained to avoid a deadlock situation.

An example of where the FNCT interLock is used is the bSD
‘command ENQP. Routine 1SP is periodically called to do queue

60454300 B : 5-24.1

priority evaluation and updates the priority field in queued
file FSTs. DSD updates the priority field in a queued file FST
in performing the ENQP command. If both DSD and 1SP tried to
update the same queued file FST, a conflict would occur. DSD
performs the following sequence to avoid the possibility of
making a conflicting ENQP entry. First, the desired FNT is
interlocked via the SFIM mechanism. Then the entire FNT is
interlocked by reserving the FNCT pseudo-channel. After DSD
updates the appropriate information in the FST, the
pseudo-channel is released, clearing the FNCT interlock, and the
individual FNT interlock is cleared using a SFIM monitor
function.

"FNT ENTRY INTERLOCK

The FNT is also globally interlocked by those system routines
making new FNT entries by the reservation of the FNT entry
pseudo-channzt (FECT). This mechanism guarantees that a system
routine may determine where within the FNT to write the FNT/FST
entry without being disturbed by another system routine making
FNT/FST entries.

An example of the use of the FECT interlock mechanism is found
in routine OBF. Routine OBF obtains the FNT entry interlock by
reserving the FECT pseudo-channel. The FNT is then scanned for
an empty position. Routine OBF writes the FNT/FST entry at this
location and then releases the pseudo-channel, clearing the FECT
interlock.

JOB ADVANCEMENT

The individual FNT dinterlock must not be set on the job's input
file in order for the job to be advanced. The job advancement
process automatically sets the FNT interlock on the job's input
file to indicate that it is in a transition state. Thus, the
FNT interlock is always set for a job if the job advancement flag
(bit 53 in control point area word STSW) is set. (The converse
of this is not true; that is, the presence of the FNT interlock
does not imply that the job advance is set for the job.) The
issuance of the JACM (job advancement control) monitor function
by the system routines involved in the advancement process (1AJ,
1RO, and 1CJ) clears the FNT interlock when the job advance flag
is cleared. To facilitate the setting and clearing of the
individual FNT interlock during job advancement, all jobs have
an input file whose FST address is contained in control point
area word TFSW bits 59 through 48. The job advancement process,
including the JACM function, sets or clears the individual FNT
interlock for the FNT/FST entry pointed to by TFSW.

TRANSITION STATE SCHEDULING
For system routines to properly control transition state
activity it is necessary to set the FNT interlock on the queued

file or input/rollout file being manipulated before any
transition activity may take place.

60454300 B ' - 5-24.2

The following example shows how the individual FNT interlock is
used during the rollin and rollout transition states. In -
following the example, remember that the same FNT position is
occupied by the job's rollout (when the job is rolled out) and
the job's input file (when the job is rollted in).

In the case of rolling in a user job, the scheduler (1SJ)

selects the job and then sets the FNT dinterlock on the rollout
file before assigning it to a control point. During the rollin
process, 1RI replaces the FNT/FST entry for the rollout file with
that for the job's input file and sets this FST address into
TFSW. When 1RI requests the job to be advanced, the FNT
interlock is cleared.

In the case of rolling out a user job, the rollout reguest (ROCM)
issued by the scheduler causes the job advance flag to be
checked. If the FNT interlock (on the input file) is already
set, the job advancement is requeued for reissuing. If the
conditions for job advancement are met and the FNT interlock is
not set, both the FNT interlock on the input file (as determined
through the TFSW entry) and the job advance flag are set, and
1TAJ is called. Then 1AJ calls 1RO. Routine 1RO writes the
rollout file FNT/FST entry at the address specified by TFSW and
issues a JACM function to clear the job advance flag, the FNT
interlock (which is now on the rollout file), and selected
control point area words including TFSW.

With the individual FNT interlock structure, system routines are
able to identify when transition states are completed by the
successful issuance of their own FNT interlock request. This in
turn prohibits a transition state from occurring while they
perform their specified function on that job or queued file.

SPECIAL PROCESSING

This section overviews the processing of subsystems, special
entry point jobs, and special RA+1 requests.

SUBSYSTEMS

A subsystem is a special type of job with many privileges not
granted to user jobs within the system. Some of the
characteristics of a subsystem are:

@ Cannot be rollted out except in system checkpoint
situations.

@ Can make use of the intercontrol point communication and
special RA+1 requests (SIC and RSB) for receiving and
sending data buffers.

@ Can get a CPU priority above user jobs.

e Need not be restricted by JCB or VALIDUs; however it must

have a user index set in UIDW, in order to access
permanent files.

60454300 B 5-24.3

® May elect to run at a specific control point.
® Has an implicit special entry point (SSJ=) status.

e Can request the CPUMTR to load a PP routine whose name
begins with a numeric (RA+1 call SPC). (Any PP request
from a normal job must be for a PP routine whose name
begins with a lLetter. ‘Any other PP call aborts the CPU
program.)

In order for a job to qualify as a subsystem, it must satisfy
each of the following requirements.

e 'Have a queue priority greater than LSSS (defined in
NOSTEXT) and have a byte for it in the SSCL words in CMR.

e Have an entry defined in 1DS so that it can be called
~from a DSD command. : : .

e Have a unique queue priority, since it interacts with the
system based on its queue priority and not on its user
index, name, or control point number.

The current subsystems and theijr queue prior1t1es are described
as follows.

Subsystem Symbol Queue Priority

Deadstart Sequencing DSPS 7777
Time-sharing (TELEX or IAF) TXPS 7776
Remote Batch (EI1200) : EIPS - . 7775
Unit Record (BATCHIO) : BIPS 7774
Magnetic Tapes (MAGNET) MTPS . 7773
Transaction (TAF/TS,TAF/NAM) TRPS 7772
Time-sharing Stimulation ‘

- (STIMULA) STPS 7771

Network Interface

Processor (NIP) NMPS 7770
Remote Batch Facility (RBF) RBPS 7767
CYBER Data Management

Control System (CDCS) CDPS 7766
Message Control System (MCS) MCPS 7765
Mass Storage Control (MSM) MSPS 7764

Subsystem Startup

A subsystem has a PP program that initializes the subsystem.

For example, TELEX has 1TD; MAGNET, 1MT; EI200, 1LS; and so
forth. In many cases, the PP program is also the driver for the
subsystem in addition to performing its initialization. As an
example in this discussion, the initialization of the remote

batch facility (RBF) subsystem is used. The PP .routine 1SI
performs the control point initijalization for RBF (as well as
several other subsystems).

The jobs for subsystem initialization are entered into the input
queue by 1DS functions 32 and 33. Function 33 is used when the
subsystem is activated by default when an AUTO. is done;
function 32 is used when the subsystem is activated by entering
the DSD command for the individual subsystem., Routine 1DS

60454300 A 5=25

maintains a table of parameters from which the FNT/FST input
queue entries for the subsystems are built. An entry in this
table has the following format.

byte O byte 1 byte 2 byte 3 byte 4
qap pp cp sm sb

qp Subsystem queue priority as described previously

pp Name of the PP processor that performs the
subsystem control point initialization

cp Relative control point number required by the
subsystem .

sm Mask bit setting (12 bits) that corresponds to

the subsystem enabled/disabled bit for the
subsystem in SSTL
sb Byte in SSTL to which sm applies

Subsystems have a requirement to reside at a given control point
in order to minimize the system overhead used by the subsystem
(for example, never storage moved). The number 1 for c¢p
indicates that control point 1 is required; 2, control point 2
required; and so on. If cp is greater than 40B, the required
control point is determined as the system control point minus 1
minus the complement of c¢cp. Thus, the value 77B indicates that
the Llast control point is required; 76, last control point minus
1 is required; and so on. If a rollable job is at the control
point, it is rolled out so that the subsystem may have the
control point it requires.

The following octal values are referenced through the symbol
1ASD.

Subsystem ap :1:] cp sm sb
TELEX/IAF TXPS 1TD 1 2000 1
EI200 EIPS 1Ls 77 1000 1
BATCHIO BIPS 110 76 4000 1
MAGNET MTPS 1MT 75 0400 1
TAF/TS TRPS 1TP 2 0200 1
TAF/NAM TRPS 181 2 0004 1
NIP NMPS 181 74 0002 1
RBF RBPS 181 73 0001 1
STIMULA* STPS 1TS 77 0000 0
Mass Storagex MSPS CMS T4 0100 1
cDCS CDPS 181 71 1000 2
MCS MCPS 181 72 2000 2
Deadstart»* DSPS SET 1 0000 0

When 1D0S is called to issue the subsystem jnitialization jobs
through an AUTO. or an individual subsystem DSD command, such as
TELEX. or n.RBFffff., it builds an FNT/FST entry using data from
this table. The FNT/FST produced as the result of an n.RBFffff.
command would have the following format.

60454300 A 5~26

s9 53 47 41 35 7 1 5 0

1 .8 I Cen SYOT |INFT 0
(pp) L Gion) | (f1)

o | 77 | FiEf -~ | & | RBPS
. . ~{ap)

pp Controlling routine

cp - Control point required

sn Job sequence number

jot Job origin type

ft File type

ffff Procedure file sequence number

fL Field Length

ap Queue priority

Eventually, 1SJ is initiated and if no other jobs are found of a
higher priority (that is, other subsystems), it selects this job
as the best candidate for scheduling. It then calls its 3SA
overlay to schedule this candidate as a special subsystem since
its queue priority is greater than LSSS. The FNT/FST entry and
the three subsystem control words SSCL, SSCL+1, and SSCL+2 are
read. If the byte in the SSCL word for this subsystem is
nonzero, then the subsystem is already active and so all
interlocks are cleared and the PP is dropped. If the subsystem
control byte is zero, then the required control point must be
assigned for this job. 1If the requested control point is = °
occupied by a Llower priority job, the job is rolled out so that
the control point can be used by the subsystem. 1If the job at
the control point is of a greater priority than the subsystem,
the subsystem uses the next available control point.

When the control point becomes available, it is assigned to the
subsystem. The control point number is entered in byte 4 of the
FNT entry and in the subsystem control word. Protective coding
prevents a subsystem. from requesting a control point which is
not defined in the system. The control point area is then built
with all Limit values set to unlimited/infinite.

The control statement pointer (CSPW) is set to indicate an EOR
on the input file., Default family information is set into PFCW
and the family count incremented. The subsystem's queue
priority and a CPU priority of MRPS-2 are set in JCIW. The
procedure file sequence number is set in CSBW for use by 1SI.
The exit mode 7007 is set in the control point exchange package.
The scheduler active bit is cleared from JSCL+1, the FNT
interlock cleared, and the job name written into this PP's input
register with an exit to PPR so that the PP program to
initialize the subsystem is loaded.

Once the PP program is loaded into this PP, it initializes the
control point field Length, and so on, to fit the requirements
of the subsystem, set up a control statement stream or procedure
file call (for TAF, NIP, RBF), and call 1AJ to process the
control statement stream which brings the subsystem dinto
execution.

60454300 A ' - 5-27

SPECIAL ENTRY POINTS

Many system operations can be performed more efficiently by a
CPU routine rather than a PP routine. However, normal CPU
routines are restricted by the system from accessing system
information. To allow CPU routines to perform restricted system
operations, special entry points are used. That is, a CPU
routine using special entry points can access restricted system
information such as CMR. ALl special entry points are

three characters in lLength followed by an equal (=) sign.

The special entry points available are the following.

Special Entry Point Description

ARG= Suppress arguments processing (RA+2
through RA+63)

DMP= Dump (save) previous job before load

RFL= Automatic FL specification for load

MFL= Minimum FL specification for Lload

SDM= Suppress control statement dayfile
message

SSM= Secure system memory

$SJ= Special system job specifications

VAL= Define job as a validation processor

A CPU routine with any of the preceding special entry points
defined is handled specially by SYSEDIT. That is, SYSEDIT
appends an extra word (SEPA) to the CLD entry for this routine.
This word is a condensed version of the special entry points
defined in the routine and are used by 1AJ when the routine is
loaded. The format of SEPA is as follows.

59 17 0

SEPA flags sa
flags Each bit set indicates the following.

Bit Description

59 Indicates special entry point table entry

58=-54 Zero

53 ARG= entry point present

52 DMP= entry point present

51 SDM= entry point present

50 SSJ= entry point present

49 VAL= entry point present

48 SSM= entry point present

47-36 Zero

35 Restart rollin

34 Zero

60454300 A 5-28

Bit Descriptidn

33 Suppress DMP= on control statement call

32 ‘ Only create DM* with nothing on it

31 Dump FNT entries, control point area and
field Length, to file DMx*

30 Create file DM* as an unlocked file

29-18 0, for dump of full FL; nonzero .for dump of
FL* 100B of FL

sa SSJ= parameter block address

AlL normal ABS entry point names in the CLD will have bit
59 of SEPA equal to 0.

Routine 1AJ detects the SEPA word and processes the load
accordingly. System routines that are called via special
entry points include CHKPT, CPMEM, and RESEX. These routines can
be called from a PP or via an RA+1 request summarized as follows.

RA+1 PP Request CPU Request

Reguest Processor Processor Description
CKP SFP CHKPT Checkpoint request
DMP SFP CPMEM Dump FL
REQ SFP RESEX REQUEST macro call
LFM/PFM LFM/PFM RESEX Tape/pack request

These CPU routines can be called by an RA+1 request or by another
PP routine. (When RA+1 is used to make the call, autorecall is
designated.) The routine names CKP, DMP, and REQ must not be in
the PP Library since these calls are processed by SFP. In order
for the PP request processor (SFP, LFM, or PFM) to call the CPU
routine, the entry point name (which is the same as the RA+1
request) is placed in SPCW in the control point area. The PP
request processor can perform the following.

® Set any completion or status bits in the requesting jobs
FL.

e Set bits 38, 39, and 40 of SPCW as desired.

e Write its own PP input register image in RA+1 so that
this PP routine is called upon completion of the CPU
routine.

e Set rollout flag (ROCM function). ,
Routine 1AJ picks up SPCW and Lloads the appropriate CPU routine
for the specified entry point name. The upper six bits of SPCW
are used as an interlock to prevent more than one call at a time
from being processed. This means that one routine using special
entry points cannot call another such routine. The upper six
bits of SPCW are equal to 77B if such a routine is active. The
CPU request processor contains entry points for the system
function desired. For instance, RESEX has entry point names REQ,
LFM, and PFM. When the PP request processor has completed
setting up SPCW, it drops and 1AJ continues the processing.
Routine 1AJ rolls out the calling CPU routine (filename is DMx)

60454300 A , 5-29

if a DMP= entry point exists for the CPU request processor
routine to be loaded. 1If a parameter block address has been
specified in the SPCW word, 1AJ picks up the parameter Llist and
stores it in RA+30B through RA+47B. The SPCW word is stored in
Llocation RA+27B (defined by symbol SPPR), as shown in figure
5-11. (This is available only if DMP= has been specified.)
Later, this parameter List will be available to the CPU request
processor. Now the CPU routine is loaded and processing begins
at the appropriate entry point. Prior to normal termination,
the CP request processor can set a return status in RA+27B
(SPPR). This status is later stored in bits 35 through 24 of
SPCW by 1RI.

When 1AJ detects that the CPU request processor has completed,
it calls 1RI to perform the following.

¢ Store the return status in SPCW.
® Retrieve the parameter block from RA+30B through RA+47B.

e Reload the control area and job's FL from the DM*x file,
if it exists.

e Store the updated parameter block back into the job's FL.
e Clear SPCW word.

Routine 1AJ now restarts the original calling program where it
left off.

60454300 A 5-30

RA+O

RA+1

(SPPR) RA+2’78

RA+ 308

RA+4?8

(PGNR) RA+64g

Figure 5-11.

60454300 A

20B word parameter block
stored here (if program requires
more than 20B words, it must
read the DMP file DM¥). Only
available with DMP= special
entry point. "

- Contents of SPPR stored

here when loading CPU
processor. CPU processor
may put a status in byte
2 for return to the PP
calling program.

Cleared to indicate call
was initiated by a PP-
request processor (other—
wise nonzero indicates
normal control statement
initiation).

Field Length of Loaded CPU Request Processor

wi
[}

31

ARG= Special Entry Point

ARG= is used by a job wishing to do its own control statement
argument processing. If present, arguments are not passed to
RA+2, but the entire control statement image, including statement
lLabel and other options ($,/), is placed in RA+70.

DMP= Special Entry Point

A program using the DMP= entry point should set up bits 35
through 18 in SEPA with a PP routine (in the case of the control
statement or macro DMP it is done automatically) as previously.
described.

The DM* file is the rollout file. The only difference is in the
FNT. If it were a rollout file, then the FNT would be as
"follows.

59 17 1 5 Q0

, job type cp
job name org |ROFT| =0

However, as a DM* file the FNT would be as follows and the file
remains attached to this control point.

59 o .17 11 5 0

job | type cp

DM* org |LOFT{ no.

DM* is not a legal file name and a CPU user cannot create a file
whose name contains special characters. However, a CPU routine
may read or write such a file if it already exists. Hence, 1RO
must be asked to create the DM* file if a special entry point
job needs to use the file.

The flow of a DMP= request is as follows.

o 1AJ finds this control point jdle. That is, W = X = R =
0 or DIS calls 1AJ directly.

e 1AJ calls 1RO, which creates a rollout file as specified
in bits 35 through 18 of SEPA. The file will be named DM=*
and left attached to the control point as a local file.

e 1AJ then loads the CPU program containing the entry point
name specified in SPCW.

e The CPU processor completes normally (END or ABT).
@ 1AJ is called to advance the job; it detects that a DMP=
has just completed and calls 1RI to restore the control

point FL and control point area from the DM* file.

e 1AJ advances the job or restarts the previous job.

60454300 A : 5=32

Figures 5-12 through 5-14 illustrate the DMP= processing while
figures 5-15 through 5-21 illustrate the flow charts for this
procedure, using DMP as a example.

RFL= Special Entry Point

When a program with RFL= is loaded from the system, the
program’'s field Length is set to the value of RFL= (rounded to
the next higher 1008B).

MFL= Special Entry Point

Same as RFL= except nothing is changed if the RFL (as set by the
last RFL control statement or by the last SETRFL macro call) is
greater than the MFL= value (if present RFL> MFL=, then use
present. RFL value).

SDM= Special Entry Point

For programs with SDM= entry points, no dayfile message is
generated on the control statement call. The program should
issue its owWwn messages. Using ACCFAM as an example, the

password on a USER statement should not appear in the dayfile.
When USER,ABCUSER,PASSWRD. is issued, ACCFAM using an SDM= entry
point can strip off the password and issue USER, ABCUSER,. to the
dayfile. :

60454300 A 5-33

Step 1 (temporary roliout)

System

>

—

DM file

Control point area

FNT/FST

RA

Job field length

FL

Figure 5-12. DMP= Processing (1AJ Calls 1RO)

60454300 A 5-34

Step 2 (DMP= job load and execution)

Control point areq

FNT/FST

RA

System

-

DMP= binary

FL

Job field length

N—

DM file

_Figure 5-13.

60454300 A

1AJ Calls LDR to Load DMP= Program

Step 3 (rollin DM file)

Control point area

FNT/FST

RA

Job field length

FL

System

>

~

DM file

Figure 5-14. 1AJ Calls 1RI to Restore the Job

60454300 A

can
we advance
this job

1RO
- .called

process
control

statement

search
- CLD

Y

did
we find a
DMP =

yes

~"has
1RO/1RI
just com-

control
statement

yes

call
1R0

call
1Rl

search
CLD

set up LDR
to load
CPMEM

\

load
routine

executive
loaded
routine

60454300 A

Figure 5-15. General Flow

Figure 5-16.

60454300 A

Previous joh
was not DMP =

can
we advance
this job

yes

process Crack control statement
control DMP (X, Y)
statement ,

this is not
ng aDMP=job
yet
search Find DMP
CLD asa
part of
* CPMEM

-did
we find a
DMP =

yes

CPMEM has
a DMP = entry
point

Pass 1 (Job Flow Has Come to a DMP
Control Statement)

60454300 A

Figure

1R0
called

5-17.

1RO has not
been called yet

no

Pass 2

call
1RO

1RO

called
yes
1RO was called
last time
TCS)=

process TCS has a trap for DMP = already
control found so it doesn’t crack the
statement control statement again.

has
1RO/1RI
just com-
pleted

DMp
control
statement

setup LDR

We called
1R0 in the
last pass

to load
CPMEM

Figure 5-18. Pass 3

60454300 A

load
routine

execute
loaded
routine

CPMEM has completed, job needs to advance to next
control statement

yes

1RO
called

yes

TCS)=

Process
control
statement.

60454300 A

TCS uses DMP = last control statement in preset and
does not crack the hew control statement.

has
1RO/1RI
just com-
pleted

call
181

Figure 5-19. Pass &

1RO

called
yes

process
control
statement

This time TCS cracks the new control
statement. Preset knows that 1RI was called
and we are now ready to get the new
control statement.

has
1RO/1RI
just com-
pleted

1Rl just
completed

Load routine

DMP search which may not
control CLD have a DMP =
statement entry point*

load execute
0a tine | | 0adled
rou routine

*1 A special entry point job cannot injtiate another special
entry point job

60454300 A

Figure 5-20. Pass 5

5$8J= Special Entry Point

Programs with S$SSJ= entry points are defined as special system
jobs. The address specified by the SSJ= entry point, determines
the start of a parameter area where the user accounting control
words from the control point area are temporarily stored to

allow the special system job access beyond the user's validation.
When the special system job completes (or aborts) the user's
validation parameters are retrieved from the parameter areas
within the special system job's field lLength and restored to

the control point area. ALl Local files created by the special
system job (ID=SSID=74) are returned before normal control
statement processing is resumed. Whenever an SSJ= job creates

a file, the FST ID field is set to SSID (74B). 1In this way,

1AJ can ensure that any files attached to this control point
during SSJ= processing are released prior to returning control to
the normal user.

The common deck COMSSSJ 4is provided to supply the calling
program with special system job parameter equivalences.

An RFL= entry point must precede the SSJ= entry point to allow
SYSEDIT to verify that the parameter area fits within the
special system jobs field Length. If this condition is not
satisfied, the SSJ= entry point is considered a normal entry
point for the program and no special processing will be done for
it. The only acceptable order is:

ENTRY RFL=
ENTRY SSJ=

The first word of the parameter area (SPPS) is used to set the
control point area values. If it is zero, the current values
are retained. Limits for these values are:

0 < CPU priority < 70B ,
0 < queue priority < MXPS+1
0 X< time Limit < 777778

Any other values are ignored. Thus, it can be ensured that a
task does not get a time Limit error, that a task has a higher

CPU priority than a normal job, and so on. Values are reset when
the task terminates.

60454300 A 5-43

The SSJ= parameter block format is as follows.

59 .47 23 17 11 0
SPPS o time limit pr?;gy ooy
uIbns ' | user number a | user index
ALMS | éxoct copy of control point areg word AI;MW
ACLS -exact copy of controi point area wérd ACLW
AACS exact copy 6f control point area word AvACW

The entire SSJ= block is swapped with the control point area
values unless word 0 is zero. If word 0 is zero, then just
store the user's control point area in the 5-word block. In any
case, when the SSJ= completes, the 5-word block is restored into
the user's control point area. Thus the S$SSJ= program can and
-does place any values 1t sets in this block into the control
point area. : :

That is the way that ACCFAM sets up the user verification area

in the control point area, and the way that CHARGE clears the
VAL= flag (bit 17) in UIDW. Also, the swap allows the SSJ=
program to specify Ul = 3777778 for accessing validation,
accounting, and resource files. If the $SJ= user defines SSJ= as
0, then the swap does not occur, and all files created by the
SSJ= user do not get ID = 74B., The files remain for the caller,
but the job gets S$SJ= privileges (SIC, RSB, and so on).

VAL= Special Entry Point.

When validation is enabled, the system aborts any job of
nonsystem (SYOT) origin which attempts to lLoad and execute as
the first control statement, any routine which does not have a
VAL= entry point. This is the method employed to check '
validation. The first two or three statements of a job stream
must be job, USER, and CHARGE (if needed). USER causes the
Ltoading of ACCFAM, and CHARGE causes the lLoading of CHARGE, both
of which contain VAL= entry points. .The system allows these
routines to run, and assuming that they do not abort the job,
they enter this job stream into the system. Once they are done,
the VAL= system checking is no lLonger done for this job. If a
user did not have a USER statement as the second statement, it
forces a Load of a routine without a VAL= entry point, and the
job is aborted by the system.

60454300 A ¢ 5~b44

SSM= Special Entry Point

The SSM= entry point causes the secure system memory status to
be set in the control point area.: The setting of the secure
system memory bit (bit 59 in DBAW) prevents the dumping of any
portion of the job's field Length. ‘

SPECIAL RA+1 REQUESTS

The following RA+1 requests can be used only by a subsystem.

@ SIC
® RSB
e SPC

SIC and RSB can also be used by S8J= or queue priority greater
than MXPS type jobs. SPC is used to call special PP routines.
SIC and RSB are used for intercontrol point communications.

Special PP Calls

A normal CPU routine may request only PP routines whose name
begins with a Letter. This is a protective feature to keep
normal jobs from accessing certain system PP routines. By
convention, any PP routine which should be available to a user,
and is coded in such a way as to keep from destroying the system
if called by an improper request, has a lLetter as the first
character of its name. Other restricted PP routines have a
number as the first character their names.

"The SPC request allows a CPU routine to call a special PP
routine (such as IAF or TELEX calling 1TA). The SPC request is
as follows.

59 : d 17 0

RA +1 SPC - 0 addr

addr First word address of a List of names of the
PP routines desired and their arguments. The
List is terminated by a zero word.
In a SPC request, the following conditions apply.
® Autorecall is not honored.

e If the addr word is cleared, the request has been honored
and the PP routine started. ‘

o If the addr word is unchanged when the CPU regains
control, the PP routine was not started (possible PP
saturation, for example.

e The call is honored only for jobs whose queue priority is
greater than MXPS. ALL other job steps are aborted.

60454300 A 5

45

The format of location addr is as follows.

59 41 35 0

addr PP routine 0

) argument
desired qu s

Intercontrol Point Communication

The centrol point concept allows each control point to run
independently of any other control points in the system. In
addition each control point is protected from any other control
point destroying any part of its field length. In some cases,
however, it is necessary for one control point to communicate
with another, as in TELEX to TAF/TS, and RESEX to MAGNET.

A subsystem or any program with SSJ= or a queue priority greater
than MXPS wishing to communicate with some other control point
(maybe another subsystem) by sending information, can set up a
communication block using ICAW in the control point area and
transfer it to a designated control point. Also, it may receijve
a block of data from some other control point (which may also be
another subsystem).

The control of the transfer is based on the subsystem's queue
priority (which is why they must be unique). The buffers are
defined in ICAW. The SIC and RSB RA+1 requests are used for

this communication.

SIC Request
The SIC request is used to send an intercontrol point data block

from a control point program to the specified subsystem. The
format of the request is as follows.

59 40 35 17 ' 0

1
RA+ 1 SIC Al o buff st

A

r 1 if autorecall is desired (bit 40)

buff First word address of the buffer to be

transferred to the subsystem
st Address of status word for the transfer

The format of Llocation st is as follows.

59 41

29 0
Y/
st bn sqp /////
i
bn Buffer number of subsystem to transfer to
sqp Pestination subsystem queue priority

60454300 A 5-46

A block starting at buff will be moved to the indicated
subsystem. The block Llength is specified in bits 17 through O
of the first word of the block (buff), which incluydes this
header. The block Length must be less than 101B (to force
CPUMTR in MTR mode; this operation must be very fast).

NOTE

The request is honored only from jobs with
queue priority greater than or equal to MXPS
(subsystem status), or an $SJ= entry point
defined, or with access bit CSTP (user may
access special transaction functions) turned
‘on. If these conditions are not met, the
call is treated as a call for a PP routine.

60454300 A 5-47

After the request is processed, Location st has the following

format.

59 41

st bn sqp reply

bn Unchanged
sap Unchanged v
reply 1 If transfer completed successfully

3 1f designation subsystem is not present in
the system

5« If subsystem buffer
moved, or subsystem job is advancing

7 If block length as specified in the first
word is Larger than that permitted by the
subsystem

11 1If destination buffer

subsystem

is full, subsystem being

is undefined by the

The format of the buffer block to be transferred is as follows.

59 11 0
buff +0 0 b!o<_:k length
=n+1
+1 1st data word
+2 2nd data word
[J []
e N . by
* []
+n—1 n—-1 data word
+n nth data word

NOTE

n is less than or equal to 100B so entire
block Length is 1018B.

- —— -

*1f autorecall
until condition 5 ends.
buffer is full by setting the first word
That is, if the first word of the buffer
nonzero it cannot receive data; if it is zero, it
receive data.

is specified, the control point remains in recall
The subsystem may indicate whether its

in the buffer nonzero.

in the subsystem 1is

is ready to

60454300 A 5-48

RSB Request

The RSB request is used to send an intercontrol point block from

a subsystem to the calling control point; if no subsystem is

specified, from absolute CM. The calling routine must have an
S$SJ= entry point defined.

The format for this-call is as follows.

59 40 35 29 17 0
%
RA+1 RSB gr% 0 sqp st
r -1 if autorecall desired (bit 40)
sqgp Subsystem queue priority (or control point to

read). If zero, then block is read from
absolute memory or relative to caller's control
point area. '

st Address of status for the read.

The format of Location st is as follows.

59 47 35 17 0
st 0 wC 4 addr buff
Qc Number of words to read.
addr Address to read from CM or buffer address
relative to the subsystem.
buff Address of buffer to receive data in this

control point's field lLength. When sgp = 0, the
contents of buff determines whether the read is
from absolute CM or relative to the caller's
control point area.

If buff is less than 0, the read is from absolute CM and addr in
the st word is the absolute address in CM to begin the read.

If buff is zero or greater, the read is relative to the caller's
control point area, and buff contains a List of addresses
located within the control point area which are to be read. The
list ends at wc or a zero lList entry. The contents of the
control point area address read is stored in the buff Location
which contains that address.

Location buff is a flag denoting a read from absolute memory or

relative to the control point area in the case where sqp is 0.
The calling program must have an SSJ= entry point.

60454300 A 549

After the request is processed, the format of location st is as
follows.
59 47 35 17 0

st reply wCe addr buff

reply 4000B Transfer completed successfully
2000B Subsystem not present

WcC Unchanged
addr Unchanged
buff Unchanged

If sqp is nonzero, the buffer is filled. 1I1f sgp is zero and
buff is less than zZero, buff is filled from absolute memory as
specified in the addr field. 1If sqp is zero, and buff is
greater than or equal to zero (control point area read), then an
example of this format is as follows.

59 0

buff +0 1

+1 STSW

+2 STSW-~178B

. .

4 :: ™ ;:

I’
+WC-2 | . MS1W
+WC~1 APJW

In the preceding example, buff+1 contains the job status word
from the control point area; buff+2 contains the second word of
the exchange package area (from the exchange package area);
buff+wc=2 is the first message buffer area; and buff+wc—-1 is the
program number area. »

NOTE

The buffer's length is wc words. It is not
possible to get the first word of the
exchange package area since the address would
be 0 relative to the control point area and
any 0 word ends the list. It would be
necessary to know the absolute address of

the control point area to get the first word
of the control point area.

The above is an example and is not intended to imply that only
the control point area shown can be read. .

60454300 A 5-50

JOB FLOW 6

System job flow is controlled by routines 1SJ, 1SP, 1AJ, 1CJ,
1R0, and 1RI.

JOB SCHEDULER =~ 1SJ

The job scheduler (1SJ4) scans the FNT/FST entries Looking for
files of type input (INFT) or type rollout (ROFT). It builds
tables which it uses to determine which of the jobs in the input
or rollout queue based on priority are to be assigned to a
control point and started (Table 6-1). Routine 1SJ rolls out
any jobs which have a lLower priority and attempts to start the
best job. If 1SJ cannot find a best job to start or cannot get
enough resources for the best job, it drops.

The next time 1SJ is called, the best job may not be the same
one picked the last time. A best job is only guaranteed a
startup if the resources necessary are available at the time the
job is being prepared. ‘

Routine 1SJ works with the current system status. Whenever many
jobs make changes, these changes affect 1SJ only while it is
executing. The JSCL and JSCL+1 words ensure that only one 1SJ
can run at any time in the system. The scheduler cycles itself
until no jobs remain to be scheduled or a certain mass storage
activity threshold is reached. This ensures that the system is
not constantkty scheduling jobs in and out and thereby wasting
computer resources.

The scheduler selects the candidate by using the subroutine
Search For Job (SFJ). The selection is done on the following
basis.

1. The highest priority job that will fit in unassigned or
rolling memory within the service constraints FL
(maximum individual job field lLength), FLE (maximum ECS
field length), and AM (maximum memory allowed) for the
candidate's job origin type.

2. 1If candidates of equal priority are found, the job
selected is the one residing on the mass storage device
with the least amount of activity. The amount of disk
activity is determined by the following factors:
channel busy; channel being requested; and unit
reservation.

3. 1If the mass storage activity is also equal, the job
with the largest field Llength is selected.

4., If no job is selected, but one was rejected due to
service constraints, it may be scheduled if no jobs
have to be rolled out. If this is done, the job's
priority will be set to its origin type's lLower bound.
This prevents resources from sitting idle during
periods of Low activity.

60454300 A 6-1

TABLE 6-1. 1SJ TABLES

|Location | Description | Bits | Description

e a —ven - . D i UM . S WS G WP N - - . OB R W W W A W W M M e W G A D G S WS M W WS M e

TACP |Active control 11 Rollout in process
|points. One-word

|available field

| Length for all
|jobs of an origin
|type. One-word
lentry indexed by
lorigin type.

e - — - e - - —— - W Y ——— - S S = WP W - . - - —— —— -

available

|

|
	l		
lentry terminated	10	Rollout requested (used	
	by zero entry.		in subroutine CFL only)
	Sorted in	9«5	Zero
] ldescending	4=0	Control point number	
lpriority.			
			:
TRST	Table of rollout	11	Rollout in process
i	status. One-word	10	Rollout requested
	entry indexed by		C(used in CFL only)
lcontrol point	9-0	Zero	
	number.		
TJFL [Job field Length.	11-0	Field length assigned	
	One-word entry		at control point
,	indexed by control		
: lpoint number. = ! }			
TJEC [Job ECS field	11-0	EcSs field length	
	tlength. One-word	‘	assigned at control
lentry indexed by		point I	
lcontrol point			
	number.		
			.
TyuP lJob priority.	11-0	Priority of job	
	One~-word entry		
]indexed by control		
} lpoint number. { } {			
TJOT	[Job origin type.	11-0	Origin type of job
:	One-word entry		
	indexed by control		
	point number. Set		
: :onLy if job active.! { }			
TMFO	Table of total	11-0	Field Length available
	available field		
	Length for all		
	jobs of an origin		
	type. One-word		
lentry indexed by			
: Iorigin type. ‘ { }			
: TMEO	[Table of total ECS } 11-0~} ECS field Llength }		

60454300 A 6-2

TABLE 6-1. 1SJ TABLES (CONTINUED)

- . D G - - - AR T R — . A . - - G - U WP WD R WD A WM WS D G A GRS R WS WD R MR e e

|Location | Description | Bits | Descriptian |

| TAFO |[Table of assigned
| |field Length by

| lorigin type.

| |One-word entry

| |]indexed by origin
{ }type.

| TAEO |Table of assigned
| |ECS field Llength
| |by origin type.

] |One-word entry

| " lindexed by origin
| | type.
|

|

|

|

|

|

|

|

|

|

|

|

|

|

| Field Length assigned.
|
|
|
|
|
|
|
|
|
|
|
|
| ‘ |
|
|
|
|
|
|
|
|
|
|
I
|
|

11-0 ECS field Length

assigned

11-0 Maximum FL allowable

TMJO |Table of maxﬁmum
: for a job

|field Length per
]job by origin type.
|One-word entry
|indexed by origin
:type.

TMXO |Table of maximum
|ECS field Length
|per job by origin
|type. One-word
lentry indexed by
lorigin type.

- - - - — " = o " =" - - W - . - . - . = R > - - - o - " " oD W - = - - - - - -

Maximum ECS field
length allowable for a
job

11

1
o

60454300 A 6-3

TABLE 6-1. 1SJ TABLES (CONTINUED)

- - —— - I W M N AT WD e A - W S WP D Y P S e - - - - - ——— —— - ————— - - -

DACT |[pevice activity
| count tabie.

| |
! | Device activity as
| I
] |One-word entry |
I |
l I
l |

|

|

| found in byte 0O of MST

| word DALL
| indexed by | -
|equipment number. {

The scheduler is requested periodically or on a demand basis
through the RSJM monitor function (refer to section 3). CPUMTR
determines if the scheduler is active (bit 59 set in JSCL+1) and
if so, takes no action. If the scheduler is not active, 1SJ is
called unless the scheduling delay in JSCL has expired. 1In this
case 1SP is called. Routine 1SP calls 1SJ into its PP when it
has finished its tasks.

The RSJM function is issued when jobs are placed into the input
or rollout queues (by QFM, 1RD, or 1TA), when a job is started
(by 1AJ), and by certain routines when it is desirable to begin
scheduling activities after they have completed (1CK, 1DS, 1MB,
1SP, and 3SA).

The call to 1SJ has the following format:

59 41 35 0
RA-+1 1SJ] cp 0]
cp Control point number

A flowchart of the main Lloop of 1SJ (SCJ), is shown in figure
6-1. The main subroutines of 1SJ are described in the following
paragraphs.

60454300 B 64

Y
e\

set control |
point status

Y

set
available memory
in ACML

A N

yes

y

search for job

job found

)
o)

/ PRS \ Y
[- SJC - \ clear schedular
preset set job ‘control,mfo active interlock
in TMJO, TMFO, TMEOQ, in JSCL +1
‘ and TMXO
¥
initialize Y
FA scheduling /oM \
P disabled
MP & drop PPU)
, l no
DDA l
build \
TAFQ tahle gleterm_ine
and TAEQ table dlsk activity

set number of
control points (NC)

Yy

read
schedular control
from INWL

Y

‘ return ’

Figure 6-1. 1SJ Main Loop SCJ

60454300 A 6-5

sufficient

sufficieng
memory with
rollouts

memory for
control paint
~_job

yes

Figure 6-1. 1SJ Main Loop SCJ

60454300 A

i

CMR \

<

clear memory
request

re-enable
rollouts

scn

(Continued)

FNT

job in gueue interlocked

ASJ \

AR RN .
commit assign job
control point

y’ Yy

if
control point
available

I

if PPUs
available

SIF \

set FNT
interlock

if recycle
allowed

*1. The job in queue condition tells 1SJ if it is trying to
schedule a job to a control point or attempting to increase a
running job's field length

Figure 6-1. 1SJ Main Loop SCJ (Continued)

60454300 A : 6-7

SET CONTROL POINT STATUS (SCS)

SCS builds the TACP, TJFL, TJEC, TRST, TJOT, TJPR, TAFO, and TAEO
tables from information contained in the control point area. It
initializes direct cells AC (available control points), AM
(avajlable CM), AE (available ECS), RM (rollout CM), RE (roltlout
ECS), JC (control point with field lLength request), JF or JE
(amount of CM or ECS JC requires), and JP (queue priority of JC).

SET JOB CONTROL (s5J40C)

SJC builds the TMJO TMX0, TMEC, and TMFO tables from the job
control area.

DETERMINE DISK ACTIVITY (DDA)D

DDA builds the DACT table. DACT is the device activity
count as found in byte 0 of MST word DALL.

SEARCH FOR JOB (SFfJ)

SFJ chooses the best candidate for scheduling. If on the first
pass in SFJ no candidate was selected and if a job had been
rejected because of service constraints, the TMJO, TMFO, TMX0 and
TMEC tables are set with unlimited values, rollout disallowed,
and a second pass through SFJ made. SFJ is flowcharted as figure
6-2.

COMMIT FIELD LENGTH (CFL)

CFL selects which jobs need to be rolled out in order to obtain
the required amount of field Length. ALL jobs necessary to be
rolled will have a ROCM set for their control point. Jobs of
the same origin type will be rolled before jobs of different job
origins, if possible.

COMMIT CONTROL POINT (CCP)

CCP selects the control point for the job. If no control points
are available and none are currently being rolled, a control
point with a lLower priority is selected to be rolled out and a
ROCM isued on that control point. If control points are
available, the control point selected is determined as follows
(consider the control point's field length to include the field.
Length of all unoccupied control points following it).

1. Exact fit

2. Smallest hole that is Larger than needed
3. Largest hole if none is big enough

60454300 B 6-8

This selection process minimizes the amount of storage movement
necessary to give the control point the required field length.

ASSIGN 408 (ASJ)

ASJ requests the storage for the job, initializes the JNMW and
"TFSW control point words, sets queue priority and time slices in
JCIW and TSCW, and calls 1AJ or 1RI to process the job. Routine
1AJ is called if the job is scheduled from the input queue and
1RI is called if the jos is scheduled from the rollout queue.

If a PP is available, a RPPM call is made for 1AJ or 1RI. 1If a
PP is not available or one is not assigned, the scheduler active
bit (bit 59 in JSCL+1) is cleared and this PP is used for the
1AJ and 1RI processing.

SCHEDULE SPECIAL SUBSYSTEM (SSS)

SSS is contained in overlay 3SA and is used to schedule jobs
whose queue priority is larger than LSSS, The FNT/FST entry and
the three subsystem control words SSCL, SSCL+1, and SSCL+2 are
read. If the byte in the SSCL word for this subsystem is
nonzero, then the subsystem is already active and all interlocks
will be cleared and the PP dropped. If the subsystem control
byte is zero, then the required control point must be assigned
for this job. If the requested control point is occupied by a
lower priority job, the job will be rolled so that the control
point can be used by the subsystem. If the job at the control
point is of larger priority than the subsystem, the subsystem
will use the next available control point. When the control
point becomes available, it is assigned to the subsystem. The
control point number is entered in byte 4 of the FNT entry and
in the subsystem control word. Protective coding prevents a
subsystem from requesting a control point which is not defined
in the system. The control point area is then built with all
Limit values set to unlimited or infinite. The control
statement pointer (CSPW) is set to indicate an EOR on the input
file. Default family information is set into PFCW and the
family count incremented. The subsystem's queue priority and a
CPU priority of MRPS-2 are set in JCIW. The procedure file
sequence number is set in CSBW for use by 1SI. The exit mode
7007 is set in the control point exchange package. The
scheduler active bit is cleared from JSCL+1, the FNT interlock
cleared, and the job name written into this PP's input register
with an exit to PPR so that the PP program to initialize the
subsystem will be loaded. Once the PP program is loaded into
this PP, it initjalizes the control point field Length, and so
on, to fit the requirements of the subsystem, sets up a control
statement stream or procedure file call (for TAF, NIP, RBF), and
calls 1AJ to process the stream which brings the subsystem into
execution,

60454300 A ’ 6-9

SFJ)

clear T4, FA,
and JP;
set MP = -0 read FST
read FNT priority
> MNPS

priority
in error
table

blank entry

processor
defined

yes

exit to
processor

if input
or roliout

Figure 6-2. SFJ - Search For Job

60454300 A

previous
job has lower
priority

" priorities equal

previous

activity

equal
MS activity

previous job
smaller

legal
origin type

]

set origin
rollable FL = 0

Figure 6-2. SFJ

60454300 A

CP available

" FL/FLE
available

- Search For Job (Continued)

job
within origin
FL/FLE
limits

within origin
AM limits if other
jobs rolled

> ves

no

set origin
rollable FL (FO)

60454300 A

4

set priority (JP)

Y

set CM FL
(JF) and

_ECS FL (JE)

Y

set rejection
flag (T4)

set previous
MS activity (MP)
and current
MS activity (MS)

) 4

set FST
address (FA)

!

save FNT for
SFIM in SIFA

Y

'SCJZ I

Figure 6-2. SFJ - Search For Job (Continued)

antoroll yes

disabled

end of table

“ enough
- memory for
job

scheduling

. joh
after reject

rolling out

include rollable
memory with
available memory

job at
CP has higher
priority

‘

check TACP

no

same origin

add FL, FLE
for origin

Vv

add rollable
memory

Figure 6-2. SFJ - Search For job (Continued)

60454300 A ‘ 6-13

iob yes

selected

subsystem

no \J

/ asA/sss \
return
- schedule special
subsystem

jobs
rejected

yes

disallow rollouts

\i

remove originm
AM, FL, EC, and EM
restrictions

Figure 6-2. SFJ - Search For Job (Continued)

60454300 A 6-14

PRIORITY EVALUATOR - 18P

Routine 18P is called periodically by CPUMTR to perform the
following functions.

Evaluate priorities of files in various queues.

Check central memory time slices for jobs at control
points. If a time slice has expired, its priority is
set to the Lower bound for the job origin type and if
the job is of time-sharing origin (TX0T) and output is
available, it is rolled out.

Check for device checkpoint requests and call 1CK if any
are found.

Check for device initialization requests and call CMS if
any are found.

ALL timed/event rollout jobs are made eligible for
scheduling when the desired event has occurred or if
their time has expired.

Check for accumulator overflow and call routine DAU to
update the PROFILa file accordingly.

A flowchart of the main routine of 1SP is shown in figure 6-3.

60454300 B -~ 6-15

AJp

[P\
N i)

Y

set priority
aging control

\

ATI O\

advance time
increments

\

AFP \|

adjust file
priorities

SN I

Figure 6-3.

60454300 A

/\/\/\

/
CET

check event
table

y
CMS

check mass
storage

\
cov

“checkpoint
devices

NSNS N\

'

accumulator no

overflow

POF \

/
\ o /

)

1SP - Main Program

set 18J call
into input register

The following paragraphs describe several 18P subroutines.

ADJUST JOB PRIORITIES (AJP)

AJP checks for wait response and swapout allowable indicators
located in word SSCW of the control point area. If any wait
response indicator is set without a corresponding swapout
allowable indicator, the jobh receives a 2*CMSL times its
specified CM slice to inhibit swapout. If wait response
indicators are Left set but the corresponding swapout allowable
indicator is also set, the job will be considered a candidate
for swapout. AJP also checks CM and CPU time slices and adjusts
the job's priority if either of these has been exceeded.

ADVANCE TIME INCREMENTS (ATI)

ATI advances the increment interval associated with the IN
service parameter for each queue type within the job origins.

ADJUST FILE PRIORITIES (AFP)

AFP ages queue files if priority aging is enabled. 1If the time
increment was reset by ATI for the queue type for the origin
type, the queue priority of the file being processed is advanced
by one. In addition, if the time specified for a timed/event
rollout file (TEFT) has expired, the file is converted to a
rollout file (ROFT) and is given the upper bound rollout queue
priority for its origin. When converting from TEFT to ROFT, the
ECS field Length 1is reset in FST byte 2 from the rollout file
system sector.

CHECK EVENT TABLE (CET)

CET matches events from the systems event table with events
specified in TEFT entries. AFP places those TEFTs waiting for
events into a table for CET to read, thus requiring only one
complete scan of the FNT to complete. If events match, the file
is converted to a rollout file and given the upper bound rollout
queue priority for its origin type.

CHECK MASS STORAGE (CMS)

CMS determines if a call to the mass storage subsystem is
necessary. The following criteria are used.

e When its delay (maintained in PFNL+1) has expired and
removable packs are enabled

e When CMS is required to diagnose mass storage error
conditions

e When initializations are pending on a mass storage device

The activation of CMS is made by making a 10S function 32 call
to initiate the mass storage subsystem.

60454300 A o 6-17

If it is necessary to call 1DS, the scheduler active bit (bit 59
in JSCL+1) is cleared, the scheduler is requested via an RSJM
function, and the 1DS request is written into this PP's input
register and PPR is entered.

CHECK IF CHECKPOINT NEEDED (CDV)

CDV checks the 1CK recall time in JSCL+1 and calls 1CK if it is
time to issue a checkpoint request and checkpoint requests were
detected by CMS. The call to 1CK is entered into this PP's
input register and PPR is entered after clearing the scheduler
active bit and requesting the scheduler via an RSJM function.

PROCESS OVERFLOW FLAGS (POF)
POF detects accumulator overflow at a control point and if

overflow exists calls 'overlay OAU to update the PROFILa file
accordingly.

ADVANCE JOB STATUS - 1AJ

Routine 1AJ advances the status of an active job. This action
may be caused by one of the following occurrences.

e The job scheduler (1SJ) wants to start a new job just
scheduled to a control point

e Monitor has sensed no activity at a control point
(W and X bits clear)

e DIS or other similar programs wish to process an error
flag or a control statement

The format of the 1AJ call is as follows.

59 41 35 23 0
RA +1 1AJ] cp fn params

cp Control point number

fn Function number 0 through 5

params Parameters depending upon the function number
For function number 0, TCS can be substituted for a 1AJ call.

For function numbers 4 and 5, the call must be made to TCS
rather than 1AJ.

60454300 B 6-18

The parameters for each function number are as follows,

fn

0

5

The programs called

23-0
23-18

17-0

23-18
17-0

Progr

1¢4
1RI
1RO
cIo
DMP

DAU
ODF

60454300 A

am

Description

Equal to 1 if set by 1AJ during DMP=

processing in case of recall

Equal to 1 if set by 1RO upon completion of
DMP= processing; set to 2 by DIS for §SJ=
and DMP= processing

Zero ,
Address of input file from 1SJ

Zero .
Set indicates control statement in MS1W

~(from DIS)

Set indicates return error message to MS2W
with no error flag on invalid control
statement (from DIS)

Set indicates read statement and stop prior
to execute (RSS indicator)

Zero (from aother PP programs)

Subfunction number for reading control
statement.
0 Advance pointers
1 Read only if not a Llocal file load,
do not advance pointers
2 Set bit 17 in argument count if
local fijle load; do not advance
pointers
4x If parameters to be cracked in
product set format
Address to read/write control statement
from/to

Zero
Address from which to read control statement
(for control statement read and execute)

by 1AJ are ashfoLLows.

Description

Complete job

‘DMP= rollin

Rollout job, normal rollout and DMP= rollout
Complete special files on errors

Exchange package dump (for certain error
flags) '

Update PROFILa file
Drop file

6-19

The common direct lLocation assignments are:

Name

AB
CN
FS
EP
SP
oT
EF
RO
FA
CwW
RF
SC

In general, 1AJ

Value

20-24
25-31
32-36
37
40-44
45
46
47
57
60-64
65
67

Description

Assembly buffer
CM word buffer
FST entry

“Entry point pointer
Statement pointer

Job origin type
Error flag
Rollout flag

Address of FST entry

Library control

word

Reprieve error flag

System control point

activity

is called by MTR, 1SJ, or DIS.
case of special entry point programs 1RO will call 1AJ back after
rolling a job out to DM* and setting up a control point for the

special entry point routine.

rolled out, and when it

advance it.

However,

(scP)

in the

A special entry point job can be

is rolled back in, 1RI calls 1AJ to

Interaction between 1AJ, 1SJ, MTR, 1RI, and TR0 is illustrated

in figure 6-4.

1AJ uses the following overlays.

Overlay

3AA
3AB
TCS
LDR
3AC
3AD
3AE
3AF
3AG
3AH

The PP memory L

ayout

Description

Begin job

Process error flag

Translate

control statement

Load central progtram
Search peripheral Llibrary
Search for overlay

Load copy

routines

Special entry point processor
Termination processing
Return special user files

is shown

in figure 6-5.

Figure 6-6 contains the flowchart of the main routine of 1AJ.

NOTE

Control point area words used by 1AJ are described

in section

60454300 A

2.

6-20

If a special entry point is
encountered; then 1RI1 and

1RO calls 1AJ.

~ If an input file, 1SJ
calls 1AJ; if a rollout
file, 1SJ calls 1RT.

MTR calls
1AdJ to a control
point with activity

Rollin job

If rollout flag is
set, 1AJ calls 1RO

If EOR on input files that is,
no more activity for this job
or abnormal termination.

Also if origin code greater

Rollout job Complete job than four.

Figure 6-4, 1AJ Interaction

o
I

60454300 A 21

Job advancement Transliate control Absolute CP overlay

0000 statement loader
PP resident
1100

LDR
1AJ main
main program
program 2200

TCS

main 3AD - Search for

1436 overla
1AJ - Preset routines program y

3AA - Begin job
3AB - Process error flag

3AG — Termination

processing
4422 |—— 61z
3AE - Load copy routines TCF - Preset routine -1
5347 1 3AF - Special entry 3AC - Search peripheral 3AE ';ffﬁn‘;g”y
point processor library
3AH - Rpfurn special 3AE -Load copy routine
files 3AF - Special entry
point processor
ODF - Drop files ODF — Drop files

7777

Figure 6-5. 1AJ Major Overlay Memory Layout

60454300 A 6-22

AJS

()—

Y

connection
;eoait:‘ tl::tl;tt:lﬂsl established
CM = STSW
CN = JNMW olear
AB = JCIW ! connection (SC)
FS = RLPW
T1= EECW R
SP = CSPW
_ _ read SSOW
CW = Sscw (outstanding
connections)
¥
RO = rollout
flag from
AB+2,
1
EF =error
flag from is
CM+1 EF=FSET
{forced
no yes

hit 47

in EECW SC=3 St=1
set
no yes
, o’
RF =T1+1 _
error flags RF=10 @
v)

*1 Read one CM word into 5 PP words

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A 6-23

FS = X and
W status
from CM+FS

A

OT = origin type
from CN+3

origin cade
undefined

[AlS
1

AJS
X

LJM
processor

*1 Is function number from IR+2 >4 (functions 4 and 5 are TCS

functions)
*2 Protective code.

60454300 A

Figure 6-6.

If an origin code > 4 is not trapped,
processors will malfunction and the system could crash.

1AJ - Advance Job (Continued)

the

24

*1
processor
" defined

no [<
[/ seh N\
check for
system control
point activity

v

set 1CJ
parameter to 0

set 1CJ
parameter to 1

Y

(A)=1¢CJ

*1 Only TXOT and MTOT have a processar (RTJX); no processor
exists for the other origin types.

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A 6-25

processor
defined

(A)=1R0O

*1
set bit 47
in CSPW
V:
get queue
priority
of CP1
*2
set EF to
yes 1RQ parameter
inlRH4
no

* 1 Ensure empty control statement buffer by

*2 Is queue priority of job at control point 1 equal to TXPS?

*3 Only TXOT and MTOT have a processor (RTJ);
exists for the other origin types.

Figure 6-6.

60454300 A

1A4

set PP

call in to
input register
far this PPU

indicating EOR.

- Advance Job (Continued)

no processor

1

*2
*3
* 4
*5
*6

CM = SEPW
CN = SPCW

*1

a
monitor call
(IR+2=10)

special request
present

*3

_job
active or rollout
requested

yes

reprieve

yes
or error flag '

| yes
/~ 3AF/RCF \

restore CP fields

Read 1 CM word into 5 PP words.

Is CN=CP entry point name # 07

Is RO+FS rollout flag + W + X status?
Is RF or EF not = zero?

See description of overlay 3AF.
Function 0 call with n=2.

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A ‘ 6-27

/T1Cs \

translate
control
statement TCS

CSR

;ob
completion
CN+1 bit.
‘set

/ _3AF/PRS1 \

rollout perform
not set DMP =
RO=10 processing

*1 This path forces job to be rolled out and 1AJ to drop.
*2 3AF exits via a call to 1RO and drops from PP.

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A 6-28

DFM X

issue diagnostic
message

read DBAW clear SPCW

clear RA+1
clear RO
L (rollout flag)
secure ;
memory
yes

set EF to
SYET/PPET

set call name

i *2
" load 3AE
copy routines
¥

/ LDR/CLD l

o\ | Cam
G| Y

user access

o message = SPCW
routine found CALL ERROR
access ‘
- allowed
yes
no
set error to set CP processor
PPET t CP proc CSR12
message = .
SECURE MEMORY, J
DUMP DISABLED /

/ 3AF/PSR \
' * process DMP =
processor

*1 Bit 59 of DBAW set.]
*2 1AJ drops and this control point aborts.

Figure 6-6. 1AJ - Advance Job (Continued)
60454300 A 6-29

[/ wma \

begin job /

oPP >
reprieve RF / 3AB \
or error flag error
processor
oPP »{ No
1 4 A
s\
clear
error chectk s'ysternt
control poin
message activity

%2

return
of error
message

*1 Exit to 1CJ if error flag set. ,
*4 Bit 1 of IR+4 not set indicates no return of message.

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A

store
" message
into MS2W

®=
*1.

set SPCW=0

\
SCP

check system
control point
activity

y

cs Sx*z

process
. control.
statement

*1 Turn off any special processor commands.
*2 Read next control statement and advance the job. If illegal
control statements abort.

Figure 6-6. 1A"J"-,4 Advance Job (Continued)

60454300 A - 6-31

yes clear error flag
(EF = 0)

reprieve or
error flag

SF.EXIT
processing

statement
huffer empty

@ *3
3AB

/ \
\ error prucessm) yes

processor
defined

no

\d
0PP2| *4

jump to processor

* 1 (SC) bit 2 set.
*2 Processors are defined as follows.

SYOT AJSX
BCOT AJSX
EIOT AJSX
TXOT RTJ
MTOT RTJ

*3 Is this the end of control statements; then terminate
* 4 Calls TCS '

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A

scp

chéck system
control point
activity

/ 3AF/RCE \|

restore
control point
fields

processor N0

defined

jump to processor

*1 Only TXOT and MTOT have 'processor (RTJ) defined; no
processor exist for other job origins.

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A

60454300 A

/ aacm\
clear job
advance flag
FN =2
(PR ng \
' process
termination

¥

return to
caller

ScP
activity
qutstanding

Figure 6-6. 1AJ - Advance Job (Continued)

The following paragraphs describe 1AJ subroutines.

BEGIN JOB (3AA)

Routine 3AA initiates job processing at a control point. The
.dayfile messages issued by.3AA‘are the following.

JOB CARD ERROR.
BINARY CARD xxxx SEQUENCE ERROR.
JOB IN NORERUN STATE ON RECOVERY.

The dﬁrect location assignments are defined as follows.

Name

PP
TN
PA
TT
TA

Value

60
61
62
64
66

Description

Pot pointer

Terminal number

Pot address (2 words)

Terminal table address (2 words)
TELEX reference address

The table of processors for 3AA is as follows.

Origin

SYOT
BCOT
EIOT
MTOT

BBC

BBC
'BBC
BMT

"Processor

A flowchart of 3AA is shown in figure 6-7.

60454300 A

BJB

get FST address
of input file
from IR+4

legal
job origin

AJS
X

\

read input / RIM \

file FNT/FST
entries proper processar

¥

Y

save queue store control
priority statement pointer
CSPW
Y ¥ ‘
clear CP area store
;Srﬁvgggw control statement
FST entry
L y
set infinite
accounting and . L
profile control set time limit
values controls
Y y ’
*1
set input file
FST address sot keypunch
into TFSW mode in SNSW

l

*1 Keypunch mode is passed to 1AJ in the system sector of the
input file :

Figure 6-7. 3AA - Begin Job

60454300 A ' 6-36

store job
sequence number
in RFCW

Y

set exit mode
into exchange
package

Y

clear FLX
and RAX in
exchange package

Y

preset RFL

with values

from job card
FS+1and FS+2

Y
CMX

]

Va \
i)

set MFL = |
- machine FL
maximum (FS)

joh card FL
(FS+2) #0

sat MFL to
job card FL
FS-<«—FS+2

v

preset RFL
with values
from job card
CN+1 and CN+2

v
AN

ECS

compute machine
FLE maximum

v

set MFL =
machine FLE
maximum (FS)

job card FL
(CN + 2)'#0

set MFL to
job card FLE
CN-=CN + 2

bf____,___

store FL‘ control
in FLCW and

ELCW
v

set default
family equipment
in PFCW

Figu:ré 6-7.

60454300 A

>

3AA - Begin Job

(continued)

6-37

/ stem O\

set family
activity count

 J
set validation
words ALMW,
ACLW and
AACW unlimited

set up
SYSTEMX/SYUI
user identificat_ion

system origin
SYOT

multi-terminal
MTOT

*1

set validation
required hit

(bit 17) for

user identification

-

validation
required

r‘f

set user
identification
in UIDW

*1 Validation required bit from SSTL is set as bit of UIDW

Figure 6-7. 3AA - Begin Job (Continued)

60454300 A 6-38

/ OmM O\

job card
present

issue accounting
message for
cards read

FL assigned

issue job card
to dayfile

i |

clear RA,
RA+1, RA+2

*1 Job card not present if MTOT.

Figure 6-7. 3AA - Begin Job (Continued)

60454300 A

6-39

/ ATM O\

begin account bieck
FM = ABBF

set accounting
controls in STLW,
SRJW and CPJW

ves message = JOB IN

priority = no
rerun priority

NRPS ON RECOVERY

NO RERUN STATE

message = JOB
CARD ERROR

Figure 6-7.

60454300 A

DFM

convert data
for message

s

\ issue message
y

IN

error

DFM \ [asix]
binary seq / y

3AA - Begin Job (Continued)

_ BBC

read job cards |and position INPU‘TVtu-_Ed'hA "

/ RC .\

read |
: job card

set track & sector
in FST

*1

\4

change job name
to INPUT

*2

set exit
mode = 7007

\

< return ")

*1 The FNT/FST entry is described in section 2
*2 For use in the exchange package

Figure 6-7. 3AA - Begin Job (Continued)

60454300 A

set TELEX
RA and SORT
terminal
number

y

STA
get input pot
pointer
word

y

ECS
enter
control
statement

*
—

\4

ETF
enter

terminal
files> FNT

y

RJSM
get
sequence
number

e NV N N2 N
SN N N\

A

set time limit
= 40, exit
mode = 7007

* 1 Read statement from TELEX pot and set up control statement

Figure 6-7. 3AA - Begin Job (Continued)

60454300 A -6=42

PROCESS ERROR FLAG (3AB)

Routine 3AB processes error flags by sending an error message to
the dayfile. 1In the case of an arithmetic error, a call is made
to DMP to dump the exchange package area.

When these operations are complete, the control statement buffer
.is searched for the control statement EXIT. If this statement
is found, 3AB returns to 1AJ to continue statement processing.
If an EXIT is not found, control returns to 1AJ to complete the
job processing.

The dayfile messages are as follows.

Message - o Description
TIME LIMIT. ' ' The monitor has detected that
the time Limit for the job has
expired.
CPU ERROR EXIT xx AT The monitor has detected CPU
YYYYYY. error exit condition at xx

| address yyyyyy.

PP CALL ERROR. The monitor has detected an
error in a CPU request for PP
action.

OPERATOR DROP. The operator has dropped the job.

PROGRAM STOP AT XXxxXXX. The monitor detected a program
stop instruction at address
XXXXXXa

SUBSYSTEM ABORTED. A subsystem has aborted and all

user jobs connected to this
subsystem will have this message
sent to their dayfiles and the
SSET error flag set.

JOB STEP LIMIT. The job step SRU Limit has

expired.

ACCOUNT BLOCK LIMIT. The SRU Limit for the account
block has expired.

MONITOR CALL ERROR. An illegal RA+1 call has been
issued.

SYSTEM ABORT. . The job has been aborted with an

SYET error type.

OPERATOR KILL. . The operator has killed the job.
(Same as an operator drop except
no error processing is done.)

SECURE MEMORY, DUMP 3AB attempts to produce an
DISABLED. exchange package dump, but
program has secure memory status.

60454300 A . 6-43

SPECIAL REQUEST
PROCESSING ERROR.

REPRIEVE IMPOSSIBLE -
BAD CHECKSUM.

J0B REPRIEVED.

3AB attempts to produce an
exchange package dump, but a
program is a special call
processor {(SPCW set).

The checksum does not match
checksum taken when reprieve
control set up.

Job is reprieved after an error.
A second message is issued to
describe the conditions under
which the job was reprieved.

The table of processors for 3AB is as follows.

Origin

SYOT
BCOT
EIOT
TXOT
MTOT

Overlay 3AB

60454300 A

Processor

EBC
EBC
EBC
EBC
EBC

is flowcharted in figure 6-8.

60454300 A

no/

valid

MXFM

AN

error type
(<MXET)

hang system

. CEFM

/ N\
\ clear eliror flag /‘

set EF = SYET

restore
sense switches

Yy

clear pause hit
from SNSW

Figure 6-8. 3AB - Process Error Flag

Figure 6-8.

60454300 A

system error
(SYET)

operator kill
(OKET)

reprieve
exchange
address

error exit
address

rerun
error type
(RRET)

CMF \

/[|
& complete files /

o

/ CER \

check error
return

Y

processor
defined

jump to
processor

3AB - Process Error Flag (Continued)

/sEx__\
search for >
& exit

error
msg. to be
issued

/ DEM__ \

issue
error
message

J

processor

* 1 Look for exit statement.
*2 Refer to the EREXIT macro, section 6, volume 2, of the NOS
Reference Manual for a description of error flags.

Figure 6-8. 3AB - Process Error flag (Continued)

60454300 A - 6-47

* 1 CPU ERROR EXIT (mode) AT <{address).
*2 PROGRAM STOP AT (address).

read

(RA)

A

y

convert
mode and
address —
display code

y *q

DFM

S

issue
error
message

Figure 6-8.

60454300 A

read

exchange

area

v

convert
address

\

*2

DFM

AN

issue error
message

/

/
\

!

3AB - Process Error Flag (Continued)

read
(RA+1)

validation
limit

*1

replace zeros
with spaces

increase = DFIN

|

/ m

convert
data

increase limit \
function RLIT

>

Y

\

return

/

DFM

AN

N

issue
(RA+1) -
dayfile

\

return

*1 Let user finish error processing if possible.

Figur

60454300 A

e 6-8.

3AB - Process Error Flag (Continued)

*1
terminal.
terminal will be logged off.
*2
Figure 6-8.
60454300 A

system
origin
(SYOT)

DIS call
(1AdJ function
2)

BS

empty statement
buffer, set EOR
if CSPW

T rerun
. no

time sharing

write logoff

byte (0004)

into message
buffer (MS1W)

.

return via
EBCX

*1

return via
AJSX

DMP
required

DMP
extra data
from PPDW

y
/ CPD

\ clear PPDW

N
/

e

return via
EBCX

Time sharing processings sends contents of message buffer to

Since message buffer has log off byte

Control point area PPDW contains the address of the control
point area to dump and number of words to dump.

Process Error Flag (Continued)

6-50

60454300 A

Figure 6-8.

validation
limit

force

charge
required
in UIDW

y

[ACTM

d convert SRU
accumulation -
function ABIF

¢

account block
limit

message =
JOB STEP
LIMIT

message =

ACCOUNT
BLOCK
LIMIT

-
-

A

~/ DFM

" issue
message

)

Y

- set increment
=DFIN

r

_ request SRU
increment
functlon RLIS

return via
EBCX

Process Error Flag (Continued)

TRANSLATE CONTROL STATEMENT (TCS)

TCS translates control statements in the following manner.

1.

Reads statement from one of the following.

e Control statement in the control point area
e Message buffer for DIS type programs
e Central memory Location for an executing program

Programs loaded from the system have their parameters
processed with operating system separator equivalences,
unless a *SC SYSEDIT directive was used when entering
the program into the system.

Local file program loads have their parameters processed
with product set separator equivalences, as do all
programs with *SC specifications, unless a slash (/) is
prefixed to the program name.

For NOS equivalences, delete all embedded spaces, up to
the termination character (a period or right
parenthesis). Any characters not in the standard
FORTRAN set (for example, > < ;) are not allowed in the
statement. They may be used in a comment. Arguments
are processed such that the separator character is the
lower six bits of the argument.

For product set equivalences, separator characters are
+-/=,(%. Blanks are treated as separators. AlLl
special characters are treated as 4-bit codes in the
lower six bits of the argument.

Searches a List of special control statement names for
a match with the statement being processed. These
special names are CTIME, RTIME, and STIME.

Extracts the first seven or Lless characters from the
statement up to a separator character and searches the
file name table for a file assigned to the control
point with this name. If found, the field length is
restored if it is different from the amount set by the
Last RFL statement or macro. If the running or nominal
field Length is zero, a system defined field Length is
used as the initial field length. If such a file is
found on a mass storage device and is in absolute
format, the loader is called to lLoad and execute it.

If the file does not reside on mass storage, the job is
aborted. If the file is in relocatable format, control
is transferred to the CDC CYBER Loader to lLoad and
execute the program. The arguments for the program
call are extracted from the control statement and
stored in the argument region of the job communication
area, (RA+2 through RA+n). The CPU is requested to
begin execution of the program.

60454300 A 6-52

5. Searches the central Ulibrary (CLD) for a program with
the name on the control statement. If such a program
is found. and contains an RFL= or MFL= special entry
point, the field length is set accordingly. Otherwise
the field lLength is set as described in step 4. The
requested program is loaded and executed with arguments
stored as described previously.

6. If the statement name is a three-character name, the
first of which is alphabetical searches the PP Llibrary
(PLD) for a program of this name. If found, places
this name with up to two octal arguments as a PP
program request and exits to the program. No change
is made in the job field length. This type of request
is valid from system orjgin only or if the caller has
system origin privileges and the system is in DEBUG
mode.

7. If none of the preceding steps are successful, the
statement is declared illegal and the job is aborted.

ALL control statements, with the exception of CTIME, RTIME, STIME
and *comment statements, cause some routine to be loaded or the
job to abort.

The following messages are issued by TCS.

Message ‘ Description

CONTROL STATEMENT LIMIT. Control statements exceed
control statement validation

Limit.

BUFFER ARG. ERROR. CM address in call is not within
the job's field length.

TCS ILLEGAL REQUEST. TCS called with an illegal
request.

IMPROPER VALIDATION. - A validation program (with VAL=)

© is required.
FORMAT ERROR ON CONTROL ~ An error has been detected in
CARD. ' the format of the control

Statement.

SECURE MEMORY, DUMP . A DMP= processor is called
DISABLED. " following a job step that'
requires secure memory.

TOO MANY ARGUMENTS. The number of arguments on the

control statement exceeds the
amount allowed.

FL TOO SHORT FOR 5S4 table MINFL is Larger than FL.
PROGRAM. :

60454300 A | ; 6-53

FL BEYOND MFL. Request FL exceeds MFL.

ILLEGAL CONTROL CARD. The control statement could not
be identified by TCS.

A flowchart of TCS is illustrated in figure 6-9.

60454300 A 6

54

/ T

\

control
statement
read

RNC

\ 4

read next
statement o

CsSL

AN

check
statement limit

SN N

!

not end of
statements

60454300 A

write statement
to MS1W

\

UPs

AN

N

unpack
statement

possible™
continuation

control
stateme

/AW \
assemble)
 keyword

Figure 6-9. TCS - Main Routine

6-55

comment
statement

/ IPL \
s comment
initialize statement
program load
/seL \
search validation
central library required

message =
ILLEGAL
CONTROL CARD

Figure 6-9. TCS - Main Routine (Continued)

60454300 A

!
scL \

AY
search
central library /
-check
user access

allowed

NN TN

yes
pre— sys.tem
privileges

CSDJ or
engineering
mode

»{ Y€s
y

Z{—' 3AC

~\

search
penpheral library

no

SSF

\

search for
special format

Y

iPL

SN N

initialize
program load

)

no

local
program
request

yes

SPF

<

search for
program file

message =
ILLEGAL
CONTROL CARD

Figure 6-9.

‘TCS

60454300 A

- Main Routine (Continued)

The following paragraphs describe the major portions of TCS.

ISSUE STATEMENT TO DAYFILE (IST)

IST issues the control statement and error messages, if any, to
the dayfile, updates the control statement pointers in CSPW and
advances the job. IST is flowcharted in figure 6-10.

SEARCH FOR SPECIAL FORMAT (SSF)

SSF processes the control statements CTIME, RTIME, and STIME and
issues the CPU time (control point area word CPTW), real time
(word RTCL) or SRU accumulation (word SRUW) to the dayfile.
This is done in 1AJ rather than by a CPU program to eliminate
any system overhead in these values.

SEARCH FOR PROGRAM FILE (SPF)

SPF determines if the program requested is Local to the control
point. SPF exits to subroutine SSF if the file is present.
SEARCH CENTRAL LIBRARY (SCL)

SCL searches the CLD and RCL in an attempt to find the desired

program and causes it to be brought to the control point. SCL
is flowcharted in figure 6-11.

60454300 A 6-58

DFM \

issue error
message

SDM=
present

control
card

CEFM

set PRET
error flag

message code
= NMSN

issue control
card to ¥
dayfile

S IN

flag set | ;t;;;v"ew
1 4
PPR

Figure 6-10. IST - Issue Statement

60454300 A 6-59

program
loaded

PPU

yes

no

program

[JACM

AN

> IST6

store new
CSPW

RA+1 yes

TCS request

\J

DPPM \

JACM

clear joh advanc
function = 0

%

Figure 6-10.

60454300 A

[E N\ [/
\osaes)

drop PP /

V

IST - Issue Statement (Continued)

clear FST
dd
address (FA)

/ LDR/GLD \
search
\ CLD /

{ *1
normal continuation w/o -
case RG -
no yhno no
@ ’ -

DMP =

relocatable z::lsystem k | clear
routine (TO) = 2 SPCW
/[wE N\ ::
check special return
entry points

*1 Test modified for given cases

Figure 6-11, SCL - Search

60454300 A

Central Library

Figure 6-11.

60454300 A

possible
continuation con-
trol state-
ment;

yes

operating
system
format

|

set system
call for

- CALL -
(TO)=1

special
format

| SSC

SCL - Search Central Library (Continued)

6-62

*1
read FLCW
clear one step MFL = yes
RFL flag defined |

FL

o no
specifie BCP
inCLD Use FL
no for requested

FL

preset
requested FL
to value from
CLD

NFL

spegified

NFL < MFL

RFL = yes
defined
no

~no
Use NFL

for requested
FL

4
A
D

requested
FL >MFL

message =
FL beyond]
MFL

*1 Definitions
MFL byte 0 of FLCW
NFL byte 1 of FLCW
FL = current FL, byte 4 of STSW

Figure 6-11. SCL - Search Central Library (Continued)

60454300 A 6-63

validation yes

reguired

yes

read library
control
word

Figure 6-11. SCL - Search Central Library (Continued)

60454300 A

64

BEGIN CENTRAL PROGRAM (BCP)

BCP obtains storage for the program, initializes the job
communication area with the cracked arguments (RA+2 through
RA+62B), the number of arguments (RA+ACTR), the control
statement (RA+CCDR), the program name (RA+PGNR), the exchange

" package, and sets FLCW for this job step. The program is loaded
into the field Length and the job step begun with the RLMM
monitor function. BCP is flowcharted in figure 6-12.

ASSEMBLE KEYWORD (AKW)

AKW extracts the program name from the control statement.
Appropriate initializations are done for / (use NOS arguments), $
(Load from system rather than Local file), and * (comment) first
characters. Job control language tags are ignored.

ENTER ARGUMENTS (ARG)

ARG processes the arguments on the control statement and sets
them in RA+ARGR (RA+2) through RA+62B. The arguments are
terminated by a word of binary zeros. Arguments are cracked in
operating system format or product set format as directed by the
characteristics of the load. If more than 60B arguments are
present, the job is aborted with the diagnostic TOO MANY
ARGUMENTS. No argument processing is done if the program has an
ARG= entry point, »

60454300 A . 6=65

RS \

\ request storage

control
statement after
rollout

no

\ 4

DIS call
(IR+2) =

clear program
name from
RA + PGNR

set RSS
and DIS bits
for loading

X

\

O

Figure 6-12.

60454300 A

loader call

ASN

<

assembie
program name

\

clear RSS flag
from IR +4

.
o

y

store program
name in
RA + PGNR

LDR/LCP

&

load central
program

load error

BCP - Begin Central Program

o
1

66

ARG

A \
\ vims)

no

54
table check

MINFL
in 54 table

NV

|4

message =
FL too short 3 skip sequence
for program ‘ number
no '

one step yes clear one step BCP
1 RFL flag \ 0
FL flag | in FLCW 10

. no

- .]

L\

/X O\ 3AF/TCA
clear exchange | | transfer control
package , point area fields
/ 3AF/SDP \

start DMP =
program

DMP =
progression on
RA +1 call

parameter
block

set argument count
(RA+ACTR) store
control statement
(RA+CCDR)

Figure 6-12. BCP - Begin Central Program (Continued)

60454300 A 6-67

BCP
10

set up fhr 0AU
call by read of

il user call
ile priva

JNMW, SRUW, electod, 3AH
FPEW

/ oAU

process overﬂow)

accounting
accumulator
overflow

operator

supplied
equipment
no
v)
DEQM
store SEPW WS or L A\
allocatable release
equipment
g yes T '
1]
yes clear 1RO
DMP = ‘
called flag clear equipment
from OAEW
no
Yy . .
store CSPW y

Figure 6-12. BCP - Begin Central Program (Continued)

60454300 A

no

v

clear SSM status

LDR=
or SLDR = to be
loaded

set SSM status

DMP =
ontral statement
call or sub-
system

yes

DIS call
(IR+2)=2
previous step
secure

RLMM

SSM =
entry point

function = RLJS

Yarm\
=/

/ oSt \

\ clear memory/

Figure 6-12., BCP - Begin Central Program (Continued)

60454300 A _ . 6-69

CHECK FOR SPECIAL ENTRY POINTS (CSE)

CSE enforces the validation required condition (a VAL= entry
point must be present if bit 17 is set in control point area
word UIDW) and checks for DMP= control statements. If a DMP=
control statement (a program with a DMP= entry point being
called by a control statement) is encountered, the input
register is written into control point area word SEPW, SPCW is
set with the upper 18 bits of the input register, the DMP= and
no RA+1 clear flags are set, and TERW has the lower 24 bits set
Wwith the lower 24 bits of the entry point word (DMP= control
information). Routine 1AJ is recalled to process the SPCW
request.

CHECK VALID DMP= CALL (CVD)

CVD enforces the secure memory protection required by the
previous job step. If the current job step cannot follow the
previous step because of secure memory, the diagnostic SECURE
MEMORY, DUMP DISABLED is issued.

PROCESS ERROR (ERR)

ERR processes error conditions detected by TCS subroutines. ERR
is flowcharted in figure 6-13.

60454300 A 6-70

‘message =
FORMAT ERROR
on control statement

save message
address

set EOR
and statement buffer
empty in CSPW

\

message =
IMPROPER
VALIDATION

!

special request
(SPCW) <0

DFM

issue message

/
CEFM

set error flag
to PPET

Y
3AF/RFJ

reset
former joh

SN NN OIS
NN NS

Figure 6-13.

60454300 A

control ,
statement read
{(IR+2)=4

"control
statement execute
(IR+2)=5

yes

no

DIS call
(IR+2)=2

yes

statement
in MS1W
clear SDM = v
status
no
T RE
IST
/ AKW —\ write statement
assembie to MS1W area
o - keyword
clear end w
of program name
’:
@
ERR - Error Processor

INTERROGATE ONE CHARACTER (I0C)

I0C determines the status of a single character, indicating
whether it is a valid separator according to the argument format
(operating system or product set) being used.

INITIALIZE PROGRAM LOAD (IPL)

IPL initializes the control point area, lLoads the copy routines
(3AE), and presets the requested field Length. The event
descriptor is cleared from TERW, pause bit cleared from SNSW,
reprieve conditions cleared from EECW, terminal interrupt

address cleared from TINW, and console message cleared from MS2W.
The requested field Length preset is the RFL or the nominal field
length (FLCW byte 1) unless it is zero, in which case the

minimum of the default field Llength (SYSDEF=50K) and MFL (FLCW
byte 0) is used. The terminal interrupt bit is cleared for TXOT
jobs.

REQUEST STORAGE (RQS)

RQS obtains the necessary field length for the program loading.
If the field length is not available but pending, the input
register is written in RLPW to recall the request. If not
available and not pending, the control point is requested to be
rolled out (ROCM) with the request recalled through RLPW.

SEARCH LIBRARY TABLE (SLT)

SLT searches a given library for a match on the request program
name.

SET SYSTEM CALL (SSC)

SSC makes a library search (SCL) for routines LDR=, CALL, -or
SLDR=. If the desired routine is not found, an MXFM is done to
hang the system and isolate the failure conditien. If this hang
occurs, it is not Likely that any processing can occur.

SKIP TO KEYWORD (STK)

STK reformats the control statement, if ARG= has not been

selected, excluding job control statement numbers and special
first characters.

60454300 A 6-72

TRANSLATE SCOPE PARAMETER (TSS)

TSS equivalences separators for the product set argument format.
The equivalences used are as follows.

Value Character

1 ’

2 =

3 /

4 (

5 +

6 -

7 blank
10 ;

INITIALIZE DIRECT CELLS CINT)

INT initialize the PP for processing of a control statement
request. INT is flowcharted as figure 6-14.

The following subroutines may be overlayed by other 1AJ overlays
caltled by TCS.

ADVANCE TO EXIT STATEMENT (ATX)

ATX checks for the exit flag set in.CSSW (bit 58) and if set
clears it and searches for an EXIT control statement. If found,
it is issued to the dayfile and processing continues by exiting
to IST.

CHECK STATEMENT LIMIT (CSL)

CSL decrements the control statement count in control point area
word ACLW using monitor function UADM. If the Limit has been
reached, CSPW is set empty and at EOR and the diagnostic CONTROL
STATEMENT LIMIT is issued. CSL also causes a charge increment
(IMCS) to be added to the mass storage accumulator in IOAW.

60454300 A 6-73

CN
Ccm
AB
FS
sp
cw

STSW
JNMW
JCIW

uipw
CSPW
SEPW

o & n ouou

priority >

queue

LSSS

yes

time
sharing job
(TX0T)

yes

no

set to bypass
memory clear

yes

GTN

clear

error

program

_ format (PF),
FST entry (FA),

flag (EF),

entry point (EP)

60454300

job origin

Y

valid

yes

1CJ

setiR+2=0
drop job

generate
terminal
number

STA

set terminal
address

set to drop PP
| instead of advance
job on terminate

Figure 6=14. INT -

A

Initialize Direct Cells

@

clear error
exit control,
reprieve options
in EECW

Y

primary file

no

read ™
function (TCS)
(IR+2)=4

function (TCS

yes

yes

set NOS argument
processing

NOS/BE
argument

clear argument
flag from {R +3

L]

(IR +2)y

rewind pointers
for primary file
in TFSW

et

Figure 6-14,.

60454300 A

message = |
TCS ILLEGAL
REQUEST

.

..lEBR1|

Initialize Direct Cells (Continued)

monitor call
(IR+2)=0

read special
call word
SPCW

control
statement
call

ne

y

bypass memory
clear; reset / 3AF/IDP

input register initialize DMP =
from SEPW \ program load

yes

set to drop PP
on termination

Y

‘ return ’

Figure 6-14. INT - Initialize Direct Cells (Continued)

60454300 A 6-76

/ 3AF/RFJ }

reset
former job

DIS call
(IR+2) =2

control
statement execute
IR+2)=5

return

- SSJ = ’ —

yes

/ 3AFRCP \
\

restore control
point fields f

Figure 6-14. INT - Initialize Direct Cells (Continued)

60454300 A 6-~77

READ CONTROL STATEMENT TO ADDRESS (RCA)D

RCA passes the next control statement to the requesting program
at a specified address. Arguments are processed (ARG) and the
program name set in RA+PGNR. If read with advance is specified,
CSPW is updated to indicate that this control statement was
processed and the statement is issued to the dayfile (unless SDM=
is present).

READ NEXT CONTROL STATEMENT (RNC)

-

RNC reads the next control statement whether from central memory,
MS1W, or the control statement buffer.

SEARCH PERIPHERAL LIBRARY - 3AC

Overlay 3AC is called to search for the program name in the *
peripheral Library. If the routine is found, the routine name
and up to two 18-bit octal arguments are written to the PPI's
input register and 3AC exits to IST. If the routine.is not
found, 3AC returns to its caller. Routine 3AC is called only
from the TCS main program.

LOAD CENTRAL PROGRAM - LDR

LDR lLoads absolute overlays in response to CPU program requests.
LDR consists of 1AJ overlays LDR, 3AD, and 3AE. TCS uses these
overlays, or parts of them, to get routines loaded.

LDR is called with the parameters shown below. If the overlay
is being loaded from the system, the central Llibrary (CLD) 1is
searched for the overlay. The message OVERLAY NOT FOUND IN
LIBRARY is issued if it is not found and the job step is aborted.
If the Load is not from the system library, overlay 3AD is
called to find the overlay or entry point. Once found,
subroutine LCP (of the 3AE copy routines) is called to Load the
program. LDR sets the entry point address into the P register
and drops the PP, thus causing execution to begin at that
address. The setting of the P address and transfer of control
is an option in the LDR request.

The format of the LDR call is as follows.

59 40 17 0
SN2
r Autorecall if desired

addr Address of request

Refer to volume 2, section 11, of the NOS Reference Manual for a
complete description of LDR requests.

60454300 A 6-78

SEARCH FOR OVERLAY - 3AD

Routine 3AD performs an end around search of the overlay (local)
file for an overlay of the requested name and level. If the
file is not positioned at the beginning of a Logical record,
random data could possibly be interpreted as a valid overlay
header. ’ : : '

The following messages are issued by 3AD.

Message ‘ ' ‘ Description

OVERLAY FILE NOT FOUND. Requested file is not available.

I1/0 SEQUENCE ERROR. Requested file is already busy.

OVERLAY FILE EMPTY. No data appears in requested
file.

OVERLAY NOT FOUND. ‘ Requested overlay is not on file.

FILE NOT ON MASS N The requested file does not

STORAGE. reside on mass storage.

ENTRY POINT NOT FOUND. ?g?uested entry point is not on

ile.

LOAD COPY ROUTINES - 3AE

Routine 3AE contains subroutines that are used to lLoad central
programs into the control point's field lLength. The dindividual
subroutines are described in the following paragraphs.

LOAD CENTRAL PROGRAM (LDC)

If the Load is from a local file, LDC exits to CMS (copy MS
resident program). If the load is from the system, the library
control word is interrogated to determine where the routine
resides. If the routine resides on an alternate residency (ASR)
device, control is transferred to subroutine CCM. Control is
returned if the ASR device is not ECS or DDP or if a SYSEDIT is
active. When control is returned or ASR is not available, LCP
requests a system device using monitor function (RSYM). If the
program is in a format loadable by 3AE (OVL, ABS, or COS),
control is given to CMS; otherwise, LCP returns to its caller
with the address of a diagnostic message to issue.

COPY MS RESIDENT PROGRAM (CMS)
CMS reads the program from mass storage into the control point's
field Length. The job is charged for the Load by incrementing

the mass storage accumulator in IOAW by the number of sectors
transferred and charge IMLL using the UADM monitor function.

60454300 A 6-79

SET LOAD PARAMETERS (SLP)

SLP is called at the end of program lLoading by CMS and CCM to
clear error mode and status bits from the exchange package,
clear selected areas of the job communication area, and set up
communication area words LWPR (last word address of program),
FWPR (first word address of program), and LDRR (loader status).
The status bits indicating CMU availability, CEJ/MEJ
availability and character set mode are set in LWPR, FWPR and
LDRR respectively. Parameters for the memory clearing done by
TCS are also set by SLP. SLP exits to the caller of LCP.

LOAD CM/AD (ECS) RESIDENT PROGRAMS (CCM)

CCM loads system routines that reside in central memory (as
directed by *CM SYSEDIT directives) or on ECS used as an
alternate residency device (*AD SYSEDIT directives). The

address to load the routine in the control point field Length and
the ECS position and CM address are passed as parameters on a
LCEM monitor function. CPUMTR does the transferring of the
program from ECS or CM to the control point. When the loading
has completed, control is transferred to SLP.

MASS STORAGE READ ERROR PROéESSOR (MSR)

MSR is entered-if a mass storage error is encountered or if a

bad ECS load address is encountered. An attempt is made to find
an alternate source of the program so that it may be loaded
correctly from that device. If none is found, the diagnostic
OVERLAY LOST is issued and the job is aborted. 1If the overlay

is being lLoaded from an alternate device, the attempt to
determine a new source to lLoad from will be made Wwith the ASR
check disabled 1If the local was from a local file the diagnostic
UNRECOVERED MASS STORAGE ERROR is issued and the job is aborted.

SET PROGRAM FORMAT (SPF)

SPF returns the program format OVL, ABS, or COS and the MINFL
from the 54 table (if any).

CHECK PROGRAM FORMAT (CPF)

CPF reads the program file to determine its format. CPF calls
SPF. The diagnostic UNIDENTIFIED PROGRAM FORMAT is dissued and the
job aborted if the program format is not OVL, ABS, or (COS.

CHECK SYSEDIT ACTIVITY (CSA)

CSA reads the RPL pointer (low core word RPLP) to determine if a

SYSEDIT is active. If SYSEDIT is active, loading from CM or ASR
is prohibited.

60454300 A 6-80

Dayfile message issued from 3AE include the following.

Message ‘ Description
UNRECOVERED MASS - An unrecoverable read error has
STORAGE ERROR. occurred on a load from a Llocal
: file,

FL TOO SHORT FOR PROGRAM, _Program Llength is larger than FL.

FLE TOO SHORT FOR LOAD. ECS block exceeds FLE.

ILLEGAL LOAD ADDRESS. Load address is less than 2.
UNIDENTIFIED PRO_G;RAMV The file requested to be Loaded
FORMAT. was not in a recognized format.
OVERLAY LOST. | ‘No alternative path'exists to

Load system routine after an
unrecovered write error.

SPECIAL ENTRY POINT PROCESSING - 3AF

Routine 3AF contains subroutines for process1ng DMP= and SSJ=
entry points.

RESTORE-CONTROL POINT FIELDS (RCF)

RCF restores the UIDW, ALMW, ACLW, and AACW control point area
words, sets the CPU and queue priorities, and drops files with
special system IDs (SSID) after a job step which used an SSJ=
entry point has completed or aborted. If the SSJ= did not have
a block address, only the special ID files are dropped if that
option was selected. The SEPW word is cleared in all calls to
RCF.

INITIALIZE DMP= LOAD ON RA+1 CALL (IDP)

IDP moves the 20B-word parameter block, if any, from the calling
program's field lLength to the control statement buffer for
moving to the DMP= processor when it is loaded. If the calling
program is also an SSJ= program, the SSJ block, if any, is moved
to the control statement buffer for passing to the DMP=
processor if it is an SSJ= processor.

PROCESS SPECIAL>PROCESSOR REQUEST (PSR)

PSR formats the call to 1RQ to perform the dumping of the calling
program's field length on a DMP= call. The dump active and 1RO
‘called flags are set in SPCW, the DMP= parameter set in TERW,

and the caller's field Length set in PPDW. The DMP= function
code (1) is set in IR+2, the DMP= parameter in IR+3 through IR+4,
and 1R0 is loaded into this PPU. .

60454300 A : 6-81

RESET FORMER JOB (RFJ)

RFJ formats the call to 1RI to reload the calling programs field
length after a DMP= processor has completed or aborted. The SPPR
parameter block is moved from the DMP= processor's communication
area to the control statement buffer for restoring into the
caller's field length when it is reloaded by 1RI. The DMP=
function code (1) is set in IR+2 and 1RI is loaded into this PP.

START-UP DMP= JOB (SDP)

SDP transfers the parameter block from the control statement
buffer to RA+SPPR in the communication area. If SSJ= values are
also being passed, they are moved from the control statement
buffer to the $SJ= block in the DMP= processor's field Length by
subroutine TCA. The CPU is requested by an RCPM function and the
PP is dropped, thus transferring control to the DMP= processor.

SET PRIORITIES (SPR)

SPR sets CPU and queue priorities as well as the time Limit
associated with SSJ= processing. '

TRANSFER CONTROL POINT AREA FIELDS (TCA)

TCA transfers control point area values to the SSJ= block in the
program's field lLength, if an SSJ= block address has been
specified. The CPU priority, queue priority and job step time
Limit, UIDW, ALMW, ACLW, and AACW are passed to the CPU program.
The Limit controls (ALMW, ACLW, and AACW) are then set to
unlimited in the control point area and UIDW is set for the
system user number and index. If any time limit, CPU priority,
or queue priority were specified in the S$SJ= block, they are

set for the control point by a call to SPR.

TERMINATION PROCESSING =~ 3AG

Routine 3AG is called to terminate processing when the program
has connections to the system control point (SCP) facility.

SEND RESPONSE TO SUBSYSTEM (SRS)

SRS reads the subsystem control word (SSCW) to examine the wait
response and long term connection indicators for each subsystem.
If any indicators are set for a particular subsystem, a message
is sent to that subsystem informing it of the user end/abort.

If a subsystem aborts, all user jobs connected to the subsystem
will have the error flag SSET (subsystem aborted) set. A system
message is issued to the subsystems to which the user connected
notifying them of the user abort.

60454300 A 6-82

CHECK SUBSYSTEM CONNECTION (CSC)

CSC determines whether a job is .in the queue (type ROFT or TEFT)
with connections set (bit 5 of FNT set), or a job is at a
control point with connections set (SSCW word has appropriate
connection indicators set).

CALCULATE SUBSYSTEM INDEX POSITION (CSP)

CSP uses the subsystem index to determine the position within
the subsystem control word of the Long term . connection and wait
response indicators (3 groups of indicators per byte).

END USER JOBS (EUJ)

EUJ ends all user jobs connected to a particular subsystem. The
FNT is searched for all jobs with connections to this subsystem,
as determined by CSC, and writes the subsystem index in the
system sector and sets the]ob's priority to SSPS (subsystem
aborted priority).

Rout1ne 3AG 1ssue5'the following messages for display from MS2W
of the subsystem control point.

Message Description
UCP ABORT. | User control point end/abort.
SUBSYSTEM BUSY. ' Subsystem is unable to receive
reply.

TERMINATION PROCESSING Indicates subsystem end/abort
- ~ processing.

USER FILE PRIVACY PROCESSING - 3AH

Routine 3AH returns all files associated with the job except
those with user file privacy id set (UPID).

COMPLETE JOB - 1cCJ

Routine -1CJ performs all the :‘following job termination
procedures. :

Release storage. '

Release assigned equ1pment.

Release any common files used by the job.

Drop any scratch files used by the job.

Release all output files to output queue. _

Record in the account and control point dayfiles the

accumulated system resource usage for the current account

block. These resources consist of application units,

- permanent file usage, magnetic tape usage, mass storage
usage, CPU time, and system resource units (SRU).

e Copy the control pownt dayfile to the end of the print
file.

e Update resource files.

e Clear the control point for usage by the next job. .

60454300 A 6-83

The following accounting messages are issued to both the user's
dayfile and the account dayfile.

Message : Description
UEAD, XXXXX.XXXKUNS. Application units (kilo-units)
UEPF, XXXXX.XXXKUNS. Permanent file usage (kilo-units)
UEMT, XXXXX.XXXKUNS. Magnetic tape usage (kilo=-units)
UEMS, XXXXX.XXXKUNS. Mass storage usage (kilo-units)
UECP, XXXXX.XXXSECS. Accumulated CPU time (seconds)
UESR, XXXXX.XXXUNTS. Accumulated SRUs (units)

The following messages are issued only to the account dayfile.

Message Description
AEUN, usernum. Job terminated and input file

requeued (RERUN)

AUSR, XXXXX.XXXUNTS. Accumutated SRUs (units) not
updated into project profile
file (PROFILA); this message
indicates that 1CJ was
unsuccessful in making its 0AU
call to update PROFILA.

AUSR, 219902.325UNTS SRU overflow detected

The following messages are issued to the system dayfile and
user's dayfile:

Message Description
JOB RERUN. Named job is in RERUN
1CJ ARGUMENT ERROR. Incorrect parameter in call

The following message is issued only to the ERRLOG dayfile:

Message Description
EQxx, OUTPUT LOST. Write errors occurred adding

dayfile to output file or
dumping output buffers

The call to 1CJ has the following format:

59 40 35 23 0

AN

RA+1 1CJ cp f 0

-cp Control point

f Function:
0 Normal completion
1 Rerun job

Routine 1CJ is flowcharted in figure 6-15.

60454300 A - 6-84

*1
*2

*3

*4
*5

, o ¥
*4
read job name Z REQ \
JNMJ and job ' I
| ¥ N
\ 8
read dayfile [URF
pointer in’ ~ update .
CMR DFPP & resource file: j
! .
RST *2
/[* \\ yes
\ release storage) ‘ » @
) ‘ - no
/ RLF\ O |
&releasa files)

Used at CPJ1. :

Release all memory for this control point. RST issues RSTM
request for zero words of memory.

Close and clear all FNT/FST and drop all unused tracks for
this control point (file OUTPUT will be checked Later and if
exists taken care of in RPF). Punch files are disposed to
the output queue. v

Release all equipment assigned to this control point.

Use ORF to clear the entry in RSXDid for this control point.

Figure 6-15 1CJ - Complete Job

60454300 A 6-85

origin
type defined

RRD

record
running data

o

N\J”

no
*2

yes

/ RPF \

release
print file

*1 Issue UEAD, UEMT, UEMS, UEPF, UECP, and AESR accounting
messages.

*2 Set print file name to job name, set type to PRFT, append
dayfile to end of file, and release file from this control

point.

Figure 6-15 1CJ - Complete Job (Continued)

60454300 A 6-86

normal
completion
AIR+2)=0_

yes

 J
RRJ \ DTKM

message 1CJ Z / _ \
argument error \ rerun job. / ‘ \ %flgpt :::I;t)

Figure 6-15 1CJ- Complete Job (Continued)}

60454300 A 6-87

dayfile tracks

DTKM \

drop
dayfile tracks

STBM '\

decrement family
activity count
function = DFCS

)

JACM \

no.
|ob advance
function = 3
yes
CFIN yes
no
CLIN
/ SFI

‘ clear FNT »
interlock /

Figure 6-15 1CJ- Complete Job (Continued)

60454300 A 6-88

JOB ROLLOUT ROUTINE - 1RO

Routine 1RO performs job rollout in response to a calling program
(such as the job scheduler) or a dump field Length function from
1AJ. ‘

The 1RO call is as follows:

59 4 35 23 7 0

IR iRO q cp fn 0 n

cp Control point number
fn- 0 Rollout
1 Selective roLLout to f1Le DM* accord1ng to DMP-
parameter
n Error flag for TXOT job (function 0). For DMP=
" parameter (function 1) each bit defined as follows if

set
Bits Description
17 Checkpoint
16-15 Unused :
14 ‘Create DM* file only
13 Dump FNT entries to file DMx
12 ‘ Create DM* ‘as an unlocked file
11

-0 If 0, dump control point area and
, entire field Llength; if nonzero, dump
control point area and FL*1008B.

Routine 1RO uses the OBF, begin file, routine. Its direct
location assignments are as follows:

Name Value Description

FS 20-24 FST entry (5 locations)

NT 25 Next track pointer

FW 26 FNT word count or central memory
index

SC 27 Sector count terminal output

CN 30-34 CM word buffer (5 Locations)

TW 35 Constant 2

DP 36 Dayfile pointer address

0T 37 Origin type

FN 40-44 FNT entry (5 locations)

TN 45 Terminal number

TT 46-47 Terminal table address (2
locations)

FA 57 Address of FST entry

ZR 60-64 CM zero word (5 Locations)

TA 65 TELEX RA

orP 66-67 Output pointer (2 locations)

Routine 1RO is flowcharted in Figure 6-16

60454300 A 6-89

COMMON DECK COMSJRO

Common deck COMSJRO defines the sector format of the rollout
file. The symbols are used by the rollout/rollin process.

Symbol

CPAIL

DFBI

FNTI

TOPI

JFLI

JECI

60454300 A

Description

Control point area. The control point area is
two sectors in length, and is the exact image of
the control point area in central memory at the
time of rollout.

Dayfile buffer. The dayfile buffer area is one
sector in Length, and is an exact image of the
job dayfile buffer in central memory.

File name table. The file name table area is n
sectors in length, terminated by a short sector
(logical record). The FNT entries are stored as
two-word (FNT/FST) entries in this area.

Terminal output. The terminal output area is n
sectors in length, terminated by a short sector
(logical record). This is the only part of the
rollout file that is unique for TXOT jobs.

Job field Length. The job field Length area is n
sectors in lLength, terminated by the EOI sector,
and is an exact image of the job FL in central
memory. If ECS is present, the FL is divided
into two parts. The first part is the field
Length from RA to RA + (MCMX/2) - 1. The second
part, which follows the ECS section, is the field
Llength from RA + MCMX/2 to RA + FL - 1. The
value MCMX defines the minimum CM fijeld lLength
when ECS is present.

Job ECS field length. The job ECS field Length
area is n sectors in length and is an exact image
of the job ECS FL.

ROLLOUT FILE SYSTEM SECTOR

Common deck COMSSSE defines locations within the system sector
that are unique for rollout files. These locations, Located in
the file dependent data area (DDSS), are:

Relative Location Symbol Definition
to BFMS (6776)

52 DBSS Dayfile buffer pointers (two

60-bit words)
64 ‘ INSS Input file FNT and FST (two
N 60-bit words) ‘
76 . AESS " Assigned equipment List (1 byte
o g per entry; terminated by a zero
: byte) h a
172 SJSS ©§8J= flag (nonzero if S$SSJ= job)
173 -—- " Reserved (2 bytes)
175 FQsSs Family EST ordinal
176 . ~ ERSS Rollout ECS FL/10008B
177 SPSS . 8SJ= job parameter block (five
, o " 60-bit words) .
-~ 230 : SWSS | . System control point data

- (SF.SWPI1); upper 6 bits contain
~priority, Lower 18 bits are
ce completion address o
232 " CLSS Job class’

- 233 - Reserved (2 bytes)
f‘Z;S- e SRSS SRU information (60 bits);

12 bits reserved, 6 bits flags,

6 bits zero, 18 bits for time

increment, and 18 bits for SRU
. increment ' ’

241 TLSS ~Terminal table at last rollout
(20 60-bit words)
361 TRSS Terminal table for recovery (20

-.60-bit words)

60454300 A 6-91

ROJ

) J
/ s\ "M / ca \ 5
preget clear
routines equipment
.Anitial rollout operations 3
/ ERE\ 2 /N O\ *6
enter rollout clear FNT '
v file entries
(:::) i v
A AN / _13RP/REG A
N e
terminal output
1 7 ‘
/ mmg \ *a XY2
request MS .
space .

*1 Disable all jumps associated with TXOT origin jobs if this is
a non-TXO0T job.

*2 Enter rollout file into FNT/FST. If DMP= call, then file
name is DM* and control point will not be dropped

*3 Check for terminal input and ocutput.

*4 Request tracks for rollout file.

*5 Release all equipment assigned to this c¢ontrol point.

*6 Clear all FNT entries associated with this control point
except the rollout file.

*7 Prepares terminal output file for IAF/TELEX.

Figure 6-16 T1RO-Rollout Job

60454300 A 6-92

read job name : clear FST address
into FNSS ; FA=10

\

/ s88 \
. no job class = .
joh class 10 .. set special system
’ 4 iob origin job parameters
~yes : | +
Y
set job class / CCHM \
into CLSS
clear SWSS select channel
.clear SRSS
y
y '
SMS
set file / \
type = ROFT set mass storage
(INFT if DMP =) '
MT1 » ‘
X //7 WSS \\
multi-terminal Write v
jab system sector

job
- still active

e rosZ]

Figure 6-16 1R0-Rollout Job (Continued)

60454300 A 6-93

\

dayfile buffer

I

/ENT \
\ write file /
|
reset FST name tahke
address FA > X3
/ mewTo \ T
Y 7001 of PP ‘nwhe
set sectar memory PP terminal output
word count MS buffer
BFMS-1 v
/ JFL \
Y
/A O\ & write job FL]
~ write control &
point area / = \
‘y - -
' write job FLE
/ DFB \ &)
Q\Q write J/)

*1 Disable all jumps associated with TXOT origin jobs if this is
a non-TX0T job.

Figure 6-16 1RO - Rollout Job (Continued)

60454300 A 6-94

WEI

write
EOQI sector

\J

EMS

end
sto

mass’
rage

y

FTN

drop

IS /\ SN

DTKM

tracks

A NG % ’ \/

no .
, cnmplete rollout: Operatlons '

ROJ
2

—
& o

memory

\ 4

RSIM

N v

TER

enter rollout
file into queue

p
N 5
[
\

x/‘

Y

/ IACM

<clear control poiy————‘ PPR

and drop PP

clear roll out
flag in JCIW

“control point
rolled

clear K
display data

-

-t

store FST/FNT
entry valyes
in FS & FN

Y

setup IR, ...,
IR-4 for 1AJ

PPR

Figure 6-16 1RO - Rollout Job (Continued)

60454300 B

JOB ROLLIN - 1RI

Routine 1RI performs job rollin response to a calling progranm,
such as the job scheduler.

Its call is as follows:

59 , 41 35 23 11 Q

IR iRI T cp fn 0 fa

¢cp Control point number
fn 0 Rollin job.

1 Selective rollin according to special entry point
fa FST address of rollin file

The 1RI dayfile message ROLLIN FILE BAD signifies that an
illegal format was detected in the rollin file (refer to Common
Deck COMSJRO, in this section).

Routine 1RI has the following direct location assignments.

Name Value Descriptian

FS 20-24 FST entry (5 Llocations)

DP 25 Address of dayfile buffer pointer
EP 25 Entry point

FI 26 FNT buffer index

CI 27 Central memory index

CN 30-34 CM word buffer (5 locations)

PR 35 Queue priority

TW 36 Constant 2

oT 37 Origin type

TN 40 Terminal Number

TT 41-42 Terminal table address (2 locations)
PP 43 POT pointer

PA 44-45 POT address (2 locations)

TA 46 RA of TELEX

TI 47 TELEX FNT buffer index

FA 57 Address of FST entry

ZR 60-64 CM zero word (5 locations)

EF 65 Error flag hold '

ou 16-17 Out pointer

Routine 1RI {(main routine) is flowcharted in figure 6-17.

60454300 A 6-96

x1 Disable all these
*2 Mass storage set and positijoned
*3 Disabled

60454300 B

"PRS \ *

& preset routine

\

/T 8YS O\ 4

read
system sector

A\

/" IRATCAL_\ "1

clear rollin
information

3+

2

‘ .
CPA

)y

read control
point area

¥
DFB

C

.

& read
dayfile buffer

<:f*

y
FNT

V\/P'\/

read
FNT entries

if no FNTS.

\f

v
/— 3RH/TOP__ \ #
skip terminal
‘output
\]
JFL \
Q read job FL)
V |
/ JEC \
& read job FLE)
/s ng \
end mass
storage
‘ 1.
/____EFN \ *3
enter
FNT entries

if non=TXOT job.
in preset.

Figure 6-17 1RI - Rollin Job

DRF *3

“drop
rollout file

Cen)
=)

/3RH/EDA *1

C

enter data

>

AEQ v
assign / RSJ *2
equipment
reset job
yes subsystem
notification
{ reqaired
ya 3RI \
natify subsystem \
of rotlin /
/___JACM N\
clear advance
job flag
y
PPR
* Disable if non-TXOT job. }
*2 Set up control point area, put job in W status (RCPM)
request.
*3

Figure 6-17 1RI - Rollin Job

60454300 A

Drop FNT entry for this rollout file and drop all tracks.

SYSTEM I/0 (MASS STORAGE) 7

ALL active files residing on rotating mass storage (RMS) are
described by a file environment table (FET), a file name table
(FNT), and a file status table (FST). The FET is supplied by
.the user and resides within the job field length. The FET is
described in section 9. The FNT and FST are supplied by the
system and are used by system routines to coordinate user
requests for I1/0 and file positioning. Three other mass storage
tables are involved with controlling I70. These are the
equipment status table (EST), the mass storage table (MST), and
the track reservation table (TRT),

TABLE LINKAGE

The Llinkage between these tables is simple and reduces system
overhead to a minimum.

The FNT and FST are two one-word entries in a single CM table.
The FNT word (first word) contains the file name and a control
point number which enables the system to associate an 1/0 request
in a user FET with an FNT/FST word pair. The assocjation of a
user's FET with an FNT/FST word pair is obtained by comparing the
file name in the FET and the control point number of the
requesting job with the corresponding fields of each FNT entry
until a match is found. The FST word (second word) contains file
status, equipment number, and track linkage and position. The
equipment number is used as an index into the EST which contains
one-word entries describing the mass storage device type, the
channels through which the device may be accessed, and a pointer
to the MST for the device. The inter-relationship of these
tables is as follows.

60454300 A 7-1

59 53 47 ’ 35 23 17 11 5 0

. . permis-| file cp
FNT . logical file name sions | type N o
FST id Iq first track current track | current sector status
(F§;——d’%/ a7 35 23 1 0
select/ . address of
EST flags channe! connect code device type MST/108B

_/

MST mass storage table ' MSTL =20g

TRT track reservation table

Each MST is located in CM on a 10B-word boundary so that the
upper 12 significant bits of a 15-bit address can be stored in
byte 4 of the EST as an MST pointer. The MST is a‘ fixed-length
table (20B words) which contains a complete description of the
logical characteristics of a mass storage device. The MST is
followed in memory by a variable-length TRT which is used to
maintain allocation of the mass storage device. '

TABLE CONTENT

Space for the FNT, FST, EST, MSTs, and TRTs is allocated in CM
at deadstart time. Pertinent information from the CMRDECK is
transferred into the EST and MST at this time. As mass storage
devices are recovered (activated) at deadstart time by RMS or
on-Line by CMS, pertinent information is extracted from the mass
storage device label and placed in the MST and TRT. As files
are created, changed, or released on a device, the MST and TRT
are updated to reflect lLogical device status. An FNT/FST entry
is created for a file when a user request is processed for a
nonexistent file (for example, CIO open or I/0 request). As
operations are performed on the file, the FNT/FST entries are
updated to reflect current status of the file. The FNT/FST
entry is cleared when a file is returned. The detailed content
of the FNT, FST, EST, MST, and TRT are described in section 2.

t This bit is used to indicate special
information in the system sector.

60454300 A 7-2

MASS STORAGE ALLOCATION

The system allocates mass storage space to a file in increments
of a unit called a track. Tracks are further divided into units
called sectors or physical record units (PRUs). A sector is the
smallest:unit of mass storage space that can be read or written
at a time. The number of tracks per mass storage device and the
‘number of sectors per track are device-~dependent and are shown
in table 7-1.

TABLE 7-1. TRT LENGTHS (OCTAL)"

]		sector	
		Length		Logical	Buffer
pevice	Mnemoniclin CM Words	Track Count	Sectors/Track	Size	
%			i		(Bytes)
ECS	DE	pependent	Dependent	20	so02
	lon ECS lon ECS				
		Llength	length		
		:			
{844-21 { DI } 630 ‘ 3140 % 153 } 502 {					
844-4x	DJ	632	3150 -	343	502
844-21	DK	630	3140 -	160	502
:844—4x { DL } 632 } 3150 - ‘ 343 '	502 }				
{sss } DM,DQ { 645 ‘ 3222 { 6407 (200 } 502 }					
poP/ECS	DOP	[pbependent	Dependent	20	502
]	on ECS lon ECS				

length | Length

Allocation of a mass storage device is controlled by a TRT. The
TRT provides a track Llinkage byte and three flag bits for each
track of a mass storage device. The track linkage bytes are

used by the system to form a Linked List of tracks as they are
assigned to a file. The upper bit of each track linkage byte is
a track linkage flag which indicates whether the remainder of

the linkage byte represents a Link to the next track for a file
or whether it indicates a sector number within the track that is
the Llast sector of the file. The Llast sector for a file is known
as the end-of-information (EOI). The three flag bits for a track
indicate whether it is free or allocated, whether it is
interlocked or not, and whether it is the first track of a
preserved file or not.

The TRT for a device contains the number of words as described

in table 7-1 with each word containing Linkage and control
information pertaining to four tracks. Bytes 0, 1, 2, and 3 of
each word of the TRT contain the track linkage byte pertaining to
four tracks. Byte 4 contains the three flag bits for each of the
four tracks represented by bytes 0 through 3. The follawing
shows the format of each TRT word.

60454300 B C7-3

59 - 47 35 23 "1 7 3 0
byte O byte 1 byte 2 byte 3 d | w i
byte n Track Llink byte
d A bit is set corresponding to bytes 0
through 3 to identify the first track of
a preserved file chain
W A bit set establishes an interlock for a

i

When set, the upper bit of each track linkage byte indicates

track

A bit set

linkage to the next track
which sector of the track

track link

in a chain;
is the EOI.
each of the three 4~bit flag fields contained
and i), the bits from Left to right correspond to the same
tracks represented by bytes 0O through 3,

track Link byte format is as follows.

when clear,

For

respectively.

Oy EOI sector

indicates track reservation

it indicates

in byte 4 (d,

The

w,

The following illustrates the correspondence between the control
bit and the track linkage byte.

]

byte O

byte 1 -

byte 2

byte 3

The d and w fields map in the same manner as the i field.

60454300 A

FILE LINKAGE

The first and current track fields in the FST and the track Llink
bytes of the TRT contain a number that. can be broken down to
determine the word within the TRT and the byte within that word
that is used to represent the track number. The general Llink
byte format is as follows. : , : - :

" 10

z 1 for next link in chain in bits 10 through O,
and 0 for EQOI sector number in bits 10 through
0. (Always 1 for first and current track of

FST.)
X TRT word relative td‘uord 0 of this TRT
y Byte within word x.

- 60454300 A 7-5

The following is an example showing file linkage from FST to EST
to MST. Notice that the file occupies space on tracks 5, 12, 14,
15, 16, 17 and 20. The EOI is sector 7 of track 20. The EST
entry shows that the device is an 844-21 (device type byte

equals 0411B, display code for DI) so that the MST/TRT length is
650 octal words. Also, the FST entry shows that the file is
currently positioned at EOI. TRT linkage can also go backward
(for example, 4012 points to 4002 which points to 4007). Tracks
are linked and delinked by CPUMTR in response to PP requests.

f : N 0)

1
FST | 00 | o1 4005 4020 0007 o716
| .
m— o -
eq first current current status
track track sector
EST entry 4000 0001 0000 0411 T 0770

DI=844-21 MST/{0B

S S S e S

ey oy T T - T
e — mass storage table

TRT=MST+MSTL 0014 4002 0042 0006 4017
0017 @01 0010 0002 0017
0006 0003 2014 0002 0017
| GotsFf | =016 =@0i D——=4020 0017
——~@00 0000 0000 0000 0010

d J, J L 4 4

[1T T T 7J

t FST status (refer to Section 2)

60454300 A 7-6

DISK SECTOR

Every sector, from a user standpoint, contains up to 64 -(1008B)

CM words, However,
two header bytes (24 bits).
linkage and other information.

sector is as follows.

header
byte 1

header
byte 2

{L
JJ

from O -1008 CM
words of data

JL

4

the system always prefixes the sector with
These two header bytes contain file
The general format of a disk

There are five types of sectors known to the system and labeled

via the header

e End-of-
° End—of-

¢ End-of-information (EOI) sector -

e System

bytes. These are:
record (EOR) sector

file (EOF) sector

sector

e Full sector

Header byte 2 contains a word count of the number of CM words

within the sector as written by the user.
is in the range 0 to 100B.

sector is full.

is called a short PRU and indicates an EOR.

relationship betwe

header bytes.

60454300 A

The word count (WC)
If the word count equals 1008,
If the word count is less than 1008,

the

the sector

Table 7-2 shows the

en the sector types: and the contents of the

TABLE 7-2. SECTOR HEADER BYTE CONTENTS

sector	,		
Type	Header Byte 1	Header Byte 2	Comment
Rl it bl bbbl e b			
!			
EOR INext Sector/Track	0 < wC < 1008	May	
			contain I
I I	data		
! EOF } 0 {Next Sector/Track% No data l			
EOI : 0 { 0 { No data {			

system	37778	778	System
			data only
Full	Next Sector/Track	WC=1008B	Full
			sector
I | | | |

In table 7-2, a full sector differs from an EOR sector by WC=1008B
rather than WC<100B as for the EOR sector.

To differentiate between a Llink to another track rather than to
the next sector in header byte 1, the upper bit (bit 11) is set.

The PP common decks that read/write mass storage perform the
reading and writing of the header bytes. Also, CI0 reads/writes
the header bytes for disk I/0.

In table 7-2, the system sectaor for a file is indicated by
special header byte values. This is done to prevent accidental
reading through the system sector itself. The system sector is
always sector 0 of the first track of a file.

Examples of the various sector types are shown in figure 7-1.
The device is assumed to be an 844-21; therefore, the sector
count is from 0 to 152B. Two situations not shown in figure 7-1
are an EOR and an EOF as the last sector on a track which Llink
to the next track.

60454300 A : 7-8

Sector
. number

0

152

60454300 A

First logical track .

3rv7

0077

System
Sector

0002

0100 .

all data

0003

0042

EOR

0004

0100

all data

4005 _

Secbnd logical track (5)

T

0100

all data

Figure 7-1.

152

File Structure

0Q01

0022

EOR

0002

0100

all data

0000

0003

EOF

0000

0000

EOIL

Sectors 4~152
are not used

SYSTEM SECTOR

The system sector is the first sector of a mass storage file and
contains system information. PP routines (for example, CIO, 1TA,
1R0) that write mass storage files begin by writing a system
sector. The system sector is generally written by PP common

deck COMPWSS. Although the calling routine stores various

system information in the system sector, COMPWSS stores the
control (header) bytes, the FNT/FST, and the data according to
the following format. System information varies with

different routines. For example, a rollout file system sector
(Figure 7-2) includes dayfile buffer pointers, a copy of the
input file FNT/FST, any operator assigned equipment, and terminal
table information for time-sharing jobs.

3777 o077
L
FNT entry ////éjjizjgzgji;j
eq ft 0000 0000 fa

packed date from PDTL in CMR

sJ
L
37

system information

1L

eq EST ordinal of this equipment
ft first track of this file
fa address of FST entry

Figure 7-2. Rollout File System Sector

DISK I/0 FROM PPs

Disk 1/0 from PPs involves the following basic functions.
1. Initialize 1/0 operation.
2. Perform I1/0 and error processing.

3. End mass storage operation.

60454300 B 7-10

The following code

3.

STD
SETMS

STD
STD
LDC
RJM
MJN

ENDMS

TS5
READ

T6
17
BUF
RDS
ERR

illustrates these functions.

SET EQUIPMENT
INITIALIZE DRIVER

SET TRACK AND SECTOR
"READ SECTOR
IF ERROR

END MASS STOAGE OPERATION

INITIALIZE 1/0 OPERATION VIA SETMS MACRO

The first step of any I/0 operation is to initialize the driver.
on is performed by first setting the equipment and
then executing the SETMS macro, The'SETMS macro performs the
following functions. o :

This functi

1. 1Insures correct driver is Lloaded.

2. Passes the operation to the driver. Possible
operations are read, write, and read of system file.

3. Executes driver preset and c¢lears driver cells DRSW,
RDCT, STSA, ERXA, and WDSE. '

4. Selects error processing dptions and writes error
processing buffer.

The format of the SETMS macro is as follows.

LOCATION

OPERATION

VARIABLE SUBFIELDS

60454300 B

SETMS

op,(epl,ep2,...,epn),wb

7-11

op

epn

wb

60454300 B

I/0 Operation Being Performed:

op Meaning
READ RDS will be called
WRITE WDS will be called

READSYS Read of system file.

NOTE

TS5 must be set to any system device
equipment upon entry to SETMS. This
is so the correct driver can be
Loaded for that equipment type. The
actual system equipment used will be
set at the time the driver requests
the channel.

Error processing options.

Error processing is selected by default if this
field is not set. If this field is used COMSMSP
must be present because it contains the bit
definitions for the error options.

epi Meaning
NE No processing of errors by caller. If an

unrecovered error occurs the job will be
aborted and the PP will be dropped.

SM Suppress error Log messages. No error LlLog
messages will be issued for errors occurring
while this option is selected.

RR Return on reserve errors. If a CR (controller
reserve) or an RS (drive reserve) error is
encountered, control will return to the calling
program without any retries.

NR Return on not ready. If a NR (not ready) error
is encountered, control will return to the
calling program without any retries.

AR Return on all errors. Whenever any error
occurs control is returned to the caller without
any retries.

Address of a 502B byte buffer than can be used
during write error processing to retry errors
encountered on the previous sector.

I/0 OPERATION AND ERROR PROCESSING

The second functional area of an I/0 operation is the I/0 itself.
1/0 is done by the driver routines RDS (read sector) and WDS
(Wwrite sector). The entry/exit conditions for these routines

are as follows.

Entry to RDS:
(T4)= Channel if driver previously called, T4 is
set by the driver upon initial entry when it
reserves a channel.

(T5)= Equipment.

(T6)= Track.

(T7)= Sector.
(A) = Address of 502B byte buffer of data to be
written to disk.
Exit: (A) =

<0 'if error and error processing is not
deselected. ' .

Entry to WDS:
(T4)= Channel if driver previously called. T& is
set by the driver upon initial entry when it
reserves a channel.

(T5)= Equipment.

(T6)= Track.

(T7)= Sector.

(A) = Buffer address + consecutive sector indicator
WCSF is added to the buffer address if a
consecutive sector will follow the present
sector.

WLSF is added to the buffer address if this is
the last of a consecutive string of sectors
being written.
See Example 1 for an illustration of the use
of WCSF and WLSF.
Exit: (A) = -0 if unrecovered error,
(A = =1 if a recovered error has occurred on the

previous sector. The -1 indicates that the
data buffer for the current sector has been
destroyed and that the current sector must be
reissued.

See Example 2 for the use of the reissue sector.

60454300 B 7-13

Example 1:

Write consecutive/last sector flag usage

STD 15
SETMS WRITE, , EBUF

* WRITE A FILE OF EOI, BUF IS CLEARED WITH ZEROS.
STD Té6
LDN 0
STD 17
A LDC BUF+WCSF CONSECUTIVE SECTOR FOLLOWS THIS SECTOR
RJM WDS
MJN ERR IF ERROR
AOD T7
LMM SLM
NJN B IF NOT END OF TRACK
STD T7 RESET SECTOR
LDI NT - SET NEXT TRACK
STD T6
AOD NT
B SOD SC
NJN A IF NOT LAST SECTOR
LDC BUF+WLSF WRITE LAST SECTOR
RJM WDS
MJN ERR IF ERROR
ENDMS END MASS STORAGE OPERATION
NOTE

It is not necessary to tell the driver when
writing the last sector of a track.

Example 2:

Reissue of current sector. Whenever the following conditions

are met the PP program should be set up to reissue the current
sector.

® More than one sector is being written consecutively.
That is, WCSF being used.

@ A write error processing buffer is not defined.

e Error processing is not deselected.

60454300 B 7-14 @

STD T5 ~ NO ERROR PROCESSING BUFFER BUT CALLER

SETMS WRITE WISHES TO PROCESS ERRORS.
STD T6
STD 7
LDC BUF1+WCSF WRITE SECTOR 1
RJM wos. ; |
MJN ERR IF ERROR - REISSUE NOT POSSIBLE ON FIRST
AOD T7 |
A LDC BUF2+WCSF WRITE SECTOR 2
RJM WDS o
PUN B IF NO ERROR
ADN 1
ZJN A IF REISSUE OF SECTOR 2
UJN ERR PROCESS ERROR
B ~AOD T7
c LDC BUF3+WLSF WRITE SECTOR 3 (LAST SECTOR)
RJM WDS -
PUN D IF NO ERROR
ADN 1 |
ZJN ¢ IF REISSUE OF SECTOR 3
UJN ERR PROCESS ERROR
D ENDMS , ~ END MASS STORAGE OPERATION

END MASS STORAGE OPERATION

ENDMS releases all resources assigned because of an I/0
operation. For the 6DI driver this means the drive and
controller are released via the operation complete function after
which the channel and software unit interlock is released.

For the 6DE driver it_meahs the,PP;buffer inter(ock is released
since no channel is applicable to this driver.

ENDMS has the foLLowihg entry conditions.
Entry: (T4) = ChahneL as set by the driver. 1If no driver
call was executed since the initial SETMS, then
T4 is ignored. ’

(T5)= Equipment.

Exit: None.

60454300 B 7-15

GENERAL PROGRAMMING CONSIDERATIONS

Storage Move

Any time the driver is entered (via RDS, WDS, ENDMS) the control
point may be storage moved. Care must be taken if the value of
RA is stored in any instructions.

Random I1/0

Whenever the track (T6) is changed and the 1/0 operation is not
starting at the beginning of the track (sector 0) a SETMS macro
must be executed to have the driver note the random operation
and reposition. The ENDMS will also force a reposition but
should only be used if it is desirable to release the 1/0
resources.

Switching Equipments

It is imperative that an ENDMS is done for the equipment
switching from and a SETMS is done for the equipment being
switched to.

SETMS, ENDMS Sequences Al lowed

Given that a SETMS begins an I/0 sequence on a device and the
ENDMS ends the sequence, virtually any combination of SETMS,
ENDMS, and I/0 can be done in between. This is contingent upon
following the proper rules for random I/0 and specifying the
operation via SETMS.

The following flow chart shoutd illustrate the more common
sequences, all of which are Llegal.

1. SETMS 1. SETMS 1. SETMS

2. No I/0 2. 1/0 2. 1/0

3. ENDMS 3. SETMS 3. ENDMS
4. 1/0 4. 1/0
5. ENDMS 5. ENDMS

DUAL, SHARED, AND MULTIPLE ACCESS

Dual access means that a disk storage unit (drive) has an access
to it from two controllers on different channels from the same
mainframe. Shared access means that a disk storage unit has an
access to it from a controller that can be accessed by more than
one mainframe. If a drive has both dual and shared access to it,
it is called multiple access. This Llatter configuration is the
one most commonly found in multimainframe environments. These
-configurations are displayed in figure 7-3.

60454300 B 7-16

mainframe R DUAL ACCESS

eDual-access drives

o 0One ‘drive access to
each controller

SIeTe)c

eEach controller
connected to same
mainframe and has
its own channel

Tt

mainframe 1| {mainframe 2 SHARED ACCESS

® One controller
.. access to drives

eController access by
two mainframes

t Controllers
tt Drives

Figure 7-3. Dual-, Shared-, and Multiple~Access Configurations

60454300 A 7-17

mainframe 1l |mainframe 2

11

_O,j
O
G

+ Controllers
+t+ Drives

Figure 7-3. Dbual-, Shared-,

MULTIPLE ACCESS

e Dual-access drives

e One drive access to
each controller

e Controller access
by two mainframes

Configurations (Continued)

60454300 A

and Multiple—-Access

7f18

SEEK OVERLAP - 6DI DRIVER

The 6DI driver performs a seek operation to inform the disk
controller of an address to position to in preparation for the
next data transfer. Once the seek 'is ‘initiated by the
controller, the disk drive can complete the positioning without
further direction from the controller. This allows the ,
"controller to perform read and write operations or to initiate
positioning on other drives that may be accessed through the
controller. This overlapping of head positioning with reading,
writing, or initiation of head movement is called seek overlap.

The overlapping of seek operations is managed by the driver seek
wait monitor functionm (DSWM). Co

MMF OPERATION OF SEEK OVERLAP

There are two basic differences in driver operation between MMF
~and non-MMF configurations.

First, in an MMF environment it is possible to get a drive
reserved status back from the seek operation. In non—-MMF
systems this status should never be seen because of the software
interlock on the unit. The drive reserved status is handled
similarly to the non-MMF drive busy. The controller is released
via the operation complete and the channel is released via DSWM.
A time-out scheme is employed for both drive and controller
reserve conditions and any time the condition persists for 5
seconds an error indication is returned to the driver. The
error must persist through 64 retries before being considered
unrecoverable. : :

The second difference is that in an MMF environment the drive
cannot be released during the seek operation. If it was, the
other machine could reseek to a different position and thrashing
would result. Thus, in an MMF environment the 1/0 operation must
be done on the same channel as the seek.

NON-MMF OPERATION OF SEEK OVERLAP

After the seek function is issued the only status that should be
received is either drive busy or an error status. If drive busy
is received, the drive and controller are released via the
operation complete function. This releasing of the drive allows
the driver to come back and do 1/0 to that unit from the other
channel on a dual channel configuration. The channel is then
released to the system via the DSWM monitor function. The drive
is protected from other requests for the unit by the software
unit reserve in MST word DILL. This interlock is gained at the
time a channel is initially assigned and is not released until
an ENDMS is encountered.

60454300 B 7-19

The channel is now free for other 1/0 requests. Every time
through the MTR Loop a check is made for a free channel to
assign to the seeking driver. If one is free it is assigned and
the driver will reseek and check again for on-cylinder status.
This sequence continues until an error or on-cylinder is
detected.

FLOWCHARTS FROM 6DI DRIVER

A core map is found in figure 7-4. Flowcharts from the 6DI
driver are shown in figures 7-5 through 7-11. PRS (preset) is
entered from SMS while the other three routines are entered via
return jumps to EMD, RDS, and WDS.

60454300 B 7-20

ALL disk drivers are originated at location MSFW for loading

into PP resident. The first location (556) contains the
entry point to the preset subroutine within the driver.

This

is

used by SMS when it has been determined that the correct driver

is loaded. Following this are the three entry points:

557 RDS - Read sector

562 WDS - Write sector

565 EMS - End mass storage operation
The symbols WDS and RDS are defined in PPCOM and are the
same for all drivers. The following functions: from the
6D1 mass storage driver are flowcharted.

e PRS = Preset

e FNC - Issue fuhction

e EMS - End mass storage operation

e RDS - Read sector

@ MWDS - Write sector

e LDA - Load address .

e DSW - Driver seek wait processing

@ DST - Check drive status

60454300 B

MSFW

RDS

wDS

EMS

PRS

PPFW

BFMS

EPFW

60454300 B

SMS

Driver preset address

RDS SUBR
UJN

wOS SUBR
UJN

EMS SUBR

RDS.

wDS.

RDS.

wDS.

Read sector

Write sector

End mass
storage

Preset for driver

Buffer

Error processor

Figure 7-4. MS Driver Core Map

7-22

select seek
function for
1:1 or 2:1
interlace

T

preset MMF
non-MMF
operation

C

Figure 7-5. PRS - Preset .

60454300 B 7-23

wait output
register clear

!

convert address
to physical address
LDAM

4

set reposition
flag

Dsw

driver
seek
wait

controller status =
connected taka status 2000
yes set controller
connected

issue
seek function

i

output physical
address

DST

Figure 7-6. LDA - Load Address

60454300 8 7-24

(=)

chiannel statiis
= requested
channel status

error status

yes

return

controller
connect
set

status requires
release

issue
operation
Dst complete
menitor
function J(
wait for
read T4, TH
as set hy accept
DSWM \l{

set channel
instructions

R

set channel
status as
set by DSWM

Figure 7-7. DSW ~ Driver Seek Wait

60454300 B

set
position
required

!
call DSW

i with return
channel status

exit

Figure 7-8. EMS - End Mass Storage

60454300 B 7-26

(9

save
buffer
: address :

'LDA

load
address

position
required

issue
read
function

v

input
data

y

set exit
to RDSX

L

Figure 7-9. RDS - Read Sector

60454300 B 7-27

60454300 B

(s

save huffer
address

v

save write
last sector
flag

set normal
write function

position
required

last
sector before
position

write last
sector selected
by caller

yes

A2

;

issue write
function

v

output
data

Figure 7-10.

- Write Sector

set write
last sector
function

60454300 B

channel
busy

function
equipment

FAN CH

(A) = function number

function

set buffer
word count

accepted

(A) = 502

Y

function

activate channel

timed-out

fFigure 7-11. FNC ~-

return

Issue Function

7-29

incomplete
;ransfer

output yes

I wait for
operation

channel empty

no \L

disconnect
channel

E

take
general
status

- (@

yes

exit to
RDSX/WDSX/LDAX

Figure 7-12. DST - Check Drive Status
60454300 B

60P DDP/ECS DRIVER

Routine 6DP provides the capability to access the ECS I and ECS

11 secondary storage devices via the DC135 or the parity

enhanced DC145 DDP. Routine 6DP performs the basic read/write
functions for the DP type equipments.

Whenever an unrecoverable ECS abort occurs, 7DP, the DDP/ECS
error processor, is called. If a read function was being
processed and a parity error occurred, 7?DP calls 7RP. Routine
7RP retrieves the data in error from the DDP port and completes
the read of the remaining ECS words (7RP is not called on a write
parity error). After 7RP is called on a read parity error, 7RP
recalls 7DP. At this time 7DP issues its first DEPM and calls
7EP, causing the initial error message to be issued for the

block of data being read or written.

Once control is returned to 7DP, it calls 7SP to reread or
rewrite the data one word at a time and compares previously read
data with the new data. Routine 7SP calls 7MP to dissue
intermediate ECS error message whenever the data read does not
compare. After issuing the error message, 7TMP recalls 7SP to
continue the single word read or write error recovery process.
Once 7SP completes its single word reads or writes, it recalls
7DP. Routine 7DP issues another DEPM and calls 7EP which issues
a final error message for the read or write function, showing an
unrecovered or recovered status for the entire operation.

Figure 7-13 illustrates the preceding process.

60454300 B : 7-31

60454300 B

RDS WDS

read sector write sector
check
status and
address

D
yes

Figure 7-13. 6DP DDP/ECS Driver

7-32 ®

determine -
error type
convert addr.
and word count

(=

60454300 B

header

for message
‘ no make
C parity error e DEPM
call
yes
no
o 7RP called
yes yes
ahort <
no
yes yes
error recovered

7SP calied

no

no

operation

no

=

set exit
address to
RDSX/WDSX

F"igur"e 7-13. 6DP DDP/ECS Driver

(Continued)

read error
data fram
DDP port

v

Check status -

A

read
remaining
data

all data
read

set 7RP
call flag
NOTE
If the channel was previously
active, or a function time out
occurs, 7RP will set its abort

flag hefore calling 7DP.

Figure 7-13. 6DP DDP/ECS Driver
(Continued)
60454300 B 7-34

60454300 B

15P

compute
address

transfer
data

J

check
status

i

- compare
data

v

. check
error type

all words
retried

compare
on data

NOTE

If a function timeout occurs

or address not accepted, 7SP
will set its ahort flag bhefore
calling 7DP.

set 7SP
eall flag

Figure 7-13., 6DP DDP/ECS Driver
‘ (Continued)

recovered
error

set recovered
status in

set RDCT = 100;
set unrecovered

third
message

status in
message message
set up 2nd
message
y
issue 1st
message

Figure 7-13.

60454300 B

issue
third
message

read
error
recovered

copy good
data to
PP buffer

6DP DDP/ECS Driver
(Continued)

7-36

MASS. STORAGE INITIALIZATION AND RECOVERY ' 8

The initialization and recovery of mass storage devices is
controlied by three routines: - recover mass storage (RMS), check
- mass storage (CMS), and system recovery processor (REC). ALl
mass storage devices have a label which contains information
identifying the equipment and usages of it such as pack name,
device number, and device masks. The usages of a mass storage
device are defined through an initialization and these
attributes remain with the device until the device attributes
are redefined by subsequent initializations.

This section deals-with the recovery and initialization of mass
storage under: NOS 1, and it 1is assumed that the reader is
familiar with NOS mass storage concepts and the format of mass
storage tables. The reader should refer to the NOS Installation
Handbook, Sections II and IV, for review of the basic mass
storage. concepts. :

MASS STORAGE MANAGER

The recovery of mass storage devices is performed by mass
storage manager (MSM). MSM routines build the mass storage
tables (MST) for all mass storage devices introduced to the
system during deadstart or on-line. The two major routines in
MSM - -CMS, which controls the on-line device operations, and RMS,
which handles the deadstart operations - read the label of each
mass storage device and enter appropriate information from the
tabel into the MST/TRT for the device. Since an attempt to read
and recover the information contained in the device label is
always done, the manipulations done by MSM are generally called
recovery. The initialization of a mass storage device is then a
subset of device recovery. .A device recovery implies that all
the information contained in the device label is transferred

to the device's MST/TRT; a device initialization may alter some
or all of the Llabel information when building the device's
MST/TRT.

The contents of the label track for a device are defined in
common decks COMSLSD and COMSDSL. The format of a mass storage
device label track and lLabel sector are shown in Section 2. The
format of the MST is also shown in Section 2 and its contents
are defined in PPCOM.

INITIALIZATION AND RECOVERY ROUTINES

RECOVER MASS STORAGE (RMS)

RMS is the deadstart portion of the MSM. It surveys all defined
mass storage equipments and attempts to recover them.

60454300 A 8-1

RMS is activated by STL as part of the deadstart process with
"the input to RMS being the level of deadstart recovery selected
to be performed. With the deadstart lLevel and information
entered into skeletal MSTs from CMRDECK processing, the recovery
of mass storage devices may be done.

A flowchart of RMS is shown in Figure 8-1. There are four basic
phases to RMS: preset, read device lLabels, check and recover
devices, and call REC into execution.

Preset

The preset phase of RMS scans the equipment status table (EST)
for mass storage devices, building two tables: table of
equipments to recover (TREC) and table of CM addresses for MST
of first unit in the equipment (TEQP). The address of dayfiles
tc recover is also set at this time. If the system being
deadstarted 1is part of a multimainframe (MMF) complex, the Link
device is examined for the existence of this machine's ID and
its condition in order to determine whether this machine can be
recovered or introduced to the MMF complex.

Read Device Labels

Before any recovery (or initialization) can be performed, an
attempt is made to read each device's lLabel. This is done by
routine read device lLabel (RDL). The flowchart for RDL is shown
in Figure 8-2. RDL is also caltled by CMS, the on-line portion
of MSM. If the attempt to read the labels from each unit
comprising the device is not successful, a lLabel error status
(STLE) is set into the MST for the device for later processing.
If the read is not successful because a unit is not ready, a not
ready status (STNR) is set into the MST if the device being
recovered is removable. The attempt to read the device label is
not made by RMS for devices with a total initialize requested.

60454300 A 8-2

PRS

preset

EXR
load 4DB
| RLD \

recover
link

device

4DB/RDL

read device

EXR

load 4DH

IMS

initialize
mass
storage

EXR .

load 4DG

Figure 8=1. Recover Mass Storage (RMS)

60454300 B

Figure 8-1.

60454300 B

CM
recovery

CDsS

check
device
status

EQs

no

/ CAD \
check
active

devices

to recover

RCD

recover
devices

UMT

update MMF
tables

EQ

recovered

VPF

verify PF
integrity

write REC

call into
input

register

Recover Mass Storage (RMS)

(Continued)

4DB/RDL

initialize

requested
SSL

set sector
limits
no

redefinition
requested

yes device

‘ available
advance
redefinition

count
yes
unloaded
return

Figure 8-2.

60454300 B

yes

set status
to STOF
= QFF

D
/—f‘\

wri MST

(return ’

Read Device Labels (RDL)

deadstart
initialize

set status
to STIN

Figure 8-2.

60454300 B

SHT

set half
track mode

set

message

Read Device Labels (RDL)

equipment

(Continued)

RLS SLT

read label
sector

search for
label
track

set full
track mode

removable

track mode
available,
not tried

first first no
unit of unit of ‘
equipment equipment
set status
to STLE
inhibit
further
processing

set status > 5
to STNR

Figure 8-2. Read Device Labels (RDL) (Continued)

60454300 B 8=7

Figure 8-2.

60454300 B

RLM

read local
MST

more
units to
read

no

return

Read Device Labels (RDL)

(Continued)

Check and Recover Devices

Upon the reading of device lLabels, the mass storage devices are
recovered from their active states (level 3 deadstart) or from
their label information (level 0, 1, and 2 deadstarts).
Subroutine check active devices (CAD) recovers mass storage
.devices from their central memory MST/TRT. Ffigure 8-3 contains
the flowchart for CAD. Subroutine check device status (CDS)
controls the recovery of the mass storage devices using the
information read from the device Llabels in conjunction with

information entered when processing the CMRDECK. Refer to figure
8.4.

60454300 B 8-9

return

device
available

no

set status
to STOF =
off

read PF
description.
and status
PFGL, PUGL

and STLL

set
equipment
message

Figqure 8-3. Check Active Devices (CAD)

60454300 B 8-10 |

4DG/RDE

read DAT
entry

device error
' ss diagnostic
acce MMF DEVICE

set

ACCESS ERROR

yes

set access o
by this

mainframe

Figure 8-3. Check Active Devices (CAD)
(Continued)

60454300 B 8-11

4DG/VLP

validate
label

parameters

“1H%Higil!g"
yes

irst
equipment
in chain

error
diagnostic
ERROR ON

DEVICE WITH

ACTIVE FILES

4DB/IES

initialize
equipment
status

(return)

4DG/ATG

adjust
track
count

Figure 8-3. <Check Active Devices (CAD)
(Continued)

60454300 B

8-12 I

Anitializa\ no

equested

set status
to STOF = |e
OFF

return

60454300 B

no

read PF
description
and status
PFGL, PUGL,

STLL

Figure 8-4.

SEM

set
equipment
message

[T\

check
system
equipment

error
~diagnostic
SHARED DEVICE
ACTIVE IN DAT
or
REMOVABLE
DEVICE
CONFLICT

first
unit of
equipment

4DG/GSD

check shared
device
status

yes DAT

hang

Check Device Status (CDS)

conflict

8-13 o

‘ no first
return unit of
equipment

no

MMF
4DG/VLP
validate yes
label
paremeters 4DG/UDT

return

update
DAT

ECS
track
unavailable

error
diagnostic
END OF DAT

set equipment TRACK CHAIN

recovery and

advance
recovery count
hang

L

Check Device Status (CDS)
(Continued)

Figure 8-4.

60454300 B 8-14 I

~Tecovery

o
requested
[yes

error
diagnostic

Tecovery ERROR ON

requested -DEVICE WITH

ACTIVE FILES

system
device

error
diagnostic
ERROR ON
SYSTEM
DEVICE

active .
files

no
A
/ 4DB/IES \
initialize
equipment
status

return

Figure 8-4. Check Device Status (CDS)
‘ (Continued)

60454300 B

8-15 |

Mass storage devices are recovered after executing CDS by
subroutine recover devices (RCD), provided that there are mass
storage devices to be recovered. RCD recovers the TRT by either
copying it entirely or editing it. The editing phase recovers
only preserved and flawed tracks, making all other tracks
available for system usage regardless of their previous
reservations. The editing phase occurs only on a level O
deadstart. Figure 8-6 is the flowchart for RCD. RCD alsoe®
initiates the recovery of preserved system dayfiles by invoking
subroutine chase dayfile chain (CDC), which recovers the dayfile
by reading the mass storage device upon which it resides.

At this point, the mass storage tables have been recovered
either from their CM area or from the labels on the mass storage
devices. If the system being deadstarted is part of a
multimainframe configuration, the MSTs for shared devices are
updated in the Llink device. The details of mass storage
recovery for an MMF configuration are described lLater in this
section.

I1f any equipments have been recovered, a verification of the
permanent file subsystem is done. This verification, performed
by verify permanent files (VPF), protects against duplicates in
pack/family names and device mask bits (master devices) and
device numbers within the same family.

Call REC Into Execution

Having completed this phase of mass storage recovery, the
remainder of the system deadstart can proceed.

RMS writes a call for PP routine REC into its input register and

jumps to PP resident, allowing REC to be loaded and to continue
the system recovery process.

60454300 A 8

16

60454300 B

equip-
ment being
recovered

SMS

set mass
storage

SEM

set
equipment
message

SEC

set
equipment

configuration

read label
to MST
buffer

/' 4DG/RTT \

read
TRT

yes

no_ .l o l
set
. diagnostic
TRT LENGTH
ERROR

Figure 8-6. Recover Devices (RCD)

return

8-17

set error
code read
label copy

of STLL

no

recovery
requested

system
device

yes

no

removable

yes

active
users

load error

4DB/IES
initiall diagnostic
nitialize -
equipment address
status
\
hang

return

Figure 8-6. Recover Devices (RCD)
(Continued)

60454300 A 8-18

60454300 B

“Tecovery
requested

4DG/ETT
edit

4DB/CLR
clear TRT

set
diagnostic

Figure 8-6. Recover Devices (RDC)

(Continued)

retain
active
user

count

CDC

chase
dayfile
chain

4DG/ATC

adjust
track
count

return

CHECK MASS STORAGE (CMS)

CMS is the on-lLine portion of the MSM. It surveys all defined
mass storage devices and verifies that the proper devices are
mounted or makes them available for user access if possible.
This survey and verification takes place on a periodic basis (60
cycles of 1SP) if removable packs are enabled (with DSD command
or IPRDECK directive). CMS is also activated by the on-line
mass storage initialization routines (IMS/MSI) after a device
has been initialized on-Line. UNLOAD and MOUNT commands will
also cause 1DS to activate CMS.

There are five phases to CMS: preset, read device labels, check
and recover devices, check for initialization requests, and
count active families. A flowchart of the main routine of CMS
is shown in figure 8-7.

Preset

The preset phase of CMS determines if CMS is being activated

for the first time or is being recalled. 1If being recalled and
PFNL is interlocked, the interlock is requested to be cleared.
The EST is scanned to build the TREC table in the same manner as
RMS.

Read Device Labels

The RDL routine contained in 4DB is modified to exclude portions
of RDL that do not apply to on-lLine lLabel recovery. RDL is then
executed. RDL is flowcharted in Figure 8-2.

60454300 B 8-20

60454300 A

load label
recovery

routines

4DB/EMF \

enable MMF
~ recovery

redefinition
requests

_4DG ;
load TRT

recovery
routines

CAD

check
active
devices

CID

check
inactive
devices

Figure 8-7. Check Mass Storage (CMS)

CuD

check no
unavailable
devices
yes
GDT
equipment get
tOo recover DAT
S ——
RQS —
9 RCD

request
storage

recover
devices

ILK

interlock
PF activity

Figure 8-7. Check Mass Storage (CMS)
(Continued)

60454300 A

UMT

update
MMF
tables

/ C£R }X

check for
initialization

requestes

VPF
verify PF
system

CFM

count,
active
families

CLK
clear PF

activity
interlock

/ RPF \ error
diagnostic
release DAF ERROR ON DPPM
interlocks ACTIVE
DEVICES

Figure 8-7. Check Mass Storage (CMS)
(Continued)

60454300 A

Check and Recover Devices

This phase of CMS validates the mounted mass storage by
verifying active devices, checking inactive and unavailable
devices, and recovering those devices that are as yet
unrecovered. Subroutine CAD is concerned with those devices
that are available, not being initialized, on or off with active
users, not removable, or removable with active users, or
checkpoint pending and not being unloaded. If the preceding
properties are held by the device, then verify lLabel parameters
(VLP) is called to validate the device. ALl other devices are
not considered to be active devices. Figure 8-8 is a flowchart
of CAD.

Subroutine check inactive available devices (CID) is then
executed to check those devices that were excluded by CAD and
are removable. The MST for devices processed by CID is
initialized and cleared of extraneous data. CID, basically, is
the routine that cleans up the MST when 3 removable device is
unloaded and restores the MST of invalid Labeled devices to a
skeletal and unavailable condition. Figure 8~-9 is a flowchart
of CID.

Subroutine check unavailable devices (CUD) processes those
devices not previously validated by CAD or not unloaded by CID
(these should be all devices not active and verified that have
an unavailable status). CUD determines if there are any devices
to recover. A flowchart of CUD is shown in figure 8-10.

60454300 A 8

24

available

read STLL
and PFGL

deadstart

initializa
requeste

return

Figure 8-8.

60454300 A

yes

no

yes

yes

) no
active
users

no
removable

no
checkpoint
pending

yes

return

yes

local
unlogd

no

Check Active Devices (CAD)

Figure 8-8.

60454300 A

4DG/VLP

verify label
parameters

no first
unit in
equipment

yes
verification
errors

es

no

validation
enabled

validate
MS tables

validation
errors

SME

process
error log
messages

J A
/ upB/SES \

set error
status

advance
error
count

y

Check Active Devices (CAD) (Continued)

CID

read MST

active
files

local
utility

rety
) agtive

set device .
unavailable;
update EST [°

entry

removable

RGM

total syste

interlock
‘DAT -

flag
register

—interlocked

yes

4DG/RDE

interlock

CLK

read global
\ MST words

return

Figure 8-9.

60454300 A

read DAT
entry

clear
machine
access

all
acgesse
cleare

clear total
interlock

diagnostic
WAITING -
RECOVERY
INTERLOCK
set recall
status = 0

clear DAT

Clear Inactive Devices (CID)

recall

4DG /WDE

write DAT
entry

IFR

drop DAT
interlock

unloaded on
all machines

4DB/TGB

set global
unload

&

return

IAaM
process
accounting
message

4DB/IES

initialize
equipment
status

CLK

clear total
interlock

WaEsiSsd on
1 machines

clear device
description,

Figure 8-9. Clear Inactive Devices (CID) (Continued)

60454300 A

60454300 A

available

read MST

eguip-
ment_in usg as
part o

return
chain

no
unload
no -
no -
- non-shared ~,
“ no |

device
previously

recovered

Figure 8-10. Check Unavailable Devices (CUD)

update
global MST
in ECS

v

clear no
unavailable ‘

status;
rewrite EST yes

CGU
return : check
glabal
unload
/ 4DG/VLP \

verify
label
parameters

first
unit in
equipment
chain

set
recovery
for device

4DB/SES

set error '
status
'——44 return /<

Figure 8-10. <Check Unavailable Devices (CUD)
(Continued)

60454300 A : 8-30

If after executing CAD, CID, and CUD, a device is to be
recovered, subroutine RCD is called. Subroutine RCD performs
the same function for CMS as the RMS subroutine. A verification
of the permanent file subsystem is performed as in RMS.

Check for Initialization Requests

After recovering and verifying existing mass storage devices, a
check is made to see if there is an initialize request pending
for any of the mass storage devices. If initialization requests
are present, then CPU routine MSI is activated to process the
initialization. The control statement MSI. is entered into
control statement buffer of the control point and 1AJ is called
to process the next statement. This activity is performed in
subroutine check initialization request (CIR) and is flowcharted
in Figure 8-11.

Count Active FamiLies

If no initialization requests were present and the permanent
file system has not been verified, VPF is called. 1If the count
of active families detected by VPF does not agree with the
family count in PFNL, then the family count is updated in PFNL
using monitor function IAUM with option IPFS or DPFS to increase
or decrease the family count. :

Once this phase has been completed, CMS terminates by dropping

60454300 A ' 8-31

preset EST
scan

read EST
entry

initialize
requested

mass
storage

PFs
involved

no

advance
recovery
count

3

3

advance
initialization
count

]

Figure 8-11. Check Initjalization Requests (CIR)

60454300 A

modify
control card

call for

CONFIG

Tequest
with PFs
involved

interlocked

set DAT
interlock

Figure 8-11.

60454300 A

DAT
interlocked

by this
machine

IFR

interlock
flag
register

DAT
interlock
:: :: y
set
initializa-
tion count

in MMFL

)

yes

store
MSI/CONFIG
control
card

(Continued)

diagnostic
" WAITING -
REGCOVERY
INTERLOCK
set recall
status = 0

Check Initialization Requests (CIR)

8-33

SYSTEM RECOVERY PROCESSOR (REC)

The third component of mass storage recovery is REC. REC
performs many recovery functions but is mentioned in this
section only for those activities dealing with the recovery of
mass storage, namely the recovery of preserved files. REC Lloads
overlay 4DA (which is part of MSM) to recover preserved files;
this dincludes input/output queue files, and direct access
permanent files. If a dayfile is not recovered, REC will
establish a new one.

MASS STORAGE RECOVERY IN MMF ENVIRONMENT

For purposes of device usage determination, tables are
maintained in ECS that identify the status of all devices in
the multimainframe complex. This includes shared and nonshared
devices for all machines. These tables are called the device
access tables (DAT).

RMS and CMS use similar lLlogic in recovering mass storage devices.
When a device is recovered, the DAT is interlocked while a
check is made to see if an entry exists for this device. The
presence of an entry indicates that another machine is also
accessing the device. If an entry is found and the machine
recovering the device has not been instructed to share it, an
error is indicated and recovery halts with an appropriate
message displayed. If the machine already accessing the device
is not allowing it to be shared (TRT is not ECS-resident), the
same error condition occurs. These situations are illustrated
in table 8-1.

60454300 A 8-34

TABLE 8-1. RECOVERY OF SHARED DEVICE ERRORS

S mm D e A . D D P G D SO D S WD WD E.UR S TR O TR M D S SE R e G Y SO G T M W T GRS W W G P W D W WO WS WP WS VR =

\ I : .
\ Status | : |
\ N |
\ I |

\ | Device Used in . Device Used in

\ | Nonshared Mode | Shared Mode

Status \ | |
LSRR B . |

—— - - . - S W W VS w W WD W G WD M M G G} SN S D G W R P R T S M I G R D M WP T M D S D e S R D D e -

| - |
Use Device | ERROR | ERROR
in | - | :
Nonshared | Two machines want to | Machine coming up wants
Mode » | use the same device | to use a device in
S | in nonshared mode. | nonshared mode that

| | other machines are

} | sharing.

- . . " o P i W A W . D TN WP A W WA E S W D N GID P D G G G S D W G R G M D e M m W R M WA S mm A WD S .
. T 7

Use Device
in Shared
Mode

ERROR

| |
| |
| Machine coming up |
| wants to use a devicel
| in shared mode that |
| I
| |
I I
| |

Add accessing status
to DAT.

another machine is
using in nonshared
mode.

e e
N, |

The statuses across the top indicate in which mode the device is
being utilized. The statuses down the left side indicate in
which mode a machine coming up wants to utilize the device.

When a machine recovers a device it adds an indication to the
DAT entry, if the indication does not already exist, that this
machine has accessed (recovered) this device.

If the device is shared and another machine has it interlocked,
a bit in the DAT is checked to determine if a level 0 type
recovery is in progress on the device. Once the recovery is
completed, recovery on this machine proceeds as indicated. It
is not allowable to attempt a nonlevel O recovery on an :
interrupted machine once the recovery utility is run on another
machine to recover the mass storage space of the interrupted
machine. When RMS recovers a device on a nonlevel 0 deadstart,
the DAT indicates that this machine has accessed the device
previously. This status is cleared by the machine recovery
utility. .

60454300 A 8-35

It is the responsibility of each machine to recover its own
Local MST area off of the device. A bit in the global portion
of the MST indicates if the sector of lLocal information exists.
In any event, if the local area that exists in the label sector
matches the machine ID of the recovering machine, that local
area is assumed to be the most up-to—-date, regardless if
information also exists in the sector of local areas.

If no entry for the device to be recovered exists in the DAT, an
entry is made by RMS. A flag register interlock is set to
prevent other machines from attempting the same. Once recovery
is completed, the flag register interlock is cleared by REC.

Table 8-2 shows the steps involved for mass storage device
recovery during the various levels of deadstart. When a device
is not shared with any other mainframe, it is termed a
standalone device. If the device is shared, the DAT is
interrogated and recovery proceeds differently depending an
whether it is active (in the DAT) or not active (not in the DAT).
Another criterion that denotes which steps are taken is the
machine mask field in the DAT which indicates whether or not the
device has been accessed previously by this machine. Removable
devices recovered on-line are handled the same as devices on a
lLevel 0 deadstart.

TABLE 8-2. MASS STORAGE DEVICE RECOVERY DURING DEADSTART

| Device Type ‘ I

I

Level	=====—cmececceeee——o “hemcs——cmoea e e m e ———		
of	Standalone	Shared-Not Active	Shared - Active
Dead-	Device	(Not in DAT)	(In DAT)
start J--——=--mmmem e e e			
I			I
	*	**	*
== mmmmm e mm e mmmmmen e e e			
I			I I
0	2,4,6,	Not 11,4,6,	Not
I	7,8,14	appli-	7,8,9,
}		cable]10,14	cable
1 and 2]2,4,7	4,7 11,4,5,	Not	3,11 111,13
	17,9	appli-	I
}	I		cable I I }
3	Error	4,7	Error
I	I I	appli-	I
I	I	cable I I	

| * Device not accessed previously |
|** Device accessed previously |

60454300 A 8-36

The numbers in table 8-2 indicate the following.

1.

2‘

9-
10.

1.

12.
13.

14.

DAT entry not found; make DAT entry that indicates that
this machine only is currently accessing the device.

DAT éntry not found; make DAT entry which shows that
this machine is accessing the device but has no MST
pointer (not shared).

Add indication to existing DAT entry which shows that
this machine is accessing the device.

Retrieve MST (all Local and global portions) from the
device and, if shared device, preset into ECS. Retrieve
TRT from device.

Set MRTs from device into ECS.

Edit TRT (that is, release all track chains except the
preserved file chains).

Clear track interlocks for all machines.

Clean up system sectors (interlocks and user counts) for
all machines.

Set TRT from device ihto ECS.

Clear MRTs for all machines.

Retrieve TRT and global MST from ECS. Get local MST
from device. Clean up Local MST (clear interlocks,
reservations and request statuses).

Process MRT for this machine and drop local tracks.

Process MRT for‘this maéhine and clear track interlocks.

Build file of inactive queued files.

MSM OVERLAYS

MSM contains the CMS and RMS main programs and overlays that are

used by CMS and RMS and by REC as well. The overlays of the MSM,
and for mass storage recovery in general, have the name 4Dx. 1In

the descriptions that follow, the mass storage recovery overlays

are detailed. , ‘

60454300 A ‘ 8-37

OVERLAY 4DA/RDA
The main routine of 4DA and RDA is flowcharted in Figure 8-12.
RDA processes preserved track chains recovering input/output
queue files and direct access permanent files. - If QPROTECT is
enabled, the IQFT file is built from the input/output files
recovered. Other subroutines in 4DA include:

CDA Determines if a track is part of a preserved chain

caF Creates an IQFT entry for a recovered input or output
queue file

IQF Creates the system sector for the IQFT file

TQF Completes the IQFT file (if queues were recovered),
causing the IQFT first track to be set in word ACGL
of the MST and checkpoints the device if the IQFT is
not empty

VFL Verifies that the file is as long as the track chain
for the file indicates

WQF Writes individual sectors of the IQFT as the IQFT
buffer becomes full

IDM Issues the following messages:
EQee xxxx DIRECT ACCESS FILES RECOVERED.
EQee xxxx PRESEﬁVED FILE ERRORS.
EQee xxxx DIRECT ACCESS FILE ERRORS..
EQee xxxx QUEUED FILES RECOVERED.
EQee xxxx QUEUED FILE ERRORS.

EQee xxxx QUEUED FILES IGNORED.

PFE Formats the permanent file length error message
BAD Compute IQFT buffer address
CFL Change file Llength
IEM Issue error Log message
RDC Read disk chain
60454300 B : . 8-38

VsL
vTC
IRM
CEA
cTu
GDE

WDE

60454300 A

Validate sector Llinkage
Verify track chain
Issue recovery messages
Converi ECS address
Clear user counts

Get DAT entry from ECS

Write DAT entry to ECS

8-39

4DA/RDA

device
being no
initialized
ves
no

MMF

yes
return

set up for

reading
preserved file
system sectors

v

preset for
TRT scan

60454300 B

Figure 8=12. Overlay 4DA/RDA

| advance
track

CDA

check for
preserved
file

preserved
file

recovery
deadstart

WQF

flush queue
buffer and
write EOI

TQF

process end

of IQFT
fileQ

release
utility
active

v

release

channel

and issue
messages

/ WDE \

write DAT
entry

interlock

4
i return

BN

display message
'RECOVERIN
- EQxxAyyyy

queue file
RSS

read system
sector

1EM
recovery
error

disabled

DTKM
release file

and set
checkpoint

recovary
deadstart

CQF

~ check for
queue file

" Figure 8-12. Overlay 4DA/RDA
’ $00ntinued) '

60454300 B o 8-41

write
enhanced
EOI

caunts

advance
DAF
recovery
count

issue
error
message

Figure 8-12. Overlay 4DA/RDA
(Continued)

60454300 A

42

VTC

recovery yes

deadstart

-

verify track
chain

4

set error
idle flag

'

set error
status (STEI)

1

clear
checkpoint
request

\

release
channel

. issue
error message

Figure 8-12. Overlay 4DA/RDA
(Continued)

60454300 B

OVERLAY 4DB

The primary routine of 4DB is RDL (read device labels), which is
fltowcharted in figure 8-2. Other subroutines in 4DB are:

MRL Provides looping control for subroutines that must be
executed once for each device being processed

CLR Clears the TRT, preserving only those tracks that have
been previously flawed '

CMT Clears the MST words ALGL and DULL; initjalizes MDGL,
STLL, and ACGL; and catls CLR

IES Initializes the equipment status fields in MST word
STLL by building the equipment chain values for this
device

SSL Sets the sectors per track values in MST word MGDL

depending upon the number of units in the equipment

RLM Reads the Llocal MST from sector of local areas if the
Llocal MST is not the correct MST for the machine ID

SPP Sets the permanent file attributes of the device into
the MST from the label of the device; converts
permanent file information from predecessor systems
into the current NOS format of this data

WMT Writes the MST from the working buffer in the PP into
the MST area of central memory for the device

CEA Convert ECS-address

SNT Set next track in DAT chain

WDE Write DAT entry to ECS

CAM Change access mode (hatf/full track or full/half track
for LDAM devices

CFT Clear full track access

SFT Set full track mode for LDAM device

SHT Set half track mode for LDAM device

RLS Read Llabel track

SLT Search for Label track

(Y Returns to its caller a status indicating the

condition of the DAT with respect to this device

CDE Check DAT entry

60454300 B . 8

44

RDE Read DAT entry from ECS

SOT Search DAT
uoT Update DAT in ECS
LDT Load DAT from ECS

OVERLAY 4DC
The subroutines in 4DC are:
VPF Determines on a family basis that the mounted members

of the family have unique device numbers and do not
duplicate master device mask bits

CAN BuiLdsva table of family names currently mounted
CFN Compare family/pack names |

GNE ‘Get next entry from MS EST

ERR Issues one of the following diagnostics:

EQxx EQyy CONFLICTING DN
EQxx EQyy CONFLICTING PN
EQxx EQyy CONFLICTING UM
and calls 4DB/IES to set the appropriate error code in
the MST. ‘ o o
OVERLAY 4DD
The primary subroutine of 4DD is IDF (initialize dayfiles) which
is flowcharted in figure 8-13. The other subroutines in 4DD

serve entirely as subordinates to IDF. Overlay 4DD is assembled
as part of REC and is included for completeness of 4Dx overlays.

60454300 B ' ‘ 8-45

60454300 A

4DD/IDF

enable
dayfile
dumping in
DF PP

clear dayfile
recovery infor-
mation from
system davfile
buffer

d

no

level O
or 2
deadstart

advance
dayfile
pointer

end of

read dayfile
status word
("FST")

dayfiles

yes

return

Figure 8-13. Initialize Dayfiles (IDF)

46

60454300 A

~ dayfile
on default
equipment

use
SYSTEM

equipment

.

no

X

read DULL

initialized

dayfile
not” being

track ™
assigned

1EM

device
nrecoverabl

no,

track
assigned

DT KM

drop dayfile
tracks

yes
assigned

error
diagnostic:

EQXX DAYFILE
"TRACK LIMIT

ERR

Figure 8-13. Initialkize Dayfiles (IDF)
(Continued)

8-47

/ STBM \

read svystem set
sector preserved
file bict

. request
valid no channel
system .
sector

/ WSS \

write
read EOIL system
sector sector

drop
channel

write
EOI

N

drop

FMM channel

format
messages

update
DULL

Figure 8~13. Initialize Dayfiles (IDF)
(Continued)

60454300 A

OVERLAY 4DE

The subroutines in 4DE manipulate the user ECS chain. This
chain is a contiguous track chain which is then used as an area
to allocate user ECS blocks. The routines are:

ECS Main routine to allocate/recover.user ECS area
ACE Assign contiguous'ECS tracks
CAD Clear allocation data in system sector for specified

machine ID
CD1 Clear device interlock on ECS.

FAD Fetch allocation data for specified machine ID from
system sector

FSS Fetch system sector for‘user ECS chain

FTM Findiaréé for this machine's subchéiﬁ-in system
sector : : :

HNG Issue message and hang

ISS Initiatizeisystem sector for userfECS area

RLS . Release existing user ECS subchain

SCP Sét up contrbL bbint areas_fbr acéess to ECS

SDI Set device interlock on ECS equipment

sss Write system sector for user ECS chain

To support user ECS, a contiguous track chain is reserved by
routines in overlay 4DE. This chain is split into subchains
that are used by machines in an MMF environment which have
machine IDs that match the ID on the subchain. The information
describing the subchains is written in the system sector of the
user ECS chain. The user ECS system sector format is shown in
section 2.

60454300 A ‘ v 8-49

OVERLAY 4DF

The subroutines in 4DF manipulate MMF tables contained in ECS.
These routines are:

EDT Builds the DAET word in ECS

UER Clears or enters machine recovery tables (MRTs)
for the device in ECS

CRT Clears the MRT of this device
ERT Edits the MRT
SMT Stores the MRT and TRT into ECS

OVERLAY 4DG

Overlay 4DG contains routines for manipulating track reservation
tables. TRTs are read into central memory area separate from
where they reside with the MST for recovery operations. The
major routines of 4DG are:

ATC Adjusts the track count (number of tracks remaining)
in word TDGL of the MST.

EMT Updates the MST and EST to indicate that the device
is available updating MST words ACGL, MDGL, DULL and
the PF descriptors ALGL, PFGL and PUGL.

ETT Edits the labels from the recovery buffer in central
memory to the TRT area, releasing all track chains
that are not preserved or flawed.

RTT Reads the TRT into the recovery buffer in central
memory from its position in the device's label track.

SEC Sets the equipment configuration by indicating
whether a device is part of an equipment chain.
While part of an equipment chain, the MST/TRT of the
first device in the chain is the primary source of
information for the chain.

CCE Validates the equipment chain to verify that the
elements of the chain are correctly Llinked.

CLP Compares a set of label parameters consisting of

pack name, user number, and number of units with a
desired set of these values.

60454300 B 8-50

OVERLAY 406G

VLP

RTC
AuL
CEP

voP

OVERLAY 4DH

Overlay 4DH

(continued)

Validates labels read for a given equipment chain.
ALl devices in the chain must be ready and have
correctly read Llabels as well as satisfying the
desired set of pack name/user number/number of unit
properties. VLP calls CLP and CCE.

Reserve track chain.

Assemble unit Llist.

Compare equipment parameters.

Verify device parameters.

contains routines utilized by RMS in initializing

mass storage equipment. The primary subroutine of 4DH is IDS

(initialize

device status) which is flowcharted in figure 8-13.1.

The other subroutines in 4DH, Wwhich are entirely subordinate to
IDS, are the following. »

CTF

IFM

PFT

RCS

MSM OVERLAY.

Check track flawed in TRT.

Interpret flaw map. This routine uses overlay OTI
to read the factor flaw map on 844 and 885 type
devices and sets the flaws in the TRT..

" Prewrite flawed track. Prewrite;_any potential

Label that is flawed.

Reserve CTI space. This routine reads the
deadstart sector, checking for the presence of
.CTI/MSL, and flaws those areas of the TRT
accordingly.

LOAD ADDRESSES

Figure 8-14
the various

details a Load map of MSM. The load addresses of
overlays of MSM are defined as follows:

Routine Load Address o Definition

4DA 04DA Maximum of /CMS/PRSX+5 and OCTL+5

4D8B 040B NMSD + maximum of /CMS/PRSX and
/RMS/PRSX

4DC osov End of common subroutines in 4DB

4DF osov

4DG osov

60454300 B

8-51

4

save track
assignment

/ STBM \
no SPFS-set
preserved
set off file hit
LDAM : status
device in MST
yes

device
off

set initialize
requested, lahel
track available,

IFM

rewrite EST
interpret
flaw :
map label
track in
range
RCS
reserve
CTI
space " error
diagnostic
/ RTCM \

LABEL TRACK
request , ()
track hang

CONFLICT

Figure 8-13.1. Initialize Device Status (IDS)

60454300 B 8-51.1®

Figure \8-13.1.

60454300 B

set first
label track

[T\

set mass
storage

PFT

prewrite
flawed
track

advance
label
track

CTF

check
track
flawed

(Continued)

Initialize Device Status (IDS)

8-51.20

T T T T T T T T T
RMS F " |
CMS . i
REC PPFW ; |
4DA 04DA 4DA .
4DB 04DB 4DB |
4DC osov 4DC I
4pD \ 400 -
4DE 4DE
S
F
4DF osov 4D I
406 0SOV_ 406
0SOV 4DH
4DH ov, |

Figure 8-14. MSM Load Map

60454300 B 8-52

Table 8-3 shows a cr