60388100

@ CONTROL DATA
CORPORATION

PL/I
VERSION 1
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:

NOS 1
NOS/BE 1

REVISION RECORD

REVISION DESCRIPTION

A Original release at PSR level 472.
(03-31-78)

B This revision incorporates various technical corrections and editorial improvements.
(11-01-79)

Publication No.

60388100

REVISION LETTERS |, O, Q AND X ARE NOT USED

© COPYRIGHT CONTROL DATA CORPORATION 1978, 1979

All Rights Reserved

Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

Page Revision Page Revision Page Revision
Cover - 7-10 B 12-25 B
Inside Cover - 7-11 thru 7-16 A 12-26 thru 12-28 A
Title Page - 7-17 B 12-29 thru 12-31 B
ii B 7-18 A 12-32 thru 12-37 A
iii/fiv B 7-19 A 13-1 thru 13-3 B
v/vi B 8-1 A 13-4 thru 13-7 A
vii thru xiv B 8-2 B 14-1 thru 144 A
XV A 8-3 A 14-5 B
1-1 thru 1-7 A 8-4 B 14-6 A
2-1 thru 2-9 A 8-5 thru 8-8 A A-1 thru A4 A
3-1 thru 3-13 A 8-9 thru 8-11 B B-1) A
3-14 B 8-12 A B-2 thru B-29 B
4-1 thru 4-10 A 8-13 B C-1 thru C-10 A
4-11 B 8-14 . B D-1 thru D4 A
4-12 B 9-1 thru 9-3 B D-5 B
4-12.1/4-12.2 B 10-1 thru 10-5 A E-1 thru E-5 A
4-13 A 10-6 thru 10-11 B E-6 B
4-14 B 11-1 B E-7 A
4-15 thru 4-22 A 11-2 A E-8 A
4-23 B 11-3 A E-9 B
4-24 A 11-4 B E-10 thru E-12 A
4-25 B 11-5thru 11-13 A E-13 B
4-26 thru 4-28 A 11-14 B E-14 thru E-17 A

I 4-29 B 11-15 thru 11-25 A E-18 B
4-30 thru 4-32 A 11-26 B E-19 A
5-1 B 1127 A F-1 A
5-2 B 12-1 thru 12-4 A F-2 A
5-3 thru 5-6 A 12-5 B F-3 B
6-1 A 12-6 thru 12-11 A F-4 B
6-2 B 12-12 B Index-1 thru -10 B
6-3 B 12-13 A Comment Sheet B
6-4 thru 6-6 A 12-14 A Return Env. -
6-7 thru 6-13 B 12-15 B Inside Cover -
7-1 thru 7-4 A 12-16 B Back Cover —
7-5 thru 7-7 B 12-17 A
7-8 A 12-18 thru 12-20 B
7-9 A 12-21 thru 12-24 A

50388100 B ifi/iv @

PREFACE

PL/1 is a block-structured programming language designed
for use in scientific and commercial applications. PL/I
Version 1 is essentially a subset of the language defined
by the American National Standard Programming
Language PL/I, X3.53-1976, document.

PL/1 Version 1 operates under control of the following
operating systems:

NOS 1 for the CONTROL DATA® CYBER 170 Series;

CYBER 70 Models 71, 72, 73, 74; and 6000 Series
Computer Systems

Publication

CYBER Record Manager Advanced Access Methods

Version 2 Reference Manual

CYBER Record Manager Basic Access Methods

Version 1.5 Reference Manual

FORTRAN Common Library Mathematical Routines

Reference Manual

NOS Version 1 Reference Manual, Volume 1 of 2

NOS Version 1 Reference Manual, Volume 2 of 2

NOS/BE Version 1 Reference Manual

NOS/BE1 for the CDC® CYBER 170 Series;
CYBER 70 Models 71, 72, 73, 74; and 6000 Series
Computer Systems

This manual is designed for programmers familiar with the
PL/I language and the operating system under which the
PL/I compiler is operating.

Related material is contained in the publications listed
below.

Publication Number

60499300

60495700

60498200

60435400
60445300
60493800

CDC manuals can be ordered from Control Data Corporation, Literature and Distribution
Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as desecribed in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or

parameters.

60388100 B

v/vi

CONTENTS

NOTATIONS USED IN THIS MANUAL

1. PL/ISOURCE PROGRAM

Program Structure
Containment
Blocks
Procedure Block
Begin Block
Block Containment
Do Groups
Compound Statements
IF Statement
ON Statement
Single Statements
Block and Do Group Closure
Statement Structure
Statement Elements
Words
Literal Constants
iSUBs
Delimiters
Character Set
Coding Conventions

2. DYNAMIC PROGRAM STRUCTURE

Flow of Control
Block Activation
Block Activation Relationships
Environment of a Block Activation
Block Termination
Program Termination
Main Procedure Termination
STOP Statement Execution
Program Abort

3. DATA ELEMENTS

Literal Constants
Arithmetic Constant
Fixed Point Decimal Constant
Floating Point Decimal Constant
Fixed Point Binary Constant
Floating Point Binary Constant
Character String Constant
Bit String Constant
Named Constants
Entry Constant
File Constant
Format Constant
Label Constant
Variables
Computational Variable
Arithmetic Variable
String Variable
Pictured Variable
Noncomputational Variable
Area Variable
Locator Variable
Entry Variable
File Variable
Label Variable

60388100 B*

XV

T
L

1 U U U L]
=S =30 OOV U U b QOB DD b b

R R b D e e e e e e e

2-1

wwwwcfawww

e q
OO OO DN DD B

3~
3-4

PYLY
O

3-6
3-6
3-7
3-7
3-7
3-8
3-9
3-9

Generations and Storage
Static Storage
Automatic Storage
Controlied Storage
Based Storage

Aggregates

Scalars

Arrays

Structures

Arrays and Structures

4. ATTRIBUTES

Attributes for Variables
Scope Attributes
Storage Type Attributes
Aggregation and Alignment Attributes
Data Type Attributes
Noncomputational Data Type
Attributes
Arithmetie Data Type Attributes
String Data Type Attributes
Pictured Data Type Attribute
Initialization Attribute
Attributes for Named Constants
Scope Attributes
Aggregation Attribute
Noncomputational Data Type Attributes
File Description Attributes
Attributes for Conditions
Attributes for Builtin Funetions
Attributes for Parameter Desecriptors
Attributes for Returns Descriptors
Attributes for Literal Constants
Attribute Desecriptions
ALIGNED and UNALIGNED Attributes
AREA Attribute
AUTOMATIC Attribute
BASED Attribute
BINARY Attribute
BIT Attribute
BUILTIN Attribute
CHARACTER Attribute
Condition Attribute
Constant Attribute
CONTROLLED Attribute
DECIMAL Attribute
DEFINED Attribute
Simple Defining
String Overlay Defining and
POSITION Attribute
Array Defining with iSUB
Dimension Attribute
DIRECT Attribute
ENTRY Attribute
Parameter Descriptors
Nested ENTRY Attributes
ENVIRONMENT Attribute
EXTERNAL Attribute
FILE Attribute
FIXED Attribute
FLOAT Attribute
Format Attribute
INITIAL Attribute
INPUT Attribute

3-9

3-10
3-10
3-11
3-11
3-12
3-13
3-13
3-13
3-14

4-1

4-3
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-8
4-8
4-8
4-9
4-9
4-9
4-10
4-10
410
411
4-11

4-11
4-12
412

4-12.1/4-12.2 i

4-13
4-13
4-14
4-14
4-14
4-15
4-15
4-15
4-16
4-16
4-17

vii

INTERNAL Attribute

KEYED Attribute

LABEL Attribute

OFFSET Attribute

OUTPUT Attribute

Parameter Attribute

PICTURE Attribute

POINTER Attribute

Precision Attribute

PRINT Attribute

REAL Attribute

RECORD Attribute

RETURNS Attribute

SEQUENTIAL Attribute

STATIC Attribute

STREAM Attribute

Structure and Member Attributes
LIKE Attribute
Completion of Structure Declarations
REFER Option for BASED Structures

UPDATE Attribute

Variable Attribute

VARYING and Nonvarying Attributes

Extents
Summary of Attributes

5.

DECLARATIONS

Scope of Declarations
Declaration Processing

SYSIN Assumptions
SYSPRINT Assumptions

Explicit Declarations

Declaration of Statement Prefixes
Declaration of Parameters
DECLARE Statement Declarations

Contextual Declarations
Implicit Declarations
Default Attributes
Summary of Defaults

6.

REFERENCES

Declaration Applicable to a Reference
Generation or Value Accessed by a Reference
Data Reference

Simple Reference

Subseripted Reference
Strueture-Qualified Reference
Locator-Qualified Reference

Procedure Reference

Function Reference

Parameter and Returns Deseriptors

Arguments and Parameters
Argument Passing by Reference

and by Value
Conversion of Arguments
Storage Associated with a Parameter
Extents of a Parameter
Calling FORTRAN Subprograms

Common Storage Areas
Argument lists
Data Type Restrictions
Array Storage Differences
Additional Considerations

Builtin Function or Pseudovariable Reference

7.

DATA MANIPULATION

Expressions

viii

Primitive Expressions

4-17

- 4-18

418
4-18
4-19
419
4-20
4-20
4-20
4-21
4-21
4-21
4-22
4-22
4-23
4-23
4-23
4-24
4-24
4-24
4-25
4-25
4-25
4-25
4-26

5-1

5-1
5-1
5-2
5-2
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-4

Prefix Expressions
Infix Expressions
Order of Evaluation
Operations
Arithmetie Operations
Operand Conversion

Prefix Arithmetic Operation
Infix Arithmetic Operation
String Operations
Operand Conversion
Prefix Bit String Operation
Infix Bit String Operation
Concatenate Operation
Comparison Operations
Operand Conversion
Infix Comparison Operation
Assignment
Computational Assignment
Locator Assignment
Label Assignment
Area Assignment
Conversions .
Arithmetie to Arithmetic Conversion
Character to Arithmetic Conversion
Bit to Arithmetic Conversion
Arithmetie to Character Conversion
Character to Character Conversion
Bit to Character Conversion
Arithmetic to Bit Conversion
Character to Bit Conversion
Bit to Bit Conversion .
Pointer to Offset Conversion
Offset to Pointer Conversion
Picture-Controlled Conversions
Pictured Character
Validate through Picture
Character Codes
Pictured Numeric Fixed Point
Edit through Picture
Interpret for Arithmetic Value
Digit Codes
Decimal Point Code
Sign Position Codes
Signed Digit Codes
Sign Suffix Codes
Currency Code
Insertion Codes
Sealing Factor Code
Pictured Numeric Floating Point
Edit through Picture
Interpret for Arithmetic Value
Codes for the Mantissa
Codes for the Exponent

8. INPUT/OUTPUT

- Files

File Opening

File Description

File Title and Local File Name

Stream I/0

Stream File Status

Stream I/0 Statements

List-Directed 1/O
List-Directed Input
List-Direeted Qutput

Edit-Directed I/O :
Edit-Directed Input
Edit-Directed Output

Format Processing for Edit-Directed I/O
A Format Item
B Format Item
COLUMN Format Item

7-2
7-2
7-2
7-3
7-3
7-4
7-4
-4
7-5
7-6
7-6
7-6
7-6
7-6
7-6
-7
-1
-7
-7
-7
7-8
7-8
7-9
7-10
7-10
7-11
7-11
7-11
7-12
7-12
7-12
7-12
7-12
7-13
7-13
7-13
7-13
7-13
7-15
7-15
7-15
7-15
7-16
7-16
7-17
7-17
7-17

S 717

7-18
7-18
7-18
7-18
7-19

8-1
8-1
8-1
8-2
8-2
8-2
8-4
8-5
8-5
8-6
8-6
8-6
8-6
8-6
8-7
8-17
8-8

60388100 B

E Format Item
F Format Item
LINE Format Item
P Format Item
PAGE Format Item
R Format Item
SKIP Format item
X Format Item
Record 1/0
Record File Status
Record I/O Statements
Allocation Unit Size

9. CYBER RECORD MANAGER INTERFACE

Environment Processing and Defaults
Environment Compatibility
File Organization
Record Type and Length
Record Keys

10. CONDITIONS

Condition Classification

Condition Prefixes

On-Units
Current Established On-Unit
Establishing and Removing On-Units
Nonlocal References in an On-Unit
I/0 Condition Names
On-Unit Termination

Raising a Condition
Condition Builtin Functions
SNAP Output
Sequence of Operations

Condition Deseriptions
AREA Condition
CONDITION/COND Condition
CONVERSION/CONYV Condition
ENDFILE Condition
ENDPAGE Condition
ERROR Condition
FINISH Condition
FIXEDOVERFLOW/FOFL Condition
KEY Condition
OVERFLOW/OFL Condition
RECORD Condition
SIZE Condition
STORAGE Condition
STRINGRANGE/STRG Condition
SUBSCRIPTRANGE/SUBRG Condition
TRANSMIT Condition
UNDEFINEDFILE/UNDF Condition
UNDERFLOW/UFL Condition
ZERODIVIDE/ZDIV Condition

11. BUILTIN FUNCTIONS

Builtin Funetion Classification
Arithmetie Builtin Functions
Array Manipulation Builtin Functions
Condition Builtin Functions
Date and Time Builtin Functions
Mathematical Builtin Functions
Picture Handling Builtin Funection
Storage Control Builtin Functions
Stream I/O Builtin Functions
String Handling Builtin Functions
Pseudovariables
Builtin Funetion and Pseudovariable Descriptions
ABS Builtin Function

60388100 B

8-8

8-9

8-10
8-10
8-11
8-11
8-11
8-12
8-12
8-12
8-12
8-14

9-1
9-2
9-2
9-3
9-3

10-1

10-1
10-1
10-2
10-3
10-3.
10-3
10-4
10-4
10-4
10-5
10-5
10-5
10-5
10-6
10-6
10-6
10-7
10-7
10-7
10-8
10-8
10-8
10-8
10-9
10-9
10-10
10-10
10-10
10-10
10-11
10-11
10-11

11-1

11-1
11-1
11-1
11-1
11-1
11-1
11-1
11-1
11-1
11-5
11-5
11-5
11-5

ACOS Builtin Funetion
ADD Builtin Funetion
ADDR Builtin Funetion
AFTER Builtin Funetion
ALLOCATION Builtin Function
ASIN Builtin Function
ATAN Builtin Funetion
ATAND Builtin Function
ATANH Builtin Function
BEFORE Builtin Function
BINARY Builtin Funetion
BIT Builtin Function

BOOL Builtin Function
CEIL Builtin Funetion
CHARACTER Builtin Funection
COLLATE Builtin Function
COPY Builtin Function
COS Builtin Function
COSD Builtin Function
COSH Builtin Function
DATE Builtin Function
DECAT Builtin Function
DECIMAL Builtin Function
DIMENSION Builtin Function
DIVIDE Builtin Funetion
EMPTY Builtin Function
ERF Builtin Funetion

ERFC Builtin Function
EXP Builtin Funetion
FIXED Builtin Funection
FLOAT Builtin Function
FLOOR Builtin Funetion
HBOUND Builtin Funection
HIGH Builtin Function
INDEX Builtin Function
LBOUND Builtin Function
LENGTH Builtin Function
LINENO Builtin Funection
LOG Builtin Function
LOG10 Builtin Function
LOG2 Builtin Funetion
LOW Builtin Function

MAX Builtin Function

MIN Builtin Function

MOD Builtin Funetion
MULTIPLY Builtin Function
NULL Builtin Function
OFFSET Builtin Function
ONCHAR Builtin Funetion
ONCHAR Pseudovariable
ONCODE Builtin Function
ONFILE Builtin Function
ONKEY Builtin Funetion
ONLOC Builtin Funetion
ONSOURCE Builtin Funetion
ONSOURCE Pseudovariable
PAGENO Builtin Funetion
PAGENO Pseudovariable
POINTER Builtin Function
PRECISION Builtin Funetion
REVERSE Builtin Function
ROUND Builtin Function
SIGN Builtin Function

SIN Builtin Function

SIND Builtin Funetion

SINH Builtin Function
SQRT Builtin Function
SUBSTR Builtin Funetion
SUBSTR Pseudovariable
SUBTRACT Builtin Funetion
TAN Builtin Function
TAND Builtin -Function
TANH Builtin Funection
TIME Builtin Function

11-5
11-6
11-6
11-6
11-7
11-7
11-7
11-7
11-8
11-8
11-9
11-9
11-9
11-10
11-10
11-10
11-11
11-11
11-11
11-11
11-12
11-12
11-12
11-13
11-13
11-13
11-14
11-14
11-14
11-14
11-15
11-15
11-15
11-16
11-16
11-16
11-16

- 11-17

11-17
11-17
11-17
11-18
11-18
11-18
11-19
11-19

11-19

11-19
11-20
11-20
11-20
11-20
11-20
11-20
11-20
11-21
11-21
11-21
11-21
11-21
11-22
11-22
11-22
11-23
11-23
11-23
11-23
11-24
11-24
11-24
11-24
11-25
11-25
11-25

ix

12,

TRANSLATE Builtin Funetion
TRUNC Builtin Funetion
UNSPEC Builtin Funetion -
UNSPEC Pseudovariable
VALID Builtin Function
VERIFY Builtin Function

" STATEMENTS

Statement Classification
Prefixes

Entry Prefix
Format Prefix
Label Prefix
Condition Prefix

Statement Descriptions

QW

ALLOCATE Statement

Allocating a Controlled Variable '

Allocating a Based Variable
Statement Processing
Conditions

Assignment Statement

BEGIN Statement

CALL Statement

CLOSE Statement
ENVIRONMENT Option
Statement Processing
Conditions

DECLARE Statement

DELETE Statement
Statement Processing
Conditions

DO Statement
Noniterative DO
DO WHILE
Indexed DO

END Statement

ENTRY Statement
Entry-Name
Parameters and Arguments
Procedure Invoecation
Returns-Deseriptor
Statement Processing
Conditions -

FORMAT Statement

FREE Statement
Freeing a Controlled Variable
Freeing a Based Variable
Statement Processing

GET Statement
LIST and EDIT Options
FILE and STRING Options
SKIP Option :
COPY Option
Statement Processing
Conditions

GOTO Statement

IF Statement

LOCATE Statement
Statement Processing
Conditions

Null Statement

ON Statement

OPEN Statement
TITLE Option
ENVIRONMENT Option
Stream Input Option

Standard Character Sets
Diagnostic Messages
Glossary

11-26 Stream Output Options
11-26 Statement Processing
11-26 PROCEDURE Statement
11-26 Entry-Name
11-27 Parameters and Arguments
11-27 Procedure Invocation
19-1 Returns-Descriptor
RECURSIVE Option
191 OPTIONS(MAIN)
Statement Processing
12-1 Conditions
12-2 PUT Statement
12-2 LIST and EDIT Options
12-2 FILE and STRING Options
12-2 SKIP Option
}g'g LINE Option
- PAGE Option
12-4 Statement Processing
12-4 Conditions
12-4 READ Statement
12-4 INTO, SET, and IGNORE Options
12-5 KEY and KEYTO Options
12-6 Statement Processing
12-6 Conditions
12-7 RETURN Statement
T REVERT Statement
REWRITE Statement
128 FROM and KEY Options
Statement Processin
12-9 Conditions g
1 SIGNAL Statement
STOP Statement
12-10 WRITE Statement
12-10 FROM and KEYFROM Options
ig’ﬁ Statement Processing
12-13 Conditions
12-13
12-14 13. COMPILATION
12-14
12-14 PLI Control Statement
12-14 B BINARY OUTPUT FILE NAME
12-15 BL BURSTABLE LISTING
12-15 COL SOURCE COLUMNS
12-15 DB DEBUGGING OPTIONS
12-16 E ERROR FILE NAME
12-16 EL ERROR LEVEL TO BE REPORTED
12-16 ET ERROR TERMINATION
12-17 GO COMPILE AND EXECUTE
12-17 I INPUT FILE NAME
12-19 INRULE I-THROUGH-N RULE
12-19 L LISTING FILE NAME
12-19 LO LISTING OPTIONS
12-19 PD PRINT DENSITY
12-19 PS PAGE SIZE
12-20 Compilation Listings
12-20 Source Program Listing
12-21 Error Directory
12-22 Attribute and Reference Lists
12-23 Object Code
12-23
12-24
12-24 14, SAMPLE PROGRAMS
12-24
12-25 Deck Structure
12-25 Sample Program PASCAL
12-25 Sample Program TBINT
APPENDIXES
A-1 D Keywords and Builtin Function Names
B-1 E Syntax Summary
C-1 F ANSI PL/1
INDEX

12-25
12-26
12-26
12-27
12-27
12-28
12-28
12-28
12-28
12-28
12-29
12-29
12-29
12-29
12-31
12-31
12-31
12-31
12-31
12-32
12-32
12-32
12-32
12-33
12-33
12-34
12-35
12-35
12-35
12-35
12-35
12-36
12-36
12-36
12-36
12-37

13-1

13-1
13-1
13-1
13-1
13-1
13-1
13-2
13-2

13-2

13-2

- 13-3

13-3
13-3
13-3
13-3
13-3
13-3
13-4
13-4
13-4

14-1

14-1
14-1

114-1

D-1
E-1
F-1

60388100 B

1-1

1-2
1-3
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11

2-12
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23

3-24
3-25
3-26
3-27
3-28

4-1
4-2
4-3

4-4
4-5
4-6
4-7
4-8
4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23

Block Containment
Block and Do Group Closure

- Coding Conventions

Sequential Flow of Control

Diverted Flow of Control

Environment Selection ,
Dynamic Block Activation Environment
Normal Procedure Block Termination
Normal Begin Block Termination
Normal On-Unit Termination

Abnormal Block Termination

Abnormal On-Unit Termination

Block Termination and Multiple Closure

Attempted Nonlocal GOTO During Storage

Allocation
Program Termination

Fixed Decimal Arithmetic Constant Syntax
Float Decimal Arithmetic Constant Syntax

Fixed Binary Arithmetic Constant Syntax
Float Binary Arithmetic Constant Syntax
Character Constant Syntax

Bit Constant Syntax

Entry Constant Examples

File Constant Example

Format Constant Example

Label Constant Examples

Arithmetic Variable Examples

String Variable Examples

Pictured Variable Examples

Area Variable Examples

Locator Variable Example

Entry Variable Example

File Variable Example

Label Variable Example

Static Variable Example

Automatic Variable Example
Controlled Variable Example

Based Variable Examples

Based Variable with Implicit Allocation
Example)
Array Examples

Structure Example

Structure Containing Arrays Example
Array of Structures Example .
Array of Structures Containing Arrays
Example

Attributes for Variables

Attributes for Named Constants
Attributes for Programmer-Named
Conditions

Attributes for Builtin Funetions
Attributes for Parameter Descriptors
Attributes for Returns Descriptors
ALIGNED Attribute Syntax
UNALIGNED Attribute Syntax
ALIGNED and UNALIGNED Attribute
Examples - .

AREA Attribute Syntax

AREA Attribute Examples
AUTOMATIC Attribute Syntax
AUTOMATIC Attribute Examples
BASED Attribute Syntax

BASED Attribute Examples

BINARY Attribute Syntax

BINARY Attribute Examples

BIT Attribute Syntax

BIT Attribute Examples

BUILTIN Attribute Syntax

BUILTIN Attribute Examples
CHARACTER Attribute Syntax
CHARACTER Attribute Examples

60388100 B

FIGURES

1-3
1-4
1-7
2-1
2-2
2-3
2-4
2-5
2-5
2-6
2-6
2-7
2-7

2-8
2-8
3-1
3-1
3-2
3-2
3-3
3-3
3-4
3-4
3-4
3-5
3-6

3-7
3-7
3-8
3-8
3-9
3-9
3-10
3-11
3-11
3-12

- 3-12

3-13
3-14
3-14

3-14

3-14
4-4

4-4
4-5
4-5
4-6
4-6
4-6

4-6
4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-8
4-9
4-9
4-9
4-9
4-9
49

4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31.1
4-31.2
4-31.3
4-31.4
4-32

4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66
4-67
4-68
4-69
4-70
4-71
4-72
4-73
4-74
4-75
4-76
4-77
4-78
4-79
4-80
4-81
4-82
4-83
4-84

4-85
4-86

4-87
4-88

Condition Attribute Examples
Constant Attribute Examples
CONTROLLED Attribute Syntax
CONTROLLED Attribute Examples
DECIMAL Attribute Syntax
DECIMAL Attribute Examples

DEFINED and POSITION Attribute Syntax

Simple Defining Example
Defining with POSITION Example
Diagonal Selection with iSUBs
Expressions with iSUBs
Dimension Attribute Suffix
Syntax

Dimension Attribute Examples
DIRECT Attribute Syntax
DIRECT Attribute Examples
ENTRY Attribute Syntax
ENTRY Attribute Examples
ENVIRONMENT Attribute Syntax
ENVIRONMENT Attribute Examples
EXTERNAL Attribute Syntax
EXTERNAL Attribute Examples
FILE Attribute Syntax

FILE Attribute Examples

FIXED Attribute Syntax

FIXED Attribute Examples

FLOAT Attribute Syntax

FLOAT Attribute Examples

Format Attribute Example

INITIAL Attribute Syntax

INITIAL Attribute Examples

INPUT Attribute Syntax

INPUT Attribute Examples
INTERNAL Attribute Syntax
INTERNAL Attribute Examples
KEYED Attribute Syntax

KEYED Attribute Examples

LABEL Attribute Syntax

LABEL Attribute Examples
OFFSET Attribute Syntax

OFFSET Attribute Example
OUTPUT Attribute Syntax

OUTPUT Attribute Examples
Parameter Attribute Examples
PICTURE Attribute Syntax
PICTURE Attribute Examples
POINTER Attribute Syntax
POINTER Attribute Examples
Precision Attribute Suffix Syntax
Precision Attribute Examples
PRINT Attribute Syntax

PRINT Attribute Examples

REAL Attribute Syntax

REAL Attribute Examples
RECORD Attribute Syntax
RECORD Attribute Examples
RETURNS Attribute Syntax
RETURNS Attribute Examples
SEQUENTIAL Attribute Syntax
SEQUENTIAL Attribute Examples
STATIC Attribute Syntax

STATIC Attribute Examples
STREAM: Attribute Syntax

STREAM Attribute Examples
Structure, Member, and LIKE Attribute
Syntax

Structure, Member, and LIKE Attribute
Examples -

REFER Option Example

UPDATE Attribute Syntax
UPDATE Attribute Examples

4-10
4-10
4-10
410
411
4-11
4-11
411
4-12
4-12

4-12.1/4-12.2

4-12.1/4-12.2
4-12.1/4-12.2

413
413
413
413
414
414
414
414
415
415
415
415
416
416
416
416
416
417
417
417
417
418
418
4-18
418
419
419
419
419
419
4-20
4-20
4-20
4-20
4-21
4-21
421
421
4-21
4-21
4-22
4-22
4-22
4-22
4-22
4-22
4-23
423
4-23
4-23

4-24
4-24
4-24

4-25
4-25

xi

4-89
4-90
4-91
5-1
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13

6-14
6-15
6-16
6-17
6-18
6-19

xii

Variable Attribute Examples
VARYING Attribute Syntax-

VARYING and Nonvarying Attribute
Examples.

Scope of Declared ldentlfxers .
Local/Nonlocal References
References and Applicable Declarations
Nonlocal Reference to a Label Constant
Simple Reference Syntax

Subscripted Reference Syntax

Sample Subscripted References
Structure-Qualified Reference Syntax
Sample Structure-Qualified References
Locator-Qualified Reference Syntax
Sample Locator-Qualified References
Function Reference Syntax

Sample Function References]
Argument Passing by Reference and by
Value ‘

Common Storage Area Example
Format of PL/I Argument List -
Format of FORTRAN Argument Llst
Argument List Example

FORTRAN Function example

Builtin Function and Pseudovariable
Reference Syntax

Expression Syntax

Primitive, Prefix, and Il’lle Expression
Examples

Order of Evaluation Examples |
Arithmetic Operations Examples
String Operations Examples .
Comparison Operations Examples -
Arithmetie to Amthmetlc Conversion
Examples

Character to Arithmetie Conversion
Examples

Bit to Arithmetic Conversion Examples
Arithmetic to Character Conversion
Examples

Charaecter to Character Conversion
Examples

Bit to Character Conversion Example
Arithmetic to Bit Conversion Examples
Character to Bit Conversion Example
Bit to Bit Conversion Examples
Picture Specification Syntax

Digit Codes and Decimal Point Code
Examples

Sign Codes Examples

Currency Code Examples

Insertion Codes Examples

Scaling Factor Code Examples

Pictured Numeric Floating Point Examples

A Format Item Syntax

A Format Item Output Examples
B Format Item Syntax

B Format Item Output Examples
COLUMN Format Item Syntax

E Format Item Syntax

E Format Item Input Examples
E Format Item Output Examples
F Format Item Syntax

F Format Item Input Examples
F Format Item Output Examples
LINE Format Item Syntax

P Format Item Syntax

P Format Item Output Examples
PAGE Format Item Syntax

R Format Item Syntax

R Format Item Example

SKIP Format Iitem Syntax

SKIP Format Item Output Example
X Format Item Syntax

4-25
4-25

4-25
5-1
6-1
6-1
6-2

6-2

6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-4

6-6
6-8
6-9
6-10
6-11

7-2
7-3
7-4
7-5
-6

7-10

7-10
7-11

7-11

7-11
7-12
7-12
7-12
7-12
7-14

7-15
7-16
17
717
7-18
7-19
8-7
8-7
8-7
8-8
8-8
8-8
8-9
8-9
8-9
8-9
8-10
8-10
8-10
8-11
8-11
8-11
8-11
8-11
8-12
8-12

8-21
10-1
10-2
10-3
10-4
10-5
11-1
11-2
11-3

11-4

11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12

11-13

11-14
11-15
11-16
11-17

11-18 °

11-19
11-20
11-21
11-22
11-23
11-24

11-25 .

11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
11-35
11-36
11-37
11-38
11-39
11-40
11-41
11-42
11-43
11-44
11-45
11-46
11-47
11-48
11-49
11-50
11-51
11-52
11-53
11-54
11-55
11-56
11-57
11-58
11-59
11-60
11-61
11-62
11-63
11-64
11-65
11-66
11-67
11-68

RECORD File Example

The Current Established On-Unit
Establishing and Removing On-Units
Referencing 1/0 Conditions.
On-Unit Termination

Sample SNAP Output

ABS Builtin Funection Syntax

ABS Builtin Funetion Examples
ACOS Builtin Function Syntax
ACOS Builtin Function Examples
ADD Builtin Function Syntax

ADD Builtin Function Examples
ADDR Builtin Funetion Syntax
ADDR Builtin Function Examples
AFTER Builtin Function Syntax
AFTER Builtin Function Examples
ALLOCATION Builtin Funetion Syntax
ASIN Builtin Function Syntax

ASIN Builtin Function Examples
ATAN Builtin Function Syntax
ATAN Builtin Funetion Examples
ATAND Builtin Funetion Syntax
ATAND Builtin Funetion Examples
ATANH Builtin Function Syntax
ATANH Builtin Funetion Examples .
BEFORE Builtin Function Syntax
BEFORE Builtin Function Examples
BINARY Builtin Function Syntax
BINARY Builtin Function Examples
BIT Builtin Funetion Syntax

BIT Builtin Function Examples
BOOL Builtin Function Syntax
BOOL Builtin Function Examples
CEIL Builtin Function Syntax =
CEIL Builtin Funetion Examples
CHARACTER Builtin Funetion Syntax
CHARACTER Builtin Function Examples
COLLATE Builtin Function Syntax
COPY Builtin Funetion Syntax
COPY Builtin Function Examples |
COS Builtin Function Syntax

COS Builtin Function Examples
COSD Builtin Funetion Syntax
COSD Builtin Function Examples

'COSH Builtin Funetion Syntax

COSH Builtin Function Examples
DATE Builtin Funetion Syntax
DATE Builtin Function Examples
DECAT Builtin funetion Syntax
DECAT Builtin Funetion Examples
DECIMAL Builtin Function Syntax
DECIMAL Builtin Function Examples
DIMENSION Builtin Funetion Syntax
DIMENSION Builtin Funetion Examples
DIVIDE Builtin Function Syntax
DIVIDE Builtin Function Examples
EMPTY Builtin Function Syntax
EMPTY Builtin Function Examples
ERF Builtin Function Syntax

ERF Builtin Funection Examples
ERFC Builtin Funection Syntax
ERFC Builtin Function Examples
EXP Builtin Funection Syntax

EXP Builtin Function Examples
FIXED Builtin Funetion Syntax
FIXED Builtin Funetion Examples
FLOAT Builtin Function Syntax
FLOAT Builtin Function Examples
FLOOR Builtin Function Syntax
FLOOR Builtin Function Examples
HBOXND Builtin Function Syntax
HBOUND Builtin Function Examples
HIGH Builtin Function Syntax

HIGH Builtin Function Examples

8-14
10-3
10-4
10-4
10-4
10-6
11-5
11-5
11-5
11-5
11-6
11-6
11-6
11-6
11-6
11-6
11-7
11-7
11-7
11-7
11-7
11-7
11-8
11-8
11-8
11-8
11-8
11-9
11-9
11-9
11-9
11-9
11-10
11-10
11-10
11-10
11-10
11-10
11-11
11-11
11-11
11-11
11-11
1111
11-11
11-12
11-12
11-12
11-12
11-12
11-12
11-13
11-13
11-13
11413
11-13
11-13
11-13
11-14
11-14
11-14
11-14
11-14

11-14

11-14
11-15
11-15
11-15
11-15
11-15
11-15
11-15
11-16
11-16

60388100 B

11-69 INDEX Builtin Function Syntax 11-16 11-142 VERIFY Builtin Function Syntax 11-27

11-70 INDEX Builtin Function Examples 11-16 11-143 VERIFY Builtin Function Examples - 11-27
11-711 LBOUND Builtin Funection Syntax 11-16 12-1 Entry Prefix Syntax 12-2
11-72 LBOUND Builtin Function Examples 11-16 12-2 Sample Entry Prefixes. 12-2
11-73 LENGTH Builtin Funetion Syntax 11-16 12-3 Format Prefix Syntax : 12-2
11-74 LENGTH Builtin Function Examples 11-17 12-4 Sample Format Prefixes 12-2
11-75 LINENO Builtin Funection Syntax 11-17 12-5 Label Prefix Syntax 12-2
11-76 LINENO Builtin Function Examples 11-17 12-6 Sample Label Prefixes 12-3
11-77 LOG Builtin Function Syntax 11-17 12-7 Condition Prefix Syntax 12-3
11-78 LOG Builtin Function Examples 11-17 12-8 Sample Condition Prefixes 12-3
11-79 LOG10 Builtin Function Syntax 11-17 12-9 ALLOCATE Statement Syntax 12-3
11-80 LOG10 Builtin Function Examples 11-17 12-10 Sample ALLOCATE Statements 12-5
11-81 LOG?2 Builtin Function Syntax 11-17 12-11 Assignment Statement Syntax 12-5
11-82 LOG?2 Builtin Funetion Examples 11-18 12-12 Sample Assignment Statements 12-6
11-83 LOW Builtin Function Syntax 11-18 12-13 Begin Block Syntax 12-6
11-84 LOW Builtin Function Examples 11-18 12-14 BEGIN Statement Syntax 12-6
11-85 MAX Builtin Function Syntax 11-18 12-15 Sample BEGIN Statements 12-7
11-86 MAX Builtin Function Examples 11-18 12-16 CALL Statement Syntax 12-7
11-87 MIN Builtin Funetion Syntax 11-18 12-17 Sample CALL Statements 12-7
11-88 MIN Builtin Function Examples 11-18 12-18 CLOSE Statement Syntax 12-7
11-89 MOD Builtin Function Syntax 11-19 12-19 Sample CLOSE Statements 12-8
11-90 MOD Builtin Function Examples 11-19 12-20 DECLARE Statement Syntax 12-8
11-91 MULTIPLY Builtin Function Syntax 11-19 12-21 Sample DECLARE Statements 12-9
11-92 MULTIPLY Builtin Funetion Examples 11-19 12-22 DELETE Statement Syntax 12-9
11-93 NULL Builtin Funetion Syntax 11-19 12-23 Sample DELETE Statements 12-9
11-94 NULL Builtin Funetion Examples 11-19 12-24 Do Group Syntax 12-10
11-95 OFFSET Builtin Function Syntax 11-19 12-25 DO Statement Syntax 12-10
11-96 ONCHAR Builtin Funetion Syntax 11-20 12-26 . Noniterative DO Operations 12-11
11-97 ONCODE Builtin Funetion Syntax 11-20 12-27 DO WHILE Operations 12-11
11-98 ONFILE Builtin Function Syntax 11-20 12-28 Indexed DO Operations 12-11
11-99 ONKEY Builtin Function Syntax 11-20 12-29 END Statement Syntax 12-13
11-100 ONLOC Builtin Funetion Syntax 11-20 12-30 Sample END Statements 12-13
11-101 ONSOURCE Builtin Funetion Syntax 11-21 12-31 ENTRY Statement Syntax 12-13
11-102 PAGENO Builtin Funetion Syntax 11-21 12-32 Sample ENTRY Statements 12-15
11-103 POINTER Builtin Function Syntax 11-21 12-33 FORMAT Statement Syntax 12-15
11-104 PRECISION Builtin Funetion Syntax 11-21 12-34 Sample FORMAT Statements 12-16
11-105 PRECISION Builtin Funetion Examples 11-21 12-35 FREE Statement Syntax . 12-16
11-106 ~ REVERSE Builtin Function Syntax 11-22 12-36 Sample FREE Statements 12-17
11-107 REVERSE Builtin Funetion Examples 11-22 12-37 GET Statement Syntax 12-18
11-108 = ROUND Builtin Funetion Syntax 11-22 12-38 Sample GET Statements 12-20
11-109 ROUND Builtin Function Examples 11-22 12-39 GOTO Statement Syntax 12-21
11-110 SIGN Builtin Funection Syntax 11-22 12-40 Loecal/Nonlocal GOTO 12-21
11-111 SIGN Builtin Function Examples 11-22 12-41 Sample GOTO Statements 12-22
11-112 SIN Builtin Function Syntax 11-23 12-42 IF Statement Syntax 12-22
11-113 SIN Builtin Function Examples 11-23 12-43 Sample IF Statements 12-22
11-114 SIND Builtin Function Syntax : 11-23 12-44 LOCATE Statement Syntax 12-22
11-115 SIND Builtin Function Examples 11-23 12-45 Sample LOCATE Statements 12-23
11-116 SINH Builtin Function Syntax 11-23 12-46 Null Statement Syntax 12-24
11-117 SINH Builtin Function Examples 11-23 12-47 Sample Null Statements 12-24
11-118 SQRT Builtin Function Syntax 11-23 12-48 ON Statement Syntax 12-24
11-119 SQRT Builtin Function Examples 11-23 12-49 Sample ON Statements 12-25
11-120 SUBSTR Builtin Function Syntax 11-24 12-50 OPEN Statement Syntax 12-25
11-121 SUBSTR Builtin Function Examples 11-24 12-51 Sample OPEN Statements 12-26
11-122 SUBSTR Pseudovariable Syntax 11-24 12-52 Procedure Block Syntax . 12-26
11-123 SUBSTR Pseudovariable Examples 11-24 12-53 PROCEDURE Statement Syntax 12-26
11-124 SUBTRACT Builtin Funetion Syntax 11-24 12-54 Scope of Internal Procedure Entry-Names 12-27
11-125 SUBTRACT Builtin Function Examples 11-25 12-55 Sample PROCEDURE Statements 12-28
11-126 ~ TAN Builtin Function Syntax 11-25 12-56 PUT Statement Syntax 12-30
11-127 TAN Builtin Function Examples 11-25 12-57 Sample PUT Statements 12-32
11-128 TAND Builtin Function Syntax 11-25 12-58 READ Statement Syntax 12-32
11-129 TAND Builtin Function Examples 11-25 12-59 Sample READ Statements 12-33
11-130 TANH Builtin Function Syntax 11-25 12-60 RETURN Statement Syntax 12-33
11-131 TANH Builtin Function Examples 11-25 12-61 Sample RETURN Statements 12-34
11-132 TIME Builtin Function Syntax 11-25 12-62 REVERT Statement Syntax 12-34
11-133 TIME Builtin Function Examples 11-25 12-63 Sample REVERT Statements 12-34
11-134 TRANSLATE Builtin Funetion Syntax 11-26 12-64 REWRITE Statement Syntax 12-35
11-135 TRANSLATE Builtin Function Examples 11-26 12-65 Sample REWRITE Statements 12-35
11-136 TRUNC Builtin Funetion Syntax 11-26 12-66 SIGNAL Statement Syntax 12-35
11-137 TRUNC Builtin Function Examples 11-26 12-67 Sample SIGNAL Statements 12-36
11-138 UNSPEC Builtin Function Syntax 11-26 12-68 STOP Statement Syntax 12-36
11-139 UNSPEC Pseudovariable Syntax 11-26 12-69 Sample STOP Statements 12-36
11-140 VALID Builtin Function Syntax 11-27 12-70 WRITE Statement Syntax 12-36
11-141 VALID Builtin Function Examples 11-27 12-71 Sample WRITE Statements 12-37

60388100 B xiii |

13-1 Sample Source Listing : 13-5 14-2 Program PASCAL Input - 14-2

13-2 Sample Error Directory 13-5 ~ 14-3 Program PASCAL Output - C 14-2
13-3 Sample Attribute and Reference List 13-5 14-4 Program TBINT Listing ! . 14-3
13-4 Sample Object Code Listing 13-7 14-5 Program TBINT Input 14-4
14-1 Program PASCAL Listing - 14-2 14-6 Program TBINT Output - 14-5
TABLES
1-1 Single Statements 1-4 8-2 Completed File Description ‘ 8-3
1-2 Delimiters . 1-6 8-3 Stream 1/0 Statements for Stream Files 8-4
1-3 Character Set 1-7 8-4 Stream I/O Statements for String Operations 8-4
3-1 Maximum and Minimum Values for : 8-5 Record I/O Statements for Record Files 8-13
Arithmetic Variables . 3-6 9-1 Default File Environment Options 9-1
4-1 Evaluation of Extents » 4-26 9-2 FO and RT Options for Files 9-3
4-2 Extents 4-27 10-1 Classification of Conditions 10-2
4-3 Summary of Attributes ' 4-27 11-1 Classification of Builtin Funetions 11-2
5-1 Defaults for Partially Declared Arithmetic 11-2 Summary of Mathematical Builtin
Items 5-4 Functions 11-4
5-2 Summary of Default Attributes for 11-3 BOOL Operations 11-9
Declarations 5-5 11-4 Boolean Funetion/Op Value Correspondence 11-10
6-1 Procedure Invocation 6-4 11-5 DECAT Operations 11-12
6-2 Data Type Correspondence -) 6-9 12-1 Classification of Statements 12-1
7-1 List of Operators . 7-1 12-2. Condition Prefix Condition Names 12-3
7-2 Order of Evaluation 7-3 12-3 SET Option Processing 12-4
7-3 Computational Conversion for Operations 7-3 12-4 IN Option Processing) 12-4
7-4 Computational Conversion for Assignment 7-8 12-5 ALLOCATE Statement Processing 12-5
7-5 Precision in Arithmetic to Arithmetic 12-6 Do-Specification Options 12-12
Conversion 7-10 12-7 Locator-Reference Processing 12-16
7-6 Precision in Arithmetic to Bit Conversion 7-12 12-8 IN Option Processing 12-17
7-7 Codes for Pictured Character 7-13 12-9 FREE Statement Processing 12-17
7-8 Codes for Pictured Numeric Fixed Point 7-13 12-10 GET Statement Processing 12-20
7-9 Signed Digit Code Representations 7-16 12-11 PUT Statement Processing 12-31
7-10 Codes for Pictured Numeric Floating Point 7-18 13-1 ' List of Attributes 13-6
8-1 File Description from Implicit Opening 8-1

xiv 60388100 B

NOTATIONS USED IN THIS MANUAL

NOTATION USED IN SYNTAX

UPPER CASE words are PL/I keywords.

Lower case words are generic terms that represent
the words or symbols supplied by the
programmer.

[1] enclose optional portions of syntax. All of

Brackets the syntax within the brackets can be
omitted or included at programmer
option. If items are stacked vertically
within brackets, only one of the stacked
items can be used.

<} enclose required portions of syntax. If

Braces items are stacked vertically within
braces, only one of the stacked items can
be used.

[l enclose two or more vertically stacked

Vertical Bars items when each of the stacked items ecan
Within Brackets be either used once, or omitted. Any
items used can be written in any order. .

.o immediately follow an item, a pair of

Ellipses brackets, or a pair of braces to indicate
that the item or enclosed syntax can be
repeated at programmer option.

60388100 A

’as immediately follow an item, a pair of
Commas brackets, or a pair of braces to indicate
that the item or enclosed syntax can be
repeated at programmer option. A
comma is required between repeated

entries.
[separates adjacent items to indicatevthey
Bullet can be written in any order. Two or more

bullets separating items at the same
bracket or brace level indicate all
separated items can be permuted in any
order.

Punctuation symbols shown within syntax are required unless
enclosed in brackets.

NOTATION USED IN EXAMPLES

A indicates the blank character.

SHADING USED IN MANUAL

Control Data restrictions and extensions to the language
deseribed in American National Standard Programming
Language PL/I, X3.53-1976, are indicated by shading.
Shading is also used to indicate processing that is different
from that specified in the standard. Language and
processing that are implementation-defined but within the
standard are not shaded.

PL/1 SOURCE PROGRAM 1

A PL/I program is one or more external procedures,
compiled separately or together, which can interact during
execution. Each procedure is composed of a series of
statements that conform to the structure and syntax of the
PL/I language. The source program is processed by the PL/I
compiler and changed into an executable program that can
be loaded and executed by the operating system.

When the compiler executes in response to a control
statement entered through a bateh job or interactive
terminal, it performs the following functions:

Reads the file containing the source program. INPUT is
the default source file.

Checks the source program for errors in program
structure and language syntax, and writes diagnostic
messages to a file to be printed on the line printer or
displayed at a terminal.

Depending on parameters specified on the PLI control
statement, writes a copy of the source program to an
output file; and writes a cross reference list to this file
as a summary of data item deseriptions and references
within the program. OUTPUT is the default output file.

Unless binary code generation is suppressed by a
compiler call parameter, compiles the source lines into
executable code and writes the executable instructions
to a file in a format suitable for loading and executing.
LGO is the default file for the compiled program.

Once the source program is compiled, it can be loaded and
executed by a control statement that names the file of
executable instructions. Section 13 describes other func-
tions that can be performed during compilation,

During execution, the compiled program makes use of
execution-time routines that are part of the PL/I run-time
library. Files referenced in the program are opened, read,
written, rewritten, and closed through the CYBER Record
Manager facility common to several products running under
the NOS and NOS/BE operating systems.)

The job in which the program executes is responsible for
making data files available before the program begins
execution and for properly disposing of output files after
execution ends. If the program uses information on a
library, the job is also responsible for making the library file
available before execution.

PROGRAM STRUCTURE

A PL/I program is composed of a sequence of structured
components. The basic language elements such as names,
keywords, and constants represent the lowest level struc-
ture; statements represent the middle level; and blocks
represent the highest level. The basic language elements
are grouped to form statements, and the statements in turn
are grouped to form organized collections called blocks.
The hierarchical structure of the program blocks determines
how muech or how little interaction between various ecom-
ponents is to take place during the execution of a program.

60388100 A

This organization of the source code represents the static
structure of a program.

CONTAINMENT

The terms contain and immediately contain are used
throughout this manual. The terms are essential to an
understanding of the way PL/I programs are organized.

A program component contains a second component if the
second component appears inside of the first.

A program component of a certain kind immediately
contains a second component if both of the following
statements are true:

® The first component contains the second component.

® There is no other component, of the same kind as the
first component, that contains the second and is
contained in the first.

For instance, one can describe the room that immediately

contains the table and the house that immediately contains

the table.

A program component is always either completely contained
or not contained at all in another program component.

-

BLOCKS

A source program consists of delimited areas called blocks.
Each block is a sequence of PL/I statements and constitutes
a section of the program. Blocks affect the program in the
following ways:

® Delimit areas within which declared names are known.

® Determine the allocation and freeing of certain kinds of
data storage. :

o Influence the flow of control during program execution.
There are two types of blocks: procedure blocks and begin
blocks. The structuring of the two types of blocks is similar.
Each is headed by an identifying statement; followed by
groups of statements, which in turn can be nested procedure
or begin blocks; and terminated by an identifying statement.
The structure of a block is as follows:

PROCEDURE or BEGIN statement

Zero or more block units

END statement

where each block unit can be any of the following
components:

procedure block
begin block

do group

1-1

compound statement

DECLARE statement

ENTRY statement (procedure block only)
FORMAT statement

single statement

The significant difference between procedure blocks and
begin blocks is the manner in which they are activated
(entered for processing) during program execution. A
procedure block is activated when it is invoked. A begin
block is activated when its BEGIN statement is encountered

in the normal sequential flow of control. If the BEGIN

statement is labeled, the block can. also be activated by an
unconditional transfer (GOTO statement).

Procedure Block

A procedure block can be external or internal. An external
procedure block is one that is not contained in another
block. An internal procedure block is one that is contained
within another block.

Every program must contain one, and only one, main
procedure. The main procedure is an external procedure
whose PROCEDURE statement denotes the main entry point
of the program; execution is initiated at this point. The
main procedure is distinguishable from all other procedures
by the appearance of the OPTIONS(MAIN) clause in the
PROCEDURE statement that heads the block.

A procedure is invoked at one of its entry points. Entry
points are denoted by the PROCEDURE statement and all
ENTRY statements that are immediately contained in the
procedure. The PROCEDURE statement denotes the pri-
mary entry point of the procedure. Each ENTRY statement
denotes a secondary entry point. Any entry point except the
primary entry point of a main procedure can have a set of
parameters to which arguments are passed when the
procedure is invoked.

Each entry point is either a subroutine entry point or a
function entry point. A procedure is invoked in one of
two ways:

CALL statement
execution

A subroutine entry name appears
in a CALL statement; control
passes to the specified procedure
entry point.

Function reference A function entry name appears in
an expression; control passes to
the function, which performs
computation and returns a value
to the point of invocation.

Begin Block

A begin block is always internal (contained within another
block). Begin blocks, unlike procedure blocks, are not
invoked. A begin block is executed when control reaches the
block at the BEGIN statement either through normal
sequential flow of control or transfer of control to the
BEGIN statement.

Block Containment
A procedure or begin block can contain other blocks. Every

block except an external procedure is completely enclosed in
some other block. Blocks can be nested up to a depth of 50.

1-2

In general, each component of a PL/I program is imme-
diately contained in exactly one block. For example, the
block that immediately contains the declaration of an
identifier is either a procedure block or a begin block. The
declaration is considered to be immediately contained in the
block even if the declaration is inside another kind of
program component (such as a do group) that is contained in
the block. All text in a block — except text in contained
blocks — is immediately contained in the block.

There are three special cases in which elements of the
program are not contained in the block one might expect:

Entry names on a PROCEDURE or ENTRY statement of
an internal procedure block are not immediately con-
tained in the procedure whose entry point is denoted by
the statement; they are immediately contained in the
block that immediately contains that procedure.

Labels on a BEGIN statement are not immediately
contained in the begin block headed by the statement;
they are immediately contained in the block that
immediately contains that begin block.

Entry names on a PROCEDURE or ENTRY statement of
an external procedure block are not contained in any
block.
These exceptions are made because these entry names and
labels are not the names of the statements on which they

appear, but the names of the blocks. The name of a block
must be outside the block so that the block can be accessed.

The concepts of containment and immediate containment
are illustrated in figure 1-1.

DO GROUPS
A do group is a delimited area of a block. Each group is a

sequence of PL/I statements that can be executed condi-
tionally or iteratively.

A do group is headed by a DO statement, followed by some
sequence of statements and blocks, and terminated by an
END statement. A do group is entered when it is
encountered in the normal sequential flow of control. If the
DO statement is labeled, the group can be entered at the DO
statement by an unconditional transfer (GOTO statement).
The structure of a do group is as follows:

DO statement
Zero or more block units
END statement

where each block unit can be any of the following
components:

procedure block
begin bloek

do group

compound statement

DECLARE statement

- 60388100 A

P1:

PROCEDURE;
statement-1;
statement-2;

B1:

BEGIN;
statement-3;
. P2:

PROCEDURE;
statement-4;
E2:
ENTRY;
statement-5;
END P2;
- statement-6;
_B2:
BEGIN;
statement-7;
EXB2:
L END B2;
END B1;
statement-8;
EXP1:
END P1;

The immediately contained text for each block is:

Block P1 Block B1
PROCEDURE; BEGIN;
statement-1 statement-3
statement-2 P2 entry name
B1 label E2 entry name
statement-8 statement-6
EXP1: END ; B2 label

END ;

Block P2 Block B2
PROCEDURE; BEGIN;
statement-4 statement-7

" ENTRY; EXB2: END ;
statement-5)
END ;

The contained text for each block is indicated by
the lines to the left of the example. The labels
of BEGIN statements and the entry names of
PROCEDURE and ENTRY statements are not
contained in the block that immediately contains
those statements, but in the next outer block.
Label B2 on the BEGIN statement, for example,
is not contained in block B2, but in block B1.
Entry name P1 on the PROCEDURE statement
is not contained in block P1 since P1 is an
external procedure.

Figure 1-1. Block Containment

ENTRY statement (noniterative do group only)
FORMAT statement
single statement

Do groups can be iterative or noniterative. A noniterative
do group is executed once each time the DO statement is
encountered. An iterative do group can be executed
repetitively according to controls specified in the DO
statement.

60388100 A

COMPOUND STATEMENTS

A compound statement is a statement that can contain
embedded statements. The IF and ON statements are the
statements in this structural category.

IF Statement
The IF statement allows the flow of control to take
alternate paths, depending on the value of a specified
expression. The structure of an IF statement is as follows:
IF expression
THEN executable-unit

ELSE executable-unit

IF expression
THEN executable-unit

The statement is classified as compound since each execu-
table unit consists of one or more embedded statements. An
executable unit is executed or bypassed depending on the
value of the expression. Each executable unit can'be any of
the following components:

begin block

do group
compound statement

single statement

ON Statement

The ON statement establislies an on-unit for a condition.
When the ON statement is executed, it sets up the action to
be taken when a specific condition occurs at some future
time. The on-unit is executable code that specifies the
action taken when the specific condition occurs. The
structure of an ON statement is as follows:

ON condition on-unit
The statement is classified as compound since the on-unit
consists of one or more embedded statements. The on-unit
can be either of the following components: :

begin block

single statement
The begin block or single statement representing the on-unit
is executed only when an unusual condition arises during
execution and results in a program interrupt. The on-unit
designates the action that is to be taken as a result of the
interrupt. :
An on-unit acts in a manner similar to a procedure block.
Two significant differences between a procedure block and
an on-unit are ,)

e The on-unit is activated automatically and only on
interrupt. :

o The on-unit cannot receive arguments.

1-3

SINGLE STATEMENTS

The single statement is the basic element from which all
groups and blocks are formed. Single statements are listed
in table 1-1. .

TABLE 1-1. SINGLE STATEMENTS
Statement

Category
e

Program Control CALL
GOTO
Null
RETURN
STOP

Storage Control ALLOCATE
FREE
REVERT
SIGNAL

CLOSE
DELETE
GET
LOCATE
OPEN
PUT
READ
REWRITE
WRITE

Interrupt Handling

Input/Output

Data Manipulation’ Assignment

BLOCK AND DO GROUP CLOSURE

The physical end of a block or do group is denoted by an
END statement. The structure of an END statement is as
follows:

END closure-name;

The closure name in the END statement is optional. If the
closure name is included, it must match one of the
following:

An entry name on a PROCEDURE statement
A label on a BEGIN statement .
A label on a DO statement

An END statement with a closure name closes its associated
block or do group, and also closes any contained blocks or do
groups that do not have END statements. This convention is
termed multiple closure. An END statement with no closure
name closes only one unclosed block or do group; the block
or do group closed is the innermost one not closed by any
previous END statement.

Examples of block and do group closure are shown in
figure 1-2.

STATEMENT STRUCTURE

The basic structure of a statement includes one or more
optional prefixes, a statement body, and a terminating
semicolon.

1-4

Example 1

4]
PROCEOURE $
Bl1:
BEGINS
De:
003
END D23
END B13
E:
ENC P3

Example 2 (equivalent to example 1)

P3
PROCEOURE S
B1:
BeGINS
Das
003
END3
EnCS
Es
ENDS

Example 3 (equivalent to examples 1 and 2)

P

PROCEDURE 3 Label on END statement

B1¢ : used for multiple closure
BEGINS is equivalent to label on

Des outermost END statement

003 in examples 1 and 2
E:
ENC P3

Example 4 (incorrect structure)

P
PROCEOURE 3
Bl:
BEGINS
823
BEGINS
END Bi3 /*ENDS 82 AND B1 ./
END B23 /*ERROR = B2 ALREADY®/
/%CLOSED &/
ENC P

Figure 1-2. Block and Do Group Closure

A prefix can be a label, entry, format, or condition prefix.
Each prefix is terminated by a colon. A label prefix
identifies a statement. An entry prefix identifies an entry
point at which a procedure can be invoked. A format prefix
identifies a FORMAT statement. A condition prefix enables
or disables program interrupts caused by one or more
abnormal computational conditions.

The statement body generally consists of an identifying
keyword followed by a sequence of options that are written
as a combination of keywords, expressions, and references.

60388100 A

STATEMENT ELEMENTS

The basic elements that are used to form the prefixes and
the components of the statement body are

words
literal constants
iSUBs

delimiters

Words

A word is a sequence of characters. Each word is used as a
keyword or an identifier. If a word listed in the keyword
vocabulary in appendix D is used in an appropriate context,
it is interpreted by the compiler as a keyword. Words that
fail to satisfy this condition are interpreted as identifiers.

Words are formed from the letters A through Z, digits
0 through 9, and the following special characters:

(CDC equivalent is <)
(CDC equivalent is =)

(CDC equivalent is)

A word can contain up to 40 characters and must begin with
a letter or one of the following special characters:

Examples of words are

X

P3
PROCEDURE
B555

BINARY

RATE_OF_PAY

Keywords

A keyword has special significance to the compiler and run-
time routines when it is used in the context for which it was
designed. Keywords are not reserved words. A particular
word can be used both as a keyword and as an identifier
throughout a program. A word is recognized as a keyword
only when it appears in an appropriate context; in any other
context, the same word is treated as an identifier.

60388100 A

Examples of keywords are .

X used as a format item.
PROCEDURE used as a statement identifier.
BINARY used as an attribute.
ENVIRONMENT used as an OPEN or CLOSE

statement option or as an
attribute.

Many keywords have abbreviations as noted in appendix D.
The abbreviations are recognized in the same contexts as
the keywords.

Identifiers

An identifier is a name that is used to identify and refer to
data, statements, and blocks. With the exception of special
identifiers SYSIN and SYSPRINT, all identifiers are
programmer—defined.

SYSIN is the default input file for program execution. Every
stream input operation (GET statement) that does not
reference a file or a string as the data source is assumed to
reference SYSIN.

SYSPRINT is the default output file for program execution.
Every stream output operation (PUT statement) that does
not reference a file or a string as the data target is assumed
to reference SYSPRINT. Every stream input operation that
includes a COPY option .and does not reference an output
copy file is assumed to reference SYSPRINT for copy
purposes. SYSPRINT is also used at run time as the system
error message file.

Literal Constants

A literal constant is an unnamed data item that represents a
constant arithmetic or string value. The following types of
literal constants are basic statement elements:

arithmetice
simple bit string
simple character string

An arithmetic constant is a numeric data item wnth no
embedded blanks. For example:

35 10108

decimal * { binary
726 constants 1010.0B 3 Y e
6.623E-27 10.1E8B

A simple bit string constant is a sequence of zero and one
characters enclosed in apostrophe characters and followed
by the radix factor B. For example:

'1110'B
'101'B
'111111'B

1-5

A simple character string constant is a combination of
characters enclosed in apostrophe characters. For example:

'ABC' represents ABC

'ABC represents A B C

When an apostrophe character is to appear in the character -

string value, it must be represented by a pair of adjacent
‘apostrophes. For example:

'AB''C’ represents AB'C

iSUBs

The iSUB elements are used only in subscripts in the
DEFINED attribute. An iSUB is an integer followed by the
letters SUB with no intervening blanks. For example:

DECLARE B(5,5) ;
DECLARE D(5)
DEFINED (B(1SUB,1SUB)) ;

Delimiters

Delimiters are special characters that define the limits of
words, literal constants, and iSUBs. When a syntax rule does
not indicate a specific delimiter, at least one blank or
comment must be used to separate any two nondelimiter
elements. In the example

PUT LIST(AMT) ;
the left parenthesis is required in the syntax and acts as a
delimiter between LIST and AMT; therefore, a blank is not

required. At least one blank is required as a delimiter
between PUT and LIST.

Some delimiters act as operators in expressions. Other
delimiters delimit or separate specific program components;
the semicolon, for example, delimits statements.

It should be noted that the decimal point, plus, and minus
characters do not act as delimiters when they appear within
an arithmetic constant. Delimiter characters do not act as
delimiters when they appear within a simple character string
constant or a comment.

The complete set of delimiters is listed in table 1-2.

Blanks
Any two basic elements can be separated by one or more
blanks. When one or both of the elements. are delimiters,
the blank is optional. The following examples are equi-
valent:

A+B(X)

A+B(X)

A+ B(X)

When neither element is a delimiter, at least one blank is
required. The following examples are equivalent:

END P;
END P;

1-6

TABLE 1-2. DELIMITERS

blank
comment
3
H
(
)
->
+
.
/
£ 2
<
>
— = (ASCIH equivalent is —~ =)
—< (ASCI equivalent is ~ <)
—1> (ASCII equivalent is —~ >)
& =
>=
— (ASCI equivalent is —~)
& (CDC equivalent is A)
! (CDC equivalent is v and ASCIHI equivalent is !)
n (CDC equivalent is VV and ASCII equivalent is !!)

The following examples are not equivalent:

END P;
ENDP;

Blanks cannot appear within any basic element except a
simple character string constant or a comment.

Comments

A comment consists of a sequence of characters preceded by
the character pair /* and followed by the character pair */.
The character pair */ must not appear within the comment
itself. For example:

/* THIS IS A LEGAL COMMENT #*/
/* THIS IS AN ILLEGAL */ COMMENT #/

Any two basic elements can be separated by a comment. A
comment between any two basic elements has the same
effect as a blank, For example:

A+/*B-FUNCTION OF X*/B (X)
END/*CLOSE BLOCK P*/P;

If any part of a character string constant conforms to the
syntax rule for a comment, it is not interpreted as a
comment, but simply as part of the character string.

60388100 A

Conversely, if any part of a comment conforms to the
syntax rule for a character string constant, it is not
interpreted as a character string constant, but simply as
part of the comment.

Comments appear on the output listing of the source
program and have no effect on program execution. They are
used for documentation purposes only.

CHARACTER SET

The set of language characters recognized by the PL/I
compiler can be combined according to the specified rules to
form names and values in the source program. The PL/I
character set is shown in table 1-3. Extralingual characters
can only be used in comments and charaecter strings.

CODING CONVENTIONS

PL/I source statements are assumed to be in columns1
through 72 of each source line. The actual columns read by
the compiler can be altered by the COL parameter on the
PLI control statement. The maximum range for source
statements is column 1 through ecolumn 100.

PL/I programming is free-form within the chosen columns.
The program can be arranged on the page for maximum
readability and maintainability. The source text within the
columns read by the compiler is treated as a continuous
stream of characters.

On a line containing an END statement that closes an
external procedure, all text following the END statement is
ignored by the compiler.

If several external procedures are compiled together, com-
plete lines of text (containing blanks and comments)
between two external procedures are treated as belonging to
the procedure they precede. Such lines are not permitted to
follow the last external procedure being compiled.

Coding conventions are illustrated in figure 1-3,

TABLE 1-3. CHARACTER SET

PL/I Language Characters

Letters:

A-Z

Digits:
0-9

Special Characters:

—@ JHAV~*t +

e we w o

(
)

plus

minus

asterisk

slash

greater than

less than

equals

not (ASCII equivalent is —)

and (CDC equivalent is A)

or (CDC equivalent is vV and ASCII
equivalent is !)

period

comma

semicolon

colon

blank

apostrophe (CDC equivalent is 1)

left parenthesis

right parenthesis

underline (CDC equivalent is r*)

dollar sign

commercial at (CDC equivalent is <)

number (CDC equivalent is =)

Extralingual Characters:

[
:

-~

percent

left bracket

right bracket

quote (CDC equivalent is #)
question mark (CDC equivalent is §)
back slash (CDC equivalent is >)

/7% THIS COMMENT

CONTINUES OVER
FOUR LINES
OF SOURCE TEXT #/

/% BUT THIS

Z IS A MUCk SAFER

7 WAY 10 WRITE

Z SUCh COMMENTS

DECLARE D CHARACTER(100) VARYING INITIAL
(*BUT THIS IS A SAFER WAY TO WRITE A VERY LONG CHARACTER STRING+)$

L4
&/
*/
T4

DECLARE C CHARACTER(100) VARYING INITIAL(4ThIS SIMPLE=CHARACTER=STRING=C
ONSTANT RUNS ACRCSS THE END OF A LINE®)S

Figure 1-3. Coding Conventions

50388100 A

DYNAMIC PROGRAM STRUCTURE 2

As described in section 1, the static structure of a program
is the organization of source code; that is, the blocks, do
groups, and statements and their relationships. This section
describes the dynamic structure of a program. The dynamic
structure is the flow of control during program ekecution,
the activation and termination of blocks, and the methods by
which statements in one block reference other blocks and
their associated generations of storage.

FLOW OF CONTROL

The collection of external procedures that constitute a PL/I
program must include exactly one main procedure. The
main procedure is the external procedure block with the
OPTIONS(MAIN) clause designated in its PROCEDURE
statement.

When PL/I program execution is initiated by an operating
system control statement, the main procedure is activated
at its primary entry point. The pnmary entry point is the
PROCEDURE statement of the main procedure. Beginning
with the first executable statement immediately contained
in the main procedure, control passes sequentially from
statement to statement.

The following are not executed when they are encountered

in the sequential flow of control:

® Procedure block — The block is bypassed, and control
passes to the statement following the END statement of
the procedure. The block is executed only when it is
invoked by execution of a CALL statement or by
evaluation of a function reference.

® On-unit — The on-unit is established when the ON
statement in which it appears is executed, but the
on-unit is not executed at that time. The on-unit is
executed only when the associated condition is raised.

® DECLARE, ENTRY, and FORMAT statements — These
statements are passed through as if they were null
statements.

Sequential flow of control is illustrated in figure 2-1. ‘

When the following are executed, they cause diversion from
sequential program flow:

® Procedure invocation — The procedure is activated and
control is transferred to an entry point of the invoked
procedure. Actions taken by the procedure determine
whether or not control returns to the point of
invocation. .

® Condition raising — If the condition is enabled, the
current established on-unit for that condition is acti-
vated and control is transferred to the first statement
of the on-unit. Actions taken by the on-unit determine
whether or not control returns to the block in which the
condition was raised.

¢ GOTO statement — Control is unconditionally trans-

ferred to a labeled statement. One or more block
activations can be terminated.)

50388100 A

A: PROCEDURE;

B: BEGIN;

END B;

C: PROCEDURE;

END C;

l

END A;

Figure 2-1. Sequential Flow of Control

® RETURN statement — Contfol is returned to the point
at which the procedure was invoked or the bloek in
which the condition was raised.

e [F statement — Flow of control is influenced by the
evaluation of the expression in the IF statement. The
flow of control takes one of two paths, depending on the
value of the expression. :

® Iterative do group — Control is influenced by the
evaluation of expression values in the DO statement.
On each iteration, control is passed to the statement
following the DO statement or to the statement
following the group END statement, depending upon the
values of expressions in the DO statement.

® END statement of a procedure — The procedure acti-
vation is terminated. Control is returned to the point
at which the procedure was invoked.

® END statement or only statement of an on-unit —
When the END statement is executed, or after the only
statement is executed, the on-unit activation is ter-
minated. Control is returned to the block in whlch the
condition was raised.

Diverted flow of control is illustrated in figure 2-2.

2-1

A: PROCEDURE;

B: BEGIN;

END B;

C: PROCEDURE;
r |
|

f

END C; — -

D: BEGIN;

P e — — v— — — — — —

— —=| CALL C;

b —

END D;

END A;

Figure 2-2. Diverted Flow of Control

BLOCK ACTIVATION

A block activation is a specific execution of a block. As
stated in section 1, an on-unit acts like a block even when it
is written as a single statement. All discussions of the
properties and behavior of blocks in this section apply to
on-units; the single statement on-unit always acts as if it
had been written with surrounding BEGIN and END
statements.

A block is aectivated' under one of the following
circumstances:

® The main procedure is initially activated when program
execution is initiated by an operating system control
statement. ; :

® A procedure block is activated when it is invoked either
by execution of a CALL statement or by evaluation of a
function reference.

® A begin block is activated when control reaches the
BEGIN statement through normal sequential flow or
when control is transferred to the BEGIN statement by
a GOTO statement.

2-2

® An on-unit is activated when the associated condition is
raised and the condition is enabled.)

Any block that has an unterminated activation is called an
active block. Several blocks can be active at the same time;
activation of one block does not .cause termination of
another.

An activation of a block that is already active is called a
recursive block activation. A procedure block can be
activated recursively only if the PROCEDURE statement of
the block has the RECURSIVE option. A recursive call to a
procedure can cause reactivation of already active begin
blocks contained in the procedure. :

When a block is activated, the following actions are taken in
the order shown:

1. If a procedure block is being activated at an entry point
that has parameters, extents (array bounds, string
lengths, and area sizes) for the parameters are
evaluated. Each parameter is associated with the
corresponding argument.

2. Declarations of automatic and defined variables de-
clared in the block are processed as follows: extents
are evaluated, storage is allocated for each automatic
variable, and initial values are assigned to automatie
variables. Refer to section 4, Attributes, for additional
details.

3. If an on-unit is being activated, appropriate condition
builtin function values are established.

This process is called the prologue of the block activation.

BLOCK ACTIVATION RELATIONSHIPS

Block activations are maintained in a stack. The stack,
known as the dynamic block activation stack, holds a set of
system-maintained values for each activation. When a block
is activated, the stack is pushed down and the new block
activation is added at the top of the stack; thus, the values
associated with unterminated activations are preserved.

The bottom activation in the stack is the first activation of
the main procedure; the top activation in the stack is the
current block activation. Each block activation is the
immediate dynamic predecessor of the next (newer) one, and
is the immediate dynamic successor of the previous(older)
one. When the current block activation is terminated, it is
removed from the stack and its immediate dynamic prede-
cessor becomes the current block activation. The maximum
number of activations in the stack at a given time is limited
only by available storage. '

The dynamic relationship between block activations is
determined by the order of block activations and termina-
tions, and not by the way blocks are statically nested in the
source program. An activation of a begin block, for
example, can be the dynamic predecessor of an activation of
a procedure that contains the begin block; an activation of a
begin block can also be the dynamic predecessor of an
activation of an external procedure. An activation of a
block can be the dynamie predecessor of another activation
of the same block.)

ENVIRONMENT OF A BLOCK
ACTIVATION

A statement can reference an identifier (variable or named
constant) that is declared in the same block as the reference
or in a containing block. A reference to an identifier that is

60388100 A

jeclared in the same block as the reference is called a local
eference. A reference to an identifier that is declared in a
rontaining block is called a nonlocal reference.

if the dynamic block activation stack holds two or more
ictivations of the same block simultaneously, multiple
opies of certain variables exist. Each copy of a variable is
ralled a generation as described in section 3, Data Elements.

Multiple generations exist for each automatic variable,

lefined variable, and parameter variable declared in the
s>lock. In the same circumstances, multiple values exist for
2ach label constant, entry constant, and format constant
ieclared in the block.

When the program executes a reference to such variables or
named constants, the system uses the following rules to
determine which generation or value to use:

A local reference accesses the generation or value
associated with the current block activation.

A nonlocal reference accesses the generation or value
associated with an activation that is part of the
environment of the current block activation.t

Each activation of an internal block has an environment that
consists of precisely one activation of each containing block.
The environment of a block activation is a subset of the
dynamic block activation stack.

An activation of an external procedure has no environment.
Nonlocal references can appear only in internal blocks.

As explained in section 1, each block except an external
procedure is immediately contained in another block. An
activation of an internal block has an immediate environ-
ment that is an activation of its immediate containing block.
Since the immediate environment of a block activation can
itself have an immediate environment, a list is formed; the
environment of a block activation is this list of block
activations.

When a block is activated or reactivated, there might be
several activations of the immediate containing block in the
block activation stack. Assume block B is immediately
contained in block A. When B is activated to produce an
activation B,, a particular activation A_ of block A is
selected as the immediate environment ol B, according to
specific rules. Figure 2-3 gives six examples of environment
selection. Each example is explained as follows:

Example 1
A: PROC OPTIONS(MAIN)S
Bs BEGINS
END B3
END A3
Example 3
At PROC OPTIONS(MAIN)S
B: PROCH
END B3

CALL B$ /,#LOCAL REFERENCE TO B#/

END AS
Example 5
A3 PROC OPTIONS(MAIN)S
B¢ PROCS
END B3

C: PROC(X)S
DCL X ENTRYS
CALL X3
END C3
CALL C(B)3 /7*LOCAL REFERENCE TO Bw/
END A

A PROC OPTIONS(MAIN)S

*®
ENDS
CALL P8
END AS
P: PROCH
SIGNAL COND(RED)$
END P3
Example 4
A3 PROC OPTIONS(MAIN)3
B: PROCH
.
*
END 83
D: BEGINS
CALL 83 /#NONLOCAL REFERENCE TO B%/
END Ot
END A3
Example 6
At PROC OPTIONS(MAIN)S
Bt PROCS
*
L[]
END B3

Example 2

DCL P ENTRYS
ON COND(RED) BEGIN /®ON=-UNIT B#/3
e
L]

C: PROC(X)S
OCL X ENTRYS
CALL X3
END C3
D: BEGINS
CALL C(B)3 /#NONLOCAL REFERENCE TO B#/
END D3
END A3

Figure 2-3. Environment Selection

60388100 A

2-3

B is a begin block.

is the immediate dynamxc predecessor of B
(e&le 1).

B is an on-unit.

A. is the block activation in which.B was estab-
lidhed as an on-unit by execution of the ON
statement that contains B (example 2).

B is a procedure block; the mvocatnon of B ‘directly
references an entry name of B.

is the activation of A that is either the
nﬁmedxate dynamic predecessor of BK (example 3),
or part of the environment of the immediate
dynamic predecessor of B, (example 4).

B is a procedure block; the invocation of B references
an entry parameter whose value is an entry name of B.

A, is the activation of A that was either the
cﬂrrently active block (example 5), or part of the
environment of the currently active block
(example 6) at the time when the constant entry
name was passed as an argument to a procedure.

The environment of B, is the list of immediate environments
leading from B, to ah activation of the external procedure
that contains B, It is possible for two activations of a block
to have the same environment or different environments.
Dynamie block activation environment concepts are illus-
trated in figure 2-4.

The rules for block activation and block termination ensure
that A is active whenever B is active, and that Ai is in the
dynamic block activation stack while Bk is active.

BLOCK TERMINATION

When a block activation is terminated, it is removed from
the block activation stack and its dynamie predecessor
becomes the current block activation.

Normal termination of the current block activation occurs
under any of the following circumstances:

® A begin block or procedure block is currently active and
control has reached its END statement. The current
block activation is terminated.

® An on-unit that consists of a single statement is

. currently active and that statement has been processed
without terminating the on-unit activation. The eur-
rent on-unit activation is terminated.

® . An on-unit that consists of a begin block is currently -

active and control has reached its END statement. The
current on-unit activation is terminated.

® A procedure block or on-unit is currently active and
control has reached a RETURN statement. The current
procedure block activation or on-unit activation is
terminated.

- Normal procedure block, begin block, and on-unit termina-
tion is illustrated in figures 2-5, 2-6, and 2-7.

2-4

A: PROC RECURSIVE OPTIONS(MAIN);

#
B: PROC RECURSIVE;

C: BEGIN;
D: BEGIN;
E: PROC;

L

F: BEGIN;

. on-unit-Z

Z: ON..

Block activations are denoted by the name of the block
followed by a subscript; By, for example, represents the
second activation in the program at block B. A possible

situation might be:

Dynamic Stack Environment
top -~ E4 D7.Bg. A
D4 By, Ay
B, Ay
on-unit-Z, | Fq.Aq
Fq Ay
Ay none
Cq By, Aq
B4 Aq
first '
activation — A1 , - hone

The environment might also be displayed by arrows. Each

arrow points to the immediate environment.
Eq

)

on-unit- Z1>
Fq

A2
Cq
B4
Ay

Figure 2-4. Dynamic Block Activation Environment

60388100 A

A: PROC OPTIONS(MAIN);

B: BEGIN;

C: PROC;

RETURN;

ENDC;

CALLC;

Block activations are denoted by the name of the block
followed by a subscript.

Dynamic Stack
Sample After END C;or
Dynamic Stack RETURN; Executed
top—~C1 Bl
B4 Aq
first
activation—=Aq Control passes
to statement
after CALL C;

"Figure 2-5. Normal Procedure Block Termination

ibnormal termination of the current block activation occurs
nder any of the following circumstances:

)

A begin block is currently active and control has
reached a RETURN statement. The current activation
of the begin block is terminated; and one or more of its
dynamic predecessors are also terminated, up to and
ineluding the most recent procedure block or on-unit
activation. The begin block activations are terminated
abnormally; the procedure or on-unit aectivation is
terminated normally. Control returns to the dynamic
predecessor of the most recently activated procedure
block or on-unit.

A begin block, a procedure block, or an on-unit is
currently active and control has reached a GOTO
statement that transfers control to a statement not
immediately contained in the same block activation as
the GOTO statement. This is referred to as a nonlocal
GOTO. The current block activation is terminated, as
well as all of its dynamic predecessors up to (but not
including) the block activation that immediately con-
tains the statement referenced by the GOTO statement.

\bnormal block and on-unit termination is illustrated in
igures 2-8 and 2-9.

\ GOTO statement that transfers control to a multiple-
losure END statement can cause normal termination of one
lock activation and abnormal termination of its dynamie

0388100 A

A: PROCEDURE OPTIONS(MAIN);
CALL B;

B: PROCEDURE; *
C: BEGIN;
D: BEGIN;
END D;

Block activations are denoted by the name of the block
followed by a subscript.

Dynamic Stack

Sample After END D;
Dynamic Stack Executed
top—~D4 Cq
Cy B
B4 Aq
actif\i/;sttion-o A Control passes
1 to statement

after END D;

Figure 2-6. Normal Begin Block Termination

successors. Block termination and multiple closure concepts
are illustrated in figure 2-10. Additional information
regarding multiple closure appears under Block and Do
Group Closure in section 1, PL/I Source Program.

When a block activation is terminated normally or abnor-
mally, the following must be considered:

® Generations for automatic variables allocated for the
block activation are freed. :

® Al values associated with the activation are discarded.

2-5

A: PROC OPTIONS(MAIN);

B: BEGIN;
ON ENDFILE(F) BEGIN;/*ON-UNIT-E*/
PUT- - -
RETURN;
END;
CALL C;

|

C: PROC;
GET FILE(F) LIST(X);

Block activations are denoted by the name of the block
followed by a subscript.

Dynamic Stack

Sample After RETURN;
Dynamic_Stack Executed
top—on-unit-E4 C4
C1 81
B4 ’ Aq
first:
activation—=A, Control passes
to statement
after GET.

NOTE: If the ON statement were ON ENDFILE(F)
RETURN; the RETURN statement would
still pass control to the statement after GET.

Figure 2-7. Normal On-Unit Termination

The termination can cause termination of one or more
other block activations; specifically, a RETURN state-
ment in a begin block, or a nonlocal GOTO in any block,
can cause termination of one or more dynamic prede-
cessors of the current block activation.

When a procedure block is activated, execution of the
statement that invoked the procedure is partially
complete. The results of procedure block termination
are as follows:

After normal block termination, processing of the
invoking statement eontinues.

After abnormal block termination, processing of
the invoking statement is never completed.

2-6

A: PROC OPTIONS(MAIN);

B: BEGIN;
CALL C; |
C: PROC RECURSIVE;
D: = BEGIN;
RETURN;
GOTO X;
GOTO D;

Block activations are denoted by the name of the block
followed by a subscript.

Dynamic Stack
Sample After GOTO D; and
Dynamic Stack D: BEGIN; Executed

top—D, D3
C2 C2
Dy D4
¢ Gy
B B~1
first
activation—A Aq

GOTO D; terminates the
current block activation
(Dy) and causes D to be
activated again (as Dj).
Al values associated with
02 are discarded.

Dynamic Stack
After GOTO X;

Dynamic Stack
After RETURN;

Executed Executed
B4 B4
Aq Al

Control passes
to statement
after CALL C;

Figure 2-8. Abnormal Block Termination

60388100 A

A: PROC OPTIONS(MAIN);

B: BEGIN;

ON ENDFILE(F) GOTO 2;
/*ON-UNIT-E*/

CALL C;

Z: - --

C: PROC;

GET FILE(F) LIST(X);

Block activations are denoted by the name of the block
followed by a subscript.)

Dynamic Stack
Sample After GOTO Z;
Dynamic Stack Executed
top— on-unit- E1 B4
¢ A
84 Control passes
first to statement Z.

activation—A

Figure 2-9. Abnormal On-Unit Termination

When an on-unit is activated, execution of the state-
ment in which the condition was raised is partially
complete. The results of on-unit termination are as
follows:

After normal on-unit termination, control passes to
the point at which the condition was raised or to
the following statement, depending upon the
specific condition. Processing of the statement in
which the condition was raised, therefore, can
continue or remain incomplete. Normal termina-
tion of the following on-units is prohibited:
ERROR, FIXEDOVERFLOW, OVERFLOW, SIZE,
STRINGRANGE, SUBSCRIPTRANGE, and ZERO-
DIVIDE. Refer to section 10, Conditions, for
further details.

After abnormal on-unit termination, processing of
the statement in which the condition was raised is
never completed.

Abnormal block termination can result in incomplete
1/0 activity. ,

60388100 A

A:

Block activations are denoted by the name of the block
followed by a subscript.

PROC OPTIONS(MAI{N);
CALL B;

B: PROC;
CALL C;

C: PROC;
GOTO E;

PUT LIST ('LAST STATEMENT
BEFORE E');
_E: END B;

END A;

Sample

top—- C1

By
first
activation— A4

Dynamic Stack
After GOTO E; and
E: END B; Executed

Dynamic Stack
After PUT and
E: END B; Executed

B4 Aq
Aq Control passes to
statement after

Control passes CALL B;
to statement
after CALL C; This is abnormal
termination of C
and normal termina-

tion of B.

Figure 2-10. Block Termination and Multiple Closure

A nonlocal GOTO must not cause the termination of a
block activation if the immediate dynamic predecessor
of that block activation is currently performing any of
the following operations:

Evaluation of extents of automatic or defined
variables

Allocation of storage for automatic variables
Initialization of automatic variables

Execution of an ALLOCATE statement

Allocation of the based variable in a LOCATE
statement

2-7

Figure 2-11 illustrates the effects of a nonlocal GOTO

during storage allocation.

P: PROCI(I)S
) OCL A(F(I))FLOAT AUYOMATIC3

/72FUNCTION REFERENCE INVOKES F#/

DCL I FIXED BINS

F$ PROC(N) RETURNS(FIXED BIN)3
DCL N FIXED BINS
.
L]

GOTO LABS
/7*ILLEGAL=WILL RAISE ERROR®/
" /%whHEN EXECUTED ; A4

RETURN(eee)
ENC F3

L]

L

.
LAB2seel
ENU P3

Note: F must not contain a reference to any automatic,
parameter, or defined variable declared in P
because the prologue of P has not been com-
pleted when F is invoked. -

P: PROC OPTIONS(MAIN)S '
© ON FINISH BEGINS /'ON-'UNXT-X'/
L
L

END3

B: BEGINS
ON FINISH BEGINS /%ON=UNIT-Y&/
L]
L]
L]
END)
RETURNS .
L]
L]

L J

STOPS

END 83
END P3

if the RETURN statement is executed, block B is
terminated and on-unit-X is activated; the dynamic
stack holds on-unit-Xq and Py.

If the STOP statement is executed, on-unit-Y is
activated; the dynamic stack holds on—umt-Y1,
B1,and P1

Figure 2-11. Attempted Nonlocal GOTO
During Storage Allocation

PROGRAM TERMINATION

Program termination occurs when the first or only activa-
tion of the main procedure is terminated or when a STOP
statement is executed. Each type of termination is
illustrated in figure 2-12 and described in the following
paragraphs. .

MAIN PROCEDURE TERMINATION

When control reaches the END statement of the first or only
activation of the main procedure, or when a RETURN
statement is executed that would cause the termination of
the first or only activation of the main procedure, the
following steps are taken:

1. If the statement executed was a RETURN statement
contained in one or more nested begin blocks, the begin
block activations are terminated.

2. The FINISH condition is raised. The first activation of
the main procedure block is still active at this point.

3. If a programmed FINISH on-unit is established in the
first activation of the main procedure, the on-unit is
activated. The on-unit can be written to execute
speclal termination processes. If the on-unit activation
is terminated by execution of a . nonlocal GOTO,
program execution continues.

2-8

Figure 2-12. Program Termination

4. On normal termination of or in the absence of an
established programmed FINISH on-unit, the system
performs the following:

Terminates the main procedure block activation.
Closes all open files.
Returns control to the operating system.

~ STOP STATEMENT EXECUTION

When a STOP statement is executed, the following steps are
taken:

1. The FINISH condition is raised. More than one block
can still be active at this point. In addition, incomplete
storage allocations or incomplete I/O activity can exist.

2. If there is an established programmed on-unit for the
FINISH condition, the on-unit is activated. The on-unit
can be written to execute speclal termination
processes. If the on-unit activation is terminated by
execution of a nonlocal GOTO, program execution
continues, but incomplete storage allocations or 1/0
activity can exist.

3. On normal termination of or in the absence of an
established programmed FINISH on-unit, the system
performs the following:

Terminates all block activations.
Closes all open files.

Returns control to the operating system.

60388100 A

PROGRAM ABORT

Program execution is aborted under the following
circumstances:

® The system ERROR on-unit is activated. When this
occurs, the system closes all files and aborts the
program (transfers control to the next appropriate EXIT
control statement),

® The STORAGE condition is raised, and the system
cannot obtain enough storage to print the snap output
and activate the STORAGE on-unit. When this occurs,
the system aborts the program. Files might not be
closed, and error messages describing the abort might
be absent or incomplete.

® Time limit is reached. When this occurs, the system

writes a message on the dayfile, attempts to close all
files, and aborts the program.

60388100 A

e A missing external procedure (unsatisfied external) is
invoked. When this occurs, the system writes a message
on the dayfile, attempts to close all files, and aborts

the program.

The following circumstances will cause incorrect program
execution and might result in mode errors:

e A disabled computational condition is raised.

® The source program has undiagnosed logic errors; for
example, the use of a bad locator value.

When a mode error occurs, the system writes a message on
the dayfile, attempts to close all files, and aborts the

program.
When program abort is unable to close files, some informa-

tion on those files might be lost. Program abort does not
raise the FINISH condition.

2-9

DATA ELEMENTS 3

This section describes the data elements that specify or
represent values in the PL/I program. Each program
includes a variety of data elements used for different
purposes. The data elements are various types of literal
constants, named constants, and variables.

Each data element has a data type. The data type indicates
the way in which the data element can be used. Data types
are divided into- two groups, computational and
noncomputational.

Each data element has an aggregate type. The aggregate
type indicates whether the data element is a scalar that
represents a single element or an aggregate that represents
an organization of data elements.

Each data element that is a variable has a storage type. The
storage type determines the way in which the variable is
associated with storage.

Data type, aggregate type, and storage type are some of the
characteristics associated with data elements. Character-
istics of each data element are dependent on the attributes

of the data element. Attributes are described in section 4, .

Attributes.

LITERAL CONSTANTS

A literal constant specifies a value that is constant
throughout program execution.” A literal constant is
unnamed and has a scalar computational value. The three
types of literal constants are ‘

e Arithmetic constant

e Character string constant

e Bit string constant

ARITHMETIC CONSTANT

An arithmetic constant specifies an arithmetic value. A set
of arithmetic attributes is implied by the actual form of the
literal constant. Attributes indicate the following
properties of the value:

e REAL mode

e DECIMAL or BINARY base

e FIXED or FLOAT scale

e precision (p,q) or (p)

Fixed Point Decimal Constant

A fixed decimal constant is an unsigned decimal number
containing an optional decimal point at any position. Blanks
are not permitted in the constant. The syntax of a fixed
decimal constant is shown in figure 3-1.

60388100 A

decimal-digits -
decimal-digits.

decimal-digits.decimal-digits

.decimal-digits

where decimal-digits is a sequence of decimal digits for
the integer or fractional part of the value

Figure 3-1. Fixed Decimal Arithmetic Constant Syntax

The implied attributes are REAL, FIXED, DECIMAL, and
precision (p,q). The precision p is the number of digits in the
constant, including leading and trailing zeros. No more than
14 digits can be specified. If the constant has a decimal
point, q is the number of digits to the right of the decimal
point, including trailing zeros. If the constant has a decimal
point but no digits are to the right, q is 0. If the constant
has no decimal point, the decimal point is assumed to be to
the right of the decimal number and q is 0. The following
are examples of fixed decimal arithmetic constants, with
the implied attributes shown:

0 REAL FIXED DECIMAL (1,0)
2156. REAL FIXED DECIMAL (4,0)
21.2000 REAL FIXED DECIMAL (6,4)
.400 REAL FIXED DECIMAL (3,3)

The maximum value for a fixed decimal constant is
99999999999999 (14 digits). The minimum value is zero, and

" the minimum nonzero value is .00000000000001 (14 digits).

A specified value such as -3.1 is a type of expression.

Floating Point Decimal Constant

A float decimal constant is an unsigned decimal number
containing an optional decimal point at any position and
followed by an exponent. The exponent is the letter E
immediately followed by an optionally signed decimal
integer. Blanks are not permitted in the constant. The
syntax of a float decimal constant is shown in figure 3-2.

decimal-digits
decimal-digits.
decimal-digits.decimal-digits
.decimal-digits

E[i] decimal-exponent

where decimal-digits is a sequence of decimal digits for
the integer or fractional part of the mantissa

and where decimal-exponent is a sequence of decimal
digits for the exponent value

Figure 3-2. Float Decimal Arithmetic Constant Syntax

3-1

The implied attributes are REAL, FLOAT, DECIMAL, and
precision (p). The precision p is the number of digits in the
mantissa, including leading and trailing zeros. No more than

14 digits can be specified in the mantissa. If there is no

decimal point, the decimal point is assumed to be to the
right of the mantissa. The value is the mantissa multiplied
by the base (10) raised to the power of the specified
exponent. The exponent is specified in decimal digits and
- can be signed. The following are examples of float decimal
arithmetic constants, with the implied attributes shown:

0E0 REAL FLOAT DECIMAL (1)
10.E2 REAL FLOAT DECIMAL (2)
326.4300E-4 REAL FLOAT DECIMAL (7)

JTE+48 REAL FLOAT DECIMAL (1)

The maximum value for a float decimal constant is
approximately 1.265E+322. The minimum value is zero, and
the minimum nonzero value is approximately 3.132E-294. A
specified value such as -4E+20 is a type of expression.

»

Fixed Point Binary Constant

A fixed binary constant is an unsigned binary number
containing an optional binary point at any position and
followed by the letter B. The B is a radix faector that
signals a binary value. Blanks are not permitted in the
constant. Each digit in the binary number must be a 0 or a
* 1digit. The syntax of a fixed binary constant is shown in
figure 3-3.

binary-digits B
binary-digits. B
binary-digits.binary-digits B
.binary-digits B

where binary-digits is a sequence of binary digits for the
integer or fractional part of the value

Figure 3-3. Fixed Binary Arithmetic Constant Syntax

The implied attributes are REAL, FIXED, BINARY, and
* precision (p,q). The precision p is the total number of binary
digits, including leading and trailing zeros. The total
number of digits specified cannot exceed 48. If the constant
has a binary point, q is the number of digits to the right of
the binary point, including trailing zeros. If the constant has
a binary point but no digits are to the right, q is 0. If the
constant has no binary point, the binary point is assumed to
be to the right of the binary number and q is 0. The
following are examples of fixed binary arithmetic constants,
with the implied attributes shown:

0B REAL FIXED BINARY (1,0)

1111.B REAL FIXED BINARY (4,0)

1.111B REAL FIXED BINARY (4,3)

.010B REAL FIXED BINARY (3,3)
The maximum value of a fixed binary constant is
1111...1111B (48 digits). The minimum value is zero, and the

- minimum nonzero value is .0000...0001B (48 digits). A
specified value such as -.101B is a type of expression.

3-2

Floating Point Binary Constant

A float binary constant is an unsigned binary number

containing an optional binary point at any position, followed
by an exponent, and then followed by the letter B. The B is
a radix factor that signals a binary value. Blanks are not
permitted in the constant. Each digit in the binary number
must be a 0 or a 1digit. The exponent consists of the
letter E . immediately followed by an optionally signed
decimal integer. The syntax of a float binary constant is
shown in figure 3-4.

binary-digits
binary-digits.
binary-digits.binary-digits
.binary-digits

E[i]decimal-exponent B

where binary-digits is a sequence of binary digits for the
integer or fractional part of the mantissa

where decimal-exponent is a sequence of decimal digits for
the exponent value

Figure 3-4. Float Binary Arithmetic Constant Syntax

The implied attributes are REAL, FLOAT, BINARY, and
precision (p). The precision p is the number of binary digits
in the mantissa, including leading and trailing zeros. The
number of binary digits specified in the mantissa cannot
exceed 48. If there is no binary point, the binary point is
assumed to be to the right of the binary mantissa. The value
is the mantissa multiplied by the base (2) raised to the power
of the specified exponent. The exponent is specified in
decimal digits and can be signed. The following are
examples of float binary arithmetic constants, with the
implied attributes shown:

0000EOB REAL FLOAT BINARY (4)

11.E2B REAL FLOAT BINARY (2)

101.11E4B REAL FLOAT BINARY (5) ,

.001E-15B REAL FLOAT BINARY (3)

The maximum value of a float binary constant is
1.111...1111E+1069B (48 digits .in the mantissa). The
minimum value is zero, and the minimum nonzero value is
1,E-975B, A specified value such as -11E-2B is a type of
expression.

CHARACTER STRING CONSTANT

A character string constant (also called a character con-
stant) specifies a character value. A simple character
constant is a sequence of zero or more characters enclosed
in apostrophes. An apostrophe character in the character
value is represented by two consecutive apostrophes. An
unpaired apostrophe cannot appear inside the character
constant, since an unpaired apostrophe would end the
character constant.

A replicated character constant consists of a repetition
factor and a simple character constant. The character value
consists of repetitions of the same sequence of characters.
If the repetition factor is 1, a single copy is used. If the
repetition factor is 0, the character constant is a null string.
If the repetition factor is greater than 1, multiple copies are

60388100 A

concatenated to form the character value. For example, a
string of forty asterisks can be written as (40)'"*'. The syntax
of a character string constant is shown in figure 3-5.

‘characters’
(repetition-factor) ‘characters' |
where characters is a sequence of zero or more characters

and where repetition-factor is an unsigned decimal integer

Figure 3-5. Character Constant Syntax

The implied attributes are CHARACTER and nonvarying.
The length is the number of characters in the character
value, after any repetition factor has been applied. Maxi~
mum length of a character constant is 16383 characters.
The following are examples of character constants, with the
implied attributes shown:

v CHARACTER(0) nonvarying; null string
'ABC' CHARACTER(3) nonvarying; value=ABC
'IT''S' CHARACTER(4) nonvarying; value=IT'S
(3)'OK' CHARACTER() nonvarying; value=OKOKOK

BIT STRING CONSTANT

A bit string constant (also called a bit constant) specifies a
bit value. A simple bit constant is a sequence of zero or
more bits (each bit 0 or 1) enclosed in apostrophes and
followed by the letter B. The B is a radix factor that
distinguishes a bit constant from a character constant. A
bit constant does not represent a binary arithmetic value.

A replicated bit constant consists of a repetition factor and
a simple bit constant. The bit value consists of repetitions
of the same sequence of bits. If the repetition factoris 1, a
single copy is used. If the repetition factor is 0, the bit
constant is a null string. If the repetition factor is greater
than 1, multiple copies are concatenated to form the bit
value. For example, a string of sixty zero bits can be
specified as (60)'0'B. The syntax of a bit string constant is
shown in figure 3-6.

‘bits'B
(repetition-factor) 'bits'B

where bits is a sequence of zero or more characters
representing bits)

and where repetition-factor is an unsigned decimal integer

Figure 3-6. Bit Constant Syntax

The implied attributes are BIT and nonvarying. The length is

number of bits in the bit value, after any repetition factor

has been applied. Maximum length of a bit constant is 16383
bits. The following are examples of bit constants, with the
implied attributes shown:

"B BIT(0) nonvarying; null string

'1101'B BIT(4) nonvarying; value=1101

(2)'101'B BIT(6) nonvarying; value=101101

60388100 A

NAMED CONSTANTS

A named constant is an identifier that represents constant
noncomputational values. Named constants have attributes
that are not inherent in the form of the constant. Named
constants have values that are not complete until the
constants are referenced. A named constant is either an
entry constant, a file constant, a format constant, or a label
constant.

ENTRY CONSTANT

An entry constant identifies an entry point of a procedure.
An entry point is a point at which the procedure can be
invoked, as well as a complete description of all parameters
and the returned value, if any. An entry constant is part of
an entry value. An entry value identifies both an entry point
and a block activation. When an entry value is used to
invoke a procedure, the entry point part identifies the
PROCEDURE or ENTRY statement at which execution
begins, and the block activation part specifies the imme-
diate environment of the new procedure activation.

An entry constant that identifies an entry point of an
internal procedure is an internal entry constant. An internal
entry constant is declared in the block that immediately
contains the procedure. An entry constant represents a
name of a procedure, and in a sense is prefixed to the
procedure. Each time an internal entry constant is
referenced, an entry value is constructed by associating the
entry constant with a block activation. The block activation
used is the most recent activation of the block that
immediately contains the referenced procedure.

An entry constant that identifies an entry point of an
external procedure is an external entry constant. The
declaration is not contained in any block. No block
activation is needed to complete the entry value, because an
activation of an external procedure has no environment.

Each entry prefix on a PROCEDURE or ENTRY statement is
declared as an entry constant. An entry constant can be
internal or external. All entry constants have the ENTRY
and constant attributes. DECLARE statement declaration
of an external entry constant is necessary only to set up
communication between external procedures.

An entry constant can be used in the following ways:

® As a subroutine reference in a CALL statement, if the
entry constant represents a subroutine entry point

® As a function reference, if the entry constant repre-
sents a funetion entry point '

® As an argument passed to an invoked procedure

e

.
Examples of entry constants are shown in figure 3-7.

FILE CONSTANT

A file constant serves as a linkage that enables a program to
communicate with external data storage. External data
storage is an organized collection of data. A program can
access CYBER Record Manager (CRM) files, using them as
input to the program, updating them, or creating them as
output. : -

3-3

P:

PROCEDURE OPTIONS (MAIN) 3

/#P 1S EXTERNAL ENTRY CONSTANT 7
DCL STR CHAR(S)$

CALL 2C(STR) 3
2C:
PROCEDURE (ASTRING) §
79%2C IS INTERNAL ENTRY CONSTANT *y
DCL ASTRING CHAR(S5)}
L]

END 2C3
END P3

activation. When a format value is referenced by an R

(remote) format item, the statement part identifies the

format to be used, and the block activation part identifies
the activation in which references in the FORMAT state-
ment are to be evaluated.

Figure 3-7. Entry Constant Examples

The declaration of a file constant does not create a
complete linkage. All declarations except those for file
constants are completed during compilation. A file constant
has a special set of attributes, called file deseription
attributes, that are not necessarily complete until program
execution. A file constant is not associated with a CRM file
until the file constant is opened.

A file constant must be associated with a CRM file before
data can be transmitted. A file constant can be repeatedly
opened and closed during program execution. When a file
constant is opened, the set of file description attributes is
completed. When the file is closed, the file constant is
restored to the same status as before opening. '

File constants can be declared by DECLARE statement, and
file description attributes can be specified. Each file
constant can be internal or external. File constants are
external by default. All file constants have the FILE and
constant attributes. In some cases, file constants are
recognized by wusage and are therefore declared
contextually.

A file constant can be used in the following ways:

® As the file reference in a FILE option in an 1/0
statement

® As the file reference in a COPY option in a GET
© statement

e As the file reference in an 1/O condition in an ON,
REVERT, or SIGNAL statement

® As an argument passed to the PAGENO builtin functio:
. or pseudovariable »

® As an argument passed to an invoked procedure

An example of a file constant is shown in figure 3-8.

FORMAT CONSTANT
A format constant identifies a FORMAT statement. A

format constant is only part of a format value. A format
value identifies both a FORMAT statement and a block

3-4

DECLARE WORK4 FILE OUTPUTS
/*WORK4 IS FILE CONSTANT */.

OPEN F ILE (WORK&) 3

DO WHILE (COUNT < 62)3
[]
®

L

PUT FILE(WORK4) LIST(TVALsJVALSOIFF)}
END}
CLOSE FILE(WORK4)}

Figure 3-8. File Constant Example

Each format prefix on a FORMAT statement is declared as a
format constant in the block that immediately contains the
statement. All format constants are internal. All format
constants have the format and constant attributes.

An example of a format constant is shown in figure 3-9.

GET FILE(F) EDIT(MODELNAME +MODELNOsOPT)
(R(FORMAT6)) 3
L d
e

L]
FORMATG6: . '
FORMAT (SKIPsA(12) oXoF (15+3)eX9B(S))}

/*FORMAT6 IS FORMAT CONSTANT */

Figure 3-9. Format Constant Example

LABEL CONSTANT

A label constant identifies a statement of any type other
than PROCEDURE, ENTRY, or FORMAT. A label constant
is only part of a label value. A label value identifies both a
statement and a block activation. When a label value is used
to transfer control to -a statement, the statement part
identifies the statement to which control is transferred, and
the block activation part specifies the new current block
activation after the transfer of control is completed.

Each label prefix on a statement other than PROCEDURE,
ENTRY, or FORMAT is declared as a label constant in the
block immediately containing the statement. All label
constants are internal. All label constants have the LABEL
and constant attributes. Each label prefix is either a scalar
label constant or an element of a label constant array. A
scalar label constant must be unique within the immediately
containing block.

60388100 A

An array of label constants has the identifier used for all
elements of the array and a set of subscripts. The subseripts
of each element of the array must be unique within the
array. All elements of an array of label constants must be
immediately contained within the same block. The number
of subscripts must be the same for every element of the
:;ray. Each subscripted label prefix declares one element of

e array.

A label constant can be used in the following ways:

® As the label reference in a GOTO statement
® As the source expression in an assignment statement

® As the start expression in a DO statement, or in an
embedded-do in a GET or PUT statement

e As an argument passed to an invoked procedure

Examples of label constants are shown in figure 3-10.

DECLARE LAB(3) LABELS

LOOP3:
/7#L00P3 1S LABEL CONSTANT */
LAB(3):
/7#LAB(3) IS ELEMENTY */
/7#IN ARRAY OF LABEL CONSTANTS */

Figure 3-10. Label Constant Examples

VARIABLES

A variable is an identifier that represents values that can
change during program execution. = A variable can be
referenced for its current value at any time during program
execution. A variable has an undefined value until a value is
assigned.

Each variable has generations that are described later in this
section. Each generation associated with a variable can hold
any value appropriate for the variable. Generations are
allocated (that is, created and reserved) at different times,
depending on the type of storage for each variable. The
storage types for variables are described later in this
section.

Variables are either computational or noncomputational.
The computational variables are used in ecomputational
expressions and in assignment operations. The noncompu-
tational variables are used for other purposes. Variables
can be scalars or aggregates. A variable that is an
aggregate can be an array, a structure, or a combination of
array and structure organizations. Aggregates are described
later in this section.

60388100 A

COMPUTATIONAL VARIABLE

A computational variable can have an arithmetic value, a
string value, or ‘a pictured value. Each computational
variable has attributes that specify the computational data
type of the variable. The attributes are supplied by
DECLARE statement declaration or by default.

A computational variable can acquire values in the following
ways:

‘e In assignment statement execution

e InGET staiement execution
e In READ statement execution
During initialization according to the INITIAL attribute

® By assignment to the STRING option variable during
PUT statement execution

e In argument passing during procedure invocation

® By assignment of a value to the index variable during
DO statement execution, or execution of an embedded-
do in a GET or PUT statement

® By assignment to the KEYTO option variable during
READ statement execution

Arithmetic Variable

An arithmetic variable has values that are numbers. The
specific arithmetic attributes of the varieble indicate the
mode, the scale, the base, and the precision of the
arithmetic values. The attributes specify the character-
istics of the values for arithmetic calculations and for
possible conversion to another arithmetic data type or
another computational data type. All arithmetic variables
have the variable attribute.

The mode of an arithmetic value is indicated by the REAL
attribute.

The scale of an arithmetic value is either fixed point or
floating point, as indicated by the FIXED or FLOAT
attribute. A fixed point value is one for which a constant
number of digits is maintained. The position of those digits
with respeet to the decimal or binary point of the number is
fixed. A fixed point value has a constant scale, but the
number of significant digits is variable because the value
can contain leading zeros. - A floating point value is one for
which a constant number of significant digits is maintained.
The position of the decimal or binary point can float with
respect to those digits. A floating point value never
contains a leading zero. A floating point value is often
represented by a mantissa and an exponent.)

The base of an arithmetic value is either decimal or binary,
as indicated by the DECIMAL or BINARY attribute. The
base affects the results of conversions from one data type to
another. The base also affects the accuracy maintained for
fixed point values. For example, the value 0.1 can be
expressed precisely as a fixed point decimal value. The
same value cannot be represepted precisely as-a binary value
because it requires an infinitely repeating fraction. FLOAT
DECIMAL values are represented internally as FLOAT
BINARY. Values that are repeating binary fractions cannot
be maintained precisely as FLOAT DECIMAL.

3-5

-The precision of an arithmetic value indicates the number of
decimal or binary digits to be maintained for the value. For
floating point, the precision ‘is simply the number. of
significant digits maintained. = The representation of a
floating point value never contains leading zeros. ‘For fixed
point, the precision has two parts. One part is. the number
of maintained digits, usually referred to as the precision p.
The other part is a scale factor, usually referred to as scale
factor . The number of significant digits is not constant
because a fixed point value can contain leading zeros. The
scale factor specifies the position of ‘the least significant
digit maintained with respect to the decimal or binary point.
A variable declared as FIXED DECIMAL (p,q) can maintain
precisely q decimal digits to the right of the decimal point,
if q is greater than zero. If q is less than zero, then p.digits
counting from the left are maintained, and ABS(q) decimal
digits immediately to the left of the decimal point are
discarded.

The maximum. and minimum values for arithmetic variables
are shown in table 3-1, Examples of arithmetic variables
are shown in figure 3-11. :

TABLE 3-1. MAXIMUM AND MINIMUM VALUES FOR
ARITHMETIC VARIABLES

Arithmetic Maximum and Minimum

Attributes Minimum Value | Positive Value
14

FIXED DEC(14,0) +(107°-1) 1

FIXED DEC(14,255) | (1014-1)#10725%] 197255

FIXED DEC(14,-255) | +(1014-1)*102%% | 19255
322

-294

FLOAT DEC ~+1.265*10 ~3.132%10

FIXED BIN(48,0) +(2%48.) 1
FIXED BIN(48,255) | +(248-1)s27255 | 47255

FIXED BIN(48,-255) | (238-1)%22%% | 4255

322

FLOAT BIN ~+1.265*10 ~3.132%10"2%4

DECLARE J FIXED DECIMALS
DECLARE VALUEI FIXED DECIMAL3S
DECLARE DF FLOAT BINARYS

L]

GET LIST(U)}

VALUEL = 100.00 * (J - 15)3
L]

GET LIST(DF)$
DF = DF ¢ 5,1278643

The type of string is indicated by the CHARACTER
attribute or the BIT attribute. The length is associated with
the CHARACTER or BIT attribute to specify the length of
the strmg value in characters or bits. The variability of the
length is determined by the VARYING or nonvarying
attribute. If the strmg variable is VARYING, the specified
length is the maximum length of the string rather than the.
current length of the string as set by assignment.

The maximum length of a string variable is 131071 char-
acters or bits. Some examples of string variables are shown
in figure 3-12.

DECLARE TSWITChH BIT(1)3
DECLARE STR]1 CHAR(4)3
DECLAKE STR2 ChAR(10)3
STR1 = +TEST+$

IF (TSWITCH)
THEN STR2 = STR1 vv *Al2+}%

Figure 3-11. Arithmetic Variable Examples

String Variable

A string variable has values that are either character strings
or bit strings. A string variable has attributes that specify
the type of string, the length, and the variability of the
length. All string variables have the variable attribute.

3-6

Figure 3-12. String Variable Examples

Pictured Variable

A pictured variable has values that are character values.
The picture specification for the pictured variable controls
the characters or digits that can be present at any position
in the character string value.

A pictured variable is declared as a pictured numeric item
or a pictured character item. A pictured character item has
only a character string value. A pictured numerie item has
a character string value and can be interpreted for an
arithmetic value. Each pictured variable has the PICTURE
attribute. Picture codes for pictured variables are described
in section 7, Data Manipulation. All pictured variables have
the variable attribute.

A pictured character item can contain any characters that
are valid according to the picture specification. A pietured
character item differs from a character string variable in .
the way values are assigned. A character value assigned to -
a pictured character item is validated to ensure that all
characters conform to the pxcture q:eclflcatlon. The length
of the character string value is nonvarying and is 1mphed by
the picture specification.

A pictured numeriec item has a value that is an -edited
character string representation of an arithmetic value. An™
arithmetic value assigned to the pietured numerie variable is
edited through the picture and stored as a character string
value. Unlike an arithmetie variable, a pictured numerie
item cannot be used directly in arithmetic computations and
must first be interpreted for an arithmetic value. An
interpreted arithmetic value has the same arithmetic
properties as arithmetic variables, with the exeeption that
binary values cannot be represented. The mode is always
REAL, and the base is always DECIMAL. The scale and
precision are implied by the picture specification. The
length of the character string value is nonvarying and is also
implied by the picture specification. Some examples of
pictured variables are shown in figure 3-13.

60388100 A

DECLARE ACCOUNT PICTURE*AA9999+3

/*PICTURED CHARACTER */
DECLARE PAYMENT PICTURE*$$S9V.99+3
/*PICTURED NUMERIC FIXED POINT &/

L .
PUT SKIP EDIT(PAYMENTACCOUNT)
) (A(7) oX(4) eA(6))3

Figure 3-13. Pictured Variable Examples

NONCOMPUTATIONAL VARIABLE

Noncomputational variables represent values that are used
for purposes other than computation. Noncomputational
values have a noncomputational data type and cannot be
converted to computational values. ‘' Area variables, locator
variables (pointer and offset), entry variables, file variables,
and label variables are noncomputational variables.

Area Variable

An area variable represents storage that is reserved, upon.

allocation, for the subsequent allocation of based genera-
tions. Storage reserved for the allocation of based genera-
tions is called an area. All area variables have the AREA
and the variable attributes.

An area variable holds an area value. An area value is an
ordered list of significant allocations, including the allo-
cated based generations and their values, and including the
information about certain allocated based generations that
have been freed but are still significant. An area value
contains no significant allocations when the area is allo-
cated. The area value is identical to the value returned by
the EMPTY builtin function described in section 11, Builtin
Functions. An allocation is significant if the allocation is
made within the area and is not yet freed. An allocation is
also significant if the allocation is freed but the freeing was
done after another significant allocation was made within
the area.

The size of an area is the number of 60-bit words utilized
when the area is allocated. An area variable can have any
storage type, including BASED. An area variable can be
included in an aggregate.

An area value can be modified in the following ways:

e By allocating and freeing based generations within the
area

e By assigning values to any based generations allocated
within the area

An area variable can acquire values in the following ways:

e By assignment of an area value to the area variable
during assignment statement execution

e By assignment of an area value to the index variable
during DO statement execution, or execution of an
embedded-do in a GET or PUT statement

e In argument passing during procedure invocation

e During initialization of the area with an area value
according to the INITIAL attribute :

60388100 A

e By assignment to the INTO option variable during REA|
statement execution :

® By being allocated and not initialized, in which case the
area is set to EMPTY()

An area variable can be used in the following ways:

o In assignment to another area during assignment state-
ment execution

® As the start exprosion in a DO statement, or
embedded-do in a GET or PUT statement

® As an initial value in the INITIAL attribute
® As an argument passed to an invoked procedure
® As the value returned from a function

e As the FROM option variable in a WRITE or REWRITE
statement

Area values cennot be compared. Examples of area

variables are shown in figure 3-14.

DECLARE XY12(20) BASED CHAR(S)3
DECLARE OFFT1 OFFSETS

DECLARE AREA7 AREA{300)3
DECLARE AREA8 AREA(300)3

L]
ALLOCATE XY12 SET(OFFT71) IN(AREA7)}

L4
AREAB = AREATS

Figure 3-14. Area Variable Examples

Locator Variable

A locator variable represents a locator (pointer or offset)
value. A locator value identifies the storage associated with
a generation. A pointer value can identify storage allocated
for a variable of any storage type. An offset value can only
identify storage allocated for a based generation within an
area. The offset value specifies the position of the storage
relative to the beginning of the area. All locator variables
have the varieble attribute and either the POINTER or the
OFFSET attribute.

A locator variable can acquire values in the following ways:

e By assignment of a locator value to a locator variable
during assignment statement execution

e By assignment of a locator value to the index variable
during DO statement execution, or execution of an
embedded-do in a GET or PUT statement

e During initialization of the locator variable with a
locator value according to the INITIAL attribute -

e In argument passing during: procedure invocation

e By assignment to the SET option variable during
ALLOCATE statement execution

3-7

e By assignment (pointer, variable only) to the SET option
_variable during READ or LOCATE statement execution

e By usage of an assumed SET option, constructed from
the declaration of the BASED "variable, during
ALLOCATE or LOCATE statement execution

_ ® By assignment (offset variable only) to the INTO option
variable during READ statement execution

A locator value can be used in the following ways:

& In assignment to another locator vamable during assign-
* ment statement execution

® As the start expression in a DO statement, or
embedded-do in a GET or PUT statement

® As an initial value in the INITIAL attribute

In referencing a based variable, as a locator value in a
locator—qualifier or as an implicit locator specified in
the BASED attribute

e In freeing a based variable, as a locator value in a
locator-qualifier or as an implicit locator specified in
the BASED attribute

As an argument passed to an invoked proeedure
As the value returned from a function

As an operand in a comparison operation to compare
two locator values for equality

e As the FROM option variable (offset value only) in a
WRITE or REWRITE statement

Conversion of locator values is performed as required for
assignment, argument passing, or returning the result of a
function.

Assignment and record I/O operations maintain the relative
positions of based generations allocated within an area.
When an area variable acquires an area value, all offset
values that identify based generations in the original area
value can also be used to identify the corresponding based
generations in the new area value.

An example of a locator variable is shown in figure 3-15.

DECLARE Q POINTERS
DECLARE BVARTEST BASED(Q) FIXED DECIMALS

. .
ALLOCATE BVARTESTS
()
[]

Q=>BVARTEST = 15.0"

Figure 3-15. Locator Variable Example

Entry Variable

An entry variable can only be used as an entry parameter.
An entry variable has values that are entry values. An entry
value identifies an entry point of a procedure and a block
activation. When the entry value is used to invoke a
procedure, the entry point part identifies the statement at
which execution begins, including a complete deseription of
all parameters and the returned value, if any. The block
activation part specifies the immediate environment of the
new procedure activation. Every entry value is ultimately

3-8

derived from an entry constant. The block activation -
identified by an entry value is determined at the time when
the entry constant is passed as.an argument to a procedure.
All entry variables have the ENTRY and variable attributes.

An entry value can be used in the following ways:

® As a subroutine reference in a CALL statement, if the
entry value represents a subroutine entry point

® As a function reference, if the entry value represents a
funetion entry point

® As an argument passed to an invoked procedure

The declaration of an entry variable specifies the data
types, alignment, and aggregate types of the parameters and
returned value, if any, associated with the entry point. The
entry parameter can only hold entry values consistent with
the specification.

An example of an entry variable is shown in figure 3-16.

MAINP?

PROCEUURE- OPTIONS (MAIN) 3
L]
L

(.:M.L CHOICE (ROUTINE2) $

/®ENTRY CONSTANT PASSED AS ARGUMENT®/
L]

[

CHOICE:)
PROCEDURE (ROUTINE) S +
DECLARE ROUTINE ENTRYS .
7%*ROUTINE 1S ENTRY PARAMETER .y

[]
CALL ROUTINE} -~
/%VALUE OF ROUTINE IS ROUTINE2 */ |
/*ROUTINE2 IS CALLED Y
END CHOICE} .
ROUTINEL S
PROCEDURE 3
L]

L]

END3
ROUTINE2:

PROCEDURE S -

L

L

éND'
END MAINP3

Figure 3-16. Entry Variable Example

60388100 A

File Variable

variable has values that are file constants. A reference to a
file variable always has the same effect as a reference to
the file constant that is the current value of the file
variable.

The declaration of a file variable cannot contain any file
description attributes. File description attributes ean only
be speclfxed in the declaration of a file constant, and as
options in an OPEN statement.

A file value can be used in the following ways:

® As the file reference in a FILE option in an I/O
statement

® As the file reference in a COPY option in a GET
statement

® As the file reference in an I/O condition in an ON,
REVERT, or SIGNAL statement

® As an argument passed to the PAGENO builtin function
or pseudovariable

® As an argument passed to an invoked procedure

An example of a file variable is shown in figure 3-17.

DECLARE FOUT FILE OUTPUTSH

(.ZALL PROD(FOUT) 3

/7#FILE CONSTANT PASSED AS ARGUMENT #/
L]

. ¢

PROD:
PROCEDURE (FILEPASS) §
DECLARE FILEPASS FILES
/7#F ILEPASS IS FILE PARAMETER ®/
OPEN FILE(FILEPASS)S
.

END PROD3

A label variable can acquire values in the following ways:
® By assignment of a label value to a label variable durmg
assignment statement execution

e By assignment of a label value to the index variable in a
DO statement, or in an embedded-do in a GET or PUT
statement

® During initialization of the label variable with a label
value according to the INITIAL attribute

e In argument passing during procedure invocation
A label value can also be used in the following ways:

® As the label reference in a GOTO statement
® As the source expression in an assignment statement

As the start expression in a DO statement, or in an
embedded-do in a GET or PUT statement

® As an argument passed to an invoked procedure

An example of a label variable is shown in figure 3-18.

Yys
PROCEDURE OPTIONS(MAIN)$
OCL LAB(3) LABELS
/%LAB IS ARRAY OF LABEL CONSTANTS ¢/
DCL LV LABEL INITVIAL(LAB(2))3
/7#LV IS LABEL VARIABLE *y
- LAB(1):
L)

CALL 2Z2(LW)3

/*LABEL VARIABLE PASSED AS ARGUMENT#/
LAB(2):

L

[]

L]
LV = LAB(3)}
CALL ZZ(LV)3

/#LABEL VARIABLE PASSED AS ARGUMENT#/
LAB(3) 2

22
PROCEDURE (L)
DCL L LABELS
L

GOTO L3
END 223
END YYS$

Figure 3-17. File Variable Example

Label Variable

A label variable has values that are label values. A label
value identifies a statement and a block activation. When a
label value is used to transfer control to a statement, the
statement part identifies the statement to which control is
transferred, and the block activation part specifies the new
current block activation after the transfer of control is
completed.

60388100 A

Figure 3-18. Label Variable Example

GENERATIONS AND STORAGE

A generation is a description of a variable. The generation
is the basic unit for referencing or assigning a value to a
variable. Each generation has'two components:

® The data description that describes the characteristies

of the variable, including the completed attribute set
and all fully evaluated extents -

3-9

® The storage description that describes and locates the
storage used to hold the values.of the variable '

A reference to a variable accesses a. generation of the
variable. During program execution, the number of genera-
tions of a variable is dynamie. If more than one generation
of a variable exists, only one is usually accessible at any
particular time. For instance, if a procedure that contains
an automatie variable has been activated recursively several
times, several generations exist for the automatic variable.
A reference to the variable is a reference to the generation
associated with the most recent activation. In the same
activation, however, there might be three accessible genera-
tions of a based variable and no accessible generations of a
controlled variable. The storage type of a variable

- determines the number of generations and the time at which

each generation is created.

Each PL/I program has a pool of storage from which
allocation units can be formed. The allocation unit is the
basie unit for allocating and freeing storage associated with
generations. The allocation unit contains the storage that
holds the values of the variable. Allocation of a variable
creates a generation and an associated allocation unit. The
storage description of the generation fully describes the
allocation unit, and the generation is called an allocated
generation. Allocation of a variable is considered an
indivisible operation for a variable. The variable to be
allocated must be unsubscripted and cannot be a member.
An array element cannot be allocated except in allocation of
the entire array. A member cannot be allocated except in
allocation of the entire containing structure.

Freeing of a variable is the process of releasing an
allocation unit and returning the storage to the available
pool of storage from which the allocation unit was formed.
When an allocated generation is freed, the allocation unit is
undefined and the generation can no longer be referenced.
Like allocation, freeing is considered an indivisible
operation. The variable to be freed must be unsubscripted
and cannot be a member. An individual array element or
structure member cannot be freed. In addition, the data
deseription and storage description of the variable to be
freed must precisely match those of the allocated
generation.

Generations can be allocated and freed in the ways

deseribed for each storage type. The storage description .

part of a generation is different from an allocation unit for
the following reasons:

® A generation of certain types of variables can share the
storage associated with another variable. In this case,
the storage description part of a generation describes
an allocation unit belonging to another variable.

® Certain variables can have multiple allocation units
available and can move a generation by means of
locator values. The. storage description part of the
generation then describes a different allocation unit.

® A particular generation can describe less than a
complete allocation unit. = Each reference in the
program effectively creates a generation. For example,
a generation created by a reference to a single element
of an array has a storage description part that does not
deseribe the complete allocated generation for the
entire array.

Each variable (except any member of a structure) has a
storage type. Just as individual structure members and
array elements cannot be allocated and freed, structure
members and array elements do not have individual storage
types. The available storage types are STATIC,

3-10

AUTOMATIC, CONTROLLED, BASED, DEFINED, and

parameter. The STATIC, AUTOMATIC, CONTROLLED, and

BASED storage types are described in this section. A
variable with the DEFINED attribute is defined on another
variable and shares storage with that variable, as desecribed
under the DEFINED attribute in section 4. A variable with
the parameter attribute is used as a received value in an
invoked procedure, as described under the Parameter attri-
bute in section 4 and described under Procedure Reference
in section 6, References.

Static Storage

A static variable has the STATIC storage attribute. Each
STATIC variable has one allocated generation. The genera- -
tion is allocated before program execution begins. Static
generations cannot be allocated or freed during program
execution. Since static storage is allocated before program
execution begins, any array bounds, string lengths, or area
sizes must be specified as literal constants. Initial values
must be literal constants or expressions containing only
literal constants. An example of static storage is shown in
figure 3-19.

DECLARE STAT STATIC CHAR(10)3
/#GENERATION IS ALLOCATED BEFORE *y
/#PROGRAM EXECUTION BEGINS &/

L]
STAT = +TEST+$

Figure 3-19. Static Variable Example

Automatic Storage

An automatic variable has the AUTOMATIC storage attri-
bute. A generation for each automatic variable is allocated
automatically each time the block in which the variable is
declared is activated. If the block is already active, then
the previous generations allocated for the previous activa-
tions of the block are automatically saved. At any given
time, multiple allocated generations for an automatic
variable can exist, with one for each activation of the block
in which the automatic variable is declared. When a block
activation is terminated, each automatic generation allo-
cated for that activation is freed. Automatic variables
cannot be allocated or freed in any other way. Block
activation and termination and the stacking of generations
associated with block activations are described in section 2,
Dynamie Program Structure.

Each allocation of a generation for an automatie variable
can involve evaluation of extent expressions and expressions
in an INITIAL attribute. Extent expressions can be used for
array bounds, string lengths, and area sizes. Extent
expressions and expressions in an INITIAL attribute can
contain references to other variables. An example of
automatic storage is shown in figure 3-20.

A local reference to -an automatic variable accesses the
generation associated with the current block activation. A
nonlocal reference to an automatic variable accesses the
generation associated with an activation that is part of the
environment of the current block activation.

When a generation is allocated for an automatic variable,

the STORAGE condition is raised if sufficient storage space
is not available.

60388100 A

BEGINS
OECLARE AUTO AUTOMATIC CHAR(10)3
/#GENERATION IS ALLOCATED WHEN #/
/79BLOCK T IS ACTIVATED */
[

.
AUTO = *TESTes
END T3

Figure 3-20. Automatic Variable Example

Controlled Storage

A controlled variable has the CONTROLLED storage
attribute. Each controlled variable has a pushdown stack of
allocated generations. A generation for a controlled
variable is allocated by execution of an ALLOCATE state-
ment that names the variable. A generation is freed by
execution of a FREE statement that names the variable,
ALLOCATE statement execution causes the stack of allo-
cated generations to be pushed down and the new generation
to be added at the top. Each generation in the stack is
‘maintained intact. FREE statement execution causes the
top generation to be freed and causes the stack to be popped
up. Block activation and termination have no effect on the
stack of generations. A reference to a controlled variable
at any given time in any block can only access the top
generation in the stack of generations.

Allocation and freeing of a controlled variable is completely
under the control of the programmer. No value can be
assigned to a controlled variable unless storage has been
allocated. Any number of allocations ecan be made. If
insufficient storage space is available for allocation of a
generation, the STORAGE condition is raised. A controlled
variable passed as an argument to a procedure cannot be
allocated or freed within the procedure.

Each allocation of a generation for a controlled variable can
involve evaluation of extent expressions and expressions in
an INITIAL attribute. Extent expressions can be used for
array bounds, string lengths, or area sizes. Extent expres-
sions and expressions in an INITIAL attribute cannot contain
references to the controlled variable itself. An example of
controlled storage is shown in figure 3-21.

DECLARE CONT CONTROLLED CHAR(10)$
L]
L

ALLOCATE CONT3
/*GENERATION IS ALLOCATED WHEN */

/*ALLOCATE STATEMENT IS EXECUTED */

.
CONT = +TEST+3

Figure 3-21. Controlled Variable Example

60388100 A

Based Storage

A based variable has the BASED storage attribute. A based
variable can be used for referencing generations of any
storage type and for allocating and freeing based
generations.

A based reference always requires use of a based variable
and a locator value. The based variable is used as the data
description of the referenced generation; that is, the based
variable is effectively a template. The locator value is used
to supply the storage description of the referenced
generation. The data description of the described storage,
as allocated, must match the data description from the
based variable.

A based generation can be allocated by execution of an
ALLOCATE statement that names the variable. When a
based generation is allocated, a storage description is
assigned to a locator variable. Each allocated generation is
independent of any other allocated generations for the based
variable. A based generation allocated in this way can be
freed by -execution of a FREE statement that uses the
locator value created during allocation and uses a based
variable whose data description matches the data desecrip-
tion of the allocated generation.

When a based variable is allocated, any extent expressions
and expressions in an INITIAL attribute are evaluated.
Extent expressions can be array bounds, string lengths, or
area sizes. Extent expressions in the declaration of a based
variable are evaluated again each time the based variable is
referenced.

An extent for array bounds, string length, or area size of a
member in a based structure can be saved as the value of
another member of the same structure. See the deseription
of REFER Option for Based Structures in section 4.

Allocation of Based Generations

A based generation can be allocated by execution of an
ALLOCATE statement that names the based variable. The
locator value that identifies the new generation is assigned
to the variable specified by the SET option, or to the
implicit locator variable specified in the declaration of the
based variable. If the ALLOCATE statement has no SET
option, a locator variable must have been supplied in the
BASED attribute in the declaration of the based variable. If
insufficient space is available for allocation, the STORAGE
condition is raised.

A based generation is allocated within an area if the
ALLOCATE statement has an IN option, or if an assumed IN
option can be constructed from the declaration of the
locator variable. If insufficient space is available for the
based generation in the area, the AREA condition rather

. than the STORAGE condition is raised.

A based generation allocated by ALLOCATE statement can
be freed by execution of a FREE statement that specifies
the allocated based generation. During execution of a FREE
statement, extents specified in the declaration of the based
variable are evaluated. If the based generation is allocated
in an area, the FREE statement can contain an IN option
specifying the area, or an assumed IN option can be
constructed from the declaration of the locator variable.
The IN option must identify the area in which the based
variable was allocated. Based generations allocated in an
area are freed if the area generation is freed, or if the
entire area is reassigned.

3-11

Examples of based storage are shown in figure 3-22.

DECLARE BASE BASED(P) CHAR(10)3
DECLARE P POINTERS

L]

ALLOCATE BASE?

/#GENERATION 1S ALLOCATED WHEN 4
/#ALLOCATE STATEMENT 1S EXECUTED ./
P=>BASE = *TEST+3

.

DECLARE BASEZ2 BASED CHAR(100)3
DECLARE OFF OFFSETS

DECLARE AREA23 AREA(300)3

*®

L]

L]

ALLOCATE BASE2 SET(OFF) IN(AREA23)3
/79GENERATION IS ALLOCATED WHEN A4
/7%ALLOCATE STATEMENT IS EXECUTED */

DCL BASE3(10) BASED(PTR3) CHAR(10)3
DECLARE PTR3 POINTERS3 ‘

L

READ FILE(TEMP) SET(PTR3)}$

/4GENERATION IS ALLOCATED WHEN W4
/*READ STATEMENT IS EXECUTED ®/

Figure 3-22. Based Variable Examples

Based generations can be implicitly allocated for use as
record I/O buffers in one situation involving output and
another involving input. A based generation allocated for
use as an I/O buffer is called an allocated buffer. No
implicit allocation can take place within an area. The
locators used must be pointer variables.

A based generation for use as an output buffer is implicitly
allocated by execution of a LOCATE statement. The
LOCATE statement specifies the record output file and
names a based variable. When the based generation has been
allocated with the LOCATE statement, values can be
assigned to the based variable. Subsequent WRITE state-
ment execution, LOCATE statement execution, or closing of
the file causes the based generation to be written as an
output record and then freed. When an output buffer ‘is
allocated by LOCATE statement execution, the SET option
of the LOCATE statement can specify the pointer variable
to which the pointer value is assigned. If the LOCATE
statement has no SET option, the pointer value is assigned to
the implicit locator specified in the declaration of the based
variable. If no SET option is used, an implicit locator must
be available. :

A based generation for use as an input buffer is implicitly
allocated by execution of a READ statement with the SET
option. The based generation acts as an input buffer for the
record input or record update file specified by the state-
ment, and the pointer value identifying the based generation
is assigned to the pointer variable specified in the SET
option. The READ statement does not specify a based
variable, but the only method of access to the input record
is by reference to a based variable. The based variable must
correctly describe the input record. Subsequent READ
statement execution (with or without a SET option), WRITE
statement execution, REWRITE statement execution,
DELETE statement execution, or closing of the file causes
the based generation to be implicitly freed. An example of
based storage using implicit allocation is shown in
figure 3-23.

3-12

Figure 3-23. Based Variable with Implieit
Allocation Example

Access to Based Generations

A based generation is accessible if a locator value that
points to the generation is accessible. When a locator
variable is assigned a new value, the previous value of the
locator variable is lost. If all locator values that point to a
based generation are lost, access to the based generation is
not possible. In this case, the based generation remains
allocated for the duration of program execution.

Because of the properties of locator variables, based
generations can be chained together for list processing. If
one generation of a based structure contains locator
variables that point to other based structures, chains of
based generations can be constructed dynamically. When
based generations are chained together with locator vari-
ables, a null locator value can be used to set the last pointer
in a forward chain and the first pointer in a backward chain.
A null locator value does not address a based generation and
must not be used in a locator-qualified reference. A null
locator value can be assigned to a locator variable, and
locator variables can be tested for the null locator value. A
null locator value is returned by the NULL builtin funetion
deseribed in section 11, Builtin Functions.

' AGGREGATES

An aggregate is an organized collection of scalar data
elements. A scalar is a single data item. Scalars can be
collected in one way to form arrays or in another way to
form structures. Scalars, arrays, or structures can be
repeatedly collected to form larger arrays or structures.
The particular organization that is used to collect the
elements or members of an aggregate is called the

aggregate type.

An array is an organized collection of array elements. All
elements of an array have the same name and the same set
of attributes. Elements are distinguished from one another
by subscripts that specify the relative positions of elements
within the array.

A structure is an organized collection of structure members.
Each member has a different name and can have a different

set of attributes. Each member is referenced by its name.

The following data elements can exist only as scalars and
cannot be arrays or structure members: ’

e Literal constants

60388100 A

The following data elements can exist as scalars or as arrays
but cannot be strueture members:

e Label constants

The following data elements can exist as scalars, afrays,: or
structure members: -~

e Structures

SCALARS

A scalar variable or named constant has a name and a data -

type. A scalar does not have the dimension attribute or the
structure attribute. A reference to a scalar variable is a
scalar reference. All scalars have the aggregate type
scalar; that is, they have an aggregate type which indicates
that they are not aggregates. Each scalar named constant
has a single value. Each generation of a scalar variable has
a single value. Note that a scalar area variable has a single
area value; the area value is scalar even if arrays are
allocated within the area.

ARRAYS

An array variable or named constant has a name and the
dimension attribute. Each element of the array has the
same name as the array. The number of dimensions is called
the dimensionality of the array. An array can have as many
as 32 dimensions. To identify a particular element of an
array, a reference must specify one subscript for each

dimension of the array; each subscript specifies the relative -

position of the element, measured along one of the
dimensions.

Each dimension has an extent that specifies the range of
subseript values permitted for that dimension. The extent
for each dimension consists of a lower bound and an upper
bound. The lower bound and upper bound together are called
the array bounds. If the lower bound is not specified, the
lower bound is assumed to be 1. The span of a dimension is
the number of possible subscript values for the dimension.
The array A(5) has five possible subseripts for the dimension,
-and B(4:6) has three possible subseripts.

The number of elements in the entire array is the product of
the spans of all dimensions. The array C(3,4) is an array of
12 elements, D(10,5,20) is an array of 1000 elements, and
E(2:5,-16:-9) is-an array of 32 elements.

The aggregate type of the array is defined by the dimension
attribute specified for the array and the aggregate type of
the array elements. Two arrays have the same aggregate
type only if their dimensionality and all array bounds match
precisely. The array bounds must mateh; it is not sufficient
for the spans to be identical.

Every array has the variable attribute or the constant
attribute. Each data type attribute specified for an array is
applied uniformly to all elements of the array. Dimension
applies to the array itself. Storage type and the scope
attribute INTERNAL or EXTERNAL can apply to the entire
array. The INITIAL attribute can apply to the entire array
but is used to specify initial values for individual elements.

The physical organization of an array in storage is linear.
The elements of an array with one dimension are stored in
order of increasing subscripts. In the array F(6), the array
element F(3) immediately precedes the array element F(4).
Multidimensional arrays are stored .in order, with the

60388100 A

rightmost subseript varying most rapidly. In the array
G(3,5), the array element G(1,1) immediately precedes the
array element G(1,2), and G(l 5) immediately precedes the
array element G(2,1). The array elements G(2,1) and G(3,1)
are not contiguous in storage.

References to array elements are subscripted references, as
described in section 6, References. Examples of arrays are
shown in figure 3-24.

DECLARE F (6) CHAR(12) INIT((6)(1)+ +)3
DECLARE G(3+5) FIXED DEC INIT((15)0)3

*
F(2) = +SPARE PARTS+3}

.
L]

G(192) = 125.43%

Figure 3-24. Array Examples

STRUCTURES

A structure variable has a name and the structure attribute.
Each member of the structure is either a variable, with a
name and a data type, or a structure. A structure that is a
member of a structure is called a substructure. The
arrangement of substructures and members within the

strueture is called the configuration of the structure.

Each structure has level numbers that indicate, in outline
form, the hierarchical organization of the strueture. The
structure is declared with the level number one. Members
of the structure are declared with a greater level number.
If a member is a substructure, the members of that
substructure are declared with a greater level number, and
so on. The specified level number for a strueture must be
level one, and the specified level numbers for substructures
and members must be greater than one. If a structure called
ID has a substructure NAME and members FIRST, MIDDLE,
and LAST, the level numbers can be:

ID structure i level 1
NAME substructure level 2
FIRST member level 3°

- MIDDLE member level 3
. LAST member level 3

The aggregate type of a structure is defined by the structure
attribute and the ordered list of aggregate types for the
structure members. Two structures have the same aggre-
gate type only if the members are arranged in the same
order and the aggregate type of each member corresponds.
The names of the members are not relevant.

' Thé attributeé of a level 1 structure are variable, a storage

type attribute, a scope attribute INTERNAL or EXTERNAL,
and an optional alignment attribute. The. attributes of a
substructure are variable, member, structure, INTERNAL,
and an optional alignment attribute. Any structure can be
declared with the LIKE attribute that expands a structure to
the form of another structure. A based variable that is a
structure can contain members with REFER options that
hold the values of extents for other members. The
attributes of a member are variable, member, INTERNAL,
and the specified data type.

3-13

The physical organization of a structure in storage is linear.
Members are stored in the order in which they appear in the
declaration.

References to members of the structure can be simpIe
references or structure-qualified references, as deseribed in
section 6. . An example of a structure is shown in
figure 3-25. . «

DECLARE 1 1D,
2 NAME,
3 FIRST CHAR(12),
3 MIDDLE CHAR(1l),
3 LAST CHAR(22);

READ FILE(F) INTO(ID)
IF (LAST = 'SMITH')
THEN CALL WHICHONE(ID);

Figure 3-25. -Structure Example

ARRAYS AND STRUCTURES

Arrays and structures represent dlfferent organizational
approaches for data elements. Arrays and structures are
considered aggregates because the two dxfferent approaches
can be combined in various ways. ‘-

A structure containing arrays is an undimensioned structure
that has one or more members that are arrays. An example
is shown in figure 3-26.

An array of structures is a dimensioned structure. An
example is shown in figure 3-27. - Note that the members
inherit-the dimensionality of the structure.

An array of structures containing arrays is a dxmensnoned
structure that has one or more members that are arrays. An
example is shown in figure 3-28. Note that the members
inherit the dimensionality of the structure, and the addi-
tional dimensions are effectively added to the left of any
specified dimensions for the members. -

DECLARE 1 A,

The storage order is

2 B(4) CHARACTER(S)
2 C(4) FIXED DECIMAL;

B(1) B(2) B(3) B(4) c(1) C(2} C(3) C(4)
' Figure 3-26. Structure Containing Arrays Example
DECLARE 1 D(4),
2 E FIXED DECIMAL,
2 F BIT(12);
The storage order is
E(1) F(1) E(2) F(2) E(3) F(3) E{4) F(4)
Figure 3-27. Array of Structures Example
DECLARE 1 G(2),
2 H(3) FLOAT BINARY,
2 J FIXED BINARY;
The storage order is
H(1,1) H(1,2) H(1,3) (1) H(2,1) H(2,2) H(2,3) J(2)

3-14

Figure 3-28. Array of Structures Containing Arrays Example

60388100 B

ATTRIBUTES 4

E

Attributes are descriptive and defining characteristics of
data used in a PL/I program. This section discusses the
categories of attributes and deseribes individual attributes.
Attribute information is directly associated with declara-

tions and defaults as deseribed in seetion 5, Declarations.

Other sections of this manual contain deseriptions that
direetly or indirectly involve attributes.

Each identifier used in a PL/I program has attributes
describing the characteristics of the identifier. The
attributes for an identifier used in the program indicate
whether the identifier is a variable, a named constant, a
programmer-named condition, or a builtin function name.
Additional attributes are used to indicate the specific use of
the identifier and the type of value represented. Since
identifiers are named, the attributes for an identifier are
associated with the name. Attributes for identifiers can be
specified in a DECLARE statement. Attributes can also be
specified explicitly or contextually by usage of the
identifier. The compiler adds default attributes as
necessary to create a completed set of attributes for the
identifier.

A descriptor is a list of attributes not directly associated
with an identifier. Descriptors are used in declarations of
entry constants and entry variables. A parameter descriptor
specifies the attributes of a parameter received by an
invoked procedure. A returns descriptor specifies attributes
of the value returned from an invoked function procedure.
Attributes for descriptors can be specified in the ENTRY or
RETURNS attribute in a DECLARE statement or in the
RETURNS option in a PROCEDURE or ENTRY statement.
Descriptors are completed by the compiler with additional
default attributes.

Each literal constant has attributes implied by the actual
form of the constant. Attributes of the literal constant
affect data manipulation and assignment operations.

The attributes that can be used for variables, named
constants, conditions, builtin functions, parameter descrip-
tors, returns descriptors, and literal constants are described
separately. By convention, full upper case is used for
attributes that can be specified by keyword. Lower case is
used for attributes recognized in some other way. Descrip-
tions of individual attributes are provided in alphabetic
order, and a summary of attributes is provided at the end of
this section.

ATTRIBUTES FOR VARIABLES

Each identifier used as a variable has the variable attribute.
Each variable can have attributes for scope, storage type,
gation, alignment, data type, and initialization

SCOPE ATTRIBUTES

The scope attributes are
® INTERNAL
e EXTERNAL

60388100 A

The scope attribute indicates the scope within which the
declaration of the variable is applicable. Scope applies to a
scalar or an aggregate. Scope applies to the entire array
rather than an individual array element and to the entire
structure rather than an individual structure member.

STORAGE TYPE ATTRIBUTES

The storage type attribute specifies the way in which the
variable is associated with storage. Storage type applies to
a scalar or an aggregate. Storage type applies to the entire
array rather than an individual array element and to the
entire structure rather than an individual structure mem-
ber. The storage type of a variable can be’

e AUTOMATIC

® BASED

e CONTROLLED
® STATIC

® Pgrameter

e DEFINED

The AUTOMATIC, BASED, CONTROLLED, and STATIC
attributes describe variables for which storage can be
allocated, as described in section 3, Data Elements. The
DEFINED and parameter attributes describe variables that
share storage belonging to other variables.

AGGREGATION AND ALIGNMENT ATTRIBUTES

The attributes that describe the aggregate type and align-
ment of a variable are

e Dimension
e Structure

e Member

‘e ALIGNED

e UNALIGNED

The dimension attribute indicates that the variable is an
array. The structure attribute indicates that the variable is
the name of a struecture. The member attribute indicates
that the variable is contained in a structure. A substructure
has both the structure and the member attributes. A secalar
does not have the dimension or the structure attribute.

The ALIGNED and UNALIGNED attributes indicate the
alignment of the variable. Any variable not declared as a
structure has one of the alignment attributes.

variable

/\

[INITIAL]

INTERNAL EXTERNAL
AUTOMATIC member STATIC
BASED CONTROLLED
l DEFINED
‘parameter
\
[dimension]
\
ALIGNED LIGNED]
UNALIGNED UNALIGNED
ENTRY[RETURNS] REAL } PICTURE structure
LABEL {BlNARY } CHARACTER [REAL]
FILE EIECégAL nonvarying }
AREA {FL)E)AT} VARYING
POINTER ‘ brecision
OFFSET

NOTE: not all restrictions on combinations of attributes are shown.

Figure 4-1. Attributes for Variables

DATA TYPE ATTRIBUTES

The data type attributes deseribe the type of values
represented by the variable. Data type attributes cannot be
specified for a structure. If specified for an array, any data
type attribute applies to all elements of the array. The data
type attributes can be categorized as noncomputational or
computational. The computational data type attributes are
further categorized as arithmetie, string, or pictured.

4-2

Noncomputational Data Type Attributes

A noncomputational data type attribute indicates the use of
the variable. The noncomputational data type attributes are

e ENTRY [RETURNS]
e LABEL

60388100 A

e FILE

e AREA(size)
e POINTER
e OFFSET
“RETURNS attrfbute, whlcﬁ implies the ENTRY attribute,
indicates that the entry constant values of the entry

variable represent function entry points. The LABEL
attribute indicates a label variabl The FILE attribut
fil i

The AREA attribute indicates an argf
variable and specifies the size of the area. The POINTER
attribute or the OFFSET attribute indicates a locator
variable.

Arithmetic Data Type Attributes
The arithmetic data type attributes indicate the type of

arithmetic values represented by the variable. The arith-
metie attributes are

e REAL

e BINARY
e DECIMAL
e FIXED

e FLOAT

® Precision

The REAL attribute indicates the mode of the arithmetic
values. The BINARY or DECIMAL attribute indicates the
base of the values. The FIXED or FLOAT attribute
indicates the scale of the values. The precision attribute
indicates the precision of the values.

\

String Data Type Attributes

The string data type attributes indicate the type of string
value represented by the variable. The string attributes are

e BIT(length)

e CHARACTER(length)

® Nonvarying

® VARYING

The BIT or CHARACTER attribute indicates the type of
string and the maximum length of the string. The
nonvarying or VARYING attribute indicates whether the

string can ever be treated as being shorter than the
specified maximum length.

Pictured Data Type Attribute

The pictured data type attribute indicates that the variable
represents pictured values, either pictured numeriec or
pictured character values. The pictured attribute is

e PICTURE

60388100 A

The PICTURE attribute is associated with a pictured value.
The REAL attribute can accompany the PICTURE attribute
for a pictured numeric item. Other arithmetic attributes
cannot be declared but are implied by the picture
specification,

Initialization Attribute

The INITIAL attribute specifies initial values to be assigned
when storage is allocated for the variable. The initialization
attribute is

e INITIAL -

Some restrictions on the use of INITIAL are described later
in this section under INITIAL.

ATTRIBUTES FOR NAMED CONSTANTS

Each identifier used as a named constant has the constant

attribute. Each named constant has a noncomputational

data type attribute. An aggregatlon attribute is possible.

Each named constant that is a file constant has a number of
ible file d

constants is shown in figure 4-2.

SCOPE ATTRIBUTES
The scope attributes are

e INTERNAL
e EXTERNAL

The scope attribute indicates the scope within which the
declaration of the named constant is applicable.

AGGREGATION ATTRIBUTE

The attribute that can describe the aggregate type of4a
named constant is

e Dimension

The dlmenswn attrlbute mdlcates an array of named
constants. The dime f

NONCOMPUTATIONAL DATA TYPE ATTRIBUTES

A noncomputational data type attribute indicates the use of
the named constant. The noncomputational data type
attributes are

ENTRY [RETURNS]

LABEL

Format

FILE

The ENTRY attribute indicates an entry point for a
procedure. The RETURNS 'attribute, which implies the
ENTRY attribute, indicates an entry point of a function.
The LABEL attribute indicates a label constant. The format
attribute indicates a format constant. The FILE attribute
indicates a file constant. '

4-3

constant

INTERNAL

EXTERNAL

\/

[dimension]

/

ENTRY[RETURNS]}

LABEL
format

[STREAM]

INPUT
OUTPUT[PRINT]
[ENVIRONMENT]

NOTE: not all restrictions on combinations of attributes are shown.

FILE

[RECORD]
INPUT
OUTPUT
UPDATE

SEQUENTIAL
DIRECT

[KEYED]
[ENVIRONMENT]

Figure 4-2. Attributes for Named Constants

~

FILE DESCRIPTION ATTRIBUTES

The file description attributes apply only to named constants
with the FILE attribute. File description attributes are not
necessarily complete during compilation. Application of file
description attribute defaults occurs at run time when the
file constant is opened. The file description attributes are
STREAM

RECORD

INPUT

OUTPUT [PRINT]

UPDATE

SEQUENTIAL

DIRECT

KEYED

ENVIRONMENT(options)

All file description attributes except ENVIRONMENT imply
the FILE attribute. The STREAM or RECORD attribute
indicates the type of file 1/0 operations (stream 1/0 or
record 1/0). The INPUT, OUTPUT, or UPDATE attribute
indicates the usage of the file (UPDATE is only appropriate
with RECORD). The PRINT attribute, which implies the
OUTPUT attribute, indicates that a file is intended for
printing (PRINT is only appropriate with STREAM). The
SEQUENTIAL or DIRECT attribute applies to record 1/0,

44

attributes for programmer-named conditions is shown in

indicating the type of access to records of the file. The
KEYED attribute can be used with DIRECT or SEQUENTIAL
to indicate that keyed operations can be performed on the
filee The ENVIRONMENT attribute specifies CYBER
Record Manager file processing options.

ATTRIBUTES FOR CONDITIONS

Each identifier used as an identifier in a programmer-named
condition has the condition attribute and the following scope

attribute:

e EXTERNAL

figure 4-3.

condition

" EXTERNAL

Figure 4-3. Attributes for Prograthmer‘Named Conditions

60388100 A

ATTRIBUTES FOR BUILTIN FUNCTIONS

Each identifier used as the name of a builtin function has
the BUILTIN attribute and the following scope attribute:

e INTERNAL

No other attributes apply to the name of a builtin function.
The BUILTIN attribute can be explicitly declared in a
DECLARE statement. An illustration of attributes for
builtin functions is shown in figure 4-4.

BUILTIN

INTERNAL

Figure 4-4. Attributes for Builtin Functions

ATTRIBUTES FOR PARAMETER
DESCRIPTORS

Each parameter descriptor specifies aggregation, alignment,
and data type attributes of values received as parameters in
an invoked procedure. The attributes for a parameter

descriptor are similar to the attributes for a parameter. An
illustration of attributes for parameter descriptors is shown
in figure 4-5.

Parameter descriptors have no scope or storage type. The
parameter descriptor can have the same attributes as a
parameter, except that the INITIAL attribute is not
allowed. All noncomputational, arithmetie, string, or
pictured data type attributes are available.

ATTRIBUTES FOR RETURNS DESCRIPTORS

Each returns descriptor specifies alignment and data type
attributes of the value returned from a function. An
illustration of attributes for returns descriptors is shown in
figure 4-6.

descrlptors can have ahgnment attributes and the following
noncomputational data type attributes:

® AREA(size)
e POINTER
® OFFSET

All arithmetie, string, or pictured data type attributes are
available. The INITIAL attribute cannot be used.

[dimension]
[member]
- ¥
{AL!GNED } ALIGNED
UNALIGNED UNALIGNED
REAL {BIT } PICTURE structure
ENTRY [RETURNS] {BINARY } CHARACTER [REAL]
LABEL DECIMAL nonvarying
FILE {leeo} {wmvme} .
AREA FLOAT! ;
POINTER precision
OFFSET
NOTE: not all restrictions on combinations of attributes are shown.

Figure 4-5. Attributes for Parameter Descriptors

60388100 A

4-5

{ALIGNED }
UNALIGNED

{POINTER} {B'NARY }

OFFSET | DECIMAL

) {FIXED}
FLOAT,
precision

{BIT . PICTURE
. \CHARACTER [REAL]
{nonvarving
VARYING

Figure 4-6. Attributes for Returns Descriptors

ATTRIBUTES FOR LITERAL CONSTANTS

Each literal constant has the constant attribute and attri-
butes implied by the actual form of the literal constant. A
literal constant can be arithmetic, bit, or character, as
described in section 3, Data Elements. An arithmetic
constant has arithmetic attributes identical to those avail-
able for variables. A string constant can be a bit constant
with the BIT attribute and a nonvarying length, or can be a
character constant with the CHARACTER attribute and a

nonvarying length.

ATTRIBUTE DESCRIPTIONS

The description of each attribute includes the purpose of the
attribute and the syntax used when the attribute is speeci-
fied. Information about conflicts and implications is
provided, as well as other information concerning the use of
the attribute. Attribute descriptions are in alphabetic
order, except that certain attribute descriptions have been
merged in the following way:

LIKE Listed under Structure
Member Listed under Structure
Nonvarying Listed under VARYING
POSITION Listed under DEFINED
UNALIGNED Listed under ALIGNED

ALIGNED AND UNALIGNED ATTRIBUTES

The ALIGNED and UNALIGNED attributes specify the
alignment of values in storage. An aligned value is aligned
on a word boundary, and an unaligned value can be packed
into storage at the next available location. The alignment
of values can affect processing time, I/O time, and storage
requirements. In general, ALIGNED leads ‘to decreased
processing time, increased I/0O time for record I/O, and
increased storage requirements. In general, UNALIGNED
leads to the opposite.

ALIGNED and UNALIGNED are alignment attributes used
for variables, parameter desecriptors, and returns deserip-
tors. An alignment attribute can be specified for a variable
that is a scalar, array, or structure. When an alignment

attribute is specified for an array, all elements of the array
have the same alignment attribute. When an alignment
attribute is specified for a structure, the alignment is
propagated through the structure. The ALIGNED attribute
can be specified by keyword. The UNALIGNED attribute
can be specified by keyword and can also be abbreviated.
The syntax of ALIGNED is shown in figure 4-7, and the
syntax of UNALIGNED is shown in figure 4-8. Examples of
ALIGNED and UNALIGNED are shown in figure 4-9.

ALIGNED

Figure 4-7. ALIGNED Attribute Syntax

UNALIGNED
UNAL

Figure 4-8. UNALIGNED Attribute Syntax

DECLARE A FIXED BINARY(8,2)%

/%DEFAULT ALIGNED */
DCL B CHARACTER(10)3
/*DEFAULT UNALIGNED *

DCL C(4) CHARACTER(S)$
/7*DEFAULT UNALIGNED- ARRAY PACKED */

DCL 1 P UNALIGNED,
2 Q _
3 R(1S) BIT(S),
3 S CHARACTER(2) ALIGNED,
2 T ALIGNED,
3 V CHARACTER(3)3

/*R UNALIGNED FROM Q FROM P *
/%S ALIGNED AS DECLARED A4

7%V ALIGNED FROM ¥ »y

Figure 4-9. ALIGNED and UNALIGNED Attribute Examples

60388100 A

The default alignment for BIT, CHARACTER, and PICTURE
data is UNALIGNED. The default is ALIGNED for all other
computational and noncomputational data. When

- UNALIGNED is used for BIT, CHARACTER, or PICTURE
data, the specified packing occurs only for array ¢lements or
structure members with nonvarying length.

Alignment is propagated through a structure declared as
ALIGNED or UNALIGNED. Each substructure or member
can also be declared with an alignment. Alignment
propagates from the structure to the members, level by
level. The member receives the propagated alignment
attribute unless the member is declared with an alignment
attribute. Alignment attributes are not meaningful for
structures or substructures, but alignment is propagated to
each member not explicitly declared as ALIGNED or
UNALIGNED. If LIKE is used in the declaration of a
structure, the alignment propagates after the expansion
caused by the LIKE attribute is effective.

If a variable shares storage with another variable, alignment
attributes must correspond for correct access. The align-
ment must correspond when a defined variable is defined on
the host variable; if string overlay defining is used, both the
defined variable and the host variable must be completely
unaligned. The alignment must correspond when a based
variable is used to access a generation allocated for another
variable.

Alignment of an argument used in a procedure or function
reference and alignment of the corresponding parameter in
the invoked procedure are significant, as deseribed in
section 6, References. If the alignment does not agree, a
dummy argument is created even if aligni i
‘meaningful for the argument being passed. ‘Sin

AREA ATTRIBUTE

The AREA attribute specifies that the variable or descriptor
represents an area that can contain area values. An area is
allocated storage in which based generations can be dynam-
ically allocated and freed, as deseribed in section 3, Data
Elements. The area has a size that is specified or supplied
by default.

The AREA attribute is a noncomputational data type
attribute used for a variable, parameter descriptor, or
returns descriptor. The AREA attribute conflicts with any
other data type. AREA can be specified for a variable that
is a scalar or an array. AREA conflicts with the structure
attribute. The AREA attribute can be specified by keyword.
The syntax of AREA is shown in figure 4-10, and examples
of the AREA attribute are shown in figure 4-11.

_pot

The specification of size is optional. The default size is
150 words. The specification of size is an extent. The rules
for extents are described later in this section under Extents.

DCL AREAA AREA
/79%DEFAULT SI1ZE 150 WORDS ®/

DCL AREAB AREA(750)%
/7#S12¢ AS DECLARED ®/

ALLOCATE B SET(XY2) IN(AREAC)S
/#CONTEXTUAL CECLARATION OF AREAC */

FREE B IN(AREAD)}
/7#CONTEXTUAL CECLARATION OF AREAD W4

OCL EFG OFFSET (AREAE) 3
/#CONTEXTUAL CECLARATION OF AREAE */

Figure 4-11. AREA Attribute Examples

AUTOMATIC ATTRIBUTE

The AUTOMATIC attribute specifies that a variable is an
automatic variable. A generation for the variable is
allocated automatically whenever the block that contains
the declaration of the variable is activated, as deseribed in
section 3, Data Elements. One generation of the automatic
variable exists for each unterminated activation of the
block.

The AUTOMATIC attribute is a storage type attribute for
variables. AUTOMATIC conflicts with any other storage
type and cannot be used with the EXTERNAL attribute. The
scope of an automatic variable is always INTERNAL.
AUTOMATIC can be specified for a variable of any
aggregate type; AUTOMATIC cannot be specified for any
individual array element or structure member. The AUTO-

" MATIC attribute can be specified by keyword and can be

abbreviated. The syntax of AUTOMATIC is shown in
figure 4-12, and examples of the AUTOMATIC attribute are
shown in figure 4-13.

AUTOMATIC
AUTO

AREA [(size)]

where size is an extent for the

Figure 4-12. AUTOMATIC Attribute Syntax

“ number of 60-bit words in the area

Figure 4-10. AREA Attribute Syntax

AREA can be explicitly declared by DECLARE statement
for a variable or explicitly specified for a deseriptor.
Contextual declaration of AREA occurs for an identifier
used in an IN option of an ALLOCATE or FREE statement
and for an identifier used . in the OFFSET attribute.
Contextual declaration involves use of the default area size.

60388100 A

DECLARE DEF AUTOMATICS

DCL ABCS
/7%DEFAULTS TO AUTOMATIC »y

DECLARE GHJ INTERNALS
/*DEFAULTS TO AUTOMATIC */

Figure 4-13. AUTOMATIC Attribute Examples

AUTOMATIC is the default storage type for any internal
variable. The AUTOMATIC storage type can be declared by
DECLARE statement or can be supplied by default.

4-7

BASED ATTRIBUTE

The BASED attribute specifies that a variable is a based ,
A based variable can be used to reference.

variable.
generations of any storage type and to allocate and free
based generations, as described in section 3, Data Elements.
A based reference always requires use of a based variable
and a locator value. The based variable is used as the data
description of the referenced generation. The locator value
is used to supply the storage description of the referenced
generation. The data description of the deseribed storage,
as allocated, must match the data description from the
based variable in one of the following ways: '

® Overlaid strings: -The referenced generation and the
based variable each represent either a string or an
aggregate of strings, and every string in both is the
same type, either all bit strings or an arbitrary mixture
of character strings and pictured variables. No string
can be VARYING or ALIGNED, and there can be no
REFER options in the based variable. The referenced
generation and the based variable can have any aggre-
gate type. The total length of each is the sum of the
string lengths. The total length of the variable must be
less than or equal to the total length of the referenced
generation.

® Complete correspondence: The referenced generation
and the based variable must have the same aggregate
type. The components (except structures) of the
referenced generation and the based variable must
correspond completely in data type and alignment,
except that corresponding OFFSET attributes need not
have identical area references. Wherever the based
variable has a REFER option, the value of the refer-
enced structure member is used to test correspondence
of a string length, area size, or array bounds.

® Left to right equivalence: The referenced generation
and the based variable are both undimensioned struc-
tures. If the based variable has n immediately
contained members, those members must completely
correspond (as described earlier) to the first n imme-
diately contained members of the referenced genera-
tion. The referenced generation can have additional
members.

The BASED attribute is a storage type attribute for
variables. BASED conflicts with any other storage type and
with the EXTERNAL attribute. The scope of a based
variable is always INTERNAL. BASED can be specified for
a variable of any aggregate type; BASED cannot be specified
for any individual array element or structure member. The
BASED attribute is specified by keyword. The syntax of
BASED is shown in figure 4-14, and examples of the BASED
attribute are shown in figure 4-15.

variable with no explicit locator-qualifier is encountered in
program execution, the locator-reference is evaluated. The
locator-reference serves as an implicit locator for refer-

. ences if an explicit locator is not supplied. The locator-

reference can be omitted if all references to the based
variable supply an explicit locator and the SET option is
present on all ALLOCATE and LOCATE statements used to
allocate the based variable. The locator used in ALLOCATE
and LOCATE statements cannot be a function reference and
must be a scalar locator variable.

DCL B BASED3
/*LOCATOR NOY SUPPLIED */

DECLARE C BASED(RST)3$
/*LOCATOR SUPPLIED R */

Figure 4-15. BASED Attribute Examples

BINARY ATTRIBUTE

The BINARY attribute specifies that an arithmetic value has
the base binary. BINARY and DECIMAL are the arithmetic
bases.

The BINARY attribute is an arithmetic data type attribute
for variables, descriptors, and literal constants. BINARY
conflicts directly with DECIMAL and cannot be used as an
attribute of any nonarithmetic quantity. BINARY can be
specified for a variable that is a scalar or an array.
BINARY conflicts with the structure attribute. BINARY is
compatible with REAL and with an arithmetic scale FIXED
or FLOAT. The BINARY attribute can be specified by
keyword and can be abbreviated. The syntax of BINARY is
shown in figure 4-16, and examples of the BINARY attribute
are shown in figure 4-17.

e

Figure 4-16. BINARY Attribute Syntax

DECLARE F FIXED BINARY(14+3)3
DCL GG FLOAT BIN(12)3

BASED [(Iocator—reference)]

where locator-reference is a
variable or function reference

Figure 4-14. BASED Attribute Syntax

The BASED attribute must be explicitly declared by
DECLARE statement. The locator-reference is an optional
reference to a locator value (pointer or offset). The locator
value can be a variable or a value returned from a function.
For allocation of a based variable, the locator-reference
must be a variable. Whenever a reference to a based

4-8

Figure 4-17. BINARY Attribute Examples

BINARY can be declared explicitly on the DECLARE
statement or can be supplied by default. BINARY is
supplied as the standard arithmetic default.

. p !
P P,q) can follow the BINARY attribute in an
explicit declaration.

BIT ATTRIBUTE

The BIT attribute specifies that a value is a bit string value,
BIT and CHARACTER are possible types of string values.

60388100 A

The BIT attribute is a string data type attribute for
variables, descriptors, and literal constants. BIT conflicts
with CHARACTER and any other data type attribute except
VARYING and nonvarying. BIT can be specified for a
variable that is a scalar or an array. BIT conflicts with the
structure attribute. The BIT attribute is specified by
keyword. The syntax of BIT is shown in figure 4-18, and
examples of the BIT attribute are shown in figure 4-19.

the BUILTIN attribute is performed whenever the name of
the builtin function is used as a function reference. The
BUILTIN attribute also applies to pseudovariables.

DECLARE DATE BUILTINS

STT = TIMEQ)S
/7#CONTEXTUAL DECLARATION OF TIME 4

BIT [(length)]

where length'is an extent for the
number of bits in the string

Figure 4-18. BIT Attribute Syntax

DECLARE 7 BIT(6)3
/#LENGTH AS DECLARED */

DECLARE R BITS
/7#DEFAULT LENGTHh OF 1 */

DCL W BIT(12) VARYINGS
/#VARYING WITh MAX LENGTH OF 12 */

Figure 4-19. BIT Attribute Examples

The string is assumed to be nonvarying unless VARYING is
specified. If the bit string is nonvarying, a constant length
is maintained. If the bit string is VARYING, the bit string
can have a current length smaller than the specified
maximum length of the string. Length of the bit string can
be from 0 through 131071 bits.

The specification of length is optional. The default length is
1 bit. The specification of length is an extent. The rules for
extents are described later in this section under Extents.

BUILTIN ATTRIBUTE

The BUILTIN attribute specifies that an identifier is a
builtin funection. Builtin functions are deseribed in
section 11, Builtin Functions.

The BUILTIN attribute indicates that an identifier is the
name of a builtin funetion. - A builtin function can be
declared INTERNAL and defaults to INTERNAL. The
BUILTIN attribute conflicts with any attribute other than
INTERNAL. The BUILTIN attribute can be declared by
keyword. The syntax of BUILTIN is shown in figure 4-20,
and examples of the BUILTIN attribute are shown in
figure 4-21.

Figure 4-21. BUILTIN Attribute Examples

CHARACTER ATTRIBUTE

The CHARACTER attribute specifies that a value is a
character string value. CHARACTER and BIT are possible

string types.

The CHARACTER attribute is a string data type attribute
for variables, descriptors, and literal constants. CHAR-
ACTER conflicts with BIT and any other data type attri-
butes except VARYING and nonvarying. CHARACTER can
be specified for a variable that is a sealar or an array.
CHARACTER conflicts with the structure attribute. The
CHARACTER attribute is specified by keyword and can be
abbreviated. The syntax of CHARACTER is shown in
figure 4-22. and examples of the CHARACTER attribute are
shown in figure 4-23.

{g:ggmﬂ} [lengt]

where length is an extent for the
number of characters in the string

Figure 4-22. CHARACTER Attribute Syntax

DECLARE PLT ChAR(4)3
/*LENGTH AS DECLARED */

DCL F CHARACTERS
/*DEFAULT LENGTH OF 1 ./

DECLARE GMK CHAR(31) VARYINGS
/*VARYING WITH MAX LENGTH OF 31 Y,

BUILTIN

Figure 4-20. BUILTIN Attribute Syntax

Explicit DECLARE statement declaration of the BUILTIN
attribute is usually not necessary. If the builtin function
name is used in a containing block for some other purpose,
explicit declaration must be used to reestablish the name as
the name of the builtin funetion. Contextual declaration of

60388100 A

Figure 4-23. CHARACTER Attribute Examples

The character string is assumed to be nonvarying unless
VARYING is specified. If the character string is nonvarying,
a constant length is maintained. If the string is VARYING,
the current length can be smaller than the specified
maximum length of the string. The length of the character
string can be from 0 through 131071 characters.

The specification of length is optional. The default length is

1 character. The specification of length is an extent.
Extents are described later in this section under Extents.

CONDITION ATTRIBUTE

The condition attribute is used for a programmer-named
condition. Conditions are described in section 10,
Conditions.

4-9

The condition attribute is declared contextually for an
identifier referenced after the keyword. CONDITION in an
ON, SIGNAL, or REVERT statement. Examples of the
condition attribute are shown in figure 4-24.

ON CONDITION(NOANS) CALL X3 .
/7%CONTEXTUAL DECLARATION OF NOANS ®/

SIGNAL CONDITION(NOANS)$
/%CONTEXTUAL DECLARATION OF NOANS */

Figure 4-24. Condition Attribute Examples

CONSTANT ATTRIBUTE

The constant attribute applies to identifiers used as named
constants and to literal constants. Named constants and
literal constants are described in section 3, Data Elements.

The constant attribute indiea
s

ord. Explicit declarations of
and contextual declarations are also
possible. The constant attribute applies to entry constants,
label constants, format constants, and file constants. The
constant attribute also applies to literal constants used in
the program. The constant attribute conflicts with the
BUILTIN, condition, and variable attributes. Examples of
the constant attribute are shown in figure 4-25.

TR: PROCEDURE OPTIONS (MAIN)S
/*TR 1S ENTRY CONSTANT .~

D: ENTRY (ONE,»TWO) 3 _ :
/%0 1S ENTRY CONSTANT Y

DECLARE W EXTERNAL ENTRYS
/%W 1S ENTRY CONSTANT _ 4

Y3 GOTO NEWS _ ‘
/%Y 1S LABEL CONSTANT oy

F12: FORMAT ((4)E(12+3))3

OCL DATA FILES
/%DATA 1S FILE CONSTANT 4

AVAL = 12,53 : ;
/%125 1S LITERAL CONSTANT , */

‘ Figure 4-25. Constant Attribute Examples

The constant and ENTRY attributes are explicitly declared
for an entry prefix on a PROCEDURE or ENTRY statement.
The constant attribute is assumed for any DECLARE

statement declaration if ENTRY is specified and parameter -

is not present.
The constant and LABEL attributes are explicitly declared

for a label prefix on any statement other than a PRO-
CEDURE, ENTRY, or FORMAT statement. The constant

4-10

attribute is supplied if a DECLARE statement declaration
involves the LABEL and dimension attributes and. the

“declared identifier matches a subseripted label prefix in the-

same block.

The constant and format attributes are explicitly declared
for a format prefix on a FORMAT statement.

The constant attribute is assumed for any DECLARE
statement declaration if FILE is specified and parameter is
not present. The constant and FILE attributes are con-

- textually declared for file references in FILE options, COPY

options, and I/O condition names.

CONTROLLED ATTRIBUTE

The CONTROLLED attribute specifies that a variable is a
controlled variable. The allocation and freeing of controlled
storage is under direct control of the programmer, as
described in section 3, Data Elements. Generations for a
controlled variable can be allocated by ALLOCATE state--
ments and freed by FREE statements. The generations exist
in a pushdown stack, and the generation at the top of the
stack is the only one accessible.

The CONTROLLED attribute is a storage type attribute for
variables. CONTROLLED conflicts with any other storage
type. A controlled variable is assumed to be INTERNAL
unless declared as EXTERNAL. CONTROLLED can be
specified for a variable of any aggregate type; CON-
TROLLED cannot be specified for any individual array
element or structure member. The CONTROLLED attribute
is specified by keyword and can be abbreviated. The syntax
of CONTROLLED is shown in figure 4-26, and examples of
the CONTROLLED attribute are shown in figure 4-27.

CONTROLLED
CTL ;

Figure 4-26. CONTROLLED Attribute Syntax

DECLARE BETAWT (20+20) CTL3 -
DCL EIGEN(20) CONTROLLED3

Figure 4-27. CONTROLLED Attribute Examples -

T

DECIMAL ATTRIBUTE

The DECIMAL attribute specifies that an arithmetic value
has the decimal base. DECIMAL and BINARY are possible
arithmetie bases.

The DECIMAL attribute is an arithmetic data type attribute
for variables, descriptors, and literal constants. DECIMAL
conflicts directly with BINARY and cannot be used as an
attribute of any nonarithmetic quantity. DECIMAL is
compatible with REAL and with an arithmetic scale FIXED
or FLOAT. DECIMAL can be specified for a variable that is
a scalar or an array. DECIMAL conflicts with the structure
attribute. The DECIMAL attribute ecan be specified by
keyword and can be abbreviated. The syntax of DECIMAL is
shown in figure 4-28, and examples of DECIMAL are shown
in figure 4-29.

60388100 A

DECIMAL can be explicitly declared in the DECLARE

LR

an explicit declaration.

DECIMAL
DEC

Figure 4-28. DECIMAL Attribute Syntax

DECLARE TT FLOAT DECIMAL(10)3
DCL R FIXED DEC(12+5)3%

Figure 4-29. DECIMAL Attribute Examples

DEFINED ATTRIBUTE

The DEFINED attribute specifies a variable that is a defined
variagble., A defined variable has no storage of its own and
is used to access storage allocated for another variable that
is called the host variable. Either the defined variable or
the host variable can access the shared storage.

The DEFINED attribute is a storage type attribute for
variables. DEFINED confliets with any other storage type.
DEFINED conflicts: with EXTERNAL and defaults to
INTERNAL. DEFINED can be specified for a variable with
any aggregate type; DEFINED cannot be specified for any
individual array element or structure member. The defined
variable cannot be a VARYING string and cannot be an
aggregate that contains any VARYING strings. DEFINED
conflicts with the INITIAL attribute, and INITIAL cannot be
used to initialize any member of a defined strueture.
Storage type for the host variable can be STATIC,
AUTOMATIC, CONTROLLED, or parameter. The host
- variable must be declared in the same block as the defined
variable, or in a containing block. The host variable cannot
be a VARYING string and cannot be an aggregate that
contains any VARYING strings. The DEFINED attribute is
specified by . keyword and -can be abbreviated. The
POSITION attribute can accompany DEFINED and can also
be abbreviated. The syntax of DEFINED and POSITION is
shown in figure 4-30.

Extents in the declaration are evaluated when the block
containing the declaration is activated, as described later in
this section under Extents. A Each time the defined variable
is referenced, any subscripts in the host reference are

statement and can be supplied by default in some cases.

2 "
p) or (p,q) can follow the DECIMAL attribute in

evaluated, the appropriate generation of the host-reference
is determined, and any POSITION attribute in the declara-
tion of the defined variable is evaluated.

Three types of defining can be indicated by the DECLARE
statement declaration of a defined variable. Each type of
defining is described separately.

Simple Defining

The defined variable and the host reference must have the
same aggregate type, except that:

e If the defined variable is an array, the array bounds
must be such that the defined generation does not
extend outside the host generation.

o If the defined variable has the BIT, CHARACTER, or
PICTURE attribute, the string length of the defined
generation must be less than or equal to the string
length of the host generation.

e If the defined variable is a structure, all extents of the
members must precisely match the. ecorresponding
extents of the host generation. The components
(except structures) of the defined variable and the host
reference must correspond completely in data type and
alignment, except that corresponding area references in
OFFSET attributes can be different.

The host reference can contain asterisk subseripts. Array
element correspondence between the defined variable and
the host reference is established by subseript value, not by
indexing relative to lower bounds.

Figure 4-31.1 showsy an example of simple defining.

DECLARE A(l12);
DECLARE B(3:6) DEFINED(A);

.

/* B 1S SIMPLY DEFINED ON A */

Figure 4-31.1. Simple Defining Example

String Overlay Defining and POSITION Attribute

The defined variable and the host reference each répresents
either a string or an aggregate of strings, and every string in
each is the same type, either all bit strings or an arbitrary

DEF

and where start-pos is an unsigned decimal integer

{ DEFINED } { host-reference
(host-reference)

where host-reference is a simple, subscripted, structure-qualified, or locator-qualified reference to the host variable

[{ POSITION} [(start;pos)]]

POS

Figure 4-30. DEFINED and POSITION Attribute Syntax

60388100 B

4-11

mixture of character strings and pictured variables. . No
. string can be VARYING or ALIGNED. The defined variable
and the host reference can have any aggregate type. The
total length of each is the sum of the string lengths. The
sum of the value of the POSITION attribute and the total
length of the defined variable must not be greater than the
total length of the host generation; plus one.

The POSITION attribute optionally specifies an unsigned
decimal integer greater than zero. The value specifies the
starting position of the definition with respect to the first
character or bit of the host string. If the POSITION
attribute or the start-pos specification .is omitted,
POSITION (1) is assumed.

Figure 4-31.2 shows an example that uses the POSITION
attribute. The character array D overlays the structure C
beginning at the second position. Therefore, D(1), D(2),
D(3), and D(4) reference CA(2), CA(3), CA(4), and CA(5)
respectively.

DECLARE 1 C
2 CA CHAR(S5),
: 2 CB PIC 'AA999';
DECLARE 0 CHAR(4) DEFINED C POSITION{(2);

/* D 1S A STRING OVERLAY DEFINED ON C */

CA(1)] CA(2) | CA(3) | CA(4)] CcA(5) | cB

Figure 4-31.2. Defining with POSITION Example

Array Defining with iSUB

Using iSUBs allows the creation of a defined array that
consists of designated élements from a host array. This
allows an array to be defined as a row, column, diagonal,
or other part of the host array.

The defined variable and the host-reference must be
arrays with the same aggregate type. Corresponding
elements, except structures, must have the same
alignment and data type attributes. Both the defined
array and host array can be arrays of structures.

The defined variable is defined on seleeted elements of
the host array using iSUBs. The i of iSUB is replaced with
a decimal integer corresponding to a subseript of the host
array. For example, 1SUB specifies the first subseript of

}he gost array, 2SUB specifies the second subseript, and so
orth.

. Expressions and constants can also be used as subseripts of

the host-reference. References to the defined variable
result in references to the host variable. Each use of the
defined variable causes evaluation of the host-reference
subseripts.

The first evaluated subscript in the reference to the
defined variable replaces all occurrences -of 1SUB in the

® 4-12

subseripted host-reference. The second evaluated

-subseript replaces all occurrences of 2SUB in the

subseripted host-reference, and so forth.

When all of the evaluated subseripts in the reference to
the defined variable have replaced all occurrences of iSUB
in the host-reference, the subscript expressions in the
subseripted host-reference are evaluated. This results in
a subscripted reference to an element of the host array.
The program must not depend upon the order of evaluation
of the subseripts. ' ,

A defined variable that is an iSUB-defined array cannot be
referenced without subseripts or with asterisk subseripts.

Figure 4-31.3 is an example of how iSUB defining can be
used to reference a diagonal of a host array. ‘A reference
to B(1) causes both 1SUBs to be replaced with 1, which
results in a reference to A(1,1). A reference to B(2)
results in a reference to A(2,2), and so forth.

DECLARE A(5,5);
DECLARE B(5) DEFINED(A(1SUB,1SUB));"

.

A 1 2 3 a4 5

1 B(1)

2 B(2)

3 B(3)

4 . B(4) .

5 Bw)'

Figure 4-31.3. Diagonal Selection with iSUBs

Figure 4-31.4 shows another example of the use of iSUBs.
In this case the iSUBs are part of a subseript expression.

DIMENSION ATTRIBUTE

The dimension attribute is used for an array that contains
array elements. Arrays are described under Aggregates in
section 3, Data Elements. i

Dimension is an aggregation attribute used fo
p -
i g

60388100 B

DCL A(3,3);
DCL B(Y) DEF A(((1SUB+2)/3),(1SUB~-(3*((1SUB-1)/3))));
A 1 2 3
1 B(1) B(2) B{3)
2 B(4) B(5) B(6)
3| 8m | B® | B9 |

Figure 4-31.4. Expressions with iSUBs

Dimension is established by appearance of a dimen-
ion suffix. The syntax of the dimension suffix is shown in
igure 4-32, and examples of dimension are shown in
igure 4-33.

(array-bounds , , ,)
where array-bounds is

upper-bound
lower-bound:upper-bound

*

where upper-bound is an extent expression
where lower-bound is an extent expression

where * is an asterisk extent indicating that array-bounds
are to be acquired from the argument

Figure 4-32. Dimension Attribute Suffix Syntax

DECLARE K(30)3%

/%K HAS ONE DIMENSION 1:30 Y
DCL L(=4:5sJ=3)3

/% L HAS TWO DIMENSIONS, Yy
7% <415 (SPAN IS 10) . *y

/% 1343 (SPAN DEPENDS ON VALUE OF J) #/

DECLARE 1 X(5)s
2 Y(3) CHARACTER(15)3

/% Y EFFECTIVELY HAS TWO DIMENSIONS, #/

/% 135 INHERITEC FROM X #y

/% 133 (SPAN IS 3) #/

DECLARE E ENTRY((10,10) FIXED)?$
/#DIMENSIONED PARAMETER DESCRIPTOR */

Figure 4-33. Dimension Attribute Examples

30388100 B

The specification of dimension in a DECLARE statement
must follow the name of the identifier and must precede any
other attributes declared for the identifier. In a parameter
descriptor, dimension must be specified as the first attribute
if used.

Each dimension of the array is specified as an array-bounds
that is an extent. Each array-bounds indicates the span,
that is, the number of elements in each dimension. If only
the upper-bound is specified, the upper-bound must be
greater than or equal to one. The lower-bound is assumed to
be one, and the span is the upper-bound. If the lower-bound
and upper-bound are both specified, the upper-bound must be
greater than or equal to the lower-bound. The span is
calculated as (upper-bound)-(lower-bound)+l. An asterisk
extent can be used for a parameter to indicate that the
array-bounds are to be acquired from the array-bounds for
the corresponding dimension of the argument. Extents are
described later in this section under Extents.

The upper-bound cannot exceed 131071 and the lower-bound
cannot be less than -131071. The total number of
dimensions is restricted to 32, including all bounds specified
and all bounds inherited from any containing structure. A
member of a structure inherits any dimensions of each
containing structure.

DIRECT ATTRIBUTE

The DIRECT attribute specifies that access to records in a
file is to be by direct reference to the key of each record.
DIRECT is only used for record files.

DIRECT is a file description attribute used for a file
constant. DIRECT ecannot be specified for a file variable.
DIRECT conflicts with the STREAM, PRINT, and

4-12.1/4-12.2

SEQUENTIAL attributes. SEQUENTIAL is an alternative
type of access to records of a file. STREAM and PRINT
apply to files used for stream I/O rather than record I/O.
The DIRECT attribute is specified by keyword. The syntax
of DIRECT is shown in figure 4-34, and examples of DIRECT
are shown in figure 4-35.

DIRECT

Figure 4-34. DIRECT Attribute Syntax

DCL U FILE DIRECTS
DCL CTFILE INPUT KEYED RECORD DIRECTS

Figure 4-35. DIRECT Attribute Examples

Appearance of the DIRECT attribute in a DECLARE
statement declaration implies the FILE attribute. The
DIRECT attribute also implies the KEYED attribute and the
RECORD attribute.

ENTRY ATTRIBUTE

The ENTRY attribute specifies that the identifier represents
an entry value. The ENTRY attribute can be associated
with a constant, parameter, or parameter descriptor.

The ENTRY attribute is a noncomputational data type
attribute used for a variable, named constant, or parameter
deseriptor. ENTRY confliets with any other data type
except RETURNS. ENTRY and RETURNS are used together
for any entry value that ts functi

ENTRY confliets with the
structure and member attributes. The ENTRY attribute can
be specified by keyword. The syntax of ENTRY is shown in
figure 4-36, and examples of the ENTRY -attribute are
shown in figure 4-37.

ENTRY
ENTRY () ,
ENTRY (parameter-descriptor , , ,)

where each parameter-descriptor specifies any consistent com-
bination of the attributes dimension, structure, member,
ALIGNED, UNALIGNED, ENTRY, RETURNS, LABEL, FiLE,
AREA, POINTER, OFFSET, REAL, BINARY, DECIMAL,
FIXED, FLOAT, precision, BIT, CHARACTER, VARYING,
and PICTURE.

Figure 4-36. ENTRY Attribute Syntax

Each statement prefix on a PROCEDURE or ENTRY
statement is explicitly declared with the constant and
ENTRY attributes. In addition, an entry constant declared
by use as the entry name of an external procedure receives
the EXTERNAL attribute. An entry name of an internal
procedure receives the INTERNAL attribute.

60388100 A

P

PROCEDURE OPTIONS (MAIN) 3

/%P IS EXTERNAL ENTRY CONSTANT */
OCL 2C ENTRY (CHAR(5)) 3§

/#DECLARATION FOR EXTERNAL ENTRY #/
DCL STR CHAR(S)3

ZA:d
BEGINS
L
CALL ZB(STR)$ /#CALL INTERNAL *y
CALL ZC{STR)$ /#CALL EXTERNAL */
END 2A3 ‘
283

" PROCEDURE (HJK) $ _
7#28 1S INTERNAL ENTRY CONSTANT *y
DCL HJK CHARACTER(S)3

3

*
END 2B3
END P3

ZC:

PROCEDURE (ASTRING) §

/#2C IS EXTERNAL ENTRY CONSTANT W4
DCL ASTRING CHAR(S)}
L

END 2C3

Figure 4-37. ENTRY Attribute Examples

For procedure calls or function references to another
external procedure, declaration of an external entry con-
stant is established by DECLARE statement declaration.
When an identifier is declared in the DECLARE statement
with the ENTRY attribute, the constant and EXTERNAL
attributes are supplied by default. Explicit declaration of
entry constants is acecomplished by use of the entry prefix
for internal or external entry constants. Entry constants
naming entry points in other external procedures can only be
known by DECLARE statement declaration. Parameter
descriptors describe all parameters that the external pro-
cedure expects to receive when invoked.

An entry parameter is declared by DECLARE statement in
the procedure that receives the entry parameter. Since all
parameters in the parameter list of a PROCEDURE or
ENTRY statement are explicitly declared with the param-
eter attribute, the variable attribute is applied by default to
a parameter declared as ENTRY.

Parameter Descriptors

Parameter descriptors must be specified for all parameters
to be passed to an external procedure. The parameter
descriptors are declared in the DECLARE statement decla-
ration of the external entry constant. When no parameters
are to be passed to the external procedure, the declaration
can be ENTRY or ENTRY(). A single parameter descriptor
can be supplied, or several parameter desecriptors can be
supplied with commas used to separate the descriptors. A
null descriptor is a parameter descriptor with no declared
attributes. Commas keep the place of a null descriptor.

4-13

Each parameter deseriptor can have the same aggregation,
alignment, and data type attributes as any variable. A
parameter descriptor cannot have the INITIAL attribute.
Scope and storage type do not apply to a parameter
descriptor. Each declared parameter descmptor 1s com-
pleted with default attributes. |

A null descriptor always receives

ults. Since the entry constant is external,
the completed set of attributes for each parameter desecrip-
tor must exactly match the attributes of each zorresponding
parameter in the external procedure to be invoked. Extents
that can be used for the parameter descriptors are deseribed
later in this section under Extents.

Nested ENTRY Attributes

If a parameter descriptor is declared as type ENTRY, the
ENTRY attribute is nested. The nested ENTRY attribute
oceurs when an entry value is passed to an external
procedure. The parameter descriptor declared with type
ENTRY can be declared with its own parameter descriptors.
Parameter descriptors for the nested ENTRY attribute can
be omitted; if specified, they are checked for consistency
but not used.

ENVIRONMENT ATTRIBUTE

The ENVIRONMENT attribute is used to specify CYBER
Record Manager (CRM) file processing options for a file
accessed by the program. The ENVIRONMENT attribute is
implementation-defined for CYBER Record Manager.

The ENVIRONMENT attribute is a file description attribute
associated with a file constant. The ENVIRONMENT
attribute can be used in conjunction with any other file
description attributes. ENVIRONMENT cannot be specified
for a file variable. @~ The ENVIRONMENT attribute is
specified by keyword and can be abbreviated. The syntax of
ENVIRONMENT is shown in figure 4-38, and examples of the
ENVIRONMENT attribute are shown in figure 4-39.

{ENVI RONMENT

ENV } (options)

Figure 4-38. ENVIRONMENT Attribute Syntax

EXTERNAL ATTRIBUTE

The EXTERNAL attribute establishes an external scope for
the identifier. An external identifier is known in the same
scope as an internal identifier and can also be known outside
the external procedure. When declarations of the same
identifier as EXTERNAL exist in separate internal or
external procedures, all declarations of the identifier are
effectively merged to reference the same identifier.

The EXTERNAL attribute is a scope attribute for variables,
named constants, or programmer-named conditions.
EXTERNAL and INTERNAL are conflicting attributes. For
variables, EXTERNAL conflicts with any storage type
except STATIC and CONTROLLED. EXTERNAL can be
specified for a variable with any aggregate type;
EXTERNAL cannot be specified for any individual array
element or strueture member. For named constants,
EXTERNAL conflicts with any data type except FILE or
ENTRY. EXTERNAL is the only possible scope for condition
names. EXTERNAL ecannot be used for builtin funection
names. The EXTERNAL attribute is specified by keyword
and can be abbreviated. The syntax of EXTERNAL is shown

"in figure 4-40, and examples of the EXTERNAL attribute

are shown in figure 4-41,

EXT

{EXTERNAL}

Figure 4-40. EXTERNAL Attribute Syntax

X: PROC(AsB) 3
/7#ENTRY CONSTANT X IS EXTERNAL IF *y
/7%PROCEDURE X IS EXTERNAL *y

DCL TT ENTRY(BIT(10))3
7#DEFAULTS TO EXTERNAL Ny

DECLARE GG(100020) EXTERNALS
DCL F23456789 FILES

/#DEFAULTS TO EXTERNAL LY
/SEXTERNAL NAME IS F234789 #y

OCL TIKL FILE INPUT ENV(+FO=SQsRT=F+)3
DECLARE AB DIRECT INPUT ENV(+FO=WA+)3

Figure 4-39. ENVIRONMENT Attribute Examples

ENVIRONMENT can be established by DECLARE statement
declaration. The ENVIRONMENT opti

The proces-
on 9, CYBER

Record Manager Interface.

4-14

ec‘f das a

Figure 4-41. EXTERNAL Attribute Examples

EXTERNAL can be explicitly declared by DECLARE state-
ment for a static or controlled variable, a file constant, or
an entry constant. The entry prefix on a PROCEDURE or
ENTRY statement for an external procedure is explicitly
declared by usage as an external entry constant. Identifiers
used in programmer-named conditions are contextually
declared as condition and EXTERNAL., The EXTERNAL
attribute is supplied by default when FILE or ENTRY is
declared, unless the identifier is a parameter. When
EXTERNAL is declared in a DECLARE statement for a
variable and no storage type is specified, STATIC is
supplied.

Declarations of an external identifier are merged to
reference the same identifier. Each declaration of an
identifier involves the specified attributes and the attributes

60388100 B

supplied by default. The completed attribute sets that
result from all declarations of an external identifier must be
identical, except that:

® Corresponding members names for an external structure
can be different.

® Corresponding area references for an external offset
variable can be different.

® Corresponding extents and INITIAL attribute for an
external controlled variable can be different

The operating system restricts external names and local

ch

i¢

modified as necessary for use as names known to the
operating system, in the following way:

e If any external name is longer than 7 characters, the
name known to the operating system is formed from the
first four and the last three characters.

FILE ATTRIBUTE

The FILE attribute specifies that an identifier represents a
file value. Input/output operations are performed on file
constants associated with local files, as described in
section 8, Input/Output.

The FILE attribute is a noncomputational data type attri-
bute for variables, named constants, or parameter deserip-
tors. FILE conflicts with any other data type attribute, but
a file constant can have file description attributes.

conflicts with the structure attribute. The FILE attribute
can be specified by keyword. The syntax of FILE is shown in
figure 4-42, and examples of the FILE attribute are shown in
figure 4-43.

FILE

Figure 4-42. FILE Attribute Syntax

CRM file names to a maximum of seven alphanumeric

External identifiers in PL/I are

DCL DATAl FILE INPUTS

OCL DATA3 PRINTS
/#PRINT IMPLIES FILE FOR DATA3 */

OPEN FILE(LIST) RECORD DIRECT OUTPUTS
/#CONTEXTUAL DECLARATION OF LIST */

GET COPY (PARTS) LIST(XeYe2) SKIP}
/#CONTEXTUAL DECLARATION OF PARTS 4

Figure 4-43. FILE Attribute Examples

60388100 A

A file constant, file parameteér, or file parameter descriptor
can be explicitly declared with the FILE attribute. Appear-
ance of STREAM, RECORD, INPUT, OUTPUT, UPDATE,
SEQUENTIAL, DIRECT, KEYED, or PRINT in a DECLARE
statement declaration implies the FILE attribute. Con-
textual declaration of FILE and constant occurs for an
identifier used as the file reference in the FILE option in
any I/0 statement, in an ON, SIGNAL, or REVERT state-
ment for an I/O condition, and in the COPY option of the
GET statement. The constant and EXTERNAL attributes
are applied by default if parameter is not present. If
parameter is present, the variable and INTERNAL attributes
are applied by default. File description attributes cannot be
associated with a file parameter. Default file description
attributes are supplied when the file constant is opened, as
described in section 8, Input/Output. If no file description
attributes are specified, STREAM and INPUT are supplied by
default,

FIXED ATTRIBUTE

The FIXED attribute indicates an arithmetic value with a
fixed point scale. The precision of a fixed point value
indicates the total number of maintained decimal or binary
digits and the number of fractional digits following the
decimal or binary point.

The FIXED attribute is an arithmetic data type attribute for
variables, parameter descriptors, returns descriptors, and
literal constants. The FIXED attribute can be implied by
the picture specification for a pictured numeric item. The
FIXED attribute conflicts directly with FLOAT and cannot
be used with any nonarithmetic data type. The FIXED
attribute can be specified for a variable that is a scalar or
an array. FIXED conflicts with the structure attribute. The
FIXED attribute is specified by keyword. The syntax of the
FIXED attribute is shown in figure 4-44, and examples of
FIXED are shown in figure 4-45.

FIXED

Figure 4-44. FIXED Attribute Syntax

DECLARE FGH FIXED DECIMAL(8s1)3
DCL JVALUE FIXED BINARY(18+5)3

Figure 4-45. FIXED Attribute Examples

The FIXED attribute can be declared explicitly by
DECLARE statement. Precision of the form (p) or (p,q) can
follow FIXED. A pietured numeric item can imply FIXED
but cannot be declared as FIXED. When a precision of the
form (p,q) is declared for an arithmetic quantity, the FIXED
attribute is implied. When arithmetic defaults are applied
’IXED is _the standard arithmetic default

FLOAT ATTRIBUTE

The FLOAT attribute indicates an arithmetic value with a
floating point scale. The effective location of the decimal
or binary point is dependent on the exponent value. The
number of significant decimal or binary digits does not
depend on the arithmetic value. The precision of a floating
point value is the total number of significant digits.

4-15

The FLOAT attribute is an arithmetic data type attribute
for variables, ‘parameter descriptors, returns descriptors,
and literal constants. . The FLOAT attribute can be implied
by the picture specification for a pictured numeric item.
The FLOAT attribute conflicts with the FIXED attribute and
cannot be used with any nonarithmetic data type.. The
FLOAT attribute can be specified for a scalar or an array.
FLOAT conflicts with the structure attribute. The FLOAT
attribute is specified by keyword. The syntax of FLOAT is
shown in figure 4-46, and examples of FLOAT are shown in
figure 4-47.

FLOAT

Figure 4-46. FLOAT Attribute Syntax

The INITIAL attribute is the initialization attribute for
varlables. INITIAL can be specified for a scalar or

Static label variables cannot be initialized. INITIAL cannot
be used to initialize a defined variable or a member of a
defined structure. INITIAL cannot be used to initialize a
parameter or a member of a structure that is a parameter.
The INITIAL attribute is specified by keyword and can be
abbreviated. The syntax of INITIAL is shown in figure 4-49,
and examples of INITIAL are shown in figure 4-50.

DECLARE KLM FLOAT DECIMAL(6)3
DCL NUMBER BINARY FLOAT(12)%

Figure 4-47. FLOAT Attribute Examples

The FLOAT attribute can be declared explicitly by
DECLARE statement. Preecision of the form (p) can follow
FLOAT. A pictured numerie it

FORMAT ATTRIBUTE

The format attribute indicates a format value that can be
used in edit-directed stream I/O operations.

The format attribute is a noncomputational data type
attnbute for named constants.

“shown in figure 4-48.

DECLARE F FILE PRINTS

°
*

L]
" FMT2: FORMAT(F(842)9 €(129392)0 A(16))3

L 4
PUT FILE(F) LINE EDIT(IsJoeK) (R(FMT2))3

For initialization of scalars

[+] arithmetic-constant
simple~character-constant
replicated-character-constant

{ 'N'TIAL} ({ simple-bit-constant)
INIT replicated-bit-constant
reference

(expression)
*

For_initialization of arrays

} (initial-element ; , ,)

{INITIAL
INIT

where initial-element is

[+] arithmetic-constant
replicated-character-constant
[(iteration-factor)] Y replicated-bit-constant
} reference s
*

simple-character-constant
simple-bit-constant

(expression)

(iteration-factor) (initial-element , , ,)

where iteration-factor is an expression

Figure 4-49. INITIAL Attribute Syntax

Figure 4-48. Format Attribute Example

The format and constant attributes are explicitly declared
for each identifier used as a format preflx on a FORMAT
statement. The INTERNAL attribute is apphed by default
to format constants.

INITIAL ATTRIBUTE

The INITIAL attribute is used to initialize a variable. The
assignment of an initial value to a sealar or initial values to
an array takes place whenever a generation is allocated for
the variable.

4-16

/7#INITIALIZATION OF SCALARS ®/
DECLARE T FIXED DEC(8+2) INIT(12.34)%
DCL U FLOAT BIN INIT((T+S))3

DCL BA BIT(S5) INIT(+11011+B)3

DCL BB BIT(6) INIT((2)+101+B)3

DCL P POINTER INITIAL(NULL())3

DECLARE SWITCH INITIAL(0)$

DCL AREA4 AREA INIT(AREAS)S

DCL (C FIXEDy O FLOAY) STATIC INIT(S)}$

/*INITIALIZATION OF ARRAYS wy
OCL A(10) INITIAL((S)=3s (S)((=X))}

DCL X(10+10) OEC INIT((SO)*s (50)1.5)3
DCL BC(5) BIT(3) INIT((5)(1)+011+8)3

DCL BD(S) BIT(3) INIT((S)(3)+1+B)3

DCL B(6) CHAR(S) INIT((6)((+ABC+}))}

Figure 4-50. INITIAL Attribute Examples

60388100 A

INITIAL is explicitly specified by DECLARE statement, and
the initial values to be assigned are supplied. A scalar
initial value can be assigned to a scalar variable. Scalar
initial values can be assigned to individual elements of an
array. References and expressions in the INITIAL attribute
are evaluated when allocation oceurs for the variable to be
initialized.

When a single initial value is assigned, the initial value can
be specified as a literal constant, a reference, or an
expression enclosed in parentheses. A literal constant can
be an arithmetie, character or bit constant. Some prefix
operators can be used without the need for enclosing
parentheses; all other operators must be used in a parenthe-
sized expression. A reference can be a variable, named
constant, or function reference. For initialization of an
automatie or controlled variable, a reference must not refer
to an earlier generation of the same variable. Multiple
initial values cannot be specified for initialization of a
scalar.

When INITIAL is used to initialize elements of an array, the
specification of initial values includes a number of initial-
elements. Any initial-element can be preceded by a
parenthesized iteration factor. Every iteration factor must
be scalar and computational. The initial elements in a
parenthesized list are processed in order from left to right,
except as controlled by iteration factors. When an iteration
factor is encountered, it is evaluated and converted if
necessary to fixed binary integer. A negative iteration
factor is assumed to be zero. The following value, asterisk,
or entire parenthesized list of initial elements is repeated
the specified number of times. For example,

((2) (5,4), *, (3) 6, (7*A))

is processed in the order

5 4 5 4 * 6 6 6 T*A

For a STATIC variable, iteration factors can only include
expressions with operands that are literal constants and
operators that are + - * / or —. For a STATIC variable, each
initial element can only be a reference to a NULL or
EMPTY builtin function or an expression with operands that
are literal constants and operators that are + - * / —or ! I,

Note that an iteration factor cannot be specified for a
simple character constant or simple bit constant. If a
parenthesized factor precedes a simple character or bit
constant, the factor is assumed to be a repetition factor for
the constant. The simple character or bit constant can be
specified with an iteration factor and the repetition
factor (1). The simple character or bit constant can also be
used as an expression.

The initial values for an array are applied in the order in
which the array elements are stored. If the total number of
initial values is greater than the number of elements of the
array, the excess initial values are ignored. If the total
number is fewer, only part of the array is initialized.
Assignment of initial values begins with the first element of
the array. An asterisk specifies no initialization of the
individual element. When asterisks are used, some elements
of the array ean be uninitialized even though elements that
follow in the storage order of the array are initialized.

INPUT ATTRIBUTE
The INPUT attribute indicates that a file is to be used for

input. An input file can be used for stream I/O or record I/0
operations.

60388100 A

‘The INPUT attribute is a file description attribute used for a

file constant. INPUT cannot be specified for a file variable.
INPUT confliets with OUTPUT, UPDATE, and PRINT.
OUTPUT and UPDATE are alternatives for the usage of the
file. PRINT applies only to OUTPUT files. The INPUT
attribute is specified by keyword. The syntax of INPUT is
shown in figure 4-51, and examples of INPUT are shown in
figure 4-52. ‘

INPUT

Figure 4-51. INPUT Attribute Syntax

OCL RGH FILE INPUTSH
DECLARE TEST#FILE RECORD INPUT DIRECTS

Figure 4-52. INPUT Attribute Examples

Appearance of the INPUT attribute in a DECLARE state-
ment ‘declaration implies the FILE attribute. The INPUT
attribute is the default for a record file or stream file.

INTERNAL ATTRIBUTE

The INTERNAL attribute establishes an internal scope for
the identifier. An internal identifier is known in the block
that immediately contains the declaration of the identifier.
In addition, the identifier is known in all contained blocks
except those in which another declaration for the same
name is effective.

The INTERNAL attribute is a scope type attribute for
variables, named constants, and builtin functions.
INTERNAL and EXTERNAL are alternatives for the scope
of an identifier. INTERNAL can be specified for a variable
with any aggregate type. INTERNAL cannot be specified
for any individual array element, but INTERNAL can be
specified for a structure member. INTERNAL conflicts with
the condition attribute. The INTERNAL attribute can be
specified by keyword and can be abbreviated. The syntax of
INTERNAL is shown in figure 4-53, and examples of
INTERNAL are shown in figure 4-54.

{INTERNAL}
INT

Figure 4-53. INTERNAL Attribute Syntax

DECLARE VB INTERNAL AUTOMATICS

DCL S AUTOMATICS
/7#DEFAULTS TO INTERNAL 4

Figure 4-54. INTERNAL Attribute Examples

INTERNAL can be explicitly declared in the DECLARE
statement for a variable of any storage type, a file constant,
an array of label constants, or a builtin function name.
INTERNAL is the default scope for any identifier except a
file constant, an entry constant, or a programmer-named
condition.

4-17

KEYED ATTRIBUTE

The KEYED attribute indicates that a file is to be accessed
by record keys. The KEYED attribute ean only be used for
record I/O operations.

The KEYED attribute is a file description attribute used for
a file constant. KEYED cannot be specified for a file
variable. The KEYED attribute conflicts with the STREAM
and PRINT attributes that apply to stream I/O operations.
The KEYED attribute is specified by keyword. The syntax
of KEYED is shown in figure 4-55, and examples of KEYED
are shown in figure 4-56.

KEYED

Figure 4-55. KEYED Attribute Syntax

DECLARE BIN FILE UPDATE DIRECT KEYEDS3
DCL LOOPRUN F1ILE KEYED3

Figure 4-56. KEYED Attribute Examples

Appearance of the KEYED attribute in a DECLARE state-
ment declaration implies the FILE attribute. The KEYED
attribute also implies RECORD and can be used with
SEQUENTIAL or DIRECT. For a record file, the default is
SEQUENTIAL.

LABEL ATTRIBUTE

The LABEL attribute is used for a label value that identifies
a statement. A label value also identifies a particular
activation of the block containing the statement.

The LABEL attribute is a noncomputational data type
attribute for variables and named constants. The LABEL
attribute conflicts with any other data type. Label
constants can be scalars or arrays. Label constants cannot
be external. LABEL can be specified for a variable that is a
scalar or an array. LABEL confliets with the structure
attribute. Static label variables cannot be initialized.
Automatie, controlled, or based label variables can be
initialized. @ The LABEL attribute can be specified by
keyword. The syntax of LABEL is shown in figure 4-57, and
examples are shown in figure 4-58.

LABEL

Figure 4-57. LABEL Attribute Syntax

The LABEL attribute is explicitly declared by usage for all
scalar label constants. Each label prefix on a statement
other than a PROCEDURE, ENTRY, or FORMAT statement
is explicitly declared as a label constant. When defaults are
applied, each label constant defaults to INTERNAL,

4-18

Yy?
PROCEDURE$
DECLARE LABVAR LABELS
/%LABVAR 1S LABEL VARIABLE 4

LABVAR = LOOP1}
°
L]

.

LOOP1

/7#L00P]1 IS LABEL CONSTANT v/
BEOGINS

GOTO LABVARS

END YvY3

Figure 4-58. LABEL Attribute Examples

Label variables must be declared explicitly by DECLARE
statement. Label values can be passed as arguments, and
the LABEL attribute can be declared for a parameter
deseriptor ed fol

OFFSET ATTRIBUTE

The OFFSET attribute indicates an offset value. An offset
value is used for references to based variables to identify
the displacement of a specific based generation within an
area. :

The OFFSET attribute is a noncomputational data type
attribute for variables, parameters descriptors, or returns
descriptors. An offset variable can have any scope or
storage type. The OFFSET attribute conflicts with any
other data type. OFFSET can be specified for a variable
that is a sealar or an array. OFFSET conflicts with the
structure attribute. The OFFSET attribute is specified by
keyword. The syntax of OFFSET is shown in figure 4-59,
and an example of OFFSET is shown in figure 4-60.

The OFFSET attribute must be deeclared by DECLARE
statement. The area-reference is an optionally specified
area in which the offset is to be effective. The area-
reference is used implicitly for the OFFSET variable in the
following circumstances:

e For allocating the based variable, if the offset variable
is used in the SET option or assumed SET option of an
ALLOCATE statement with no IN option

® For freeing the based variable, if the offset variable is

used as the locator or implicit locator in a FREE
statement with no IN option

60388100 A

e In all references to based variables if the offset
variable is used as the locator or implieit locator.

storage type. The parameter attribute also conflicts with
trib 1

iR

‘ L L i 4
If an area value is written to a record file and read in again, . Examples of the parameter attribute are shown

the offset value remains valid. If the area value is assigned in figure 4-63.
to another area by assignment or by INITIAL attribute, the
offset value also remains valid.
/*PARAMETER IN INTERNAL PROCEDURE #y
OFFSET -ref
[(area-reference)] JKLE
PROCEDURE S

Figure 4-59. OFFSET Attribute Syntax

DCL BVAR BASEDS

DCL AREA4 AREAS

DCL A4QFFf OFFSET(AREA4) S

/%EXPLICIT DECLARATION OF A4OfF */
*

L 2
ALLOCATE BVAR SET(A4OFF) 3
A4QFF=>BVAR = TESTeRESS

Figure 4-60. OFFSET Attribute Example

OUTPUT ATTRIBUTE

The OUTPUT attribute indicates that a file is to be used for
output. An output file can be used for stream 1/0 or record
1/0 operations. An output file for stream I/O can have the
PRINT attribute.

The OUTPUT attribute is a file description attribute used
for a file constant. OUTPUT cannot be specified for a file
variable. OUTPUT conflicts with INPUT and UPDATE.
INPUT and UPDATE are alternatives for the use of the file.
The OUTPUT attribute is specified by keyword. The syntax
of OUTPUT is shown in figure 4-61, and examples of
OUTPUT are shown in figure 4-62.

OUTPUT

Figure 4-61. OUTPUT Attribute Syntax

DCL RESULT OUTPUT PRINTS
DCL ThJy FILE RECORD OUTPUTS

Figure 4-62. OUTPUT Attribute Examples

Appearance of the OUTPUT attribute in a DECLARE
statement declaration implies the FILE attribute.

PARAMETER ATTRIBUTE

The parameter attribute is used for a parameter variable.
Each parameter is associated with an entry point of a
procedure. Each variable used as a parameter appears in the
parameter list of a PROCEDURE or ENTRY statement.
Arguments passed when the procedure is invoked are
received as parameters in the invoked procedure.

'The parameter attribute is a storage type attribute for
varigbles. The parameter attribute conflicts with any other

60388100 A

DCL 0D BIT(12)%
L
[]

. _
‘CALL YG(DD)3
YG?
PROCEDURE (PRESsJV) §
DCL PRESeJv BIT(12)3 /#PARAMETER®/
*
*

.
END YG3$
END JKL3$
7 - -e/

7*PARAMETER IN EXTERNAL PROCEDURE W4

TFS
PROCEDURE OPTIONS(MAIN) 3
DCL EX ENTRY(CHAR(20)
(3+43) OECIMAL FIXED)3
L]

CALL EX(STRsARR)S
END TF3

EX$
PROCEDURE (XsY) 3 :
DECLARE X CHAR(20)3
DECLARE Y(3+3) DECIMAL FIXED ALIGNED3

[]
END EX3
L */
/%PARAMETER WITH ASTERISK EXTENT A4
H4SS
PROCEDURE $

DCL MAT(100,5) FLOAT DECIMALS
DCL GYF(100+2) FLOAT DECIMAL3

.
®

L]
CALL N(MAT)$

L]
CALL N(GYF)$

PROCEDURE (PASS) 3
DCL PASS(100+%) FLOAT DECIMALS

*
END N3
END H4S53

Figure 4-63. Parameter Attribute Examples

4-19

Each parameter that appears in the parameter list of a
PROCEDURE or ENTRY statement is explicitly declared by
.usage with. the parameter attribute.* Within the procedure,
each parameter can be further declared by DECLARE
statement with additional attributes that define the use of
the parameter. = When default attributes are applied,
parameters are supplied with the variable and INTERNAL
attributes. A parameter that appears ina parameter list but
is not declared in an oth‘

PICTURE ATTRIBUTE

The PICTURE attribute is used for a pictured variable that.
can be a pictured character item or plctured numerie item.
Picture-controlled Conversion is descnbed in section 7, Data
Manipulation.

The PICTURE attribute is a computational data type
attribute. The PICTURE attribute conflicts with any
noncomputational data type attribute. Other computational
data type attributes can be associated with the pictured
item but are not declared for the pictured item. The
exception is the REAL attribute. PICTURE can be specified
for a variable that is a scalar or an array. PICTURE
conflicts with the structure attribute. The PICTURE
attribute is specified by keyword. The syntax of the
PICTURE attribute is shown in figure 4-64, and examples of
PICTURE are shown in figure 4-65.

{PlCTURE} 'picture-specification’
PIC P P
where picture-specification is

'pictured-character'
‘pictured-numeric-fixed'
'pictured-numeric-fioat'

where pictured-character can include the picture codes A
X and 9

where pictured-numeric-fixed can include the picture codes
9Z*YVS+-TIRCRDBS$/,.BandF in a valid
combination :

where pictured-numeric-float can include the picture codes
92*YVS+-TIR/,.BEandK in a valid com-
bination

Figure 4-64. PICTURE Attribute Syntax

is. declared for a variable or specified for a parameter or
returns deseriptor, no data type attribute except REAL can
accompany the PICTURE attribute.. The picture for a
pictured numeric item implies REAL, DECIMAL, FIXED or
FLOAT, and the precision. The UNALIGNED attribute is

applied by default to a pictured item. A pictured item can
be ALIGNED or UNALIGNED.

POINTER ATTRIBUTE

The POINTER attribute indicates a pointer value. A pointer
value is a-locator value used to specify the location of a
generation.

The POINTER attribute is a noncomputational data type
attribute for variables, parameter descriptors, and returns
descriptors. A pointer variable can have “any scope or
storage type. The POINTER attribute conflicts with any
other data type. POINTER can be specified for a variable
that is a sealar or an array. POINTER conflicts with the
structure attribute. The POINTER attribute is specified by
keyword and can be abbreviated. The syntax of POINTER is
shown in figure 4-66, and examples of POINTER are shown
in figure 4-67.

{POINTER}
PTR

Figure 4-66. POINTER Attribute Syntax

DCL P POINTERS
/7#EXPLICIT DECLARATION OF P 4
DCL BRESULT BASED(P)3

DCL DvVALUE BASED(Q)3
/#CONTEXTUAL DECLARATION OF Q@ *y

DCL RIGHT PICTURE®GAXXXXX*3
DCL RESULT PIC*$2222V.Z2CR+*3
DCL KPL PIC49V.9999E5999+ REALS

Figure 4-65. PICTURE Attribute Examples

If a PICTURE attribute that specifies pictured-character is
declared for a variable or specified for a parameter or
returns descriptor, no other data type attribute can be
declared. The CHARACTER and nonvarying attributes are
implied from the picture. If a PICTURE attribute that
specifies pictured-numeric-fixed or pictured-numeric-float

4-20

Figure 4-67. POINTER Attribute Examples

The POINTER attribute can be declared by DECLARE
statement. Contextual declaration of the POINTER and
variable attributes occurs for an identifier appearing in the
SET option of an ALLOCATE statement, an identifier
declared as the implicit locator in the BASED attribute, or
an identifier used as the locator in a locator-qualified
reference to a based variable. The default attributes
INTERNAL, AUTOMATIC, and ALIGNED are applied to a
pointer variable. The default attribute ALIGNED is applied
to a parameter descriptor or returns descriptor that speci-
fies POINTER.

PRECISION ATTRIBUTE

The precision attribute indicates the computational pre-
cision of an arithmetic value. The precision is the number
of digits to be maintained for an arithmetic quantity.
Precision of a fixed point value indicates the total number
of maintained decimal or binary digits and the scale factor
of the value. Precision of a floating point value indicates
only the total number of significant decimal or binary digits.

The precision attribute is an arithmetic data type attribute
used for variables, parameter descriptors, returns deserip-
tors, and literal constants. Precision is implied by the
picture specification for pictured numeric items. Precision

60388100 A

is compatible with the arithmetic attnbutes REAL,
DECIMAL or BINARY, and FIXED or FLOAT.

11 . Precision is estab.
ppearanee of a preclsmn ffix. The syntax of the
precision suffix is shown in figure 4-68, and examples of
precision are shown in figure 4-69.

attribute is specified by keyword. The syntax of PRINT is
shown in figure 4-70, and examples of PRINT are shown in
figure 4-71.

PRINT

{p.q)
{p)
where p is an unsigned decimal integer for the total number

of significant decimal or binary digits

and where q is a signed decimal integer scale factor that can
be specified for fixed point values

Figure 4-70. PRINT Attribute Syntax

DECLARE SFILE PRINTS
DECLARE GHT FILE STREAM OUTPUT PRINTS

Figure 4-68. Precision Attribute Suffix Syntax

OCL TV FIXED DECIMAL(8+5)3%
DCL YY FLOAT DECIMAL(6)3
DCL SOF BIN FIXED(12+3)3
DCL KGH REAL(846)3

Figure 4-69. Precision Attribute Examples

Any specification of precision must immediately follow one
of the attributes REAL, DECIMAL, BINARY, FIXED, or
FLOAT. Precision can be specified for an arithmetic
variable that is a scalar or an array. Precision conflicts
with the structure attribute. The specification (p) or (p,q) is
used for FIXED arithmetic and (p) is used for FLOAT
arithmetic. The p specification is an unsigned decimal
integer, and the q specification (if used) can be an optionally
signed decimal integer. The possible values of p and q are

e For FIXED DECIMAL: 0<p and p<=14, -255<=q and
q<=255

e For FLOAT DECIMAL: 0<p and p<=14

® For FIXED BINARY: 0<p and p<=48, -255<=q and
q<=255

e For FLOAT BINARY: 0<p and p<=48

When default arithmetic attributes are applied to an
arithmetic quantity, the default precisions are:

e For FIXED DECIMAL: (5,0)
e For FLOAT DECIMAL: (14)
e For FIXED BINARY: (15,0)
e For FLOAT BINARY: (48)

PRINT ATTRIBUTE

The PRINT attribute indicates that an output file is intended
for printing on a line printer. The PRINT attribute is used
only for stream output files.

The PRINT attribute is a file description attribute for a file
constant. PRINT cannot be specified for a file variable,
PRINT confliets with any file deseription attributes exeept
STREAM, OUTPUT, and ENVIRONMENT. The PRINT

60388100 A

Figure 4-71. PRINT Attribute Examples

Appearance of the PRINT attribute in a DECLARE state-
ment declaration implies the FILE attribute. The PRINT
attribute also implies the OUTPUT and STREAM attributes.

REAL ATTRIBUTE

The REAL attribute indicates that an arithmetic value has
the mode REAL. The mode REAL indicates that the
arithmetic value has no imaginary part.

The REAL attribute is an arithmetic data type attribute for
variables, parameter descriptors, or returns descriptors.
The REAL attribute can be used with other arithmetic data
type attributes. REAL can also accompany the PICTURE
attribute in the declaration of a pictured numerie item.
REAL can be specified for a variable that is a scalar or an
array. REAL conflicts with the structure attribute. A
precision specification can follow the REAL attribute in the
declaration of an arithmetic variable or descriptor. The
REAL attribute is specified by keyword. The syntax of
REAL is shown in figure 4-72, and examples of REAL are
shown in figure 4-73.

REAL

Figure 4-72. REAL Attribute Syntax

DCL RES REAL FIXED BINARYS
DCL M REAL FLOAT DECIMAL(9)3

Figure 4-73. REAL Attribute Examples

REAL is compatible with the scale FIXED or FLOAT, the
base DECIMAL or BINARY, and a precision. During default
processing, any implicitly declared variable and any deserip-.
tor with no declared attributes receives the REAL attribute
and other arithmetic attributes by default.

RECORD ATTRIBUTE
The RECORD attribute indicates that a file is to be used for

transmission of input or output records. RECORD indicates
the use of record 1/0 operations for the file.

4-21

The RECORD attribute is a file description'attribute ‘used

for a file constant. RECORD cannot be used for a file:
The RECORD attribute conflicts with the’

variable.
- STREAM and PRINT attributes that apply to stream 1/O
operations. The RECORD attribute is speclfled by keyword.
The syntax of RECORD is shown in figure 4-74, and
examples of RECORD are shown in figure 4-75. .

RECORD

Figure 4-74. RECORD Attribute Syntax

DCL KK FILE RECORDS
DCL OF ILE RECCRD OUTPUT SEQL KEYEDS

Figure 4-75. RECORD Attribute Examples

Appearance of the RECORD attribute in a DECLARE
statement declaration implies the FILE attribute.

RETURNS ATTRIBUTE

The RETURNS attribute specifies that an entry value
represents a function entry point. The RETURNS attribute
additionally describes the single value that is returned from
the function.

The RETURNS attribute is a noncomputational data type
attribute for a variable, named constant, or parameter
descriptor. RETURNS conflicts with any data type other
than ENTRY. ENTRY and RETURNS are used together for
an entry value that represents a function. RETURNS can be
associated with an entry constant, an entry variable, or an
.entry parameter descriptor. The RETURNS attribute is
specified by keyword. The syntax of RETURNS is shown in
figure 4-76, and examples are shown in figure 4-77.

RETURNS
RETURNS (returns-descriptor)

where returns-descriptor specifies any consistent combination
of the attributes ALIGNED, UNALIGNED, AREA, POINTER,
OFFSET, REAL, BINARY, DECIMAL, FIXED, FLOAT,
precision, CHARACTER, BIT, VARYING, and PICTURE

Figure 4-76. RETURNS Attribute Syntax

DCL P8 ENTRY(BIT) RETURNS (FLOAT DEC)3
/REXTERNAL ENTRY HAS RETURNS ATTRIBUTE®/

DCL P10 ENTRY(CHAR(6)) RETURNS3

/*ENTRY HAS RETURNS ATTRIBUTE ®/
/#STANDARD RETURNS (FIXED BINARY(15+0)) %/
/72 INRULE RETURNS (FLOAT DEC(14)) v/
PR63

PROCEDURE RETURNS(CHAR(]OO))S

/*PR6 HAS RETURNS ATTRIBUTE ®/
/#*SUPPLIED BY STATEMENT OPTION */

The RETURNS attribute can be declared for an entry
constant. The entry prefix on a PROCEDURE or ENTRY
statement is explicitly declared by usage as an internal or
external entry constant. The RETURNS option on the
PROCEDURE or ENTRY statement adds the RETURNS.
attribute to the entry constant. If no attributes are supplied
for the returns deseriptor, arithmetic defaults are applied.

deseribed later in this section under Extents. When a value
is returned from the function by RETURN statement
execution, the value is econverted as necessary to match the
attributes of the returns descriptor before being returned
from the funection.

If an external procedure is to be invoked as a function from
within a separate external procedure, the RETURNS attri-
bute must be specified in the DECLARE statement declara-
tion of the external entry constant. Rules for the specified
returns deseriptor are the same as for the RETURNS option
used on the PROCEDURE or ENTRY statement. Since
attributes of all external identifiers must exactly match, the
attributes specified for the returns descriptor (and supplied
by default) must exactly match the attributes of the returns
descriptor in the external function.

The RETURNS attribute can also be declared for an entry
parameter or an entry parameter descriptor. The RETURNS
attribute identifies an entry parameter as representing a
function entry point.

SEQUENTIAL ATTRIBUTE

The SEQUENTIAL attribute indicates that records in a file
can be accessed sequentially. The SEQUENTIAL attribute
applies only to record I/O operations, even though stream
I/O operations effectively involve sequential access to
stream data.

The SEQUENTIAL attribute is a file description attribute
used for a file constant. SEQUENTIAL cannot be used for a
file variable. SEQUENTIAL conflicts with the STREAM and
PRINT attributes that are used for stream I/O rather than
record /0. The SEQUENTIAL attribute is specified by
keyword and can be abbreviated. The syntax of
SEQUENTIAL is shown in figure 4-78, and examples of
SEQUENTIAL are shown in figure 4-79.

SEQUENTIAL
SEQL

Figure 4-78. SEQUENTIAL Attribute Syntax

DCL NM SEQUENTIAL OUTPUT KEYED RECORD$
DECLARE 22 FILE SEQLS

Figure 4-77. RETURNS Attribute Examples

4-22

Figure 4-79. SEQUENTIAL Attribute Examples

60388100 A

Appearance of the SEQUENTIAL attribute in a DECLARE
statement declaration implies the FILE attribute. The
records in a SEQUENTIAL file can be created or retrieved in
sequential order. The records in a SEQUENTIAL and
KEYED file can be accessed sequentially or by record key.
The SEQUENTIAL attribute is the default for a record file.

STATIC ATTRIBUTE

The STATIC attribute indicates that a variable has the
static storage type, as described in section 3, Data Ele-
ments. Static storage is allocated only once, before
program execution begins.

The STATIC attribute is a storage type attribute for
variables. The STATIC attribute conflicts with any other
storage type. STATIC can be used with INTERNAL or
EXTERNAL. If a variable is declared with the STATIC
attribute, the INTERNAL attribute is applied by default.
STATIC can be specified for a variable of any aggregate
type; STATIC cannot be specified for any individual array
element or structure member. The STATIC attribute can be
specified by keyword. The syntax of STATIC is shown in
figure 4-80, and examples of STATIC are shown in
figure 4-81.

STATIC

Figure 4-80. STATIC Attribute Syntax

DECLARE TMATRIX(40+30) STATIC FLOAT DEC3

DECLARE G CHAR(10) EXTERNALS
/#DEFAULTS TO STATIC */

Figure 4-81. STATIC Attribute Examples

If a storage type is not declared and the EXTERNAL
attribute is declared for a variable, the STATIC attribute is
supplied by default. The STATIC attribute is usually not the
default storage type. If scope and storage type are both
unspecified, INTERNAL and AUTOMATIC are supplied by
default.

STREAM ATTRIBUTE

The STREAM attribute indicates that a file is to be treated
as a continuous stream of characters representing input data
or output data. The STREAM attribute specifies that
stream I/O operations are to be used for the file.

The STREAM attribute is a file description attribute used

for a file constant. STREAM cannot be specified for a file -

variable. The STREAM attribute conflicts with the
RECORD, UPDATE, SEQUENTIAL, DIRECT, and KEYED
attributes that apply only to record I/O operations. The
STREAM attribute is specified by keyword. The syntax of
STREAM is shown in figure 4-82, and examples of STREAM
are shown in figure 4-83.

STREAM

Figure 4-82. STREAM Attribute Syntax

60388100 B

Appearance of the STREAM attribute in a DECLARE
statement declaration implies the FILE attribute. The
STREAM attribute is the default for a file, unless the
RECORD attribute is implied.

DCL OUT FILE STREAM OUTPUTS
DCL G STREAMS3

Figure 4-83. STREAM Attribute Examples

STRUCTURE AND MEMBER ATTRIBUTES

The structure attribute is used for identifiers that are
structures, and the member attribute is used for identifiers
that are members of structures. Structures are deseribed
under Aggregates in section 3, Data Elements. The LIKE
attribute can be used to expand one structure to the form of
another. The REFER option for a based structure is used to
preserve the value of an extent expression as the value of
one of the members. Each structure is a hierarchical
collection of variables. The structure has members. Each
member can in turn be a substructure that is both a member
of the structure and a structure with members. The
members at the bottom level of the hierarchy are variables
with data type attributes.

The structure and member attributes are aggregation attri-
butes for variables or parameter deseriptors. The structure
and member attributes cannot be specified by keyword. The
syntax of structures and members is shown in figure 4-84,
and examples are shown in figure 4-85.

The structure name is declared as level 1, and members of
the structure are declared in outline form with higher level
numbers. The list of declared items is processed from left
to right, with continual reference to the level number of the
previous item. A higher level number indicates that the
item is a member contained by the preceding item. The
same level number indicates that the item is at the same
hierarchical level as the previous item. A lower level
number indicates that the item is not contained by the
preceding item and that the item is immediately contained
by the nearest preceding item with a lower level number.
Items that contain one or more members are substructures
within the level 1 structure.

The structure variable with level number 1 can be declared
with a scope attribute and storage type attribute. Any
structure can also be declared with dimension, alignment,
and LIKE. Alignment can be declared but is propagated
through the structure. After propagation of alignment,
alignment is known for all members. A structure cannot be
declared with any data type attributes. If structure is
specified for a parameter descriptor, scope and storage type
cannot be specified. Scope and storage type do not apply to
deseriptors. The substructures, if any, can be declared only
with dimension and alignment.

Each member that is not a structure can be declared with
dimension, alignment, and a valid combination of data type
attributes. Storage type does not apply to members. Every
member has the INTERNAL attribute. INITIAL can be used
to assign an initial value to a member that is not a

4-23

For variables

For_parameter descriptors:

1 [attribute] ... , {Ievel [attribute] . . } P

where structure and member names are not supplied

1 structure-name . level member-name [attribute] . . .
[attribute] . .. , X e,
level member-name LIKE structure-reference [attribute] . . .
LIKE structure-reference

where each specified level is an unsigned decimal integer indicating the hierarchical level of the member

Figure 4-84, Structure, Member, and LIKE Attribute Syntax

DECLARE 1 A(3) UNALIGNED,
2 By
3 C(5) CHAR(10),
3 D(10+¢5) FLOAT BIN,
2 E»
3 F FIXED DECIMALS

/%A IS AN ARRAY OF STRUCTURES ®/
/%8 IS A SUBSTRUCTUREs MEMBERS C AND D#/
s#E IS A SUBSTRUCTUREs MEMBER F "y
/% “y
/#DIMENSIONALITY OF A IS INHERITED %y
/#B IS EFFECTIVELY (3) W4
/7#C 1S EFFECTIVELY (3+5) #/
/#D 1S EFFECTIVELY (3+1065) ®/
/#E IS EFFECTIVELY (3) *y
s7eF IS EFFECTIVELY (3) ®y
/% */
/#ALIGNMENT PROPAGATES FROM A #/
/%8 AND E ARE UNALIGNED ®y
/#Cy Do AND F ARE UNALIGNED ®y

DECLARE 1 M LIKE A3

/7#M 1S EXPANDED TO THE FORM OF A #y
/#DIMENSIONALITY OF A IS IGNORED ®/
/#ALIGNMENT OF A IS IGNORED #y
/%M EXPANDS TO@ #/
7% 2B » #y/
/% 3 C(S) CHAR(10) */
/% 3 D(10+S) FLOAT BIN ®y/
VAd 2 E) ®y
/7% 3 F FIXED DECIMAL #y
/7#NO DIMENSIONS ARE INHERITED ®#/
s7#C IS UNALIGNED BY DEFAULT *y/
s#D AND F ARE ALIGNED BY DEFAULT */

Figure 4-85. Structure, Member,
and LIKE Attribute Examples

LIKE Attribute

The LIKE attribute can be used to expand a structure to the
form of another structure. The syntax of the LIKE attribute
is included in figure 4-84. The LIKE attribute cannot be
specified for a parameter descriptor. = The structure-
reference must be unsubscripted. The referenced structure
or substructure cannot be declared with the LIKE attribute.
In the structure expansion, any dimension or alignment
attributes of the referenced structure are not used. All
members of the referenced structure and all declared
attributes of the members are copied. Level numbers are

4-24

modified as necessary to preserve the hierarchical structure.
The declaration with the LIKE attribute must not be
immediately followed by an item declared with a higher
level number.

Since expansion with LIKE is essentially a copy operation,
any dimensionality inherited by the réferenced structure is
ignored. In any given bloek, the struetures referenced in all
LIKE attributes are determined before any expansion with
LIKE is performed.

Complefion of Structure Declarations

Three steps are involved in the completion of structure
declarations. The expansion of any LIKE attributes is
performed. Level numbers for members are then modified
so that the level number of each member is one greater than
the level number of the immediately containing structure.
The last step in completing structure declarations is the
propagation of alignment. During default processing, the
declarations of the structure and all members are completed
with default attributes.

REFER Option for BASED Structures:

The REFER option is used to preserve the value of an extent
expression as the value of a member of the structure. The
strueture must be declared with the BASED attribute. The
REFER option is used in an extent in the declaration of a
member of the based structure. An example of the REFER
option is shown in figure 4-86.

s

DECLARE J AUTOMATIC FIXED DEC INIT(10)3
DECLARE 1 GSTRUC BASED,

2 KEEFP FIXED DEC,

2 VAL CHAR(S#J REFER (KEEP))3
/#WHEN GSTRUC IS ALLOCATED, KEEP IS */

/%SET 10 50, SUBSEQUENT REFERENCE *y
/%70 VAL USES THE VALUE OF KEEP RATHER#/
/*THAN REEVALUATING S®J sy

Figure 4-86. REFER Option Example

The REFER option is specified in an extent for area size,
character string length, bit string length, or array bounds of
a dimension. Extents are deseribed later in this section
under Extents. The extent expression cannot contain

60388100 A

references to any member of the same structure or to the
structure itself. The reference in the REFER option must
identify a scalar and computational member that is declared
egrlier in the structure. The extent expression must be
scalar and computational.

“When the based _structure is allocated, all extents are
evaluated to determine the -size of the based generation.
After the generation is allocated, each structure member
named in a REFER option is assigned the value of the extent
with which it is associated. Therefore, an allocated
generation for a based structure has some initial values that

" define extents for members appearing later in the structure.
The REFER option is effective for each allocation of the
based structure. When the based structure is referenced or
freed, the extent expression is not evaluated. The value of
the extent is taken from the member designated by the
REFER option.

UPDATE ATTRIBUTE

The UPDATE attribute indicates that a file is. to be used
- either for input. or for output. An UPDATE file can only be
used for record I/0O operations.

The UPDATE attribute is a file deseription attribute used
for a file constant. UPDATE cannot be specified for a
file variable. The UPDATE attribute conflicts with
INPUT, :OUTPUT, STREAM, and PRINT. OUTPUT and
INPUT are alternatives for the use of the filee. STREAM
and PRINT are used for stream I/O rather than record
1/0. The UPDATE attribute is specified by keyword. The
- syntax of UPDATE is shown in figure 4-87, and examples
of UPDATE are shown in figure 4-88.

UPDATE

Figure 4-87. UPDATE Attribute Syntax

syntax of VARYING is shown in figure 4-90.

DECLARE RHVAL FLOAT BINARYS

/%RHVAL IS A VARIABLE : 8y

DECLARE D CHAR(S)3 R ‘

/%D IS A VARIABLE *y

DECLARE AREAZ AREAS

/#AREA2 IS A VARIABLE »y
_ DECLARE JUN LABELS)

/%JIN IS A VARIABLE */

Figure 4-89. Variable Attribute Examples

VARYING AND NONVARYING ATTRIBUTES

The VARYING attribute and the nonvarying attribute indi-
cate whether the current length of a character string or bit
string can ever be shorter than the maximum specified
length. A nonvarying string always has the specified length.
A VARYING string has a current length and the available
maximum length.

The VARYING and nonvarying attributes are string data
type attributes for variables, parameter descriptors, and
returns descriptors. The VARYING attribute can be
specified for a variable that is a scalar or an array.
VARYING and nonvarying conflict with the structure attri-
bute. The VARYING attribute is specified by keywo d. The

ord: Examples of
figure 4-91.

VARYING

Figure 4-90. VARYING Attribute Syntax

DECLARE YH FILE RECORD SEQL UPDATES
DECLARE FILE4 UPDATES

Figure 4-88. UPDATE Attribute Examples

Appearance of the UPDATE attribute in a DECLARE
statement declaration implies the FILE attribute. The
UPDATE attribute also implies the RECORD attribute.

VARIABLE ATTRIBUTE
The variable attribute applies to identifiers used as vari-
ables. A variable can have different values during program

execution.

The variable attribute indicates that an identifier is the
name of a variable.

are shown in figure 4-89. The variable attribute can be used
with any storage type or scope. Variable conflicts with the
constant, BUILTIN, and condition attributes. When defaults
are applied to identifiers, most identifiers are supplied with
the variable attribute by default. Except if the FILE or
ENTRY attribute is present for an identifier that is not a
parameter, the variable attribute is applied by default.

60388100 B

DECLARE TSTRING CHAR(65)3
/#TSTRING IS NONVARYING BY DEFAULT ®/

DCL DSTRING CHAR(105) VARYINGS
/#MAXIMUM LENGTH OF DSTRING IS 105 #y
/#CURRENT LENGTH OF DSTRING IS NOT SET#/

DCL BITL BIT(100) VARYING INIT(+11+B)3
/#MAXIMUM LENGTR OF BITL IS 100 ®/
/“CURRENT LENGTH OF BITL IS 2 */

Figure 4-91. VARYING and Nonvarying
Attribute Examples

A string variable or descriptor not declared as VARYING is
known to be nonvarying. Strings involved in string overlay
defining must be nonvarying. All character constants and
bit constants are nonvarying. A string declared as
VARYING has a string value with a current length estab-
lished by the most recent assignment.

EXTENTS

An extent is a specification of one of the following values:
e Size in the AREA attribute

® Length in the BIT attribute

425

‘e Length in the CHARACTER attribute v

® - Array bounds for -each. d)mensnon in the dlmenslon
attribute

An extent can be specified in a DECLARE statement, orina
RETURNS option in a PROCEDURE or ENTRY statement.
_ An area size, bit string length, or character string length

can be specified as an extent expression or an asterisk
extent. The array bounds for a dimension of -an array can be
specified as an extent expression for the upper bound, a pair
of extent expressions separated by a colon for the lower
bound and the upper bound, or an asterisk extent.

The appearance of an asterisk as an extent indicates that
any area size, bit string length, character string length, or
array bounds are acceptable. The actual extent is deter-
mined each time a generation is allocated for the variable or
-associated with the desecriptor. For example, a parameter
declared as BIT(*) can represent a bit string of a different
length each time the procedure is invoked. - The length is
dependent on the length of the correspondmg argument
passed to the procedure.

The storage type of the variable, or the type of descriptor,
determines when the extent expressmns are evaluated, as
. shown in table 4-1. :

. The legal usage of extent expressions and asterisk extents
depends on the storage type of the variable, or depends on
the type of descriptor, as shown in table 4-2. An expression
used as an extent must be scalar and computational. Extent
" expressions are evaluated and converted to fixed binary
integer. An evaluated extent can be negative only if the
extent expression specifies a lower bound or upper bound of
a dimension,

SUMMARY OF ATTRIBUTES

A summary of attributes is provided in table 4-3. The
attributes are listed in alphabetic order. A similar table in
section 5, Declarations, is intended as a summary of
attribute defaults and implications.

- 4-26

TABLE 4-1. EVALUATION OF EXTENTS

Time of evaluation

Storage type or
type of descriptor of extent
—— 1§

STATIC Before program execution begins, .
when storage is allocated for all
static variables.

_AUTOMATIC |} When storage is allocated for the
variable, during activation of the
.| block immediately containing the

declaration.

CONTROLLED | When storage is allocated for the
variable by execution of an
ALLOCATE statement.

BASED When the variable is allocated, and
each time the variable is referenced.'

DEFINED During activation of the block
immediately containing the declara--
tion. Note that the defined variable
is not associated with a generation

at this time.

Parameter During activation of the block
immediately containing the declara-
tion, when the parameter is asso-
ciated with the generation belonging
to an argument passed to the
procedure.

Parameter During evaluation of the argument

descriptor list in a procedure reference.

Returns

descriptor

60388100 A

TABLE 4-2. EXTENTS

Storage type or
type of descriptor

Legal form of extent expression
or asterisk extent

Storage type or
type of descriptor

Legal form of extent expression
or asterisk extent

STATIC
AUTOMATIC

CONTROLLED

BASED

BASED, for
structure member
with REFER option

Expression
-

evaluation of the extent of a var-
able must not require a reference
to the value of the variable itself.

Expression

The extent of a controlled variable
cannot reference the controlled
variable itself.

Expression

The extent of a based variable
cannot reference the based vari-
able itself, except as described for
structure member with or without
REFER option. ’ :

Expression REFER (refer-variable)

When the based structure is allo-
cated, the expression is evaluated
and used to initialize the refer-
variable. When the BASED struc-
ture is referenced or freed, the
‘value of the refer-variable is used.
The refer-variable must be a scalar
member of the same based strue-
ture and must be declared earlier
in the structure. The user must
not assign values to the refer-
variable.

BASED, for
structure member
without REFER
option

DEFINED

Parameter
Parameter
descriptor

Returns
descriptor

reference a scalar member of the

Expression

When the based structure is allo-
cated, referenced, or freed, the
expression is evaluated and used as
the extent. The expression can

same based structure. The refer-
enced member must be declared
earlier in the structure. If the
extent references an earlier mem-
ber, the declaration cannot be used
to allocate the based structure,
and the referenced member must
contain the correct extent.

Expression

evaluation of the extent of a vari-
able must not require a reference
to the variable itself.

o

TABLE 4-3. SUMMARY OF ATTRIBUTES

Attribute: - Belongs to the following Can be in the completed And conflicts with
) category of attributes: attribute set for: the following attributes:
ALIGNED Alignment variable UNALIGNED
parameter deseriptor
returns descriptor
AREA(size) Noncomputational data type variable any other data type
parameter descriptor structure
returns desecriptor
AUTOMATIC or Storage type variable any other storage type
AUTO EXTERNAL
member
BASED Storage type variable any other storage type
EXTERNAL
member
60388100 A 4-27

TABLE 4-3. SUMMARY OF ATTRIBUTES (Cont'd)

Attribute: Belongs to the following Can be in the completed And conflicts with
) category of attributes: attribute set for: the following attributes:
=
BINARY or Arithmetic data type variable any data 'type other than
BIN parameter deseriptor arithmetic
returns descriptor DECMAL
literal constant structure
BIT(length) String data type variable any data type other than
' ' parameter descriptor string
returns deseriptor CHARACTER
literal constant structure
BUILTIN None identifier used as builtin eondition
function name constant
variable
EXTERNAL
CHARACTER(length) or String data type variable any data type other than
CHAR(length) parameter descriptor string
returns descriptor BIT
literal constant structure
condition None identifier used in BUILTIN
programmer-named
condition constant
variable
INTERNAL
constant None identifier used as named BUILTIN
constant condition
literal constant variable
CONTROLLED or Storage type variable any other storage type
CTL member
DECIMAL or Arithmetic data type variable any data type other than
DEC parameter deseriptor arithmetic
returns descriptor BINARY
literal constant structure
DEFINED or Storage type variable any other storage type
DEF EXTERNAL
member
INITIAL
VARYING
dimension Aggregation variable
label constant
parameter deseriptor
DIRECT File description file constant STREAM
' PRINT
 SEQUENTIAL
4-28 60388100 A

TABLE 4-3. SUMMARY OF ATTRIBUTES (Cont'd)

Belongs to the following

Can be in the completed

And conflicts with

Attribute: category of attributes: attribute set for: the following attributes:
ENTRY Noncomputational data type variable any data type other than
i RETURNS
named constant
parameter descriptor
structure
member
ENVIRONMENT or File description file constant None -
ENV
EXTERNAL or Scope variable BUILTIN
EXT named constant INTERNAL
identifier used in LABEL
programmer-named
condition format
member
AUTOMATIC
BASED
DEFINED
parameter
FILE Noneomputational data type variable any other data type
named constant
parameter descriptor
sfi'uctﬁré :
member
FIXED Arithmetic data type variable any data ‘type other than
parameter descriptor arithmetic
returns deseriptor FLOAT
literal constant structure
FLOAT Arithmetic data type variable any data type other than
parameter descriptor arithmetic
returns descriptor FIXED
literal constant precision (p,q)
structure
format Noncomputational data type named constant any other data type
INITIAL Initialization variable parameter
DEFINED
structure
ENTRY
FILE
format

60388100 B

LABEL with STATIC

4-29

TABLE 4-3. SUMMARY OF ATTRIBUTES (Cont'd)

Attributes Belongs to the following Can be in the completed : And confliets with
) category of attributes: attribute set for: the following attributes:
_ — — —
INPUT File description file constant OUTPUT
' PRINT
UPDATE
INTERNAL or Scope variable | condition
INT named constant EXTERNAL
builtin function
KEYED k File desci‘iption ~ file constant STREAM
| PRINT
- LABEL - .. Noncomputational data type variable any other data type
)) named constant STATIC with INITIAL
. . parameter descriptor strueture
LIKE - None C None any data type
INITIAL
member " | Aggregation variable EXTERNAL
parameter descriptor any storage type
nonvarying String data type variable any data type other than
parameter desecriptor string
returns descriptor VARYING
literal constant " structure
OFFSET) . Noncomputational data type | variable any other data type
parameter descriptor structure
returns deseriptor
OuTPUT File description - file constant INPUT
UPDATE
parameter Storage type variable any other storage type
member
INITIAL
PICTURE or Pictured data type variable any other data type
PIC parameter descriptor structure
returns deseriptor
POINTER or Noncomputational data type variable any other data type
PTR parameter descriptor structure
returns descriptor
PQSITION(start-pos) or None variable (for string overlay any storage type except
POS(start-pos) defining only) DEFINED
: any data type other
than string and pictured
EXTERNAL
ALIGNED
member
VARYING
INITIAL

4-30 60388100 A

TABLE 4-3. SUMMARY OF ATTRIBUTES (Cont'd)

Belongs to the following

Can be in the completed

And conflicts with

Attribute: category of attributes: attribute set for: the following attributes:
precision Arithmetic data type variable any data type other than
parameter deseriptor arithmetic
returns descriptor structure
literal constant
PRINT File desecription file constant INPUT
UPDATE
RECORD
SEQUENTIAL
DIRECT
KEYED
REAL Arithmetic data type variable any data type other than
parameter descriptor arithmetic
returns deseriptor structure
literal constant
RECORD File description file constant STREAM
PRINT
RETURNS Nonecomputational data type variable any data type other than
named constant ENTRY
parameter descriptor structure
member
SEQUENTIAL or File description file constant STREAM
SEQL PRINT
DIRECT
STATIC Storage type variable any other storage type
member
" LABEL with INITIAL
STREAM File description file constant RECORD
UPDATE
SEQUENTIAL
DIRECT
KEYED
structure Aggregation variable any data type
parameter descriptor INITIAL
UNALIGNED Alignment variable ALIGNED
parameter descriptor
returns descriptor
UPDATE File description file constant INPUT
OUTPUT
STREAM
PRINT
60388100 A 4-31

TABLE 4-3. SUMMARY OF ATTRIBUTES (Cont'd)

Belongs to the following

Can be in the completed

And conflicts with

L category of attributes: attribute set for: the following attributes:
variable None identifier used as variable BUILTIN
condition
constant

VARYING String data type variable any data type other than

parameter descriptor
returns deseriptor

string
nonvarying
DEFINED
structure

4-32

60388100 A

DECLARATIONS S5

“

Declarations of identifiers used in a PL/I program are
accumulated and completed during program compilation.
The completed declarations are used during program execu-
tion to control the use of variables, named constants, builtin
funetions, and programmer-named conditions. A specific
identifier can be used in different ways in different blocks.
Each identifier used in a PL/I program has at least one
declaration.

This section describes the ways in which identifiers are
declared, either by DECLARE statement or by usage of the
name. The operation of explicit, contextual, and implicit
declarations is described, as well as the application of
default attributes. Declaration of an identifier usually
involves declaring attributes for the identifier. Default
attributes are added as necessary to complete the deserip-
tion of the declared identifier.

Parameter descriptors and returns descriptors can also
contain attributes. Descriptors are completed with default
attributes in the same way as declarations are completed.

SCOPE OF DECLARATIONS

The scope of a declaration specifies the parts of the
program within which the declared identifier is known.
The secope of an identifier is determined by its position
within the source program and by the INTERNAL or
EXTERNAL attribute.

An identifier with the INTERNAL attribute is known in the
block that immediately contains the declaration of the
identifier. In addition, the identifier is known in all
contained blocks except those in which another declaration
for the same name is effective. When another declaration
of the same name exists in a contained block, the name is
redeclared in that block (and can be INTERNAL or
EXTERNAL). Each declaration of an identifier as
INTERNAL constitutes a separate declaration for the
identifier. If an identifier is declared as INTERNAL and
declared again in a contained block, two separate identifiers
are declared for use in different blocks.

An identifier with the EXTERNAL attribute is known in
contained blocks in the same way as an identifier declared
INTERNAL. In addition, an identifier declared EXTERNAL
is known outside the external procedure. All declarations of
an identifier as EXTERNAL are merged when the program is
loaded for execution. Therefore, all declarations of an
identifier as EXTERNAL must declare the identifier with
the same attributes. For the few minor exceptions to this
rule, see the EXTERNAL attribute in section 4, Attributes.
If an identifier is declared as EXTERNAL, the same
identifier can be declared in a contained block as
INTERNAL and with different attributes.

Declaration of an identifier as EXTERNAL sets up commun-

ication between external procedures. A name declared as
EXTERNAL is recognized as the same in all external

60388100 B

procedures that declare the name as EXTERNAL. Effec-
tively, external entry constants, external file constants, and
external programmer-named conditions can be known in
several external procedures. External variables can be
known in other external procedures without being passed as
arguments. An example of the use of INTERNAL and
EXTERNAL is shown in figure 5-1.

PR:

PROCEDURE OPTIONS(MAIN)$
DCL A INTERNAL FIXED BINARYS
/% DECLARED A IS KNOWN IN PR. ®/
ODCL 8 INTERNAL FIXED BINARYS
/% DECLARED B IS KNOWN IN PR AND ®/
/% KNOWN IN Bl AND B2. */
DCL C EXTERNAL CHAR(ES)3
/* DECLARED C IS KNOWN IN PR AND L4
/% MERGED wIThH DECLARED C IN B2. ®/
[
*
L]

B1:
BEGINS
DCL A EXTERNAL POINTERS
/% DECLARED A IS KNOWN IN Bl LY
s¢ AND KNOWN IN B2. *y
OCL C INTERNAL AREA3
/% DECLARED C IS KNOWN IN Bl. #/
.
.
B2:
BEGINS
DCL C EXTERNAL CHAR(1S5)3
/% DECLARED C IS KNOWN IN B2 #/
s® AND MERGED WITH C IN PR. #/
*
L]
L]
END 823
END 813
END PR3

Figure 5-1. Scope of Declared Identifiers

DECLARATION PROCESSING

The PL/I compiler accumulates declarations during compi-
lation. The order of declaration processing is as follows:

1. Explicit declarations are recognized and established for
statement prefixes, parameters in parameter lists, and
DECLARE statement declarations.

2. Contextual declarations are established for all identi-
fiers that are used in certain contexts but are not
declared explicitly.

3. Implicit declarations are established for all identifiers
that are used but are not declared explicitly or
contextually.

After all explicit, contextual, and implicit declarations have
been established, the compiler completes the declaration for
each identifier with default attributes.

If attributes are incorrectly supplied in an explicit
DECLARE statement declaration, the compiler produces
diagnostic messages during compilation. Default attributes
are selectively added to each declaration in such a manner
that no confliet results from completion of the declaration.

SYSIN ASSUMPTIONS

Before the processing of declarations begins, the compiler
makes the following additions to the source text of the
program:

® For each GET statement with no FILE option or

STRING option, the compiler supplies a FILE option of
the form

FILE(SYSIN)

SYSPRINT ASSUMPTIONS

Before the processing of declarations begins, the compiler
makes the following additions to the source text of the
program:

® For each PUT statement with no FILE option or
STRING option, the ecompiler supplies a FILE option of
the form '
FILE(SYSPRINT)

® For each COPY option with no file reference, the
compiler substitutes a COPY option of the form

COPY(SYSPRINT)

EXPLICIT DECLARATIONS

Explicit declarations are established for entry prefixes, label
prefixes, format prefixes, parameters in parameter lists, and
DECLARE statement declarations.

For each identifier, only one explicit declaration can be
made in any given block. The compiler issues diagnostics for
multiple explicit declarations of the same identifier, except
in the following cases:

® A member name can be identical to another identifier
declared in the same block, but any member name must
be unique within the structure that immediately con-
tains the member. The fully structure-qualified mem-
ber name must be unique within the block.

® An identifier can be explicitly declared by appearance
as a parameter in the parameter list of a PROCEDURE
or ENTRY statement and can also be explicitly declared
in a DECLARE statement. Any given variable can also
appear as a parameter at several entry points in the
same procedure. .

DECLARATION OF STATEMENT.
PREFIXES

Explicit declaration oceurs for identifiers contained in entry
prefixes, label prefixes, and format prefixes. The explicit
declarations by usage are as follows: :

® Each entry prefix on a PROCEDURE or ENTRY
statement is explicitly declared with the constant and
ENTRY attributes. In addition, a scope attribute is
supplied explieitly. If the PROCEDURE or ENTRY
statement belongs to an external procedure, the
EXTERNAL attribute is supplied and the declaration is
not contained in any block. If the procedure is an
internal procedure, the INTERNAL attribute is supplied
and the declaration is made in the block that immedi-
ately contains the procedure. If the PROCEDURE or
ENTRY statement has the RETURNS option, the
RETURNS attribute and the specified returns descriptor
are added to the declaration.

® Each label prefix is explicitly declared with the
constant, LABEL, and INTERNAL attributes. Any label
prefix attached to a BEGIN statement is declared in the
block that immediately contains the BEGIN block. Each
label prefix of a statement other than BEGIN is
declared in the block in which the statement occurs.

® Each format prefix on a FORMAT statement is explic-
itly declared with the constant, format, and INTERNAL
attributes. Each format prefix is declared in the block
in which the FORMAT statement oceurs.

Default attributes are added after all explicit, contextual,
and implicit declarations have been processed.

DECLARATION OF PARAMETERS

Explicit declaration occurs for identifiers contained in the
parameter list of a PROCEDURE or ENTRY statement. The
declaration applies the parameter attribute to each identi-
fier in the parameter list. Other attributes for each
identifier can be supplied by an explicit DECLARE state-
ment declaration of the identifier in the same block.
Default attributes are added after all explicit, contextual,
and implicit declarations have been processed.

DECLARE STATEMENT DECLARATIONS

Explicit declarations for identifiers can be made with the
DECLARE statement. Each declaration made by DECLARE
statement is established in the block that immediately
contains the DECLARE statement.

A declaration is established for each identifier in the
DECLARE statement. Each declaration has an attribute set
consisting of the explicitly declared attributes. Default
attributes are added after all explicit, contextual, and
implicit declarations have been processed.

A DECLARE statement can create declarations for more
than one identifier. When a factored declaration is used to
apply the same attribute to several identifiers, the attribute
is applied to each identifier. :

60388100 B

If an identifier is declared with the dimension attribute, a
declaration is established for an array of identical data
items. The dimensioned identifier can be a structure, in
which case the identical elements of the array are struc-
tures and the members inherit the dimensions of the
structure. If the members of the structure are also
dimensioned, the members are established with the declared
dimensions and with the inherited dimensions, as described
under Aggregates in section 3, Data Elements.

For a declared structure, a declaration is established for the
structure and for each member. The completion of
structure declarations is performed in the following steps:

1. The expansion of LIKE attributes is performed if the
structure is declared with the LIKE attribute, as
described under LIKE attribute in section 4, Attributes.

2. The level numbers declared for members are modified
as necessary so that the level number of each member
is one greater than the level number of the immediately
containing strueture, as deseribed under Structure and
member attributes in section 4.

3. Alignment attributes are propagated through the struc-
ture, as described under ALIGNED attribute in
section 4.

If an identifier is declared as BUILTIN in a DECLARE
statement, the declared identifier must match the name of a
supplied builtin function. Explicit declaration of an
identifier as BUILTIN is usually not necessary, as described
under BUILTIN attribute in section 4.

CONTEXTUAL DECLARATIONS

The appearance of an identifier in a specific context is often
sufficient to establish the intended use of the identifier. A
contextual declaration is not made if an explicit declaration
exists for the identifier in the same block or in a containing
block. If no explicit declaration exists, a contextual
declaration with certain attributes is established in the
following cases:

® AREA and variable attributes are supplied for an
identifier referenced as an area in an OFFSET attribute
or the IN option of an ALLOCATE or FREE statement.

e BUILTIN attribute is supplied for an identifier that
matches the name of a builtin funetion if the identifier
is referenced and is followed by a parenthesized
argument list.

® Condition attribute is supplied for an identifier refer-
enced in a programmer-named condition in an ON,
SIGNAL, or REVERT statement.

e FILE and constant attributes are supplied for an
identifier referenced as a file in a FILE or COPY option
of an I/O statement and for an identifier referenced as
a file in an I/O condition name in an ON, SIGNAL, or
REVERT statement.

® POINTER and variable attributes are supplied for an
identifier referenced as a locator in the SET option of
an ALLOCATE, READ, or LOCATE statement, for an
identifier used as a locator in a locator-qualified
reference, and for an identifier referenced as a locator
in a BASED attribute.

When a contextual declaration is processed, the declaration
is established in the outermost block of the external
procedure. The contextual declaration therefore is known in
all blocks except any internal blocks in which an explicit
declaration of the same identifier is effective. The scope of
the identifier can default to INTERNAL or EXTERNAL.
Default attributes are added after all explicit, contextual,
and implicit declarations are processed.

60388100 A

IMPLICIT DECLARATIONS

An implicit declaration is established for each identifier not
declared explicitly or contextually. An implicit declaration
is a declaration with no attributes. Each implicit declara-
tion is established in the outermost block of the external
procedure. An implicit declaration is not made if an explicit
or contextual declaration exists for the identifier in the
bloek or in a containing block. Any implicit declaration
operates as if the statement:

DECLARE identifier;

had been written in the external procedure. Default

attributes are added after all explicit, contextual, and

implicit declarations are processed. An implicit declaration

sets up arithmetic defaults when the default attributes are
supplied.

DEFAULT ATTRIBUTES

Default attributes are added as necessary to each explieit,
contextual, and implicit declaration. The compiler adds
default attributes to complete the attribute set for each
declaration.

After defaults have been applied, the attribute set for each
identifier is a complete and consistent set of attributes,
with one exception. The set of file deseription attributes
for each file constant is completed at open time for the file.
The rules for default file description attributes are
deseribed in section 8, Input/Output.

The application of default attributes occurs in a specific
order. Each step of the sequence can add attributes to the
attribute set. In each step, the decision to add default
attributes is based on the existing attributes in the attribute
set for the identifier. The steps in default attribute
processing are as follows:

1. ENTRY: If RETURNS is present and if ENTRY is not
present, ENTRY is added. Only the keyword ENTRY is
added; parameter descriptors for ENTRY are not
created.

2. FILE: If one or more of the file description attributes
STREAM, RECORD, INPUT, OUTPUT, UPDATE,
SEQUENTIAL, DIRECT, KEYED, or PRINT is present
and if FILE is not present, FILE is added. Presence of
the ENVIRONMENT file description attribute by itself
does not add FILE.

3. Arithmetie: Arithmetic defaults are added for each
identifier or descriptor not already known to be
nonarithmetie. Arithmetie defaults are not added if the
ENTRY, LABEL, FILE, format, AREA, POINTER,
OFFSET, BIT, CHARACTER, PICTURE, structure,
BUILTIN, condition, or constant attribute is present.
Arithmetic defaults are either the standard defaults or
the INRULE defaults.

The standard (ANSI standard) arithmetic defaults are
added in the following steps:
If no base is present, BINARY is added.

If no scale is present, FIXED is added. Precision of
the form (p,q) also establishes the FIXED attribute.

If no mode is present, REAL is added.

Samples of default arithmetic attributes for ANSI
standard and for INRULE are provided in table 5-1.

Precision: If the identifier is arithmetic, the default
precision is supplied in the following way:

For FIXED BINARY, if only p is present, q is
supplied as 0. If both are unspecified, precision
is (15,0).

For FIXED DECIMAL, if only p is present, q is
supplied as 0. If both are unspecified, precision
is (5,0).

For FLOAT BINARY, precision is (48).
For FLOAT DECIMAL, precision is (14).

Length, size, or position: If CHARACTER, BIT, AREA,
or POSITION is present without a parenthesized length,
size, or position, the default is:

CHARACTER(1)

BIT(1)

AREA(150)

POSITION(1)

Nonvarying: If CHARACTER or BIT is present and
VARYING is not present, then nonvarying is added.

Variable or constant: If variable is not present, con-
stant is not present, BUILTIN is not present, condition
is not present, and if the declared item is not a
descriptor, then variable or constant is added according
to the following rules:

Constant is added if ENTRY or FILE is present and
parameter is not present.,

Variable is added in all other cases.

8. INTERNAL or EXTERNAL: If INTERNAL is not
present, EXTERNAL is not present, and the declared
item is not a descriptor, then a scope attribute is added
according to the following rules:

EXTERNAL is added if condition is present.

EXTERNAL is added if FILE and constant are
present.

EXTERNAL is added if ENTRY and constant are
present.

INTERNAL is added in all other cases.

9. Storage type: If variable is present, member is not
present, and no storage type (AUTOMATIC, BASED,
CONTROLLED, STATIC, DEFINED or parameter) is
present, then AUTOMATIC or STATIC is added accord-
ing to the following rules:

If EXTERNAL is present, STATIC is added.
If INTERNAL is present, AUTOMATIC is added.

10. Alignment: If ALIGNED is not present, UNALIGNED is
not present, and the declared item is a variable or a
deseriptor, an alignment attribute is added according to
the following rules:

If CHARACTER, BIT, or PICTURE is present,
UNALIGNED is added.

ALIGNED is added in all other cases.

SUMMARY OF DEFAULTS

A summary of default attributes is provided in table 5-2.
The full list of attributes is included in the summary, even
though some attributes are not involved in default proc-
essing (for example, dimension and ENVIRONMENT). By
convention, attributes that can be recognized by keyword
are shown in upper case.

The default file deseription attributes are covered in this
summary. File description defaults are applied when the file
constant is opened and removed when the file is closed, as
deseribed in section 8, Input/Output.

TABLE 5-1. DEFAULTS FOR PARTIALLY DECLARED ARITHMETIC ITEMS

Arithmetic Attribute Standard Arithmetic
Declaredt Default
-- REAL FIXED BINARY (15,0)
REAL REAL FIXED BINARY (15,0)
FIXED REAL FIXED BINARY (15,0)
FLOAT REAL FLOAT BINARY (48)
BINARY REAL FIXED BINARY (15,0)
DECIMAL REAL FIXED DECIMAL (5,0)
REAL (p) REAL FIXED BINARY (p,0)
REAL (p,q) REAL FIXED BINARY (p,q)
+

More complete combinations are not shown,

5-4

60388100 A

TABLE 5-2. SUMMARY OF DEFAULT ATTRIBUTES FOR DECLARATIONS

An identifier with
this attribute:

Will necessarily acquire
these attributes:

And will acquire these
attributes unless contradicted:

ALIGNED
AREA

with or without (size)
AUTOMATIC or AUTO
BASED

BINARY or BIN

BIT
with or without (length)

BUILTIN
CHARACTER or CHAR
with or without (length)

condition

constant
CONTROLLED or CTL
DECIMAL or DEC

DEFINED or DEF

dimension
DIRECT

ENTRY

ENVIRONMENT or ENV
EXTERNAL or EXT
FILE

FIXED
FLOAT
format

INITIAL
INPUT

INTERNAL or INT
KEYED

60388100 A

variable
variable

variable
INTERNAL

variable
INTERNAL

variable

INTERNAL
variable

None
variable

variable
INTERNAL

None

FILE

constant

RECORD (open time)
KEYED (open time)

variable (if parameter)
constant (if not parameter)

None
None

variable (if parameter)
constant (if not parameter)

variable

variable

INTERNAL
None

FILE
constant

None

FILE
constant
RECORD (open time)

None

ALIGNED t
size = 150 words t

None

None

scale FIXED
precision t

nonvarying t
UNALIGNED t
length = 1 bitt

None

nonvarying t
UNALIGNED t
length = 1 charactert

None
None
INTERNAL

scale FIXED
precisiont

None

None
INPUT (open time)

ALIGNED (if parameter) t+
EXTERNAL (if constant)

None
STATIC (if variable)

ALIGNED (if parameter)tt
EXTERNAL (if constant)
STREAM (open time)
INPUT (open time)

base BINAR
precisiont
base BINARY |
precisiont

None

None
STREAM (open time)

AUTOMATIC (if ' variable)

SEQUENTIAL (open time)
INPUT (open time)

TABLE 5-2. SUMMARY OF DEFAULT ATTRIBUTES FOR DECLARATIONS (Cont'd)

An identifier with
this attribute:

LABEL

LIKE
member
nonvarying
OFFSET
OUTPUT

parameter

PICTURE or PIC
with 'picture-specification’

POINTER or PTR

POSITION or POS
with or without (start-pos)

precision

PRINT

REAL

RECORD

RETURNS
SEQUENTIAL or SEQL
STATIC

STREAM

structure
UNALIGNED
UPDATE

variable

VARYING

these attributes:

INTERNAL (if constant)

None
None
None
variable

FILE
constant

variable
INTERNAL

variable

variable
None

REALt

FILE

constant

STREAM (open time)
OUTPUT (open time)

variable

FILE
constant

ENTRY t+

FILE
constant
RECORD (open time)

variable

FILE
constant

variable

variable

FILE
constant
RECORD (open time)

None

None

Will necessarily acquire

T e e e e

And will acquire these
attributes unless contradicted:

variable
ALIGNED (if variable) t1
INTERNAL (if variable)

None

None

None

ALIGNED t

STREAM (open time)

None

INTERNAL
AUTOMATIC
UNALIGNED ¥

ALIGNED t
start-pos = 1

(15,0) for FIXED BINARY
(48) for FLOAT BINARY

(5,0) for FIXED DECIMAL
(14) for FLOAT DECIMAL

None

precisiont

SEQUENTIAL (open time)
INPUT (open time)

None
INPUT (open time)

INTERNAL
INPUT (open time)

INTERNAL
AUTOMATIC

None
None

INTERNAL
AUTOMATIC

None

TAlso effective for any parameter descriptor or returns descriptor.

L Also effective for any parameter deseriptor.

60388100 A

REFERENCES 6

e

A reference is the appearance of an identifier in any context
other than one that represents an explicit declaration of the
identifier. This section summarizes the various types of
references and describes how they are interpreted during
program execution. The descriptions of statements and
their components given in section 12 indicate precisely what
must be represented by references.

DECLARATION APPLICABLE
TO A REFERENCE

The identifier in a reference has an applicable declaration
that is either in the same block as the reference or in a
containing block. A reference to an identifier that is
declared in the same block as the reference is called a local
reference. A reference to an identifier that is declared in a
containing block is called a nonlocal reference. Examples of
local and nonlocal references are shown in figure 6-1.

Ps
PROCS ;
DCL A FIXED DECIMALS
Ls
A=53 7#LOCAL REFERENCE#/
B:
BEGINS
A=73 /#NONLOCAL REFERENCE®/
.
€OTO B3 /#NONLOCAL REFERENCE®#/
*
€0TO L3 /#NONLOCAL REFERENCE®#/
END B3
L]
GOTC L3 /#LOCAL REFERENCE®/
L]
.
60TC B3 /#LOCAL REFERENCE®/
ENC P3

CALC:
PROCS
DCL Xx FIXEC3

L4
CALL P(X)3

P:
PROC (A) §
CCL (AsBsP) FIXEDS

L]
B = A ¢ P # X3
END P3
ENC CALC3H
The declaration applicable to both references to X is the one
established in block CALC. Entry constant P is declared in
block CALC, and the arithmetic variable P is declared in the
inner block; consequently, the reference to P in the assign-
ment statement refers to the arithmetic variable and not to
the entry name.

Figure 6-1. Local/Nonlocal References

When a reference is encountered during program execution,
the first block examined for the declaration of the identifier
is the block containing the reference. If the declaration is
not found in that block, the immediate containing block is

examined. Each containing block is examined until the .

declaration is found. The first declaration found by this
process is the applicable declaration. References and
applicable declarations are illustrated in figure 6-2.

60388100 A

Figure 6-2. References and Applicable Declarations

GENERATION OR VALUE ACCESSED
BY A REFERENCE

During the execution of a PL/I program, an identifier can be
associated with several generations or values at the same
time. This can oceur under the following eircumstances:

e Multiple generations are allocated for a controlled
variable.

e Multiple on-unit activations are contained in the
dynamic stack. This results in multiple values being
associated with some condition builtin funetions.

e Multiple activations of the same block are contained in
the dynamic stack. This results in multiple generations
being associated with each automatic variable, defined
variable, and parameter variable deeclared in the block;
and multiple values being associated with each label
constant, entry constant, and format constant declared
in the block.

When the program evaluates a reference to an identifier
associated with multiple generations or values, the system
must determine which generation or value to use. The
appropriate generation or value is selected as follows:

@ A reference to a controlled variable always accesses
the top generation in the stack of generations for the
variable. This is the most recently allocated generation
that has not been freed.

6-1

e A reference to a condition builtin function always
accesses the most recently established value still
available” for that builtin function. If the most recent
on-unit activation in the dynamic stack does not have a
value for the builtin function, a value is obtained from a
dynamic predecessor of that on-unit activation.

® A local reference to a variable or named constant
accesses the value associated with the current bloeck
activation when multiple activations of the same block
exist in the dynamic stack; a nonlocal reference
accesses the value associated with an activation that is
part of the environment of the current block activation.

As described in section 2, Dynamic Program Structure, the
environment of an activation of an internal block is a set of
block activations; this set consists of precisely one activa-
tion of each containing block. The environment is used to
evaluate nonlocal references of the following types:

o Automatic variable — The appropriate generation is
selected.

® Defined variable — The appropriate generation of the
defined variable is selected. The host reference named
in the DEFINED attribute is. evaluated according to its
own storage type, which may or may not involve the
environment.

® Parameter variable — The appropriate generation of
the parameter is selected. The generation associated
with the parameter was established when the procedure
was invoked.

® Label constant — The block activation that contains
the label value is selected. The referenced block
activation is established when a label constant is
referenced by a GOTO statement, assigned to a label
variable, or passed as an argument; that is, the label
value includes both the referenced statement and the
selected block activation. Nonlocal reference to a label
constant is illustrated in figure 6-3.

CALL P(1)3
P
PkOC(A) RECURSIVES
DECLARE A FIXEDS$
DECLARE LV STATIC LABELS
IF A=S THEN ON COND(BLK) LV=SLCS
IF A=7 THEN SIGNAL COND(BLK)3$
IF A+12 THEN CALL P(A+1)3
GOTO Lv3$
LC:
PUT SKIP EDIT(tA=+5A) (AsF(3))3
STOP3
END P3

The environment of the on-unit is established when the
ON statement is executed; therefore, the environment of
the on-unit is the activation of P in which A has the
value 5. (The dynamic predecessor of the on-unit acti-
vation is the activation of P in which A has the value 7.)
This example prints A=5; the GOTO causes the termina-
tion of seven activations of P.

Figure 6-3. Nonlocal Reference to a Label Constant

® Entry constant — The environment associated with the
entry constant is selected. This environment is estab-
lished when an entry constant is referenced by a CALL
statement or function reference, or when it is passed as
an argument in a procedure invocation; it is then used
by activations resulting from invocations of that entry.

DATA REFERENCE

A data reference is used for one of three purposes. It can be
a value reference, a target reference, or a storage control
reference. A value reference is written for the purpose of
obtaining a value. A target reference is written for the
purpose of assigning a value. A storage control reference is
written for the purpose of allocating or freeing storage.

A data reference can be written in one of four forms:
simple, subscripted, structure-qualified, or locator-qualified.
Each form is described in the following paragraphs.

SIMPLE REFERENCE

A simple reference is a reference to a variable or a named
constant. Simple reference syntax, which consists only of an
identifier, is shown in figure 6-4.

identifier

Figure 6-4. Simple Reference Syntax v

A simple reference to an array or structure is a reference to
the entire array or structure.

- SUBSCRIPTED REFERENCE

A subscripted reference is a reference to one or more
elements of an array. Subscripted reference syntax is shown
in figure 6-5.

identifier(subscript , , ,)

where subscript is an
expression or an asterisk (*)

Figure 6-5. Subscripted Reference Syntax

The number of subseripts must equal the number of
dimensions declared for the array. The number of dimen-
sions ineludes inherited dimensions when the array is a
member of an array of structures.

A subseript can be either an expression or an asterisk. A
subseripted reference with no asterisk subseripts is a scalar
reference; it references a single element. A subscripted
reference with one or more asterisk subseripts is an array
reference; it references a cross section of the array. A
cross section is an array of lower dimensionality. For
example, it is possible to reference a one- or two-
dimensional cross section of a three-dimensional array. A
cross section is formed by specifying one or more subscripts
uniquely (as expressions) and utilizing all elements that have
those subscripts. The dimensionality of a cross section is
the number of asterisk subseripts. Other subsets of an array
(for example, a diagonal, or a 3x3 piece of a 5x5 array) can
be referenced as described under the DEFINED attribute in
section 4, Attributes.

60388100 B

A subsecript that is an expression is evaluated and converted
to a fixed binary integer when the reference is encountered
during program execution. If the value is less than the lower
bound or greater than the upper bound of the dimension, the
SUBSCRIPTRANGE condition is raised.

Sample subscripted references are shown in figure 6-6.

Array A is declared as A(2,3,4)

A(1,2,2) references 1 element
A(1,2,%) references 4 elements
A(1,*,3) references 3 elements

A(*,1,1+J) references 2 elements

A(1-1,*%,*) references 12 elements

Figure 6-6. Sample Subscripted References

STRUCTURE-QUALIFIED REFERENCE

A structure-qualified reference is one form of reference to
a member of a structure. Structure-qualified reference
syntax is shown in figure 6-7.

{structure—qualifier._}. .. member-reference

where each structure-qualifier and member-reference is
a simple reference or a subscripted reference

Figure 6-7. Structure-Qualified Reference Syntax

A strueture-qualified reference with one structure-qualifier
identifies a structure and a contained member. For
example:

A.B Structure A contains member B.

A structure-qualified reference with more than one
structure-qualifier identifies a structure, contained sub-
structures, and the contained member. For example:

A.B.C Structure A contains substructure B, which
contains member C.

A partially qualified reference identifies a structure and a
member of a contained substructure. For example:

A.C Structure A contains substructure B, which
contains member C. This is a partially
qualified reference because substructure B
is not specified.

A reference to an identifier is said to be fully qualified if it
is within the scope of a declaration for which one of the
following is true:

® The declared identifier is a structure member, and the
reference includes a structure-qualifier for each of the
containing structures.

® The declared identifier is not a structure member.

60388100 B

A reference to a structure member need not be fully
qualified; some or all of the structure-qualifiers ecan be
omitted and this is termed a partially qualified reference.
Partially qualified references can be used whenever no
ambiguity results. Fully qualified references eliminate any
possibility of ambiguity.

A reference is resolved as follows:

1. If the reference is a fully qualified reference to an
identifier, it specifies that identifier.

2. If the preceding case does not apply and if the
reference is a partially qualified reference to exactly
one identifier, it specifies that identifier.

3. If neither of the preceding cases applies, the reference
is illegal or ambiguous and cannot be used.

If the member-reference is an array or inherits dimensions
from a containing structure or substructure, the total
number of subscripts in the structure-qualified reference
must equal the total number of dimensions for the member.
The subseripts must appear in the same order as the
declared dimensions for the structure and its members, but
can appear following any identifier in the reference.

Sample structure-qualified references are shown in
figure 6-8.

DCL 1 A(S)y 2 B(2+2)9 3 C3

A(I)QB(E’J)QC
A(ls294)eB.C
AdBoC(IsZed)
A(I) es(2).C(J)

Fully qualified reference
to C; references are
equivalent.

Alb9ley)eC
A(4) C(IeJ)
Bl4slsu)eC
Bl4y1)eC(J)

Equivalent partially qual-
ified references to C.

P has three declarations
DCL P(2,3) BIT(2)} anthastwo.Any'ref-
DCL 1 A 2 Py 3 Q FIXECS erencetoQorP.Qis

. o 3 ambiguous because it is
OCL 1 Bs 2 Py 3 G POINTER} not sufficiently qualified

to identify one structure
member uniquely. A ref-
erence to P, with or with-
out subscripts, is consid-
ered an unambiguous
reference to the array,
while A.P or B.P would
identify a structure mem-
ber unambiguously. The
presence or absence of
arguments or subscripts
in a reference is not sig-
nificant for purposes of
resolving ambiguity of
reference,

Figure 6-8. Sample Structure-Qualified References

LOCATOR-QUALIFIED REFERENCE

A locator-qualified reference is one form of reference to a
based variable. Locator-qualified reference syntax is shown
in figure 6-9.

6-3

“locator-reference -> based-reference

where locator-reference is a simple reference, a subscripted
reference, a structure-qualified reference, or a locator-
qualified reference; and based-reference is a simple reference,
a subscripted reference, or a structure—qualified reference.

Note: The term locator qualifier is used to refer to
the locator-reference and the symbols - >.

TABLE 6-1. PROCEDURE INVOCATION

Figure 6-9. Locator-Qualified Reference Syntax

The locator-reference must be a variable or function that
has a locator value; the locator value, which ean be offset or
pointer, addresses a generation of storage. The based-
reference must be a based variable or a member of a based
structure.

A locator-qualified reference is required only when a locator
value cannot be supplied implicitly. A locator value is
supplied implicitly when the locator is specified by the
BASED attribute of the variable. An explicit locator
qualifier overrides any implieitly supplied locator values.

A locator-qualified reference is not permitted for the
following:

® A based variable named for allocation in an ALLOCATE
or LOCATE statement

® An identifier named in the REFER option of an extent
expression

Examples of locator-qualified references are shown in
figure 6-10. ' ‘

Method of Entry Point Normal
Invocation Characteristics Termination
CALL Parameters are RETURN statement
statement | optional; RETURNS | without return-

is not allowed. value or END

statement
Function Parameters are RETURN (return-
reference | optional; RETURNS | value)
- is required.
Operating | OPTIONS(MAIN) re- | RETURN statement
system quired; parameters without return-
control and RETURNS are value or END
statement | not allowed. statement.
FUNCTION REFERENCE

A function reference is a reference to an entry point.
Function reference syntax is shown in figure 6-11.

simple-reference ([argument,,,])

P->B

P(IsJd)=->B

P=>B(lsX)

Illustrates the use of a locator—

qualified reference as a locator
qualifier.

AJP=>Q~>B

Figure 6-10. Sample Locator-Qualified References

PROCEDURE REFERENCE

A procedure is invoked at an entry point by execution of a
CALL statement or by evaluation of a function reference.
When the procedure is invoked, the procedure block is
activated and control is transferred to the statement
immediately following the PROCEDURE or ENTRY
statement. If the procedure activation terminates normally,
control returns to the point of invoeation.

With the exception of the primary entry point of the main
procedure, each entry point can have its own set of
parameters. The parameters are denoted by a parameter
list included in the PROCEDURE or ENTRY statement.
Each parameter is a variable that is declared in the
procedure block. External entry points must be declared by
DECLARE statement in the calling bloek; attributes for all
external identifiers must be identical in all external pro-
cedures that declare the identifiers. Rules relating to
procedure invocation are summarized in table 6-1.

Figure 6-11. Function Reference Syntax

In a function reference, the simple-reference must identify
an item declared with the ENTRY and RETURNS attributes.
The number of arguments must equal the number of
parameters declared for the invoked entry point. If the
entry point has no parameters, the reference must have a
null argument list of the form ().

Any reference to a function entry name followed by a
parenthesized argument list, including a null argument list,
is a function reference; that is, a reference to the value
returned when the function is invoked. Any reference to a
function entry name without a following parenthesized
argument list is a reference to an entry value; it does not
cause the procedure to be invoked.

Examples of function references are shown in figure 6-12.

DCL X AREA3
DCL A ENTRY () RETURNS(AREA)3
DCL C ENTRY(FIXED+BIT(2)) RETURNS(FLOAT)

X = A3

/%FUNCTICN REFERENCE WITH AREA VALUE®#/
Z = C(I+19210+E)3

/7#FUNCTION REFERENCE WITH FLOAT VALUE#/

Figure 6-12. Sample Function References

PARAMETER AND RETURNS DESCRIPTORS
An entry point denoted by a PROCEDURE or ENTRY

statement is declared explicitly by usage as a named
constant with the ENTRY attribute, and with the RETURNS

60388100 A

attribute when one is included in the statement. If a
parameter list is specified for the entry point, the entry
constant declaration is completed with parameter deserip-
tors taken from the declarations of each of the parameter
variables.

Parameter descriptors enable the compiler to properly
evaluate arguments of function references and CALL state-
ments. A returns descriptor specifies the attributes of the
value that is to be returned to the point of invocation.

ARGUMENTS AND PARAMETERS

An argument is an expression that is specified in a funection
reference or CALL statement. A parameter is a variable
that is included in a parameter list of a PROCEDURE or
ENTRY statement.

When an entry point is invoked by a function reference or
CALL statement that has an argument list, each argument is
passed to the corresponding parameter declared for the
invoked entry point. The first argument is passed to the
first parameter, the second argument to the second param-
eter, and so forth.

Arguments and parameters must meet the following
requirements:

® The number of arguments must equal the number of
parameters.

® Data type of an argument must be the same as or one
that can be converted to the data type of the
corresponding parameter.

® Builtin function names (builtin function results can be
passed)

® Programmer-named conditions

Argument Passing by Reference
and by Value

Each argument is passed either by reference or by value.
The differences between the two types are as follows:

Argument passed by reference

The parameter generation is the generation of the
argument variable, and therefore describes the
same storage. If a value is assigned to the
parameter, the value of the original argument is
changed.

Argument passed by value

A dummy argument is allocated and a generation
created for it; the parameter generation is the
generation of the dummy argument. If a value is
assigned to the parameter, the value of the original
argument is not changed.

60388100 A

An argument is passed by reference if it satisfies all of the
following rules:

o The argument must be a variable reference. The
variable reference can be subscripted, structure quali-
fied, or locator qualified; it cannot be an expression
containing operators.

e Data conversion must not be required, Each scalar item
of the argument must have the sdme data type and
alignment as the corresponding scalar item of the
parameter. The following need not match: scope type,
storage type, file description attributes, INITIAL attri-
bute, OFFSET attribute area reference, ENTRY param- °
eter deseriptors, returns deseriptor, or member names
of structures.

® For each extent expression (that is, nonasterisk extent)
in the declaration of the parameter, the argument must
have a corresponding extent expression. The extent

must be equal to
eter; and must not

contain a REFER option.

e If the argument is an aggregate, the aggregate argu-
ment and parameter must have identical aggregate
type, data type, and alignment.

® The argument must not be ¢ontained in an iSUB-defined
array.

An argument that cannot be passed by reference is passed by
value. Enclosing a scalar argument in parentheses forces
the argument to be passed by value,

Examples of argument passmg by reference and by value are
shown in figure 6-13.

Conversion of Arguments

If the data types or alignments of an argument and the
corresponding parameter do not match, the argument is
converted to the data type and alignment of the parameter.
Conversion is performed before the procedure is invoked,
and the converted value is passed as a dummy argument. It
is an error if the argument cannot be converted

The conversion rules used for passing dummy arguments are

the same as those used for assignment. Conversions are

deseribed in section 7, Data Manipulation.

If an argument is a pointer variable and the corresponding
parameter is an offset variable, the area of the offset must
be known in the calling block and the generatlon identified
must be in that area.

Storage Associated with a Parameter

An argument passed by reference shares its generation of
storage with the parameter. The two variables share the
generation for the duration of the procedure activation.
Either variable can be used to access and assign values to
the generation.

An argument passed by value has a dummy argument created
by the compiler. The dummy argument has a unique
generation of storage allocated for its value or converted
value at compilation time. That generation is associated
with the parameter for the duration of the procedure

DCL(WeXsY) FIXEC BINS
DCL F ENTRY(FIXEC BINoFIXED BIN) RETURNS(FIXELC BIN)3

Y=F (XeW)3 /%PASS. BY REFERENCE#/
Y=F (3+61)3 /#PASS BY VALUE®/
Y=F (5¢X)3 /#F IRST ARGUMENT IS PASSED BY VALUEs/

/#SECONC ARGUMENT IS PASSED BY REFERENCEx/

P: PROC(X)3
DCL LVAR LABEL?$

L: RETURNS
DCL FL ENTRY(LABEL)S
CALL FL(X)$ /#PASS BY REFERENCE®/
CALL FL(Y)3 /#PASS BY VALUEs®/

ENC P3

/%L ABEL VARIABLE#®/
/%L ABEL CONSTANT®#/

DECLARE (XsY) CHAR(10)3

DECLARE (F+G) ENTRY(CHAR(%)) RETURNS(CRAR(10))3

Y=F (X)3} /74PASS BY REFERENCE#/

Y=F (G(X))3 /#PASS G(X) 10 F BY VALUE®/

Y=F (COPY (X92))}3% /7°PASS COPY(Xe2) TO F BY VALUE®/

DECLARE (XeYs2) FIXEC BINS

DECLAKE F ENTRY(FIXED BIN) RETURNS(FIXEC BIN)3
Z2=F (X) 3 /%FASS BY REFERENCE®/

Z=F (X+Y)3 /*PASS BY VALUE#®/

2=F (+X) 3 /7%*PASS- BY VALUE#*/

2=F (=X} 3 /%PASS BY VALUE®/

Z=F ((X))3 /%PASS BY VALUE®/

DECLARE X (8) CHAR(10) 3
DECLARE F ENTRY (CHAR(10)) RETURNS(ChAR(10))3
Z=F(X(3)})3 /7%PASS BY REFERENCE#/

Z=F (X(A=2)) 3 /72PASS BY REFERENCE#®/

FIXEC EIN BASEDS

DCL B(S)

oCL P PCINTERS

OCL @ ENTRY(FIXED BIN) RETURNS (POINTER) S
DCL F ENTRY(FIXED BIN) RETURNS(FIXEC BIN)3

/%PASS BY REFERENCE®/
/#PASS B(Ae1) TO F BY REFERENCE®/

2=F (P=>B(3)) 3
2=F (Q(2)=>B(As1)) 3

DCL A(2+394) FIXEC BINS

DCL D(2,4) FIXED EIN DEFINED(A(*919%))3
DCL F ENTRY((®o®) FIXED BIN)S
CALL F(A(#92,#))3 /#PASS BY REFERENCE®/
CALL F(D)3 /%PASS BY REFERENCE®/

DECLARE A(8) CHAR(20)3

DECLARE E(8) CRAR(20) VARYINGS
DECLARE C CHAR(20) 8

DECLARE P ENTRY(ChAR(®)) 3

CALL P(A(1))3 /*PASS BY REFERENCE®/
CALL P(E(1))3 /#PASS BY VALUE®/

DCL C ChAR(10)3

DCL P ENTRY (ChAR(20))3

DCL G ENTRY(CFAR(#))3

CALL P(C)3 /®PASS BY VALUE®/
CALL Q(C)$ /%FASS BY REFERENCE®/

A literal constant or named
constant is passed by value.

A function reference or a builtin
function reference is passed by
value: the function or builtin func-
tion is invoked, and the value re-
turned by the function or builtin
function is passed as a dummy
argument.

An expression that is not simply
a variable reference is passed by
value. Note that a variable
reference can contain expressions
in subscripts or locator qualifiers;
this does not force pass-by-value.

An array or array cross section
can be passed by reference if it
satisfies the rules for pass-by-
reference.

If data conversion is required,
the argument is passed by
value.

If the parameter has an AREA,
BIT, CHARACTER, or dimension
attribute, and the corresponding
argument has a different extent,
the argument is passed by value.
(If the parameter has an asterisk
extent, the argument can be
passed by reference, regardless of
its extent, unless pass-by-value is
forced for some other reason.)

Figure 6-13. Argument Passing by Reference and by Value

60388100 A

activation; it is freed automatically when control returns to
the point of invocation. The original argument is not
affected by any changes made to the dummy argument;
conversely, the dummy argument is not affected by any
changes made to the value of the original argument,
including the freeing of the generation of the original
argument. .

A parameter can never be explicitly allocated. A generation
can be associated with a parameter only when arguments are
passed to it during procedure invocations. Parameters other
than those named for the entry point used for the current
invocation have undefined values and should not be accessed
during that invocation; they are effectively in an unallo-
cated state.

Extents of a Parameter

The extents of a parameter generation are those of the
argument or converted argument. When an asterisk extent
is used in a declaration of a parameter, the size, length, or
bounds of the parameter are replaced by the corresponding
size, length, or bounds of the argument or converted
argument.

In the following example, the length of the string repre-
sented by P is the length of the argument associated
with P each time the procedure is invoked.

I: PROC (P);
DCL P CHAR(*); /* PARAMETER */

.
.
.

CALLING FORTRAN SUBPROGRAMS

PL/1 programs can reference FORTRAN funetions and
subroutines.

There are two methods of passing parameters between
PL/1 and FORTRAN routines: using common storage
areas, and using argument lists.

Using common storage areas is the only method of ealling
FORTRAN routines directly from PL/I. This method
involves creating a PL/I structure that can be accessed in
the FORTRAN routine as a named common block.

The other method of passing parameters involves using an
argument list. A PL/I program cannot directly call a
FORTRAN subprogram if an argument list is used to pass
parameters. Instead, the user must write a COMPASS
interface routine to modify the argument list generated
by PL/I.

Not all types of PL/l variables can be passed to
FORTRAN subprograms. PL/I provides more data types
than FORTRAN; therefore, only those data types that are
allowed by FORTRAN can be passed as parameters.

Furthermore, arrays are stored differently in PL/I than in
FORTRAN, so the programmer must compensate for the
difference in the logie of the program.

Common Storage Areas

One method of passing parameters between PL/I and
FORTRAN routines is by using ecommon storage areas.

60388100 B

This method ean be used only when calling a FORTRAN
subroutine with the PL/I CALL statement.

The name of the FORTRAN routine must be explicitly
declared in the PL/I routine with the ENTRY attribute.
References to the FORTRAN subroutine are written in
the same manner as references to PL/I procedures.

A common storage area must be created in the PL/I
routine and in the FORTRAN subprogram. A common
storage area in PL/I is a structure with the STATIC and
EXTERNAL attributes. A common storage area in
FORTRAN is a named common block

The name of the PL/I structure must correspond to the
name of the FORTRAN common block. The structure can
contain scalars and arrays, but not substructures. The
scalars and arrays in the strueture must correspond to the
variables and arrays in the FORTRAN common block.

An example of the use of common storage areas to pass
parameters is shown in figure 6-14. The FORTRAN
routine is declared with the ENTRY attribute in the PL/I
program. The structure MYCMBLK is declared STATIC
EXTERNAL, and corresponds to the common block
MYCMBLK in the FORTRAN subroutine. The structure
members are initialized in the PL/I routine and printed.
Then the FORTRAN routine is called to modify the value
of the structure members. Upon returning from the
FORTRAN subprogram, the new values of the structure
members are printed.

Arguments Lists

The other method of passing parameters between PL/I and
FORTRAN routines is by using argument lists. This
method can be used for calling both FORTRAN functions
and subroutines.

This method requires the programmer to supply a
COMPASS interface. The name of the interface must be
explicitly declared in the PL/I routine with the ENTRY
attribute. - References to the COMPASS routine are
written in the same manner as references to PL/I
functions and procedures.

The COMPASS routine must modify the argument list
generated by PL/I so that it can be used by the FORTRAN
routine. After modifying the list, it must invoke the
FORTRAN subprogram.

The argument list is located by accessing register Al,
which contains the address of the argument list.

The - FORTRAN routine expeets the argument list to
contain an address for each argument, and expects the list
to be terminated by a word of zeros.

However, the argument list generated by PL/I contains
the address of a descriptor for each argument, rather than
the address of the argument itself. The descriptor word
contains the address of the argument in the low order 18
bits. Additional information about the argument might be
stored in the rest of the descriptor word. Lists generated
by PL/I CALL statements are terminated with a negative
zero followed by a positive zero. Lists generated by PL/I
function references are terminated with the address of
the descriptor of the function result followed by a positive
zero.

Figure 6-15 shows the format of the PL/I argument list.
Figure 6-16 shows the format of the argument list

6-7 @

COMMON :

DCL FORT ENTRY;
DCL 1 MYCMBLK STATIC

CALL FORT;

END COMMON;

SUBROUTINE FORT

C .

COMMON /MYCMBLK/ X, I,
c

X =X%*2.0

I =1+ 25

MESS(2) = 8H FORTRAN
C

RETURN

END
OUTPUT:
HELLA FROM PL/1 1.234
HELLO FROM FORTRAN 2.468

PUT EDIT (MESS(1),MESS(2),X,1)

PROCEDURE OPTIONS(MAIN);

EXTERNAL,

2 X FLOAT DECIMAL,
2 1 FIXED DECIMAL(3,0),
MESS(2) CHAR(10) ALIGNED;

2
X = 1.234;
I =53 ,
MESS(1) = 'HELLO FROM';
MESS(2) = ' PL/I';

PUT EDIT (MESS(1),MESS(2),X,1) (SKIP,2(A),F(7,3),F(5));

(SKIP,2(A),F(7,3),F(5));

MESS(2)

5
30

Figure 6-14. Common Storage Area Example

expected by the FORTRAN subprogram. The COMPASS
interface routine must transform the argument list from
the PL/I format to the FORTRAN format.

The PL/I argument list contains an extra level of
indirection compared to FORTRAN. Therefore, the
COMPASS interface must replace the descriptor addresses
with the addresses of the arguments themselves. The
original PL/I argument list can be overwritten with the
modified list. The COMPASS routine must preserve the
contents of register A0.

An example of a PL/l reference to a FORTRAN
ssubroutine is shown in figure 6-17. The name of the
COMPASS . interface is declared with the ENTRY
attribute. The interface reformats the argument list by
reading each descriptor word and storing it back into the
list over the original pointer.

For PL/I references to FORTRAN functions, a COMPASS
interface is always required; the common storage area
method cannot be used. FORTRAN functions return the
result in register X6. PL/I functions return the result in
an address specified in the argument list. The address of
the descriptor for the last argument is followed by the
address of the descriptor for the function result. This
address takes the place of the negative zero which
precedes the terminating positive zero.

An example of a PL/I reference to a FORTRAN function
is shown in figure 6-18. The argument list is transformed

® 6-8

as before, but the descriptor for the funetion result is
read in addition to those of the other arguments. After
the return from the FORTRAN routine, the COMPASS
interface reads the descriptor and stores the contents of
X6 at the specified address (X6 econtains the result
returned from FORTRAN).

Data Type Restrictions

PL/1 provides more data types for variables than
FORTRAN. Therefore, not all types of variables can.be
passed between PL/I and FORTRAN. Only those data
types that are common between the two languages can be
shared. Table 6-2 shows the PL/I data types that can be
passed to FORTRAN subprograms, and gives the
corresponding FORTRAN data types.

Other restrictions are:

PL/1 strings passed to FORTRAN routines must be
declared ALIGNED.

CHARACTER and BIT strings longer than one word
must be treated like a 1-dimensional array within the
FORTRAN routine. Each group of 10 charaecters or
60 bits in the PL/I string corresponds to one word of
the FORTRAN array. The length of the FORTRAN
array must be a multiple of 10 characters or 60 bits.

60388100 B

Register Address
Al of argument
list

|

Descriptor Words

- Actual Arguments

This shows the PL/I argument list generated by the statement CALL F(1,J,K). For PL/I function
references, the -0 in the argument list is replaced with the address of the descriptor word for the

function result.

¥
Argument List !
! Address
of
i 1 . Value of |
Address of / !
descriptor for | H
L]
i
1 Add
Address of ! A o;ess
descriptor for J ! J Value of J
E .
1
Address of T
descriptor for K \ 1
1 Address
! of Value of K
! K
]
H
-0 ———
Low order
18 bits
+0

Figure 6-15. Format of PL/I Argument List

TABLE 6~2. DATA TYPE CORRESPONDENCE

PL/I Data Type FORTRAN Data Type

FLOAT DECIMAL REAL
FIXED DECIMAL (q=0) INTEGER
CHAR(10) ALIGNED. Nonvarying Hollerith
FLOAT BINARY REAL
FIXED BINARY (q=0) INTEGER
BIT(1) ALIGNED LOGICAL

PL/1 strings of varying length can be passed to
FORTRAN routines, but the FORTRAN routine must
not alter the current length of the string. Varying
length strings cannot be passed through common
storage areas. Arrays of varying strings must not be
passed to FORTRAN subprograms.

60388100 B

PL/1 pictured variables are nonvarying character
strings and are treated like FORTRAN character data.

PL/1 AREA, POINTER, OFFSET, FILE, ENTRY, or
LABEL data and FORTRAN COMPLEX or DOUBLE
PRECISION data cannot be shared.

Array Storage Differences

Arrays are stored differently in PL/I than in FORTRAN,
so the programmer must compensate for the differences
in the logie of the program.

In general, PL/I arrays are stored in row order, whereas
FORTRAN arrays are stored in column order. Thus, the
programmer should reverse the order of the subscripts in
the FORTRAN routine.

For example, the array element referenced as
ARRAY(2,3) in the PL/I routine, is referenced as
ARRAY(3,2) in the FORTRAN routine.

There are two methods of passing arrays using argument
lists: by specifying the unsubscripted array name in the

6-9 @

Register Address
Al of argument
list

]

Argument List

Address
of
|

Actual Arguments

Value of |

Address

Value of J

Value of K

This shows the argument list expected by the FORTRAN subroutine
F. The first statement of the subroutine is SUBROUTINE F(l,J,K).

Figure 6~16. Format of FORTRAN Argument List

argument list, and by specifying the subscripted array
name.

If the unsubscripted array name is specified, array
element zero is associated with the first element of the
FORTRAN array. This occurs even if the PL/I array does
not have its origin at zero. For example, if a PL/I array is
declared without explicitly specifying the array bounds,
the first subseript defaults to 1. If this array is passed to
FORTRAN, array element zero is associated with the first
element of the FORTRAN array, which results in a
reference outside of the array bounds. To avoid this
problem, the programmer can declare all PL/I arrays to
have origins at zero if they are to be passed to FORTRAN
in this way.

If a subscripted array name appears in the argument list,
the specified element of the PL/I array is associated with
the first element of the FORTRAN array; all subsequent
elements correspond.

To pass arrays through common storage areas, the
programmer must simply reverse the subseripts as
explained previously.

e 6-10

Arrays with elements longer than one word should not be
passed to FORTRAN subprograms. If this is done, the
programmer must develop an algorithm for computing
proper subscripts in the FORTRAN routine.

Arrays of variable length strings must not be passed to
FORTRAN subprograms.

Additional Considerations

Input and output operations should be restricted to PL/I
routines.

PL/I allows recursive procedures, but FORTRAN does
not. FORTRAN routines that are called recursively can
result in infinite loops. : .

PL/1 snap output normally contains a traceback of all
active procedures and on-units; however, FORTRAN and
COMPASS routines called from PL/I will not appear in the
snap output.

60388100 B

ARGLIST:

& oo
fton

PROCEDURE OPTIONS(MAIN);

DCL COMPINT ENTRY (FLOAT DEC, FIXED DEC, CHAR(10) ALIGNED);
DCL A FLOAT DECIMAL;

DCL B FIXED DECIMAL;

DCL C(2) CHAR(10) ALIGNED;

1.2
5.

OOV I >
N no

(1)
(2)

H il

34,

"HELLO FROM';

' PL/TY;

PUT EDIT (C(1),C(2),A,B) (SKIP 2(A),F(7,3),F(3));

CALL CO

MPINT (

A, B, C(?)

PUT EDIT (C(1),C{2),A,B) (SKIP 2(A),F(7,3),F(3));
END ARGLIST;

SUBROUTINE FORT (A, B,.C)

INTEGER B,C

Ax 2
B + 25
8H FOR

RETURN
END

IDENT
ENTRY

COMPINT BSS

LoopP

OUTPUT:

HELLOD

HELLN FROM FORTRAN

SB6
SB7
SA2
SA3
SX6
SA6 -
SR6
GT
RJ
EO
END

FROM PL/I

TRAN
COMPINT
COMPINT
1
0
3 SET B7 TOD NUMBER OF ARGUMENTS
Al+B6 READ ADDR OF DESCRIPTOR INTO X2
X2 READ ADDR OF ARGUMENT INTO X3
X3 WRITE ADDR OF ARGUMENT IN ARG LIST
A2
B6+1
B7,B6,L00P LOOP BACK IF MORE ARGUMENTS
=XFORT
COMPINT

1.234 5

2.468 30

60388100 B

Figure 6-17. -Argument List Example

6-11 o

FORTFUN: PROCEDURE OPTIONS(MAIN); _
DCL AVG ENTRY((*)FLOAT DEC, FIXED DEC) RETURNS(FLOAT DEC);
DCL ARY1(0:2) FLOAT DEC INIT(12.345,-98.765,246.357);
DCL ARY2(0:4) FLOAT DEC INIT(1.2,-3.4,5.6,-7.8,9.0);
DCL ARY3(0:9) FLOAT DEC INIT(.1,.2,.3,.4,.5,.6,.7,.8,.9,.0);
PUT SKIP EDIT('AVG OF ARY1l IS', AVG(ARY1,3)) (A,F(9,4));
PUT SKIP EDIT('AVG OF ARY2 IS', AVG(ARY2,5)) (A,F(9,4));
PUT SKIP EDIT('AVG OF ARY3 IS', AVG(ARY3,10)) (A,F(9,4));
END FORTFUN;
FUNCTION AVERAGE (ARRAY,IDIM)
c
DIMENSION ARRAY(IDIM)
c
SUM = 0
DO 100 I = 1,IDIM
SUM = SUM + ARRAY(T)
100 CONTINUE
. AVERAGE = SUM/IDIM
RETURN
END
IDENT AVG
ENTRY AVG
AVG BSS 1
SB6 0
SB7 3 SET B7 TO NUMBER OF ARGUMENTS + 1
Lnnp SA?2 A1+B6 READ ADDR OF DESCRIPTOR INTO X2
SA3 X2 READ ADDR OF ARGUMENT INTO X3
SX6 X3 WRITE ADDR OF ARGUMENT IN ARG LIST
SA6: A2
SB6 Bh+1
GT B7,B6,L00P LOOP BACK IF MORE ARGUMENTS
SA6 RESULT SAVE ADDR FOR RESULT
RJ =XAVERAGE
SA1 RESULT READ UP ADDR FOR STORING RESULT
SA6 X1 STORE RESULT IN SPECIFIED ADDR
EQ AVG
i RESULT BSS 1
END
OUTPUT:
AVG OF ARY1 IS 53.3123
AVG 0F ARY2 IS 0.9200
AVG OF ARY3 IS 0.4500

® 6-12

Figure 6-18. FORTRAN Function Example

60388100 B

BUILTIN FUNCTION OR
PSEUDOVARIABLE REFERENCE

A builtin funetion reference is a reference to a builtin
funection. A pseudovariable reference is a reference to a
pseudovariable; a pseudovariable is a counterpart of a builtin
function and is used as the target of an assignment
operation. Builtin function and pseudovariable reference
syntax is shown in figure 6-19.

simple-reference [([argument, ,, 1)]

Figure 6-19. Builtin Function and Pseudovariable ’
Reference Syntax

In a builtin function reference, the simple-reference must be
the name of one of the system-supplied builtin functions.

60388100 B

The number of arguments and the attributes of the argu-
ments must be as described in section 11, Builtin Functions.
If the builtin function does not require any arguments, the
reference can have a null argument list of the form () or the
parentheses can be omitted. Any reference to a builtin
funetion causes the builtin funetion to be invoked. A builtin
funetion cannot be referenced as an entry value.

In a pseudovariable reference, the simple-reference must be
the name of one of the system-supplied pseudovariables.
The number of arguments and the attributes of the argu-
ments must be as deseribed in section 11. If the pseudo-
variable does not require any arguments, the reference can
have a null argument list of the form () or the parentheses
can be omitted. The name of each pseudovariable is the
same as the name of the corresponding builtin function. It is
recognized as a pseudovariable reference by the context in
which it appears.

6-13

DATA MANIPULATION 7

This section describes the various types of PL/I expressions
that can be written for manipulating data. Other sections of
this manual describe where expressions can be used in the
language. An expression can be a primitive, prefix, or infix
expression. An expression that contains subexpressions is a
combination of these simple expressions. Evaluation of an
expression proceeds in a specific way, according to the rules
given in this section.

Arithmetie, string, and comparison operations are performed
as necessary in the evaluation of an expression. The
operator in a simple expression establishes whether the
operation is to be arithmetie, string, or comparison. Every
operator in an expression is either a prefix or infix operator.
For each type of operation, this section describes the prefix
and infix operators that can be used and the result of the
operation., The result of an expression evaluation can be
used as an operand in another expression.

PL/I performs conversion of operands as necessary in any
arithmetic, string, or comparison operation. Since the
operator establishes the type of operation, the operator can
force conversion of an operand to a specific computational
type, such as arithmetic, bit, or character. In an infix
operation, conflict in the data types of the operands can
forece further conversion, such as from FIXED DECIMAL to
FLOAT DECIMAL. In an arithmetie, string, or comparison
operation, any necessary conversions occur before the
arithmetie, string, or comparison operation is performed.

Assignment involves a source value and a target. The source
value is the result of an expression evaluation. Conversion
is necessary if the source value has a different data type
than the target. If the data type of the source value
matches the data type of the target, the source value is
assigned to the target without conversion.

Conversion is performed for operations and during assign-
ment. This section briefly describes other situations in
which any necessary conversion is performed. The rules for
each available conversion from one data type to another are
described.

The rules for picture-controlied conversions are deseribed in
this section. The picture codes available for pictured
- charaeter and pictured numeric items are also described.

EXPRESSIONS

Each expression consists of operators and operands arranged
in a meaningful way. The operators are categorized as
arithmetic, string, or comparison operators and as prefix or
infix operators. The complete list of operators is shown in
table 7-1. An expression can be a single primitive, prefix,
or infix expression. An expression can also be a combination
of expressions. An expression used as part of a larger
expression is called a subexpression. The syntax of
expressions is shown in figure 7-1.

An operand can be a literal constant, a reference, an iSUB
reference, or an expression. An expression can be used as an
operand in another expression. The result of the final
expression evaluation is the result of the complete
expression.

60388100 A

TABLE 7-1. LIST OF OPERATORS

Li:erator Type Prle;]fgcxor Meaning

+ arithmetic prefix positive

- arithmetie prefix negative

+ arithmetie infix add

- arithmetie infix subtract

* arithmetic infix multiply

/ arithmetie infix divide

*¥ arithmetic infix exponentiate

- bit string prefix NOT

& bit string infix AND

1 bit string infix OR

I character infix concatenate

string or
bit string

= comparison infix equal

= comparison infix not equal

< comparison infix less than

<= comparison infix less than or
equal

< comparison infix not less than

> comparison infix greater than

>= comparison infix greater than or
equal

1> comparison infix not greater than

A primitive expression consists of a single operand and no
operators. A prefix expression consists of a single operator
and a single operand. An infix expression consists of two
operands separated by a single operator. Examples of
primitive, prefix, and infix expressions are shown in
figure 7-2.

The value of an expression is determined each time it is
encountered during program execution. An expression yields
a result value of a particular data type and aggregate type.
The evaluation of each subexpression contained in the full

" expression produces a result with a particular data type. If

the result is used as an operand in another subexpression, the
data type and aggregate type are used as the operand type in
that subexpression evaluation. The result of the final
subexpression evaluation has a result type.

PRIMITIVE EXPRESSIONS

A primitive expression that is a variable reference has the
data type and aggregate type of the variable. A primitive
expression that is a function reference has the data type and
aggregate type of the value returned by the function. If the

primitive expression is used as an operand in a prefix or infix
expression, the data type and aggregate type must be
acceptable for the prefix or infix operation.

reference
literal-constant
iSUB

+
- >expression
5

(

* ™~ % | +

*

expression < > expression

Jh=—go

(expression)

where reference is a variable reference, named
constant reference, or function reference. A
variable reference can be simple, subscripted,
structure-gualified, or locator-qualified. A

named constant reference can be subscripted.

Figure 7-1. Expression Syntax

Primitive Expressions

ADDTRY variable reference
THG(7) subscripted variable reference

ER.DATA6 structure-qualified variable reference
KPTR->N locator-qualified variable reference
LABEL7?7 named constant reference
UTIL(R,T) function reference

12.6 arithmetic constant

4 integer constant

UK L character constant

'10'8 bit constant

(4)'101'8 replicated bit constant -

2SUB iSUB reference

Prefix Expressions

+ADDTRY
-THG(7)
—'10'B

Infix Expressions

ER.DATA6 + UTIL(R,T)
ADDTRY ** 4

"10'B | (4)'101'B
KPTR->N —< 12.6
-THG(7) = "10'B

3 * 2SUB

Figure 7-2. Primitive, Prefix, and Infix Expression Examples

PREFIX EXPRESSIONS

The data type of the expression value is determined by the
prefix operator and the data type of the operand. In a prefix
expression, the operator requires that the operand be of a
certain computational type. The operand is compatible with
the operator if the operand has the required computational
type or can be converted to that type.

The steps in evaluation are as follows:

1. The operand is evaluated. The value of the primitive
expression is used, or an intermediate result from
subexpression evaluation is used.

2. The operand is converted to an intermediate value
appropriate for the operator, if necessary.

3. The prefix operation produces a result value.

INFIX EXPRESSIONS

The data type of the expression is determined by the infix
operator and the data types of the operands. In an infix
expression, the operator requires that the operands be of a
certain computational type. Each operand is compatible
with the operator if the operand has the required compu-
tational type-or can be converted to that type.

The steps in evaluation are as follows:

1. Both of the operands are evaluated. The velue of a
primitive expression is used, or an intermediate result
from subexpression evaluation is used for either
operand.

2. Each operand is converted, if necessary, to an inter-
mediate value appropriate for the infix operator. If the
two operands have different data types, one or both can
require further conversion. ’

3. The infix operation produces a result value.

ORDER OF EVALUATION

An expression that contains more than one operator is
evaluated in an order established by the precedence of
operators and by the way the expression is parenthesized.
Operator precedence determines the order of evaluation in a
static way; operator precedence is not dynamie. If an
operand is an expression, the expression is fully evaluated
before being used as an operand. Paired parentheses force
evaluation of the contained expression before the result is
used as an operand of any operator outside the parentheses.

Within the entire expression, and within each pair of
parentheses, the order of evaluation depends on the priority
of operators. Subexpressions containing operators of the
highest priority are evaluated first, then those of the next
highest priority, and so forth. If a subexpression or
parenthesized subexpression contains operators of equal
priority, the order of evaluation is usually left to right but
can be right to left. The order of evaluation is shown in
table 7-2. Some examples of order of evaluation are shown
in figure 7-3.

60388100 A

TABLE 7-2. ORDER OF EVALUATION

statement. The result of a function reference is never
reused. The value of a variable reference is not reused if
the compiler detects that the generation or the value could
change during subexpression evaluation. If any compu-
tational conditions are raised during subexpression evalua-
tion, then reuse of subexpression values can change the final
result only by reducing the possible number of raised
computational conditions.

OPERATIONS

The evaluation of expressions can involve arithmetie, string,
or comparison operations. The operator used in an expres-
sion establishes what type of operation is to be performed.
Depending on the circumstances, an operation can be a
prefix or an infix operation.

If operations require conversion of operands, any necessary
conversions take place before the operation is performed.
Specific conversions are described later in this section under
Conversions. The conversions for ecomputational operands
are shown in table 7-3. The required intermediate type for
each necessary operand conversion in any given operation is

Same Priority
Gvalaion| Overaters onder o
= =i — ﬂa
First — Hprefix) —(prefix) ** Right to left
Second | * / Left to right
Third +(infix) -(infix) Left to right
Fourth | I Left to right
Fifth = T1= < <= T > >z T1>| Left to right
Sixth & Left to right
Last | Left to right
Expression Order of Evaluation
-A**B - (A ** B)
c/-D Cc/(-D)
E+F/G E+(F/Q)
H+J1 K H+J) 11K
L=MI|I|N L=(M]]|N)
P>Q&R=S (P> Q) & (R=29)
SIT&U SI(T &U)

described under the particular operation.

ARITHMETIC OPERATIONS

Figure 7-3. Order of Evaluation Examples

When an operand is evaluated, the order of evaluation for
subseripts, locator qualifiers, and funection references is not
predetermined. The program must not depend on any
particular order of evaluation for subseripts, locator quali-
fiers, and function references in an expression.

For the purpose of optimization, the result from a sub-
expression evaluation can be reused if the result has already
been caleulated during the present execution of the

Arithmetic operations can be specified with prefix or infix
operators. The prefix operators are + (positive) and - (nega-
tive). The infix operators are + (add), - (subtract),
* (multiply), /(divide), and ** (exponentiate). Arithmetic
operations can involve operands that are arithmetie, char-
acter string, bit string, or pictured items. Operands can also
be intermediate values that are result values from sub-
expression evaluations. The result of the operation is always
arithmetic with a scale FIXED or FLOAT and a base
DECIMAL or BINARY. The result ecan be used as an operand
in a subsequent operation or can be the final result of
expression evaluation, depending on the circumstances.
Examples of arithmetic operations are shown in figure 7-4.

TABLE 7-3. COMPUTATIONAL CONVERSION FOR OPERATIONS

Operand Type

Intermediate Type

Arithmetie

Character Bit

|

Arithmetic

Arithmetic to
arithmetic conversion

Arithmetic to Arithmetic to
character conversion bit conversion

Pictured Numeric

Interpret for
arithmetic value

Arithmetic to
arithmetic conversion

Use character value

Character to
character conversion

Interpret for
arithmetic value

Arithmetic to
bit conversion

Character

Character to
arithmetic conversion

Character to
bit conversion

Character to
character conversion

Pictured Character

Use character value

Character to
arithmetic conversion

Use character value

Character to
bit conversion

Use character value

Character to
character conversion

Bit

Bit to arithmetic
conversion

Bit to bit
conversion

Bit to character
conversion

60388100 A

OCL FIXDEC FIXED DEC(10+3) INIT(1.10)3
DCL FLCEC FLOAT DEC(7) INIT(.21E2)3

DCL FIXBIN FIXED BIN(1294) INIT(20.008B)3
DCL FLBIN FLOAT BIN(1S5) INIT(1.010E2B)3
DCL PICNUM PICTURE +ZZZV.Z2* INIT(1.48)3%

L d

PUT SKRIP LIST(-FIXBIN)3
/#RESULT IS -00000010.0000B - */
/7#LISTING 18 -2.00 */

PUT SKIP LIST(FLDEC + 1E1)3
/¥RESULT IS 3.100000E+001 #/

.

PUT SKIP LIST(FIXDEC + PICNUM)¥
/#RESULT IS ; 2.580 */

PUT SKIP LIST(FIXDEC # 35)3%
/#RESULT IS 384500 #/

*

L d

PUT SKIP LIST(FLBIN / .1E0B)3

/#RESULT IS 1.01000000000000E+0038 */
/7#LISTING 1S 1.0000E+001 */

*

* -
PUT SKIP LIST(FIXDEC ## 3)3
/7#RESULTY IS 14331000000E+000 4

Figure 7-4. Arithmetic Operations Examples

Operand Conversion

Each operand of an arithmetic operator is converted to the
appropriate arithmetic type, if necessary, before the opera-
tion occurs. The operand type to which the operand value is
converted is defined by the following rules.

Arithmetie Operand

An arithmetic operand of a prefix operator requires no
conversion. Arithmetic operands of an infix operator can
require conversion.

For an infix arithmetic operator, conversion to a common
base and common scale is necessary if the operands (after
conversion to arithmetic) differ in base or scale. If base
differs, the DECIMAL operand is converted to BINARY in an
arithmetic to arithmetic conversion. If scale differs, the
FIXED operand is converted to FLOAT in an arithmetie to
arithmetic conversion. For exponentiation, conversion to a
common base and scale is not always necessary.

Character String Operand

A character string operand requires character to arithmetic
conversion. The operand is converted to REAL FIXED
DECIMAL (14,0). An operand of an infix operator can
require further base or scale conversion, as described for
arithmetic operands. An operand for a prefix operator
requires no further conversion.

Bit String Operand

A bit string operand requires bit to arithmetic conversion.
The operand is converted to REAL FIXED BINARY (48,0).
An operand of an infix operator can require further base or
scale conversion, as described for arithmetic operands. An
operand for a prefix operator requires no further conversion.

Pictured Operand

A pictured character item is treated as a character string
operand. A pietured numeric item is interpreted for its
arithmetic value and treated as a FIXED DECIMAL or
FLOAT DECIMAL item, depending on the form of the
picture. An operand of an infix operator can require further
conversion, as described for arithmetic operands. An
operand for a prefix operator requires no further conversion.

Prefix Arithmetic Operation

The result value has the mode, base, scale, and precision of
the arithmetic operand (after conversion to arithmetic).
The negative (-) operator causes the sign of the operand to
be reversed. The positive (+) operator has no effect on the
value of the operand. An example of a prefix operation is
included in figure 7-4.

Infix Arithmetic Operation

The base and-scale of the result value are the common base
and scale of the operands. The precision depends on the
arithmetic operation performed and on the precision of the
operands. The following symbols are used for the deserip-
tion of the operations:

(m,n) or {m) Actual precision of the result value

N Maximum number of digits available for
the result value (48 for BINARY, 14 for
DECIMAL) ‘

(p,q) or (p) Precision of the first operand

(r,s) or (r) Precision of the second operand

Examples of infix operations are included in figure 7-4.

Addition or Subtraction

The second operand is added to or subtracted from the first
operand.

If both operands are FIXED, the precision of the result is
(m,n) = (MIN(N,MAX(p-q,r-s)+MAX(qg,s)+1), MAX(q,s))

The FIXEDOVERFLOW condition can be raised during fixed
point addition or subtraction.

If both operands are FLOAT, the precision of the result is
(m) = (MAX(p,r))

The OVERFLOW or UNDERFLOW condition can be raised
during a floating point addition or subtraction.

60388100 A

Multiplication

The result value is the product of the two operands.

If both operands are FIXED, the precision of the result is

(m,n) = (MIN(N,p+r+1), q+s)

The FIXEDOVERFLOW condition can be raised during fixed
point multiplication.

If both operands are FLOAT, the precision of the result is

(m) = (MAX(p,r))

The OVERFLOW or UNDERFLOW condition can be raised
during a floating point multiplication.

Division
The first operand is divided by the second operand.

If both operands are FIXED, the precision of the quotient is
the maximum available

(m,n) = (N, N-p+g-s)

The FIXEDOVERFLOW or ZERODIVIDE condition can be
raised during fixed point division.

If both operands are FLOAT, the precision of the result is

(m) = (MAX(p,r))

The OVERFLOW, UNDERFLOW, or ZERODIVIDE condition
can be raised during a floating point division.

Exponentiation

In exponentiation, conversion of the operands to a common
base and scale is not always necessary. The following types
of exponentiation can apply: ‘

® If the first operand (after conversion to arithmetie) is
FIXED BINARY (p,q) and the second operand is a
positive integer constant with a value less than or equal
to 49/(p+1), then a FIXED to FIXED exponentiation is
performed. If the first operand (after conversion to
arithmetie) is FIXED DECIMAL (p,q) and the second
operand is a positive integer constant with a value less
than or equal to 15/(p+l), then a FIXED to FIXED
exponentiation is performed. The base, scale and mode
of the result are the same as those of the first operand,
after conversion. The precision of the result, where y is
the value of the second operand, is

(m,n) = ((p+1)*y-1, q*y)

® The second type of exponentiation can be used if the
first type does not apply. If the second operand
(after conversion) is FIXED (r,s) with s equal to zero,
the first operand is converted, as necessary, to
FLOAT and a FLOAT to FIXED exponentiation is
performed. The result is FLOAT with the base and
mode of the first operand, after conversion. The
precision of the result is

(m) = (p)

60388100 B

e If the first two types of exponentiation do not apply,
both operands are converted (as necessary) to FLOAT
and a FLOAT to FLOAT exponentiation is performed.
The result is FLOAT with the base and mode of the first
operand, after conversion. The precision of the result is

(m) = (MAX(p,r))

In some special cases of exponentiation, the result value can
be determined without executing the operation. The result
value is determined in the following way, where x represents
the value of the first operand, and y represents the value of
the second operand:

® For x=0 and y>0, the result is 0
® For x1=0 and y=0, the result is 1
® For x=0 and y<=0, the ERROR condition is raised

e For x<0 and y not FIXED (r,s), with s=0, the ERROR |
condition is raised

STRING OPERATIONS

String operations can be specified with prefix or infix
operators. The prefix operator is = (NOT). The infix
operators are & (AND), | (OR), and Il (concatenate). The
operators ™ & and | are for bit strings. The operator II is for
character strings or bit strings. For string operations, the
operands can be character string, bit string, arithmetic, or
pictured items. Operands can also be intermediate values
that are result values from subexpression evaluations. The
result of the operation is a bit string or character string
with a specific length. The result ean be used as an operand
in a subsequent operation or can be the final result of
expression evaluation, depending on the circumstances.
Examples of string operations are shown in figure 7-5.

DCL CHAR CHARACTER(4) INIT(4K™)3$

DCL CHARVAR CHAR(6) VARYING INIT(*LMN*)3$
DCL PICSTR PICTURE +AA99+ INIT(+AB33+)3
DCL BIT BIT(S) INIT(+110114B)3

DCL BITVAR BIT(8) VARYING INIT(+1000+B)3

.

/9%NOT OPERATION W74
PUT SKIP LIST(-BIT)S

/#RESULT IS 40010048 ®/
L

L]

/#AND OPERATIGCN *y/
PUT SKIP LIST(BIT A BITVAR)}

/#RESULT IS 41000048 ®*/
/%0R OPERATION W4
PUT SKIP LIST(BITVAR v BIT)$

/#RESULT 1S +11011+8 ®/
L]

/7#CONCATENATE OPERATION #/
PUT SKIP LIST(CHAR vv CHARVAR)3

/7#RESULT IS K LMNe+ 4

L]

.
PUT SKIP LIST(CHARVAR vv PICSTR)$
/HRESULT IS +LMNAB33+ ®/

Figure 7-5. String Operations Examples

Operand Conversion

For bit string operations, each operand is converted, as
necessary, to a bit string. For the operator I (coneatenate),
both operands are converted, as necessary, to character
strings unless both are bit strings.

Charaeter String Operand

A character string operand in a bit string operation requires
character to bit conversion. The operand is converted to a
bit string with the current length of the character string. A
character string operand in a concatenate operation requires
no conversion,

Bit String Operand

A bit string operand in a prefix or infix bit string operation
requires no conversion. Unless both operands are bit strings,
a bit string in a concatenate operation requires bit to
character conversion. The operand is converted to a
character string with the current length of the bit string.

Pictured Operand

A pictured character or pictured numeric operand in a bit
string operation requires character to bit conversion on the
character value of the pictured item. A pictured character
or pictured numeric operand in a concatenate operation is
used for its character value.

Arithmetic Operand

An arithmetic operand in a bit string operation requires
arithmetic to bit conversion. An arithmetic operand in a
concatenate operation requires arithmetic to character
conversion. The length of the bit string or character string
depends on the precision of the arithmetic operand.

Prefix Bit String Operation

The result value of the prefix operator — (NOT) is the
complement of the bit string operand (after conversion to
bit). At each bit position, the corresponding bit of the result
is set to '1'B if the operand has '0'B, or set to '0'B if the
operand has '1'B. The length of the result is the length of
the operand. An example of a prefix operation is included in
figure 7-5.

Infix Bit String Operation

The result value of the bit string operator & (AND) or ! (OR)
is a bit string with a length that is the greater of the current
lengths of the two operands. Before the operation oceurs,
the shorter operand is padded on the right with zero bits to
the length of the longer one. If either operand has the
VARYING attribute, the infix expression ean yield a string
of a different length each time it is evaluated. 'Examples of
infix bit string operations are included in figure 7-5.

Logical AND

For the infix & operator, a logical AND operation is
performed on the strings, bit by bit. At any bit position, the
corresponding bit of the result is set to '1'B if both operands
have a '1'B. The corresponding bit of the result is set to '0'B
if either operand has '0'B or both operands have '0'B.

Logical OR

For the infix | operator, a logical OR operation is
performed on the strings, bit by bit. At any bit position, the
corresponding bit of the result is set to '1'B if either operand
has '1'B or both operands have '1'B. The corresponding bit of
the result is set to '0'B if both operands have '0'B.

Concatenate Operation

The result.value of the infix operator !l (econcatenate) is a
character string if the two operands are character strings.
The result value is a bit string if the two operands are bit
strings. The resulting length is the sum of the lengths of the
two character string or bit string operands (after con-
version). The second string is coneatenated with the first so
that its first character (or bit) immediately follows the last
character (or bit) of the first string. If one of the operands

"~ has a VARYING attribute, the length of the result can be

different each time the operation is performed. Examples
of the concatenate operation are included in figure 7-5.

COMPARISON OPERATIONS

Comparison operations are all infix operations. The compar-
ison operators are = (equal), = = (not equal), < (less than),
—< (not less than), < = (less than or equal), > (greater than),
—> (not greater than), and > = (greater than or equ%l).
Examples of comparison operations are shown in figure 7-6.

DCL FIXDEC FIXED DEC(10+3) INIT(1.10)3%
DCL FLBIN FLOAT BIN(1S5) INIT(1.010E2B)3
DCL CHAR CHARACTER(4) INIT(+K+)3

DCL. CHARVAR CHAR(6) VARYING INIT(*LMN*)}

L]
PUT SKIP LIST(FIXDEC > 1)3%
/#RESULT IS +14+8 */

.
PUT SKIP LIST(FLBIN >= 111E08)3
/#RESULT IS +0+B W4

PUT SKIP LIST(CHAR > CHARVAR)}
/#RESULT IS +0+B */

Figure 7-6. Comparison Operations Examples

Operand Conversion

No conversion ocecurs if both operands have the same data
type. Any necessary conversions are done to achieve a
common data type.

Arithmetic values can be compared. If at least one operand
is arithmetie or pictured numeric, the common type is
arithmetie. One or both operands are converted to
arithmetic and additionally converted to a common base and
scale in the same way as for infix arithmetic operations. A
pictured numeric item is interpreted for its arithmetic
value.

String values can be compared. If one operand is a
charaeter string and the other is a bit string, the ecommon
type is character. The bit string operand therefore requires
a bit to character conversion. A pictured character item is
used for its character value.

60388100 B

Locator values can be compared. If one operand is a pointer
value and the other an offset value, pointer is the common
type. The offset value is therefore converted to pointer in
an offset to pointer conversion.

Ar not be compared

Infix Comparison Operation

The result value of a comparison operation is expressed as
the truth of the comparison. If the comparison is true, the
result value is "1'B. If the comparison is false, the result
value is '0'B.

Arithmetic comparison is an algebraic comparison of arith-
metie values.

NOTE

Every floating point value is an approximation.
Floating point values are not rounded or truncated
to the precision (p) declared for a target variable.
The program should not compare two FLOAT
values for precise equality.

Character string comparisons are performed
character-by-character from left to right. Comparison
stops when the first nonmatching pair is encountered. If
the strings are not the same length before the comparison
begins, the shorter string is padded on the right with
blanks so that it is the same length as the other. For all
comparisons involving greater-than or less-than relations,
the collating sequence is used. In the collating sequence,
a blank is less than any nonblank character, special
characters are less than alphabetic characters, and
alphabetic characters are less than numeric characters.
(A’ is less than 'B'..., and '1' is less than '2'...) Two null
strings are equal. The collating sequence appears in
appendix A.

Bit string comparison involves a bit-by-bit comparison of the
two strings from left to right. If one string is shorter than
the other, the shorter string is padded on the right with zero
bits to the length of the longer string before comparison
begins. For all greater-than and less-than tests, a '1'B is
greater than a '0'B. Two null strings are equal.

Pointer values are equal if they are both null, or if both
identify the same generation. Pointer values can only be
compared with the = and = = operators. Offset values are
equal if they are both null or they both represent the
displacement from the beginning of an area

represent the same displacement from the beginning of
different areas. Offset values can only be compared with
the = and == operators.

ASSIGNMENT

The assignment operation assigns a source value to a target.
Any previous value of the target is replaced with the source

Assignment oceurs in the following eircumstances:

° Assignment statement execution
® GET statement execution with LIST or EDIT option
® PUT statement execution with STRING option

60388100 B

® Assignment of a locator value to a locator variable
during ALLOCATE, READ, or LOCATE statement
execution

® Assignment of a value to a KEYTO option variable
during READ statement execution

® Assignment of a value to the target-variable in a
REFER option during allocation of a BASED structure

e Assignment of initial values according to the INITIAL
attribute during allocation of a STATIC, AUTOMATIC,
BASED, or CONTROLLED variable

® Assignment of a value to the index during indexed DO
execution or during execution of an embedded-do in a
GET or PUT statement

If the source value has a different data type than the target,
conversion of the source value is necessary. No conversion
is necessary if the data type of the source value matches the
data type of the target. The source value is assigned to the
target without conversion. If conversion is necessary, the
source value is converted to an intermediate value that is
assigned to the target. If conversion is necessary, the data
types must be compatible. Source type and target type are
compatible if both are in one of the following categories:

e Computational (arithmetic, character, bit, or picture)
® Locator (pointer or offset)
® Label

® Area

COMPUTATIONAL ASSIGNMENT

A computational source value must be assigned only to a
computational target. The source value and the target value
can be arithmetie, character string, bit string, pictured
string, or pictured numeric. Any computational value can be
converted to any other type of computational value, as
shown in table 7-4. Computational conversion produces an
intermediate value with computational data type attributes
identical to the data type attributes of the target value.
For assignment of an arithmetic source value to a target,
conversion is required even if mode, base, and .scale match
but precision does not mateh. For assignment of a character
or bit source value to a target with the same type,
conversion is required simply to adjust the length. For
conversion from a pictured source value, the pictured source
value is a character value or is interpreted for the
arithmetic value, depending on the pictured item and the
circumstances. For assignment to a pictured target value,
an operation to validate through the picture or edit through
the picture is necessary. Picture-controlled conversions are
described later in this section.

LOCATOR ASSIGNMENT

A locator source value must be assigned only to a locator
target value. A pointer source value is directly assigned to
a pointer target value. An offset source value is directly
assigned to an offset target variable, without regard for any
area identified in the declaration of the offset target
variable. The offset source value represents a displacement
from the beginning of an area. Conversion is possible from
pointer to offset or offset to pointer.

LABEL ASSIGNMENT

A label source value must be assigned only to a label target
value. A label source value is assigned directly to a label
target value. The label source value represents an address.

7-7

TABLE 7-4. COMPUTATIONAL CONVERSION FOR ASSIGNMENT

Target Type
Source Type
Arithmetic Pictured Numeric Character Pictured Character Bit
Arithmetie Arithmetic to Arithmetic to Arithmetic to | Arithmetic to Arithmetic to
arithmetic, arithmeticf character character bit eonversion
conversion conversion conversion conversion .
Assign
Assign Edit through Assign Validate through
' pieture and picture and assign
assign .
Pictured Interpret for Interpret for Use character | Use character Interpret for
Numerie arithmetie value arithmetic value value value arithmetie value
Arithmetic to Arithmetic to Character to Character to Arithmetic to
arithmetic arithmetic,r character character bit conversion
conversion conversion conversion conversion Assign
Assign Edit through Assign Validate through
picture and picture and
assign assign
Character Character to Character to Character to Character to Character to k
arithmetic arithmetic character + character , bit conversion
conversion conversion conversion conversion Assign
Assign | Edit through Assign Validate through
picture and picture and
assign assign
Pictured Use character Use character Use character | Use character Use character
Character value value value value . value
Character to Character to Character to Character to Character to
arithmetic arithmetic character character + bit conversion
conversion conversion conversion conversion Assign
Assign) Edit through Assign Validate through
picture and picture and
assign assign
Bit Bit to arithmetic Bit to arithmetic Bit to Bit to character Bit to bit +
convg:rsion conversion character conversion conversion
Assign -Edit through conversion Validate through Assign
pieture and Assign pieture and
assign assign
TNot necessary for an arithmetie value if mode, base, scale, and precision are already as required. Not necessary for a
string value if the length is already as required.

AREA ASSIGNMENT

An area source value must be assigned only to an area target
value. The area target variable must be of sufficient size to
contain all based generations presently allocated in the
source area. After assignment, all offset variables valid for
the source area are valid for the target area. If the target
area contains any allocated generations, assignment to the
target area destroys all previously allocated generations and
invalidates all locator values that previously addressed the

allocated generations. The area value of the source area is

dependent on the order of allocation and freeing of
generations in the source area. If the target area cannot
contain all allocated generations in the source area at the
same offset positions, the AREA condition is raised.

7-8

CONVERSIONS

Conversion of a value is necessary when the data type
attributes are not appropriate for the context in which the
value is used. Conversion occurs automatieally in a number
of circumstances. In conversion, a source value is
converted to an intermediate value.

During expression evaluation, any operand can be converted
as necessary to a computational type (arithmetie, bit string,
or character string) appropriate for the operator in a prefix
or infix expression. If the operands of an infix arithmetic
operator are not the same data type, one operand is
converted or both operands are converted to a common
arithmetic data type. Conversion of operands to a common

60388100 A

base and scale does not apply to the exponentiation
operation. Operands in an.infix comparison operation are
converted as necessary to a common data type. Individual
cases of required conversion are deseribed earlier in this
section for specific arithmetie, string, or comparison opera-
tions.

For assignment, if the source value does not have the same
data type as the target, the source value is converted to the
data type of the target before assignment. Assignment is
described earlier in this section. Assignment can involve
conversion of the source value from one data type to
another.

When an argument is passed to a parameter during CALL
statement execution or evaluation of a function reference
(including a builtin function reference), conversion can be
required for the argument.

When a RETURN statement is executed, conversion is
required if the value of the expression specified by the
statement does not have the data type specified by the
RETURNS attribute associated with the entry name used to
invoke the procedure.

Conversion to integer is performed as necessary in evalu-
ation of an expression used in a number of program
components. The intermediate value has the attributes
REAL FIXED BINARY (17,0). The conversion used depends
on the result type of the evaluated expression. Conversion
to integer is done as necessary for the following program
components:

e LINESIZE, PAGESIZE, SKIP, and LINE options of I/O
statements for stream files

e Subsecripts in a subscripted reference

® Extents that specify area sizes, string lengths, and
array bounds

e IGNORE option of a READ statement

e Any POSITION attribute declared for a DEFINED
variable

e Certain argument expressions in a SUBSTR builtin
funetion or pseudovariable reference

e [Iteration factors used in INITIAL attributes and in
format specifications

Conversion to character string is performed as necessary in
evaluation of an expression in a number of program
components. The intermediate value has the attributes
CHARACTER and nonvarying. ' The exact conversion pro-
cedure used depends on the result type of the expression.
Conversion to character string is done as necessary for the
following program components:

@ The STRING option of a GET statement. The length of
the intermediate string is determined by the value of
the input-source expression.

® Values transmitted to the output stream during PUT
statement execution. Length is appropriate for the
source value (LIST option) or specified with a format
item (EDIT option).

e The KEY option of a READ, REWRITE, or DELETE
statement, or the KEYFROM option of a WRITE or
LOCATE statement. The length of the target string is
determined by the length of the key for the file.

60388100 A

Conversion to bit string is performed as necessary in
evaluation of an expression in a number of program
components. The intermediate value has the attributes BIT
and nonvarying. The length of the intermediate string is
determined by the expression value. The exact conversion
procedure used depends on the data type of the expression.
Conversion to bit string is done as necessary for the
following program components:

© Any WHILE option in a DO statement or in an
embedded-do in a GET or PUT statement

o The expression in an IF statement

The conversion of any computational value to another
computational data type is possible. The computational
conversions are the following:

Arithmetie, character, or bit to arithmetie

Arithmetie, character, or bit to character

Arithmetie, character, or bit to bit

Validate through picture, edit through picture, and
interpret for arithmetic value as described later in this
section for pictured items.

The locator conversions are the following:

e Pointer to offset
e Offset to pointer

If conversion is required and the required conversion is not
defined (not legal), the program is in error and a fatal
compile-time diagnostic message is issued. The description
of each conversion describes the conditions that can be
raised during the conversion.

ARITHMETIC TO ARITHMETIC CONVERSION

The mode, base, scale, and precision of the source arith-
metie value are known. For conversion during assignment,
the required base, scale, and precision of the intermediate
value are known. For operand conversion, the required base
and seale are known. For operand conversion, the precision
is ecalculated as shown in table 7-5. Operand conversion
does not require any FLOAT to FIXED conversion.

The intermediate value resulting from the conversion has
the mode REAL and the required base and scale. The
intermediate has the required precision or the caleulated
precision.

The SIZE condition is raised if the target is FIXED with a
precision insufficient to represent the integral value of the
source. The OVERFLOW or UNDERFLOW condition ean be
raised in a FLOAT DECIMAL to FLOAT BINARY conversion
or FIXED DECIMAL to FLOAT BINARY conversion.

NOTE

A FIXED DECIMAL variable or literal constant
with noninteger value and small positive value of
‘precision q should be avoided in an operation that
causes conversion to FIXED BINARY. For
example, the expression (.1 + 0B) has the result
value 00.0001B (0.0625) because of the precision
rules. The expression (.1000 + 0B) has the result
value 00.00011001100101B (approximately
0.0999435).

Examples of arithmetic to arithmetic conversion are shown
_in figure 7-7.

TABLE 7-5. PRECISION IN ARITHMETIC TO ARITHMETIC CONVERSION

Source Type Required

Intermediate Type

Resulting Precision
of Intermediate

FIXED BINARY (p,q)
FIXED DECIMAL (p,q)

FIXED BINARY
FIXED BINARY

FIXED BINARY (p,q)
FIXED DECIMAL (p,q)

FIXED BINARY (p,q)
FIXED DECIMAL (p,q)
FLOAT BINARY (p)
FLOAT DECIMAL (p)

FIXED BINARY (p,q)
FIXED DECIMAL (p,q)
FLOAT BINARY (p)
FLOAT DECIMAL (p)

FIXED DECIMAL
FIXED DECIMAL

FLOAT BINARY
FLOAT BINARY
FLOAT BINARY
FLOAT BINARY

FLOAT DECIMAL
FLOAT DECIMAL
FLOAT DECIMAL
FLOAT DECIMAL

(p, @

(MIN(CEIL(p*3.32)+1,48), CEIL(q*3.32))
(MIN(CEIL(p/3.32)+1,14), CEIL(q/3.32))
, @

(MIN(p,48))

(MIN(CEIL(p*3.32),48))

(p)

(MIN(CEIL(p*3.32),48))

(MIN(CEIL(p/3.32),14))
(MIN(p,14))
(MIN(CEIL(p/3.32),14))
)

DCL FIXDEC FIXED DECIMALS
DCL FLDEC FLOAT DECIMALS
DCL FIXBIN FIXED BINARY3S
DCL FLBIN FLOAT BINARY3

L]

FIXDEC = 12.0E13

PUT SKIP LIST(FIXDEC)}

/#RESULT IS 120 . 0/

L]

FLDEC = 5%

PUT SKIP LIST(FLDEC)$

/4RESULT IS $40000000000000E+000 ®y

[]

FLBIN = 65.0E~13

PUT SKIP LIST(FLBIN)S

/#RESULT 1S 1.,000001000E+0068 */
/#LISTING IS 6.5000000000000E+000 */

L]

FIXBIN = 253

PUT SKIP LIST(FIXBIN)3

/#RESULT IS 000110018 */
/7#LISTING IS 25 *y

Figure 7-7. Arithmetic to Arithmetic Conversion Examples

CHARACTER TO ARITHMETIC CONVERSION

The length of the source character string is known. The
source string is expected to contain an arithmetic
constant, optionally preceded by a sign. The constant can
be preceded and followed by any number of blanks. If the
source string consists entirely of blanks, or if the source
string is null, the value is zero. The intermediate value
resulting from the conversion has the mode REAL. An
arithmetic to arithmetic conversion is used to convert the
arithmetic constant to the required base, secale, and
precision. The required precision is not known if the
conversion was caused by an operator in an expression. In
that case, the precision for the conversion becomes (14) or
(14,0) for DECIMAL, (48) or (48,0) for BINARY.

7-10

The CONVERSION condition is raised if the source string
does not contain a valid arithmetic constant or all blanks.

If conversion from character string to arithmetic involves an
arithmetic precision with q=0, any fractional digits are lost.

Examples of character to arithmetie conversion are shown in
figure 7-8.

DCL FIXDEC FIXED DECIMALS
DCL FIXBIN FIXED BINARYS

L]

FIXDEC = +125.,3+%

PUT SKIP LIST(FIXDEC)3$

/#RESULT IS 125 */

L

FIXBIN = ++101+3

PUT SKIP LIST(FIXBIN)S

/#RESULT IS 0000000011001018B */
/7#LISTING IS 101 */

Figure 7-8. Character to Arithmetie Conversion Examples

BIT TO ARITHMETIC CONVERSION

The length of the source bit string is known. The bit
string is considered to be a positive binary integer with a
length of 48 bits. If the string length is greater than 48,
only the rightmost 48 bits are used. If the source string is
null, the value is zero. The intermediate value resulting
from the conversion has the mode REAL. An arithmetic
to arithmetic conversion is used to convert the FIXED
BINARY integer to the required base, scale, and
precision. The required precision is not known if the
conversion was caused by an operator in an expression. In
that case, the precision becomes (14) or (14,0) for
DECIMAL, (48) or (48,0) for BINARY.

Examples of bit to arithmetic conversion are shown in
figure 7-9.

60388100 B

DCL FIXDEC FIXED DECIMALS
DCL FLBIN FLOAT BINARYS

L]

FIXDEC = +1+83

PUT SKIP LIST(FIXDEC)S$

/BRESULT IS 1 .y

FLBIN = +1101+83

PUT SKIP LIST(FLBIN)S

/%RESULT IS 1.101000... O0O00E+0038 W4
7*LISTING IS 1,3000000000000E+001 ./

Figure 7-9. Bit to Arithmetic Conversion Examples

ARITHMETIC TO CHARACTER CONVERSION

The mode, base, scale, and precision of the arithmetic
source value are known. An arithmetic to arithmetic
conversion is used, if necessary, to convert the source value
to a DECIMAL value. The DECIMAL value is then
converted to a character string. Conversion to character
string is described in terms of picture-controlled conversion.
Conversion is performed in one of the following ways to
generate the result string, S:

® Value FIXED DECIMAL with q=0: The length of S is
p+3. The string value is derived as if under the control
of the picture

"BB(p)-9'

e Value FIXED DECIMAL with p>=q and ¢>0: The length
of S is p+3. The string value is derived as if under the
control of the picture

'B(i)-9V.(q)9' where repetition faetor i=p-q
and q controls the number of
digits in the fractional part

® Value FIXED DECIMAL with p=q and g>0: The length
of S is pt4. The string value is derived as if under
control of the picture

-9V.(qQ)9'

® Value FIXED DECIMAL with p<q or with gq<0: The
length of S is p+3+k, where k is the number of digits
needed to represent the value of q. A partial string
value is derived as if under the control of the picture
_ (p)-9t where the value is multiplied by
(10**q) before being - edited
through the picture

The partial string is completed with the addition of an F
followed by a signed decimal integer whose value is -q.

e Value FLOAT DECIMAL: The length of S is p+7. The
string value is derived as if under the control of the
picture

'-9V.(i))9ES999' where repetition factor i=p-1

If the required length is known, the length of string S is

adjusted to the target length. The string S is padded on the

right with blanks or truncated on the right to form the
intermediate value.

603838100 A

Examples of arithmetie to character conversion are shown in
figure 7-10.

DCL CHAR CHARACTER(8) VARYING?S

CHAR = ~10%

PUT SKIP LIST(ChAR)S

/*RESULT IS ¢+ -10+ */
/*LISTING IS -10 ./

[]

CHAR = 11,183

PUT SKIP LIST(CHAR)S

/%RESULT IS + 3,5+ */
/*LISTING IS 3.5 W4

Figure 7-10. Arithmetie to Character Conversion Examples

CHARACTER TO CHARACTER CONVERSION

" The length of the source character string and the length of

the target character string are known. The source string is
adjusted to the length of the target string. The source
string is padded on the right with blanks or truncated on the
right to form the intermediate value.

Examples of character to character conversion are shown in
figure 7-11.

DCL CHAR CHARACTER(8)$

CHAR = +G+*3%

PUT SKIP LIST(CHAR)S

/®*RESULT IS +C * Y3
/7#*LISTING IS G *y

CHAR = +A12812C12012+%

PUT SKIP LIST(CHAR)S

/*RESULT IS +A12812Cl+ ./
/*LISTING IS Al2812C1 4

Figure 7-11. Character to Character Conversion Examples

BIT TO CHARACTER CONVERSION

The length of the source bit string is known. The source
string is converted to a character string by changing each
'0'B bit of the source to a '0' character and each '1'B bit to a
"' character. If the required length is not known, the
changed string is the intermediate value.

If the required length is known, the length of the string is
adjusted to the target length. The string is extended on the
right with blanks or truncated on the right to form the
intermediate value.

An example of bit to character conversion is shown in
figure 7-12.

7-11

DCL CHAR CHARACTER(8)3

L]

.

CHAR = +1101+83

PUT SKIP LIST(CrAR)S)

/*RESULT IS +1101 + #®y
7#LISTING IS 1101 A4

Figure 7-12. Bit to Character Conversion Example

ARITHMETIC TO BIT CONVERSION

The mode, base, scale, and precision of the source arith-
metic value are known. The absolute value of the source is
taken. An arithmetic to arithmetic conversion is used,. if
necessary, to convert the source value to a FIXED BINARY
value with the precision shown in table 7-6. The FIXED
BINARY integer is interpreted as a bit string with a length
that is the precision p. -If the required length is not known,
the intermediate value is the bit string.

TABLE 7-6. PRECISION IN ARITHMETIC TO BIT
CONVERSION

Source Type Required Precision

e |
(MIN(48,M AX(p—q,0)), 0)

(MIN(14,M AX(CEIL((p-q)*3.32),0)), 0)
(MIN(48,p), 0)
(MIN(14,CEIL(p*3.32)), 0)

FIXED BIN (p,q)
FIXED DEC (p,q)
FLOAT BIN (p)
FLOAT DEC (p)

If the required length is known, the length of the bit string is
adjusted to the target length. The bit string is padded on
the right with '0'B bits or truncated on the right to form the
intermediate value. ’

Examples of arithmetic to bit conversion are shown in
figure 7-13.

OCL BIT BIT(10)3

BIT = 10183
PUT SKIP LIST(BIT)S

/*RESULT IS +1010000000+8 */
BIT = 333
PUT SKIP LIST(BIT)

/%RESULT IS +0100001000+8 ‘ ./

Figure 7-13. Arithmetic to Bit Conversion Examples

CHARACTER TO BIT CONVERSION

The length of the source character string is known. The
source string must consist of '0' and "1' characters only. The
source string is converted to a bit string by changing each "0’
character to a '0'B bit and each '1' character to a '1'B bit. If
the required length is not known, the changed string is the
intermediate value.

7-12

If the required length is known, the length of the bit string is
adjusted to the target length. The string is padded on the
right with '0'B bits or truncated on the right to form the
intermediate value.

The CONVERSION condition is raised if the source st‘riﬁg
contains any characters other than '0' or '1' characters.

An example of character to bit conversion is shown in
figure 7-14.

DCL BIT BIT(10)%

*

L]

BIT = +01001+3

PUT SKIP LIST(BIT)S

/*RESULT IS +0100100000+86 */

Figure 7-14.. Character to Bit Conversion Example

BIT TO BIT CONVERSION

The length of the source bit string and the length of the
target bit string are known. The source string is adjusted to
the length of the target string. The source string is padded
on the right with '0'B bits or truncated on the right to form
the intermediate value.

Examples of bit to bit conversion are shown in figure 7-15.

DCL B17 BIT(10)3

L]

BIT = +110110483

PUT SKIP LIST(BIT)S \
/*RESULT IS +110110000048 7

L]

L

BIT = «111111011011+83%

PUT SKIP LIST(BIT)§

“/#*RESULT IS 2111111011048 A4

Figure 7-15. Bit to Bit Conversion Exémples

- —

POINTER TO OFFSET CONVERSION -

A pointer value can be converted to an offset value that
identifies the same BASED generation stored within_the
same area. The program is in error unless the offset was
declared with the area reference, or the conversion occurs
during evaluation of the OFFSET builtin function where the
area reference is supplied as the second argument.

OFFSET TO POINTER CONVERSION

An offset value that identifies a BASED generation allo-
cated within an area can be converted to a pointer value
that identifies the same generation. The program is in error
unless the offset was declared with the area reference, or
the conversion occurs during evaluation of the POINTER
builtin function where the area is identified by the second
argument.

60388100 A

PICTURE-CONTROLLED CONVERSIONS

Picture-controlled conversions apply to pictured variables
and to input/output operations that involve picture specifi-
cations. Pictured variables are declared with the PICTURE
attribute, as described in section 4, Attributes. Stream 1/0
operations can be performed with the P format item, as
described in section 8, Input/Output. Specification of the
PICTURE attribute or the P format item involves the use of
picture codes. Syntax of the picture specification is shown
in figure 7-16. The following discussion provides the
specific rules for using the picture codes.

A pieture can be specified for a pictured character, pictured
numerie fixed point, or pictured numerie floating point item.
Each pictured character item has a character value. Each
pictured numeric item has a character value and also a
decimal arithmetie value that can be fixed point or floating
point. Any pictured variable is stored as a character value.
Maximum length of the character value is 1000 characters.
If the arithmetic value of any pictured numeric variable is
required, the arithmetic value is interpreted from the:
present character value.

Picture codes can be specified with repetition factors. Each
repetition factor is an unsigned decimal integer enclosed in
parentheses. The repetition count applies to the picture
code immediately to the right of the repetition factor. If
the repetition factor is zero, the picture code is ignored
rather than repeated. For instance, '(5)299' is equivalent to
'ZZZ72799"' and '(0)Z99' is equivalent to '99'.

PICTURED CHARACTER

A pictured character item has a character value that can
contain characters, digits, or blanks. The picture codes for
a pietured character item specify the type of character that
can appear in each position. The available codes are shown
in table 7-7.

TABLE 7-7. CODES FOR PICTURED CHARACTER

Category Code Use
1== —— |
Character codes 9 Digit or blank
A Letter A-Z or blank
X Any character
Validate through Picture

A character value that is assigned to a pictured character
variable or written out through a P format item is validated
through the picture. The character value must mateh the
picture. If an indicated character does not appear, the
CONVERSION condition is raised.

Character Codes

The A code indicates any letter (A through Z) or blank. The
X code indicates any character. The 9 code indicates any
digit or blank. The picture specification for each pictured
character item must contain at least one A or X code. The
total number of A, X, and 9 codes establishes the number of
characters in the pictured character item.

60388100 A

PICTURED NUMERIC FIXED POINT

A pictured numeric fixed point item has a character value
representing a FIXED DECIMAL value on which editing has
been performed. The character value contains the decimal
digits and all edited characters including insertion char-
acters. The character value does not include the assumed
decimal point but can include inserted decimal points.

Assignment of an arithmetic value to a pictured numeric
fixed point variable can raise the SIZE condition. SIZE is
raised if editing the value through the picture specification
causes loss of significant digits on the left. SIZE is also
raised if the arithmetic value is negative but the picture
does not include a sign indication.

The picture codes used for pictured numeric fixed point
items can be grouped by function. The available picture
codes are shown in table 7-8. A pictured numeric fixed
point item consists of one field. If the assumed decimal
point (picture code V) is used, the assumed decimal point
divides the picture into an integer subfield and a fractional
subfield.

TABLE 7-8. CODES FOR PICTURED NUMERIC

FIXED POINT
Category Code Use
Digit code 9 Digit
Z Leading zero suppression digit
* Leading zero replacement digit
Y Zero suppression digit
Decimal point A Assumed decimal point
code
Sign position S Sign + or - (can drift)
codes + | signif + (can drift)
- Sign if - (can drift)
Signed digit T Overpunch digit with + or -
codes I Overpunch digit if +
R Overpunch digit if -
Sign suffix CR | Credit indicator
codes DB | Debit indicator

Currency code $ Dollar sign (can drift)

Insertion codes / Inserted slash
’ Inserted comma
. Inserted period

B Inserted blank

Scaling factor F Scaling factor for arithmetie
code value

The picture specification for a fixed point value must
contain at least one code that represents a digit -
(9Z*YTIorR) in the field. The maximum number of
digits that can be represented in the entire field is 14. Only
one assumed decimal point code (V) can be specified. In the
entire field, the sign can be represented only once with a
sign position code (S + or -), a signed digit code (T I or R), or

7-13

pictured-numeric-fixed

pictured-character }
pictured-numeric-float

where pictured-character must include at least one A or X code and is

il

where pictured-numeric-fixed must include at least one of the codes 9 Z * Y T | or R, must include no more than one sign code
S+ -T | R CR or DB, can include insertion codes / , . or B at any position, and is

nondrifting-field [+] LT]
{drifting—field } [F(*| integer)

where nondrifting-field is

s
[sl.[f] ® digits

[s] e digits { CR }

DB.

where digits is ‘
[] [digit-pos] ... [V] [digit-pos] ...
oo fvE |
where digit;pos is |
i
iy

where drifting-field is

*N

[s]e driftingsign

[f] .' { :s[.s. ;. .[.taig\ilt-:t?s']. ...[v] [digit-pos]. .. }

s (3]0 [3]] |
sfs...]vs... ’ l
;fﬁ} 2] - VI3

where pictured-numeric-float is

cr !
o8 §

mantissa { i} exponent

where mantissa must include at least one-of the codes 9 Z * Y T | or R, must mclude no more than one sign code S+ - T | or
R, cap include insertion codes / , . or B at any position, and is

157 e
]

drifting-sign

and where exponent must include at least one of the codes 9 Z * Y T | or R, must include no more than one sign code S + -
T 1 or R, can include insertion codes / , . or B at any position, and is

9 T |

Figure 7-16. Picture Specification Syntax

7-14 : _ , 60388100 A

a sign suffix code (CR or DB). A sign position code can be
used in a drifting sequence. In the field, a currency code ($)
can be used only once and can be used in a drifting sequence.
The insertion codes (/,.or B) cause insertion of a slash,
comma, period, or blank' anywhere in the field. Any
combination and number of insertion characters can be used.
The scaling factor code (F) can be used to specify that the
arithmetic value is to be scaled. Each picture code for
numerie fixed point items is described by category.

Edit through Picture

An arithmetic value that is assigned to a pictured numeric
variable or written out through a P format item is edited
through the picture specification. The arithmetic value is
used to create a character value that can inelude digits,
blanks, a sign indication, a dollar sign, and inserted
characters, The created character value depends on the
pieture codes specified. The picture codes indicate a
character value created from a FIXED DECIMAL arithmetie
value.

Interpret for Arithmetic Value

A pictured numeric is stored as a character value and can be
interpreted for the arithmetic value when the arithmetic
value is required for the purpose of operations or assign-
ment. The character value is interpreted for the arithmetic
value when an input value is read in through a P format
item. The arithmetic value is FIXED DECIMAL with a
precision indicated in the picture specification.

Digit Codes

The digit codes specify character positions in which a
decimal digit can appear. The digit codes are the following:

- 9 indicates a digit position to hold a digit. The
position can hold a leading zero as necessary.

Z indicates leading zero suppression. When the
position would hold a leading zero for the number,
the zero is replaced with a blank. When the
position would hold a significant digit, the Z code
acts as a 9 code.

* indicates leading zero replacement. When the
position would hold a leading zero for the number,
the zero is replaced with an asterisk. When the
position would hold a significant digit, the * code
acts as a 9 code.

Y indicates zero suppression. When any position of a
number would hold a zero digit, the zero is
replaced with a blank. Effectively, the Y code
unconditionally replaces a zero with a blank. When
the position would hold any nonzero digit, the
Y code acts as a 9 code.

The 9 code is used for each position that must hold a digit.
Leading zeros in the integer subfield and trailing zeros in
the fractional subfield are represented as zeros.

The Z code represents a digit position. The Z code sup-
presses any leading zero and replaces it with a blank. The
Z code cannot be used in the same field as the * code. The
Z code cannot be used in the same field as a drifting
sequence of S+ -or $ codes. The Z code also cannot be
used to the right of any 9 Y TIor R code. Usually, a
number of Z codes precede a number of 9 codes in the
integer subfield. If a Z code appears in any position in the

60388100 A

fractional subfield, all digit positions in the integer and
fractional subfields must contain the Z code. When all
integer and fractional digit positions contain the Z code,
suppression of leading zeros in the fractional subfield is not
performed unless all positions in the number are zero digits.
If all positions are zero digits, the character value of the
entire picture is a string of blanks.

The * code represents a digit position. The * code replaces
any leading zero with an asterisk. The * code cannot be
used in the same field as the Z code. The * code cannot be
used in the same field as a drifting sequence of S+ ~or $
codes. The * code also cannot be used anywhere to the right
of the code 9 Y TIor R. Usually, a number of * codes
precede a number of 9 codes in the field. If a * code
appears in any position in a fractional subfield, all digit
positions in the integer and fractional subfields must contain
the * code. When all integer and fractional digit positions
contain the * code, replacement of leading zeros in the
fractional subfield is not performed unless all positions in
the number are zero digits. If all positions are zero digits,
the character value of the entire picture is a string of
asterisks.

The Y code represents a digit position but suppresses any
zero by replacing it with a blank. The Y code can appear in
any position where unconditional replacement of a zero is
required.

Examples of digit codes are shown in figure 7-17.

Arithmetic Picture Character
Value Specification Value

120 999 120
2 999V 002
1.34 999V 001
5 279 AAS
19.65 229V A19
1256 2Z22 1256
0 (4)2 AAAA
6 * % *9 * % *6
25 Ry *250
570 YYYY AB7A
45.0578 YYYVY A45A
10005 YYYYYY A1TAAAS

Figure 7-17. Digit Codes and Decimal Point Code Examples

Decimal Point Code

The decimal point code is the following:

V specifies the assumed location of the decimal point
in the arithmetic value. The V code separates the
integer and fractional subfields. The V code does
not specify insertion of an actual decimal point
character.

The V code cannot appear more than once in the field. If no
V code appears, a V code is assumed at the right end of the
field. The position of the V code establishes digit codes to
the left as being in the integer subfield and digit codes to
the right as being in the fractional subfield. Examples of
the V code are included in figure 7-17.

7-15

Sign Position Codes

The sign position codes represent a sign position in the
character value of the picture. The sign position codes are
the following:

S indicates a sign represented as + (value>=0) or -
(value<0). A sequence of S codes represents a
drifting + or -.

+ indicates a sign represented as + (value>=0) or
blank. A sequence of + codes represents a
drifting +.

- indicates a sign represented as - (value<0) or blank.
A sequence of - codes represents a drifting ~-.

Each picture can have only one code for the sign. The sign
code can be a sign position code (S + or -) or one of the
other sign codes (TIR CR or DB). A sign position code
must appear to the left or right of all digit codes in the
field. Examples of sign position codes are shown in
figure 7-18.

Arithmetic Picture Character
Value Specification Value
1367 599999 +01367
5.0 999S : 005+
-12.0 +9999 A0012
-3 9999- 0003-

553 S$SS5SS99 AAA+553
-152 —9 AA-152
135 T99 A35

135 919 1C5

135 99R 135

- -135 99R 13N
1250 (6)ZCR AA1250AA
-8841 - Z22Z2ZZCR AA8841CR
145 222Z2ZDB AA145AA

Figure 7-18. Sign Codes Examples

The sign position code can be static or drifting. Static use
reserves one position in the character value for the sign
associated with the arithmetic value of the pictured numeric
item. Drifting use involves a sequence of occurrences of the
same sign code. The S + - or $ code can be used as a drifting
sequence, but only one drifting sequence can appear in the
field. If a drifting $ is used, no drifting sign can be used in
the same field. '

A drifting sign cannot appear in the same field with any
Z code or * code. The drifting sequence must appear to the
left of all digit codes (9 and Y) in the field. The sign
position moves to the right through leading zeros. Except
for the first position, all positions in the drifting sequence
can contain a significant digit. The sign occupies the
position immediately to the left of the first significant digit.
All positions to the left of the sign in the drifting sequence
are supplied as blanks. If the drifting sequence occupies all
digit positions and the value is zero, the entire field
becomes a sequence of blanks. .

The drifting sequence can contain the V code and can

contain insertion codes (/, . or B). If the drifting sequence
contains the V code, all digit positions in the fractional

7-16

subfield must be included in the drifting sequence. The
V code terminates movement of the sign to the right, except
when the value of the picture is zero, in which case the
drifting sequence is represented as all blanks.

Insertion codes w1thm the drifting sequence (or following the
drifting sequence) are considered part of the sequence and
can be altered as appropriate. If an insertion code appears
more than one position to the left of the first significant
digit, the insertion code becomes a blank. If the insertion
code is immediately to the left of the first significant digit,
the insertion code is replaced with the drifting symbol. If
the insertion code appears to the right of the first
significant digit, the insertion code operates normally.
Refer to the description of insertion codes later in this

section.

If a fractional value between ~1.0 and 0.0 is assigned to a
picture and the fractional digits are truncated, the sign
remains negative because evaluation of the sign occurs
before any necessary truncation.

Signed Digit Codes

The signed digit codes specify that the sign of the
arithmetic value and the value of a digit are to be
represented as a single character. Combination of a sign
and a digit yields an overpunch digit that is represented as a
character. The signed digit codes are the following:

T indicates that a 12-punch (value>=0) or 11-punch
(value<0) is overpunched in the digit position.

I indicates that a 12-punch is overpunehed in the
digit position (value >=0).

R indicates that an 11-punch is overpunched in the
digit position (value <0).

Each picture can have only one code or drifting code for the
sign. The T 1 or R code can be used, or one of the other sign
codes (S + ~ CR or DB). When a signed digit code is used,
the value of the digit and the sign are contained in any
chosen digit position. Examples of signed digit codes are
included in figure 7-18.

The character represented by the combination of a digit and
12-punch or 11-punch is shown in table 7-9.

TABLE 7-9. SIGNED DIGIT CODE REPRESENTATIONS

o | e | ene |
0 < !
1 A J
2 B K
3 C L
4 D M
5 E N
6 F (0]
7 G P
8 H Q
9 I R

60388100 A

Sign Suffix Codes

The sign suffix codes for credit and debit are intended for
use in financial reports. The sign suffix codes are the
following:

CR indicates that the last two characters of the
field are 'CR'(value<0) or two blanks
(value>=0).

DB indicates that the last two characters of the
field are 'DB'(value<0) or two blanks
(value>=0).

The credit or debit indication always appears at the end of
the character value; the CR or DB code must be to the right
of all digit positions in the field. Each field can have only
one indication of sign. The CR or DB code can be used, or
one of the other sign codes (S+ - T Ior R). Examples of
sign suffix codes are included in figure 7-18.

Currency Code
The currency code is the following:

$ supplies a dollar sign in the character value of the
picture. A sequence of $ codes represents a
drifting $.

The ecurrency code $ can be used in a statie or drifting
manner. Static use involves one ocecurrence of the $ code to
the left or to the right of all digit positions in the field.
Drifting use of the $ code involves a sequence of $ codes.
Examples of the eurreney code are shown in figure 7-19.

Arithmetic Picture Character
Value Specification Value
51 $Z27272Z2 $AAB1
23 272777Z$ AAA23$
663 6)$9 AAAS663

Figure 7-19. Currency Code Examples

A drifting sequence of $ codes must appear to the left of all
digit codes. Only one drifting sequence can be used in a
field; the drifting dollar sign cannot be used if a drifting sign
(S + or -) is used. The drifting dollar sign also cannot appear
in any field containing a Z code or * code. The dollar sign
moves to the right through leading zeros. Except for the
first position, all positions in the drifting sequence can
contain a significant digit. The dollar sign occupies the
position to the left of the first significant digit. All
positions to the left of the dollar sign in the drifting
sequence are supplied as blanks. If the drifting sequence
occupies all digit positions and the value is zero, the entire
~ field becomes a sequence of blanks.

The drifting sequence can contain the V code and can
contain insertion codes (/,.or B). The discussion of the
Vcode and insertion codes used in a drifting sequence
appears under Sign Position Codes.

60388100 B

Insertion Codes

The insertion codes cause a character to be inserted into the
character value of the pictured numeriec item. The insertion
codes are the following:

/ indicates insertion of a slash '/' character.

, indicates insertion of a comma ',' character.

. indicates insertion of a period '.! character.

B indicates insertion of a blank ' ' character.

Insertion codes do not indicate digit positions. The . code
does not specify the position of the assumed decimal

. point. It can be used with the V picture code to cause the

assumed decimal point to be represented as a character.
An insertion code which is immediately preceded by a Z
picture code is represented as a blank when the Z code
causes a leading zero to be suppressed. An insertion code
which is immediately preceded by a * picture code is
represented as * when the * picture code causes a leading
zero to be replaced. Examples of insertion codes are
shown in figure 7-20.

Arithmetic Picture Character
Value Specification Value
122577 Y9/Y9/99 12/25/77
12.678 999V.99 012.57
15.36 2ZZN ZZ A15,36
12567.03 222,222V .99 A12,567.03
6475.77 222.22ZN 99 AAB.475,77
54.7 SBB99V.999 +AAB4.700
6 2,227ZV.ZZBDB AAANG.00AAA
0.25 ZZZN .99 AAA.25
0.25 2Z22.N99 AAAA2S
00345.67 22,279V.99 AAA345.67
00345.67 ** **QV.99 ***345.67

Figure 7-20. Insertion Codes Examples

The /code inserts a slash in the character value of the
picture.

The , code inserts a comma in the character value of the
picture.

The . code inserts a period in the character value of the
picture. The . code must not be confused with the V code
that specifies the assumed decimal point. The V code can
only appear once, while multiple . insertion codes can be
used. Usually, the . code is used immediately after the V
code, since the assumed decimal point is not represented
in the character value of the picture.

The B code inserts a blank in the character value of the
picture.

Scaling Factor Code

The scaling factor code is the following:

F(factor) indicates that the decimal digits in the
character value must represent a scaled
arithmetie value. The faector is an
optionally signed decimal integer.

7-17

The F code must appear at the right end of the field. The

scaling factor indicates that the arithmetie value is divided
by ten to the power of the scaling factor, that is,
(value/(10**factor)), before being used to create the char-
acter value. If the arithmetic value is subsequently
required, interpretation of the character value for the
arithmetie value involves multiplying the decimal value in
the character string by ten to the power of the scaling
factor, that is, (value*(10**factor)).. The scaling faector
must be in the range -255 to 255. Examples of the scaling
factor code are shown in figure 7-21.

TABLE 7-10. CODES FOR PICTURED NUMERIC
FLOATING POINT

Arithmetic Picture Character
Value . Specification Value
1800 9999F(2) 0018

1.35 999999F (-3) 001350

Figure 7-21. Scaling Factor Code Examples

PICTURED NUMERIC FLOATING POINT

A pictured numeric floating point item has a character value
representing a FLOAT DECIMAL value on which editing has
been performed. The character value contains the decimal
digits and all edited characters including insertion char-
acters. The character value does not include the assumed
decimal point in the mantissa but can include inserted
decimal points.

The pieture specification for a pictured numeric floating
point item consists of two fields. The picture field for the
mantissa is similar to the field used for a fixed point item
and can contain most of the picture codes available for a
numerie fixed point item. The picture field for the exponent
can contain a more restricted set of picture codes. The two
fields are included in the same picture specification; the
mantissa field is followed by the E or K exponent ecode that
precedes the exponent field. The available picture codes are
shown in table 7-10.

Edit through Picture

An arithmetic value that is assigned to a pictured numeric
variable or written out through a P format item is edited
through the picture specification. The arithmetic value is
used to create a character value that can include digits,
blanks, a sign indication for the mantissa, and inserted
characters, as well as an exponent indication and a sign
indication for the exponent. The created character value
depends on the picture codes specified. The picture codes
indicate a character value created from a FLOAT DECIMAL
arithmetic value.

Interpret for Arithmetic Value

A pictured numeric item is stored as a character value and
can be interpreted for the arithmetic value when the
arithmetic value is required for the purpose of operations or
assignment. The character value is interpreted for the
arithmetic value when an input value is read in through a
P format item. The arithmetic value is FLOAT DECIMAL
with a preeision indicated in the picture specification.

Codes for the Mantissa

For the mantissa, digit codes (9 Z * or Y) can be specified in
the same way as for a pictured fixed point numeric item.

Category Code Use
s |
Mantissa
Dig'it codes 9 Digit
Z Leading zero suppression digit
* Leading zero replacement digit
Y Zero suppression digit
Decimal point \ Assumed decimal point
code
Sign position S Sign + or - (can drift)
codes + | signif + (can drift)
- Sign if - (can drift)
Signed digit T Overpunch digit with + or -
codes ’ I Overpunch digit if +
R Overpunch digit if -
Insertion codes / Inserted slash
, Inserted comma

Inserted period
B Inserted blank

Exponent

=

Exponent codes Start exponent field (supply E)

K Start exponent field

(suppress E)
Digit codes 9 Digit
Z Leading zero suppression digit
* Leading zero replacement
Y Zero suppression digit
Sign position S Sign + or -
codes - + | signif+
- Sign if -
Signed digit T Overpunch digit with + or -
codes I Overpunch digit if +
R Overpunch digit if -
Insertion / Inserted slash
codes s Inserted comma
. Inserted period

B Inserted blank

The assumed decimal point can be indicated with the V code.
The sign can be represented with a sign position code
(S+or-) or a signed digit code (TIorR). A drifting
sequence of the sign eode S+ or - can be used. Insertion
codes (/. , B) can be used. The codes $ CR DB and F eannot
be used and are used only for pictured numeric fixed point
items.

60388100 A

The value of the mantissa is adjusted so that the first
significant digit appears in the first available digit position,
even if leading zero suppression or leading zero replacement
is specified with Z codes or * codes.

Codes for the Exponent

The exponent code separates the mantissa field and the
exponent field. The exponent codes are the following:

E starts the exponent field and inserts the exponent
indicator E.

K starts the exponent field but suppresses the expon-
ent indicator E.

Either the E code or K code must be used in any floating
point picture specification. The exponent field follows the

60338100 A

E code or K code. The digit codes (9 Z * or Y) can be used.
A sign can be represented with a sign code (S +or -) or a
signed digit code (T Ior R). The sign code S + or - cannot
be used in a drifting sequence. Insertion codes (/, . or B)
can be included. Examples of pictured numeric floating
point items are shown in figure 7-22.

Arithmetic Picture Character
Value Specification Value
1.1E1 99999ES99 11000€E-03
3.456E3 ZZZZV.9ES99 3456.0E+00
3.4E-7 9V.99BBES99 3.4044E-07
7.7€-1 V.(4)9K-(3)9 .77004000
352E-12 V.9999KB-99 .35204-12

Figure 7-22. Pictured Numeric Floating Point Examples

7-19

INPUT/OUTPUT 8

“

This section describes the available PL/I data transmission
operations. Input/output operations are either stream I/O
operations or record I/0O operations.

Stream 1/0 operations involve the input or output of streams
of legible characters. Data items transmitted with stream
I/0 operations can be converted from one computational
type to another, and can be formatted under program
control. The two methods of stream transmission are list-
directed I/O and edit-directed I/O. The stream I/O state-
ments are

GET Stream input

PUT Stream output
Record I/O operations involve the input or output of
complete records transmitted in internal form. No compu-

tational conversions ocecur, and no formatting of data items
is possible. The record I/0 statements are

READ Record input
WRITE Record output
REWRITE Record replacement
DELETE Record deletion
LOCATE Record output

Stream I/O operations and record I/O operations (except for
stream I/O with the STRING option) are performed on files
that are opened and closed during program execution. The
1/0 statements that can be used to open and close files are

OPEN Open file

CLOSE Close file

Various conditions can be raised during input/output opera-
tions., The possible /O conditions are UNDEFINEDFILE,
ENDFILE, ENDPAGE, KEY, RECORD, and TRANSMIT.

FILES

The file constants in a program have no intrinsic conneetion
to CYBER Record Manager (CRM) local files. Association
of a particular file constant with a CRM file is made when
the file constant is opened during program execution. A file
is defined as a file constant that is open, together with the
completed file description attributes and the associated
CRM file.

FILE OPENING

File opening is the process of establishing all necessary
information so that the file can be used. If a file constant is
not open, no association with a CRM file exists. When the
file constant is opened, an association exists. When the file
is closed, the established association is discarded. Sub-
sequent reopening of the file constant can establish asso-
ciation with a different CRM file. Attributes specified in
the declaration of a file constant cannot be altered during

60388100 A

program execution. When a file constant is opened, a
complete set of file description attributes is established for
the file, the file constant is associated with a CRM file (the
file title is established), and all necessary CRM file
processing options are established from ENVIRONMENT
information and defaults.

A file can be opened explicitly by an OPEN statement, or
can be opened implicitly by execution of a stream or record
I/O statement. An attempt to open a file constant is
ignored if the file constant is already open.

FILE DESCRIPTION
The available file deseription attributes are STREAM,
RECORD, INPUT, OUTPUT, UPDATE, PRINT,

SEQUENTIAL, DIRECT, KEYED, and ENVIRONMENT. The
ENVIRONMENT attribute specifies CRM file processing
options. A file constant can be declared with file
description attributes in the DECLARE statement.

If a file is opened explicitly by an OPEN statement, options
in the OPEN statement can be used to supply file description
attributes. The attributes specified in the OPEN statement
are combined with the attributes specified in the declaration
of the file constant.

If a file is opened implicitly by execution of a stream or
record 1/O statement, the statement implies file description
attributes that are combined with the attributes specified in
the declaration of the file eonstant. The attributes implied
by the statement that causes implicit opening of the file are
shown in table 8-1.

TABLE 8-1. FILE DESCRIPTION FROM
IMPLICIT OPENING

Input/Output Statement
Causing Implicit Opening

Implied File
Description Attributes

GET STREAM INPUT
PUT STREAM OUTPUT
READ RECORD (if the declaration

does not specify UPDATE,
INPUT is also implied)

WRITE RECORD (if the declaration.
does not specify UPDATE,
OUTPUT is also implied)

REWRITE RECORD UPDATE

DELETE RECORD UPDATE

LOCATE RECORD OUTPUT

Certain file deseription attributes imply other file deserip-
tion attributes. PRINT implies STREAM and OUTPUT.
UPDATE, SEQUENTIAL, DIRECT, or KEYED implies
RECORD. DIRECT implies KEYED.

8-1

In some cases, a default file deseription attribute can be
supplied. If STREAM or RECORD is not indicated, STREAM
is supplied. If INPUT, OUTPUT, or UPDATE is not
indicated, INPUT is supplied. If SEQUENTIAL or DIRECT is

not indicated for a record file, SEQUENTIAL is supplied. If -

a file constant named SYSPRINT has the attributes STREAM
and OUTPUT, PRINT is supplied.

The completed set of file deseription attributes must be a
consistent set. If conflicting attributes exist in the set, the
UNDEFINEDFILE condition is raised. In the completed set,
STREAM and RECORD are alternative types of file opera-
tions. INPUT, OUTPUT, and UPDATE are alternative types
of usage for the file. INPUT and QUTPUT can apply to a
stream file or.a record file. UPDATE can apply only to a
record file. PRINT can .apply only to a stream output file.
For a record file, SEQUENTIAL and DIRECT are alternative
types of access to records. KEYED ecan apply to a
sequential record file or a direet record file.

The completed file description attributes are shown in
table 8-2 for all consistent combinations of attributes,
including declared attributes, and additional attributes
specified in the OPEN statement or implied by the I/0
statement that implicitly opens the file. The
ENVIRONMENT attribute can apply to any consistent
combination shown in the table. Section 9, CYBER
Record Manager Interface, describes the available CRM
file processing options for each attribute combination.

FILE TITLE AND LOCAL FILE NAME

When a file constant is opened, a file title is established.
The file title becomes the local CRM file name unless the
title is too long to be a legal CRM file name.

The local CRM file name must consist only of letters and
digits, must begin with a letter, and must be 1 to 7
characters long. If the file title is longer than 7
characters, the local file name is constructed from the
first four and last three characters of the file title. For
example, the file title LONGTITLE would specify the
local CRM file LONGTLE.

The file title can be specified in one of three ways. If the
file is opened explicitly with an OPEN statement, the
TITLE option can be used to specify the file title. If the
file is opened with an OPEN statement and the TITLE
option is not used, the file constant specifies the file
title. If the file is opened implicitly by execution of an
I/0 statement, the name of the referenced file constant
specifies the file title.

Treatment of the file title is identical to the treatment of
external names in general. The file title must not
duplicate the local file name of an open file. Note that
the file titles TESTIINPUT and TEST2INPUT would cause
an invalid duplication of the local file name TESTPUT. A
local file name can duplicate the name of an external
variable, named constant, or eondition without conflict.

8-2

STREAM I/0

In stream I/O operations, the data in the file is considered as
a continuous stream of characters organized into lines. A
file with the PRINT attribute can also be organized intc
pages. Stream I/O statements specify the input/output of
data items and direct any editing or formatting of the data.
Stream I/O operations are different from record I/O opera-
tions described later in this section.

STREAM FILE STATUS

Each file constant that can be used for a stream file carries
the following information as ‘the result of program
compilation: .

® Declared file description attributes, if any.
® Declared ENVIRONMENT, if any.

When the file constant is opened either explicitly by OPEN
statement or implicitly by execution of a stream I/O
statement, the following information is added:

® The file title, either supplied in the TITLE option of the
OPEN statement or created from the file eonstant.

o Additional attributes specified on the OPEN statement
or implied by the statement that implicitly opens the
file constant.

® Any additional attributes required to complete the set
of file description attributes for the file. .

® Creation of a file information table (FIT) used by
CRM. The ENVIRONMENT attribute specifies file
processing options that are used for option fields in
the FIT (see section 9).

® The line size for the file is established. If the OPEN
statement specifies the LINESIZE option, that line size
is used. If LINESIZE is not specified, the following line
size is used:

80 STREAM OUTPUT
136 STREAM OUTPUT PRINT

Line size is the maximum number of characters per line
of user data. For a PRINT file, the line size is the
maximum number of printable characters in each line.
The line size does not count any earriage control
information for the line. A line size specified with the
ENVIRONMENT attribute overrides the LINESIZE
option of the OPEN statement or the default line size
shown.

® The current column position is established. Column
position is set to 1 when the file constant is opened and
reset to 1 for each new line. The current column
position is the number of characters already trans-
mitted in the line, plus one.

® For a PRINT file only, the page size is established. If
the OPEN statement specifies the PAGESIZE option,
that page size is used. If page size is not specified, the
default page size is 60 lines. The page size establishes
the maximum number of lines that can be written on a
page before the ENDPAGE condition is raised. The
ENDPAGE condition is raised when the current line
number is incremented and the increment causes the
current line number to exceed the maximum page size.

60388100 B

TABLE 8-2. COMPLETED FILE DESCRIPTION

Combinations of Declared Attributes and . . cas
Attributes Specified or Implied in File Opening Resulting Completed File Description
_— —
STREAM INPUT
STREAM
INPUT STREAM INPUT
(no attributes supplied)
STREAM OUTPUT
OUTPUT STREAM OUTPUT
STREAM OUTPUT PRINT
STREAM PRINT
OUTPUT PRINT STREAM OUTPUT PRINT
PRINT
RECORD INPUT SEQUENTIAL
RECORD INPUT
RECORD SEQUENTIAL RECORD INPUT SEQUENTIAL
RECORD
INPUT SEQUENTIAL
SEQUENTIAL
RECORD OUTPUT SEQUENTIAL
RECORD OUTPUT RECORD OUTPUT SEQUENTIAL
OUTPUT SEQUENTIAL
RECORD UPDATE SEQUENTIAL
RECORD UPDATE
UPDATE SEQUENTIAL RECORD UPDATE SEQUENTIAL
UPDATE
RECORD INPUT SEQUENTIAL KEYED
RECORD INPUT KEYED
RECORD SEQUENTIAL KEYED
RECORD KEYED
INPUT SEQUENTIAL KEYED RECORD INPUT SEQUENTIAL KEYED
INPUT KEYED
SEQUENTIAL KEYED
KEYED
RECORD OUTPUT SEQUENTIAL KEYED
RECORD OUTPUT KEYED
OUTPUT SEQUENTIAL KEYED RECORD OUTPUT SEQUENTIAL KEYED
OUTPUT KEYED
RECORD UPDATE SEQUENTIAL KEYED
RECORD UPDATE KEYED
UPDATE SEQUENTIAL KEYED RECORD UPDATE SEQUENTIAL KEYED
UPDATE KEYED
RECORD INPUT DIRECT KEYED
RECORD INPUT - DIRECT
RECORD DIRECT KEYED
RECORD DIRECT
INPUT DIRECT KEYED RECORD INPUT DIRECT KEYED
INPUT DIRECT
DIRECT KEYED
DIRECT
RECORD OUTPUT DIRECT KEYED
RECORD OouTPUT DIRECT
OUTPUT DIRECT KEYED RECORD OUTPUT DIRECT KEYED
OUTPUT DIRECT
RECORD UPDATE DIRECT KEYED
RECORD UPDATE DIRECT
) UPDATE DIRECT KEYED RECORD UPDATE DIRECT KEYED
UPDATE DIRECT
60388100 A 8-3

® TFor a PRINT file only, the current line number is
established. = The current line number is set to 1 when
the file constant is opened. The current line number is
the number of complete lines written since the begin-
ning of the page, plus one.

e For a PRINT file only, the current page number is
established. The current page number is set to 1 when
the file constant is opened. The current page number is
incremented whenever a new page is established and
can be reset with the PAGENO pseudovariable.

The following I/O conditions can be raised during stream I/0
operations using GET and PUT statements with the FILE
option:

UNDEFINEDFILE Failure to open a file correctly.

ENDFILE End of input file exceeded.

ENDPAGE End of page exceeded on a print
file.

TRANSMIT Data transmission error.

In addition, the SIZE or CONVERSION condition can be
raised during list-directed or edit-directed operations in-
volving conversion of data.

STREAM I/O STATEMENTS

The GET and PUT statements are used for stream I/0. The
FILE and STRING options are mutually exclusive. The GET
statement syntax and the PUT statement syntax are shown
in seetion 12, Statements. The FILE option is used for data
transmission to and from stream files on external
input/output devices. The STRING option is used for data
transmission to and from character strings in internal
storage. If both the FILE option and the STRING option are
omitted from a GET or PUT statement, a FILE option is
assumed.

GET and PUT statements with the FILE option are used for
stream files. The available GET and PUT statements for
each possible set of file deseription attributes are shown in
table 8-3.

GET and PUT statements with the STRING option are used
for character string transmission. The available GET and
PUT statements are shown in table 8-4.

The FILE option specifies the stream file to be used for the
input/output operation. If both the FILE option and the
STRING option are omitted from a GET or PUT statement, a
FILE option of the form FILE(SYSIN) is supplied for GET and
a FILE option of the form FILE(SYSPRINT) is supplied
for PUT.

The STRING option specifies the character string value from
which input is taken, or the character variable or pseudo-
variable to which output is assigned. The STRING option is
used only for internal manipulation of string values, and no
input/output is performed on any external I/0 deviece.

The COPY option specifies that all input data is to be copied
to an output file. The COPY option ean be used for GET
FILE or GET STRING operations. Effectively, the COPY
option provides a record of all input data used by the
statement. If a COPY option appears with no file-
reference, COPY(SYSPRINT) is assumed. The COPY option
uses all input data accessed by the statement and writes a
copy to the output file. The input stream is copied intact,
with no editing of the input data and no positioning of the
output file. Data on the COPY file is separated into lines in
accordance with the line size of the COPY file. The COPY
file must be a STREAM OUTPUT or STREAM OUTPUT
PRINT file. If the COPY file is a print file, the ENDPAGE
condition can be raised.

The SKIP option is used only for GET FILE or PUT FILE
operations to specify positioning of the input file or output
file. . For a GET FILE operation, the SKIP option indicates
that the input file is to be positioned forward the specified

TABLE 8-3. STREAM 1/0 STATEMENTS FOR STREAM FILES

| Stream File Attributes

STREAM INPUT

GET [FILE—option

Available 1/0 Statements

'r] [LIST-option |

EDIT-option [SK1P-option] [COPY-option]

STREAM OUTPUT

PUT [FILE—option

ﬂ] [L1ST-option |

EDIT-option| [SKIP-option]

STREAM OUTPUT PRINT

PUT [FILE—optionﬂ]

_ . o | SKIP-option

LIST-option | | PAGE-option

EDIT-option| | LINE-option
- ~ | PAGE-option LINE-option

tif omitted, FILE(SYSIN) is assumed.

Hif omitted, FILE(SYSPRINT) is assumed.

TABLE 8-4, STREAM 1/0 STATEMENTS FOR STRING OPERATIONS

String Operation

Available 1/0 Statements

String Input

GET STRING-option {

LIST-option

EDIT-option } [cOPY-option]

String Output

PUT STRING-option {

LIST-option }
EDIT-option

§ s

60388100 B

number of lines. The ENDFILE condition can be raised. For
a PUT FILE operation, the SKIP option indicates that the
current line is ended and the output file is positioned
forward the specified number of lines. If the output file is a
print file, the ENDPAGE condition can be raised.

The PAGE option is used only for PUT FILE operations to
establish a new page on the output print file. The current
page number is incremented by 1, and the next available
print position becomes eolumn position 1 in line number 1 on
the new page.

The LINE option is used only for PUT FILE operations to
establish a new line on the output print file. The LINE
option specifies the required line position on the page and is
evaluated with respect to the current line position. If the
new line number is greater than the current line number but
less than the page size, lines on the page are skipped until
the required position is reached. If the new line number is
less than the current line number, or if the new line number
is greater than the established page size, the remaining lines
on the page are skipped and the ENDPAGE condition is
raised. If the new line number is the same as the current
line number, the required line position is already the next
available line position and the LINE option has no effect.

The LIST option indicates a list-directed I/O operation.
List-directed I/O involves transmission of data in accor-
dance with the data type of each target or source value,

The EDIT option indicates an edit-directed I/O operation.
Edit-directed I/O involves transmission of data in acecor-
dance with the format specifications supplied in the
program.

Stream I/O operations without the LIST option or the EDIT
option are file positioning operations. If the LIST option or
EDIT option is used, list-directed I/0O or edit-directed I/O
operations are indicated.

LIST-DIRECTED 1/0

In list-directed 1/0, each data item in the stream is
interpreted or created according to the data type of the
target or the source value, rather than acecording to a
format specification supplied in the program. Each list-
directed I/O statement can transmit one or more data items.

List-Directed Input

The LIST option specifies one or more targets to which data
values are assigned by GET statement execution. Each
targe ional variable or a pseudovariable.

When a GET statement is executed, the specified list of
input-targets is processed in order. The processing order is
left to right, except as controlled by embedded-do specifi-
cations. The input-targets at the same parenthesis level as
the embedded-do are processed left to right once for each
iteration of the embedded-do. For example, the
specification

(A(D, B DOI=1TO 3)
is processed in the order
A(1) B(1) A(2) B(2) A(3) B(3)

The statement terminates normally when the input-target
list is exhausted.

60388100 A

The input stream is treated as a sequence of literal
constants separated by blanks or commas. For each input-
target, the next constant in the input stream is obtained,
interpreted, and assigned. The following forms are
recognized:

® Arithmetic constant, as deseribed in section 3, Data
Elements. The arithmetic constant can be preceded by
a sign +or -. Blanks are not permitted between the
sign and the constant.

e Simple character constant, as described in section 3.
The character constant can include blanks or commas as
part of the string and can include the apostrophe
character (represented by two consecutive apostrophes).

e Character constant not enclosed in apostrophes. The
character constant is treated as an evaluated character
constant in the program. The constant cannot include
any blanks or commas. The constant can include the
apostrophe character (represented by a single
apostrophe character). To avoid confusion with the
standard character constant form, this form of char-
acter constant must not begin with an apostrophe.

e Simple bit constant, as described in section3. In
addition, the bit constant can include blanks or commas
between the apostrophe that begins the constant and
the sequence of specified bits, or between the sequence
of specified bits and the second apostrophe. Blanks and
commas are not allowed in the sequence of specified bit
values, No blank is allowed between the second
apostrophe and the radix factor B.

® Character constant with bad parse. The character
constant is a standard character constant enclosed in
apostrophes, but additional characters follow the
apostrophe that would normally end the character
eonstant. Until a blank or comma is encountered in the
input stream, any additional characters are treated as a
continuation of the constant.

The terminator used to separate source items in the input
stream is the comma or the blank. The following can
represent a single terminator separating source items:

® A single blank.
® A number of consecutive blanks.

® A single comma, preceded by zero or more blanks and
followed by zero or more blanks.

For each target item, the input stream is advanced by at
least one character from its current position. Line
boundaries in the input stream are ignored.

An input field is considered to be null if two commas are
separated only by zero or more blanks. If the first nonblank
charaeter in the input stream is a comma, the first input
field is considered null. If the input field is null, no value is
assigned to the input target item and execution continues
with evaluation of the next target item.

If the input field is not a valid constant, CONVERSION is
raised. The new value of the ONSOURCE builtin function is
the input field that raised CONVERSION. If an end of file
is encountered before an input: field is found, the ENDFILE
condition is raised. If the end of the STRING option
character string is reached before an input field is obtained,
the ERROR condition is raised.

8-5

Any necessary computational conversion can be performed
to convert the value contained in each input field to another
computational type suitable for assignment to the target
item. The computational conversions are deseribed in
section 7, Data Manipulation.

List-Directed Output

The LIST option specifies the source values to be trans-
mitted to the output stream by PUT statement executi

When a PUT statement is executed, the specified list of
source values is processed in order. The processing order is
left to right, except as controlled by enibedded-do specifi-
cations, which are processed in the same way as for list-
directed input. The statement terminates normally when
the list of source values is exhausted.

Each source value is converted, as necessary, to a character
string for transmission to the output stream. Each source
value appears in the output stream exactly as converted,
except in the following cases:

e If the source value is a bit string, the converted string
is modified to have the form of a bit constant.
Enclosing apostrophes are supplied, and the character B
is appended.

® If the source value is a character string or pictured
character item, and if the output stream is not being
transmitted to a PRINT file, then the value is modified
to have the form of a character constant. Enclosing
apostrophes are supplied, and each contained apostrophe
is replaced by a pair of consecutive apostrophes. For a
PRINT file, the converted string is not modified.

The length of the output field is the length of the converted
character string and any added characters, including added
apostrophes (if any) and an added radix factor B (if any).
. For a PUT FILE operation, if there are not enough positions
remaining in the current line for the output field, a SKIP(1)
operation is performed to skip to position 1 of the next line,
For a PUT FILE operation, if there are not enough positions
in an entire line for the output field, the output field is split
as necessary and transmitted to the current and subsequent
lines. If there are not enough positions remaining in a
STRING option character string for the output field, the
ERROR condition is raised.

Each source value transmitted to the output stream is
automatically positioned according to system-defined tabs.

EDIT-DIRECTED I/O

For edit-directed transmission, a format is specified for
each data item in the data stream. A GET statement can
specify input of one or more data items. For each target
item, a format item in a format list specifies the characters
that are to be obtained from the input stream and the
interpretation of the characters. A PUT statement can
specify output of one or more data items. For each source
item, a format item specifies the form of the transmitted
data in the output stream.

In edit-directed operations, the data stream is not con-
sidered to have separators between data items for input, and
no separators are written during output. The program has
complete format control over access to and interpretation
of characters in the input stream, and over -construction of
characters in the output stream.

8-6

Edit-Directed Input

The EDIT option specifies one or more targets to which data
values are assigned by GET statement execution. Each
et can be a computational variable or pseudovariable.
A sequence of format-items is
P IT option. The specified format
items control the aceess to and interpretation of charaecters
in the input stream.

When a GET statement is executed, each parenthesized list
of input targets is paired with the following parenthesized
list of format items: The paired groupings are processed in
order from left to right. For each paired grouping, the
specified list of input targets is processed in order from left
to right, except as controlled by embedded-do specifi-
cations. The input targets at the same parenthesis level as
the embedded-do are processed left to right once for each
iteration of the embedded-do. For example, the
specification

(C(4,d), D) DO J =1 TO 2)

is processed in the order
C(4,1) D(1) C(4,2) D(2)

Processing of each paired grouping terminates normally
when the list of input targets is exhausted. The statement
terminates normally when the list of paired groupings is
exhausted.

Edit-Directed Output

The EDIT option specifies the source values to be trans-
mitted to the output stream by PUT statement executlon.
na,be a computational expression. (Each
’ Jlar. The EDIT option also speelfles
a sequence of format items that control the construction of
characters in the output stream.

When a PUT statement is executed, each parenthesized list
of source values is paired with the following parenthesized

“list of format items. The paired groupings are processed in

order from left to right. For each paired grouping, the
specified list of source values is processed in order from left
to right, except as controlled by embedded-do specifi-
cations, which are processed in the same way as for edit-
directed input. The processing of each paired grouping
terminates normally when the list of source values is
exhausted. The statement terminates normally when the list
of paired groupings is exhausted.

FORMAT PROCESSING FOR EDIT-DIRECTED I/O

The list of input targets or output source values drives
processing of the list of format items. Spaeing or_
positioning is done in the process of a search for the next’
data transmission format item.

The format items in a parenthesized format specification
are processed -in order from left to right, except as
controlled by iteration factors. When an iteration factor is
encountered, it is evaluated and converted to a fixed binary
integer that must not be negative. Then the followmg
format item, or entire parenthesized list of format items, is
repeated the specified number of times. For example, the
specification

(2(A(10), F(5))

is processed in the order
A(10) F(5) A(10) F(5)

60388100 A

When a remote format item is encountered, left-to-right
processing of the format specification in which the remote
format appears is interrupted. Format processing goes to
the first item of the remote list. When the last format item
of a remote list has been used and target or source items
remain to be transmitted, format processing returns to the
format specification that contains the remote format
reference. Evaluation continues with the next format item
following the used remote format item.

If the last format item has been used and target or source
items remain to be transmitted, format evaluation returns
to the beginning of the format specification.

The data transmission format items that control the
transmission of values are:

F Fixed point decimal arithmetic

E Floating point decimal arithmetic
A Character string

B Bit string

P Pictured

The control format items that control the spacing and
positioning of the input or output data in the stream are:

X Ignore a number of characters or create a
number of blanks '

COLUMN Move to a new column position

SKIP Skip a number of lines

LINE Move to a new line on the page (PRINT
only)

PAGE Move to the next page (PRINT only)

The remote format item that controls the use of the format
specifications contained in FORMAT statements is:

R Use remote format specification in
FORMAT statement

The format items for data transmission, spacing and
positioning, and use of remote formats are described in
alphabetic order.

A Format ltem

The A format item is used for stream transmission of a
character string value. The syntax is shown in figure 8-1.

The width specification is evaluated and converted, if
necessary, to fixed binary integer.

Input

Width must be specified and must not be negative. The
specified number of characters is obtained from the input
stream. If width is zero, the source value is a null string.
The source string is assigned to the target, and any
necessary conversion is done during assignment.

Output

The source value is converted as necessary to character
string. If width is not specified, all characters in the string
are transmitted to the output stream. If width is specified,
the string is padded on the right with blanks or truncated on
the right. The string is then transmitted to the output
stream. Examples are shown in figure 8-2.

Output Value Format utput St
'ABCDE' A(5) ABCDE
'ABC' A7) ABCAAAA
'ABCDEFGH' A(6) ABCDEF

Figure 8-2. A Format Item Output Examples

B Format ltem

The B format item is used for stream transmission of a bit
string value. The syntax is shown in figure 8-3.

For input

B (width)
For output

B [iwiatn

where width is an expression for the number of bits to be
transmitted

For input
A (width)

For output
A [(width)]

where width is an expression for the number of characters
to be transmitted

Figure 8-1. A Format Item Syntax

60388100 A

Figure 8-3. B Format Item Syntax

The width specification is evaluated and converted, if
necessary, to fixed binary integer. .

Input

Width must be specified and must not be negative. The -
specified number of characters is obtained from the input
stream. The stream is expected to contain a representation
of a bit string as zero or more consecutive '0' and 'l'

characters. The bit string can be preceded and followed by

blanks. The CONVERSION condition is raised if the input
field contains any character that is not 0%, 1, or blank. If
width is zero or if the string is all blanks, a null character
string is the source. The source value is then converted to a
bit string. The bit string value is assigned to the target
item, and any necessary conversion is done during
assignment.

8-7

Output

The source value is converted as necessary to bit string.
The bit string is then converted to a character string., If
width is not specified, all characters in the string are
transmitted to the output stream. If width is specified, the
source value is padded on the right with blanks or truncated
on the right. The string is then transmitted to the output
stream. Examples are shown in figure 8-4.

Output Value Format Output Stream
'1101111'B B(7) 1101111

'11'B B(5) 11AAA
'111101010101'B B(4) 1

are transmitted for the remainder of the line. Blanks are
then transmitted for the following line until the required
column position is reached.

E Format tem

The E format item is used for stream transmission of a
floating point decimal arithmetic value. The syntax is
shown in figure 8-6. .

Figure 8-4. B Format Item Output Examples

COLUMN Format ltem

The COLUMN format item is used to reposition the data
stream at a specific column position in the line. COLUMN
is used for FILE option processing and cannot be used for
STRING option processing. @ The syntax is shown in
figure 8-5.

where width is an expression for the number of characters
in the field

where fd is an expression for the number of fractional
digits in the mantissa

where sd is an expression for the total number of significant
digits in the mantissa

where new-column is an expression for the required column
position in the line

Figure 8-5. COLUMN Format Item Syntax

The new-column specification is evaluated and onvert
_to fixed bin integer. lf ol

new column position beyond the line size for the stream f:le,
COLUMN(1) is also assumed.

Action of the COLUMN format item is effective before the
next data transmission through an A, B, E, F, or P format
item. If no data transmission follows, the COLUMN format
item is ignored.

Input

No action is taken if new-column is the next position. If
new-column is greater than the next position, characters are
ignored in the stream until the new-column position is
reached. If new-column is less than the next position,
remaining characters in the current line are ignored.
Characters are also ignored in the following line until the
required new-column position is reached.

Output

No action is taken if the new-column position matches the
next available column position. If new-column is greater
than the next available position, blanks are transmitted to
the output stream until the new-column position is reached.
If new-column is less than the next available position, blanks

8-8

If new-column specifies a

Figure 8-6. E Format Item Syntax

The width, fd, and sd specifications are evaluated and
converted, if necessary, to fixed binary integers. Width
must be specified and must not be negative.

Input

A field of the specified width is obtained from the input
stream. The input field is expected to contain a repre-
sentation of a floating point decimal constant. The
representation of the floating point constant can be pre-
ceded or followed by one or more blanks, but the constant
cannot contain any blanks. If width is zero or the input field
consists only - of blanks, the source value is zero. The
possible valid representations are:

e An optionally signed fixed point decimal constant. The
exponent E+0 is assumed. For example, 13.67 is
assumed to represent 13.67E+0,

.® An optionally signed fixed point decimal constant

immediately followed by a sign and a decimal integer.
The exponent indication E is assumed. For example,
23+4 is assumed to represent 23E+4,

® An optionally signed floating point decimal constant.

ntains no decimal point. If the constant contains
a decimal point, fd does not change the value of the
constant. If fd is used, the assumed decimal point is placed
so that fd significant digits are to the right of the decimal
point. The sd specification can be present but is ignored for
input values.

The value is then assigned to the target. The precision of
the value is (p), where p is the number of sxgmflcant digits in
the value. Any necessary conversion is done during
assignment. Examples are shown in figure 8-7.

60388100 A

Input Stream Format Input Value
AA20 E(4,0) 20E+0
200AAA E(6,2) 2.00E+0
A2.3E5A E(7,2) 2.3E+5
-243AAA E(7,0) -2E+3

Figure 8-7. E Format Item Input Examples

Output

The source value is con

The sd specification is

, sd is assumed to be fd+1.

If sd is specified, sd must be greater than fd. The value of
fd, and the value of sd, if specified, must not exceed 14.

The width should be at least 6 greater than the total number
of significant digits. Positions must be reserved for the sign
of the mantissa, an E, and a signed three-digit exponent. If
the mantissa is to contain a decimal point, width should be
at least 7 greater than sd, and if all significant digits are to
be fractional digits, w1dth should be at least 8 greater than
sd. If the specified width is not sufficient to represent the
value without loss of sign or high-order significant digits,
the SIZE condition is raised.

The value is transmitted to the output stream in one of the
following ways:

e = E format item with fd=0: all significant digits are to be
in the integer part of the mantissa. The output field is
created as if under control of the picture

(i)B~(j)9VES999* where repetition factor

i=width-sd-6 and j=sd

e E format item with sd>fd and fd>=0; significant digits
are to be in the integer and the fractional part of the
mantissa. The output field is created as if under
control of the picture

()B-(j)9V.(K)IES999' where repetition factor
i=width-sd-7 and j=sd-fd and
k=fd

o E format item with sd=fd and sd>0: all significant
digits are to be in the fractional part of the mantissa.
The output field is created as if under control of the

picture
'(i)B-9V.(j)9ES999" where repetition factor
i=width-sd-8 and j=sd

Examples are shown in figure 8-8.
4 Qutput Value Format Qutput Stream

20 £(10,3) 2:000E+001
4 20 E{10,0) AAAA2E+001

2.3 £(10,3) 2.300E+000

.023 £(10,1,4) 230.0E-004

F Format ltem

The F format item is used for stream transmission of a
decimal fixed point arithmetic value. The syntax is shown in
figure 8-9.

F (width [,fd [,sca|e]])
where width is an expression for the number of characters
in the field.

where fd is an expression for the number of fractional
digits

where scale is an expression for the scale factor to be used

Figure 8-9. F Format Item Syntax

The width, fd, and scale specifications are evaluated and
converted, if necessary, to fixed binary integers. Width
must be specified and must not be negative.

, Input

A Tield of the specified width is obtained from the input
stream. The input field is expected to contain a repre-
sentation of a fixed-point decimal constant. The constant
can be immediately preceded by a sign. The constant can be
preceded or followed by blanks, but the constant cannot
contain any blanks. If the width is zero or the input field
consists entirely of blanks, the source value is zero.

The fd specification for the number of fractional digits is
optional. If the constant contains a decimal point, the fd
specification is ignored. 1If fd is specified, the assumed
decimal point is initially placed so that fd significant digits
are to the right of the decimal point. If fd is not specified,
fd is assumed to be zero. The scale specification can
further alter the position of the decimal point.

If scale is not speeified, seale is assumed to be zero. The
scale specification alters the source value by changing the
location of the decimal point. A positive scale moves the
decimal point to the right, and a negative scale moves the
decimal point to the left. Effectively, the source value is
multiplied by ten raised to the power of the scale.

The value is then assigned to the target. The precision of
the value is (p,q), where p is the number of significant-digits
in the value and q is fd-scale. Any necessary conversion is
done during assignment. Examples-are-shown in figure 8-10.

Input Stream Format Input Value

A200 F(4) 200 1
A200 F{4,2) 2.00

£3.2 F(4) 3.2

200A F{4,3,2) 20.0

Figure 8-8. E Format Item Output Examples

60388100°B

Figure 8-10. F Format Item Input Examples

QOutput

The source value is converted as necessary to a decimal
fixed point value. The fd specification for the number of
fractional digits is optional. If fd is not specified, fd is
assumed to be zero. The scale is optional and is used to
scale the output value. If scale is not specified, the seale is
assumed to be zero.

The width should be at least 1 greater than the total number
of significant digits, to reserve a position for the sign. If
the output value is to contain fractional digits, width should
be at least 2 greater than the number of significant digits,
to reserve an additional position for the decimal point. If
the specified width is not sufficient to represent the value
without loss of sign or high-order significant digits, the SIZE
condition is raised. .

The value is multiplied by ten raised to the power of the
scale. The number of fractional digits specified by fd is
maintained, but fractional digits can be lost when the scale
is applied. The value is then transmitted to the output
stream in one of the following ways:

e F format item with fd=0: all significant digits are to be
in the integer part of the value. The output field is
created as if under control of the picture

(1)=9* where repetition factor i=width-1

® F format item with fd>0: significant digits are to be in
the integer and fractional parts of the value. The
output field is created as if under control of the picture

(i-9V.()9* where repetition factor i=width-fd-1

and j=fd

~ Examples are shown in figure 8-11.

Qutput Value Format Output Stream
3.2 F(4) AAAT:

3.2 F{4,2) 3.20

0 F(4,1) A0.0

-3.5 F{4,0,2) ; -350

Figure 8-11. F Format Item Output Examples

LINE Format ftem

The LINE format item is used to position the output stream
to the specified line with respect to the top of the page.
LINE is used for FILE option processing and eannot be used
for STRING option processing. LINE is used only for a
PRINT file. -The syntax is shown in figure 8-12.

where new-line is an expression for the required line posi-
tion on the page

Figure 8-12. LINE Format Item Syntax

8-10

The new-line specification is evaluated

t cu en y
the page are skipped until the specified line number is
reached. If new-line causes the current line number to
exceed page size, the ENDPAGE condition is raised. If new-
line is less than the current line number, or new-line is the
same as the current line number but characters have already
been transmitted to the current line, the ENDPAGE condi-
tion is raised. If new-line specifies the current line and the
next available position is the first character of the line, the
LINE format item has no effeet.

Action of the LINE format item is effective before the next
data transmission through an A, B, E, F, or P format item.
If no data transmission follows, the LINE format item is
ignored.

P Format ltem

The P format item is used for stream fransmission of a
pictured value. The pictured value transmitted is dependent
on the form of the picture. The syntax is shown in
figure 8-13.

P 'picture=specification’

where picture-specification is

pictured-character
pictured-numeric-fixed
pictured-numeric~-float

where pictured-character can include the picture codes A X
and 9

where pictured-numeric-fixed can include the picture codes
9Z*YVS+-TIRCRDBS$/,.BandF in avalid
combination

where pictured-numeric-float can include the picture codes
9Z*YVS+-TIR/,.BEandK in a valid combina-
tion

Figure 8-13. P Format Item Syntax

The picture-specification is a character string containing
a sequence of picture codes. The length of the picture
specification cannot exceed 1000 characters.
Picture-controlled conversion is deseribed in section 7,
Data Manipulation.

Input

The width of the input field is taken from the picture. For
pictured character, the width is the number of picture
codes. For pictured numeric fixed, the width is the number
of pieture codes other than V and F. For pictured numeric
float, the width is the number of picture codes other than V
and K. The input field is treated as the character value of a
pictured item; if the input field does not conform to the
specified picture, the CONVERSION condition is raised. The
character value or arithmetic value interpreted from the
character value is assigned to the target, and any necessary
conversion is done during assignment.

60388100 B

Output

The source value is treated as if for assignment through the
picture-specification. =~ The width of the output field is
determined by the picture. For pictured character, the
source value is converted to character, if necessary, and
then validated through the picture. For pictured numeric,
the source value is converted, if necessary, to FIXED
DECIMAL or FLOAT DECIMAL and then edited through the
picture. Examples are shown in figure 8-14.

must not reference a remote-format already referenced for
the same GET EDIT or PUT EDIT operation; recursion is not
permitted. An example is shown in figure 8-17.

Qutput Value Formét Output Stream
‘123 ABC' P'999AAAA' 123AABC
12.25 P'S(5)ZV.99' +AAA12.25
3E+7 P'999ES99’ 300E+05

FMTL:
FORMAT(A(5)e R(FMT2))3
FMT2:
FORMAT (SKIPs A(1S)s F(1043))3

L] .
PUT EDIT(CNs CLABELs CVALUEs CFLAG)
(R(FMT1)y B3

/* FORMAT ITEMS USED ARE: *y
/% A(S5)s SKIPy A(1S5)s F(10+3)s B #/

Figure 8-14. P Format Item Output Examples

PAGE Formo'r ltem

The PAGE format item is used to select the next page of the
output stream. PAGE is used for FILE option processing and
cannot be used for STRING option processing. PAGE is used
only for a PRINT file. The syntax is shown in figure 8-15.

Figure 8-17. R Format Item Examiple

SKIP Format ltem

The SKIP format item is used to skip a specified number of
lines in the input stream or to advance a specified number of
lines in the output stream. SKIP is used for FILE option
processing and cannot be used for STRING option processing.
The syntax is shown in figure 8-18.

PAGE

Figure 8-15. PAGE Format Item Syntax

PAGE causes the current page humber to be incremented by
1. The first character of the first line of the next page is
the next available character position.

Action of the PAGE format item is effective before the
next data transmission through an A, B, E, F, or P format
item. If no data transmission fo]lows, the PAGE format
item is ignored.

R Format ltem k

The R format item causes use of a remote format
SpeCIfl at1

SKIP [(Iine-cou_nt)}

where line-count is-an expression for the number of lines
to be skipped

R(remote-format)

Figure 8-16. R Format Item Syntax

All format items in the format specification of the
FORMAT statement identified by remote-format are in-
cluded in place of the R format item. The remote-format
can in turn contain the R format item. Each R format item

60388100 B

Figure 8-18. SKIP Format Item Syntax

‘The line-count specification is evaluated and converted, if

necessary, to fixed binary integer. The line-count specifi-
cation is optional and is assumed to be 1 if omitted.

Action of the SKIP format item is effective before the next
data transmission through an A, B, E, F, or P format item.
If no data transmission follows, the SKIP format item is
ignored.

Input

The input stream is advanced to the beginning of the
indicated line. The specified line-count must be greater
than zero. SKIP(1) indicates that the input stream .is
advanced from the current position to- the first character
position in the next line. If line-count specifies a value
greater than 1, additional lines are skipped, with (line-
count)-1 lines ignored If line-count exceeds the number of
lines available in the input stream before end—of-flle, the
ENDFILE condition is raised.

Output

The output stream is advanced the specified number of lines.
The line-count specification must not be negative. For a
PRINT file only, line-count can be zero to indicate that the
current character position is to be reset to 1. The current
line number is not changed, and an overprint situation exists.
If line-count is 1, the current output line is terminated.and

8-11 .

the output stream is positioned at the first character
position of the next line. If line-count specifies a value
greater than 1, additional lines are skipped, with (line-
count)-1 empty lines written. If execution of the SKIP
option causes the page size to be exceeded, the ENDPAGE
eondition is raised. Examples are shown in figure 8-19.

PUT EDIT(+FIRST LINE+,
+SECOND+
*L INE+,
+FIFTH LINE#)
(SKIPy A
SKIPy Ay
SKIP(O}s X(T7)s Ag
SKIP(3)e M)}

/*OUTPUT LINES --- S ——
FIRST LINE SR

SECOND LINE

FIFTH LINE

Figure 8-19. SKIP Format Item Output Example

X Format Hem

‘The X format item is used to ignore a number of characters

in the input stream or create a number of blank characters.

in the output stream. The syntax is shown in figure 8-20,

where space-count is an expression for the number of
characters to be ignored or blanks to be ¢reated

Figure 8-20. X Format ltem Syntax

The q:ace-eount speexﬁcatnon is eval

For input, the
specified number of characters are ignored. For output, the
specified number of blank characters are created in the
output stream.

RECORD /O

In the record I/O operations, the file is considered as a
collection of diserete records. Reeord I/O operations direct

the input, output, or replacement of complete records. No-

conversions are performed during data transmission, and no
formatting of the records occurs. Record I/O operations are

-different from stream I/O operations deseribed earher in
this sectiom.

Records in a file can be accessed sequentially or by record

- key. Records in a SEQUENTIAL file ean be accessed in the

. order in which the records exist in the file. "Records in a
SEQUENTIAL KEYED file can be accessed either sequen-
tially or by record key. Records in a DIRECT KEYED file
can be accessed only by record key. Each record key is a
unique name associated with the complete record. :

812

- RECORD FILE STATUS

Each file constant that can be-used for a record’fxle carries
the following information as ‘the result of program
compilation: :

® Declared file d‘eseription attributes, if any.

® Declared ENVIRONMENT, if any.

When the file constant is opened either explicitly by OPEN

statement or implicitly by execution of a record 1/0

statement, the following information is added:

& The file title, either supplied in the TITLE option of the

OPEN statement or created from the file constant.

e Additional attributes specified on the OPEN statement
or implied by the statement that implicitly opens the
file constant."

® Any additional attributes required to complete the set
" of file deseription attributes for the file.

® Creation of a file information table (FIT) used by
CRM. The ENVIRONMENT attribute specifies file
processing options that are used for option fields in’
the FIT (see section.9).

e For SEQUENTIAL and SEQUENTIAL KEYED files, the
current record designator is established.

The following I/O conditions can be raised durmg record 1/0

operations:
UNDEFINEDFILB
ENDFILE

Failure to open a file correctly.

End of input file exceeded on a
sequential read of a SEQUEN-
TIAL or SEQUENTIAL KEYED
record file.

KEY ' Invalid record key used for a
DIRECT KEYED or SEQUEN-
TIAL KEYED record file.

Inconsistency between the- size
of the allocation unit (variable or
allocated buffer) and the record
length (MRLor FL) specified
with ENVIRONMENT.

Data transmission error.

'RECORD

TRANSMIT

In addition, the CONVERSION condition can be raised during

record I/O eperations. For example; CONVERSION can be

* raised during conversion to integer for a key used for a word

addressable (WA) file,

RECORD /0O S‘[ATEMENTS

The statements used for record I/O are the READ, WRITE,
REWRITE, DELETE, and LOCATE statements. Each record
I/0 statement is deseribed in detail in section 12, State-
ments. . The record 1/O statements have a number of
statement options that are used or omltted, depending on
the. cxrcumstances.

The READ statement can be used with an INPUT file or
UPDATE file. - The WRITE statement can be used with an -
OUTPUT file or UPDATE file. The REWRITE statement can
be used with an UPDATE file. The DELETE statement can

be used with an. UPDATE KEYED file. The LOCATE

statement can be used for an OUTPUT file. The available
record I/O statements for each possible set of file descrip~
tion attributes is shown in table 8-5.

60388100 A

TABLE 8-5. RECORD I/O STATEMENTS FOR RECORD FILES

Record File Attributes

Available 1/0 Statements

|

RECORD INPUT SEQUENTIAL

INTO-option }

READ FILE-option {SET—option

IGNORE-option

RECORD OUTPUT SEQUENTIAL

WRITE FILE-option FROM-option
LOCATE based-variable FILE-option [SET-option]

RECORD UPDATE SEQUENTIAL

INTO-option }

'READ FILE-option {SET—option

IGNORE-option

REWRITE FILE-option [FROM-option]

RECORD INPUT SEQUENTIAL KEYED

READ FILE-option {SET—option

INTO-option }[KEY-option]

IGNORE-option KEYTO-option

RECORD OUTPUT SEQUENTIAL KEYED

WRITE FILE-option FROM-option KEYFROM-option

LOCATE based-variable FILE-option KEYFROM-option [SET-option)

RECORD UPDATE SEQUENTIAL KEYED

READ FILE-option {SET-option

REWRITE FILE-optio!

DELETE FILE-option

INTO-option KEY-option
KEYTO-option

IGNORE-option

KEY-option

RECORD INPUT DIRECT KEYED

READ FILE-option KEY-option {

INTO—option}
SET-option

RECORD OUTPUT DIRECT KEYED

WRITE FILE-option FROM-option KEYFROM-option

LOCATE based-variable FILE-option KEYFROM-option [SET-option]

RECORD UPDATE DIRECT KEYED

READ FILE-option KEY-option {

REWRITE FILE-option

DELETE FILE-option

INTO-option }
SET-option

KEY-option

WRITE FILE-option FROM-option KEYFROM-option

The FILE option for all record I/O statements identifies the
file on which record I/0 is to be performed. Transmission
oceurs to or from the file.

The INTO option for READ statements specifies the variable
to receive the input record.

The SET option for READ and LOCATE statements specifies
a pointer variable. The pointer variable is set to address an
allocated buffer used for storage of the record.

The IGNORE option for READ statements specifies the
number of records to be skipped during input. The IGNORE
option is used in reading records by sequence rather than
by key.

60388100 B

The FROM option for WRITE and REWRITE statements
specifies the variable whose value is to be written as an
output record.

The KEYTO option for READ statements specifies the
variable to receive the value of the key when a keyed record
is read sequentialily.

The KEY option for READ, REWRITE, and DELETE state-
ments specifies the value of the key for an operation t
read, replace, or delete a record by key. :

The KEYFROM option for WRITE and LOCATE statements
specifies the value of the key when a new keyed record is
written to a file.

8-13

An example of statements that access a SEQUENTIAL file
and a DIRECT KEYED file is shown in figure 8-21.

DECLARE IN1 FILE RECORD INPUTS
DECLARE ISFILE FILE RECORD OUTPUTS
DECLARE 1 CARDIMAGE,

2 ANIMAL CHARI(15)

2 AGE CHAR(S),

2 COMMENTS CHAR(60)3

.

OPEN FILE(IN1) ENV(+RT=WsMRL=80,KL=154)3}
OPEN FILE(ISFILE) DIRECT KEYED

ENV(*RT=WsMRL=80,KL=154)3
L)

READ FILE(IN1) INTO(CARDIMAGE)$
WRITE FILE(ISFILE) FROM(CARDIMAGE)
KEYFROM (ANIMAL) 3

/#RECORDS FROM FILE IN]l ~-=ceecccccccanaa

BABOON 12 A TYPE OF MONKEY

cow 4 NOT A MONKEY

AARDVARK S2 THIS IS A CRAZY ANIMAL
DOG 10 ENEMY OF CATS

- - - - - - - - - - - - - - - m—rwmw----d

Figure 8-21. RECORD File Example

ALLOCATION UNIT SIZE

All record 1I/O operations involve the input or output of
complete records. For an input operation, the length of the
input record must match the size of the allocation unit for
the variable referenced in the INTO option. For an output
operation, the size of the allocation unit for the variable
referenced in the FROM option must match the record
length established for records in the output file.

The record length for records in a file can be specified with
the ENVIRONMENT attribute for the file constant or with
the ENVIRONMENT option in the OPEN statement. A FILE
control statement (in the control statements for the job) can
also specify the record length. The processing of
ENVIRONMENT options is described in section 9, CRM
Interface.

Er S e e ST

always an integral number of 60-bit words. Each 60-bit
word can be divided into 10 characters or bytes containing
6 bits each.

The size o?an aﬁocatlon unit ls‘

The allocation unit size for a scalar variable depends upon

the data type of the variable, and is calculated as follows:
e Arithmetie: 1 word

e CHARACTER nonvarying: CEIL(length/10) words

e CHARACTER VARYING: CEIL(length/10) + 1 words,
where length is the maximum length

e BIT nonvarying: CEIL(length/60) words

e BIT VARYING: CEIL(length/60) + 1 words, where

length is the maximum length

e Pictured: CEIL(length/10) words, where length is the
length of the character value

e AREA: (area-size) words
e All noncomputational types except area: 1 word

The allocation unit size for an array variable is calculated
as follows:

e ALIGNED array containing elements of any type:
(words-per-element) * (number-of-elements) words

e UNALIGNED array containing CHARACTER non-
vary1§ elements: CEIL((length * (number-of-ele-
ments))/60) words

e UNALIGNED array containing BIT nonvarying ele-
ments: CEIL((1length * (number-of-elements))/60) words

e UNALIGNED array -containing pictured elements:
CEIL((length * (number-of-elements))/10) words,
where length is the length of the character value

e UNALIGNED array containing elements of any typek
except CHARACTER nonvarying, BIT nonvarying, or
pictured: (words-per-element) * (number-of-elements)
words

The allocation unit size for a structure that does not
contain another structure is calculated as follows:

e Structure in which every member is CHARACTER
nonvarying ~ UNALIGNED: CEIL((total-length/10)
words, where total-length is the sum of all scalar
members including array elements.

e Structure in which every member is BIT nonvarying
UNALIGNED: CEIL((total-length)/60 words, where
total-length is the sum of the lengths of all sealar
members including array elements.

e All other structures that do not contain other

- structures: (total-size) words, where total-size is the

sum of the lengths of all immediately contained
members of the structure.

The allocation unit size for a structure variable that
contains one or more other structures is calculated as
follows:

e All structures that contain other structures:
(total-size) words, where total-size is the sum of the
lengths of all immediately contained members of the
structure.

60388100 B

CYBER RECORD MANAGER INTERFACE -9

All input/output operations performed on stream files or
record files are done by CYBER Record Manager (CRM),
This section describes the connection between PL/I
information about a file and the information specified
about the local CRM file used for input/output
operations. Input/output operations are deseribed in
section 8 Input/Output.

The environment of a file consists of information about
CRM file processing options. - The environment options
can be specified with the ENVIRONMENT attribute in the
declaration of the file constant, with the ENVIRONMENT
option in an OPEN or CLOSE statement, or with the FILE
control statement (in the control statements for the job).
The file environment information can be specified or
omitted. If omltted, environment options are established
by default.

The environment options specified for a file must be
appropriate for the local CRM file. The file description
attribute set for the file determines the compatibility of
the environment options. The deseription of environment
compatibility discusses the available environment options.

ENVIRONMENT PROCESSING'
AND DEFAULTS

When a file constant is opened, the ﬁle env1ronment
information is established. The environment information
is established with default values which cean then be
overridden. The processing of environment information is
therefore different from the completion of a consistent
set of file description attributes for the file.

The file environment information is placed in the file
information table (FIT) used by CRM. When a file
constant is opened, file processing options are established
in the newly-created FIT for the file. Default file
processing options are supplied, and the specified options
can override certain default options or set additional
options. The supplied default options are:

e The local file name (LFN) option is supplied. The file
title is used as the local file name, as described in
section 8.

e The file organization (FO) option is supplied as shown
in table 9-1. FO ..is set to SQ (sequential
organization) for all stream files and for all record
files that are not KEYED. FO is set to indexed
sequential organization (IS) for all record files that
are KEYED.

e The record type (RT) option is supplied. RT is set to
Z for all stream files, and W for all record files
except INPUT and OUTPUT. The record types for
INPUT and OUTPUT are always set to Z. See
table 9-1.

e The fixed length or maximum record length (FL/MRL)
option can be supplied. For a stream file, FL is
supplied as shown in table 9-1. For a record file, no
FL/MRL value is supplied by default. For a record
file, ENVIRONMENT (or the FILE control statement)
can be used to set the FL/MRL option.

60388100 B

TABLE 9-1. DEFAULT FILE ENVIRONMENT OPTIONS

Default
Environment
File Attributes Options
FO | RT | FL/MRL i
'STREAM INPUT sQ. 80
STREAM OUTPUT SQ 80
" STREAM OUTPUT PRINT SQ 137
RECORD INPUT SEQL ' SQ
RECORD OUTPUT SEQL SQ
RECORD UPDATE SEQL SQ
RECORD INPUT SEQL kEYED IS

RECORD OUTPUT SEQL KEYED IS
RECORD UPDATE SEQL KEYED IS
RECORD INPUT DIRECT KEYED S
RECORD OUTPUT DIRECT KEYED | IS

= 2 82 £ €8 28 8 € £ N N N

RECORD UPDATE DIRECT KEYED | IS

The key length (KL) option is supplied for a KEYED
file. The specification KL=10 is assumed.

The open flag (OF) option is supplied. For any INPUT
file (except file SYSIN) and for any UPDATE file, OF
is set to R (rewind). For all other files, OF is set to -
N (no rewind).

The block type (BT) option is set to C for all stream
files and record files. The BT option must not be -
overridden for stream files.

The processing direction (PD) option is supplied. PD
is set to INPUT for all INPUT files, OUTPUT for all
OUTPUT files, and I-O for all UPDATE files. The PD
option must not be overridden.

" The old/new flag (ON) option is supplied. ON is set to
NEW or OLD as appropriate. The ON option must not
be overriden.

The ORG option is supplied as NEW for all files. The
ORG option must not be overridden. -

The error file control (EFC) option is supplied. EFC
is set to 3, which enables error messages and notes to
be listed on the error file.

The dayfile control (DFC) option is supplied. DFC is

set to 1, which enables error messages to be listed on
the dayfile.

9-1

e The error option (EO) is supplied. EO is set to AD
which causes parity errors to be disregarded. :

After default environment options have been established,
the following steps are performed to complete the opening
of the file:

1. If the OPEN statement for a stream output file
includes the LINESIZE option, the specified line size
is used to set FL/MRL. If the file is a print file,
FL/MRL is set to a value one greter than the line
size. For example, LINESIZE(136). sets line size to
136 and sets FL/MRL to 137. The FL/MRL option

includes one character for the carnage control -

information.

2. I the DECLARE statement for the file constant
specifies the ENVIRONMENT attribute, the specified
options are effective. The ENVIRONMENT attribute
specifies a simple character constant containing a list
of CRM options separated by commas. For any
option that requires a -supplied numeric value, a
decimal integer must be used. The CRM options that
can be specified include:

FL Fne organization

RT Record type

FL/MRL Fixed length/maximum record

o length v

KL Key length (KEYED record file
. only) ' ' :

OF Open flag

3. If the OPEN statement for the file speecifies .the
ENVIRONMENT option, the specified options are
effective. The ENVIRONMENT option specifies and
expression that is evaluated to yield a character
value contamrg a list of CRM options separated by
commas. The CRM options that can be specified are
the same as shown for step 2.

4. If a FILE control statement for the file appears in the
control statements for the job, the specified options
are effective. The FILE control statement specifies

the local file name and a sequence of specnflcations

separated by commas,
The format of the FILE control statement is:
FILE(lfn,opnon-value gave)

The CRM options that can be specified for a file used
by the PL/I program are the same as shown in step 2.

5. CYBER Record Manager can rurther supply values for
FIT fields. See the CYBER Reeord Manager
reference manuals.

When the file is closed, the following steps are taken:

1. The close flag (CF) option is set to DET. This
detaches the file without rewinding it, releases the
buffer space and removes the file name from the
active file list. :

‘2. I the DECLARE statement for the file constant
specifies the ENVIRONMENT attribute, the specified
options are effective. The ENVIRONMENT attribute
specifies a simple character constant containing a list
of CRM options separated by commas. For any

9-2

option that requires a numeric value, a decimal
integer must be used. The CRM option that can be
used is:

CF Close flag

3. K the CLOSE statement for the file specifies the

ENVIRONMENT option, the specified options are
effective. The ENVIRONMENT option specifies an
expression - that is evaluated to .yield a character
value containing a list of CRM options separated by
commas. The CRM options that can be specified are
the same as those shown for step 2.

-4, If a FILE control‘ statement for the file appears in the

.control statements for the job, the specified options
are effective. The FILE control statément specifies
the local file name and a sequence of specifications
separated by commas. The format of the FILE
-control statement is:

FILE(lfn,option mnemonic=value, eed)

‘The CRM options that can be specified for a flle are
the same as those shown in step 2.

5. CYBER Record Manager can further supply values for :
FIT fields. See the CYBER Record Manager
- reference manuals.

ENVIRONMENT COMPATIBILITY

When a PL/I file is opened for input/output processing and
the environment information has been used to establish
CRM options in the file information table (FIT), the CRM
options are checked. I any incompatiblity exists between
the PL/lI file and the established CRM options, the

" UNDEFINEDFILE condition is raised and the file is not

opened,

FILE ORGANIZATION

The FO option for file organization can indicate a
sequential CRM file (SQ), a word addressable CRM file
(WA), or an indexed sequential CRM file (IS). The possible
values for the FO option are shown in table 9-2.

For FO-SQ, the following rules apply:

e A REWRITE statement can only be used for RT=F or
RT=W. In either case, the rewritten record must
have the same length as the one it replaces.

e The DELETE statement can only be used for RT=F or
RT=W. In either case, the rewritten record must
have the same length as the one it replaces.

For. FO=WA, the following rules apply:

e All records transmitted must have the exact length
specifled by the FL or MRL option, even if RT=W.

° The file is always rewound before opening, and the
OF option is ignored. For example, the following
sequence of operations would cause data to be lost:

OPEN ‘the file with SEQUENTIAL
WRITE to the file

CLOSE THE file

60388100 B

TABLE 9-2. FO AND RT OPTIONS FOR FILES

File Attributes

CRM File Organization
and Record Type

—_— |

STREAM INPUT
STREAM OUTPUT
STREAM OUTPUT PRINT

FO=8Q and RT=F, Z, W, or S

RECORD INPUT SEQUENTIAL
RECORD OUTPUT SEQUENTIAL
RECORD UPDATE SEQUENTIAL

FO=SQ and RT=F, Z, W, or S
FO=WA and RT=F or W

RECORD INPUT SEQUENTIAL KEYED
RECORD OUTPUT SEQUENTIAL KEYED
RECORD UPDATE SEQUENTIAL KEYED
RECORD INPUT DIRECT KEYED
RECORD OUTPUT DIRECT KEYED
RECORD UPDATE DIRECT KEYED

FO=IS and RT=F, Z, W, or S
FO=WA and RT=F or W

OPEN -the file with SEQUENTIAL

WRITE to the file

e The DELETE statement cannot be used.

e Overwrite of an existing record cannot be detected.
Extension of the file (writing beyond the last existing
key) cannot be detected.

e In a READ operation, the program must not attempt
to read a nonexistent record or read beyond the last
existing record of a file.

e In a REWRITE operation, the program must not

attempt to rewrite a nonexistent record or rewrite
beyond the last existing record.

e A REWRITE statement must write a record of the
same length as the one it replaces.

For FO=IS, the following rules apply:
e All record I/O statements are available.

e A REWRITE statement must write a record of the
same length as the one replaced.

RECORD TYPE AND LENGTH

The RT option for record type can indicate fixed records
(F), zero byte records (Z), control word records (W), or
system records (S). The possible values for the RT option
are determined by the FO option and are shown in
table 9-2. The fixed length option (FL) is used to specify
the record length for RT=F or RT=Z files. The maximum
record length option (MRL) is used to set the maximum
record length for RT=W or RT=S files.

For RT=F, all records transmitted must have the exact
length specified by the FL option. Since no FL/MRL
option is supplied by default for a record file, FL must be
specified for a record file in the ENVIRONMENT or with
~ the FILE control statement.

For RT=Z on stream input files, each line from the CRM

file is padded on the right with blanks to the length
specified by the FL option. For RT=Z on stream output

60388100 B

files, all blanks at the end of each line will be lost in
transmission to the CRM file. No transmitted line can be
longer than the length specified by the FL option. No
occurrence of two consecutive ':' characters can occur in
the data if a 64-character set is in use.

For RT=Z on record files, a record cannot be transmitted
if the internal form contains twelve consecutive zero bits
at the right end of any word and a 64-character set is in
use.

For RT=W, all records transmitted must have a length less
than or equal to the length specified by the MRL option.

For RT=S, all recrords transmitted must have a length less
than or equal to the length specified by the MRL option.

RECORD KEYS

Record keys are used for a KEYED record file. The file
organization for a KEYED record file can be either FO=IS
or FO=WA. The program specifies key values for the 1/0
statements used to read or write the file. The KEY,
KEYFROM, and KEYTO options of the record I/0
statements specify handling of record keys.

For FO=IS files, all keys are character strings with the
attributes CHARACTER nonvarying and a length greater
than 0. The KL option for key length specifies the length
of all keys for the file. The KL option for an OUTPUT or
UPDATE file must agree with the length of the keys in
the existing file; no length checking is performed. The
length of the string specified by a KEY, KEYFROM, or
KEYTO option must agree with the KL option for the file.

For FO=WA files, all keys are character strings containing
values that are representations of nonnegative integers.
The KL option is not used. All keys used in the program
must be record numbers and not word addresses. The first
record is addressed with a key of '0', the second record
with a key of ', and so forth. Sinece all records
transmitted are required to have the exaet length
specified by the FL/MRL option, the word address of the
record is calculated at run time for each access to a
record. In the evaluation of any expression that specifies
a key value, conversion to integer is performed. For
example, '3.42' becomes 3.

9-3

CONDITIONS 10

{5

A condition is an unusual situation that can occur during
execution and result in a program interrupt. The situation
could be related to computational error, such as dividing by
zero; special status recognition, such as sensing an end-of-
file; or /O error, such as using an invalid record key. When
the situation ocecurs, a condition is said to be raised.

PL/1 defines a number of standard conditions and the
circumstances under which they are raised. Each is
identified by a keyword condition name. Standard conditions
are raised automatically by the system. Any standard
condition can be simulated by the SIGNAL statement for
testing of error recovery code.

Conditions can also be defined by the programmer. Each is
identified by a programmer-assigned name in eonjunction
with keyword CONDITION. Programmer-named conditions
are raised only by SIGNAL statement execution.

When a condition is raised or simulated by the execution of a
statement, the action taken depends on whether the condi-
tion is enabled or disabled. for that statement. Compu-
tational conditions can be enabled or disabled through the
use of condition prefixes. All other conditions are always
enabled. The raising of an enabled condition causes an
interrupt and activates the current established on-unit for
that condition. The on-unit specifies the action that is to be
taken when the condition is raised. The raising of a disabled
condition is an error; the subsequent actions are described
for individual conditions later in this section. The simu-
lation of a disabled eondition by SIGNAL statement is not an
error; it has no effect.

Enabling a condition ensures that errors will be detected.
Disabling a condition improves the execution speed of a
checked-out program, but errors that oceur might not be
detected and can produce unpredictable results.

There are two types of on-units: programmed on-units and
system on-units. A programmed on-unit is code that
specifies action to be taken when the condition is raised. A
system on-unit provides standard system action when the
condition is raised. Every condition has exactly one current
established on-unit, which can be either a programmed
on-unit or the system on-unit. The system on-unit is
automatically in effect for each condition that has no
programmed on-unit.

CONDITION CLASSIFICATION

Conditions can be grouped into six general categories. The
categories and their respective conditions are listed in
table 10-1.

CONDITION PREFIXES

Condition prefixes are used to enable or disable compu-
tational conditions. As described in section 12, Statements,
a condition prefix precedes the body of a statement and
consists of one or more enabled condition names or disabled
condition names ‘enclosed in parentheses. Condition prefixes
can appear on any statement except DECLARE, END, and
ENTRY. Condition prefix syntax is

({enébled—*condition—name })
disabled-condition-name f’ * *”*

60388100 A

An enabled condition name can be any of the names listed in
the computational category of table 10-1. A disabled
condition name is formed by preceding the condition name
with the letters NO. Disabled eondition names are

NOCONVERSION or NOCONV
NOFIXEDOVERFLOW or NOFOFL
NOOVERFLOW or NOOFL

NOSIZE

NOSTRINGRANGE or NOSTRG
NOSUBSCRIPTRANGE or NOSUBRG
NOUNDERFLOW or NOUFL
NOZERODIVIDE or NOZDIV

A condition is explieitly enabled or disabled only within the
scope of a condition prefix that names the condition.
Outside that scope or in the absence of any condition prefix
naming that condition, the condition assumes a default
state. All conditions are enabled by default except SIZE,
STRINGRANGE, and SUBSCRIPTRANGE; these three condi-
tions are disabled by default.

A condition prefix on any'statement other than BEGIN or
PROCEDURE applies only to that statement. It does not
apply to blocks activated during the execution of the
statement. Specifie rules are noted as follows:

BEGIN statement

The condition prefix applies to all statements and
blocks contained in the begin block. It does not
apply to contained statements or blocks that have
condition prefixes identifying the same condition.

CALL statement

The condition prefix applies to expressions or
arguments in the CALL statement. It does not
apply to the invoked procedure.

DO statement

The condition prefix applies to expressions in the
DO statement. It does not apply to statements or
blocks contained in the do group.

FORMAT statement

The condition prefix applies to expressions in the
FORMAT statement. It does not apply to the
referencing GET or PUT statement.

GET statement

The condition prefix applies to expressions in the
GET statement. It does not apply to a referenced
FORMAT statement.

IF statement

The condition prefix applies to evaluation of the IF
statement .expression. It does not apply to any
statements in the executable units following the
keywords THEN :and ELSE.

ON statement

The condition prefix applies to execution of the ON
statement. -1t does not apply to the on-unit. A
condition prefix on the first or only statement of
the on-unit applies to the on-unit.

10-1

TABLE 10-1. CLASSIFICATION OF CONDITIONS

=_ = e |
Computational CONVERSION or CONV Enabled Yes
- FIXEDOVERFLOW or FOFL . Enabled Yes
* OVERFLOW or OFL Enabled Yes
SIZE Disabled Yes
‘STRINGRANGE or STRG Disabled Yes
SUBSCRIPTRANGE or SUBRG Disabled Yes
UNDERFLOW or UFL Enabled Yes
ZERODIVIDE or ZDIV Enabled Yes
/o ENDFILE(file-reference) Enabled No
ENDPAGE(file-reference) Enabled No
KEY(file-reference) Enabled No
RECORD(ﬁle—reference) Enabled No
TRANSMIT{file-reference) Enabled No
UNDEFINEDFILE(file-reference) Enabled No
or UNDF(file-reference)
Storage Control AREA Enabled No
STORAGE Enabled - ' No
Error) ERROR Enabled No
Finish FINISH Enabled No
Programmer-named CONDITION(identifier) or Enabled No
COND(identifier)
PROCEDURE statement ‘A programmed on-unit is a begin block or a single

The condition prefix applies to all statements and
blocks contained in the procedure block. It does
not apply to contained statements or blocks that
have condition prefixes identifying the same condi-
tion.

PUT statement
The condition prefix applies to expressions in the

PUT statement. It does not apply to a referenced
FORMAT statement.

ON-UNITS

Programmed and system on-units are specified with the ON
statement. ON statement syntax is

. " on-unit
[prefix]. . . ON condition [SNAP] {SYSTEM; }

Refer to section 12 for detailed ON statement syntax.

10-2

statement. For example:
ON ENDFILE(FILEA) GOTO RECOVER;
or

ON ENDFILE(FILEA) BEGIN;

iEND;

A system on-unit specifies standard system action for the
condition. The SYSTEM option in the ON statement
indicates that the system on-unit should be activated when
the condition is raised. For example:

ON ENDFILE(FILEA) SYSTEM;
The SNAP option is described later in this section.
Execution of the ON statement establishes the programmed
or system on-unit for the specified condition. Establishing

an on-unit does not cause it to be executed; it merely makes
the on-unit available for execution when the condition is

60388100 A

subsequently raised. An established on-unit is always
associated with the block activation in which the ON
statement was executed. The on-unit is said to be
established in that block activation.

Note that the ON statement is not a declarative statement.
It is executed only when it is encountered in the normal flow
of control.

CURRENT ESTABLISHED ON-UNIT

The current established on-unit for a condition is the
on-unit that will be activated if the condition is raised. The
current established on-unit can be associated with any block
activation; it need not be established in the current block
activation.

Several established on-units can exist for a condition; one
can be associated with each block activation in the dynamie
block activation stack. There is always exactly one current
established on-unit for each condition, and it is found as
follows:

e If no established on-unit exists for the condition in any
block activation, the current established on-unit is the
system on-unit for the condition. The SNAP option is
assumed to be present for the ERROR condition only.

e If exactly one established on-unit exists for the
condition, it is the current established on-unit.

e If more than one block activation has an established
on-unit for the condition, the current established
on-unit is the most recently established on-unit; that is,
the one in the most recent block activation.

Figure 10-1 illustrates these three cases.

ESTABLISHING AND REMOVING ON-UNITS

Each block activation in the dynamic block activation stack
can have associated with it one established on-unit for each
condition. Note that ENDFILE(F) and ENDFILE(G) are two
different conditions if F and G are file constants.
CONDITION(RED) and CONDITION(BLUE) are also different
conditions.

When a block is activated, the new block activation has no
established on-units. When the block activation is termi-
nated, all on-units established in it are discarded. While the
block is active, on-units can be established and removed as
follows:

® Execution of an ON statement for a condition estab-
lishes the specified programmed or system on-unit in
the current block activation. If an on-unit for that
condition is already established in the current block
activation, the old on-unit is discarded and replaced by
the new one.

e Execution of a REVERT statement for a condition
removes the on-unit established for that condition in
the current block activation. If there is no on-unit for
the condition established in the current block acti-
vation, the REVERT statement has no effect.

® Execution of an ON statement or REVERT statement
has no effect on on-units established in dynamic
predecessors of the current block activation.

60388100 A

Pt PROC OPTIONS(MAIN)
CALL Q%

Qs PROCS
READ FILE(F) SET(POINT)S
/#SYSTEM ON=UNIT®#/
END Q3

END P23

P: PRNOC OPTIONS (MAIN)3
DECLARE FIRSY ENTRYS
ON ENDFILE(F) CALL FIRSTS3
CALL Q3

Q: PROC:
READ FILE(F) SET(POINT)S
/%CALL. FIRST#/
END 03

END P3

P: PROC OPTIONS(MAIN)3
DECLARE (FIRSTsSECOND) ENTRY?}
ON ENNFILE(F) CALL FIRST3
CALL Q3

0: PROCS
ON ENDFILE(F) CALL SECOND3
READ FILE(F) SET(POINT)$
/#CALL. SECOND®*/
END O3

END P

P: PROC OPTIONS(MAIN)3
DECLARE (QoFIRST) ENTRYS
ON ENOFILE(F) CALL FIRSTS
CALL Q3
END Pt

Q: PROC3
READ FILE(F) SET(POINT)3
/#CALL FIRST#/
END Q3

Comments indicate the action that will be taken if
ENDFILE(F) is raised during execution of the READ
statement.

The last example illustrates that the current established
on-unit need not be contained in the same. external
procedure as the statement that causes it to be
activated.

Figure 10-1. The Current Established On-Unit

Figure 10-2 illustrates the use of the ON statement to
establish on-units and the use of the REVERT statement to
remove established on-units.

NONLOCAL REFERENCES IN AN ON-UNIT

Any reference to an identifier that is not explicitly declared
inside the on-unit itself is a nonlocal reference. Any
reference in a single statement on-unit is a nonlocal
reference. : :

10-3

P: PROC OPTIONS (MAIN)3
NECLARPE (FIRSTeSECONDsTHIRD) FNTRYS
WEAD FILE(F) SET(POINT)S
/#SYSTEM ON=(INIT#/
ON ENDFILE(F) CALL FIRSTS
READ FILF(F) SET(POINT)S
/RCALL FIRST#/
ON ENMDFILE(F) CALL SECOND:
CALL Q3 :

0 PROCS
READ FILE(F) SET(POINT)S
/#CALL SECOND#®/ ;
ON ENDFILE(F) CALL THIRDS
READ FILE(F) SET(POINT)S
/#CALL THIRD#®#/
REVERT ENOFILE(F) S
READ FILE(F) SET(POINT)S
/#CALL. SECOND*%*/
REVERT ENDFILE(F)
READ FILE(F) SET(POINT)S
/#CALLL SECOND*/
ON ENDFILE(F) CALL THIRDS
READ FILE(F) SET(POINT)S
/HCALL THIRD#®/
END Q3

READ FILE(F) SET(POINT)S
7#CALL SECOND#®/

REVERT ENDFILE(F) S

READ FILE(F) SET(POINT)S
/9SYSTEM ON=tINIT#/

END P3

Each comment indicates the action that will be taken
if ENDFILE(F) is raised during execution of the
. preceding READ statement.

which control is returned depends upon the particular
condition and the manner in which it was raised. Abnormal
termination transfers control to some specified point in the
program by a nonlocal GOTO. Any GOTO statement that
transfers control to a statement outside the on-unit is a
nonlocal GOTO. This is true regardless of whether the
on-unit is written as a single statement or as a begin block.
Normal and abnormal termination is discussed under Block
Termination in section 2.

Figure 10-2. Establishing and Removing On-Units

Execution of a nonlocal reference sometimes requires the
use of the environment of the current block activation as
described in section 2, Dynamic Program Structure. The
immediate environment of an on-unit activation is the block
activation in which the on-unit was established.

1/0 CONDITION NAMES

The name of each I/O condition contains a file reference. If
the file reference is a file variable, the current file constant
value of the file variable is used when the ON, REVERT, or
SIGNAL statement is executed. Similarly, when an 1I/0
condition is raised during execution of a statement that
references a file variable, the current file constant value of
the file variable is used in finding the current established
on-unit. The use of I/O conditions is illustrated in
figure 10-3. -

If A and B are file constants, ENDFILE(A) and ENDFILE(B)
are two different conditions. An on-unit for ENDFILE(A)
and an on-unit for ENDFILE(B) can be established in the
same block activation. When ENDFILE(A) is raised, the
current established on-unit for ENDFILE(A) is activated;
established on-units for ENDFILE(B) are irrelevant.

ON-UNIT TERMINATION

Termination of an on-unit is classified as normal or
abnormal. Normal termination returns control to the block
activation in which the condition was raised. The point to

10-4

P: PROC OPTIONS(MAIN)3
DECLARE (F+G) FILES
ON ENDFILE(F) GOTO CLEANUPS
ON ENDFILE (G) RETURNS
CALL Q(F) 3
CALL 0(G)3

Q3 PROC(FPARM) 3§
DECLARE FPARM FILES
ON ENDFILE (FPARM) CLOSE FIi E(FFARM) 3
READ FILE(F) SET(POINT)S

READ FILE (FPARM) SET(POINT)3
END Q3

CLEANUPS .00
END Ps

During the first execution of procedure Q, an end-of-file"
encountered by either READ statement will cause the
execution of the CLOSE statement, and will close file F.

During the second execution of procedure Q, an end-of-
file encountered by the first READ statement will cause
the GOTO statement to be executed, terminating the
execution of both the on-unit and procedure Q. An
end-of-file encountered by the second READ statement
will cause the CLOSE statement to be executed, and
will close file G.

Figure 10-3. Referencing I/O Conditions

Examples of normal and abnormal on-unit terminations are
shown in figure 10-4.

ON UFL PUT ... ; Normal Termination
ON CONV BEGIN;
PUT ... ;
END; Normal Termination
ON UFL GO TO X; Abnormal Termination
ON CONV BEGIN;
GO TO X;
END;

Abnormal Termination

Figure 10-4. On-Unit Termination

RAISING A CONDITION

When an enabled condition is raised, the current established
on-unit for that condition is activated. It is an error to raise
a disabled condition; raising a disabled condition can produce
mode errors, program looping, or incorrect results.

60388100 A

Conditions that are not classified as computational cannot
be disabled. When such conditions are raised, the associated
system on-unit is always executed in the absence of a
programmed on-unit. System action can be bypassed,
however, by specifying a null on-unit. For example:

ON ENDPAGE(SYSPRINT);

This statement allows printing to be continued after the
maximum number of lines are printed on a page.

CONDITION BUILTIN FUN‘CTIONS

Condition builtin functions provide information concerning
interrupts. They can be referenced in an on-unit or a
dynamic successor of an on-unit to determine the location
and cause of the interrupt. The condition builtin function
names and the values they return are as follows:

Returns the character in ONSOURCE
that caused the condition to be
raised.

ONCHAR

ONCODE Returns an integer value indicating
why the condition was raised. Refer
to run-tlme diagnostics in appendix B.
ONFILE Retums the name of the file constant
that caused the condition to be
raised; the name is returned even if
the file. reference specified a file
variable.

ONKEY Returns a character string containing
the value of the KEY or KEYFROM
expression.

ONLOC Returns the name of the procedure
containing the statement that caused
the condition to be raised.
ONSOURCE Returns the character string that
caused CONVERSION to be raised.

When a condition is raised, the system determines condition
builtin funetion values and maintains the values as part of
the information unique to the ‘on-unit activation. The values
are stacked and unstacked as on-units are activated and
terminated. When a condition builtin function is referenced
in an on-unit, the system returns the most recently
established value of that condition builtin funetion.

Values are only established for condition builtin functions
applicable to the condition raised. A reference to a
condition builtin function that does not have an established
value yields a default value.

Pseudovariables are ° available for ONCHAR and

ONSOURCE. These can be used to modify the source data
and allow program execution to continue.

SNAP OUTPUT

The SNAP option of the ON statement specifies that
diagnostic information is to be written onto file SYSPRINT
when the named ‘condition is raised. SNAP output consists
of the following information:

® Error message

® Name of the condition raised

60388100 A

® Values of relevant condition builtin functions ‘

_ & Statement number near the source of the failure

® Names of procedure blocks that are dynamic predeces-
sors of the on-unit

If the information cannot be transmitted to SYSPRINT, an
abbreviated SNAP output is transmitted to the dayfile. This
can oceur under any of the following circumstances:

@ The declaration of SYSPRINT in the block is not a flle :

constant declaratlon.

e SYSPRINT is not open as a print file and cannot be f
opened as a print file. :

® The condition being raised is UNDF(SYSPRINT) or .
TRANSMIT(SYSPRINT).

® SYSPRINT has insufficient record length specified.

An example of SNAP output is shown in figure 10-5.

SEQUENCE OF OPERATIONS

When a condition is raised during program execution, the
system takes the following steps in the order given:

1. Determines whether the condition is currently enabled
or disabled. If the condition is disabled, steps 2 and 3
are bypassed except as noted under specific conditions.

2. Outputs diagnostic information if the SNAP option is in
effect for the current established on-unit.

3. Activates the current established programmed or
system on-unit, and establishes for the new on-unit
activation the value of each condition builtin funetion
that is pertinent to the condition.

4. Continues execution. The results of continuing after
normal termination of an on-unit, or when the condition
_is disabled, vary depending upon the condition that was
raised and the manner in which it was raised.

CONDITION DESCRIPTIONS

Condition names appear in the following statements:

ON statement An on-unit is established for a

condition.
REVERT The on-unit established for the condi-
statement tion in the eurrent block activation is
removed.
SIGNAL The raising of a condition is
statement simulated.

Condition name syntax consists of the condition name only
with the following exceptions:

1/0 conditions require a parenthes1zed reference to the
- file.

Programmer-named conditions require a parenthesized
identifier.

Conditions are presented in alphabetic order in the following
paragraphs. Each condition description includes the circum-
stances under which the condition is raised and the proc-
essing that occurs on normal termination of the on-unit.

10-5

PO ERROVR'CONDITION RAISED ~HITHONCODE = 9.

*********************************‘

SNAP GENERATED UPON OCCURRENCE OF ERROR
.. ONCODE = 9

- -+++ ACTIVE PROCEDURES AND ON-UNITS +++ :
STMT / EXT. PROC. ./ PROCEDURE / ENTRY OR ON-UNIT

/ *SYSTEM / / ON-ERROR
6 / BEGIN - / BEGIN / BEGIN

kkkkhkhkhkkkhkhkhkhkkkhkhkkhkhkkkhkkkdhhkkkihk

RPV - PREVIOUS ERROR CONDITIONS RESET. -

Figure 10-5. Sample SNAP Output

Any of :the conditions can be simulated by execution of a
SIGNAL statement. On normal termination of the on-unit,
program execution continues with the statement following
the SIGNAL statement.

AREA CONDITION

The AREA condition is raised when an area is not large
enough to contain a generation being allocated for a based
variable, or is not large enough to contain an area value
being assigned to the area variable. In the following
example, the "ALLOCATE statement raises the AREA
condition because each generation allocated within an area
requires one extra word for system control information.

DCL A AREA(100);
DCL B(100) FIXED DEC BASED(P);
ALLOC B IN(A); /*RAISES AREA*/

The condition is raised during the execution of the following
statements:

A based variable is being allocated
within an area and the referenced
area does not have enough space to
contain the generation. Existing gen-
erations ¢annot be repositioned to
obtain space because offset values
must be preserved.

ALLOCATE

Assignment An grea value is being assigned to an
area variable and the target area is
not large enough to contain the area
value. Existing generations cannot be
repositioned to obtain space because
offset values in the target must
mateh those in the source area.

On normal termination of the on-unit during ALLOCATE
statement processing, the IN option is reevaluated and the
allocation is attempted again. This can cause the AREA
condition to be raised repeatedly unless the on-unit frees
sufficient space in area storage. The on-unit activation
must not be terminated by a nonlocal GOTO if the AREA
condition was raised during ALLOCATE statement
- processing,

On normal termination of the on-unit during assignment
statement execution, the result of the assignment operation
is unpredictable. If there are remaining assignment targets,

10-6

execution continues with the next one; otherwise, program
execution continues with the statement following the assign-
ment statement.

New values are established for condition builtink functions
ONCODE and ONLOC when the:AREA on-unit is activated.

The system AREA on-unit writes an informative message on
SYSPRINT and raises the ERROR condition.

CONDITIO‘N'/COND‘CONDITVION

A CONDITION condition is a programmer-defined condition
that is raised only by SIGNAL statement execution. The
condition is referenced by -keyword CONDITION or COND
followed by an identifier in parentheses. Each unique
identifier declares a separate condition. The identifier is
contextually declared as a condition with the EXTERNAL
attribute. For example:

ON CONDITION(MYNAME) BEGIN;

.

END;

SIGNAL CONDITION(MYNAME);

On normal termination of the on-unit, program execution
continues with the statement following the SIGNAL
statement.

New values are established for condition builtin functions
ONCODE and ONLOC when any CONDITION on-unit is
activated.

The system CONDITION on-unit for any programmer-named
condition writes an informative message on SYSPRINT and
returns control to the point of interrupt.

CONVERSION/CONV CONDITION

The CONVERSION condition is raised when a character
string value is invalid for conversion to an arithmetie, bit
string, or pictured target data type. Such conversions occur
during stream 1/O, expression evaluation, and assignment.
For example:

DCL A FIXED DEC;
A='123A4"; /*RAISES CONV*/

60388100 B

Character string conversions are executed character by
character, from left to right. When an invalid character is
encountered, the conversion attempt stops and the
CONVERSION condition is raised. The value of the target is
undefined, and remains undefined until the conversion is
successfully completed or some subsequent statement exe-
cution assigns it a value.

; if the user does

y p t loop indefinitely.
If the condition occurs during 1/0 statement execution, the
on-unit must not have closed the file being used by the
statement.

If the CONVERSION condition is disabled, execution con-
tinues and program results are unpredictable. In some cases
ERROR will be raised; the ONCODE will indicate the
CONVERSION error, If CONVERSION is disabled, SIGNAL
CONVERSION acts like a null statement.

New values are established for condition builtin functions
ONCODE, ONLOC, ONSOURCE, ONCHAR, and possibly
ONFILE and ONKEY when the CONVERSION on-unit is
activated. ONFILE is assigned a file name if the conversion
is being performed during an I/O statement execution. The
ONCHAR value is the character that caused the CONVER-
SION condition to be raised. The ONSOURCE value is the
entire source string.

The system CONVERSION on-unit writes an informative
message on SYSPRINT and raises the ERROR condition.

ENDFILE CONDITION

An ENDFILE condition is raised when an input statement
attempts to read or skip past the end of a CRM file. The
condition only occurs during execution of a GET statement
or during execution of a READ statement without a KEY
option. The ENDFILE condition is raised on each subsequent
attempt to read data from the CRM file until the file
associated with it is closed. Each of the following
statements can raise an ENDFILE condition:

GET FILE(F) EDIT(AXA);
READ FILE(G) SET(P);
READ FILE(G) SET(P) KEYTO(K);

On normal termination of the on-unit, program execution
continues with the statement following the GET or READ
statement.

New values are established for condition builtin funetions
ONCODE, ONLOC, and ONFILE when any ENDFILE on-unit
is activated.

The system ENDFILE on-unit for any file writes an
informative message on SYSPRINT and raises the ERROR
condition.

ENDPAGE CONDITION

An ENDPAGE condition is raised when the program
attempts to begin a line that would be beyond the page size
defined for a file. The condition can oceur during execution
of a PUT statement or during execution of a GET statement
with a COPY option while transmitting data to the copy file.
The condition only occurs for files with the attributes
STREAM OUTPUT PRINT. For example:

PUT LINE(30). .. ;
PUT LINE(20)...; /*RAISES ENDPAGE*/

60388100 B

On normal termination of the on-unit, the action taken
depends on the circumstances under which the condition was
raised.

If the condition was raised during an attempt to write
data (including writing blank data for an X format or
COLUMN format), the data not yet transmitted is
written on return from the on-unit.

If the eondition was raised during execution of a LINE
format, LINE option, SKIP format, or SKIP option, the
format item or option is considered to be completed,

In either case, processing of the PUT or GET statement
continues. The file must not have been closed in the
meantime.

When the condition is raised, the current line number has the
value page size + 1, but no data has yet been transmitted to
that line. If the on-unit does not cause the line number to
be reset by starting a new page, line number will be
incremented beyond page size by subsequent data trans-
mission until a new page is established. In effeet, there will
be no page ejection. ENDPAGE for that file will not be
raised again until the line number has been set to a value
less than or equal to page size and subsequently exceeds
page size. Line number can be set to 1 by any of the

following:

® Execution of a PUT statement with a PAGE option

® Execution of a PUT statement with a LINE option §
r with an expression that has a value of 1

® Use of a PAGE format item

® Use of a LINE format item 3}
an expression that has a value of 1

New values are established for condition builtin functions
ONCODE, ONLOC, and ONFILE when any ENDPAGE on-
unit is activated.

The system ENDPAGE on-unit for any file begins a new
page. If the condition was raised by SIGNAL statement
execution and the file does not have the attribute PRINT,
the ERROR condition is raised.

ERROR CONDITION

The ERROR condition is raised under the following
cirecumstances:

® As standard action for most system on-units. No new
condition builtin function values are established.

® As standard action for certain programming errors.
These programming errors include mathematical builtin
function errors, exponentiation errors during expression -
evaluation, and failure to open a file within an
UNDEFINEDFILE on-unit. New values are established
for condition builtin functions ONCODE and ONLOC.
For example:

X=SQRT(-5); /*RAISES ERROR*/

Normal termination of the on-unit is prohibited. An
attempted normal termination causes program execution to
be aborted. Abnormal termination of the on-unit is
permitted. An abnormal termination allows program execu-
tion to continue.

10-7 | |

The system ERROR on-unit writes an informative message
on SYSPRINT and aborts the program. The FINISH
condition is not raised."

FINISH CONDITION

The FINISH - condition is raised under the following
circumstances:

® Control reaches a RETURN statement or END state-
ment that would cause the first activation of the main
procedure to be terminated.

® A STOP statement is executed.

When the FINISH condition is raised during execution of a
RETURN or END statement, the first activation of the main
procedure is the only one still active. A programmed
FINISH on-unit is present only if one was established by an
ON statement execution in that activation.

When the FINISH condition is raised by STOP statement
execution, all the blocks that were active at that time are
still active.

On normal termination of the on-unit, control is returned to
the point of interrupt, program termination procedures are
completed, and control is returned to the operating system.
Program termination can be avoided by abnormal termi-
nation of the FINISH on-unit.

If the FINISH condition was raised by SIGNAL statement
execution, the program is not terminated. The on-unit is
executed and control is returned to the statement following
the SIGNAL statement.)

New values are established for condition builtin functions
ONCODE and ONLOC when the FINISH on-unit is activated.

The system FINISH on-unit returns control to the point of
interrupt.

FIXEDOVERFLOW/FOFL CONDITION

The FIXEDOVERFLOW condition is raised when the result of
a fixed point calculation exceeds the maximum possible
precision, The maximum preecision for a binary fixed point
value is 48 binary digits; the maximum preeision for a
decimal fixed point value is 14 decimal digits. The condition
can oceur during intermediate calculations.

FIXEDOVERFLOW should not be confused with the SIZE
condition. The FIXEDOVERFLOW condition is raised when a
value that is calculated during expression evaluation exceeds
the maximum possible precision. SIZE is raised when a value
being converted or assigned is too large for the declared or
default precision of the target. For example:

DCL A(2) FIXED DEC(10,0) INIT(123456,1234567890);
DCL B FIXED DEC(10,0);

B=A(2)*A(2); /*RAISES FOFL DURING MULTIPLY*/

B=A(1)*A(1);/*RAISES SIZE DURING ASSIGNMENT*/

Normal termination of the on-unit is prohibited. An
attempted normal termination causes the ERROR condition
to be raised. Abnormal termination of the on-unit is
permitted. An abnormal termination allows program execu-
tion to continue.

I 10-8

If the FIXEDOVERFLOW condition is disabled, execution
continues from the point of interrupt and program results
are unpredictable. If FOFL is disabled, SIGNAL FOFL acts
like a null statement.

New values are established for condition builtin functions
ONCODE and ONLOC when the FIXEDOVERFLOW on-unit
is activated.

The system FIXEDOVERFLOW on-unit writes an informative
message on SYSPRINT and raises the ERROR condition.

KEY CONDITION

A KEY condition is raised under one of the following
circumstances:

® The value of the KEY option does not match any
existing key value in the CRM file. This ean be
detected during execution of a READ, DELETE, or
REWRITE statement.

® The value of the KEYFROM option duplicates an
existing key value in the CRM file. - This can be
detected during execution of a WRITE or LOCATE
statement, or during explicit or implicit file closing.
For example:

WRITE FILE(F) KEYFROM(K) FROM(G);
WRITE FILE(F) KEYFROM(K) FROM(H);
/*RAISES KEY*/

® The key value is not compatible with the selected
CYBER Record Manager file organization.

On normal termination of the on-unit, program execution
continues with the statement following the I/O statement.

New values are established for condition builtin funetions
ONCODE, ONLOC, ONKEY, and ONFILE when any KEY on-
unit is activated.

The system KEY on-unit for any file writes an informative
message on SYSPRINT and raises the ERROR condition.

OVERFLOW/OFL CONDITION

The OVERFLOW condition is raised when the result of a
floating point calculation yields an exponent that exceeds
the maximum allowed by the hardware. The condition can
oceur during intermediate calculations. For example:

DCL A FLOAT DEC;
A=1.E200**2; /*RAISES OFL*/

Normal termination of the on-unit is prohibited. An
attempted normal termination causes the ERROR condition
to be raised. Abnormal termination of the on-unit is
permitted. An abnormal termination allows program execu-
tion to continue.

If the OVERFLOW condition is disabled, execution continues
from the point of interrupt and program results are
unpredictable. If OFL is disabled, SIGNAL OFL acts like a
null statement.

New values are established for condition builtin functions

ONCODE and ONLOC when the OVERFLOW on-unit is
activated.

60388100 B

The system OVERFLOW on-unit writes an informative
message on SYSPRINT and raises the ERROR condition.

RECORD CONDITION

A RECORD condition is raised during execution of the
following:

® READ statement

The size of the generation identified by the INTO
option is different from the length of the record
read from the CRM file.

® WRITE or REWRITE statement

The CRM file has W, Z, or S type records and the
size of the generation identified by the FROM
option is larger than the maximum record length
for the CRM file; or the CRM file has F type
records and the size of the generation is different
from the record length for the CRM file. In the
following example, the WRITE statement raises the
RECORD condition because the variable A requires
10 additional characters for overhead:

DCL F RECORD OUTPUT ENV(RT=F,FL=100;
DCL A CHAR(100) VARYING;
WRITE FILE(F) FROM(A); /*RAISES RECORD¥

® WRITE or LOCATE statement

A record being written from an allocated buffer is
longer than the maximum record length for the
CRM file.

® Explicit or implicit file closing

A record being written from an allocated buffer is
longer than the maximum record length for the
CRM file.

When the condition is raised during READ statement
execution, the value of the target generation identified by
the INTO option is as follows: .

If the record is shorter than the target generation, the
entire record is contained in the first part of the
generation; the remainder of the generation has an
undefined value.

If the record is longer than the target generation, only
the first part of the record .is contained in the
generation; the excess portion is not transferred to the
target generation.

When the condition is raised during output statement
execution, the record has not been written when the on-unit
is activated.

On normal termination of the on-unit activated during
execution of a READ statement, program execution con-
tinues with the statement following the READ statement.
On normal termination of the on-unit activated during
execution of a REWRITE statement, statement processing
continues from the point of interrupt; the file must not have
been closed. On normal termination of the on-unit activated
during execution of a WRITE or LOCATE statement or an
explicit/implieit file closing, the ERROR condition is raised.

New values are established for condition builtin functions
ONCODE, ONLOC, and ONFILE when any RECORD on-unit
is activated. A new value is established for condition builtin
funetion ONKEY if a KEY option is associated with the
statement.

The system RECORD on-unit for any file writes an

informative message on SYSPRINT and raises the ERROR
condition.

60388100 B

SIZE CONDITION

The SIZE condition is raised during conversion of a value to
a fixed point or pictured numeric target type when the
converted value is too large for the precision of the target;
that is, loss of significant digits would occur. For example:

DCL A(2) FIXED DEC(10,0) INIT(123456,1234567890);
DCL B FIXED DEC(10,0);

B=A(1)*A(1); /*RAISES SIZE DURING ASSIGNMENT*/
B=A(2)*A(2); /*RAISES FOFL DURING MULTIPLY*/

The SIZE condition can be raised under the following
circumstances: :

e Conversion to fixed point

During assignment or during execution of an E or F
format item by a PUT statement, SIZE is raised if
the number of digits available to the left of the
decimal or binary point is not large enough to
contain the integer part of the converted value.

e Conversion to fixed point during intermediate calcu-
lations

Conversion from FLOAT to BIT requires inter-
mediate conversion to FIXED BINARY. SIZE can
be raised during conversion to FIXED BINARY.

Conversion from CHARACTER to arithmetic

during expression evaluation such as (1.E20+'2.E20")

requires intermediate conversion to FIXED

DECIMAL (14,0) .even if the type of the entire

expression is FLOAT. SIZE can be raised during
- this intermediate conversion.

® Conversion to pictured numeric during edit through
picture

During assignment or during execution of a P
format by a PUT statement, SIZE is raised when
the picture is not large enough to contain the
integer part of the value; or when the value is
negative and the picture does not contain any of
the sign specification codes S +- TIR CR or DB.

During execution of an E or F format item by a
PUT statement, SIZE is raised if the implied
picture is not large enough to contain the integer
part of the converted value.

During execution of an E format item by a PUT
statement, SIZE is raised if the implied picture is
not large enough to contain the exponent, signs,
decimal point, and E.

Normal termination of the on-unit is prohibited. An
attempted normal termination causes the ERROR condition
to be raised. Abnormal termination of the on-unit is
permitted. An abnormal termination allows program execu-
tion to continue.

If the SIZE condition is disabled, execution continues from
the point of interrupt and program results are unpredictable.
In some cases ERROR will be raised; the ONCODE will
indicate the SIZE error. If SIZE is disabled, SIGNAL SIZE
acts like a null statement.

New values are established for condition builtin funetions
ONCODE and ONLOC when the SIZE on-unit is activated.

The system SIZE on-unit writes an informative message on
SYSPRINT and raises the ERROR condition.

10-9 |

STORAGE CONDITION

The STORAGE condition is raised when an attempt is
made to allocate storage and the required amount is not
available. The condition can be raised during- alloeation of
storage for variables of any storage type, for blo