'CONTROL DATA

CORPORATION.

CONTROL DATA®
6000 COMPUTER SYSTEMS

FORTRAN EXTENDED REFERENCE MANUAL
6000 VERSION 3

REVISION RECORD

REVISION DESCRIPTION
A Original publication.
B Revised December 1967.
C Project updating of system and corrections in response to user comments.
(1-6-69)
D This revision includes changes required by release of SCOPE 3.1.6, and minor
(12-12-69) corrections to the text in response to user comments or errata. Pages affected
are: iii thru viii; 1-1, 2, 5, 6, 8 thru 10; 2-9; 3-1; 4-5, 9, 12;5-4, 6, 9; 6-1
thru 3, 6-7 thru 10, 12, 6-16 thru 18; 7-2 thru 4; 8-1, 6,8, 9, 10; 9-2, 9-2.1, 10
B-2, 7, 8; C-2; D-1, 2, 3, 5; E-1; F-1 thru 4; G-1, 3, 5, 6 thru 11; H-5; I-1
thru 3, 7, 8; J-1, 2; Index 1 thru 9; Comment Sheet.
E Information included in this revision reflects changes made for version 3.0
(7-23-70) which runs under SCOPE version 3.2, Pages affected are: iii thru ix;
1-1 thru 1-10; 5-1, 5-2, 5-11; 6-1 thru 6-3, 6-17 thru 6-19; 9-6; 10-3;
11-1 thru 11-24; 12-1 thru 12-10; C-1 thru C-10; D-1, D-4; G-5, G-9;
H-1; I-1, I-3, I-5, I-7; K-1; Index-1 thru Index-11; Comment Sheet.
F Project updating of system and additional debugging information. Pages
(1-15-71) affected are: viii, ix; 1-5; 4-3; 5-11; 6-17, 6-18; 9-6 thru 9-8; 11-1 thru 11-24;

12-1 thru 12-4, 12-9 thru 12-11; C-1 thru C-4, C-9; D-1, D-2; I-4; Index-1

thru Index-11; Comment Sheet.

Publication No.

60176600
Additional copies of this manual may be Address comments concerning
obtained from the nearest Control Data this manual to:

Corporation sales office.

CONTROL DATA CORPORATION
Documentation Department

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

©1968, 1969, 1970, 1971
Control Data Corporation or use Comment Sheet in the
Printed in the United States of America back of this manual

ii

60176600 Rev. F

PREFACE

This publication describes the features of the FORTRAN Extended language
(version 3.0)for the CONTROL DATA® 6400/6500/6600/6700 Computers.
It is assumed that the reader has some knowledge of an existing FORTRAN
language and the CONTROL DATA 6400/6500/6600/6700 Computer System.
The language described herein is an extension of the ANSI FORTRAN
language.

The FORTRAN compiler operates in conjunction with version 1.1 COMPASS
assembly language processor under the control of the SCOPE operating
system (version 3.2). The FORTRAN processor makes optimum use of
storage both during compilation and in generated machine language instruc-
tions. Implementation of this processor providesthe capability of compilation
and execution within a single job operation as well as the simultaneous
compilation of several programs, utilizing the system's multi-programming
features.

60176600 Rev. E

iii

CONTENTS

PRETFACE

CHAPTER 1

CHAPTER 2

60176600 Rev. E

PROPERTIES AND ELEMENTS Oif FORTRAN

1.1
1.2

e
(S, NG

1.6

The FORTRAN Character Set
FORTRAN Statements
Statements
Continuations
Comments
Statement Label
Identification Field
Symbolic Names
Data Types
Constants
Integer
Real
Double Precision ==
Complex e=
Logical ===
Hollerith
Octal
Variables
Variable Names
Types of Variables
Extended Core Storage e=
Arrays
Order of Array Storage
Subscripted Variables

EXPRESSIONS

NN DNDDNDN
QDb W N

Arithmetic Expressions
Relational Expressions
Logical Expressions
Masking Expressions o=
Evaluation of Expressions

e
.
-

L U
WWwWWwNNNNNDERER

Lo
SIS N

I
© 0 =1~ ~J0C O™

HHHHHHHHHHHHTHHHHHHHHHHH =
i

CHAPTER 3

CHAPTER 4

CHAPTER 5

vi

ASSIGNMENT STATEMENTS

3.1 Arithmetic Assignmente—
Mixed-Mode

3.2 Logical Assignment

3.3 Masking Assignment

CONTROL STATEMENTS

4.1 GO TO Statements
Unconditional GO TO
4.2 Assigned GO TO
Computed GO TO
4.3 IF Statements

Arithmetic IF Three-Branch
Arithmetic IF Two-Branch

Logical IF
Logical IF Two-Branch
4.4 DO Statement
DO Nests
DO Loop Execution
CONTINUE
4,5 CALL
RETURN
4.6 Program Control
STOP
PAUSE
END

INPUT/OUTPUT STATEMENTS

5.1 Modes of Input/Output
1/0 Lists
Read/Write Statements
Formatted Input/Output

Read

Input File

Write

Print/Punch

Print Control
5.5 Unformatted Input/Output

Read
Write
5.6 Namelist Statement
Input Data
Output Data

7 Rewind
8 Backspace
9 Endfile
10 ECS1/0
11 Mass Storage I/0

[S))}
VI \V]

5.
5,
5.
5.
5.

oo
N R S

ﬁ#l&)&)&%;&#%f%ﬁ#%%%b&»&dkﬂk
W =& o 1 U

1
B W whNhNDN = P

1
18

1
= O W W, u o,

01010101010101010101?101@0101010101010101
1
-
o O

L}
oy
o

60176600 Rev. D

CHAPTER 6

CHAPTER 7

CHAPTER 8

60176600 Rev. E

FORMAT STATEMENTS

6.1 Format Declaration
Field Descriptors
Tield Separators
6.2 Conversion Specification
Iw Input
Iw Output
Ew.d Input
Ew.d Output
Fw.d Input
Fw.d Output
Gw.d Input
Gw.d Output
Dw. d Output
Dw.d Input
Ow Output
Ow Input
Aw Output
Aw Input
Rw Output
Rw Input
Lw Output
Lw Input
Complex Conversions
nP Scale Factor
6.3 Editing Specifications
nX
nH
New Record
G NN
Tn
6.4 Repeated Format Specifications
6.5 Variable Format

AUXILIARY INPUT/OUTPUT STATEMENTS

7.1 Buffer Statements
Buffer In
Buffer Out
7.2 ENCODE/DECODE Statements
Encode
Decode

SPECIFICATION AND DATA STATEMENTS

8.1 Dimensions
Variable Dimensions
8.2 Common
Labeled Common
Unlabeled Common
Arrangement of Common Blocks

[T I I T A A
== 2 O O 00~ =T W NN
o QO O

Oﬁclnc?:clvc;wc:c:mammammam@m@mmmm@a@mmmmma)
[T T T T S S T R N T
ol el el R e R R R R R e N ol
O~ U b WNONNNDNNNRRFO

ENTIES IS IS ES IR IR |
I
W NN R~ P

oooooo?ooooo o)
AR W W N = =

vii

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

viii

8.3 Equivalence
8.4 External
8.5 TYPE

8.6 DATA

PROGRAM FUNCTION, SUBROUTINE, BLOCK DATA,

AND LIBRARY ROUTINES

9.1 Main Program

9.2 Subroutine Subprograms
ENTRY Statement
Library Subroutines

9.3 Function Subprograms
Statement Functions
Intrinsic Function
External Function
External Function Reference
Basic External Functions

9.4 Block Data Subprogram

OVERLAYS AND SEGMENTS

10.1 Overlays
10.2 Segments
Segment Control Cards
Sections
Segments

DEBUGGING FACILITY
11.1 Format

11.2 Arrays Statement
11.3 Calls Statement
11.4 Funcs Statement
11.5 Stores Statement
11.6 Gotos Statement
11.7 Trace Statement
11.8 Nogo Statement

11.9 Deck Structure

11.10 Debug Statement
11.11 Area Statement

11.12 Off Statement

11.13 Printing Debug Output

FORTRAN CONTROL CARD

12.1 Control Card Format

12.2 Source Input Parameter

12.3 Binary (Object) Output Parameter
12.4 List Parameter

UL
[

I
W 0001~ O =

—
(=)

|
[y
o

60176600 Rev. F

12.5 Error Traceback and Calling Sequence Parameter 12-3

12.6 Update Parameter (Editing Parameters) 12-3
12.7 Optimization Parameter 12-4
Invariant Computations 12-5
Register Assignment 12-6
12.8 Rounded Arithmetic Parameter 12-9
12.9 Debugging Mode Parameter 12-9
12.10 Exit Parameter 12-9
12.11 System Text File Parameter 12-9
12.12 System Editing and I/O Reference Parameter 12-10
12.13 Assembler Parameter 12-10
12.14 Control Card Examples 12-10
12.15 Small Buffers 12-11
12.16 Reference Map Level 12-11
APPENDIX A SOURCE PROGRAM CHARACTERS A-1
APPENDIX B FORTRAN DIAGNOSTICS B-1
APPENDIX C CROSS REFERENCE MAP C-1
APPENDIX D LIBRARY SUBPROGRAMS D-1
APPENDIX E INTERMIXED COMPASS SUBPROGRAMS E-1
APPENDIX F STATEMENT FORMS F-1
APPENDIX G SYSTEM ROUTINE SPECIFICATIONS G-1
APPENDIX H DECK STRUCTURE H-1
APPENDIX I OBJECT TIME I/O I-1
APPENDIX J SUBPROGRAM AND MEMORY STRUCTURE J-1
APPENDIX K FORTRAN-INTERCOM INTERFACE K-1
INDEX Index-1

60176600 Rev. F ix

00994709

FORTRAN CODING FORIM

PROGRAM

SAMPLE PROGRAM

ROUTINE

CONTROL DATA ELLY.I

EEIIE DATE

PAGE

OF

5 STATE-(§ FORTRAN STATEMENT SERIAL
p| MENT [N 0: ZERO = ONE 2: TWO NUMBER
el NO. |T @: ALPHA © I: ALPHA T Z: ALPHA 2
242348 ie 7B 908 a2y 34)is 6 17 }eR31912012:1122]23]24]25]26127]26129]30131132)33}34{35]36}3738)39]40141]42|43]44(45146]|47(48149{50]51{52]53|54|55{56{S7(50|59|€0 |61 {62[€3]|64163|66{67 6869|7071 |72173)|74(73|76|77|76|79 80}
Cl PRIGIGRAM TS, THE S SLIUT TGN (GF) AN M DEGCGREE| (PP LYNEMIAL (BY (LEAST-ISIQUIARS ME[THBDI.L 1 1 1|
Lo] IREALE X (10,000, % (]10,0;,),, W G230 | & (L), A G L) LB G G 200 g e b L Py
Ll JFORMAT GI2,,, T3/ 4 A7)y | i e i it a1 [PeLY2y]
Ll 2l JFeRMAT GSELS 600 vy oy o o b v i e bt Lt bbb (PO
v READE G5, 1) M NG GR G, TSNy s b s g b e v ia b P1¢|LJ¥JQJ_LJJ
Lo W E2RM AL IR R I AN S A SN SN G S AT AV AN EE R UL D SR AN T SV S UU AN NN S AN SN SN AN A AN Y AN BRE L4122 78 NN A
Ll P B=MH2 v Lo v v b e braa g v o o a s g L [BaLYe
11 Lal=lM+‘L_lL1ll'L S D TN T T NN B O | § I D IS T T T T W RN T T T NS U S N S R S DU U G T A N §) N N S O T Y I | _L_PJ@J_L‘L,Yl?l,LJ_
L D@, 5| (J=020 W Wy |y v e e b b Ll e g | P8, L,J
L GIDE00 e v b v v e b e e vy |B@LY9,
L) MGIEYN i s e lllILIIJJ_‘,IIIIlLil_lv,_lJlJl[J;lL Ll g [P Y10, |
SR DA, 6] J=1 LB i b bbb e b ity o) PP LYLL |
1L6 EI(IL) =IOL‘J01 N NS N G (N U S S N S W Wy U S S N O S N WS N W I S W W IO S S) F I Y N S N U S | R Y S TR S Y I | 1 PI¢IL1Y|1121 |
o P8 e TN e i cc e b e i g o | [PSLYL3
JE Pl=lll' Ol | S S S B P T | ,_J_Li,l‘,L,LJ.J_L}_lJAJJ I T N S S S U W W T | S U NS S N S I I | U I O Y S O O | 1 P\@JILIAYLILAIL
b BGIDI=E G Y G b e v e v nr v b g i g g (PSS
NI B LI 1 TN Mt TN 2L T N S A AT SR R SR T I AN AN I AN I S I O N IR S I SN I AR SR BN O AN EN A IR AT TN IR AT AT S I A N b T A R A A T
PRI N L A5s2. ST € R SO FES AN N AT RN A AN UGS S B S S S o A SO SN S A IU RN A Nl IR A R A A R S S 0 A A AN SN A SN SN I A ET ST R S S RNATEY S £:UN A 45 S A
L AW GIN =W G oy e b e e e v v b c ey v Lo s i o (P18, |
L3R (IR QI Y (ID*R S T O 0 S M B B O NS O S R SR RN B SN RN £ 41 Nt 9% B SR TI
vl2ysyeys]e|r i eyoy0] iy zyispiegisgie;iryiegis20 20122123 24125126127 28129 30f 31 132) 33341 35, 36]37,38139,40f41 1424344181 46147 48149 5051 | 5253 54]35 5637|5859 60 {61 626364 63,66 67]68163,70) 7172|7378 175,76 |77, 78179] 60

Figure 1-1

FORM 252-8

PROPERTIES AND ELEMENTS OF FORTRAN 1

1.1
THE FORTRAN
CHARACTER SET Alphabetic: AtoZ
Numeric: 0toH
Special: = equals) right parenthesis
+ plus , comma
- minus . decimal point
* asterisk $ dollar sign
/ slash space (i.e., blank)
(left parenthesis
In addition, any character of the SCOPE character set may be used in Holl-
erith information and in comments.
1.2
FORTRAN
STATEMENTS FORTRAN source programs consist of an ordered set of statements from

which the compiler generates machine instructions and constants. These
statements describe a procedure to be followed during execution of the
program.

The statements comprising the FORTRAN program are written in the fol-
lowing columns:

Column Content
1-5 Statement label (optional)
Statements 6 Blank or zero
7-72 FORTRAN statement
73-80 Identification field
1-5 Ignored
6 FORTRAN character other than
Statement
Continuations blank or zero
7-72 Continued FORTRAN statement
73-80 Identification field
c ¢ { 1 Cor $or *
omments 2-80 Comments

60176600 Rev. E 1-1

1-2

Except in Hollerith constants, blanks may be used freely and are ignored by
the compiler. A coding line may contain more than one FORTRAN statement
if each statement is separated by the special character $. The next column
following $ is interpreted the same as column 7 of a normal statement. A $
may serve as a statement separator for all statements except FORMAT, END,
or labeled statements.

Continuation

Any FORTRAN statement except a comment, END statement, or loader
directive may be continued. A statement may be continued on as many as
19 lines, each denoted by a continuation character (any acceptable character
other than blank or zero) in column 6 on the continuation card. A blank or
zero in column 6 denotes the first line of a statement. Blank cards within
the input deck are ignored by the compiler; however, a continuation card
following a blank card is treated as a new statement. (See also chapter 11,
Debugging Facility.)

Comment

Comment information is designated by a C, *, or $ in column 1 of a state-
ment. A comment statement has no effect upon the program. Comments
may be used to explain the logic of the program. They appear on the listing
2 through 80. Comments may not be continued by use of a continuation
character in column 6.

Statement Label

Statements are identified by unsigned integers which can be referred to

from other sections of the program. A statement label (from 1-99999) may
be placed anywhere in columns 1-5 of the initial line of a statement. Leading
zeros are ignored. In any program unit, each statement label must be unique.

Identification Field

The FORTRAN Extended compiler is designed so that input iines may be
greater than 80 characters long (e.g., when the input medium is a file pro-
duced by one of the source editing programs such as UPDATE). Only the
first 72 characters are processed by the compiler and only the first 100
characters appear on the listing. Positions beyond 72 may be used for
identification codes or sequencing.

60176600 Rev. E

1.3
SYMBOLIC
NAMES

1.4
DATA TYPES

1.5
CONSTANTS

1.5.1
INTEGER

60176600 Rev. E

A symbolic name may be any alphabetic character followed by 0~6 alphanu-
meric characters. It may not contain special characters. Embedded blanks
are ignored. Symbolic names are used for: subprogram and subroutine
names, function names, variables, block data program, main program,
input/output unit, common block, and namelist group names.

Each of the seven types of data has different significance. The types are:
integer, real, double precision, complex, logical, octal, and Hollerith.

Integer type may assume only whole number values. For multiplication and
division of integer operands, the result is truncated to 48 bits. For addition
and subtraction, the full 60-bit word is used.

Real type data is carried in normalized floating point form. The magnitude
of values of real type data is in the range 10322 to 10-293 with approximately
15 significant digits and 14 digit precision.

Double precision data is similar to type real, but it has approximately 29
significant digits. x

Complex data consists of an ordered pair of real data. Each part has the
same precision as real data. The first part is the.real part, and the second
is the imaginary part.

Logical data has only a true or false value. True is represented by any
negative value, and false is represented by any positive value.

Octal data may consist of any value from 0-7...7 which can be represented
in a maximum of 60 bits (20 octal digits).

Hollerith data consists of strings of characters. Blank characters are valid
in a Hollerith string.

A constant is an unvarying quantity. The types of constants are the same
as the types of data.

An integer constant is a string of up to 18 decimal digits with a magnitude

no larger than 259-1. If multiplication or division is specified, the operands
and result will be truncated to 48 bits. Effectively, an integer constant
string may contain up to 15 decimal digits with a maximum magnitude of
2°°-1. It may not contain embedded commas. For example:

1-3

1.5.2
REAL

1.5.3

DOUBLE PRECISION

0 -2145637
67 45753576357
345 =17

The result of integer addition or subtraction must not exceed 259-1. Integers
used as subscripts and DO indexes are limited to 217-2. The integer constant
may be positive, zero, or negative (if unsigned, it is assumed to be positive)
and must be within the allowed magnitude.

The maximum value of an integer constant as a result of a conversion from

a real constant is 248-1. The maximum value of an integer constant as a
result of multiplication or division must not exceed 248-1. If the value should
exceed the magnitude allowed, the high order bits are lost.

A real constant may be represented by a string of up to 15 significant decimal
digits. It contains a decimal point or an exponent representing a power of
10, or both. Real constants may be in the following forms:

n.n n. n.nE+s n.E+s nE+s .nE+s

n is the coefficient; E signifies that the succeeding datum is the exponent;
and s is the base 10 exponent. The value of s must be in the range -308 to
+337. The plus sign may be omitted if s is positive. The magnitude of
non-zero absolute real values may be in the range 107293 to 10322, with

up to 15 significant digits. I the range of the real constant is exceeded, the
constant is considered zero and a compiler diagnostic is issued.

Examples:

3.E1 (means 3.0x101;or 30.)
3.1415768 31.41592E-01
314.07 .31415E01
-3.14159E+279 .31415E+01
30E02 -30E02

A double precision constant is written as a string of digits and represented
internally by two words. The forms are:

.nDz+s n.nD+s n. D+s nD+s

The D must always appear; the coefficient is n; s is the exponent of base 10.

60176600 Rev. E

The plus sign may be omitted for positive s. The range is the same as that
of a real constant but is accurate to approximately 29 decimal digits. If
the range is exceeded, a compiler diagnostic is issued.

Examples:

3.1415927D+1 3141.593D3
3.1416D0 31416.D-04
3131.593D-03 31416D02

1.5.4
COMPLEX A complex constant is an ordered pair of signed or unsigned real constants,
separated by a comma, and enclosed in parentheses (rl,r2). rl represents
the real part of the complex number; r2 represents the imaginary part.
rl and r2 must adhere to the magnitude specified for real constants. If
this range is exceeded, a compiler diagnostic is provided. Diagnostics also
occur when the pair contains integer constants, including (0, 0).
Examples:
FORTRAN Representation Complex Numbers
(1.,6.55) 1. + 6.5561
(15.,16.7) 15. + 16.7i
(-14.09, 1.6E-03) -14.09 + . 0016i
©.,-1.) 0. - 1.0i
1.5.5
LOGICAL Logical constants assume only the values of true or false. When the com-~

piler generates a value for the constant . TRUE., it will generate a minus
one; for the constant FALSE., a zero is generated. Logical constants
must be preceded and followed by a period and have the forms:

.TRUE. or .T.
.FALSE. or .F.

Example:

LOGICAL X1,X2

X1=.T.
X2 = .FALSE.

60176600 Rev. I 1-5

1.5.6

HOLLERITH A Hollerith constant is of the form hHf, hRf (right justified), or hLf (left
justified). h is an integer constant whose value is greater than zero; f
represents the Hollerith data and must contain exactly Lk characters. When
the hHf form is used, if h is not a multiple of 10, the last word is left justi-
fied and blank filled. Incomplete words in the hRf and hLf forms are binary
zero filled.

Blanks are significant in a Hollerith data string. Hollerith constants are
stored internally in display code. (See Appendix A.)

Hollerith constants may be used in arithmetic expressions, DATA and CALL
statements, and in function argument lists. If the constant is an operand of
an arithmetic operation, an informative diagnostic to that effect is issued.

Examples:

6HCOGITO
4LERGO
3RSUM
3HSUM

The maximum number of characters allowed in a Hollerith constant depends
on its usage. In an expression, h may not be greater than 10; in a DATA
statement, h is limited only by the number of characters that can be contained
in a maximum of 19 continuation lines. If more than 10 characters are given
in a DATA statement for such a constant, only the last word will have the
appropriate fill.

1.5.7
OCTAL An octal constant consists of 1 to 20 octal digits followed by a B. The
form is:
nj.. niB

If the constant exceeds 20 digits, or if a non-octal digit appears, a fatal
compiler diagnostic is issued. When fewer than 20 octal digits are specified,
the digits are right justified and zero filled.

Example:

2374216B
7177776B
777000777000777B

1-6 60176600 Rev. E

1.6
VARIABLES

1.6.1
VARIABLE NAMES

1.6.2
TYPES OF VARIABLES

60176600 Rev. E

A variable is a symbolic representation of a quantity that may assume
different values during execution of a program.

A variable name may be any combination of 1 to 7 alphanumeric characters,
must begin with an alphabetic character, and may contain embedded blanks.
It may not contain special characters. For a main program, the program
name may not appear as a symbolic name in any statement other than the
PROGRAM statement.

The type of a variable may be declared explicitly with the FORTRAN type
declarations. (The type of the data is converted to the type of the variable.)

For example:

INTEGER ABC123, GNU12, CATXXX, FIREOUT, JOKER
REAL ISPY, JASONII, KOOR47, NVRT, SAMPLE

If integer and real variables are not declared explicitly, the type is deter-
mined by the first character of the symbolic name. If the name begins with
I, J, K, L, M, or N, the variable is assumed to be integer.

115, JK26, KKK, LB02, NP456L, and MM are classed as integer variables
and must adhere to all limitations stated for that type. Variables beginning
with characters A-H and O-Z are considered to be real and must adhere to
all limitations stated for that type.

Complex, logical, and double precision variables must be declared explicitly
by a type declaration. The values which the variables represent must adhere
to the limitations stated for the corresponding type of constant.

Octal and Hollerith data can be entered into or used in any type variable.

When an octal or Hollerith constant is used in an arithmetic operation, it

is used as is without conversion. If the constant in question is not combined
with another type of variable or constant, it is considered to be of integer type.

Examples:

JX = THACCOUNT
JX is an integer variable containing a Hollerith constant.

IITT = 3572158
IITT is an integer variable containing an octal constant.

1.6.3
EXTENDED CORE
STORAGE_(ECS)

1.64
ARRAYS

1.6.5
ORDER OF ARRAY
STORAGE

1-8

BC = 174B + 623B
Addition of octal constants is treated as an addition of two integer con-
stants; the result is converted to the type defined for BC and stored.

KLM = 3.14 - 35B
KLM is defined as integer. The octal constant assumes the type of the
other operand (real) and the result is real. That result is converted
to integer before being stored in KLM.

An ECS variable must be defined explicitly by a type declaration. This type
of data occupies a 60-bit word and resides in Extended Core Storage. ECS
variables may appear in the source program only in the following circum-
stances:

In a COMMON statement as an element of an ECS common block

In a CALL or function reference as an actual parameter

In a SUBROUTINE or FUNCTION statement as a dummy parameter
In a TYPE ECS statement

In a DIMENSION statement

Only one common block may contain ECS variables, and all variables in the
block must be of type ECS.

An array is an ordered set of variables identified by a variable name. Each
variable in the array is referred to by the array name followed by a subscript
which indicates its relative position within the array. The entire array may
be referenced by the array name without subscripts when used as an item in
an input/output list or in a DATA statement. In an EQUIVALENCE state-
ment, however, only the first element of the array is implied by the
unsubscripted array name.

Arrays may have one, two, or three dimensions and must be defined at the
beginning of the program in a DIMENSION, COMMON, ortype statement.
When a reference is made to an array, if the subscripts exceed the magni-
tude of the dimensions declared initially, a position outside the array will
be accessed. If the number of subscripts is greater than the number of
dimensions defined, a diagnostic is issued.

Arrays are stored in ascending storage locations, with the value of the first
of their subscripts increasing most rapidly and the value of the last increasing
least rapidly.

60176600 Rev. E

1.6.6
SUBSCRIPTED
VARIABLES

60176600 Rev. E

The following list shows the order of a three-dimension array A(3,2, 3).
The first subscript varies from 1 to 3, the second varies from 1 to 2, the

third varies from 1 to 3.
A(L,1,1) A2,1,1) A@3,1,1) A(l1,2,1) A@2,2,1) A(3,2,1)j
L—A(l,1,2) A(2,1,2) A@,1,2) A(1,2,2) A@2,2,2) A(3,2,2)—l
I---A(1,1,3) A2,1,3) A@B,1,3) A@1,2,3) A@2,2,3) A@3,2,3)

Array allocation is discussed further under DIMENSION declaration. The
location of an array element with respect to the first element is a function
of the maximum array dimensions and the type of array.

Given DIMENSION A (L, M, N), the location of A(i, j,k), with respect to the
first element of the array, is given by A + (i-1+L*(j-1+M*(k-1)))*E,

E is the element length, the number of storage words required for each
element of the array. For real, logical, and integer arrays, E = 1. For
complex and double precision arrays, E = 2.

Example:

In an array defined by DIMENSION A(3,3,3) where A is real, the loca-
tion of A(2,2,3) with respect to A(1,1,1) is:

LocnA(2,2,3) = LocnA(1.1,1) + (2-1+3%(2-1+3*(3-1)))*1 = LocnA+22

A subscripted variable is an alphanumeric identifier that is the name of an
array followed by up to three subscript expressions representing a single
element within the array. The elements of a subscript expression are
separated by commas and the expression is enclosed in parentheses. Sub-
script expressions may be any legal arithmetic expression. If the number
of subscript expressions used in a reference is less than the declared di-
mensionality, the compiler assumes missing subscripts have a value of one
(see examples below). If the subscript list does not appear, all subscript
expressions are assumed to be one, and an informative diagnostic is issued.

If the subscript expression is not integer, the value will be truncated to
integer.

FORTRAN Extended permits the following relaxation of the representation of
subscripted variables:

1-9

Given A(Dl,Dz,Dg), where the Di are integer constants,
then A(1,J,K) implies A(1,d,K)
A(I,d) implies A(1,J, 1)
A(D implies A(1,1,1)
A implies A(1,1,1)T
Similarly for
A(Dl,D2)
A(1,J) implies A(L,J)
A(I) implies A(I,1)
A implies A(1,1) T

and for A(Dy)
A(D) implies A(I)
A implies A(1)T

The elements of a single-dimension array A(Dl) may not be referred to as
A(I,J,K) or A(I,J). Diagnostics occur if this is attempted.

T Except in input/output lists and DATA statements.

1-10 60176600 Rev, E

EXPRESSIONS 2

2.1
ARITHMETIC
EXPRESSIONS

An expression is a constant, variable (simple or subscripted), function ref-
erence, or any combination of these separated by operators and parentheses.
The four kinds of expressions in FORTRAN are: arithmetic and masking
(Boolean) expressions which have numerical values, and logical and rela-
tional expressions which have truth values. FEach kind of expression is
associated with a group of operators and operands.

An arithmetic expression is formed with arithmetic operators and arithmetic
elements. Both the expression and its constituent elements identify values
of one of the types integer, real, double precision, complex, octal, or
Hollerith.

Arithmetic Operators Arithmetic Operands
+ addition Constants
- subtraction Variables (simple or subscripted)
* multiplication Evaluated functions

/ division
** exponentiation
Any unsigned constant, variable, or function reference is an arithmetic ex-

pression. If X is an expression, then (X) is an expression. If X and Y are
expressions, then the following are expressions:

X+Y X-Y
X *Y X/Y
_X X**Y
+X

An expression may not contain adjacent operators, such as X +/ Y. Omission
of an operator, as for implied multiplication (X) (Y), for instance, is not
valid and results in a compiler diagnostic.

The mode of an arithmetic expression is determined by the type specifications
of the variables in the expression. The following table indicates how the mode
is determined from the possible combinations of variables.

2-2

Table 1.

Mixed Mode Arithmetic Expressions

+ = * / |Hollerith |Integer Real Dou.bl'e Complex | Octal
Precision
Double
Integer |Int Int R Compl
g nteger nteger eal Precision mplex |Integer
Real Real Real Real Dou.bl.e Complex |Real
Precision
Double Double Double Double Double Double
- . . - . . Complex L
Precision| Precision|Precision |Precision |Precision Precision
Complex |Complex |[Complex |Complex |Complex | Complex |Complex
Double
Octal Integer Integer Real Precision Complex |Integer
Double
i C
Hollerith |Integer Integer Real Precision omplex |Integer

The following examples are valid expressions:

A
3.1415

9

B + 16.427
(XBAR +(B(I,J+1,K) /3))
-(C + DELTA * AERO)

(B - SQRT(B**2*%(4*A*C))) /(2. 0%A)
GROSS - (TAX*0.04)

TEMP + V(M, MAXF(A, B))*Y**C/ (H-FACT(K+3))

The arithmetic operator denoting exponentiation (**) may be used to combine
constants, variables, expressions, and subscripted variables. Rules
governing the types of variables and constants used in the exponentiation
operation are given on the following page:

2.2
RELATIONAL
EXPRESSIONS

60176600 Rev. C

Base

Integer

Real

Complex

Double
Precision

Exponent

Integer

Real

Double Precision
Complex

Integer

Real

Double Precision
Complex

Integer

Integer

Real

Double Precision
Complex

Result

Integer

Real

Double Precision
Complex

Real

Real

Double Precision
Complex

Complex

Double Precision
Double Precision
Double Precision
Complex

The following examples illustrate how constants, variables, and expressions
may be combined using the arithmetic operator, **.

Examples:

Expression
CVAB**(-3)
D**B

C**1

BASE(M, K)**2, 1

K**5

314D-02**
3.14D-02

Type Result

Real**Integer Real

Real**Real Real

Complex**Integer Complex

Double Precision

**Real

Integer** Integer
Integer

Double Precision

**Double Precision

Double Precision

Double Precision

A relational expression has the value true or false; it contains two arithmetic

expressions separated by a relational operator.
combined in the same manner as defined for arithmetic operators.

The types of operands may be

Only the

real part of complex elements are compared by relational operators, except

for .EQ. and .NE.

2-4

Relational operators indicate comparison operations between operands and
are enumerated below:

.EQ. Equal to (9

.NE. Not equal to (75)

.GT. Greater than (>)

.GE. Greater than or equal to (=)

.LT. Less than (<)

.LE. Less than or equal to (=)

A relational expression has the form:
a, opa,

The a; are arithmetic expressions; op is an operator belonging to the above
set.

A relation is true if a; and a, satisfy the relation specified by op; otherwise
it is false. A false relational expression is assigned a positive value; a

true relational expression is assigned a negative value. Relations are eval-
uated as illustrated in the relation p.EQ.q, which is equivalent to the ques-
tion: Does p - q =07? The difference is computed; and if it is zero, the
relation is true; if the difference is not zero, the relation is false. Relational
expressions are converted internally to arithmetic expressions according to
the rules of mixed-mode arithmetic (Table 1). These expressions are eval-
uated to produce the truth value of the corresponding relational expressions.

The order of dominance of the operand types within an expression is the order
stated for mixed mode arithmetic expressions.

In relational expressions, +0 is considered equal to -0.

aj op ag op ag. .. is not a valid expression. The relations a; op az, a; op
(a2) are equivalent.

Examples:
A .GT. 16. R(I) .GE. R(I-1)
R -Q(I)*Z .LE. 3.141592 K .LT. 16
B-C .NE. D+E I1.EQ. J(K)

@ - EQ. (J(K))

60176600 Rev. C

2.3

LOGICAL

EXPRESSIONS A logical expression is formed with logical operators and logical elements
and has the value true or.false. (The values have the same internal repre-
sentation as for relational expressions, section 2.2.)

Logical Operators Alternate Form
.OR. Logical disjunction .O.
.AND. Logical conjunction AL
.NOT. Logical negation .N.

A logical expression has the general form:

L opLzopL

1 g

Li are logical variables, logical constants, logical functions, logical expres-
sions enclosed in parentheses, or relational expressions; and op is the logical
operator .AND, indicating conjunction or .OR. indicating disjunction.

The logical operator that indicates negation appears in the form:

.NOT. Ll

Each expression is evaluated by scanning from left to right, with logical oper-
ations being performed according to the following hierarchy of precedence.

first .NOT.
then .AND,
then .OR.

A logical variable, logical constant, or a relational expression is, in itself,
a logical expression. I Ll’ L2 are logical expressions, then the following
are logical expressions:

. NOT, L1

L1 .AND. L
Ll .OR. L2

2

If L is a logical expression, then (L) is a logical expression. If Ll’ L2 are
logical expressions and op is .AND. or .OR., then L op op L, is never
legitimate. However, .NOT. may appear in combination with , AND. or .OR.
only as follows: :

.AND. .NOT. L,
.OR. .NOT. L,
.AND. (.NOT....)

.OR. (.NOT....)

H B B
[

.NOT. may appear with itself only in the form .NOT. (.NOT. (.NOT. L))
Other combinations cause compilation diagnostics.

If Ly, Ly are logical expressions, the logical operators are defined as

follows:
.NOT. L1 is false only if L1 is true
L1 .AND. L2 is true only if Ll,L2 are both true
L1 .OR. L2 is false only if Ll’ L2 are both false
Examples:

1. B-C=A=B+C
is written B - C ,LE. A ,AND.A.LE.B+C

2. TFICA greater than 176.0 and PAYNMB equal to 5889.0
is written FICA .GT. 176.0 ,AND. PAYNMB .EQ. 5889.0

3. An expression equivalent to the logical relationship (P — Q)
may be written in two ways:

.NOT. (P.AND.(.NOT.Q))
.N.(P.A.(.N.Q))

24

MASKING

EXPRESSIONS Masking expressions consist of masking operators and elements; they
resemble logical operations in appearance only.

In a masking expression, 60-bit logical arithmetic is performed bit-by-bit
on the operands within the expression. The operands may be any type vari-
ables, constants, or expressions, other than logical. No mode conversion is
performed during evaluation. If the operand is complex or double precision,
operations are performed on the real part, or higher order word. Although
the masking operators are identical in appearance to the logical operators,
their meanings are different. They are listed according to hierarchy. The
following definitions apply:

.NOT. or .N. bit-by-bit logical negation
AND. or .A, bit-by-bit logical multiplication
.OR. or .O, bit-by-bit logical addition

The operations are described below:

P v p.-AND.v p.OR.Vv .NOT.p
1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

If Bi are masking expressions, variables or constants of any type other than
logical, the following are masking expressions:

NO B1 Bl AND. B Bl OR.B

2 2

If B is a masking expression, then (B) is a masking expression .NOT, may
appear with . AND. or .OR. only as follows:

.AND. .NOT.
.OR..NOT

.AND. (.NOT. ...)
.OR. (.NOT. ...)

Masking expressions of the following forms are evaluated from left to right.

A (AND. B .AND. C...
A .OR. B.OR. C...

Masking expressions must not contain logical operands.
Examples:

A 77770000000000000000 octal constant

D 00000000777777777777 octal constant

B 00000000000000001763 octal form of integer constant
C 20045000000000000000 octal form of real constant

2-7

25
EVALUATION OF
EXPRESSIONS

2-8

.NOT. A is 00007777777 TT7TTTTIT7T

A .AND. C is 20040000000000000000
A.AND. .NOT.C is 57730000000000000000
B.OR. .NOT.D is 77777777000000001763

The last expression could also be written as B.O. .N.D

Evaluation of expressions is generally from left to right with the precedence
of the operators and parentheses (the deepest nested parenthetical subex-
pression is evaluated first) controlling the sequence of operation. The pre-
cedence of operators for arithmetic evaluation is shown below:

*k exponentiation class 1
/ division class 2
* multiplication class 2
+ addition class 3
- subtraction class 3
relationals class 4
.NOT. class 5
.AND. : class 6
.OR. ‘ class 7

(Function references may be considered to be class 1.)

In an expression with no parentheses or within a pair of parentheses in which
unlike classes of operators appear, evaluation proceeds in the above order
(lowest class operators first). In expressions containing like classes of
operators, evaluation proceeds from left to right (A**B**C is evaluated as
(A**B)**C).

All function references and exponentiation operations which are not evaluated
inline are evaluated prior to other operations.

When writing an integer expression, it is important to remember not only the
left-to-right scanning process but also if dividing an integer quantity by an
integer quantity yields a remainder the result will be truncated; thus 11/3 = 3.

An array element name (a subscripted variable) used in an expression re-

quires the evaluation of its subscript. The type of the expression in which
a function reference or subscript appears does not affect, nor is it affected
by the evaluation of the actual arguments or subscripts.

The evaluation of an expression with any of the following conditions is
undefined:

Negative-value quantity raised to a real, double precision, or complex
exponent

Zero-value quantity raised to a zero-value exponent

Infinite or indefinite operand

Element for which a value is not mathematically defined, such as division

by zero

If the error traceback option is selected on the FTN card (Appendix C), the
first three conditions will produce informative diagnostics.

In the following examples, R indicates an intermediate result in evaluation.
A**B/C+D*E*F-G is evaluated:
Xk —
A**B R1
R,/C =R
*F
D*E R3

2

* —
R3 F R4

Ry+Rs~ Rg evaluation completed
A**B/(C+D)*(E*F-G) is evaluated:

A**B —~ R,
C+D —R,
RI/RZ —~ R
*F
E*F — R,
R,-G =R,

3

R3*R5 - R 6 evaluation completed

H(13)+C(I, J+2) ¥*(COS(Z))**2 is evaluated:
COs(z) — R1
K%Y —
R, **2 R,
(Evaluation of the index function)

* —_
R,*C(L,J+2) — R,

R +H(13) — R

4 evaluation completed

60176600 Rev. D 2-9

The following are examples of expressions with embedded parentheses:

A*(B+({(C/D)-E)) is evaluated.
C/D =R,
Rl—E ‘—>R2

B+R, —Rg

A* R3 — R 4 evaluation completed
(A*(SIN(X)+1.)-Z)/(C*(D-(E+F))) is evaluated

SIN(X) — R,
R1+1. - R2
A*R, — R,
R,-Z —R,
E+F — R,
D-R. — R,
C*R; —R,
R4/R7 —R

8 evaluation completed

2-10 60176600

ASSIGNMENT STATEMENTS 3

Statements are classified as executable or nonexecutable; executable state-
ments specify actions, Assignment statements are executable. They assign

values with four types of operations; arithmetic, logical, assign (Chapter 4),
and masking.

3.1
ARITHMETIC

ASSIGNMENT The general form of the arithmetic assignment statement is v = e, where v is
a variable, simple or subscripted, other than logical; and e is an arithmetic
expression. The = indicates that v is assigned the value of the evaluated ex-
pression e. Mode conversion occurs if v is of a type different from e.

Examples:

A=-A
B(I, 4=CALC(I+1)*BETA+2. 3478
39 XTHETA = 7.4*DELTA /(A(I,J,K)+BETA)
RESPONS=SIN(ABAR(INV+2, JBAR) /ALPHA(J, KAPL(D))
4 JMAX =19
AREA=SIDE1*SIDE2
PERIM=2. *(SIDE 1+SIDE?2)

Several variables may be assigned the value of the same expression with the
following form:

V1=V2=. . vm=e

The value of expression ¢ is converted to the type of v ., and stored; v, is

then converted to the type of v,,_1 and stored. The process is repeated until
a value is stored in v;.

Example:
RATE=2.0

DATA=6.9

DATA=DATA1=LDATA=DATA2=DATA*RATE

60176600 Rev. D 3-1

MIXED-MODE

The variable, DATA2, equals 13.8 from the expression DATA*RATE.
LDATA equals 13 by real-to-integer conversion. DATA1 equals 13.0
by integer-to-real conversion; then DATA equals 13.0 by real-to-real
assignment.

The type of an evaluated expression is determined by the type of the dominant
operand; however, this does not restrict the types that identifier v may
assume. (v may not be logical). A complex expression may replace v, even
if v is real. TABLE 2 on page 3-4 shows the v = e relationship for all
standard modes. The mode of v determines the mode of the statement.

Examples:

Ci’Al Complex
Di’AZ Double
Ri’AS Real
Ii’A4 Integer
A1=01*C2’C3/C4 (6.905, 15.393)=(4.4,2.1)*

(3.0,2.0)~(3.3,6.8)/(1.1,3.4)

The expression is complex; the result of the expression is a two-
word, floating point quantity. A1 is complex, and the result re-
places Al'

A=C, 4.4=(4.4,2.1)

The expression is complex. A3 is real, therefore, the real part of
C1 replaces A3.

A_=C_*(0.,-1.) 2.1=(4.4,2. 1)*
371
(0.,-1.)

The expression is complex. A, is real; the real part of the result
of the complex multiplication replaces A 3"

= * - - = * - —(1%*
A, Rl/R2 (Rg-R)+ 13=8.4/4.2*%(3,1-2, 1)+14-(1*2, 3)
(I1,*Ry)

The expression is real. A4 is integer, the result of the expression
evaluation, a real, is converted to an integer replacing A 4

60176600

=T)**Q % * *D_*
5. A2 D**2 (D2+(D3 D4)) + (D2 D1 D2)

49, 68=2. 0D0**2%*(3. 2D0+ (4. LDO*1. 0D0))+(3. 2D0*2. 0D0*3. 2D0)

The expression is double precision. A, is double precision, the
result of the expression evaluation, a double precision floating quantity.
replaces A 9°

3.2
LOGICAL In the general form of the logical assignment statement,
ASSIGNMENT

v=e
v is a logical variable or subscripted variable, and e is a logical expression.
Examples:

LOGICAL A, B, C, D, E, LGA, LGB, LGC
REAL F,G,H
A = B.AND.C.AND.D
A =TF.GT.G.OR.F.GT.H
5 A=.N.(A.A..N.B).AND.(C.0.D)
LGA = .NOT.LGB
2109 LGC = E.OR.LGC.OR.LGB.OR.LGA.OR. (A. AND. B)

A multiple replacement statement of the following form is also allowed in
logical assignment statements:

V, =V,=...V._ =¢

3.3

MASKING In the masking assignment statement, v = e, e is a masking expression, v is

ASSIGNMENT a variable name and may be of any type other than logical. During the assign-
ment, no mode conversion occurs, and the value of the expression is assigned
to the first word of v if the type is double precision or complex with the least
significant or imaginary part set to zero.

Examples:

INTEGER 1,J, K, L, M, N(16)
REAL B,C,D, E, F(15)

N(2) =1.AND.J
B =C.AND.L

84 TF(J) =1.0R..NOT.L.AND
N(1) =1.0.J.0.K.0.L.O.
I=.N.I

.F@)
M

3-4

A multiple replacement statement of the following form is also allowed in
masking assignment statements:

V, =V, =...V.__=e

Table 2 enumerates the assignment of e to v. These rules apply only for
arithmetic assignment statements.

Table 2. Rules for Assignment of e to v

Double Precision
Double Precision
Complex
Complex

Complex

Complex

Double Precision
Complex

Integer

Real

Double Precision

Complex

v Type e Type Assignment

Integer Integer Assign

Integer Real Fix and Assign

Integer Double Precision |Fix and Assign

Integer Complex T Fix and Assign Real
Part

Real Integer Float and Assign

Real Real Assign

Real Double Precision | DP Evaluate and Real
Assign

Real Complex T Assign Real Part

Double Precision Integer DP Float and Assign

Double Precision Real Real Evaluate, DP Assign

Assign

T DP Float Real Part and Assign
T Float and Assign to Real Part, I
T Assign Real Part, I

T DP Evaluate and Real Assign to
Real Part, I

Assign

Extended).

TProhibited combination under USASI FORTRAN (but permitted in FORTRAN

60176600 Rev. C

60176600 Rev. C

Assign indicates transmission of resulting value, without change, to entity.

Real Assign indicates transmission to entity,of as much precision as a
real value can contain.

DP Evaluate indicates evaluation of the expression according to rules of
arithmetic expression evaluation.

Fix indicates truncation of any fractional part of the result and transformation
to an integer value.

Float indicates transformation to a real value.

DP Float indicates transformation to a double precision value retaining, in
the process, as much precision as a double precision value can contain.

Real Part refers to the real portion of the complex value.

I indicates the imaginary part of the complex value is set to zero.

CONTROL STATEMENTS 4

4.1

GO TO STATEMENTS

UNCONDITIONAL
GO TO

4.2
ASSIGNED GO TO

60176600 Rev. C

Control statements alter the sequence of operations or affect the number of
iterations of a program section. Control statement labels must be associated
with executable statements within the same program unit. Control may not
be transferred to a non-executable statement. See appendix F.

GO TO k

When this statement is executed, control transfers to the statement identified
by k.

Example:

GO TO 100
GO TO 9

ASSIGN k to i

k is a statement label and i is an integer variable. Execution of this state-
ment and subsequent execution of an assigned GO TO statement using the
value i causes the statement k to be executed next. The label must refer to
an executable statement in the same program unit containing the ASSIGN
statement. k must be the label of an executable statement.

The integer variable i, once used in an ASSIGN statement, may not be ref-
erenced in any statement other than an assigned GO TO or an ASSIGN state-
ment until it has been defined in a replacement statement.

ASSIGNED GO TO

Example:

ASSIGN 10 TO KLOK
15 GO TO KLOK,(3, 12, 10, 20)
12 CC =D+E -2¥(F/G)

10 D = SQRT(B**C*(1-E))
ASSIGN 20 TO KLOK
GO TO 15

20 E =A+l1.5

GO TO i, (k) Ky, .- k)

iis an integer variable, and k; are statement labels; i must contain the
value assigned by a preceding ASSIGN statement and it must be one of the
statement labels in the list. At execution, control transfers to statement
identified by k. If the value i is defined by other than an ASSIGN statement,
a transfer is made to the absolute memory address represented by the low
order 18 bits of i.

Example:
ASSIGN 26 TO INDEX

10 GO TO INDEX, (3,45,26,78,6)

26 BASE (I) = BASE (I+1)*FACT*(CONST**2.0)
ASSIGN 45 TO INDEX
GO TO 10

60176600 Rev. C

COMPUTED GO TO GO TO (kl,k2, e ,kn) , 1
k are the statement labels and i is a variable. This statement acts as a
—n}any—branch GO TO; i is preset or computed prior to its use in the GO TO
statement. Control transfers to k;, if 1< i <n. Ifiisless than one or I
greater than n, a fatal error occurs. The comma separating the statement
number list and the index is optional. i must not be specified by an
ASSIGN statement.

Example:

N=N*I

GO TO (100,101, 18,102, 103)N

Control transfers to the statement numbered 102.
Example:

ISWICH=1

GO TO (10, 20,30) ISWICH(control transfers to 10)

KSWICH=ISWICH+1

GO TO (11,41, 31), KSWICH(control transfer is to statement 41)
Another form of the statement may be used where i is replaced by e:

GO TO (kl’kz’ e ,kn), e
The value of e is truncated and converted to integer and used in place of i.
Control transfers to the statement identified by the label, k.; where j is the
integer value of e at the time of execution. If the value of € is less than one,

it is treated as equal to one; if it is greater than n, it is treated as equal to
n. The comma before e is optional.

60176600 Rev. F 4-3

4.3
IF STATEMENTS

ARITHMETIC IF
THREE-BRANCH

Examples:

1.

BRANCH=2.3
INDEX=4
GO TO (23, 33,43,53,63),INDEX*BRANCH

Control transfers to statement 63 since the integer part of the evaluated
expression, INDEX*BRANCH, equals 9 and there is no ninth branch.

GO TO (10,110,11,12,13),X/K

Control is transferred to statement 110 since the integer part of the
expression X/K equals 2,

IF (e) k; ko, kg

e is an arithmetic expression of type integer, real, double precision, or
complex, and Ei are statement labels. For complex, only the real part is
used in selecting the branch. Execution of the statement results in evalua-
tion of e and transfer of control as follows:

e <0 to statement k1

It

e=90 to statement k2

e >0 to statement k3

60176600 Rev. C

ARITHMETIC IF
TWO-BRANCH

LOGICAL IF

60176600 Rev. D

Example:

I=-2
K=1
J=3

1 IF (I*K*J)2,3,4 (control transfers to 2)
2 LDD=LDD+1
GO TO (40, 50,60) LDD
40 IF (X*Y*SIN(X))11,12,13

A second form of the Arithmetic IF statement; an arithmetic two-branch IF
is allowed.

IF () k .k,

e may be a masking or arithmetic expression; e is evaluated and control is
transferred as follows:

e#0 to statement k1
e=0 to statement k2

Example:

IF (I*J*DATA(K))100, 101
100 IF (I*Y*K) 105,106

IF (e) s

e is a logical expression and s is any executable statement except a DO .state-
ment or another logical IF statement. If the value of e is false, statement s
is treated as if it were a CONTINUE statement. If the value of e is true, s is
executed.

LOGICAL IF
TWO-BRANCH

4.4
DO STATEMENT

4-6

Example:

B4=DATA()

YMAX=B(ILAST)
YMIN=B(IFRST)

16 IF (B4.GE.YMIN.AND. B4.LE. YMAX) GO TO 109
101 INDEX=INDEX+1
GO TO 110
109 KDEX=KDEX+1

If B4 is satisfied by the condition, YMIN < B4 = YMAX, control transfers
from statement 16 to 109. If the condition is not satisfied, execution resumes
at statement 101.

Another form of the logical IF may be a two-branch statement:
IF (e) »kl, k2

If the logical statement is true, the statement identified by statement label

k, is executed next, if false the statement k, is executed.

The DO statement makes it possible to repeat a sequence of statements and
change the value of an integer control variable during the repetition. A DO
statement takes one of the forms:

m or DOni=m_,m

D0n1=m1,m2, 3 1'My

The executable statement labeled n is the terminal statement of the sequence

to be repeated and must physically follow and be in the same program unit
as the DO statement.

60176600 Rev. C

Example:

DO 100L=300, 400

IF(B(L)) 101,100
101 B(L-100)=B(L)
100 CONTINUE

Statement n (100 in the example) may not be a GO TO of any form, arithmetic
IF, RETURN, STOP, PAUSE, DO, two-branch logical IF, or a logical IF
followed by any of the preceding statements.

The simple integer variable i is the control variable; m; are the indexing
parameters; m; is the initial value of i, my is the terminal value of i, and

mg is the incrementing parameter. m; may be either integer constants or
simple integer variables. If mg is not specified, a value of one is implied.

At execution of the DO statement, m;, m, and mz must be greater than zero.
The range of each DO contains all executable statements between and including
the first executable statement after the DO and the terminal statement identi-

fied by n.

DO NESTS When a DO loop contains another DO loop, the grouping is called a DO nest.
Nesting may be to 50 levels. Either the last statement of a nested DO loop
must be the same as the last statement of the outer DO loop or it must occur
before it. If D{,D,,...Dy, represent DO statements where the subscripts
indicate that Dy appears before Dy appears before Dg and ny,ny,...,n_ re-
present the corresponding limits of the Dy, then n, must appear at or lgefore
noq

Examples:

DO loops may be nested in common with other DO loops:

a. b.

— Dy F’Dl

C.

[D2 D, ———D,

> L

n ' t——-——D
2 3
o3

—n2 [D3 -—n1=n2=n3
— D

4 ng

60176600 Rev. C 4-7

The preceding diagrams would be coded as follows:

a., DO 11=1,10,2 b. DO 100 L=2, LIMIT c. DO 51=1,5
DO 5 J=I, 10
. . DO 5 K=J,15
DO 2 J=1,5 DO 10 J=1,10
. . 5 A =B*C
DO 3 K=2,8 10 CONTINUE
3 CONTINUE DO 20 K=K1,K2
2 CONTINUE 20 CONTINUE
DO 4 L=1,3 100 CONTINUE
4 CONTINUE
1 CONTINUE
DO LOOP
EXECUTION The loop defined by a DO statement is executed as follows:

1. The control variable i is assigned the value represented by the
initial parameter m;. The value of m 1 should be less than or equal
to the value of the terminal parameter my; otherwise, the DO loop
is executed only once. (The control variables of each nested DO
loop muyst be unique.)

2. The range of the DO is executed.

3. After the DO is executed, the control variable is incremented by the
value mg (or by one if mg is not specified).

4. If the value of the control variable i after it is incremented by m 3 is
less than or equal to the value of the terminal parameter m,, execu-
tion of the range of the DO loop is repeated. When the value i is
greater than the value of mo, the DO has been satisfied and the
control variable i, becomes undefined (the value of i may be greater,
less than or = to m, at the termination of the loop execution, there-
fore its value cannot be assumed).

4-8 60176600 Rev. C

60176600 Rev. D

If the DO is nested, the control variable i of the next outer DO is
incremented by mq and execution continues repeating steps 4 and 5
until all the DO statements referencing this terminal statement are
satisfied. After the last DO is satisfied, execution continues with
the first executable statement following its terminal statement.

1
If m;, m,, Or mg are constants which exceed 2 7—2, a diagnostic
notes the error and the control variable is used modulo 217-1 for
iteration of the DO loop.

Before the DO is satisfied, an exit may be made from its range
through an IF or a GO TO statement. In this case, the control

. variable retains the value last assigned to it before the exit.

Example:

DO 20 I=1, 200
IF (I-3) 20,10,10
20 CONTINUE
10 19=I

An exit from the range of the DO is made to statement 10 when the
value of the control variable I is equal to 3. The value of the integer
variable, 19 is equal to 3, since the last value assigned to I before
the exit from the DO trange was 3.

A DO has an extended range if both of the following conditions are satisfied:

1.

A GO TO or an IF statement within the range of a DO nest transfers
control outside the nest

A GO TO statement or an IF statement outside the nest causes con-

trol to re-enter a DO loop or nested set of DO loops as illustrated
below.

4-9

4-10

Examples:

1. — 1, 2. — b, 3. b,
A 1]
- - -]31 — — -———ﬁl
~———- B Dy 5 :
——Az A3 E
| —-——— - C —Dg :
ng :
-—-————}32 ._____: :
Ny g i
R Sl
n, s

Example 1 shows an exit at point A. Any re-entry into D; may be made as
illustrated at point B or at any subsequent point within the indicated loop.

Example 2 shows three nested loops with. Dg and Dy being parallel. An exit

is made at point Al’ re-entry into D2 may be made at points Bl’ By, or B3.
However, re-entry cannot be made into D5 or D, because the control variables
for those loops have not been defined. If an exit is made from point A, re-
entry may be made at C, Bl’ B2 or B3 but not at any other points within the
other loops.

The third example illustrates the capability of specifying an extended range
DO loop within the extended range of another loop. Loop D5 has an extended
range which is entered at point A, ; the loop D,., which also has an extended
range beginning at point A 4 is contained within the extended range of D5.

If both conditions are satisfied, the extended range is defined as all state-
ments that may be executed between pairs of control statements, the first of
which satisfies condition 1 and the second of which satisfies condition 2.

A GO TO or an IF statement may not cause control to pass into the range of
a DO unless it is being executed as part of the extended range of that particu-
lar DO.

The control variable i and the parameters m,, m,, and m, may not be rede-
fined during execution of the immediate or extended range of that DO. When
parameters are redefined during execution, the results are unpredictable.
An informative diagnostic is issued for redefinition during an immediate
range.

60176600 Rev. C

60176600 Rev. C

When a statement is the terminal statement of more than one DO loop, the
label of that terminal statement may not be used in any GO TO or IF state-
ment in the nest, except in the range of the innermost DO.

Example:

10

DO 10 J=1,50
DO 10 I=1,50
DO 10 M=1,100

GO TO 10

CONTINUE

When the IF statement is used to bypass several inner loops, different
terminal statements for each loop are required.

Example:

20

40

101

103

50
30
10

102

109

104

DO 10 K=1, 100
IF(DATA(K)-10.)20, 10,20

DO 30 L=1,20

IF(DATA(L)- FACT*K-10.)40, 30,40
DO 50 J=1,5

GO TO (101,102, 50), INDEX
TEST=TEST+1

GO TO 104

TEST=TEST-1
DATA(K)=DATA(K)*2.0

CONTINUE
CONTINUE
CONTINUE

GO TO 104
DO 109 M=1,3

CONTINUE
GO TO 103
CONTINUE

4-11

CONTINUE

4.5
CALL

CONTINUE

This statement is most frequently used as the last statement of a DO loop to
provide a loop termination when a GO TO or IF would normally be the last
statement of the loop. If CONTINUE is used elsewhere in the source program
it acts as a do-nothing instruction and control passes to the next sequential
program statement.

Example:
DO 10K = 1,200

DATA(K)=DATB(K+1)
10 CONTINUE

The CALL statement, which transfers control to a subroutine subprogram,
may take one of the following forms:

CALL s (al,az, cee ,an)

CALL s
CALL s (a,,3,,...,2), RETURNS (b ,b,,...,b)
CALL s, RETURNS (b ,b,,...,b)

s is the name of a subroutine and a; are actual arguments which correspond to
dummy arguments specified in the subroutine subprogram. b; parameters
indicate labels of statements in the current calling program or subprogram.,
The total number of parameters, a; + bj, should not exceed 63.

The arguments (ai) appearing in the statement may be constants, variables,
array element names, array names, the name of an external procedure, etc.
(see p. 9-4). These arguments must correspond in number, order and type
with those specified in the SUBROUTINE statement (see chapter 9 for an
explanation of this statement).

The parameters b; must be specified with the RETURNS if alternate exits are
taken from the subroutine. If alternate exits are not taken, this specification
may be omitted, and control returns to the statement immediately following
the CALL., These parameters must also correspond to similar parameters
specified in the subroutine.

The return of control from the designated subroutine completes the execution
of the CALL statement.

60176600 Rev. D

60176600 Rev. C

Example:

10

101

102

103

104

10

20

30

40
50

PROGRAM MAIN (INPUT, OUTPUT)

CALL XCOMP(A, B, C), RETURNS(101, 102, 103, 104)

CONTINUE

GO TO 10
CONTINUE

GO TO 10
CONTINUE

GO TO 10
CONTINUE
END

SUBROUTINE XCOMP (B1,B2,G), RETURNS (A1,A2,A3,A4)
IF(B1*B2-4.159)10, 20, 30

CONTINUE

RETURN Al
CONTINUE

RETURN A2
CONTINUE

¥ 0

-/
IF (B1)40,50
RETURN A3
RETURN A4
END

,40

i

4-13

RETURN RETURN or RETURN a
a is a formal parameter (as indicated in the RETURNS list).
Example:

SUBROUTINE XYZ, (P, T, U), RETURNS(A, B, C)
IF (P*T*U)1,2,3
1 CONTINUE

RETURN A
2 CONTINUE

RETURN B
3 RETURNC
END

The statement, RETURN a, can appear only in a subroutine subprogram.
Execution of this statement returns control to the statement number corres-
ponding to a in the RETURN list.

A RETURN statement marks the logical end of a procedure (subroutine or
function) subprogram and may appear only in a procedure subprogram. In a
subroutine subprogram, a RETURN statement returns control to the next
executable statement following the CALL statement of the current calling
program. In function subprograms, a RETURN statement returns control to
the statement containing the function reference.

4.6
PROGRAM CONTROL

STOP STOP n or STOP
n is a string of 1-5 octal digits.
When a STOP statement is encountered, n is displayed in the dayfile, the

executable program terminates and control returns to the monitor. If n is
omitted, blanks are implied.

4-14 60176600 Rev. C

PAUSE

END

60176600 Rev. C

PAUSEn or PAUSE

n is a string of 1-5 octal digits.

When a PAUSE statement is encountered, the executable program halts and
PAUSE n appears as a dayfile message on the display console. The operator
can continue or terminate the program with an entry from the console. The
program continues with the next statement. If n is omitted, blanks are
implied.

END
This must be the final statement and marks the physical end of the program
or subprogram. It is executable in the sense that it effects termination of a

main program or acts as a RETURN in a SUBROUTINE or FUNCTION, but it
may not be labeled.

4-15

INPUT/OUTPUT STATEMENTS 5

The READ and WRITE input/output statements cause information to be
transferred between internal storage and external devices.

5.1

MODES OF

INPUT/OUTPUT Input and output can be formatted or unformatted. Formatted information
consists of strings of characters acceptable to the FORTRAN processor.
Unformatted information consists of strings of binary word values in the
form in which they normally appear in storage. The transmission of for-
matted information is always associated with a FORMAT statement, as des-
cribed in chapter 6. Additionally, NAMELIST may be used for input/output
as discussed in section 5. 6.

5.2

1/O LISTS The input list specifies the names of variables and array elements to which

information is transmitted from the external device. The output list speci-
fies the variables and array elements whose values are transmitted to the
external device. Both lists may take any of the following forms.

If no list appears on input, a record is skipped. Only Hollerith information
from the FORMAT statement can be output with a null (empty) output list.

A simple list consists of a variable name, an array name, an array element
name, or a DO-implied list.

If an array name without any subscripts appears in a list, the entire array
(not just the first word of the array) is read or written.

Multiple simple lists may appear, separated by commas, each of which
may be enclosed in parentheses, such as: (...),(...).

A DO-implied list is a simple list followed by a comma and a DO-implied
specification, all enclosed in parentheses.

60176600 Rev. E 5-1

5.3
READ /WRITE
STATEMENTS

5.4
FORMATTED
INPUT/OUTPUT

READ

5-2

A DO-implied specification takes one of the following forms:

i=m,,m),m, or i=m,m,
The elements i, m;, my and mq have the same meaning for the DO statement.
The range of DO-implied specification is that of the DO-implied list. For the
input lists, i, m 1’ m, and m 3 may appear within that range only as sub-
scripts.

Elements of a list are specified in order of occurrence from left to right.
The elements of a DO-implied list must be specified for the initial cycle
of the implied DO.

The parameters used with the READ/WRITE statements are defined as follows:

u Identifies the input/output unit; an integer constant or a simple
integer variable.

f Identifies the format specification; a FORMAT statement label or
an array name. If f is a statement label, the statement must appear
in the same program unit as the input or output statement.

k Input/output list indicating the data to be transferred.

The statements discussed in this section pertain to the transmission of data
according to a FORMAT specification.

Information processed by the READ and WRITE statements is divided into
records. Each time a READ or WRITE is executed at least one record is
processed. It is not possible to read several parts of a single record with
more than one READ statement.

READ (u,fk READ (u,{) READ f,k

This statement transmits data from the external device for which the logical
unit number is the integer value of u. Information contained on u is scanned
and converted in accordance with the format specification identified by f.
The values, as a result, are assigned to the element specified by the list, k.
However, if the list is omitted, this statement means the next logical record
is bypassed (except for the case described on page 6~15 of reading Hollerith
characters into an existing H field within a FORMAT statement).

60176600 Rev. E

Example:

READ (2,10) (IDAT()), I =1,10), C
10 FORMAT (2X, 10(I5,2X), F3.2)

DO 30 K=1, 10

READ (2, 20) (B2(K,J),J=1,5)
20 TORMAT (5(F10. 2, 1X))
30 CONTINUE

INPUT FILE READ f,k or READf

This statement results in the input of records from the SCOPE INPUT file.
The theory of operation is the same as that described for the formatted READ
statement. ’

Example:

READ 31,NAME, GREEN, HORNET
31 FORMAT (A10,¥10.3,E20.2)

WRITE WRITE (u,f)k or WRITE (u,f)

The above statements write formatted records on the logical unit specified
by u. The parameters have the same meaning as described for the corre-
sponding READ statement. The contents of the resulting records consist
of the values of the list items in the order in which they appear in the list.
The values represented by the list variables are converted according to
the format specification, then transferred to the indicated output unit.

Example:

WRITE (6, 10) L1,B1, L2, B2
10 FORMAT (2X,15,1X,F5.2,15,F9. 3)
DO 20 J = 1,10
DO 20 K = 1,10
20 WRITE (4,26) DATAL(J,K), DATA1 (J,K)
26 FORMAT (2X,15H THE VALUES ARE, 2F6.2)

If the list k in a formatted WRITE statement is omitted, the contents of the
created record are dependent upon the corresponding FORMAT statement.

Example:

WRITE (4, 27)
27 FORMAT (32H THIS COLUMN REPRESENTS X VALUES)

(92}
1
w

60176600

PRINT /PUNCH

When the list k is specified for formatted input or output, the corresponding
FORMAT declaration must contain at least one conversion specification other
than Hollerith,

PRINT f,k or PRINT f

The information specified by k is transferred as line printer images to the
SCOPE OUTPUT file,!l_g_ﬁwa- haracters or less per line in accordance with
FORMAT declaration {,)

Example:

PRINT 20, DNAME
20 FORMAT (X,A10)

When the list designation is omitted, the statement has the form illustrated in
the following example:

PRINT 20
20 FORMAT (31H THIS IS THE END OF THIS REPORT)

The first character of formatted records is not printed, but is used by the line
printer to determine vertical spacing of records on a page. Appendix I,
carriage control characters, lists the control options.

PUNCH f, k or PUNCH {

The information specified by k is transferred to the SCOPE PUNCH file as
Hollerith images, 80 characters or less per card in accordance with FORMAT
declaration f. If the card image is longer than 80 characters, a second card
is punched with the excess characters. Omission of k is interpreted the same
as for the PRINT statement.

Example:

PUNCH 30, JOHN
30 TFORMAT (X,I7)

60176600 Rev. D

5.5

UNFORMATTED
INPUT /OUTPUT The statements discussed herein transmit data without a FORMAT designation.
READ READ (wk or READ (u)
This form of the READ statement is classified as unformatted because of the
omission of the f parameter in the statement form. Execution of the state-
ment results in the sequential assignment of values, as they are read, to the
variables appearing in the list k. The sequence of values required by the
list may not exceed the length of the unformatted record. However, if the
list is omitted, this statement serves merely to designate the bypassing of
the next logical record; no information is transmitted from the source device.
Examples:
READ (30)
READ (31) DATA1, DATAZ2,IDATA
READ (32) (SUM(K), K=1, 100)
READ (33) 1,J,K,L,M, N
WRITE WRITE (W k or WRITE (u)

This form of the WRITE statement creates the next record on the unit identi-
fied by u. The contents of the record are the sequence oi values specified
by the list k.

Examples:

WRITE (30) (DATA(I), I=1,100)

WRITE (31) 1,J,K,R

WRITE (32) PAY, COST, BAL
If the list is omitted from the statement, a null record is written on the out-
put device. A null record is a record which consists of no data but contains
all the other properties of a legitimate record.

Example:

WRITE (14)

60176600 Rev. B 5-5

5.6
NAMELIST

STATEMENT The NAMELIST statement permits the input and output of character strings
consisting of names and values without a format specification.

NAMELIST /yl/al/y2/a2/ .. ./yn/an

Each y is a NAMELIST group name consisting of 1-7 characters which must
be unique within the program unit in which it is used. Each a is a list of the
form bysbg,..n ,bn; each being a variable or array name.

In any given NAMELIST statement, the list a of variable names or array
names between the NAMELIST identifier y and the next NAMELIST identifier
(or the end of the statement if no NAMELIST identifier follows) is associated
with the identifier y.

Examples:

PROGRAM MAIN
NAMELIST/NAME1/N1,N2,R1,R2/NAME2/N3,R3,N4,N1

SUBROUTINE XTRACT (A, B, C)
NAMELIST/CALL1/L1,L2,L3/CALL2/L3,P4,1L5,B

A variable name or array name may be an element of more than one such list.
In a subprogram, b may be a dummy parameter identifying a variable or an
array, but the array may not have variable dimensions.

A NAMELIST group name may be defined only once in a program unit preced-
ing any reference to it. Once defined, any reference to a NAMELIST name
may be made in a READ, WRITE, PRINT, or PUNCH statement. The form
of the input/output statements used with NAMELIST is as follows:

READ (u,x)

READ x

WRITE (u,x)

PRINT x

PUNCH x

u is an integer variable or integer constant denoting a logical unit, and x is a
NAMELIST group name,

(7]
|
=]

60176600 Rev. D

INPUT DATA

Example:

Assume A,1, and L are array names

NAMELIST /NAM1/A,B,1,J/NAM2/C,K, L

.

READ (5,NAM1)

.
.

WRITE (8, NAM2)

These statements result in the BCD (coded) input/outputs on the device
specified as the logical unit of the variables and arrays associated with

the identifiers, NAM1 and NAM2.

The current file on unit u is scanned up to an end-of-file or a record with a
$ in column 2 followed immediately by the name (NAM1) with no embedded

blanks. Succeeding data items are read until a $ is encountered.

The data item, separated by commas, may be in any of three forms:

v=c
a=d1,...,dj
a(n) =d1,...,dm

v is a variable name, c a constant, a an array name, and n is an integer
constant subscript. gi are simple constants or repeated constants of the
form k*c, where k is the repetition factor.

Example:

DIMENSION Y (3, 5)
LOGICAL L

COMPLEX Z

NAMELIST /HURRY/11,12,13,K,M,Y,Z, L
READ (5, HURRY)

5-7

and the input record:

$HURRY I1=1, L=. TRUE.,12=2,13=3. 5, Y(3,5)=26, Y(1,1)=11,12. 0E1, 13, 4*14,
Z=(1.,2.),K=16,M=178

produces the following values in memory:

11=1 Y(1,2)=14.0
12=2 Y(2,2)=14.0
13=3 Y(3,2)=14.0
Y(3,5)=26.0 Y(1,3)=14.0
Y(1,1)=11.0 K=16
Y(2,1)=120.0 M=17
Y(3,1)=13.0 zZ=(1.,2.)
L=. TRUE.

The number of constants, including repetitions, given for an unsubscripted
array name must equal the number of elements in that array. For a sub-

scripted array name, the number of constants need not equal, but may not
exceed, the number of array elements needed to fill the array.

v=c variable v is set to ¢
a=dl, veoyd, the values d1 ,d. are stored in consecutive elements
) of array a in the order in which the array is stored
internally.
a(n)=d1, censy dm elements are filled consecutively starting at a(n)

The specified constant of the NAMELIST statement may be integer, real,
double precision, complex of the form (cq,c,), or logical of the form . T., or
.TRUE.,.F., or .FALSE. A logical or complex variable may be set only

to a logical and complex constant, respectively. Any other variable may be
set to an integer, real or double precision constant. Such a constant is con-
verted to the type of its associated variable. '

Constants and repeated constant fields may not include embedded blanks.
Blanks, however, may appear elsewhere in data records.

A maximum of 150 characters per input record is permitted. More than one

record may be used for input data. All except the last record must end with

a constant followed by a comma, and no serial numbers may appear; the first
column of each record is ignored.

The set of data items may consist of any subset of the variable names

associated with x. These names need not be in order in which they appear
in the defining NAMELIST statement.

60176600 Rev. C

OUTPUT DATA When a NAMELIST group name is referenced in a WRITE (u,x), PRINT x,
or PUNCH x statement, the entire list associated with that name is output as
BCD information. Output consists of at least three records. The first record
is a $ in column 2 followed by the group identifier x; the last record is a $ in
column 2 followed by the letters END. Between these two records are as
many records as necessary to output the current values of all variables in the

list associated with x.

Each variable or array is output as a separate record, with no data appearing
in column 1 of any record. Simple variables are output as v =c. Elements
of dimensioned variables are output in the order in which they are stored
internally. Logical constants appear as T and F. The data fields are made
large enough to include all significant digits.

The records output by a WRITE (u,x) statement may be read by a READ (u,Xx)
statement. The maximum length of a record written by a WRITE (u,x) state-
ment is 130 characters. If unitu is the standard punch unit and a record to
be output contains more than 80 characters, a second card is used for the
record.

57
REWIND REWIND u

" This statement positions unit u at its initial point. If the statement is not
applicable to the unit specified or u is at the initial point, the statement has
no effect.

Example:

REWIND 31
REWIND L

5.8
BACKSPACE BACKSPACE u

Execution of this statement positions unit u so that what had been the preceding
user logical record becomes the next record. If the statement is not applicable
to the unit specified or unit u is at the initial point, the statement has no effect.

Example:

BACKSPACE 40
BACKSPACE K

60176600 Rev. D 5-9

59
ENDFILE

5.10
ECS 1/0

5.1
MASS
STORAGE 1/0

5-10

ENDFILE u

When this statement is executed, an end-of-file record is written on unit u.
The end-of-file record indicates a demarcation of a file.

Example:

ENDFILE 31
ENDFILE M

The following statements result in data transmission between ECS (Extended
Core Storage) and central memory.

CALL READEC (a,b,n)
CALL WRITEC (a,b,n)
a Simple or subscripted variable located in central memory.

b Simple or subscripted variable located in ECS common block.

n Integer constant or integer expression.

When either statement is executed, n consecutive words of data are trans-
mitted between central memory and ECS beginning at location a in central
memory and b in Extended Core Storage.

Four object time subroutines control record transmission between central

memory and a mass storage device. The references to these routines take
the following forms:

CALL OPENMS (u,ix,4,p)
CALL READMS (u,fwa,n, i)
CALL WRITMS (u, fwa,n, i)
CALL STINDX (u,ix,?)

1=

Logical unit number.

First word address of the index (in central memory).

I~ %

Length of the index; ¢ = 2 (number of index entries)+1 for a name
index; £ = number of index entries+l for a number index.

60176600 Rev. C

p=1 Indicates the file is referenced through a name index, p=0
indicates a number index.

fwa Central memory address of the first word of the record.

Number of central memory words to be transferred.

i=]

Record number or the address of a cell containing the record
name (left justified display code with binary zerofill, 1to 7
characters) or number,

1=

OPENMS is used to open the mass storage file. This routine informs SCOPE
that this file is a random access file; and if the file exists, the master index
is read into the area specified by the program. OPENMS must be called
before READMS, WRITMS, and STINDX.

The routines READMS and WRITMS perform the actual transfer of data to
or from central memory.

STINDX is called to change the file index to the base specified in the CALL
(See Appendix I for further information and examples concerning the use of

these routines.)

The random access name must be left justified display code, from 1-7 char-
acters long, with binary zero fill.

60176600 Rev, F 5-11

FORMAT STATEMENTS 6

6.1
FORMAT
DECLARATION

FIELD DESCRIPTORS

60176600 Rev. E

The FORMAT statement is used in conjunction with the input/output of for-
matted records to indicate the manner of converting and editing information
between the internal representation and the external character strings.

FORMAT (qltlzltzzz. . 'Zn-ltn 9

q,)

q series of slashes (optional)

t field descriptor or groups of field descriptors

z field separator

n may be zero

The FORMAT declaration is non-executable and may appear anywhere
in the program. It must have a statement label in columns 1-5.
FORMAT statements are analyzed for validity by the compiler.
Diagnostics are provided.

The format field descriptors are:

srEw.d
srFw.d
srGw.d
srDw.d
riw

rLw

rAw

rRw

rOw

“Hh1h2' . .hn
nX

* ..k or Ao F

Tn

Single precision floating point with exponent
Single precision floating point without exponent
Single precision floating point with or without exponent
Double precision floating point with exponent
Decimal integer conversion

Logical conversion

Alphanumeric conversion

Alphanumeric conversion

Octal integer conversion

Hollerith character control

Intraline spacing

Hollerith string delimiters

Column tabulation

FIELD SEPARATORS

6.2
CONVERSION
SPECIFICATION

6-2

E, ¥, G, Db, I, L, A, R, O, H, X, and T are the conversion codes which
indicate the type of conversion and editing.

w and n are non-zero integer constants which represent the field width in the
external character string. nused with T indicates the beginning column
position for subsequent information.

d is an integer constant which represents the number of digits in the frac-
tional part of the external character strings (except for G conversion).

r is the repeat count. It is represented by an optional non-zero integer
constant and indicates the repetition factor of the succeeding basic field
descriptor.

s is optional and represents a scale factor.
h is one of the characters in the machine character set.
* or #.is used to delimit Hollerith strings. (¢ prints as ' on many printers.)

For all descriptors, the field width w or n must be specified. If d is not
specified for w.d, it is assumed to be zero.

The two format field separators are the slash (/) and the comma (,). Series
of slashes are another form of field separator. Field separators are used
to separate field descriptors and groups of field descriptors. The slash

is also used to specify demarcation of formatted records.

Leading blanks are not significant in numeric input conversions; other
blanks are treated as zeros. Plus signs may be omitted. An all blank
field is considered to be minus zero, except for logical input, where an all
blank field is considered to be FALSE. When an all blank field is read
with a Hollerith input specification (R or A), each blank character will be
translated into a display code 55 octal.

For the E, F, G, and D input conversions, a decimal point in the input
field overrides the decimal point specification of the field descriptor.

The output field is right justified for all output conversions. If the number
of characters produced by the conversion is less than the field width, lead-
ing blanks are inserted in the output field. The number of characters pro-
duced by an output conversion must not be greater than the field width. If
the field width is exceeded, an asterisk is inserted in the leading position
of the field .

60176600 Rev. E

Iw INPUT

lw OUTPUT

60176600 Rev. E

Any output which is sent to the line printer uses the first character on the
left for carriage control. Thus, the first character is lost and printing
begins in the first print position using the second character. This applies
only to line printers, not to other output devices.

This specification, in conjunction with an input statement, designates a
decimal integer constant; field length of w characters. The input field is
an optionally signed integer or blank. When a sigi appears, it must pre-
cede the first digit in the field. Blanks are interpreted as zeros. The
value is stored right-justified in the specified variable.

Example:

READ 10,1,J,K, L, M,N
10 FORMAT (I3,17,12,13,12,14)

Stored Variable: I J K LM N

At e N el e o b e, e
Input Card: 139bb-15bb18bb7b3blb4
WVW
Field Width: 3 7 2 32 4

I specification may also be used to indicate the output of decimal integer
values. The output quantity occupies w output character positions, right
justified:

ba...a
where b is a blank or minus sign if the integer is negative, a's are the digits
(maximum 15) of the integer. If the integer is positive, the + sign is sup-
pressed. If the field width w is larger than required, the output quantity is
right justified with blank fill to the left. If the field is too short, characters
are stored from the right; an asterisk occupies the leftmost position, with
excess characters being discarded from the left. If the integer is greater
than 248—1, an X is printed in the field.

Example:
PRINT 10,I,J,K I contains -3762

10 FORMAT (18,110,15) J contains +4762937
K contains +13

Result: bbb-3762bbb4762937bbb13
N s’ “—. s e

8 10 5

6-3

Ew.d INPUT

6-4

The E specification designates the conversion and storing of a number in the
input field as a real number. The total number of characters in the input field
is specified by w; this field is scanned from left to right; blanks are inter-
preted as zeros.

Subfield structure of the input field:

input field

—A
e —\
+ . +
digit o E
integer fraction exponent

decimal point

The integer subfield begins with a sign (+ or -) or a digit and may contain a
string of digits. The integer field is terminated by a decimal point, D, E, +,
-, or the end of the input field.

The fraction subfield which begins with a decimal point may contain a string
of digits. The field is terminated by D, E, +, -, or the end of the input field.

The exponent subfield may begin with D, E, + or - followed by an integer
constant right adjusted in the field. When it begins with D, or E, a sign is
optional between D or E and the string of digits of the subfield. The value of
the string of digits in the exponent subfield must be less than 323.

Permissible subfield combinations:

+1.6327E-04 integer fraction exponent
-32.7216 integer fraction

+328+5 integer exponent
.629E-1 fraction exponent

+136 integer only

.07628431 fraction only

E-06 (interpreted exponent only
as zero)

60176600

In the Ew.d specification, d acts as a negative power-of-ten scaling factor
when an external decimal point is not present. The internal representation
of the input quantity is:

-d field
(integer subfield)x10 xlo(exponent subfield)

For example, if the specification is E7.8, the input quantity 3267+05 is con-
verted and stored as: 3267x10~8x10% = 3.267.

A decimal point in the input field overrides d. The input quantity 3. 672+5
read by an E9.d specification is always stored as 3. 672x10°. When d does
not appear, it is assumed to be zero.

The field length specified by w in Ew.d should always be the same as the
length of the field containing the input number. When it is not, incorrect
numbers may be read, converted, and stored as shown below. The field w
includes blanks, significant digits, signs, decimal point, E or D and the

exponent.

Example:

READ 20,A,B,C
20 FORMAT (E9.3,E7.2,E10.3)

Input quantities on the card are in three contiguous fields columns 1
through 24:

9 5 10
- N — -
+6.47E-01-2,36+5.321E+02bb

The second specification (E7.2) exceeds the width of the second field by
two characters.

Reading proceeds as follows:

9 7 10
i\ — p— .. ity m—

+6.47TE-01[-2.36+5 .321E+02bb
+6.47E-01|-2.36+5]|.321E+02bb
+6,47E-01 -2.36+5|.321E+02bb

First, +6.47-01 is read, converted, and placed in location A. Next,
-2,.36+5 is read, converted, and placed in location B. The number
actually desired was -2.36, but the specification error (E7.2 instead
of E5. 2) caused the two extra characters to be read. The number read
(-2.36+5) is a legitimate input representation under the definitions and

restrictions.

Finally, .321E+0200 is read, converted, and placed in location C. Here
again, the input number is legitimate and is converted and stored, even
though it is not the number desired.

The above example illustrates a situation where numbers are incorrectly
read, converted, and stored, and yet there is no immediate indication that
an error has occurred.

Examples:

Ew.d Input

Specifi- Converted
Input Field cation Value
+143.26E-03 Ell.2 . 14326
-12.437629E+1 EI13.6 -124, 37629
8936E+004 E9, 10 .008936
327.625 E7.3 327.625
4,376 ES 4,376
-.0003627+5 E11.7 -36.27
-.0003627E5 E11.7 -36.27
blanks Ew.d -0.
1E1 E3.0 10.
E+06 E10.6 0.
1.bEbl E6.3 10.

6-6

Remarks

All subfields present
All subfields present

No fraction subfield; input

number converted as 8936.
x 10-10+4

No exponent subfield
No d in specification

Integer subfield contains
- only

Integer subfield contains
- only

All subfields empty

No fraction subfield; input
number converted as
1.x101

No integer or fraction sub-
field; zero stored regardless
of exponent field contents

Blanks are interpreted as
Zeros

Ew.d OUTPUT Real numbers in storage are converted to the BCD character form for output
with the E conversion. The field occupies w positions in the output record;
with the real number right justified in the form:

b.a...axeee 100 = eee = 308
or
b.a...akExee 0 =ee =99

b indicates no character position or minus sign; a's are the most significant
digits of the value, and eee are the digits in the exponent. If d is zero or no
character, the digits to the right of the decimal do not appear as shown above.
Field w must be wide enough to contain the significant digits, sign (if negative),
decimal point, E, and the exponent. Generally, w = d+6. Since positive num-
bers do not require a sign, space need not be reserved for one.

If the field is not wide enough to contain the output value, an asterisk is in-
serted in the high order position of the field. If the field is longer than the
output value, the quantity is right justified with blank fill to the left. If the
value being converted is indefinite, an I is printed in the field; if it is out of
range, an R is printed.

Examples Al

PRINT 10,A A contains -67,32 or +67.32
10 FORMAT (E10.3)

Result: b-.673E+02 or bb.673E+02

PRINT 10,A
10 FORMAT (E13.3)

Result: bbbb-.673E+02 or bbbbb,673E+02

PRINT 10,A A contains -67.32
10 FORMAT (E8.3) no provision for - sign

Result: *,67E+02

PRINT 10,A
10 FORMAT (E10.6)

Result: *.6732E+02

Fw.d INPUT This specification is the same as Ew.d input specification. It may be used for
the transfer of real data that does not contain a decimal exponent.

TIn the examples, the use of column 1 for carriage control has been ignored.
The results demonstrate the way in which data is converted, not the way the
line will appear when printed.

60176600 Rev. D 6-7

Fw.d OUTPUT

The field occupies w positions in the output record; the corresponding list
item must be a floating point quantity, which appears as a decimal number,
right justified

ba...a.a...a

b identifies a minus sign or no character position and a's represent the most
significant digits of the number.

The number of decimal places to the right of the decimal is specified by d. If
d is zero or omitted, digits to the right of the decimal point do not appear. If
the number is positive, the + sign is suppressed. If the field is too short to
accommodate the number, one asterisk appears in the high-order position of
the output field. Field w must be wide enough to contain significant digits,
sign (if negative), and a decimal point, If the field is longer than required to
accommodate the number, the number is right justified with blank fill to the
left. If the value being converted is indefinite, an I is printed in the field; if
it is out of range, an R is printed.

Examples: |
A contains +32.694

PRINT 10,A
10 FORMAT(F7.3)

Result: b32.694

PRINT 11,A
11 FORMAT(F10.3)

Result: bbbb32.694

A contains -32.694

PRINT 12,A
12 FORMAT(F6.3) no provision for - sign

Result: *2.694

A contains .32694

PRINT 13,A,A
13 FORMAT(F4.3,F6.3)

Result: .327bb. 327

TIn the examples, the use of column 1 for carriage control has been ignored.
The results demonstrate the way in which data is converted, not the way the
line will appear when printed.

60176600 Rev. D

Gw.d INPUT Gw.d input specification is the same as the Ew.d input specification.

Gw.d OUTPUT The G conversion specifies the transfer of real data where w designates the
field length and d denotes the number of significant digits of the value to be
represented.

The method of representation in the external output string is a function of the
magnitude of the real datum being converted. Let N be the magnitude of the
internal datum. The following tabulation exhibits a correspondence between
N and the equivalent method of conversion that will be effected:

Magnitude of Datum Equivalent Conversion Effected
0.1=N<1 F(w-4).d, 4X

1=N<10 Fw-4). (d-1),4X

1092 =N < 109-1 F(w-4).1,4X

1097 = v < 10 F(w-4).0,4X

Otherwise sEw.d

The effect of the scale factor is suspended unless the magnitude of the datum
to be converted exceeds the range that permits effective use of the F conver-
sion. If the value being converted is indefinite, an I is printed in the field;
if it is out of range, an R is printed.

When F conversion is used under Gw.d output specification, four blanks are
inserted within the field, right justified. Therefore, for effective use of
F conversion, w must be = d+6.

Examples:

PRINT 101,XYZ XYZ contains 77.132
101 FORMAT (G10. 3)
Result: bb77. 1bbbb
PRINT 101,XYZ XYZ contains 1214635.1
101 FORMAT (G10.3)
Result: bb.121E+07

60176600 Rev. D 6-9

Dw.d OUTPUT

Dw.d INPUT

Ow OUTPUT

Ow INPUT

6-10

D conversion corresponds to Ew.d output. The field occupies w positions of
the output record, the list item is a double precision quantity which appears

as a decimal number, right justified. If the value being converted is indefinite,
an I is printed in the field; if it is out of range, an R is printed.

b.a-*-ateee 100 < eee < 308
or

b.a-+-aD+tee 0=ee= 99

D conversion corresponds to E conversion except that the list variables
must be double precison names. D is acceptable in place of E as the be-
ginning of an exponent suhfield.

Example:

DOUBLE Z,Y,X
READI1, Z7,Y,X
1 FORMAT (D18.11,D15,D17.4)

Input Card:

-6.31675298443D-03+2.7189264531476293477528869D-09
N v/

. A N\
~ ~ v

18 15 17

O specification is used to output octal integer values. The output quantity
occupies w output character positions right justified.

aa...a

The a's are octal digits. If w is 20 or less, the rightmost w digits appear.
If w is greater than 20, the number is right justified in the field with blanks
to the left of the output quantity. A negative number is output in its one's
complement internal form.

Octal integer values are converted under O specification. The field is w
characters in length.
The input field w consists of an integer subfield only (maximum of 20 octal

digits) containing +, -, 0 through 7, or blank. Only one sign may precede
the first digit in the field. Embedded blanks are interpreted as zeros.

60176600 Rev. D

Example:

INTEGER P, Q, R
READ 10, P,Q, R
10 FORMAT (010,012,02)

Input Card: 3737373737666b6644b444-0

—
v v

10 12 2

R

In storage:

P 00000000003737373737
Q 00000000666066440444
R 777777T7T7T7007TTT7777

A negative octal number is represented internally in one's complement

form (20 digits) obtained by subtracting each digit of the octal number from
seven. TFor example, if -703 is an input quantity, its internal representation
is 7T777TTT7777777777074.

That is, 77777777777777777777
-00000000000000000703
TTTTTTTTTINITIUTT074

Aw OUTPUT A conversion is used to output alphanumeric characters. If w is 10 or more,
the quantity appears right justified in the output field, blank fill to left. If
w is less than 10, the output quantity is represented by leftmost w characters.

Aw INPUT This specification accepts FORTRAN characters including blanks. The in-
ternal representation is 6000 Series display code; the field width is w char-
acters.

If w exceeds 10, the input quantity is the rightmost 10 characters in the field.
If w is 10 or less, the input quantity is stored as a left justified BCD word;
the remaining spaces are blank filled.

Example:

READ 10,Q,P,0
10 FORMAT (A8,A8,A4)

Input card: LUX MENTIS LUX ORBIS
N “———— e et
8 8 4

60176600 6-11

Rw OUTPUT

Rw INPUT

lw OUTPUT

Lw INPUT

COMPLEX
CONVERSIONS

6-12

In storage: Q LUXbMENTbb
P ISbLUXbObb
O RBISbbbbbb

This specification is similar to the Aw output with the following exception.
If w is less than 10, the output quantity represents the rightmost characters.

This specification is the same as the Aw input with the following exception.
If w is less than 10, the input quantity is stored as a right justified binary
zero filled word.

Example:

READ 10,Q,P,0
10 FORMAT (R8,R8,R4)

Input card: LUX MENTIS LUX ORBIS
N, o “— p— “——
8 8 4

In storage: Q 00LUXbMENT
P 00ISbLUXbO
(0] 000000RBIS

L specification is used to output logical values. The output field is w char-
acters long, and the list item must be a logical element. A value of TRUE
or FALSE in storage causes w-1 blanks followed by a T or F to be output.

Example:

LOGICAL I, J,K,L I,K,L are negative (TRUE) and
PRINT 5,1,J,K,L J is positive (FALSE)
5 FORMAT (4L3)

Result: bbTbb¥bbTbbT

This specification accepts logical quantities as list items. The field is con~

sidered true if the first non-blank character in the field is T or false if it is

F. An all blank field is considered false. If the first non-blank character is
neither T nor F, the field is considered false.

The specification by which a complex variable is read or written requires the
designation of two real field descriptors: the first designates the real part,
the second the imaginary part. The field descriptors that may be used are:
E (Ew.d), F(Fw.d), or G(Gw.d).

60176600 Rev. D

nP SCALE FACTOR

Example:

INTEGER A

COMPLEX CC where A =3762

PRINT 20,A,B,CC,D B =833.275
FORMAT (15,F8.3,E10.4,E9.2,G11.5) CC = 36.292, -46.73

D =.62534
Results: b3762 b833.275 b.3629E+02b~. 47TE+02 b.62534bbbb

A scale factor that may be used with F, E, .G, and D conversions is of the
form:

nP

nPrw.d
nPEw.d
nPGw.d
nPDw.d

n, the scale factor, is a positive (unsigned) or negative integer constant.

A scale factor of zero is established when the format control is initiated; it
holds for all F, E, G, and D field descriptors until another scale factor is
encountered.

The scale factor n affects conversions as follows:

For F, E, G, and D input conversions (provided no exponent exists) in
the external field) and F output conversions: External number =
Internal number x 107

For F, E, G, and D input, the scale factor has no effect if there is
an exponent in the external field.

For E and D output, the basic real constant part of the output quantity
is multiplied by 10™ and the exponent is reduced by n.

TFor G output, the effect of the scale factor is suspended unless the mag-

nitude of the data to be converted exceeds the range that permits effective
use of T conversion. If the effective use of the E conversion is required,
the scale factor has the same effect as with E output.

Examples:

Using an internal number of 3.1415926538, some output representations with
the use of a scale factor are:

Specification Output Representation
E20.2 .31E+01
1PE20.2 3.14E+00
4PE20. 2 3141.59E-03
7TPE20.2 3141592.65E-06
-1PE20.2 .03E+02
5PF20,2 314159, 27
-2PF20.4 .0314
6.3
EDITING
SPECIFICATIONS
nX This specification permits spacing of input/output quantities; it permits

blanks to be inserted in an output record or n characters to be skipped in an
input record. The designation of 0X is ignored and bX is interpreted as 1X.
In the specification list, a comma following X is optional.

Examples:
INTEGER A A contains 7, B contains 13.6,
PRINT 10,A,B,C C contains 1462.37

10 FORMAT (12, 6X, F6. 2, 6X, E12. 5)
Result: b7bbbbbbbl3. 60bbbbbbbb. 14624 E+04

READ 11,R, S, T
11 FORMAT (F5.2,3X,F5.2,6X,F5.2)

or

11 FORMAT (F5.2,3XF5.2,6XF5. 2)
Input card: i4.62bb$13.78bCOSTb1S. 97
In storage: R 14.62

S 13.78
T 15.97

6-14

nH This specification provides for the input or output of 6-bit characters, in-
cluding blanks, in the form of comments, titles, and headings. An unsigned
integer n specifies the number of characters, maximum of 136 to the right
of H that are transmitted to the output record; H denotes a Hollerith field;
the comma following an H field is optional.
Examples:

Source program:

PRINT 20
20 FORMAT (28HbBLANKSbCOUNTbINDANbHbFIELD.)

produces output record:

bBLANKSbCOUNTbINbANbHbFIELD.

Source program:

PRINT 30,A A contains 1.5
FORMAT (6HbLMAX=, F5.2) comma is optional

produces output record:
bLMAX = bl.50

The H specification may be used to read Hollerith characters into an existing
H field within the FORMAT specification.

Example:

Source program:

READ 10
10 FORMAT (27Hbbbbbbbbbbbbbbbbbbbbbbbbbbb)

Input card:
hTHISbI SbAbVARIABLEbHEADINg

27 columns

After READ, the FORMAT statement labeled 10 contains the alphanumeric
information read from the input card; a subsequent reference to statement 10
in an output statement acts as follows:

PRINT 10
produces the print line:

bTHISbISbAbVARIABLEbHEADING

60176600 6-15

NEW RECORD The slash (/) indicates the end of the last record anywhere in the specification
list. Consecutive slashes may appear and need not be separated from the
other list elements by commas. During output, the slash is used to produce
blank records. During input, it is used to bypass records. k(/) is equiva-

lent to /1/2, - ,/k.
Examples:
1. PRINT 10

10 FORMAT (6X,7THHEADING///3X,5HINPUT, 2X, 6HOUTPUT)

Printout:
bbbbbbHEADING line 1
(blank) line 2
(blank) line 3
bbbINPUTbbOUTPUT line 4

Each line corresponds to 2 BCD record. The second and third records
are null and produce the line spacing illustrated.

2. PRINT 10,A,B,C,D
10 FORMAT (2E10.3/2F7.3)

In storage: A -11.6

B .325
C 46.327
D -14.261

Printout:

b-.116E+02bb. 325E+00
b46.327-14. 261

3. PRINT 11,A,B,C,D
11 FORMAT (2E10.3//2F17.3)

Printout:
b-.116E+02bb. 325E+00 line 1
(blank) line 2
b46.327-14. 261 line 3

6-16 60176600 Rev. D

60176600 Rev. F

L FELF

4. DIMENSION X(3)

PRINT 15, (X(I), I=1, 3)
15 FORMAT (8HPRESULTS2(/)(3F8. 2))

Resultant lines:

bRESULTS line 1
(blank) line 2
3.62 -4.03 -9.78 line 3

The same results may also be obtained by using the statement,
PRINT 15,X

Hollerith string delimiters are *...* and #...#£. All characters (including)
blanks) enclosed by apair of delimitersareread or written. Eachcharacter
may appear in a field delimited by the other. In an nH delimited specifica-
tion, the * or # (' for some printers) will be reproduced.

Example:

PRINT 10
10 TFORMAT (20X*THISbISbTHEbENDbLO FbTHISbRUN*,T52¥.. HONEST *)

Result: (beginning in print position 20)

L2348AT000Y 2406 THY 23000 =Y 12369078901 23496TH9012 3656789
Tesls 1S InE try OF TRIS wUN o8 e HONEDT

This specification is used as a tabular column selection control. When Tn
is used, the format pointer is skipped to column n and the next format speci-
fication is processed. n may be any unsigned integer, maximum of 136. If
n = zero, column 1 is assumed. (If output is to a line printer, printing is
left-shifted one character due to carriage control requirements.)

Using card input, if n > 80 the column pointer is moved to column n but a
succeeding specification would read only blanks.

Examples:
1) PRINT 60

60 FORMAT (T80,*COMMENTS*, T60, *HEADING4*, T40
HEADING3, T20, *HEADING2*, T2, *HEADING1*)

6-17

6.4
REPEATED FORMAT
SPECIFICATIONS

Produces the following output: print positions are indicated by the upper
line of numbers 1-80.

1 19 39 59 79
HEADING1 HEADING2 HEADINGS3 HEADING4 COMMENTS

2) WRITE (31, 10)
10 FORMAT (T20,*LABELS¥)

The first 19 characters of the output record are skipped and
the next six characters, LABELS, are written on output unit
number 31 beginning in character position 20.

3) READ (20, 20)
20 FORMAT (T10,*COLUMNIL¥*)

The first nine characters of the input record are skipped and
the next seven are read from input file 20; these seven char-
acters replace COLUMNI1, the data in storage.

FORMAT specifications may be repeated by using an unsigned integer constant

repetition factor k as follows: k(spec). For example, to print the array Y:

PRINT 10, (Y(I),I=1,9)
10 FORMAT (3(3F8.3))
is equivalent to:
PRINT 10, (Y(}), 1,9)
10 FORMAT (9F8.3)

When a group of FORMAT specifications repeats itself as in:

FORMAT (E15.3,F6.1,14,14,E15. 3, F6. 1,14,14)

the use of k produces:

FORMAT (2(E15.3,F6.1,214))

If no group repetition factor is specified, a basic group (repetition factor of
one) is assumed. If, however, the format control proceeds to the last outer
right parenthesis of the format specification, a test is made to determine if
another list element is specified. If not, control terminates. However, if
another list element is specified, the format control demands a new record
start and control reverts to that group repeat specification terminated by the
last preceding right parenthesis, or if none exists, then to the first left
parenthesis of the format specification.

60176600 Rev. F

6.5
VARIABLE FORMAT

60176600 Rev. E

Further groupings may be formed by enclosing field descriptors, field sep-
arators, or basic groups within parentheses, and a group repetition factor
may be specified for these groupings. The parentheses enclosing the format
specification are not considered as group delimiting parentheses.

FORMAT statement specifications may be nested to a depth of two. TFor
instance:

10 FORMAT(1H0,3E10.3/(12,2(F12.4,F10.3))/D28.17)

FORMAT specifications may be indicated at the time of program execution.
The specification, including left and right parentheses but not the statement
label or the word FORMAT, must be Hollerith data stored in an array. The
name of the array containing the specifications may be used in place of the
FORMAT statement labels in the associated input/output operation. The
array name specifies the location of the first word of the FORMAT informa-
tion and may appear with or without a subscript.

Examples:
1) Assume the following FORMAT specifications:

(E12.2,F8.2,17,2E20. 3, F9. 3, 14)

This information can be punched in an input card and read by the
statements of the program such as:

DIMENSION IVAR(3)
READ 1, (IVAR(D), I=1, 3)
1 FORMAT (3A10)

The elements of the input card are placed in storage as follows:

IVAR(): (E12.2,F8.
IVAR(2): 2,17, 2E20.
IVAR(3): 3,F9.3,14)

A subsequent output statement in the same program can refer to these
FORMAT specifications as:

PRINT IVAR,A,B,I,C,D,E,dJ
This produces exactly the same result as the program:

PRINT 10,A,B,1,C,D, E,d
10 FORMAT (E12.2,F8.2,17,2E20.3,F9.3,14)

6-19

2) DIMENSION LAIS1(3), LAIS2(2),A(6), LSN(3), TEMP(3)
DATA LAIS1/21H(2F6.3,17,2E12.2, 311)/LAIS2/20H(I6, 6X, 3F4.1, 2E12.2)/

Output statement:
PRINT LAIS1, (A(}),I=1,2),K, B, C, (LSN(J),Jd=1, 3)
which is the same as:

PRINT 1, (A(),1-1,2),K, B, C, (LSN(J), J=1, 3)
1 FORMAT (2F6.3,17,2E12.2,3I1)

Output statement:
PRINT LAIS2, LA, (A(M),M=3,4),A(6), (TEMP(]), =2, 3)
which is the same as:

PRINTZ, LA, (A(M), M=3, 4), A(6), (TEMP(I), I=2, 3)
2 FORMAT (I6,6X,3F4.1,2E12.2)

3) DIMENSION LAIS(3), VALUE(6)
DATA LAIS/26H(I3, 13HMEANbVA LUEDIS, F6. 3)/

Output statement:
WRITE (10, LAISNUM, VALUE(6)
which is the same as:

WRITE (10, 10)NUM, VALUE(6)
10 FORMAT(I3, 13HMEANbVA LUEDIS, F6. 3)

6-20 60176600

AUXILIARY DATA TRANSMISSION STATEMENTS 7

7.1
BUFFER

STATEMENTS Some of the characteristics of buffered input/output are given below:

1. The mode of transmission (BCD or binary) is tacitly implied by
the form of the input/output control statements. In a buffer control
statement, parity must be specified by a parity indicator.

2. The input/output control statements are associated with a list and in
BCD transmission, with a FORMAT statement. The buffer control
statements are not associated with a list; data transmission is to or
from one area in storage.

3. Use of an input/output control statement does not return control to
the program until completion of the operation. A buffer control
statement initiates data transmission, then returns control to the
program, permitting the program to perform other tasks while data
transmission is in progress. Before buffered data may be used,
status of the buffer operation should be checked through use of the
UNIT function (see Appendix I). Failure to perform a status check
renders the result of the last buffer operation unpredictable.

In the following discussion, the definitions of the indicated parameters are
as follows:

u Logical unit number; an integer constant or variable which may
range in magnitude from 1 to 99. |

p Recording mode; an integer constant or variable which may assume
the value of zero, designating even parity (coded mode) or 1 indicating
odd parity (binary mode).

A First word address of the block of data to be transmitted.
B Last word address of the block of data to be transmitted. This

address must be greater than or equal to A.

A unit referenced in a BUFFER statement may not be referenced in other
statements except REWIND, BACKSPACE and ENDFILE.

60176600 Rev. C 7-1

BUFFER IN

BUFFER OUT

7.2
ENCODE/DECODE
STATEMENTS

7-2

BUFFER IN (u,p) (A, B)

This statement transfers information from unit u in mode p to storage loca-
tion A through B. Only one logical record is read for each BUFFER IN
statement,

BUFFER OUT (u,p) (A, B)

This statement initiates output of data contained in locations A through B onto
unit u. One logical record is written for each BUFFER OUT statement.

A more detailed discussion of these statements is given in Appendix I.

The ENCODE/DECODE statements are comparable to the BCD WRITE/READ
statements; however, no peripheral equipment is involved. Information is
transferred under FORMAT specifications from one area of storage to
another. The parameters in these statements are defined as follows:

n Unsigned integer constant or a simple integer variable (not sub-
scripted) specifying the number of characters in the record. n may
be an arbitrary number of BCD characters.

f Statement number or variable identifier representing the FORMAT
statement.

A Identifier of a variable or an array which supplies the starting loca-
tion of the BCD record.

k Input/output list.

The first record begins with the leftmost character position specified by A and
continues until n BCD characters have been transferred (10 BCD characters
per computer word).

Each succeeding record begins with a new computer word, the integral num-
ber of computer words allocated for each record is nt9.
10

Further information on these statements is given in Appendix I,

60176600 Rev. D

ENCODE

60176600 Rev., D

ENCODE (n,f,A)k

The list of variables, k, is transmitted according to the FORMAT f and
stored, n BCD characters per record, starting at location A. If n is nota
multiple of 10, the remainder of the word is blank filled. If the I/0O list k
and the specification list f translate more than n characters per record, an
execution diagnostic occurs.

Examples:

A(l) = 10HABCDEFGHIJ
A(2) = 10HKLMNO

B(l) = 10HPQRSTUVWXY
B(2) = 10HZ12345

1. n = multiple of 10

ENCODE (20,1,ALPHA)A,B
1 FORMAT (A10,A5/A10,A6)
Result:

record a record b
A A

(. Y N\
ALPHA | ABCDEFGHIJ | KLMNO [bbbbb| PQRSTUVWXY | 712345 | bbbb |
word 1 word 2 word 3 word 4

2, n # multiple of 10

ENCODE (16,1,ALPHA)A, B
1 FORMAT (A10,A8)

Result:
record a record b
r —A —\ r A— A
ALPHA | ABCDEFGHIJ |KLMNOb |bbbb PQRSTUVWXSLI 712345 | bbbb
word 1 word 2 word 3 word 4

beginning of new record

3. ENCODE can be used to rearrange and change the information in a
record. The following example also illustrates that it is possible to
encode an area into itself and that encoding will destroy information
previously contained in an area.

DECODE

PROGRAM ENCO2(OUTPUT)
I = 10RBCDEFGHIJK
IA = 1H1
ENCODE (8,10,D)1,1A, I

10 FORMAT (A3,A1,R4)
PRINT 11,1

11 FORMAT (020)
END

Print-out is:

02030434101112135555

The display code equivalent is:
BCD1HIJKbb

DECODE (n,f,A)k

The information in n consecutive BCD characters (starting at address A) is
transmitted according to the FORMAT and stored in the list variables. If
the record ends with a partial word the balance of the word is ignored.
However, if the number of characters specified by the I/0 list and the
specification list f is greater thann (record length) per record, an exe-
cution diagnostic occurs. If DECODE attempts to process an illegal BCD
code or a character illegal under a given conversion specification, that
character is converted to a blank and conversion continues through n char-
acters.

Examples:
1, n # multiple of 10

DECODE (18,1, GAMMA) A6, B6
1 FORMAT (A10,A8)

record a record b
4 A N I'd A N
GAMMA | HEADERb121 | HEADbbO1 |31| HEADERb122 | HEADDbO2 |31]
word 1 word 2 word 3 word 4

beginning of new record

60176600 Rev. D

Result:

A6(1) = HEADERb121
A6(2) = HEADbbO1bb
B6(1) = HEADERb122
B6(2) = HEADbb02bb

2. The following illustrates one method of packing the partial contents of
two words into one word. Information is stored in core as:

LOC(1) SSSSSxxxxx

LOC (6)xxxxxddddd
10 BCD ch/wd

To form SSSSSddddd in storage location NAME:

DECODE(10, 1, LOC (6)) TEMP
1 FORMAT (5X,A5)

ENCODE(10, 2, NAME) LOC(1), TEMP
2 FORMAT(2A5)

The DECODE statement places the last 5 BCD characters of LOC(6) into
the first 5 characters of TEMP. The ENCODE statement packs the
first 5 characters of LOC(1) and TEMP into NAME,

With the R specification; the program may be shortened to:

ENCODE (10, 1, NAME)LOC(1), LOC(6)
1 FORMAT (A5, R5)

3. DECODE may be used to calculate a field definition in a FORMAT speci-
fication at object time. Assume that in the statement FORMAT (2A10, Im)
the programmer wishes to specify m at some point in the program, sub-
ject to the restriction 2 =m = 9. The following program permits m to
vary.

IF(M.LT.10,AND.M.GT. 1)1, 2

1 ENCODE (10,100,SPECMAT)M
100 FORMAT (7TH(2A10,1, 11, 1H))

PRINT SPECMAT, A,B,J

7-6

M is tested to insure it is within limits. If not, control goes to statement
2 which could be an error routine. If M is within limits, ENCODE packs
the integer value of M with the characters: (2A10,1). This packed FOR-
MAT is stored in SPECMAT. SPECMAT contains (2A10,Im).

A and B will be printed under specification A10, and the quantity J under
specification 12, or 13, or ... or I9 according to the value of m.

SPECIFICATION AND DATA STATEMENTS 8

8.1
DIMENSION

60176600 Rev. D

DIMENSION, COMMON, EQUIVALENCE, EXTERNAL, and TYPE statements,
are called specification statements. Specification statements are nonexecutable
statements which describe the characteristics, allocation and arrangement of
data. The ordering of specification statements is immaterial, but they must
appear before any statement function definition, DATA, NAMELIST, or exe-
cutable statements in the program.

Information necessary to allocate storage and define the reference for arrays
may be provided by the DIMENSION statement.

DIMENSION vl(ll) , v2(12), ce ,Vn(ln)

Each v; is a symbolic name and i, is the corresponding subscript. Each i;
may consist of one, two, or three integer constants designating the dimension~
ality for the array and defining the maximum value which a subscript may
assume in a subsequent array reference.

Example:

DIMENSION A (20, 2, 5)
DIMENSION MATRIX(10, 10, 10), VECTOR(100)

An array name may not contain a subscript which assumes a value during
execution that is less than one or larger than the maximum length specified

in the DIMENSION statement. If such a condition exists, an element beyond
the array may be referenced. However, a subscript expression which assumes
the value zero renders a result which is undefined.

The maximum value a subscript may attain is indicated below:

Maximum
Dimen- Subscript Subscript Subscript
sionality = Declarator Subscript Value Value
1 (A) (a) a A
2 (A, B) (a,b) a+A*(b_l) A*B
3 (A,B,C) (a,b,c) a+A*(b-1) A*B*C

+A*B*(c-1)

a,b,c are subscript expressions.
A, B, C are dimensions.

The number of computer words reserved for an array is determined by the
product of the subscripts in the subscript string and the type of the variable.
A maximum of 217-1 elements may be reserved in any one array. If the
maximum is exceeded, a diagnostic is issued.

Example:

COMPLEX CELL
DIMENSION CELL (20, 10)

The number of elements in the array CELL is 200. Since two words
are used to contain a complex element, 400 words are reserved. This
is also true for double precision arrays. For real, logical, and integer
arrays, the number of words in an array equals the number of elements
in the array.

if an array is dimensioned in more than one declaration statement, an infor-
mative diagnostic is issued and the first dimiensions encountered are retained.

VARIABLE

DIMENSIONS If an entry in a declarator subscript is an integer variable name, the array
is variable, and the variable names are called variable dimensions. Such
an array may appear only in a procedure subprogram. The dummy argu-
ment list of the subprograms must contain the array name and the integer
names that represent the variable dimensions., The values of the actual
parameter list of the reference must be-defined prior to calling the subpro-
gram and may not be redefined or undefined during execution of the subpro-
gram. The maximum size of the actual array may not be exceeded. Every
array in an executable program requires at least one associated constant
array declaration through subprogram references.

Example:

SUBROUTINE XMAX (DATA, K, J)
DIMENSION DATA (K, 6, J)

In a subprogram, a symbolic name that appears in a COMMON statement
may not identify a variable array.

DIMENSION statements must appear before any statement function definition,
executable, DATA, or NAMELIST statements in the program.

8-2 60176600

8.2
COMMON

LABELED COMMON

The COMMON statement reserves blocks of storage for variables or arrays
appearing in one calling program or subprogram which may be shared and
referenced with variables or arrays of other subprograms. The areas of
common storage are specified by the statement form:

COMMON /xl/al/ ces /xn/an

Each a is a non-empty set of variable names, array names or array declara-
tors such as, v(i) illustrated for the DIMENSION statement, and each x is a
block name. Block names may be symbolic names or integer constants in
the range 0 to 9999999, but may not exceed seven characters in length.

Example:
COMMON/BLOCK1/A, T(10,15)/BLOCK2/E, G,Q

The list of variable names (A and T or E, G, and Q) may not be dummy
parameters. The entries A and T are defined to be in the block labeled
BLOCKI1 and E, G, and Q are in the block labeled BLOCK2. These
blocks are referred to as labeled common. However, if the block name
is omitted as in:

COMMON/H/D, C,F//U, L, P(12,12)
or
COMMON 8,V,Z,X, M

the list of variables following the empty block name specification are
placed in unlabeled or blank common. In the two above examples, D, C,
and F are in the block H, whereas U, L, P, S, V, Z, X, and M are
defined in unlabeled common.

Any labeled common block may be referred to by any number of programs or
subprograms which comprise an executable program. References are made
by block name which must be identical in all references. The definition of
all labeled common blocks need not be made within any one program, but
must be made in the program unit in which the data is needed.

The length of a common block in a program unit is the sum of the storage re-
quired for the elements defined by the COMMON statement. The length of
labeled common blocks with the same label should be the same.

8-3

UNLABELED COMMON

ARRANGEMENT OF
COMMON BLOCKS

8-4

Example:

SUBROUTINE A SUBROUTINE B
REAL B, W, X(20) COMPLEX G, F(10)
COMMON/BLKA/V,W,X COMMON/BLKA/G,F

Both references te the COMMON block, BLKA, correspond in size.
That is, both subprograms define the block as containing 22 words;
subroutine A specifies 22 items of real type and the specification in
B indicates 11 items of complex type.

Reference may be made to the name of a labeled common block more than
once in any program or subprogram. Multiple references may occur in a
single COMMON statement, or the block name may be specified in any
number of individual COMMON statements. In both cases, the processor
links together all variables into a single labeled common block.

All variables defined in unlabeled or blank common blocks are assigned to-
gether; that is, only one section of the storage allocated for common is
assigned to such variables. These variables are always referred to by an
unlabeled COMMON statement (block name is omitted).

Unlike labeled common, the sizes specified in various program units to be
executed together need not be the same. Size is measured in terms of
storage units.

Example:
SUBROUTINE ALPHA SUBROUTINE BETA

COMMON E, F, G(20, 10) COMMON H, A, D, S

Subroutine ALPHA defines an area of 202 words in unlabeled common,
BETA uses only 4 words or a maximum of 8 words of the storage already
defined.

The properties of common block names as used in all of the program units
of an executable program are as follows:

8.3
EQUIVALENCE

60176600

Each subprogram using a common block assigns the allocation of words
in the block. The entities used within the block may differ as to name,
type, and number of storage units although the block identifier itself
must remain the same.

When a block is labeled and the entities are defined for the block, the
values of identifiers in the corresponding positions (counted by the number
of preceding storage units) are the values referenced through COMMON

declaration in the executable program. The order of entities in the
labeled common block is significant throughout the executable program.

Example:

PROGRAM MAIN (INPUT, OUTPUT)
COMMON Al,A2, L1/B1/B2, B3
CALL CALLI(S, T, Z)

END
SUBROUTINE CALL1(X,Y, Z)

COMMON Al,D,M/B1/F,G

END

A double precision or a complex entity consists of two logical consecutive
storage units: a logical, real, or integer entity is one storage unit.

If any common block elements are type ECS, all the elements of that block
must be type ECS. No type ECS elements may appear in the blank common
block.

COMMON statements must appear before any statement function definitions,
executable, DATA, or NAMELIST statements in the program unit.

An EQUIVALENCE statement permits storage to be shared by two or more
entities, it does not imply equality of entities. Each element in a given list
is assigned the same storage (or part of the same storage) by the processor

EQUIVALENCE (kl)’ (kz), ces (kn)
Each k is a list of the form:

A ,8,50448
1°%9? %M

Each a is either a variable name or an array element name (but not a dummy
argument or an ECS variable or array element), the subscripts may contain
only constants. m is greater than or equal to two. The number of subscript
expressions of an array element name must correspond to the dimensionality
of the array declarator, or it must be one.

EQUIVALENCE may not be used to reorder COMMON nor reposition the base.

The effect of an EQUIVALENCE statement upon common assignment may be
the lengthening of a common block beyond the last assignment for that block
made by a COMMON statement.

When EQUIVALENCE is used for two variables or array elements, the name
of the variables or arrays may not both appear in COMMON statements in the
same program.

The following examples illustrate changes in block lengths as the result of
EQUIVALENCE declaration.
Given: Arrays A and B
Sa subscript of A
Sb subscript of B

Examples:

1. A and C in common, B not in common
Sb < Sa is a permissible subscript arrangement

Sb > Sa is not
Block 1

origin A(l) COMMON/1/A(4),C
A(2) B(1) DIMENSION B(5)
A(3) B(2) EQUIVALENCE (A(3), B(2))

A4 B(3)
C B(4)
B(5)

EQUIVALENCE statements must appear before any statement function defini-
tions, executable, DATA, or NAMELIST statements in the program unit.

60176600 Rev. D

J
Y

1

8.4 ‘

EXTERNAL The EXTERNAL statement defines variable names to be external procedure
names. This feature permits external procedure names to be passed as
arguments to another external procedure; the names must be defined in an
EXTERNAL statement in the program unit in which it is used.

EXTERNAL vl,v yeeesV

2 n

v, are declared to be external procedure names.
Example:

EXTERNAL NAME1,NAME2, NAME3

CALL SUB(A, B, NAME?2)
SUBROUTINE SUB(X, Y, IFUNC)

The user is also allowed to define an Intrinsic function name in an EXTERNAL
declaration. This re-definition of an intrinsic function name causes the
processor to consider any subsequent reference as an external function ref-
erence; the user must supply the procedure.

EXTERNAL statements must appear before any statement function definitions,
executable, DATA, or NAMELIST statements.

8.5

TYPE The TYPE declaration provides the processor with information concerning
the structure of variable and function identifiers. Six variable types may
be declared by the statement:

tvl,vz, Ce ,vn
{ may be INTEGER, REAL, DOUBLE PRECISION (or DOUBLE), COMPLEX,
LOGICAL or ECS optionally preceded by the characters TYPE. Eachy is a
variable name, array name, function name, or an array name with its dimen-
sions which assumes the type indicated by t.

A TYPE statement may be used to override or confirm implicit typing; it

must be used to declare entities to be double precision, complex, logical
or ECS; it may also supply dimension information.

60176600 8-17

8.6
DATA

8-8

Example:

INTEGER ACBS,AFDS,ITRC

TYPE COMPLEX CC, F
The TYPE declaration is non-executable and must precede any statement
function definitions, executable, DATA, or NAMELIST statements in a given
program unit. Any variable defined by a TYPE statement may not be re-
defined in another TYPE statement; when such a condition does exist, a

diagnostic occurs and the processor assumes the type as declared when first
encountered.

The DATA, data initialization, statement is used to define initial values of
variable or array elements not located in blank COMMON.

DATA kl/dl/, kz/dz/, . ,kn/dn/

Each k is a list containing names of variables and/or array elements, but
may not be dummy arguments. Each k may also be an array name which
can have from one to three variable or integer constant control subscripts.
Each d is a list of constants, optionally signed, which designate the values
which each k is to assume.

Example:
DATA X,Y,Z/32.5,-7.4,3./,5,T/1.5E3,. TRUE, /

Entries in the list are separated by commas. Hollerith constants may also
be included.

The list d may be grouped by parentheses, any of which may be preceded by
a repetition factor, j*.

Example:

DIMENSION AMASS(10,10,10), A(10), B(5)

DATA (AMASS(6,K,3),K=1,10)/4*(-2.,5.139),6.9,10./
DATA (A(l),I=5,7)/2%(4.1),5.0/

DATA B/5*%0.0/

60176600 Rev. D

60176600 Rev, D

ARRAY AMASS:

AMASS(6,1,3) = -2.
AMASS(6,2,3) = 5.139
AMASS(6,3,3) = -2.
AMASS(6,4,3) = 5.139
AMASS(6,5,3) = -2.
AMASS(6,6,3) = 5.139
AMASS(6,7,3) = -2.
AMASS(6,8,3) = 5.139
AMASS(6,9,3) = 6.9
AMASS(6,10,3) = 10.

ARRAY A:

A(5) =4.1
A(6) =4,1
A(7) =5.0
ARRAY B:
B(1) = 0.0
B(2) = 0.0
B(3) =0.0
B4) =0.0
B(5) =0.0

A one-to-one correspondence is necessary between the list items and the

constants which establish their initial value.
Example:

DIMENSION K(10), A(2)
DATA A/2.0/

The value 2.0 is stored in A(1), however, in A(2), there is no

definite value.

When the number of list elements exceeds the range of the implied DO, the

excessive list elements are not stored.
Example:

DIMENSION B(10)
DATA(B(J),J=1,5)/4*1.23,6*1.24/

The excessive values 5%*1. 24 are discarded.

If a list item is an array name with no control subscripts or parameters, the
constant list defines the values in the array to the maximum dimensional
length or until the constant list is exhausted.
An initially defined variable or array element may not be in blank common.
An alternate form of the data initialization statement has the form:

DATA (r1=d1), (r2=d2), cees (rn=dn)
Each r is an array element name that may have from one to three control
subscripts or a list of names of variables and array elements (each of which

may be a single integer variable) and from one to three integer constant con-
trol parameters.

Each d is a list of constants and optionally signed constants, any of which
may be preceded by j*. The constants may be grouped by parentheses and
optionally preceded by j*; j is an integer constant.

Example:

DIMENSION D3(4), POQ(5, 5)
DATA (D3 = 5.,6.,7.,8.), ((POQ(L, J), I=1, 5), J=1, 5)=25*0)

which initializes:

D3(1) = 5.
D3(2) = 6.
D3@3) = 7.
D3(4) = 8.

and sets the entire POQ array to zero.

DATA statements must appear after all specification statements in a program
unit.

The type of the DATA value is determined by the form of the constant, not
the type of the list variables.

8-10 60176600

PROGRAM FUNCTION, SUBROUTINE, BLOCK DATA,

AND LIBRARY ROUTINES

9.1
MAIN PROGRAM

60176600

A FORTRAN Extended program consists of a main program with or without
subprograms. Subprograms are separate programs that are executed only
when called and may be defined by the programmer or be preprogrammed
and contained in the processor or system library.

The first statement of the main program must be one of the following forms;
it may begin anywhere after column 6.
PROGRAM s

PROGRAM s (fy,fy, ... &)

S is a symbolic name of the main program, f; are the names of all input/
output files required by the main program and its subprograms.

The arguments must satisfy the following conditions within the program and
its subprograms at compile time.
File name INPUT must appear if the READ f,k statement is included.

File name OUTPUT must appear if any PRINT statement is included:
also needed for printing of execution time diagnostics.

File name PUNCH must appear if any PUNCH statement is included.

File name TAPE i (i is an integer constant 1-99) must appear if any
input/output statement involving unit i appears in the program. If i is
a variable, there must be a file name TAPE i for each value i may
assume.)

Files may be equivalenced at compile time. For example,
(INPUT, OUTPUT, TAPEL = INPUT, TAPE2=OUTPUT)
All input normally provided by TAPE1 is to be extracted from INPUT
and all listable output normally recorded on TAPE2 is to be transmitted

to the OUTPUT file.

In the list of parameters, equivalenced file names must follow those to which
they are made equivalent.

9-2

File buffers may be assigned a non-standard size at compile time;
(OUTPUT=4000, TAPE4=0OUTPUT). If buffer size is not indicated, 1025 is
assumed. If the buffer is explicitly assigned a length, the assignment must
appear with the first reference to the file on the program card. The length
may be specified in decimal or in octal with the trailing B.

If the PROGRAM card is omitted, the FORTRAN processor assumes a pro-
gram name of START. when it encounters a statement that is not a comment
card, Input/output buffers and files for the program are equated to the
standard SCOPE system files INPUT and OUTPUT.

The equivalencing of files causes associated buffer and file names to be
equivalenced.

Example:

PROGRAM HELLO (TAPE1,TAPE2=TAPE1)

N=1
WRITE (N) A

END

PROGRAM HELLO (TAPE1, TAPE2=TAPE1)

N=2
WRITE(N) A

END
The file name resulting from both programs is TAPE 1.

The file names declared on the program card are the only names that may
result from 1/0 references within the program. If no parameters appear on
the control card which calls a program into execution, the non-equivalenced
declared names will be taken as the SCOPE file names to be accessed. If
parameters do appear on the control card which calls a program into execu-
tion, each parameter will be the SCOPE file name to be accessed by the
corresponding program declared name. In a program headed by the program

card
PROGRAM name (f3,f9,...,f})

which is called into execution by the control card

LGO(pl’Pz re e ,pn)

60176600 Rev. D

9.2
SUBROUTINE
SUBPROGRAMS

60176600 Rev. D

(where each p; may be null), a reference to the declared name f; will access
the SCOPE file f; if p; is null; otherwise, the SCOPE file p; will be accessed.
Only non-equivalenced program declared names may have a corresponding p;
specified on the control card which calls the program into execution.

Example:

If a program is headed by the card

PROGRAM PROG (TAPE1,0UTPUT, TAPE2=OUTPUT)
and is called into execution with

LGO.

every reference to unit 1 within PROG will access the SCOPE file TAPE1,
every print statement and every reference to unit 2 will access the SCOPE
file OUTPUT.

If PROG is called into execution with the control card

LGO(INPUT, LOAD)

every reference to unit 1 within PROG will access the SCOPE file INPUT;
every refer print statement or reference to unit 2 will access the SCOPE
file LOAD.

Calling PROG into execution with the control card
LGO(, , LOAD)
will act the same as using

LGO.

in the former case, there is an illegal attempt to change an equivalenced
declared name (the attempt is ignored).

A subroutine is an external computational procedure defined by FORTRAN
statements which is identified by a SUBROUTINE statement and may or may
not return values to the calling program. The statement may have any one of
the following forms:

SUBROUTINE s (aj,a9,...,3,) or SUBROUTINE s
SUBROUTINE s (a1,89,...,2,), RETURNS (by,by,...,by)
or

SUBROUTINE s, RETURNS (by,bg,...,b,)

9-2.1

S is the symbolic name of the subroutine, a; are the dummy arguments (these
may be variable names, array names or external procedure names), and —bi
are variable names containing statement labels which indicate alternate exits
from the subroutine. SUBROUTINEs and FUNCTIONSs are restricted to a
maximum om gummy arguments.

Example:

Calling Program Subprogram

SUBROUTINE PGM1 (X, Y, Z),
RETURNS (M, N)
U:V*W+T**2
X=Y*7
: 20 IF (U+X) 25, 30, 35
: 25 RETURN M
5 B=SQRT(A*C) 30 RETURN N
. 35 Z=ZHX*Y)
RETURN
END

CALL PGM1 (A, B, C),
RETURNS (5, 10)

10 CALL PGM2 (D, E)

The above example illustrates the different types of returns which may be
made from a subroutine subprogram. If the RETURNS list is omitted from
the CALL statement in the calling program, a return of the form RETURN a
may not be made. However, the converse is permitted; a normal return via
the RETURN statement may be made to the calling program if the RETURNS
list is specified in the CALL statement.

Subroutine subprograms are constructed with the following restrictions:

Symbolic name of the subroutine must not appear in any other statement
in this subprogram.

Symbolic names of the dummy arguments may not appear in an EQUI-
VALENCE, COMMON, or DATA statement in the subprogram.

Subroutine subprograms do not require a RETURN statement if the pro-
cedure is completed upon executing the END statement. When the end
line is encountered, a return is implied.

Subroutine subprograms may contain any statements except BLOCK DATA,
FUNCTION, or another SUBROUTINE statement.

Execution of a subroutine begins with the first executable statement of the
subprogram. Continuation is sequential unless a GO TO, IF, RETURN,
STOP or terminal statement of a DO is encountered, in which case execution
proceeds as indicated.

A reference to a subroutine is made by a CALL statement. The actual argu-
ments, which constitute the argument list, must agree in order, number,
and type with the corresponding dummy arguments in the defining program;
otherwise the results are unpredictable. The use of a Hollerith constant or
octal constant as an actual argument is an exception to the rule requiring
agreement of type. An actual argument in a subroutine reference may be
one of the following:

Constant

Variable name

Array element name

Array name

Name of an external procedure
ECS variable name

ECS array element name

ECS array name

Any other expression

Several restrictions and rules govern the correspondence of actual arguments
in the calling program to dummy arguments in the subprogram:

If an argument in the calling program is an external function or subrou-
tine name, the corresponding dummy argument must be used in the
same manner.

An argument in the calling program must be a variable name, an array
element name, or an array name if it corresponds to a dummy argument
which is defined or redefined in the subprogram.

The association of arguments in the calling program is made by name
to dummy arguments appearing in executable statements, function
definition statements, or those used as adjustable dimensions in the
subprogram. However, if an argument takes the form of an expression
(any other expression), the association is by value rather than by name.

An argument which is an array element name containing variables in the
subscript expression may be replaced by the same argument with a con-
stant subscript with an equivalent value.

If a subroutine reference causes a dummy argument in the referenced
subroutine to become associated with another dummy argument in the
same subroutine or with an entity in common, a definition of either
entity within the subroutine is prohibited.

60176600 Rev. C

ENTRY STATEMENT

60176600

Example:

Assume X =3and Y =2

1) CALL SUBA (X,X) SUBROUTINE SUBA (A, B)
A=Y AR o
Z=B
2) COMMON X SUBROUTINE SUBB (B)
CALL SUBB (X) COMMON A
END A=Y
Z=B
END

In the above examples, the first two statements in the subroutine set

X =Y then Z = X resulting with X = 2 and Z = 2. However, if the state-
ments are reversed the results obtained will be different; Z =X then

X =Y, the numeric values resulting are Z =3 and X = 2,

/
This statement provides alternate entry points to a function or subroutine
subprogram.

ENTRY name

Name is an alphanumeric identifier which may appear within the subprogram
only in the ENTRY statement. Each entry identifier must appear in a separate
ENTRY statement. The formal parameters, if any. appearing with the
FUNCTION or SUBROUTINE statement do not appear with the ENTRY state-
ment. They are assumed to be the same as those of the FUNCTION or
SUBROUTINE in which the ENTRY statement is located. ENTRY may appear
anywhere within the subprogram except within a DO; ENTRY statements

cannot be labeled. The first executable statement following ENTRY becomes
an alternate entry point to the subprogram. '

In the calling program, the reference to the entry name is made just as if
reference were being made to the function or subroutine in which the ENTRY
is imbedded. The name may appear in an EXTERNAL statement and, if a
function entry name, in a TYPE statement.

The ENTRY name type must agree with the function name type. The name
may not be given a type explicitly in the defining program; it assumes the
same type as the name in the FUNCTION statement.

Examples:

FUNCTION JOE(X, Y)
10 JOE=X+Y

RETURN

ENTRY JAM

IF (X.GT.Y) 10,20
20 JOE=X-Y

RETURN

END

This could be called from the main program as follows:

Z = A+B-JOE (3. *P,Q-1)

R = S+JAM@Q, 2. *P)

LIBRARY SUBROUTINES Library subroutine subprograms may be referred to by any program with a

9-6

CALL statement. i must be an integer variable or constant, j is an integer
variable.

CALL SLITE (i) Turn on sense light i. If i = 0, turn all sense lights off.
iis 0to6; ifi > 6 or < 0, an informative diagnostic is given and all
sense lights remain unchanged.

CALL SLITET (i, j) If sense lightiis on, j= 1, if sense light i is off, j=2;
then turn sense light i off. iis 1to6. Ifi >6 or <0, an informative
diagnostic is given and all sense lights remain unchanged and j=2.

CALL SSWITCH (i, j) If sense switch i is on (down), j= 1, if sense switch i
is off (up), j=2,iis 1to6. Ifi >6 or < 0, an informative diagnostic
is given and all sense switches remain unchanged and j = 2.

CALL EXIT Terminate program execution and return control to the operat-
ing system.

CALL REMARK (H) Place a message, not to exceed 40 characters, in the
dayfile. H is a Hollerith specification.

CALL DISPLA(H,k) Displays a variable name and its numerical value in
the dayfile. The value k is displayed as an integer if not normalized
and in floating point format if normalized. H is a Hollerith specification.

CALL RANGET(n) Obtain current generative value of RANF between 0 and 1.
n is a symbolic name.

CALL RANSET(n) Initialize generative value of RANF. n is real.

60176600 Rev. F

9.3
FUNCTION
SUBPROGRAMS

STATEMENT FUNCTIONS

60176600 Rev. F

CALL DUMP (a ;b ,f , ...

CALL PDUMP (al, bl, fl, ceey an,bn,fn) I
Dump storage on the OUTPUT file in the indicated format. If PDUMP was
called, return control to the calling program; if DUMP was called, terminate
program execution and return control to the monitor. a; and b; identifiers
indicate the first word and the last word of the storage area to be dumped;

1 =n=20. The dump format indicators are as follows:

,a_,b)
n nn

f =0 or 3 octal dump
f =1 real dump
f = 2 integer dump

f = 4 octal dump; this implies that ay and b; are statement numbers that

have been defined by an ASSIGN statement.

Statement function definitions must precede the first executable statement of
the program or subprogram and must follow any specification statements.

The name of a statement function must not appear in an EXTERNAL statement,
nor as a variable name or an array name in the same program or subprogram.
A statement function applies only to the program or subprogram containing

the definition; it is defined by a statement of the form:

f (al,a2,. - ,an) =e
1 is the statement function name, e is any expression. aj are variable names
which are dummy arguments indicating type, number, and order of arguments;
they may be the same as variable names of the same type appearing elsewhere
in the program unit. n may not exceed 63. f and e must be both logical or
both non-logical. '

Examples:
1. LOGICAL C,P, EQV
EQV(C,P) = (C.A.P).O.(.N.C.A..N.P)

2. COMPLEX D, F
D(A, B) = (3.2,0.9)*EXP(A)*SIN(B) +(2.0, 1.)* EXP(Y) * COS(B)

3. GROS(R,HRS,OTHERS) = R*HRS + R* .5*OTHERS

I INTRINSIC FUNCTION

EXTERNAL FUNCTION

9-8

The symbolic names of the intrinsic functions (built-in functions) have
special meaning and type as described in Appendix D. An intrinsic function
may be referenced when it is used as a primary in an arithmetic or logical
expression. The actual arguments, which constitute the argument list, must
agree in type, number, and order with the specification in Appendix D and
may be any expression of the specified type.

Examples:

1) DATA(I)=DATA(I+1)* ((FLOAT(MAX) /K(I)) /DATA(I))
2) IB(J)=IFIX(B(J))

The intrinsic functions SIGN, ISIGN, and DSIGN are defined when the value of
the second argument is zero, such that the sign of the second argument is
taken as positive (negative) for +0(-0). However, the functions AMOD and
MOD are not defined when the second argument is zero; division by zero
renders the results undefined.

An external function is defined externally to the program or subprogram that
references it. An external procedure defined by FORTRAN statements headed
by a FUNCTION statement is called a function subprogram.

t FUNCTION f(al’a2""’an) or FUNCTION f(al,az,...,an)

t is INTEGER, REAL, DOUBLE, DOUBLE PRECISION, COMPLEX,
LOGICAL, or it is omitted.

f is the symbolic name of the function. If t is omitted the type of the
function is derived from f according to the type rules of implicit
definition.

24 are the dummy arguments; each may be a variable name, an array
name, or an external procedure name. 1=i=63.

The function name f must appear as a variable in the defining subprogram.
During every execution of the subprogram, the variable must be defined,
and once defined, it may be referenced or redefined. The value of the
variable when a RETURN statement is executed is the value of the function.
The function name f must not appear in any non-executable statement other
than the FUNCTION statement in the function subprogram.

The dummy argument names may not appear in an EQUIVALENCE, COMMON,
or DATA statement in the function subprogram. The function subprogram
may define or redefine one or more of its arguments so as to effectively re~
turn results in addition to the value of the function.

A function subprogram may contain any statement except BLOCK DATA,

SUBROUTINE, another FUNCTION STATEMENT, or any statement that
directly or indirectly references the function being defined.

60176600 Rev. F

When the END line is reached, a return is implied.
Example:

FUNCTION GRATER(A, B)
IF(A.GT.B)1,2
1 GRATER=A-B
RETURN
2 GRATER=A+B
END

EXTERNAL FUNCTION

REFERENCE The reference to an external function may also be established when it is
used as an operand in an arithmetic or logical expression. The actual argu-
ments must agree in order, number, and type with the corresponding dummy
arguments in the defining program.

f(al,az, . ..,an)

f is a symbolic name of the function, a. are the actual arguments. An actual
argument name in an external function reference may be one of the following:
Variable
Array element
Array name
External procedure reference
Constant
ECS variable
ECS array
ECS array element
Any other expression
The rules governing the association of arguments in the function call to

dummy arguments in the function are the same as those enumerated for
subroutine subprograms.

60176600 Rev. B 9-9

BASIC EXTERNAL
FUNCTIONS

9.4
BLOCK DATA
SUBPROGRAM

9-10

Examples:
1) W(,J)=FA+FB-GRATER(C-D, 3. *AX/BX)

2) FUNCTION PHI (ALPHA, PHI2)
PHI=PHI2(ALPHA)
RETURN
END

The reference to the function PHI in example 2 may be:

EXTERNAL SIN
C=D-PHI(Q(K), SIN)

The. replacement statement in the function PHI will produce the same result
as if it had been written PHI=SIN(Q(K)).

The basic external functions listed in Appendix D are referred to in the
manner described in the section, External Function Reference. Arguments
may not be used for which a result is not mathematically defined and they
may not be of a type other than that specified.

Initialization of data to be stored in labeled common may be accomplished by
the specification of a BLOCK DATA subprogram which begins with a statement
of the form:

BLOCK DATA
or
BLOCK DATA d

d is the symbolic name of the BLOCK DATA subprogram. This param-
eter must be specified if the subprogram is to be included in a SEGMENT
as defined for SCOPE.

The BLOCK DATA subprogram contains only specification and DATA state-
ments; executable statements are prohibited. Only the DATA, COMMON,
DIMENSION, EQUIVALENCE, and TYPE statements associated with the data
being defined are accepted; data may not be entered into an unlabeled (blank)
common block. If an entry for a common block is given an initial value in such
a subprogram, a complete set of specification statements for the entire block
must be included, even though some of the elements of the block do not appear
in DATA statements.

60176600 Rev. D

Example:

BLOCK DATA

COMMON/MAX/DATA(3),AA, BB/MIN/A, B, C, LAX
REAL LAX

INTEGER BB

COMPLEX A

DOUBLE PRECISION C

DATA LAX/145.12/,(DATA()),1=1,3)/1.1,2*9.3/,BB/1256/,A,B,C/
(2.0,1.0),13.6,172.5432D06/

END

Initial values may be entered into more than one block in a single subprogram.

9-11

OVERLAYS AND SEGMENTS

10.1
OVERLAYS

Programs that exceed available memory may be divided into independent
parts which may be called and executed as needed. Such programs can be
divided into segments or overlays.

Segments are groups of subprograms that are loaded in relocatable form when
requested, giving the user explicit control over established interprogram
links. An overlay is a program combined with its subprograms which is
converted to absolute form and written on mass storage prior to execution.
During execution, overlays are called into memory and executed as requested.
OVERLAY and SEGMENT loader control cards are recognized by the compiler
if they start in column 7 or later and appear between subprograms. Compiler
processing places them in the desired position on the binary output file.

Overlay processing allows programs to be divided into independent parts
which may be called and executed as needed. Each part (overlay) must
consist of a single main program and any necessary subprograms.

Each overlay is numbered with an ordered pair of numbers (I,dJ), each in

the range 0-775. 1 denotes the primary level, J, the secondary level. An
overlay with a non-zero secondary level is called a secondary overlay and is
associated with and subordinate to the overlay which has the same primary
leve and a zero secondary level, called the primary overlay. The initial or
main overlay which always remains in memory has levels (0,0). The signif-
icance of this distinction appears in the order in which overlays are loaded.

Overlay level numbers, (0,1), (0,2), (0,3)...are illegal. Primary overlays
all have their origin at the same point immediately following the main overlay
(0,0). The origin of secondary overlays immediately follows the primary
overlay. For any given program execution, all overlay identifiers must be
unique. The loading of any primary overlay destroys any other primary
overlay. For this reason, no primary overlay may load other primary
overlays. Secondary overlays may be loaded only by the associated primary
overlay or main overlay. Thus two levels of overlays are available to the
programmer.

An overlay may reference subprograms in its own overlay, in the main over-
lay, or in its associated primary overlay.

10-1

Example:

Main Overlay (0,0)

6,0)| (7,0)] ...
2.0) (6,0)] (7,0)

(1,0 @,0)

2,1

R @y @2

4,3)

Overlays (1,1) and (1,2) are secondary to overlay (1,0)
Overlay (2,1) is secondary to overlay (2, 0)

Overlay (2,1) may not be called from (1,0) or (1,1) or (1,2) but only
from (2,0) or (0,0)

Overlays (1,0), (2,0), (4,0)...may be called only from the main over-

lay (0, 0)
OVERLAY
CONTROL CARDS OVERLAY (lfn, 11, 12, Cnnnnnn)
1fn File name on which overlay is to be written; first overlay
card must have a named lfn. Subsequent cards may omit it,
indicating that the overlays are related and are to be written
in the same lfn. A different 1fn on subsequent cards results
in generation of overlays to the new lfn.
11 Primary level number in octal.
12 Secondary level number in octal. 11, 12 for the first overlay

card must be 0,0.

Cnnnnnn Optional parameter consisting of letter C and six-digit octal
number. If this parameter is present, the overlay is loaded
nnnnnn words from the start of blank common. This provides
a method of changing the size of blank common at execution
time. Cnnnnnn cannot be included on the overlay 0,0 loader
directive. If this parameter is omitted, the overlay is loaded
in the normal manner.

10-2 60176600 Rev. C

10.2
SEGMENTS

60176600 Rev. E

Overlays are called by:
CALL OVERLAY (fn, I, J,p,1)

OVERLAY is a FORTRAN execution time subroutine which translates the
FORTRAN call into a call to the loader.

fn Variable name of a location which contains the name ot the file
(left justified display code) that contains the overlay

I Primary level of overlay
J Secondary level of overlay

p Recall parameter. If p equals 6HRECALL, the overlay is not
reloaded if it is already in memory.

1 Load parameter. Used to determine which value of the fn will
be used. 1 may be any value. If | is present and non-zero, the
overlay designated by fn will be loaded from the system library;
otherwise, it will be loaded from the file designated by fn.

Prior to execution of this call which causes loading and execution of the
overlay, the overlay must have been made absolute and written on file fn.
When an END statement in the main program of an overlay is encountered,
control returns to the statement following the CALL OVERLAY which initi-
alized execution of the overlay in question.

A segment is a group of subprograms (possibly one) which are loaded together
when specified by the programmer. Segments are loaded at levels from 0-77g.
Level zero is reserved for the initial or main segment, Level zero, which
must contain a PROGRAM, remains in memory during execution.

The following definitions apply to segmentation.

Entry point. A named location within a subprogram that can be referenced
by another program — created by the SUBROUTINE, FUNCTION and
ENTRY statements.

External reference. A reference within a program or subprogram to the
entry point of some other subprogram — created by explicit CALL
statements, function references, I/O statements, implicit functions,
ete.

Link. The connection established between an external reference and an entry
point when the programs are loaded into memory.

Unsatisfied external. An external reference for which no matching entry
point can be found, and therefore no link established.

10-3

10.2.1
SEGMENT
CONTROL CARDS

SECTIONS

10-4

When the segment is loaded, external references will be linked to entry
points in previously loaded segments (those at a lower level). Similarly,
entry points in the segment are linked to unsatisfied external references
in previously loaded segments. Unsatisfied external references in the
segment remain unsatisfied; subsequent segment loading may include entry
points to satisfy the external references. Unsatisfied external references
may be satisfied, if possible, from the system library.

If a segment is to be loaded at a requested level which is less than or
equal to the level of the last loaded segment, all segments at levels down
to and including the requested level will be removed/delinked. Delinking
a segment at a given level requires that the linkage of external refer-
ences in lower levels to entry points in the delinked segment be destroyed
so that the external references are unsatisfied once again.

Once the delinking is complete, the segment is loaded. Only one occur-
rence of a given subprogram or entry point is necessary since all levels
may eventually link to the subprogram. However, a user may force load-
ing of a subprogram by explicitly naming it in another segment at a higher
level. Thereafter, all external references in higher levels are linked to
the new version. In this manner, a subprogram and/or entry point can
effectively replace an identical one already loaded at a lower level. How-
ever, once a linkage is established, it is not destroyed unless the seg-
ment containing the entry point is removed.

Example:

The SINE routine is loaded in a segment at level 1. The user wishes
to try an experimental version of SINE. He loads a segment con-
taining the new SINE at level 2. Segments loaded at level 3 or high-
er will now be linked to SINE at level 2 until a new level 2 or a new
SINE is loaded.

Common blocks may be loaded with any segment. Labeled common may
not be cross-referenced in segments. Maximum blank common length is
established in the first segment which declares blank common.

This card defines a section within a segment. Segments are loaded by user
calls during execution or by MTR during initial load.

SECTION (sname,pnl,pnz, e ,pnn)
sname Name of section (7-characters maximum).

pn, Names of subprograms in the section. If more than one
card is necessary to define a section, additional cards with
the same sname may follow consecutively.

60176600 Rev. C

SEGMENTS

60176600 Rev. C

All subprograms within a section are loaded whenever the named section is
loaded. All section cards must appear prior to the SEGMENT cards which
refer to the named sections.

All programs requiring segmentation loading must contain a SEGZERO card
prior to any of the binary text.

SEGZERO (sn,pnl,pnz, ... ,pnn)
sn Segment name
pni Names of subprograms or section names which make up

main or zero level segment. Defining other segments in a
similar manner reduces the list of subprograms in the
loader call.

SEGMENT (sn,pnl,pnz, R ,pnn)

The parameters are defined as in SEGZERO. In a segment, all programs
must reside on the same file. A segment defined in the user's program
need not be defined by a SEGMENT card; however, a SEGZERO card is
always required.

Segments may be loaded by;

CALL SEGMENT (fn,e,a,lib,m)

fn Variable name of location which contains the file name
(left justified display code) from which the segment load
takes place.

e Level of the segment load.

a Variable name of array containing a list of SEGMENTS,

SECTIONS and/or SUBPROGRAMS to be loaded with this
call. In this list, the name must be in left justified dis-
play code, and the list must be terminated by a zero entry.
An initial list entry of zero signals a segment load of all
subprograms remaining on the file fn.

lib If zero or blank, unsatisfied externals are to be satisfied,
if possible, from the system library.

m If zero or blank, a map of the segment load is not pro-
duced. lib and m need not be specified.

Once the named subprograms are loaded control returns to the statement
following the CALL SEGMENT. The programmer is free to call on the
loaded subprograms as desired.

10-5

DEBUGGING FACILITY | n

The debugging mp de of compilation, along with the source cross-reference
map selection, is provided specifically to aid in the development or conver-
sion of programs. In the debugging mode of compilation, a programmer can
establish a record of selected operations as they are performed in the execu-
tion of his program. This mode facilitates debugging from a source listing,
and perhaps a source cross-reference map should core dumps be required;

it makes their interpretation much easier.

Features provided with the debugging mode of compilation:

Array bounds checking

Program flow tracing

Call and return tracing

Function call and value returned tracing

Stores checking

Assigned GO TO checking

Partial execution of routines containing fatal errors
The debugging mode is selected by the option D on the FTN control card
(Appendix C). In this mode, debugging selection cards are recognized.
If this mode is not specified, debugging selection.cards are treated as
comments.
In the debugging mode, a program is compiled so that specified checks can
be performed during execution; however, execution will stop when a fatal
error is detected.
When a program is compiled in debug mode, 120004 words will be required

beyond the minimum field length for non-debug mode compilation. To
execute, 2500¢ words beyond the minimum will be required.

60176600 Rev. F 11-1

11.1
FORMAT

11.2
ARRAYS
STATEMENT

11-2

Debugging statements are punched in columns 7-72, as in the normal
FORTRAN statement. In addition:

Columns 1 and 2 of each statement must contain the characters C$
A continuation line must be flagged by a character in column 6 (any

FORTRAN character other than blank or zero). Columns 3-5 must
be blank.

G e
1]213 1445 o718 9 10] 1112131 16 116117181920 21222324 125 26 2728 oof
Ci$1 11 | |Usitialtiemiemit) 1 11 | 11 L1 11 11
[A1 1 1 N T 5 Y T T S I A |
cldl 1 1 kl(lelolntiiinulattiitolnt (Vi et | 1|)
R S

T if required

The restriction on the number of debug continuation lines is the same as for
FORTRAN continuation lines. When FORTRAN Extended is not in debug
mode or when the program is used with another FORTRAN compiler, the
debug cards will be treated as comment cards. Since even working programs
sometimes exhibit new bugs, it could be advantageous to retain the debugging
statements in a program once checkout is complete.

In the following pages, excerpts from an actual printout of a working pro-
gram are used in conjunction with typewritten examples to illustrate the
debugging messages. A sample working program is reproduced in full at
the end of the chapter.

The ARRAYS statement initiates subscript bounds checking on specified
arrays. Warning messages appear on the output if the address calculated by
the array indexing function is not within the storage allocated for the array.

Cc$ ARRAYS(al,a2. . .an)
C$ ARRAYS
(al. ..a_) are the names of the arrays for which subscript bounds are to be

checkedx} If array names are not given, all arrays in the program unit are
checked.

60176600 Rev. F

/DEBUG/
/0ERUG/
/DFRUG/
/0E8UG/
N———
Identifies
a debug-
ging
message

1.3
CALLS
STATEMENT

/DEBUG/ SAMPLE AT LINE 23- ROUTINE SuBi CALLED AT LEVEL
/DEBUG/ SAMPLE AT LINE 24- ROUTINE SuB1 RETURNS TO LEVEL
/DFBUG/ SAMPLE AT LINE 25- ROUTINE SLITE CALLED AT LEVEL
/0EBUG/ SAMPLE AT LINE 26- ROUTINE SLITE RETURNS TO LEVEL

The C$ ARRAYS statement does not provide checking of individual sub-
scripts, only checking of the address computed from all the subscripts.

When ARRAYS statement is used, a bounds check is made each time an
element of an array is referenced. Bounds checking is not performed for
array references in an input/output list. If the element is not within the
overall bounds of the array, a message is printed with the job output, as
shown in the following example. After printing a message for an out of
bounds array reference, the reference is allowed to occur.

SAMPLE AT LINE 11- THE SUBSCRIPT VALUE OF
SAMPLE AT LINE 11~ THF SURSCRIPT VALUE OF
SAMPLE AT LINE 13- THE SUBSGRIPT VALUE OF
SAMPLE AT LINE 14~- THE SUBSCRIPT VALUE OF

IN ARRAY A1 EXCEEDS DIMENSIONED BOUND OF
IN ARRAY A1 EXCEECS DIMENSIONED EBOUND OF
ARRAY A1 EXCEECS DIMENSIONED POUND OF
IN ARRAY At EXCEECS DIMFNSIONED BOUND OF

eron
-
z
[LECRURY

S——

Program
unit name
containing
subscript
reference

T T N —— " T

Line number Value of subscript Name of array

of reference

in reference

being referenced

T ———— N ————
Actual dimension
limits of array

This statement traces calls to and returns from specified subroutines.

C$ CALLS@q,... ,an)

C$ CALLS
The subroutine names for which call tracing is to be performed are indicated
by(al. . .an). If this parameter is not specified, all subroutine calls are

traced. Nonstandard returns are also traced.

The message produced for each call and return are printed with the job out-
put as follows:

cooo

N Nt e e M ————

Identifies Program Line number Name of Indicates call or
a debug- unit name containing subroutine return status and
ging containing call or return called or level number

message reference returned

60176600 Rev. F

11-3

A main program is always at level zero; subroutines are at any level other
than zero. Calls are always in order of ascending level number; returns are
always in order of descending level number.

level 0 call
level 1 return SUB A call
level 2 return SUB B

Traceback information from the current subroutine level back to the main
level is available through a call STRACE, an entry point in the object routine
BUGCLL. The output is printed on a file named DEBUG; however, the pro-
gram need not be compiled in debug mode to use this feature.

FROGRAM MATN
PEOCRAM MAIN (CUTPUT,DEBLG=0UTFUT)
CALL SuB1
END

SUAROUTINE SUEL

SURRCLTINE SUE1
CALL <UBZ
PETURN

END

SUBROUTINE SUR2

SUBPCLTIMNE SUEB?2
I = FULNC1(2)
PETUFA

END

FUNCTION FUNC1

FUNCTION FUNC1 (K)
FUNC1 = Kk ** 1T
CALL STRACE

PETUFRM
05 END
Output from STRACE:
/DEBUG/ FUNC1 AT LINS - TRACE ROLTINE CALLED

FUNCY{ CALLED BY Suez AT LINE 2, FROM 1 LEVELS BACK
SUF2 CALLED RBRY SUBL AT LINE 2, FRCM 2 LEVELS BEACK
SUE1L CALLED BY MAIN AT LINE 2, FRCM 2 LEVELS BACK

11-4 60176600 Rev. F

1.4
FUNCS
STATEMENT

Function tracing is similar to call tracing except that functions return a
value that often is of concern to the programmer.

C$ FUNCS(ay,...,a)
C$ TFUNCS

The function names for which function tracing is to be performed are indicated
by (al, . ,an) . If no names are listed, all functions are traced. IFunctions
used in array subscripts in input/output lists and statement functions are

not traced. A message is issued for each use of a function; it is printed

with the job output as shown below.

JDERUG/ SAMPLE AT LINE 33~ REAL FUNCTICN FUNY CALLED aT LEVEL Q

/DEBUG/ SAMPLE AT LINF 33- REAL FUNCTION FUNL RETURNS A VALUE OF 7743.000000 AT LEVEL 1]

/OFRUG/ SAMPLE AT LTME 35~ INTEGER FUNCTION TABS CALLED AT LEVEL 4

/DEBUG/ SAMPLE AT LTNF 36« INTEGER FUNCTICN IABS RETURNS A VALUE OF 8242 AT LEVEL 0

/NERUG/ SAMPLE AT LINE 37- RFAL FUNCTION EXP CALLED AT LEVEL 0

J0EBUG/ SAMPLE AT LINE 37- PFAL FUNCTICN EXP RETURNS A VALUE OF 23114063123 AT LEVEL 0

R D g e B e i

Identifies Program Line number Function Function Level number of using Value returned Level to which

a debug- unit using containing the type name program unit including by function value is being
ging functions function usage call or return status returned

message

60176600 Rev. F 11-5

11.5
STORES
STATEMENT

/DEBUG/
/0FBUG/
/DERUG/
/0FBUG/
/DERUG/
/DFRUGY
/NERPUG/
/DFBUG/
/0ERUG/
/DERUG/
/NEBUG/
/0FRUG/

N —
Identifies
a debug-
ging
message

11-6

The STORES statementis used to record changes in value of specified
variables resulting from arithmetic assignment statements. Variables
altered as a result of use in an input list or a subroutine (function) para-
meter list are not detected. Stores checking is not performed on the con-
trol variable of a DO loop; stores checking is not performed when a variable
is changed as a result of a store into an equivalenced variable.
C$ STORES(cl,cz, ceeaCp)
(RN cn) can be variable names or relational expressions in the form:
variable name .relational operator. constant

or expressions with checking operators in the form:

variable name .checking operator.

The checking operators are:

RANGE prints when the value is out of range

INDEF prints when the value is indefinite

VALUE prints for either out of range or indefinite
If variable names are used, a message is issued each time a new value is
stored in a variable or array element. If the relational or checking expres-

sion is used, a message is issued only when the stored value satisfies the
relation. The message will contain:

SAMPLE AT LINE 48~ THE NEW VALUE OF THE VARIABLE At Is .
SAMPLE AT LIME 48- THE NEW VALUE CF THE VARIABLE A1 1S ;.ggggggggg
SAMPLE AT LINF 48~ THE NEW VALUE CF THE VARIABLE At 1s 3.000000000
SAMPLE AT LINE 48~ THE NEW VALUE OF THE VARIABLE A} Is 4.,000000000
SAMPLE AT LINE 48- THE NEW VALUE CF THE VARIABLE A1l IS $.000000000
SAMPLE AT LINE 51= THE NEW VALUE OF THE VARIABLE AGAIN IS 3.141%90000
SAMPLE AT LINE 53« THE NEW VALUE CF THE VARIABLE A2 1s 5.000000000
SAMPLE AT LTNE S4- THE NEW VALUE OF THE VARIABLE IAGAIN IS 10
SAMPLE AT LINE 5S4~ THE NEW VALUE CF THE VARIABLE TAGAIN IS 9
SAMPLE AT LINE S4- THE NEW VALUE OF THE VARIABLE IAGAIN IS 8
SAMPLE AT LINE S4= THE NEW VALUE OF THE VARTIABLE IAGAIN IS 7
SAMPLE AT LINE Ske THE NEW VALUE OF THE VARIABLE IAGAIN IS (]
B e e e e ———— e e
Name of Line number Name of variable, New value of
program of reference and message variable

unit

60176600 Rev. F

1.6

GOTOS
STATEMENT This statement checks the validity of the selected statement labels in an
in an assigned GO TO.
C$ GOTOS
The statement label assigned to the integer variable is compared with
statement labels in the list. A message is printed when the label value is
not in the list, but the transfer of control is allowed to occur.
JDEBUG/ SAMPLE AT LINE 94= ASSIGNED GOTO INDEX CONTAINS THE ADDRESS 007061. NO MATCH FOUND IN STATEMENT LABEL ADORESS LIST
Identifies Name of Line number Address of assigned go to Message
adebug- program of assigned statement label
ging unjt go to
message
1.7
TRACE
STATEMENT When the TRACE statement is used, a message is produced for each intra-
program transfer of control at a level less than or equal to the level specified
by lv.

C$ TRACE(lv)
C$ TRACE

If lv = 0, tracing will occur only outside DO loops; if lv = n, tracing will
occur up to and including level n in a DO nest; if no level is specified, zero
level is implied. If a DO loop is not satisfied, the transfer back to the start
of the loop is not traced. Transfers resulting from nonstandard returns are
not traced. (These may be checked using C$ CALLS.) When tracing is sel-
ected and an out-of-bound computed GO TO is executed, the value of the
incorrect index is printed before the job is terminated.

Flow tracing will follow these types of program flow control:

Simple GO TO
Computed GO TO
Assigned GO TO
Arithmetic IF

True side of logical IF

60176600 Rev. I 11-7

11.1
NOGO
STATEMENT

11-8

/DEBUG/
/0EBUG/
/DERUG/
/DEBUG/

———

Identifies

a debug-
ging

message

The output message will contain the following:

SAMPLE AT LINE 71- CONTPOL WILL BF TRANSFERRED YO STATEMENT 503 AT LINE 73
SAMPLE AT LINF 73- CONTROL WILL BF TRANSFERRED TC STATEMENT 504 AY LINE 7%
SAMPLE AT LINE 75- CONTROL WILL BE TRANSFERRFD TO STATEMENT S50% AT LINE 77
SAMPLE AT LINE 77- CONTROL WILL BF TRANSFERRED TO STATEMENT 516 AT LINE 78

N e ————
Program Line number Statement number to which Line number of
unit name from which control was transferred statement to
control trans- which control
ferred was transferred

The NOGO statement suppresses partial execution of a compiled routine
whenever a fatal compilation error occurs during compilation.

C$ NOGO
If the NOGO statement is not present and the debugging mode is in effect,
the program executes until a fatal error is encountered; at which paint,

the following message is issued:

FATAL ERROR ENCOUNTERED DURING PROGRAM
EXECUTION DUE TO COMPILATION ERROR.

Partial execution is not permitted for only three classes of errors:
Errors in the declarative statements
Missing DO loop terminators

Missing FORMAT statement numbers

60176600 Rev. F

11.9

DECK STRUCTURE Debugging statements may be interspersed with FORTRAN statements
in the source deck of a program unit (main program, subroutine, function).
The debugging statements apply to the program unit in which they appear.
Inclusion of interspersed debugging statements will change the FORTRAN
generated line numbers for a program (figure 11-1).

Debugging statements also may be grouped to form a debugging deck beginning
with a C3 DEBUG card. Debugging decks may be placed in a job in one of the
following ways:

As on external debugging deck in a separate file named by the D parameter
on the FTN card. When no name is specified by the D parameter, the
INPUT file is assumed. (Figure 11-2.)

Immediately preceding the first source deck in the compiler input
record (External Packet, figure 11-3).

Immediately after a program header card (PROGRAM, SUBROUTINE,
or FUNCTION statement) (Internal Packet, figure 11-4).

The range of a debugging statement depends on its position:

Location Range
External File Any or all program units
External Packet Any or all program units
Internal Packet Routine containing the packet
Interspersed Routine containing the specifications

Note: In the following illustrations, it is assumed that a 7/8/9 card terminates
each Control Card Record.

60176600 Rev. F 11-9

11-10

DEBUG
CARDS

DEBUG
CARDS

,;;C$v 'ARRAYS' - :k:‘n s S
C$AREA ey

L0oo=I

/

L
s

A
Data Deck

© w3

=

/
/
/ Executable Statements

GSOALLS

oL
(Executable Statements

A

V4

/
(Specification Statements

/C$ DEBUG

~ /Program Name Card

| H-

Control Card Record

SAMPLE DEBUG AID POSITION: As individual debug cards interspersed

in a program unit.

The debug cards are inserted into the program where

they will be activated. This positioning is especially useful when a new

program is to be run for the first time and the accuracy of specific areas,
such as array bounds, is in doubt.

Figure 11-1. Sample Debug Aid Position

60176600 Rev. F

60176600 Rev. F

deck).

A

/

/

Source Debug Deck

Deck
Tape 1

(Input)

/ (Input)

FTIN (I= TAPEL, D)

Compiler

A

/

/-

Source Deck

(Input)

/ (Input)

FTN (D= TAPE1)

Compiler

Figure 11-2. Sample Debug Aid Positions

SAMPLE DEBUG AID POSITIONS: Debug deck placed on a separate file
(external debug deck) named by the D parameter on the FTN control

card, and called in during compilation.
gram units will be debugged (unless limiting bounds are specified in the
This positioning is particularly useful when several jobs can be
debugged using the same debugging deck.

With these positions, all pro-

11-11

Nele ol Nep)

V4
A
A

f
Data Deck

Nefe N

Subroutine B

-

Vs

/
/
/Program A

L
(Debug Deck (External Packet)

/

e
Vs | |
Control Card Record

J FTN (D)

SAMPLE DEBUG AID POSITION: As a deck, placed immediately in front
of the first source line (when the D file is the same as the source input file).
All program units (here, Program A and Subroutine B) will be debugged
(unless limiting bounds are specified in the debug deck). This positioning
is particularly useful when a program is to be run for the first time, since
it ensures that all program units will be debugged.

Figure 11-3. Sample Debug Aid Position

11-12 60176600 Rev, F

FTN (D)

60176600 Rev. I

O o=

F
P

r

Data Deck

7
8
9

A
/

/
’
Ja
/ Source Deck
/

/ Debug Deck (Internal Packet)

L

Program Name Card H

Control Card Record

SAMPLE DEBUG AID POSITION: As a deck, placed immediately after the
program header card and before any specification statements. All statements
in the program unit will be debugged (unless limiting bounds are specified in
the debug deck), but no statements_in other program units will be debugged.
This positioning is especially useful when the job is composed of several
program units known to be free of bugs and one unit that is new or is known
to have bugs.

Figure 11-4. Sample Debug Aid Position

11-13

11.3
DEBUG
STATEMENT

11-14

A debug deck must begin with a DEBUG statement written in either of the
forms:

C$ DEBUG
C$ DEBUG(namel, - ,namen)

The program unit names, to which the debugging deck applies, must be
enclosed in parentheses.

In an internal debugging deck, the DEBUG statement must appear immedi-
ately after the PROGRAM, SUBROUTINE, or FUNCTION statement heading
the routine to which the debugging deck applies. Any names specified in the
DEBUG statement, other than the name of the enclosing routine, are ignored.
In a single external debugging deck, whether on the job INPUT file or not, the
DEBUG statement may contain a list of the program unit names to which the
deck applies. If no name appears, the debugging deck applies to all program
units being compiled.
When more than one C$ DEBUG card occurs in an external debugging deck,
this card specifies the routines to which the debugging specifications between
it and the next C$ DEBUG or non-debugging card apply.
This debug deck specifies arrays checking in all routines, stores checking
on the variable CHI routines CHISQ, STATP, and calls checking in routine
MAIN.

C$ DEBUG

C$ ARRAYS

C$ DEBUG(CHISQ,STATP)

C$ STORES(CHI)

C$ DEBUG(MAIN)

C$ CALLS

60176600 Rev. F

11.11
AREA

STATEMENT The AREA statement allows a region smaller than a program unit to be
debugged. All debugging statements that apply to the program areas desig-
nated by the AREA statement must follow that statement. Each succeeding
AREA statement cancels the preceding program area designations.

AREA statements may appear only in a debugging deck. If they are inter-
spersed in a FORTRAN source deck, they will be ignored.

The AREA statement can be written in two forms:
C$ AREA (boundsl), ey (boundsn)
for use in a debugging deck with the statement:
C$ DEBUG
or
C$ AREA/namel/(boundsl), - /namen/(boundsn)
for use in a debugging deck with the statement:

C$ DEBUG(@mame

1,...,namen)

C$ DEBUG

The second form of the AREA statement must be used in an external
debugging deck.

In the second form of the AREA statement, the /name,/parameter designates
the program units to which the bounds following it apply. If a (name,) list
appears on the C$ DEBUG card, the /name./ parameter must be present

and name, must be included in the list. Otﬁerwise, the C$ AREA statement
and its associated debugging specifications are ignored. For an external
debugging deck the /name./ field must be present when using either form

of the C$ DEBUG statement.

The (bounds) parameter may be written in one of the following forms:
(from field) indicates line position to be debugged

(from field, to field) defines a range of line positions which may be
in one of the following:

nnnnn FORTRAN statement label

60176600 Rev. F 11-15

Lnnnn Program line number as printed on the source
listing (source listing line numbers will change
when debugging cards are interspersed in the
program.)

id.n Legal UPDATE line identifier, from the source
line, where id = information in columns 73-79;
must begin with an alphabetic character and con-
tain no special characters; and n = columns
82~86. (80-81 are blank.)

* First line in the from field
Last line in the to field

A comma must be used to separate the line numbers, and embedded blanks
are not permitted.

C$ DEBUG(CHISQ)
C$ AREA/CHISQ(210,400)
C$ ARRAYS(SVAL,RMS)
C$ DEBUG(CHISQ,STATP)
C$ AREA/CHISQ/(210,*) /STATP/(L20, L47),
C$ * (570,L94)
C$ STORES(CHI)
C$ DEBUGMAIN)
C$ AREA/MAIN/(MAIN.2,MOD1.13)
C$ CALLS

11.12

OFF

STATEMENT C$ OFF statements are effective only on interspersed debug directives.

In a debugging deck, the C$ OFF statement is ignored.
C$ OFF(Xl’Xz""’Xn)
C$ OFF
11-16 60176600 Rev. F

1113
PRINTING
DEBUG OUTPUT

60176600 Rev. F

The C$ OFF statement deactivates subsequent references to debugging
options previously activated by interspersed specifications except for C$
NOGO. I a parameter list is specified, only the options in the list are
deactivated. Debugging options activated subsequent to the C$ OFF state-
ment and options activated by packet specifications will function normally.
The C$ OFF statement is effective at compile time only.

All debug messages produced by the object routines are written to a file
named DEBUG. The file always will be printed at job termination time,
since it has a print disposition. If the programmer wants to intersperse
debug information with his output, he should equate DEBUG to OUTPUT on
his program card. A FET and buffer will be supplied automatically at load
time if the programmer does not declare the DEBUG file on his program
card. For overlay jobs the buffer and FET will be placed in the lowest
level of overlay containing debugging. If this overlay level will be over-
written by a subsequent overlay load, the debug buffer will be cleared
before it is overwritten.

All object time printing is performed by seven debug routines coded in
FORTRAN. These routines are called by code generated when debugging is §
selected on items such as arrays, calls, stores, etc. The seven routines
and their functions are:

ROUTINE FUNCTION
BUGARR Checks array subscripts
BUGCLL Prints messages when subroutines are

called. Return

BUGFUN | Prints messages when functions
are called. Return

BUGGTA Prints a message if the target
of an assigned GO TO is not in
the list.

BUGSTO Performs stores checking

BUGTRC Flow trace printing except for

true sides of logical IF

BUGTRT Flow trace printing for true sides of
logical IF.

11-17

8T-11

A "A9Y 0099LT09

PROGRAM

15

10

i5

25

35

45

56

55

SAMPLE DEEUG TRACE CCC 6660 FTN V3.0-P240 OPT=0 01/14/71 16.58.14. FAGE

PROGRANM SAMPLE (OUTPUT, DEBUG=CUTPUT)
ceg DERUG
C3 AREPR (1,100)
cg ARRAYS(A1)
DIMENSION AL(5), A2(5)
1 PRINT 99
99 FORMAT(//* MESSAGES SHOULD FOLLOW FOR REFERENCES TO A1(0) AND
*¥/% A1(6)y FOR BCTH LOADS AND STORES. THERE SHOULD BE NO MESSAGE
¥X/® FCR 82.%)
00 100 I = 1,4
AL(2+1) = AL (uL-I}
A2(2+1) = A2(4-D)

wn
-

AGAIN = AL(2+I)
AGAIN = Al (4-T)
AGATN = A2(2+1)
107 AGAIN = A2(4-1)

cg CALLS(SUEL,SLITE)
201 PRINT 29¢
299 FORMAT(//* TWO MESSAGES SHCULD FOLLCh, ONE FCR A CALL CF SUB1 WITH
**®/¥ ARGUMENT 7743, AND ONE FOR A CALL CF SLITE WITH ARGUMENT 1.
%/% THERE SHOULD BE NO MESSAGES FOR CALLS OF SUB2 AND SLITET.)
CALL SUB1(7743)
CALL suB2(8242)
CALL SLITEW)
MY CALL SLITET(L,I)
cg FUNCS(FUNL,IARS,HEXP)
201 PPINT 39¢
299 FORMAT(//¥ MESSAGES SHOULO FOLLOW FCR CALLS CF FUN1 WITH ARGUMENT
«¥/% 7743, TABS WITH ARGUMENT 8242, ANC EXP WITH ARGUMEMNT 3414159,
**/* THERE SHOULD BE NO MESSAGES FOR CALLS CF FUN2, ABS, OR ALOG.*)
TAGAIN = FUNL(7743)
IAGAIN = FUN2(7743)
IAGAIN = IABS{(8242)
AGAIN = ARS(8242.)
AGATN = EXP(3,14159)
4% AGAIN = ALOG(3.14159)
CE STORES(A1,AGATN3I)A2.EQa545 IAGAINLLELLLY
4f.1 PPIMT 49c¢
499 FORMAT(//* MESSAGES SHOULN FOLLOW FCR STORES INTO AL(1), AL(2),
#¥x/% p1(3), AL(L), RL(S), I, AGAIN, AZ(1)y IAGAIN, IAGAIN, IAGAIN,
*¥/% TAGAIN, AND IAGAIN., THE VALUES STCRED IN THE RESPECTIVE
®¥/*% VAPIABLES SHCULD BE 14y 249 24y bey 5.5 5y 3.14159, 5.,
¥¥/*% 10, Gy By 7y 6. THERE SHOULD 3E AC OTHER STORES MESSAGES.*)
DO 422 T = 1,12
ALC(I) =1
IF(I.EQ.5)GO TC 403
402 COMTINUE
403 AGATN = 2,1415¢
DO (0 I = 1,1C
A2(1) = 4o + I
517 IAGAIN = 16 - I
cs AREA(Er1,600)
[TRACE (D)
501 PRINT 59¢
599 FORMAT(//¥ MESSAGES SHOULD FOLLOW FCF TRANSFERS CF CONTROL

Jd *A9Y 00991109

61-1T

PROGRAM

6C

65

70

75

a2

85

gc

SAMPLE DEEUG TRACE

¥¥/% FRCM 502 TC 503, 563 TC 5G4, 504 TG 5C5, AND 505 TC 506.
¥®/% THERE SHOULD BE NO OTHER CONTRCL TRANSFER MESSAGES.*)

DO €10 I = 1,2
DO %11 J = 1,2
DO 512 K = 1,2
DO 512 L = 1,2
DO 514 M = 1,2
G0 TO 537

514 CONTINUE

507 GO TC (508,508,5C8,508),L
513 CONTINUE

508 ASSIGAN 503 TO L
02 GO T0 L, (503,5C€)
512 CONTINUE

5(3 GO TC (504,504), 1
511 CONTINUE

504 GO TC 5G¢&

512 CONTINUE

5(5 GO TQ 53¢

SC6 CONTINUE

6060 CONTINUE

0g OFF
AL(1) = 1.
60 TC 601
€01 AGAIN = FUNL(1)
I =1

GO TC (622,662),1
602 CALL SUB1(7743)
AGATN = 3.7
Ccg GOTNns
704 PRINT 79¢
799 FORMAT(//* WILL NOW ATTEFPT AN ASSIGNED GO TC. SHOULD ISSUE
¥/% MESSAGE.)
ASSIGN 6227 TO IGO
GO TC IGC, (BQ1,€02)
8l CONTINUE
€327 PRINT €328
6228 FORMAT(///* ENC CF SAMPLE CEBUG PROGRAVM,*)
END

CCC 66C0 FTN Vv3.0-P24C OPT=C

G1/714/771

1€.58.14.

PAGE

2

02-1T

Jd "A9Y 00992109

FROGRAM SAMPLE CEEUG TRACE
SYMBOLIC REFEPENCE MAF
ENTRY POINTS
2026 SAMPLE
VARIARLES SN TYPE RELOCATION
2723 AGAIN REAL
2737 A2 REAL ARRAY
2724 IAGAIN INTEGER
2725 J INTEGER
2727 L INTEGER
FILE NAMES MCCE
0 DEBUG 3 CcuTPUT
EXTERNALS TYPE BRCS
ABS REAL 1
EXP REAL 1
FuUNz REAL 1
SLITE 1
SURL 1
STATEMENT LARELS
7 1 INACTIVE 2471
0 201 INACTIVE 2519
¢ 3r1 INACTIVE 2534
0 udi INACTIVE 3
2561 499 FMT J
¢ 502 TNARTIVE 2267
2314 545 2314
2254 578 9
0 512 Y
2623 599 FMT L}
2321 en2 g
0 8%¢ INACTIVE 2359
STATISTICS
SYMTAB+DIMTAR 2658 182
PROGRAM LENGTH 7228 46€E
BUFFER LENGTH 21228 itue
SURROUTINE SUBL CEEUG TRACE

SUBRPOUTINE SUEBL(I)
END

2732
2722
2721
2726
2730

FMT

99
299
399
432
53¢
5023
50€
512
513
(3]
731
€327

CCC 66C0 FTN V3.0-P240 OPT=¢

Al
IGC

ALOG
FUNL
IAES
SLITET
sL82

FMT
FMT
FMT

INACTIVE
INACTIVE

CCC 66L0 FTN V3.0-P240 OPT=y

REAL

INTEGER
INTEGER
INTEGER
INTEGER

REAL
FEAL
INTEGER

ARRAY

L

o

2205

2343

2241

2317
2647
2660

Q1/714/714

10639
3ce
469
403
501
S5C4
567
511
514
601
793
6328

01/14/71

1€.58.14,

INACTIVE
INACTIVE

INACTIVE

FMT
FMT

16.58.44.,

FAGE

PAGE

g "A9Y 00992109

13-11

SUBRQUTINE Suel DEEUG TRACE CCC 66ULC FTN V3.0-P24l OPT=(01/14/71 16.58.14. PAGE
SYM3QLIC REFERENCE MAF

ENTRY POINTS

2 suny
VARIABLES SN TYFE RELCCATION
9 I INTEGEP *UNUSED FoPe
STATISTICS
SYMTAR+DIMTAE 3R 24
PROGRAM LENGTH 78 7
SUPROUTINE sSuB2 CEFUG TRACE CCC 6fRLU FTN V3.0=-P24¢ OPT=5 21/14/71 16458.14. FAGE
SURFCLTINE SUB2(I)
END
SURRQUTINE SUE2 DERUG TRACE CCC 66CY FTN V3.0-P24(OPT=8 (41/14/71 16.58.14. FAGE

SYMAQLIC REFEREHNCF MAF

ENTRY PCINTS

2 SUB2
VARTAELES SN TYPE RELOCATION
t I INTEG:RR *LNUSED FePo
STATISTICS
SYMTAB+DTIMTAR 2.8 24
FROGRAM LENGTH 7B 7
FUNCTICN FUNL BEEUG TRACE CCC 6600 FTN V3.0-F243 OFT=C 01/14/71 16.58.14, FAGE
FUNCTION FUN1(I)
FUNL = T
END

2e-11

d "A9Y 0099109

FUNCTTEON FUNL DEEUG TRACE
SYMACLIC REFFPENCE MAF

ENTRY PRINTS

2 FUN
VARIABLES SN TYRE RELOCATION
12 FUNL REAL
STATISTIOS
SYMTAR+NIMTAR 278 e
PROGRAM LEMGTH 17R 11
FUNCTION FUN? DEELG TRAGE
FUNSTION FUNZ (D)
FUNZ = I
END
FURGTION FUN? CEEUG TRACE

SYM3OLTIC REFEPCMCE MAF

ENTRY PCINTS

2 FUN2
VARIAFLES SN TYPE RELCCATION
12 FUN2 REAL
STATISTICS
SYMTAR+DIMTAR 328 2€
PROGRAM LENGTH 138 11

CCC 66CC FTN v3.G-P243 OPT=C

CCC 660

CCC 6€&i

INTEGER

FIN v3e0-P24C OPT=C

FIN V3.0=-F24¢ OPT=3

INTEGER

(171677

w1/714/71

€1/714771

1€.58.14,

1€.58.14,

1€.58.14,

FAGE

FAGE

FAGE

g "A8Y 0099LT09

€¢-11

CCRE MAF 16.58.37. NORMAL CONTROL Leill? 313173 “3.e) Lusuil
~=-TIME=~=-LCAD MODF =-Li--L2=w===TYPE-=-cuccm- m—me—— LSER===t4===CALL==-=-=moec=u= FWA LOAC--LWA LCAD=--BLNK CCMAN-<=LENGTH==-
FWA LCADER <“Su4771 Fwh TABLES C52456
-PROGFAM==~=-ACDPESS~ ~~LABELED===-CCMMON==~
SAMFLE eriLee
suel
SUR2
FUNL
FUN2
GETS3A
s1cg
SYSTEMS
ACGOERY
BUGARFY
EUGCLL S
RUGETLSE
BUGFUNS
BUGGTAS
BUGSTOS
BUGTRCS
ORGFETS
KODERE
QUTRTCS
TRAGEXS
ARSE
1ABSE
ALNLCGE
ALOGZ 012767
EXPZ V13 114
EXPE 112 52
LEGVAPS 13117
LOCFS 12124
SLITES "13126
SLITETS 1131F¢

DEBUG object time routines

Ve-11

g "A9Y 0099L109

==<-=UMSATISFIEC EXTERNALS===== REFERENCES

MESSAGES SHOULD FOLLCw FNP REFERENCES TC A1(3) ANN
A1(6), FOR FOTH LCADS AND STORES., THEFE SHOULD BE NO MESSAGE

FOR A2,

/0ERUG/ SAMPLE AT LINME 11- THE SUBSCRIPT VALUE CF 6 IN ARRAY Af EXCEEDS DIMENSICNED BOUNG CF 5
/DERUG/ AT LINE 11- THE SUBSCRIPT VALUE CF C IN ARRAY A1 EXCEEDS DIMENSICNED ECUND CF 5
/CEBUG/ AT LINE 12~ THE SURSCRIPT VALUE CF € IN ARRAY A1 EXCEEDS DIMENSICNED EQUNC CF 5
/DERUG/ AT LINE 14- THE SUBSCRIPT VALUE CF € IN ARRAY A1 EXCEECS CIMENSICNED BOUNC CF s
TWO MESSAGES SHOULD FCLLOW, ONE FCR A CALL OF SUBL WITH

ARGUMENT 7743, AND CNE FOP A CALL CF SLITE WITH ARGUMENT 1.

THERE SKOULN BF NO MESSAGFS FCR COLLS OF SUB2 AND SLITET.

/DERUG/ SAMPLE AT LINE 22- POLTINE SUFY CALLED AT LEVEL &

/CEBUGY AT LINE 23- ROLTINE SUEL RETURNS TO LEVEL ¢©

/DERUG/ AT LINF 24= BAOLTINE SLITE CALLED AT LEVEL €

/CERUG/ AT LINE 25~ BOUTINE SLITE PETURNS TO LEVEL ¢

MESSAGES SHGULD FOLLCW FOR CALLS CF FUNL WITH ARGUMENT

7743, TA3IS WITH APGUMENT 8242, ANC TXP WITH ARGUMENT 2,14159,

THERE SHOULN RE N0 MESSAGES FCR CALLS CF FUN2, A2S, OR ALCG.

/CEBUG/ SAMPLE AT LINE 1= PEAL FUNCTICN FUNL CALLEC AT LEVEL ¢

/CEBUG/ AT LINE oL AL FUNCTION FUN1 RETURNS A VALUE OF 7743,3%5000 AT LEVEL 0
/DERUG/ AT LINE INTEGER FUNCTICN IARS CALLEC AT LEVEL @

/CEBUGY/ AT LINE TNTEGER FUNGTION IARS QETURNS A VALUE CF 8242 AT LEVEL 8
JDERUG/ AT LTIME PEAL FUNCTICN ExP CALLEC AT LEVEL €

/CERUG/ AT LINE SE AL FUNCTICN EXP RETURNS A VALUE CF 23.14063123 AT LEVEL ¢
MESSAGES SHAULD FOLLCW FaP STCRFS INTO AL(1), A1(2),

B1(3), AL(4), AL(5), T, AGATIM, N2(1), IAGAIN, IAGAIN, IAGAIN,

IAGAIN, AND IAGAIN. THE VALUES STCRED IN THE RESPECTIVE

VARIARLES SHOULD "€ Lay 24y Tey Hay Se9 Sy 2.1415%) 54,

10, 9, B, 7, 6. THERL SHAULD BE NC OTHER STORES MESSAGES. N
/CEQUG/ SAMPLE AT LIMS 4b%= THE NEW VALUF CF THT VASIARLE 81 1S

/CEBUG/ AT LINE 45 TYE NEW VALUE OF THE VARTAGLE 81 1S

/CERUG/ AT LTME 4G~ THE NFW VALUE CF THE VARIARLE 01 IS 2.3000%

/CERUGY AT LINE 4T=- THMF NSW VALUE OF THE VARIAGLE A1 IS Glf0CigGan

79FRUG/ AT LIME UG- THE NEW VALUE CF THE VARTARLE A1 IS S.ifotcaddd

/CEBUG/ AT LINE 48=- THE NEW VALUE CF © VARIABLE AGAIN 1S 3.1415870.)

/DE2UG/ AT LTME £ = THE NEW VALUE OF VORIARLE 82 IS 5.623074943

/CERUG/ AT LTKE 51— THE MEW VALUE CF VARTABLE IBGAIN IS 13

/CEBUS/ AT LTNME 51- THE NEW VALUE OF VARIABLE 16GAIN IS ¢

/DEBUG/ AT LINS Si~- THE NEW VALUE OF VARIAELE I1AGAIN IS 8

/DEBUS/ AT LIME 51~ THE NEW VALUE CF = VARTARLE IAGAIN IS 7

/CERUG/ AT LINE S1- THE NEW VALUE CF VEARIADLE IAGAIN IS 6

MESSAGES SHAULD FOLLGW FOR TRANSFERS OF CCNTRCL

FROM 502 TO 373, %22 10 574, €i4 TC 505, AND 535 TQ Sd€.

THERE SHOULN %E NC CTHER CONTRCL TRANSFER MESSAGES.

/OEBUG/ SANMSLE AT LINE €8=- CONTROL WILL BE TRANSFERPED TC STATEMENT 533 AT LINE 7

/CEEUGY/ AT LINE 7¢- COMNTROL hILL BE TRANSFERRED TC STATEMENT 504 AT LINE 72

/CERUG/ AT LINE 72- CONTROL WILL BE TRANSFERRED TC STATEMENT 595 AT LINE 74

/0EAUG/ AT LINE 74~ CONT20L WILL BE TRANSFERRED TC STATEMENT 506 AT LINE 75

WILL NOW ATTEMPT AN ASSISNED CC TC. SHCLLLD ISSUE
MESSAGE.
/CERUG/Z SAMPLE AT LTME Q" - ASSIGNED GCTO INDEX CONTAINS THE ADDRESS 33245C. NO MATCH FOUNC IN STATEMENT LABEL AOCRESS LIST

END OF SAMPLE DEBUG FROG?AM,

FORTRAN CONTROL CARD 12

12.1

CONTROL CARD

FORMAT The control card for compilation of a FORTRAN source program consists of
the characters FTN and an optional parameter list enclosed in parentheses.
If parameters are omitted, F'TN is followed by a period. Comments follow-
ing the right parenthesis or period are transcribed to the dayfile in a normal
installation. The first improperly formed parameter terminates the FTN
control card scan.

T ves
TN (pl,p2 s pn) comments
or
FTN. comments
When an error is detected in a control card, a dayfile entry is made con-

sisting of an asterisk (below the approximate column in which the compiler
encountered the error) and the following message:

*POINTS TO FTN CONTROL CARD ERROR
Example of dayfile:

06.52.35.FIN(I=0/L=LIST)
0€.52.3€, *
0€e52e3€e * POCINTS TO FTN CCNTROL CARC ERRCK

The job will proceed with the options already processed or terminate and
branch to an EXIT(S) card, depending upon an installation option. Default
files or files specified in the control card must be in SCOPE 3 format.

12.2

SOURCE INPUT

PARAMETER If the source input parameter is omitted (default condition), the FORTRAN
source input file is assumed to be INPUT. If it is on any other file, a para-
meter of the following form must be provided:

60176600 Rev. F 12-1

I=lfn (default I-INPUT)

1fn is the logical file name of the file containing the source input.
Source input parameters of the forms I=INPUT and I are equivalent
to omitting the parameter.

12.3

BINARY (OBJECT)

OUTPUT PARAMETER If the binary output parameter is omitted (default condition), a relocatable
binary (object) file is written on a file named LGO. For any other output
file, a parameter of the following form must be provided:

B=1fn (default B=LGO)

1fn is the name of the file on which binary output is to be written.
Binary output parameters of the form B=LGO or B are equivalent
to omitting the parameter.

To suppress production of an object output file, the binary output parameter
must be of the form:

B=0

If the letter G appears in the binary output parameter, the object file will be
loaded and executed at the end of compilation.

G=lin BG=lin GB=lfn G

124

LIST PARAMETER If this parameter is omitted (default condition), a normal listing is provided
on OUTPUT; it includes the source program and informative and fatal
diagnostics. Other list options may be selected as follows:

y=1in (default L=OUTPUT,R=1)
y may be one or more of the following:

Normal listing
Listing of diagnostics which indicate non-ANSI language usage
Source keyed cross reference map (implies R=2)

Listing of generated object code

ZzZ O = XK ¢

Suppress listing of informative diagnostics and list only
diagnostics fatal to execution

12-2 60176600 Rev. F

12.5

ERROR TRACEBACK
AND CALLING
SEQUENCE
PARAMETER

12.6

UPDATE PARAMETER
(EDITING
PARAMETERS)

60176600 Rev. F

lfn is the file name on which list output is to be written. If 1fn is omitted,
listing will be on OUTPUT. If L=0 fatal diagnostics with the statements that
caused them will be listed; but all other listable output including intermixed
COMPASS will be suppressed.

Any combination (with no comma) of the above parameters provides the
features indicated. (Note: X and N cannot be used at the same time.)

LRON=Ifn specifies all options are to be listed for the file named except non-
ANSI diagnostics, and LO selects source and assembly listing on OUTPUT.

CROSS REFERENCE MAP

The FORTRAN Extended cross reference map can be obtained using the R
option. This map is described in Appendix C.

The T mode of compilation is intended for use with programs in the debugging
stages. This parameter is indicated by TT. When it is present, calls to
library functions will be made (with the call-by-name sequence), and maxi-
mum error checking will be done. Full error traceback will be done if an
error is detected.

When T is omitted, the compiler generates calls to library functions with the
call-by-value sequence (e.g., cause X1 to contain the parameter, RJ func-
tion). Minimum error checking will be done and no traceback will be
provided when errors are encountered. A significant saving in memory
space and execution time is realized.

An E or E=lfn (default E = COMPS) as a parameter requests that the object
code output from the compiler produce COMPASS subprogram line images
for UPDATE input. This output facilitates hand optimization of the compiler
generated object code.

*DECK,name (name = program unit name) is the first card image written on
the object code output file, COMPS (assumed when lfn does not appear).

An *END card image is written as the last card on the file. COMPASS is not
called automatically. The output file lfn or COMPS is rewound and ready for
UPDATE input. No binary file is produced.

TSee Debugging Mode Parameter section in this chapter.
NOTE: The O option is not legal when E is used.

12-3

12.7
OPTIMIZATION
PARAMETER The OPT parameter is of the form:

OPT=m

The level of optimization the compiler will perform is determined by the
value of m as follows:

m=0 fast compile modet

m=1 standard compile mode

m=2 fast object code mode

If this parameter is omitted, the installation default option is assumed .
Debug mode D option on FTN card implies that OPT=0.

The OPT=2 level of optimization can offer significant execution speed increases
for certain classes of loops. Two types of optimization are performed:

° Moving of invariant computations from frequently executed regions
to less frequently executed regions.

[] Assignment of variables and constants to registers over the body
of a loop.

Both DO loops and IF loops can be optimized within these constraints.
° The loop must be the innermost loop (i.e., contain no loops).

o The loop must contain no branching statements (GO TO, IF or
RETURN) except a branch back to the start of the loop for IF loops.

L] The 1oop does not contain nonstandard input/output statements such
as BUFFER IN/BUFFER OUT, ENCODE/DECODE. In case stan-
dard I/0O statements occur (or any external calls), only invariant
code removal will be attempted.

® Control must flow to the statement following the end of the loop when
the loop completes.

L Entry into the loop must be through the sequence of statements
preceding the start of the loop.

TSee Debugging Mode Parameter section in this chapter.

12-4 60176600 Rev. F

60176600 Rev. E

Invariant Computations

In many instances, ecither for clarity or by accident, calculations which do
not change on successive iterations are made within a loop. When these
computations are made outside the loop, the speed of the loop is improved
without changing the results.

Example 1:

DO 100 I =1,2000
100 A(T) = 3*I + J/K+5

A more efficient loop would be:

ITERM = J/K+5
DO 100 I =1,2000
100 A(I) = 3*I + ITERM
TFor clarity, the programmer may not wish to write the code in this form.

Using the OPT=2 level, the more efficient loop structure would be produced.
A message will be issued stating:

n WORDS OF INVARIANT RLIST REMOVED FROM
THE LOOP STARTING AT LINE x

RLIST is the intermediate language of the compiler. The message serves two
functions. It notifies the programmer that his loop has been modified,
and it informs him of the magnitude of the change.

Example 2:
I=1
200 J = K+L+4
A(l) = M+I
I=1+1
IF(I. LE. 100) GO TO 200

12-5

12-6

Use of OPT=2 will produce code as if Example 2 had been written as shown
below:
I=1

J = K+L+4
200 A(T) = M+I

I=1+1

IF(I. LE. 100) GO TO 200

Example 3:

DO 300 I=1,2000

A(I) = SQRT(FLOAT(I))

A(l) =A() + 3.5*%R
300 CONTINUE

The computation of 3.5%R will be removed from the loop in spite of the
external call. In general, this process will occur unless R is a parameter
to the external routine or in COMMON, The use of a variable will not be
recognized as invariant if it is a member of an equivalence class for which
some member of the class is referenced inside the loop using nonstandard
subscripts. For standard subscripts, optimization will occur, although
the assumption is made that all subscripting is within the bounds of
dimensional declarations.

Register Assignment
For many loops, it is possible to keep commonly used variables and constants
in the registers. Eliminating loads and stores from the body of the loop

has two advantages:

] Reducing the number of loads and stores increases the execution
speed.

o The loop is shortened and may fit in the instruction stack of the 6600.
Presently up to four X registers may be assigned over a loop. The actual
number assigned depends on the number of candidates available for selection
and the complexity of the operations performed within the loop. When
registers are assigned, an informative message is printed:

n REGISTERS ASSIGNED OVER THE LOOP BEGINNING AT LINE x

Register assignment will not be performed for loops containing external
references.

60176600 Rev. E

Example 1:

Loop Without assignment | With assignment

DO 100 I=1,2000
A(I) = 3.0
100 CONTINUE

60176600 Rev. E 12-7

Example 2:

Loop Without assignment | With assignment

X=1.0
DO 200 I=1,100
X =X/.5+y
A =X

200 CONTINUE

result to
register
holding X

12-8 60176600 Rev. E

12.8

ROUNDED
ARITHMETIC
PARAMETER The compiler will produce rounded arithmetic instructions for any combina-
tion of arithmetic operators (+ - * /) if the parameter is specified in the
form:
ROUND=operators (default=0OFF)
If this parameter is omitted (default condition), rounded arithmetic pro-
cessing does not take place.
12.9
DEBUGGING MODE
PARAMETER When this parameter is selected, the OPT=0 compilation and T error trace-
back modes are assumed. If the debugging mode parameter is omitted
(default condition), this mode of compilation does not take place.
D or D=1fn (default = INPUT)
lfn specifies the file name of the debugging aid selection package.
12.10

EXIT PARAMETER When this parameter is specified, the run will terminate and branch to an
EXIT(S) control card if fatal errors occur during compilation. The form is:

A (default off)

12.11

SYSTEM TEXT

FILE. PARAMETER The S parameter specifies the systems text file to be used for intermixed
COMPASS programs.

S=0 or S=1n (default 1fn = SYSTEXT)
If S=0 when COMPASS is called to assemble any intermixed COMPASS pro-

grams, it will not read in a system text file. If this parameter is omitted
(default condition), S=SYSTEXT is assumed.

60176600 Rev., T 12-9

12.12

SYSTEM EDITING
AND 1/0 REFERENCE
PARAMETER

12.13
ASSEMBLER
PARAMETER

12.14
CONTROL CARD
EXAMPLES

12-10

This parameter is of the following form:

SYSEDIT=FILES
SYSEDIT=IDENT
SYSEDIT (default, both FILES and IDENT)

The FILES specification assures that all INPUT/OUTPUT references will
be accomplished indirectly through GETBA, In addition, the file names
are not entry points in the main program, and subprograms do not
produce external references to the file names. When IDENT is specified,
a $ is appended to the program name on both the IDENT and ENTRY
cards if the program name is the same as that of any FORTRAN object
library program.

The COMPASS assembler, rather than the FTN built-in assembler, can
be used to assemble the code generated by FTN., The COMPASS assembler
is specified with the following parameter: :

C (default off)

The control card FTN. is equivalent to:
FTN (=INPUT,L=OUTPUT, B=LGO, S=SYSTEXT,OPT=1,R=1)
The control card:
FTN (A,LRN,G,S=0)
will select the following options:
A Abort, branch to EXIT(S) card when errors occur in compilation

LRN List on the file OUTPUT, which will include a source-keyed
cross reference map, and suppress the informative diagnostics.

G Placed on file LGO, the relocatable binary file. If compilation
is successful, it will be loaded and executed,

S=0 When COMPASS is called to assemble intermixed COMPASS
subprograms, it will not read in a system text file.

60176600 Rev. F

12.15
SMALL
BUFFERS

12.16
REFERENCE
MAP LEVEL

60176600 Rev. F

When this option is selected, the compiler is forced to use 513-word
buffers for compiler intermediate files. Programs with a large number
of declarations may be compiled with a smaller field length if this

parameter is specified. Since less space is used in the buffers, compile
time may increase. The form of the parameter is:

v (default = off)

The kind of reference map produced is determined by the R option on
the control card:

R=0 No map
1 Short map (symbols, addresses, properties)

2 Long map (short map, references by line number
and a DO-loop map)

3 Long map and printout of common block members
and equivalence classes

blank Implies R=1

The default option is R = 1 unless the L option equals 0; then R = 0.

12-11

APPENDIX SECTION

DISPLAY CODE

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44

CHARACTER

o
ey
ul
=]
]

VONOOTVMPLNMNHRFONKMKELACcHOLONONOZRrARUWUHMHIEOERUQWE >

CDC 6500

DISPLAY CODE

45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

CHARACTER

I v~~~ % 1 +

o
-
m
=]
=

, (comma)
(period)

(colon)

(semicolon)

SOURCE PROGRAM CHARACTERS A

FORTRAN CHARACTERS

Console Hollerith
Alphabetic Display Card
Characters Code Punch
A 01 12-1
B 02 12-2
C 03 12-3
D 04 12-4
E 05 12-5
F 06 12-6
G 07 12-7
H 10 12-8
1 11 12-9
J 12 11-1
K . 13 11-2
L 14 11-3
M 15 11-4
N 16 11-5
(@] 17 11-6
P 20 11-7
Q 21 11-8
R 22 11-9
S 23 0-2
T 24 0-3
U 25 0-4
\' 26 0-5
w 27 0-6
X 30 0-7
Y 31 0-8
Z 32 0-9
Numeric
Characters
0 33 0
1 34 1
2 35 2
3 36 3
4 37 4
5 40 5
6 41 6
7 42 7
8 43 8
9 44 9

Console Hollerith

Special Display Card
Characters Code Punch
+ 45 12
- 46 11
/ 50 0-1
= 54 8-3
’ 56 0-8-3
(51 0-8-4
$ 53 11-8-3
* 47 11-8-4
. 57 12-8-3
) 52 12-8-4
blank 55 space
ADDITIONAL CHARACTERS
Console , Hollerith
Display Card
Character Code Punch
= 60 0-8-6
[61 8-7
] 62 0-8-2
: 63 8-2
64 8-4
- 65 ' 0-8-5
v 66 11-0f
A 67 0-8-7
4 70 11-8-5
} 71 11-8-6
< 72 12-0Ft
> 73 11-8-7
= 74 8-5
= 75 12-8-5
- 76 12-8-6
H 77 12-8-7
end-of-
line 0000

T11-0 and 11-8-2 are equivalent
T112-0 and 12-8-2 are equivalent

FORTRAN DIAGNOSTICS B

Diagnostic messages are produced by the FORTRAN processor to inform the user of errors in the
program. Messages are produced during compilation and execution; compilation errors are dis-
cussed in this appendix, a detailed discussion of the execution errors is given in Appendix G.

Errors detected during compilation are noted on the source listing, immediately following the END
card. Figure B-1 illustrates a listing and the format used by the processor in noting compilation
errors.

100 WRITE (6, 8)
8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000/
119X,1H1/19X, 1H3)
101 I1=5
5 8 A=l
102 A=SQRT(A)
103 J=A
104 DO 1 K=3,J,2
105 L=I/K
10 106 IF(L*K-D)1,2,4
1 GO TO 108
107 WRITE (6,9)
5 FORMAT (120)
2 I=1+2
15 108 IF(1000-1)7,4,3
4 WRITE (6,7)
9 FORMAT (14H PROGRAM ERROR)
7 WRITE (6, 6)
6 FORMAT (31H THIS IS THE END OF THE PROGRAM)
20 109 STOP
END

60176600 Rev. B B-1

CARD NO.

01

05
11

21

)

SEVERITY

FE
FE

FE

FE

START.

DIAGNOSTIC

ASSUMED PROGRAM NAME WHEN NO HEADER STATEMENT
APPEARS

THIS STATEMENT NUMBER HAS BEEN USED BEFORE

A DO LOOP MAY NOT TERMINATE ON THIS TYPE OF
STATEMENT

THIS REFERENCED FORMAT NUMBER DOES NOT APPEAR
ON A FORMAT STATEMENT

THIS REFERENCED STATEMENT NUMBER DOES NOT APPEAR
ON AN EXECUTABLE STATEMENT

Figure B-1. Sample Source Listing

The source of the errors is identified by the card number. This number corresponds to the card
number assigned by the processor indicated by the numbers on the extreme left side of the example.
The severity of the error is indicated by the code accompanying the message: I means informative
and has no effect on compilation or execution, FE indicates catastrophic to execution, FC means
the error is catastrophic to compilation, and USASI indicates that the particular usage does not con-
USASI diagnostics are not listed unless requested by an X parameter on

form to USASI standards.

the FTN control card.

60176600 Rev. D

The diagnostics that follow are printed in full capitals, for readability, they are shown here in upper
and lower case.

FC Errors

Compiler error at ER21A or ER21B of DO processor.
Tables overlap, more memory required.
Auxiliary table overflow.

Arithmetic statement function has caused a table overflow while being processed. More memory
required.

Symbol table overflow. Reduce number of variables.

CONLIST too big, too many constants.

Tables overlap during equivalence processing. More memory required.

Insufficient memory.

The statement beginning at line is too complex for this compiler. Please simplify it.

Not enough room in working storage to hold all OVERLAY control card information.

FE Errors

Loops are nested more than 50 deep.

The terminal label of a DO must be an integer constant between 0 and 100, 000.

The terminal statement of this DO precedes it.

The control variable of a DO or DO implied loop must be a simple integer variable.

The syntax of DO parameters must be I=M_,M_,M_ or I=M_, M,_.

) 1
A constant DO parameter must be betweenlo ar?d lle. :

A DO parameter must be an integer constant or variable.

This statement number has been used before.

A previous statement in this nest references this statement number illegally.
This statement references a previous statement number in this nest illegally.
A DO loop may not terminate on this type of statement.

A DO loop which terminates here includes one or more unterminated DO loops.

Entry statements may not occur within the range of a DO statement.

This DO loop is unterminated at program end.

This loop is entered from outside its range but has no exit.

This referenced statement number does not appear on an executable statement.
This referenced FORMAT number does not appear on a FORMAT statement.
Program card delimiter missing.

Filename is greater than 6 characters.

Filename previously defined.

Unit number or parity indicator must be an integer constant or variable.
Equated filename not previously defined.

Unrecognized statement.

Illegal label field in next statement.

Statement too long.

Symbolic name has too many characters.

Unmatched parenthesis.

Unlabeled FORMAT statement.

Duplicate statement label.

RETURNS list error.

Doubly defined formal parameter.

No legal list terminator.

Illegal separator between variables.

Variable has more than three subscripts.

Variable with illegal subscript.

Variable dimension is not a formal parameter.

Variable in common has either an adjustable subscript or is a formal parameter.
Header card not first statement.

Common block name not enclosed in slashes.

COMMON variable is formal parameter or previously declared in COMMON.
Illegal block name.

Illegal separator in EXTERNAL statement.

A reference to this arithmetic statement function was not followed by an open parenthesis.
Insufficient memory, possibly a recursively defined arithmetic statement function.

A reference to an improperly specified arithmetic statement function has been encountered.

A reference to this arithmetic statement function has unbalanced parenthesis within the parameter
list.

Unmatched parameter count in a reference to this statement function.

A constant cannot be converted. Check constant for proper construct.

RETURN statement appears in main program.

Non-standard RETURN statement may not appear in a function subprogram.

Parameter on non-standard RETURN statement is not a RETURNS formal parameter.
Illegal sequence in I/0 list.

FORMAT reference must be an integer constant or an array reference.

Entry point names must be unique — this one has been previously used in this subprogram.
Improper form of ENTRY statement, only allowable form is [entry name] .

Referenced label is more than five characters.

ENTRY statement is not allowed to appear within a program, only in a subroutine or function.
There is an entry in this namelist statement other than a slash, a comma, or a variable.
NAMELIST nam e is either not a variable or a variable that has been previously defined.
NAMELIST group name is not surrounded by slashes.

— this entry appeared in a position where a variable should have appeared.

Name of a variable that is not allowed to be used in conjunction with NAMELIST.

— this variable has variable dimensions, this is not allowed in conjunction with NAMELIST.
Statement number is not allowed on an ENTRY statement.

There is insufficient room to process this statement, more memory required.

Formal parameters or ECS variables cannot appear in EQUIVALENCE statements.
Subscripts not integer constants. Equivalencing abandoned.

Only one symbolic name in EQUIVALENCE group.

Syntax error in EQUIVALENCE statement.

Subscript value is out of range of the array as determined by the dimensions.
COMMON-EQUIVALENCE error.

Number of subscripts is incompatible with the number of dimensions during EQUIVALENCEing.
Common block origin extended, extension not allowed.

Symbol was involved in contradictory equivalencing. Equivalencing abandoned.

Either the expected list of transfer labels is non-existent, empty, or not enclosed in parentheses.
This is not a recognizable form of the GO TO statement.

There is a non numeric entry in this list of transfer labels.

Number of characters in an ENCODE/DECODE statement must be an integer constant or variable.
More than 50 files on program card or 63 parameters on subroutine or function card.

Declarative statement out of sequence.

Error table overflow.

This ASSIGN statement has improper format, only allowable is [ASSIGN no. to variable] .

Illegal identifier in variable list of DATA statement.

Variable appearing in DATA statement may not be in blank COMMON.

Variable appearing in DATA statement may not be a formal parameter.

Variable appearing in DATA statement may not be a function name.

Illegally typed variable in DATA statement must be only integer, real, double, complex, or logical.
Illegal format of DATA statement.

All items in data list of DATA statement must be constant.

Repeat factor of DATA items and DO limits must be integer.

Constant subscript of variable must be integer.

No terminating right parenthesis after subscript or DO variables.

DO control variable not used as subscript in DATA statement.

No equal sign after DO variable in DATA statement.

Implied DO loop may have only 3 limits.

Variable appeared as subscript but its DO limits were never defined.

Non dimensioned identifier appears with subscripts in DATA statement.

Unmatched parentheses in DATA statement.

Zero statement labels are illegal.

Illegal character after DATA item, must be comma, slash, or left paren.

Only a comma or end of statement may follow terminating slash or right parenthesis in a DATA
statement.

Slash, equal sign, or left parenthesis must follow variable list.
Illegal use of the equal sign.

Variable followed by left parenthesis.

No matching right parenthesis.

No matching left parenthesis.

The operator indicated (-, +, *, /, or **) must be followed by a constant, name, or left parenthesis.

More than 63 arguments in argument list.
A constant may not be followed by an equal sign.
Expression translator table OPSTAK overflowed, simplify the expression.
Logical operand used with non-logical operators.
No matching right parenthesis in subscript.
Local entry point referred to as external function.

| Statement function reference may not use a function name as an argument.
Argument not followed by comma or right parenthesis.
A function reference requires an argument list.
Illegal CALL format.
Expression translator table FRSTB overflowed, simplify the expression.
Illegal input/output address.
Right parenthesis followed by a name, constant, or left parenthesis.
More than one relational operator in a relational expression.

A comma, left paren, =, . OR., or . AND. must be followed by a name, constant, left paren, -,
.NOT., or +.

An array reference has too many subscripts.

No matching right parenthesis in argument list.

Illegal form involving the use of a comma.

‘Logical and non-logical operands may not be mixed.

Division by constant zero.

A complex base may only be raised by an integer.

Use of this program or subroutine name in an expression.

Subroutine name referred to by CALL is used elsewhere as a non-subroutine name.
Illegal call format.

Illegal returns parameter.

Illegal labels in IF statement.

Logical expression in 3-branch IF statement.

The statement in a logical IF may be any executable statement other than a DO or another logical IF.

The expression in a logical IF is not type logical.

60176600 Rev. D B-17

Left side of replacement statement is illegal.

A reference to this ASF has a parameter missing.

All elements in an ECS common block must be type ECS.

A previously mentioned adjustable subscript is not type integer.

All ECS variables must appear in an ECS common block.

The type of this identifier is not legal for any expression.

A constant operand of a real operation is out of range or indefinite.

Referenced label is greater than five characters.

This combination of operand types is not allowed in this version.

Implied DO in I/0O statement is unterminated, check paren count and syntax.
was last character seen before trouble. Remainder of statement was skipped.

Double or complex operand in subscript expression not allowed.

Double or complex argument not legal for this intrinsic function.

No terminating right parenthesis in OVERLAY, SEGMENT, SEGZERO or SECTION card.

I Errors

This statement redefines a current loop control variable or parameter.
More storage required by DO statement processor for optimization.

The variable upper limit and the control variable of this DO are the same producing a
non-terminating loop.

The constant lower limit is greater than the constant upper limit of a DO

No END card. End line assumed.

START. assumed program name when no header statement appears.

Undefined variable, i.e., this variable is never initialized.

Previously dimensioned variable, first dimensions will be retained.

Previously typed variable, first encountered type is retained.

Dummy parameter in an arithmetic statement function definition occured twice
Arithmetic statement function has more dummy parameters than are allowed (20).
There is an entry following the right parentheses of this assigned GO TO list.

In this unconditional GO TO there is an entry following the transfer statement label.
More data items appear in data list than array can contain, excess items are discarded.

More memory would have resulted in better optimization.

B-8 6017600 Rev. D

Array name operand not subscripted; first element will be used.
The number of arguments in the argument list of a non-basic external function is inconsistent.
The number of arguments in a subroutine argument list is inconsistent.

Number of digits in constant exceed possible significance. High order digits retained when possible.

USASI Usage Diagnostics

Dummy parameter in an arithmetic statement function definition occurred twice.

Arithmetic statement function has an improperly formed parameter list or no = following the list.
The non-standard RETURN statement is not USASI FORTRAN. '

This statement is non-USASI.

Non-USASI form of DATA statement.

More than one equal sign.

Array name referenced with fewer subscripts than the dimensionality of the array.

FORMAT Statement Validation Diagnostic Messages
The word preceding the diagnostic has the following form:

xx cd nnnn
where
XX is a card column number

nnnn is a card number
Example:

67 cd 5 refers to column 67 of card 5
Informative Diagnostics:

Separator missing, separator assumed here.
X field preceded by a blank, 1X assumed.

X field preceded by a zero, no spacing occurs.
Preceding field width is zero.

Preceding field width should be 7 or more.

Floating point descriptor expects decimal point specified. Output will include no fractional parts.

60176600 Rev. C B-9

Floating point specification expects decimal digits to be specified. Zero decimal digits assumed.
Repeat count for preceding field descriptor is zero.

Field width is outside inner limits. Check use of this format to assure device can handle this
record size.

Preceding scale factor is outside limits of representation within the machine.
Superfluous scale factor encountered preceding current scale factor.

Record size outside inner limits. Check use of this format to assure device can handle this
record size.

Field width of preceding floating point descriptor should be 7 or more than decimal digits specified.
Numeric field following tab setting designator is equal to zero, column one is assumed.

Numeric field omitted in preceding scale factor. Zero scale assumed.

Non-blank characters follow zero-level right parenthesié . These characters will be ignored.

Tab setting may exceed record size depending on use.
USASI Usage Diagnostics:

Plus sign is an illegal character.

Preceding field descriptor is non-USASI.

Floating point descriptor expected following scale factor designator.
Tab setting designator is non-USASI.

Hollerith string delineated by symbols is non-USASI.

Fatal to Execution Diagnostics:

Preceding character illegal at this point in character string. Error scan for this format stops here.
Illegal character follows preceding floating point descriptor. Error scan for this format stops here.

Illegal character follows preceding A, I, L, O, or R descriptor. Error scan for this format
stops here.

Illegal character follows tab setting designator. Error scan for this format stops here.

Illegal character follows preceding sign character. Error scanning for this format stops here.
Preceding character illegal, scale factor expected. Error scanning for this format stops here.
Preceding Hollerith count is equal to zero. Error scanning for this format stops here.

Format statement ends before last Hollerith count is complete. Error scan for this format stops at H.
Format statement ends before end of Hollerith string. Error scanning stops here.

Preceding Hollerith indicator is not preéeded by a count. Error scanning stops here with format
incomplete.

B-10 60176600 Rev. C

Zero level right parenthesis missing. Scanning stops.
Preceding field width outside outer limits for record size. Scanning continues.
Preceding record outside outer limits for record size. Scanning continues.

Tab setting is outside outer limits for record length. Scanning continues.

FORTRAN Extended Assembler Diagnostics:

Storage overflow, no object program will be produced.

Increase field length by xxxxx.

60176600 Rev. C B-11

CROSS REFERENCE MAP C

The cross reference map is a dictionary of all programmer created symbols appearing in a program
unit, with the properties of each symbol and references to each symbol listed by source line num-
ber. The symbol names are grouped by class and are listed alphabetically within the groups. The
reference map begins on a separate page following the source listing of the program and the error

dictionary.

The kind of reference map produced is determined by the R option on the control card:

R=0 No map
1 Short map (symbols, addresses, properties)
2 Long map (short map, references by line number and a DO-loop map)
3 Long map and printout of common block members and equivalence classes

blank Implies R=1
The default option is R = 1 unless the L option equals 0; then R = 0.

Errors in the source program will cause certain parts of the map to be suppressed, incomplete,
or inaccurate. Fatal execution and fatal compilation errors will cause the DO-loop map to be
suppressed, and assigned addresses will be different; symbol references may not be accumulated
for statements containing syntax errors.

For the long map, it may be necessary to increase field length by 1000(octal).

The number of references that can be accumulated and sorted at reference map time is: field
length - 20000 (octal)-4 x (number of symbols). For a source program containing one thousand
symbols, approximately eight thousand references can be accumulated with a field length of
50000 octal.

In the following pages, examples from the actual cross-reference map produced by the debugging
program reproduced in chapter 11 are interspersed with the general format discussions. The
complete cross reference map and the generating program may be found at the conclusion of
chapter 11.

60176600 Rev., F C-1

General Format

Formats for each symbol class are different, but printouts for all the classes contain the following
information:
Program or common relative address of the symbol (in octal with leading zeros suppressed)
The symbol as it appears in the FORTRAN source listing
Properties associated with the symbol
List of references to the symbol

All line numbers in the reference list refer to the line of the statement in which the reference

occurs. Multiple references in a statement are printed as n*l where n is the number of references
on line 1.

All numbers to the right of the name are decimal integers unless they are suffixed with a B which
indicates octal.

Names of symhols generated by the compiler (such as system library routines called for input/
ouput) do not appear in the reference map.

CLASSES OF SYMBOLS

Each class of symbol is preceded by a subtitle line that specifies the class and the properties listed.

Entry Points

Entry point symbols include subprogram names and names appearing in ENTRY statements. The
subtitle line is printed:
ENTRY POINTS DEFINITION REFERENCES
RA Name Def Ref

RA Program relative address
Name Entry point name as it appears in the FORTRAN source
Def Line number of subprogram statement or line on which ENTRY statement occurs

Ref Line number (none for a main program). In a subprogram, RETURN statements are
references to the entry point. (For a function subprogram, references to the
function value appear in the variable map.)

ENTRY POINTS
2026 SAMPLE

C-2 60176600 Rev. F

Example:

SUBROUTINE SUBR
COMMON A, B,C
IF(A .EQ 0.0) GO TO 10
RETURN

10B = C**2
A =B+C
RETURN
END

The subtitle line and properties are:

ENTRY POINTS DEFINITION REFERENCES
2 SUBR 1 4 7

Variables

Variable symbols include local and common variables and arrays, formal parameters, RETURNS
names, and for a function subprogram, the function name when used as a variable. The subtitle
line is: :

VARIABLES SN TYPE RELOCATION

RA Name * Type Properties Blockname (Refs, Defined, IO Refs)
RA Program or common relative address; 0 for formal parameters
Name Variable name as it appears on the source listing
SN Stray name flag. Names which are variable names and appear only once

in a subprogram are indicated by *., Variables in this category are stray,
since they may be keypunch errors, misspellings, etc. A legal usage
that would cause a stray name is a DO loop where the control variable

is not referenced. (Present only for R= 2 or R = 3)

Type The arithmetic mode of a variable (logical, integer, real, double precision, com-
plex, or ECS). RETURNS is printed for RETURNS formal parameters. Types are
offset to aid in debugging.

Properties The following keywords may be printed out in this column:
*UNDEF The symbol has not been defined. A symbol is defined if any of the
following conditions hold: :
It appears in a COMMON or DATA statement
It is a non-base member of an equivalence class

It appears on the left side of an assignment statement, at the outermost
parenthesis level

It is the control variable in a DO loop

60176600 Rev. F Cc-3

It appears as a stand alone actual parameter in a subroutine or function
call

It appears in an input I/0O list
Variables used before definition are not detected
ARRAY Symbol is dimensioned.

*UNUSED Name is an unused formal parameter. If nothing is printed and the name is
not a RETURNS parameter, it is a simple variable.

Blockname blank Local symbol (address is program unit relative)
F-P- Formal parameter
// Symbol is in blank common, RA relative to blank common
name Name of common block where symbol appears; RA is common relative

Refs, Defined, IO Refs
References and definitions are the rightmost items in a variable map.

REFS References are collected for variable symbol names appearing in declarative
statements or used in assignment statements.

DEFINED Definitions are listed for names appearing in DATA statements, the control
variable of a DO loop, names defined in an ASSIGN or assignment statement,
and names defined by READ or ENCODE/DECODE statements. The subprogram
header line defines formal parameters.

I0 REFS Input/output references are collected for symbols used as variable file names
in an I/O statement.

In a function subprogram, references to the function name are listed in the variable map.

References are collected after statement functions are expanded and are not collected for the
arguments before expansion.

Example: If ASF (J) = (J+ 1)/(J - 1) is a statement function and K = ASF (I) is on line 5:
two references will be listed for I on line 5.

VARIABLES SN TYPE RELOCATION

2723 AGAIN REAL 2732 A1 REAL ARRAY
2737 A2 REAL ARRAY 2722 1 INTEGER

2724 IAGAIN INTEGER 2731 IGO INTEGER

2725 J INTEGER 2726 K INTEGER

2727 L INTEGER 2730 ™ INTEGER

File Names

File names include those used as logical file names (unit number) in the input/output statements or
names declared as files on the program card in a main program, The subtitle line is printed:

FILE NAMES MODE
FET Name Mode Reference

C-4 60176600 Rev. F

FET Program relative address of the file environment table associated with the file. The
file's buffer starts at FET + 17D (listed in a main program and blank in subroutine).

Name Filename
Mode One of the following will be printed:
blank If the mode cannot be determined from operations on the file

UNFMT Unformatted I/0O, no conversion
FMT Formatted I/0O

BUF Buffer 1/0
MIXED Some combination of the above
References are divided into the categories:
READS Input operations
WRITES Output operations
MOTION Positioning operations; rewind/backspace and ENDFILE

FILE NAMES MODE
0 DEBUG 0 OUTPUT FMT

External References

External references include names of subroutines or functions external to a subprogram. Names of
system routines not explicitly called in the source program such as those used for input/output and
exponentiation will be suppressed. The subtitle line is:

EXTERNALS TYPE ARGS REFERENCES
Name Type Args Prop Refs

Name Symbol name as it appears in the FORTRAN source
Type blank Subroutine
NO TYPE Conversion will follow the same rule as for octal or Hollerith data
Other Arithmetic mode
Args Number of arguments used to reference symbol
Prop Blank Programmer defined function or subroutine
Ir-P- Formal parameter
LIBRARY Call by value library function
Refs Lines on which symbol was referenced

In T or D mode, no LIBRARY functions appear since they are all called by name and most intrinsic
functions are compiled as external references.

60176600 Rev. E C-5

EXTERNALS TYPE ARGS

ABS REAL 1 ALOG REAL 1
EXP REAL 1 FUN1 REAL 1
FUN2 REAL p Iaes INTEGER 1
SLITE 1 SLITET 2
suB1 1 sue2 1

Inline Functions

Inline functions include names of intrinsic and statement functions appearing in the subprogram.
The subtitle line is:
INLINE FUNCTIONS TYPE ARGS DEF LINE REFERENCES

Name Mode Args Ftype Def Refs
Name Symbol name as it appears in the listing

Mode Arithmetic mode, NO TYPE means no conversion in mixed mode expressions

Args Number of arguments with which the function is referenced

Ftype INTRIN Intrinsic function

SF Statement function
Def Blank for intrinsic functions; the definition line for statement functions
Refs Lines on whic.. fimetion is referenced

Namelist Group Names

This listing includes names declared as namelist group names in NAMELIST statements. The
subtitle line is:

NAMELISTS DEF LINE REFERENCES

Name Line of definition References to group name

Statement and Format Labels

The label map includes all statement labels appearing in the program. Labels may be referenced in
input/output, GO TO, ASSIGN, IF or CALL statements with RETURNS lists. The subtitle line is:

STATEMENT LABELS DEF LINE REFERENCE
RA label Type Activity Def Refs

RA label Program relative address. Inactive labels are printed with a zero address.

Type Blank Executable statement number
FMT Format number
UNDEF Label is undefined

C-6 : 60176600 Rev. E

Activity

Def

Refs

Blank Label is active or referenced

INACTIVE Label is inactive (statement number)

NO RETS

Label is defined as a format number and not referenced

Line number in which label appeared in columns 1-5 of a source statement

Lines in which label was referenced

Active labels are those for which the compiler has not deleted all references by optimization.

The following example contains the only reference to the label 5 in a program.

because the compiler deletes jumps to the next statement.

5
10

IF(X)10,5, 10

X=1

continue

The label is inactive

Labels referenced only in DO statements as loop terminators are not assigned addresses.

Inactive labels and those used as loop terminators cannot be assigned any meaningful address by the
compiler.

STATEMENT LABELS

8 1
0 201
0 301
0 401
2561 499
0 502
2311 505
2254 508
0 512
2623 599
2331 602
g 800
DO-Loop Maps

INACTIVE

INACTIVE

INACTIVE

INACTIVE
FMT

INACTIVE

FMT
INACTIVE

99
299
399
ug2
500
503
506
510
513
600
701
6327

FMT
FMT
FMT

[~ R~=R-=]

2205

(=]

2303
2241

INACTIVE 2317
INACTIVE 2647

2660

i0¢0
300
400
403
501
504
507
511
514
601
799
6328

INACTIVE
INACTIVE

INACTIVE

FHT
FMT

This map is a printout of all DO loops appearing in the source program and their properties. The
Loops are listed in order of their appearance

map may be generated by the R = 2 or R = 3 option.

in the program. The subtitle line is:

LOOPS

fwa

fwa

term

mf

LABEL INDEX

term mf index

First word address of loop body

FROM-TO
-1t

LENGTH

len prop

Label associated with end of loop, or blank for I/O loop

PROPERTIES

* Loop index is kept in memory to generate code for loop counting
mechanism

60176600 Rev. E

blank Other

index Variable used to control loop

1f-1t Numbers of first and last lines of loop

len Number of instruction words generated for body of loop

prop If loop can be optimized, one of these messages is printed:
OPT Loop has no properties which inhibit optimization

INSTACK Loop is seven words or less, compiler assembled in 6600 mode
If loop is not optimized by the compiler, the reasons are listed:

EXT REFS Loop contains references to an external subroutine or function, or
it is an input/output loop

ENTRIES Loop is entered from outside its range

EXITS Loop contains references to labels outside its range
NOT Loop is not innermost loop in a nest
INNER

Loops that fit in the 6600 instruction stack have a maximum length of seven words, and usually
run two to three times as fast as a comparable loop that does not fit in the stack.

Common Blocks

Common block synibols include common block names and names declared in common statements to
be variables and arrays in common. The subtitle line is printed:

COMMON BLOCKS LENGTH MEMBERS - BIAS NAME (LENGTH)

bname blen bias mname (size)
bname Block name
blen Total block length

When the common block members are to be printed (R = 3), the following details appear for each
member declared in a COMMON statement.

bias Common relative address (distance from block origin)
mname Member name
size Number of words allocated for member

If an equivalence class is linked to common, all members of the class become members of the
common block. These members are listed in the equivalence class printout.

C-8 : 60176600 Rev. E

Equivalence Classes

This class of symbol is collected only when R = 3. All members of an equivalence class explicitly
mentioned in EQUIVALENCE statements are listed. Any symbols added through linkage to common
are not included. The subtitle is:

EQUIV CLASSES MEMBERS - BIAS NAME (LENGTH)
pbase base clen bias mname (size)
pbase *ERROR* Class is in error (more than one member in common or block ﬂ
origin extended by equivalence)
base member Class in common

blank Other

base If the class is local, base is the name of the base member of the class, the
one with the smallest address, (If the class is in common, the name of the
symbol in common which linked the equivalence class to the common block
is printed.) When an equivalence class is in common, the base member of
the equivalence class is the first member of the common block.

clen Class length or span

bias Distance from the class base to the member
mname Member name

size Number of words allocated for the member

Members of a class are printed in the order of increasing bias. If the class is in error, the
numbers associated with the class length and bias are meaningless.

Program Statistics

At the end of the reference map, the statistics are printed in octal and decimal. The subtitle line is:

STATISTICS

program length Program length including code, storage for local variables, arrays, con-
stants, temporaries, etc., but excluding buffers and common blocks.

buffer length Total space occupied by I/O buffers and FETs
common length Total common length, excluding blank common
blank common Length of blank common

STATISTICS

PROGRAM LENGTH 7228 466 1
BUFFER LENGTH 20228 1042

60176600 Rev. F C-9

Error Messages

The following error messages are printed if sufficient storage is not available:

CANT SORT THE SYMBOL TABLE INCREASE FL BY NNNB
or

REFERENCES AFTER LINE NNN LOST INCREASE FL BY NNNB

DEBUGGING (USING THE REFERENCE MAP)

New Program:

The reference map can be used to find names that have been punched incorrectly as well as other
items that will not show up as compilation errors. The basic technique consists of using the com-
piler as a verifier and correcting the FE errors until the program compiles.

Using the listing, the R=3 reference map, and the original flowcharts, the following information
should be checked by the programmer:

Names incorrectly punched

Stray name flag in the variable map

Functions that should be arrays

Functions that should be inline instead of external

Variables or functions with incorrect mode

Unreferenced format statements

Unused formal parameters

Ordering of members in common blocks

Equivalence classes

Existing Program:
The reference map can be used to understand the structure of an existing program. Questions

concerning the loop structure, external references, common blocks, arrays, equivalence classes,
input/output operations, and so forth, can be answered by checking the reference map.

C-10 . : 60176600 Rev. E

LIBRARY SUBPROGRAMS

Intrinsic Function
& No. of Arguments

Absolute value

1)

Truncation

1)

Modulo

Choosing largest
value (=2)

Choosing smallest
value (=2)

Float (1)

Fix (1)

60176600 Rev. F

Definition

la]

trunc () = [a] if a=0

-[-a] if a<0
where the function repre-
sented by [a] is defined
to be the integer i that

satisfies i=a<i+1

MOD or AMOD (a
is defined to be

- *
a trunc(al/az) a

M
aX(al,az,)

Min (al,az,)

Conversion from
integer to real

Conversion from
real to integer

173‘2)

2

Symbolic Type of

Example Name Argument Function
Y=ABS(X) ABS Real Real
J=IABS(I) IABS Integer Integer
DOUBLE A, B DABS Double Double
B=DABS(A)
Y=AINT(X) AINT Real Real
I=INT(X) INT Real Integer
DOUBLE Z IDINT Double Integer
J=IDINT{Z)
B=AMOD(A1, A2) AMOD Real Real
J=MOD(I1,12) MOD Integer Integer
DM=DMOD(D1, D2) DMOD Double Double
X=AMAXO0(I, J,K) AMAXO0 Integer Real
A=AMAX1(X,Y,Z) AMAX1 Real Real
L=MAXO0(,J,K,N) MAXO0 Integer Integer
I=MAX1(A, B) MAX1 Real Integer
DOUBLE W,X,Y,Z DMAX1 Double Double
W=DMAXI1(X,Y,Z)
Y=AMINO(I, J) AMINO Integer Real
Z=AMIN1(X,Y) AMIN1 Real Real
L=MINO(I, J, K) MINO Integer Integer
J=MIN1(X,Y) MIN1 Real Integer
DOUBLE A, B,C DMIN1 Double Double
C=DMIN1(A, B)
XI=FLOAT(I) FLOAT Integer Real
IY=IFIX(Y) IFIX Real Integer

Intrinsic Function Symbolic Type of

& No. of Arguments Definition Example Name Argument Function
Transfer of sign (2) Sign of ag times |aq| Z=SIGN(X,Y) SIGN Real Real
J=ISIGN(I1,12) ISIGN Integer Integer
DSIGN Double Double
Positive difference (2) aj - Min(a,ay) Z=DIM(X, Y) DIM Real Real
J=IDIM(I11,12) IDIM Integer Integer
Truncate to obtain most DOUBLE Y SNGL Double Real
significant part of double X=SNGL(Y)

precision argument (1)

Obtain real part of COMPLEX A REAL Complex Real

complex argument (1) B=REAL(A)

Obtain imaginary part of D=AIMAG(A) AIMAG Complex Real

complex argument (1)

Express single precision DOUBLE Y DBLE Real Double

argument in double Y=DBLE(X)

precision form (1)

Express two real a1 + a, V-1 - COMPLEX C CMPLX Real Complex

arguments in complex C=CMPLX(A1,A2)

form (2)

Obtain conjugate of a COMPLEX X,Y CONJG Complex Complex

complex argument (1) Y=CONJG(X)

Shift (2) Shift aj by ag bit B=SHIFT(A,I) SHIFT a;: Single Octal
positions: word

left circular if a
is positive; right
with sign extension
if ay is negative

ag: Integer

Logical product (2) aj A a, C=AND(A1,A2) AND Single word Octal
Logical sum (2) 3, v 3, D=0OR(A1, A2) OR Single word Octal
J Complement (1) —a B=COMPL(A) COMPL Single word Octal
I Masking MASK()) - MASK Integer Octal

D-2 60176600 Rev. F

External Function

& No. of Arguments Definition
Exponential (1) ed
Natural logarithm (1) loge(a)
Common Logarithm (1) 1og10 (a)
Trigonometric sine (1) sin (a)
Trigonometric cosine cos (a)

(1)
Hyperbolic tangent tanh (a)

(1)
Square root (1) (a)l/ 2
Arctangent (1) arctan (a)

(2) arctan (al/az)

Modulus (1) V AIMAG2(a) tREAL2(a)

Arccosine (1) arccos (a)

60176600 Rev. D

Example

Z=EXP(Y)

DOUBLE X,Y
Y=DEXP(X)

COMPLEX A, B
B=CEXP(A)
Z=ALOG(Y)
Y=DLOG(X)
B=CLOG(A)

B=ALOG10(A)
DD=DLOG10(D)

Y=SIN(X)
DS=DSIN(D)
CS=CSIN(C)

X=COS(Y)
DC=DCOS(D)
CC=CCOS(C)

B=TANH(A)

Y=SQRT(X)
DY=DSQRT(DX)
CY=CSQRT(CX)

Y=ATAN(X)
DY=DATAN(DX)
B=ATAN2(Al, A2)
D=DATAN2(D1,D2)

CM=CABS(CX)

X=ACOS(Y)

Symbolic Type of
Name Argument TFunction

EXP Real Real
DEXP Double Double
CEXP Complex Complex
ALOG Real Real
DLOG Double Double
CLOG Complex Complex
ALOG10 Real Real
DLOG10 Double Double
SIN Real Real
DSIN Double Double
CSIN Complex Complex
COS Real Real
DCOS Double Double
CCOS Complex Complex
TANH Real Real
SQRT Real Real
DSQRT Double Double
CSQRT Complex Complex
ATAN Real Real
DATAN Double Double
ATAN2 Real Real
DATAN2 Double Double
CABS Complex Real
ACOS Real Real

External Functions
& No. of Arguments

Arcsine (1)

Trigonometric
tangent (1)

Random number
generator (1)

Address of argument a

)

1/0 status on buffer
unit (1)

1/0 status on non-
buffer unit (1)

Length (1)

Variable character-
istic (1)

Parity status on
non-buffer unit (1)

Date as returned by
SCOPE (1)

Current reading of
system clock as

returned by SCOPE (1)

Time in seconds (1)

Definition
arcsin (a)

tan (a)

ranf (a) returns values
uniformly distributed
over the range [0,1)

loc (a)

= -1 unit ready;
no error

=0 EOF on last
operation

= +1 parity error

=0 no EOF in
previous read

Number of central
memory words read
on the previous I/0
request for a particu-
lar file

-1 = indefinite
+1 = out of range

0 = Normal

0 = no parity error on
previous read

date(a)

time(a)

second (a)
(accumulated CP
time)

Example
X=ASIN(Y)

Y=TAN(X)

=RANF(DUM)

P=LOCF(X)

IO=UNIT(6)

IFL=EOF(4)

L=LENGTH(J)

LEN=LEGVAR(V)

IP=<IOCHEC(5)

WHEN=DATE(D)

CLTIM=TIME(A)

CLTM=SECOND(A)

Symbolic Type of

Name Argument Function
ASIN Real Real
TAN Real Real
RANF Dummy Real
LOCF Symbolic Integer
UNIT Integer Real

EOF Integer Real
LENGTH Integer Integer
LEGVAR Real Integer
IOCHEC Integer Integer
DATET Value Hollerith

Returned

TIMET Variable Hollerith
SECONDT Real Real

T These routines may be used as functions or subroutines. The value is always returned via the argument and
via the normal function return.

60176600 Rev. E

Subroutine
& No. of Arpuments

Set Sense Light (1)

Test Sense Light (2)

Test Sense Switch (2)

Terminate (0)

Console Comment (1)

Console Value (2)

Obtain current

generative value of

RANF between 0 and 1 (1)
Initialize generative
value of RANF (1)

Dump memory (3-60)

Input checking (2)

Definition

1= 1i=6 turn sense light
ison. i =0 turn off all
sense lights.

If sense light i is on
j=1. Ifoff j =2 Always
turn sense light i off

If sense switch i is down
j=1. If sense switch i is
up j =2.

Terminate program exe-
cution and return control
to the monitor

Place a message of up to
80 characters on dayfile

Display up to a 10 charac-
ter message and value in
the dayfile¥

ranget (a)

ranset (a), the generic
value is set to the nearest
odd number = a

dump (a, b, f)
dump A to B according to f

ERRSET (a,b), set maxi-
mum number of errors, b,
allowed in input data before
fatal termination. Error
count kept in a.

Example

CALL SLITE(I)

CALL SLITET(, J)

CALL SSWTCH(I, d)

CALL EXIT

CALL REMARK (2HHI)

CALL DISPIA
(2HX=,20.2)

CALL RANGET (X)

CALL RANSET (X)

CALL DUMP(A, B, 1)
CALL PDUMP(X,Y,0)

CALL ERRSET(A, B)

Symbolic
Name

SLITE

SLITET

SSWTCH

EXIT

REMARK

DISPLA

RANGET

RANSET

DUMP
PDUMP

ERRSET

Type of
Argument

Integer

Integer

Integer

Hollerith

as= Hollerith

as=real or
integer

Symbolic

Real

Logical

Integer
Real
Double
Complex

Symbolic
Integer

TCharacters with a display code value above 57g are not allowed. The message must be terminated with binary

zeros, even if an entire word is necessary.

mination automatically.)

60176600 Rev. D

(Use of a Hollerith constant of any form will provide such a ter-

INTERMIXED COMPASS SUBPROGRAMS E

Subprograms written in COMPASS may be intermixed with FORTRAN coded subprograms in the
source deck. COMPASS subprograms must begin with a card containing the word IDENT in columns
11-15, and terminate with card containing the word END in columns 11-13. Columns 1-10 of the

IDENT and END cards must be blank; column 14 of the END card must be blank.,

Calling Sequence

When the FORTRAN compiler encounters a reference to an external subprogram, subroutine, or
function the following calling sequence is generated:

SA1 Argument list (if parameters appear)

RJ Subprogram name
where the argument list consists of consecutive words of the form:
VFD 60/argumenti

followed by a zero word.

Control Return

The COMPASS subprogram must restore the initial contents of A0 in A0 upon returning control to the
calling subprogram. When the COMPASS subprogram is entered via a function reference, the re-
sult of that function must be in X6 or X6 and X7 with the least significant or imaginary part of the
double precision or complex result appearing in X7.

60176600 Rev. D E-1

STATEMENT FORMS F
Statements Classification Page
Entry Points
PROGRAM s NT 9-1
cen 9-1
PROGRAM s (fl’fz’ ,fn) N
SUBROUTINE s N 9-2
SUBROUTINE s (a_,a_,...,a) N 9-2
1’2 n
SUBROUTINE s, RETURNS (bl’bz’ e ,bm) N 9-2
S een e N 9-2
SUBROUTINE s (al,az, ,an),RETURNS (bl’bz’ ,bm)
g N 9-8
FUNCTION f (al,az, ce ,an)
REAL FUNCTION f (al,az, A ,an) N 9-8
DOUBLE FUNCTION f (al,az, v ,an) N 9-8
COMPLEX FUNCTION f (al,az, . ,an) N 9-8
INTEGER FUNCTION f (a ,a,,...,2) N 9-8
LOGICAL FUNCTION f (al,az, ce ,an) N 9-8
DOUBLE PRECISION FUNCTION f (al,az, e ,an) N 9-8
ENTRY s N 9-5
Specification Program Declaration
BLOCK DATA N 9-10
BLOCK DATA d N 9-10
Inter-subroutine
EXTERNAL v_,V_,...,V NS 8-17
1’2 n
Inter-subroutine Transfer Statements
CALL s 4-12
ce 4-12
CALL s (al,az, ,an)
CALL s, RETURNS (b,,b_,...,b_) 4-12
1’72 m
T N=Non-executable, S=Specification, E=Executable.
60176600 Rev. D r-1

Statements (Cont'd) Classification Page

CALL s (al,a2,...,an), RETURNS (bl’bz""’bm) E 4-12
RETURN E 4-14
RETURN a E 4-14

Data Declaration and Storage Allocation

Type Declaration

REAL V_,V_,...,V NS 8-7
1’2 n
DOUBLE V_,V_,...,V NS 8-7
172 n
COMPLEX vl,vz,.. .,vn NS 8-7
INTEGER vl,vz, “ee ,vn NS 8-7
LOGICAL v, ,V_, ...,V NS 8-7
1772 n
DOUBLE PRECISION VisVgree sV NS 8-7
ECS vl,vz,...,vn NS 8-7
TYPE REAL vl,vz, ceeaVy NS 8-7
TYPE DOUBLE VirVgreeeaVy NS 8-7
TYPE COMPLEX VisVgreeesVp NS 8-7
TYPE INTEGER Vi Vgree sV NS 8-7
TYPE LOGICAL VisVgseee ,vn NS 8-7
TYPE DOUBLE PRECISION VisVgreeesV NS 8-7
TYPE ECS ViV eeesV NS 8-7
Storage Allocation
DIMENSION vl(ll) , v2(12) yeoe ,vn(ln) NS 8-1
COMMON /xl/al/. .. /xn/an NS 8-3
EQUIVALENCE (kl) , (k2) yeeey (kn) NS 8-6
DATA kl/dl/, kz/dz/, e ,kn/dn/ N 8-8
DATA (r;=d)), (£,=d,),...,(r =d) N 8-10
Statement Function
P = 9-

f (al,az, ,an) e E 7

F-2 60176600 Rev. D

Symbol Manipulation and Control

Replacement Statements

Arithmetic
v=e { Logical

Masking
Intra-program Transfers

GO TO k
GO TO i, (kl’kz’

oK)

n

GO TO (k Ky, .- k), e

IF (e) kl’kz’k3
IF (e) kl,kz

IF (e) s
Loop Control

DOni =ml,m2,m3

Miscellaneous Program Controls

ASSIGN k TO i
CONTINUE
PAUSE
PAUSE n
STOP

STOP n

Input/Output

1/0 Format

FORMAT (q;t12t222

60176600 Rev. D

.. .tnzan)

Classification

H =B B & B3 3

m B & &8 8=

Page

3-1
3-3
3-3

4-1
4-1
4-2
4-3
4-4

4-5

4-1

4-12
4-15
4-15
4-14
4-14

1/0 Control Statements Classification Page

READ f,k E 5-3
READ (u) k E 5-4
READ (u) E 5-4
READ (u,) k E 5-2
READ (u,f) E 5-2
WRITE (u) k E 5-4
WRITE (u,f) E 5-3
WRITE (u,f) k E 5-3
PRINT f,k E 5-4
PUNCH 1,k E 5-4
BUFFER IN (u,p) (A, B) E 7-2,1-2
BUFFER OUT (u,p) (A, B) E 7-2,1-2
Internal Manipulation
ENCODE (n,f,A) k E 1-6,7-3
DECODE (n,f,A) k E 1-6,7-3
Tape Hahdling
ENDFILE u E 5-10
REWIND u E 5-9,1-5
BACKSPACE u E 5-9,I-5
Miscellaneous
-6
NAMELIST /y,/a /y,/a,/. .. /y /2 N 5
Program Termination
END N 4-15

F-4 60176600 Rev. D

SYSTEM ROUTINE SPECIFICATIONS G

The SYSTEM routine handles error tracing, diagnostic printing, termination of output buffers, and
transfer to specified non-standard error procedures. All the FORTRAN mathematical routines rely
on SYSTEM to complete these tasks, Also a FORTRAN coded routine may call SYSTEM. Any of

the parameters used by SYSTEM relating to a specific error may be changed by a user routine during
execution. The END processor also makes use of SYSTEM to dump the output buffers and print an
error summary. Since the initialization routine (Q8NTRY.), the end processors (END,, STOP.,

and EXIT.), and SYSTEM must always be available, these routines are combined into one subprogram

with multiple entry points.

The calling sequence to SYSTEM passes the error number as the first parameter and an error
message as the second parameter. Several different messages may be associated with one error
number. The error summary given at program termination lists the total number of times each
error number was encountered.

The error number of zero is accepted as a special call to end the output buffers and return. If no
OUTPUT file is defined before SYSTEM is called, no errors are printed and a message to this effect
appears in the dayfile. Each printed line is subjected to the line limit of the OUTPUT buffer; when
the limit is éxceeded, the job is terminated.

The error table is ordered serially (the first error corresponds to error number 1) and it is ex~
pandable at assembly time. The last entry in the table is a catch-all for any error number which
exceeds the table length. An entry in the error table appears as follows:

Print Error
Print Frequency Print Detection F/ A/ Non-Standard
Frequency Increment Limit Total NF NA Recovery Address
8 8 12 12 1 1 18

Print Frequency = PF

Print Frequence Increment = PFI

PF =0 and PFI =0, the diagnostic and traceback information are not listed.

PF =0 and PFI = 1, the diagnostic and traceback information are listed until the print limit is
reached.

PF =0 and PFI =n, the diagnostic and traceback information are listed only the first n times
unless the print limit is reached first.

PF =n, the diagnostic and traceback information are listed every n@ time until the print limit
is reached.

60176600 Rev. D G-1

Fatal (F)/ Non-Fatal (NF)

If the error is non-fatal and a non-standard recovery address is not specified, error messages are
printed according to PRINT FREQUENCY and control is returned to the calling routine.

If the error is fatal and no non-standard recovery address is specified, error messages are printed
according to PRINT FREQUENCY, an error summary is listed, all output buffers are terminated,

and the job is terminated.

If a non-standard recovery address is specified, see Non-Standard Recovery.

Non-Standard Recovery

SYSTEM supplies the non-standard recovery routine with the following information:

Al Address of parameter list passed to the routine which detected the error

X1 Address of the first parameter

A0 Address of parameter list of the routine that called the routine which detected the error
Bl Address of a secondary parameter list, which contains, in successive words:

Error number passed in SYSTEM
Address of diagnostic word available to SYSTEM
Address within auxiliary table if A/NA bit is set, otherwise zero

Instruction consisting of RJ to SYSTEM in upper 30 bits and trace back information
in lower 30 bits for the routine that called SYSTEM

A2 Address of error table entry in SYSTEM

X2 Contents of error table entry

Information in the secondary parameter list is not available to FORTRAN-coded routines.

Non-Fatal Error

The routine which detected the error and SYSTEM are delinked from the calling chain and the non-
standard recovery routine is entered. When this routine exits in the normal routine, control returns
to the routine which called the routine which detected the error.

Thus, any faulty arguments may be corrected, and the recovery routine is allowed to call the rou-
tine which detected the error, providing corrected arguments. By not correcting the faulty argu-
ments in the recovery routine, a three routine loop can develop between the routine which detects

the error, SYSTEM, and the recovery routine. No checking is done for this case.

Fatal Error
SYSTEM calls the non-standard recovery routine in the normal fashion, with the registers set as

indicated above. If the non-standard recovery routine exits in the normal fashion returning control
to SYSTEM, an error summary is listed, all output buffers are terminated, and the job is terminated.

Use of the A/NA Bit

The A/NA bit is used only when a non-standard recovery address is specified.

If this bit is set, the address within an auxiliary table is passed in the third word of the secondary
parameter list to the recovery routine. This bit allows more information than is normally supplied
by SYSTEM to be passed to the recovery routine. The bit may be set only during assembly of SYS-
TEM, as an entry must also be made into the auxiliary table. Each word in the auxiliary table must
have the error number in its upper 10 bits so that the address of the first error number match is
passed to the recovery routine. An entry in the auxiliary table for an error is not limited to any
specific number of words.

The traceback information is terminated as soon as one of the following conditions is detected:

The calling routine is a program.
The maximum traceback limit is reached.
No traceback information is supplied.
To change an error table during execution, a FORTRAN type call is made to SYSTEMC with the
following parameters:
Error number
List containing the consecutive locations:
Word 1 Tatal/non-fatal (fatal = 1, non-fatal = 0)
Word 2 Print frequency
Word 3 Print frequency increment (only significant if word 2 = 0) special values:

word 2 =0, word 3 =0 never list error
word 2 =0, word 3 =1 always list error
word 2 = 0, word 3 =X list error only the first X times

Word 4 Print limit
Word 5 Non-standard recovery address
Word 6 Maximum traceback limit

If any word within the parameter list is negative, the value already in table entry is not to be
altered.

60176600 Rev. D G-3

(Since auxiliary table bit may be set only during assembly of SYSTEM, only then can an auxiliary
table entry be made.)

Error Listing

Message supplied by calling routine:

ERROR NUMBER xxxx DETECTED BY zzzzzzz AT yyyyyy 2zzzzzzz and cccccc are routine
CALLED FROM cccccc AT ADDRESS wwwwww names, yyyyyy and are

or

relocatable addresses

CALLED FROM ccccce AT LINE dddd

(dddd is FORTRAN source line count)

ERROR SUMMARY

ERROR

XXXXX

TIMES
yyyy

(all numbers are decimal)

NO OUTPUT FILE FOUND

Functions of Entry Points

Q8NTRY.
STOP.
EXIT.
END.

SYSTEM

SYSTEMC

Initialize I/0 buffer parameters
Enter STOP in dayfile and begin END processing
Enter EXIT in dayfile and begin END processing

Terminate all output buffers, print an error summary, transfer control to the
main overlay if within an overlay; in any other case exit to monitor.

Handles error tracing, diagnostic printing, termination of output buffers and
either transfers to specified non-standard error recovery address, terminates
the job or returns to calling routine depending on type of error.

Changes entry to SYSTEM's error table according to arguments passed.

60176600

Execution Diagnostics

Routine

ACGOERS$

ACOS$

ALOGS$

ALOG10$

ASINS

ATANS

ATAN2$

CABS$

ZTOI$

CCOS$

CEXP$

CLOG$

COsS$

Message

ERROR IN COMPUTED GO TO STATEMENT:

INDEX VALUE INVALID

ABS(R).GT.1.0
INFINITE ARGUMENT
INDEF ARGUMENT

ZERO ARGUMENT
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

ZERO ARGUMENT
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

ABS(R).GT. 1.0
INFINITE ARGUMENT
INDEF ARGUMENT

INFINITE ARGUMENT
INDEF ARGUMENT

X=Y=0.0
INFINITE OR INDEF ARGUMENT

FLOATING OVERFLOW
INFINITE OR INDEF ARGUMENT

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
INFINITE OR INDEF ARGUMENT

INFINITE OR INDEF ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

INFINITE OR INDEF ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

ZERO ARGUMENT
INFINITE OR INDEF ARGUMENT

ARG TOO LARGE, ACCURACY LOST
INFINITE ARGUMENT
INDEF ARGUMENT

60176600 Rev. E

Error

No.

10

11

12

13

Routine

CSINS$

CSQRT$

DABS$

DATANS

DATANZ2$

DTOD$

DTOI$

DTOZ$

DTOX$

DCOS$

DEXPS$

Message

INFINITE OR INDEF ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

INFINITE OR INDEF ARGUMENT

INFINITE ARGUMENT
INDEF ARGUMENT

INFINITE ARGUMENT
INDEF ARGUMENT

X=Y=0.0
INFINITE OR INDEF ARGUMENT

FLOATING OVERFLOW

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR INDEF ARGUMENT

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
INFINITE OR INDEF ARGUMENT

FLOATING OVERFLOW IN D**REAL(Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(D) TOO LARGE

INFINITE OR INDEF ARGUMENT

FLOATING OVERFLOW

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR INDEF ARGUMENT

ARG TOO LARGE, ACCURACY LOST
INFINITE ARGUMENT
INDEF ARGUMENT

ARGUMENT TOO LARGE, FLOATING OVERFLOW
INFINITE ARGUMENT
INDEF ARGUMENT

Error
No.

14

15

16

17

18

19

20

21

21

22

23

60176600 Rev. D.

Routine

DLOG$

DLOG10$

DMODS$

DSIGN$

DSINS

DSQRT$

EXP$

ITOJ$

IDINT$

XTOD$

XTOI$

Message

ZERO ARGUMENT
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

ZERO ARGUMENT
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

DP INTEGER EXCEEDS 96 BITS
2ND ARGUMENT ZERO
INFINITE OR INDEF ARGUMENT

INFINITE ARGUMENT
INDEF ARGUMENT

ARG TOO LARGE, ACCURACY LOST
INFINITE ARGUMENT
INDEF ARGUMENT

NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

ARGUMENT TOO LARGE, FLOATING OVERF LOW
INFINITE ARGUMENT
INDEF ARGUMENT

INTEGER OVERFLOW
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER

INTEGER OVERF LOW
INFINITE OR INDEF ARGUMENT

FLOATING OVERFLOW

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR INDEF ARGUMENT

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
INFINITE OR INDEF ARGUMENT

60176600 Rev. D

Error

No.

24

25

27

28

29

30

31

32

33

34

Error

Routine Message No.
XTOY$ FLOATING OVERFLOW 35

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE OR INDEF ARGUMENT

SIN$ ARG TOO LLARGE, ACCURACY LOST 36
INFINITE ARGUMENT
INDEF ARGUMENT

SLITES ILLEGAL SENSE LITE NUMBER 37
SLITET$ ILLEGAL SENSE LITE NUMBER 38
SQRTS NEGATIVE ARGUMENT 39

INFINITE ARGUMENT
INDEF ARGUMENT

SSWTCHS$ ILLEGAL SENSE SWITCH NUMBER 40

TANS ARG TOO LARGE, ACCURACY LOST 41
INFINITE ARGUMENT
INDEF ARGUMENT

TANH$ INFINITE ARGUMENT 42
INDEF ARGUMENT

ITOD$ FLOATING OVERFLOW 44
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR INDEF ARGUMENT

ITOX$ FLOATING OVERF LOW 45
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE OR INDEF ARGUMENT

1TOZ$ FLOATING OVERFLOW IN I**REAL(Z) 46
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(I) TOO LARGE
INFINITE OR INDEF ARGUMENT

G-8 60176600 Rev., D

Routine

XTOZ$

FTNERRS$

INPUTNS$
OVERLAS$
SEGMENS$

BACKSP$
BUFFEI$

BUFFEO$

ENDFIL$
IFENDF$
INPUTBS$

INPUTO$
OUTPTNS$

INPUTCS$
INPUTN$

60176600 Rev. E

Message

FLOATING OVERFLOW IN X**REAL(Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG (Z)*LOG(X) TOO LARGE

INFINITE OR INDEF ARGUMENT

COMPILATION ERROR ENCOUNTERED DURING PROGRAM
EXECUTION

TOO FEW CONSTANTS FOR UNSUBSCRIPTED ARRAY
FATAL ERROR IN LOADER

FATAL ERROR IN LOADER
NON-FATAL ERROR IN LOADER

UNASSIGNED MEDIUM, FILE NAME: XXXXXXX

UNASSIGNED MEDIUM, FILENAME: XXXXXXX
END-OF-FILE ENCOUNTERED, FILENAME: XXXXXXX
WRITE FOLLOWED BY READ ON FILE: =XXxXXXXX
BUIFFER DESIGNATION BAD--FWA, GT. LWA

UNASSIGNED MEDIUM, FILENAME: XXXXXXX
BUFFER SPECIFICATION BAD--FWA. GT. LWA

UNASSIGNED MEDIUM, FILENAME: XXXXXXX
UNASSIGNED MEDIUM, FILENAME: XXXXXXX

UNASSIGNED MEDIUM, FILENAME: XXXXXXX
END-OF-FILE ENCOUNTERED, FILENAME XXXXXXX

UNASSIGNED MEDIUM, FILENAME: XXXXXXX

END-OF-FILE ENCOUNTERED, FILENAME: XXXXXXX

PRECISION LOST IN FLOATING INTEGER CONSTANT
NAME LIST DATA TERMINATED BY EOF, NOT $
NAMELIST NAME NOT FOUND

NO I/O MEDIUM ASSIGNED

WRONG TYPE CONSTANT

INCORRECT SUBSCRIPT

TOO MANY CONSTANTS

(,$, OR = EXPECTED, MISSING

VARIABLE NAME NOT FOUND

BAD NUMERIC CONSTANT

MISSING CONSTANT AFTER *

UNCLEARED EOF ON A READ

READ PARITY ERROR

Error
No.

47

48

49
50

51
52

53

54
55
56
57

58
59

60
61

62
63

64

65
66

Routine
INPUTSS
IOCHECKS

KODERS$

KRAKERS

LENGTHS$

F TNBIN$
OUTPTB$

OUTPTCS$
CONNECS

OUTPTN$
OUTPTS$
REWINMS$
KODERS$

INPUTB$

INPUTCS

OUTPTB$

OUTPTCS$

G-10

Message
*DECODE*CHAR/REC. GT. /50*
UNASSIGNED MEDIUM, FILENAME; XxxXxxxXxX
*ILLEGAL FUNCTIONAL LETTER
*IMPROPER PARENTHESIS NESTING
*EXCEEDED RECORD SIZE
*SPECIFIED FIELD WIDTH ZERO
*FIELD WTH . LE. DECIMAL WTH
*HOLLERITH FORMAT WITH LIST
*ILLEGAL FUNCTIONAL LETTER
*IMPROPER PARENTHESIS NESTING
*SPECIFIED FIELD WIDTH ZERO
*EXCEEDED RECORD SIZE
*ILLEGAL DATA IN FIELD * {*
*DATA OVERF LOW *>*
*HOLLERITH FORMAT WITH LIST
UNASSIGNED MEDIUM, FILENAME: XXXXXXX

UNASSIGNED MEDIUM, FILENAME: XXXXXXX
UNASSIGNED MEDIUM, FILENAME: xxxx

OUTPUT FILE LINE LIMIT EXCEEDED
ENCODE*CHAR/REC . GT. 150%

UNASSIGNED MEDIUM, FILENAME: XXXXXXX
*LIST/FMT CONFLICT, SNGL/DBLE

WRITE FOLLOWED BY READ ON FILE: XXXXXXX
LIST EXCEEDS DATA, FILENAME: Xxxxxxx

PARITY ERROR READING (BINARY) FILE: xXXXXXX

WRITE FOLLOWED BY READ ON FILE: xxxxxxx
PARITY ERROR READING (CODED) FILE: XXXXXXX

PARITY ERROR ON LAST READ ON FILE: XXXXXXX

PARITY ERROR ON LAST READ ON FILE: XXXXXXX

Error
No.,

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82

83

84
85
86
87
88
89

90

91
92

93

94

60176600 Rev. D

Error

Routine Message No.
IOCHECS$ UNASSIGNED MEDIUM, FILENAME: XXXXXXX 95
*STATUS OF BUFFER I/O MUST BE CHECKED BY THE UNIT 96

FUNCTION * FILENAME: XXXXXXX

INITMS$ UNASSIGNED MEDIUM, FILENAME: xxxxxxx 97
READMS$

WRITMS$

INITMS$ FILE DOES NOT RESIDE ON A RANDOM ACCESS DEVICE 98
READMS$ FILE WAS NOT OPENED BY A CALL TO SUBROUTINE OPENMS 99
WRITEMS$

READMS$ RECORD NAME REFERRED TO IN CALL IS NOT IN THE FILE INDEX 100
INITMS$ INDEX BUFFER IS OF INSUFFICIENT LENGTH 101
WRITMS$

LABELS$ UNASSIGNED MEDIUM, FILENAME: XxXXXXX 102
READMS$ *READ PARITY ERROR* 102
READMSS$ SPECIFIED INDEX IN THIS MASS STORAGE CALL .GT. MASTER 110

INDEX OR IS ZERO
WRITEC$ ECS UNIT HAS LOST POWER OR IS IN MAINTENANCE MODE 112

READEC$: ECS READ PARITY ERROR 113

60176600 Rev, D G-11

DECK STRUCTURE H

Program Unit Structure

FORTRAN Extended program unit source decks are divided into five sections as follows; they must
conform to the order shown.

Section Content

A Program unit identification (PROGRAM, SUBROUTINE, FUNCTION, or
BLOCK DATA card)

Specification statements (DIMENSION, TYPE, etc.)

Statement function definition

Executable statements X=Y, GOTO14, etc)

H U o W

END statement

Section A should appear in every program,. Sections B, C and D may include FORMAT statements
and comment lines. Sections C and D may include NAMELIST and DATA statements. If Section A
is a BLOCKDATA statement, Sections C and D may not be included in the prograr: unit. Section E
should appear if multiple subprograms are used, since if no recognizable header card is present
on the following subprogram, a fatal error occurs.

Source Decks

Source decks are comprised of complete FORTRAN program unit source decks and/or COMPASS
source decks. Each COMPASS source deck must begin with an IDENT card (columns 11-15) and
terminate with an END card (columns 11-13); in both cases columns 1-10 must be blank. FORTRAN
and COMPASS program unit source decks may be in any order.

60176600 Rev. E H-1

SAMPLE DECK STRUCTURE

1. Compilation only

6
7
8 / .
9 '5
II
(Source Deck
7
8
9 (FTN.
JOB.
2. Compilation and Execution
6
7
583 /) :llll
Il
((Data
7
8 —
9 Sf—
y
(Source Deck
7
8
9 (LGO.
(FTN.
JOB.

H-2 : 60176600

3.

Compilation and Execution with Binary Subroutine

6
7
8
9 y
Data Deck
7
8
9 7
/8
? Y/
/ Binary Deck
7
8
9
W((Source Deck
7
8
o (LGO.
(LOAD(INPUT)

(FTN.

JOB.

4. FORTRAN LOAD
AND EXECUTE
SEGMENTS

(END |
data 4|
7 |
3 (‘SUBROUTINE ALLAN
(SUBROUTINE START2
(END

VA

AL

Vs

(

Preparation of

CALL SEGMENT(L, 2, L2)

I

SEGMENT call

1.2(2)=0

Loads JACK,JOHN from

L2(1)=5L HELP2 |

L
L

file HELP2 at level 2

Loads ALLAN, SAM from

/CALL SEGMENT(L, 1, L2)-

file HELP1 at level 1

Preparation of

=L HELP1 I

SEGMENT call

L=3LLGO |

IMENSION L2(2)
(PROGRAM STARTL(INPUT,OUT PUT)I

60176600 Rev. C

5. OVERLAY PREPARATION OF
0,0; 1,0;and 1,1

T |

g = |
data

pu 1

data

/END B

PROGRAM MLT

OVERLAY(FRANK, 1,1) 1

Source Deck

|

Source Deck

END
/ CALL OVERLAY(5HFRANK, 1, 1)

A
L

PROGRAM RDY |

OVERLAY(FRANK, 1, 0)

1

SUBROUTINE GROUCH(X)

=
I

/END

CALL OVERLAY(5HFRANK, 1, 0)

Source Deck CALL GROUCH(40, 0)

V4

I

yA

/)
/PROGRAM LEO(INPUT,OUTPUT, TAPE])

OVERLAY(FRANKI, 0, 0) 1

60176600 Rev. D

OBJECT TIME 1/O I

STRUCTURE OF FILES

A file is an ordered sequence of user logical records. Each type of input/output that a FORTRAN
programmer can use has a user logical record definition:

FORMATTED I/O

READ f,k PUNCH f,k READ(u, f) WRITE (u, f)
PRINT f,k READ(u, f) k WRITE (u, f) k

For formatted 1/0 the user logical record (also referred to as a unit record) corresponds to a card
image or a print line. User logical records may be a maximum of 1507y characters for input but
only 1377, are transferred on output records. A user logical record corresponds to a tape block
on S and L tapesT; on X tapes it always is 1367 ¢ characters.

UNFORMATTED I/O

READ (u) k WRITE (u) k

When I/O is unformatted, the user logical record is the same as a SCOPE logical record on internal
files or XTT magnetic tape files. On an S and L magnetic tape the physical representation of user
logical records is the same as that on a SCOPE internal tape although there is no SCOPE-logical-
record definition (i.e., on S- and L-style tapes each tape block will consist of a maximum of 5120
characters with a user logical record terminated by a tape block shorter than 5120 characters).

Since the physical representation of FORTRAN unformatted user logical records is the same on S and
L tapes as that on SCOPE internal tapes, the files may be used interchangeably; a tape created as a
SCOPE internal tape may be read as an S or L tape. Likewise, a tape created by a FORTRAN job as
an S or L tape may be read as a SCOPE internal tape. Tapes written as X tapes must be read as X
tapes.

Throughput of small user logical records can be increased if S magnetic tapes are used instead of
SCOPE internal or L tapes. Non-stop tape motion can often be achieved when the buffer size is in
excess of 2048 10 words, which is four physical record units on magnetic tape.

BUFFER I/O

BUFFER IN (u,k) (A, B) BUFFER OUT (u,k) (A, B)

TStranger tape and Long record tape.
TTExternal tape in SCOPE 2 format.

60176600 Rev. E I-1

On SCOPE internal files (including tape files) and binary S magnetic tapes, the user logical record is
represented as a SCOPE logical record. On a coded X tape, the user logical record will always
consist of 14 words (136 characters on tape), and any attempt to write a record longer will result in

a fatal diagnostic. On S and L magnetic tapes, the user logical record is defined to be one tape block,
the information between two record gaps or between the load point and a record gap. On S magnetic
tapes, 512 words is the maximum record length.

BUFFER I/O
BUFFEI (BUFFER IN)

Only one logical record is read each time BUFFEI is called. If the block length specified by the call

is longer than the logical record, excess block locations will not be changed by the read. If the logi-

cal record is longer than the block, excess words in the logical record are passed over. The number
of CM words transmitted to the program block may be obtained by referencing LENGTH.

After using a BUFFER IN (or BUFFER OUT) statement on unit i, and prior to a subsequent reference
to unit i, or to the information, the status of the BUFFER operation must be checked by a reference
to the UNIT function. This check insures that requested data has been transferred, and the buffer
parameters for the file have been properly restored. If an attempt is made to BUFFER IN past an
end-of-file without referencing the UNIT function, BUFFEI will abort the program with the diagnostic:
*BUF IN*ENDFILE file name

If a read is attempted, when the last operation on the file was a write, BUFFEI will abort the program
with the diagnostic: *BUF IN**LAST OP WRITE, file name

If the starting address for the block is greater than the terminal address, BUFFEI will abort the pro-
gram with the diagnostic: *BUF IN***FWA, GT. LWA, file name

If an attempt is made to BUFFER IN from an undefined file (file not declared on the PROGRAM card),
BUFFEI will abort the job with the diagnostic: *BUF IN**UNASSIGNED MEDIUM, file name

BUFFEO (BUFFER OUT)
One logical record is written each time the routine is called; record length is LWA-FWA+1.

A BUFTFER OUT operation must be followed by a reference to the UNIT function. Since BUFFEO
changes the buffer arguments for the file to point to the CM block specified in the call, calls to other
routines involving the same file may not follow any buffer operation until the pointers have been
restored by the UNIT function. If LWA is less than FWA, the program will be aborted =nd the follow-
ing diagnostic will appear in the dayfile: *BUF OUT**FWA.GT.LWA, file name

The UNASSIGNED MEDIUM diagnostic is similar to that issued by BUFFEL

1-2 60176600

Random Access Files (Mass Storage)

Two degrees of sophistication are available using the mass storage subroutines. It is possible to
utilize the routines in a normal fashion having just one master index, or it is possible to have a
master index and many sub-indexes. A file may have a name or a number index and is referenced
in one of the following ways:

CALL OPENMS (u, ix, 1, p) CALL WRITMS (u, fwa, n, i)
CALL READMS (u, fwa,n, i) CALL STINDX (u, ix, 1)

u is a logical unit number; ix is the first word address of the index in central memory; 1 is the index
length; p indicates how the file is referenced; fwa is central memory address of first word of record;
n is number of CM words to be transferred; i is record number or cell address of record name or
number. (See Chapter 5, Mass Storage 1/0.)

In all cases it is necessary to open (CALL OPENMS) the mass storage file before calling READMS,
WRITMS, or STINDX. If the file exists, OPENMS reads the master index into the CM area specified
in the call (the ix parameter).

The STINDX subroutine causes no transfer of data, it merely changes the file index in the FET to the
base specified in the call. After calling STINDX it is necessary to call READMS or WRITMS to read
in or create the new index. After making a call to STINDX, if the next operation on that file is to be
a random access write (WRITMS) and if the file is being referenced through a name index, the pro-
grammer must zero out the area reserved for the new index buffer (whose first word address is
specified by the ix parameter in the call to STINDX) prior to calling WRITMS. The master index
must be reset before termination of the job so that the correct index will be written on the file.

Upon termination of the job, the mass storage file is closed automatically by FORTRAN. At this
time the index as specified in the FET is written as a record on the file.

Examples:

1. PROGRAM MS (TAPE5)
DIMENSION I(10), B(20), C(30)
CALL OPENMS(5,1,10,0)

C READ MASTER INDEX INTO I

CALL READMS (5, B, 20, 4)

C READ RECORD 4 INTO B (ASSUME THIS RECORD IS A SUB-INDEX)
CALL STINDX (5, B, 20)

C ALL SUBSEQUENT OPERATIONS ON UNIT 5 WILL USE

C B AS THE INDEX FOR THE FILE

CALL STINDX (5,1, 10)
C RESTORE MASTER INDEX
END

60176600 Rev. E 3

2. PROGRAM MS (TAPES)

C PROGRAM FOR CREATING RANDOM FILE
DIMENSION J(10), B(7),XYZ(20), ZXY (10), YXZ(50)
DATA JOE,SAM, PETE,SUB1/3LJOE, 3LSAM, 4LPETE, 4LSUB1/
CALL OPENMS(5, J, 10, 1)

CALL STINDX(5, B, 7)
DO 10 =1,7
10 B()=0.

C USE INDEX B

CALL WRITMS(5,XYZ,20,JOE)
CALL WRITMS(5, ZXY, 10, SAM)
CALL WRITMS(5, YXZ,50, PETE)
CALL STINDX(5, J, 10)

CALL WRITMS(5, B, 7,SUBL)

C WRITE OUT THE SUB-INDEX
END

3. PROGRAM MS (TAPES5)

C THIS MS FILE HAS NO SUB-INDEXES
DIMENSION I(10)
CALL OPENMS(5,1, 10, 0)

C READ MASTER INDEX INTO I

C ANY READ OR WRITE ON THIS FILE WILL USE THE INDEX IN
C ARRAY I

END

The execution-time routine END will close the file, causing the index at I to be rewritten on the file.

Status Checking

UNIT Function

The UNIT (i) function checks the status of a buffered operation (BUFFER IN or BUFFER OUT only)
on logical unit i. The function returns values as follows:

-1 unit ready, no previous error
+0 previous read encountered an end-of-file
+1 parity error on previous read

Example:

IF(UNIT(i)) 12,14, 16

Upon return from the UNIT function, control is transferred to the statement labeled 12,14 or 16
if the value returned was -1, 0, or +1 respectively.

1-4 60176600 Rev, F

If the value returned is 0 or +1 the condition indicator is cleared before returning to program
control.

Note: If the UNIT function references a non-buffered unit (a unit referenced by I/O statements
other than BUFFER IN and BUFIFER OUT), the status returned will always indicate unit ready
and no previous error (-1).

EOF Function

The EOF (i) function tests for end-of-file read (non-buffered) on unit i. The value zero is returned
if no end-of-file was encountered on the previous read, or non-zero if end-of-file was encountered
on unit i.

Example:

IF (EOF(i)) 10,20

If i designates the file named INPUT, control will return to statement 10 if the previous read
encountered an end-of-file, or any 7/8/9 end-of-record card. Otherwise control will go to
statement 20.

The user should make the EOF check after each READ operation to insure against possible input/
output errors. If a READ on unit i is attempted and an EOF was encountered on the previous READ
operation, execution is terminated and a diagnostic message issued.

If the previous operation on unit i was a write, EOF will always return a zero value. Only when an
end-of-file is read will the end-of-file condition exist.

This function has no meaning when applied to a mass storage file., If the EOF function is called in
reference to a MS file, a zero value is always returned.

IOCHEC Function

The IOCHEC (i) function tests for parity errors on non-buffered reads on unit i. The value zero is
returned if no error occurs.

Example:

J = IOCHEC (i)
IF (J) 15,25

A value of zero is returned to J if no parity error occurs, and non-zero is returned otherwise.
Control would then transfer to the statement labeled 25 or 15 respectively. If a parity error
occurs, IOCHEC will clear the parity indicator before returning.

Parity errors are handled in the above fashion regardless of the type of the external device.

Only read parity errors are detected by the status checking functions. Write parity errors are
detected and a message is written in the dayfile by the SCOPE system,

60176600 Rev. E 1-5

A parity error indication reveals parity error somewhere within the current logical record.
For nonbuffered coded files, this does not necessarily mean the error occurred within the last
record requested by the program because the I/0 routines read a logical record ahead when-
ever possible.

Backspace/Rewind

If a BACKSPACE is requested on a coded file (except files created by the BUFFER OUT statement)
the file is logically moved back one unit record. The backspace is attempted within the I/0 buffer;
if this is not possible, the external I/O device is repositioned.

Backspace on binary files and files created by BUFFER I/0O statements reposition the external device
so that the last logical record becomes the next logical record.

When a BACKSPACE (or REWIND) request follows a write operation on a file, an end-of-file is

written followed by two backspaces (or by a rewind). Note that SCOPE may write trailer label infor-
mation immediately following the end-of-file written by FORTRAN.

FORMAT Field Separators

Field descriptors are normally delimited by field separators; however, some exceptions are
allowed. For example, the statement

10 FORMAT(F25. 22F 10, 3)

would be interpreted as two descriptors, F25.22 and F10.3. Tield separators should be used when-
ever ambiguity could result.

ENCODE/DECODE

Under SCOPE, a binary zero byte is used to terminate a unit record. When the DECODE processor
encounters a zero character (6 bits of binary zeros), that character is interpreted as a blank. Con-
version continues through n characters per record.

Whenever a record terminator (a slash or the right parenthesis if the list is not exhausted) is en-
countered in a FORMAT statement, the rest of the record is filled out with blanks (for ENCODE) or
ignored (for DECODE), and conversion continues beginning with the next record. (The length of
the record is specified by n in a DECODE (n,f,A)k or ENCODE (n,f,A)k statement.) The record

is restricted to 2 maximum length of 150 characters.

Example:

10 FORMAT (16(F10.4)) is illegal (the diagnostic EXCEEDED RECORD SIZE is issued)
10 FORMAT (10F10.4,/,6F10.4) is allowed

1-6 60176600 Rev. E

Labeled Files
Only files recorded on 1/2 inch magnetic tape may be labeled files.

When the PROGRAM line is compiled, FET's (File Environment Tables) are set up for each file
declared. All the fields in the FET label information for a given file are set to zero with one excep-
tion; the reel number is set to 1. If the file has been declared as labeled on a REQUEST control
card, SCOPE compares the label with the information in the FET when the file is opened. The in-
formation will not compare, and if the initial use of the file is for input SCOPE will allow the job

to continue only after instructions are entered from the display console to do so. If the initial use
of the file is for output SCOPE will write a default label on the tape and the job will continue.

In order for the FORTRAN programmer to compare label information or to create a standard label
containing given information, an object time subroutine (LABEL) is provided to set the desired
information into the FORTRAN prepared FET.

If the label information is properly set up, and subroutine LABEL is referenced prior to any other
reference to the file, then when the file is opened the label and the information are compared for
an input tape, or the information is written on an output tape.

The form of the call is:
CALL LABEL (u, fwa)
where:
u is the unit number

fwa is the address of the first of four consecutive words containing the desired label infor-
mation to be placed into the FET. The information must be in the mode and format
discussed in Appendix C of the SCOPE 3. 2 Reference Manual.

The four words beginning at fwa are transferred directly to words 10 through 13 of the FET for
the file designated by u.

Carriage Control Characters

Character Action Before Printing Action After Printing

A Space 1 Eject to top of next pagef
B Space 1 Skip to last line of page T
1 Eject to top of next page No spacef

2 Skip to last line on page No spaceT

+ No space No space

0 (zero) Space 2 No space

- (minus) Space 3 No space

blank Space 1

T The top of a page is indicated by a punch in channel 8 of the carriage control tape for the 501 printer
and channel 1 for the 512 printer. The bottom of page is channel 7 in the 501 and 12 in the 512.

60176600 Rev. E I-7

When the following characters are used for carriage control, no printing takes place. The remainder
of the line will not be printed.

Q Clear auto page eject

R Select auto page eject

S Clear 8 vertical lines per inch (512 printer)

T Select 8 vertical lines per inch (512 printer)

PM Output remainder of line (up to 30 characters) on the B display and the dayfile and

(col 1-2) wait for the JANUS typein /OKuu. For files assigned to a printer, n.GO. must be
typed to allow the operator to change form or carriage control tapes.

any other See SCOPE Reference Manual.

Any pre-print skip operation of 1, 2 or 3 lines that follows a post skip operation will be reduced to
0, 1 or 2 lines.

The functions Q through T should be given at the top of a page. S and T can cause spacing to be

different from the stated spacing if given in other positions on a page. Q and R will cause a page
eject before the next line is printed.

Notes
Meaningful results are not guaranteed in the following circumstances:
1. Mixed mode files within a logical file.

2. Mixing buffer 1/0 statements and standard Read/Write statements on the same file (without a
REWIND in between) .

3. Requesting a LENGTH function on a buffer unit before requesting a UNIT function.

4, Two consecutive buffer 1/0 statements on the same file without the intervening execution of a
UNIT function call.

A FORTRAN formatted WRITE will produce X's or I's in an output field under the following
conditions:

1. Fixed point format will produce R's in the output field if the internal data is out of range
(greater than or equal to 2**48),

2. TFloating point format will produce R's in the output field if the internal data is out of range
or I's if it is indefinite (as defined for 6400/6600 hardware).

Disposition of files at run termination:

1. All indexed files (randomly accessible files) are closed through SCOPE.

2. Output files are demarcated by FORTRAN with an end-of-file and are not rewound. No
action is taken on input files.

1-8 60176600 Rev. E

SUBPROGRAM AND MEMORY STRUCTURE J

This appendix describes the arrangement of code and data within PROGRAM, SUBROUTINE and
FUNCTION subprograms. It does not describe the arrangement of data within common blocks
because this is specified by the programmer; however, their placement in memory is described.

SUBROUTINE and FUNCTION Structure

The code within procedure subprograms is arranged in the following blocks (relocation bases) in the
given order.

START. The code for the primary entry and the saving of AO.

VARDIM. The address substitution code and the variable dimension initialization code.
ENTRY. Either a full word of NO's or nothing.

CODE. The code generated by compiling executable statements followed by parameter

lists for external procedure references within the current procedure.

FORMAL One local block for each formal parameter in the order in which they appear on
PARAM- the subroutine header card, to hold tables used in address substitution for pro-
ETERS cessing reference to dummy arguments.

DATA. Storage for usage declared variables, format statements, constants and compiler

generated temporaries.
DATA.. Storage for dimensioned local variables.
HOL. Storage for Hollerith constants.

Main subprograms consist of the following blocks:

START. The 1I/0 buffers and a table of files specified in the PROGRAM card.
CODE. The transfer address code plus the code specified for the CODE. block above.
DATA. Storage for usage declared variables, format statements, constants and compiler

generated temporaries.
DATA.. Storage for dimensioned local variables.

HOL. Storage for Hollerith constants.

60176600 Rev. D J-1

Memory Structure

Subprograms are loaded as encountered in the input file from RA+100B toward FL. Labeled common
blocks are loaded prior to the subprogram in which they first occur. Library routines are loaded
immediately after the last encountered subprogram and these are followed by blank common.

The following is a typical memory layout.

RA

RA+100B Communication Region

Common block ABLE
PROGRAM TEST includes I/0 buffers.
SUBROUTINE SUBR

SYSTEMS$
OUTPTC$
SI0$
GETBAS$
KODERS$
SIN.

Blank Common

J-2 60176600 Rev. D

FORTRAN -INTERCOM INTERFACE K

When a program is entered at an INTERCOM control point, INTERCOM associates INPUT and
OUTPUT files of the program with the user's remote terminal device, and all references to these
files are directed to the terminal. With calls to the CONDIS library subprogram, the user may
specify other files to be associated with the terminal.

The user can associate any logical file in his program with a remote device, with the statement:
CALL CONNEC (lfn)

If a file is already connected, the request will be ignored. If the file has been used already, but
not connected, this request will clear the file's buffer, write an end-of-file, and backspace over it
before the connection is performed.

A file is disconnected by:
CALL DISCON (Ifn)

This request will be ignored if the file is not connected. After a disconnect, the file is reassociated
with its former device:

Ifn File name parameter of the form:
tape logical unit number, 1 to 99

Hollerith constant in the format hlLfilename

integer variable containing either of the above

Examples:

CALL CONNEC (3LEWT)
CALL DISCON (6)
K=5LINPUT

CALL DISCON (K)

J=12

CALL CONNEC (J)

Any files listed on the PROGRAM card may be connected or disconnected during program execution.
An attempt to connect or disconnect an undefined file will result in a fatal execution time error,
and the job will be terminated. ’

CONNEC and DISCON calls are ignored when programs are not executed through an INTERCOM
control point.

Interactive input/output is supported only for formatted and NAMELIST reads and writes.

60176600 Rev. E K-1

INDEX

ANSI

ANSI Usage Diagnostics B=-9
AREA

AREA STATEMENT 11-15
ARITHMETIC

ARITHMETIC ASSIGNMENT 3-1

ARITHMETIC EXPRESSIONS 2-1

ARITHMETIC IF, TWO-BRANCH 4-5

ARITHMETIC IF, THREE-BRANCH 4-4
Array

Array storage order 1-8
Arrays

Arrays 1-8

ARRAYS STATEMENT 11-2
Assembler

Assembler Diagnostics B-11
ASSEMBLY

ASSEMBLY PARAMETER 12-10
ASSIGNED GOTO

ASSIGNED GOTO 4-1

ASSIGNMENT
ASSIGNMENT STATEMENTS 3-1
AUXILIARY
AUXILIARY DATA TRANSMISSION STATEMENTS
Aw
Aw INPUT 6-11
Aw OUTPUT 6-11
BACKSPACE

BACKSPACE 5-9
Backspace/Rewind

Backspace/Rewind 1I-6
BINARY

BINARY OUTPUT PARAMETER 12-2

OUTPUT PARAMETER, BINARY 12-2
BLOCK

BLOCK DATA ROUTINES 9-1

BLOCK DATA SUBPROGRAM 9-10

BUFFEI

BUFFEI I-2
BUFFEO

BUFFEO I-2
BUFFER

BUFFER I/0 1I-1
BUFFER IN 7-2

60176600 Rev. F

7-1

Index-1

BUFFER OUT 7-2
BUFFER STATEMENTS 7-1

BUFFERS, SMALL 12-11
CALL
CALL 4-12
CALLING
CALLING SEQUENCE PARAMETER 12-3
CALLS
CALLS STATEMENT 11-3
Carriage
Carriage Control Characters I-7
CHARACTER
CHARACTER SET 1-1, A-1
Comment
Comment 1-2
COMMON
COMMON 8-3
COMMON BLOCKS, ARRANGEMENT OF 8-4
COMMON BLOCK SYMBOLS, CROSS REFERENCE MAP (-8
COMMON,
COMMON, LABELED 8-3
COMMON, UNLABELED 8-4
COMPASS
COMPASS SUBPROGRAMS, INTERMIXED E-1
Complex
Complex 1-5
COMPLEX CONVERSIONS 6-~12
COMPUTED
COMPUTED GOTO 4-3
CONSTANTS
CONSTANTS 1-3
Continuation
Continuation 1-2
CONTINUE
CONTINUE 4-12
CONTROL
CONTROL CARD 12-1
CONTROL CARD EXAMPLES 12-10
CONTROL CARD FORMAT 12-1
CONTROL CARD, OVERLAY 10-2
CONTROL CARD PARAMETER 12-1
CONTROL CARD, SEGMENT 10-4
CONTROL STATEMENTS 4-1
PROGRAM CONTROL 4-14
CONVERSION
CONVERSION SPECIFICATION 6-2
Core
Extended Core Storage (ECS) 1-7
CROSS
CROSS REFERENCE MAP 12-3, (-1
CROSS REFERENCE MAP DEBUGGING USE (C-10
CROSS REFERENCE MAP ERROR MESSAGES (C-10
CROSS REFERENCE MAP EXTERNAL REFERENCES C(C-5
CROSS REFERENCE MAP FILE NAMES C(C-4
CROSS REFERENCE MAP FORMAT (C-2
CROSS REFERENCE MAP FORMAT LABELS (C-6
CROSS REFERENCE MAP INLINE FUNCTIONS (-6
CROSS REFERENCE MAP LOOP MAPS C-7
Index-2

60176600 Rev.

F

CROSS REFERENCE MAP NAMELIST GROUP NAMES C(C-6
‘CROSS REFERENCE MAP PROGRAM STATISTICS C-9
CROSS REFERENCE MAP STATEMENT LABELS (-6

CROSS REFERENCE MAP SYMBOLS C(C-2

CROSS REFERENCE MAP SYMBOLS COMMON BLOCKS (-8
CROSS REFERENCE MAP SYMBOLS, ENTRY POINT C-2
CROSS REFERENCE MAP SYMBOLS EQUIVALENCE CLASSES
CROSS REFERENCE MAP SYMBOLS, VARIABLES (-3

DATA
AUXILIARY DATA TRANSMISSION STATEMENTS 7-1
DATA AND SPECIFICATION STATEMENTS 8-1
DATA STATEMENT 8-38
DATA TRANSMISSION, AUXILIARY 7-1
DATA TYPES 1-3
DEBUG
DEBUG DECK STRUCTURE 11-9
DEBUG STATEMENT 11-14
DEBUG STATEMENT FORMAT 11-14
DEBUGGING
DEBUGGING FACILITY 11-1
DEBUGGING MODE PARAMETER 12-9
DEBUGGING USING CROSS REFERENCE MAP C-10
DECK
DECK STRUCTURE H-1

DECODE
DECODE 7-4
DECODE/ENCODE

DECODE/ENCODE I-6

DECODE/ENCODE STATEMENTS 7-2
DESCRIPTORS

FIELD DESCRIPTORS +6-1
Diagnostics

ANSI Usage Diagnostics B-9

Assembler Diagnostics B-11

DIAGNOSTICS B-1

USASI Usage Diagnostics B-9

DIMENSION
DIMENSION 8-1
DIMENSIONS,
DIMENSIONS, VARIABLE 8-2
DO

DO LOOP EXECUTION:- 4-8

DO NESTS 4-7

DO STATEMENT 4-6
Double

Double Precision 1-4
Dw.d

Dw.,d INPUT 6-10

Dw.d OUTPUT 6-~10

ECS
ECS 1-7
ECS I/0 5-10
I/0, ECS 5-10
EDITING
EDITING SPECIFICATIONS 6-14

60176600 Rev., F

Index-3

Editing, H Descriptor

Editing, X Descriptor

Editing, T Descriptor

Editing, *...* 6-17

Editing, #.,..# 6-17
ELEMENTS

ELEMENTS AND PROPERTIES
ENCODE

ENCODE 7-3
ENCODE/DECODE

ENCODE/DECODE 1I-6
ENCODE/DECODE STATEMENTS 7-2

END

END 4-15

ENDFILE
ENDFILE
Entry

Entry Points,

5-10

ENTRY STATEMENT 9-5

EOF

EOF Function 1I-5

EQUIVALENCE

EQUIVALENCE 8-5

EQUIVALENCE CLASS SYMBOLS,

ERROR

ERROR MESSAGES,
ERROR TRACEBACK PARAMETER

Errors
Errors,
Errors,
Errors,

Ew.d

FC B
FE B

Ew.d INPUT 6-4
Ew.d OUTPUT 6-7

EXIT

Exit Parameter

EXPRESSION

12-9

EXPRESSION EVALUATION
EXPRESSIONS 2-1

Extended
Extended

EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
External

FC

FC Erfors

FE

FE Errors

FIELD

CROSS REFERENCE MAP

6-15
6-14
6-17

1-1

CROSS REFERENCE MAP SYMBOLS (C-2

CROSS REFERENCE MAP

c-10
12-3

2-8

Core Storage (ECS) 1-7

8-7
FUNCTION 9-8

FUNCTION REFERENCE 9-9
References CROSS REFERENCE MAP C-5

B-3

B-3

FIELD DESCRIPTORS 6-1
FIELD SEPARATORS 6-2

FIELD SEPARATORS,

FORMAT Field Separators

FILE

FILE NAMES,

Index-4

FORMAT 1I-6

I-6

CROSS REFERENCE MAP C-4

60176600 Rev.

F

FILE STRUCTURE 1I-1
Files
Files, Labeled I-7

Files, Random Access I-3

FILE,
FILE, INPUT 5-3

FORMAT
FORMAT DECLARATION 6-1
FORMAT Field Separators

I-6

FORMAT LABELS, CROSS REFERENCE MAP

FORMAT STATEMENTS 6-1

FORMAT, AREA STATEMENT 11-8
FORMAT, ARRAYS STATEMENT 11-9
FORMAT, CALLS STATEMENT 11-10
FORMAT, CONTROL CARD 12-1
FORMAT, DEBUG STATEMENT 11-14
FORMAT, FUNCS STATEMENT 11-5
FORMAT, GOTOS STATEMENT 11-7
FORMAT, NOGO STATEMENT 11-8
FORMAT, REPEATED 6-18

FORMAT, STORES STATEMENT 11-6
FORMAT, TRACE STATEMENT 11-7

FORMATTED
FORMATTED I/0 5-2, 1I-1
FORMAT,

FORMAT, CROSS REFERENCE MAP C(C-2
FORMAT, OFF STATEMENT 11-16

FORMAT, VARIABLE 6-19
FUNCS

FUNCS STATEMENT 11-5
FUNCTION

FUNCTION REFERENCE EXTERNAL 9-9

FUNCTION Structure J-1

FUNCTION SUBPROGRAMS 9-7

Functions
Functions, EOF 1I-5
Functions, IOCHEC 1I-5
Functions, UNIT 1I-4

FUNCTIONS,
FUNCTIONS,
FUNCTIONS,

GOTO

EXTERNAL 9-
INTRINSIC 9
STATEMENT 9

COMPUTED GOTO 4-3

GOTO 4-1
GOTOS

GOTOS STATEMENT 11-7

Gw.d

Gw.d INPUT
Gw.d OUTPUT

H

6-9
6-9

Editing, H Descriptor 6-15

Hollerith
Hollerith

60176600 Rev.

1-5

F

Index-5

“~

N
\z

I .
I'“Errors B-8
Identification
Identification Field 1-2
IF
IF STATEMENTS 4-4
IF, TWO-BRANCH LOGICAL 4-6
IF,
IF, LOGICAL 4-5
IF, THREE-BRANCH ARITHMETIC 4-4
IF, TWO-BRANCH ARITHMETIC 4-5
Inline
Inline Functions, CROSS REFERENCE MAP
INPUT
INPUT DATA (NAMELIST) 5-7
INPUT FILE 5-3
INPUT PARAMETER, SOURCE 12-1
INPUT, Aw 6-11
INPUT, Dw.d 6~
INPUT, Ew.d 6
INPUT, Fw.d 6-
INPUT, Gw.d 6
INPUT, 1w 6-3, 6-12
INPUT, Ow 6-10
INPUT, Rw 6-12
INPUT/OQUTPUT
INPUT/OUTPUT STATEMENTS 5-1
Integer
Integer 1-3
INTERCOM
INTERCOM INTERFACE K-1
INTERMIXED
INTERMIXED COMPASS SUBPROGRAMS E-1
INTRINSIC
INTRINSIC FUNCTION 9-8
IOCHEC
IOCHEC Function I-5
I/0
I/0 LISTS 5
I/0 MODES 5-
I/0 REFERENCE PARAMETER 12-10
I1/0, BUFFER 1I-1
I/0, ECS 5-10
I/0, FORMATTED 5-2, 1I-1
I/0, MASS STORAGE 5-10
I/0, OBJECT TIME 1I-1
I/0, UNFORMATTED 5-5, I-1

-1
1

LABELED
LABELED COMMON 8-3
Labeled Files I-7

Labels

Labels, Statement 1-2
Level

Level, Reference Map 12-11
LIBRARY

LIBRARY ROUTINES 9-1
LIBRARY SUBPROGRAMS D-1
LIBRARY SUBROUTINES 9-6

Index-6

C-6

60176600 Rev,

F

LIST
LIST PARAMETER 12-2
Logical
Logical 1-5
LOGICAL ASSIGNMENT 3-3
LOGICAL EXPRESSIONS 2-5
LOGICAL IF 4-5
LOGICAL IF, TWO-BRANCH 4-6
LOOP
LOOP MAPS, CROSS REFERENCE MAP C-7

1w

lw INPUT 6-3, 6-12

lw OUTPUT 6-3, 6-12
MAIN

MAIN PROGRAM 9-1
MAP

CROSS REFERENCE MAP 12-3, C-1
CROSS REFERENCE MAP DEBUGGING USE C-10
CROSS REFERENCE MAP ERROR MESSAGES (C-10
CROSS REFERENCE MAP EXTERNAL REFERENCES C-5
CROSS REFERENCE MAP FILE NAMES C-4
CROSS REFERENCE MAP FORMAT (-2
CROSS REFERENCE MAP FORMAT LABELS C-6
CROSS REFERENCE MAP INLINE FUNCTIONS C-6
CROSS REFERENCE MAP LOOP MAPS C(C-7
CROSS REFERENCE MAP NAMELIST GROUP NAMES C(C-6
CROSS REFERENCE MAP PROGRAM STATISTICS (-9
CROSS REFERENCE MAP STATEMENT LABELS C-6
CROSS REFERENCE MAP SYMBOLS (-2
CROSS REFERENCE MAP SYMBOLS COMMON BLOCKS C-8
CROSS REFERENCE MAP SYMBOLS, ENTRY POINT C-2
CROSS REFERENCE MAP SYMBOLS EQUIVALENCE CLASSES
CROSS REFERENCE MAP SYMBOLS, VARIABLES (-3
Reference Level 12-11
MASKING
MASKING ASSIGNMENT 3-3
MASKING EXPRESSIONS 2-6
MASS
MASS STORAGE 1I-3
MASS STORAGE I/0 5-10
Memory
Memory Structure J-2
MEMORY STRUCTURE, SUBPROGRAM AND J-1
MIXED-MODE
MIXED-MODE 3-2
MODES
MODES OF 1/0 5-1

NAMELIST
NAMELIST GROUP NAMES, CROSS REFERENCE MAP C-6
NAMELIST STATEMENT 5-6

NESTS,
NESTS, DO 4-7

60176600 Rev. F

Index-7

NEW
NEW RECORD 6-16
NOGO
NOGO STATEMENT 11-12

OBJECT
OBJECT OUTPUT PARAMETER 12-2
OBJECT TIME I/0 1I-1
OUTPUT PARAMETER, OBJECT 12-2
Octal
Octal 1-6
OFF
OFF STATEMENT 11-14
OPTIMIZATION
OPTIMIZATION PARAMETERS 12-4
OUTPUT
OUTPUT DATA (NAMELIST) 5-9
OUTPUT PARAMETER, BINARY 12-2
OUTPUT PARAMETER, OBJECT 12-2
OUTPUT, Aw 6-11
OUTPUT, Dw.d 6~
OUTPUT, Ew.d 6
OUTPUT, Fw.d 6
OUTPUT, Gw.d 6-
OUTPUT, 1w 6-3
OUTPUT, Ow 6-1
OUTPUT, Rw 6-1
OVERLAY
OVERLAY CONTROL CARDS 10-2
OVERLAYS
OVERLAYS 10-1
OVERLAYS AND SEGMENTS 10-1
Ow
Ow INPUT 6-10
Ow OUTPUT 6-10

P
P SCALE FACTOR 6-13
PARAMETERS
PARAMETERS, ASSEMBLER 12-10
PARAMETERS, BINARY OUTPUT 12-
PARAMETERS, CALLING SEQUENCE
PARAMETERS, DEBUGGING MODE 12

2
12-3

-9

PARAMETERS, ERROR TRACEBACK 12-3

PARAMETERS, EXIT 12-9
PARAMETERS, I/0 REFERENCE 12~
PARAMETERS, LIST 12-2
PARAMETERS, OBJECT OUTPUT 12-
PARAMETERS, OPTIMIZATION 12-4
PARAMETERS, ROUNDED ARITHMETIC
PARAMETERS, SOURCE INPUT 12-1
PARAMETERS, SYSTEM EDITING 12
PARAMETERS, SYSTEM TEXT FILE
PARAMETERS, UPDATE 12-3

PAUSE
PAUSE 4-15

Index-8

10

2

12-9

-10

12-9

60176600 Rev.

F i

PRINT/PUNCH

PRINT/PUNCH 5-4
PROGRAM

PROGRAM CONTROL 4-14

PROGRAM FUNCTION, SUBROUTINE, BLOCK DATA,
PROGRAM STATISTICS, CROSS REFERENCE MAP

PROPERTIES

PROPERTIES AND ELEMENTS 1-1
PUNCH/PRINT

PUNCH/PRINT 5-4

Random

Random Access Files I-3
READ

READ 5-2
READ/WRITE

READ/WRITE STATEMENTS 5-2
Real

Real 1-4
RECORD,

RECORD, NEW 6-16
REFERENCE

REFERENCE MAP LEVEL 12-11
RELATIONAL

RELATIONAL EXPRESSIONS 2-3
REPEATED

REPEATED FORMATS 6-18
RETURN

RETURN 4-14
REWIND

REWIND 5-9
Rewind/Backspace

Rewind/Backspace 1I-6
ROUNDED

ROUNDED ARITHMETIC PARAMETER 12-9
ROUTINES,

ROUTINES, BLOCK DATA 9-1

ROUTINES, LIBRARY 9-1

ROUTINES, PROGRAM FUNCTION 9-1

ROUTINES, SUBROUTINE 9-1

Rw
Rw INPUT 6-12
Rw OUTPUT 6-12
SCALE

P SCALE FACTOR 6-13

SCALE FACTOR, nP 6-13
SEGMENT

SEGMENT CONTROL CARDS 10-4
SEGMENTS

SEGMENTS 10-3

SEGMENTS AND OVERLAYS 10-1
SEGMENTS,

SEGMENTS, SECTIONS 10-4
SEPARATORS

FIELD SEPARATORS 6-2

60176600 Rev, F

AND LIBRARY ROUTINES
Cc-9

9-1

Index-9

SMALL
SMALL BUFFERS 12-11
SOURCE
SOURCE DECK STRUCTURE H-1
SOURCE INPUT PARAMETER 12-1
SOURCE PROGRAM CHARACTERS A-1
SPECIFICATION

SPECIFICATION AND DATA STATEMENTS

STATEMENT
STATEMENT FORMS F-1
STATEMENT FUNCTIONS 9-7
Statement Label 1-2

STATEMENT LABELS, CROSS REFERENCE MAP

STATEMENTS 1-1

Status

Status Checking I1-4
STOP

STOP 4-14
Storage

Storage Order, Arrays 1-8
STORES

STORES STATEMENT 11-6
SUBPROGRAM

SUBPROGRAM AND MEMORY STRUCTURE

SUBPROGRAM STRUCTURE H-1, J-1

SUBPROGRAM SUBROUTINES 9-2.1

SUBPROGRAMS, BLOCK DATA 9-10

SUBPROGRAMS, FUNCTION 9-7

SUBPROGRAMS, INTERMIXED COMPASS

SUBPROGRAMS, LIBRARY D-1
SUBROUTINES

SUBROUTINES 9-1

SUBROUTINE SUBPROGRAMS 9-2.,1
Subscripted

Subscripted Variables 1-9
SYMBOLIC

SYMBOLIC NAMES 1-3
SYMBOLS,

SYMBOLS, CROSS REFERENCE MAP. (-2

SYSTEM
SYSTEM EDITING PARAMETER 12-10

8-1

SYSTEM ROUTINE SPECIFICATIONS G-1

SYSTEM TEXT FILE PARAMETER 12-9

Index-10

C-6

60176600 Rev.

F

T

Editing, T Descriptor 6-17
TEXT

PARAMETERS, SYSTEM TEXT FILE 12-9
TRACE

TRACE STATEMENT 11-7
TRACEBACK

ERROR TRACEBACK PARAMETER 12-3
TYPE

TYPE DECLARATION 8-7

Unconditional

Unconditional GOTO 4-1
UNFORMATTED

UNFORMATTED I/0 5-5, 1I-1
UNIT

UNIT Function 1I-4
UNLABELED

UNLABELED COMMON 8-4
UPDATE

UPDATE PARAMETER 12-4
USASI

USASI Usage Diagnostics B-9

VARIABLE
VARIABLE DIMENSIONS 8-2
VARIABLE FORMAT 6-19
Variable Names 1-6
Variable Types 1-7
VARIABLES
VARIABLES 1-6
Variables, CROSS REFERENCE MAP SYMBOLS
Variables, Subscripted 1-9

WRITE

WRITE 5-3, 5-5
WRITE/READ

WRITE/READ STATEMENTS 5-2

Editing, X Descriptor 6-14

*

Editing, *...
Editing, 36000

b
o

'

(S
~

60176600 Rev. F

Index-11

-

VU VIV 1THIO 1 Ve

COMMENT SHEET CUNTROL DATA.

CORPORATION

TITLE: 6400/6500/6600 FORTRAN Extended Reference Manual

PUBLICATION NO. 60176600 REVISION F

Control Data Corporation solicits your comments about this manual with a view to improving its usefulness in later
editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM nNAME: POSITION:

BUSINESS
ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

FOLD

STAPLE

STAPLE

FOLD

STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Documentation Department

215 Moffett Park Drive
Sunnyvale, California 94086

; .
-

STAPLE

CUT ON THIS LINE

> »CUT OUT FOR USE AS LOOSE ~LEAF BINDER TITLE TAB

CONTROL DATA

CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO.. MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Pub. No. 60176600 Litho in U.S.A.

