19983900 &

CONTROL DATA
| @Ecokp[éwmorq ot
2.0
(2= H)
BASIC
VERSION 3

REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1
NOS/BE 1

INDEX TO BASIC STATEMENTS AND FUNCTIONS

APPEND

CALL
CHAIN
CLOSE

DATA
DEF
DELIMIT
DIM

END

FILE
FNEND
FOR

GOsuB
GOTO

Mathematical

ABS
ATN
COos
coT
EXP
INT
LGT
LOG
MAX
MIN
RND
ROF
SGN
SIN
SQR
TAN

Error and Interrupt Processing

ASL
ESL

ESM
NXL

R R A T A A R P A A A R A
NNRNNRNNRRNNNPDNNNNN

1

\n\n\nmm\nv‘\n\;n\n\n\nm\n\n\n

4-8
4-8
4-8
4-8

STATEMENTS
IF 4-2
IF END 7-5
IF GOTO ELSE 4-2
IF THEN ELSE 4-2
IF MORE 7-5
image 7-14
INPUT 7-9
JUMP 4-7
LET 3-1
MARGIN 7-21
MAT assignment 8-2
MAT INPUT 8-10
MAT PRINT 8-11
MAT PRINT USING 8-12
MAT READ 8-10
MAT WRITE 8-9
NEXT 4-3
NODATA 7-4
FUNCTIONS
String
ASC 5-4
CHR$ 5-4
LEN 5-5
LPAD$ 5-5
LTRM$ 5-5
LWRC$ 5-5
ORD 5-7
POS 5-7
RPAD$ 5-7
RPT$ 5-8
RTRM$ 5-8
STR$ 5-8
UPRC$ 5-9
VAL 5-9
System
CLK$ 5-4
CLK 5-4
DAT$ 5-4
TIM 5-4
USR$ 5-4

ON ATTENTION
ON ERROR

ON GOsuUB

ON GOTO

ON THEN
OPTION

PRINT
PRINT USING

RANDOMIZE
READ

REM

REM LIST
REM TRACE
RESTORE
RETURN

SET
SETDIGITS
STOP

WRITE

Matrix Manipulation

IDN
CON
TRN
ZER
INV
DET

Input/Output

LocC
LOF
TAB

3-2

7-11
7-14

5-3
7-23
3-4
12-7
9-1
7-4
6-2

7-7
7-22
3-4

7-6

19983500 G

19983900

@ S CONTROL DATA
CORPORATION

BASIC

VERSION 3
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1
NOS/BE 1

REVISION RECORD
REVISION DESCRIPTION
A Original printing.
B Includes corrections to revision A and user information pertaining to the Network Operating
(11-75) System/Batch Environment (NOS/BE Version 1.0).
C Includes minor editorial changes to revision B, plus modifications for the following new features:
(02-76) CHAIN Statement, user number function, file number 0, trace option, comments at end of source
lines, positioning beyond bad input items, and improved field length management.
D Revised to include new features upgrading the products to BASIC Version 3.2, PSR level 472.
(05-78) These consist of the IF THEN ELSE statement and the capability to handle large strings.
E Revised to include new features upgrading the product to BASIC Version 3.3, PSR level 485.
(11-78) These consist of the RPT function and the ON ATTENTION statement.
F Revised to reflect BASIC 3.4. The changes and additions inctude substring addressing; CYBER
(07-20-79) Interactive Debug facility; eight new string functions (LPADS, LTRMS$, LWRCS, ORD, POS, RPADS,
RTRMS, and UPRCS); alphabetic characters in file name must be uppercase; CALL statement
limitation with IF. . . THEN . . . ELSE; operating system terminology; and miscellaneous changes.
This printing obsoletes all previous editions.
G. Revised to conform to the American National Standard for Minimal BASIC (ANSI). Changes and additions
(10-31-80) include new statements OPTION and RANDOMIZE; subscript and index rounding; FOR. . .NEXT control
variable value; handling of unquoted strings; new RND and DET function forms; default array base 0 (zero);
formatting of large integers; new TAB features; ASCII default collating sequence; print comma spacing control;
redimensioning result matrices; reading numeric data as string data; INPUT validation; other miscellaneous
changes; and appendixes explaining guidelines for a possible CDC merge to ANSI standard BASIC and the
difference between BASIC 3.4 (last revision) and BASIC 3.5 (this revision). Released at PSR level 528. This
Publication No. | printing obsoletes all previous editions.
19983900
Address comments concerning
REVISION LETTERS I, O, Q AND X ARE NOT USED this manual to:

©COPYRIGHT CONTROL DATA CORPORATION 1975, 1976, 1978, 1979, 1980

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

All Rights Reserved or use Comment Sheet in the
Printed in the United States of America .
back of this manual

LIST OF EFFECTIVE PAGES

—

New features, as well as changes, deletions,

and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page

Revision

Front Cover
Inside Front Cover
Title Page

ii

ifi/iv

v

vi

vii thru x
Xi/xii

xiii

1-1 thru 1-16
2-1 thru 2-8
3-1 thru 3-5
-1 thru 4-8
thru 5-14
-1 thru 6-6

-1 thru 7-23
-1 thru 8-13
thru 9-6
-1 thru 10-6
-1 thru 11-6
1 thru 12-9
thru A-3

-1 thru B-12

I = O 00 N OV U1 D
bt et b et

N=O

(
bt N b R b b I\ b et |

POPT

?

thru D-5

IIG";""'II‘FIFH

N

H-3

Index-1 thru -4
Comment Sheet
Mailer

Summary Card - Front
Summary Card - Back
Inside Back Cover
Back Cover

D1 OOOMOTOOMOOOOMOOOOOMOOOOOMOOOOOOOOOHOD 't O !

19983900 G

iii/iv ®

PREFACE

S~ —

This manual describes the BASIC Version 3.5 language
which operates under control of the following operating
systems:

e NOS 1 for the CONTROL DATA® CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series
Computer Systems

e NOS/BE1 for the CDC® CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series
Computer Systems

CDC offers guidelines for the use of the software
described in this manual. These guidelines appear in
appendix E. Before using the software described in this
manual, the reader is strongly urged to review the content
of this appendix. The quidelines recommend use of this
software in a manner that reduces the effort required to
migrate application programs to future hardware or
software systems.

BASIC 3 is an extension of the original BASIC language
which was designed and implemented at the Dartmouth
College Computation Center. Although BASIC is normally
used interactively from a remote terminal, BASIC
programs can be compiled and executed as batch
programs. The CDC® CYBER Interactive Debug (CID)
facility can be used in interactive mode to debug a BASIC
program.

BASIC is an all-purpose programming language that
includes features which render it well-suited for scientific,
business, and educational applications. BASIC provides a
small but powerful set of easy-to-learn statements that are
similar to English and written in free format. Some of the
more important features provided by BASIC are:

e Numeric and character string manipulation
e Array definition and redimensioning
e Access to trigonometric, matrix, and string functions

e Facility for writing multiple-line and multiple-
argument user-defined functions

e Facility for calling BASIC and non-BASIC subroutines
e Facility to chain to other BASIC programs

e Matrix I/O for 1- and 2-dimensional numeric and string
arrays

19983900 G

e Output format determination, including various
commercial formats

e Manipulation of coded and binary files, including
random access for binary files

e FError detection and processing during program
execution

e Facility to trace program flow

e Facility to debug a program (CYBER Interactive
Debug)

This document is intended to describe these and other
BASIC features to both the nonprogrammer and the
experienced programmer. The information in this manual
is provided in three major parts:

e Section 1 is a primer or introduction to the BASIC
language directed at the nonprogrammer. Appendix H
contains sample BASIC programs.

e Sections 2 through 12 include reference information
that expands on section 1 information and is directed
at the experienced programmer. Appendixes A
through D support and summarize information in these
sections.

e Appendix E contains general feature use guidelines to
ensure ease of migration to future hardware or
software systems and appendix F contains an overview
of the differences between this version of BASIC
(BASIC 3.5) and the previous version (BASIC 3.4).
Appendix G summarizes those features that are
described in the American National Standard for
Minimal BASIC as implementation-defined.

You can find additional pertinent information in the
Control Data Corporation manuals. The NOS Manual
Abstracts and the NOS/BE Manual Abstracts are
pocket-sized manuals containing brief descriptions of the
contents and intended audience of all NOS and NOS/BE
manuals and all the product set manuals of these two
systems. The abstracts manuals can be useful in
determining which manuals are of greatest interest to a
particular user. The Software Publications Release History
serves as a guide in determining which revision level of
software documentation corresponds to the Programming
System Report (PSR) level of installed site software.

The manuals are listed alphabetically in gi'oupings that
indicate relative importance to the readers of this manual.

@ vi

The following manuals are of primary interest:

Publication
Network Products Interactive Facility User's Guide

Network Products Interactive F acility Version 1
Reference Manual

NOS Version 1 Reference Manual, Volume 1 of 2

NOS/BE Version 1 Reference Manual

The following manuals are of secondary interest:

Publication

CYBER Interactive Debug Version 1 Reference Manual
CYBER Loader Version 1 Reference Manual
INTERCOM Version 4 Reference Manual

INTERCOM Version 5 Reference Manual

NOS Time-Sharing Version 1 User's Guide

NOS Time-Sharing Version 1 User's Reference Manual
NOS Version 1 Manual Abstracts

NOS/BE Version 1 Manual Abstracts

Software Publications Release History

Text Editor Reference Manual

XEDIT Version 3 Reference Manual

CDC manuals can be ordered from Control Data Corporation, Literature and

Publication
Number

60455260
60455250

60435400
60493800

Publication

Number

60481400
60429800
60494600
60455010
60436400
60435500
84000420
84000470
60481000
60436100
60455730

Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or

parameters.

19983900 G

CONTENTS

;

NOTATIONS

1. BASIC PRIMER

Programming and L.anguages
Statement of the Problem
Analysis of Statements

REM Statement

LET Statement

PRINT Statement

IF, GOTO, and END Statements
Break-Even Program and Output

Expressions in BASIC
Arithmetic Expressions
Relational Expressions

Defining and Reading Data
DATA and READ Statements

Looping in BASIC
IF and GOTO Statements
FOR and NEXT Statements

Lists and Tables

Terminal Input and Output (I/O)

Using BASIC Under NOS and NOS/BE
NOS

Login Procedure for the
Interactive F acility
Login Procedure for the
Time-Sharing System
Sample Terminal Session
NOS/BE
Sample Terminal Session

2. ELEMENTS OF THE BASIC LANGUAGE

BASIC L anguage Structure
Character Set
Statement Structure
Program Structure
Constants
Numeric Constants
Integer Constants
Decimal Constants
Exponential Constants
String Constants
V ariables
Simple V ariables
Numeric
String
Subscripted V ariables
Substring Addressing
Expressions
Arithmetic Expressions
Rules for Writing Arithmetic
Expressions
Arithmetic Expression Evaluation
String Expressions
Concatenation
Relational Expressions
Simple Relational Expressions
Compound Relational Expressions

19983900 G

1-1
1-1
11
1-2
1-2
1-2
1-2
1-3
1-3
1-4
1-4
1-4
1-4
1-5
1-5
1-6
1-6
1-8
1-10
1-10

1-10

1-12
1-12
1-12
1-15

2-1

2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-5

2-5
2-5
2-5
2-6
2-6
2-6
2-7

3. FUNDAMENTAL STATEMENTS

Value Assignment
LET Statement
OPTION Statement and DIM Statement
OPTION Statement
Option Base n
Option Collate
DIM Statement
Program Comments
REM Statement
TAIL Comments
Program Termination
STOP Statement
END Statement

4, BASIC CONTROL STATEMENTS

Test and Branch Statements
GOTO Statement
ON GOTO Statement
IF Statement
IF...THEN...ELSE Statement
Looping
FOR...NEXT Statements
Error and Interrupt Processing
ON ATTENTION Statement
ON ERROR Statement
JUMP Statement
ASL Function
ESL Function
ESM Function
NXL Function

S. BASIC FUNCTIONS

Referencing a Function
Mathematical Functions
Random Number Generation
RND Function
RANDOMIZE Statement
System Functions
String Functions
ASC Function
CHRS$ Function
LEN Function
LPADS$ Function
LTRMS$ Function
LWRCS$ Function
ORD Function
POS Function
RPADS$ Function
RPT$ Function
RTRMS$ Function
STR$ Function
UPRCS$ Function
VAL Function
Error And Interrupt Processing
Matrix Functions
1/O FUNCTIONS
User-Defined Functions
Single-Line Function/DEF
Multiple-Line Functions/DEF ...FNEND

3-1

3-1
3-1
3.2
3-2
3-2
3.3
3.3
3.4

3-4
3-4
3-4
3-5

4-1

4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-5
4-5
4-7
4-7
4-8
48
48
4-8

5-1

5-1
5-1

5-1
5-3
5-3
5-3
5-4
5-4
5-5
5-5
5-5
5-5
5-7
5-7
5-7
5-8
5-8
5-8
5-9
5-9
5-9
5-9
5-9
5-11
5-11
5-12

vii ®

6. SUBROUTINES, SUBPROGRAMS, AND
CHAINING

BASIC Subroutines
GOSUB Statement
ON GOSUB Statement
RETURN Statement
External Subprograms
CALL Statement
Program Chaining
CHAIN Statement
CHAIN Processing

7. 1/O STATEMENTS AND FUNCTIONS

BASIC Files and File I/O Statements
File Access Methods
Permanent File Access
FILE Statement
CLOSE Statement

File Control Statements
RESTORE Statement
NODATA Statement
IF END Statement
IF MORE Statement
APPEND Statement

Binary 1/O Statements and Functions
WRITE Statement
READ Statement
SET Statement
LOC Function
LOF Function

Display Format 1/O Statements and Functions
INPUT Statement

Terminal Input

File Input
DELIMIT Statement
PRINT Statement
Default Print Formats

Numeric Formats

String Formats
Print Zoning

TAB Function
Print Using Statement

Image

Format Fields

Order Restrictions

Special Cases
MARGIN Statement
SETDIGITS Statement

Internal Data Table I/O
DATA Statement
READ Statement

8. MATRIX OPERATIONS

Matrix Definition and Declaration
Array Boundaries
Array Declaration
Redimensioning
Matrix Arithmetic
Matrix Assignment
Matrix Addition
Matrix Subtraction
Matrix Multiplication
Matrix Scalar Multiplication

® viii

6-1
6-1
6-2
6-2
6-2
6-3
6-5
6-5
6-5

7-1

7-1
7-2
7-2
7-2
7-3
7-4
7-4
7-4
7-5
7-5
7-6
7-6
7-6
7-7
7-7
7-8
7-8
7-8
7-9
7-9
7-9
7-10
7-11
7-12
7-12
7-13
7-13
7-13
7-14
7-14
7-16
7-18
7-20

7-21 .

7-22
7-22
7-23
7-23

8-1

8-1
8-1
8-2
8-2
8-2
8-2
8-3
8-3
8-4
8-4

" Matrix Functions

Matrix CON Function
Matrix IDN Function
Matrix ZER Function
Matrix INV Function
Matrix TRN Function
Matrix DET Function
Matrix 1/O
MAT WRITE Statement
MAT READ Statement
MAT INPUT Statement
MAT PRINT Statement
MAT PRINT USING Statement

9. DEBUGGING

BASIC Debug Features
Inserting PRINT Statements
Conditional TRACE Statement
Unconditional TRACE Parameter
CYBER Interactive Debug
Referencing BASIC Line Numbers and
Variables
Variables
Line Numbers
Resuming Program Execution
GO Command
GOTO Command
Setting and Clearing Breakpoints and Traps
SET BREAKPOINT Command
CLEAR BREAKPOINT Command
SET TRAP Command
CLEAR TRAP Command
Default Traps
Displaying Program Values
PRINT Command for CID
MAT PRINT Command for CID
LIST VALUES Command
Changing and Testing Program Values
LET Command
IF Command for CID
Other Commands and Features

10. TERMINAL OPERATION UNDER NOS

Entering a Program
BASIC Subsystem

BATCH Subsystem

Using Data Files
Renumbering BASIC Lines

11. TERMINAL OPERATION UNDER NOS/BE

Entering a Program

Interactive BASIC Terminal Session
BASIC Command

Using Data Files

Renumbering BASIC Lines

12. BATCH OPERATIONS

Deck Structure

BASIC Control Statement

REM LIST Statement

Batch Processing From a Terminal
NOS
NOS/BE

8-5
8-5
8-5
8-6
8-6
8-7
8-8
8-8
8-9
8-10
8-10
8-11
8-12

9-1

9-1
9-1
9-1
9-2
9-2

9.2
9-2
9-2
9-2
9.3
9-3
9-3
9.3
9.3
9.3
9-4
9-4
9-4
9-5
9.5
9.5
9.5
9.5
9-6
9.6

10-1

10-1
10-1
10-1
10-4
10-4

11-1

11-1
11-1
11-4
11-4
11-4

12-1

12-1
12-1
12-7
12-7
12-7
12-8

19983900 G

moow>»

] U I 1
Pt b e

e b e b
b

[+ RN AUV EWN -~

1-19

'."
K

NI?’N
&S WN

NN
LI T A) |
o U

[JRIR
o

J-‘bbwwu\'nuuuuuu

] i
\lO\\lﬂP\ANl—'I—‘\Dm\IO\V\FWN)—'

s g-‘-‘bbb

1
= b\
N -~

J>4=-l’-\
o
W

3
=
[CR'S

4-16

Character Sets

Diagnostics

Glossary

NOS File Handling

Future System Migration Guidelines

Break-Even Program

REM Statement Lines

PRINT Statement Line

IF, GOTO, and END Statement Lines

Break-Even Program and Output

READ and DATA Statements

IF and GOTO Statements

Break-Even Program Output

FOR...NEXT Loop Sample Program

Break-Even Program Modified for
Dimensions

Array V

Placing Data Into Arrays

PRINT Statements for Array Elements

Output for Array Contents

INPUT Statement in Break-Even Program

Break-Even Program Cutput Using
INPUT Statement

IAF System

OLD Command Accesses Permanent File
Under NOS

Interactive Data Input (Add, Delete,
Change V alues) Under NOS

Numeric and String Subscripted
Variables

Substring Addressing Format

String Concatenation Format

Format for Simple Relational
Expressions

Evaluating Simple Relational Expressions

Format for Compound Relational
Expressions

LET Statement Format

LET Statement Examples

Substring Addressing Using LET Statement

OPTION Statement Formats

DIM Statement Format

DIM Statement Examples

REM Statement Format

REM Statement Examples

STOP Statement Format

END Statement Format

GOTO Statement Format

ON GOTO Statement Format

Example of ON GOTO and GOTO Statements

IF Statement Format

IF Statement Example

Nested IF ... THEN Statement Example

IF... THEN... ELSE Statement Format

IF... THEN,..ELSE Statement
Examples

FOR...NEXT Statement Formats

Loop With Specified Step Value

Control Variable Value Changed

Loop Exit Effect on Control V ariable

FOR Statement Examples

FOR...NEXT Loops

On ATTENTION Statement Formats

ON ATTENTION Statement Examples

19983900 G

APPENDIXES

1-14

2-4
2-4
2-6

Ry
o O\

1 (K] 1
NNNI—‘\F###\N\NNNH!‘—‘\I

bpbbpkbu\‘awuuuuuuun

U
WNN

FNFSES
I S

4-4
b4-4
4-4
4-5
4-5
4-6

F

G
H

INDEX

FIGURES

4-17
4-18
4-19

4-20
4-21
4-22
4-23
5-1

i
U U]
N

— 0o~ oV P

0
1
2

=

\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\ll'l\ﬂ ARV RV RV, |

U
(=
W

5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36

5-37

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8

6-9
6-10

Differences Between BASIC 3.5

and BASIC 3.4
Implementation - Defined Procedures
Sample BASIC Programs

ON ERROR Statement Formats

JUMP Statement Format

Example Using ON ERROR, JUMP, ESL, ESM,
and NXL

ASL Function Format

ESL Function Format

ESM Function Format

NXL Function Format

Function Reference Format

RND Function Format

RND Function Example

RANDOMIZE Statement Format

RANDOMIZE Statement Example

Program Using System Functions
CLK$, DATS, and TIM

ASC Function Format

CHR$ Function Format

CHR$ Function Example

L.LEN Function Format

LEN Function Example

LPAD$ Function Format

LPAD$ Function Example

LTRM$ Function Format

LTRM$ Function Example

LWRC$ Function Format

LWRC$ Function Example

ORD Function Format

ORD Function Example

POS Function Format

POS Function Example

RPADS$ Function Format

RPAD$ Function Example

RPT$ Function Format

RPT$ Function Examples

RTRM$ Function Format

RTRM$ Function Example

STR$ Function Format

STR$ Function Example

UPRCS$ Function Format

UPRC$ Function Example

VAL Function Format

VAL Function Examples

Single-Line Functions With DEF Format

Single-Line Function Example/DEF

Multiple-Line Function Format With
DEF ...FNEND String Format

Multiple-Line Function Examples/
DEF ...FNEND

BASIC Subroutine and RETURN Statement

GOSUB Statement Format

Nested Subroutines

ON GOSUB Statement Format

ON GOSUB Statement Example

RETURN Statement Format

CALL Statement Format

BASIC Program Call to FORTRAN
Subroutine

CHAIN Statement Format

Keywords for Optional Values

F-1
G-1
H-1

¥
~

4-7

T
~

U I R L TR A Iy |
WWNN+F@OOOo®

] 1 1
54

| T T L I | 1
DO NNNINAAONAA OO

\n\n\n\n\n\n\n\n\n\nm\n\n\n\'n\n\n\n\ﬁ\n viviviuv e & &

Uy]
O O

5-9
5-9
5-9
5-9
5-10
5-10
5-10
5-10
5-11
5-12

5-13

5-13
6-1
6-1
6-2
6-2
6-3
6-3
6-3

6-4

6-5
6-5

ix

6-11
7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
7-40
7-41
7-42
7-43
7-44
7-45
7-46
7-47
7-48
7-49
7-50
7-51
7-52
7-53
7-54
7-55
7-56

N O
NS WN -

o
= \0 0O~

?mmmmmmmma)
[=1

1-1
1-2
2-1

CHAIN Processing Example

FILE Statement Format

FILE Statement Examples

CLOSE Statement Format

CLOSE Statement Example
RESTORE Statement Format
RESTORE Statement Example
NODATA Statement Format
End-of-Information Processing

IF END Statement Format

IF END Statement Example

IF MORE Statement Format

IF MORE Statement Example
APPEND Statement Format

APPEND Statement Example

WRITE Statement Format

WRITE Statement Example

READ Statement Format

READ Statement Example

SET Statement Format

SET Statement Example

LOC Function Format

LOF Function Format

Example of LOC and LOF Functions
INPUT Statement Format

INPUT Statement Examples

DELIMIT Statement Format

PRINT Statement Format

PRINT Statement Example

Program Example of Numeric Formats
String Formats Using the PRINT Statement
Use of Semicolons With String Data
Use of Semicolon With Numeric Data
Print Zoning Examples

TAB Function Format

TAB Function Examples

PRINT USING Statement Formats
The Image for a PRINT USING Statement
Image Statement Format

Image With PRINT USING Statement
Delimiters in Image

Delimiters in Image Reused

Format Field Types

Sign and Edit Option Examples

Fields of Image Statement Identified
Field Character in Literal

Correction of Field Character Use
Special Cases for Format Fields
MARGIN Statement Formats
MARGIN Statement Example
Program Example Using MARGIN Statement
SETDIGITS Statement Format
SETDIGITS Statement Example
DATA Statement Format

DATA Statement Example

READ Statement Format

READ Statement Examples

ARRAY A(2,4) With GPTION BASE 0
ARRAY A(2,4) With OPTION BASE 1
Formats for Redimensioning Specifiers
Redimensioning Example Using MAT READ
Matrix Assignment Statement Format
Matrix Assignment Example

Matrix Addition Format

Matrix Addition Example

Matrix Subtraction Format

Matrix Subtraction Example

Arithmetic Operators
Relational Operators
BASIC Character Set

6-6
7-1
7-2
7-4
7-4
7-4
7-4
7-4
7-5
7-5
7-5
7-5
7-5
7-6
7-6
7-6
7-7
7-7
7-7
7-8
7-8
7-8
7-8
7-9
7-9
7-10
7-10
7-11
7-12
7-12
7-13
7-13
7-13
7-14
7-14
7-15
7-15
7-15
7-15
7-16
7-16
7-16
7-18
7-18
7-19

7-20 ~

7-20
7-20
7-21
7-22
7-22
7-22
7-22
7-23
7-23
7-23
7-23
8-1
8-1
8-2
8-2
8-3
8-3
8-3
8-4
8-4
8-4

1-4
1-4
2-1

8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34
8-35
9-1

9.2

9.3

9-4

9.5

9-6

9.7

9.8

9.9

9-10
9-11
9-12
9-13
9-14
9.15
9-16
9-17
9-18
10-1
10-2
10-3

10-4
10-5
10-6
11-1
11-2
11-3
11-4
11-5
12-1
12-2
12-3
12-4

12-5
12-6
12-7
12-8

12-9

TABLES
2-2
2-3

Matrix Multiplication Format

Matrix Multiplication Example

Scalar Multiplication Format

Scalar Multiplication Example

Matrix CON Function Format

Matrix CON Example

Matrix IDN Function Format

Matrix IDN Example

Matrix ZER Function Format

Matrix ZER Example

Matrix INV Function Format

Matrix INV Example

Matrix TRN Function Format

Matrix TRN Example

Matrix DET Function Format

Matrix DET Function Example

MAT WRITE Statement Format

MAT WRITE Example

MAT READ Statement Format

MAT READ Statement Example

MAT INPUT Statement Format

MAT INPUT Statement Example

MAT PRINT Statement Format

MAT PRINT USING Statement Format

MAT PRINT USING Statement Example

REM TRACE Statement Format

REM TRACE, ALL Example

REM TRACE Statement Example

Line Number Referencing Format

GOTO Statement for CID Format

GOTO Command for CID

SET BREAKPOINT Command Format

Breakpoint Message Format

CLEAR BREAKPOINT Command Format

SET TRAP Command Format

SET TRAP Command Examples

Trap Message Format

CLEAR TRAP Command Format

PRINT Command for CID

MAT PRINT Command for CID Format

LIST VALUES Command

LET Command for CID Format

IF Command for CID

BASIC Subsystem Under NOS

OLD Command Under NOS

Program Run Interactively Under Batch
Subsystem

Using Data Files Under NOS

RESEQ Command Format

RESEQ Command Example

Interactive BASIC Terminal Session

BASIC Command Parameters Under NOS/BE

Using Data Files Under NOS/BE

BRESEQ Command Format

BRESEQ Command Example

Job Structure under NOS

Job Structure Under NOS/BE

BASIC Compile and Execute Job Under NOS

BASIC Compile, Load, and Execute Job
Under NOS/BE

REM LIST Statement Format

REM LIST Statement Example

Batch Processing From a Terminal
Under NOS

Batch Processing From a Terminal
Under NOS/BE

Printing a Batch Job

Arithmetic Expression Operator
Hierarchy
Expression Evaluations

8-4
8-4
8-4
8-5
8-5
8-6
8-6
8-7
8-7
8-7
8-7
8-8
8-8
8-8
8-8
8-9
8-9
8-9
8-10
8-10
8-10
8-11
8-11
8-12
8-12
9-1
9-1
9.2
9-2
9-2
9-3
9.3
9.3
9.3
9-4
9-4
9-4
9.4
9.5
9-5
9-5
9-5
9-6
10-2
10-3

10-4
10-4
10-6
10-6
11-1
11-4
11-5
11-6
11-6
12-1
12-1
12-2

12-2
12-7
12-8
12-8

12-9
12-9

19983900 G

2-4 Relational Expression Operators 2-6 5-5 Matrix Functions 5-10
2-5 Logical Operator Hierarchy 2-7 5-6 I/O Functions 5-11
2-6 NOT (UNARY) Operator Evaluation 2-7 5-7 User-Defined Functions 5-11
2-7 AND Operator Evaluations 2-7 6-1 Subroutine, Subprogram, and Chaining
2-8 OR (INCLUSIVE) Operator Evaluations 2-7 Statements 6-2
3-1 Value Assignment 3-1 7-1 /O Statements and Functions 7-1
3-2 OPTION and DIM Statements 3-2 7-2 Sequential Access Versus Random Access 7-2
3-3 REM Statement and Tail Comment 3-4 7-3 1/O Statements and Related Type of I/O 7-3
3-4 END and STOP Statements 3-4 7-4 Standard Numeric Output Formats 7-12
4-1 Test and Branch Statements 4-1 7-5 Types of Fields 7-17
4-2 Looping Statements 4-3 7-6 SIGN and EDIT Options 7-17
4-3 Error and Interrupt Processing 8-1 Matrix Arithmetic Statements 8-3
(Statements and Functions) 4-5 8-2 Matrix Functions 8-5
5-1 Mathematical Functions 5-2 12-1 Compiler Listable Output Parameters 12-3
5-2 Predefined System Functions 5-4 12-2 Compiler Input Parameters 124
5-3 String Functions 5-5 12-3 Compiler Binary Output Parameters 12-5
5-4 Error and Interrupt Processing Functions 5-10 12-4 Program Execution Parameters 12-6

19983900 G xi/xii @

NOTATIONS

Certain notations are used throughout this manual. The
notations and their meanings are:

Underlined

or
Lowercase

19983900 G

Horizontal ellipsis indicates repetition.

Vertical ellipsis indicates program lines
not shown.

Underlined or lowercase indicates
user-supplied lines when operating
from a terminal.

Shading

Delta indicates a space (blank).

Carriage return denotes the trans-
mission key on the keyboard.

Shading indicates Control Data
extensions to the language described in
the American National Standard
x3.60-1978, BASIC. Language and
processing that are in the standard, but
are implementor-defined, are not
shaded.

xiii ®

BASIC PRIMER 1

L

Modern digital computers are designed for a wide range of
applications. However, all digital computers have certain
common characteristics; they all perform tasks specified
by a set of instructions.

A set of sequential instructions designed to solve a specific
problem is called a program. A program can perform a
simple task, such as adding or subtracting two numbers, or
printing a single letter or digit. However, a program
usually performs a more complicated task. A program for
a complete scientific computation could require a few
thousand computer instructions.

Computer programs process or manipulate information
called data. A program can be used to perform
calculations by using data, and to print out the results.
Most programs permit new data to be input each time the
program is used. The three phases of program operation
are input, computation, and output. The process of a
program performing tasks in a computer is called program
execution, or running a program.

PROGRAMMING AND LANGUAGES

Computers can execute thousands and even millions of
computer instructions each second; therefore, computer
instructions must be structured in a form suited to the
computer's architecture. Writing a program by using
computer instructions in the form used directly by the
computer (machine instructions) is tedious and
time-consuming. In order to simplify writing programs,
computer specialists have developed several high-level,
easy-to-use, programming languages and associated
compilers and translators to convert these high-level
languages to machine instructions. BASIC, the beginner's
all-purpose symbolic instruction code, is one such
high-level language. BASIC was originally developed by
professors John G. Kemeny and Thomas E. Kurtz at
Dartmouth College.

This section describes the process of writing and executing
a BASIC program by solving a sample problem. The BASIC
statements used in solving the problem are explained. This
section is intended for nonprogrammers. This section
provides the information necessary to write BASIC
programs and understand the more detailed descriptions of
the BASIC language provided in the sections that follow
this section. .

STATEMENT OF THE PROBLEM

The following general description outlines a manufacturing
system problem that is to be solved by using BASIC., In this
problem, F represents fixed costs per year associated with
production, C represents variable costs incurred per unit,
and V represents the annual volume of production (and
sales) in units. The total cost incurred per year is
T=F +C*V, If the revenue per unit made (and sold) is R
per unit, then the total annual revenue is R1=R*V. The
profit obtained on an annual basis is the difference
between R1 and T, if that result is positive. A loss occurs
if R1 - T is negative. The break-even point is reached when
the volume is sufficient to make R1=T.

19983900 G

For example, a company operates with fixed costs of
$1 million per year, variable costs of $10 per unit, and a
revenue of $30 per unit of production. Using this data,
answer the following questions:

1. What is the break-even point?

2. If the predicted sales are 25000 units, what is the
expected profit or loss?

3. What is the expected profit or loss for sales of 50000,
75000, and 100000 units?

The BASIC program in figure 1-1 answers questions 1 and 2
of the problem. The solution to question 3 is provided
later in this section.

001 REM THIS IS A BREAK-EVEN PR3GRAM
002 REM THE FOLLOWING VARIABLES ARE USED

003 REM FIXED ANNUAL CI2ST F
004 REM VARIABLE COST PER UNIT C
005 REM SALES REVENUE PER UNIT R
006 KEM SALES V3ILUME v
007 rEM BREAK-EVEN rPIINT (VJILUME) vl
008 REM TQTAL C@sST T
009 KEM T3TAL rREVENUE K1
010 REM PROFIT/LOSS P
011 REM

012 RrREM

013 <EM ASSIGN VALUES T3 F>CsrisV

020 LET F=1000000

030 LET C=10

040 LET R=30

050 LET v=25000

060 REM

070 REM COMPUTE BREAK-EVEN PJINT

080 LET V1=F/(K-C)

090 PRINT "BREAK-EVEN PJIINT=";5VI;""VILUME
UNITS"

100 rREM

110 REM COMPUTE TITAL CaST

120 LET T=F+C*V

130 REM

140 REM COMPUTE TJYTAL REVENUE

150 LET Rl=RrR=*V

160 xEM

170 REM CIMPUTE PROFIT/LOSS

180 LET P=KI1-T

200 IF v>V1 THEN 230

210 PRINT *LOSS = $"3P,"VOLUME ='"3y3"JNITs"

220 GOT3 240

230 PRINT *PROFIT=3"3P,"VILUME="3V; " "UNITS"

240 END

Figure 1-1. Break-Even Program

ANALYSIS OF STATEMENTS

Each line of a BASIC program is called a statement; each
statement must begin with a line number. Line numbers
normally indicate the sequence in which the computer is to
execute the statements. The following statements are
used in the break-even program shown in figure 1-1.

1-1 I

REM Statement

Figure 1-2 shows a segment of the break-even program
that contains the REM statement. The REM statement
allows the user to insert remarks. These remarks increase
readability and comprehension in a program; they have no
effect on the program during execution. A maximum of
haracters can be included in a REM statement.

001 REM THIS IS A BREAK-EVEN PRIGRAV
032 REM THE FOLL3WING VARIABLES ARE USED:

003 REM FIXED ANNUAL COST F
004 REM VARIABLE CAST PEXR UNIT Cc
005 REM SALES REVENUE PER UNIT R
006 REM SALES V3LUME v
007 REM BREAK-EVEN PJINT (V3LUME) V1
008 REM T@TAL CaST T
009 REM T@TAL REVENUE rR1
01D REM PRIFIT/LOSS P
011 REM

012 REM

Figure 1-2. REM Statement Lines

Figure 1-2 shows the use of the REM statement to identify
the type of program, the variables used, and the variable
identifiers. These identifiers are used later in program
computations.

LET Statement

The LET statement specifies that the variable (quantity
that can vary during execution of the program) to the left
of the equals sign be set to a value (the value is the
formula or expression to the right of the equals sign).

Examples:

o Constant Value Assignment - Statements 20 through
50 in the following sample program. assign values to
variables F, C, R, and V, which are used later in
computing the break-even point. The values for F, C,
and R represent dollars and the value for V represents
units,

013 REM ASSIGN VALUES TO F,C,R,V
020 LET F = 1000000

030 LET C = 10

040 LET R = 30

050 LET V = 25000

e Formulas Value Assignment - In the sample program,
statements 120, 150, and 180 compute total cost, total
revenue and profit or loss, respectively, and assign
these values to variables T, R1, and P, The symbol *
specifies multiplication. The value of the variable or
expression to the right of the equals sign becomes the
value of the variable to the left of the equals sign.
BASIC conforms to the normal algebraic rules for
order of arithmetic computation, (See Arithmetic
Expressions in this section.)

110 REM COMPUTE TOTAL COST
I120LET T=F +C*V

130 REM

140 REM COMPUTE TOTAL REVENUE
IS0 LETR1 =R *¥V

160 REM

170 REM COMPUTE PROFIT / LOSS
180 LETP=R1-T

Statement 120 directs the computer to multiply V (25000)
by C (10) and add the product (250000) to F (1000000)
equaling a sum of 1250000. This sum is assigned to the
variable T.

In computing total revenue, the volume (V) is multiplied by
the revenue per unit (R) (25000* 30), and the product
(750000) is assigned to R1.

To determine profit or loss, the total cost (T) is subtracted
from the total revenue (R1): (750000 -1250000) and the
remainder (-500000) is assigned to P.

PRINT Statement

The PRINT statement can be used to: print out a value;
print a message; print a combination of a value and a
message; and print a blank line. BASIC normally separates
an output lire into five print zones, each 15 characters
long. Spacing is controlled with commas and semicolons
embedded in the PRINT statement. The comma is used to
space over to the next print zone (insert blank spaces
between items); the semicolon permits items to be printed
with no additional blanks between them. When printing
headings or labels, enclose the heading or label in quotes in
the PRINT statement. To print a blank line, simply use the
PRINT statement without specifying what to print.

Statement 080 in figure 1-3 illustrates the assignment of a
value to a variable by using the LET statement.
Statement 090 illustrates the use of the PRINT statement
to print an identifying label and the derived value.

Statement 080 directs the computer to subtract C from R
(30-10) and, by using the remainder (20) as a divisor, divide
F (1000000) by 20. The quotient (50000) is then assigned to
the variable V1. (The symbol / indicates divide.)
Statement 090 directs the computer to print the value
of V1 and the BREAK-EVEN POINT identifying label. The
unit of measure for V1 is labeled VOLUME UNITS. When
executed, this PRINT statement in figure 1-3 produces:

BREAK-EVEN POINT = 50000 VOLUME UNITS

IF, GOTO, and END Statements

In the sample program (figure 1-1), if sales volume V is
greater than the break-even volume, a profit is earned. If
the sales volume is less than the break-even volume, a loss
is incurred.

The IF statement at line number 200 in figure 1-4 directs
the program execution to the statement at line

080 LET V1 = F/(R-0)

120 REM

)70 REM CAMPUTE BREAK-EVEN POINT

099 PRINT '"BREAK-EVEN PIINT ="3VI1;3'VILUME UNITS"

Figure 1-3. PRINT Statement Line

12

19983900 G

number 230, if the condition V is greater than V1 is met.
The IF statement directs execution to the following
statement line number 210, if the condition is not met.
Line 200 illustrates how execution sequence by line number
can be altered.

The IF statement (line 200) selects the print label PROFIT
or LOSS to be printed with the values associated with
variables P and V.

In figure 1-4, the PRINT at 210 is executed because
V =25000 and V1=50000. After executing the PRINT
statement, the computer then executes statement 220.
Statement 220 is a GOTO statement that directs the
computer to continue execution at statement 240.

The END statement directs the computer to stop executing
the BASIC program. Its corresponding line number must be
the highest in the program.

BREAK-EVEN PROGRAM AND OUTPUT

Figure 1-5 shows the output from the break-even program,
listed in figure 1-1, that answers questions 1 and 2. After
the program is entered into the computer, the BASIC
compiler is directed to execute the program.

EXPRESSIONS IN BASIC

An expression can be simple, that is, consisting of one
term (A); or complex, that is, consisting of two or more
Expressions

arithmetic,

arithmetic and relational

terms connected by operators (A+B-C).
200 IF V>V1 THEN 230 evaluate to a single value, which can later be used in
210 PRINT "L@SS = $"3P,'"VOLUME ='"3V;'"UNITS" computation, or can be used in determining program
220 GOTO 240 execution sequence. (See line number 200.) There are
230 PRINT "PROFIT=S$";3P,"VOLUME="3V; " UNITS" three types of expressions in BASIC:
240 END relational, and string. String expressions are discussed in
section 3 of this manual;
expressions are discussed in the following paragraphs and in
Figure 1-4. IF, GOTO, and END Statement Lines section 3.
001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FQ2LLAWING VARIABLES AKE USED
003 REM FIXED ANNUAL C@ST F
004 REM VARIABLE C@ST PER UNIT C
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VALUME) vl
008 REM T@TAL COST T
009 REM TOTAL KEVENUE K1
010 REM PROFIT/LOSS P
011 REM
012 REM
013 REM ASSIGN VALUES T2 FsCsR,V
020 LET F£=1000000
030 LET C=10
040 LET R=30
0S0 LET v=25000
060 REM
070 REM COMPUTE BREAK-EVEN PJINT
080 LET VI=F/(R-C)
090 PRINT *"BREAK-EVEN POINT="3V1;"VOLUME UNITS"
100 REM
110 REM COMPUTE TOTAL COST
120 LET T=F+Cx*V :
130 nEM
140 REM COMPUTE TOTAL REVENUE
150 LET R1=R%V
160 REM
170 REM COMPUTE PROFIT/LOSS
180 LET P=R1-T
200 IF V>Vl THEN 230
210 PRINT °*'L2SS = S$"3P,"VOLUME ="3V3"UNITS"
220 GOTO 240
230 PRINT °*PROFIT=$"3P,"VOLUME="3V; " UNITS"
240 END
After the program is entered into the eomputer, the BASIC compiler is directed to execute the program.
Below is the computer output after program execution.
BREAK-EVEN PQINT = 50000 V3LUME UNITS
L@sSS = $-500000 VBLUME = 25000 UNITS

19983900 G

Figure 1-5. Break—Evén Program and Output

1-3 I

ARITHMETIC EXPRESSIONS

Arithmetic expressions are formed from numeric variables,
numeric constants, function references, and arithmetic
operators. The arithmetic operators allowed for BASIC are
shown in table 1-1.

TABLE 1-1. ARITHMETIC OPERATORS

TABLE 1-2. RELATIONAL OPERATORS

Symbo1 Meaning

Symbol Meaning

| == ——

Exponentiation (¢ on
some teletypewriters)

/ Division

* Multiplication

+ Addition

- Subtraction
NOTE

The circumflex (A) is the preferred character
symbol for exponentiation. See Future System
Migration Guidelines, appendix E.

= Equal to
> or < Not equal to

Greater than

> =0 = > Greater than or equal to
Less than
< =or =< Less than or equal to

In the sample break-even program, operators (+, -, *,
and /) are used in line numbers 080, 120, 150, and 180. The
exponentiation operator raises a number to a specified
power. For example, 2**3 means 2 raised to the third
power, or 23,

The arithmetic operators have a hierarchy for evaluation:
exponentiation; then multiplication and division; then
addition and subtraction. Evaluation proceeds from left to
right through an expression. The hierarchy is altered by
the use of parentheses. When using parentheses in BASIC,
the rules of algebra apply. For example, 2*3+2=8 and
2#(3+2) = 10.

Within a number in BASIC, commas cannot be used to
separate decimal groupings. For example, ten million is
written 10000000, not 10,000,000.

A numeric variable (such as, F, C, R, or V in the sample
program) is named with a single alphabetic character or an
alphabetic character followed by a digit. The detailed
rules for using numbers and variables are included in
section 3.

BASIC provides several mathematical functions that can be
requested within an arithmetic expression such as, SINE,
COSINE, and SQUARE ROOT. Functions are described in
section 5.

liEl.ATIONAL EXPRESSIONS

Relational expressions are formed by combining variables
and/or constants into arithmetic expressions that are
compared by using relational operators. Relational
expressions are used in IF statements to compare two
values. Table 1-2 illustrates the relational operators.

An example of the use of the relational operator, can be
found in line number 200 of the sample break-even
program. For more details and the rules for using
relational operators, see section 2.

DEFANING AND READING DATA

An efficient method of assigning values to variables is
through the use of the READ and DATA statements.

DATA AND READ STATEMENTS

In the break-even program, values are assigned to variables
by using LET statements as follows:

013 REM ASSIGN VALUES TO F,C,R,V
020 LET F = 1000000

030 LET C =10

040 LET R = 30

050 LET V = 25000

060 REM

Statements at line numbers 020 through 050 can be
replaced with the following:

035 DATA 1000000,10,30,25000
037 READ F,C,R,V

The DATA statement creates a block of data that is
internal to the program. Within the DATA statement,
values must be separated by commas. In the above
program, the DATA statement precedes the READ
statement; however, this is not required. The DATA
statement can be placed anywhere in the program. The
READ statement is used to access the values contained in
the internal data block. The variables in the READ
statement are assigned values sequentially from the data
block; for example, F =1000000, C=10, R=30, and
V =25000. This method is more efficient from the
programmer's standpoint because only the associated
DATA statements need to be changed for added or
different data. Figure 1-6 illustrates the use of the READ
and DATA statements in the break-even program.

19983900 G

001

003
004
00s
006
007
008
009
010
o11
o112
013
03s
037
060
070
080
090
+00
110
120
130

150
160
170
180
200
210
220
230
240

REM THIS IS A BREAK-EVEN PROGRAW
REM THE FALLOWING VARIABLES ARE USED:

REM FIXED ANNUAL COST F

REM VARIABLE COST PER UNIT C

REM SALES REVENUE PER UNIT R

REM SALES VOLUME v

REM BREAK-EVEN POINT (VOLUME) V1

REM TOTAL COST T

REM TOTAL REVENUE R1

REM PROFIT/LDSS P

REM '

REM

REM ASSIGN VALUES T8 FsCsRsv

DATA 1000000,10,30,25000 } New Inserts
READ F,CsRsV :

REM

REM COMPUTE BREAK-EVEN PGINT

LET V1 '= F/(R-C)

PRINT "BREAK-EVEN POINT ="3V15"VOLUME UNITS"
REM

REM COMPUTE TOTAL COST

LET T =F «C *V

REM

REM COMPUTE T@TAL REVENUE

LET Rl = R % V

REM

REM COMPUTE PROFIT / LOSS

LET P =Rl - T
IF Vv > V1 THEN 230
PRINT *"LOSS = $"3P,'VOLUME ="3V3'UNITS"

GOT9 240 .
PRINT " PROFIT = $"3P,'VOLUME ='"3V3'UNITS"
END ’ :

When executed this program produces:

BREAK-EVEN P@INT= 50000 VOLUME UNITS

LOSS =

$-500000 VOLUME = 25000 UNITS

LOOPING IN BASIC

We are frequently interested in solving a problem in which .
a specified sequence of statements is executed a number of
times. Each time the sequence is executed, a variable is
assigned a different value. In programming, this is done by
using a technique called looping. The following statements

provide two methods for looping:

IF and GOTO statements

°
o FOR and NEXT statements
IF AND GOTO STATEMENTS

In the original problem, question 3 requests the profit or
loss for sales of values 50000, 25000, 75000, and 100000
units. To solve questions 1 and 2 of the problem for these
four values, a loop is inserted using the IF statement (line
number 104 in figure 1-7) and the GOTO statement (line

number 236).

19983900 G

Figure 1-6. READ and DATA Statements

In figure 1-7, V is assigned the initial value of 25000 (line
number 102). The statement of line number 104 then
compares V to 100000. If V is greater than 100000,
control is transferred to line number 240, then the loop
ends. If V is not greater than 100000, line numbers 110
through 236 are executed in the normal sequence. The
statement of line 235 increments V by 25000, and the
statement line number 236 transfers control back to
line 104. Statement of line number 104 compares the new
value of V to 100000 to determine whether or not to
execute the loop again. lLooping continues until
V equals 100000.

For each value of V, the values of T, Rl, and P are
computed, and LOSS or PROFIT is printed depending on the
value of V; this completes the execution of the loop in the
break-even program.

During the first pass through the loop, V equals 25000;
during the second pass, V equals 50000; during the third
pass, V equals 75000; and during the fourth pass, V equals
100000. The printed output from the program (figure 1-8)
shows the break-even point and the profit or loss for the
four volume levels.

1-5

Q01
002
003
004
005
006

008
009
010
o111
012
013
03s
037
060
070
080
090
100
102
>, 104
110

130
149
150

REM THIS IS A BREAK-EVEN PROGRAM
REM THE FOLLZWING VARIABLES ART USED:
REM FIXED ANNUAL COST F
REM VARIABLE C@ST PER UNIT c
REM SALES REVENUE PER UNIT R
REM SALES VOLUME v
REM BREAK-EVEN POINT (VOLUME) V1
REM TJTAL COST T
REM T@TAL REVENUE R1
REM PRAFIT/LOSS P
REM

REM

REM ASSIGN VALUES T@ F»CsR

DATA 1000000510530

READ F»CsR

REM

REM COMPUTE BREAK-EVEN PJINT
LET V1 = F/(R-C)

PRINT "BREAK-EVEN P3INT ='"3V13“VOLUME UNITS"
REM

LET Vv = 25000

IF Vv > 100000 THEN 240

REM COMPUTE TOTAL C@ST

LET T=F +C *V

REM

REM COMPUTE TOTAL REVENUE

LET Rl = R * V

160 REM

220 GOTO 235

V 236 G3T3 104
240 END

Loor 170 REM COMPUTE PROFIT / L@SS
180 LET P = R1
200 IF Vv > V1 THEN 230

210 PRINT "LASS = $*3P,"VALUME ="3V3"UNITS"

230 PRINT * PROFIT = $'3P,'VOLUME ="3V3"UNITS"
235 LET V = V + 25300

Figure 1-7. IF and GOTO Statements

L3SS = $-500000

BREAK-EVEN PJIINT = S0000 V3ILUME UNITS

50000 UNITS

L3SS = $ O VALUME =
PRIFIT = $ 500000
PRAOFIT = $ 1000000

VILUME = 25000 UNITS

VALUME
VILUME

75000 UNITS
100000 UNITS

"nu

Figure 1-8. Break-Even Program Output

FOR AND NEXT STATEMENTS

The sample program in figure 1-9 shows a loop created by
using the FOR statement (line number 101) and the NEXT
statement (line number 235).

The FOR statement establishes the first value of V
(25000), the final allowable value of V (100000), and the
step value of (25000). Statements between the FOR
statement and the NEXT statement are repeatedly
executed until V is greater than the final allowable value.
The value of V is incremented by the step value each time
the NEXT statement is executed. Output from the
program is identical to the output produced when the T
and GOTO statements controlled the loop.

| ¢

LISTS AND TABLES

For some problems, it is desirable to present data or the
solution in the form of a list or table; such lists and tables
are called arrays. An array is an ordered collection of
items (data elements) arranged in a multidimensional
structure. A l-dimensional array, or list, is called a vector
and a 2-dimensional array, or table, is called a matrix.
These terms have been borrowed from mathematical
terminology because vectors and matrices in BASIC obey
other special properties expsgted by r:lathematicians.

Variables are used to name arrays. The individual
elements of an array, identified by the use of subscripts,
are called subscripted variables. The subscripts, one for

19983900 G

006 REM SALES VILUME
008 REM TATAL CIST
010 REM PRIFIT/LOSS

011 REM
012 REM

037 READ F,C»R
050 REM)
080 LET V1 = F/(R-C)

100 REM

130 REM

150 LET R1 = R * V
160 REM

180 LET P = Rl - T

220 GOTO 235

—> 2345 NEXT V
240 END

001 REM THIS IS A BREAK-EVEN PROGRAM

002 REM THE FOLLOWING VARIABLES ARE USED:
003 REM FIXED ANNUAL CaST
004 REM VARIABLE C3IST PER UNIT c
005 REM SALES REVENUE PER UNIT R
007 REM BREAK-EVEN PZINT (VOL'ME) VI

009 REM TITAL REVENUE

013 REM ASSIGN VALUES T3 F,CsR

035 DATA 1000000,10,30

070 REM CIMPUTE BREAK-EVEN PJINT

090" PRINT “3REAK-EVEN POINT ="3V13“VOLUME UNITS"
—>101 F3R V = 25000 T@ 100203 STEP 25000
110 REM COMPUTE TATAL COST
120 LET T = F + C * V

140 REM COMPUTE TOTAL REVENUE

170 REM COMPUTE PRIFIT / LOSS

200 IF VvV > V1 THEN 230
210 PRINT *LOSS = $'"3P,'"VILUME ="3V3" UNITS"

239 PRINT “ PROFIT = $'3P,*VOLUME ="3V3 UNITS"

F

v

T
Ri
P

Figure 1-9. FOR...NEXT Loop Sample Program

each dimension of the array, are position indicators that
locate elements within the array. Subscripts are separated
by commas and enclosed by parentheses. The first matrix
subscript designates a row; the second matrix subscript
designates a column. Numbering of the elements begins
with zero; the first element in the first row and the first
column has subscripts (0,0).

Example:

In the following matrix, the element designated by A(1,2) is ‘

circled.

1 2 3 &4
A= 5 6 8

9 10 1 12
In the break-even program, where the profit or loss for
four different sales volumes is computed, the values V, P,
T, and R1 can be organized in array form, with each array
containing four elements. For each volume (V), an
associated revenue (R1), cost (T), and profit (P) are
computed.

In the sample program (figure 1-10), the DIM statement is
used to specify each array as containing four elements (line
numbers 039, 040, 041, and 042); however, the use of this
statement is not required. To specify an array of up to
eleven elements, only the selected variable name and

19983900 G

associated subscripts are required. If the array is to
contain more or less than eleven elements, the DIM
statement is required. The advantage of using DIM in this
situation is the conservation of space because the use of a
variable and subscript results in an automatic allocation of
space for eleven array elements by BASIC. See section 3
for additional information pertaining to the DIM statement.

The DIM statement in line number 039 of figure 1-10
reserves space for an array named V. The amount of
space reserved is determined by the bound specifier; the
bound for array V is 3. This means that the largest
subscript for array V is 3 and that array V has four
elements: V(0), V(1), V(2), and V(3) because a count of
the elements begins with zero (0). The OPTION statement
is described later in this manual. (See figure 1-11.) Arrays
P, T, and Rl are similar. Figure 1-12 shows the method
used for placing data into the array.

The variable I is used to initialize the volume array V.
The variable I is set to the value of zero, and is
incremented within the FOR loop (line number 102) by
25000 for each increment of J. The wvariable J is a
subscript used to address the individual elements of
array V; when J is zero, the first element is addressed.
The statement at line 103 places the current value of I into
the array V at the location identified by the current value
of J. Jis also used as a subscript for addressing the
elements of arrays P, T, and R1.

001
002
003
004
005
006
007
008
009
010
011
012
013
035
037
038
039
040
041
042
060
070
080
090
095
096
101
102
103
130
140
141
160
161
170
181
183
201
202
203
204
240

REM THIS IS A BREAK-EVEN PROGRAM
REM THE FOLLOWING VARIABLES ARE USED

REM FIXED ANNUAL COST F 0
REM VARIABLE COST PER UNIT C 152 1125000
REM SALES REVENUE PER UNIT R)=
REM SALES VOLUME : v 104 REM
140 REM COMPUTE TOTAL REVENUE

REM BREAK-EVEN POINT(VOLUME) V1
REM TOTAL COST T

REM TOTAL REVENUE R1 :

161 RICJI=R * V(J)
EE"M PROFIT/LOSS P 170 REM COMPUTE PROFIT/LOSS
REM 181 PCJ)I=RICJII-TCJ) :
REM ASSIGN VALUES TO F,C,R 183 NEXT J

095 REM INITIALIZE ARRAY V,COMPUTE P,T,Rl
096 1=0 -

101 FOR J=1 TO 4

141 TC(J)=F + C * VU(J)
160 REM COMPUTE TOTAL REVENUE

DATA 1000000,10,30

R DEETNE ARRAYS FOR v.p.T.RL Figure 1-12. Placing Data Into Arrays

DIM V(3)

DIM P(3)

DIM T(3) 201 PRINT ** YOLUME'",V(1)5V(2),5Y(3),V(4)

DIM R1(3) 292 PRINT *" REVENUE™,R1C1)5R1(2)5,R1(3),R1€4)
REM 2073 PRINT * C3ZST"»T(1)5T(2),T(3),TC4)

REM COMPUTE BREAK-EVEN POINT 204 PRINT " PRIFIT",PC1)-P(2),P(3),P(4)

LET V1=F/(R-C) : 240 END

PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"

REM INITIALIZE ARRAY V,COMPUTE P,T,R1

1= 0 : _

FOR J =0 T0 3 Figure 1-13. PRINT Statements for Array Elements
1=1+25000

V(Jd)=1 After completing the loop between line numbers 101 and
REM 183 (figure 1-12), all of the arrays contain the results of
REM COMPUTE TOTAL REVENUE the computation. The PRINT statements in lines 201, 202,

T(J)=F + C * V(J)

REM COMPUTE TOTAL REVENUE
RL(J) = R * V{J)

REM COMPUTE PROFIT / LOSS

203, and 204 (figure 1-13) print the individual elements of
each array. The program output displays the contents of
each array as shown in figure 1-14.

(J) = R1J) - .
ho 5 - T@) TERMINAL INPUT AND
PRINT * VOLUME“,V(O),V(l),V(Z),V(3) OUTPUT (I/O)

PRINT " REVENUE",R1(0),R1(1),R1(2),R1(3)
PRINT " €OST",T(0),T(1),T(2),T(3)

PRINT " PROFIT",P(0),P(1),P(2),P(3)

END

Figure

1-10. Break-Even Program Modified for Dimensions

element O

element 1 element 2 element 3

Figure 1-11. Array V

Sometimes it is desirable to enter data while a program is
executing. For example, if the break-even problem is
generalized to permit several different products with
different fixed costs, variable costs, and revenue per unit,
the program can be modified to request the values for
these variables while the program is executing.

The INPUT statement is used in a BASIC program when
entering data from the terminal keyboard. When the
INPUT statement is executed, a displayed ? asks for data.
Execution stops until the requested data is entered. Data
entered through the terminal keyboard is assigned
sequentially to variables listed as INPUT statement
arguments.

If more than one item is requested by one INPUT
statement, the exact number of items requested must be
entered and the items must be separated by commas. If
not enough data or too much data is entered, diagnostics
are issued by BASIC. The specified action must be taken
before execution can resume.

BREAK-EVEN PJIINT = S0000 VILUME UNITS

V3LME 259000 53029 75300 1200090

REYENYE 750000 1500000 22592000 3030099
CosT 1250000 1500000 1750000 2000000
PRIFIT -500000 0 500000 1000000

1-8

Figure 1-14. Output for Array Contents

19983900 G

Figure 1-15 illustrates the break-even program using the
INPUT statement. The values of variables F, C, and R are
to be input. The print statement at line number 015 prints
a message on the terminal indicating the values and the
sequence of the values to be input. The output of this
statement is followed by the question mark and the result
of the INPUT statement line 036 is shown in figure 1-16.
Note that only two values were entered and that the NOT

ENOUGH DATA diagnostic was issued; the additional value
was then entered.

The program output is shown in figure 1-16. Revenue,
cost, and profit were computed on the basis of data
entered at the terminal. Refer to section 7 and
appendix D for more information pertaining to input and
output.

001
002
003
004
005
006
007
008
009
010
011
012
013
015
036
039
040
021
042
060
070
080
090
095
096
101
102
103
130
140
141
160
161
170
181
183
201
202
203
204
240

REM THIS IS A BREAK-EVEN PROGRAM
REM THE FOLLOWING VARIABLES ARE USED
REM FIXED ANNUAL COST F
REM VARIABLE COST PER UNIT C
REM SALES REVENUE PER UNIT R
REM SALES VOLUME v
REM BREAK-EVEN POINT(VOLUME) V1
REM TOTAL COST T
REM TOTAL REVENUE R1
REM PROFIT/LOSS 4
REM

REM

REM ASSIGN VALUES TO f,C,R
PRINT "INPUT:FIXED COSTS
INPUT F,C,R

DIM V(3)

DIM P(3)

DIM T(3)

DIM R1(3)

REM

REM COMPUTE BREAK-EVEN POINT

LET Vi=F/(R-C)

PRINT "BREAK-EVEN POINT=";V1;" VOLUME UNITS"
REM INITIALIZE ARRAY V,_COMPUTE P,T,R1
1=0

FOR J=0 TO 3

1=1+25000

vi=1

REM

REM COMPUTE TOTAL REVENUE

TWI=F+Cxv (J)

REM COMPUTE TOTAL REVENUE

R1(JI=R*V(J)

REM COMPUTE PROFIT/LOSS

PCII=R1WI-TU)

NEXT J

PRINT "VOLUME" ,V(0),v(1),Vv(2),V(3)

PRINT "REVENUE",R1(0),R1(1),R1(2),R1(3)
PRINT "COST",T(0),T(1),T(2),T(3)

PRINT "PROFIT",P(0),P(1),P(2),P(3)

END

VARIABLE COSTS

REVENUE PER UNIT"

Figure 1-15. INPUT Statement in Break-Even Program

?
B

INPUT:FIXED COSTS
? 1000000,10
NOT ENOUGH DATA, REENTER OR TYPE IN MORE AT 240

“EVEN POINT= 50000

VARIABLE COSTS REVENUE PER UNIT

VOLUME UNITS

VOLUME 25000 50000 75000 100000

REVENUE 750000 1.50000E+6 2.25000€+6 3.00000€E+6
CosT 1.25000€+6 1.50000€+6 1.75000€E+6 2.00000E+6
PROFIT -500000 0 500000 1.00000E+6

19983900 G

Figure 1-16.. Break-Even Program Output Using INPUT Statement

USING BASIC UNDER NOS
AND NOS/BE

The previous paragraphs describe BASIC statements and
the organization of these statements into a BASIC
program. The following paragraphs describe the
procedures for entering a program-into a computer and for
executing that program.

BASIC is primarily a terminal-oriented language; however,
programs in card deck form can be entered and executed
(batch mode). The following paragraphs describe the
method for entering and executing BASIC programs
interactively through use of a teletypewriter (TTY) or
cathode ray tube (CRT) terminal. See section 13 for a
description of BASIC program card deck structures -and
batch mode operations.

BASIC runs under both the NOS and NOS/BE operating
systems. Its usage under NOS is described below; its usage
under NOS/BE is described later in this section. See
sections 10 and 11 for more detailed information.

If operating from a terminal, the program must be written
into a file, as shown in the examples that follow, and must
be executed from the file. To correct a line, reenter the
line number, followed by the corrected line. To delete a
line under NOS, enter the line number and press the
transmission (carriage return) key. To delete a line under
NOS/BE, enter DELETE, the line number, and press the
transmission (carriage return) key. New lines can be added
freely.

NOS

BASIC programs can be run from a time-sharing terminal
under NOS through Interactive Facility (IAF) or the
Time-Sharing System. Login procedures for IAF and the
Time-Sharing System differ. The procedures are described
later.

To initiate the login procedure, establish physical
connection between the terminal and the computer. The
method used to establish this connection varies depending
on the type of terminal being used and the type of coupling
between the terminal and the computer. Connection
methods for IAF are described in the Network Products
Interactive Facility reference manual. Connection

methods for the Time-Sharing System are described in the .

NOS Time-Sharing User's reference manual.

Login Procedure for the Interactive Facility

The login procedure for the Interactive Facility (IAF)
- begins with the system printing the following three lines at
the terminal. The second line of this message is dependent
on the installation.

yy/mm/dd. hh.mm.ss termname
CDC NOS

FAMLY:

When this occurs, perform the followmg steps (underlines
indicate input at the terminal):

] 10

1

2.

3.

Submit the family name on the same line:

nnnnnnnn

If the family name is the default family for the
system, press . Certain installations do not request
a family name.

The system then responds:
USER NAME:

Submit the user name on the same line:

XXXXXXX

The user name consists of alphanumeric characters
assigned by the installation.

The system then requests:

PASSWORD:

Enter the password:
22222722

The password must consist of up to seven
alphanumeric characters. To provide a greater
measure of security, overtyping is done on hardcopy
terminals.

If the family name, user name, and password are not
acceptable, the system responds:

IMPROPER LOGIN, TRY AGAIN.
FAMILY:

If the family name, user name, and password are
acceptable, the system responds:

termname - APPLICATION:

Select the Interactive Facility by typing IAF on the
same line:

IAF

The termname on this line is the same as that on the
first line of the login sequence and can be disregarded.

If validation is given to access the Interactive
Facility, the system responds:

TERMINAL: nn, NAMIAF
RECOVER/CHARGE:

or
TERMINAL: nn, NAMIAF
RECOVER/SYSTEM:

where nn is the terminal number. Remember this
number because it can be used for recovery.

19983900 G

5. Perform the following step (a) or (b) depending upon

which system response was printed in step 4.

(a) If RECOVER/SYSTEM is printed, enter the
subsystem to be used on the same line:

BASIC
Since all interactive programs that are run under
NOS reside as files, the system queries the
applicable file type by responding:

OLD, NEW, OR LIB FILE:

(b) If RECOVER/CHARGE is printed, type CHARGE
followed by the assigned charge number and
project number on the same line:

CHARGE,chargeno,projectno
The system responds by printing:
READY.
Enter the desired subsystem‘:
BASIC
Since all interactive programs that are run under
NOS reside as files, the system queries the
applicable file type by responding:
OLD, NEW, OR LIB FILE:
6. Submit the appropriate file status: Ifn is the local file
name.
OLD, Ifn Indicates the file previously
created and available.
NEW, 1fn Indicates a new file.
LIB, Ifn Indicates a file from the system
library.

The file name consists of up to seven alphanumeric

characters. If an OLD or LIB file does not exist, the

system responds:
ifn NOT FOUND, AT nnnnn.

If the file name entered contains illegal characters,

the system responds:
ERROR IN ARGUMENT

Correct the file name.

If the file name entered contains too many characters,

the system responds;
ILLEGAL PARAMETER

Correct the file name.

After the system finds the specified file, it responds:
READY.

19983900 G

The following example illustrates a sample login:

78/03/19.
CDC NOS
FAMILY: SYS1

USER NAME: US2

PASSWORD: TIME

TM109 - APPLICATION: IAF
TERMINAL: 60, NAMIAF
RECOVER/SYSTEM: BASIC

OLD, NEW, OR LIB FILE: NEW,EX4

13.19.28. TMI109

READY.

Enter the new BASIC program. Each line must begin
with a 1- through 5-digit line number, and end
with €J) . BASIC “statements need not be typed in
correct order; the BASIC subsystem automatically
sequences the statements according to line number.
The NOS edit facility, XEDIT, can be used to enter a
new BASIC program or change an existing file. See
the XEDIT reference manual for use of this editing
facility.

To execute the program, type:

RUN
or

RNH (run no header)
This command initiates compilation and execution of
the BASIC program. The output of a BASIC program
is in the form:

hh.mm.ss
nnnnnnn

yy/mm/dd
PROGRAM

(Data printed by the program and error messages, if
program errors occur.)

9.

RUN COMPLETE.

When a run is completed, the following options are
available:

Continue processing (build and execute new
programs; modify existing program and rerun; or
rerun the same program).

or
Terminate the terminal session with the following
command:

BYE

All files not saved (see appendix D, Indirect Access
Permanent Files) are released, and the following is printed:

xxxxxxx LOG OFF
xxxxxxx SRU

hh.mm.ss.
s.ss8 UNTS

XXXXXXX Indicates the user name.
8.888 Indicates the total number of system

resource units used under this charge
and project number.

1-1 |

Login Procedure for the Time-Sharing

System

The login sequence for the Time-Sharing System begins
with the system printing the following three lines at the
terminal. The second line of this message is dependent on
the installation.)

yy/mm/dd. hh.mm.ss.

CDC TIME-SHARING SYSTEM NOS
FAMILY:

When this occurs, perform the following steps (underlines
indicate input at the terminal):

1. Submit family name on the same line:
nnnhnnn

If the family name is the default family for the
system, press . If your installation does not use
family names, a family name is not requested.

The system then requests:

USER NUMBER:

2. Submit the user number on the same line:

XXXXXXX

The wuser number consists of up to seven
alphanumeric characters assigned by the installation.

The system then requests:

PASSWORD:

3. Enter the password:
2227222

The password must consist of up to seven
alphanumeric characters. To provide a greater
measure of security, type the password in the area
the system has blacked out. If a password is not
needed, type:

If the family name, user number, and password are
not acceptable, the system responds:

IMPROPER LOGIN, TRY AGAIN.
FAMILY:

If the family name, user number, and password are
acceptable, the system responds:

TERMINAL: nnn, TTY

RECOVER/CHARGE:
or

TERMINAL: nnn, TTY

RECOVER/SYSTEM:

The nnn indicates the particular terminal number
being used. (These responses are installation-
dependent.)

1-12

4-5. These steps are the same as the steps 5. and 6.of
the previous description of Login Procedure for the
Interactive F acility.

The following example illustrates a sample login:

79/04/19. 13.19.28.
TIME SHARING SYSTEM
FAMILY: SYS1

USER NUMBER: [TTTTTT]
PASSWORD

TERMINAL: 60,TTY
RECOVER/SYSTEM: BASIC
OLD,NEW,0OR LIB FILE: NEW,EX4

READY.

The password is blacked out and cannot be seen; it is
shown for purposes of illustration.

6-8. These steps are the same as steps 7. through 9. of
the previous description of Login Procedure for the
Interactive Facility.

Sample Terminal Session

The sample program in figure 1-17 was run at a terminal
under the NOS IAF System. Responses entered at the
terminal are underlined. Press the transmission (carriage
return) key after typing in each response.

In figure 1-17, the program is saved as a file named EX4.
The program in this file is stored as an indirect access
permanent file which can later be accessed by use of the
OLD command (as shown in figure 1-18). At this time,
add, delete, or change program statements as shown in
figure 1-19.

The REPLACE command replaces the old program with the
corrected program:

REPLACE, EX4

This NOS command stores the updated program in
file EX4. If logoff of the system occurs before replacing
EX4, the corrected version is lost but the old version of
EX4 remains intact. :

For a detailed description of the NOS commands used in
figure 1-17, as well as other available NOS commands, see
the IAF reference manual or the NOS Time-Sharing User's
reference manual.

NOS/BE

To access a central computer from a terminal, establish
physical connection with the computer system. The
method of establishing the connection between the
terminal and the central site computer varies depending on
the type of terminal equipment and the connection
provided by the telephone company. See the INTERCOM
Version 4 and the INTERCOM Version 5 reference
manuals. When connected to the terminal, the system
responds:

CONTROL DATA INTERCOM n.n
DATE mm/dd/yy
TIME hh.mm.ss

PLEASE LOGIN

19983900 G

80/05/22. 14.45.59. TM1024

(22) SVL SN112 NOS.
FAMILY: ,abs0455
PASSWORD: pubs

TM1024 - APPLICATION: iaf
TERMINAL: 24, NAMIAF

RECOVER/ CHARGE: charge,591 2,693a412

$CHARGE ,5912,693A412.
/basic -=

NOS1-1D176/R6B.

OLD, NEW, OR LIB FILE: new,ex4

READY.

auto
00100 print "type a number"
00110 input x

00120 let f=1

00130 for i=1 to x

00140 let f=f*i

00150 print "factorial ";x;"is
00160 goto 10

00170 end

ll;f

00180

IDLE.

00160 goto 100
00170 end
00180

IDLE.

run

80/05/22. 14.51.54.
PROGRAM EX4

FOR WITHOUT NEXT AT 130

BASIC COMPILATION ERRORS

RUN COMPLETE.
00145 next i

00115 if x=0 then 00170

run

80/05/22. 14.53.45.
PROGRAM EX4

TYPE A NUMBER
7?73

FACTORIAL 3 IS 6
TYPE A NUMBER
?

RUN COMPLETE.
list

80/05/22. 14.54.13.
PROGRAM EX&4

00100 PRINY "TYPE A NUMBER"
00110 INPUT X

00115 IF X=0 THEN 00170

00120 LET F=1

00130 FOR I=1 TO X

00140 LET F=Ff*x1

00145 NEXT I

00150 PRINT "FACTORIAL ";X;"IS
00160 6070 100

II;F

IAF {NOS) log-in procedure; type family
name, user number, and password.

Request for BASIC subsystem.
Program is NEW file (ex4).

BASIC program statements consist of a
line number, followed by a space, followed
by the appropriate statement. You should
allow gaps between line numbers (10, 20,
30, etc.) to permit the inclusion of addi-
tional lines of code should changes be
desired. You can enter the AUTO com-
mand (IAF) to initiate automatic line
numbering.

Enter a user break to stop the automatic
line numbering.

Changing statement (00160) to correct
program. Auto is reinitiated unless a
list or run is issued.

NOS compile and execute program
command.

BASIC issues diagnostic.

Adding statements to correct program.

Compile and execute again.

Input 3 as the value for X.

X = 0, so program terminates at line 80.

NOS command to list program.

Program listing.

00170 END
READY.
save,ex4 —= NOS command saves program with
file name ex4 for later use.
READY.
Figure 1-17. 1AF System
19983900 G

1-13 l

old,exé4 Makes the copy of the file
accessible.
READY.
list Requests a list of the file
contents,
80/07/22. 10.03.45.

PROGRAM EX4

00100 PRINT "“TYPE A NUMBER"
00110 INPUT X

00115 IF X=0 THEN 00170
00120 LET F=1

00130 FOR I=1 7O X

00140 LET F=F*]

00145 NEXT I

00150 PRINT "FACTORIAL ";X;"IS “;F

00160 60TO0 00100
00170 END
READY.

Figure 1-18. OLD Command Accesses Permanent File Under NOS

KUN

75/05/22. 1004422,
PROGRAM EX4

TYPE A NUMBEK

Compiles and executes the new program.

? 6
FACIOKIAL 6 IS 1720
TYPE A NUMBEKR

? 0

SKU 0.103 UNTS.

KUN COMPLETE.

Enters 6 as value for X.

NOS log off command.

EYE
BPEIZMI LOG OFF 10.05-13.
OBRERZY/S SKU 1.000 UNTS.

When this occurs, perform the following steps (underlines

Figure 1-19. Interactive Data Input {Add, Delete, Change Values) Under NOS

indicate input at the terminal):

1.

2.

| pRR

Log in to the system by entering:
LOGIN
The system responds:
ENTER USER NAME-
Enter user name followed by . The user name can

be any combination of up to ten letters or digits and
must not be followed by a period.

When the user name has been entered at a TTY
terminal, the system responds:

FERRNERREE ENTER PASSWORD-

At a 200 User Terminal (200 UT) or any display
terminal, the system responds:

ENTER PASSWORD-

Then enter the password followed by @. A password
is any combination of up to ten letters or digits that
must not terminate with a period. On a teletypewriter
(TTY) listing, the system preserves privacy by allowing
the password (over ten character spaces that have
been blacked-out by overprinting) to be entered, as
shown below.

When the user name and password are accepted, the
user id (a 2-character user code) and the time logged
in, followed by the equipment number (multiplexer
equipment status table ordinal) and the port number
logged in, are displayed at the terminal, as shown
below:

ENTER USER NAME-USERA
ENTER PASSWORD-

19/07/79 LOGGED IN AT 17.47.26
WITH USER-ID AB
EQUIP/PORT 52/03
COMMAND-

19983900 G

3. After a successful login the system responds with
COMMAND; enter the text edit mode by entering the
command EDITOR, as follows:

COMMAND - EDITOR

The system indicates text edit mode by displaying two
consecutive periods (..).

4. Enter:
.« FORMAT, BASIC

When this command is entered after the two periods, a
format specification is automatically established at
the terminal that permits lines to be entered in BASIC
language format. The comma is optional.

5. Enter the BASIC program statements (line number
followed by BASIC statement); for example:

.« 10LETX=5

After the first line, the two period prompts are not
given; continue inserting statements. Each line must
begin with a 1- through 5-digit line number and end
with @ . BASIC statements need not be typed in
correct order because the EDITOR automatically
sequences them according to line number.

6. Once the entire program is entered, compile and
execute the program by typing:

RUN, BASIC

After the program compiles and executes, the
appropriate error messages are displayed if program
errors occur. The comma is optional.

7. When the run completes, select one of the following
options:

Continue processing (build and execute new
programs; modify and rerun existing programs; or
rerun the same program).
or

Terminate the terminal session by entering the
BYE and LOGOUT commands or by entering the
BYE BYE and LOGOUT commands. When the BYE
or BYE BYE command is entered, the system is
returned to command mode from EDITOR mode.
The BYE command does not save the EDIT file.
(See the following example of a BASIC program
run under NOS/BE, the INTERCOM Version 4 and
the INTERCOM Version 5 reference manuals.)

The system responds with:
COMMAND --

19983900 G

At this time, enter the LOGOUT command to release
any local files created under EDITOR. Only files that
are permanent are retained after logout. Perform any
subsequent login. Disassociation from NOS/BE occurs
until a subsequent LOGIN command is entered.
NOS/BE displays the date and time logged out.
LOGOUT is not allowed when operating under control
of the EDITOR. (Leave EDITOR via the END or BYE

command.)

Example:
COMMAND- LOGOQUT
CPA 6.377 SEC. 6.377 ADJ.
CPB .000 SEC. .000 ADJ.
SYS TIME 1.774
CONNECT TIME 0 HRS. 19 MIN.

10/21/79 LOGGED OUT AT 08.43.09.

Logout time is given in hours, minutes, seconds
(24-hour clock); CP time is given in seconds.
Disconnect the terminal from NOS/BE by tuming it
off, or by hanging up the data set receiver.

Sample Terminal Session

After logging in, create and execute BASIC programs. The
sample BASIC program in figure 1-20 illustrates how to run
a BASIC program under NOS/BE. The program was entered
at a TTY terminal. After typing each response, press the
carriage return key .

Saving the file (SAVE, BASPROG) allows the file to be
reserved for later use during the terminal session (for
example, before logging out). To save the file
permanently, it must be stored as a permanent file
(STORE, BASPROG). (Some accounting information might
be necessary before saving a file with STORE. Check
site-procedures.) To retrieve and execute this program
later, the following command sequence must follow the
user login sequence.

COMMAND- EDITOR

. FETCH, BASPROG

. .EDIT, BASPROG,SEQ
..RUN, BASIC

FETCH, BASPROG retrieves the file previously made
permanent and tells EDITOR that BASPROG is to be the
edit file. The commas are optional. RUN, BASIC compiles
and executes the program.

For a more detailed description of INTERCOM EDITOR
commands used in this example, as well as other available
commands, see the section on Terminal Operation under
NOS/BE and the INTERCOM Version 4 reference manual
or the INTERCOM Version 5 reference manual.

1-15

COMMAND~ editor

..format basic

..10 print "type a number";

20 input x

30 Let f=1

40 for i=1 to x

50 Llet f=fxj

60 print "factorial ";x;" is ";f
70 goto 10

80 end

run,basic
FOR WITHOUT NEXT AT 40

BASIC COMPILATION ERRORS

--55 next =
25 if x=0 then 80
run,basic

TYPE A NUMBER ? 3
FACTORIAL 3 IS 6

TYPE A NUMBER 70 =
..tist,all,sup

10 PRINT "TYPE A NUMBER";

20 INPUT X

25 IF X=0 THEN 80

30 LET F=1

40 FOR I=1 TO X

50 LET F=F*]

55 NEXT I

60 PRINT "FACTORIAL “;x;" IS ";F
70 GOTO 10

80 END

..save,basprog e—
..account. ACCOUNT statement.

..catalog,basprog,id=jones,rp=99. e

INITIAL CATALOG

CT Ip= JONES PFN=BASPROG:
CT CY= 001 SN=PFQSET 00000064 WORDS.:
..end

Issue a call to EDITOR.

Request BASIC format specifications, following the EDITOR
COMMAND MODE RESPONSE (..); then enter a BASIC

program line by line.

Request BASIC compile to compile and execute program.

BASIC issues diagnostic messages.

Add statement 55 to satisfy looping requirements. State-
ment 25 is added to provide an exit from the program.
A call is then made to the BASIC compiler again for

compilation and execution of the BASIC program.

Type O (zero) to exit from execution and return to the
EDITOR command mode. Then request a listing of the

program in the edit file.

Save the edit file named BASPROG until LOGOUT.

Store BASPROG as a permanent file.
Exit from EDITOR.
Return to NOS/BE command mode.

I 1-16

Figure 1-20. BASIC Program Under NOS/BE

19983900 G

ELEMENTS OF THE BASIC LANGUAGE 2

e T

This section describes the BASIC lanquage structure, and TABLE 2-1. BASIC CHARACTER SET
explains the elements of the language. The language
elements include: numeric data consisting of integer,
decimal and exponential constants; string data consisting Symbo1l Description
of alphanumeric text with or without quotation marks;
variables representing values that are not fixed; and
operators of the language, expressions, and function A thru Z Letters (uppercase)
references.
+ Plus
BASIC LANGUAGE STRUCTURE - Minus
A BASIC program is comprised of statements that define * Asterisk
the type of operations performed and the types of data
manipulated by the program. The statement lines are / Slash
written by using characters from the BASIC character set.
The following paragraphs define the BASIC character set, (Left parenthesis
the structure of a BASIC statement, and the structure of a
BAGSIC program,) Right parenthesis
$ Dollar
CHARACTER SET
= Equal
The characters listed in table 2-1 can be used to form
BASIC statements. Any character available to the : Colon
operating system can be used in data and string constants. \
See appendix A for a description of all available characters. Apostrophe
0 thru 9 Numerals
STATEMENT STRUCTURE ¥
A Blank
A BASIC statement can be in the form of an executable
statement that specifies a program action (LET X =10) or a s Comma
nonexecutable statement that provides information
necessary for program execution (DATA 1,3,5). All BASIC . Period
statements have the following common characteristics:
" Quote
e Each statement begins with a ~number. Line
numbering must range from 1 tof A Circumflex! T
e Each statement must be completed on a single line. < Less than
Statement continuation onto another line is not
allowed. > Greater than
e Generally, blanks within a BASIC statement have no ? Question mark
meaning. However, there are specific instances in
which blanks are significant, such as in strings. Blanks H Semicolon
should only be used to separate elements of the BASIC
language; for example, they should not be embedded # Number
within line numbers, keywords, constants, or variable
names. See the Future System Migration Guidelines, ¥
appendix E. Refer to appendix E for recommendations for
the use of blanks.
e A BASIC statement, including blanks line numbers, 4
and tail comments, can be ‘a max 0 Up arrow (t) on some terminals.
characters.

comments serve onl} as documentation Xéxcept for
being included in the 150 character statement limit.

19983900 G 2-1

PROGRAM STRUCTURE

A BASIC program is a group of statement lineskarranged
according to the following general rules:

e Program statements must be in line number order
when the program is compiled. If entering the
program lines in the BASIC subsystem under NOS or
using the INTERCOM command FORMAT, BASIC
under NOS/BE, the program statements need not be
entered in line number order. See the NOS Interactive
Facility reference manual or the INTERCOM
Version 5 reference manual and INTERCOM
Version 4 reference manual for information about
sorting line numbers before execution.

e [Executable and nonexecutable statements can be
intermixed. In the following example, a nonexecutable
statement is the DATA statement at line number 110,
and an executable statement is the IF statement at
line number 100. These executable and nonexecutable
statements are explained in more detail later in this
manual under the GOTO statement:

100 FF A=B GOTO 110
110 DATA 10,20,30
120 READ C,D,E

130 END

e An END statement must have the highest line number
in the source program.

Although BASIC programs can be compiled and executed as
batch programs, BASIC is normally used interactively from
a remote terminal.

'CONSTANTS

A constant is a fixed, unchanging value. In BASIC, there
are numeric and string constants.

NUMERIC CONSTANTS

In BASIC, there are three types of numeric constants:
e Integer

e Decimal

e Exponential

Although each of the numeric constant types has specific
rules that govern its use, the following rules apply to all
three constant types:

e A comma cannot be used to delimit placement over
the one-hundredth place, such as thousands and
millions.

e When a numeric constant is not signed explicitly by a
negative or positive sign, the constant is assumed to
be positive.

e Any number of digits can appear in a numeric
constant; a maximum of 14-digit accuracy is used in
computation. The CYBER 170 Model 176 uses a
method different from other CYBER models when
rounding the results of division. The difference is in
the 15th digit of accuracy, but can become apparent
when several divides and multiplies are done in
succession (as in the case when matrix inversion is
followed by matrix multiplication).

e Whether integer, decimal, or exponential, the absclute
value of a constant must be in the range 3.13152 times
10-294 to 1.26501 times 10322, An attempt to
execute a program by using values above this range
results in the diagnostic, ILLEGAL NUMBER. An
attempt to execute a program by using values below
this range results in zeros.

Integer Constants

An integer constant is a whole number written without a
decimal point.

Examples:

-49 25000
+123456789 0

Decimal Constants

A decimal constant is any whole number, fraction, or
mixed number written with a decimal point. Leading zeros
to the left of the decimal point and trailing zeros to the
right of the decimal point are ignored; the decimal point
can appear anywhere in the number.

Examples:
-4.08 1.91632614 .0000001
50.5 147.2 +3025.098
Exponential Constants

The representation of very large or very small numbers is
simplified by using exponential constants. For example, to
write ten billion in its full form requires 11 digits
(10000000000); however, ten billion can also be represented
as 1.0 times 1010,

In BASIC, this exponential form is expressed by 1.0E10,
The 1.0 is the significand and the 10 is the exponent. The
E means times ten to the power of.

Similarly, a small number, such as .00000000923, can be
represented as 9.23 times 10-9. In BASIC, this notation
can be expressed by 9.23E-9.

To use exponential constants in a BASIC program, the
following rules must be observed:

® A number, the significand, must precede the E. The
significand can be any valid integer or decimal
constant.

e The exponent (number that follows the E) is an integer
constant with a positive or negative sign. If a sign is
absent, a positive sign is assumed. If the exponent is
too large to be represented in the computer, a
diagnostic is issued.

e Decimal points are not permitted in the exponent.
Examples:
-2.517E130

7E+20
4.91872634E-18

19983900 G

STRING CONSTANTS

A string is a collection of alphabetic, numeric, and special
characters. In BASIC, these characters are usually set off
by quotes from the rest of the program; this is called
quoted text. Strings that are not set off with quotes,
called unquoted strings, are permitted, but they can only
be used in DATA statements or as input data.

Rules:

e A string enclosed in quotes consists of all characters
between quotes, including blanks.

: g’ depends on the mode:
normal or ASCIL. In normal mode, the maximum
length is 131070 characters; in ASCIL mode, t the
maximum
characters, dependmg on number o escape code
characters in the string. See appendix A.

e A zero-length string, also called a null string, is
represented by a pair of quotes ("").

e Any character can be used in quoted strings.

Examples:

"PART 25"
"THIS IS A TEST"
"An"'embedded'"'quote"

The outside quotation marks are not part of the string
constant. See DATA, under the I/O Statements section,
for an example of unquoted strings.

VARIABLES

Variables represent values that are not fixed. Values can
be assigned to variables and later changed by other
statements or conditions during execution of the BASIC
program. Variables can represent numeric or string data
and can be simple or subscripted.

SIMPLE VARIABLES

Simple variables can be either numeric or string. These
two types of simple variables are described in the following

paragraphs,
Numeric
A simple numeric variable represents a numeric value. It
is named by a single alphabetic character or a single
alphabetic character and a numeric character. V ariable
names must not exceed two characters in length.
Examples of simple numeric variables are:

A Z3 C9 E

Examples of invalid numeric variable identifiers are:

B23 49 G* AA

19983900 G

The following rules apply to numeric variables:
e Numeric variables represent only numeric data.

e Numeric variables are preset to zero before the
program executes.

e The absolute value of a numeric variable must be in
the rzange of 3.13152 times 10-294 to 1. 26501 times
1032

e If a value smaller than the minimum is assigned, the
variable is set to zero.

e If a value greater than the maximum is assigned, a
fatal diagnostic is issued.

String

String variables represent alphanumeric text and are
named with a 2- or j
character must be

| and, in either case:
the last character must be a dollar sign ($). For example:

A$ B% Y$ Al$ B9 Y3$

The value represented by a string variable is a string of
characters. Internally, each character is represented by
one or two 6-bit numeric codes. (See appendix A.) The
characters at the beginning of the alphabet have code
values that are less than the characters at the end of the
alphabet. For example, if A$ and B$ represent strings ABC
and XYZ, respectively, then A$ has a value less than B$.

The string lepresented by a string variable can contain
from 0 through) 6-bit characters or from 0 through
& 2}'@@ 12-bit escay code (ASCH) characters. The
maximum for a string containing both 6- and 12-bit
characters (the usual case when operating in ASCII mode)
lies somewhere between 65535 and 131070 characters
depending upon the number of 12-bit escape code
characters.

The memory space allocated to each string is determined
by the length of the string. The minimum is one computer
word; the maximum is 13108 computer words. The
one-word minimum space is allocated by the BASIC
compiler for every string variable mentioned in the
program. The remaining words are allocated and
de-allocated dynamically at execution time.

SUBSCRIPTED VARIABLES

Subscripted variables represent one value in an array of
values. There twi i
numeric :

followed by a

p g p are formed by a
simple strlng variable followed by a subscnpt list. A
subscript list consists of one to three numeric expressions
bounded by parentheses. (See figure 2-1.)

2-3

NUMERIC SUBSCRIPTED VARIABLES

A(0)

B2(3)

B(5,10)
A(B2(3))
X{(1,N+M,A(3))

STRING SUBSCRIPTED VARIABLES

BS(4)
L$(1,9+3)
C$(1,+3,A(1))

Figure 2-1. Numeric and String Subscripted Variables

Rules for subscripted variables are listed below:

BASIC permits 1-, 2-,
BASIC, array dimensions
using subscripted variables.

Unless an array has been explicitly defined by a DIM
statement, as described in section 3, the first
subscripted variable that references an element in an
array automatically defines the array as containing 11
elements (0 through 10) in each dimension. Thus, a
l-dimensional array has 11 elements; a 2-dimensional
array has 11 times 11 (or 121) elements, and a
3-dimensional array has 11 times 11 times 11 (or 1331)
elements,

A subscript value greater than 10 requires a DIM
statement. (See section 3.)

Subscripted variables with one subscript refer to
elements in l-dimensional arrays; subscripted
variables with two subscripts refer to 2-dimensional
arrays; subscripted variables with three subscripts
refer to 3-dimensional arrays.

A subscript can be any arithmetic expression. The
subscript used is the value of the expression rounded
to an integer.

The lower limit on subscripts is normally zero.
However, this limit can be changed to one by using
OPTION BASE 1 (See OPTION statement in
section 3.) OPTION BASE 1 instructs the system to
start array subscripting with element 1, rather than
the default element 0. Thus, when OPTION BASE 1 is
in effect, automatically-defined l-dimensional arrays

contain 10 elements Qa through 10),
automatically-defined 2-dimensional arrays contain
100 elements, and automatically-defined

3-dimensional arrays contain 1000 elements.

Substring addressing specifies a portion of the value
associated with a simple or subscripted string variable.
Substring addressing can be used anywhere that simple or
subscripted string variables can be used. Substring
addressing is achieved by adding a substring qualifier after
a simple or subscripted variable. (See figure 2-2.)

Figure 2-2. Substring Addressing Format

The substring qualifier specifies the portion of the value of
the string variable from its mth through nth character.

The m and n represent the positions in the string. The
substring indices are first rounded to integers then the
following rules are applied:

1. If m<1, then m is considered to equal 1.

2. If m > the length of the string, then the substring
addressed is the null string immediately following the
last character of the string.

3. If n> the length of the string, then n is considered to
be equal to the length of the string.

4. If n<m, then the substring addressed is the null string
preceding the mth character of the string.
If A$ contains ABCDEF, then the following is true:
A$(1:4) represents ABCD.
A$(0:3) represents ABC (rule 1).
A$(4:8) represents DEF (rule 3).
_ A$(4:4) represents D.
A$(3:2) represents the null string between B and C.

A substring variable can be used anywhere that a string
variable can be used.

EXPRESSIONS

An expression is usually formed from a series of operands
and operations; however, a single constant or variable can
also be considered an expression. In BASIC, there are
three types of expressions: arithmetic, string, and
relational. The value of an arithmetic expression is
numeric; a relational expression is either true or false; and
a string expression is a string of characters.

19983900 G

ARITHMETIC EXPRESSIONS

Arithmetic expressions consist of a series of numeric
operands and operators. Operators can be any arithmetic
operator listed in table 2-2; operands can be any numeric
constant, simple or subscripted variable, numeric function
reference, or any expression enclosed in parentheses. A
function reference is a notation for activating a predefined
algorithm. If arguments are required by the function, the
arguments are evaluated and passed to the function. The
function then calculates and returns a result based on the
arguments. The returned value is used in place of the
function reference. BASIC provides several built-in
functions and allows you to write your own functions. See
BASIC Functions in section 5.

TABLE 2-2. ARITHMETIC EXPRESSION
OPERATOR HIERARCHY

Hierarchy | Operator Definition

1 Exponentiation (Note: ¢ on
. some teletypewriters)

2 * and / | Multiplication and division
3 + and - | Unary + and -

4 + and - [Addition and subtraction

Rules for Writing Arithmetic Expressions

In the formation of arithmetic expressions, certain rules
must be followed:

e Only numeric operands and numeric operators can be
used.

e Two arithmetic operators cannot appear side by side;
for example, X++Y is not allowed. If a minus sign is
used to indicate a negative value in an expression,
parentheses must be used to separate the negative sign
and associated operand from the remainder of the
expression. For example:

Correct A*(-B)

Incorrect A*.B

e Operators cannot be implied; for example, (X+1) (Y+2)
is not allowed. The correct form is (X+1) * (Y+2).

The following are examples of valid arithmetic expressions:

‘A+B*C/DAE

Al(3,1+8)A2.6-G3/Z

A+B**%C

A+SIN(X)+COS(Y) (built-in function)
=3 14%RA2

19983900 G

Arithmetic Expression Evaluation

The rules for the evaluation of arithmetic expressions are
as follows:

o Expressions within parentheses are evaluated first.

e Operations of higher precedence are performed before
those of lower precedence. Precedence is determined
by the hierarchy illustrated in table 2-2 from highest
(1) to lowest (4).

e Operations of equal priority or precedence are
performed in order from left to right.

Table 2-3 illustrates some examples of arithmetic
expression evaluation.

TABLE 2-3. EXPRESSION EVALUATIONS

Expressions Evaluation Steps
MB*C/DAE | 1.DAE=a

2. B*C = b

3. b/a=¢

4, A+c = d (final value)
A+(B-C)*3 1. B-C=a

2. a*¥3 = b

3. A+b = ¢ (final value)
2N2 1. 2A2 = a

2. -a = -4 (final value)
(-2)n2 1. -2 = a

2. an2 = 4 (final value)

STRING EXPRESSIONS

String expressions consist of a series of string operands and
operators, There is only one string operator available,
string concatenation (+). String operands can be one of the
following:

e A string constant

e Asimple orig

string variable

The following are examples of string expressions:
"TEST1"

B$(1)+D$
B8$(1:4)

2-5

Concatenation

The format of a string concatenation is shown in
figure 2-3. The concatenation operation causes the string
to the right of the operator, sep to be appended or
joined ta the end of the string to the left, sej.

Figure 2-3. String Concatenation Format

The character + is either a concatenation operator or an
arithmetic operator, depending on the context. It must be
surrounded by string variables to be considered a
concatenation operator. Any expression containing both
string and arithmetic operands is illegal.

Only one string operator can be used, so there is no
hierarchy of operations. Parentheses can be used to group
expressions into subexpressions, but such groupings have no
effect on the result,

The fatal error, STRING OVERFLOW, results if a
concatenation operation produces a string longer than the
allowable maximum. In normal mode, the maximum string
length is 131070 characters. In ASCIl mode, the string
length maximum is 65535 to 131070 characters, depending
on the number of escape code ASCII characters in the
string.

The following examples illustrate string expressions and
the string concatenation operator.

1. "ABC" + "DEF" evaluates to "ABCDEF"

2. If string A$ contains the string expression SUBSTRING
EXPRESSION then A$(1:10) + "ADDRESSING"
evaluates to "SUBSTRING ADDRESSING".

RELATIONAL EXPRESSIONS

There are two types of relational expressions: simple and
compound. Simple relational expressions are formed by
connecting two numeric or string expressions with a
relational operator. Compound relational expressions are
formed by connecting two simple relational expressions
with a logical operator.

Simple Relational Expressions

The format of a simple relational expression is shown in
figure 2-4. The relational expression operators that can be
used to connect numeric or string expressions are shown in
table 2-4.

eq op ep

eq, eg Indicates numeric or string constants,
variables or expressions.

op Indicates relational operator.

Figure 2-4. Format for Simple Relational Expressions

TABLE 2-4. RELATIONAL EXPRESSION OPERATORS

Operator Definition

= Equal to

Not equal to

Greater than

Less than

Greater than or equal to
Less than or equal to

Rules for Writing Simple Relational Expressions

e Comparison of a string to numeric expressions is not
allowed.

e Only one relational operator is allowed in an
expression.

e Relational expressions can be wused only in
IF statements (section 4).

Rules for Evaluating Simple Relational Expressions

e Numeric Relational Expressions

The two arithmetic expressions are evaluated and then
their resultant values are compared algebraically to yield a
true or false value. If A = 2 and B = 3, the expressions in
figure 2-5 are evaluated as shown.

Relational Expression Value
A=B False
A><B True
A>B False
A<B True
A>=8B False
A<=8B True
A*A+3<B*2 Faise

Figure 2-5. Evaluating Simple Relational Expressions

e String Relational Expressions

Strings

ASCII is the default collating sequence used for all string
comparisons in BASIC. OPTION COLLATE can be used to
change the collating sequence to a collating sequence that
is native to the character set being used. See the OPTION
statement, and appendix A (describes the various character
sets supported by BASIC).

19983900 G

Strings are equal if they have the same length and contain
the same characters (including blanks) in the same order.
Blanks are important when they are used in strings.

When strings are equal in length, the first pair of
corresponding characters that are not equal determines the
greater string. For example, ABXY is greater than ABCZ
because the numeric code for X is greater than the
numeric code for C.

When strings are unequal in length, but corresponding
characters that can be compared are equal, the longer
string is always considered greater. For example, ABX is
greater than AB.

When strings are unequal in length, but one of the
corresponding characters that can be compared when
scanning from left-to-right is greater, the string with the
first character of greater value is the greater string. For
example, X7 is greater than X6543, and X76 is greater than
X75123.

Compound Relational Expressions

A compound relational expression is a sequence of simple
relational expressions separated by logical operators. A
compound relational expression evaluates to TRUE or
FALSE. The format for the compound relational
expression is shown in figure 2-6. The logical operator
hierarchy is shown in table 2-5.

Rq op Ry

R1 - Rz Simple relational expression or com-
pound relational expression.

op Logical operator (AND, OR, unary
NOT).

Figure 2-6. Format for Compound Relational Expressions

TABLE 2-5. LOGICAL OPERATOR HIERARCHY

Hierarchy | Operator Definition

1. NOT Logical negation

2 AND Logical multiplication or
Togical intersection

3 OR Logical addition or union

(inclusive or)

Rules for Evaluating Compound Relational
Expressions

e Expressions within parentheses are evaluated first.

e Operators of higher precedence (hierarchy) are
performed before those of lower precedence. The
hierarchy and definition of the logical operators are
provided in table 2-5.

NOT is a unary operator and can appear to the left of any
operand; however, it cannot appear as the only operator
between two operands.

NOT can appear between the other logical operators (AND,
OR) and an operand (for example, R} AND NOT Rp;
Rj OR NOT Ry).

In the truth table 2-6, the NOT (unary) operator is
evaluated. The NOTp is the opposite of p. In the following
examples, TRUE is printed for the first example, and
FALSE is printed for the second example.

1. A<B THEN PRINT "TRUE" ELSE PRINT "FALSE"

2. NOT A<B THEN PRINT "TRUE" ELSE PRINT "FALSE"
In the first example, it is true that A is less than B; in the
second example, it is false that A is not less than B (A is
less than B).

The logical operators AND, OR are defined in truth
tables 2-6, 2-7, and 2-8.

TABLE 2-6. NOT (UNARY) OPERATOR EVALUATION

P NOTp
FALSE TRUE
TRUE FALSE

TABLE 2-7. AND OPERATOR EVALUATIONS

q
FALSE TRUE
P
FALSE FALSE FALSE
TRUE FALSE TRUE

TABLE 2-8. OR (INCLUSIVE) OPERATOR EVALUATIONS

q
FALSE TRUE

P

FALSE FALSE TRUE

TRUE TRUE TRUE

19983900 G

Examples using NOT, AND, OR

In the examples below, if =8 and J=4, the result is the
following:

1. I OR NOT J>1
Evaluates to false or true, so the expression is true.
2. 2*¥1=JA2 AND I<J

Evaluates to true and false, so the expression is false.

2-8

In the following examples, if A=5, B=4, C=2, and D=1, the

result is the following:

1. NOT A>B AND C=D
Evaluates to false and false, so the expression is false.
2. NOT (A>B AND C=D)

Evaluates to false (the AND expression) and true, so
the expression is true.

19983900 G

FUNDAMENTAL STATEMENTS 3

This section describes the statements that are used for the
following purposes:

e Perform value assignment during program execution.
e Choose the lower boundary of an array.

e Choose the collating sequence to be used for string
and function comparisons.

e Define and allocate storage for arrays.
e Terminate execution of a program.
e Insert explanatory remarks into a program.

The tables in each category of statements summarize the
effect and usage of each statement.

VALUE ASSIGNMENT

The value of a variable can be assigned with the LET
statement. For numeric variables, the present value is
replaced by a new value. For string variables, the
complete present value or a specified substring of the
value can be replaced by a new value.

LET STATEMENT

The LET statement assigns a value to one or more
variables during execution of a BASIC program. The effect
and usage of the LET statement is shown in table 3-1. The
format of the LET statment is shown in figure 3-1. The
use of the word LET is optional in the LET statement.

TABLE 3-1. VALUE ASSIGNMENT

the LET statement at line number 30 simultaneously
assigns the value 6 to I, and places the element 6 into
subscript I in Z(I), which was previously assigned the array
position (2+1). After execution of line number 30, the
subscript value of I becomes 6, which places the element 4
in the statement at line number 35 into the array
position 6; the fifth LET statement assigns the value of the
quoted string expression TEST to the string variable B$.

(or)

nv Indicates a numeric variable (simple or subscripted).
The string variables can also have a substring
descriptor.

sv Indicates a string variable (simple or subscripted).

ne Indicates a numeric expression of any complexity.

se Indicates a string expression of any complexity.

Figure 3-1. LET Statement Format

Statement Effect Usage
LET Assigns a numeric LET B = 3+2
or string value

to one re
variables speci-
fied in the LET
statement line.

C(4) = 20

10 LET A1=X+Y

20 LET A2=A3=A4=X+Y
25 LET I=2+1

30 2(1)=1=6

35 2(1)=4

60 LET BS$="TEST"

When the LET statement contains a single variable (nv or
sv) on the left-hand side of the equals sign, the value of the
expression ne or se on the right-hand side of the equals sign
is assigned to the variable. When the LET statement
contains a series of equalities, each variable is assigned the
value of the expression. Subscript expressions are
evaluated prior to the assignment of the value, and all
expressions are evaluated according to the rule of operator
precedence. (See table 2-2 in section 2.) For examples,
see figure 3-2. The LET statement at line number 10
assigns the value of the expression X+Y to the variable Al;
the LET statement at line number 20 assigns the same
expression value to each of the variables A2, A3, and A4;

19983900 G

Figure 3-2, LET Statement Examples

Substring addressing can be used anywhere that string
variables are used. Use the LET and the INPUT statements
to replace, delete, extract, or insert substrings into or
from a simple or subscripted string variable. Any length
string (up to the limits) can be inserted into a string by
using a substring descriptor. A substring can be replaced
by assigning a new value to that particular part of the
string, or the substring can be deleted by assigning a null
value to it. The value of the original string can be
lengthened or shortened with these insertion, deletion, and
replacement operations. A variable containing a null string
can be assigned a value by extracting a substring value
from one string and inserting it into the null string.
Figure 3-3 shows several examples of substring addressing;
all the examples assume an original string variable value of
ABCDEF.

The following examples of substring addressing use an original
string value of ABCDEF.

20 LET A$(2:5)="XXXX"” Value XXXX replaces BCDE;
value of string A$ becomes
AXXXXF.

215 LET C$(3:5)=" " Null value replaces CDE;

value of string C$ becomes

ABF.

110 LET B$(4)(2:0)=""MM" Value MM replaces the null
string before B; value of
subscripted string variable
B$ becomes AMMBCDEF,

30 LET 2$(1:3)=2%$(4:6) Value DEF replaces the

first three characters of

string Z$; value of Z$
becomes DEFDEF.

10 LET B$=A$(2:4) A$ is the original string

value of ABCDEF; B$

contains the null value; B$
is assigned the extracted
value BCD.

OPTION BASE n

The OPTION statement using BASE explicitly sets the
origin of all arrays to either 0 or 1. OPTION BASE n can
appear only once in a program, and it must precede any
DIM statement or any reference to an array. If OPTION
BASE n is not specified, the lower boundary of all arrays is
assumed to be base 0. The default for array subscripting
starts with element 0.

In the following example, BASE n is declared as 1. Since
the example specifies that subscripting starts with element
1, the DIM statement defines A as a 3 by 4 (or 12 element)
array, and B as a 2 by 13 (or 26 element) array.

100 OPTION BASE 1
110 DIM A(3,4),B(2,13)

Using OPTION BASE 0 (the default) in the above example
would cause the array A to be dimensioned as a 4 by 5 {or
20 element) array, and B to be dimensioned as a 3 by 14 (or
42 element) array. Other examples of using OPTION BASE
n are shown under Matrix Statements in section 8.
Figure 3-4 shows the possible formats for OPTION BASE n.

Figure 3-3. Substring Addressing Using LET Statement

OPTION STATEMENT AND DIM STATEMENT

Use one statement, the OPTION statement, to choose a
particular collating sequence for comparing strings and
computing values, and to declare the base (origin) of all
arrays. To declare and allocate storage for 1-, 2-, or
3-dimensional arrays that are not the default size, use the
DIM statement. See table 3-2 for a summary of the
effects and usage of the OPTION and DIM statements.

OPTION STATEMENT

Use the OPTION statement for two distinct purposes: to
explicitly declare the lower boundary (or origin) of all
arrays being used in the program to base 0 or to base 1,

| e OPTION statement is
encountered ﬁuriﬁg normal program execution, control
passes to the next statement, with no effect on the
program.

1. OPTION BASE n

(or)

n Indicates the origin to be set; it can be
either 0 or 1.

Note

You shouid not use OPTION COLLATE NATIVE
in normal mode. See Future System Migration
Guidelines, appendix E.

Figure 3-4. OPTION Statement Formats

TABLE 3-2. OPTION AND DIM STATEMENTS

Statement Effect

Usage

OPTION Can set the lower boundary of all
arrays being used by the program

to base 0 or to base 1. “
i

DIM Defines and allocates storage for
1-, 2-, and 3-dimensional arrays.

OPTION BASE 1

DIM A(4,4), B(15)

e 3-2

19983900 G

OPTION COLLATE

The OPTION COLLATE NATIVE and OPTION COLLATE
STANDARD determine the collating sequence used by a
program for comparing strings and for computing values of
the CHR$ and ORD functions. Figure 3-4 shows the
formats for these two choices.

OPTION COLLATE STANDARD is the default collating
sequence; it specifies that the ASCII collating sequence is
to be used by the program for comparing strings and
computing values of the CHR$ and ORD functions. Every
character in the BASIC character set (as shown under
BASIC Language Structure) is assigned an ASCII character
code; the smaller the ASCII character code, the earlier the
character appears in the collating sequence. This ordering
is important in string comparison operations because
BASIC compares characters according to their assigned
numeric codes in the applicable character set. For
example, A is less than B because the ASCII (or BASIC
decimal) code is 65 for A and 66 for B. Table A-1 in
appendix A provides a list of characters and their
corresponding ASCII character codes.

OPTION COLLATE NATIVE instructs BASIC to select the
collating sequence native to the character set being used
by the program. The character set used by a program is
determined by the AS parameter of the BASIC control
statement. (See Batch Operations.) As shown in
appendix A, the native character sets supported by BASIC
can be classified as the ASCII character set or as the
normal character set. The native collating sequence for
ASCII character sets (described in appendix A as NOS
ASCII 128-character set, NOS/BE ASCII 95-character set,
and the Extended Character Set) is the same as for the
standard collating sequence. The native collating sequence
used for normal character sets (described in appendix A as
CDC 63-character set, CDC 64-character set, ASCII
63-character set, and ASCII 64-character set) is display
code. However, because of the anticipated changes in
BASIC, it is recommended that OPTION COLLATE
NATIVE not be used in normal mode. See the Future
System wiigration Guidelines, appendix E. BASIC treats
display character codes in the same way as ASCII
character codes. That is, the smaller the display character
code, the earlier the character appears in the collating
sequence. ~able A-2 in appendix A provides a list of
character. and their corresponding display character codes.

The COLLATE option can be used only once in a program.
If the statement is not specified, OPTION COLLATE
STANDARD is assumed by default.

DIM STATEMENT

The DIM statement explicitly defines one or more arrays
and allocates storage space for the named arrays. The
format for the DIM statement is shown in figure 3-5.

Arrays require a DIM statement when a subscript value
greater than 10 is needed. To save space, use the DIM
statement to dimension an array with an upper subscript
limit of less than 10. An array not previously defined by
the DIM statement is implicitly declared to have one
dimension (10) when an element is referenced by an array
variable with one subscript; two dimensions (10 times 10)
when the element is referenced by an array variable with
two subscripts; and three dimensions (10 times 10 times 10)
when the element is referenced by an array variable with
three subscripts.

Use DIM statements anywhere in a program, but define an
array prior to usage of that array. See Future System
Migration Guidelines, appendix E. However, an array
variable cannot be declared in a DIM statement more than
once in the same program. An array can be redimensioned
when a matrix statement is executed. (See Redimensioning
and Matrix Operations, section 8.) DIM is not executable;
the program is not effected if DIM is encountered during
normal program execution.

Arrays passed as arguments to the INV function are
limited to 100 times 100 elements. (See INV function.) In
all other cases, the number of dimensioned array elements
is limited only by the amount of available memory.
Figure 3-6 illustrates use of the DIM statement to define
arrays and to reserve space for each of the declared array
elements. The examples presented in figure 3-6 assume
that subscripting begins with element 0.

e 100 DIM X$(5,5), B3(1,2), X1(50)
This statement reserves space for:

X$ A two-dimensional string array with
6 times 6, or 36 elements.

B3 A two-dimensional numeric array with
6 elements.

X1 A one-dimensional numeric array with
51 elements.

e 50 DIM G2(5,6,7), A0(9,2), P$(2,3)
This statement reserves space for:

G2 A three-dimensional numeric array with
6 times 7 times 8, or 336 elements.

A0 A two-dimensional numeric array with
10 times 3, or 30 elements.

P$ A two-dimensional string array with
12 elements.

DIM m1(nc1, e

mq - my, Indicates numeric or string matrix
identifier.

ncq - ncg Indicates one-to- integers, sepa-

rated by commas, that represent the
maximum value of each subscript.

NOTE

Each element of a numeric array requires one
computer word. Each element of a string array
requires 1 + n computer words where n is a
function of the number of 6-bit characters
currently assigned to the string. If the number
of characters is zero, n=0. If the number of
characters is nonzero, n=INT ((number of 6-bit
characters +11) /10) + 1.

Figure 3-5. DIM Statement Format

19983900 G

Figure 3-6. DIM Statement Examples

3-3 @

PROGRAM COMMENTS

Program comments in a B
using the REM statemen . 1
i Table 3- “the eff
M statement and the tail comment.

TABLE 3-3. REM STATEMENT AND TAIL COMMENT

Statement Effect Usage

REM SOLVE FOR Y

REM Adds comments
to a program
without
affecting
execution.

REM STATEMENT

The REM statement is used to insert explanatory remarks
or comments into a program. REM is a nonexecutable
statement and, therefore, has no effect on program
execution. The format of the REM statement appears in
figure 3-7. Figure 3-8 shows some examples of the REM
statement.

REM chy . . . ch,

chq . . . ch, Any comment or exp
string within the
statement length limitation; characters
can be continued on additional REM
statements.

Figure 3-7. REM Statement Format

100 REM M EQUALS MASS IN GRAMS
110 REM V EQUALS VELOCITY IN CM/SEC.
120 REM T EQUALS KINETIC ENERGY

Figure 3-8. REM Statement Examples

If control reaches, or is transferred to, a REM statement,
the next executable statement following the REM
statement is executed. In the following example, if A is
equal to 10, control is transferred to the REM statement
and the next executable statement becomes 40,

10 IF A=10 GOTO 30

20 PRINT "A=AVERAGE"

30 REM TEST FOR SECOND AVERAGE
40 TIF B=20 PRINT "B=AVERAGE2"

TAIL COMMENTS

An alternate form of a comment is the tail comment. A
tail comment can be added to the end of any BASIC

statement, except DATA and image, by adding an
apostrophe (') before the comment. For example:

100 LET F = 1000 'F IS FIXED COSTS
An apostrophe always indicates the beginning of a tail

comment, except when it appears in a quoted string, a
DATA statement, or an image statement.

PROGRAM TERMINATION
To terminate a program, use either the END statement or

the STOP statement. Table 3-4 shows the effects and
usage of these two statements.

TABLE 3-4. END AND STOP STATEMENTS

Statement Effects Usage

STOP Terminates program STOP
execution.

END Marks physical end END
of a source program.
END must be the last
Tine number in the
program. END should
be used because it
might be required in
future versions. See
Future System Migra-
tion Guidelines,
appendix E.

STOP STATEMENT

The STOP statement can be used anywhere in a BASIC
program to cause an immediate exit from the program.
When the STOP statement is encountered, program
execution terminates at that particular point, and control
is returned to the operating system. Figure 3-9 shows the
format of the STOP statement.

STOP

Figure 3-9. STOP Statement Format

The STOP statement is equivalent to an unconditional
GOTO statement that specifies the line number of an END
statement.

In the following example, the STOP statement causes
program execution to terminate if Al is less than zeroj if
Al is greater than or equal to zero, program execution
continues until the END statement is encountered.

100 IF A1<0 GOTO 120

110 IF A1>=0 GOTO 130

120 STOP

130 PRINT "VALUE IS SUFFICIENT."

999 END

19983900 G

END STATEMENT

The END statement signals the end of a BASIC program; if
control reaches the END statement during program
execution, the program terminates as if a STOP statement
had been executed. The format of the END statement
appears in figure 3-10.

The END statemen but it should be used in
programs because future of BASIC might require
its use. See the Future System Migration Guidelines,
appendix E.

19983900 G

END

Figure 3-10. END Statement Format

BASIC CONTROL STATEMENTS 4

13—

This section describes control statements of the language
that are used to change the sequence of execution of
statements, to test and branch on a condition, to perform
loops, and to monitor and control errors and interrupts.

TEST AND BRANCH STATEMENTS

t

Testing and branching to certai
accomplished with the IF, the
GOTO, and the ON GOTO statements. Table 4-1 defines
the test and branch statements and their effects in a
program. Further details of these statements follow
table 4-1.

GOTO STATEMENT

The GOTO statement unconditionally transfers control
from one point in the program to another, thereby
interrupting the normal sequence of instructions. The
format for this statement is shown in figure 4-1.

GOTO In

In Indicates line number.

Figure 4-1. GOTO Statement Format

GOTO specifies that the statement at the referenced line
number is to be executed next. Normal sequential
execution continues from that point. If a GOTO statement
references a nonexecutable statement, such as a DIM
statement, execution continues with the first executable
statement that follows the referenced nonexecutable
statement.

Since the GOTO statement unconditionally causes control
to be transferred to the specified line number, care must
be taken that this does not set up an infinite loop. For
example, consider the following program:

10 LET X=X+1
20 INPUT X
30 GOTO 10
40 END

When this program is executed, it cycles continuously
through lines 10, 20, and 30, and never reaches the END
statement at line 40. It can be terminated only by
interrupting the program. (See the NOS Interactive
Facility reference manual or the INTERCOM Version 5
reference manual or INTERCOM Version 4 reference
manual.) Inserting an IF statement (25 IF X=100 GOTO 40)
before the GOTO provides an exit. When the value of X
equals 100, the IF statement branches to line 40 and
automatically terminates the program. The IF statement
is described later in this manual.

TABLE 4-1. TEST AND BRANCH STATEMENTS

Statement Effect

Usage

ment.

ON GOTO

statement.

GOTO Unconditionally transfers
control to a specified state-

Transfers control to one of
a group of statements depen-
ding on the integer value
specified in the ON GOTO

IF Tests a relationship or a
. group of relationships.
the test is true, control
moves to a referenced pro-
gram statement; otherwise,
control falls through to the
next executable statement.

GOTO 50

ON A/3 GOTO 50,60

IF A=20 THEN 80
If

19983900 G

4-1 @

ON GOTO STATEMENT

The ON GOTO statement provides for conditional
branching depending on the value of an expression. The
expression is evaluated and rounded to an integer value.
Then control is transferred to Im if ne is equal to 1; to
Ing if ne is equal to 2; and so forth. If the value of the
expression is negative, zero, or greater than the number of
line numbers specified, an execution diagnostic ON
EXPRESSION OUT OF RANGE is issued. Figure 4-2
illustrates the formats for the ON GOTO statement. The
second format should not be used because it might not be
supported in future versions of BASIC. See the Future
System Migration Guidelines, appendix E.

1. ON ne GOTO Inq, Iny, In3, ceeyIng

or

ne Indicates numeric expression,

In Indicates line number.

Figure 4-2. ON GOTO Statement Format

In figure 4-3, SGN(A) can have the value -1, 0, or 1. The
expression SGN(A)+2 can have the value 1, 2, or 3, and
control transfers to statements 100, 110, or 120,
respectively. If, for example, A has the value 2.5, then
SGN(A)+2 has the value 3, and the order of statement
execution is 95, 120, 130, and the next logical statements.

95 ON SGN(A}+2 GOTO 100, 110, 120
100 LET A=A*A

105 GOTO 130

110 LET A=A*B

115 GOTO 130

120 LET A=A*BA2

130 LET B=A+1

Figure 4-3. Example of ON GOTO and
GOTO Statements

IF STATEMENT

The IF statement tests conditions and controls the
sequence of operations. The formats for the IF statement
are shown in figure 4-4. If the relational expression r is
true, the program transfers control to the statement at
line number 1n, if format 1 is used, and executes
statement stm, if format 2 is used. Do not use the format
GOTO because it might not be supported in future version
of BASIC. See the Future System Migration Guidelines,
appendix E. If the relation r is false, the next sequential
statement is executed. Examples of simple IF...THEN
clauses are shown in figure 4-5.

The stm parameter can contain any executable statement
other than a FOR or a NEXT statement. The
nonexecutable statements OPTION, DATA, DEF, DIM,
END, FNEND, image, and REM are not allowed in the
stm parameter.

4-2

1. IF r THEN In (or)

r Indicates simple or compound relational
expression,

In Indicates line number.

stm indicates executable BASIC statement.

Figure 4-4. IF Statement Format

20 IF 2*1 > = J A 2-1 THEN 165

Assuming | = 8 and J = 4, the value 16 is compared to the
value 15; the evaluation is true, the next statement executed
is at line number 165.

15 IF 1 =J OR NOT J < | THEN 140

Assuming | = 8 and J = 4, the relation | = J is false. The
relation J < | is true; however, NOT J < | is false. The
compound relational expression evaluates to false (false or
false is false) and the branch to statement 140 is not made.

25IFA<>0THENLETB=0

This statement causes B to be set to 0 if A is not equal
to 0. The next statement in sequence is then executed.
If A = 0 the next statement in sequence is executed but
the LET B = 0 is not.

Figure 4-5. |F Statement Example

Multiple IF...THEN clauses can be embedded within a
single IF statement to perform various kinds of conditional
tests, as shown in figure 4-6. The maximum number of
IF...THEN clauses is governed only by the 150 character
line width limitation. The IF statement in figure 4-6
contains two IF ... THEN clauses to test for a zero value in
each of the numeric variables A and B. If both A and B are
zero, C is assigned the value 14.3. If neither A nor B is
zero, C is not assigned the value 14.3.

30 IF A=0THEN IF B=0 THEN LET C = 14

Figure 4-6. Nested |IF.. THEN Statement Example

When the IF statement contains multiple IF...THEN
clauses, the clauses are tested consecutively, beginning
with the first clause.

The IF...THEN...ELSE statement, an extension of the
simple IF statement, enables execution to continue at a
specified line number when the IF condition is false, as
well as when it is true. The formats for this form of the
IF statement are shown in figure 4-7. Do not use format 2

because it might not be supported in future versions of
BASIC. See Future System Migration Guidelines,

appendix E.

19983900 G

Figure 4-7. 1F..THEN..ELSE Statement Format

In figure 4-7, if the relational expressionr is true, the
program transfers control to line number Inj or it
executes statement stm), depending upon which was
specified in the statement. If the relational expression is
false, statement stmy or the statement at Inp s
executed. The statements stm; and stm2 can be any
executable BASIC statements except FOR and NEXT.
They cannot be nonexecutable statements such as OPTION,
DATA, DEF, DIM, END, FNEND, image, or REM.

Figure 4-8 contains examples of the IF...THEN,..ELSE
statement.

1. IF A <0 THEN 150 ELSE 160

2. IF A$ = “STOP” OR A$ = “END” THEN STOP
ELSE 100

3. IFX=0THEN LETY =0 ELSE LET Y =
Y/X

4. IF A=0 THEN IF B = 0 THEN PRINT 1 ELSE
PRINT 2 ELSE PRINT 3

5. IF A=0 THEN IF B = 0 THEN PRINT 1 ELSE
PRINT 2

6. IF A= 0 THEN GOSUB 500 ELSE IF B = 0
THEN GOSUB 600 ELSE LET B= 3

Figure 4-8. IF..THEN...ELSE Statement Examples

e Example 1 causes control to go to line number 150
when ‘A is less than zero, and to line number 160 when
A is not less than zero.

e Example 2 causes the program to stop when the string
variable A$ contains either STOP or END, and to
transfer control to line 100 when A$ contains any
other value.

e Example 3 sets Y to zero when X is equal to 0, and
sets Y to Y/X when X is not equal to 0. In either
case, control falls through to the next sequential
statement after Y has been assigned a value.

e Example 4 causes the number 1 to be printed if both A
and B are equal to zero, the number 2 to be printed if
A is equal to 0 but B is not equal to 0, and the number
3 to be printed if A is not equal to 0 (the value of B is
not tested in this case). When IF...THEN...ELSE
statements are nested, as in this example, the inside
ELSE belongs to the inside IF ... THEN, the next level
ELSE (the second one seen when reading from left to
right) belongs to the next level IF THEN, and the
levels continue in this progression (similar to the way
nested parentheses are paired). It is not necessary to
have as many ELSEs as IF...THENs however, and
outside IF ... THEN...ELSEs are executed first.

e Example 5 causes 1 to be printed if both A and B are
equal to 0, 2 to be printed if A is equal to zero but B is
not, and nothing to be printed if A is not equal to
zero. In all cases, the next statement in sequence is
executed next. There is no ELSE clause for IF A =0
THEN. It is a simple IF THEN with an IF THEN ELSE
as its consequent statement.

e In example 6, if A is equal to 0, the subroutine at
line 500 is executed, and control returns to the next
sequential statement following the IF. If A is not
equal to 0, the relation B is equal to 0 is tested. If B
is equal to 0, the subroutine at line 600 is executed,
and control returns to the next sequential line. If B is
not equal to 0, it is set to 3, and control falls through
to the next sequential statement. Neither the
subroutine at line 500 nor the subroutine at line 600 is
executed in this case. In this example, the
consequence of the ELSE in the first
F...THEN...ELSE is an IF...THEN...ELSE
statement.

LOOPING

Looping, the repetitive execution of the same statement or
statements, can be efficiently controlled in BASIC with the
FOR and NEXT statements. Table 4-2 summarizes these
looping statements and their effect in a program.

FOR . . . NEXT STATEMENTS

The FOR statement initiates repeated looping through the
statements that physically follow the FOR statement, up
to and including a corresponding NEXT statement. The
FOR statement must appear as the first statement of the
loop, and the NEXT statement must be the last statement
of the loop. The format of the FOR...NEXT statements
is illustrated in figure 4-9.

TABLE 4-2. LOOPING STATEMENTS
Statement Effect Usage
FOR Marks the beginning of a loop and in- FOR I=1 TO 10
itiates its execution.
NEXT Marks the end of the FOR loop; tests for NEXT 1
end-of-1oop condition and reexecutes or
terminates depending on the results.

19983900 G

4-3 4

1. FOR snv = neq TO ney STEP nej
(or)

2. FOR snv = neq TO ne,

NEXT snv

snv Indicates simple numeric variable
(called the control variable; it must
be identical in both statements).

neq Indicates any arithmetic expression
(called the initial value).

ne; Indicates any arithmetic ’expression
(called the final value).

neg Indicates any arithmetic expression

(called the step value).

Figure 4-9. FOR...NEXT Statement Formats

When the FOR statement is executed, the expressions are
evaluated and their values are saved as initial, step, and
final values of the loop. The control variable is assjgned
the initial value and, if it does not surpass the final value,
the statements between the FOR and NEXT statements are
executed. When the NEXT statement is encountered, the
value of the control variable is adjusted by the step value.
A comparison is made between the value of the adjusted
control variable and the specified final value: if the
control value has not surpassed the final value, looping
continues at the statement following the FOR; if it has,
the loop is complete and execution continues with the
statement following NEXT. The statements between the
FOR and NEXT statements are never executed if the
initial value is beyond the final value.

The STEP value can be positive or negative. For a positive
"STEP value, the initial value must be less than the final
value upon entrance to the loop. Similarly, for a negative
STEP value, the initial value must be greater than the final
value. If either condition is not met, the loop does not
execute, and control branches to the statement following
the NEXT statement. Figure 4-10 illustrates a loop with a
specified STEP value of +2. Execution of the loop in

figure 4-10 causes the values 1, 3, 5, 7, 9, and 11 to be.

printed. Statements 20 through 30 are repeated six times,
once for each value assigned to X.

printed. Even though the FOR statement specifies that the
control variable X be incremented by an implicit STEP
value of +1 until it exceeds 10, the LET statement adds 1
to X, thereby causing the control variable to be
incremented by 2 for each pass through the loop. Thus, the
value of the control variable can be changed by statements
within the loop.

10 FOR X=1 TO0 10
20 LET X=X+1

30 PRINT X

40 NEXT X

50 END

Figure 4-11. Control Variable Value Changed

After a loop has repeated itself the specified number of
times, the final value of the control variable is the first
value not used. That is, upon normally exiting from a loop,
the control variable assumes its final value plus an
additional STEP value (+1 when a STEP value is not
specified). Using a control statement, such as GOTO, to
prematurely terminate a loop causes the control variable
to retain the value it has when the control statement is
executed. Figure 4-12 shows the effect that a normal exit
from a loop has on the control variable. The X in line
number 120 assumes the value of 1, 3, 5, 7, 9, and 11, and
the X in line number 140 assumes the value 13.

100 REM LOOP CONTROL VARIABLE EXIT TEST
110 FOR X=1 TO 11 STEP 2

120 PRINT X

130 NEXT X

140 PRINT X

150 END

10 FOR X=1 TO 11 STEP 2
20 PRINT X

30 NEXT X

40 END

Figure 4-10. Loop With Specified STEP Value

The initial, final, and STEP expressions are evaluated only

once (upon entrance into the loop). These values do not
change during execution of the loop, even if the program
changes the value of the variables within the expressions.
The value of the control variable, however, can be changed
by statements within the loop; its last value is always
adjusted by the STEP value and is used in comparison to
the final value, as shown in figure 4-11. Execution of the
loop in figure 4-11 causes the values 2, 4, 6, 8, and 10 to be

1 44

Figure 4-12. Loop Exit Effect on Control Variable

Loops can be nested (loops specified within loops) to a

- maximum depth of 10, but the loops must not intersect

each other. Examples of correct and incorrect looping are
shown later in this section.

A loop can contain a GOTO statement or other statements
that transfer control outside the range of the loop. In this
case, the loop terminates prematurely, and the control
variable retains its latest value. Do not transfer control
into a FOR...NEXT loop. See Future System Migration
Guidelines, appendix E.

Figure 4-13 shows the effect of the FOR statement on
control variables. The loop initiated in line number 112 did
not execute because the initial value is not greater than
the final value, and the step value is negative. Figure 4-14
shows examples of correct and incorrect looping.

Statement Values
110 FOR X =2 to 4 2,345
111 FOR G = 6 TO 3 STEP -1 6,5, 4,3, 2

112 FOR X =5 TO 10 STEP -1 5

Figure 4-13. FOR Statement Examples

19983900 G

Correct: Incorrect:
—FOR X . .. FOR X ...
FOR Y ... FORY ...

FORZ... NEXT X

NEXT Z NEXT Y

FOR Q

NEXT Q
L NEXT ¥
L NEXT X

Figure 4-14. FOR...NEXT Loops

Three statements (ON ATTENTION, ON ERROR, and
JUMP) and four functions (ASL, ESL, ESM, and NXL) are
used to detect and control processing errors and the

terminal interrupts that occur during program execution.
Table 4-3 defines these error and interrupt processing
statements and functions and their effects in a program.

The ON ATTENTION statement establishes an address for
interrupt handling if an interrupt occurs during program
execution. It enables the program to respond to terminal
interrupts. Figure 4-15 shows the format for the ON
ATTENTION statement.

Figure 4-15. ON ATTENTION Statement Formats

Formats 1 and 2 in figure 4-15 specify that control is to be
transferred to statement 1n if a terminal interrupt occurs
during execution. The ON ATTENTION statement is used
in conjunction with the attention statement line (ASL)
function.

The statements at In can use the ASL function to
determine where the terminal interrupt occurred. After
the interrupt location is determined, appropriate action to
process the terminal interrupt can be taken; execution can
be reinitiated at any point in the program.

TABLE 4-3. ERROR AND INTERRUPT PROCESSING (STATEMENTS AND FUNCTIONS)

19983900 G

4-5

Normal terminal interrupt processing is suppressed and the
program can gain control of interrupts by the execution of
format 1 or format 2 of the ON ATTENTION statement.
Normal interrupt processing is restored (ON ATTENTION
turned off) by either the execution of format 3 of the ON
ATTENTION statement, or after execution of ON
ATTENTION (format 3) and after control has been
transferred to statement In as a result of a terminal
interrupt.

The first ON ATTENTION statement should appear at, or
near, the start of the program. When an ON ATTENTION
statement is encountered during compilation, each
following statement is changed to test for interrupts

before execution. During execution, interrupts are
normally recognized at the start of a statement so that
statements are not partially executed. The exceptions are
terminal I/O statements. Interrupts are recognized when
an INPUT statement is waiting for data. When an input
request is interrupted before any values have been entered,
none of the variables on the input list are modified.
Interrupts are also recognized at each line of output.
However, many lines of output processing usually occur
before data appears at the terminal, therefore some data
lines could appear after the terminal is interrupted.

Figure 4-16 shows how the ON ATTENTION statement can
be used to control terminal interrupts. In the sample

100 ON ATTENTION GOTO 900

210 INPUT N
220 IF N = 0 GOTO 500

310 INPUT 1

320 IF 1 = 0 GOTO 400

330 PRINT “ENTER QUANTITY"
340 INPUT @

3

900 Z = ASL(O)
910 ON ATTENTION GOTO 910

940 INPUT Z$
950 IF Z$ ="STOP" THEN STOP
960 ON ATTENTION GOTO 900

995 GOTO 910
999 END

ENTER NEXT ITEM NUMBER OR 0
? 443

ENTER QUANTITY

? ATTN

? NEXT ITEM

ENTER NEXT ITEM NUMBER OR O
? 444

ENTER QUANTITY

? 2

appropriate reference manual for this information.

200 PRINT "ENTER NEXT ORDER NUMBER OR 0O

*0 MEANS END OF ORDERS

300 PRINT "ENTER NEXT ITEM NUMEER OR 0O*

*0 MEANS END OF ITEMS

'Z 1S LINE NUMBER AT WHICH TO CONTINUE
'RESET SO INTERRUPT VWILL NOT CHANGE 2z
920 PRINT "INTERRUPTED AT LINE";Z3", LAST ORDER ";N3", LAST ITEM"31

930 PRINT “TYPE STOP, NEXT ORDER, NEXT ITEM, OR CONTINUE"

*RE-ENABLE AT ORIGINAL LINE NUMBER
970 IF 23 = "NEXT ORDER" THEN GOTO 200

980 IF Zs = "NEXT ITEM" THEN GOTO 300

990 IF Z$ = "CONTINUE'" THEN JUMP Z

'INVALID RESPONSE. REPEAT QUESTION

INTERRUPTED AT LINE 340 , LAST ORDER 6087 » LAST ITEM 443

TYPE STOP, NEXT ORDER, NEXT ITEM, OR CONTINUE

TThe key that initiates an interrupt varies with the operating system and the terminal mode. Consult the

Figure 4-16. ON ATTENTION Statement Example

I s-6

19983900 G

dialog of this figure, the programmer mistakenly types in
443, then presses the appropriate key to cause a terminal
interrupt. The ON ATTENTION statement establishes line
rnumber 900 as the ON ATTENTION address, and control
transfers to line 900, at which point, the program offers a
choice of recovery options. The programmer enters NEXT
ITEM and, when the NEXT ITEM or zero is requested, the
corrected value of 444 is entered, and the dialog continues
normally.

The ON ERROR statement is used for detecting and
processing errors that occur during program execution.
Figure 4-17 illustrates the three formats for the ON
ERROR statement.

Figure 4-17. ON ERROR Statement Formats

Formats 1 and 2 specify that control is to transfer to
statement In if an execution error occurs. The ON ERROR
statement, in conjunction with the error statement line
rumber (ESL) function (explained later in this section) and
the error statement message (ESM) function (explained
later in this section), allows the BASIC program to respond
to execution errors.

After the error location and error type are deterrnined,
appropriate action to process the error can be taken;
_ execution can then be reinitiated at any point in the
program. The program should not give contro! to a CHAIN
statement that chains to a copy of the original program.
An endless loop can result if the error that caused the ON
ERROR branch recurs each time the program is executed.

Normal error processing is suppressed (allowing the
program to continue executing at the ON ERROR address)
by the execution of format 1 or 2. It is restored by either
execution of the format 3 ON ERROR statement, or after
execution of ON ERROR (format 3) and after control has
been transferred to the specified statement In as a result
of an error.

Any execution error can be recovered from; however some
errors, such as time limit and operator drop, can only be
recovered from one time. (See appendix B.) An example
of the ON ERROR statement is shown later in this section.

The JUMP statement transfers control to the statement at
the line number determined by the value of an arithmetic
expression. The format for the JUMP statement is
illustrated in figure 4-18.

Figure 4-18. JUMP Statement Format

The expression is evaluated and rounded to an integer
value; control is transferred to the statement at the
resultant line number, provided it exists. If the statement
does not exist, a diagnostic is issued. A JUMP statement
cannot refer to a REM statement. Care must be taken not
to jump into a FOR loop or functon definition.

The JUMP statement is designed to be used in error and
interrupt processing routines where line numbers are
assigned to variables by use of the NXL, ESL, and ASL
functions. The JUMP statement should never be used in
place of a GOTO statement.

Figure 4-19 illustrates a program example using the ON
ERROR and JUMP statements, and the ESL, ESM, and NXL
functions (described later in this section). The following

00100 ON ERROR GOTO 160

00110 PRINT "READ ERROR WILL BE PROCESSED BY PROGRAM"
00120 READ X1,X2,X3

00130 PRINT "VALUES READ WERE ";X1;",";X2;",AND";X3
00140 sToOP

00150 REM ERROR PROCESSING ROUTINE

00160 X=ESL(X)

00170 Y=ESM(X)

00180 IF X=120 THEN 00210

00190 PRINT "ERROR NOT IN STATEMENT 120"

00200 sToOP

00210 PRINT "ERROR NUMBER #";Y;"DETECTED AT LINE #";X
00220 JUMP NXL(X)

00230 DATA 2.0,3.0,"STRING"

00240 END

produces:

READ ERROR WILL BE PROCESSED BY PROGRAM
ERROR NUMBER # 126 DETECTED AT LINE # 120
VALUES READ WERE 2 , 3 LAND O

Figure 4-19. Example Using ON ERROR, JUMP, ESL, ESM, and NXL

19983900 G 4-7 §

sentences explain the meaning of specific line number
statements in this program. Execution of statement 00100
suppresses normal error processing and ensures that on a
subsequent error, control will be transferred to statement
line number 00160. If an error occurs in reading the data
(line number 00120), control is transferred to statement
line number 00160. Normal error processing is then
reinstated. If another error occurs during further
execution, the program aborts. In statement line
numbers 00160 and 00170, value 00120 is saved in X and
value 126 is saved in Y. Further action can be taken based
on the user requirements for processing errors. Value 126
is the error message number. The statement at line
number 00180 indicates that if an error occurred in
statement line number 00120, execution control is
transferred to statement line number 00210. A jump is
made from statement line number 00220 to statement line
number 00138 and normal execution continues. If another
error occurs during execution, the job aborts.

The ASL function returns the statement line number of the
statement executing, or about to be executed, when the
most recent terminal interrupt occurred. Figure 4-20
shows the format for the ASL function.

Figure 4-20. ASL Function Format

The ASL function returns a value of -1 if a terminal
interrupt has not occurred since the most recent execution
of an ON ATTENTION statement. Thus, when processing
terminal interrupts, the function value should be saved
before issuing another ON ATTENTION statement.

In the statement 100 LET A=ASL(x), A is assigned the line
number of the statement that was to be executed when the
terminal interrupt occurred. For an additional example of
the ASL function, refer to the ON ATTENTION statement
example (figure 4-16).

The ESL function returns the statement line number of the
statement executing, or about to be executed, that caused
the most recent program execution error. The format for
the ESL function appears in figure 4-21.

Figure 4-21. ESL Function Format

J 4-8

The ESL function returns a value of -1 if an execution
error has not occurred since the most recent execution of
an ON ERROR statement. Thus, when processing errors,
the function value should be saved prior to issuing another
ON ERROR statement.

In the statement 100 LET A=ESL(X), A is assigned the line
number of the statement that caused the error. For an
additional example of the ESL function, see figure 4-19.

The ESM function returns the error number associated with
the most recent program execution error, (See table B-3
in appendix B for a list of error numbers associated with
execution errors.) Figure 4-22 shows the format for the
ESM function.

Figure 4-22. ESM Function Format

The ESM function returns a value of -1 if an execution
error has not occurred since the most recent execution of
the ON ERROR statement. Thus, this function value
should be saved prior to issuing another ON ERROR
statement.

In the statement 100 LET A=ESM(x), the error number of
the error is assigned to A. For an additional example of
the ESM function, see figure 4-19.

This function returns the next line number of the
statement that follows the line number specified in the
argument of the NXL function. Use NXL to determine at
what point program execution is to resume in the event of
an error or interrupt.

For example, NXL(ESL(x)) returns the line number of the
line following the one that caused the error. The format
for the NXL function appears in figure 4-23.

Figure 4-23. NXL Function Function

The NXL function should not refer to a REM statement or
to any nonexisting statement because such referencing can
cause program execution to terminate (unless ON ERROR
is in effect) and the diagnostic ILLEGAL LABEL to be
issued. The function argument ne is evaluated and rounded
to an integer value. For an example of the NXL function,
see figure 4-19.

19983900 G

BASIC FUNCTIONS 3

A function is a predefined algorithm. Some functions
return values (some return a single value) to the point of
reference each time the function is invoked from an
executing program.

Two kinds of functions are provided with BASIC: the
predefined functions of the language, called built-in
functions; and the functions that can be written by using
the DEF and FNEND statements, called user-defined
functions. The built-in functions are in the form of subset
programs written to perform specific kinds of tasks.

The built-in functions and user-defined functions are
classified as follows:

o Built-in functions:

Mathematical functions

System functions

String functions

Matrix functions

Error and interrupt processing functions
1/O functions

e User-defined functions:

Single-line functions
Multiple-line functions

Although all of the built-in functions are reviewed in this
section, some of the functions are described in more detail
in other sections of this manual. (See the table of contents
for specific section references. The user-defined functions
are described at the end of this section.)

The functions described in this section are ordered
alphabetically within the following functional categories:

e Mathematical functions

e System functions

e String functions

e Matrix functions

e Error and interrupt processing functions

e 1/O functions

The six tables in this section identify the built-in functions
and indicate their functional classification. See the

Summary Card at the end of this manual for a complete
alphabetical listing of the built-in functions.

REFERENCING A FUNCTION

Built-in and user-defined functions are referenced by
specifying a function name followed by associated function
parameters in parentheses. If there are no parameters in
the function definition, no parameters are supplied to the
function reference. If no parameters are used in the
function definition, no parameters are needed in the
function reference. The form for a function reference is
shown in figure 5-1.

19983900 G

function name (e1,ez, <. 8

e Indicates numeric or string expression;
parameter is optional.

Figure 5-1. Function Reference Format

The number and type of parameters (e) passed with a
function reference must exactly correspond to the number
and type of parameters expected by the function; for
example, a string must be passed where a string is
expected and a number must be passed where a number is
expected. A diagnostic is issued if the type and number of
parameters contained in the function reference do not
correspond to those expected in the definition.

Built-in function parameters that are integer quantities use
the value of the numeric expression rounded to an integer.
User-defined functions cannot specify that a parameter is
an integer. With user-defined functions, all numeric values
are real numbers and the function either truncates or
rounds values to integers, depending upon the written
statement. Function reference parameters are evaluated
and the values of the parameters are passed to the
function. The function is then evaluated and the result is
returned to the point of the function reference.

MATHEMATICAL FUNCTIONS

Table 5-1 is an alphabetical list of the standard
mathematical functions that can be referenced by a BASIC
program. In this table, the function argument ne can be a
numeric expression of any complexity and can include
other function references.

RANDOM NUMBER GENERATION

The generation of pseudo random numbers is controlled by
the RND function and by the RANDOMIZE statement. The
RANDOMIZE statement overrides the predefined sequence
of numbers generated by RND.

RND FUNCTION

The RND function returns a pseudo random number from
the set of numbers uniformly distributed over the range of
0 to 1. The formats for the RND function are shown in
figure 5-2. Do not use the second format because it might
not be supported in future versions of BASIC.

RND is equivalent to RND(0) in that the established
sequence of pseudo random numbers uniformly distributed
over the range of 0 to 1 is returned. The same sequence of
random numbers is returned each time the program
containing RND is executed unless the RANDOMIZE
statement is used to override the predefined numbering
sequence. RANDOMIZE has no effect on RND(ne). The
RANDOMIZE statement and its effect on random number
generation is discussed in more detail later in this section.

5-1 @

TABLE 5-1. MATHEMATICAL FUNCTIONS

C0S(ne)

i

EXP(ne)
INT(ne)

Function Description
ABS(ne) Finds the absolute value of ne.
ATN(ne) Finds the arctangent of ne in the principal value range (- 7 /2) to {+ 7/2).

Finds the cosine of ne; the angle ne is expressed in radians.

,

Finds the value of e to the power of ne.

Finds the largest integer not greater than ne.

Example: INT(5.95) = 5 and INT(-5.95) = -6.

Finds the natural logarithm of ne; ne must be greater than zero.

i

SGN(ne) Interrogates the sign of ne and returns a value of 1 if ne is positive;
0 if ne is 0; or -1 if ne is negative.
SIN(ne) Finds the sine of ne; the angle ne is expressed in radians.
SQR(ne) Finds the square root of ne; ne must be > 0.
TAN(ne) Finds the tangent of ne; the angle ne is expressed in radians.
RND 100 FOR T=1 TO 3
110 L=RND
120 E=RND
130 I=RND
| (See Future System Migration Guidelines, 140 PRINT L,E,I
appendix E.) 150 NEXT T
160 END
produces:
. . .580114 .950513 .786371
Figure 5-2. RND Function Format .29762 L4537 6.26194E-3
.275736 .305651 .689101
produces:
.580114 .950513 .786371
An example of the RND function is shown in figure 5-3. .29762 .4537 6.26194E-3
The program was executed twice. The RND function twice .275736 -305651 -689101
returned the same set of pseudo random numbers. An
example later in this section shows the use of the
RANDOMIZE statement to override the RND function. Figure 5-3. RND Function Example

® 5-2

19983900 G

The value of ne in RND(ne) affects random number
generation as follows:

e ne>0

A random number sequence is initialized based on the
value of ne, and the first number in the sequence is
returned. Each reference to RND with ne equal to a
particular positive constant value initializes the
sequence at the same starting point and returns the
same value. Therefore, the same number or the same
sequence of numbers can be returned each time RND
is referenced and/or each time the program is run if
the ne>0 arguments are used. RND(ne), if ne>0, can
affect RND without the argument.

) ne=0

The next number in the established sequence of pseudo
random numbers is returned. If the sequence was not
previously established by an ne>0 RND reference, a
standard constant is used to initiate the sequence.
The same sequence of random numbers is returned
when using RND(0) references each time the program
is run unless you initialize the sequence with a
different positive (>0) value each time the program
executes. This can be done by using a first reference,
such as RND(CLK(0)). CLK(0) returns the
time-of-day. If ne=0, RANDOMIZE can affect
RND(ne).

° ne<0

The first reference initializes a random number
sequence based on the current time of day, and returns
the first wvalue in that sequence. Subsequent
references with ne<0 return the next number in the
sequence. A program that uses ne<0 returns a
different value on each reference and a different
sequence each time it is run. The sequence initialized
by ne<D is separate from the sequence controlled by
ne>0, and ne =0 references to RND sequences.

RANDOMIZE STATEMENT

The RANDOMIZE statement causes a new value to be
placed in the random number generator each time a
program containing the RND function is run. The
placement of this new value in the random number
generator overrides the predefined sequence of pseudo
random rnumbers generated by the RND function,
therefore, the RND function returns a different sequence
of values each time the program is executed. Figure 5-4
shows the format for the RANDOMIZE statement.

RANDOMIZE

Figure 5-4. RANDOMIZE Statement Format

Figure 5-5 shows an example using RANDOMIZE to control
random number generation. This program was executed
twice. The RANDOMIZE statement causes RND to return
a different sequence of values, unlike the example shown
for the RND function that does not use RANDOMIZE
(figure 5-2), so the same random values are returned each
time the program is executed.

090 RANDOMIZE
100 FOR T=1 70 3
110 L=RND

120 E=RND

130 I=RND

140 PRINT L,E,I
150 NEXT T

160 END

produces:

-249215
.787186
.200757

.817709
503474
.780481

.627958
-151829
.899516

produces:

69942
.685796
.948027

.933368
657676
271674

.707659
.363484
.509133

Figure 5-5. RANDOMIZE Statement Example

The built-in system functions are CLK$ (or CLK(x)), DATS$,
TIM, and USR$. Table 5-2 defines the system functions,
and figure 5-6 illustrates the use of the CLK$, DAT$, and
TIM functions in a BASIC program.

STRING FUNCTIONS

The string functions provided by BASIC are used to create
and/or manipulate character string data in specific ways.
Strings can contain from 0 through 131070 characters in
normal mode and from 0 through 65535 or 0 through 131070
characters in ASCII mode, depending on the number of
escape code characters in the string. Table 5-3 is an
alphabetical list of string functions.

10 X=TIMC1)

30 PRINT DATE
40 Y=TIM(2)

60 END
produces:

15704728
TeTAL ELAPSED 1IME IS

20 P=INT '""CLXE [IME Q2F'3CLK

50 PRINT "TATAL ELAPSED TIME IS"3Y-X

CLXKS TIME CF 12.55¢536e= 12.9322 IN CLK(X) TIME

3U="3CLK 1) IN CLK(X) TIME™

Figure 5-6. Program Using System Functions CLK$, DAT$, and TIM

19983900 G

TABLE 5-2. PREDEFINED SYSTEM FUNCTIONS

ASC returns the decimal code (ordinal position in the ASCII
character set) of a character name or abbreviation in its
argument. ASC returns the same result whether used in
ASCII or normal mode.

The mode of the program is controlled by the AS (ASCII)
parameter in the BASIC control statement and by the mode
of the terminal. (See Batch Operations and appendix A.)
ASCII values range from 0 to 127. Character abbreviations
are listed in table A-1 of appendix A.

® 5-4

The format for the ASC function is shown in figure 5-7.
Use of the ASC function is not recommended; the ORD
function should be used instead. For guidelines, see
appendix E.

Figure 5-7. ASC Function Format

This function returns the character corresponding to the
decimal code (ordinal position in the collating sequence)
specified in the function argument. The format for the
CHRS$ function appears in figure 5-8. The argument ne is
evaluated and rounded to an integer.

Figure 5-8. CHR$ Function Format

CHRS$ is valid for all characters in the current collating
sequence, including nonprinting characters. If the standard
ASCII collating sequence is in effect, CHR$ character
values exist for argument values O through 127; if the
nonstandard display code collating sequence is in effect,
CHR$ character values exist for argument values 0 through
63, or 1 through 63, depending on the character set being
used by your system. (See appendix A.) OPTION
COLLATE controls the collating sequence being used, and
is described in the section on Fundamental BASIC
Statements. A fatal error results if CHR$ argument values
are outside the valid range of characters represented in the
collating sequence.

This function returns the same result whether used in
ASCII or normal mode if the standard ASCII collating
sequence is in effect. The function returns different
values if the nonstandard collating sequence is in effect.
The mode of the program is controlled by the AS (ASCI)
parameter in the BASIC control statement and by the mode
of the terminal in the BASIC subsystem under NOS. (See
Batch Operations and appendix A.) In normal mode, 12-bit
escape code characters do not exist. However, if the
standard collating sequence is in effect, CHR$ returns a
12-bit escape code character for argument values of 0
through 31 and for values of 96 through 127, which are
treated as two normal 6-bit characters when manipulated
or printed. An example of the CHRg function is shown in
figure 5-9.

19983900 G

TABLE 5-3.

STRING FUNCTIONS

The LEN function returns the current length, in characters,
of the string specified by the argument in this function.
Figure 5-10 shows the format for the LEN function, and
figure 5-11 shows an example of how to use this function
to return the length of the string S$.

The LPAD$ function pads a string out to a specified
number of characters by inserting blanks on the left (called
left pad). Figure 5-12 shows the format for the LPAD$
function.

In figure 5-12, if ne is not greater than the length of se,
then se is the resultant string. If ne is in the form of an
expression, the argument is evaluated and rounded to an
integer. If ne is less than zero, the diagnostic ILLEGAL
LPAD$ ARGUMENT is returned.

In figure 5-13, the LPAD$ function pads two space
characters to the left of the string value for A$; the output
from the PRINT statement shows the two spaces between 0
and 12345,

19983900 G

The LTRM$ function trims the original string of all leading
space characters (spaces on the left). The format for
LTRMS$ is shown in figure 5-14.

In figure 5-15, the LTRM$ function trims the leading space
characters of string B$. The printout from the second
PRINT statement has no spaces between the value 8 and
the value 12345.

The LWRC$ function returns the original string with all its
uppercase letters replaced by their lowercase equivalents.
The LWRC$ function is only useful in ASCII mode. In
normal mode, the LWRC$ function returns the original
string in its same form because no lowercase letters exist
in the normal character set. The results of this function
depend on the terminal you use. Figure 5-16 illustrates the
format for the LWRC$ function.

In figure 5-17, the LWRCS$ function returns the lowercase
equivalent of the value of string A$. The returned value
"file a" is shown below the original value "FILE A",

5-5 @

20 LET B$=CHR$(98)
40 END
ascii
produces:
b IS 1 CHARACTER(S)
RUN COMPLETE.
normal
READY.
rnh
“B IS 2 CHARACTER(S)
RUN COMPLETE.

Lnh

20 LET B$=CHR$(98)
40 END

READY.
rnh

ILLEGAL CHRS ARG AT
BASIC EXECUTION ERROR

15 option collate native

20

10 REM 98 IS THE ASCII CODE FOR LOWER CASE B
75 OPTION COLLATE STANDARD

30 PRINT BS$;" IS";LEN(BS);"CHARACTER(S)"

10 REM 98 IS THE ASCII CODE FOR LOWER CASE B
15 OPTION COLLATE NATIVE

30 PRINT BS$;" IS";LEN(BS);"CHARACTER(S)"

Figure 5-9. CHR$ Function Example

Figure 5-10. LEN Function Format

100 LET s$$="543"
110 LET A=LEN(SS)
120 PRINT A

produces:

Figure 5-11. LEN Function Example

Figure 5-12. LPAD$ Function Format

100 A$="1234"

110 B$=LPADS(AS,6)
120 PRINT "0";BS;"5"
130 END

produces:

0AA12345

Figure 5-13. LPAD$ Function Example

Figure 5-14. LTRM$ Function Format

100 B$="AA12345"
105 PRINT "8'";BS$;"5"
110 PRINT "8";LTRM$(BS);"5"

produces:

8AA123455
8123455

Figure 5-15. LTRM$ Function Example

19983900 G

Figure 5-16. LWRC$ Function Format

100 A$="FILE A"
110 PRINT AS
120 B$=LWRCS$ (AS)
130 PRINT BS

produces:

FILE A
file a

Figure 5-17. LWRCS$ Function Example

The ORD function returns the decimal code (ordinal
position) of a character in the collating sequence being
used. The character or abbreviation for a character name
having its ordinal position returned is specified as a string
in the function argument, as shown in figure 5-18.

Figure 5-18. ORD Function Format

Decimal codes that represent ordinal positions range from
0 to 127 when the standard ASCII collating sequence is in
effect, and from 0 to 63 or 1 to 63 when the nonstandard
display code collating sequence is in effect (see the
OPTION statement and appendix A). The diagnostic
ILLEGAL ORD ARGUMENT is issued if the argument
string contains more than one character and the string is
not an abbreviation for a character name. Figure 5-19
shows an example of using the ORD function.

The POS function returns the starting character of one
specified string within another specified string. The
format for the POS function appears in figure 5-20.

Figure 5-20. POS Function Format

The POS function returns the first character position of
string sep within string sej. The search for this first
character position begins at position ne. Character
positions are numbered from the left, and start with one.

If the value associated with seq does not occur within
the designated portion of sej, the function value will
return zero. If starting position ne is omitted or less
than 1, it is considered to be equal to 1. If ne is greater
than the number of characters of se), the portion of
se] being specified is the null string starting after the
last character position of sej. The numeric expression
ne is evaluated and rounded to an integer.

Figure 5-21 shows a program using the POS function to
determine the position of different string characters within
the original string A$ that has the value OUTSTANDING.

The RPAD$ function pads a string to a specified number of
characters by inserting blanks on the right (called right
pad). Figure 5-22 shows the format for the RPAD$
function.

105 LET As="a"
110 A=0RD(AS$)

130 PRINT ORD("5")

produces:

917
53
8

100 PRINT "PROGRAM FOR ORD FUNCTION"

115 PRINT “CHARACTER ";A$;" HAS ORDINAL OF “;A
120 PRINT ORD(“LCA")

140 PRINT ORD("BS"}

PROGRAM FOR ORD FUNCTION
CHARACTER a HAS ORDINAL OF 97

Figure 5-19. ORD Function Example

19983900 G

5-7 @

10 PRINT "POS FUNCTION PROGRAM"™
20 PRINT

30 LET A$="0OUTSTANDING"

40 LET A=POS(AS,"AN",2)

60 PRINT POSCAS,"ST*™)
70 PRINT POSCAS."AN",15)
80 PRINT POSCAS,"T"™)

produces:
POS FUNCTION PROGRAM

4
0
3

S50 PRINT *"THE POSITION OF ‘AN’ STARTING WITH CHARACTER POSITION 2 IS *;

THE POSITION OF ‘AN’ STARTING WITH CHARACTER POSITION 2 IS 6

Figure 5-21. POS Function Example

Figure 5-22. RPAD$ Function Format

If the length argument ne is not greater than the string
argument se, then se is the resultant string. The argument
ne is evaluated and rounded to an integer. If ne is less than
zero, the diagnostic ILLEGAL RPAD$ argument is returned.

In figure 5-23, the RPAD$ function pads string A$ with one
blank in order to generate a 2-character string. The
printout from the second PRINT statement has a space
between ABCD and EF.

100 As$="D"
110 PRINT "ABC";AS$;"EF"
120 PRINT "ABC";RPADS(AS,2);"EF"

produces:

ABCDEF
ABCDAEF

Figure 5-23. RPADS$ Function Example

The RPT$ function generates a string consisting of several
repetitions of the argument string. The format for the
RPT$ function appears in figure 5-24.

If the repetition argument ne is greater than zero, the
function returns a string consisting of ne occurrences of
the characters in string se. If ne is zero, a null string is

® 5-8

returned. If ne is less than zero, the diagnostic ILLEGAL
RPT$ ARGUMENT is returned. The argument ne is
evaluated and rounded to an integer. Figure 5-25 shows
three examples of the RPT$ function.

Figure 5-24. RPT$ Function Format

The RTRM$ function trims the original string of all trailing
space characters (spaces on the right). Figure 5-26
illustrates the format for the RTRM$ function.

In figure 5-27 the RTRM$ function trims the two trailing
space characters of string A$. The printout from the
second PRINT statement has no spaces between the 345
and the ABC.

The STR$ function converts a numeric value to a string
representation. The format for this function appears in
figure 5-28.

In format 1 of the STR$ function, the resultant string is
formatted according to the image specified by se. The
image se can contain alphanumeric constants and any
specification control characters that are allowed in the
image statement. (See 1/O Statements for a complete
discussion of format images.) If se is absent, as shown in
format 2 of figure 5-28, the string is formatted according
to the standard rules for numeric output except no
preceding or trailing blanks are included. (See I/O
Statements and Functions for a complete discussion of
standard rules for numeric output.) Figure 5-29 illustrates
two examples of the STR$ function.

19983900 G

10 LET A$ = RPT$(*",132) AS$ is assigned the string consisting of 132 asterisks (*).

20 IF B$ = RPT$("” ~,80) THEN 90 Control is transferred to statement 90 if
BS$ consists of 80 blanks.

05 LET C$ = RPT$(“ABC*,2) C$ is assigned the string ABCABC.

Figure 5-25. RPT$ Function Examples

The UPRC$ function returns the original string with all its
lowercase letters replaced by the uppercase equivalents,
The UPRC$ function is only useful in ASCII mode. In
normal mode, the UPRC$ function returns the original
string in its same form because there are no lowercase
letters in the normal character set. The format for the

Figure 5-26. RTRM$ Function Format UPRC$ function is shown in figure 5-30. Figure 5-31
illustrates an example of this function (all of the letters
change except D).

10 A$="1A345 "
20 PRINT AS$;"ABC"
30 PRINT RTIIQMS (AS) :"ABC" The VAL function converts a string containing numbers to
’ a numeric value. The VAL function is the inverse of the
STR$ function. The format of the VAL function is

produces: indicated in figure 5-32. The string must be written in the
1A345AA ABC form of a numeric constant. Examples of this function are
1A345A8C illustrated in figure 5-33.

Figure 5-27. RTRM$ Function Example

Table 5-4 summarizes the functions used in error and
interrupt processing. Further details on these functions
are in section 4.

Table 5-5 outlines the functions used to simplify the use of
matrices. For more details regarding these matrix
functions, see the section on Matrix Operations.

1/0 FUNCTIONS

Table 5-6 briefly describes the functions used in I/O
operations. Further details of these functions are
Figure 5-28. STR$ Function Format described in the section 1/0O Statements and Functions.

010 B$ = STR$(A(1,6))

Assuming A(1, 6) = 1234, execution of this statement assigns the string 1234 to BS.

010 A$ = STR$(l, “COSTPRICE = $###.## LESS DISCOUNT")

Assuming | = 203.23476, execution of this statement assigns the string COSTPRICE =
$203.23 LESS DISCOUNT to AS.

Figure 5-29, STR$ Function Example

19983900 G 5-9@

Figure 5-32. VAL Function Format
Figure 5-30. UPRC$ Function Format

1. 110 LET B9

L]

VAL(B$(1))
2*C4 + VAL("123.7")

2. 100 LET X4
10 AS=UPRCS("Department 4")

20 PRINT AS 3. 090 LET IF VAL(D$(I,J))<24 THEN 291

produces: Assuming that B$(1) in example 1 contains a string 1234,

then the numeric value 1234 is assigned to B9.
DEPARTMENT 4

Similarly, in the latter two examples, numeric values are

. extracted and used for arithmetic purposes or for com-
Figure 5-31. UPRC$ Function Example parison with a numeric constant.

Figure 5-33. VAL Function Examples

TABLE 5-4. ERROR AND INTERRUPT PROCESSING FUNCTIONS

5-10 19983900 G

TABLE 5-6. I/0 FUNCTIONS

Function

Description

TAB(ne) Returns a string of blanks, which

results in moving the print mecha-
nism to print position ne. TAB can
only be used with the PRINT state-

ment.

USER-DEFINED FUNCTIONS

BASIC, in addition to providing built-in functions of the
language, also permits you to define your own functions.
User-defined functions can be written either as single- or
multiple-line functions. When these functions are
referenced, they return a value based upon the parameters
passed by the function reference and the function
definition. User-defined functions are referenced the same
as built-in functions. See Referencing a Function.

The DEF and FNEND statements are provided to write
user-defined functions. To write a single-line function,
only the DEF statement is used. To write a multiple-line
function, the function definition must begin with the DEF
statement and end with the FNEND statement. Any BASIC
statement, except END and another DEF statement, can be
located between the DEF and FNEND statements.
Table 5-7 summarizes the effect and usage of the DEF and
FNEND statements.

TABLE 5-7. USER-DEFINED FUNCTIONS

Statement Effect Usage

DEF Defines a
function.

DEF FNA(X) = A+B+C

SINGLE-LINE FUNCTION/DEF

The DEF statement is used to write a single-line
user-defined function. A single-line function is a complete
definition on one statement line. It can be in the form of a
numeric function or a string function, and it can contain
parameters (up to 20 parameters are allowed). The format
for a single-line function appears in figure 5-34.

19983900 G

1. DEF FNa=ne

2. DEF FNa (svysvg, . ..

,SVZO) = ne

a Any alphabetic character that uniquely
identifies the function.

ne Indicates numeric expression.

se indicates string expression.

$Vq - . . SV Indicates simple variable numeric or
string.

NOTE

Formats 1 and 2 are for numeric functions;
formats 3 and 4 are for string functions.

Figure 5-34. String Function With DEF Format

The rules for writing a single-line function using DEF are
as follows:

e The variables sv are formal parameters. They can be
used elsewhere in the program without affecting the
function. Each formal parameter must be unique
within the function. From 0 to 20 formal parameters
are permitted.

e The expression defining the function can include
variables other than formal parameters. The current
value of these variables is used when the function is
evaluated.

e The definition must be complete on one line.

e A function can include references to built-in BASIC
function or other user-defined functions, but not to
the function being defined; recursive definitions are
not allowed and an error diagnostic is issued at
compilation time.

e Although a user-defined function can be referenced
before it is defined, this is not recommended. A
compile time warning diagnostic is issued when this
occurs (WARNING - FUNCTION REFERENCE
BEFORE DEFINITION). See the Future System
Migration Guildines, appendix E.

e Although a function can be redefined within a
program, it is not recommended; a compile time
warning diagnostic is issued when this occurs
(WARNING - FUNCTION REDEFINITION). If a
function is redefined, the definition used is the one on
the highest line number before the line containing the
function reference; for a function referenced at a line
number before any definitions, the definition used is
the one with the lowest line number after the function
reference. See the Future Systems Migration
Guidelines, appendix E.

5-11 @

Figure 5-35 shows three examples using the DEF statement
to express a single-line function. In example 1 of
figure 5-35, line number 10 contains the function
definition, and line number 20 contains the function
reference.

In example 2 of figure 5-35, FNA computes the area of a
circle when given its radius, FNC computes the
circumference of a circle when given its diameter, and
FNV computes the volume of a sphere when given its
radius. Note that the definition FNV uses the function
FNA. At line 40, four columns of headings are printed.
The FOR loop prints, on successive lines, a radius and the
corresponding circumference, area, and volume computed
by the user-defined functions.

In example 3 of figure 5-35, a DEF statement with no
formal parameters is used to define the area of a circle
having a radius of .2.

&
2
&

Multiple-line functions are defined through use of the DEF
and FNEND statements. The function definition must

begin with the DEF statement and end with the FNEND
statement. Any BASIC statement, except for another
DEF, can appear between the DEF and FNEND
statements. A multiple-line function can be in the form of
a numeric or string function, and it can contain parameters
(maximum of 20 parameters are allowed). The format of a
multiple-line function appears in figure 5-36.

The rules for writing a multiple-line function using the
DEF ... FNEND statements are as follows:

o The variables (sv) are formal parameters. They can be
used elsewhere in the program without affecting the
function. Variables used as formal parameters are
local to the function; for example, changing the values
within the function has no effect on variables of the
same name outside the function.

When a function is referenced (described under
Referencing a Function), parameter expressions are
evaluated and their values are passed to the function.
Therefore, changing the value of a formal parameter
within a function only effects the local value of the
parameter, not the value of the parameter expression
or variable used in the expression outside the function.

1.
10 DEF FNA(M,N,0,P)=M+N+0+P (Function definition)
20 LET E=FNA(2,3,4,5) (Function reference)
30 PRINT E
40 END
produces:
14
2.
10 DEF FNA(R)=3.14159%R*%2
20 DEF FNC(D)=3.14159%)D
30 DEF FNV(R)=FNA(R)*R/3
40 PRINT "RADIUS",”CIRCUMFERENCE" " AREA" " VOLUME"
SO FOR R=.1 TO 1 STEP .3
60 PRINT R,FNC(2%*R) ,FNA(R) ,FNV(R)
70 NEXT R
99 END
produces:
RADIUS CIRCUMFERENCE AREA VOLUME
.1 .628318 3.14159€-2 1.046720€E-3
b 2.51327 .502654 6.70206€-2
.7 4.39823 1.53938 .359188
1 6.28318 3.14159 1.0472
3.
10 DEF FNP=3.14159
20 DEF FNA(R)=FNP*R**2
30 PRINT "AREA=";FNA(.2)
40 END
produces:
AREA= .125664

Figure 5-35. Single-Line Function Example/DEF

® 5-12

19983900 G

Figure 5-36. Multiple-Line Function Format
with DEF . . . FNEND

e The expression or expressions within the function
definition can include other program variables in
addition to the formal parameters; these are global
variables and have the same values inside and outside
the function.

® (Global variables can have their value changed by
operations within the function definition. Unexpected
results can occur if a global value that has been
changed in a function is used in an expression
containing the function reference.

19983900 G

® A function can include references to built-in or other
user-defined functions, but not to itself; recursive
function definitions are not permitted.

e It is illegal to reference a line number outside a
function definition from within the definition, or to
reference a line number in a function definition from
outside the definition. An attempt to do so causes the
compile time diagnostic TRANSFER OUT OF DEF or
TRANSFER INTO DEF to be issued.

e The function name must be assigned a value if the
function is to return other than a 0 or null.

® A function definition can appear after a function
reference; however, it is not recommended. The
warning diagnostic WARNING - FUNCTION
REFERENCE BEFORE DEFINITION is issued. See
Future Systems Migration Guidelines, appendix E.

e A function can be redefined within a program;
however, this is not a recommended programming
practice. The diagnostic warning WARNING -
FUNCTION REDEFINITION is issued. If a function is
redefined, the definition used is the one on the highest
lire number before the line containing the function
reference; or for a function referenced at a line
number before any definitions, the definition used is
the one with the lowest line number after the function
reference. See Future Systems Migration Guidelines,
appendix E.

® Statements located between the DEF and FNEND
statements can be any BASIC statement except END
and another DEF statement.

e The function name can be used as a local variable
within a function definition (on the right side of the
statement). However, such usage is not recommended
because it might not be supported in a future version
of BASIC. See Future System Migration Guidelines,
appendix E.

Figure 5-37 shows two examples of writing and referencing
multiple-line functions. The first example illustrates a
string function; the second example illustrates a numeric
function.

In example 1 of figure 5-37, the function FNR$ replaces
the characters of A$, starting with character I, with the
first three characters of B§. B$ is blank padded to J, if
necessary.

In example 2 of figure 5-37, the function FNM uses its
formal parameter N as a local variable. Changing its value
in the function (line numbers 00170 and 00200) has no
effect on the actual parameter M passed to the function at
line number 00220. Note also that the actual parameter
need not be used in calculating the function result. The
result in this example is calculated from global variables
8(0),...,B(4).

5-1> @

Example 1 (String Function)

00100 REM EXAMPLE OF MULTI-LINE STRING FUNCTION
00110 DEF FNRS(AS$,I,J,BS)

00120 REM REPLACE J CHARACTERS OF A$ BEGINNING AT CHARACTER I
00130 REM WITH THE FIRST J CHARACTERS OF BS$.
00140 REM B$ IS PADDED TO LENGTH J, IF NECESSARY.
00150 IF J<LEN(BS) THEN LET BS$=RPAD$(BS$,J)

00160 LET AS(I:I+J-1)=B$(1:J)

00170 LET FNR$=AS

00180 FNEND

00190 LET X3="ABCDEFGH"

00200 LET Y$="12345"

00210 PRINT FNRS(XS$,3,4,Y$)

00220 END

\

produces:
AB1234GH

Example 2 (Numeric Function)

00100 oIM B(5)

00110 PRINT “TYPE IN ANY 5 NUMBERS"
00120 INPUT B(0),B(1),B(2),B(3),B(4)
00130 LET M=17

00140 REM FUNCTION DEFINITION

00150 DEF FNM(N)

00160 LET FNM=B(0)

00170 FOR N=1 TO 5

00180 IF FNM>=B(N) THEN 200

00190 LET FNM=B(N)

00200 NEXT N

00210 FNEND

00220 LET Y=FNM(M)

00230 PRINT "THE VALUE OF M IS UNCHANGED BY THE FUNCTION"
00240 PRINT “IT IS STILL ";M

00250 PRINT "MAXIM IS ";Y

00260 END

produces:

TYPE IN ANY S5 NUMBERS
? 89,78,45,67,9

THE VALUE OF M IS UNCHANGED BY THE FUNCTION
IT IS STILL 17

MAXIM IS 89

@ 5-14

Figure 5-37. Multiple-Line Function Examples/DEF . . . FNEND

19983900 G

SUBROUTINES, SUBPROGRAMS, AND CHAINING 6

{8

This section describes the statements used to write BASIC
subroutines, link to external subprograms, and chain to
other programs. Table 6-1 outlines the subroutine,
subprogram, and chaining statements. Further details for
these functions and statements follow the table.

BASIC SUBROUTINES

When a particular part of a program must be performed
more than once, it is useful to use a subroutine. Control
can be transferred to a subroutine from the main program
and, at the conclusion of the subroutine, be returned to the
main program.

Within the main BASIC program, control can be transferred
to BASIC subroutines. These subroutines are compiled
along with the main program. The following paragraphs
describe the method of calling subroutines using the
GOSUB or ON GOSUB statements. The RETURN
statement directs execution to the most recently executed
GOSUB or ON GOSUB., The following rules must be
followed when using these statements:

e Any number and type of BASIC statements are allowed
in a BASIC subroutine.

e GOSUB statements can be nested to a depth of 40.

e Recursion is allowed; a subroutine can contain a call
to itself.

Figure 6-1 illustrates a subroutine call and return
sequence. Lines 150 through 220 contain subroutine A.
The subroutine is called from line 60. After execution of
subroutine A, control is transferred to line 70, and at
line 80 execution is directed to line 230 (the end of the
program) bypassing the subroutine statements.

GOSUB STATEMENT

The simple GOSUB statement unconditionally transfers
control to a line number that is the first statement of the
subroutine. Figure 6-2 shows the format of the GOSUB
statement.

GOSUB In

In Indicates the line number of the first
statement of the subroutine.

Figure 6-2. GOSUB Statement Format

Execution of the GOSUB statement and the RETURN
statement (described later) can be described in terms of a
stack of line numbers. The stack is empty prior to
execution of the first GOSUB statement. Each time a
GOSUB statement is executed, the line number referred to
in the GOSUB statement is placed on top of the stack and
execution of the program continues at this line number,
which is the first statement of a subroutine. Each time a
RETURN statement is executed, the line number on top of
the stack is removed from the stack and execution of the
program is continued at the line following the line number
presently at the top of the stack.

A GOSUB (or ON GOSUB) statement can be used within
one subroutine to transfer control to another subroutine;
these are nested subroutines. The GOSUB statement can
be used 40 times in these nested subroutines. Each
subroutine in nested subroutines is executed by the stack
order, explained under the GOSUB statement. A GOSUB
can be ended without a RETURN. For example, execution
can be stopped inside a subroutine. An example of nested
subroutines is shown in figure 6-3.

20 .
30 .
40 .
50 .

10 REM USER PROGRAM TRANSFERS CONTROL TO

SUBROUTINE A

60 GosuB 150
—= 70 LET Z=A%*%2
80 G6O0TO 230

90 .
100 .
120 .
130

140 REM SUBROUTINE A

Transfer control to subroutine

150 LET A=1+#X
160 .

170
180
190
200
210 .
——220 RETURN e —
230 END

Subroutine A

Figure 6-1. BASIC Subroutine and RETURN Statement

19983900 G

6-1

TABLE 6-1. SUBROUTINE, SUBPROGRAM, AND CHAINING STATEMENTS

Statement Effect

Usage

GOSUB Transfers control to a BASIC sub-
routine.

GOSUB 150

RETURN

Upon completion of the subroutine,

RETURN

returns control to the statement im-
mediately following GOSUB or ON GOSUB.

80 GOSUB 150 —
’——-»90 .

150 . -

160 GOSUB 250 [
=1 170 .

L 200 RETURN
[250 .

RETURN

—{ 300

Figure 6-3. Nested Subroutines

ON GOSUB STATEMENT

The ON GOSUB statement conditionally transfers control
to one of n possible subroutines, The format of the ON
GOSUB statement is shown in figure 6-4.

Figure 6-4. ON GOSUB Statement Format

In figure 6-4, the expression ne is evaluated and rounded to
an integer value; control transfers to lnj when ne is 1, to
Ing when ne is 2, and so on. The line number of the ON

® 6-2

GOSUB statement is recorded on the GOSUB stack (see
GOSUB STATEMENT) so that RETURN statement can
subsequently return control to the statement following the
ON GOSUB statement. If the value of the expression ne is
negative or zero, or greater than the number of specified
line numbers in the ON GOSUB statement, program
execution terminates, displaying the diagnostic ON
EXPRESSION OUT OF RANGE.

Figure 6-5 illustrates the ON GOSUB statement. In the
example, when the expression x-y equals 1 or 3, control
transfers to line 200. When x-y equals 2, control transfers
to line 250, and when x-y equals 4, control transfers to
line 300.

RETURN STATEMENT

The RETURN statement is usually the last statement of a
BASIC subroutine; however, it can be used anywhere and
any number of times within the subroutine; RETURN
directs the program to resume execution at the statement
immediately following the most recently executed GOSUB
or ON GOSUB statement. Figure 6-6 shows the format of
the RETURN statement.

Each time a RETURN statement is executed, a line number
is removed from the top of the GOSUB stack, and control
is transferred to the next line following that line number.
See GOSUB statement for a description of GOSUB stack.
The diagnostic RETURN BEFORE GOSUB is issued if there
is no return line number on the GOSUB stack (if there is no
remaining GOSUB or ON GOSUB from which to return).
For examples of the RETURN statement, see the GOSUB
and ON GOSUB statements in this section.

EXTERNAL SUBPROGRAMS

Transfer of control to an external subprogram is
accomplished through use of the CALL statement. The
following describes the CALL statement format, and
includes programming ideas for preparing external
subprograms for use with a BASIC program.

19983900 G

—a 100

90 ON X-Y GOSUB 200, 250, 200, 300 —

Integer value of 1 or 3

~ 200

l<l— 240 RETURN -

Integer value of 2

- 250

~— 290 RETURN -

— 300

340 RETURN -~

Integer value of 4

Figure 6-5. ON GOSUB Statement Example

RETURN

Figure 6-6. RETURN Statement Format

CALL STATEMENT

The CALL statement permits you to execute a separately
compiled subprogram in a non-BASIC language, such as
FORTRAN. When the CALL statement is executed,
parameters are evaluated and passed to the subprogram,
then the subprogram is executed. When the subprogram
finishes, control returns to the main program at the
statement immediately following the CALL statement.
Values are returned as new values of the parameters that
are changed by the subprogram. The format of the CALL
statement appears in figure 6-7.

Figure 6-7. CALL Statement Format

As shown in figure 6-7, the CALL statement can contain
parameters (up to 20 parameters are allowed). If
parameters are specified with the CALL statement, the
parameter values are passed to the subprogram in the order
that the parameters are listed in the CALL statement.
The following is an example of two CALL statements, one
with parameters and the other without parameters:

CALL SUBTEST(A,B,C,D)
CALL A12348

19983900 G

The following rules apply to the CALL statement:

e The subprogram name, subnm, can be 1 to 7
characters. The first character must be alphabetic;
any alphabetic characters used must be uppercase.
The last character must not be a colon. Characters +,
-y ¥, [, comma, circumflex, and blank cannot be used.

e No more than 20 parameters can be passed to the
subprogram.

e The CALL statement can be executed only if the
B option (relocatable binary code) is used when
compiling the BASIC program. See BASIC Control
Statement. If an attempt is made to execute a CALL
in compile-to-memory mode (no B option), the
diagnostic UNSATISFIED EXTERNAL REFERENCE is
issued. The compiled program must be loaded, along
with the subprogram that has been called, before the
program can be executed. See the CYBER Loader
reference manual.

e The CALL statement cannot appear in a BASIC source
program that is the target of a CHAIN statement. See
description of CHAIN statement in this section for
more information.

e The CALL statement, without parameters, cannot be
the object of THEN in the IF...THEN...ELSE
statement.

e The CALL statement can be used to call subprograms
written in any language that conforms to the
FORTRAN calling sequence conventions. For an
example of using the CALL statement to call a
FORTRAN subprogram, see figure 6-8.

Rules For Writing External Subprograms:

e All numbers processed by BASIC are stored as
normalized, single-precision, floating-point values.
Therefore, all numeric values passed to external
routines are in normalized, single-precision,
floating-point form (FORTRAN type REAL), and all
numeric values returned by external routines must be
stored in the same form.

6-3

00100 OPTION BASE 1 'BASE 1 NEEDED SO BASE IS THE SAME AS FOR FORTRAN SUBPROGRAM
00110 DIM A(2,3)

00120 FOR I=1 TO 2

00130 FOR J=1 TO0 3
00140 ACI,J)=1I*J
00150 NEXT J

00160 NEXT I

00165 PRINT "THESE ARE THE BASIC ELEMENTS"

00170 FOR I=1 TO 2

00185 PRINT ACI 1) ,A(CI1,2),A(1,3)

00186 NEXT I

00190 CALL FSuB (A(1,1)) - CALL to FORTRAN subprogram.
00191 PRINT “THESE ARE THE BASIC ELEMENTS CHANGED WITH THE FORTRAN SUBPROGRAM"

00192 FOR I=1 TO 2

00194 PRINT A(CI 1) _,A(CI,2) ,A(1,3)

00195 NEXT I
00210 sTOP
00220 END

v

C SUBROUTINE FSuB
C NOTE THAT ORDER OF SUBSCRIPTS MUST BE REVERSED FROM BASIC
SUBROUTINE FSuB (A)
DIMENSION A(3,2)
bo 200 1=1,3
Do 100 J=1,2
ACI,J)=A(1,4)+10

FORTRAN subprogram.

100 CONTINUE
200 CONTINUE
RETURN
END

/x,basic,i=call2,l=0,b=Llgo

.011 CP SECONDS COMPILATION TIME
/ftn5,i=fsub,L=0,b=1g0 -

0.009 CP SECONDS COMPILATION TIME.

Compile BASIC program.

- Compile FORTRAN subprogram.

/lgo Execute BASIC main program
THESE ARE THE BASIC ELEMENTS and FORTRAN subprogram.
1 2 3
2 4 6
THESE ARE THE BASIC ELEMENTS CHANGED WITH THE FORTRAN SUBPROGRAM
1 12 13
12 14 16

Figure 6-8. BASIC Program CALL to FORTRAN Subprogram

® 6-4

All strings processed by BASIC are stored as 6-bit.

display code or 6- and 12-bit escape code characters
packed into words with the first character being the
leftmost character in the first word of the string. The
6-bit display codes are used when BASIC is executing
in normal mode; the 6- and 12-bit escape codes are
used when BASIC is executing in ASCHI mode. The
string is always passed in the 6/12 character set on
both NOS and NOS/BE. Strings passed to external
programs are zero-byte delimited; the last word of the
string contains zeros in the last 12 bits and in all other
character positions not containing valid characters.
The length in 6-bit characters is indicated in the
parameter block. The length in characters can be
obtained by scanning the string looking for the
zero-byte delimiter or by passing the length as
determined by BASIC's LEN function. (The LEN
function returns the count of logical, not physical,
characters). In ASCII mode, two 6-bit characters
sometimes constitute one logical escape code
character.

External routines can change characters in a string,
but they must not change the length of the string.
BASIC maintains its own length indicator; therefore,
externally shortening a string by moving the zero-byte
delimiter is not noticed, but externally lengthening a
string destroys adjacent data, just as storing a
double-precision value over a single-precision value
destroys adjacent data. To change the length of a
string, pass an indicator back to BASIC and let BASIC
change the length with a string assignment statement.

External subprograms should not perform input or
output operations on files used by BASIC.

Avoid the use of subprogram names that are identical
to entry points in any of the BASIC execution on-time
routines; the wuse of such names can cause
unpredictable results and program termination.

19983900 G

e No provision is made for passing an entire array to an
external subprogram. However, if the first element of
a numeric array, such as A(0,0), is passed, its address
can be interpreted as the address of the array because
all elements of a numeric array are stored
contiguously. This technique does not apply for string
arrays because string array elements are not stored
contiguously.

e When passing BASIC numeric arrays to FORTRAN,
provision must be made for the fact that BASIC
normally begins array subscripting with element
zero (0) and stores elements in row order (A(0,0),
A(0,1), A(0,2), and so forth), while FORTRAN begins
array subscripting with element 1 and stores elements
in column order (A(l,1), A(2,1), A(3,1), and so forth).
This difference causes the array to appear to be
transposed each time it is passed between FORTRAN
and BASIC. Note that in BASIC, OPTION BASE can be
used to begin array subscription with 1 rather than 0.

PROGRAM CHAINING

The CHAIN statement allows control to exit from a BASIC
program by terminating the current program and initiating
execution of another program.

CHAIN STATEMENT

The CHAIN statement terminates the current program and
initiates execution of another program. The new program

can be either a BASIC program in source form or a BASIC .

or non-BASIC program in precompiled binary form. In
either case, it is retrieved from either a local or a
permanent file. Figure 6-9 illustrates the formats for the
CHAIN statement.

Figure 6-9. CHAIN Statement Format

When the file ordinal format is used, no options can be
specified. Chaining is done to the local file specified by
the file ordinal, and, if the file contains a BASIC source
program, the compiler is invoked with the same mode
(ASCII or normal) as the chaining program. If the file is
binary, the mode is determined by the binary program
itself. A file ordinal expressed as a numeric expression is
evaluated and rounded to an integer value.

When the string expression format is used, a filename must
be specified and, optionally, a permanent file user number
(ID) and/or password must be specified. Also, a mode
indicator (ASCII or normal) can be specified. The optional
values can be specified positionally or with keywords, as
shown in figure 6-10.

19983900 G

file,user pswd,mode

or

file, UN=user, PW=pswd , MODE=mode
or

file, 1D=user,PW=pswd, MODE=mode

file Required file name, 1-7 characters
beginning with a letter.

user Indicates optional user number (I1D) for
permanent file access, 1-7 characters.

pswd Indicates optional password for permanent
file access, 1-7 characters.

mode Optional mode, must be ASCI1 or NORMAL
or leftmost substrings of these such as
A,AS,ASC.

Figure 6-10. Keywords for Optional Values

Letters used in file names and optional values must be
uppercase. When keywords are used, they can be specified
in any order. Missing positional parameters must be
indicated by commas. For example:

file, , ,mode

Keyword and positional parameters can be mixed, but any
keywords must follow all positional values. For example:

file,user,MODE=NORM

CHAIN PROCESSING

Execution of the CHAIN statement proceeds in the
following manner: for the string expression format, the
string is decoded into parameters. The diagnostic
ILLEGAL CHAIN PARAMETER is issued for such errors as
an illegal file name, a file that is already assigned or
connected to the terminal, and/or an incorrect mode value,
such as ASKI. If the mode is not specified, the mode of the
current chaining program is used. If the user number is not
specified, the current user number (user name) is used
under NOS, and the ID of PUBLIC is used under NOS/BE.
For the file ordinal format, no parameters need be
decoded. If a local file of the specified name exists, it is
used. If one does not exist, access is attempted for NOS
with GET or ATTACH (if GET is unsuccessful), and for
NOS/BE with ATTACH. In both systems, attached files are
attached with read-only permission. If the named file
cannot be obtained, the diagnostic CHAIN FILE NOT
FOUND is issued.

When the file has been found, all files in the current
(chaining) program are closed as if STOP or END had been
executed. The file containing the current program is
returned, unless it is named INPUT or is the file being
chaired to, and the chained-to file is rewound. Also, for
NOS in interactive mode, the new file is made the primary
file, if possible (if it is not a direct access permanent file).
Under NOS/BE and NOS batch mode, the new file is not
treated in a special manner.

6-5

The new file is examined to determine if it contains source
or binary data and the BASIC compiler or the CYBER
Loader is called as appropriate. The file is rewound before
and after this check. Both the compiler and the loader
destroy the current program so that no returmn is possible.

Restrictions:

e DATA, or the values of variables and arrays, cannot be
passed between programs. All information must be on
files.

e The chained-to program cannot contain CALL
statements if the chained-to program is in source
form. However, CALL statements are permitted in
precompiled binary programs. When the program is in
source form, the BASIC compiler is called to, compile
and execute the program in one step without using the
loader; therefore, any called subroutine is not
available.

e The chained-to file cannot be connected or assigned to

the terminal.

e If the BASIC compiler to be used resides in a local file

rather than in the system library, the filename must
be BASIC.

Figure 6-11 shows how the CHAIN statement can be used
in a control program to determine which of a given number
of computer game programs to execute. Each game
program exists as a separate file with a user number (for
NOS) or an ID LIBRARY (for NOS/BE). The game and the
control program can CHAIN back to the control program
when it finishes, if the last executed statement is as
follows:

510 CHAIN "CONTROL,LIBRARY"

1106 INFUT AS

160 GU1O 110

230 ENU

10C¢ FEINT "ENTEK NAME OF THE CGANE"
120 Ir AS="FUREEL"™ CUTL 170

13C IF A$="RLULETIE"™ CUIL 190G

14C 1k AS="STARTRER' CL1U 210

15C FPRKINT "I LON'T HAVE 1HAT C(&NEs ThY AGAIN"

176 FRINT "CALLING FOUKER®
180 CHAIN "PUKEF,LIERARY™
190 FRINT *CALLINC ROULET1E"
200 CHAIN "RUULE11sLIEKAKY"
210 FFEINT "CALLING STARTKEK"
220 CHAIN "tTARTRKsLIBRARY"

Figure 6-11. CHAIN Processing Example

® 6-6

19983900 G

170 STATEMENTS AND FUNCTIONS 7

This section explains file usage in BASIC and describes the
statements and functions related to input and output.
Included are the statements and functions to input and
print display format; read and write binary data; construct
and read internal data tables; aid random access;
manipulate files; and produce special output formats.
Table 7-1 summarizes the input and output statements.

BASIC FILES AND FILE I/O STATEMENTS

Data can be contained within the BASIC program internally
in a data block or externally in a file. A file is a named
collection of data that a BASIC program can reference and
manipulate. A logical file name (Ifn) consists of 1 to 7
alphanumeric characters. The first character must always

TABLE 7-1. 1I/0 STATEMENTS AND FUNCTIONS

Statement Effect

Usage

RESTORE

Resets data table pointer to the first data value, or restores

RESTORE

file pointer to the beginning of the file.

READ Reads data from a binary file or from an internal data table.

program execution.

a file or at a terminal.

INPUT Reads data from a display format file or from the terminal during

PRINT ‘ Prints data in display format (as specified in the PRINT line) in

INPUT X,Y

PRINT "VALUE", Y

TAB Causes the print mechanism to tab to a specified column. TAB(5)

DATA "A",1,2,3

DATA Creates a table of data values internal to a program.

19983900 G 7-l @

be a letter. Any letters that are used must be uppercase.
Files used with BASIC are normally located on mass
storage; exceptions are those files connected or assigned to
the terminal. Terminal files accept and display data
directly at a terminal. Direct access to tape files is not
supported.

Files named INPUT and OUTPUT have special meaning in a
BASIC program. In interactive mode, if these files are
connected or assigned to the terminal, data written on file
OUTPUT is automatically printed at the terminal, and data
read from file INPUT must be entered at the terminal.
Files INPUT and OUTPUT are said to be connected to the
terminal. In batch mode, data written on file OUTPUT is
automatically printed at the end of the job and data read
from INPUT must be included in the file that contains job
control statements.

BASIC programs can read and write files in two formats:
binary format (a file created by WRITE) and display format
(files created by PRINT or an external method). It is more
efficient and more accurate to manipulate data in binary
format because no translation is needed before processing,
but it is sometimes inconvenient to use binary data because
it cannot be printed at the terminal or printer.
Conversely, it is less efficient and sometimes less accurate
to manipulate data in display format because translation
into binary is necessary before the data can be used by
BASIC, but it is usually more convenient to use display
format data because it can be printed at the terminal or
printer. Thus, all data entered on cards or at the terminal,
and all printed data, is formatted in display format. In
general, binary data files are written only if the data is to
be read later by a BASIC program and a printed copy is not
needed.

BASIC offers both a sequential and random access method
of reading and writing files. Sequential access sometimes
involves a systematic search throughout the file from
beginning to end until the desired information is found.
Random access allows immediate location of the
information (direct retrieval). @Random access, for
example, can be used to advantage on a file with students'
grades, provided the grades are ordered in student number
order. In this case, the student number indicates the
relative position of the student's record within the file; for
example, student number 12645 would indicate that the
student record occupied the 2645th position in the file
(assuming that student numbering begins at 10001). If the
student number associated with the desired record is
known, retrieval of this student's grade can be almost
instantaneous by using random access techniques. Display
format files can only be accessed sequentially, however,
both access methods apply to binary format files.
Table 7-2 summarizes the differences between these two
access methods.

The BASIC statements described in this section are used
for binary input and output, display input and output, and
input and output for internal data tables. Some of the
statements, such as RESTORE, apply to all of these
categories; while others, such as INPUT and PRINT, apply
to only one category. Table 7-3 identifies each 1/O
statement that is applicable to each category. The
statements listed in this table are grouped according to
their respective functions.

e 7-2

TABLE 7-2. SEQUENTIAL ACCESS VERSUS RANDOM ACCESS

Sequential

Access Method Random Access Method

Can be used with dis- Can be used with binary
play and binary format | format files only.
files.

Data need not be pro-
cessed sequentially.

File can be positioned to
any word in the file.

Data must be processed
cessed sequentially
from beginning to end
or until the desired
information is found.

File can be created File must be created se-
with WRITE or PRINT quentially with the WRITE
statement, and the READ | statement and read with
or INPUT statement is the READ statement. The
used to systematically |SET statement and two
examine each data item |{functions, LOC and LOF,
until the desired in- supply the data to per-
formation is found. mit positioning directly
to the desired word
location and retrieve or
write the word stored at
that location.

File must be either in |READ and WRITE operations
READ or WRITE mode and | can be intermixed without
must be rewound before | an intervening RESTORE
the other can be used. | statement.

BASIC processes local (temporary) files. A local file can
be one of the following:

® A permanent file made local with the ATTACH
command

e A file created by the user or by an executing program
during the job terminal session

® A copy of a permanent file

An attached permanent file is a permanent file that has
been made directly accessible to the BASIC program. If
changes are made to an attached direct access file, those
changes are permanent. An indirectly accessed permanent
file is a copy of a permanent file. If the job or terminal
session ends before the modified copy is saved, all changes
made during the file are lost. Similarly, if a file created
by the user or by an executing BASIC program is not
explicitly made permanent with operating system
commands before the job or terminal session ends, the file
is lost. Sections 10 and 11, and appendix D illustrate
operating system commands to make temporary local files
permanent, and permanent files local. Refer to the NOS or
NOS/BE reference manual for a complete explanation.

FILE STATEMENT

The FILE statement is used to associate a number (the file
ordinal) with a file name. All file /O statements require
the use of a file ordinal. Figure 7-1 shows the format for
the FILE statement. In figure 7-1, the file named by Ifn is
associated with the file ordinal specified by n.

19983900 G

TABLE 7-3. 1/0 STATEMENTS AND RELATED TYPE OF 1/0

Type : 1/0 for
of Display 1/0 Binary 1/0 Internal Data Tables
Tyoe 1/0
gg Sequential Sequential Random Sequential
Statements Access Access Access Access
File Access FILE FILE FILE
and CLOSE CLOSE CLOSE CLOSE
statement
Input INPUT READ READ READ
DELIMIT
Output PRINT WRITE WRITE DATA
PRINT USING
Image
MARGIN
SETDIGITS
File RESTORE RESTORE SET RESTORE
Control NO DATA NODATA RESTORE NODATA
IF END IF END NODATA
IF MORE IF MORE IF END
APPEND APPEND IF MORE
APPEND

Figure 7-1. FILE Statement Format

All file buffers, one for each name or number pair declared
in all FILE statements, are allocated as the program is
compiled. A maximum of 13 such buffers are allowed.
Names and numbers are associated with each other and
assigned to an available file buffer when a FILE statement
is executed. Names and numbers must be unique, not
currently in use, and buffer space must be available, or a
fatal error results. Therefore, a FILE statement can be
executed only once, unless the file names and numbers that
the FILE statement uses are different for each execution,
and unless unassigned buffers are available, and the names,
numbers, and buffers that the FILE statement uses are
first released by using a CLOSE statement.

When the FILE statement references a previously
non-existing file name, an empty file is created; data can
later be added to the empty file by using statements like
PRINT, WRITE, and APPEND. When the FILE statement
references a previously existing file (local), the FILE
statement does not position the file. Therefore, if unsure
of the present position of the file, RESTORE the file
before using it.

In example 1 of figure 7-2, the ordinal 99 is assigned to

the file OUTPUT, so that all data placed on file 99 is
printed on the terminal or the printer (OUTPUT is a special

19983900 G

file name). In example 2, files OLLDM and NEWM are
assigned ordinals, 1 and 11, respectively. In example 3, a
file (name determined during execution of the program) is
assigned ordinal 48. In example 4, both file name and
ordinal are determined during execution. If the variable X
is not an integer, it is rounded to an integer.

-

110 FILE #99 = “OUTPUT”

2. 10 FILE #1 = “OLDM”, #11 = “NEWM"”
3. 50 FILE #48 = A$

4. 100 FILE #X = A$

Figure 7-2. FILE Statement Examples

File ordinal zero has a special reserved meaning. Although
using it in the FILE statement has no effect, it refers to
the default input file in input-related statements and to
the default output file in output-related statements. (See
section 12, Batch Operations, J and K parameters.) These
files are connected to the terminal when running
interactively; for example, ordinal zero refers to the
terminal when it is running interactively.

CLOSE STATEMENT

The CLOSE statement is used to disassociate a file from
the BASIC program. The associated ordinal and file buffer
space become free for reassignment to another file by
executing another FILE statement. The file is retained as
a local file, and can be referenced again following an
appropriate FILE statement. Explicitly stating the CLOSE
statement rewinds the disassociated file (positions the file
at the beginning). Figure 7-3 illustrates the format for the
CLOSE statement.

7-3

Figure 7-3. CLOSE Statement Format

In figure 7-4, the first statement makes file DTFIL1
available as file ordinal 1. The second statement detaches
DTFIL1 from the BASIC program and frees file ordinal 1.
The third statement makes DTFIL2 available as file
ordinal 1. The fourth line makes file DTFIL1 available
once ‘more, this time to be referenced by file ordinal 2,
The fifth and sixth statements detach DTFIL1 and DTFIL.2,
respectively, from the BASIC program, and free their
associated file ordinals and buffers.

1. RESTORE

Figure 7-5. RESTORE Statement Format

100 FILE #1="DTFIL1"
110 CLBSE #1

120 FILE #1="DTFIL2"
130 FILE #2="DTFIL1"
140 CLASE #1

150 CLOSE #2

160 END

10 DATA 1,2,3
20 READ A,B,C

30 RESTORE
40 READ D
50 PRINT A;B;C;D
60 END
produces:
1 2 3 1

Figure 7-4. CLOSE Statement Example

FILE CONTROL STATEMENTS

The file control statements RESTORE, NODATA, IF END,
IF MORE, and APPEND are used to manipulate files and
internal data tables in various ways. For example, these
file control statements can be used to check the position of
the file pointer (NODATA, IF END, and F MORE) and to
move the file pointer to the beginning of a file (RESTORE)
and to the end of an existing file (APPEND).

All of the file control statements can be used with binary
and display format files; the RESTORE and NODATA
statements can also be used with internal data tables
created by the DATA statement.

RESTORE STATEMENT

A file or internal data table has a pointer associated with
it that indicates the position of the file or table. For an
input file, as the file is being read, the pointer moves
ahead, indicating the next item of data to read. For an
output file, the pointer is always at the end of the file,
indicating where the next data item is to be written. The
RESTORE statement positions this pointer to the beginning
of the file or internal data table. A file is nat
automatically rewound at the end of program execution. A
file can be rewound with a RESTORE or CLOSE
statement. Once a file has been restored, it can be written
into or read. The file can be in either binary or display
format. Be careful not to write over any data that is to be
saved. Figure 7-5 shows the formats for the RESTORE
statement.

In figure 7-5, if format 1 of the RESTORE statement is
used, the statement refers to an internal data block
created by the DATA statement. If format 2 is used, the
numeric expression ne must evaluate to an existing file
ordinal; for example, the number associated with the file
name through the FILE statement. The expression ne is
rounded to an integer. An example of the RESTORE
statement is shown in figure 7-6.

i 74

Figure 7-6. RESTORE Statement Example

NODATA STATEMENT

The NODATA statement can be used with files and internal
data tables to test the location of the file position pointer.
If the pointer is at the end-of-data, control branches to the
statement of the line number specified in the NODATA
statement. Thus, NODATA can be used to determine if all
the data in a file or internal data table has been read.
Figure 7-7 shows the format for the NODATA statement.

Figure 7-7. NODATA Statement Format

In figure 7-7, if format 1 is used, the NODATA statement
refers to an internal data block created by the DATA
statement. If format 2 is used, the NODATA statement
refers to a binary or display format file with the ordinal
that matches the ordinal specified as ne. The ordinal ne is
rounded to an integer.

Files that have just been sequentially written have no data
available for reading. Thus, when NODATA references a
file that has just been sequentially written (and not yet
repositioned with RESTORE), an end-of-file condition is
indicated, and control immediately transfers to the
statement at line number In. Conversely, when NODATA
references an internal data table that contains at least one
item and has not yet been read, transfer of control is not
executed.

The NODATA statement is typically used for
end-of-information processing, as in figure 7-8. The first
NODATA statement in line 110 detects an end-of-
information on the internal data block and directs control
to statement 150, where a message is printed. Note that
since file #1 has just been written on the first time
through, the NODATA statement in line 160 detects an
end-of-information condition on file #1.

19983900 G

90 FILE #1="NODAT1"

100 DATA 1,2,3,4

110 NODATA 150

120 READ A

130 PRINT A

135 WRITE #1,A

140 GOTO 110

150 PRINT “END OF DATA BLOCK"
160 NODATA #1,180

170 sToP

180 PRINT "END OF FILE #1"
190 END

END OF DATA BLOCK
END OF FILE #1

Figure 7-8. End-of-Information Processing

IF END STATEMENT

The IF END statement is logically equivalent to the
NODATA statement, except IF END cannot refer to the
internal data block created by DATA statements. The
numeric expression ne in figure 7-9, is evaluated and
rounded to an integer. The status of the file that has this
integer as its file ordinal is then interrogated in a manner
similar to that of the NODATA statement. Control is
transferred to the statement line number In if the pointer
is found to be at the end of data. Do not use the second
format because it might not be supported in future versions
of BASIC. See Future System Migration Guidelines,

appendix E. The IF END statement is customarily used for
end-of-information processing, as illustrated in figure 7-10.

100 FILE #1="1IFEND"
110 IF END #% GOTO 160
120 INPUT #1,A
130 PRINT »A
140 S=S+A
150 GgTe 110
160 PRINT Pl L
170 PRINT "*TOTAL:"sS
180 END
produces:
10
10
20
20
30
30
40
40
TATAL 200
Figure 7-10. |IF END Statement Example

Figure 7-11.

IF MORE Statement Format

Figure 7-12 duplicates the example given for the IF END
statement; however, it uses the IF MORE statement to
allow for end-of-information processing. Note that using
IF MORE allows the program to be shortened by one line.

100 FILE #1="IFEND"

120 INPUT #1.,4

130 S=S+A

140 PRINT s A

150 IF MORE #1 G@TO 120

[¥ |
Figure 7-9. IF END Statement Format :9,(0) izi:}: ’ “T@ETAL:">»S

180 END
IF MORE STATEMENT
The IF MORE statement is the logical converse of the produces:
NODATA statement and the IF END statement. Similar to 10
the IF END statement, the IF MORE statement cannot 10
refer to the internal data block. The arithmetic 20
expression ne is evaluated and rounded to an integer. The 20
status of the file that has the integer as its file ordinal is 30
interrogated. Control is transferred to the statement with 30
the line number specified in In, only if the pointer is found 40
not to be at the end of data; for example, if there is data 40
available for reading. Figure 7-11 illustrates the format ---
for the IF MORE statement. Do not use the second format TeTAL 200
because it might not be supported in future versions of

BASIC. See Future System Migration Guidelines,

appendix E. Figure 7-12. IF MORE Statement Example

19983900 G 7-5 |

APPEND STATEMENT

The APPEND statement adds data to the end of an existing
binary or display format file (APPEND cannot be used with
internal data tables created with the DATA statement).
The format for the APPEND statement appears in
figure 7-13.

Figure 7-13. APPEND Statement Format

Executing an APPEND statement causes the file pointer
associated with the file ordinal specified as ne to be
positioned after the last data item on the file. The
expression ne is rounded to an integer. The file mode
(binary or display) is set depending on the mode of the last
input or output operation for the file. If there is no
preceding input or output operation or if the last dperation
was a RESTORE, the mode is determined by the next
output operation on the file. After APPEND, an output
operation on the file, such as WRITE or PRINT, causes the
information to be added to the file. Once the file has been
positioned, any amount of data can be written. It is not
necessary to execute an APPEND before each output
statement. Any attempt to INPUT or READ from a file
after an APPEND for that file and without an intervening
RESTORE or SET causes the execution time diagnostic
ILLEGAL INPUT ONFILE.

Figure 7-14 shows one method of adding information to the
end of a file. In this case, the file used is a file of student
grades. The first example program attempts to read
through the file, and write at the end. An execution
diagnostic results as shown. The second program has an
APPEND statement inserted before the WRITE statement.
This positions the pointer after the end of data and allows
additions to be made. The program then repositions, reads,
and prints the contents of the file showing that the new
value was added to the end.

BINARY 1/0 STATEMENTS
AND FUNCTIONS

The following paragraphs describe the BASIC statements
and functions used to read and write binary format files.
The binary I/O statements are WRITE for creating binary
files; READ for reading binary files; and SET for pointing
to a specific word location within a binary file so the next
READ or WRITE statement can reference the desired
word. The binary I/O functions are L.OC and LOF. LOC
and LOF functions aid in the random access procedure and
are described in the following text.

As stated at the beginning of this section, binary files
cannot be directly connected to the terminal or output on a
printer. Binary files must be disk files and can be
referenced by using either the sequential or random access
method. The READ and WRITE statements apply to both
methods of accessing binary data, and the SET statement
applies only when you want to randomly acccess binary
data. Two BASIC built-in functions, 1.OC and LOF, aid in
the random access procedure.

] 76

100 FILE #1="CREATED"
110 READ #1,A

120 IF MORE #1 THEN 110
130 A=99

140 WRITE #1,A

150 END

produces:

ILLEGAL OUTPUT ON FILE AT 140
BASIC EXECUTION ERROR

Corrected example:

100 FILE #1="CREATED"
110 APPEND #1

120 A=99

130 WRITE #1,A

140 RESTORE #1

150 READ #1,A

160 PRINT A;

170 IF MORE #1 THEN 150
180 END

produces:
96 97 98 99

Figure 7-14. APPEND Statement Example

WRITE STATEMENT

The WRITE statement is used to write a contiguous block of
data to a binary file. The data is written into the file
starting at the current position of the file pointer. No
delimiters or end-of-line characters are written.
Figure 7-15 shows the format for the WRITE statement.

Figure 7-15. WRITE Statement Format

When the WRITE statement is executed, the binary value of
the expressions (e in figure 7-15) is written on the file
indicated by the ordinal (ne in figure 7-15). The ordinal ne
is rounded to an integer.

Files written by a WRITE statement can be read only by a
READ statement in the same program or in another BASIC
program. Note that for sequential access files, a simple
WRITE operation causes the file pointer to be positioned at
the current end-of-file; any attempt to READ from the file
without an intervening RESTORE or set causes an
execution time diagnostic ILLEGAL INPUT ON FILE.
Figure 7-16 illustrates use of the WRITE statement. The
binary values of 1 and 10 are written on file #1. The file is
restored and the data is read, then it is printed.

19983900 G

00100 FILE #1="OLDM"
00110 LET A=1

00120 LET B=10

00130 WRITE #1,A,B
00140 RESTORE #1
00150 READ #1,D,E
00160 PRINT D,E
00170 END

produces:
1 10

Figure 7-16. WRITE Statement Example

READ STATEMENT

Binary files created by the WRITE statement are read by
the READ statement. Figure 7-17 shows the format for
the READ statement. See 1/O For Internal Data Blocks for
alternate formats of the READ statement for reading
internal data tables created by the DATA statement.

Figure 7-17. READ Statement Format

In figure 7-17, binary data from the file with ordinal ne is
read and assigned to each of the variables
V1,V2,..+3Vn, respectively. The ordinal ne is
rounded to an integer. Numeric data items should be
assigned to numeric variables and string data items should
be assigned to string variables; otherwise, unpredictable
results can oceur (no diagnostic is issued).

As each binary data item is read from the file and assigned
to a variable in the READ statement list, the file pointer is
advanced to the next data item. If an executing READ
statement attempts to read beyond the end-of-file, the
execution time diagnostic END OF DATA ON FILE is

issued. Check for an end-of-file condition by using the IF
END, F MORE, or NODATA statement. (See File Control
Statements in this section.)

Output files that have been sequentially written must be
restored (via the RESTORE or the SET statements) to be
read; otherwise, the execution time diagnostic ILLEGAL
INPUT ON FILE is issued. (The RESTORE statement is
described previously in this section under File Control
Statements.)

Figure 7-18 illustrates the READ statement. The program
creates a file named MYFILE, then writes a series of
values to the file (one string value followed by 20 integer
values). The program then reads the file information
previously created, and displays the file contents at the
terminal.

SET STATEMENT

The SET statement positions a file so that the next READ
or WRITE statement executed on that file references the
desired word. Figure 7-19 shows the format of the SET
statement. When the SET statement is executed, nej and
ney are evaluated and rounded to an integer, then the
file associated with the ordinal nej is positioned at the
word nep. The user is responsible for computing the file
position to be set and should remember the following:

e Numeric variables occupy just one word each on a
binary file.

e String variables occupy n+l words, where n is the
integral of the (number of 6-bit characters in the
string in 6-bit characters +9)/10; for example, a string
variable of length 34 6-bit characters occupies
INT(34+9)/10)+1=5 words. The 12-bit escape code
ASCII characters count as two 6-bit characters.

If the logical blocks of information on the file to be
referenced in random mode are all fixed length, the
starting word position of any particular block can be
readily computed. The starting word position of the nth
block is ((n-1)* block length+1). However, if variable
length logical blocks are used, it is necessary to produce a
table of relative logical block addresses when the file is
being created and to record this table in some fixed area,
such as the start of the file or in a separate file, if the
table size is large and variable.

00100 FILE #1="MYFILE"
00110 RESTORE #1

00130 WRITE #1,AS
00140 FOR I=1 TO 20
00150 WRITE #1,1
00160 NEXT I

00170 RESTORE #1
00180 READ #1,AS
00190 PRINT AS
00200 IF END #1 THEN 00999
00210 READ #1,A

00220 PRINT A;

00230 IF MORE #1 THEN 00210
00999 END

produces:

1 2 3 4 5 6 7 8 9 10

'ENSURES FILE IS AT BEGINNING
00120 A$="WRITE A FILE OF SEQUENTIAL NUMBERS FROM 1 TO 20"

'READS THE STRING

WRITE A FILE OF SEQUENTIAL NUMBERS FROM 1 TO 20

12 13 14 15 16 17 18 19 20

Figure 7-18. READ Statement Example

19983900 G

7-7

Figure 7-19. SET Statement Format

In addition to the SET statement, BASIC provides the LOC
and LOF functions to help position directly to the desired
word location so the word stored at that location can be
retrieved or written. Any attempt to position to a word
location beyond the end of the file results in a diagnostic
message RANDOM ACTION BEYOND EOF. The LOC
function returns the current word position on the file
where the next READ or WRITE operation is to start, and
the LOF function returns the length of the specified binary
file. The first word in the file is word 1.

Figure 7-20 shows how the SET statement can be used to
randomly access a binary file containing 12 student grades
organized in student number order (file STUDENT not
shown). The student number indicates the relative position
of the student's grade record within the file, and the
student numbers range from 10001 to 10012, For example,
student number 10001 indicates that the corresponding
student grade record occupies the first position in the file,
and student number 10012 indicates that its student grade
record occupies the twelfth position in the file. The
program prompts for a student number; once the number is
entered, the corresponding student grade is displayed at
the terminal.

LOC FUNCTION

The LOC function returns the current word position of a
binary file. That is, LOC returns the position at which the
next READ or WRITE operation on the file is to begin. The
format for the LOC function appears in figure 7-21.

Figure 7-21. LOC Function Format

The value returned by LLOC is updated after each item is
read or written by the READ or WRITE statement. The
value is incremented by 1 for numeric values and by n for
string variables, where n is a function of the length of the
string. See discussion under SET statement. If RESTORE
is used on the file, LOC yields the value of 1. The LOC
function can also be used with the LOF function to detect
an end-of-file condition.

LOF FUNCTION

The LOF function returns the length in words of a binary
file. Figure 7-22 shows the format for the LOF function.

Figure 7-22. LOF Function Format

When the value returned by the LOC function equals the
value returned by the LOF function, the file is positioned
at the last word in the file. When LLOC=LOF +1, all data has
been used, and an end-of-file condition is indicated. An
example of both the LOC and LOF function is shown in
figure 7-23.

DISPLAY FORMAT 1/0
STATEMENTS AND FUNCTIONS

The statements INPUT, DELIMIT, PRINT, PRINT USING,
image, MARGIN, and SETDIGITS are used for display

120 INPUT N

130 LET N1=N-10000
140 SET #1,N1

150 READ #1,61

170 GoTO 120
999 END

produces:

? 10001
? 10002
? 10003
? 999

100 FILE #1="STUDENT"
110 PRINT "ENTER A STUDENT NUMBER"
115 PRINT "ENTER 999 TO TERMINATE THE JoB"

125 IF N=999 THEN 999

160 PRINT "STUDENT NUMBER ";N," GRADE ";G1

ENTER A STUDENT NUMBER
ENTER 999 TO TERMINATE THE JOB

STUDENT NUMBER 10001
STUDENT NUMBER 10002

STUDENT NUMBER 10003

GRADE 95
GRADE 89
GRADE 80

Figure 7-20. SET Statement Example

7-8

19983900 G

format I/O. The INPUT statement is used to read display
format input, The various forms of the PRINT statement,
and the MARGIN and SETDIGITS statements, are used to
create display format output and to control the output
format. :

100 FILE #1="STUDENT"

105 RESTORE #1

110 LET M=10000

120 READ #1,6

130 LET M=M+1

140 PRINT M,G

150 IFf MORE #1 THEN 120

200 RESTORE #1

210 LET S§=0

220 READ #1,61

230 IF LOC(1)=LOF(1)+1 THEN 260
240 LET S=S+6G1

250 G0TO 220

260 LET A=S/LOF(1)

270 PRINT "CLASS AVERAGE ";A

300 END
produces:

10001 95
10002 89
10003 80
10004 84
10005 94
10006 78
10007 88
10008 68
10009 96
10010 79
10011 92
10012 90

CLASS AVERAGE 78.5833

Figure 7-23. Example of LOC and LOF Functions

INPUT STATEMENT

The INPUT statement permits display format data to be
read from a file or from the terminal during program
execution, The two forms of the INPUT statement are
shown in figure 7-24.

1 INPUT vq, vp, . . . V,

Indicates string or numeric variables.

Figure 7-24. INPUT Statement Format

Terminal Input

When a BASIC program is run interactively from a
terminal, the INPUT statement without a file ordinal
(format 1 in figure 7-24) reads data into the program from
the terminal. One item is input for each variable of the
INPUT statement.

19983900 G

Each time an INPUT statement is executed, a question
mark is displayed at the current print position of the
terminal line. Enter data to satisfy the input request; the
data entered must correspond one-for-one with the
variables in the INPUT statement.

Numbers must be entered for numeric variables, and
quoted or unquoted strings must be entered for string
variables. No assignment of values in a reply takes place
until the reply is validated with respect to the type of
data, the number of input items, and the allowable range
for each item.

Unless DELIMIT is in effect, numeric constants must be
separated by commas or blanks, and string constants must
be separated by commas.

A carriage return marks the end of the input reply (the end
of the data to be entered). If an insufficient number of
data items is entered, the diagnastic NOT ENOUGH DATA,
REENTER OR TYPE IN MORE is issued. When this
message appears at the terminal, either reenter the entire
input line or enter a non-blank delimiter followed by the
additional data items. Starting a subsequent input line
with a delimiter indicates that it is a continuation of the
first input line. One of the diagnostic messages TOO
MUCH DATA, RETYPE INPUT or ILLEGAL DATA, or
RETYPE INPUT is issued if too much data or unacceptable
data is entered. In these cases, retype the entire data list.

Rules for entering data from a terminal are as follows:

e Numeric items must be delimited by commas or blanks
and string items must be delimited by commas, unless
a DELIMIT statement (described later) is in effect.

e A carriage return marks the end of the input reply.

e If an insufficient number of data items is entered,
BASIC issues a request to reenter or type in more data.

e If too much data or unacceptable data is typed, BASIC
requests that the data be reentered.

e All leading and trailing blanks (blanks between the last
nonblank character of the data list and the carriage
return) are eliminated from the input line.

e Redundant delimiters preceding or following data
items are ignored.

e If a line ends with a delimiter, the input reply is
assumed to be continued on the following line and
another input prompt is issued.

Figure 7-25 illustrates a program example of using the
INPUT statement to enter data from the terminal during
program execution. The example shows what happens if
insufficient data is supplied in response to an INPUT
request. The input reply line is completely reentered
(the 2 is repeated). Alternatives are to add data to the
previous input reply (,2) or to continue the input reply line
cn the next line 2,3/.

File Input

The second format in figure 7-24 reads from the file
specified by the file ordinal (ne). It is essentially the same
as input from a terminal except that TOO MUCH DATA
and NOT ENOUGH DATA conditions are not applicable.

00100 AS="ABCDEF"
00120 INPUT X,A$(4:5)
00150 €END

produces:

? 2

2 2,48
X= 0 AS=ABC4SF

00110 PRINT "ENTER A NUMBER AND A STRING"

00130 REM NOTE INPUT INTO SUBSTRING OF AS IN PROGRAM OUTPUT
00140 PRINT "X=";X,"A$=";AS

ENTER A NUMBER AND A STRING

NOT ENOUGH DATA, REENTER OR TYPE IN MORE AT 120

'TWO VALUES MUST BE SUPPLIED

Figure 7-25. INPUT Statement Example

Rules for data input from a file are as follows:

e A display format file contains line images that can be
printed at a terminal. However, the INPUT statement
regards the file as one block of contiguous values with
no special regard for the end of lines other than as
item delimiters.

e Numeric items must be delimited by commas or
blanks; string items must be delimited by commas,
unless a DELIMIT statement specifies other types of
delimiters.

e End-of-line (EOL) is a special indicator that marks the
end of each line image on the file. It does not mark
the end of the input reply from a file as a carriage
return does for a terminal line. EOL simply acts as a
delimiter in the same way as does a comma.

e When entering data at a terminal, an input reply has to
have the same number of items that is requested by
the program. Too many or too few items cause an
error. When entering data from a file, if more data is
requested than is available in the current line, data is
automatically taken from the following line(s). If
more data exists in the current line than is needed, the
unused data are simply retained for the next INPUT.
No diagnostic is issued. For example, the remainder
of a partially-used line is not skipped.

e The program terminates with the diagnostic END OF
DATA ON FILE if it attempts to INPUT more data
than exists in the file.

e The program terminates with the diagnostic ILLEGAL
DATA ON FILE if invalid numbers or strings are
input. However, the file is positioned to the following
delimiter to facilitate recovery by using ON ERROR.
See Error and Interrupt Processing.

® Redundant leading and trailing delimiters are ignored.

® The program terminates with ILLEGAL INPUT ON
FILE if an INPUT statement attempts to read an
output file whose file pointer has not been moved to
the beginning of the file (via the RESTORE statement).

If the file ordinal referenced in the second format of
figure 7-24 is associated with the default input file
(J parameter on BASIC control statement), the statement
operates according to the format 1 rules; for example, if
the file is connected or assigned to a terminal, input is
prompted, and too much and too little data are diagnosed
as errors. File ordinal 0 is automatically associated with

7-10

the default input file (no FILE statement is required).
Also, if the default input file is not connected to a
terminal, the format 1 statements operate according to
format 2 rules.

DELIMIT STATEMENT

DELIMIT specifies the character or characters to be used
as input item separators. Figure 7-26 illustrates the
formats for the DELIMIT statement. The characters
specified override the default separators, comma and
blank. Any characters, or abbreviations for characters
(appendix A), can be specified as separators. If the
abbreviation CR is specified, the entire line is accepted as
one item. All preceding and trailing blanks are returned
when CR is a delimiter. The operating system can add or
delete trailing blanks on data lines entered through the
terminal or card reader.

Figure 7-26. DELIMIT Statement Format

Zero, one, two, or three characters can be specified in a
DELIMIT statement. If no characters are specified, the
default delimiters (comma and blank) are restored. If no
file is specified in the DELIMIT statement, the delimiters
apply to the default input file; in interactive mode, this
file is the terminal. (See section 12, Batch Operations, the
J parameter.)

Examples:

10 DELIMIT (CR)

55 DELIMIT #1,(), (5)

110 DELIMIT

155 DELIMIT #1

19983900 G

In the first DELIMIT statement (line number 10), if the
program is run interactively from the terminal, the input
requests read all information typed up to the carriage
return (end-of-line if processed in batch mode) into a single
variable. It should be noted that this form usually is used
to read data into a string variable. In the second example
(line number 55), a blank and semicolon (;) are interpreted
as delimiters (numeric and string) when entering input from
a file with an ordinal of 1. The succeeding lines 110 and
155 restore the default delimiters (blank and comma).

The following descriptions compare DELIMIT not in effect
and DELIMIT in effect.

DELIMIT Not in Effect (Normal Case)

Carriage return on a terminal (end-of-line on files) is
always treated as a delimiter.

° When input is from a terminal and carriage return is
encountered before the input list is satisfied, the
message NOT ENOUGH DATA, REENTER OR TYPE
IN MORE is issued.

° When input is from a terminal and data exists on the
input line after the input list is satisfied, the message
TOO MUCH DATA, RETYPE INPUT is issued.

° When input is from a file and end-of-line is
encountered before the input list is satisfied, it (the
end-of-line) is treated as a delimiter (item separator)
and input continues from the next line.

° When input is from a file and data exists on the input
line after the input list is satisfied, this excess data
item is retained for the next INPUT request. No
diagnostic is issued.

° If a delimiter is encountered after the input list is
satisfied, the delimiter is ignored.

Comma is the delimiter for all input items (numbers,
quoted strings, and unquoted strings). Blank is a delimiter
for numbers, but not for strings. When input is from a
terminal, the input reply can be continued onto the next
line by terminating the current line with a comma
delimiter. Leading and trailing blanks are deleted.

DELIMIT in Effect

Default delimiters are turned off except carriage return
or end-of-line. Only explicitly-named characters act as
delimiters.

° Comma and blank do not delimit items unless they
are specified in a DELIMIT statement.

° Quotes have no special meaning.

° All characters, including quotes, leading and trailing
blanks, but not delimiters, are valid string characters.

° All strings are considered to be unquoted. There are
no string boundary characters equivalent to quotes.

Carriage return (end-of-line on files) is always a delimiter
and need not be explicitly defined in a DELIMIT
statement. The TOO MUCH DATA and NOT ENOUGH
DATA conditions are handled as in the normal case.

Trailing blanks on an input line are ignored unless CR is
explicitly defined as a delimiter.

19983900 G

Blanks are ignored if the item being input is a number or if
blank has not been specified as a delimiter.

Any specified delimiter, other than CR or blank, causes the
input reply to be continued on the next line in interactive
mode if the delimiter follows the last item on the line.

PRINT STATEMENT

The PRINT statement writes display format data on a
terminal or a file. The formats for the PRINT statement
are shown in figure 7-27.

1. PRINTejdeyd...e

e Indicates constant, variable, or expression
{numeric or string).

d Indicates delimiter (comma or semicolon);
final delimiter is optional.

Figure 7-27. PRINT Statement Format

when the PRINT statement is executed, the value of each
expression {(e) is printed according to standard format.
Spacing between the printed values is controlled by
delimiters (d) in the print list. If no expressions are
specified, a blank line is printed.

The PRINT statement of format 1 in figure 7-27 writes on
a default file named OUTPUT. When running the program
interactively, file OUTPUT is the terminal; when running
in batch mode, file OUTPUT is the printer. The default
file name can be changed by using the K option of the
BASIC control statement. (See Batch Operations.) The
PRINT statement of format 2 in figure 7-27 writes on a
file whose ordinal is #ne.

Format 1 prefixes a carriage control character at the
beginning of each line. Except for the first printed line,
this character is always a blank. The carriage control
character is not normally affixed to lines output if the
second PRINT format is used, unless the file ordinal
referenced is that of the default print file OUTPUT or
default file specified by the K option of the batch BASIC
control statement.

To assure that the data from the format 2 PRINT
statements print in proper order when the files are
connected or assigned to the terminal, RESTORE or
CLOSE the file before executing any other I/O statement
that references a connected file.

When printing data on a file that is to be read later with
the INPUT statement, ensure that items on the file are
separated by delimiters. When only numbers are printed,
default delimiters (blanks) are automatically included in
the output. When printing a file containing strings, each
string must be printed on a separate line, or explicitly
specified print delimiter characters must be printed
between data items. In addition, if the string includes
leading or trailing blanks, quote marks must be printed
around the string. Figure 7-28 illustrates an example of
the PRINT statement.

7-11

10 LET A$="STRING"

20 LET B$="STRING2"

30 LET X=1

40 FILE #7="FILEX"

50 REM PRINT ON FILE

60 PRINT #7,AS;",";BS

70 PRINT #7,X,X+X,SIN(X)
80 REM PRINT ON TERMINAL
90 PRINT AS;",";BS

100 PRINT X,X+X,SIN(X)

produces:

STRING,STRING?Z2
1 2

numeric formats is shown in figure 7-29. The following
items refer to the output formats in table 7-4.

TABLE 7-4. STANDARD NUMERIC OUTPiJT FORMATS

Output Format
Internal Value Used

-841471

Figure 7-28. PRINT Statement Example

DEFAULT PRINT FORMATS

Unless a USING clause is used or the SETDIGITS statement
(described later) is in effect, all numbers and strings
printed are printed in standard default formats. These
formats are explained below.

Numeric Formats

Numeric values are formatted in one of the three standard
formats shown in table 7-4. A program example using the

Exact integers less than seven snnnnnn
digits. (E format)

Nonintegers that after
rounding can be represented as
accurately in decimal notation
as in exponential (E format)

snnnnnnn
(where one n
represents a
decimal point)

notation. (F format)
A1l other numbers. sn.nnnnnE+nnn
(E format)
° The n represents a numeric digit.
® The s represents a minus sign if the value is negative

and a blank if the value is positive.

° Each format is terminated by one trailing blank.
) Leading zeros are suppressed.

° Trailing zeros after a decimal are suppressed in

F format, but not in E format.

00100 LET A1=0

00110 LET B1=124

00120 LET €1=123456
00130 LET D1=1234567
00140 LET E1=123456.789
00150 LET F1=-.00192
00160 LET 61=1234567890
00170 LET H1=1234567.8
00180 LET J1=.07623488
00190 LET K1=-.0000192
00200 PRINT "INTERNAL VALUE"

00220 PRINT

00230 PRINT "OUTPUT FORMAT"
00240 PRINT A1,B1,C1,D1,E1
00250 PRINT

00260 PRINT "INTERNAL VALUE"

00280 PRINT
00290 PRINT "OUTPUT FORMAT"
00300 PRINT F1,61,H1,J1,K1

00210 PRINT "0","-124","123456","1234567","123456.789"

00270 PRINT ".00192","1234567890","1234567.8",".07623488","-.0000192"

00310 END
produces:
INTERNAL VALUE
0 =124 123456 1234567 123456.789
OUTPUT FORMAT
0 124 123456 1.23457€+6 123457.
INTERNAL VALUE
.00192 1234567890 1234567.8 .07623488 -.0000192
OUTPUT FORMAT
-.00192 1.23457E+9 1.23457E+6 7.62349E-2 -1.92000€E-5
Figure 7-29. Program Example of Numeric Formats
7-12 19983900 G

° The final digit in both the first and second formats of
table 7-4 is obtained by rounding to the sixth place
from the first nonzero digit, for example:

123 456 789.453 is rounded to 123 457 000.000
and
.001234567 is rounded to .001234570

String Formats

String values are formatted as a contiguous group of
characters. For example, only the characters in the
original string value are displayed; no quotation marks or
blanks are added.

String constants are printed exactly as they appear in the
PRINT statement, without the quotation marks. Examples
of string formats using the PRINT statement are
illustrated in figure 7-30.

When a semicolon is used to separate strings, it is printed
consecutively without any preceding or intervening blanks,
as shown in figure 7-31.

Commas and semicolons can be intermixed in any PRINT
statement. When commas are used as separators with
numeric data, each number occupies one zone; but with
string data, each string can occupy more than one zone.

Successive commas can be used to skip zones. Each
comma causes a skip to the begimning of the next print
zone. Semicolons have no spacing effect.

PRINT ZONING

The print line is divided into zones of 15 spaces each.
Unless the MARGIN statement (described later) is used to
specify some other value, the default margin (line length)
is 75; there are five print zones in a line. A comma, used
as a separator or a final delimiter, signals BASIC to move
to the next zone of the print line, or to the first zone of
the next print line when the last zone is filled. If a print
zone is exactly filled by a print item, a comma separator
causes the print mechanism to skip over the following print
zone.

A semicolon used as a separator has no spacing effect (the
print line zoning effect is inhibited). Numbers are printed,

preceded by a blank or a minus sign, and followed by .

another blank, so two positive numbers are separated by
two blanks. (See figure 7-32.)

10 PRINT "THIS IS';3'"AN EXAMPLE'
20 PRINT 'THIS IS",'"AN EXAMPLE"
30 END

produces:

THIS ISAN EXAMPLE
THIS 1S AN EXAMPLE

Figure 7-31. Use of Semicolons With String Data

10 LET A1=123

20 LET B2=256

30 PRINT "12345678901234567890"
40 PRINT A1;B2

50 PRINT -a

50 PRINT -A1;14.3

60 END

produces:

12345678901234567890
123 256
=123 14.3

Figure 7-32. Use of Semicolon With Numeric Data

If a PRINT statement does not end with a delimiter (either
semicolon or comma), subsequent printing commences at
the beginning of a new line. If a PRINT statement does
end in a delimiter, subsequent printing continues on the
same line until the line is filled. If a semicolon is used as
the final delimiter, the next item printed starts in the next
available space. If a comma is the last delimiter, the next
item printed starts at the beginning of the next zone.

If the formatted print item does not fit entirely on the
current line, it is printed as the first item of the next line.
If an item does not fit on an empty line, it is broken at the
margin and continued on the next line. (See figure 7-33.)

TAB Function

The TAB function causes the printing mechanism to tab to
a specified column. Printing can commence in the
specified column. The semicolon should be used as a
separator when the TAB function is used because the

115 LET X=Y=1=2

118 END

produces:
ANSWER

‘If statement 117 is changed to:

the program produces:

117 PRINT '"ANSWER","X AND Z=";Z,"X*Y*xZ=" ;X*xY*Z

X AND Z=2

117 PRINT "ANSWER;X AND Z=;Z ;XkY*ZI=_XkYxZ"

ANSWER;X AND Z=;Z;X*kY*Z=;X*xY*xZ

X*Y*x71=8

Figure 7-30. String Formats Using the PRINT Statement

19983900 G

7-13

10 FOR 1=1 TO 10
15 PRINT I

20 NEXT I

30 END

produces:

mwORIOUDWN -

0
If line 15 is changed to:
15 PRINT 1,
The above program produces:

1 2
6 7

If line 15 is changed to:
1S5 PRINT 1I;
The program produces:

123456782910

TAB(ne)

ne Indicates constant, variable, or expression
indicating the print position number.

Figure 7-34. TAB Function Format

the format for the TAB function. The TAB function is
legal only in the PRINT statement; it should not be used in
MAT PRINT or PRINT USING statements. If the argument

is less than the current position, the print mechanism is .

positioned to the specified column of the next print line. If
the argument is greater than the current line margin, it is
divided by the line margin, and the remainder is used as the
argument. If the argument is less than one, a warning
diagnostic is issued, and the value one is substituted.
Examples of the TAB function appear in figure 7-35.

PRINT USING STATEMENT

The PRINT USING statement writes display format data on
a terminal or file. The formats for the PRINT USING

statement are shown in figure 7-36.

When the PRINT USING statement is executed, the value of
each expression (e) is printed in the format specified by an
image. The image is defined in the image statement (In) or
in the string expression (se).

Format 1 (figure 7-36) prefixes a carriage control
character at the beginning of each line. Except for the
first printed line, this character is always a blank. The
carriage control character is not normally prefixed to lines
output by format 2, shown in figure 7-36, unless the file

I 716

Figure 7-33. Print Zoning Examples

ordinal referenced is that of the default print file (for
example, OUTPUT or the file specified by the K option of
the BASIC control statement). To assure that the data
prints in proper order when the files are connected or
assigned to the terminal under NOS by using format 2
PRINT USING statements, RESTORE or CLOSE the file
before executing any other I/O statement that references a
connected file.

When printing data on a file that is to be read later with
the INPUT statement, ensure that items on the file are
separated by delimiters. When only numbers are printed,
default delimiters (blanks) are automatically included in
the output. When printing a file containing strings, each
string must be printed on a separate line or explicitly
specified input delimiters must be included between data
items. In addition to maintain leading and trailing blanks
in the string, you must print the strings within quotation
mark characters.

IMAGE

The image for a PRINT USING statement describes the
output format for the value to be printed. It consists of
format fields for each value in the print list and optional
separating literals. Each character in the image
corresponds to one character in the printed output. When
the format field is filled by string data, the specification
determines only the number of characters to be included
from the string. When the format is filled by numeric data,
the format specification directs the placement of the value
in the field and the number of digits retained in the
converted value as well as the extra characters to be
printed with the value (for example, decimal point, dollar
sign, or asterisks).

19983900 G

20 PRINT TAB(10);"1%;TAB(
30 PRINT "123456789012345
40 END

produces:
1 2

00100 LET 11=12345678
00110 LET 12=123456739
00120 LET 13=12345678901
00130 LET Dp1=123.4

00140 LET 02=123.456
00150 LET 03=123.4567
00160 PRINT I1,TAB(25);01
00165 PRINT 12,TAB(25);D2
00170 PRINT I3;TAB(25);D3
00180 END

produces:

1.23457E+7
1.23457E+8
1.23457€+10

123456789012345678901234567890234567890

20);"2";TAB(30);"3"
678901234567890234567890"

3

123.4
123.456
123.457

Figure 7-35. TAB Function Examples

Figure 7-36. PRINT USING Statement Formats

As described under the PRINT USING statement, an image
can be written as a separate statement or as a string
expression. An image string is constructed as shown in
figure 7-37. An image statement is not executable, so it
has no effect on the results of the program if it is
encountered during a normal execution sequence. The
format of an image statement is as shown in figure 7-38.

Literals can contain any character or combination of
characters that do not constitute a format field (F).
Format fields are constructed from specification
characters #, $,*%, , , ,+, -, comma, (, and).

19983900 G

Figure 7-37. The Image for a PRINT USING Statement

Figure 7-38. Image Statement Format

A separate image statement is referenced by its line
number (from within the PRINT USING statement) as
shown in example 1, figure 7-39. For separate image
statements, a trailing literal cannot be terminated by a
blank. For example:

H#LITERAL AAA
is compiled as:
HSILITERAL

If the image is a string, it can be included as a string
constant within the PRINT statement (example 2 in
figure 7-39) or it can be specified as a string expression
referenced in the PRINT statement (example 3).

When a value is printed according to a field of an image,
the literal following the field (if any) is also printed. Only
that part of the image that is required by the print list of
the associated PRINT USING statement is used.

7-15 1

100 LET T1=544

TOTAL OF ORDERS

200 PRINT USING 300,71
300 :TOTAL OF ORDERS H#H#HHHH

544

200 PRINT USING "TOTAL OF ORDERS ###E#n",T1

544

Wum:
TOTAL OF ORDERS
2.
100 LET T1=544
produces:
TOTAL OF ORDERS
3.
100 LET T1=544
110 AS=""TOTAL OF ORDERS #HH#HAHN"
120 PRINT USING AS,T1
produces:

544

Figure 7-39. Image With PRINT USING Statement

Delimiters between items in the print list of the PRINT
USING statement do not have the same meaning as they do
in the PRINT statement because there is no print zoning.
The final delimiter, if present, indicates that subsequent
printing continues on the same line until the line is filled.
Whether or not-this delimiter is a comma or a semicolon,
the next item printed starts in the next available space. If
absent, subsequent printing begins on the next line.

If the number of values to be output in a PRINT USING
statement is greater than the number of format
specifications in the image, the format specifications are
reused until all the variables have been output. For this
case, the delimiter after the last item printed before
repetition directs line action. If this delimiter is a comma
(,), a new lire is started when the image is repeated. If the

delimiter is a semicolon (;), printing continues on the same -

line.

Figure 7-40 illustrates the use of the final delimiter. The
result is the same if the final delimiter is a semicolon
instead of a comma. Figure 7-41 shows how delimiters can
affect the output when the image is reused.

100 N=5

101 M=10

102 PRINT USING "##",N3M

103 PRINT USING "##">NoM
produces:

510

10

10=10 LET N=5

25=25 PRINT USING 30,N,
30=30 :S$TOTALS PAGE ### DATE
40=40 PRINT DATS

50=50 END

produces:

STOTALS PAGE 5 DATE 06/19/80

Figure 7-40. Delimiters in Image

) 7-16

Figure 7-41. Delimiters in Image Reused

With respect to the print margin (the maximum line length),
the output generated by PRINT USING is treated as one
string. That is, if all of the output formatted by PRINT
USING does not fit on the current line, it is broken at the
margin and continued on the next line.

Format Fields

There are three kinds of format fields available for use in
images: numeric, string, and neuter. Numeric fields can be
further subdivided into integer, fixed-point and
floating-point fields. Sign control and special editing
options are available for numeric fields. The numeric,
string, and neuter fields are described in table 7-5.
Table 7-6 describes the special options. Examples of these
fields types and options are shown in figures 7-42 and 7-43.

19983900 G

TABLE 7-5.

TYPES OF FIELDS

Type of Field

Image Representation

Output Format

Numeric Integer Indicated by any number of pound signs Value right-justified. Rounded to
(#). integer.
Fixed- Indicated by any number of pound signs Decimal point positioned as specified,
Point (#) with a single leading, embedded, decimal portion rounded to fit up to 14
or trailing decimal point. digits of accuracy.
Floating- Indicated by a fixed-point specifica- Decimal point shifted to fit format speci-
Point tion followed by at least two, and fication and exponent adjusted accordingly.
usually five, circumflexes (A). Value is rounded as for fixed-point.
String Indicated by the < or > followed by Value left-justified and right-truncated
any number of pound signs (#). (default) or right-justified and left-
truncated according to leading character.
If the leading character is < , the value
is left-justified in the field and right-
truncated, if necessary.
If the leading character is >, the value
is right-justified in the field and left-
truncated, if necessary.
Neuter Indicated by any number of pound signs Numeric value right-justified and trun-
(#). cated to integer. String value left-
justified and right-truncated.

TABLE 7-6. SIGN AND EDIT

OPTIONS

Option Character

Image Representation

Output Format

Blank or
no sign

Sign

()

DB/CR

No sign control specified.

Plus sign specified as first character in
the field.

Minus sign specified as first character in
the field. .

Parentheses enclosing field.

DB or CR specified as last two characters
of the field.

If a value is negative, a minus immedi-
ately precedes the leftmost significant
digit, for example, minus is treated as
high-order significant digit.

If a value is positive, sign is not
printed. Plus is printed for positive
values; minus for negative values.

Blank is printed for positive values;
minus for negative values.

Negative values enclosed in floating
parentheses. Positive values enclosed in
blanks.

Negative value followed by DB or CR. Pos-
itive value followed by two blanks.

Comma Insertion

Commas can be inserted between any charac-
ters of a numeric field that can be
replaced by digits when the field is used;
for example, between pound signs (#),
dollar signs ($), or asterisks (*).

Commas will be printed where they occur in
the numeric image, provided they are sur-
rounded by digits.

Floating $

Leading pound signs (#) in a numeric
specification replaced by dollar signs

($).

A dollar sign is printed in the rightmost
dollar sign position in the image that was
not replaced by a digit. Unused dollar
signs are replaced by blanks.

Check Protect

Leading pound signs (#) or pound signs (#)
following dollar signs in a numeric speci-
fication replaced by asterisks (*).

An asterisk is printed in every asterisk
position in the image that was not
replaced by a digit. Unused commas are
replaced by asterisks.

19983900 G

7-17

Integer Field
10 LET A=12345.67
15 PRINT USING 20,A
20 :SUMMARY TOTAL=HWHHHHHHY
30 END :
produces:

SUMMARY TOTAL= 123456

Fixed-Point Field

10 A=12345.678
20 PRINT USING "TOTAL COST HHHHH.HH" A

produces:

TOTAL COST 12345.68

Floating-Point Field

10 A=12.345E01
20 PRINT USING "H.HHHEEAAA" A

produces:

1.2345E+2

String and Neuter Fields

10 A=12345
11 PRINT USING 12,"FRACTION ="_A
12 : SHEUBBHUHRBY Huuny
produces:
FRACTION = 12345

Figure 7-42. Format Field Types

A field begins when a combination of characters is
identified. (See Format Fields in this section.) A field
ends when a literal is encountered; for example, when a
combination of characters appears that do not conform to
the order restrictions described below or contain
characters that are not allowable field characters. A field
also ends when an end-of-line is encountered (or
end-of-string). The fields of the image statement are
described in figure 7-44.

Order Restrictions

The following order restrictions govern the allowable
combinations of specification characters in fields.

® Plus and minus signs and the left parenthesis sign
indicator, if present, must be positioned before all
other characters of a field. Only one sign indicator is
permitted per format field.

e Dollar signs ($), if present, must appear following the
plus or minus sign. They cannot follow a decimal point.

e Any asterisks, if present, must follow the sign and/or
dollar signs. Asterisks cannot follow a decimal point.

e Pound signs (#) can appear anywhere after the optional
sign unless dollar signs and/or asterisks are present. If
they are present, the pound sign can only appear after
them.

e The trailing sign, right parenthesis, or DB/CR, if
required, can only appear as the last characters of an
image field.

e Commas can appear anywhere provided they are
surrounded by characters that can be replaced by
digits when the field is used. Commas cannot, for
example, appear next to a decimal point, a sign, or the
first dollar sign.

® A decimal point, if present, can appear anywhere after
a leading sign or parenthesis and before a trailing sign
indicator. There can be only one decimal point per
field.

Examples:

1. Sign Specifications

30 :+#u# -#H
produces:

+11 11 11

-12 -12 -12

2. Commas Insertion

produces:

1,000,000

10 PRINT USING 30,11,11,11
20 PRINT USING 30,-12,-12,-12

10 PRINT USING “#HHHK HHK HRH# ,##4", 1000000

Figure 7-43. Sign and Edit Option Examples (Sheet 1 of 2)

7-18

19983900 G

3. Parentheses and DB/CR sign options

500 PRINT USING 550,1000.588,14.75
520 PRINT USING 550,-14738.10,-173
550 :(HHHK HHH BHK.HH) OR HHH HAH HHK . H#HDB YOUR CHOICE

produces:
1,000.59 OR 14.75 YOUR CHOICE
(14,738.10) OR 173.00DB YOUR CHOICE
4. Floating-Dollar option
600 PRINT USING 650,10.75,138.7,111.888
610 PRINT USING 650,-1738,-28,-29

650 :$%,8$S.#H#CR 3333% (SSSHHUHR.RI)
660 PRINT USING "+$3$3%" -7

produces:
$10.75 $139 $111.89
$1,738.00CR $-28 (s 29.00)
-$7

5. Check Protect

600 LET FS="Sx&xk *kk H##"

610 PRINT USING F$, 1745.50

620 PRINT USING FS$, 25
produces:

$x%1,745.50

Srxxxkx25,.00

Figure 7-43. Sign and Edit Option Examples (Sheet 2 of 2)

1010 :TOTALS : $$$##H## #HHHSSSSHAHAMOUNT: 88, #HHE##
t t tot t o t t

@ @ @® 6 ® @

The character T is not an allowable format field character so it indicates the start of a literal.

The $$ begins a field. One $ by itself is not t;onsidered a numeric field.

Blanks are not allowable format field characters so they indicate the end of the field and beginning of a literal.
‘The # begins a new field.

The $ because of position cannot be part of the previous field, so that field ends. $$ begins a new field.
The A is not an allowable formth field character, so it indicates the start of a literal.

The $$ begins a new field.

The end-of-line terminates the last field.

® 00 06600

Figure 7-44. Fields of Image Statement identified

19983900 G 7-19

Figure 7-45 illustrates the result of inadvertently including
a field character in a literal. Figure 7-45 shows the
corrected version.

20 N=b
21 PRINT USING “A IS # ## IN THE LIST”, N

produces:

A IS b

Figure 7-45. Field Character in Literal

In figure 7-45, the first pound sign is identified as a
separate field and is replaced by the present value of N,
Since there were no further items in the print list, the
literal (a blank) following the field is printed, and scanning
stops.

In figure 7-46, the string # is printed according to the
neuter field # and the number is printed according to the
neuter field ##.

22 PRINT USING “A IS # ## IN THE LIST",
ll#'l' N

produces:
A IS # 5 IN THE LIST

Figure 7-46. Correction of Field Character Use

Special Cases

Each of the characters that comprises a field is a place
holder. That is, a blank, a symbol, or a digit replaces each
field character. The following section deals with rules of
placement, large fields, accuracy, field overflow, and signs.

There are no restrictions on the number of pound signs
allowed in a format field in an image. However, since the
machine word size allows a maximum of 14 digits of
accuracy, only 14 digits appear on output.

If the value to be printed in an integer or fixed-point
numeric format field is greater than 1015-1, an * is
printed followed by the number printed in floating-point
format. (See example 1 in figure 7-47.) If printing a value
according to a fixed-point format yields more than 14
digits, the least significant fractional digit positions are
filled with blanks so that only 14 digits print. (See
example 2 in figure 7-47.)

If more than 14 fractional digits are requested in a
floating-point format field, all digit positions beyond the
14th are replaced by blanks. The print positions of the
exponent value are not affected. (See example 3 in
figure 7-47.) Unless DELIMIT is used, this result is
readable by a BASIC program because the blank delimits
.78200000000000 from E + 001.

If a number, including its sign, is to be printed but the
number is too large for the image specification, overflow
occurs. (See example 4 in figure 7-47.) When an overflow
condition occurs, if the image field includes any of the
special edit characters, $, *, DB, CR or (), which normally
denote a monetary field, the entire printed field is filled
with asterisks to indicate that an error has occurred. (See

1. '
130 PRINT USING "“#A#S#FIVAFNELRERIRI,) .089B8BE20
pﬂmﬁun&
*+1E+20
2.
100 A=-7.82
120 PRINT USING 130,A
130 sHNHUSXNRIVEHIENIDB
produces:
7.8200000000000 DB
3. .
100 A=7.82
120 PRINT USING 130,A
130 t#HAFNRFRRFANIRFNI 2222
produces:
+78200000000000 E+001

Figure 7-47. Special Cases for Format Fields (Sheet 1 of 2)

j 720

19983900 G

100 A=-78
200 PRINT USING "## o HH¥"3A, T.R2

produces:

*-78 *7 482

500 AS="THIS IS THE TGTAL"
600 PRINT USING “<###ANFZACHFRFF",LAS
700 PRINT USING “>HAN#HKALRANERENE,AS

produces:

THIS IS THE T2TA
HIS IS THE TQTAL

400 A=-17.82

produces:

dok %k k

%00 A=12000000000.0

READY.

produces:
1.20E*10

410 PRINT USING "S.##',A

810 PRINT USING "#.##1t1'7,A

Figure 7-47. Special Cases for Format Fields (Sheet 2 of 2)

example 6 in figure 7-47.) This is a significant feature
when printing a monetary value, for example, printing a
check, because it prevents the printing of an unexpectedly
large value. When an overflow condition occurs, but the
image field does not contain any of the special edit
characters, one asterisk is printed and the image is
expanded to accommodate the size of the value to be
printed, shifting all other fields to the right.

Because of the nature of floating-point representation,
only the exponent portion of a floating-point number can
overflow. In example 7 in figure 7-47, an asterisk is
printed following the E, and the actual exponent is printed,
shifting all other fields to the right; the result is in the
format shown in the PRINT USING statement at line
number 810,

A string that is too large to be printed in the image
specification is truncated on the right or left, depending on
whether the format specifies left-justification or
right-justification. (See example 5 in figure 7-47.)

MARGIN STATEMENT

This statement defines the right-hand margin for printed
output. It overrides the default margin of 75. The formats
for the MARGIN statement are shown in figure 7-48. The

19983900 G

MARGIN statement permits the building of long lines for
output on wide-carriage terminals or other devices. It also
allows the program to control maximum record lengths
written on files. When the MARGIN statement is used
without specifying a file, it applies to standard output,
such as the terminal or the printer. Output can be
different than expected since it can be affected by IAF,
INTERCOM, or the type of terminal used. Commands are
available to change these results. See the NOS Interactive
Facility reference manual, the INTERCOM Version 5
reference manual, and the INTERCOM Version 4 reference
manual.

Figure 7-48. MARGIN Statement Formats

7-21 |

In figure 7-48, the expression nes is evaluated and
truncated to an integer. It must be in the range 0 through
131070, and its value affects all PRINT statements to the
associated file or the terminal until another MARGIN
statement is executed. If the number of characters in the
item to be printed is longer than the defined margin, it is
broken into pieces so that as many lines as required are
used.

A margin value of 0 indicates that no upper limit applies
(the margin is effectively set to infinity). This allows a
continuous stream of characters with no line terminators
to be generated. Figure 7-49 shows examples of the
MARGIN statement.

200 MARGIN #6, 136
310 MARGIN 1*J/K

Figure 7-49. MARGIN Statement Example

In the first example, the right margin is set at 136 for
output to a file with an ordinal of 6 previously specified by
a FILE statement. In the second example, the expression is
evaluated, rounded, and used as the right margin value for
PRINT statements.

Figure 7-50 shows that MARGIN controls the number of
logical characters in the line, as opposed to physical 6-bit
characters; for example, in ASCII mode 12-bit escape code
characters count as one character and a line can be 150
6-bit characters long even though the margin is 75. This is
normally only of concern when passing BASIC files to other
language programs.

SETDIGITS STATEMENT

The SETDIGITS statement can be used to specify the
number of significant digits to be output in subsequent
PRINT statements when the default formatting is used.
Numeric constants that are equal to or greater than seven

digits are formatted and printed as exponential constants.
This statement allows data printed up to 14 significant
digits to be obtained. The value assigned by SETDIGITS is
truncated to an integer in the range 1 to 14. Numbers are
printed within the defined significance until the end of the
program or another SETDIGITS statement is encountered.
Figure 7-51 illustrates the format for the SETDIGITS
statement. Note that any relevant sign or exponent is still
printed even if a SETDIGITS value of 1 is in effect. A
program example of the SETDIGITS statement is shown in
figure 7-52.

10 margin 17
20 print rpt$("a"”,26),1.75,88
30 end

produces:

aaaaaaaaaaaaaaaaa
aaaaaaaaa

1.75

88

Figure 7-50. Program Example Using MARGIN Statement

Figure 7-561. SETDIGITS Statement Format

INTERNAL DATA TABLE /O

1/O for internal data tables (blocks of data internal to a
BASIC program) uses the DATA statement to create, and
the READ statement to access, the tables.

100 LET A=55,45454545

130 FOR N=1 TQ 10
140 SETDIGITS N
1S5S0 PRINT N»A

160 NEXT N

170 END

produces:

SETDIGITS VALUE @QUTPUT
1 6E+1
55,
55.5
55.45
55,455
55.4545
55445455
55.454545
5544545455
0 55.45454545

-0 N~ D W

110 PRINT "A=55.45454545 AND IS NORMALLY QUTPUT AS';A
120 PRINT "SETDIGITS',"VALUE QUTPUT"

A=55.45454545 AND IS NORMALLY QUTPUT AS 55.4545

Figure 7-52. SETDIGITS Statement Example

7-22

19983900 G

DATA STATEMENT

The DATA statement constructs an internal data table
containing the values appearing in the DATA statement
line; this data can then be accessed by the READ
statement. Figure 7-53 shows the format for the DATA
statement. :

DATA ¢q, €y, ..., Cy

c Indicates numeric or string constant.

READ STATEMENT

The READ statement (READ without a file ordinal) is used
to read data values contained in the internal data table.
The internal data table is a table containing data values
that has been built into a program by using DATA
statements. The format for the READ statement appears
in figure 7-55.

READ V-‘, V2, s v sy Vn

v Indicates variable identifier (numeric or string).

Figure 7-53. DATA Statement Format

The data values cj1,c2,...,cn are entered in the
data table in the same order that they appear in the DATA
statement line. The number of values per DATA statement
line is restricted only by the length of the line. Any
number of DATA statements can be used anywhere in the
program to construct the data table; the BASIC compiler
considers the statements to be contiguous statements and
automatically places the data in sequential order in one
internal data block before the program executes.

Both quoted and unquoted strings are allowed in a DATA
statement line. Leading or trailing blanks in unquoted
strings are ignored. An unquoted string can begin with
plus, minus, digit, letter, or period, and can contain these
characters as well as blanks. Unquoted strings cannot
begin with a comma or a question mark. Other characters
are allowed since they might not be supported in future
versions of BASIC. All characters in quoted strings are
considered to be significant, including any leading or
trailing blanks.

DATA statements are nonexecutable and have no effect on
the results of a program if they are encountered in the
normal sequence of execution.

Figure 7-54 shows two examples of using the DATA
statement to construct internal data tables. Example 2
also illustrates the diagnostic for not enough data. Both
examples also demonstrate the READ statement.

NOTE

An alternate form of the READ statement is provided
for reading binary files created by the WRITE state-
ment. See Binary I/O Statements in this section.

100 DATA 1,2,3
110 READ A,3,C
120 PRINT A,8,C

produces:
1 2 3
100 DATA 1,2,3
110 READ A,3,C,D
120 PRINT A»B,C»D
130 END

produces:

END OF DATA AT 110
BASIC EXECUTION ERRZR

Figure 7-565. READ Statement Format

When a READ statement is executed, data values contained
in the data table are placed sequentially into the variables
V14¥2 5eees V. The read position pointer is
advanced one data item for each value read.

The variables in a READ list must correspond in type to
data items being read from a data table. For example,
numeric variables must correspond to numeric data;
otherwise, program execution terminates, displaying the
diagnostic BAD DATA IN READ. If the ON ERROR
statement is used to trap this situation, the diagnostic BAD
DATA IN READ is not returned, and a subsequent READ
statement accesses the next data item (the one following
the bad data). Note that unquoted strings that look like
numbers can be read either as strings or numbers.

If a READ statement attempts to read more data than is
available, the diagnostic END OF DATA is given, and
program execution terminates. Check for end-of-data by
using the NODATA statement (described in this section
under File Control Statements). The IF END or IF MORE
statements cannot be used to check for end-of-data in an
internal data table; these two statements apply only to
files. After issuing a READ, use RESTORE to move the
data pointer to the beginning of the data table.

In figure 7-56, the DATA statements at lines 10 and 20
establish values for the data table. The READ statement
at line 30 reads the first two data values (10 and 15). The
READ statements at lines 40 and 50 read the remaining
data values. F$(1:4) reads a substring of value "THREE",

10 DATA 10,15,17

20 DATA "ONE","TWO","THREE"," FOUR"
30 READ A,B :
40 READ C,DS$

50 READ ES,F$(1:4),GS

60 PRINT A,B

70 PRINT €,0$

80 PRINT ES$,FS$,GS$

90 END
produces:
10 15
17 ONE
TWO THREE FOUR

Figure 7-54. DATA Statement Examples

19983900 G

Figure 7-56. READ Statement Example

7-23

MATRIX OPERATIONS 8

19983900 G g-1 @

8-2 19983900 G

19983900 G 8-3 @

8-4 19983900 G

@g}ﬁ it ma

19983900 G N

® 8-6

19983900 G

19983900 G

19983900 G

® 8-8

S e " — s a—” Vit - . . atan “ S
Lo iR - o e a8 K - e L
Sl , Ao b daen b : il L =]
av o . hxm i ey mﬁ;mm i 5 L S
- - . S e . - = e
- e o L . e ; - L o
- . . - o .]

= - : - s
.

:ss

&
o

-

o o = . B e o
. - .

o
.

an

.

e

S S

-

.

=

-

i

.

e

g

S
-

e e
e b
. .

-

o ; . - . . d L . e

i
S

:

0

. SR
: .

.

. e

o e

o

L . &] - ey
5 -

L

= o

S . peann o e e . L
o b o - . L 8 - - i -
P e o o o e - o o : Ly o
£ G n L E G e . - o - .
B o Gt Lo . - < SR i bt T M
iy - R ol : : . e ruvw;k:ww@u;x P o S e
| & . . L poa o el .
- P e : e sl 4 shhs ,
m al o v .)} e S . , 3 tam oy
: § L0 . e ; : . e . =] - i 2 o : , L
& ® : e ﬁm e - ke 3 wﬁr ! G
o e R f Lo - ¢ = : o 3
S = B S - v . P : - - . -
S e o e e 2 Gl e - o . i g
S - o . L | . o o : L =
- . o - e s - . : e =
o o i o L e = st : - S e
o - : - o
S L - . : L b
. e » © - !

| : et
i Sy cenE e

B

B
E e .

pr— 2 " e
b L -
. ! . e
ol v e
e
L

. : - . Mswx%z o : - i w; M

= o e

i . " . . ; L . ® . . e oy

i
i

i

o

G

. . - o ¢ - - L
o o . - =
L G o - S
-

o

o

L

-
il

| dErerr

L e
TS oy -
S .

:

.
G
o

.

5o
e

2
=
L
:

=
i

!

.
.
.
-

1 ca?®

g

S e
S e
. - L .

5 . . e b . : v . - ; -
. 2 : . . :) - o

o

:

S oy
e S

o
o
.

e e

S
.

i
-

:

o

o
i

-

L

L

S o L P
e iR el e o

s
.

L

K9

T
.

i

g
i

s

o
o
Sl

s

i

.

e

e

: 4
e
e ! ﬁmfw e
e o=

b

s

o
- :

e , o - : Y
e : g

i
.

-

7
Gt
e

ey

7y

£

5

e

.
e
. -
B
-

e

o
.

-

T

e
-

£

L

-
ES
&

-

O e

.

.

.
e

-
.

-

L

o
i
.
.

S
T
f@w

o

S : S
e 5 - -
i o

i
i

" T
.

e

ol

i
-

&
e

Lo
L

-

e

.

:

-
.

P

S H o
E S Sl e e e ; e
ok o o . o o .
;. L o . - %me e = i S
e = i B e - i e e o

= o oo o sl . e o

;

e
. 9 o

B .
.

s e
S S

o

-

-

s

T osem R ” s 5 T e

. .
- e

g SEea SR Ll e
g e o

e e

it

e e

ol o Lo b
T B 3 S -
" e L

cade o L

B o o
. o .
. .

o

zi(
gps
.
i
o

o e
. .

: o N
- : e

')

s
.

%%
EF

o

L

o
i
i
o

]
S

= -
. S S o -y

-

i

.

-

-

i

e

r:

;

g

. v =

- .

. .

o . . = N

S e D e .

e e sh . b

. - o -
o Shmea o

- e Ben

g - =

g g s L e

o e R e

o

.
-
-

-

.

.
L

.
o

i

e

o
S o
o o

-

i
-
%‘

o
5

.

‘D

&

i

-
- s e L

4 o - e =
i H = .

. e
. = .
L L . e
¥ Lok B

.

.

-
-

.
e
|

it

.

Fiks
NN

ol o

.
o
-
-
i

e
ShoC SR B
..

i

.

e

o

L

-
o
=

m

.

.

.

e
i
i

=

o

- . . . #&ﬁ%ﬁﬁ L = . e e W

et - S o Ol e & e : S Lo - Sanabeaaiie Sl

E e o - B Ak . o - Tt Q.
E ol o : fm = mﬁm - . e
. . - - o e e e o , e &

- = - - . mmm - _ = - - - o T

i S o . o L e vl e PR e e - -

s

=

S
s

7

= i =

o

| =

3 foos CEER S SRR it i o i R i =

| P o L o o il s e o

L - . - . L .

i g cofnae o g e sl s :

E B . i it . G G e G
-
e o . e s S . .y]
s i - i § * " " o " S el

8-9 @

19983900 G

19983900 G

® 8-10

19983900 G 8-11 @

8-12

19983900 G

P . SRSy
mm@ﬁmﬁﬁ o it s i

.

R T
= -
.. .
- -

. . .
P el e
e o o o
e e L .
. - w

e e
e e
e

A

-

-

)
e

L

o

7

o

T

i

o
= Sl Pl

o
i 5
i

i

-

o
A,i%www%%m@mwﬁ%
S
o
o o
- . sm%u%mwwmwm e
o . .
.. -
...

o

.

-

i

e
&
.

o
B
G

.

o
o

-

.
.

i
e
e

e
"
o

o
e e 5 S : o
e s

e
i

Caaan

.
.

o
"

e - .

.. -
- ...
. ;.

G
S

o
-

o

o

o

e o
pano e :

e e e u - o -
o . . e e . . o .
o . . L e . - : o o
e . Sy s e L S
i i im0 - i = : e s ; i i

S e
- i

0. -
-

i

e
. et
e LE

o

o

-

i

.

. e
o o et

i

i

L

i
i

o
e

i

o
.
.

i

o
e

i .
. : e
o e o

o . .

o

-

. -

e e
L e .
i

e
Gelmiiaa

oo
.
S S
.

-
i

.

i
G
ot
e

o e e L
G = e . . . fou
i o : o Sane R e e h
e : e . . 9 &
. e
o

o

-

Lo
o

i

i

e

L

.
-
o

-

e

.

T s L
o T ey

g a
= o

-

i
o

o

o
-

i

.

.
-

o
s

i
o

i

o

:
.

AE o - e =
o G o = : n
. - : : . o n:zaxﬂm

e i

G

i

o
G

E

o
L

e

:

.

ExE

: e
e
.

e

o e ; . g
. n@%&%ﬁ% - e . - W
.

e . o
= .
L . G .

3

St

o

i
=
=

o . o o

Lo o -

L

e
o

i

o

o

i
.

.

.

i

=

i

.

-

e =
e

&
2

5y - e e e
L o . o - .
i , - s G i S i o
. o P S - e e Shi e : ! . L
s .

e e i e . e - s . - e

. : - . . e o . .
. . o ... o .. - . : o ; . o
- e o - ... : o o . : = : - .
B o e o s e o w Tohi

- . o ... = = e e o
.
. L

i

L -

et
e

e

e

e ; - o

e o ; . et

Cna i { S . e~

Dasii G : o g

- o
.

L
o

.?Z,
i

o
.
.

.

-
G
i
-

.
.
.
-
.

L

e
i

-

S

o

o

¢

e

.

- L
At
Ll

Z

!

o
-

o

L
pin

i

.
e
o

¢

o

.

P

o

i
=
o

s e .

L
-

.

e

i
o

e
. ‘ o
e -

o x x 5
- e .
. : . s =
= - ey e
. - g S
. e | o o
i v Sedie S . : S T R &
. ‘ - : , . . : - L .
i = = uwm.m,m% v o L o e 2 . s e : =
il . - i i i i . . o o
= ...
B - %mw.,%%w,Mmwmmﬁ%mmﬁ«é&m
. . L
i L mmmwﬁwﬁwm,w,%%w%n? Sy .
o . o G o
- e Lo
o . . o
a0 .. o
L o - ...
. .

i

o

i
-
o

e

i

i

i

i

=

&

-

=

i

-

o

o

..
. ...
.

.

. .

i
D
e

s
i
-

-

i

. b

.
i
o
.

= T e
: ...
.

v =

o
o . Lo
sela e

.
-
:

-

i

L

e

e

o
s

i
i
e

-

C

- P . .

e . .
o . o

-
.

o
e
i

i

-

i

o
o

i
o

-
o

i
-

.

.

e
a

o

e
e
.

e

-

.

S

i
-
:

by R s e - - 5 e
i e . e . e -~
iR e s . : i i = S
. e - - e . o
o i e 2 o Rl o
e y o
i

ei

i

:

&
-
-

il

e
o

.

.

o
L
o

L

-
7

o
i

o

-
=

e

.
:

.
-
~

.
SR

. -
L ..
.
.
.
.
%wﬁww&wﬁﬁmm

o

5
-
o

o
o

.
o

e . K

- . o

o
-
-

-

G
.
.
.
o
-
i
o
o

.
SH

o

oo : i
£ o : o

o o -

o . o .
;x%w% . -
. ! . .
. o
-

i mw«m X

e

o
-

i
-

o

.

-
o

o
i

o

o

-
.
e

i
i
e

.
.
. e e
e e . %hmwwmwﬁén%ifswﬁw%um o émmmmw%mﬁ 4 o
e . .

o - . -
S i waﬁmaw&éﬁ:y . e

e s
.
. .

-

v
F

o
-
o

i

-

i
2

=

o G
e =
e . .

. =s

-
:
.

S
-
-
o
o
x

.

i
=

.

m

.
o
.
.

o

. 5

" w0
o —
e - o

o
i
e

L

3

o

e

L : B s o
< : v e -
2 o ; . = w1

i - siE i
el

e

o

i
i

-
:

i

-
o
i

L e i - s
. .

e

.
.

S e o 4 e el 5 = “ S £ > .- i e &
A O e . - . vwgsz - - e - : . o B o™
- o i - o o L L ot
P , . W% . e e e -
P L o y .. e ... = L e i . e P
o = o G Ny e ... 4 - > | . = -
3 : o o o o i e v o : .
] . e e o 4 O > e
o>

i
-

g

.

.
o
1

-
.

-

o

o
e
.

e

i

i
o

s

‘:‘%

T

.

.
.
.
.
i
.
.

.

1

I
.

i
z

=
f?—‘;5
-
S

.
L
e

-
.
-
-
o
-
o
e
o
-
.
o

-

e

i

o
-

o
o

S IA D

owtsn e

-
.

s
.
.

.

o

i
i
i

:
rwsmn

i

o
.
P

i
g
2
s
o2
e
i
o

.

.v :?5,5;>iizw

:W,xafw,;«%@Q,&, .. f&;a ﬁ,,“”,é,

%.@wﬁaﬁ,éa%%m55 3 On v o . v;m

e T L T - !

- . .. e . o

- i e . . - L -
. - .

i

-

.
o

4

s
e

s

-
£

-
-

o

o

Gin o
i
e

o
o

o

o
.

"

.

-
=

S

L

fale

-

S
e i

e . e
S . G o i

=

S
i
.

e

#

g

=

o
P

e Caiiain g < o :

o
.

o
3R

o - o o i . o e -
o b e i = = 5 Brina e o o
R - o o e . e o L
o faan Son e e - G
Eon . S e ot . o i o S o : . : ; e
e . .. - . o - . L e e S - > e
[- . e o b . S o ? . ! L

S e . e ——— e o -

8-13

19983900 G

DEBUGGING 9

e

Often newly written programs do not operate correctly on
the first attempt to execute them. They either stop with a
run-time diagnostic (such as SUBSCRIPT ERROR AT 230)
or the programs run to completion, but produce incorrect
results. The process of isolating and removing errors or
bugs in a program is referred to as debugging.

BASIC itself provides some tools to help debug a program
(PRINT statements and tracing). In addition, a companion
product, CYBER Interactive Debug (CID), provides a
powerful interactive debug facility, The choice of
particular tools to use is determined by personal
preference, mode of operation (batch or interactive), and
availability. CID is the most powerful and easy-to-use
tool; however, it is not always available in the system.

BASIC DEBUG FEATURES

Three debugging aids or techniques that are available in
BASIC are: inserting PRINT statements, conditional
tracing of program flow, and unconditional tracing.

INSERTING PRINT STATEMENTS

A common debugging technique is to temporarily insert
PRINT statements in a program. Output from these PRINT
statements can indicate program control flow (what order
statements are executed) and values of selected program
variables at specific points in the program. However,
these PRINT statements must be removed once the
program is debugged and making any changes to the
program (even relatively minor changes, such as removing
temporary PRINT statements) provides the opportunity for
introducing new errors. Refer to section 7 for the format
and examples of the PRINT statement.

CONDITIONAL TRACE STATEMENT

BASIC provides a special REM statement to control tracing
of program flow. This_state t i

‘op selected, this statement starts and stops the
program trace mechanism. This trace mechanism prints a
sequential list of the BASIC statements executed in the
order the statements were executed. This information can
be used to determine the actual flow of control through the
program. The formats of this conditional trace statement
are shown in figure 9-1.

Figure 9-1. REM TRACE Statement Format

The first format is REM TRACE,ALL. This format causes
dynamic tracing (all executable statements are traced

19983900 G

regardless of where they occur in the source code). The
second format is REM TRACE, PART. This format causes
static tracing (only those statements within the specified
range of line numbers are traced). The third format is
REM TRACE,NONE. This format suppresses tracing; it is
the default setting for the REM TRACE statement.

The following two points further explain the use of these
statements:

e REM TRACE,ALL causes the message * AT nnn to be
output for every statement executed until a REM
TRACE,NONE statement is executed (nnn is the line
number).

e REM TRACE,PART causes the message * AT nnn to
be output only for those statements lying physically
between the REM TRACE,PART statement and the
next sequential REM TRACE,NONE statement.
Execution of statements outside this physical range
(for example, those executed with GOTO, GOSUB and
function references) are not traced. The GOTO,
GOSUB, and function reference statements do not
cause tracing to be turned off; tracing resumes when
control returns to statements within the physical
range. i

Although the REM TRACE statement does not provide
information about program variable values (an advantage
to using the PRINT statement), the REM TRACE
statement has the advantage of not needing to be removed
from the program once the tracing is complete.

Figure 9-2 shows an example of REM TRACE, ALL.
Execution of the statements in this example produces a
sequence list of all the executable statements in the order
they were executed. Figure 9-3 shows an example using all
three REM TRACE statements. ’

150 REM TRACE,ALL
160 FOR X=1 TO 10
170 LET X=X+1

180 NEXT X

produces:

AT 160
AT 170
AT 180
AT 160

* % F H e 0

Figure 9-2. REM TRACE,ALL Example

9-1@

00200 REM TRACEsPART
00210 I=1

00220 PRINT TAB(5)31
00230 REM TRACE» NONE
00240 REM TRACE»sALL
00250 T=J+S '

00260 GOSUB 320
00270 REM LISTsALL
00280 I=4

00290 REM TRACE»NONE
00300 STOP

00310 J=I

00320 PRINT TAB(S5)#J= #£3J
20330 RETURN

00340 END
produces:

* AT 210
* AT 220
1
* AT 250
* AT 260
* AT 320

Js 0
* AT 330
* AT 280
* AT 300

Figure 9-3. REM TRACE Statement Example

UNCONDITIONAL TRACE PARAMETER

In addition to the conditional trace statements that can be
included within the program, BASIC provides a parameter
on the BASIC control statement that can be used to force
program flow tracing to be printed no matter what
statements are included in the program.

If the TR (trace) option of the DB parameter is selected on
the BASIC control statement when the program is
compiled, the message * AT non is output for each
executable line encountered during program execution.
The nnn represents the line number of the executed
statement.

This debug feature does not require program modifications,

not even insertion of REM TRACE statements. However,
only a full trace of the entire program can be obtained.

CYBER INTERACTIVE DEBUG

The CYBER Interactive Debug (CID) facility is a
companion to BASIC debug features. CID permits external
monitoring and controlling of the execution of the program
from an interactive terminal without making any changes
to the program. The CID commands and features are only
available if CID is installed in the system. Fundamental
features of CID are listed below. For further information,
refer to the CYBER Interactive Debug reference manual.

The CID facility allows the following to be done:

® Suspend program execution when control reaches a
predefined point (called a breakpoint).

e Suspend program execution when a particular event

oceurs, such as a store into a specific variable, or a
program termination (called a trap).

9-2

e Display and/or change the values of program variables
while program execution is suspended.

e Restart program execution at the point of interruption
or at some other point in the program.

REFERENCING BASIC LINE NUMBERS
AND VARIABLES

VARIABLES

Program variables are referenced in CID commands in the
same format as they are in BASIC statements. Simple and
subscripted variables, full arrays, and substring addressing
can be referenced. V ariables referenced in CID commands
must exist in the program; and execution must be
suspended inside a function before formal parameters are
known to CID.

Examples:

A
Al$
X$(2:4)
x@)

LINE NUMBERS
Line numbers for CID commahds are referenced with a

special format not similar to BASIC. This format is shown
in figure 9-4.

L.in

In Indicates line number.

Figure 9-4. Line Number Referencing Format

Example:
L.310

An exception to this format is the GOTO commands, which
is referenced in the same format as it is in BASIC
statements. (See figure 9-5.)

GOTO In

In Indicates line number.

Figure 9-5. GOTO Statement for CID Format

Example:

GOTO 310

RESUMING PROGRAM EXECUTION

The two CID commands, GO and GOTO, can be used to
resume the execution of a program. These two commands
are explained in the following paragraphs.

19983900 G

GO COMMAND

The GO command resumes program execution from the
point at which the program suspended execution. The
format for this command is:

GO

When the GO command is entered, the program resumes
execution from the last point of suspension and executes
until it reaches a breakpoint or trap. The GO command
cannot be used after an END trap because execution is
complete and cannot continue any farther.

GOTO COMMAND

The GOTO command resumes execution of the program at
a specified line number. This command is in the same
format as the BASIC statement GOTO. (See figure 9-6.)

GOTO In

In Indicates line number,

Figure 9-6. GOTO Command for CID Format
Example:
GOTO 50

The GOTO command causes program execution to continue
at the specified statement line number 50. Execution
proceeds until the program reaches a breakpoint or trap.

SETTING AND CLEARING
BREAKPOINTS AND TRAPS

The following commands allow specific breakpoints and
traps to be set or cleared in the BASIC program. A
breakpoint is a point within a program at which CID takes
control. When program execution reaches a breakpoint,
execution is suspended, a message is issued, and CID
requests input of commands by displaying a question mark.
Any number of commands can be entered once CID gains
control. A breakpoint is set by wusing the SET
BREAKPOINT command and cleared by using the CLEAR
BREAKPOINT command.

Traps are set to cause program suspension on the
occurrence of a particular event. Traps are set by using
the SET TRAP command and are cleared by using the
CLEAR TRAP command.

SET BREAKPOINT COMMAND

The SET BREAKPOINT command sets a breakpoint at a
specific program line number. The format for this
command is shown in figure 9-7.

Examples:

SET BREAKPOINT, L.120
SB, L.150

A breakpoint remains set until it is explicitly cleared.
Figure 9-8 shows the format of the breakpoint message
displayed when the program reaches a breakpoint during
execution.

19983900 G

SET BREAKPOINT,L.In
or

SB,L.In

In Indicates line number.

Figure 9-7. SET BREAKPOINT Command Format

*B #n,AT L.n

n Indicates identifying ordinal for the
breakpoint.

In Indicates line number or point in the

program where the breakpoint is set.

Figure 9-8. Breakpoint Message Format
Example:

*B #1, AT L.110

CLEAR BREAKPOINT COMMAND

The CLEAR BREAKPOINT command clears a breakpoint
that exists at a specific line number. Figure 9-9 illustrates
the format for this command.

CLEAR BREAKPOINT,L.In
or

CB,L.n

In Indicates line number or point at which
the breakpoint is set.

Figure 9-9. CLEAR BREAKPOINT Command Format

Examples:

CLEAR BREAKPOINT, L.120
CB, ..150
CB,*

The last example clears all of the breakpoints. Breakpoints
can also be cleared by referring to the identification
number, such as CB, #1. Refer to the CYBER Interactive
Debug reference manual for more details. .

SET TRAP COMMAND

When a trap event occurs, program execution is suspended,
a message is issued, and CID requests commands. Any
number of commands can be entered once CID is in
control. The SET TRAP command is used to set a trap of a
specified type for a specified range of applicability.
Figure 9-10 illustrates the format for the SET TRAP
command. - Examples of this command are shown in
figure 9-11.

9-3 |

SET TRAP type,scope
or

ST, type,scope

type Indicates keyword describing the condi-
tion that causes the trap.

scope Indicates range of applicability.

Figure 9-10. SET TRAP Command Format

SET TRAP,STORE,A(4,7) Trap occurs after any
STORE in variable
Al4,7).
ST,LINE,L.100...L.200 Trap occurs before any
line in the range of 100
to 200 is executed.

Figure 9-11. SET TRAP. Command Examples

There are many forms of the keyword type used in the trap
commands. Refer to the CYBER Interactive Debug
reference manual for a complete list. Two important types
are STORE and LINE.

STORE traps can catch stores into any variable or range of
variables; however, BASIC string pointers are sometimes
manipulated without affecting the string to which they
point, so extraneous STORE traps can occur for string
variables. The source statement should be inspected to
verify that the named string variable is actually being
referenced.

LINE traps cause a trap prior to execution of each
statement in the specified range. For instance, in the
second example of figure 9-11, a trap occurs at any
statement from line 100 to line 200 so this type of trap
enables program flow to be traced in a specific area.
Figure 9-12 shows the format for the trap message.

*T #n,type AT In

n Indicates identification ordinal for this
trap.
type Describes briefly the condition that

caused the trap.

In Indicates line in the program where
execution was suspended. If IN,
rather than AT, is specified, then
execution is suspended inside, not
before the indicated line.

Figure 9-12. Trap Message Format

CLEAR TRAP COMMAND

The CLEAR TRAP command clears specific traps. The
format for this command is shown in figure 9-13.

i 94

CLEAR TRAP, type,scope
or
CT,type,scope

Type and scope must be the same as
those used when setting the trap.

type,scope

Figure 9-13. CLEAR TRAP Command Format

Examples:

CLEAR TRAP, LINE L.100...L.200
CT, STORE A(4,7)

Traps can also be cleared by referring to the identification
number, such as CT, #1 or by clearing all traps at once,
CT,*. Refer to the CYBER Interactive Debug reference
manual for more details.

DEFAULT TRAPS

Three traps are on by default and cannot be cleared: END,
ABORT, and INTERRUPT. The END trap occurs whenever
the BASIC- program reaches normal completion, which
occurs when a STOP, END, or CHAIN statement is
executed. Program execution can be resumed at a specific
line with the GOTO In command; the GO command cannot
be used because the program has completed and cannot
continue from these traps.

The END trap for the CHAIN statement causes execution
to end at the point just before the next chained-to program
is executed. Compilation and execution of the chained-to
program is not automatic; enter the QUIT command in
order to terminate the present CID session, then enter any
necessary control statements in order to compile and
execute the chained-to program.

The ABORT trap occurs whenever the BASIC program
terminates because of an error. If the program executes
an ON ERROR statement before the trap occurs, a GO
command causes execution to resume at the ON ERROR
line. If the program does not execute an ON ERROR,
execution cannot be resumed with a GO command;
however, it can be resumed with the GOTO In command.
Note that the ABORT trap does not occur for interactive
input errors and the normal BASIC recovery options still
apply.

The INTERRUPT trap occurs whenever the BASIC program
is interrupted from the terminal. If ON ATTENTION is in
effect, that is, if the program executes an ON ATTENTION
statement before the interrupt is trapped, GO causes the
program to begin executing at the ON ATTENTION line. If
ON ATTENTION is not in effect, GO causes execution to
resume at the point where it was interrupted. The
command GOTO In can be used to cause execution to
restart at a particular line.

DISPLAYING PROGRAM VALUES

Three of the commands that allow program values in the
BASIC program to be displayed are PRINT, MAT PRINT,
and LIST VALUES. The first two commands are similar to
BASIC statements. :

19983900 G

PRINT COMMAND FOR CID

The PRINT command is similar to the BASIC PRINT
statement. It prints values of program variables or
computed expressions. Figure 9-14 illustrates the format
for the PRINT command.

PRINT 1/0 list

1/0 list List of any number of restricted
arithmetic or string expressions;
separated by commas or
semicolons.

Figure 9-14. PRINT Command for CID Format

Examples:

PRINT "THE VALUE OF B=";B
PRINT A,A*A,A+135,7,8(17,J)
Print C$(1)(2:3)

V ariables used in the I/O list must exist in the program.
Multiple semicolons must be used to separate the PRINT
command from the next command on the same line (also
true for the MAT PRINT command). Expressions cannot
contain references to functions or to the exponentiation
operator. CID does not allow partial print lines. The
trailing comma or semicolon is ignored in CID. Images,
PRINT USING statements, and file ordinals cannot be used
in CID.

MAT PRINT COMMAND FOR CID

The MAT PRINT command is similar to the BASIC MAT
PRINT statement. It prints complete 1- or 2-dimensional
arrays. The format for this command is illustrated in
figure 9-15.

MAT PRINT array list

List of one or more of 1- or 2-
dimensional arrays; separated by
commas or semicolons.

array list

LIST VALUES COMMAND

The LIST VALUES command lists values of all variables
within the program. The format for this command is shown
in figure 9-16.

LIST VALUES
or

Lv

Figure 9-15. MAT PRINT Command for CID Format

Examples:

MAT PRINT A,B
MAT PRINT X1$

Arrays listed in the array list must exist in the BASIC
program. Elements of the array are printed in row order
with spacing between items controlled by the comma or
semicolons (as with the PRINT command). A blank line is
output after each row and an extra blank line is output
between matrices. The MAT PRINT command is separated
from the next command on the same line by using two
semicolons (as with the PRINT command).

19983900 G

Figure 9-16. LIST VALUES Command

The names and values of all variables, including arrays, are
listed in alphabetical order. Formal arguments of
user-defined functions are listed only if program execution
was suspended inside and while executing the function DEF.

CHANGING AND TESTING
PROGRAM VALUES

Two commands that can be used to change and test
program values are the LET command and the IF
command. These commands are similar to the BASIC
statements.

LET COMMAND FOR CID

The LET command is similar to the BASIC LET statement.
It assigns values to program variables. The command can
be used with simple and subscripted variables and
substrings. Figure 9-17 illustrates the format of the LET
command for CID.

LET nv=ne

nv Indicates numeric variable.

ne Indicates restricted arithmetic expression.
or

LET sv=se

sV Indicates string variable.

se Indicates restricted string expression.

Figure 9-17. LET Command for CiD Format

Examples:

LET A=A+45
LET B$(3,2)=A$ + "ABC"
LET D$(3:6)="DEFG"
LET F$(1X4:6)=""

The variables referenced must exist in the BASIC program
being debugged. Multiple assignments, references to
functions, and use of the exponentiation operator are not
allowed; all other arithmetic operators {(+, -, *, and /) and
the string concatenation operator can be used in the
expressions.

9-5 |

IF COMMAND FOR CID

The IF command is similar to the BASIC IF statement. It
controls the selection of CID commands based on a
comparison of program variables or computed values.
Refer to the CYBER Interactive Debug reference manual
for further uses of the IF command in debug mode.
Figure 9-18 shows the format for the IF command for CID.

IF re THEN db

re Indicates any BASIC relational expres-
sion; variables must exist in BASIC
program being debugged.

db Indicates any CID or BASIC debugging
command.

Figure 9-18. IF Command for CID Format

The following is an example of the IF command:

IF A<=8B THEN PRINT A

j 96

OTHER COMMANDS AND FEATURES

There are many other CID features and commands. The
following is a list of some features and commands not
explained in this section:

e Sets of CID commands can be predefined to
automatically occur when a breakpoint or trap
occurs.

e Set breakpoints can be predefined to occur every
nth time through a loop.

e Save on a file or read from a file can be
predefined to occur at any breakpoint or trap
definition.

e Suspend debug sessions can be predefined so that
an operating system command can be issued.

e Other commands include HELP, LIST
BREAKPOINTS, and LIST TRAPS.

CID can be used in ASCII mode only under NOS. CID can
be used in normal mode under NOS and NOS/BE. Refer to
the CYBER Interactive Debug reference manual for
further information regarding CID commands and features.

19983900 G

TERMINAL OPERATION UNDER NOS 10

NOS is the Network Operating System for CDC's
CYBER 170, CYBER 70, and 6000 Series computer
systems. NOS provides BASIC users with both a batch and
an interactive processing environment. BASIC can be
accessed from a remote time-sharing terminal, such as a
Teletype Maodel 33 or Model 35 teletypewriter (TTY), or a
CDC Model 713 CRT terminal.

When accessing NOS from a remote terminal, BASIC
programs can be entered and executed by using either the
BASIC subsystem or BATCH subsystem when under the
NOS Interactive Facility (IAF). Also, data files created
under NOS can be built at the terminal through use of
TEXT mode, Text Editor, or XEDIT.

This section illustrates the use of the BASIC and BATCH
subsystems, a method of creating data files at a terminal,
and some tips on using the line editor when writing
programs at a TTY or CRT terminal.

For a detailed description of 713 CRT and Model 33 or
Model 35 TTY terminal wusage, see the Networks
Interactive Facility reference manual or the NOS
Time-Sharing reference manual. For a detailed description
of Text Editor or XEDIT usage, see the Text Editor
reference manual or the XEDIT reference manual.

ENTERING A PROGRAM

The process for interactively entering a program into a file
is shown in the examples that follow. To correct an
existing syntax, semantic, or logic error, enter the line
number that contains the error, type in the corrected line,
and press the carriage return key. To delete a line, enter
the line number and press the carriage return key. To
correct an error while typing a line, backspace n
characters by pressing the backspace key or by holding
down the control key and pressing H once for each
incorrect character; then type the correct information.
For additional control key information, refer to the NOS
Network Products Interactive Facility reference manual,
the NOS Time-Sharing User's reference manual, and the
operator's guide for a specific terminal.

BASIC SUBSYSTEM

When in the BASIC subsystem under IAF (or TELEX), a
BASIC program can be written at a TTY or CRT terminal,
and the program can be edited or executed interactively.
The program in figure 10-1 was created and run at a
terminal under IAF and the BASIC subsystem. Responses
entered are in lowercase; the carriage return key is pressed
after typing in each response.

19983900 G

For a detailed description of the NOS commands used in
figure 10-1 and other available commands, see the
Networks Interactive Facility reference manual or the NOS
Time-Sharing User's reference manual. In figure 10-1, the
program is saved as a file named EX4. The program in this
file is now stored as an indirect-access permanent file that
can later be accessed by use of the OLD command. (See
figure 10-2. Responses entered are underlined.)

Use the REPLACE command to store the changed program;
this replaces the old program with the corrected program.
For example, the following command stores an updated
program in file EX4:

REPLACE,EX4

The updated file EX4 is lost if the session is logged off
before storing the corrected version.

BATCH SUBSYSTEM

The batch subsystem provides batch control statement
capability from the terminal. It enables control
statements to be typed at the terminal; otherwise, control
statements must be entered through a card reader at the
central site or must be entered from a remote batch
terminal that calls the statements from a procedure file or
includes the statements in a submitted job.

BASIC can be run interactively in the batch subsystem.
The BASIC control statement in the form X, BASIC is
issued to call the BASIC compiler. All options of the
BASIC control statement described in the section on Batch
Operations are available when BASIC is run interactively in
the batch subsystem.

The program contained in file SUM (figure 10-3) was
written during a previous terminal session, while in the
BASIC subsystem, and saved with the SAVE command.
The BATCH command requests the batch subsystem, and
the X, BASIC (I=SUM) command requests the execution of
the program found in file SUM.

Each data file was saved under its respective name and
later converted to local files, accessible by program TEXT,
through use of the GET statement. To terminate TEXT
Mode, press the interrupt key: the INT, INTRPT, BREAK,
or ETX character (CONTROL-C) key. (These are the
TEXT Mode terminators for time-sharing on an ASCII code
terminal.) For additional control key information, refer to
the Network Products Interactive Facility reference
manual, NOS Time-Sharing User's reference manual, and
the operator's guide for a specific terminal.

10-1

80/05/28. 17.12.07. TM1021 Login to the IAF (NOS) System. See section 1.
(22) SVL SN112 NOS. NOS1-1D176/R6B.

FAMILY: ,abs0455,pubs,iaf

TERMINAL: 35, NAMIAF

RECOVER/ CHARGE: charge,5912,693a412

$CHARGE,5912,693A412.

/basic . - —_— ' Request BASIC subystem.
OLD, NEW, OR LIB FILE: new,ex4 -= Enter program in a NEW file (ex4).
READY.

10 print "type a number"

20 input x

25 Llet f=1

30 for i=1 to x

40 Llet f=f*i

50 print "factorial ";x"is ";f

60 goto 10

70 end

tnh List file without header.

10 PRINT "TYPE A NUMBER"

20 INPUT X

25 LET F=1

30 FOR I=1 TO X

40 LET F=F*]

50 PRINT "FACTORIAL ";X"IS ";F
60 GO0TO 10

70 END

READY.
run Compile and Execute.

80/05/28. 17.18.25.
PROGRAM EX4

FOR WITHOUT NEXT AT 30 : Diagnostic issued.
BASIC COMPILATION ERRORS

RUN COMPLETE.

45 next i - Add statements to correct program.
24 if x=0 then 70
run Compile and execute again.

80/05/28. 17.19.34.
PROGRAM EX4

TYPE A NUMBER

? 3

FACTORIAL 3 IS 6 - Input 3 as value for x.

TYPE A NUMBER

?2 0= Enter 0 and program terminates at line 80.
RUN COMPLETE. .

List List file with header.

80/05/28. 17.19.51.
PROGRAM EX4

10 PRINT "TYPE A NUMBER"

20 INPUT X

24 IF X=0 THEN 70

25 LET F=1

30 FOR I=1 TO X

40 LET F=Fx]

45 NEXT I

50 PRINT "FACTORIAL ";X"IS ";F
60 60TO 10

70 END

READY.
save,ex4 Save program with file name ex4.

READY.

Figure 10-1. BASIC Subsystem Under NOS

1 10-2 19983900 G

75
PRO

10
20
25
30
40
50
55
60
70
80
REA

RNH

2 6

FACT@RIAL 6 IS 720
TYPE A NUMBER

OLDs,EX4

READY.
LIST

/05/7/13. 08.24.34.
GRAM EX4 ’

PRINT TYPE A NUMBER"
INPUT X

IF X=0 THEN 80

LET F=1

FOR I=1 1@ X

LET F=Fx]

NEXT I

PRINT "FACTORIAL "3X3"1IS *"3F .
GeTe 10

END

Dy.

At this time, you can add, delete, or change program statements.

TYPE A NUMBER

10
SRU 0107 UNTS.

RUN COMPLETE.

BYE

GRD2320 LG OFF 08+25.39.
GRD2320 SRU 1.000 UNTS.

Compiles and executes with no
header.

Inputs 6 as value for x.

Logs off.

19983900 G

Figure 10-2. OLD Command Under NOS

10-3 1

For a complete description of the TEXT command, see the
batch NOS Time-Sharing User's reference manual. For a
$RFL,O. complete description of Text Editor or XEDIT commands,
/get,sum see the Text Editor reference manual or the XEDIT
/list, f=sum reference manual. For additional file handling
05 REM SUMMATION OF FIRST N INTEGERS information, see appendix D.
07 REM VALUE OF N SUPPLIED AT EXECUTION
10 INPUT N
20 PRINT TAB(2);"INTEGERS","SUM" USING DATA FILES
30 LET s=0
40 FOR I=1 TO N Figure 10-4 illustrates the creation of a data file used by a
50 LET S=S+I BASIC program. To create a data file under NOS, specify
70 PRINT TAB(5);I,S the name of the new file and enter the TEXT command.
80 NEXT I The TEXT command permits the file to be created without
90 END sequence numbers. 1f, after the file is created,
EQOI ENCOUNTERED. corrections, additions, or deletions are required, enter
/rewind, sum EDIT or XEDIT and use Text Editor or XEDIT commands.
SREWIND ,SUM. In figure 10-4, the program reads a data base file and
/x,basic(i=sum) update file, calculates a new charge account balance, and
? 10 prints an updated statement. Both data files were created
INTEGERS SuM by entering the TEXT command and by inserting the data
1 1 line by line. Each line ends by pressing the carriage return
g z key after the system message ENTER TEXT MODE.
4 10
Z ;? RENUMBERING BASIC LINES
7 28 In the BASIC subsystem, the RESEQ command resequences
8 36 BASIC programs and automatically updates all line
9 45 references. The format of the RESEQ command is shown
10 55 in figure 10-5, and an example of this command is
illustrated in figure 10-6.
Figure 10-3. Program Run Interactively Under Batch For additional information, see the NOS Time-Sharing
Subsystem User's reference manual and the Network Products

Interactive Facility reference manual.

new,client Program is new file CLIENT.

READY.
text
ENTER TEXT MODE.

Creates the file CLIENT.

S.APPLE, 3434 cherry st,CHARGE NO 2211,222.22

| J .BROWN,1422 EAST ST,CHARGE NO1111,500.00
r.redi,?7896 algo ave,charge no 1660,133.98

I EXIT TEXT MODE. = Control break key pressed to exit from TEXT mode.

READY.
save

READY.
new, update

READY.
text
ENTER TEXT MODE.

oooooo0010 Creates the file UPDATE. With the charge account
000000020 balances to be added to CLIENT file balances.
000000030

Figure 10-4. Using Data Files Under NOS (Sheet 1 of 2)

10-4 19983900 G

EXIT TEXT MODE. Control break key pressed to exit from TEXT mode.

READY.
save

READY.
new,test

auto

00100 file #2="UPDATE" Creates a program to read CLIENT and UPDATE
00110 file #1="CLIENT" files, AUTO command (lAF) is used to initiate
00120 restore #1 automatic line numbering.

00130 restore #2

00140 for i=1 to 3

00150 input #1,A%$,b%,c$,d

00160 input #2,s

00170 x=d+s

00180 print tab(2);a$;tab(12);b%;tab(32);c$;tab(52);"balance=%";x

00190 next i .

READY.
get,client Places file CLIENT in working file area.

READY.
get update

READY. .

rnh Compiles and Executes.
J .BROWN 1422 EAST ST CHARGE NO1111 balance=$ 510
S.APPLE 3434 cherry st CHARGE NO 2211 balance=$ 242.22
r.redi 7896 algo ave charge no 1660 balance=%$ 163.98

Figure 10-4. Using Data Files Under NOS (Sheet 2 of 2)

RESEQ,nn,ii

nn Indicates new line number of the first statement in the file; maximum size is
: five digits; if omitted, the default is 00100.

i Indicates increment to be added to nn; default value is 10.

Figure 10-5. RESEQ Command Format

19983900 G 10-5 @

BASIC

READY.
OLD, RESEQ1

READY.
LNH

10 PRI

NT ®"TYPE A POSITIVE NUMBER®

20 INPUT A

22 IF

A<0 THEN 46

27 PRI

NT USING 37.A

37 :YOU DID 1T, +#4# IS A POSITIVE NUMBER

40 STOP

46 PR1

NT A3* 1S NEGATIVE, TRY AGAIN"

77 GOTO 10
80 END
READY.

RESEQ

READY.
LNH
00100

PRINT “TYPE A POSITIVE NUMBER®

001190

INPUT A

00120

IF A<0 THEN 00160

00130

PRINT USING 00140,A

00140

$YOU DID 1T, +### 1S A POSITIVE NUMBER

001590
80160

STOP
PRINT A3" 1S NEGATIVE, TRY AGAIN®

00170

GOTO 00100

60180

END

READY.

B 10-6

Figure 10-6. RESEQ Command Example

19983900 G

TERMINAL OPERATION UNDER NOS/BE 11

The Network Operating System/Batch Environment
(NOS/BE) permits multiple-user access to CDC's CYBER
170, CYBER 70, and 6000 Series computers. From a
remote terminal, the INTERCOM commands and directives
can be used to enter and execute BASIC programs
interactively, to create and submit BASIC programs for
bateh execution, and to create data files to be accessed by
BASIC programs. The remote terminal can be any
teletypewriter (TTY) or CRT supported by NOS/BE.

This section describes and illustrates the creation of BASIC
programs for interactive processing; a method of creating
data files to be accessed by a BASIC program; and the
utility for resequencing BASIC programs. For a complete
description of Text Editor commands, and remote
terminals supported by NOS/BE, see the INTERCOM
Version 4 reference manual or the INTERCOM Version 5
reference manual. Creation and submission of BASIC
programs for batch processing is described in the section
on Batch Operations.

ENTERING A PROGRAM

When creating a BASIC program that is to be run
interactively or submitted for batch execution, first enter
text edit mode. Text edit mode can be entered at any time
after the login sequence is completed by typing EDITOR
and the carriage return key after the system prompt,
COMMAND.

COMMAND - EDITOR
The system editor responds with two consecutive periods,
indicating text edit mode is in effect. After the EDITOR
command, enter the following command (after the periods):

.. FORMAT,BASIC

This command establishes a special BASIC program
environment. The maximum line length is established at
150 characters. BASIC line numbers serve as EDITOR
sequence numbers, and EDIT with SEQUENCE, CREATE,
ADD, or RESEQ becomes illegal. Once specified, the
BASIC format environment remains in effect for the
duration of the terminal session or until the one of the

following is specified: a FORMAT without parameters, or
a FORMAT with a COMPASS, FORTRAN or COBOL
parameter (such as FORMAT, COBOL).

Once the FORMAT command is accepted (apparent by two
periods displayed on the next line following the command),
enter program text in one of the following two forms: line
number (one space) text (for the BASIC format) line
number = text (in other formats). If an error is made while
typing a line, back space n characters by pressing the
backspace key or by typing CONTROL H, n times, and
enter the correct information, or erase the entire line by
pressing CONTROL X. The CONTROL key must be held
down while the H or X key is pressed. To correct an
existing line, reenter the line number and type the correct
information. To delete an existing line, type DELETE, line
number. If an entered line exceeds 150 key strokes, it is
truncated and a message is displayed at the terminal.

INTERACTIVE BASIC
TERMINAL SESSION

A BASIC program can be entered, edited, and executed
interactively from a CRT or TTY terminal. Figure 11-1
was created and run at a TTY terminal. Responses entered
are underlined. Press the carriage return key @ after
typing in each response.

CONTROL DATA INTERCOM 4.7

DATE 05/06/80
TIME 13.07.54.

PLEASE LOGIN
Login

ENTER USER NAME-abs

SRBARERANE ENTER PASSWORD-

05/06/80 LOGGED IN AT 13.08.21.
WITH USER-ID HX
EQUIP/PORT 63/067
LOGIN CREATED 05/02/80 TODAY IS 05/06/80 —— Optional login bulletin can change daily.

LOGIN procedure.

-Figure 11-1. Interactive BASIC Terminal Session (Sheet 1 of 3)

19983900 G

11-1

CemMAND- EDITBR Calls EDITOR.

s @RMAT>BASIC When in EDITOR command mode, requests
BASIC format specifications.

«+«10 REM THIS PROGRAM COMPUTES INTERESI PAYMENTS Enters a BASIC program line by line.

20 PRINT “ENTER. TQI1AL AMBUNT aF L OAN'

21 INPUT A

22 IF A <= 0 G010 200

26 PRINT "ENTER INIEREST PERCENTAGE"

30 INPUT J

35 J=J/100

40 PRINT "ENITER T2TAL NUMBER OF YEARS"

45 INPUL N

50 PRINI " ENIER NUMBER @OF PAYMENTS PER YEAR'

55 INPJI ™M

60 N=N*M

65 I=J/M

70 3=1+1

75 R=A%1/C1-1/8%%N)

79 AMIUNT PER PAYMENT =$5$3#.##

80 :107AL INTEREST =55355$#.44

81 PRINT USING 70, R

B2 PRINI USING 80s R*N-A

88 PRINT

94 :INTEREST APP i@ PRIN $ BALANCE §

95 PRINT JSING 94

100 L=Ax]

110 P=R-L

120 A=A-P

130 PRINT USING 135, LsPsA

135 s###.#4 IR 21210l

140 IF A>=R G3I© 100

150 PRINT USING 135, A*I,R~A%*1

155 PRINI

160 PRINT USING "LAST PAYMENT =S$S5S#.##'"5A%x]1+4

170 GOTI 20

230 EmMD

200 END

' KUNs3ASIC . Compiles and executes BASIC program.

BASIC issues diagnostic messages.

ILLEGAL STAITEMENT AT 79
NON-IMAGE REFERENCED AT 81
3ASIC COMPILATION ERRURS

l «e79 :AM@GUNT PER PAYMENT =S$35S#.##4 Corrects the illegal statements by
%1 PRINT USING 79» R reentering them.
l "RUNsBASIC Calls BASIC compiler again to compile

and execute the BASIC program.

ENTER TATAL AMQUNT OF LEAN
25000

ENTER INIEREST PERCENTAGE
211 .

NTER TOTAL NJUMBER OF YEARS

w [

ENTER NUMBER OF PAYMENTS PER YEAR
26

Figure 11-1. Interactive BASIC Terminal Session (Sheet 2 of 3)

11-2 19983900 G

AM

QUNT PER PAYMENT = $467.97

TOTAL INTEREST = $615.566

INTEREST APP T8 PRIN $ BALANCE $
91.67 37631 4623.69
84477 3%83.20 4240 .49
17774 390.23 3850.26
70459 397.38 3452.88
63.30 404.67 334B.21
55.88 412.09 2636.12
4833 419.64 2216.+48
40.64 42734 1789+14
32.80 435.17 1353.97
24.82 443.15 910.82
16.70 451 .27 459455
Bea3 453455

LAST PAYMENT =8$467.97

ENTER TOTAL AMZUNT OF LOAN

20

*»+SAVE>BASPROG

eeLISTsALLSSUP

STBREsBASPRAG

REM ITHIS PRIGRAM CIMPUTES INTEREST PAYMENTS
PRINT "ENTER TE@TAL AMJUNT OF LOAN'

INPUT A

IF 4 <= 3 G&Te 200

PRINT "ENTER INTEREST PERCENTAGE"

INPUT J

J=J4/100

PRINI “ENTER TOTAL NUMBER OF YEARS"

INPUT N _

PRINT "ENTRR NUMBER OF PAYMENTS PER YEAR"
INPUT ™

N=N*M

[=J/M

B=1+1

R=A%1/7C1-1/3%*%N)

PRINT

$AMBUNT PER PAYMENT =SSS5#.##

80 :IQTAL INTEREST =S355S#.##

81 PRINT USING 79» R

82 PRINT USING 80, R*N-A

28 PRINT

94 :INTEREST APP T@ PRIN $ B8ALANCE §
95 PRINT USING 94

100 L=Ax%I

110 P=R-L

120 AzA-pP

130 PRINT USING 1355 LsPsA

135 s##k 44 (XL XY 14 RHENNE HH

140 IF A>=R GOTZ 100

150 PRINT USING 135, A*I,R-AxI

155 PRINT

160 PRINT USING "LAST PAYMENT =SSS#.##",AxI+A
170 G310 20

200 END

Requests contents of edit
file be saved as a local

file named BASPROG until
log out using the LOGOUT
command.

Stores BASPROG as a
permanent file.

Requests listing of programs.

19983900 G

Figure 11-1. Interactive BASIC Terminal Session (Sheet 3 of 3)

11-3

BASIC COMMAND

Basic can be run interactively using the full capability of
the BASIC control statement, described in section 13, by
performing the following steps:
1. Create the BASIC program under EDITOR.
2. Save the program by entering:
SAVE,lfn
For a program created in BASIC format.

SAVE,1fn,NOSEQ

For a program created in other than BASIC
format.

3. To leave EDITOR type in END.,
4. Connect required files to terminal by entering:
CONNECT,lfny,1fny, ...

Normally the J and K files on the BASIC command
(default INPUT and OUTPUT) should by connected.

5. Compile and execute the program by entering:

BASIC(I=Ifn,...)

An example of these command parameters is shown in
figure 11-2. BASIC command parameters are described in
the section on Batch Operations.

USING DATA HLES

Data files to be used by a BASIC program can be created
under EDITOR. To create data files acceptable to the

BASIC program, select a format; the format must be a
format other than BASIC. In the BASIC format, line
numbers are part of the text and cannot be removed.

Data is entered one line at a time in line number=text
format. After the entire file is created, save the file (file
becomes local file) without sequence numbers by using the
SAVE,Ifn,NOSEQ command. EDITOR line numbers are
stripped when the SAVE command with no sequence
number option (NOSEQ) is selected. To edit a file that was
saved without sequence numbers, enter the EDIT,\fn,SEQ
command. The SEQ parameter causes an EDITOR line
number to be appended to each line of text. An example of
using data files under NOS/BE is illustrated in figure 11-3.
Responses entered are underlined.

RENUMBERING BASIC LINES

The BRESEQ command provides a means of resequencing
the line numbers in a BASIC local file. Line number
references in the BASIC program are automatically

COMMAND-EDITOR
- «FORMAT, BASIC

«+100 PRINT "SAMPLE PROGRAM"
SAVE EX1)

.'END

COMMAND-BASIC(I=EX1

COMMAND-BASIC

EX1

IC 3.4 79122 06719/79

SAMPLE PROGRAM
24000B CM USED

COMMAND-

COMMAND-CONNECT, INPUT, OUTPUT

13+45.21. PAGE 1

100 PRINT “SAMPLE PROGRAM"™

<020 CP SECONDS COMPILATION TIME
«009 CP SECQNDS EXECUTI(_)N'TIME

Figure 11-2. BASIC Command Parameters Under NOS/BE

11-4

19983900 G

CaMvAND- EDIIOR Enters EDITOR.

s FORMAT L FIRIRAN Chooses a format other than BASIC for data.
s e CREAT R EDITOR command creates an edit file. Line

_ numbers and equals signs supplied by the system.
100=J«3RJANs 1422 EAST S1 »CHARGE N€ 1111,500.090

110=5APPLE>3434 CHERRY ST »CHARGE N2 2211,222.22

120=R.KEDI, 7896 ALG2 AVE ,CHARGE N3 1650,133.98

1393== Equals sign terminates entry of lines.
e SAVESCLIENT»NOSED Saves CLIENT in local file without sequence
numbers.
ceCREATE Creates local file UPDATE containing new
- charge account balances to be added to
1092=3000000130 file CLIENT.

110=0020003020

120=000000030

1 3()=i
e SAVE, JPDATE, NBSE]D Saves UPDATE in local file.
ceDELETESALL " Deletes contents of edit file. Cannot use
CREATE in BASIC format.
e FORVAT»3A851C Chooses BASIC format for program entry.
eed> FILE #2 = "“UPDAIE' Creates a program to read the files
10 FILE #1 = "CLIENI" CLIENT and UPDATE.

20 RESIORE #1

30 REST@RE #2

40 FYR I=1 10 3

20 INPUL #15 A$,38,C85D

60 INPJL #2, S

70 X=D+3

80 PRINI TAB(2)3AS5TAB(12)3383TAB(32)3C83TA3(52)3"BALANCE=8"5X
90 NeXT I

19983900 G

Figure 11-3. Using Data Files Under NOS/BE (Sheet 1 of 2)

11-5

Requests compilation and execution.

RUN»BASIC

RESULTS
J«BREWN 1422 EAST ST CHARGE NO 1111
S<APPLE 3434 CHERRY S1 CHARGE N2 2211
RexEDI 7896 ALGO Ave CHARGE NO 1660

BALANCE=% 510
BALANCE=$ 242.22
3ALANCE=% 153.98

Saves the program.

e SAVE »BASPRAG

Exits from EDITOR.

.‘END —

ComMMAND~

Figure 11-3. Using Data Files Under NOS/BE (Sheet 2 of 2)

updated, The format for the BRESEQ command is shown in
figure 11-4. When only one parameter is specified, it is
assumed to be the starting line number for the new file,
and the default increment value (10) is used.

BRESEQ,Ifn start,incr

n Indicates filename of the local file to
be resequenced.

start Indicates new line number to be

assigned to the first line in the file.

incr Indicates increment to be added to
nn; default vatue is 10.

Figure 11-4. BRESEQ Command Format

The BASIC file must exist as a local file and cannot be the
local name for an attached permanent file. To resequence
a permanent file, copy the file and assign a unique
filename. This can be accomplished by the use of the

COPY command or by loading the file into an EDIT file and

then using the SAVE command.

The BRESEQ command affects only the specified local file

and not the edit file. If further modifications are to be

performed, the resequenced file must be reloaded into the

EDITOR edit file by using the following directive:
EDIT,filename

An example of the BRESEQ command and reloading of the
resequenced file is shown in figure 11-5.

11-6

CemMMAND=- EDI R
e FERMAI»3A31C

eed PRINT "TYPE A POSIIIVE NUMBER'
10 _INPUI A

20 _1F A4<Q jHsN 8D

60 PRINT JSING 71, A

71 s +4##4 IS POSIIIvE

15 sicp

&) PRINI 43" IS NEGALIVES
100 GEie¢ 10

IRY AGAIN'

e e BRESEQ(EX5105,10)

eeUII»EX

eel ISTsALL, SUP

02010 PRINI "1YPE A POSITIVE NUMS3EK"
00020 INPUJUT A

30030 IF A<Q IHEN 00070
00340 PRINT UJSING 00950, A
00050 : +4## 1S POSHIIVE
00060 3519P

00070 PRIN1 A3" IS NEGATIVES
00080 G212 00020

IRY AGAIN'

Figure 11-5. BRESEQ Command Example

19983900 G

BATCH OPERATIONS 12

L

A batch job includes a user-written program, associated
data, and control statements organized as separate logical
records. A batch job can be input through a card reader at
the central site, input from a remote batch terminal,
invoked from a procedure, or, if the batch job is stored on
a file or created during an interactive terminal session, it
can be entered into the batch queue from the interactive
terminal.

This section describes the general structure of a batch job,
the BASIC control statement parameters, and the
procedure for creating and submitting a batch job under
NOS or NOS/BE. Figure 12-1 shows the control statements
for a batch job under NOS and figure 12-2 shows the
control statements under NOS/BE.

Job statement Specifies job name, and optionally,
the memory and time requirements,

priority, and other information.

USER and Specifies accounting information

CHARGE for NOS. CHARGE might be

statements optional at your site.

BASIC Calls BASIC compiler.

statement

LGO. Loads binaries from LGO file and
initiates execution.

7/8/9 Indicates end-of-record.

Figure 12-1. Job Structure Under NOS

DECK STRUCTURE

Compile-to-memory (previously known as compile-to-core)

involves no relocation of addresses. An example of a.

compile-to-memory job deck for use under NOS is shown in
figure 12-3. An example of a relocatable binary load under
NOS/BE is shown in figure 12-4.

Information on entering a job from an interactive terminal
can be found in the Network Products Interactive Facility
reference manual and the XEDIT reference manual for
NOS, and in the INTERCOM Version 4 reference manual
and INTERCOM Version 5 reference manual for NOS/BE.

A 6/7/8/9 statement specifies end-of-information
(end-of-deck). A complete description of the BASIC
control statement follows. Refer to the NOS or NOS/BE
reference manual for a detailed description of these and
other control statements.

19983900 G

Job statement Specifies job name, and optionally,
the memory and time requirements,

priority, and other information.

ACCOUNT Specifies accounting information

statement for NOS/BE.

BASIC Calls BASIC compiler.

statement

LGO. Loads binaries from LGO file and
initiates execution.

7/8/9 Indicates end-of-record.

Figure 12-2. Job Structure Under NOS/BE

BASIC CONTROL STATEMENT

Programs submitted for batch processing must include a
BASIC control statement. This control statement calls the
compiler and is formatted as follows:

BASIC(py, . - . ,Pp)

The simplest form of the BASIC control statement is:

BASIC.

This control statement specifies that the BASIC program
on file INPUT is to be compiled and executed. A source
listing is produced on file OUTPUT unless the control
statement was issued from a terminal. A relocatable

binary file is not produced. The parameters
(Pl,“"pn) associated with this control statement

permit the selection of the following parameter types:

o Compiler listable output options

e Compiler input options

e Compiler binary options

e Program execution options

Tables 12-1 through 12-4 list available control statement
parameters under the appropriate category, and describe
their use. Some control statement parameters can have

multiple values associated with them. Multiple values are
separated by slashes and are cumulative.

12-1

g

Program
Record
Y BASIC.
A CHARGE, 569,A24.
USER,ABC,XYZ.
Control JOBAAA.
Statement
Record
y

Figure 12-3. BASIC Compile and Execute Job Under NOS

A

Data
Record

>k

Program
Record

Y o

* BASIC (B=LGO).
’ACCOUNT,ABCDEFG, TUVWXYZ,
Control JOBAAA.

Statement
Record

Y

12-2

Figure 12-4. BASIC Compile, Load, and Execute Job Under NOS/BE

19983900 G

TABLE 12-1.

COMPILER LISTABLE OUTPUT PARAMETERS

Parameter

19983900 G

density to 8 and automatically
resets the density to the default
value after output is written to
the files.

Parameter Format Description Remarks
Compile-Time omitted For batch jobs, default output file If the program is in ASCII, the
List File (L) is QUTPUT. For interactive jobs, Tisting file must be sent to the

default is no compiler listable ASCII printer, not to the normal
output file (same as L=0). 64-character printer.

L Listable compiler output on file
OUTPUT.

L=1fn %;stable compiler output on file

n.

L=0 No compile list file.

(zero)

Listing Options omitted or Produces a source listing on a file This parameter can have multiple

(Lo) LO or LO=S specified by the L parameter. values associated with it. Values
are separated by slashes and are
cumulative.

LO=0 Produces a source listing and an S is on by default.

(Tetter 0) object listing on L file.

L0=0/0 Produces an object 1isting only on The number zero (0) turns off all

(zero/ L file. previously specified values. In

Tetter) this case, it turns off the de-

fault S value. The letter O

L0=0 Turns off all 1ist options. turns on object listing.

(zero)

Burstable List- omitted Page ejects between portions of the The installation can change the
ing Control compiler output (source listing and meaning of BL omitted to that
(BL) object listing) are suppressed; specified by the BL option that

Tisting is not burstable. If the follows.

compile-to-memory and execute-in-

one-step option is selected (no B

option), the pages that are between

the compiler output eject, the first

line of execution output is sup-

pressed, and four blank lines are

listed instead.

BL Includes page ejects between com- Does not apply if the L file is
piler output portions and between the terminal.
the compiler output and the first
line of execution output.

Print Density omitted Specifies the print density (lines-

Control (PD) per-inch) on the files specified by
the L and K parameters as the in-
stallation default (usually 6).

PD=6 For L and K files, sets print Only effective on an output device
density to 6. Automatically resets whose density can be changed. (for
the density to the default value example, a CDC-512 printer).
after all output is written to the
files.

PD=8 or PD For L and K files, sets the print

12-3

Control (PS)

installation default page size
(number of printable lines per
page excluding upper and lower
margins for the file).

If PD specifies a nondefault print
density, PS is calculated as
follows:

PS=PD*(default PS)/(default PD).

TABLE 12-1. COMPILER LISTABLE OUTPUT PARAMETERS (Contd)
Parameter s
Parameter Format ‘Descr1pt1on Remarks
| ———————— =h
Page Size omitted If PD is not specified, uses

PS=n Establishes the L file page size as Four is the smallest possiblg page
(where n is n printable lines per page. This size because each page must in-
4<n<32768) parameter has no effect on execution | clude a 3-line header and at least
output. Lines are not counted at one additional line.
execution time.
Compile-Time omitted Compile-time error diagnostics If the program is in ASCII, the
Error File (E) written on the file specified by listing file must be sent to the
the L Earameter. If there is no L ASCII printer, not to the normal
file (L=0), diagnostics are written 64-character printer.
to file OUTPUT.
E Compiler error diagnostics are
written on file ERRS.
E=1fn Error diagnostics are written on Diagnostics are listed only once
file 1fn. even when the file specified by
the E parameter is the same as
that specified by the L parameter.
Error Level omitted or Writes warning diagnostics and
Control (EL) EL=W fatal compiler diagnostics on the
file specified by the E parameter.
EL=F Fatal error diagnostics, but no
warning diagnostics, are written
on the E file.
TABLE 12-2. COMPILER INPUT PARAMETERS
Parameters P?;ﬁﬂ::er Description Remarks
— |
ASCII Character omitted Source program and data files con-
Set (AS) or AS=0 tain only normal (non-ASCII display
(zero) code) characters. (See appendix A.)
AS Source program and data are encoded Under NOS/BE, a normal character set
in the extended ASCII character set. source program is also acceptable.
(See appendix A.) Program runs in
ASCII mode.
Compile-Time omitted Compiler input (BASIC source program) | Normally the program ID (name) con-
Input (I) is on file INPUT. tained in optionally generated relo-
catable binar¥ decks is the name of
I Compiler input (BASIC source program) | the source file specified in the I
is on file COMPILE. parameter. The on1y exception occurs
when the I file is the system file,
I=1fn Comp11er input (BASIC source program) INPUT or COMPILE; in which case, the
is on file 1fn. program name in the binary deck is
BASICXX.

12-4

19983900 G

TABLE 12-3.

COMPILER BINARY OUTPUT PARAMETERS

Parameter s s
Parameter Formats Description Remarks
Binary File omitted Compile-to-memory. Does not produce a Automatic execution is controlled by
(B) or B=0 relocatable binary. the GO parameter. See table 12-4.
(zero) If in CID mode (DEBUG (ON) has been ex-
ecuted, or DB=ID has been specified),
a relocatable binary is written onto
the reserved system file ZZZZZDC.
B Binary of compiled program written on
file BIN.
B=1fn Binary of compiled program written on
file 1fn.
Debug omitted Trace feature, force binary gener- Binary generation and automatic
(DB) ation, and program execution are program execution are inhibited by
not activated. CID feature is not compilation errors, and REM Trace
activated unless an explicit DEBUG statements are only comments.
or DEBUG(ON) command has been Generation of CID information is
previously issued. controlled solely by an explicit
DEBUG command.
pg=0f CID and trace features are not Same as if omitted except that CID
(zero) activated. information is inhibited even if an
explicit DEBUG command has been
issued.
DB Same as DB=B/DL. The default list of parameters.
DB=0/BT Forces binary generation and/or See B and GO parameters. A program
(zero) program execution regardless of containing compilation errors executes
compilation errors. normally until a statement which
caused the compilation error is en-
countered.
DB=0/DLT Activates program tracing as con- See section 9.
(zero) trolled by REM TRACE debug lines.
DB=O/IDT Activates generation of CID infor- Causes generation of CID tables and
(zero) mation. special code.
DB=0/TRT Traces all statements regardless of Turns on the trace feature.
(zero) REM TRACE debug lines.
DB=TR Same as DB=B/DL/TR. TR parameter is added to the default
Tist of parameters.
DB=ID Same as DB=B/DL/ID. ID parameter is added to the default

list of parameters.

and DL.

TThe zero turns off all previously specified values. For example, DB=0/TR turns off default values B

19983900 G

12-5

TABLE 12-4.

PROGRAM EXECUTION PARAMETERS

Parameter

Parameter
Formats

Description

Remarks

ASCIT Mode
(As)

Execution
Control (GO)

Execution-Time
Input File (J)

Execution-Time
Print File (K)

12-6

omitted
or AS=0
(zero)

omitted

GO

G0=0
(zero)

omitted
or J

J=1fn

J=0
(zero)

omitted
or K

K=1fn

Program runs in normal mode.
Data files are presumed to be
in normal, not ASCII mode
(display code, not ASCII,
characters).

Program runs in ASCII mode.
A1l character data is inter-
preted as ASCII, not display
code. See appendix A.

Compiled BASIC program
executes without loading
provided it was compiled-
to-memory (i.e., no B
parameter specified) and
there were no compilation
errors. When the B option
(table 12-3) is specified,
the compiled program does
not execute.

Compiled BASIC program exe-
cutes provided there were no
compilation errors.

Inhibits execution. Neither
the compile-to-memory version
nor the relocatable binary
version of the BASIC program
executes.

Default input file for com-
piled BASIC program (file
read when INPUT statement is
executed) is INPUT.

Default input file for com-
piled BASIC program is 1fn.

No default run-time input
file.

Default output file for com-
piled BASIC program (file
used for PRINT statement and
run-time error diagnostics)
is OUTPUT.

Default output file for the
ggmpiled BASIC program is
n.

Program can be executed despite com-
pilation errors. See DB parameter
table 12-3.

See DB parameter in table 12-3.

Use of the INPUT statement aborts the
executing BASIC program.

J and K options control the default
in?ut and output files of the com-
piled program because BASIC does not
provide a means of controlling file
assignment for the simple form of the
PRINT and INPUT statements; also, the
normal mode of operation, compile-to-
memory and execute-in-one-step
option, prohibits file assignments
from being manipulated by interven-
ing loader control statements. When
loading and executing a program from
relocatable binaries, parameters can
be used to change the names of the J
and K files, such as when relocatable
binaries have been written on file
LOG:

LG0, FILEIN, FILEOUT.
This causes the program to be loaded
and executed with INPUT data from

FILEIN and output PRINT data on
FILEOUT.

19983900 G

TABLE 12-4. PROGRAM EXECUTION PARAMETERS (Contd)

Parameter

Parameter Formats

Description

Remarks

Debug and Trace

table 12-3.

Print Density
Control (PD)
See table 12-1.

Activates trace feature and
(DB) forces execution regardless
of compilation errors. See

Controls density (lines per
inch) of printed output.

The following examples illustrate some combinations of
control statement parameters and the following paragraphs
discuss possible options.

e Compile and Execute
BASIC (B=SAM,GO)

The above control statement compiles the program
found on file INPUT (I parameter default), places the
compiler binary output on file SAM (B=SAM), and loads
and executes the compiled program (GO).
Execution-time output is written on file OUTPUT (K
parameter default). Compile-time errors prevent
execution and, when detected, are written to file
OUTPUT (E and EL parameter default). A source list
is created on file OUTPUT (L parameter default and
LO parameter default) unless it is assigned to a
terminal. When under NOS, source listing is not
written when the program is in interactive mode
(default L value is O) because file OUTPUT is
automatically associated with the terminal.

e ASCII Compile and Execute
BASIC (AS,I=PROG3)

The AS parameter specifies that the source code found
in file PROG3 is encoded in ASCII characters and that
data produced by the BASIC program is in the ASCII
character set. The program is compiled-to-memory
and executed immediately (B and GO parameter
defaults). A source listing is produced on file
OUTPUT unless it is assigned to a terminal (L
parameter default). On NOS, the source code of the
program must be in ASCII 6/12 characters. On
NOS/BE, the source can be in either display code
(6-bit) characters or in ASCII 8/12 characters.

e Compile, Execute, and L ist
BASIC (I=SOURCE, L=LIST)

This control statement compiles-to-memory and
executes; compiler input (source) is on file SOURCE.
Listable compiler output is written on file LIST.
Source listing is specified by the LO parameter
default. Error diagnostics are written on file LIST
(default of E parameter). Source code and data do not
contain ASCII characters.

e Compile and Execute with Listing Options and Controls

BASIC (I=TESTP, EL=F, LO=0, PD=8, P5=20)

19983900 G

The compiler input (source code) is on file TESTP
(I=TESTP) and the program is compiled and executed
(default B and GO parameters). Compile-time errors
are written on file OUTPUT. However, warning
diagnostics are suppressed (EL.=F). Also, a source and
object listing is written on file OQUTPUT (default L
parameter and LO=0). Print density of file OUTPUT
is set to 8 (PD=8). ROUTE (DISPOSE on NOS/BE) the
file OUTPUT to a device that can print 8 lines per
inch. Page size for the printed output file is set at 20
lines per page (PS=20).

REM LIST STATEMENT

The REM LIST statement controls the source code listing
produced by the BASIC compiler. The format of the REM
LIST statement is shown in figure 12-5.

1. REM LIST,NONE

2. REM LISTALL

Figure 12-5. REM LIST Statement Format

REM LIST, NONE inhibits all further source code listing
until a REM LIST, ALL statement is executed, which
causes listing of the source code to resume. Both
statements are printed by BASIC to permit you to see
where the source code listing was suppressed.

The REM LIST statement is effective only when the source
list option (L parameter) is activated via the BASIC control
statement. If the source list option is off when a REM
LIST statement is encountered, REM LIST is treated like a
REM statement (a comment). Figure 12-6 illustrates the
REM LIST statement.

BATCH PROCESSING FROM A
TERMINAL

BASIC programs can be created at a terminal and
submitted for batch processing. This is accomplished by
setting up the program in a Text Editor file that includes
control statements.

NOS

Figure 12-7 shows an example of a terminal session where
a job is created and submitted for batch processing.

12-7

100 J=120

120 REM LIST PRICE (J) PLUS SALES TAX (S) = TOTAL COST (T)
130 s=J4*.07

140 REM LIST,NONE

155 REM LIST,ALL

160 PRINT "TOTAL COST IS $";T

170 PRINT "SALES TAX IS $";s

180 END

produces:
LIST PRICE IS $ 120

TOTAL COST IS $ 128.4
SALES TAX IS $ 8.4

statements not listed:

145 T=J+s
150 PRINT "LIST PRICE IS $";J

Figure 12-6. REM LIST Statement Example

batch
SRFL,O0.

/new,guide
/100 /job
110 marlene.
120 user,abs0455 ,pubs.
130 charge,5912,693a412.
150 basic.
151 dayfile,prog.
152 replace,prog.
153 exit.
154 dayfile,prog.
155 replace,prog.
160 /eor
170 /noseq
180 a=304
190 b=403
200 t=a=*b
210 print t
220 end
250 /eof
submit,guide,b

15.45.35. SUBMIT COMPLETE. JOBNAME IS ACLICGQF
/enquire,jn=cqf

ACLICQF 1IN INPUT QUEUE.

Figure 12-7. Batch Processing From a Terminal Under NOS

The /JOB directive indicates that the file is to be
reformatted for batch processing. Some defaults indicated
by the directive are:

NOS,/BE

To send a batch job to NOS/BE from a remote terminal,
first enter EDITOR, as described in Terminal Operation
under NOS/BE. You can then issue the CREATE command
to construct the program statements to be processed. A
FORMAT need not be specified, but if one is, it cannot be
BASIC (the BASIC format directs the system to
automatically generate line numbers and, therefore, would
disallow entry of any control statements).

e Remove sequence numbers.

e Remove internal EOR and EOF marks (converts /EOR
and /EOF found in this deck to end-of-record and

end-of-file, respectively).

See the Network Products Interactive Facility reference
manual or the NOS Time-Sharing User's reference manual

(Reformatting Submit File) for remaining directive The job must include the NOS/BE control statements, along

descriptions. The options of the BASIC control statement
are available to the interactive user when using the batch
subsystem.)

12-8

with the BASIC program. Each control statement and
BASIC statement is entered on a separate line. A typical
deck setup is shown in figure 12-8,

19983900 G

When entering BASIC statements (under a format other
than BASIC), the EDITOR sequence numbers are distinct
from the BASIC line numbers and must be specified
separately. In figure 12-8, 610 is the EDITOR sequence
statement number generated by the system, and 100 is the
BASIC line number input from the terminal. Once this is
accomplished, the file can be modified by using EDITOR
commands and can be saved by using the SAVE,lfn,NOSEQ
form of the SAVE command.

To submit a batch job created under EDITOR, save the edit
file without sequence numbers, then submit the saved file
to the batch input queue by using the BATCH or ROUTE
command. The following are two types of processes for
submitting a job into file TESTJOB for batch execution;
results are automatically printed at the central site.

SAVE,TESTJOB,NOSEQ

BATCH,TESTJOB,INPUT
or

SAVE,TESTJIOB,NOSEQ,

ROUTE, TESTJOB,DC=IN.

Optionally, the job can be submitted for batch processing
with the results directed to the submitting terminal for
inspection. If acceptable, the job can be printed at the
central site. Figure 12-9 shows an example of printing a
batch job.

Refer to the INTERCOM Version 4 reference manual or
the INTERCOM Version 5 reference manual for additional
details and examples concerning these commands.

COMMAND-editor
..Create

Creates the file.

100=job statement.

500=BASIC.

600=*xEOR
610=100 INPUT X =

Control statements. (Lines 100 - 600)

620=110 IF X=0 THEN 190

690=180 GO0TO 110
700=190 END

680=170 PRINT "FACTORIAL";X;"IS";F

BASIC statements. (Lines 610 - 700)

End of BASIC source record; optional if

710=%EOR

no su ding information.
End CREATE mode.

..S,testjob,ns «

Saves job in file named TESTJOB.

Figure 12-8. Batch Processing From a Terminal Under NOS/BE

BATCH,TEST JOB,INPUT,HERE

Allow time for batch job to complete.

BATCH,ifnT,LOCAL

PAGE,IfnT,L
coded file.

BATCH, Ifn,PRINT,id

generated by the system.

Submits the job.

FILES Lists file names so you can identify remote output file Ifn created by the job.
Makes remote output file local to terminal.

Prepares to display contents of file Ifn. The L is optional to display ASCH
When prompted with READY . . . enter 1 to see the first page and + to see each

additional page. Enter E or END to exit from the PAGE mode.

Submits the file to the batch print queue with user identification id.

TThe remote output file name consists of the first five characters from the job statement (job name) and two characters

Figure 12-9. Printing a Batch Job

19983900 G

12.9 o

CHARACTER SETS A

[RRRRRRNA——\=———

Each computer has its own character set, which includes a
collection of graphics (letters, digits, and special symbols)
that the computer recognizes. Associated with each
graphic of a character set is a number called a code. The
code represents the character within the computer.
Computers differ in their codes as well as their graphic
sets, so in order to permit intercomputer communication,
the American Standard Code for Information Interchange
(ASCII) has been established. The ASCII character set
includes all letters (uppercase and lowercase), digits, and
many special symbols. The characters used in BASIC are
taken from the ASCII character set. Table A-1 lists the
full ASCH character set.

Any one of several character sets can be used on CDC
CYBER and the 6000 Series computers. These character
sets include CDC 63- and 64-character sets, ASCII 63- and
64-character sets, and ASCIl 128-character set.
Differences in character sets occur in either graphics
(CDC or ASCII), or the number of characters (63 or 64 and
normal or 128-ASCII). Graphic differences are a function
of the terminal or printer that is used; some devices use
CDC symbols; others use ASCII symbols. These differences
do not affect the BASIC program provided the programmer
realizes that all BASIC characters are defined in terms of
ASCII codes. When using CDC character set devices, the
programmer must use CDC symbols equivalent (same
internal code) to ASCIl symbols required by BASIC.
Table A-2 lists ASCII and CDC character sets so that
equivalent symbols can be easily determined; for example,
the ASCII # is equivalent to the CDC=.

Differences in internal representations of characters can
have an effect on programs and program results.
Differences in program results can only occur when a
program is developed on a 63-character set system, then
run on a 64-character set system, or vice versa, and the
program uses the OPTION COLLATE NATIVE statement
and the normal (not ASCII) character set. Normally,
however, there is no problem because computer systems
operate either with a 63- or 64-character set system and
do not switch between character sets. Even if one of the
character set disparities exists, there is a problem only if
the program uses string data that contain the characters
% (percent) and : (colon). The character % is not available
in a 63-character set system; the character : has a numeric
code 0 in a 64-character system, but a numeric code 51
(63g) in a 63-character set system. As a result, for a
program in normal mode that uses the OPTION COLLATE
NATIVE statement, the relation ":BCD"<"ABCD" is true
in a 64-character set system, but false in a 63-character
system.

CHARACTER USAGE RESTRICTIONS

If operating with the 64-character set in normal mode, it is
advisable to restrict the use of the colon, as follows:

e Never use the colon at the end of a string.

e Do not use multiple colons (:::) because they could be
interpreted as the end of the string or end of the line.

19983900 G

e Do not use a colon at the end of a line or on a line by
itself.

e Do not use :A, :B, :D, :E, or :H at the end of a
terminal output (PRINT) line because it is interpreted
by the operating system as a terminal command.
Other colon and letter combinations, :L, :F, :G, and :l,
could be misinterpreted depending on the carriage
control at the beginning of a terminal PRINT line.

NOS ASCIHl 128-CHARACTER SET

NOS enables the BASIC programmer at an ASCII code
terminal to make use of the ASCII 128-character set. (See
table A-1.) This character set, which includes lowercase
letters, special symbols, and device control characters, is
only available when the user's terminal and program are in
ASCII mode. A terminal is switched into ASCII mode by
entering the ASCII command. The terminal is returned to
normal mode by entering the NORMAL command. (Refer
to the Network Products Interactive Facility reference
manual or the NOS Time-Sharing User's reference
manual). Under the BASIC subsystem, the BASIC compiler
and the BASIC program automatically operate in ASCIH
mode when the terminal is in ASCIl mode. In order for the
compiler and program to handle the ASCIl 128-character
set in batch mode, the AS parameter must be explicitly
specified.

In order to provide 128 characters, some characters must
be represented as 12-bit instead of 6-bit characters. The
6-bit characters are distinguished from the 12-bit
characters by using the 6-bit codes 74g and 76g as
escape codes to indicate that the next six bits are actually
part of this 12-bit character. This coding method is
referred to as the 6/12 or extended display code. When
operating in ASCII mode, the BASIC compiler assumes that
all data files contain 128-ASCII characters, so display code
74g and 76g are interpreted as escape code characters;
they are never characters by themselves.

NOS/BE ASCHl 95-CHARACTER SET

NOS/BE provides an ASCH 95-character set, as listed in
table A-1 (those characters not included in the
95-character set are shaded). This character set includes
those symbols and letters represented by decimal code
values 32 through 126, which are available when the
terminal operates in ASCII mode.

In NOS/BE, the terminal is switched to ASCII mode only
when directed from within the user program. There is no
ASCII command available under NOS/BE. To specify ASCII
modes include the AS parameter option in the BASIC
control statement. Once the program switches the
terminal to ASCIHl mode, the ASCII mode remains in effect
until the program terminates.

In order to provide 95 characters, each character is
represented by 12 bits (the eight rightmost bits in a 12-bit
byte). If a BASIC program is run in ASCIH mode, all
associated data files must be in 8/12 ASCII code. NOS/BE
does not use the 6/12 display code.

A-2

TABLE A-1. EXTENDED CHARACTER SETS

BASIC BAsic | Display | ASChi ASCl BASIC | o agc | Display |ASCH ASCIHI
BASIC Character Decimal] Code | Code Code BASIC Character | o= /| Code | Code Code
Character | Abbrevia- Codet (6/12-Bit| (7-Bit (7-Bit Character | Abbrevia- Codet (6/12-Bit | (7-Bit (7-Bit
tion Octal) | Octal) |Hexadecimal) tion Octal) | Octal) | Hexadecimal)
00t [nun c Lcc 29 7603 | 143 63
A Uca 65 01 101 41 d LCD 100 7604 | 144 64
B uce 66 | o2 102 42 e LCE 101 7605 145 65
c ucc 67 03 103 43 f LCF 102 7606 | 146 66
D uco 68 04 104 a4 g LCG 103 7607 | 147 67
E UCE 69 05 105 a5 h LCH 104 7610 | 150 68
F UCF 70 06 106 46 i Lel 105 7611 181 69
G ucG 7 07 107 a7 i Lcd 106 7612 | 152 6A
H UCH 72 10 110 48 Kk LCK 107 7613 | 153 6B
1 ucl 73 1 1M 49 1 LCL 108 7614 | 154 6C
J ucy 74 12 112 4A m LCM 109 7615 | 188 6D
K uck 75 13 113 4B n LCN 110 7616 | 156 6E
L ucL 76 14 114 ac ° Lco m 7617 | 157 6F
™M ucm 77 15 115 4D p Lcr 112 7620 | 160 70
N UCN 78 16 116 4€ q Lca 113 7621 161 71
] uco 79 17 117 4F t LCR 114 7622 | 162 72
P ucP 80 20 120 50 s LCS 115 7623 | 163 73
Q uca 81 21 121 51 t LCT 116 7624 | 164 74
R UCR 82 22 122 52 u Lcu 117 7625 | 165 75
s ucs | 83 23 123 53 v LcvV 118 7626 | 166 76
T ucTt 84 24 124 54 w Lcw 119 | 7627 | 167 77
u ucu 85 25 125 55 x Lex 120 7630 | 170 78
v ucv 86 26 126 56 y Lcy 121 7631 171 79
w ucw 87 27 127 57 2 Lcz 122 7632 | 172 7A
X ucx 88 30 130 58 { LBR 123 7633 | 173 78
\'4 ucy 89 31 131 59 : VLN 124 7634 | 174 7€
2 ucz 90 32 132 5A 1 RBR 125 7636 | 175 70
[} 48 33 060 30 ~ TIL 126 7636 | 176 7€
1 49 34 061 31 DE DEL 127 7637 177 7F
2 50 35 062 32 0 7640 | 000 00
3 51 36 063 33 1 7641 001 01
4 52 37 064 34 2 7642 1 002 02
5 53 40 065 35 3 7643 | 003 03
6 54 41 066 36 4 7644 | 004 04
7 55 42 067 37 5 7645 | 005 05
8 56 43 070 38 6 7646 | 006 06
9 57 44 071 39 7 7647 | 007 07
+ 43 45 053 28 8 7650 | 010 08
- 45 46 055 2D 9 7651 011 09
» 42 47 052 2A 10 7652 | 012 0A
/ 47 50 057 2F 1 7653 013 (V1]
§ 40 51 050 28 12 7654 | 014 oc
41 52 051 29 13 7655 | 015 oD
$ 36 53 044 24 14 7656 | 016 OE
= 61 54 075 3D 15 7657 | 017 oF
SP (space) 32 55 040 20 16 7660 | 020 10
. 44 56 054 2c 17 7661 | 021 1
. 46 57 056 2E 18 7662 | 022 12
35 60 043 23 19 7663 | 023 13
1 91 61 133 5B 20 7664 | 024 14
] 93 62 135 5D 21 7665 | 025 15
%§§ 37 63 045 25 22 7666 | 026 16
” (quote) auo 34 64 042 22 23 7667 027 17
__(underiine)§| UND 95 65 137 SF 24 7670 | 030 18
! 33 66 041 21 25 7671 031 19
& 38 67 046 26 26 7672 | 032 1A
’ {apostrophe) 39 70 047 27 27 7673 | 033 1B
? 63 7 077 3F 28 7674 034 1c
< 60 72 074 3c 29 7675 | 035 1D
> 62 73 076 3E 30 7676 | 036 1E
74 (escape 31 7677 037 1F
code) 7400 - -
\ 92 75 134 5C @ 64 7401 100 40
76 (escape A(circumflex) 94 7402 136 SE
code) 7403 - -
: (semicolon) 59 77 073 3B 8§ 58 7404 072 3A
7600 - - 7405 - -
a LCA 97 7601 141 61 7406 - -
b LCB 98 7602 142 62 \ GRA 96 7407 | 140 60

TThese codes are the decimal equivalent of the 7-bit octal ASCI| codes. They are returned by the ORD function, used by the CHR$

the native collating sequence is in effect and the ASCII character set is being used. (See AS parameter or BASIC control statement.)

TTTwelve zero bits at the end of a 60-bit word are an end-of-line or end-of-record mark rather than two colons. Colons at the end of
lines or strings are considered part of the end-of-line or end-of-string marker. In the 63-character set, this display code represents a
null character.

11 Those characters which are not included in the NOS/BE 95-character set are shaded.
§0On TTY models having no underline, the backarrow (+) takes its place.

§8 In a 63-character set the internal octal representation for colon (:) is 63g, and the internal octal representation for percent (%) is
- 7404g. (The characters reverse posiitons.)

function and used for comparing strings when the standard collating sequence is in effect (regardless of the character set used) and when

19983900 G

TABLE A-2.

CDC AND ASCII 63- AND 64-CHARACTER SETS

BASIC CcDC ASCH!
Display Hollerith Ext]
. Code olleri xterna .
Character | Decimal . Graphic Punch Code
Character | Apbreviationt| Code 11| (Octal) | Graphic Punch BCD Subset (029) (Octal)
(026) Code
== —_—— |
: {cotom) TTT 58 008 |:(colon)tTT 8-2 00 : (colon) TTT 8-2 072
A UCA 65 01 A 121 61 A 121 101
B ucse 66 02 B 12-2 62 B 12-2 102
(o ucc 67 03 (o] 12-3 63 [o 12-3 103
D ucpb 68 04 D 12-4 64 D 12-4 104
E UCE 69 05 E 125 65 E 12-5 105
F UCF 70 06 F 12-6 66 F 12-6 106
G ucG 71 07 G 12-7 67 G 12-7 107
H UCH 72 10 H 12-8 70 H 12-8 110
1 uct 73 1 1 12-9 71 1 12-9 111
J ucy 74 12 J 111 41 J 11-1 112
K UCK 75 13 K 11-2 42 K 11-2 113
L ucL 76 14 L 11-3 43 L 11-3 114
M ucm 77 15 M 11-4 a4 M 11-4 115
N UCN 78 16 N 115 45 N 115 116
o uco 79 17 o 11-6 46 (o] 11-6 117
P uce 80 20 P 11-7 47 P 117 120
Q uca 81 21 Q 11-8 50 Q 11-8 121
R UCR 82 22 R 119 51 R 119 122
S ucs 83 23 S 0-2 22 S 0-2 123
T UcT 84 24 T 0-3 23 T 0-3 124
U ucu 85 25 U 0-4 24 (V] 0-4 125
\" ucv 86 26 Vv 0-5 25 \" 0-5 126
w ucw 87 27 w 0-6 26 w 0-6 127
X ucx 88 30 X 0-7 27 X 0-7 130
Y ucy 89 31 Y 0-8 30 Y 0-8 131
r4 ucz 90 32 z 0-9 31 4 0-9 132
0 48 33 0 0 12 0 0 060
1 49 34 1 1 01 1 1 061
2 50 35 2 2 02 2 2 062
3 51 36 3 3 03 3 3 063
4 52 37 4 4 04 4 4 064
5 53 40 5 5 05 5 5 065
6 54 41 6 6 06 6 6 066
7 55 42 7 7 07 7 7 067
8 56 43 8 8 10 8 8 070
9 57 44 9 9 11 9 9 071
+ 43 45 + 12 60 + 12-8-6 053
- 45 46 - 1 40 - 11 055
* 42 47 * 11-8-4 54 * 11-8-4 052
/ 47 50 / 0-1 21 / 0-1 057
(40 51 (0-8-4 34 (1285 050
) 41 52) 12-8-4 74) 1185 051
$ 36 53 $ 11-8-3 53 $ 11-8-3 044
= 61 54 = 8-3 13 = 8-6 075
SP (space) 32 55 blank no punch 20 blank no punch 040
, (comma) 14 56 , (comma) 0-8-3 33 , (comma) 0-8-3 054
. (period) 46 57 . (period) 12-8-3 73 . {period) 12-8-3 056
35 60 = 0-8-6 36 # 8-3 043
[91 61 [8-7 17 [12-8-2 133
] 93 62 1 0-8-2 32] 11-8-2 135
%ttt 37 eattt]| ottt 8-6 16 %ttt 0-8-4 045
" (quote) Quo 34 64 # 8-4 14 " (quote) 8-7 042
___(underline) UND 95 65 [ng 0-8-5 35 __(underline) 0-8-5 137
L 33 66 v 110 52 ! 12-8-7 041
& 38 67 A 0-8-7 37 & 12 046
‘ (apostrophe) 39 70 - 1185 55 ’ (apostrophe) 85 047
? 63 71 4 11-8-6 56 ? 0-8-7 077
< 60 72 < 120 72 < 1284 074
> 62 73 > 11-8-7 57 > 0-8-6 076
@ 64 74 < 856 15 @ 8-4 100
\ 92 75 > 12-8-5 75 \ 0-8-2 134
Aflcircumflex) 94 76 - 12-8-6 76 Alcircumflex) 11-8-7 136
; (semicolon) 59 77 1 (semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073
TThe BASIC character abbreviation can be used only with the ORD function.
Tt These decimal codes are the values returned by the ORD function, used by the CHR$ function, and used for string comparison when
the native collating sequence is in effect and the normal (not ASCI1) character set is in use.
11, installations using a 63 character set, display code 00 has no associated graphic or card code; display code 63 is the colon
(8-2 punch); the % character and related card code; do not exist and translations yield a blank (55g).
§ Twelve zero bits at the end of a 60-bit word in a zero-byte record are an end-of-line or end-of-record mark rather than two colons.

19983900 G

- DIAGNOSTICS

BASIC produces three categories of diagnostic messages:
dayfile messages, compile-time diagnostics, and
execution-time diagnostics. Tables B-1 through B-4 list
the diagnostics.

DAYFILE MESSAGES

When a job is operating interactively, dayfile messages are
displayed at the terminal. In contrast, dayfile messages
for a batch job are appended to the output file for the job.
Special control statements are required to access the
dayfile of a job submitted by using the NOS command
SUBMIT. (See section 12, Batch Operations.)

Dayfile messages are listed in table B-1. BASIC
automatically increases its memory field length as required
up to the maximum allowed; therefore, this maximum is
the field length referred to in the dayfile messages.

COMPILE-TIME DIAGNOSTICS

While compiling or translating a program into object code,
BASIC checks the source code for such things as incorrect
syntax, improper use of statements, and missing or illegal
arguments. If any of these checks fail, the program (in
most cases) compiles unsuccessfully and an error message,
indicating the nature of the problem, is returned to the
terminal from where the program originated. The
messages that can be produced during program compilation
are listed in table B-2. These messages are printed in the
following format:

message AT line-number

TABLE B-1.

With the following exceptions, all compile-time diagnostics
listed in table B-2 inhibit program execution. The
messages OBSOLETE FORM, LINES TRUNCATED AT 150
CHARACTERS, WARNING - FUNCTION REDEFINITION,
and WARNING - FUNCTION REFERENCE BEFORE
DEFINITION are warning types of diagnostics that do not
inhibit program execution. The program that contains
compilation errors can be forced to execute by specifying
the DB=B parameter in the BASIC control statement.

EXECUTION-TIME DIAGNOSTICS

BASIC allows two modes of execution-time error
processing. During normal error processing, control is
returned to the operating system. If the program has
executed an ON ERROR statement, the program retains
control. The program can then inspect the error number by
use of the ESM function.

Errors 100, 106, and 115 can be recovered from only once.
Should these errors occur a second time during the same
execution period, the BASIC program aborts without
transferring control to the ON ERROR address.

Execution-time diagnostics are listed in alphabetical order
in table B-3. These messages are printed in the following
format:

message AT line-number

For ease of reference, diagnostics are listed by error
numbers in table B-4.

DAYFILE MESSAGES

Message

Significance Action

BAD CONTROL CARD
ARGUMENT-parm

BASIC COMPILATION
ERRORS compilation.

BASIC EXECUTION
ERROR

INPUT FILE EMPTY OR
MISPOSITIONED information.
FIELD LENGTH TOO
SHORT FOR BASIC

FL TOO SMALL FOR
EXECUTION

compilation.

The specified control statement parameter or
the parameter value is invalid.

Indicates that errors occurred during

An error has terminated program execution.
Input file is empty or positioned at end-of-
The maximum field length is too short to allow

The program compiled correctly but there was
not enough assigned memory for execution. This
condition is usually caused by excessive array
dimensions. This message only occurs in
compile-to-memory and execute mode.

Correct the parameter.

Correct the errors.

Correct the error.

Rewind the input file.

Increase field length.

Increase field length.

19983900 G

TABLE B-2. COMPILE TIME DIAGNOSTICS

Message Significance Action
BLANK FILE File ordinal or name missing in a Correct and rerun.
STATEMENT file statement.

BLANK CLOSE The CLOSE statement does not specify Correct and rerun.
STATEMENT which file to close.

DEF WITHIN DEF

DELIMITER
OVERFLOW

DUPLICATE LINE NO
END NOT LAST

FL TOO SMALL FOR
COMPILATION

FNEND MISSING

FOR NESTED TO0O
DEEP

FOR WITHOUT NEXT

ILLEGAL ARGUMENT
IN ASC

ILLEGAL BOUND

ILLEGAL CHARACTER

TLLEGAL
COMPARISON

ILLEGAL EXTERNAL
NAME
ILLEGAL FILE NAME

ILLEGAL FILE
NUMBER

ILLEGAL FN NAME

ILLEGAL LINE NO

A DEF statement occurs before the
current multiple-line function defi-
nition is terminated by FNEND.

More than three characters are
specified in the DELIMIT statement.

The same line number was used twice.

An END statement is placed prior to
the last statement.

The maximum field length allowed is
too small to allow compilation. The
more compilation options requested,

the more memory required. The B
option requires more memory than the L.

A multiple-line function is not ter-
minated by FNEND before the end of the
program.

FOR statements are nested more than
ten deep.

A FOR statement has no balancing
NEXT statement.

The argument in an ASC function is not
a character or a defined abbreviation
for a character.

An array bound declared in a DIM state-
ment is < 0 or > 131070. If OPTION
BASE 1 was specified, the array bound
cannot be = 0.

BASIC encountered an unrecognizable
character.

A numeric quantity was compared to a
string in an IF statement.

A name in a CALL statement does not
begin with a letter, or it is longer
than seven characters.

The specified name is not allowed as a
file name.

The numbfg in a FILE statement is < 0
or > (2i9-1). .

The user function name is not in the
form FNx or FNxS$.

A line number is > 99999.

Move the DEF statement outside
of the multiple-1ine function.

Specify three or fewer char-
acters.

Change one of the line numbers.
Remove the END statement and
replace it with a STOP state-
ment if necessary.

Increase field length.

Supply an FNEND statement.

Rewrite so that no more than ten
FOR statements are nested.

Supply a NEXT statement.

Replace the argument with a valid
one.

Replace the array bound with a
valid one.

Replace the character with a
valid one.

Replace the comparison with a
valid one.

Correct the name.

Replace the file name with
a valid one.

Replace the file number with
a valid one.

Correct the function name.

Replace the 1line number with
one < 99999.

19983900 G

TABLE B-2. COMPILE TIME DIAGNOSTICS (Contd)

Message

Significance

Action

— —————

ILLEGAL LINE REF

ILLEGAL MARGIN

ILLEGAL NUMBER

ILLEGAL OPERAND

ILLEGAL

REDIMENSIONS

ILLEGAL STATEMENT

ILLEGAL STATEMENT
WITHIN IF

ILLEGAL STRING

ILLEGAL USE OF
LEFT PAREN

ILLEGAL USING

INVALID BASE
STATEMENT

INVALID BASE
VALUE

INVALID CHANGE

LINES TRUNCATED

AT 150 CHARACTERS

LINES OUT OF

ORDER

MISSING LINE NO

NEXT WITHOUT FOR

NON IMAGE
REFERENCED

Referenced line number is incorrectly
written or > 99999.

The margin specified in a MARGIN
statement is < 0 or > 131070.

A numeric constant is incorrectly
written.

A string is used in an arithmetic
expression.

An array specified in a DIM statement

has been dimensioned in a previous DIM
statement, or a statement attempts to

change the number of dimensions (sub-

scripts) of an array.

A statement does not begin with a
recognizable word or is written
incorrectly.

The statement is not allowed as an
object of THEN or ELSE in an IF THEN
ELSE statement. The object of THEN
or ELSE must be executable.

A string constant is incorrectly
written.

An attempt was made to use an argument
with a system function when none was
required.

USING clause is not allowed where it is
written or it is not allowed at all.

OPTION BASE statement appears after the
DIM statement or array reference.

Base value is not O or 1.

CHANGE statement arguments are other
than string-expression T0 one-dim-
array or one-dim-array TO string-
expression.

-Some lines are greater than 150 char-

acters. Although lines were truncated,
program compilation continued.

Line numbers are not in ascending
order. :

A statement was written without a line
number. :

A NEXT statement has no balancing FOR
statement.

The Tine number referenced in the
USING clause is not an image statement.

Correct the line number
reference.

Specify the margin with a valid
value.

Write the constant correctly.

Write the expression correctly.

Delete the duplicate DIM state-
ments or use the proper number
of subscripts.

Rewrite the statement.

Replace the invalid statement
with a valid one.

Rewrite the string correctly.

Remove the argument.

Correct the placement of the
USING clause.

Place the OPTION BASE statement
before the DIM statement or
array reference.

Correct the value with the
OPTION BASE statement.

Replace invalid arguments with
valid ones.

Shorten the lines.

Renumber Tines in ascending
order.

Rewrite the statement with a line

number.
Supply a FOR statement.
Change the line number to one

that references an image state-
ment.

19983900 G

B-3

TABLE B-2. COMPILE TIME DIAGNOSTICS (Contd)

Message Significance Action
NOT ENOUGH The number of arguments in a function Reference the function with
ARGUMENTS reference is less than the number ex- with the proper number of

OBSOLETE FORM
PARAMETER LIST
CONFLICT

READ WITHOUT
DATA

RECURSIVE FN
REDEFINITION OF
COLLATE

SET VALUE ILLEGAL

TOO MANY
ARGUMENTS

TOO MANY FILES
TOO MANY FORMALS

TRANSFER INTO DEF

TRANSFER OUT OF
DEF

UNDEF INED IN REF

UNDEF INED LINE
REF

WARNING - FUNCTION
REDEFINITION

WARNING - FUNCTION
REFERENCE BEFORE
DEFINITION

pected by the function.

The statement form used is no longer
supported; compilation continues.

Too many or too few parameters for the
function reference; a string is used
where the function expects a number; or
a number is used where the function
expects a string.

The program contains a READ statement
but no DATA statement.

A user function calls itself. This is
not allowed.

The program contains more than one
OPTION COLLATE statement.

The value in the SET statement is spec-
ifie?]as a string or is not specified
at all.

The number of arguments in a function
reference is greater than the number
expected by the function. The number
of arguments in a CALL statement is
greater than 20.

More than 13 FILE statements are in
the program.

The DEF statement contains more than
20 formal parameters.

The statement refers to a line that
is part of a multiple-line function
definition.

A statement within a multiple-line
function definition refers to a line
number not contained in .the DEF...
FNEND block.

The user function referenced is
undefined.

The Tine number referenced does not
exist. Several statements can refer-
ence the same nonexistent line; only
the first reference is diagnosed.

A user-defined function was redefined
within the program; compilation con-
tinues.

A user-defined function was referenced
before it was defined with DEF; com-
pilation continues.

Remove the affected function

arguments.

Use proper statement form.
Replace the invalid parameter
Tlist with a valid one.

Include DATA statements.
Eliminate the recursion.
Remove the excessive OPTION
COLLATE statement(s).

Replace the invalid value with

a valid one.

Replace the argument 1ist with
one containing the proper number
of arguments.

Use fewer FILE statements.
Rewrite the DEF statement with 20
or fewer parameters.

Change the statement reference.

Change the statement reference.

Refer to a defined function.

Refer to a defined line number.

reference.

Move the function definition
ahead of the function reference.

19983900 G

TABLE B-3. EXECUTION TIME DIAGNOSTICS

Message 5:;§2r Significance Action

ARGUMENT IS POLE IN COT 148 The argument for the COT function Make sure the argument is
is a multiple of m; therefore, not a multiple of 7.
the results are undefined.

ARGUMENT IS POLE IN TAN 153 The argument for the TAN function Make sure the argument is
is a multiple of #/2; therefore, not a multiple of w/2.
the results are undefined.

ARGUMENT NEGATIVE IN LOG 154 The argument for the LOG function Make sure the argument is
is negative. positive.

ARGUMENT NEGATIVE IN SQR 160 The argument for the SQR function Make sure the argument is
is negative. positive.

ARGUMENT TOO LARGE IN COS 152 The argument for the COS function Make sure the argument is
must be less than 2.21069E14. less than 2.21069E14.

ARGUMENT TOO LARGE IN COT 149 The argument for the COT function Make sure the argument is
must be less than 2,21069E14. less than 2.21069E14.

ARGUMENT TOO LARGE IN EXP 156 The argument for the EXP function Make sure the argument is
must be less than 2.21069E14. less than 2.21069E14.

ARGUMENT TOO LARGE IN SIN 150 The argument for the SIN function Make sure the argument is
must be less than 2.21069E14. less than 2.21069E14.

ARGUMENT TOO LARGE IN TAN 15} The argument for the TAN function Make sure the argument is
must be less than 2.21069E14. less than 2.21069E14.

ARGUMENT IS ZERO IN LOG 155 The argument for the LOG function Make sure the argument is
is zero. nonzero.

ARRAY TOO SMALL IN CHANGE 163 Array in the CHANGE statement is Increase the size of the
not large enough to hold the array.
string length plus one word for
each character of the string.

AUTO RECALL STATUS 116 Internal error. Follow site procedures

MISSING for reporting and re-

solving system problems.

BAD DATA IN READ 126 A string was read when a number Correct the DATA state-
was expected, or vice versa. ment.

BAD FORMAT FIELD 127 The current data conversion field Correct the print image.
in the image is for string data
only, but the item to be printed
is a number, or vice versa.

BAD TAB ARG - 1 USED 197 A TAB function was issued that Change the TAB setting,
contained a bad argument. A tab or take no action.
of 1 (col 1) was assigned. Exe-
cution continues.

CHAIN FILE NOT FOUND 144 The file referenced in CHAIN does Check the spelling of the
not exist as a local or permanent file name.
file.

COMPILATION ERROR 119 The statement caused a compila- Correct the statement.

tion error; therefore, it cannot
be executed. This error occurs
only if the DB=B option is
specified.

19983900 G

B-5

TABLE B-3.

EXECUTION TIME DIAGNOSTICS (Contd)

Message

Error
Number

Significance

Action

CPU ERROR EXIT 00

CPU ERROR EXIT 01

CPU ERROR EXIT 03

CPU ERROR EXIT 05

CPU ERROR EXIT 06

CPU ERROR EXIT 07

DET USED BEFORE INV

DIVISION BY ZERO

ECS OR CY 170 PARITY
ERROR

107

108

110

112

113

114

162

125

101

An illegal instruction was exe-
cuted. Could result from an
error in a FORTRAN or COMPASS
subroutine.

Address is out-of-range. Can
result from an error in a FORTRAN
or COMPASS subroutine.

Address is out-of-range, or
infinite operand.

Indefinite operand or address is
out-of-range. Could result after
division of zero by zero if an ON
ERROR was used to continue execu-
tion. Could result from an error
in a FORTRAN or COMPASS subrou-
tine that modified the parameters
passed.

Indefinite or infinite operand.
Could result after division of
zero by zero if an ON ERROR was
used to continue execution.
Could result from an error in a
FORTRAN or COMPASS subroutine
that modified the parameters
passed.

Address is out-of-range, or in-
definite operand. Could result
after division of zero by zero if
an ON ERROR was used to continue
execution. Could result from an
error in a FORTRAN or COMPASS
subroutine that modified the
parameters passed.

DET without a parameter was

called before a square numeric
matrix was inverted by INV.

An attempt was made to divide by
zero. .

A hardware error occurred.

Correct the subroutine.
If there are no errors in
the subroutine, follow
site-defined procedures
for reporting software
errors or operational
problems.

Correct the subroutine.
If there are no errors in
the subroutine, follow
site-defined procedures
for reporting software
errors or operational
problems.

Correct the subroutine.
If there are no errors in
the subroutine, follow
site-defined procedures
for reporting software
errors or operational
problems.

Correct the calculation
that generated the faulty
number or change ON ERROR
code to correct the
faulty variable before
using it again, or cor-
rect the subroutine.

Correct the calculation
that generated the faulty
number or change ON ERROR
code to correct the
faulty variable before
using it again, or cor-
rect the subroutine.

Correct the calculation
that generated the faulty
number or change ON ERROR
code to correct the
faulty variable before
using it again, or cor-
rect the subroutine.

Before issuing DET, in-
vert a matrix (with. INV),
or supply a parameter to
DET.

Make sure no division by
zero occurs.

Follow site procedures
for reporting and re-
solving system problems.

B-6

19983900 G

TABLE B-3. EXECUTION TIME DIAGNOSTICS (Contd)
Message Eggggr Significance Action

END OF DATA 120 A READ statement was executed Check for end-of-data, or
after the internal data block was supply more data.
exhausted.

END OF DATA ON FILE 136 A READ# or INPUT# statement was Check for end-of-data, or
executed after file data was supply more data.
exhausted.

ERROR IN CHANGE 164 The length as specified in the Specify a valid length.
first element of the array that
is being changed to a string is
greater than 131070, less than O,
or an element is not a valid
character code.

FILE ALREADY OPEN 143 The file name specified in the Close the file before
FILE statement has been assigned attempting to open it
a file number in a previous FILE again.
statement and is still in use.

FILE CLOSED/UNDEFINED 141 The file number referenced does Check the file number or
not correspond to an active file. activate the file with a

FILE statement.

FILE NUMBER ALREADY IN 142 The file number specified in the Specify an unused file

USE FILE statement is already number.
assigned to an open, active file.

GOSUB NESTED TOO DEEP 123 More than 40 GOSUB statements are Nest 40 or fewer GOSUB
nested. statements.

HUNG IN AUTO RECALL 117 Internal system error. Follow site procedures
for reporting and re-
solving system problems.

ILLEGAL ACTION ON BINARY 175 A DELIMIT, MARGIN, OR SETDIGITS Do not attempt a DELIMIT,

FILE was attempted on a binary file. MARGIN, or SETDIGITS on a
binary file.

ILLEGAL ACTION ON CODED 171 A SET statement or LOC or LOF Do not attempt a SET, LOC

FILE function was attempted on a coded or LOF on a coded file.
file.

ILLEGAL CHAIN PARAMETER 145 A parameter in the CHAIN state- Form the parameter
ment is incorrectly formed, or correctly.
the referenced file is assigned
or connected to the terminal.

ILLEGAL CHARACTER 165 A string in a string comparison Eliminate the invalid
or a string that is referenced in character or change the
a CHANGE statement contains an mode.
invalid character; usually caused
by processing non-ASCII data in
ASCII mode, or vice versa.

ILLEGAL CHR$ ARGUMENT 196 Argument does not correspond to Correct the argument.
an ordinal in the collating
sequence.

ILLEGAL DATA ON FILE 135 An illegal number or string was Check data on the file.
encountered when INPUT from a
file was attempted; usually
caused by reading a string when a
number was expected.

19983900 G

B-7

TABLE B-3.

EXECUTION TIME DIAGNOSTICS (Contd)

Message

Error
Number

Significance

Action

ILLEGAL
INPUT

ILLEGAL

TLLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

TLLEGAL

ILLEGAL

ILLEGAL

TLLEGAL

TLLEGAL

ILLEGAL

DATA, RETYPE

FILE NAME

FILE NUMBER

INPUT ON FILE

LABEL

LPAD$S ARGUMENT

MARGIN

ORD ARGUMENT

OUTPUT ON FILE

RPAD$ ARGUMENT

RPT$ PARAMETER

SET VALUE

SUBSTR PARAMETER

133

139

138

137

170

192
131

194

130

193

191
172

169

An improperly formed number or
string was entered; usually
caused by entering a string when
a number was expected.

The file name is not allowed as a
NOS file name.

The file number referenced is
less than zero or is greater than
131071.

The input operation, READ or IN-
PUT, is not valid for the current
mode of the file (READ on a coded
file, INPUT on a binary file,

READ or INPUT on an output file).

The label referenced in a JUMP
statement or NXL function does
not exist, is greater than 99999,
or is the label of a REM
statement.

The LPADS numeric argument is
negative, indefinite, or
infinite.

Margin specified is outside the
allowable range of O through
131070.

The value of the ORD argument is
neither a valid character nor a
valid character mnemonic for
characters in the collating
sequence.

The output operation, PRINT or
WRITE, is not valid for the cur-
rent mode of the file (WRITE on a
coded file, PRINT on a binary
file, PRINT or WRITE on an input
file). An attempt to WRITE or
PRINT on a read-only permanent
file causes this error.

The RPAD$ numeric argument is
negative, indefinite, or
infinite.

The RPT$ parameter is negative,
indefinite, or infinite.

The SET value is negative, in-
definite, or infinite.

Parameters specified in the
SUBSTR function are outside the
legal range as determined by the
actual string length.

Reenter the entire line.

Choose another name.

Use a file number within
the proper range.

Use the RESTORE statement
to permit change of mode.

Correct the label.

Correct the argument.

Specify the margin within
the range of 0 through
131070.

Correct the argument.

Restore the file to
change mode.

Correct the argument.

Correct the parameter.

" Correct the parameter.

Specify parameters within
the allowable range.

19983900 G

TABLE B-3. EXECUTION TIME DIAGNOSTICS (Contd)
Message ﬁ;;g;r Significance Action

INDEFINITE OPERAND 111 An indefinite floating-point Correct the calculation
value was used in a calculation. that generated the faulty
Could result after division of number; change ON ERROR
zero by zero if an ON ERROR was code to correct the
used to continue execution. faulty variable before
Could result from an error in a using it again; or
FORTRAN or COMPASS subroutine correct the subroutine.
that modified the parameters
passed.

INFINITE OPERAND 109 An invalid floating-point number Correct the calculation
was used in a calculation. Could that generated the faulty
result from division by zero if number; change ON ERROR
ON ERROR was used to continue. code to correct the
Could result from an error in a faulty variable before
FORTRAN or COMPASS subroutine using it again; or cor-
that modified the parameters rect the faulty sub-
passed. routine.

INPUT WITHIN INPUT 195 INPUT statement includes a Eliminate one of the
function reference that attempts INPUT statements.
to execute another INPUT state-
ment. No diagnostic is returned
if the second reference INPUT is
in another file.

I/0 TIME LIMIT 106 Time 1imit exceeded. Increase the time limit.

MASS STORAGE LIMIT 118 Mass storage 1imit exceeded. Increase the mass storage

limit.

MATRIX DIMENSION ERROR 161 Dimension inconsistency in one of Correct the dimensioning
the MAT statements or the dimen- error.
sion is greater than 100 times
100 in the INV function.

MEMORY OVERFLOW 166 Field length exceeded. More field length needed.

NEGATIVE NUMBER TO POWER 158 An attempt was made to raise a Correct the error.
negative number to a noninteger
exponent.

NO FILE SPACE. ADD 140 A11 declared fill buffers are Add another FILE state-

ANOTHER FILE STMT used. ment or CLOSE a file.

NO FORMAT FIELD SPECIFIED 128 The print image does not contain Rewrite the print image
a data conversion field but the to include a data con-
print list specifies that data is version field.
to be printed.

NONNUMERIC STRING 167 The string in the VAL function is Make the string numeric.
nonnumeric.

NOT ENOUGH DATA, REENTER 134 Not enough data was entered in Either reenter the entire

OR TYPE IN MORE response to an input request. input Tine or enter a de-

limiter followed by the
additional data items.

XXX NOT IN PPLIB 103 System software malfunction. Follow site procedures

for reporting and re-
solving system problems.

19983900 G

TABLE B-3.

EXECUTION TIME DIAGNOSTICS (Contd)

Message

Error
Number

Significance

Action

ON EXPRESSION OUT OF
RANGE

OPERATOR DROP OR KILL

OPERATOR RERUN
POWER TOO LARGE

PPU ABORT

PP CALL ERROR

RANDOM ACTION BEYOND EOF

RANDOM FILE EMPTY

RETURN BEFORE GOSUB

STRING OVERFLOW

SUBSCRIPT ERROR

TAPE FILE IS NOT ALLOWED

TIME LIMIT EXCEEDED

TOO MUCH DATA, RETYPE
INPUT

UNSATISFIED EXTERNAL
REFERENCE

ZERO TO A NEGATIVE POWER

122

105

115
159

102

104

174

173

124

168

121

147

100

132

129

157

The expression in the ON state-
ment is negative, zero, or ex-
ceeds the count of line numbers.

The operator dropped or killed
the program.

The operator reran the program.

The exponent in an expression is
such that an overflow occurs.

A PPU abort occurred. The pro-
gram was terminated by an oper-
ating system-detected error.

Internal system error.

The SET value is greater than LOF
or a WRITE operation on a random
file attempted to extend the file
length.

A SET was attempted on an empty
file.

A RETURN statement was encoun-
tered with no GOSUB in effect.

An attempt was made to create a
string that contains more than
131070 (6-bit) characters.

An attempt was made to reference
an element outside the bounds of
an array.

An attempt was made to use a tape
file.

The program time Tlimit was
exceeded.

Too many data items were entered
in response to an input request.
A1l items entered on the last
type~in are ignored.

An attempt was made to execute a
CALL statement in compile-to-
memory mode.

Exponent in an expression is neg-

ative when the mantissa is zero.

Make sure the expression
is valid.

None.

None.

Use a smaller exponent.

Follow site procedures
for reporting and re-
solving system problems.

Follow site-defined pro-
cedures for reporting
software errors or
operational problems.

Correct the error.

Correct the error.

Add a GOSUB or remove the
RETURN.

Use two or more strings
that are shorter than the
Timit.

Use a correct subscript
value or specify a larger
array with a DIM state-
ment.

Use mass storage for the
file. Copy an existing
tape file to mass storage
before using with BASIC.

Increase the time limit.
Check the program for a
nonending 1oop.

Reenter the entire input
line. The exact number
of items requested should
be entered.

Use the B and GO options

on the BASIC control
statement.

Correct the error.

B-10

19983900 €

TABLE B-4. EXECUTION TIME DIAGNOSTICS BY ERROR NUMBER

ﬁ:;ggr Message ﬁ:;ggr Message
100 TIME LIMIT EXCEEDED 131 ILLEGAL MARGIN
101 ECS OR CY 170 PARITY ERROR 132 TOO MUCH DATA, RETYPE INPUT
102 PPU ABORT 133 ILLEGAL DATA, RETYPE INPUT
103 xx NOT IN PPLIB 134 NOT ENOUGH DATA, REENTER OR TYPE IN
MORE
104 PP CALL ERROR
135 ILLEGAL DATA ON FILE
105 OPERATOR DROP OR KILL
136 END OF DATA ON FILE
106 170 TIME LIMIT
137 ILLEGAL INPUT ON FILE
107 CPU ERROR EXIT 00
138 ILLEGAL FILE NUMBER
108 CPU ERROR EXIT 01
139 ILLEGAL FILE NAME
109 INFINITE OPERAND
140 NO FILE SPACE. ADD ANOTHER FILE STMT
110 CPU ERROR EXIT 03
141 FILE CLOSED/UNDEFINED
111 INDEFINITE OPERAND
142 FILE NUMBER ALREADY IN USE
112 CPU ERROR EXIT 05
143 FILE ALREADY OPEN
113 CPU ERROR EXIT 06
144 CHAIN FILE NOT FOUND
114 CPU ERROR EXIT 07
145 JILLEGAL CHAIN PARAMETER
115 OPERATOR RERUN
147 TAPE FILE IS NOT ALLOWED
116 AUTO RECALL STATUS MISSING
148 ARGUMENT IS POLE IN COT
117 HUNG IN AUTO RECALL
149 ARGUMENT TOO LARGE IN COT
118 MASS STORAGE LIMIT
150 ARGUMENT TOO LARGE IN SIN
119 COMP ILATION ERROR
151 ARGUMENT TOO LARGE IN TAN
120 END OF DATA
152 ARGUMENT TOO LARGE IN COS
121 SUBSCRIPT ERROR
153 ARGUMENT IS POLE IN TAN
122 ON EXPRESSION OUT OF RANGE
154 ARGUMENT IS NEGATIVE IN LOG
123 GOSUB NESTED TOO DEEP
155 ARGUMENT IS ZERO IN LOG
124 RETURN BEFORE GOSUB
156 ARGUMENT IS TOO LARGE IN EXP
125 DIVISION BY ZERO
157 ZERO TO A NEGATIVE POWER
126 BAD DATA IN READ
158 NEGATIVE NUMBER TO POWER
127 BAD FORMAT FIELD
159 POWER TOO LARGE
128 NO FORMAT FIELD SPECIFIED
160 ARGUMENT NEGATIVE IN SQUARE ROOT
129 UNSATISFIED EXTERNAL REFERENCE
161 MATRIX DIMENSION ERROR
130 ILLEGAL OUTPUT ON FILE

19983900 G

B-11

TABLE B-4. EXECUTION TIME DIAGNOSTICS BY

ERROR NUMBER (CONTD)

Error

5:::82\" Message Number Message
162 DET USED BEEORE INV
173 RANDOM FILE EMPTY
163 ARRAY TOO SMALL IN CHANGE
174 RANDOM ACTION BEYOND EOF
164 ERROR IN CHANGE
175 ILLEGAL ACTION ON BINARY FILE
165 ILLEGAL CHARACTER
191 ILLEGAL RPT$ PARAMETER
166 MEMORY OVERFLOW
192 ILLEGAL LPAD$ ARGUMENT
167 NONNUMERIC STRING :
193 ILLEGAL RPAD$ ARGUMENT
168 STRING OVERFLOW
194 ILLEGAL ORD ARGUMENT
169 ILLEGAL SUBSTR PARAMETER
195 INPUT WITHIN INPUT
170 ILLEGAL LABEL
196 ILLEGAL CHR$ ARGUMENT
171 ILLEGAL ACTION ON CODED FILE
197 BAD TAB ARG - 1 USED
172 ILLEGAL SET VALUE

B-12

19983900 &

GLOSSARY C

Abort -
The procedure to terminate a program or job when a
specified condition exists.

Alphanumeric -
The letters, digits, and special characters in the
computer character sets defined in appendix A, tables
A-1 and A-2.

ASCIl -
American National Standard Code for Information
Interchange, wused wunder NOS as the ASCI
128-character set with either 6- or 12-bit characters,
and under NOS/BE as the ASCII 95-character set with
8-bit characters.

BASIC -
Beginner's all-purpose symbolic instruction code, an
elementary programming language.

Batch Processing -
A processing method that accumulates and processes
together a number of related input items.

Breakpoint -
A designated location in a program where, if reached
during program execution, a break or suspension in
execution occurs.

Character Set -
The numbers, letters, and symbols having meaning in a
given device or coding system.

Compile -
The procedure that translates a program from a
high-level programming language, such as BASIC, into
machine instructions called object code.

Concatenate -
The procedure of uniting or linking a series of
characters; chaining.

Constant -
A value assumed to be fixed or invariable in a given
operation or calculation.

CYBER Interactive Debug (CID) -
The facility that externmally monitors and controls
execution of a program, usually from an interactive
terminal.

Debug -
The procedure to trace, detect, and eliminate
mistakes in a program or in any software.

Direct Access File -
The permanent file, itself, that is made local.

Display Code -
An internal code set that is used by CDC CYBER 70,
CYBER 170, and 6000 Series computers to represent
alphanumeric and special characters. (Refer to tables
A-1 and A-2 in appendix A.)

19983900 G

End-of-File (EOF) -
A boundary within a sequential file; the end of a file.

End-of-Information (EOI) -
The definition of the actual end of a named file.

End-of-Line (EOL) -
A special indicator that marks the end of each line or
card image. EOLs are automatically written on coded
files created by BASIC. See Coded Output.

End-of-Record (EOR) -
A special indicator that marks the end of a logical
record.

File -
A collection of data with an associated name.

Function -
A procedure that returns a value; invoked by a
function reference in an expression.

Indirect Access File -
A separate local copy of the permanent file (used
under NOS).

Input/Output (1/0) -
The equipment used to process data with a computer
or the data processed and produced by the computer.

Interactive -
A two-way exchange of information; alternating
input/output dialog; contrast with batch processing.

Interrupt -
The procedure to stop a running program in such a way
that it can be resumed at a later time. The interrupt
key depends on the terminal and system that is being
used.

Local File -
Any file assigned to a job; this includes all temporary
(indirect access permanent files), all direct access
permanent files, and all files that are not permanent.

Login -
The procedure to initially establish a terminal session.

Logoff -
The procedure used to end a terminal session.

Null String -
A data string that has a length of zero.

On-Line -
The condition when equipment communicates with the
host computer.

Parameter Variable -
A variable that is given a specific value for a
particular purpose or process.

Permanent File -
A file that remains in the operating system permanent
file system after the user logs off.

Record -
A collection of related items of data treated as a
unit. A complete set of such records can form a file.

Statement -
Each line of a program that begins with a line number.

String -
A sequence of contiguous characters or bits treated as
a unit.

String Variable -
A variable that holds string values.

Subscripted V ariable -
A representation for one value in an array of values;
consists of numeric and string variables.

Substring -
A character string that is part of another string.

Temporary File - ‘
A file that is released from the NOS system when the
user logs off. It is a local file of an indirect access

permanent file.

Time-Sharing -
The allocation of available computer time among all
users, such that each user has equivalent access to
system resources.

Trap (noun) -
The established mechanism for detecting a specified
condition and causing a transfer of control. In CID,
the location to which control is transferred is in CID
itself.

Trap (verb) -
The automatic transfer of control to a predefined
location upon the detection of some specified
condition.

Variable -
An established identifer that represents a value or
values that can change during program execution.

19983900 G

'NOS FILE HANDLING | D

L IR,

A file is a collection of information with an associated
name. A BASIC program is an example of a file. A BASIC
program frequently reads in another file containing data.
All or part of the output from a program can be stored in a
file instead of being printed at the terminal. This file can
then be listed on a teletypewriter or on a high-speed
printer, or simply used as data for another program.

NOS recognizes two types of files, local and permanent. A
local file is any file assigned to a job; this includes all
temporary and all attached direct access files. Before any
file can be used, it must be made local. A permanent file
is one that remains in the NOS permanent file system after
the system is logged off. There can be both a local and a
permanent copy of the same file. After the system is
logged off, the permanent copy is retained and the local
copy is released.

There are two types of permanent files, indirect access and
direct access. An indirect access file is used indirectly; it
is always a separate local copy of the permanent file that
is used. With a direct access file, the permanent file (not a
copy) is made local. (See figure D-1.) An indirect access
file is created by using the NOS system commands:
REPLACE and SAVE; a local copy is made available to the
user by either the OLD, GET, or LIB commands; the local
copy is updated by the REPLACE command and released
from use (but not from permanent storage) by the RETURN
command. A direct access file is created by the DEFINE
command; it is made local by the ATTACH command and
released from use by the RETURN command. The PURGE
command is used to remove from permanent storage both
direct and indirect access files.

When a file is made local, it becomes either a primary or a
local file. The local file established by a NEW, OLD, or LIB
command, under the BASIC subsystem, is always primary.
The NEW command creates a primary file; the OLD and LIB
commands obtain a primary file from an indirect access
file. There can be only one primary file and usually this
file is the program to be run. When the commands LIST,
SAVE, or RUN are issued, the operating system assumes it
refers to the primary file. The GET or ATTACH
commands establish a local file. To refer to a local file
with a NOS command, the file name must be specified, as
in: LIST, F=DAT, or SAVE,DAT. In SAVE,DAT, file DAT
is retained as a permanent file; DAT can be a primary or
local file. When the current primary file is released by
entry of the OLD, NEW, or LIB commands, all primary and
local files are released unless the ND (no drop) is included
in the command.

NOS FILE CONTROL COMMANDS

The following subsections include brief descriptions of
some NOS file manipulation commands. Specific
information can be obtained pertaining to permanent files
by using the CATLIST command described in the Network
Products Interactve Facility reference manual or in the
NOS Time-Sharing User's reference manual.

If the following commands are entered in batch mode, they
should end with a period. The following commands are
divided into those that access direct access permanent
files and those that access indirect access permanent files.

Local Files

(temporary) Commands Permanent Files
Commands

i oLD
LIST (';"::fl;‘; - Indirect Access
RETURN
SAVE
etc. G(’:‘
LIST,F=lfn”
RETURN, Ifn .
SAVE, Ifn Local ATTACH" Direct Access
etc.
* ifn is the name of a local file
* same copy
Figure D-1. NOS Files

19983900 G

D-1e

DIRECT ACCESS PERMANENT FILES

Figure D-2 illustrates the formats for the commands
DEFINE and ATTACH, which are used to access direct
access permanent files under NOS. The DEFINE command
creates an empty permanent file pfn with a local file name
(figure D-2). The ATTACH command makes a permanent
file pfn a local file (figure D-2). For a description of the
parameters not explained for ATTACH, see the DEFINE
command.

INDIRECT ACCESS PERMANENT FILES

Figure D-3 illustrates the formats for the commands that
access the indirect access permanent files under NOS. For
a description of the statement parameters shown in these
formats, see the DEFINE and CHANGE commands
(figures D-2 and D-3).

The SAVE command creates an indirect access permanent
file, permits a copy of the specified local file to be
retained on the permanent file system, and specifies the
subsystem to be associated with the file.

The GET command retrieves a copy of a specified indirect
access file for use as a local file. To reference the local
file by a name other than the pfn, the 1fn parameter is
used. The current primary file remains primary unless the
file name specified by 1fn is that of the current primary
file. In that case, the contents of the primary file are
replaced by a copy of pfn, which becomes the new primary
file. i

The OLD command requests a copy of the specified
permanent file as a primary file. When a specific
subsystem is associated with the file, it is selected
automatically. This occurs only if the file was originally a
primary file and was saved while a subsystem, other than
the null subsystem, was active.

e DEFINE,lfn=pfn/CT=n,M=mNA.

RM = read in modify mode
RA = read in append mode
E = execute file permission

® ATTACH, lfn=pfa/M=m,NA

ifn If DEFINE is to be used to create an empty direct access permanent file, Ifn (local file name) is
specified only to reference the file by a name other than its permanent file name. If DEFINE is to
be used to define an existing local file as a direct access file, Ifn is the name of the local file. Also,
if Ifn exists, its position is not altered.

pfn This is the permanent file name. If pfn is omitted, the system assumes kn = pfn.
cT Permanent File Category: '

P = private

S = semi-private

PU = public
M File or User Permission:

W = write permission

m = modify permission

NA If a resource is unavailable, NOS suspends requests until a resource is free.

Ifn=pfn This is used when desirable to reference an attached file by other than its permanent file name. If a
current temporary file is referenced as Ifn, the contents of that file are lost when the permanent file
is attached.

=M This indicates modify permission. If omitted, the system assumes read permission only.
NA This allows waiting for the direct access file to become available. If the file is currently being

accessed, the job is suspended. IAF uses a user break, such as CTL P, to terminate the request.
Enter STOP to terminate the request under the NOS Time-Sharing system.

Figure D-2. Direct Access Permanent File Commands

19983900 G

® SAVE, lfn=pfn/CT=n,M=m, ss=subsyst,NA.

® GET Mfn=pfn/NA.

® OLD,ifn=pfn.

® LIB|fn=pfn.

® REPLACE Mn=pfn/NA.

® CHANGE nfn=0fn/CT=n,M=m,ss=subsyst,NA .

CTand M

ofn This is the current permanent file name.

nfn This is the new permanent file name to be assigned.

These are to be specified only if they are to be changed. For a description of the command
parameters, see DEFINE command.

Figure D-3. Indirect Access Permanent File Commands

The LIB command requests a copy of specified indirect
access permanent files from the catalog of a special user
library; this file becomes a primary file.

The CHANGE command allows attributes of permanent
files to be changed without further operation of the file;
this is valid only for one originator of the file.

The REPLACE command permits the contents of an
indirect access permanent file to be replaced with the
contents of a local file. If pfn does not exist, a new
permanent file is created.

EXAMPLE OF FILE CONTROL
COMMANDS

Figure D-4 illustrates a series of programs that use the -

system commands to create, reference, list, and purge files
with a time-sharing terminal. The example is divided into
three main columns. The leftmost column contains a
transcript of the text entered and received at the
terminal. The center column represents the area of

19983900 G

temporary files. The center column is divided inte two
sections: the left section shows the life span of each
program (primary file) entered; the right section is the
area of the remaining temporary files and shows when
temporary files enter the working area and how long they
remain. The rightmost column represents permanent files.
It shows when a copy of a temporary file is made into a
permanent file and how long that permanent file exists.

Temporary files are created with the NEW command or a
copy of a file that already exists in the system. All
temporary files are released when they are logged off the
system. Local files include temporary and direct access
files assigned to a job.

Duration of a file is indicated by a solid vertical line. An
arrow point signals destination and termination. The
copying of a file from Ifn to pfn, or the reverse, is
indicated by a broken horizontal line.

For a complete explanation of systemm commands, consult
the Network Products Interactive Facility reference
manual or the NOS Time-Sharing User's reference manual.

D-3 @

Temporary Files Permanent Files
Keyboard Text Primary
File (OLD, Local (pfn)
NEW, LIB) (ifn)
NEW,PROG1 ‘ PROG1
READY.
090 FILE #1 = “WORK1”
095 FILE #2 = “WORK2"
100 WRITE #1,1,2,3
110 PRINT #2, “A", “B"
120 RESTORE #1
130 RESTORE #2
140 END
RNH WORK1 WORK2
RUN COMPLETE.
SAVE | U I R .
READY. >=PROG1
NEW,PROG2/ND PROG2 PROGH
READY. WORK1 WORK2
Y 9
145 FILE #1 = “WORK1” -
150 READ #1,X,Y,Z
160 PRINT X;Y;Z
170 END
RNH
1 2 3
RUN COMPLETE.
SAVE,WORK1=PERM1 ' ¢ 4 — — | — —|=PERM1
READY.
SAVE,WORK2=PERM2 & - — 4L L e PERM2
READY.
Y Y Y

NEW,PROG3 PROG3
READY.
175 FILE #3 = “PERM1”
177 APPEND #3
180 WRITE #3,4,5,6
190 RESTORE #3
200 END
GET,PERM1
RNH ~ PERM1 ¢+ — — |- — -4
RUN COMPLETE.
REPLACE,PERM1 N O I
OLD,PROG1 PROG] =€ —|— — — — — — 4 1 —8
READY. :
LNH
090 FILE #1 = “WORK1”
095 FILE #2 = “WORK2”
100 WRITE #1,1,2,3
110 PRINT #2, “A", “B"
120 RESTORE #1

Figure D-4. File Control Commands (Sheet 1 of 2)

® D-4 ' 19983900 G

Temporary Files Permanent Files
Keyboard Text Primary
File (OLD, 'szf:’)' (pfn)
NEW, LIB)
T T

130 RESTORE #2 PROG1 PROG1
140 END PERM1
READY. PERMZ.
PURGE,PROG1
READY. {
NEW,PROG4 PROG4
READY.
GET,NEW1=PERM1 NEW] — — — — 4+ 4+ — — — — i 3

READY.
200 FILE #4 = “NEW1”
210 RESTORE #4
230 READ #4, A
240 PRINT A;
250 IF MORE #4 THEN 230
270 PRINT “ALL OUT”
280 END
RNH

1 2 3 4 5 6 ALLOUT
RUN COMPLETE.
CATLIST

CATALOG OF USER007

INDIRECT ACCESS FILE(S)

PERM1 PERM2

DIRECT ACCESS FILE(S)
2 INDIRECT ACCESS FILE(S), TOTAL PRUS = 14.
0 DIRECT ACCESS FILE(S), TOTAL PRUS= 0.

READY.

Figure D-4.

19983900 G

File Control Commands (Sheet 2 of 2)

D-5 @

FUTURE SYSTEM MIGRATION GUIDELINES E

“

This appendix contains programming practices
recommended by CDC for users of the software described
in this manual. When possible, application programs based
on this software should be designed and coded in
confoermance with these recommendations.

Two forms of guidelines are given. The general guidelines
minimize application program dependence on the specific
characteristics of a hardware system. The feature use
guidelines ensure the easiest migration of an application
program to future hardware or software systems.

GENERAL GUIDELINES

Good programming techniques always include the following
practices to avoid hardware dependency:

e Avoid programming with hardcoded constants.
Manipulation of data should never depend on the
occurrence of a type of data in a fixed multiple such
as 6, 10, or 60.

e Do not manipulate data based on the binary
representation of that data. Characters should be
manipulated as characters, rather than as octal
display-coded values or .as 6-bit binary digits.
Numbers should be manipulated as numeric data of a
known type, rather than as binary patterns within a
central memory word.

e Do not identify or classify information based on the
location of a specific value within a specific set of
central memory word bits.

e Avoid using COMPASS in application programs.
COMPASS and other machine-dependent languages can
complicate migration to future hardware or software
systems. Migration is restricted by continued use of
COMPASS for stand-alone programs, by COMPASS
subroutines embedded in programs using higher-level
languages, and by COMPASS owncode routines used
with CDC standard products. COMPASS should only
be used to create part or all of an application program
when the function cannot be performed in a
higher-level language or when execution efficiency is
more important than any other consideration.

FEATURE USE GUIDELINES

The recommendations in the remainder of this appendix
ensure the easiest migration of an application program for
use on future hardware or software systems. These
recommendations are based on known or anticipated
changes in the hardware or software system, or comply
with proposed new industry standards or proposed changes
to existing industry standards.

BASIC3

BASIC users should anticipate changes to BASIC caused by
future availability of a new ANSI standard BASIC. All of
the following guidelines except the first anticipate the new
standard for BASIC.

19983900 G

C1K$ and DAT$ Functions
Do not dismantle values returned by the CLK$ and DAT$

functions; use the result as a whole. The order of fields in
the result might be different in a future version of BASIC.

ASC Function

Do not use the ASC function. Use the equivalent ORD
function instead.

SUBSTR Function

Do not use the SUBSTR function. Use the equivalent

substring notation instead.

DEF Function

Do not redefine a user-defined function within a program.
In the future, redefining a function might not be possible.

RND Function

Use the RND function without a parameter. The
parametric form might not be supported in future versions
of BASIC.,

CHANGE Statement

Do not use the CHANGE statement. Use string functions
or substring notation to manipulate characters. Do not
manipulate the numeric codes for characters.

END Statement

Use the END statement in all programs. Future versions of
BASIC might require the use of this statement.

IF. . . GOTO Statement

Avoid using this statement. Use IF THEN instead. IF
GOTO might not be supported in future versions of BASIC.

ON ne THEN Statement

Avoid using ON ne THEN Inj, Inp,...In,. Use ON
ne GOTO 1Inj, In2...lny instead. The ON ne THEN
form might not be supported in future versions of BASIC.

Obsolete Forms

Avoid using any statement or function that causes the
compile-time diagnostic OBSOLETE FORM. The BASE
statement, the CHANGE statement, and the SUBSTR$
function are examples of obsolete forms that should be
avoided.

E-l e

Collating Sequence
Do not rely on the display code collating sequence (native
collatng sequence in normal mode, non-ASCII character set

is in use). The display code collation order might not be
supported in future systems.

ANSI Form

If both an ANSI form and a non-ANSI form exist, use the
ANSI form. Non-ANSI forms might not be supported in
future versions of BASIC.

Exponentiation

Use the circumflex character (A) rather than two asterisks
(**) for exponentiation.

Multiple Assignments

Do not use multiple assignments. The form of such
assignments might change in future versions of BASIC.

Use of Blanks

Do not embed blanks within line numbers, keywords,
variable names, and any other elements of the language.

Separate Keywords and Language Elements

Do not run keywords and variable names together. A
statement such as PRINTT might not be supported in the
future versions of BASIC.

Referencing Functions

Define functions before referencing them. Future versions
of BASIC might require the function definition to appear
before the first reference to the function.

® E-2

Using Function Names as Variables

Do not use a function name as a variable within a function
definition (do not place the name on the right side of an
equals sign). This usage might not be permitted or might
generate code with a different meaning in future versions
of BASIC.

Presetting Variables
Do not assume that variables will be preset to zero or null.

Future versions of BASIC might not automatically preset
variables.

Simple and Subscripted Variable Names

Do not use the same name for array variables as for scalar
variables. The use of the same name faor both types of
variables is not supported by the ANSI standard for BASIC
and might not be supported in future versions.

Control Into FOR . . . NEXT
Do not transfer control into a FOR ... NEXT loop. Results

are unpredictable and future versions of BASIC might not
allow it.

Characters In Unquoted Strings

Use only the characters plus, minus, period, blank, digit,
and letter in unquoted strings. Future versions of BASIC
might only allow these characters, if other characters are
needed, use quoted strings.

File Numbers

Do not use file numbers greater than 255. Larger values
might not be supported in future versions of BASIC.

19983900 G

DIFFERENCES BETWEEN BASIC 3.5 AND BASIC 34 F

Lo —————————

BASIC 3.5, the subject of this reference manual, is a
version of BASIC 3.4 that was updated to conform to the
American National Standard (ANS) for Minimal BASIC.
Due to syntax and semantic changes to the product,
BASIC 3.5 is not 100 percent upward compatible with
BASIC 3.4. Therefore, some BASIC 3.4 programs operate
differently when compiled under BASIC 3.5. The following
text identifies these differences and, where possible,
provides suggestions for modifying the program to
compensate for the affected change. Differences between
3.4 and 3.5 that are extensions (do no effect existing 3.4
programs) are not listed. BASIC 3.4 binaries continue to
operate the same, except in those cases noted below.

ARRAY BOUNDARIES

Unless otherwise instructed, in BASIC 3.5, the lower
boundary (origin) of all arrays in a program is zero; in
BASIC 3.4, the lower boundary is one. Therefore, arrays in
BASIC 3.5 normally have one more element along each
dimension than the arrays in BASIC 3.4. The OPTION
statement using BASE n (was BASE statement in
BASIC 3.4) is provided to set the lower boundary of an
array to zero or one. Thus, if array subscripts are to begin
with element 1 rather than element 0, use OPTION
BASE 1 to change the origin to l. (See OPTION
statement.)

ROUNDING VERSUS TRUNCATION OF
NUMERIC VALUES

BASIC 3.5 rounds all index, subscript, or pointer values
that require integer values (for example, subscripts, TAB
arguments, substring indexes, and ON statement indexes;
BASIC 3.4 truncates these values to integer values. To
truncate numeric quantities in a BASIC 3.5 program, use
the INT function to force the truncation.

TRAILING BLANKS IN UNQUOTED STRINGS

OF DATA STATEMENTS AND INPUT REPLIES -

BASIC 3.5 ignores all trailing blanks in unquoted strings of
DATA statements and INPUT replies that use standard
delimiters. BASIC 3.4 returns all trailing blanks of
unquoted strings, unless the trailing blanks are at the end
of a line (a string not followed by a delimiter), then
BASIC 3.4 ignores the blanks., If trailing blanks are
important to a program, enclose all unquoted strings with
trailing blanks within quotation marks (for example;
STRING1, STRING2,"THEN END ").

INPUT VALIDATION

BASIC 3.5 validates all interactive responses to an INPUT
request as to data type, number of data items input, and
range of data values, before assigning any of them to the
program. BASIC 3.4 validates and assigns INPUT responses
one at a time. No programming changes can compensate
for this difference.

19983900 G

NOT ENOUGH DATA

When insufficient data is entered in response to an INPUT
request, BASIC 3.5 permits either the entire INPUT
response or only the additional items required to satisfy
the request to be reentered. To add data, begin the next
response with a comma. BASIC 3.4 only allows the
additional data required to be entered to complete the
INPUT request. No programming changes can compensate
for this difference. This BASIC 3.5 response also applies
to BASIC 3.4 binaries run under the BASIC 3.5 library.

NUMERIC DATA READ AS
CHARACTER STRING DATA

In BASIC 3.5, unquoted strings in DATA statements that
look like numbers can be read either as numbers or as
strings. In BASIC 3.4, this type of string can only be read
as numbers.

OUTPUT FORMATTING

BASIC 3.5 prints all integers greater than or equal to 1£7
in E Format (d.ddddddE+nn) if no other format is
specified. In BASIC 3.4, integer values up to 1lE9 are
printed in integer format.

PRINT ZONES

If a print zone is exactly filled in BASIC 3.5, the comma
separator causes the print mechanism to skip over the next
print zone causing spaces to be output; in BASIC 3.4, the
next print zone is not skipped if the current print zone is
exactly filled. In those cases where output must conform
to BASIC 3.4 output, replacing the comma separator with a
semicolon causes the print mechanism to be positioned at
the first character of the next print zone.

TAB POSITION

In BASIC 3.5, TAB(n) causes the print mechanism to be
positioned so that the next character prints in column n.
In BASIC 3.4, TAB(n) positions the print mechanism so that
the next character prints in column n+l. If positioning is
critical, add 1 to all TAB arguments in the equivalent
BASIC 3.5 program. .

NEGATIVE TAB ARGUMENT VALUES

When BASIC 3.5 encounters a negative TAB value (TAB(n)
where n<D0), it resets the TAB value to 1 and issues an
execution time warning diagnostic (error message
number 197). BASIC 3.4 ignores negative TAB values.
Change negative TAB values to positive TAB values in a
BASIC 3.5 program to compensate for this difference.

F-l1e@

BACKWARD TABBING

In BASIC 3.5, TAB(n) positions the print mechanism to
positon n on the next line, if n is less than the current print
position; BASIC 3.4 does not allow backward tabbing.

COLLATING SEQUENCE

ASCII is the standard collating sequence used by BASIC 3.5
for string comparison operations and for computing values
of the CHR$ and ORD functions regardless of the
character set being used. In BASIC 3.4, the collating
sequence depends upon the character set being used. It is
display code if a normal, non-ASCII character set is being
used; it is ASCII if an extended ASCII character set is
being used. In BASIC 3.5, the OPTION statement using
COLLATE can be used to select the collating sequence
native to the character set currently being used by the
program.

FOR . . . NEXT LOOP CONTROL VARIABLE

In BASIC 3.5, the value of the loop control variable, upon
normal exit from a FOR block via its NEXT statement, is
the first value not used; in BASIC 3.4, it is the last value
used. That is, in BASIC 3.5 the control variable value is
the last value used plus one additional STEP value (+1 when
no STEP value is specified), and in BASIC 3.4, the control
variable value is the last value used upon exit from a loop.

INPUTTING ARRAY DATA

BASIC 3.5 allows an entire array being read by a MAT
INPUT statement to appear on one INPUT line in row
order. A delimiter following the last item on the line
indicates that the response is continued on the next line.
BASIC 3.4 allows only one row of the array in each input
reply line. In BASIC 3.5, if only one row of the array is
entered, the diagnostic NOT ENOUGH DATA is received.
The data for the complete matrix can be reentered or the
remaining data can be entered to complete the matrix by
beginning the response with a comma. This BASIC 3.5
feature also applies to BASIC 3.4 binaries run under the
BASIC 3.5 library.

® F-2

REFERENCING DET BEFORE INV

Referencing the DET function before a matrix has been
inverted via the INV function is considered a fatal error by
BASIC 3.5 BASIC 3.4 simply returns a value of zero if no
matrix has been inverted.

REDIMENSIONING RESULT MATRICES

If required, BASIC 3.5 automatically redimensions a result
matrix to accommodate the result; BASIC 3.4 generates a
fatal error if the result matrix does not conform to the
previously specified dimensions. No programming change
can compensate for this difference. Redimensioning also
applies to BASIC 3.4 binaries run under the BASIC 3.5
library.

INVERTING A SINGULAR MATRIX

BASIC 3.5 does not diagnose as fatal error an attempt to
invert a singular matrix; BASIC 3.4 does diagnose this as a
fatal error. The DET (determinant) function must be used
in BASIC 3.5 programs to determine if the matrix was
singular or nearly singular; when DET returns a zero, it
indicates that the matrix is singular.

INVALID USE OF THE CHR$ FUNCTION

If the argument given to the CHR$ function is not the
ordinal of any character in the selected collating
sequence. BASIC 3.5 generates a fatal error; BASIC 3.4
returns a null string and no diagnostic. Use the ON
ERROR mechanism to simulate 3.4 under 3.5.

PRINT USING INTEGER FORMAT

In BASIC 3.5, values are rounded to an integer when
printing according to an integer PRINT USING image
field. In BASIC 3.4, these values are truncated. To force
truncated under BASIC 3.5, use the INT function in the
PRINT list.

19983900 G

IMPLEMENTATION-DEFINED FEATURES G

L e

BASIC, Version 3.5, is a revision of BASIC, Version 3.4.
BASIC 3.5 conforms to the American National Standard for
Minimal BASIC. The ANSI publication identifies some

features as implementation-defined. These features and
their definitions for BASIC 3.5 are shown in table G-1.

TABLE G-1. IMPLEMENTATION-DEFINED FEATURES

Item

BASIC 3.5 Definition/Comment

Initial value of numeric and string
variables

End-of-line (End of source line)

End-of-input reply
Precision of numeric constants
Range of numeric constants

Length of string constant

Length of Tline
Length of string associated with a string
variable

Precision of numeric value associated with
a numeric variable

Range of numeric value associated with a
numeric variable
End-of-print line

Print significance-width (d)

Print extra-width (e)

Length of print zone

Margin

Input-prompt

Numeric variables are preset to zero; string variables are
preset to null. However, your program should not depend
on this initialization. See Future System Migration
Guidelines, appendix G.

Indicated with carriage return when entering source lines
at a terminal, with end-of-card when entering statements
on cards. Trailing blanks are ignored by the BASIC com-
piler or removed by the operating system. Internally,
end-of-Tine is denoted by a zero-byte terminator.

Same as end-of-Tine.

Approximately equal to 13+ decimal digits. Not all stan-
dards of BASIC support 13 digits of precision because only
six digits are required.

Range can be from 3.13152E-294 to 1.26501E+322. However,
the standard only requires a range of 1E-38 to 1E+39.

Length is limited only by line length. Since line length
is longer for 3.5 than required by ANS, string constants
can be longer than required by ANS.

Length can be 150 characters; ANS requires only 72
characters.

Length can be 130, 170 6-bit characters; ANS requires only
18 characters.

Same as for precision of numeric constant.

Same as for range of numeric constant.

Internally, it is a zero-byte terminator; last two or more
6-bit characters of a word are zero.

Width is six digits, the minimum required by ANS. The d
controls the number of digits printed when the default
format is used.

Width is three digits. The minimum required by ANS is
two, but BASIC 3.5 uses three to accommodate the large
exponents available on CYBERs.

Length is 15 characters. The minimum required by ANS is
d+e+6=15.

Margin is 75 characters.

Prompt is "?", the same as recommended by the standard.

19983900 G

G-l 0

SAMPLE BASIC PROGRAMS H

The following sample programs illustrate some common
features of BASIC. They are not presented as models for
programming or mathematical techniques in problem
solving.

The program in figure H-1 illustrates the use of the DEF
and GOSUB statements to calculate the value PI by
evaluation of a series.

The program in figure H-2 illustrates the use of a
FOR...NEXT loop to calculate a table of factorials.

The program in figure H-3 illustrates the sorting of a list
of names (string variables) into alphabetic order.

The program in figure H-4 illustrates the inversion of a
Hilbert Matrix (n times n) by using BASIC matrix
operations.

The interactive terminal session shown in figure H-5
illustrates the CYBER Interactive Debug (CID) facility
under NOS. Responses entered are in lowercase letters.

10 PRINT "CALCULATE A VALUE FO@R PI"
20 PRINT

25 Z=100000

26 PRINT "NUMBER OF ITERATIANS;Z
27 PRINT

30 A=1

40 B=3

50 DEF FNA(D)I=(1/D)

60 DEF FN3(D)=(D-FNA(B))
70 DEF FNC(DX=(D+FNA(B))
80 Fax I=1TAZ

90 A=FNB(A)

100 GasuB 150

110 A=FNC(A)

120 GasSUB 150

130 NEXT I

140 GATOo 170

150 B=B+2

160 RETURN

170 PRINT "PI="";4%A

200 END

READY .

RUN

79705722+ 10.35+84.
PRBGRAM EXAMP

CALCULATE A VALUE FOR P1
NUMBER OF ITERATIGNS 100000

PI= 31416

10 A=1

50 Z=20

60 For I=1TQ Z

70 A=Ax]

75 PRINT "FACTORIAL'"3I1,A

80 NEXT I

100 END

READY .

RUN

75705722+ 1037437,

PRO RAM EXAMP2

FACT@RIAL 1 1

FACTORIAL 2 2

FACTORIAL 3 6

FACTORIAL 4 24
FACTORIAL S 120
FACTORIAL 6 720
FACTORIAL 7 5040
FACTORIAL 8 40320
FACTORIAL 9 362880
FACTARIAL 10 3628800
FACTORIAL 11 39916800
FACTORIAL 12 479001600
FACT@RIAL 13 6+22702E+9
FACTORIAL 14 B.71783E+10
- FACTORIAL 15 1.30767E+12
FACTORIAL 16 2.09228E+13
FACTORIAL 17 3.55687E+14
FACTORIAL 18 6 +40237E+15
FACTORIAL 19 1.21645E+17
FACTORIAL 20 2+43290E+18

Figure H-1. Using DEF and GOSUB Statements

19983900 F

Figure H-2. Using FOR...NEXT Loop

S PRINT °*UNS@ORTED LIST"
10 READ N

20 FOR 1=1TO N

30 READ AS(I)

40 PRINT ASCID)

SO NEXT 1

60 FOR I=1TO N-1

70 FOR J=I+1TO N

80 IF AS(I)<AS(J) THEN 120
90 LET T$=AS(I)

100 LET ASCI)=AS(D)

110 LET ASCJ)=TS

120 NEXT J

130 NEXT 1

135 PRINT

140 PRINT '*SORTED LIST"
150 FOR 1=1TO N

160 PRINT AS(]1)

170 NEXT I

180 STeP

200 DATA 8

210 DATA MARY>JOHN, SUE, JOE» JACK,BILL,TED,ANN
READY .

|Run

75705722« 103859,
PROGRAM EXAMP 3

UNSORTED LIST
MARY

JOHN

SUE

JeE

JACK

BILL

- TED

ANN

SORTED LIST
ANN

BILL

JACK

JOE

J@HN

MARY

SUE -

TED

Figure H-3. Sorting String Variables

| H-2

10 DIM A(20,20),B(20,20)
20 READ N

30 MAT A=CON(N,N)

40 MAT B=CON(N,N)

SO FOR I=1TG N

60 FBR J=1TO N

T0 LET ACI,J)=1/7CI+J-1)
80 NEXT J .

90 NEXT 1

100 MAT B=INV(A)

110 MAT PRINT B3

190 DATA 4

READY .

RUN

15705722+« 10.40.04.
PRQ RAM EXAMP4

16. -120. 240. -140.

-120. 1200. -2700. 1680,
240. -2700. 6480. -4200.

-140. 1680. -4200. 2800.

Figure H-4.

Using Matrix Operations

19983900 G

/basic
OLD, NEW, OR LIB FILE: old,dbl

READY.

debug(on) =

READY.
Tnh

100 A=2.1

110 B=A*A

120 C$="SUBSTRING ADDRESSING"
130 PRINT A,B

140 PRINT C$

150 END

READY.
rnh -

" Enters CID facility command while in the BASIC
subsystem.

CYBER INTERACTIVE DEBUG
? sb 1.110 ==

. Compiles and executes the BASIC program.

790

Sets breakpoint at line 110.

*B #1, AT L.110 —=

Program reaches the breakpoint.

? print a,b —=
2.1 0 —=

B=0 since line 110 is not yet executed.

?7 ¢cb,1.110 ==
? st line 1.110...1.120 —=—

Clears breakpoint at line 110.

Sets line traps.

? goto 100 —=
*T #1, LINE AT L.110
? a=2.3 =

Reaches line trap before line 110 is executed.

Assigns 2.3 to variable a.

' Resumes execution:

?7 go ==
*T #1, LINE AT L.120 —=
? b=30
? print a,b
2.3 30

? ct,* =

- | Assigns 30 to variable b.

- Clears all traps.

? goto 100 —=—
2.1 4.41
SUBSTRING ADDRESSING

Resumes execution at line 100.

*T #17, END IN L.150 —=
? print a,c$
2.1 SUBSTRING ADDRESSING
? a=20
? c$=c$(1:9) ==

Defaults trap at program termination.

? print a,c$

i Replaces c¢$ with substring of c$.

1 Lists all program values for program db1.

2.1 4.41
SUBSTRING ADDRESSING
*T #17, END IN L.150
? quit =

20 _ SUBSTRING
?7 v -
P.DB1 '
A = 20, B = 4.41, C$ = "SUBSTRING"
? goto 100 ==

Restarts execution at line 100.

SRU 11.172 UNTS.
RUN COMPLETE.

Terminates this CID session.

CID prompts for new command. User enters PRINT a, b.

debug(off) - Turns off CID.
READY.
Figure H-5. Using CID Under NOS
19983900 G H-3

INDEX

¥
“

ABS function 5-2
APPEND statement 7-6
Arithmetic
Arithmetic operators 2-5
Relational operators 2-6
Arithmetic expression evaluation 2-5
Array 1-6,3-3
AS parameter 12-4
ASC function 5-4
ASCII mode 5-4, 12-4, A-1
ASL function 4-8
ATN function 5-2
ATTACH command D-1

BASIC character set 2-1
BASIC control statement 12-1
BASIC functions (see Summary Card)
BASIC statements (see Summary Card)
BASIC subsystem 10-1
BATCH operations
Control statement 12-1
Deck structure 12-1
BATCH subsystem 10-1
BATCH terminal processing
NOS 12-7
NOS/BE 12-8
Binary I/O statements
Random access 7-2, 7-6
READ 7-7
WRITE 7-6
Blanks 2-1
Branching
GOTO statement 4-1
IF statement 4-2
IF...THEN...ELSE 4-2
ON GOTO statement 4-2
BRESEQ command 11-4

CALL statement 6-3

CHAIN processing 6-5

CHAIN statement 6-5

CHANGE command D-1

Character sets
63- or 64- A-1
NOS or ASCII 128- A-1
NOS/BE ASCIT 95- A-1

CHR$ function 5-4

CLKS$ function 5-4

CLK(x) 5-4

CLOSE statement 7-3

Coded format files
DELIMIT statement 7-10
Image 7-14
INPUT filename 7-2
INPUT statement 7-9
MARGIN statement 7-21
OUTPUT filename 7-3
PRINT statement 7-11
Standard print formats (numeric

and string) 7-12

PRINT USING statement 7-14

19983900 G

Comments
REM statement, remarks 3-4
Tail comments 3-4
Compound relational expressions 2-7
Concatenation 2-6
Constants
Numeric 2-2
String 2-3
COS function 5-2
Control statement parameter examples 12-7
COT function 5-2
CR 7-10
CVYBER Interactive Debug (CID)
Changing and testing program values
IF command for CID 9-6
LET command 9-5
CID Environment 9-1
Displaying program variables
LIST VALUES command 9-5
MAT PRINT command for CID 9-5
PRINT command for CID 9-5
Introduction 9-1
Other commands and features 9-6
Resuming program execution
GO command 9-3
GOTO command 9-3
Referencing BASIC line numbers and variables
Line numbers 9-2
Variables 9-2
Setting and clearing breakpoints and traps
Breakpoint commands ’
CLEAR BREAKPOINT 9-3
SET BREAKPOINT 9-3
Default traps
END 9-4
ABORT 9-4
INTERRUPT 9-4
Trap commands
CLEAR TRAP 9-4
SET TRAP 9-3

Data file usage

NOS 10-4

NOS/BE 11-4
DATA statement (BASIC 1/O) 1-4, 7-23
DAT$ function 5-4
Debugging 9-1
Decimal constants 2-2
Deck structures

Compile and execute 12-2

Compile, load, and execute 12-2
DEF statement 5-11
DEFINE command D-1
DELIMIT statement 7-10
DIM statement 3-3
Diagnostics

Compile time B-2

Dayfile B-1

Execution time

Message B-5
Error number B-11

Direct access file (NOS) D-2

Index-1 ®

EDITOR 1-15, 11-1
END statement 1-3, 3-5
Entering a program

NOS 10-1

NOS/BE 11-1
Error messages (see Diagnostics)
Error and interrupt processing

ASL function 4-8

ESL function 4-8

ESM function 4-8

JUMP statement 4-7

NXL function 4-8

ON ATTENTION statement 4-5

ON ERROR statement 4-7
EXP function 5-2
Exponential constants 2-2
Expressions

Arithmetic 1-4, 2-5

String 3-4

Relational 1-4, 3-5
External programs

CHAIN statement 6-5
External subprograms

CALL statement 6-3

File control commands D-1
Files and internal data blocks
APPEND statement 7-6
CLOSE statement 7-3
DATA statement 7-23
FILE statement 7-2
IF END statement 7-5
IF MORE statement 7-5
NODATA statement 7-4
RESTORE statement 7-4
File ordinal 6-1
FILE statement 7-2
FNEND statement 5-12
FOR statement 1-6,4-3
Format
Fields 7-16
Image
Fields 7-16
Order restrictions 7-18
Special cases 7-20
Output format, numeric 7-12
Output format, string 7-13
Print zoning 7-13
Statement structure 2-1
Functions
Mathematical functions 5-1
Referencing functions 5-1
System functions 5-3
String functions 5-3
User-defined functions 5-11

GET command D-1
GOTO statement 1-3, 4-1
GOSUB statement, branching 6-1

IF statement 1-5,4-2
IF END GOTO statement 7-5
IF END THEN statement 7-5
IF MORE GOTO statement 7-5
IF MORE THEN statement 7-5
IF... THEN... ELSE statement 4-2
Image statement
Definition 7-14
String format 7-13
Fixed-point format 7-17
Floating-point format 7-17

® Index-2

Image statement (contd)
Integer format 7-17
Neuter 7-17
Order restrictions 7-18
Sign and edit options 7-17
Special cases 7-20

INPUT statements
MAT INPUT 8-10
INPUT 1-8, 7-9

Indirect access file (NOS) D-1

INT function 5-2

Integer constant 2-2

JUMP statement 4-7

LENGTH (LEN) function 5-5
LET statement 1-2, 3-1
LGT function 5-2
Library D-1
Line numbers 1-2
LIST command D-1
Lists and tables 1-6
L.ocal files D-1
LOC statement 7-8
LOG function 5-2
Login procedure (NOS)
IAF 1-10
Time-sharing 1-12
Login procedure (NOS/BE) 1-12
LOF statement 7-8
Logical operators 2-7
L ooping ’
FOR...NEXT statements 4-3
LPADS$ function 5-5
LTRMS$ function 5-5
LWRCS$ function 5-5

MARGIN statement 7-21

MAT INPUT statements 8-10

MAT PRINT statements 8-11

MAT PRINT USING statements 8-12

MAT READ statements 8-10

MAT WRITE statements 8-9

Matrix arithmetic
Assignment 8-2
Addition 8-3
Subtraction 8-3
Multiplication 8-4
Scalar multiplication 8-4

Matrix declaration 8-1

Matrix definition 8-1

Matrix functions
Determinant (DET) 8-5
Identity matrix (IDN) 8-5
Matrix inversion (INV) 8-5
Matrix transposition (TRN) 8-5
One matrix (CON) 8-5
Zero matrix (ZER) 8-5

Matrix Input/Output (1/O) statements
MAT WRITE statement 8-9
MAT READ statement 8-10
MAT INPUT statement 8-10
MAT PRINT statement 8-11
MAT PRINT USING statement 8-12

Matrix operations 8-1

Matrix redimensioning 8-2

Matrix I/O 8-8

MAX function 5-2

MIN function 5-2

Multiple-line functions (DEF-FNEND) 5-12

19983900 G

ND D-1
Nested loops 4-4
NEW command D-1
NEXT statement 1-6, 4-3
NODATA statement 7-4
NOS file handling
Direct access permanent files - D-2
Indirect access permanent D-2
NOS commands
ATTACH D-2
CHANGE D-3
DEFINE D-2
GET D-3
LIBRARY 1-11, D-3
LIST D-1
NEW 1-11, D-1
ND D-1
oLD 1-11, D-3
PURGE D-1
REPLACE 1-13, D-3
RESEQ 10-4
RETURN D-1
RUN 1-11, D-1
SAVE D-3
NOS/BE commands
BRESEQ 11-4
SAVE 11-4, D-1
Numeric constant 2-2
NXL function 4-8

OLD command 1-11, D-1
ON ATTENTION statement 4-5
ON ERROR statement 4-7
ON GOSUB statement 6-2
ON GOTO statement 4-2
Operations
BATCH operations 12-1
BATCH terminal operations (NOS) 10-1
OPTION statement 3-2
ORD function 5-7
Ordinal file 7-3
Output
Example H-1
Numeric formats 7-12
Print zoning 7-13
String format 7-13

Permanent file access 7-2
Permanent file (NOS) D-1
POS function 5-7
Predefined functions 5-1
Primary file D-1
PRINT statements
MAT PRINT 8-11
PRINT 1-2, 7-11
PRINT USING 7-14
Print zoning 7-13
Program termination
STOP statement 3-4
END statement 3-4
PURGE command D-1

Quoted strings 2-3

Random access 7-2, 7-6
RANDOMIZE statement 5-3
Random number generation 5-1
READ statements
MAT READ statements 8-10
READ statement 1-4, 7-23

19983900 G

Redimensioning 8-2

Relational expressions 2-6
Relational expression oerators 2-6
REM LIST 12-7

REM statement (remarks) 1-2, 3-4
Remote terminals (TTY) 10-1
REM TRACE 9-1

Renumbering BASIC lines 10-4, 11-4
REPLACE command D-1

RESEQ command 10-4

RESTORE statements 7-4
RETURN statement 6-2

RETURN command D-1

RND function 5-2

ROF function 5-2

RPAD$ function 5-7

RPT$ function 5-8

RTRM$ function 5-8

RUN command D-1

Sample programs H-1
SAVE command D-1
Secondary file D-1
SETDIGITS statement 7-22
SET statement 7-7
SGN function 5-2
Significand 2-2
Simple relational expressions 2-6
Simple string variables 2-3
SIN function 5-2
Single-line functions (DEF) 5-11
SQAR function 5-2
Statement structure 2-1
STOP statement 3-4
String comparison 2-6
String concatenation 2-6
String constants 2-3
String expressions 2-5
STR$ function 5-8
String functions 5-3
String output formats 7-13
Subprograms 6-2
Subroutines
GOSUB statement 6-1
ON GOSUB statement 6-2
RETURN statement 6-2
Subscripted variables 2-3
Substring addressing 2-4
System functions 5-3

TAB function 7-13
Tail comments 3-4
TAN function 5-2
Temporary files D-1
Terminal operations
NOS 10-1
NOS/BE 11-1
Test and branch statements
GOTO statement 4-1
ON GOTO statement 4-2
IF statement 4-2
IF... THEN...ELSE statement 4-2
TEXT mode 10-1
TIM function 5-4

Unquoted strings 2-3

UPRCS$ function 5-9

User-defined BASIC subroutines 6-1
User-defined functions 5-11

Using data files 10-4, 11-4

USRS function 5-4

Index-3 @

VAL function 5-9 WRITE statements
Value assignment 3-1 MAT WRITE 8-9
V ariables WRITE 7-6

Simple, numeric 2-3

Simple, string 2-3

Subscripted 2-3

Substring addressing 2-4

® Index-4 19983900 G

CUT ALONG HERE = CUT ALONG HERE

BASIC VERSION 3 SUMMARY CARD BASIC STATEMENTS BASIC STATEMENTS (Contd) 19983900 6
Statement Format Function Page Ko. Statement Format Function Page Na.
APPEND #ne Allows the user to add additional information 7-6 MAT READ {12725+ -+ oM Reads matrices from {nternal data block 8-10
LANGUAGE ELEMENTS striry Strig af aphanumenic characters. to the end of an existing file. {lne Mx,mz,,..,mn} or reads matrices from file #ne in binary
format. Can be used for redimensionin
If the charsrter 15 to appear in the string, it must be CALL subrm (e e,...,020) Allows the user to access external subroutines 6-3 a matrix. (See Matrix Redimensioning.
BASIC CMARACTER SET pecifiad by twe Lonserutive " marks. by subprogram name and pass wp to 20 param-
eters to that subroutine. MAT PRINT M d m2 dmy d...d Prints matrices on a terminal or prints 8-11
{lne my ¢ mp d...d matrices in a coded format on specified file.
OPERATORS CHAIN se Exetules program on file specified by se. 6-5
] rogram can exist as binary or BASIC source. Tn,m ¢ m d...m d Matrices to be formatted to an image 8-12
N MAT PRINT USING { d g.. My d statement (1n) or an image (se) on a
ninnk Asrthmetic Operstors CHAIN #ne Executes program on file whose ordinal fs ne. 6-5 terminal.
Program can exist as binary or BASIC source. . "
Any ~haracter avsisble 16 the operat.ng system can be [poaentistion: ~ o nm d do.ompy Matrices to be formatted to an_ image 8-12
saed 1n data and string constants. CLOSE #ne Sets the nased file to the beginning nl Infor- 7-3 NAT PRINT #ne USING {se m d 3 do..My d} statement s n) or an image {se) on a
Divmion: ! matton and detaches it from BASIC to specified file.
reassignment by another FILE suta-ent.
VARIASLES Multphication: . ”,m, My Inputs matrices from a terminal or a 8-10
TA €4 €00en 1 Crestes a block of data internal to the BASIC 723 AT NPT (LR) fi%e fre.
Addgion; unary plus: . program.
Momanc Varaiiss ! v Bl e MAT WRITE #ne,my,mg,...,my Writes matrices in binary format on a 8-9
Subtraction; unary mirus: . DEF FNa [(svy,svz,...,5vp0)) sne Defines a new single-1ine numeric or string 5-11 specified file.
A rumeric verizbie conmista of s wmrgle siphsbetc (FMa$) function to be used within the BASIC N
character or a mngle aiphsbelic charmcter foiiowed by & OFF FMas [(sv),svp.....5v0)]=se program. NEXT snv Terminates a FOR...NEXT Toop and incre- 4-3
numeric charecter. Numeric varisbles are presst to zerc Relstionsl Operstors ments the value tested by the loop.
before program execution BEF FMa [(svy,svz,....5v20)) Defines the start of a new numeric or string 5-11
Equal to: = myitiple-line function. The end of the func- NODATA 1n Tests data pointer for increment beyond 7-4
OEF FNa$ ((svl‘svz,.“.svm)] tion definition is indicated by FMEKD. end-of -data block. Branches to In if
Swring Verisbies Not equal to: <>ot>< end-of-information fs encountered.
DELIMIT (chy),...,(ch3) Defines separuors between input items from 7-10
A string veriable consists of & single aiphabetic ch-n:m Grester than: > termina NODATA #ne, 1n Transfers pmgrn control to specified 7-8
followsd by a doller sign (§) or & single s Tine number file is positioned at
character and & rumeric charscler followed by » doxl.r Greater then or squal to: >:or:> DELIMIT #ne,(chy),....(chy) Defines separators between input items on 7-10 end-of-information,
son specified file.
Lesa than: < ON ATTENTION GOTO 1n Transfers contro] to In on runtine 4-5
Vartahim DIM m{ncy,...,mc3), ..., my(nc], ..., nc3) Declares the dimensions of an array 33 termina) interrupt.
Sebecripet Lew then or aqual to: <o variable; nc must be integer. ON ATTENTION THEN 1n Transfers control to 1n on runtime 45
A rumerc mbacripted verisble corsists of & mumeric 1] Specifies end of program; must be last 3-5 terminal interrupt.
sariadis olicwad by a mbectipt it bourded by parerthesis. Logieal Operston statement in program. N ATTENTION Turns on normal terminal interrupt ¥y
A strig mbectpted verisble corsists of & strirg varisble Logical negation: NOY FILE #ney=1fn;, fnepelfng, ... fneyelfny ?ﬂims file ordinal and equates it to a 7-2 processing.
followed & & oted et bounded by e name
" . " ON ERROR GOTO 1n Transfers control to In on runtime error. 4-7
Logical muftiplicetion or Intsrsection: AND
> Fuew Specifies the end of a mltiple-line 5-i2 ON ERROR THEN 1 Transfers control to In on runtise error a7
FORMAT FELD SPECIICATION Logical addrtion or union: oRr function definition. n er .
CHARACTERS ON ERROR Turns on normal error processing. 4-7
FOR snvene) TO nep { STEp "‘3} Begins a program loop. 4-3
§ Pumersc chersciar sbhabstic charactor, phany: Syme Operston wex ON ne GOSUB Iny, Inp, ..., Tng Permits a branch to a specific BASIC 6-2
meric - WIng, e,
String corcatanation: . 5OSU8 1n Transfers program control to a subroutine 61 subroutine 1ine number. raf-
$ Currency sign; flosting when mors than one "™ beginning .:0%1,‘ nusber indicated. erenced is dependent on the ulue of ne.
© Chack protact; lesding blarks replaced by * STATEMENTS AND FUNCTIONS 070 In Interripts the norma] sequence of progrm 41 N ne {gg} LIRS E:’mm ::‘n“:::::'ﬂ;’ :?m“:::‘: :‘; 42
execution ransfers program contro H
ne nuaber In} if ne=1, Tin¢ number In;
< Left-pmtify string; right truncats :,“:ﬁ" y". lnll::h':-m1.=1l:nl'n:‘mtnla- to indicated 1ine number. “ m-Z. and sn forth m'nn Tng. 2
> Right-mstity string; left truncets repressnt words or symbols mpplisd by the progremmer. I £R0 Ine {m} n T;": ‘":""‘:p:‘tﬂ:"t’;]‘:"tt"z """m"“ 75 BASE {o} [mu‘“ {srmm}] Sets the lower boundary of ﬂl (rrags b being 3-2
statement exct statemen
A Floating poit indwestor s Alphebetic identifior Cannot refer to an internal data block. oPTION MATIVE used by the program to dase 0 (zero,
STANDARD 0 to base 1, and selects the collating
. e prartedt for positive vekees: murus for regative o Numenc or string conetant o e {13 Transters progras contral to lne or) coLLATE {TANARD) [.usz {1] sequence R be used for string coma ison
- e executes statement stm if relat R
.] | ORD functions. Both or only one of these
Rienk printed for pomtive values; mirus for ragative o Any charactar or Catrisge return 10 1In :nm:::(ﬂ":s':r:e“ ﬁf’,‘;’“‘ falls thro"w functions can be selected.
 oreena et 4 Deamiter
son e ‘w“ m . Transfers progran control to Tne Ing 42 PRINT ¢y d e d...eq d Prints data at terminal. -1
L 1 porrt neerts . » !
st s et " b o, el T iy ey @5 il I necies sttt i el ruter st {11281 32 o200 4} ittt b rmttsd By o g satemert | 714
Negelive rahms wwimed i parsntheses; pomtive { Formet specihication Wne Iy or executes stmy if r is false. se.e) d ey do..end (1n) or an fmage (se) on a terminal.
ek . PRINT #ne,e; d e d...eq d Prints data on specified file. 7-11
; Latter 1F MRE tne | T9E8) 1 This stateaent 15 the logical converse of 1-5
DB DR .rmetted ‘o nagat;ve vahst; Lwo blanks for pasitive . the MODATA and IF END statements. PRINT #ne USING n,eq d ep d...ep d Output to be formatted by an image statement 7-11
I Logical file neme on Specified file,
R R ineertad for reqative value; two blanks for postive) (mage) Specifies output formats. 7-14
In Line rumber : character string RANDOMIZE Overrides the predefined mu:ﬂu of nndna 5-3
i ¢ " rumbers generated by the unc
m Matrix identifier {1- or 7-dimensionel arrsy) INPUT vi.vp,... ¥ Reads data from the terminal. 7-9 A . -
CONSTANTS READ ¥1,¥2,...,% Accesses data created by DATA statements. -
ra Numenc srrey mme INPUT #ne,v),vp,... . Vp Reads coded data from specified file fne. 7-9 A e " - vz
READ fne,vy,vp,...,V, Reads binary data from named file crea -
A rumeric constant consiste of an irt. o Nu ic corstant »1,V2 Vo
areial b in e range 126501k TOVE % TR com AU e Transfers control to statement where Vine a7 by WRITE FILE statements.
2113152 = 10-79% ang is sccurste 10 » maximum of 18 ne Numeric expression, constant, or varisble . NONE
dac imal digits. e, rew List, {0 } Controls optional source isting. 1247
+ Relationsl s pression [LEr) 1mv2maeTnd oe Assigns a value to 3 variable during 31
A string coratent conshata of & string of O ta 131070 6-bit v program execution. AL
charecters or 0 to 65935 6/12-bit characters ¢ displey sc String coretent REM TRACE, {PART Controls optional trace facility. 9-1
code. HARGIN ney Defines a right-hand margtn for output to 7-21 * LWoKe
se String expression, constant, or verisble a terminal,
ommen’ ; chy... 3-4
g Consmrn wr Symple rumeric varisble WARGIN #ne),ne; Defines a right-hand margin for output to 7.2 REN chy...chp Teneesants w‘:,‘,:.g;';';:,. 10 s
o specified file. non i Sager RN LIST o REM TRACE.
] nm Executable statsment .
)) NAT a-m Matrix assignment. 8- RESTORE Reinitializes data pointer to the first 7-4
Decima Conetarts v String varisble e — Matrix addition 83 word of the data block.
Simple variable -of - inf . -4
;anamn o Bmele WAT mymp-my Matrix subtraction. a3 RESTORE #ne Sets named File to begiming-of-information 7
v Varisbla identifier (simple, subscripted, numeric, or RETURN Resumes execution at statement following 6-2
Exponenual Comstants string) HAT Matrix multiplication. 84 most recently executed GOSUB statament.
« Constant, verisbls, function, or mumerical expression | MAT me(ne)*m Matrix scalar multiplication by value of 8-4 SET #ne Posittans a file pointer to the desired 747
anfes smofis ooFes anfas (] Coctoned stements are eptiont an expression. 1.m€2 relative word 1oc5¢1mﬂ;mc 3 to be ref-
rciosed elements are optional. statement.
n Dec imal digits 0 AT me18V(m) Inverts a matrix. 85 erenced by the next READ or g
Oni S d. -
€ Fxponent Only one element must be seincte MAT meTRN(m) Transposes matrix. &5 SETOIGITS ne Spectfles mmber of significant digits for 722
.. Repeat elements as needed.
s Rase 10 scsle factor MAT m=ZER [(nel[.nez])] Returns a matrix of all zeros. 8-5 STOP Terminates Bmgrm exe:uﬂon at places other 3-4
ement.
Swring Co MAT m-COM[{nel[,nez])] Returns a matrix of all ones. 8-5 than the ERD stat
79 Constents Writes data in binary format on specified 7-6
NAT m=10!|[(l\e1[,ne2])] Creates an identity matrix, 85 WRITE fne,e1,ez.--»en H rary '
“string"

CUT ALONG HERE

BASIC FUNCTIONS

BASIC FUNCTIONS (Contd)

Function Meaning Page No. Function Meaning Page No.
ABS(ne) Finds the absolute value of ne. 5.2 TAN(ne) Finds the tangent of ne where ne is an angle expressed in radians. 5-2
ASC(ch) Returns the ASCII code in decimal of the character in fts TIM(x) Returns elapsed time in seconds (x is a dummy argument). 5-4
ASC(abr) argument, 5.4

UPRCS(se) Returns str1n? se with a1l lowercase letters replaced by their 5-9
ASL{ne) Returns the line number of the statement at which the last terminal uppercase equivalents.
interrupt occurred. 4-8
USRS Returns the NOS 7-character user name {number). Under NOS/BE this 5-4
ATH(ne) Finds the arctangent of ne in the principal value range - functfon returns the string USERKUM,
w/e to + x/2. 5-2
VAL(se) Converts string se to its numeric value. 5-9

CHRS{ ne) Returns the character with decimal code (ordinal position in the 5-4
collating sequence) that corresponds to ne.

CLK(ne) Returns the time of day in hours and fractions of an hour in a
24-hour sca) 5-4

CLK$ Returns the time of day as a string. 5.4

€0S(ne) Finds the cosine of ne expressed in radians. 5.2 BASIC CONTROL STATEMENT

€0T(ne} Finds the cotangent of ne expressed in radians. 5.2 BASIC. GO0 Do ot exscuts compiisd program.

DATS Returns the date as a string. 5-4 BASIC(parameter-list)

DET or DET(m) Returns the determinant of the matrix most recenny inverted by I omitted Compile source progrem from file

" As omlnsd Source program and data files NPUT.
the INV function, or the determinant of matrix 5-2 contain non-ASCIT characters.
» 1 Compite source program from file

ESL(ne) ::;:::'s. :;;:cn?emmer of the statement that caused the most recent 4-8 AS Source program and data files contain COMPILE.

* ASCI charecters.

ESM(ne) Returns the error number associated with the wost recent program a-8 I=ifn Compile source program fram file ifn.
execution error. B omitted Do not produce relocatable binery. 3 omitted Read data from default fils INPUT.

EXP(ne) Finds the value of e to power of ne. 5.2 8-0 2

INT(ne) Finds the]'r“ Integer not greater than ne. 5.2 8 Write relocateble binary on file BIN. J=lfn Read date from default filo Ifn.
Exple: INT(5.95)%5 and INT(-5.%5)=-6. Bslfn Weits relocatable binsry on file Ifn. 30 Nodefault runtime data fle.

LEN(se) Determines current length of string se. 5-5

L&T(ne} Finds the base 10 Togarithm of ne; ne > 0; otherwise an execution BL omitted Suppress page ejects on output listing. K pmitted Write exscutiontime outet on

sult output file OUTI
error will cause the program to terminate. 5.2 BL Do not suppress pege ejects on output

LOC(ne) Returns the current word position in a file. 7-8 listing. K=lfn Write execution-time output on default

output file Ifn.

LOF(ne) Returns the length in words of the referenced binary file (ne). 7-8 DB omitted Do not sctivate the and trace

LOG(ne) Finds the natural logarithm of ne where ne > 0; otherwise an §-2 DB=0 festures. L omitted 1f bf}j‘ ’l‘;b' "’:"‘t e‘;’l‘l‘:“&;"m““;:
execution error will cause the program to terminate. on ault - outpu .

) Same as DB=B/DL. interactive job, suppress compile-time
output.

LPADS(se, ne) :;d:t:::;ngese out to ne characters by adding spaces on the left 5-5 DB-0/8 Force binery ration and/or program

. of L Write compile-time output on flle

LTRMS(se) Trims string se of all leading space characters. 5-5 errors. ouUTPUT.

LWRCS(se) Returns a string consisting of the se string value with all 5.5 DB=0/0L :‘g‘é’h:',r?“':ﬂc's":.:‘;‘:‘l @9 controlled L=lfn Write.complie-time output on file ifn.

2 nes.
uppercase letters replaced by thetr lowercase equivalents. L=0 Suppress compile-time output.
MAX(ney, ..., nezq) Returns the maximum element in the list. 5-2 08-0/10 ﬁﬁmﬁfm generstion of CID
LO omitted Write source listing on the file

WiN(ne,...,nex0) | Returns the mininum element in the 1ist. 5-2 DB-0/TR Traces ali ststements regardiess of Lo specified by the L parameter.

WXL (ne} Returns the line number of the statement where the program execution 4-8 REM TRACE dsbug lines. LO=5
15 to resume. OB=TR Same as DB=B/DL/TR. LO=0 Write object and saurce listing on the

ORD(se) Returns the decimal code (ordina) position) of a character in 5-7 file specified by the L parsmeter.

DB=ID Same ss DB=B/DL/ID.
string se in the collating sequence being used. See appendix A. LO=0/0 Write objact “lﬂﬁn mly on the file
POS(sep, sep,ne} Returns the position of string s u1th|n string se 5-7 specified by the L pi
e position search begins with gﬁt a2t 1f 1s‘not indicated, E omitted "“"m"."".‘:“”'""w‘":: ‘l":’:“:""’:!: LOSD Tumoff all list options.

P0S(sey, sep) the default is the first character. I LoD Tthen write. disgrostics 1o

N0 or Returns pseudo-random numbers from the set of numbers uniformly 5-2 OUTPUT.

RND(ne) distributed over the range 0 < RND < 1.0. For RND, the s. PD omitted Use the installation default prlm
sequence of random numbers is returned unless the predefined E Write compile time error diagnostics on deraity on the files specified by the L.
sequence fs overridden with the RANDOMIZE statement. fie ERRS, and K parameters.

If ne > 0, & random number sequence is initialized based on the E=lfn Write compile time error diagnostics on PD=6 Use & prirt density of & lines/inch an

value of ne and the first number of the sequence is returned. tile Ifn. the files specifisd by the L and K
parameters.

e e e o o oy Seduance of randm EL omittad Write warning diagnostics and fatal PO Use a print density of 8 lines/inch

established by an ne > O RND reference, a standard constant is EL-W complie-time dlagnostics on the file PD=8 on the files spacified by the L and K

used to initiate the sequence. specified by the E parameter. paremeters.

If ne < 0, the first-RND reference initializes a random number EL=F only fstal complla-time

sequence based on the time of day and returns the first ulun of d“’"‘""“ on the file specified by the PS omitted If PD is not specified, use iﬂl-lllﬂm

the sequence. Subsequent ne< O RND references return the E parameter. default page size for the file spec

number in the sequence. ty the L parametar. If PD is lp-:med,
use PS=PD*(default PS)/(default PD).

ROF(ne) or Finds the value of the first argument rounded to the number of 5-2 GO omitted 1 no B parameter it specified, execute

ROF(ne, ne) decimal places specified by the second argument. Omission of ne complied progrem without loading. 1f B PS=n Use a page size of n lines/page;
rounds variable ne to the nearest integer. parameter is specified, do not executs 4<n<32768,

complied progrem,
-7

RPAD$(se, ne) ::d:tm;ngse to ne characters by inserting blanks on the right 5 co Executs complled program, I o

compllation errors.

RPT$(se,ne) Returns the string created by repeating the se string ne times. 5-8

RTRMS(se) Trims string se of all trailing space characters. 5-8

SGN(ne) stigns a value of 1 if ne is positive; O if ne is 0; or -1 if ne 5-2
s negativs

SIN{ne) Finds the sine of ne where ne {s an angle expressed in radians. 5-2

SQR(ne) Finds the square root of ne where ne > 0, otherwise an execution 5-2
error causes the program to be terminated.

STR$(ne) or Converts numeric value ne to string representation. The result fs 5-8

STR$(ne, se) controlled by image string se, if present

TAB(ne} Moves print line to position ne. Can only be used in PRINT
statement, 7-13

CUT ALONG HERE

19983900 &

-—

- -

CUT ALONG LINE

-

AA3419 REV. 4,79 PRINTED IN U.S.A.

COMMENT SHEET

MANUAL TITLE: BASIC Version 3 Reference Manual
PUBLICATION NO.: 19983900 REVISION: G

NAME:

COMPANY:

STREET ADDRESS:

Qary: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

D Please reply D No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

FOLD

FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL —

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. []
L]

POSTAGE WILL BE PAID BY I
CONTROL DATA CORPORATION N
Publications and Graphics Division N
215 Moffett Park Drive R
Sunnyvale, California 94086]
|

L]

|

L |

FOLD FOLD

CUT ALONG LINE

BASIC CONTROL STATEMENT PARAMETERS

L -

Compiler Listable Output
L Compile-Time List File

omitted Default file OUTPUT.

L File OUTPUT.
L=Ifn File 1fn.
L=0 None.
LO Listing options
omitted Source listing on L.
or LO Parameter file.
or LO=S
LO=0 Object listing on L.

Parameter file.
LO=0/0 Object listing only on L file.

LO=0 None.
BL Burstable Listing Control
omitted
BL
PD Print Density Control
omitted Default on L and K.
Parameter files.
PD=6 Density 6.
PD=8 Density 8.
or PD
PS Page Size Control
omitted Default.
PS=n (nis 4 < n < 32768)

E Compile-Time Error File

omitted L parameter file, if no
L file, OUTPUT.
E File ERRS.
E=Ifn File 1fn.
EL Error Level Control
omitted Fatal and warning to
or EL=W E parameter file.
EL=F Fatal only to E file.

C iler Input
Ag ASCH Character Set

omitted Normal (non-ASCII).
or AS=0
AS Encoded and run in ASCIIL.

I Compile-Time Input
omitted File INPUT.
I File COMPILE.
I=1fn File Ifn.

19983900 G

Compiler Binary Output

B Binary File
omitted None.
or B=0
B File BIN.
B=Ifn File Ifn.
DB Debug, Trace, and Force Binary

Generation and/or Program

Execution

omitted None activated.

DB=0 Debug and trace not activated.

DB Default(DB=B/DL).

DB=0/8 Execute normally regardless
of compilation errors.

DB=0/DL Program tracing with REM Trace.

DB=0/ID Interactive debug (CID tables
and special code).

DB=0/TR Trace all statements.

DB=TR Trace added to default list.

DB=ID Interactive debug added to

default list.

Program Execution

AS

or

GO

or

DB

ASCII Mode
omitted Run in normal (non-ASCII) mode.
AS=0
AS Run in ASCIL.
Execution Control
omitted Execute without loading
if no errors.
GO Same as omitted.
GO=0 Inhibjts execution.

Execution-Time Input File
omitted Default file INPUT.

J
J=Ifn Default file 1fn.
J=0 None.

Execution-Time Print File

omitted Default file OUTPUT.
K Same as omitted.
K=1fn Default file Ifn.
Debug and Trace

(see Compller Binary Output)

Print Density Control

(see Compiler Listable Output)

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G

CONTROL DATA CORPORATION

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	F-01
	F-02
	G-01
	H-01
	H-02
	H-03
	Index-01
	Index-02
	Index-03
	Index-04
	RefCard-1
	RefCard-2
	replyA
	replyB
	xBack0
	xBack1

