CAL RUN
FOHTRAN
GUIDE

REVISION

UNIVERSITY OF CALIFORNIA, COMPUTER CENTER, BERKELEY

CAL RUN Fortran Guide

University of California

Computer Center
Berkeley

8/74

Preface to Revision 4

This revision represents a change in the intended purpose of this document.
Namely, material which is really relevant to the operating system instead

of to Fortran, is to be published separately. Enough operating system infor-
mation has been left here to enable simple Fortran runs to be set up and
interpreted, but, for example, detailed deecriptions of operating system
control statements have been left out.

A second change in intention is that the Guide no longer purports to des-
criBe compilers other than RUN. The Guide to Computer Center Services.con-
tains pointers to documentation of other available compilers, such as FTN
and AID.

As to the details of the changes, users familiar with the previous edition
will find that chapters 1-10 and 12 contain only minor revisions and correc-
tions. Chegpter 11 has been greatly expanded to provide an index of all sup-
ported functions and subroutines available on the standard system library to
users of RUN. Chapter 13 has been tailored more closely to the needs of
Fortran users. Chapters 14-17 have been extensively reorganized into the new
Chapters 14 and 15. The control statement descriptions and deck setups for-
merly contained in Chapter 15 are now published separately, and the infor-
mation about FIN in Chapter 14 has been eliminated; otherwise, the former
material has been retained, although in new locations. The old Appendix B
(Fortran IV incompatabilities between the IBM 7094 and the CDC 6400) has
been eliminated as have been all references to the 7094 and Fortran II. A
new Appéﬁdixlslists known RUN bugs of a more or less permanent nature.
Appendix C has been eliminated and the relevant material is now contained in

Chapter 11.

Preface to Revision 5.0

This revision is intended to bring the manual up to date for fall 1974. Due
to the exigencies of paper shortages, the use of colored sections has been
eliminated.

Changes in this edition are numerous azd distributed throughout the text.
Most of the changes are by way of clarifications rather than changes of
specification so that most of the information in the preceding edition is
still applicable but must be used with caution. Substantive changes appear
particularly in chapters 11 and 14.

iii

TABLE OF CONTENTS

Preface

Table of Contents

Introduction
Chapter 1 Fortran Programming
1.1 What is Fortran?
1.2 A Fortran source program
1.3 Problem solution using Fortran
1.4 Computer processing of a problem
1.5 Fortran coding line
1.6 TInput media’
1.7 Symbol conventions
Chapter 2 Elements of Fortran .
2.1 TFortran character set
2.2 Identifiers
2.3 Constants
2.4 Variables
2.5 Subscripted variable
2.6 Arrays
Chapter 3 Expressions
3.1 Arithmetic expressions
3.2 Relational expressions
3.3 Logical expressions
3.4 Masking expressions
Chapter 4 Replacement Statements
4.1 Arithmetic replacement
4.2 Mixed-mode replacement
4.3 Logical replacement
4.4 Masking replacement

Chapter 5 Type Declarations and Storage Allocation

5.1 Type declaration

2 Dimension declaration

3 Common declaration

.4 Equivalence declaration
5 Data declaration

iii

<

L
) [

]
NV EN R

R e

NN N)? NN
o N N N N e

%:u>%>u> w
= 00 O\ b= =
o

AR
L

11 |
oW =

U1U'IUIL'J'IU1U'|

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

vi

Execution Sequence Control Statements

6.1

GO TO statements
IF statements

DO statement
CONTINUE statement
PAUSE statement
STOP statement
RETURN statement
END statement

Program, Function, and Subroutine

~
=

NS N NN NN NN NN
HHHEHEREEROOINOULLEEWN

WD EHO

Subprogram types
Subprogram communication

Main program

Subroutine subprogram
CALL statement

Function subprogram
Function reference
Statement function

Library subprograms
Program arrangement
Variable dimensions in subprograms
ENTRY statement
EXTERNAL statement

BLOCK DATA subprogram

Overlay Stractures

8.1

o 00 00
LN

Overlays

Overlay execution
Overlay directives
Overlay calls

Input/Output Lists and Formats

O
[

Ao B0 LN e NNE, JF SN VE

O O WO O WO WY\

Input/output list

FORMAT declaration

Conversion specifications

nP scale factor

Editing specifications
Repeated format specifications
Format and list interaction
Variable format

NAMELIST statement

Input/Output Statements

10.1
10.2
10.3
10.4
10.5
10.6

Output statements

Read statements

File handling statements

File status testing statements
Buffer statements
ENCODE/DECODE statements

0\0\0\0\?\0\0\0\ <))
O~ NN WE

\J\J\.I\I\I\I\ITI'\I\I\I\J\I\I ~!
R HHEREEBEOO~NN U WRE R

NI W kO

2 D T R |

oloooc%ooo [e 2]
[NV B S

]
O

i
(Yo

~

1
N
o

9-27
9-28

10-1

10-2
10-4
10-7
10-8
10-9
10-11

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Predefined Functions and Subroutines

11.1 Table of Fortran Functions and Subroutines
11.2 Descriptive Notes for Functions and Subroutines

Fortran Statement List

Fileset Structures

13.0 Filesets
13.0.1 Fileset access
13.0.2 Fileset names
13.0.3 Fileset disposition

[
w
.

=

The logical structures of filesets
13.1.1 Logical record
13.1.2 File

13.2 The physical structures of filesets
13.2.1 Punched cards
13.2.2 Printed output
13.2.3 Magnetic tapes
13.2.4 Disk storage

How to Use the RUN Fortran Compiler

14,1 Flow of control
14.2 Output of sample job
14.2.1 MSFILE and JOB LOG
14.2.2 Source listing
14.2.3 Compiler storage map
14.2.4 The loader and the load map
14,2.5 Execution
14.2.6 Punched output
14.2.7 Magnetic tape Input/Output

14.3 Other job setups
14.3.1 Using precompiled binary decks
14.3.2 Compiling some programs and using
binary decks for others

Miscellaneous RUN Notes

15.1 The RUN control statement

15.2 The FET and I/0 buffer areas

15.3 RUN-COMPASS linkage

15.4 Error messages
15.4.1 RUN Fortran compiler diagnostics
15.4.2 RUN Fortran execution error messages
15.4.3 Operating system error messages
15.4.4 Arithmetic errors

15.5 Debugging and memory dump interpretation
15.5.1 Dump format
15.5.2 Identifying code or variables starting

- from absolute addresses

15.5.3 Finding absolute addresses starting

with addresses given in compiler listings

11-1

11-3
11-10

12-1

13-1

13-1
13-1
13-2
13-4
13-5
13-5
13-7

13-7
13-9
13-11
13-11
13-15

14-1

14-2

14-5

14-16
14-18
14-19
14-21
14-28
14-30
14.32

14-32
14-33

14-34

15-1

15-1
15-2
15-3
15-7
15-7
15-20
15-28
15-30
15-31
15-32

15-33

15-34

vii

Appendix A

Appendix B
Glossary

Index

viii

15.6 Hazardous names
15.6.1 Subprogram names illegal because of
implied calls
15.6.2 Subprogram names which collide with
library linkage
15.6.3 Subprogram names which collide with
library deck names

Hardware Representation of Data

A.1 6400 word structure
Table A 1Internal Data Formats
A.2 Integer arithmetic
A.3 Real, complex, double-precision arithmetic
A.4 Alphanumeric words
A.5 Logical operands
Table B Character String Data
A.6 Summary of numeric representations
A.6.1 Limiting values for integers
A.6.2 Limiting values for floating-point
(reals, double-precision, complex)
Table C Samples of Powers of Ten
Table D Octal floating Point to Decimal Conversion
for Numbers Near Unity

Table E Full Range Octal Floating Point to Decimal
Conversion

Table F Conversion Table of Octal-Decimal Integers

Table G Powers ot Two

Table H 6000 Series Character Codes

Table I Summary of Control Codes for Keyboard Terminals

Known RUN 2.3B3 Bugs

15-35

15-35

15-35

15-36

A-1

A-1
A-1
A-2
A-3
A-6
A-7
A-8
A-9
A~-10

A-10
A-11

A-12
A-14
A-15
A-19
A-20
A-21

B-1

I-1

Introduction

Fortran in general and RUN Fortran in particular

The Fortran programming language is a widely available high-level computer
language which is useful for expressing the solution to a wide variety of
problems. A special translator program (known as a compiler) accepts, as
input, programming statements written in Fortran and generates a correspond-
ing sequence of instructions in the particular 'machine language' acceptable
to the computer being used.

Ideally, Fortran exists independent of any particular computer or compiler.
Unfortunately, many different Fortran compilers for different computers have
been developed by different groups at different times, so that different ver-
sions of Fortran have inevitably evolved. Fortran programmers should be
aware that the American National Standards Institute, (ANSI for short) has
specified a 'standard' Fortran (see USA Standard FORTRAN X3.9-1966) which
contains only those elements of the language common to most existing com-
pilers. Thus, anyone developing a program which he may wish to operate in
anything other than the current Computer Center enviromment should consider
ANST Fortran and use only ANSI standard features in his program. However,
most compilers deviate in some respects from the standard with both exten-
sions and restrictions being common, so that adherence to the ANSI standard
does not eliminate, but only minimizes, the conversion problems encountered
when going from one computer (or compiler or installation) to another.

This Guide describes the Fortran language as it is accepted by a particu-
lar compiler, the RUN Fortran Compiler.

Organization of this Guide

This Guide attempts to incorporate all information relevant to writing and
running programs in RUN Fortran at the Computer Center. The approach is
as tutorial as is practical, with many examples and much explanatory text.
However, there are places where the desire for a complete reference docu-
ment, combined with lack of time, have resulted in a presentation which

is probably not accessible to the novice. Chapters 13 and 15 and the
appendices are mostly of this type, and they are probably best regarded as
reference material for the already knowledgeable. Even the more tutorial
Chapters 1-12 do not constitute a text and a novice programmer may wish

to consult one of the standard texts:

Organick, E.I., A FORTRAN IV Primer, Addison-Wesley, 1966
Lecht, C.P., The Programmer's FORTRAN II and IV, McGraw-Hill, 1966

Hull, T.E., Introduction to Computing, Prentice—-Hall, 1966

Didday, R.L. and R.L. Page., FORTRAN for Humans, West, 1974.

ix

The Guide is dividedinto several sections for easy reference. The first
sectiongdescribe the RUN Fortran language and later sections give informa-
tion relevant to actually running programs written in RUN Fortran.

Chapter 1-12 describe the RUN Fortran language and library.

Chapter 13 describes how information is structured in the 6400 computer by
the operating system. Familiarity with this information is not neces-
sary for most Fortran programs, but may be useful in cases where spec-
ialized input or output is performed and is essential for optimizing
program performance when much I1/0 is to be done.

Chapter 14 describes how to set up an actual run on the computer and repro-
ces and explains the output for a sample job. This information is
mainly of use to the novice, but much useful information appears here
which is not explicit anywhere else.

Chapter 15 gives miscellaneous information of a more or less esoteric
nature about RUN Fortran. It also contains a food deal of 'folklore'
which defied organization and for which no other place could be found.

Glossary gives definitions for some commonly used computer terms.

Appendices give details on how quantities are represented internally and
how arithmetic is performed on the 6400 (Appendix A) and lists known
bugs in the RUN compiler (Appendix B).

An Index is last.

Other documentation

A knowledge of material in the Guide to Computer Center Services is neces-
sary for any utilization of the Center's facilities. It contains such use-
ful items as where the computer is, how to get access to it, how much it
costs, etc. It also contains a key to other Computer Center publications
and facilities. These include other Fortran compilers, such as AID, For-
tran Extended (FTN), and facilities of the operating system over and above
those necessary for the straightforward use of RUN Fortran.

The other documents listed below also contain matetrial of interest to users
of RUN, but are not 'required reading':

CALIDOSCOPE Control Statements
OLDMSG
Computer Center Newsletters

These and other useful documents are available in the Computer Center
Library, 216 Evans Hall.

8-74

Textual Notation

The following notation conventions have been adopted in the body of the
text and in examples:

Numbers subscripted with 8, 10, and 2 indicate, respectively, octal,
decimal, and binary representations, thus:
= 76, = 111110, .
6210 7 8 2
The symbol O (zero underlined) indicates, in internal character repre-
sentation, a binary zero (all zero bits), not the BCD character zero.

Where necessary for the sake of clarity, the letter O is written as "]
to distinguish it from zero.

Where blanks need to be made explicit, they are indicated by the lower
case letter b.

Updating

As errors are found and corrected or modifications are made to the
system, the necessary changes are made to subsequent printings of

the RUN Guide. Unless a major revision is made which obsoletes the
previous edition, change lists or replacement pages will be available
from the Computer Center Library. Points where revisions have been
made are indicated by vertical bars in the margin of the page. Pages
which have been revised since an edition was issued are identified with
the date of the last revision.

Xi

FORTRAN PROGRAMMING I

1.1

WHAT 1S

FORTRAN? FORTRAN is a problem-solving tool, a language which allows
man to communicate with a computer without being forced
to learn "machine language", the special code to which a com-
puter responds. FORTRAN is a problem-oriented language;
that is, it closely resembles the language naturally used
in stating scientific and engineering problems. This allows
the computer user to focus his attention on the definition
of his problem and upon a plan for its solution.

FORTRAN is both a language and a compiler. As a language

it is largely machine-independent. That is, it can be recog-
nized by a large number of different computers regardless

of their internal workings.

As a compiler, FORTRAN is a translator for a particular com-
puter; that is, it is a computing procedure which will accept
the FORTRAN language and convert it to a form usable directly
by the computer. Because computers differ in internal char-
acteristics, the interpretation of various specifications in
the FORTRAN language may vary from computer to computer. Since
a FORTRAN compiler is also a program, it may be designed to
meet other criteria besides the language specificatioms, such
as speed of translation, which may restrict the language.
These reasons lead to differing versions of the FORTRAN
language. This document describes a particular version of
Fortran available at the Center, namely RUN Fortran.

One should remember that FORTRAN is not the natural language
of the scientist or engineer, nor is it the natural language
of the computer. Rather it is a compromise between the two,
with a form composed of a set of symbols and rules that can
be translated into the basic language of a computer. It is
less ambiguous and more rigid in form than a natural language.
It is also much smaller in scope, since the set of orders one
is able to give a computer is small.

1.2

A FORTRAN

SOURCE PROGRAM The syntactic units of the Fortran language, the "sentences',
are called statements. The rules for constructing these
statements are described in Chapter 1-10.

1-1

A source program is a sequence of statements, arranged line
after line, that specify a step-by-step procedure for solving
a problem. This procedure is usually interpreted and acted
on by the computer (i.e., executed) in sequential order,

just as English sentences are read in sequence.

The .types of statements which make up the program (and the
language) can be grouped according to the componments of the
computer or compiler which they instruct.

The syntax ("grammatical rules') for each type of statement
is described in the indicated chapters of this Guide:

Declarations instruct the compiler itself, providing infor-
mation that enables it to translate other statements pro—
perly. They assign space in memory, structure groups of
statements into subprogram units, and edit the information
entering or leaving the computer (Chapters 5, 7, and 9).

The remaining statements describe a procedure the computer is
to perform, and are called executable statements.

The arithmetic and logical statements define the basic com-
putational steps for most programs and assign new values
to variables in memory (Chapters 2-4).

Input-output (I/0) statements instruct one of the input-
output devices attached to a computer. They usually call
for data read into the computer from punched cards or for
printing results (Chapter 10).

Execution Sequence Control Statements are used to alter the
sequential mode of operation. Often values which have been
computed are used in deciding which sequence of instructions
is to be carried out (Chapter 6).

1.3

PROBLEM SOLUTION

USING FORTRAN To solve a problem on a computer by the use of the Fortran
language is a multi-stage process. The first two stages
are the problem definition and the analysis of a means of
solving it. The computer must be provided with a step-by
step method for reaching the answers. (A computer has no
intuition; each decision or calculation must be described

explicitly.)

In the third stage this procedure is written (coded) using
the Fortran language statements. As the coding proceeds,
more problem analysis may have to be done in order to
clarify ambiguous areas.

The coding stage produces a source program which is
usaally presented to the computer in .the form of punched
cards or through a keyboard terminal.

In the fourth stage, the computer first executes the Fortran
compiler with the source program as its input data. Next,
the user's subprograms are combined with each other and with
any required library subprograms by a program known as a
loader. Finally, the computer may execute the procedure
described by the source language statements, using any pro-
vided data. The calculated answers are usually printed by

the computer.

- In the final stage, the results must be scrutinized by the
programmer. If errors are found, recoding and/or redefinition
of the problem must be done. The execution and checking
stages are known as testing. The program may be corrected

and tested many times before a finished product is achieved.

A sample problem might be to find the real roots of the quad-
ratic equation axZ+bx+c=0.

Definition and Analysis: The coefficients will be read
from a data card. _To solve the equation, the quadratic
formula y = -b+Vb2—Aac will be used. Since only real
roots are to be found, a test will

be included for a negative discriminant. The results will
be printed along with the given coefficients.

Coding: The coding of the procedure could look as follows
(the lines beginning with "C.." are explanatory comments);

PR@GRAM R@PTS (INPUT,@PUTPUT)
C@MPUTE THE REAL R@@TS @F THE EQUATI@N
AXX%%24B*X+C=0

PRINT HEADING

PRINT 44
44 FPRMAT (1H1,7X,1HA,16X,1HB,16X,1HC,17X,5HR@@T1,13X, SHRGGT2)
C.. READ DATA CARD

10 READ 11,A,B,C

s NeNe!

c.. CALCULATE DISCRIMINANT
DISCRM=B*#2—4 . Q*A*(
c.. TEST FPR NEGATIVE DISCRIMINANT
IF (DISCRM)1,2,3
c.. NEGATIVE F@UND, PRINT MESSAGE
1 PRINT 22, A,B,C
ST@P
c.. HAVE ZER@ DISCRIMINANT, ROOTS ARE EQUAL

2 RPPT1=-B/ (2.0%A)
RAPT2 = RPPT1
GP TP &
cC.. CALCULATE R@@TS
3 RADICL=SQRT (DISCRM)

1-3

1.4

COMPUTER PRO-
CESSING OF A
PROBLEM

RAPT1= (-B+RADICL)/ (2.0%A)
: R@PT2=(-B-RADICL)/ (2.0%A)
C.. PRINT RESULTS '
4 PRINT 33, A,B,C, R@#T1,RO4T2
STPP
11 F@RMAT(3F15.7) ,
22 FPRMAT(1HO,3F17.7,*bRPSTSbAREDIMAGINARY#)
33 FPRMAT(1HO,3F17.7,5X,2E18.10)

Execution and Testing. The above program would be prepared

as described in sections 1.5 and 1.6, and presented te the com-
puter along with a set of operating system control state—
ments. The program would be executed with various sets of
data and the printed results would be checked against hand
calculations. If there are any errors, changes in the source
code or redefinition of the problem would be made.

The processing of the problem by the computer actually

occurs in two parts. The first is compilation, the trans-
lation of the source program into an object program by the
compiler. The second is the executing of this set of instruc-

-tions by the computer to give the results specified by the

source program and associated data. The stages are shown as
blocks in the diagram below.

Input Computer Output » Time
FORTRAN | Execution Listing of .
SOURCE of the fr-———-—ir program with
PROGRAM | FORTRAN possible
Compiler diagnostics

|

Ubject Program

DATA __,J Execution
(1f any) | of the]|
Object

Program (e, RESULTS

At each stage errors made by the programmer may be detected
by the computer. If the individual statements, their order,
or their reference to each other are inconsistent or have
the wrong form (i.e., incorrect syntax), the compiler may
issue a diagnostic report of the errors instead of allowing
the program to continue to the next stage.

A program may still be faulty even when successfully com-
piled. The compiler can only check the syntax rules for
FORTRAN statements described in this Guide. The meaning
imparted by the programmer to these statements cannot be

. . .
checked. Thus, a program which is syvntactical]_y correct

L1CCACd LAUS L s il puLaloealaan CiLiiTCu
3 v 7

may still fail to solve the given problem. It is not
guaranteed that the compiler will detect all errors of
syntax.

Errors occurring during execution are usually indicated by
incorrect results or by error messages given in the printed
output. But even if the results look correct, there is no
guarantee that they are the desired results. They must

be checked against known results, usually hand calculations,
to insure that the program does indeed solve the stated

problem.
1.5
FORTRAN
CODING LINE A FORTRAN coding line contains 80 columns* in which FORTRAN

characters are written one per column. The three types of
coding lines are listed below:

Line Column Content
Statement 1-5 statement number or blanks
1}

6 blank or zero

7-72 FORTRAN statement

73-80 identification field
Continuation 1-5 blank

6 Any character other than blank or

zero

7-72 continued FORTRAN statement

73-80 identification field
Comment 1 C

2-80 comments

Columns 73-80 are used only for labelling for the user's convenience. Their
presence is optional and any Fortran source program may be entered through
devices which allow only 72 characters per line.

1.5.1
Statement
Numben

1.5.2
Forntran
Statement

1.5.3
Statement
Continuation

1.5.4
Identification
Field

1.5.5
Comments

1.6
INPUT MEDIA

1.6.1
Punched Cards

1-6

Any statement may have an identifier called a statement

number. A statement number is a string of 1 to 5 digits
occupying any column positions 1 through 5. For usage,

see Section 2.2.2.

The actual statement information is written in columns 7
through 72. Statements longer than 66 columns must be con-
tinued to the next line. Blanks in these columns are ignored
by the Fortran compiler except in Hollerith fields or literal
strings, and thus may be included wherever desired for clarity
in reading a statement.

The first line of every statement must have a blank or zero
in column 6. If statements occupy more than one line, all
subsequent lines must have any characters other than blank
or zero in column 6. Continuation lines may be separated
by lines whose first 72 columns are blank. A statement may
have up to 19 continuation lines.

Columns 73 through 80 are always ignored in the compilation
process. Usually these columns are blank or contain sequencing
information provided by the programmer, which acts as card
identification when the program is to be punched on cards.

Each line of comment information is designated by a C in

column 1. Comment information may be placed anywhere in the
source program. It appears in the source program listing, but
it is not translated into object code. The continuation charac-
ter in column 6 is not applicable to comments.

It is necessary to transcribe the coded source program and
data onto a medium which is easily interpretable by the com-
puter. A detailed discussion of input and output media appears
in Chapter 13.

The most commonly-used medium is the punched card. Each coding
line corresponds to one 80-column card; the terms "line" and

"c ard" are often used interchangeably. A punch code is used

in each column of the card to indicate the letter, digit, or
special character which is represented by the column. This
code is -called Hollerith code and the information read into

the computer from such cards is called display code. Both of
these codes are detailed in Appendix A, Table H.

1.6.2
Keyboard
Terminals

1.6.3
Magnetic Tape

1.7
SYMBOL
CONVENTIONS

The format of a card used for statements in a source
program is described in Section 1.5 When cards are
being used for data, all 80 columns may be used.

The second most commonly-used input medium is a key-
board-actuated terminal. This is a device with a key-
board and a display mechanism connected to the computer
by wire. The most common keyboard terminal is a tele-
type machine but other devices with displays similar

to a television receiver are often used.

It is usual to restrict input and output to lines no
longer than 72 characters when keyboard terminals are
used.

Magnetic tape is often used for the storage of large
program or data files but not as an initial input medium
for programs. See Chapter 13 for details of magnetic
tape usage. ’

Because of the similarity between symbols, certain hand-
writing conventions are established when coding a prob-
lem. Is are usually written as Z and ones as / .
Letter Os are often written with a slash, @. Zeros are
seen as 0. Note that this convention (0 and @) is not
universally adopted. Many documents exist which use the
exact opposite convention. Beware! A preferred (and
unambiguous) convention is to write a cursive letter &
with the zero as 0.

Zs are usually written as # and twos as 2. A blank in
a line of coding, especially in a Hollerith field, is
represented by the symbol ¥ or b.

1-7

8-74

ELEMENTS OF FORTRAN 2
2.1
FORTRAN
CHARACTER SET Alphabetic: A to Z
Numeric: 0 to 9
Special: = equals) right parenthesis
+ plus , commas
- minus . decimal point
* asterisk $ dollar sign
/ slash (space) blank

2.2
TDENTIFIERS

2.2.1
Symbolic Name

(left parenthesis

All characters appear internally in display code (Appen-—
dix A). A blank is ignored by the compiler except in
Hollerith fields within DATA and FORMAT statements and
in Hollerith constants; otherwise it may be used freely
to improve program readability.

A symbolic name (also called an alphanumeric identifier)
consists of one to seven* alphabetic or numeric characters
beginning with a letter, with one exception. The combina-
tion of the letter ¢ followed by 6 or more octal digits is
recognized as an octal constant. Embedded blanks within
identifiers are ignored.

Examples:

ALPHA PEN IS UP (will be treated as PENISUP)
A1234 @123

HI THERE 9123456 (illegal as identifier)
@12KK3 M

Symbolic names are used as names of:

Formal parameters Labelled common blocks
Variables Filesets

Library subprograms Function: subprograms
Subroutine -subprograms Block data subprograms
Main programs NAMELIST group names

Input/Output units
Statement functions

* ‘ .)
The maximum allowed in standard Fortran is six characters. Seven character
names should not be used in programswhich are also to be used on other For-

tran systems.

2-1

8-74

2.2.72
Statement
Tdentifiens

2.2.3
Data Types

2.3
CONSTANTS

2.3.1
Integen
Constants

2.3.72
Octal
Constants

Statements are identified by unsigned numbers, 1-5 digits long,
placed anywhere in columns 1-5 of the initial line of a state-

ment. Blanks and leading zeros are ignored. Within one subprogram,
statement numbers must be unique and can be any number from 1

to 99999. The values of the statement numbers in a subprogram

do not affect the order in which statements are executed. State-
ment identifiers are optional for statements not referenced by
other statements.

Seven data types are used in Fortran: integer, octal,* real,
double precision, complex, Hollerith, and logical. Complex
and double precision data may be formed from real data. The
computer word structure for each data type is listed in Appen-
dix A. Both the range and precision of numeric data are sys-
tem dependent. Both are greater in RUN Fortran than in most
systems.

There are constants of each data type in Fortran. The type
of a constant is determined by its form.

An integer constant, N, is a string of up to 18 decimal digits
in the range -(2°° - 1) <N j_(259 - 1). The magnitude of the
result of integer addition or subtraction must not exceed this.
Subscript and DO-index calculations are limited to 2'7 - 1.

Examples:
63 3647631
247 464646464
314159265 574396517802457165

During execution, the maximum allowable magnitude when an inte-
ger is converted to real is 2*% - 1. This maximum applies to
the result or operands of integer multiplication or division.
High order bits will be lost if a value is larger, but no error
message is provided during execution. See Appendix A for range
limits expressed in decimal.

An octal constant consists of 6 to 20 octal digits preceded
by the letter @ or 1 to 20 octal digits suffixed with a B.
The forms are:

fn

e 0,
1" i

n, ... n.B
i

1

*
Octal is not a standard data type and should be avoided in programs which may
be used in other Fortran environments.

2-2

8-74

2.3.3
Real Constants

2.3.4
Vouble Precision
Constants

Both forms of the constant are assigned logical mode.

If the constant exceeds 20 digits, or if a non-octal
digit (8 or 9) appears, a compiler diagnostic is pro-
vided.

If there are less than 20 digits, they are right jus-
tified in the computer word. The high order bits are
filled out with zeros.

Examples:
$00007777777700000000 23742168
@7777700077777 . 777776B
$2323232323232323 777000777000777B
$000077
@7777777777777700

A real constant is represented by a string of digits;

it may contain a decimal point, or an exponent repre-

senting a power of 10, or both. Real constants may be
in the following forms:

n.n n. .n n.nE*s .nEts n.Ets

where n dis ga string of digits, and s 1is the ex-
ponent to the base 10. The plus sign may be omitted

if s 1is positive. The magnitude range of a non-zero

constant is approximateliy 10 29% to 101%%2 with appro-
ximately 15 significant digits. If the range is ex-
ceeded, a compiler diagnostic is provided. See Appen-
dix A for exact range limits.

Examples:

3.E1 (means 3.0 x 10! : i.e., 30.)

3.1415768 31.41592E-01
314.0749162 .31415E01
3.141592E+279 .31415E+01

nEts

A double precision constant is a string of digits repre-
sented internally by two words. The forms are similar to
real constants. The string is n; s 1s the exponent to

the base 10.

.nD*s n.nDis n.Dis nDts

2-3

8-74

The D must always appear, but the plus sign may be omitted
for positive s. The magnitude range of a nonzero constant
is the same as for real constants, but with approximately
29 significant digits; if the range is exceeded, a compi-
ler diagnostic is provided.

Examples:
3.1415927D 3141.593D3
3.1416D0 31416.D-04
3141.593D-03
2,3.5
Complex
Constants A complex constant is represented by a pair of real constants
separated by a comma and enclosed in parentheses (r,,r,); r
represents the real part of the complex number, r,, thé ima-
ginary part. Either constant may be preceded by a minus sign.
If the real numbers comprising the constant exceed the allowed
range, a compiler diagnostic is provided. A diagnostic also
occurs when the pair contains integer constants, including
(0,0).
Examples:
Fortran Representation Complex Number
(1.,6.55) 1. + 6551
(15.,16.7) 15. + 16.74i
(-14.09,1.654E~4) -14.09 + .00016541
(0.,~1.) ‘ 0. - 1.01
2,.3.6
Hollerith
Constants A Hollerith constant is a string of display code characters*
of the form nHf; n is an unsigned decimal integer repre-
senting the length of the field f . The maximum number of

characters allowed in a Hollerith constant of H form depends
upon its usage; n is limited to 10 characters when used in

an expression. The limit of ten characters is a character-~
istic of this system. On other systems the limit may be dif-
ferent. In a properly formed DATA statement n is limited
only by the number of characters than can be contained in up
to 19 continuation lines. Blanks are significant in the field
f . When n is not a multiple of 10, the last computed word
is left justified with blank fill.

Alternate forms are nLf (left justified) and nRf (right jus-
tified) Hollerith constants with true zero fill (not the char-
acter zero) for incomplete words. These alternate forms are
not defined in standard Fortran and should be avoided in pro-
grams to be used on other systems. The maximum number of

Use of characters outside the Fortran character set (see section 2.1) must be
tested for side effects in each context.

2-4

8-74

2.3.7
Logical
Constants

2.4
VARTABLES

characters allowed for these forms in expressions.’is 10.
If more than 10 characters are used in a DATA statement
for such a constant, only the last word has the zero
fill.

Hollerith constants may be used in an arithmetic replace-
ment statement, such as I=5HABCDE. They are stored in-
ternally in display code. Hollerith data should never
be stored in real varables; only integer variables should
normally be used. Great care must be taken in comparing
Hollerith data items because of the possibility of arith-
metic overflow.

Examples:

Constants Internal Form
6HCPGITE CAGIT@bbbD

4HERG® ERG@bbbbbb

3HSUM SUMbbbbbbb

5RSUMbb 00000SUMbb **
12HCPNTRPLDATA CPNTRPLDAT Abbbbbbbbb
5LSUMbb SUMbb0O0000 **

1H))bbbbbbbbb

3LbTIT , bTT0000000 **

A Hollerith constant which is used as an actual parameter
of a subroutine call or function reference has a word of
all zeros following the last word of the constant. See:
Hardware Representation of Data, Appendix A.

Logical constants may be in the forms:

.TRUE.
.FALSE.

A false constant is stored internally as plus zero. A
true constant is stored internally as minus zero (A word
of all one bits).* These are the only proper logical
values.

Fortran recognizes simple and subscripted variables. A
simple variable represents a single quantity; it refer-
ences a storage location. The value specified by the
identifier is always the current value stored in the
location. A variable is identified by a symbolic name
(Section 2.2.1).

Note the difference between a logical constant and a logical variable,

Section 2.4.5.

*%

0 represents a ‘true binary zero here, not the display code character

for 0.

2-5

8-74

2.4.1
Integen
Variables

2.4.2

Variables

2-6

The type of a variable is determined in one of two ways:

EXPLICITLY Variables may be declared a particular
type with the type declarations.
(Section 5.1)

IMPLICITLY A variable not defined in a type declara-
tion is assumed to be integer if the
first character of its symbolic name is
I, J, K, L, M, or N. All other variables
not declared in a type declaration are
assumed to be real.

Assuming no explicit typing affects these variables, we have:
INTEGER examples:

I15, JK26, KKK, NP326L, M
REAL examples:

TEMP, R@BIN, A55, R3P281

Integer variables can be typed explicitly or implicitly and
values may be in the range -(2°? - 1) < I < (2% -1).

The maximum allowable magnitude of an integer variable depends

on usage. The magnitude of the result of conversion from

integer to real, or of integer multiplication or division or

an integer being printed may not exceed 2*® - 1; the result of
integer addition or subtraction can be as great as 2°° - 1, Sub-
scripts and DO-indexes are limited to 217 _ 1. Each integer var-
iable occupies one word in storage. See Appendix A for range
limits expressed in decimal and internal formats.

Examples:
N NEGATE
ITEM K2S04
M58A M58

Real variables may be typed explicitly or implicitly; a non-
zero value must be in the approximate range 10~2°" §>|r| 5_10"'322
with approximately 15 significant digits. Each real vari-

able is stored in 6000 Series floating-point format and

occupies one word. See Appendix A for exact range limits

and internal format.

Examples:
VECTOR A62597 X
YBAR BARMIN X74A

The variable, r, may have any one of the following values:

_10+322 cre 21072%% |, r = 0, 10729" <r< 10+322

8-74

2.4.3

Double Precision ’

Varniables Double precision variables must be typed explicitly by a
type declaration. Each double precision variable occupies
two words of storage and can assume values in the same range
as real variables but with approximately 29 significant
digits. See Appendix A for exact range limits and inter-
nal format.

2.4.4

Complex Variabfes Complex variables must be explicitly typed by a type
declaration. A complex variable occupies two words in
storage (real part first). Each word contains a number
in real format. The ordered pair of real values (Cl,Cz)

represents the complex number: C1 + 4 C2 .

2.4.5 . ,

Logical Variables Logical variables must be typed explicitly by a type
declaration. Each logical variable occupies one word of
storage; it can assume the value true or false. A logi-
cal variable with a plus zero value (a binary 0) is false;
any other value, including minus zero (a word of all one
bits) is considered true.** (Caution: see Appendix A,
Logical Operands). When a logical variable appears in an
expression whose dominant mode is real, double, or com-
plex, it is not converted prior to its use in the evalua-
tion of the expression (as is the case with an integer
variable).

2.5

SUBSCRIPTED 4

VARIABLE A subscripted variable may have one, two, or three sub-
scripts enclosed in parentheses immediately following the
variable name.* More than three subscripts produce a com-
piler diagnostic. The subscripts can be unparenthesized
expressions in which operands are simple integer variables
and integer constants and operators are addition, subtrac-
tion, multiplication, and division only. Subscripted var-
iables may not appear in a subscript. If a program is:to be
‘used on other Fortran. systems, subscript expressions should be
limited to constants and linear functions of a single variable.

When a subscripted variable represents the entire array

as in a DIMENSI@N statement, the subscripts are the dimen-
sions of the array. When a subscripted variable references
a single element in an array as in an expression, the sub-
scripts describe the relative location of the element in
the array. The number of subscripts should be the same as
the number declared for the array.

*
The use of the identifier, FPRMAT, for a dimensioned variable should be avoided

because the compiler has difficulty distinguishings its use from a FPRMAT state-

ment (Section 9.2).

Kk)
Thus, it is possible to have both a logical variable and its negation considered

true if the variablé doeés ho¢ tontain a proper logical value, i.e., minus
zero for true, plus zero for false.

2-7

8-74

2.6
ARRAYS

2.6.1

Y
Sthucturnes

2-8

Simple Variable Subscripted Variable
FRAN A(TL,J)

P B(I+2,J+3,2%K+1)

Z14 Q(14)

EVAL STRING (3*K*ILIM+3)

I GPING(5-1,50/J)

An array is a block of successive storage locations which is

used for the storage of all subscripted variables with a given
name. The entire array may be referenced by the array name with-
out subscripts (in I/0 lists and subprogram references). Arrays
may have one, two, or three dimensions; the array name and di-
mensions must be declared in a DIMENSI@N {3ection 5.2), C@MMPN
(Section 5.3), or type declaration (Section 5.1) prior to the
first program reference to that array.

Each element in an array may be referencel by the array name with

a subscript notation, Program execution errors (with or without
an error message) may result if the value of a subscript is zero,
negative, or larger than the corresponding dimension declared for
the array. The maximum number of elements in an array is the pro-
duct of the dimensions.

In discussing arrays the following definitions are used: The .

dimension of an array is the number of subscripts in its decla-

ration. A column is a subset of the elements of a two-dimensional
array which have the same value for the second subscript. Thus
the first subscript is the row number and the second subscript

is the column number within a two-dimensional array. A plane

is the subset of the elements of a three-dimensional array which
have a given value for the third subscript. Thus a column is
effectively a one-dimensional array and a plane is effectively

a two-dimensional array.

Arrays can be of three forms. A one-dimensional array has its
elements stored in ascending memory locations; in the array de-
clared as A(9) and stored beginning in location L in memory :

Al > L A4 > L+3 A7 - L+6
A2 > L+l A5 > L+4 A8 > L+7
A3 > Lt+2 A6 - L+5 A9 - L+8

8-74

A two-dimensional array has its elements stored by
columns. in ascending locations; in the array declared

as A(_4,3) :
All - L A12 > 1L+4 Al3 - 1+8
A21 > L+1 A22 - 1L+5 A23 - 1L+9
A31 > T+2 A32 > L+6 A33 > L+10
A, > L+3 A, > L47 A, ~ L+1l
41 4z a3

A three-dimensional array has its elements stored by
column, row, and finally plane; in the array declared
as A(3,3,3):

Alil > L A121 > 1+3 . .. A133 > 1+24
A21l:+ L+1 A221 > L+4 .., A233 + L+25
A311 - L+2 A321 > L+5 . . . A333 > L+26

Thus, in order to step consecutively through the memory
locations allocated to an array, we would begin with the
element whose subscripts all equal one. We would then
add one to the first subscript at each step until its

- maximum value (the first dimension) is reached. On the
following step, we add one to the second subscript and
reset the first to one. When the second reaches its
maximum, we would similarly advance the third. When
this algorithm would require advancing to a non-existent

element, we are through,.

The planes are stored in order, starting with the first,
as follows:

A1 M1 Am

A211 A221 A231

8311 321 4331

112 122 132
212 7222 7232

Az1o Agpp B33

8-74

Array allocation is discussed further under the C@MM@N and
DIMENSI@N declarations. The memory location of an array
element with respect to the first element is a function of
the subscript values, the declared array dimensions, and
the type of the array.

Given DIMENSI@N A(L,M,N), the locations of A(i,j,k), with
respect to the first element A of the array, is given by
the array element successor function*

A+ (-1 +L * (j-1+M* (k-1))) * E .

The quantity enclosed by the outer parentheses is the
evaluation of the subscript expression. E 1is the element
length--the number of storage words required for each element
of the array. For real, logical, and integer arrays, E = 1.
For complex and double precision arrays, E = 2.

Example:

In an array defined by DIMENSI@N A(3,3,3), the loca-
tion of A(2,2,3) with respect to A(1,1,1) is:

Locn A(2,2,3)

]

Locn A(1,1,1) + (2-1+3(1+3(2)))

L + 22

The elements of a single-dimension array A may not be
referred to as A(I,J,K) or A(I,J). Diagnostics occur if
this is attempted.

- 2-10

The array element successor function for the one and two dimensional
arrays A(L) and A(L,M) are A + (i-1) * E and A + (i-1+ 1L * (3-1)) * E
respectively, where the symbols are as above.

EXPRESSIONS 3

3,1
ARTTHMETIC
EXPRESSTONS

An expression is a constant, variable (simple or sub-

.scripted), function, or a combination of these sep-

arated by operators and parentheses. The four kinds of
expressions in FORTRAN are: arithmetic and masking (Boolean)
expressions, which have numerical values, and logical and
relational expressions which have truth values. Each type
of expression is associated with a group of operators and
operands.

An arithmetic expression can contain the following operators:

+ addition

- subtraction

* multiplication
/ division

*x exponentiation

Operands may be:
Constants
Variables (simple or subscripted)
Evaluated functions
Expressions

Any unsigned constant, variable, or function is an arith-
metic expression. If X is an expression, then (X) 1is
an expression. If X and Y are expressions, then the
following are expressions:

X+Y X-Y
X*Y X/
-X X*%xYy

If op is one of the valid operators given above and X
and Y are valid expressions, then X op op Y 1s never
a valid expression.

3-1

3.1.1
Arithmetic
Evaluation

3-2

Examples:
A
3.14159
B + 16.427
(XBAR+(B(I,J+I,K)/3))
~ (C+DELTA*AERQ)
(B-SQRT (B**2-(4*A*C)))/ (2.0%A)
GR@SS—(TAX*0.04)

(TEMP+V (M,MAXF (A,B)) *Y**C) / (H-FACT (K+3)) (where V and
MAXF are functions)
A+-B (erroneous expression - invalid sequence of operators)

A+(-B)

The hierarchy of arithmetic evaluation is:

%% exponentiation class 1

/ division 1

% s s . class 2
multiplication

+ o
+ addition class 3

subtraction

In an expression with no parentheses or within a pair

of parentheses in which unlike classes of operators
appear, evaluation proceeds in the above order. In
expressions containing like classes of operators, eval-
uation proceeds from left to right. For example, A**B**C
is evaluated as (A**B)**C,.

Parenthetical and function expressions are evaluated first
in a right-to~left scan of the entire statement. In
parenthetical expressions within parenthetical expressions,
evaluation begins with the innermost expression. Paren-
thetical expressions are evaluated as they are encountered
in the right-to-left scanning process.

When writing an integer expression, it is important to re-
member not only the left-to-right evaluation process, but also
that dividing an integer quantity by an integer quantity

may yield a truncated result; thus 11/3=3. The expres-

sion I*J/K may yield a different result than the expression
J/K*I. For example, 4*3/2 = 6 but 3/2%4 = 4,

Examples:
In the following examples, R indicates an intermediate result in cvaluation:

A**B/C+D*E*F-G is evaluated:
A**B — R
1
Rl/C — R2
D*E — R
3

* —
R3 F R4

R +R_—
BT Ry

R5-G — R 6 evaluation completed
A**B/(C+D)*(E*F-G) is evaluated:

E*F-G — R1

+ ——
C+D R2
Avt —
B R3
113/112 — R,

R4*R1 — R5 evaluation completed

H(13)+C(I ,J+2)%(COS(2)) x%2 is evaluated:

R,*C(1,J+2) —~ R,
R3+}{13) —- R 4 evaluation completed

The following is an example of an expression with embedded parentheses.

A*(B+((C/D)-E)) is evaluated:
C/D — Rl
RI-E — R2
R,+B — R

2 3

R3"'A —= R evaluation completed

4
(A*(SIN(X)+1.)-Z)/(C*(D-(E+F))) is evaluated:
E+F — Rl
D-R1 — R2
' —
SIN(X) — R,

3-3

4 5
*
Rg * A - R6
e~ T Ry
R7/R3 > Ry evaluation completed
3.1.2
Mixed-Hede
Avritime tic :
Exprzssions Mixad-mode arithmetic with the exception of exponentiation

is completely general®; howevar, most applications probably npix

only the operand types: real and integer, real and double, or
real and complex. The relationship between the mode of

an evaluated expression and the types of operands it con-
tains is established as follows below.

Order of dominance of the operand types within an expres-
sion from highest to lowest:
Complex
Double
Real
Integer
Logical
Arithmetic expressions, except exponentiation and functions,
are evaluated by in-line arithmeti¢ instructionms.
The type of an evaluated arithmetic expreagioﬁ is the mode
of the dominant operand type. '
In expressions of the form A**B , the following rules apply:
If B 1is to ba praceded by a unary minus operator,
the form is A®*(-B),

If A 1is preceded by a unary minus operator, it is equi-
valent to the form: -(A**B).

For the various operand types, the typs relationships
of A**3 are:

Type of B
< 1_ R __D _C L
Wl 1 n a a n
T R R a D n n .e
:% D » » D 8 n ods of A**B
g f : : _ g : n jndicates an

invalid assumption

For example, if A is real and'B isinteger, the mode of A**B is reai.

Altheuagh this capabllity often provides more compact programs, its use can
complicate the debugging process considerably.

Examples:

1} Given real A, B, integer I, J. The type of expression A°DB-I+J is real
because the dominant operand type is real.

The expression is evaluated:

Convert 1 to real
Convert J to real
A*B — Rl real
Rl—l — R2 real
R +J —=

2 J R3 real

2) The use of parentheses can chﬁnge the evaluation. A,B,I,J are dcfined
as above. A*B-(I-J) is evaluated: ‘

I-J — R, integer
A*B — Rz real
Convert Rl to real

Rz—Rl — R3 real

3) Given complex C,D, real A,B. The type of the expressicn AX(C/D)+B
is complex because the dominant operand type is complex. The
expression is evaluated:

C/D — R complex
Convert A to complex
A*R] — 32 complex
Convert B to complex

R2 +B — R complex

3

4) Consider the expression C/D+(A-B) where the operands are defined in
3 above. The expression is evaluated:

A-B — Rl real

C/D — Rz complex

Convert Rl to complex

+ —
R1 R2 R3 complex

3) Mixed-mode arithmetic with all types is illustrated by this examplc:

Given: the expression C*D+R/I-L

C Complex
D Double
R Real

1 Integer
L Logical

The dominant operand type in this expression is complex; therefore, the
evaluated expression is complex.

Evaluation:

Round D to real and affix zero imaginary part.
Convert D to complex
C*"D — Rl complex
Convert R to complex
Convert I to complex
R/1 =R, complex
R ,_,+R 1 y
R;-L =R, complex)

- Rs complex

If the same expression is rewritten with parentheses as C *D+(R/I-L) the
evaluation proceeds:

Convert I to real

R/1 == R, real

RI-L — R2 real »

Convert D to complex

C*D == Ra complex

Convert R2 to complex

R2+R3 — 34 complex

3.2
RELATIONAL : '
EXPRESSIONS A relational expression has the form:
b Bl
and its result has a logical value.
* Note that logical variables are not converted if used in an expression

whose dominant mode is real, double, or complex.

3-6

The a's are arithmetic expressions; op is an operator belonging
to the set:

-EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to
.LT. Less than

.LE. Less than or equal to

A relation is true if aj and a, satisfy the relation specified
by op; otherwise, it is false. A false relational expression
is assigned the value plus zero; a true relational expression
is assigned the value minus zero (all one bits).

Relations are evaluated by subtraction of the two expressions
being related. Thus, for example, the evaluation of the rela-
tion p.EQ.q 1is equivalent to answering the question does

p - q = 0? The difference is computed and tested for zero.

If the difference is zero or minus zero, the answer is yes,
and the relation is true. If the difference is not zero or
minus zero, the relation is false.

The arithmetic values minus zero and plus zero are always con-
sidered equal in these comparisons.

Relational expressions are converted internally to arithmetic
expressions according to the rules of mixed-mode arithmetic.
These expressions are evaluated and compared with zero to deter-
mine the truth value of the corresponding relational expres-
sion. When complex (or double precision) expressions are tested
for zero or minus zero, only the real part (or most significant
part) is used in the comparison.

Take care when comparing non-integer values for equality.
It is often more appropriate to test for an absolute
difference less than some suitable tolerance value.

The operators of the above set cannot be used to relate
logical variables and constants. The operators given
under Logical Expressions, Section 3.3., should be used.

Order of dominance of the operand types within an expression
is the order stated in mixed-mode arithmetic expressions. For
example, relational expressions of the following forms are allowed:

I .,LT. R

I .LT. D

I .LT. C

I is integer, R is real, D is double precision and C

is complex. The I is converted appropriately before
the comparison is made. If the expressions are not con-

stants or single variables, they should be enclosed in
parentheses to eliminate ambiguities in mode conversion.

Examples:

A .GT. 16. R(I).GE.R(I-1)
R-Q(I)*Z.LE.3.141592 K .LT. 16
B-C .NE. D+E I .EQ. J(K)

(I) .EQ. (J(K))

3.3

LOGICAL

EXPRESSIONS A logical expression has the general form:
Ll op L2 op L3 cen

The terms L., are logical variables, logical constants, or rela-
tional expressions and op 1is either the logical operator .AND.
indicating conjunction or .OR. indicafing disjunction.

The logical operator .N@T. indicating negation appears in the form:

.N@T. Ll

If the value of the expression* is equal to plus zero,

the logical expression has the value .FALSE. . All other
values are considered true. Thus, it is possible to have
both A and .NOT. A be true if A does not contain a proper
logical value.

The hierarchy of logical operations is:

First N@T.
‘then .AND.
then .@R.

A logical variable, logical constant, or a relational expression
is, in itself, a logical expression. If L, ,L, are logical ex-
pressions, then the following are logical expressions:

.N¢T.Ll
L. .AND.L

1 2

Ll.$R.L2

If L is a logical expression, then (L) is a logical expres-
sion.

If Ll,L2 are logical expressions and op is .AND. or .PR., then

Ll op op L2 is never legitimate.

See Appendix A, Logical Operands.

3-8

N@#T. may appear in juxtaposition

. only as follows:

L. .AND. NPT L,

"1
L, .gR. .NgT. L,
L ;AND.(.N¢T. el)

L, .¢R.(.N¢T.

-N@T. L1 .PR. ...

-N@T. Ll -AND. ...

with .AND. or

#R.

.N@T. may appear with itself only in the form .N@T.(.N@T. L);
other combinations cause compilation diagnostics.

If L,, L, are logical expressions, the 1ogica1 operators

are defined as follows:

.N¢T.L1 is true only if L
L, -AND. L2 is true only if L
by ofRo 1, e prue only s L

DULIL dLle Lliue, [%

1 is false

,L, are both

1°72

true

is true, or

LAl aan
LdldE,

These relations are summarized in the table below where T

represents true and F is false.

L, L, | Lj.AND.L, L;.#R.L, .NfT. L,

T T T T F

T F F T F

F T F T T

F F F F T
Examples:

1) B-C<A<B+C is written

B-C.LE.A.AND.A.LE.B+C

2) FICA greater than 176.0 and PAYNMB equal to 5889.0

is written

FICA.GT.176.0.AND.PAYNMB.EQ.5889.0

3) An expression equivalent to the logical relation-
ship (P > Q) may be written as:

.NBT.P.#R.Q

3-9

3-i0

1-73

The masking expression is a generalized form of the logical
expression in which the variables are of types other than

logical.*

In a FORTRAN masking expression, 60-bit logical arithmetic
is performed bit-by-bit on the operands within the expres-
sion. The operands may be any type variable, constant, or
expression. No mode conversion is performed during evalua-
tion. If the operand is complex, operations are performed
on the real part. The masking operators are identical in
appearance to the logical operators, their hierarchy is the
same, and have the following definitions:

.NZT. complement the operand

.AND. form the bit-by-bit logical product of two
operands

.@R. form the bit-by-bit logical sum of two operands.

The operations are described below:

P v p_.AND. v p fR. v .NPT. p
1 1 1 1 0
1 0 0 1 0
o 1 0 1 1
0 0 0 0 1

Let B; be masking expressions, variables or constants of any type. The following
are masking expressions: ‘
. N T L]
¢T. B,
B, . .AND. B

1 2
Bl .PR. Bz

If B is a masking expression, then (B) {a & masking expression.

NAT. may appear next to .AND. or .@R. only as follows:

AND. .N@T.

$R. NPT,

AND. (NT. ..
PR, (NST. ..)

Masking operations may also be performed by the AND, @R, or QﬁhPL functions.

Masking expressions of the following forms are evaluated from left to right.

A AND. B .AND. C.
A .¢n. B .¢n. C..

Arithmetic expressions contained in masking expressions should
be enclosed in parentheses.
Examples:

A 77770000000000000000 octal constant

D 000000007 77777777777 octal constant

B 00000000000000001 763 octal form of integer constant

C 20045000000000000000 octal form of real constant

N@T. A is 00007777777777777777
A AND. C is 20040000000000000000
A AXD. .NFT.C is 57730000000000000000
B.AR. .NGT.D is 77777777000000001763

3-11

REPLACEMENT STATEMENTS 4

4.1
ARITHMETIC
REPLACEMENT

4 2
Te bl

MIXED-MODE
REPLACEMENT

The general form of the arithmetic replacement statement
is A =E , where E is an arithmetic expression and A
is any variable name, simple or subscripted. The operator
= means that A is replaced by the value of the evaluated
expression, E, with conversion for mode if necessary.

B(N,4) = CALC(I+1)*BETA+2.3478
XTHETA=7.4*DELTA+(A(I,J,K)**BETA)
RESPSNE=SIN(ABAR(INV+2,JBAR)*ALPHA(J,KAPL(I)))
JMAX = 19

AREA = SIDE1 * SIDE2

PERIM = 2.*(SIDEl + SIDE2)

C = (3.,1,)

The type of an evaluated expression is determined by the
type of the dominant operand. This, however, does not
restrict the types that identifier A may assume. The
following chart shows the A = E relationship for all the
standard modes. The mode of A determines the mode of
the statement.

When all the operands in the expression E are logical,
the expression is evaluated as if all the logical operands
were integers.

For example, if Ly, L, L3, L, are logical variables, R
is a real variable, and 1 is an integer variable, then

I =1 *L, + Ly - L, is evaluated as if the Lj were all
integers and the resulting value is stored as an integer

in I .

R=1L1; L+ Ly -1, is evaluated as stated above, but the
result is converted to a real (a floating point quantity)
before it is stored in R.

Warning: mixed-mode expressions are sometimes not compiled
exactly as ANSI Fortran specifies. Dominant mode for sub-
expression is determined by the compiler for each level of
parenthesis grouping.

A =X .LT. Y .AND. I/J .EQ. K
is actually compiled by RUN as:
A =X .LT. Y .AND. FLOAT(I)/FLOAT(J) .EQ. FLOAT(K)

4-1

because the compiler determines the dominant mode as REAL,
the integer division is not truncated as expected in stan-
dard Fortran.

To avoid this problem, and whenever in doubt, fully paren-
thesize the subexpressions in question. That is,

A = (X .LT. Y) .AND. (I/J .EQ. K)

will convince RUN to compile an ANSI standard interpretation
without really altering the expression.

é Type of Expresalon E
Type of ’ Double ‘
A Compiex Precision Real Integer
ComplexdA = E Set A = most Convert E
significant half to Real
of E
= = = ¥
Areal E Az-eal E Areal >
= = A = 9
Aimng 0 Almag 0 imag
Double A:Ereal A=E A=E Convert £
3 | to Real
Preclsioa less signifi- less signifi- °
cant is set cantis set |A=E
to zero to zero less signifl-)
cant ia set .
to zero
Real A= Ereal " |Set A = most A=E Convert £
significant half to Real
of E A=E
A=E
Integer Truncate Truncate E Truncate E | A= E
E to to 48 bit to Integer
real integer
Integer g :
= = E
A=E A=E A
Logical {If E # 0,JIf E#0, If E#O0, fE#O,
real A4 O A#0 A0
A#0
R IO e ey
A=0
Examples:
Given: ci’Al Complex
D,A Double
i 2
Ri' A3 Real
H,A4 Integer

L.,A logieal

= * - C
A C CZ LB/C

i 1 (6.905, 15.393) (4.4,2.1)*

4 (3.0, 2.0) - (3.3, 6.8)/(1.1, 3.4)
The expression is complex; the result of the expres-
sion is a two-word floating point quantity. A, is
complex, and the result replaces the old value’in Al'
A3 = Cl 4,400 = (4.4,2.1)

The expression is complex. A, 1s real; therefore,

the real part of C1 replaces A3 .

A3 = Cl*(O.,—l.) 2.1000 = (4.4,2.1)*(0.,-1.)

The expression is complex. A, is real; the real part
of the result of the complex multiplication replaces A3 .
A Rl/RZ (R3 Ra)+]1 13 = 8.4/4.2*%(3.1-2.1)+14

(12*R5) -(1*2.3)

4

The expression is real. A, is integer; the result of
the expression evaluation, a real, is converted to an
integer replacing A4 .

A, = D **2%(D_+(D,*D,)) 4.96800000000000 =

+(D,*D *D,) 2.0D**2%(3.2D+(4.1D*1.0D))
+(3.2D*2.0D*3.2D)

The expression is double precision. A, is double
precision; the result of the expression evaluation,
a double precision quantity, replaces Ay

= *R. - = *8.4-4.
A5 C1 R1 R2+Il 46.72=(4.4,2.1)%8.4-4.2+14
The expression is complex. ~ Since Ag is
logical, the real part of the evaluated expression
replaces A5 . If the real part is zero, zero replaces
A, .
5

4-3

4.3
LOGICAL
REPLACEMENT

4.4
MASKING
REPLACEMENT

able.

The general form of the logical replacement statement is
L =E , where L is a logical variable and E may be a
logical or relational expression. L is replaced by a minus
zero (a word of all one bits) if the evaluated expression is
true and by a plus zero (a binary 0) if the evaluated expres-

sion is false.

Examples:

LYGICAL A, B, C, D, E, LGA, LGB, LGC
REAL F, G, H

A =B .AND. C .AND. D

A=F .GT. G .fR. F .CT. H

LGA = .N#T. LGB

LGC = E .#R. L6C .fR. LGB fR. 1GA .gR. (A .AND. B)

The general form of the masking replacement statement is
M=E. E is s masking expression, and M is a variasble

of any type except logical. No mode conversion is made
during the repfacement.

Examples:

INTEGER I,J,K,L,M,N(16)
REAL B,C,D,E,F(15)

N(2) = I .AND. J
B=C .AND. L

F(J) = I .#R. .NT. L .AND. F(J)

D = (B.LT. C) .AND. (C .LE. E) .AND. .N§T. I

Masking is used to form special bit patterns within a com-
puter word and to manipulate bits and characters within a
computer word.*

A set of bit and character string manipulative functions is also avail-
The descriptions and binary decks for these subprograms may be

obtained from the Computer Center Library.

4-4

8-74

TYPt DECLARAITONS AND STORAGE ALLOCATION 5

5.1
TYPE
DECLARATION

The type declaration statements provide the compiler with infor-
mation on the data type of variables and function values. They
may also be used for array storage allocation.

Statement Characteristics

CPMPLEX list 2 words/element Floating Point-
DPUBLE. PRECISI@N list 2 words/element _ Floating Point
or D@UBLE 1ist

REAL list 1 word/element Floating Point
INTEGER 1list 1 word/element . . Integer
LOGICAL list 1 word/element Logical

DPUBLE may replace DPUBLE PRECISI@N in any RUN Fortran state-
ment in which the latter is allowed. This abbreviation is not
acceptable to all Fortran systems. ’

The list is a string of names separated by commas; integer con-
stant subscripts are permitted. For example:

A, Bl, CAT, D36F, CAR (1, 2, 3)

Type declarations are non-executable and must precede the first
reference to the typed variables or functions in a given sub-
program. Type declarations should also precede the first
executable statement in a given program; if not, a warning
diagnostic will be given. Only one type may be declared for a
name in any subprogram. If a name is typed more than once (even
with the same type), the second and ensuing delcarations will
result in warning diagnostics.

A name not declared in a type declaration is type INTEGER if
the first letter of the name is I, J, K, L, M, or N; for any
other letter, it is type REAL. (See Section 2.4.)

When subscripts appear in the list, the associated name is the
name of an array, and the product of the subscripts determines
the amount of storage to be reserved for that array. By this

means, dimension (Section 5.2) and type information are given

in the same statement. In this case no DIMENSI@N statement is
needed; in fact, it is not allowed.

5-1

8-74

5.2
DIMENSTON
DECLARATION

Examples:
C@MPLEX A412,DATA,DRIVE, IMP@RT
DPUBLE PRECISION PLATE,ALPHA(20,20),B2MAX,F60,JUNE
REAL I,J(20,50,2),L@GIC,MPH
INTEGER GAR(60),BETA,ZTANK,AGE,YEAR,DATE
L@GICAL DISJ,IMPL,STR@KE,EQUIV,M@DAL
D@UBLE RL,MASS(10,10)

Storage is reserved for arrays by the non-executable state-
ments DIMENSI@N, C@MMPN, or a type statement.

The standard form of the DIMENSI@N declaration is:

DIMENSI@N VisV, eV
The variable names v, may have 1, 2, or 3 integer constant
subscripts separated %y commas, as in SPACE(5, 5, 5). Under
certain conditions within subprograms only, the subscripts may
be simple integer variables as well as constants (see Sec-
tion 5.2.1).

The DIMENSI@N declaration is non-executable and it must precede
the first reference to its declared arrays in a given subprogram.
The DIMENSI@N statement should precede the first executable state-
ment and will result in a warning diagnostic otherwise.

The number of computer words reserved for an array is determined
by the product of the subscripts in its declaration and by the
type of the variable.

A maximum of 131,071% elements may be reserved in any one array.
If the maximum is exceeded, a diagnostic is provided.

Examples:
C@MPLEX AT@M
DIMENSI@N AT@M (10,20)

In the above declaration, the number of elements in the array
AT@M is 200. Two words are used to contain a complex element;
therefore, the number of computer words reserved is 400. This
is also true for double precision arrays. For real, logical,
and integer arrays, the number of words in an array equals the
number of elements in the array. The same effect as the two
statements above could be achieved by the statement :

CEMPLEX AT@M (10,20).

* This is the limit enforced by the compiler. The size of our computer limits

storage even more.

A total of 120000B (409601() words is the maximum central

memory field length normally available.

5-2

An array may only be dimensioned in one declaration statement
in any one subprogram.

Examples:

DIMENSI@N A(20,2,5) ,
DIMENSI@N MATRIX(10,10,10),VECTPR(100),ARRAY(16,27)

5.2.1
Variable : ‘
Dimensions When an array name and its dimensions appear as formal
parameters in a function or subroutine, the dimensions may
be assigned through the actual parameter list accompanying
the function reference or subroutine call. The dimensions
must agree with the array size specified in the calling
program. (See Variable Dimensions in Subprograms, Section
7.11.) :
Example:
SUBR@UTINE X(A,L,M)
DIMENSI@GN A(L,10,M)
5.3
COMMON |
DECLARATION The CPMMPN declaration provides up to 61 blocks of storage

‘that may be shared with other subprograms. The declaration
can reserve both blank and labeled blocks. Only labeled
common blocks may be preset by DATA declarations (section
5.5). Data stored in labeled common blocks by the DATA
declaration are available to any subprogram using the
appropriate labeled block identifier.

The starting addresses for both blank and labeled blocks
are indicated on the load map.

Areas of common information may be specified by the declar-
ation: :

C¢MM¢N/illlistl/iz/list2 -

where il,i » .. are labeled common block names. They have

the form o% symbolic names (Section 2.2.1).
Example:

COMMPN/DATA1/A,B,C

5-3

A common statement without a block label, or with just
blanks between the separating slashes is treated as a
blank common assignment. Data may not be entered into
blank common by a DATA declaration.

List, is a string of identifiers representing simple and
subs%ripted variables. If a non-subscripted array name
appears in the list, the dimensions must be defined by a
type or DIMENSI@PN declaration in that program. If an array
is dimensioned in more than one declaration, a diagnostic is
provided. The order of simple variables or array storage
within a common block is determined by the sequence in which
the variables appear in the C@MM@PN statements.

COMMPN is non-executable and can appear anywhere in the
program but should precede the first executable state-
ment or else a warning diagnostic is given. Any number
of C@MMPN declaratiors may appear in a program subject to
the restriction that no single subprogram may declare more
than sixty labeled common blocks. If DIMENSI@N, CPMM@N,
or type declarations appear together, the order is. imma-
terial.

Since labeled common block names are used only within the
compiler and loader, they may be used elsewhere in the pro-
gram as other kinds of identifiers, except the subroutine
name, or formal parameters in the same subroutine. A
variable listed in one common block may not appear in another
common block. (If it does, the variable is doubly defined.)

Examples:

"CPMMPN A,B(10),C(5,5)
CoMMON/ /E,F,G,H(10,5,2)
COMMPN/BLACKA/AL1 (15),B1,C1/BLACKD/DEL(5,2) ,ECHP
C@MMPN/VECTPR/VEECTPR (5) ,HECT@R , NECT@R

] Use of blank common

The length of a common block (in computer words) is deter-
mined from the number and type of the list variables. 1In
the following statements, the length of common block A

is 12 computer words. The origin of the common block is

Q(1).

CHMMPN/A/Q(4) ,R(4),S(2)
REAL Q,R
CPMPLEX S

Block A

origin Q(1)

Q(2)

Q(3)

Q(4)

R(1)

R(2)

R(3)

R(4)

S(1) = real part

S(1) imaginary part
S$(2) real part

S(2) imaginary part

If a subprogram does not use all of the locations reserved
in a common block, dummy variables may be necessary in the
CPMMPN declaration to insure proper correspondence of com—
mon areas.

CPMMPN/SUM/A,B,C,D (fiain program)
C¢MH¢N/SUM/E(3),D (subprogram)

In the above example, only the variable D is used in the

subprogram. The unused variable E is necessary to space

over the area reserved by A, B, and C. This coding tech-. e

nique should not be used. It is much safer and easier to
duplicate the necessary CPMM@PN statements.

Each subprogram using a common block assigns the allocation
of words in the block. The variables used within the block
may differ as to name, type*, and number of elements; but
the block name and total size must be the same for each
occurrence of a particular labeled C@MM@N block.

Example:

PRPGRAM LINEAR (INPUT,@UTPUT)
CPMPLEX C
COMMPN/ TEST/C (20)

The length of the block labeled TEST is 40 computer
words.

No type conversion is implied so only temporary storage should be treated
this way.

5-5

The subprogram may rearrange the allocation of words
as in:

SUBROUTINE ¢$NE
C@MMPN/TEST/A(10) ,G(10) ,K(10)
CMPLEX A

The length of TEST is 40 words. The first 10 elements
(20 words) of the block represented by A are complex
elements. Array G is the next 10 words, and array K
is the last 10 words. Within the subprogram, elements
of G are treated as floating point quantitites; ele-
ments of K are treated as integer quantities.

A labeled common block will be loaded with the first sub-
program referencing that block. Therefore, the length of

a labeled block must not be increased by subprograms sub-
sequently loaded. Variable names used within the block

may differ as shown above. Blank common normally follows

in memory all user and library subprograms needed; its size
may be different from one subprogram to another, and is deter-
mined by the largest blank common declaration encountered.

5.4
EQUTVALENCE
DECLARATION The EQUIVALENCE declaration permits variables to share
locations in storage. The general form is:
EQUIVAI‘ENCE (Al’Bl,' . .) ,(Az’nz,o bl)_’. ()
(A1,B1,...) 18 an equivalence group of two or more simple
or subscripted variable names. :
EQUIVALENCE is most commonly used whﬁp two Or more Arrays
can share the same storage locations.” The lengths need
not be equal.
Example:
DIMENS1¢N A(10,10),1(90)
EQUIVALENCE (A,I)
5 READ 10, A
6 READ 20, 1
v

If two variables of different types are declared equivalent, no mode conversion
is implied of the data stored in the shared locations.

The EQUIVALENCE declaration assigns the first element of
array A and array 1 to the same storage location. The
READ statement 5 stores the A array in consecutive loca-
tions. Before statement 6 is executed, all operations
using A should be completed since the values of array 1
are read into the storage locations previously occupied
by A.

Variables requiring two memory positions per element which appear
in EQUIVALENCE statements must be declared to be CPMPLEX or DGUBLE
PRECISION prior to their appearance in such statements. :

Example:

CPMPLEX DAT,BAT

DIMENSIN DAT(10,10),BAT(10,10),CAT(10,10)
DPUBLE PRECISIPN CAT

cpmg&N/IFAT/FAT(z,zo).

EQUIVALENCE (DAT(6,3),FAT(2,2)), (CAT,BAT)

EQUIVALENCE is non-executable and can appear anywhere in
the program or subprogram. However, if it appears after
the first executable statement, a warning diagnostic is
provided.

No element of the formal or dummy parameter list of a sub-
program may appear in an EQUIVALENCE statement contained
within the subprogram. Two variables which are both
declared in CPMMPN statements may not be declared equi-

valent.

Any single or multiword variable may be made equivalent to
any other single or multiword variable. The variables may
be with or without subscripts.

The following example illustrates changes in block lengths
caused by the EQUIVALENCE declaration.

5.5
DATA

Example:

Given: Arrays A and B and simple variable C. A and C
are declared in a C@MMPN statement and B is not.

Declaration of /BL@CK1l/ Allocation of /BL®CK1/
C@MMON /BLOCK1/A(4),C origin A(1)
DIMENSI@N B(5) A(2) B(1)
EQUIVALENCE (A(3), B(2)) A(3) B(2)
AGB) B(3)
C B(4)

B(5)
Therefore /BL@CK1l/ is six words long.

DECLARATION Initial values* may be assigned to program variables or labeled

common variables** with the DATA declaration:

*
DATA dl""’dn/al’k az,...,anAql,...,dn/al,...,an/,...

d identifiers representing simple variables, array
i names, or variables with integer comstant sub-
scripts or integer variable subscripts (implied
D@-loop notation).

a, constants; they may be signed or unsigned.

integer constant repetition factor that causes
the constant following the asterisk to be re-
peated k times. If k is non-integer, a
compiler diagnostic occurs. Note that 5%-2.0
is legal in a DATA statements and specifies 5
repetitions of -2.0.

DATA is non-executable and can appear anywhere in the pro-
gram or subprogram. When DATA appears with DIMENSI¢N, COMM@N,
EQUIVALENCE, or a type declaration, the statement that dimen-
sions any arrays used in the DATA statement must appear prior
to the DATA statement. Variables in blank common or formal
parameters may not be preset by a DATA declaration.

Single-subscript, D@-loop-implying notation is permissible.

This notation may be used for storing constant values in arrays.
Multiple-subscripted arrays can be preset by listing each array
element (specifying all subscripts with integer constants) or
single-subscripted implied D@-loop notation can be used to preset
contiguous array elements which may be accessed according to the
array element successor function (see section 2.6.1).

If a variable is preset to a value by a DATA statement, executing a statement

with a variable on the left-hand side of an equal sign or reading into the
variable destroys that value; the original value will not be restored until

*%

5-8

the program is reloaded.

Standard Fortran allows DATA statements which initialize variables in common
storage to appear only in BL@CK DATA subprograms (see section 7.14).

Examples:

1. DIMENSI¢N GIB(10)
DATA (GIB(I), I=1, 10)/1.,2.,3.,7%4.32/

Array GIB:

2. DIMENSION TW$(2,2)
DATA TWH(1,1),TWP(1,2),TWP(2,2) ,TWH(2,1)/1.,2.,3.,4./

Array TW¢:
TW(1,1) 1.
™WP(2,1) 4.
TW(1,2) 2.
TWP(2,2) 3.

3. DIMENSION SINGLE(3,2)
DATA (SINGLE(I), I=1,6)/1.,2.,3.,1.,2.,3./

Array SINGLE:

SINGLE(1,1) 1.
SINGLE(2,1) 2.
SINGLE(3,1) 3.
SINGLE(1,2) 1.
SINGLE(2,2) 2.
SINGLE(3,2) 3.

In the DATA declaration, the type of the constant stored is
determined by the structure of the constant rather than by
the variable type in the statement. In DATA A/2/, an integer
2 replaces A, not a real 2.0 as might be expected from the
form of the symbolic name A.

There should be a one-one correspondence between the variable

names and the list. This is particularly important in
arrays in labeled common. TFor instance:

5-9

CPMMON/BLK/A(3) ,B
DATA A/1.,2.,3.,4./
The constants 1.,2.,3., are stored in array locations

A(1) ,A(2),A(3); the constant 4. 1is discarded, B is

unmodified and a mysterious DATA RANGE diagnostic is
issued. If this occurs unintentionally, errors may occur
when B is referred to elsewhere in the program.

CéMMPN/TUP/C(3)
DATA C/1.,2./

The constants 1.,2. are stored in array locations
C(1) and C(2); the content of C(3), is not defined.

When the number of list elements exceeds the range of
the implied DO, the excess list elements are not stored,
and a diagnostic is given.

DATA (A(T), I=1,5,1)/1.,2.,3.,4.,5.,6.,7.,8.,9.,10./
The excess values 6. through 10. are discarded.

Examples:

1. DATA LEDA, CAST@R, PPLLUX/15,16.0,84.0/

LEDA; 15
CAST¢R: 16.0
PYLLUX: 84.0

2. DATA A(1,3)/16.239/ -
Array A:
A(1,3) 16.239

3. DIMENSION B(10)
DATA B/77B, 64B, 3*5B, 5%200B/

Array B; 778
64B

5B

5B

5B

200B

200B

200B

200B

200B

5-10

CPHMMPN/HERA/C(4)
DATA C/3.6,3%10.5/

Array C: 3.6
10.5
10.5
10.5
CMPLEX PR@PTER (4)
DATA PRPTER/4%(1.0,2.0)/
Array PRYTER: 1.0
2.0
1.0
2.0
1.0
2.0
1.0
2.0

DIMENSI@N MESAGE (3)
DATA MESAGE/9HSTATEMENT,2HIS,lOHINC¢MPLETE/

Array MESAGE: STATEMENTD

ISbbbbbbbb
INCAMPLETE

DIMENSI@N MESSAGE (3)
DATA MESSAGE/23HSTATEMENTbISbINC@MPLETE/

Array MESSAGE: STATEMENTb

ISbINCPHMPL
ETEbbbbbbb

5-11

EXECUTION SEQUENCE CONTROL STATEMENTS 6

Program execution normally proceeds from one executable
statement to the next executable statement following it
in the program. Execution sequence control statements
can be used to alter this sequence or cause a number of
iterations of a section of a program.

Control may be transferred to an executable statement only;
a transfer to a non-executable statement usually results in
a diagnostic message (but sometimes the diagnostic gets lost).

6.1
GO TO o
STATEMENTS Program control is transferred to a statement other than
the next statement in sequence by the G¢ T¢ statements.
6.1,1
Unconditional
GO TO Gp T¢ n
where n 1is statement number. Executing this statement
causes an unconditional transfer to the statement labeled n .
6,1.2

Assdigned GO TO G¢ T¢ m, (nl,nz;...,nk)
Gp TP m

This statement acts as a many-branch G§ T@; m is a simple
integer variable assigned a statement label nj in a preceding
ASSIEN statement. The n, are statement labels in the same
subprogram. As shown, thé parenthetical statement label

list need not be present.

The comma after m 1is optional; however, when the list is
omitted, the comma must be omitted. Although an integer
variable in type, m must be defined by an ASSIGN statement
and cannot be defined as the result of a computation. No
compiler diagnostic is given if m is computed, but the
object code is incorrect. If an assignment has not been
made for an assigned G@ TP statement before executing it,
an error will occur.

6.1.3
ASSIGN STATEMENT ASSIGN n T¢ m

This statement is used to define m for use with an assigned
G@ TP statement; n is a statement label in the same subpro-
gram as the ASSIGN, m is a simple integer variable.

6-1

6.1.4
Computed GO TO

6-2

Example:

ASSIGN 10 T¢ LSWTCH

Gp TP LswrcH, (5,10,15,20)

Control transfers to statement 10.

el T¢ (nl,nz,...,nm),i

. This statement acts as a many-branch G TP; i must be pre-

set or computed prior to its use in the G@ T@.

The n. are statement labels and i 1is a simple integer
variable. i is not a statement number; rather, the value
of 1 points to a position in the list of m statement.
labels. If 1 <i<m, a transfer is made to statement
n;. All other values of i prqduce execution aborts.

The comma separating the statement number list and the
Index is optional.

Example:

N=3

.

Go Tp (100,101,102,103),N
The third statement number, 102, identifies the
next statement to be executed.

For proper speration, 1 muat not be specified by zn ASS
statement. No compilation diagnostic is provided for this
error, but program execution will be incorrect.

Example:

ISWICH = 1
cp Tp (10,20,30), ISWICH

10 JSWICH = ISWICH + 1
G§ TP (11,21,31), JSWICH

Control is transferred to statement 10 by ISWICH
and then to statement 21 by JSWICH.

6.2
IF STATEMENTS

6.2.1
Three~Branch
Andithmetic IF

6.2.2
One-Branch
Logical TF

Program control is transferred to a statement depending
upon the condition of the computed results of the IF
statements. Evaluating the condition of an IF statement, -
such as IF(A.GT.B) requires arithmetic. . If exceptional
values (such as indefinite in a real comparison or Hol-
lerith data in an integer comparison) occur, ~ then im-
proper results may be obtained.

A) n ,n_,n
IF () l’ 2’ 3
A 1is an arithmetic expression, and the n, are statement

labels. This statement tests the evaluated expression A
and transfers accordingly as follows:

A<O transfer to statement ny
A=20 transfer to statement n, (including A = -0)
A>0 transfer to statement n3

In the test for zero, +0 = -0. When the mode of the eval-~

uated ' expression is complex, only the real part is tested

for zero. Likewise, when the mode of the evaluated expres-
sion is double precision, only the upper part (most signi-

ficant half) is used. ' '

Examples: _
IF (A*B-SIN (X)) 10,20,10
IF (1)5,6,7
IF (A/B**2)3, 6, 6

IF (L) s

L is a logical expression* and s is any executable statement
except another logical IF or a DO statement. If L 1is true

(not plus zero), the statement s is executed. Program control
then passes to the next sequential statement unless s is a
transfer statement. In that case, control is transferred as
indicated by the transfer statement. If I 1is false (plus zero),
s 1s not executed and the statement immediately following the

IF statement is executed. If the IF statement is the last state-
ment of a DO-loop, the looping continues until the DO-loop is
satisfied.

Note that a logical variable is in itself a logical expression.
Other types of variables, if used alone, may be treated as logi-
cal expressions (without mode conversion), or may return a diag-
nostic and be rejected by the compiler. (See Logical Operands
in Appendix A.)

Note that the use of .EQ. to test the value of a logical variable,
i.e., IF(SWl .EQ. .TRUE.), will always succeed since 0 = -0 in
such a test. Therefore, a statement of the form IF(SW1) should
be used instead, since SW1 1is logical already.

Double precision arithmetic is not used with double precision variables

in a logical IF statement. An arithmetic IF statement handles double
precision variables correctly.

6.2.3
Two-~Branch
Logical TF

6.3
DO STATEMENT

Examples:
IF(A.LE.2.5) A=2.0
IF (VALUE®*4.73.GT.PRICE.@R.VALUE.LT.150.0)BUY=.TRUE.
IF(P.AND.Q)G® T@ 427

IF (L) n;,n,

L 1s a logical expression; n, are statement labels.
The evaluated expression is tested for true (not plus
zero) or false (plus zero) condition. If L dis true,
transfer is to statement nj. If L 1s false, transfer
is to statement n,.

Examples:
IF(K)5,6
IF(K.EQ.100)70,60
IF(IJUMP,LT.K)10,11

D¢ ni=m,n,n, or D ni-= m, M,

This statement makes it convenient to repeat groups of state-
ments and to change the value of an integer variable during
the repetition. The group of statements beginning with the
D§ statement and ending with a statement with label n is
called the DO loop. 1 1is the index variable (simple inte-
ger). The values of 1 and the number of times the DO

loop is executed are determined by the indexing parameters
m], my, and m3y. They may be unsigned integer constants or
simple integer variables. The initial value assigned to 1
is my ; m, is the limit assigned to i , and m is the
amount aaded to i after each time the D§ loop is executed.
If my does not appear, it is assumed to have the value 1.

Statement n may not be an arithmetic IF, a RETURN, a

STOP, a PAUSE, a two-branch logical IF, a G® TP, another D@,

a loglcal IF containing any of the preceding forms, nor a non-
executable statement. It need not be a CPNTINUE statement.

The indexing parameters m,,mj,m3 are either unsigned inte-
ger constants or simple integer variables. Subscripted
variables and negative or zero integer constants cause a
diagnostic.

The indexing parameters mj and mp, if variable, may
assume positive or negative values or zerg but the latter
two may = cause erroneous results.

If the values of i, mj, mp, and m3 are changed during the
execution of the D@-loop, this may produce undefined results.
If it is necessary to change these parameters during an itera-
tion, the loop should be coded using an IF statement rather
than a D@.

6.3.1
D9-Loop
Execution

6.3.2
DI Nests

The initial value of i, m,, is increased by m, and compared with m
after executing the D@ loop once, and if i does not exceed m,, the
loop is executed a second time. Then, i is again increased %y m
and again compared with m,; this process continues until i exceeds
m,. Control then passes fo the statement immediately following
sfatement n, and the D@ loop is said to be 'satisfied'.

Should m, exceed m on the initial entry to the loop, the loop is
executed once (w1tﬁ set to m,) and the iteration ceases. If m
and m, are constants, this condi%ion may produce an error diagnostic
during compilation. When the D@ is satisfied, the index variable i
is no longer well defined. If a transfer out of the D@ loop occurs
before the D@ is satisfied, the value of i is preserved and may

be used in subsequent statements.

D@ loop arithmetic is performed with 18-bit ar1thmet1c7 and the
values involved must not at any time exceed 131071 (217-1) or else
erroneous results may occur, e.g., the D@ may loop indefinitely.

When a DF loop contains another D@ loop, the grouping is called
a DP nest. Nesting may be to any level. Each loop must have a
different index variable. The last statement of a nested D@ must

either be the same as the last statement of the outer DF loop
or occur before it.

If Dy,Dy,...D, represent Dgfstatenentswhere the subscripts indi-
cate that Dj appears before D; appears before D3 and njy,np,...ny
represent the corresponding limits of the D;, then nyp must

appear at *
PP at or before R

1)

Examples:

Dﬂ‘l’oops may be nested in common with other D,(J loops:

— D
2 I:Dz D,
D
[3 n Dy
n, I
r-—-D4 ’ n3
1
5 1
Ny
-
"

Dp 1 I=1,10,2 D¢ 100 L=2,LIMIT Dg 5 I=1
. D 5 J=1
. . D@ 5 K=J
D@ 2 J=1,5 DY 10 I=1,10
: D@ 10 J=1,10 .
: . 5
DY 3 K=2,8 CONTINUE

10 C@NTINUE

3 CONTINUE D@ 20 K=KI,K2

2 C@NTINUE 20 CQNTINUE

-

D@ 4 L=1,3 100 C@NTINUE
4 CONTINUE

1 CONTINUE

6.3.3

DO Loop Trnansfer A DO loop should be entered by the execution of the D@
statement. One exception is allowed: once the D? state-
ment has been executed and before the loop is satisfied,
control may be transferred out of the DY range to perform

some calculation and then transferred back into the range
of the D@.

In a DO nest, a transfer may be made from an inner DO loop
into a D§ loop that contains it, but should not be made
from the outer DP loop to the inner DP loop without first
executing the DO statement of the inner DO loop. The com-
piler issues no diagnostics for some such transfers

but the program will execute incorrectly.

i —
— —
E)

6-6 —_— —

Not Allowed Allowed

o O
v o

w w e

1-73

6.4
CONTINUE
STATEMENT

6.5
PAUSE
STATEMENT

6.6
STOP STATEMENT

6.7
RETURN
STATEMENT

n C@NTINUE

The usual function of the CPNTINUE statement is to provide
the statement label n. It is most frequently used as the
last statement of a DQ loop to provide a label for the loop
termination, particularly when a G§ T@ or IF would normally
be the last statement of the loop:. If CANTINUE is used else-
where in the source program, it acts as a do-nothing instruc-
tion and control passes to the next sequential program state-
ment. The CONTINUE statement must contain a statement number
in' columns 1-5, ' o e

Example:

25 C@NTINUE

PAUSE
PAUSE n

n < 5 octal digits without an @ prefix or B suffix. PAUSE

'stops program execution with the words PAUSE n displayed

as a message to the operator. An operator entry from

the console can continue or terminate the program. Pro-

gram continuation proceeds with the statement immediately fol-
lowing PAUSE. If n is omitted, it is understood to be blank.

ST@P
STPP n

n < 5 octal digits without an @ prefix or B suffix. STOP
terminates the program execution and returns control to the
monitor. The message STPP n is placed in the Job Log. If
n is omitted, it is understood to be blank.

RETURN

A subprogram normally contains one or more RETURN statements
to indicate the end of logic flow within the subprogram and
to return control to the calling program.

From function subprograms, control returns to the statement
containing the function reference. From a subroutine sub-
program, control returns to the next executable statement
following the CALL. A RETURN statement in the main program

causes execution to be terminated unless this is the pseudo-

main program of an overlay (Chapter 8).

6-7

6.8
END STATEMENT

END

END must be the last physical line in every main program or
subprogram. It is not executable. An attempt to execute it
terminates the program. An END line in a subprogram does not
act as a RETURN. The END line may not be numbered.

For compatibility the END line may include the name of the
program or subprogram which it terminates, but this may
cause errors and is not recommended.

PROGRAM, FUNCTION, AND SUBROUTINE 7

7.1
SUBPROGRAM
TYPES

7.2
SUBPROGRAM
COMMUNTCATION

A FORTRAN source program consists of a main program with or
without subprograms. Subprograms are block data declarations
or computational procedures returning zero, ong or more values
as results. There are two kinds of procedural subprograms:
subroutines and functions. In the following discussion, the
term subprogram refers to both.* Subprograms may be compiled
independently of one another. (Although used like other func-
tions, a arithmetic statement function is compiled within the
subprogram where it is referenced.) The object code for a sub-
program is only loaded once for program gxecution, although the
subprogram may be referred to in many places.

A calling program is a main program or subprogram that refers
to another subprogram. The reference causes program control .
to be transferred to the subprogram called. A subprogram . '
referenced (called) by a program may not have the same name as
that program. Subprograms may call or be called by any other
subprogram as long as the calls are nonrecursive; that is, when
program A calls B, B may not call A, even indirectly.

The main program and subprograms communicate with each other

via parameters and/or CMMPN variables. The parameters appearing
in a subroutine call or function reference are termed actual
parameters. Corresponding arguments, called formal parameters,
appear with the called subprogram as part of its definition.

When a subprogram calls another, the actual parameters of the
calling subprogram are associated with the corresponding formal
parameters of the called subprogram; that is, the called subpro-
gram acts as if it has been written using the actual parameters

of the caller. If any values of the formal parameters are changed,
the effect is as if the values of the actual parameters are changed;
in this way new parameter values can be 'returned' from a called
subprogram.

The actual parameter list in the calling program must contain

the same number of parameters as the formal parameter list of the
called subprogram. The corresponding parameters in the two lists
must agree in type,** dimensionality, and intended use (i.e.,
whether the parameter will be altered by the subprogram or not).

The term "subprogram" is also frequently used to include the main program as
well. Also the term "program" may be uged to refer to one subprogram or to
a collection of subprograms. There are also library subprograms which are
used without explicit CALL or function references.

*%

There is no automatic mode conversion if the types of the actual and formal
parameters disagree.

7-1

CPMM@PN variables (Section 5.3) may also be used to transmit
parameters between subprograms, either from caller to called
or vice versa. In this case those CYMM@N variables must
also agree in type, dimensionality and intended use. The
same variable should not occur both in a C@MMPN statement in
the subprogram and as an actual parameter if it is altered
under either guise.

7.2.1

Formal .

Parametors Formal (dummy) parameters may represent the names of arrays,
simple variables, functions, and subroutines. A name may not
appear more than once in a formal parameter list. Since for-
mal parameter .names are local to the subprogram containing
them, they may be the same as names appearing outside the sub-

program in other contexts.

No element of a formal parameter list may appear in a COMMON,
EQUIVALENCE or DATA statement within the subroutine. 1If
it does, a compiler diagnostic results.

When a formal parameter represents an array, it must be

dimensioned within the subprogram. If it is not declared,
the array name must appear without subscripts and only the
first element of the array is available to the subprogram.

7.2.2
Actual
Parametesrns Permissible forms:
*
Arittmetic expression
L%
Logical expression
*
Constant
Simple or subscripted variable

- Array name %%

" FUNCTI@N subprogram name*
Library function or subroutine namé* See Section 7.13
SUBR@PUT INE name*

A calling program statement label, identified by
suffixing the label with the character S . *

"

This form must not be a result parameter, i.e., there must be no stores into
it in the subprogram.

Normally the array dimensions of the actual parameter as declared in the
calling program will agree exactly with the dimensions of the formal para-
meters in the subprogram (See Variable Dimensions, Section 5.2.1). If not,
full account must be taken of the actual allocation of array storage (sec—
tion 2.6.1) so the subprozTanm can properly locate values in the array.

7-2

7.3
MAIN
PROG

%%

dededk

RAM The first statement of a main program may be of the following
form:
PRPGRAM name (fl,...,fn)

The choice of program name is restricted in that it must not be

that of any subprogram which is to be used with it (including

library routines), nor any of the reserved names discussed in

Section 15.6.

If the PRPGRAM statement is omitted, a program name of '"START."

is assumed with filesets INPUT and @UTPUT.

The parameters f are symbolic names naming all input/output

filesets required by the main program and its subprograms.¥*

These parameters must satisfy the following conditions:

1. The file name INPUT must appear if any READ i statement
is included in the program or its subprograms.

2. The file name @UTPUT must appear if any PRINT statement
is included in the program or its subprograms.

3. The file name PUNCH must appear if any PUNCH statement
is included in the program or its subprograms.

4, The file name TAPEi** must appear if a READ(i,n),
WRITE(i,n), READ(i), or WRITE(i) statement is included
in the program or its subprograms. (i 1is an integer
from 1 to 99 with no leading zeros;)

5. If I is an integer variable name for a READ(I,n),
WRITE(I,n), READ(I), or WRITE(I) statement which
appears in the program or its subprograms, the file
names TAPEI_,..., TAPEi ** must appear. The integers
i ,...,1 twith no leading zeros) must include all
values wgich are assumed by the variable I. A file-
set name TAPEI bears no relationship to the file
being referenced by I in the above input/output
statements, *¥*

Input/output statements are discussed in Chapter 10. Fileset name substi-
tution during program loading is discussed in section 13.0.2.

The use of the word "tape" in forming these names does not imply the use of
actual tape devices.

File names may be used as variables within a main program or subprogram
and do not have any intrinsiec value assigned -them. That is, the statement
'READ(INPUT,n) list' will cause an execution error if INPUT has not been
set to some integer value i within the program; the file TAPEi must also
have been declared in the PRPGRAM statement.

- 7-3

6. If the program has been overlaid (see chapter 8)
the overlay filesets must not appear.

Example:

PRAGRAM SH@W (INPUT,@UTPUT, TAPE6)

READ 10,X
NUNIT=6
WRITE (NUNIT)B

CALL QUT(6,Y)
PRINT 10,Z

10 F@RMAT (F6.6)
RETURN
END
SUBR@QUTINE @UT(I,B)

WRITE(I)B
RETURN
END

File names may be made equivalent and/or their buffer lengths
may be specified at compile time by the f; parameters in the
PRJGRAM statement in the form:

filename = buffer length (octal)
or

filename2 = filename1

Example 1:

PRGGRAM name (INPUT=2001)

A file name INPUT is declared and it is to have a buffer length
of 2001, words. The buffer length may not be specified to be less
than 10lg words. For example, PR@GRAM X (INPUT=20) will cause

a buffer of 10lg to be formed. If the buffer length is not
indicated, a standard buffer size of 1001g (5131,) words is
allocated.

I/0 buffers are further discussed in section 15.2.

7.4
SUBROUTINE
SUBPROGRAM

7.5
CALL STATEMENT

‘Example 2:
PRPGRAM name (@UTPUT,TAPE6=@UTPUT)

TAPE6 is equivalent to the $UTPUT file. That is, WRITE(6,n)
list will produce output on file @UTPUT. The file name to
which an equivalence is made must appear previously in the
parameter list and must not have been defined by equivalence.

Example 3:

PRPGRAM name (INPUT , UTPUT=10000, TAPE1=INPUT, TAPE2=@UTPUT)

All input read from logical I/0 unit number one will be
taken from INPUT and all output written on logical I/0
unit number two will be transmitted to the @UTPUT fileset.
A buffer length is specified by @QUTPUT=10000 which esta-
blishes a buffer length of 10000,. The file INPUT has

a buffer length of 10018. Separate buffers are not set

up for TAPE1l and TAPE2.

A subroutine subprogram is a computation procedure which
may return zero, one, or more values. A value or type is
not associated with the subroutine name itself.

The first statement of a subroutine subprogram must have
one of the following forms:

SUBRGUTINE name (pl;...,pn)

name is a symbolic name and p, are formal parameters;
n may be 1 to 60.

Restrictions on subprogram names are discussed in Sec-
tion 15.6.

The parameter list is optional. If no parameters are
specified, the second form is used.

‘No variable name used in a subroutine subprogram may be the
same as the name in the SUBROUTINE statement.

The executable statement in the calling program for referring
to a subroutine is:

CALL name
or

CALL name (pl,...,Pn)

7-5

where name is the name of the subroutine being called% and
Pi are actual parameters; n is 1 to 60. The name should
not appear in any declarative statement in the calling
program, with the exception of the EXTERNAL statement when
name is also an actual parameter.#**

The CALL statement transfers control to the subroutine.
When' a RETURN statement is encountered in the subroutine,

" control 1s returned to the next executable statement fol-
lowing the CALL statement in the calling program. If the
CALL statement 1s the last statement in a DO loop, looping
continues until the DO loop is satisfied.

Examples:

1. SUBRQUTINE BLDX(A,B,W)
W=2.*B/A

BRE"Y

Calls

CALL BLDX(X(I),Y(I),W)

SUM = X(I) + SUM (Cnnfrn'l returns t

~n
sssssss LT LUL S v

after subroutine is executed)
CALL BLDX(SIN(S.),BVEC(L) + H/2.,EVEC(I+J))

2. SUBRQUTINE MATMULT

CPMMPN/ ITRARE/X(20,20) ,Y(20,20) ,Z(20,20)
D¢ 10 I=1,20 o

D$ 10 J=1,20

Z(1,J) = 0.

DO 10 K=1,20

10 Z(I,J) = Z(I,J) + X(I,K)*Y(K,J)
RETURN
END

Operations in MATMULT are performed on variables contained
in the common block ITRARE. This block must be defined in

all programs calling MATMULT, for example:

COMMON/ITRARE/AB(20,20) ,CD(20,20) ,EF(20,20)
CALL MATMULT

*

See Section 15.6 for a discussion of names that may not be used.
*k

Very obscure difficulties may occur if the same actual parameter is supplied
for more than one formal parameter. Even more obscure versions of the same
problems may occur if a subprogram has access to a particular variable
through both a COMMON declaration and its parameter list. The difficulties
arise because the variable may be altered in one guise without the program
being aware that this also alters the other guise.

7.6
FUNCTION
SUBPROGRAM

3. SUBR@UTINE AGMT (SUB,ARG)

C@MM@N /ABL/XP (100)
ARG = 0.
DY 5 I=1,100

5 ARG = ARG + XP(I)
CALL SUB
RETURN
END

Here the formal parameter SUB is used to transmit another
subprogram name. The call to subroutine AGMT might be
CALL AGMT (MULT,FACT@R), where MULT is specified in an
EXTERNAL statement (Section 7.13).

A function is ‘a computational procedure which returns a
value associated with the function name. The mode of the

~function is determined by a type indicator or the name of

the function. See 15.6 for restrictions on subprogram names.

The first statement of a function subprogram must be one
of the following forms where name is a symbolic name and

the p; are formal parameters.* A FUNCTI@N statement
must have at least one parameter: 1 < n < 60.

FUNCTI@N name (pl,...,pn)
type FUNCTI@N name (pl,...,pn)

Type is REAL, INTEGER, DPUBLE PRECISI¢N, DPUBLE, CPMPLEX,
or LPGICAL. When the type indicator is omitted, the mode
is determined by the first character of the function name
according to the rule used for the implicit typing of
variable names. The name of the function must be the name
of ‘a simple variable appearing in the function subprogram.
Its value at the time of the return from the function sub-
program is the value of the function.

This variable must be assigned a value by appearing at

least once in the function subprogram as any of the following:
On the left-hand side of a replacement statement
As an element of an input list

As an actual parameter of a subroutine reference (in
which it must be assigned a value)

See footnote ** gection 7.5

7-7

7.7
FUNCTTION
REFERENCE In the general form

name (py,... P)

name identifies the function referenced. It is a symbolic name
and its type is determined in the same way as a variable iden-
tifier. The p, are actual parameters*, n is 1 to 60.

A function reference may appear in any expression where a sub-
scripted variable may be used. The evaluated function has a
single value associated with the function name.

When a function reference is encountered in an expression,
control is transferred to the function subprogram.** A value
for the function is computed and control is then returned to
the statement containing the function reference.

The function name may not appear in any declarative state-
ment in the calling program except a type statement or in an
EXTERNAL statement when the name is used as an actual parameter.

Examples:

1. FUNCTIN GRATER(A,B)
IF(A.GT.B)1,2
1 GRATER=A-B
RETURN
2 GRATER=A4B
RETURN
END

A reference to the function GRATER might be:
W(I,J)-FA+FB-GRATER(C—D,3.*AX/BX)

2. FUNCTI¢N PHI(ALPHA,PHI2)
PHI=PHI2 (ALPHA)
RETURN
END

This function might be referenced:

EXTERNAL SIN
C=D-PHI (Q(K) ,SIN)

The replacement statement in the function PHI will be executed
as if it had been written PHI=SIN(Q(K))

See footnote **, section 7.5

k%
Except for statement functions (see section 7.8) and the Fortran intrinsic

functions (see Chapter 11).

7-8

7.8
STATEMENT
FUNCTION

A statement funetion is defined by a single expression and
applies only to the subprogram containing the definition.
The name of the statement function is a symbolic name; a
single value is always associated with the name.

A statement function definition has the form:

name (pl""’Pn) = E

the formal parameters p, are symbolic names and
. i . .
n is 1 to 60. The expréssion E may be any arith-

metic or logical expression, which may contain refer-
ences to any other functions. The nonparameter names
appearing in the expression have the same values as

they have outside the function.

A statement function reference has the form:

name (pys.«+5p)

name is the name of the statement. functionj the actual
parameters p;, may be any expressions.

During compilation, the statement function definition is com-
piled once in the subprogram and a transfer is made to this
portion of the subprogram whenever a reference is made to

the function. The value of the function is calculated using
the actual parameters. Control is then returned to the state-
ment containing the reference.

Actual and formal parameters must agree in number, order, and
mode. The mode of the evaluated statement function is deter-
mined by the name of the function. However, the mode of the
right-hand expression is determined by the highest mode of
the formal parameters of the function.

The statement function name must not appear in a DIMENSI@N,
EQUIVALENCE, C@MM@N, or EXTERNAL statement; the name of the
function and its formal parameters may appear in a type dec-
laration but cannot be dimensioned. Statement function names
must not appear as actual or formal parameters.

A statement function definition must precede the first state-
ment in which it is used, but it must follow all declarative
statements (DIMENSI@N, type, etc.) which contain symbolic names
referenced in the statement function, including formal para-
meters. All statement functions should precede the first
executable statement; otherwise, a warning diagnostic is
provided.

Omission of dimensioning information may cause later assign-
ment statements to have the appearance of statement functions

and lead to confusing diagnostics about statement functions.

7-9

7.9
LIBRARY
SUBPROGRAMS

7-10

A statement function may not reference itself and if such
an attempt is made, a fatal diagnostic is provided.

Example definitions:

L@GICAL A,B,EQV

EQV(A,B)=(A.AND.B) .#R. (.NOT.A.AND. .N@T.B)

C@MPLEX Z

Z(X,Y)=(1.,0.)*EXP(X)*C@S (Y)+(0.,1.)*EXP(X) *SIN(Y)
GR@PAY (RATE,HRS , THRS) =RATE*HRS+RATE* , 5*@THRS

Examples of use:

NETPAY=GR@PAY (1.25,HPURS (I) ,@VTIME(I))~DEDUCT (I)-TAX
RESULT=(Z (BETA,GAMMA (I+K))**2-1.) /SQRT (TW@PIE)

Subprograms that are used frequently have been stored in
a reference file called a library. Library subroutine
calls and function references may appear in the main pro-

"gram and/or subprograms in the same manner as do the pro-

grammer's own subprograms. The call acts as the request
for the library program and causes a copy of its object
code to be included during loading of the programmer's
main program and any subprograms.

One exception to this procedure is for the intrinsic
functions listed in Chapter 11. The object code for
such a function is compiled directly into a subprogram
at each place where it is referenced.

The names, parameters, and result type of standard 1lib-
rary functions and subroutines are listed in Chapter 11.
Errors detected by the library functions at execution time
are listed in Chapter 15.

7.10

PROGRAM .
ARRANGEMENT ' Frequently, the whole grouping of a main program, its
subroutines and its functions are referred to as a
"PROGRAM". A typical arrangement of a main program
and a set of subprograms follows. The main program
does not have to appear first.
(™~ PR@GRAM WHAT (INPUT, BUTPUT)
END
J REAL FUNCTI@N F1(P1l) .-
UpPROGRAM" : - S
END
SUBROUTINE ALPHA
" RETURN
L END
See Chapter 14 for a discussion of a complete sample job.
The ordering of subprograms is significant in case the
program is to be overlaid (see chapter 8).
7.11
VARIABLE
DIMENSIONS ON .
SUBPROGRAMS - In many subprograms, especially those performing matrix

manipulation, the programmer may wish to use different
array dimensions each time the subprogram is called.

This is accomplished by specifying the array name and

its dimensions as formal parameters in the FUNCTION

or SUBROUTINE statement. The corresponding actual para-
meters specified in the calling program are used by the
called subprogram. The dimensions that may be transmitted
to a subprogram should be the same as the dimensions

of the array in the calling subprogram.

7-11

The use of variable dimensions does not control
storage allocation; it merely informs the subprogram
of the dimensions in use in the calling program.

The formal parameters representing the array dimensions
must be simple integer variables. The array name must also
be a formal parameter. The actual parameters representing
the array dimensions must have positive integer values.

The total number of elements of the corresponding array
in the subprogram must not exceed the total number of ele-
ments of the array in the calling program.

Example:

Consider a simple matrix add routine written as a
subroutine:
SUBROUTINE MATADD (X,Y,Z,M,N)
DIMENSION X(M,N),Y(M,N),Z(M,N)
Db 10 I=1,M
D$ 10 J=1,N
10 Z(I,3)=X(I1,J) + Y(L,D)

RETURN

END
The arrays X, Y, Z and the variable dimensions M,N must
all appear as formal parameters in the SUBRGUTINE state-
ment and also in the DIMENSIQN statement as shown. If
the calling program contains the array allocation declar-
ation

DIMENSI@N A(10,10),B(10,10),C(19,10),E(5,5),F(5,5),G(5,5),H(10,10)

the program may call the subroutine MATADD from several
places within the main program as follows:

CALL MATADD(A,B,C,10,10)

CALL MATADD(E,F,G,5,5)

CALL MATADD(B,C,A,10,10)

CALL MATADD(B,C,H,10,10)
The compiler does not checkvto see if the limits of the

array established by the DIMENSISN statement in the main
program are exceeded.

7-12

7.12
ENTRY
STATEMENT

This statement has a single purpose. It provides an alter-
nate. entry pointA to a function or subroutine subprogram.

ENTRY name

Name is a symbolic name and may appear within the subprogram
only Iu iic FNTRY statoment. The cuicy name zay uct be fol-
lowed by a formal parameter list. Formal parameters, if there
are any, are the same as- those which appear in the FUNCTI@N
or SUBRAUTINE. statement. Each entry name must appear in a

separate ENTRY statement.

ENTRY may appear anywhere within the subprogram except it

- should not appear within a DO; the ENTRY statement cannot be

labeled. The first executable statement following ENTRY
becomes an alternate entry point to the sSubprogram.

In the calling program, the reference to the entry name waf."
'is made just as if reference were being made to the func-’

tion or subroutine in which the ENTRY is embedded. That
is, an equivalent parameter list must be used. The name
may appear in an EXTERNAL "statement and, if a function
entry name;in a type statement.

In a function subprogram, an ENTRY name assumes the same
type as the name in the FUNCTI@N Statement. The ENTRY
name may not.be given type expllc1tly in: the deflnlng
program.

Exaﬁpies:»

FUNCTION JQE(X,Y)
10 JOE=X+Y

RETURN

ENTRY JAM

IF (X.GT.Y) 10,20
20 JOE=X-¥

RETURN

END

7-13

7.13
- EXTERNAL
STATEMENT

7-14

Note that the formal parameters are X and Y, and that the
function returned is that value stored in JOE even when
entry is via JAM. This function could be called from the
main program as follows:

N
]

A+B - JPE(3.*B,Q-1)

R = S + JAM(Q,2.*P)

With the JAM call, the values of Q and 2.*P are used as
X and Y., The argument list matches that of the function

name JﬁE, and the function value JPE is returned and added
to S.

When an actual parameter is the name of a function or a
subroutine subprogram name, that name must be declared in
an EXTERNAL statement in the calling program. -

EXTERNAL némel, name,, ...
" &

The EXTERNAL statement must precede the first statement
which calls a function or subroutine subprogram using the
EXTERNAL name. When it is used, EXTERNAL always appears

-in the calling program; it may not be used with stdte-

ment functions. If it is a compiler diagnostic is.pro-
vided. ’

Exémples:

1: A function name used as an actuzl parameter reanires

an EXTERNAL statement.

Calling Program Reference

EXTERNAL SIN
CALL PULL(SIN,R,Q)

.
-
.

Called Subprogram
SUBR@UTINE PULL(X,Y,Z)

Z=X(Y)E

END

But a function reference used as an actual parameter does not

need an EXTERNAL statement.

Calling Program Reference

Called Subgrogram
SUBR@UTINE PULL(X,Z)

END

2: A subroutine used as an actual parameter must have its name

declared in an EXTERNAL statement in the calling program.

C¢MM¢N/ABL/ALSI(1001
EXTERNAL RTENTA, RTENTB
CALL AGMT(RTENTA,V1)
CALL AGMT (RTENTB,V1)
When a subprogram name appears as an actual parameter, any

parameters to be associated with a call of this subprogram
must appear as separate actual parameters.

Example:

Calling Program
EXTERNAI. ADDER

CALL SUB (ADDER,A,B)

Called Subprogram
SUBR@UTINE SUB(X,Y,Z)

CALL X(Y,Z)

END

CALL SUB(ADDER(A,B)) would imply that ADDER is a function
value, not a subroutine name.

7-15

7.14

BLOCK DATA

SUBPROGRAM A block data subprogram may be used in place of DATA
declarations in the procedural subprograms to enter
data into labeled common blocks prior to program
execution. The form is:

BL@CK DATA name

.

FORTRAN declaration* statements only

END

All elements in the common blocks must appear in a
COMMPN declaration in the subprogram even if they are
not in the DATA declaration.

Example:

BL@CK DATA FIRST

C@MM@N/ABC/A(5),B,C,/DEF/D,E,F

CPMPLEX D,E

D@UBLE PRECISI¢N F '

DATA (A(L),L=1,5)/2.3,3.4,3%7.1/,B/2034.756/,D,E,F/2%
1(1.0,2.5),7.86972415872E30/

END

The BL@CK DATA name may not be the same as that of any
other subprogram (including main and library subprograms)
to be loaded with it.

Standard Fortran requires that all DATA statements which
set initial values of variables in labeled common blocks
appear in BLPCK DATA subprograms.

That is C@MM@N, DATA, DIMENSI@N, EQUIVALFNCE and type statements.

7-16

OVERLAY STRUCTURES 8
8.1 Ov s \

When a program is too large for all parts of it to fit in the available
central memory of the computer simultaneously as a ljipneax load (the
ordinary case), it must be divided into pieces which can be fetched as
needed to fulfill the program function. The technique employed in this
division is called gverlaying, and the pieces into which the program. is
divided are called links. The overall structure of the overlaid
program is a tree consisting of a xoot (the first 1link) and a set of
overlays (the remaining 1links). Each 1link 1is a collection-of the
subprograms defined by the source program or selected from a library.
The grouping of the subprograms into 1links is. - determined by the
programmer on the basis of the logical and temporal -structure .of. . the
program. S

Even in cases where a program will fit in the memory available, it may
be advisable to use overlays to reduce the cost or to improve
turnaround by permitting the program to execute in a. smaller- central
memory field. PR . - e

Each overlay is a group of subprograms plus a pseudo-main 1prOQIam
introduced to define the initial entry to the overlay. Overlays are in
absolute (as opposed to relocatable) form which is loaded into central
memory at the request of the program being executed. . The process of
loading a link during execution is very fast, consisting essentially of
one read operation. Since loading a link is such a simple operation,
the subprogram required to perform the locad 1is quite small compared
with a full-scale loader which must be able to relocate and link
together subprograms, search libraries, create memory maps, etc.

The distinction between overlay dgeneration (which requires the
full-scale loader), and overlay execution (which requires only a small
library routine to load the overlays which have already been created)
must be kept in mind throughout the following discussions. This point

is a frequent source of confusion in the use of overlayse. For more
information see CALIDOSCOPE Control Statements and L3 CAL CLDR which

describes an alternate method of defining overlays with increased
flexibility, and wusually without requiring modification of the source
programe.

When a link is loaded during execution it is in the form in which it
was written by the loader and loading it does not alter the other links
which remain in memory. 1In particular, if a link is loaded, executed.,
and overlaid, and is then loaded again, all storage contained in it is
reset to contain the original values regardless of any changes that may
have been made during the first execution. On the other hand, common
blocks which are initialized by DATA statements contained in the
programs making up the 1link will be reset only if the common blocks

8-1

themselves are contained in the link. DATA statements are effective
only at the time the overlays are generated and the values given are

incorporated into the link which actually contains the common block in
guestione.

L]
Blank common storage 1is normally allocated at the end of the lowest
level link which declares it. If it is not declared in the root, 1its
contents will be lost whenever the link it follows is overlaid.

A library search is made for unsatisfied externals after the decks have
been read for each overlay. 2An external will be unsatisfied at this
point if it is referenced by a deck in the current overlay but not
defined by either the root or one of the decks just read or by the

associated primary, if the current overlay is a secondary (see next
section) .

8.2 Overlay Execution

When an overlaid program is to be executed, the root is loaded first
and remains in memory throughout the program execution. The root may
call in primaries which may in turn <call in their gassocjated
secondarijes.

As an example, consider a program which which is divided into three
phases which are executed consecutively. In an ordinary linear load
this program might occupy memory in the following fashion during
execution:

--------- time -=-=---->
FL m~ecccccrmcccccccccnea———
| LIBRARY .]
|- = === === - - - - |
| FINAL |
Memory = = = = = = = = - - - - |
Address | PROCESS |
I |
| |
|- = = === ===~ |
} INITIAL }
MAIN

In this case the memory occupied by PROCESS and FINAL is idle while the
INITIAL phase 1is being executed. Once this phase is complete, the
space it occupies will be idle for the rest of the time of execution.
Similar considerations apply to the PROCESS and FINAL phases. 1In

8-2

addition, parts of the library may be used by only one or two phases,
but this will be ignored here to keep the example simple.

If the program were converted to an overlay structuré. the above map
could be replaced by one like this:

------------ time =====--=--==>
B]
D e S W G G S -—-‘ ‘_ﬁ== ===== ——
| |
Memory LENITIAL PROCESS FINAL
Address r————————— ——————— et —— - -
| LIBRARY |
|- = = - s = - - - e - - - - 1
MAIN
o N . i

In this arrangement MAIN and LIBRARY are loaded first as the root,

which then <calls the link INITIAL. Once the processing performed by
" INITIAL is completed, the link PROCESS is loaded into the memory space
previously occupied by INITIAL. Finally. PROCESS is replaced by the
1ink FINAL to complete the processing required.

The process illustrated above may be continued so that, for example,
the PROCESS overlay itself might be subdivided in a manner similar to
that used for the entire program to give the following form which 1is
still more compact: ‘

------------- time ~====----=-=>

FL ~=====-- el Skt ST L L L T -
l “TGET IEUT |

I Tt ——— I

Memory LENITIAL PROCESS |FINAL I
Address |e---ss-e-dmmosooooodmsmsmees -
I LIBRARY |

|- - =-==-=-======-=-=-- l

MAIN
0 b i

Clearly this process of subdivision cannot be carried on indefinitely
without the overhead for additional overlays becoming too great. The
program designer should ensure that excessive overlay requests are

avoided by grouping interrelated subprograms together in a link where
possible.

The overlays INITIAL, PROCESS, and FINAL may call subroutines contained
in the root or reference labeled common blocks in the root with no more
overhead than if they were in the same linearly loaded program (i.e-..
no overlay structure). Of course such a subroutine may not cause the

8-3

routine which called it to be overlajd if there is to be return to the
calling routine. In general, external references from overlays must be
directed toward the root. For example, a primary overlay may contain
references to subprograms and common blocks in the root but not to
those in a secondary overlay. A seconday may contain references to the
root or to its associated primary.

The identification assigned to each link consists of a pair of numbers
in the range 0-63 (0 to 77B) called the primary and secondary
identjifiers. The root is distinguished by having both these identi-
fiers equal to zero. An overlay whose primary identifier is not zero
but whose secondary identifier is zero is a primary. An overlay whose
identifiers are both non-zero is a secondary. An overlay whose primary
identifier 1is zero and whose secondary identifier is non-zero is an
error.

The program may have only the root and at most one primary and one
secondary (for a total of three links) in memory at one time. In the
preceding example, MAIN and LIBRARY would constitute +the root, and
INITIAL, PROCESS, and FINAL would all be primaries. If PROCESS were
subdivided as suggested, then the secondaries GET and PUT would have
been introduced and the identifiers might be assigned as follows (where
the parenthesized numbers are the identifier pairs for the links):

FL ==--=--=q----—pommmm—p =
‘INITIAL —TGET PUT _TFINAL '
j(1,0) L£2 1) | (2,2) |(3a0) |

:

Memory I e -

Address | |PROCESS (2,0) |
|~ LIBRARY ‘I
R T |
L. MAIN (0,0) |

Since the maximum value an identifier may have is 63 (77B) this limits
the number of primaries which may be included in an overlay tree as
well as the maximum number of secondaries associated with a given
primary. Note that the primaries immediately follow the root (which
consists of MAIN and the library routines) in memory and each secondary
immediately follows its gssocjated primary (the primary with which it
shares its primary identifier). A secondary is never loaded unless its
associated primary is in memory. When a new primary is loaded during
execution, any previously loaded primary (and secondary, if present) is
destroyed. When a new secondary 1is 1loaded, any old secondary is
destroyed, but the common primary remains. The root always remains
throughout all overlay loading.

8.3 Overlay Directives

Every link begins with 'an OVERLAY directive. Each OVERLAY directive is
inserted in the program deck immediately preceding the decks which make
up the link to which it applies. OVERLAY directives encountered by the
compiler are copied immediately to the fileset on which object decks
are being written, from which they are to-be read by the 1loader. ' An
OVERLAY directive begins in column seven and has the following form:

OVERLAY (fn,11,12,Cnnnnnn)
where
fn fileset namé onto which the generated¥OVerlaykis_toﬁbe written
1ll Primary identifier (in octal) | »
12 Secondary identifier (in octal)

Cnnnnnn (optional): C 1is the character ¢ and nnnnnn is 6 octal
digits. If absent, this overlay is 1locaded normally. if
present and blank common is assigned at the next lower level,
this overlay is loaded nnnnnn words from the start of blank
common. This provides a method for changing the 31ze of blank
common when the overlays are generated.

Both the primary and secondary identifiers must be in octal. However,
the identifiers glven in the CALL OVERLAY statement (see below) may be
decimal. ’ _

The first overlay card must have a fileset name. Subsequent cards may
omit fn; i.e., the form of the card is OVERLAY(1l1,12,Cnnnnnn) and the
overlay is written on the same fileset.

The program card for the main program in the root must specify all
needed fileset names, such as INPUT, OUTPUT, TAPEl, etc., for all
links.

The pseudo-main program which defines the entry to each overlay differs
from the real main program (in the root) in that it normally contains a
RETURN statement to send control back to the routine which called the
overlay, and the pseudo-main program contains no file declarations on
the program card. :

The structure selected for the overlaid program is imposed by ordering
the overlay generation input as follows:

l. The input which defines the root appears first.

2. The input for each secondary

overlay

appears following

its

associated primary in the tree but preceding any subsequent

primarye.

There are many possible trees into which a program may be

it is up to the program designer to choose an appropriate one.

divided

and

In order to create the overlay structure illustrated above and write it

on the fileset named FILE, the input to the compiler could be

source decks and loader directives like the following:

OVERLAY(FILE,0,0)
(Decks for MAIN)
OVERLAY (FILE,1,0)
(Decks for INITIAL)
OVERLAY (FILE, 2,0)
(Decks for PROCESS)
OVERLAY(FILE,2,1)
(Decks for GET)
OVERLAY (FILE,2,2)
(Decks for PUT)
OVERLAY(FILE,3,0)
(Decks for FINAL)
End of file

8.4 Qv ay Calls

When an overlay is to be executed,
statement:

CALL OVERLAY (fn, 11, 12, p)

where

PR EEFE

reloaded if it is in memory:

All four parameters are required.

OVERLAY is a library subroutine which loads and

requested.

8-6

it

Primary identifier of the overlay

is

Secondary identifier of the overlay

Recall parameter. If p is 6HRECALL.,

called by the

executes the

a set of

Fortran

Hollerith constant or a variable containing the fileset name

the overlay is not to be
otherwise, specify zero.

overlay

The CALL OVERLAY statement not only loads the indicated overlay but
also passes control to the first executable statement of the pseu-
do-main program in that overlay. No arguments can be transmitted
except through shared common blocks. When the called pseudo-main
program executes a RETURN, program control is given to the first
executable statement after the CALL OVERLAY statement just as 1if the
overlay pseudo-main program were the subroutine OVERLAY.

Examples:

DATA FILE/6HXYPLOT/
CALL OVERLAY (FILE,4,0,0)

NAME = 5LXTREE
CALL OVERLAY (NAME,1l,2,6HRECALL)

CALL OVERLAY (SHXFILE,7,3,0)

8-7

INPUT/OUTPUT LISTS AND FORMATS 9

Data transmission between storage and extermal units
requires the FPRMAT statement (for coded mode only) and
the I/0 statement proper (Chapter 10). The I/0 state-
ment specifies the logical input/output unit, the pro-
cess (READ, WRITE, etc.) and a list of any data to be
moved. The unit of information transmitted to/from an
external unit is called a record.* The F@RMAT statement

n nq’F-’es {-ke manner in which the data is found or placed
speciri Lil maiificerl 411 wiiiklid i€ data 15 10und OrF piaced

in records. In binary I/0 statements no F@PRMAT state-
ment is used.

9.1
INPUT/OUTPUT
LIST The list portion of an input/output statement specifies
' the data items and the order, from left to right, of
transmission. The input/output list can contain any num-
ber of elements in the following form:

I ELTTLEPERD ’

The list items a; may be array names, simple or subscripted
variables, or variables with implied D@ loops. Constants,
functions, and expressions are not allowed. Items are
separated by commas, and their order must correspond to any
format specification associated with the list. Coded re-
cords are always read or written until the list is satis-
fied, or, on reading, an end-of-file is reached. The inter-
action between a FORMAT and a list is further explained in
Section 9.7.

Subscripts of variables in an I/0 list may be only in the
following forms:

c*I+d

I+

c*1

I

c

c and d are unsigned integer constants, and I is a simple
integer variable, previously defined, or defined within
an implied D@ loop.

In the discussion presented in this Chapter the word '"record" is used to
refer to a unit record. The usual input unit record is an 80 column punched
card, and the usual output unit record is a printed line of up to 133
characters. Unit records on other storage media are described in Chapter 13.

9-1

Examples of lists, used here with READ statements, fol-
low. Note the number following the word READ is not
part of the list, but refers to the FFRMAT statement to
be described in Section 9.2.

Examples:

READ 100, A,B,C,D
READ 200, A,B,C(I),D(3,4),E(1,J,7),H

READ 101, J,A(J),I,B(I,J)

READ 102, DELTA(5*J+2,5%I-3,5%K),C,D(I+7)

READ 202, DELTA

READ 300, A,B,C,(D(I),I=1,10),E(5,7),F(J), (G(I),H(I),I=2,6,2)
READ 400, I,J,K,(((A(I1,JJ,KK),II=1,1),JJ=1,J),KK=1,K)

READ 500, ((A(1,J),I=1,10,2),B(J,1),J=1,5),E,F,G(L+5,M~7)

9.1.1

Ay

Transmirsion Part or all of an array can be represented for trans-
mission as a single I/0 list item by using an implied DO
notation of the general form:

(((A(I,J,K),Ll=ml,m2,m3),L2=n1,n2,n3),L3=p \

which is proportionately simpler if the array has fewer
subscripts, and where

m;»M;,p; are unsigned integer constants or simple integer
variables. If Mg,05, OF P3 is omitted, it is
assumed equal to~1.

I,J,K are subscripts of A.

Ll’LZ’L3 are index variables I,J,K in some order.

During execution, each subscript (index variable) is set

to the initial index value: Ll =m,, L2 =n_, L3 =p, .

The first (innermost) index Variable defineé in~the }ist

is incremented first, following the rules for nested DO loop
execution. When the first index variable has reached its
limit , m,, it is reset to m, ; the next index vari-
able to t%e right is incremented; and the process is repeated
until all the index variables have been incremented to their
maximum value. If mj is greater than my initially, Ly is
given the value my only.

An array name which appears without subscripts in an I/0
list causes transmission of the entire array by columns
(as in Section 2.6.1). This form is sometimes referred
to as "short list" notation. Thus if B is dimensioned as

DIMENSI@N B(10,15)
the statement

READ 13,B
is equivalent to

READ 13, ((B(1,J),I=1,10),J=1,15)
but the first form is faster.

9-2

An implied Q¢ loop can be used to transmit a simple
variable more than one time. For example, the list

item (B,A(K), K=1,5) causes the transmission of variable
B five times. A list of the form K,(A(I),I=1,K) is per-
mitted and, when reading, the input value of K is used
in the implied D¢ loop.

Examples:

=
w

READ 400, (A(I),I=1,10)
400 F@RMAT (E20.10)

With this format, the READ statement is equivalent to the
following D@ loop.*

DP 5 I=1,10
5 READ 400, A(I)

2. READ 100, ((A(JV,JX),JV=2,20,2),J%=1,30)
READ 200, (BETA(3*J@N+7),J@N=J@NA,I@PNB, JGNC)
READ 300 (((ITMLST(I,J+1,K-2),I=1,25),J=2,N),K=IVAR,IVMAX,4)

3. READ 600, (A(I),B(I),I=1,10)
600 FPRMAT (F10.2,E6.1)

With this format, the previous READ statement is equivalent
to the D@ loop:*

D@ 17 I=1,10
17 READ 600,A(I),B(I)

4. PRINT 700,(I,I=1,10)

This statement will print the index variable I, I=1,2,3,...10.

Equivalence of the forms here depends on the fact that the FPRMAT state-
ment specifies the same number of items as the-list without the implied
DP. If the FPRMAT statement were different, the same results wouldjhot
be produced since a formatted READ statement always begins a new unit
record. See Section 9.7.

5. Nested implied D@ list items.
READ 100,(((({A(I,J,K)B(I,L),C(J,N),I=1,10),J=1,5),K=1,8),
1L=1,15),N=2,7)
Data is transmitted in the following sequence (summarized):
A(1,1,1),B(1,1),C(1,2),A(2,1,1),B(2,1),C(1,2). . .
. .A'(.‘x0,1,1),}3(10,1),C(1,2),A(1,2,1),B(1,1),C(2,2). -
. .A(lo,z,1),B(10,1),C(2,2). . .A(10,5,1),B(10,1),C(5,2). . .
. -A(10,5,8),B(10,1),C(5,2). . A(10,5,8),B8(10,15;,C(5,2). . .
. .A(10,5,8),B(10,15),C(5,7)
6. The following list item will transmit the array E(3,3) by columns:
READ 100, ((E(1,J),I=1,3),J=1,3)
The following list item will transmit the array E(3,3) by rowa:
READ 100,((E(1,J),J=1,3), I=1,3)
7. Short list notation.
DIMENSI@N MATRIX(3,4,7)
READ 100, MATRIX

The above items are equivaient to the following statements:
DIMENSIZN MATRIX(3,4,7)
READ 100,(((MATRIX(1,J K),I=1,3),d=1,4),K=1,7)

This list is equivalent* to the nest of DO loops:
DY 5 K=1,7 ‘
D@ 5 J=1,4
D@ 5 1=1,3

5 READ 100, MATRIX(I,J K)
provided the FORMAT specifies one item per record, e.g.,

100 FPRMAT (I6)

9.2

FORMAT

DECLARATION Coded input/output statements require a NAMELIST (see
section 9.9) or a FORMAT declaration which contains con-
version and editing information relating to internal/
external structure of the corresponding I/0 list items.
A FORMAT declaration has the following form:

FORMAT (spec,, . . . k(spec , . .)ispec , . .)
S.peci format specification

k optional repetition factor which must be an unsigned integer
constant.

*

See previous footnote'to this section.

9-4

The FPRMAT declaration is non-executable and may appear anywhere
in the program. F@RMAT declarations must have a statement label
in columns 1-5.

The data items in an I/0 list are converted from one representa-
tion to another according to FPRMAT conversion specifications.

An input conversion specification converts a coded data item

into the internal word structure specified. Output conversions
perform the reverse task. To be meaningfully converted, the data
must agree with the format specifications in order and type. No
type checking between list and F@RMAT is performed during execu-
tion. Formats may also contain editing specifications. In the
examples below, the lower case letter 'b" will often be used to
indicate a blank.

9.2.1 Conversion Specification

Ew.d Single precision real with exponent

Summarv:

Fw.d Singie precision real without exponent

Dw.d pouble precision real with exponent

Gw.d Single precision real with or without exponent

Iw Decimal integer conversion
Gw Qctal integer conversion
Aw Alphanumeric coaversion
Rw Alphanumeric conversion
Lw Logical conversion

w, n and d are unsigned integer constants; w specifies the
field width in number of character positions in the external
record, and d specifies the number of digits to the right of

el

the decimal, i.e., the fractional portion, within that field.

The total field widths specified for one record must be < 80
characters for card input/output or < 132 characters for—brinter

or < 137 for tapes (see Chapter 11, LNGBCD).

Each complex data item in a list is converted on irput/

output according to a pair of consecutive Ew.d or Fw.d
specifications.

Example:
COMPLEX A, B
PRINT 10,A
10 F@RMAT (1X,F7.2,F9.2)
READ 11,B
11 F@PRMAT (ELC.3, E10.3)

9.2.2 ' Editing Specification Summary:
+nP Scaling factor (decimal)
wX Space w columns to the right
wH Insert/Receive w characters
Tn Tab to column n

Z Print leading zeros

/ Begin new record

... Insert/Receive character (no *) string between * delimiters
#

...# Insert/Receive character (no #) string between # delimiters

9.3

CONVERSION

SPECIFICATIONS In general, the following can be stated about numeric conversion
specifications:

On input, blanks in numeric fields are interpreted as zeros;
but a field of all blanks is converted to a minus zero.*
The use of the plus sign is optional. A minus zero value
may be tested for by use of the function MZERO (see 11.2.25).

On output, if the coded representation of a number is not
large enough to fill the field allowed, it is right-adjusted
in the field with leading blanks inserted. If too large,
the field is filled with #s. When a zero is put out in a
real format, no zeros appear after the decimal point. This

provides a convenient distinction between an actual zero and
a very small number.

9.3.] Real numbers in storage are converted to the coded character

Ew.d Output form for output with the E conversion, Ew.d. The field

(REAL) occupies w positions in the output record; with the real
number right justified in the form:

b .a. . .azeee 100 =eee= 323
or

b .a.. .aEzee 0=ee=99

E;indicates blank character or - sign, a's are the most
significant digits of the integer and fractional part and
eee are the digits in the exponent. If d is zero or blank,
digits to the right of the decimal do not appear.” =
Field width w must be sufficient to contain the sig-
nificant digits, signs, decimal point, the letter E, and
the exponent. Generally, w > d+6. Positive numbers need
not reserve a space for the sign of the number. '

Tf the field is not wide enough to contain the output value, #'s
ark inserted in the field. If the field is longer than the output
value, the quantity is right justified with blank fill to the left.
If the value is infinite or indefinite (see Appendix A), the

field contains R or I respectively.

Examples:
PRINT 10,A A contains -67.32
10 FORMAT(1X,E10.3) or +67.32

Printed Result: b=.673E+02 or bb.673E+02

PRINT 10,A
10 FORMAT (1X ,E13.3)
Printed Result: bbbb-.673E+02 or bbbbb .673E+02

PRINT 10,A
10 FORMAT(1X ,E8.3)

Printed Result: #####h#4 or .673E+02

Provision not made for sign

=
Minus zero does not exist in all Fortran systems.
not be transferrable to such systems.

9-6

Programs which depend on it may

9.3.2

Ew.d Inpu,t . The .E specification converts the number in the input field to a real number and
{REAL} ‘ stores it in the proper location.

Subfield structure of the input field:

input field

digit ‘ . . E
integer A fraction exponent

decimal point

The total number of characters in the input field is specified by w: this field |
scanned from left to right: blanks are interpreted as zeros.

i

The integer subfield befins with a sign (+ or =) or a digit and may contain a
string of digits.” The integer field is terminated by a deumal point, D, E, +, -,
or the end of the input tield.

P
C
-,

The fraction subfield which.begins with a.decimal point may contain a string
digits. The field is terminated by D, E, +, -, ar the end of the input field.

The exponent subfield may begin with D, E, + or -. When it begins with D or E,
the + is optional between D or E and the string of digits of the subfield. The
value of the string of digits in the exponent subfield must be less than 323.

Tralllng blanks are interpreted as zeros.’

Permissible subfield combinations:

+1.6327E-04 integer fraction exponent
2.7210 integer {raction

T323+3 .) ' A integer, exponent

LG29E-1 . ©. fraction exponent

=136 integer only

1356 ‘ integer only

OTH23451 ” ' fraction oniy

E-06 (interpreted as zero) exponent only”

. In the Ew.d specification, d acts as a negative power-of-ten scaling factor when
an external decimal poeint is not present. The internal representation ot the
inptt quantity is:

. T exponent-subfield
(integer subfieldix10~ \ 0l po b

0:;I

For example, if the specification is E7.8, the input quantity 3267+05 {8 converted
and stored as: 3267x1079x10Y = 3.267,

A decimal point in the input field overrides d. The input quantity 3.67294+5 read
by an ES9.d specification is always stored as 3.6729x10°. When d docs not appear,
it is assumed to be zero.

The field length specified by w in Ew.d should always be the same as the leagth
of the field containing the input number. When it is not, incorrect numbers may
be read, converted, and stored as shown below. The field w includes the
significant digits, signs, decimal point, E or D, and exponent.

Example of incorrect data input:

READ 20,A,B,C
20 FPRMAT (E9.3,E7.2,E10.3)

Input quantities on the card are in three contiguous fields columas 1
through 24;

9 5 10
TN aatt™ T N
+6.47E-01-2,36+5.321E+02bb

The.second specification (E7.2) exceeds the width of the second field by
two characters.

Reading proceeds as follows:

o 10

+G.47E—01| -2.36+5 .321E+02bb

+6.47E-01{-2.3645],321E+02bb)]

+6.47E-01-2.36+5 |.321E+O2bb=

First, +6.47-01 is read, converted, and placed in focation A. Next, -2.36+3
is read, converted, and placed in location B. The number actually desired
was -2.,36, but the specification error (E7.2 instead of E5.2) caused the two
extra characters to be read. The number read (-2.36+5) is a legitimate
input representation under the defiaitions and resirictions.

Finally, .321E+0200 is read, converted, and placed in location C. Here again,
the input number is legitimate and is converted and stored, even though it is
not the number desired.

The above examp:.e illustraies & s.iuation where numbers are incorrectly read,
converted, and stored, anc yet there 18 no immeaiate indication that an error

has occurred.

Examples of Ew.d conversion on inpu;:

Specifi- Converted
Input Field caiion Value Remarks
+143.26E-03 E11.2 14326 “All subficlds present
-12.437629E+1 E13.6 -124.37629 All subfields present
8936 E+004 " U E9.10 ° .008936 No fraction subficld; input
number converted as 8936,
x 10-10+4
327.625 E7.3 -~ 327.625 Mo exponent subfield
-.0003627+5 E11.7 -36.27 Integer subfield contains
: . ‘ G- Only
-.0003627E5 . E11.7 -36.27 . Integer subfielu contains
- only
blanks Ew.d -0. " All subfields ermpty
1E1 E3.0 10, No fraction subfieid; 1nput
, ’ number converted as 1.x10}
E+06 E10.6 0. No integer or fraction sub-
field; zero storea regardliess
of exponent field c.ntents
1.bEbl . E6.3 10. Blanks are interpreted as
: 100 zeros
1.E1bbd E6.-3 10 Trailing blanks in exponent

are interpreted as zeros.

9.3.3
Fw.d Output The field occupies w positions in the output record; the cor-

[REAL) responding list item must be a real (i.e., floating point)
quantity, which appears as a decimal number, right justified:

- ba...a.a. ..’

b indicates a blank or - sign. The a's represent the most
significant digits of the number. The number of decimal places
to the right of the decimal is specified by d. If d is zero

or omitted, digits to thé right of the decimal point do not
appear.* If the number {s positive, the + sign is suppressed.
If the field 1s too short to accommodate the number, # fills
the field. If the field is longer than required to accom-
modate the number, the number is right justified with blank
f111l to the left. If the output value is infinite or inde-
finite (see the end of section A.3), the field contains R or

I resnectively.

When card fields are punched under F-specification, there is no way to sup-
press the decimal point except by programmed statements which punch the in-
tegral and decimal parts of the real number as two integers in adjacent

fields. 9-9

{ Examples:

PRINT 10,A A contains +32.694
10 FORMAT (1X,F7.3)
Printed Result: b32.694

PRINT 11,A
11 FORMAT (1X,F10.3)
Printed Result: bbbb32.694
PRINT 12,A A contains -32,694
12 FORMAT(1X,F6.3)

Printed Result: ###### no provision for - sign

PRINT 13,A,A A contains .32694
13 FORMAT (1X,F4.3,F6.3)
Printed Result: .327b0.327

9.3.4 .

Fw.d Input This specification is a modification of Ew.d. The input
field consists of an integer and a fraction subfield.‘ An

(REAL) omitted subfield is assumed to be zero. The restricticns

described under Ew.d input apply, except Fhat the scale -
factor will affect the F format (see Section 9.4): A dec1ma.
point punched in the field on the card will override the deci-

mal point in the FORMAT specification.

9-10

Examples:

Specifi- Converted
Input Field calion Value Remarks
367.2593 FR.4 367.2593 Integer and fraction lield

© 37925 F5.7 0037925 No fraction subficld; input
' ' ‘ e . number. converted as
374925 x 1@'7

Givs

.62543 F6.5 .62543 No integer subfield
.62543 F6.2 .62543 Decimal point overrides d
e : . of specification
+144.15E-03 F11.2 14415 Exponents are legitimate
in I input and may have
P-scaling
5bbbb F5.2 500.00 No fraction subficld; input
' " number converted as
'50000x 1072
9.3.5 '
Gw.d Ou/tpu,t The real data will be represented by F conversion-unless the magnitude
(REAL) of the data exceeds the range that permits effective use of I conversion.

In this case, the E conversion will represent the external output. There-
fore, the effect of the scale factor is not implemented unless the magnitude
of the data requires E conversion. :

When F conversion is used under Gw.d output specification, 4
blanks are inserted within the field, right justified. There-
fore, for effective use of F conversion, d must be < w6.

Examples:

PRINT 101, XYZ : XYZ contains 77.132
101 FORMAT (1X,G10.3)

Printed Result: 77.132bbbb
PRINT 101, XYZ : XYZ contains 1214635.1
101 FORMAT (1X,G10.3
Printed Result: bb.121E+07

9-11

9.3.6

Gw.d specification is similar to the Fw.d INPUT specification.

Gw.d Input
[RFAL)
9.3.7
Dw.d Output The field occupies w positions of the output record, the list item is a double
(DOUBLE) precision quantity which appears as a decimal number, right justified:
b .a, . .ateee 100 =eee =323
or
b .a. . .aDiee 0=ee=99
b indicat?s blank or minus zero. The specification for
D conversion corresponds to the Ew.d output specification.

9.3.6 .

e d Tnput D conversion corresponds to E conversion except that the list
{5)”“12‘ variables must be double precision names. D is equiva-
WOLRLE, lent to E as the beginning of an exponent subfield on the

input record.
Example:
D@UBLE Z,Y,X
READ1,2,Y,X
1 FORMAT (D18.11,D15,D17.4)
Input Card:
(—6.31675298443E-03 +2.718926453147 6293477528869D-09
WWW
18 15 17

9.3.9 e . . i i h i
Tw Ouipuz I specification is used to convert decimal integer values. The output quantity
[INTECER) occupies w output record positions, right justified:

ba.. .a

b is a blank or - sign. The a's are the most significant
decimal digits of the integer. If the integer is positive,
the + sign is suppressed. The maximum integer magnitude that can be

put out is 281474976710655 (248 - 1). If the integer is greater,
the symbol R is placed right justified in the field.

9-12

9.3.10
Iw Input

(TMTEGER)

I? the field w is larger than required, the output quantity is
right justified with blank fill to the left. If the field is
too short, #s occupy the field. If the internal value is -0
and a field descriptor of Il is given, - will be preduced.

Example:
PRINT 10,L1,J,K I contains -3762 -

A ‘ J ‘contains ~4762937
10 F¢RM T (lX’IS’I]‘O’IS) K contains +13

Printed Result: \bbb-BTGZl)bl)J‘762937bblﬂ
L/*

—~— ;\,.‘%/L_’_
10

8

The field is w characters in length, the list item is an inte-

ger variable, and the input data item is a decimal integer con-
stant. The input field w consists of an integer subfield, which
can contain only the characters +, -, 0 through 9, or blank.

When a sign‘appears, it must precede the first digit in the field.
Blanks (caution, this includes trailing blanks) are interpreted -
as zeros. The value 1s stored right justified in the specified
variable. The maximum input value is 576460752303423487 (2°7-1).

~ Example:

READ 10,1,J,K,L,M,N
10 Fd)RMAT (13,17,12,13,12,14)

Input Card:

Fﬂ»sbb-labblsbbvwblm
——— e — e~ S
3 7 2 3 2 4

In storage:

I contains 139

J -1500
K 18

L 7

M 3

N 104

9-13

9.3.11
Pw Output
(OCTAL)

9.3.12
P Input

(OCTAL)

9-14

@ specification is used to convert octal integer values. The
output quantity occupies w output record positions right justified:

aa. . .a

where a 1is an octal digit. If w is 20 or less, the
rightmost w digits occur. If w is greater than 20, the
number of right justified in the field with blanks to the

left of the output quantity. A negative number is output
in its seven's complement internal form.

Octal integer values are converted under ¢ specification. The ficld is w
characters in length, and the list item must be an integer variable.

The input field w consists of an integer subfield only (maximum
of 20 octal digits) containing only the characters +, -, 0
through 7 or blank. '

Only one sign may precede the first digit in the field. All
blanks (including trailing blanks) are interpreted as zeros.
Fields which contain only blanks are interpreted as -0.

Example:

TYPE INTEGER P,Q,R
READ 10,P,Q,R
10 FPRMAT ($10,012,62)

Input Card:

(3737373737GGGb6644b444—0

N e el

10 12 2

In storage:

P 00000000003737373737
Q 00000000666066440444
R 77777777777077171777

9.3.13
Aw Output -
{ALPHANUMERIC)

9.3.14
Aw Input
{ALPHANUMERIC)

9.3.15
Rw Output
[ALPHANUMERIC)

A negative octal number s represented internally in seven's complement form
(20 digits; obtained by subtvacting each digit of the octal number from seven.
For example, if -703 is an input quantity, its internal representation is
TITTe07T77TTT7777074.

That is, 7777717777777 77777777
~00000000000000000703
71777977 T77777777074

A conversion is used to output alphanumeric characters. If w
is 10 or more, the quantity appears right justified in the out-
put field, blank fill to left. If w is less than 10, the out-
put quantity represents the leftmost w characters of the inter-

nal word (see below). Binary zero characters are converted on
output to 55B (blank).

This specification accepts FORTRAN characters including blanks.
The internal representation is display code (see Appendix A);
the field width is - w characters.

If w exceeds LQTthe input quantity is the rightmost 10 characters in the field.
If w is 10 or less, the input quantity is stored as a left justified BCD word; the
remaining spaces are blank filled.

Example:
READ 10,Q,P,4

10 FPRMAT (A8,48,A4)

Input Card:

LUX MENTIS LUX §RBIS

R O i N

8 8 4
In storage:

Q LUXbMENTbb
P ISbLUXb@bb
$ KBISobbbbbb

This specification is similar to the Aw Output with the fol-
lowing exception. If w is less than 10, the output quantity
represents the rightmost w characters of the internal word.

If a binary zero is put out as a character, it is converted
to the character code for blank.

The number of characters which may be stored in a data item varies from one
Fortran system to another. ~Ten is an unusually large limit. See Table
B of Appendix A for examples of internal storage of alphanumeric data.

9-15

9.3.16

Pw Input This specification is the same as the Aw Input with the fol-
lowing exception. If w is less than 10™*the input quantity
(ALPHANUMERIC) is stored as a right justified BCD word; the remaining spaces

are filled with binary zeros.

Example:

READ 10,Q,P,¢
10 F@RMAT (R8,R8,R4)

Input Card:

LUX MENTIS LUX @RBIS

A R e W

8 8 4

In storage:

Q OOLUXbMENT *
P OOISbLUXb@ *
¢ O000OORBIS *

9.3.17 .
Lw Ou,tpu,t L specification is used to output logical values. The output ficld is w charactlers
long, and the list item must be a logical element.
(LOGICAL) g
A value of true or false in storage causes w-1 blanks fol-
lowed by a T or F to be output.
Example:
LZGICAL 1,J,K, L 1 contains -0 J contains 0
PRINT 5,1,J,K, L K contains -0 L contains -0
5 F@RMAT (4L3)
Result: bbTbbFbbTbbT
9.3.18
Lw Tnput This specification accepts logical quantities as list items. The field is
(LOGICAL) considered true if the first non-blank character in the field is T or false if
it is F. An all-blank field is considered false.
*

‘Here the 0 represents the true zero (all zero bits), not the character
zero.

*k See footnote to section 9.3.15.°

9-16

9.4

nP SCALE FACTOR The D, E, F, and G conversion may be preceded by a scale

factor which is: External number = Internal number
XlOscale factor.
A scale factor is of the form:

‘ nP

where n, the scale factor, is an unsigned or negative integer
¢onstant in the range -8 < n < 8.

When an input/output statement is initiated, a scale factor
of zero is assumed. Once a scale factor has been given, it
applies to all subsequently interpreted F,E,G, and D speci-
fications, until another scale factor is.encountered, and
then that scale factor is used. For example, OP nullifies
the effect of a previous scale factor.

The scale factor is not automatically reset if the F@RMAT
is rescanned.

Example:
F@RMAT (3PE12.6,F10.3,0PD18.7, -1P, F5.2)

The E12.6 and F10.3 specifications are scaled by 103, the
D18.7 specification is not scaled, and the F5.2 specifi-

tion is scaled by 101 .
The scaling specificatio
element.

o moQm AT s ~Ad 55 &L - h .
S not assocliatea witn a iist

]
o
lav]
[

The format (3P,319,F10.2) is the same as the format
9 4.1 (319,3PF10.2).

FW. d Sca»&(’.ng InEut

The number in the input field is divided by 10" and stored.
For example, if the input quantity 314.1592 is read under

the specification 2PF8.4, the internal number is
314.1592x10"2 = 3.141592.

Output

The number in the output field is the internal number mul-
tiplied by 10%. In the output representation, the decimal
point is fixed; the number moves to the left or right,
depending on whether the scale factor is plus or minus.

For example, the internal number 3.1415926538 may be repre-
sented on output under scaled F specifications as follows:

9-17

9.4.2
tw.d oxr Dw.d
Scaling

9.4.3
Gw.d Scaling

9-18

Specification Qutput Representation

F13.6 3.141593
1PF13.6 31.415927
3PF13.6 3141.592654

-1PF13.6 .314159

Input
The scale factor has the same effect as in the F speci-

fication unless the field has an exponent. In that event,
there is no effect.

Qutput

The scale factor has the effect of shifting the output num-

ber left n places while reducing the éxponent by n. Using
3.1415926538, some output representations corresponding to
scaled E specifications are:
Specification Output Representation

E20.2 _ 0.31 E+01
1PE20.2 3.14 E-00
2PE20.2 31.41 E-01
3PE20.2 314.15 E-02
4PE20.2 3141.59 .E-03
5PE20.2 31415.92 E-04
-1PE20.2 0.03 E+02

Input

Gw.d scaling on input is the same as Fw.d scaling on input.

OQutput

The effect of the scale factor is suspendéd unless the mag-
nitude of the data to be converted is outside the range
that permits the effective use of F conversion.

9.5
EDITING
SPECIFICATIONS

9.5.1
wX
(SKIP)

9.5.2
wH Output
(HOLLERITH)

Editing specifications unlike the previous format conver-
sion specifications, have no list elements associated with
them. These specifications allow for insertion or skipping
of characters in the input/output record and for starting

a new record.

This specification may be used to include w blanks in an
output record or to skip w characters on an input record

to permit spacing of input/output quantities. O0X is not
permitted; bX is interpreted as 1X. InRUN Fortran, the
comma following X i# optional but it is required in standard
Fortran.

Examples:
INTEGER A A contains 7
PRINT 10,A,B,C B contains 13.6

C contains 1462.37
10 FPRMAT(3X,12,3X,F6.2,6X,E12.5)

K]

Printed Result: bbb7 bbbb13.60bbbbbbb0.14624E+04%*

READ 11, R,S,T
11 FPRMAT (F5.2,3X,F5.2,6X,F5.2)

Input Card:

(14Aubb51355bc¢srb1537
In storage:

R 1+.62
S 13.7
T 15.9

With this specification 6-bit characters (given in the
format itself), including blanks, may be put out in the form
of comments, titles, and headings. w, an unsigned integer,
specifies the number of characters to the right of H that
are transmitted tc the output record; w may specify a maxi-
mum of 133 characters. H denotes a Hollerith field; the
comma following the field is optional.

Instead of prefixing the Hollerith field with wH, it may

be defined by being contained between asterisks or not equal
signs. (Therefore, *s are prohibited in a field delimited
by asterisks and #s are prohibited in a field delimited by
not equals.) No count is necessary. In either case, it is
not necessary to set off a Hollerith field from other format
specifiers (if any) by a comma.

The same result is obtained with the F@RMAT(1X,I4,F9.2,E18.5).

9-19

Examples:

Source program:

PRINT 20
20 FPRMAT (28HbBLANKSbCHUNTbINbANBHBFIELD.)

or

20 FPRMAT (*bBLANKSbCHUNTbINDANBHbFIELD. *)
produces the printed result:
BLANKSbC@UNTb INbANbHbFIELD.

Source program:

In the F@RMAT the comma after

the = sign is optional.

PRINT 30,A A contains 1.5.
30 FPRMAT (6HbLMAX=,F5.2)

produces the printed result:

LMAX=b1.50

9.5.3
wH Tnput The H specification may be used to read Hollerith characters into an existing il
(HOLLERITH) field within the FORMAT specificdtion.

Example:

Source program:
READ 10
10 FPRMAT (27Hbbbbbbbbbhbbbbbbbbbbbbbbbbly)

Input Cal‘d;

(bTHIS IS A VARIABLE HEADING
W

27 cols

After READ, the FGRMAT statement labeled 10 contains the alphanumeric in-
formation read from the input card; a subsequent reference to statement 10 in
“n output statement acts as follows:

PRINT 10

produceé the printed result:

THIS IS A VARIABLE HEADING

5-20

9.5.4
New Recoad

When an input/output statement is initiated, a new record
is always started.* In addition, a new record is started
when the end of the format is encountered if another list
element is specified.

A slash (/) character in the specification list also signals
the beginning of a new record. Consecutive slashes may appear
in a format and they need not be separated from the other spe-
cifications by commas. During output, the slash may be used
to skip lines, cards, or tape records. During input, it spe-
cifies that the next record is to be read. Format/list inter-
action when a slash is encountered is further explained in
Section 9.7. K(/) results in K-1 lines being skipped, except
at the end of the format in which case K lines are skipped.

Examples:

1) PRINT 10
10 F@RMAT (6X, 7THHEADING/ / /3X, SHINPUT, 2X, Gn¢UTPUT)

Printout:
HEADING line 1
(blank) line 2
(blank) line 3
INPUTbb@UTPUT line 4
Each line corresponds to a record. The second and third records are

null and produce the line spacing illustrated.

2) PRINT 11,A,B,C, D
11 F@RMAT (1X,2E11.3/1X,2F7.3)

In storage:
A -11.6
B .325
C 46.327
D -14.261

Printout:

b-0.116E-+02bb0, 325E+00
b46.327-14.261

Note that the first character of each record is interpreted by the
prin?er as a carriage control character and is not printed. Unless
provision is made for this character in the F@RMAT statement, e.g., using
a wX or wH specification, information placed in this positior’x is lc;st

and unexpected spacing of the output may result.

9-21

3) PRINT 11,A,B,C,D _
11 F@RMAT(1X,2E11.3/1H0,2F7.3/)

Printout:

b-0.116E+02bb0.325E+00 line

b46.327-14.261

1
~(blank) - 1line 2

, line 3
-(blank) - 1line 4

Line 2 on the printout above is blank because the zero in
the first position of second output record (which actually
prints as line 3) causes a double space before printing of

the record.*

&) PRINT 15, (A(I),I=1.9) : .
15 F@RMAT (8HbRESULTS,2(/) (4X,3F8.2))

Printout:

RESULTS

3.62
-6.33

6.21

9.5.5
Tabulation In

-4.03
7.12
—6.74

line 1

—(blank)- 1line 2
~-9.78 line 3
3.49 line 4
-1.18 line 5

The T (tab) specification is available for column selection control.
When Tn is used, the format pointer is skipped to column n of the ex-
ternal record, and the next format specification is then processed.
h may be any unsigned integer < 132. If =0, column 1 is assumed.

Tn Input (tab)

On input records, In enables data to be skipped or to be read in any
desired order. If n > 80 when reading data from cards, the column
pointer is moved to column n but a succeeding specification would

read only blanks.

* The first character of an output record is interpreted by the printer
as a carriage control and is not printed.

9~22

See Section 10.1.

9.5.6
Zeno
Suppression

Example:

Input list: A,J,K
Format specification: (E7.2,T20,12,T15,I4)

1 7 10 15 20
Input card: /bb34.21bbb37b1b572b4b

In storage: A contains 34.21
J contains 40
K contains 572

Tn Output (tab)
On output, T enables information to be placed anywhere on the record

in any order desired. The output line image is blanked prior to the
actual formulation of a line.

Examples:

1. Format specification:
(T80, *COMMENTS*,T60 ,*HEADING4*T40*HEADING3*T20 , *HEADING2#*,T2,
HEADING1)

Printed output (numbers indicate print positions)#*
1 19 39 59 79

HEADING1 HEADiNGZ HEADING3 HEADING4 COMMENTS

2. Output list: K,L,M
Format specification: (T20,14,T36,12,T28,I4)

In storage: K 372
L 0
M 4499
Output record: 19 27 35

bbbbbbbbbbbbbbbbbbb372bbbb4499bbbbb0
Z Output

The appearance of a Z in an output specification acts as

a switch causing leading zeros to be printed for all succeeding
integer output quantities. The appearance of -Z turns the switch
off, and normal output resumes. This switch is not automatically
reset when a format is rescanned.

The compiler may give a non significant warning diagnostic when
the Z specification is used.

The first character position of a printed line is always used for
carriage control.

9-23

9.6

REPEATED
FORMAT =~
SPECIFICATIONS

9-24

Example:
In storage:

-632.43

R
I 32
J -3762
X 37.95
K 4

Output list: R,I,J,X,K
‘Egrmat specification: (1Hb,F7.2,Z,14,16,F8.2,-Z,I3)
 Output: -632.430032-03762 37.95 4 o

Format specifications may be repeated by ﬁsinghan

-unsigned integer constant, k (called a repetition

factor), as follows: k spec or k(specs), where spec
is any conversion ‘ ‘ C

and specs is any set of format specifications. TIf k -
is omitted, it is assumed to be 1. For example, to
print two quantities K,L:

PRINT 10,K,L
10 ~ F@PRMAT(I2,12)

Specifications for K,L are identical; the FPRMAT state-
ment may also be:

10 FPRMAT(212)

When a group of format specifications repeats itself as
in: FQ@RMAT(E15.3,F6.1,14,14,E15.3,F6.1,14,14), the use
of k produces: F¢RMAT(2(E15.3,F6.1,ZI4)). Two levels of
parentheses are allowed in 4ddition to the outer paren-
theses delimiting the format specification.

Examples:

F@RMAT (3 (4HbRGW,) *bY@URbBPAT*)
F@RMAT (2 (1X,15,3(F8.5,2X)))
F@RMAT (1H0, 5110/ (10F10.5))

9.6.1

lnlomited

Groups If the end of the format specification is encountered and
the input/output list is not exhausted, a new record is
started. The format scan reverts to that parenthetical’
group terminated by the last preceding right parenthesis,
or if none exists, then to the first left parenthesis of
the F@RMAT statement.

For example, in the output format:

22 F@RMAT (10HORGWHNO.b=T12/(3X,6(I110,2Hb=F10.4)))
. 1 i i 3

the group denoted by the arrows is the group repeated and
is used to specify the format of output records 2,3,... if
there are more than 13 output list elements.
Example:
DIMENSI@N X(4,4)
PRINT 100, (I,I=1,4),(J,(X(J,K),K=1,4),J=1,4) .
100 F¢RMAT(15X,*ARRAYbX*/1X,*C¢LUMNp*,4I6/(lX,*R¢W*,I2,2X,4F6.l))

produces the following printout:

ARRAY X
COLUMN 1 2 3 4
ROW 1 1.1 6.2 7.6 4.9
ROW 2 2.3 8.9 6.7 2.6
RGW 3 4,6 1.5 4.3 9.5
ROW 4 7.8 2.3 5.7 1.4

9-25

Note that if a scale factor has been used, the last
scale factor in effect will be used if the format is
‘repeated, thus possibly changing the conversion for
elements which appeared before the first scale factor
in the format specification.

Example:

FPRMAT (F10.5/(5E15.8,-2PF9.6))

If the list is not exhausted at the end of the format, the
format will repeat starting with the 5E15.8 specification
but with a scale factor of -2. ‘

9.7

FORMAT AND

LIST S

INTERACTION When processing of a coded input/output statement is begun,
a scan of the referenced FPRMAT statement is initiated.
Each action then depends upon information jointly ‘pro-
vided by the next element of the input/output list and
the next specification obtained from the format.

When a READ statement is executed, the next record is read
immediately. Additional records are read only as the
format specifications demand. Any unprocessed charac-
ters of the current record will be skipped at the time

of termination or when a slash is encountered.

When a WRITE or PRINT statement is executed, writing of
the next record begins. Additional records are written
as the format specifications demand.

Whenever a new record is required (as whén a slash is
encountered) processing of the new record begins with

the first character position of the record, proceeding
from. left to right.

Except for the effect of repetition factors, the format
is interpreted from left to right. Except for implied
DO loops, the input/output list is also interpreted from
left to right. To each conversion specification inter-
preted in the format, there corresponds one element in
the input/output list, except that a complex element
requires the interpretation of two F, E, or G specifica-
tions. (The conversion specifications, E, G, D, F, I,
ﬁ, L, A, R, are described in section 9.3.)

Conversions are made as specified (if legal), regardless of the
type designation of the list element.

9-26

9.8
VARTABLE
FORMAT

No list item is associated with an editing specification
(see Section 9.5). Whenever an editing §pecification is
encountered in the format, it is executed. When a con-
version specification is encountered, the list is examined
first. If there is a list element, the indicated conver-
sion is made. If no list element is found, the input/
output statement is terminated.

Whenever the format scan reaches the end of the format, the
input/output statement is terminated if the list is found
to be exhausted. If not, a new record is started and the
format scan proceeds as described in Unlimited Groups,

Section 9 6 1
[e AuvLL J e Ue L oo

Format specifications may be specified at the time of pro-
gram execution. The specifications, including left and
right parentheses but not the statement label nor the word
'FORMAT', may be read with A conversion, generated by an
ENCODE statement (Section 10.6), or defined in a DATA
statement and stored in an array. The name of the array
containing the specifications is used in place of the
FORMAT statement label in the associated input/output
operation. The array name that appears, with or without a
subscript, specifies the location of the first word of the
FPRMAT information.

A variable format may be modified by replacing individual
elements in the array containing it with the appropriate
Hollerith constant.

Examples:
1. Assume the following format specifications:
(1X,E12.2,F8.2,17,2E20.3,F9.3)

This information can be punched in an input card and
read by the statements of the program such as:

DIMENSI@N IVAR(3)
READ 1, (IVAR(I),I=1,3)
1 TF@RMAT (2A10)

The elements of the input card are placed in storage
as follows:

IVAR(1): (1X,E12.2,

IVAR(2): F8.2,17,2E
IVAR(3): 20.3,F9.3)

A subsequent output statement im the same program can
refer to these format specifications as:

PRINT IVAR, A,B,I,C,D,E

9-27

This produces exactly the same result as the statements:

‘ PRINT 10, A,B,I,C,D,E
10 F$RMAT (1X,E12.2,F8.2,17,2E20.3,F9.3)

2. DIMENSI¢N LAIS1(3),LAIS2(3),A(6),LSN(3),TEMP(3)
DATA LAISl/ZSH(1H0;2F6.3?I7,2E12.2?311)/,LAISZ/
1 23H(1X,16,6X,3F4.1,2E12.2)/
Output statement:
PRINT LAISI1, (A(I),I=1,2),K,B,C,(LSN(J),J=1,3)

which is the same as:

PRINT'1,(A(I),1=1,2),K,B,C,QLSN(J),J=1,3)
1 F@RMAT(1HO,2F6.3,17,2E12.2,311)

Output statement:
PRINT LAIS2,LA, (A(M),M=3,4),A(6),(TEMP(I),I=2,3)
which is the same as:

PRINT 2,LA, (A(M) ,M=3,4),A(6),(TEMP(L),L=2,3)
2 FPRMAT (1X,16,6X,3F4.1,2E12.2)

3. - DIMENSIPN LAIS(3), VALUE(8)
DATA LAIS/27H(I3,14HbMEANBVALUEbIS,F6.3)/

Output statement:
WRITE (lO,LAIS)NUM,VALUE(6)
which is the same as:

WRITE (10,10)NUM,VALUE(6)
10 FPRMAT (I3,14HbMEANbVALUEbIS,F6.3)

9.9 .
NAMELIST Variables placed in a NAMELIST statement may be converted
STATEMENT on input or output without thé need for format specifica-

tions. Instead the input record contains the names of the
variables to be read and the values the variables are to
be set to. The output record contains the names of the
variables (as seen in the program) and the values of the
variables converted to BCD.

The form of the NAMELIST statement is:
NAMELI‘ST /yllal/yz/azl/. .. /yi/ai/. . ./yn/an

yi is an identifier of 1-7 characters.

a; is a list of the form b.,b ”"bi""’bm where bi is
a variable or an array fiamé.

9-28

Each y is a NAMELIST name; it must be different from all
other names in the program. After it is defined, the name
may appear only in READ or WRITE statements as described
in Chapter 10. A NAMELIST name may be defined only once
in a subprogram.

In any given NAMELIST statement, the list, a, of variable
names or array names between the NAMELIST identifier, vy,
and the next NAMELIST identifier (or the end of the state-
ment if no NAMELIST identifier follows) is associated with
the identifier, y.

Examples:

PR@PGRAM MAIN
NAMELIST/NAME1/N1,N2,R1,R2/NAME2/N3,R3,N4,N1

SUBRGUTINE XTRACT(A,B,C)
NAMELIST/CALL1/L1,L2,L3/CALL2/L3,P4,L5

A variable name or array name may be an element of more

than one such list. In a subprogram, b; may be a formal
parameter identifying a variable or an array, but if it

is an array, it may not have variable dimensions.

Chapter 10 describes the format of the input and output

records and their interaction with the corresponding READ
and WRITE statements.

9-29

1-73

INPUT/QUTPUT STATEMENTS 10

The following definitions apply to all I/O statements:

i logical I/0 unit number:

an integer constant of one or two digits (the first
must not be zero) or '

an integer variable with value from 0 to 99.
n FPRMAT declaration identifier:
statement number or

dimensioned variable identifier (with or without sub-
scripts) which references the starting storage location
of format information

L the input/output list (Section 9.1)

X namelist identifier (Section 9.9)

Logical I/0 unit numbers do not have any predetermined
mode (coded or binary) associated with them. The type of
I/0 statement determines the mode to be used. For each
unit number i referenced by the program, there must be
a file name TAPEi declared in the PRPGRAM statement.®

The filesets INPUT, OUTPUT, and PUNCH are needed for the READ n,
PRINT n, and PUNCH n I/0 statements, respectively. Other I/0
statements may manipulate these filesets (except that fileset INPUT |
may not be written). This is done by using a logical unit num-

ber whose file name is equivalenced to the desired file.*T

There are two modes of reading or writing information on a
fileset: binary and coded. The way in which the information

is organized depends upon the mode as well as the I/O device

on which the fileset is recorded.* Mixed mode filesets, i.e.,
filesets written partly in binary mode and partly in coded mode,
should not be used.

Coded Mode

The information in Fortran coded mode files is organized into
unit records. For the card reader or punch, a unit record is
an 80-character card image. For the printer 133 characters

(1 print line) constitutes a unit record. A unit record

on magnetic tape contains up to 136 characters written in even
parity.**

Chapter 13 contains a further discussion of filesets, file names, physical
and logical records.

Section 7.4 shows how filenames are equivalenced. The footnote to

Section 10.4 shows an example of equivalencing one of these files.

The parity of a magnetic tape is the means by which the reading and writing
of the information on tape is checked for validity.

10-1

Binary mode

A binary record on punched cards consists of all cards between
the beginning of the deck and the first E@R (a card with 7-8-9
punched in column 1) or between consecutive E@Rs. A binary
record on magnetic tape is written in odd parity.*

When no other I/0 device is assigned to a fileset, the fileset
is recorded on disk or ECS.

10.1 , : , .
OUTPUT STATEMENTS PRINT n,L

Information in the list (L) is transferred from the storage lo-
cations to the standard output fileset (OUTPUT) as line images,
133 characters or less per line in accordance with the F@RMAT
declaration, n. The maximum physical record length is 133 char-
acters, but the first character of each unit record (line) is
‘not printed, as it is used for carriage control when printing.
'Each PRINT statement or each new record starts a new print line.

The CDC system line printer uses a vertical spacing of six lines
per inch, so the standard eleven inch page has room for sixty-
six lines. To: allow reasonable margins printing normally runs
from line six through line sixty-one for a total of fifty-six
lines per page. The horizontal spacing is ten characters per

- inch. Printers at remote stations do not necessarily follow the
same conventions. The IBM printers use a vertical spacing of
eight lines per inch. The following table will correspond to the

“IBM line printer positioning if all line numbers have 1 added.
Example: Control Character 9 causes a skip to line 62.

Control Character Effect (all actions are taken prior to printing the line)

Blank .-Single space
0 : Double space

Triple space

Suppress space

Skip to line 7 (of next page in most cases)

Skip to next of lines 10, 37 (next half page)

Skip to next of lines 9, 27, 45 (next third page)

Skip to next of lines 8, 22, 36, 50 (next quarter page)

Skip to line 1 just after concave paper fold

Skip to line 1 just after convex paper fold

Skip to line 1

Skip to line 62

Single space and enter automatic skip suppress mode
(passing line 62 will not cause a skip to line 7);

: . this mode continues until the mode is left

Y : Single space and leave automatic skip suppress mode.

Z Single space but suppress automatic skip for this line

MO WN -+ |

The "convex" fold in computer output is at the bottom of the output when
folded normally and viewed by the prospective reader. It is the fold which
is convex with respect to.the viewer. '"Concave" refers to a fold in the
opposite direction ' '

An unrecognized control character will be treated as a blank.

* ' '
See third footnote on previous page and the WRITE(i)L statement in following
page.

10-2

PUNCH n,L

Information is transferred from the storage locations given
in the list (L) to the standard Hollerith punch fileset
(PUNCH). Information is transferred as 80 character or less
unit records in accordance with the F@RMAT declaration, n.

WRITE (i,n)L

This form transfers information from storage locations given

by the list (L) to the specified output unit (i) according

to the FPRMAT declaration (n). The number of words in the

list and the FPRMAT declaration determine the number of records
that are written as discussed in Chapter 9.

If the file is to be printed, the first character of each
record is not printed but is used as a carriage control charac-
ter. If the programmer fails to allow for a carriage control
character, the first character of the output data is lost on
the printed listing and erratic line skipping may result.

WRITE(i)L

This form transfers information from the storage locations
give by the list (L) to a specified output unit (i) in binary
mode. If L is omitted, the WRITE(i) statement acts as a do-
nothing statement. See READ(i)L in Section 10.2.

Examples:
DIMENSI@N FSTNME(2), FIRMNM(4)
DIMENSI@N M(10,5), B(4000), AMAX(10), C(20,20), LSTNME(2)
L@AGICAL A(260)

RFAL ITMN@
INTEGER ACCT, TELN@, SHPDTE
WRITE(10) A,B
DP 5 I=1,10
5 WRITE(6) AMAX(I),(M(I,J),J=1,5)
PRINT 51, (A(I),I=1,20)
51 F@RMAT (X23HTRUTHbMATRIXbVALUESbBARE/ (3X,4L3))
PUNCH 52, ACCT, LSTNME,FSTNME,TELN®,SHPDTE,ITMN®
52 FPRMAT(I8,3X,4A10,2X,110,1X,15,F8.2)
WRITE(2,53)B,C,D B
53 FPRMAT(4E21.9)
WRITE(2,52) IC@DE,FIRMNM,L@C
WRITE(2,54)
54 FPRMAT (*bTHISbSTATEMENT bHASbN@bDATADLIST. %)

10-3

10.2

WRITE (4,x)

Write coded information to unit i as follows:

1. One record consisting of a $ in column 2 immediately
followed by the NAMELIST identifier, x.

2. As many records as are needed to contain the current
values of all variables in the NAMELIST associated with
X. Simple variables are written as v=c.

Elements of dimensioned variables are written in the order
in which they are stored internally. (Section 2.6.1).

The data fields are made large enough to include all sig-
nificant digits. Logical values appear as .T. and .F.
No data appears in column 1 of any record.

3. One record consisting of a $ in column 2 immediately
followed by the letters END.

The records written by such a WRITE statement may be read by a
READ(i,x) statement where x is the same NAMELIST identifier.

READ STATEMENTS ~ READ n,L

One or more unit records are read* from the standard input file
(i.e., fileset INPUT). Information is converted from left to
right in accordance with format specification (n), and it is
stored in the locations named by the list (L). Each new READ
statement starts a new record.

Example:

READ 10,A,B,C
10 FPRMAT (3F10.4)

10-4

A program should not expect to be terminated for encountering an end-of-file
(EOF), since provision is allowed in the language to test for an EOF, the

IF (EOF,i) statement. Instead the job is terminated only when on a subsequent
READ, the EOF indicator has not been turned off by the test statement. List
items unsatisfied when the EOF is encountered will be set to minus zero in
memory. For historical reasons, INPUT is inconsistent with all other file-
sets in that any EOR will be treated as if it were an EOF by a coded READ.

READ (i,n)L

This form transfers information from a specified unit (i)

to storage locations named by the list (L), according to the
format specification (n). The information is read in coded
mode.

The number of words converted and records read is determined
by the list and format specifications, which must conform to
the record structure on the specified unit.* Each READ (i,n)
statement starts a new record. See footnote to READ n,L.

READ (1)L

This form transfers one binary record of information
from a specified unit (i) to the storage locations indicated
by the list (L).

Records to be read by READ(i) should be written in binary
mode. The number of words in the list of READ(i)L must
not exceed the number of words in the corresponding WRITE
statement ¥* If the list is longer than the record,

the excess words in the list are left unchanged in memory.
If the list is shorter than the record, the untrans-

mitted words are skipped. Each READ(i) statement starts a
new recoQrd.

Examples:

DIMENSI@N C(264)

DIMENSI@N BMAX(10), M2(10,5), A(100,50)
DPUBLE PRECISIPN DB(4)

DIMENSI@N Z(8)

READ (10)C
DY 7 1I=1,10
7 READ(6) BMAX(I), (M2(I,J),J=1,5)
READ(5) (skip one logical record on unit 5)

READ(6) ((A(I,J),I=1,100),J=1,50)
READ(10,50)X,Y,Z
50 FPRMAT (3F10.6)
READ(10,51) DB
51 F@YRMAT (4D20.12)
READ 51, DB
, READ(2,52) (2(J),J=1,8)
52 FORMAT (F10.4)

Attempting to use more than 136 characters of aunit record will normally
terminate the job, but see Chapter 11: LNGBCD.
See Chapter 11: the LéﬁEEE‘functidﬁ.dd?wwwwmm}

10-5

10-6

READ (i,x)

The current file of unit i is scanned until either an
end-of-file or a record with a § in column 2 immediately
followed by the NAMELIST name, x, with no embedded blanks
but followed by a blank is located. When the name,

X, is encountered, succeeding data items are read until a $
is encountered. The data items are placed in the variables

and arrays associated with the NAMELIST x. If no data
block with the correct name is found, a fatal error exit
occurs. If no data are to be read by this statement, a
void block with the correct name should be used.

Data items are separated by commas. They may be in any
of three forms:

v =_c
a = dl,...,dj
a(n) = dl,...,dm

v is a variable name
c is a constant
a is an array name

n is an integer constant subscript

The di are simple constants or repeated constants of the
form “k*c, where k*c implies that the constant, c, is to
be repeated k times.

Example: The statements:

PROGRAM SHW@RD (INPUT,@UTPUT, TAPE7 -INPUT)
DIMENSI@N Y(3,5)

LPGICAL L

CHMPLEX Z
NAMELIST/HURRY/I1,12,13,K,M,Y,Z,L
READ (7,HURRY)

and the card input records, starting in Col. 2:

$HURRY Il=1,L=.TRUE.,I2=2,13=3.5,Y(3,5)=26,Y(1,1)=11,
12.0E1,13,4%14,2=(1.,2.),
K=16, M=17$

produce the following values upon execution:

I1=1 Y(1,2)=14.0
12=2 Y(2,2)=14.0
I3=3 Y(3,2)=14.0

Y(3,5)=26.0 Y(1,3)=14.0
Y(1,1)=11.0 K=16
Y(2,1)=120.0 M=17
Y(3,1)=13.0 z=(1.,2.)
L=.TRUE.

The number of constants, including repetition, given for
an unsubscripted array name must equal the number of ele-
ments in that array. For a subscripted array name, the
number of constants need not equal, but may not exceed,
the number of array elements which follow the specified
element, plus onme.

=C variable, v, is set to c
a=dl,...,dj the values, dl"" dl’ are stored
in consecutive elements of array, a,

in the order in which the array is
stored internally.

a(n)=d1,...,d elements are filled consecutively
starting at a(n)

The specified constant of the NAMELIST statement may be
integer, real, double precision, complex of the form (c,,c,)
or logical of the form .T., .TRUE.,.F., .FALSE. A logical
or complex variable may be set only to a logical or com-
plex constant, respectively. Any other variable may be

set to an integer, real or double precision constant. Such
a constant is converted to the type of its associated vari-

able.
Constants and repeated constant fields may not include
embedded blanks. Blanks, however, may appear elsewhere

in data records.

A maximum of 120 characters per input record is permitted.
More than one record may be used for input data. All
except the last record must end with a constant followed
by a comma, and no serial numbers may appear; the first
column of each record is ignored.

The set of data items may consist of any subset of the
variable names associated with x. These names need not
appear in the same order in which they appear in the defining
NAMELIST statement. Those variables not specified are left
unchanged in memory.

10.3
FILE HANDLING
STATEMENTS REWIND i

Logical I/0 unit i is rewound, i.e., positioned so thét thg‘
next record to be processed is the first record on this unit.
1f the unit is already rewound, REWIND does nothing.

ENDFILE 1 =~

An end-of-file is written on unit i.
10-7

BACKSPACE i

Logical I/0 unit i is backspaced one record, i.e., one unit record
if unit i is formatted, one binary record if unit i is unformatted,
one logical record if unit i is buffered. If unit i is rewound or
has not been moved from its beginning by the Fortran program, the
BACKSPACE does nothing. If end-of-file has just been passed, a
BACKSPACE leaves the unit positioned immediately before the end-
of-file. BACKSPACE should not be used on a fileset on which
NAMELIST I/0 is used. '

10.4 IF (ENDFILE i)nl,n
File Status .

Testing IF (E¢F,1)nl,n2
Statements IF (E¢F(i))n1,n

2

2°™1

These statements check the previous read operation on unit i to
determine if an end-of-file has been encountered.* If so, control
is transferred to statement n,; if not, control is transferred to
statement n,. If an end-of-file has been encountered, the end-of-
file indica%or for that unit is on and the execution of this state-
ment turns it off. If the end-of-file indicator is not turned off
for a unit, an attempt to read more information from the unit will
terminate the job. '

If (UNIT,l)nl?nz,nS,n4

n, 1/0 in progress on unit i
n, previous I/0 complete on unit i, with no error
n, EOF sensed on last input operation

n4 parity or lost data error on last input operation

This statement is used for testing the status of unit i when a BUFFER
statement (Section 10.5) is used for input/output on unit i. When
it is necessary to wait for an I/0O operation to complete, execute

CALL XRCL
between IF(UNIT,i) tests to reduce central processor charges while
waiting.
IF(I¢CHECK,i)n1,n2

This statement is used to check for a parity error in the last record
read on logical I/O unit i. If the error occurred control is trans-
ferred to statement n,, otherwise control is transferred to statement n,.
If a parity error occurs and is not checked by this statement, a subse-
quent attempt to read from this unit will terminate execution with

error code 53.

¥ An EQF on the standard input device, fileset INPUT, may be tested by equiv-
alencing the filename INPUT to another filename on the PRAGRAM card (Section 7.4)
Thus, PRPGRAM MAIN(INPUT,@UTPUT,TAPES0=INPUT) and IF(E@F,50)20,30 would test
for the end of input. Due to an historical quirk, an E¢R from a simple
7-8-9 card on fileset INPUT (only) will test as an end-of-file. On all other
files, E¢R's are ignored in coded reads and only E@F's will be sensed by
this test. If it is necessary to test for E@R on coded reads, see
Chapter 11: IE@R.

10-8

10.5

BUFFER

STATEMENTS The BUFFER statements allow the programmer to control
the use of 1/0 units and to buffer the information being
sent to/from these units. These statements combined with
the ENC@DE/DEC@DE statements permit the FORTRAN programmer
to construct complicated input/output schemes.

Because the operating system normally attempts to overlap I/0
and execution, the Buffer statements frequently do not result

in much improvement in I/0 efficiency. Also, the use of Buf-
fer statements is fraught with hazards due to their handling cf
tlie structure of logical records. For these reasons, use of the
buffer statenents in normal circumstances is not recommended.

The primary differences between buffer 1/0 and read/write
I1/0 statements are given below:

1. The mode of transmission (coded or binary) is tacitly
implied by the form of the read/write control state-
ment. In a buffer control statement, mode must be
specified by a mode indicator.

2. The READ/WRITE control statements are associated with
a list and, in coded transmission, with a F@RMAT state-
ment. The buffer control statements are not associated
with a list; data transmission is to or from a single
area in storage.

3. A buffer control statement initiates data transmission,
and then returns control to the program, permitting the
program to perform other tasks while data transmission
is in progress. Before buffered data is used, the
status of the buffer operation should be checked. (Dif-

ference: a READ or WRITE statement completes the
operation before returning control to the program.)

The forms of the BUFFER statements are:

'BUFFER IN(i,p) (fw,£w)
BUFFER PUT(i,p) (fw,lw)

where
i is a logical unit number,

P is a mode key. May be specified by an integer
: constant or simple integer variable (not sub-
scripted). O for coded mode; 1 for binary mode.

fw is a variable identifier, the first word of a
block of data to be transmitted.

Lw is a variable identifier, the last word of a
block of data to be transmitted.

A BUFFER OUT statement with an 1w address which is one less
than the fw address will write a zero length logical record.
In all other cases the address of 1w must be greater than or
equal to that of fw or an execution error message is given.

10-9

Examples:

DIMENSI@N A(100)
N=6
BUFFER @UT(N,1) (A(1),a(100))

CPMMPN/BUFF /DATA (10) , CAL (50
M@DE=0 . '
BUFFER IN(9,MPDE) (DATA(1),CAL(50))

BUFFER IN(i,p)(A,B)

Information is transmitted from unit i in mode p to storage
locations A through B. Thus, in the second example above,.
coded information is read from unit 9 into labeled common
area BUFF beginning at DATA(l), the first word of the block,
and extending through CAL(50), the last word of the block.

The BUFFERIN statement issues a system request for input from
fileset i in mode p into the given block. Execution continues
in parallel with the physical input operation. The completion

.of the operation can be determined only by the IF(UNIT,i) state-

ment (p. 10-8). Once the read operation is completed and the
data transferred into the block, the amount of data actually
read can be determined by the library function LENGTH(i), see
Chapter 11, which returns the length (in C.M. words) of the
entire record.* If the record read was longer than the given
buffer, the excess words are counted, but skipped. If the
record is shorter than the buffer, unused buffer words are
not changed.)

BUFFER @UT (i,p)(A,B)

Information is transmitted from storage locations A through
B and one logical record is written on unit i in mode p con-
taining all the words from A to B inclusive. Thus in the
first example above, binary information is transmitted to
unit N from the block area defined by A(l) and A(100), i.e.,
all of array A is transmitted.

The BUFFERQUT statement issues a system request for output

onto fileset i in mode p from the given block. Execution
continues in parallel with the physical output operatiomn.

The completion of the operation can be determined only by

the IF(UNIT,i) statement (see elsewhere in this section). Once
the output operation is completed, the file can be referenced by
other I/0 statements. One logical record is written by the sys-
tem for each BUFFER OUT request.

10-10

A logical record even on a coded file. .A coded logical record is not
usually a unit record. See Chapter 13.

10.6

INTERNAL DATA
TRANSMISSION
(ENCODE/DECODE)

The following restrictiors apply to the use of BUFFER IN/
BUFFER ¢UT:

a. The statement IF(UNIT,i) is used to determine the completion
of a BUFFER statement and to check for a file mark when using
BUFFER IN. It must be used before any further I/0 request of
unit i is made (including a reference to the function LENGTH).

b. Other Fortran I/0 statements referring to unit i, such
as REWIND i, must not be used until the buffer opera-
tion is completed as indicated by the IF(UNIT,i) state-
ment. Mixing READ/WRITE and BUFFER IN/BUFFER @UT state-—
ments for the same I/0 unit is not recommended.

c. BUFFER I/0 statements process complete logical records.
See Chapter 13 for a discussion of logical records.

Information may be transferred under a format specification
from one area of central memory to another using the ENCODE/
DECODBx statements; no external devices are involved. These
statements are quite slow, the central processor time required
being about the same as an actual formatted I/0 operation
with the same format. They should be used only where the
flexibility of the format control is essential or where
they are executed relatively few times.

Uses of ENCODE/DECODE statements:

All information stored in the central memory of the com-
puter is in the form of strings of binary digits (0's and
1's). However, two different binary representations may be
used, depending upon whether the format specification used
to read the data was a numeric conversion specification or
an alphanumeric conversion specification (see Appendix A).
For instance, consider the decimal integer 8 on a data card.
If it is read into memory under an I format, it is stored
in a 60-bit word in the form: O—-——- 010005. For ease of
reference, it is said to be stored as 10 octal or 10B. If,
on the other hand, the same card were read under an alpha-
numeric conversion specification, e.g., Al, it would

appear in memory as a string of 60 binary digits of the
form: 100011101101---101 (i.e., 435555--55B). This repre-
sentation-is called internal BCD and uses the 6-bit binary
equivalents of the octal digits 01B to 32B to represent

the 26 letters of the alphabet, 33B to 44B for the digits

0 to 9 and 45B to 77B for various special characters (see
Appendix A).

*ENCODE and DECODE are non-standard and may not function within other Fortran

systems.

10-11

10-12

The ENCODE/DECODE statements are available to permit the
user to

1. rearrange and manipulate information stored in
display code (e.g., to break up into several words
a string of characters stored (packed) into one word,
or to alter or fill in some part of a format speci-
fication stored in an array).

and

2. convert information from coded to binary (DECODE) or
vice versa (ENCODE).

NOTE: All integer values are stored as binary infor-
mation regardless of whether they are input under

0 or I conversion specification, which dictate only
what conversion is to occur before the values are
stored. Thus, if 11 is read under O conversion
into I, it is stored as an 11B, whereas if 11 is
read under I conversion into II, it is stored as
13B. When these two values are used in arithmetic
expressions in a program, octal (i.e., binary)
arithmetic is performed and proper results are
generated; that is, I = I + II will store 24B (=20)
into I, which is the correct value.

These statements haye the following form:

ENCODE (c,f,v)4
DECODE (c,f,v)£

where

c is an unsigned integer constant or a simple integer
variable (not subscripted) specifying the number of
characters in the record. Under RUN c may be up to
150 BCD characters (¢ > 150 is an error which is
caught at compilation time if ¢ is an integer con-
stant and at execution time if ¢ is an integer

variable).
-
f is the statement number or variable identifier
identifying the format specification,
v is a variable or array name (with or without sub-

'scripts) specifying the starting location of the
BCD information,

£ is the input/output list.

Information transfer into or out of the area specified

by v begins with the leftmost character position of the
location given by v and continues until ¢ characters
(10 per word) have been transferred [i.e., read (DECODE)

or stored (ENCODE)]. For ENCODE if € is not a multiple
of 10, the record ends in the middle of a word and the
remainder of the word is blank filled. For DECODE, if

the record ends with a partial word, the balance or the
word is ignored.

Since each succeeding record begins a new computer word,
the number of words allocated for each record is
(c + 9)/10 truncated if necessary to the nearest Integer.

The list of variables, £, is transmitted according to
the format specification identified by f and stored in
successive locations starting at v with ¢ internal BCD
characters per record. If ¢ is not a multiple of 10,
the record ends in the midst of a word and the remainder
of the word is blank filled. If the I/0 list £ and the
format specification translate more than ¢ characters
per record, an execution error message is generated.

Examples:

ENCODE may be used to calculate a field definition in a
format specification at execution time. Assume that the
user wishes to have a format specification of the form
(2A10,Im) but wants to specify a value for m at some
point during the execution of the program, subject to the
restriction 2 < m < $. The following statements allow

m to vary.

IF(M.LT.10 .AND. M .GT. 1)1,2
1 ENCODE(9,100,SPECMAT)M
100 FORMAT (7H(2A10,I,I1,1H))

PRINT SPECMAT,A,B,J

2 PRINT 10
10 FORMAT (*bMbOUTbOFbRANGE)

M is tested to insure it is in the proper range. If not,
control transfers to the statement labeled 2, which in

this case prints a message. If M is in the proper range,
ENCODE packs the coded equivalent of the value of

M into the character string forming the format specification
in SPECMAT. For instance if M were 5, SPECMAT would con-
tain (2A10,1I5)b (in display-code:51350134335611405255).

10-13

10-14

.2’

1

A(1) = 10HABCDEFGHIJ
A(2) = 10HKLMNOPQRST
B(1) = LOHPQRSTUVWXY
B(2) = 10HZ123456789

(C = multiple of 10)

DIMENSION ALPHA (4)

ENCODE (20,1,ALPHA)A,B
FORMAT (A10,A5/A10,A10)

Result: (lst record)

ALPHA (1) = ABCDEFGHIJ
ALPHA(2) = KLMNObbbbb
(2nd record)

ALPHA(3) = PQRSTUVWXY
ALPHA(4) = 2123456789

(c # multiple of 10)

DIMENSION ALPHA(10)

ENCODE(16,1,ALPHA)A,B

FORMAT (A10,A6)

1st record . 2nd record
ABCDEFGHIJKLMNOPbEEb PORSTUVWXYZ]ZSASbbbb
L 1l

ALPHA(1) ALPHA(2) ALPHA(3) ALPHA(a)

DECODE

'The information in ¢ consecutive internal BCD characters

(starting at address v) is transmitted according to the
format specification indicated by f and stored in the list
variables £. If a record ends with a partial word, the
balance of the word is ignored. However, if the speci-
fication f is greater than ¢ (record length) per record,
an execution error message is given. Attempting to DECODE
an illegal format code or a character illegal under a
given conversion specification gives an execution error .
message.

If a binarv zer

a binary zeroc (six zerc bits) is encountered anywhere
in a record, it is treated as a blank. If two binary

zeros occur consecutively (12 zero bits) in the processing

~ of a record, the remaining characters to be transmitted

in the record, if any, are converted to blanks; the next
record begins at the word following the word containing

the 'two binary zeros.
Examples:

1.

DIMENSION GAMMA (4),A6(2),B6(2)
GAMMA (1)=10HHEADERb121
GAMMA (2)=10HHEADbb0131
GAMMA (3)=10HHEADERb122
GAMMA (4)=10HHEADbb0231 °
DECODE (18,1 ,GAMMA)A6,B6

1 FORMAT(A10,A8)

1st record

2nd record

Result: A6(1l) = HEADERb121
A6(2) = HEADbbO1lbb
B6(1) = HEADERb122

B6(2) = HEADbbO2bD

2. DECODE will be used in this example to break the DATE
into three integer words containing the MONTH, DAY
and YEAR.

INTEGER DATE, MONTH, DAY, YEAR

DATE = 10Hb01/08/70b

DECODE (10,205,DATE) MONTH, DAY, YEAR
205 FORMAT (3(1X,I2))

10-15

After execution of the DECODE statement, the contents
of the integer words will be:

MONTH = 1 (or 0 ——— 01B)
DAY = 8 (or 0 ——- 10B)
YEAR = 70 (0 ——— 106B)

The internal BCD contents of DATE = 553334503343504233;

The above statements decode the number values repre-
senting the date by executing the conversion under

the format 1X,I2, three times; i.e., taking the next

two BCD characters (01 = 3334) and converting them te
an integer, skipping the next character (/ = 50B),
converting the next two BCD characters to the equivalent
integer number (08 = 3343), and finally skipping the
next character (/ = 50B), and converting the last two
BCD characters 4233 (= 70) to the equivalent integer.

3. The following illustrates one method of packing the
partial contents of two words into one word. Informa-
tion is stored in LOC(1l) and LOC(6) as:

LOC(1) = SSSSSXXXXX
(10 BCD characters/word)
LOC(6) = XXXXXDDDDD

to form a word of the form: SSSSSDDDDD in storage
location NAME:

DECODE (10,1,L0C(6)) TEMP
1 FORMAT (5X,A5)

ENCODE(10,2,NAME) LOC(l), TEMP
2 FORMAT (2A5)

The DECODE statement places the last 5 BCD characters
of LOC(6) into the first 5 characters of TEMP. The
ENCODE statement then packs the first 6 characters of
LOC(§) and of TEMP into NAME.

With the R specification, the statement may be
shortened to:

.

ENCODE (10,1 ,NAME)LOC (1) ,LOC (6)
1 FORMAT (A5,R5)

10-16

PREDEFINED FUNCTIONS AND SUBROUTINES 11

In addition to the subprograms which the user may define for himself,
many functions and subroutines are automatically available to the
Fortran programmer, either through the automatic generation of the
required code by the compiler, or through the standard subprogram
library (fileset SUBRLIB) which is supplied as a part of the
operating system.

Additional specialized libraries such as the Graphical Display System
library (fileset GDSLIB) and the mathematical subprogram library
(fileset MATHLIB) exist, and may also be searched for required
subprograms at the wuser’s option (see CLDR in CALIDOSCOPE Control
Statements).

The intrinsic (in line code) function names are reserved (i.e.,
cannot be used to denote a program name, subscripted variable or
another subprogram) unless the name occurs in a DIMENSION or EXTERNAL
statement, is redefined by an arithmetic statement function, or is
‘used without an argument list. Of course, it is then unavailable as
an intrinsic function within that subprogram. If a type statement
which changes the type associated with an intrinsic function name
appears in a program unit, the intrinsic function is superseded.

The table in the following section describes the supported functions
and subroutines available. It does not describe those library
subprograms which are called implicitly, e.g., for the execution of a
PRINT statement, or only by other library subprograms. In the column
showing the form of the references, the variables used as arguments
and to receive function values are coded to indicate type as follows
(appended numbers indicate argument positions):

ByB1,B2,... are bit strings (type is irrelevant)

CsCl,C2)00e are complex numbers

D,D1,D2,... are double precision (D.P.) numbers

HyH1,H2,... are Hollerith (character string) data
I,11,I12,... are integers

L,L1,L2,... are logical values

RyR1,R2,... are real numbers

S1,S2,... are external subroutines

If an array is expected as an argument, an A is inserted following
the type code letter. The dimension of the array may be indicated in
parentheses, e.g., IA1(5) means first argument is an integer array of
dimension five.

If the argument is an external function, an F is inserted following
the type code letter. T T .

11-1

If there is an option as to argument type, acceptable types appear
separated by slashes (e.g., H1/I1 for Hollerith or integer as first
argument) .

Variable length argument lists are indicated by the minimum argument
list followed by an ellipsis.:

Deck names are listed only when they differ from the reference (entry
point) names. An "(I)" under deck name indicates an intrinsic
function. '

References may refer to library writeups (e.g., K2 CAL REGISTR),
sections of this manual (e.g., 8.2.3), error numbers discussed in
chapter 15 (e.g., 62), or to the American National Standards
Institute Fortran Standard (ANSI). Functions marked ANSI are
available in every Fortran IV system which meets the standard.

The arguments of the trigonometric functions are ~expressed in
radians, as are the results of the inverse trigonometric functions.

Multi-valued complex functions calculate only a single value.

Examples
1. R=AMINO(Il,I2,...) Minimum of Arguments (1) ANSI

indicates that the function AMINO has a variable number of
arguments (at least two) which are integers and returns a real
result. The function is defined to have a value which is equal
to the mininum of the arguments with which it is called. The
"(I)" in the Deck Name column indicates that AMINO is compiled
in 1line so there is no separate deck for it. The "ANSI" in the
Reference column indicates that AMINO is a function found in all
standard Fortran implementations.

2. CALL OVERLAY(H1/I11,12,13,H4) Load and Execute Program Overlay
8.4

indicates that OVERLAY is a. subroutine with four arguments, the
first being either Hollerith or integer, the second and third
being integers and the fourth being Hollerith. OVERLAY is the

- library routine used to execute overlays. A detailed descrip-
tion is found in section 8.4 of this manual.

11-2

€-TT

11.1 Table of Fortran Functions and Subroutines

f Us

CALL ABORT (H1)

R

R

o W™ W =W

ABS(R1)

ACOS (R1)
AIMAG(C1)
AINT(R1)

ALOG (R1)
ALOG10(R1)
AMAXO(I1,I2,...)
AMAX1(R1,R2,...)
AMINO(I1,I2,...)
AMIN1(R1,R2,...)
AMOD (R1,R2)
AND(B1,B2,...)
ASIN(R1)
ATAN(R1)

ATANZ2 (R1,R2)

CALL BLOK(H1/11)

Definition

Terminate Job Step with Error Status
Absolute Value: |R1]

Arcosine

Imaginary Part of Complex

Integer Part of Real

‘Natural Logarithm

‘Common Logarithm
Maximum of Arguments
Maximum of Arguments
Minimum of Arguments
Mininum of Arguments
R1 modulo R2

Boolean Product
Arcsine

Arctangent (R1)
Arctangent (R1/R2)

Force Blocked Binary on I/0 Unit

Deck Name

(1)
ASINCOS
(1)
(1)
ALNLOG
ALNLOG
(1)
(1)
(1)
(1)
(1)
(1)

ASINCOS

NOBLOK

Reference
11.2.22

ANSI

ANSI
ANSI, 11.2.27

ANSI

"ANSI

ANSI
ANSI
ANSI
ANSI
ANSI, 11.2.13

11.2.2

ANSI
ANSI

11.2.1

=11

FQ;m_Qf Use

R = CABS(C1l)

C = CCOS(Cl)

C = CEXP(Cl)
CALL CLDISK

C = CLOG(C1)

C = CMPLX(R1,R2)
L = COMPL(B1)

C = CONJG(C1)

R = COS(R1)

C = CSIN(Cl)

C = CSQRT(C1)

D = DABS(D1)

D = DATAN(D1)

D = DATAN2(D1,D2)
D = DBLE(R1)

D = DCOS(D1)

D = DEXP(D1)

R = DIM(R1,R2)

Definiti
Absolute value

Complex Cosine

Complex Exponential

Close Random Access Fileset
Complex Natural Logarithm
Complex R1+iR2 from Parts
Complement (Logical Negation)
Complex Cdnjugate

Cosine

Complex Sine

Complex Square Root

D.P. Absolute Value: |D1]

D.P. Arctangent (D1)

D.P. Arctangent (D1/D2)

Conversion: Real to Double Precision
D.P. Cosine

D.P. Exponential

Positive Difference: R1-min(R1,R2)

Deck Name

TSDISK
(1)
(1)

(1)

SINCOS

- DATAN

DSINCOS

(1)

Reference
ANSI

ANSI

ANSI

19 CAL TSDISK
ANSI

ANSI

11.2.2

'ANSI

ANSI
ANSI
ANSI
ANSI, 11.2.26
ANSI
ANSI
ANSI, 11.2.4
ANSI
ANSI

ANSI

S-TT

Form of Use

CALL DISPLA(H1,I2/R2)
D = DLOG(D1)

D = DLOG10(D1)

D = DMAX1(Dl1l,D2,...)
D = DMIN1(D1,D2,...)
D = DMOD(D1,D2)

D = DSIGN(D1,D2)

D = DSIN(Dl)

D = DsQRf(Dl)

CALL DUMP(B1,B2,I3,...)
CALL DUMPREG

CALL DVCHK(I1)

IF(EOF(H1/11))

CALL EXIT

R = EXP(R1)

CALL FDEBUG(Hl,...)

R = FLOAT(I1)

CALL GETCJE

Definition Deck Name

Reference

Display Name and Value on Job Log

D.P. Natural Logarithm DLNLOG
D.P. Common Logarithm DLNLOG
D.P. Maximum of Arguments (1)
D.P. Minimum of Arguments (1)

D.P. D1 Modulo D2

D.P. |D1| with sign of D2

D.P. Sine DSINCOS
D.P. Square Root

Dump Memory and Terminate Execution

Print CPU Register Contents

For compatibility only, use LEGVAR

EOF#0 means End of File on I/0O Unit

Terminate Execution Normally

Exponential: e to the R1 ?ower

Program Tracing Control

Conversion:lInteger to Real (1)

Fetch Current Job Environment to /CJE/

11.2.5

ANSI

ANSI

ANSI

ANSI

ANSI, 11.2.13
ANSI

ANSI

ANSI

11.2.6

04 CAL REGDUMP
11.2.15

11.2.7

ANSI
N1 CAL DEBUG
ANSI

Z1 CAL GETCJE

9-11

F Us

CALL GETREG(BA1(8))

I = IABS(Il)

I = IDIM(I1,I2)
I = IDINT(D1l)

I = IEOI(H1/I1)
I = IEOR(H1/I1l)
I = IFIX(R1)

IF(INDVCEX(H1/I11))
I = INT(R1)

I = ISIGN(I1,12)

L = KOMMON(H1,H2,I3,1I4)

I = LEFT(B1,I2)
I = LEGVAR(R1l)

I = LENGTH(H1/I1)

CALL LNGBCD(I1,BA2(I1))

I = LOCF(B1)

I = LRDISK(I1)

Definiti
Fetch System Communication Registers
Absolute Value: |[I1]

Positive Difference: Il-min(I1,I2)

Integer Part of D.P. Number

I>0 means EOI on I/0 Unit

End of Record Level on 1/0 Unit
Integer Part of Real Number

Check for Input Device Capacity Exceeded
Integer Part of Real Number

|11} with Sign of 12

Control Fileset Common/Local Status
Nominal Left Shift Bl by I2 Bits
Legitimacy.of Real Variable

Length of Last Record Read on 1I/0 Unit
Extend Formatted I/0 Unit Record Size
Location of Argument: Machine Address

Length of Record on Random Access File

Deck Name
REGISTR

(1)
(1)

(1)

(1)
(1)

- TSDISK

Reference

K2 CAL REGISTR
ANSI

ANSI

ANSI,11.2.26,
11.2.27

11.2.8

I0 CAL IEOR

.ANSI, 11.2.27

11.2.9

ANSI, 11.2.27
ANSI

Q4 CAL KOMMON
M2 CAL LEFT
11.2.10
11.2.11

'I4 CAL LNGBCD

I9 CAL TSDISK

L=TT

CALL

CALL

CALL

CALL

CALL

CALL

CALL

of Use
MAXO(I].' 121000)
MAX1(R1,R2,...)

MCLOCK (H1)
MDATE (H1)
MEMORY (H1,12,13)

MILSEC(B1)
MINO(T1,I2,...)
MIN1(R1,R2,...)
MOD (I1,1I2)
MTDISK

MZERO (B1)

NARG (I1)

NMDISK (H1)

NOBLOK (H1/11)

OPDISK(I1,IA2(I1))

OR(B1,B2,...)

Definition
Maximum of Arguments
Maximum of Arguments

Fetch Current Time of Day
Fetch Current Date
Control ECS and Central Memory Fields

Milliseconds of CP Time Used in Job
Minimum of Arguments

Mininum of Arguments

I1 modulo I2

Empty Random Access Fileset

Test for Minus Zero

Return Current Argument Count

Set Random Access Fileset Name
Suppress Blocked Binary on I/0O Unit
Open Random Access Fileset

Boolean Sum of Arguments

Deck Name
(1)

(1)

MTIME

MTIME

SECOND
(1)
(1)
(1)

TSDISK

TSDISK

TSDISK

(1)

Reference
ANSIT
ANSI

11.2.23,
Z2 CAL MTIME

11.2.24
Z2 CAL MTIME

1102’12[
04 CAL MEMORY

Z1 CAL SECOND
ANSI

ANSI

ANSI, 11.2.13
I9 CAL TSDISK
11.2.25

Z9 CAL NARG
I9 CAL TSDISK
11.2.14

I9 CAL TSDISK

11.2.2

8-11

Form of Use

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

OVERFL(I1)

OVERLAY (H1/I1,I2,13,H4)

PDUMP(B1,B2,13,...)
PUTREG (BA1(8))

RANF (R1)
RDDISK(I1l,BA2(1I3),I3)
REAL(C1)
RECS(BA1,I2,1I3)
REMARK (H1)
RERECS(BA1,12,13)
RETURN (H1/11)

SECOND (R1)
SETFXB(H1/11,12,13,14)
SETPRU(H1/11,12)
SETRDCT(I1/H1,12)
SIGN(R1,R2)

SIN(R1)

SLITE(I1)

Definitjon

For compatibility only. use LEGVAR
Load and Execute Program Overlay
Dump Memory and Proceed

Store System Communication Registers
Pseudo Random Number Generator
Read Random Access Fileset

Real Part of Complex

Read Extended Core Storage

Insert Remark in Job Log

Reread Extended Core Storage
Return Assigned I/0 Device

Seconds of CP Time Used in Job

Set Fixed Block Logical Record Size

Set Physical Record Size Limit

Deck Name

REGISTR

TSDISK

(1)

ECSIO

ECSIO

REWINM

SETPRU

Set Reaé Error Recovery for Magnetic Tape

|R1| with Sign of R2
Sine

Simulate Sense Light

(1)

SINCOS

Reference
11.2.15
8.4
11.2.6

K2 CAL REGISTR
11.2.16

I9 CAL TSDISK
ANSI

K2 CAL ECSIO
11.2.17

K2 CAL ECSIO
11.2.18

Z1 CAL SECOND
I4 CAL SETFXB
I4 CAL SETPRU
11.2.21

ANSI

ANSI

11.2.3

Form

of Use

CALL

CALL

CALL

CALL

o)
1]

CALL

CALL

CALL

CALL

CALL

SLITET(I1,I2)
SNGL(D1)

SORTR (BA1,I2,...)
SQRT(R1)
SSWTCH(I1,1I2)

START

Definition Deck Name
Reset and Test Simulated Sense Light

Truncate D.P. Value to Real

Radix Exchange Method Sort TSORTR

Square Root
Test Simulated Sense Switch

For compatibility only, use REMARK

SYSTEMP(B1,B2,B3,B4,B5,B6,17,H8) Diagnostic Print with Traceback

TAN(R1)

TANH (R1)

TIME

TRAILB(HI/II.IZ)
WECS(BAl,IZ:I3)
WRDISK (I1,BA2(I3),13)

XRCL

Tangent

Hyperbolic Tangent

For compatibility only, use REMARK
Control Trailing Blanks in Coded Output
Write Extended Core Storage ECSIO
Write Random Access Fileset TSDISK

Regquest Recall Status

Reference
11.2.3
ANSI, 11.2.26
M1 CAL SORTR
ANSI

11.2.3
11.2.15

11.2.19

ANSI

11.2.15

J4 CAL TRAILB
K2 CAL ECSIO
I9 CAL TSDISK

11.2.20

11.2

11.2.

11.2.

11.2.

11-10

Descriptive Notes for Functions and Subroutines

The following notes supply only summary information for those
library routines which have separate writeups.

1 BLOK

The BLOK subroutine allows the user to force the use of blocked
binary on a fileset for which it is not normally used. This
applies only to filesets processed with binary READ and WRITE
statements. The statement:

CALL BLOK(unit)

must be executed before any I/0 operations are performed on the
fileset. The argument unjt is the logical I/0 unit number for the
fileset or the L-form Hollerith literal fileset name given on the
PROGRAM statement.

1 Vet o more Aa+as ~e b
4L nuw L NCT o P il

1A~
NOBLOK in Section 11.2.14
2 Boolean Functions: AND, OR, COMPL

The boolean functions (AND, OR, COMPL) operate in a manner similar
to the masking operations (see Section 3.4), and are redundant to
some extent. The table in Section 3.4 which defines the masking
operator is related to the Boolean functions as follows:

COMPL (B1) is equivalent to .NOT. Bl
AND(B1,B2) is equivalent to Bl .AND. B2
OR(B1,B2) is equivalent to Bl .OR. B2

The Boolean functions are used when more than two arguments are to
be combined by AND or OR or when it is anticipated that the
program may later be converted for a different machine.

3 Console Simulation Routines: SLITE, SLITET, SSWTCH

On the console of the computer for which Fortran was originally
implemented (IBM 704) were four indicator lights which could be
tested and turned on and off by programmed instructions. There
were also six switches which could be set manually and tested by
programs. These were Kknown as sepnse lights and sepnse switches
respectively. To provide compatibility for programs which used
these features: three routines are provided which are used as
follows:

Set Light CALL SLITE(I) turns on simulated light I for 1 < I < 6,
and turns off all the simulated lights if I = 0. The
simulated 1lights are all off at the beginning of
execution.

Sense Light Test CALL SLITET(I,J) sets J =1 if simulated light I
is on and turns light I off; sets J =2 if simulated
light I is off and leaves it off.

Sense Switch Test CALL SSWTCH(I,J) sets J =1 if simulated switch

' I is on, otherwise SSWTCH sets J = 2. The simulated

switch 1is unchanged. See the SWITCH statement in
CALIDOSCOPE Control Statements.

11.2.4 DBLE

The use of the DBLE function does not extend the precision of 1its
argument. It merely supplies a correctly formatted low order part
of wvalue zero to go along with the original argument which is the
high order part of the result.

11.2.5 DISPLA

The first argument is a name which is printed on the job 1log
followed by the value of the second argument. If the second

argument is a normalized real number, it is printed in a format
similar to "E" formatted output with fifteen significant figures,
otherwise it is printed as a sixteen digit integer (with 1leading

zeroes) .

11.2.6 DUMP, PDUMP

DUMP and PDUMP differ only in that PDUMP returns to the calling
program after ‘completion of the dump requests, whereas DUMP
terminates execution of the job step. Arguments are supplied in
groups of three (with up to sixteen groups). Each group of three
arguments specifies a block of central memory to be printed out.
These arguments have the following order:

(1) First word to be dumped (Not the address of the first word)
(2) Last word to be dumped (Not the address of the last word)
(3) Format code as follows:

.0 or 3: Octal dump

1: Real numbers to be dumped in floating decimal

2: Integers to be dumped in decimal

11-11

Thus
I 0
J 1000
CALL PDUMP(I,J,0)

is not a request to dump the first 100 words of the wuser’s
memory., but to dump the block of memory beginning with the storage
allocated to variable I and running through the storage allocated
to variable J. In order to dump between calculated addresses, the
following trick may be used:

Assume M is an array which is declared in the program. that
the value of I is the address of the first word to be dumped
and the value of J is the address of the final word to be
dumped. Then '

K =1 - LOCF(M)
CALL PDUMP(M(K+I) ,M(K+J),0)

will perform the required dump.
If it is desired to express a dump block limit for either DUMP or
PDUMP by reference to a statement location rather than a variable,
use the statement number followed by the letter "“S"™ as the
argument, e.g., S

CALL PDUMP(10S,1055,0)

11.2.7 EOF
The EOF function permits end of file checking in a manner
compatible with the statement forms of ANSI Fortrane. The
statement:

IF(EOF(1)) 10, 20, 10
is equivalent to the non-standard statement:

IF(EOF,1) 10, 20
The form IF(EOF(I)) GO TO 10 may be used by declaring EOF to be of
type 1logical. EOF may have as its argument the logical I/0 unit
number or the fileset name as an L-type literal (again,
non-standard):

IF(EOF (5LINPUT)) 10, 20

11-12

which may avoid the need for files to be declared equivalent on
the PROGRAM card.

11.2.8 IEOI

IEOI is a function to test for end of information encountered on a
fileset (and to clear the flag in a manner analogous to the
IF(EOF(I)) statement). The IEOI function has one argument which
is the logical I/0 unit number or the L-form Hollerith 1literal
fileset name . IECI has a positive nonzero value if an
end-of-information has been encountered, and zero otherwise.

An end-of-file status will always be set along with the

end-of-information status, so EOI need be tested for only if an
EOF is found.

11.2.9 INDVCEX

The Input Device Capacity Exceeded flag is turned on when a
physical record longer than the stated PRU length (see Chapter 13)
is read. Executing the function INDVCEX turns off the flag and
returns a positive nonzero result if the flag was on. If the flag
was off INDVCEX returns a positive zero. If an attempt is made to
continue reading without resetting the flag after this error
occurs, execution is terminated with an error code 63.

INDVCEX has a single argument, the logical I/O unit number or
L-form Hollerith literal fileset name.

11.2.10 LEGVAR

LEGVAR tests the legitimacy of the value of its argument and
returns the following values:

Argqument Value Result
Indefinite -1
Legitimate 0
Infinite +1

For details on these .forms, see Section A.3.
11.2.11 LENGTH

LENGTH 1is a function which is called with a single argument which
is either a logical I/O unit number or an L-form Hollerith literal
fileset name. LENGTH returns the number of words contained in the
last record read from the indicated-units - If-the--read was done
with a BUFFER 1IN statement, the record is a logical record. If
the read was done with an unformatted READ statement, the record

11-13

is a binary record. LENGTH does not apply to formatted READ
operations.

If the list on the last READ exceeded the amount of data contained
in the record, LENGTH returns a negative number whose absolute
value 1is the true length of the record. If this condition occurs
and LENGTH is not called, execution is terminated with error code
54 when the next operation is attempted on the fileset.

11.2.12 MEMORY

The 1length of the current central memory field may be determined
by the statement

CALL MEMORY (2HCM, 0, LENGTH)
which will return the CM field length in the variable LENGTH.

Similarly, the statement

will return the length of the ECS field in LENGTH.

Other calls to MEMORY to adjust the field lengths and to determine
the maximum amounts of memory allowed are available. For details,
see library writeup Q4 CAL MEMORY.

11.2.13 Modular Functions: AMOD, DMOD, MOD

The modular functions are defined as follows:
f = argl - [argl/arg2]*arg2

where [x] is the integer of greatest magnitude whose sign 1is the
same as that of x and whose magnitude does not exceed the
magnitude of x, e.g., [3.1] is 3, [-2.5] is -2

11.2.14 NOBLOK
The NOBLOK subroutine allows the user to ipnhibit blocking for a
disk fileset processed by binary WRITE or READ statements.
(Blocking is automaticallvy inhibited for all magnetic tape
filesets, for disk filesets with a print or punch disposition, and
for filesets named INPUT, OUTPUT, PUNCH or PUNCHB). The form of
the call is

CALL NOBLOK(unit)

11-14

where unit is a logical I/0 unit number or the L-form Hollerith
literal fileset name. This call must appear before the first use
of the fileset in the program.

For more detail on blocked binary see Section 13.1.1. See also
BLOK in Section 11.2.1.

11.2.15 Obsolete Routines: DVCHK, OVERFL, START, TIME

These routines are obsolete. They are retained in the system only
to avoid introducing incompatibilities for existing programs.
DVCHK and OVERFL are a remnant of the conversion of the programs
which had formerly run on the 7090. Their purpose is now
accomplished, so far as the CDC hardware allows, by the LEGVAR
function. START and TIME just ©placed messages in the job log
which is now done by REMARK.

11.2.16 RANF(R1)

R1=0 The RANF function returns a sequence of pseudo-uniform random
real values between zero and one on successive calls with a
zero argument.

R1#0 Selection and repetition of the generated sequence may be
controlled by RANF references with nonzero argument as

followe:

-\l A VAT T

R1<0 RANF returns the last preceding result of RANF (0) or the
predefined basis of the pseudo-random sequence if there
have been no previous references by RANF(0).

R1>0 R1 is altered if necessary to set its low order bit to
one and its magnitude to Dbetween 2zero and one (by
inserting a characteristic of 1717B). The result is
used as a new basis for the sequence being generated and
is returned as the result of this reference to RANF as
well as in Rl (therefore Rl must not be a constant 1in
this case). The result is not necessarily normalized.

11.2.17 REMARK

A message may be tranémitted to the job log from a Fortran program
by the statement:

CALL REMARK (m)
where m is a Hollerith 1literal constant, variable or array

containing the string of..characters which comprise the message.
The maximum length of the string is forty characters.

11-15

11.2.

11.2.

11.2.

11-16

18 RETURN

RETURN performs the same action on a fileset as the UNLOAD control
card. The call has the form:

CALL RETURN (I)

where I may be either an integer designating the logical unit
number for the fileset, or the L-form Hollerith 1literal name of
the fileset as it appears in the PROGRAM statement. For example:

CALL RETURN(3)
or
I=3
CALL RETURN(I)
or
CALL RETURN(5LTAPE3)

all unload the fileset TAPE3.

19 SYSTEMP

SYSTEMP may be called to issue diagnostics for conditions detected
within a Fortran program. The seventh argument to SYSTEMP is the
error number (51 for a fatal error, 52 for a non-fatal error), and
the eighth is an error message in the form of a Hollerith 1literal
which begins with a carriage control character. SYSTEMP prints
out the diagnostic supplied by the user followed by a traceback
and tallies the error for the final summary. The first six
arguments of a SYSTEMP call should be the first six arguments to
the routine <calling SYSTEMP. 1If this routine has fewer than six
arguments, they should appear in the same positions in the SYSTEMP
call and dummy arguments added to complete the six.

20 XRCL

When XRCL is called, a perjodic recall request is issued to the
operating system. This means that the job relinquishes the
Central processor until a fixed period of time elapses or until a
peripheral processor posts some progress on a task for the jobe.
For example, on an I/0 operation this could mean that a physical
record has been processed and the buffer pointers updated. The
job will proceed immediately if there is no peripheral processor
active for the job. Repeated periodic recall requests without any
intervening peripheral processor activity may cause an error
termination of the job step.

11.2.21 SETRDCT

Subroutine SETRDCT is used tc set the errcr reccvery procedure
which will be wused for each physical record of a magnetic tape
fileset in case of errors while reading. The default is currently
nine attempts (eight retries). The first argument is the 1logical
I/O unit number or the L-form literal fileset name. The second
argument is a code specifying the procedure to be used. Zero
indicates the system default is to be used. If the code is one,
the system will not attempt to reread the record and the wrong
mode read detection is disabled. A count of one is useful in
reading tapes generated with off 1line devices which do not
generate correct parity indications. The IF(IOCHECK,i)nl,n2
statement should then be used to check each read operation (see
Section 10.3).

11.2.22 ABORT
The statement
CALL ABORT (message)
where message is a Hollerith literal constant, variable, or array
containing a coded message of up to sixty characters, will
immediately abort the current job step and enter the given message
in the job log. The effect of aborting a jiob step is described in
CALIDOSCOPE Control Statements in the section "Control Statement
Processing Sequence®.
11.2.23 MCLOCK
.The statement
CALL MCLOCK(ITIME)

sets the variable ITIME to the current time of day as a display
coded string in the following format:

10Hbhh:mm: ssb
where b is a blank, hh is a number from 0 to 23 designating hours,
mm and ss are numbers from 0 to 59 designating minutes and seconds
respectively. The twenty-four hour clock system is used.

11.2.24 MDATE

The statement

11-17

11.2.

11.2.

11.2.

11-18

CALL MDATE (IDATE)

sets the variable IDATE to the current date as a display coded
string in the following format:

10Hbddbmmmbyy

where b is a blank, dd is a number from 1 to 31, mmm is a three
letter month designation and yy is the last two digits of the
current year. - ‘

25 MZERO

The function MZERO has the logical value .TRUE. if its argument
is a minus zero and has the logical value .FALSE. if its argument
has any other value.

26 DABS, IDINT, SNGL

In violation of the ANSI Fortran standard, the DABS, IDINT, and
SNGL functions are external rather than intrinsic functions. This
raises the possibility of some name conflicts which might not

otherwise occur. Also see next section with respect to IDINT.

27 IFIX, INT, AINT, IDINT

The definition of the IFIX function in the ANSI Fortran standard
is ambiguous. As implemented, it is the same as the function INT.
These function values may be described as:

Sign of argument times largest integer less than or equal to
absolute value of argument.

FORTRAN STATEMENT LIST 12

SUBPROGRAM STATEMENTS

Subprogram Declarations Executable Section
PRPGRAM name (fl,...,fn) N 7.3
SUBRGUTINE name (pl,;..,pn) N 7.4
FUNCTI@GN name (pl,...,pn) N 7.6
type FUNCTI@N name (pl,...,pn) N 7.6
BL@CK DATA name N 7.14

Subprogram Linkage Statements

ENTRY name N . 7.12
EXTERNAL name,, name,, ... N 7.13
CALL name Y 7.5
CALL name (pl,...,pn) Y ‘ 7.5
RETURN Y 6.7

DATA DECLARATION AND STORAGE ALLOCATION

Type Declaration

CPMPLEX list N 5.1

DPUBLE PRECISI@N list N 5.1

DPUBLE list N 5.1

REAL list N 5.1

INTEGER list N 5.1

LOGICAL list N 5.1
N = No Y = Yes

12-1

12-2

Storage Allocation

DIMENSI@N V »V

/TN A

C¢MM0N/1l/listl/i2/list2 -

EQUIVALENCE (A;,By,...) . (Ay,Byyene)

Storage Initialization
DATA I,/L1ST/,I,/LIST/,...

STATEMENT FUNCTION

name(pl,pz,...,pn)=Expression

REPLACEMENT STATEMENTS
A=Arithmetic Expression
L=Logical/Relational Expression

M=Masking Expression

EXECUTION SEQUENCE CONTROL
Intraprogram Transfefs
G TP n (n is a statement label)
G Td m (m is an integer variable)
G§ TP m, (nl,...,nm)
GO TQ (nl,...,nm),i
Conditional Statements

IF (A)nl,nz,n3

IF (L)nl;n2

IF (L)s

IF (ENDFILE 1)n1,n2

IF (UN i
(IT,1)n1,n2,n3,n4

IF (IPCHECK,i)n,n,

<

Section
5.2
5.3

5.4

5.5

7.8

4.1
4.3

4.4

6.1.1
6.1.2
6'1.2

6.1.4

6.2.1
6.2.3
6.2.2
10.4
10.4
10.4

10.4

Loop Control Executable... = - Section

D@ n i=ml,m2,m3 Yy .- - + 6.3
Miscellanecus
ASSIGN s to m Y i 64103
n CONTINUE Y 6.4
PAUSE oy 6.5
PAUSE n Y " 6s
ST@P Y 6.6
ST@P n Y 6.6
1/0 FORMAT
FORMAT (specl,specz,...) N ' 9.2
NAMELIST/yl/al/yZ/az/ ve N 9.9
1/0 OPERATION STATEMENTS
READ n,L Y $10.2
PRINT n,L Y 10.1
PUNCH n,L Y 10.1
READ (i,x) Y 10.2
READ (i,n)L Y 10.2
WRITE (i,x) Y 10.1
WRITE (i,n)L Y 10.1
READ (i)L | Y 10.2
WRITE (i)L Y 10.1
ENC@DE (c,n,v)L Y 10.6
DEC@DE (c,n,v)L Y 10.6
BUFFER IN (i,p) (fw, 1w) Y 10.5
BUFFER QUT (i,p) (fw, 1lw) Y 10.5

©12-3

1/0 File Handling Executable Section

END FILE i Yy 10.3
REWIND i Y 10.3
BACKSPACE i Y 10.3

PROGRAM AND SUBPROGRAM TERMINATION

END N 6.8

12-4

Fileset Sthwucture 13

13.0 All information handled by the Operating System is stored in

Filesets named collections called filesets (sets of files) which are
structured in a manner dependent upon both logical and physical
considerations. That is, the representation of the data within
the computing system should be structured to reflect the natural
relationships among the data and to make it convenient and eco-
nomical to use for its intended purpose. In other words the
data should be represented in a logical form. However, since
a computer consists of physical components with varying physi-
cal characteristics, information must be recorded on each
medium in a form that can be "understood" by the component
being used to process it.

The criteria for structuring information to be transferred
between humars and a computer are exactly analoguous to those
for transferring it between humans. A person wishing to con-
vey his ideas clearly to another person usually writes them

on paper, indicating the basic level of a thought with a state-
ment ended by a period, designating the next higher level, a
group of related statements, by a paragraph and groups of
related paragraphs by a chapter, etc. Further guides are often
provided in the form of heading and numbering. This repre-
sentation of logical structure, however, since it is recorded
on the physical medium of paper, is restricted in format by

the number of letters that fit om a line and the number of
lines on a page. It is this sort of constraint which must be
dealt with in organizing data for particular media.

13.0.1
Fileset The operating system recognizes two arrangements of filesets:
Access sequential- and random-access. A sequential-access fileset

is one in which information is read or written in sequential

order, as on a magnetic tape. It has a beginning and an end,

and is positioned at a given point at any time, ready to read

or write the next record. When a sequential-access fileset

is written, any information following the record written is erased,
Since the last write determines the end of the useful information on
the fileset, it is not permitted to read after writing on the file-
set without having moved backward over the section just written. All
of the Fortran language I/0 statements deal with sequential-access
filesets.

A random—access fileset is one in which any record may be
read or rewritten at any time, without processing intervening
data to accomplish the repositioning. New records may also
be added at any time. This type of accessibility results

13-1

from the fact that an index*of where records are found is
associated with the fileset. See I9 CAL TSDISK as an example
of a library program for processing random-access filesets.

A sequential fileset may reside on magnetic tape or in disk
storage or on punched cards (from which it will be copied to
the disk before being used). Random access filesets may
currently reside only on disk (a rotating storage device,
see Section 13.2.4) or in ECS. The great majority of users
will be concerned only with sequential filesets.

13.0.2

Fileset The names which may be used for filesets are the same as

Names those which may -be used for variables, arrays, etc., i.e.,
alphanumeric identifiers. Certain fileset names are reserved
so that they always refer to particular filesets. For example,
the fileset containing the job input following the control
record 1is given the name INPUT; the name OUTPUT refers to
the information normally printed by a line printer; PUNCH refers
to the images of the cardsnormally punched in coded mode by
the card punch; and PUNCHB to the images of cards.normally
punched in binary mode. Other filesets may be assigned _
special disposition by the user via REQUEST or COMMON (see
CALTIDOSCOPE Control Statements).

Within a Fortran program, input/output statements are auto-
matically associated with particular filesets from which or
onto which information is to be transferred. Since most I/0
is performed via the card reader and line printer, the Fortran
READ n statement has the fileset named INPUT associated with
it; the PRINT statement, the fileset named OUTPUT. For con-
venience, the user may establish his own associations between
filesets which he creates and wishes to use and the I/0
statements of his program. This is accomplished by declaring
file names on the PROGRAM statement (the first statement in

a Fortran main program) which correspond to the filesets
referred to by the particular I/O statements used. (See
Chapter 10.) Although the user may attach other names to
filesets, the I/0O statements are constructed to render most
convenient use of names of the form TAPEi, where 1 < i < 99.
If i=5, a statement of the form READ(5) refers to the file-
set of the name TAPE5 which must appear in the PROGRAM state-
ment. The value i is the logical I/0 unit number. (See
Section 7.4 for.greater detail.) Note that names of the form
TAPEi are a carry-over from earlier days when -tape was the most
commonly used -I/0 medium., Filesets so named need not be on
magnetic tape and in most circumstances will probably reside
on the disk (see Section 13.2.4). In general,

13-2 *The index is normally the last record of the fileset and is
distinguished by a record level number of 15B.

the PROGRAM statement defines which filesets are to be
referenced by the I/O statements within the program. If

a fileset named does not already exist for the job, the

system creates an empty fileset on the disk and gives it the re-
quested fileset name. Fileset names may be équivalenced to

one another in the PROGRAM statement so that two or more

logical I/O unit numbers refer to the same fileset. In

addition, the EXECUTE or LGO statements allow other fileset names
to be substituted for the file names stated in the PROGRAM
statement.

The following examples illustrate the topics just discussed.

1. PROGRAM RECORD (INPUT,OUTPUT, TAPE6)
DIMENSION NAME(4), MONACT (100)

)
.

READ 10, NAME, PAY
10 FORMAT (4A10,F10.2)

PRINT 11, NAME, TPAY
11 FORMAT(5X,4A10,F10.2)

.
.

WRITE(6) (MONACT(I),I=1,50)

END

The program uses the filesets INPUT, OUTPUT, which are normally
created automatically by the operating system, and TAPE6, which
will be created by the system as an empty fileset on the disk if
it has not been created by a jobstep preceding execution of

this program.

2. PROGRAM MAIN (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT)
DIMENSION A(100),B(50),C(50)
READ 11,A
PRINT 12,A
READ (5,11)B
WRITE (6,12)B

END

TAPES is equivalenced to INPUT and TAPE6 is equivalenced to
QUTPUT. Thus, both READ statements read from the INPUT file-
set and the WRITE and PRINT statements both put information
to be printed on the OUTPUT fileset.

13-3

13.0.3
Fileset
Disposition |

3. J9998,1,100,40000. J. DOE PAYMASTER
RUN. : g
REQUEST,UCSED,I1.2137
LGO, , ,UCSED.

7-8-9 Card
PROGRAM FILEH(OUTPUT,TAPE6,PUNCHB,TAPE7=PUNCHB)

.
.

READ(6) ERECORD

WRITE(7) TOTALS

END

Because the LGO card has substituted the fileset UCSED for
the fileset TAPE6, the READ(6) statement reads the fileset
UCSED which has been assigned to magnetic tape. Of course,
TAPE6 does not have to be replaced by UCSED, but it was done
to demonstrate the generality of fileset naming and substi-
tution. A more usual form is to have "REQUEST,TAPE6,1.2137"

instead of "REQUEST,UCSED,I.2137" and to have "LGO" instead
of "LGO,,,UCSED."

Note that the order of the parameters (the fileset names) on
the LGO card is important here: the first name is associated
with the name of the fileset on which the program resides,
the second name on the card is associated with the first file-
set name given in the PROGRAM statement, etc. (Thus, the
fileset name UCSED is associated with the second name, TAPE6.)
Only 3 parameters are allowed in this example, since TAPE7

is already equivalenced in the PROGRAM statement to PUNCHB
and therefore is not counted as a fileset name parameter.
Only the fileset names explicitly stated on the LGO card
override the program fileset names listed in the PROGRAM
statement. Thus, OUTPUT and PUNCHB are unchanged in this
example.

The WRITE(7) statement causes binary information to be placed
on the PUNCHB fileset (a fileset predeclared by the system for
the punching of binary cards).

Except for those filesets automatically associated with spe-
cial dispositions by the operating system* all the filesets

The fileSets which automatically receive dispositions are:

13-4

OUTPUT - Print (PR) disposition

PUNCH - Punch Hollerith (PU) disposition

PUNCHB - Punch Binary (PB) disposition

INPUT - Protected from writing in case it is necessary to
restart the job. INPUT is released after execution
is completed. The special character of INPUT is not,
strictly speaking, a disposition.

associated with the execution of a job are normally temporary
and are - assigned to the disk. That is, in the absence of a
specific request to the contrary, storage space for a fileset
is allocated by the operating system as the fileset is created
and this space is released and is available for reuse as soon
as the job completes execution.

By use of the REQUEST Control Statement* a fileset may be
assigned to magnetic tape, or post—execution processing such

as printing or punching may be designated. By use of the
COMMON Control Statement* (not related to the Fortran COMMON
statement) a fileset may be retained on the disk for a limited
period after the job creating it terminates. The COMMON Con-
trol Statement also allows the attachment of a previously
created common fileset to the current job. Public filesets
may also be attached to the job with this statement.

Only one disposition may be made for any fileset, i.e., it
may not be both printed and punched, nor may it be made com-
mon and printed, etc.

13.1

The Logical In the logical arrangement of information in a fileset to

Strwcture of be handled by the Operating System, the following structural

Filesets levels are defined: logical records of fourteen** levels, and
files.

13.1.1.

Logical A logical record is a string of physical records (see Section

Recond 13.2) which is delimited by an end-of-record (EOR) whose exact

form depends on the storage medium used. In a Fortran binary
fileset on tape, each binary record normally constitutes a
logical record. This is known as the unblocked binary form
and is less compact than the form called blocked binary
which is normally written on most disk filesets (all those
without dispositions specified). It is possible to override
the assumed blocking of a fileset by calling library rou-—
tines BLOK or NOBLOK (see Chapter 11) if desired.

In the blocked form an additional word appears at the begin-
ning and end of each binary record to declare its length and
position within the fileset. These words are processed entirely
automatically and need not be allowed for by the user except
that he must not attempt to read a blocked fileset as unblocked,
nor vice versa. Their presence allows the fileset to be
written without including an EOR for each binary record. Thus,
blocking is most important when the binary records are short.

Binary filesets may be converted between the blocked and un-
blocked forms with the BBLOK and BUBLOK utility programs.*

See CALIDOSCOPE_antrol Statements.

%k .
Two addftional levels-exist but are reserved for special use, e.g., a zero

length record of level 15 (17B) is an end—of-file (EOF).
13-5

Coded filesets are not normally divided into logical records
except for the fileset INPUT where an EOR is treated as an
end-of-file. If one wishes to test for EOR on a coded
fileset, library routine IEOR may be used (see Chapter 11).

Logical record level numbers: The Operating System allows
related logical records to be grouped into an organized
hierarchy by means of level numbers, much like the ideas
treated in a book are organized. (See Figure 13.1) A single
. logical record forms the unit of information and therefore has
the lowest level number. A higher level number delimits a
set of logical records consisting of the logical record at
that level plus all preceding records (of a lower level) back
to one of an equal or higher level. Up to 14 different
levels may be defined (00 to 15B). In many cases, although
not from standard Fortran, the user may take advantage of
this structure imposed by the System in order to organize
his own records. For example, the CALIDOSCOPE fileset posi-
tioning control statments SKPF and SKPB can position filesets
using level numbers (see CALIDOSCOPE Control Statements).

Logical Records | Level Number | Paragraph Section Chapter
1 0 Employee A Department | College
2 1 Employee B W Q
3 0 Employee C Department
4 0 Employee D X
5 2 Employee E
6 0 Employee F Department | College
7 0 Employee G Y R
8 2 Employee H
9 0 Employee I Department | College

10 2 Employee H Z S
Figure 13.1

A schematic description of the use of record level numbers

-to organize a fileset .containing University emplovee
records.

13-6

13.1.2

File All logical records pertaining to a general subject may be
formed into a major collection of information called a file.
A file need not be divided into logical records. A file
being written may be terminated by executing an

ENDFILE i
Fortran statement. When reading, an

IF (ENDFILE i)

or .
IF(EOF (i))
or
TR(EOT 1)
L ‘J_IUJ. ’J./

may be used to test whether an end-of-file (EOR on fileset
INPUT) was encountered during the previous access.

13.2

The Physical The logical structure of information is so defined that

Strweturne o4 filesets may be stored on assorted media without the logical

Filesets structure being lost due to a medium's physical characteristics.
Thus a fileset can be recorded on disk, magnetic tape or cards.
A set of cards read by the card reader becomes a fileset on
disk. A set of lines to be printed on a line printer is also
stored as a fileset on disk until it has been printed. When
a fileset is transferred from one medium to another (e.g.,
cards to disk, disk to tape or vice versa) each of which
possesses different physical properties, it is the logical
structure of the fileset which prevents the information con=
tained in the fileset from losing its structure and thereby
its meaning as a result of being transcribed to a different
medium.

This section defines some terms and concepts relevant to the
physical structure of filesets. Subsections explain the par-
ticular methods used to represent logical structure on eachH
available storage medium.

Physical Record Unit: On a physical device, the actual
units in which the information is recorded are called
physical records; they define the amount of information
which is moved as a unit to or from that medium in one trans-
fer (read or write) operation. This is a purely physical
element, hence the term physical record. The maximum size
of physical records normally used on a particular device
is called the physical record unit (PRU) for that device.
On some devices the PRU is completely determined by the
hardware (e.g., card readers and line printers; the PRU on
other devices is fixed by the operating system (e.g., disk
and ECS); finally, on some devices a PRU size is assumed
by the operating system but may be overridden by the user
(e.g., external magnetic tape, see I9 CAL SETPRU).

13-7

13-8

Blocking: Efficient use of devices such as magnetic tape

and disk demands that logical information be grouped or
blocked into larger PRUs than are used for cards. On magnetic
tape, a 3/4" gap (at least) of blank tape, called the inter-
record gap (or. just record gap)s is required by the tape drive
between physical records to allow time for the physical device
to stop and start up again. If the PRU size were equivalent
to that of cards, only 14% of the recording surface of the
tape would contain information, since 80 columns of infor-
mation can be written on 1/7" of tapme at 556 characters per
inch.

Blocking is a general term used to described the action of
combining two or more records into a standard element, called
a block, and for dividing long records (normally binary) into
several such blocks for the purpose of improving I/0
efficiency. In general, blocking may be fixed or variable,
the important factor being that there be an established
scheme for deblocking (restoring to its original structure)
the information once it has been blocked. 1In fixed blocking,
the length of each record is predetermined and constant, with
a constant number of elements in each block. 1In variable
blocking, the length of the records varies and is signalled
either by a unique terminator, or by a pointer word at the
beginning (and/or end) of the record telling how long the
record is. A block as used here may be thought of as

being synonymous with a physical record; it may contain a
partial record, exactly one record, or more than one record.

Summary of Input—Output Devices and Storage Media

The following input and output devices are presently con-
nected to the CDC 6400 computers and are used in transfer-
ring information between storage media.

1. Card Reader

The CDC 405 card reader is used to read Job decks sub-

mitted at .the Input counter into the system. It is

capable of reading 80-column punch cards at a maximum
" rate of 1200 cards per minute.

2. Card Punch
The CDC 415 card punch is used to punch output from
user's jobs when requested. It can punch 250 80-column

cards per minute.

3. Line Printers

There are both CDC 501 and IBM 1403 line printers in the
system. The printers produce printed output from
the system at a maximum rate of 1000 lines per minute-

13.2.1
Punched Canrda

with 132 characters per line. See Table H of Appendix
A for the character set used.

4. Magnetic Tape Units

There are five CDC 604 magnetic tape units in the sys-
tem. They use 1/2" seven track magnetic tapes which
serve as a permanent, portable storage medium in cases
where cards would be too bulky and/or inconvenient.

All reels of magnetic tape have two aluminum reflective
spots, one at the beginning and one at the end, to sig-
nal the beginning and end, respectively, of the physical
reel. They can be recorded and read at densities of
200, 556, or 800 7-bit frames (6-bits plus parity check
bit) per inch and at a speed of 75 inches per second.
Thus at 800 characters per inch, the transfer rate is
60,000 characters per second.

5. Disk

There is one CDC 6638 Disk Storage Device in the system.
It is a random—access large-capacity memory commonly
used for job input waiting to be processed, output file-
sets waitirg to be printed, punched or sent to remote
terminals, user scratch filesets, public filesets,

user common filesets, system library programs, etc.

Once the disk is positioned, information may be read

or written at the effective rate of 420,000 characters
per second. The capacity of the entire disk memory is
131,072,000 characters including space occupied by the
Operating System itself; a half-track, which has a maxi-
mum capacity of 32,000 characters, is the smallest amount
of disk which can be assigned to a fileset.

6. Remote Terminals

There are numerous remote terminals, such as Teletypes,
which are located on campus and are owned or rented by
indiyidual departments or their members (see Guide to
Computer Center Services). '

7. Extended Core Storage

There are 500,000 words of guxiliary core storage in the
system which may be accessed as an I/0 device. Part of
this storage is now allocated for system residence, part
for optimization of fileset handling, and part for direct
access (e.g., see library routine K2 CAL ECSIO).

In addition to the devices connected directly to the computer,
there are separate devices for graphical output. See the

Graphical Display System Manual.

For files which are to be read by a card reader or have been
produced by a card punch and therefore are recorded on punched
cards, the 80 columns of a card comprise one physical record.
Since cards are of fixed size, every physical record is a full
PRU. The end of a logical record is indicated by a card with

13-9

Figure 2

Fileset Structure Delimiters for Filesets on Punched Cards

7-8-9 or EOR card. These
two forms are equivalent;
the card stock and printing
are immaterial.

13 14

1

885

9389
BRINY
1K 158362

poojoocojoodoloooo

0
12 314 SEEL)6 9o i 1zf13 14 1) 17 1819 20 2122
1

IRRIERI IRRIIRE]
7-8-9 level 17 or EOF card;

card stock and printing are
immaterial.

2222221212 212220222§22 2022
333133315]13313331333133333
44434 4444444J444)444
555550515 5/555(555[555/555

666f666

TiNT11]

888j88¢8

949

16 17 "4y

ﬂUUQﬂEﬁGOUUGWUUOUDUOGDBOUC

PR B R B I EUR AR) S5 L T 19N T AT

R RERERRER AR RARARRARARRY

. oy aann gy : 272

ﬁai{43‘44¢2-227222 2 6-7-8-9 or EOI card. Pink

13333332333333333333333 cards with 4 square corners

. are used to end job decks;

EOI cards punched by the

55555555555555555555555') computer' are on normal punch
stock. -

14344 44444484444444434

wr

IBEES366865665663555868886

BN R RN RARARR R RRARRRRY)

B.3823855382888388b8888888

&

B59:99509039395389958698
A A PN IR TRR IR PR B U B LTI
20 308!

el

13-10

the multiple punch 7-8-2 in column one; the level number
associated with that record consists of two octal digits
punched in columns 2 and 3. Since the level number is
"normally 00, these columns will usually be blank. An end-
of-record level 17B occurs only as an end—of-file. The
end of a job is indicated by a card with the multiple punch
6-7-8-9 in column one. See figure 13;2, Alsoc see
14.2.6 for examples of other cards.
13.2,2
Printed Printed output is produced from filesets produced during
Output job execution and given a print disposition. Since printed
' output is the only form produced directly by the computer
for human "input", its characteristics are quite different
from media designed for reentry into the computer.

Each unit record is represented by a printed line of up to

132 characters but the printer has an additional feature which
uses an additional character. The first character of each
unit record is used to control the vertical movement of the
paper past the printing position. A detailed list of the
available carriage control characters appears under the

PRINT statement (Section 10.1). Logical record structure

is ignored in produeing printed output.

13.2.3 '
Magnetic The CDC 604 tape drives handle 7-track tapes only. 9-track
Tapes tapes made on machines using that format must be copied to
7-track tapes before use on the 6400.
A fileset may consist of one or more tape reels.

Parity Checking: Parity checking is a scheme used to check

for erroneous bits of information (caused on tape, for example,
by dust on the recording surface or skew while reading or
writing) on storage media. In the case of 7-track tape

a character or frame parity check examines the six infor-
mation carrying bits in a column across the width of the tape
called a frame and inserts a parity bit as the seventh bit in
the frame. A block, track, or longitudinal parity check
examines the bits along a track of a tape and inserts a parity
bit in the corresponding bit position of a terminating frame
consisting solely of block parity check bits. If information
is written in even parity, the instances of one bits in a frame
or track of a block are counted, and a binary 1 or 0 is inserted
as the parity bit such that the total of ones is even. If
information is written in odd parity, the same count is per-
formed, but the parity bit is inserted such that the total of
ones in each frame is odd. The track parity checking always
‘uses even parity.

13-11

Character or frame
parity check bit

-

)
{
\
\
]
7

\
Track — %1

Lo

f

frame

Section of Magnetic Tape

The parity checking scheme provides a fairly reliable means
for checking against erroneous information, but the even
parity check introduces a complication; a character consis-
ting of all zeroes has an even number of ones, and
therefore, the parity bit is a zero. However, an all zero
character would exist on tape as a gap; a series of zeroes
would appear as blank tape, and the tape drive would be
unable to differentiate between a zero and a stretch of
tape containing no information. To avoid this confusion,
another bit configuration is written to represent the char-
acter code for 0, leaving available for use only 63 of the
possible 64 characters which can be represented by six bits
(26 = 64). 0dd parity does not produce this problem. Cur-
rently on tape,'binarz information is written in odd parity,
and coded information in even parity.

External and internal tapes:

Magnetic tapes are of two types: Those written by and
intended for use on a CDC 6000 series machine, (called

-internal tapes) and those written in a generalized format

such that they may be used as well by other types of
machines (called external tapes).

INTERNAL TAPE FORMATS (I or U tapes¥)

1) Binary - A file written on magnetic tape in binary
mode exists as a series of physical records not
exceeding the standard length (PRU) of 512 CM words.
The end of a logical record is signalled by a 48 bit

See REQUEST in CALIDOSCOPE Control Statements.

13-12

marker in which the four low order bits indicate the
leyel number in binary. If the information in the
logical record does not fit exactly into an integral
number of PRUs, the 48 bit marker is appended to the
last physical record written, forming a short physical
record. Otherwise the marker is written as a separate
physical record which is said to have zero length. 1In
either case, the marker is called an end-of-record (EOR).
The end of a file is indicated by an end-of-record to
terminate the last record, followed by a second end-of-
record of level 17B. This constitutes a ''zero length
logical record of level 17B" and is called an end-of-
file. Binary tapes are always recorded in odd parity.

2. Coded - The structure of coded files written for use on
CDC 6000 series machines is basically the same as that
of binary with three exceptions. The first exception is
that the tape is recorded in even parity. Second, the
standard PRU is 128 CM words rather than 512, since some
of the space in the peripheral processor which would be
allotted to the buffer is taken up to perform the re-
quired conversion of the coded information. The third
exception stems from the fact that all coded files are
composed of one or more unit records (lines), where a
unit record is a variable length sequence of characters
(< 137 characters) terminated by the external BCD ter-
‘minator 1632g* converted internally to a zero byte**
(0000g) in Central Memory. The unit records are simply
concatenated without regard to the boundaries between
physical records. This is an example of variable
blocking, mentioned above, i.e., the length of each
unit record is completely determined by the position
of the terminator. Thus, the division into logical
records is not needed to provide for orderly handling
of the information.

In both modes on an internal tape, the fact that the remainder
of the tape contains no valid information and is to be ignored
is signaled by an End-of-Information (EOI). This consists of a

The use of this code as the unit record demarcation has the unfortunate
side effect of restricting the use of the character code for colon ":"
from data which is to be read or written on coded internal tapes.

A zero hyte used to terminate a unit record in the I/0 buffer contains
a minimum of twelve zero bits hut may contain more since it is always
extended, 1f necessary, to include the low order twelve bits of the
CM word which contains it.

13-13

octal - 17 written in even parity followed by a block parity
check character and is generally referred to as a tape mark,
since it may be used in other contexts to signify something
other than EOI. The tape mark is followed by a special series
of characters called an EOL trailer label, to indicate that
there is no more information on the fileset.

EXTERNAL TAPE FORMAIS (X tapes¥)

All magnetic tape filesets which are not in the formats described
above for internal tapes are external tapes. The PRU length may
be specified by the user** if the defaults indicated below do not
fit the user's needs.

Binary - The standard PRU is 512 words (5120 frames). The
tape format differs from that of a binary internal
tape in only three respects:

(1) There are no level numbers associated with the logi-
cal records on external tapes, level zero being
assumed. Therefore, each logical record consists
merely of a sequence of one or more physical records
ending with a short (less than a PRU) record. All
but the last physical record in each logical record
are one PRU in length. The 48 bit marker is used
only when a zero length physical record is required
as in binary internal format.

(2) End-of-file is indicated by a tape mark (cce above)
which is also considered to be a logical record of
length zero and level 17B.

(3) There is no EOI on an external tape.

Coded — Each file is considered to contain a single logical
record. Points (2) and (3) under binary external. -
tape above also-apply to ceded external tape.

When writing coded external tape each unit record is written as

a separate physical record. Thus although the PRU length is 128
words (1280 frames) the records are normally limited by the Fortran
formatted I/0 routines to 137 characters.

13-14

See REQUEST in CALIDOSCOPE Control Statements.

See I9 CAL SETPRU.

This limitation can be bypassed (see I4 CAL LNGBCD) so long as the
unit records remain shorter than the PRU length*. Due to a pecu-
liarity of CDC hardware all physical records written must contain
an even number of characters. If a unit record contains an odd
number of characters, a blank will be added at the end. The
Fortran formatted output routines normally discard trailing blanks
from each unit record (which saves space on disk and coded internal
tapes) but this may be controlled by the user (see J4 CAL TRAILB).

When reading coded external tape each physical record is normally
read as a unit record so that a zero byte (see note under coded
internal tape) is appended to the data read in. The zero byte is
not added if the physical record is exactly one PRU in length;
thus, the longest record which can be read preserving the record
structure is two frames less than a PRU (maximum unit record
length of 1278 characters with the default PRU).

For reading of tapes prepared on computer systems which use fixed
blocking special controls are available through the library rou-
tine I4 CAL SETFXB.

Note: When writing coded records of the usual size (no more than
137 characters) the peripheral processor time required with
external tape may be five or ten times greater than with internal
tape.

13.2.4

Disk The CDC 6638 Disk File is composed of 72 magnetic disks which are

Ston arranged in two stacks mounted on revclving shafts; the 36 disks

in each stack are in turn arranged in two groups of 18 disks each.

The two top groups are referred to as UNIT O; the two bottom as
UNIT 1. See Figure 13.3. Data are recorded onto the disk surface
by read/write heads fitted onto an access arm. The arm can be
moved by a positioner to any track on the surfaces it accesses,
and once on the proper track, the revolution of the disk brings
a desired location to the read/write head. The surfaces of a
disk are also divided radially into 100 sectors of 64 words which
are the physical records.

"y
\]

Vs

&
©®

The positioning parameters serve as coordinates for locating each
record of information stored on a Disk File. Whereas information
stored on magnetic tape is only available sequentially, i.e.,

after all the information recorded preceding it has beenread, infor-
mation stored on a disk file may (but need not) be referenced as a
random-access fileset (e.g., via I9 CAL TSDISK).

For unit records longer than 1278 characters see I9 CAL SETPRU.

13-15

The disk file has a fixed PRU of 64 CM words and is always recorded

in odd parity. A logical record consists of data written continu-

ously in one or more sectors. A logical record always begins at the begin-
ning of a sector. The time required to position the disk (about 125
milliseconds) is large compared to the time required to read each

physical record (about 1 millisecond). This renders the transfer

of large records the most efficient way to use the disk.

Filesets residing on disk have the same structure as internal
binary tapes, except for the fact that an end-of-information

(EOT) mark is not actually written onto disk, but note is kept

of its location in a central memory table maintained by the system
outside the user's memory field.

13-16

STACKO STACK |

(HE#D GROUPS 0-15) (HEAD GROUPS 16-31)
——7 W
e ———— -
—————] ————
— R ———.
— T > 9 DISKS
—— _ '
e ———————— P—
S — e
' p.] -
) FILE
POSITIONER
UNIT O U?T
N -~
| —eeere———j
—_——— F—
—_— e
[remm————————— 4
e— P — > 9 DISKS
e E——— o
[——— e a— |
[e | ————————
L —m ~ — - -
MOTOR MOTOR
ﬁ
] ——eeee—
[ST prem—me—————4
] —
e +—
—— . - > 9 DISKS
—————— ——————
—] R —
— S §
POSITIONER FILE
UNIT| UNIT
c p— N——— - |
o ed ——ee—y
[E———— e ———
[—— -
e ESEE— ————————
—] _ L 9 DISKS
[—— e
[—— e)
— L —— P

ONE OF 32 POSITIONS

A DISK

[7

POSITIONER —» it sk _
1]

////////111 11 DISK

/

Figure 13.3. 6638 Disk: F11e Disks and
Positioners

13-17

HOW TO USE THE RUN FORTRAN COMPILER Chapter 14

This chapter shows a typical setup for running a program coded in
Fortran and explains the output from a sample program. .

After a program has been coded in Fortran, it (along with any
data) is either punched on cards for entry into the computer or
typed into the computer via a keyboard terminal. 1In order for the
program to be interpreted by the computer, it must be organized in
a particular sequence and accompanied by certain control instruc-
tions which indicate to the operating system, which controls the
processing of programs, how the information is to be handled. The
operating system must be told, for example, whether the program is
written in Fortran, in some other language, or a combination of
languages; it must be told where the beginning and end of the
program deck are; it must be told where the data cards begin and
end, and where any additional sources of input -and destinations
for output are (e.g., magnetic tape). '

The unit of work which is submitted to the operating system by the
programmer is called a job. It Dbegins with a group of lines
called control statements, the first of which is a special
statement called the Job Identification Statement. The Jjob is
terminated by a special code which denotes the end of the
information that is being submitted.

The operating system is itself a collection of programs which,
given the information from the control statements, controls the
sequence of events occurring within a job and communicates
necessary information to the computer operator (for example, which
magnetic tapes, if any, are required). It must also arrange the
scheduling of jobs with respect to each other since it can process
up to 6 jobs simultaneously in addition to those being printed,
punched, held in queues, etc. .

The remainder of the chapter refers to a program punched on cards.

For information about running a program from a keyboard_terminal.
see Appendix A, Table I.

14-1

14.1

Flow of Control

A typical job deck is shown in Figure 14.1. The 3job illustrated
here calls for a compilation (i.e., conversion to a form
executable by the computer) of a Fortran program (labelled "source
deck" in the figure) and execution of the resultant program (i.e.,
performing the set of calculations specified by the program) with
the data cards shown.

N

L
L
i

*‘T}/—' 7 Data

5 i
yA

EOI

(Voo ENTe)

S o

EOR l

|

Wy

PROGRAM OVERFL(...) fSource Deck

EOR

. L LGO,
ZRIIN
Job

Identification
Statement
(JOB CARD) V.

W~

? Control Record

Figure 14.1 Typical Job Deck

The set of control statements heads the deck and is separated from
the remainder of the deck by an end-of-record (EOR) card (the card
with rows 7, 8, and 9 of column 1 punched out), which signals the
end of a logical grouping of cards. The particular control
statements and the corresponding arrangement of the remainder of
the deck (everything after the first EOR) depend upon the purpose
and structure of the job (see other examples in Section 14.3). 1In
Figure 14.1, the body of the job deck consists of a Fortran source
deck, terminated by an EOR card, followed by the data cards to be
read as input by the executing program. Note that the EOR card

14-2

may be omitted for the last record of the job deck since it is
implied by the special pink EOI (end-of-information) card that
ends the deck. For detailed information about control statements,

see Calidoscope Control Statements.

When the Jjob is introduced into the computer, it is placed in an
input gqueue along with other jobs waiting to be processed. A job
scheduler decides the order in which jobs from the input queue
will be executed. When the Jjob is brought to execution. the

operating system uses the control statements to direct the
processing of the job.

First, all the cards following the first EOR card are given the
fileset name INPUT. Then the system begins processing the control
cards in order. In our case, the first card encountered is the
‘RUN’ card. This card causes the system to load the RUN Fortran
compiler and start it executing.

The RUN compiler begins processing cards from the INPUT fileset.
Its task is to convert the Fortran source statements into a form
which can Dbe used by the loader and/or to inform the user of any
errors it may detect in the program(s). The compiler stops
processing cards when it encounters the EOR card. It produces a
listing on a fileset called OUTPUT to be printed. The 1listing
contains information about the program(s) compiled, including any
error diagnostics. If there were no fatal errors, the compiler
also produces a version of the program in a form suitable for the
loader (called relocatable obiject code) on a fileset named LGO.
If the RUN compiler found an error which prevented it from
compiling a usable program, it aborts, which sets a flag called
the current error flag. It then returns control to the operating
system.

The system tests the current error flag and, if it is on, skips
control statements until an error control statement is found. If
no error control statements are found the operating system
terminates the job. However, if the flag is not set, it proceeds
to process the next control statement, in our case, the 1Gol card.
The LGO card causes the system to begin execution of a program
named CLDR (the CALIDOSCOPE Loader).

The loader begins processing the relocatable binary information
from the fileset LGO, which is where the RUN compiler 1left the
converted form of the Fortran program. The task of the loader is
to arrange the program in memory so that it can be executed.
After it has gotten the subprogram(s) from the LGO fileset into
memory, it performs a library search for additional subprograms

X From Load and Go into execution.

14-3

which are explicitly or implicitly required in order to run the
program. (The library contains subprograms to perform frequently
used operations; these subprograms are already in relocatable
object code form.) For instance, the program may explicitly use
the COS function. If so, the loader finds the subprogram for
computing cosines in the library and loads it into memory.

It also happens that a Fortran PRINT statement compiles code which
calls a subprogram called OUTPTCZ so that programs containing
PRINT statements implicitly call OUTPTC. The loader finds OUTPTC
in the library and puts it into memory too. If the user has also
accidentally misspelled the name of a function in one of his
Fortran statements (perhaps he wrote SINE instead of SIN), then
(unless he provided his own subprogram named SINE) the loader will
search the library for SINE. Failing to find it, the loader will
place a warning message in the OUTPUT fileset. 1In any case, it
produces a load map. describing where in memory it loaded the
various subprogramsSe.

Should the 1loader run into a sufficiently bad problem, it will
abort. If no major problems were encountered, the loader will
begin execution of the program it has loaded into memory.
Execution will begin, in our «case, with the first executable
statement in the program OVERFL. At this point, the first data
card is wating to be read from the INPUT fileset. What happens
next 1is entirely up to the program which the user wrote. It may
generate answers (correct or incorrect’) on the OUTPUT fileset and
then terminate normally, or it may ‘blow up’ and terminate
abnormally for any of a number of reasons. Some of the most
popular abnormal terminations are due to calling a function with
illegal arguments, which terminates with a Fortran execution
diagnostic (see 15.4.2), using the value of a variable which has
never been set, which may generate a mode 4 error (see 15.4.4), or
using a bad index when referencing an array, which results in a
mode 1 error (see 15.4.4) if you are lucky and causes mysterious
- failures if you are unlucky.

When the job finishes (normally or abnormally) the OUTPUT fileset
is placed in an gutput gueue along with the output from various
other jobs waiting for a printer to become available. The next
section discusses the output from a sample job in some detail.

To summarize the handling of a typical 3job in the system, we
distinguish three phases: '

1. entering the input queue and waiting for a chance to
execute

2 From Output of Coded information.

14-4

14.2

2. executing

3. waiting in the output queue for an available printer and
then being printed.

The execution phase of our sample job can be further subdivided
into three steps:

a. compilation

be loading
Ce execution of the program.

It is important to distinguish these steps because errors may
occur during any of them, and the significance of a particular
error is highly dependent on which phase of the 3job the error
applies to. It 1is also possible to save computer time by
bypassing some steps, notably compilation, when circumstances
permit (see 14.3).

Output of a sample job

This section describes the output of a sample job. The sample
uses a RUN Fortran program which does not solve a ‘real’ problem.
Rather, it demonstrates a variety of different features, including
a number of errors. The program contains many Fortran comments
explaining different aspects of the program. It also prints
explanatory comments on the output.

The printer output has been reproduced on the next 10 pages about
a factor of 2 smaller than it would appear on a 1line printer.
Numbered comments have been added on the right to explain various
features of the output. :

The printed output is a combination of the following pieces:
MSFILE, Job Log, source listing, compiler storage map, load map,
and execution output. These aspects are discussed in sections
following the output. Besides printed output, a job may have card
output and/or magnetic tape output. These are also discussed
briefly-)

14-5

Sl

16.48.12 H: LP D4 BEGIN CUTPUT

SAMPLE PROGRAM 9997 200
SAMPLE PROGRAM 3657 200
SAMPLE PROGRAM 9997 200
SAMPLE PROGRAM 93957 200
SAMPLE PRODOGRAM 9997 200
CURRENT Sy
04 AUG 73 *kkkkx CLOR AS STANDARD LOACER FOR ALL ***x%k

WE PLAN TO FSTABLISH THE CALIDOSCOPL LCADER, CLDRy AS THE
STANDARD LOADER DURING THE WEEKEND OF AUGUST 18 AND 19.
THIS MEANS THAT CLOR WILL NORMALLY BE USED TO PROCESS

LOAD, LGO, SXECUTS, AND NOGO CONTROL STATEMENTS.

POTENTIAL AREAS OF DIFFICULTY ARE DISCUSSED IN THZ AUGUST
NEWSLETTER. WE ANTICIPATE THAT THEY WILL IMPACT LFSS THAN
ONE PERCENT OF THE JOBS RUN. PLEASE REPORT ANY PRCELEMS NOT
INCLUDED IN THIS LIST TC THCS SUMNER, 221 EVANS HALL, OR
TO THE PROGRAMMING CONSULTANT, 217 EVANS. IF DIFFICULTY
ARISES, THE CDC LOADER MAY BE USED BY INSERTING THE CONTROL
STATEMENT LOADER,PPLOACR IMMEDIATELY AFTZIR THE JCB
IDENTIFICATION STATEMENT.

16 SEP 73 INPUT PASSWORDS
AN INPUT PASSWORD FEATURE WAS INSTALLED TODAY FQOR TESTING.
7-8-9 CARDS WHICH CONTAIN THE LETTERS #PW=% WILL PE IGNORED
OR CAUSE THE J0B TO BE ABORTED WITH THE MESSAGE #BAD .
PASSWORD# CR #J0B DELETED. INCORRECT INPUT PASSWOR[Di#. THIS
SHOULD NOT AFFECT ANYONE USING VALIC 7-8-9 CARDS, BUT
ANYONE HAVING UNUSUAL PROBLEMS WITH 7-8-9 CARDS SHOULD SEE
THE CONSULTANT OR GREG SMALL (223 EVANS). ADDITIONALLY,
A NEW NON-FATAL CARD READER MESSAGE, #ERROR ON 789 CARD#,
WILL OCCURR FOR 7-8-G CARDS WHICH DO NOT STRICTLY CCNFORM
TO THE EOR CARD SPECIFICATION.

18 SEP 73 NOGC PROSLEM
ON MONDAY 17 SEPT, THERE WAS 4 PROBLEM WITH NOGO LOAD
SEQUENCES WHICH RESULTED IN JOBS RUNNING 7O THEIP TIME
LIMITS. THIS PROBLEM HAS BEEN FIXED AND ANYONE WHCSE J40B
EXPERIENCED IT SHOULD BRING THEIR J0OB#S OUTPUT TO THE
CONSULTANTS OFFICE FOR A REFUND.

18 SEP 73 NEW JCB CARD DEFAULTS / ONLINE BALANCE
AS GF ABOUT 1100 ON 18 SEP 73, THE FOLLOWING NEW JOB CARD
STANDARD FIELDS WERE PUT INTO THE JET. AS USUAL, THESE
VALUES MAY BE CHANGED BY APPLICATION TO THE ACCCOUNTING
DEPARTMENT IN 239 EVANS HALL. ALSC AT THIS TIME THE NEW
DNLINE BALANCE WAS TURNED ON. SEE THZ POSTED DISCFIPTION
AT THE INPUT DESK OR ON THE BCARD DQUTSIDE 88 EVANS.

FIELD JOBS 0000 - 7999: JOBS 800) - 999¢9:
DEFAULT MAXTMUM DEFAULT MAX TMUM
TAPES (D) 0 3 0 0
TIME () 4 1000 2 20
CM FL (B) 40000 120000 40000 120000
PAGES (D) 25 1000 25 100
PUNCH (D) 100 10000 100 1000

Pace 1 oF SavpLe QuTPuT.

XXXXXXXXXXXXX A XXX XXX
XXXXXXXXXXXXXXXXXXXX\
XXX XXX XEXXX XY XXKXKXXX

XXXXXXXXX XXX X XXXXX XX
XXXXXXXXXXXXXXXXXX XX
XXXXXXKXXXRKXX XXX XXX X

-

4% s 45 ea ss 45 e es

4t e sa ek 00 20 we e

46 46 40 48 US ee BN 4% 06 46 o8 6 8e ee S8 S5 U4 es 04 3o Gs OF e ue 4s S5 B4 B8 s

o e e

E

M

22

22

04

0¢

06

06

SAMPLT PRCOGRAM 9997 200 AG 10/06/73
SAMPLZ PROGRAM 9997 200 AG 10/0¢/73
SAMPLE PROGRAM 9997 200 AG 10/06/73
SAMPLS PROGRAM 9997 200 AG 10/0€/73
SAMPLE PROGRAM 9997 200 AG 10/06/73
MESSAGES

ECS FL (B)] 304000 0 0

SEP 73 PUBLIC FILESET CHANGES

ASS: TEXT360

REPLACE: ALPHAC, TSP

SEP 73 NEW TSP

A NEW TSP COMMON FILE VERSICN WILL BE IN EFFECT AS OF
SEPTEMBER 22. THE NEW VERSION REQUIRES ECS AND ALSG ALLOWS
A LARGE DECREASE IN CM FIELD LENGTH. THE TYPICAL SMALL JO8
WILL WORK WITH 70000B FIELD LENGTH AND 20B ECS. A FULLER
EXPLANATION IS GIVEN IN A HANDOUT, AVAILABLE IN 673 EVANS.

ocT 73 ATTENTION GDS USERS

A NEW ERROR CHECKING FACILITY HAS BEEN ADDED TO GDSLIB WHICH
EXAMINES THE SPECS VALUES ON USER CALLS TO DETERMINE IF THEY
HAVE BEEN INITIALIZED. IF ANY REQUIRED VALUES ARE
UNINITIALIZED, THE. JOB WILL ABORT AS BEFORE BUT WITH A
TRACEBACK INSTEAD OF THE OLD MODE 4 ERROR.

UNFORTUNATELY, AT LEAST ONE ERROR EXISTS IN THE
IMPLEMENTATION. IF YOU CALL ANY OF THE ROUTINES FABLIX,
FABLIY, FAGLIX, OR FAGLIY, YOUR PROGRAM WILL CURRENTLY ABORT
IF YOU HAVE NOT SET SPEC{1) THROUGH SPECS(10). THIS WILL BE
CORRECTED ON MONDAY. YOU CAN AVOID THE PROBLEM IN THE
INTERIM BY SETTING THESE SPECS VALUES TO ZERO. IF ANY OTHER
PROBLEMS ARISE PLEASE CONTACT JOHN WELLSs X2-1410 CR BILL
INGRAM X2-1724.

ocyY 73 CONSULTING HOUR CHANGE
EFFECTIVE MON. OCT. 15 THE PROGRAMMER CONSULTANT HOURS WILL
BE: 10-12 A.M. AND 1-5 P.M. MON.-FRI.

ocT 73 HAZELTINE DEMONSTRATION

THERE WILL BE A DEMONSTRATION OF THE FOLLLOWING NEW PRODUCTS
FROM HAZELTINE ON TUES. AND WED. OCT. 16 AND 17 10 A.M.

TO 5 P.M. IN ROOM 251 EVANS: 1000 AND 2000 TERMINALS, TwO
TYPES OF PRINTERS (IMPACT AND THERMAL), AND A TAPE CASSETTE.

ocT 73 INTERESTED IN PERMANENT FILESETS

THE PERMFILE SYSTEM AND DOCUMENTATION ARE ESSENTIALLY

READY FOR RELEASE. HOWEVER, WE CURRENTLY HAVE PRECIOUS
LITTLE DISK STORAGE TO ALLOCATE TO PERMFILES. CONSEQUENTLY,
WE ARE ASKING CUSTOMERS WHO ARE INTERESTED IN USING
PERMFILES TO FILL OUT A FORM ESTIMATING THEIR SPACE
REQUIREMENTS. WE HOPE TO FORMULATE A FAIR POLICY BASED GN
THIS SURVEY AND WE MAY ACTUALLY ALLOCATE SPACE BASED ON THE

QUTPUT IDENTIFICATION, JOB SEPARATORS, AND MSFILE,

RETURNED FORMS. FORMS ARE AVATLABLE IN 239 EVANS. PLEASE
TRY TO COMPLETE A FORM BY 15 OCT IF INTERESTED.
XXXXXXXXXXXXX X XXXXXX XXXRXXXXXXXX
XXXXXXXXXXXXX XXXXKX XX XXXXXXXXXXXX
XXXXXX XXX X XXX XXXXXXX XXXKXX XXX XXX

IXXXXXXXLOXXXXXXXX2OXXXXXXXXBOXXX XXXXXED XXX XXX XXSCRXAXXXXXE O XXX XXX XTOXXX XXX XX BOXX XXXX XXGOXXXXXXXLOOXXXXX XKLL OXXXXXXX120XXXXXXXL30XX

@
@

[T

XXXXXXXXXXXXXXXXXXXX
XXXXEKXXXX XXX XKXXXX XX
XXXXXXXXX XXX X KXX XX XX

10/086/73
16.48.00
16.4B.04
16.4B.04

1644B .04
16.4B.04
16.48.05
16.48,05
16.48.0¢
16.48.07
16.48.07
16.48.07
16.48.07
16.4B.07

16.48.07
1€.4B.07
16.4B8.08

16.4B.08

XXX XXX XXXKKEXXKXXX XXX
XXXXXXXKXXXXX X XXX XXX
XXXXXXXXXXAXX XY XX XXX

— CALIDOSCIPZ (SCM) VER.ULl.2-A 07/21/73 MALHINE A
H: CR 05 J9997, SAMPLE PROGRAM

H: CR 05 81 CARDS INPUT

$:J0B J999T7AG AT CTLPT 3.

*3IRUNyssy 9999 +CR.

$:CM=1638414D0008)y EC=0, CP=0, PP=0.172, SP=0
W 1 WAPNING IN OVERFL

®*1LGO.

BEGIN OVERFL , CP TIME LOADING 249
$:CM=4544(10T700B)y CP=0.536, PP=2,32), SP=0.,043
FTARITHMETIC ERROR MCCE 2 AT ADDRESS 003250 -

INFINITS OPERAND USED

I:
It OPERAND MAY HAVE RESULTED FROM A DIVISION BY ZERD
I:

REFERENCT TO WORD 00102¢ WHOSE VALUE IS INFINITE

$:J08 COMPLETED. CP=90.553, PF=2.853, SP=D.048
$:PRINTED LINES = 227, PUNCHED CARDS = 0
$:EFFECTIVE TIME = 1.104 SEC, JOB COST = $0.105

I:FUNDS REMAINING = $41.366

XXXXXX XXX XXXX X XXXXXX KXXXXX XXX XXX
XXXXXXXXXX XXX XXXXX XX KXXXXXXXXXXX
XXXXXXXXXXXXX X XXX XXX KXXXXXXXXXXX

Pace 2 oF SampLE OutpuT
JOBLOG

(1) Date AND (2) TIME WHEN THE JOB
ENTERED THE SYSTEM,

6)) zESSAGE GIVING ABSOLUTE ADDRESS + 1
OTHER INFQRMATION A FATAL
ERROR, SEE 5845 ANDATgUE
(&) MESSAGES GIVING THE APPROXIMATE

AMOUNT OF OUTPUT GENERATED AND THE
APPROXIMATE COST OF THE JOB.

8-l

®

16.48.38

RUN FORTRAN COMPILER VERSION 2.3 B.3

5)
000003
000003
000011

000011
000021

000021
000023
000033

000033

000037

10/06/73 OUTPUT

PROGRAM DVERFL (INPUT,OUTPUT,TAPES=INPUT)
Ce.THIS SAMPLE PRCGRAM DEMONSTRATES SEVERAL FEATURES GF RUN FORTRAN
C.<LISTINGS, INCLUDING A VARIETY DOF ERRORS. BECAUSE DOF THE HIGH DENSITY
C..0OF ERRORS, IT SHOULD NOT BE TRUSTED FOR SXAMPLES OF HOW TO DO THINGS.
COMMON VARDI(30) /BLOK1/VARNAM(50),VARNM2(100),VARNM3(200)
C<.READ A FROM A& CARD AND PRINT IT FOR LATER VISUAL CHECKING.
READ(5,1) A
1 FORMAT (E10.0)
PRINT 6, Ay, A
€ FORMAT{*0A = *G1l0.4y%, BUT IF THE PRIN™ FIELD IS NOT LARGE ENOUGH*
1%, A PRINTS LIKE THIS *F10.4)
C..GENERATE AN INFINITE VALUE B BY DIVIDING A BY ZERO. THEN PRINT B.
B=A/0.0
PRINT 2,848
2 FORMAT (*0DIVIDING BY ZERD RESULTS IN AN INFINITE VALUE, WHICH PR
1INTS AS * GT7.4,% CR OCTAL *021)
CesTHE FOLLOWING STATEMENT TESTS THE VALUE OF B AND BRANCHES TO
Coo 30 IF B IS INDEFINITE
Ceo 20 IF B IS IN RANGE
Ceo 10 IF B IS INFINITE
IF (LEGVAR{(B)) 30,20.,10
C..AN ELEMENT IN THE VARNAM ARRAY IS GIVEN A VALUE. A SUBSEQUENT
C..REFERENCE TO THE SAME ELEMENT MISSPELLS THE VARIABLE NAME, CAUSING
C..THE COMPILER TO MISTAKE IT FOR AN EXTERNAL FUNCTION REFERENCE.
C..ALSOs THERE IS NO WAY FOR THE NEXT STATEMENT TO BE EXECUTED AND THE
Ce<COMPILER FLAGS THIS ANOMALY WITH A NON-FATAL DIAGNOSTIC.
VARNAM{5)=5.0

kNP FkoR ok ko ook sk e e e skl kel ok ook ok ok

000040
000043
000043
000045

000047
000051
000061

000061
000063

000064

. 0000¢4

000070
000070

C=VARNM{5)
10 CONTINUE
CALL WORK{ARGP,16.)
C=ARGP
C..BECAUSE THE SUBROUTINE WORK ALWAYS TAKES THE SQUARE RCQOT OF ITS
Ce.SECOND ARGUMENT, THIS CALL CAUSES A NON-FATAL EXECUTION TIME ERROR
Ce.DETECTED BY THE SQUARE RONT FUNCTION.
CALL WORK({ARGPy—1.5)
PRINT 11,ARGP,ARGP
11 FORMAT (%#0SQRT OF NSGATIVE NUMBER 1S ¢N INDEFINITE VALUE, WHICH PR
1INTS AS * GT7.4,*% OP OCTAL *,021)
Ce.THE NEXT STATEMENT CAUSES WORK TC MULTIPLY BY AN INFINITE NUMBER,
C..A FATAL ERROR WHICH TERMINATES THEZ JOB.
CALL WORK(ARGP,B)
GO TO 30
C..THIS CODE HANDLES THE CASE OF B LEGAL (WHICH CANT HAPPEN IN
Ce.THIS EXAMPLE).
20 CCNTINUE
C..THIS CODE HANDLES THE CASE OF B INDEFINITE (WHICH CANT HAPPEN IN
Ce«THIS EXAMPLE]},
30 PRINT 31
31 FORMAT (%0 HELP — THERE HAS BEZN A HIDEOUS DISASTER*)
END

06 OCT 73

16:48:04 PAGE NO. 1

Pace 3 oF SavpLE OuTPUT
So LISTING OF THE MAIN PROGRAM
OVERL

5

©®

PRODUCED BY THE COMPILER

THIS COLUMN GIVES THE RELATIVE
LOCATION OF THE CODE COMPILED
FOR EACH STATEMENT.

A COMPILER DIAGNOSTIC INDICATING
AN ERROR IN PREVIOUS STATE-
MENT, SEe (10) BELOW.

6-hT

RUN FCRTRAN CCMPILER VERSION 2.3 B.3

CRDSS PEFERENCE MAP-OVERFL

PROGRAM LENGTH INCLUDING

002237

STATEMENT FUMCTICON REFERENCES

@ LOCATION

STATEMENT NUMBER REFZIREMCES

LOCATION
000102
000121
000105
000043
000140
000064
000064
000153

GEN TAG

GEN TAG
cJJ010
cooo27
€0J013
LOv022
C0J04%6
L20035
LO0035
CO00¢1l

BLOCK NAMES AND LENGTHS

- 000036

VARTABLE REFEFEMCES

.

i LOCATION
! 0001¢7
000172
000170
000171
000000C01
000000C02
000062C02
000226C02

START OF CONSTANTS
000072

3LOK1

GEN TAG
v00005
vooo10
v00D06
V31007
2407001
A02002
A00003
A00004

START CF TEMPORARIES

0001561

START OF INDIRECTS
0001¢&7

UNUSED COMPILER SPACE

002600

1/0 BUFFFPRS

@

SYM TAG

SYM TAG
1

2

&

10

11

20

30

31

000536

SYM TAG
A

" ARGP

B

C

VARD
VARNAM
VARNM2
VARNM3

©
REFERECES

KEFERENCES
000003
000023
000011
000036
000051
000035
030035
000064

REFERENCES
00000¢€
000043
000022
000042
NONE

NONE

NONE

NONE

1 WARNING IN QVERFL

NP&kxkzx*xND PATH TO THIS STATEMENT

000037

(10

000036
090036

000014
0N0045
000026
090046

000063
000063

H00016
000046
000030

000021
000054
000033

06 OCT 73 16:48:04 PAGE NC. 2

Pace 4 oF SampLe OuTtpPuT
ComPLETE WE&P[ILER STORAGE MAP FOR MAIN

PROGRAM
(7) STATEMENT LABELS USED IN THE PROGRAM
AND " (8) THE RELATIVE LOCATION OF THE CODE COM-
PILED FOR THE STATEMENT
AND
(9) A LIST OF THE LOCATIONS WHERE THE
STATEMENT IS REFERENCED,
000056 000061
0000€1

(10) AN EXPLANATION OF THE DIAGNOSTIC OCCURRING
AT LOCATION 3/ IN THE SOURCE LISTING,

F
bt
o

RUN FORTRAN COMPILER VERSION 2.3 B.3

000005

000005
000005
000005
000007
000013
000013

o SUBROUT INE WORK{S, X)

Cee

CeoTHIS SUBRJUTINE IS SET UP TO MAKE LOTS OF MISTAKES FOR THE MAIN
C..PROGRAM,

C..

C..ON THE FIRST CALL, X=16.0 IS LEGAL AND EXZCUTION IS NORMAL
C..0ON THE SECCOND CALL, X=-1.5 AND THE SQUARE ROOT FUNCTION DETECTS

Ceo A NON-FATAL EXECUTION ERROR

Ce«ON THE FINAL CALL, X IS INFINITE AND THE MULTIPLICATION CAUSES A
Caw FATAL ARITMETIC CRROR

Cae

"Ce«WORK ALSO ‘DECLARES SOME VARIABLES THAT IT DOES NOT USE. THE

Ce«VARIABLES IN COMMON SERVE CNLY TO DEMONSTRATE CERTAIN FEATURES OF
C..BLANK AND LABELED COMMON. THE VARIABLE DEMO IS DEFINED S50 THAT AN
C..UNINITIALIZED VARIABLE WILL OCCUR IN THE DUMP.
Cao
COMMON VARC(100),VARD(30)/BLOKL/VNAMEL{50),VNAMEZ2{100),VNAME3{ 200)
1/BLOCK2/XXX{100) '
INTEGER DEMOD
X1l=X
X2=2.*X1
S=SQRTI(X)
RETURN
END

an

06 OCT 73 16:48:04 PAGE NO. 1

PAGE 5 OF SampLE OuTpuT
SOURCE LISTING FOR THE SUBROUTINE WORK
PRODUCED BY THE RUN COMPILER

1n NOTETHATWORK sSCCWD‘l

BLOCKS
BLOCKS B @)
BeLow, 50 NOTE THAT |

REFERENCED V
THEY wouu: NOT GET THE
LOCATION BECAUSE BLANK
ALLOCATED DIFFERENTLY IN THE mo
ROUTINES,

RUN FORTRAN COMPILSR VERSIGON 2.3 B.3

CROSS REFERENCS MAO-WORK

SUBPROGRAM LENGTH
000026

STATEMENT FUNCTION REFERENCES
LOCATION GEN TAG SYM TAG
STQTEMENT NUMBER REFERENMNCES
? LOCATION GEN TAG SYM TAG

BLOCK NAMES AND LENGTHS

- 000202 BLOK1 - 00053¢
(12
VARTABLE REFERENCES
i LOCATIGN GSN TAG SYM TAG
§ 000023 v0OoOoLtL DEMO
000000C01 AQ0D001 VARC
000144C01 A00002 VARD

TT-T

000000C02 400003 VNAME1
000062C02 A00004 VNAME?2

(13) 00022¢C02 A02005 VNAME3
000000C02 AD0C06 XXX
000024 V00012 X1

B
i
H
i

000025 V00013 X2

START OF CONSTANTS
000015

START OF TEMPORARIES
000017

START OF INDIRECTS
000023

UNUSEC COMPILER SPACE
003100

REFERENCES

REFERENCES

BLOCK2 — 200144

REFERENCES
NONE

NINE

NONE

NONF

NINE

NINE

‘NONE
000006
000007

0¢ OCT 73 1l€:48:04 PAGE NC. 2

Page 6 oF SampLE OuTPuT

CoMPLETE ﬂ?PIlER STORAGE MAP FOR SUB-
ROUTINE WORK.

12

1)

Buank COMMON 1S INDICATED HERE BY A

K FOLLOWED BY A LENGTH OF
ﬂf%. K1 1S THE S Cﬁ%&ﬂ
BLOCK DECLARED AND IS THE THIRD,

THIS LINE SAYS THAT VNAME3 1S LOCATED

AT ADDRESS 2726B TIVE TO THE BEGINNING
OF THE_SECOND BLOCK DECLARED,
1.E., BLOKL

-t

BEGIN CLDR2.2F

BLOCK

/BLOK1 7/
OVERFL
/8LOCK2 /

WORK
INPUTC
I0MSGS
10.SUP
LEGVAR
OuTPTC
SQRT
/SYS . MEM/
SYSTEM
SYS . M2P
17/

UNSATISFIED REFERENCES

ENTRY

VARNM -

DECK

ORIGIN LENGTH
(15)
000100 000536
000636 (14) 002237
003075 000144
003241 000026
003267 001025
004314 000226
004542 001326
006070 000005
00£075 001203
007300 000043
007343 000005
007350 001024
010374 000021

010415

007461:

000202 1e)

OVERFL

6 OCT 73 16:48:06 4 CPU TIME USED IS

DATE TIME P

06 OCT 73 16:48:04

0& OCT 73 1€:48:04
20 APR 73 19:59:46
12 NOV 70 12:32:16
20 APR 73 19:59:46
12 NOV 70 12:32:16
20 APR 73 19:59:4¢€
02 DEC 71 01:04:33

20 APR 73 19:59:46
DIAGNOSTIC STORAGE MarP

000041 (20067T)

.283
POCESSGR

RUNZ2.3B3

RUN2.383
CMP1.1A4
CMP1l.1A4
CMP1l.1A4
CMPl.1A4
CMP1l.1A4
CMP1.1A4%

CMF1l.1A4

an

REQUIRES 027357B WORDS TO LOAD, 010617B WORDS TO EXECUTE

SECONDS

FILE

LGO

LGO

SUBRLIB
SUBRLIB
SUBRLIB
SUBRL 1B
SUBRLIB
SUBRL1IB

SUBRL1B

LOCATION : FROM DECK AT RELATIVE (ABSOLUTE) ADDRESSES

Pace 7 oF SaMpLE OuTtPUT
Loap Map

(I
(15
ae

an

636 1s IHE LOAD ADDRESS FOR OVERFL
241 1S THE LOAD ADDRESS FOR

10 E LOAD ADDRESS FOR BLOKL
IS THE LOAD ADDRESS FOR

THE LENGTH OF BLANK 1s 202
AS DECLARED , NOT 36 As
DECLARED IN .

A procraM VARNM 1s RE RENCED AT

AT ABSOLUTE ADDRE IS
RELATIVE ADDRESS IN M%L,

1.E., IN THE STATEMENT
C=VARNM(GS)

WHICH BEGINS AT RELATIVE ADDRESS

llﬂé mBSV:l .

A = .1235E406, BUT IF THE PRINT FIELD IS NOT LARGE ENJUGH, A PRINTS LIKE THIS #r#serzezs Pace 8 oF SaMPLE OUTPUT

DIVIDING B8Y ZFRO RESULTS IN AN INFINITE VALUE, WHICH PRINTS AS R OR OCTAL 37770000000000000000 QUTPUT GENERATED DURING
EXECUTION OF PROGRAM

NEGATIVE ARGUMENT

ERROR NUMBER 39 DETECTED BY SQRT AT ADDRESS 007323

CALLED FRCM WORK AT 003251 = 000010 1IN WORK

CALLED FROM CVERFL AT 000706 = 000050 IN OVERFL

SQRT OF NEGATIVE NUMBER [S AN INDEFINITE VALUEZ, WHICH PRINTS AS I OR CCTAL 17770000000000000000

ST-T

H-hT

Pace 9 oF SamPLE OuTPUT

MEMORY DUMP A CALL
DMP — EXCHANGE PACKAGT DUMP — CALLED AT 16:48:07 CN 1u/06/73 BY SYSTEM - INFINITE OPEZRAND USED PRODUCED BEO&ggMSE[ﬂE J

FATAL ARITHVETIC ERROR

P = 000000 RE = 143509 FL = 010700 EM = 07 eCS RA = 01121909 ECS FL = 00000000 MA = 013743

X0 = 77777 77777 77770 00000 AC = 004643 C(AO) = OCO0OO 00000 J0000 0055 BO = 000000 PP CALL = OPE 23 000000 002053
X1 = 00000 00000 10269 00000 Al = 006175 C{Al) = 0OULOO OLODO 0COQD 52053 Rl = 001030 C{Bl) = L7770 00000 00000 00000
X2 = 37770 00000 00000 00000 A2 = 001026 ClA2) = 37770 20000 20000 D0000 R2 = 001026 C(B2) = 37770 00000 00000 00000
X3 = 17214 00000 00000 00000 A3 = 003256 C(A3) = 17214 00000 00000 00000 B3 = 004542 C(B3) = 33232 12224 55170 65516
X4 = 37770 00000 G600 00000 A4 = 004554 C{A4) = 33333 30000 20000 00000 B4 = 000000 C{(B4) = 00020 03250 00000 00000
X5 = 00000 00000 00000 00007 A5 = 004555 C(A5) = 0(NOO QD000 OOOGOO 00007 8BS = 000001 <C(B5) = 00000 00000 00000 00000
X6 = 37770 00000 00000 00000 A6 = 003265 C{A6) = 37770 00000 00000 D0000 B& = 000001 C(B6) = 00000 00000 00000 00000
X7 = 37770 00000 00000 00000 A7 = 003260 C(A7) = 00U00 00000 10260 01030 87 = 007256 C(B7) = 00000 00000 00000 00017
$0 = 00000 00000 00000 00000 &1 = 00000 00009 00000 00000 $2 = 00000 00000 00000 00000 $3 = 00000 00000 00000 00000
¢4 = 00020 00000 000D0 00000 $5 = DOOJID 00003 000)0 00000 $€& = 02000 00000 00000 Q0000 $7 = 00000 00000 00000 00000

SYSTEM™ COMMUNICATICN AREA

000000 00020 03250 00000 0000C 000C0 00000 00000 00000 11162 02524 00000 01031 17252 42025 24000 02053

000004 24012 00540 00000 01031 00000 00000 COO0O 00000 00000 00000 00000 00000 00000 00000 00000 00000
WORCS 000010 TN 000063 ALL CONTAIN 00000 00000 00000 00000

000064 14071 70090 00000 00000 00000 J0000 0CO00 10617 00000 00004 00000 00100 00000 00000 00000 00000

000070 172€0 5220€ 14570 00000 03000 20000 00000 90000 00000 00000 00000 00000 00000 00000 00000 00000

000074 C0000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

PP PARAMETER AREA

002050 60007 77777 02004 02050 60007 77777 02004 02051 60007 77777 02004 02052 17252 42025 24000 00015
002054 02000 00000 40140 02074 00000 00000 00000 DJ21¢€0 00000 00000 00000 02074 41140 62000 01000 03075
002060 00000 00000 00000 00003 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
002064 00000 00000 00000 00000 00000 00000 0GOCO 00000 00000 00000 00000 Q0000 00000 00000 00000 00000
002070 00000 00000 00000 00000 41000 230000 00000 00000 00000 00000 00000 00000 00000 00601 00000 00200

P—40 THROUGH P+40

WORDS 003210 TO 003237 ALL CONTAIN 60007 77777 02004 ***xx*

003240 60007 77777 02004 03240 27172 21300 00000 00002 04000 00721 00000 00000 43052 76710 15770 76120
003244 15110 20122 36717 4¢€000 51700 23260 56220 10622 51300 03256 10466 46000 51600 03265 40734 66120
003250 51700 03266 46000 46000 01000 37301 07010 03241 51500 03260 63150 21522 63250 56610 04000 03242
003254 5110003257 10711 4€000 01000 J7474 07000 03241 17214 00000 00000 00000 00000 00000 00000 00000
003260 00000 00000 10260 01030 60007 77777 02004 03261 60007 77777 02004 03262 60007 77777 02004 03263
003264 60007 77777 02004 03264 37770 00000 CL{*00 00000 60561 77777 77777 7771717 11162 02524 03000 00000
- 003270 04000 00¢44 00000 00000 04000 20647 0C200 00000 04100 03304 06100 03274 76610 51600 03356 46000
003274 01000 03360 07000 03267 51200 03356 03(¢20_03271 76600 54620 51600 04772 50660 00001 51200 04774
003300 03220 03271 43001 15720 54720 50220 01202 4¢€000 51109 03352 52110 00005 73710 53720 04000 03271
003304 51100 03271 10611 46000 51600 23270 46000 46000 01000 05217 07000 03267 66100 51500 03353 46000

003310 01000 05073 07030 03267 01000 26060 4£000 46000 76620 76120 51600 03352 61620 00005 61200 04542

STl

1649433 H: LP

SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE

PROGPAM
PROGRAM
PROGRAM
PROGR AM
PROGRAM

04

1081
9997
9967
9997

3997 -

3697

LINES GuTPUT
200
200
200
200
200

Pace 10 oF SampLe QutPuT
FINAL SEPARATOR PAGE

SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMDOLE

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PR OGRAM

9997
9997
9997
9997
9997

200
200
200
200
200

AG
AG
AG
AG
AG

10/0&/73
10/06/73
10/06/73
10/706/73
10/06/173

14.2.1 The MSFILE and Job Log

The first page of each output printed at the Computer Center has
page separators printed across the folds of the paper to make it
easier for the output from different jobs to be identified. The
body of this page contains MSFILE - notices giving current
information relevant to Computer Center operations, e.g., bugs
found (or fixed), features added (or to be deleted), upcoming
events, etc.

The Job Log (sometimes called the "Dayfile") contains an entry for
each significant occurrence during the running of the job. It
constitutes the first page of the job output proper. All control
statements executed are reproduced here, along with other messages
from the system, from the operators, etc., most of them
self-explanatory. Probably the most important point for the user
to note is that many (but not all) error messages appear here.
(See section 15.4.3.)

| P
LOWD «

(=]

The first line of the Job Log appears as fo
mm/dd/yy - CALIDOSCOPE (SCM) vVvVv.xXx mm/dd/yy MACHINE A

where the first mm/dd/yy is the date on which the job was run, vvv
is REC if the System has recovered from a failure, and VER
otherwise, xx is the release number of the version, the second
mm/dd/yy is the date of the most recent system modification.

Lines after the first have the following general format (some
exceptions are noted in section 15.4.3):

hh.mm.ss ac messages

where hh.mm.ss gives the time of day in hours, minutes, and
seconds since midnight.

The next field, ac, contains a pair of characters which indicate
the tvpe and origin of the messages, respectively. a may be any
one of the following:

Characterxr Mes e T

Control statement
Operator
Informational
Warning

Fatal Error

User comment
Accounting
Statistic

nNnno™MEHO %

14-16

E Error in Operating System

/ Hardware error

| Continuation of previous message

H Message from HYDRA (the program which

control reading and printing of jobs)

G Generated Control statement
¢ is either ":" or ‘blank depending upon whether the message
originated from a peripheral processor program which 1is part of
the Operating System or from a Central Program, respectively.

The message itself follows. If the message is longer than 120
characters, it will be continued on the next 1line . after a
repetition of the time.

A line by 1line interpretation of the Job Log from the sample
output follows:

16.48.00 H: CR 35 J9997. SAMPLE PROGRAM
16.48.04 H: CR 05 81 CARDS INPUT
16.48.04 $:J0OB J9997AG AT CTLPT 3.

The Job deck was read in at 16.48.00 on the card reader with
logical number 5 and 81 cards were in the deck. The job name
J9997AG was given and the job entered execution at control point
3.

164834 *:RUN,+rs11+s7¢1sCRo
16.48.36 $:CM=16384(40000B),EC=0, CP=0, PP=0.172, SP=0
16.48.37 W 1 WARNING IN OVERFL.

The RUN card is reproduced (the CR option was specified in order
to provide a sample of the cross-reference 1listing - a simple
‘RUN’ is adequate for most purposes --see section 15.1). The
accounting message indicates that at the time the job entered
execution, it requested a Central Memory field length of 16384
(decimal) words, the equivalent of 40000 (octal) words, but did
not call for any Extended Core Storage. The number of seconds of
Central Processor and Peripheral Processor time required up to
that point was zero and .172 respectively. System Processor time
used was 0. During compilation, one warning message was generated
by the program OVERFL.

16.48.05 *:LGO.
16.48.06 BEGIN OVERFL, CP TIME LOADING .249
16.48.07 $:CM=4544(10700B), CP=0.536, PP=2.320, SP=0.043

The LGO control statementis ~reproduced followed by a message

indicating the initial entry name of the program and the central
processor time used in the loading process. This is followed by a

14-17

second accounting message indicating the CM field 1length was
automatically reduced (after 1loading and prior to execution) to
4544 (decimal) words, the equivalent of 10700 (octal) words. To
this point, Central Processor, Peripheral Processor and System
Processor time consumed were .536, 2.320, and .043 seconds
respectively. ECS is not listed because it did not change.

16.48.07 F:ARITHMETIC ERROR MODE 2 AT ADDRESS 003250

16.48.07 I: INFINITE OPERAND USED

16.48.07 I: OPERAND MAY HAVE RESULTED FROM A DIVISION BY ZERO
16.48.07.I: REFERENCE TO WORD 01026 WHOSE VALUE IS INFINITE

Execution of the main program OVERFL began at 16.48.06 and within
a second an execution error was found which made it undesirable
for execution to continue. The next four messages indicate the
nature of the fatal error and various suggestions as to what may
have caused it. (See Sections 15.4.3, 15.4.4, and 15.5.)

16.48.07 $:J0B COMPLETED. Cp=0.553, PP=2.853, SP=0.048
16.48.07 $:PRINTED LINES = 227, PUNCHED CARDS 0
16.48.07 S:EFFECTIVE TIME 1.104 SEC, JOB COST $§0.105
16.48.08 I:FUNDS REMAINING = $41.366

The 1last four messages on the Job Log are accounting messages.
The first indicates the total amounts of Central Processor (CP)
time, Peripheral Processor (PP) time, and System Processor (SP)
time required for executing the entire job (reading, compilation,

- loading, execution, printing). All time values are in decimal.

14.2.

14-18

The second message estimates the print and punch output generated,
excluding Job Log and MSFILE messages. The last two messages give
the time used for calculating the job cost, followed by the cost
itself and, finally, the funds remaining in the account (this is
not printed for all accounts). The formula for calculating the
cost of a Jjob may be found in the Guide to Computer Center
sServices.

2 Source Listing

The compiler normally reproduces each source statement on the
OUTPUT fileset.l Each executable statement 1is prefixed with a
relative location (relative address) which indicates where the
object code generated for that statement begins relative to the
subprogram origin. The 1locations are given in octal. The
subprogram origin has a relative address of zero but is assigned
an absolute address (relocated) during loading.

Statements, such as FORMAT, COMMON, DIMENSION, etc., which are
non-executable, i.e., do not generate object code, are listed with
the relative location of the next executable statement in the
subprogram. A CONTINUE statement which is not used as the
terminator of a DO loop will be treated similarly.

All cards with a C punched in ceolumn 1 are printed as comments and
otherwise are ignored by the compiler. The compiler may. however,
alter the ordr of some comments with respect to source statements.

All local variables and constants used by a suprogram (excluding
formal parameters) are assigned to relative locations beginning at
the point where the subprogram object code ended. Variables
assigned to a commoen block are given locations relative to the
beginning of the block. Common blocks are given numbers in order
of appearance.

Compiler diagnostics may also appear in the source listing. The
sample contains an ‘NP’ diagnostic following the line at relative
address 000037. See 15.4.1 for a discussion of compiler diagnos-
ticse.

14.2.3 Compiler Storage Map

After each subprogram has been successfully compiled (no fatal
errors have been diagnosed) and listed, the subprogram length is
printed. In the sample output. it is 2237 (octal) CM words,
including space for the I/0 buffers (usually 1001B words each).
for the main program OVERFL and 26B for the subroutine WORK.

1f the references option on the RUN control statement has been
specified, an extended subprogram storage map which lists referen-
ces is then printed. Under the heading STATEMENT FUNCTION
REFERENCES (there are none 1in either subprogram) are given the
relative addresses assigned to programmer-defined arithmetic
statement functions together with the generated compiler tag
assigned and the relative addresses of all references to each
function listed. Under STATEMENT NUMBER REFERENCES are listed the

' The listing produced during compilation may Dbe suppressed by
inserting a statement with the word NOLIST starting in column 7 before
the PROGRAM, SUBROUTINE, BLOCK DATA, FUNCTION or IDENT (for Compass
subprograms) statement. The 1listing remains turned off for all
succeeding subprograms until 1listing is restored by a statement
containing the word LIST beginning in column 7+ - NOLIST is overridden
whenever fatal errors (not warnings) occure.

14-19

14-20

statement label numbers used in the subprogram. The programm-
er-assigned label or name is SYM TAG. Under GEN TAG is the name
which the compiler has generated to use to refer to the symbol.
Statement labels serving as branch points carry the prefix L.
FORMAT statements and constants carry the prefix C. In the main
program, OVERFL, for example, the statement which has been
labelled 10 is compiled beginning at relative location 43B. The
compiler has assigned that location a label, namely L00022, and a
reference was made to it from relative location 36B. The location
given for the statement 1label number identifying a FORMAT
statement is the Jlocation in which the display code for the format
itself, the alphanumerics between and including the outer paren-
theses, is stored; it is pot the relative location listed with the
statement 1in the source listing. Thus FORMAT statement number 1
is stored at location 102B. It is given the label C00010 by the
compiler and a reference is made to it by an I/0 statement at
relative location 3, a READ statement.

Under the next heading BLOCK NAMES AND LENGTHS are listed the
blank and labelled common blocks and their lengths. Thus in the
sample output, the compiler storage map for subroutine WORK shows
three common blocks: blank common with a length of 202B; BLOK1
with 536B words, and BLOK2 with 144B words. As can be seen from
the 1load map for the sample program, blank and labelled common
blocks are stored in different areas of the program’s central
memory field. '

Under VARIABLE REFERENCES are 1listed the relative addresses of
most programmer-defined variable names actually referenced and
where they are referenced. The compiler-generated label (GEN TAG)
is prefixed with a V in the case of a simple variable, or with an
A, for an array name. Locations given for variables in COMMON are
suffixed by Cnn, where nn denotes the order of the particular
common block as 1listed under BLOCK NAMES AND LENGTHS and the
address portion indicates the relative position with respect to
the start of the COMMON block. Thus in subroutine WORK, the array
XXX 1is located at the beginning (000000) of the COMMON block 03
(BLOK2) .

The programmer should bear in mind that because of the way the
compiler operates not all references will be listed. An actual
physical reference is necessary before the reference is placed in
the reference map. If the required variable address is already in
a register, the compiler will use the address in the register and
not -make an actual variable reference by name. Since ' subprogram
formal parameters are always located in pointer registers their
references are never listed. A reference to a statement number
will not be 1listed if an actual jump is not necessary, such as
when the code simply falls through to the next statement and the
compilation of a jump instruction is therefore not necessary. On

the other hand, the code compiled for a 1logical IF statement
usually invelves a jump to the next statement so a reference may
appear for it even though there is no reference in the source
poogram.

Following the list of VARIABLE REFERENCES is printed the starting
location for the constants used in the program for locations used
as temporary storage during calculations, etc., and for the area
in which the variables are stored.

The compiler storage map has many uses. The correct spelling of
variable identifiers can be checked and misnamed variables caught
(except when an array reference is misspelled, in which case the
compiler thinks it is a function reference and, depending on how
the reference is used, one of several error messages may result).
As changes are made in the subprogram, new statement numbers and
variable names can be checked for a previous use. The map is used
extensively when interpreting dumps.

If the references parameter is not specified in the RUN statement,
an abbreviated compiler storage map is produced which omits the
GEN TAG and REFERENCES listing.

The last line of the compiler output indicates the 2600B locations
were unused in compiling the main program and 3100B were unused in
compiling .the subroutine. Thus, the field length specified on the
Job card could be reduced if it would not fall below the 40000B
word minimum required by the compiler.

14.2.4 The Loader and the Load Map

Here we digress briefly to describe some aspects of the operation
of the lcader prior to describing the lcad map which it generates
on the output. 1In addition to the loader discussion in this
chapter, the writeup L3 CAL CLDR describes other loader features
which allow more control of the loading process, use of auxiliary
libraries, etc. Some of this information is also to be found in

CALIDOSCOPE Control Statements.

The loader is a program in the operating system which accepts a
translator-generated object code program as input and places it in
the memory of the central processor in proper form for execution.

The following information and concepts are useful in understanding
how the loader performs its task.

14.2.4.1 What the locader loads and where it finds it
As each source subprogram in the source deck 1is successfully

program is stored (usually in the fileset named LGO). Additional

14-21

14.2.

14. 2.

14-22

object code subprograms generated at another time (using the P
parameter on the RUN card, for example) may come from the user’s
input deck (from fileset INPUT) or other filesets generated by the
user. Control statements (described in CALIDQSCOPE Control
Statements) tell the loader where to find the relocatable object
code subprograms which it is to use to construct the executable
object program and specify the order in which they should be
loaded. Loading is performed in the same order in which the
filesets are specified and, within each fileset, in the order in
which the object programs appear.

4.2 The relocation of subprograms and COMMON blocks

The object subprograms are read into contiguous locations in core,
starting at a particular address, usually 100B, which is the
initial load address-. :

As ‘a subprogram is loaded, the code and each relative address
reference within it is relocated. That is, the subprogram origin
(load address for the particular subprogram) is added to the
address on the left margin of the source 1listing to determine
where the code generated for that statement is to be stored. The
load address is also added to the memory addresses within the
code. Thus the internal program references remain consistent but
refer to the actual addresses in which the program is stored. The
load address is the memory address (with respect to the beginning
of the memory field assigned to the job) of the beginning location
of that subprogram. For subprograms after the first, this is one
plus the last address of the preceding subprogram or labeled
common block.

Labeled common blocks are loaded as separate items. Each block is

placed immediately in front of the first subprogram which declares
it and is allotted the length declared for it in that subprogram.
Therefore, if a longer block with the same label is declared in a
subprogram which is loaded later, a fatal diagnostic message is
issued. If a subprogram which declares a shorter block than
actually allocated is loaded, a warning diagnostic message
appears. The blank common block is loaded directly after the last
subprogram loaded (including subprograms loaded from the library
to satisfy external references). It is allotted the maximum
length declared for it (which need not be the length given in the
first subprogram in which blank common is declared).

4.3 Communication linkage between subprograms
During 1loading, each reference to an address which is external to

a given subprogram (as in a CALL or FUNCTION reference) must De
replaced by the relocated external address. This process is

termed linking. For example, in the sample program, the subrou-
tine WORK, which has its origin at 3241B and ends at 3266B calls
the function SQRT which comes from the standard subprogram library
and has its origin at 7300B. SQRT is external to the program
WORK.

The - address to which an external reference is linked is called an
entry int, i.e., a location in a subprogram which is the start

of a given section of the executable code and can be referenced by
other subprograms. A subprogram may have more than one entry

ML UL LI -aili: LT TLaiL e

point. Each PROGRAM, SUBROUTINE, FUNCTION, or ENTRY statement
generates an entry point for the subprogram in which it appearsl.

14.2.4.4 Standard Subprogram Library

Any entry point which is referenced but missing from the user’s
program is automatically searched for in the standard subprogram
library. A copy of the subprogram which contains that entry (if
found) is then loaded into the wuser’s memory field after the
user’s program and is 1linked to it. This program in turn may
call for still others from the library fileset. Note that only a
missing entry name will be requested from the library; thus, the
SQRT library function will not be loaded if a subprogram named
SQRT is supplied by the user.

Many 1library subprograms are referenced by the code generated by
the RUN Fortran compiler as it compiles the object code for many
of the Fortran statement types. For example, input/output (e.g.,
READ, WRITE) statements generate calls to 1library subprograms
which perform I/0 and format conversion. These can be seen (e.g.,
INPUTC, OUTPTC) in the load map. Section 15.6.1 lists all such
names which may conflict with Fortran subprogram names. Chapter
11 contains a general description of the contents of the standard
subprogram library.

14.2.4.5 Unsatisfied References

If a referenced entry cannot be found either among the wuser’s
subprograms or in the 1library, it is <called an unsatisfied
reference. Execution is allowed in such cases. However, in
instances where a reference is unsatisfied unintentionally [e.g.,
if the user’s program leaves out a subroutine, or neglects to
dimension an array (in an expression, a reference to an element of

1l 1n general, an entry point indicates what a subprogram has available;
an external reference indicates what a subprogram needs but does not
have availabls. The lodder attempts to satisfy all of each™ subpro-
gram’s needs using what is available.

14-23

an array has the same syntax as a function call and will be
interpreted as such by the Fortran compiler)], and an attempt to
execute the non-existent subprogram is made a fatal error occurs
(see section 15.4.2).

14.2.4.6 Memory Backgrounding

The locations in memory used to store the object code for the
program’s instructions and the 1locations whose contents are
specified in DATA statements are initialized by the program. The
contents of all other areas used by the program (e.g., COMMON
areas, locations reserved for variables) are preset to a standard
value, which has the following form: the upper 30 bits contain a
negative indefinite real value (6000777777B) and the lower 30 bits
contain a jump to an address of the form 400000B + XXxXXXX. where
XXXXXXX 1s the address of the word itself. For example, the
location 076340B would contain 60007777770200476340B. This value
is intended to halt execution with a fatal error if the program
uses it in a floating point calculation or attempts to execute it
as an instruction. When such a halt occurs, the program is
attempting to use ‘undefined’ numbers and the form of the number
frequently helps identify the problem. There 1is no hardware
facility to check for the use of an undefined integer quantity; so
this error may manifest itself in obscure ways. For practical
purposes this means a variable should pever appear to the right of
an edual sign unless it either appears in a prior statement to the
left of an equal sign, has had a value assigned to it by a DATA
statement, or appears in the list of a prior READ statement.

14.2.4.7 Error Detection in the Loader

Some error conditions are detected by the loader. Some are fatal
(e<.g., no main program), others are not (e.g., unsatisfied
references). All detected errors are signalled by some (hopeful-
ly) explanatory message. However, some error conditions are not
detected by the loader. For instance, the loader can not check to
be sure that the actual parameter 1lists given to a subprogram
agree with what is expected by the subprogram in its formal
parameter list.

14.2.4.8 The Load Map

As the loader loads each subprogram, it writes a map of the
program on the OUTPUT fileset. The first line of the load map:

BEGIN CLDR2.2F 6 OCT 73 16:48:06, CPU TIME USED IS .283 SECONDS
identifies the version of the loader in use, gives the date and

time the load operation began and the amount of central processor
time wused within the Jjob prior to the load. 1In this case, the

14-24

loader version is CLDR2.2F, the load began on 6 OCT 73 at 16:48:06

after using

.283 seconds of CP time in the job.

The second line of the load map contains the column headings for

the map itself.

BLOCK

ORIGIN

LENGTH

DATE

TIME

PROCESSOR

FILE

The DATE.,

blocks.

The significance of these headings is:

This column 1lists the names of the program blocks
and COMMON storage blocks in the order in which
their space is allocated in memory. Common block

This is the address within the central memory field
where the block begins.

This is the length of the block.

This is the date of the <creation of the object
code, e.g., translation by RUN from a source
program.

This is the time of the <creation of the object
code. Together with the DATE field, this field
makes it possible to verify that the correct
version of a program was actually used.

This is the identification of the processor used to
produce the object code.

This is the name of the fileset from which the
subprogram was loaded. The standard subprogram
library is named SUBRLIB.

PROCESSOR, and FILE fields appear only for program

A special block named SYS.MAP is generated by the loader

itself and is identified by the words "DIAGNOSTIC STORAGE MAP" in
the above fields.

The blank COMMON block appears at the end of the load map and is
identified by a block name which consists only of a double slash.

Error diagnostic messages may appear interspersed with the 1load
map to indicate the points at which errors were detected.

Following

load map itself, a list of unsatisfied references

appears in the sample program. This section will not appear if
there are no unsatisfied references. In this case the reference
to VARNM found at relative location 41B in program OVERFL 1is not

satisfied.

which is

has been given an arbitrary definition at 7461B.

diagnostic printing procedure for this -condition

contained in library subprogram SYSTEM.

14-25

The final message from the loader states that the process of
loading the sample program requires 27357B words of memory to hold
the program, the loader, and the loader’s working tables while the
program is being loaded. However, once execution of the program
begins, only 10617B words will be required. Since memory is
allocated in blocks of 100B words the effective figures are 27400B
and 10700B respectively.

All addresses used in the load map are in octal and are relative
to the starting location of the user’s memory field, considered as
lccation 0. :

14.2.4.9 Memory BAllocation

The executable program is constructed within the central memory
field. The sample program illustrates how large an area of memory
is used for even a small program. In the diagram of the locad map,
the User program code and common blocks are seen to occupy only
about 1100 cells. Three large areas occupy most of the diagram
(see Figure 14.2). They are:

a. The input/output buffers

The size cf the main program, OVERFL, is due to large blocks
of memory for buffers for filesets declared on the PROGRAM
card. These buffers are allocated within the main program
area by the compiler. Determination of the buffer length is
as described in Section 7.4. The purpose of the buffers is
descrited in Section 15.2.

b. The likbrary routines

The RUN Fortran compiler generates code which calls in large
library subprograms to handle communication, data movement
and ccnversion, etc. The bulk of the space shown for library
routines in the diagram is wused for reading cards and
printing cutput.

C- The lcader itself
The lcader prcgram and its tables effectively occupy the high
addresses of the memory field during the loading process. No
object rrogram can be loaded into the same space. However,
blank cowrmen can be placed there. The programmer who is
pressed for core space during loading may possibly gain about
20C0CF woxde by placing arrays in a blank commor area of at
least *hatv lenagth.

14-26

0B

100B

636B

3075B

3241B

32678

10415B

106178

377778

System Communication Area ‘
/BLOK1l/ Labeled common block declared 1in
OVERFL and in subprogram WORK I
OVERFL Main Program |
Object Code
Constants
T—g-..-.-..—‘..'
Local Variables and Arrays
1/0 Buffers and Tables

subprogram WORK

Library Subprograms |
INPUTC Coded Input Editor |
IOMSGS Coded I/0 Diagnostics |
I0.SUP I/0 Supervisor |
LEGVAR LEGVAR Function |
OUTPTC Coded Output Editor |
SQRT Square Root Function |
/SYS.MEM/ Memory Allocation Parameters |
SYSTEM Execution Supervisor

|
I
|
|
|
I
[ﬁ /BLOCK2/ Labeled common block declared in
I
|
I
I
|
|
|
|

SYS.MAP Diagnostic Storage Map

r— Blank Common Length is Maximum Declared

e e e e e e e o e -
Space unused during loading

e i e > > - En e A B S S A . . S A BS . B . e S S A . A - —a— ———

Loader Tables (Length Depends on Program Loaded)

et o e e - . > o - ———— i~ — . - - - -~ =t - —

The Loader Itself Effectively Occupies this Space]
L- Last Word of Central Memory Field

A . A ———— - - . - — - . v " - - -

Figure 14.2 Central Memory Layout for Sample Program

14-27

14.2.

1 1f
do) .,

5 Execution

If a Fortran program is loaded with no fatal errors, control is
transfefred to the first executable statement of the main
program-. Execution then proceeds as dictated by the statements
of the source program. '

Caution: when execution begins, varjables not assigned a specific
value in the program (including variable subscripts and variables
in labeled common), have a predetermined value as described in
Section 14.2.4.6.

As part of execution data may be read from any fileset specified
and information may be written on any unprotected fileset
specified. Normally,

1. data (if any) are read (in the order in which they are
arranged in the data deck) from the fileset INPUT as
specified by READ and FORMAT statements;

2. information to be printed is placed on the fileset OUTPUT as
specified by PRINT and FORMAT statements. Information is
printed 56 lines per page, unless otherwise specified by
a carriage control character (see Section 10.1). There
is automatic skip over the page fold unless suppressed hy
a carriage control character.

E i Printout: The Sample Program was designed to illustrate
execution time errors. The execution print lines were generated
at the points in the program noted below. Each point 1is
identified by the subprogram name and the relative location (in
parentheses) given in the source 1listing for that subprogram.
Execution begins with the READ statement in OVERFL (relative
location 3) and proceeds sequentially except as noted below.
Blank lines are not itemized in the table.

- e - — - .-V -

more than one main program is loaded (a rather strange thing to
control 1is transferred to the 1last one loaded unless the

programmey explicitly directs otherwise.

14-28

Print Location FORMAT
line of PRINT Used Comment

1 OVERFL(11B) 6 The value read into variable A from a
data card is printed out by OVERFL (as a
check for correct input) using G format
conversion. It is also printed with too
little space under F conversion to show
what happens when a field is too small.

2 OVERFL(23B) 2 The program reached this PRINT statement
only because B is an infinite value as
determined by the LEGVAR library subrou-
tine. B is printed with both G and O
format conversions to illustrate that an
infinite prints as an R when a numeric

specification (I,F,E,G) is used. (Sec-
tion 9.3)
3-6 SQRT OVERFL calls the subroutine WORK to

compute the square root of the second
parameter and places it in the first
parameter. In the first call to WORK at
relative location 43, the return is made
without a message being printed since
the call was legal. In the second cail
however, at relative location 47, the
value whose square root is to be calcu-
lated is negative. This 1illegal argu-
ment was deliberately passed in order to
illustrate this execution time error
message, which is explained further in
Section 15.4.2. SORT returned an inde-
finite value as the function value.

7 OVERFL (51B) 1 An explanatory comment is printed Dby
OVERFL. The indefinite value returned
is printed with both G and O format
conversionse. Note that the indefinite
prints as I when a numeric conversion
specification is used.

The last call of WORK in OVERFL (61) caused execution to terminate
with an arithmetic error - use of an infinite value (for variable
B) in a real expressione.

This error exit triggered the dump which follows. Note that no

execution time error message was printed via the fileset OUTPUT
for the ARITHMETIC ERROR because it was sensed by the 6400°s

14-29

internal circuitry (hardware) rather than by a program (software).
This error and interpretation of the dump are discussed in
Sections 15.4.4. and 15.5.

14.2.6 Punched Output

Two types of punched card output may be generated during a job.
The first 1is binary cards containing the compiled object program
if requested:; the second is output from the execution phase of the
job, usually coded (Hollerith) cards, generated by the PUNCH
statement. These are punched on orange top striped cards by the
system, with "picture" cards at the beginning for identification
purposes. The picture card has columns 1-3 and 78-80 completely
punched, and the job identifier (the first 4 numbers of the job
name plus a 2-digit sequence number) punched in block letters on
the card so that they can be interpreted visually. The picture
cards should be removed from the output decks. A sample picture

card with the job identifier 99980Y is shown below.

- - \
i i III\\
(}]] (]| (1]
m 1]} il it (]]]] (11111 I I
i 1 1 1 1 I | 1 1 i 1 il]|
(11] 11 11 P 1 1 m 1 1 (1]
i i 1 nmnm i1 n i m 1 1 11 (1]
i im i i1 mi1 1 1 m 1] 1 il
m i | (I IO T | I | 1 m
i 1 1 1 | | 1 1 m 1] 1 i
i (J1]] (1] (111 (]]] (] IIIlII 1 i
i |] R | [
i (] | il

_ /

Figure 14.3 Picture Card Separator
Binary Cards: Binary cards containing object code from compila-
tions, any, are terminated by a 7-8-9 level 17B card, and a
6-7-8-9 card. The latter should be discarded. .Each object code
subprogram

is terminated by a 7-8-9 card which must be left as
part of the deck. : o -

Each subprogram deck is sequentially numbered in bij
rows of column 79 and in column 80, beginning with the

in ‘the

/

B

i [e

bThe first character of the subprogram | IIIIIII IR by B
ERB22222227 name. Here it is 000100p = Odg or D 12222222202222202222022222022222222

\ -

UNIVERSITY OF CALIFORNIA

number 1. Thus, card 1 of the deck has a 9 punch in column 80;
card 2, an 8 punch; card 3, 8 and 9 punches; card 4, a 7 punch;
card 5, 7 and 9 punches, etc.

Card 1 (a 9 punched in column 80) of each subprogram deck contains
the subprogram name in display code (Appendix A, Table U), two
characters per column, in columns 8-11. In the card shown below,

3 Q ~And+ T n o 11 n _ 2 7 -~ A Q
column 8 contains 1,9 punches; column 9 contains 11,0,3,7 and 8

punches. Starting at the top (row 12) of column 8 and reading the
holes in groups of 3, we obtain 000 100 000 001 (binary) or 0401
octal. Continuing similarly for the other columns, the subprogram
name becomes 04013106B. Looking up the 2-digit octal <codes in
Appendix A, Table H, gives DAYF for the subprogram name.

[Punches in this row are called '12" punchps —F—
] B] —Punches in this row are called "11" punchps ——
Joooop Uﬂh00GUFUUUUhUUOUUUUUMUUUO#UGUUUGUUUU

8192822252425 267128 2038 -3+ 3?;33—34—35 33832 4G4 4213344454547

454358 5452

TS 85 00 4626364 69 (-b/EA-63-18-1-7 412

in 6400 interngl BCD code.
M]] ! i])

fi44444? 1414444

335555555 3%
i

888.8888'88338888%3383

T f ™~

rrrrerlrecrcrricrreciceccen

The second character of the subprogram

*B5BE6606 5 ®nane. Here it is 000001, = 0lg or A 6865666/566665656656658166566666
: w77 5in 6400 internal BCD code.
R TRk AR

4

IBMJUB352)

Figure 14.4 Sample Binary Card

Execution Output: The deck of coded cards produced by PUNCH
statements (if there are anv) on the fileset PUNCH during
execution is terminated by a 6-7-8-9 card (6,7,8,9 punches all in
column 1) which should be discarded.

It is also possible to produce binary punched output during
execution by performing a binary (unformatted) write on a logical
unit whose fileset name has been equivalenced to the fileset
PUNCHB on the PROGRAM statement (or as q§scribed in QEEE}QQ
13.0.2). 1In this case, the binary output follows the binary cards
from the compilation, if any, with no intervening picture card.

00000(00000/00GCCIO0000/00000000000¢ ¢

- 13331333331322331333331323331332332323
T T T
44444%4444%444ﬂ4444ﬂ44444?4444r44444444444444444444444444444444

c

e e e T G G G 5555 5555555/55555055553555

2354 5550 SHIT5G S0-61- D536 65-F6-81 B3e 680 S a315 M 1 i 10 79 5 50

, GNTTTII I IT I 1119171
|

saaa338833asasﬁasassmseasasssssaasassassssasssssssaassasas

.}99999 99999BQQSLBS9&93999999999890939993&999999999999999999999999993939999999'

\

£R° CEN

T

gt

BERKELEY CCW

14-31

14.2.

14.3

14-32

Binary (PUNCHB) cards are punched in this manner:

columns 1-2, checksum and word count
columns 3-77 15 binary words, 5 columns per word,
columns 78-80, binary card sequence number.

Note: All cards punched during a job are counted in the punched
card 1limit specified in the job card. 1If this limit is
exceeded, the job is aborted with a message, and the punched
output is terminated with a 6-7-8-9 card. 1If the operator
terminates the punching, the punched output ends with a
picture card with ENDED in block letters.

7 Magnetic Tape Input/Output

The input/output statements, discussed in Chapter 10, are used to
control the reading and writing of information on magnetic tape:
the form in which information is recorded on tape is described in
Section 13.2.3.

Information may be recorded in either binary (unformatted) or
coded (formatted) mode on tape. For efficient use the binary form
is recommended; since the information is written on the tape
exactly as it appears in memory., no time-consuming conversions
need to be performed. However, for <compatibility with other
computers, or initial entry of data to the system, coded is the
preferred mode.

Temporary filesets (sometimes called "scratch" or "work" files)
which are written and read within a particular job should also.
for efficiency, be written in binary mode. Temporary files are
usually not written on reels of magnetic tape, but are recorded on
magnetic disk storage; they are discarded at the end of the job in
which they are used. No special provision need be made for them
except declaring them in a Fortran program on the PROGRAM
statement (Section 7.4). As far as the programmer is concerned,
they behave as actual tapes except that rewind 1is almost
instantaneous.

Filesets which are assigned to actual tape, either for program
input or output, must be declared in the PROGRAM statement and

appear on a REQUEST card. (See CALIDOSCOPE Control Statements).
Other Job Setups

Besides the deck shown in Section 14.1 to compile and execute a
Fortran program, the following sample decks may be useful to the
Fortran programmer. A more complete description of control
statements is given in CALIDOSCOPE Control Statements.

14.3.1 Load a program from pre-compiled binary decks and execute

Once a program has been successfully compiled, a deck may be set
up to run the program without redoing the compilation. This saves
the cost of compilation in cases where ‘production’ runs are to be
made with different sets of data.

To do this, one first obtains a copy of the relocatable object

code form of the program on cards by specifying the P option on
the RUN card (see 15.1 and 14.2.6) (remember the punched output

WL L U AT AT 2 = ol FACE P LAV B O V)

limit on the job identification statement). The following deck
may be set up to execute the cards that the compiler punches:

Deck Remarks

Job card '

LGO,INPUT. Load binary decks from fileset INPUT (job
deck) and execute.

7-8-9 card End of control card record.

Binary program decks

7-8-9 card follows program deck jin addjition to the
7-8-9 card following the 1last binary
card. ’

<Data cards> If any are to be read from fileset INPUT.

6-7-8-9 card EOI (End-of-Information)

14-33

14.3.

2 Compile and load some routines, load others from pfe-compiled
relocatable binary decks, and execute : o

In some cases, a problem may have been broken up into a number of
subprograms some of which may be gotten into a satisfactory state
while others are still being debugged. In this situation, the
cost of recompiling the subroutines which are already known to be
operating correctly can be avoided. First, obtain relocatable
binary decks for the subprograms which are correct by using the P
option on the RUN card (see 15.1 and 14.2.6). Next, remove the
source decks for these routines, leaving only the ones that need
to be recompiled. Then use the following deck setup:

Deck Remarks

Job card : :

RUN. : Compile source statements.

LOAD, LGO. Load compiled routines.

LGO, INPUT. Load binary routines from INPUT fileset
: and execute. _

7-8-9 card End of control cards.

source deck

7-8-9 card End of source deck.

binary decks

7-8-9 card In addition to 7-8-9 following last

binary card.

<data cards> If any.

6-7-8~-9 card , EOI (End-of-Information)

Note:

14-34

If duplicate program names are loaded via a LOAD card (from
either LGO or INPUT filesets), only the first is used; a
warning message is given. Thus, with this deck setup, the
compiled subroutines are loaded first; they will override
any decks of the same name which might already exist in the
precompiled subprograms.

MISCELLANEOUS RUN NOTES Chapter 15

15.1 The RUN Control Statement

The general form of the RUN statement is:*
RUN, [model], [p£],[bL], [input], [output], [£go],[epl],[asa], [CR], [NA]

The most important parameters for most users are mode and CR. For the
remaining parameters, the default is normally used.

mode Compiler mode option
S compile and print out source listing (this is the default).

P compile, print out source listing, and punch binary decks
of the object code generated (see Section 14.2.6).

L same as S with the generated object code for each
source language statement listed using COMPASS mnemonics.

M same as P with the generated object code for each
' source language statement listed using COMPASS mnemonics.

p€ In the current implementation of the system, this parameter field
is ignored. '

b€ standard object program input/output buffer lengths (if not over-
ridden in PROGRAM statement). If omitted, lOOl8 is assumed.
Anput name of the fileset from which the RUN compiler program reads
its input. If not specified, INPUT, which is the disk fileset
consisting of information read in from the card reader, is assumed.

oufput The name of the fileset on which the RUN compiler is to write the
source listing portion of its output. If omitted, OUTPUT is
assumed.

£g0 The name of the fileset on which the RUN compiler program is to
write the binary machine code that is to be loaded, not that to
be punched. If omitted, LGO is assumed. The fileset is not
rewound prior to use by the compiler, thus allowing several
compilations from different RUN statements to be placed on the fileset.

epl This field is ignored under the current system.

This format is subject to change.

15-1

15.2

15-2

asa if zero, the normal ASA I/0 list and format interactions are
suppressed at execution. Use of this feature is not recommen-
ded. (See Section 9.7)

CR If specified, the reference table for each sub-)
program is printed after the source listing on the OUTPUT file-
set. This is often convenient when the mode parameter is L or M.

NA If specified, and a fatal compilation error occurs, the job step
will not set the current error flag and control statements will
continue to be processed.

Examples:

RUN. Compile (i.e., load and execute RUN compiler program)
with source list.

RUN,L, ,,TAPE3,,,,,CR.

Compile with source listing and COMPASS mnemonics for
the generated object code. The source language state-
ments are read from fileset TAPE3 rather than INPUT
(i.e., the card reader). A reference table is

to be printed for each subprogram.

The FET and I/O0 Buffer Area

The compiler assigns to each distinct (not equivalenced) fileset
named in the PROGRAM statement an area, following the machine code for
the main program, to be used as a communication area and buffer for
the fileset. The communication area is called the Fileset Environ-
ment Table (FET) and directly precedes the fileset buffer it describes.
This table (currently 17 words long) provides the name of the fileset,
an area where I/0 requests and their statuses are posted, and

pointers to indicate where information should currently be placed in
the buffer or read from it. The buffer holds information

waiting to be written on a fileset or input records awaiting a READ
reference within the program. [t serves to compensate for the dif-
ference in the speed at which the Central Processor executes the
program and the slower speed at which the physical I/0 device sends
or receives data.

On output, when a record is sent to an I1/0 device, the area of the
buffer which contained that record is freed. On input, an area for
the physical record must be available within the buffer in order for
data to be transmitted from the device.

15.3

The huffer for a fileset is emptied when an ENDFILE or REWIND is issued
for it. When execution is terminated normally or for fatal 1lib-

rary subprogram errors (Section 15.4.2), the information in the buffers
of all output filesets is transmitted to the I/0 devices. On an abnor-
mal termination, such as ARITHMETIC ERROR (Section 15.4.4) or TIME LIMIT,
information may still be in the buffers awaiting output. After an abnor-
mal termination, the system empties (flushes) the buffers for any file-
sets with dispositions (such as OUTPUT), provided the FET is intact and
no limit (such as print limit) is exceeded.

Buffer sizes for filesets are determined by the PROGRAM statement (Sec-—
tion 7.3). The standard buffer size for a fileset is 100lg words which
is the minimum for a binary magnetic tape fileset. (The minimum buffer
size for a disk fileset is 10ig words.) But with a bigger buffer area,
the program may not have to wait (i.e., stop the sequence of calcula-
tions) for space in the buffer to be freed, thus reducing the amount

of PP time used.

RUN-COMPASS Subroutine Linkage

Since it may be convenient or necessary for some subroutines or functions
called by a program to be written in COMPASS, the manner in which COMPASS
subprograms should be constructed and how RUN compiled Fortran subpro-
grams communicate with them is important.

If COMPASS subprograms are to be compiled along with Fortran-coded sub-
programs, the first jine of each COMPASS subprogram must be one on which
the first 10 columns are blank and columns 11-15 contain the characters
IDENT. The last line is ome with the characters END in columns 11-13
and the remainder blank. For efficient compilation, COMPASS subpro-
grams should be grouped together after the subprograms written in For-
tran language.

The RUN-COMPASS linkage is explained by an example followed by comments.
The example consists of a Fortran main program and two subroutines.

The Fortran statements are followed by the machine-language instruc-—
tions which they generate, suitably commented. The Fortran statements
are underlined to help distinguish them from the machine code.

PROGRAM MAIN(INPUT,OUTPUT)

ENTRY MAIN This declares the location
MAIN to be an entry point,
i.e., accessible from outside

+ VFD 42/0LMAIN,18/102B entry/exit trace (see notes below)
MAIN SBl k-1
SB2 €00001
RJ =XQ8NTRY initialize FETs, etc.
CALL PHD(A,B,C)
SB1 A address of first parameter to Bl
SB2 B address of second parameter to B2
SB3 c address of third parameter to B3~
+ RJ =XPHD call PHD with three parameters.
- VFD 6/07,6/3,18/MAIN-1 linkage and trace information (see

notes below)

15-3

15-4

CALL PEN(M,N,0,P,Q,R,S,T,U,V)

SB1
SB2
SE3
'SB4
SB5
SB6

SA1

SX6
SA6
SX7

SA7

- VFD

END

M

N

—1+=XPEN

X1-6

A6+l
=XPEN

6/07,6/10,18/MAIN-1

SUBROUTINE PHD(A,B,C)

ENTRY

VFD

PHD RBSS

RETURN

EQ

PHD

42/0LPHD,18/3

PHD

The first six
parameters' addresses
are passed by way

of the

first six
B-registers.

fetch entry/exit trace from
PEN and

calculate number of para-
meters it expects less 6.

Pass address of paraméter 7

to indicated word in PEN.

Pass address of parameters

8, §, and 10 similarly.

Up to a total of 60 parameters
can be passed using the

RUN calling

sequence.

call with 10 parameters

linkage and trace information
(see notes below)

This declares PHD to be an
entry point, i.e., accessible
from outside.

entry/exit trace line (see
notes below)

Entry/exit word for RJ instruc-
tion in calling program

RETURN

SUBROUTINE PEN(A,B,C,D,E,F,G,H,I,J)

ENTRY PEN ~ This declares PEN to be an
entry point
G BSS address of parameter 7
H BSS address of pérameter 8
I BSS address of parameter 9
[J BSS address of parameter 10
VFD 42/0LPEN,18/10 entry/exit trace line (see

notes below)

PEN BSS 1 Entry/exit word for RJ instruc-
: ' tion in calling program

RETURN

EQ PEN RETURN

The linkage performs three functions: passing parameters, providing return
information, and providing traceback information (to be used in case of
error). i

Parameter passing. In executing a call, the caller places the addresses of
the parameters in B-registers and words in the called subprogram. The
address of the first parameter (if any) is put into Bl, the address of
the second parameter (if it exists) is placed in B2, and so on up to the
6th parameter. If more than 6 parameters are being passed, the addresses
of parameter 7,...,n < 61 are placed in words preceding the entry point
of the called subprogram. Note that the number of parameters being
passed is available in the linkage and trace information line in the
caller and in the entry/exit trace line in the called subprogram (see
description below). Also note that both of these parameters counts
govern the storage of parameter addresses in the called subprogram; if
the counts do not agree, something may be clobbered. RUN compiled sub-
programs do not automatically check that they are being passed the cor-
rect number of arguments but this may be determined by using the 1ib-
rary subroutine NARG.

Return address. The RJ instruction executed by the caller transfers to
the called subprogram at the location one greater than the entry point.
It simultaneously places a transfer in the entry point location which,
when executed, will transfer to the (location of the ¢alling RI) + 1.
Thus, execution of the subprogram begins with the location after its
entry point and the subprogram can return to the caller by transferring
to the subprogram's own entry point.

15-5

Traceback information. Information is stored in the word preceding the
entry point of all subprograms (the word labeled 'entry/exit trace line'
in the example) and in the low 30 bits of each RJ word which calls a
subprogram (labeled 'linkage and trace information' in the example) to
allow automatic analysis of the paths leading to errors. An example

of such analysis is the rua-time error message traceback described in
Section 15.4.2., The general formats of these words follow:

entry/exit trace line
VFD 42/0Lname,l18/nparms

name is the name of the subprogram containing the entry/exit trace line
(RUN-compiled subroutines contain the name of the subroutine here, for
example). npams is the number of parameters expected by this program
when it is called (except in a main program, where it is the load address
+ number of fileset names déclared on the PROGRAM statement).

linkage and trace information
- VFD 6/07,6/nparms,18/addr

npamé is the number of parameters being passed with this call. addxr is
the address of this subprogram's entry/exit trace line. -The minus sign
shown on this VFD causes the information to be stored in the low 30 bits
of the RJ instruction where it belongs (without the minus, COMPASS would
*force upper' after the RJ and store the VFD information in the word
following the RJ.)

Returning parameters. A subroutine returns parameters by resetting the
values in the appropriate words whose addresses it has been passed. A
function returns its value by placing the value in X6 (and X7 for double
precision or complex functions) before returning.

15-6

15.4

Error Messages

Various classes of errors are detected during the running of a job.
Compiler and assembler programs issue diagnostic messages when errors
in rules for forming statements (syntax) are caught. Section 15.4.1
describes the diagnostics produced by the RUN compiler. Various
library subprograms, called during the execution of a program, check

for mistakes in their usage and issue error messages to the OUTPUT
fileset if errors are found; these Fortran executlon time error messages

are listed in Section 15.4.2. The programs of the Operating System
produce messages on the Job Log if they detect errors during execu-
tion; these errors are discussed further in Section 15.4.3. Finally,
the internal circuitry of the 6400 detects a class of arithmetic
avvare degsceribed in 15.4.4.

errToYs gescrineds 1n Lo,

It should be noted that some messages from RUN Fortran programs will
normally appear in the JOBLOG and do mnot indicate an abnormal condi-
tion. Among these are:

Message A occurs when
END name an END statement is executed or a RETURN statement

is executed in a main program

STOP n name a STOP n statement is executed
PAUSEn a PAUSE n statement is executed
EXIT name a CALL EXIT statement is executed

name indicates the program which executed the statement.

15.4.1 RUN Fortran Compiler Diagnostics

15.4.1.1 During a Fortran compilation by the RUN compiler, 2- or 3-character

diagnostic mnemonics follow statements which are incorrect; other diag-
nostic mnemonics may follow the END statement or the storage map and
indicate types of errors in the program which are not attributable to
one given statement. RUN Fortran compiler diagnostics are of the form:

XXY*********************************

where XX is a two-character error type indicator and Y is either
blank or F; a blank signifies a warning diagnostic and F indicates
a fatal diagnostic.

Warning diagnostics are given for statements that appear in the wrong
order in a subprogram or are inconsistent with a previous statement.
The compiler accepts the statements and produces the appropriate object
code to perform the indicated operation. Statements so marked should
be checked by the programmer for the intended meaning or sequence.

15-7

Fatal diagnostics cause the object code for the current subprogram

to be deleted from the relocatable binary fileset. If punched binary
cards of the object code were requested, none will be produced for

the subprogram. The comniler will translate succeeding subprograms,

but the program as a whole will not be executed. Also, unless other-
wise specified on the RUN card, control statements in the control.record
will be skipped &s descrihed in 'CALIDOSCOPE Contxol Statements.

The number of warning diagnostics (m) and fatal diagnostics (n) found
in program name is indicated by a message in the JOBLOG such as:

n ERRORS m WARNINGS IN name

When n or m is 1 or 0, the text of the message is suitably modified.
name is the name of the subprogram in which the errors were detected.
The total number of fatal errors in all programs compiled with one RUN
statement is indicate in a JOBLOG message thus:

FORTRAN FATAL ERROR TOTAL: n errors

A statement may have more than one diagnostic message associated with
it. Also an error in one statement may cause diagnostics to be issued
for succeeding correct statements.

For each type of diagnostic message found in a subprogram a further
descriptive message appears at the end of the listing of source state-
ments for that subprogram. This message gives a brief explanation

of the error, the relative locations where it was found, and is of the
form:

XX*#*xxx Explanation of the ewron
/u&ocl, uocz, fbl’,oca,

where XX is the two-character error type indicator found in the
diagnostic message and each nfoc_ is a relative location associated
with the statement in which the error occurred.

15-8

The following alphabetical list contains each two-character
error type indicator generated by the RUN Fortran compiler
with its diagnostic message. Further explanation of the error
and a possible reference to a section of this Guide accompanies
each item.

Note that "SYNTAX ERROR" refers to a punctuation error such as
the incorrect use or absence of a comma, period, slash or
parenthesis.

ARGUMENT COUNT TOO HIGH

Indicates that the number of arguments in this reference to an
arithmetic statement function is greater than the number of
formal parameters. See Section 7.8.

AEk*&k¥kk ARITHMETIC STATMENT FUNCTION CALLS ITSELF
The arithmetic statement function being compiled references
itself.

AF*%kkkk% ARITHMETIC STATEMENT FUNCTION ERROR

The arithmetic statement function has a statement number or

appears after the first executable statement. This diagnostic

can also be caused by having a subscripted variable on the left

side of a replacement statement without the variable appearing

first in a DIMENSI@N, COMMON, or type statement. See Section 7.8 or 5.2.

AL%*&k k%% SYNTAX ERROR IN ARGUMENT LIST

Indicates that the list of formal arguments of a subprogram is
improperly constructed. It may be caused by an incorrect use
of a library function. See Section 7.2.1 or Chapter
11. This diagnostic can also be caused by having a subscripted
variable on the left side of a replacement statement without
the variable appearing first in a DIMENSIPN statement. See
Section 7.8 or 5.2. This message will also be issued if an
integer constant used for the c parameter in an ENC@DE/DEC@DE
statement is greater than 150 (Section 10.6).

ASHxkFkkk SYNTAX ERROR IN ASSIGNMENT STATEMENT

Indicates that the form of an ASSIGN statement is
incorrect. See Section 6.1.3.

BCH*%kkkk SYNTAX ERROR IN OCTAL CONSTANT

Indicates an error in the form of an octal constant,
possibly an 8 or 9 occurs.

BXkkkkkkk SYNTAX ERROR IN BOOLEAN STATEMENT

Indicates an error in the form of a FORTRAN Boolean
expression. See Section 3.3.

15-9

15-10

CB**kkkkk

CD**kkkk*

CEX****%k%

CL** %k k%

CM**kkkkx

CNFx#xFxERXX

CTh*kkkkk

DA* % kkkkk

DBR**k k%

DC***kkkk

DD* & * % &k %

LABELED COMMON BLOCKS EXCEED MAX OF 61

More than 61 blocks of storage have been declared
labeled common. See Section 5.3.

VARIABLE DUPLICATED IN COMMON

Indicates that a variable currently being assigned to
a common region has been previously assigned to this
region. See Section 5.3.

VARIABLES ASSIGNED TO COMMON ARE IMPROPERLY EQUIVALENCED

Indicates that two variables assigned to common blocks
are improperly equivalenced. See Sections 5.3 and 5.4.

SYNTAX ERROR IN CALL STATEMENT

Indicates that the form of a CALL statement is
incorrect. See Section 7.5.

SYNTAX ERROR IN COMMON STATEMENT

Indicates that the form of a CPMMPN statement is
incorrect. See Section 5.3.

TOO MANY CONTINUATION CARDS

Indicates that mofe‘than 19 continuation cards appear
in succession or that one such card appears in an
illogical sequence. This diagnostic may appear because
of a previous diagnostic.

CONTINUE STATEMENT IS MISSING A STATEMENT NUMBER

All CONTINUE statements must have a statement number.
See Section 6.4.

DUPLICATE ARGUMENTS IN A FUNCTION DEFINITION STATEMENT

See Section 7.2.1.

ARRAY SIZE OUT OF RANGE
An array exceeds 131,071 elements.

SYNTAX ERROR IN A DECIMAL CONSTANT

A FORTRAN decimal constant is incorrectly formed.
See Section 2.3.3.

VARIABLE BEING DIMENSIONED HAS BEEN PREVIOUSLY DIMENSIONED

Indicates a variable has appeared in more than one
DIMENSI@N statement, or has been dimensioned previously
in a type or CPMM@N statement.

DF***% k&% DUPLICATE FUNCTION NAME

Indicates that the function name in the current ariti-
metic function definition statement has o?curred ?s
the name of a previously defined arithmetic function.
May be caused by second use of an array variable which
has not been dimensioned (the first use causes the

AF diagnostic).

DI*#**kkik DO TERMINATOR PREVIOUSLY DEFINED

The terminator of this D@ loop has already been defined,
i.e., the statement number terminating the DP has
occurred before the D@ statement.

DJ k¥ kdedkk INDEX OF OUTER DO REDEFINED BY INNER DO
The index of an outer D@ loop has been used as the
‘index of an inner DY loop.

DL*%%kkk%k DECLARATIVE APPEARS AFTER FIRST EXECUTABLE STATEMENT

The declarative statement, a DIMENSI@N, COMM@N, EQUIVA-
LENCE or type statement, appears after the first execu-
table statement. See Sections 5.1, 5.2 and 5.3.

DM#*kkkkkk SYNTAX ERROR IN DIMENSION STATEMENT
Indicates an error in the form of a DIMENSI@N state-
ment. See Section 5.2.

DN*#kk&*x% ILLEGAL DO TERMINATOR

This statement cannot be used as a DP terminator.
Indicates the attempt to use a FPRMAT, G@ T@, arithmetic
IF, two-branch logical IF, or another D@ statement as
the termination statement of a DF. See Section 6.3.

DO#**kkkdk SYNTAX ERROR IN A DO STATEMENT

Indicates an error in the form of a Df statement, for
example, when a previously dimensioned variable, or a zero or
negative constant is used as an index parameter. See 6.3.

DP*%kkkk* MULTIPLY DEFINED STATEMENT NUMBER

Indicates the current statement number has previously
appeared in the statement number field. See Section
2.,2.2.

DQ#***kdkkk SYNTAX ERROR IN DATA STATEMENT OR APPEARANCE OF UNDIMEN-
SIONED VARIABLE IN DATA STATEMENT

Self-explanatory. Dimensioning information for a variable
must precede the DATA statement in which the variable
occurs. See Section 5.5.

15-11

15-12

DR*%%kkk%k

DSk *kkkkk

DT#*kkkkk

DU*kkkkk*k

ECk*k%kkkk

EFkkkkhkk

EM#& k& kkkk

EQ¥&xkkkk

EX*kkkkkk

FA**kkkkk

FL**%kkk*

DATA RANGE ERROR

The dimension limits of an array are exceeded in a DATA
statement. See Section 5.5.

UNDEFINED STATEMENT NUMBER IN A DO LOOP

The statement numbers in one or more D statements

have not appeared in any statement number field.

SYNTAX ERROR IN DATA STATEMENT

Indicates an error in the form of a DATA statement.
See Section 5.5.

AN ATTEMPT WAS MADE TO PRESTORE BLANK COMMON
Data may not be entered in blank common by DATA
statements. See Section 5.3.

CONTRADICTION IN EQUIVALENCE STATEMENT

Indicates that a variable currently appearing in an
EQUIVALENCE statement cannot be equivalenced because
of an inherent contradiction in the statement.
END OF FILE CARD ENCOUNTERED, END CARD ASSUMED

Indicates that an EPR (7-8-9) or EQI (6-7-8-9) card
is detected before an END card is encountered. This
may be caused by an incorrect deck setup (see Section
14.1) or by a mispunch in column 1 of the card.
SYNTAX ERROR IN INDICATED EXPONENTIATION

Indicates the type of the base or the exponent of an
indicated exponentiation process is improper. See
Section 3.1.2.

SYNTAX ERROR IN EQUIVALENCE STATEMENT

Indicates an error in the form of an EQUIVALENCE
statement. See Section 5.4.

SYNTAX ERROR IN EXPONENT

Indicates an error in the exponent portion of an
indicated exponentiation process. See Section 3.1.2.

FUNCTION HAS NO ARGUMENT

No argument was supplied in a function call.

SYNTAX ERROR IN EXTERNAL OR F-TYPE STATEMENT

Indicates an error in the form of an EXTERNAL state-
ment. See Section 7.13.

FMkkkkkkhk UNRECOGNIZABLE STATEMENT

Indicates a statement whose type cannot be determined.
This error can be caused by mispunching a card, by an
erroneous punch in column 6 of a card, or by a missing
punch in column 6 of an intended continuation card.

It also can be given if there is no PRPGRAM, SUBR@PUTINE
or FUNCTIPN statement preceding a subprogram.

FN##&&kkik NO STATEMENT NUMBER ON FORMAT STATEMENT

Indicates that a F@RMAT statement is missing a state-
ment number.

FPxkkkkk DUMMY PARAMETER USED IN COMMON STATEMENT

It is illegal in a given subroutine for a formal
parameter and a variable in a common block to

have the same name, since this would imply two dif-
ferent uses for the same name.

FS¥kkkkkk ERROR IN SPECIFICATION PORTION OF FORMAT STATEMENT

Indicates that the form of a conversion or editing
specification in a FPRMAT statement is in error.
See Section 9.3, 9.4, and 9.5.%

FTh*kkkkk SYNTAX ERROR IN FUNCTION TYPE STATEMENT

Indicates an error in a FUNCTI@N statement. See
Section 7.6.
The following nine diagnostics all refer to FORMAT statements:

Flakkddds LEFT AND RIGHT BRACKETS DO NOT MATCH, OR NEST IS
DEEPER THAN FORMAT (((}))

F2%kkskdk POINT MISSING FROM D,E,F, OR G CONVERSION

F3#cwkkkk COMMA NEEDED BETWEEN CONVERSIONS

Fhkkkkdhkk COUNT NEEDED BEFORE H FIELD

Fh#kkkddk | ZERO, OR SIGNED, NUMBER ONLY ALLOWED BEFORE P
Fo*&kkkkk H COUNT TOO BIG, OR CLOSING QUOTE OR ASTERISK MISSING
F7¥%kdkkkk UNRECOGNIZED CONVERSION CODE

F8k&dkkidkk REPEAT COUNT NOT ALLOWED BEFORE T, ASTERISK, RIGHT

BRACKET, QUOTE, OR COMMA

FO%#kkkdk NON-DIGIT IN FIELD WIDTH SPECIFICATION, OR ZERO
FIELD WIDTH

The format scan routines K@DER and KRAKER perform a further check on the

validity of format specifications at execution time. See Section
15.4.2,

15-13

15-14

GFxkkkkkk

CO**kkkkk

HCh*kkkkk

ICk*kkkkk

ID*%*%k%x*%k%

IFxkkkxkk

TLk*%kkkkk

IN**&kkkk

IO*%%k%kk%%

TSkkKkkkk

ITH**kkkkk

FORMAT NUMBER REFERENCED BY CONTROL STATEMENT

A G§ TP or IF statement references a format statement
number . . o
SYNTAX ERROR IN A GO TO STATEMENT

Indicates an error in the form of a G§ TP statement.
See Section 6.1.

HOLLERITH CONSTANT TOO LONG

CHARACTER NOT IN FORTRAN CHARACTER SET

A character has been used which is not one of the
characters in the FORTRAN Source Language Character

Set (see Appendix A). N6t all occurrences of such
characters are detected.

IMPROPERLY NESTED DO LOOPS

The sequence of D@ loops is improper. Also caused by an
error in the construction of a D@ loop or of an implied
DY loop in I/O statements. See Sections 8:3.2 and 9.1.1.

SYNTAX ERROR IN AN IF STATEMENT o
Indicates an error in the form of an IF statement.
See Section 6.2.

SYNTAX ERROR IN AN INDEXED LIST OF I/0 STATEMENT
Indicates an error in the form of an indexed list of
the current input/output statement. See Section 9.1.
ILLEGAL FUNCTION NAME

The name of a function reference starts with a numeric
character. See Section 7.7.

ILLEGAL I/0 DESIGNATOR

An I/0 designator has a variable name of more than 6
characters or a numeric value of more than 99.
ILLEGAL USE OF PROGRAM SUBROUTINE OR FUNCTION NAME

It is illegal to use the name given to a subroutine or
a function as an array name within the subroutine or
function definition. A subroutine name may not even

be used as a simple variable name within the subroutine.

ILLEGAL TRANSFER TO DO TERMINATOR

A transfer to a D@ terminator is not allowed if no
transfer to it appears before it appears in the physical
deck sequence. This can be caused by illegally trans-
ferring in a D@ loop. See Section 6.3.3.

LN*kkkkkk

LPpkkkkkik

LSk *kkkkk

LIk %k ke

MA * % &k ok k

MO**kkk %k

MS*&kkdk®

NC&*kkkk*

NL*** %k

NM#&* & k& k%

NO#*dkkkk

NP**%kkkk

NAMELIST ERROR

Indicates that the form of a NAMELIST statement is
in error or the usage of a NAMELIST name is incorrect.

See Section 9.9.
EXPONENTIATION TO A LOGICAL POWER

See Section 3.1.2.

SYNTAX ERROR IN INPUT/OUTPUT LIST

Indicates an error in the form of an input/output
list. See Section 9.l.

NON-LOGICAL EXPRESSION USED IN A LOGICAL CONTEXT

DUMMY PARAMETER MAY NOT APPEAR IN EQUIVALENCE STATEMENT

Indicates that a formal argument of the subroutine or
function being compiled has been used in an EQUIVALENCE

-statement. See Section 5.4 and 7.2.1.

MEMORY OVERFLOW, FIELD LENGTH TOO SHORT

Indicates that the memory field, as specified on the Job

jdentification statement or by an RFL.statement is too short

for compilation.
UNDEFINED STATEMENT NUMBER

Indicates that references have been made to statement
numbers which did not appear anywhere in the statement
label field of a line. May appear when the terminal
statement of a DO loop is referenced from outside the
loop. The missing statement numbers are listed above
this diagnostic.

SUBROUTINE OR FUNCTION NAME CONFLICTS WITH A PRIOR USAGE
This diagnostic is usually the result of a subscripted

variable not being dimensioned.

NAMELIST NAME NOT UNIQUE

IMPROPER HEADER CARD

Indicates that a PRPGRAM, SUBRPUTINE, or FUNCTI@PN card
is in error. This diagnostic may also be caused by a
missing END statement in a previous subprogram.

NO OBJECT CODE GENERATED

The source program has generated no object code. This
error will occur if a vacuous record is input to the
compiler as when one too many 7-8-9 cards appear after
the control cards or an EOF (7-8-9/17) is used in place
of an FOR (7-8-9).

NO PATH TO THIS STATEMENT

The logic of the program is arranged so that this
statment can never be executed.

15-15

15-16

Ny *kkkkkk

OD** k& kk

PMX*kkkkk

PN**%kk&k%k

PTH**kkkk

RN*** k% &

Rk kkkkk

SBAkkkkkk

SE*%k*k%kk%k

SRk Kk kkkk

VARIABLY DIMENSIONED ARRAY IN NAMELIST

A variably dimensioned array has been used in a
NAMELIST statement, which is illegal.

REFERENCE TO AN ARRAY BEFORE IT IS DIMENSIONED

Indicates that a reference to an array was made -prior
to the appearance of the array in a DIMENSIPN state-
ment. See Section 5.2.

FUNCTION PARAMETER MODE INCONSISTENCY

Indicates that the parameters in an arithmetic statement
function reference do not agree in mode with' the formal
parameters of the statement function. See Section 7.8.

UNBALANCED PARENTHESIS

Indicates an unequal number of left and right paren-
theses in a statement. May be caused by punching
past column 72.

SYNTAX ERROR IN AN ENTRY STATEMENT

The ENTRY statement being processed is labeled, has
more than one name, is in a DP loop, has a name starting
with a number, or has a formal argument list. See
Section 7.12.

SYNTAX ERROR IN A RETURN STATEMENT

Indicates an error in the form of a RETURN statement.
See Section 6.7.

ILLEGAL USE OF RESERVED NAME

See Section 15.6.1

ERROR IN AN ARRAY SUBSCRIPT

Indicates an error in the form of a subscript of an
array reference currently being processed. Can also
be caused by using more subscripts in the array
reference than are indicated in the dimensioning
information for the array. See Sections 2.5 and 2.6.

SYNTAX ERROR IN SENSE STATEMENT

Statements which gererate this diagnostic are using an
obsolete statement form.

FIELD LENGTH OF ROUTINE BEING COMPILED EXCEEDS THE
SPECIFIED FIELD LENGTH

A program takes more memory than is specified in the
field length parameter of the Job identification state-
ment. See CALIDOSCOPE Control Statements.

GM* &k kkkk

SN**kk ik

SYkkkkkkk

TM*k*kkd%k%k

TN* &k &k*k*

TThkkkkkk

TY &k kdek

UA%*kkkkkk

UEk*%xkk*

VChkkkkkk

YDk kkkkkk

SYNTAX ERROR IN STATEMENT NUMBER

Indicates an error in the form of the statement number
field. See Section 2.2.2.

TLLEGAL CHARACTER IN STATEMENT NUMBER USAGE

In a Fortran statement which may contain statement
numbers, a statement number is incorrectly stated or
positioned in the statement.

SYSTEM ERROR IN FORTRAN COMPILER

Show these to the programming consultant!

SUBROUTINE HAS MORE THAN 60 ARGUMENTS

Indicates that a subroutine reference has more than 60
arguments or that the subprogram being compiled has
more than 60 parameters.

PROGRAM HAS MORE THAN 50 ARGUMENTS

Indicates that the PRPGRAM card has more than 50
arguments.

VARIABLE GIVEN CONFLICTING TYPES

A variable has appeared in more than one type state-
ment.. See Section 5.1.

SYNTAX ERROR IN A TYPE STATEMENT

Indicates an error in the form of a type statement.
See Section 5.1.

REFERENCE MADE TO AN AS YET UNDIMENSIbNED ARRAY
Indicates reference was made to an array which has not

previously appeared in a DIMENSI¢N statement.

LOGICAL UNIT NUMBER IS NOT AN INTEGER

The logical unit number in an I/0O statement must be a
constant or simple variable of integer type. See the
introducticn to thapter 10.

VARIABLE NAME CONFLICTS WITH A PRIOR USAGE

Tndicates that a variable name appears which conflicts
with some prior usage, where, for example, the prior
usage was a mispunched subscripted variable mistaken
as a function.

ARRAY WHOSE DIMENSIONS ARE ARGUMENTS TO THE SUBROUTINE
OR FUNCTION HAS BEEN MISUSED

Indicates improper use of an array with variable
dimensions. See Section 7.11.

15-17

XF®khkkkk SYNTAX ERROR IN THE EXPRESSION BEING PROCESSED

Indicates an error in the form of the expression cur-
rently being processed. An error in the form of a

complex conmstant is also indicated by this diagnostic.
See Chapter 3.

ZY *kkkkkk SYSTEM ERROR-UNKNOWN TWO LETTER CODE

See the Computer Center programming consultant.

This list of diagnostic messages may be .changed 1in
future versions of the CAL RUN Fortran Compiler. The
Computer Center programming consultant should be seen
if the cause of a diagnostic cannot be found.

15-18

15.4.1.2 Errors Undetected by Compiler

Not all of the errors that may be in a source language
program are diagnosed by the RUN compiler. These errors may
result in execution time error messages (see 15.4.2)

or in incorrect answers to the problem being programmed.

The compiler can only check the correctness of the syntax
of a statement or group of statements, not their intent or
meaning. (As a parallel, an English language sentence may
be structurally correct but convey no meaning.) Thus a
programmer must carefully examine his program to be sure
that it conveys the meaning he intended, i.e., solves the
given problem.

One way to check for meaning is to follow the program through
with a sample set of data, performing by hand the operations

prescribed by each program statement. This procedure is com-
monly called "'dry running" the program.

The CAL RUN Fortran compiler itself does not completely check
the program for correct syntax. One particular area where

few checks are made is program flow, i.e., can the program
logically proceed at each branch = statement (Chapter 6) to

the sections of the program indicated on the statements?

Thus no diagnostics are given if there are transfers to state-
ments within a D loop from outside the loop. Each branch
statement should be checked by the programmer to be sure that
all indicated transfers in control are valid. 1In addition, it

may not detect instances where a subroutine (or function) name
is used incorrectly in the subroutine (or function) definition.

The compiler does not check the use of subscripted variables
very carefully. No check is made either at compilation time

or at execution:time to insure that the referenced element

of an array is within the bounds of the array as allocated

by the DIMENSI@N statement. Exceeding the bounds of an array
is likely to destroy the contents of locations stored after

it and cause other errors, such as ARITH errors (see Section 15.
4.4). Also the compiler does not give any diagnostics if

the number of subscripts used with an array name is less than
the number indicated by the DIMENSI@N statement.

One inherent feature of the language that may cause undiagnosed
errors is the ability to have a mixed-mode arithmetic expres-
sion (Section 3.1.2). Thus, for example, forgetting to type a
variable as CPMPLEX could result in an erroneous calculation
of a complex expression. Further difficulties may arise when
real and integer variables and constants are mixed, because
integer arithmetic produces truncated results. A careful exam-
ination of the program should be made to wverify that an arith-
metic expression is evaluated as intended and that the types
of all variables are those intended.

IMPORTANT: ''Dry running' a program not only aids finding
undetected errors, but facilitates the debugging phase of
a program. Flow charting a program before coding aids
spotting bug-prone logic.
& oneP ® 15-19

15.4.2 RUN Fortran Execution Time Error Mesages

The Fortran library subprograms test for many of the more common
cases of incorrect arguments and indicate these errors to the pro-
grammer by a standard error prlntout. The form of the listing on
the fileset @UTPUT is: :

Message indicating the nature of the error

ERROR NUMBER n DETECTED BY LSUB AT y
CALLED FROM SUBn AT Yn.=mh IN SUBn
CALLED FROM SUBn-1 AT Yn-l=m IN SUB
n-1 n- .
Trace ifniformation
CALLED FROM SUB1 AT Y1 = m, IN SUB1

CALLED FROM main AT ¥Ym = mi IN MAIN

where n is the error number associated with the detected error; 1LSUB

is the library subprogram in which the error was detected at address

y. SUBl,...,SUBn are subprogram names and main is the name of the

main program. The Y1,...,Yn,Ym are absolute (octal) -addresses in the
program, and the m, are the corresponding relative addresses within the
subprogram. *

On those errors which are fatal, execution is halted and an error

skip of control statements is 1n1tlated (see CALIDOSCOPE Control
Statements). Also the message,

FATAL ERROR N

where N is the error number, is placed in the Job Log.

The trace information shows (in reverse order) the way in which pro-
gram control was transferred from the main program to subprogram SUBL
to subprogram SUB2 to ... to subprogram SUBn which referenced LSUB.
,m sees,m_ indicate the place in each subprogram where the subpro-
g%am 3bove 1t was CALLed or referenced. This information is useful
to the programmer in establishing how the error occurred.

Example: The following error printout occurred in the sample output
shown in Chapter 14 as compiled by the RUN Fortran compiler.

NEGATIVE ARGUMENT

ERROR NUMBER 39 DETECTED BY SQRT AT ADDRESS Q07323
CALLED FROM WORK . AT 003251=000010 IN WORK

CALLED FROM OVERFL AT 000706=000050 IN OVERFL

Here the main program OVERFL called subroutine WORK which used the
SQRT function with a negative argument. If WORK has been called

from several different places in OVERFL the address given with OVERFL
would locate the CALL used when the error occurred. The addresses
given in the error printout are flrst the absolute then the rela-
tive. : ~

v -

15-20

When a program terminates normally or with a library detected
error (not on an ARITHMETIC ERROR, LIMIT EXCEEDED, etc., exit),
an error summary is provided, and each error number is given
with the number of times it occurred in the job. Those error
numbers which did not occur in the job are not listed.

FORTRAN ERROR MESSAGES AND ASSOCIATED NUMBERS

Listed below are the error conditions checked for by various Fortran
library subprograms, the standard recovery action (either the value
returned, or the word "fatal" for fatal errors), and the associated
error number.

The symbols INF and IND denote the infinite and indefinite forms of
a floating—point number described in Appendix A.

When an error condition is preceded by "also" it indicates that the
subprogram in question calls on a subordinate library subprogram,

giving it the arguments indicated. Therefore, the subordinate sub-
program may detect some errors of its own and report them under its

own error number.

(INF or IND)
Z=(0,0) and I.LE.C

(+IND, +I¥D)

Eoutine Condition Standard EIrror
Zecovery Yumber
ACGCER This routine is only called Fatal 1
upor detectior of a computed
or assigned GO TO error.
ACOS (R) T = INF or ¥ = IND or +IND Z
abs (EF) .GT. 1.¢ IND
A1 0OG (E) R = INF or E = IND oOr
E .LT. @ +TND 3
R 0 -INF%
ALOG10 (R) F = INF or E = IND or
R.LT.0 +IND L
E=0 -INF
ASIN(F) B = INF or R = IKD or
abs {(§) .6T. 1.0 +TND =
ATAN (R) E = INF or R = IND +IND €
_ATAN2 {(R1, (R1 or R2) = (INF cr IND) +TND 7
k2) E1 =R2 =0 +IND
CABS (7) (real (Z) or imag (%)) = +IND 13
(INF or IND)
CRAIEX:Z*%*T (real (Z) or imag (%)) = (+IND,+IND) O

15-21

Routine

CCOS (Z)

CEXP (Z)

CLOG (Z)

COS (F)

CSIN(2)

CSQRT (Z)
DABS (D)

DATAN (D)

DATAN2 (D1,
D2)

DEADEX:
D1**D2
DERIEX:
D1**xTI2
DBAREX:
D1*%*R2

DCOS (D)

DEXP (D)

15-22

Condition

(real (Z) or imag (2)) =
(INF or IND) also: COS(real
{Z)) and EXP (imag (Z)) and
imag (z) .LT. -€7%5.82

real (Z) or imag (2)) =
(INF or IND); also: SIN
(imag (Z)) and EXP
(z))

(real

(real (Z) or imag (2)) =
(INF or IND); also: ALOG
(CAES (Z)) and ATREN2
(Z), real (2))

(imag

R = INF or IND or
abs (R) .GT. 2.2E14

(real (Z) or imag (2)) =
(INF or IND) RALSO: SIN
(real(Z)) and FXP (imag
(Z)) and imag (Z) .LT.
-675. 82

(real (Z) or imag (2)) =
(INF or IND) '

D = INF

D = IND

D = INF or D = IND

(D1 or D2y = (INF or IND)
D1=D2=0

(D1 or D2) = (INF or IND)
D1=0 and D2 .LE. C

D1 .LT. O

D1 = INF or D1 = IND

D1 = 0 and I2.LE.O

(D1 or E2) = (INF or IND)
D1 = 0 and R2 .LE. O

D1 .1T. O

L = INF or D= IND or
abs (D) .GT. 2.2F14

D = INF or D = IND
D.GT. 741.67

Standard
Recoverz
(+IND,+IND)

(+IND, +IND)

(+IND,+IND) .

+IND

(+IND, +IND)

(+IND,+IND)

+INF
+IND

+IND
+INF

Error

Number

190

1M

12

13

o

15
1€

17

18

19

21

22

23

Routine
DLOG (D)

DLOG10 (D)

DMOD (D1,D2)

DSIGN(D1,D2)

DSIN (D)
BSQRT (D)
TP ()
IBAIEX:

T1%%12

IDINT (D)

RBADEX:
R1*%D2

REAIEX:
RI*xT2

FEAFEX :
R1%%R2

SIN(?)
SLITE(I)

SLITET
(11,12)

Londition

D = INF or D
D

D

IND or
«LT. 0
=0

= INF or D
.LT. 0
=0

IND or

O oo

(D1 or D2)
D2 = 0
D1/D2 .GE.

(INF or IND)
2%%96
D1 = IND or D2 =

or IND)
D1 = INF

(0 or INF

D = INF or D = IND or

abs (D) .GT. 2.2E14
D = INF or D = IND or
D L.1T. 0

kK = INF or P = IND

E .GT. 741.67

IT1 = 0 and I2 .LF. O
I1%*%T2 .GF. k%048

D = «INF or D = IND or

D GE. 2%%59

D = -INF or D .LE, -—2%%*C0
(R1 or D2) = (INF or IND)

F1 = 0 and D2 .LE. G
F1 .L7. O

E1 INF or R1 = IND
R1 0 and I2 .LE. O
R1%%T2 = INF.

I

(R1 or R2) = (INF or IND)
P1 = 0 and R2 .LE., O
R1 .LT. O

R = INF or R = IND or
abs (R) .GT. 2,214

I .6GT. 6 or T .1LT. O
I1 .GT™, 6 or IT .LE. D

Standard Error
Recovery Number
+4TND 24
-TNF

+IWND 25
~-INF

+IND 26
+IND

+TND

+TND 27

INF with sian

of D2

+IND 28
+TND 26G
+TND ¢
+INF

0 21
0

2%%59-1 W2
1-2%%5¢C

+IND 23
+TND

+IND 34
+TND

+IND 325
+TND

+TND

+TND 36
PEOCEFD 37
TZ = 2 2R

15-23

Routine

SQRT (P)

SSWTCH(I1,
I2)

TAN (R)

TRNH (R)

Unused

Standard

Condition Recovery
R = INF or R = IND or +IND

R .LT. O

I .GT. 6 or I1 .LE. 0 12 = 2
R = INF or R = IND or +IND
abs (R) .GT. 8.4F14
B = INF or R = IND +IND

The following routines whose names are followed by a colon and
a sample statement or expression are not explicitly called for

by the programmer in his program.
indicated statement is used in the program.
errors detected by these subprograms, except as noted, are fatal

They are called for when the
Currently, all

errors causing termination of the job.

Error
Number

{0
O

41

u2

45

ug

u7

us

L9

Routine _Condition_ _ __
IOCHEK IF(UNIT, i) should only be used
IF (UNIT, i) on a BUFFER I/0 file. The file
name given in the message is = i.
LENGTH: Status of a BUFFER I/0 file must
LENGTH (1) be checked by IF(UNIT,I)
IFENDF: in the instance where an error
IF (EOR,I) would occur if no check
IOCHEC: were made.
IF (IOCHECK,I)
Unused
SETPRU The physical record unit size
should not be changed since the current
process is not completed. FHowever the PRU’
size is changed as requested. '
SETPRU The physical record unit size
cannot be changed on this type of device.
Peturns without changing the PRU size.
INPUTN: NAMELIST error:
READ (I ,X) precision lost in converting

15-24

integer constant. NAMELIST data
terminated by 7-8-9 or 6-7-8-9 card, not
$. Too few constants for unsubscripted
array.

40

NF

NF

Routine
OVERLAY

SYSTEMP

SYSTEMP

CKFLAG.

CKFLAG,

CKFLAG.,

CKFLAG.

BUFFEI:
BUFFER IN

CKFLAG,

BUFFEO:
BUFFER 0UT

TNPUTN:

READ (I ,X)

SETPRU

MEMORY

STO$

Condition Error
Improper use of OVEFLAY tC F
User program detected fatal error. 51 F
User program detected non-fatal error. Execution is £ y=
allowed to continue but results should be suspect. T
Parity error on previous read 52 T

not checked for. IF (JOCHTCK,T) N1,N2
should be used to check for parity errors
(except on buffer I/0 files). N1 ig the
return indicating a parity error, Nz is

the return indicating no error.

Number of elements in the list for 50 ®
the previous unformatted (binary) read wvwas

more than were contained in the binary

record and the LENGTH function was not used to

check for this condition.

An end-of-file was encountered on 58 F
the 1last read on this file and neither

1F (EOF,I) nor IF(UNIT,I) were used to check for this
condition. ‘

A read was attempted after a write, g6 ¥
without an intervening BACKSPACE or
REWIND. This is not allowed.

starting address greater than ter- 57 ¥
minal address.

An I/0 operation was attempted on 58 ¢
a buffered I/0 file without checking 1its
status first with an IF(UF¥IT,I).

ctarting address greater than 56 ¥
terminal address minus 1.

NAMFLIST name not found. £C T
wrong type constant.

Incorrect subscript.

Too many constants.

(, §, or = expected.

The PRU size requested exceeds the £1 F
maximum allowed for magretic tape.

Illegal request for memory. £f2 T
Physical record too big, i.e., €2 F
longer than 512 words if binarv or 1z&C
characters if coded (unless SFTPET has

been called).

15-25

Rogtine. ~ Condition ' Error

GETB2 Undefined file. There is no buffer 6L F
defined for the file being accessed; i.e.,
the fileset name appearing in the
diagnostic was not specified in the
PROGRAM statement list. See Section 7.4.
If the file is O0UTPUT, the message NO
OUTPUT FILE FOUND appears in the job log.
May also indicate that values have been
improperly assigned to a variable tape
number, or that. lower core has been
destroyed by the progranm.

Unused €5
INPUTS: Attenpt was made to transfer more 6k
DECODE : than 150 characters per record on

DECODE processing.

Unused ‘ 67
KEAKER/KODFR: Illegal letter used as format : - eR T
Used in RCD specification. _
1/0 CON- Improper parenthesis nesting in 69 F
VERSTIONX* format specification.
Format exceeds maximum record length 70 ¥
currently set on input or output.
Field width specified as zero. 71 F
Field width specified as less than or 72 F
equal to the specified fraction width o
list was used with an I/0 statement , 73 ¥

with only Hollerith specifications in
the format.

Jnused u
Unused . 75
Unused 76
FBPUT/FBGET Wrong number of arguments. ' 77 F

KRAKER: USFD Illegal character in data item in record', 78 ©
in BCD input being read.

Conversion* Data converted is too large. 79 F
INPUTB: An attempt has been made to read an 80 F
Blocking unblocked fileset as if blocked or Do
BACKSP ~ blocking control word mismatch, or-incorrect

trailing blocking control word.

* See footnote on next page.

15-26

Routine Condition Error

IF(IEOI) *nd of Information on previous read. g1 F

INPUTB Machine, system, disk or tape checksumn g2 NF
‘ error. It is important to show the job
output to the Computer Center Consultant
in order to enable the Systems sStaff *to
pin down the machine failure. The parity
error flag is set and the blocking control
word is checked. TIf it is all right, the
program continues.
The function code is not allowed for the g2 F
device:; the file is closed or not allowed
to be written on or read follows a v¥rite.

An unexpected error status has been Ry F
detected in the FET. Possible system
error. See the Computer Center

Consultant.

OUTPTS: Attempt to transfer more than 150 g5
ENCODF characters per record on ENCODE
processing.

FRPUT 1RKECL greater than blocksize. 8¢ F
KODER: Used Attempt to output a single precision g7 F
in BCD output variable under "D" format.

Conversion¥*

SYS,UEX Attempt to reference a missing subprogram. 93 F

* The message indicating the nature of an error found by the
subroutines KODER (formatted output) and KERAKEF (1npﬁt) is
followed by supplemental messages which localize the error. The
FORMAT statement number and up to one 1line of the FOFRMNET
statement will be printed with an wup arrow to indicate the
position in the FORMAT statement where the error was detected.
In the case of input data errors, the position of the card in
the data deck and one line of the record (card) in which the
error was detected will be printed with an up arrow pointing to
the spot at which the error was found.

15-27

15.4.3 Operating System Error Messages

15-28

The operating éystém:produces messages in the Job Log to warn of a .
possible error, to indicate a definite error, and/or to report hard-
ware malfunctions. The exact messages depend on the version of the
operating system. .Here, the general form of CALIDOSCOPE error mes-
sages.is-explained.éﬁd a few of the more common examples are discussed
briefly. Section 15.4.4 discusses arithmetic errors, which are very
common errors that also generate messages in the Job Log. An example
of an arithmetic error message occurs in the sample program in 14.2

"and is-discussed in 15.5.

All syétem error messages are printed on the Job Log and are usually

~(the exceptions are discussed below) prefixed with the time and a

character pair, the first of which indicates the severity of the error.

I: indicates an informational message. Sometimes such mes-—
sages are associated with a fatal or warning error and
give additional information; other times they pertain to
an error which was automatically recovered by the system:

F: indicates a fatal error that causes theé job to be aborted.
W: is a warning message which indicates that a possible error

‘was detected,»bqt processing continues. The cause of the
message should be investigated. S

Approximate text of some common messages

These three messages indicate that the job tried to exceed the indicated
limit as specified on the job identification statement (job card). It
is well to ascertain that the indicated limit is not being exceeded
because of an error in the program before resubmitting the job with

a higher limit. aaaaaa indicates an octal address.

hh.mm.ss F :CENTRAL PRQCESSOR'IIME LIMIT EXCEEDED AT ADDRESS aaaaaa

hh.mm.ss F:PRINT LIMIT:EXCEEDED' :
hh.mm.ss I:FET ADDRESS = aaaaaa, FILESET = name

hh.mm.ss F:PUNCH LIMIT EXCEEDED :
,hh,mm.ss I:. FET ADDRESS = aaaaaa, FILESET = name

The followirng messages are printed by HYDRA, the program which supervises
reading jobs into the computer. They are the most common messages

which don't have a prefix containing the time, etc. These errors
prevent the job from being run:

BAD JOB NUMBER

indicates that the job number specified is out of funds or was never
funded at all; or the two check characters necessary to use the indi-
cated number were not specified correctly.

BAD JOB CARD

covers a variety of sins: an illegal character occurs in the statement,
such as an 8 or 9 in an octal number field; a parameter has been spe-
cified in excess of the maximum allowed for that parameters on this
job number; the job is an S job but specifies a parameter which is
too large for S.

CHECKSUM ERROR RECORD n CARD m
indicates that binary card m in record n* has been punched improperly
or read improperly.

‘SERIAL CHK RECORD n CARD m

indicates that binary card m in record n* is out of order.

. ThHelfollowing’ possible errors are reported but the joB is alloied tc run;

HOLLERITH CHECK RECORD n CARD m

indicates that card m in record n* has an illegal combination of punches
for a Hollerith card. The job is allowed to execute with blank(s) sub-

stituted for the character(s) in question.

The message
MODE CHANGE RECORD n CARD m

means that toth Holieritn and binary cards occurrzd in the same record.

n and m are decimal. The control statement record is counted as record 0.
Cards within a record are numbered starting with 1. If you cannot analyze
these problems, see the programming consultant. Checksum errors which
disappear when a job is simply resubmitted should be reported to the con-
sultant in any case.

15-29

15.4.4

15-30

Arithmetic Errors

Computation is halted (error exit) when the internal circuitry of
the 6400 detects certain "arithmetic" errors. A dump is then
initiated and a message of the form:

F:ARITHMETIC ERROR MODE X AT ADDRESS Y

is placed in the Job Log. X is the type (or mode) of error which
occurred and Y is the absolute address (usually plus one) (in octal)
of the instruction word causing the error. Several lines of I:-
messagesmay follow the F: message giving some explanatory information
and the locations of some values which might have caused the error.

A dump of the 6400's registers is automatic (i.e., no DMP statement
is needed) with an arithmetic error. The system communication area,
showing the names of the filesets and the locations of the FETs for
the filesets, is given, followed by about 100B locations on each side
of the offending instruction. An error skip of control statements
(see CALIDOSCOPE Control Statements) is initiated after an arithmetic
error.

The sample job output in Section 14.2 shows an example of an arith=
metic error. Section 15.5 discusses the error from the sample job.

The types of errors detected are:

- MODE 0O An ARITHMETIC ERROR with a MODE of zero may be

generated by an erroneous transfer to location
zero, e.g., the 6400's internal circuitry has
found no error. This wild transfer can be caused
by the program storing data where instructions
should be (e.g., subscripts of a variable are
incorrect or labelled COMMON exceeded) or by
having the actual parameters to a subprogram not
agree with their intended use in the subprogram.
COMPASS programmers note that a MODE O ARITHMETIC
error can also be generated by an attempt to
execute an illegal instruction or having a PS
instruction in the lower 15 bits of a word.

MODE 1 Address out of bounds. The instruction has tried
to reference a location not contained within a
job's field length. In the dump one of the address
registers will contain an address greater than the
program length, which is shown in the FL register.
This error can occur when an operand is being
fetched for a calculation or stored as a result of
a calculation. 1In a Fortran program, subscripts of
an array which exceed the dimensions of the array
can cause this error. B

15.5

In this case the address given in the Job Log message
is around 400000B and a reference appears under
"UNSATISFIED EXTERNALS" at the end of the load map.

MODE 2 Operand out of range. The instruction has tried to
use an infinite operand in a floating-point operation.
In the dump, at least one of the working registers
will contain an infinite form (37770...0 or 4000.....0).
An infinite operand is usually created by a division
by zero in a Fortran program. However only its sub-
sequent use in another calculation causes this error.
Refer to Appendix A for a further explanation and for
the form of the infinite operand.

MODE 4 Indefinite operand. The instruction has tried to
use an indefinite operand in a floating-point opera-
tion. In the dump, at least one of the working regis-
ters will contain an indefinite form (17770...0. or
60000....0). Because the loader sets unused cells
in memory to indefinite values (see p. 14.12), the
most common source of indefinite operands is refer-
encing variables which have not been set. An array
reference using a wild index is a frequent cause of
using such an ‘'undefined' variable. An indefinite
operand is generated either when an error is detected
in one of the library mathematical functions (15.4.2)
or when zero is divided by zero. However, only the
subsequent use in another calculation causes this
error. Refer to Appendix A for a further explana-
tion and the form of the indefinite operand.

MODE 6 The instruction has tried to use both infinite and
indefinite operands in a floating-point operation.
See Modes 2 and 4 above.

Debugging and Memory Dump Interpretation

Debugging is a term used to describe the process of trying to figure
out why a program did not do what it was supposed to do. It some-
times happens that an error cannot be found simply by inspecting the
program or its normal output and in such cases one may be forced to
seek clues in a memory dump.

Dumps of memory (i.e., a printout of the contents of locations in mem-
ory are taken when a DMP statement (see CALIDOSCOPE Control Statements)
is encountered in the control statement record or when a fatal error is
detected by the operating system. Section 15.5.1 describes the infor-

"mation given in a dump, using the dump produced by the sample program

of Chapter 14 for examples.

15-31

15.5.1

Two problems are commonly associated with debugging and memory
dumps. One is to identify the variable or code associated with
an absolute address given in a dump or error message. The other
is the inverse problem of finding the absolute address of some
variable or code so that it can be inspected in a dump. These
are discussed in sections 15.5.2 and 15.5.3.

Dump Format

A dump shows the contents of registers and memory words in octal. Each
octal digit represents 3 bits of the binary number contained in a word.
The correspondence between the octal digit and binary number is as
follows:

Octal Binary Octal Binary
0 000 4 100
1 001 5 101
2 al1a 6 . 110
3 011 -7 111

The first line of the dump gives the time and circumstances of the dump .
The second line gives the values of the location count (P = 000000), the
reference address* (RA = 101100), the field length (FL = 010700), the
exit mode (EM = 07), the reference address for ECS (ECS RA = 01053000),
the field length for ECS (ECS FL = 00000000), and the monitor address#

(MA = 003567).

The next 8 lines give the contents of the machine registers and related
information in one of the forms:

X=Y or cCx) =Y ,

where X is the name of a register (X0-X7, AO-A7, or BO-B7) and Y
is either the contents of that register in the first form or the con-
tents of the cell specified by the address contained in the register
in the second form. For example, if Al = 005517 appears followed by
C(Al) = 00000 00000 00000 02053, then the contents of address 5517 is
2053B. C(Al) = el (el [{{{l [//]]/ would indicate that the
address in Al points Sutside the job's memory field.

The next 2 lines give the contents of the System communication registers.

Following these registers, the contents of memory locations are

-given. The dump of memory is in the form of five columns. The

first column comprises 6 octal digits which specify the absolute
location (in the user's portion of memory) of the word whose con-
tents are shown next. The contents of 4 consecutive memory loca-
tions then follow in columns 2-5. Each location is represented by 20
octal digits broken up by an intervening space into four groups of
five digits each. For example, the sample dump shows that location
64 contains 14071700000000000000B, location 65 contains 106478, etc.
When consecutive locations contain the same value, a line of the fol-

lowing form is printed:

15-32

The reference address is the hardware location of the beginning of the mem-
ory field. It is not relevant to the user's program but may be significant
in checking for possible machine failure.

The monitor address is a pointer internal to the generating system and is
also not relevant to the user's program.

WORDS N1 TO N2 ALL CONTAIN N3

Thus, the line before the one giving the contents of location 64 in
the sample dump tells one that locations 10 through 63, inclusive, are

all zero.

The first few words in the system communication area may be useful to
the programmer. Starting in location 2 are the fileset names for the
filesets in the order that they appear in the PROGRAM statement. The
high order 42 bits (first 14 octal digits of each word) contain the
pname of the fileset in 6400 internal BCD code; the low order 18 bits
(last 6 octal digits) contain the address of the Fileset Environment
Table (FET) used for that fileset. Thus in the sample output these
cells are shown following the label 'SYSTEM COMMUNICATION AREA'. Cell
2 contains the name INPUT (1116202524B) and the Fileset Environment
Table (FET) is located at 1031B; cell 3 contains OUTPUT (172524202524B),
and its FET is at 2053B; cells 4 contains TAPE5 (2401200540B), and
since it is equivalenced to INPUT, its FET is also 1031B.

The contents of other locations in a dump can be interpreted by knowing
the octal forms of each type of variable or constant used in the Fortran
language. These octal forms as well as methods or tables for their con-
version to decimal or alphanumeric forms are given in Appendix A.

15.5.2 Identifying Code or Variables Starting from Absolute Addresses

The addresses given in memory dumps and most addresses given in diagnostic
messages are absolute. That is, the user program's memory is considered
as one long block of cells numbered from O to the field length less one
and the absolute address merely identifies one of these cells. On the
other hand, the addresses given on compiler listings are relative to the
beginning of the program being compiled and are referred to here as
relative locations. To convert an absolute address AA to a relative
location RL involves two steps:

1. Identify the subprogram containing the dbsolute address and deter-
mine its load address LA. To do this compare AA with the loading
addresses of the subprograms indicated on the load map. The
largest load address which does not exceed AA is LA and the cor-
responding subprogram contains AA.

2. RL = AA — LA. Remember that the numbers are octal. RL may now
be used to identify a variable or code in the compiler listing in
the appropriate subprogram.

Example:

In the sample program shown in Chapter 14, the following arithmetic
error occurred:

F:ARITHMETIC ERROR MODE 2 AT ADDRESS 003250
I: INFINITE OPERAND USED-- e
I: OPERAND MAY HAVE RESULTED FROM A DIVISION BY ZERO
I: REFERENCE TO WORD 001026 WHOSE VALUE IS INFINITE

15-33

We will now identify the statement associated with address 3250.
Because the address given in the error message is one greater than
the address of the offending instruction, we take 3247 as AA. From
the load map, we identify WORK, whose LA is 3241, as the subprogram
containing the instruction. Now RL = 3247 - 3241 = 6 and inspection
of the compiler listing for WORK identifies the statement associated
with the arithmetic error: '

X2 = 2.%X1

which indicates fairly strongly that X1 has somehow become out-of-range.
It should be noted that because there can be up to 4 instructions in
one computer word, it sometimes happens that instructions from two
adjacent statements 'share' the same word, in which case there is an
ambiguity as to the identification of the statement.

Example:

Now we identify the variable associated with address 001026 given in
the error message above. With AA = 1026 we inspect the load map and
find that OVERFL, whose LA is 636, contains the cell in question. So
RL = 1026 - 636 = 170 and inspection of the compiler listing for OVERFL
identifies the variable B as occupying 170. :

15.5.3 Finding Absolute Addresses Starting with Addresses Given in Compiler
Listings

The addresses given on compiler listings are relative to the beginning
of the individual program being compiled. Since the loader relocates
each subprogram so that its origin is at the load address rather than at
0, the addresses of variables, etc., given in the listing must be modi-
fied in order to inspect them in memory. The addresses where things
actually get put in memory are referred to as absolute addresses. An
absolute address AA is easily calculated from a relative location RL
given in the compiler listings:

l; Look'up in the load map the load address LA where the loader put
the given subprogram.

2, AA = RL + LA. Remember that the numbers are octal. AA may now
be used to inspect the variable (or whatever) in a memory dump.

Example:

We find the variable DEMO in the subroutine WORK in the sample program
of Chapter 14, starting from its RL of 23. The load map gives 3241

as the LA of WORK, so the absolute address of DEMO is 23 + 3241 = 3264.
Cell 3264 is shown in the sample dump as 60007 77777 02004 03264. This
'is an example of the values which the loader puts in unused cells in
memory, so we deduce that DEMO had not been set at the time the

dump was taken.

15-34

Labeled COMMON blocks are not subprograms, but the method for finding
variables contained in labeled COMMON is the same as that for finding
other variables except that LA must be taken as the location of the
block.

15.6 Hazardous Names

There are several aspects of the RUN Fortran implementation which
restrict the kinds of name that may be given to subprograms (sub-
routines, functions, main programs, etc.). This section discusses

the causes and effects of such restrictions and gives as much explicit
information as possible as to what the reserved names are. The names

of less than 7 characters listed in this section are all perfectly legal

ANSI Fortran names and indicate substandard implementation of RUN.

The clumsy addition of literals to FORMATs by CDC causes the

possibility of ambiguous statements; so the name FORMAT should
not be used for arrays.

15.6.1 Subprogram Names Illegal Because of Implied Calls

Some Fortran statements other than CALL generate code which calls a sub-
program. An example is the PRINT statement, which generates a call of the
library subprogram OUTPTC. Consequently, if a programmer names a
subroutine of his own OUTPTC, the loader has no way to link a given

call to the correct subprogram. RUN detects a statement which calls

a subprogram by one of these names and flags it as a fatal error.

However, it does not detect a subprogram named one of these names. Con-
sequently, a main program could be given one of these names, no error
would be detected, and an infinite loop might result. A complete list

of such names follows:

ACGOER DBADEX IBAIEX INPUTS OUTPTN RBAIEX
BACKSP DBAIEX IFENDF TOCHEC OUTPTS RBAREX
BUFFEIL DBAREX INPUTB IOCHEK PAUSE | REWINM
BUFFEO END INPUTC OUTPTB Q8NTRY STOP
CBAIEX ENDFIL INPUTN OUTPTC RBADEX

15.6.2 Names Which Collide with Library Subprogram Linkage

A general problem arises during loading when the same entry point

exists in two or more subprograms. When this happens, the loader will
link calls to the first subprogram containing the name. This sort of
confusion is usually under the control of the programmer, who can

avoid the problem in a variety of ways. Unfortunately, some subprograms
in the RUN library call other subprograms in the library using

linkage names which are legal Fortran subprogram names. If the pro-
grammer defines a subprogram of his own with such a name, he may 'derail'
the internal linkage of the library into his own routine. No error is
detected by RUN or the loader and havoc is the normal result.

The following are (otherwise legal) names-of library-subprograms -called
internally in the library:

15-35

ABNORMIL, 1010

ALOG TOSAV
ATAN2 10ZW
CABS 10ZZ
cos KODER
CPC KRAKER
CPC02 »
CPCO3 PRINTRG
CPCO4 RESTORE
CPC999 SAVEREG
DCQR : SIN
DEXP SQRT
DLOG : SYSTEM
EXP

GETBA

Many of these subprograms are only required under special circumstances,
but the ones underlined are loaded with every RUN Fortran program which
does formatted input and output.

Note that some of the above are Fortran functions, e.g., SIN, COS, SQRT,
etc. Thus, if a programmer supplies his own version of such a Fortran
function, it will affect calculations other than the calculation of
the function in question. For example, the SIN function is used by

the library functioms CSIN, CCOS, CEXP. So supplying a different ver-
sion of SIN (perhaps faster but less accurate than the library version)
may well have unexpected and undesired side-effects.

15.6.3 Subprogram Names Which Collide with Library Deck Names

The relocatable binary form of a subprogram has a name associated with

it called a deck name. The loader insists that only one subprogram of

a given name be present in any collection of subprograms that it puts
into memory at one time. When it finds a subprogram with the same name
as one already loaded, it effectively ignores the latest one and proceeds.
Generally, the deck name is the same as the name by which a subprogram

‘is called. (Subprograms compiled by RUN are given the name specified

on the SUBROUTINE, FUNCTION, etc., statement as a deck name.)

Unfortunately, the RUN library harbors some subprograms whose deck
names differ from the names by which they are called. An example is
ASIN, which has a deck name of ASINCOS. Thus, if a programmer acci-
dentally names a subroutine ASINCOS in a collection of programs which
uses ASIN somewhere, trouble results at load time. The loader will not
load ASINCOS from the library and ASIN will be an undefined external
~unless the programmer provides his own ASIN subprogram.

vChapter 11, which lists RUN library subroutines and functions, indi-

cates deck names when they differ from the name used to call the sub-
routine,

15-36

HARDWARE REPRESENTATION OF DATA APPENDIX A

A.l Use of machine-dependent or compiler-dependent coding within
6400 Word Structure a Fortran program requires familiarity with the 6400 word
structures shown below.

TABLE A Internal Data Formats

59 58 48 18 s °
y §’
INTEGER % . |
—
smn—r 53 ksvaserrorsd
MOLTILPLECATION C L ocP tNDél—-i
AND DTVLSTON

59 58 a8 o
)]
REAL BIASED
E /it Coefficient (k)
2 48
b= SIGN .
w
=]
"3 59 58 48 o 59 58 a8
B DOUBLE-PRECISION n BIASED Nt BIASED 1
AD ExP k EXP-48 k
.S'(Sian MOST SIGNIFICANT S!GNT eAST SIGNIFCENT
o
g
E 59 S8 48 o 59 58 a8 o
COMPLEX n % BIASED , N J e % s ’ y

} REAL _} IMAGINARY
SIGN SIGN

54 48 a2 36 30 24 18 12 6 0
HOLLERITH a, ar | as | @z | as | ae | a7 | as | a9 | @0
(DISPLAY CODE) —
59 o
LOGIC:\L FALSE (0000 0000
TRUE [I 111 X
57 54 51 48 45 42 39 36 2 s & 3 O

OCTAL @085 P18217 (P16 (915 (214 0, 18312210
33 3 3 3 3 3 33 303

This knowledge is used in constructing octal magks, § or
A formats; in manipulatingalphanumeric information; and in
performing special arithmetic calculations. :

A.Z
INTEGER
ARITHMETIC

In fixed point addition and subtraction of 60 bit numbers,
negative numbers are represented in one's complement nota-
tion* and overflows produce no error condition. The sign

bit is in the high-order bit position (bit 59) and the binary
point is at the right of the low-order bit position (bit 0).
A zero sign bit indicates a positive number; a one, a nega-
tive number.

Examples (in octal):

()

00000000000000000000
-0 77777777777777777771
1 00000000000000000001
-1 77777777777777777776
25 00000000000000000031
-25 77777777777777777746
Further examples are shown in Table C.
During addition and subtraction the sign bit is treated as
just another bit of the number. This results in what is termed

"wrap-around' instead of an overflow condition; thus if 1
is added to the largest positive number, the result is the

largest negative number:

37777777777777777777 (largest positive number)
+ 00000000000000000001
40000000000000000000 (largest negative number)

. The 6400 does not have integer multiply and divide instructions:

these operations are programmed using the floating-point instruc-
tions. As a result, operands for these operations may be no
larger than 248-1; larger operands lose their high-order bits.
Programs using multiplication-division to shift bits or char-
acters in a word are affected by this feature. Also, on output
conversion, a variable greater .than 2481 is flagged as.out-
of-range (R).

The one's complement of a binary number is found by subtracting the number

from ZN—l, where N is 60 for the 6400.

A.3

REAL, COMPLEX,

DOUBLE PRECISION

ARITHMETIC Floating-point word representation and arithmetic are used
for the Fortran types real, double precision and complex.

Floating-point arithmetic takes advantage of the ability to
express a number with the general expression kB[, where:

k = coefficient

B base number

n = exponent, or power to which the base number is raised

For binary information the base number is the constant 2.
The base does not appear in the number representation.

The 60-bit floating-point format used by the CDC 6400 is shown
below. The binary point is considered to be to the right of
the coefficient, thereby providing a 48-bit integer coefficient,
the equivalent of about 15 decimal digits. The sign of the
coefficient is carried in the highest order bit of the

word; a zero bit indicates a positive number and a one bit, a
negative number. Negative numbers are represented in one's
complement notation.

COEFFICIENT BIASED INTEGER
SIGN EXPONENT COEFFICIENT
Y ¢
1] 48 } 5
59 58 48 47 } 0
BINARY
POINT .

The 1l1-bit exponent carries a bias of 210 (2000g) when placed
in the floating-point word (a biased exponent is sometimes
referred to as a characteristic). Thus, a number with a true
exponent of 342g would appear as 2342g; a number with a true
exponent of -160g would appear as 1617g. Exponent arithmetic
is done in one's complement notation.

The coefficient is normalized; that is, the most significant
bit is in bit 47 of the word. Since the binary point is to
the right of the normalized coefficient, the coefficient is
an integer between 247 and 248, Therefore all numbers less
than 247 will have negative exponents.

Examples (in octal):

1.0 © 17204000000000000000
-1.0 60573777777777777777
1.09 §I012 17704000000000000000
1.4074x1014 20004000000000000000

Conventing '
FLoating-Point Octal Floating-Point to Decimal Conversion Tables

Several tables are included in this appendix to assist'thaqb
programmer who wishes an approximate conversion of octal -
floating-point values to decimal:

Table
C illustrates some full word octal fbrms
D gives conversions for values near unity
E gives rough scale conversions for all floating-point
numbers.

A decimal value which appears in the body of either Table

D or Table E is equivalent to the octal number whose
high-order digits appear as the row and column headings, res-
pectively, with zeros to the right. For example:

Table Row Col. Octal Number Decimal Number
D 17154 0 17154000000000000000 .12500
D 17337 3 17337300000000000000 3776.0
E 17 504 17504000000000000000 l.677x107
E 05 704 05704000000000000000 2.4099){10_181

Conversion of a Number from Decimal to Floating-Point Form

The operation of converting the decimal number 12.5 to its
exact octal floating-point representation is as follows:

a. Convert the number to binary: 12.510 = 1100.12

b. Express the number as a 48-bit integer coefficient nor-
malized (.i.e, with a one as the leftmost bit) times the
appropriate integral power of two:

1100.12 = 11001000

X 2_44
(Octally seen as 6200000000000000 in the coefficient field.)

c. Convert this power to octal : —4410 = —548

d. If the power is positive, add it to 2000,. If the power
is negative, subtract it from 1777,; thetefore 1777, -
8 8
54, = 1723, .
8 8
e. And obtain the result as the octal word:

17236200000000000000.

Reversing the process gives the decimal version of the number.

Overglow, Under-

4Low and Indetern-

minate Fomms The magnitude of a floating-point number is limited by the i1
bits allocated for the characteristic. Its range, from 0000g
to 37778, is equivalent to about 10-294 to 10322, The result
of a floating-point operation (usually division by zero) which
exceeds the upper limit (overflow case) is treated as an infinite
quantity. The result is zero if the exponent falls below the
lower limit (underflow case). Indefinite (i.e., indeterminate)
results may follow the use of infinity (or possibly zero) as
operands or may be returned by mathematical functions (refer
to Section 15.4.4) which are given illegal arguments (such as
SQRT (-1.)).

The floating-point circuitry of the computer assigns the fol-
lowing special bit configurations to indicate indefinite and
infinite operands:
+ 377 7XXXXXXXXXXXXXXXX (causes MODE 2 errors)
- 4000XXXXXXXXXXXXXXXX (causes MODE 2 errors)
+indefinite 1777XXXXXXXXXXXXXXXX (causes MODE 4 errors)
—indefinite 6000XXXXXXXXXXXXXXXX (causes MODE 4 errors)
(X = any octal digit)
Computation is not halted when the indefinite or infinite
result is generated. If either form may be generated as
the final value of the expression in an arithmetic replace-
ment statement, the program may test for these exceptional

conditions by using the LEGVAR function (see section 11.2.10)
before the result is used for further computation.

For Underflow or Overflow Use:

LEGV AR (vhame) The function value returned will be -1,
+1, or 0 if the variable vname is inde-
finite, infinite, or within range, res-
pectively.

A's

A.4
ALPHANUMERIC
WORDS

The infinite or indefinite result may be printed (printing
as R for infinite, I for indefinite) or moved from one
location to another with no error condition arising.

Computation is halted (error exit) when an attempt is made to
use either form in a floating-point operation (see Section 15.
4.4). Use of an indefinite or infinite form which is the
result of a sub-expression evaluation within an expression

may trigger the error exit before the above test

can be made.

(Thus if A/B results in an infinite form, the evaluation of
the expressiod: (A/B)*C will cause an error exit.)

The operating system may be instructed to process infinite and -

indefinite operands without taking an error exit (see MODE in -

CALIDOSCOPE Control Statements).

Shown below are the results of all calculatlons involving

1nf1n1te or indefinite forms.

Arithmetic Involving Infinite and Indefinite Forms

© = o =T °°/N
oo/oo:I o 4+ N
00*0:1 oo..N
0/0=1 N/ O
I8X=1
where « = infinity

I = indefinite

"0 = zero

o

© = o 0/ =
© = o 0% 0 =
0=w 0/ N-=
N=mow N/ ==

0% N =

any finite nonzero
point number
I, N, Oor

Table H lists the display codes stored for character
Character strings are

often compared and sorted by means of arithmetic or
masking operations which depend on these octal values.

string information on the 6400.

o O o ©

floating-

Several new methods of defining and handling character

data are available:

1. Internal format conversions may be made by means of the
FORTRAN statements ENC@DE and DECPDE (Section 10.5).

2. Two new forms, nRf and nLf, have been added as Hol-
lerith constant specifications.

3. The Hollerith constants may be used in executable state-
ments as well as in DATA statements, for example,

(Note that the end-code for Hollerith

constants in argument lists is a binary zero word.)

A=9HH@ALLERITH.

A.5
LOGICAL
OPERANDS

4, One new form, Rn, has been added as an alphanumeric
format conversion specification.

Table B clarifies the use of these different forms.

Note that the octal form, which may be used to define any
word structure, is useful for internal definition of the
additional printer characters shown in Table G. (These
printer characters do not appear on a key punch and must
otherwise be multiple-punched on a card.)

Logical operands are defined as 77777777777777777777 octal
(minus 0) for true and binary zero (plus 0) for false. The
logical operators .AND.,.@R. and .N@T. are used with these
operands as discussed in Section 3.3.

However, it must be remembered that operators .AND., .PR. and
.NOT. perform a dual function on the 6400, acting as masking
operators as well as logical operators. The same internal
evaluation is used for both types of operations: a bit-by-bit
masking. That is, each binary bit of an operand is comple-
mented in the .NOT. operation, and the pairs of corresponding
bits in two operands are masked bit-by-bit in the .AND. and

.PR. operations. Section 3.4 defines these maskings evaluations.
For example, given

00000000000000000001 ¢ (a non-zero word)
00000000000000000010g (a non-zero word)

o
[

then

A.AND.B

it

000000000000000000008 (a plus zero word)

Yet, in a logical operation the word as a whole must be the
logical unit of information. This unit is obtained by using
as operands only the words in which all bits are the same, the
plus zero (all zero bits) for false, or the minus zero (all
one bits) for true. Logical operands which are defined

within the FORTRAN language will be assigned these values.

If the definitions for logical operands are not followed, not
only will logical operations be faulty but also the logical
IF statement will give erroneous results. The test in a
logical IF statement provides a true branch if the result of
the expression is anything other than plus zero; that is, if
any bit is one. Thus, in the eample shown above, the expres-
sion A.AND.B gives a false value (a plus zero) and a false
branch even though A and B have non-zero values (true values).

8-V

TABLE B

Character String Data

Form when less than full Example of information stored

word is specified in machine word

Characters Unused
Type of are positions Example As Characters As octal digits Reference
Definition justified filled with | Definition (ten/wordl3 (20/word) Section
Hollerith con- left blank 7HTABLEDZ TABLEbZbbb 24010214055532555555 2.3.6
stant nHf 1 characters
Hollerith con-| right binary 7RTABLEbZ | OOQTABLEbZ 00000024010214055532
stant nRf zeros
Hollerith con- left binary 7LTABLEbZ TABLEDbZ 000 24010214055532000000
stant nLf 2 zZeros
Format left blank A4 RATSbbbbbb 22012423555555555555 9.3.12
conversion characters
spec. Aw
Format right binary R4 000000RATS 00000000000022012423 9.3.15
conversion zZeros
spec. Rw2
Octal con- right binary $53232515 000000$SUM 00000000000053232515 2.3.2
stant ¢n zZeros
Octal format right binary 920 (PAaQv-R)bb 51206721667622525555 9.3.12
conversion @w zeros

1. All definitions must be for ten characters or less except the;an Hollerith constant when it appears

in a DATA
ment.

2. Caution:

statement.

The nLf form is a Hollerith constant,

(Caution:

fication (see Section 9.3.17).

the nHf is also used as an editing specification in a format state-
Such use does not define a Hollerith constant.)

but the Lw form is a logical format conversion speci-

0 represents a true binary zero, but not a .display code zero. b repreé&@ﬁs a blank.

Moreover, unless a logical value (X) is properly defined,
both "X" and ".N@T.X" will be treated as true in a logical

IF statement. For example, if X = 1.0 = 17204000000000000000
octal, then .N@T. X = -1.0 (the complement of X) =
60573777777777777777 octal, and since neither of these is
plus 0, they are both true.

The L input format conversion assigns the value .TRUE. to a
variable when the field on the data card contains T as the
first non-blank character. Otherwise the value .FALSE. is
assigned. A diagnostic is never given, no matter what
characters appear in the data field; that is, the input is
alphanumeric. Note that each of the following data items
will be assigned the value false if read in and converted
under an L format:

F, 1, 0, -0, -1, .TRUE.

A.6 Summary of Numeric Representations

The smallest nonzero positive REAL which

fits in one computer word is .3131513062514-293 or OCTAL 00014000000000000000
The largest positive REAL which fits in

one computer word is .1265014083171+323 or OCTAL 37767777777777777777
Positive zero, also used as logical '

FALSE, is stored as 0. or OCTAL 00000000000000000000
Negative zero, also used as logical .

TRUE, is stored as -0. or OCTAL 77777777777777777777
The smallest nonzero negative REAL

which fits in one computer word is -.3131513062514-293 oxr OCTAL 77763777777777777777
The largest negative REAL which fits

in one computer word is -.1265014083171+323 or OCTAL 40010000000000000000
The largest positive INTEGER which ' .

can be output as a decimal number is 281474976710655 or OCTAL 00007777777777777777

Positive octal INTEGERS from 00010000000000000000 to 17767777777777777777 may be stored
and added or subtracted but not multiplied or printed as decimals. For example
‘R or OCTAL 00010000000000000000
R or OCTAL 17767777777777777777

The largest negative INTEGER which
can be output as a decimal number is -281474976710655 or OCTAL 77770000000000000000

Negative octal INTEGERS from 77767777777777777777 to 60010000000000000000 may be stored
and added or subtracted but not multiplied or printed as decimals. For example
R or OCTAL 077757777777777777717
R or OCTAL 60010000000000000000

Four special forms are reserved for infinite or indefinite real results, and may be
stored or moved but not used as real operands. They are determined by the first
four ocal digits, and the other digits may be any octal characters.

A.6.1 Limiting Values for Integers

The largest integer which can be handled directly by the hardware is
+567460752303423487 = 239 - 1. More stringent limits are sometimes
Ehposed on integers used in certain contexts. If these limits are
exceeded, no error message is given and results are unpredictable.
The contexts and limits are:

CONTEXT MAXIMUM INTEGER VALUE

integer multiplication or division +281474976710655 = 248 -1

index of DO-loop +131071 = 217 ~ 1 (and greater than 0!)
integer mode to real mode conversion +281474976710655 = 248 391

real mode to integer mode conversion +576460752303423487 = 2
real has less precision than this)
48

integer to be converted for output +281474976710655 = 2 -1
integer addition, subtraction, or 59
input conversion +576460752303423487 = 277 - 1

A.6.2 Limiting Values for Floating-Point (Reals, Complex, Double-Precision)

The magnitude of non-zero floating-point values which can be handled
directly by the hardware must lie in the range .313151306251401E-293 to
.126501408317068E323. Generating a vaue smaller than the lower limit
results in a zero with no other indication that accuracy has been lost.
Generating a value larger than the upper limit results in a special
value called infinite. Infinite values may be tested for with the
library subroutine LEGVAR. Use of a infinite value in a floating-point
calculation will cause an arithmetic error detected by the hardware.

Reals are directly represented in floating point, so the above limits
apply directly. Complex values are represented by a pair of floating-
point values, so the real and imaginary parts of a complex value are
each constrained by the same limits. Double-precision values are
represented by a pair of floating-point values. The MSP (most sig-
nificant part) is a regular floating-point value and is constrained
by the given limits. The LSP (least significant part) is also a
floating-point value, but it has a characteristic which is 48 less
than that of its corresponding MSP. Thus, the LSP will be set to

0 when the MSP is 248 times larger than the given lower limit for
floating-point. In other words, half the accuracy of a double-
precision value will disappear when the magnitude gets down to

248% 313151306251401E-293. At the other extreme, an LSP larger than
2—48% 126501408317068E323 would imply that the corresponding MSP

has become infinite.

A-10

- 1 (but the

T1-v

n
0

1

10

100

1000

10000

100000

1000000
10000000
100000000
1000000000
10000000000
100000000000
1000000000000
10000000000000
100000000000000

10

10.0"

20000001

»0000010
»0000100
20001000
20010000
»0100000
ilOOOOO?

10

100

1000

10100

. 100000
1000000
10000000
100000000
1000000000
10000000090
100000000000
1000000000000

TABLE C

Octal Integer
00000000000000000000

00000000000000000001
00000000000000000012
00000000000000000144
00000000000000001750
00000000000000023420
00000000000000303240
00000000000003641100
Hn000000000046113200

N0000000000575360400

Nn000000007346545000
nno00000112402762000
0n000001351035544000
10000014432451210000
90000221411634520000
00002657142036440000

Octal Floating Point

16706553762465362573
15744143367501327555
1A775174265%421A15510
17026433342726161032
17064061115645706520
17115075341217270244
17146314631463146315
17204000000000000000
17235000000000000000
17266200000000000000
17317640000000000000
173564704000000000000
17406065%000000000000
17437502200000000000
17474611320000000000
17525753604000000000
17557346545000000000
17614520137100000000
17645644166720000000
17677215224504000000

of Powers of Ten

VI~NPRIPLWN~O OF

N~C OCD~NTPPHWN—O

P Pt b

n
Y

-1

-]0

=100

=1000

=10000

»100000
-1000000
=10000000
100090000
-1000000000
=10000v00000
=100000000000
=1000000000000
=10000000000000
=100000000000000

© =10

-10.0"
=,0000001
=-,000001v
'.0000100
=,0001000
=,0010000
~+0100000
=e1000000

: -l

wl]l0

w]OU

=1900

«1nQou
«100000
=1000000
«10000000
«100000000
«100000000V
«10000000000
=100000000000
=1000000000000

Negative Octal Integer
AARARERRRARARRANR NN

TTITITRTNITTITITTTITT6

TIT777717717717177765
T7717777777777177633
1771717T177177T176027
TTY717771777777156357
TT7117T17777177474537
TTT1I710171774136677
TT71171771717131664577
TTTITT17777202417377
T177/777770431232777
1777117111665375015777
177717764267422137177
T71717613453265677177
17711556366143257717
TT7715120635741337777

Negative Octal Floating Point

61071224015312415204
61033634410476450222
61002603512356162267
6075113644435051616745
60713716662132071257
60652702436560507533
606316631463146314662
60S/377T7771T177717717
605427771711 71777777
6081157777711 177107
60400137777177017777
604230737777771717717
6037471217171 TN
6034027557777 7777717
60303166457777777777
602>2024173/777717777
602204312327771777717
60163257640677777717
60132133611057777777
601005625532737171777

TABLE D Octal Floating Point to Decimal Conversion for Numbers Near Unity

Q 1 2 3 & 5 6 7
.00003 .00003 .00003 .00003 .0GO03 00004 .0000% 000064

17314

172.5 .50004% 00004 .00004 .0000% .C0004 .000U4 .00004 .00004
17C16 .70005 .00005 .00005 .00003 .00005 . 00005 .00005 .00005
17217 .20005 00005 .00006 .00006 .00006 .00006 .00C06 .00006
1702% .J0006 .000086 .00006 00007 .00007 .00007 . 00007 .00007

17025 .30008 .00008 .00C08 .00008 .00008 .00009 .00009 .00009
7075 .00009 .00009 .00010 .0001C .0001Q .00010 .0CO1O0 .00010
17027 .{0011 .00011 .000li 00011 .00011 .00012 .00OlZ2 .00012
17034 .0C012 .00013 .GO0G13 .00013 .00014 .07014 .00014 .00015
17035 .00015 .00016 .00016 .00016 .00017 .00U17 .00018 .00018
17036 .00018 .00019 .00019 .00019 .0N020 .00020 .00021 .00021
17037 .00021 .00022 .00022 .(0023 .00023 .00023 .00024 -00024
17044 .00024 .00025 .00026 .00027 .00027 .00028 .00029 ».00030
17045 .00031 .00031 .00032 .00033 .00034 .00034 .00035 .00036
17046 .00037 .00027 .G0038 .00039 .00040 .00040 .00041 .00042
17047 ,00043 .00043 .00044 .00045 .00046 .00047 .00047 .00048
179254 .00049 .00050 .00052 .00053 .00055 .00056 .00058 .00060
17053 .0006 .000&2 .00064 .00066 .00067 .00069 .00070 .00072
17656 .00073 .00075 .00076 .00073 .00079 .00081 .00082 . 004084
17057 .00085 .00087 .00089 .00090 .00092 .00093 .00095 .000986
17064 .00098 .001J1 .00104 .00107 .00110 .00113 .00ll& .00119
17065 .00122 .00125 .00128 .00131 .00134 .00137 .00140 .00143
17066 .00146 .00150 .00153 .00156 .00159 .00162 .00165 .00168
17067 .00171 .00174 .00177 .00180 .00183 .(00186 .00189 .00192
17075 .00195 .0G201 .00208 .00214 .00220 .00226 .00232 .00238
17075 .0024%4 .00250 .00256 .00262 .00269 .00275 .00281 .00287
17076 .00293 .00299 .00305 .00311 .0031%Y .00223 .00330 .00336
17077 .00342 .00348 .00354 .00360 .00366 .0C=2/2 .00378 .00385
17104 .00391 .00403 .00415 .00427 .00439 .00452 .0046% .00476
17105 .00488 .00500 .00513 .00525 .00537 .00549 .00552 00574
17106 .00586 .00598 .00610 .00623 .00635 .00647 .00659 «00671
17107 .00684 .00696 .00708 .0G720 .00732 .00745 .00757 .00769
17114 .00781 .00806 .00830 .00854 .00879 .00303 .00928 .00952
17115 .00977 .01001 .01025 .01050 .01074 .01099 .01123 .01147
17116 .01172 .0i196 .01221 .01245 .01270 .01294 .01318 .01343
17117 .01367 .01292 .01416 .01440 .01465 .01489 .01514 .01538
17124 ,01563 .016il .01660 .01709 .01758 .01807 .01855 .01904
17125 .01953 .02002 .02051 .02i00 .02148 .02197 .02246 .02295
17126 .02344 .02393 .02441 .02490 .02539 .02583 .02637 02686
17127 .02734 .02783 .02832 .02831 .02930 .02973 .03027 .03076
17134 .03125 .03223 .03320 .03418 .035156 .03813 .03711 .03809
17135 . 03906 .040G4 04102 04199 04297 .u4395 04492 < 04590
17136 .04688 .04785 .04883 .04980 .05078 .05176 .05273 .05371
17137 .05469 .05566 05664 05762 .05859 .05957 .06055 .06152
1714% L06250 06445 06641 06836 07031 .07227 .07422 « 07617
17145 .07813 .02008 .08203 .08398 .08594 .08789 .08984 .09180
17146 .09375 .09570 .09765 .09961 .10156 .10352 .102547 « 10742
17147 .10938 .11133 .11328 .11523 .11719 .11914 .12109 »12305
17154 .12500 .12891 13281 .13672 .14063 .14453 .14844 .15234
17155 15625 16015 16406 16797 .17188 17578 .17969 .18359
171586 .18750 .19141 .19531 .19922 .20313 .20703 .21094 ~21484
17157 .21875 .22266 .22656 .23047 .23438 23828 .24219 .24609
171¢4 .25000 .25781 .26563 .27344 .28125 .289056 .29688 »30469
17160 .31250 .32031 .32313 .33594 .34375 .35156 .35938 .367189
17166 .37500 .38281 .39063 .3984% .40625 .41406 .42188 « 42969
171567 43750 <4%4531 .45313 .4609% 46875 .4T656 48438 «49219
17174 .50000 .51563 .53125 .54688 .56250 .57813 .59375 .60938
17175 L62500 640563 .65525 67183 .68750 .70313 .71875 . 73438
17170 .75000 .76563 .73125 .796388 .81250 .82813 .84375 .85938
17177 .87500 .890%63 .20625 .92188 .93750 .95313 .96875 ».98438

A-12

TABLE D Octal Floating Point to Decimal Conversion for Numbers Near Unity

17204
17205
17206
17207
17214
17215
17216
17217
17224
17225
17226
17227
17234
17235
17236
17237
17244
17245
17246
17247
17254
17255
17256
17257
17264
17265
17266
17267
17274
17275
17276
17277
17304
17305
17306
17307
17314
17315
17316
17317
17324
17325
17326
17327
17334
17335
17336
17337
17344
17345
17346
17347
11354
17355
17356
17357
17364
17365
173¢6
17367

0
1.0000
1.2500
1.5000
1.7500
2.0000
2.5000
3.0000
3.5000
4.0000
5.0000
6.0000
7.0000
8.0000
10.000
12.000
14.000
16.000
20.000
24.000
28.000
32.000
40.000
48.000
56.000
64.000
80.000
96.000
112.00
128.00
160.00
192.00
224.00
256.00
320.00
384.00
448.00
512.00
640.00
768.00
896.00
1024.0
1280.0
1536.0
1792.0
2048.0
2560.0
3072.0
3584.0
4096.0
5120.0
6144.0
7168.0
8192+0 -
10240.
12288.
14336.
16384,
20480.
24576
28672

1
1.0313
1.2813
1.5313
1.7813
2.0€25
2.5625
3.0625
3.5€625
4.1250
5.1250
6.1250
7.1250
8.2500
10.250
12.250
14.250
16.500
20.500
24.500
28.500
33.000
41.000
49.000
57.000
66.000
82.000
98.000
114.00
132.00
164.00
196.00
228.00
264.00
328.00
392.00
456.00
528.00
656.00
784.00
912.00
1056.0
1312.0
1568.0
1824.0
2112.0
2624.0
3136.0
3648.0
4224.0
5248.0
6272.0
7296.0

2
1.0625
1.3125
1.5625
1.8125
2.1250
2.6250
3.1250
3.6250
4.2500
5.2500
6.2500
7.2500
8.5000
10.500
12.500
14.500
17.000
21.000
25.000
2%9.000
34.000
42.000
50.000
58.000
68.000
84.000
100.00
116.00
136.00
168.00
200.00
232.00
272.00
336.00
400.00
464,00
544.00
672.00
800.00
928.00
1088.0
1344.0
1600.0
1856.0
2176.0
2688.0
3200.0
3712.0
4352.0
5376.0
6400.0
T7424.0

3
1.0938
1.3438
1.5938
1.8438
2.1875
2.6875
3.1875
3.6875
4.3750
5.3750
6.3750
7.3750
8.7500
10.750
12.750
14.750
17.500
21.500
25.500
29.500
35.000
43.000
51.000
59.000
70.000
86.000
102.00
118.00
140.00
172.00
204.00
236.00
280.00
344.00
408.00
472.00
560.00
688.00
816.00
944 .00
1120.0
1376.0
1632.0
1888.0
2240.0
2752.0
3264.0
3776.0
4480.0
5504.0
6528.0
7552.0

844 8+0-8104«0- 85600

10496.
12544,
14592.
168S6.
20992.
25088.
29184%.

10752.
12800.
14848.
17408.
21504.
25600.
29696.

11008
13056.
15104.
17920.
22016.
26112.
30208.

4
1.1250
1.3750
1.6250
1.8750
2.2500
2.7500
3.2500
3.7500
4.5000
5.5000
6.5000
7.5000
9.0000
11.000
13.000
15.000
18.000
22.000
26.000
30.000
36.000
44.000
52.000
60.000
72.000
88.000
104.00
120.00
144 .00
176.00
208.00
240.00
288.00
352.00
416.00
480.00
576.00
704.00
832.00
960.00
1152.0
1408.0
1664.0
1920.0
2304.0
2816.0
3328.0
3840.0
4608.0
5632.0
6656.0
7680.0

11264.
13312.
15360.
18432.
22528.
26624.
30720.

5
1.1563
1.4063
1.6563
1.9063
2.3125
2.8125
3.3125
3.8125
4.6250
5.6250
6.6250
7.6250
9.2500
11.250
13.250
15.250
18.500
22.500
26.500
30.500
37.000
45.000
53.000
61.000
74.000
90.000
106.00
122.00
148.00
180.00
212.00
244.00
296.00
360.00
424.00
488.00
552.00
720.00
848.00
. 976.00
1184.0
1440.0
1696.0
1852.0
2368.0
2880.0
3392.0

6
1.1875
1.4275
1.6875
1.9275
2.3750
2.8750
3.3750
3.8750
&.7500
5.7500
6.7500
7.7500
9.5000
11.500
13.500
15.500
19.000
23.000
27.000
31.000
38.000
46.000
54.000
62.000
76,000
92.000
108.00
124.00
152.00
184.00
216.00
248.00
304.00
368.00
432.00
496.00
608.00
736.00
864.00
992.00
1216.0
1472.0
1728.0
i$84.0
2432.0
2944.0
3456.0

3904.0 3968.0
4736.0 4864.0
5760.0 5888.0
6784.0 6912.0
7808.0 793¢.0

11520.
13568.
15616.
18944.
23040.
2T136.
31232,

9216.0.9472.0.9728.0

11776
13824.
15872
18456.
22552.
27648.
31744,

7
1.2188
1.46€62
1.7166
1.S66E
2.4375
2.9375
3.4375
3.9375
4.8755
5.8750
6.8750
7.8750
9.7500
11.750
13.750
15.750
19.500
23.500
27.500
31.500
39.000
47.000
55.000
63.000
78.000
94.000
110.00
126.00
156.00
188.00
220.00
252.00
312.00
376.00
440.00
504 .00
624.00
752.00
880.00
1008.0
1248.0
1504.0
1760.0
20616.0
2496.0
3008.0
3520.0
4032.0
4992.0
6016.0
7040.0
8064 .0

2884 ,.0

12032.
14083C.
161z¢&.
193968,
24064,
2816C.
32256.

A-13

71-V

TABLE E
OCTAL 004 104
00 O, T 4,0083-292
01 2.8883=275 T7:3941=~273
02 543280256 143640=253
03 9,8284=237 2.5161=234
04 148130-217 4+6413-215
__05_,3.3444'198 805518'196
06 641694=179 145794=176
07 1.1381=159 2.9134~157
10 2.0993”140 503743"138
11 3.8726=-121 9.9138-119
12 7.1437=102 1,8288£-99
13 1.3178E=82 3,3735E=80
14 244309E=63 64.2230E=61
15 4,4842E=44],1479E=4])
16 8,2718E=25 2.1176E=22
#17 1.5259E~05 3.9063E=03
TR0 1440748414 3,6029E+16
21 2,5961FE+33 6,6461E435
22 4.7B90E+52 1.,2260E+55
23 B.B342E+T| 2+2616E+74
24 1,6296E+91 4,1718E£+93
25H~300061*110 Te6957+112
26 5¢5453+129 144196+132
27 1.,0229+149 2,6187+151
30 1.38T70+168 4,8307+170
31 3.,4809+18B7 8,9110+189
32 64,4211+206 1.6438+209
33 118454226 3403234228
34 2,18504245 5,5935+247
35 4,0306+264 1,0318+267
34 T7.63514282 1.9a34+2RA
37 3.5111+305

137154303

Coordinates represent the five leftmost octal digits.
represents the octal word:

FULL RANGE OCTAL FLOATING POINT TO DECIMAL CONVERSTON

206
1,0261=289

1.8929~270
3.4918=251
6.4411-232
1.1882=212

2¢1918=~193

440432~174
T7+4583~155

1.3758~135
2-5379‘116

4 ,6817E-97

B+.6362E~78
1¢5931E-58
2+938T7E~=39
544210E=~20
1.0000E+00

942234E+18 2

1.7014E+38
3.1386E+57

5e78B96E+76

100680E096
109701{115
3¢6342+134
6,7039+153

1,2367+173
242812+192
442081+211
Te7626+230
1043190250

2.6415+¢269

4_R727.2RR
8.9885+307

304
2,6269-287

8,9389=249
1:6489-229
3.0417=210
5.6110=191
1.0351~171
1.9093-152

3.5221~133
6.49T71=114
1,1985E=94
2.2109E=75
4.07B3E~56
Te5232E=37
143878E=17
2.5600E+02
2.3612E+21
4 3556E+40
’0347E‘59k
1.4821E+79
2.7341E+98
5.,0435+117
9,3035+136
1,7162+156

3.16580175
5.8399+194
1.0773+214
1.9872+233
3,66584+252
6.,7622+271
13267ﬁ099!

2.3010+310

17 004 00000 00000 00000,

are represented as + nnn, rather than Et nn.

404

T6,7249-285
4.8458~268

142405265
2.28844246
4,2213=227
T7.7869-208

1.4364~188

2,6497=169
408819?150

9,0166=131
1.6633~111
3,0682E=-92
5,6598E~ 73
1.0440h?53
1.9259&”34
3.5527E~15
6,5536E+04

6.0446E423
1.1150E+43
2.0569€E+62
3.7943E+8]
6,9992+100

1,2911+120

2.3817+139
4,39354158

8.104501?7
1449504197
2.7578+216
5,0873+235
9,38444+254
147311+274
2.193342017
5.8907+312

Example:

- 506

5e8582=244
‘1.0806=224
1e9934=205
3,6772~186
6.7833~167
1.2513~147

2,3082-128
44,2580~109
7.8545E=90
144489E=T0

246728E=51

4 9304E'32
009495“13
1 6TTTE+O7

1eS4T4ES2H
- 8545E+45
542656E4+64

947133E+83
1.7918+103
3.3053+122
6409724141
1.1247+161

207484180
3482734199
T.0600+218 1
130234238
2.40240257
4443174276
R::7qﬂs?qg
1450804315

1.7216=282
341757263

604

%24072-280
8,1299-261

124997'241
2:7665=222
5¢1032-203
9-4137 184
147365~164%
302033‘145

5:9091-126
1,0900-106
240108E=87
3,7092E~68
648423E-49
102622E-29
243283E=10
442950E+09

3.9614E+28

7¢3075E+47
1.34aoE+67
2+4866E+86
4,5870¢105
Be4615+124
156094144
248793+163

5431144182
9.7978+201

1.8074+221
3433404240
6415024259
1413454279
E:QQ?R&?QQ
3.8605+317

706

1,1282-277
2.0812~258 _

3.8392-239
7.0821-220
1.3064-200
244099~181
4,4455=162
842005=143

1.5127-123
2.,7905~104
5,1476E-85
9,4956E=66
1.7516E=46
3923125'27
5096055-08
1,0995E+12

1.0141E+31
1.8707E+50
3,4509E+69
6+3657E+88
1,1743+108
2016614127
3e 99580146
7,3710+165

1.35970185
2.5082+204
4,6269+223
8,5351¢+242
1,5744+262
2.9043+281
‘-'\- AR 7‘;;1!\!\
9.8329+319

The first column of the starred line

Powers .of 10 greater than +99 or less than -99

TABLE F CONVERSION TABLE QF
OCTAL-DECIMAL INTEGERS
o 1 2 3 4 5 6 7 [1 2 3 4 5 6 7
0000 | COOO 0001 0002 0003 0004 0005 0006 0007 0400] 0256 0257 0258 0253 0260 0261 0262 0283
0010| 0008 0003 0010 0011 0012 0013 0014 0015 0A10| 0264 0265 0266 0267 0268 0269 0270 0271
0020 0018 0017 0018 0013 0020 0021 0022 0023 0420f 0272 0273 0274 0215 0278 0277 Q278 0273
0030| 0024 0025 0026 0027 0028 0G23 0030 0031 0430| 0280 0281 0282 0283 (0284 Q285 0288 0287
0040 | 0032 0033 0034 0035 0036 0037 0038 0039 0440| 0288 0289 0290 0291 0292 07293 0294 0295
00s0! 0040 004) 0042 0043 0044 0045 0045 004) 0450{ 0296 0297 0288 0299 0300 0301 0302 0303
0060 | CO48 0049 0050 0051 0052 0053 0054 0055 0450] 0304 0305 0306 0307 0308 0309 @31 0370
0070)| 0056 0057 0058 0OSS 0060 008! 0062 0063 0470 0312 0313 0314 0315 0316 0317 0318 09
0100 0064 0065 0068 0087 0068 0068 0070 007} 0500{ 0320 0321 0322 0323 0324 0325 038 0327
o110 0072 0073 ©0O74 0075 0076 0077 0078 0079 0510| 0328 0329 0330 0331 0332 0333 0334 0335
0120} 0080 0081 0082 0083 0084 (0085 0088 0087 0520] 0338 0337 0338 0333 0340 0341 0342 03Q
0130| 0088 0083 00SO 0031 0092 0093 0034 0095 0530 0344 0345 0348 0347 0348 0349 0350 0351
0140 | 009 0097 0038 0099 0100 0101 0102 0103 gs40] 0352 0353 0354 0355 0356 0357 0358 0358
0150 0104 0105 01086 0107 0108 0109 0110 O 0550] 0380 0381 0362 0383 0364 0365 0368 0387
0180} 0112 G113 014 011S 0116 0117 0118 ONY 0560 0368 0369 0376 0371 0372 0373 0374 0375
0170 0120 0121 0122 0123 0124 0125 0128 Q127 0570{ 0378 0377 0378 0379 0360 03831 0382 0383
0200] 0128 0123 0130 0131 0132 0113 0134 0135 0500 0384 0395 0386 0387 0388 0388 0390 0331
0210| 0138 0137 0138 0133 0140 0141 012 0143 060l 0332 0333 0394 0385 0396 0397 0398 0338
0220| 0144 0145 0146 0147 0148 0149 0150 0151 0620| 0400 040) 0402 0403 0404 0405 0408 0407
0230} 0152 Q153 0154 0155 0156 0157 0158 0153 0630] 0408 0409 0410 0411 0412 0413 04l4 0415
0240} 0180 0161 0162 (0163 0164 0185 0166 0167 0840 0418 0417 0418 0419 0420 0421 0422 0423
0250 | 0168 0188 0170 0171 QI72 0173 0174 017§ 0650| 0424 0425 0428 0427 0428 0429 0430 0431
0280] 0178 0177 0178 0173 0180 0181 0182 0183 0660| 0432 0433 0434 0435 0438 0437 0438 0439
0270| 01s4 0185 0186 0187 0188 0189 0130 019 0670] G440 0441 0442 D443 0444 DMS OME 0447
0300 | 0192 0133 0194 0195 01% 0197 0188 0199 0700| 0448 0449 0450 0451 0452 O0AS3 0454 0455
0310 | 0200 0201 0202 0203 0204 0205 0206 0207 0710 0458 0457 0458 0459 0460 0481 0482 0483
0320 0208 0209 0210 0213 0212 0213 0214 0215 0720] 0484 0485 0488 0467 0488 0469 0470 D471
0330 0218 0217 0218 0219 0220 0221 0222 0223 0730] 0472 0473 0474 0475 0476 0477 0478 0479
0340 | 0224 0225 0228 0227 0228 0229 0230 0231 0740| 0480 0481 0432 0483 0434 0485 0488 0487
0350 0232 0233 0234 0235 0238 0237 0238 0239 0750] 0488 0489 0430 0491 0432 0493 0434 0495
0360 | 0240 0241 0242 0243 0284 0245 0248 0247 0760| 0436 0437 0498 0493 0500 0501 05062 0503
0370 0248 0249 (0250 0251 0252 0253 0254 0255 0770| 0504 0505 0508 0507 0508 0508 0510 0SH1
] 1 2 3 L 5 6 7 [+] 1 2 3 4 5 [} 7

1000 | 0512 0513 0514 0515 0516 0517 05)8 0518 1400| 0768 0769 0770 0771 OF72 0773 0774 0775
1010 | 0520 0521 0522 0523 0524 0525 0526 0527 10} 0776 0777 0778 0779 G780 (0781 0782 0783
1020 | 0528 0529 0530 0531 0532 0S33 0534 0535 1420| Q784 0785 0786 0187 0788 0783 0790 0791

1030 | 053¢ 0537 0538 0539 0540 0541 0542 0543 1430| 0792 0793 0734 0795 0796 0797 01%a 0798
1040 | 0544 0545 0548 0547 0548 0549 0550 0551 1440| 0800 0801 0802 083 0804 0805 0808 0807

1050 | 0552 0553 0594 0555 0S56 0S57 0558 0958 14501 0308 0803 0810 0811 0412 0813 0814 0815
1060 | 0560 0S61 D562 0563 0564 0565 0566 0567 1460| 0816 0817 0818 0819 0820 0821 0822 0823
1070 | 0s88 0568 0570 0571 0572 0573 0674 0575 1470| 0824 0825 0826 0827 0828 0829 0830 0831

1100 | 0576 0577 0578 0579 0580 0581 0582 (0583 1500 | 0832 0833 0834 0835 083§ 0837 0838 0439
111D | 0584 0585 0586 0587 0588 0589 0530 0591 1510 | 0840 0841 0842 (0843 (844 (0845 0845 0847
1120 | 0592 0593 0594 0585 0536 0597 0598 0599 1520| 0848 0843 0850 0851 0852 (0853 0854 (08sS
1130 | 0500 0601 0602 06603 0604 0605 0806 0607 1530| 0858 0857 0858 0859 0860 086 0862 0863
1140 | 0608, 0608 0610 0611 0612 0613 0614 0615 1540 | 0864 0885 0856 0867 0868 0869 0870 0871

1150 06168 0817 0618 0619 0620 0621 0622 0623 1550 | 0872 0873 0874 0875 0876 03877 0878 0879
1166 | 0624 0625 0626 0627 0628 0823 0630 0831 1560 | 0880 0881 0882 0883 0884 (0885 0886 088)

1170 [0632 0633 0834 0635 0636 0637 0518 0639 1570| 0888 0889 089 0891 0892 0893 0894 0835
1200 | 0540 0641 0642 0643 0644 0645 0646 0647 1600| 0898 0837 0898 0899 0900 0901 0902 0903
1210 | 0648 0643 0650 0651 0652 0853 0654 0655 1610 | 0904 0905 0908 0807 Q%08 (0303 0810 09N

1220 | 0656 0657 0658 0659 0660 0661 0662 0663 16201 0912 0913 0914 0315 0916 0917 0918 0919
1230 | 0564 0665 0668 0667 0668 0669 0670 0671 1630} 0320 0921 0922 0923 0924 0925 0928 (0327
1240 | 0872 0§73 0574 ©£S?S (0878 0877 Q678 Q8IS 154c| 0928 0929 0930 0931 0932 0933 0934 0935
150 | ubsG CoMi ussz G883 U594 NS5 uedd Goal i550| 0336 0037 o538 Uu3d 330 981 688z O3
1260 [0688 0639 0630 0631 0632 0693 0634 0635 1660 | 0344 0945 0948 0947 0348 0949 0950 0951

1270 | 063 0697 0638 0699 ©700 Q701 0702 0703 1670 0952 0953 0954 0955 0956 0957 0958 0958
1300 | 0704 0705 0706 0707 0708 0709 0710 O 1700| 0960 0961 0362 0963 0964 0965 0966 0967
1310 { 0712 073 0714 G715 0118 0717 0718 0N9 1710] 0968 0969 0970 0971 0972 0973 0974 0915
1320 | 0720 07121 0722 0723 0724 0725 072 07127 1720| 0976 0877 0978 0979 0980 Q381 (0982 (0963
1330 | 0728 0729 0736 0731 0732 07133 0734 0735 1730| 0384 0385 0986 0987 0S38 0369 0930 0391
1340 1 0738 073! 9738 0739 0740 0741 0142 0743 1740] 0992 0933 0934 0995 099 0997 0938 0939
1350 | 0744 0745 0746 0747 Q748 0249 0150 0751 1750| 1000 1001 1002 1003 1004 1005 1006 1007
1360 | 0752 0753 0754 0755 0756 0757 0758 0758 1760| 1008 1008 1010 1011 1012 1013 1014 1015
13/0 | 0760 0761 0762 0763 0764 0765 (0168 0767 1770| 1016 1017 1018 1019 1020 1020 1022 1023

0000 0000
L 1]
01717 osi
(Octal) {Oegimal}
Octél Decimal
12000 . anae
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20430
60000 - 24578
70000 - 28872
1000 0512
L] ts
m 1023
{Octal) (Dacimal)

A-15

A-16

OCTAL/DECIMAL INTEGER CONVERSION TABLE (Cont'd)
0 1 2 3 4 5 6 7 [1 2 3 4 s 6 7
2000 1024 2000 | 1024 1025 1026 1027 1028 1029 1030 1031 2400 | 1280 1281 1282 1283 1284 1285 1286 1287
‘o fa 2010 [1032 1033 1034 1035 1036 1037 1038 1039 2410 | 1288 1289 1290 1291 1292 1293 1294 1295
27 1535 2020 {1040 1041 1042 1043 1044 1045 1046 1047 2420 | 1296 1297 1298 1299 1300 1301 1302 1303
(Octah (Decimal) 2030 | 1048 1043 1050 105! 1052 1053 1054 1055 2430 | 1304 1305 1306 1307 1308 1309 1310 131
2040 | 1056 1057 1058 1059 1060 1061 1062 1063 2440 | 1312 1313 1314 1315 1316 1317 1318 1319
2050 |1064 1085 1066 1067 1068 1069 1070 1071 2450 | 1320 1321 1322 1323 1324 1325 1326 1327
Octdt Decimal 2060 [1072 1073 1074 1075 1076 1077 1078 1079 2460 | 1328 1323 1330 1331 1332 1333 1334 1335
10000 - 4098 2070 {1080 108) 1082 1083 1084 1085 1086 108/ 2470 | 1336 1337 1338 1339 1340 1341 1342 1343
e sz 2006 | iGes 063 103D 1033 iUwe 053 iube 1093 AL RTINS L TR LS AL TL NN LT I L R I
30000 - 12288 2100 1086 1097 1098 1033 1100 1101 1102 1103 2510 | 1352 1353 1354 1355 1356 1357 1358 1359
40000 16384 2120 {1104 1105 1106 1107 1108 1109 1110 1N 2520 | 1360 13671 1362 1363 1364 1365 1366 1367
50000 - 20480 2130 {1112 113 1 s N6 17 1118 1ns 2530 | 1368 1369 1370 1371 1372 1373 1374 1375
60000 24576 2140 {1120 M0 M22 123 124 1125 126 N2 2540 | 1376 1377 1378 1379 1380 1381 1382 1383
10000 28672 2150 {1128 1129 1130 131 1132 1133 1134 13 2550 | 1384 1385 1386 1387 1388 1389 1390 139
2160 [1136 1137 §138 1139 1140 114) 1142 1143 2560 | 1392 1333 1334 1395 139 1397 1398 1399
2170 [1144 1145 1146 1147 1148 1149 1150 1151 2570 | 1400 1401 1402 1403 1404 1405 1406 1407
2200 {1152 1153 1154 1155 1156 1157 1158 118 2600 | 1408 1409 1410 1411 1412 1413 1414 415
2210 (1160 1160 1162 1163 1164 1165 1166 1167 2610 | 1416 1417 1418 1419 1420 1421 1422 1423
2220 {1168 1169 1170 171 1172 1113 1174 175 2620 | 1424 1425 1426 1427 1428 1429 1430 1431
2730 (1176 1977 1178 1979 180 1I8F 1182 1183 2630 | 1432 1433 1434 1435 1436 143) 1438 1439
2200 | 1184 1185 1186 1187 1188 1189 1190 1191 2640 | 1440 1441 1442 1443 1444 1445 1446 1447
2250 (1192 1193 1194 1195 1196 1197 1198 1199 2650 | 1448 1443 1450 1451 1452 1453 1454 1455
2260 |1200 1201 1202 1203 1204 1205 1206 1207 2660 | 1456 1457 1458 1453 1460 1461 1462 1463
2270 (1208 1209 1210 1211 1212 1213 1214 1215 2670 | 1464 1465 1466 1467 1468 1469 1470 1471
2300 1216 1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 1474 1475 1476 1477 1478 1479
2310 1228 1225 1226 1227 1228 1229 1230 1231 2710 | 1480 1481 1482 1483 1484 1485 1486 148/
2320 |1232 1233 1234 1235 1236 1237 1238 1239 2720 | 1488 1489 1490 1491 1492 14393 1434 1495
2330 | 1240 1240 1242 1243 1244 1245 1246 1247 2730 | 1496 1497 1498 1493 1500 1501 1502 1503
2340 11248 1243 1250 125) 1252 1253 1254 1255 2740 [1504 1505 1506 1507 1508 1519 1510 1511
2350 |1256 1257 1258 1259 1260 1261 1262 1263 2750 | 1512 1513 1514 1515 1516 1517 1518 1519
2360|1264 1265 1266 1267 1268 1269 1270 127} 2760 | 1520 1521 1522 1523 1524 1525 1526 1527
2370 {1272 1213 1214 1215 1276 1277 1218 1279 270 | 1526 1529 1530 153F 1532 1533 1534 1535
[} 1 2 3 a 5 6 7 o 2 3 4 5 6 7
3000 1538 3000 | 1536 1537 1538 1539 1540 1541 1542 1543 3400 | 1792 1793 1794 1795 179 VI3 1798 1799
fo to 3010 | 1544 1545 1546 1547 1548 1549 1550 1551 3410 | 1800 1801 1802 1803 1804 1805 1806 1807
i 2047 3020 {1552 1553 1558 1555 1556 1557 1558 1559 3420 | 1808 1809 1810 181} 1812 1813 1814 181§
{Octal) |Decima) 3030 | 1560 1561 1562 1563 1564 1565 1566 1567 3430 [1816 1817 1818 1819 1820 1821 1822 1823
3040 {1568 1569 1570 1571 1572 1573 1574 1575 3440 | 1824 1825 1826 1827 1828 1823 1830 183)
3050 [1576 1577 1578 1579 1580 1531 1582 1583 3450 | 1832 1833 1834 1835 1836 1837 1838 1839
3060 | 1584 1585 1586 1587 1588 1589 1590 1591 3460 | 1840 184) 1842 1843 1B44 1885 1846 184/
3070 {1592 1593 1594 1595 1596 1597 1598 1599 3470 | 1848 1849 1850 185} 1852 1853 1854 1855
3100 | 1500 1601 1602 1603 1604 1505 1606 1607 3500 | 1856 1857 1858 1850 1860 1861 1862 1883
3110 {1608 1603 1510 1611 1612 1613 1614 1615 3510 | 1864 1865 1866 1867 1868 1863 1870 1871
3120 {1616 1617 1618 1609 1620 1621 1622 1623 3520 | 1872 1873 1874 1875 1816 1877 1878 1879
3130 |1624 1625 1626 1627 1628 1629 1630 1631 3530 | 1880 1881 1882 1883 1884 1885 1386 148/
3140 {1632 1533 1634 1635 1636 1637 1638 1639 3540 | 1888 1889 1890 1891 1892 1893 1834 1895
3150 [1640 1641 1542 1643 1644 1645 1646 1647 3550 | 1896 1897 1A98 1899 1900 1901 1902 1903
3160 {1648 1549 1650 1651 1652 1653 1654 1655 3560 | 1904 1905 1906 1907 1908 1909 1910 191}
3170 | 1656 1657 1658 1659 1660 1661 1662 163 3570 | 1912 1913 1914 1915 1916 1917 1918 1919
3200 |1664 1665 1666 1667 1668 1669 1670 1671 3500 | 1920 1921 1822 1923 1928 1925 1926 1927
3210 |1672 1673 1674 1§15 1616 - 1677 16J8 1679 3610 | 1928 1929 1930 1931 1932 1933 1934 1935
3220 |1680 1681 1682 1683 1684 1685 1686 1687 3620 | 1936 1937 1938 1939 1940 1941 1942 1943
3230 {1688 1689 1630 1691 1692 1693 1634 1695 3630 | 1944 1945 1946 1947 1348 1943 1950 1951
3240 {1696 1697 1698 1693 1700 1701 1702 1703 3640 | 1952 1953 1954 1955 1956 1957 1958 1959
RELIN S VLTS T ST R D1 B 1.5 T B TR £ ST 21 28En | ovasn 1ngy 1oe2’ inCy o oaner GRS es iner
3260 [1712 13 ame s ans ang ang g 3660 | 1968 1969 1970 1971 1972 1973 1974 1975
3270 {1720 120 1722 1723 1128 125 1726 1727 3670 | 1976 1977 1978 1979 1980 1981 1982 1983
3300 [1728 1729 1730 1731 1732 1733 1734 1735 3700 | 1984 1985 1986 1987 1988 1983 1990 1991
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710 | 1992 1993 1994 1995 1996 1997 1998 1999
3320 1744 1745 1746 1747 1748 1743 1750 1151 3720 | 2000 2001 2002 2003 2004 2005 2006 2007
3330 {1752 1753 1754 1155 1756 1757 1758 1759 3730 | 2008 2009 2010 2011 2012 2013 2014 2015
3340 {1760 1761 1762 1763 1764 1765 1766 1767 3740 | 2016 2017 2018 2019 2020 2021 2022 2023
3350 1768 1769 1730 171 1772 1113 1778 1118 3750 | 2024 2025 2026 2027 2028 2029 ,2030 2031
3360 (1776 1777 1778 1779 1780 1781 1782 1783 3760 | 2032 2033 2034 2035 2036 2037 2038 2039
3370 (1784 1785 1786 18] 1788 1789 1790 1791 3770 | 2040 2041 2042 2043 2044 2045 2045 2047

OCTAL/DECIMAL INTEGER CONVERSION TABLE (Cont'd)

o 1 2 3 &4 5 6 17 o 1 2 3 4 5 6 7
4000 (2048 2049 2050 2051 2052 2053 2054 2055 4100| 2304 2305 2306 2307 2308 2309 2310 2311 | agog 2048
4010 | 2056 2057 2058 2059 2060 206) 2062 2063 a0 2312 2313 2314 N5 2316 2317 2318 2319 0 o
020 2064 2065 2066 206/ 2068 2063 2070 2071 an| 220 22 2 W3 WU 5 W WU | 4 2559
4030 (2072 2073 2024 2075 2076 2077 2078 2079 4430 2328 2329 2330 2331 2332 2333 2334 2335
4040 2080 2081 2082 2083 2084 2085 2086 2087 aug| 2336 2337 2338 2339 2340 2341 2347 2363 | (0ct# (Decmall
4050 | 2088 2089 2090 2091 2092 2093 2094 2085 3450] 344 2345 2346 2347 2348 2345 2350 2358
4060 | 2096 2097 2038 2099 2100 2101 2102 2103 480 2352 2353 2354 2355 2356 2357 2358 2359
4070 [2104 2105 2106 2107 2108 2103 2110 2113 w70| 2360 2361 2362 2383 2364 2365 2366 2367 Detal Decimal

naen . 4oty

4100 {2112 213 214 2115 2116 2117 2118 219 4s00| 2388 2389 2370 237V 2372 2373 2314 2375 20000 8192
Q0 (2120 2120 2122 2123 2124 2125 128 2127 as10| 2376 2377 2318 2379 2380 2381 2382 2383 30000 . 12258
4120 {2128 2129 2130 2131 2132 2133 213 135 4520 2334 2385 2386 2387 2388 2389 2390 2391
4130 {2136 2137 2138 2133 2140 2141 2142 2143 4530 2392 2393 2334 2395 2396 2397 2398 2399 40000 - 16384
4140 | 2144 2145 2146 2147 2148 2149 2150 215) 4540 | 2400 2401 2402 2403 2404 2405 2406 2407 50000 - 20480
4150 [2152 2153 2154 2155 2156 2157 2158 2159 4550 | 2408 2408 2410 2411 2412 2413 2414 2415 60000 - 24576
4160 | 2160 2161 2162 2163 2164 2165 2166 2167 4560 | 2416 2417 2418 2419 2420 2421 2822 7423 70000 - 28672
4170 {21868 2169 2170 2171 2172 2113 2174 7S 4570 | 2424 2425 2426 2427 2028 2429 2430 243)
4200 {2176 2177 2178 2179 2180 2181 2182 2183 4500 | 2432 2433 2434 2435 2436 2437 2438 2439
4210 | 2184 2185 2186 2187 2188 2189 2190 2191 4610 2040 2441 2442 2443 2844 2445 2446 2447
4220 {2192 2193 2134 2195 219 2197 2198 2199 4620 2448 2449 2450 245) 2452 2453 2454 2455
4230 {2200 2201 2202 2203 2204 2205 2206 2207 4630 | 2456 2457 2458 2453 2460 2461 2462 2463
4240 | 2208 2203 2210 2211 2212 2213 2214 2215 4540 | 2084 2885 2486 2457 2468 2469 2470 2471
4250 [2218 2217 2218 2219 2220 2221 222 1N 4850 | 2472 2473 2474 2475 2476 2477 2478 2479
4260 | 2224 2225 2226 2221 2228 2229 230 231 4560 | 2480 2481 2482 2483 2484 2485 2435 2487
4270 | 2232 2233 2234 2235 2236 2231 2238 2238 4570 | 2488 2489 2490 2491 2492 2433 2434 2495
4300 | 2240 2241 2202 2203 2204 2245 2206 224 4700 2496 2497 2498 2499 2500 2501 2502 2503
4310 | 2248 2249 2250 225} 2252 2253 2254 2255 4710| 2504 2505 2506 2507 2508 2509 2510 2511
4320 | 2256 2257 2258 2259 2260 2261 2262 2263 4720 2512 2513 2514 2515 2516 2517 2518 2519
4330 | 2264 2265 2266 2267 2268 2263 2210 227 4730(2520 2521 2522 2523 2524 2525 2526 2527
40 | 212 2213 2204 2215 2218 2211 2218 2219 4740(2528 2529 2530 2531 2532 2533 2534 2535
4350 | 2280 2281 2287 2283 2284 2285 2286 2287 4750| 2536 2537 2538 2539 2540 2541 2542 2543
4360 | 2288 2289 2290 2291 2292 2293 2294 22% 4760| 2548 2545 2546 2541 2548 2549 2550 2551
4370 | 2296 2297 2298 299 2300 2301 2302 2303 4770] 2552 2553 2554 2855 2556 2557 2558 2558

o 1+ 2 3 &4 5 6 7 o 1 2 3 4 s 6 17
5000 | 2560 2561 2562 2563 2564 2565 2566 2567 5400 | 2816 2817 2818 2819 2820 2821 2822 2823 | s5ggq 2560
5010 | 2568 2569 2570 2571 2572 2573 2574 2515 5410 | 2804 2825 2826 2827 2828 2829 2830 2831 © o
5020 | 2516 2577 2578 2579 2580 2581 2582 2583 5420{ 2832 2833 2834 2835 2836 2837 2838 2839
5030 | 2584 2585 2586 2587 2588 2589 2500 2591 5430 | 2840 2841 2842 2843 2884 2845 2846 2847 | 7 3071
5040 | 2592 2593 2594 2595 2596 2597 2598 2599 5440| 2848 2849 2850 2851 2852 2853 2854 2855 | (0ctab) (Deamal)
5050 [2600 2601 2602 2603 2604 2605 2606 2607 5450 | 2856 2857 2858 2859 2850 2861 2852 2863
5050 | 2608 2609 2610 2611 2612 2613 2614 2615 5450 2864 2855 2866 2867 2868 2859 2870 2871
5070 | 2616 2617 2618 2613 2620 2621 2622 2623 5470 2872 2873 2874 2875 2876 2877 2878 2879
5100 | 2624 2625 2626 2627 2628 2629 2630 2631 5500 | 2880 2881 2882 2883 2884 2885 2886 2887
5110 | 2632 2633 2634 2635 2636 2637 2638 2639 5510{ 7888 2889 2890 2891 2892 2893 2894 2895
5120 | 2640 2641 2642 2643 2644 2645 2645 2647 5520| 2896 2897 2898 2893 2900 2901 2902 2903
6130 | 2648 2649 2650 2651 2652 2653 2654 2658 5530| 7904 2905 2906 2907 2908 2909 2910 2911
5140 | 2685 2657 2658 2659 2660 2661 2662 2663 5540 2912 2913 2914 2915 2916 2917 2918 2919
5150 | 2654 2665 2666 2667 2668 2669 2670 2671 5650| 2920 2921 2022 2923 2924 2975 2926 2927
5160 | 2672 2673 2674 2675 2676 2677 . 2678 2679 5560| 2928 2929 2930 2931 2932 2933 2934 2935
S\70 { 2680 2681 2682 2683 2684 2685 2686 2687 5570 | 2936 2937 2938 2033 2940 2941 2942 2943

. -

5200 | 2688 2689 2690 2631 2692 2693 2634 2695 5S600| 2944 2945 2946 2947 2948 249 2950 2951
5210 | 269 2697 2698 2699 2700 2701 2702 2703 5610| 2952 2953 2954 2955 2956 2957 2958 2959
5220|2704 2705 2706 2707 2708 2703 2710 2711 5620] 2960 2961 2962 2963 2964 2965 2966 2967
5230 | 2712 2713 2714 2715 2016 2737 28 2719 5630| 2968 2963 2970 2971 2972 2973 2974 2975
san | Mo 2725w I o2 a1 2B L 354G 2373 2397 333 9819 JAmn %2 9 ieED
5250 | 2728 2723 2730 2731 2132 2133 W} 2735 5650| 2984 298 2986 2987 2988 2389 2930 2991
5260 | 2736 2137 2738 2733 2780 2741 2142 2143 5660| 2992 2993 2994 2995 2996 2997 2938 2999
5270 | 2744 2745 2746 2747 2748 2783 2750 2751 5570| 3000 3001 3002 3003 3004 3005 3006 3007
5300 | 2752 2753 2% 2155 2156 2757 2758 2759 5700| 3008 3009 3010 3011 3012 3613 3014 3015
5310 | 2760 2761 2762 2763 2064 2165 2766 2161 5710(3016 3017 3018 30'9 3020 3021 3022 3023
5320 | 2768 2769 2770 2N 2172 2073 2174 2775 5720| 3024 3025 3026 3027 3028 3029 3030 3031
5330 | 2776 2777 2778 2779 2780 2731 2782 2783 57301 3032 3033 3034 3035 3036 3037 3038 3039
5340 | 2784 2785 2786 2787 2788 2783 2790 279 5740| 3040 3041 3042 3043 3044 3045 3045 3047
5350 | 2792 2793 2194 2795 21% 2191 2198 2799 5750| 3048 3049 3050 305 3052 3053 3054 3055
5360 | 2800 2801 2802 2803 2804 2805 2806 2807 5760| 3056 3057 3058 3059 3060 3061 3062 3063
5370 | 2808 2809 2810 2811 2812 2813 2814 2815 5770| 3064 3085 3066 3067 3068 3069 3070 3071

A-17

OCTAL/DECIMAL INTEGER CONVERSION TABLE (Cont'd)

6000
to
6777
{Octat)

Octal

1000
10Co0 -

20000

30000 -

40000

50000 -
60000 -
70000 -

7000
to
mn
(Octal)

3072
to
3583
{Decimal)

Oecimal
anag
8192

12288
16384
20480
24576
28672

3534
to
4095
{Oecrmal)

(4] 1 2 3 4 5 [7 Q 1 2 3 4 5 6 7
6000 | 3072 3073 3074 3075 3076 3077 3078 3079 6400 | 3328 3329 3330 333) 3332 3333 3334 3335
6010 | 3080 3081 3082 3083 3084 3085 3086 308/ 6410 | 3336 333/ 3338 3339 3340 3341 3342 3343
6020 | 3088 3083 3090 3091 3082 3093 3094 3095 6420 | 3344 3345 3346 3347 3348 3349 3350 3351
5030 | 3096 3097 3098 303% 3100 3101 3102 3103 6430 | 3352 3153 3354 3355 3356 3357 3358 3359
6040 | 3104 3105 3106 310/ 3108 3109 3110 311 6440 | 3360 3361 3362 3363 3364 3365 3366 336/
6050 | 3112 3113 3114 3115 3136 3157 3118 3119 6450 | 3368 3369 3370 3371 3372 3373 3374 3375
6060 | 3120 3121 3122 3123 3124 3125 3128 3127 6460 | 3376 3377 3378 3379 3380 3381 3382 3383
6070 | 3128 3129 3130 3131 332 3133 3134 3135 6470 | 3384 3385 3386 3387 3388 3389 3330 339t
6100 | 3136 3137 3138 3133 3140 3141 3142 314, 6500 | 3392 3393 3394 3395 3336 3397 3398 3399
6110 | 3144 3145 3136 3147 3148 3149 3150 31%) 6510 | 3400 3401 3402 3403 3404 3405 3406 3407
6120 | 3152 3153 3154 3155 3156 3157 3158 3158 6520 | 3408 3409 3410 3411 3412 I3 U4 S
6130 | 3160 3161 3162 3163 3164 3165 3166 3167 6530 | 3416 3417 3418 3419 3420 3421 3422 3423
6140 | 3168 3169 3170 3111 3172 3173 374 3115 6540°| 3424 3425 3426 3427 3428 3429 3430 343
6150 | 3176 3177 3178 3179 3180 3181 3182 3133 6550 | 3432 3433 3434 3435 3436 3437 3438 3439
6160 | 3184 3185 3186 3187 3188 3189 31%0 39N 6560 | 3440 344) 3442 3443 3444 3445 3445 3447
6170 | 3192 3183 3194 - 3195 3196 3197 3198 3199 6570 | 3448 3449 3450 3451 3452 3453 3454 3455
6200 | 3200 3201 3202 3203 3204 3205 3206 3207 6600 | 3456 3457 3458 3459 3460 3461 3452 3483
6210 | 3208 3209 3210 3211 3212 3213 3214 3215 6610 | 3464 3465 3466 3457 3468 3469 3470 W
6220 | 3216 3217 3218 3219 3220 3221 3222 3223 6620 13472 3473 3474 3475 3476 3477 3418 3419
6230 | 3224 3225 3226 3227 3228 3229 3230 3231 6630 | 3480 3481 3482 3483 3484 3485 3486 3487
6240 | 3232 3233 3234 3235 3236 3237 3238 3239 6640 | 3488 3489 3490 3491 34327 3493 3494 3495
6250 | 3240 3241 3242 3243 3244 3245 3246 3247 6650 | 3496 3497 3498 3499 3500 3501 3502 3503
6260 | 3248 3249 3250 3250 3252 3253 3254 3255 6660 | 3504 3505 3506 3507 3508 3509 3510 3511
6270 | 3256 3257 3258 3253 3260 3261 3262 3263 6670 [3512 3513 3514 3515 3518 3517 3518 3519
6300 | 3264 3265 3266 3267 3268 3269 3270 321 6700 | 3520 3521 3522 3523 3524 3525 13526 3527
6310 | 3272 3273 3274 3275 3276 3277 3218 3219 6710 | 3528 3529 3530 3531 3532 3533 3534 3535
6320 | 3280 3281 3282 3283 3284 3285 3286 328/ 6720 | 3536 3537 3538 3539 3540 354) 1542 3543
6130 | 3288 3289 3290 3291 3292 3293 3294 3295 6730 13544 3545 3546 3547 3548 3549 3550 3551
6340 | 3296 3297 3298 3299 3300 330t 3302 3303 6740 | 3552 3553 3554 3555 3556 3557 3358 3558
6350 | 3304 3305 3306 330/ 3308 3309 3310 331 6750 13560 3561 3562 3563 3564 3565 3566 3567
6360 | 3312 3313 3314 3315 3216 3317 3318 3319 6760 | 3568 3569 3570 3571 3512 3573 3574 3575
53”70 3320 3320 3322 3323 3324 3325 3326 3327 6770 13576 3577 3578 3579 3584 3581 3582 3583
[1 2 3 4 5 ' 6 7 [v] 1 2 3 4 5 6 7
7000 | 3584 3585 3586 3587 3588 3583 3590 3591 7400 | 3840 3841 3842 3843 3844 3345 3846 3847
7010 | 3592 3593 3594 3595 3496 3497 3598 3599 7410) 3848 3849 3850 3851 3852 3853 3854 1855
7020 | 3600 3601 3602 3603 3604 3605 3606 3607 7420 13856 3857 3858 3859 3860 3861 3862 3863
7030 | 3608 3609 3610 3611 3612 3613 3614 3615 7430 | 3864 3865 3866 3867 3868 3869 3870 3871
7040 | 3616 3617 3618 3613 3620 3621 3622 3623 7440 | 33872 3873 3874 3875 3876 3877 3878 3879
7050 | 3624 3625 3626 3627 3628 3629 3630 3631 7450 |3380 388) 3882 3883 3884 3885 3886 3887
7060 | 3632 3633 3634 3635 3636 3637 3638 3639 7450 {3888 3889 3890 3831 3892 3893 3894 3895
7070 | 3640 3641 3642 3643 3644 3645 3646 3647 7470 {3896 3897 3898 3899 3800 390%. 3902 3903
7700 | 3648 3643 3650 3651 3652 3653 3654 3655 7500 {3904 3905 3906 3907 3908 3909 3%i0 39t
7110 | 3656 3657 3658 3659 3660 3661 3662 3663 7510 [3912 3913 3914 3915 36 3917 3918 3919
1120 | 3664 3665 3666 3667 3668 3663 3670 3671 7520 13920 3921 3922 3923 3924 3925 3926 3927
7130 } 3672 3673 3674 36/5 3676 3677 3678 3679 7530 | 3928 3929 3330 3931 3932 3933 3934 3935
7140 | 3680 3681 3682 3683 3684 3685 3686 3687 7540 13936 3937 3938 3939 3940 3941 3942 3943
7150 | 3688 3689 3690 3691 3692 3693 3694 3695 7550 [3944 3945 3946 3947 3948 3949 3950 3951
7160 | 3696 3697 3698 . 3639 3700 3/01 3702 3703 7560 13952 3953 3954 3955 3956 3957 3958 3999
7170 | 3704 3)05 3706 3707 3708 3709 3710 371t 7570 {3960 3961 3962 3963 3964 3965 3966 3967
7200 | 312 3113 3114 3J15 3716 3717 3718 3118 7600 |3968 3969 ‘3570 39 3973 3974 3975
7210 | 3720 372v 3722 3J23 3124 3125 3126 3127 7610 {3976 3977 3978 3919 3981 3982 3983
7220 | 3728 3729 3730 3731 3732 3733 3734 3135 7620 {3984 3985 3986 3937 3989 3990 399%
1230 | 3736 3137 3/38 37139 3130 3741 3142 3143 1830 | 3992 3994 3995 399/ 3998 3949
178G 1 A4 3TAS TS0 GISF 3743 3143 3158 NS 7529 rangn #0827 4302 4205 en0s 2007
7250 | 3752 3753 37584 3755 3756 - 3757 3758 3759 7650 |4008 4010 4011 4013 4014 4015
7260 | 3760 3761 3762 - 3763 3764 3765 3766 3167 1560 |4016 4017 4018 4019 4020 4021 4022 4023
1270 | 3768 3769 3710 3770 371712 31713 3113 37718 7670 [4024 4025 4026 4027 4028 4029 4030 403}
7300 | 3776 37177 3718 3779 3180 3781 3182 3783 7700 {4032 4033 4034 4035 4036 4037 4038 4039
7310 13784 3185 3786 3787 3788 3789 3790 3791 7710 14040 4041 4042 4043 4044 4045 4046 4047
7320 3792 3793 3794 3795 3196 37197 3798 3799 7720 {4048 4049 4050 4051 4052 4053 4054 4055
7330 | 3800 3801 3302 3803 3804 3805 3806 3807 7730 14056 4057 -4058 4059 4060 4061 4062 4063
7340 | 3808 3809 3810 3811 3812 3813 3314 3815 7740 3064 4065 4066 4067 4068 4069 » 4070 4071
7350 {3816 3817 3818 38!9 3820 3821 3822 3823 7750 {4072 4073 4074 4075 4076 4077 4078 4079
7360 | 3824 3825 3826 3827 3828 3823 1830 3831 7760 |40B0 4081 4082 4083 4084 4085 4086 4087
7370 13832 3833 3834 3835 3836 3837 3838 3839 7770 14088 4089 40850 4091 4092 4093 4094 4095

A-18

TABLE G

256

512

1024

2048

4096

8192

16384

32768

65536

131072
262144
524288
1048576
2097152
4196304
B38B608
16777216
33554432
67108864
134217728
268435456
536870912
1073741824
2147483648
4294967296
8589934592
17179869184
34359738368
68719476736
137438953472
274877906944
549755813888
1099511627776

2199023255552

4398046511104
8796093022208
17592186044416
3518437288832
70368744177664
140737488355328
281474976710656
562949953421312
1125899906842624

VE~NPV S WN—~O o

Powers of Two

2“1’1

1,0000000000000000
+5000000000000000
+2500000000000000
+1250000000000000
«0625000000000000
00312500000000000
«0156250000000000
.0078125000000000
+0039062500000000
+0019531250000000
«0009765625000000
«00064882812500000
+00024641406250000
+0001220703125000
+0000610351562500
«0000305175781250

1.5258789062500000000000000000=05

7.6293945312500000000000000000=06
3.814697265625000000000000000D=06
1.9073486328125000000000000000=06
9.5367431640625000000000000000=07
4.7683715820312500000000000000=07
243841857910156250000000000000=07
1.1920928955078125000000000000=07

5.960464477539062500000000000008

2.9802322387695312500000000000=08

7.4505805969238281250000000000~09

3,725290298461914062500000000009

148626451492309570312500000000709

94313225746154785156250000000D=10

4.6566128730773925781250000000=10
243283066365386962890625000000=10
1.1641532182693481445312500000=10

5.8207660913467407226562500000%11

2.9103830456733703613281250000%11

1:4551915228366851806640625000=11

7.2759576141836259033203125000=12

3,637978807091712951660156250012

1+818989403545856475830078125012

9.0949470177292823791503906250=13
445474735088646411895751953]130=13
2.2737367544323205947875976560=13
1.1368683772161602973937988280=13
5.6843418860808014869689941410=14
2,8421709430406007434846970700=14
1.4210854715202003717422485350e16
7.1056273576010018587112426760~15

3,552713678800500929355621 338015

1.776356839600250664677810669D=15

848817841970012523233890533450=16

A-19

TABLE H 6000 SERIES CHARACTER CODES

FORTRAN FORTRAN
Source Card Source Card
Language Display Punch Language Display Punch
Character Code Code Character Code Code
A 01 12-1 + 45 12
B 02 12-2 - 46 11
C 03 12-3 * 47 11-8-4
D 04 12-4 / 50 0-1
E 05 12-5 (51 0-8-4
F 06 12-6) 52 12-8-4
G 07 12-7 $ 53 11-8-3
H 10 12-8 = 54 8-3
I 11 12-9 blank(space) 55 space
J 12 11-1 , 56 0-8-3
K 13 11-2 . 57 12-8-3
L 14 11-3 A
s agitiona
N 16 11=5 Characters
0 17 11-6 —— 7
P 20 11-7 = 60 0-8-6
Q 21 11-8 [61 8-7
R 22 11-9] 62 0-8-2
S 23 0-2 : 63 8-2
T 24 0-3 # 64 8-4
1) 25 0-4 ~ 65 0-8-5
\ 26 0-5 Vv 66 11-0
W 27 0-6 A 67 0-8-7
X 30 0-7 4 70 “ 11-8-5
Y 31 0-8 ¥ 71 11-8-6
Z 32 0-9 < 72 12-0
0 33 0 > 73 11-8-7
1 34 1 < 74 8-5
2 35 2 > 75 12-8-5
3 36 3 —_ 76 - 12-8-6
4 37 4 ; 77 12-8-7
5 40 5 not used 00
6 41 6
7 42 7
8 43 8
9 44 9

Display codes are the octal codes stored in central memory to represent
the above characters. Those characters which are not in the FORTRAN source
language are only printable on the on-line printer.

A-20

TABLE I Summary of Control Codes for Keyboard Terminals

Keyboard come in several flavors; as a result there are variations in the

key used to transmit a particular code to the computer. This table lists

the keys used on the most common devices, model 33 and model 35 teletypes.

If "shift" or "CTRL" appears it means that the shift or CTRL key is to be held
down while the accompanying key is struck. "(CS)" means that both the

shift key and the CTRL key are held down while the indicated key is struck.

Key Action

RETURN Return printer to column one and inform computer
that the line is complete as sent

LINEFEED Space printer to next line -

SHIFT / Delete previous character (prints "?")

SHIFT 1 Restart line (prints "!", no carriage return)

CTRL A Exit from bell mode (characters sent in bell
mode are discarded)

SHIFT O Prepare to enter 8-bit mode (prints left arrow)

(Cs) P Sign on code

CTRL Q Enter or leave echo suppression mode (characters

are not printed in this mode - used for pass-
words, etc.)

The following codes are sent only at the beginning of a line during input
and are followed by a RETURN.

CTIRL B End of record (may be followed by two digit octal
level. Level 17 is end of file). If sent during
output, CTRL B means suppress multiple blanks.

CTRL D End of job (i.e., end of information of fileset
INPUT). If sent during output, CTRL terminates
the current fileset.

CIRL I Cancel job currently being entered

Further details are in the Remote Terminal System manual.

A-21

KNOWN RUN 2.3B3 BUGS APPENDIX B

The following problems still exist in RUN 2.3B3:

1. Registers may be confused in a DO loop within a subroutine if the sub-
routine has six or more formal parameters and the DO loop does not end
with a CONTINUE statement.

2. Blank card preceding or following a COMPASS subroutine may cause trouble.
Avoid them.

3. A statement such as
READ 91,1,J,X(1,J),I,J,X(1,J)

does not execute properly: when the subscripts for the second X(I,J)
are calculated, a temporary value is used which was calculated for the
first X(I,J) and involves the first value of J. In other words, it
behaves like

READ 91, I,J,X(I,J)I,ITEMP,X(I,J)
J=ITEMP

4. If the program name is included on the END card of a Fortran deck and
the name begins with the letter F an erroneous no path diagnostic is
given although the right code seems to be generated.

5. One program has been reported which produces an erroneous undefined
statement number diagnostic and fails to detecta NO PATH to this state-
ment error. Fixing this error eliminates the spurious diagnostic.

6. Expressions involving the in line functions REAL(Z) and AIMAG(Z) may
not compile correctly. This may be avoided by using temporaries to
hold the in line function values and substituting the temporaries in
the required expression. In the case observed, the Washington RUN
(RUNW) compiler produced correct code.

7. When IF statements using compound conditionals are used, the mode of
arithmetic in one component of the compound may incorrectly dominate
other components. Enclosing the components in parentheses appears to
avoid the problem, e.g.

IF ((A .EQ. 5.3) .AND. (I .EQ. 10H)) STOP

compiles correctly (but does not do so without the inner parentheses).

B-1

10.

11.

12.
13.

14.

If a variable is mentioned in both a TYPE statement and a NAMELIST
statement, the TYPE statement must appear first in the program.

An illegal branch into the range of a DO of the form:

DO 1 I=1,N
IF(BLOB) GO TO 1

DO 1 J=1,M

1 CONTINUE

is not detected as an error. Do not use this construction. Time
will not be refunded to you if you do. -

The material concerning subprogram names discussed in 15.6 should
properly be considered as bugs.

A subscripted formal parameter'may’not be used as a FORMAT declara-
tion identifier.

Example:

SUBROUTINE SUB(I)
DIMENSION I(10)

wpn@: (1,1(5)) J

END
produces the spurious diagnostic:

UNRECOGNIZABLE STATEMENT

RUN sometimes generates a bad object deck (won't load) for a sub-
program with twenty or more formal parameters.

Difficulties have been reported with ENCODE/DECODE statements
using formal parameters.

Use of an undefined value as a subscript of an I/0 list item

sometimes causes spurious error messages, e.g.. lllegal format
or list-format conflict.

Loop indices should be integer values.

GLOSSARY

All page, chapter and section references are to be found in this Guide.

Underlining is used to indicate terms which are described elsewhere in
this glossary.

Absolute Address .
The adjusted address, after loading is completed, used to refer-
ence a given word in the storage of a computer.

Address

A number used to locate a specific word in the storage of a
computer.

Allocatable device
A storage medium which can be shamd by several jobs simultan-
eously; a disk is allocatable, a magnetic tape is not.

Alphanumeric
An alphabetic or numeric character (A-Z and 0-9).

ANST
American National Standard Institute (Formerly USA Standard In-
stitute and American Standards Association).

ASA See ANSI

ASCII
American Standard Code for Information Interchance — a binary
representation of characters which has been adopted as a national
standard for transferring characters between electronic devices.

Assembler
A translator which operates on computer—oriented symbolic lang-
uage statements, generating the corresponding object code.
COMPASS is an example.

Base
Base of exponentiation in floating point notation. The base is
often implicitly the same as the radix being used.

BCD

An abbreyiation for Binary Coded Decimal which refers to any one
of several systems for representing each of the 10 decimal digits
in addition to the 26 letters and sundry special characters by a
unique sequence of bits.

Coﬁmonly but inaccurately used to describe the mode of recording
information on tape in even parity.

Binary
- The number system expressed to.the base (radix) 2, consisting
solely of combinations of the digits Q and 1. This is the
system employed internally by the CDC 6000 Series computers.

Binary Record
The data read or written by a SLngle unformatted READ or WRITE
statement.

Bit
One binary digit, either O or 1.

Block
A group of contiguous entities recorded on and read from a
storage medium as a unit; it may contain a partial, one, or
more record(s) and is synonymous with Physical Record.

Blocking
A method for making more efficient use of a storage medium by
grouping or dividing the data being read from or written onto
the medium into standard physical units. See Chapter 13.

Buffer
An internal temporary storage area in which data are accumulated
during input and output operations. It serves to compensate for
the difference in speed at which two communicating components
perform operations. The storage of data in a buffer is analo-
guous to the storage of energy by a flywheel.

Byte -
A group of adjacent bits which constitute a subdivision of a
computer word. In CDC 6000 Series machines, a 60 bit word is
composed of 5 bytes of twelve bits each.

CAL o .
The identifier of the Computer Center installation within VIM,
an organization comprised of installations using CDC 6000 and
7000-series computers.

CALIDOSCOPE .
CAL Improved Design of SCOPE. The name given to the operating
system installed at CAL in 1971.

Carriage Control
The process of regulating the position of the paper in the printer
to control the spacing of the printed lines. DPouble spacing and
skipping to the top of a new page are examples.

Carriage Control Character
The first character of each.llne to be printed is used for
carriage control and does not appear on the printout. See
Section 10.1.

CDC 6400 Computer System
A computer complex manufactured hy the Control Data Corporation
consisting of one central processor and ten peripheral processors
plus assorted peripheral devices connected to the processors.

Central Memory (CM)
See Memory

Central processor (CP or CPU)
A computing unit which performs the computational operations
within a CDC 6000 series machine.

Characteristic
In floating point notation, the characteristic is the exponent of
the base plus a constant used to eliminate negative values.

Character Set
A set of unique visual representations (graphics) and its corres-
pondence to a given set of sequences of bits. A character set
usually includes the letters from A to Z, the digits from 0 to 9,
and a selection of punctuation marks and mathematical symbols.
In the CDC 6000 series machines there are 63 characters in the
character set, each of which is represented by a given configura-
tion of six bits (excluding the all-zero configuration). (See
Appendix A, Table H.)

Gharacter
May refer to either a graphic or its corresponding bit sequence.
See Character Set.

Coded
Encoded in characters as in formatted 1/0 as opposed to binary
form. (See Chapter 13.)

COMMON fileset
A user created fileset which remains in the system after the job
which created it is completed. It is available to subsequent jobs
until it expires, a system deadstart occurs, or the fileset is-
released by the user.

Common Storage
An area for storing data within the memory field of a Fortran
program such that its contents may be referenced by more than
one subprogram. Common blocks which are labelled are stored
just before the first subprogram which references them. The
unlabelled or blank common hlock is placed at the end of all
the subprograms loaded. See Section 5.3.

COMPASS
A hardware oriented symbolic programming language for CDC 6000
series computers which provides a COMPrehensive ASsembly System,
designed for efficient usage of computer resources and maximum
flexibility in program construction at the price of tedious and
detailed coding.

Compiler
A translator, which operates on procedure- or application-
oriented source language statements and generates the ob]ect
code whlch cooresponds to them

Compiler Storage Map
A table generated by a compiler giving the relative addresses
assigned to elements declared in a source program. See Sectlon 14.2.3.

Control Record

The first logical record of the input for a job containing the' io ob
identification statement followed by the other control statements
necessary to run the job.

Control Statement Py g
Any one of several. statements:which are placed. at_the beglnnlng
of thée job input.and which indicate to the Operatlng System-an
operation to be performed. (See CALIDOSCOPE Control Statements.)

Core . Co . ;
A donut-shaped piece of magnetic material used to record one
bit of information.. .Many computer memories are fabricated
using cores so-that 'core" and "memory" are often used inter-
changeably. - : '

Cpi

Characters per inch (see Densitz.)

Cross—Reference Table : ‘s
A program—generated directory giving the relative address a881gned
to elements in a program and the relative addresses of the refer-
ences to each of them. ' '

Data Channel : ‘ :
The 1nterface between a perlpheral controller and a peripheral

processor.

Dayfile : e ,
See Job Log and System Log.

Deadstart o .
The procedure of loading the Operating System from tape and placing
it in execution. All previous information in the machine is erased, -
and the system is totally reinitialized. See recovery.

Debug - , : .
To locate errors in a program or hardware device.

Deck

A collection of punched cards; usually a set of related cards which
have been punched for a definite purpose. See Job.

Deck Name L : , o o , (
Seven .or fewer characters associated for identification purposes with
the object code generated for a subprogram. See Section 15.6.3 and
Chapter 11.

Default
The value of an item which is assumed in the absence of a speci-
fic indication of what value the item should have. Usually
applied to parameter values on control statements.

Density
A number which describes the physical spacing of information on
a storage medium. On magnetic tape the unit of measure 1is charac-
ters per inch (cpi) and equals the number of frames which are
recorded per inch within each physical record. Densities used on
CDC tape units are 200 cpi (LO), 556 cpi (HI), and 800 cpi (HY).
Diagnostic

A message issued by a program indicating an error in its input
or environment.

Direct-access fileset
See Random Access Fileset.

Disk :
A circular metal plate coated with a material which provides a
magnetic recording surface. Information is recorded onto con-
centric rings called tracks, each of which has an address. Reading
and writing is done by means of one or more read/write heads
mounted on movable or fixed arms. The operating system keeps
filesets on disk and performs all the necessary bookkeeping so
that filesets can be created, read, etc., by name rather than
by disk address.

Disk driver
The set of peripheral processor programs which perform the read/
write operations from and to the disk. Also called the stack

processor because requests for disk I/0 operations may be queued
in a stack.

Disk fileset
A fileset whose storage medium is disk.

Disk pack
A removable set of disks.

Display code
The encoding of characters as six bit sequences used to repre-
sent coded information internally in the CDC 6400. See internal BCD.

Disposition code
A 12-bit code in the FET for a disk fileset which designates the
manner in which the fileset will be disposed of when the job is
terminated, e.g., print, punch (Hollerith), punch (binary), etc.
Zero indicates the fileset is not to be further processed.

Dump . - S
A print—out of the contents of locations in memory in a specified
format, usually octal. (See Section 15.5). More generally, the print-out
of the contents of any storage medium, e.g., a tape dump .

G-5

ECS
Extended Core Storage: An auxiliary storage device accessible
via specific central processor instructions which serves as a
relatively inexpensive and slower access core memory.

ECS Field
That part of the ECS allocated to a single job for access by
instructions contained in the program.

ECS Fileset
A fileset whose storage medium is ECS.

End of file .
A recorded configuration used to indicate the end of a file
(see Chapter 13),

End of record
A recorded configuration (see Chapter 13) used to indicate the
end of a SCOPE logical record. On punched cards, it is a card
with 7,8, and 9 punches in column one.

Entry point
A labeled instruction in a subprogram which marks a point at which
references may be made to the subprogram from other subprograms.

EOF
Abbreviation for End of file.

EOR
Abbreviation for End of record.

Error message
A message generated by a program to provide information about an
error or a program malfunction. It is like a diagnostic except
that is usually more serious. See Section 15.4.

Execution
The state describing the operation of a program in which the central
processor of the computer functions according to the instructions
of the program. Also, the state of a job while its control statements

are being processed and the steps they call for are being performed.

External :
An address referenced by a given subprogram which is not part of the
same subprogram, e.g., a CALL or function reference (see entry point).

External BCD
A particular BCD representation used to represent a character set
on even parity magnetic tape. The encoding used is the ANSI stan-
dard BCD encoding.

FET v
An abbreviation for Fileset Environment Table.

G~6

Field
A set of one or more adjacent entities, such as memory words, card
columns, printer positions, or bit positions, which are treated
as a whole.

Field Length
The physical extent of a field. In particular the number of words
in the Central Memory (or ECS) field of a job.

File
A collection of related information terminated by a unique mark
(called an EOF) having a logical beginning and ending, existing
in the computing system as an element of a fileset.

Fileset Environment Table
A table set up in Central Memory serving as a communication link
between the system and the user's program. The system and user's
program indicate the state of the processing of a fileset by set-
ting fields in this table.

Fileset
A named collection of information which is accessible via the
Operating System. It consists of one or more files.

Fileset name

The name by which a fileset is known to the Operating System. A
fileset name is a letter followed by up to 6 alphanumeric charac-
ters. Sometimes called a logical fileset name or lfn.

Floating Point Notation
A notation similar to scientific notation by which a number is
expressed as a signed decimal mantissa times some integral power
(exgonent) of ten (the base), e.g., 345.123 = ,345123 x 103. This
notation is used with binary radix in computers to increase the
range of numbers which can be stored (see Appendix A).

Format
1. Any specification for arranging elements.
2. A Fortran statement specifying the arrangements of characters,
fields, lines, punctuation, etc.
Formatted
Describes an I/O operation performed under the specifications of
a Fortran FORMAT statement.
Frame

See Magnetic Tape.

Graphic The visual representation of a character (as produced, for example,
by a line printer or teletype).

Half Track

Another name for a disk record block used because the operating
system adlocates half of a track for a recurd block.

G-7

Hardware
1. The magnetic, mechanical, electrical and electronic devices. ..
or components of a computer.

2. (Slang) Any piece of automatic data/processing equipment.

Hollerith Code

Coding system for data in punched cards using one column per chakac-
ter. Named for inventor Herman Hollerlth

Input
: Information or data transferred or to be transferred from an
external; storage medium into the internal storage of the com-
puter. . 1In general anythlngvthat is received from an external
source; e.g., input to a subprogram (i.e., parameters), input
to a card reader, (i.e., a punched card), or input from a tele—‘_
.type llne, .ete. s "~

Input/Output (I/O) .
The process of transmlttlng 1nformatlon into or out of ‘a computer
via peripheral devices (see Chapters Q, 10, and 13).

Interface.

A common: boundary between automatlc data-proces51ng systems or
between two devices of a single system.

Internal BCD . e ‘

A BCD system used to store characters in a computer's memory.
In particular, display: code, the character code used in CDC
6000 series computers. (See Appendix A.) ' .

Inter-record gap: ~ :

: An interval of space or tlme contalnlng no 1nformat10n and sig-
nalllng the end of a phy81cal record on a storage medlum such as
tape. Also referred to as a record gap. The size, of the inter-
record gap for. magnetlc ‘tape is about 3/4".

I/0
See Inmput/OQutput.

Job - 1. The unit of work, consisting of a deck of cards or the equiva-
lent input suppliéd via another input medium, beginning with
a job identification statement and presented to the Operatlng
System.

2. More spec1f1cally, a collectlon of one or more filesets, one
of which is classified as the INPUT fileset, which the Opera-
ting System recognizes as an entity and which contains a des-
cription of the operations the.computer has to perform. “Pos-
sible elements include local filesets and COMMON filesets.

Job card .
See job identification statement.

Job deck e - . : : ~'««,H
See Job 1. L - ' : k o

3

Job identification statement

The first statement of any job, containing the number of the account

to be billed and various limit and control parameters. Called a job
card when the job is punched on cards. See Guide to Computer Center
Services and CALIDOSCOPE Centrol Statements for details.

Joh log .
A chronological summary of significant occurrences during the

processing of a job. It is printed at the beginning of each
job's output.

Job ste
? One of the diyisions in the execution of a job which begins
when a control statement is processed and (except for load
sequences) ends when a subsequent control statement is pro-
cessed or job execution terminates.

Justify .
To position the contents of a field such that they either begin
in the left-most position (left-justify) or end in the right-
most position (right—justify).

Keyword

1. An informative word in a title or text.

2. An identifier on a control statement specifying one of
seyeral possible parameters.

Level number
A number (from 1 to 17B) associated with each logical record which
serves to organize the records in a fileset in a hierarchy (see

Chapter 13).

Lfn Abbreviation for logical fileset name.

Library
A collection of subprograms which are selectively loaded, as
required, to satisfy the external references in a program
already loaded.

Line See Unit record

Linking
During loading, the process of supplying for each external refer-
ence occurring in a subprogram loaded into memory, the absolute
address of the corresponding entry point. More generally, the
act of establishing a connection between two elements.

Listing
A printed representation of coded information.

Literal

A data item which is made up of a string of characters, e.g., a
Hollerith constant.

Load Address

The absolute address of the first word of a subprogram after it
has been loaded. .

Load map
The directory produced on the output fileset by the Loader showing
the absolute addresses at which the object code for various sub-
programs and Common Storage blocks were placed in memory. A
reference listing may also be included. See example in Chapter 1l4.

G-9

Load sequence
A sequence of one or more control statements which load and
(optionally) execute a user's program.

Loader
A program which accepts translator generated object code subpro-
grams as input and places them in central memory in proper form
for execution as one absolute program (see Section.14.2.4). It
may also produce program overlays on secondary storage media
(see Chapter 8).

Loading
The action performed by a Loader.

Location

See Address.

Logical fileset name.

See Fileset name.

Logical Record
A data structure within a fileset which is recognized by the
operating system and which consists of a collection of infor-
mation terminated by an end of record. The collection begins
with the preceding end of record or, for the first logical
record in a fileset, the beginning of the fileset. See
Chapter 13.

Machine language)
The set of instructions (and/or the binary representation of
a particular sequence of instructions) which is directly
interpretable by the machine hardware.

A programming language which represents the hardware instructions
more or less directly.

See Object code.

Magnetic tape
A ribbon of plastic, coated with a metallic oxide that accepts
and holds magnetism. The recording surface of the tape is
divided lengthwise into tracks and crosswise into frames.
These define a matrix in which the presence or absence of tiny
spots of magnetism called bits represent the information. See
Chapter 13. See entries for parity.

Main program
The program element (defined in Fortran by a PROGRAM statement)
to which control is transferred after loading has been comple-
ted. A Fortran main program contains the definitions of the
filesets to be used for input and output (see Section 7.4).

G-10

Mantissa

Memory

The coefficient which is to be multipled by the base raised to

the exponent power to determine the value of a number in floating-
point notation. The mantissa is usually in the form of a nor-
malized fraction. See Floating Point Notation.

The internal hardware device used to store information to be

‘used by the central processor. Also referred to as Central

Memory, core or CM.

Memory Field

That portion of memory assigned to the processing of a job.

Microsecond

One millionth of a second.

Millisecond

One thousandth of a second.

Normalized

A fraction is normalized with respect to a radix if its posi-
tional representation in that radix has a non zero digit fol-
lowing the radix point. A number in floating point notation
is normalized if its mantissa is a normalized fraction or the
number is zero.

Object code
/ A sequence of instructions needing only linking and relocation

to be directly comprehensible to the computer, to perform a given
set of arithmetic and logic operations which solve a given prob-
lem. Also referred to as object language, machine language, or
object program.

Octal
The number system to the radix 8. Octal numbers may be
derived from binary numbers by grouping the bits into sets of
three going away from the binary point and converting each group
to the corresponding octal digit.

Off-line
Operation of input/outputand other devices not under direct com-
puter control.

On-line
Operation of an input/output device as a component of the compu-
ter, under programmed control.

Operating System

An organized collection of programs under whose supervision and
control jobs are processed.

G-11

Qutput
Information transferred from the internal storage of a computer -+’
to any one of several external storage media, e.g., paper, cards,
magnetic tape. In general anything which is communicated to the
-outside. ' '

Overlay :
The technique used to run a job in a smaller area of memory than
would be required if the entire program resided in memory simul-
taneously. Overlays are stored on a secondary storage device and
are read into memory when needed, replacing program eleménts which
are no longer needed (see Chapter 8).

Parity
The remainder modulo 2 (i.e., even or odd) of the count of the
non-zero bits in a given group. v :

Parity: block, track, or longitudinal
The parity of the bits in a given track of a block on tape, also, by
extension, the parity of all tracks in the block.

Parity bit ;
The seventh bit in a frame on magnetic tape representlng the parity
cneck information.

Parity: character or frame
The parity of the bits in each frame across the width of the tape.

Parity check - :
A method for detecting errors in stored data (caused on tape, for
example, by dust or gkew while reading/writing). Also, an error
detected by performing a parity check, i.e., a parity error.

Parity: even
A checking method which counts one bits in a given group and
appends a 1 or 0 as the parlty bit such that the total.of ones is’
even.

Parity: odd
A checking method which counts the one bits in a given group and
appends a 1 or 0 as the parity bit such that the total of ones
is odd.

Peripheral controller
A piece of equlpment which acts as an intermediary control device,
linking a peripheral unit to a data channel or in the case of '
off-line operation, to another peripheral unit. '

Peripheral processor (PP)
A computer which performs input/output or monitor functions
within a CDC 6000 series computer system.

G-12

Peripheral unit or deyice
One of various machines used in combination or conjunction with
the computer but not part of the computer itself, e.g., card
reader, line printer, magnetic tape unit.

Physical record
A block of information recorded on a physical medium and con-
stituting the amount of information which was recorded on that
medium as a unit. It is the minimum amount of information which
can be read from the medium. (see Blocking.)

Physical Record Unit (PRU)
The maximum size for physical records to be read from a particu-
lar medium. For . most media this is fixed but it may be adjusted
in the case of magnetic tape (see Chapter 13).

Print-out
Output produced on a printer.
Process
A generic term that may include compute, assemble, compile, inter-
pret, execute, generate, etc., i.e.,, perform a specific compu-
tation action.
Program
The collection of subprograms needed to solve a given problem
on a computer. Also used commonly to refer to a single subprogram.
PRU

See Physical Record Unit.

Public Fileset
A fileset which is permanently available to jobs in the system,
i.e., is guaranteed to be available whenever user jobs .are being
processed.

Radix
The base of a number system, i.e., a quantity that defines a sys-
tem of representing numbers by positional notation.

Random access fileset
A fileset in which individual logical records are directly acces-
sible regardless of their position. See Section 13.0.1.

Record
See Binary Record, Logical Record, Physical Record and Unit Record.

Record block
The unit in which space on an allocatable device is allocated to
a fileset, e.g., a disk record block is fifty sectors of 64 words
cach. ittt T T s

G-13

Reference Address (RA)
The hardware address in Central Memory which serves as the origin
for the loading of a job. It defines the first word of the mem-—
ory field for the job (the job uses 0 to address this word).

Relative Address, :
The address used to identify a word in a subprogram with respect
to its relative position in that subprogram. The starting
address is relative location 0. A relative address is transla-
ted into an absolute address by addition of the specific load
‘address serving as the origin of that subprogram.

Relocatable binary P ‘
The form of the object code produced by many translators, RUN in
particular.

Relocation . o Lo
The method by which the object code for a subRrogram is placed
in memory starting at a load address.

Register .
A device for the temporary storage of one or more words to faci-
litate arithmetic, logical, or transfer operation. CDC 6000
series computers have eight address registers (AO-A7), eight
index registers (BO-B7), and eight operand registers (X0-X7).
Also, a memory cell devoted to a specific function. ‘

Remote Terminal System

" The CALIDOSCOPE subsystem which communicates with keyboard ter-

minals.

Ring
See Write Enable Ring.

Rollout
A technique used to improve turnaround for high-priority jobs’
by temporarily saving the contents of the memory field of a
lower priority job on disk or ECS to allow other jobs to get
the memory they require. When the higher priority tasks are
complete, the lower priority job is "rolled in" and its pro-
cessing resumed,

RTS

See Remote Terminal System.

RUN compilef.

'THe name given to the particular Fortran compiler documented in
this manual. ‘

Run

The act of submitting a job to the computer for processing -

including all phases of processing. ’
RUNW

A version of RUN produced by the University of Washington.
SCOPE

The manufacturer's Operating System for the CDC 6000 series com-
puters. CALIDOSCOPE is derived from version 3.2 and 3.3 of SCOPE.

G-14

Sectar
One of the 100 equal length areas into which a track on a disk
is divided; a disk PRU.

Sequential access fileset
A fileset in which individual logical records are accessible
only after the preceding records have been accessed, regard-
less of whether all the information or only some of it is
desired. See Section 13.0.1.

Skew
Misalignment of the bits in a frame on tape due to some physical
distortion of the tape.

Software
Various internal programs or routines professionally prepared
to facilitate the user's efficient operation of the computer
equipment (hardware); e.g., compilers, assemblers, operating
systems. More generally, any programs used on a computer.

Source language
A language suitable for input to a translator (as opposed to

object code).

Source listing
Output generated by a compiler or assembler in which each state-

ment of the source language input is given. Diagnostics for any
detected errors which occur may also be given.

Source program
The sequence of statements #hich are input to a translator (e.g.,
Fortran). See Section 1.2.

Stack processor
See Disk Driver.

Storage map
See Compiler Storage Map and Load Map.

Storage medium
A material on which information may be recorded; in particular,
a material on which information may be both recorded and retrieved
through I/0 devices attached to a computer.

Subprogram
A program element which can be compiled separately and may be
linked with other program elements to create an executable pro-
gram. Used to refer to a subroutine, a main program, a function,
a block data subprogram or a 1ibrarz subprogram which is not in
any of these categories. Subroutines, functions, and main programs
are called ''procedural subprograms''. See Chapter 7.

G-15

Subroutine _
A subprogram which depends upon other subprograms for its acti-
vation. In Fortran a subroutine is activated by a CALL state-

ment.
Syntax
Rules governing statement structure in a language.
System lag :
Combined job log for all jobs run during a given period, also
containing certain operational information.
Tape

See Magnetic Tape.

Tape Drive (Unit)
The hardware mechanism that moves magnetic or paper tape past
read/write heads for purposes of information transfer.

Tape Driver
The set of peripheral processor programs which perform the input/
output operations from and to magnetic tape.

Tape Mark
A pattern recorded on tape to signal the end of valid information.
It consists of an octal 17 written in even parity followed by a
block parity check character.

Traceback .
A listing of the sequence of subprogram linkages in the path from
the main program to the current subprogram, i.e., an ordered
listing of CALL, function references, or implicit library calls
which have been executed and for which no corresponding RETURN
has been executed.

Tracing .
A technique for debugging a routine whereby during the execution
of its instructions, information concerning the status of regis-
ters, storage locations, location counters, variables, etc., are
transmitted to an output device in the same sequence in which
the traced instructions are executed.

Track
The portion of a moving—storage medium, such as a magnetic tape
or disk, onto or from which sequences of bits may be written .
or read one at a time in a serial fashion.

Translator ‘ .
A program which operates on statements written in one language
(called the source language) and generates a set of corresponding
statements in another language (called the target language or

in some cases, object code).

Turnaround

The length of time from when a job is submitted for processing
until the results are available.

G-16

Unformatted
Describes an operation performed on data taken just as it is
found. Used specifically to refer to a Fortran read or write
cperation which has no FORMAT statement associated with it.

Unit record
In central memory, a sequence of coded characters whose end is
indicated by a terminator (twelve or more bits of zero) which
fills out a CM word. Externally, a unit record may be a printed
line or a punched card.

Unsatisfied external
An external reference which appears in a subprogram and which does
not correspond to an entrz point in any subprogram loaded with
it or in any subprogram in the library. A list of unsatisfied
externals, if any were found, appears at the end of the load

map.
USASI

See ANSI.
Volume

A physical unit of a storage medium, e.g., a reel of magnetic
tape, a disk pack.

Write Enable Ring
A ring physically inserted into a reel of magnetic tape to allow
information to be written on it.

Write Ring
See Write Enable Ring.

Word
A unit of information within memory. The information may be
data to be operated on by the central processor or instructions
for the central processor to execute a program. In CDC 6000
series machines, a word consists of 60 bits.

G-17

I NDEX T

A FORMAT

ARORT (SUBRQOUTINE)
ABS {FUNCTICN)
ACOS {FUNCTION)

ACTUAL PARAMETERS

AIMAG {FUNCTICON)
AINT {(FUNCTION)
ALDG (FUNCTION)
ALOG10 (FUNCTICON)
ALPHANUMERIC FORMAT
AL PHAMUMERIC NATA

AMAXD (FUNCTION)
AMAX] (FUNCTION)
AMINO (FUNCTICN)
AMIN1 (FUNCTION)
AMOD {FUNCTION)
AND (FUNCTION)
ANSI

AR GUMENT

AR ITHMETIC, FLOATING POINT

APITHMETIC, INTEGER

ARITHMETIC DATA STRUCTURE

ARITHMET IC ERROR
ARITHMETIC EVALUATION
AR ITHMET IC EXPRESSIONS

ARITHMETIC IF STATEMENT

AR ITHMET IC CPERATORS
ARITHMETIC REPLACEMENT

ARITHMETIC STATEMENT FUNITION

ARRAY DECLARATION

ARRAY ELEMENY SUCCESSOR FCN.

APRAY STRUCTURE
ARRAY TRANSMISSION
ARRAYS

ASIN {FUNCTION)
ASSIGN STATEMENT

ASSIGNED GO TO STATEMENT

ASTEPISK (%.,.* FORMAT)
ATAN {FUNCTICN)
ATAN2 {FUNCTION)

BACKSPACE STATEMENT
BAD PARITY, TESTS FOR
BINARY BLNCKING

BINARY DECKS

BINARY 1/0

BINARY MODE

BINARY RECNRDS

BIT MANTPULATION

BLANK CARDS, EFFECT JF

9-15
11-3,
11-3
11-3
T=1,
11-3
11~-3

11-3

11-3
9-15

11-17

7-24 15-3 70 15-5

A-6 TO A-8,

11-3
11-3
11-3
11-3
11-3,
11-3,

11-14
11-10

A-20

IX (INTRCDUCTION)
SEE PARAMETER

A-3

A-2.

A-1

15-30

3-2

3-1

6-3

3-1

4-1

7-9.

5”19 5“29 5"3

2-10

2-8

7'21 9"2, 9‘267 10"9
2-8y 5-2, 7-11

11-3

6-1

6-1

9~5

11-3

11-3
-8~

10-8

10-8

i1-10, 11-14, 13-5
14-30y 14-33, 14-34, 15-
10"'21 10"31 10"'5,‘ 13"5,
10-2, 13-12, 13-14&
10-2y 13-5, 13-12, 13-14
4-44 10-11

1-&, 9-¢

1
13-12,

13-14

I-1

BLANK COMMON 5-3, 8-5, 14-22, 14=25, 14-26

BL ANK TNPUT DATA 9-é

BLOCKING, RINARY 13-5

BLOCK DATA SUBPROGRAM 7-16.

RLOCK ING 13-5, 13-8

BL OK (SUBRNUTINE) 11-3, 11-10

BNOLEAN SEE MASKING

BUFFER IN STATEMENT , 10-9

BUFFFER 1/0 STATEMENTS ” 10-9 10 10-11

BRUFFER LENGTH, DEFAULTYT T-4

BUFFER LENGTH, OVERRIDINSG 1-4

BUFFER DUT STATEMENT ~ 10-10 .

RUFFERS, I/0 T-4y 14-264 14-27, 15-2

8UGS IN RUN B-1

RUILT—-IN FUNCTIONS SEE INTRINSIC FUNCTIONS
_C-

CABS ({FUNCTIGCN) 11-4

CALL STATEMENT 7-5

CALLING SEQUENCE, COMPASS 15-3

CARD PUNCH CODE - A=20

CARDS 13-8, 13-9, 14-30

CARRTAGE CONTROL CHARACTERS 10-2

cCCoS {FUNCTION) 11-4

CEXP {FUNCTION) 11~-4

CHARACTER CCDES A-20

CHARACTER DATA 2-4y 9-15, A-1l, A-6, A-8, A-20

CHARACTER 1/0 FDRMATS 9-15, A-B

CHARACTER MANTPULATION 4-4, 10-11

CHARACTER SET 2-1y A-20

CHARACTER STRINGS 2~49 A—-E&, A-8 .

CHARACTERS PER RECORD 10-1, 13-9, 13-11, 13-13, 13-14, 13-15

CLDISK (SUBROUTINE) 11-4

CLOG (FUNCTION) 11-4

CMPLX {FUNCTION) . 11-4 ‘

CODED MCDE 10-1, 13-13, 13-14, 14-32 -

CODING FORM , 1-5

COMMENTS, FORTRAN 1-6

COMMON FILESFTS 11-6, 13-5

COMMON STATEMENT ' - 5-3

COMMON STORAGE INITIALIZATION 5-3, 5-8, 14-24

COMMUNICATION, SUBPROGRAM T-1y 72y 7-5y T~-Ty 7-8, '15-3

COMPILATION DIAGNOSTICS 15-7 70 15-18

COMPILER BUGS, KNOWN : B-1

COMPILFR OPTIONS 15-1

COMPILER STCRAGE MAP 14-19

CaMPL (FUNCTION) 11-4, 11-10

COMPLEX CONSTANTS 2-

COMPLEX EXPRFSSIONS 3-4

COMPLEX STATEMENT) . 5=1

COMPLEX VARTABLES 2=Ty 5-1

COMPLEX, I/0 FORMAT FOR ' 9-5
COMPUTED GO TO STATEMENT .
COMPUTER PROCESSING
COMPUTER WORD STRUCTURE

> -

-2
-4y 14-1 YO 14-5
-1

I-2

CONJG (FUNCTION)
CONSTANTS

CONTINUE STATEMENT
CONTINUATION LINES

| CONTROL CARD

CONTROL CHARACTERS, CARRIAGE

CONVERSION, OCTAL/DECIMAL

cos FUNCTION)

CSIN FUNCTION;

CSQRT (FUNCTION

D FORMAT

NABS {FUNCTIOM)
DATA CARDS

DATA, INTERNAL FNORMATS

NDATA STATEMENT

DATA, FORMAT CONVERSION JF
DATA INPUT

DATA TYPES

DATAN (FUNCTION)

NDATANZ (FUNCTION)

DAYFILF

DBLE (FUNCTION)

nPCOsS {FUNCTION)

DECIMAL CONSTANT
DECIMAL TO NCTAL
DECK SETUP
DECLARATIVE STATEMENTS
DECNDE STATEMENTS

DEXP (FUNCTION)
DIAGNOSTICS, COMPILATICN
PIAGNOSTICS, EXECUTION
OIM (FUNCTION)
DIMENSIONING

DIMENSION STATEMENT

DI SK

DISPLA (SUBRQUTINE)
DISPLAY CODE

DLNOG (FUNCTION)
DLOGLO {FUNCTIDON)
DMAX1 {FUNCTION)
DMIN1 {FUNCTICN)

DMOD (FUNCTION)

DO, IMPLIED

DO NESTS

DO STATEMENT

NOMINANCE, MIXED-MODE
DOUBLE STATEMENT

CONVERSION

DOUBLE
DOUBLE
DOUBLE
POUBLE
DOUBLE
NSIGN
DSIN

PRECTSION
PRECIS ION
PRECIS ION
ORECTSION
PRECISION

CONSTANTS
EXPRESSION
1/0 FORMATS
STATEMENT
VARIABLES

(FUNCTION)
(FUNCTION)

11-4

2-2, A-1

6-7

1-6

15-1

10-2

A-4, A-12 TO A-18
11-4

11-4

11-4

T0
A-1, A-8
5-8
9-5
1-7,
2=2
11-4
11-4%
SEE J0B LOG

11-4, 11-11

11-4

2-2 10 2-3, A-1

A-4, A-12 1D A-18

14-2y 14-33, 14-34, 15-1
1-2, 5-1 TN 5-11, 9-4
10-11, 10-15

11-4

15-7 10 15-18

15-20 70 15-27

11-4

5-1 TC 5-3,
5-2
10-2,
11"51
A-20
11-5
11-5
11-5
11-5
11-5, 11-14
5-8y 9-2
6-5,B-2
b~4, A-10
4-2

9-5, 10-4, 10-9

7-11

1 3"91
11-11

13-15

[I N |

e

{- -
o8
|
~N

H
i

=N WO W N W
|
ool W

VI -

——
|

DSQRT (FUNCTION)
DUMMY ARGUMENTS

NUMP, EXPLANATION OF
pumMp (SURROUTINE)
DUMPREG (SURROUTINE)
DVCHK (SUBROUTINE)
E FORMAT

FCS

ECSIO (SURROUTINE)

EDITING SPECIFICATIONS
ENCODE STATEMENT
ENDFILE STATEMENT
END-OF-F ILE
END-OF-INFCRMATIDN
EMD-DOF-RECORD

END STATEMENT

ENTRY POINTS

ENTRY STATEMENT

EQF CARD
EOF

EOT CARD
FOR CARD
EQUIVALENCE STATEMENT
EQUIVALENCING 1/0 FILESETS
ERROR MESSAGES, COMPILATION
ERRNR MESSAGES, EXECUTION
ERRNR TRACEBACK

{FUNCTION)

11-5
SEE FORMAL PARAMETERS
15-32
11-5,
11-5
11-5,

11-11
11-15
-E-

9-6y 9~T7,4 9-18
10-2, 13-9

ERRORS UNDETECTED BY COMPILER 15-19

EVALUATICN, EXPRESSION
EXECUTABLE STATEMENTS
FXECUTION

EXECUYION SEQUENCE CONTRIL
EXECUTION-TIME DIAGNOSTICS
EXTIT MODE

EXIT {SURROUTINE)

EXP (FUNCTION)
EXPLICIT TYPING

EXPONENT FORMATS
EXPONENTIATION

EXPRESSICONS

EXTENDED CNRE STORAGE
EXTERNAL STATEMENT
EXTERNAL TAPE

F FORMAY

FATAL COMPILATION DIAGNOSTICS 15-7 TO 15*18

FATAL EXECUTION DIAGNOSTICS

FDEBUG (SURROQUTINE)
FET

FIELD LENGTH

FILE

-4

SEE RECS, RERECS,y WECS
9-19
10-11, 10-13
10~-7
SEE EOF, 10-7, 10-8
SEE EQI, 13-14, 13-16
SEE EOR, 13-5
6-8
14-23
7-13
13-10
i11-5, 1l1-12
13-10
13-10
5~6
-4, 7-5, 13-3
15-7 T0 15-18
15-20 70 15-27
15-3, 15-6, '15-20
3-2
1-4y 14-2, 14-28
1-24 6-1 TO 6-~7
15-20 10 15-27
15-30
11-5
11-5
2-64 5-1, 7-7
2“31'9—69 9479 A”l, A-3
3-1, 3-2
3-1 70 3~11
10-2, 13-9
T-14
13-12, 13-14
—F-
9-9, 9-17
15-20 1O 15-27
11-5
15-2
14-25, 14-29

SEE FILESET, 13-7

FILF ENVIRONMENT TABLE
FILESET

FILESET ACCESS

FILESET DISPOSITION
FILESET EQUIVALENCING
FILESET INPUT

FILESEY LGO

FILESET NAMES

FILESET QUTPUT

FILESET POSITIONING STMTS.
FIXED-PQINT

FLOAT (FUNCTION) :
FLOATING POINT ARITHMETIC
FLOATING POINTY FORM

FLOW OF JOB IN SYSTEM
FORMAT STATEMENT

FORMAL PARAMETERS
FARMAT/LIST INTERACTION
FORMAT REPETITION FACTOR
FORTRAN CHARACTER SET
FORTRAN LIRRARY FUNCTIONS
FORTRAN SOURCF PROGRAM

SEE FET
7-3, 13-1 70 13-1¢
13-1
. 13-4
T-4, 13-3
7-3, 10-1, 10-4, 10-8, 13-2,
14-3, 14-21
7-3 10 7-5, 10-1, 13-2
T-3, 10-1y 13-2, 13-4, 14-3
10-7, 10-8
SEE INTEGER
11-5
A-3
A-1
1-4y 14-2
9-4
1-2
9-24
9-24
2-1
CH 11.
1-2, 14-2

FORTRAN STATEMENTS CATEGIRIES CH 12.

FUNCTION REFERENCE
FUNCTION STATEMENT
FUNCTIONS

G FORMAT

GDSLIB

GETCJE (SUBROUTINE)
GETREG {SUBROUTINE)
GO 7O STATEMENTS

H FORMAT

HIERARCHY DOF OPERATIONS
HIERARCHY OF TYPES
HOLLERITH CONSTANTS
HOLLERITH FORMAY

I FNRMAT

IABS (FUNCTION)
IDENTIFICATION FIELD
IDEMYIFIER, ALPHANUMERIC
TDENTIFIER, STATEMENT

IDIM {FUNCTION)
IDINT {FUNCTYION)
TEOI (FUNCTION)
TIEOR {FUNCTION)

IF STATEMENT, ARITHMETIC
IF STATEMENT, ONE-BRANCH

3-2, 7-8
7-7
7-1y T-T7y 7-9, CH 11

-G-

S-iiy S-18
11-1

11-5

11-6

6-1y 6-2

-H-

9-19, 9-20

3-2, 3-8, 3-10

3-4

2-4' A"ly A"ﬁ, A"'B
9‘5' 9'199 A-ly A-6

-I-

9-12, 9-13
11-6

1-6

2-1

2-2

11-6

1i-6y 11-18
11-6, 11-13
11-6

6-3

6-3

13-4,

14-3

I-5

IF STATEMENT, TWO-BRANCH

IF STATEMENT, THREE-BRANCH

IF(ENDFILE, I) ToF
IF(FOF, 1) ToF

IF({ IOCHECK, I) _ T,F
IF(UNIT, 1) "~ ByCyEyP
IFIX {FUNCTION)

6-4

© 6-3

10-8
10-8

" 10-8

10-8

©ol1-6y 11-18

IMPLICIT TYPING NF VARIABLES 2-6, 5-1

IMPLIED DO-LOOP NOTATION
INNDEFINITE FORM, MACHINE
INDVCEX (FUNCTION)
INFINITE FORM, MACHINE
INPUT FILESETY
INPUT/0OUTPUT

INPUT STATEMEMTS

INT {FUNCTION)
INTEGER ARITHMETIC
INTEGER CONSTANTS
INTEGER 1/0 FORMAT
INTEGER STATEMENT
INTEGER VARIABLES
INTERNAL DATA TRANSMISSION
INTERNAL FORMAT CONVERSIIN
TNTERNAL TAPE
INTRINSTC FUNCTIONS

I1/0 BUFFERS -

1/0 DFVICES

170 LIST

1/0 STATEMENTS

1SIGN (FUNCTION)

JOB DEFINITIDON

JOB TDENTIFICATION STATEMENT

JNB LOG
JOB, SAMPLE

KEYRDARD TERMINALS

KOMMON {FUNCTION)
L FORMAT

LABELED COMMON

LEFT (FUNCTION)
LEGVAR (FUNCTION)
LENGTH {(FUNCTION)

LEVELS, OVERLAY

LGN CONTROL STATEMENY

LGO FILESFT

LIBRARY ROUTINES

LIBRARPY EXECUTION MESSAGES
LINKAGE, COMPASS

I-6

5-8y 9-2 ,
14-24,4 15-30, A-5, A-6
11-6, 11-13 '
14"29' 15"‘301 A"Sq A"é
7-3, 10-1, 10D-4, 10-8,
SEE /0

10-4 70O 10-7, 10-9
11-€¢, 11-18

A-2

2-2

9-5, 9-12y 9-13

5-1 -

2-6y 5-1 .
10-11 70 10-16

10-11 ’ -
‘13-12 T0O 13-13

11-1, 11-2

T-4, 14-26, 15-2

13-8 .

9-1 70 9-4, 9-26

1-2, CH 10,

11-6 ’

13-2,

-J—

14-2

14-1

l4-€y 14-16
14=-5 1O 14-15

-K-

1-7y A-21
11-6

- -

9-5, 9-16

5-3, 14-20, 14-22
11-6

11-6, 11-13
l11-6y 11-13
CH 8.

13-4‘, 14—7’
14-3, 14-21
7-10y CH 11
15-20 10O 15-27
15-3 TO 15-5

14-17, 14-33, 14-34

13-4, 14-3

LINKAGE BETWEEN SUBPROGRAMS 7-1y 7-5y 7-8, 7-13, T-14, 14-20
LINKS, QVERLAY 8-1
LIST 5~1y 5~8, T7-1, 7-3, 7-7, 9-1 TO 9-4,
9-26
LIST STATEMENT - 14-19
LTI TERALS 2-4y 9-5, 9-19, 9-20, A-1, A-6, A-8
LNGRCD {SUBROUTINE) 11-6
LOAD AND EXECUTE SEE LGO
LOAD AND GO SEE LGO
LOAD CONTROL STATEMENT 14-34
LOAD MAP 14-20, 15-33, 15-34
LOADER . CH 8, 14-21, 14-33, 14-34
LOCATION OF ARRAY ELEMENTS 2-8, 5-6 '
LOCF {FUNCTION) 11-6
LOGICAL CONSTANTS 2-5, A-1, A-T7, A-9
LNGICAL EXPRESSIONS 3-1, 3-8
LNGICAL I/0 FORMAT 9-5, 9-164 A-7, A-9
LOGICAL-TF STATEMENT 6-3, 6-4
LOGICAL I/0 UNIT NUMBER 10~-1, 13-2 TC 13-4
LOGICAL OPERAND USAGF 3-Te 3-8, 44y A-Ty A-9
LOGICAL RFCORD 13-5
LOGICAL REPLACEMENTY STATEMENT 4-4
LOGICAL STATEMENT 5-1
LOGICAL STATEMENT FUNCTIOIN 7-9
LOGICAL VARIABLES 2-7, 5-1, A-1, A-T7, A-9
LnoP SEE DO STATEMENT
LRDISK (FUNCTION) 11-6
-M-
MACHINE LANGUAGE l1-1y 15-3 TQ 15-5
MAGNETIC TAPE 1-7y, 13-4, 13-9, 13-11 TQO 13-15, 14-32
MAIN PRNGRAM 7-1, 7-3, 14-28
MAPS OF PROGRAMS IN MEMDRY 14-21 ‘
MASKING EXPRESSIONS 3-10
MASKING REPLACEMENT STATEMENT 4-4
MATHLIB 1i-1
MA X0 {FUNCTION) 11-7
MAX1 {(FUNCTION) 11-7
MC LDOCK (SUBRDOUT INE) 11-7, 11-17
MDATF {SUBROUTINE) 11-7, 11-17
MEMORY BACKGROUNDING 14-24
MEMDRY DUMP 14-14, 14-29, 15-30, 15-32
MEMORY LAYQUY 14-22, 14-24 T0O 14-27
MEMORY (SUBROUTINE) 11-7, 1l1-14
MESSAGES T0Q DPERATOR SEE REMARK, PAUSE
MESSAGES TO USER SEE JOB LOG
MILSEC (FUNCTION) 11-7
MINUS ZERC 2-5y 2-Ty 3-Ty 9-6y 11-18, A-T
MINO (FUNCTION) 11-7 '
MIN1 (FUNCTION) 11-7
MIXEN-MODE EXPRESSIONS 3-4 10 3=6
MI XED-MODE REPLACEMENT 4-1
MOD (FUNCTION) 11-7, 11-14
MODE, ERROR EXIT 15-30
MODE OF 1I/0 SEE BINARY, CODED

I-7

MSFILE

MTDISK (SUBROUTINE)
MZERN (FUNCTTION)
NAME, SYMBOLIC

NAMEL IST READ
NAMELIST STATEMENT
NAMEL IST WRITE

NARG (SUBRDUTINE)
NEW RECORD SPECIFICATION
NMDISK (SUBROUT INE)
NOBLOK (SUBROUTINE)

NOLIST STATEMENT

0O FORMAT
NRJECT PRCGRAM

'DCTAL CONSTANTS

OCTAL I/0 FORMAT

OCTAL TO DECIMAL CONVERSION
ONES COMPLEMENT |
OPDISK (SUBROUTINE)
OPERANDS AND OPERATORS
OPERATING SYSTEM DIAGNOSTICS
OPERATOR ACTION

OR (FUNC TION)

NRDER OF OPERATIONS

OUT-OF -BOUNDS ADDRESS
OUTPUT FILESET

NPUTPUT OF SAMPLE JOB
OUTPUT STATEMENTS

OVERFL (SUBROUTINE)
NVERLAY EXECUTION

OVERLAY DIRECTVIVE

NVERLAY (SUBROUTINE)

P FCRMAT

PAGE EJECTS

PARAMETER

PARITY, DISK

PARITY, MAGNETIC TAPE
PAUSE STATEMENT

PDUMP (SUBROUT INE)
PHYSICAL RECORD

PHYSICAL STRUCT. OF FILESETS
" PLACEMENTY OF DECLARATIONS
PRECISION, FLOATING POINT
PRIMARY

PR INTED OQUTPUT

I-8

14-5,
11-7
11’7’

l4-16
11-18
-N-

2-1
10-6
9-28
10-4
11-7
9-5,
11-7
11-7,
14~19

9-21, 9-27

11-14

-0-

9-5y 9-14
1-4, 14-3,
14-34, 15-1
2-2

9-14

A-4, A-12 TO A-18
3-10y, A=-2

11-7
3-1
15-23’
6-7
11”79
3-2,
15-30
7-3, 10-1, 13-2,
14-5 TN 14-15
10-2 TD 10-4
11-8, 11~-15

8-2 TO 8-4

8-5
8-6,

14-21y 14-22,

15-30

11-10 -
3-8, 3-10

13-4, 14-3

11-8
-p-

9-17
10-2
7'19 7’21 7”5' 7”8' 15“3
13-16 ‘ '
10-1,
6-7
11-8, 11-11

13-5, 13-7, 13-8 ,
13-14, 13-15
13-7 10 13-9,

10-2, 10-8, 13-11

13-12,

13-12 TJ 13-16

5-1, B-2

2=-3y 2-4, A-1, A-9, A-10
- 8-2

10-2y 13-11

14-30,

13-13,

14-33,

PRINTFR CHARACTER SET
PRINTER CARRIAGE CONTROL
PR INT STATEMENT

PROGRAM ARRANGEMENT
PROGRAM LENGTH

PROGRAM STATEMENT

PRU (PHYSICAL RECORD UNIT)
PUNCH, FILESEY

PUNCH STATEMENT

PUNCHR, FILESET

PUNCHED CARD INPUT
PUNCHED CARD NUTPUT

PUTREG (SUBROUTINE)

QUOTE (#...% FORMAT)

R FORMAT

RANF (FUNCTION)
RANGE OF NUMBERS
RDNI SK (SUBRCUTINE)
READ STATEMENTS

RE AL CONSTANTS

PEAL {FUNCTION)
REAL STATEMENT

RE AL VARIABLES

REAL I/0 FORMATS
RFECORD, LOGICAL
PECORD, PHYSICAL

RECORD, UNIT

RECS (SUBROUTINE)
REFERENCE, ARRAY
REFERENC Ey SUBPROGRAM
REFERENCE, UNSATISFIED
RELATIONAL EXPRESSIONS
RELATIVE LOCATION
RELOCATABLE OBJECT PROGRAMS
REMARK (SUBROUTINE)
REMOTE TERMINAL SYSTEM
REPEATED FORMAT SPECS.
REPLACEMENT STATEMENTS.
REQUEST CONTROL STATEMENT
RFRECS (SUBROUTINE)
RESERVED WORDS AND NAMES
RETURN STATEMENT

PEYURN {SUBROUTINE)
REWIND STATEMENT
RONT ‘

RTS

RIYN CONTROL STATVEMENT
RUN-COMPASS L INKAGE

A-20
10-2
10-2
T-11,
14-19
7-3,
13-7,
7‘31
7-3,
13‘4’
1-€,1
7‘31
11-8

-Q-
9-5
-R-

9-16
11-8,
Q-gv
11-8
10-4
2-3

T-1,
14-23
3-6
2-10,
1-4
11-8,
A-21
9-24,
4-1
13-4
11-8
15-35
6-7
11-8,
10-7
8-1
SEE R
15-1
15-3

14-2, 14-24,
v 14-25,; 14-26
13-3

13-12,
10-1,
10-3

14-31, 15-1
3-8y 13-9, 14-2y 14-2
10-3, 13-8, 13-9, 1l4-

14-26

13-13, 13-14,
13-4, 14-31

11-15
A-10

 10-7

1
9-12y 9-17, 9-18

13-7,
13-15%
13-11,

13-8 4 13-12,

13-13, 13-14

7-5,4 7-8, 14-23

14-22, 15-33, 15-34%
14-3, 14-21,y 14-30, 1
11-15

9-25

D 15-3¢
11-1¢
EMOTE TERMINAL SYSTEM

T 15-2
TN 15-5

13-16

8 .
30

13-13,

4-33,

14-34

I-9

SAMPLE DECK SETUPS

SAMPLE 0OUTPUT

SAMPLE USE OF FILESET NAMES
SCALE FACTNR {I/0 FIRMATS)

SECOND (SUBROUTINE)
SECONDAPY

SETFXR {SURRQUTINE)
SFTPRU (SUBROUTINF)
SETRDCY (SUBROUTINE)
SHOPT 'LIST NOTATION
SIGN (FUNCTION)
SIMPLE VARIABLES

SIN (FUNCTION)
SKIP COLUMNS (X-FORMAT)
SLITE (SUBROUTINE)
SLITET {SUBROUTINF)
SNGL (FUNCTION)
SORTR (SURRDUTINE)

SOURCE DECK

SAURCE LISTING
SOURCE PPOGRAM

SPACE ALLNCATION
SQRT {FUNCTION)
SSWYCH (SUBROUTINE)
STANDARD SUBPROGRAM LIBRARY
STAR (*,..*% FORMAT)
START (SURROQUTINE)
STATEMENT IDENTIFIER
STATEMENT FORM
STATEMENT FUNCTION
STATEMENT NUMBER
STOP STATEMENT
STORAGE ALLOCATION

STORAGE ALLOCATION STATEMENTS

STORAGE, PERIPHERAL
SURPROGRAM LINKAGE
SUBPROGRAM TYPES
SUBPRNGR AM

SUBRLIB

SURROUTINE STATEMENT
SUBROUTINES
SUBSCRIPTED VARIABLES
SUBSCRIPTS

SWITCH

SYMROL CONVENTIONS
SYMROLS, FOPTRAN
SYNTAX ERRORS

SYSTEM COMMUNICATION AREA
SYSTEM EPROR MESSAGES
SYSTEMP (SUBROUTINE)

I-10

-S-

14-2, 14-33,
14-5 TD 14-15
13-3, 13-4
9-17 TQ 9-18
11-8
8-2
11-8
11-8
11‘8,
9-2,
11-8
2-5
11-8
9-19
11-8,
11-9,
11-9,
11-9
14-2
14-3,
l4-2
5-1 TG 5-7, 14-2¢
11-9
11-9,
11-1
9-5
11-9,
2-2
1-5,
7-9
1‘69
6-T7
14-26
5-1 10 5-7
13-8 70 13-17
15-3
7-1
7“5,
11-1
7-5
7-1,
2-7y 5-1 70D 5-6, 5-8,
2-T7y 5-8y 9-1,y 9-2
SEE SSWTCH

1-7
2-1
15-7
14-27
14-17,
11-9,

14-34

11-17
9-4

11-10
11-10
11-18

‘14-18

11-10

11-15
1-6

2-2

-7y 7-10y 7-11, 7-16

7-5
9-2

14-18,
11-16

15-7 10 15-31

T FORMAT
TAN (FUNCTION)
TANH (FUNCTION)

TAPE DENSITY

TAPF ERRORS

TAPE MARK

TAPE PARITY

TAPE PARITY ERRCRS
TAPES, EXTERNAL
TAPES, INTERMAL

TESTING
THREE-BRANCH TF STATEMENT
TIME (SUBRCOUTINE)

TRACERACK INFORMATION
TRATILSB (SUBROUTINE)
TR ANSFER QOF CONTROL
TPEF

TYPE CONVERSICN

TYPE DECLARATION STATEMENTS

TYPE, FUNCTION
TYPES OF VARIABLES

-T-

9-5, 9-22

11-9

11-9

13-9

10-8

13~14

10-1, 10-8, 13-11 TQO 13-1/Z
10-8

13-12, 13-14
13-12, 13-13

1-3

6-3

11-9, 11-15

15-3, 15-20

11-9

6"'1 TO 6"'4' 6”71 7"'57 7"8'
8-1

SEE MIXED-MQODE

5-1

7-7

2”6, 5"1] 9“5, A—-l

-U=

UNCONDTITIONAL GO T STATEMENT 6-1

UNDEFINED FILE OR MEDIUM
UNDERFLOW

UNIT NUMBER

UNIT RECORD

UNLIMITED FORMAT GRQUPS
UNSATISFIED REFERENCES

VARTABLF DIMENSIONS
VARIABLE FORMATS
VARIABLES

WARNINGS

WECS {SURROUTINE)
WORN STRUCTURE

WRDISK (SUBRCUTINE)
WRITE STATEMENTS

X FORMAT
XRCL (SUBROUTINE)

7 FORMAT

15-26
A-5

0-1y 13-2

10-1, 13-11, 13-13, 13-14
9-25

14-23
-y-
5-3, 7-11
9-27, 10-13
2-5
-W-
SEE DIAGNGSTICS
11-9
A-1
11-9
10-3, 10-4
-X-
9-5, 9-19
11-9y tl-16
-7~
9-23

14-28

I-11

FOLD HERE

COMMENT SHEET

DOCUMENT TITLE

Publication: Number___ , Date
FROM: Name » Phone
Address:

Please check one:

Graduate

Faculty Student __ Staff Other

Undergradagte .

COMMENTS ¢
Your evaluation of this document will be welcomed by the Computer Center.

Any errors (Please indicate page number), suggested additions or deletioms,
or general comments may be made below.

Fold in half, staple and return to address on reverse side of this form.

a’1od

HYHH

Staple

University of California

Computer Center Library
239 Evans Hall -

Berkeley, Calif. 94720

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	12-01
	12-02
	12-03
	12-04
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	B-01
	B-02
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	replyA
	replyB

