SOFTWARE WRITER®S LANGUAGE SPECIFICATION) :
R : L o ' S “T5706/09
Revision. 4 June 09: 1975

LANGUAGE 'SPECIFICATION.
:_fo,.:-"

SOFTWARE WRITER'S LANGUAGE

75706709

Table of Contents

1.0 INTRODUCTION TO FIRST VERSION (DEC 73) o o & o

¢ o o o 9 o 1-1

lel INTRODUCTION TO SUBSEQUENT VERSIONS 6 6 o o ¢ o o 4 o o o o 1-2
lelol SUMMARY OF CHANGES?! REVISION 2 (0CT.'74) ¢ o o o 0. 6. 1=2
lelo2 SUMMARY OF CHANGES: REVISION 3 (DECe '74) ¢ o o o & o 1-6
lole3 SUMMARY OF CHANGES: REVISION 4 (JUNE 1975) e o o o e @ 1-7
2.0 LANGUAGE OVERVIEW ¢ & e 6 6 0 e e € ¢ © e © e & e o o o o o 2=1
3.0 METALANGUAGE AND BASIC CONSTRUCTS ¢ o o o o o ¢ ¢ ¢ o ¢ o o 3-1
3.1 METALANGUAGE o © [] L] ° L] () () ° L] ® (] [] [] L] [] ° L] © * L] L] ° 3-1
3.2 LEXICAL CONSTRUCTS e o o o.n © © © © @ 0o © e ® © 0 o0 e e o 3=2
3.2.1 t‘\LPHABET [© © ° © ° ® ° L] L] ® L] ©] © [] L[] L} [° [] [] [3 3-2
30202 IDENTIFIERS o 6 o 0 © 6 & & & 0 06 e 0 6 © e o e © © @ @ 3-3
3¢2¢3 BASIC SYMBOLS © © ® @ © ¢ © 0 0 e o .6 0 o o & . © 0 e 6 o 3=4
3.2‘.‘1’ CDNSTANTS [® L] (] [] (] (] L] ¢ [] [] [] L] & L d L] L] L[] L] ® ® [] 3“’
3¢2¢5 CONVENTIONS FOR BLANKS ¢ © ¢ ¢ & 9 © ©.0 6 & o B o © o 3-4
3e206 COMMENTS e © © & © © © 6 ¢ © © © $.606 6 € © © £ 6 © & o 3=5
4.0 SWL TYPES e © . ¢ o @& © &6 o o o © € © & © © e © o € 9 o o ¢ 4-1
4,1 TYPE DECLARATIONS @ @ & © © e o © & © ® 66 o0: @ ® & © © 6.0 © 4-1
4be2 DATA TYPES (TYPES) e e o 6 6 e © ©0 o & e ¢ 0o © © e © ©0:0 @ 4=2
4¢62.001 Fixed or Variable Bound Types e © © © © © o e 0 o o 4=3
442601 BASIC TYPES © @ o © 6 © e o6 © o0 ¢ ° & o © e e o © 9 o o 4=4
4¢201l6l Scalar TYPGS o © © © o © o & o o © o 8 e 06 e © o o L

402 10101 INTEGER TYPE e @ & & © © ©6 @ © M~ @ © © & & ¢ o 4‘4
402¢10l1.2 CHARACTER TYPE e & © 6 & @ 0 e o 0O 0.0 06 © 6 o 4=5
4¢20 10103 ORDINAL TYPE ¢ o 6 0o ¢ ¢ ¢ & e 0 & o6 & ¢ © o0 O 2 4=5
4e20lelo4 BOOLEAN TYPE ¢ © 6 0 © 6 e © © e 0 ® © © O & o © 4-6
b4e20 lelo5 SUBRANGE TYPE o @ © © ¢ ¢ e ¢ & ¢ 6 © o o> O o0 o o 4=6
40¢2.2 REAL TYPE © © e e o © © 6 © © e © & 6 o © & o e 0 o o 9 4=7
4¢2¢3 POINTER TYPE o ¢ © o0 e ¢ o ¢ © 6 © 6 © ® © o ©° © 6 0o o 4-8
4¢203.1 Direct Pointer Types e © 0.6 e © e. 6 & ®» © © 0 6. O 4-8
402c¢3+.2 Relative Pointer Types ¢ o o o © s © o o o © o e o 4-9

%e3 STRUCTURED TYPES e ¢ ¢ © o e e & O ¢ o © & © ¢ o o o o o o 4=10
403.1 SET TYPE € 9 o ® © 6 © o © © © e 0 o o o ©o. o e o © o o 4-11
Ge3 2 STRING TYPE o © e e 6 o © © @ © © © 0 @* & ¢ e 0o 5 © o o 4?12
40303 ARRAY TYPE 0 o e © o0 © e o © © ° e © o o e o ©°0 o o o o 4“13
4030301 Array Dimensionality and Equivalience ¢ & o s o o e 4-14
4:3¢362 Alternate Spetllings for Array Types o o o ¢ o o o o 4=14
%4¢30¢3¢3 Packed Arrays o © o © o © o6 o 6 ¢ © 6 & e © o oio 4b=14
4.3.4 RECORD TYPE © & © © 6 © © ©6 0 © ©6 © © & © 6 ©o o o o e ® “4=15
4¢3¢%e) Fixed Records ¢ @ o6 e o ¢ 0 ¢ & o o o & ¢ ©o o & o o 4=16
4¢3c¢402 Invariant Records and Fixed Fields o e o o o & o o 4-16
4¢364¢3 Variable Bound Records and Variaole Bound Fields o 4=16
4e3.4¢4 Variant Records and Case Parts o o« o ¢ ¢ o o o o o 4-17
4e3¢405 Record Type Equivaience ¢ © 2 © o o o e & © o e o o 4=~17
4¢3¢4.6 Adaptabie and Bound Variant Record Types e o o o o 4-18
443,447 Packed Recaordss Aligned Fields ¢ e ¢ o © o © o o e 4-18
$e3.5 UNION TYPE € 3 @ © e o © 0 © o0 © e © © 6 & ¢ o e & o e 4=19
4¢345.1 Restrictions on Union Membership ¢ o o 6 0 o 0 o 4~19
4030502 Packed Unions o e o ¢ 6 © o e ©6 e © e o© e o © o o 4~20

4636503 Union Type Equivalence
¢4 STORAGE TYPES: ¢ © & o o e o
44401 STACK TYPE ©c ¢ & @ o o
40402 SEQUENCE TYPE o o o o o
beb 03 HEAP TYPE © o o © o o o
4oto4 SEQUENCE AND HEAP SPACE
405 ADAPTABLE TYPES e o o o o
$e5.1 ADAPTABLE STRING ¢ o
Ge5¢2 ADAPTABLE ARRAY o o o
4e5¢3 ADAPTABLE RECORD ¢ o
4¢50301 Bound Variant Recor
Ge5¢4 ADAPTABLE STACK o
4¢5.5 ADAPTABLE SEQUENCE
4¢5.6 ADAPTABLE HEAP e @
4.6 CONTROL TYPES o e o o @
406»1 LABEL TYPE o 8 e o
bhobo?2 PROCEDURE TYPE o o
4.6.3 COPROCESS TYPE s o
47 BOUND VARIANT RECORD TYP
‘ ©
I
.

e ®» © e & & o e o

°
® © 6.6 & & O Qe o c o

408 FILE'TYPES ¢ ©° ¢ e o
4801 FILE VARIABLES o
4.8.2 FILE VARIABLE WARNI
409 PACKING AND ALIGNMENT o
4010 OTHER ASPECTS OF TYPES .
4,10.1 INSTANTAMNEGUS TYPES .
4¢10.2 VALUE AND NON-VALUE TYPES
©4,10.3 COMPARABLE AND NON=-COMPARABLE
40100@ FUNCTIDN“RETURN TYPES s o o o
40.10.5 CONVERTIBLE AND CUNFORMABLE TYPES

e ® [Theo © © e ¢ o

G

@ @ o e o
® © ©®© ®& ©6 © o © © © ®» 0 e & © ® & © © o O e 6 O

e ©®© © o 6 06 & &6 © 6 o © e© ©°
@ © © & ® ©0 o 6 O © @ © o e & O O 6 O & o o©o © © & o

- ® © & @ © & ¢ © &6 & o O ©0 ¢ © © © © & © o o & o o ¢

<

e "Ue © 6 ©¢ © ® 06 © © O © & O © © © © © e © © © o & © ©

m

© W e - L] < o L] ® e o e o L] L] L J L L] L] e o * [] o © * L J o

50 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
5¢1 VALUE CONSTRUCTORS e o6 ¢ s o 8 o s o o
S5¢lel CONSTANTS AND CONSTANT DECLARATIONS
5¢1lolc) Constants o © © e © o ¢ 0. 0 e
95¢1c1.2 Constant Expressions °
5:16143 Constant Deciarations o
ele2 DEFINITE VALUE CONSTRUCTORS
ele3 INDEFINITE VALUE CONSTRUCTORS
VALUE CONVERSION ¢ o © o o o o @
201 TYPE CONVERSION FUNCTIONS o+ e
5¢2¢1el Basic Conversions o+ e & o
5¢2e¢le2 Conformable Array and Recor
506201e3 String Conversions o o o
5¢3 FILE VARIABLE CONSTRUCTORS o o e

* @ o

5
-5
502

5

o
e ® J o e & & e © o o

s e Qe @ o 0o & o
e » (Ve © © ¢ o o o

6.0 VARIABLES>» SEGMENTS» AND FILES o o
6.1 VARIABLES AND VARIABLE DECLARATIONS
6elc)l ESTABLISHING VARIABLES s o e o
- 6ele2 TYPING OF VARIABLES o 6 o o o o
6¢ls2¢l Instantaneous Types o ¢ o
6¢le3 EXPLICIT VARIABLE DECLARATIONS
6.2 ATTRIBUTES L] * [] ® L] @ L[] [] ° ® [} ®
62,1 ACCESS ATTRIBUTE ¢ © o o o o o
662062 STORAGE ATTRIBUTES AND LIFETIMES
6e2¢2¢1 Automatic Variables ¢ o o o
6626242 Statlc Variables e © & © o o

e & o & © o & ©

L]
o L] L] e o o @ ®* o L] -

<
© e (0D o © ©¢ & © o © © ¢ o

® © o © © & o 6 o » © 0 o e °© o0 e &6 ©°© e & o © v O ©

e o © o o o e © o© e ©

-

e & U e e &5 o ©® o @& o o © ¢

e © & & © © & @ © s o

e 0 © ¢ @ & ©0 o ® © © & @& o @€ o 6 ® © &6 © O © ¢© o o o o o

o~

o @ O o e 6 o © & © © o o »

e 06 © © © ® &6 © o . &6 & ¢ & » © & © © » o 6 © © 6 o O e o ¢

2

e o N & © & & & & e & o6 & o

@ o ® © o & o o o o o

.0‘.0..0...0...0.0.0’.000.00..

® & 6 o o & o o © & O

® ®« © © o & ©o © ¢ © o o

®

® ® © ®» O e © ¢ & o ©

e © o © & ®» @6 © 0 e &6 @& ©®© © & © o o & © © & © & o O & o o

®© © o ¢ ®© © © & o & o o © ©

e ©6 o © o o e & & o O

o o e @ o ® L] -] L] e o o o ® e -] © L] o © o e © [2 (-3 © o ® ©

@ ® 6 ¢ © 0 o © » 9 ¢ © O ® & 6 ©6 © e © ©6 6 © & e o © o o

® ®© ©o 3 © e ¢ & &6 © o

e © © o © © » 6 o &5 © o e O
. o

..000.09.0..0‘0......‘00.000.0

¢ © © e © © o o o c o 8 O ©

¢ 6 © e &6 o o6 6 e o o

¢ © o 0 © 6 © ® & 6 e © © 6 © 6 © © 0 @ © e © ® o & ® 0 O

.Q.OQQOO’O....

® & o ® © o e e o o o

® € 6 © o © o © o e e o o6 o ¢ e o0 o6 O e © o e 5> o O o ©o O

e © o © ©o & o © e © ® o 3 e

e @ e © & o o © ©o o6 ©

(G RV CORCRU Y RS RT G R RN)
t

A=2

75706709

4=20
4=20
4-21
421
4=22

4=22

=22
4=~23
4-24
4-=25
4-25
§-25
4=26
4=26
4=-26
426
§=27
4~238
428
4-29
4=30
4=31
4-31
§=32
4=32
4=-32
4-32
4=33
4=-33

i (I
= O @~ O W L e b e

L LR

v\
]
-

U L]

G‘O(TG‘O(?O‘O(?O‘O
COoOUMVES SN

!

3 Lifetime Conventions ¢ o o o
4 Lifetime of Formal Parameters
5 Lifetime of Allocated Variables
6 Pointer Lifetimes o o
OPE ATTRIBUTES o o o o
ILE ATTRIBUTES o o o o @
TIALIZATIDF‘ [] (-] L] [] [* L]
e301 INITIALIZATION CONSTRAINTS
6e3c2 FILE VARIABLE INITIALIZATION
6e4 SEGMENTS AND SEGHMENT DECLARATIUNS
6.5 VALID COMBINATIONS OF ATTRIBUTES AND
6e6 VARIABLE REFERENCES ¢ o o e o ¢ o o
60601 POINTER REFERENCLS o © o o o e
6ebolcl Examples of Direct Pointer Re
6¢6¢2 SUBSTRING REFERENCES © o o o o
66603 SUBSCRIPTED REFERENCE & o o o o
6ebot FIELD REFERENCES ¢ ¢ & o o o o
6ebeH ADAPTABLE AND BOUND VARIANT REFER
6.7 FILE VARIABLES © o © &8 06 o ¢ o e e
607}1 FILE SPECIFICATIUN e © o s © o
6¢e74101l File Attributes © 6 o ¢ © o
6e7¢2 FILE VARIABLE INITIALIZATION N

]] Q]

> WNh NN

e © ¢ o

©
°
e
©
L]
[

e

e e o © Mo e © "Ho e Mo e © & o o

PROGRAM STRUCTURE ¢ © o e & 65 6 © 0 ¢
COMPILATION UNITS e ¢ © o © o o ¢ o o
MODULES e © ¢ © ©o© 8 o o0 o o o © © e
DECLARATIONS AND SCOPE OF IDENTIFIERS
MODULE = STRUCTURED SCOPE RULES =« &
BLOCKS e ® ©6- e o © © o6 o ¢ °
sLOCK = STRUCTURED SCOPE RULES
SCOPE ATTRIBUTES ¢ & o o o @
70701 ALIAS NAMES o ¢ o o o o o
o8 EXAMPLES OF SCOPE RULES o o o
79 DECLARATION PROCESSING c e
7069.1 BLOCK-EMBEDDED DECLARATIONS o o

~N oUW O

L J L] L] L J L] * o o

7
7
7
7
7
7
7
7
7

e o & o o o
e ® © © o o
® © e ¢ o o a

®e & o o

7092 COMPILATION=-UNIT-~EMBEDDED DECLARATID:S

7¢9¢3 ORDER OF EVALUATION OF DECLARATIONS

8.0 PROCSs COPROCSs AND LABELS
8¢1 PROCEDURE DECLARATIONS o o
8elel PROC ATTRIBUTES o« o o o
8e1e2 PARAMETER LIST o o o o
8.1lc.3 FUNCTIONS AND RETURN TYPE
802 CDPRDCS L] ° [] ° [] °] L [] ® []
8¢3 LABEL DECLARATIONS e o o o o

® o o o
e e & o o o o
® © o @& & o o

9¢0 EXPRESSIONS o o ¢ o o o o o
9¢1 EVALUATION OF FACTORS ¢ o o
9.2 OPERATORS o o o o o o o o
2.1 TYPE TESTING OPERATDRS
2.2 NOT OPERATOR “ o o o
2.3 MULTIPLYING OPERATORS
2.4 SIGN OPERATORS)
2¢5 ADOING OPERATURS e o
266
9e2

e © o e e o o o

e & o o

[]
L
L]
e
°
L]
L]
o
o

® o & o & © © o o

RELATIONAL OPERATURS o .
eb6el Comparison of Scalars and R

%]

N

L d

® @ @ o () e ® ©6 ™M & o 1 © & © © &6 & O

L]

L] L 3 e o o o

® ® L] L3 e [] o e o

i L J -3 o ®© LJ L o o o L)

e O 6 & {(NHeo 6 © T @ 6 tO© 6 e e o6 o6 O e °© o

.
°
°
[J
]
°
]
.
[]
°
°
[]
N

6 o & o o o o

® © 6 © e o © b e © o o

@ © © 6 o o & &6 o o

[

e © o o © o o

@ © o (D 6 © [T & © © o » & O & > @

e & o o

o 06 6 © ¢ © o & o o
® o @ © ¢ © e o o o

L] [N o ° [® ® ® O e © e

e © o » o o o o

@ ® © ¢ & o & ® e O© © o o o

o e © o & & o

®e e o © o o © ©° o o

® 06 6 & o o © ¢ & ©® o ~je O ¢ e © o O & © o

®© e © & & o ©® © & © & ° ¢ o

® ® © 2 o © o © © o

e © 06 © e © o ® © © o (De o o © © © 0 & o o
@ © 8 & © o o © » & & (N®e o & © @ © O & © @

® © © & © o @& e o O O © e o

© & & o o © o

o ®© © o o o o

® o & ©6 © 6 ® O © © © © & o

e &6 ¢ © & ¢ o

e © & © e O o o O©° o

¢ 6 & © o e 0 6 o e

®e & o & o > a o© & o

L] L J L] ® o ® L] L 4 [] L] L L] e & ® ® e .0 o © ® o

e © & & & © o o o o+ o

® o o © o o o © o o © o o o

@ © e © & o6 o & » o © e o o

® © o & o © o

e ® © © @€ © e o o0 o

® © & & o ® o ®& o © e a2 > ®

® © & e o o o

¢ o & » e © & o & o

L J o e © o o L] * ® L] L] [] o e * * o ® O L] L o

15/06/009
[6-6
o 6-6
. 6“7
° 6-7
° 6-7
e 6‘8
[} 6-8
. 6-8
° 6-9
[6-9
¢ 6-10
® 6‘11
. 6-12
. 6=-12
. 6-13
e 6-15
[6-16
° 6“17
.- 6-18
° 6-18
o 6-19
. 6-21
° 7“1
¢ 7=1
] 7“1'
L 7=2
[7=3
° 7=3
o -4
° =4
s 7-5
° 76
° -7
© 7=7
° - 7‘8
° 7-8
© 8‘1_
e g=2
° 8-3
. 8=4&
L] 8-5
.. 8-7
] 8“10
L] 9-1
° 9?2
@ 9-4
. 9-4
[] '9‘5
° =6
[] G-=7
° Q-7
L =9
o 9-9°

A=3

e
®

ONOOVOVODOVOD
e o e & o © o o

w0
L)

OF EVALUATION o

10,0 STATEMENTS o o o o @
1001 ASSIGNMENT STATEMENTS

1061.1 ASSIGNMENTS TJ VARIABLES AND FUNCTIONS
AND PREDECESSOR
106103 CONCATENATING ASSIGNMENT

10412 SUCCESSOR

10,2 STRUCTURED STATEMENTS

10.3

10.4 STORAGE MANAGEMENT STATEME

I0e2,1
10.2.2
10.2,3
1002:4
104245
10206
10.2.7
10268 -
10.2¢9

BEGIN STATEMENTS
IF STATEMENTS °
LOOP STATEMENTS

WHILE STATEMENTS
REPEAT STATEMENTS
FOR STATEMENTS .
CASE STATEMENTS

CONTROL STATEMENTS

L]

L]
]
]
L]

©

[]

e
°
°
°
]
®
°
°
L]

°

[

[

® &6 o o o © o

°

L]

*

L]

1043.1 PROCEDURE CALL STATEMENT'

10,3611 Call

10e3ele2 Cail
10.3¢2 CREATE STATEHMENT
106303 DESTROY STATEMENT
10.3¢4 RESUME STATEMENT
10035 CYCLE STATEHENT
10e306 EXIT STATEMENT .
10637 RETURN STATEMENT
10¢3.8 GOTO STATEMENT o
1063¢9 EMPTY STATEMENT

by Vailue

[

®

by Reference

]
©
e
L3
®
o
[]

10.4.1 ALLOCATION DESIGNATOR

10.40.2 PUSH STATEMENT

L]
L]
L]
L]
e
L]
°
[]
N

1004¢261 User—-Deciared Stack

10e4e¢2¢.2 System—Managed Stack

10443 POP STATEMENT .
JO0eb o4 NEXT STATEMENT o
1045 RESET STATEMENT
1044¢5061 Reset Sequence
10e4e¢5¢2 Reset Stack
1040543 Reset Heap
10e4e6 ALLOCATE STATEMENT
104447 FREE STATEMENT

L4

105 INPUT-QUTPUT STATEMENTS

104541 OPEN STATEHMENT

10.5.1:1 Unspecified Attrip

10542 CLOSE STATEMENT

10.5¢3 POSITIONING STATEHMENTS

10s5¢64 READ-WRITE STATEMENTS

°
°
°
°
°
°
°
.
°
U
°

T

t

1]
®
*
L]
[]
°
*
L]
®
L]
S
°
L]

°
°
)
°
.
°
°
.
®
°
e
.
°
.

S

.

[

L]
L)

ASSIGNMENT STATE

°

e © & o o @ o

® e & ¢ o © © o © o5 o

¢ e © L] - L) ° L] L] e o© [] [L
¢ ©6 @ O & © © o 0o © e © o6 & © > & ¢ &6 & o 6 a6 O e & o © o o

[]

[

°

°

(4

° o o *® [] o L 2 o

2 Comparison of Direct Pointers

3 Comparison of Relative Polinters
4 Comparison of Strings

5 Reltations Invoiving Sets
6

7

8

.

°

-]

°

L. o L] L d L] L J -3

VALUE CONFORMITY CASE STATEMENT
POINTER CONFORMITY CASE STATEMEVTS

e ®© ®© o0 & © © © & © © © o © & & © o O © o & © 6 © ©6 o e o O

[

[

°

[]

]

o © © &6 o e o o

@ o © 0o e e © © & 8 © e o0 & 0O ® o6 e o © o o o e o © O e o ©

N
L]

°

ce L] ® L] ° * L L *®

Relations Involving Arrays and Reco
Non~Comparabie Types
Table of Comparable Types and Resul
PONEMTIATING OPERATOR

[

©

®
[
[]
.
L]
*
©
°
.
®
[
°
[
¢
(]
L]
®
©
®
L]
L]
¢
[
[]
[
]
o
°
°
L
[]
L)
[]
.
e
L4
[]
[}
°
L]
°
°

°
.
.
°
r
.
t
°
.

°

® & o o & & & o »& & &6 © © © »® ¢ O 6 5 O © O > © &6 &6 ©6 © © 6 e © © © ©0 © & O e O o

°

(4

e 0o —~je& N © o e o

® 0 © © & & © © e e o o & o e e VO O o0 &6 &6 o e »® 6 o S 6 © © © © e © O © o © o o o

e o o o

ype

L

m

© ©6 © 0o @ © 0 0 ® 6 © © © @ © ® & @ © e 0 0 0 © 6 0 O ¢ ® ¢ 0 0 e ®© © © ®© © © © e © T e o O
© © © o o ¢ &6 ¢ o 0 O ®© O © © © & &6 6 © ® 6 & & ® o ® & 6 © & &6 O © 6 & 6 © 0 0 © 0 Ze o

e & N e & o o o o

® ®© o o o ¢

.'.0.‘000....."000.00.......'000000.0...00‘0...

® © ©o e © e © o o

4 © © ¢ o o © e o o ©o & o6 © ©0 e ©6 o & O o0 O o6 &6 60 5 ©6 € & >3 © © & © 6 © O ©0 o v

o e 6 © & ©o & s @

e © ® ® e © O & © e o0 © O e o o & o &6 & o ® © e & 6 o & o & © ®& ©0 © o © O°o & o © & o 6 o o o

o @& © & o © o o o

e © © © e 0 €6 © ® O & 6 e © © © & & e o @ © o © 0 6 e ¢ & e 66 2 & ® 0 o0 © e e e © o o e o© ©

A=t

75706709

€ ®© o e ©o & o © @

® © © o o o © ¢ e © 0 ¢ © ©0 ©6 0 © © e © e o © & &6 o o0 & o6 o O o e 6 e e o6 ©»© & © v e 6 o e ©

9-10
9-10
9-11
9-11
9-12
9-~12
9-12
9-14
9-14

10-1
10-2
10-3
10~5
10-5
10-6
10-6
10-7
10-8
10-9

10-10

10-11

10=14

10=-16
10=17

10-18

10-18

10-19

10=20

10-20

10-21

10-22

10-22

10-23

10-24

10-24

10-25

10-25

10-26

10-28

10-28

10-29

10-29

10-30

10-31

10-31

-10-31

10-32
10~32
10-32
10-33
10-34
10-34
10=34
10-35
10-35

10e564el Write (Partial) Line Statement

10e5040lel WRITE LINE STATEMENT .

106504012 WRITE PARTIAL LINE STATEMENT

10542 Put Eflements e © 6 e o e
100656462+s1 CHARACTER CLASS OUTPUT

°

*

[

10650%02¢2 NON-NUMERIC SCALAR WITH RADIX

105440263 STRING ELEMENT WITH RADI
“10eBeh0204 REAL ELEMENT e ©o o o o
10050190205 INTEGER ELEI"‘IL‘.NT e o ¢
10¢5064c2¢66 SCALAR SUBRANGE ELEMENT
10eHeb4e267 POINTER ELEMENT o o o
1065¢4¢3 Write Binary Statement .
1065404 Hrite Seauential Statement
10c¢56405 UWrite Direct Statement
10c5¢%.6 Read Leagible Statement .

" 10e5c¢4e¢7 Read Partial Legible Stateme

1050468 Read Binary Statement .
10549 Read Sequential Statement
1054010 Read Dircct Statement

10.5.5 FORMAT CONTROL o o o o o o o
100656501 Page Statement e o o o o
105¢5¢2 Eject Statement © © o e
10¢5¢5¢3 Line Statement o ¢ o o o
10650504 SkiP Statement e o e ® @

11.0 STANDARD PROCEDURES AND FUNCTIONS
11.1 STANDARD PROCEDURES e ¢ o o o @
1lolel #TRANSLATE (S5 Ds T) o o o o
11.1.2 #STRINGREP (Vs Ds WI[sR1) .

11¢1e3 #SETPAGESIZE (<KPRINT FILE VARI:ZBLE

1lcle4

X

[

]

o e o -] L] L]

°

L

© o © & 0 & 06 » J o e o © & e © O

® © © & & o o o

\“o © o o
‘-

® e e o ., % o & o

®e ® & e O © @ o © O & o o & & © O o e & o o o

/Ae e o o

=z

C o o o o

#SETPAGEPROC (<PRINT FILE VARIABLE>»<PROCEDURE

11.2 STANDARD FUNCTIONS .

1162¢1 #ABS(X) s 6 e © © ¢ © e ¢ o
1le2c2 #SIGN(X) e © ¢ ® o o o & o
11243 #SUCCIX) ¢ ¢ o0 © ¢ e & o o o
11e2c% H#PRED(X) e ¢ o o o ¢ o o o o
1l1e2¢5 SINTEGER(X) e © o e e ¢ o o
11e2¢6 3$REAL(X) e ¢ ¢ & & © & o e o
11627 $CHAR(X) ¢ © ¢ o ¢ e o o o o©
1162¢8 $STRING(L»SIL,FILLI) e o o o
1129 #STRLENGTH(X) © e o e o o o
112,10 #LOWERBOUNDU(ARRAYs N) s o o
1126011 #UPPERBOUND{ARRAYs N) o o o
11.2.12 #EOF(FILE) ¢ e o s © © o
11.2c13 #COPROCID ¢ o o o ¢ o o o o
1102014 #REL(PUOINTERLDsPARENTALID) o
1102015 #PTR(RELATIVE_POINTERL»PARENT
1162.16 #HUPPERVALUE(X) e e o o o o
11,217 #LOWERVALUE(X) « o 6 o o o

11.2.18 #PREVIOUS(SsN) e o ¢ o o e

1162019 #CURPAGESIZE (<PRINT FILE VARIABLE>

[

® © > o0 ©® © © o » e ¢ © ¢ © oo o o

©

—

® o &JO©® © 6 e & © © o © o ®» o0 o o

[

112,20 #CURLINO (<PRINT FILE VARIABLED>)

11.2.21 H#CURSTRLENGTH (X) o o o o
1102.22 $BOOLEAN (X) e &+ & o o &
113 REPRESENTATION DEPENDENT ¢ o o o

[

[

®

]

® ®© o o6 & o & o & © O e o o

[]

® & © 0 ~ o & & o6 © o © @ O e © & O ¢ o0 o o o

® & o ©

® & o & @ & & 0 © o o © » © © O©0 © © o & ° & o+ ©O

e © & & ¢ © 6 © O e © o ©®© O & O © e o

3 .
Coe © o o
m

© © 6 © » © 6 ® © o © & & 6 &5 6 o © © © & ' 06 0o 6 X

© 6 ©¢ @ ¢ 6 © 2 ®« »# © © o © © & & o6 & © 0 € o ®

7)o e o o

m

® 6 ¢ ®© ¢ © ©¢ © 0 0 © ®© © © ©6 © © e © 6 © © o © T

@ ©¢ © © o © 0 e 6 ©o e ®© ©0 o © @ & © 6 0o 0o © o ©
‘e © ® @ © © o ©6 & © o e & & e & o o & o & ¢ o o

m

© © © o e © & © o o o O & © e o & o & 6 ¢ ¢ o o

Lo o o o
-

m

®e © © 6 © © & e © O & & © & o » &6 o © o © o & o 7

® @ © o & © 6 ¢ 06 5 5 5 o * o © 6 &6 & © © © o o

L] o e *

[

® © © © o © & o @6 &6 © ® 6 ¢ ©o & ©6 ¢ & & o & o o mM

& & ®© ® ®© ©0 o 6 G e e e O ® o © & 0 & & o°o & ¢ o

-
o & o ©
=

-

\%

® © © o o o o e ® o e © o L) L J ® © e o ® o e L] ° b

fTie o o o

® o6 © e O 06 & © e o © ® © O © ©6 © © ©® o © & o ©

(%]

N o o e o ® & o o & & o o & O 6 & o & © o © 0 ©0 ©0 & © o o

® 0 © © o & & & © o 6 o © O ¢ © @ ¢ © 2 ° & o o

©c e o e

® & © & ¢ o ¢ o &5 » 6 & © » © © o © o ©0 © © o o

e © © ®© o ®© © ® @ © & ©6 © © © © © & & e o0 © © o ©

A=5

75706709

10~35
10-35
10-36
10-36
10-37
10-38
10--39
10-39
10-40
10-40
10-40
10-41
10-41
10=41
10-42
10=42

10-43

10-43
10-44
10=-44
10-=45
10-45
10=-45
10=46

S 11-1

11-1
11-1
11-1
11-2

11-2
11-2
11-3
11-3
11-3
11=-3
11-3
11-4
11-4
11-4
11-4
11-4
11-5
11-5
11-5
11-5
11-6
1l-6
11-7
11-7
11-7
11-7
11-7
11-7
11-8

11.3.1
11.3.2
11.3.3
1le3c4%

#LOCCKVARIABLED) o o o
#SIZE(ARGUMENT) o o e
H0FFSET(USBASE) > o o

1lebdol
1ls4e62
114403
llebob
11¢4.5

HOWEOR (<KFILE VARIABLED)
#oWEQNF (KFILE VARIABLE>)
#6EQOR (<KFILc VARIABLE>)
#6EDF (KFILE VARIABLE>)

#6EQI (KFILE VARIABLE>)

12,0 COMPILE=TIME FACILITIES °
121 STATEMENTS AND DECLARATIONS
12:101 COMPILE-TIME VARIABLES

°
[}

°

g

(]
o
°
°
L]

°
°

L)

°

#MALIGNMENT (ARGUMENTs OFFSETS

L]
[]
°
[
°

[]

©

©

©°

o

BASE)
1144 SYSTEM DEPENDENT FUNCTIONS AND PROCEDURES

®e © o© o

1212 COMPILE-TIME ASSIGNMENT STATEHENT

12.1¢3 COMPILE-~TIME IF STATEMENT

1202 MACRUS [} ® () [] Q e . 0 e
13.0 REPRESENTATICON-DEPENDENT
13.1 DATA TYPES o & ¢ o o o
13.1.1 CELL TYPE o o o
136162 CRAMMED TYPES o
13c1:2¢1 Alignment o
1301("202 \’Jidth L] © e
STATEHENTS e ©° o o

e e & o »
o © o e o o
e © & e o o

13.2

14,0 MACHINE-DEPENDENT FEATURES
14,1 DATA TYPES 6 o © ©6 0 ¢ o e
142 MACHINE-DEPENDENT
14.3 CODE STATEMENT e & ¢ o @
1404 MACHINE INSTRUCTIONS o o o

o

©
[
.
°
L]
°

*

] L] -] o o

o

[

L]

e o e o o

¢

FEATURES

© ® © o o o

°

°
STORAGE ATTRIBUTES

¢

o © © o & o o

]

[
[
®
[

o []

©o © © o © o ©

o e © o o e

L o o L J o

o

e o o o

e & © o e o o

®e © o o o

® o o & ¢

® ®o© o @ o o

®e © o e o o o

e & & o o o o @ © & o o© o ® © e o 0 o © e o ©

® & © ¢ © o © o o o

o e ® [L] [] L] L] e . L J [] °

® & e o o

e © ® e o6 e O e o o

o © o © L] L] ® L d o L] L] * L 2

® e 5 e o

e © ¢ © o 6 0 & o o

o ° o L] * L J

© @ © o o

® © e o e o ©o

e & & o o o © ® o e © o o ® & © 6 © © o o o o

® ®© o o o

© e e @ o o

® o o o o

® ®© ¢ © o o6 ©o e o o

®¢ © o o © o ©

®& © e © ©6 o ©

® © © e © o © o e o

.0 © e e o e

®© o © o o

A=-6

75/06709

L] L J e e [] * o ® © o

e o @ o o o

e @ » © o

o c L J L J [] L L]

11-8
11-8
11-8
11-8
11-8
11-9
11-9
11-9
11-9
11-9

12-1
12-1
12-1
12-2
12-2
12-3

13~-1
13-1
13-1
13-1
13-2
13=-3
13-3

14-1
14-1
14-1
14-1
14=2

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75706709

Revision & June 09, 1975

1.0 INTRODUCTION TO FIRST VERSION (DEC 73)

CIMEIR IR PIR PR R ERRENNINRINNNNEGNRNRNNNRSNNRNORRNRRNIBRINNNN RN RR RN R NGNS

1.0 INIRODUCTIIOQN.IQ EIRST_VERSJION_LDEC_Z3)

The purpose of this‘ document is to define the Software

Writers?' Language to such a degree that the {anguage can be
understoods useds documenteds and implemented by programmers
experienced in the use of high=level block=structured t!anguageses

The tanguage design and this document are products of the NCR=CDC
Software Writers? [anguage Committees

The Software Writers! Language will serve as the sole systems
programming language for the development of the NCR-CDC
Integrated Product Line (IPL) and is established to satisfy the
bulk of the IPL systems programming requirements with
machine—-independent facilities that are wefl structured and can
be impltemented efficiently and reliablye.

Further fanguage developments can be expected In the areas. of.
operating systems hardwares and debugging facilities as the IPL
becomes further defineds

The goals for the Software Writers' Language include:

= It shoutd furnisn high functional power for the problems
encountered in the creation of compilers and otner software
systems.

- It should be an "easy to use" languagey giving the facility or
function needed in a reasonably direct manner,

- As much as possibles it should guard against the programmerts
use of programmatic elements in ways which might cause
long=undetected errorsy of errors if the program were carried
from one machine to a different model, .

‘= The language should provide sufficiently high—-level constructs
to free the programmer from much of the burdensome details of
program constructions and sufficient low=-level constructs to
get the job donee

= SWL should yield effective object programs in computer systems
not necessarily yet designede.

- The language should encourage the creation of programs and data
whose structure is immediately apparent to the readers

NCR/CDC PRIVILEGED

1-2
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/089
Revision 4 June 09 1975 _
1.0 INTRODUCTION TO FIRST VERSION (DEC T73)
l1e) INTRODUCTION TO SUBSEQUENT VERSIONS

OIS KPS PE N NI 0L R PGPS PIEN NN NINNNRN RN EQRENRRIZNRENPRIPINRRNNMRUR RN ORINKGNIPRIIIIII N RNMNN

1.1 INIRODUGIINN.IO.SUBSEQUENI_VERSIONS

On acceptance of the first verslion of the language
specifications the original Software Writers Language Committee
was dissolved and replaced by a SWL Language Control Board
responsible for the future of the tanguage. Concurrentilys a SWL
Language Log was started for purposes of recording and tracking
requests for flanguage changes and thelr eventual resoclution by
the boarde The SWL specification will be periodically revised to
reflect accepted language changes., in additions minor
correctionss rewordingss and clarifications wiil. be mades more
exampless exemplary discussion and cross=-referencing will be
added, This will pe a continuing process intended to transform
an austere specificaltions directed to a limited audiences Into a
more generailly usable reference documente,

lelel SUMMARY OF CHANGES: REVISIbN 2 (0CTe'74)

-Changes are listed below by topic and section numberss
-~ Constants (3.2041) .

An explicit denotation for a base=10 radix has been added.
- Formal Types (4.0 and &4.6)

Proceduresy fabelss and coprocs are now classified as
tcontrol!' typeses Formal types include control typess adaptable
typess and the newly introduced bound variant record types (cf.
4¢7)s which are included in the new syntax for SWL typese

= Ordinal types (4¢2¢1lcle3)

Ordinal type specifications are no longer restricted to appear
only in type declarations,

At least twuwo brdinal constant identifiers must appear in the
ordinal constant tist,

= Subrange Types (4e¢2¢leled)
Variable-bound subranges are no longer permitted.
- Pointer Types (4.2¢3)

Read-oniy pointers——and the associated 1read! attribute for
pointers--have been introduced.

NCR/CDC. PRIVILEGED 160

SOFTWARE WRITER'S LANGUAGE SPECIFICATION .
75706709

Revision 4 June 09s 1975 N

1.0 INTRODUCTION TO FIRST VERSION (DEC 73)

lolel SUMMARY 0OF CHANGES: REVISION 2 (0OCT.'7%)

RIGNRPRRIIIIIN PO NRONRANNENNRNNMENBIN RN NRRREDRN NN MNMIIMNPINMNMINNTENNR IR RNNNNINRRN

Relative pointers may now be used with elements of stringss
arrayss and recordss as well as uwith elements of storage types,

The definition of vrelative-pointer equivalence has been
strengtnened to include dependence on the t'parental? types of the
relative pointerssy as well as tne types of the elements pointed

toe.

‘Spec(ficatfons for the i#gel and #ptr functions have been
revised to reflect the new definition of relative pointer
equivalence.

- Arrays and Subscripted References (4¢3+3 and 6o4¢3)

The treatment by SWL of arrays and subscripted references has
been clarified; an n=dimensional array may be declared and
referenced as a vector of o - 1 dimensional arrayss for exampieo

= Record Types (4+3.4)

Syntax and semantics for record types have been simplified:
and minor corrections madee

Variant records are now legitimate fields of records of fixed
tyre. '

Allignment may now be specified for tag fields of variants.,
‘= Union Types (4c305)

Union membership Is now restricted to distinctys tvalued®
typese The non-value types are fites and heapss arrays and
stacks of non=value typess and records c¢ontaining a field of
non=-value type.

Union types may now be packed,

- Adaptable Types (4q5)

Syntax and semantics for adaptable arrays have been readefined
and simplified.

Components of adaptable arrays may now be adaptable typese

Correction to adaptable records now allows field selectors for
adaptanlie fields.

= Proceduress Labelsy» and Coprocs (4.6 and 8.1)
Formal types aré now called 'controlt' typese

NCR/CDC PRIVILEGED 1.0

1-4
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75/06/709
Revislon & June 09y 1??5 - . :
1.0 INTRODUCTION TO FIRST VERSION (DEC 73)
1o1.1 SuUMMARY OF CHANGES: REVISION 2 (OCT.¢74)

NNNRRHURNNANMNPNEIWNEMRNNERNEPI N NRIINMIN KRNI IR GRAIEIN RN M RNRIINRIT RN N PININIONNN»N

Syntax for procedure type specifications and procedure
declaration has been revised; procedure type ldentifiers may now
be used in procedure dec@arations.

- Bound Variant Record Types (4.7)

Bound variant records may have their case parts tfixed® to one
of their constitutent variantssy for purposes of space
compactions They are formal typess which may be used as formal
parameters and must otherwise be referenced through pointerse
- Repetition Factors (4e4¢22 10c4ols 501c2)

The spelling for repetitions has been changed to allow parsing
without iIndefinite look~aheades The definition of spans has been
restricted to the use of type identifiers rather tnan typese
- Types ‘Constants and Variable Declarations (4els S5olels 6o1)

, Empty specifications are now allowed in these declarationss
The Intent is to provide flexibility in program composition and.
revision, :
- Compilation Unitss Moduless Blocks (7)

Syhtax and semantics have been reordered and expanded.

Procedures as well as varjables are alltlowed as prongs of
compltation units. :

Empty declarations are now allowed (for purposes of program
composition and revision)e

4

Order of evaluation of declarations (7.9.3) is governed solely
by block structuringe.

- Expressions (9)

A conditional=-and operator (cand) and an unconditional=or
operator (uor) have been added,

The pointer type test operator has been respelted (:®:) and an
analogous value type test operator (:=:!) has been added,.

Order of evaluation of expressions (9.3} Is now governed
solely by the syntactic rules of composition and their implied
precedence rules.

- Assignment Statements (10.,1)

NCR/COC PRIVILEGED 1,0

1=-5
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09s 1975

QRN IEN I NARNNPEARININRIINRPMNIINIGIIIIPNEIII I IINRRMINNNINANNNNRIOINI NN IINNNRNNNNRNRN NS

1,0 INTRODUCTION TO FIRST VERSION (DEC 73)
lelel SUMMARY OF CHANGES: REVISION 2 (0CT.'74)

PP BRI PNII NPT R R RN INRNNNNARIZINNNNNNRIMNRIRENIIENRNRIRNNNNMNMNRNNNRNMNNNNNSRNRONRA
N

A successor statement and a predecessor statement have been
added.,

Stacks and sequences may now be assigned (to stacks and
sequences respectively); the restrictions on such assignments are
callted out (lO0elels point 8),

-Restrictions on assignments involving read-only pointers and
pointers to bound variant records are spelied out (10.1.,1ls points
6’ 7)0 ’

- Case Statements (10.2.8 and 10.2.9)
Variant case statements have been removede.
A value conformity case statement has been added.

Q-Format and Actuail Parameters (10.3,1)

Restrictions on the use of bound variant records as actual and
formal parameters are spelled out {(points 7 and 3},

- Allocation Designators (10e4el)

Syntax and semantics for allocation. designators have been
expanded to éiliuminate the various species of 'fixers! used. for
adaptabies and bound varlantse.

- Standard Procedures and Functions (11)

The ordering of the parameters of the #translate procedure has
been changeds

.

The following functions now accept a type identifier as well
as a variabtle as an argument: #strlengths #lowerbounds
ffupperbound, #sizes #matltignment,

The functions #towervalue and #uppervalue have been. added.

-~ Compile=Time Facitities (12)

The semantics of the phase=one facilities have been expanded
to cover the treatment of. identifiers for compile~time variables
and macross and the interpretation of macros and compile~time
statementso,

= Representation~Dependent Features (13)

The syntax of crammed types has been corrected to preciliude the
use of varilable-bound crammed structuresy, and to spruce up the

NCR/CDC PRIVILEGED 1.0

1-6
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09
Revision 4 June 09s 1975

NERNNNNRBNNNNRBIIRNRMNRRROOUINOGNR ORI NIIRNNRININRNENNNRRIRNIRNNNRERRNRRIRNNNN DN

1.0 INTRODUCTION TO FIRST VERSION (DEC 73)
lolel SUMMARY OF CHANGES: REVISION 2 (0CT.*'74)

NRIEBNNRNNIWNRNUORREENRNNINRNRNNRNINIINNNNRRRRRNNRMNENNNRNNNENSRRIORIMNNMNRIRRNIINNNAN

speciffcatlon of malignmente.
l¢1.2 SUMMARY OF CHANGES?® REVISION 3 (DEC. '7%)

Changes are listed below by topic and section numberse
= Constants (3.2.4%)

~ The $ghar conversion function is now a <character constant>
rather than a <string term>. -

= Storage Types (4+4)» Storage Mgmt. Statements (10.4%)

Mechanisms for accessing elements of a stack other than the
topmost one have been added. -

The wuse of a stack identifier followed by an up arrow to
reference the top element of a stack is no longer permittede.

A system=defined stack with automatic lifetime characteristics
has been introducede.

The gggn and pgop statements have been changed to reflect the
above changess,

The geset statement has been extended to permit stacks to be
successively popped to a designated element and to permit afl
" elements of a heap to be freed en-masse.

A new buiit=in function for returning pointers to stack
elements has been added (#previouss 1l.2.18).

- Pointer Comparisons (cfe DGe2¢602 and 9¢20¢603)

All six relational operators may now be used with atl direct
and relative pointers except for pointers to file typess which
are non-comparabiey, and pointers to control typess which may be
compared for equatity and inequallty oniye.

- Files (4468 6622 1045)
File types (4¢8) have been rounded out to include pring files
(formatting controlted by procedures) and direct files (binary

files with *keyed? accessing facilities).

File types are now data types (rather than formal types) which
are associated with .file variables (6¢7). File variables are
used to access actual filess An actual file must be associated

NCR/CDC PRIVILEGED 1.0

SOFTWARE WRITER®S LANGUAGE SPECIFICATION :
_ 757/06/09
Revision 4 June 09, 1975

NINIRIRNNIWRNNNNNERISRNPINPINPIINNNNENRERRITERNMIIRINNRIINRNNMNERR NI RN NNARIPNINENNRN NN

1.0 INTRODUCTION TO FIRST VERSION (DEC 73)
lelo2 SUMMARY 0OF CHANGES: REVISION 3 (DEC. '74)

M I NI ICIN NI RN NNRN IO PIN TN I MPINNRPININIINNNEENNNKNIIINNNNRNNER RSN NNRENNNNRNRNNRS

with a file wvariable (by an gpen statement) in order to be
accesseds

*Value <constructors! for file variables have been. added
(56203)

Input-Output statements (10.5) have been extended and revised
(in part) to reflect the new file types and the new handling of
file accessinge Subsequent revisions wWill complete these
extensionso, :

lele3 SUMMARY OF CHANGES: REVISION 4 (JUNE 1975)

This revision has its changes from Revision 3 specified by
tchange bars' in the right marginy except for deletions of entire
paragraphs or sectionse

Change bars have been manually deleted where they indicate
only trivial spelling correctionss clarificationss re-wordings or
re~formattingse.

MajJor changes for this revision include:

- The mpicrg facility of the tanguage has been completely removed
{but macras remain), :

= Input/output has been modified by the addition of formatted
output and related functionse See 4e¢8s 6¢7» and 10c5,

= Varying strings and concatenation have been added to the
language (cf. 4e3¢29 5020163y 60206964 and 1lla2.8) '

- The use of a procedure-type—~identifier in the dectfaration of a
procedure has been removed.

- Restrictions have been placed on type=fixers 1in allocation
designators for variant records (cfo 10,401 Allocation
Designators)e. ' :

_ - A reset command for a storage variable prior to the flirst
allocation into that storage variable 1is now required (cfo
10.4)

- The spelling of access attributes and file attributes has been
changed so they begin with the prefjix character ¢#1t,

= Structured conversions have been re=defined (cfe 5e2¢le2)e

NCR/CDC PRIVILEGED

1.0

1-8
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision & June 09, 19375
1.0 INTRODUCTION TO FIRST VERSIOW (DEC 73)
lo)e3 SUMMARY OF CHANGES: REVISIOM & (JUMNE 1975)

MWK NNNNNRRNNNERNNRNRRNNIEMINIINNNMNNRRERIINIINSNNERININRINOINRMRIRPREEONONRNNNNN

- Label declared are required only in ISWL programss and should
not appear in SwWL programs (cf., 8.3 Label Declarations)e.

- An taliast® for identifiers has been added ¢to the language
(Cf. 70701 Alias Names)o

NCR/CODC PRIVILEGED 1.0

2~-1
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75706709
Revision & Juqe 0%, 1975

2.0 LANGUAGE OVERVIEW

MNIGNRIINANEIIRNNDINIINWINKRRYINEININ RN PINNRRR PRI IR NINONRRRIIIIR RN INR

2.0 LANGUAGE_OQVERVIEY

A SWL program consists of statementss» which define actions
involving programmatic elementss and dgglarcatlionss which define
such elementse

The definable etements include varlahless proceducagss Lahelss
and filess all having the characteristics that are conventionaliy
associated with their names. Declarations of instances of these
elements are speiled out in terms of an. jdentjifler for the.
element and a tyvpe descriptions which defines the operational
aspects of the <etement ands in many cases: indicates ‘a-
referential notation. In the case of a variable declarations the
type defines the set of vatues that may be assumed by the
variables Types may be directly described in such declarationss
or they may be referenced by a type identifiers which in turn
must be defined by an explicit type declarations A smail set of
pre-defined types are provideds together with notations for
defining necu t.pes in terms of existing ones.

In ogenerals an etlement may not enter Into operations outside
the domain indicated by its types and most dyadic operations are
restricted to elements of equivalent types (e.ges an integer may
not be added to a real number). Since the requirements for type
equivalence are severey these operational constraints are
stricte Departures from them must be explicitly spelled-out in

terms of gonvarsion fungfionse. ,

The basic typaes include the pre-=defined integer» chars hoolean

and rgal typess atlt having thelr conventlonal connotationss value
setss and operational domains., The flrst three are scalar Ltypess
which define welt—-ordered sets of values —=- as distinguished from.

real typese A scafiar type may also be defined as an gordinal Lype
by enumerating the tdentifiers which stand for Ilts ordinal
valuess or as a gubrange of another scalar type by specifying the
smallest and largest values of the subrange. PRointer Ltypes are
included in the basic types. They represent {ocation valuess and
other descriptive Informations, that <c¢an be wused ¢to reference
fnstances of variables and other SWL elements. Pointers are
always bound to a specific types and pointer variables may
assumes as valuessy only pointers to elements of that type.

Structured fypes represent collectlions of components,; and are

defined by describing their component types and indicating a
so-called gsirtucturing mekthods These differ in the accessing

NCR/CDC PRIVILEGED 2.0

2=2
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09, 1975 .

2.0 LANGUAGE OVERVIEW

RN NNNEIINNRNNNNENRCINNNRRENMEIINNNRIINIIRNININPIRNENNNNNRNNRRENMENRRERINRENSNNNN

discipline and notation used to setect individuat components,
Five structuring methods are availables: get structures string
structures arCrLay structures cecord structure and upion
structures

A set type represents all subsets of values of some scalar
type. : :

A sftring type of length n represents all ordered p-tuples of
values of character type. An ordered [k~tuple of these values
(1 £ kK £ n) is <called a suybstrcing. Notation for accessing
substrings is provided, -

An array type represents a structure consisting of components
of the same typeo Each component is selected by an array
selector consisting of an ordered set of p index values whose

o n dis Ta

types are indicated in the array definitione

A reacord type reprasents a structure consisting of a fixed
number of components <calied fieldsy which may be of different
types and which must be identifled by fleld selectarse In order
that the type of a setected field be evident from the progranm

text {(without -xecuting the program) a fieild selector is not a
computable vatues but instead is an identifier uniquely denoting
the component to be selectede These component: identifiers are

declared in the record type definition,

A yaplilant record ftype may be specified as consisting of
several yagiantse This implies that different variabless
although said to be of the same types may assumne structures which
differ in a certain manner. The difference may consist of a
‘different numoer and different types of components. The variant
which Is assumed by the current value of a record variable is
indicated by a component fijeld which is common to all variants
and is calted the tag field.

A unlon type represents a finite set of- selectables
non=equivalent typese Union types permit one to define
procedures wnhose parameters can be of more than one type and
provide an alternative to variant record typese

Array and record types may have associated packing attributess
which can be used to specify component space-~-time trade~offs,
Access time for specific components of packed (space~compressed)
structures can be snhortened by decifaring them to pe galianede
Crammed structured types ‘are used to spell out the precise
representation of a structure in terms of the bit-lengths and
relative alignments of its components. The use of crammed types
Is restricted to the so-called representation-dependent portion
of a programe

NCR/CDC PRIVILEGED 2.0

2=3
SOFTWARE WRITER®!S LANGUAGE SPECIFICATION
T5/06/09
Revision & June 09, 1975

2.0 LANGUAGE OVERVIEW

RN IR EIRNRNRNRNEIRNQRMRNRRKIIN RN NIENRRBIORIRIINRRNNNINNANRINORNN NN EINENNRIR NN
N

Storaae types represent structures to which other variables
may be addeds referenceds and deleted wunder explicit program
controloe There are three storage typess each with Its owun
management and access characteristicse A stack Lype represents a
coltection of components of the same type which Is managed (in a
“last in - first out" manner) by the pushs pop and reset

s wEs w—

operationse Stack components are accessed through pclinters
constructed as by-=products of these operations, Seguence types

and heap types represent storage structures whose components may
be of diverse type. Components of seguenges are managed through
the operations of resetting to the first component and moving to
the pext component and are accessed through pointers constructed
as by-products of these operations. Space for components of heap
storages must be explicitly managed by the operation of alliocate
and free; the components are accessed tnrough pointers

constructed as by-products of the alfocate operatione

Many -of the structured and storage types are described in
terms of attributess called bgundss that specify their shapes and
extents, If the values of such attributes- can be determined by a
perusal of the wentire programs then the associated type is
precisely defineds and is said to be of fixed types; otherwisers
the type is. sald to be of variable bound typege In the latter
cases the type represents a class of potential instances of fixed
typess An "instantaneous" fixed type for these is establishad
whenever the type declaration is =elaborated during execution
(upon entering the block in which the declaration occurs)s and
persists over the scope of the declaration.

Adaptable types are arrays strings records and storage types
defined in terms of one or more indefinite boundse They may be
used as formal parameters of procedures =- in which case the
.bounds of the actual parameters are assumed; or they may be used
to define pointers to structures which are meant to be explicitly
fixed during execution of the programs through the wuse of
so—-calted "atlocation designators",

An austere set of file__typess and ‘taccessing methods?, is

providede Actual files are accessed by means of file_variabless

and must be explicitly associated with a file wvariable (through
an gpegn statement) in order to be accessed.

Denotations for explicit values of the basic and structured
types consist of gcopstantss which denote constant values of the
basic types; and value constructorss which are used to denote
instances of values of sets arrays and record typese Numeralss
quoted strings of characterss and the booftean constants
(tcuesfalse) are pre—definede New constants can be introduced by
constant deglarationss which assoclate an ldentifier with a
constant expressione.

NCR/CDC PRIVILEGED 2,0

2=~4
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75/06/09
Revision 4 June 09y 197H%

2¢0 LANGUAGE OVERVIEW

NIZIRINRMNRRNRBRRRINNRINNNIENMNNRNNRINRIENRRINIIEINNIONNNRINIENNRNRNIINE NN N NN

Definite value <constructorss which include specific type
informations may be used freely In expressions. JIndefinjifte vajlue
canstructors can be used only where their type is explicitly
indicated by the context in which they occurs.

Lzakien expressions are
evaluated when storage for the vartable is altlocateds and the
resultant values are then assigned to the variables The
attributes include agcess aticibutes - which specify the purposes

for which the variable may be accessed; shtotage attribytes -
which specify when storage for the variable is to be aliocated
and when it is to oe freed; and sggpe attributes =which specify
the program span over which the deciaration is to hoild (the scope
of the dectaration). Unliess otherwise specifieds the scope.of a
declaration is the bDblock containing the declarations including
all <contained sub-bitocks except for those which contain a
re—~declaration of tne identifier,

Variablés can be declared with inltlalization specifications
and with certain attribufess Inifial
a

Blogcks are _portions of programs grouped together as either’
begip=end blocks or procedurese The former are used primarily to
define scope and fto provide shielding, The tatter also have
identifiers associated with thems so that the identified portions
of the ©program can be actlivated on uemand by statemenis of. the

language,

A procedure Is declared In terms of its identifliers the
associated programs a set of attributess and a list of formal
parangkterses Formal parameters are variable declarations which
provide a mechanism for the binding of references to the
procedure with a set of values and variables -~ the actual
parameters - at the point of activation. Two methods of
parameter binding are provided - call=-by=valug and

¢all=-by-referengces they have their conventional connotations.

A function is & procedure that returns a value of a specified
type. These pefurn—=fypes are restricted to the basic typess and
are specified in the procedure declaration.

Procedures may be used in the creation of cgpraocessgess which
are distinct synchronous processess Instead of the entire
procedure being executed and tnen returning in lines coprocesses
allow partial execution of a set of procedures witn a2 single
thread of control being passed back and forth amongst them
through the resume statement, Subsequent resumption of a
coprocess causes execution to commence with the successor of the
last executed resume statement of the coprocesss.

Variables and procedures sharing common attributes <c¢an be
associated with gegmepfss which are identified areas for the

NCR/CDC PRIVILEGED 2.0

' 2=5
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
_ 75/06/009
Revision 4 Jgne 09, 1975

260 LANGUAGE OVERVIEW

NGO IIEIPINIRLINRNRRNNIPTIINRN IR NNIEHNRIRRNRIEANNIIIRNINRNIIRNNRNRNNNNNMBBNNNRRRERNNNKR

storage and management of the elements associated with the
segment., Segments are defined by segment declarationss and
segment associations are specified {in variable and procedure
declarations (as a specifled attribute).

In addition to their other programmatic aspectss blocks
(together with segments and attributes) provide partiat
mechanisms for the shielding and sharing of variables and
portions of programs. Hodulgs (together with scope attributes)
provide a mechanism for the shielding and sharing of
declarations. Modules are declared in terms of a grouped set of
dectarations and a list of ldentiflers for elements declared
within the moduie that <can be referenced from without the
modufe. All other identifiers are blocked off. Modules are
primarity designed to permit program repackagings at the Ysource!
language levele.

Statements define actions to be performeds

Structured stetements are constructs composed of statement
listst beain statements provide for scope control and storage
allocation for their constituent declarations; Lf statements
provide for the <conditional execution of one of a set of
statement llscts; loop siakemenis cause unbounded repetitions of
their statement list; whiles fors and repeal statements - control
repetitive execution of their statement tists; case statements

conditionally select one of thelr component statement tists for
execution; conformity case siatemenkts -select one of their
component statement lists for executiony depending on the type or

the value of a union variableeo

Control statements <cause the creation or destruction of
execution environmentse. They provide for the activation of
procedures; for the <creations resumptions, and destruction of
coprocesses; and for general changes in the flow of controle

Sterage management siatemenks provide mechanisms for pushing
and popping stack componentss moving forward and backward over
components of sequencessy and allocating and freeing storage for
components of heaps.

Inoput=cutput__statements provide mechzanisms for associating
({and de—-associating) files with file variables (gpen and glose)s
for positioning filesy for vreading and writing filess and for
explicitly formatting so-catled !print fites?,

Finatlys assiapment statements cause variabies to assume new
values.,

A SWL vprogram is meant to be transltated by a gompilation

NCR/CDC PRIVILEGED 240

2=-6
SOFTWARE WRITER®S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

WRITIINRIIIRINRNNRNNRIRNRNNIWWNNNRRNNRRIIPNRNNR NI NRIRNEENNMRIEN I NNNER
2.0 LANGUAGE OVERVIEW

NEIIIISNNIR RN NINISIINII NI IRINNIPIIRIIIIINRINR PN I EINN ORI RRRERRINIRIN NN NN
.

progcess into a SWL object programe Obdeect programsg resulting
from distinct compilations can be combined by a {ipkinga process

into a single object programs and may undergo fuffggr
transformations by a loading processs Iinto forms capable of

direct interpretation (execution) by members of the IPL linees

Compile~time facllitiess that are essentially extra-linguistic
in natures are wused to control the <compitation process and
construct the vprogram to be compiled: compile-~time yariahle

declagaflonss compile—-time siatementss and macro facilitieso

Mechanisms for the incorporation of some
cepresentafion=depepndent facilities are providede Their use may
be dependent on the SwWlL compilerts alltocatlion algorithms and on

the target hardware design, The wuse of these facilities s
restricted to procedures declared with the rcepdep attribute. The
facilities Include a cgll Ltypes which represents the smallest

unit of. directly addressable storage; crammed typess which are
memory—~dependent structures with specified component bit-sizes
and alignments; and methods for overriding pointer=-to=-type

equivalence restrictions.

An extended set of pachine=dependent facilitiess including

native data__fypess, storage atiribufess and instructionss are to
be provided for each machine for which SWL will generate object
codeso, The wuse of such facilities is restricted to the body of

the so-called caode shtatements which may inciude - SWL statements
and declarations as welt as native instructions.,

NCR/ZCDC PRIVILEGED 2.0

3-1
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
15/06/709
Revislion 4 June 09, 1975

3,0 METALANGUAGE AND BASIC CONSTRUCTS

BRI NMERINHHNINENRNIONNNRENRNNNIPRRNRN RO IIBNNRENNNNIBNRNENONRNNNIDIRNEERRAONN

3.0 MEIALANGUAGE_AND_RASIC_CONSTRUCIS

3.1 HEIALANGUAGE

In this specifications syntactic constructs are denoted by
English words enclosed between angle brackets < and >, These
words also describe the nature or meaning of the constructs and
are used in the accompanying description of semantics.,

Constructs not enclosed in angle brackets stand for’
themselves.

= is wused to mean %Yis defined as'"s and the
used to signal an alternative definition,

.
.

The symbol ¢
vertical bar | is

An optional syntactic .unit (zero or one occurrences) is
designated by square brackets [and 1lo

Indefinite repetition (zero or more occurrences) is designated
by braces { and 2.

Examplegs:
The deflniﬁion:

< real number> t!= <unscaled number>
{ <{scaled number>

is ready "a real number is defined as either an unscaled number
or a scaled number'.

The definitions

unscated number> $t=s <numeral>.<numeral>
<numeral> t3= <digit> {<Kdligit>}

are ready "an unscaled number is a numeral followed by a period
followed by a numerai; a numeral is a digit followed by 2zero or
more diglits".

The definition

<scaled number> ::= <unscaled numberDEl<sign>l<numeral)>

NCR/CDC PRIVILEGED 3.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75706709

Revision 4 June 09, 1975

NNNNNENRNIGRNNRIIRRNRRNRNNMNMNNRNPINIRNNNIINRNRICNNRRMNPRNR NI NN RNRIZRINN N OR

3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.1 METALANGUAGE

RN IIPRINNNRIRMNIUENRRDRIINIEIRNRIINNIIPN M RANNRNRNNRINERIINIGNNNNNNIENRNRERESREN RN NN R

is read assy Ya scaled number is an unscaled numbersy followed by
the tetter *'Ety, followed by an optional (zero or one) signy
followed by a numeralft, o

The angle bracketss square bracketss and braces are also
etements of the languages and therefore are wused in syntactic
constructse Such syntactic occurrences of these symbols will! be
underscored when necessarys

Exapples

The definition:

<attr(bute list> 2:3a [<attripbute > { s<attribute>} 1:
is read.aSy “an attribute list consists of an attribute folliowed
by =zero or more comma-separated atttributesy the entire set of

attributes being enclosed in square brackets."

Words reserved for speciflc purposes in the lanéuage witl
always be underscored,.

Example:
The definition:
<a}ray spec> $i= 3L5§1L<lndlcés>l of <component type>
is read asy "an array spec is composed of the word farray?

followed by indices enclosed in square brackets, followed by the
" word Yoft' followed by a component typeo"

3.2 LEXIGAL_CONSTRUCIY

The texical wunits of the tanguage = identifierss basic
symbolss and constants = are constructed from one or more
{ Juxtaposed) elements of the alphabete.

3¢2+1 ALPHABET

Thé alphabet consists of tokens from a subset of the
256=vatued ASCII character set: those for vwhich graphic
denotations are defineds

NCR/CDC PRIVILEGED

32

3.0

- o

- e - e - oe

- -

SOFTWARE WRITER®S LANGUAGE SPECIFICATION

3-3

75/067/09

Revision & June 09y 1975

KRNI PRI IS RINPINNM NN NNNGGNRANMOIORRRENRINBNVRIRIRRINNIIFINRNNICNRINNRARRIANNIER

3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.2¢1 ALPHABET

NOIWNRKRNNMNIINNENRIEIRNNRNNRNRNRRONONMRRNORRRIR QRN ERDIINIBININAINNRORRNNRIINNGRIRN

<ASCII character> t:= <alphabet>!<unprintable>

{alphabet> tt= <letter)>
1<digit>
t<speclal mark>
1<blanks>

t<unused mark>
toLe

{letter> t:1= A
a

<digit> t= 01112:43141516:17:819

<special mark> $t= +{=i%{/ilotsesiMi?

<btanks> ::=
<unused mark> = SIZLCIIILI7LY

"The meaning of !' when occurring within a string term bounded
by two singte quotes (* and ') is a single quote mark:as a part
of the string, Qutside that:context, it has the meaning of a
null string (since nothing is bounded)s Thuss four sinagle aquote

(leees 1ot } indicates a string constant.with a value of a

single quote marke
3c¢2¢2 IDENTIFIERS

, Identifiers serve to denote constants, variabless procedures,
and other programmatic eiements of the languages

<identifier> 3= Cletter>{<follower>}

<follower> :t= <letterd>i<digito>i_t#1312

Identifiers are restricted to a maximum of 31 charactersy, and
fdentifiers that differ only by case shifts of component letters
are considered to be identical. Identifiers must begin with a

letter and may not contain embedded blanks (cf.s Conventions for
Blanks below).

NCR/CDC PRIVILEGED

3.0

o

" oa ne ow v

3~4
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
’ 75706709
Revislion & June 09, 1975 e n
3.0 METALANGUAGE AND BASIC CONSTRUCTS
3e2c.2 IDENTIFIERS

NITRIMPRNNPIANR NN REINCIRN RN QMM IVNRNRNRRANEIEIRISEREIMNIINIIN R RIGNNNIMNERRNRNNRRIE

Examples:?

x2 Henry Jobi A_wordy_Ildentifler

o -

-

Bad.Exzmples:

lst_character_must_be_a_letter
number_of_characters_must_not_exceed_thirtyone

34203 BASIC SYMBOLS

Selected 1identifiersy, special markss digraphs of special
markss and ‘other polygraphs are reserved for specific purposes in
the fanguage; 2ogdes as operatorss separatorss delimiterss
grouperse These so=-called “basic symbols"™ will be introduced as
they arise in the sequel.

Identifiers reserved for use as basic symbols will be shouwn as
underscoreds lower=case wWordse

3¢2¢4 CONSTANTS

Constants are lexical constructs used to denote values of some
of the elementary data types. Their spellingss and the data
types for which constant denotations can be giveny are described
in Section 561010

3e2¢5 CONVENTIONS FOR BLANKS

Identifierss reserved wordss and constants must not abut ezach
others and must not contain embedded blankse. Basic symbols
constructed as digraphs of trigraphs may not contain embedded
blanks, Otherwises blanks may be employed freelys and have no
effect outside of character constants and string constants -
vhere they represent themseives, '

NCR/CDC PRIVILEGED 3.0

3=5
SOFTWARE WRITVER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09y 1975
NN NNOSIIIT IR IR NN PTIINI NI IO PSIICIIPOINII N RN TIIRIRIINISMNNITINIENNMRERKEHNNNRGERNN SN

3.0 METALAMGUAGE AND BASIC CONSTRUCTS
306206 COMMENTS

NI NCINRIENPINNNIGNNNEERNRNRRNOBARNRNRIENRRRNRITINEIRNENMMNNNIAIRIEENNERNRRAIRRONNRDDHENIRNON

3¢2.6 COMMENTS

Commentary strings may be used anywhere that bfanks may be
used except within character and string constants,

. <commentary string> $t=s “{<comment character>}"

<comment character> 3= <any ASCII character other than
double—-quote and semicolon>

NCR/CDC PRIVILEGED 3.0

SOFTWARE WRITER?S LANGUAGE SPECIFICATION

41

75706709

Revision & June 09, 1975

NI RIORNINGGRINQIESPINNIEIER I NNEENNIENNNNNRNRMNRNNRENNRDONNNRNERNONR RSN NNRINR NN
4¢0 SWL TYPES

~~NMM'JI’N'JN"”M'JM~NNNH‘NNI‘JﬂI‘JNIJNMMNMM”NMNﬂNNA’NM‘NNMNNMN”NNNMNNNNHNNNNNN

4.0 SWL.IYPES

SWL types are wused to define operational domains and
characteristics of variables (which take on values) and other
pragrammatic elementse. SWL elements fall into two broad classes
of typess :

<SUWL type> t3:z {data type>

' t<formal type>

{data type> iz <type> Hef, G20
<formal: type> tsi= <adaptable type> Hoefe 4o5NW
t<controt type> Hefe GobY

t<bound variant record type> 'cfo 47"

Data types (more brieflys types) are used to define sets of
values that can be assumed by SWL variabliess their operational
domain and==in many gases-=a notation for referencing such valucs
(cfe 442)

Formal types are used to define objects which must be
referenced in an indirect manner; they may be used as formal
parameters of procedures and must otherwise be referenced through
the use of a polnter mechanismo.

Adaptable types and bound variant record types are associated
with data types whose precise attributes are meant to be
explicitly 'flxed'»during_eXecution of the program,

Control types are associated with labelss proceduress and
coprocessess.

41 IYRE_DRECLARAILONS

SWL provides a small set of pre-defined types, reserved
identifiers for theses and notation for defining new types in
terms of existing ones.

Type declarations are wused to introduce new typess and
identifiers for the newly declared typese

‘Ktype dectaration> 1:= type [<type spec>{s <type specd>}]

NCR/COC PRIVILEGED

4,0

oe we o- oo

- aw

SGFTWARE WRITER'S LANGUAGE SPECIFICATION

75706709

Revision 4 June 09, 1975

NNNNNNN!@MMNN'J”NNNNMNNNMNMIINNMNMNMN”NMNN~~~NNM"N’IN"MNMNN~NNN~MNNl’l“”

40 SWL TYPES
4¢1 TYPE DECLARATIOHNS

POWNMNMEAMNOINNNNNANRI RN R NN IERNNNNNRONRNRPIINRISINANNNRRRNKR NI NNN G RPNRN I RN SN

{type spec> i3 <{type identifier list> = <SWL type> | <empty>
<type ldentifier list> t:= <identifier list> .
identifier list> 3= {identifler>{s<identifier>}

Type declarations can be used for purposes of brevitys
claritys and accuracy. Once declareds a type may be referred to

elsewhere in the program by its declared type identifier whichos
If properly chosens can provide a reduction in errors associated
with spelling=-out type specificationss as well as mnemonic

value. -

4oz DATALTYERES.(IYRES)

Data. types (more brieflys types) are used- to define sets of
values that may be assumed by variables (cfe¢ 56:0)¢

{data type> 3= <{type>
<type> ::s <fixed or variable bound type> | <fife types
Fixed or variable bound types consist of:
a) basic typess which take on simple values;
b) structured typess which define collections of components;

c) storage typess which are used as repositories for collections
of components of various types,

Fite types define actual files of data meant to be manipulated
by Input—-output operationse. '

NCR/CDC PRIVILEGED

-2

460

- e

- wme

4=3
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/706/009
Revision 4 June 09, 1975

IR RIIN RIS IFINNRNMNRPIRRMEMRONNENIIN NN MIIGR IR NI PRIN IR NIIIOAI NP RANRIRDRINNERNMRNINNS
4.0 SWL TYPES
46206001 Fixed or Variaote Bound Types

NN KN NIENNRIIEIISN M IONRINNRINIRENRNRINNNNRINRNRRRINRNENERNRRENRNRNNEENNNRR NN

4.2.0,1 Eixed_or_Variable_ Bound.Ivpes

{fixed or variable bound type> tt=

<basic type> ::a

{real type>

<pointer type>

<scatar type> 1:=
<integer type>
{character type>

_<ordinal type>
<boolean type>
<{subrange type>

i <structured type> t:i=

. <set type>
union type>
. <aggregate type> =

<string type>
_<array type>
. <record type>

i <storage type> ::=

‘{stack. type>
{ <sequence type>
t{ <heap type>

A subset of the structured types (the aggregate types) and all
the storage types are defined in terms of attributes that are
called 'Ylengthst® or tsizest or Ybounds? or ftindex rangess'
‘depending on the specific type and on the context in which it is
being discussed. If the wvalues of such attributes can be
determined by a perusal of the entire programs then the
associated type is precisely defineds and is said to be of fixed
types otherwise, the type is said to be of variable bound ftyeee
In the latter cases the type represents a class of potential
instances of fixed typese An instantapeous type (cfe 6Ho0lel2el)

for these is established whenever the type declaration is
elaborated during execution {(upon entering the biock in which the
decltaration occurs)s and vpersists over the scope of the
declaration (cf. 7¢3)o0 For purposes of expositiony, the

constructs
<variable bound type>
and
<fixed type>

are Introduceds the latter denoting all types but the former.

NCR/CDC PRIVILEGED 4.0

- -

b=4
SOFTWARE WRITER'S LANGUAGE SPECIFICATIOCN ‘
75706709
Revision 4 June 09 1975
4,0 SWL TYPES
.21 BASIC TYPES

BN HRI TSN NN R LR NNNIS RN NRRNNNRNPNNMRPRIEIIN I RIRRNNININLIMNNENNRRNNNRERN N

40201 BASIC TYPES

Basic types define components that take on simple valuess and
are the only types that may be assoclated with *returned® values
of functions (cfe B8o0lc3).

<basic type> 3t= <scalar type>
1<real type>
t<pointer type>

4e201l01 Jgcalar_Types

Scalar types define well=ordered sets of values for which the
following functions are defined:’

sucs the succeeding value in the set;
pLed the preceding value in the sete (cfe 1le2e3s 1llc204)

<scalar type> 133 integer type>
t<character type>
i{<ordinal type>

t<boalean type>
t<{subrange type>

4¢2¢1elel INTEGER TYPE

integer type> 313z jntegeri<integer tybe identifier>
<integer type identifier> t:= {identifier>
Integer type represents an implementation~dependent subset of

the Integerss and is equivalent to the subrange (cf. 4e2elcleb)
defined by ‘

-0l s D2
whére nl and g2 denote impiementation-dependent integerse.
Permissiple._operationst assignments set membership test, all
six refationss additions subtractions, multiplications quotients

remainder, exponentiations absolute values built-in-functions
(cf. 11). - ’

NCR/CDC PRIVILEGED 400

-5
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
A 5706709

Revision & June 09» 1975

RN RONR IR NP IIHRNNRRNNINAONRRNNRNRMKPNIERERIENRINRNNRNN RPN OINRRNRNNS

4.0 SWL TYPES
46201102 CHARACTER TYPE

RN RNEMNRRINRITRORINRREIIPIIOR M RERENIIRINNNERRORNRIEHNINRIIRBRNIRRGRINRENRRRIENNIRRONNNLENIG

4¢2¢lele2 CHARACTER TYPE

<character type> ::= charit<character type identifier>
<character'type fdentifier> :3:= <identifier>
Character type defines the set of 256 values of the ASCII
character sets and is equivalent to the subrange (cfe 402¢lcle5)
defined by
$char(0) .« $char(255)

where "$char'" denotes the mapping function. from:integer type onto
character type (cf. Standard Functionsy, 11.2).

. Permissibie__opecatigpns: assignments set membership tests alf
six relationss built—=in function (cfe 11). :

402+1.1.3 ORDINAL TYPE:

<ordinal type> ::= (<ordinal constant identifier tist>)
i1<ordinat. type identifier>

ordinal constant identifler list> 3:= .
<ordinal constant identifier>s<ordinal constant identifier>
{s<ordinal constant identifier>}

ordinal constant identifier> t:= <Lidentifier>
ordinal type identifier> ::= <identifier>

An ordinal type defines an ordered set of values by
enumerations in the ordinal lists of the identifiers which denote
the values. Each of - the identifiers (at least two) in. the

ordinal list is thereby declared as a constant of the particular
ordinal type.

Permissible_operationss assignments set membership test, all
six relationss built=in functions (cf, 1l).

Two ordinal typés are equivalent if they are defined in terms
of the same ordinal list.

Example: The constants of the ordinal type ‘'primary color®
declared by

type primary_color = (reds greens, blue)
are denoted by '"red", ‘“green®y and '"blue's; and the following

NCR/CDC PRIVILEGED 4,0

4=6
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/709
Revision 4 June 09y 1975
4e0 SWL TYPES
4621613 ORDINAL TYPE

PSP RIRINNAINEZGZANIIIIINREINNEN RN NIINS RGN IENRNNNRERIODIINIINNNENNEIKNNENN NN

relations hold:

fed < green
red < blue
green < blue

A mappfng from ordinals onto non-negative integers Is provided
by the S$jinteger function (cf. Standard Functions, 1l1l.2)e For
the constants of the examples the following relations hold:

$inteaar (red) = 0
$inteaer (green) = 1 . -

e 2o <

$integer (blue} = 2
The ordinal type declaration

type primary_color = (reds greens blue)s
hot_color (reds oranges yellow)

[

vwould be in error because of the duail definition of the
ldentifier “red" as a constant of two different ordinal typese.

402061+1c¢4 BOULEAN TYPE
<boolean type> :3= boolean
{<boolean type identifier>
<boolean type identifier> ::= <identifler)>
Boolean type represents the ordered set of "truth values™, whose
constant denotations are false and Lttues and is conceptually

equivalent to the ordinal type specified by the ordinal iist

(falsestrue)

Permissible__operaflions: assignment, set membership test, all
six retations (false < truels sumy products, differences symmetric
differences negation: builtt=in functions (cfe 1l)e

4¢20lele5 SUBRANGE TYPE

<subrange type> $t1= {subrange type identifier>
i<lower>c.es<upper>

{foWer> t11a <constant scalar expression>

Cupper> tt= <constant scalar expression>

NCR/CDC PRIVILEGED 400

SOFTWARE VWRITERY*S LANGUAGE SPECIFICATION
75706709
Revision & June 09 1975
400 SWL TYPES
4el20lole5 SUBRANGE TYPE

NN NNNRINNNNNNNNNONNNEBNNRON RN NAKNEUSRNNRIKRIIINRNNRIRRORNICRRNARIIN NN NN

{subrange type ldentifier> i3 Lidentifler>

A subrange type represents a subrange of the values of. another

scalar types defined by a lower bound and an upper bound., The
fower bound must not be greater than the upper bound and beth
must be of equivalent scaltar typeso Two subrange types are
equivalent .if they have identical upper and lower boundse. An

improper subrange type (isecs one that completely spans its
'parent?! range) is equivalent to its ®parent! types

Equivalence ruies are relaxed for subranges to permit values
from a subrange and values from its parent range {or another
subrange of Its parent range) to be assigned to each other and to
enter into the operatlions of assignment and comparisons and other
dyadic operationse

Bermissible_operations: as for the parent typeo

Example:s

type non_negative integer = 0,0.32767»
letter = VA, 028, .
color = (reds oranges yeliows greeny bluels
hotcolor = redesosyellows
hue = reds.obluesy
range = =10,.10 ;

The ordinal 'subrange types '"hues" Is an improper subrange ofs, and

therefore equivalent tos its parent ordinal types "color."

4e2¢2 REAL TYPE

<real type> t:= rezli<real type identifier>
<real type identifier> tt= <jidentifier>

The range : and precision of real type s
impltementation~dependent. Conversion functions between real and
integer type are provided (cfo Standard Functionss 11l.2),

Permissible__operations assignments all six felationss
additiony subtractions multiplications quotients . built=in

functions (cfell),

NCR/CDC PRIVILEGED 460

4~8
SOFTWARE WRITER®S LANGUACE SPECIFICATION
75/06/09
Revision & June 095 1975
o0 SHUL TYPES
40263 POINTER TYPE

CIEIOIEI N PLFI EFIFIST OIS W ISR RN R IR RIS RNRCICRNRETIRIINID IR NN RIRENRRIPRIRRRFEIRRRRORNOREINIIN

Ge2.3 POINTER TYPE

Pointer types represent location values, and other descriptive
informations that can be used to reference Instances of SWL
objects indirectiyes

{pointer type> ::= <direct pointer type>
i<relative pointer type>

Direct pointer types represent locations of instances of
objects of SWL typeo -

Relative pointer types represent locations of components of
objects of " storage type or aggregate type relative ¢to the
variable of storage or aggregate typeo

Permissible__operations: assignments wunion membership (cfe
Qe¢2el)s atl six relations except for pointers to file

(non=comparable) and pointers to control types (comparable for
equality and inequaifity onlyls buitt=in functions (cf.ll),

4e2.3.1 Diregt_Pointer_Jypes

Direct pointer types are introduced by an up arrows followed
by a SWL type to which the pointers are always bound; direct
polnter variables may assumes as valuessy only poilnters to that
SWL typeo

<dlrect pointer type> :1:= <pointer to type>
. t<formal pointer>

<pointer to type> 1:3 “<fixed or variable bound type>
t<pointer to file>

<pointer to File> t1a “<file type>

<formal pointer> ::= <adaptable pointer>
{<pointer to control>
t<bound variant pointer>

<adaptable pointer> ::= “<adaptabie type>

<pointer to control> :t= “<controi type>

<bound variant pointer> 1:= “<bound variant record type>

Formal pointers provide the sole mechanlism for accessing
.objJects of formai types other than through formnal parameters of

NCR/CDC PRIVILEGED 4.0

SOFTWARE WRITER®S LANGUAGE SPECIFICATION
7570
Revision & June 09, 1975 '
4,0 SWL TYPES
%:203c¢) Direct Pointer Types

NN NBRBRIERINRERRNENRRNINMNNNMNNER RGN NEIEIRRNNNIRNNRRINNNNCRQPIRRRNORRRNRRMNRRENNIEGRIRORN

procedurese In particularsy adaptable pointers and bound variant
pointers are used to access instarces of adaptable varjables and
bound variant records whose type has opeen ffixed? by an allccale
or a pexrkt statement (cf. Sections 10¢4s 10c%e3s 10cbed)oe

See Section 10,15 Assignment Statementss for rules governing
pointer assignment.

Direct pointers are equivaient if they are defined in. terms of
equivalent types. No pointer to type can ever be equivalent to a
formal pointere -

The fotlowing ancitlary constriucts are introducced for
expository use elserhere in the document,

= {formal pointer>
formal pointer>
ormal pointer>

<pointer to procedure> $:
<pointer to coproc> 1tz <
<pointer to ftabel> 1:= <f

{adaptable pointer to string> ::3 <adaptable pcinter>:
<adaptable pointer to array> t:= <adaptable pointer>
{adaptable pointer to record> ::= <adazptaole pointer>
<adaptabl~ peinter to stack> 1:2= <adaptable pointer>
<adaptable pointer to sequence> $:= <{adaptabie pointer>
<adaptabile pointer to heap> :3= <adaptable pointer>

te2¢3.2 Relative Poinfer_Tvpes

Relative pointer types represent relative locations (with
respect to the beginning of some composite object) of components
‘of such objectss . ,
<relative pointer type> 1=

rell(<parental type>)17<object typed

‘Kparental type> 3tz {storage type>
t<aggregate type>

{aggregate type> :3= <string type>i<array type>i<record type>
<object type> ::= <type>

Reltative pointer types are equlvalent If they are defined in
terms of equivalent parental types and equivalent object typeso
If the parental type is not specifiedsy a defaults system—defined

heap Is assumed,

Relative pointers provide three facllities not given by dircct
pointer types:

NCR/CDC PRIVILEGED

4=9

6/09

%60

4-=10
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09, 1975

~~N~N”~MNN”'JNNNNNNNMNNMN“NNNNN"?NNN”"""NN’NN“MN"NN“NIJNA’NM'INNNNN“N"N~

4,0 SWL TYPES
4620342 Relative Pointer Types

FLOI R PPIPI LI TINII N NI NIE NN AN NIRRT EININ N IIPERI PR EIN ROFINTINRIR BRI I N RN AR N RN NI EIIEN PRI RN

1. A relative pointer variable requlires less space than a
direct pointer variable.

20 A tinked 1tist or array of relative pointers (or a similar
pointer network) refated to a parental variable is stitl
-correct if that wentire variable is assigned to another

variabtlte of the same parental types

3. A retative pointer variable (or group of relative pointer
variables) may be used to refer simultaneousiy to severatl
variantes of the same parental type where parailel
information is contained (so long as the parental type is not
a heap)o

Relative pointer values can be generated sofely througn the
bulitt—=in function t#gel (cf, 11.2014%) whose arguments are a
poiuter variable and an optionat parental variable,

Relative pointers cannot be wused to access data directly.
Such data must be accessed through a direct pointer generated by
the built=in function #ptr (cfe 11l.2.15) whose arguments are a
retative pointer variable and an optional parental variableo

Exanples

‘type intrel = pel (heepfitipe) “recttipes
rec#tipe = record

fa 1t infegers

fb : reals

fc ¢ string (20) of chars
fwd 2 iIntrels 'relative polnters to records™

bkwd ¢ jinteger "within stacks of heep#t{pe"
cecend 5

type heeptfitipe = phegp (cep 100 of rec#tipe)e.
fype ltatest = gfagk (101 of intrel ;

"{atest Is a smali stack of relative pointers which
can point to records within heaps of heepttipe¥

- 4.3 STRUCTURED_IXBES

Structured types represent collections of componentss and are
defined by describing theilr component types and indicating a
so~called structucinag methode. These differ in the accessing

disciptine and notation used to setlect individual <components,
Five structuring methods are available?: set structures string
structures array structures record structures and union

NCR/CDC PRIVILEGED 4.0

' 4-11
SOFTWARE WRITER!S LANGUAGE SPLCIFICATION
75706709
Revision 4 June 09s 1975 '
4,0 SWL TYPES .
4,3 STRUCTURED TYPES

N
”MIONNNNNNNWNNNNNNMNNNNMNNNNNNA’NNNNNNHMMNNI""~N~NNNNNNNNNN“NNH‘VNN&?HH

structure. Each will be described In the sequelo

<structured type> ti=s <set typed
t<union type>
t<aggregate type>

<aggregate type> i1:=z <string type>
i<array type>
{<record type>

Aggregate types may be of variable bound ﬁype (cfe 4o02)o0

4.3.1 SET TYPE

<set type> ::= set of <base typed
t{<set type identifier>

<base type> :t:= <scalar type>
¢set type identifier> t:= <identifier>

A set type represents the set of all subsets of values of the
base type. The number of elements defined by the base type wmust
be constrained (considers ecgos sef of lnkteager). Its value will
be implementation dependents but no less than 256 (to accommodate

sef of chat)s

Permissible___opecations? assignments intersections wunicns
differences symmetric differences negation, inclusions identity.

Set types are equivalent if they have equivalent base typese

Examples The sets akcesss declared by

fype akcess = sgt 9f (no_reads, no_writes no_execute)

represents the set of the following subsets of values of its
ordinafi base type:

$akcess [] "the empty set"

$akcess L[no_read]

$akcess [no_writel

$akcess [no_executel

$akcess [no_reads no_writel

$akcess [no_reads» no_execute]l

$akcess [no_writesy no_execute]

$akcess [no_reads no_writes no_executel

NCR/CDC PRIVILEGED 4.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09

Revision 4 June 09, 1975
AIQGINIORRKRNNNNNNNNNMENNRPINNRONINANNIRIINRNNNRONNR RN RENRIRRNNNRNNRNRAIRIIOIRIRNRINRNRNRRS
4,0 SWL TYPES

4¢3¢1 SET TYPE

FIEQARIELEIN RN N NI NN ANNNBNRNIERONRRRRORNINMRNINDNNNENRRERNNARRRNNNRSERINRNRNN NN RN

where the notation "3akcess [eoo0]" denotes a yalug constructor
(cfe Vatue Constructorssy Section 5.1) for the set types a Se

.32 STRING TYPE

A string type represents ordered n-tuples of values of
character type. Two string types are providedt fixed strings and
varying stringse

{string type> :ta <fixed string> .
<varying string> 7
<string type itdentifier>

<fixed string> 31:= string (<length>) gf <character type>

{varying string> :1:= _ ,
vstring (<maxlength>) gf <character type>

s

<tength> 2:= <{positive integer expression>
<maxlength> ::= <positive integer expression>
{string type identifier> 32 <Lidentifier>

A fixed string of ltength n represénts all ordered pn=tupies of
values of character types A varying string whose maxlength és. n
represents ali fixed strings of length K (1 <= kK <= n) together

with the pull_string (see below),

The current _lenath of a string Is defined as follows: The
current length of a varying string is defined to be m whenever
its value is a fixed string of length m and is defined to be zero
whenever Its value is the null stringe The current length of a
fixed string is equal to its length, The function #cursirlepatih
(cfe 1le2.21) returns the current tength of a string or a
varying stringe The function #strlength (cfe 1le269) returns
the maxlength of a varying string and the lengtn of a fixed

stringe.

A constant denotation for the null string (whose maxlength or
length is zero) is provided?

<null string> 1= ¢t¢
An ordered k=tuple of the values of a string or varying string
(1 <= K <= p) is called a substrlnge. Notation for accessing

substrings is provided (cfe 6He%e2s Substring Refercecnces).

NCR/CDC PRIVILEGED

b

G0

o ow o- - oo o= o om w»

n Ge we »

B AD B0 Gm e v Bn e e

SOFTWARE WRITER®'S LANGUAGE SPECIFICATION
75706709
Revision 4 Junc 09s 1975 N
4.0 SWL TYPES
406362 STRING TYPE

BEEIOILSOI R PIIIRI NI PI PR IIFIRI TIPS M TIPS NEINIMMNNILENRNRER NN RRBRRNMEENREBRRERRRNENRNID NSNS

Two string types are equivalent if they are fixed strings of
the same lengths or arc varying strings of the same maxiengthe
In the case of a variable length (or variable maxlengthl)s the
length (or maxlength) is determined when the declaration is
elaborated (¢cfe 402 Fixed and Variable=Bound Types)s

Permissible __orparalkiopnss assignments comparison (all six
relational operatorsl)s concatenations and the built-in functions
(cfe chell)e Equivatlence rules are relaxed to permit fixed
strings and varying strings to enter jointly into these
operations, independent of their current tengthss with truncation
or right extension with bltanks carried out when necessarye In
additions characters are treated as strings of fength one (1)
when they enter into these {(but only these) operations {see also
assignments in 10e¢ls 10clols LOole3s and string—-values as factors
in 9.1),

Yarnina: Despite the special exceptions of the preceeding
paragrapho» the types strings vsitrings and char are not
equivalent, In particulars a pointer to one of those types may
not be assigned to a pointer to another of the typess or enter
into other cperations with pointers to those other types; nor may
an actual parameter of one of the types be passed to a procedure
where the corr~sponding formal parameter is a reference parameter
of another typee.

4¢3¢3 ARRAY TYPE

An array type represents a structure consisting of components
of the same typeo Each component is selected by an array
‘'selector consisting of an ordered set of n index value$s whose
types are indicated by the indices In the definition.

array type> ti¢= [<packing>l<array type identifier>
t[<packing>l<array spec>

array type ldentifilier> ti=s <(identifier>
<array spec> tt= agrray [<indices>] of <component type>
<lIndices> 3= <index>{s<index>}

<index> t:= <scalar type> _
t<scalar expression> +o <scalar expression>

<component type> 3= <typed>
{packing> $:= {packing attributes>

NCR/CDC PRIVILEGED 460

- ®o e we o

Oo S M- e e Bw G @ e oo

P AE e On G me ee oo

4=14
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
' 75/06709
Revision 4~ June 09, 1975
4.0 SWL TYPES
45343 ARRAY TYPE

N
MR U CI PPN NI R PRI IITIIZ I IR PRI IR PIR RN RRIRIEIRIINR RN EGRNNRRNNRRRNNRNRERIREIRANNR

Permissible_operationst assignments comparison for equality
and Inequality only.

©e3e03.1 Array.Rimgnsicenality_and_fgulvalenge

If the component type is not an array type and n indices are
specifieds then the array type has dimension n If the component
type is an array type of dimension ms and n indices are
specifieds then the array has dimension o + me Two array types
are equivalent if they have the same packing and dimensionsy have
equivalent component typess and corresponding indices are of
equivalent typess, For variable index rangess the index type is
defined by the values of its constituent expressions determined
when the deciaration is elaboratede.

©¢3+3.2 Alfernate_3pelliicas_for_Arcax_Jypes

4There are 2 %% {(pn = 1) distinct speilings for specifying an,
array of dimension pe For exampies for p = 3:

acray Lint) of arcay Lintsint]l of g¢hat
acray Lintsint] of acrcay Lint]l of c¢hac
acecay Lintsintsint]l of ghac

are all! equivalent spellings fors’

array Lint] of array Lint]l of arcay Lint]l of char

which is the spelliing that preciéely defines SuWlL's: treatment of
arrayse :

Simiflar alternative spellings are allowed for referencing
array components (cfes Subscripted Referencess 6¢60¢3)e

4.3e3+3 Packed_ Arrayxs

Packing attributes (cf. 4.9) are wused to specify storage
space =-- access time tradeoffs for array componentse Components
of a packed array will be mapped onto storage so as to conserve
storage space at the expense of access timee The array Itself
(the collection of components) is always mapped onto an
addressable memory location (lceos the array Is aligned) unless
the array itself is an unaligned element of a packed structuree.

Example:
var ts»J * inteaers
NCR/CDC PRIVILEGED 440

SOFTWARE WRIVER'S LANGUAGE SPECIFICATION
7570
Reviston & June 09, 1975
4.0 SWL TYPES
403¢3.3 Packed Arrays

”HNNNNMMP'I’NMNHNNNNNNNNNNNNNMNNNNN”N'l”&GN”ﬂfvl’lNNN“NNMNNN’JNNNN“NMNNNNN

type hotness = arpay [colorl) of non_negative_integer,
token_code = arrav [cnarl of token_class,
token_class = (alpnhas numericy specialss others)s
arrayl = array (100100, 100602001 9oF 10064300»

il 3 10,1005,
i2 2 100c.200,
sl = 100..3005

s array2 = agray Lilsi2] of sl»
arrayeb = array (i1l of array [i2]1 gof sl»
array3 = array Lie.ojl of Bbogleans
arrayé = arpay (160101 of array3;

The -array types tarrayls? tarray2s*t and farrayz2b® are
equivalente. The farray3?® type is of variable bounds (because {ts
index range cannot be determined until run—-time elaboration of
the declaration)s. This holds in a similar way for the tarray4?®

types since its component type is Farray3,f

4¢3.4 RECORD TYPE

A record type represents a structure consisting of a fixed

number . of components calied filelds. Fields are defined in terms
of their types and associated field selectorsse which ‘are
identifiers wuniquely denoting that field among ail other fieids
of the record (cfe bebe%s Fleld References),

Permissible_operations: assignments <comparison for equafity
and inequality only; howevers variant records (see below) can not
be compareds)

4-15

6709

Records are <classified as being either flxed records or’

variable bound recocds.

{record type> t1=a <fixed record type>
t<variable bound record type>

NCR/CDC PRIVILEGED

4.0

SOFTWARE WRITER®'S LANGUAGE SPECIFICATION
15706409
Revision & June 09, 1975

MMNWNKRNRRNEENIRIERENGR RN ER NI INRNNRRRNNREER NPT NNNIENNNNRNRERRNRER N NN N

4.0 SWL TYPES
4.3.4.1 Fixed Records

MNORRNMNEONRRIRNPIENRIICR MR NRTIIONIIRMNIRNISIENIESN NN NOINR NI RNRNENIRMANRNIINRNRNRN R

4.3:40.1 Elxed_Records

Fixed recordss which include both [fovaciant records and
variant recordse will atways be atlocated a fixed amount of
spaceo :

{fixed record type> :t= <invariant record type>
t<variant record type>

4¢3.4.2 Inyariant_Records_and Elxed_Elelds
An invariant record contains only fixed fieldss which are
fields of fixed type (cfe 4e2)o .
<invariant record type> tt=
[L<packing>] <invariant record type identifierd>
tf<packing>] <invariant record spec>

invariant record spec> ::= gpegorgd <fixed fields> <recend>

{fixed fields> 31tz <(fixed field> {s <fixed field>}
<fixed field> 1= <field selectors> ¢ [<alignment>] <fixed type>

{field selectors> $:= <field selector> {s<field selector>}
{fleld selector> t:= <identifier> ’

<recend> ::= [,lrecend

©e3¢443 -MQLLagig-ﬁguug-ggggzgs_gng_yaaiagig-ﬁgQng_Eigigs

.

A variable bound record consists of zero or more fixed fields
followed by one and only one variable bound fields which is a
field of variable bound type (cfe. 442).

<variable bound record typed> it= 4
[<packing>l<variable bound record type identifier>
tl<packing>l<variable bound record spec>

~Kvariabie bound record spec> its=
cegordl<fixed fields>sl<variabie bound field><{recend>

<variable bound fileld> t:=
" Lfield setector> ¢t [<Kalignment>l<variable bound type>

<recend> ti= [plrecend

NCR/7CDC PRIVILEGED 460

&-=17
SOFTWARE WRITER®*S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09y 1975
4.0 SWL TYPES
463.%04 Variant Records and Case Parts

NN EORNNNIERTEIRNINKRNRNENRONRRIIR NN NNRNIINIRNRNNMORNRNERRRRIGR R RN

4e304.4 _Varlant_ Records_and.Case _Pacis

A variant record consists of 2ero or .more fixed fields
foltowed by one and onty one ¢ase paLts._ A case part is a
composite field that may assume values of different types during
execution ofFf a program. It Is defined in terms of a tag fields
and a list of the admissible types - (called yvariants) together
with associated setection values. During executions tne value of

- the tag fie!ld determines the variant currently in use Dby being
matched against the seiection values associated with each
variant. The variants themselves may consist of one or more
fixed fieldss o¢ of zero or more fixed fields followed by one and

only one case parte

<variant record type> =
[<packing>] <variant record type identifier>
t{<¢packing>] <variant record spec>

<variant record spscg> =
record [<fixed flelds>s] <case part> <recend>

{recend> $:= t»]ggggng
<case part> $:= gcase <tag field spec> gf <variations> ¢casend

{tag field spec> t:=

<tag field selector> ¢ [Kalignment>] <tag field type>
{tag field selector> $:= <jdentifier>
<tag field type> 123 <scalar type>

t= Cvarijation> {» <Kvariation>}
a a{selection values>=s <variant>

<vartations> ¢
varlation> 3

<selection values> ta <selection value> {,.<selection valued>}
<selection value> i1:= :
<constant scalar expression>f{ecc<constant scalar expression>l

variant> ::= [(fixed fields>]
tl<fixed fields>s] <case part>

4¢3.445 Record _Type_ Equivalence

Two record types are equivalent if they have the same packing
(cfe 409)s the same number of fieldss identical field selectorss
and equivalent types for corresponding fieldse Two variants are
equivatent {if they have identical tag field selectors and
equivalent tag field typess and if wvariants having identical

NCR/CDC PRIVILEGED 400

-

e
'

4-18
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/709
Revlslon 4 June 095 1975 »
4.0 SWL TYPES
4,3.4.5 Recard Type Equivalence

WRPIPIIRISKRNIRIR RSN EIINMN NI IRNERPPRNMENR BRI NONRN NI RIEII NN RNIIPINNRNK R R

fileld seiectors and equivalent types are setected by the same
selection vatuess The type of a variabite -bound field 1is
determined when the declaration Is elaboratedo

4e¢3.4.6 Adapfable_and_Bound.Varlant_Record.lypes

Two further types of records are adaptaole record type and
bound variant record type (cfe 40503 and 406041} These are
formal types (cfe 4¢0) which can be used as formal parameters of
procedures but must otherwise be referenced through pointer
mechanismse. . -

4¢3:4.7 Packed_Regerdss Alicned_Eiglds

Packing and atignment attributes (cfo 4,9) are used to

speclfy 'storage space == access .time tradeoffs for fields of
recordse Fields of packed records are mapped onto storage so as
to conserve space at the expense of timee However, aligned

fields are mapped onto storage so as to be directly addressablee.
Records themsetves {(the collection of fields) are always aligneds
unfess they are unatigned fields of a packed structure,

Exanples

type
date = pegord day ! lse31s "date is an"
“invariant record type"
month ¢ sfripa (4) of cghags
year ¢ 1900:.2100

cecends .

status = regord age : 6066
marrieds sex ¢ bgoleans

recends

red_book = record name $ string (3) gf chafls
’ iredbook might be a variable bound record type®"
status ¢ statuss
scores ! arraylO.en] gf date
cecends

shape = {(triangles rectanglies circlels

angle = -=180¢.180>

figure = reggord xs ys area ¢ geals "figure is a varjant®
: "record tvpe"

NCR/CDC PRIVILEGED 400

SOFTWARE WRITER®'S LANGUAGE SPECIFICATION

15/06709

Revision & June 09y 1975
NNN"NMNNNNNNNNNMNNNNMNNNNNNNMAINNNNNNMNNNMNM”MM"M&NN”NNNNNMNMNNMNNI’J
4.0 SWL TYPES

4636407 Packed Recordss Aligned Flelds

WA PIRNNNNNEINWR I RN NN RNRRNIERR IR NNIGNNNNNNR QRN AR IRIRRNANRRNNRRPIMRIINANR NI N

case s ¥ shape of

= triangle = side ¢ peals inclinations anglels
angle2 ¢ angle

s rectangle = sidelsy side?2s reals skews angle3s.

. angle
a circle = diameter: real
casend
recend;
4e3.5 UNION TYPE
Union types represent a finite set’ of selectables

non-equivalent typess and are used to define varilables that «can
take on values of different types.

Such - values—-of-=the-moment c¢can not be accessed in a direct
manner., Howevers the type~of—~the—-moment of a union variable can
be compared with the type of a- variables and its
value—~of-the-moment (ors optionallys a pointer to it) assigned ta
that variabtles if the types match (¢f. Type Testing Operators
and Conformity .Case Statements)s so that a program obranch
appropriate to values of that type can pe executed,

<union type> 332 [<packing>] uynion (<members>)
<{members> (= <type list>
{type list> t33 <type> {s» <typed)}

Permissible__operationss: assignments union membership (cf,
Type Testing Operatorss 9e.2.1)e In addition, union variables may
be wused iIn <conjunction with Conformlity Case statements (cf,
1062685 1062.9) for selective execution of statements dependant
on the type of value last assigned to the union variable,

©e3+5.1 Restrictions_on_Unlon_Membershle

The so=-called pon alue types cannot be members of a unione
The non-value types arc¢ neapss arrays and stacks of non-value
type componentss and records containing a field of non—=value
type.

If vtl and vt2 are varlables of the types t1 and t2
respectivelys and if the assignment statement vtl = vt2 is
potentially admissible within the scope of a union type
decltarations, then tl and t2 cannot both be members of that union
type.

NCR/CDC PRIVILEGED 4,0

C- ew e 0w e om ww

- o sw

4-20
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
15706709
Revision 4 June 09, 1975
4,0 SWL TYPES
4636901l Restrictions on Union Membership

AN NI NRNINKRNNRNENNIINNNMEORMEENNNPIERNIGM RN NRNERNRNNNEIMRRENNINNNNIIRNONNINNENN

Examples:
" an improper union "
bealn
yar ne rs sy €
t = 4o

n = kK - t ;

“e oo

begin
type mixture =
union (boolteans, reals vectar vectbs ord) j;
Evpe ord = (kreads, kwrites kclose» kopen)s '
vecta = array [1..99]1 of inteaers
vectb = array [n.orl of integer ;

-Mejther vecta or vectb must be removed from the
union type mixtures, since potential equatity. of type
could occurs depending on the values of n and r."

evo 3 gnd eond

4e3¢5.2 _Packed_Unions

A union type is in realtlty a type or two components—==the type
field and the value field. The packing {(cfe 4.9) of a union
variable affects the alignment of these fields but does not
affect the packing of the union memberse A union. type that is
packed because It is declared to be packed or because It 1Is a
member of a packed structure such as an array or a record cannot
be made the object of the pointer type test operator (cfoe P.2.1)
nor used in a polnter conformity case statement {(cfe 10e62¢901)
becauses by definitions, tne fields of suchn a union are not
addressables

©4e¢3¢543 Union.Iype_Eauivalence

Two wunion types are equivalent if and only if they have the
same packing attribute and the two ordered sequences of types are
pair-wise equivalent,

4e6 JTORAGE_IXBES

Storage types represent .structures to which other variables
may be addeds detetedy and referenced wunder explicit program
control (cf., Storage Management Statementss 10.4),

{storage type> :t= <stack type>

NCR/CDC PRIVILEGED 4¢0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75706709

Revision & June 09, 1975

MM RIONNNINEPIRRRNEIR NN IINERRNIORRRRNRR I GRIRNERINNIENN ISR NI N NN N
4.0 SWL TYPES

4¢305.1 Restrictions on Union Membership

BINNRNIINENKRRRNNRNENNRINI IR PN NN NNIGRNNNNRNNNENNR KRR ISR RNNNNNNEINRRENIEMISNR

Example:
" an improper union %
bealn
yac n» ry sy t i jinteaer
t 1= o6 3 eoo H

n 3= k=t 3 r = n+ s ;

type mixture =
union (booleans real, vectas vectbs ord)
type ord = (kreads kwrite, kcloses» kopen)s
vecta = grray [1..99] of infegecrs

vectb = array [(n..rl of integer ;

A1)

“Wejther vecta or vectb must be removed from the
union type mixtures since potential equality. of type
could occurs depending on the values of n and r."

eoo 3 end end

403.5.2 _Packed Unions

A union type is in reatlty a type o1 two components—=the type
field and the value fieide The packing (cfe. 4.9) of 2 union
varlable affects the alignment of these fields but does not
affect the packing of the union memberse A union type that is
packed because it is declared to be packed or because It is a
member of a packed structure such as an array or a record cannot
be made the object of the pointer type test operator (cfe 9e2.1)
nor used in a pointer conformity case statement (cfe 1062:9.1)
becauses by definitiony tne fields of sucn a union are not
‘addressable.

4¢3¢5¢3 Union_Iype _Equivalence

Two wunion types are equivalent if and only if they have the
same packing attribute and the two ordered sequences of types are
pair-wise equivalent.

404 JTORAGE.JTXRES

4-20

Storage types represent .structures to which other variables

may be addedr, deleteds and referenced wunder explicit program
control (cf. Storage Management Statementss 10.4),

{storage type> :3:= <stack type>

NCR/CDC PRIVILEGED

400

- o ee

G221
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75706709
Revislon ¢ June 09s 1975
4,0 SWL TYPES
%tek STORAGE TYPES

v’)lv%’ft’l\l'lu'lr:NNNNNNM!JMMNI‘JMMN”Ml#NlJN"NNPI”NNNI‘)NNNNf?K’NNNNQNMNMMNMI\‘INHMIJIINN”

t<sequence type>
t<heap type>

Storage types may be of variable bound type (cf. Fixed and
Variable Bound Types).

be4el STACK TYPE

<stack type> ii=
LR

sback [<stack size>] of <type>
{stack size> i

S
<integer expression>

A stack type represents a coliection of wup to ‘fstack sizet
components of the same type managed (using a tlast in=first out!?
discipline) by the pushs pops and resgl operations (cfel0cbol»
10e¢4¢3s . and 10c4e7)o In additions stacks may be assigned to
stacks; no other operations are aliowede.

Two stacks are equiéivalent if they have the same size and
component types

Stack components are accessed through peinters constructsd 2s
by=-products of the push and pgp operationsoe The tNtht! element
betow the top (current) element of the stack may be accessed by
use of the - standard function fipreviogus (cfe 11e2.18),

A system=-defined stack- (cfo 100646242 is providede.
Components of any type may be allocated (pushed) on this stacks
but can not be explicitly freed {(popped or reset) .by the usere.
Insteads such freeing is done automatically on.exits from blaocks
'(Cfe Te5)e ' ’

4e4e2 SEQUENCE TYPE

{sequence type> $:=2 geq (<space)) Nef, 4.4.4"

A sequence type represents a storage structure whose
components are referenced (by a sequential accessing discipltine)
through pointers constructed as by-products of the nexf and resct
operations (cfese 10o%obs 1l0c%4e5)o In additions segquences may be
assigned to sequences; no other operations are allowedo

NCR/CDC PRIVILEGED 4.0

422
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/709
Reviston 4 June 09, 1975% : R
4.0 SWL TYPES
4e&s3 HEAP TYPE

P ENIIRIICIE NI I IQIINIIPIIIN R NIERIII I IS EI TN PRI NI IINPIIIRIIRI R NEIIGRNRNIGNRNNRRPR NIRRT R

4.4.3 HEAP TYPE

<heap type> 3:= pheap (<space>) "cfo Gohob"

A heap type represents a structure whose components can be
“explicitly allocated (by the allogcate statement) and freed (by
the free and reset statements)s and which are referenced by
pointers <constructed as by-products of the allogate statement
(cfe 10c4e5s 10.406)0 No other operations on heaps are

allowede

A system—defined heaps that can be managed in the same manner’
as user-=defined heapss is providedes

belho4 SEQUENCE AND HEAP SPACE

<{space> tt= {s}

 itz [pep <positive integer expression> gﬁ]_4
<type identifier>

A space attribute of the general form

cep. nl of typels, [Lep N2 Qf typPels oeo

specifies a requirement that sufficient space be provided to
simultaneousiy hold nl instances of variables of typel, n2
.instances of variables of type2s and so on. .

The space attribute places no restriction on the types of the
variables that may be stored in a sequence or heaps other than
‘that the space available for storage (as defined by the space
attribute) be targe enoughe For examples the space attrioute may
be defined solely in terms of integerss but the sequence or heap
filled only with strings of characters and boolean variabless

o5 ADARTABLE_IYBES

Adaptable types are structural skeletons of structured and
storage types containing one or more indefinite boundss indicated
by an asteriske They may be used solely to define formal
parameters of procedures (cfo, Procedure Typesr 4Lebo2) and
adaptable pointers (cf, Pointer Types 4.2.3)s the Llatter
providing a mechanism for referencing variables of such typess

NCR/CDC PRIVILEGED 4.0

SOFTWARE WRITER®S LANGUAGE SPECIFICATION
7570
Revision & June 095 1975
4,0 SWL TYPES
4¢5 ADAPTABLE TYPES

N ITERIW NN IR NN RINIIRRIERI NI NI NN RN REERI NPT EI IR R I EIMRRNRIINI R RN S IEN N IR NI

Adaptable types represent classes of retated types to which
they can adapt, Adaptation to such an ipstantangcous type (cfoe
6¢1:201) can occur in three distinct ways:

Adaptable types <can be expélcltly fixed by the use of
allocatlion designators assoclated with storage management
statements (cfe 10:4)

Adaptable types used as formal parameters are fixed by the
actual parameters specified at procedure activation,

Adaptable pointer types wused as teft parts of assignment
statements are fixed by the. assignment operation.

<adaptable type> 331= <adaptable aggregate type>
1<adaptable storage typed>

<adaptable aggregate type> ::s <adaptable string>
- {<adaptable array>
{<adaptable record>

{adaptable storage type> ti1= <adaptable stack>

i<adaptable sequence>
t<adaptabi~ heap>

4e5¢) ADAPTABLE STRING
Adaptabie fixed strings (varying strings} can. adapt to Ffixed

strings {(varying strings) of any length (maxlength)e.
<adaptable string> $:= <adaptable fixed string>

{ <adaptablie varying string>

t <adaptable string identifier>
<adaptable fixed string 3:= gtrjng (%) gf <character type>
<adaptable varying string> :t= ystrinag (%) af <character type>
Cadaptable string ldentifier> 1ts Cidentifier>

Two adaptablie fixed strings are always equivalents; and two
adaptabte varying string are always equivalent,

NCR/CDC PRIVILEGED

4=23

6709

4,0

LT e ww ww oc aw Do

-

-~ 4mes
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09s 1975 :
4e0 SWL TYPES
LeHe2 ADAPTABLE ARRAY

;VNM”HIJNNHNN“NNNMNI‘JM&PI’:NNII!’.’NNMHNNNMM”"N”NNMN”MNN"'@NN“N”MN“NNMNNN“NNN
/

4¢5¢2 ADAPTABLE ARRAY

Adaptable arrays may have elther adaptable components or one
(or more) adaptable indicess or bothe

Adaptable arrays can adapt to any array with the same packing
attributesy the same types of subscripts and either the same
component type or (in the case of an adaptable component type) a
type to which the adaptable component type can adapte

{adaptable array> t:s3 [<packing>l<adaptable array identifier>
{ [<packing>l<adaptable array spec>

{adaptable array identifler> t:= (identifier>

<adaptable array spec> tt=
arcray L[<starred list>] of <type>
tarray L<starred list>] of <adaptabie component type>
tarray L[<indices>] of <adaptable component typed>

{starred list> 1:=
{<index>,} <starred index> {», <any index>}

<any index> 33 <index> { <starred index>
<starred index> t:= <star> | <starred subrange>
{star> t:= % §{ % ¢ <scalar type> ’
{starred subrange> 3$t= % ,, <scalar expression>
t<scalar expression> ee¢ ¥

<adaptable component type> 2= <{adaptable type>

Note that component typess indicess and the upper and lower
expressions associated with starred subranges may be of variable
bound typeo ’

An asterisk (%) without a scalar type indicateé an adaptable
bound of integer type.

Adaptable arrays are equivalent if they have the same packing
(cfs 4e9)s equivalent component typess identical dimensionss and

{f corresponding indlices and elements of starred lists are
equivalent, Two stars are wequivaitent if they have the same
associated types; two starred subranges are equivalent |If their

lower and upper expressions are equivalentoe

NCR/CDC PRIVILEGED 4,0

S e an we oo v o

SOFTWARE WRITER®'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

NRNNRHNRNNRNIIRNIRNOQOMNRININ KNP IINIPRIN NN RRROREOARNEN IR OINICAN R R NN NN RN

4.0 SWL TYPES
4¢50.3 ADAPTABLE RECORD

RNICRIIITRONIIRIENRRIENREOINNRNNIPRRNREBIRNRRERNRNIENNBRNIERBRNRRRUERNORENRNRRNERNNNNENY

4¢5.3 ADAPTABLE RECORD

Adaptable records consist of zero or more fixed fields {cfo,
$e34¢4) followed by one and onily one gdaptable fields which 1is a
fleltd of adaptable types

Adaptabte records can adapt to any record whose type is the
same except for the type of its last fields which must be one to
which the adaptable field can adapte
<adaptable record> ::=

[<packing>l<adaptable record type identifier>
t{<packing>l<adaptable record spec>
{adaptable record type identifier> 2tz idantifier>

<{adaptable record'spec> 1tz
record [<fixed fields>»] <adaptable field> <recend>

{adaptable field> 1t¢a
<field selector> ¢ [<alignment>) <adaptable type>

<recend> := [»] recend
Two adaptable record types are equivaifent if they have the

same packing (cfe 4.9)s the same number of fieldss and identical
field selactors and equivalent types for corresponding fieldse

4e¢5.3.1 Bound_Variapnt_.Record

A bound variant record is a variant record whose case’partAis
meant to be fixed to one of its constituent wvariantse See
Section 4.7 for syntax and semanticse

4e¢544 ADAPTABLE STACK
Adaptable stacks can adapt to a stack of any sizes, with the

same component type.

Cadaptabile stack> $i= <adaptable stack identifier>
¢ stagk L[*¥] of <type>

Cadaptable stack identifier> t1= identifier>

The maximum number of components of an adaptable stack can be
fixed by a length. fixer .(cfoe 10c4). ,

NCR/CDC PRIVILEGED

425

75/06/709

4.0

- me oo

-

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75706709
Ravision 4 Junc 09, 1975

~~~11NNNN~NMNNNF)M”MNIJNNNNI\INNNNNMNN~~~~~”"M~M~M~~”"NNN“NN”NM““NNNN”"

4¢0 SWL TYPES
40505 ADAPTABLE SEQUENCE

BENMNIGNRNNRERR RN NIV PSRN NN NRRENANKRRNRMEINR IR NRRI NI NRNMIRENEINITNNEGNRNN

40505 ADAPTABLE SEQUENCE

Adaptables sequences can adapt to a sequence of any size.

{adaptabte sequence)> ::= <{adaptablie sequence identifier>
tseq(x)

<adaptable sequence identifier> t:=2 <identifier>
The space for an adaptablie sequence can. be fixed by a span
fixer (cfe 1004). -

4e5.6 ADAPTABLE HEAP

Adaptable heaps can adapt to a heap of any size.

{adaptable heap> tt= <adaptable heap identifier>
theap (%)

<adaptable heap identifier> 3:=2 <identifier>

The space for an adaptable heap can be fixed by a span fixer
(cfo 10e4) e V

o6 CONTROL.IYRES

<control type> ::=3 <label type>
{<procedure type>
{<coprocess type>

Control types may be used solely to define Lgﬁgngan
pacraneters (cfoe betow) and polinters (cfe Pointer Types 4e¢2e3)s

40641 LABEL TYPE

Labels are identifiers wused for referring to specific
statements (cf., 10.0)c Refer to sections 83 and 100 for the
semantics of labelss

<fabel type> $t:t= jlabel

NCR/CDC PRIVILEGED 4.0

-

e oo on



SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09

Revision 4 June 09, 1975

N NIEINERNNERIPINENNRNRMIIRN NN RNNRIZIRNRRMNISNRNNRMEN RPN NN KRN RPN

4.0 SWL TYPES
40602 PROCEDURE TYPE

CQU WP RRNRNRE DN ISP PIPIEEIL TP EI0IEILIDILIRIPINPI IR MI R PINSR IR NRRNENNNRARRRNRRIGRRRNNIRM

o642 PROCEDURE TYPE

Procedures are ldentified portions of:. programs that c¢an be
activated on demand. Refer to section B8 and 10.3 for the
semantics of proceduress ' :

A procedure type defines an optional ordered list of formal
parameters together with an optional return types

<procedure type> 3:= <procedure type identifier>
tpLog <proc type spec> -

<{proc type spec> t:=
[L<proc type attributes>lll<parameter list>ll<return typed>l

<proc type attributes> 3=
<rnull construct (for expansion purposes)>

{procedure type identifier> $t:= <jdentifler>

<parameter list> t:= (<param segment>{;<param segment>})
<param segment> ti= <{reference params>i<value params>

<reference params> !=
cef <reference param> { s<reference param> }

<reference param> $:=
<formal param list> ¢ [[ #read 11 <ref type>

<value params> ::= yal <value param>{ s<value paramd>}

{value param> $3= EXVES
<formal param ftist> : [[ #gead 1] <val type>

{formal param list> t:= identifier list>

{ref type> 23:= <SWL type>
<val type> i:=
<type> | <adaptable type> { <bound variant record type>

<return type> :t= <basic type>

Val type Is further restricted. to exclude the so=-called
non-=value types? heap typess arrays and stacks of non=-value
typess and records contalning a fieid of a non-vatue type.

Two procedure types are equivalent if corresponding param
segments have the same number of formal parameterss identical
methods (ref or yal)s and equivaient typess and If. thelr return

NCR/CDC PRIVILEGED 400

427

- o= an



SOFTWARE WRITER®S LANGUAGE SPECIFICATION

75/06/09

Revisliaon 4 June 095 1975

MR NRNRMRENNRGRPIMINENNNENRRRNNMN I NMMNENRRRRRRNRIZRARNNRRIENR R RPN ISR NNMWNRN I N?R
40 SWL TYPES

4e6.2 PROCEDURE TYPE

PO WINPT PIR KRN NRNRIR RIS PENNNNAONNINFERANRAANIENA I RSN IR SN P IENIIR AN NI ENGNRN

types are equivalent. The #read agcess attrlibute (cfe 7elelel)
defines a read—only parameters

The presence of a return type in the proc type spec indicates
that the procedure is a functional procedure to be invoked as a
factory rather than by a procedure call statement (cfe B8olac3s
Functionss and 9.0s Expressions)e

40663 COPROCESS TYPE

Coprocesses are procedures controited as synchronous
processess so that partial execution of more than one procedures
Wwith a2 single thread of control passing back and forth between
thems is permitteds Refer to sections 8.2 and 10¢3 for semantics
of coprocsoe '

{coprocess type> i:= ggggﬂg'

.7 _BOUND_VARIANI_REGCORD.IXRE

A bound variant record is a varlanf record (cfe 4o3e44) whose

case part is meant to be fixed to one of its constituent variants

by the use of a tag field fixer (cfe Section 10.4). These are

space saving constructss, since oniy the space required for the
selected variant is allocated,

<bound variant record type> $:=
[<packing>] <bound variant record type identifier>
{[<packing>] bound <variant record spec> ‘
{[<packing>] bgoynd <variant record type identifier>

{varlant record spec> $:= |
record [Kfixed fields>s] <case part> <recend>

<recend> ¢t= [slrecend

{case part> tia=
case <tag field spec> gof <variatilons> gasend

NCR/CDC PRIVILEGED

S W

.o

-

-

"o



SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09

Revision 4 JuneAOQf 1975
4e0 SUL TYPES
47 BOUND VARIANT RECORD TYPE

NRRENEIN IR N DRI RIIR IR MITIRREI IR RITIIDIPROINPIMEOIRR QIR R MR NIER NN NG

{tag fleld spec> 3= .
{tag field selector> t [Lalignment>] <tag field type>

<tag fleld selector> t:= <identifier>

<tag field typed> ::=a <scalar type>

{varlations> :t= <variation> {» <variation>}
<variation> ::= =adselection values>= <variant>

{selection values> 1=
<selection value> {» <selection value>}
<selection value> 1:= <{constant scatlar expression>
[ ¢o <constant scalar expression>]

<variant> t:= [Kfixed flelds>]
t[<fixed fields>s] <case part>

A bound variant record type may only be used to define formal
parameters or to define pointers for bound variant record types
(losess bound variant pointers)s Thus a variable of this type is
always cither a formal parameter of a procedures or is allocated
(cfe 104%) in a sequence or a heaps or in the system-managed
stacke

An altlogate statement for a2 bound variant record type reauires
the specification of the tag field valuess which select the
variation of the record alioccated, In this cases only the
specified space is allocated,. A bound variant pointer is
returned by such an allocate statemente.

If the formal parameter of a procedure is of bound variant
record typey then the actual parameter may be of either variant
record type or bound varjant record types )

If a formal calli-by=-ref parameter of a procedure is of variant
record types then the actual parameter may not be of bound
variant record typeo

A bound wvariant record type is never equivalent to a variant
record typeo

Record assignment is not allowed to a variable of bound
variant record type.

4.8 EILE_IYRESR

Fitles are sources and sinks of data that can be accessed
through input-output statments. Four file types are providede.

NCR/CDC PRIVILEGED

4.0

LTI Y



4-30
SOFTWARE WRITER'S LANGUACGE SPECIFICATION
75/06/09
Revislon & June 09» 1975
460 SVWL TYPES
468 FILE TYPES

WRHNHRIRNRRR RPN RIEQRIIRNRRRRANRENEGNRNNQRICSNR IR NERNIIIIRORNENERRRRNNINRIRONA

<file type> 3:= lealhle | prlint ' blpary ! dicect

Lealbla [iles consist of a sequence of entities called Ilineso
System-defined mappings between lines and strings_of_chac exist;
these may differ depending on the source or destination device of
the . tinese.

Brinkt. . files are special cases of legible files that permit the
user to control output formatting through the use of paginations
spacing and titling procedures (permitted on print files only)l,
rather than through the use of embedded control characterse. The
user should not directiy embad such control characters in. data
destined for print filess, :

Bipacy_fjiles consist of a linear sequence of SWL varlables.
These variables are not self-identifyings so that resuits of a
read operation are guaranteed {f and only I{f the sequence of
types read is the same as the sequence writtens

RDirect_.files are speclal cases of binary files that also
permit the retrieval (and rewriting) of variables ‘'directly?
through the use of a fkey's Results of such a read {(or rewrite)
operation are guaranteed if and onily {if the obvious (but
tediously desc.ibed) type matching holdse

Files are referenced by so-called jipnput output statements
{cfe 1005) which refer to files via file=variableso

4e8.1 FILE VARIABLES

Files are accessed through flle___variabless which are
associated with a file by an explicit gpen procedure and
de—-associated from a file by an explicit glose procedure, File

varlables take on as values some undefined structured collection
of values which defines the instantaneous state of the actual
file associated with the variablee They may be used zas
components of arrays and fields of recordss may be alfocated in
storage variabless and may be assigned to other file variables of

the same type, In additions they may be used as actual
parameters of proceduress and file types may be used to define
both fef and yal formal parameters, In generals thens file

variables are data variables with a restricted operational
domaine In particutar, file variables can not be compared.

NCR/CDC PRIVILEGED 4.0



SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75/06709

Revision 4 June 09s 1975

4.0 SWL TYPES

4eB8s2 FILE VARIABLE WARNING

MNP POEI PRI RS PP PRI IS U P NI FEPS I RS PI PRI FI UL PT IS E2 P32 CII IR DWW RN NN NVNRQRNORIRRIRNNANNR ISR NN NN

408.2 FILE VARIABLE WARNING

Wacnina: If a file variable Is assigned to another fitle
variables and either wused for maniputation of a fites then
resulting changes in the file variable used are not implicitely
reflected {n the other file variable. The use of both file
variables for simultaneous manipulation of the same file <could
result in serious errorse '

409 BAGKING_ANR_ALLGNUENT -

<packing attributes> ::= packed ! unpacked
alignment> #:= gligngd

A packed structure will generally require less space at the
cost of greater overhead associated with access to its
components, If a packing attripbute is unspecifieds then the
structure is assumed to be unpackede An inner structure inherits
the packing of its immediately containing structure unfess the
packing of the inner structure is explicitly specified,

Eltements of packed structures are not guaranteed to tie on
addressable memory sites (ioeor pointers to such elements can not
always be generated)s The 3aligned attribute must be wused to
ensure addressability of such elementss Addressability is
achieved at the expense of storage space (except 1in certain
serendipitous cases)s so that the effect of packing may be
dituteds sometimes severelys .

Explicitiy unpacked structures and their components are always
aligneds Packed structures are alsoc aligned unless they are
unaligned components of a packed structures but their components
are not unless they are explicitly given the glianed or unpacked
attribute,

The attributes pagkeds uppackeds and c¢rammed (cfe Crammed

Typess 13¢1le2) cannot be applied to types that are explicitly
packeds unpackeds or crammede

NCR/CDC PRIVILEGED 460

- e pe o



4=32

SOFTWARE WRITER®S LANGUAGE SPECIFICATION

75706709

Revislon 4 Junec 09, 19785 ,

P IQRPININNNIIRENIEN I LGN AMNNNNEENNNREINISMAN R NRPIR PRI NIDNI PIINN IR NI A PRI N NICR NI PN RN
400 SWL TYPES

4,10 DTHER ASFECTS OF TYPES

BRI N RO IS NI NI IRI NN NN ARER NI IO MR NIIMNOIRIIRIOEINNR NI RIGNFII N XNEIPIAM M INN

4010 (IHER_.ASEECTS_QE_TYRES

40101 INSTANTANEOUS TYPES

Variable bounds, adaptable . and .bound variant record types
actuelty define <c¢classes of related typeso. Variables of such
types (and pointers to such variabies) are explicitiy meant to be
tfixed® to any or all types of their type=-class at different
times during the execution of a program, See Variables and
Variable Declarations for a discussion. of type fixinge

4610.2 VALUE AND NON-VALUE TYPES

Value assignments (cfe Assignment Statements) are permitted
only to variables of the so-called valug typese. The non=-value
types aret ,

a) heaps;

b) arrays of non=vaiue component -ypes

¢) stacks ‘of non-value component types

d) records containing a field of non-value typeo

4.10.3 COMPARABLE AND NON-COMPARABLE TYPES

Value comparisons (cfe Relational Operators) are permitted
only between variables of the so-called g¢omparable typese The
non-comparable types are?

a) filess stacksy heapss sequencess unions and variant
‘records;

b) arrays of non-=comparable component types;

¢) records containing a field of non=-comparable typee.

NCR/CDC PRIVILEGED 460

o oo on ve S e ae LT -e ar ac oo a» ae o~

-

- we am



SOFTWARE WRITVER®S LANGUAGE SPECIFICATION ' )
75/06/09

Revision & June 095 1975

4eQ SWL TYPES

$.10.4 FUNCTION-RETURM TYPES

;”NIJNNN“NldNMNMM!JNM"MNNﬁl’lwl’CL’NM'WN”MMMN"“”NNN@NNNNMNNN'I“N~~~NNNNNNMN~"

401004 FUNCTION=-RETURN TYPES

The only types that can be associated with returned vatues of
functions (cfs Functions and Return Types) are the basic types:?

a) iofeaers chars bheoleans ordinal typess sub-range types;
b) peal types;

ah el wie

¢) pointer typese:
4105 CONVERTIBLE AND CONFORMABLE TYPES

Mechanisms for converting values of some types to vafues of
others are provided {(cfo. Value Conversion)e

2) ‘Scalar values and real values are convertible to integer
valuess and conversely; .

b) Conversions are allowed between ganformnable arrays and
between gonformable records (cf. Conformable Arrays and
Records) e

NCR/CDC PRIVILEGED 4.0

-—— ww - we e wa - w- -—

o B e Bw



SOFTWARE WRITER®S LANGUAGE SPECIFICATION
7570
Revision 4 June 09s 1975

L MR IG IR RGN NN R ISR B ICPR PN IR R PRI RIM R RIRNMRIRBIKNNR NI NN RN RINNNCRNIRNNREIRNN

50 VALUE CONSTRUCTORS AND VALUE CONVERSIONS

WG RARANR IR RN RNRDRINRRRINRRSRNNNERRRNARNNRKRRNIQNIIR R IR NRIINR NI RN

5.0 YALUE.GONSIRUCIORS-AND_VALUE _CONVERILONS

5¢1 VALUE_COMSIRUGCIORS

5=1
6709

Two mechanisms are provided for explicitly denoting values:.

constants and yalue construyctorse. Constants are used to denote

ol e

constant values of the basic types and strings. Value
constructors are wused to denote instances of values of sety
arrays and record typeso There are two kinds of value

constructors: definite value constructorss, which include specific
type identification; and indefinite value <constructorss whose

- o i S o ol < s ko

type must be determined contextualiyoe
50101 CONSTANTS AND CONSTANT DECLARATIONS

5¢101s1 Constants

Constants are used to‘denote instances of values of the basic
types and of string typess

<constant> ::3 <basic constantdi<string constant>

.

"<baslc constant> :t= <scalar constant>
t<compile time variable> "cf, Section 12.1%
t<real constant>
t<pointer constant>

{scalar constant> t:= <ordinal constant>
i<boolean constant>
i<integer constant>
{<character constant>

<ordinal constant> tta <ordinal.constant identifler>
tef e 4e26¢lele3™

<boolean constant> t:a falseifruei<boolean constant identifier>
<integer constant> ::= <integer>i<integer constant identifier>
<character constant> t:= t<aiphabet>!?

NCR/CDC PRIVILEGED

5.0

-

- LT -



5=2
SOFTWARE WRITER'®'S LANGUAGE SPECIFICATION
75706709
Revision & June 09y 1975
500 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
5¢1.1s1 Constants

PRI BRI PIIS IS PINITNEIPIISPI IR PE ORI ET II RO NIRO R RPN TINNIENRIIRIINRIINRIRRNRIRERIRRNMANRNR PR NN MNR

t<character constant identifier>
1$char (<integer>)
wecfe Standard Functionsy 11,29

<real constant> 1:3 <real number>i<reatl constant identifier>
{string constant> ::= <string term> { gat <string term>}
{string term> ::= <character constant>
t<string constant identifier> :
t¢<atphabet> <alphabet> {<alphabet>}?
<pointer constant> 3= pji

identifier>

ordinal constant identifier> <
<identifier>
<

<boolean constant identifier> ¢

integer constant identifier> identifier>
{character constant identifier> <ldentifier>
<real constant identifier> 3t= <Lidentiflier>
<{string constant identifier> ::=a <ldentifier>
<pointer constant identifier> ¢:= <identifier>

<real number> :t= <unscaled number>
{<scaled number>
<ugscaled number)d> $ts Ldigit>{<digitd>}c<digit>{<digit>}
<scaled number> $:= <unscaled number> EC<sign>1<digit>{<digit>}

integer> tt= <digit>{<digit>}
1<digit>{<hex diglt>} <base designator>

dligit> 135 01112131641506571819

<hex digit> t:=

<base deslignator> ti=a (<radix>)
<radix> 1:= 2 { & { 8 § 10 | 16
<sign> tta ¢+ | =
If the base designator is omitted from an integers then a

radix of 10 is assumeds In afil casess the dligits (or hex digits)
are constrained to be less than the specified radixe.

NCR/CDC PRIVILEGED 5.0

- se B- e me e e o=

- on om .- - o - " - e

- we ww



5=3
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
15/06/09
Revision & June 09y 1975
50 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
5061l¢le2 Constant Expressions

MESIIT IR NI PINNRRITINRRBIIIENNERONNIRNRRNEMNRNNNNRDDIENIIR NN RNPERIENN RN RIRNIIRI RN RIRNRN

5¢lele2 Constant Expressions

Constant expressions are constructs denoting rules of
computation for obtaining values (at compife time) by the
appltication of operators to operandse The rutes of apptication
are those for expressions (cfe. 9.0) with the following
constraints:

a) Factors of such expressions must be eithe¢ constants or
parenthesized constant expressionss s

b) The expressions must be simplie expressions (terms involving
relatlionals must be parenthesized),

c) The only functions allowed as factors In such expressions
are the $inteqers, %cghars $hooleans #abss #signs #suggs #ereds and

$<scalar type identifier> functions with constant expressions as
arguments, ‘

d) Real constant expressiohs used in constant declarations are

constrained to be either a <real number> or a <real constant
identifier>e.

5¢1e1¢3 Constant_Deciacatiens

Constant . declarations are wused to introduce identifiers for
constant valuese 0Once declareds such a ggnstant identifer can be
used elsewhere to stand for the identified values

<constant declaration> ::=
const [<constant specd> {» <constant spec>}]
{constant spec> t:= _ ‘
<constant identifier tist> = <constant expression>
{ <empty>
{constant identifier list> $t= {identifier tist>
A constant spec associates one or more identifiers with the
value of the constant expressione
50102 DEFINITE VALUE CONSTRUCTORS
Definite value constructors are used to denote instances of

values of a specified sets arrays uniony or record typey and to

NCR/CDC PRIVILEGED 5.0

- - me aw oo -e

-—n o

On Pe aw o - w-

mw @ oa

. o o

e ow



SOFTWARE WRITER!S LANGUAGE SPECIFICATION

757067009

Revislon & June 09» 1975
5060 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
S561.2 DEFINITE VALUE CONSTRUCTORS

NNN'ONN'ONNNNNNNIJ'J'JNNNNA’NN&'NNNNI#NN‘JAlNNNNN"JMNA"‘A?’J'JN@MNNNMNNNNI'N”NNN~N~

denote instances of typed empty sets and typed 'nil? pointers,

<definite value constructor> t:=s

‘ $<constructor id> [<value elements>]
{ $<set type ldentifier> [ 1] “the empty set"
¢ $<pointer type identifier> [ nil 1
{ $<union type identifier> [ <expression> ]

{constructor id> $t=s <set type identifier>
i<array type identifier>
t<record type identifler>

t= <value element>{s<value element>}

= [<rep spec>l<expression>
t[<rep spec>l<indefinite value constructor>
{l<rep spec>] *

<value elements> !
<value efement> ::

<rep spec> 3i= pep <positive integer expression> gf

Identifiers for definite value constructors are obtained by
prefixing the %target typet! identifier with a dollar signs %%,
The types of the eiements of the value constructor must match the
ocrdered set of components of the specified target types except
for tundefined elementss? which are denoted by an asterisk, t%?,
Definite vatue constructors can be used wherever an expression
can be useds with the caveat that fundefined fields?® may vyield
results which are either undefined or erroneouss or bothe

Initialization ofs or assignment tos a ypnlon variable requires
that the right hand side's type be knowne When that type Is to
be a pointer type with value pils the 3$<pointer type identifier>
for pi)l as shown in syntax above may be used.

The expression used in a union value constructor must evaluate
to a value whose type can be assigned to one (and only one)
member of that unione.

Rep specs may be used solely for array constructione,

Note that a set value may be deflned to be tempty! by use of
nothing between the brackets [ and ].

All fields of a definite value constructor carresponding to

tag fields of a variant record must be constant scalar
exXxpressionse

NCR/CDC PRIVILEGED

5-4

5.0

om ®o ve on

- e

- an o«



SOFTWARE WRITER!S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975
560 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
H5e¢le3 INDEFINITE VALUE CONSTRUCTORS

WIS NI NNERPINNINNNAOIENR RN RN RN IINNIIENRRIMMEBARER R NREMRNNR RN XA DA

5¢1¢3 INDEFINITE VALUE CONSTRUCTORS

Indefinite value constructors are used to denote instances of
sety arrays or record typee

indefinite value constructor> 3= [<value elements>]
' i L1 “the empty set"

Indefinite wvalue constructors can. be used only where their
type is explicitly indicated by the context in which they occur:
as arguments of conversion fupctions {cf. Section 5:.2})s 2as
elements of definite and indefinite value constructorss and for
the initialization of variables (cf. Section 6.0)e They may be
a2 sety arrays or record depending on their -context.

All fields of an indefinite value constructor corresponding to
tag fields of a variant record must be constant scalar
expressions,

The lack of value elements <can. be used to define the

indefinite vatue of %an empty set?s when nothing appears between
the square brackets £ and le

Example:
For the types defined by

(reds greens blue)s

type color =
S = gtring (3) of gnacs
A = array [1..20]1 of integgrs
Rl = pecord t : gtnax [1..3] of booleans .
s 3
4 recends
R2 = pecord F1 ¢ set of golors
F2 : S»
F3 1 As
F4 ¢t R1
cecend;

instances of definite value constructors for the types Rl and R2
follows with their fine structure displayed.

$R1Clgep 3 of &ngly 1SBC*1]

e o 0 n s e o e . > > - - . - e -

H $=====¢string constantd> for field s

te===ljndefinite value constructor> for field ¢t

NCR/CDC PRIVILEGED

75/06/09

5.0

- oo

- mw -



5=6
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75406/09
Revislion & June 09 1975

AN CTEI PRI I P I I RI VOIS PRI RIERI R G RI PRI N FE RS PEN N OIS REFI O PONE PR IS ST P PO PE RSB PR PP LRI ORI A A I PI NN AR AT E 3 FD 03 e 12

50 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
50103 INDEFINITE VALUE CONSTRUCTORS

NI RREINPRDARNRIENQIRERINIRNNRISNNENIIR IS NN IINANNNRER RN RN RNNNNINR PIN R NN NN R

" $R2CCreds bluels'CBS'sLrep 20 of 21,LCrep 3 of falsels*tBCS¢1]

for F3
+==<string constant> for F2
-~<indefinite value constructor> for F1

————— fommeme sl e e et s o 02 s 0 2 e e ke e e
H H ‘ +==<indefinite vaiue
H H H . constructor> for
. H H Fé
H H 4+==<indefinite vatue constructor>
[ ] []
; (]
+

Each of the constants used in the above examnples couild have
been replaced by expressions that evaluate to the required
types. }

Example:

fype vio = regord
inout ¢ (kreads kuwrites kopens kclose) Yordinal
type" »

index : jnteagers
fname 3 string (8) of chacr

cecend ;5

yag arec ¢ vio ;
v e

‘arec t= $violkopens % » tholdings'l ;

value of fiefid areco.index is undefined"

52 YALUE_CONVERSION

Most dyadic operatlions are defined only for operands of the
same typee .This requirement is relaxed to permit:

a) values of different subranges of the same parent type (and
values of the parent type) to enter jointly into operations
defined for the parent type; :

b) characters to be used with strings In string operatlons§
¢) other formélty non-equivalents but operationalfy simitar
types to enter Jointly In some cases of assignment (cf. 10.1¢1)

and 1063.1) and comparison {(cfe D¢2:6),
In alt other casess when it Is necessary to operate on

dis-similar types the conversion functions described below must
be used,

NCR/CDC PRIVILEGED 50

- -
Y

- 0w w0

no ow oo



SOFTWARE WRITER®S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975
50 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
506201 TYPE CONVERSION FUNCTIONS

NI RRIENNRRIBIGERD NN WR ARSI NRITIRININNONNRNNNRNR RGO IIOININNRNRNRRNR SRR

5¢2.1 TYPE CONVERSION FUNCTIONS

Identifiers for conversion functions are obtailned by prefixing
the target type identifier with a dollar signe. The function so
fdentified witl then accept as an argument values that are
convertible to the target typeo

5¢0201¢1 Basic_Conversions

These consist of the fpre-defined? functions (cf. Standafd
Functionsy, 11:2).

$integer (<real expression or char expression or ordinal
expression or boolean expression>)

$real (<integer expression>)

$chag (<integer expression>)

$boolean(<integer expression>)

and the VYdefinable! functions?
$<ordinal type ldentifier>(<integer expression>)
$<integer type identifier>{(<real expression or char
expression or ordinal expression
or boolean expression>)
$<real type identifer(<integer expression>)
$<char type identifier> (Linteger expression>)
$<{boolean type identifier>(<integer expression))

Converstons between the basic types are the conventional ones
and are defined in Section 11.2. :

Conversions to ordinal type return the value whose ordinal
number is the value of the integer expression used as argument.

NCR/7CDC PRIVILEGED

5«7

75/06/09

560

-e o= on on oo e -
v . . .



5-8

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75706709

Revision 4 June 09y 1975
5060 VﬁLUE CONSTRUCTUORS AND VALUE CONVERSIONS
5e20l01 Basic Conversions

)NNNNMNNNNNN”N'JNNNNNN”N"”I\INPINNNNN&’NIS"JNN’J“Mf#Nh!NN“R!NNN’JMN“MN'OMNM”NNN“

Examples:

type status = {(nowcloses nowopens nowread);
yar i2s i3, i4s iI5 ¢ [nfegers
r2s r3 ¢t reals bs babbage ¢ boolecans
'stat ¢ statuss
chly, ch2 ¢ ¢har

i3 ¢= 33 i4 1= 4;

{2 3= 23 _

r2 $= 2¢23 r3 i= =3.,3 ;3 stat ¢= nowread;

i5 t= 1; babbage = false;

12 3= $inteqger( r3 ); *new vatue of {2 is -3 "

il = $integaerlistat); "il now = 2,

chl = Schagti2 )5 "chl now = 2nd ASCII character %

stat t= $status(l) ; "stat value is changed to nowopen "
i4 ¢= %$ipteger( babbage }; "i4 set to zero V¢
b 3= $bggicag(35), b set to frue®

e <

5¢2.1.2 Conformable_ Arcay_and_Racord_Copyersions

Array—-to—-array 2and record—~to-record <conversions are defined
ontly for arguments that are 'conformable?® to the tarqget typee.
$<array type identifier>(<array expression>)
$<record type identifier>(<record expression>)

{array expression> $i3 {expression>
t<indefinlte value constructor>

<record expression> s$:=z expression>
t<indefinite vailue constructor>

Conformability is defined recursivelys in terms of the

conformability of array components and fields of recordss by the
following tables

NCR/CDC PRIVILEGED 5.0

o e oo



5-Q
SOFTWARE WRITER?S LANGUAGE SPECIFICATION
75/06/09
ngiilgg ﬁ “June 09s 1975
50 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
5.201+2 Conformable Array and Record Conversions

RN NENRENRANRNERNNNNIINRERNIENRRINNMANRNMNRNEIERMININMRNRNRNANRIONINNNRRNNNINNN

Target Component
or
Fietd Type

e D D B P W TP e P I D W R WD WD D WD W

‘basic types
set types‘

string types
union types

array types

array types-

non-variant record
types

variant record types

| A D e TR I > IS W WS . > CED A S T . S A SO

Conformable Component
or
Field Type

D G T B D U B D D WD S D D D N T U D "> B WD WD Y W WD WP T G T T W WD WD T

any type assignable to target
any type assignable to target'
any type assignable to target
any type assignable to target

array type whose indices span.
same number of elements as

target type and whose component
type conforms to target component

indefinite value constructor
containing same number of
elements as index type of
targets all conformapnle

to target component.

non-variant record type or
indefinite vaiue constructor:
same number of fieldss with
each field conformable to
corresponding target field.

equivalent record type; or
indefinite value constructor
with same number of fieldss
each field conformable to the

corresponding target fields

with constant scalar expressions
for tag fields,

- o ace wm - e O TR R TP TP WL @ B GO G WD CB «D D WP WD D W W

NCR/7CDC PRIVILEGED 5.0

- Be G- O on Be oo



SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

5-10

75/06/09

IO RNRNRPINNERNRNNNPIRRIIEN RIS ORI RIINIERNNENNENRIN RN NNRRIINNRK RN N NN

5,0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS

5¢20l02 Conformable Array

and Record Conversions

IR EENPINIRANIENRRFIRDIENNR N IR EEPRNIEINRNSONNNIRNRRNRMRIRNERR NN N RN WA NGN

Example:
type Al = array [1l¢.101 @f sl»
sl = gtrina (20) of chars
A2 = array [(11.4201 of s2,
sé¢ = gtrina (10} of ¢hars
Rl = gegcord
i ¢ lonkegers
J ¢ geals
| At Al
recends
Re2 = pecord
alpha 3 jntegers
beta ¢ feals
gamma ¢ A2
recends
R3 = packed RZ2;

The two array

5e2¢1+3 3trina_Conversions

types conform and the three record types

conforme

String conversion functions are used primarily to right—-extend

a string with ffiltt or

choices

¢padding?

characters

of the userts

$skring(<tength>s<string expression>Ls<fill1>1)

$<string type identifier>{(<string expression>Ls<filt>])

where

{length> 3t= <positive integer expression>

<Pit1> ti=s <character expression>

THese functions return a fixed string whose length is

specified by the length given as argument or by the length of the
target typee The value returned |{s obtained from tne string
expression used as the argument, right-=truncated or
right-extended (by the fill character) as required by the 1t{ength

of the
used,

resulte If no fill

is specifieds

the blank character is

NCR/CDC PRIVILEGED

540

e @6 Mo e =

- ™ m- oe - - -

- s - -

e we we ow oo Be



SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75706709

Revision & June 0G9s 1975

'
BIM NI M NI I PR IO NN RIS NERRNNNIGNMNMRORNNNRBIRONRNIBIGEI NN RRRBHRARNNRIRNR NN

5.0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
543 FILE VARIABLE CONSTRUCTORS

KN NERRKNRENIRGRR ORI NNIINOIINRNNRIESNMNMNRPINRDONNRRITEIRNNENRNRRRMNNNRONNNRNK N

5¢3 EILE_VARIABLE_CONSIRUGTORS

Indefinite file variable constructors can be wused only for

initiatizing fite variables (cfo 6.7) or as the arguments of

definite file variable constructorse The ltatter can be used for

assignment operations involving file wvariables of . the same

typese
indefinite file variéble constructor> 132 [<file spec>]

{definite file variable constructor> t:=
$<file typed> [<file expression>]}

<file spec> t:= <file attributes> "cf, 6.7"

t= <file attribute> {s<file attributed]
= old or new>

<{mode>

<encoding>

<position>

Cactua! file name>

<{page size>

<end of page proc>

<file attributes> :
<file attribute> ::

<old or new> t:= #gld | fpey

<mode> ::= #inlsH#oufl | #outl s#inl
<position> ::= #first | #asis ¢ #last
Cactual file name> (:= <string expression>

<page slze> $:= #pagesize (<number of lines>)

<end of page proc> ::= #pageproc (<procedure reference>)
<encoding> 3t= #godeset (Kcodesetd>)

<codeset> 1t= Casciit

tebcdic!

tasciib3?

tasciio6lat

‘nativef®

<others as required>

on on o® oo e

See section 6.7 for a complete coverage of file attributes.,

NCR/CDOC PRIVILEGED

5-11

5.0

" N P Be On e OB e

o - o= o -on oo om we

e oo 50 ae oo o



6-~1
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
15/06/709
Revision 4 June 09, 1975

640 VARIABLESs, SEGMENTS, AND FILES

MMNRINIPIREINNNRNNRRORIERRININNNRNI ISR NIR RPN RNNRNNMNBNERNNRERR RN R R

6.0 VARIARLES. _SEGUENIS: AND_ELILES

6.1 VARIABLES_AND_VARIABLE_DECLARALXONS

Variabtes take on values of a subset of the SWL typess:. fixed
or variable bound typess adaptable typess and bound variant
record typese

Variables of fixed or variable bound type can be declared by
an explicit variable declaration (see below) or can be deciared
as formal parameters of procedures (cfe B8el)e

Variables of adaptable or bound variant record type <c¢an only
be declared as formal parameters of proceduress and must
otherwise be expiicitly westablished by storage management
operations (cfoe 10.4). ' ’

6elel ESTABLISHING VARIABLES

This process involves:
a) The determination of the type of. the variable;

b) The allocation of storage for values to be taken oﬁ by the
variable; o

c) The possibié assignment of initial values to the variable;

d) The possiblie binding of references {(see below) to that
variable. '

Explicitly declared variables are automaticaily established on
each entry to the block (cf. 745) in which they were declarede.
Howevers so=-called tstatic! variables (cfe 6e2.2) are
established once and only oncee

Formal parameters of procedures are automatically established
on each <call of that procedures, If the procedure is associated
with a coprocy establishment occurs on each creation of that
COpProce

NCR/CDC PRIVILEGED

6.0

—m W we o= - nw o= - e ww -

o= v - -~ oo



SOFTWARE WRITER®'S LANGUAGE SPECIFICATION

75/06/09

Revision 4 June 09, 1975
6.0 VARIABLES, SEGMENTSs AND FILES
6o1s1 ESTABLISHING VARIABLES

PRI ELIN IR BI WS PIN PRI ML PRI N RIS AIN MM R RN PP MRARIETIRERBRRINIIRINVVOONRNREINRRORNNNNNRRIRNRIRRORN S

So~called fatlocated? variabiles are explicitly established by
storage management operations (cf. 10.4) (for type determination
and storage allocation)s and by assignment operations (for
initiatization).

- 6e1e2 TYPING OF VARIABLES

Variable bounds adaptabie and bound variant record types
actuatlly define <ciasses of related typesoe Variables of such
types (and pointers to such varitables) are explicitly meant to be
tfixedt to any or altl types of their type=class at different
times during the execution of a programe

6.1.2.1 Instantaneous_Iypes

The type to which a variable is fixed at a specific time
during execution of a program is called its instanianegus type
(at that time)e It is a variablet®s instantaneous type that s
actually wused to determine the operations it may enter into at
any point in time. In generals two variables whose instantaneous
tvpes are equivalent can enter into dyadic operations defined for
that typee

The instantaneous type of variables iIs fixed in the following
manner?

6=2

1. Types themselves are fixed on entry to the block in.which

they are declared (by an explicit type deciaration), and remain
fixed until exit from that blocke

2o The instantaneous type of declared variables. and formal
parameters (of fixed or variable bound type) is determined as
follows: ’ ' ‘

a) If their type is specified solely by a type identifiery the
type is fixed on each entry to the block containing the
declaration of the identified types and remains fixed
until exit from that block

b) If their type is specified by an explicitly spelled out- types
then the type is fixed on each entry to the block
contalning the variable or procedure declarations and
remains fixed until exit from that blocke.

i 3. Variable bound parts (if any) of adaptable and bound
varlant record types are fixed as above for variable bound
typese

NCR/CDC PRIVILEGED

640

LT - o s eu @o > e oo we vo

e B 0o 26 v B S

oe an ne em .o S0 oo on e ws ®e

e oo ma



6-3
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75706709
6.0 VARIABLESs SEGMENTS» AND FILES
6102.1 Instantaneous Types .

MWW RNRIIINNRKNRNIENNIEINNGNEINNNNNISNRIKMMNRENRRPINNPMENNNRENRNNRENNRNRREN NN

4, Variables of adaptable and bound variant record type are

fixed in three distinct ways:

a) Formal parameters of such types are fixed by

instantaneous types of their corresponding actuai parameters on

‘each call on the procedure of which they are a part,.

.Section 10.3¢1 for the rules for fixing parameters.) If the

procedure is associated with a coprocs the type is fixed on
creation of that coproce

b) Explicitly allocated variables of such types are

fixed by the allocation operation. See Section 10,41 for
rules for fixing such variables.

c) A direct pointer whose instantaneous type is any of

the types to which an adaptabtie pointer <can adapts <can

assigned to that adaptable pointero In. such casess both the
value and the type are assigneds thus fixing the instantaneous

type of the adaptablie pointers

Example:

vac J» ms n 3 integer;
. :

L] B
bealn "first block"
type t1 = string (n) of ghar;
[ ]
[ ]
[

beain "“second block"

yarp S ¢ til,

Al ¢ array [j1 of tl1»

A2 * array [J3 of stcing (m) of chacs
ecee P (val A : arcay (*) of tl);

®

.
erocend;

P(Al

® & e ~ o o
e

NCR/7CDC PRIVILEGED

6.0

*n on e B oo on - e

e oo e an e "o ae @



SOFTWARE WRITER®S LANGUAGE SPECIFICATION

75/06/09

Revision ¢ June 09, 1975
NRORRRNPIMAONMNNNNNOIIDIERMN NN RMREERNRORNNNINPNNRREAIGIN IR N ISR IINNRRIIN RN NRNNENNNN
6.0 VARIABLESs, SEGMENTSs AND FILES

6:1:2:1 Instantanecous Types

' RN R RANERNRENNRERNNRINNRORNRRONRRIRNRIR R NRRRONNNRIIRONRNRNRIEIRNRNRNR
.

The typey tls is fixed on each entry to the first blocks thus
fixing the instantaneous type of the variables Ss and the
component type (but onily the component type) of the variaples Als
and the formal parameters A, The instantaneous types of the
variables, Al and A2» are fixed on each entry to the second
blocke The instantaneous type of the formal parameter, A, is
fixed to that of the variable Al on each procedure calls P(Al).

6ele3 EXPLICIT VARIABLE DECLARATIONS

64

Variables are explicitly declared in terms of an identifier

for denoting thems a types an optional set of attributes and an
optional jnitlalization.

{veriable declaration> ::= :
var -[<flile or variabile spec>{s<file or variabte spec>}].

<flle or variable spec> t:= <variable spec>
{ <fite variable spec> %Wcf, b6,7"
i <empty> ‘

{variable spec> 3=
{variable identifiers> ¢ [Lattributes>] v
<fixed or varlable bound type>(<initialization>]
variabte identifiers> tt= '
{variable identifier> [<alias>]
{ s<vartable identifier> [<alias>] }
{variable identifier> ¢t:s <identifier>

<alias> 1= aliag ' <alphabet> { <alphabet> } '
"cfoe TeTel for semantics of allast

6.2 ATIRIBUIES
Cattributes> t:= [<attribute>{s<attribute>}].
Cattribute> $t= <access attribute>
t<storage attribute>
1<scope attribute>
<scope or storage attribute> 1=

L<scope attribute> [s<storage attribute>]]
{ L<storage attribute> [s<scope attributes>1]

NCR/CDC PRIVILEGED

6.0

" me on av o o o

- o0 o= on we oo e we e - e e wa e -

e oe



SOFTWARE WRIVER?®S LANGUAGE SPECIFICATION

75/06/09

Revision 4 June 09y 1975
6.0 VARIABLES» SEGMENTSs AND FILES
66201 ACCESS ATTRIBUTE '

CRRINIGCHTIII P2 R IIFPIIIIN PIPI DT PIOI N PIEIPI N IR IO PN NN NNEIINNNRNNNNARMRIRNRIOMNNR NN SN NN
. ~

621 ACCESS ATTRIBUTE

{access attribute> 1= f#iread | #urcite + #execute

The read and write attributes can be associated with variables
{and segmentss cfo 6¢5) to specify whether values can be read or
written-overo,

The execute attribute cannot be associated with variablessy is
automatically associated wWith procedures and {abelss and is
otherwise wused solely to declare segments (cfe Section 6.5)
containing procedures. The degree of support for the execute
attribute will be a function of the link~loader (link=~editor) and
the operating systems so will be system=dependente.

Vartables can be declared with either the read attribute or
with no attributes at atle In the former casey the variable is
called a 'read=only variable;® in the latter cases both the read
and tne write attributes are automatically associated with the
variabtes which is then called a 'read=write variableo!?

Read=-write variables can be used freely for purposes of
retrieval and reassignment! in expressions (cf. Section 9)s as
cbjects of assignrment (cf, Section 10.1) and as actual
parameters of procedures (cf, Section 10.3¢1)

Read;only variables can (and should) be initiallized (cfe.
Section 6.3})s may not be used as objects of assignment, and may
be wused as actual parameters only If the corresponding formal

6-5

parameter is either a val parameter or 2 read-oniy rgf parameter’

(cfe Sections 4«6 and B8elel)e

Exampless

¥ar vl ¢ [#readl integer = 10; "vl Is read onlys but
initiatization Is valid"

yar v2 ¢ feal 3 "v2 may be ?read!'! and twrittent"

6e2.2 STORAGE ATTRIBUTES AND LIFETIMES

{storage attribute> 2::= gtatici<segment identifier>

Storage attributes specify when storage for an explicitly
declared variable is to be ailocated (and initial values assigned
If necessary) and when it is to be freed (at which time values of
the variable become wundefined), The programmatic domain in
effect between the time such storage is allocated and the time it

NCR/CDC PRIVILEGED

6.0

- wme B e we e

-



SOFTWARE WRITER®S LANGUAGE SPECIFICATION

75/06/709

Revision 4 June 09, 1975
600 VARIABLES» SEGMENTSs ANDO FILES
6c62¢2 STORAGE ATTRIBUTES AND LIFETINMES

NN RNNRINANNRNMRERNRIINRNNEIRIEINNNAMNRPNINANIEN RN INPIINMNRNRERRNIINR NIRRT NN NN

Is freed is called the '}lifetimae? of the variable.

6624201 Automatic_Variablgs

The tifetime of an tautomatic variabte?® s the block (cf,
Section 7.5s Blocks) in  which it was declared: alfocation and
initialization occur on each entry to that block and freeing
occurs on each exit from that blocke '

6e2¢2.2 Stakic. Variables

The lifetime of a fstatic variable' is the entire programs:
allocation and initialization occur once and only once (at a time
not later than initial entry to the block in which the variabie
was declared)s and storage is not freed on: exits _ from that
blocke : .

6¢202¢3 L1lfefime_Conventions

If neither storage attributes nor’ scope attribqtes (cfo
Section 6¢2:.3) are specifieds then the variable is treated as. an
automatic variableo,

If the static attribute is specified or. if a segment Is
"specified (cfe Section 6¢5) then the variable is treated as a
static variabile. .

If any of the scope attributes (cf, Sectibn 6.2¢3) are
specifleds then the variable Is treated as a static variable,

Variables of variable~bound type (cfe. Section 441) cannot be
static variabies,

Variables declared at the outermost tevel of a compitlation
unit (cfe 741) are treated as static variables.,

6e2¢2.4 Lifetime of_Formal_Paramefers

The lifetime of a format parameter is the lifetime of the
procedure of which it Is a part: the formal parameter is
established on each entry to the procedures and becomes undefined
on exits from the procedure.

NCR/CDC PRIVILEGED

6-6

6.0

. e e we me



SOFTWARE WRITER®'S LANGUAGE SPECIFICATION

75/06/009

Revision 4 June 09, 1975
6.0 VARIABLES, SEGMENTS: AND FILES
66262065 Lifetime of Allocated Variables

MNNNTRINNRRNNNO RN RIRARINNNMN NN IINANENNPNNNIQMAPIN DR RINNPONNRNRINRNRE RN

6e202¢5 Lifetima of Allgocated_Variables

Allocated variables are established (but not initiaiized) by
an explicit allocation operationys and become undefined when they
are explicitly freed or their containing storage variable ceases
to existo

yarnipna: Note that generally a pointer value has a finite
lifetime different from that of the pointer variableo
Proceduress labelsy and automatic variables cease to exist on
exit from the block in which they were declareds. Allocated
variables cease to exlst when they are freed or their containling

67

storage - variable ceases to exlistes Attempts to reference.

non~existent variables by a designator beyond their lifetime is a
programming error and could lead to disastrous resultse

6e203 SCOPE ATTRIBUTES

{scope attribute> 3:= xdecl | xref | exterpal

Variable identifiers are used in variable denotationse. Scope
attributes specify the regimen to be used to associate instances
of variable identifiers with instances of variapble specss The
programmatic domain over which a variable spec is associated with
instances of its associated variable identifiers that are used in
variable denotationsy is calied the gcope of that spec. If no
scope attribute is specifieds the spec is said to be jinkternal to
the block in which it occurss and a so-called block-structuring
regimen is used (cfoe Section 7«2)o

Internat variables are always automatic variaoles (see above)
unless glven a storage attributes while scope—attributed
variables are always gsktatice Each of the scope attributes
specifles certain deviations from the block=structuring regimens

Broadly speakingy, a variable identifier associated with an xref

varlable can be used to denote a similarly identified wvarlable
having the xdgl. attributes subject ontly to reasonanle rules of
specificational conformitys

External variables are introduced to permit SWL programs to be

interfaced with programs written in other languages; they may be
referenced whenever and wherever their spec appears.

NCR/CDC PRIVILEGED

6.0

-—w oo me me

- S ew ce S S e oo



6-8
SOFTWARE WRITER®*S LANGUAGE SPECIFICATION
75/06709
Revislion & June 09, 1975
6.0 VARIABLES, SEGMENTSs AND FILES
6¢62¢3 SCOPE ATTRIBUTES

| MR IR EIRI R RINNNEIRNRRNRNRITNROIIINEINPNNORRICIE NN NRIRNIIN NI MNRINIIINNNRNNNI PN

Neither xref nor external variables can be initialized, and
each carries the de-facto static storage attribute.

There should exist only one declaration of a given variable
(identifier) with the xdgl attribute within a compilation wunict
(cf, Section 7.7) or within a group of compilation units to be
combined for executione

If a varitable declaration contains either the xref or external

attributes then it may not also contain a segment identifier
attribute, :

-

66204 FILE ATTRIBUTES

See section 6.7 »

6.3 INIIIALIZATION

Initiatizations are used to specify values to be assigned to
explicitly deciared variables weach time such variables: are
established.

inltialization> £;= t=s <Ljnitialization expression>

Cinitialization expression> $t= <expression>
} <indefinite value constructor>

Whenever the variable is established (cfe 6e¢lel)s the type of
the variable is determineds storage for a variable of that type
Ils allocateds the initialtization expression is evaluateds and the
resultant - value is assigned to the variable according to the
normal rules for assignment (cf. 10el).

6e3¢1 INITIALIZATION CONSTRAINTS

l. If no iInitialization iIs specifieds the initial value is
undefined,

2e If the initialization expression Is an indefinite value
constructory the variable must be either a sets arrays or records
so that the type of the Indefinite value constructor can be
determined.

3. An asterisks '¥%', <can be used in indefinite value

NCR/CDC PRIVILEGED

6.0

on o o - e e e w- e e

oo B ee o

-



6=~9
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
. 75/06/709
Revision & June 09, 1975 s
660 VARIABLESs SEGMENTSs AND FILES
5e3el INITIALIZATION CONSTRAINTS

MNOIEORIINII R REOENNPAI NI RIS R RINARIIN NI NNNIZIRNRNNNER RRRNRNIIRIIIENINAFERNNNROREENNNR RN

constructors to indicate  uninitiatized elements of. arrays and
recordss The inltial values of such uninitiatized elements are
undefinedo

4. Initialization expressions may not contain references to
values of variabtes declared in the same block as that containing
the iInitializations Howevers references to values of pointers to
varlabless procedures and labets declared in the same block are
allowedo. '

Kore precliselys if SES® identifles a variables procedure or
label declared Iin the block containing the initializations then
its use in a factor of the initialization expression is

constrained to the factor '"E",
6302 FILE VARIABLE INITIALIZATION

See sectlion 6+7s as speclal initiallzation rules apply for
file variablese.

6e% SEGNENIS_ AcQ.SEGUENI_DECLARAIIOQNS

<seagment deciaration> 3= gsegmant <segments>s <segments>
<segments> ::= <segment identifiers> [ ¢ [<access attributes>]l
<segment identifiers> 1it= <segment identifier>

{s<segment identifier>}
<segment identifier> $:= <identifier> .
access attributes> fi1= <access attribute>{s<access attribute>}

A segment is a static storage area for specified variables and
procedures sharing common. access attributes, The access
attributes of variables and procedures declared to be in a
particular segment must be a2 subset of. that segment'!s access
attributes. The combinations of segment access attripbutes to be
supported witl be impiementation dependents but will include
(#readl and ([#reads #writelo. Support of the #execybte attribute

will be system=dependents related to both (link~loaders and the
operating systems themselvess

Note that SWL segments are primarily designed to group things
togethers and have no a=-priorf relationship (or ltack of one) to
hardware supported segments,

A segment identifier may never be a prong (cf. Tels
Modutes).

NCR/CDC PRIVILEGED

6.0

-- - -

W e B e B AN W ww

" e o

- -



6-10
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75706709
Revision 4 June 095 %975
6.0 VARIABLESs SEGHENTS» AND FILES ‘
6.5 VALID COMBINATIONS OF ATTRIBUTES AND INITIALIZATIONS

BIRW RN IINRIIN DN NSRRI ISIEN IR BN RRSIIIRIINPI RN RNMIONENRNNWR RN NNNR

6+5 VALID.COMBINAIIONS QE_ATIRISUIES_AND_INILIIALIZALLONS

Only certain combination of attributes are valid, These
combine with certain initiatization assignmentss some of which
are -optionals some requireds and some prohibited,

ALIRIBULE CINITIALIZATIION SAHE_AS

(1) - none optional

(2) #tread required -

(3)  static | optional

(&) 53321@»#5@39 requi}ed

(5) xdcl. . optional (7)

(6)  xdcls#read . required (8)

(7) xdelsstatic | / optionzal (5)

(8)  xdgls.statigs#read required (6)

(9)  xref ‘ - prohibited (11)
,(10) xrefstread prohibited (12)

(11) xcefsshatie prohibited (9)

(12 xrefrsifatics#regad | prohibited (10) |

(13) external ‘ prohibited

(14) externals#read prohibited

(15) % <segment id> - optional

(16) * <segment id>s#reag required

(17) * <segment id>sxdci optional

(18) * <segment id>sxdcls#read required

(%) Static is implied for segments,

NCR/CDC PRIVILEGED 6.0



6-11
SOFTWARE WRITER®'S LANGUAGE SPECIFICATION
‘ 757067009
Revistion 4 June 09y 1975
6.0 VARIABLESs SEGMENTS» AND FILES :
605 VALID COMBINATIUONS OF ATTRIBUTES AND INITIALIZATIONS

KPR NPNEENNIENNNMINNENRNN NI RN NN NINRNRIRRNNINNIRNRNRINEIYN A I3 NIENMNMES I NN

Examples:

sgament sl ¢t [#reads #wpifels s2 ¢ [#readl, s3t [#exgcukel;
kar: Ci#geadsxdeclssl] integer $= 275 "correct declaration®
kbrs Cxdclss21 fegal;

Mimproper dectiaration == access attribute of

kb is read=writes, while s2 is read oniy"®
kert [s31 ipnteaers

"{mproper declarations == no accesses allowed

-to segment s3¥
kdrs [sll integer 3 "correct declaration®
karp: [s2s #regads xdcl 1 rpeals

"improper-=-initialtization required

‘ for xdcls read=-oniy"™

pir: [sfaticsuzdels#read] real ¢= 3.14159265 ;

"correct deciaration and initial value assignmente”

0o ok &

sealsnseg2 ¢ [#peadr #urcites #execukel. ;
aged ¢ [seg2s f#readl fnteger := 63 ; "correct declaration®
bad ¢ [seg2-xrefl beolean ;
"improper use of both a segment identifier and
xpef attributes in same variabie spec™
gonv 3 [xdgll ceal := 39,37 ;
"correct declaration with static attribute implied"

yar: [xrefs#readl boolecan ; "correct declaration of v3u
v4art (w#readsexterpall inkteaer; 'correct use of

access attribute with external scope attribute®
ybops (#reads xcefl real = 2.545 "error because initial

value assignment not aliowed with xref attribute "
vér: Cexlernals #read 1 hoolgan = frugs

errors inftial value assignment never allowed
with extegnal attributeo"

.

6.6 VARIABLE_REEERENGES

<variable> t:= (variable reference>

{variable reference> t¢= (varjaoie identifier>
i<pointer reference>”®
{<substring reference>
t<subscripted reference>
t<field reference>

NCR/CDC PRIVILEGED 6.0

LN - Y

®o o



6-12
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/706/09
Revision & June 09, 1975 e oo me o e ve some
660 VARIABLES» SEGMENTS» AND FILES
66601 POINTER REFERENCES

”MNNNNNMNNN'JNNNMHNNNNNMNMNNM‘MNNI‘JNNNM“”"WNM”NN~~~N~NN“N~"’N~NH~N~~~A’

606.1 POINTER REFERENCES

<pointer reference> $t= <pointer variable>
t<function designator>

{pointer varlabted> ::=2 <varlable>

Whénever a variable reference denotes a varlable of polinter
types it is referred to as a pgolinter reference and the notation

<pointer reference>®
may be used to denote a variable whose type is determined by the
type associated with the pointer variablte. If another variable
of pointer type is denoted by this references then.

<pointer reference>®"
may be wused as a variable reference, Note that variables of

pointer type can be components of structured variables .as well as
valid return types for proceduress,

Given a variable identifiers the notation to obtain a pointer
value to the variable is:

“<variable identifier>

Howevers successive applications of the up arrow for such
purposes is not atlowed (See Evaluation of Factorss 9¢1).

Pointers are always bound to a specific type (cf. 'Section
4e¢2¢3) and pointer varjables may assumes as valuess only pointers
to objects of that typeo

The special vatue qgjt Is wused to denote that a pointer
variable has no current assignment to a locations Note the wuse
of the typed nil value constructor for use when a typed pointer

Ils requireds such as in the assignment to a ynign. variables
(cfe 5¢le2 and 5.1.3 for value constructorse)

6.6¢1.1 Examples_of Direct Pointer Refergnges
var i» J» k ¢ lpntegecs "integer variables"
pi ¢ “jinteaers, "pointer variable of typet pointer to integer®

ppi ¢ “"“integers "pointer variable of type:
pointer to pointer to integer®

NCR/CDC PRIVILEGED 6.0



6-13
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
15/06709
Revision 4 June 09s 1975

WNHENRNRNRONRRERRINNQORINNRNROINNNIENNRORNNNRNENMNPINNRIREI R RINEENIBIINRNPIENNN NN

6. O VARIABLES, SEGMENTSs AND FILES
5060lol Examples of Direct Pointer References

DINEREIIRNRNIORR PR RN &GN “MNNMNNNN“'J“NNNNNNNNMNNNM*’NHNI‘NNNH“““NNNNH“””

bls b2 3 boolean ; "boolean variables—=-end of declarations"
i ¢= 10 ; "the integer variazble i is gilven the value 10"

pi ts ~i ; "the pointer varlable pl takes on the value:
' pointer to integer variabile i
ppi = “pi 3 "the pointer variable ppl takes on the values
pointer to pointer variable pif
“™f 3 "not permitted=="" oeo “Kidentifier>
is not an altowable expression"

ppi =
'j ¢= pi®™ ; "the integer variable j takes on:the value
of the integer variable %"’

k t= ppi™™ 5 “the integer variable k takes on the
. value of the integer variabfe i

bl 3= J = k. ; *“the boolean variable takes on the value fLrue"

b2 t= pi® = ppi®™™ ; uthe boolean variable b2 takes on the
value trye'"

"the pointer variable pi is set to denote
fack of indicating any varijable

e

Pi 1= nil

K ¢= pi™ ; "statement is in error when pi has the
value pil—-result of this statement
witl be implementation dependent®

LEf ppt = pky then k := k + 1 ifend ; .
"valid test of ppi and valid statement®

pt t= “(i ¢ J + 2%k) 3 "improper use of up arrow to request
tocation of an expression=--—an undefined concept®
6e6e2 SUBSTRING REFERENCES

<substring reference> 2:= <string variable>(<substring spec>)
{string variabte> ?2t= <variable>

<substring specd> ::i= <f!rst'char>[;<substring length>]
<first char> t2= <positive integer expression>
<substring length> ::= <positive integer expression>
HEE
~Values of string variables are ordered n-tuples of character

NCR/CDC PRIVILEGED 6.0



6-14
SOFTHWARE WRITER®*S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09, 1975 :

NANNPRNNRLNIPRIRIENNEERNNNINIINRNGIGNNRRNMNIIENRMNARMENINRINNMRNENRRRRNNNRNNISNRPIN NN

6.0 VARIABLESs SEGMENTS», AND FILES
66602 SUBSTRING REF:RENCES

BRI PORNNRNNROINMNNENRIIIRRPINRISM AN NIENRNNRIMRRIRRPIENANPNNPIIIEN PRI IR TN

values (or the nult string)le Substring references yield fixed
strings defined as followss

Let *S! denote a string whose current length is n.
If 1 <=1 <= n and 1 <= k <= n+l=-is then

a) tS(i)e yields a fixed string of length ones consisting of
the i=th character of S;

b) *S(isk)® yields a fixed string of length ks <consisting of
the i=th through the (it+k=1)=th character of S; -

c) S(isx)*® js equivatlent to 'S(isn-i+l)?,

Otherwises an error resultse

Examples
If a string variable is declared and initialized by
varL S ¢ strina(s6) of ghap := PABCDEF';

then the fottlowing relations hoid

S(1) = 1p¢ S(2s5) = 'BCDEF!
S(6) = 1Fe S(2s%) = S(2s5)
S(1,6) = S S(ls%) = S

If a2 pointer variable is then declared and initialized bys.

yar ps ¢ “stripg (6) of char := “S;
then

ps™(i) and ps®(isJ) become valid references to substrings of
Se

Note that a string constanty even if declared with an
identifier for denoting its is not a variables so that a
substring of such a string constant is not a defined entity of
SWLs ege:

gaonskt str24¢ = thelpert;
o e 0

string2 = str24(3,%) ; "invalid substring reference~=str24
is a string constant®

NCR/CDC PRIVILEGED 6.0



SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09s 1975

6-=15

757067009

RERNNNNNRMEEINNI IR ISOON P I EENR RIS NRNR RSP RNANANCIIPRIIIRI BRI I IINRNRNI R R RN I NI INRGR

6.0 VARIABLESs SEGMENTS» AND FILES
6e6c3 SUBSCRIPTED REFERENCE

WNEIIII NN NN RNNIINIEAIRPEN NN NNRMRRNRIRNNIONINRIPLNNANNMEIANRNRINRNNRNRNMENBRN NN

6¢6¢3 SUBSCRIPTED REFERENCE

{subscripted reference> :i1s <array variable> {<subscripts>]
<array variable> ti1= <variable>

{subscripts> 1t= <subscript>{9<subsdript)}
{subscript> 1:t= <(scalar expression>

A subscripted reference denotes a component of an

array

variabtes whose value type |Is the component type of the array
variables A subscript may be of any type that can be assigned to

a variable of the corresponding Index type. Note thats, to
endy any subrange is considered to be of the same type as
parent range (or any subrange thereof),
Exanpla:
If an array variable is declared and initiatized by

vyat A ¢ array [l..51 of integer := [1s 25 35 4» 51

and an integer variable is declared and initialized by

- ipnteger = 5

L

xar. i

then the following relations hold
ACi] = 5
ALi-11 = &

[
- AlI=4]1 = 1
Howevers the reference ALi+1] would be in errore
If a pointer variable is then declared and initiatized bys:’

= AA;

yar pA ¢ “array [1..5] of ioteger

then

PA®Li) becomes a valid reference to components of A.

Eaulvalence of Qimanslionality of Arccays

this
its

If the components of an array are a second arrays then this is

NCR/CDC PRIVILEGED

6.0

-

- -e L)



S e

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06709
Revislion 4 June 09, 1975
6.0 VARIABLESs SEGMENTSs AND FILES |
6ebe3 SUESCRIPTED REEERENCE

NBBNOINMNNRERIRIRIININRRIERIENINIGNRNRIPIRRREI NI IEMNRPNIENINMERRINNNINRDIIRHNNNNRNIGENNRN RN

fully equivalent to a two-dimensional array (cf 4.3.35 Array
Type)le Both declarations given in the following are equivalent

var vect ¢ agrray [l.4101 of array [l..161 ¢of real
var vect t array [le«l0s1ce161 of real

and both of the following expressiohs for denoting a component of
the array are equivalent:

vectl 105141
vectl{1l01[141
6664 FIELD REFERENCES

<field reference> 3:= <record var{able>.<fleld selector>
{record variable> ::= variable>

A field reference denotes a field of a record variablee Since
field selectors are unique only within the scope of their parent
record types the record variable must be specifiede The field
denoted by a field reference may itseif be of record types in
which case '

{record -ariabie>.<field seiector>.{fieid selector>

becomes a valid Ffield references

NCR/CDC PRIVILEGED 6.0



6=17
SOFTWARE WRITERYS LANGUAGE SPECIFICATION
75/06/09
Revision ﬁ June 09, 1975
660 VARIABLESs SEGMENTSs AND FILES
bebebd FIELD REFERENCES

MENNRENOINROIRNNNERRERARNENTINEERINPRPNRNNRERNONRRRRINNRIINRNNRNRNEERNINRNR RN NN IS

Example:

For the record varianle declared and initialized by

Eype tR = record age : 6e60bb6>s
: marrieds sex ¢ booleans
date ¢ gfecord day ¢ loe3ls
month ¢ leol2s
year ¢ 700,80
cecends
recend;

yar R 3 tR i= [23,falsgstrues[3,5,7311;

the following relations hold

Reage = 23
Remarried = false
Resix = frue

Re dateeda}’ = 3
Redateesmonth = 5
Redate.year = 73
Jf a pointer variable is then declared and initiaflized bys:.
var PR ¢ “tR 3= “R;
then

PR"sages pR™emarrieds ooo

become valid references to fieids of R,

6.6e5 ADAPTABLE AND BOUND VARIANT REFERENCES

£l

Adaptable and bound variant record types can be used as formal
parameters of proceduress in which case they are referenced and
treated as variables. In all other cases they must be addressed
indirectiy through pointers that are generalily produced as
by=products of allocation operations used to type-fix and
allocate storage for variables of such typese

The notation
<pointer reference>”®

is used to reference such variabless and c¢an  be used as a
variable reference {(cfe 6e6ecldle For exampile?

NCR/CDC PRIVILEGED

6.0

-o- me Be a0 ee

-e on - -



SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/0
Revision & June 09s 1975

NINNMENNNKEOIINPRNNN SN RNR NN NNISRNNNRNNINRKRICIRI NI IENNNRNNIR R INIRINNA N NN

~
( 660 VARIABLES, SEGMENTS, AND FILES
64605 ADAPTABLE AND BOUND VARLANT REFERENCES

NRRBERNMHKRRNMIRENSRRIRONNNNNRIERINNSREMNANNNII RN PRIRIRIRINNNNISNMEN RN NNRINNR

Lype R = pecord "adaptable record type®
fl1 @ inteaer,
F2 ¢ striopg(*)s Wadaptable field"
gecend;

¥ar pR ¢ ®“R := pil; “pointer to adaptable™
allocate PR ¢ [10]; ™allocate fixed instance of R"
pR® t= [100, YHENRY®]; "initial value assigned"

PR™«fl 8= 2 % pR™.fl; "change value of first field"

6.7 EILE_YARIABLES

An actual file is accessed through a file variable associated
with that file, The association is effected by an: open
statement, and de-association is effected by a glose statement
_ (cfo 10¢562)¢ Fite variables take on as values an undefined
(;) record structure whose <component values describe the kind and

current state -f the associated actual file in terms of the

6-18

6/09

actual file type {cfe 4¢8)s a file specifications and other

pertinent informatione
<file variable> 2:= <varijable)

Warning: If a file variable is assigned to another file
variables and either wused for manipulation of a files then
resulting changes in the file variable used are not implicitely
reflected in tne other file variable, The use of both file
variables for simultaneous manipulation of the same file could
result in serious errors,

64741 FILE SPECIFICATION

A file variable is declareds by a flle variable specs in terms
of an identifier, a file types and an optional set of initial
file attributes.

Kflle variable spec> t:= <variable identifiers> 3
[<scope or storage attributes>]

. ‘ <flle t)’pe) e f, 4o,8M"

S ‘ ~ [<file variable initialization>]

A file spec consists of an optional set of non-repeated
attributess and is used to initialize file variabless to specify

NCR/CDC PRIVILEGED

6.0

-e

- me wo - o S s pe Oe ow -

.o oo oo oe

"o we




SOFTWARE WRIYER'S LANGUAGE SPECIFICATION

75/06/09

Revision 4 June 09, 1975 .
6.0 VARIABLESs SEGMENTSs» AND FILES
66701 FILE SPECIFICATION

RIRIORRPANNNNOIRMRRRNINNRINEENNN ORI RN NNNRRNRRIINIINRRDRNRAIRNRRNNRGN &R

(or respecify) file attributes in gpen statements (cfe 10s541)5
and to spell—-out file-variable constructors (cfe 5¢203).

<file spec> 1tz <file attributes>

6o7c1e1l Elle Aftrinules

{fille attributes> tt= (file attributed> {s<file attributed>}
fllte attribute> ::= <old or new>

<mode>

<encoding>

<pasition>

<actual file name>

<page size>

<end of page proc>

- Ge e on *o ne

<old or ‘new> st= i#ogld | #new

<mode> ::= ginle#outl 1§ #outl »#inl
<position> 3:= #firsk | #gsis | #lasg
actual flle name> ti= <string expression>

<page size> !z #pagesize (<number of lines>)
<end of paée proc> ti= fipagepro¢ (<procedure reference>)
<encoding> ::= #gcodesal (<codeset>)

<codeset> t:= f%ascii?

tepbcdic!

tasciib3?

tasciibla!

tnative?

others as required>

e e mw on o=

The #gld attribute indicates that the variable s to be
associated with an existing file. The #new attriobute indicates
that a file must be created before such an association can ©pe
made., The <creation of new files is effected by the gpgn

proceduree

The mode attribute specifies whether the file associated with
the wvariable is to be reads writtens, or baothe Dilregt filess
leaible filessy and binary files may have both #jin and figylf for
<{mode> simultancously; ©pbut pcint flles may have only f#goult for
<mode>,

The encodipng attribute specifles the external representation
cf a file (its so=-called fcodeset?), and .implicitely indicates

NCR/CDC PRIVILEGED

6--19

6.0

e Be se Sn Ge G- ae

e we me w-

- an Be oo o o=

o me mw e

e we oe o oo



V Ge

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09, 1975
660 VARIABLESs SEGMENTS», AND FILES
6e7¢lcl File Attributes

‘lMMNNNNNNMNMN”N“NNNNNN"'INNNMNNN~~”N"NNNN~~~~~M~M~~~~~~M~NNMN”NNN"N”

the conversion process that is invoked during reading and writing
of the fileo An initial collection of codesetssy corresponding to
existing representations, is provideds The <codeset> value

‘native? will select the standard codeset for the machine on
which execution is to occur,

The positlon attribute permits the gpen procedure to position
the file at Its beginningy Its ends or some existing pointe (The
use of the #gsis attribute and 1its effects will be operating

VD e o

system dependent,)

The actual__file__name is used solely to identify the actual
file to a host operating system, Its lexical formation rules may
be system—-dependent.

The {#pagesize and ‘#gggggggg attributes are associated with
print files onlys and define the size of a page and the procedure
to be activated when a page change is ready to occur.

The end-of-page_procedure is a user—defined: procedure that is

called whenever the current f{ine number for the print file
exceeds the specified page size for the filee It is responsible
for issuing a conventional page eject (cfo, 106505025 <eject
statement>)s and its parameter fist is assumed to be specified as
follows: :

(cef <flle identifier> : <print fife typed>;
val <integer identifier> : <integer type> "next page no.")
If no end-of=-page procedure has been specified for the files, a
conventional page eject is Issued and the fline number is-set to

one (1l).

The user may sety, or resets these attributes directly through
the following procedures: .

#setpageslze(<print file variable>s<number of lines>)
<number of t!ines> t1t= <integer expression>
#ggﬁgggggggQ((prlnt file variabled>s<procedure reference>)

and may interrogate the current page size through the function
#cucpageslze (Kprint file variabie>) .

NCR/CDC PRIVILEGED

6.0

on -— - - ®o me - - - e v oo P o

e we



o=al

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/709
Revision 4 June 09, 1975
6.0 VARIABLES» SEGMENTS» AND FILES
befoel2 FILE VARIABLE INITIALIZATION

"NMMMNHNNNMH”NNNHNNNNMNNIVMNNNMNMNMNNNNNNMN&‘”MNN'J”MMNN”"’M".’NFG””"NI@M”

6e¢7.2 FILE VARIABLE INITIALIZATION

. File variable initializations are used to specify one or more
file attributes when declaring file variables,

Kfile variable initialization> tt=
ta <file expression>
t t= dindefinite file variable constructor>

indefinite file variable constructor> ::= [<{file spec>].
<flle spec> 3= <fjle attributes>
The .actual file need not be completety specified with the
dectaration of the file variables Any or aflt of the file
aftributess inctuding the actual fife names can be specified or

re-specified with the gpep statement used to associate an actual
file with the file variableo

NCR/CDC PRIVILEGED 6.0



7-1
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
15/06/09
Revision 4  June 095 1975

NNAMNRORN RSN PIN AR RN RN NRINNNEERNRNIGNRNRRNRNNRNIENNMGANONRONNNE NN NN

7.0 PROGRAM STRUCTURE

~
QI IRIROTI RN RINNRINNNNNNBREIRNRNESISA NSRRI RINNNNRNOEREINNRIINRNRNIONPIRI NN RN NI NN I

7.0 PRUGRAN_JIRUGIURE

7.1 GOHMRILATION_UNIIS

A SWL program is a collection of statements (cf. Section 10)
and declarations (cfTe Section 7.3) which is meant to be
transltateds via a gonpjilation processy into a SWL gbiect modules
Object moduies resulting from separate compilations <can be
comblineds via a ljinking processs into a single object moduler and

may undergo further transformations into a form capable of direct
execution by members of the IPL lines

The collection of statements and dectarations may also include
compile~time directives (cfe Section 12) which are used solely
to construct the program being compited and to otherwise control

the compilation processs rather than having any meaning in the
program itself, The result of  processing the «collecticn
according to these directives must be one or more valid

compliabtion unltss which are distinguishable cases of a poduleges

{compilation unit> tt= <module declaration> "¢cf, Section 7.2“

Since statements are constrainaed to appear solely within the
body of a ppocedure deglaration (cfs Section 8.l)s compilation
units consist sofely of a Ilist of decltarationso Atl such
decltarations must be capable of being evaluated (cf. 'Section
7e¢9) at the time of compifation. All variables declared in a
compilation wunitt's declaration list will automatically be given

the gtatic storage attrclhbute (cf. Section 6.2.2)

7.2 HODULES

A module |Is a collection of declarations packaged so as to
make visible the identity of those objects declared within the
module which are meant to be shared with other parts of the same
compitation unit or with separate compifation unitss A module Is
introduced by a module declaration.,.

NCR/CDC PRIVILEGED 70



SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revislion 4 June 09y 1975

7570

PR NINRNEIMN NI NNIEN RGN NRIINANONWNEORNRNNIEIRNRBRRRINNRROMNRENNRNNRNRENR SR RNN

7.0 PROGRAM STRUCTURE
7.2 MODULES

MIGNREENNNNNNNRROINNRRNRORRINANPIRNNPININNRNNNENRNRRNRR RN NRNIGNIERRNNNRRERNNRNR NN

<{module deciaration> $:=
moadule [<module identifier>] [(<
<modutle body>
modend [<moduie identifier>]

- <moduie identifier> t:= <identifier>C

Wecfo T7e7el for semantics of ali
<prongs> iz <Lidentifier iist>

<module body> ¢:= <declaration list>

{decliaration list> t:= {<declaration>

The optional gogdule idgntifliar can
expositionqt clarity and to assist
activitiessy such as linking and debugginge

prongs>)1;

Catias>].
ase't

3}

be wused ¢to pr
in post=compil

ovide
ation

Bronas are identifiers declared in the pbody of the modules and
If = are used solely to

- together with module packaging itse
control the sgopg of idepnfifiers (cf. Sec

7.3 DECLARAIIONS_AND_SCDRE_QE_IDENTIEIERS

Declarations introduce objects together
may be used to denote these objects elsewh

{declaration> ::3 <type declaration>

) t{ <constant declaration

t variable declaration>
i <segment dectaration>
! <module dectaration>

t <procedure declaration
{ <iabel declaration>

[}
]

<empty>

The programmatic domain over which al
are associated with the same object is cal
tdentifiere. Wwithin a compilation wunit

tion 73 thru 7¢7)

with identifiers
ere in a program,

{cfo Section
{(cfs Section
(cfe Section
{cfs Section
{cfoe Section
> (cf, section
(cfe Section

{ uses of an ident

ted the scope of

which

4el)
5.1)
6e¢l)
6ed)
7.2}
8el1)
8¢3)

ifler
the

» such a programmatic
domain is either a module body {(cfe Section 7.2) or a hlogk body

(cfe Section 7.5). In the former <cases the scope is a
declaration tist; in the lattery a statement list preceded by an
optional deciaration list.

The‘ scope of an ldentifier is determined by the context in
which it was declared and by optional sgcopge 3aticibutes (cfe
Sections 6.2+35 8¢l and 7.7) which may be associated with
declarations of variables and procedurese.

NCR/CDC PRIVILEGED

7~2

6/09

7.0



73
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09, 1975
7.0 PROGRAM STRUCTURE
To& MODULE = STRUCTURED SCOPE RULES

RN IR IR NRNSNAR RN NN RN NRININNNEIRIRNNNENNRRNRNNNNNMEMNENRINNNN

T7¢4 NODULE = SIRUCTIURED_SCORE_RULES

Modules are statlic constructs designed solely to control the
scope of identifiers according to the foliowing rules:

l. The scope of an identifier declared 1in one of the
constituent declarations of the body of a modules is the body of
that moduleo : ’

2o An identifier whose scope is the body of a modules and is
also tisted as a prong of that module has its scope extended
foutward®' to include the body of the module or block which
includes the module declaration as one of: its. constituent
declarationss

3 Identiflers (of variables and procedures) whose scope is
the body of a compilation units and are also listed as prongs of
that compitation units have their scope extended Poutwardf® to
include object programs resulting from other compilation unitse.
Scope attripbutes (cfe Section 7.7) may 2lso be used to specify

such extensions of scope for variables and procedurese, The
prongs of a compilation wunit are constrained to identify oniy
variables and proceduress and the xd¢l scope attribute s

automatically given to any variable or procedure whose identifier
Is listed as the prong of a <compilation wunits wunless it is
explicitly declared with one of the other scope attributess

7¢5 BLOGKS

A block is elither a begin statement (cfe. Section.10.2.1) or a
pregedure declaratjon (cfo Section 8)e A block body consists of
a statement {list preceded by an optional declaration liste
Blocks have three functions:

1. Like moduless blocks control the scope of identifierss

20 Unlike modulesy blocks control the processing of
declarations and determine when declarations take effect (cfo
Section 7.9)

3. Untike moduless blocks include statementss which
translate into algorithmic actions in the resulting program,

NCR/CDC PRIVILEGED 7.0



T=4%
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09s 1975 :
7.0 PROGRAM STRUCTURE
7«6 BLOCK = STRUCTURED SCOPE RULES

RID NI ENITTERI RPN R RIIIRN IR IORONREINPIRERIIR NN IPNENRIIRINIIRN NI NREIPINNRRRNRIRNIINNRON

7.6 BLOGK = SIRUCTUREDR_SCGORE_RULES

1o Except for fleld selectors (see below)s the scope of an
identifier decliared in the —constituent declaration Ilist of _a
btock is the body of that block,

2o If an identifier jlabels (cf. Section 10) a statement of
the constlituent statement list of a blocks, then its scope 1is the
body of that blocks Howeversy, if an identifier labels a statement
of one of the constituent statement 1tists of other structured
statements (cfs Section 10.2)s then its scope is restricted to

that statement fiste. .

3. If. the scope of an identifier includes a blocks then its
scope is extended ftdownwardt to include the body of that blocks
unless the body incliudes a re-declaration of the identifler,

G Field selectors are identifiers introduced as part of the
declaration of 2 record type (cf. Section 4¢3.4) for purposes of
selecting fields of records {(cf. Section 6.4.4). Except for the
restriction tnat field selectors associated with the same record
type must be uriques identifiers used as field selectors may be
re-declared with impunity.

5 Except for field selectorss no more than one declaration
of an identifier can be included in the constituent declarations
and statements of a bplockts bodye. :

7.7 SCORE_AIIRIBUIES

The scope attributes xdels xref and external (cfe 66203)
cause the scope of identifiers to be extendeds in a discontinous
manners to include other compitation unitss but do not otherwise
contravene either module=structured or block=structured scope
rulfess ’

Variables and procedures that are part of one compilation
unit, but are meant to be referenced from other compilation
unitss, must have tne xdgl attribute associated with them either
by expiicit declaration or by virtue of having their Identifiers
listed as a prong of the compitation unite. Other compilaticn
units which are meant to reference such objects must deciare them
Wwith the xref attribute.

Variabless but not proceduress may also be decliared with the

external attributes which is intended to permit SWlL programs and
programs wuwritten in other fanguages to share datae. Variables

NCR/CDC PRIVILEGED 7.0



SOFTWARE WRITER®S LANGUAGE SPECIFICATION

75/06/7009

Revision 4 June 09y 1975

RPN SIS IINPNIEINRINPENIM NN RIEIENTINRERINIGFIION PRI NRNRIRINNIIDIEININNNNIRRRTIR IR RN NN
70 PROGRAM STRUCTURE

77 SCOPE ATTRIBUTES

NOIEWR I INIMNIGI NN MM NPIPRIEIDEIINIIIIRNNNRNREINNOGRIRNIINIR NI EENNK RPN IIIIN MR NN RN

Wwith the external attribute may be referenced in any compilation
unit in which they are declared.

Neither xref nor external variables can be initialized (cfe
Section 6.4)s and all xdels xrcef and external variables are
automatically given the static storaae attribute (cfe Section
6e2c2)

The declarations for objects shared among compilation units
must match; for example, an identifier with the xdcl attribute in

one compilation unit and the xref attribute in other compilation
units must denote tne same object in all such compilation unitse
Violations of such matching rules are detected during the linking

processs
ToToel ALIAS NAMES

An talias? is an alternate spelting which may be specified for
an ldentifier., Its reasons for existence are varied: to meet
system—=requirements of speiling which are invalid in SWLs to
equate two differing spellings for an entity between two

=2

different compilation unitss to avoid  identifier spelling

conflicts among different compifation wunits or wWith system
standard namesy, etce.

An alias is to be used outside of a compilation unif onlys and
will not function as an alternative spelling for an identifier
within the compilation unit in which it is defined as an aliase.

Aliases may be furnished for identifiers of modulesy
procedures» and variables by following the identifier associated
with a declaration of such an object by an gllias.speecificatione

alijas> t:ta alias " <atlphabet> { <alphabet> } !

In order for an alias to !reach' the host systems it must be
associated with an obJject that is externalized in some way: by
virtue of being externaltds xref'ds or xdci'd (either explicitly

- <

or by being pronged with an outermost module)s or by being

associated with the identifier of the outermost moduie. Al

other aliases will be inoperative except for taking up room
during the compilation processs

If an identifier which is externallized has an allas specifieds
then only the alias will be made known outside of tne compitation
unitoe (loeos the identifier itself will pot be made Known
outside of the compifation unite) : '

NCR/CDC PRIVILEGED

7.0



SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75706409

Revision 4 June 09, 1975 -

BINRRNRNNIENIINNENRINNIORINRNNERNNREMMNNNENRNNNRNENRONR NG NRNRROINRNNRNNNRNRA RN NN

7.0 PRAGRAM STRUCTURE
Toe7ol ALIAS NAMES

WM PMRPINNMNNNNNRNRNILTINIENNERNNRN NN RRONINNNNRDRNERINRINRORIIRNINNRNRNNR NN N

Exampless?
module outer afias 'PTH*T4%' (xs5a);5 oo
proc [xdgll searcher alias futil#*221* (ref Ist2s5e00

yar V2 alias ®flag2's V3 alias 'T##3.1B' : [xdcl 1 inteasr;

7.8 EXAURLES OE_SCORE_RULES

module outer{xs a) ; “scope of x and a is extended
outward to the body of module
or block including this
" declaration®

btockl: begin
¥ar xs ys 2 ; lnte

o
2
ko
L}
L3

.

“e

"blockl®s x» ys and 2%

b:j; "blockl'!s ys» as and b (see inner
module below)®

"Invalid: not within scope of p
(see block2 below)!'

+ +
N
‘.o

X $= y
y = a

Z 1= p 4 2

.o

0 ¢ ; .
block2: . g

begin

yar xs y & integer 3
“Valid redeclaration of x» y"

vag p ¢ [xdgll inkegecrs
"scope of p extended to other
compilation unitss, but not"
extended to include blockl"

q ¢ [xrefl intsger 5 "q from different
compilation unit"
X =y + 2 ; "2 of blockl and x and y of blocka"

[ ) 3
end block2 ;
PP H "Now back in blockl"
moduyte inner(as b) ;"Still in blockls but within

Inner module®
vyar as b ¢ integer 3 'as b are within the scope
of blockls since they are pronged"

yar z : jnfeger ; "Valid redeclaration of 2z,
: since it is not pronged®
see 3 "Other declarations of inner module"

nodend inner
NCR/CDC PRIVILEGED 7.0

- - -



SOFTWARE WRITER'S LANGUAGE SPECIFICATION
757067009
Revision &4 June QQ’ 1975 .
7.0 PROGRAM STRUCTURE
7.8 EXAMPLES OF SCOPE RULES

PN IIRIPOIRIN RN NRINRICENNPRINNPNALPARI N RMPIOIRIINIRINNIININERRANNCPIRCIRRNICENNMNNMNNIINRIRIIPN

end blockl ;
block3: bealn
yar xs ys 2 ¢ ipnteger ;
“"Walid redeclaration of xs y» and 2z"

.
c e ’

end block3 ;
modend outer ;

"ok ok K ok %M

L1z Jf x < y then eoce 3

e - .

[ ]
L2 X 8= 2 / Y 5 ece 3 gota L2 5 eeo ’
"Valid: L2 can be reached from within
this statement list®
orlf x > z thep eee ;

® & o

X 3y / 2 5 ece 3 goto L1 5 cee
“Valids Scope of L1 is entire block
containing the {f statement”
[ ]
[ ]
[ ]
glse y 12 y = a 5 se0 5 d0fo L2 5 eoe
“Invalid: L2 cannot be reached from this statement list?
Lfend ‘

7.9 RECLARAIION_PROCESSING

T7¢9¢1 BLOCK-EMBEDDED DECLARATIQNS

Except for the constituent declarations of a compitation unit
(see bpelow)sy declaratlion processing is governed solely by
block=structure. During compitations all constituent tist of a
block are gathered together and are processed en-masses all such
declarations coming into effect simultaneousiys

Block=structure also governs declaration processing during
execution of the resuiting programs. On entry to a blocks all
decltarations included in the block’¥s constituent list are again
coltected togethers evaluation of deciarations that couid not be
completely evaluated during compilation Is completeds storage for

NCR/CDC PRIVILEGED 7.0



7-8
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
- 75/706709
Revision 4 June 09, 1975 s nms
70 PROGRAM STRUCTURE
7:9.1 BLOCK-EMBEDDED DECLARATIONS

AT RNEIFR A PIRARIINNIINIINH RN AN IR IR RN N RIRNERRRRROORINRPEIRRENRRNRAE

automatic variables (cf. Section 6¢2.2¢1) Is allocateds and altl
identifiers declared by such declarations become accessible. On
exlt from a blocks all identifliers declared within that block
become inaccessible and the values of automatic variables become
undefined,

Te9¢2 COMPILATION-UNIT-~-EMBEDDED DECLARATIONS

Ob Jjects dectlared in the body of a compilation wunit (cf..

‘Section. © 7.1) are associated with no block at alle Such
declarations must be evaluateds and required storage allocateds
prior to program executione Accordinglys all variables so
declared are automatically given the static storage attribute
(cfe Section 6e62:2)s as are all scope-attributed variabies (cfo,

Sections 77 and 6.:2.3)s and ali such variabies are constrained
to be of fixed-bound type {(cfo. Section 4.2) to ensure that their
types can be evaluated during compitlation, In additions formal
parameters of procedures decliared in a compiftation wunitts
dectaration list may not be of variabe=bound type (cf. Section
4¢2)s slnce the evatluation of a procedure declaration involves
the evaluation of the types of its formal parameters (cfoe
Section 8.1). ‘ '

7¢9.3 ORDER OF EVALUATION OF DECLARATIONS

Apart from the above rutfess no specific order of evaluation of
declarations Is defineds nor is the order of evatluation of
expressions entering into such declarations defineds Thuss care
must be exercised in spelling-out declarationse For example!

var L & jintegecs U ¢ upion (lnktegers eee)s
L ¢= 5; U &= 33

beain.
yar A ¢ array [leol 222 Us leol) QFf eee;

X

end

In the above examples the integer variable || has been assigned
the value 5 and the union variable U has pbeen assigned the value
(integers 3) prior to entry to the begin blocke On entry to the
blocks evaluation of the index ranges of the array 4 must be
donees This evaluation can result in either Allee3» les31 or
Allee3s leobls depending on which indicial expression s

NCR/7COC PRIVILEGED 7.0



L

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision & June 09 1975
WNFRIREER RN RN NNNRNNRNNENAERNRONRNRREBIRIRNRIIKNMAONNRNANRRN N RPINNMNNRENRENNEENNR

7.0 PROGRAM STRUCTURE :
793 ORDER OF EVALUATION OF DECLARATIONS

WA RECHPONIIIPNNIRRISNRRRINC RN NIAREIN RN RNNIIINPENAIINI PR PN IIEIPIRPIPIPIPIMRIEPIIIRN N R IR

evaluated first (cfo. Section 9.2.1 for the value conformity
operator v:i=:*% whichs in this case, would assign-| the value 3).
Since no precise order of evaluation is guaranteeds the result of
the above program fragment Is undefined.

NCR/CDC PRIVILEGED 7.0



SOFTWARE WRITER?S LANGUAGE SPECIFICATION

75/06/09

Revision & June 095 1975

RRIDNIEIN IR ENINEN NI FENRNIIAN IR RBINNRIRINNNNRNCHRNOONBRNNRNRRNR RO MNRNNNRNRNNNNNN

8.0 PROCS» COPROCSs AND LABELS

'
REEINICINR ORI NETRIRIN IR RNIIEN NN R RINRINNNNERNRERINIIGN IR PIEIMEIMNCIIIEI NN KNNNRR

- 8.0 BEROCS_CORROGS ANDLLABELS

A procedure declaration defines a portion of a program and
associates an identifier with it so that it can be activated
. {leees executed) on demand by other statements in the language,
A procedure can return a value of some basic types in which case
it is referred to as a function and is invoked as a factor in an
expression., If a procedure returns no values it is invoked by a
procedure call statement or a coprocess create statement,

The value of a function is the vatue fast assigned to its
procedure identifier bpefore returning (either by falling through
the procends, by a return statement, or by an exit statement).
The results of returning by any means from a functCional procedure
prior to assignment of a value to the function designator (for

.the current execution) are undefined.

A procedure cali statement (cf. 10¢3¢1) causes the execution
of the constltuent deciarztions and statement lizsts of the
procedure after substituting the actuatl parameters.  of the «call
for the formal parameters of the declarations Control returns to
the next statement iIn line following the procedure - call
statemente. :

A coprocess is a separate synchronous process. Instead of the
entire procedure being executed and then returning in (lines
coprocesses allow partial execution of a set of procedures with a
single thread of controi{ being passed back and forth amongst them
through the resume statemente

The create statement  (cfo section 10.3.2) <creates the
necessary environment for the execution of a procedure as a
coprocesss Subsequent resumption of a coprocess causes execution
to commence with the successor of the tast executed resume
statement of the coprocess. If a coprocess has been created but
not resumeds then execution of a resume statement designating
that coprocess causes executlon to commence at the constituent
declaration list of the procedure used to create the coprocess.,

NCR/CDC PRIVILEGED

8-1

8.0

-

- oo ow



SOFTWARE WRITER®'S LANGUAGE SPECIFICATION

75706709

Revislon ¢ June 09s 1975
8,0 PROCSs COPROCSs AND LABELS
8s1 PROCEDURE DECLARATIONS

NNV N IWRNRNAEHNNRIGHI NN RN RINNRRRRENIGIORIIMANIRNMNR RN RNRIMIORISIINN RN

8.1 PROGEDURE_DECLARAIIONS

There are two forms of progedure declaratiton:

<procedure declaration> :t=

ere¢ [ xref 1 <proc spec>
i progllf<proc attributes>ll<proc spec>;<proc body><proc end>

{proc attributes> t:=2 <proc attributed>{ s<proc attribute>}
<proc attribute> 3= xdcl| | gfepdep i <segment identifier> | main

<{proc spec> ti= _
<procedure identifier>[<alias>l<proc type spec>
Calias> :3= aljas ' <alphabet> { <alphabet> } ¢
tcfo Telel for semantics of aliash

{proc tgpe spec> 1=
[[<proc type attributes>]ll<parameter tist>1ll<return type>]

<proc type attributes> ::= _
<nul§ construct (for expansion purposes)>

<param segment>{;<param segment>})

<parameter list> : 4
: <reference params>i<{value params>

{param segment> i

<reference params> =
tef <reference param> { s<reference param> }

{reference param> ::=
Lformai param list> 1 LL #read 1) <ref type>d

<value params> $¢:= yal <value param>{ s<value param>}

<value param> =
{formal param tist> ¢ [[ #read Jl<val typed>

<formal param list> 3t= <ldentifier list>

<ref type> tt= <{SWL type>
- <val type> i11=
{type> | <adaptable type> § <bound variant record type>

<return type> :1= <basic type>
<proc body> 3t=s <declaration list> <statement list>

<proc end> :i1= procend [<procedure identifier> 1

NCR/7CDC PRIVILEGED 8.0

~o we



8-3
SOFTWARE WRITER®'S LANGUAGE SPECIFICATION
' 715/06/709
Revision 4 June 09, 1975 . . .
8.0 PROCSs COPROCSs AND LABELS
181 PROCEDURE OECLARATIONS

NNNNI¢“4N!4NIJNﬂNrJ!aﬂJFJMNN{JIJNNNNNNNNNN'JM”“J“HHIJ““J”'JMMNNNI’JNNNN”NR"NNQNNNNNN

{procedure identifler> t:=s <identifier>
<function identifier> 31:=3 <procedure identifier>

The first form Is used to rafer to a procedure which has been
compiled as part of a different wunit of compilatione The
procedure must have pbeen declared with the xdcl attributes and
with an equivaient parameter list and return type in that unite.

The second form declares the procedure identifier to be a
procedure of the type specified by Its parameter list and return
types and associates the identifier with the <constituent
declaration list and statement list of the declaration.: - ‘

The procedure type is eilaborated on entry to the block in

which it is declareds and remains fixed throughout the execution
of that block; iecees altl variable boundss lengthss or sizes
occurring in the type of the parameters are evaluated once on
entry to the blocks and remain fixed for all caftls an the

procedure within that blocke

Outermost level proceduress iseos those whose declarations are
not contained in another procedures must have a fixed type
determined at compile timeo Thuss none of their parameters may
be of a variab.e bound type. Note that this restriction holds
with respect to the xref form of declarations since by definition
it must refer to an outermost level ©procedure (Section 8.1lels
Proc Attributes)o Formal parameters of outermost level
procedures may be of either fixed bound type or adaptable bound
types ) ’

-8elel PROC ATTRIBUTES

Proc attributes are essentially extra=lingulstic features in
that they have an effect on the output produced by the compiler’
rather than an effect on the meaning of the program, '

<proc attributes> t:= <proc attribpute>{ ¢<proc- attributed}
<proc- attribute> 3:= xdgl & repdgp ¢ <segment identifier> { main

The attribute xdgl may only be used on a procedure declared at
the outermost Jevels leeer not contained In another procedure,
It specifies that the procedure should be made referenceable from
other units of compitation which have a declaration for the same
procedure jdentifier with the xref attribute.

The attribute cepdep specifies that the procedure s
potentially representation dependent and gives permission for the
use of those portions of the ifanguage that are representation

NCR/CDC PRIVILEGED 8.0

- oo we we Sc we



SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09

Revision 4 June 09, 1975
8.0 PROCS», COPROCS» AND LABELS
811 PROC ATTRIBUTES

MEERGENNRENRNNRNIENNIINRINNRNRIIRNPIRNIEENIN NIRFINNNNNRNRNRNRBHENRNENRRERNRERNIRNIENNENRREINRN N

dependedt (see Chapter 13).

The attribute 'segment identifiert! specifies that the code
produced by the compiler for the body of the procedure should be
altocated to the named segment along with other code carrying the
same segment identifier.,

The attribute majin is used to identify the first procedure of
a program to be executeds when so required by the systeme It may
only be present on a single outermost block ltevei procedure of
the outermost module of a compifation unite. :

If more than one compilation unit is to be linked together for
executions then only one procedure with the maln attribute may be
present among all those compilation units being linkede.

801ls2 PARAMETER LIST

Variables that are referenced but not declared in the body of
a procedure follow normail scope ruless ioess the references are
bound to the dectaration cenvirconment of the procedures A
parameter list is a set of varjable declarations which provides a
mechanism for the binding of references to the ©procedure call
environment, This is accomplished by providing the procedure
with a set of values and variables-=so-called actual
parameters=-=at the point of calile

{parameter list> ::=s (<param segment>{;<param segment>})
<{param segment> t:=3 <{reference params>i<value params>

<reference params> 8=
cef <reference param> { s<reference param> }

<reference param> 3=
<formal param list> 3 (L #read 11 <ref typed>

<value params> ti= val <vatue param>{ s<value param>}:

<value param> t:=
<formal param list> : [[ #read 11 <val type>

{formal param tist> :1=s (identifier Jist>
<ref type> :

<val type>
{type>

i= <SWL type>
{ <adaptable type> | .<bound variant record typea>
Two methods of passing parameters are provided: call=-by-valuep

NCR/7CDC PRIVILEGED

- - ee



SOFTWARE WRITER®S LANGUAGE SPECIFICATION

75/06/09

Revision 4 Junc 09, 1375 : _—
8.0 PROCSs, COPROCS» AND LABELS
8cle2 PARAMETER LIST

CRIEIEI I NI NI R PO PI N D R W N NI NRNMRNNNRPNIRIINPRNNSIRERMMRNAMRNNRNMNOINTNRRBINREINR NN

dqs(gnated by vals and call=-by=-references designated by ref.

A call-by=-value parameter results in the <creation of a
variable tocal to the body of the proceduree The value of the
corresponding actual parameter is assigned to this variable at
the time of the procedure calls See Section 10.3.1 for precise
rules governing call=by-value parameter passinge

The type of a formal call=by=value parameter may be any data
typeys adaptabie type or bound variant record type except for the
so-called non=vaiue typest! heapss; arrays or stacks of non-value
types; and records containing a fileld of a non-value typeo

A calt~-by=-reference parameter results in the formal parameter
designating the corresponding actual parameter throughout
execution of the procedure. Assignments to the Formal parameter
thus cause changes to the variable that was passed as the
corresponding actual parameter. See Section 10.3.2 for precise
rules governing call-by~-ref parameterso,

The type of a formal cali=by=-reference parameter may be any
SHL types ,

The read csttribute  applied ‘to either kind of parameter
prohibits explicit assignments to that parameter or any component
of ite A

8ele3 FUNCTIONS AND RETURN TYPE

A procedure may return a value of a specified types in which
case it is referred to as a function, A function is activated by
a function designator (see Factors in Chapter 9)s which is a
component of an expression. The function is given a value by
‘assigning to its procedure Identifiers, The type of the value
returned ts specified by the return type. The return type must
be specified in the proc type spec for any procedure which is a
functional procedure (cfe 4e.6.2); and an assignment statement
{at Jdeast one) to the procedure identifler must occur within the
procedure bodye.

<return type> tiz <basic type>

The value of a function is the value last assigned to its
procedure identifler before returning (either by falling through
the procendy by a return statements or by an exit statement)e.
The results of returning from a functional procedure by any means
prior to assignment of a value to the function designator (for
the current execution) are undefined.

NCR/CDC PRIVILEGED

=5

860

- an o oo o=



8-6
SOFTWARE WRITER®*S LANGUAGE SPECIFICATION
75/06709
Revision & June 09s 1975
8.0 PROCS, CJOPROCS» AND LABELS
Boele3 FUNCTIONS AND RETURN TYPE

ORI RNNIPIRENRRNNNIISRINNMMNIINNERNANIIRRICRDIIRNNPINNRNNRNNO RN IZMIINNNRRICRNNNRMNN

A function may neither be invoked by a procedure call
statement nor used as a coprocs (It may however lie within the
dynamic execution of a coprocs and there is no restriction
against its containing a resume statement,)

Examples:
proeg GCD (yal ms n t ipteger 5 cef xs y» 2 ¢ jnteger) s

var als 225 bly b2s Cc» ds qs r ¢ jnkteger 5 '"m > Oen > OV
“Greatest Common Divisor x of m and n»s
Extended Euclid!s Algorithme
This could have been written as a
fuqctional procedure,"

al ¢=2 0 ;3 a2 ¢= 1 3 bl t= 1 3 b2 =0 ;
¢c =2 m 3 d = n ; ‘

while d /= 0 dg
Mgl ¥ m + bl * n = ds a2 * m + b2 ¥ n = ¢
- gcd(cy d) = gcdims n)"

d ¢t= ¢ / d 3 r s ¢ mgd d

a2 ¢= a2 = q ¥ al ; b2 =

c 3= d 3 d = r 3

r t= al 3 al $= a2 ; a2 s r’

r t= bl 3 bl ¢t= b2 ; b2 t=r
yhilend 5

H
b2

q ¥ bl 3

-e

X = C3; y = a2; z = b2
Wy = gcd(ms n)y y ¥ m ¢+ 2 ¥ n = gecd{ms n)"
pcecendg

NCR/CDC PRIVILEGED 860



SOFTWARE WRITER®S LANGUAGE SPECIFICATION

75/06/09

Revision & June 09, 1975

MIMPRIWNRNNMRIR N RINITRINIAEANNNETEINNRNNNINNRNEERRENENPBIERNRNRNNNRRRRRERRRNNRERNRNR NN

8.0 PR3ICSs, COPROCS» AND LABELS
"8o1s3 FUNCTIONS AND RETURN TYPE

NENNNNNRISRNISERE I IERINNEENENE NN NEIINNNNRRR NN RIEINNRGRRINNNENNRARRIRI RPN

0o ok ko kW
“functional procedure Finder"

prog Finder(yal wanted: idents 4
ref table ¢ array [0ec¢47] of entries : retype) “retype ;

for k ¢= 0 Lo 47 do "trivial search™

" Lf tabtelklsfn = wanted then
Finder := “tablelk]
.ceturcn

else
Finder = pil
~lfend

forand

procend 5 "Finder either set to point
to tabie entry or set to pil"

k22 = k22 + Finder®.kstep 3

8.2 COPROCS

A coproc is created by execution of the g¢regate (cfelQe3.2)
statementx -

create (<polnter to coproc>s <procedure call statement>);

where the coproc reference serves as a linking mechanism between
(among) two (or more) synchronous coprocs in execution,

Any declared procedure may be designated as a coproc in a
greagfe statement.

Execution of the create statement does not cause execution of
the designated procedure (in the procedure call statement part)
to commences It does cause the <creation of a separate
environment (for procedure entriessy parameter passings and
procedure exits)s and the passing of actual parameterss including
those calied by values

Execution of the procedure body of tne coproc begins with the
execution of 3 resumg command using the coproc reference (cf.
10¢3¢4)e Such executlon begins witn the declaration list of the

NCR/CDC PRIVILEGED

8=-7

B8e0

- -



8-8
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09, 1975 e n e
8.0 PROCS, COPRDOCS» AND LABELS
8.2 COPROCS

PN N N M ILII NI RPIMRINIIEMN NN IRERINNRRNPINIERMNIZNAONNNRRNRANANRGRENRNNRORPRRROOREGNMER

procedure body (at which time automatic variables are allocated)s
and then with the first statement of the procedure bodye.
Execution of the <coproc continues until a fesume statement is
encountered in execution which returns control to the
initializing <coproc or alternately causes execution to begin for
another coproc or to continue in another coproce

The form of the coproc fesyne statement (cfe 104364 ) is?
resymne (<pointer to coproc>™); eee

If such a resume statement occurs dynamically (during program
execution) at some point prior to designation by a greate
statement for the coproc or at some point after the <coproc has
been destroyed (¢cfo 10e3.3) then the program is in error. (This
is because the environment for the designated procedure has not
been=—=or no longer is—-set up as a Coproce)

whed an exit is made from a dynamically active coproc by any
means other than a resumes then the program: is in errore. The

execution of a pesuyme statement will always transfer control to 2
different coproc at:

(a) the succescor of another gesume statement of another coprocs
or

(b) the beginning of a specified coproc for which a ¢create has
already been dones but for which no .pgsume has yet been
donee

A resume statement designating the coproc in which the rLesgume
statement occurs is in errors .

The main program which initializes the other coprocs with
create and gresupe statements is always implicitly a coproc to
those other coprocse In order to allow it to be resumed by these
‘other coprocss it must determine its own tidentity?! using the
#icoprocid function (cfe 11.2.13) and assign It to a jointly
known variable of type pointer to coproc (see CPPC in example
below) .

NCR/CDC PRIVILEGED 8.0



O™ 4LV
SOFTWARE WRITER®S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June Q09 1975
8.0 PROCS» COPROCSs» AND LABELS
803 LABEL DECLARATIONS

)~~f4~NNNNJIHNNNNNNN“NNHMMMIVNNNNNMHMF!H':MHH'.‘FJF.‘NNI.*A‘#FJI’:IJPJE‘:PJJ‘?'#!JfJPJHN-"JP!rlHH’QN

8¢3 LABEL_DEGLARATLONS

Label declarations serve to define those labels of the block
which may be assigned to a pointer to label variables, passed as a
parameter to a procedure or functions aor serve as the destlnation
of a goto exit statement which <crosses a block or procedurs
boundary (see 10.3¢8s» Goto Statements).

<label declaration> t1= fabel <label>{s <labeld>)}
<tabel> :t:= <identifier>

All lébels in the list must also appear in the blocks labéling
a statement which is not contained within a nested block (see
10.0s Statements)e. .

Note that onity those labels which are assfigneds passed as a
parameters or are the destination of a non-=iocal goto statement
are required to be declared in a label declarations but other
{abels of the biock are permittede.

NOIE: Label declarations are required only in ISWL programss
and should not appear in SWL programse

NCR/7CDC PRIVILEGED 8.0



9-1
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09, 1975

NMNIRIMARNNNIINNRIRONRENNNBIONNPINNRANNFRNINNENONINNRNRNNIENNARNRNMNRNRNERIKNRGNR NN
9.0 EXPRESSIONS

ORI NNRRIDTNNNRNORNNAEARNR NIRRT RRNRRINRIR IR QNN RMIRENNNIGRNNENRNENRNRIRNNENRNRN RN

9.0 EXERESSIONS

Expressions are constructs denoting rutes of computation for
obtaining values of variabies and generating new values by the
application of operatorse. Expressions consist of operands (ic€os
variables and constants) operatorss and functions. Constant
expressions (cf. 5.l.1) are expressions involving constants- and
a subset of the operators and functions.

{expression> 213 <simple expression>
i<simple expression><reclational opcrator>
<simple expression>

{simple expression> !tz <term> | <sign><term>
i<simple expression>
<adding operator><term>

{term> tt= <Lpowverd>i<{term><multipliying nperator><power>
<power> :t= <factor> { <power> <exponentiation operator> <factor>

{factor> ti1= <conformity>i<variabled>i<constant>
' t<definite value constructor>i”<varianle>i®<iabel>
t*<procedure identifier>{<function designator>
1(<expression>)i<not operator><factor>

<conformity> ::= , .
<type ldentifier> <type test operator> <union variable>
t<pointer variable> <pointer type test operator>
<union variabie>
t<variable> <value type test operator> <union variable>

<type identifier> tt= <identifler>!jipntegericharibogleanireal

union variabie> tt= {variable>

{function designator> ::=
{procedure reference>(<actual parameter>
{s<actual parameter>})
t<procedure reference>( )

{procedure reference> $t= {procedure identifier>
I<pointer to procedure>”

NCR/CDC PRIVILEGED 9.0



- Revision 4 June 095 1975

9-2
SOFTWARE WRITERYS LANGUAGE SPECIFICATION
75/06/09

CINMIINNIOIN I IERNIINNISNNERIRRNNIERENPRERI RIS RRNNIIAIN RTINS NNRNRRAINRRONRIIIRENN N NN

9.0 EXPRESSIONS

RRNWNARNNNIRRIRIZINRIDERIRRINANNNNPRNOINRRIRINRIPRINCINIIIIN QRN IIIIIIPEN RN NNKIINNNNNRR

Cactual parameter> (:a3 <expression>{<procedure identifier>
i<label>

{type test operator> ::= 1
<pointer type test operator> 3= 3
<value type test operator> ti= iai

<not operator> = not
<exponentiating operator> $t=a %Xk
<muttiplying operator> $t= % § /
sign> $t= + | =
{adding operator> 3= +
:

{relational operator>

3
o
[}
[
=
[T}
0
oo
 be]
o

[}
{=

[
'
HE R 4

- o=
VX

Examples:

basicvar
basicvar
! basicvar

Conformitiess real ¢
A

Factors: X

$colorset [reds cs greenl

net p
“alis gl

Terms: ' X ¥y
: i~/ 3

P and g

(x <= y) and (y < 2z)

Simple expressions: X + y
) -x
huel ¢or hue2
I * j+ 1
hue = $colorset [(reds greenl

Expressions: X = 1
‘ p <= 2

(i<j) = (j<k)
¢ ipn huel

9.1 EVALUAIJION_QE_EACIQRS

The value of a conformity as a factor is the booltean value
Lrues if the type test Is successfuls and false otherwise (see

NCR/CDC PRIVILEGED 9.0



o 9=3
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

_ 75/06/7009
Revision 4 June 09s 1975
9.0 EXPRESSIONS
9¢1 EVALUATION OF FACTORS

CIRINNIIINNNNNENENREINNNRNINNMNENNRNNNRNRNOORRIINRNNRRNRGNNAINNNNRNNIINNENNNEENNNRN

9,2.1» Type Test Operators)e.

The value of a variabley as a factors Is the value last
assigned to it as possibly modified by subsequent assignments to
its components,. :

The value of an unsigned number is the value of type Integer
or real denoted by it in the specified radix systeme

String constants consisting of a single character denote the
value of type g¢ghar of the character between the quote markse

~ String constants of n (n. > 1) characters denote the fixed
stripna (n) value consisting of the characters between the quote
marks.

The value of a string when used as a factor in an expression
is as follows: if the current length (see following paragraph) of
the string is zeros its value is the null string; otherwisey its
value is a fixed string of the same current t{engthe In
particulars substrings of varying strings are fixed stringse The
value of a character wnen used as a factor in-a string expression
is a fixed string of length onee.

The gurrent__lenath of a string is defined as follows: The
current length of a varying string is defined to be m whenever
its value is a fixed string of length m and is defined to be zero
whenever its value is the nul! strings The current length of a

fixed string is equal to its length,

The constant nil denotes a null pointer value of any pointer
typee. .

A constant identifier is replaced by the constant it  denotese,
If this in turn is a constant identifiers the process is repeated
until a constant of one of the abpove forms results. The value is
then obtained as aboves,

The value of a definite value <constructor is the value
obtained from the values of its constituent expressions of type
specified by its type identifiere

The value of an up=-arrow followed by a variapnle of type T is
the pointer value of type “T that designates that variable.

The vatue of an up=-arrow followed by a procedure iIdentifier of
proc type P is the pointer to procedure value of type “P that
designates the current instance of declaration of that
procedure.

NCR/CDC PRIVILEGED 9.0

- Emn o e G0 ae B

. Gm W B wo



Q=4
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
15/06/09
Revision 4 June 09s 1975 .
9.0 EXPRESSIDNS
G¢1 EVALUATION UF FACTORS

PRI NNNIN NN NN NIIRNRNNRNNRNIINNRBNENNRNRNINNIGEINNNRI NN WNNNNRONRRPIINR NN

The value of an up arrow followed by a label is the pointer to
tabel value of type "I that designates the current instance

s e e -

of declaration of the lapel (see 10,0, Statements).

A function designator specifies the execution of a functiono
The -actual parameters are substituted for the <corresponding
formal parameters In the declaration of the function. The body
is then executed. The value of the ‘function designator is the
value last assigned to the function identifier, The procedure
reference must be to a procedure with a return type. The meaning
ofs and restrictions ons the actual parameters is the same as for
the procedure call statement (see 10¢3el). ' :

The vatue of a parenthesized expression_ is the value of the
expression which is enclosed by the parentheses.

The type of the value of a factor obtained from a variable or
function designator whose type is a subrange of some scalar type
is that scalar typeo

9.2 QRPERAIORS

Operators perform operations on a value or a pair of values to
produce a new value. Most of the operators are defined only on
basic typess though some are defined on most types, The
following sections define tne range of applicanilitys as well as
results of the defined operators. An operation on a variable or
fleld which has an undefined value will be undefined in resutlt,

9.2.1 TYPE TESTING OPERATORS

The type testing operators are used to:

a) determine the type of the value last assigned to a wunion
_variable; :

b)Y permit references to that value by concurrently assigning
it (ors optionallys a pointer to the value) to the variable
(pointer variable) being used as a comparand,

The type being tested-for can Dbe specified by a type
identifier, the type of a variables or the type pointed-to by a
pointer variables These operations are permitted only If a
variable of the type being tested-for can be assigned to one and
only one member of the unione.

NCR/COC PRIVILEGED

9.0

- an we o e«



9-5
SOFTWARE WRITER®*S LANGUAGE SPECIFICATION
75/06/709
Revision 4 June 09, 1975
960 EXPRESSIONS
9e2e1 TYPE TESTING OPERATORS

RPN RIPENNRIIPMIINIG NN NRIRRRIRENMNERNRRIRNRINNRNRIENIRINRRRINNNMEONN A NNRIA NP NNE

The type test operator (tt) expects a type identifler on its
tefty and returns the boolecan vaiue fgrue if the type identifier
specifies the same type as the type of tne current value of the
union variable on the right, and false otherwises

The pointer type test operator (:":) expects a pointer
variable on its lefty and returns the boolean value frue If the
pointer variable is of type pointer to the type of the current
value of the union wvariable on the right. If it is, then the
pointer variable on the left is caused to designate the value of
the union variable; otherwises the value Is false and the pointer
variable Is assigned the value nite -

The value type test operator ($¢=t) expects a variable on. its
lefts and returns the boolean value frue if the variable is of
the type of the current value of the union variable on the rights
but otherwise returns the value false. When:the boolean value
returned is Lfrues then the variable designated on the left is
assigned the value of the union variabie. Jdtherwise the variable

designated on the left is unchangeds
9.2.2 NOT DOPERATOR

" The not operatorsy nots applies to factors of type boolean and
sete, When applied to type booleans the meaning is negation;
to€os not true = falise and not false = true. When appitied to a
sets the meaning is set complement with respect to the base type
~ feees the set of alt elements of the base type not contained in
the specified set,

NCR/COC PRIVILEGED 9.0

“e @ wes o e aw



‘ G=6
SOFTWARE WRITER®S LANGUAGE SPECIFICATION

75706709
Revtsion 4 NJune 09s 1975 . R oo nenons e ne

Z¢0 EXPRESSIONS

Yo2¢3 MULTIPLYING OPERATORS

HNMN”N'JNNNMMN!GNNNNNNNNN”NNNNNNNNNNNNNNHMM”M'JNMNMNNM~”~N'J~HNN~“NNNI’

Qe¢2¢3 MULTIPLYING OPERATORS

The following table showus the‘multiplying operatorss the types
of thelr permissible operandss and the type of the resulte.

e ———— - r e
t Operator

T AT @ L W A RS W | I G W - A 00 e P SH W WS G G S W Cabs D B S P MG W AP WD e | W aED A W SN KD e ER D D WO P

D 1 W v aaw AP wr s T wcw wen can e L . > B e - - "D e > T an

4
integer division H
for as bs n positive :
integers H
a/b = n where n is the '
largest integer such H
that b%n < = a H
(=a)/b = (a}/(-b) = H

- (afblsal/b = (-a}l/(=b)i

-

- D KD« S w3 cov =t e - an -

real division

femainder function
a mod b = a = (a/b)*b

[}
-+
§
IR |
o3 |
o}
- 1
6
!
{
[}
!
[}
1
|

d Bm me en me e en ee e b On ee e on e em me e on ee  we me > me
]
o
(ad
to
()
-
<
hel
o

]
§
8
i
|
§
i
'
1}
[}
§
!
L}

- WD An > - 0 o> -

- O TS €D O -3 D fo ED w2 > G2 e > - e

logical tand!

trug and false = false
frue and Lrue = Xrue
false and false = false
false apd true = falss

B T A T D ST TR S D WD D STA W SIS T D P e CAD SRS W WD W -G

set intersection

- the set consisting of
elements common to the
two sets

- - . €D e AT €D T e O -

1
i
¢
{
'
$
]
§
¢
}
§
)
¢
i
!
1
§
i
[
|
)
§
!
|
i
¢

conditionat ang

true and Lrue = frue

frue and false = false

false and false = falseg

false apd true = false¥*

*¥Hdhen the flrst operand
is falser the second
is never evaluated,

A R R B WY W G Y G I > W T - w- - -

G e o v om se sn e an G e e e B0 e e en Be C® ae f Se B0 S ee  Cw e e fe Cw Be B8 Be ) ee B- ce e D
) §
|
§
i
¢
¢
'
§
i
|
!
'
|
}
i
§
§
i
i
i
i
i
'
]
¢
|

- s > w T " > w wD o fp W D N> S > s "= — =

Note: The operator gapd may not be used for set intersectlion as
and is usead,

NCR/CDC PRIVILEGED 9.0



P
SOFTWARE WRITER®'S LANGUAGE SPECIFICATION
75706709
Revision & June 09, 1975
9.0 EXPRESSIONS
9s2.4 SIGN JOPERATORS

NN”“”HNUNNMD}Nl;ll”'lNMNMNNNNl#NNNNN”N’NNH"N~N~ﬂN~HNNN~~N~~NlJNl‘INN”“”NNN~~

9¢244 SIGN OPERATORS

The + operator can be applied to integer and'real types onlye.
It denotes the identity operation and results in integer or real
type respectively——is,ees» a = + 2,

The = operator can be apptied to integer and real types only.
It denotes sign inversion=—i.ees =a 0 - a.

H

9¢2¢5 ADDING OPERATORS

The following table shows the adding operatorss the types of
their permissible operandss and the type of tne resulteo (See
also 10.1s1 for the successor assignment statement and
predecessor assignment statementr, which are analogous to the
adding operator.)

NCR/CDC PRIVILEGED 9.0



Q=5
SOFTWARE WRITER?'S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09, 1975
260 EXPRESSIONS
¢2¢5 ADDING UPERATORS

IO OE NI RI NPT NI PN PR PIRIR PSR B $Z I PRI I T W R I TI R AN PEPIN EITI PR FIP NI PE RSP M RIS RN 230G P BT B W0 R I0 PE RS 18 0O N

<+
' .
]
!
i
!
¢
i
¢
§
L}

R o et s e e e e i e e e o e e e e e e fomm e ———————— +
{ Operator | Operations { Operands H Result H
pm————————— o e e e et e e e o e e e e o e o o s e e +
HE S { addition i inteaer ¢ lnteger H
: : { rceal { real H
H f o e o e s o e b e i 5 o o e oo - e o o e -
H ! concatenation * ! string ¢ string H
i : i and sfring.i. :
' : ¢ string ¢ skring ‘
; ‘ : and ghar !
o o e e e e e e s e e i 2 e e e fommm e n e c——— o —————— &
P - { subtraction i loteger i. integer H
H H i ceal ¢ real H
H G e e e e e e e e L fom—————————— +
H i boolean difference i haolean ! beooliean H
: { true - true = falses : : H
i : true - false = iagg : ' :
: { false - true = false : i :
: i false - false = ﬁziig : H H
H § o e e e o i e o e o s e 2 fr o o e e e e o~ —-———— +
H { set difference { set of type | set of typel
H ! = the set consisting of H : H
! H efements of the left : H H
H i vperand that are not H H D
H H also elements of the H H H
! H right operand, ' H H
e o e e e e e 2 e i 22 3 o e 2 e i 0 < 2 o e 2 2 2 e o e 2 e 2 e e -
ioer ! logical tor? { beolean i, boolean :
iouogp ¥¥ ¢ krue or frug = trues : H :
‘ : true or falise = true H P S
i i false or frue = frues : = :
) : false or false = false H ) !

] R e e e S o ———————— fm————————— +
: { set union { set of type | set of type!
H { = the set consisting of ¢ i H
{ H all elements of both : e H
v H setso : H '
o - - e 2 o e e o o e 8 e e e R cmfecncnacc——~-$
{ xor ¢ exclusive for! i boglean ¢ bealean :
H ¢ true xor Ltrue = false H H :
‘ ¢ true xor false = fruye : : H
i ¢ false xor true = true : ' H
: i false xor fgLa = false H H
' G o e e e e e e fmmmm———co——— T -
: { symmetric d&fference { set af type | set of typei
H { - the set of elements H H H
H H contained in either { H H
H : set but not both sets. } H H
o e e o o e e e e e fom—————— e +

NCR/CDC PRIVILEGED 9.0

e oo so oo



SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975
2,0 EXPRESSIONS
9205 ADDING OPERATORS

N
WRORKNYRNIGIWNIIRNIININNNINNRNISAIININNNNNRONRMNIINRNRN IR NRNRORRERRNNR RSN

* The rules for —concatenation are as follows, The adding
operators '4+% j§s used as the dyadic concatenation operator. The
result of concatenation is a string whose current length is the

sum of the current lengths of tne two aperands and whose value Is
the string obtained by right-extending the feft operand by the
right operande

¥% Jf evatuation of the uygr (unconditional qr) is found to be
necessary in the execution of the statement in which it occurss
then 'the evaluation of both operands Is guaranteed to occur. The
uor may not be used as a set union operatore.

9.2.6 RELATIONAL OPERATORS

Retational operators are the primary means of testing values
in  SWlL. They return the boolean value frue if the specified
relation holds between the operandss, and the value falses
otherwises

%.2.6.1 Comparison_of_Scalacs_and_Reals

All six comparison operations < {less than)s <= (less than or
equal tol)s > (greater thanls >= (greater than or -equal tois =
({equal tols and /= (not equal to) are defined between operands of
the same scalar typey, operands of type feals and operands of type
stcing or string and char.

For operands of type iptegec or reals they have their usual
meaning. .

For operands of type bogjiean the refation false < fruye defines
fthe:ordering.

For operandss a and bs of type ghars the relation a op b holds
if and only if the reftation $integer(a) oqop $inktegger{b) holdss
Where gp denotes any of the six comparlson operators and $inkteger
is the mapping function from <character type to integer type
defined by the ASCII collating sequence.

For operands of any ordinal type Ts a = b if, and only ify, a

and b are the same vailue; a < b ifs and only ifs a precedes b in
the ordered ltist of values defining T.

NCR/CDC PRIVILEGED

9-Q

75/00/09

9.0

on av e

e me Be aw -



A 9-10
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09
Revision 4 June 09, 1975
3,0 EXPRESSIONS
Ge2:6¢2 Comparison of Direct Poznters

NI RNEIINRNANERNRR RN NI RRIRMNAEAINNNKENERNRR NI RI RPN IR IIIN A NNRANNANR

924642 Compacison_of Direct_Polnigrs

Two direct pointers <can be compared If they are pointers to
either equivaient types or potentialily equivalent typess. In the
tatter cases one of both of the pointers may be pointers to
variable bound typess adaptables types and bound variant records
~ whose type must be determined during executlon of the SWL
programs The Instantaneous type of such pointers must bpe the
same as that of the pointer they are being compared with; if it
is noty, the operation is undefined, '

1, Pointers to file type and pointers to control type may be
compared for equiality and inequality oniy. » -

a) Tuwo polnters te file are equal if they designate the same
file variables

b) Two pointers to procedure are equal if they designate the
same instance of declaration of a procedures .

¢) Two polnters to coproc are equal if. they designate the same
coprocesse

d) Two pointers to label are equal if they designate the same
instance of definition of a label,

26 All six comparison operators are defined for pointers to
data types for adaptable pointers and for polnters to bound
variant types

a) Pointers of such type are equai If they designate the same

varlaople. For pointers to wvariabie ©Dbound types adaptable
pointers and bound variant pointerssy this means that their
instantaneous type (iesees including current boundss lengthss, or

tag fields and variants) must be the same as the type of the
pointer they are being compared wWitho

b} Two pointers with pil value are always equaie

c) The remaining comparison operations are defined as

follows. Let gp denote any of the remaining operators <s <=y >=,
>» and let ps g5 ¢ denote three pointers of equivalent type, If

p op q and q gp r hold trues then p gp r also holds true,

9¢2¢6.3 Comparisen_of _Relative Paint

Retative pointer <comparison is allowed only for relative
pointers of equivalent types TwWo relative pointers are..

NCR/CDC PRIVILEGED 9.0

n M on R BN e G-



SOFTWARE WRITER®S LANGUAGE SPECIFICATION

75/0
Revision & June 09, 1975 ‘ ‘ e
9.0 EXPRESSIONS

QaZ 6.3 Comparison of Relative Pointers

NfJNNNNI‘JNNHNNﬁJNNNNN&MNN&NNIJNNNIJNNNNMNNMNNHNHNFI“MNMNM~N'¥NNNNNNNN““N

equivalent if they are defined in terms of equivalent object
types and equivalent parental types (cfoe 4+2.3» Relative Pointer
Types)o For relative pointers whose object type is a variable
bound types this means that their Yinstantaneous'™ object type

9-11

6709

must be the same as the object type of the relative pointer they.

are " baing compared with; if it is nots the operation is
undefinedo,

Comparison of retative pointers is defined as follows:

1. Let p and g denote relative pointers of equivalent types
and let P denote a variable whose type is equivalent to the
common parental type of these relative pointerse If the reltation
#ptrlpsP) = #iptp(asP) holds (cfe 1le2.l5)s then. p. and q are
equal.,

2o Let ps» g and p denote relative pointers of equivalent
typey and let op denote any of the comparlson operators <» <=p
>85 D If the refations p gp. g9 and g gp r both hoids then the
relation p gp r also holdse

9e246+4 Comparison_of_Strinds

For operands of type string or string and gnacs comparison is
defined in the following ways:

Al six relational operators may be applied to operands whose
values are strings; if ‘the current lengths of the strings
entering into the operation differs then the shorter of the two
is right—-extended with blanks to match the current length of the
larger before the operation is «carried out. If one of the
operands is of type c¢chars it is converted to the string(l) value
consisting of that <characters and then the ruies for unequal
length strings are applied if appropriate.

Strings are compared to each other character by character from
teft to right until total equality or inequality is determinedsy
as followse Let n be the tength of the resulting strings a and b
(n 2 1)y and gp be any of the six comparison operatorss then:

a op b Iff a{l) op b(1)
or a(i) = b(i) for all i (1 £ I < k)

and al(k) gp bi{k) (1 < k £ n)

9¢2¢6.5 Relations_Involvina_Sets

The vrelation a jop S is true if the scatar value a is a member
of the set value S The base type of the set must be the  same

NCR/CDC PRIVILEGED

9.0

- ww -



AR N =

SOFTWARE WRITER?®S LANGUAGE SPECIFICATION
75706709
Revislion 4 June 09, 1975
9.0 EXPRESSIONS
9e2eb6¢5 Relations Involving Sets

NMNNRRMNOORIINNRRN IR NMORNIINNRN NI IINMNEINARERNIERPINCIRNMMNRIINR IR NI NIINRRNISNRN

ass or a subrange ofs the type of the scalar.

The set operations = (identical to)s /= (different from) <=
(is Included in)s and >= (includes) are defined between two set
values of the same base type.

S1 = S2 is true if all members of Sl are contained
in S2s and all members of S2 are contained in Sl,

S1 /= S2 is true when S1 = S2 is falses

S1 <= S2 is true If all members of S1 are also
members of S2.

S1 >= S2 ts true If all members of S2 are afso
members of Sl.

9:24606 Relations_Involyina_ Arrays_and._Recaords

1. Arrays may be compared for equality or inequality onfy,
Two arrays are equal If their Instantaneous types are the same
(cfa 4¢343:1) and if elements with corresponding subscript
values are squzlt,

2« Variant records cz2n not be compared. Other record types
may be compared for equality or inequality oniy. Two comparable
records are equal if their instantaneous types are the same (cf,
©e3c4e5) and if corresponding fields are equale.

9.2¢607 Nan=Comparable_Iypes

.

Certain types in the {anguage cannot be compared. These are
filesy stackss heapss sequencessy unionss variant recordss arrays
of non-comparable component typess and records containing a field
of a non-comparanle typee. Howevers pointers to non-comparabie
types can be compareds

9e24608 Iabhlo_of Comparable Iypes_and_Resulf_Tyees

See the f6llowing page.

NCR/CDC PRIVILEGED 9.0

e B Be o

- on Ko oo



: 9-13
SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09, 1975 ‘ 7 oo me e o e
90 EXPRESSIONS

2:2¢608 Table of Comparable Types and Result Types

AAEOEIT N R NI NMITNIONK N RPN NN ISR NNMRMNRIONRNNNNGR RN R RNIENCRNNRNA R R RN RN

The following table shows the relational operatorsy the types
of their permissible operandss and the type of the result, '

tomrme————— fom————————— R T PR e o et e 2 e 2 e e e fmm—m———— -
‘ : : Left : Right H H
{ DOperator | Operation { Operand i Operand + Result H
Fom e o m f h e 2 e e e e o o o e e e o e e n +
i < t = less than t any scalar! T { baolean H
‘ H : H type T H :
i <= { = less than or | real { Lesal ¢ boolean :
: H equal to P ——— tor e P ————— +
P> { = greater than | string { string ¢ boolean i
i >=o { = greater than | strina i ¢char i boolean :
: . or equal to { ghar ¢ stcing i boolean :
HEE { - equal to H H H H
A { = not equal to +er==w—on—e- R bttty P e e ———— *
H ' 1 oany (%) N | { boglean i
H H ! pointer H H :
H H i type T H H H
fommmenon—— b —————————————— fm———————— o ————————— frm————————— +
t in { set membership! any scalar}! set of T' | boolean H
H H test H type T | where T¢%} H
3 H ! : ! is T or | ‘
H ' H H a sub=-- | H
' H H H range ofi H
H H H H T H :
o e 2t 2 e 2 e 5 2 2 o o e 0 2 e o e e mmm e ———————
i o= i = ldentity i set of T ¢ sgt of T 4 hoolegan :
LR ! = different { where T is} H :
i <= { = is contained | any sca=i : :
H H in H tar or | H H
t >s i = contains H subrange; H , H
HE H H type H H H
fm————————— R ——— —fpmcm— e ———— et ———————— e frmn————————
HIE { = equal to "1 any array { T { boolean H
HE A ! - not equal H type T i i
H H to H H ‘ ‘
H ' { any non- | T { boolean ‘
H H H variant } H '
' H ' record | ‘ H
H H H type T | H H
" H H H H H
: vod { any ¢ T i boolean H
H H H pointer | H H
H H H type T | H :
+ + + + + +

- e W o wn st o D - —r - —— . e e S W > Ghon WS a n B > v e s s W S e s s o oy e . > - e W W D A - wn wn w-n aw -

(%) Except for pointers to procedures coprocs labels or file.

NCR/CDC PRIVILEGED 9.0

- O aon Be o=



914
SOFTWARE WRITER®'S LAMNGUAGE SPECIFICATION
75/06/09
Revision 4 June 09s 1975
9.0 EXPRESSIONS
Q6207 EXPONENTIATING OPERATOR

PLRBIRINI N RSN NNRPIM NI EINR ORI RNNIINNLIIIIIRIINIERIRIFORNIIRPRIPIITIINIMNINRPINNNRIRNAEPNPIINPIIENNN

9¢2¢7 EXPONENTIATING OPERATOR

The exponentiating operator %% |s deflined for an argument
which is a positive or negatlve integer expressiony raised to a
power which Is iimited te that of a positive integer expressione
It is defined to be feft associatives so that a *¥% b %% ¢ is
evaluated as {(a =% b) %% C. (This follows the syntactic rules
for expressionsy cfe 960)e

943 QRRER_QE_EVALUATLON : ' 7

The rules of composition specify operator precedence according
to six classes of operatorse The type testing operators nave the
highest precedences followed by the not operators followed by the
exponentiating operators followed by the so-called mulitiplying
operatorss then the so-catled adding operatorss and finallys with
the lowest precedences the relational operatorss

The precise order in which the operands entering into an
expression are evaluated iIs undefined., The order of application
of operators ic defined by the composition rules (and their
implied hierarchy of operator precedence) with the exception that
the order of application is wundefined for any sequence of
commutative operators of the same precedence classe For examples.

1l. The expression. a % b * ¢ / d is ‘evaluated as
(a ¥ b # ¢c) / ds and the internal order of evaluation of the
first term is undefinede

2 The expression a + b + ¢ - d is evaluated as (a + b + c) =d»

with the internal order of evaluation of (a + b + ¢).
undefined. '

NCR/CDC PRIVILEGED 3.0



: 10-1

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75706709

Revision 4 June 09, 1975 . st rt o e me e rom

1040 STATEMENTS

WK NRNINONNNNMNRERNNNKENRERONOERRNRINN IR NNNNRNNN NN NNNNARNENNRNNN R

10,0 SIAIEHEWIS

Statements denote algorithmic actionssy and are said to be
executables A statement list denotes an ordered sequence of such
actionsoe A statement is separated from its successor statement
by a semicolone The successor to the Jlast statement of a
statement list is determined by the structured statement or
procedure of which it forms a parte '

Statement.lLabels

A statement may be labeled by preceding it by an identifier
followed by a colon., This allows the statement to be explicitly
referred to by other statements (ecges gotos exits cyctel. Such
a labeling of a statement <constitutes the declaration of the
identifier as a labets and hence the ldentifier must differ from
all other identifiers declared in the same block, :

If an identifier labels a statement of the —constituent
statement list of a procedure declaration (see Section 8.0) or a
begin statement (see Section 10¢2¢1)s then its scope is that
procedure deciaration or begin statement, If it tabels a
statement of one of the <constituent statement lists of other
structured statements {(see Section 10.2)s then its scope is that
statement liste Thuss it is impossible to refer to a label

contained within a procedure declaration or structured statement
from outside that declaration or statements or from other
statement lists of the same structured statement.

A label may optionally follow a structured statement other
than the repeat statements in which case It must be identical to
one of the labels labeling that statement. This is for checking
purposes onlys and does not affect the meaning of the programe

Kstatement list> 1= <{statement>{;<statement>}

{statementd> t:= <unlabeled statement>!<label> : <statement>

<unlabeled statement> tt= <assignment statement>
}<structured statement>(<label>]
t<control statement>
. $<storage management statement>
{<input-output statement>

{label> 31i1= <jidentifier>

NCR/CDC PRIVILEGED 10.0



10~2

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09

Revision & June 09, 1975

NI NNRNRDRRRNRIEB RN NISPINIRP IS NIENINRCMNNNEGRIRRINNAOONNMRNNNNIIPRINNNRPONRR NN RN
10,0 STATEMENTS

IIRIPI NN N PRI IIPE IR TP N PSPPI RIFI RSO NI B GBI RIPE RSP AL PP N RIPINNIDNN NI R IR RS NN RN N NNN RN RGN

Exanplg:

check_range: (if val < 0 then tagfld t= 0
orif val > bound fthep tagfld := bound
else tagfld t= val.
ifend check_range

L1: X = x + y
L2:L3sL4s y $= 2z Ynote multiple labels permitted®

semicolons As_Statement_Delimitacs

Since the successor of the last statement of a statement Ilist
is uniquely determined by tne structured statement or procedure
of which it is a parts semicolons are not required as statement
fist delimiterse However, since the empty statement (cfs
106369) -is alfioweds semicolons may be so wused for purposes of
consistency or presentation, :

Examples:

check_range ¢t if val < O then tagfid = 0 ;

@ e

orCif val > bound thepn tagfid := bound;
else tagfld t= val ;
ifend check_range ;

Ll: x t= X 4+ y 3

10.1 ASSIGNMENI_STATEHENIS

.

The assignment'statement is used to repliace the current value
of a variable by a new value derived from an expressiony, or to
define the value to be returned by a function designator.

Casslignment statement> 3t= <variable> t= <expression>
: 1<function identifier> := <expression>

t{successor assignment> Ycf, 10¢l.2%
1<predecessor assignment>

{<concatenating assignment> "“cf, 10.1l.3"

NCR/CDC PRIVILEGED 10.0

e Ne oo ee e ae

-



SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09s 1975

10-3

75/06/009

MIENNMNNNNNNRMNRROIIRINRNINNNNERE NN NPIMMNMNNIINRIO NN MISIIPINNISNANIRNNNNMNNNNR SN

20.0 STATEMENTS
10.1.1 ASSIGNMENTS TO VARTABLES AND FUNCTIONS

EIPRIBN NN RNRIIRERNICIINER IR RIS RO NIIIRIRIN ISR RRRINNNNRRIINRRRNNRPIIN N PR

10.

lel ASSIGNMENTS TO VARIABLES AND FUNCTIONS

The part to the left of the assignment operator (i=) is

evaluated to obtain a reference to some variables The expression

on

‘the right is evaluated to obtain a valuee The value of the

referenced variable is replaced by the value of the expressione

The variable on the left may be of any data type except for:

(a) the so=called nop=vaiue types: heaps; arirays or stacks of

e oim 4Tk ame o

non-valued types; and records containing a fleld of non~vatlue
typeo

and

(b) any variable or parameter speclfjed as read=-only.,
(c) any bound variant record.
(d) the tag field of any bound variant recorde

The variable on the left (or the return type of the functlon)
the expression on the right must be - of - identicatl.

instantaneous tvpes (cfe 6clc2)s except as noted below:

1.

2

3e

G

The type of the varlable may be a subrange of the type of
the expressione If the value of the expression is not a
value of the subranges tne program is in errore

If the variable is a unign variables then the type of the
expression may pe one (and onify one) of the types from which
the union type was unitede In this cases the type of the
expression as well as its value is assigned. .

If the left part is a character variables the expression. may
be a string whose current ltength is one or greaters The
string value is right truncated to a single character string
which is converted to type gchar and then assigned,

If the left part Is a fixed string variables the expression
may be a character or a strings and the operation is as
folilowss

a) if the expression is a characters It is converted to a
fixed string of iength ones ’

b) if the current length of the string differs from that of
the assigneey the string will be either rignt truncated:
or right extended with bianks to obtain a string of
matching length,

NCR/CDC PRIVILEGED 10.0

.- L -

e

- ww W

o mn

- wme ww ®o

on e



10~4%
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75706709
Revision & June 09, 1975
100 STATEMENTS
1041¢1 ASSIGNMENTS TO VARIABLES AND FUNCTIOWNS

PRPIEIPLIRICIPNI BTN RN PP I N R PERIINRINNNRIINPNNIZNANINASNNIERIOININANDRINNRRNRINNNNNNNRONNRINRNS

c) the assignment is then carried out.,

5¢ If the left part 1is a varying string variables the
expression may be a character or a strings and the operation
is as follows? '

a) if the expression is a charactery it Is converted to a
fixed string of length one.

b) if the current tength of the string expression exceeds
the maxlength of the assigneey the string will be right
truncated to the matching current fengthe -

c) the assignment is carried out; the current length of the
variable is set to the (possibly revised) current length
of the expressione

6o If -the left part is a variant record the right part may be a
bound variant record of otherwise equivalent typeo

7o If the left part is a pointer to a bound variant records the
expression may be a pointer to an otherwise equivalent
‘unbound?’ variant recorde

Bo If the teft part is an adaptable pointers the right part may
be either a direct pointer to any of the instantaneocus types
to which the teft part pointer can adaptsy or an adaptable
pointer . which has been adapted to one of those types, Both
the type of the expression and Its value are assigneds thus
setting the current type of the assignees

Qe If the left part is a stacks the right part must be a stack
.Hhose instantaneous component type must be the same as the
left part's component types

10 If the left part is-a sequences the expression may be any
sequencee.

11, Stacks may be assigned only to stacks of the same component
types and sequences may be assigned only to sequencess After
the assignments source and destination contain the same data
values (those stored in the source ) and are in. identical
states with respect to any future operationss, If the
allocated size of the destination is not large enough to hold
the source datas then the program is in errore. Data values
stored in the destination orior to the assignment become
undefined by virtue of having been either overwritten or
stored past the space required for the assignmente,

12 Yarcning: Note that generally a pointer value has a finlte

NCR/CDC PRIVILEGED 10,0

e e e o

- wo "D e me on aw aw - o=

O De Gw BN ww e - w W



SOFTWARE WRITER®S LANGUAGE SPECIFICATION

Revision & June 09y 1975
;0.0 STATEMENTS
L1061¢1l ASSIGNMENTS TU VARIABLES AND FUNCTIONS

NOIEIEIEIPIPI NI NI NI R ISP IRNAINISPRRPINNIIRNNMAPMNNMRIEIANNRIN NN EIRRNMNNNHNNMNNANNRN N

fifetime (see Section 6.2.2) different from that of the
pointer variables Proceduress. {abelss and automatic
variables cease to exist on exit from tne olock.- in which they
were declareds Ailocated variabcies cease to exist when they
are freed or their containing storage varliable <ceases to
‘existe Attempts to reference non=existent variables by a
designator beyond their lifetime is a programming error and
could lead to disastrous resultse :

10¢1¢2 SUCCESSOR AND PREDECESSOR ASSIGNMENT STATEMENTS

These assignment statements furnish the pth successor or pth
predecessor of a scalare

{successor assignment> 3
_ <predecessor assignment>
vwhere .

<pnth> 3:=2 <integer expression>

i= <scalar variable> :+ <nth>
tt= <scalar variable t=- <nth>

These statements repliace the current value of the scalar variable
by its nth successor or predecessors if that successor or
predecessor existse They are equivaient to appiying the #gugg or
#pred function p times to the variablie,

If the vaiue of npnth is zero then the —current value is
unchanged., If the vaiue of pth is negative then tne program is
in errorae

If the pnth successor or predecessor does not exists then the
program is in error.

100143 CONCATENATING ASSIGNMENT
The concatenating assignment statement is used for purposes of
conveniently right-extending varying stringse
{concatenating assignment> ::=

varying string variable> :+ <string expression>

If the expresslion is a character, it ls‘converted to a fixed
string of length onee.

If V¥ denotes a varying string variabfe and E denotes a string
expressions then the concatenating assignment

NCR/CDC PRIVILEGED 10,0

75706709

om ow -



LU0
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

: 75/06/GC9
Revislton 4 June 09, 1975
10,0 STATEMENTS |
106163 CONCATENATING ASSIGNHMHENT

N&'NN"NFJ/"I"I""NFJNNN’JNHM"JNNNNf:'ul‘:l’ NHH#}M(’J’J?“N”&?MHNHFJ?J”& BIESEPIIIPIIIPIPIEI LI NI L2 0202 A0

V i+ € 3
yields the same effect as the variable assignment

V t= y + (E) 3
10.2 STRUCTUREDR.SIAILLUENIS

Structured statements are constructs composed from statement
listse They provide for storage altocation and scope controls
selective executions or repetitive execution of their constituent
statement lists,

<structured statement> t:= <begin statement>
1<Iif statement>i{<loop statement>
it<uhite statement>!<{repeat statement>
i<for statement>i<case statement>
t<value conformity case statement>
t<pointer conformity case statement)

10.2.1 BEGIN STATEMENTS

Begin statements are blockss and constitute the scope of their
constituent declarationse On entry to the begin statement all
declarations are evaluateds and storage allocated for automatic
variabless The statement list Is then executedes On exits either
through completing execution of the last statement of the
statement tist or through an explicit transfer of controls all
identifiers declared within the begin statement ' become
inaccessibier and the values of automatic variables become
undefined, '

The successor of the last statement of the statement tist of a
begin statement is the‘successor of the begin statements

<begin statement> t1i=
bgain <declaration tist><statement list> gpd

NCR/CDC PRIVILEGED 1040

-



, vy
SOFTWARE WRITER®*S LANGUAGE SPECIFICATION

75706709
Revision 4 June 09, 10975 .
10.0 STATEMENTS |
10.2.1 BEGIN STATEMENTS

WA NEVIN N NIRENNNNRRRAMANNRINNRRRENNNRTNRETD RGN ROINRROERENORBRIOQONPINRIPD IR0

Examplet

outer: begln yaL as» bsr ¢ ¢ lInteaers b2, b3 : poqglean ;
a {=r ¢+ s ;3 "r and s declared outside bDlock"
b ¢= ¢ ¢+ 10 ;

L1t - b2 3= true 3

inner:
begin vl, v2 ¢ jnteagar s b2 ¢ hoolean ;
: vl = a + r ;
v2 = 25 ;
Lf vl < v2 thep b3 1= true ifend 3
L3: b2 = false ; b2 of inner block"
end inner ; :
1f v2 > a fthen
a 1= 1 ;3 "improper statements since -v2
no fonger exists®
Lfend ;
Lﬁaagz b2 then
iz ¢C

ifend 5 "b2 is true from statement Ll
the b2 set by statement L3 holds only
in the block labelled inner "
end outer ;

10¢2.2 IF STATEMENTS

The if statement provides for the execution. of one of a set of
statement lists depending on the values of Boolean expressionse,
The Boolean expressions following the Lf or grif symbols are
evaluated in order from teft to right until one is found whose
value is truee The subsequent list is then executed, '

If all Boolean &expressions are .falses then either no
'statements or the statement list following the else symbol is
executed,

The successor to the last statement of a constituent statement
list of an if statement is the successor of the If statements

KIf statement> t:=
alternative parts> jfend
i1<alternative parts> eglse <statement list> jfend

alternative parts> 212 jf <expression> fhen <statement list>
{orlf <expression> then <statement 1ist>}

NCR/7CDC PRIVILEGED 10,0



108
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75706/09
Revision 4 June 09, 1975
10.0 STATEMENTS
10202 IF STATEMENTS

NS LIBIRI NN I IS NN RIIRRINNNMIER RGN NNEPRIIIR NN ENRINRNIE N RN RRRN

Exameplest
Lf x <y Lthen x =y jfend
Lf x <= 5 fKhen 2z t= y + 1; y 2= y + 5
ofLif x > 30 then z = y * y; y 1= 2
grilf x = 15 then z = y * 2z
else z = 2 *‘z; y i= 2 % z + 15
ifend
10.2¢3 LOOP STATEMENTS
The loop statement causes unbounded repetition of its.

component statement liste Thuss exit from a loop statement must
be through an explicit change of controloe,

The -successor to the last statement of the constituent
statement list of a loop statement is the first statement of the

liste.

<loop statement> :t= loop <statement list> lgopend

NCR/7COC PRIVILEGED 10.0



SOFTWARE WRITER®S LANGUAGE SPECIFICATION

Revision 4 June 09y 1975

10-9

75/06/09

PN NNNIIIINN IR INCIINIIRENNOMNIENR RN RPN N NN RNNRNN A'GO RN N RN NN

10,0 STATEMENTS
10,2.3 LOOP STATEMENTS

’lNNIJNNMM“NI‘J‘VN&JNNNNNNNMNNNNNNMNNNNN~“HNNMNNNNMNNNNN'¢H~NNN~”'€MNMNNM~

Example:

Eype nextid

¢ sfcing (200 of ¢har ;
yvar scrambloc ¢

PR

type field = regord
' as bs c 3 jnieaers
d ¢ ““field,
id ¢ strinag (20) of char
regend
yar k ¢ integers found 3 poolegn ;
K = 128 ’ :

mosk/zs
finders jlgop "binary search used"
? if scramblocikl®
found t= true ;
exif finder
ifepd 5
if scrambioclkl
K ¢= K - m
glse
k 22 k + m
Lfend ;
mt=m / 2 ;
Lf m =0 Lhen
found 1= false 3
exit finder
Lfand
loepend ;
Lf found then
-3 ]
ifend 3
“the variable found tells whethe
nextld is located in the tables
are pointed to by the values

matching entry is founds then Kk
entry."
1062¢4 WHILE STATEMENTS
A- while statement controls repeti

constituent statement list,

<while statement> t:=

while <expression> do <statement 1i

The expression controlling repeti
Bootean., The statement !ist is repeate
expression becomes falsee If its

arcay [1e02561 of “field

in scrambioc,

s

sid =2 nextid gneu

“o.id < nextid then

r a string equal to

the entries of which

if the
is the

tive execution of

st> whilend

be of
until

at

must
executed
is false

tion
diy
value

NCR/CDC PRIVILEGED

index of the

its

type

the
the

10,0



—

SOFTWARE WRITER®'S LANGUAGE SPECIFICATION

75/06/09
Revision & June 09y 1975

NWNIRNIIINNRMNNNRTRNNGRNNRANRIIILNRMNRINIRNRI RN NMNNNNRINRNNENNNENRNNANNRINNR NN

10,0 STATEMENTS
10244 WHILE STATEMENTS

IR IENRKNNNNIGIPMNAERKNINIIRPININNI ISR RRPIORIEIN HISIIRRNNIONNRERNILINNNIERIPIIRNNRNIINIRIENNANN

beginnings the statement list is not executed at alle The while
statement

while e do S whilend

is equivalent to

if e then S5 uwhile e do S whilend ifend

The successor of the fast statement of the constituent

statement list of a while statement is the while statement
itself, '

Examplgas:

while alil /= x do i 3= i + 1 whilend

while- i > 0 do
1f odd (i) then z t= z * x Jfend;

i o¢e=j /1 23
X I3 xX %® X
whilend

10.20.5 REPEAT STATEMENTS

A repeat statement controls repetitive execution of its
constituent statement list. :

<repeat statement> :t:= repeaf <statement list> yntil <expression>

The expression controlling repetition must be of ¢type
Booleans The statement list between the symbols repeat and uyntil
is repeatedly (and at least once) executed until the expression
becomes true. The repeat statement

cepeat S uniil e

is equivalent to

beain
S
Lf e Lhen
‘ "do nothing"
else
cepgal S untfil e
ifend
end

NCR/CDC PRIVILEGED 10.0



10~-11
SOFTWARE WRITER'S LANGUAGE SPECIFICATION
. 757067009
Revision 4 June 09y 1975
\10»0 STATEMENTS
1025 REPEAT STATEMENTS

S RN BRORINAI NI RNIIR R NIIRN NIRRT NRANIONANNRANANNNIIBN RN ERIIGNNRIENRR I IIIER ISR N R

The successor of the last statement of the constituent statement
list of a repeat statement is the expression following untils

Exanpple:
cepeal k 3= 1 mod J;
i = 3
J ts k
gyoptil J =0

104206 FOR STATEMENTS -

The for statement indicates that its constituent statement
list is to be repeatedly executed while a progression of values
is assigned to a variables which is called the control varitabile
of the for statement,

<for statement> :1:= for <control variable> := <for list> do
<statement list> forend

<for list> ::= .
initlal value> to <final value>[by <increment>]

< ey

i<initial value> dounto <final value>[py <decrement>]:
controil variable> tt= <variable>

initiat value> 1:= <expression>
<final value> ti= <expression>
increment> :3=2 <expression>
{decrement> t= <expression>

The <control variables initial values final. values and
increment or decrement must all be of the same scalar type or
subranges of the same typeo The control variable may not be an
unaligned component of a packed or crammed structures and when
the by option is useds must be type integer or subrange thereof,

The sequence of vatues assigned to the control variable for
which the statement list is executed is determined solely by the
Initial values final values and increment or decremente
Assignment to the control variable on a given dteration will
cause its vailue to Dbe changed for the remainder of that
iterations but its value will be reset to the next value of. the
sequence prior to the next iteration,

The initial valuey, final values and increment or decrement are
evaluated once on entry to the for statements as is tne name of
the control variable. Thus» subsequent assignments to components
of these axpressions have no effact on the sequencing of the

NCR/CDC PRIVILEGED 10.0



LVU—=JLc

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09

Revision 4 June 09, 1975

PESRIPINMNRNNNNIINRROERIRRRRIENENENRRIERR IR RBEGRRIINNIENINR NN RRIENRENNNRNNNRRGNN

10.0 STATEMENTS
JOc2e6 FOR STATEMENTS

PP IS PSP NI PRI PN BIEI NSRBI NI NN INV RN RINAARRRITRI N MR RRIIIR NN R RE NG IIN NN N TN R GNP

statement.,

If the iInitial value is greater than the final value in the fo

forms or if the initial value is less than the finafl value in the
dopgnte forms then no assignment is made to the control variable
and the statement list Is not executeds.

If no assignment is made to the control variable by the

statement lists, and the exit from the statement is a normal ones
then the value of the control variable is the final valueo.

A for statement of the form

Is

for w 3= i £o n daoa S forend

equivalent to

hegdin var control :™ TYPE (w)s temps limit : TYPE (w) ;

control = “w 3 temp = i ; limit 2= n ;

if temp <= limit thep

ghile temp < limit dg control”® :
temp = #succ(temp) yhilend ;

control®™ 1= temp ;

S

ifend

end

= temp$ S 3

where controls temps and timit are identifiers not appearing in

the

of

statement list Ss and TYPE is a function returning the type
its argument (not available in SWl). '

A for statement. of the form

Is

for w 3= i downto n do S forend
equivalent to

bealn vac controi ¢t “TYPE(w)s, temp, limit : TYPE(w)} ;
A .

control t= “w ; temp = | ;3 limit t= n ;

if temp >= limit then

while temp > timit dgo control®™ 3= temp 53 § 3
temp = #pred(temp) ;
control®™ = temp ;
whilend 5
S;
Lfend
end

NCR/COC PRIVILEGED 10,0



10-13
SOFTWARE WRITER®S LANGUAGE SPECIFICATION

757106709
Revision & June OQ» 1975 . e ro e e me mo mo ru
10,0 STATEMENTS
10.2.6 FOR STATEMENTS

NN IIRA RN NMNRNNNNERRANRIQIEIIRENVARRNRIINNIRRNRIREERRRRIREIPRNRNEINRNIINENNP

A for the statement of the form

for w 3= i Lo n by inc do S forend

Is equivaltent to
bealn var control :™ TYPE(w)s limit, steps temp ¢ jpteaer 3
control = “w ; temp ¢=3 i 3 llmit 23 n ; step := inc ;
while temp <= limit do
control”™ := temp 3 S ; temp ¢= temp + step
whiltend .
end , ‘ g

and a for statement of the form

for w = | doynkta n by cecr do S faorend

Is equivalent to

beain ‘
yar control 3 “TYPElw), limits steps temp : jinteger 3
control 3= “w 3 temp 3= | 3 limit t= n ; step := decr ;
yhile temp >s limit do
contrqlA ta temp ; S 3 temp $am temp - step
ehilend ’
end

The successor to the last statement of the <constituent
statement list of a for statement is tne caiculation of the next
value of the temporary control variablie.

Exanpless

for i = 2 o 100 dg
if alil > max thenp
max t= alil
Lfend
forend

"ok ok % kW

for i 3= 1 to n by 1 do
for J t= n downto 1 de
X ¢= 0 3}
for k t= 1 £o n do
x t= x + alisk]l % blksjl.
forend ; ‘
clisrjl 15 x
faorend
forend

NCR/CDC PRIVILEGED 10.0




10=-14
SOFTWARE WRITER?®S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09s 1975
100 STATEMENTS
10¢2:6 FUOR STATEMENTS

PIWE NI NIRRT ICRI RSP A PO PIIS RIPI I RTINS NI PIRE IS LI M PRI R RI B EONII PG RI ST I RO RS BI NE RO BG 8 R WP PRI R R e P2

WOk o ok ok 0

for ¢ = red Lo blue do q(c) forepnd ;3 '"note: by option
is not allowed when the control varlabie is not
of type integer or type subrange of integer,”

10.2.7 CASE STATEMENTS

A case statement selects one of its component statement lists
for execution depending on the value of an expressions :

<case statement> :3= gasg <selector> gf <cases>
; [else <statement llst>] casend

<selector> ti= <expression>

<cases> .:

3= <a case>{3<a cased>}
<a case> 13

= zfselection spec>{,kselection.spec>}=
{statement jist>

<selection spec> 2= <simple constant expression>
[oec<simple constant expression>]

The <case statement selects for execution that statement list
(if any) which has a selection specification which includes the
value of the selectore. If no selection specification includes
the value of the selectors the statement list following else s
selected when the else option is employed; otherwises the program
is in error. If the value of the seiector is not included in any

selection spec and the else is omitteds the program is in errcre.

The selector and all selection specifications must be 'of the
same scalar type or subranges of the same type., No two selection
specifications may include the same values (i.e.» selection must
be unique)e.

Selection specs are vrestricted to simple expressions (cfo
9.0} to preclude the wuse of unparenthesized relations as
selection specse

The successor of the last statement of a setected statement
list is the successor of the case statement.

Exanples:

case operator gf
splusa= X &= x 2+ vy 3}
aminus= X $3 X = y ;
stimes= X 1= x ¥ y ¢

NCR#CDC PRIVILEGED 10.0

- wo

oo se aw



10=-1>

SOFTWARE WRITER®*S LANGUAGE SPECIFICATION

Revision

75706709
4 June 09, 19795

NICHEIIHRNRRNR UM NAEENRRRNMNREINNN P NRPRNIENNRERNNREBIIPNNNMNNENMRIRONENRNNRNRRENRRENRN

100 STATEHENTS
0.207 CASE STATEMENTS

I PIHNANNGERIREMFIEI R DI R R NI NN PN RIINRROIBREERRAIINNMNRIRIICMHMNNNNENRRRNONRIIIIENRRA

case i of
z]= x 3= sin{x) ;
22 X &= cos(x) ;
ala x t= exp{x) ;
4= X t= In(x)
-else X 3= =X
casend
ok %k ok & ok ; 1"
type f(extype = (basics Inconsts, realconsts stringconsts

fdentifier)s

symbol = pegord .
. case lex 3 lextype of
=pasic= name : symbolids
class : operations
=jinconst= value ¢ jintegers
_ optimiz ¢ healeans
=realconst= value : geals
=stringconst= length ¢ 1lee255>
‘ stringouf : “string(%*)s
=jdentifier= identno ¢ integers
decli ¢ “symboientry
casend
cecend

yaL cursym : symbols sign : hoolean := false ;

L1
L2

oo oo

insymboi 3
case cursymclex gof
zpasic= jf cursymesymbolid= minus fhen sign := .
ngt sign ; gofe L1
orif cursymessymbolid = plus then gotgo L1
else error ("missing operand!)
Lfend 5
zinconst= cursymesoptimiz t= (cursymevalue<halfword)
or pwr2 (cursymovalue) ; Lf sign fhen sign t= fajse ;-
cursymevalue 1= =cursymo.value ifend ;
srealconst=s jf sign then sign = false 3
cursymosvalue ¢= —cursym.value [fend ;
sstringconst= error (¥string constant where
arithmetic type expected?) ; -
sidentifier= cursymodecl := symbolsearch
(cursymoidentno) ; Lf cursymeodeci®™otyp /=
constdecl thepn variable (cursme.dect) else
cursym = cursymedecl™,value™ ; gotgo L2
ifend
gasend

NCR/CDC PRIVILEGED 10.0



- v R

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09
Revision 4 June 09, 1975
100 STATEMENTS
10.2.8 VALUE CONFORMITY CASE STATEMENT

PPN PRI IIINPIIIS N I NPT N NN PRI RO I P PEIRIIN PE PRI RN PG RIASREA PN FIRS FG O RS RSO P REAI BRI 1 10 P NN PO NSRS R

106208 VALUE CONFORMITY CASE STATEMENT

A value conformity case statement selects for execution one of
its component statement lists depending on the type of the value
last assigned to a union variables, and permits references to that
value by assigning it to a variableo The unlon variable may be
of packed union type.

{value conformity case statement> $:=
gase ¢=: <union variable> of <value conformity cases>
' (eise <statement list> J gasend -

<union variable> tt= <variabie>
{value 6onformity cases> =
<a value conformity case> {; <a value conformity case> }

<a value conformlity case> i:=
={value type specifier>= <statement list>

<value type specifier> tt= {variable>

Each value type specifier must be a variable of one (and onty
one) of the types of the union variables and must be of a type
different from all other value type specifiers in the statement
(leees "type selection must be unique)e. If one of the value type
specifiers is of the type of value last assigned to the wunion
variables it will be assigned that vatue and the associated
statement list will be executeds Within the statement tists the
value type specifier (ieees the variable itself) may be used to
access. the value which was that of the union variableo

If none of the value type specifiers matches the type of the
value of the unlan variabley, the statement list following glse is
executedes If none of the value type specifiers matches the type
of the value of the wunion variabley and §if the else part is
omitteds the program is in error.,

The successor of the seliected statement list is the successor
of the value conformity case statements,

MCR/CDC PRIVILEGED 10.0

oo ww -



ES " b WY |

SOFTWARE WRITER®!S LANGUAGE SPECIFICATICN

15/06709
Revision & June 09, 1975

QW RITIRNANNNMNE RN RENRAEARRAEEENRNNTIRNENIIPERNNERNIRIRNR NN ERIGNRONNNRENNRRIREBRONNN
10,0 STATEMENTS
10:2.8 VALUE CONFORMITY CASE STATEMENT

PiISK NN NN ANNNNRNNRRRONRADNEN R RN NRNIEINNNENRRINRIRREGRROREZRNORIPIMENMNMAINNN

Examele:

var b2 ¢ booleans i2 : jpnkeaecs r3, r4 ¢ reals
mix = ynion (ilnteagrs» Lgals baolean)
o
mix $2 (r3 + 24.213) / r5 3 "mix assumes a real value®

It o o o

gase ¢=: mix gof "value conformity case"
=p2= stb 3= sta 3 ki=z kK + 1 3;
=i2= i2 = 12 ¢+ 2 ;5 b2 t= frue ;3
2r4s r3 3= 2 ¥ r4 3 b2 = ftrue ;
Wr4 s assigned vatue of mix and
this case is chosen"

106209 POINTER CONFORMITY CASE STATEMENTS

A pointer conformity case statement selects for execution one
of its component statement tists depending on the type of the
value fast assigned to a union variables and permits references
to that value by assigning a pointer-to—-the=vaiue to a poilnter
variables The union variablie may not be of packed union type,

<pointer conformity case statement> ::= gase :™: <union variable>
of <pointer conformity cases>leglse <statement tist>] c¢asend

union variabtle> tt= <variable>

<pointer conformity cases> ii=
€a pointer conformity case>{j;<a pointer conformity caseb>}

<a pointer conformity cased> ::=
a{pointer type specifier>= {statement list>

{pointer type specifier> $t= <pointer variable>
<pointer variable> ::= <varlable>

Each pointer type specifier must be a pointer variable to one
(and only one) of the types of the union variables and must be of
a type different from all other type specifiers in the statement
(feeos type selection must be unique)s If one of the pointer
type specifiers is a pointer to the type of value last assigned
to the union variabie, it will! be assigned a pointer to that
value and the associated statement list will be executedse wWithin

NCR/CDC PRIVILEGED 10.0

. Ge B ww O



LVTLO
SOFTWARE WRITER*®*S LANGUAGE SPECIFICATION
75/06709
Revision 4 June 09s 1975
10,0 STATEMENTS
10,209 POIMTER COMFORMITY CASE STATEMENTS

MWW NNNNRCQENINNNRRNNSRR ARSI PRI PINNIMASRIRMNNIGR IR MR ITIIIICRAIIERIIIOMNNPIIPINRIIII PN

the statement listy the pointer followed by an up arrow may be
used to refer to the value,

If none of the pointer type specifiers matches the type of the
value of the union variables the statement !ist following else Is
executeds If none of the pointer type specifiers matches the
type of the current value of the union variables and if the glse
part Iis omitted» the program Is In errore

The successor of the selected statement list is the successor
of the pointer conformity case statement. :

Examples

prog .format(ref u ¢ union (fntegershoofeands S : skrina(*)) ;
var pint ¢ “jntegers pbool t “boolgan ;
case ™t u of "pointer conformity case statement"
spiint= #strinarep {(pint®s Ss 12) ;
~=pbool= {f pbool”™ then
S(1,6) 2= Strue__°?

else
S(1s6) 3= *false_*¢
ifend
casend
precend

10.3 _CONIROL.SIAIEMENIS

Control statements <cause the- creation or destruction of
execution environmentss the transfer of control toc a different
execution environment or to a different statement in the same
-environments or bothe

{control statement> 3:= <procedure call statement>
t<create statement>{<destroy statement>
i<resume statement>i{<cycle statement>
t<exit statement>i{<return statement>
i<goto statement>i<empty statement>

10631 PROCEDURE CALL STATEMENT

A ' procedure call statement causes the creation of an
environment for the execution of the specified procedure and
transfers control to that procedure, (Cfes chape B8s Procss;

Coprocs and Labelse) A procedure call statement may never be
used to activate a function,

NCR/CDC PRIVILEGED 10.0



SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revislon & June 09, 197%
10 0 STATEMENTS
10.3.1 PROCEDURE CALL STATEMENT

"NNMIJNNNNMNNI1HN'JN"JNWNNlel'dk!NNkINNKJMNINMN~NN’JNM“~”HN'JNNN”HN”NMIJMNNNNMN

{procedure call statement> t:=x
<procedure reference> <actual parameter list>

<procedure reference> i1:= <procedure identifler>
i<pointer to procedure>”

<actual parameter list> ::=
{<actual parameter>{s<actual parameter>})

t<empty>
actual parameter$ t:= {expression>i<procedure identifier>
t<labe!> -
The actual parameter list must be compatible with the formal

parameter f{ist of the proceduree. An actual parameter corresponds

to the formal parameter which occupies the same ordinal position

in the formal parameter lists

1063011 Call_by_Value

A call by vatue: parameter causes the establishment of a
variable local to the cailed procedures and the assignment of the

value of the actual parameter to ite The type of the iocai

varlable is fixed as follows:

1. If the formatl parameter Is of fixed or variable bound types
then its instantaneous type Is Known at the time of call and
becomes the type of the local variable. The actual parameter
may be any expression which could be assigned to a varizabile
of that type (cfo Assignment Statements),

20 If the formal parameter is of adaptable types it must be an
adaptable strings» arrays records stack or sequence. The
instantaneous type of the actual parameter must be one of
those to which tne adaptable type can adapt (cf. Adaptable
Types), and the tocal variable takes on that types. The
actual assignment of value then follows normal assignment
rulese

3. If the formal parameter is an adaptable pointers tnen the
actual parameter may be any pointer expression which could be
assigned to that adaptable pointer. Both the value and the
instantaneous type of the actual parameter are assigned, thus
fixing the type of the local variable.

4, If the formal parameter 1is a bound or t‘unbound? variant
records then the actual may be an unbound or bound
(respectively) variant record of the same Instantaneous
typeo

NCR/CDC PRIVILEGED 10.0

10=1%

75/06/09

o- o e Bm

S me B Gw e G e - B e S e



10~20
SOFTWARE WRITER®*S LANGUAGE SPECIFICATION .
75706709
Revision & June 09, 1975
10,0 STATEMENTS
110:3.1.2 Call by Reference

MMEM NI TR RBIEIRINRIIZIPIIIRIRIIAI IR RPN RINISRINPIR IR ISR ISP IR FIN N FIEIN NN NN SN TR KT8 PO ET RN

10.3.1.2 Call_by Reference

A call—-by-ref parameter causes the formal parameter to
designate the actual parameter throughout execution of the
procedure. Assignments to the formal parameter thus <cause
changes to the <corresponding actual parameter. An  actual
parameter corresponding to a call=hy=ref formal parameter nust be
aligned (cfe Secltion 4,9) to ensure that it can be addressede.

The type designated by the formal parameter is fixed as

followst .

1. If the formal parameter is of fixed or variable bound types
then its instantaneous type is known.at the time of caltlo,
The actual parameter must be a wvariabte or substring

reference of the same instantaneous typesr and that type is
designatede.

20 If the formal parameter is of adaptable types the actual
parameter must be a varlable or substring reference whose
instantaneous type is one of those to which the adaptable
type c¢an adapt (cfFe Adaptable Typaes)s and that type is
designatiteds '

3. If the formail parameter is a variant record then the actual
parameter may pnot be a bound variant recordo o

G If the formal parameter is a call=by-ref procedures then the
actual parameter must be a procedure reference to a procedure
with the same ordered list of parameter types and return
typee )

5e If the formal parameter is a cali-by-ref labely then the

actual parameter must be a tabel references

1043.2 CREATE STATEMENT

The create statement causes the creation of a coprocess from
the specified procedures and establisnes a new environment

{incltuding the actual parameter list, but not including automatic
variables) for the execution of that procedure as a <Ccoprocesss
The identlity of the <created coprocess is assigned to the
specified pointer to <coproce On completion of the create
statement, a resume statement using the pointer to coproc wouid
'‘cause execution to be resumed at the constituent deciaration !ist

(if any) of the body of the procedure. At that times, automatic
variables are allocated,

NCR/7CDC PRIVILEGED 10.0

- ®n

- sw a0 wn o=

- e e ow e

on oo

B W g W

- ®o
.

ae wn



LVT L L

SOFTWARE WRITER®S LANGUAGE SPECIFICATION
75/06709

Revision 4 June 09, 1975 . :

10,0 STATEMENTS

106362 CREATE STATEHMENT

NMNANNNNBRMNNIN RN NRIERNIGISNINN NN NIORNNEQNNNINNIIKNRRAN RN NN NNRR NI RN R A

The procedure specified in the create statement is designated
the primary procedure of the coprocesse An exit by means of a
normal exits returns or goto statement while the coprocess is
stitl active Is an error (cfe B8o2 for an integrated. example and-
related semanticss)

It is possibie to have several instances at the same time of a
stngle procedure in use as a coprocs each instance having been
created with a different pointer to coprocs and potentially with
differing actual parameterso (See the second example
followings) '
{create statement> ::=

greale (<pointer to cecproc>s <procedure cali statement>)"

<pointer to coproc> :t= <variable>
Examples

prog fixer(pef as by ¢ ¢ siring (20) of cinars
answer ¢t 1 +o 10) 3
¢ 0 ¢

precend

L2 Y
yapr fixkls, fixk2s fixk3, fixk4s fixké& : “coprogc ;
"pointer to coproc"
eco '
greate(fixklsfixer(vay, vbs str#rrs response#l)) ;
greate(fixk2s fixer(vas vbs varfmms str#ss, response#2)) 3
e ¢ o

create(fixk5, fixer{rksstsk24s str#abs response#5)) ;
10.3.3 DESTROY STATEMENT

The destroy statement causes the destruction of. the coprocess
specified by the pointer to coproc and sets the pointer to pile
Storage allocated to the coprocess is returneds and subsequent
attempts to resume the coprocess or access variables local to it
are in errore A destroy statement designating the <coprocess in
which it occurs is an error (cfe Be2 for an integrated example
and related semantics).

{destroy statement> =

destroy (<pointer to coproc> {s<pointer to coproc>l})
{pointer to coproc> tia variabie>

Examples

NCR/CDC PRIVILEGED 10.0



AV Dy S &
SOFTWARE WRITER?'S LANGUAGE SPECIFICATION
75706709
Revision 4 June 09y 1975 )
100 STATEMENTS
10.3¢3 DESTROY STATEMENT

WP NANNIMADN RN IO NGNNINRERRN I RINMMNNLINIRI A A PSPPI RIPIIIMIPICINI N PRI IINIEI RN R R RN R NRN

destroy (fixk2)
1063c4 RESUME STATEMENT

The resume statement causes execution of the current coprocess
to Dbe suspendedos and execution to continue at the successor of
the last executed resume statement of the specified coprocess,
If the specified coprocess had Jjust been createds execution
resumes at {ts constituent declaration list (cf, 8.2 for an
integrated example and semantics), -

A resume statement designating a destroyed coprocess or the
coprocess in which it occurs is in error,

<resume statement> ti= pesyne (<coproc referenced)
<coproc .reference> t:= <pointer to coproc>”

Example:

cesumg (fixk2*™)

10¢3¢5 CYCLE STATEMENT

The cycte statement allows the conditional by-passing of the
remainder of the statement of the constituent statement tist of
the deséignated repetitive statementsy thus cycling it to its next
iteration (if any)s

<cycle statement> (t:= gycle [<label>llyhen <expression>]

The Jlabel must tabel a repetitive statement (fors repeats
Wwhites or loop statement), which statically encompasses the cycle
statements leeos the cycle statement must be within the scope of
the fabele If no tabel is specifieds then the cycle statement
must be a statement of the constituent statement tist of a
repetitive statements and It is that repetitive statement that is
cycleds

The expresston following 4hgn must be a boolean expression.
If t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>