
SOFIWAR.t, WRITER'S LANGUAGE'SPECIFICA.TION'

Revisl:on Ie' 'June Q·9p' 1915'

L ANGUAGE;:;SP~C I FtCATTON

'for

SOFHJARE\;J.RITER' S LAHG~UAGE

' . .L

'1 f).:·t.O:.61 09.,

75/06/0'9

Table of Contents

1.0 INTRODUCTION TO FIRST VERSIO~ (DEC 73) ••••••••••.
1.1 INTRODUCTION TO SUBSEQUENT VERSIONS •• 0 0 •••••• ~ •

1.1.1 SUMMARY OF CHANGES: REVISION 2 (OCT.'74) •••••••.
1.1.2 SUMMARY OF CHANGES: REVISION 3 (DEC. '74) ••••••
1.1.3 SUMMARY OF CHANGES: REVISION 4 (JUNE 1975) • 0 ••••

2.0 lANGUAGE OVERVIEW •
3.0 METALANGUAGE AND BASIC CONSTRUCTS •••••••••••••
3.1 METALANGUAGE •••• 0 •• 0 •••••••••• 0 ••••

3.2 LEXICAL CONSTRUCTS •• 0 0 0 0 ••••••••• 0 ••••

3.2.1 ALPHABET •• 0 ••••••••••••••• 0 •••• '

3.2.2 IDENTIFIERS 0 eo •••••• e' ••••••••••••

3.2.3 BASIC SYMBOLS ••••••• 0 •••••••••••••

3.2·.4 CONSTANTS ••••••• 0 ••••••••••••• ~
3.2.5 CONVENTIONS FOR BLANKS • 0 • e ••• e· e •••••••

3.2.6 COMMENTS ••••• e •••• e ••••••••••••

4.0 SWL T-YPES • 0 ••••••• ~ •••••••••••••••

4.1 TYPE DECLARATIONS 0 Q Q 0 0 0 0 0 0 e •• e, ••••••.••

4.2 DATA TYPES (TYPES) ••••••••• ~ •••••••• , ••
4.2.0.1 Fixed or Variable Bound Types •••••••••••

4.2.1 BASIC TYPES 0..........
4.2.1.1 Scalar Types •••••••••••••••••••
4.2.1.1.1 INTEGER TYPE ••••••••••••••••••
4.2.1.1.2 CHARACTER TYPE ••••••••••• - ••••• e

4.2.1.1.3 ORDINAL TYPE ••••••••••••••••••
4.2.1.1.4 BOOLEAN TYPE ••••••••••••••••• 0

4.2.1.1.5. SUBRANGE TYPE ••••••••••••••••• 0

4.2.2 REA-L TYPE •••••• 0 ••••••••••••••••

4.2.3 POINTER TYPE ••••••• 0 •••••••••••••

4.2.3.1 Direct Pointer Types ••••••• ' •••••• ' ••
4.2.3.2 Relative Pointer Types ••••••••••• 0'. 0

4.3 STRUCTURED TYPES •••••••••••••••••••••
4.3.1 SET TYPE •••••••••••••••••••••••
4.3.2 STRING TYPE ••••••••••••••••••••••
4.3.3 ARRAY TYPE ••••••••••••••••••••••

4.3.3.1 Array Dimensionality and Equivalence •••••••
4.3.3.2 Alternate Spel I ings for Array Types ••••••••
4.3.3.3 Packed Arrays •••••• It ••••••••..••••

4.3.4 RECORD TYPE •••••••• 0 •••••••••• 0 ~ •

4.3.4.1 Fixed Records •••••••••••• 0 ••••••

4.3.4.2 Invariant Records and Fixed Fields ••••••••
4.3.4.3 Variable Bound Records and Varia~le Bound Fields •
4.3.4.4 Variant Records and Case Parts ••••••••••
4.3.4.5 Record Type Equivaieric& ••••••••••••••
4.3.4.6 Adaptable and Bound·Variant Record Types •••••
4.3.4.7·Packed Records, Aligned Fields ••••••••••

4.3~5 UNION TYPE ••••••••••••••••••••••
4.3.5.1 Restrictions on Union .Membership •••••••• ~
4.3.5.2 Packed Unions ••••••••••••••••••

1-1'
1-2
1-2
1-6
1-7

2-1

3-1
3-1
3-2
3-2
3-3
3-4
3-4
3-4
3-5

4-1
4-1
4-2
4-3
4-4
4-4
4-4
4-5
4-5
4-6
4-6
4-7
4-8
4-8
4~9

4-10
4-11
4-.1.2
4-.13
4-il.4
4-'14
4-14

'4-15
4-16
4-16

'4-16
4-17
4-.17
4-18
4-18
4-19
4-19
4-20

A-2.
75/06/09

4.3.5.3 Union Type Equivalence •••••••••••• 0 0

4.4 STORAGE TYPES' • 0 •••••••••••••••• 41 •• 0 •

4.4.1 STACK TYPE •••••• 41 •• e ••••••••• e,' •

4.4.2 SEQUENCE TYPE ••• 0 ••••• 0 0 • 0 0 0 0 0 • 0 • 0

4.403 HEAP TYPE • 0 •••• 0 ••••••••••• 0 • 0 ••

4.4.4 SEQUENCE AND HEAP SPACE ••••••• M ••••••• e

4.5 ADAPTABLE TYPES ••••••••••••••• 0 ••• 0 0 •

4.501 ADAPTABLE STRING •••••••••••••••• 0 • 41

4.5.2 ADAPTABLE ARRAY ••••••••••••••••••••
4.5.3 ADAPTABLE RECORD •••••••••••••••••••

4.5.301 Bound Variant Record •••••••••••••••
4.5.4 ADAPTABLE STACK 0 •••••• 41 •• e ••••• ' ••••

4.5.5 ADAPTABLE SEQUENCE ••••••• ' •••••• 41 ••••

4.506 ADAPTA8LE HEAP •••••••• 0 41 ••••• 0 ••••

4.6 CONTROL TYPES ••••••••• 0 •••••••• 0 ••••

4.6.1 LABEL TYPE •••• 0 ~ 0 0 ••••••••••••••

4.6.2 PROCEDURE TYPE •••••••••••••••• 0 •••

4.6.3 COPROCESS TYPE •••••••••••• ' ••••••••
4 • 7 B 0 U N D V A R I ANT R E COR D TY P E'........
4.8 FILE TYPES •••••••••• ~ •••••••••••• '.

4.8.1 FILE VARIABLES •••••• 0 •••••••••••• ' 0

4.8.2 FILE VARIABLE WARNI~G •••••• 0 ••• '0 • 0 0 ••

4.9 PACKING AND ALIGNMENT •••••••••• o ••••••••

4010 OTH~R ASPECTS OF TYPES •••••• 0 ••••••••• 0 •

4.10.1 INstANTANEOUS TYPES •••• 0 ••••• 0 • 0 0 • 0 •

4.10.2 VALUE AND NON-VALUE TYPES •••••• 0 •••• 0 0 •

4.10.3 COMPARABLE AND NON-COMPARABLE TYPES • 0 .' ••••••

4.10.4 FUNCTION-RETURN TYPES ••••••••• 0,' •••••

4.10.5 CONVERTIBLE AND CONFORMABLE TYPES ••••••••••

5.0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS ••• 0 0 •• 0 •

5.1 VALUE CONSTRUCTORS • 0 ••••••••••••••••••

5.1.1 CONSTANTS AND CONSTANT DECLARATIONS ••••••••••
5.1.1.1 Constants •••••••••• ~ 0 •••••••••

5.1.1.2 Constant Expressions •••••••••••••• 0

5.1.1.3 Constant Declarations 0 ••••••••••••••

5.1.2 DEFINITE VALUE CONSTRUCTORS •••••••••••• 0 .'

5.1.3 INDEFINITE VALUE CONSTRUCTORS ••••••••• '0' ••
5.2. VALUE CONVERSION ••••••••••••••••••• 0 •

5.2.1 TYPE CONVERSION FUNCTIONS •••••••••••••••
5.2.1.1 Basic Conversions •••••
5.2.1.2 Conformable Array and Record

• • 0 • • • • • • • • •
Conversions • • • • •

5.2.1.3 String Conversions •••• ·''
5.3 FILE VARIABLE CONSTRUCTORS •••• ·'.
6.0 VARIABLES, SEGMENTS, AND FILES ••••••
6.1 VARIABLES AND VARIABLE DECLARATIONS ••••

6.1.1 ESTABLISHING VARIABLES ••••••••
6.1.2 TYPING OF VARIABLES ••••••••••

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

6.1.2.1 Instantaneous Types ••••••••••••• 0 ••

6.1.3 EXPLICIT VARIA8LE DECLARATIONS • 0 ••••••••••

6.2 ATTRIBUTES •••••••••••••••••• 0 •••••

6.2.1 ACCESS ATTRIBUTE •••••••••••••••••••
6.2.2 STORAGE ATTRIBUTES AND LIFETIMES •••••••••••

6.2.2.1 Automatic Variables ••••••••••••• 0 • 0

6.2.2.2 Static Variables •••••••••••••••••

4-20
4-20
4-21
4·~21

4-22
4-22
'.-22
4-23
4-24
4-25
't-25
4-25
4-26
4-26
4-26
4-26
4-27
4-2.8
4-28
4-29
4-30
4-31
4-31
4-32
4-32
4-32
4-32
4~33

4-33

'5-1'
5-1
5-1
5-1
5-3
:;-3
5-3
5-5
5-6
5-7
5-7
5-8

5-10
5-11

6-1
6-1
6-1
6-2
6-2
6-4
6-4
6-5
6-5
6-6
6-6

A-3
75/06/09

6.2t2.3 Lifetime Conventions •••••••••••••••
6.2.2.4 Lifetime of Formal Parameters •• 8 ••••••••

6.2.2.5 Lifetime of AI located Variables ••••••• 0 ••

60202.6 Pointer Lifetimes 0 C • C ceQ 0 ceo 0 coo 0 C

6.2.3 SCOPE ATTRIBUTES •• 0 ••••••••••••••••

6.2.4 FILE ATTRIBUTES •••••••••••••• 0 • 0 •••

6.3 INITIALIZATION •••• 0 •••••••••••••••• '.

6.3.1 INITIALIZATION CONSTRAINTS • 0 ••••••••••••

6.3.2 FILE VARIABLE INITIALIZATION •••••• 0 0 • 0 •••

6.4 SEGMENTS AND SEGMENT DECLARATIONS •••••••• ~ ••• 0

6.5 VALID COMBINATIONS OF ATTRIBUTES AND INITIALIZATIONS • 0 •

6.6 VARIABLE REFERENCES o. 0 0 •• 0 ••••• 0 •••••••

6.6.1 POINTER REFERENCES ••••••••••••••••••
6.601g1 Examples of Direct Pointer References •••••••

6.6.2 SUBSTRING REFERENCES ••••••••••• 0 0 ••••

6.6.3 SUBSCRIPTED REFERENCE •••••••••••••••••
6.604 FIELD REFERENCES •••• 0 •• 0 •••••••••• 0

6.6.5 ADAPTABLE AND BOUND VARIANT REFERENCES ••••••• '.
6.7 FILE VARIABLES •••• 0 •••••• 0 ••••• ' ••••• '

6.7~1 FILE SPECIFICATION •••••••••••• 0 0 ••••

6.7.1.1 File Attributes 0 •••• 0 • o ••••••••• 0

6.7.2 FILE VARIABLE INITIALIZATION ••••• 0 •••••••

7.0 PROG~AM STRUCTURE ••••• 8 •••••••••••••••

7.1 COMPILATION UNITS ••••••••••••••• 0 •••••

7.2 MODULES •••• 0 • 0 •••••••••••••••••••

7.3 DECLARATIONS AND SCOPE OF IDENTIFIERS •••••• , •••• e

7.4 MODULE - STRUCTURED SCOPE RULES ••••••• 0,' •••••

7.5 BLOCKS •••••• 0 ••• 0 •••••••• 0 ••••••

7.6 BLOCK - STRUCTURED SCOPE RULES •••••••• o ••••• '

7.7 SCOPE ATTRIBUTES •••••••••••••••••••••
7.7.1 ALIAS NAMES • 0 ••••• 0 0 •••• 0 ••••••••

7.8 EXAMPLES OF SCOPE RULES ••••••••••••••••••
7.9 DECLARATION PROCESSING ••••••• ~ ••••••••••

7.9.1 BLOCK-EMBEDDED DECLARATIONS •••••••• ••••••
7.9.2 COHPILATION-UNIT--EMBEDDED DECLARATIONS ••••• ~ ••
7.9.3 ORDER OF EVALUATION OF DECLARATIONS • 0 ••••••••

8.0 PROCS, COPROCS, AND LABELS 0 •••• 0" ••••• ' ••••

8.1 PROCEDURE DECLARATIONS ••••••••••••••••••
8.1.1 PROC ATTRIBUTES •• 0 ••••••• '. 0 ••••••••

8.1.2 PARAMETER LIST ••••• 0 •••• 0 • 0 •••••••

8.1.3 FUNCTIONS AND RETURN TYPE •••••••••••••••
6.2 COPROCS •••••••• 0 • 0 •• 0 ••••••••••••

6.3 LABEL DECLARATIONS ••• 0 ••• _ •••• 0 e e,' ••••

9.0 EXPRESSIONS ••••••••••••••••••• 0 0 •••

9.1 EVALUATION OF FACTORS ••••••••••• 0 •••••••

9.2 OPERATORS ••••••••• 0 ••••••• ' •••• e •••

9.2.1 TYPE TESTING OPERATORS ••••••••• 0 ••• e ••

9.2.2 NOT OPERATOR ••••••••••••• 0 •••••••

9.2.3 MULTIPLYING OPERATORS •• 0 ••••• o ••••••••

9.204 SIGN OPERATORS ••••••••••• 0 ••••• 0 0 •

9.2.5 ADDING OPERATORS •••••••••••••••••••
9.2.6 RELATIONAL OPERATORS ••• 0 ••• 0 ••••• 0 •••

9.2.6.1 Comparison of Scalars and Reals ••••••••••

6-6
6-6
6-1
6-7
6-7
6-8
6-8
6-8
6-9
6-9

6-10
6-11
6-12
6-12
6-13
6-15
6-16
6-17
6-18
6-18
6-19
6-21

7-1
7-1
7-1
7-2
7-3
7-3
1-4
7-4
7-5
7-6
7-7
7-7
7-8
1-8

8-1
8-2
8-3
8-4
8-5
8-7

8-10

~-1
9~2

9-4
9-4
9-5
9-6
9-7
9-7
9-9
9-9'

A-4
75/06/09

902.6.2 Comparison of Direct Pointers •••••••••••
9.2.6.3 Comparison of Relative Pointers •••••• 0 •••

9.2.6.4 Comparison of Strings ••••••••••••• : ••
9.2.6.5 Relations Involving Sets •••••••••••••
9.2.6.6 Relations Involving Arrays and Records ••• 0 • 0

9.2.6.7 Non-Comparable Types • 0 •••••• 0 ••••••

9.2.6.8 Table of Comparable Types and Result Types ••• 0

9'. 2 • 7 E X P 0 N E H T I A TIN GOP ERA TOR ••• 0 • • • • • .'. • • • • •

9.3 ORDER OF EVALUATION ••••••••••••••••••••

10 0 0 STATEMENTS ••••••••••••••••••••••••
10.1 'ASSIGNMENT STATEMENTS 0 ~ ••••••••••••••••

10.1.1 ASSIGNMENTS fa VARIABLES AND FUNCTIONS 0 •••••••

10.1.2 SUCCESSOR AND PREDECESSilR ASSIGNMENT STATEMENTS •••
10.1.3 CONCATENATING ASSIGNMENT 0 ••••••••••••••

10.2 STRUCTURED STATEMENTS •••••••••••••• ~ ., ••
lOQ201 BEGIN STATEMENTS •• 0 ••••••••••••••••

10.2.2 IF STATEMENTS 0 •• 0 ••••••••••••••••

10.2.3 LOOP STATEMENTS • 0 ••••••••••••• 0 •••

10.2.4 WHILE STATEMENTS ••••••••••••••• 0 •• 0

10.2.5 REPEAT STATEMENTS •••••••• e •••••• e ~ •

10.2.6 FOR STATEMENTS ••• e ••• e • ~ ••••••••••

10.2.7 CASE STATEMENTS • D •••• 0 ••••••••• e, ••

10.2.8· VALUE CONFORMITY CASE STATEHENT ••••• D •••••

10.2.9 POINTER CONFORMITY CASE STATEMENTS ••••••••• '.
10.3 CONTROL STATEMENTS • 0 ••••• ' ••••••••• 0 ••

10.3.1 PROCEDURE CALL STATEMENT •••• e, •••••••••••

10.3.1~1 Call by Value • e ••••••••••• ~ ••••

10.3.1.2 Call by Reference ••••••••••••••••
10.3.2 CREATE STATEMENT •• e ••••••••••••••••

10.3.3 DESTROY STATEMENT •••••• e •••••••••• e

10.3.4 RESUME STATEMENT •••••••••••••••••••
10.3.5 CYCLE STATEMENT ••••••••••••• ' ••••••
10.3.6 EXIT STATEMENT ••••••••••••••••• 0 ••

10.3.7 RETURN STATEMENT ., ••••• ' ••••• ' ••• ' ••••
10,3.8 GOTO STATEMENT •••••••••••••.•••••••
10.3.9 EMPTY STATEMENT ••••••••••••••• 0 •••

10.4 STORAGE MANAGEMENT STATEMENTS • e ••••••••••••

10.4.1 ALLOCATION DESIGNATOR ••••••••••••••••
10.4.2 PUSH STATEMENT ••••••••••••••.•• e •••

10.4.2.1 User-Declared Stack •••••••••••••••
10.4.2.2 System-Managed Stack •••••••••••••••

10.4.3 POP STATEMENT ••••••••••••••••••••
10.4.4 NEXT STATE~ENT ••• e ••••••••••••••••

10.4.5 RESET STATEMENT •••••••••••••••••••
10.4.5.1 Reset Sequence ••••••••••••••••••
10.4.5.2 Reset Stack •••••••••••••••• ' •••
10.4.5.3 Reset Heap •••••••• e •••••••••••

10.4.6 ALLOCATE STATEMENT ••••••••••••••••••
10.4.7 FREE STATEMENT ••••••••••••••••••••

10.5 INPUT-OUTPUT STATEMENTS •••••••••••••••••
10.5.1 OPEN STATEMENT ••••••••••••••••••••

10.5.1.1 Unspecified Attrloutes ~ 0 0 0 0 •••••• e ••

10.5.2 CLOSE STATEMENT •••••••••••••••••••
10.5.1 POSITIONING STATEMENTS ••••••• e ••••••••

10.5.4 READ-WRITE STATEMENTS ••••••• e ••••••••

9-10
9-10
9-11
9-11
9-12
9-12
9-12
9-14
9-14

10-1
10-2
10-3
10-5
10-5
10-6
10-6
10-7
10-8
10-9

10-10 '
10-11
10-14
10-16
10-17
10-18
10-18
10-19
10-20
10-20
10-21
10-22
10-22
10-23
10-24
10-24
10-25
10-25
10-26
10-28
10-28
10-29
10-29
10-30
10-31 '
10-31
10-31
10-32
10-32
10-32
10-33
10-34
10-34
10-34
10-35
10-35

A-5
75/06/09

10.5.401 Write (Partial) Line statement ••••••••••
10.5.4.1.1 WRITE LINE STATEMENT • 0 •••• 0 0 ••• 0 ••

10.5.401.2 WRITE PARTIAL LINE STATEMENT ••••••••••
10,5.4.2 Put Elements ••••••••••• 0 o ••••••

10.5.40201 CHARACTER CLASS OUTPUT •••••••••••• 0

10.5.4.2.2 NON-NUMERIC SCALAR WITH RADIX ••••••• 0 •

10.5.4.2.3 STRING ELEMENT WITH RADIX •••••••••••
10.5.4.204 REAL ELEMENT ••••••••••••••••••
10.5.4 0 2 0 5 INTEGER ELEMENT ••••••••••.••••••
10.5o~~2.6 SCALAR SUBRANGE ELEMENT ••••••••••••
10.5.40207 POINTER ELEMENT ••••••••••••••••
10.5.4.3 Write Binary Statement •••••••••• 0 • 0 0

10.5.4.4 Write Sequential statement ••••••••••••
10.5.4.5 Write Direct Statement 4 ••• 0 •••••••• 0

10.'.4.6 Read Legible Statement •••••••••• 0 • 0 •

1005.4.7 Read Partial Legible Statement ••• 0 ••. GOO.

10.504.8 Read Binary Statement • 0 ••••.• 0 • 0 •• 0 •

10.5.4.9 Read Sequential Statement 0· •• 0 • 0 •• 0 •• 0

10 e5 0 4 • 10 R e ad D ire c t S t at em e n t •••..• 0 .' 0 • 0 0 • • • • .

10.5.5 FORHAT CONTROL •••••••• 0 0 • 0 •••• 0 • 0 0

10.5.5.1 Page statement 0 0 •• 0 0 •.• 0 • o. 0 0 •••• 0

10.5.5.2 Eject Statement •• 0 0 •• 0 • 0 0 0 •••• 0 •

10.5.SQ3 Line statement •••• 0 •• 0 00 ••••• •• 0

10.5rSo4 Skip statement ••••••••• 0 ••• 0 0 •• 0

11.0 STANDARD PROCEDURESANO FUNCTIONS ••••• 0 • 0 0 0 000

11.1 STANDARD PROCEDURES •••••••••• o· 0 0 •• 0 • 0 •

11.101 #TRANSLATE (S, 0, T) ••• 00 •• 0 0 0 • 0 • 0 0 0 0

11.1e2 nSTRINGREP (V~ 0, W(,R]) • c • 0 0 •• 0 ••••• 0

11.1.3 #SETPAGESrZE «PRINT FILE VARI~BLE),<NUMBER OF LINES»
11.1.4
#SETPAGEPROC «PRINT FILE VARIABLE>,<PROCEOURE REFERENCE» •

11.2 STANDARD FUNCTIONS •••••• 0 •••• 0 0 0 •• 0 •• 0

11.2.1 #ABS(X) • o' •• 0 • 0 • 0 0 0 • 0 0 ••••• 0 •••

11.2.2 #SIGN(X) ••••• 0 0 • 0 0 ••• 0 0 • ", • 0 • 0 •

11.2.3 #SUCCeX) ••••• 0 0 • 0 •• 0 •• 0 •• 0 •• 0 • 0

11.2.4 #PRED(X) • 0 • 0 0 • 0 • 0 • 0 ••• 0 0 •• 0 ••• 0

11.2.5 SINTEGER(X) 0" 0 0 • 0 0 0 0 • 0 •••••••• 0

11.2.6 $REAL(X) • 41 • 0 • 0 • o· • 0 0 ••••••• 0 0 •••

11.2.7 $CHAR(X) ••• 0 •• 0 0 o •• 0 0 0 0 0 •• 0 • 0 • 0

11.2.8 SSTRING(l,SC,FILL) • 0 • 0 0 • 0 •••••• 0 0 • 0

11.2.9 ffSTRLENGTH(X) •• 0 •• 0 •• 0 • 0 • 0 • '. 0 0 0 0 •

11.2.10 #LO~ERBOUND(ARRAY, N) • 0 •• 0 • 0 0 0 0 •• 0 •• 0

11.2.11 #UPPERBOUNO(ARRAY, N) 0 0 ••• 0 •• 0 0 0 • 0 0 • 0

11.2.12 #EOF(FILE) •••• 0 0 0 •••• 0 • 0 0 0 •••••

11.2.13 #COPROCID ••• 0 ••• 0 0 ••••• 0 0 0 • 0 •••

11.2014 #REL(POINTER[,PARENTAL1) •••• 0 0 0 0 0 ••• 0 0

11.2.15 #PTRCRELATIVE_POINTERC,PARENTAL1) 0 ••• 0 • 0 •••

1102016 flUPPERVAlUE(X) ••• 0 ••••• 0 0 0 ••• 0 0 • 0

11.2.17 #LOWERVALUE(X) •••••••• 0 0 0 '0 0 0 ••• 0 0

11.2.18 #PREVIOVS(S,N) • 0 ••• 0 0 • 0 0 ••••••• 0 •

11.2.19 #CURPAGESIZE «PRINT FILE VARIABLE») •• 0 • 0 • 0 0

11.2.20 #CURLINO «PKINT FILE VARIABLE» • 0 • 0 0 0 0 0 0 0

11.2.21 #CURSTRLE~GTH (X) •••• 0 0 •• 0 ••••• 0 •••

11.2.22 $BOOLEAN (X) •• 0 •••••• 0 0 ••• 0 • 0 • 0 •

11.3 REPRESENTATION DEPENDENT ••• 0 •••• 0 •• 0 • 0 0 0 0

10-35
10-·35
10-36
10-36
10-37
10-38
10-39
10-39
10-40
10-40
10-40
10-41
10-41
10-41
10-42
10-42
10-lt3
10-43
10-44
10-4 l •

10- li5
10-45
10-45
10-46

11-1
11-1
11-1
11-1
11-2

11-2
11-2
11-3
11-3
11-3
11-3
11-3
11-4
11-4
11-4
11-4
11-4
11-5
11-5
11-5
11-5
11-6
11-6
11-7
11-7
11-7
11-7
11-7
11-7
11-8

A-6
75/06/09

11e3.1 #LOC«VA~rABLE» 0 0 0 0 ••• 0 0 •• .. • • • • • • •
11.3.2 USIZE(hRGUMENT) 0 •••• 0 ••••• • · •
1103c3 UOFFSET(U,BASE) •• 0 0 0 •• 0 0 •• • ., • • • • 0 •
11.304 ffMALIGNMENT(ARGUMENT, OFFSET, BASE) • .. Q Q 0 000

11. /t SYSTEf'1 DEPENDtlH FUNCTIONS Ai~D PROCEDuRES • ·'. •
11.4.1 UbWEOR «FILE VARIABLE» 0 •••••• .. · . . ., . . •
11.4.2 "6WEOF «FILE VARIABLE» 0 •••••• • • • 0 • • • •
11.4.3 U6EOR «FILE VARIA~lE» ••• 0 ••• • · . .0. . •
11.404 U6EOF «FILE VA~IABlE» ••••••• • • • • • • 0 •
11.405 #6EOI «FILE VARIABLE» ••••••• .. • • • • • • •

12 • 0 'C 0 :"1 P I L E - T I i'l E F A elL I TIE So. 0 • • • • • • •
12.1 STATE~ENTS AND DECLARATIONS eo •• 0 ••

1261.1 COMPILE-TIME VARIAULES 0 0 •• 0 •••

12.1.2 COMPILE-TIME ASSIGNMENT STATEMENT ••
12.1.3 COMPILE-TIME IF STATEMENT ••••••

· •
• • • • • • • •
• • • • • • • •
• • C • • • .. •

12.2 MACROS •••• 0 0 • 0 • eo •• 0 ••• • .. • • ., • 0 •

13.0 REPRESENTATION-DEPENDENT FEATURES
13.1 DATA TYPES I> I> C ... 0 ... C

13.101 CELL TYPE 0 0 ••••• 0 ••

13" 1 • 2 C R At-l t,,! EDT Y PES 0.,... 0 . .
•
•
•
•

1301.2.1 Alignment o • • • eo. • •
13.1e'2.2 vlidth • " • • 0 • • • • • •

13.2 STATEMENTS 0 0 o • • • • C • 0 •

• • • ••
• • • 0

., . . .
c • • •

• • • •
.. • 0 •

o • • •

14 .. 0
14.1
1402
14.3
1 'to 4

MACHINE-DEPENDENT FEATURES •••••••••
DATA TYPES 0 0 e & 0 •• 0 ., ., •• ., ••

MACHINE-DEP~NDENT STORAGE ATTRIBUTES " .. o

CODE STATEMENT o. 0 •••••••••••

MACHINE INSTRUCTIONS •••• • ., ••••••

.0. ·

.. • 0 • • " •

• • • • • • •
o • 0 • 8· Q Q ·
• • • • • • 0 .' . • • • • 0 ·'.
• • • • • • 0

• • • • • • •

11-8
11-8
11-8
11-8
11-8
11-9
11-9
11-9
11-9
11-9

12-1
12-1
12-1
12-2
12-2
12-3

13-1
13-1
13-1
13-1
13-2
13-3
13-3

14-1
14-1
14-1
14-1
14-2

1-1
SOFTWARE WRITER'S LANGUAGE SP[CIFICATION

75/06/09
Revision 4 June 09, 1975

1.0 INTRODUCTION TG FIRST VERSION (DEC 73)

The purpose of this document
Writers' Language to such a degree
understood, used, documented, and
experienced in the use of high-level
The language design and this document
Software Writers' Language Committee.

Is to define the Software
that the language can be

implemented by programmers
block-structured languages.

are products of the NCR-CDC

The Software Vlri terse Language wi II serve as the sole systems
programming language for the development of the ~CR-CDC
Integrated Product Line (IPL) and is established to satisfy the
bulk Qf the IPL systems programming requirements with
machine-Independent faci I ities that are weJI structured and can
be implemented efficiently and reliably.

Further language developments can be expected in the areas of.
operating system, hardware, and debuggingfaci lities as the IPl
becomes further defined.

The goals for the Software Writers' language include:

It should furnisn high functional power for the problems
encountered In the creation of compi lers and other software
systems,
It should be an "easy to use" language, giving the facility or
function needed in a reasonably direct manner.

- As much as possible, it should guard against the programmer's
use of programmatic elements in ways ~hlch might cause
long-undetected errorsl or errors if the program were carried
from one machine to a different model.

'- The language should provide sufficiently high-level constructs
to free the programmer from much of the burdensome detai Is of
program construction, and sufficient low-level constructs to
get the job done.
SWL should yield effective object programs in computer systems
not necessarily yet designed.
The language should encourage the creation of programs and data
whose structure is immediately apparent to the reader.

NCR/CDC PRIVILEGED 1.0

1-2
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09, 1975

1.0 INTRODUCTION TO FIRST VERSION (DEC 73)
1.1 INTRODUCT IOr~ TO SlJBSEQUENT VERS IONS
HN~NNNN~~~~~HHNNN~NNNN~NN~NNHNNUNNNUNNNNHNH~MHNNNNNNNNNNNNHNNNNHNH

On acceptance of the first version of the language
specification, the original Software Writers Language Committee
was' dissolved and replaced by a S\'JL Language Control Board
responsible for the future of the language. Concurrently, a SWL
Language Log was started for purposes of r~cordlng and tracking
requests for language changes and their eventual resolution by
the board. The SWL specification wi II be periodically revised to
reflect accepted language changes. In addition, minor
corrections, rewordings, and clarifications wi II be made, more
examples, exemplary discussion and cross-referencing will be
added. This I-li II be a continuing process intended to transform
an austere specification, directed to a limited audience, Into a
more generally usable reference document.

1 • 1. 1, SUM MAR Y 0 F C HAN G E S: REV I SID N 2 (0 CT •. ' 74)

Changes are listed below by topic and section numbers.

Constants (3.2.4)

An explicit denotation for a base-lO radix has been added.

Formal Types (4.0 and 4.6)

Procedures, labels, and coprocs are now classified as
'control' types. Formal types include control types, adaptable
types, and t~e newly introduced bound variant record types (cf.
4.1), which are inCluded in the new syntax, for SWL types.'

Ordinal types (4.2.1.1.3)

Ordinal type specifications are no longer restricted to appear
only in type declarations.

At least two ordinal constant identIfiers must appear in the
ordinal constant list.

Subrange Types (4.2.1.1.5)

Variable-bound suoranges are no longer permitted.

Pointer Types (4.2.3)

Read-only pointers--and the associated 'read' attribute for
polnters--have been Introduced.

NCR/CDC PRIVILEGED 1.0

... - ...
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

1.0 INTRODUCTION TO FIRST VERSION (DEC 73)
1.1.1 SUMMARY OF CHANGES: REVISION 2 (OCT.'74)
HNNNHNNNNNHHNNNNHHH~HNNNNNNNU~N~~N~NN~N~N~HM~HNNNHNNNNN~HNNNNNNNNN

Relative pointers may now be used with elements of strings,
arrays, and records, as weI I as with elements of storage types.

The definition of relative-pointer equivalence has been
strengthened to include dependence on the 'parental' types of the
rel~tlve pointers, as well as tne types of the elements pointed
too

Specifications for the #~~! and #~tt functions have been
revised to reflect the new definition of relative pointer
equivalence.

Arrays and subscrIpted References (4.3.3 and 6.4.3)
~.

The treatment by SWL of arrays and subscripted references has
been clarified; an a-dimensional array may be declared and
referenced as a vector of Q - 1 dimensional arrays, for exampleo

Record Types (4.3~4)

Syntax and semantics for record types have been simplified,
and minor corrections made.

Variant records are now legitimate fields of records of fixed
type.

Alignment may now be specified for tag fields of variants.

Union Types (4.3.5)

Union membership is now
types. The non-value types
~tacks of non-Value types, and
non-value type.

restricted to distinct, 'valued'
are fifes and heaps, arrays and
records containing a f~eld of

Union types may now be packed.

Adaptable Types (4.5)

Syntax and sem.ntics for ~daptable arrays have been redefined
an d s imp I I fie d •

Components of adaptable arrays may now be adaptable types.

Correction to adaptable records now allows field selectors for
adaptaole fields.

Procedures, Labels, and Coprocs (4.6 and 8.1)

ForRlal types are now called 'control I types.

NCR/CDC PRIVILEGED 1.0

1-4
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/0&/09
Revision 4 June 09, 1975

1.0 INTRODUCTION TO FIRST VERSION (DEC 73)
1 Q 1 0 1 S U ~1i'1 A R Y 0 F C HAN G E S: REV I SIO!~ 2 (0 C r.. ~.7 td
HHNNNNNNHN~NNNNNNNNH_NNN~HNNHNN~HNN~_UNMqNN~_NN~H~~NNH~M~NNNH~NHNH

Syntax for procedure type specifications and procedure
d~claration has been revised; procedure type Identifiers may now
be used in procedure declarations.

- Bound Variant Record Types (4 0 7)

Bound variant records may have their case parts 'fixed' to one
of their constltutent variants, for purposes of space
compaction. They are formal types. which may be used as formal
parameters and must otherwise be referenced through pointers.

Repetition Factors (404.2, 10.401, 5.102)

The spell ing for repetitions has been changed to allow parsing
without indefinite look-ahead. The definition of spans has been
re~tricted to the use of type identifiers r~ther than types.

Type~ 'Constant, and Variable Declarations (401.1' 501,,1j1 6.1)

Empty specifications are now allowed in these declarations.
The Intent Is to provide flexibility in program composition and
revision.

'Compilation Units, Modules; Blocks (7)

Syntax and semantics have been reordered and expanded.

Procedures as well as variables are al'owed as prongs of
compilation units.

Empty declarations are now al lowed (for purposes of program
composition and revision).

Order of evaluation of declarations (7.9.3) is governed solely
by block s~ructuring.

Expressions (9)

A conditional-and operator
operator (uor) have been addedo

(cand) and an unconditional-or

The pointer type test operator has been respelled (:A:) and an
analogous value type test operator (:~:) has been added.

Order of evaluation of expressions (9.3)
solely by the syntactic rules of composition and
precedence rules.

- Assignment statements (10.1)

is now governed
their implied

~CR/COC PRIVILEGED 1.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

1.0 INTRODUCTION TO FI~ST VERSION (DEC 13)
1.101 SUMMARY OF CHANGESs REVISION 2 (OCT.'74)

75/06/09

"NNNNUNN~H~NNNuN~NHHN~N~_~NNNNNH~NN~NHNHHHN~NNN~NN~HNNNNNHNNNNNNNN

A successor statement and a predecessor statement have been
added.

Stacks and sequences may now be assigned (to stacks and
sequences respectively); the restrictions on such assignments arc
cal~ed out (10.1.1, point 8)0

Restrictions on assignments involving read-only pointers and
pointers to bound variant records are spelled out (10.1.1, points
6, 1).

Case statements (10.2.8 and 10.2.9)

V~riant case statements have been removed.

A value conformity case statement has been added.

-'Formal and Actual Parameters (~0.301)

Restrictions on the use of bound variant records as actual and
formal parameters ar~ spelled out (points 7 and 8).

Allocation Designators (1004.1)

Syntax and semantics for allocation, designators have been
expanded to il'uminate the various species of 'fixers' used for
adaptab'es and bound variants.

Standard Procedures and Functions (11)

The ordering of the parameters of the #translate procedure has
been changed.

The following functions now accept a type identifier as well
as a variable as an argument: #strlength, #Iowerbound,
#upperbound, #size, /tmal ignment.

The functions #fowervalue and #uppervaluehave been. added.

Com p I I e - Tim e Fa c'j , i tie s (12)

The semantics of the phase-one faci Iities have been expanded
to cover the treatment of identifiers for compi Ie-time variables
and macros, and the interpretation of macros and compile-time
statements.

Representation-Dependent Features (13)

The syntax of crammed types h~s been corrected to preclude the
use of variable-bound crammed structures, and to spruce UP the

NCR/CDC PRIVILEGED 1.0

1-6
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

1 0 0 INTRODUCTION TO FIRST VERSION (DEC 73)
lolGl SUMMARY OF CHANGES: REVISION 2 (OCT.;74)

specification of mallgnment.

1.1.2 SUMMARY OF CHANGESl REVISION 3 (DEC. '74)

Changes are listed below by topic and section number~.

Constants (3.2.4)

The $~Ua~ conversion function is now a <character constant>
rather than a <string term>.

Storag~ Types (4.4), storage Mgmt. Statements (10.4)

Mechanisms for accessing elements of a stack other than the
topmost one have been added e

The use of· a stack identifier followed by an up arrow to
reference the top element of a stack is no longer permitted.

A system-defined stack with automatic lifetime characteristics
has been introduced,

The eM~U and &U2 statements have been changed to reflect the
abo v e c.h a n g e s •

The ~~~gl statement has been extended to permit stacks to be
successively popped to a designated element and to permit al I
elements of a heap to be freed en-masse •

•
A new built-in function for returning pointers t9 stack

elements has been added (#2LA!lQ~i' 11.2.18).

Pointer Comparisons (cf. 9.2.6.2 and 9.2.6.3)

All six relational operators may now be used with al I direct
and relative pointers except for pointers to file types, which
are non-comparable, and pointers to control types, which may be
compared for equaHty and inequality only.

Files (4.8, 6.~, 10.5)

File types (4.8) have been rounded out to include 2tlut files
(formatting controlled by procedures) and tllt~~t fi les (binary
files with 'keyed' accessing facilities).

File types are now data types (rather than formal types) which
are associated with file variables (6.7). FI Ie variables are
used to access actual files. An actual file must be associated

NCR/CDC PRIVILEGED 1.0

SOFTWARE WRITERIS LANGUAGE SPECIFICATION
15/06/09

Revision 4 June 09, 1975

leO INTRODUCTION TO FIRST VERSIO~ (DEC 73)
1.102 SUMMARY OF CHANGES: REVISION 3 (DEC. '74)
NNN~~UHNNNM~NNUNNNNNN~NNNHNNNHNU~NHNNNHNHNNNNN~NNNUNNNNNNNNNNNNNNN

wit h a f i I e va ria b I e (by an 2.11Sl11 s tat em e n t) i nor de r to be
accessed.

'Value constructors' for file variables have been. added
(5.2.3).

Input-Output statements (10.5) have been extended and revised
(In part) to reflect the ne~3 file types and the neltl handling of
file accessing. Subsequent revisions will complete these
extel1sionso

1.1e3 SUMMARY OF CHANGES: REVISION 4 (JUNE 1975)

This ·revision has Its changes from Revision 3 specified by
'change bars' in the right margin, except for deletions of entire
paragra~hs or sections,

Change bars have been manually deleted. where they Indicate
only trivial spelling corrections, clarlflcationsp re-wordlngs or
re-formattings.

Major changes for this revision include:

The mi~tQ faci lity of the language has been completely removed
(but ma~Ln~ remain).

Input/output has been modified by the addition of formatted
output and related functions. See 4.8, 6e7, and 10.5.

Var.ying strings and concatenation have been idded to the
language (cf, 4.3.2, 5.2.1.3, 6e2.9.4, and 11.2.8),

The use of a procedure-type-Identifier in the declaration of a
procedure has been removed.

Restrictions have been placed on type-fixers in allocation
Allocation designators for variant records (cf. 10.4.1

Designators).

A L~~~t command for a storage
allocation into that storage
10.4).

variable
variable

prior
is now

to the first
required (cf.

The spel ling of access attributes and file attributes has been
changed so they begin with the prefix character 'H'.

Structured conversions have been re-defined (cf. 5.2.1.2).

NCR/CDC PRIVILEGED 100

• I .

• I .

• I .

• · .
I
I .

I · . • I ..

• · .

• • • • • · .
• • • •

1-8
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

leO INTRODUCTION TO FIRST VERSION (DEC 73)
101.3 SU~MARY OF CHANGES: REVISION ~ {JUNE 1975)

Label declared are required only In ISWL programs, and should
not appear in SwL programs (cfe 8.3 Label Declarations).

An 'alias' for Identifiers has been added to the language
(cf. 707.1 Alias Names).

NCR/CDC PRIVILEGED 1.0

• • • · .

2-1
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

2.0 LANGUAGE OVERVIEW

A SWL program consists of ~ti1gillgnt~' which define actions
involving programmatic elements, and agQlititl~Q~J which define
such elementso

The definable elements include ~2tl~glQ~' ~t~QQQ~t~~, l~QE!~'
and [11~§' al I having the characteristics that are conventionally
associated with their names. Declarations of Instances of these
elements are spe' led out in terms of an itltDtlfl~t for the
element and a txeft description, which defines the operational
aspects of the element and, in many cases, indicates a
referential notation. In the case of a varlable declaration, the
type defines the set of values that may be assumed by the
variablec Types may be directly described In such declarations,
or they may be referenced by a type identifier, which In turn
must be defined by an exp(icit type declarationQ A Smal I set of
pre-defined types are provided, together with notations for
defining new t;pes in terms of existing ones.

In general, an element may not enter Into operations outside
the domain indicated by its type, and most dyadic operations are
restricted to elements of equivalent types (e090, an integer may
not be added to a real number). Since the 'requirements for type
equivalence are severe, these operational constraints are
stricto Departures from them must be explicitly speJ led-out in
.terms of GQuxAt~lQU f~nntlQQ~o

The ~2~lri l~~g~ include the pre-defined iQl~g~t, Qh~L' h~Ql~aQ
and tfl~l types, al I having their conventional connotations, value
sets, and operational domains w The first three are ~~Blilt t~£~s,
which define well-ordered sets of values -- as distinguished from·
real typese A scalar type may also be defined as an QtnlUal 1xe~
by enumerating the Identifiers which stand for Its ordinal
value~, or as a iY2tAU9~ of another scalar type by specifying the
smallest and largest values of the subrange. e21Dt~t tye~i are
included in .the basic types. They represent location values, and
other descriptive Information, that can be used to reference
Instances of varlaDles and other SWL e'ements. Pointers are
always bound to a specific type, and pointer variables may
assume, as values, only pointers to elements of that type.

Sttll£tUL~~ tXEC~ represent collections of components, and are
defined by describin~ their component types and indicating a
so-called ~ttu~tutiQg mAihQ~. These differ in the accessing

NCR/CDC PRIVILEGED 2.0

2-2
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09, 1975

200 LANGUAGE OVERVIEW

discipline and notation used to
Five structuring methods are
structure, ~tL2X structure,
structuree

select Individual components.
available: ~~1 structure; ~ltlng
Lg~~t~ structure and illll~n

A ~ftl type represents all subsets of values of some scalar
type.

A £tLluu t~~c of length D represents al I ordered a-tuples of
values of char3cter type. An ordered ~-tuple of these va'ues
(1 ~ K ~ n) is called a ~~QilL1Ugc Notation for accessing
substrings is provldedo

An aLr.,ax. tYp"g represents a structure consisting of components
of the same typeo Each component is selected by an ~r.L~Y
~glft~tQt consisting of an ordered set of D index values whose
types are indicated in the array definitiono

A t~£QLn l~~g represents a structure consisting of a fixed
number of components cal led fields, which may be of different
types and which ffiust be identified by flftld ~glftQtRL~. In order
that th2 type of a selected field be evident from the program
text (without ~xecuting the program) a field selector is not a
computable value, but instead is an identifier uniquely denoting
the component to De selected. These component Identifiers are
declared in the record type definitiono

A ~~Cl~Q! tf£2tQ iX£Q may be specIfied as consisting of
several ~Er.lsut~. This implies that different variables,
although said to be of the same type, may assune structures which
differ in a certain mannero The difference may consist of a

° d iff ere n t n u m Do era n d d iff ere n tty pes a f com p 0 n en t s • The. v a ria n t
which is assumed by the current value of a record variable is
indicated by a component field which is common to al I variants
and is cal led the tAg field.

A ~nlQo type represents a finite set of
non-equivalent types. Union types permit one
proce.dures whose parameters can be of more than one
provide an alternative to variant record types.

selectable,
to define

type and

Array and record types may have associated el£~lng !lttl~utftl'
which can be used to specify component space-time trade-offs.
Access time for specific components of packed (space-compressed)
structures can be shortened by declaring them to be alLgil~rt.

'Lammg~ ittYGtU[~~ tY2ft~ 'are used to spel lout the precise
representation of a structure in terms of the bit-lengths and
relative alignments of its components. The use of crammed types
Is restricted to the so-cal led ~~er~~~nt~tiQD-g~2~DgQnt portion
of a program.

NCR/CDC PRIVILEGED 2.0

2-3
SOFTWARE WRITER'S lANGUhGE SPECIFICATION

;5/06/09
Revision 4 June 09, 1975

200 LANGUAGE OVERVIEW

st~ti9~ ty~~~ represent structures to which other variables
may be added, referenced, and deleted under expl icit program
controlo There are three storage types, each with its own
management and access characteristics. A ~t~~~ i~~~ represents a
collection of components of the same type I-Jhich is managed (in a
"last in - first out" manner) by the e~~~, ~ge and t~iQt
operationso Stack components are accessed through pointers
constructed as by-products of these operations. ~~gli~n~ft 1~eg~

and b2ae lY2Q~ represent storage structures whose components may
be of diverse type. Components of ~~gllQnQft~ arc managed through
the operations of resetting to the first component and moving to
the DfrXt component and are accessed through pointers constructed
as by-products of these operationso Space for components of ll~n~

~i~tgQ~~ must be explicitly managed by the operation of ~ll~£atft
and tLg~; the components are accessed through pointers
constructed as by-products of the al locate operation.

Many -of' the structured and storage types are descr i bed in
terms of attrlbutesp cal led hQllUQ~' that specify their shapes and
extents. If the values of such attributes· can be determined by a
perusal of the entire program, then the associated type is
precisely defined, and is said to be of ti~grt !~~~; otherwise,
the type is. said to be of ~~tlE~l~ ~QYQrt tye~o In the latter
case, the type represents a class of potential instances of fixed
types. An "instantaneous" fixed type for these is establlshcld
whenever tne type declaration is elaborated during execution
(upon entering the block in which the declaration occurs), and
persists over the scope of the declarationo

Agg&tg~lft i~e~~ are array, string, record, and storage types
defined in terms of one or more indefinite bounds. They may be
used as formal ~arameters of procedures -- In which c~se the
bounds of the actual parameters are assumed; or they may De used
to define pointers to structures which are meant to be explicitly
fixed during execution of the program, through the use of
so-called "atlocation designators""

An austere set of tl!~ __ tye~~, and 'accessing methods', is
providedo Actual files are accessed by means of !11~_~~Ll~hl~~~
and must be explicitly associated with a file variable (through
an ~&gU statement) in order to be accessedo

Denotations for expl jcit values of the basic and structured
types consist of ~~llitnut~' which denote constant values of the
basic types; and yalY~ ~gO~tLY~lQt~' which are used to denote
instances of values of set, array, and record types. Numerals,
quoted strings of characters, and the boolean constants
(!tli~'f~li~) are pre-definede New constants can be introduced by
£nn~tant ~Q~lBt!li2Ui' which ~ssoc'ate an identifier with a
constant expression.

NCR/CDC PRIVILEGED 2.0

2-4
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

2.0 LANGUAGE OVERVIEW

llfttlultg
information,
Qno~ttli£t2LS
indicated by

~a!ug ~~n~itY£i~C~' which Include specific type
may be used freely In e~presslonse Xng~tlD11Q l~l~~
can be used only where their type is exp'icitly
the context in which they occuro

Variables can be declared with lQltlgllz~tlQn specifications
and with certain ntttlbllt~~. Inltlallzil11nD ~!£tc~~lQn~ are
evaluated when storage for the ~Brlable is allocated, and the
resultant values are then assigned to the variable. The
attrfbutes Include !~£Qi~ ~t1[1~utQS - whiCh specify the purposes
for which the variable may be accessed; ~tQta~~ ~tt[lhUiQ~
which specify when storage for the variable is to be allocated
and when it is to oe freed; and i£Q£Q atttlhutUi -which specify
the program span over which the deciaration is to hold (the scope
of the dec&aratlon)o Unless otherwise spe6ified, tne scope· of a
declaration is the Ql~~k containing the declaration, including
all contained sub-blocks except for those which contain a
re-dec'~ration of tne identifiero

ftl~~~~ are .portions of programs grouped together as either·
~lglD=gDd blocks or ~tQ£~~ytg~o The former are used primarily to
define scope and to provide shielding. The latter also have
identifiers associated with them, so that the identified portions
of the program can be activated on Jemand by statements of the
language.

A 2tQ~~llYL~ Is declared In terms of Its identifier; the
associated program, a set of attributes, and a list of fQtffiAl
~~tam~t§ti. Formal parameters are variable declarations which
provide a mechanism for the binding of references to the
procedure with a set of values and variables the ~£ty~!

&itAm~t~L~ at the point of activation. Two methods of
parameter binding are provided £a!l=hX=~El~ft and
£all=Qy=~~f~[~U~~; they have their conventional connotations.

A tllDQ1120 is a procedure that returns a value of a specified
type. These t~ill[U=tY£~~ are restricted to the basic types, and
are specified in the procedure declaration.

Procedures may be used in the creation of '2etQ£~~i~I' which
are distinct synchronous processes. Instead of the entire
procedure being e~ecuted and then returning in I ine, coprocess~s

allow partial execution of a set of procedures witn a single
thread of control being passed back and forth amongst them
through the tftiUillg statement. Subsequent resumption of a
coprocess causes execution to commence with the successor of the
last executed resume statement of the coproccsso

Variables and procedures
associated with ~~aill~ut~'

sharing
Which

common attributes can be
are Identified areas -for the

NCR/CDC PRIVILEGED 2.0

2-5
SOFTWARE W~ITERtS LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09. 1975

~.o LANGUAGE OVERVIEW

storage and management of the elements associated with the
segment. Segments are defined by segment declarations, and
segment associations are specified In variable and procedure
declarations (as a specified attribute).

In addition to their other programmatic aspects, bloCKS
(together with segments and attributes) provi~e partial
mechanisms for the shielding and sharing of variables and
portions of programso tlQQU1~~ (together with scope attributes)
provide a mechanism for the shielding and sharing of
declarationsc Modules are declared in terms of a grouped set of
declarations and a list of Identifiers for elements declared
within the module that can be referenced from without the
module. AI I other identifiers are blocked off. Modules are
primarily designed to permit program repaci<agings at the "source"
language level.

~1~1~m~llt~ define actions to ~e performed~

~itu~lut~g ~iei~m~ut~ are constructs co~posed of statement
lists: hg~ln si~tnm~n~~ provide for scope control and storage
allocation for their constituent declarations; 1t ~t~l~m~ni~
provide for the conditional execution of one of a set of
statement Ils~s; l~Q~ ~1£tQm~nt~ cause unbounded repetitions of
their statement list; ~blig, f2L' and [fie~it statements control
repetitive executIon of their statement lists; £~~~ statements
conditionally select one of their component statement lists for
execution; £2QfQ[mit~ £3lift ~i§i~m~Dt~ ·select one of their
component statement I ists for execution, depending on the type or
the value of a union variable.

~QnttQl ~ta~gm~Qt~ cause the creation or destruction of
execution environmentse They provide for the activation of
procedures; for the creation, resumption, and destruction of
coprocesses; and for general changes in the flow of control.

~t~t~g~ msQa~~m~nt ~iat~mgut~ provide mechanisms for pushing
and popping stack components, moving forward and backward over
components of sequences, and allocatin~ and freeing storage for
compo~ents of heaps.

IQe~t=~ut~~t __ ~lat~m~ut~ provide mechanisms for associating
(and de-associating) files with file variables (Q~~Q and £1.1Qsg,),
for positioning files, for read'ng and writing files, and for
explicitly formatting so-called 'print files'.

Final Iy, A~slgumgui ~t~t~m~n1E cause variables to assume new
values.

A SWl progr.am is meant to be translated by a ~nmel1atlQo

NCR/CDC PRIVILEGED 2.0

2-6
SOFTWARE WRITERoS LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09, 1975

200 LANGUAGE OVERVIEW

£L~~ft~S into a SWl object pragrame Qb.jr.~t etQg~Ami resulting
from distinct compi lations can be combined by a 11nKin~ ~CU£g1li
into a single object program, and may underg6 further
transformation, by a lQ~QlQg ~LU~ft~~' into forms capable of
direct interpretation (execution) by members of the IPL line.

CQooel!~=tiilln t~~lliilft~,
in nature, are used to
construct the program to
d~~laLltlnu~, compi Ie-time

that are essentially extra-linguistic
control the compi lation process and
be compiled: campi Ie-time ~gti~h!ft

~tgi~m~ul~, and mA~t~ ts~11l11~~o

Mechanisms for the incorporation of some
L~atg~ftni~11uQ=Ug2~nQ~nt ta£1!111~~ are provided. Their use may
be dependent on the S\4L compi ler's allocation algorithms and on
the target hardware design. The use of these facilities is
restricted to procedures declared with the tged§2 attribute. The
facilities Include a ~~11 tXEgp which represents the smal lest
unit o~ directly addressable ~torage; ~[Ammnd tX2ga, which are
memory-dependent structures with specified component bit-sizes
and alignments; and methods for overriding pointer-to~type

equivalence restrictions.

An extended set of m~~uln~=g~e~Ug~nt ta~ll!i!~~, including
native gJli __ tYR1~' li1Qt~Sg Ilttlhyt~i' and lnittygtlgBi' are to
be provided for each machine for which SWL wit I generate object
codes. The use of such facilities is restricted to the body of
the so-cal led ~QdA ItAtAIDIUt, which may include SWL statements
and declarat10ns as well as native instructions.

NCR/CDC PRIVILEGED 2.0

3-1
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09, 1975

3 0 0 METALANGUAGE AND BASIC CONSTRUCTS

In this specification, syntactic constructs are denoted by
English words e~closed between angle brackets < and >. These
words also describe the nature or meanln~ of the construct, and
are used in the accompanying description of semantics.

Constructs not enclosed in
themselv-es.

angle brackets stand for'

The symbol
vertical bar:

::: is used to
is used to signal

mean lOis defined as", and the
an alternative definitlono

An optional syntactic unit (zero or one occurrences) is
designated by square brackets (and J.

Indefinite repetition (zero or more occurrences) is designated
by braces { and }.

The definition:

< real number> ::c <unsealed number>
<scaled number>

Is read, "a real number is defined as either an unsealed number
or a scaled number".

The definitions

<unsealed number> ISs <numeral>.<numeral>
<numeral> IS: <digit) {<digit)}

are read, "an unsealed number is a numeral followed by a period
followed by a numeral; a numeral is a digit followed by zero or
more digits".

The definition

<scaled number> ::3 <unsealed number>E«sign)J<numeral)

NCR/CDC PRIVILEGED 3.0

3-2
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

3.0 METALA~GUAGE AND BASIC CONSTRUCTS
i3.1 METALANGUAGE
NNNNNH~NNN~NNHNHNNNNNN"HHHNU~NNNN~NHNNNUNNWNNHHNHNNNUNNNNHNNNNU~NN

is read as, lIa scaled number Is an unscaled number,
the letter 'E', follo~4ed by an optional (zero or
followed by a numeral".

fo Ilowed by
one) sign,

The angle brackets, square brackets, and br~ces are also
elements of the language, and therefore are used in syntactic
constructsc Such syntactic occurrences of these symbols wi I I be
underscored when necessaryo

The definition:

<attribute list> ::a i <attribute> { ,<attribute>} I'

is read as, "an attribute I ist consists of an attribute follol-led
by zero or more comma-separated atttributesJ' the entire set of
a t t rib u t·e s bel n 9 en c los e din s qua reb r a c It e t so"

Words reserved for specific purposes In the language will
always be underscored.

The definition:

<array spec> ::= ~LL~~t<lndlces>l nt <component type>

is read asp "an array spec is composed of the word 'array'
followed by indices enclosed in square brackets, followed by the
l"Jord 'of' followed by a component type."

The lexical units of the language
symbols, and constants are constructed

identifiers, basic
from one or more

(Juxtaposed) elements of the alphabet.

3.2.1 ALPHABET

The alphabet consists
256-valued ASCII character
denotations are defined.

of tokens from a
set: those for

subset
which

of the
graphic

~CR/CDC PRIVILEGED 3.0

I
¥ ,

• · ,
I · ,
• · .
• · .
I · .
• · .
• · .

3-3
SOFTWARE WRITERoS LANGUAGE SPECIFICATION

15/06'/09
Revision 4 June 09, 1975

3.0 METALANGUAGE AND BASIC CONSTKUCTS
1302.1 ALPHABET

<ASCII character> ::= <alphabet>l<unprintable>

<alphabet> II~ <letter>
:<dlgit>
: <spec I a I mark>
:<blanks>
:<unused mark>
: !!

<letter> A : B ; C ; D : E : F : G : H : I : J : K :L : M l N : 0 : P : Q : R : S : r: U : V ~ \>1: X : y : z
: a : b : c : d : e : f : g : h : i : J : k ; ,I : m : n : 0 : p : q : r ~ s : t : u : v : yl :)(: y : z

<blanks> ::'"

'The meanrn~ of !! when occurring within a string term bounded
by two single quotes (e and I) is a single quote mark as a part
of the string" Outside that" context, it has the meaning of a
null string (since nothing Is bounded). Thus, four single quote
(iOe$9 I •• ') indicates a string constant with a value of a
single quote markQ

3.2.2 IDENTIFIERS

Identifiers serve to denote constants, variables,
and other programmatic elements of the language.

<Identifier> ::= (Ietter>{<follower>}

procedures,

Identifiers are restricted to a maximum of 31 characters, and
identifiers that differ only by case shifts of component letters
are considered to be identical. Identifiers must begin with a
letter and may not contain embedded blanks (cf., Conventions for
Blanf(s below).

NCR/CDC PRIVILEGED 3.0

SOFTWARE WRITER8S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

3.0 METALANGUAGE AND BASIC CONSTRUCTS
30202 IDENTIFIERS

75/0b/09

NnUNNHNNNN~NNNUN~~NN~NNMNNHHNNN~NNN~~NM~~~H"NNN~~N~N~HNNNNHNH"N~nN

xl Henry J obit.

lst_character_must_be_a_letter
number_of_characters_must_not_exceed_thirtyone

3.2.3 BASIC SYMBOLS

Selected Identifiers, special marks, digraphs of special
marks, and 'other polygraphs are reserved for specific purposes in
the language; eog.9 as operators, separators, delimiters,
grouperso These so-called "basic symools" will.be introduced as
the y a r i.s e I nth e seq u e I c

Identifiers reserved for use as basic symbols will be shown as
underscored, lower-case words.

3.2.4 CONSTANTS

Constants are lexical constructs used to denote values of some
of the elementary data types. Their spel lings, and the data
types for which constant denotations can be given, are described
in Section 5elol~

'3.2.5 CONVENTIONS FOR BLANKS

Identifiers, reserved words, and constants must not abut each
other, and must not contain embedded blanks. Basic symbols
constructed as digraphs or trigraphs may not contain embedded
blanks o Otherwise, blanks may be employed freelyp and have no
effect outside of character constants and string constants -
where· they represent themselves.

NCR/CDC PRIVILEGED 300

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

3 0 0 METALANGUAGE AND BASIC CONSTRUCTS
30206 CONt1ENTS

3-5

75/06/09

NHNNNHHHMHNNN~NNUNNNHNMNNNNUNNNUMNnNNNUN~N~NNUNNUNH~U~NNN~UNNU~HMN

3.2.6 COMMENTS

Commentary strings may be used anywhere that blanks
used except within character and string constants.

<commentary string) ::D "{<comment character)}"

<comment character> ::= <any ASCII character other than
double-quote and semicolon>

may be

NCR/CDC PRIVILEGED 3.0

4·'1
SOFTWARE WRITERoS LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09p 1~75

4.0 S~Jl TYPES

SWL types are used to define operational domains and
characteristics of variables (which take on values) and other
pragrammatlc elements. SWL elements fall into two broad classes
of types.

(SWL type) ::a (data type)
:<foimal type>

<data type) ::; <type) "cf. 4.2"

(formal. type> I z= <adaptable type> "cf. 4115"
4.6"
4.7"

:<control type> ncf.
:<bound variant record 'type> "efo

Data types (more briefly, types) are used to define sets of
values that can be assumed by SWL variables, their operational
domain and--in manY...JXIses--a notation for referencing such value:;
(cf. 4.2).

Formal
referenced
parameters
the use of

types are used to
in an indirect manner;
of procedures and must
a pointer mechanism.

define objects which must be
they may be used as formal
otherwise be referenced through

Adaptable types and bound variant record types are associated
with data types whose precise attributes are meant' to be
explicitly 'fixed' during execution of the programo

Contr~' types are associated with 'abels, procedures, and
coprocesses.

SWL provides a small set of pre-defined
Identifiers for these, and notation for defining
terms of existing ones.

types, reserved
nel-l types In

Type declar~tions are used to introduce new types, and
Identifiers for the newly declared types.

<type declaration> ::~ tX2A [<type spec>{, (type spec>} J

NCR/CDC PRIVILEGED 4 0 0

• ..

4-2
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

'teO S~JL TY~)ES

4.1 TYPE DECLARATIONS
NHH~HH~NN~HNNNNNNNNNN~NHNNNNNN~N~~HUNNNH.N~NNNN~~N~~HNNN~HNN~NNN~N

(type spec) ::3 (type identifier list) • (SWL type) ~ (empty)

(type identifier list) 1:= (Identifier list)

(Identifier list) ::3 (identlfler){,(ldentlfier)}

Type declarations can be used for purposes of brevity,
clarity, and accuracy. Once declar.ed, a· type may be referred to
elsewhere in the program by its declared type identifier wh'c~,

If properly chosen, can provide a reduction in errors associated
with spellAng-out type speciflcat'ons, as well as mnemon.c
value.

Data. types (more briefly, types) are' used· to define sets of
values that may be assumed by variables (cfo 000).

(data type) ::a (type)

(type) ::~ (fixed or variable bound type) ; <file type>

Fixed or variable bound types consist of:

a) basic types, which take on simple values;

b) structured types, which define collections of components;

c) storage types, which are used as repositories for collections
of components of various types.

File types define actual fi'es of data meant to be manipulated
by Input-output operations.

NCR/CDC PRIVILEGED 4.0

I · .
• · . • · .

4-3
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

4.0 S\~L TYPES
4.200~1 Fixed or Variable Bound Types
NNNNNNH~NH~NNNHUN~N~HNNNNNHNNNHNNNN~M~NNHH~~NNH~"~NHNH.~NHNNNNHNNN

<fixed or variable bound type> Z:m

<basic type) ::=
<rea I type>
<pointer type)
<scalar type> z:=

<structured type> ::=

<set type>
: <union type>

<integer type>
: <character type>
L <ordinal type)
: <boolean type)
: <subrange type>

:. <aggregate type> ::=

<storage type> ::=

<stacie type>
<sequence type>
<heap type>

<string type>
L <array type>
:. <record type>

A subset of the structured types (the aggregate types) and al I
the storage types are defined in terms of attributes that are
called 'lengths! or 'slzes' or 'bounds' or 'index ranges,'
-depending on the specific type and on the context In which it Is
beIng discussed. If the values of such attributes can be
determined by a perusal of the entire program, then the
associated type is precisely defined, and is said to be of tl~ld

tX21; otherwise, the type is said to be of ~i[lib!~ nQYn~ tX£A.
In the latter case, the type represents a class of potential
Instances of fixed types. An In~t~ntgO~2U~ type (cf. 601.2.1)
for these is established whenever the type declaration is
elabarated during execution (upon entering the block in which the
declaration occurs), and persists over the scope of the
declaration (cf. 7.3). For purposes of exposition, the
constructs

<variable bound type>
and

(fixed type>

are Introduced, the .atter denoting all types but the former.

NCR/CDC PRIVILEGED 4.0

4-4
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06109
Revision 4 June 09, 1975

4vO SWL TYPES
4.2.1 BASIC TYPES
HHHNNUNNNNNNNHNNN~NNNNNNNNNNNNNNNNNNNNNNUNNNNN~NNNNN~NNNN~NNNNNNNN

4.2.1 BASIC TYPES

Basic types define components that take on simple values, and
are the only types that may be associated Hith 'returned' values
of functions (cf. 8.183>.

<basic type> ;:~ <scalar type>
:<real type>
:<pointer type>

Scalar types define wei I-ordered sets of values for which the
following functions are defined:

iY~S the succeeding value in the set;
at~d the preceding value in the setv (cf.· 11.2.3, 11.2.4)

<scalar type> ::~ <integer type>
:<character type>
l<ordlnal type>
:<boolean type>
:<subrange type>

4.2.1.1.1 INTEGER TYPE

<integer type> ';B iut~g~t:<integer type identifier>

<Integer type identifier> ::- <Identifier)

Integer type represents an implementation-dependent subset of
.the integers, and Is equivalent to the subrange (cf. 4.2.1.1.5)
defined by

where ul and aZ denote implementation-dependent integers.

f~Lml~~lnlt __ ~£~tsli£u~f assignment, set membership test, al I
six relations, addition, subtraction, multiplication, quotient,
remainder, e~ponentiation, absolute value, built-in-functions
(cf. 11).

NCR/CDC PRIVILEGED 4.0

4-5
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

4 0 0 S vJ L T Y PES
462~1~1.2 CHARACTER TYPE

4.2.1.1.2 CHARACTER TYPE

<character type) ::= £hnLI<charactcr type Identifier>

<ch~racter type Identifier) ::c <identifier)

Character type defines the set of 256 values of the ASCII
character set, and is equivalent to the subrange (cf. 4.2.1.1 0 5)
defined by

$~(O) •• $char(255)

.. ,here U$char" denotes the mapping function. from integer type onto
character-tYpe (CfD Standard Functlonsp 1102).

e~Lmii~lh!g __ n2~tAtlRD~: assignment, set membership test, al I
six relations, bui It-in function (cf. 11).

4.2.101.3 ORDINAL TYPE

<ordinal type) ::". «ordinal constant identifier list»
:<ordlnal type Identifier>

< 0 r din a.l con s tan tid en t i fie r I 1st) :: ..
<ordinal constant identifier>,<ordinal constant identifier>
{,<ordinal constant identifier>}

<ordinal constant Identifier> ::3 <Identifier>
<ordinal type identifier> ::= <identifier>

.
An ordinal type defines an ordered set of values by

enumeration, in the ordinal list, of the identifiers which denote
the valueso Each of the Identifiers (at least two) in the
ordinal I ist is thereby declared as a constant of the particular
ordinal type.

eILml~il~11_22AtitLQnil assignment, set membership test, al I
six relations, built-in functions (cf. lll.

Two ordinal types are equivalent if they are defined in terms
of the same ordinal list.

f~~mE.l~: The constants of the ordinal type "primary color"
declared by

lx2~ primary_color = (red, green, blue)

are den 0 ted by If red n , It Q r e e n 10 , and It b I u e " , and the f 0 I low I n 9

~CR/CDC PRIVILEGED 400

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

4.0 sIn TYPES
4.2.101.3 ORDINAL TYPE

15106/09

NHNNNNNNq~NNN~N~HNUNNHNNNHHNNNN~~NNNHHNNNHNNNHH~NNHNNNNNHNNUNNNNNN

relations hold:

red < green
red < blue
green < blue

A mapping from ordinals onto non-negative integers is provided
by the $lQl~rr~c function (cf. Standard Functions, 11.2). For
the constants of the examplo, the following relations hold:

$LQt~gftt (red) = 0
$LQlgg~L (green) 3 1
$lQi~U~t (blue) G 2

The ordinal type declaration

lxe.~ p rim a r y _ color· = (r ed, 9 r e en" b I u e) ,
hot_color = (red, orange, yellow)

would be In error because of the dual definition of the
Identifier "red" as a constant of two different ordinal types.

4.2.1.1.4 BOOLEAN TYPE

<boolean type> ::= QQQlfi&Q
:<boolean type identifier>

<boolean type identifier> ::3 <identifier>

Boolean type represents the ordered set of "truth values", \"Jhose
constant denotations are !gl~~ and tC~ft, and is conceptually
equivalent to the ordinal type specified by the ordinal list

e~tml~~l~lfi __ ~~~tatlQQ~: assignment, set membership test, all
six relations (tg!~g < ttll~)' sum, product, difference, symmetric
difference, negation, built-in functions (cf. 11).

4.2.1.1.5 SUBRANGE TYPE

<subrange type> II- <subrange type identifier>
:<Iower> •• <upper>

<'ower> ::a <constant scalar expression>
<upper> 11= <constant scalar expression>

NCR/CDC PRIVILEGED 4.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

400 SHL TYPES
4.2.101.5 SUB RANGE TYPE
HNNNNHNUHNNNNNHNHNNNH~NN~NNNHHH~NNHHHNNUNNNNHNNHHNN~NNHNNNNNNNNUHN

(subrange type Identifier> ::= <identifier>

A subrange type represents a subrange of the values of. another
scalar type. defined by a lower bound and an upper bound. The
lower bound must not be greater than the upper bound and both
must be of equivalent scalar types. Two subrange types are
equivalent if they have identical upper and lower bounds. An
Improper subrange type (i.ee' one that completely spans its
'parent' range) is equivalent to Its 'parent' type.

Equivalence rules are relaxed for subranges to permit· values
from a subrange and values from Its parent range (or· another
subrange of Its parent range) to be assigned to each other and to
ente~ into the operations of assignment and comparison, and other
dyadic operations.

l~e~ non_negative integer ~ 0 •• 32767,
letter a IA' •• 'Z',
color = (red, orange, yellow, green, blue),
hotcolor :: red •• yellow,
hue:: red •• blue,
range B -10 •• 10 j

The ordinal ·subrange type, "hue," Is an improper subrange of, and
therefore equivalent to, its parent ordinal type, "cotor."

4 • 2 • 2 REA L T Y P E'

<rea. type> z:= t.~,g!:<real type identifier>
(real type identifier> Jlu <identifier>

The range and precision of real type Is
Implementation-dependent. Conversion functions between real and
integer tYPe are provided (cf. Standard Functions, 11.2).

ettml~ii~lt __ Qe~t~tlQu:
addition, subtraction,
functions (cf.1l).

assignment,
mu , tip lie a t lon,

all s.ix
quotient,.

relations,
built-in

NCR/CDC PRIVILEGED 4.0

4-8
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

400 SHL TYPES
4.2.3 POINTER TYPE
NUNN~nUUNNN_NNN~~NNNNNN~NNNnN~NNRNNNUHNN~NN~NNNUNNNNNHHNN~N~~HN~~N

4.2.3 POINTER TYPE

Pointer types represent location values, and other descriptive
information~ that can be used. to reference Instances of SWL
objects in~irectly.

<pointer type> ::n (direct pointer type>
:<relative pointer type>

Direct pointer types represent locations of instances of
objects of SWL typeo

Relative pointer types represent loc~tions of components of
obJects,of' storage type or aggregate type relative to the
variable of storage or aggregate type.

etcml~~lQl~ __ ~£~ta~lQllS: assignment, union membership
9.2.1), all six relations except for pointers to
(non-comparable) and pointers to control types (comparable
equality and inequality only), built-in functions (cf.11).

(cf.
f i Ie

for

Direct pointer
by a ~WL type
pointer variables
SWL typeo

types are introduced by an up arrow, followed
to which the pointers are always bound; direct
may assume, as values, only pointers to that

<direct pointer type> ::~ <pointer to type)
:<formal pointer>

<pointer to type> ::~ A(fixed or' variable bound type>
:<pointer to file>

<pointer to file> 'tm A(file type>

<formal pointer> ::= <adaptable pointer>
:<pointer to control>
:<bound Variant pointer)

<adaptable pointer> :ss A<adaptable type>

<pointer to control> ::= A(control type>

<bound variant pointer) ::. A(bound variant record type>

formal pointers provide the sole mechanism
objects of formal type, other than through fornal

for accessing
parameters of

NCR/CDC PRIVILEGED 4.0

..
• . .

4-9
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

4.0 SWL TYPES
4.203~1 Direct Pointer Types
~NNNNNNNH~NNNNNNH~_NHUNNHWNHNM~NNN~NNNNMNNN_~"NN"NNNNNNHNHNNNNNMNN

procedurese In particular, adaptable pointers and bound variant
pointers are used to access !nsta~ces of adaptable variables and
bound variant records whose type has Deen ~fixed' by an al1g£nt~
or a nm~t statement (cf. Sections 10~4, 10 0 4.3, 1004.5)c

See Section 1001, Assignment Statementsp for rules governing
pointer assignment.

Direct pointers are equivalent if they are defined in terms of
equivalent types. No pointer to type can ever be equivalent to a
formal· pointer.

The fol lowing ancillary constr~cts are introduced for
expository use elsewhere In the document.

(pointer to procedure> ::= (formal pointer>
(pointer to coproe) 3:a (formal pointer)
<pointer to label) ::= <formal pointer)

(adaptable pointer to string> ::3 (adaptable pointer)'
(adaptable pointer to array) It= (adaptable pointer>
(adaptable pointer to record> ::= <adaptaole pointer>
(adapt~blr pointer to stack) ::= (adaptable pointer)
(adaptable pointer to sequence) ::= (adaptable pointer)
(adaptable pointer to heap) :~3 (adaptable pointer>

Relative pointer types represent relative locations (with
respect to the beginning of some composite object) of components
of such objects.

(relative pointer type> :1=
~ft![«parental type»]A<object type>

(parental type> :lu (storage type>
:(aggregate type>

(aggr~gate type> ::- (string type>:(array type>:(record type)

(object type> ::~ (type>

Relative pointer types are equivalent if they are defined In
terms of equivalent parental types and eq~ivalent object types.
If the parental type Is not specified, a default, system-defined
heap is assumed o

Relative pointers provide three facilities not given by direct
pointer types:

NCR/CDC PRIVILEGED 4.0

4-10
SOFTWARE WRITERoS LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

'toO S~Jl TYPES
4.20302 Relative Pointer Types

lc A relative pointer variable requires less space than a
direct pointer variable.

2. A linl,ed list or array of relative pointers (or a similar
pointer network) related to a parenta' variable is sti I I

-correct if that entire variable is assigned to another
variable of the same parental type.

3. A relative pointer variable (or group of relative pointer
variables) may be used to refer simultaneously to several
variables of the same parental type where parallel
Information is contained (50 long as the parental type is not
a heap)c

Relative pointer values can be generated safely through the
built-In function #tS! (cf. 11~2014) whose arguments are a
poillter variable and an optional parental variableo

Relative pointers cannot be used to access data direct.y.
Such data must be accessed through a dire6t pointer generated by
the bui It-in function uett (efo 11.2015) whose arguments are a
relative pointer variable and an optional parental variable~

!~R~ intrel = tgl (heep#tlpe) ~rec#tlpe,
re~#tipe =tA£Q[~

fa z .lnt!25HU.J!
fb : .r:.~ill'
fc : ~ttln2 (20) Qt ~ha[,
fwd: Intrel, Irrelative pointers
bkl-ld , .l!lt~9.~t. "wi thin stacks of

!.A£~!Hi ;

tX2A heep#tlpe ~ hgBe (tge 100 2f rec#tlpe)o
t!e~ latest = ltig~ (10J Q! Intrel ;

to records"
heep#tipe" .

"latest Is a small stack of relative pointers which
can point to records within heaps of heep#tipe"

Structured types represent collections of components, and are
defined by describing their component types and indicating a
so-called l![ll~tutln2 mgth2a. These differ in the accessing
discipline and notation used to select individual componentso
Five structuring methods are available: set structure, string
structure, array structure, record structure, and union

NCR/CDC PRIVILEGED 4.0

4-11
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09

Revision 4 June 09p 1975

4.0 SWL TYPES
4,,3 STRUCTURED TYPES
~UHNNNHNNN~NNNHNNNNNNNNNNNNNNHNNNHNNNNNN~NNHNNNNNNNNNNNNNNNUNNN~~N

structure .. Each Hili be described In the sequelo

<structured type> ::= <set type>
:<union type>
I<aggregate type>

<aggregate type> ::= <string type>
:<array type>
:<record type>

Aggregate types may be of variable bound type (cf. 4.2).

4.3.1 SET "(YPE

<set type> ::~ ~~t ~t <base type>
:<set type identifier>

<base type> ::= <scalar type>

<set type identifier> ::~ <identifier>

A set type represents the set of all subsets of values of the
base type. The ~umber of elements defined by the base type mu~t
be constrained (consider, e.g .. , ~~t Qt lotISIC)" Its value wit I
be implementation dependent, but no less than 256 (to accommodate
~~t g,t ~h.ar..)·

fftLml~~lhl~ ___ Qa~r..nilQn~s assignment,
difference, symmetric difference, negation,

intersection, union,
inclusion, Identity.

Set types are equivalent if they have equivalent base types.

f~Am2!~: The set, akcess,. declared by

represents the set of the following subsets of values of Its
ordinal base type:

$akcess () lithe empty set"
$akcess (no_read)
$akcess (no_wrlteJ
$akcess [no_execute)
$akcess [no_read, no_writeJ
$akcess Cno_read, no_execute]
$akcess [no_write, no_execute~
$akcess [no_read, no_write, no_execute]

NCR/CDC PRIVILEGED 4 0 0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

4 0 0 S \.Jl T Y PES
4&3,,1 SET TYPE

75/06/09

UN~~~NNNNNN~NNNNNNNNN~NNHNNHnNHUN~NHHNNNNH~HN~HHNNHMNNNNNN~~NNNUN~

where the notation "$akcess (.. 0]" denotes a !l.al~H~ £9.C1ii.tr..l..H: . .t.Q.i:.
(ef e Value Constructors, Section 5.1) for the set type. akcCSSe

4.3.2 STRING TYPE

A string type represents ordered n-tuples of va4ues of
character typeo Two string types ar~ providedl fixed strings and
varying strings.

<string type> ::~ <fixed string)
<varying string)
<string type Identifier>

<fixed string) J:U itr..1Ug «length» 2f <character type)

<varying string) ::=
Y~lr..lUg «max length» Qt <character type)

(length) ::2 (positive integer expression)

(maxlength) ::~ (positive Integer expression)

<string type identifier) ::a <Identifier>

A fixed string of length n represents all ordered a-tuples of
values of character type. A varying string whose maxlength is n
represents all fixed strings of length ~ (1 <= ~ <2 a) together
with the aYl1_~tL!llg (see below).

The £YLr..~nt~_!~ngtb of a string is defined as follows: The
current length of a varying string is defined to be m ~henever
its value is a fixed string of length m and is defined to be zero
whenever Its value is the null string. The current length of a
fixed string Is equal to its length o The function #£llt~t[l~agtb
(cf. 1102021) returns the current length of a string or a
varying string. The function #itr..l~Qgtn (cf. 11.2.9) returns
the maxlength of a varying string and the lengtn of a fixed
string.

A constant denotation for the null string (whose maxlength or
length is zero) is providedJ

<null string) ::11 It

An ordered k-tuple of the values of a string or varying string
(1 <a ~ (a al is cal led a iU~~tLIQSo Notation for accessing
substrings Is provided (cf. 6.4.2, Substring Refeiences).

NCR/CDC PRIVILEGED 4.0

I
I .

I · .
• I.

• a .

• · .
• • • I ,

• I .

• I .

SOFTWARE WRITERfS LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

4.0 SWL TYPES
403.2 STRING TYPE

75/06/09

Two string types are equivalent if they are fixed strings of
the same length, or arc varying strings of the same maxlength.
In the case of a variable length (or variable maxlength), the
length (or maKlength) is determiried when the declaration is
elaborated (cf. 402 Fixed and Variable-Bound Types)Q

f~Lml~~l~l~ __ g~~t~tIQQs: assignment, comparison (all six
relational oper8tors)~ concatenation, and the built-in functions
(ct. choll)o Equivalence rules are relaxed to permit fixed
strings and varying strings to enter jointly into these
operations} independent of their current lengths, with truncation
or right extension with blanks carried out when necessaryo In
addition, characters are treated as strings of length one (1)
when they enter into these (but only these) operations (see also
assignments in 10~1, 10glol, 100103, andstring-valucs as factors
in 901)0

HaLUiQ~: Despite the special exceptions of the preceeding
paragraph, the types ~tLIDgp ~~tLID9' and £hat are not
equlvalentG In particular, a pointer to one of those types may
not be assigned to a pointer to another of the types, or enter
into other operations with pointers to those other types; nor may
an actual parameter of one of the types be passed to a procedure
"here the corr"sponding formal parameter is a reference parameter
of another type~

4.3.3 ARRAY ,TYPE

An array type represents a structure consisting of components
of the same 'typeo Each component is selected by an array
selector consisting of an ordered set of U index values whose
types are Indicated by the indices in the definition.

<array type) ::~ [(packlng)l(array type identifier)
:[(packing)J(array spec)

<array type identifier> ::s (identifier>

(arra~ spec> ::a !LLa~ l<indices>l 2f <component type>

<Indices> ::z <Index>{,<index)}

<Index> ::= <scalar type>
:<scalar expression> .~ <scalar expression>

<component type> ll= (type>

<packing> ::= (packing attributes>

NCR/CDC PRIVILEGED 400

4-14
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09, 1975

4.0 SWL TYPES
4~303 ARRAY TYPE
NMNU~NN~NHN"UNUNN~MNNNN~N~UNUNUNU~NUNNNNNN~UNnNNNNNNNNNNN~~NN~NNNN

eft~ml~~1~1~_2~~~at12ui' assignment, comparison for equality
and Inequality only.

If the component type is not an array type and Q indices are
specified, then the array type has dimension o. If the component
type Is an array type of dimension ill' and Q Indices are
specified, then the array has dimension n + m. Two array types
are equivalent if they have the same packing and dimensions, have
equivalent component types, and corresponding Indices are of
equivalent types. For variable Index ranges, the index type is
defined by the values of Its constituent expressions determined
when the declaration is elaborated.

There are 2 ** (n - 1) dIstinct spel lings for specifying an.
array of dimension n. For example, for 0 = 3:

a~~gl tlntl ~f ~Lca~tlnt,intl ~f ~hat
atti~ ilnt,intl ~f BtLax Lintl ~t £hit
~ttAX Lint,lnt,intl ~t ghat

are all equivalent spellings fora

which is the spelling that precisely defines SWl's treatment of
arrays.

Similar alternative spellings are allowed for referencing
array components (cf~Subscripted References, 6.6.3).

Packing attributes (cf. 4.9) are used to specify storage
space -- access time tradeoffs for array components. Components
of a packed array wit I be mapped onto storage so as to conserve
storage space at the expense of access time. The array Itself
(the collection of components) is always mapped onto an
addressable memory location (I.e., the array Is aligned) unless
the array itself is an unaligned element of a packed structure.

NCR/CDC PRIVILEGED 4.0

4-15
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

4.0 SWL TYPES
4&3&3.3 Packed Arrays
~NNNUNNNH"NNNNNNHNNNHNNNN~NHNNNNNNNNN~NN~NH~NNN~MNHH~"HNNNNNNNNNNH

ix~~ hotness 3 a~c~~ [co'or) ~t non_negative_integer,
token_code = Btt§! [Gn~t) gf token_class,
token_class ~ (alpha, numeric, specials, others),
arrayl n acta~ (1.0100, 100 •• 200] QL 100 •• 300,

il ~ 1. 0 100,
12 ~ 100e.200,
51 z 100,0300,

array2 ~ attax (i1,i2] gf s1,
array2b = aLLn~ [ill nt s&L~X (i2] Q! sl,
array3 D sLLa~ (ioojl Qt nQQ1~QU'
array4 = ALtax [10010] gf array3;

The 'array types 'array1,1 'array2," and 'array2b" are
eq~ivalent. The larray3' type Is of variable bounds (because Its
index range cannot be determined until run-time elaboration of
the declaration), This holds in a similar way for the 'array4'
type, since its component type is 'array30~

4.3.4 RECORD TYPE

A record type represents a structure consisting of a fixed
number. of components called t!~l~~. Fields are defined in terms
of their types and associated tlsld ig!~~iQt~L which are
identifiers unique'y denoting that field among al I other fields
of the record (cf. 6.4.4, Field References).

f~~m!~~lhl~_~e~t~tiQn~: assignment, comparison for equality
and In'equallty only; however, variant records (see below),can not
be compared.

Records are clas~ified as being either t!~Ad t~£~tdi or
~~tlab!~ hQ~Qd tAC2t~i.

<record type> SIs <fixed record type>
I<variable bound record type>

NCR/CDC PRIVILEGED 4.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

4.0 SWL TYPES
4.3.401 Fixed Records

Fixed records, which include both lU1Btlaut· t~~Qtdi and
latlaat t~~QtdiL witl always be allocated a fixed amount of
space.

<fixed record type> :,~ <invariant record type>
:<varlant record type>

-
4.304.2 In~atlnnt_a~~Q[Q~_aQtl_El~~~_El~lrt~

An invariant r~cord contains only !llAd flgldlL which are
fields of fixed type (cf. 4.2).

<Invariant record type> ::-
[<packing>] <Invariant record type identifier>

:[(packing>] <invariant record spec>

<Invariant record spec> ::= LftQQtll <fixed fields> <recend>

(fixed fields> 'Is <fixed field> {, <fixed field>}
(fixed field> ::~ (field selectors> : [<al ignment>J.·(fixed type>

(field selectors> ::~ (field selector> {,<field selector>}
<field selector> ::= (identifier>

(recend> ::= [,ltA£~n~

A variable bound record consists of zero or more fixed fields
followed by one and only one l~tis~l~ ~Q~a4 fl~lgL which is a
field of var.lable bound type (cf. 4.2).

<variable bound record type> lID
[(packlng>J(variable bound record type Identifier>

IC<packing>J(varlable bound record spec>

<variable bound record spec> :Se
L~~QL9[<fixed fields>,J<variable bound field>(recend>

<variable bound rleld> ::~
. (field selector> I C<alignment>J<varlable bound type>

NCR/CDC PRIVILEGED 4.0

I
I .

• I .

4-17
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06109
Revision 4 June 09, 1975

403~4o4 Variant Records and Case Parts

A variant record consists of zero or, more fixed fields
followed by one and only one Q£S~ ~~LiL_ A case part is a
com~osite field that may assume values of different types during
execution of a programo It Is defined In terms of a 199 tlfrln&
and a list of the admissible types' (called l£r.l.?!l!.~) to;}ether
with associated ~ftl~~tlQQ ~Slygio During execution, tne value of
the tag field determines the variant currently in use by being
matched against the selection values associated with each
variant. The variants themselves may consist of one or more
fixed fleldsp or of zero or more fixed fl$lds followed by one and
only one case parte

<variant record type> ::=
[<packing)] <variant record type identifier>

I[(packing>] <variant record spec>

<variant record spec> :!=
~~~2~Q [<fixed fields>,) <case part> <recend> 

<case part> ::= Q&~~ <tag field spec> ~t <variations> ~~~ftQg 

<tag field spec> 1:= 
<tag field selector> [<al ignment>l <tag field type> 

<tag field selector> !:~ <identifier> 
<tag field type> 23m <scalar type> 

<variations> ::= <variation> {, <variation>} 
<variation> S:Q u<selection values>= <variant> 

<selection values> ::= <selection value> {'o <selection value» 
<selection value> ::3 

<constant scalar expression>[o~<constant scalar expression>] 

<variant> ::= [<fixed fields>] 
I[<flxed fields),] <case part) 

Two record types are equivalent IF they have the same packing 
(cf. 409), the same number of fields, identical field selectors, 
and equivalent types for corresponding fields. Two variants are 
equivalent If they have Identical tag field selectors and 
equivalent tag field types, and if variants having identical 

NCR/CDC PRIVILEGED 4.0 



SOFTWARE WRITER'S LANGUAGE SPECIFICATION 
75/06/09 

Revision 4 June 09, 1975 

4.0 S\.Jl TYPES 
403.405 Record Type Equivalence 
MNN~HMNNN~~NN~NNNM_~N~NN~NWUN~N.NMNNN~NNN~NHHNH~MNH~NN~NNNNNNNUNNH 

field selectors and equivalent types are selected by the same 
selection values. The type of a variable -bound field is 
determined when the declaration is elaboratedo 

THO 'further types of records are adaptable record type and 
bound variant record type (cfc 40503 and 4.684). These are 
formal types (cf. 400) which can De used as formal parameters of 
procedures but must otherwise be referenced through pointer 
mechanisms. 

Packing and alignment attributes (cfo 409) are used to 
s p e c I f y . s t 0 fag e spa c e -- a c c e s s . tim e t r a d e 0 f f s for fie Ids 0 f 
records. Fields of packed records are mapped onto storage so as 
to conserve space at the expense of time. However, aligned 
fields are mapped onto storage so as to De directly addressable. 
Records themselves (the collection of fields) are al~ays aligned, 
unless they are unaligned fields of a pacKed structure. 

date ': r.~HiQr.g day: 1 •• 31, "date is an" 

r.'~~~QQ.9 

"invariant record type" 
month : ~tr.lnn (4) gt £U2C' 
year: 1900,.2100 

status • r.f~Qr.g age: 60.66.9 
married, sex : ~QQ1~sn' 

r.~~~QQ, 

red_book ~ r.~Q9.r.Q name: string (3) 21 Quae, 
"redbool~ might be a variable bound record type" 

status : status;, 
scores : ILr.B~[O.~n] 2t date 

r.~~~Og, 

shape • (triangle, rectangle, circle), 
angle 0 -180c.180; 
figure :3 r.!l~Q.r.Q. x, y, area: r.fal, "figure is a variant" 

"record type ll 

NCR/CDC PRIVILEGED 4.0 



SOFTWARE ~RITER'S LANGUAGE SPECIFICATION 
75/06/09 

Revision 4 June 09, 1975 

4.0 SWL TYPES 
4.3.407 Packed Records, Aligned Fields 

Qa~~ s I shape Q! 
B triangle r:I side : r.~el'" Inclination.., angle1, 

angle2 : angle 
a rectangle u sldel. side2= r.R~l' sKew, angle31: 

4.305 UNION TYPE 

.. ang I e 
3 c.rcle = diameter: [111 
SUl.S,!UH! 
r.g££ll9.j 

Union types represent a finite set of selectable, 
non-equivaient types, and are used to define variables that can 
take on values of different types. 

Such. values-of-the-moment can not be accessed in a direct 
manner. However, the type-of-the-moment of a union variabfe can 
be compared with the type of a' variable, and Its 
value-of-the-moment (or, optionally, a pointer to it) assigned to 
that variable, if the types match (cf. Type Testing Operators 
and Conformity .Case statements), so that a program branch 
appropriate to values of that type can De executed. 

(u~(on type) ::= [(packing» YUi211 «members» 
<members> ::= <type list> 
(type fist> ::= <type) {, (type)} 

f~tmlES1~1& __ 2al[it12Qi: assignment, union membership (cfo 
Type Testing Operators~ 902.1). In addition, union variables may 
be used In conjunction with Conformity Case statements (cf. 
10.2.8, 10.2.9) for selective execution of statements dependant 
on the type of value last assigned to the union variable. 

The so-called 112D ·.,f!l~!~ types cannot be members of a union. 
The non-value types arc fleaps, arrays and stacks of non-value 
type components, and records containing a field of non-ya'ue 
type. 

If. vtl and vt2 are variables of the types tl and t2 
respectively, and j f the assignment statement vtl : :a vt2 is 
potentially admissible within the scope of a union type 
declaration, then tl and t2 cannot both be members of that union 
type. 

NCR/CDC PRIVILEGED 4.0 

1 
I . 

• . . 
. : 



4-20 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

4.0 S~JL TYPES 
4.3.5.1 Restrictions on Union Membership 

" an improper union" 
D,1u-till 
l!aJ:. np r, $, t : lot~9.~r. . , 

t : t: ••• ; • • • ; 
n : t: k - t ; r : CI n + s ; 

Q.e.9.1u 
t~Q.ft mixture ::a 

MUigU (h~21ftIO' t~il' veeta, veetb, ord) ; 
tl!eft ord = (kread, kwrite, kelose) kopen), 

veeta Q ~Lts~ (10.99] ~t lo!~g~t, 
vaetb =ALtD! (noor] 2t latG9Gt ; 

.ueither veeta or vectb must be removed from the 
union type mixture, since potential equal Ity.of type 
could occur, depending on the values of nand r." 

• • • ; ~!H1 .eOn 

A union type is in reality a type o~ two cornponents--the type 
field and the value fieldo The packing (ef. 4.9) of a union 
variable affects the alignment of these fields but does not 
affect the packing of the union members. A union,type that is 
packed because It is declared to be packed or because It is a 
member of a packed structure such as an array or a record cannot 
be made the object of the pointer type test operator (cf. 9.2.1) 
nor used in a pointer conformity case statement (cf. 10.2.9.1) 
because, by definition, tne fields of such a union ~re not 
addressable. 

Two union types are equivalent If and only if they have the 
same packing attribute and the two ordered sequences of types are 
pair-wise equivalent. 

Storage types represent .structures to which other variables 
may be added, deteted, and referenced under exp"cit program 
control (cf. Storage Management Statements, 10.4). 

<storage type> :t= <stack type> 

NCR/CDC ~RIVILEGEO 4.0 

• .. 



4-20 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

4 • 0 S vi L T Y PES 
4c305.1 Restrictions on Union Membership 

II an Improper union II 

b. ftll 10. 
x&t n, r, s, t : lo.t~U~L 

t := oe. ; •• 0 ; 

n := k - t ; r := n + s ; 

Q.!Hl1o. 
t~Q.!1 mixture :: 

llnlQu (~rrQl~in, clal, vecta, vectb_ ord) ; 
tXQ.~ ord = (kread9 kwrite, kelose) kopen), 

vecta a nLLA~ [10099J Qt IDi~g~LI 
vectb :: ~tt£~ (n.or] ~t lo.!g9gL ; 

·"either vecta or vcctb must be removed from the 
union type mixture, since potential equallty.of type 
could occur, depending on tne values of nand r." 

•• 0 ;.fl uil .finn 

A union type is in rea. I ty a type oi two components--the type 
field and th~ value field. The packing (cfo 4.9) of a union 
variable affects the alignment of these fields but does not 
affect the packing of the union members. A union type that is 
packed because It is declared to be packed or because It is a 
member of a packed structure such as an array or a record cannot 
be made the object of the pointer type test operator (cfe 9.2.1) 
nor used in a poLnter conformity case statement (cf. 10.20901) 
because, by definition, tne fields of sucn a union ~re not 
addressao'eo 

Two union types are equivalent If and only if they have the 
same packing attribute and the two ordered sequences of types are 
pair-wise equivalent. 

Storage types represent .£tructures to which other variables 
may be added, deleted, and referenced under explfcit program 
control (efo Storage Management statements, 10.4). 

<storage type> ::= <stack type) 

NCR/CDC PRIVILEGED 4.0 



4-21 
SOFTWARE WRITERfS LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

4 0 0 SHL TYPES 
404 STORAGE TYPES 
~~~~NNNNNNNNMNNNUMN~N~MN~NNMgNHM~NNMNNHNHN~N.MNn~~~NNN#~N~NU~~UUNN 

I<sequence type)
:<heap type)

Storage types may be of variable bound type (cf.
Variable Bound Types).

4.4.1 STACK TYPE

(stack type) ::= ~ta~~ [<stack slze)l at <type)
(stack size> ::3 (integer expression)

Fixed and

A stack type represents a collection of up to 'stack sizel
components of the same type managed (using a 'last in-first out'
discipl ine) by the fH1S.U.I' £>.QJ?J' and !:'§'~Qt operations (cf .. 10~{~o2,
1 0 .. '" & 3, . and 1 0 • 4 e 7) 0 I n add.1 t Ion, s t a c f, sma y b e ass i 9 ned t 0

stacl~s; no other operations are aliowedo

Two stacks are equivalent if they have the same size and
component type(!

Stack ccmp~~ents arc accessed through pointers CDn~tructed as
by-products of the ~u~band EQe operationso The 'Nth! element
below the top (current) etement of the stack may be accessed by
use of the standard function #etg~i~u~ (cfo 11.2.18)&

A system-defined stack (cfe 10.402.2) is
Components of any type may be allocated (PLlshed) on
but can not be explicitly freed (popped or reset) .by
Instead.\l such 'freeing is done automatically on, exits
·(cf. 7.5)0

4.402 SEQUENCE TYPE

<sequence type) ::8 i~S (space» "ef" 4.4.4"

provided ..
this stack,
the user ..

fro m b I 0 c 1< s .

A sequence type represents a storage structure whose
components are referenced (by a sequential accessing discipl Inc)
through pointers constructed as by-products of the u~~t and t~a~1
operations (Cf6 10.404, 10 0 4.5)& In addition, sequences may be
assigned to sequences; no other operations are alfowedo

NCR/CDC PRIVILEGED 4 0 0

4-22
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09, 1975

4eO S~JL TYPES
'h4.3 HEAP TYPE

4.4.3 HEAP TYPE

<heap type) ::~ U~QP- «space» "cf. l~olt.4"

A heap type represents a structure whose co~ponents can be
explicitly allocated (by the al!l1£ahSl. statement> and freed (by
the fLgR and Lftsti statements), and which are referenced by
pointers constructed as by-products of the allQ~atg statement
(cf. 10.4.5, 10.4.6). No other operations on heaps are
allowed.

A system-defined heap, that can be managed in the same manner
as user-defined heaps, is provided.

4.4.4 SEQUENCE AND HEAP SPACE

<space) ::= {,<span)}

<span) ::u [L~P- <positive integer expression) ~f]
<type ide~tifjer>

A space attribute of the general form

specifies a requirement that sufficient space be
simultaneously hold nl instances of variables
.instances of variables of type2, and so on.

provided to
of typel, n2

The space attribute places no restriction on the types of the
variables that may be stored in a sequence or heap, other than
that the space available for storage (as defined by the space
attribute) be large enougho For example, the space attribute may
be defined solely In terms of integers, out the sequence or heap
filted only with strings of characters and boolean variables.

Adaptable types are str~ctural skeletons of structured and
storage types containing one or more Indefinite bounds, indicated
by an asterisk. They may be used solely to define formal
parameters of procedures (cf. Procedure Type, 4.6c2) and
adaptable pointers (cf. Pointer Type, 4.203), the latter
providing a mechanism for referencing variables of such types.

NCR/CDC PRIVILEGED 4.0

4-23
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

4 0 0 SWL TYPES
4.5 ADAPTABLE TYPES

Adaptable types represent classes of related types to which
they can adapto Adaptation to such an lQ~tiQtaQn2Ul type (cf.
6.1.2.1) can occur in three distinct ways:

Adaptable types can be exp'lcltly fixed by
allocation designators associated with storage
statements (cf. 10.4).

the use of
management

Adaptable types used as formal parameters are fixed by the
actual parameters specified at procedure activation.

Adaptable pointer types used as left parts of assignment
statements are fixed by the assignment operation.

<adaptable type> 11m <adaptable aggregate type>
:<adaptable storage type)

<adaptable aggregate type) ::- <~daptab/e string>
I<adaptable array>
I<adaptabte record)

<adaptable storage type> 11m <adaptable stack>
I<adaptable sequence)
:<adaptab'~ heap)

4.5.1 ADAPTABLE STRING

Adaptable fixed strings <varying strings) can adapt to fixed
strings (varying strings) of any length (maxlength).

<adaptable string> ::= <adaptable fixed string>
: <adaptable varying string>

<adaptable string Identifier)

<adaptable fixed string ::= ~t&lUg (*) ~t <character type>

<adaptable varying string) ::= !ittlQ~(*) 21 <char~cter type>

<adaptable string Identifier> 110 <Identifier)

Two adaptable fixed strings are always equivalent, and two
adaptable varying string are always equivalent.

NCR/CDC PRIVILEGED 4.0

• i .

• •

« · "

• · .

• , "

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

4.0 S\~L TYPES
Ao5.2 ADAPTABLE ARRAY
~NNNNUNNHN~UNNNNNNN~UUHUNNUN~NNNNNNNN"NNNN~NNNN~UNNNNN~NNNNNNNHNNu

4.5.2 ADAPTABLE ARRAY

Adaptable arrays may have either adaptable· components or· one
(or more) adaptable indicesp or both.

Adaptab'e arrays can adapt to any array with the same
attribute, the same types of su~scripts and either
component type or (in the case of an adaptable component
type to wnich the adaptable component type can adapt.

pacldng
the same
type) a

<adaptable array> ::8· [<packlng>l<adaptable array identifier>
: [<packing>l<adaptable array spec>

<adaptable array Identifier> ::= <identifier>

<adaptable array spec> 11=

~C~a~ t<starred I ist>l fit <type>
IgLL3~ L<starred I ist>l 2t <adaptable component type>
:s~L~~ L<indices>l ~t <adaptable component type>

<starred list> ::=
{<Index>,} <starred index> {, <any index>}

<any index> ::~ <index> : <starred Index>
<starred Index> ::= <star> : <starred subrange>
<star> ::= * : * : <scalar type>
<starred subrange> JI= * •• <scalar expression>

:<scalar expression).. *
<adaptable component type> ::= <adaptable type>

.
Note that component types, Indices, and the upper and lower

expressions associated with starred subranges may be of variable
bound typeo

An asterisk (*) without a scalar tYPe Indicates an adaptable
bound of integer type.

Adaptable arrays are equivalent if they have the same packing
(cf. 4.9), equivalent component types, identical dimensions, and
If corresponding Indices and elements of starred lists are
equivalent. Two stars are equivalent if they have the same
associated types; two starred subranges are equivalent if their
lower and upper expressions are equivalent.

NCR/CDC PRIVILEGED 4.0

• . ,

4-25
SOFTWARE ~RITERtS LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1915

4.0 S~JL TYPES
4e503 AOAPTABLE RECORD
NNNMNNNNU~~NNHNNNNHNNNNNNNNNHNNNNNNNNNHNNunHNHHNNNHHUNNHNNHHNHNNNN

405.3 ADAPTABLE RECORD

Adaptable records consist of zero or more fixed fields (cf.
4.3.4) fol!owed by one and on'Y one ~Qaatshlfl flg!~~ ~hlch Is a
fietd of adaptable type.

Adaptable records can adapt to any record whose type is the
same except for the type of its last field, which must be one to
which the adaptable field can adapto

(adaptable record> ::=
C(packlng>J<adaptable record type identifier>

IC<packing>J<adaptable record spec>

(adaptable record type ide~tlfier> ::n <identifier>

<adaptable record spec> Iia

tg~gtg [<fixed fields>,] (adaptable field> <recend>

(adaptable field> "~
<field selector> (al ignment>J (adaptable type>

Two adaptable record types are equivalent if they have the
same packing (cf. 4.9), the same number of fields, and identical
field selectors and. equivalent types for corresponding fields •

.
A bound ·variant record is a variant record whose case part. is

meant to be fixed to one of its constituent variants. See
Section 4.7 for syntax and semantics.

4.5.4 ADAPTABLE STACK

Adaptable stacks can adapt to a stack of any size, with the
same componerit type.

(adaptable stack> &,= (adaptable stack identifier>
: ila~~ l*l ~f (type>

(adaptable stack identifier> 'Ia (identifier>

The maximum number of components of an adapt~ble stack can be
fixed by a length. fixer .(cf. 10.4).

NCR/CDC PRIVILEGED 4.0

, ..

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

4.0 SWL TYPES
4.5.5 ADAPTABLE SEQUENCE
~N~N~NNN~N~~N~NNUNN~~~UNN~NNNNNNNNNNNN~~NNN~NNNNNNNNNNNNNNNNNNNNNN

4.505 ADAPTABLE SEQUENCE

Adaptables sequences can adapt to a sequence of any size.

<adaptable sequence> ::: <adaptable sequence identifier>
:l~S(*)

<adaptable sequence identifier> ::a <identifier>

The space for an adaptable sequence can be fixed by a span
fixer (cfo 1004)0 ~

4.506 ADAPTABLE HEAP

Adaptable heaps can adapt to a heap of any size.

<adaptable heap> ::= <adaptable heap identifier>
:h~ae(*)

<adaptable heap identifier> ::~ <identifier>

The space ·for an adaptable heap can be fixed by a span fixer
(cf. 10.4).

<control type> ::= <label type>
l(procedure type>
:<coprocess type>

Control types
e!tlm~t~c~ (cf.

may be used solely to define c~f~c:Q~n
below) and £~!Ql~C~ (cf. Pointer Type, 4.2.3).

4.6.1 LABEL TYPE

Labels
statements

are identifiers used for referring to specific
(cr. 10.0). Refer to sections 8.3 and 10.0 for the

semantics of labels.

<label type> 1:a l£n~l

NCR/CDC PRIVILEGED 4.0

I
I .
I
I

, , .

4-27
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09, 1975

4.0 SHL TYPES
40602 PROCEDURE TYPE

4.6.2 PROCEDURE TYPE

Procedures are Identified portions of programs
activated on demand. Refer to section 8 and
semantics of procedureso'

that can be
10.3 for the

A procedure type defines an optional ordered list of formal
parameters together with an optional return typee

(procedure type) ::= <procedure type identifier>
:eLQQ (proc type spec>

<pro~ type spec) ::=
[L(proc type attributes)l][<parameter list>]C<return type>]

<proc type attributes) ::c
(nul I construct (for expansion purposes»

(procedure type Identifier> ::c <Identifier)

<parameter list) ::= «param segment){~<param segment)})
(param segment) ::= <reference params):<value params)

(reference params> ::=
CAf <reference param) { ,<reference param) }

<reference param> t:=
<formal param list> : [f.. #r.ga!i).J <ref type)

<value params) ::= ~gl <value param){ ,<value param>}

<value param> ::= ~
<formal param list> : [L #CABd 1J (val type)

(formal param list) ::= (Identifier list)

<ref type> ::= <SWl type)
<val type) :: =

<type) : <adaptable type>

<return type) ::2 <basic type)

(bound variant record type)

Val type Is further restricted to exclude the so-called
non-value types: heap types, arrays and stacKs of non-value
types, and records containing a field of a non-value type.

Two procedure types are equivalent if corresponding par~m
segments have the same number of forma. parameters, identical
methods (L~f or ~~1)' and equivalent types, and If their return

~CR/CDC PRIVILEGED 400

I
I .

• · .
• · .

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
15/06/09

Revision 4 June 09, 1975

4.0 SWL TYPES
4.6.2 PROCEDURE TYPE
N~NNNNHNNNNHNNHH~NNNN~N~NNNHNNNNUNNNNNN~NNNNNNNHUNNNNNNNNNNNNNN~NN

types are equivalent. The #L~~d aQQ~~~ Ett~lh~tft (cf.
defines a read-only parameter.

1.1.1.1)

The presence of a return type in the proc type spec indicates
that the procedure Is a functional procedure to be invoked as a
factorl rather than by a procedure call statement (cf. 8.1.3,
Functions, and 900, Expressions).

4.6.3 COPROCESS TYPE

Cop rocesses are procedures controlled as synchronous
processes, so that partial execution of more than one procedure,
with a single thread of control passing back and forth between
them, is permitted. Refer to sections 8.2 and 10.3 for semantics
of coprocs.

<coprocess type> ::= ggetQ~

A bound variant record is a variant record (cf. 4.3.4) whose
case part is meant to be fixed to one of its constituent Variants
by the use of a tag field fixer (cf. Section 10.4). These are
space saving constructs, since only the space required for the
selected variant is allocated.

<bound variant record type> ::=
«packing>] <bound variant record type identifier>

:C<packing>J ~gllQd <variant record spec>
:C<packing>J ~nyuil <variant record type Identifier>

<variant r~cord spec> ::=
L~£ntg [<fixed fields>,] <case part) <recend>

<case part> ISm
£AA~ <tag field ?pec> 21 <variations> £~~~Qg

NCR/CDC PRIVILEGED 4.0

• · . ,
•

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

4 0 0 S \.J L T Y PES
4e7 BOUND VARIANT KECORD TYPE

<tag field spec> I:~

<tag field selector> 1 [<al ignment>] <tag field type>
<tag field selector> ::= <identifier>
<tag field type> ::~ <scalar type>

<variations> ::= <variation> {; <variation>}
<variation> ::= ~<selection values>~ <variant>

<selection values> :S~

<selection value> {~ <selection value>}
<selection value> ::~ <constant scalar expression>

[eo <constant scalar expression>]

<var'iant> ::= «fl>:ed fields>]
:[<flxed flelds>~J <case part)

75/06/09

A bound variant record type may only be used to define formal
parameters or to define pointers for bound variant record types
(Ieed bound variant pOinters)o Thus a variable of this type is
always either a formal parameter of a procedure, or is allocated
(cf. 10.4) in a sequence or a heap, or in the system-managed
stack.

An a! locate statement for a bound v~rlant record type requires
the specification of the tag field values, which select the
variation of the record allocated. In this case, only the
specified space is al located. A bound variant pointer is
returned Dysuch an allocate statemente

If the formal parameter of a procedure is of bound variant
record type, then the actual parameter may be of either variant
record type or bound variant record type.

If a formal call-by-ref parameter of a procedure is of variant
record type, then the actual parameter may not be of bound
variant record type.

A bound variant record type Is never equivalent to a variant
record typeo

Record assignment Is not allowed to a variable of bound
variant record type.

Files are sources and sinks of data that can be accessed
through input-output statments. Four fi Ie types are provided.

NCR/CDC PRIVILEGED 4.0

4-30
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09. 1975

4.0 S~JL TYPES
408 FILE TYPES

Lgglhlu fllRi consist of a sequence of entitles cal led lineso
System-defined mappings between lines and ~tcLQgS_Qf_~hRL exist;
these may differ depending on the source or destination device of
the·lines.

etlni_fllg~ are special cases of legible files that permit the
user to control output formatting through the use of pagination;
spaclng and titlinQ procedures (permitted on print files only),
rather than through the use of embedded control characters. The
user should not directly embed SLICh control characters in. data
destined for print flies.

alu~t~_tllt~ consist of a linear sequence of $WL variables.
These variables are not self-identifying, so that results of a
read operation are guaranteed If and only if the sequence of
types read is the same as the sequence written.

lllt~~l __ tllQS are special cases of binary files that also
permit the retrieval (and rewriting) of variables 'dlrectlyO
through the use of a 'key'. Results of such a read (or rewrite)
operation are guaranteed If and only If the obvious (but
tediously desc;ibed) type matching hOlds.

Files are referenced by so-cafled lu~ut Qllte~t statements
(cfe 1'005) which refer to files via file-variables.

4.8 0 1 FILE VARIABLES

Fifes are accessed through fl!A ___ X![ll~!A~' whi6h are
associated with a file by an expl iclt Qe~Q procedure and
de-associated from a file by an explicit !d.1Qi~ procedure" File
variables take on as values some undefined structured collection
of values which defines the instantaneous state of the actual
file associated with the variable. They may be used as
components of arrays and fields of records, may be allocated in
storage variables, and may be assigned to other file variables of
the same type. In addition, they may be used as actual
parameters of procedures, and fi Ie types may be used to define
both r.~f and x.aL formal parameters. In general, then, fi Ie
variables are data variables with a restricted operational
domain. In particular, file variables can not be compared.

NCR/CDC PRIVILEGED 4.0

• , ,

• · .

4-31
SOFTWARE WRIfER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

4,,0 sIn TYPES
40BeZ FILE VARIABLE WARNING

408.2 FILE VARIABLE WARNING

l:liu:.n.lng: If a file variable Is assigned
variable, and either used for manipulation
resulting cllsngcs in the fAle variable used are
reflected In the other file variable. The
variables for simultaneous manipulation of the
result in serious errorso

<packing attributes> ::~ ~s£~~g

<alignment) ::: ~llgD.Q~

to
of
not
use

same

another file
a fl fep then

implicitely
of both fj Ie
file could

A packed structure 14111 generally require les.i space at the
cost of greater overhead associated with access to its
components o If a packing attribute is unspecified. then the
structure Is assumed to be unpackedo An inner structure inherits
the packing of its immediately containing structure unless the
packing of the Inner structure is explicitly specifiedo

Elements of packed structures are not guaranteed to tie on
addressable memory sites (I~eop pointers to such elements can not
a'ways ~e generated). The illgD~rt attrlbute must be used to
ensure addressability of such elements. Addressabllity Is
achieved at the expense of storage space (except in certain
serendipitous cases), so that the effect of pacKing may be
diluted, sometimes severely.

Explicitly unpacKed structures and their components are always
aligned. Packed structures are also aligned unless they are
unaligned components of a packed structure~ but their components
are not unless they are explicitly given the ~11QU~Q or YOe~£~~g
attributeo

The attributes ~£~~ng, Yn~e~~~d, and ~tim~gQ (cfo Crammed
Types, 1301.2) cannot be applied to types that are explicitly
packed, unpacked, or crammed.

NCR/CDC PRIVILEGED 4.0

• ..

4-32
SOFTWARE WRITERoS LANGUAGE SPECIFICATION

75/06/09
Revision 4 Juna 099 1915

4aO SWL TYPES
4010 OTHER ASPECTS OF TYPES
~~NNNNH~~NHNNNHNN~NNNNNNNNHN~~H~NHNNNNNH~NN"HNNNN~nNHHRNNNn'l~NNNNN

4.10.1 INSTANTANEOUS TYPES

Variable bound~ adaptable and ·bound variant record types
actually define classes of related types. Variables of such
types (and pointers to such variables) are expl icitly meant to be
'fixed' to any or al I types of their type-class at different
times during the execution of a progr~mo See Variables and
Variable Declarations for a discussion. of' type fixing.

4.1002 VALUE AND NON-VALUE TYPES

Value assignments (cf. Assignment Statements) are permitted
only to variables of th~ so-called Ylly~ types. The non-value
types arel

a) heaps;
b) arrays of non-valUe component ',ypes
c) stacks 'of non-value component types
d) records containing a field of non-value type.

4.10.3 COMPARABLE AND NON-COMPARABLE TYPES

Value comparisons (cf. Relational Operators) are permitted
only between variables of the so-cal led £Qm~~tl~lf typej. The
non-comparable types arel

a) files, stacks, heaps, sequences, unions and variant
'records;

b) arrays of non-comparable component types;
c) records containing a field of non-comparable type.

NCR/CDC PRIVILEGED 4.0

I · -

• · .
• · .

• • • · . • · . I

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

4.0 SWL TYPES
4elO.4 FUNCTION-RETURN TYPES
:NNNNNUNNNU~~NNnN~NNNNHU~UNN~NNNU~NNNNNN~NNNNNNNNNNNNNNNNNNNNNNNNNU

4.10.4 FU~CTrDN-RETURN TYPES

The only types that can be associated with returned values of
functions (cf. Functions and Return Types) are the basic types:

a) IntgSnL' ~hatl ~221g~ll' ordinal types, sub-range types;
b) ~~~l types;
c) pointer types."

4.10.5 CONVERTIBLE AND CONFORMABLE TYPES

Mechanisms for converting values of some types to values of
others are provided (cf. Value Conversion).

a) ·Scalar values and real values are convertible to integer
values, and conversely;

b) Conversions are allo~ed between ~2ll!QtnsQlft arrays and
between £2ntuLmablA records (cf. Conformable Arrays and
Records).

NCR/CDC PRIVILEGED 4.0

• . ,

5-1
SOFTWARE WRITERGS LANGUAGE SPECIFICArrON

75106/09
Revision 4 June 09, 1975

5.0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS

Two mechanisms are provided For explicitly denoting values:
£2UillUii and xalyft Q2n~lty£tgt~o Constants are used to denote
constant values of the basic types and strings. Value
constructors are used to denote instances of values of set,
array, and record types. There are two kinds of value
constructors: Qfttlnit~ xnly~ SQn£itll~tQt~' which include specific
type id~ntifjcation; and InQftflnit~ ~~lll~ ~gQ~ttll£t~t~' whose
type must be determined contextually.

541.1 CONSTANTS AND CONSTANT DECLARATIONS

Constants are used to denote Instances of values of the basic
types and of string types.

<constant> ::u <basic constant)l<string constant>

"<basic constant> ::= <scalar constant>
:<compile time variable> "cf. Section 12.1"
I<real constant>
l<pointer constant>

<scalar constant> ::- <ordinal constant>
l<boolean constant>
l<integer constant>
I<character constant>

<ordinal constant> 1101 <ordinal. constant identifier>
Itcf. 4.2.1.1.3"

<boolean constant> ::3 tal~~:1ty~:<boolean constant identifier>

(integer constant> ::= (integer>:(integer constant identifier>

(c h a rae t ere 0 n s tan t > :::s • <·3 • ph abe t > •

NCR/CDC PRIVILEGED 5.0

• . .

:
:

5-2
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

5 0 0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
5.1.1.1 Constants

:<character constant Identifier>
:$~hAt «Integer»
"ef. Standard Functionsp 11.2"

<real constant> Z:m <real number>:<real constant Identifier>

<string constant> ::= <string term> { ~Bi <string term>}

<string term> ::= <character constant>
:<string constant identifier>
:e<alphabet> <alphabet> {<alphabet>}'

<pointer constant> ::~ all

<ordinal constant Identifier> ::~ <Identifier)
<boolean constant identifier> ::= <identifier>
<intege~ constant identifier> ::= <Identifier>
<character constant identifier> ::= <Identifier>
<real constant identifier> :I~ <identifier>
<string constant identifier> ::= <Identifier>
<pointer constant identifier> ::= <identifier>

<real number> :t= <unsealed number>
:<scaled number>

<unsealed number> :1= <digit>{<digit>}Q<digit>{<digit>}

<scaled number> ::~ <unsealed number> E[<sign>J(diglt>{(dlgit>}

<Integer> ¥I= <digit){<digit)}
l<~igit>«hex digit>} <base designator>

<hex digit> ::= A:S:C:D:E:F
la:b:e:d:e:f
l<digit>

<base designator> ::~ «radix»

<radix> ::= 2 : 4 : 8 : 10 : 16

<5 I gn> :: li1 + :

If the base designator is omitted from an integer, then a
radix of 10 is assumed. In ai I cases, the digits (or hex digits)
arc constrained to be less than the specified radix.

NCR/CDC PRIVILEGED 5 0 0

• . .

5-3
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

5.0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
5 010102 Constant Expressions

Constant
computation
apptication
arc those
constraints:

expressions are constructs denoting rules of
for obtaining values (at compile time) by the

of operators to operands. The rules of application
for 2Ia~Ai£lQUli (cf. 9.0) with the following

a) Factors of such expressions must be either constants or
parenthesized constant expressions.

b) The expressions must be simple expressions (terms involving
relationals must be parenthesized).

c) The only functions al lowed as factors In such expressions
ar~ the $lDtA9~L' $£~IL' $bQ2!~An' lib!, #linn, #i~G~' 'etArt, and
$<scara~ type identifier> functions with constant expressions as
arguments.

d) &~~1 constant expressions used in constant declarations are
constrained to be either a <real number> or a <real constant
identifier>.

Constant. declarations are used to introduce identi'fiers for
constant values. Once declared, such a ~Qn~tEut 19~Qt!ft~ can be
used elsewhere to stand for the identified value.

<constant declaration> :;=
~~ui1[<constant spec) {, <constant spec>}]

<constant spec> 1:=
(constant identifier list> z <constant expression>

: <empty>

<cons~ant identifier list> '1= <identifier list>

A constant spec associates one cir more identifiers with the
value of the constant expression.

5.1.Z DEFINITE VALUE CONSTRUCTO~S

Definite value constructors are used to denote instances of
values of a specified set, array, union, or record type, and to

NCR/CDC PRIVILEGED 5.0

, · ,

• · .
• · .

5-4
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

5 c O VALUE CONSTRUCTORS AND VALUE CO~VERSIONS
5Glo2 DEFINITE VALUE CONSTRUCTORS

denote instances of typed empty sets and typed 'nl I D pointers.

(definite value constructor> :":~

$<constructor id> [<value elements>l
$<set type identifier> I. J. IVthe empty set"

:" $<pointer type identifier> L nil 1
$<union type identifier> r <expression> 1

<constructor Id) ::a <set type identjfier>
:<array type identifier)
:<record type identifier>

<value elements> !:g <value element>{,<value element>}
<value element> ::= «rep spec)](expression>

:[(rep spec>]<indefinite value constructor>
:C(rep spec>] ~ ..

<rep spec) ::= £12 (positive integer expression> Qf

Identifiers for definite value constructors are obtained by
prefixing the 'target type' identifier with a dollar sign. '$!~

The types of the elements of the value constructor must match the
ordered set of components of the specified target type, except
for 'undefined elements,e wh'ch are denoted by an asterisk, '*'.
Definite value constructors can be used wherever an expression
can be used, with the caveat that 'undefined fields& may yield
results which are either undefined or erroneous, or botho

Initialization of, or assignment top a ~1D.1Q.D. variable requires
that the right hand side's type be known. When that type 6s to
be a pointer type with value nii, the $<pointer type identifier>
for nll as shown in syntax above may be used.

The expression used in a union value constructor must evaluate
to a value whose type can be assigned to one (and only one)
member of that union.

Rep specs may be used solely for array construction.

Note that a set value may be defined to be tempty' by use of
nothing between the brackets Land 1.

All fields of a definite value constructor corresponding to
tag fields of a variant record must be constant scalar
expressions.

NCR/CDC PRIVILEGED 5.0

• . .

5-5
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09, 1975

5.0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
:5 G 1 0 3 IN D E FIN I T E .v II L U E CON S T Rue TOR S
NN~HNNNHHNHNNNHNHNNN~H~NNUNHNNH~NNH~NHHHNNNHNHNNNNNHHUNNN~NN~NNH~M

5.1.3 INDEFINITE VALUE CONSTRUCTORS

Indefinite value constructors are used to denote instances
set, array, or record type.

<Indefinite value constructor> ::= r<value etements>l
f..). "the empty set"

of

Indefinite value constructors can. oe used only rlhere their
type is exp'lcitly indicated by the context in which they occur:
as arguments of £Qn~lr~12Q tUOQ11QUi (cf. Section 5.2), as
elements of definite and indefinite value .constructors, and for
the iQitl~11z~tiQn of variables (efo Section 6.0). They may be
a set, array, or record depending on their -contexto

All fields of an indefinite value constructor corresponding to
tag fj-elds of a variant record must be constant sc"Iar
expressions.

The lack of value elements can be used to define the
indefinite value of 'an empty set', when nothing appears between
the square brackets I and 1.

For the types defined by

txag color = (red, green, blue),
S • ~ttlng (3) 2t ~nat'
A = gtta~ [1 •• 20J ~f Int~g~t'

Rl a L~QQtn t : accay [1 •• 3] Qf ~QQ1~aa,
s . .s •

.tft~~!ls!'
RZ = r.ft~Qr.s! Fl I ~~t 2.! £2.12.c,

F2 . S, .
F3 2 A,
F4 I Rl

r.ft~~O£U

Instances of definite value constructors for the types Rl aod R2
f 0 I low, wit h the' r fin est r uc t u red I s p I aye d •

-~-----+-----~-. -~+-~
: +---~~<strlng constant> for field s
+----<indefinite value constructor> for field t

NCR/CDC PRIVILEGED 5.0

I ..

5-6
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

500 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
$.103 INDEFINITE VALUE CONSTRUCTORS
N~NNNNNNNN~NNNNNNNNNNNNNnNNNNN~HMNNNNNNN~N~N~NNNHNUNNNNNNUNN~NUNNU

-----+----- --+-- ----+-------- -------+---------------

I
I

I
I

+--(Indefinite value
constructor) for
F4

+--(indefinite value constructor>
for F3

v--<string constant> for F2
+--(indefinite value constructor> for Fl

Eacn at the constants used In the above exanp'es could have
been replaced by expressions that evaluate to the required
types •

.e~Slmelfil :.

t~£g vio s tg~~tg
inout (kread, kwrlte, kopen, kclose) "ordinal

index : lntft9.~c..p
fname , ~itlU9. (8) Qf SUat

t!Ua~Og ;
~~t arec : via; . " .
arec 1= $vlo(kopen, * , 'holdings'] ;
"value of rlel~ arec.index Is undefined"

type" ,

Mos·t dyadic operations are defined only for operands of the
same type •. This requirement is relaxed to permit:

a) values of different subranges of the same parent type (and
values of the parent type) to enter jointly into operations
defined for the parent ty~e;

b) characters to be used with strings in string operations;

c) other formally noo-equivalent, but operationally similar
types to enter Jointly In so~e cases of assignment (cr. 10.1.1)
and 10.3.1) and comparison (cf. 9.2.6).

In al' other cases, when it Is necessary to operate on
dis-similar types the conversion functions described below must
be used.

NCR/CDC PKIVILEGEO 5.0

t •
I
t·

5-7
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 Juno 09, 1975

5.0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
5.2 0 1 TYPE CONVERSION FUNCTIONS
NN~_NNNNH_~N~N_NNNNNNNNN_NNNNrlN~NNN~NNNNNNNN~NNNN~N~NN N~H~NHMN~"NN

5.201 TYPE CONVERSION FUNCTIONS

Identifiers for conversion functions are obtained by prefixing
the target type identifier with a dollar sign. The function so
Identified wi I I then accept as an argument values that are
convertible to the target typeo

These consist of the 'pre-defined' functions {cf. Standard
Functions, lle2)o

$lDl§g~[«real expression or char expression or ordinal
expression or boolean expression»

$t~a! «integer expression»
$£hat «Integer expression»
$~~~lftau«integer expression»

and the 'definable' functions:

$<ordinal type Identifier)C<lnteger expression»

$<Integer type identifier)«real expression or char
expression or ordinal expression
or boolean expression»

$<real type Identlfer«integer expression»
$<char type identjfier) «Integer expression»
$<boolean type identifier)«integer expression»

Conversions between the basic types are the conventional ones
and are defined in Section 11.2.

Conversions to ordinal type return the value ~hose ordinal
number is the value of the Integer expression used as argument.

NCR/CDC PRIVILEGED 5.0

• · .
• · .

I · .
I · .
• · .
• · .
• · . • · .
t
t· .

• · .

5-8
SOFTWARE W~ITER'S LANGUAGE SPECIFICATION

75/06/09
Revlslon· 4 June 09, 1975

5 0 0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
~.201bl Bas.ie Conversions
~NNNNNNN~NN~MNNNNN_NHH~NN_HHUHMN.NUNMN.~NNN~HUUN~.N~MN~~N"NNNHN~UN

1xe~ status = (nowclose, nowapen, nowread);
:i.~r. i 2p i 3, i 4, 15 : lD..tr..su~.r.,

r2r r3 r c.~£1' b, babbage , Q.Q.Q.J.~flf1'
'stat : statusJ>
c h 1, c h 2 : ~tHH. ;

12 := 2; i3 := 3; 14 := 4;
~2 := 2~2; r3 := -303 ; stat :~ nowread;
i5 Z= 1; babbage := ti111?f';
12:= $in.ig.9.er.< r3); "ne~l value of i2 Is -3 II

il z:.: $lniQ,gSH. (s tat); It i 1 no 1'4 '" 2 0 If

chI ::s $ £. b.21 £. (i 2); " e h 1 now :.: 2nd AS C I Ie h a rae t e r II

stat :=' $status(l) ; "stat value is changed to nOHopen"
i4 := $inlJ?9.Q[.(baboage); nllt set to zero"
b ,= $hQQl9.~!:l(i 5); lib set to .tt.Ug H

Array-to-array
only for arguments

and record-to-record conversions are defined
that are 'conformable f to the target typeQ

$<array. type Identifier>«array expression»

$<record type identifler)«record expression»

<array expression> ::3 <expression>
:<indefinfte value constructor>

<record expression> z:= <expression>
:<indefinite value constructor>

Conformabillty is defined recursively, in terms of the
conformabll ity of array components and fields of records, by the
fol[owing table.

NCR/CDC PRIVILEGED 5.0

• , .

SOFTWARE WRITERoS LANGUAGE SPECIFICATION

Revision 4 June 09" 1975

5.0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
5020102 Conformable Array and Record Conversions

75/06/09

NNNNNUNNHN~N~HNNNHN~NNM~~NHN~~MNN~N~NNNN~NHN~NNNN~N~~NHNN~"NN~NNHN

Target Component
or

Field Type

'bas ic types

set types

.s t r i n 9 t Y pes

union types

array types

array types

non-variant record
types

Conformable Component
or

Field Type

any type assignable to target

any type assignabje to target

any type assignable to target

any type assignable to target

array type whose indices span
same number of elements as
target type and whose component
type conforms to target component

indefinite value constructor
containing same number of
elements as Index type of
target, al I conformaole
to target component.

non-variant record type or
Indefinite value constructor:
same number of fields, with
each field confor.mable to
corresponding target field.

variant record types equivalent record type; or
indefinite value constructor
with same number of fields9
each field conformable to the
corresponding target field,
with constant scalar expressjons
for tag fields.

----~-------------------------------------~----~~---~~~-----

NCR/CDC PRIVILEGED 5.0

• · .

I
I .

• · .

5-10.
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/0bl09
Revision 4 june 09, 1975

5 0 0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
5.20102 Conformable Arr~y and Record Conversions
N~NNNNNWNH~HNHNN~NNNNNNHHNN~'N~NN~HNNNNNNU~NNNN~NH~~NNN~N~NN~NNNNNN

txP.~ Al = gtta~ [10010) Q! 51,
s1 a ~ltl~U (20) Qf ~h~L'
A2 ~ £Lr.~~ (110020] Qt 52,
s2 = ~iLiarr (10) Qf ~hnt'

c.g,~~!lfh

i : InlfHHU • .9

J : tga!,
A I Al

alpha : io.!;,~~H~.!.'
b c t a : J:.g.a..l,
gamma : A2

R3 ZI e.a~tHu1 R2i

The two array types conform and the three record types conform.

String conversion functions are used primari Iy to rlght-extend
a string with 'fill' or 'paddlng' characters of the user's
choice.

where

$~.tt.lllg « I.cngth), <5 tr I ng expr ess I on)(, (f ill)l)

$(strl~g type identifier)«string expression)(,<fi II)])

(length) lIz (positive integer expression)
(fill) II: (character expression)

These functions return a fixed string whose length is
specified by the length given as argument or by the length of the
target type. The value returned Is obtained from tne string
expression used as the argument, right-truncated or
right-extended (by the fill character) as required by the length
of the result. If no fill is specified, the blank character is
used.

NCR/CDC PRIVILEGED 5.0

• I .

, · .

, · .

5-11.
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09~ 1975
NHN~HNNNnM~NM"N~~NNNH~NNNNNNNNNN~N~HH~NNHH.~NN~~UNNNMH~MNN~NNNNHNN

5 0 0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS
5.3 FILE VARIABLE CONSTRUCTORS
NNHNHN~NUN~NNUNNNNNUN~_NNNHHNNHNNHNNNNNNnHN~NNNNNN~NNNNNNHM~NNNNN~

Indefinite fl Ie variable constructors can be used only for
initializing file variables (cf. 6.7) or as the arguments of
definite fi Ie variable constructorso The latter can be used for
assignment operations involving fi Ie variables. of . the same
types.

<indefinite file variable constructor> 11== «file spec>l

<definite file variable constructor> ::~

$<file type> L<file expression>l

<file'spec) :;= <file attributes> "cf. 6.7"

<file attributes> :::: <file attribute> {,<file attribute>}
<file attribute> ::0 <old or new>

<mode>
<encoding>
<position>
<actual fl Ie name>
<page size>
<end of page pr0c)

< 0 I d 0 r. nevI> :::l'l 1# 2.1 Q. 1# OJ!. tl
<mode> ::= #iu[,#QutJ #Qllt[,#1u)
<position> ::3 #flt~t #Rliii: #1&&t
<actual file name> ::= <string expression)

<page size> ::= #e~g~iiz~ «number of lines»

<end of page proc> ::= #ell~~aLQ~ «procedure reference»

<codeset> Jln 'asci j'
'ebcdlc'

I 'ascii63'
: 'ascii61Z'
: 'native'

<others as required>

See section 6.7 for a complete coverage of file attributes.

NCR/CDC PRIVILEGED 5.0

• · .
• · .
• · .
I .'
• · .

6-1
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6.0 VARIABLES, SEGMENTS, AKDFILES

Variables take on values of a subset of the SWL types:. fixed
or variable bound types, adaptable types, and bound variant
record typ~s.

Variables of fixed or variable bound type can be declared by
an explicit variable declaration (see below) or can be deciared
as formal parameters of procedures (cf. 8.1).

Variables of adaptable
be declared as formal
otherwise be exp.lcitly
operations (cf. 10.4).

or bound variant record type
parameters of procedures,
established by storage

6.1.1 ESTABLISHING VARIABLES

This process Involves:

a) The determination of the type of. the variable;

can only
and must

management

b) The allocation of storage for values to be taken on by the
variable;

c) The possible assignment of initial values to. the variab·'e;

d) The possible binding of references (see below) to that
variable.

Explicitly declared variables are automatically established on
each entry to the block (cf. 7.5) in which they were declared.
However, so-called 'static' variables (cf. 6.2.2) are
established once and only once.

Formal parameters of procedures are auto~atically established
on each call of that procedures If the procedure is associated
with a coproc, establishment occurs on each creation of that
coproc.

NCRICDC PRIVILEGED 6.0

• · .

• • · . I

I · .
• t .

, · .

,
r

• •
. ..
. . I

I
I .

b-2
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

b.O VARIABLESp SEG~ENTS, AND FILES
6Qlel ESTABLISHING VARIABLES
NNNNNN~HNHUNNNMNNNNN~NNN~NNNNNNN.NNNN~NN~U~NN~~NN~N~~~~NNN~N~NNNN~

So-called 'allocated' variables are explicitly established by
storage management operations (cf. 10.4) (for type determination
and storage allocation), and by assignment operations (for
initialization)o

6.1.2 TYPING OF VARIABLES

Variable bound, adaptable and bound variant record types
actually define classes of related types. Variab'es of such
types (and pointers to such variables) are explicitly meant to be
'fixed' to any or all types of their type-class at different
times during the execution of a program.

The type to which a ~ariable is fixed at a specific time
during execution of a program is called its lu~t~at~OgQYS type
(at that time). It is a variable's instantaneous type that is
actually used to determine the operations it may enter into at
any point In time. In general, two variables whose instantaneous
types are equl"alent can enter Into dyadic operations defined for
that type.

The lnstantaneous type of variables is fixed in the following
manner.

1. Types themselves are fixed on entry to the block 'n,which
they are declared (by an explicit type declaration), and remain
fixed until exit from that blOCk.

2. The' Instantaneous type of declared variables, and formal
parameters (of fixed or variable bound type) is determined as
follows:

a) If their type is specified solely by a type identifier~ th~
type is fixed on each entry to the block containing the
declaration of the identified type, and remains fixed
until exit from that block.

b) If their type is specified by an explicitly spelled o'u't-,"l')<'pe,
then the type is fixed on each entry to the block
containing the variable or procedure declaration, and
remains fixed until exit from that block.

3. Variable bound
variant record types are
types.

parts (If
fixed as

any)
above

of adaptable and bound
for variable bound

NCR/COC PRIVILEGEO 6.0

I
I ,

I
I
I
I
I · .

• I
I •
I · ,

• · . I • • · ,
• t

• t

6-3
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6.0 VARIABLES, SEGMENTS, AND FILES
6.1.2.1 Instantaneous Types
NNNNNUN~N~NNNNN~~nN~~NHNNNNNNNNH~~NNNNNNHNNNNNNNHNHNHNNNNNNHHNHHNN

4. Variables of adaptable and 'bound variant record type are
fl'xed in three distinct ways:

a) Formal parameters of such types are fixed by the
instantaneous types of their corresponding actual parameters on

,each cal I on the procedure of which they are a part. 'See
Section 10.3.1 for the rules for fixing parameters.) If the
procedure is associated with a coproc, the type is fixed on each
creation of that coproc.

b) Explicitly allocated
fixed by the allocation operation.
rules for fixing such variables.

variables
See Section

of such types are
10.4.1 for t,he

c) A direct pointer whose instantaneous type is any of
the types to which an actaptabte pointer can adapt, can be
assigned to that adaptable pointer. In such cases, both the
value and the type are assigned, thus fixing the instantaneous
type of the adaptable pointer.

•
•
•

~ttgl!l "first block"
1xet tl -, ~tLlns (n) ~f ~hat;

•
•
•

~~giQ "second block"

!£j),J:. S : t1,
Al :atJ:.ax [Jl 2! tI,
A2 a aJ:.tg~ [J] ~t ~tting (m) ~t ~hat;

£tQ~ p (~al A : £J:.t~~ (*) 2t ti);

•
•
•

£tQ.£~ng;

•
•
•

peAl);
•
•
•

NCR/CDC PRIVILEGED b.O

I · ,
,
I ,

• I,

I · "

• I ,

• · '

'. • • • • • •
I •

6-4
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6.0 VARIABLES, SEGMENTS, AND FILES
6clo2cl Instantaneous Types

. NNNNNM~NNNNNNNUN~NUNNNH~NNNNNNNNNNNNN~NNNUN~NNNNNNNNnMNNNNN~_NNNNN

The type, ti, is fixed on each entry to the first block, thus
fixing the instantaneous type of the variable, 5, and the
component type (but only the component type) of the variaOle, Al,
and the formal parameter, A. The Instantaneous types of the
variables, Al and A2, are fixed on each entry to the second
block. The instantaneous type of the forma. parameter, A, Is
fixed to that of tne variable Al on each procedure call, P(Ai).

6.1.3 EXPLICIT VARIABLE DECLARATIONS

Variables are explicitly
for denoting them, a type, an
optional Inlil~11Zel1~n.

declared in terms of an identifier
optional set of gtt~lnMt~~ and an

<v~rlable declaration) ::~

~a~·[(frle or variable spec){,<fl/e or variable speC>}J

(file or variable spec> ::u <variable spec)
<file variable spec) "cf. 6.7"
<empty>

<variable spec> ::a
<variable identifiers) t [(attributes)]

<fixed or variable bound type)C<inltialization>]

<variable Identifiers) ::=
< v a ria b Ie Ide n ti f j e r > « a I i as)]
{ ,<variable identifier> «alias)].}

<variable Identifier> ::a <identifier>

<alias> :t- A!La~ , (alphabet> { (alphabet) } '.
"cr. 7.7.1 for semantics of alias"

6.2 AIIBla.ulfS

(attributes> a:a [<attrlbute>{,<attrlbute>}l.

(attribute> 'Ia <access attribute>
:<storage attribute)
:<scope attribute>

(scope or storage attribute) :1=
«scope attribute) (,<storage attribute)ll

: [<storage attribute> [,<scope attrJbute)ll

NCR/CDC PRIVILEGED 6.0

• · . • •

• · .
• • • · . :

• · .. • • • · .
• · .

• · .

6-5
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6 e O VARIABLES, SEGMENTS, AND FILES
6e2~1 ACCESS ATTRIBUTE
•• NN~UNn~~H_NNN __ NNMNHNNNMHHNN~HNnHM~HUH~~HNNMN~NH~MN~MNNNNNN~UNNN

6.201 ACCESS ATTRIBUTE

<access attribute) It= ff.L~2g : #tlLlt~ : #~~~~utg

The read and write attributes can be associated with variables
(and segments, cf. 6.5) to specify whether values can be read or
written-over.

The execute attribute cannot be associate·d with variables, Is
automatically associated with procedures and labels, and is
otherwise used solely to declare segments (cf. Section 605)
containing procedureso The degree of support for the execute
attribute I-iii I be a function of the link-loader (link-editor) and
the operattng system, so will be system-dependent.

Variables can be declared with either the read attribute or
with no attributes at a". In the former casep the variable is
called a 'read-only variable;o in the latter case, both the read
and the write attributes are automatically associated with the
variable, which is then cal led a 'read-write variable.'

Read-write variables can
retrieval and reassignment:
objects of assignment (cf~

parameters of procedures {cf.·

be used freely for purposes of
in expressions (efo Section 9}p as

Section 10.1) and as actual
Section 10.3.1>.

Read-only variables can (and should) be Initialized (cf.
Section 6~3), may not be used as objects of assignment; and may
be used as actual parameters only If the corresponding formal
parameter Is either a ya! parameter or a read-only t~t parameter
(cf. Sections 4.6 and 8.1.2)0

~g.t:. vl: [#.t:.~ag) 1!lt~9.ftt := 10; "vl (s read only, but
Initialization Is valid"

y'gr. v 2 : t~.a! ; It V 2 may be' rea d' and f w r itt e n I"

6.2.2 STORAGE ATTRIBUTES AND LIFETIMES

<storage attribute) ::= ~tgl1~:<segment identifier>

Storage attributes specify when storage for an expt Icitly
declared variable is to be allocated (and initial values assigned
if necessary) and when it is to be freed (at whleh time values of
the variable become undefined)~ The programmatic domain In
effect between the time such storage is allocated and the time it

NCR/CDC PRIVILEGED 6.0

6-6
SOFTWARE WRITERcS LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6.0 VARIABLES, SEGMENTS, AND FILES
6.2.2 STORAGE ATTRIBUTES AND LIFETIMES
HNNNHNN~HNN~NNNNNNHNNNN~NNNNHNH~"NHN~~NNNNHHNNHNNNN~~~~~~M~_~NNNN~

Is freed Is cal led the 'llfetlme' of the variable.

The lifetime of an 'automatic variable' is the block (cf.
Section 7.5, Blocks) in which It was declared: allocation and
initialization occur on eacn entry to that block and freeing
occurs on each exit from that bloCKo

The lifetime of a 'static variable' is the entire program:
allocation and initialization occur once aRd only once (at a time
not later than Initial entry to the bloCK in which the variable
was declared), and storage is not freed on exits from that
block.

If neither' storage attributes nor scope attrib~tes (cf.
Section 6.203) are specified, tn~n the variable' i~ treated as, . an
automatic variable.

If the static attribute is specified or
. specified (cf. Section 6.5) then the variable Is
static variable.

if a segment Is
treated as a

If any of the scope attributes (cf. Section 6.2.3) are
specified, then'the variable is treated as a static varia~le.

Variables of variable-bound type (cf. Section 4.1) cannot be
static variables.

Variables declared at the outermost level of a compi lation
unit (cf. 7.1) are treated as ·static variables.

The lifetime of a formal parameter Is the lifetime of the
procedure of which It is a part: the formal parameter Is
established on each entry to the procedure, and becomes undefined
on exits from the procedure.

NCR/CDC PRIVILEGED 6.0

I
I

:
• . .

6-7
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6.0 VARIABLES, SEGMENTS, AND FILES
6.2.2.5 Lifetime of AI located Varlnbles
NN"N~NNNNUNNHNNNNNN~NNNNNNNN"NnNNH~NNNNNNHN#N~UNNHNHNNNHNNNN"HHHNH

Allocated variables are established (but not initialized) by
an explicit al location operation, and become undefined when they
are' explicitly freed or their containing storage variable ceases
to exist.

~atnln~: Note that generally a pointer value has a finite
lifetime different from that of the pointer· variable.
Procedures, labels, and automatic variables cease to exist on
exit from the block in which they were declared •. Allocated
variables cease to exist when they are freed or their containing
storage variable cea~es to exist. Attempts to reference·
non-existent variables by a designator beyond their I ifetime is a
programming error and could lead to disastrous results.

6.2.3 SCOPE ATTRIBUTES

<scope attribute> ::= ~rtkl : ~t~f : ~~t~tnaL

Variable identifiers are used in variable denotations. Scope
attributes specify the regimen to be used to associate instances
of variable identifiers with instances of variable specs. The
programmatic domain over which a variable spec is associated with
instances of its associated variable identifiers that are. used in
variable denotations, is called the E~2e~ of that spec. If no
scope attribute is specified, the spec is said to be lut~~uaL to
the block In which it occurs, and a so-called 2!~£~-~iLY£tY~ln~

.regimen is used (cf. Section 7.2).

Internal variables are always automatic variables (see above)
unless ·glven a storage attribute, while scope-attributed
variables are always ~1R.ll£. Each of the scope attributes
specifies certain deviations from the block-structuring regimen.
Broadly speaking, a variable identifier associated with an ~t~f
variable can be used to denote a similarly identified variable
having the Kd~l attribute, subject only to reasonaole rules of
specificational conformity.

f~l~tQa! variables are introduced to permit SWL programs to be
Interfaced with programs ~ritten in othet languages; they ~ay be
referenced whenever and wherever their spec appears.

NCR/CDC PRIVILEGED 6.0

6-8
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6.0 VARIABLES, SEGMENTS, AND FILES
6e2.3 SCOPE ATTRIBUTES

Neither ~t~f nor ~~i~[n~l variables can be Initialized, and
each carries the de-facto static storage attribute,

There should exist only one declaration of a given variable
(Identifier) with the Kti£! attribute within a compilation unit
(cf. Section 7.7) or within a group of compilation units to be
combined for execution.

If a variable declaration contal«s either the ~t~t or §!t~LQD!
attribute, then it may not also contain a segment identifier
attribute.

6.204 FILE ATTRIBUTES

See sect ron 607 •

6.3 ItllllAhll~llQtl

Initial izat/ons are used to specify values to be ass/gned
explicitly declared variabJes each time such variables
established.

<initialization> :;= :u <initialization expression>

<initialization expression> :l= <expression>
: <indefinite value constructor>

to
are

Whenever the' variable Is established (cf. 6.1.1), the type of
the variable is determined, storage for a variable of that type
is allocated, the Initialization expression Is evaluated, and the
resultant value is assigned to the variable according to the
normal rules for assignment (cf. 10.1).

6.3.1 INITIALIZATION CONSTRAINTS

1. If no initialization is specified, the initial value is
undefined.

2. If the Initial izatlon expression is an indefinite value
constructor, the variable must be either a set, array, or record,
so that the type of the indefinite value constructor can be
determinedo

3. An asterisk, '*', can be used in indefinite value

NCR/CDC PRIVILEGED 6.0

• I .

• · .
• · .
• · . • · .
I · .

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 099 1975

6.0 VARIABLES, SEGMENTS, AND FILES
~.3.1 INITIALIZATION CONSTRAINTS

15/06/09

NNHN~N~~NH~NNN_NNHNN~N~NHNNU~NNNnHNNN~N~MN~NN~N~~~N~NNNNN~~NNNNNNN

constructors to indicate uninltialized elements of, arrays and
records. The Initial values of such uninltializcd elements are
undefined.

4. Initial fzatlon expressions may not contain references to
values of variables declared in the same block as that containing
the initialization. However, references to values of pointers to
variables, procedures and labels declared In the same block are
allowed.

More precisely, if 'E' Identifies a variable, procedure or
label declared In the block containing the Initialization, then
its use in a factor of the initialization expression is
constrained to the factor ,AE'.

6.3.2 FILE VARIABLE INITIALIZATION

See section 6.7, as special
file variables.

Initialization rules apply for

(segment declaration> 11= ~~nmftQt (segments>, (segments)
(segments> ::= <segment identifiers> (: l<access attributes>ll
<segment identifiers> :1= (segment identifier>

{,(segment identifier>}
,(segme~t identifier) ::= (identifier> .
(access attributes> liB <access attribute>{,(access attribute>}

A segment is a static storage area for specified variables' and
procedures 'sharing common access attributes. The access
attributes of variables and procedures declared to be in a
particular segment must be a subset of that segment's access
attributes. The combinations of segment access attrioutes to be
supPorted will be implementation dependent, but wi II include
(#Lft&tl] and [#L~~Q' #~Lllt]. 'Support of the #~~~~yt~ attribute
will be syst.em-dependent, related to both link-loaders and the
operating systems themselves.

Note that SWLsegments are primarily deSigned to group things
together, and have no a-priori relationship (or lack of one) to
hardware supported segments.

A segment identifier may never be a prong (cf.
Modules).

NCR/CDC PRIVILEGED 6.0

,
I ,

,.
a

• •

• • , · .
• I

• •

6-10
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6.0 VARIABLES, SEGMENTS, AND FILES
6.5 VALID COM3INATIONS OF ATTRIBUTES AND INITIALIZATIONS

-
6.5 YA11Q_~OMilrNAIIQN~_QE_AIIR13UlfS_A~Q_ltllIlALlZAIlatl~

Only certain combination of attributes are val ide These
combine with certain initial ization assignments, some of which
are -optional, some required, and some prohibited.

AIIB.lflU,I£ It:lllr~!..Il.L\IlQ~ ~AtlE._AS

(1) none optional

(2) #r.giEl required

(3) ~ii1tlf2. optional

(4) ~l~t.l£j> tH.~19 required

(5) l\Q;£1 optional (7)

(6) . l\Q£.l'#r:~art required (8)

(7) 2iQ£l.' ~.tBt.i!& optional (5)

(8) ~Q~l'Sigil~'#L~gQ required (6)

(9) b~~f prohibited (11)

(10) Ar.ft.E, #r.~ag prohibited (12)

(11> ~.r:~.t,~.t.a.t11C. prohibited (9)

(12) Ar.~tp~.t$tl~'#.r:~~Q prohibited (10)

(13) ~uit~.c.Qal prohibited

(14) ~~.t!l.c.rH.l' # J:!HH1 prohibited

(15) * <segment Id> optional

(16) * <segment id>,#!:.S!as1 required

(17) ,. <segment id>,ltsis;,! optional

(18) * <segment i d>, ?S..d.c.!, #t.fHUt required

(*) Static is implied for segment's.

NCR/CDC PRIVILEGED 600

• · -

• f .

. .
•
• · .
I · ,
• · .
• · .

6-11
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6eD VARIABLES, SEGMENTS, AND FILES
6.5 VALID COM8INATIONS OF ATTRIBUTES AND INITIALIlATIONS
NHNNNNNNHNNNNNNNUNNN_N~NNHNHHNN~N~_NUUNHN~N~NnNNHNNNNH~~~"N~~~NnHN

a~9.LlHU1.t sl 1 [#ttl1gp #w.r:.l.t~], s2 1 (fft!laQ]' S31 [#g~~9.11.!;.f:.];
K.ar..: [;t[!Hul'.1f.1f?1,slJ lo.lg.gg,[:'" 27; "correct declaration"
thr.: (!~£1'52] C~!l;

." imp r 0 per dec jar a t ion -- a c c e s sat t rib ute 0 f
kb Is read-write, "thi'e s2 is read only"

~~[l (s3J lntgggc.J
It j m pro per dE: C far at jon. -- no a c c e sse s a I lowed
·to segment s3"

fuiL: (s 1 1 lo.!g,9.~r. ; lie 0 r r e c t dec I a rat jon It
~Qr..: [52, #CftQg, ~g£l J r:.Q~l;

"improper--initiaf ization required
for xdcl, read-onlyll

elr..: [itatLQ'lirt~l'#r..~~rtJ r:.~gl := 3.14159265 ;
"correct declaration and initial value assignment."

~~glLQieg2 : [#r:.gad, #llr:.lt~, #g~~~ytg]·;
9.Q~d : (seg2.9 #c.Q.~.rt] lQ.t~~uu:. :'" 63 ; "correct declaration"
hid: [seg2,!tctJ n~~!Aan ;

"Improper use of both a segment identifier and
~r:£.f. attributes in same variable spec"

~~nv : [~1£lJ r:g~l := 39437 ;
Itcorrect declaration ''11th static attribute implied"

~.lt.: [1S.t$lf,tJCf..ug1 Q.Q.Ql£.~n ; "correct declaration of v3"
l!ir:' (#r:~~g'~2\.t~r.D.!llj l.Ui!'t£AJ:.i "correct use of

access attribute vdth SllLt~r.nil.!. scope attribute"
l!.2t.' (#.c.,g.a.d, 2:I..c.gfJ r.gal := 2.54; "error because initial

va I ue ass i gnment not a I lowed w j th ~t:.~t a ttr i bute. 11

!bt: (~!tgtQal' #r:.ga~ J bQQ!gall := tr:.Y~;
"error, Initial value assignment never allol-Ied

with g~.t~c.Qgl attributeo"

<variable> ::2 <variable reference>

<variable reference> ::3 <varlaole Identifier>
:<pointer reference>A
:<substring reference>
I<subscripted reference>
I<field reference>

NCR/CDC PKIVIL[GED 6.0

• · .

, · .

• · .
• • • · -• t •.

6-12
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975
NNN~UHNMNNNH~NN~HNN~NN~~HNNNN~NNN~~NN~NH~N~HHNMN~~NH~H~HNHNNN~~NNH

6.0 VARIABLES, SEGMENTS, AND FILES
6Q6.1 POINTER REFERENCES
N~NNNNNNNNNNNnNHHHNNHN~NNNNN~NN~NHNNNNNNNHNNNNHNNHNNNNHNNNNNNNNNNN

6.6.1 POINTER REFERENCES

(pointer reference> ::~ <pointer variable>
I<function designator>

<pointer variable> ::= (variable>

Whenever a variable reference denotes a variable of pointer
type, it Is referred to as a 22!ntAt [nf&tin~~ and the notation

(pointer reference>h

may be used to denote a variable whose type is determined by the·
type associated with the pointer variable. If another variable
of pointer type is denoted oy this reference, then.

(pointer reference>AA

may be used as a variable referenceo Note that variables of
pointer type can be components of structured variables ·as wei I as
valid return types for procedures.

Given a v~riable identifier, the notation to obtain a pointer
value to the variable is:

A(var.able identifier>

However, successive applications of the up arrow for such
purposes is not allowed (See Evaluation of Factors, 9.1).

Pointers are always bound to a specific type (cf. 'Section
4.2.3) and p~inter variables may assume, as values, only pointers
to objects of that type.

The special value ail Is used to denote that a pointer
variable has no current assignment to a location, Note the use
of the typed nil value constructor for use when a typed pointer
Is regulred, such as in the assignment to a llul2U. variable.
(cf. 5.1.2 and 5.1.3 for value constructors.)

~at I, j, k I lutggftt, "integer variables"

pi I Alat~g~t' "pointer variable of type l pointer to integer"

pp I : AAlQt~Sl~t' "po Inter var I ab I e of type:
pointer to pointer to integer"

NCR/CDC PRIVILEGED 6.0

• I

:

6-13
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6.0 VARIABLES, SEGMENTS, AND FILES
~c601o1 Examples of Direct Pointer References

bl, b2 z h22!~aD ; "boolean varlables--end of declarations"

lz 10 ; "the integer variable I Is given the value 10"

pi la "'I "the pointer variable pi takes on the value:
pointer to integer variable ilt

ppi := "'pi; "the pointer variab.Je ppi takes on the value:
pointer to pointer variable pi"

p pi: =. '" '" I ;." not per mit ted --"',. ••• A < Ide n t I fie r >
is not an allowable expression"

'J: ZI· pi'" ; II the i n t e 9 e r v a r jab I e j t a k e son· the val u e
of the Integer variable i'"

k :n ppl"A; "the integer variable k takes on the
value of the integer variable i"

bl := j = k ; "the boolean variable takes on the value ttYI"

b2 l~ piA 2 pp,"'" ; "the boolean variable b2 takes on the
value tt!,1g,"

pia ILl nl! ; "t h e pol n t e r va ria b I e p lis set to den 0 t e
lack of indicating any variable"

k :~ pill>· ; IIstatement is· in error lolhen pi has the
value ol!--result of this statement
wi I J be implementation dependent ll

i! ppi =: nll th.en k := k + 1 If.~Dg ;
"valid test of ppi and valid statement"

pi l= A(I + j + 2*k) ; "improper use of UP arrow to request
location ·of an expression--an undefined conceptI!

&.6.2 SUBSTRING REFERENCES

(substring reference) ::= <string variable)«substrlng spec»
(string variabl,e> '1= <variable>

<substring spec> ::= <first char>C,<substrlng length)]

<first Char> I:: (positive integer expression)
(substring length> ::= (positive integer expression>

:*
Values of string variables are ordered n-tuples of character

NCR/CDC PRIVILEGED &.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

6eO VARIABLES, SEGMENTS, AND FILES
6.6.2 SUBSTRING REF~RENCES

75/06/09

values (or the nul I string). Substring references yield fixed
strings defined as follows~

Let 'S' denote a string whose current length is n.

If 1 <= I <= nand 1 <= k <= n+1-1, then

a) 'S(I)' yields a fixed string of length one, consisting of
the i-th character of $;

b) 'S(i,k)' yields a fixed string of length k, consisting of
the i-th through the (i+k-l)-th character of $;

c) 'S(I,~()o is equivalent to 'S(I,n-i+l)1.

Otherwise, an error resultso

If a string variable is declared and Initialized by

~A[S : ittlng(6) 2f ~h~L:~ 'ABCDEF';

then the rollol-dng relations hold

S(1) u 'A'
S(6) = 'F'
S(1,6) a S

S(2,S) "' 'BCDEF'
$(2,*> ,. S(2,5)
S(1,*) :: S

If a pointer variable is then declared and initialized by:

then

ps"(i) and ps"(i,J) become valid references to substrings of
S.

Note that
identifier for
substring of
SVlL, eg.:

a string constant, even if declared with an
denotJng it, Is not a variable, so that a

such a string constant is not a defined entity of

£~u~t str24 m 'helper';

• • •

s t ri n 9 2 : a S t r 24 (3" *) ; "i n v, a I Ids u bs t r I n 9 ref ere nee --s t r 24
Is a string constant"

NCR/CDC PRIVILEGED 6.0

• •

I · .
• I .

6-15
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

600 VARIABLES, SEGMENTS, AND FILES
6.6.3 SUBSCRIPTED REFERENCE
NNNNHN~NHN~NNNNNNHNHNNNN~~NNN~~N~~~N~HN~~HNNNNN~NNNNNNHNNNNN~NNNNN

6.6.3 SUBSCRIPTED REFERENCE

<subscrlpted reference> ::u (array variable> [(subscripts>}
<array variable> ::= <variable>

<subscr I pts> I 1::1 <subscr i p t>{, (subsc'r i pt>}
<subscript> :Im <scalar expression>

A subscripted reference denotes a component of an array
variable, whose value type Is the component type of the array
var~able. A subscr1pt may be of any type that can be assigned to
a variable of the corresponding Index type. Note that, to this
end, any subrange is considered to be of the same type as its
parent range (or any subrange thereof).

If an array variable Is declared and initialized by

and-an integer variable is declared and initialized by

then the fol.lowing relations hold

AU] • 5
AU-l] • 4

•
•
•

At 1-4] ':11 1

However, the reference Atl+1] would be in ertor.

If a pointer variable is then-declared and 'nitialized by:

then

pAACll becomes a valid reference to components of A.

If the components of an array are a second array, then this Is

NCR/CDC PRIVILEGED b.O

f . -

t •

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

6.0 VARIABLES, SEGMENTS, AND FILES
6.603 SUBSCRIPTED REFERENCE

75/06/09

~NNNNNNNH~~NNH~n~HNN~NN~N~NNN~HN~HNNNNNNNN~~NH~NNN~nNNNNN~NN~~U~NN

fully equivalent to a two-dimensional array (cf 4.3.3~ Array
Type). Both declarations given in the following are equivalent

~st vect aLLa~ [1 •• 10] of ~ttQY (1 •• 16) Q! c~a!
~~c vect : arr2~ (1 •• 10,10&16] QL L~Ql

and both of the fol lowing expressions for denoting a component of
the array are equivalent:

.vectC IO,ltd
vectCIO)C1 ld

6.6.4 FIELD REFERENCES

<field reference> ::~ <record variable>.<fleld selector>
<record variable> ::; <variable>

A field reference denotes a Field of a record varlablee Since
field selectors are unique only within the scope of their parent
record type, the record variable must be specified. The field
denoted by a field reference may itself be of record type, in
which case

(r~cord ·ariable).<field selector>.(field selector>

becomes' a valid field reference.

NCR/CDC PRIVILEGED 6.0

6-17
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6.0 VARIABLES, SEGMENTS, AND FILES
6.6.4 FIELD REFERENCES

For the record variaole declared and initialized by

t~Rft tR = t~~n[Q age: 6.066,
married, sex I hnQ!~gn'
date : Lg4~LQ day: 1 0 .31,

month: 1.012,
year ': 70 •• 80

tft£.st!H1,

the following relations hold

R.age 3 23
R.ma~ried 3 f3!~~
R.s;>: :: t..r..!J~
R.date.day :t 3
R.dateemonth n 5
R.date.year = 73

If a pointer variable is then declared and initialized by:

x.at pR : "tR :=

then

• • •

become valid references to fields of R.

6.6.5 ADAPTABLE AND BOUND VARIANT REFERENCES

Adaptable and bound variant record types can be used as formal
parameters of procedures, in which case they are referenced and
treated as variables. In all other cases they must be addressed
indirectly through pointers that are generally produced as
by-products of allocation operations used to type-fix and
allocate storage for variables of such types.

The notation

<pointer reference)h

Is used to reference such variaoles, and can be used as a
variable reference (cf. 6.6.1). For example:

NCR/CDC PRIVILEGED 6.0

I
I .

I ..
• t.

6-18
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

(~16.0 VARIABLES, SEGMENTS, AND FILES
',,--_/ 6 • 6 0 5 A 0 APT A B LEA NOB 0 U N D V A RIA N r KEF ERE N C E S

o

NNNNHHNHNNHNNHNNN~N~NNNNNHNN~M~NNMNU~~N~NN~NN~NNNNNNNNNNNNHNNNNNNN

tJe: R = t~£~td "adaptable record type"
f1 I In..tg,g~r.'
f 2 I ~.t..c.l.!lg (*) , " a d apt a b I e fie I d"

t~£.~ng;

lAC. pR : R := nll; "pointer to adaptable"

A!!~Hl~1§. pR : (10]; "allocate fixed instance of R"

pR 1m (lOO,'HENRY']; "initial value assigned~

pR fl 1= 2 * pR f1; "change value of first field u

An actual file Is accessed through a fite variable associated
with that file. The association Is effected by an, 22AO
statement, and de-association is effected by a glQ~~ statement
(cf. 10.502)0 FI Ie variables take on as values an undefined
record structure whose component values describe the kind and
current state :f the associated actual file In terms of the
a~tual file type (cr o 4.8), a file specification, and other
pertinent information.

<fl Ie variable> ::- <variable>

~i.t.!ll.!l£P If a file variable is assigned to
variable, and either used for manipulation of
resulting changes In the file variable used are not
'reflected in tne other fife variable. The use
variables for simultaneous manipulation of the same
result in serious errors.

6.7.1 FILE SPECIFICATION

another 1'1 Ie
a f j I e, the n

imp lie i tel y
of' both 1'1 Ie
file could

A -1' I I e va r I a b lei s dec I are d, by a· f I I e va ria b I e s P e c , i n t e r m S
of an identifier, a file type, and an optional set of initial
file attributes.

<file variable spec) ::- <vatiable identifiers> :
(scope or storage attributes)]
<file type> IIcf. 4.8"
[(file variable initialiZation)]

A file spec consists of an optiona' set of non-repeated
attributes, and is used to initialize fl'e variables, to specify

NCR/CDC PRIVILEGED 6.0

t . ,
I

6-19
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

6.0 VARIABLESp SEGMENTS, AND FILES
607.1 FILE SPECIFICATION
NHHNNUHUNN~NNHNNNNN~~NNNNH~NNN~~~HHHHNN~"NN#NNNNNNN~NNNUNNUU~NNNNN

(or respecify) fi Ie attributes in Q.f.?~a statements (cf. 10.5.1),
and to spell-out fi Ie-variable constructors (cf. 5.2.3).

<file spec> II: <file attributes>

<file attributes> ::= <file attribute> {,<file attribute>}
<file attribute> ::= <old or new)

<mode)
<encoding)
<position>
<actual fi Ie name>
<page size>
<end of page proc>

<0 I d or 'new> ::;: #Q.ld #ag!:!
<mode> :Jz #la[,#Q.yiJ #QU![,#10J
<position> ::= #fi~~t : #aEll : #lglil
<actual file name> ::= <string expression>

<page size> ::= #B~gg~i~g «number of lines»

<end of page proc> 1'= #eag~eL~~ «procedure reference»

<encoding> ::a #~gil~~ftt «codeset»

<code~et> ::= 'asciI'
'ebcdic'
'ascii63'
'ascil612'
'natlve'
(others as required>

The #Qlrt
associated
that a fi Ie
made. The
procedure,

attribute indicates that the variable is to be
with an existing fite. The #Q~~ attribute indicates
must be created before such an association can be
creation of new files is effected by the ~e£n

The m~g~ attribute specifies whether the rile associated with
the variable is to be read, written, or both. nlt~~~ fl'es,
l~glQl~ fi les, and QiOst~ files may have both #lu and #Qut for
(mode> simultaneously; but etiot f"es may have only ffQyi for
<mode>.

The ~O~2~iOg attribute specifies the external representation
of a file (its so-called 'codesetl), and ,impticitely indicates

NCR/CDC PRIVILEGED b.O

, · , • · , • •

• · ,

• · .
• • • · ,

SOFTWARE WRITER'S LAN~UAGE SPECIFICATION

Revision 4 June 09, 1975

600 VARIABLES, SEGMENTS, AND FILES
6.7.101 File Attributes

75/06/09

)~NNH~NNNNNN~n~~NNNNNNNNNNNMHNNNN~NNNNNN~NHN_NHNNNNNNNNNNNNN~NHN~MM

the conversion process that is invoked during reading and writing
of the flleG An initial collection of codesets, corresponding to
existing representations, is provided. The <codeset> value
'native' wi II select the standard codeset for the machine on
which execution Is to occur.

The eQ~ltluu attribute permits the Q£gn procedure to position
the file at Its beginnlngp its end, or so:ne e>cistjng polnto (The
use of the #n~l~ attribute and its effects will be operating
system dependent o)

The ag1YA1 __ fll~ __ n~mA is used solely to identify the actual
fi Ie to a host operating system. Its lexical formation rules may
be system-dependent.

The #~~nQ~l~~ and #eagft£~Q~ attributes are associated with
print files only, and define the size of a page and the procedure
to be activated when a page change is ready to occur.

The ~UQ=~f=£~Qft_eLQ~~tlliL~ is a user-defined procedure that is
called whenever the current I ine number for the print fi Ie
exceeds the specified page size for the file. It Is responsible
for issuing a conventional page eject (cf. 10050502, <eject
statement», and its parameter list is assumed to be specified as
follows:

(c.~f. < f I lei den t i fie r > : (p r i n t f i i e t y p e > ;

~~! (integer identifier> : <integer type> "next page no.")

If no end-of-page procedure has been specified for the fl Ie, a
conventional page eject is Issued and the I fne number ;s set to
.one (1).

The user may set, or reset, these attributes directly through
the following procedures:

#l~taAgftil~ft«print file variable>,(number" of lines»

<number of lines> '1= <integer expression)

#i~le~g~etQ~«prlnt fi Ie variable>,(procedure reference»)

and may interrogate the current page size through the function
#~yc.~~g~~l~~ «print fl Ie variable» •

NCR/CDC PRIVILEGED 6.0

• . .

0- t: ,1-----

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 Jun~ 09, 1975

6.0 VARIABLES, SEGMENTS, AND FILES
6.7.2 FILE VARIABLE INITIALIZATIO~

75106/09

~NMHHMH~~NHHHNNNHNNN~~HNNHNNHNNHN~HHNHNMMNNMNHN"HHNNNMH~NNHNMHMMNH

6.7.2 FILE VARIABLE INITIALIZATION

- File variable Initlalizations are used to specify one or more
file attributes when declaring file variab.eso

(fi Ie- variable initial fzation> 'llII

:~ <file expression>
::= (indefinite file variable constructor>

<indefinite fl Ie variable constructor> :::11 t<file spec>l

<file spec> :;0: <file attributes>

The -acfual file need not be completely specified with the
declaration of the file variable. Any or all of the file
attributes, Including the actual file name, can be specified or
re-spec~fied with the gaAD statement used to associate an actual
file with the file variableo

NCR/CDC PRIVILEGEu 6.0

• . -

7-1
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision ~ June 09, 1975

7 0 0 PROGRAM STRUCTURE

A SWL program is a collection of Etat~m~Qti (cfo Section 10)
and dGQ!~LBtlQU~ (efo Section 703) which is meant to be
translated, via a ~QmR!litlnn process, into a SWL Q~J!Qt mQ~ll!~.
Object modules resulting from separate compi lations can be
combined, via a !ln~!ng process, into a single object module, and
may undergo further transformations into a form capable of direct
executi~n by members of the IPL (IneQ

The collection of statements and declarations may also Include
rrQm~llft-ilill~ rtiCgQii~g~ (cf. Section 12) which are used solely
to construct the program being compiled and to otherwise control
the compi lat ion process, rather than having any meaning In the
program itself. The result of processing the corlecti~n

according to these directives must be one or more valid
k2m~11AilQU Ynli~' which are distinguishable cases of a ru2rt~!~o

< com p i I a t .1 on un it> : 1:s < mod u fed e c I a rat ion> If C f • Sec t ion 7. 2 "

Since statements are constrained to appear solely within the
body of a ~LQ£gQYL~ Q~~lgt~ilQU (cfQ Section 801), campi lation
units consist solely of a list of declarationsQ All such
dectaratlons must be capable of being evaluated (cf. Section
7.9) at the time of compilation .. All variaoles declared in a
compilation unit's declaration list will automatically be given
the ~tg~1£~tQL~9~ stt~lu~i~ (cf. Section 6.2.2).

7.2 IjQUlJ.LES,

A module Is a collection of declarations packaged so as to
make visible the identity of those objects declared within the
module which are meant to be shared with other parts of the same
compilation unit or with separate compi lat/on units. A module Is
introduced by a module declaration.

NCR/CDC PRIVILEGED 1.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

).0 PROGRAM STRUCTURE
7.2 MODULES

<module declaration> ::n
ID2dylfl [(module identifier>] [«prongs»];

<module body>
IDQQn09 [(module identifier>]

<module identifier> ::::s <ldentifier>[<allas>J
"cfo 7.7.1 for semantics of alias."

<prongs) :~~ <identifier jist>
<module body> ::::s (declaration list>

<declaration list> ::~ {<declaration>;}

75/06/09

The optional illQQlllfl 199ntltlg~ can
expositional clarity and to assist
activitj.esi such as I inking and debugging.

be used to provide
in post-compilation

e[QQg~ are identifiers declared in the Dody of the module, and
together with module packaging itself - are used sofely to

control the EG2B~ 2t lrtflnl1tl~t~ (cf. Section 703 thru 7G7)

Declarations introduce objects together with identifiers which
may be ~sed to denote these objects elsewhere in a program.

<declaration> . : :: <type declaration> (cf. Section 4.1)
<constant dec I ar aU on (cfo Section 5.1)
<variable declaration> (cf. Section 6.1)
<segment declaration> (cf. Section 6.4)
<module declaration> (cf. Section 702l
<procedure declaration) (cf. section 8.1)
<label declaration> (cf. Section 8e3)
<empty>

The programmatic domain over which all uses of an identifier
are associated .dth the same object Is called the ~g,Qe.~ of the
'dent·if/er. Within a compilation unit, such a programmatic
domain is either a module body (cf. Section 7.2) or a n12~~ body
(cf. Section 7.5). In the former case, the scope is a
declaration I ist; in the latter, a statement list preceded by an
optional declaration list.

The scope of an identifier is determined by the context in
which it was declared and by optional ~4Qe.~ ~1ttlhllt~~ (cf.
Sections 6.2.3, 8.1 and 7.7) which may be associated with
declarations of variables and procedures.

NCR/CDC PRIVILEGED 7.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

7.0 PROGRAM STRUCTURE
"04 MODULE - STRUCTURED SCOPE RULES
NN~~~U~~HN~NNHHNNNHNNN~~~NNN~NNNN~NNNNNNN"~~~NNNNHN~N~NNH~NNNNNNNN

Modules are static constructs designed solely to control the
scope of identifiers according to the following rules:

1. The scope of an identifier declared in one of the
constituent declarations of the body of a module, is the body of
that module.

2. An identifier whose scope Is the body of a module, and is
also listed as a prong of that module has its scope extended
'outward' to include the body of the module or block which
includes the module declaration as one of its constituent
declarations.

3. Identifiers (of variables and procedures) whose scope is
the bod~ of a compilation unit, ?nd are also listed as prongs of
that compilation unit, have their scope extended 'outward' to
include object programs resulting from other compilation unitso
S'~21 ~ttLl~ut~i (cf. Section 7.7) may also be used to specify
such extensions of scope for variables and procedures. The
prongs of a campi latton unit are constrained to Identify only
variables and procedures, and tile Ag~! ~~~eg atttiuutl IS

automatically given to any variable or procedure whose identifier
Is listed as the prong of a compi lation unit, unless it is
explicitly declared with one of the other scope attributes.

7. 5 fH .. Qk~S.

A block is either a n~giQ at~t~OOlot (cf. Section,10.2;1) or a
e[~£ltl~tl ~IQlatltl~ll (cf. Section 8). A block body consists of
a s tat e men t lis t pre c e d e d by an 0 p t·j 0 n a Ide c I a rat ion lis t •
Blocks have three functions:

1. Like modules, blocks control the scope of identifiers.

Z. Un like
declarations
Section 7.9)

modules, blocks
and determine wnen

control the processing of
declarations take effect (cf.

3. Unlike modules, blocks includ~ statements, which
translate Into algorithmic actions in the resulting program.

NCR/CDC PRIVILEGED 7.0

7-4
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

7.0 PROGRAM STRUCTURE
706 BLOCK - STRUCTU~ED SCOPE RULES

1. Except for tl~!~ ~Al~~tQL~ (see below), the scope of an
identifier declared in the constituent declaration list of a
block is the body of that block.

2. If an identifier lftQ~l~ (cf. Section 10) a statement of
the constituent statement I ist of a block, then Its scope Is the
body of that block. However, if an identifier labels a statement
of one of the constituent statement lists of other ittU~tYtEtl
siat~m~nt~ (cf. Section 10.2), then its scope is restricted to
that statement list.

3. If the scope of an identifier includes a block, then its
scope is extended fdownward' to include the body of that block,
unless the body includes a re-declaration of the identifier.

4. Field selectors are identifiers introduced as part of the
declaration of a record type (cf. Section 4e304) for purposes of
selecting fields of records <cfo Section 6.4e4). Except for the
restriction tnat field selectors associated with the same record
type must be unique, identifiers used as field selectors may be
re-declared with Impunity.

5. Except for field selectors, no more than one declaration
of an identifier can be included in the constituent declarations
and statements of a Dlock's body.

The scope attrlbutes ~~'1' xc§t and AxtACQIl (cf. 6.2.3)
cause the scope of identifiers to be extended, in a discontinous
manner, to include other compilation units, but do not otherwise
contravene either modu'e-structured or block-structured scop.e
rules.

Va~iables and procedures that are part of one compilation
unit, but are meant to be referenced from other campi latlon
units, must have tne l~Gl attribute associated with them either
by exp! iclt declaration or by virtue of having their Identifiers
listed as a prong of the compilatIon unit. Other campi iation
units which are meant to reference such objects must declare them
with the ~tftt attribute.

Variables, but not procedures, may also be declared with the
~~i~Laal attribute, which is intended to permit SdL programs and
programs written in other languages to share data. V~riables

NCR/CDC PRIVILEGED 7~O

7-5
SOFTWARE WRITERGS LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

7.0 PROGRAM STRUCTURE
7.1 SCOPE ATTRISUTES
NHNNNN~~NHN~~NHN~NN~N •• Nn~NNNNM~UUNNNNNNNNNNHN~NNNNNNNNNNNNNNUHNNN

with the ~~t~tUa! attribute may be referenced in any compilation
unit in which they are declared.

Ne i ther' K.tftf. nor
Section 604), and all
autO'matically given
6.2.2)

ftKt~LQal variables can be initialized (cf.
KQgl, ~L~t and ft~tftLual variables are

the at~il~ ~iQrag~ attLi~llt~ (cf. Section

. The declarations'for objects shared among campi lation units
must match; for example, an identifier with the Ids! attribute in
one compilation unit and the ~tQt attribute in other campi latlon
units must denote tne same object in all such compilation units.
Violations of such matching rules are detected during the linking
process.

7.1.1 ALIAS NAMES

An 'alias' is an alternate spelling which may be specified for
an Identifier. Its reasons for existence are varied: to meet
system-requirements of spelling which are Invalid in SWL, to
equate two differing spellinJs for an entjty between two
different compilation unitsJ' to avoid identifierspelli""'g'
conflicts among different compilation units or with system
standard names, etc.

A n a I I as ·i s to b e use d 0 u t sid e a f a com p i I a t ion un ito n I y, and
will not function as an alternative spelling for an identifier
within the compilation unit in whIch it is defined as an alias.

Aliases may be furnished for identifiers of modules,
procedures, and variables by following the Identifier associated
with a declaration of· such an object by an u!la~_~e~~1f.l~s!12Q.

<alias> z:. s!ls~ • <alphabet> { <alphabet> } •

In order for an alias to 'reach' the host system, it must be
associated with an object that is externalized in some way: by
virtue of being ~~t~cna!'d, ~~~ffd, or XQ~l'd (either explicitly
or by being pronged with an outermost module), or by being
associated with the identifier of the outermost module. All
other aliases will be inoperative except ror taking UP room
during' the compilation process.

If an identifier which is externalized has an alias specified,
then only the alias wi II be made known outside of tne compi lation
unit. (i.e" the identifier itself wi II oat be made known
outside of the compilation unit.)

NCR/CDC PRIVILEGED 1.0

• . .

7-6
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06109
Revision 4 June 09, 1975

7.0 PROGRAM STRUCTURE
7.701 ALIAS NAMES
NHHHHNNNN~~HHN~~NNHMM~HNNNHM~N~~~~~~HHNNNNNN~NNHNHN~NH~NN~N~NNNNNN

blockl: llg,g10

"scope of x and a is extended
outward to the body of module
or block including this
declaration ll

~gt x, y, Z j la!~~~t j 600
. ,

x := y ... z ;
y:ua+bj

"blockl's x, y, and z"
"bloc~(l's y, ap and b (see inner

module below)"
z := p + Z j "lnval id: not within scope of p

(see block2 below)"
• 66. ,

block2:
~~gl!l
~~t x, y J lat~g~t j

"Valid redeclarationof x, Y~

~AtP : [X~£!] IntABAt'
"scope of p extended to other
compilation units, but not"
extended to Include blockl"

q : [~t~f.J lO.t.ft9!lt ; IIq from different
compi1ation unit" .

x a:ll y + z ; liZ of blockl and x and y of block2"
• • • j

§Q~ block2 ;
••• ; "Now back in blockl"

!!HH1y.!~ Innr:r(a, b) j"Sti II in blockl, but within
Inner module ll

~At a, b I lD.t.Sa~t; "a, b are within the sc6pe
of blockl, since they are pronged"

X~t z : In1~~At ; IIValid redeclaration of z,

. ••• ,
mSH!~o.s1 Inn er

since it is not pronged"
"Other declarations of Inner modu'e u

NCR/CDC PRIVILEGED 7.0

• · .
• · .

7-7
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

7.0 PROGRAM STRUCTURE
7.8 EXAMPLES OF SCOPE RULES

~nrt blockl ;
blocl{3: Q.~9.1Q

~~L x, y, z : Ini~Q~L ;
"Valid redeclaration of x, y, and zit .

• • III ,

~rui b I 0 c k 3 ;
mQg~!H1 0 ute r ;

II * * * * *" If

LII It x < y lu~n .0. . , · "
•
•
l2: x:~ z / y j •• 0 ; g~tQ L2 ; .'G ;

"Valid: l2 can be reached from within
this statement list"

2.tlf. .x > z .tb.!:lQ • • • ;
e

• ,
x :~ y / Z ; .se ; g~tQ II ; 0'. ;

"Valid: Scope of Ll is entire block
containing the If statement"

•
•
•

~!~~ y lu y - a ; ••• ; g2tQ L2 ; ••• ;
II I n val i d: L 2 can not b ere a c h e d fro m t his s tat em e n t I 1st ,I

Iti!O£l

7.9.1 BLOCK-EMBEDDED DECLARATIONS

Except for the constituent declarations of a compi latton
(see oelow), declaration processing is governed solely
block-structure. During compi latlon, all constituent list
block are gathered together and are processed en-masse, all
declarations coming into effect simultaneously.

unit
by

of a
such

Block-structure also governs declaration processing during
execution of the resulting programs. On entry to a bloCK, aC I
declarations inCluded in the block's constituent Jist are again
collected together, evaluation of declarations that could not be
completely evaluated during compilation is completed, storage for

NCR/CDC PRIVILEGED 7.0

7-8
SOFTWARE WRITERQS LANGUAGE SPECIFICATION

75/ 06'/ 09
Revision 4 June 09, 1975

7.0 PROGRAM STRUCTURE
70901 BLOC~-EMBEDDED DECLARATIONS
NN~~N~NNMNNNNNNNNNNNNN~NNN_NM_NHMNMN.NNN.~.NNM~~UUNMNNNUMN~.NNN~N.

automatic variables (cf. Section 6e2.2.1) Is allocated, and all
Identifiers declar~d by such declarations become accessible. On
exit from a block, al I identifiers declared within that block
become inaccessible and the values of automatic variables become
undefined.

709.2 COMPILATION-UNIT--EMBEDDED DECLARATIONS

Objects declared in the body of a campi lation unit (cf.
Section' 7.1) are associated with no block at aile Such
declarations must be evaluated, and required storage al located,
prior to program executiono Accordingly, all variables so
declared are automatically given the static storage attribute
(cf~ Section 002.2), as are al I scope-attributed variables (cf.
Sections 7.7 and 602.3), and al I such variables are constrained
to be of fixed-bound type (cf. Section 4 0 2) to ensure that their
types can be evaluated during compilatione In addition, formal
parameters of procedures declared in a campi lation unit~s
declaration list may not be of variabe-bound type (cf. Section
4.2), since the evaluation of a procedure declaration involves
the evaluation of the types of its formal parameters (cf.
Section 8<;1) ..

7.9.3 ORDER OF EVALUATION OF DECLARATIONS

Apart from the above rules, no specific order of evaluation of
declarations is defined, nor is the order of evaluation of
expressions entering into such declarations defined o Thus, care
must be exercised in spelling-out declarations. For example:

L := 5; U :;s 3;

Q.~9.1!l,
.Y.st A : Slr.ta.'£ (1 •• L ::oJ:, U, 1 •• L J' Q.,E ••• j .. ,.

In the above example, the Integer variable ~. has been assigned
the value 5 and the union variable U has Deen assigned the value
(Integer, 3) prior to entry to the begin block. On entry to the
block, evaluation of the index ranges of the array A must be
done. This evaluation can result in either ACle.3, 1 •• 3] or
A[1 •• 3, 1 •• 5J, depending on which Indlcial eXPiession is

NCR/CDC PRIVILEGED 7.0

(-~

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

7.0 PROGRAM STRUCTURE
7e9~3 ORDER OF EVALUATION OF DECLARATIONS

evaluated first (efa Section 9.201 for the value conformity
operator' :=:0 which, in this case, Hould assign' L the value 3).
Since no precise order of evaluation is guaranteed, tne result of
the above program fragment Is undefined.

NCR/CDC PRIVILEGED 7.0

8-1
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75106/09
Revision 4 June 09, 1975

8.0 PROCS, COPROCS, AND LABELS
I

~N~~U~"N~~N"NN~N~NNNN"NNUNNNNUNNUNNNNNNNNNNNNNHNNNNnNNNNHNNNNNNHHN

A procedure declaration defines a portion of a program and
associates an identifier with it so that it can be activated
(I.e., executed) on demand by other statements in the. language.
A procedure can return a value of some basic type, in which case
it is referred to as a function and is invoked as a factor In an
eKPression. If" a procedure returns no value, it is invoKed by a
proc~dure cal' statement or a coprocess create statement.

The value of a function is the value last assigned to its
procedure identifier before returning (either by fal ling through
the procend, by a return statement, or by an exit statement).
The results of returning by any means from a functional procedure
prior to assignment of a value to the function designator (for

,the current execution) are undefinede

A procedure call statement (cfo 10.3.1) causes the execution
of the const:tuent declarations and statement lists of the
procedure after substituting the actual parameters of the cal I
for the formal parameters of the declaration. Control returns to
the next statement in line following the procedure" cal I
statement.

A coprocess is a separate synchronous process. Instead of the
entire procedure being executed and then returning in line,
coprocesses all~w partial execution of a set of procedures with a
~ln9le thread of control being passed back and forth amongst them
through the resume statement.

The create statement . (cf. section 10.3.2) creates the
necessary environment for the execution of a procedure as a
coprocess. Subsequent resumption of a coprocess causes execution
to commence with the successor of the last executed resume
state~ent of the coprocess. If a coprocess has been created but
not resumed, then execution of a resume statement designating
that coprocess causes exe~utlon to commence at the constituent
declaration list of the procedure used to create the coprocess.

NCR/CDC PRIVILEGED 8.0

• . .

8-2
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

8.0 PROCS, COPROCS, AND LA8ELS
8.1 ~ROCEDURE DECLA~ATIONS

There are tHO forms of procedure declaration:

<procedure declaration> ::=
ELQ~ (~L~t 1 <proc spec>

: E[Q£CI(proc attributes>ll<proc spec>;(proc body><proc end>

<proc attributes> ::~ <proc attrlbute>{ ft<proc attribute>}
<proc attribute> ::~ ~Q~l : tg~4gE : <segment identifier> : mnlu

<proc spec> ':::1
<procedure Idantifier>C(alias>l(proc type spec>

<alias> ::= .alls.$. t <alphabet> {(alphabet>} I

"cfo 7.701 for semantics of alias"

(proc type spec> ::=
([<proc type attributes>l]C(parameter list>]C<return type>]

<proc type attributes> ::3
<null construct (for expansion purposes»

(parameter list> ::= «param segment>{;(param segment>)}
<param segment> ::~ <reference params>:<value params>

<reference params> ::=
t~! <reference param> { ,<reference param>)

<reference param> ::=
~formal param I ist> I (L I[al~ 1J <ref type>

<value params> ::= ~I! <value param>{ ,<value param»

<value par~m> ::=
<formal param list> : (1 #[ft~g IJ<va' type>

<forma. param list> JI:a <Identifier list>

<ref type> ::= <SWL type>
<val type> ::01

<type> : (adaptable type> <bound variant record type>

<return type> :1= <basic type>

<proc body> :1~ <declaration list> <statement list>

<proc end> ::= e[Q~~QU [<procedure Identifier>]

NCR/CDC PRIVILEGED 8.0

• . .
I
I .

8-3
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06'/09
Revision 4 June 09, 1975

8.0 PROCS, COPROCS, AND LABELS
l8g1 PROCEDURE DECLARATIONS
NNNNNNN~NNN~~~~~~~NNUUNUUNNHU~NUNU~NNNNMNNNUNNHN"UNNUN~H~NN~NNNNUN

(procedure identifier> ::= <Identifier>
(function identifier> ::= <procedure identifier>

The first form Is used to refer to a procedure which has been
compiled as part of a different unit of compilation. The
prodedure must have Deen declared with the ~rt£l attribute, and
with an equivalent parameter list and return type in that unit.

, ..

The second form declares the procedure identifier to be a
procedure of the type specified by Its parameter list a~d rettirn
type, and associates the identifier with the constituent
declarat'ion list and statement list of the declaration.

The procedure type Is elaborated on entry to the block in
which it is declared, and remains fixed throughout the execution
of that block; i.e., al I variable bounds, lengths, or sizes
occurring in the type of the parameters are evaluated once o~
e n try tat he, b I 0 c k , . and rem a i n fix e a for a II c a I I s Q n t he
procedure within that block.

Outermost level procedures, i.e., those whose declarations are
not contained in another procedure, must have a fixed type
de t e r m i ned a t co ITI P i let i m eo T h u s p no n e of the i r par am e t er s may
be of a variab:e bound type. Note that tnls restriction holds
with respect to the ~t~! form of declaration, since by definition
it must refer to an outermost level procedure (Section 8.1~1,

Proc Attributes). Formal parameters of outermost level
procedures may be of either fixed bound tYRe or adaptable bound
type.

,6.1.1 PROC ATTRIBUTES

Pro cat t rib ute s are e sse n t i a I I y extra-I i n 9 u 1st i c . features in
,that they have an effect on the output produced by the compi ler'
rather than an effect on the meaning of the prog~~m.

(proc attributes> ::= (proc attribute>{ ,(proc attribute>}
(proc· attribute>. 11= 1igGl : r.g,e,51111? : (segment identifier> : lIlilO

The attrl'bute 1i9.~l may only be used on a procedure declared at
the 0 ute r m 0 s t .1 eve I, I. e ., not con t a in e din an 0 the r pro c e d u r e •
It specifies that the procedure should oe made referenceable from
other units of compilation which have a declaration for the same
procedure Identifier with the 1iL~f attribute.

The attribute t~eU~2 specifies that the procedure is
potentially representation dependent and gives permission for the
use of those portions of the language that are representation

NCR/CDC P~IVILEGEu 8.0

8-4
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

8~OPROCS, COPROCS, AND LABELS
801~1 PRJC ATTRIBUTES
MN~N~NNNNN~HNNN~NNN~NNNN~NNNNNNUNN~NN~NNHNNNNNNNNNN~HNNNHNNNNNNHNN

dependent (see Chapter 13).

The attribute 'segment identifier' specifies that the code
produced by the compi ler for the body of the procedure should be
a"ocated to the named segment along with other code carrying the
same segment identifier.

The attribute main is used to identify the first procedure of
a program to be executed, when so required by the system. It may
only be present on a single outermost Dlock levei procedure of
the outermost module of a campi lation unit.

If more than one compilation unit is to be I inked together for
execution, then only one procedure with the malo attribute may be
present among all those compilation units being linked.

8.162 PARAMETER LIST

Variables that are referenced but not declared In the body of
a procedure follo~-4 normal scope rules, I.e., the references are
bound to the declaration cr.vironment of the procedure. A
parameter I ist is a set of variable declarations which provides a
mechanism for the binding of references to the procedure cal I
environrnent& This is accompl ished by providing the procedure
with a set of values and Yariables--so-called actual
parameters--at the point of call.

<parameter list> ::: «param segment>{;<param segment>})
<param segment) ::= <reference params):<value params>

<reference params> ::=
~~f <reference param) { ,<reference param> }

<reference param> ::=
<forma. param list) : [I #t~ag 13 <ref type)

<value params> ::= ~al <value param){ ,<value param>}

<value param> ::=
<formal param list> : [1 #t~~2 1] <val type>

<formal param list) :au <identifier list>

<ref type> ::= <SWl type)
<va. type> ::=

..

<type> : <adaptable type> : -<bound variant record type>

Two methods of passing parameters are provided: cal '-by-valuep

NCR/CDC PRIVILEGED 8.0

• I .

I ..

8-5
.SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09, 1975

a.o PROCS, COPROCS, AND LABELS
)8G1a2 PARAMETER LIST
.UUNNNNNNN~~NNNNNNMNNNNNUNNNNNNHNNNNNUNNNUNNNNNNNNNNNNNNUNNN~HNNHNN

designated by ~~l' and call-by-reference, designated by Lftf.

A call-by-value parameter results in the creation of a
variable local to the body of the procedure. The value of the
corresponding actual parameter is assigned to this variable at
the' time of the procedure cal I. See Section 10.3.1 for precise
rules governing call-by-value parameter passing.

The type of a formal call-by-value parameter may be any data
typel adaptable type or bound varia~t record type except for the
so-called non-value types: heaps; arrays or stacks of non-value
types; and records containing a field of a non-value type.

A calf-by-reference parameter results In the formal parameter
designating the corresponding actual parameter throUghout
execution of the procedure. Assignments to the formal parameter
thus cause changes to the variable that was passed as the
corresponding actual parameter. See Section 10.3.2 for precise
rules governing cal I-by-ref parameters.

The type of a formal call-by-reference parameter" may be any
SWL type.

The read ~ttribute applied to either kind of parameter
prohibits explfcit assignments to that parameter or any component
of it.

8.1.3 FUNCTIONS AND RETURN TYPE

A procedure may return a value of a specified type, !n which
case it Is referred to as a function. A function is activated by
a fUnction designator (see Factors in Chapter 9), which is a
component of an expression. The function is given a value by
assigning to Its procedure Identifier. The type of the value
returned is specified by the return typee The return type must
be specified in the proc type spec for any procedure which is a
functional procedure (cf. 4.6.2); and an assignment statement
(at ·Ieast one) to the proceaure Identifier must occur within the
procedure body.

<return type) ::~ <basic type>

The value of a function is the value last assigned to its
procedure Identifier before returning (either by falling through
the procend, by a return statement, or by an exit statement).
The results of returning from a functional procedure by any means
prior to assignment of a value to the function designator (for
the current execution) are undefined.

NCR/CDC PRIVILEGED 8.0

1
·1

I
1 .
1 . .

8-6
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

8.0 PROCS, CJPROCS, AND LABELS
0.1.3 FUNCTIONS AND RETURN TYPE,
~NNNNN~~~H~~~NNHNN~NN~~N~NNN~NHN~~"~UNNHNNNN~NN~~NI#M~~~NN~~~~~MH~.

A function may neither be Invoked by a procedure cal I
statement nor used as a coproc. (It may however lie within the
dynamic execution of a coproc, and tnere is no restriction
against Its containing a resume statement.)

~at aI, a2, bl, b2, c, d, q, r : !Q.t.~9.~r:. ; "m > O,n > 0"
"Greatest Common Divisor x of m and n,
Extended Euclid's Algorithm.
This could have been written as a'
functionaJ procedure." .
a1 : a 0 j a2 t= 1 j b1 I :II 1 • b2 ,
C 1= m ; d := n ;

!'!h!J.!l d I ... 0 !ig,

1=0

"a1 * m + b1 * n :II d, a2 * m +
gcd(c, d) := gcd(m, n)"

d II: C 1 d . r : :: C m~.Q d j ,

j

b2 * n

82 : = a2 q * a1 j b2 . - 02 q * 01 ..
c· := d . d I- r I

.
I

r' ,:II a1 . a1 a .. , a2 ; a2 ::. r';
r , ". b1 j b1 : ... b2 ; b2 : = r

11 ilL 1. !it!H! ;

x := Cj Y := alj Z :lI!: b2
"x = gcd(m, n), y * m + Z * n = gcd(m, n)1I

e.t~~iUl~

::c C

;

NCRICDC PRIVILEGED 6.0

8-7
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

8.0 PROCS, COPROCS, AND LABELS
'8.103 FUNCTIONS AND RETURN TYPE
NHNNNNNN~NHNNNNNNNNNNHHNNNHNN#N~H~NN~NNNN"~~~NH~NNNN~N NNNN~NM~ __ ~N

" * * * * * "
"functional procedure Finder"

~tQG Flnder(~al wanted: ident,
~~f table : aLt~Y (0 •• 47] gf entries

f2.t: I, : = 0 tQ l~ 7 .ctfl It t r I v I a I sea r c h "

. if table[kJofn m wanted th~n
Finder := AtableCkJ

• £:,~t.!J.I:.n
fti:ift

Finder ;= ull
ItlU1Q.

e.r:.l2Sl.f.OQ ; "Finder either set to point
to table entry or set to 0.11" . " .

k22 := k22 + Findern.kstep ;

retype) Aretype ;

A coproc Is created by execution of the Sl.t~~t~ (cf.10.3.2)
statemcntr

£tf.~t~ «pointer to cop roc), <procedure call statement»;

where the coproc reference serves as a linking mechanism between
(among) two (or more) synchronous coprocs in execution.

Any declared procedure may be designated as a coproc In a
~t~at~ statement.

Execution of the ~t~at~ statement does not cause execution of
the designated procedure (in the procedure call statement part)
to commence. It does cause the creation of a separate
environment (for procedure entries, parameter passing, and
procedure exits), and the passing of actual parameters, Including
those called by value.

Execution of the procedure body of toe coproc begins with the
execution of a t~iYm~ comman~ using the coproc reference (cf.
10.3.4). Such execution begins witn the declaration list of the

NCR/CDC PRIVILEGED 8.0

6-8
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

8.0 PROCS, COPROCS, AND LABELS
802 COPROCS
~N~HNNNN'iN~~NHN~NNHHNNHNMNNNN~N~NNN~~NUNNN~~NNHNHNHN~~NNH~N~NNHNN~

procedure body (at which time automatic variables are allocated),
and then with the first statement of the procedure body.
Execution of the coproc continues unti I a (~~llm~ statement is
encountered in execution which returns control to the
initial izlng coproc or alternately causes execution to begin for
another coproc or to continue in another coproc.

The form of the coproc L~~YmA statement (cf. 10.3.4) isl

t~~Ym~ «pointer to coproc)h)j •••

If such a resume statement occurs dynamically (during program
execution) at some point prior to designation by a ~L~gi~
statement for the coproc or at some point after the coproc has
been destroyed (oro 10.3.3) then the program is in error •. (This
is because the environment for the designated procedure' has not
been--or no longer is--set up as a coproc.)

When an exit is made from a dynamically active cop roc by any
means other than a L~~Mmg, then the program is in error. The
execution of a tA~llml statement will always transfer control to a
different coproc at:

(a) the succes~or of another LIEYm~ statement of another coproc,
or

(b) the beginning of a specified coproc for which a ~tlAtl has
already been done, but fur which no ·t~~Mml has yet been
done.

A t~~Yml statement designating the coproc In which the [~IUml
·statement occurs is in error.

The main program which i~itiatizes the other coprocs with
~L~~I~ and !~~Ym~ statements is always imp' icltly a coproc to
those other coprocs. In order to allow it to be resumed by .these

'other coprocs, it must determine its own 'identity' using the
#~QetQ~ld function (cf. 11.2.13) and assign it to a Jointly
known variable of type pointer to coproc (see CPPC In example
below).

NCR/CDC PRIVILEGED SeO

tI-J.U

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revlslor) 4 June 09, 1975

8.0 PROCS, COPROCS; AND LABELS
803 LABEL DECLARATIONS

Label declarations serve to define those labels of the block
which may be assigned to a pointer to label variable, passed as a
parameter to a procedure or function, or serve as the destination
of a ggtQ ~Kll statement which crosses a block or procedure
boundary (see lOe3.8, Goto statements).

<label declaration> 31~ lah~l <Iabel){, <label)}
<label> ::= (identifier>

All labels in the
a statement which
10.0, Statements).

list must also appear in the block, labeling
is not contained within a nested block (see

Note that only those labels whlch are assigned, passed as a
paramet~r, or are the destination of a non-local goto statement
are required to be declared in a label declaratlonp but other
labels of the block are permittedo

HOlE: Label declarations are required only in ISWL programs,
and should not appear in SWL programso

NCR/CDC PRIVILEGED 8.0

I
I
I
f .

9-1
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

9.0 EXPRESSIONS

Expressions are constructs denoti'ng rules of computation for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operanJs (ioeo'
variables and constants) operators, and functions. Constant
e~pressions (cf. 5.1.1) are expressions involving constants- and
a subset of the operators and functionso

<expression) :In <simple expression>
:<slmple expression><rclatlonal operator>

(simple expression>

<simple expression> 11m <term> : <sign><term>
:<simple expression>

<adding operator><term>

<term> :I~ <power>:<term><multiplying "per~tor><power>

<power> :1= <f~ctor> : <power) <exponentiation operator> <factor>

<factor) '1= <conformity>:<variable>:<constant>
:<definlte value constructor>:A<variaole>:A<label>
IA<procedure Identlfier>:<functlon designator>
:«expression» :<not operator><factor>

<conformity> ::=
<type Identifier> <type test operator> <union variable>

:<pointer variable> <pointer type test operator>
<union variable>

:<variable> <value type test operator> <union variable>

<union variable> :1= <variable>

<function designator> ::=
<procedure reference>«actual parameter>

{,(actual parameter>})
:<procedure reference>(

<procedure reference> 1'- (procedure identifier>
:<pointer to procedure>n

NCR/CDC PRIVILEGED 9.0

• . .

9-2
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09,. 1975

9.0 EXPRESSIONS

<actual parameter> ::~ <expression>:<procedure identifier>
:<Iabel>

(type test operator> ::= I:

(pointer type test operator> ::= :h:
<value type test operator> 1:= J=l

(not operator> ::= QQt
<exponentiating operator> ::3 **
(muttiplylng operator> :l~ * : 1
<sign> II::: ? : -

(adding operator) ::= + : Qt
(relational operator> ::= ((:::

~Q.r. : y.~t.

Conformities:

Factors:

Terms:

Simple expressions:

Expre.sslons:

> : >:s ::: 1=·: 1a

Lfta! :: basicvar
pint :A: basicvar
int :~q baslevar

x
15
ex + y + z)
f(x (- y)

$colorset (red, c, green]
o'fli p
"'aCi, j]

x * Y
i I 3
p sag q
(x <= y) ~Qg (y (z)

x + y

huel Q.t. nue2
i * j + 1
hue $cotorset (red, green]

X II 1
p <= 2
(i<j) :a (j(k)

c 1n huel

The value of a conformity as a factor is the boolean value
lLYII If the type test Is successful, and fiLiI otherwise (see

NCR/CDC PRIVILEGED 9.0

9-3
SOFTWARE W~ITERIS LANGUAGE SPECIFICATION

75/06/09
Revision 4 JunB 09, 1975

9.0 EXPRESSIONS
9.1 EVALUATION OF FACTORS

9.2el, Type Test Operators).

The value of a variable, as a factor, is the value last
assigned to it as possibly modified,by subsequent assignments to
its components.

The value of an unsigned number is the value of type Intgggr
or rgal denoted by it in the specified radix systemo

string constants consisting of a single character denote the
value of type £biL of the character between the quote marks.

string constants of n (n > 1) characters denote the fixed
~ttlng (n) value consisting of the characters between the quote
marks.

The value of a string when used as a factor in an expression
is as follows: if the current length (see following paragraph) of
the string is zero, its value is the nul'" string; otherwise, its
value is a fixed string of the same current length. In
particular, substrings of varying strings are fixed strlngse The
value of a character wnen used as a factor in a string expression
is a fixed string of length one.

The £lltt~at __ l~Qgtn of a string is defined as fol lows: The
current length of a varying string is defined to be ill whenever
its value is a fixed string of length m and is defined to be zero
whenever Its value is the nul' string. The current length of a
fixed string is equal to its length.

The constant nil denotes a null pointer value of any pointer
type.

A constant identifier is replaced by the constant it
If this in turn is a constant Identifier, the process is
untl I a constant of one of the above forms results. The
then obtained as abovee

The value of a definite value constructor is
obtained From the values of Jts constituent expressions
specified by its type identifier.

denotes.
repeated
value is

the value
of type

The value of an up-arrow fol lowed by a variaole of type T is
the pointer value of type hT that designates that variable.

The value of an up-arrow followed by a procedure Identifier of
proc type P is the pointer to procedure value of type Ap that
deSignates the current instance of declaration of that
procedure.

NCR/~OC PRIVILEGED 9.0

9-4
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

9.0 EXPRESSIONS
9.1 EVALUATION OF FACTORS
NNNHNHNNNNNNNHNNH~H~HNNNNNHNNNNNN~NNNNNNUUHNHN.HNN~NNNNN~~"NNNN~HN

The value of an up arrow followed by a label is the pointer to
label value of type ~l~~~! that designates the current instance
of declaration of the Jacel (see 10.0, Statements).

A function designator specifies the execution of a function.
The·actual parameters are substituted for the corresponding
formal parameters In the declaration of the function. The body
is then executed. The value of the ·function designator is the
value last assigned to the."function identifier. The procedure
reference must be to a procedure with a return type. The meaning
of, and restrictions on, the actual parameters is the same as for
the procedure cal I statement (see 10.3.1).

The value of a parenthesized expression. is the value of the
expression which is enclosed by the parentheses.

The type of the value of a factor obtained from a variable or
function designator whose type i~ a subrange of some scalar type
is that scalar type.

Operators perform operations on a value or a pair of values to
produce a new value, Most of the operators are defined only on
basic types, though some are defined on most types. The
following sections define tne range of applicability, as wei I as
result, of the defined operators. An operation on a variable or
fleld"which has an undefined value will be undefined in result.

9.2.1 TYPE TESTING OPERATORS

The type testing operators are used to:

a) determine the type of the value last assigned to a union
" variable;

b) permit references to that value by concurrently assigning
it (or, optionally, a pointer to the value) to the variable
(pointer varlaole) being used as a comparand.

The type being tested-for can be specified by a type
Identifier, the type of a variable, or the type pointed-to by a
pointer varlablco These operations are permitted only If a
variable of the type being tested-for can be assigned to ona and
only one member of the union.

NCR/CDC PRIVILEGED 9.0

9-5
SOFTWARE WRITER'S LANGUAGE SPECIFICATIO~

75/06/09
Revision 4 June 09, 1975

9.0 EXPRESSIONS
~.2.1 TYPE TESTING OPERATORS'
NHHNNNN~N~~HN~NNNNN~NHNNN~NN~N~N~NNNNNNHNNnNNHN~HNNNN~NNNNNNNNN~~H

The type test operator (II) expects a type identifier on its
left, and returns the boolean value ttll~ if the type identifier
specifies the same type as the type of tne current value of the
union variable on the right, and fBllig otherwise.

The pointer type test operator (:h:) expects a pointer
variable on its left, and returns the boolean value tt~~ if the
pointer variable is of type pointer to the type of the current
value of the union variable on the righto If it is, then the
pointer variable on the left is caused to designate the value of
the union variable; otherwise, the value Is til~~ and the pointer
variable is assigned the value nllo

The value type test operator (:=:) expects a variable on, its
left, and returns the boolean value tLY~ if the variable Is of
the type of the current value of the union variable on the right,
but otherwise returns the value t.li~. When'the boolean value
returned is iLlig, then the variable designated on the left Is
assigned the value of the union variableo Otherwise the variable
designated on the left is unchanged.

ge2.2 NOT OPER~TOR

The ~ot operator~ 02t, applies to factors of type boolean and
·set. When applied to type boolean, the meaning is negation;
i.e., 021 tLY~ ~ f~li~ and ant t~!£~ = true. When appl led to a
set, the meaning is set complement with respect to the base type
-. I.e., the set of all elements of the base type not contained in
the specified set.

NCR/CDC PKIVILEGED 9.0

I . .

9-6
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06109
Revision 4 June 09, 1975

9.0 EXPRESSIONS
)02.3 MULTIPLYING OPERATORS
~NN~_N~~NN~UHUNNNNUNHNNNNNNNNNNNNNNHNHNMHNNMNNNN~NUNNNNNHNNNNNNNNU

9.2.3 MULTIPLYING OPERATORS

The fol lowing table shows the multiplying operators, the types
of their permissible operandsl and the type of the result.

+----------+----~-------~------------~+-------------+------------+
: Operator : Operation : Operands Result
·l-----~----:--------------------------:-------------I~---------~~: : * ~ multiplication : &~al tAn!

: intAggt lntlQ~[

+~-----~---+-~------~-----------~~--~-+~------------+------------+
I integer division int~~At

for a, b, n positive
integers

alb = n where n is the
largest Integer such
that b*n < :II a

(-a)/b : (a)/(-b) ~

- (a/b),a/b ~ (-al/C-b)

+-----~-------------~-~~-~-+-------------+~~~------~--+
: real division : t!Hl! :. I:!H\l

+-~--------+---------------------~----+-------------+------------+
: Dl2.'u· : r~~ainder function

: a m'sHi b !! a - (a/b)*b I·
I

+~---------+-------------~------~-~---+-------------+----~-------+
logical 'and'
t~y~ an~ !Al~~ = f~l~~
l~Y~ ~ng tLUg .:: lLll~
t~l~g ~Ug f~!~~ = t~l~g
!~!~~ ~O~ ltyg !! t~!~~

• · .
+-~~~~-~-------------------+-------------+------------+ set intersection
: - the set consisting of
: elements common to the

two sets
I • • • • • •

+----------+--------------------------+-------------+------------+
• I

:
I'
I

conditional liLUt
lr:.Y~ ~ng tt~~ .:: l[M~
1r:.Y~ ~u1 t~l~~ !! t.a!Sg
!al~~ aun ial~~ !! tal~~
tals~ ~Qg ttll~ .:: t~l~~*
*When the first operand

is fA!S~' the second
Is never evaluated.

• • :
I • • • • •

+----------+----------~-------------~-+-------------+---~--------+

Note: The operator '~Qd may not ue used for set Intersection as
Ao..d. is used.

NCRICDC PRIVILEGED 9.0

9-7
SOFTWA~E WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

9.0 EXPRESSIONS
902c4 SIGN OPERATORS

9.2.4 SIGN OPERATORS

The ~ operator can be appt led to integer and real types only.
It denotes the identity operation and results in integer or real
type respectively--ioe., a ~ + a.

The - operator can be applied to integer and real types only.
It denotes sign inversion--i.e., -8 ~ 0 - a.

9.2.5 ADDING OPERATORS

The following table shows the adding operators, the types of
their permissible operands, and the type of tne res~lt. (See
also 10.1.1 for the successor assignment statement and
predece~sor assignment statemeot, which are analogous to the
adding operatoro)

NCR/CDC PRIVILEGED 9.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06'/09

Revision 4 June 09, 1975

9.0 EXPRESSIONS
9.2.5 ADDING OPERATORS

+---~------+-----~--------------------+-------------+----------~-+
: Operator : Operations : Operands Result
+----------+--------------------------+----~--------+------~-----+

+ I addition

+--------------------------+-------------+------------+
concatenation * ~itJ.ng :

I · . and ~tr...LOgl
, Sttill9.

and £USlt.
st.,tina

+----------+--------------------------+-------------+------------+

~.t

llQ.J:. **

..

: sUbtraction : lUiitfl~r..
: t~al

:. ioi!'tflSi.t.
r.!L~l

+-----------------~--------+-------------+------------+
boolean difference
tr..Y~ - ir.ul ~ f~lil'

ttMft - i~l~~ ~ tr.~~
f~lSg - tr..ll~ ~ fnlsl'

t~l~~ - fal~~ ~ t~l~~

I · .
+-~------------------------+------~----~-+---------~--+

set difference
- the set consisting of

elements of the left
"perand that art: not
~Iso elements of the
right operand.

logical 'or'

I · .
u~t. ~f type ?~t g.t type!

. :. ~2Q.!fta!l

I · .

.f · . • •

· . · . tr..M~ 2r.. tty~ ~ tJ:.ll~'
itll~ Q.t tsl~~ = ttM~

ta!~g Q.J:. ltUft ~ lLUft'
til~ft 2r.. tal~~ : fs!~~ .

+-----------------~--------+-----~-------+------------+
: set union
: - the set consisting of

all elements of both
setso • · .

I • • · . I
+-~-~--~---+-~--~-~-~----------~-----~+--~-~-~-~--~-+--~--~~-~-~-+

exclusive 'or'
IJ:.Y!'t AQ.r. ttll~ ~ !Al~~
iJ:.ll~ A2r. fsl~Si ~ 1LYft
ia!li~ ~Q.L ir..Y~ ~ iLYft
ts!~~ ~Q.r.. f~l~ft ~ fal~ft

: b.2Q.!ftsa
• • • •

+------~------~------------+-----~~~~-~--+~~-~~-------~
symmetric difference

: - the set of elements
: contained in either

set but not both sets.

~utl 2f. type:

+----------+--------~-----------------+~---~-~~-~~--+----~-----~-+.

NCR/CDC PRIVILEGED 9.0

, ..

9-9
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09p 1975

9.0 EXPRESSIONS
9e205 ADDING OPERATORS

* The rules for concatenation are as folloHso The adding
operator, '+', is used as the dyadic concatenation operatoro The
result of concatenation is a string whose current length is the
sum of the current lengths of tne two operands and whose value Is
the string obtained by right-extending the left operand by the
right operand.

** If evaluation of the ~Q.t (unconditional UC) is found to be
necessary in the execution of the statement in which it occurs,
then "the evaluation of both operands is guaranteed to OCCUfo The
YQ[may not be used as a set union operatoro

902 0 6 RELA~IONAL OPERATORS

Relational operators are the prlmar~ means of testing values
in SWLo" They return the boolean value tr.~!.l if the specified
relation holds between the operands, and the value t~l~ft,

otherwisee

AI I six comparison operations < (less than), <= (less than or
equal to), > (greater than),)= (greater than or equal to), =
(equal toi, and 1= (not equal to) are defined between operands of
the same scalar type, operands of type t~&!, and operands of type
Aitius or ~t[lQg and £h~L.

For operands of type lotggftt or b~a!, they have their usual
meaning.

For operands of type h~Ql~~n the relation tal~~ < lty~ defines
. the, ordering.

For operands, a and 0, of type ~hi[' the relation a Q~ b holds
if and only if the relation $lQi~gftt{a) Q2 $lQ~~g~[(b) holds,
where Q2 denotes any of the six comparison operators and $lntga~L
is the mapping function from character type to Integer type
defined by the ASCII collating sequence.

For operands of any ordinal type T, a :II b if, and only if, a
and b are the same value; a < b if, and only if, a precedes b in
the ordered list of values defining T.

NCRICDC PRIVILEGED 9.0

I . .

, , .

9-10
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

9.0 EXPRESSIONS
9.206.2 Co~parlson of Direct Pointers

Two direct pointers can be compared If they are pointers to
either equivalent types or potentially equivalent typesG In the
latter case, one or both of the pointers may be pointers to
variable bound types, adaptables types and bound variant records

whose type must be determined' during execution of the SWL
program. The Instantaneous type of such pointers must be the
same as that of the pointer they are being compared withi if it
is notp the operation Is undefined.

1. Pointers to file type and pointers to control type may be
compared for equlality and inequality only.

a) Two pointers to file are equal if they designate the same
file variable.

b) fwo pointers to procedure are equal if they designate the
same instance of declaration of a procedure.

c) Two pointers to coproc are equal if they designate the same
coprocess.

d) Two poi n t'e r s to I abe I are e qua I i f the y des i 9 nat e the sam e
instance of definition of a label.

2. All six comparison operators are defined for pointers to
data type, for adaptaole pointers and for pointers to bound
variant type.

a) Pointers of such type are equal if they designate the same
varlaole. For pointers to variable bound type, adaptable
pointers and bound variant pointers, "this means that their
instantaneous type (i.e., including current" bounds, lengths, or
tag fields and variants) must be the same as the type of the
~olnter they are being compared with.

b) Two pointers with 011 value are always equa'.

c) The remaining comparison operations are defined as
follows. Let 2& denote any of the remaining operators (, (a, >-,
>, and let a' g, L denote three pointers of equivalent type. If
p 2e q and q 2& r hold true, then p ~a r also holds true.

Relative
pointers of

pointer comparison
equivalent type.

i s
Two

allowed only for relative
relative pointers are."

NCR/CDC PRIVILEGED 9.0

9-11
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06'109
Rev I s Ion 4 June 09~ 1975

9 0 0 EXPRESSIONS
~~2Q6Q3 Comparison of Relative Pointers
.'NNNNNNN~NN~NNN~NNNMNNNHN~NNNMU~N~NHNNNNNN~~N~N~NNMU~NN~HNNNNNMNMN

equivalent if they are defined in terms of equivalent object
types and equivalent parental types (cf. 4.2.3, Relative Pointer
Types). For relative pointers whose object type is a variable
bound type, this means that their "Instantaneous" object type
must be the same as the object type of the relative pointer they.
are· being compared with; if it is not. the operation is
undefinedo

Comparison of relative pointers is defined as follows:

1. Let ~ and g denote relative pointers of equivalent type~
and let e denote a variable whose type is equivalent to the
common parental type of these relative pointerso If the relation
#ei.c.(p,P) = #~l[(q.P) holds (cf. 11.2.15)~ then. p and q are
equal.

2. Let ~, g, and L denote relative pointers of equivalent
type, a~d let g~ denote any of the comparison operators <, <=,
)0,). If the relations p 2£ q and q ~a r both hold, then the
relation p ~e r also holds o

For operand~ of type ~tLIDg or litlUg and £~B[' comparison is
defined In the following I-Iay:

All six relational operators may be app'ied to operands v4hose
values are strings; If the current lengths of the strings
entering into the operation differ, then the shorter of the two
is right-extended with blanks to match the current length of the
larger before the operation Is carried out. If on~ of the
operands is of type £.!ls.c.. it is converted to the 5..t.c.ing(l) value
consisting of that character. and then the rules for unequal
length strings are applied if appropriate.

Strings are compared to each other character by character from
left to right until total equality or inequality is determined,
as fol lows. Let n be the length of the resulting strings a and b
(n ~ 1), and 2e be any of the six comparison operators, then:

a £a bIt! atl) Q2 bel)
~L a(l) 3 bel) for all i (1 ~ J < k)

iUg a(k) Qe b(k) (1 < k ~ n)

The relation a lu S is true If the scalar value a is a member
of the set value S. The base type of the set must be the same

NCR/CDC PRIVILEGED 9.0

"f-J.t:..

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
15/06/09

Revision 4 June 09, 1975

9.0 EXPRESSIONS
9.2.6 .. 5 Relations Involving Sets

as, or a subrange of, the type of the scalar.

The set operations :II (identical to), I::. (different from) <=
(is Included In), and)0 (includes) are defined between two set
values of the same base type.

S1 = S2 is true if al I members of 51 are contained
In S2, and all members of 52 are contained in Slo

S1 I~ S2 is true when S1 : 52 is falsee

$1 <= S2 Is true If al I members of S1 are also
members of 520

S1)= S2 Is true if al I members of 52 are also
members of S10

1. Arrays may
Two arrays are equal
(cf. 4.3.3.1) and
v~!ue~ are equ~!.

be compared for equality or inequal ity only.
if their instantaneous types are the same
if elements with corresponding subscript

2. Variant records can not be compared. Other
may be compared for equality or inequality only.
records are equal if their instantaneous types are
4e3G4.5) and if corresponding fields are e~ualo

record types
Two comparable
the same (cfQ

Certain types in the language cannot be compared. These are
files, stacks, heaps, sequences, unlpns, variant records, arrays
of non-comparable component types, and records containing a field
of a non-comparable type. However, pointers to non-comparable
types can be compared.

See the fo Ii ow, ng page.

NCR/CDC PRIVILEGED 9.0

..
;

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

·9 • 0 E X PRE S S ION S
9 0 20608 Table of Comparable Types and Result Types

9-13

75/06/09

~dH~NNNNNNH~~UNNNNNNNNN~~HNHN_NHN~NNNNNHNq~~NNNNNNNNNNNNNNNHUN~NHNN

The following table shows the relational operators, the types
of their permissible operands, and the type of the result. '

+------~---+------------~-~-+-----~-----+---~--~----+---~-~---~~-+
• I I •

: Op e'r at 0 r : Operation
• t Left
: Oper and

Right
Operand : Result

+~----~-~--+----------------+~----~-----+-----------+------------+
(- I t~ S 5 than

(1:1 - less than or
equal to

> greater than
>u - greater than

I or equal to I.

S - equal to
1= not equal to

I
I .

any scalar: T
type T

~ftal t~al

: tHHll~ao.,
I
I

:, ~QQlfHHl

+-----------+-----------+------------+
S.tr..ltUl
~t.r.lo.g
SU.sr.

I
t ,

s.t t1 !HI
~hi\r. .
~.t.tl!lg

b.QQ!~a!l
hQ.Q.!~.all

:. tHlQ.l~!l!l

+-----------+-----------+------------+ -: any (*)

: pointer
: type T

T

+----------+----------------+-----------+-----------+------------~ : 1n
I
I · . I .

I , ,
t.

set membership: any scalar: ~~t sf T'
test type T where T'

is T or
a sub-'
range of
T

+---~~-~~--+----~--~-~~-~--~+~-~-~~-~~--+-~---------+---~-~~-----+
I = Identity ~~t &11: T ~§.t. .21: T h22!~all. • , /:a - different where T i s ,
:. (= - is contained any sea-
I in lar or •
t >- contains subrange •
I type · ..
+~-------~-+----------------+---------~-+-----------.+--~-~----~~~+

/=-

I, : ,
I

equal to
not equal
to

any array
type T

any non­
variant
record
type T

any
pointer
type T

T

T

T

I . ,
I
I

:. 22Sli1t.all·

+----------+----------------+-----------+-----------+------------+
(*) Except for pointers to procedure, coproc, label, or file.

NCR/CDC PRIVILEGED 9.0

I ...

9-14
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

9.0 EXPRESSIONS
9.2.7 EXPONENTIATING OPERATOR
NN~~NN~NNN~N~~NNNN~NN~NNNN~NNNHN~n~NNNMNNHNNNN"HNNNNNNNNNNNHNNHNMH

9.2.7 EXPONENTIATING OPERATOR

The exponentiating operator ** Is defined for an argument
which is a positive or negative integer expression, raised to a
power which is limited to that of a positive integer expression.
It Is defined to be left associative, so that a ** b ** c is
evaluated as (a ** b) ** c. (This folloHS the syntactic rules
for expressions, cf. 9.0).

The rules of composition specify operator precedence according
to six classes of operators. The type testing operators have the
highest precedence, followed by the not operator, followed by the
exponen~iating operator, fol lowed by the so-called multiplying
operators, then the so-called adding operators9 and finally, with
the lowest precedence, the relational operators.

The precise order in which the operands entering into an
expression are evaluated is undefined. The order of ap~'lcation
of operators i~ defined by the composition rules (and their
implied hierarchy of operator precedence) with the exception that
the ord~r of application is undefined for any sequence of
commutative operators of the same precedence class. For example:

1. The expression a * b * c I d is ~valuated as
(a * b * c) I d, and the internal order of evaluation of the
first term is undefined.

.
2. The expression a + b + c - d Is evaluated as (a + b + c) -d,

with the internal order of evaluation of (a + b + c).
undefined. .

NCR/CDC PRIVILEGED 9.0

10-1
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/0&/09
Revision 4 June 09, 1975

qO.O STATEMENTS
I

10.0 ~IAIEtlf~IS

Statements denote algorithmic actlons~ and are said to be
executableo A statement I ist denotes an ordered sequence of such
actlonso A statement is separated from its successor statement
by a semicolon. The successor to the last statement of a
statement list is determined by the structured statement or
procedure of which It· forms a part.

A statement may be labeled by preceding it by an Identifier
followed by a colone This allows the statement to be explicitly
referred to by other statements (eog., go to, exjt,.cycle). Such
a labeling of a statement constitutes the declaration of the
identifier as a label, and hence the identifier must differ from
all other identifiers declared in the same block.

If an identifier labels a statement of the constituent
statement list of a procedure declaration (see Section 8.0) or a
begin statement (see Section 1082.1), then its scope is that
procedure declaration or begin· statement. If it labels a
statement of one riJ-the constituent statement lists of other
structured statements (see Section 10.2), then its scope is that
~tatement list. Thus, it is impossible to refer to a label
contained within a procedure declaration or structured statement
·from outside that declaration or statement, or fro~ other
statement li·sts of the same structured statement.

A label may optionally follow a structured statement other
than the repeat statement, in which case It must be identical to
one of the labels label ing that statement. This is for checking
purposes only, and does not affect the meaning of· the program.

<stat~ment list> 'I~ <statement>{;(statement>}

<statement> ::~ <unlabeled statement>:<label> :. <statement>

<unlabeled statement> :ta<assignment statement>
:<structured statement>C(label>l
:<control statement>

<label> :1- <identifier>

. :<storage management statement>
:<jnput-output statement>

NCR/CDC PRIVILEGED 10.0

10-2
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1915

1000 STATEMENTS

check_range: it val < 0 .t.b.!lU tagfld 1::1 0

LIz

RLlf val> bound thlQ tagfld := bound
~l~Q tagfld J= val
ItQ.OQ checlt_range

x := x + y

y.:= z !fnote multiple labels permitted"

Since the successor of the last statement of a statement list
is uniquely determined by the structured ·statement or procedure
of which it is a part, semicolons are not required as statement
list del imiters. However, since the ametl statement (cf.
10 \I 3 • 9) . i s a I I 0 I.J ed, s em i colon s m Ii y be sou sed for pur p 0 s e s 0 f
consistency or presentation.

check_range f it val < 0 lh~u tagfld J= 0 ;
2&i1 val> bound thao tagfld :~. bound;
Q.!~l tagfld 1::1 val j

Itlnd check_rang~ ;

Ll: x :::1 .x + y ;

The assignment statement is used to replace the current value
~f a variable by a new value derived from an expression, or to
define the value to be returned by a function designator.

<assignment statement> ::= <varIable> :a <expression>
:<function identifier> := <expression>

:<successor assignment> ncf. 10.1.2"
:<predecessor assignmant>

:<concatenatlng assignment> "cf. 10.1.3"

NCR/CDC PRIVILEGED 10.0

, · .

• · .

10-3
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15106"109
Revision 4 June 09, 1975

lOGO STATEr1ENTS
110 • 1 ,1 ASSIGNMENTS TO VARIASLES AND FUNCTIONS
'NUNUNnNNNUNNNNNNNN~~N~NNNNNN~NNNN~N~~UN~NNHNUUNNNNNNNNNNNNNNNMNHNN

10.1.1 ASSIGNMENTS TO VARIABLES AND FUNCTIONS

The part to the left of the assignment operator (:a) is
evaluated to obtain a reference to some variable. The expression
on ·the right is evaluated to obtain a value. The value of the
referenced variable is replaced by the value of the expression.

The variable on the left may be of any data type except for.

(a) the so-called QQQ::~£ly.£. types:. heaps; 'arrays or stacks of
non-valued types; and records containing a field of non-value
type.

(b) any variable,or parameter specified as read-Only.

(c) any bound variant record.

(d) the tag field of any bound variant record.

The variable on the left (or the return type of the
and the expression on the right must be of
instantaneous tvpes (cf. 6.1.2), except as noted below:

function)
identical,

1 • The t y p e o' f the v a ria b I e may be a sub ran 9 e 0 f, the t y p e 0 f
the expression. If the value of the expression is not a
value of the subrange, tne program is in error.

2. If the variable is a YU1~U variable, then the type of the
expression may De one (and only one) of the types from which
the union type was united. In this case, the type of the
expression as we" as its value is assigned.

3. If the left part is a character variaote, the expression,may
be a string whose current length Is one or greater. The
string value is right truncated to a single character string
which Is converted to type £hA& and then assigned.

4. If the left part is a fixed string variab,'e, the expression
may be a character or a string, and the operation is as
follows:

a) i f the .. ex pre s s Ion i sac h a r act e r, I tis con v e r ted to a
fixed string of length oneo

b) if the current length of the string differs from that of
the assignee, the string wi' I be either right truncated
or right extended with blanks to obtain a string of
matchi ng • ength.

NCR/CDC PRIVILEGED 10.0

f
I ,

• · .
I · .,
I · ,

I · ,

10--4
SOFTWARE WRITERcS LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

10eO STATEMENTS
10~181 ASSIGNME~TS TO VARIAaLES AND FUNCTIONS
"NNNUUN~N~NNNN_N#NN_NMN~NNNNN~N~NNNN"N~NNNNNMNN~N~~NN~NNHNNNNNNNNH

c) the assignment is then carried out.

Se If the left part is a varying string variable, the
expression may be a character or a stringp and the operation
is as follol'lSI

a) if the expression is a character, It Is converted to a
fixed string of length one.

b) If the current length of the string expr~sslon exceeds
the maxlength of the assigneep the string will be right
truncated to the matchIng current length.

c) the assignment is carried out; the current length of the
variable is set to the (possibly revised) current length
of the expression o

60 If· the I eft par tis a va ria I) t r e cor d the rig h t par t may be a
bound variant record of otherwise equivalent type.

7. If the left part is a pointer to a bound variant record, the
expression may be a pointer to an otherwise equivalent
'unbound' variant recordc

80 If the left part is an adaptable pointer, the right part may
be either a direct pointer to any of the instantaneous types
to which the left part pointer can adapt, or an adaptable
pointer, which has been adapted to on~ of those typeso Both
the type of the expression and Its value are assigned, thus
setting the current type of the assignee.

,9. If the left part is a stack, the right part must be ,a stack
,whose Instantaneous component type must be the same as the
left part's component typeQ

100 If the left part is a sequence, the expression may be any
sequence.

11. Stacks may be aSSigned only to stacks of the same component
type, and sequences may be assigned only to sequences. After
the assignment, source and destination contain the same data
values (those stored in the source) and are in identical
states with respect to any future operations. If the
allocated size of the destination is not large enough to hold
the source data, then the program is in err~r. Data values
stored in the destination prior to the assignment become
undefined by virtue of having been either overwritten or
stored past the space required for the assignment.

120 WaLoingl Note that generally a pointer value has a finite

NCR/CDC PRIVILEGED 10 0 0

I . ,

10-5
SOFTWARE wRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09, 1975

10.0 STATEMENTS
~Oel~l ASSIGNMENTS T8 VARIABLES A~D FUNCTIO~S
~UUUUNNNMN~NNNNHNNNNNnNNHN~NNNNH~NN~NNNNHNH~NNN~NH~NNHNN~NN~~H~NNN

lifetime (see Section b.2.2) different from that of the
pointer variable. Procedures, labels, and automatic
variables cease to exist on exit from tne olock in whicn they
were declared. Allocated variables cease to exist when they
are freed or their containing storage variable ceases to
'exist. Attempts to reference non-existent variables by a
designator beyond their lifetime is a programming error and
could lead to disastrous results.

10.1.2 SUCCESSOR AND PREDECESSOR ASSIGNMENT STATEMENTS

These assianment statements furnish the oth successor orath
predecessor of a scalaro

<successor assignment> :;= <scalar variable> :+ <oth>
<predecessor assignment> I:~ <scalar variable :- <nth>

where
<nth> ::a <integer expression>

These statements replace the current value of the scalar variable
by its Uth successor or predecessor, if that successor or
predecessor existse They are equivalent to applying the #i~'~ ,·r
#RL~g function a times to the variable.

If the
unchanged.
in error.

If the
program is

value of ath is zero then the current value Is
,If the value of nth is negative" then tne program is

nth successor or predecessor does not exist, then the
in error.

10.1.3 CONCATENATING ASSI"GNMENT

The eoncatenating assignment statement is used for purposes of
conveniently right-extending varying strings.

<concatenating aSSignment> ::z

(varying string variable> :+ <string expression>

If the expression is a character, it is converted to a fixed
string of length one.

If ~ denotes a varying string variable and E denotes a string
expression, then the concatenati~g assignment

NCR/CDC PRIVILEGED 10.0

• . ,

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
15106/09

Revision 4 June 09, 1975

10.0 STATEMENTS
~Oolo3 CONCATENATING ASSIGNMENT .
~NNNNNnNN~~NH~HMNHMNN~NNNUNN~~N~~~nN~NnNNN~NNNN~MN~nWNNNnN~~NNNN~N

V 1+ E j

yields the same effect as the variable assignment

V Is V + (E) j

structured statements are constructs composed from statement
lists. They provide for storage allocation and scope control,
selective execution, or repetitive execution of tneir constituent
statement lists • .
<structured statement> I:~ <begin statement>

1002.1 BEGIN STATEMENTS

:<Jf statement>:<loop statement>
l<while statement>:<repeat statement>
:<for statement>:<case statement>
:(value conformity case statement>
:(pointer conformity case statement>

Begi~ statements are blocks, and constitute the scope of their
constituent declarations. On entry to the begin statement al I
declarations afe evaluated, and storage al located for automatic
variables. The statement I ist Is then executed. On exit, either
through completing execution of the last statement of the
statement I ist or through an explicit transfer of control, all
identifiers declared within the begin statement' become
inaccessible, and the values of automatic variables become
undefined.

The successor of the last statement of the statement list of a
begin statement Is the successor of the begin statement.

<begin statement> az=
R~~lu (declaration list><statemeht list> ~Qg

NCR/CDC PRIVILEGED 10.0

• · .
• · .

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
15/06109

Revision 4 June 09, 1975

10.0 STATEMENTS
~0.2.1 BEGIN STATEMENTS
NN~NNNNNH~HNUUNHHNNNNMNUUHHUUUU~U~~U~UUUNU~~NU~~~~~N~~N~~NUuUU~~~~

outer: ~~ulu yat a, b, c lui~ll~t, b2, b3 : nu~!~au ;
a := r + s ; "r and s dec'ared outside block"
b :== r +],0 ;

LlI' b2 := .t.t.y~ j

inner:
Q~aln vI, v2 I'Lniasftt. , b2 ~2n!ftAU;

vl := a i' r ;
v2 I'" 25 ;
if vl < v2 th~a b3 1= tt.ll~ ifQag ;

l3: b2 := .ts.!s.~ ; "b2 of inner block"
Coon Inner;
If. v2 > a t.b~a

a := 1 ; lIimproper statement, since'v2
no longer exists"

!tCoad ;
1t -U2.t b2 th~!l

b :0 c
Ifg,oQ. ; "b2 is 1:.r.!J~ from statement Ll.

J:Og outer ;

the b2 set by statement L3 holds only
in the block labelled inner."

10.2.2 IF STATEMENTS

The if statement provides for the execution. of one of a set of
statement lists depending on the values of Boolean expressions.
The Boolean expressions following the it or gtif symbols are
evaluated in order from left to right until one is found whose
value Is tt!J~. The subsequent J 1st is then executed.

I f a I t
statements
executed.

Boolean expressions are. f~l~~,
or the statement Jist following the

then
1tl~~

either
symbol

no
i s

The successor to the last statement of a constituent statement
I ist of an if statement is the successor of the I f statement.

<If statement> I:",

<alternative parts> lt~Og
:<atternative parts> A!~ft <statement list> l!~ad

<alternative parts> Ila it <expression> tb~u <statement list>
{~Llt <expression> th~u <statement list>}

NCR/CDC PRIVILEGED 10.0

10-8
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

10.0 STATEi'1ENTS
10~l.2 IF STATEMENTS

1f x < y tlH1Q x
it x <= 5 ttUtll z
Qt.i! x > 30 thf.U
!ttl! x :::I 15 ttUiD.
~l~st z : c z * z;
If.gns1

: = y
: :: y
z : u

z : ::
y : =

10.2.3 LOOP STATEMENTS

itgo.s!
+ 1 ; y : :: y + 5
y * y; y t .. z
y ~t Z

2 * z {- 15

The loop statement causes unbounded repetition of its
component statement list. Thus, exit from a loop statement must
be through an explicit change of control.

The 'successor to the last statement of the constituent
statement list of a loop statement is the first statement of the
I 1st.

<loop statement> ::= lQQ£ <statement list> lQQe~Qg

NCR/CDC PRIVILEGED 10.0

10-9
SOFTWARE WRITER'S LANGUAGE SPECIFICAfrON

75/06/09
Revfslon 4 June 09, 1975

10.0 STATHIENTS
iO.2.3 lOOP STATEMENTS
~NNUHN~N~NNNNMHNNNHNNHNNHHNNHNNHNNN~HNNNNNNN~NN~NNNN4NNNNNNNNNNNNN

1~2g nextid : ~ttlQU (20) Qt ~u~t ;
~~L scrambloc : sLLnX (1 •• 256] 2£ Afield;
t~E~ field = t~~~t1

a, b, c ; illt~~~t'
d : Afield,
id : litrinu (20) ~! ~h~t

r.~rc.eL:Hi ;
~ar. k : int~Q~r, found : ~QQ1~~U ;

k := 128 ;
m ::11 k I 2 ;

finder: 19.2.£ "binary search used"
If scrambloc(klA.id ~ nextid lU~Q

found 1= .t.r.M~ ;
Q~ll finder

It~Qg ;
it scrambloc[k]A.id < nextid IhftQ

k := k - m
gls.ft

k:=lc+m
If.!lUS ;
m := m 1 2 ;
if m aO th~a

found 1= f..a!~~ ;
g1Sit finder

If.~Qn
IQ.!H?&lU.Q ;
It f 0 un d .t.tHill .0.
if.~o.i1 i
"the va~iable found tells whether a strlng equal ~o

nextfd is located In the table, the entries of which
are pointed to by the values in scrambloc. if the
matching entry Is found, then k is the index of the
entry.1t

10.2.4 WHILE STATEMENTS

A' while statement controls repetitive execution. of its
constituent statement list.

<while statement) ::=
Hbl!~ (expression> dQ <s~atement list> ~nl!~Q~

The expression controlling repetition must be of
Boolcane The statement list is repeatedly executed until
expression becomes !Il~~. If its' value Is !a!~~ at

~CR/CDC PRIVILEGED

type
the
the

10.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

10.0 STATErlENTS
10.2.4 WHILE STATEMENTS
NNHNNNNNNUHNNNNHNNNHNNNNNHNNNNHNMNNNNNNNNNNNNNMNNNNNNHNNNUNNNUNNNN

beginning, the statement list is not executed at al!. The while
statement

Is equivalent to

The successor of the last statement of the constituent
statement list of a while statement is the while statement
itself.

~hl!g a[iJ 1m X g~ III i + 1 !:!hllg.ad

!'jull!}. I > 0 &lQ.
L! odd (I) fu~n z 13 Z * X ligan;
i:= 1 2;
x '3 X *)(

tLll!!gart

10.2.5 REPEAT STATEMENTS

A repeat statement controls repetitive execution of its
constituent statement list.

<repeat statement> ::= t~£~~1 <statement list> ~atll <expression>

The expression controlling repetition must be 6f type
Boolean. The statement list between the symbols L~a~st and ~otll
is repeatedly (and at least once) executed untl I the expression
becomes true,_ The repeat statement

is equivalent to

tuutlo
s ;
1t e .tll~u

"do nothing"
~!~!it

£!}.a~at S ~o.tll e
If.~ng

1tOg

NCRICDC PRIVILEGED 10.0

10-11
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06'/09
Revision 4 June 09, 1975

~lOoO STATEMENTS
lO.2~5 REPEAT STATEMENTS

The successor of the last statement of the constituent statement
list of a repeat statement is the expression following ~Qtllo

fISAme.!il:

c:~e.~.at k : :I I !!HHi jj

• : :: J;
j 1m k

uuil! J lit 0

10.2.6 FOR STATEMENTS

The for statement Indicates that Its constituent statement
list is to be repeatedly executed while a progression of values
is assigned to a variable, which Is called the control variable
of the for statement.

<for statement> ::= f.2t. <control variable> := <for list> gfJ,
<statement list> fnLAUd

<for list> ::=
<initial value> tQ <final value>(n~ <increment>]

:<inltial value> gQtlUt2 <final value>(Q~ <decrement>]:

<control variable> lla <variable>

<initial value> ::=. <expression>
<final value> ::= <expression>
<Increment> ll= <expression>
<decrement> ::= <expression>

The control variable, initial value,- final. valu~, and
increment or decrement must al I be of the same scalar type or
subranges of the same type. The control variable may not be an

.unaligned component of a packed or crammed structure, and when
the Q~ option is used, m4st be type integer or subrange thereof.

The sequence of values assigned to the control variable for
which the statement list is executed is determined solely by the
initial value, final value, and increment or decrement.
Assignment to the control variable on a given iteration will
cause its value to be changed for the remainder of that
Iteration, but Its value will be reset to the next value of. the
sequence prior to the next iteration.

The initial value, final value, and increment or decrement are
evaluated once on entry to the fQr statement, as is tne name of
the control variable. Thus, sUbsequent assign~ents to components
of these expressions have no effect on the sequencing of the

NCR/CDC PRIVILEGED 10.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATIO~

Revision 4 June 09, 1975

10.0 STATEMENTS
~OG2.6 FOR STATEMENTS

J.V-J..C-

75/06/09

HNNNN~NNHNNNNNH~MNN~NNNNNNU~Nu~UU~~HHHNNNNNNNNHNNHNNNNHHNNNN~HNNNN

statement.

If the initial value is greater than the final value in the 1.2
form, or if the initial value is less than the final value in the
dQ~D12 form, then no assignment is made to the control variable
and,the statement list is not executed.

If no assignment is made to th~ control variable by the
statement I ist, and the exit from the statement is a normal one,
then the vafue of the control variable is the final value.

A for statement of the form

Is equivalent to

'b,g,g!o. ~~t control :'" TYPE hd, temp,. limit :',TYPE (w) ;
control := ~w ; temp :a i ; limit :~ n ;
Lt temp <= limit rUgD.
~bl1~ temp < limit 92 control'" := tempj S ;

temp z: #~y~£{temp) ~hll~o.g i
contro,h := temp;
s ;

where contra', temp, and limit are identifiers not appearing in
the stateme~t list S, and TYPE is a function returning the type
of its argument (not available in SWl)e

A for statement, of the form

Is equivalent to

b,gJJ.!n)Cat control: AlYPE(w), temp, limit: TYPE(w) ;
control : .. "'w ; temp :a i ; limit ,:II n i
1t temp >- I imit t~~n

~hl!~ temp> I imit d~ control'" :- temp; S ;
temp :II #et~g(temp) ;
control'" := temp;

l'Ib1!fng ;
Si

1!~!H1
~Og

NCR/CDC PRIVILEGED ·10.0

10-13
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06'/09
Revision 4 June 09t 1975

10.0 STATEI~1ENTS
100206 FOR STATEMENTS
~~UNHH"HnM~nNHM~NNNUNN~NUMNn~NN~NNN~NUN~~NNN~~nNNNNNNN"N~"NN~UMNNN

A for the statement of the form

Is equivalent to

uggln ~st control :A TYPE(w), limit, step, temp : lat~g~t ;
control :a AW ; temp := I ; limit := n ; step :a inc;
~hi!Q temp <a limit rtQ

control A :a temp; S temp:= temp + step
ltOll!.to£i

~O,g

and a for statement of the form

Is equiValent to

b,g.glo
~~t control: ATYPE(w), limit, step, temp : lat~g~t ;

control 13 "'104 ; temp I:: ; limit := n ; step :~ -deer;
tlhll~ temp)a limit QQ

contrvl" la temp j S ; temp Sa temp- step
1ib.l!~!l.d.

~LUf.

The successor to the last statement of the constituent
statement list of a for statement is the calculation of the next
value of the temporary control variable.

t2t i := 2 t2 100 ~~
it aCI] > max ih~a

max I: aU]
It~al1

!2.r.~!lg

"****"
t2t i :. 1 12 n bx 1 dQ

f2.t J Sa n d~~atQ 1 ~2.
X := 0 ;
!~t k 'D 1 t~ n gQ

X :. X + aC"kl '" bCk,jl.
!nttr.u! ;
c(i,jl I:;:)(

tQ.t~!l.l1
!nr.~ng

NCR/CDC PRIVILEGED 10.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

1000 STATENENTS
10 0 2.6 FUR STATEMENTS

10-14

75/06/09

NNNqNNN~~N~~~NN~~NN~N~N~"~H~~NHnUHNN~NHHUN~N~UNNNNN~N~~~N~NNN~NNN~

10 * * * * It tnt c := redig. blue QQ q(c) f.Q.r:.~Qrt ; "note: Q~ option 's not allOrJed lihen the control variable is not
o.f type j nteger Of type subrange of I nteger. rr

10.2.7 CASE STATEMENTS

A case statement selects one of its component statement lists
for execution depending on the value of an expression.

<case statement> :;= ~a~~ <selector> Q.t <cases>
[~1~~ <statement list» £~~~UQ

<selector> I:a <expression>

<cases> .::= <a case>{;<a case>} .
~a case> ::= ~(selection spec>{,(selection spec>}~

(statement list>

<selection spec> ::= (simple constant expression>
[•• <simple constant expression>]

The case statement selects for execution that statement list
"f any) which has a selection specification which includes the
value of the selector. If no selection specification includes
the value of. the selector, the statement list fol'owlng ~l.~~ Is
selected when the else option is employed; otherwise, the program
Is in erroro If the value of the selector is not included in any
selec~Ion spec and the ~!~! is omitted, the program is in error •.

The selector and al I selection specifioations must be 'of the
same scalar type or subranges of the same type. No two selection
specifications may include the same values (I.e., selection must
be unique).

Selection specs
9.0) to preclude
selection specs.

are· restricted to simple expressions {cf.
the use of unparenthesized relations as

The successor of the last statement of a selected statement
list is the successor of the case statement.

~a~t operator ~!
=plus=
::aminus=
Ktimes D

X I~ X ... Y ;
X I'll X y;
x. := x * y £i~~Qd

NCR/CDC PRIVILEGED 10~O

• •

J.U-1:>

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

J 0 0 0 S TAT E i1 E N T S
0.207 CASE STATEMENTS

&.fts.~ i Qf.
=1= x : :: sin(x)
=2x: x := cos(x) ;
a3= x , a e~p(x) ;
=4· X . - I n (X) . -
~l~g X := -x

£~s.gnn

It * * * * * *' "
1%2. lextype ~ (basic, inconst, realconst, stringconst,

Identifier),

symbol :% I:.~~Qt.g

£a!i~ lex: lextype Qf
=bas i c= name : symbo lid,

class: operation,
:fnconst: value : !n!ftg~C'

optlmiz : hQ~lgilU'
=realconst~ value: t,gal p

=stringconst= length: 1 •• 255,
stringouf : Astt.lng(*),

8identifier~ identno , integer,
decl : "symbo lentry

£'~~!lng
t!l£gui!

XII:. cursym : symbol, sign

Ll : insymbol ;
L2 : £.a~g cursymcle~ Qt

"basic: if cursym.symbolid= minus tOgO sign :=
llQl sign i 3Q1Q L1

QLif cursymasymbol id = plus tOgO gQtQ Ll
~1~~ error ('missing operandi)
It~!lQ ;

-inconst: cursym~optimlz := (cursym.value(halfword)
2t pwr2 (cursym.value) ; If. sign tu~n sign : .. f.~1~~ ;'
cursym.value := -cursymevalue ltftnd ;

Brealconst= If sign th~n sign :~ tsl~~ ;
cursym.value := -cursym.value li~u~ ;

=stringconst= error <'string constant where
arithmetic type expected'> ;

=ldentifler~ cursymodecl := symbolsearch
(cursymoidentno) ; if cursymodeclA.typ 1=
constdecl tbeo variable (cursm.decl) ~li=
cursym := cursym.decl~.valueA ; g2iQ L2
l.f:.e.oj

k.a~!iIl!.1

NCRICDC PRIVILEGED 10.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 197~

10.0 STATEMENTS
10.2.8 VALUE CONFORMITY CASE STATEMENT
UUNNNNN~NN~N~NNNN~~HNNNN#NNNNNH~NnNNN~NNNNNNMnNNNHNN~NNN~NNNNNNNN~

10.2.8 VALUE CONFQRMITY CASE STATEMENT

A value conformity case statement selects for execution one of
Its component statement lists depending on the type of the value
last assigned to a union variable, and permits references to that
value by assigning it to a variableo The union variable may be
of packed union type.

<value conformity case statement> ,:~

;Aa~ :~: <union variable> 2! <value conformity cases>
C~l~~ <statement list> l Ga~~ag

<union variable> ::= <variable>

<value conformity cases> ::=
<a value conformity case> {; <a value conformity case> }

<a value conformity case> :;=
=<value type specifier>= <statement list>

<value type specifier> ::= <variable>
I

Each va'ue type specifier must be a varlab.eof one (and onty
one) of the types of the union variable, and must be of a type
different from all other value type specifiers in the statement
('.e., 'type selection must be unique). If one of the value type
specifiers is of the type of value last assigned to the union
variable, it wil I be assigned that value and the associated
statement list wi' I be executed. Within the statement list, the
value type specifier (i.e., the variable itself) may be used to
access. the value which was that of the union variable.

If none of the value type specifiers matches the type of the
value of the union variable, the statement list following ~!~~ is
executed. If none of the value type specifiers matches the type
of the value of the union variable, and if the ~!~~ part is
omitted, the program is ih error.

The successor of the selected statement list is the successor
of the value conformity case statement.

NCR/CDC PRIVILEGED 10.0

.1.V-J,,1

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06'109

Revision 4 June 09, 1975

10.0 STATEMENTS
10.2.8 VALUE CONFORMITY CASE STATEMENT
~~UNNN~MNN~N~NN~HNN_UNNNNNNN~~NUNNN"NNNN~M~~NH~HNNN~~ ___ ~MMHNNMUNN

~.at b 2 : Q,Q,Q.!g.ao., i 2 : lU!£9j~L" r 3, r 4 : t~.al,

mix • YU1QU (lui~rret' t~sl' QQ.gl~~u)
•
• · ; mix l:a <r3 ? 24(1213) 1 r5 ; "mi~ assumes a real value"
•
•
• . - . . - .

=b2=
:11;2'"
sr4'"

mix Qf. IIvalue conFormity case lt

stb := sta ; k: e k + 1 ;
i 2 ::: I 2 + 2 ; b 2 :::1 .ttll~ ;
r3 := 2 * r4 ; b2 := lLM~ ;

"r4 is assigned value of mix and
this case is chosen"

10.209 POINTER CONFORMITY CASE STATEMENTS

A pointer ~onformity case statement selects for execution one
of its compone~t statement lists depending on the type of the
value last assigned to a union variable, and permits references
to that value by assigning a pointer-to-the-value to a pointer
variable. The union variable may not be of packed union type.

<pointer conformity case statement> ::= ~~~~ :h: <union variable>
21 <pointer conformity cases>[Al~A <statement I ist» Qgifto.~

<union variable> :Im <variable>

(pointer conformity cases> ::a
<a pointer conformity case>{;<a pointer conformity case>}

<a pointer conformity case> ::=
a<pointer type specifier>s <statement list>

<pointer type specifier> 11= <pointer variable>
<pointer variable> ::~ <variable>

Each pointer type specifier must be a pointer variable to one
(and only one) of the types of the union variable, and must be of
a type different from all other type specifiers in the statement
(i.e., type selection must be unique). If one of the pointer
type specifiers is a pointer to the type of value last assigned
to the union variable, it 1'4111 be assigned a pointer to that
value and the associated statement list wi II be executed. ~ithln

NCR/CDC PR!VILEGED 10.0

J.V-.LO

SOFTWARE WRITERQS LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

1 0 ,,0 s rAT HI E NT S
~Oo2~9 POINTER CONFORMITY CASE STATEMENTS
~NU~NNN_NNNNN~_N~N_H~~MMH~NNN_NN~M~HN~NN_M ____ Nn~n~H~NHMNNNNNNNMNN

the statement I ist, the pointer followed by an up arrow may be
used to refer to the value.

If none of the pointer type specifiers matches the type of the
value of the union variable, the statement list follo.ling gl§..§. is
executeda If none of the pointer type specifiers matches the
type of the current value of tile union variable, and if the Ql!!~
part is omitted, the program is In error.

The successor of the selected statement list is the successor
of the pointer conformity case statement.

£t2G .fofmat([!f. u : union (lnta2gt'hQQ!!~a), S : iitiOg{.») ;
YftL pint: AlniQ2frLI pbool : AQQQL~~Q j

~fts.§! :A: u g[lipointer conformity case statement"
~~int~ #itt!QgL~e (pintA, $, 12) ;
=pbool= it pbool A tbQO

£!!S!1.!Hl
e.r.!Hl!;l.O!l

S(1,6) := itrue __ '
~1~!l

5(1;0) := 'false_'
ItnQ9.

Control statements cause the creation or
execution environments, the transfer of control
execution environment or to a different statement
environment, or botho

destruction of
to a different

in the same

<control statement) ;:= <procedure cal I statement>
l<create statement>l<destroy statement>
:<resume statement>:<cycle statement>
:<exlt statement>l<return statement)
I<goto statement>:<empty statement>

10.3&1 PROCEDURE CALL STATEMENT

A procedure call statement causes the creation of an
envIronment for the execution of the specified procedure and
transfers control to th~t procedure. (Cf., chap. 8, Procs,
Coprocs and Labels.) A procedure call statement may never be
used to activate a function.

NCR/CDC PKIVILEGEO 1000

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

lOcO STATHIENTS
\

10&301 PROCEDURE CALL STATEMENT

<procedure call statement> ::u
<procedure reference> <actual parameter fist>

<procedure reference> Z:e <procedure Identifier)
:<pointer to procedure)A

<actual parameter list> :: ..
«actual parameter>{,<actual parameter>})

:<empty>

<actual parameter> ::= <express!on>:<procedure Identifier>
:<labeJ>

The actual parameter I ist must be compatible with the formal
parameter list of the procedureo An actuaf parameter corresponds
to the formal parameter which occupies the same ordinal position
in the formal parameter I istc

A c a I I by value' parameter causes the establ i shment of a
variable local to the ca I led procedure, and the as s i ;J n men t of the
value of the actual parameter to it. The type of the local
variable I s fixed as follows:

1. If the formal parameter is of fixed or variable bound type,
then its Instantaneous type is known at the time of ca" and
becomes the type of the local variable. The actual parameter
may be any expression which could be assigned to a variable
of that type (cfo Assignment statements)o

20 If the formal parameter is of adaptable type, it mu~t be an
adaptable string, array, record, stacK or sequence. The
instantaneous type of the actual parameter must be one of
those .to which tne adaptable type can adapt (cf. Adaptable
Types), and the local variable takes on that type. The
actual assignment of value then folloHs normal assignment
rules.

3. If the formal parameter Is an adaptable pointer, tnen the
actual paramete.r may be any pointer expression which could be
assigned to that adaptable pointer. Both the value and the
instantaneous type of the actual parameter are assigned, thus
fixing the type of the local variable.

4. If the formal parameter is
record, then the actual may
(respectively) variant record
type.

a bound or 'unbound' variant
De an unbound or bound
of the same instantaneous

NCR/CDC PRIVILEGED 10.0

• I .

, · . • · .

• I , ..
• · .

10-20
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

10.0 STATEMENTS
110.301.2 Call by Reference .
HNNN~UNH~~NN~HNNMN~~NNNNHNNN~NNnNNN~NNNNURNNNNN~NN~NNNNNNNNN~HNNNN

A call-by-ref parameter causes the fornal parameter to
designate the actual parameter throughout execution of the
procedure. Assignments to the formal parameter thus cause
changes to the corresponding actual para~etero An actual
parameter corresponding to a call-by~ref formal parameter must be
aligned (cf. Section 4 0 9) to ensure that it can be addressed.

The type designated by the formal parameter
folloloJSI

is fixed as

1. If the formal parameter Is of fixed or variable bound type;
the" i'ts instantaneous type is kno~In.· at the time of call.
The actual parameter must be a variable or substring
reference of the same instantaneous type, and that type Is
des 1.9 nat e d •

2. If the formal parameter is of adaptable type, the actual
parameter must be a variable or substring reference whose
instantaneous type is one of those to which the adaptable
type can adapt (cf. Adaptable Types), and that type is
designatedo

3. If the formal parameter is a varlarit r~cord then the actual
parameter may Q~i be a bound variant record.

~. If the formal parameter is a cal'-by-ref procedure, then the
actual parameter must be a procedure reference to a procedure
with the same ordered list of parameter types and return
type.

5 • 1ft h e for m a I par am e t e r I sac a I I -b Y - ref I abe I ,
actual parameter must be a I abel reference.

10.3.2 CREATE STATEMENT

then the

The create statement causes the creation of a coprocess from
the specified procedure, and establisnes a new environment
(including the actual parameter list, but not Including automatic
variables) for the execution of that procedure as a coprocess.
The identity of the created coprocess is assigned to the
specified pointer to coproco On completion of the create
statement, a resume statement using the pointer to coproc would
~ause execution to be resumed at the constituent declaration !Ist
(if any) of the body of the procedure. At that time, automatic
variables are allocated.

NCR/CDC PRIVILEGED 10.0

• · .

t· •
• · .

• · .

• ..

I. v-c...\.

SOFTWARE WRI1'ER'S LANGUAGE SPECIFICATION
-'5/06/09

Revision 4 June 09,1975

10.0 STATEi'-IENTS
10.3.2 CREATE STATEMENT
~NNNNNN~HNH~NNNNN~NNNHU_NNUN~MNNN~N~NNH~~NNHN~NNNNNNH~NH~NMNHNMNHH

The procedure specified in the create statement is designated
the primary procedure of the coprocess. An exit by means of a
normal exi t, return, or gato statement whi Ie the coprocess is
stili active Is an error (efo Be2 for an Integrated example and
related semanticsc)

It is possible to have several Instances at the same time of a
single procedure in use as a coprac, each instance having been
created with a different pointer to coproc. and potentially with
dlff~ring actual parameterso (See the second example
follo\·dngo)

<create statement> ::2
~tftst~ «pointer to coproc>, <procedure call statement»·

<pointer to coproe> ::~ <variable>

2!.o2£ fixer(r.~t a, b, c :
answer' 1 10 . " .

« " •

~iLiOQ (20) Qf ~Uat'
10) ;

lit flxkl. fixk2, fixk3. fixk4. fixk4 : A~2e[g£ ;
!' poi n t e r toe 0 pro c "

I ••

~L~at~(fixkl,fixer(va, vb, str#rr, response#l» ;
£r.Q.ia1;.1i(fixkZ, fixer(va, vb, var#mm, str#ss; response#Z» ;

• C Q

10.3,,3 DESTROY STATEMENT

The destroy statement causes the destruction of the coprocess
specified by the pointer to coproc and sets the pointer to 011.
Storage al located to the coproeess Is returned, and subsequent
attempts to resume the coproeess or access variables local to it
are In error. A destroy statement designating the coprocess In
whiCh it occurs is an error (cf. 6.2 for an integrated example
and related semantics).

<destroy statement> ::=
gQiitQ~ «pointer to coproc> {,<pointer to coproc>})

<pointer to coproc> 11= <variable>

NCR/CDC PRIVILEGED 10.0

LV-'£: Co

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

10.0 STATEMENTS
10~3e3 DESTROY STATEMENT

~g,s.tJ:.Q.'y' (f i x 1<; 2)

10.304 RESUME STATEMENT

The resume statement causes execution of the current coprocess
to be suspended, and execution to continue at the successor of
the last executed resume statement of the specified coprocess.
If the specified coprocess had Just been created, execution
resumes at Its constituent declaration list (efo 8.2 for an
integrated example and semantics),

A, resume statement designating a destroyed coprocess or the
coprocess in which it occurs is In erroro

<resume statement> ::= t~~lim~ «coproc reference»
<coproc seference) I;: <pointer to coproc)A

f.~!l!!l2!~:

r.g,li1!!Dft Cfixk2A)

10.3.5 CYCLE STATEMENT

The cycle. statement .llows the conditional by-passing of the
remainder of the statement of the constituent stat~ment list of
the designated repetitive statement, thus cycling it to its next
iteration (jf any).

<cycle statement> ::= ~X£12 [<label>J(~u~O <expression»

The label must label a repetitive statement (for, repeat,
while, or loop statement), which statically encompasses the cycle
statement, I.e., the cycle statement must be within the scope of
the 'abel. If no label is specified, then the cycle statement
m us t b e a s tat em e n t. 0 f th e con s tit u e n t s tat e me n t I 1st 0 f a
repetitive statement, and it Is that repetitive statement that is
cycte-d.

The expression following ~h~o must be a boolean expression,
If the value of the expression is true, or the when clause does
not occur, then execution continues at the successor of the last
statement of the constituent statement Jist of the designated
structured statement or procedureo Otherwise, execution
continues at the successor of the cycle statement.

Thus, the cycJe statement has the effect of (potentially)

NCR/CDC PRIVILEGED 10.0

• I .

10-'23
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09p 1975

re-executlng the statement list of a repetitive statement such as
forI repeat, loop, or I·th; Ie.

tQ.f.. I : II 1 in. n QQ
~x~l~ tlb~u x < a(;] ;
x := aU] "balance of loop skipped Hhen x < aEI]"

tQ.LttUQ

1003.6 EXIT STATEMENT

The exit statement causes execution to continue at the
successor of a designated structured statement or procedure when
a condition is true or non-existent.

<exit statement> :;= ~~it. [<'abel or proc Identifier>]
(tlbflD <expression>].

<label or proc Identifier> ::& <Jabel>:<procedure identifier>

If no label or procedure is specified, then execution
at the successor of the immediately containing
statement or procedure.

continues
structured

If a procedure Is designated as the obJact of the g~lt, then
that procedure must statically encompass the AlIt statement
within the same compi latlon unit (see section 8.103 for exits
from functions). If a 'abel is designated as the object of the
cllt, then that label must be for a structured statement which
statically encompasses the §x11 statement within t~e same
compilation unit.

Note that the exit statement with either a label or procedure
designated permits multiple levels of exit with a single
command. This exit can permit recursive nests to be terminated
with the single command by selection of the appropriate label or
procedure identifier.

t~e~gt ~Ilt ~h~n key = aCI] ; i Is i + 1 ~ntl! i > n
• • •

L21 x :"1 y {> 27 ; "example of ~KLt. <Iabe'>"
l3: t2L k := 1 12 10000 ~Q

J In k ;
it (i IDQU 2) = 0 Ih~n

b[k] : .. t.al~~

NCR/CDC PRIVILEGED 10.0

1 0-2l~
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

10.0 STATEt-1ENTS
1 0 0 3.6 6 E X ITS TAT E ~1 E N T
NNUU~NNNNHN~NNNNN~~~NN"nNNNNNN~N~NNNnNNN~NNNNNN~NNNNNNNNNN~NNNNNHN

L4:

~!a!l
prime(i, answer) ; "test if prime"
J.Q.Q.e.

it fibonacci(answer) thna
~lil.t L3 IIgoes to L4"

If.~uQ ;
ans~/er := answer - 5 ;
it answer (= 0 thron

!UI.it L 3 "e)(Its it, lQ.Q2' if, tQ.J:"
ltso.Q

1 Q. Q. IHH1.G
11:1102

!Q.c,£iusi ;
"exit causes control to transfer here"
bound ,. j ; .0 ..

10.3.7 ~ETURN STATEMENT

,.

The returh statement· causes the current procedure to return
when the expression is true or non-existent; I.eo, the successor
of a return statement is the successor of the iast statement of
.the constituent statement list of the procedure or function ·n
which it is em~eddedo

<return statement> ::= L~tMtO (tiOgO <expression>]:

10.3.8 GOTO STATEMENT

(goto statement> Sfz gRiD. (~llt]· ('abel reference)

<label reference> ZZa (label) : (pointer to label)A

The goto statement names as .ts successor the labeled
statement designated by the label or by the value of the pointer
to label.

If the label reference's to a label outside the current
block, then the form s2ta gXlt must be used, and the 'abel must
have been declared in a label declaration in the declaration list
of its block; otherwise, the form without ~~il is used.

If the pointer to 'abe' deslg~ates a state~ent in a procedure
that has already been exited, or a statement in a coprocess other

NCR/CDC PRIVILEGED 10.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION
75/06/09

Revision 4 June 09, 1975

10.0 STATE~\ENTS
LO&3.8 GOTD STATEMENT

than the one In which the goto statement occurs, then the goto
statement Is in error.

" * "

ll:

finder (e~f a,b : egAl) ;
" e x a rn pie 0 f Q Q t Q. "d t han d ''I i tho u t ft 1S.1 t. 0 p t ion"

L1, L2, L3 ;

kl, 1<2 : e~.rlJ., k i nb J I nt lQtfl9~!:,;
circle(cuf k2 : L§~l' ~Il kl : t~il) ;

1<2 :n $r.~al(Kint> ;
kl In pj * k2 ;
1f. kl < $tll~l(jint) 1h~n

9.QtQ. !:tAii; L2 "go to L2 outside of procedure circle"
Ifg!).rt ;
k2 l~ k2 + 0.05 ;
119.t 9. L 3 ; "s t a y sin sid e pro c e d u r e c I r c I e 10

circle;

b i fcl ;:: 2 * a +
circle(a, k2) ;

4> • • ; a;:: a + ••• ;

£lfli2. Ll ;
it oeo ;

kl := • • •

IiSQtQ. ~ALt from pro edure circle
comes· to this point"
i ••• If!l!Ht

l3: if k 1 • • •
l?r.Q.~~!lQ finder;

10.3.9 EMPTY STATEMENT

An empty statement denotes no action and consists of no
symbols.

<empty statement) ::=

There are three storage types -- stack, sequence, and heap -­
defined in the language, each with Its own unique management and
access cnaracteristics. A variable of any of these types is a
structure into which other varlaotes may be placed9 referenced,
and deleted under program control according to the discipl ine
impl led by the type of the storage variable. storage management
statements are the means for effecting this control.

NCR/CDC PKIVILEGED lOeO

10-2(,
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 Juno 09, 1915

10.0" STATEMENTS
11 ° 0 4 S TOR AGE MAN A G Hi E NT S T A T.E 11 E NT S
~~MN~~N~HNNN~NNHNN_HHNHN~NNNNNN~NNHNUHHN~HH~NH~NNNNNNNNNNNNN~HNNUN

<storage.management statement> ::~ <push statement>
:<pop statement>
:<next statement>
l<reset statement>
:<allocate statement>
:<frce statement>

Prior to the first allocation into a storage variable~ a r.g~Sl.t.
statement is required for that storage variable.

10.4.1 ALLOCATION DESIGNATOR ,.

An allocation designator specifies the type of the variable to
be managed by the storage management statements. An al location
designator is either:.

a) a pointer variable, in which case a variable of the type
designated by the pointer variable Is specified;

or

b) an a~a~table pointer (or bound variant record pointer)
followed by a txa~ __ tixgt (see below) which specifies the
adaptable bounds or lengths or sizes (or tag fields), in which
case a variable of the resultant fixed type is designat~d and the
adaptable or bound variant record polnte~ Is set to deslgna~e a
variable of that type.

(allocation designator> ::a
(pointer variaole>

:<adaptable pointer variable> : £<adaptable field fixer>
{,<adaptable field fixer>}l

I<polnter to bound variant record variable>
t<tag field fixers>l

(tag field fixers> ::= <scalar expression>
: <constant fixers>C,<scalar expression>]

<constant fixers> ::= <constant scalar expression>
{,<constant scalar expression>}

<adaptable field fixer> ::= <star fixer>
:<starry subrange fixer>
:<len<Jth fixer>
:

<star fixer> ::- <scalar expression>.. <scalar expression>
<starry subrange fixer> ::= <scalar expression>

NCR/CDC PRIVILEGED 10.0

• · ,

• · .

• • • •
• •

10-27
SOFTWARE WRITERoS LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

10.0 STATEI'IENTS
~0.401 ALLDCATION DESIGNATOR
I~NNNUNNN~NN~NNNNNNNNNUUNNUNUNN_NN~HN~NNNH_NNNUNNNN.HN_NNNNNNNNNNNN

<length fixer> ::= <scalar expression>
 ::~ «span> {, (span> }l
(span> ::= (L~~ (positive integer expression> Btl

(type identifier>

1. Star fixers and starry subrange fixers are used in the
fixl~g of adaptable bounds of arrays.

2. Length fixers are used in the fixing of adaptable bounds of
strings or stackso

3. Span fixers are used in the fixing of adaptable bounds of
heaps or sequences.

4. The order, types, and values of adaptable field fixers must
select one of the types to which the associated adaptable
pointer can adapt (cf. Adaptable Types).

5. The order, types, and values of tag field fixers must select
those variants to which the associated bound variant record·
pointer can be bound. All but the last of these tag field
fixers must be constant expressions.

6 • For the b 0 u n d s lis t use din ~, n a I I 0 cat ion· d e $ i 9 nat 0 r J

entries are reqired only for dimensions (or either end of a
dimension) which are adaptable. No place holders or position
markers are required to Indicate values or relative positions
within the entire sequence of the fixed or variabCe bound
Indices involved in the total type definition.

7. Pointers associated with type fixers are set to designate a
variable of' the type fixed by the type fixer (whenever the
statement in which they occur I.s executed). They wi II then
designate a variable of that fixed type until they are either
reset by a subsequent assignment operation or re-flxed by a
type fixer In a subsequent storage management operation.

t~at tipe a ittl~ [1 •• 5, • , v2 •• v3, 21 •• *]:~! tAl! ;
~A~ point : ~tipe , bunch: O§a2 (tft£ 25000 ~t tA~!) ;

"point is an adaptable pointer variable"
•••

~!!~~at~ point: [5 •• 15,24J 1n bunch j

This allocate statement would cause the allocation of an array
of four dlmensicins with components of type [tai, with dimensions:

1 to 5, 5 to 15, v2 to v3, and 21 to 24.

~CR/COC PRIVILEGED 10.0

• · .
• · .

10-26
SOFTWARE WRITER'S LANGUAGE SPECIFICATIO~

15/06/09
Revision 4 June 09, 1975

10.0 STATErlENTS
100401 ALLOCATION DESIGNATOR
NNUNNNNHHNNHH~HNNNNNHH_~~~NNHNNH~HNNHNNUNNNNNNNNNNHNNNNNNNNNNNNNHN

and would set the pointer variable, point, to designate that
arrayo (The values of v2 and v3 wi I I have been established on
entry to the block containing the above declarations.)

A subsequent statement of the form:

il!2Gitt point: (r •• s, tJ In b~nch ;

would allocate an array with dimensions

1 to 5, r to s, v2 to v3, and 21 to t'

and would reset the pointer variable, point, to designate the new
array. The second and fourth dimensions will be determined by
the values of r,s, and t when the statement Is executed.

1004~2 ~USH STATEMENT

The push statement causes the al location of space for a
Variable on either a user-declared stack or a system-managed
st~ck, and sets an al location desi~nator to designate that
variable (or to the pointer value all if there is insufficient
space for the allocation). The value of the newly allocated
variable (or of any component thereof, in the case of structured
variables) remains undefined until the SUbSeqUent assignment of a
value to the variable or to its components.

The first e~~h statement for any user~declared stack must be
preceeded by a [~~Ai statement for the stack, or the program wi I a
be in error. (SUCh a [~~~1 statement is neither requ~red nor
possible by the user for the 'System Stack').

(push statement>

(stack variable>

, : a

• •
: : I:

ey.s.!l (pointer variable> 20.' (stack, variable>
eY~h (allocation designator> .

<variable>

The object type (the type pointed-to) of the pointer variable
must De the same as the stack's component type. Space for a
variable of that type is allocated atop tne specified stack, and
the pointer variable Is set to designate the newly allocated
variable (or to the value 011 if there Is insufficient space)o
The pointer variable may then be used to access the newly
allocated variable.

NCR/CDC PRIVILEGED 10.0

• · .
• · .
• · .

• · .
• · . • · .

10-29
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06·109
Revision 4 June 09, 1975

10.0 STATENENTS
\

~Oo4.201 User-Declared Stack
NNHHNNHH~NH~~NU~M~_NMUNN_NNUNNNNNN~NUNNNNN~#HNNNMNN"NNHHNUNNMNNNNN

~at stk : ~t~~~ [100] Ql lut~g~t,
stl<top : Ala.tg£l~t' "to poin"t to top of stack 'stk' I.

k : InlgHQL Sn 1 ;
ey.lih stktop nn stl< ; "allocate space for new value"
stl<top'" & .. k ; "assign new value"

If a stack Is not specified, space for a variable of the type
determined by the allocation designator is set to designate that
variable (or to the value nll if there is insufficient space). A
variable so al located can not be expl iCitly de-allocated by the
user. Instead, de-allocation occurs automatically on exit from
the block (cf. 7.5) containing the allocating e.Y.!iU statement, at
which time space for the variable is released and Its value
becomes undefined.

xat localarray : h~tta~(*l Q!!n!~g~t ;
eUib locafarray :[20J;

"allocate space for array [20] of integer' on.

system stack, i-th element can be referenced

as localarray"'(j] "

10.4.3 POP STATEMENT

The ege statement causes the de-allocation of the top element
on a specified stack (space for the variable is released and its
value becomes undefined), and a pointer variable is set to
designate the previous Variable on the stack (whiCh becomes the
new top of stack). If no elements remain on the stack,. the
pointer variable is set to the value all.

(pop statement> :13 e2~ (pointer variable> 2U <stack. variable>

The object type of the pointer variable (the type pointed-to)
must be the same as the stack's component type, and the use of a
read-only pointer variable is an error.

NCR/CDC PRIVILEGED 10.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

10.0 STATEMENTS
iOo403 POP STATEMENT

10-30

15/06/09

~NN~~H~~_~~~~NHNNHNM~N~N~~N~~~~~NNUN~NH~NNHW~NNNNNNNNNNNNNN"NNNNNN

~aL intstack I ~ta~~ [100] Qf Iniftg~L'
intstacktop : h!n1Qggt,
j, k ; In.tQ.sQt: ;
L!U.ft.i;. i n t s t a c k ; • o' •

!QL k := 1 19. 90 QQ
eu~b intstacktop gQ infstack ;
intstacl<top'" := 2):. k j "2,4,6, ••• ,180"

L,2£,g!Hi j

!~L k :~ 1 tQ 15 QQ
ana lntstacktop QU lntstack;

tQ.r..~u.Q ;

"seventy-five values now in stack"
j :,:r intstacktop'" ; IIj has value 150 II

10.4.4 NEXT STATEMENT

The next statement sets the allocation designator to designa'e
the current el'ement of the sequence, and causes the next element
to become the current element. After a reset or an al location of
a sequence, the current element is the first element of the
sequence. Note that the ordered set of var1ables comprising a
sequence is determined algorithmically by the sequence of
execution of next statements.

Prior to the first Uftxt statement for any sequence, the
program must execute a L~~~t for that sequence to set it to the
beginning, or the program wil' be in error.

If. the execu~lon of a next statement would calise the' new
'current element to tie outside the bounds of the sequence, then
the allocation designator is set to the value all.

<next statement> :s=
n~~1 <al location designator> In <sequence variable>

<sequence variable> ::- <variable>

n~At Icngth_ptr iu buf j

u~~t stgptr I (l •• length_ptr~] io buf

NCR/CDC PRIVILEGED 10.0

I
I .

10-31
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

10.0 STATEMENTS
lO.4e5 RESET STATEMENT
~NNNNUNM~MNH~NNNH~n~NNNN~HHNNNNN~HNHNNHHNN~~NNNNNNNNNHNNNNMHNNNNNN

10.4.5 RESET STATEMENT

The reset statement causes either positioning in a sequence,
de-al location and positioning in a stack, or en-masse
de-al location of al I variables of a heapo Space for de-allocated
variables is released and their values become undefined.

(reset statement) ::=
Lg~~l <sequence variab'e)C IQ (pointer variable>].
Lg~~1 (stack variable> CtQ (pointer variable>]
La&!i <heap variab'e) .

~.tolog: a tg~at
allocate statement for
to reset the stack,
otherwise, the program

statement Is required prior to the first
any user-defined stack, sequence, or heap
sequence, or heap to an 'empty' status;

is in error.

The reset sequence statement causes positioning in a
sequenceo The current element of the sequence becomes either the
first element or the element specified by the pointer variabt~.

The use of a pointer variable whose value had not been set by a
next statment for the same sequence, or whose value is 011, is an
error.

t~~~t but 12 length_ptr

100405.2 B~~~t_Sta£~

The reset staCk statement causes de-allocation and positioning
In a stack. If a pointer variable is not specified, all elements
of the stack are de-al located. If a pointer variable is
specified, its object type (the type pointed-to) must be the same
as the stack's component type, and the operation is as follows:
if the pointer variable does not designate the top of the
specified stack, then the top element is de-a' located and the
process continues untl I the pointer variable designates the top
element. The use of a pointer variable whose value had not been
set by a push or pop operation on the specified stack, or whose
value is ull, Is an error.

NCR/CDC PRIVILEGED 10eO

I . ..

10-32
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 Juna 09, 1975

The reset heap ~tatement causes all elements currently
allocated (cf. 10.4c6l In the specified heap to be freed (cf.
10.4.7) en-masse.

10.4.6 ALLOCATE STATEMENT

The al locate statement causes the allocation of a variable of
the specified type In the specified heap and sets the allocation
designator to designate that variable .or to the va.ue nIL if
there Is insufficient space for the allocation. If a heap
variable is not specified, the allocation takes place out of the
universal (system defined) heap.

Note that the first ~!lQ~~t~ statement for any heap must be
preceeded by the execution of a ~lllt statement for that heap, or
the program wi II be in error (cf. 10.405).

<allocate statement> ::=
i!lQ~atl <allocation designator> ~ 10 <heap variable>]·

<heap variable> ::- <variable>

a!!nGB1~ my_stack: [50); "allocate space in system he~p"
Al12££tg sym_ptr 10 symbol_table

10.4.7 FREE STATEMENT

The free statement causes the deletion of a specified variable
from aheaPI making Its storage available for subsequent allocate
statements.

A pointer variable specifies the variable to be freed. If the
pointer variable was not set as a result of a previous allocate
statement for the same heap, the effect is undefined. Execution
of the free statement sets the pointer variable to the va1ue
011. Use of a pointer variable with a value of nl1 to attempt
data access is an error.

NCR/CDC PRIVILEGED 10.0

SOFTWARE WRITER'S LANGUAGE SPECIFICATION

Revision 4 June 09, 1975

10.0 STATEMENTS
100407 FREE STATEMENT

75/06/09

~NnMMn~~~~_~M"~N~~~~N.NNN~N~~NUN~_UN~NNNN~N_NNNNNUNN~~~UUUNN~UUMM~

<free statement> ~:=

tLt~ <pointer variable>Clu <heap varlable>l

J;lUl!lH?l~a =

tLft~ sym_ptr 1u symbol_table
ftg,~ my_stack

Four file types are accommodated:

Llgl~1. __ tll.1 consist· of a sequence of entitles called 11onso
System-defined mappings between lines and ~tLIUg~_~f_~haL exist;
these may differ depending on the source·or destination device of
the fine-so

fLlnt_!11~~ are special cases of legible files that permit the
user to control output formatting through the use of pagination~
spaolng and titling procedures (permitted on print fi les only)p
rather than through the use of embedded control characterso The
user should no~ directly. embed such contrbJ characters In d~tz
des tin e d r 0 r p r· I n t f i I e s •

Rln~L~ __ fl!~~ consist of a linear· sequence of SWL varlableso
These variables are not self-identifying, ~o that results of a
read operation are guaranteed If and only if the sequence of
types read is the same as the sequence writteno

nlL~~t_!l!gli are special cases of binary files that also permit
the retrieval (and rewriting) of variables 'directly' through the
use of a 'kiy'. Results of such a read (or rewrite) oper~tion
are guaranteed if and only If the obvious (but tediously
described) type matching holds.

Files are accessed through tl!~_~~tl~Ql~~ (cf. 6.1), which
are associated with a file by an expl icit Q2~U procedure and
d e-a s soc i ate d fro m a f i I e by an ex p I I cit £.l~!i.~ pro c e d u reo Fit e
variables take on as values an undefined record structure whose
component vaJues specify the kind and current state of the
associated file. A file spec (cfo 6.7.1) Is used to specify
'Initial' values consisting of the actual name of the file and
certain other fi Ie attributes.

~~Lulug: A file-variaole may be assigned to another
fEle-variable of the same type (and only the same type). If this
occurs, and the program attempts use of both fi'e-variables to
manipulate the same file in an interchangable (intermixed)

NCRICDC PRIVILEGED 10.0

10-34
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

15/06/09
Revision 4 June 09, 1975

10.0 STATEMENTS
\

10.' INPUT-OUTPUT STATEMENTS

ITI an n e r, 0 per at 10 n s don (~ v i a 0 n e 0 f the f I I e va ria b I e s w I I I not be
reflected in the otherp and serious errors can occur. (Note that
the passing of a fi Ie variable by value to a procedure can create
analogous errors If dual file variable usage is attempted for a
single file.)

Input-output statements are used to associate and de-associate
file variables and actual filasJ' to position files, to transmit
information to and from files, and to format ~tlQt fi les.

<Input output statements> ::= (open statement>

10.5.1 OPEN STATEMENT

(close statement>
<positioning statements>
<read-write statements>
(format control statements>

An actual fi Ie
with a file variableo
statement.

is inaccessible untif It has been associated
This Is accomplished through an open

<open statement> ::= ~Qefta «file variable> [, <file spec>])

The open. statement can specify or respecify file attributes
(i n c Iud i n 9 the act u a I file n a me) ass 0 c· i ate d wit h the f i I e
variable to be used for accessing the file; however, the fi Ie
type can not be respecified.

It is an error to open a file which is already opened.

To be provided.

10.5.2 CLOSE STATEMENT

The close statement prevents further access to the actual. fi Ie
until a subsequent open of that fi Ie is executed.

<close statement> ::= ~S!~S~«file variable»

NCR/COC PRIVILEGED 10.0

• · .

• •
• · .
• · .

10-35
SOFTWARE WRITER'S LANGUAGE SPECIFICA~ION

75/06/09
Revision 4 June 09, 1975

~,O • 0 S TAr E 11 E N T S
10.5.3 PUSITIONING STATEMENTS
NNNnUNNnNN~NN~HNNNMNN~NHNUH~N~~NN~~HNNNNNNNNNNNNNNNNNNNNNNNNNNNNN~

10.5.3 POSITIONING STATEMENTS

Positioning statements per~lt an actual f"e to be positioned
at Its beginning (through a #flt~t statement), at its end
(through a #la~t statement), or at some position specified by a
key associated with a direct file (through a c.£:i.~t statemenU •

. <positioning statements> ::=
#f.l.c.s.t «file variable»
it-1iA~.t.. «file variable»
#&g~Qt«direct f. Ie variable>,<key value»

< d I, r e c t f i I e v a ria b Ie> :::s: < f I 'e v a ria b Ie>

<key value> ::= <integer expression>

10.5.4 READ-WRITE STATEMENTS

<read-wrlt~ statements> :l~

<write line statement>
:<wrlte partial 'ine statement>
:<write binary statement>
I<wrlte sequential statement>
:<write direct statement>

:<read legible statement)
:<read partial legible statement)
:<read binary statement)
:<read sequential statement>
:<read direct statement>

These statements cause the conversion of value(s) into string
form and their transmission as a 'ine or' as part of a line.

10.5.4.1.1 WRITE LINE STATEMENT

Tne write line statement causes the conversion of a value or a
sequence of values into string form, according to specified
formats for each of the values, and the transmission of those
concatenated strings to the specified legible or print fi fe 11 __ a
110ft- The formatting information is contained within the write
I ine statement itself, or is the system-default standard (cf.

NCR/CDC PRIVILEGED 10.0

, · . I · , I · ,

• •

10-36
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

1 a 0 a S TAT E ~t E N T S
LO.504.1.1 WRITE LINE STATEMENT
YNNNNNUNNNNNNNNNNHNNNNNNNNNM~_NNU~~.NNNN~~N~NNN~MUNNNUNN~NN~~NNM~N

<\uite line statement) :;'" ttl?ll.t. «file variable),
<put element> {)(put element>})

10.50401 0 2 WRITE PARTIAL LINE STATEMENT

The write partial line statement causes the conversion of a
value or a sequence of values into string formp according to
specified formats for each of the values, and the transmIssion of
those concatenated strings a~_ft_l?a[t_rrf_a_l!Q~ to the specified
legible or print fj leo The formatting information is contained
within the write partial tine statement itself, or is pre-defined
(cf" 10.5,,402).

Successive write partial I ine statements will concatenate
(left to right) the strings from each succesive write partia'
I ine statement into the same' ina of the specified legible or
print file until the boolean expression, which Indicates the
'final part of the Iine o is .t.r.!U~o The write partial line
statement execution for which the boolean expression is ttyg wi I I
cause both the transmisSion of the values (put elements) of that
statement and the I ine to be tcompletedfo

The program '\>4/11 be In error if a tfllU.t.£.sr.t for a file with the
<boo lean expr ess i on> val ue .tal~g I s fa I IOloJed in execut i on (for
the same fi Ie) by a #ay.!;.. ffaRt, or a #gatear.t Instead of a
further #eUiI?Br.t. The final #eut£§r.t for the record must have a
<boolean expression> value of .t.r.Y~ or the program is In error.

<write partial line statement) ::= #l?Y.tflill:.t «file variable> ,
<boolean expression>,(put element> { ,<put element)})

Values to be output by write line and write partial line
statements, rules for their conversion into strings of
characters, and the sizes and formats of the receiving fields for
such strings are specified by ~Yl_~l~m~Qt~.

<put element> ::3 <scalar element>
<string element>
<real element>
<pointer element>

<scalar element> ::3
(scalar expressjon)[<scalar field specifier)]

<scalar field specifier> II. (I<field length») [:(radix spec»)

NCR/CDC PRIVILEGED 10.0

• I ,

10-3-'
SOFTWARE WRITER'S LANGUAGE SPECIFICATIO~

75/06/09
Revision 4 June 09, 1975

\~ 0 0 0 S TAT E MEN T S

~2!~:~:~N~~!N~!~~~~!~N~UN~NNNUN~~MNNUNMM~HHMnNuHHNHNNUNHHHNNNNNN~N
, ,

(field length> ::=' (po~it~ve' fnteger expression>

(radix spec> 1:= ,«radix expression»

<radix expression> ::= ("an expression whose value
is a valid radix, cfe 30204">

(string element> ::=
(string expression> [(string fi~ld spe~i,fier>]:

<string field specifier> :1:

(empty>
:(radlx spec>
=(fleld length> [:(radlx spec)]
:(field length> z(positions/char> [:<radix spec>],
r*:(positions/char) [:(radix spec>]

<positi~ns/char> ::a <positive ioteger expression>

<real element> ::= (real expression> C<real specifier>]

(real specifier 113 I<radix spec> 1 <empty>

: :(fleld length> (:(right of,point>].

<right of point> 11= <non-negative integer'expression>

I n g e n e r a.l, val u e ssp e c i fie d t 0 b e inn u mer I c for mar e w r Itt e n
right Justified into the specified field, with blank left fi II or
truncation on the left. Values specified to be in string or
character (alphabetic) form are written left justified into the
specified fleld~ with blank rignt fi II or truncation on the
right. .

lOc5.4.2.1CHARACTER CLASS OUTPUT

If the put element is :

(a) a string without radix spec

(b) a character without radix spec

(c) a boolean without radix spec

(d) an ordinal without radix spec

Then

(1) Tne string value of tne expression is placed. left

NCR/CDC PRIVILEGED 1000

I, · ,

• · ,
• •

• •

• · ,
• · ,

• · .
• I .

10-38
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

\0 0 0 STATEMENTS
LO~5.462.1 CHARACTER CLASS OUTPUT
~UHNNNN~NNNNNN~NNNNNNUNNNN_N~NUU~NU~N_NNNN~~N~N~~N~NN~N~~~~~~NN~NN

justified into the field length specified o For strings and
characters, the character from the ASCII character set is
suppl ied. For booleans the string Vitu~1 or 'f~l~Qf is used.
For ordinals a string identical to the ordinal constant
Identifier corresponding to the ordinal value is usedo

(2) If no field length is specified, then a field Is furnished
equal in length to the value of the stringo

(3) If the length of the string value is greater or less than
the specified field length, then right truncation or right blank
fil I respectively wi I' occuro

100504.252 NON-NUMERIC SCALAR WITH RADIX

If the put element Is:

(a~ a char~cter expression

(0) a boolean expression

(c) an ordinal expression

then:

(1) The $lUl!g~L function is applied to the value of the
express~on to obtain an integer~

(2) The value of the integer
specified, is right-justified in the
with blank fill to the left.

is ~xpressed in the radix
field length specified,

.
(3) If no field length is speclfied$ then for the put elements

and radices as I isted below, the field length default values are:

~lftID!ul

character
character
character

boolean
boolean
boolean

ordinal
ordinal
ordinal

Lartl~

decimal
octal
hexadecimal

decimal
octal
hexadecimal

decimal
octal
hexadecimal

!!U~lh

4
4
3

1
1
1

(as for integer elements)
(as for integer elements)
(as for integer elements)

(4) If the field length is specified but is shorter than the

~CR/CDC PRIVILEGED 10.0

• I

I · ..

I
~ .

• Q'

: .

10-39
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1915

'.0.0 STATEMENTS
l 0 • 5 • l, c 2 • 2 NO 14 - N U t'l E RIC seA l A R ~H T H R A D I X

representation of the value then left truncation can occur~

10.5.4.203 STRING ELEMENT WITH RADIX

Each Character of the string Is Individually converted to an
Integer by the $lnt~ggt fUnction, and then placed right justified
Into a field of size positions/char. If positions/char is
omitted, then the default sizes fpr each radix are the same as
for a character put-element (decimal - (tl octal - 4, hexadecimal

3t. These representations are placed left justified into the
specified field lengtn, or if no field length is furnished, then
a field Is supplied equal in length to positions/char times the
number of characters in the string. Truncation or blank fil I on
the right. may occur, when the field length is specified o

(Truncation or blank fl I I may also occur at the. character
representation level when positions/char is specified with a
radix spec also present.)

10.5.4.2.4 REAL ELEMENT

If only a radix spec is given as the rea! specifier, than an
implementation defined form of the internal representation wi II
be produced in the specified radix.

If only a field length is given as the real specifier, or no
speclfi~r Is present, then the value of the real expression is
Converted to a standard decimal floating point form, right
justified in a field of the length specified, with blank left
flil or left truncation if the length specified is longer or
shorter than the required space for the standard representation.

If the real specifier is of the form (field length>(r~ght of
point>, then the real expression value is converted to a decimal
representation of its value which has (rignt of point) digits to
the right of the decimal· point and an explicit decimal point
between the ·Integer and non-Integer parts of the number. If the
value is negative, then a minus sign will be placed to the left
of the most significant digit to the left of the decimal point.

Any excess positions on the left will be blank filled. If
there are no significant digits to the left of the decimal point,
then one zero will be placed to the left of the point, with left
fill of blanks (and optionally the minus sign preceding the zero,
when the value is negative).

Field overflow can cause loss of the minus sign (if present),
of high or·der digits, and of the decimal point, by truncation on
the left.

NCR/CDC PRIVILEGED 10.0

, · .

• · .

• ..
• · .

10-40
SOFTWARE wRITERoS LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09, 1975

1005040205 INTEGER ELEMENT

If a scalar field specifier Is given which is only a field
length, then the value of the integer expression is converted to
a standard decimal radix notation and placed right justified Into
the. field, with blank fill to the lefte If the field length
given is not long enough to contain all the digits of the value
of the Integer expression. then left truncation of tne high order
integer digits occurs. If the integer expression is negative in
value, then a minus sign precedes the leftmost significant digit
within the field (out might be a part of left truncation if the
value is too large)o

If the scalar fie{d specifier is omitted (empty), then the
same process is performed as described in the preceding
paragraph, but tne value is placed right justified into a field
of 'standard length' (which Is macnine and implementation
dependent) witn blanK fi II to the lefte

If a scalar field specifier is fur~ished which contains a
radix spec, then the integer expression value is converted to a
standard notation in the radix Indlcatedp and placed right
justified into the field of specified length c If the field
length is omitted. then plecement is into a 'standard lengt~Q

field -- which is both machine and implementation dependent and
radix dependent, with blank fill to the left. Again, left
truncation can occurc

10e504o2ob SCALAR SUBRANGE ELEMENT

A put element which is a scalar subrange type is handled
exactly as the scalar range of which it Is a subrangeo

1005.4.207 POINTER ELEMENT

A pointer element may be either a
pointer. If a radix spec is included in
then an implementation dependent form
written In the specified radix system.

pointer or a relative
the pointer element,
of the pointer wi I. be

If the radix spec is omitted, then the implementation
dependent form of the pointer wi II be wrltten.n the radix 10
system. The form written wi II contain a system-standard
Indication if the pointer is a relative pointer (or wi' I have a
differing standard format tnan a non-relative pointer).

In either case, the field size for pointer representations
will be standard (but wi I I be system-dependentlo

NCR/CDC PRIVILEGED 10.0

t . .

, . .

10-41
SOFTWARE WRITER'S LANGUAGE SPECIFICATION

75/06/09
Revision 4 June 09~ 1975

10.0 STATEMENTS
~Oo504.3 Write Binary statement
~~~~~N.~~.MM~.~~~NU~NNUNNNHNNNN~NNNNNN~UU~~H~N~~N~~~NN~NNNNNNNNNNN 

A write binary statement causes the value of an expression to 
be" transmitted to the specified binary file. 

(write binary statement) t'~ #eyt «file variable),(expression» 

A write sequential statement causes the value of an expression 
to be transmitted to the specified direct fi leo It also assigns 
a value ·to the key variable specifying the position on the file 
of the expression written. 

(write sequential statement) :1= 'aut «fl Ie variable) , 
(key variable)g(expression» 

(key variable) ::z (Integer variahle) 

A write direct statement causes the value of an expression to 
be transmitted to the specified direct file at the location 
specified by the key valueo The write direct statement does not 
modify the current fi Ie position. 

(write direct statement) It= #eytgit «file variable) , 
(key value) ,(expression» 

(key value) ::= (integer expression) 

NCR/CDC PRIVILEGED 10.0 

I . " 



10-42 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

~OoO STATEMENTS 
1005.4.6 Read legible Statem·ent 

The read legible statement, #Slt, causes that portion of the 
next I ine which wi i I fit left justified in the specified string 
variable to be moved. If the I Ina is less than or equal to the 
length of the string variab!e, the boolean valae tcu~ wit I be 
returned in the boolean variableo If the line is greater than 
the length of the <string variable> part of the I ine is returned 
In the <string variable) and the boolean value tn!~Q is returned 
in the <boolean variable)o In both cases, the number of 
characters returned is returned in <no_read). If only a partial 
line was returned, the remainder may be obtained through 
subsequent #g~t~~ri requests. 

An attempt to read beyond the fast line causes the boolean 
variable to be set to t[UQ' <no_read) to be set to zero, and the 
built-in function #~p.f «fi Ie variable» to return the boolean 
value it~~o The string variable is unmodified. 

If a #g~t~aLi statement which returns falia or t~llg into the 
<boolean variable> is sequentially fol lowed by a ftggt statement, 
then any balance of the current record is bypassed and the #2~1 
statement returns the va'ues from the next record of the file. 

<read legible statement) ::~ 

#Q~i«fi Ie variable),<boolean variable),<no_read) , 
<string variable) 

<string variable) ::= <variable> 
<no_read) :;= <integer variable) 

The read partial legible statement causes that portion of the 
next line which wil I fit left justified In the specified string 
variable to be moved. If the line is less than or equa' to the 
length of the string variable, the boolean value ltll~ wi I. be 
returned in the boolean variable. If the line is greater than 
the length of the (string variable> part of the line is returned 
in the <string variable) and the boolean vaiue ta!~l Is return~d 
In the <boolean variable). In both cases, the number of 
characters returned is returned in (no_read). If only a partial 
I ine Has returned, the remainder may be ootained through 
subsequent #g~teatl requests. 

NCR/CDC PRIVILEGED 10.0 

I 
I 

I • • , 



1 O-l~ 3 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

75/06'/09 
Revision 4 June 09~ 1975 

,10 .0 S TAT ENE N T S 
10050407 Read Partial Legible Statement 
NN~nHN~NNNNN~HN~HNHN~/NNNNNH~~~~~N~NNNNNNNU~_NNNNNNNNNNN~NN~~NH~HnN 

An attempt to re~d beyond the last line causes the 
v~riable to be set to iLlig, <no_read> to be set to zerop 
built-win function n~9.f. «file variab'e» to return the 
value tty~. The string variable is unmodified. 

boolean 
and the 
boolean 

The program is in error if a #g~teatt statement which returns 
f.al~~ into the <boolean variable> is sequentially folloHed by a 
leui or a #~y!eatt. If the #ggteatt statement which return~ 
f..n.LEf.. I n tot he < boo I e a n va ria b Ie> iss e que n t i a I I Y foil 0 wed 0 y a # 
gAt statement, then the balance of the current record is bypassed 
and the #gf..t statement returns the values from the next record of 
the file. 

<read partial legible statement> ::= 
ft~~tesLt«fi Ie variable>,<bootean variable>,<no_read> , 

<string variable> ) 

r. £}, IHHl. 1. 
#aAieaLt (source_fi Ie, end_'ine, line_'ength, line_buffer); 
accum_string (IJne_buffer, line_length); 
!.inti! end~1 ine; 

10.5.4.8 &~~g_alnaL~_~tat~m~ul 

The read binary statement causes the transmission of a value 
from a binary file to a variable. If the sequence of types read 
is different from the sequence written, the result is undefined. 
An attempt to read beyond the end of information causes the 
built-in function #ft~f «file variable» to return It~g, and the 
variable is unmodified. 

<read binary statement) ::= #911 «file variable>,<variabl~» 

The read sequential statement causes the transmission of a 
value from a direct fl Ie to a variable. It also assigns a value 
to the key variable specifying a position on the fi Ie of the 
value obtained. An attempt to read beyond the end of information 
causes the bui It-In function #ft~t«flle variable» to return Ityg 
, and the value of the variable is unchanged. 

NCR/CDC PRIVILEGED 10.0 

• I . 



SOFTWARE WRITER'S LANGUAGE SPECIFICATION 
75/06/09 

Revision 4 June 09, 1975 

\10.0 STATH\ENTS 
1005.409 Read Sequential Statement 

<read sequential statement> 11= #nmt (file variable>, 
(key variable> , <variable» 

fX1ime.l.e.: 

The read direct statement causes the transmission of the value 
aSSOCiated with the key from the file to a variable. The type of 
the variable must be the same as the type of the value in the 
write direct statement that associated the value with the keyo 
The curren( file position is unmodified by this statement. 

(read direct statement> ::= 
#sAt~i& «file variable> i <key value> , <variable> ) 

10.5.5 FORMAT CONTROL 

Print files may be formatted into .e~g~~ consisting of a 
specified number of I ineso The number of lines per page 
(pagesize) can be set or reset by the user. lines are numbered 
from one (1) to #aagAI!ZA. The number of the next line to be 
printed is called the £Y&LAnt lluA QYmh~t. The user can 
interrogate .the current line number via the #GYtl!n2 f~nction, 
and can use format control statements to exercise direct control 
over pagination and lineation. 

In addition, whenever the 
would exceed fta2g~~lz~' an 
end-oF-page regimen consists 
below) or the invocation 
a~Q~~Q~~~ (cf. 6.7.1.1). 

number of tines actual ly pr inted 
end-of-page regimen is invoked. The 
of either an ~1~~1 operation (see 
of a user specified ~Uu=~t=£ag~ 

, . 
. '. ". 

NCR/CDC PRIVILEGED 10.0 

t .. 

, 
t, 

. . • 



SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

Revision 4 June 09~ 1975 

10.0 STATE~iENTS 
1005.5 FORMAT CONTROL 

10-45 

75/06/09 

HNHHNN~NNNNNNNNNN~NNNMHN~NHNNNN~~~NNHN~NN~~NNNN~NN~NNNunUNNNNNNNNU 

<format control statement> 1:= <page statement> 
<eject statement> 
<I ine statement> 
<skip statement> 

The page statement invokes the ·end-of-page procedure (cf. 
6.7.1.1) directly; if none has been specified for the file, the 
ft~j~~l procedure is used(see below)o 

<page statement> ::= #~ag~ «print fi Ie variable» 

The eject statement issues a conventional page eject and 
the current line number of the specified file to one (1). 

<eject statement> ::= #~jft£t «print file variable» 

sets 

The line statement spaces a print fi1e forward to a target 
line number on the same page if the target line number lies 
between the current line number and the page size. If the target 
I ine number exceeds the page size, then the current line number 
Is set to (pageslze+l) and the end-oF-page regimen is invol<ed • 

. 
If the target I ine number is 'ess than or equa' to the current 

line number; the current line number is set to (pagesize+l), the 
end-of-page regimen Is invoked, and the current line number is 
tested again: if the target line number lies between the current 
line number and the page size, then the lineation Is carried out; 
otherwise, no further action is taken. 

<line statement> ::= #110ft«print file variaole),<line number» 

<line number> 1:= <positive integer expression) 

The related function #GU&1!U2 (cf. 11.2.20) may be used to 
find the current line numoer for a print file. 

NCR/CDC PRIVILEGED 10.0 

• · . 

• · .. 

• I . 



SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

Revision 4 June 09, 1975 

lO~O STATEMENTS 
10.505.4 Skip statement 

10-46 

75/06/09 

NNN~NNNUNUNNNNMN~NNNnNHMNNHNHNNNNHNNNNN~~NNNNNUNNNNN~~NUNNNNNNNNNu 

The skip statement spaces a print fi Ie forward either one line 
or the specified number of I ineso If the new line number would 
exceed the page size, the current line number is set to 
(pagesize+1) and tne end-of-page regimen is invoked. 

(skip statement) ::~ 

#~~la «print fi Ie variable) [,(number of lines>]) 

(number or I ines> ::~ (positive integer expression> 

NCR/CDC PRIVILEGED 10.0 

, . . 



11-1 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

1.0 STANDARD PROCEDURES AND FUNCTIONS 

Certain standard procedures and functions have been defined 
for the SWL which have been included because of the assumed 
frequency of their use or because they would be difficult or 
impossible to define in the language In a machine-independent 
Hay. 

II.lel UTRANSLATE (S, 0, T) 

This procedure accepts as arguments the string variables S, 0, 
and T, and assigns to 0 the result of converting the elements of 
S according to the 'translation tabl:,· T, by the foilowing 
algorithm: 

it ({l <~ #~llL~tt!~QQtb(s) ) aQ~ 
(#£uti1L!gnulb(s) <= #~tL!QD9tb(D) » tOiD 

t~L i := 1 i~ #~uL~lL!~DQth(s) Q~ 
D( i) : u T( 1 + $ In.t.f.9.f.t.( S (i») 

fULi!Hl 
~!a~ 

"error" 
llftUg 

11.1.2 #STRINGREP (V, 0, We,R]) 

This procedure accepts as arguments: An expression, V, of type 
Integer, real, or boolean; a string variable, D; an integer 
expression, W; and an optional Integer expression, Ro 

The string 0 takes on the string representation of the value 
of V, In the following manner: 

1. Boolean values are converted to one of the strings "true" or 
"false lf • 

z. Integer values are converted to W-dlgit decimal numerals 

NCR/CDC PRIVILEGED 11.0 

• · . 

• · . 
• • 
I · . 
• .' 



11-2 
SOFTWARE WRITERas LANGUAGE SPECIFICATION 

15/06/09 
Revision 4 June 09, 1975 

~l~O STANDARD PROCEDURES AND FUNCTIONS 
11.1.2 #STRINGREP (V, 0, W[,R]) 
UHHNNNNUNNNUNHN~N~NNNNNNHN~NNNNNNN~NNNN~UNNNNNN~NNNN~N~N~~N~NN~~NN 

with leading zeros replaced by blanks, an~ a minus sign 
preceding the most significant digit for negative values. 

3. Real values are converted into a string representation which 
assumes the radix 10, as defined for put elements in 

·10.5.4.2.4. The parameters to the procedure are: 

V is the [Ail number to be converted 

o is the string reference for destination of the value 

W is the field width 

'R Is the optional <right of point> specification. 

Blank fil I and truncation rules are the same as· those given jn 
10.5.4.2.4 for [~B! put elements. 

4. The string resulting from these operations Is left extended, 
if necessary, by blanks to match the length of 0, and then 
assigned to D. 

11.1.3 'SETPAG~SIZE «PRINT FILE VARIABLE>,<NUHBER OF LINES» 

This procedure sets the page size for the specified print fi Ie 
variable to .the value of the integer varia~le, number of lines. 

11.1.4 #SETPAGEPROC «PRINT FILE VARIABLE>,<PROCEDURE REFERENCE» 

This procedure sets the end-of-pag~ prbcedure for· the 
specified print file variable to be the procedure specified. 
This procedure can be invoked by a e~g~ statement (cf. 
10.5.5,,2), and wi II be automatically invoked whenever the current 
line number for the print fite exceeds that fite's specified page 
size. See section 6.7e1.1 for end-of-page procedure 
conveotions. 

The following standard functions return values of the 
specified type. 

NCR/CDC PRIVILEGED 11.0 

• · . 

I · . 
• · -



11-3 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

11~0 STANDARD PROCEDURES AND FUNCTIONS 
11~2,,1 ItA8S(X) 
NNUNHHNNNHNNNNHNNNNNN~NHNNNNNNNNNN~"NNNNNN~UHNNHNHM~HNNN~NNH~NN'~NN 

11~2.1 tlABS(X) 

Computes the absolute value of Xo The type of the expression, 
x, must either be t2ul or lUiSg~L' and the type of the result is 
the ·type of x. 

11,,2 .. 2 ftSIGN(X) 

returns the value 1 jf x > 0, 
the value 0 if x = 0, 

or the value -1 if x < o. 

The type of the expression, x, must be lni~~~L or C~gl' and the 
result is the same type as K. 

11.2.3 #SUCC(X) 

The type of the expression, x, must be scalar or subrange, and 
·the result is the successor value of x (if it exists). 

11.2.4 #PRED(X) 

The type of the expression, x, must be scalar or subrange, and 
the result is the predecessor value of x (if it exists). 

1102.5 $INTEGER(X) 

Returns the integer representation of the value x~ The type 
of the expression, x, must be gtQ1U~1' ~h2t' QQ2!~QQ' or L~E!. 
If x is Lgal then the value returned is an integer y of the same 
sign as x, such that 

absCx)-l < abs(y) ~ abs(x). 

If x Is ~QQ1~iQ then zero (0) is returned for tal~~ and one 
(l) for itllflo If x Is ~nnt' the value returned is the ordinal 
number, In the ASCII collating sequence, of x. If x Is an 
ordinal constant, the value returned is the ordinal number of 
that constant. 

NCR/CDC PRIVILEGED 11.0 



SOFTWARE WRITERIS LANGUAGE SPECIFICATION 

Revision 4 June 09, 1975 

4100 STANDARD PROCEDURES AND FUNCTIONS 
11.2.6 $REAL{X) 

11-4 

75/06/09 

'NNUNNN~~n~~NNN~H~"NN~~~~UNHNN~NUNH~~NNHNNNN~~NNNNNNN~NHNNNNUNUN_NN 

11.2.6 $REAl(X) 

Returns a value of type real that approxJmates the value of 
the integer expression, x. Note that $integer($real(x» does not 
necessarily equal x. 

11.2.7 $CHAR(X) 

x must be an Integer expression yielding a value 0 ~ x ~. 255. 
The value returned is the character whose ordinal number in the 
ASCII coil ating sequence Is x. 

11.2.8 SSTRING(L,Sl,FIlLl) 

l Is an integer expression, s is a string expression, and fil' 
is a character expression. 

Ret urn s a s t r i n 9 val u e 0 f . . len 9 t h , fro III the' s t ring " r 
substring s byz 

(a) tr~ncating s on the right if length of s.> I, or 

(b) appendi.ng characters on the right if length.of s < I. The 
characters appended are blanks, or the character value of 
fill when it is specified •. 

11.2.9 #STRLENGTH(X) 

Returns the length of the string x. For a fixed string this 
is the allocated lengt~, and x may be either a string variable or 
a string type identifier. For a varying string this is the 
maxlength and x may be either a strIng varIable or a string 
type. 

11.2.10 #lOWERBDUND(ARRAY, N) 

where 
of the 

The 
type 

Returns the value of the n-th lower bound of the array, 
the leftmost subscript position is numbered 10 The type 
result is the Index type of that .dlmension of the array. 
argument (array) may be either a array variable or an array 
Identifier. N must be a <constant tnteger expression>. 

NCR/CDC PRIVILEGED 11.0 

• · . • • 



11-5 
SOFTWARE WRITERoS LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

11.0 STANDARD PROCEDURES AND FUNCTIONS 
11.2.11 HUPPERBOUND(ARRAY, N) 
~H~HUHN~NNHNNN~HN~NN~N~NNN~NNNNNNNNNNNU~U~M~nNHHUN~MNHHNNNNN~NNHroM 

11.2.11 HUPPERBOUND(ARRAY, N) 

where 
of the 

The 

Returns the value of the n-th upper bound of the array, 
the leftmost subscript position is numbered l~ The type 
res~lt is the index type of that dimension of the arrayo 
argument (array) may be either an array variable Of an array 
ldentifiere N must be a <constant Integer expression)o 

type 

11.2.12 #EOF(FIlE) 

Returns .the value .t.r.!H! if the end-of-fi Ie condition exists for· 
the specified file. Returns fgls.~ otherwise. The argument must 
be a file variable .. 

The 'current S~Jl end-of-flle remains operating system 
independent, and is defined by the last sequential write of a 
legible, binary, or direct fileo Thus, the £iQ§ft statement for a 
file being written in a sequential manner Hill impliCitly also 
~Irite an end-of-file indication (which 1'1111 be system dependent 
In form, but detected by ffgQf function on a system-independent 
basis)o 

Note, that a ~Jrfte direct statement (ff:e,kltdlt) is essentially 
used to modify and update an existing fllee Thus, writes done 
with #eyt~l~ do not change the iocatlon which will be 
'end-of-file: as caused by writing in sequential manner and then 
closing tne file. 

11.2.13 #COPROCID 

Returns the value of type pointer to ~QetQG of the coprocess 
In which It is executed. (See 8.2 for an example in context.) 

11.2.14 #REl(POINTER(,PARENTALJ) 

Produces a relative pointer value from a pointer variable and 
parental variable. If the parental variable is not supplied, the 
default heap is used. The relative pointer's object type is the 
object type of the pointer variable, and its parental type is 
that of the parental variable. The result is undefined if the 
pointer does not designate an element of the parental variable. 
(See also example under 11.2.15.) 

NCR/CDC PRIVILEGED 11.0 

• ! . 
I • C) 
i 



11-6 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

11.0 STANDARD PROCEDURES AND FUNCTIONS 
11~2015 ffPTR(RELATIVE_POINTER(,PA~ENTAL]) 
~M~NU~NHUN~NN~N~~~~NNNN~_MN_~~~N~~~~NHN~~NHN~NH~NNNNHHNNHHNHNNNHNN 

1102.15 #PTR(RELATIVE_POINTER[,PARENTAL1) 

Is used to convert a relative pointer to a pointer, and is 
required when using a relative pointer. It returns a pointer to 
the "same type as the object type of the retative pointerD If the 
parental variable is not specified then the default heap is 
used. If the parental type associated with the relative pointer 
is not equivalent to the type of the parental variable, an error 
results" 

1x~~ myheap s bBA2 (L~a 500 2t 101!Q~t) ; 
~~L rptrl, rptr2, rptr3 : L~! (myheap) AIDi~g~t, 

h Z myheap, 
i p t Z A lut~g!u., 
a~ b, x : lQiQg~t, 
cptr, dptr : (myheap) Ala!agAt ; 

oe. ; t.!l..li~.t. h ; 
X I. a + 3 ; .... 
b :. x + 2 * a - 7 ; 
a.!!g,~gt~ dptr 10. h ; "get space in heap h" 
dptr"':= b! "put value in allocated variable" 
~!l~£ilt~ cptr 1n h ; "get another space in heap hit 
cptrA:= x; Ifput value in allocated variable" 
rptrl := #t~l(dptr, h) ; 
rptr2 , .. #!.!l.l(cptr, h) ; "record current relative position of 

cptr in hit 
• e • 

A!!Q'At~ cptr 1n h J "get new variable in heap" 
• • • j 

tt~~ cptr 10. h ; "free space in heap" 
cptr := ~2tr.(rptr2, h) ; "point cptr back to another 

remembered variable in heap h" 

11.2.16 #UPPERVALUE(X) 

Accepts as argument 
variable of type scalar. 
which an argument of 
result is the type of x. 

either a scalar type identifier or a 
It returns the largest possible value 

that type can take on. The type of the 

NCR/Cue PRIVILEGED 11.0 



11-7 
SOFTWARE WRITER&S LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

11 0 0 STANDARD PROCEDURES AND FUNCTIONS 
11.2.17 ULOWERVALUE(X) 
HNNN~q~N~NNMNN~NHNNNnN~.NN~MUNNNNN~NNU~NNN~N~NNNMNnNHNNNNNHNNNNNHN 

11.2017 #LOWERVALUE(X) 

Accepts as argument either a scalar type identifier or a 
variable of type scalaro It returns the smallest possible value 
whtcih an argument of that type can take· on. The type of the 
res~lt is the type of Xo 

11.2e18 UPREVIOUS($pN) 

Accepts as arguments a stack variable; S, and 
N, which must yield a non-negative integer valueo 
returns a pointer value which designates that 
specified stack which Hould be the topmost elenent 
be executed on the specified stack. 

1102019 ffCURPAGESIZE «PRINT FILE VARIABLE» 

an expression; 
The function 

element of the 
vlere I:i pops to 

Returns the print f i lee s page size a sa n1 n te 9 e r • 

11.2e20 #CURLINO «PRINT FILE VARIABLE» 

Returns the print filets current line number as an integer. 

11.2,21 #CURSTRLENGTH (X) 

Returns the current length (as an integer) of a string, which 
is defined as follows: the current length of a varying string is 
defined to be N whenever its value is a fixed string of length N 
and Is defined to be zero whenever its value is the null string; 
the current length of a fixed string is equal to Its lengthp 

11.2.22 $BOOLEAN (X) 

Returns the value fsl~~ if x ffiQ9 2 B 0 (where x Is always a 
non-negative integer value). If x m~d 2 D 1 then the function 
returns the value ttU~o 

NCR/CDC PRIVILEGED 11.0 



11-8 
SOFTWARE WRITERIS LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

11.0 STANDARD PROCEDURES AND FUNCTIONS 
11~3 REPRESENTATION DEPENDENT 

11 0 3.1 #lOC«VARIABLE» 

Returns a pointer to the argument which 
assigned or compared to any direct pointer type 
relative pointer type)o 

110302 #SrZE{ARGUMENT) 

can bed ire c U y 
(but not to a 

Returns the number of cells (cfo Section 13.1.1, Cetl Type) 
required to contain a variable of the same type as the argument. 
The argument may be either a varJable or a type identifier. 

Returns an integer value n which is the offset of the variable 
u In number of cells from an integral multiple of base cel I 
boundary. 0 ~ n ( baseo 

11.304 #MALIGNMENT(ARGUMENT, OFFSET, BASE) 

Assigns the'offset and base alignment required for a variable 
of the same type as its first argument to its second and third 
arguments respectively. The first argument may be either a 
variable or a type identifier. 

Since many aspects of 110 are system dependent, the language 
Includes facilities for checking and creating system-dependent 
file-structure delimiters.· The spelling of such facilities 
indicates that dependence; and the identifiers for Cyber-related 
facilities are distinguished by the prefix 1#6'. The Cyber 
related facilities are the creation procedures #Qrl~~t and #tl~Qt, 

and the checking functions #~~Qt, #b~nf' and #glul. 

NCR/CDC PRIVILEGED 11.0 

I 
I . 



11-9 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

11eO STANDARD PROCEDURES AND FUNCTIONS 
11.4.1 #6WEDR «FILE VARIAULE» 
NNNN~N~NUN~~N~~NNNHNNN~NHHHNN~NNNNNNNNN~NNN"NNNNNNNNNHNNHNUNNNNNNN 

11.4.1 #6WEOR «FILE VARIABLE» 

The #.b~S~L standard procedure writes an 'end-of-record' as 
denoted in the CYBER systemo The Indication of reaching that 
jndi'cator when reading a fi Ie wi II be detected by use of the 
#b~gt function (cfo 11.4.3). 

11.4.2 u6WEOF «FILE VARIABLE» 

. The #Q~e~t standard procedure writes an 'end-of-file Q as 
denoted In ,the CYaER system. The indication of reaching that 
I n die at 0 r vI hen rea din 9 a f j lew i I I bed etc ct e d by use 0 f the 
#b~~c function (cfo 11.4.4). 

11.4.3 U6EOR «FILE VARIABLE» 

The #Qe~t standard function returns the boolean value tLll~ if 
the file (in CYBER) Is at an 'end-of-record i as a result of the 
last read command which contained valid data. (i.e., the test 
for an 'end-of-record' condition should be made prior to 
per for m.1 n gar e ad for the fur the r d a tao f the r e cor do) 
Otherwise, the function wi If return the value t~l~~. 

11.4.4 #6EDF «FILE VARIABLE» 

, 
The '#Q~2t standard function returns the boolean value !t~~ if 

the file (in CVBER) is at an 'end-of-file' as a result of the 
last read command which returned valid data of the. file; 
otherwise it returns the value fAl~2o (i.e., the test for an 
'end-or-fi Ie' condition should be made prior to performing a read 
for fur the r' d a tao f the f I Ie. ) 

11.4.5 #6EOI «FILE VARIABLE» 

The #b~21 standard function returns the boolean value ttu~ (in 
CYBER) if the last read command gjvinQ val id data also returned 
an 'end-of-information' indicator; otherwise it returns the value 
f..alSfi. 

NCR/CDC PRIVILEGED 11.0 

• · . 

• · . 

• . . 

I 
r 



12-1 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 197~ 

12.0 COMPILE-TIME FACILITIES 

Compile-time facilities are eS,sentially e)(tra-'ingulstlc in 
nature in that they are used to construct the program to' be 
compiled rather than having a meaning in the program itselfo 

The fac'lities consist of the compile-time variable 
declarationsp compi Ie-time statements, ,and macro facilities. 
They generally apply from the point of definition until the end 
of the compilation unit, or until a complie-tllle redefinition of 
the same identificfo The result of processing the text 
containing these fac! lities must be a properly block-structured 
compilation unito 

12.1.1 COMPILE-TIME VARIABLES 

Compile-t,ime variables of type Integer and boolean may be 
declared by means of the compile-time declaration statement. 

(compile-time declaration) ::3? XiL (compile-time var spec) 
{, (c amp i I e - t'l In e - v a r s pee> } ?; 

(compile-time var spec) ::= 
(identifier list) : (compi Ie-time type) := (expression) 

(compile-time type) ::= in!~~Qt : h~Q!~&U 

The following rules apply: 

1. The compile-time declaration statement must appear Defore 
the use of any of the compile-time variables. The scope of 
the campi Ie-time variable is from the point of declaration to 
the end of the compllation unit. 

2. Compi Ie-time variables may be used within compi Ie-time 
expressions and compile-time assignment statements. 

3. The expression used to initialize a compile-time variaole 
must be composed only of constants and compile-time 
variables, but excluding identifiers for user-defined 
constants. 

NCR/CDC PRIVILEGED 12.0 

• · , 

.­• 



12-2 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

15/06/09 
Revision 4 June 69, 1975 

12.0 COMPILE-TIME FACILItIES 
1201.1 COMPILE-TIME VARIABLES 
NHNNNHNUHNN~NNNNnHNNNN~HNNNNU~~NNNNNHN~UNN~#UNNNNNNNNNNNNNHNNNHUNN 

4. The operators defined on compi Ie-time variables arer 

+ - * 1 mod 
~OQ QL· ~Qt UQ! 
< ~ > <~ )3 I~ 

for type IDtag~t 
for type hQ~lr.~ll 

for type Intg~2t and UUQ1~~Q 

5. Identifiers of compile-time variables may not be the same as 
any otner program identifiers, including macro Identifiers. 

12.1.2 COMPILE-T~ME ASSIGNMENT STATEMENT 

The value of a compile-time variable may be aftered by a 
compile~timeassignment statement. 

<compile-time assignment> ::=? <variable>:~ <expression> 1; 

The following rules apply: 

1. The variable 
expression must 
compile-time 
constants. 

must be a compile-time variable, and the 
be composed ·only of constants and 

variables, but excluding user-defined 

2. Th~ compile-ti~e assignment statement may appear anywhere in 
the compilation unit. 

12.1.3 COMPILE-TIME IF STATEMENT 

The compl Ie-time If statement is used to make the compilation 
of a piece of source code conditional upon the value of some 
boolean expression. 

<compile-time if> ::= ? 
{? 
[1 

if <expression>? tu~u <text> 
2t1t (expression>? ib~u <text>) 
~1~~ (text>]? 1t~u~ 

The following rules apply: 

1. The expression must be a 
constants, and compile 
user-defined constants. 

boolean expression composed only of 
time variables, but excluding 

2. <text> Is a string of source text which is compiled upon the 
value of the conditional expression. The text may contain 
compile time statements.' Compile ti~e statements are 
executed, and macro expansion takes place only In the 

NCR/CDC PRIVILEGED 12.0 



12-3 
SOFTWARE WRITER'S LANGUAGE ·SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

12.0 COMPILE-TIME FACILITIES 
12.1.03 COMPILE-TIME IF STATEMENT 
NNNNNHNNNNNN~NNNNNNN~~N~NNN_NNN"~~NNNNNHNN~_MNNNNNNNNNNNNNNHNNNNNN 

selected text. 

3. The corn p I let i me 1t s tat em en t may a p pea ran Y H her e I nth e 
compilation unlto 

4 •. The text of a compi Ie time If statement may contain either 
or both macro definitions or compile tirne variable 
definitions. In either case, the macro definition or the 
definition of the compile time variable uill or will not be 
Included in the compi latlon, depending upon the results of 
execution of the compile time I·f statemento 

flt.ame.l.e.: 

? XA~ Table_size : lUiQ£~L z= 50, 
Page_size : lQt~g~t := 1024 1; 

l~t Table , £rL~Y (l.oTable_size] ~t lut~a~t 
? It Table_size < 10? ih~n. 

"might Include this procedure call into program." 
BUbblesort (Table) 

1· ~tlf Table_size <~ 2 * Page_size? th~u 

"or calion procedure 'treesort t Into program" 
Treesort (Table) 

? ~!a.e. 

It C hoi c. e 3 , c a I Ion pro c e d u r e Qui c k s 0 r tin pro 9 ram. II 
Quicksort (Table) 

,? l.tftu!1 

A macro definition provides a string of source text which is 
compiled whenever the macro name is encountered by the complier 
within the scope of the macro definition. 

<macro definition> z:= mg~L~ <identifier>C«macro parameter 
list»)]; <text> ma£L~eag 

<macro parameter list> ::= <ldentlfier>{,<ldentlfier>} 

The following rules apply: 

1. The macro definition may appear anywhere in the compilation 
unit, and the scope of the macro name is from the point of 
declaration until a redec&aration of the same identifier as a 
macro. 

NCR/CDC PRIVILEGED 12.0 



SOFTWARE WRITER'S lANGUA~E SPECIFICATION 

Revision 4 June 09', 1975 , 

.12.0 COMPILE-TIME FACILITIES 
12.21'lACROS 

75/06/09 

NNNN~NH~NNUNHHUNNNHNNNNNHH"HNNNNNN~~NNNNUNHNN~NNNH~n~NH~HNN~NNNHNH 

2. (text> is a string of source text which effectively replaces 
any subsequent occurrences of the macrb name within the scope 
of the macro. The text may contain compi Ie-time statements 
and invocations of other macros, but these are evaluated at 
the time of substitution of the text -- not at the time of 
'declaration. (A macro may Invoke itself as a macro, but the 
Invocation must be conditional so that when not executed, the 
nesting wi II cease in the compi I'erd 

3. -All occurrences of formal parameters in the macro body are 
repl~ced b.y.<thecorrespoh,ding:actual parameters suppl jed by 
the macro invocation. The actual parameters are treated 
purely as symbol strings, and the parameter replacement has 
the e~fect of text substitution. Any macro names appearing 
in the actual parameters are invoked after the ,parameter has 
been sUbstituted in the body. 

The· actual parameter I ist follows the macro name and Is 
surrounded by parentheses, and the parameters are separated 
by commas. Actual parameters may contain no unbalanced 
parentheses or brackets, and no commas except for those 
within parentheses or brackets. 

4. The Identifiers for a macro ~ay not be the same as the 
identifiers of other parts of the compilation unit, including 
compile time variables. (See 6 betow for exception.) 

5. Macro definitions may not be statically nested (in source 
code) but one macro definition may contain an invocation of 
another dis)olntJy defined macro (or of itself, see 3. 
above). 

6. The identifiers of the formal parameters of a macro may be 
duplicated In other parts of the compilation unit (outside 
the macro definition) Including use as another macro 
Identlf',er. In the latter case it will be r~cognized as a 
formal parameter and not used to Invoke the other macro, 
whenever it appears within the text of the macro definition 
In the source code. 

ma&L2 swap (a, b, type_idJ; 
b.~9.1!l 

~at temp: type_id; 
temp :8 B; 
a ,= b; 
b := temp; 

NCR/CDC PRIVILEGED 12.0 

• · , 

• · ' • · , 



SOFTWARE WRITERDS LANGUAGE SPECIFICATION 

Revision 4 June 09, 1975 

12 0 0 COMPILE-TIME FACILITIES 
12.2 i1ACROS 

It***,~ .. 
. swap(x, y, attax [leo10, 1 •• 10J Qt IntRUQ[) ; 

It * * * * " 
l1lS1£r.2. forgn ; f.R.f.. 9 : :s 1 tn. n £in. !lHH? r. !.H~. n rt 
!!!lH?.t:.!l f Of In ; tn.!: j . - 1 1.90 n QQ ill !:H~. 1:. !H. n 9 ; . -
!!li}.9.!:U forkn ; tn.£. 1< : :: 1 .t.Q n gn mQ~LQ.~D.1 ; 
X!lr. n . lCJ.!.~9.~t, elem . r.!lll! ,; . . 
IDil£r.2. mac j rCjpld * sU" jJ illla9.r.9.f:.CJ..Q ; 

n : :m 27 ; Htypical choice of array size" 
1l~9.1n 
X~r. f' $, t ilr.!:gX CleGnJ Q! r.~g! ; 
XsL jp kp 9 : lQl~g~r. ; 

Ig: forgn 
k ::3 9 ; 

IJ: forjn 
elem := 0; 

Ik: forkn 
elem := elem + mac 

t9.t.Qn!l ; "end of for loop Ik" 
t(g,JJ :::s elem 

lR.r.k i.Ht "e n d 0 flo 0 p I j" 
f.Qt.~!Hl "end of loop Ig" 

NCR/CDC PRIVILEGED 

12-5 

75/06/09 

12.0 



13-1 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

13.0 REPRESENTATION-DEPENDENT FEATURES 

In contrast to the previously discussed aspects of the 
language, the language features discussed in this section are 
dataurepresentation dependento This is not to imply that 
programs using these features are, In fact, system d~pendent. It 
is possible to write system independent programs through the 
careful use of representation-dependent faatureso 

. 
The 'representation-dependent features are such that use of 

these features may oe dependent upon the compilervs allocation 
algorithms or the hardware.designo The use of these features is, 
therefore, restricted to procedures declared with the t~&rt~~ 
procedure attribute. 

<rep type> ::a <cel I type) 
:<crammed type) 

13.1.1 CELL TYPE 

<cell type> ::= £~11 
. 

Ace I I 
represents 
addressable 
attribute. 

type 
the 

by 

is a representation-dependent basic type that. 
smallest unJt of storage that Is directly 
a pointer. A cell, therefore, has the sii9.[HU.t 

Only the operations of assignment and equality test are 
defined on a cell. 

13.1.2 CRAMMED TYPES 

Through the use of crammed records 
memory-dependent structures can be defined wherein 
and al ignment of eacn ele~ent Is specified. 

and 
the 

arrays, 
bit-size 

<c~ammed type) :s= «mal ignment») £t~mm~d <cra~med structure> 
<crammed structure) ::= <crammed array>:<crammed record> 

NCR/CDC PRIVILEGED 13.0 



13-2 
SOFTWARE WRITER'S LANGUAGE SPECIFICATION 

75/06/09 
Revision 4 June 09, 1975 

1300 REPRESENTATION-DEPENDENT FEATURES 
13Q102 CRAMMED TYPES 
UNUN~UNNH~NNN~U~NNNNUNUUUHNUNUNNM~UUHUNNNQUHNNNNNNNHHUHNNNNHNNNNNN 

<crammed array) z:= 
atta~ r<crammad indices)l ~t <crammed element) 

<crammed indices) ::= <crammed index> {~<cramme~ index)} 
<crammed Index> z:= (fix~d scalar type> 
<crammed record) JI= 

flQQt~ (crammed field>{,(crammed field>} t~~~nd 
<crammed field> 1&= (identifier list> : <crammed element> 
<crammed element> ::= 

[(.l1all gnment)J (boo I ean type> 
[(maC ignment» (integer type>.[<width)l 
[(mal ignment>J (integer subrange type>I<width>l 
<crammed type) 

<mallgnment> ::2 malluufid «offset>[,(base>l> 
<width> 1:= <Integer constant> 
<offset> zt~ (integer constant> 
<base) .::= (Integer constant) 

If a variable of crammed type is maligned, it will be 
allocated on an <offset> m21 (base> (or an <offset» cell 
boundary; otherwise, It is allocated on the first available cell 
boundary. If a crammed element is maligned, it will be allocated 
on an <offset> m2d (base) bit boundary relative·to the beginning 
of the Innermost containing structure; if It is not maligned, it 
will be allocated at the next available bit. If (base> is not 
specified, the (base> of the containing structure is inherited. 

Crammed variables can be passed· by reference; crammed elements 
cannot. 

Crammed types are equlvaleht if, and only If, fhey arc 
equivalent in all conceivable ways. 

Crammed types can conform to one another and to un-crammed 
·types (c.t., Section 5.2.1). 

NCR/CDC PRIVILEGED 13.0 



SOFTWARE WRITERoS LANGUAGE SPECIFICATION 

Revision 4 June 09, 1975 

1300 REPRESENTATION-DEPENDENT FEATURES· 
1 3 0 1 0 2 • 2 ~J j d t h 

13.1.202 lild.th 

The width specification defines the bit size of the field. 

ix£~ cyber_80_ptr 2 

r:.r.iJmm§.9. r.g,£!2(g 
"bit OIU 
"bits 5 -14" 
"bits 35-63" 

·r.ft~g,Qg 

jnval id bQQigRn 
segment_num : mgllgu~d (5) lnt~gtC (10J 
word_num : ill~ligll~~ (35) lu!~~~r. (28) 

...... oJ 

75/06/09 

The result· of an invocation of the lQQ function can be 
assigned to any direct pointer type (see 11.301). 

NCR/CDC PRIVILEGED 13.0 



SOFTWARE W~ITERDS LANGUAGE SPECIFICATION 
15/06/09 

Revision 4 June 09, 197~ 

14.0 MACHINE-DEPENDENT FEATURES 

An extended set of machine-dependent features including data 
types, storage attributes, machine instructions, and the code 
statement /s provided each machine for which SWL will generate 
object codet 

The only operations def(ned on machine-dependent data types 
are ass I.g nine n tan d e qua lit y t est CI 

~ar. a : QQ!J.Q.l~' 
b hlllttHtr.£1, 
c : .ar.t:.iU! [0..,63J 2t Q.yta, 
d sttp·tH I t#ptp 
E I int#16, 
f fltfpt, 
dfp . fl#pt#double j • 

In general, the set of operations defined for a data type wi II 
not be affected by Its storage attributes. 

lat tos: [t!~l!t~[l bal!tl2td, 
param (J~~£Qr.~l A1D1~g~t, 
aecum I C, ::.U [3]J .lu.t.~g!lr:. 

The use of machine-dependent features is restricted to the 
body of the code statement. 

(code statement> ::c ~Qg~ «machine»(code body> ~~Q~ag 

NCR/CDC PRIVILEGED 14.0 



14-2 
SOFTWARE WRITERoS LANGUAGE SPECIFICATION 

75/0tj/09 
Revision 4 June 09, 1975 

14.0 MACHINE-DEPENDENT FEATURES 
~4e3 CODE STATEMENT 
NNNNUUN~~~N~~NNNN~NN~nNNNNNNNNNNN~NMUNN~NN~N~NNMNUNHH~NNNNNNNN~NNN 

<code body> ::a <code>{,<code)} 
<dode) S:n <statement> 

:<machine instruction> 

The format of machine instructions may vary with the 
particular'machineo 

<machine Instruction> ::~ !<Instructlon> 

NCR/CDC PRIVILEGED 


