
CDC - AOVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

eYHER 180 II ASSEMBLER

for

CPU and IOU

EXTERNAL REFERENCE SPECIFICATION

(55233)

+---------------------------------------+
I
I
I
1
I
I

This product is intended for
used only as described in this
document. Control Data cannot
be responsible for the proper
functioning of undescribed
features and parameters.

I
I
I
I
I
I

+---------------------------------------+

(e) Copyright Control Data Corporation 1985

1

86/10/11
Rev: F

2
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10111
Rev: F

REVISION DEFINITION SHEET

-------+----------+---
REV I DATE J DESCRIPTION

-------+----------+---
I I

A J 05/30/80 J Original, for CPU Assembler only.
I ,
I I

B '09/15180 , Revised for comments against REV. A.
J I
, J

c t 05/05/81 I Revised to add IOU mnemonic instructions,
I I several appendicies, and other corrections.
I ,
, I

o I 08/14/81 I Revised to correct comments against REV. C.
I 1 , ,

E 1 1,2/01/81 I Revised to corectgrammatical errors, delete
I , obsoletepseudo-op GEN from examples, correct
I I errors ~n des~riptions of' the IOU
I 1 instructions, update titles and update this
f , revision page. Since reVISIon 0 of this
f 1 document was never submitted to Des the
I I revision bars have been generated relative to
, , revision C.
1 t , ,

FI 04/11/85 I Revised to include vector instructions for
I I the Cyber 180-990. Appendix A, which
I 'describes the command parameters, changed to
I I include the LIST_OPTIONS parameter.
t I
I 1
I I , ,
I I
I ,
, I
I I
f I
, I
I 1 , ,
I I
I ,
, I
I t
I ,
I I
, I
I I

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

1.0 SCOPE

1-1

86/10./17
Rev: F

This document is the external specification for the CVBER 180
II Assembler. This assembler runs on the (YBER 180 machine tn
CVBER 180 mode and assembles either CVBER 180 CPU or CYSER 180
IOU code. The object program output of the Assembler is
compatible with the NOS/VE -loader. The II Assembler is the
language successor to the Cl Assembler described in the ARH1693
ERS document.

The following documents reference related m-aterialwhich would
be of value to the reader.

•

•
•
•

tYBER 180 Mainframe Model Independent GDS {MIGOS1. Rev. S
(ARH 1-700).

CVBER 180 CI CPU Assembler ERS (ARH 1693).
NOS/VE Command Interface
NOS/VE Program Interface

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

2.0 LANGUAGE STRUCTURE

2-1

86/10/17
Rev: f

--

A CYHER 180 Assembly language source program consists of a
sequence of statements which contain symbolic machine
instructions. pseudo instructions, and comment lihes. With the
exception of the comment 1,ines, each statement consists of a
label field, an operation field. argument field(s), and a
comments field. Each field -is terminated by one or more blank
characters. The size of the argument field is restricted by the
maximum statement size only. Statement format is essentially
free field. except for the label field which must start in column
1.

A statement consi sts of one or more physica-' 1 ines of data. _A
line may be up to 255 characters long and the Assembler will
print the entire line at the rate of 88 characters per print
line. Assembler will only examine the first 88 characters of a
line. Information after column 88 is presumed to be comments.

The language also supports a procedure mechanism with
parameter capab i 1 i ty. Each time the name of the procedure is
referenced, the body of the procedure will be inserted in the
code. This will be further explained in the section entitled
'Procedures·.

2.1 SIAIEME1S1

A statement is an ordered group of fields starting (from left
to right) with one label field followed by Operation and Argument
fields and one Comments field. The number of fields allowed in a
statement is not limited. The comments field is optional. but
the other fields must be accounted for by field delimiters. A
statement may be continued onto more than one line, but no more
than one statement is allowed per line.

2.1.1 FIELD

A Field is a consecutive group of characters starting with a
non-blank character and terminated by a blank character J

end-of-line, or character position 88 of the line, whichever
occurs first.

The only exceptions to this definition are:

a) Blanks may appear freely in a CHARACTER STRING without

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

2.0 LANGUAGE STRUCTURE
2.1.1 FIELD

causing field termination.

bl Blanks may appear freely in the COMMENTS field.

2-2

86/10/17
Rev: F

cl If a continuation character v;v is encountered within a field
which is not a COMMENTS or CHARACTER STRING, the field is
continued on the next line.

d) Extra or spurious fields in a statement are not detected and
no error is diagnosed.

2.1.2 StJBFIElO

A Subfield is a consecutive group of characters starting with
a non-blank character and terminated by a comma u t - or by
End-Of-Field, whichever occurs first. A field may have one or
more subfields.

The only exceptions to this definition are:

a) Commas may appear freely in a CHARACTER STRING without
causing subfield termination.

b) Commas may appear freely in the COMMENTS field.

c) If a continuation character ";U is encountered within a
subfield, the subfield is continued on the next line.

d) Extra or spurious subfields in a field are not detected and
no error is diagnosed.

2.1.3 NUll FIELD

The absence of a field or subfield is automatically detected
by the Assembler based on the number of fields. An OPERATION
field must __ DQ.t __ hf! __ tlulland must have as many ARGUMENT fields
f 01 'ow i n gi t as r e qu i red by its de fin i n 9 pseudo ins t rue t 'Ion or
PROCEDURE. although the number of ARGUMENT fields can be variable
and depend on some other field.

The rules for NUll field:

a) A blank in character position 1 of a line indicates the
absence of the LABEL field on that line. The next non-blank
character on the line, excluding comments, is accepted as
part of an OPERATION field.

CDC - ADVANCED SYSTEMS DEVELOPMENT

cvaER 180 II Assembler ERS

2.0 LANGUAGE STRUCTURE
2.1.3 NULL FIELO

b) An OPERATION field cannot be blank.

2-3

86/10/.11
Rev: F

c) Two consecutive commas indicate the presence of a null
subfield.

d) One comma H,. followed by a blank indicates (as specified)
end-oF-subfie ld .andend-of-fi e 1 d and can be used to de J imi t
trailing Null subfie1ds. The configuration blank.blank
indicates a Null field with two Null subfields.

2 •. 2 tOtH:1ft4IS

Comments may start in any column. but are always the last
field on a line, and end at end of line. All comments must begin
with a period. Scanning by the Assembler stops when a period
preceded by a blank or a period in column 1 is encountered, thus
comments may contain any Ascii character. including characters
that would otherwise have special meaning (e.g. the semicolon
which denotes continuation when used outside of comments).

When a statement is continued to the next line, comments may
appear after the continuation character on the line being
conti nued.

2.2.1 STATEMENT CONTINUATION

Normally. column 88 terminates a source statement that has not
otherwise terminated. However. a statement that cannot be
contained in the first 88 characters can be continued on
successive lines by placing a semi-colon u;u at the continuation
point. A statement may only be broken between fields, 5ubfields,
or terms of an expression. A term may not be broken onto 2 lines
(e.g. a long character string must fit on one tine). The
statement will be continued at the first non-blank character on
the next line at or after character position 2. Character
position 1 of all continuation lines must contain a blank. The
continuation character, if used, must appear at or prior to
character position 88.

The only exceptions to this definition are:

a) Semicolons may appear freely in a CHARACTER STRING without
causing continuation. This implies that character strings
cannot be continued across statements.

bl Semicolons may appear freely in a COMMENTS field without
causing continuation. Comments cannot be continued across

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

2.0 LANGUAGE STRUCTURE
2.2.1 STATEMENT CONTINUATION

stat.ements.

.2-4

806/10/17
Rev: F

The Assembler recognizes the following, graphic character
subset of the NOS/VE ASCII character set as input:

A h)habet ic A through 1 (upper or lower case)
$ al :# _ :

Numeric 0 through 9
Special Characters!

+

I
=
<
>
&.

Blank or Space

Add
Subtract or Unary Minus
Multiply
Oivide or logical NOT
Equal
less Than
Greater Than

I , ,
(=

)=

1=

logical AND
lo~ical Inclusive OR (vertical bar)
logical Exclusive OR (double vertical bar)
less Than or"Equa1 To

•
t

(

1
{

1

. ,
**

Greater Than or Equal To
Not Equal To
Period or Decimal Point
Comm·a
left Parenthesis
Right Parenthesis
left Bracket
Right Bracket
Apostrophe
Continuation
Shift

In addition to the characters listed above. the Assembler
accepts the following characters as part of program comments or
as part of a Character String:

The Assembler distinguishes between
characters only when used within character
quotes.

upper and lower case
strings enclosed by

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

2.0 LANGUAGE STRUCTURE
2.3 CHARACTER SeT

2-5

86/10/17
Rev: F

D-ther ASCI I characters appear i 09 before the comment fie 1 dare
diagnosed as an error.

A symbol is a set of alphabetic or numer ie characters that
identifies a byte address or a value and its associated
attributes. The symbol must start with any alphabetic character,
and the symbol can be a maxImum of thirty-one (31) characters
long, and cannot include any of the special characters. The
colon (:) may not be used as a character in a user defined
symbol, it is reserved for language defined names. Symbols are
defined when they are used in the label field of any statement
(CPU, IOU, or pseudo instruction), except for some pseudo
instructions which ignore the label field and other pseudo
instructions which use the label field for other purposes.

EXAMPLES:

Le,giU
S,¥mhols

Ille.gal
Sxmbols.

P543

R3 ABCDEFGHIJKlMNOPQRSTUVWXYI012345
PROGRAM ABE+15

2.4.1 LINKAGE SYMBOLS

First character must
be alphabet ic.
Exceeds 31 characters
Contains plus sign

Modules (assembly
(assembly/compilation
points.

units)
units)

can be
through

linked to other modules
symbols defined as entry

Entry points in the current module are
DEFG pseudo instruction. This allows
referenced from another module. External
referenced by declaring them with the REF
are treated as relocatable values.

declared with a OEF or
the entry point to be
entry points can be
pseudo instruction and

To link to entry points with different names. a symbol can be
ALIASed to another symbol.

2.4.2 SYMBOL ATTRIBUTES

In addition to the value or byte address associated with a
symbol, each symbol has symbol attributes. Symbol attributes are

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYDER 180 II Assembler ERS

2.0 LANGUAGE STRUCTURE
2.4.2 .5VMBOlATIRIBUTES

2-6

86/10/17
Rev: F

various pieces of information about the symbol which describe
properties of that symbol. Attributes are normally ·associated
with a symbol at the time the symbol is defined. This is an
automatic process within the Assembler and takes place whenever
symbol definition takes place.

The CVBER 180 Assembler contains six built-in attributes which
are associated with a symbol. These attributes and their
associated mnemonics are:

Symbol Category SC:

Address Mode AM:

Symbo 1 Value

length LS:, LC:, LW:

Starting Bit Position S8:

Symbol Number SN:

Each attribute is discussed and defined in the section on
Attribute Functions. A symbol's attributes are always referenced
using one of the attribute function mnemonics listed above. This
reference may not be forward. It is used for retrieval only, and
o·as the form:

attribute_function(symboll

The Assembler also permits any symbol to have any number of
additional programmer defined attributes. These additional
attributes can be given names .and values by the programmer and
can have any meaning desired. The values may not exceed 64 bits.
The names and values can be altered during the course of the
program assembly using the ANA HE and ATRIB pseudo instructions.
The ANAME pseudo instruction is used to assign a name to a
particular attribute. Following that, a symbol can then be
assigned a value associated with the named attribute. This
attribute name may then be used in the following manner to
retrieve the value of the attribute:

user _defined_attr i bute_oame(symbo 1 J

An attribute name for any of the programmer defined attributes
will be valid until changed.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

2-1

86/10.111
Rev: F

--2.0 LANGUAGE STRUCTURE
2.5 REGISTERS

2.5 REGISIERS

Register designators symbolically represent the 32 operating
registers. The designators are inherent to the Assembler and
cannot be changed during assembly. However, other symbols may be
equated to them. There is an Assembler defined attribute
(#regtyp) which defines the type of register a symbol represents.

Address

Operand

tAn' or a symbol with its #REGTYP attribute
set to ·IIAREG".

'Xn' or a symbol with its #REGTYP attribute
set to tf:#XREG".

For the forms An or Xn, n is a single hex digit from 0 to F.
Any other value for n. 'for example H,causes An or Xn to be
interpreted as a symbol rather than a register designator.

EX.AMPLE'S:

Al Designates address register 1

AIO Interpreted as a symbol, not a register

Data notation provides a means of entering values for
calculation. increment counts, operand values, line counts,
control counter values, text for printing out messages.
characters for forming symbols, etc.

The two types of data notation are character and numeric. The
Assembler allows the user to introduce data in the program in two
basic ways.

As a self defining term

As a number in numeric data notation

2.6.1 SELF DEFINING TERMS

A Self-Defining Term is a constant whose value is defined by
its structure. The value of a Self-Defining Term is constant
throughout the program and is not altered by the relative

2-8
CDC - ADVANcED SYSTEMS DEVELOPMENT

CYOER 180 II Assembler ERS
86/10/11

Rev: F

2.0 LANGUAGE STRUCTURE
2.6.1 SELF DEFINING TERMS

position of the program in storage. The Assembler uses two
methods by which a Self-Defining Term can be expressed:

al As an unsigned string of binary, octal, decimal, or
hexadecimal characters, the first character of which must be
a decimal digit, which has the following format:

numeric_character_string(base)

Base is optIonal, but when present it must be enclosed by
parenthesis. Base may only be hexadecimal (16). decimal (10),
octal (8), or binary (2). Any other value for base results in an
error. The following examples illustrate the numeric notation:

AlPHA+OFF(16)
3*(NET_PAY)

·OFf(16)" i~ a Self-Defining Term
-3- is a Self-Defining Term

The range of this form of Self-Defining Term must be
consistent with its use in the program.

b) As a Generalized Self-Defining Term which has the following
structure

symboJ'character-string'

where the character string is a1ways enclosed by apostrophes
and where -symbol" is one of the characters:

Sxmhol

C

I¥pe_Qf_G.e.necallzed-Self::.llefininQ_Ier.m

t!:lARAtIEB. __ SIRlti.G! Const,ant translated into 8 bit
ASCII code. The characters can be any of the
characters in the Assemb1er character set.. Note
that a lower case letter will generate a different
8 bit ASCII code than an upper case character. The
maximum string length is limited to one line and
therefor cannot exceed 81 characters.

Self-defining terms can assume a range of values (e.g.
precision or storage occupied) depending on their type and usage.
In all cases however, the internal representation of a
self-defining term is an integral number of bytes. When
translation from input format to internal representation occurs,
self-defining terms are expanded to the next nearest multiple of
bytes, provided they do not exceed the maximum defined below.

*Two consecutive quote marks in a C character
string are used to indicate a single quote within the string.

2-9
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/17

Rev: F

2.0 LANGUAGE STRUCTURE
2.6.1 SELF DEFINING TERMS

During the expansion process, Justification and filling (~here
required) also take place as defined:

+---------------+---------+---------+---------------+---------
I Tvpe of I Minimum t Maximum f I
, Self~hefinin9 I Size , Size 1 ,
I Term I (Bytes) I (Bytes) I Justification I Filling
+---------------+---------+---------+---------------+---------
I Decima"' 1 a t 8 , Right I Zero , Hexadecimal I 1 I 6 I Right I Zero , Octal I 1 I 8 I Right , Zero , Binary I 1 I 8 I Right , Zero , C I 1 las needed' left I Space

A self-defining term used as a single term expression can
assume any of the values described above. When self-defining
terms are used as part of a multi~term expression however, the
following additional restrictions apply:

a) When an address symbol is used only the byte offset for the
address is used. Bit offset, if any. and section ordinal are
discarded.

b) The size of all numeric terms (decimal, hexadecimal, octal,
binary, or string will be 8 bytes when arithmetic operations
are performed. Strings are right justified and truncated or
zero filled as necessary to be 8 bytes and are treated as
integer. When an expression contains operators, the result
is integer. Arithmetic operations are performed using 2'5
complement arithmetic. When the expression contains only one
term, the result is that term (which is not converted in
form).

2.6.2 NUMERIC DATA NOTATION

Numeric data can b~ specified in binary. octal, hexadecimal.
or decimal notation with the INT and DINT pseudo instructIons.
Only decimal notation is available with the FLOAT and OFLOAT
pseudo instructions. The value is converted to an integer or a
floating point number in single or double precision. Floating
point conversion is performed by a CYBER 180 math library
conversion program. The actual representation of the output data
is beyond the scope of this document.

2-10
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS
86/10/17

Rev: F

2.0 LANGUAGE STRUCTURE
2.6.2 NUMERIC DATA NOTATION

Formats:

Uata-Item

sign

value

modifier

+------+-------+----------+
, sign I value I modifier I

Opt: i onal.

+ or omitted The value is positive.

The negative va1ue is formed.

A series of binary, octal, hex or decl*al digits
consisting of an integer (required). optional
decimal point and optional fraction, or optional
base. An integer value (fixed point) does not
contain a point,"but may contain an 'optional base
indicator enclosed in parenthesis. The fixed point
format is thus a numeric, self-defininq term with a
sign preceding. A floating point valu~ is noted by
the occurrence of the point. If point occurs then
base may not occur and value is decimal.

An octal value can be a maximum of 22 octal digits
and cannot exceed 64 bits of significant data. A
decimal value cannot exceed 5.2 x 10**1232 in
absolute value. used in a floating point pseudo
instruction. Extra significant digits cause a
diagnostic. A hex value can be a maximum of 16
digits. If value is omitted, it is assumed to be
zero. The actual minImum or maximum values
permitted are further limited by the pseudo
instruction in which the data notation appears.

Associated with the value is an
modifier. Exponent defines a
factor.

Format is E, En, E+o, or E-n.

optional exponent
power of 10 scale

When the sign is plus or omitted, the exponent (n)
i.5 pos i t i ve.

When n is omitted, it
va1ue of n cannot exceed
decimal integer.

is assumed to be o. The
32161 and is always a

A fixed point value can have 32-bits or 64-bits of
precision and a floating point value can be

CDC - ADVANCED SYSTEMS DEVELOPMENT
2-11

86.110/17
Rev: F CYSER 180 II Assembler ERS

2.0 LANGUAGE STRUCTURE
2.6.2 NUMERIC DATA NOTATION
--

Ex.amples!

generated in either single precision (one word) or
double precision (two words), depending on the
pseudo instruction.

The effect of the exponent is to multiply the value
by 10 decimal raised to the n power or -n power.
limitations of maximum and minImum values and
exponents may be found in the appropriate CYBER 180
math library documents.

LeSlal_
-21904
3.14159
1.7E-6

111egal_
316E
7F(16)E-3
• 2893

EXlllanatian
missing base
value must be decimal
interpreted as comments •

2.7 ElfBESSlDH5

Entries in sub-fields of most source statements are
interpreted as expressions consisting of a combinartion of one or
more terms. A comma or blank terminates the expression~ When
symbolic names appear as terms in expressions the Assembler must
be able to replace the symbolic name with its associated value.
The association of a symbolic name with a va"'ueis called symbol
definition and is described in Section 2.4. An expression in
which all the symbolic names can be evaluated (which means the
expression can be reduced to a single value) is said to be an
"evaluable expressionu • An uabsolute evaluable expression- is an
expression whose symbolic name terms are all defined in
statements previous to the current statement.

2.7.1 TERMS

A term represents an evaluation made during the assembly
process. A value is assigned to a term either by the Assembler
or the term may be self-defining (as in the case of a constant).

A term can be a:

Symbol that is evaluable
(One that Assembler can associate with a value)

Self-defining term

Function reference

Attributes

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

2.0 LANGUAGE STRUCTURE
2.7.1 TERMS

Register designator

2.1.2 ORDER OF EVALUATION

2-12

86/10/11
Rev: F

Expression evaluation normally is determined by the binding
strength of the operators involved. This can be altered by the
use of parenthesis. Terms inside of parenthesis are evaluated
first. Parenthesis can be nested to any depth, and will be
evaluated in the order of innermost to outermost. An expression
such as INDEX+4 or AO*(9+PAN), is reduced to a single value as
fo 11ows:

a) The expression takes on the attributes of the first term in
the expression from left to right.

bJ Each term is given its defined value. When arithmetic
operations are performed on a term it's internal
representation is converted to integer. When strings are
used as arithmetic terms they are truncated, if necessary, or
ri~ht justified with zero fill, if necessary, to occupy 8
bytes and are treated as an integer.

c) Arithmetic operations are performed from left to right.

d)

Operations at the same parenthetical level within the highest
binding strength are performed first. For example:

VE+VX*AE1.AX

is evaluated as VE+«VX*AE)/AX).

Division always yields a
division by zero yields
diagnostic.

a
truncated integer result and

zero result with a generated

The operators processed by the Assembler during expression
evaluation are!

CDC - ADVANCED SYSTEMS DEVELOPMENT

ClSER 180 II Assembler ERS

2.0 LANGUAGE STRUCTURE
2.7.2 ORDER OF EVALUATION

/

I

+

<

>
(=

)=

1=

I I

Rlndin,g_Stc.engl.h

7

7

5

5

4

4

3

3

3

3

1

1

Eunction

Plus (unary)

Minus (unary)

L09ical
(unary)

NOT or

2-13

86/10/17
Rev: F

Complement

Binary Shift (logical)

Integer Mu It i ply

Integer Divide

Integer Add

Integer Subtr act

less Than

Greater Than

less Than or Equal

Greater Than or Equal

Equal

Not Equal

logical AND

logical OR

logical Exclusive OR

NOTE: All operators are binary (i.e., require two operands)
except the three specifically indicated as unary. These
require only one operand.

2.7.3 THE LOGICAL NOT OPERATOR

The logical NOT or complement operator causes a one's
complement of its operand, based on a length of 64 bits~

llalue

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

2.0 LANGUAGE STRUCTURE
2.1.3 THE LOGICAL NOT OPERATOR

2-14

86/10/11
Rev: F

--
5 000 ••• 0101 111 ••• 1010

12 '00'0 ••• 1100 111 ••• 0011

2.7.4 LOGICAL AND, OR, EXCLUSIVE OR

The logical AND, OR, and exclusive OR compare two operands DAV

and DB" .as fo 11ows=

+---+---+----+----+----+
J A I B I £ I , I II I
+---+---+----+----+----+
I , I I I 1
I 1 I .1 I 1 I 1 I '0 I
f 1 , 0 I '0 1 1 I 1 I
I 0 I 1 , 0 1 1 t 1 I
t 0 I 0 I '0 I 0 , '0 ,
t I I I 1 ,
+---+---+----+----+----+

2. '7. '5 THE BINARY SHIFT OPERATOR

The Binary logical Shift Operator determines the direction of
shift based on the sign of the second operand: a negative operand
denotes a right shift and a positive operand denotes a left
shift. For example: 1**(-2) results in a logical right shift of
two bit positions for the operand 7. Shifts are end-off with
zero bit replacement.

2.7.6 THE COMPARISON OPERATORS

The result of any comparison produced by the comparison
operators is: Fal~e = 0; True = 1.

EXAMPLES:

Ex,pr.ession

9)11

13=4

3/=4

o

o

1

(9 is not greater than 11)

(the word-s izeva tue 13 is
equal to 11 ••• 1100 and is not
equal to 4; i.e., 00 ••• 0100)

(3 is not equal to 4)

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

2.0 LANGUAGE STRUCTURE
2.7.6 THE COMPARISON OPERATORS

2-15

86/10/11
Rev: F

--
1(3=4) 11 ••• 11 (3 is not equal to 4, so the

result of the comparison is 0
which NOTed becomes a word size
value of all lis.)

Any term in an expression may be relocatable or absolute
(non-relocatable). A relocatable term is one which represents
the location of some piece of assembled code (i.e. represents an
address in the memory of the computer). Its symbol category
would be 6. An example would be the label of a ass statement.

An absolute expression consists of either an absolute term or
a combination of terms that, when evaluated. has no relocation.
An absolute term is an absolute symbol or a constant. All
operators may be used with absolute terms. Absolute terms are
a)ways internally represented in the 2's complement number system
(the number -0 does not exist in thissystemJ.When the
Assembler is generating object data for an IOU module the data is
then converted to the l's complement number system at the time
the data is output.

A relocatable expression consists of a single relocatable term
or a number of terms that. when evaluated, has relbcation. A
relocatable term results when an absolute term is added to or
subtracted from a relocatable term and the result is not negative
and does not exceed the storage capacity of a section. All
arithmetic operations may be performed on relocatable terms. If
a relocatable term cannot result, then the relocatable term is
first converted to an absolute term whose value is the byte
offset of the relocatable term and the result of the arithmetic
operation is an absolute term.

If an absolute value is required of an expression, then it is
converted to absolute value. A relocatable value is required
only for certain operands of the ADDRESS pseudo instruction. If
an expressIon contains only a single term. the result is that
term and the result may be absolute. relocatable. or string.

CDC - ADVANCED SYSTEMS DEVELOPMENT

(VBER 180 II Assembler ERS

3.0 PROGRAM STRUCTURE

806/10/17
Rev: F

This chapter describes the general structure of a program. In
some cases, it repeats information described elsewhere and
correlates it so that the programmer wi 11 obtain ·3 better
understanding of how the program is assembled, loaded, and
executed. Some references are made to the NOS/VE loader but for
a complete description of the 'oader, refer to the applicable
NOS/VE document.

A CYBER 180 program consists of one or more modules that can
be assembled separately, either in the same computer run or in
independent runs. The .Assemb ler wi 11 assemb Ie many modu les fro.m
the same input file per call. These many program modules can all
be written in the Assembler source language, or can be written in
any other source language available in the product set of the
operating system as long as the compiler or Assembler produces
relocatable binary output in a form acceptable to the NOS/VE
loader. An Assembly language module is composed of statements
beginning with an IOENT pseudo instruction and ending with an ENO
pseudo instruction.

The Assembler repertoire includes pseudo instructions that
facilitate relocatable module linkage. Through these linkages,
modules loaded together can transfer control to each other and
can access common storage locations.

The first topic considered in this chapter is the program
module and how the Assembler and the programmer organize the
object code into program sections. Following this is a brief
description of the counters that control the sections.

A CVBER 180 Assemb1y program is a collection of statements
which are translated via an assembly process. into a CYBER 180
object module. Object modules resulting from separate
assemblies. or compilations by a CVBER 180 Compiler (CYBIl,
FORTRAN, etc.) can be combined. via a 1inking process. into a
single object module, and may undergo further transformation into
a form capable of direct execution by the CY8ER 180 hardware.

A set of statements between an IOENT pseudo instruction and an
END pseudo instruction is a program module. A CPU program module
can be divided into sections having different attributes. For
instance. the CODE section has the attributes of READ and

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

3.0 PROGRAM STRUCTURE
3.1 PROGRAM SECTIONS

3-2

86.110/17
Rev: F

--
EXECUTE, while the WORKING section is READ and WRITE. The use of
sections provides a means of code protection. As assembly of a
program module proceeds. the Assembler or the user designates
that object code b:e generated or that storage be reserved in
specific sections. By properly assigning code sequences, data.
or reserved storage areas in blocks through use of ORG or USE. a
programmer can intermix instructions and data for the different
sections. The Assembler assigns locations in a section
consecutively ·as j t encounters instructi ons destined for the
section. A. symbol defined within a section is not local to the
section. That is, it is global and can be referred to from any
other section in the program.

For the CPU there are several types of sections available, but
for the IOU only one section is permitted. Only a CPU module may
contain SECTION or USE statements. If a CPU module does not
contain a USE instruction or if object code is generated (or
storage reserved) before the first USE instruction, the Assembler
places the object code in the CODe section, which is one of the
five default sections. The user controls use of the
default-sections and any user-established sections, through USE,
ORG, and SECTION pseudo instructions.

3.1.1 DEFAULT SECTIONS

The following is a list of default sections and their
attributes established for the user by the Assembler:

CPU SECTIONS:
CODE
WORKING
BINOING*
STACK*

IOU SECTIONS:
CODE

REAO+E.XECUTE
REAO+WRI'TE
BINO+REAO
REAO+WRITE

REAO+WRITE+EXECUTE

* Symbols may be associated with addresses in these sections,
but dat.a may not be i ni t ia 1 i zed at assemb Iy time except for
the BINDING section in which pointers may be established
through the use of the ADDRESS pseudo instruction.

3.1.2 THE BINDING SECTION

The BINDING section is a special purpose section whose
function .is to permit access to data and code that is either
internal or external to the current module. This i~ accomplished

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

3-3

86/10/1'7
Rev: F

--3.0 PROGRAM STRUCTURE
3.1~2 THE 8INDING SECTION

--
via pointers in the BINDING section which are built by the NOS/VE
loader. In addition. the NOS/VE library_Generator may -bindu

modules together. Part of this "bindingJlprocess consists of
consolidating the separate BINDING section of each module into
one common BINDING section by e1iminating redundant entries
(pointers) in the BINDING section. This means that "bindingU

inherently requires that entries in the BINDING section be vorder
independent". The user must beware to preserve this "order
independence".

It is recommended that reference to the pointers in the
BINDING section be limited to the "load" type instructions (See
Section 7.3.1) or the CAllSEG instruction. For these
ins'tructions the Assembler inherently generates "re location"
object text which permits the library_Generator to adjust the
displacement field of these instructions to a new value as a
resuJt of module -binding".

The use of other CPU instructions (e.g. ADORQ) or generation
of data which contains a displacement relative to the BINDING
section is permitted and the Assembler will generate the
necessary -relocation- object text with the assumption that the
field (displacement) being generated is an unsigned positive
field. If this assumption is not correct, the relocation
attributes may be specified by the intrinsic Relocation_function
(R:) (See Section 5.1.9). If the relocation attributes cannot be
specified by the relocation function (R:), then the module cannot
be bound and if the module is to be assembled without diagnostics
the module must be declared uNONBINDABlEw via the MACHINE
statement (See Section 4.2.1).

Each section has a section counter from which the byte offset
from the beginning of the section, and the bit offset in' the
current byte can be obtained. The Assembler automatically
updates and maintains this counter when a section is first
established, or its use is resumed. The current contents of the
location counter may be returned as a rel0catable value via the
location counter function $ (dollar sign).

The byte offset is the relative location of the next byte to
be assembled or reserved in the section. It is possible to
increment the byte offset simply by using either ORC or BSS
pseudo instructions. ORG also permits the programmer to reset
the counter to some lower location in the section. The current
byte offset can be referenced by using the function $(0).

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

3.0 PROGRAM STRUCTURE
.3.2 SECTION CONTROL COUNTER

3-4

86/10/11
Rev: F

The bit offset points to the next bit to be used in the
current byte, and ~an range in value from 0 to 1 for a CPU module
and 0 to 15 for an IOU module. It can be referenced by using the
function $(1).

3.2.1 FORCING PARCEL ALIGNMENT

A parcel is the minimum instruction size of either the CPU or
IOU. For both the CPU and IOU a parcel is 2 bytes or 16 bits.
The CYBER 180 hardware requires that al' instructions start on a
parcel boundary_ For the CPU this also means that tbe byte
address of the instruction must be even. In a CYBER 180 Virtual
Machine assembly, if any of the following conditions are true,
the Assembler forces parcel alignment.

Insufficient room remains in a partially filled parcel for the
next instruction to be generated.

The current statement isan END, IOEHT, or ALIGN 0,2 pseudo
instruction.

4-1
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/.10/1"1

Rev: F

4.0 PSEUDO INSTRUCTIONS

Pseudo instructions are instructions needed by the programmer
to write programs, but for-which there are no hardware
equi va 1 en"ts.

Pseudo instructions discussed in this chapter are classified
according to application as follows:

Module identification (IOENT and END)

Binary control (MACHINE)

Symbo1 assignment (EQU, SET, ANAME, ATRI8)

Module linkage (DEF, OEFG, REf, ALIAS and ADDRESS)

Data generation (8551, INT, DINT, FLOAT, DFlOAT, POEC, CMO,
VFOand TRUNC)

Assembly control (DO, ELSE, DEMO, WHILE, and SKIPTO)

Error control (ERROR, fLAG)

Listing control (LIST. PAGE, SPACE, TITLE, XRSY)

Section control (SECTION, USE, ORG, POS, 8SS~ ALIGN)

Procedure/functIon pseudo instructions (PROt. PEND. PNAHE.
FNAHE LOCAL, OPEN. CLOSE. CONY)

In general, pseudo instructions can be placed anywhere in a
module. The following list of pseudo instructions is valid only
fora CPU module. The presence of any of these instructions in
an IOU module will generate and error.

ADDRESS
FLOAT

ALIAS
INFOMSG

OEF
POEC

4.1 ~f.l!lUlf_lIlEHIlfltAllilf!l

OEFG
REF

DFlOAT OINT
SECTION USE

Module identification pseudo instructions
beginning and end (IOENT-ENO) of a module).

designate the

4-2
CDC - ADVANCED SYSTEMS DEVELOPMENT

CV8ER 180 II Assembler ERS
86/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.1.1 IOENT - MODULE IDENTIFICATION

4.1.1 {DENT - MODULE IDENTIFICATION

An {DENT pseudo instruction of the following form is thoe first
statement ofa module recognIzed by the Assembler. The first
input statement must be an lDENT or-comment statement and if end
of information does not follOW an END statement then the
statement following END must be another IOENT or comment
statement. Only an IOU module assembly permits several IOENT
statements before the END statement. where each IDENT identifies
an IOU overlay. Assembler flags any spurious use of IDENT before
END as an error. For an IOU module only, the IOENT statement
permits 3 operands. Fora CPU module the argument field must be
blank.

name

entry

origin

iouno

E.xample:

+---------+----------+------------------------11 ;abe 1 toperation 'argument
+---------+----------+------------------------
I name I IDENT lentry,origin.iouno

Name of the module, it is required and can be 1-31
characters of which the first must be alphabetic as
defined in Section 2.3. This name cannot be
redefined, and may be used to reference the code
section.

(required for an IOU module) A symbol specifying the
IOU overlay entry address. Symbol category must be
6.

(required for an IOU module) An expression specifying
the first word address of the IOU overlay. It must
represent a valid IOU memory address (O-OFFF(16»
else an error is diagnosed.

(optional) Absolute expression specifying the number
of the IOU on which the program is to be loaded.'

TEST IDENT .TEST is the name of the module

4.1.2 END - END MODULE

An END pseudo instruction must be the last statement of each
module. It causes the Assembler to terminate all counters,
conditional assembly, procedure generation and code duplication.

4-3
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYDER 180 II Assembler ERS
86/10/17

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.1.2 END - END MODULE
--

The Assembler combines all local blocks (sections) into a
relocatable subprogram block, generates the relocatable binary
tables and produces the listing.

label

tralabel

Example:

+---------+----------+------------------------
foperation 'argument

+---------+----------+------------------------
Ilabe 1 lEND I"t,. al abe 1

END

Optional. last address of the module.

Optional, a 1-31 character symbol specifying the
entry point to which control transfers for a CPU
modu1e. Tralabel is invalid in an IOU module and
must be omitted. This symbol must be declared as an
entry point in the (linked) CPU module. either by a
OEF, OEFG, or REF pseudo instruction in this module.
At least one module must specify a transfer address
or the loader signals an error. If more than one
module indicates a iransfer address, then the lbader
uses the first one encountered.

START .START is the transfer label

This section describes a pseudo instruction that allows the
user to control the binary output produced by the Assembler.

4.2.1 MACHINE - DECLARE OBJECT PROCESSOR TYPE

The MACHINE pseudo instruction specifies the type of computer
processor on which the object program can be executed. A MACHINE
statement must appear before any generated code. The MACHINE
pseudo instruction also identifies which instruction mnemonics
are permitted (CPU or IOU) and which type of object text to
generate (CPU or IOU). No more than one MACHINE pseudo
instruction may appear within any assembly unit (IDENT-END).

+---------+----------+------------------------11 abe"' toperation largument
+---------+----------+------------------------

IMACHINE Itype,bind

type C180CPU The object processor is a tYBER 180 CPU

4-4
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86l10l11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.2.1 MACHINE - DECLARE OBJECT PROCESSOR TYPE
--

bind

C180IOU

(default). The Assembler
instruction mnemonics and
object text.

wi J 1 accept CPU
wIll generate CPU

The object: processor is a eYHER 180 IOU. The
Assembler will accept IOU instruction
mnemonics and will generate IOU object text.
Negative numbers in the generated data will be
in l's complement form (since the IOU is a Its
complement processor).

No other type is available at this time.

This subfield is applicable only if type is C180CPU.

8INDABlE (DEFAULT) The Assembler will generate
additional object text to permit the
L'ibrary_generator to ub ind" the modu'le. If
the other statements in the module do not
conform to the rules for ubindable" code then
a FATAL diagnostic will be issued for each of
these statements (See Section 5.1.9).

NONBINDABlE The object text generated will have the
vnon-bindablew attribute set. No diagnostics
wi 11 occur if the rules for vbindableu code
are not fo 1 lowed. The l i brarY_generator wi 11
abort if an attempt is made to "bind- this
module.

Example:

MACHINE C180CPU .Binary is for a CV8ER 180 CPU

The pseudo instructions SET and EQU permit direct assignment
of values to symbols. The values can be absolute or relocatable.
Subsequent use of the symbol in an expression produces the same
result as if the value had been used as a constant. Symbols
defined using EQU cannot be redefined.

Any symbol may be given one or more programmer defined
attributes by using the ANAME pseudo instruction to define an
attribute name, and then using the ATRIa pseudo instruction which
assigns a specific value to a specific symbol. Once defined, the
attribute function may be used to recover the attribute value
assigned to the argument.

4-5
CDC - ADVANCED SYSTEMS DEVELOPMENT

(V8ER 180 II Assembler ERS
86/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.3.1 SET/EQU - ASSIGNMENT OF VALUES

4.3.1 SET1EQU - ASSIGNMENT OF VALUES

A SET or EOU pseudo instruction defines the symbol in the
label field as having the value and attributes indicated by the
expressions in the argum-ent fie ld. The di fference between SET
and EQU is that symbolS defined with an EQU cannot be redefined.
whereas symbol~ defined with a SET may be redefined with a
subsequent SeT any number of times •

1abel

-, is t

•. _-------+----------+------------------------
'label 'operation 'argument
+---------+----------+------------------------
tlabel
Ilabel

I SET
IEQU

{Requ ired) A
element number
field list is
category of 9.

11 ist
11 i st

list of one or more symbols, or symbol
identifiers to which the argument
assigned. It will have a symbol

Evaluatable expressions. The expressions cannot
include symbols as yet undefined. The maximum value
of a list element cannot exceed 64 bits
(OFFFFFFFFFFFFFFFF(16}). When the first element in
the list is a symbol, the attributes of that symbol
will replace the attributes of the symbol in the
label field.

Any symbol in the label field cannot be referred to prior to
its first definition.

The SET and EQU pseudo instructions assign a list of values to
the symbol(s) in the label field. The list must contain only
evaluable expressions at the time the pseudo instruction is
processed by the Assembler. The label field may consist of list
names (symbols) or list element identifiers.

List elements are referenced using the form:

listnamefetement number)

where listname is the name of the list. and element number Is an
evaluable expression denoting a particular element in the list,
where, for an n element list, element number = 0, 1. 2, ••• ,n-l.
A negative element number is diagnosed as an error.

A SET or EQU pseudo instruction within a PROCEDURE is
processed by the Assembler only when the PROCEDURE is referenced

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.3.1 SET/EQU - ASSIGNMENT OF VALUES

4-6

86/10/17
Rev: f

--
and not when the PROCEDURE is defined. The expressions which
comprise the list elements must be evaluable therefore, only when
the PROCEDURE is referenced.

A particular list element may have a value of ZERO or NUll
depending on how that element is defined. A null element is
assigned to a list whenever a position for a list element is
indicated with appropriate commas, but the position is devoid of
contents. A null list element has the numeric value zero when
used computationally. Null elements may be transferred from one
list to another.

The argument field is completely processed and for each
subfield in the argument list the value is assigned to the
corresponding value element of each of the symbolic names in the
label field. If a list is specified. it is replaced completely
by the argument. If a 'Iist elementi.s specified, replacement is
on an element by element basis. The designated element is
replaced by the first argument list value, and succeeding
elements being replaced by the corresponding argument value.

SET

When this pseudo instruction is processed by the Assembler,
the label VA" i~ associated with the list 3,5,7,12,15. The
elements and their values are:

AIO} = '3
All) = 5
.A[21 = '1
AI'31 = 12
.A[41 .- 15
4(5.1 = 0 • (Nu 11)

Following the previous pseudo instruction, we could then give
the pseudo instructions:

A(l]
A{41
A(5)

SET
SET
SET

42
1'1

8

And the list associated with BAB would then be:

A[O} = 3
All) = 42
A[21 = 1
.Af 3] = 12

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.3.1 SET/EQU - ASSIGNMENT OF VALUES

AI4]- 1'1
Al 5) = 8
A(6) = 0 .(Null)

SET

In this case, the symbol SUH must have
defined. If its value were 50, then the
establish two lists X and Y which would both be
the list:

5.3,1,2,51,6

4-1

86/.10/17
Rev: F

been previously
Assembler would
associated with

In addition, any previous list associated with either X or Y
would be erased. The 'fo'11owing instructions may then be given:

Z
X[OJ
ZZ
X

SET
SET
SET
SET

X
SlfM+l
X
5,3,1

After these pseudo instructions have been executed, the lists
appear as:

x = 5,,3,1
Y = 53,12,51,6
1 = 5.3,12,57,6
ZZ= 51,12,57,6

E2S.amJlle_113

RINO_REG
TEMP_REG

EQU
SET

A3
A5

.points to the binding segment

.'temporary work ing regi ster

BIND_REG now is equal to 3 and has the attributes of #AREG.
The symbol BIND_REG cannot be redefined. TEMP_REG is equal to A5
and has the attributes of #AREG. TEMP_REG can be changed with a
subs:equent SET.

A SET 0,1,2,3,4
AI21 SET 5,6

results in the list:

A = 0,1.5,6,4

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.3.1 SET/EQU - ASSIGNMENT OF VALUES

The pseudo instruction:

Afll SET ,.10,,11

modifies the list to:

A = 0",10,,11

4.3.2 ANAME DIRECTIVE

4-8

86/10/11
Rev: F

The ANAME pseudoi nstruct ion is used to define a programmer
defined attribute name and to assign a particular attribute
number to that name. A p,art i cu lar att:r i bute number may have
several names -associated with it by using ANA,.,E more than once.

label

value

+---------+----------+------------------------
Ilabel I oper a-t ion 1 argument
+---------+----------+------------------------
J label IANAt-1E 'value

A previously undefiried symbol.

Evaluatable expression
positive integer.

whose value can be any

4.3.3 ATRIB DIRECTIVE

The purpose of the ATRI8 pseudo instruction is to assign a
value to the programmer defined attribute of a particular symbol.
The symbol to which the attribute value is assigned is the symbol
in the LABEL field. If the symbol in the LABEL field of thi~
pseudo instruction is not previously defined, it will be placed
in the permanent symbol table and given a symbol category of It
and the specified attribute assigned to it. If the symbol in the
LABEL field has been previously defined. the value is assigned to
the attribute of the symbol and replaces any previous value
assigned to that symbol for that attribute. Normally, a symbol
must be defined before attribute values are assigned to that
symbol. An exception occurs when PROCEDURES are executed while a
source statement is being processed.

+---------+----------+------------------------
Ilabel loperation fargument
+---------+----------+------------------------
'label IATRIB lattribute,value

CDC - ADVANCED SYSTEMS DEVELOPMENT

crBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.3.3 ATRIB DIRECTIVE

86/10/17
Rev: F

label A label field symbol is required.

attribute A previously defined
pseudo instruction)
attribute name.

(using the ANANE
programmer defined

value Evaluatable expression.

4.3.4 USE OF THE ANAME AND ATRIB PSEUDO INSTRUCTIONS

• CONSIDER THE FOLLOWING SEQUENCE OF DIRECTIVES:

INDEX
BASE

ANAME 1
ANAME 2

•

•

At this point we have defined two programmer defined
attributes INDEX and BASE. Any symbol can now have values
assigned to these attributes.

5MBl ATRIB INDEX,5
SM81 ATRI8 BASE.OA(16)

•
•

At this point. the INDEX attribute of SM81 is 5
and the ~ASE attribute of 5MB! is a hexadecimal A.

5MBl ATRIB INDEX,a
SM81 ATRIS 8ASE,2

•
•

•
•

•

JA
JB

At this point the INDEX and BASE attributes of 5MB! have been
reassigned to the values:

INOEX{SMBIJ = 0
BASE{ 5MB 1] =.2

Attributes may be used as terms of an expression.

SET
EQU

BASEISMBll
INDEXfSMBIJ

The pseudo instructions DEF, OEFG, and REF are valid only in
CPU modules, and are used to denote entry points. either in the
current module or a separately assembled/compiled modu1e. A
symbol flagged as an entry point denotes an address representing
data or code, which can be referenced by other modules. It is
through the use of entry points that the NOS/VE loader is able to

4-10
CDC - ADVANCED SYSTEMS DEVELOPMENT

craER 180 II Assembler ERS
86/10/17

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.4 MODULE LINKAGE

link modules together. See the appropriate NOS/WE
document for complete details.

loader

4.4.1 OEF,OEFG-DECLARE ENTRY SYMBOLS

The OfF and OEFG pseudo instructions define symbols as entry
points in the current CPU module. OEFG pseudo instruction
defines symbols as gated entry points. (Gated entry points are
explained further in the NOS/VE loader documentation.)

symi

Example:

+---------+----------+------------------------
Ilabe 1 loperation 'argument
+---------+----------+------------------------,
I

OEF

10EF
IDEFG

Isyml,sym2, ••• ,symn
Isyml,sym2, •••• symn

(Required) Linkage symbol from 1-31 characters of
which the first must be alphabetic as defined in
section 2.4. (Also see ALIAS statement.) Each
symbol must be further defined in the module as a
relocatable address (catagory 6). The symbol may not
be a LOC.Al or OPENED ,symbo 1. The appear ance of the
same symbol more than once in a OEF or DEFG is not an
error, but the symbol may not appear in both a OfF
and O£FG statement.

PRGI .PRGI is a symbol in this compilation unit.

4.4.2 REF-DECLARE EXTERNAL SYMBOLS

The REF pseudo instruction 'lists symbols that are defined as
entry points in independently campi led or assembled CPU modules
for which references can appear in the module being assembled.

symi

+---------+----------+------------------------
l1abel loperation largument
+---------+----------+------------------------

1REF Isyml,sym2 •••• ,symn

(Required) linkage symbol, 1-31 characters of which
the first must be alphabetic as defihed in Section
2.4. These symbols must not be further defined
within the module being assembled. Note that it is
still possib1e to have new definitions for the symbol
by using LOCAL or OPEN statements. (Also see AtlAS

4-11
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYoER 180 II Assembler ERS
86/10/17

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.4.2 REF-DECLARE EXTERNAL SYMBOLS
--

statement.)

Symbols may be declared .in a REf statement prior to or
subsequent to their use in the program. They must be global
symbols, and cannot have been declared OPEN or LOCAL. Symbols
which are declared in a REF pseudo instruction are assumed to be
relocatable and their use in expressions must follow the rules
for relocatability. Any further definition of a REF symbol wi't
be diagnosed as an error.

Example!

REF TAGX .TAGX IS AN ENTRY POINT IN A OIFFERENT
.ASSEMBlY/COMPILATION UNIT.

4.4 • .3 ALIAS - EQUATE lINKAGE SYMBOLS

The ALIAS pseudo instruction gives the programmer the ability
to declare entry points with names other that that used within
the current CPU module.

namel

name2

Example:

+---------+----------+------------------------
11 abe 1 toperation 'argument
+---------+----------+------------------------
Iname! IAtIAS Iname2

1-31 character linkage symbol used by the Assembler.
This symbol must be further defined in the module as
a OfF, DEFG, or REF symbol.

1-31 character CYeER 180 linkage symbol. This symbol
is not restricted by the limits of symbol definition
in Section 2.4. The symbol must consist of
alphabetic or numeric characters, the first of which
must be alphabetic. The colon may not be used as one
of the characters.

TAG ALIAS TAGFORAlONGNAME .TAG FOR A LONG NAME IS
.DEFINED IN A DIfFERENT
.COMPILATION UNIT.

4.4.4 ADDRESS - FORM CY8ER 180 ADDRESS

The ADDRESS pseudo instruction enables the generation of

CDC - ADVANCED SYSTEMS DEVELOPMENT
4-12

86.110.111
Rev: F CYBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.4.4 .AODRESS - FORM (VBER 180 ADDRESS

--
references to full Process Virtual Address (PVA's) in a CPU
module, to be filled in by the NOS.lVE Loader. Generally. this
pseudo instruction is used in the BINDING section to form
poi nter s.

Label

typi

+---------+----------+------------------------
J label loperation 'argument
+---------+----------+------------------------

I.AOORESS Itypl,symlt ••• ,typn,symn

Optional. symbol assigned the value of the beginning
of the address list. Symbol category equals 6.

Type designating the address insertion type. It can
have only the following values else an error is
diagnosed:

P - (Pointer) Creates a pointer (PYA) to the
specified address. The generated object code is
one word long and is word aligned relative to the
sec-tion origin. The PYA is stored in the
generated object code right justified with zero
f i 11 •

C - (Code Base Pointer) Used for linking procedures.
The format for the PYA is one word of generated
object code for internal symbols, and two words
of generated Object code for external symbols.
The generated object code is always word aligned
relative to the section origin with the PYA being
right justified with zero fill.

Cl- (Code Base Pointer Internal Format) Generates
object code for a code base pointer in internal
format (1 word) for the symbo I f without regard as
to whether the symbol is internal or external.
The generated object code is word aligned
relative to the section origin with the PYA being
right Justified with zero fill.

CE- (Code Base Pointer External Format) Generates
object code for a code base pointer in external
format (2 words) for the symbol. without regard
as to whether the symbol is internal or external.
The generated object code is word aligned
relative to the section origin with the PYA being
right justified and zero filled.

R - (Relative) Generates object code for a PYA which

4-13
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
66/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.4.4 ADDRESS - FORM CYHER 180 ADDRESS
--

symi

points to ·a symbol with an offset. The I·ength of
the generated object code is 8 bytes in the
binding section, or 6 bytes in any other section~
The generated object code is word aligned
relative to the section origin when in the
binding section with the PYA being right
justified with zero fill. When not in the
binding section, the generated object code is
byte aligned. -

Fo·llowing each TYPI subfield there must be a single.
corresponding SYHI subfield which contains a symbol
or expression which identifies the internal or
external location for which a PYA is to be created.
Expressions are permitted only when TYPI is R.

Example:

TA.G

USE SINDING
REF TESTflATA
ADDRESS C,TESTDATA
USE #lASTSEC

.GENERATES A 2 WORD PYA FOR TESTOATA

.WHICH IS IN A DIFfERENT MODULE.

The instructions described In this section are the only pseudo
instructions that generate data. All other program data is
generated through symbolic machine instructions.

4.5.1 RSSI-RESERVE ZEROED STORAGE

The 8SSZ pseudo instruction generates zeroed bytes of data in
the section of a CPU module currently in use or it generates
zeroed 16-bit words of storage in an IOU module.

label

aexp

+---------+----------+------------------------
Ilabe 1 loperation largument
+---------+----------+------------------------
, 1 abe 1 18551 I ae.xp

Optional, 1abel defined as the byte offset in the
section after the appropriate alignment occurs. The
symbol identifies the beginning of the reserved
storage area.

Absolute evaluable expression specifying the number
of zeroed units (bytes for CPU or words for IOU) of

4-14
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F
--4.0 PSEUDO INSTRUCTIONS
4.5.1 8SSI-RESERVE ZEROED STORAGE

stor,age to be reserved. The ex.pression cannot
contain external symbols or result in a relocatable
or negative value.

A 8551 0 or an erroneous expression causes a force to a unit
boundaryCbyte for CPU or word for IOU) and the symbol
definition, but no storage is reserved. If storage is to be
reserved ina CPU module starting ata word, halfword. or parcel
boundary, then the assz must be preceded by one of the
appropriate alignment pseudo instructions.

Examp le:

ALIGN 0,8 .FORCE BYTE OFFSET TO A WORD BOUNDARY.
TAG BSSZ 10 .RESERVES 10 8YTES OF ZEROES.

4.5.2 INT - GENERATE INTEGERS

The INT pseudo instruction generates one or more 32-bit
integers on a byte boundary in the current section of a CPU
module for each item listed in the argument field or it generates
one or more 16-bit integers on a word boundary in an IOU module
for each item listed in the argument field.

label

itemi

Example:

TAG INT

+---------+----------+------------------------
11abe 1 I operat ion largum:ent
+---------+----------+------------------------
'label lINT liteml,item2, ••• ,itemn

Optional. symbol is assigned the byte offset in the
section after the force to the appropriate boundary
occurs. Symbol category equals 6.

Numeric data item. Value of the numeric data item
cannot exceed the storage capacity of the item being
generated.

4.5.3 DINT - GENERATE 64-81T INTEGERS

The OINT pseudo instruction generates one 64-bit integer on a
byte boundary in the current section of a CPU module for each
item in the argument field.

4-15
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS
86/10/17

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.5.3 DINT - GENERATE 64-81T INTEGERS

I.abe 1

i temi

Example:

+---------+----------+------------------------
'label loperation 'argument
+---------+----------+------------------------
Ilabe 1 JOINT liteml,item2, ••• ,itemn

Optional, symbol assigned the byte offset in the
section after the force to a byte boundary occurs.
Symbol category equals 6.

Numeric data item.

TAG OINT

4.5.4 FLOAT - GENERATE SINGLE PRECISION FLOATING-POINT NUMBERS

The FLOAT pseudo instruction generates one 64-bit flbating
point number on a byte boundary in the current section of a CPU
module for each item listed in the argument field. Note that
floating point numbers entered with a decimal point must have a
digit preceding the period (else the remainder of the statement
will be interpreted as comments).

'1 abe 1

i temi

Examp" e:

+---------+----------+------------------------
loperation largument

+---------+----------+------------------------
Ilabel IFLOAT liteml.item2, ••• ,itemn

Optional symbol assigned the byte offset
section after the force to a byte boundary
Symbol category equals 6.

in the
occurs.

Numeric data item. Value of numeric data item cannot
exceed the storage capacity of a single precision
(64-bit) floating point item. Conversion of the
numeric data item into the internal f'oating point
representation is performed by a (VBER 180 math
libray program. Consult the appropriate (VSER 180
math libray documentation for further information.

TAG FLOAT 1.341E-6,O,-6.3416E12,1.

4-16
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/17

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.5.5 OFlOAT - GENERATE DOUBLE PRECISION FLOATING-POINT NUMBERS
--

4.5.5 DFlOAT - GENERATE DOUBLE PRECISION FLOATING-POINT NUMBERS

The OFlOAT pseudo instruction generates one double precision,
128-bit floating point number on a byte boundary in the current
section of a CPU module for each item listed in the argument
field. Note that floating point numbers entered with a decimal
point must have a digit preceding the period (else the remainder
of the statement is interpreted as comments).

label

itemi

Example:

+---------+----------+---------------------~--
1label 'operation 'argument
•. --------+----------+------------------------
Ilabel IDFlOAT Itteml,item2 •••• itemn

Optional symbol assigned the byte offset
section after the force to a byte boundary
Symbol category equals 6.

in the
occurs.

Numeric data item. The value of the numeric data
item must be within the limits of the storage
capacity of the item being generated. Conversion of
the item into internal floating point representation
is performed by a CYBER 180 math library program.
Consult the appropriate CYBER 180 math . library
documentation for further information.

TAG OFLOAT -22.661,6.81701E-14,lE3,O.00000001762

4.5.6 POEC - GENERATE PACKED DECIMAL DATA

The POEC pseudo instruction generates packed decimal data on a
byte boundary for the length of the field desired.

label

str ·ing

+---------+----------+------------------------
Ilabe 1 loperation .argument

+---------+----------+------------------------
I 'abe' IPOEC IC'string'

Optional symbol assigned the byte offset in the
section after the force to a byte boundary occurs.
Symbol category equals 6.

Signed or unsigned numeric decimal character string

4-17
CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS
86/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.5.6 POEt - GENERATE PACKED DECIMAL DATA

--

Example:

is required. Any other argument type is diagnosed as
an error. Each character in the string generates a
4-bit code. Only the characters 0-9 and + or are
permitted. Any other characters in the string are
diagnosed as an error. The sign character (+ or -)
must be the last (rightmost) character. If the data
is to be used by a BDP instruction the user must
insure that the contents of the generated object code
fit the requirements of the SOP type designator (See
Section 1.4).

TAG POEt C'1234'

4.5.1 CMO - GENERATE 8IT STRING

The CHO pseudo instruction is a single statement form of
PROCEDURE. The output of the CHO pseudo instruction is a string
of binary bits together wi thappr apr i ate control information for
the CYBER 180 LOADER. The length of the binary bit string is
controlled by the -length list- and the contents of the binary
bit string are controlled by the ·value list". 80th the -length
listU and the ·value list" can contain multiple subfields,
provided that the total bit string produced is greater than zero
and less than or equal to 19Z~ bits.

label

+---------+----------+------------------------t 1 abe J loperation 'argument
+---------+----------+------------------------
t label

A label field symbol is required. It is used to
define the OPERATION field name by which this
particular CMO definition will be referenced in
subsequent statements of the program. The CHO
statement must appear prior to any reference to the
operation it defines and may not appear within a
PROCEDURE definition. The (optional) label
appearing on a line referencing a CHO defined
operation will be associated with the generated bit
string. Symbol category equals 6.

The length list is a list of evaluable expressions
whose value represents the length in bits. of each
argument field element to be generated by the
Assembler. This list is ordered from left to right.
If thev;al ue of the tf '_1 sttf causes an overflow o·f

4-18
CDC - ADVANCED SYSTEMS DEVELOPMENT

cvaER 180 II Assembler ERS
86/10/17

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.5.7 CHO - GENERATE BIT STRING

the section counter, then an error will be
diagnosed.

In one-to-one correspondence with the "length list­
is a uvalue list·, which is a list of expressions
which determines the ~al1Je assigned to the
corresponding element of the "length list-. If
number of elements in -l_lst" does not match the
number of elements in "v_1st" then an error is
diagnosed. I f -the va 1 ue of a "v_l stUe lement
exceeds the storage capacity allocated by the
corresponding V)_15tH element, then an error mayor
may not be diagnosed depending on the use of the
TRUNe statement (See Section 4.5.9).

Example: (Also see the section on PROCEDURES)

LA CMO.8.4,4,16

4.5.8 VFD - VARIABLE FIELD DEFINITION

The VFO pseudo instruction generates a string of binary bits.
The (optional) label is associated with the data string.

The difference between the CHO and VFO pseudo instructions is
that the tHO pseudo instruction is a template which does not
generate output until called, whereas the VFD pseudo instruction
generates output when it is encountered.

1 abel

+---------+----------+------------------------
, labe 1 loperation largument
+---------+----------+------------------------
'label

Optional symbol assigned the byte offset in the
section.

A list of evaluable expressions which represent the
length in bits of each subfield to be constructed.
This list is ordered from left to right. If length
list causes an overflnw of the section counter then
an error wi 11 be di agnosed.

In one-to-one correspondence with the length list is
a list of expressions which determine the value
assigned to the elements of the length list. If the
number of elements of wl_1stU does not match the

4-19
CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS
86/10/17

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.5.8 VFD - VARIABLE FIELD DEFINITION

--

Example:

LISTl

number of elements of "v_1stV then an error is
diagnosed. If the value of the "v_1st- e·'ement:
exceeds the storage capacity specified by the
corresponding "l_'st" element, then an error mayor
may not be diagnosed depending on the use of the
TRUNe statement (See Section 4.5.9).

4.5.9 TRUNC - TRUNCATE

The TRUNe pseudo instruction is used to indicate what action
is to be taken, if it is necessary to truncate a value in order
to enable it to fit into a field specified by a tHD or YFD pseudo
instruction.

v.a1 ue

+---------+----------+------------------------
'label loperation targument
+---------+----------+------------------------

ITRUNC Ivalue

Value is one of the numbers 0 and 1 which have the
following meaning:

0: Truncate and do not associate an error flag
with the data generated.

1 ·• .- Truncate and flag the word generated as in
error.

An attempt will always be made to fit the significant bits of
a value into a field. When type 1 truncation is specified, the
elimination of an unbroken string of non-significant zeros or
elimination of an unbroken string of Its in the case of a
negative number, is not considered to be an error. When
character data is truncated, trailing blanks are not considered
an error.

More than one TRUNC pseudo instruction may appear in a
program. The most recently encountered TRUNC pseudo instruction
will be used. If no TRUNe pseudo instruction appears in a
program, "type 0" truncation will be used.

Example:

TRUNC 1 .FLAG TRUNCATION ERRORS.

4-20
CDC - ADVANCED SYSTEMS oeVELOPMENT

CVBER 180 II Assembler ERS
86/10/17

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.'5.10 INFOMSG

4.5.10 INFOMSG

The INFOMSG pseudo instruction is used to control the
generation of the Informative Diagnostic issued when data
generation occurs in the BINDING or STACK sections of a CPU
module.*

value

Example:

+---------+----------+------------------------
J 1 abe I 1operation largument
+---------+----------+------------------------

tINFOMSG Ivalue

- LISTON - Turns generation of error message on
(default).

- blank - Suppresses generation of error message.

INFOMSG LISTON .FLAG DATA GENERATION ERRORS.

* Data cannot be initialized in the Binding and Stack sections
at assembly time, with the exceptIon of the ADDRESS pseudo
instruction which can be used in the Binding section.

4.6.1 OO/ELSE/DENO PSEUOO INSTRUCTIONS

This group of pseudo instructions is used for conditional
iterative control of Assembler processing. The format of these
pseudo inst~uctions is:

-I abe 1

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------
'label
I
Ilabel

100
IELSE
IOENO

lexpression ,
J

Optional label that is assigned the value of the
expression when used on the DO statement. It is not
valid on the ELSE pseudo instruction. When specified
on a DEMO, a cycle effect can be created by using a
SKIPTO LABEL instruction. The label of a OEND
statement is never entered in the Assembler's symbol
table and the presence of a label field is used only

CDC - ADVANCED SYSTEMS DEVELOPMENT

(VBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.6.1 DO/ElSE/DEND PSEUDO INSTRUCTIONS

as the object of a SKIPTO.

4-21

86/10/11
Rev: F

expression Expression must be absolute and evaluable. Thi~
expression represents the number of times the 00 loop
wi 11 be executed. If no expression is present, the
.argument of the 00 will be treated as O.A boolean
condition can be specified for conditional assembly
of code.

A DEMO pseudo operation must be associated with each DO pseudo
operation written. However. the ELSE need not be present. but if
desired. must occur between the DO and DEMO.

The DO pseudo operation operates as follows:

a) An internal counter is set up and initially given the value
of o.

b) If a label is present on the DO line. its value is set to o.

c) The expression on the DO line is evaluated. Denote the
results of this calculation by n. (If no expression was
present or the expression was not evaluable, n = 0).

d) If n ~ 0, skip succeeding lines until an ELSE or DEND pseudo
operation is encountered.

1) If an ELSE pseudo operation is encountered. assemble
succeeding statements until a OEND line is encountered.
Cont.inue assembly at the statemen·t after the OENO line.

2) If a OENO pseudo operation is encountered, resume
assembly at the statement followIng the DEMO line.

e) If n) 0, the following action occurs:

1) Increment the internal counter by 1.

2) If a label was present on the on line, set the value of
the label equal to the new value of the internal counter.

3) Assemble all lines unti 1 an ELSE or DENO pseudo operation
is encountered.

4) Compare the internal counter to n.

a) If the count is less than 0, repeat the procedure
from step (e). This causes the count to be
incremented, and resumes assembly of the statements

4-22
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVoER 180 II Assembler ERS
86/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.6.1 DOIElSE/OEND PSEUDO INSTRUCTIONS

Examp'le:

following the DO.

b) .If the count is equal to n, terminatecon1:rot of the
DO pseudo operation and resume assembly at the line
immediately following the OEND. skipping all
statements between the ELSE and DE NO if necessary~

• EXAMPLE 1) The following code will assemble one 64-bit word
with a value of X factorial. If X is negative or
zero, then a word with value zero is assembled
instead:

•
•
•

FACT
I
FACT

FACT

SET
DO
SET
ELSE
SET
OENO
VFD,64

1
,X
FACT*I

o

FACT

PROCESSED X TIMES IF X)O

PROCESSED ONCE IF X~O

• EXAMPLE 2) The following code will assemble N'+l 64-bit words
whose values are 0 J ••• ,N where N can be e i the,.
positive or negative. The inner 00 block is
processed only if N(O.

•
•
•

I

J

•

•

VFO.,64 0
00 N
VFO,64 I PROCESSED N TIMES IF N)O
ELSE
00 -N
VFO,64 -J PROCESSED -N TIMES IF N(O
OEMO
OENO

If N=3 the above code is equivalent to:
VFO,16 0
VFO,16 1
VFO,16 2
VfO,16 3

If N=-2 the example code Is equivalent to:
VFO.,16 0
VFD,16 -1
VFO,16 -2

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.6.2 WHIlE/ElSEIDEND PSEUDO INSTRUCTIONS

4.6.2 WHIlE1ElSE/OENO PSEUOO INSTRUCTIONS

The format of these pseudo Instructions are:

+---------+----------+------------------------
'label loperation largument
+---------+----------+------------------------
Ilabe 1
I
'label

'WHILE
'ELSE
fOENO

'expression
t
I

4-23

86/10/1"7
Rev: F

label and expression have the same meaning as in the DO pseudo
operation. However. there is no limit placed on the value of the
expression.

The execution of the WHILE loop is similar to that of the 00,
except that the expression is eva1uated for each iteration in the
loop.

The WHILE pseudo operation is performed as follows:

a) An internal counter is set up and initially is given the
value o.

b) If a label is present on the WHILE line, its value is se~ to
o.

c) The expression of the WHILE line is evaluated. Denote the
results of this evaluation by m. (If no expression i~
present, or the expression is not evaluable, m = 0.)

dJ If m { 0 and this is the first time through the WHILE loop,
suppress assembly until an ELSE or OENO pseudo operation is
encountered.

}) If an ELSE pseudo operation is encoun"tered t assemble
succeeding statements until a DENO line is encountered.
Continue assembly at the statement following the OENO
li nee

2) If a OENO pseudo operation is encountered, resume
assembly at the line following the OEND line~

If m , 0 and this is not the first
loop, skip all lines until a
encountered and resume assembly at
DENO.

time
OENO
the

through the WHILE
pseudo operation is
lfne following the

4-.24
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYaER 180 II Assembler ERS
86.110/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.6.2 WHILE/ElSE/DEND PSEUDO INSTRUCTIONS

e) If m > 0,

1) Increment the internal counter by 1.

2) Set the value of the label on the WHILE line (if present)
to the new value of the counter.

3) Continue assembly until an ELSE or DEND pseudo operation
is encountered, a~d then repeat the procedure from step
c.

Note that the only logical way to get out of a WHILE loop is
to change ·within the loop, one or more of the items which
make up the expression on the WHILE 1ine so that the
expression will not have a value ~O.

Example:

•
•
•
•
•

A
B

This code will assemble a number of 16-bit words whose value
are from the Fibonacci series. Starting with the value It
each word is equal in value to the sum of the previous t·wo
words. In this example the series is terminated when all o·f
its members less than N have been generated.

A ,8 ,TEMP
o
1
S(N
B

TEMP
B

OPEN
SET
SET
WHILE
VFD,16
SET
SET
SET
OEND
CLOSE

B
A+8

A TEMP

A.8,TEMP

• If N=10 the above code is equivalent to:
VFO,16 1
VFO,16 1
VFO,16 2
VFO,16 3
VFO,16 5
VFO,16 8

4.6.3 SKIPTO - SKIP CODE

The SKIPTO pseudo operation enables the user to conditionally
alter the sequence in which assembly lines are processed. It has
·the form:

4-25
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.6.3 SKIPTO - SKIP CODE

--
+---------+-----------+-----------------------

loperation I argument
+---------+-----------+-----------------------

fSKIPTO,exp Inamel ••••• namen

exp Optional, must be evaluable.

namei A valid label appearing on a CONT, DENO. or PEND
statement which follows the SKIPTO statement.

If the expression is not present, only a single label is
permi ss i b le.

a)

SKIPTO operates as follows:

If no expression
succeeding lines
found.

is present on the SKIPTO line. skip
until a line with the appropriate label is

b) If an expression is present, it is evaluated.

1) If value of the expression i5k and k lies between 0 and
0-1 where n is the number of labels on the SKIPTO
ditective, the succeeding lines are skipped until a CONT,
DEND, or PEND statement is found which has as its label.
namek.

2) If the value of the expression is < 0 or >= n (or the
expression is not evaluable), assembly resumes at the
line immediately fol1bwing the SKIPTO pseudo instruction.

Note that when in the skipping mode, all pseudo instructions
except LOCAL, OPEN and CLOSE are ignored •. Any symbol defined
by LOCAL or OPEN pseudo instructions are not recognized.
Labels within PROC/PEND, WHIlE/DEND, or OO/OENO blocks are
not recognized, and it is illegal to write a SKIPTO pseudo
instructions which branches out of a procedure definition,
WHILE/DEMO sequence, or OO/OENO sequence.

Example:

• In the following example. the statement processed following
• the first SKIPTO directive depends on the value of BAU.

LJNEXPT

•
•
SMAll

SK IPTO, A
SKIPTO MORE

RES 50

SMALl,MEDIUM,LARGE,HUGE
THIS STATEMENT IS PROCESSED
If A IS NOT EQUAL TO 0, 1, 2
OR 3.
THIS STATEMENT IS PROCESSED

CDC - ADVANCED SYSTEMS DEVELOPMENT

(YBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.6.3 SKIPTO - SKIP CODE

•
SKIPTO MORE

MEDIUM RES 100
•

SKIPTO MORE
LARGE RES 250
•

SKIPTO MORE
HUGE RES 1000
•
MORE CONT

•
•

IF A IS EQUAL TO o.

4-26

86110/17
Rev: F

THIS STATEMENT IS PROCESSED
IF A IS EQUAL TO 1.

THIS ST,ATEMENT IS PROCESSED
IF A IS EQUAL TO 2.

THIS STATEMENT IS PROCESSED
If A IS EQUAL TO 3.

•
•
•
•

If DRESU is a user-defined procedure which reserves the
number of words of core specified by its argument, then the
amount of core reserved by the above code varies depending on
"A." •

• .•

I

x

x

This example illustrates the effect of OPEN/CLOSE and DO/OEND
blocks on the SKIPTO directive •

•
•

SKIPTOX
•
•

OPEN
RES

CLOSE
•
•

x
s

x

00 10
LOCAL X
VFO,16 I

OEND
•
•

ADO BASE,OISP

THIS LINE IS SKIPPED BECAUSE
IT APPEARS

BETWEEN AN OPEN AND CLOSE

THIS LINE IS SKIPPED BECAUSE
IT APPEARS WITHIN A OO/DENO

BLOCK

THIS LINE IS PROCESSED
FOLLOWING THE SKIPTO DIRECTIVE

4-27
CDC - ADVANCED SYSTEMS DEVELOPMENT

crHER 180 II Assembler ERS
86/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.1.1 ERROR PSEUDO OPERATION

4.·7.1 ERROR PSEUDO OPER,AT ION

+---------+----------------+------------------
, 1 abe' loperation 'argument
+---------+----------------+------------------

IERROR,exp.label le'message'

The ERROR pseudo operation provides a method for conditionally
generating an error message in the object listing and
transferring control to another portion of the program.

label

exp

message

Label is any valid symbol appearing in the label
field ofa subsequent CONT, DENO, or PEND st;atement.
The statement must be a CONT. DEND. or PEND statement
before label comparison is made.

Exp is a conditional expression whose value
determines whether the error message is to be
produced and if a transfer of control is necessary~
If this subfield is omitted, then the message is
unconditionally generated.

Message is any valid combination of characters (see
Character set).

When an ERROR pseudo instruction
expression is evaluated.

is encountered, the

If it is true (1) or not specified, the error message is
produced on the object listing. If symbol is present.
control is transferred to the indicated line. If no
symbol is present, assembly continues with the next
statement.

If the expression is false (0), no message is produced
and assembly is continued at the succeeding line.

Example:

•
•

NElX
ERROR,A(O
SET

C'ILLEGAl ARGUMENT'
2,:3,A,M,XOR,COMX

•
•
•
•

WHEN THE ABOVE DIRECTIVE IS ENCOUNTERED, IF A IS lESS THAN
ZERO THEN THE MESSAGE "ILLEGAL ARGUMENT" WIll BE PRINTED. IF
A IS NOT lESS THAN ZERO, NO MESSAGE WILL BE PRINTED. IN
EITHER CASE, THE LINE NEll WILL BE PROCESSEO NEXT.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.1.1 ERROR PSEUDO OPERATION

PSRl

IlR
NEWl

ERROR,8(0)8)15,ILR
lPO,2 8
SKIPTO NEwt
ERR
CONT

C-ILLEGAl REGISTER'

·4-28

86/10/11
Rev: F

•
•
•
•

•

WHEN THIS ERROR DIRECTIVE IS ENCOUNTERED, IF O~B!15, NO
MESSAGE IS PRINTED OUT AND THE LINE PSRl IS PROCESSED,
fOLLOWED BY LINE NEWL. IF 8(0 OR 8{15, THEN THE ;MESSAGE
ffIllEGAl REGISTER- WILL BE PRINTED AND THE LINE IlR IS
PROCESSED, FOLLOWED BY THE LINE NEWL. IN THIS EXAMPLE, uLPO·
AND UERR" ARE USER-DEFINED PROCEDURES.

4.7.2 FLAG - CONDITIONALLY SeT ERROR FLAG

A FLAG pseudo instruction produces an assembly error, but does
not affect other code.

errtype

Example:

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------

1FLAG lerrtype

FATAL - a fatal error detected.
WARNING - a non-fatal error detected.

FLAG FATAL

The instructions described in this section permit extensive
control of the assembly listing format.

4.8.1 LIST - SELECT LIST OPTIONS

+---------+----------+------------------------t 1 abe 1 1operation 'argument
+---------+----------+------------------------

ILIST,val lexp_l,exp_2,exp_3

The LIST pseudo operation controls the assembly listing
generated. The argument field is used to select the various
listing options.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.8.1 LIST - SELECT LIST OPTIONS

val Val is an optional evaluable expression which is
interpreted as follows:

o = list this statement
controls in effect
encountered.

according
when this

to the listing
statement is

1 = list this statement according to the value of
expression 3. This is the default.

An evaluable expression which
following values:

o = Suppress complete listing.

1 = list input statements.

may assume the

2 = list input statements plus all statements that
generate code (VFD, CHO statements that normally
would not be listed).

3 = List all generated statements including internal
procedure expansions.

4 = list atl generated statements.

An evaluable expression used to control the listing
of unprocessed statements that are by-passed during
the assembly procedure and also the repeated
statements in a nOlWHILE which normally would not be
listed. This may occur during the proceSSing of
SKIPTO, 00 and WHILE pseudo instructions. The values
of the expression are as follows:

o = list only processed statements. but not repeated
~O/WHILE statements.

1 = list processed statements including repeated
~O/WHILE statements that are processed.

2 = List all statements.

Used to control the listing of the listing control
pseudo instructions, TITLE, PAGE, SPACE. IRSY, and
LIST. The values of this e.xpression are as follows:

o : 00 not list the Listing control statements.

1 = List the Listing control statements.

CDC - ADVANCED SYSTEMS DEVELOPMENT

cveER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.8.1 LIST - SELECT lIST OPTIONS

4-30

86/10117
Rev: F

The standard lIST parameters established by default are:

Causing a full listing to be generated. Subsequently any of
these parameters may be altered. A null subfield specifies that
the parameter is to be unchanged. If no parameters are
specified, the lIST options wi 11 revert back to their previous
settings.' -

4.8.2 PAGE - EJECT PAGE

+---------+----------+------------------------
, 1 abe 1 loperation fargument
+---------+----------+------------------------

f P.AGE t

The appearance of this pseudo operation will cause the next
tine of output to appear at the top of a new page on the computer
listing. If the next line would normally appear at the top of a
new page, the PAGE pseudo operation is ignored. Two consecutive
PAGE directives will generate a blank page.

4.8.3 SPACE - SKIP LINES

+---------+----------+------------------------
11abe 1 foperation 'argument
+---------+----------+------------------------

ISPACE fexpression

expression Expression is any evaluable expression. The value of
this expression specifies the number of lines to be
spaced before the next line appears on the computer
1 isting.

If the expression is no·t present. a value of .l is assumed. If
the value of the expression is greater than the number of lines
remalnlng on the page. the SPACE pseudo operation wi11 have the
same effect as the PAGE pseudo operation.

Example:

SPACE 3

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.8.4 TITLE - ASSEMBLY LISTING TITLE

4-31

86/10/1'1
Rev: F

--
4.8.4 TITLE - ASSEM8LY l.ISTING TITLE

+---------+----------+------------------------
'label 'operation 'argument
+---------+----------+------------------------

, TITLE I('character string'

character string
Character string is a sequence of any characters (see
Character Set) up to a maximum of 56 characters.

The II TlE pseudoi nstruct j cns enab Jes the proqf" ammer to
specify an identification for assembly listing.

When a TITLE pseudo instructions is encountered, the assembly
listing is advanced to a new page (if it is not already at a new
page). The indicated character string is printed at the top of
this page and at the top of a1l succeeding pages until another
TITLE pseudo instruction is encountered or the end of assembly is
reached.

A null argument field on a TITLE pseudo instruction line will
cause the listing to be advanced to a new page, but no heading
printed.

Example:

TITLE CtTESTCOOE'

4.8.5 XRSY - CONCORDANCE SELECTION

+---------+-----------+-----------------------
Ilabe 1 I operation largument
+---------+-----------+-----------------------

IXRSY Inamel, •••• namen

The XRSY pseudo operation is used to select certain symbols to
be included in the concordance.

namen

Examp Ie:

Namen designates symbols to be included in the
concordance.

XRSY .XO

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.9 SECTIONS

4.9 SECIIJJ~S

4-.32

86/10/11
Rev: F

Sections are established for the user by the Assembler, and
optionally by the user. The concept of sections Is valid only
for CPU programs. An IOU program has only one section, the code
section, which can be read, written, and executed. Sections in a
CPU module are established with differing levels of access to
allow the user who uses them protection for code and data. The
concept of sections is similar to the hardware concept o·f
segments. Hardware segments are established to have different
levels of access. and generally so are the Assembler sections.
However, sections can be established with the same level of
access,and they will then be combined into the same hardware
segment.

Sections can be used to establish a blocking of data and code.
The section counter is automatically maint·ained by the Assembler,
but can be modified by using the ORG. POS or BSS pseudo
instructions.

Data and code within a section is not relocatable. The
sections are treated as relocatable with references made via the
use of pointers. The CYBER 180 instruction set has been designed
to efficiently access data and code in other sections via a
mechanism of pointers to a byte address plus an offset in the
specific section. The pointers are generally established via the
ADDRESS pseudo instruction in the BINDING section.

4.9.1 SECTION - ESTABLISH BLOCK

SECTION establishes a new block. This statement is valid only
for a CPU module. A user may establish up to 10 sections in
addition to the five default sections established for him. All
SECTION pseudo instructions must appear before any code or data
generation instructions are specified.

name

type

+---------+----------+------------------------
11abe 1 'operation I argument
+---------+----------+------------------------
fname ISECTION Itype,attr.cid.algn,maxsize

(Required) Internal section name for USE
definition.

block

(Required) The section ty'pel denti fier which must be
one of the ·followl n9 names:

4-33
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYSER 180 II Assembler ERS
86/10117

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.9.1 SECTION - ESTA8LISH BLOCK

attr

cid

a1go

maxsize

CODE

B INOI NG

WORKING
COMMON
EXTWORK

EXTCOM

Code section, only one code section is
permitted per module.
~inding s~ction, only one binding section
is permitted per module.
Working storage section.
Common block section.
Extensible working storage section. Data
may not be established in sections of this
type at Assemb "y time.
Extensible common block section. Data may
not be established in sections of this
type at Assemblyt.ime.

(Required) An absolute expression which specifIes
legal combinations of access attributes of the
segment to contain the section. Only the •••
operator is permitted in the expression.

READ - Read
WRITE - Write
EXECUTE - Executable
BIND - Binding
CACHE_BYPASS - cache bypass (hardware feature)

(Optional) Common section name (1-31 character alias
n·ame) •

(Optional) Two absolute expressions separated by a
comma which define section alignment. The first
parameter is an offset, the second is the base
(modulus).
Examples are:

0,8 - Word aligned section start.

8,64 - Section starts at word one o'fanS word block
boundary.

0,8 - Word aligned section start (default for all
sections except binding sections).

(Optional) Absolute evaluable expression which
specifies the maximum section size.

The following default sections are establ ished
Assembler for a CPU module:

by the

At.tt:iilu.tes

4-34
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS
86./10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.9.1 SECTION - ESTABLISH BLOCK

--
*COOE

WORKING
8:lND"lNG
STACK

R.ead+Execute
Read· ... Wr i te
Read+Bind
Read+Write

* The name on the IOENT card can also be used to reference the
CODE section.

DUMMY SECTION WORKING.REAO+WRITE"O,8

4.9.2 USE - USE BLOCK

The USE statement is valid only for CPU modules. USE
starts/resumes use of an a1ready established section into which
code is subsequently assembled.

name

+---------+----------+------------------------I J abe 1 10peration largument
+---------+----------+------------------------

IUSE Iname

The name of the section into which the text that
follows is assembled. (It corresponds to the name of
a SECTION pseudo instruction). A blank name causes
the assembly of code into the default CODE section.
The name .lASTSEC will resume using the section in
use prior to the last USE statement.

The current position in a section is automatically maintained
by the Assembler. When the USE pseudo instruction is executed.
the section counter wilt automatically be restored to its
previous value.

Example:

DUMMY SECTION WORKING,REAO+WRITE"O,8
•
•
•

USE DUMMY
•
•
•

USE #lASTSEC

4-35
CDC - ADVANCED SYSTEMS DEVELOPMENT

CV8ER 180 II Assembler ERS
86/10/1'1

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.9.3 ORG - SET SECTION COUNTER

4.9.3 ORC - SeT SECTION COUNTER

The ORG pseudo instruction specifies the unit (bytes for CPU
or words for IOU) offset to which the section counter is to be
set.

label

exp

Example:

TAG ass
•
•
•

ORC

+---------+----------+------------------------
1label toperation largument
+---------+----------+------------------------
Ilabe 1 lORG lexp

Optional, if present, is set to the value of exp.
Symbol category equals 6.

An absolute expression specifying the address to
which the unit offset is to be set. Any symbols in
the expression must have been previously defIned.

10 .DATA AREA.

TAG .STORE IN OATA AREA.

4.9.4 POS -SET BIT POSITION IN THE SECTION COUNTER

The POS pseudo instruction sets the value of the bit offset in
the section counter to the value specified by the expression in
the argument field for either CPU or IOU modules.

aexp

+---------+----------+------------------------
II abe 1 loperation largument
+---------+----------+------------------------

IPOS laexp

An absolute, evaluable expression having a positive
value less than or equal to the bit position with a
unit (byte for CPU or word for IOU). A negative
va lue, or a val ue greater than 7 for a CPU modu Ie, or
a value greater than 15 for an IOU module causes an
error. The value indicates the bit position within
the current address unit at which the Assembler is to
generate the next data. Use caution, because if the
new bit position value is less than the old bit
position value, part of the byte is reassembled.

4-36
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86'10/11

Rev: F
--4.0 PSEUDO INSTRUCTIONS
4.9.4 POS - SET 8IT POSITION IN THE SECTION COUNTER
--

(New code is ORed with previously assembled data).
If the new bit position value is greater than the old
bit position value. the Assembler generates zero bits
to the specified bIt position.

CAUTION: If the POS pseudo instruction is used on a word
containing relocatable or external addresses, undefined
results may occur with no diagnostics.

The POS pseudo instruction does not alter the unit offset
(byte for CPU or word for IOU). ThePOS instruction never causes
the unit (byte for CPU or word for IOU) to be changed.

Example:

POS 3

4.9.5 ass - STORAGE RESERVATION

The BSS pseudo instruction reserves memory in the section in
use by adjusting the addressable unit offset (bytes for CPU or
words for IOU). It does not generate data to be stored in the
reserved area.

label

aexp

Example:

TAG ass

+---------+----------+------------------------
I Jabe 1 loperationlargument
+---------+----------+------------------------
11 abe 1)BSS J aexp

Optional label defined as the addressable unit offset
after the force to an addressable unit boundary
occurs. It is the beginning symbol for the storage
area. Symbol category equals 6.

Absolute expression specifying the number of
addressab1e storage units to be reserved. All
symbols must be previously defined. Aexp cannot
contai n external symbols or be reO'ocatable. The
value of the expression can be zero or positive, but
not negative, and the value is added to the
addressable units offset. A ass 0 causes a force to
byte boundary and symbol definition, but no storage
is reserved.

5

4-37
CDC - ADVANCED SYSTEMS DEVELOPMENT

Cl8ER 180 II Assembler ERS
86/.10/17

Rev: F
--~---4.0 PSEUDO INSTRUCTIONS
4.9.6 ALIGN - FORCE SECTION COUNTER ALIGNMENT

4.9.6 ALIGN - FORCE SECTION COUNTER ALIGNMENT

The ALIGN pseudo instruction forces the unit offset to the
specified boundary (byte for CPU module. word for IOU module) and
sets the bit offset to zero.

label

+---------+----------+------------------------
Ilabe 1 loperation largument
+---------+----------+------------------------
Ilabe1 I ALIGN lincrement,unitsize

Option·al label defined as the unit offset after the
force to the specified offset plus increment occurs.
Symbol category equals 6.

increment The increment is a value that is added to the unit
offset after the alignment is made to a unitsize
boundary.

unitsize

E.xample:

The unitsize soecifies a value by which the unit
offset must' be evenly divisible. The number
specified must be greater than zero. To do this, a
n~mber between 0 and unitsize -1 is added to the unit
offset to make it evenly divisible.

ALIGN 0,2
ALIGN 0,8

.PARCEL BOUNDARY (CPU).

.WORD BOUNDARY (CPU).

4.10 £ROCfIlURES

A procedure defini tion is a sequence of source statemen·ts that
are saved and then assembled whenever needed through a procedure
call. A procedure call consists of the occurrence of the
procedure name in the operation field of a statement. It usually
includes parameters to be substituted for formal parameters in
the procedure code sequence so that code generated can vary with
each procedure call.

Use of a procedure requires two steps. definition of the
procedure sequence, and calling of the procedure.

A definition consists of three parts: heading, body, and
terminator.

Heading A PROC definition is headed by a PROC pseudo

4-38
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.10 PROCEDURES

Body

instruction initiating the definition of a procedure,
and a P~I.AME pseudo instruction stati"9 the name of
the procedure.

The body begins with the first statement in a
definition after the heading. The body consists of a
series of symbolic instructions. All instructions
other than PEND, including other procedure calls are
legal within a definition. Within a PROCEDURE, calls
can appear to other Procedures, but a PROCEDURE
cannot call itself nor can any PROCEDURE in a nest of
callS call any other PROCEDURE previously in the
nest. PROCEDURE definitions cannot be nested. That
is, a PROt pseudo operation must be followed by a
PEND pseudo operation prior to the appearance of
another PROC pseudo operation. The overall order of
PROCEDURE definition is immaterial so long as the
definition precedes the first call to assemble the
PROCEDURE (i.e. a procedure call within a procedure
definition may reference a procedure that is not
defined prior to this point).

Terminator A PEND pseudo instruction terminates a procedure
definition.

A procedure can be defined anywhere in a program before it is
called. When the Assembler encounters a definition, it places
the name of the procedure along with the number of substitutable
parameters and local symbols in the Assembler operation code
table.

4.10.1 PARAMETER REFERENCING WITHIN PROCEDURES

Parameters on a procedure call can be referenced using the
Field function BF:" and specifying the position of the parameter.
The position of the parameter is indicated by using an fl.j)
notation to describe where on the procedure call the parameters
should be gotten. Using the (i,j) notation, i describes the
field number (label fie-'d= 0, operation field = 1, argument
field = 2), and J describes the position in the field starting at
O. An entire field may be referenced by just quoting the first
parameter.

When a label is specified on the PROC statement. that label is
equated to the Field function and can optionally be used instead
of F:(the colon is pa-rt of the Field -funet ion name). For more
information, refer to the section discussing the PROt statement.

CDC - ADVANCED SYSTEMS DEVELOPMENT

(rBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.10.1 PARAMETER REFERENCING WITHIN PROCEDURES

4-39

86110/17
Rev: F

---~--------------------------

Using F: notation, the i**th field and the j**th subfield of a
statement is referenced as:

A reference to the entire i*Oth field would be:

F:fi)

References to a particular field or subfield may occur
anywhere that such a reference has meaning. Each reference acts
as a direct substitution of the referenced subfield into the
referencing entity_ The actual substitution mechanism can have
several meanings which are discussed in subsequent chapters.

4.10.1.1 £!ac.amet.e.t:._lden.tlflca.tion_Examples

•
•

THIS EXAMPLE SHOWS HOW RELATIVE FIELD IDENTIfICATION WORKS.
CONSIDER TR.ANSlATION OF THE FOLLOWING LINE:

IMPER,~T AOO,3,4 AOOENO,AUGENO MOVE,5.6 OEST,SOURCE

• DURING PROCESSING OF THE OPERATION:
• F:(O) :: IMPERAT
• F:(l,O) .- ADO F:(l,l) .- .3 F:(I,2) = 4

• F:(l,O) :: AOOENO F:(l,l') = AUGENO
• F:(3,O) = MOVE F:(3,1) = 5 F:(3,2) = 6
• F:(·4,O) .:: DEST F:(4,ll .- SOURCE

4.10.2 PROC - PROCEOURE HEADING

The PROt pseudo instruction is the first pseudo instruction
which must be given in the process of defining a PROCEDURE. This
pseudo instruction may contain an optional label field.
Following the PROt pseudo instruction must appear the statements
which comprise the entire PROCEDURE being defined. The
appearance of the PROC pseudo instruction initiates definition of
a PROCEDURE. All statements which follow the PROC pseudo
instruction up to and including the first encountered PEND pseudo
instruction will be included as part of the PROCEDURE being
defined.

The PROCEDURE being defined will be considered terminated when
the first subfield of any subsequent OPERATION field contains the
pseudo instruction PEND. All statements of the PROCEOURE which
lie between the PROC pseudo instruction and the next PEND pseudo
instruction are considered to be the body of the PROCEDURE.

4-·40
CDC - ADVANCED SYSTEMS DEVELOPMENT

(YHER 180 II Assembler ERS
86/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.10.2 PROC - PROCEDURE HEADING
--

Within this PROCEDURE body. the first subfield of any subsequent
OPERATION field prior to a PEND pseudo instruction cannot contain
another PROC pseudo instruction.

label

+---------+----------+------------------------
!Iabel loperation largument
+---------+----------+------------------------
"abe 1 IPROC

Optional. the label field of a PROC pseudo
instruction contains a symbol, this symbol can then
be used as a field function name within the procedure
body and also by any other (nested) procedures. Note
that the label is defined only while the procedure is
active (referenced), and cannot be used to call the
procedure.

The label on the PROt pseudo instruction line is
normally used within the PROCEDURE followed by field
and sUbfield notation to reference the actual
arguments by which the PROCEDURE was called. If no
label appears with the PROC pseudo instruction. then
the parameters by which the procedure is called can
be referenced only by using the F: notation described
in the previous section.

Examples can be found in the section entitled "Procedure
Examples".

4.10.3 PNAME - PROCEDURE NAME DEFINITION

The PNAME pseudo instruction is used to
which a PROCEDURE can be referenced.
instruction must immediately follow the PROC,
PNAME pseudo instructIon when a PROCEDURE is
PROCEDURE may have multiple PNAME pseudo
therefore, be referenced by several names.

1 'abe J loperation largument

provide a name by
The PHAME pseudo

FNAHE, or another
being defined. Any

instructiOns and,

+---------+----------+------------------------
11 abe 1 IPNAME 'value

label Name by which the procedure is referenced.

value An evaluable expression.

Within the PROCEDURE, the value of the expression following

CDC - ADVANCED SYSTEMS DEVELOPMENT

eYHER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.10.3 PNAHE - PROCEDURE NAME DEFINITION

4-41

86/10/17
Rev: F

the name by which the PROCEDURE was actually referenced is
available as F:(l,O). This permits the programmer to distinguish
between referencing names. when desired.

A PROCEDURE is referenced (as a procedure) by placihg one of
its defined PNAMEts in the first subfield of a OPERATION field.
The expression which represents the value associated with the
PNAME is evaluated each time the PROCEDURE is referenced using
that name.

Examples can be found in the section entitled ·Procedure
Examples-.

4.10.4 FNAHE - FUNCTION NAME DEFINITION

The FNAME pseudo operation is used to provide a name by which
a PROCEDURE may be referenced as a FUNCTION. The FNAME pseudo
oper at i on must immediate 1 y 'fo 1 J ow ·the PROC. PNAME or another
FNAHE pseudo operation when a PROCEDURE is being defined. Any
PROCEDURE may contain multiple FNAME pseudo instructions and,
therefore, be referenced by several names.

label

vaJue

+---------+----------+------------------------
I t abe 1 loperation largument
+---------+----------+------------------------
11abe 1 IFNAME Ivalue

Name by which the procedure is referenced as a
function.

An evaluable expression.

Within the PROCEDURE, the value of the name by which the
PROCEDURE was actually referenced is available as F:(l,O). This
permits the programmer to distinguish between referencing names,
when desired.

A PROCEDURE is referenced (as a function) by forming a
structure:

n·arne (ar gument)

Where name is its defined FNAME and argument is the argument to
the PROCEDURE. This bounded argument, less parentheses, is
available, starting at F:{2,O), just as if the PROCEDURE was
referenced as a procedure (via PNAME). The argument is limited
to one field, although it may contain as many subfields as
necessary. No blanks may appear between the argument and the

4-42
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.10.4 FNAHE - FUNCTION NAME DEFINITION

enclosing parentheses. The expression which represents the value
associated with the FNAME is evaluated each time the PROCEDURE is
referenced using that name.

A PROCEDURE. referenced using one of its FNAME's will have the
entire reference replaced by the value of the e.xpression on the
PEND pseudo instruction when the PEND pseudo instruction is
executed. This val0e will always be 8 bytes long.

Note that a function may not generate code or change location
counters if it is invoked from a statement which, itself. is
generating code.

Examples can be found in the section entitled uProcedure
Examples".

4.10.5 PEND - END PROCEDURE DEFINITION

A PEND terminates any unterminated definition. A PEND outside
the range of any procedure sequence has no effect other than to
be included in statement counts.

label

exp

+---------+----------+------------------------
'label 'operation largument
+---------+----------+------------------------II abe 1 'PENO texp

(Optiona1) May be used as the object of a skip by a
SK IPTO or ERROR statement. The 1 abe 1 symbol .is not
entered into Assembler's symbol table and the
presence of a label does not constitute symbol
definition.

The argument field can be null or can be an evaluable
expression. When the PROCEDURE is called as a
procedure reference, any PEND expression is ignored.
When a PROCEDURE is called as a function reference.
the PENO expression is evaluated and the value is
returned as the value of the function. A null
expression returns the value zero.

Examples can be found in the section entitled ·Procedure
Examples".

4.10.6 LOCAL - ESTA8LISH LOCAL SYMBOLS

The LOCAL pseudo instruction is used to establish symbols

CDC - ,ADVANCED S·YSTEMS OEVELOPMENT

CYHER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.10.6 LOCAL - ESTABLISH LOCAL SYMBOLS

4-43

86/10/17
Rev: F

which are to be considered local to the PROCEDURE in which they
are defined. The appearance of a LOCAL pseudo instruction
supersedes all previous LOCAL pseudo instructions in that program
or PROCEDURE and all symbols previously declared loca1 are
erased. A PEND or END line terminates the lOCAL.

+---------+----------+------------------------
Ilabel loperation 'argument
+---------+----------+------------------------

ILOCAL 'n:arnel, ••• namen

namel, ••• namen Establish symbols local to a procedure.

A symbol may not be defined as lOCAL if its symbol category is
one of the following:

2 CHO defined instruction
4 PROCEDURE call

10 PROCEDURE Reference list
12 ANAME defined symbol (programmer defined attribute)
13 Section counter

Examples can be found in the section entitled ·Procedure
Examples lf •

4.10.7 OPEN - DECLARE TEMPORARY SYMBOLS

The OPEN pseudo instruction is used to declare temporary
symbols without affecting any prior use of the l~bel. A label
declared by an OPEN pseudo instruction remains active until
closed by a CLOSE pseudo instructio using the same label. OPEN
pseudo instructions may be nested using the same label. The
label created under the last OPEN pseudo instruction executed
will be active until closed. It is important to note that
closing opened symbols takes place in reverse order ·fromthe
opening process. That is, the last open symbol is closed first,
then the next-to-last, etc. Subsequent OPEN pseudo instructions
only affect each other if they use the same symbol, otherwise
they act independently without cancelling prior OPEN pseudo
instructions as is the case with LOCAL pseudo instruction.
Definitions of OPEN'ed symbols are restricted in the same way as
LOCAL symbols.

+---------+----------+------------------------II abe 1 loperation largument
+---------+----------+------------------------IOPEN Inamel, ••• ,namen

4-44
CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS
86/10/1"1

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.10.7 OPEN - DECLARE TEMPORARY SYM80lS

namel, •••• namen Establish temporary
namel, •••• namen

symbols with names

Examples can be found in the section entitled ·Procedure
Examples".

4.10.8 CLOSE - ERASE TEMPORARY SYMBOLS

The CLOSE pseudo instruction erases the symbols whose names
are used as arguments to the pseudo instructions. Ifa symbol
has been opened by more than one OPEN pseudo instruction. then
CLOSE only erases the last OPEN and the symbol usage then reverts
to its usage under the previous OPEN. If there was only one OPEN
associated with the symbol, the symbol becomes non-existent and
is completely erased. It is illegal to CLOSE a symbol that has
not been opened.

+---------+----------+------------------------I t abe 1 loperation 'argument
+---------+----------+------------------------

I CLOSE Inamel, ••• ,namen

namel, ••• namen Erase temporary label field symbols with
names namel, ••• n-amen.

Examples can be found in the section entitled "Procedure
Examples".

4.10.9 CONT - NO OPERATION

The CONT pseudo instruction is used to place a symbol on a
statement only for the purpose of assembly time transfer of
control. The CONT pseudo instruction functions in all other
respects as a no-ope

label

+---------+----------+------------------------11 abe-J loperation largument
+---------+----------+------------------------
11 abe 1 ICONT

(Required) Symbol used for transferring
during the assembly process. The symbol
entered in Assembler's symbol table and use
symbol in the label field does not constitute
definition.

control
is not
of a

symbol

Examples can be found in the section entitled ·Procedure

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.10.9 CONT - NO OPERATION

Examp 'I es".

4.10.10 PROCEDURE CALLS

4-45

86/10/11
Rev: F

A procedure headed by the PROC pseudo instruction can be
called bV an instruction in the following format:

label

procname

fields

+---------+----------+------------------------
11abe " I operation' argument

+---------+----------+------------------------
11 abe 1 I procname I fieldl.fieJd2 •••• fieldn

Optional, its value can be retrieved from within the
procedure's body by the F:(O) field function.

Name of a predefined procedure (label on PNAME).

One or more fields which might consist of several
subfields.

A defined PROCEDURE may be referenced using ,anyone of its
names as defined by a PNAME or FNAME pseudo instruction. This
name is written as the first subfield of the OPERATION field.
The remainder of the OPERATION field and as many argument fields
as necessary can follow the OPERATION subfield and contain the
arguments to the PROCEDURE. The Assembler is capable of handling
as many arguments as the user wishes to provide.

Parameters passed to PROCEDURES are call_b¥_name in that a
parameter is evaluated each time it is referenced within the body
of a PROCEDURE. Any previous statements within the body of the
PROCEDURE which have changed the value of a given parameter will
affect later references to the parameter. Any OPEN or LOCAL
pseudo instructions within the body of a referenced PROCEDURE
which dec lare' abel s wi th the samesymbo" asa label passed as a
parameter will not affect the parameter being passed •.

l.t_is._thf!_acl:ual call_tQ_il_e&OtfDuRE which requires that it be
defined and not Just t.be-aPJleaJ:ance_Qf_a_call in an Assembler
statement. Unexecuted calls do not require that the named
PROCEDURE be defined.

4.10.11 PROCEDURE EXAMPLES

4--46
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

4.0 PSEUDO INSTRUCTIONS
4.10.11.1 Procedure Definition
--

• THIS IS AN EXAMPLE OF THE USE OF PROCEDURES. THE
• PROCEDURE STATEMENTS (THOSE .APPEARING BETWEEN A PROC AND
• A PEND DIRECTIVE) ARE NOT PROCESSED UNTIL" THE PROCEDURE
• NAME APPEARS IN THE OPERATION FIELD OF A STATEMENT BEING
• PROCESSED. IN THIS EXAMPLE, AFTER THE STATEMENT LABELLED
• ·CALLING" IS ENCOUNTERED, PROCESSING OF THE STATEMENTS IN
• PROCEDURE uSAMu BEGINS. WHEN THE PEND DIRECTIVE IN uSAMu
• IS ENCOUNTERED, PROCESSING RESUMES AT "NEXTLINED.
SAMR PROt
SAM PNAME 5
A SET F:(2,O)
8 SET F:(2,1)
F:(Z.2) ANAME 6

.F:(2,O} REFERENCES X*3

.F:{Z,lJ REFERENCES lXT

.ASSIGNS NAME INDEX TO

.ATTRIBUTE NUMBER 6
MAX SAMR:(2,2),SAMR:(2,1}

•
PEND
PROC

MAX PNAME
F:(2,1) ATRI8 F:(2.0),5
•

.INTERPRETED AS: lIT ATRI8

.INDEX.5
PEND • F: REFERENCES LINE CALLING

•
•

•
•

CALLING SAM X*3,IXT,INOEX
NEXTlINE VFO,16 lXT

• THE ABOVE CODE IS EQUIVALENT TO:

A SET X*3
8 SET ZXT
INDEX ANAME 6
IXT ATRIB INDEX,S
NEXTLINE VFO,16 IXl

•
•

•

MAX,
SAMR

CALLING
SAM

REFERENCES LINE

•
•
•

THE FOLLOWING EXAMPLE INVOLVES TWO DIFFERENT DEFINITIONS OF
THE LABEL X. THE NET EFFECT OF THIS CODe IS TO SET THE VALUES
OF X A NO Y TO -7:

ZED
PROC
PNAME
LOCAL X
SET 2

CDC - ADVANCED SYSTEMS DEVELOPMENT

tYBER 180 II Assembler ERS

4.0 PSEUDO INSTRUCTIONS
4.10.11.1 Procedure Definition

4-41

86/10/11
Rev: F

--
F: (2,0) SET
Y SET

F:(l.O)-+X
f: (2,0)

PEND
•
•

x SET
ZEO

5
X

.WHEN EXECUTED LOCAL X NO LONGER EXISTS

• GLOBAL X
.GLOBAL X AS PARAMETER F!{2,O)

•
•
•
•

THIS PROCEDURE DEFINES A SET Of INSTRUCTIONS FOR THE el.80 CPU

EACH OPERATION CODE IS SPECIFIED AS A PROCEDURE ENTRY NAME
WHEN HAS THE MACHINE CODE AS THE VALUE.

•
•
•

THESE INSTRUCTIONS .ARE IN THE FORM
Rl AND R2 SPECIFY REGISTERS.

OP WHERE

•
PROC

AOOR PNAHE 20(16)
SUeR PNAME 21(16)
MULR PNAME 22(16)
DIVR PNAME 23(16)
SR PNAME IS(16)
•
F:(O,O) VFO,8,4,4 F:{1,O),F:(Z,1),F:{2,O)

EVAL

•
A
D
a
•

C
E

•
•

PEND

SET
•
•

PROC
PNAME

5

LOCAL A,B ,e

SET 7
SET A
SET A.

•
•

PEND
•
•

SET A
SET D

THIS IS A GLOBAL "A"

ANY REFERENCES TO A, 8, OR C WITHIN THE
EVAl PROCEOURE SIGN IFY SYMBOL S LOC.Al
LOCAL vAu
GLOBAL "0-, LOCAL tf~"
LOCAL USD, LOCAL VAU
AT THIS POINT, VA:(A) = 7, VA:(B) = 1,

GLOBAL "C·, GLOBAL "AH

AT THIS POINT, VA:(A) = 5, VA:(C) = 5,
VA:(O) = 7, AND VA:(E) = 1

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 It Assembler ERS

5.0 ATTRIBUTE FUNCTIONS

5-1

86/10/11
Rev:F

--
5.0 AII8IRlllf_fUtitIIDt::j,S

The Assembler provides a set of built in functions to assign
andlor retrieve values of a symbol ,a'ttribute. They are usually
used to aid in param,eter analysis in procedure and function
definitions.

An attribute function is a replacement operation in which the
value of the specified attribute replaces the function in the
expression. The permitted arguments to an attribute function are
defined later in this section.

The set of Symbol Attribute Functions (SC:, VA:, LS:, lC:,
lW:, S8: and SN:', and the basic Field Reference Function ("F:v
used for parameter referencing), all include the character t:.
(colon), which is an alphabetic character within the meaning of
the Assembler. This character is included as a means of avoiding
potential conflicts with user-defined symbols, and does not
represent an operator of any kind. Note that this character must
be' entered in the NOS ASCII representation.

The general form of an attribute function is:

attribute_function_name(argument)

where attribute_function_name is the name of a specific attribute
function, and the argument. enclosed in parentheses, immediately
follows.

All of the symbol attributes discussed in the section on
Symbol Definition have a corresponding attribute function which
can be used to retrieve that particular symbo" at'tribute from the
internal Assembler symbol table.

All the attribute functions described in this section are
built into the Assembler.

5.1.1 SYMBOL CATEGORY ATTRIBUTE - Sc:

Format: SC:(argument)

The SYMBOL CATEGORY Attribute function is used to determine
the symbol category assigned to the argument. The argument can

5-2
CDC - ADVANCED SYSTEMS DEVELOPMENT

(VBER 180 II Assembler ERS
86/10117

Rev: F

5.0 ATTRIBUTE FUNCTIONS
5.1.1 SYM~Ol CATEGORY ATTRIBUTE - SC:
--

be a symbol name ora PROCEDURE reference field spec i 'f i cat ion.
This function returns the value of the category and may be used
for testing. When the argument refers to an expression rather
than a symbol, the category of the expression will be the
category of the first term in the expression. The category of a
NUlt subfield in a PROCEDURE reference is zero. The Symbol
Category attribute has the f-ollowing values and meaning:

CategQL¥

o

.1

2

3

4

5

6

7

8

9

.10

Meaning

Non-existent symbol~ The symbol in question has
not been encountered by the .As semb 1 er. The
existence of a blank LABEL field can be detected by
thi scategory.

The symbol has appeared in a LABEL field. may have
certain attributes, but no operation has taken
place to further define the symbol. After each
statement is processed. any remai n i og ca-tegory 1
symbols are erased from the symbol table. unless
they have programmer defined attributes.

The symbol has been defined by a tHO pseudo
instruction and is now recognized as an instruction
generating symbol.

The symbol is an Assembler defined function.

The symbol is a PROCEDURE call. defined by an FNAME
or PNAME pseudo instruction.

The symbol is an Assembler pseudo instruction.

The symbol is a relocatable addre.ss defined by use
in a code generating statement such as VFD, INT,
OINT, FLOAT, OFLOAT. POEC, ass, BSSZ, ADDRESS, ORG,
ALIGN, or by the execution of an instruction
generating symbol defined by a CHO pseudo
instruction.

The symbol was defined by a REF pseudo instruction.

The symbol is the symbol US" (section counter).

The symbol is a list name defined by a SeT or EOU
pseudo instruction or as the label of a 00 or WHILE
pseudo instruction.

The symbo -, is ali st name of a symbolic 1 i st

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

5.0 ATTRIBUTE FUNCTIONS
5.1.1 SYMBOL CATEGORY ATTRIBUTE - SC:

holding PROCEDURE
defined bya
PROt EnURE S) •

references.
PROt pseudo

5-:3

86/10/11
Rev: F

The symbol
instruction

was
(see

11 The symbol is a self-defining term.

12 The symbol is defified
instruction.

by an ANAME pseudo

13 The .symbol is ali st: defi ned by a SECTION pseudo
instruction.

Symbols defined in the label field of pseudo instructions
where the label field is not ignored will have the symbol
category documented for that instruction. Symbols defined in the
label field of the symbolic machine instructions will have a
Symbol Category of 6.

5.1.2 ADDRESS MODE ATTRIBUTE

Format: AM:(argument)

The ADDRESS MODE attribute function is used to determi~e the
relocatabi lity of ·the argument. The argument can be a symbol
name or a PROCEDURE field reference specification. This function
returns the value 1 if and only if the argument is defined and
relocatable. Otherwise, it returns a value of zero. When the
argument refers to an expression rather than a symbol, the
ADDRESS MODE will be the ADDRESS MODE of the first term in the
expression. When the symbol is the symbol US", the address mode
value will be O.

5.1.3 VALUE ATTRIBUTE

Format: VA:(argument)

The VALUE attribute is used to determine the value assigned to
the argument, where argument is either a symbol or a PROCEDURE
field reference specification. The meaning of the VALUE
attribute varies with the symbol category of the argument:

o
1
2
3

o
o
o
o

5-4
CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS
86/10/17

Rev: F

5.0 ATTRIBUTE fUNCTIONS
5.1.3 VALUE ATTRI8UTE

4

5
6
1
8
9

10
11
12

13

The value of the PNAME/FNAME symbol when the
procedure is called.

o
(Integer) address assigned to the symbol.

o
The current integer location counter value.
The value of the first element of the list.

o
The (word) value of the self-defining term.
The value is ·the programmer defineda·ttribute
number assigned to the symbol.
The value of the first element of the list
(the integer location counter).

The value of an expression
evaluating the expression. A NUll
value of zero.

is the net value found by
field or subfield has the

The VALUE attribute function is processed in a similar manner
to normal expression evaluation, except that errors caused by
invalid use of symbols are suppressed.

5.1.4 LENGTH ATTRIBUTES

Format: lB:{argument)
lC:(argument)
lW:(argumentJ

The LENGTH attribute is used to determine the length in bits
(LB:), bytes or cel1~ (lC:), or words (LW:) of the argument,
where the ar gument .i s a symbo 1 represent i n9 a data or instruct i on
area assigned by the Assembler in either a CPU or an IOU module •
. A CYBER 180 CPU word is 64 bits long and an IOU word is 16 bits
long.

The LENGTH function rounds up to the next integral number of
units in cases where the bit length of the argument is not an
exact multiple of the defined character or word. LENGTH returns
the value·· 0 if a symbol has not been defined at the time the
evaluation of LB:, LC:, or lW: takes place.

As explained in the section on SYMBOL DEfINITION, a symbol
acquires a 1ength attribute when it becomes defined by appearing
in the LABEL field of a data generating pseudo instructibn. Thi~
length attribute is the quantity of storage assigned to the
information labeled with the symbol. A Self-Defining Term has a
lENGTH attribute assigned to that term based on its structure.

CDC - ADVANCEO SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS
86/10/1'7

Rev: F
--5.0 ATTRIBUTE FUNCTIONS
5.1.4 LENGTH ATTRIBUTES
--

If the symbol h,as been defined with a code generating pseudo
instruction (category 6) then the bit length i~ given by the
total number of bits gene,. ated by the statement • :App 11 cab Ie
pseudo instructions include VfD. INT, DINT, FLOAT, OFLOAT, POEt.
~ss, aSSl. ADDRESS. and CHD calls. A character is assumed to be
8 bits, and the word size is taken to be 64 bits fora CPU
module, 16 bits for an IOU module.

If the argument is a self-defining term, the length is
determined based on its structure. A character string (types C
and E) have a character/byte length equal to the number of
characters in the string, a bit length of 8*lC. For all other
types of self-defining terms. the bit length is equa1 to the
appropriate tYBER 180 word size.

5.1.5 STARTING BIT POSITION ATTRIBUTE

Format: SB:(argument)

The STARTING BIT POSITION attribute is used to determine the
value of the BIT offset in the stored byte at the time storage
was assigned to the argument. This function has a zero value for
all arguments whose symbol category is not equal to 6. The
STARTING BIT POSITION attribute for an expression is the STARTING
BIT POSITION attribute of the first term ~n the expression. The
STARTING BIT POSITION attribute of a NUll field or subfieJd is
zero. The maximum value for this attribute is 15.

5.1.6 ELEMENT NUMBER ATTRIBUTE

Format: EN:(argument)

The ELEMENT NUMBER attribute determines the number of
subfie1ds (elements) associated with or assigned to the argument.
The ,argument can be any 'i st name and the value of the EN:
function will be the number of elements assigned to the list at
the time evaluation takes place. Note that a symbol name becomes
defined as a list only by appearing in the LABEL field of the SET
pseudo instruction.

When a PROCEDURE field reference is used as an ~rgument to the
EN: function, then one of two forms of substitution take place:

a) If the specification contains a field index and no subfield
index (F:(O},F:(l), ••• etc.), then the count is made against
the actual subfield elements in the PROCEDURE reference line
itsel'f.

CDC - ADVANCED SYSTEMS DEVELOPMENl

CVHER 180 II Assembler ERS

5.0 ATTRIBUTE FUNCTIONS
5.1.6 ELEMENT NUMBER ATTRIBUTE

5-6

86/10/17
Rev: F

--------------------------------------~-----------------------------

b) If the spec i fi ca"t i on cORta i os both a fie' d AND subfi e ld index
(f:(O,O),F:(2.0) •••• etc.), then the count is made against the
contents of the designated subfield.

5.1.7 LAST ELEMENT NUMBER ATTRIBUTE

Format: El:(argument)

The lAST ELEMENT NUMBER attribute determines the element
number of the last element assigned to the Jist used as an
argument. For lists wit:h one or more elements:

EL:(argumentJ = EN:(argument)-l

For a 11 non-l i st arguments:

El:(argument) = 0

When a PROCEDURE field reference is used as an argument to the
EL: function. then one of two forms of substitution take place:

a) If the specification contains a field index and no subfield
Index (F:(O),F!(l)"".etc.). then the count is made against
the actual subfield elements in the PROCEDURE reference line
itself.

b) If the specification contains both a field AND subfield index
(F:(O,Ol.F:(2,O), ••• ,etc.), then the count is made against
the contents of the designated subfield.

5.1.8 SYMBOL NUMBER ATTRIBUTE

Format: SN:(argument)

The SYMBOL NUMBER attribute determines a unique value
representing the symbol. This vCilue is only meaningful when used
for comparison to test equality with the SYMBOL NUMBER of other
symbols. If the argument does not correspond to a symbol. then a
value of zero is returned.

5.1.9 RELOCATION ATTRIBUTE

The Relocation attribute is nota property of a symbolic name.
The Relbcation attribute is a function that is used to associate
relbcation information with the generation of data and as such it
is meaningfu1 only when used in an expression in the argument

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

5-7

86/10/11
Rev: F

--5.0 ATTRIBUTE FUNCTIONS
5.1.9 RELOCATION ATTRIBUTE

field of a VFD. CMO, INT. or DINT statement. See the example
below. The function is valid only ina CPU module. If the CPU
module is declared vNONBINDABLEv. then the relocation information
is ignored. This function must have three (3) arguments. The
relocation function is called as follows:

R:(EXP,RCT,AOT)

EXP An expression defining the byte offset to be used as a
di sp 1 acement. If the express i on is not re loc-atab le in -the
BINDING section then notfr-e 1 ocat i on" object text t s
generated. The function result is the expression result
divided, if necessary, as determined by the AOT subfield.

ReT Defines the relocation container type (width and alignment).
This applies to the field being generated. (Note that only
discrete values are permitted.): Unless otherwise indicated
the field must start on an addressable boundary.
o = Parcel Size (Z-bytes)
1 = Three Bytes f3-bytes)
2 = Half Word (4-bytes)
3 = Word (S-bytes)
4 = Instr. O-Field ttl-bits/MOO 4)
5 = Instr. Q-Field (Z-bytes)
6 = long D-Field (3-bytes) ENTC & ENTA Instr.
Any other value is diagnosed as an error.

AOT Defines the address displacement type of the field. The
function result Is EX? divided by a constant determined by
the ADT subfield as fol1bws:
o = Byte Positive R: = EXP
1 = Parcel Positive R: = EXP I 2
2 - Halfword Positive R: = EXP I 4
3 = Word Positive R: = EXP I 8
4 = Byte Signed R: = EXP
5 = Parcel Signed R: = EXP I 2
6 = Halfword Signed R: = EXP I 4
7 = Wor d Signed R: - EX P I 8
Any other value is diagnosed as an error.

EXAMPLE:
VFO,16

Any symbo 1 may be given one or more programmer de-f i ned
attributes by first using the ANAME pseudo instruction to give
each programmer defined attribute a name and then using the ATRIB

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

5.0 ATTRIBUTE FUNCTIONS
5.2 PROGRAMMER DEFINED ATTRIBUTE FUNCTIONS

5-8

86/101'11
Rev: F

--
pseudo instruction which assigns a value to a specific attribute
of a symbol. The Assembler permits the definition up to 16
programmer defined attribute names. Each programmer defined
attribute is given a name and an attribute number using theANAME
pseudo instruction:

INOEX
B.ASE
FREQ

ANAME
ANAME
ANAME

•
•
•

etc.

1
2
3

Once defined, a programmer defined attribute function of the
form:

programmer defined_attribute_name(argument)

may be used in the same way as an Assembler defined attribute
function to recover the value of a particular programmer defined
attribute assigned to the argument.

When the argument to an programmer defined attribute function
is an expression. the function value is the value of the named
programmer defined attribute of the first symbol in the
expression.

The names and values can be altered during the course of the
program assembly using the ANAME and ATRIB pseudo instructions
discussed in the section on pseudo instructions.

•
•
•

length aname 1 .LENGTH IS A PROGRAMMER DEFINED ATTRIBUTE
•
•
•

proc
data pname
•
•
•
•
•

This procedure generates a character string of data
in the WORKING section starting on a half-word
boundary. It will also assign the length in
bytes as an attribute called length.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

5.0 ATTRIBUTE FUNCTIONS
5.3 SYMBOL ATTRIBUTE EXAMPLES

-- label data charstring
•

use working .puts us in working section

5-9

86/10/17
Rev: F

align 0,4 _puts us on a half-word boundary
f:(O,O) vfd,lb:(f:(Z,O) f:(2.0) .generate data
f:(O,O) atrib length.lc:(f:(2,O») _puts byte length

use tllastsec
pend

•
•
•

label1 data
numbyte set

•
•
•

C'EXAMPLE'
length(1abe 11)

.data procedure call
_picks up byte length of string

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

6.0 OFFSET FUNCTIONS (#WOFF, flHOFF,#POFF, #BOFF)

6-1

-86/10/17
Rev: F

The offset functions return the Word, Half-Word, Parcel, or
Byte offset of an address relative to the beginning of a CPU
section in which it is defined. For an IOU module, only Word and
By-te offse-t are def ioed. Use of :#HOFF or II P OFF i nan IOU module
generates a diagnostic. An informative error will be generated
if label does not fallon the appropriate boundary.

The functions are:

NWOFF (labe 1) CPU or IOU Returns the offset in words.

'HOFF (labe 1) CPU only Returns the offset in hal f-wor d s.

1# PDF F (1 a be 1) CPU only Returns the offset in parcels.

#80FF (1abe 1) CPU or IOU Returns the offset in bytes.

CDC - ADVANCED SYSTEMS DEVELOPMENT

tY6ER 180 II Assembler ERS

1-1

86/10/17
Rev: F

1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS

The CY8ER 180 Assembler recognizes symbolic notation for all
CYHER 180 CPU Instructions. Instructions in this group are valid
only for a MACHINE pseudo instruction type of C180CPU. If the
MACHINE pseudo instruction type is C18010U the mnemonics listed
in this section will generate errors.

The Assembler identifies each symbolic instruction according
to its mnemonic. The object code for the instruction is
generated in the block in use when the instruction is
encountered. For a more complete description of the hardware
instructions, refer to the CYBER 180 Processor-Memory
Model·Independent GOS.

7 • 1 .s.Yl1BQLlt_~DIAllOl!l

This section describes notation used for coding symbolic eYHER
180 instructions. The CPU instructions are listed according to
the CVBER 180 MIGDS Reference Numbers.

The instruction descriptions are obtained from the CY8ER 180
MIGOS. lengths will always specify the actual number. The
Assembler wi 11 make any adJustments necessary. as when the
hardware requires the length to be entered as length-I. Any 0 or
g field that is adjusted by the Assembler will be denoted by the
wordlabe 1 in the mnemonic description, and wi·' J then be further
described as to exactly what the Assembler expects for that
field.

The label field of a symbolic machine instruction optiona11y
contains a label. When the label is present, it is assigned the
val ue of the byte offset after it is forced (f f requi red) to
parcel boundary_ The symbol category of the label will be set to
6.

The operation field of a symbolic machine ins·truction contains
an instruction mnemonic and might also contain several o·ther
subfields.

The argument field contains the instruction operands as one or
more subfields.

An optional comment field
subfield of the argument field.
a period (.l character.

may appear following the last
A comment field must begin with

CDC-ADVANCED SYSTEMS OEVElOPMENT

CYBER 180 II Assembler ERS

1.0 CYHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.1 SYMBOLIC NOTATION

1-2

86/10/17
Rev: F

The mnemonics chosen are descriptive of the actual hardware
operation being performed and will provide for a high degree of
recognition by the 2nd and 3rd reader of assembly language
programs. In all cases, the mnemonics are 8 characters or less,
and in most cases much less. This should provide for a certain
ease in programming. The rules enforced when defining the
instructions are:

o A common abbreviation used when shortening the mnemonics.

o The first part of the mnemonic describing the action to be
performed.

o The second part of the mnemonic further qualifies the type of
action to be taken (X used to represent a full X register, R
for right half of an X register. BIT signifying operation on a
bit field, etc.).

o The operand fields are written such that multiple subfields
relating to source or destination are positioned together.

o Implied registers are written as part of required instruction
syntax.

o The operands are written such that the most significant or
resultant register is written first.

The figures in this section illustrate the formats for the
CVBER 180 16-bit and 32-bit CPU instructions generated by the
Assembler. for all instructions the Assembler generates parcel
alignment whenever necessary.

+------------------+----+----+----+------------+ J Operation Code
j' k' i' o

+------------------+----+----+----+------------+
4 4 .12

Figure 8.1 CYBER 180 jkiO Instruction Format

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYDER 180 II Assembler ERS

1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.2 CPU INSTRUCTION FORMATS

1-3

86/10/17
Rev: F

------------------~---

+-------------+---+----+----+----+-----------+
f Operation
I Code

, S I
1 ,

j 1 k I
I f

i I
I

I
I

+-------------+---+----+----+----+-----------+
5 3 4 It 12

Figure 8.2 - CYBER 180 SjkiO Instructions Format

For these 32-bit instruction formats: the j, k, and i fields
provide register designations. the 0 field provide either a
signed shift count, a positive displacement or a bit-string
descriptor, and the 5 field provide a sub-operation code.

+------------------+----+----+
, Operation Code I j I k t
+------------------+----+----+

B 4

Figure 8.3 - CYBER 180 Jk Instruction Format

For this 16-bit instruction format, the J field provides a
register designation, a sub-operation code. or an immediate
operand value and the k field provides a register designation~

+------------------+----+----+---------------+
I Operation Code J' k t Q

+------------------+----+----+---------------+
8 4 4 16

Figure 8.4 - CYBER 180 jkQ Instruction Format

For this 32-bit instruction format, the J and k fields provide
register designations or sub-operation codes. The 16-bit Q-field
provi de s a signed di spl acemen-t or an i mmeo j ate oper and va J ue.

The CYBER 180 Assembler's CPU Instructions Group is subdivided
into the following classes of instructions according to function.

7.3.1 LOAD AND STORE

This sub-group of instructions shall provide the means for
transferring data. in the form of a single bit, a byte string. a
64-bit word, or multiple 64-bit words between one or more
Registers and one or more locations in central memory as
specified bV the individual instruction mnemonic.

COC - AOVANCED SYSTEMS DEVELOPMENT

(YBER 180 II Assembler ERS

7.0 CYBER 180C?U SYMBOLIC MACHINE INSTRUCTIONS
1.3.1 LOAD AND STORE

1-4

86/10/11
Rev: F

--
For the purpose of establishing operand access validity for

the associated central memory read and write accesses, the ring
number used for validation is the value of the ring number
contained in bit positions 16 through 19 of the associated A
Register.

The central memory operand access type is read-access for any
instruction which loads an A or X register, and write-access for
any instruction which stores an A or X register.

Instructions which transfer data from one or more Registers to
central memory, (name)y, Store instructions), do not alter the
contents of any Register which serves as a source of the data to
be transferred to central memory.

a) load Bytes to Xk from (Aj) displaced by 0 and indexed by (Xi)
Right, Length Per S.

lBYTS -(Format ;: SjkiO Op Code;: DO-01Ref# = 00.1)

+---------+----------+-----~------------------
II abe 1 loperation largument
+---------+----------+------------------------IlBYTS,S IXk,Aj,Xi,O

S - number of bytes to load(l-S).

b) Store Bytes from Xk at tAj) displaced by {) and indexed by
(Xi) Ri-ght. Length per s.

SBYTS - (Format - SjkiO Op Code = D8-0F Refll ;: 003)

+---------+----------+------------------------11 abe 1 loperation 1argument
+---------+----------+------------------------

I SBV'TS t S

S - number of bytes to store(1-8).

1-5
CDC - ,ADVANCED SYSTEMS DEVELOPMENT

CYDER 180 II Assembler ERS
86/10/17

Rev: F

7.0 CYSER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.1.2 LXI,lX,SXI.SX-Load/Store Word. Xk

--

a) Load Xk from (A]) displaced by 8*0 and indexed by 8*(Xi)
Right.

LXI - (format = jkiD Op Code = A2 Ref' : 005)

+---------+----------+------------------------
Ilabel loperation 1argument
+---------+----------+------------------------

ILXI IXk,Aj.Xi,label

label - byte address, must be on a word boundary.

b) load Xk from (Aj) displaced by 8*0.

LX - (Format = jkQ Op Code = 82 Ref' = 006)

+---------+----------+------------------------
Ilabel loperation 'argument

+---------+----------+------------------------
tLX IXk,Aj,label

label - byte address. must be on a word boundary_

c} Store Xk at fAj) displaced by 8*0 and indexed by a.txi}
Right.

SXI - (Format = jkiO Op Code = 13 Ref# = 001)

+---------+----------+------------------------
Ilabe) loperation 'argument
+---------+----------+------------------------

ISXI IXk,Aj,Xi,label

label - byte address, mU.st be on a word boundary.

CDC - ADVANCED SYSTEMS DEVELOPMENT

tYBER 180 11 Assembler ERS

7-6

86/10/1°7
Rev: F

--1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.1.2 lXI,LX,5XI,SX-load/Store Word, Xk

d) Store Xk at fAj) displaced by B*Q.

SX - (Formaot== JkQ Op Code :: 83 Ref# :: 008)

+---------+----------+------------------------I label loperation largument
+---------+----------+------------------------

ISX

label - byte address, must be on a word boundary.

a) Load Bytes to Xk from (Aj) displaced by D and indexed by (Xi)
Right. Length per xo.

lBYT - (Format :: Jki 0 Op Code = A4 Ref# == 009)

+---------+----------+------------------------'1 abe 1 loperation I argument
+---------+----------+------------------------I Il8YT,XO IXk,AJ,Xi,D

b) Store Bytes from Xk at (Aj) displaced by D and indexed by
(Xi) Right, Length per XO.

SBYT - (Format = jkIO Op Code = A5 Ref# = 011)

+---------+----------+------------------------
Ilabel loperation largument

ISBYT,XO 'Xk,AJ,Xi,O

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYOER 180 II Assemb1er ERS

7.0 CYBER 180 CPU SYM80LIC MACHINE INSTRUCTIONS
1.3.1.4 lBYTP-load Bytes. Xk length per j

7-1

86/10/11
Rev: F

a) load Bytes to Xk from (P) displaced by Q. Length per j.

lBYTP - (Format = jkQ Op Code = 86 Ref# = 013)

+---------+----------+------------------------
tlabel 'operation 'argument
+---------+----------+------------------------

IlBYTP,J IXk.label

labe J- byte address of the data.
1 - number of bytes to Joadet-B).

a) load Bit to Xk (Aj) displaced by Q and bit indexed by (XO)
Right.

l8IT - (Format = jkQ Op Code = 88 Ref' = 014)

+---------+----------+------------------------
Ilabel I opera-t ion I argument
+---------+----------+------------------------

ItS!T 'Xk,AJ,Q.,XO

b) Store Bit from Xk at (AJ) displaced by Q and bit indexed by
(XO) Right.

SBIT - (Format = jkQ Op Code = 89 Ref# = 015)

+---------+----------+------------------------
Ilabel I operat _ion 1 argument
+---------+----------+------------------------

IS8IT

7.3.1.6 LAl ... LA.a.SAl.a.SA=Loa.dLS:tor:e.a.4k

a) load Ak from CAl) displaced by 0 and indexed by (Xi) Right.

LAI - (Format = jkiO Op Code = AO Ref# = 016)

CDC - ADVANCED SYSTEMS DEVELOPMENT

(YHER 180 II Assembler ERS

1.0 CYBER 160 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.1.6 lAI.lA,SAI,SA-lbad/Store,Ak

+---------+----------+------------------------I label loperation 'argument
+---------+----------+------------------------

tlAI Ilk,Aj,Xi,D

b) load Ak from tAjl displaced by Q.

LA - (Format = jkQ Op Code = 84 Ref' = 011)

+---------+----------+------------------------
, labe 1 'operation largument
+---------+----------+------------------------, ILA

86/10/11
Rev: F

c) Store Ak at (Aj) displaced by 0 and indexed by (Xi) Right.

SAl - (Format = jkiO Op Code = Al Ref# = 018)

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------

fSAI IAk,Aj,XI,D

d) Store Ak at (Aj) displaced by Q.

SA - (Format = jkQ Op Code = 85 Ref. = 019)

+---------+----------+------------------------
(label 'operation fargument

+---------+----------+------------------------
'SA IAk,Aj,Q

CDC - ADVANCED SYSTEMS DEVELOPMENT

trBER 180 II Assembler ERS

·7.0 C"VilER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
·7.3.1.7 lMUtT.SMUlT-Load/Store Multiple Registers

a) load Multiple Registers from (Aj) displaced
Selectivity per (Xk) Right.

lMULT - (Format = .';kQ Op Code = 80 Ref# = 020)

+---------+----------+------------------------
f 1 abe 1 loperation I argument

+---------+----------+------------------------
IlMUlT

1-9

86/10/11
Rev: F

by

label - byte address, must be on a word boundary

hI Store Multiple Registers
Selectivity per (Xk) Right.

·at (Aj) displaced by BOQ,

SMULl - (Format = jkQ Op Code = 81 Ref' = 021)

+---------+----------+------------------------11 abe 1 'operation 'argument
+---------+----------+------------------------

'SMUlT I Xk,A J, label

label - byte address, must be on a word boundary
•••••• •

7.3.2 INTEGER ARITHMETIC

Integer arithmetic operations shall be performed on words and
hal fwords contai ned in Regi ster .Xk and Regi ster Xk Ri ght,
respectively, as described in the following subparagraphs.

Binary integers contained in the X Registers consist of
signed, two's complement, 32-bit or 64-bit quantities. The
leftmost bit, (in position 00 for 64-bit integers and in position
32 for 32-bit integers), constitute the sign bit.

The ranges in magnitude, M, covered by binary integers in each
of the two fixed point formats, are the following:

32-bit Integer: -2(31)~M'2(31)-1

64-bit Integer: -2(63)'M~2(63)-1

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

1.0 CVBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.2.1 AODX,ADOXQ,INCX-Integer Sum, Xk

a) Integer Sum, (Xk) replaced by (Xk) plus (Xj).

ADDX - (Format = jk Op Code = 24 Ref. = 022)

+---------+----------+------------------------
11abe 1 t operationf argument
+---------+----------+------------------------
I IADDX IXk,Xj

b) Integer Sum, (Xk) replaced by (XJ) plus Q.

AODXQ - (Format = jkQ Op Code = 88 Ref' = 143)

+---------+----------+------------------------loperation largument
+---------+----------+------------------------

IADOXQ IXk,Xj,Q

c) Integer Sum, (Xkl replaced by (Xk) plus j.

INtI - (Format = Jk Op Code = 10 Ref# = 166)

+---------+----------+------------------------
Ilabel 'operation largument
+---------+----------+------------------------

IINCX

7 • .3.2.2 SUBl ... DECl:::lntege.c._J.liffec.enceJl._lk

a) Integer Difference, (Xk) replaced by (Xk) minus (Xj).

SU8X - (Format = jk Op Code = 25 Ref# = 023)

+---------+----------+------------------------
Ilabe 1 'operation largument
+---------+----------+------------------------

IStJBX 'Xk,X,J

1-10

86/10/.17
Rev: F

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.3.2.2 SUBX,OECX-Integer Difference, Xk

h) Integer Difference, (Xk) replaced by (Xk) minus j.

OECX - (Format = jk Op Code = 11 Ref' = 161)

+---------.~---------.------------------------
'label 'operation largument
+---------+----------+------------------------
f tDECX IXk,J

a) Integer Product, (Xk) replaced by (Xk) times (XJ).

MUll - (Format = jk Op Code = 26 Ref' = 024)

+---------+----------+------------------------
Ilabe 1 'operation largument

+---------+----------+------------------------
J IMUlX tXk,Xj

b) Integer Product, Ilk) replaced by (Xj) times Q.

MUL XQ - (Format = jkQ Op Code = B2 Ref# = 168)

+---------+----------+------------------------
loperation t argumen"t

+---------+----------+------------------------
IMUlXQ

7-11

86/10/11
Rev: f

a) Integer Quotient. (Xkl replaced by (Xk) divided by (Xj).

OIVX - (Format = jk Op Code = 21 Ref# = 025)

+---------+----------+------------------------
11 abe 1 loperation Jargument
+---------+----------+------------------------, lOIVX IXk,Xj

7-12
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS
86/10111

Rev: F

7.0 CYOER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.3.2.5 ADDR.ADDRQ,INCR-Integer Sum, Xk right

a) Integer Sum, (Xk) Right replaced by (Xk) Right plus (Xj)
Right.

AOOR - (Format = Jk Op Code = 20 Ref' = 027)

+---------+----------+------------------------11 abe 1 loperation largument:
+---------+----------+------------------------

IAOOR

b) Integer Sum, (Xk) Right replaced by (Xj) Right plus Q.

AOORQ-(Format = JkQ Op Code = 8A Ref# = 028)

+---------+----------+------------------------
Ilabel loperation largument:
+---------+----------+------------------------I AOORQ IXk,Xj,Q

c) Integer Sum, (xt) Right replaced by (Xk) Right plus j.

INCR - (Format = jk Op Code = 28 Ref# : 029)

+---------+----------+------------------------
1label 'operation largument
+---------+----------+------------------------

lINeR IXk,j

a) Integer Difference, (Xk) Right replaced by (Xk) Right minus
(Xj) Right.

SUBR - (Format = jk Op Code = 21 Ref# = 030)

+---------+----------+------------------------
Ilabel 'operation largument
+---------+----------+------------------------I SUBR IXk,XJ

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

7.0 CYDER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.2.6 SUBR.OECR-Integer Difference, Xk Right

1-13

86/.10/11
Rev: F

h) Integer Difference, (Xk) Right replaced by (Xk) Right minus
j.

DEeR - (Format = jk Op Code = 29 Ref' = 031)

+---------+----------+------------------------
toperation largument

+---------+----------+---------~--------------IOEeR

a) Integer Product, (Xk) Right replaced by (Xt) Right times (Xj)
Right.

MULR - (Format = jk 01' Code =22 Ref:# = 032)

+---------+----------+------------------------
Ilabe 1 loperation largument
+---------+----------+------------------------1 MUlR IXk,Xj

b) Integer Product, (Xk) Right replaced by (Xj) Right times Q.

MUlRQ - (Format = jkQ Op Code = Be Ref# = 033)

+---------+----------+------------------------
11 abe 1 loperation largument
+---------+----------+------------------------

I HUlRQ IXk.Xj,Q

a) Integer Quotient, (Xk) Right replaced by (Xk) Right divided
bv ex J) Rig ht.

OIVR - (Format = Jk Op Code = 23 Ref# = 034)

+---------+----------+------------------------
11abe"} loperation largument
+---------+----------+------------------------

IOIVR lXk,X j

CDC - ADVANCED SYSTEMS DEVELOPMENT

CyeER 180 II Assembler ERS

7.0 CYBER 180 CPU SYM80LIC MACHINE INSTRUCTIONS
1.3.2.9 CMPX.CMPR-Integer Compare

7-14

86/10/17
Rev: F

--

a) Integer Compare (Xj) to (Xk). result to Xl Right.

CMPX - (Format = jk Op Code = 20 Ref' = 03S)

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------

ICMPX lXl,Xj,Xk

b) Integer Compare (Xj) Right to (Xk) Right, result to Xl Right.

CHPR - (Format : jk Op Code = 2C Ref# = 036)

+---------+----------+------------------------
l1abe 1 loperationlargument
+---------+----------+------------------------ICM?R

• • • • • • •

1.3.3 BRANCH

The instructions within this subgroup consist of both
conditional and unconditional branch instructions.

Each conditional branch instruction performs a comparison
between the contents of two general registers. Then. based on
the relationship between the results of that comparison and the
branch condition as specified by means of the instruction'S
operation code. each conditional branch instruction performs
either a normal exit or a branch exit.

Normal exit: When the results of a comparison do not satisfy
the branch condition as specified by the operation code, a normal
exit is performed. A normal exit for all conditional branch
instructions consists of adding four to the rightmost 32 bits of
the PYA obtained from the P Register, with that 32-bit sum
returned to the P Register in its rightmost 32-bit positions.

Branch exit: When the results of a comp~ison satisfy the
branch condition as specified by the operation code, a branch
exit is performed. A branch e.xit consists ofe)(panding the
16-bit Q field from the instruction to 31 bits by means of sign
extension, shifting these 31 bits left one bit position with a
zero inserted on the right, and adding this 32-bit shifted result

CDC - ADVANCED SYSTEMS DEVELOPMENT

(V8ER 180 II Assembler ERS

1.0 CVBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.3.3 BRANCH

7-15

86/10/17
Rev: F

to the rightmost 32-bits of the PYA obtained from the P Register.
with the 32-bit sum returned to the P Register in its rightmost
32-bit positions.

Unconditional branch instructions perform branch exits
according to the appropriate instruction descriptions contained
in subparagraphs 2.2.3.5 and 2.2.3.6 of the "1605.

The Assembler sets the instruction's Q field according to the
value of the 'label' subfield of the instruction mnemonics, which
must correspond to a label of an Assembler statement within the
currently active section. Relative addresses cannot span section
boundariese

a) Branch to (P) displaced by 2*Q if (Xj) equal to (Xk).

BRXEQ - (Format = jkQ Op Code = 94 Ref. = 037)

+---------+----------+------------------------
11abel loperation 'argument
+---------+----------+------------------------
I lBRXEQ I X j , Xk • 1 abe 1

label - byte address of the new location.

b) Branch to (P) displaced by 2*Q if (Xj) not equal to (Xk).

8RXNE - (Format = JkQ Op Code "= 95 Ref# = 038)

+---------+----------+------------------------
tlabel loperation largument
+---------+----------+------------------------

IBRXNE IXj,Xk.label

label - by"te address of the new locat ion.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

7.0 CY8ER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.3.3.1 BRXEQ,8RXNE,8RXGT,8RXGE-Branch Conditional

1-16

86.110111
Rev: F

c) Branch to (P) displaced by 2*Q if (Xj' greater than (XkJ.

BRXGT - (Format = JkQ Op Code = 96 Ref:fl= 039)

+---------+----------+------------------------I label loperation 'argument
+---------+----------+-----------------------~

ISRXGT tXj,Xk,label

label - byte address of the new location.

d) Branch to (P) displaced by 200 if (Xj) greater than or equal
to (Xk).

8RXGE - (Format = jkQ Op Code = 91 Ref. = 040)

+---------+----------+------------------------
loperation largument

+---------+----------+------------------------
ISRXGE lXj,Xk,label

label - byte address of the new location.

a) Branch to (P) displaced by 20g if (Xj) Right equal to (Xk)
Right.

8RREQ - (Format = jkQ Op Code = 90 Ref# = 041)

+---------+----------+------------------------
Ilabel loperation largument:
+---------+----------+------------------------, IBRREQ IXJ.Xk,label

label - byte address of the new location.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVHER 180 II Assembler ERS

7.0 CYBER 1-80 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.3.2 8RREQ.BRRNE.8RRGT,BRRGE-Conditional, X Right

7-11

86.110/11
Rev: F

b) Branch to (P) displaced by 2*Q if (Xj) Right not equal to
(Xk) Right.

8RRNE - (Format = jkQ Op Code = 91 Ref# = 042)

+---------+----------+------------------------I .• abe' loperation largument
+---------+----------+------------------------

'6RRNE IXJ,Xk.,·'abel

label - byte address of the new location~

c) Branch to (Pl displaced by 2*0 if (Xj) Right greater than
(XklRight.

BRRGT - (format = jkQ Op Code = 92 Ref' = 043)

+---------+----------+------------------------
J 1 abe 1 1operation Jargument
+---------+----------+------------------------IBRRG! 'Xj,Xk.l abe 1

label - byte address of the new location.

d) Branch to (P) displaced by 20Q if (Xj) Right greater than or
equal to (Xk) Right.

8RRGE - (Format = jkQ Op Code = 93 Ref# = 044)

+---------+----------+------------------------
tlabel toperation 'argument
+---------+----------+------------------------

tBRRGE tXj,Xk,1abel

label - byte address of the new location.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

1-18

86/10/17
Rev: F

--1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.3.3 8RINe-Conditional. with Increment

7.3.3.3 BRl~t::.tQn.dlllQn.al _Jlfi.tb_lnc.t:f!ment

a) Branch to (P) displaced by 2*Q and incremen"t (Xt) if (KJ)
greater than (Xk).

BRINe - (Format = JkO Op Code = 9C Ref' = 045)

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------, 'BRINe tXJ,Xk,label

label - byte address of the new location.

"1 • 3.3.4 flESEG=Candltianal ... _Ak

a} Branch to (P) displaced by 2*Q if SEC«Aj) not equal to
SEG(Ak}; else Compare BN(Aj) to SNCAk). result to Xl Right.

8RSEG - (Format = jkQ Op Code = 90 Ref# = 046)

+---------+----------+------------------------
I"' abe 11 operati on I argument

+---------+----------+------------------------
IBRSEG lXl,AJ,Ak, label

label - byte address of the new location.

1.3.3.5 B&REL=Unc.andlllonaLRc.anc.b _12.1_1nde.xeg

a) Branch to (Pl indexed by 20tXk) Right.

8RREl - (format = jk Op Code = 2E Ref' = 041)

+---------+----------+------------------------
'label lope rat i onlar gumen"t

+---------+----------+------------------------I BRREl I Xk

cnc - ADVANCED SYSTEMS DEVELOPMENT

CVoER 180 II Assembler ERS

7-19

86/10/11
Rev: F

---~--------
1.0 CVaER 180 CPU SYMBOLIC MACHINflNSTRUCTIONS
7.3.3.6 BRDIR-Unconditional Branch, (A) indexed
--

a) Branch to (Ajl indexed by Z*(Xk) Right.

BROIR - (Format = jt Op Code = 2F Ref# = 048)

+---------+----------+------------------------
Ilabel loperation I argument

+---------+----------+------------------------
I IBRotR

• • • • • • •

1.3.4 COpy

The instructions within this subgroup provide the means for
accomp"'ishinginter-register transfers to the extent defined by
the following instruction descriptions.

CPYXX - (Format = Jk OpCode = 00 Ref# = 049)

+---------+----------+------------------------
11 abel 'operation 'argument
+---------+----------+------------------------

ICPYXX 'Xk ,Xj

CPYAX - (Format = jk Op Code = OB Ref# = 050)

+---------+----------+------------------------
J 1 abe 1 loperation fargument
+---------+----------+------------------------

tCPYAX IXk,Aj

CDC - ADVANCED SYSTEMS DEVELOPMENT

(YBER 180 II Assembler ERS

1.0 CYHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.3.4.3 CPYlA-Copy to Ak from Aj

1-20

86/10/17
Rev: F

--

CPYIA - (Format = jk Op Code = 09 Ref# % 051)

+---------+----------+------------------------
11 abe 1 loperation largument
+---------+----------+------------------------ICPYAA IAktAj

CPYXA - (Format = Jk Op Code = OA Ref' = 052)

+---------+----------+------------------------
Ilabe 1 loperation largument
+---------+----------+------------------------, !CPYXA

CPYRR - (Format = jk Op Code = OC Ref' = 053)

J 1 abe 1 1operatlon 'argument
+---------+----------+------------------------

ICPYRR
• • • • • • •

7.3.5 ADDRESS ARITHMETIC

The instructions wIthin this subgroup shall provide the means
for accomplishing address arithmetic to the extent defined by the
following instruction descriptions.

CDC - ADVANCED SYSTEMS DEVELOPMENT

crBER 180 II Assembler ERS

7.0 CVSER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.3.5.1 ADDAQ-Copy A with Displacement

7-21

86/10/1"1
Rev: F

--

a) Address (Ak) replaced by (Aj) plus Q.

AODAQ - (Format ::: JkQ Op Code ::: 8E Ref# ::: 054)

+---------+----------+------------------------
Ilabel loperation 'argument
+---------+----------+------------------------

JADOAQ IAk,Aj.Q

a) Address (Ak) replaced by (P) plus 2*(Xj) Right plus 2*G.

AODPXQ - (Format ::: jkQ Op Code ::: SF Ref. = 055)

+---------+----------+------------------------
'label loperation 'argument
+---------+----------+------------------------I I AOOPXQ IAk,Xj,label

label - byte address of the new location.

7.3.5.3 AllIlAl::.A_lndexed

a) Address (Ak) replaced by (Ak) plus (Xj) Right.

AOOAX - (Format::: Jk Op Code::: 2A Ref# ::: 056)

+---------+----------+------------------------II abel 'operation largument
+---------+----------+------------------------

IAOOAX

CDC - ADVANCED SYSTEMS DEVELOPMENT

CV8ER 180 II Assembler ERS

1.0 CVBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.3.5.4 AOOAO-Copy A with Oisplacement, Modulo

1-22

86/10/11
Rev: F

--

a) Address (Ak) replaced by (Ai) plus 0 per j.

ADDAD - (Format = jkiD Op Code = A7 Ref' = 161)

+---------+----------+------------------------
11 abe 1 loperation targument
+---------+----------+------------------------

I.AOOAO I .Ak t Ai, 0, j
• ••• •• •

7.3.6 ENTER

The instructions within this subgroup provide the means for
entering immediate operands, (consisting of logical quantities of
signed, two's complement binary integers). into the X Registers
to the extent defined by the following instruction descriptions.

a) Enter Xk with plus j.

ENTP - (Format = jk Op Code = 3D Ref. : 051)

+---------+----------+------------------------
, labe 1 loperation largument
+---------+----------+------------------------

lENTP IXk,j

b) Enter Xk with minus j.

ENTN - (Format = Jk Op Code = 3E Ref# = 058)

+---------+----------+------------------------
11abe 1 1operation largument
+---------+----------+------------------------

lENIN IXk,j

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.6.2 ENTE-Enter Q

7-23

86/10/1"7
Rev: F

--

a) Enter Xk with sign extended Q.

ENTE - (format = jkQ Op Code = 80 Ref. = 059)

+---------+----------+------------------------
!label loperation largument
+---------+----------+------------------------

IENTE

1.3.6.3 EblIL.LE~IX=En.tec._Jk

a) Enter XO with logical jk.

ENTl - (Format = jk Op Code = 3F Ref' = 060)

+---------+----------+------------------------
, 1 abe J loperation 'argument
+---------+----------+------------------------

IENTl IXQ,jk

b) Enter Xl with logical jk.

ENTX - (Format = jk Op Code = 39 Ref' = 164)

+---------+----------+------------------------
II abel loperation largument
+---------+----------+------------------------

lENTX IXl,Jk

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

7-.24

86/10/11
Rev: F

--1.0 CVBER 180 CPU SYM80lIC MACHINE INSTRUCTIONS
·7.3.6.4 ENTZ,ENTQ,ENTS-Enter Signs

--

a) Enter Xk left with signs per j.

The value of the right most 2-bits of the j field from the
instruction shall be translated as follows:

rf 00, 32 bit positions of Xk left shall be cleared
(,zeroes) •
If 01, 32 bit positions of Xk left shall be set (ones).
If 10 or 11, 32 bit positions of Xk left sha11 be set to
the value of the sign bit in position 32 of Xk Right.

ENTZ - (Format = Jk Op Code - IF Ref' = 061)

ENTD - (Format = jk Op Code = IF Ref' - 061)

ENTS - (Format = jk Op Code = IF Ref. = 061)

+---------+----------+------------------------
, labe 1 loperation largument
+---------+----------+------------------------

JENTZ ,
I ENTO J Xk
tENTS ,

The assembler computes the value of J from the specific
instruction mnemonic used.

a) Enter Xl with sign extended jkQ.

ENTC - (Format = jkQ Op Code = 87 Ref' = 165)

+---------+----------+------------------------
I 'abe J loperation 'argument
+---------+----------+------------------------

IENTC IX1,JkQ

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

7.0 eYHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.6.6 ENTA-Enter XO jkQ

7-25

86.110/1"1
Rev: F

--

a) Enter XO with sign extended jkQ.

ENTA - (Format = JkQ Op Code = 83 Ref. = 169)

+---------+----------+------------------------
1label loperation 'argument
+---------+----------+------------------------
t IENTA IXO,JkQ

1.3.1 SHIFT

The instructions within this subgroup provided the means for
shifting the initial contents of the Xj Register and transferring
the result to the Xk Register. to the extent defined by the
following descriptions.

All of the instructions within this subgroup derive the
computed shift count in the following manner: The rightmost 8
bits of the 0 field from the instruction is added to the
rightmost 8 bits initially contained in bit positions 56 through
63 of Register Xi Right and the 8-bit sum represents the computed
shift count. Any overflow from the a-bit sum is ignored. In
this context, the contents of Register XO Right are interpreted
as consisting entirely of zeroes.

The instructions within this subgroup shall interpret the
computed shift count as follows: The sign-bit in the leftmost
position of the 8-bit computed shift count shall determine the
direction of the shift. When the computed shift count is
positive (sign bit of zero), these instructions shall left shift.
When the computed shift count is negative (sign-bit of one),
these instructions shall right shift. For 32-bit quantities,
shifts shall be from 0-31 bits left and from 1-32 bits right.
For 64-bit quantities, shifts shall be from 0-63 bits left and
from 1-64 bits right.

When these interpretations of the computed shift count result
1 n an actual shift count of zero, the associated instructions
transfer the initial contents of the Xj Register to the Xk
Register and no shifting is performed.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

'1.0 CYSER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.3.7.1 SHFC-Shlft (Xj) to Xk. Circular

1-26

86/10/11
Rev: F

--

a) Shift (Xj) to Xk Circular, Direction and Count per (Xi) Right
plus D.

SHFC - (Format = jkiO Op Code = AS Ref# = 062)

+---------+----------+------------------------
Ilabe 1 'operation largument
+---------+----------+------------------------

ISHFC

a) Shift (Xj) to Xk, Direction and Count per (Xi) Right plus D.

SHFX - (Format = jkiD Op Code = A9 Ref# = 063)

+---------+----------+------------------------11 abe 1 toperation (argument
+---------+----------+------------------------

ISHFX IXk,Xj,Xi.O

b) Shift (Xj) Right to Xk Right, Direction and Count per (Xi)
Right plus O.

SHFR - (Format = JkiD Op Code = AA Ref' = 064)

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------

ISHFR
.•

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

7.0 CV3ER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.3.8 LOGICAL

1.3.8 LOGICAL

7-27

86/10/17
Rev: F

The instructions within this subgroup shall provide the means
for performing Boolean operations on the 64-bit words contained
in the X Registers to the extent defined by the following
instruction descriptions.

a) logical Sum IXk) replaced by (Xk) OR (Xj).

IORX - (Format = jk Op Code = 18 Ref# = 065)

+---------+----------+------------------------
11 abel loperation 1argument
+---------+----------+------------------------

IIORX I.Xk. XJ

b) logical Difference, (Xk) replaced bV (Xk) EOR (Xj).

XORX - (Format = jk Op Code = 19 Ref# = 066)

+---------+----------+------------------------11 abe 1 loperation largument
+---------+----------+------------------------

I XORX

c) logical Product, (Xk) replaced by (Xk) AND (Xj).

ANOX - (Format = jkJOp Code = lA Ref# = 067)

+---------+----------+------------------------
11abe 1 toperation 'argument
+---------+----------+------------------------

IANOX tXk,XJ

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

7.0 CV8ER 180 CPU SYM80LIC MACHINE INSTRUCTIONS
7.3.8.2 NOJI-logical Complement

a) logical Complement. (Xk) replaced by (Ij) NOT.

MOrX - (format = jk Op Code = 18 Ref. = 068)

+---------+----------+------------------------I 'I abe 1 loperatlon largument
.~ ".

+---------+----------+------------------------
INOTX tXk,X,j

7.3.8. 3 l~:U:lI=LQglcal-1nhihit

a} logical Inhibit, (Xk) replaced by (Xk) AND (Xj) NOT

INHX - (F~rmat = Jk Op Code = Ie Ref' = 069)

+---------+----------+------------------------
1label loperation largument
+---------+----------+------------------------
I IINHX IXk,Xj

• • •• • • •

1.3.9 REGISTER BIT STRING

86/10/17
Rev: F

The instructions within this subgroup provide the means for
addressing a contiguous string (field) of bits. beginning and
ending independently with any bit positions within a 64-bit word.

For each of these instructions in this subgroup, the bit
string is addressed by means of a 12-bit field referred to as a
bit string descriptor. Any field of bits. including the field
constituting a bit field descriptor, is numbered from left to
right, with the leftmost bIt numbered 00. The six-bit subfield
in bit positions 00 through 05 of a bit string descriptor
desi9nates the beginning, or leftmost, bit position within a
64-bit word. The 6-bit subfield in bit positions 06 through 11
of the bIt string descriptor is a length designator that is
interpreted as deSignating one less than the length (in bits) of
a bit string within a 64-bit word.

CDC - ADVANCED SYSTEMS DEVELOPMENT

(YBER 180 II Assembler ERS

7.0 CyoER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.9 REGISTER BIT STRING

Bit String Descriptor

100 05106

1-29

86/10/11
Re·v: F

111

+-------------------------------+-------------------------------+ Leftmost Position Designator I length Designator
+-------------------------------+-------------------------------+

(Bit Length-I)

For all instructions within this subgroup, indexing is carried
out as follows: the bit string descriptor obtained from the 0
field of the instruction is zero-extended on the left to 32 bits
and then added. without overflow detection. to the contents of
register Xi Right (in this context, the contents of register XO
shall be interpreted as all zeroes); the rightmost 12 bits of the
result is then interpreted as a bit string descriptor, in the
manner described above.

a) Isolate Bit Mask into Xk per (Xi) Right plus o.

ISOM - (Format = JkiO Op Code = Ae Ref# = 010)

+---------+----------+------------------------
Ilabe 1 loperation 'argument
+---------+----------+------------------------

1150M IXk,Xi,Otj

a) Isolate into Xk from Xj per (Xi) Right plus D.

1508 - (Format = jkiD Op Code = AD Ref# = 071)

+---------+----------+------------------------
Jlabel loperation 'argument
+---------+----------+------------------------

IISOB IXk,Xj,Xi,Q

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYHER 180 II Assembler ERS

1-30

86/10/17
Rev: F

--7.0 CY8ER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.3.9.3 INSB-Insert into Xk
--

a) Insert into Xk from Xj pertXi) Right plus o.

INSB - (Format = jkiD Op Code = AE Ref# = 072)

+~--------+----------+------------------------
11 abe 1 I operat i onl argument
+---------+----------+------------------------
f IINSB tXk,XJ,Xi,O

7.3.10 MARK-MARK TO BOOLEAN

This instruction tests the two bits initially contained in the
leftmost two bit positions, 32 and 33, of Register Xl Right
according to the 4-bit j field from the instruction. When the
llalue of the two leftmost bits initially contained in Register Xl
Right is equal to any of the one or more values specified by the
instruction's J field, Register Xk shall be cleared in bit
positions 1 through 63 and set in bit position o. When the llalue
of the two leftmost bits initially contained in Register Xl

Right is not equal to any of the one or more values specified by
the instruction's j field. Register Xk Right is cleared in all 64
bit positions, 0 through 63.

1-31
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

7.0 CVBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.10 MARK-MARK TO BOOLEAN
--

The values of the j field and the leftmost two bits initially
contained in Register Xl Right shall be interpreted with respect
to equality (EO) as follows:

+----+--+
I · .J
f

IBinary Value of Bits 32 and 33 of Xl Right, respectively
I 00 , 01 I 10 I 11

+----+--------------+--------------+---------------+------------+
10000' Unconditional inequality
+----+--------------+--------------+---------------+------------+
100011 EO ,

+----+--------------+--------------+---------------+------------+
100101 EQ I
+----+--------------+--------------+---------------+------------+
100111 , EQ , EQ

+----+--------------+--------------+---------------+------------+
101001 £0 I
+----+--------------+--------------+---------------+------------+
tOlOll EQ , EQ

+----+--------------+--------------+---------------+------------+
101101 I EQ 'Ea I
+----+--------------+--------------+---------------+------------+
1011111 EQ EQ EQ

+----+--------------+--------------+---------------+------------+
110001 EQ

+----+--------------+--------------+---------------+------------+
110011 EQ EQ 1
+----+--------------+--------------+---------------+------------+
11010' EO EQ f
+----+--------------+--------------+---------------+------------+
11011 , EQ f , EQ EQ

+----+--------------+--------------+---------------+------------+
t11001 EQ f EQ '1
+----+--------------+--------------+---------------+------------+
111011 EQ EQ I EO I
+----+--------------+--------------+---------------+------------+
'11101 EO , EQ EQ t
+----+--------------+--------------+---------------+------------+
111111 Unconditional Equality
++++++--+ I I , , -++++--------+

+++-----------------------+
f
I

++--------------------------------------+
I
I
I

+--+
The four individual bits of j can be visualized as individual

pointers which are associated, from left to right. with the four
possible values (00,01.10,11) of the tested bit-pair (bits 32 and

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

7.0 CVBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.3.10 MARK-HARK TO BOOLEAN

1-32

86/10/11
Rev: F

33 of Register Xl Right). For example. if j = 0101. equality is
detected when the value of the tested bit pair is 01 or 11.

a) Set Ik per j and (Xl) Right.

MARK - (Format = jk Op Code = IE Ref# = 145)

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------

'HARK tXk.Xl,j
• ••••• •

The general form of execution for this group shall involve the
util ization of a first data field in central memory, referred to
as the ·source-, to modify, replace. or compare with a second
data field in central memory referred to as the Wdestination".
Both the source and destination fields shall be individuall,
described by means of independently designated Data Descriptors,
with respect to the types of representation, sign and zone
conventions, lengths and relative locations of the data fields.

The Data Descriptors shall be obtained from central memory at
locations immediately following the BOP instruction, as defined
by the BOP instruction format and number of descriptors used by
the instruction. A'II descriptors consist o'f a 32-bit half word,
aligned to a parcel (16 bit) boundary in central memory.

7.4.1 GENERAL DESCRIPTION

The instructions of this group utilize the jk and jkiO
instruction formats in combination with one or two descriptors in
the following combinations:

1) jk and two descriptors.

Operation Code j k

+--------------+---+---+
p I 8 1414'

+--------------+---+---+

CDC ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

7.0 CYBER 180
7.4.1 GENERAL

CPU SYMBOLIC
DESCRIPTION

MACHINE INSTRUCTIONS

Descriptor j

+---------------------------------------+ P+2 f 32 ,
+---------------------------------------+

Oescr i ptor k

+---------------------------------------+
P+6 32

+---------------------------------------+
2) jkid and two descriptors.

Operation Code j k i o

+--------------+---+---+---+------------+
p 8 4 ·4 12

+--------------+---+---+---+------------+
Descriptor j

+---------------------------------------+
P+4

+---------------------------------------+
Oescriptor k

+---------------------------------------+
P+8 32

+---------------------------------------+
3) and one descriptor.

Operation Code j k i o

+--------------+---+---+---+------------+
p 8 4 414 12 1

+--------------+---+---+---+------------+
Descriptor j or k

+---------------------------------------+
P+4 32

+---------------------------------------+

7-33

86/10/11
Rev: F

CDC - ADVANCED SYSTEMS DEVELOPMENT

eYHER 180 II Assembler ERS

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.1.1 Operation Codes

A total of 18 operation codes shall be utilized
instructions comprising the BOP Instruction group.
purpose of this specification, the BOP Instruction group
further divided into four subgroups. including
instruction names, as follows:

1-34

86/10/11
Rev: F

by the
For the

shall be
·short-

NOTE: for the order of exception sensing for these instructions,
as well as all other instructions, refer to the CYBER 180
Processor-Memory Model-Independent COS.

Subgroup , Short Name

-----------------------------+----------------------------------BOP Numeric I Sum
I 0 i fference
I Product
I Quo·t i ent
I Scale
1 Sea Ie Rounded
I Decimal Compare
, Numeric

-----------------------------+----------------------------------Byte , Compare
I Compare Collated
I Scan While Non-Member
I Translate
I Move Bytes ,
I Edit

-----------------------------+----------------------------------
Subscript I Calculate Subscript ,

-----------------------------+----------------------------------Immediate Oata I Move Immediate Oata
I Compare Immediate Data
, Add Immediate Data

-----------------------------+----------------------------------
7.4.2 DATA DESCRIPTORS

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

7.0 CYHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.2 DATA DESCRIPTORS

7-35

86/10/11
Rev: F

The generated Data Descriptor shall be formatted as follows:

F , 0 t T l o ,
+---+---+-----+-----------------+---------------------------+
I 1 1 3 I 4 B 16 I
+---+---+-----+-----------------+---------------------------+

00 32-bit Descriptor

When specifying the data descriptor, the 0 field is not
specified. The format for the source descriptor (SO) and the
destination descriptor (OD) is the same, and is specified as
F.T,l,O.

F - 1 bit - field specifier for length
T - 4 bits - data types
L -8 bits - optional Jength field
o - 16 bits - offset address field

The da'ta descr iptor f i et ds may be spec i fj ed vi a ,e i ther of two
methods.

1. - The field may consist of four subfields each containing
an evaluatable expression.

2. - The field may consist of a single seT or eQU symbol
(category 9) which is associated with four values.

Example!

OSCRPTR

AODN,A1,XO AF,XI 0,1,0,16 1,7,0,16 .DESCRIPTOR
.FIELDS ARE F,T,L,D.

SET 0,7,0,16 .BOP DESCRIPTOR
ADDN,A7,XD AF,Xl DSCRPTR OSCRPTR .ALTERNATE METHOD

The 0 field is a 3 bit reserved field in bit positions 01, 02
and 03 of the data descriptor. Interpretation of other Data
Descriptor fields follow. This field is not specified in the
instruction.

The T field shall consist of 4 bits, in bit positions 04
through 07 of the Data Descriptor. and shall describe the type of
data representation used in the associated source or destination

7-36
CDC - ADVANCED SYSTEMS DEVELOPMENT

86/10/17
CYHER 180 II Assembler ERS Rev: F
---~--------
1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.2.2 BDP Operand Type. T Field
---~--

field. The 16 values of the T field are assigned data type
representations as follows:

o Packed Decimal No Sign

1 Packed Decimal No Sign leading Slack Digit

2 Packed Decimal Signed

3 Packed Decimal Signed leading Slack Digit

4 Unpacked Oecima1 Unsigned

5 Unpacked Decimal Tr ai ling Sign Combined HoI

6 Unpacked Decimal frat 1 i"9 Sign Separate

le,. i th

7 Unpacked Oecimal Leading Sign Combi ned Ho l"'er ith

8 Unpacked Decimal Leading Sign Separate

q Alphanumeric

10 Binary Unsigned

11 Binary Signed

12 Translated Packed Decimal Signed

13 Translated Packed Decimal Signed Leading Slack Digit

14 Translated Binary Unsigned

15 Translated Binary Signed

As determined by the operation code, source and destination
field, data types shall be restricted to only those combinations
which are defined as valid within the instruction descriptions.
The designation of invalid T field combinations within the
associated Data Descriptors shall result in the detection of an
Instruction Specification error, the instruction's execution
shall be inhibited and the corresponding program interruption
shall occur. The term "freely compatible- as used in the BOP
instruction descriptions, means that any allowable source field
data type may be used with any allowable destination field data
type.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CV8ER 180 II Assembler ERS

1.0 CYBER 180 CPU SYM80LIC MACHINE INSTRUCTIONS
1.4.2.3 80P Operand Address, 0 Field

1-31

86/10/1'7
Rev:F

--

The PYA corresponding to the leftmost byte of a BOP source or
destination fIeld shalt be obtained by utilizing the 16 bit 0
field of the corresponding data descriptor (bit positions 16
through 31) as a byte item count to be added as a sign extended
32 bit offset (l's complement for negative offset) to the byte
number (BN) portion of the base PYA contained in RegisterAj or
Ak respectively.

The length in bytes of a BOP source or destination field shall
be obtained according to the value of the I-bit F field (bit 00)
of the correspondIng descriptor as follows:

E Length

o Obtained from the 8 bit l field (bits 08 through 15) of the
corresponding descriptor.

1 Obtained from bits 55-63 of 10 Right for the first
descriptor following an instruction, and from bits 55-63 of
Xl Right for the second descriptor following an instruction.

Although field lengths as long as 256 bytes are possible, the
length of a 80P operand shall be restricted to a smaller value
for decimal and binary operations, according to the operand data
type. These inclusive limits are the following:

19 bytes for Packed Oecimal (types 0 through 3. 1.2 and 1.3)

38 bytes for Unpacked Oecima '. (types 4 through 8)

8 bytes for Binary (types 10. 11, 14, and 15)

When any BDP field length exceeds the specified maximum
associated with a given data type, an Instruction Specification
error shall be detected, the execution of that instruction shall
be inhibited, and the corresponding program interruption shall
occur.

If F equals 1, then only the rightmost 9 bits of XO and Xl
will be checked to determine whether or not the field length
exceeds the maximum allowed. The other bits of XO and Xl will
not be inspected.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

7.0 CVBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.3 DATA AND SIGN CONVENTIONS

1.4.3 DATA AND SIGN CONVENTIONS

1-38

86/10/11
Rev: F

With respect to numeric data and sign conventions,
interpretation sht~11 be performedaccordinq to Type (T) where
applicable, for characters (el, Digits (D) and Signs (5), using
hexadecimal notation.

NOTE: Data field examples are illustrated in the CYBER 180
Processor-Memory ModeJ- Independent GDS.

1.4.4 BDP NUMERIC

The instructions in this subgroup shall provide the means for
per formi ngar i thmet ic, shi ft, conversi on and compar i son
operations for byte fields in central memory consisting of
numeric decimal data.

Unless the length and format fields within the Data
Descriptors associated with the source and destination fields,
conform to the restrictions defined within the following
instruction descriptions, the detection of a length or Type error
shall result in an Instruction Specification Error condition, the
execution of the associated instruction shall be inhibited and
the corresponding program interruption shall occur.

Overflow into or other alteration of the slack digit of
destination field types 1 and 3 Is not allowed. The result shall
be right justified in the destination field. If the decimal
result is shorter than the destination field, the destination
field sh.al) be zero filled to the left. If the result is longer
than the destination field, the result shall be truncated on the
left as necessary. Thus, conceptually, these instructions shall
process the data fields from right to left.

Note that these conventions shall cover the end cases for
numeric operands of length equal to 1 for atl numeric data types.
For instance, a Move Numeric from a type 5 operand to a type 3 or
type 6 operand of length 1 would amount to an extraction of the
source field sign.

A source BOP operand of numeric type (0 through 8 and 12
through 15) and a length zero, shall be interpreted as the value
:zero.

A destination BOP operand of length zero shall transform the
associated instruction into a no-op. However, exception sensing
for the source fie1d shall occur normally, including the testing

CDC - ADVANCED SYSTEMS DEVELOPMENT

CyoER 180 II Assembler ERS

1.0 CVBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.4 BDP NUMERIC

1-39

86/10/11
Rev: F

for an Ar i thmet i c loss of Si go i fi cance or Ar ithrneti c Overf low
condition. provided the source field does not also have a length
of zero.

Minus zero shall be considered equivalent to plus zero by all
the instructions in this subgroup, with respect to decimal
Rumer ic data.

The representation for zero, zones and signs shall be normally
determined by interpreting the T field from the Data Descriptor
associated with the destination field.

Division by zero shall not be allowed to the extent that the
destination field in central memory shall not be changed and a
Divide Fault condition shall be detected.

Each source digit shall be checked for decimal digit validity_
An invalid decimal digit shall cause an Invalid BOP Oata
condition to be detected'and. if enabled, a program interruption
shall occur upon the completion of these instructions.

7.4.4.1 At:.llhmetlc

a) Decimal Sum. D{Ak) replaced by O(Ak) plus O(Aj).

014 jk (2 descriptors)

b) Decimal Difference, O{Ak) replaced by O(Akl minus O(Aj).

075 jk (2 descriptors)

c) Decimal Product. O('Ak) replaced by O(Ak) times O(Aj).

076 jk (2 descriptors)

d) Decimal Quotient, O(Ak) replaced by D(Ak) divided by D(Ajl.

011 Jk (2 descriptors)

Operation: These instructions shal'l ar ithmetical1y modify the
lni tial contents o"f the destination field in central memory.
(treated as an augend, minuend, multiplicand or dividend as
determined by the operation code) by the contents of the source
field in central memory (treated as an addend, subtrahend,
multiplier or divisor as determined by the operation code) and
shall transfer the decimal result consisting of a sum,
difference, product or quotient, as determined by the operation
code, to the destination field in central memory.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.4.4.1 Arithmetic

1-40

86/10/11
Rev: F

--
Types: All Packed decimal types ande11 Unpacked decima" types.
except for the leading Sign formats, shall be freely allowed for
decimal arithmetic; i.e., types 0 through 6, 12 and 13 shall be
compatible for these instructions.

Unpacked Decimal leading Sign (both conventions) shall not be
supported in the decimal arithmetic. A Numeric Move instruction
must be generated to format the operands of those types prior to
their use in arithmetic operations.

lengths: The maximum allowable lengths
destination fields shall be determIned
respective decimal data types.

for the source and
according to their

NOTE: Decimal operands shall be treated as integer values.

When the results of these instructions exceed the capacity of
the designated field such that significant digits are not stored
into central memory, an Arithmetic Overflow condition shall be
detected. When the corresponding user condition mask bit is set
and the trap is enabled, instruction execution shall be inhibited
and program interruption shall occur.

1.4.4.2 AOIlf!i ... SUat:l ... HULhI.&!llY!!l::At.ithm.eti~'

a) Decimal Sum, D(Ak} replaced by D(Ak) plus O(Aj).

AOON - (Format = jk2 Op Code = 70 Ref# = 015)

+---------+-----------+-----------------------
11 abel loperation I argument
+---------+-----------+-----------------------1 fAODN,Aj,XO IAk,Xl so 00

When the F field in the data descriptor is equal to 0, the
length register (XO for source, Xl for destination) is not a
required parameter.

7-41
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS
86.110/17

Rev: F

7.0 CVBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.4.2 AOON,SUBN,MULN,DIVN-Arithmetic
--

b) Decimal Difference, D(Ak) replaced by D(Ak) minus DCAj).

SUBN - (Format = jk2 Op Code = 11 Ref. = 075)

+---------+-----------+-----------------------
11abel loperation Jargument
+---------+-----------+-----------------------

ISUBN,Aj,XO IAk,Xl so no

When the F field in the data descriptor is equal to 0, the
length register (XO for source, Xl for destination) is not a
required parameter.

c) Decimal product, O{Ak) replaced by DtAk) times DfAj).

HUlN - (Format = jk2 Op Code = 72 Ref. = 016)

+---------+-----------+-----------------------
'label 'operation 'argument
+---------+-----------+-----------------------

IMUlN,Aj,XO IAk,XI so 00

When the F field in the data descriptor is equal to 0, the
length register (XO for source, Xl for destination) is not a
required parameter.

d) Decimal Quotient. OCAk) replaced by O(Ak) times O(Aj).

DIVN - (Format = jk2 Op Code = 13 Ref# = 017)

+---------+-----------+------------------~----
Ilabel Joperation 'argument
+---------+-----------+-----------------------

SO DO

When the F field in the data descriptor is equal to 0, the
length register (XO for source, Xl for destination) is not a
required parameter.

7.4.4.3 SCL~.LS.cL&=Sblft

The following instructions shall move data initially contained
in the source field to the destination field, and shall provide
shifting of the data under control of a shift count. The shift
count shall be derived in the following manner: The rightmost 8
bits from the instruction's 0 field shall be added to the
rightmost 8 bits initia1ly contained in bit positions 56 through
63 of Register Xi Right and the 8-bit sum shall represent the

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

7.0 (VBER 180 CPU SYMBOL IC M,ACHINE INSTRUCTIONS
7.4.4.3 SClN.SCLR-Shift

7-42

86/10/11
Rev: F

computed shift count. Any overflow from the 8-bit sum is
ignored. In this context, the contents of Register XO shall be
interpreted entirety of zeroes. A zero shift count shall cause
the instruction to act as a move only instruction.

The a-bit shift count shall be interpreted as a signed, binary
integer. When this 8-bit shift count is positive, the direction
of the shift shall be left with the number of decimal digit
positions to be shifted determined by the value of the right-most
seven bits (bit positions 51-63) of the shift count. When this
8-bit shift count is negative, the direction of the shift shall
be right with the number of decimal digit positions to be shifted
determined by the value of the l's complement of the rightmost 1
bits (bit positions 57-63) of the shift count. with minus 128
(1000 0000) being interpreted as zero. Thus, positive shift
counts shall provide the means for multiplying the source data
field by powers of ten, and negative shift counts shall provide
the means for dividing the source data fields by powers of ten,
as the source data is moved to the destination field.

When non-zero digits are shifted left end-off, or truncated on
the left, an Ari-thmetic loss of Significance condition shall be
detected. If the corresponding user condition mask bit is set
and the trap is enabled. instruction execution shall be inhibited
and program interruption shall occur.

Shifting shall be accomplished end-off with zero filIon the
appropriateend(s) as required to accommodate the length and type
of the receiving field. (For example. when the destination fie1d
is longer than the source field, and the difference in field
lengths is greater than the left shift count, such a scale
instruction shall provide zero fill, to the extent required. on
both the right and left ends of the destination field result).

Types: Source field data shall be restricted to Types 0 through
6, 9, 12 and 1.3, all of which shall be freely compatible with
allowable destination field data Types of 0 through 6, 12 and 13.

Lengths: The maximum allowable lengths
destination fields shall be determined
respective decimal data types.

for the source and
according to their

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

1.0 tYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.4.3 SClN,SClR-Shift

1-4.3

86/10/17
Rev: F

--
a) Decimal Scale, D(Ak) replaced by OfAJ), scaled per (Xi) Right

plus D.

seLH - (Format = jkiD2 Op Code = E4 Ref# = 078)

+---------+-----------+-----------------------
, labe 1 loperation 'argument
+---------+-----------+-----------------------

1seLH,AJ,IO IAk,XI.li,O SO DO

When the F fi e 1 di n the data descri ptor 'i s equa 1 to 0, the
length register {XO for source, Xl for destination} is not a
required parameter.

b) Decimal Scale Rounded, O(Ak) replaced by rounded D(Aj),
scaled per (Xil Right plus D.

SCLR - (Format = jkiD2 Op Code = E5 Ref' = 019)

+---------+-----------+-----------------------
Ilabel 'operation 'argument
+---------+-----------+-----------------------

ISCLR.Aj,IO IAk,Xl,Xi,O SO DO

When the F field in the data descriptor is equa1 to 0, the
length register (XO for source, Xl for destination) is not a
required parameter.

These instructIons shall move and scale the decima' data field
initially contained in the source field to the destination field.
They shall transfer the sign of the source field to the
destination field without change (unless the results consist
entirely of zeroes and there is no loss of significance, in which
case the sign of the destination field shall be made positive, or
unless the result would otherwise contain a non-preferred sign,
in which case the sign of the destination field shall contain the
preferred sign).

When specified by means of the operation code, rounding shall
be performed for negatively signed scale factors by adding five
to the last digit shifted end-off and propagating carries, if
any, through the decimal result transferred to the destination
field. Thus the absolute value shall be rounded upwards.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

1-44

86/10/17
Rev: F

--1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.4.4 HOYN-Move

a) Numeric Move, O(Ak) replaced by O(Aj}, after formatting.

MOVN - (Format = jk2 Op Code = 75 Ref. = 092)

+---------+-----------+-----------------------
"abel I operat ion 'argument
+---------+-----------+-----------------------
f IMOVN,Aj.XO IAk.XI SO DO

When the F field in the data descriptor is equal to 0, the
length register flO for source, Xl for destination) is not a
required parameter.

This instruction formats the number obtained from the source
field and transfers the result to the destination field.

The source field validated accordinq to the T field from its
associated descriptor; the source fieJdls reformatted according
to the T field from the data descriptor associated with the
destination field and the result is transferred to the
destination field.

a) Decimal Compare, O(AJ) to O(Ak), result to Xl Right.

CMPN - {Format = jk2 Op Code = 14 Ref# = OS3}

+---------+-----------+-----------------------11 abe 1 I operation I argument
+---------+-----------+-----------------------

ICMPN,Aj,XO IAk,Xl so on

When the F field of the source descriptor is equal to 0, XO is
not a required parameter.

This instruction algebraically compares the decimal contents
of the source field to the decimal contents of the destination
field and transfers a 32-bit halfword to Register Xl Right
according to the results of the comparison.

When the results of
equal, the entire 32-bit
cleared.

the source and destination fields are
positions of Register Xl Right are

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

7.0 CYBER 180 CPU SYM80lIC MACHINE INSTRUCTIONS
1.4.4.5 CMPH-Comparison

7-45

86/10/17
Rev: F

When the contents of the source field are greater than the
contents of the destination field, Register Xl Right is cleared
in bit positions 3.2 and 3·4 through 6.3. and set in bit position
33.

When the contents of the source field are less than the
contents of the destination field, Register Xl Right is cleared
in bit positions 34 through 63 and set in bit positions 32 and
3.3.

• • • • • • •

7.4.5 8YTE

The instructions in this subgroup provide the means for
comparing, scanning, translating, moving and editing byte fields
in central memory to the extent defined by the following
descriptions.

a) Byte Compare, D(Aj) to OCAk), result to Xl Right. Index to XO
Right.

CMPH - (Format = jk2 Op Code = 11 Ref# = 084)

+~--------+-----------+-----------------------
11 abe! loperationlargument
+---------+-----------+-----------------------

ICHPB,Aj,XO IAk,XI so 00

b) Byte Compare Collated, O(lj) to O(Ak), both translated per
(AI) plus n. result to Xl Right, Index to XO Right.

CMPC - (Format = jki02 Op Code = E9 Ref# = 085)

+---------+-----------+-----------------------
1label 1operation I argument
+---------+-----------+-----------------------

ICHPC,Aj,XO IAk,XI,Ai,O SO DO

These instructions compare the bytes contained in the source
field to the bytes contained in the destination field and
transfer the results to the comparison to Register Xl Right.

The comparison proceeds from left to right. When the field
lengths are unequal, trailing space characters are used for the
field having the shorter length. The maximum length for each

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

7.0 CYBER 180 CPU SYMBOL Ie f.1ACHI NE INSTRlJCTIONS
7.4.5.1 CMPB,CHPC-Comparison

7-46

86/101'11
Rev: F

--
operand is 256 bytes.

'The comparison continues until the longer field has been
exhausted or until an -inequality· is detected between
corresponding bytes from the source and destination fie1ds
according to the following definitions. For the compare
instruction, inequality between the bytes obtained directly from
the source and destination fields results in the completion of
the comparison. For the Collated Compare instruction inequality
of the bytes obtained directly from the source and destination
fields results in the translation of both bytes by means of a
translation table, and inequality of the pall=.tc.ans,la.tlQQ bytes
results in the completion of the comparison. When the translated
bytes are equal, and the longer field has not been exhausted,
comparison between the corresponding bytes obtained directly from
the source and destination fields is resumed.

Each byte shall be translated by using its value as a positive
offset to be added to the beginning (leftmost) address of the
Translation Table, (Ai) + 0, for the purpose of addressing the
translated byte to be read from central memory.

a) Byte Scan While Non-Member, O(Ak) for presence bit in {Ai)+D,
index to XO Right, character to Xl Right.

seN8 - (Format = JkiDl Op Code = f3 Ref. = 086)

+---------+-----------+-----------------------
tlabeJ loperation I argument
+---------+-----------+-----------------------

ISCNB,Aj.XO tAk.Xl,Ai,D 00

The Aj field of this instruction is unused and optional.
Operation: The operation shall proceed from left to right on the
destination field addressed by O(Ak). One character at a tIme
shall be taken from this character string and used as a bit
address into the string addressed by a PYA whose Ring Number (RN)
and Segment (SEC) are obtained from Ai. and whose Byte Number
(BN) is formed by the 32-bit sum (ignoring overflow) of the
rightmost .32 bits of Ai plus the instruction's Il-bit 0 field
extended to the left with 20 zeroes. The scan shall terminate if
the bit thus addressed in ON or if the destination field has been
exhausted; otherwise the next character in O(Ak) is considered.

Source Field: The operand addressed by Ai+O shall be interpreted
as a bit string consisting of 256 bits (32 bytes). The entire

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.5.2 SCNB-Byte Scan

1-41

86/10/11
Rev: F

tab1e, consisting of 256 bits, may be loaded internally to the
processor, on a model dependent basis, before any operation on
the data is performed.

Destination Field: The type fie1d in D(Akl shall be ignored.
The operand addressed by D(Ak} shall be interpreted as a byte
string, and restricted to no more than 256 characters.

The binary value of the sequence number in the string of the
byte which caused the scan to terminate shall be placed right
justified into XO Right.

The binary value of the character itself which caused the scan
to terminate shall be placed right justified into Xl Right.

If the scan stops by exhaustion of the characters in the byte
string, XO Right shall contain the length of the original byte
string and Xl Right shall be set in bit position 32 and cleared
in bit positions 33 through 63.

1.4.5.3 I&A~8=Icansla~e

a) Byte Translate, O(Ak) replaced by OfAj), translated per (Ai)
plus o.

TRANS - {Format = Jk j 02 OJ) Code = EB Refit :: 088)

+---------+-----------+-----------------------
11 abel I operation Jargument
+---------+-----------+-----------------------

ITRANB,AJ,XOIAk,Xl,Ai,D SO DO

When the f field
length register (10 for
required parameter.

in the data descriptor is equal to 0, the
source, Xl for destination) is not a

This instruction translates each byte contained in the source
field according to the translation table in central memory and
transfers the results of the byte-by-byte translation to the
destination field.

The translation table is addressed in a manner identical to
that previously described for the Collated Compare instruction.
The type fields in the Data Descriptors associated with the
source field and the destination field are ignored. Both
operands are restricted to no more than 256 bytes.

The translation operation shall occur from left to right with

CDC - ADVANCED SYSTEMS DEVELOPMENT

(YBER 180 II Assembler ERS

.1.0 CYBER 180 CPU SYt"SOLIC MACHINE INSTRUCTIONS
7.4.5.3 TRANe-Translate

1-48

;86/10/17
Rev: F

each source byte used as a positive offset to be added to the
beginning (leftmost byte) address of the translation table for
the purpose of permitting each byte's translation. Translated
bytes. thus obtained from the translation table, shall be
transferred to the destination field. 'The translation operation
shall terminate after the destination field length has been
exhausted. When the source field length is greater than the
destination field length, rightmost bytes from the source field
shall be truncated, to the extent required, with respect to the
translation operation. When the source field length is less than
the destination field length, translated space characters shall
be used to fill the rightmost byte positions of the destination
field to the extent required.

7.4.5.4 t;1Qltl=MQlle

a) Move Bytes. O(Ak) replaced by OtAj}.

MOVB - (Format = jk2 Op Code = 76 Ref' = 089)

+---------+-----------+-----------------------
1label loperation 'argument
+---------+-----------+-----------------------
I IMOV8,AJ,XO IAk,Xl SO DO

When the F field in the data descriptor is equal to 0, the
length register (XO for source, Xl for destination) is not a
required parameter.

This instruction provides the means for moving the bytes
contained in the source field to the destina·tion field. The type
fields of the source and destination data descriptors are
ignored. Field lengths are restricted to a maximum of ~56 bytes.

7 • ·4 .5 • 5 EIlII=E.dlt

a} Edit, OCAk) replaced by O(Aj) edited per M«Ail + 01.

EDIT - (Format = jkiD2 Op Code = EO Ref. = 091)

+---------+-----------+-----------------------
Ilabe 1 'operation 'argument
+---------+-----------+-----------------------

IEOIT,Aj,XO IAk,Xl,Ai,O SO 00

The Aj field is unused and optional.
data descriptor is equal to 0, the

When the F field in the
length register (XO for

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVDER 180 II Assembler ERS

1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.4.5.5 EDIT-Edit

source. Xl for destination) is not a required parameter.

'7-49

86/10/11
Rev: F

This instruction shall edit the digits or characters contained
in the source fie1d according to an edit mask in central memory
and shall transfer the result to the destination field. The edit
mask shall be addressed by a PYA whose Ring Number (RN) and
Segment (SEG) are obtained from Ai. and whose Byte NUmber (8N) is
formed by the 32-bit sum (ignoring overflow) of the rightmost 32
bit of Ai plus the instruction's 12-bit 0 field extended to the
left with 20 zeroes. The edit mask shall consist of a one byte
length indication fol1bwed by a string of micro-operations. The
length indication shall include the byte containing the length.

7.4.6 IMMEDIATE DATA

Within this instruction group, the Immediate Data Byte is an 8
bit field formed by the 2's complement addition of bits 56-63
(Xi) Right and the rightmost 8 bits of the instruction's 0 field.
Overflow is ignored on this summation. In this context, the
contents of Register XO shall be interpreted as consisting
entirely of zeroes.

MOVI - (Format = jkiDl Op Code = F9 Ref# = 154)

+---------+-----------+-----------------------
Jlabel loperation 'argument
+---------+-----------+-----------------------

IHOYI,Xi,D IAk,Xl,j DO

When the F field in the data descriptor is equal to 0, the
length register (Xl for destination) is not a re~uired parameter.

This instruction shall move the Immediate Data Byte to the
destination field after format conversion per the destination
field type and the j field sub-operation code. The 1east
significant 2 bits of the j field shall be used as an encoding of
the operation to be performed:

a) If = 00, the unsigned (considered positive) numeric value
(Type 10) contained in the Immediate Data 8yte shall be moved
right justified to the receiving field, which must be of type
10, 11, 1·4 or 15. If necessary, the destination field is
filled with zeroes on the left.

b) If: 01, the decimal numeric value (Type 4) contained in the

CDC - ADVANCED SYSTEMS DEVELOPMENT

crBER 180 II Assembler ERS

7.0 (YBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.6.1 MOVI-Move Immed Data (Xi) Right plus 0 to D(Ak)

7-50

86.110/11
Rev: F

--
Immediate Data Byte shall be moved right Justified, to the
receiving field after possible reformatting to match the data
type of the destination. If the format requires a sign, a
positive sign shall be supplied. The destination shall be
restricted to one of the decimal data types 0 through 6. 12
or 13. This move shall be executed according to the rules of
the numeric move for truncation, padding and validation.

Each source digit shall be checked for decimal digit
validity. An invalid decimal digit shall cause an Invalid
BOP Data condItion to be detected. When the corresponding
user mask bit is set, and the trap is enabled. instruction
execution shall be inhibited and program interruption shall
occur.

c) If :: 10, the ASCII character contained in the Immediate Data
Byte is repeated left to right in the receiving field. The
destination data type shall be ignored.

d) If :: 11. the ASCII character contained in the Immediate Data
8Vte is moved left justified into the receiving field, the
rest of that field is space filled. The destination data
type shall be ignored.

CHPI - (Format: jkiDl Op Code = FA Ref# :: 155)

+---------+-----------+-----------------------11 abe 1 loperation I argument
+---------+-----------+-----------------------

This operation shall, depending on the value of the j field,
compare the explicit value contained in the Immediate Data Byte
to O{Ak) after a possible reformatting to match the data type and
shall transfer a 32-bit half word to Register Xl Right according
to the result of the comparison.

When the contents of the source and destination fields are
equal, the entire 32-bit positions of Register Xl Right shall be
cleared.

The rightmost two bits of the j field shall be used as an
encoding of the operation to be performed:

a) If J=OO, the unsigned (considered positive) numeric value
(Type 10) contained in the Immediate Data Byte shall be

CDC - ADVANCED SYSTEMS DEVELOPMENT

(YHER 180 II Assembler ERS

1-51

86.11011'1
Rev: F

--7.0 CY8ER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.6.2 CMPI-Compare Immed Oata(Xi) Right plus 0 to O(Ak)

--
compared to the contents of field D{Ak). which must be of
type 10, 11, 14 or 15. If field O(Ak) is longer than one
byte, then the Immediate Data Byte will be zero filled to the
left as necessary.

b) If J=Ol, the decimal numeric value (Type 4) contained in the
Immediate Data Byte shall be compared to the contents of
field D{Ak) after possible reformatting to match the data
type of field D(Ak). If the format requires a sign, a
positive sign shall be supplied. The D(Ak} field shall be
restricted to one of the decimal data types 0 through 6, 12
or 13. If field O(Ak) is longer than one byte, then the
Immediate Data Byte shall be zero filled to the left as
necessary.

Each source digit shall be checked for decimal digit
va1idity. An invalid decimal digit shall cause an Invalid
BOP Data condition to be detected. When the corresponding
user mask bit is set. and the trap is enabled, instruction
execution shall be inhibited an~ program interruption shall
occur.

c) If J=10, the ASCII character contained in the Immediate Data
Byte shall be compared left to right with each successive
byte contained in the O(Ak) field. The data type of field
O(Ak) shall be ignored.

d) If j=11, the ASCII character contained in the Immediate Data
Byte-shall be compared to the leftmost byte in field O{Akl.
If the comparison is equal and if field O(Ak) is longer than
one byte, then a space character sha1l be compared left to
right with each successive remaining byte contained in the
O{Ak) field. The data type of field OtAkI shall be ignored.

When the contents of the source field are greater than the
contents of the destination field, Register Xl Right shall be
cleared in bit positions 32 and 34 through 63 and shall be set in
bit pos i t ion "3'3.

When the contents of the source field are less than the
contents of the destination field, Register Xl Right shall be
cleared in bit positions 34 through 63 and sha1l be set in bit
positions 32 and 33.

The interpretation of the source and destination fields are
analogous to those described under the Move Immediate Data
Instruction.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

7.0 CYDER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.6 • .3ADOI-Add Immed Data (Xi) Right plus 0 to O(Ak)

1-52

86/10/11
Rev: F

--

ADDI - (Format = JkiDl Op Code = FB Ref# = 156)

+---------+-----------+-----------------------11 ~lbe 1 loperation I argument
+---------+-----------+-----------------------IAODI,Xi.O fAk,XI,j DO

When the F field in the data descriptor is equal to O. the
length register (XO for source, Xl for destination) is not a
required parameter.

This operation shall add the explicit integer value contained
in the Immediate Data Byte to D(Ak) after a possible conversion
to match the destination data type.

Source! The Immediate Data Byte is used to store the integer
value of the addend. The J field is used as an encoding of the
type of the data contained in the Immediate nata Byte. The least
significant bit of the j field is decoded as follows:

a) If - 0, the Immediate Data Byte, contains an unsigned
(considered positive) binary integer value: Immediate Data
Byte = Data Type 10.

b) If: 1, the Immediate Data Byte, contains one ASCII character
representing a decimal digit; If invalid decimal data is
encountered in the Immediate Data Byte, an Invalid BDP Data
condition shall be detected. When the corresponding user
condition mask bit is set and the trap is enabled,
instruction execution shall be inhibited and program
interruption shall occur. Immediate Data Byte = Data Type 4.

If the source corresponds to case a} above, the destination
shall be confined to types 10, 11, 14 and 15.

If the source corresponds to case b} above. the destination
shall be confined to types 0 through 6, 12 and 13.
•••••• •

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYDER 180 II Assembler ERS

1.0 CYBER 180 CPU SYM80LIC MACHINE INSTRUCTIONS
1.5.1 GENERAL DESCRIPTION

7.5.1 GENERAL DESCRIPTION

7-53

86/10/17
Rev: F

A floating point number consists of a signed exponent and a
signed fraction. The signed exponent can also be referred to as
the characteristic and the signed fraction can also be referred
to as the coefficient.

The quantity expressed by a floating point number is of the
form (f)2x where f represents the signed fraction and x
represents the signed exponent of the base 2.

The exponent base of 2 isan imp1ied constant for all -floating
point numbers and thus does not explicitly appear in any floating
point format.

1.5.2 FORMATS

Floating point data occupies one of two fixed length formats;
64-bit word (Single Precision) or 128-bit doubleword (Double
Precision).

In both the single and double preCISion formats, the leftmost
bit pas it i on, 00, is occup i ed by the s i go of the fract ion. The
fifteen bit positions immediately to the right of bit 00, 01
through 15, occupied by the signed exponent.

The field immediately to the right of the signed exponent is
occupied by the fraction which in single precision format
consists of 48 bits and in double precision format consists of 96
bits, according to the following figures.

'00101 15'16 63'
+--+----------------+----------------------------------+ IS 'Signed Exponent , 4-8-bitfraction
+--+----------------+----------------------------------+

Single Precision Floating Point Number

1-54
CDC - ADVANCED SYSTEMS DEVELOPMENT

crBER 180 II Assembler ERS
86/10/11

Rev: F

1.0 eYHER 180 CPUSYMSOlICMACHINE INSTRUCTIONS
7.5.2 FORMATS
--

100tol 15,16 63'
+--+----------------+----------------------------------+
IS ISigned Exponent Ileftmost 48-bits of the fraction J
+--+----------------+----------------------------------+
164165 11172 127

+--+----------------+----------------------------------+ IS 'Signed Exponent tRightmost 48-bits of fraction
+--+----------------+----------------------------------+

Daub 1 e Preci s ion FO'oat i og Poi nt Number

A double precision f10 0ating point number consists of two
single precision floating point numbers located in consecutively
numbered X Registers. The two single precision floating point
numbers comprIsing a double precision flbating point number are
referred to as the leftmost and rightmost parts as contained in
the Xn and Xn+l, respec-ti ve ly. The leftmost pa.rt may be any
single precision floating point number and when it is normalized,
(the leftmost bit of the fraction. in bit position 16, is equal
to a one) the double precision floating point number is
considered to be normalized. The sign of the fraction and the
characteristic of the leftmost part constitutes the sign of the
fraction and the characteristic of the double precision number.

The fraction field of the leftmost part constitutes the
leftmost 48 bits of the 96-bit double preCISion fraction. The
fraction field of the rightmost part constitutes the rightmost 48
bits of the 96-bit double precision fraction. The sign of the
fraction and the characteristic of the rightmost part cannot be
utilized from any number constituting an input operand (argument)
to a double precision floating point operation~ Such operations
assume that the sign of the fraction of the rightmost part is the
same as the sign of the fraction of the leftmost part and that
the characteristic of the rightmost part is 48 less than the
characteristic of the leftmost part. However, the formation of a
double precision floating point result includes making the sign
of the fraction of the rightmost part the same as that of the
leftmost part and, except for certain cases involving
non-standard forms of floating point results, also includes
making the characteristic of the rightmost part 48 less than the
characteristic of the leftmost part.

The following table illustrates hexadecimal exponent codes for
corresponding non-standard as well as standard floating point
numbers:

1-55
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F
--7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.5 • 2 FOR totAl S

+---'Hexadecimal Exponent including coefficient sign
I +---, IActual Exponent (to the base of 2)
I I +----------------------------------
I I 1Input Arguments
I I t +------------------------I I I IResults

I 17XXXI ----- lIndefinitell000.0---)O I
, , +----+-----------+----------+-------------------------+
I I 16FFF 12**12287 I lOver f low Mask = 0: I
I I I'" '" t Infi nj te 15000.00---)00 I
I I I I I I I I Dve r flow Ma s k = 1 : I
ICoe-fficient 1500012**4096 t lAs Shown I
ISign Equal +----+-----------+----------+-------------------------+
I to 0 14FFFI2**4095
I(Positive ,,, I A

I numbers) I I I
, I 14000120*0
I I 13FFFf2**(-1)
I I J I I 1
II 'vI v
1 I 1300012**{-4096)

t
I ,
1Standard
I
I
I
I

I I
I I
I I
lAs Shown I
I I
I J
I I , I

I I +----+-----------+----------+-------------------------+
I 1 12FFF 12** (--40(7) II Un derfl ow Mask = 0 : I
I , I I I f IZero ,000.00---)00 I
I I 1 v I v 1 IUnderflow Mask = 1 : I
, I , 100012**(- .12288) I LA s Shown J
I I +----+-----------+----------+-------------------------+
'vIOXXXI I I I ,-----------+----+ ----- IZero tNot ApplicabJe ,
I '" 18XXXI I I I
I +----+-----------+----------+-------------------------+
I 1900012**(-12288 I IUnderflow Mask = 0 : I
, I '" f -A t 10000.00---)00 I
1 I I I' 1 IZero IUnderflow Mask = 1 : ,
fCoefficientIAFfFI2**{-4091) I lAs Shown I
ISign Equal +----+-----------+----------+-------------------------+
t to 1 I B 000 12** (-4096) I I I
"Negative J A f A 1 I I
I Numbers) I II , I I I
I , I BFFF 12**(-1) I Standard 1 As Shown I
I I 'COOOI2**0 I' I
1 , I II I 1 I
I I Iv I v I I I
I I ICFFFt2**4095 I I I
I , +----+-----------+----------+-------------------------+ I I 1000012**4096 1 'Over-f low Mask = 0 :1
, , I I I I I

7-56
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/1-7

Rev: F

1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.2 FORMATS

--
I
f
I ,
I

t , I I I
t v I v
IEFFFI2**12281

tInfinite
I
I

10000.00--->00
IOverflow Mask::: 1 :
lAs Shown

I
I
I I

I +----+-----------+----------+-------------------------+
v 'FXXXI IlndefiniteI1000.00---)OO I

Floating Point Representation

7.5.3 EXPONENT ARITHMETIC

When the exponent fields from input argument.s are added,as
for floating point mu1tiplication, or subtracted, as for floating
point division, the exponent arithmetic is performed
algebraically in 2's complement mode. Moreover, such operations
take place, conceptually, as if the bias were removed from each
.exponent field prior to performing the addition or subtraction
and then restored following exponent arithmetic so as to
correctly bias the exponent result.

Exponent Underflow and Overflow conditions are detected for
all s'ingle precision, but only for theleftmos-t p-art of double
preCIsIon floating point results. When the generation of the
exponent of the rightmost part, by reducing the exponent of the
leftmost part by 48, results in underflow for the rightmost part,
this underflow is not to be detected and utilization of an Out of
Range exponent permits the rightmost part of the double precision
floating point number to correctly express its value.

1.5.4 NORMALIZATION

A normalized floating point number has a one in the leftmost
bit position, 16, of the fraction field. If the leftmost bit of
the fraction is a zero, the number is considered unnormalized.
Normalization takes place when intermediate results are changed
to final results. Numbers with zero fractions cannot be
normalized and such fractions remain equal to zero.

For intermediate results in which coefficient overflow has not
occurred and the initial operands were normalized, the
normalization process consists of left shifting the fraction
until the leftmost bit position contains a one and
correspondingly reducing the characteristics by the number of
positions shifted. For intermediate results in which coefficient
overflow has occurred, the normalization process consists of
right shifting the fraction one bit position and correspondingly

CDC - ADVANCED SYSTEMS DEVELOPMENT

eYDER 180 II Assembler ERS

1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.4 NORMALIZATION

86/10/17
Rev: F

--
increasing the characteristic by one. For double precision
"floating point numbers, the entire fraction participates in the
normalization such that the rightmost part mayor may not appear
as a normalized single precision number as determined by the
value of the fraction.

For quotient and product instructions (reference numbers 103,
104, 101, 108) if the operands are unnormalized t the results may
be unnormalized.

When exponent arithmetic operations on standard floating
numbers generate an intermediate exponent which is Out of Range,
but normalization requirements generate an adjusted exponent
which is nolon.ger Out of Range, then neither Exponent Overflow
nor Exponent Underflow is recorded for the final results.

1.5.5 DOUBLE PRECISION REGISTER DESIGNATORS

The terms "Xk+l u and ·Xj+l- is used to designate an X Register
associated with the rightmost part of a double precision floating
point number. When the leftmost part of a double precision
floating point number. as designated by the terms "Xk U and"XJft is
associated with Register XF (in hexadecimal notation) the terms
"Kk+l" and "Xj+1" are interpreted as designating Register XO.

7.5.6 CONVERSION

The instructions within this subgroup provide the means for
converting 64-bit words, contained in the X Registers, between
floating point and integer formats.

a) FloatIng Point Convert from Integer. Floating Point (Xk)
formed from Integer (Xj).

CNIF - (Format = jk Op Code = 3A Ref. = 097)

+---------+----------+------------------------
11abe 1 Joperation 'argument
+---------+----------+------------------------

1CNIF

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

7.0 CY8ER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.5.6.2 CNFI-Convert Floating Point to Integer

1-58

86/10/17
Rev: F

a) Floating Point Convert to Inte-ger, Integer (Xk) formed from
Floating Point (Xj).

CNFI - (format = jk Op Code = 38 Ref# = 098)

+---------+----------+------------------------
!label loperation targument
+---------+----------+------------------------

ICNFI

1.5.7 ARITHMETIC

The instructions within this subgroup provide the means for
performing arithmetic operations on floating point numbers to the
extent described in the following subparagraphs.

7.5.7.1 ADDE ... S1JRE=Ad.dLS.uhJ:t:.ac.t.s._lk

a) Floating Point Sum. (Xk) replaced by (Xk) plus (Xj).

ADDF - (Format = jk Op Code = 30 Ref# = 099)

+---------+----------+------------------------
"abel loperation largument
+---------+----------+------------------------

IADOF ,Xk,Xj

bl Floating Point Difference. (Xk) replaced by (Xk) minus (Xj).

SUBF - (Format = Jk Op Code = 31 Ref' = 100)

+---------+----------+------------------------
Jlabel Joperation 'argument
+---------+----------+------------------------ISUBF IXk,Xj

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYaER 180 II Assembler ERS

7.0 (YBEl< 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.7.2 MUlF-Product to XK

7-59

86/10/11
Rev: F

a) Floating Point Product, (Xk) replaced by (Xk) times (Xj).

MULF - (Format = Jk Op Code = 32 Ref' = 103)

+---------+----------+------------------------
"abel loperationJargument
+---------+----------+------------------------

I MULF

a) Floating Point Quotient, (Xk) replaced by (Xk) divided by
f.Xj).

OIVf - (Format = jk Up Code = 33 Ref# = 104)

+---------+----------+------------------------
Ilabel 'operation targument
+---------+----------+------------------------

IDIVF tXk.Xj

a) Floating Point OP Sum (Xk, Xk+l) replaced by (Xk, Xk+l) plus
(X], Xj+ll.

ADOO - (Format = Jk Op Code = 34 Ref# = 105)

+---------+----------+------------------------
I ·'abe 1 loperation largument
+---------+----------+------------------------

I AOOO tXk,Xj

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assemb1er ERS

1.0 (V8ER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1. 5.1.4 AODD, SUBD-AddlSubtract •. Xk andXk+l

7-60

86/10/17
Rev: F

b) Floating Point OP Difference (Xk, Xk+ll replaced by (Xk,
Xk+l) minus (Xj, XJ+l).

SUBO - (Form.at = Jk Op Code = 35 Ref# = .106)

+---------+----------+------------------------
I) ·abe' loperation 'argument
+---------+----------+------------------------I SUeD

a) Floating Point OP Product (Xk, Xk+1) replaced by tXk, Ik+l)
times {Xj, Xj+l}.

HUlO - (Format = jk Op Code = 36 Ref' = 107)

+---------+----------+------------------------
11 abel loperation 'argument
+---------+----------+------------------------

I MOLD IXk,XJ

a) Floating Point DP Quotient, tXk, Xk+l) replaced by tXk, Xk+l)
divided by (Xj, Xj+l).

OIVD - (Format = Jk Op Code = 37 Ref# = 108)

+---------+----------+------------------------
1label loperation 'argument
+---------+----------+------------------------

IDIVO IXk,Xj
• • • •• • • •

1.5.8 BRANCH

The instructions in this subgroup consist of conditional
branch instructions.

Each of these conditional branch instructions perform a
comparison between two floating point numbers. Then, based on
the relationship between the results of that comparison and the
branch condition as specified by means of the instruction's

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYDER 180 II Assembler ERS

7.0 (YHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.8 BRANCH

86/10/17
Rev: F

operation code, each conditional branch instruction performs
either a normal exit or a branch exit.

Normal Exit: When the results of a comparison do not satisfy
the branch condition as specified by the operation code. a norma'
exit is performed. A normal exit for all conditional branch
instructions consist of adding four to the rightmost 32 bits of
the PVA obtained from the PRegister with that 32-bit sum
returned to the P Register in its rightmost 32-bit positions.

Branch Exit: When the results of a comparison satisfy the
br.anch condition as specified by the operation code, a branch
exit is performed. A branch exit consists of expanding the
16-bit Q field from the instruction to 31 bits by means of sign
extension, shiftinq these 31 bits left one bit position with a
zero inserted on the right and adding this 3Z-bit shifted result
to the rightmost 32-bits of the PYA obtained from the P Register
with the 32-bit sum returned to the P Register in its rightmost
32-bit positions.

The Assembler sets the instruction's Q field according to the
value of the 'Iabel' subfield of the instruction mnemonics, which
must correspond to a label of an Assembler statement within the
currently a~tive section. Relative addresses cannot span section
boundaries.

a) Branch to (P) displaced by 2*Q if Floating Point (Ij) equal
t.o (Xk).

BRFEQ - (Format = jkQ Op Code = 98 Ref,# = 109)

+---------+----------+------------------------
t 1 abe 1 loperation largument
+---------+----------+------------------------

J8RFEQ IXJ,Xk.,label

label - byte address of the new location.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

7.0 CY8ER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.8.1 8RFEQ.BRFNE,BRFGT,BRFGE-Compare and Branch

1-62

86/10.111
Rev: F

bl Branch to (P) displaced by 2*Q if Floating Point (XJ) no~
equal to Ilk).

BRFNE - (Format :: jkQ Op Code :;: 99 Ref:' :: 110)

+---------+----------+------------------------11 abe "1 'operation largument
+---------+----------+------------------------IBRFNE IX J,Xk. 1 abe 1

label - byte address of the new location.

c) Branch to(P) displaced by 20Q if Floating Point (Xj) greater
than (Xk).

BRFGT - (Format:;: jkQ Op Code = 9A Refil = Ill)

+---------+----------+------------------------
"abel loperation 'argument
+---------+----------+------------------------
I IBRFGT IX j. Xk. 1 abe J

labe 1 - byte address of the new locat ion.

d) Branch to IP) displaced by 2*Q if Floating Point (Xj) greater
than or equal to (Xk).

RRFGE - (Format = jkQ Op Code = 98 Ref. = 112)

+---------+----------+------------------------
Ilabe 1 Joperation largument
+---------+----------+------------------------IBRFGE IXj,Xk,label

label - byte address of the new location.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.5.8.2 BROVR,BRUND,BRINF-Exception Branch

7-63

86/10/11
Rev: F

a) Branch to tP) displaced by 20Q if Floating Point Exception
per J contained in Xk.

The values
instruction
follows:

of the rightmost 2 bits of the j field from the
are associated with exception conditions as

BROVR -
BRUNO -

if 00, Exponent Overflow
if 01, Exponent Underflow
if 10 or 11, Indefinite

(Format ;: JkQ Op Code ;: 9E Ref#

(Format ;: jkQ Op Code -= 9E Ref#

;: 113)

;: 113)

BR I NF- (For ma t,: Jk Q opeo de .;: 9ERe f '11= 11 '3)

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------
I
I
1

IBROVR
I BRUNO
lBRINf

I
I Xk. "abe 1
I

'label - byte address o'f the new locat ion.

The Assembler computes the value of J from the specIfic
instruction mnemonic used.

a) Compare Flbating Point (Xj) to elk), result to Xl Right.

CMPF - (Format = jk Op Code = 3C Ref# = 114)

+---------+----------+------------------------
11abel toperation largument
+---------+----------+------------------------ICMPF

• ••••• •

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

7.0 CVHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6 SYSTEM INSTRUCTIONS

1.6.1 NON-PRIVILEGED MODE

1-64

86110/17
Rev: F

This class of instructions is permitted to execute in any
processor mode •

. 13) Execute Algorithm - Processor Model Dependent Instruction.

EXECUTE - (Format = SjkiD Op Code = CO-(7 Ref' = 139)

+---------+----------+------------------------
, 1 abe 1 loperation largument
+---------+----------+------------------------

IEXECUTE.S Ij,kti.D

b) Program Error.

HALT - (Format = jk Op Code: 00 Ref' = 121)

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------

I HALT I Jk

c) Synchronization - Scope loop Sync.

SYNC - (Format = jk Op Code = 01 Ref' = 194)

+---------+----------+------------------------
'label loperation largument
+---------+----------+------------------------

I SYNC 'Jk

These instructions save the "environmentD,as designated by the
contents of Register XO Right, in the stack frame save· area
pointed to by the Dynamic Space Pointer initially contained in
Register AO. The stack associated with the current ring of
execution, as determined by the RN field initially contained in
the P Register, ·pushedB by transferring the Dynamic Space
Pointer, modified in its rightmost 32-bit positions by the

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

1.0 CVBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.1.2 CAlLSEG,CAllREl-CalJ

1-65

86/10/17
Rev: F

--
addition of 8 times the number of words stored into the stack
frame save area. to the appropriate Top of Stack entry in the
executing process's Exchange Package.

The AD. AI, and A2 Registers altered to reflect changes with
respect to the Current and Previous Stack Frames and theA3, and
A4 Regi sters sha 11 be alter·ed to reflect pertinent parameter
changes as required. in accomplishing this transfer of control
from a ·calling- procedure to a ·called- procedure.

Register assignments are as follows:

(AO)- Dynamic Space Pointer
(Al)- Current Stack Frame Pointer
(A2)- Previous Save Area Pointer
(A3)- Binding Section Pointer
(A4)- Argument Pointer

(XO) RIGHT - the Save Environment is defined as follows:

Bits 52-55: Xs .: Starting X-Reg to save

Bits 56-59: At .: Final A-Reg to save

Bits 60-64: Xt = Final X-Reg to save

a) Call per (AJl displaced by 8*Q, Arguments per (Ak).

The PYA obtained from Register Aj Is modified in its
rightmost 32-bit positions by the addition of the
zero-extended Q field from the instruction, (shifted left
3-bit positions with zeroes inserted on the right), and the
resulting PYA is used to address a Code Base Pointer from a
Binding Section Segment. This Code Base Pointer is
translated into a PYA used to address the first instruction
to be executed in the ·called" procedure. The ring of
execution of the called procedure, P{RN) final, shall be used
to obtain a Top of Stack pointer from the process' Exchange
Package to be used as the new Current Stack Frame Pointer.

CALlSEG - (Format = jkQ Op Code = 85 Ref# = 115)

+---------+----------+------------------------
'labeJ 'operation largument
+---------+----------+------------------------ICAllSEG , 1 abe 1 fA j fA k

label byte address of entry point in the new
procedure, must be ona word boundary.

CDC - ADVANCED SYSTEMS DEVELOPMENT

tYBER 180 II Assembler ERS

7.0 CYBER 180 CPU SYM80LIC MACHINE INSTRUCTIONS
7.6.1.2 CAllSEG,CAllREl-Cal1

7-66

86110/11
Rev: F

b) Call to (P) displaced by 8*0, Binding Section Pointer per
{Aj}, Arguments per (Ak).

The P Register shall be modified in its rightmost 32-bit
positions by the sign extended Q field from the instruction,
(left shifted 3-bit positions with zeroes inserted on the
right) and the final contents of the P Register shall be made
zeroes in the least significant three bit positions (61-63)
and shall be used to address the first instruction to be
executed in the "called" procedure.

CAllREL - (Format = jkQ Op Code: 80 Ref# = 116)

+---------+----------+------------------------
Ilabel toperation largument
+---------+----------+------------------------

label

ICAllREl Ilabe 1, AJ, Ak

byte address of the location to continue
execution, must be on a word
boundary.

The A ssemb fer computes the value of Q from the "label· field
of the instruction mnemonics. which must correspond to a
label of an Assembler statement within the currently active
section~ Relative addresses cannot span section boundaries.
The address represented by the label must be ona word
boundary. This can be insured by using the ALIGN pseudo
instruction.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

1-61

86/10/11
Rev: F

--1.0 CYBER 180 CPU SYM80LIC MACHINE INSTRUCTIONS
1.6.1.3 RETURN

7.6.1 • .3 RfIU&~

This instruction re-establishes the Stack Frame and
"environment" of a previous procedure as defIned by the Previous
Save Area Pointer.

The J and k fields from this instruction are not translated by
the hardware. Th values have no effect on the execution of this
instruction for which all execution parameters are implicit.

The Stack Frame Save Area from which a
-environment- is obtained, is addressed
initially contained in Register Al.

previous procedure's
by means of the PYA

The RETURN instruction may also require global privilege.
Consult the MIGHS for further information.

RETURN - (Format = jk Op Code = 04 Ref' = 117)

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------

I RETURN tJk

1.6.1.4 eoe

This instruction re-establishes the Stack Frame of a previous
procedure as defined by the Previous Stack Frame's Save Area.

The j and k fields from this instruction are not translated by
the hardware. Th values have no effect on the execution of this
instructIon for which all execution parameters are implicit.

The Stack Frame Save Area from which a previous procedure's
Stack Frame pointers is obtained, is addressed by means of the
PYA initially contained in Register A2.

POP - (format = jk Op Code = 06 Ref' = 118)

.---------+----------+------------------------
'operation 'argument

+---------+----------+------------------------I POP I jk

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.6.1.5 EXCHANGE

7-68

86/10/1-7
Rev: F

--
1.6 • .1.5 fltHAH:Gf

When executed in Monitor mode, this instruction shall change
the processor from monitor process state to Job process state.

When executed in Job mode this instruction changes the
processor from job process state to monitor process state. In
addition, the System Call bit in position 10 of the Monitor
Condition Register, job process state, is set.

The PYA contained in Word 0 (P Register) of the Exchange
Package associated with the state from which the exchange is
taking placet is updated such that it points to the instruction
which would have been executed had the exchange not taken place,
i.e., the PYA of the -Exchange- instruction with 2 added to its
8N fie 1 d.

The J and k fields from this instruction are not translated
and their values have no effect on the execution of this
instruction.

EXCHANGE - (Format = jk Op Code = 02 Ref# = 120)

+---------+----------+------------------------11 abe-' loperation 'argument
+---------+----------+------------------------

I EXCHANGE fJk

7.6.1.6 JifY20lbiI

The Keypoint Instruction allows performance monitoring -of
programs via the optional Performance Monitoring Facility or via
Trap Interrupts. The Keypoint Instruction shall test bit J of
the Keypoint Mask Register. The j field, termed the Keypoint
Class Number (KCN', shall be used as a bit index into the
Keypoint Mask Register. Thus, a KeN or j field of value 4 tests
the fifth bit from the left in the Keypoint Mask Register (KMR).

CDC - ADVANCED SYSTEMS DEVELOPMENT

eYHER 180 II Assembler ERS

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.1.6 KEYPOINT

a) Keypoint, class j, code equal to (XK) Right plus Q.

KEYPOINT - (Format = jkQ Op Code = 81 Ref' = 116)

+---------+----------+------------------------
1label loperation largument
+---------+----------+------------------------

IKEYPOINT Ij,Xk,Q

'7-69

86/10/17
Rev: F

a) Compare (Xk) at (Al); if not equal, load Xk from (Aj); if
equal store (XO) at fAj); however, if (Aj) locked, branch to
P plus2*Q.

CMPXA - (Format = JkQ Op Code = 84 Ref# = 125)

+---------+----------+------------------------
,Iabel 'operation largument
+---------+----------+------------------------

ICMPXA 'Xk.Aj,XO,label

label - byte address of the new location, must be in
'the same sect ion.

A serialization function is performed before this instruction
begins and again at its end. Execution of this instruction is
delayed until all previous accesses to central memory on the part
of this processor are completed. Execution of subsequent
instructions is delayed until all central memory accesses due to
this instruction are completed.

Conceptually, the execution of this ·CompareD instruction on
the part of a processor results in preventing other processors
from accessing any part of the central memory word at the PYA
contained in Register Aj between the read and write accesses
associated with the execution of this instruction. provided such
processors are also executing a "CompareD instruction. With
respect to this instruction only. in order to satisfy its
unon-preemptive" requirement. the use of 64-bit words consisting
entlrelv of ones in their leftmost 3Z-bit positions. 00 through
31. is reserved for each processor's implementation of this
instruction.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 11 Assembler ERS

7.0 CYHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.1.8 lBSET-load 8it

1-70

86/10/11
Rev: F

--

a) Load Bit to Xk Right from (Aj) bit indexed by (XO) Right and
set bit in central memory.

LBSET - (Format = jk Op Code = 14 Ref# = 124)

+---------+----------+------------------------
Ilabel loperation largument
+-----~---+----------+------------------------

IL8SET IXk,AJ,XO

This instruction transfers a single bit into Register Xk
Right, bit position 63, from a bit: position in central memory.
This instruction also clears the Xk Register in its leftmost 63
bit positions, 00 through 62. The bit position -in central memory
is unconditionally set without changing any other bit positions
within the byte or word.

No other accesses from any port shall be permitted access to
the byte in central memory from the beginning of the read access
until the end of the write access which sets the bit within that
byte.

A serialization function is performed before this instruction
begins and again at its ending. Execution of this instruction is
delayed until all previous accesses to central memory by this
processor are completed. Execution of subsequent instructions by
this processor is delayed until all central memory accesses from
this instruction are completed.

a) Test Page (AJ) and Set Xk Right.

TPAGE - (Format = jk Op Code = 16 Ref# = 126)

+---------+----------+------------------------, labe 1 loperation 'argument
+---------+----------+------------------------

ITPAGE IXk,AJ

This instruction shall test for the presence of the page in
central memory corresponding to the PYA contained in Register AJ.
When this instruction finds the corresponding page in central
memory, the ·Used" bit in the UM field of the associated Page
Descriptor is set, and the Real Memory Address (RMA) translated

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

'1-11

86/10/11
Rev: F

--.-----------------------7.0 CV8ER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.1.9 TPAGE-Test Page
--

from the PYA contained in Register Aj is transferred to Register
Xk Right. When this instruction cannot find the corresponding
p.age in central memory, Register Xk Right is set in bit position
32 and cleared in bit positions 33 through 63.

a) Copy to Xk from Central Memory Maintenance Register at (Xj)
Right.

CPYTX - (Format - jk Op Code = 08 Ref' = 132)

+---------+----------+------------------------
11abel loperation 'argument:
+---------+----------+------------------------

ICPYTX IXk,XJ

This instruction shall copy the central memory Maintenance
Register specified by the contents of Register Xj into the Xk
Register. All 64 bits of the Xk Register shall be cleared before
the selected register is copied into it.
• ••••• •

7.6.2 LOCAL PRIVILEGED MODE

This class of instructions shall be permitted to execute only
from segments having either local privileged mode or global
privi'leged mode. If an instruction in the local privi leged mode
class attempts execution from a segment having neither local nor
global privileges, a Privileged Instruction fault shall be
detected, execution of that instruction shall be inhibited, and
the corresponding program interruption shall occur.

Instructions in the local privileged mode class are executable
whenever a processor is executing instructions from a segment
whose Segment Descriptor defines that segment as either a local
privileged executable segment or a global privileged executable
segment.

7-72
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS
86/10/17

Rev: F

1.0 (YBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1.6.2.1 lPAGE-load Page Table Index

a) load Page Table Index per (XJ) to Xk Right and Set Xl Right.

lPAGE - (Format = jk Op Code = 11 Ref' = 127)

+---------+----------+------------------------
, 1 abe 1 loperation largument
+---------+----------+------------~-----------

ILPAGE tXk,Xj,Xl

Thi 5 local privi leged instruction searches the Page Table in
central memory, returns the final index value to Register Xk
Right. and sets Register Xl Right according to the results of the
search.

The entry searched for within the Page Table is defined by the
System Virtual Address (SYA) contained in Register Xj.

The number of entries searched shall always be transferred to
Register Xl Right, bits .33-63, right-Justified with zeroes
extended.

When a Page Oeser iptor corresponding to the SVA initially
contained in Register Xj is found. the index into the Page Table
which is associated with that entry shall be transferred
right-justified and zero-extended to Register Xk Right, and bit
32 of Register Xl Right shall be set.

When the Page Table
finding a Page Descriptor
contained in Register XJ
Continue bit equal to
comparisons), the index
last entry compared shall
and bit 32 of Register Xl

search terminates as a result of not
which corresponds to the SVA initially
{whether the termination results from a
o or performing a maximum of 32
into the Page Table associated with the
be transferred into Register Xk Right
Right shall be cleared.

1.6.3 GLOBAL PRIVILEGED MODE

This class of instructions shall be permitted to execute only
from segments having global privileged mode. If an instruction
in the g10bal privileged mode class attempts execution from a
segment not having global privileges, a Privileged Instruction
Fault shall be detected, execution of that instruction shall be
inhibited, and the corresponding program interruption shall
occur.

CDC - ADVANCED SYSTEMS DEVELOPMENT

(VHER 180 II Assembler ERS

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.3 GLOBAL PRIVILEGED MODE

1-73

86/10/11
Rev: F

--
Global privileged mode exists whenever the processor is

executing instructions from a segment whose Segment Descriptor
defines that segment as a global privileged executable segment.

a) Interrupt Processor per (Xk).

INTRUPT - (Format = Jk Op Code = 03 Ref# = 122)

+---------+----------+------------------------
II abel loperation fargument
+---------+----------+------------------------

IINTRUPT

The execution of this global privileged class instruction
sends an external interrupt to one or more processors via their
central memory ports. The processors are Identified by the
central memory port number to' which they are connected.

The interrupting processor sends the contents of Register Xk
to central memory_ Central memory then sends an external
interrup~ to the processor(s) on those ports whose port numbers
correspond to the bit positions which are set within Register Xk.
When the interrupting processor has two ports connected to the
same memory, a H5witch" selects the port used to transmit· the
contents of Register Xk to central memory along with the
"interrupt U function.

When the interrupting processor has two ports connected to
independent memories, the state of Bit 33 of RegisterXkselects
the port used to transmit the contents of Register Xk to central
memory along with the "interrupt" function. When Bit 33 is
clear. Port 0 is used; when Bit 33 is set, Port 1 is used.

A serialization function is performed before this instruction
begins execution. That is. execution of this instruction is
delayed until all previous central memory accesses on the part of
the interrupting processor are complete.

1.6.4 MIXEO MODE

This class of instructions includes those instructions whose
mode is dependent on a parameter selection within the
instruction. Depending on the value of the parameter, the mode
of the instruction is non-privileged, local privileged, global
privileged, or monitor. The description of each instruction

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

7.0 CYHER 180 CPU SYM80lICMACHINE INS"TRUCTIONS
7.6.4 MIXEO MODE

'1-14

86/10/11
Rev: F

defines which parameter selects the mode and, how the selection is
made.

a) Branch to (P) displaced by 2*Q and alter Condition Register
per Jk.

BRCR - (Format = JkQ Op Code = 9F Ref' = 134)

11abel loperation largument
+---------+----------+------------------------

IBRCR I j ,I<, labe 1

label - byte address of the new location.

This instruction tests the value of a selected bit in the
Condition Register. The j field selects the bit number within
the Monitor Condition Register or within the User Condition
Register depending on the k field. "The k field shall also
determine the branch decision and Condition Register bit
alteration as follows:

k' = 0 or 8, if bit j of the Monitor Condition R.egister is set,
clear it and take a branch exit.

k = 1 or 9, if bit j of the Monitor Condition Register is not
set, set it and take .a branch exit.

k ,- 2 or A, if bit j of the Monitor Condition Register is set,
take a branch exit.

k = :3 or B, if bit j of the Monitor Condition Register is not
set, take a branch exit.

k = 4 or C, if bit j of the User Condition Register is set. clear
it and take a branch exit.

k = 5 or 0, if bit j of the User Condition Register is not set,
set it and take a branch exit.

k = 6 or E, if bit j of the User Condition Register is set, take
a branch exi t.

k = 1 or F, if bit j of the User Condition Register is not set,
take a branch exit.

CDC - ADVANCED SYSTEMS DEVELOPMENT

(VHER 180 II Assembler ERS

7.0 CYHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.4.1 BRCR-Branch and Alter Condition Register

7-15

86110/11
Rev: F

HonllQc._an.d_et:.l~lleSJe.d_H'lde. - Some values of the k fie ld of this
instruction shall cause this instruction to be a Monitor or
Non-pr i vi 1 e!;ted i nstr uct ion as fo' lows·:

k I Mode
-------+------------------
0 or a J Monitor
1 or 9 I Monitor
2 or A f Non-privf leged
.3 or B I Non-privileged

I
4 or e I Non-pr i vi Jeged
5 or D I Non-pr i vi leged
6 or E I Non-privi leged
7 or F I Non-pr i vi leged

These instructions provide the means for copying cert:ain state
registers to and from X Registers. The state register is
addressed by means of the rightmost 8-bits initially contained in
Register Xj Right.

The address assignments are defined in Table 2.6-1 and the
restrictions in Table 2.6-2 of the MIGDS.

a) Copy to Xk per eXj}.

CPYSX - (Format = jk Op Code = OE Ref' = 130)

+---------+----------+------------------------
11 abe 1 loperation largument
+---------+----------+------------------------

ICPYSX 'Xk,Xj

This instruction copies the contents of the state register
addressed by the contents of Register Xj into Register Xk. This
instruction is a non-privileged instruction.

1-16
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.4.2 CPYSX,CPYXS-Copy State Registers

b) Copy from XK per {Xj'.

CPYXS - (Format = jk Op Code = OF Ref' = 131)

+---------+----------+------------------------
Ilabel 'operation largument
+---------+----------+------------------------

'CPYXS

This instruction copies the contents of Register Xk into the
state register addressed by the contents of Register Xl.

a) Purge Buffer k of Entry per (Xj).

PURGE - (Format = Jk Op Code = 05 Ref' = 138)

+---------+----------+------------------------I J abe I loperation largument
+---------+----------+------------------------

'PURGE IXJ,k

The Purge Buffer instruction invalidates entries in th~ Map
and Cache buffers. The purge may invalidate all entries In a
buffer, invalidates all entries in a buffer which derive from a
given segment,invaJidate all entries in a buffer for a given
page, or invalidate all entries in a buffer for a given 512 byte
block. Register XJ contains the required address information,
either System Virtual Address (SVA) or Process Virtual Address
(PVA) •

An SVA contains the Active Segment (ASID)in bits 16 through 31
of Register Xj. A PYA contains the Segment number (SEG) in bits
20 through 31 of Register Xj. Bits 32 through 63 contain the
8yte Number (BN) for either an SVA or a PYA. The rightmost 9
bits of the 8N are ignored and assumed to be zeros since the
smallest purgeabJe portion of a buffer is a 512 byte page or a
512 byte block of a larger page. Proportionately more rightmost
bits of the aN are ignored and assumed to be zero as page size
becomes larger than the 512 byte minimum.

16 20 .32 55 63

+-----------------------------+-------------------+---------+
Jllllllllll SEC AN 11/11111111
+---------+-------------------+-------------------+---------+ ASIO BN 11/1111/111
+-----------------------------+-------------------+---------+

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

7.0 (YHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.4.3 PURGE-Purge Buffer

7-17

86/10/11
Rev: F

--
The value of k determines the buffer to be purged, the range of
entries to be purged. and the type of addressing used to
determine the range of entries to be p~rged. The definition of k
fot lows.

k=O, Purge all entries in Cache which are included in the 512
byte block defined by the SVA in XJ.

k=l, Purge all entries in Cache which are included in the ASID
defined by the SVA in Xj.

k=2, Purge all entries in Cache.
k=3, Purge all entries in Cache which are included in the 512

byte block defined by the PYA in Xj.
k=4-)1. Purge all entries in Cache which are included in the SEG

defined by the PYA in Xj.
k=8, Purge all entries in Map which are inclOded in the page

defined by the SVA in Xj. This size of the page involved
shall be determined by the contents of the Page Size Mask
Register.

k=9, Purge all entries in Map which are included in the ASID
defined by the SVA in Xj.

k=A t Purge all information from the map pertaining to the PTe
defined by the PYA in Xj. The size of the page involved
shall be determined by the contents of the Page Size Mask
Register.

k=8, Purge a 11 information from 'the MAP pertaini n9 to the SDE
defined by PYA in Xj, and to all PTE's included within
that segment.

k=C-)F, Purge all entries in Hap_

For k=O, 1, 2. 8-)F this instruction is a local privileged
instruction. It is non-privileged for all other values of k.
• ••••• •

1.1.1 GENERAL DESCRIPTION

This class of instructions operate on vectors. that is,
sequences of full-word integer or real numbers. These
instructions are only implemented on the Cyber 180 Model 990.
Attempting to execute a vector instruction on any other processor
will result in an Unimplemented Instruction condition.

7.1.2 COMMON ATTRIBUTES OF VECTOR INSTRUCTIONS

All vector instructions utilize the jkiO instruction format.
However, some instructions do not use all operand fields. In

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

1.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.1.2 COMMON ATTRIBUTES OF VECTOR INSTRUCTIONS

1-78

86/10/11
Rev: F

general, the J operand ei·ther is an A register which points to a
source vector, or is an X register which contains a value which
is turned into a vector by vbroadcastingU or repeating the value
the necessary number of times. The K operand isan A register
which points to the destination vector. The I operand is
normally a second source vector, but is used differently by some
instructions. All addresses used by vector instructions must
point toa word boundary, or an Address Specification error wi I"'
result.

In the instruction descriptions that follow, V(Aj) represents
either the vector addressed by Aj, or the broadcast vector
created from the value in Xj.

The 0 field contains the length of the vector, when non-zero.
It must be an positive integer less than or equal to 512. This
is the size of the vector in words. When the rightmost ten bits
of the D field are zero, Xl Right specifies the 1ength of the
vector. When Xl Right is n"egative, an Instruction Specification
error is recorded. When Xl Right is greater than 512, 512 is
used for the size of the vector. When the rightmost ten bits of
the 0 field are greater than 512. an Instruction Specification is
recorded.

The leftmost bit of the D field is set by the Assembler when
the J operand is an X register, to indicate that broadcasting
shall take place.

7.1.3 INTEGER VECTOR ARITHMETIC

a) Integer vector sum, V(Ak) replaced by V(Aj) plus VeAl).

AODXV - (Format = jkiD Op Code = 44 Ref# = 112)

+---------+----------+------------------------
'label loperation 'argumen~

I AOOXV
I AOOXV

IAk,AJ,Ai.O
IAk •. Xj,Ai,O

The first form of this instruction adds each" word in the
vector pointed to by Aj to the corresponding value in the vector
pointed to by Ai. storing the result in the vector pointed to by
Ak. The second form adds the value in Xj to each word pointed to
by Ai. storing the result in the vector pointed to by Ak.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

1.0 CYBER 180 CPU SYM80LIC MACHINE INSTRUCTIONS
7.7.3.2 SU8XV-Subtract Integer Vectors

7-19

86/10/17
Rev: F

a) Integer vector difference, V(Ak) replaced by V{Aj) minus
V(Ai).

SU8XV - (Format = jkiD Op Code = 45 Ref' = 113)

+---------+----------+------------------------
II abe 1 1operation targument

0.,. .,.

+---------+----------+------------------------I SUBXV
ISUBXV

IAk,Aj,Ai,O
IAk,Xj,Ai,O

In the first form, each value in the vector pointed to by Ai
is subtracted from its corresponding value in the vector pointed
to by AJ. The results are stor'ed in the vector pointed to byAk.
In the second form, the values pointed to by Ai are subtracted
from the value in Xj.

1.7.4 INTEGER VECTOR COMPARISON

The following four instructions compare correspondihg elements
of two vectors. The results are stored in the vector indicated
by Ak. If the compare is true, bit 0 of the corresponding word
in V{Ak) is set and bits 1 through 63 are c'eare~. If the
compare is false, bits 0 through 63 are cleared. If the second
form is used, where Xj is specified, each value in V(AI) is
compared to the value in Xj.

The following example shows the results in V(Ak) after the
instruction is executed.

CMPEQV A9,Al.A8,3

+-.~ ... -.--+
A7-->1

I
I

2301
'151
181

+------+

+------+
A8-->1

I
1

200' A9-->IOO ••• OOI
151 (binary)IIO ••• OOI
271 100 ••• 001

.+------+ +-- --.------+

a) Integer vector compare, V(Ak) replaced by V(Aj) equal to
VeAi).

coe -ADVANCEO SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

7.0 CYHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.'1.4.1 CMPEQV-Integer Vector Comparison - EquaJ

CMPEQV - (Format ~ jkiD Op Code = 50 Ref# = 116)

+---------+----------+------------------------
"abel loperation largument
+---------+----------+------------------------

ICMPEQV
ICMPEQV

IAk,AJ,Ai.O
IAk,Xj,Ai,O

7-80

86/10/17
Rev: F

a) Integer vector compare, V(Ak) replaced by V(Aj) less than
V(Ail.

CHPlTV - (Format = jkiD Op Code = 51 Ref' = 171)

+---------+----------+------------------------
Ilabe 1 loperation largument
+---------+----------+------------------------
I
1

I CMPL TV
ICMPlTV

IAk,Aj,Ai,O
IAk,Xj,Ai,O

a) Integer vector compare, V(Ak) replaced by V(Aj) greater than
or equal to V(Ai).

CMPGEV - (Format ~ jkIO Op Code = 52 Ref# = 118)

+---------+----------+------------------------
Ilabel 'operation largument
+---------+----------+------------------------ICMPGEV

tCMPGEV
IAk,AJ,Ai,O
IAk,XJ,Ai,O

a) Integer vector compare, V(Ak) replaced by V{Aj) not equal to
V(Ai).

CMPNEV - (Format = jklD Op Code = 53 Ref# = 119)

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

1.0 CVHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7.4.4 CMPNEV-Integer Vector Comparison - Not Equal

+---------+----------+------------------------
Ilabe 1 loperation largument
+---------+----------+------------------------
1
I

ICMPNEV
ICMPNEV

1.7.5 SHIFT VECTOR CIRCULAR

IAk,.Aj,Ai ,0
IAk.XJ.Ai.D

7-81

86/10/11
Rev: F

a) Shift vector circular, V{Ak) replaced byV{Aj), direction and
count per V (AJ).

SHFV - (format = jklD Op Code: 40 Ref' = 180)

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------

tSHFV
I SHF'Y

'Ak,Aj,Ai,O
IAk,Xj,Ai,n

This instruction performs a left circular shift on each
element of V(Ail, as directed by the corresponding element of
V(Ajl, storing the results in V(Ak). The shift count for each
element of Y(Ai) is taken form the rightmost 8 bits of the
corresponding element of V(AJ) and is interpreted as follows:

The sign-bit in the leftmost position of the a-bit shift count
shall determine the direction of the shift. When the shift count
Is positive (sign bit of zero). this instruction shall left
shift. When the shift count is negative (sign bit of one), this
instruction shall right shift. Shifts shall be from 0-63 bits
left and from 1-64 bits right. Based on an a-bit signed 2's
complement shift count, these shifts are as follows:

0111 1111 --\

· le'ft Shift 0-63 •
0100 0000 --I
0011 1111 Left Shi 'ft 63 .. • · .
0000 0000 left Shift 0

1111 1111 Right Shift 1
· : ..

1100 0000 Right Shift 64
1011 1111 --\

· Right Shift 1-64 · 1000 0000 --I

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

7.0 CYHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.1.5 SHIFT VECTOR CIRCULAR

'7-82

86/10/1'1
Rev: F

--
When these interpret,ations of the shift count result in an

actual shift count of zero, the instruction transfers the element
of V(Ai) to the corresponding element of V(Ak) with no shift.

When broadcast of V(Aj) is selected and J=O, the contents of
the xo register shall be interpreted as consisting entirely of
zeros.

7.1.6 LOGICAL VECTORS

at Logical vector sum, V(Ak) replaced by V(Aj) OR VIAi).

lORY - (Format = jkiD Op Code = 48 Ref# = 181)

+---------+----------+------------------------
Ilabel loperation largument
+---------+----------+------------------------
I
I

IIORV
IIORV

I Ak,AJ"A i ,0
IAk,Xj,Ai,O

a) logical vector difference, VtAk) replaced by VeAj) XOR V(Ai).

XORV - (Format: jkiO Op Code = 49 Ref# = 182)

+---------+----------+------------------------
'label loperation 'argument
+---------+----------+------------------------

IXORV
IXORV

I Ak, AJ "Ai,O
IAk,Xj,Ai,D

a) logical vector product, V{Ak) replaced by V{Aj) AND V{Ai).

ANDV - (Format = jkiO Op Code = 4A Ref# = 183)

+---------+----------+------------------------
tlabe1 loperation largument
+---------+----------+------------------------

IANDV
IANDV

IAk,Aj,Ai,D
tAk,Xj,Ai,D

CDC - ADVANCEO SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

1.0 CYHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.1.1 CONVERT VECTORS

1-83

86/tO/17
Rev: f

--
1.7.7 CONVERT VECTORS

a) Convert vector, floating point V(.Ak) formed from integer
V(A.J) •

CNIFV - (Format = jkiO Op Code = 48 Ref# = ·184)

+---------+----------+------------------------
11abe 1 loperation largument
+---------+----------+------------------------

ICNIFV
ICNIFV

IAk,Aj.O
IAk,XJ.O

a) Convert vector, Integer V(Ak) formed from floating point
V(AjJ.

CNFIV - (Format = jkiO Op Code = 4C Ref# = 185)

+---------+----------+------------------------
Ilabel 'operation 'argument
+---------+----------+------------------------

ICNFIV
ICNFIV

fAk,Aj,D
'Ak,Xj,D

1.7.8 FLOATING POINT VECTOR ARITHMETIC

a) Floating point vector sum, V(Ak) replaced by V(Aj) plus V(Ai).

AODFV - (Format = JkiO Op Code = 40 Ref# = 186)

+---------+----------+------------------------
11 abe 1 loperation 'argument
+---------+----------+------------------------I AOOFV

1 AOOFV
tA,k,AJ,Ai ,0
IAk,.Xj,Ai,O

a) Floating point vector difference, VC'k} replaced by V(Aj)

CDC - ADVANCED SYSTEMS DEVELOPMENT

crBER 180 II Assembler ERS

1.0 CYHER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.1.8.2 SUBFV-Floating Point Vector Difference

mi nus VCAi).

SUBFV - (Format = jkiD Op Code = 41 Ref' = 187)

+---------+----------+------------------------
'operation largument

+---------+----------+------------------------
ISUBFV
ISUBFV

IAk,AJ,Ai,O
IAk,Xj,Ai,O

1-84

86/10/17
Rev: F

a) Floating point vector product, V(Ak) replaced by VIA';) times
V{Ai).

MUlFV - (Format = jkiO Op Code = 42 Ref# = 188)

+---------+----------+------------------------
Ilabel toperation largument
+---------+----------+------------------------

I MULFV
I MULFV

I Ak,Aj.,A i ,0
IAk,XJ,Ai,Q

a) Floating point vector quotient, V(Ak) replaced by VeAj)
divided by V(Ai).

OIVFV - (Format = jkiD Op Code = 43 Ref# = 189)

+---------+----------+------------------------
11 abe 1 loperation largument
+---------+----------+------------------------
I
1

IOIVFV
IDIVFV

'Ak.Aj,Ai,O
'Ak, XJ,A i ,0

7.7.9 FLOATING POINT VECTOR SUMMATION

1.7.9.1 .sU~E~=EIQatin,g-eQint.-~eclQr.-S1JmmatlQn

a) floating point vector summation, Xl< replaced by summation of
elements in V(Ai).

SUMFV - (Format = jkiO Op Code = 51 Ref' = 190)

CDC - ADVANCED SYSTEMS DEVELOPMENT

CyeER 180 11 Assembler ERS

1.0CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.1.9.1 SUHFV-Floating Point Vector Summation

+---------+----------+------------------------
1label loperation 'argument

tSUMFV

7.7.9.2 H&G~=l:!e.[.g~-~ec:t2.[.

Ilk,AifO Merge Vector

86/10/11
Rev: F

a) Merge vector, V(Ak) partially replaced by VeAj) per mask
V(A.i).

MRGV - (Format = jkiD Op Code = 54 Ref' = 191)

+---------+----------+------------------------11 abel loperation 'argument
+---------+----------+------------------------lMRGV

I MRGV
tAk.Aj,Ai.D
'Ak,Xj •. Ai,D

This instruction replaces the first element of V(Ak) with the
fir s t el e me n t 0 f V (A j) i fbi t 0 iss e tin the fi r s tel e me n t of
V(AI). If bit 0 is clear, the first element of V(Ak) is 1eft
unchanged. This operation in repeated for successive elements
until the required number of operations has been performed.

7.7.10 GATHER AND SCATTER VECTOR

a) Gather vector. V(Ak) replaced by gathered VtAjl with interval
.Xi.

GTHV - (Format = jkiO Op Code = 55 Ref' = 192)

+---------+----------+------------------------
'label loperation largument:
+---------+----------+------------------------

'GTHV
IGTHV

I.Ak.Aj,XitO
IAk,.XJ,Ai,O

This instruction obtains the first element from V(Aj) and
stores it as the first element of V(Ak}. The second element to
be stored in V(Ak) is taken from the address formed by adding the
rightmost 32 bits of Xi, shifted left three places with zero
fill, to the rightmost 32 bits of Aj. Successive elements in
V(Ak) are taken from the address formed by adding the rightmost
32 bits of Xi, shifted left three places with zero fill, to the
rightmost 32 bits of the previous address. The Nth

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYOER 180 II Assembler ERS

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.1 • .10,.1 Gather Vector

7-86

86.110/.17
Rev: F

--
fl,2,3 •••• ,n, •••) element of V(.Ak) is replaced by V(Aj) whose
address is (Aj)+8*fn-l)*{Xi). The contents of register Xi are
not altered by the execution.

Thus, contiguous vector V(Ak) is formed by gathering elements
from V(Aj) at interval Xi.

1.1.10.2 .sca11er._llec1ac,

a} Scatter vector, V(Ak) replaced by scattered V(Aj) with
interval Xi.

SCTV - (Format = jkiD Op Code = 56 Ref# = 193)

+---------+----------+------------------------
'label 1operation largument
+---------+----------+------------------------
I
t

ISCTV
ISCTV

fAk.,Aj,Xi,O
tAk,Xj,Ai,O

This instruction obtains the first element from VIA]) and
stores it as the first element of V(Ak). The second contiguous
element from V(Aj) is stored into V(Ak) at the address formed by
adding the rightmos·t .32 bits of Xi, shfited left three places
with zero fill, to the rightmost 32 bits of Ak. Successive
elements from V(Aj) are- stored into the addresses formed by
addIng the rightmost 32 bits of Xi, shifted left three places
with zero fi'l, to the rightmost 32 bits of theprevous address.
The Nth (.1,2,3, ••• ,n, •••) element of V(Aj) is stored into V(lk)
at (Ak)+8*(n-l)*lXi).

Thus, the contiguous elements from VeAj) are scattered in
V(Ak) at interval Xi.

8-1
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS
·86/10/17

Rev: f

8.0 CYBER 180 ASSEMBLER SYMBOLIC lOU INSTRUCTIONS

The label field of a symbolic machine instruction
optionally contains a symbol. If there is a label present, it
is assigned the value of the current location counter.

The operation field of a symbolic machine instruction
contains the instruction mnemonic which is a pre-defined three
or four character name. The first two characters generally
describe the function to be performed tie. data transmission.
arithmetic, etc.). The third character indicates the
addressing mode used. And if there'S a fourth character this
indicates it's a "long" machine instruction using a 16-bit
operand rather than a 12-bit operand.

The argument field of a symbolic machine instruction
contains one or two subfields. Each subfield contains an
absolute or relocatable expression that reduces to a 6-bit,
12-bit or IS-bit va1ue.

An optional comment field may fo·' low the lastsubfield of
the argument field. A comment must begin with the period t.l
character.

All IOU instructions are represented in one of four
formats. Two of these use a single 16-bit word and the other
two use two consecutive 16-bit words. These formats are shown
below.

4
.8

5
2

16-bit Formats

5
8

6
3

+--+------+-------------------+---------------------+
19 10 0 0 , f , d I
+--+------+-------------------+---------------------+

+--+------+-------------------+--+------------------+
'9 to 0 0 I f I s I c

+--+------+-------------------+--+------------------+

8-2
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.2 IOU M.ACHINE INSTRUCTION fORMATS

it
8

5
2

32-bit Formats

5
8

6
J

+--+------+-------------------+---------------------+
19 10 0 01 f I d I
+--+------+-------------------+---------------------+ 1o 0 0 0 , m I
+---------+---+

+--+------+-----------------~-+--+------------------+
Ig 10 0 0 I f I 5 I c
+--+------+-------------------+--+------------------+
10 0 0 0 I m I
+---------+---+

The following field descriptions apply to both instruction
formats:

f 6-bits the least significant 6 bits of the 1 bit

d 6-bits

operation code.

an operand. part of an operand. or an
address specification depending upon the
instruction.

c 5-bits a channel number.

m 12-bits part of an operand, an address
specification or an 110 function code
depending upon the instruction.

9 I-bit the most significant bit of the 1 bit
operation code; 9 controls the width of
the value read or written from IOU memory.
If 9 is 0, the operand is 12 bits; if 9 is
one the operand is 16 bits.

s I-bit a sub-operation code used with certain 110
instructions.

o uaused bits which should be set to zero.

8-3
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/1"7

Rev: F

8.0 CVOER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.3 IOU ADDRESS MODES

IOU instruction operands are determined by the address mode
of the instruction. The 16-bit or 32-bit instruction format
provide for 5, 6, 12, 16 or 18 bit operands and 6 or 12 bit
addresses.

8.3.1 NO-ADDRESS MODE (N)

The no-address mode used the d-field directly as a 6-bit
operand.

8.3.2 CONSTANT MODE (C)

The constant mode uses the d-field and the m-field direct1y
as an IS-bit operand. The d-field contains the most
signific"ant 6 bits and the m-fie"ld contains the least
significant 12 bits.

8.3.3 DIRECT MODE (0)

The direct mode uses the d-field as the 6-bit address of a
12 or 16 bit operand in memory.

8.3.4 INDIRECT MODE (Il

The indirect mode uses the d-field as the 6-bit address of
a word in memory that is used as the address ofa 12 or 16 bit
operand in memory.

8.3.5 MEMORY MOnE (M)

'The memory mode uses the d-field and the m-field to specify
the address of a 12 or 16 bit operand in memory.

If the d-field is zero, the m-fietd is used as a 12 bit
address (bits 52-63).

I "f the d-f ie 1 dis not zero, the d- f Ie 1 dis a 6-bit address
of a 12-bit index. This index is then added to the m-field to
generate the 12-bit address of all the possible IOU memory
locations (0 to 01171(8».

The 12-bit address is specified by d and m as follows
(expressed in octal):

+-------------------+---------+---------+---------+
m=O I m=1711 fO(m(1111'

+-------------------+---------+---------+---------+

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYHER 180 II Assembler ERS
86/10/11

Rev: F

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.3.5 MEMORY HOOE (H)

Id=O o , m t
td/=O. (d)=O
fd/=O, (d)=7777
td/=O, O«d)(7771

I
I
I
I

o ,
01
o I
(d) ,

o I
7117 ,
(d) I

m ,
m t
m+(d) 1

+-------------------+---------+---------+---------+
Note, in the block 1/0 and central memory access

instructions, d has an alternate meaning and is not used in
address computation. The first word address for these
instructions is gotten directly from m and can reference
location 1111(8).

This is the nomenclature used in the following instruction
descriptions.

A.

CA)

x

c

d

dm

Cd)

«d»

m+(d)

(m+(d»

Refers to the A-regi ster (arithmetic
register).

Refers to the contents of the A-register.

Refers to one bit field which can be either 0
or 1.

Refers to channel number.

Refers to the value
(no-address mode).

of the d-fie .• d

Refers to the 18-bit value obtained from the
d-field and the m-fieJd (constant mode).

Refers to the contents of the location
specifIed by the d-field (direct mode).

Refers to the contents of the location
specified by the contents of the location
specified by the d-field (indirect mode).

Refers to the address specified by the
m-field indexed by the contents of the
location specified by the d-field.

Refers to the contents of the
specified by the m-field indexed
contents of the location specified
d-field (memory mode).

location
by the
by the

8-5
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYHER 180 II Assembler ERS
86/10/17

Rev: F

8.0 (YBER 180 ASSEMBLER SYM80LIC IOU INSTRUCTIONS
8.4 NOMENCLATURE USED IN IOU INSTRUCTIONS

Refers to the P-register (program address
register).

R Refers to the R-register (relocation
register).

(R) Refers to the contents of the R-register.

(R)+{A) Refers to the central memory address formed
from the contents of the R and A registers.

The symbolic machine instructions are divided according to
their function and then further divided according to the
different addressing modes.

8.5.1 BRANCH INSTRUCTIONS

8.5. 1 • 1 LJM.I._RJM ... _UJH£_ZJ~£_HJH ... _eJtls._MJtA

a) This instruction is a long Jump to the address formed by
m+(d).

LJH - (Format = fdm Op Code = OOOldm Size = 32 bit)

+----------+----------+-------------------------
t label toperation largument
+----------+----------+-------------------------, ILJM

If d = 0, then m is not modified.

b) This instruction stores the current program address plus
two ({P)+2) in the address -formed by m ... (d). The
instruction then does a return jump to m + (d) + 1.

RJM - (Format = fdm Op Code = 0002dm Size = ~2 bit)

+----------+----------+-------------------------
Ilabel !operation 'argument
+----------+----------+-------------------------

fRJMlm,d

If d = O. then m is not modified.

8-6
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/17

Rev: F

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.1.1 lJM. RJM, UJN, lJN, NJN, PJN, MJN

c) This instruction causes an unconditional jump forward or
backward as specified by d.

UJN - (Format = fd Op Code = 0003d Size = 16 bit)

+----------+----------+-------------------------
II abel loperation 'argument
+----------+----------+-------------------------

IUJN Id

d) If (A) is zero, then this instruction causes a branch
forward or backward as specified by d.

lJN - (Format = fd Op Code = 0004d Size = 16 bit)

+----------+----------+-------------------------
Ilabel loperation largument
+----------+----------+-------------------------

IIJNI d

e) If fA) is non-zero, then this instruction causes a jump to
a location either forward or backward as specified by d.

NJN - (Format = fd Op Code = 0005d Size = 16 bit)

+----------+----------+-------------------------
Ilabel loperation 'argument
+----------+----------+-------------------------

INJN I d

f) If (A) is positive, then this instruction causes a jump to
a location either forward or backward as specified by d.

PJN - (Format = fd Op Code = 0006d Size = 16 bit)

+----------+----------+-------------------------
11 abe 1 loperation 'argument
+----------+----------+-------------------------
t IPJN Id

8-1
CDC - ADVANCED SYSTEMS DEVELOPMENT

eYHER 180 II Assembler ERS
86/10/17

Rev: F

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.1.1 lJM. RJH, UJN, IJN, NJN, PJN, MJN

9) If (Al is negative, then this instruction causes a jump to
a location either forward or backward as specified by d.

MJN - (Format = fd Op Code = 0001d Size = 16 bit)

+----------+----------+-------------------------
Ilabe 1 loperation largument
+----------+----------+-------------------------I MJN I d

• ••••••

8.5.2 SHIFT INSTRUCTION

The SHN instruction shifts the content of the A register
either right open-ended or left circularly as specified by the
d-field. If the most signifIcant bit of the d field is zero,
then the content of the A register shifts circularly to the
left. If the most significant bit in the d field is one, the
content of A shifts open-ended to the right.

8.5.2.1 St:ltj

a} Shift (A) by + (left) or - (right) d bits.

SHN - (Format = fd Op Code = OOIOd Size = 16 bit)

+----------+----------+-------------------------11·abel loperation largument
+----------+----------+-------------------------

I SHNI d

If there's a d-field of 0 or 11(8), then no shifting takes
place.

• ••••• •

8.5.3 LOAD AND STORE INSTRUCTIONS

This sub-group of instructions is responsible for
transferring 6-bit, 12-blt, 16-bit or IS-bit values either to
or from the IOU A register or memory. When a LOAD instruction
is executed any remaining upper bits of the A register are
cleared, except for the LeN instruction where the remaining
bits are set to one. When a STORE instruction is executed,
the contents of the A register are not altered.

8-8
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

8.0CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.3.1 LON, LeN, loe - LOAD bits by NO ADDRESS and CONSTANT

a) load bits 58-63 of the A register from d-field; bits 46-51
of A are cleared.

LON - (Format = fd Op Code = 0014d Size = 16 bit)

+----------+----------+-------------------------
Jlabel loperation I ,argument
+~---------+----------+-------------------------

'LON Id

b) load bits 58-63 of the A register with the bit by bit
complement of the d-field; bits 46-51 are set to one.

LeN - (Format = fd Op Code = 0015d Size = 16 bit)

11 abe 1 loperation largument
+----------+----------+-------------------------
I 'LeN Id

c) load A register with 18-bit operand from d-field and
m-field.

loe - (Format': fdm Op Code = OO.20dm Size': 32 bit)

+----------+----------+-------------------------11 abe 1 loperation lar'9ument
+----------+----------+-------------------------

flOC Idm

NOTE: There are no corresponding STORE instructions using
the NO-ADDRESS or CONSTANT modes.

a) load A register with a 12-bit quantity (short form) from
(d) •

lOO - (Format = fd Op Code = 0030d Size = 16 bit)

+----------+----------+-------------------------t 1abe" loperation largument
+----------+----------+-------------------------

ILOO t d

8-9
CDC - ADVANCED SYSTEMS DEVELOPMENT

tYBER 180 II Assembler ERS
86/10/11

Rev: F

8.0 CY8ER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.3.2 LOO, lDOl, STD, SlOl - LOAD/STORE bits by DIRECT mode
--

b) load A register with 16-bit quantity (long form) from (d).

lOOl - (Format = fd Op Code = l030d Size = 16 bit)

+----------+----------+-------------------------
'label loperation targument
+----------+----------+-------------------------
I lLOOl Id

c.) Store the 12-bit quantity (short form) from A register into
(d).

STD - (Format = fd Op Code = 0034d Size = 16 bit)

+----------+----------+-------------------------
1labet 'operation targument
+----------+----------+-------------------------

I STU t d

d) Store the 16-bit quantity (long form) from A register into
).

STOL - (Format = fd Op Code = l034d Size = 16 bit)

+----------+----------+-------------------------
Ilabel loperation largument

+----------+----------+-------------------------
ISTOl Id

a) Load A register with 12-bit quantity (short form) from
«d».

lOI - (Format = fd Op Code = 0040d Size = 16 bit)

+----------+----------+-------------------------
Ilabel loperation 'argument
+----------+----------+-------------------------

ILOI Id

8-10
CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS
86.110/17

Rev: F
--8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.3.3 lOI, lOll, 511, SlIt - LOAD/STORE bits by INDIRECT mode

--
b) load A register with 16-bit quantity (long form) from

«(d».
lDll - (Format = fd Op Code = l040d Size = 16 bit)

+----------+----------+-------------------------
11 abe 1 I oper a t i on I ar gumen"t

+----------+----------+-------------------------
'lOll td

c) Store 12-bi"t quantity (short form) from A register into
«(d}).

STI - (Format = fd Op Code = 0044d Size = 16 bit)

+----------+----------+-------------------------
Jlabel loperation largument
+----------+----------+-------------------------

'STI Id

d) Store 16-bit quantity (long form) from A register into
«d»).

STll - (Format = fd Op Code = l044d Size = 16 bit)

+----------+~---------+-------------------------
'label loperation 'argument
+----------+----------+-------------------------

ISTIl Id

8. 5 .3. 4 Lll!:1 _LnML ... _SIM.L-S.IML_=_LDAJll.sIQRE_hit.s_h.~-t1ftUJgY-mQde.

The addr'ess for the operand in these instructions is formed
in the following manner: if the d-field is zero, the m-field
contains the operand; if the d-field is not zero, the m-field
is added to the least significant 12 bits of (d) in ones
complement mode.

8-11
COC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

8.0 elBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.3.4 tDM, LOMl, 5TM, STMl - LOAD/STORE bits by MEMORY mode

a} load 12-bit operand (short form) from memory into A
register.

LOM - (Format:;: fdm Op Code = 0050dm Size = 32 bit)

+----------+----------+-------------------------
1label loperation largument
+----------+----------+-------------------------ItDM Im,d

b) load 16-bit operand (long form) from memory into
A-register.

lDMl - (Format = fdm Op Code = l050dm Size = 32 bit)

+----------+----------+-------------------------
Ilabel (operation largument

+----------+----------+-------------------------
IlOHl 1m. d

c) Store 1.2-bitquantity (short form) from A register into
memory.

STH - (Format = fdm Op Code = 0054dm Size = 32 bit)

+----------+----------+-------------------------
'label loperation largument
+----------+----------+-------------------------

15TH Im.d

d) Store 16-bit quantity (long form) from A register into
memory.

STMl - (Format = fdm Op Code;: l054dm Size =32 bit)

+----------+----------+-------------------------
11abel 1operation largument
+----------+----------+-------------------------I STMl Im,d

• • • • • • •

8.5.4 ARITHMETIC INSTRUCTIONS

These instructions perform integer arithmetic using the A
register as one operand and the instruction specifying the
other operand. The result is then replaced in the A register.

-8-12
CDC - ADVANCED SYSTEMS DEVELOPMENT

eYHER 180 II Assembler ERS
86/1011-7

Rev: F

a.oeYSER 180 ASSEMBLER SYM80lIC IOU INSTRUCTIONS
8.5.4.1 AON, AOC, SSN - ADO/SU8TRACT by NO ADDRESS and CONSTANT

----------------~---

a) Add a -6-bit quantity from the d-field to the contents of
the A-register. The result remains in the A register.

AON - (Format: fd Op Code = 0016d Size: 16 bit)

+----------+----------+-------------------------
Ilabel 'operation (argument
+----------+----------+-------------------------
1 IAON. Id

b) Add an 18-bit quantity from the d and m fields to the
contents of the A register. The result remains in the A
register. The d-field contains the 6 highest order bits
and the m-field contains the 12 lowest order bits.

AOC - (Format = fdm Op Code = 0021dm Size = 32 bit)

+----------+----------+-------------------------11 abe 1 loperation largument
+----------+----------+-------------------------lADe tdm

c) Subtract a 6-bit quantity from the d-fieJd from the
contents of the A register. The result remains in the A
register.

SBN - (Format-: fd Op Code = 0011d Size = 16 bit)

+----------+----------+-------------------------
Ilabel 'operation largument
+----------+----------+-------------------------
I ISBN Id

a) Add a 12-bit quantity (short form) from (d) to the contents
of the A register. The result remains in the A register.

ADO - (Format = fd Op Code = 0031d Size = 16 bIt)

+----------+----------+-------------------------
Ilabel loperation largument
+----------+----------+-------------------------I AOD I d

8-13
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/.10/17

Rev: F

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.4.2 ADD, ADDl, SBD, SeOl - ADD/SUBTRACT bits by DIRECT mode

b) Add ~ 16-bit quantity (long form) from (dl to the contents
of the A register. The result remains in the A register.

ADDL - (Format = fd Op Code = l031d Size = 16 bit)

+----------+----------+-------------------------
J 'abe 1 'operation largument
+----------+----------+-------------------------

I AODl I d

c} Subtract a Il-bit quantity (short form) found in (d) from
the contents of the A register. The result remains in the
A register.

sao - (Format = fd Op Code = 0032d Size = 16 bit)

+----------+----------+-------------------------
'"1abe I loperation largument
+----------+----------+-------------------------

ISBO Id

d) Subtract a 16-bit quantity (long form) found in (dl from
the contents of the A register. The result remains in the
Are9ister.

seOl - (Format = fd Op Code = l032d Size = 16 bit)

+----------+----------+-------------------------
Ilabel loperation largument
+----------+----------+-------------------------

I SBOl I d

8.5.4.3 AIlI _A£llL.J._SfU ... _SBIL_=-_A£.llllSURIB.AC.I_hit.s._hx_lhJlllRfCI

a) Add a 12-bit quantity <short form) from storage to the
contents of the A register. The address for the operand is
in (d). The result remains in the A register.

AOI - (Format = fd Op Code = 0041d Size = 16 bIt)

+----------+----------+-------------------------
"t 1 abe 1 'operation largument
+----------+----------+-------------------------IAOI Id

CDC - ADYANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 CY8ER 180 ASSEMBLER SYMBOLIC IOU INSTRUC·fIONS
8.5.4.3 ADI, lDll. S81, SBIl - ADO/SUBTRACT bits by INDIRECT

8-14

86/10/17
Rev: F

b) Add a 16-bit quantity (long form) from storage to the
contents of the A register. The address for the operand is
in (d). The result remains in the A register.

AOll - (Format: fd Op Code = l041d Size = 16 bit)

+----------+----------+-------------------------
Ilabel loperation fargument
+----------+----------+-------------------------

IAOIl Id

c) Subtract a 12-bit quantity (short form) found in storage
from the contents of the A register. The address for the
operand is found in Cd). The result remaIns in the A
register.

S8I - (Format = fd Op Code = 0042d Size = 16 bit)

+----------+----------+-------------------------
11abe J loperation largument
+----------+----------+-------------------------
I ISBI Id

d) Subtract a 16-bit quantity (long form) found in storage
from the contents of the A register. The address for the
operand is found in Cd). The result remains in the A
register.

SBIl - (Format = fd Op Code = l042d Size = 16 bit)

+----------+----------+-------------------------
Ilabel toperation 'argument
+----------+----------+-------------------------ISBIl Id

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 CVBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS

8-15

86110/17
Rev: F

8.5.4.4 ADM. AOML, S8M, SBMl - AOO/SUBTRACT bits by MEMORY mode

---------.--

al Add a 12-bit quantity (short form) from storage to the
contents of the A register. The address for the operand is
formed by adding 12 bits of the m-field to 12 bits from
(dJ. The result remains in the A register.

ADM - (Format = fdm Op Code = 0051dm Size::: .32 bit)

+----------+----------+-------------------------
Ilabel loperation 'argument
+----------+----------+-------------------------

IADM Im.d

If d = O. the storage address is the m-field.

b) Add a 16-bit quantity (long form) from storage to the
contents of the A register. The address for the operand is
formed by adding 12 bits of the m-field to 12 bits from
Cd). The result remains in the A register.

ADMl - (Format = fdm Op Code = l051dm Size = 32 bit)

+----------+----------+-------------------------
11 abe J loperation 'argument
+----------+----------+-------------------------

I AOMl tm,d

c) Subtract a 12-bit quantity (short form) found in storage
from the contents of the A register. The address of the
oper and is form·ed by addi n9 12-b its of the m-fie 1 d to
12-bits from (d). The result remains in the A register.

SSM - (Format = fdm Op Code = 0052dm Size = 32 bit)

+----------+----------+-------------------------
Ilabel loperation largument
+----------+----------+-------------------------

ISBM Imtd

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 eVBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS

8-16

86/10/.17
Rev: F

8.5.4.4 ADM. ADMl, SBM. SBML - ADO/SUBTRACT bits by MEMORY mode
--

dJ Subtract a 16-bit quantity (long form) found in storage
from the contents of the A register. The address of the
operand is formed by adding 12-bits of the m-field to
12-bits from Id). The result remains in the A register.

S8Hl - (Format = fdm Op Code: l052dm Size = 32 bit)

+----------+----------+-------------------------
"abel loperation 'argument
+----------+----------+-------------------------, ISSML Im,d

• • • • • • •

8.5.5 LOGICAL INSTRUCTIONS

These instructions perform operations using the A register
for one operand and the other operand specified by the
instruction. The result remains in the A register.

a) Performs the logical difference (EXCLUSIVE OR) function
between the d-fleld and the least significant 6 bits
(58-63) of the A register. The rest of the A regIster is
unchanged.

lMN - (Format = fd Op Code = OOlId Size = 16 bit)

"+----------+----------+-------------------------
flabel Joperation largument
+----------+----------+-------------------------

ILMN J d

b) Performs the logical difference (EXCLUSIVE OR) function on
an IS-bit operand and the A register. The la-bit operand
is formed with the d-field being the highest order 6 bits
·and the m-field being the lowest order 12 bi·ts.

LMC - (Format = fdm Op Code = 0023dm Size = 32 bit)

+----------+----------+-------------------------I label loperatlon 'argument
+----------+----------+-------------------------

IlHe ldm

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assemb1er ERS

8.0 CVBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS

8-17

86/10/11
Rev: F

8.5.5.1 lMN, LHe, LPN, lPC, SeN - NO ADDRESS and CONSTANT modes

c) Performs the logical product (lOGICAL AND) funct.ion between
the d-field and the least significant 6 bits (58-63) of the
A register. The rest of the A register is cleared.

LPN - (Format: fd OpCode : 0012d Size = 16 bit)

+----------+----------+-------------------------
Ilabel I operat ion 'argument
+----------+----------+-------------------------

ILPN Id

d) Performs the logical product (LOGICAL AND) function between
an IS-bit operand and the A register. The IS-bit operand
is formed with the d-field being the highest order 6 bits
and the m-field being is the lowest order 12 bits.

LPC - (Format: fdm Op Code = 0022dm Size = 32 bit)

+----------+----------+-------------------------
Ilabel 'operation largument
+----------+----------+-------------------------

IlPC Idm

e) Performs a selective clear function
least siginificant 6 bits (58-63)
corresponding bits of the d-field
clears bits 58-63 of A if the
d-field is set to one). The rest
unchanged.

on the
of the A register where
are set to one (ie.

correspondi nq bi tin the
of the A register is

SCN - (Format = fd Op Code = 0013d Size = 16 bit)

+----------+----------+-------------------------
'·'abel 'operation largument
+----------+----------+-------------------------
I IseN Id

(OC- ADVANCED SYSTEMS DEVELOPMENT

CYHER 180 II Assembler ERS

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.5.2 lMO. LMOl, lPOl - Instructions using O.lRECTmode

8-18

86/10/11
Rev: F

a) Performs the logical difference (EXCLUSIVE OR) with 12-bit
quantityfshort form) from (d) and the A reg.ister. The
highest order 6 bits of the A register are unchanged.

tHD - (Format = fd Op Code = 0033d Size = 16 bit)

+----------+----------+-------------------------
J label loperation largument
+----------+----------+-------------------------

IlHO I d

b) Performs the logical difference (EXCLUSIVE OR) with 16-bit
quantity (long form) from Cd) and the A register. Bits
46-47 of the A register are unchanged.

lHDL - (Format = fd Op Code = l033d Size = 16 bit)

+----------+----------+-------------------------
'label loperation largument
+----------+----------+-------------------------

IlHOl I d

c) Performs the logical product (LOGICAL AND) function with
16-bit quantity «long form) from (d) and the A register.
Bits 46-47 of the A register are cleared by this operation.

lPOl - (Format = fd Op Code = l022d Size = 16 bit)

+----------+----------+-------------------------
Jlabel loperation largument
+----------+----------+-------------------------

IlPOl I d

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 CVHER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.5.3 lHI. LMIl, LPIl - Instructions using INDIRECT mode

6-19

86/10/17
Rev: F

a) Performs the logical difference (EXCLUSIVE OR) function on
12-bit quantity (short form) from storage and the A
register. The address for the operand is in Cd). The rest
of the A register is unchanged.

LMI - (Format = fd Op Code = 0043d Size = 16 bit)

+----------+----------+-------------------------
'label loperation 'argument
+----------+----------+-------------------------, IlMI Id

b) Performs the logical difference (EXCLUSIVE OR) function on
16-bit quantity (long form) from storage and the A
register. The address of the operand is in (d). Bits
46-47 of the A register are unchanged.

lMIL - (Format = fd Op Code = l043d Size = 16 bit)

+----------+----------+-------------------------
II abe 1 loperation 'argument
+----------+----------+-------------------------
J llMIL Id

c) Performs the logical product (LOGICAL AND) function on a
16-bit quantity (long form) from storage and the A
register. The address of the operand is in Cd). Bits
46-47 of the A register are cleared by this operation.

LPIL - (Format = fd Op Code = l023d Size = 16 bit)

+----------+----------+-------------------------
,I abel 'operation largument
+----------+----------+-------------------------

IlPIl Id

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 CV8ER 160 ASSEMBLER SYMBOLIC :tOU INSTRUCTIONS
8.5.5.4 lMM" lMMl, LPMl - Instructions using MEMORY mode

8-20

86/10/17
Rev·: F

a) Performs the logical difference
a 12-bft quantity (short form)
register. The address for the
the m-field to 12 bits of (d).
remains unchanged.

(EXCLUSIVE OR) function on
from storage and the A

operand is formed by adding
The rest of the A register

LMM - (Format = fdm Op Code = 0053dm Size = 32 bit)

+----------+----------+-------------------------
'label loperation largument
+----------+----------+-------------------------

ILMM Im,d

If d = 0, then the m-field is the address for the operand.

b) Performs the logical difference (EXCLUSIVE OR) function on
a 16-bit quantity (long form) from storage and the A
register. The address for the operand is formed by adding
the m-field to 12 bits of (d). Bits 46-41 of the A
register remain unchanged.

lMMl - (Format = fdm Op Code = 1053dm Size = 32 bit)

+----------+----------+-------------------------
11abe 1 'operation largument
+----------+----------+-------------------------

IlMMl 1 m, d

If d = 0, then the m-field is the address for the operand.

CDC - ADVANCED SYSTEMS DEVELOPMENT

(YBER 180 II Assembler ERS

a.o (VBER 180 ASSEMBtERSYMBOl.IC :IOUINSTRUCTIONS
8.5.5.4 LMM, lMMl, LPMl - Instructions using MEMORY mode

8-21

86/10/17
Rev: F

--
c) Performs the logical product (LOGICAL AND) function on a

16-bit quantity (long form) from storage and the A
register. The address for the operand is formed by adding
the m-field to 12 bits of the (d). Bits 46-47 of the A
register are cleared by this operation.

lPMl - (Format = fdm Op Code = l024dm Size = 32 bit)

+----------+----------+-------------------------
, "abe 1 loperation 'argument
+----------+----------+-------------------------

ILPMl 1m. d

If d = 0, then the m-field is the address for the operand.
• ••••• •

8.5.6 REPLACE INSTRUCTIONS

The replace instructions are similar to the arithmetic
instructions in that they both use the A register as one
operand and the instruction specifies the other. The
difference is that both the A register and the contents of the
location of the other operand ar~ replaced with the result.

If the instruction is the short (ie. 12-bit operand) then
the value returned to storage is the 12 lowest ordered bits of
the A register with 4 higher ordered zero bits added. If the
instruction is the long form (Ie. 16-btt operand) then the 16
lowest ordered bits of the A register are returned to storage.
Therefore. the A register and the value replaced in storage
are not necessarily equal~

All arithmetic is done in IB-bit ones comp1ement mode.

a) Add a lZ·-bi t quantity (short form) from (d) to the A
register.

RAO - (Format = fd Op Code = 0035d Size = 16 bit)

Jlabel loperation largument
+----------+----------+-------------------------t RAO J d

8-22
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/17

Revt F

8.0 (YBER ISO ASSEMBLER SYMBOLIC .IOU INSTRUCTIONS
8.5.6.1 RAO, RAOL - REPLACE AOD using DIRECT mode
--

b) Add a 16-bit quantity (long form) from (d) to the A
register.

RAUL - (Format = fd Op Code = l035d Size = 16 bit)

+----------+----------+-------------------------t labe 1 'operation 'argument
+----------+----------+-------------------------

'RAOl I d

8.5.6.2 AOIl.L_AODL ... _SDIl ... _SQUL_=_REeLAtf_AOlllSU.f1I&ACI_QtJE_l.lslng_D.IRE.t.l

a) Enter 1 into the A register then add the 12-bit quantity
(short form) from (d) to the A register.

ADO - (Format = fd Op Code = 0036d Size = 16 bit)

+----------+----------+-------------------------
Ilabel loperation largument
+----------+----------+-------------------------

IAOD J d

b) Enter 1 into the .A reg i ster then add the 16- bi t quant i ty
(long form) from (d) to the A register.

AOOt - (Format = fd Op Code = l036d Size = 16 bit)

+----------+----------+-------------------------
I 'abe 1 loperation largument

I AODL I d

c) Enter negative 1 into the A register the add the 12 bit
quantity

(short form) from (d) to the A register.

SOD - (Format = fd Op Code = 0031d Size = 16 bit)

+----------+----------+-------------------------
11 abel loperation largument
+----------+----------+-------------------------

I SOO I d

8-23
CDC - ADVANCED SYSTEMS DEVELOPMENT

CJBER 180 II Assembler ERS
86.110/17

Rev: F

8.0 CYBER 180 ASSEM8LER SYMBOLIC IOU .INSTRUCTIONS
8.5.6.2 ADO, AOOl. SOD, SOOl - REPLACE ADD/SUBTRACT ONE using DIRECT
--

d) Decrease the content of (d) by 1 then use 16-bit quantity
(long form) from (d) to add to the .A. regi ster.

SOOl - (Format = fd Op Code = 1037d Size = 16 bit)

+----------+----------+-------------------------
J label loperation 'argument
+----------+----------+-------------------------

I SOOt fd

8.5.6.3 RAl.t.._RAlL_=-RfelAtf_A!lD._u.sing_l!itllRftI_mQd~

a) Add a 12-bit quantity (short form) from storage to the A
register. The address for the operand is found in (d).

RAI - (Format = fd Op Code = 0045d Size = 16 bit)

+----------+----------+-------------------------
Ilabel 'operation 'argument
+----------+----------+-------------------------

,RAt I d

b) A.dd a 16-bit quantity (long form) from storage to the A
register. This result remains in A and the 16 lowest
ordered bits are returned to storage Therefore, the A
register and the va1ue returned to storage are not
necessarily equal. The address for the operand is found in
«d) •

RAIL - (Format = fd Op Code = l045d Size = 16 bit)

+----------+----------+-------------------------
,I abel 'operation largument
+----------+----------+-------------------------

tRAIL Id

8.5.6.4 ADl£_AOlL£_SDl.&._SDll_=_gEeLAtf_ADOlS.lJBIRAtI_.us.ln,g_I~lllBEC.!

a) Enter 1 into the A register then add the 12-bit quantity
(short form)

of the operand in storage. The address for the operand is
found in (d).

ADI - (Format = fd Op Code = 0046d Size = 16 bit)

+----------+----------+-------------------------
Ilabe 1 loperation largument
+----------+----------+-------------------------

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 (yeER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS

8-24

86/10/1"1
Rev: F

8.5.6.4 ADI, AOll, 501, SOIL - REPLACE ADO/SUBTRACT using INDIRECT

IAOI Id

hI Enter 1 into the A register then add the 16-bit quantity
(long for m)

of the operand in storage. The address for the operand is
found in Cd).

lOll - (Format = fd Op Code: l046d Size = 16 bit)

+----------+----------+-------------------------
11 abet 'operation largument
+----------+----------+-------------------------

'AD Il I d

c) Enter negative 1 into the A register then add the 12-bit
quantity

(short form) of the operand in storage. The address for
the operand is found in (dl.

SOl - (Format = fd Op Code = 0041d Size = 16 bit)

+~---------+----------+--------------~----------
tlabel loperation largument
+----------+----------+-------------------------
I 1501 'd

d) Enter negative 1 into the A register then add the 16-bit
quantity

of the operand in storage. The address for the operand is
found i n (d).

SOIL - (Format = fd Op Code = l047d Size = 16 bit)

+----------+----------+-------------------------
Ilabel loperation largument
+----------+----------+-------------------------

ISOll Id

CDC - ADVANCED SYSTEMS DEVELOPMENT

tY8ER 180 II Assembler ERS

8.0 CY8ER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.6.5 RAM, RAML - REPLACE ADD using MEHOR"Y mode

8-25

86/10/17
Rev: F

a) Add a 12-bit quantity (short form) from storage to the A
register. The address for the operand is found by adding
the m-field to the content of (d).

RAM - (Format = fdm Op Code = 0055dm Size = 32 bit)

+----------+----------+-------------------------, I abe 1 loperation targument
+----------+----------+-------------------------

tRAM 'm,d

If d = 0, then the operand address is the m-field.

b) Add a 16-bit quantity (long form) from storage to the A
register. The address for the operand is found by adding
the m-field to the content of Id).

RAHl - (Format = fdm Op Code = l055dm Size = 32 bit)

+----------+----------+-------------------------
Ilabel 'operation largument
+----------+----------+-------------------------

I RAMLI m,d

If d = 0, then the operand address is the m-field.

a} Enter 1 into the A register the add the 12-bit quantity
(short form)

of the operand from storage. The address for the operand
is found by adding the m-field to the content of fd).

ADM - (Format = fdm Op Code = 0056dm Size = 32 bit)

+----------+----------+-------------------------
I "' abe 1 'operation Jargument
+----------+----------+-------------------------
f IAOM

If d - O. then the operand address is the m-field.

CDC - ADVANCEO SYSTEMS DEVELOPMENT

CYBER 180 II Assemb1er ERS

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS

8-26

86/10.111
Rev: F

8.5.6.6 AOMJ AOHl, SOM, SOMl - REPLACE ADO/SUBTRACT ONE using MEMORY mode

b) Enter 1 into the A register then add the 16-bit quantity
(long form)

of the operand from storage. The address for the operand
is found by adding the m-field to the contents of (d).

AOMl - (Format = fdm Op Code = l056dm Size = 32 bit)

+----------+----------+-------------------------t "'abe 1 foperationlargument
+----------+----------+-------------------------

I AOMl Im,d

If d - 0, then the operand address is the m-field.

c) Enter negative 1 into the A register then add the 12-bit
quantity

(short form) of the operand form storage. The address for
the operand is found by adding the m-fieJd to the content
of (d).

SOH - (Format = fdm Op Code = 0051dm Size = 32 bit)

+----------+----------+-------------------------
, labe 1 'operation largument
+----------+----------+-------------------------

If d = 0, then the operand address is the m-field.

d) Enter negative 1 into the A register then add the 16-bit
quant"i ty

(long form) of the operand form storage. The address for
the operand is found by adding the m-field to the content
of {dl.

SOHl - (Format = fdm Op Code = l057dm Size = 32 bit)

+----------+----------+-------------------------
II abe 1 loperation largument
+----------+----------+-------------------------

I SOHl 1m, d

If d = 0, then the operand address is the m-field.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.1 CENTRAL MEMORY ACCESS INSTRUCTIONS

8-21

86/10/11
Rev: F

--
8.5.7 CENTRAL MEMORY ACCESS INSTRUCTIONS

The central memeory access instructions provide a means for
readi 09 and wr i t i n9 central memory to and -from IOU memory.
The IOU has read access -to all of centralm:emory but write and
exchange accesses are monitored by the OS Bounds Register.
Central memory addressing uses real addresses rather than
virtual addresses and these are formed from the contents of
the A-register and the R-register.

The two types of addressing for these instructions are
absolute and relocation. The type of addressing desired is
determined by bit 46 of the A register. In all the central
memory acess instructions (R) + (A) will mean the following:

If bit 46 of the A register is zero. the absolute central
memory address is specified by bits 41-63 of the A register.

If bit 46 of the A register is one. meaning relocation is
desired, 6 zeros are concatenated to the rightmost end of
the contents of the R register and this is added to bits
47-63 of (A) forming an absolute centra' memory -address.

The OS Bounds Register divides central memory into two
reg ions for dua I-state. For wr i te and exchange accesses. a
bit in the OS Bounds Register for each PP indicates which
region the PP has access to:

A set bit indicates the lower region:
pp eM address < as boundary.

A cleared bit indicates the upper region:
OS boundary < pp eM address.

Address verification for eM accesses occurs on the
following IOU instructions:

0026
0062
1062
0063
1063
1000
1001

EXCHANGE JUMP
CENTRAL WRITE
CENTRAL WRITE
CENTRAL WR rTE
CENTRAL WRITE
CENTRAL READ AND SET lOCK
CENTRAL READ AND CLEAR LOCK

CDC -ADVANCED SYSTEMS DEVELOPMENT

CV8ER 180 II Assembler ERS

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.1.1 LRD, SRD, - LOAD/STORE R Register in IOU Memory

8-28

86/10111
Rev: F

a) loads 22-bit (R) register from (d) and (d)+l. Bits 46-51
of R are loaded from bits 52-63 of (d)+l and bits 52-63 of
R are loaded from bits 54-63 of (d).

lRD - (Format = fd Op Code: 0024d Size = 16 bit)

+----------+----------+-------------------------
Ilabel loperation largument
+----------+----------+-------------------------

ILRO I d

If d = 0, then the instruction is a pass.

b) Stores the content of the 22-bit R register into (d) and
(d)+l. Bits 46-57 of the R register are stored in Cd)+l
and bits 36-45 of R are stored in (d). The remaining bits
in (d) and Cd)+l are cleared.

SRO - (Format = fd Op Code = 0025d Size = 16 bit)

+----------+----------+-------------------------
, labe 1 'operation 'argument
+----------+----------+-------------------------ISRO Id

If d = 0, then the instruction is a pass.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

8.0 CYBiER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.7.2 CRDt CROl, CWO, CWOL - RO/WRCPU Memory, DIRECT mode

8-29

86/10./11
Rev: F

When reading or writing a eM memory word to or from :IOU
memoryj two different packing/unpacking schemes are used
depending on if the instruction specifies the long (64 bit) or
shoT't (60 bi t) form.

PACKING/UNPACKING for short instructions (60 bit value)

o 4
1
6

Central Memory Word

2
8

4
o

5
2

6
3

+----+---------+---------+---------+---------+---------+
1(4) I a(1.2) b(lZ} c(12) d{IZ} , e{12J

+----+---------+---------+---------+---------+---------+

4
8

5
2

PP MEMORY WOROS

6
3

+------+--------------+
d I 0(4) I a{IZ)

+------+--------------+
d+l '0(4) I b(12) I

+------+--------------+
d+2 f 0(4) I c(12) ,

+------+--------------+
d+3 I 0(4) I d(12) I

+------+--------------+
d+4 I 0(·4) I e(12) I

+------+--------------+

·8-30
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

8.0 CyaER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.1.2 eRO, CROl, CWD, eWDl - RD/WR CPU Memory, DIRECT mode
--

PACKING/UNPACKING for long instructions (64 bit value)

o
1
6

Central Memory Word

3
2

4
B

6
3

+--------------+--------------+--------------+--------------+
a(16) b(16) c(16) d(16) I

+--------------+--------------+._------------+--------------+

4
B

PP Memory Words

6
3

+---------------------+
d a(16} I

+---------------------+
d+l I b(16) I

+---------------------+
d+2 c(16)

+---------------------+
d+3 d(16}

+---------------------+
a) Reads one central memory word (60 bit word), 4-63, to

bits 52-63 of five consecutive IOU memory words. The
address for the eM word is specified by (R) + (A). The
address for the first IOU memory word is specified by d.

eRD - (Format: fd Op Code = 0060d Size = 16 bit)

+----------+----------+-------------------------11 abe 1 'operation largument
+----------+----------+-------------------------leRO Id

CDC - ADVANCED SYSTEMS DEVELOPMENT

CyeER 180 II Assembler ERS

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.7.2 eRO, tROL, CWD, eNOL - RD/WR CPU Memory. DIRECT mode

-8-31

86/10/11
Rev: F

--
b) Reads one central memory word (64 bitwordl to four

consecutive iou memory words. The address for the eM word
is specified by (R) + (A). The address for the first IOU
memory word is specified by d.

CROt - (Format = fd Op Code = l060d Size = 16 bit)

+----------+----------+-------------------------
11 abe' 'operation largument
+----------+----------+-------------------------

I CROl 'd

c) Transfers the 12 lowest ordered bits from five consecuti've
IOU memory words to bits 4-63 of a central memory word (60
bit word). Bits 0-3 are cleared. The address for the eM
word is specified by(R)+ fA) and is verified against the
OS Bounds Register. The address for the first IOU memory
word is specified by d.

cwo - (Format = fd Op Code: 0062d Size = 16 bit)

+----------+----------+-------------------------
Ilabel loperation Jargument
+----------+----------+-------------------------

ICWO 'd

d) Transfers the 12 lowest ordered bi ts from four consecutive
IOU memory words to one central memory word (64 bit word).
The address for the eM word is specified by (R) + (A) and
is verified against the OS Rounds Register. The address
for the first IOU memory word is specified by d.

CHOl - (Format = fd Op Code: l062d Size = 16 bit)

+----------+----------+-------------------------I J abe 1 loperation 'argument
+~---------+----------+-------------------------

ICWOl Id

8.5 .7.3 c.B.~L_CB.r!U_ ... _tH!1..L_tiUiL_=_Rf!DlWB.IIE_tt.1_fllgi;k.S

After the following instructions are completed Awi 11
contain the non-relocated portion of the eM address plus one
of the last memory word transferred. Note that if the value
of bits 47-63 of A exceeds (2**11)-1, then bit 46 will be
toggled and the addressing mode will change from direct
addressing to relocation addressing mode. Note also that if

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCJIONS
8.5.7.3 CRM, CRMl, eMM, CWHl - READ/WRITE eM Blocks

8-32

86/10111
Rev: F

the last eM word transferred has a relative address of
3177'76(8) and re locati on is in affect, the ,A regi ster wi 11 be
cle·ared and the value 'in A may not point to the last word
transferred plus one.

a) Transfers bit 4-63 of consecutive centra1 memory words
(ie. 60 bit words) to consecutive IOU memory words. The
address of the first CMword is specified by (R)+ (Al, the
address of the first IOU memory ~ord is specified by m and
the number of eM words transferred is specified by (d).

CRM - (Format = fdm Op Code = 0061dm Size = 32 bit)

+----------+----------+-------------------------
Jlabel loperation largument
+----------+----------+-------------------------teRM Im,d

b) Transfers consecutive central memory words (64 bit words)
to consecu'ti ve IOU memory words. The address of the first
eM word is specified by (R) + (A), the address of the first
IOU memory word is specified by m and the number of eM
words transferred is given by (d).

CRMl - (Format: fdm Op Code = l061dm Size: 32 bit)

+----------+----------+-------------------------
11 abe 1 loperation largument
+----------+----------+-------------------------

ICRMl Im,d

c) Transfers bits 52-63 of consecutive IOU memory words to
bits 4-63 of consecutive central memory words (60 bit
words). Bj'ts 0-3 are cleared. The address for the first
IOU memory word is specified by m. the address for the
first eM word is specified by (R) + (A) and is verified
against the OS Bounds Register. The number of eM words
transferred is given by (d).

CWM - (Format = fdm Op Code = 0063dm Size = 32 bit)

+----------+----------+-------------------------11 abe 1 loperation largument
+----------+----------+-------------------------

ICWH fm,d

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYHER 180 II Assembler ERS

8.0 CY8ER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.°7.3 CRM, CRMl, CWM, CWMl - READ/WRITE eM Blocks

8-33

86/10/1"7 "
Rev: F

--
d) Transfers consecutive IOU words to consecutive central

memory words (64 bit words). The address for the first IOU
word is specified by m, the address for the first eM word
is specified by (R) + (A) and is verified against the" OS
Bounds Register. The number of eM words transferred is
specified by (d).

CWMl - (Format = fdm Op Code = l063dm Size = 32 bit)

+----------+----------+-------------------------
11 abe' loperation largument
+----------+----------+-------------------------ICWMl I m,d

A serialization function is performed at the beginning and
the end of these instructions. Execution is delayed until all
accesses to central memory by the IOu are completed. no other
accesses are permitted from the beginning of the read until
the end of the write and no execution from other instructions
are a "'lowed until a 11 accesses to and from eM fromthi s
i nstructi on are comp leted.

a) The LOGICAL OR function is performed between four
consecutive IOU memory words and one central memory word
(64 bit word). The result is replaced in the eM word while
the original contents of the eM word are replaced in the
four IOU words. The address of the first IOU word is
specified by d, the address for the CM word is specified by
(R) + (A) and is verified against the OS Sounds Register.

ROSl - (Format = fd Op Code = lOOOd Size = 16 bit)

+----------+----------+-------------------------
Jlabel loperation Jargument
+----------+----------+-------------------------

IROSl 'd

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 CYBER 180 ,~SSEMBtER SYMBOLIC IOU INSTRUCTIONS
8.5.7.4 ROSl, RDCl - REAOeH and SET or CLEAR LOCK

6-34

86/.10/17
Rev: F

b) The LOGICAL AND function is performed between four
consecutive IOU memory words and one central memory word
(64 bi t word). The resu 1 tis rep laced in the eM word whi 1e
the original contents of the eM word are rep1aced in the
four IOU words. The address for the first IOU word is
specified by d. the address for the eM word is specified by
CR) + (A) and is verified against the OS Bounds Register.

1

RDCL - (Format = fd Op Code = lOOld Size = 16 bit)

+----------+----------+-------------------------11 abe 1 loperation largument
+----------+----------+-------------------------

J ROeLl d
• • • •• • • •

8.5.8 INPUT/OUTPUT INSTRUCTIONS

There are 26 instructions to control activity on IIO
channels. These instructions select an external device,
determifie if the device is available and ready to transfer
data and then transfers data to or from the device.

Each PP has a set of external function codes that
establishes the mode of operation and also starts and stops
data transfer. The devices are also capab1e of detecting
certain errors and they report these to the controlling PP.

The following instructions are conditional branch
instructions, each of which tests for a condition on channe1
c. When the condition is true the branch to address m occurs
and when the condition is false execution continues with the
following instruction. The c expression is required.

a) Branch to the location specified by m if channel c is
active.

AJM - (Format = fscm Op Code = 00640cm Size = 32 bit)

+----------+----------+-------------------------
'label loperation largument
+----------+----------+-------------------------, IAJM tm,c

CDC - ADVANCED SYSTEMS DEVELOPMENT

(V8ER 180 II Assembler ERS

B.O CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.8.1 AJM, Sept FSJM, IJM, FCJH, FJM, EJM, SF", (FM, CCF

8-35

86/10117
Rev: F

b) Branch to location specified by m if the channel c flag is
set, otherwise set channel flaQ and exit. One may
unconditionally set the channel fl~g by setting m to P+2.

SCF - (Format = fscm Op Code = 00641cm Size = 32 bit)

+----------+----------+-------------------------
Ilabe 1 loperation largument
+----------+----------+-------------------------

I SCf f m,c

c) Branch to the location specified by m if the flag for
channel c is set.

FSJM - (Format = fscm Op Code = l064Xcm Size = 32 bit)

+----------+----------+-------------------------If abel loperation largument
+----------+----------+-------------------------

'FSJM 'm,e

d) Branch to the location specified by m if channel c is
inactive.

IJH - (Format = fscm Op Code: 00650cm Size: 32 bit)

+----------+----------+-------------------------
, 1 abe 1 loperation 'argument
+----------+----------+-------------------------

IIJM Im,c

e) Branch to the ·'ocation specified by m if the flag for
channel c is clear.

FCJM - (Format: fscm Op Code = l065Xcm Size: 32 bit)

+----------+----------+-------------------------
Jlabel 'operation largument
+----------+----------+-------------------------IFCJM Im,c

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.8.1 AJM, SCF, FSJH, IJM, FCJM, FJM. EJM, SFM, CFM, CCf

f) Branch to the location specified by mif channel c is
full.

FJM - (Format = fscm Op Code = 00660cm Size = 32 bit)

+----------+----------+-------------------------
II abe 1 loperation 'argument

+----------+----------+-------------------------
IFJM 'm,c

g) Branch to the location specified by m if channel c is
empty_

EJM - (Format = fscm Op Code = 00670cm SIze = 32 bit)

+----------+----------+--------~----------------
Ilabel loperation largument

+----------+----------+-------------------------
IEJM Imtc

h) Branch to the loc.ation specified by m i fthechannel c
error flag is set, and then clear error flag.

SFM - (Format = fscm Op Code = 00661cm Size = 32 bit)

+----------+----------+-------------------------
'operation largument

+----------+----------+-------------------------
ISFM Im,c

i) Branch to the location specified by m if the channe1 c
error flag is clear, and then clear error flag.

CFH - (Format = fscm Op Code = 00611cm Size = 32 bit)

+----------+----------+-------------------------
11 abe 1 loperation largument
+----------+----------+-------------------------

8-36

86110/11
Rev: F

CDC - ADV.ANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCIIONS
8.5.8.1 lJH, SCF, FSJM, IJM, FCJM, FJM, EJM, SFM, CFH, CCF

8-31

86/10.111
Rev: F

j) Clear the flag on the channel specified by c. The m-field
is required but not used.

ceF - (Format = fscm Op Code = 00651cm Size = 32 bit)

+----------+----------+-------------------------
1label foperation largument
+----------+----------+-------------------------

fCCF Im,c

a) Transfers a word from channel c to bits 48-63 of register
A. Bits 46-47 are cleared. The instruction waits for the
channel to become active and full before e)(ecuting.

IAN - (Format = fsc Op Code = 00100c Size = 16 bit)

+----------+----------+-------------------------I 1 abet loperation largument
+----------+----------+-------------------------

II.AN Ie

b) Transfers a word from channel c to bits 48-63 of register
A. Bits 46-41 are cleared. If the channel is inactive or
becomes inactive before becoming full, no transfer takes
place and the instruction exits with (A) = o.

IAN - (Format = fsc Op Code = 00701c Size = 16 bit)

+----------+----------+-------------------------
II abe 1 'operation 'argument
+----------+----------+-------------------------

'IAN 140(8)+c

Note, on these two instructions if a 12-bit external
interface is used, bits 48-63 of A are zero. If an 8-bit
interface is used, bits 46-55 of A will be zero.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 CYBER 180 ASSEHBlER SYMBOLIC IOU INSTRUCTIONS
8.5.8.2 IAN, DAN - A Register 110 Instructions

8-38

86/10/11
Rev: F

c} Transfers bl-ts 48-63 of (Al to channel c. The instruction
waits for the channel to become active and empty before
executing. The content of A is unchanged.

OAN - (Format = fsc Op Code: 00720c Size = 16 bit)

+----------+----------+-------------------------
Ilabel loperation largument
+----------+----------+-------------------------

lOAN I c

d) Transfers bits 48-63 of (A) to channe1 c. If the channel
is inactive, than no transfer takes place and the
instruction exits. The content of A is unchanged.

OAN - (Format = fsc Op Code = 00721e Size = 16 bit)

+----------+----------+-------------------------
Ilabe 1 loperation 'argument
+----------+----------+-------------------------

lOAN 140(B)+c

Note, on these two instructions if a 12-bit external
interface is used on the channel, bits 48-51 of the channel
word are not transmitted and are lost. If an 8-bit
interface is used, then bits 48-55 of the channe1 word are
not transmitted and are lost.

a) Transfers successive words from channel c to consecutive
IOU memory words. The address of the first IOU memory word
is specified by m and the number of words transferred is
specified by fA). Termination can occur one of two ways:

- (A) = 0 or
- channel becomes inactive; if this is the cause for
termin.ation, the next IOU wor-dis cleared and CA) will
contain the difference of the initial value and the
number of words transferred.

If the channe1 is initially inactive when the instruction
is executed. no transfer takes place, (A) remains unchanged
and the IOU word spe~ified by m is set to zero.

lAM - (Format = fscm Op Code = 00110cm Size = 32 bit)

+----------+----------+-------------------------

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

8.0 CVHER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
B.5.8.3 lAM, IAPM. DAM. nAPM - BLOCK 1/0 Instructions

1labeJ 'operation largument
+----------+----------+-------------------------IIAM Im.c

8-39

86/10/17
Rev: F

Note, with a 12-bit external interface. bits 48-51 of IOU
memory will be zero; With an a-bit interface. bits 48-55 of
IOU memory will be zero.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0CYBER 180 ASSEMBtER SYMBOLIC IOU INSTRUCTIONS
8.5.8.3 JAM, IAPM, OAM, OAP" - BLOCK 110 Instructions

6-40

86/10/11
Rev: F

b) Transfers bits 52-63 of successive words from channel c to
consecutive IOU memory words. During this transfer, 4
channel words (·48 bits) are packed into 3 IOU m:mory words.
(See be low.) Bits 4;8-51 of the channe 1 word 1 s ignored.
The address of the first IOU memory word is specified bym
and the number of channel words is specified by (A).
Termination can occur one of two ways:

- (A) = 0; if the number of channel words transferred is
not a multiple of 4 f ·then the last I OUword wi 11 be .zero
filted;

channel becomes inactive; IOU words will be zero
filled to the next four channel word boundary.

If the channel is initiaJlyi nactive when the instruction
is executed. no transfer takes place, fA) remains unchanged
and the IOU memory words mt m+l, m+2 are set to o.

4
8

5
2

Channel Words

6
3

+------+--------------+
'(4) I a(12)
+------+------+-------+
'(4) I b(4) I c(a) 1
+------+------+--+----+
1 {4} deS) le(41f

1 (4) f(12)
+------+--------------+

4
8

5
2

IOU Memory Words

5
6

6
o

6
3

+--------------+------+ I a(12) I b(lt) t
+----------+---+-+----+

c(B) deS)

+------+---+---+-+----+
, e(4) , fIll) 1
+------+-------+------+

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 CVBER 180 ASSEMBLER :SYMBOLIC IOU INSTRUCTIONS
8.5.8.3 lAM, IAPH, DAM, OAPM - BLOCK 1/0 Instructions

IAPM -(Format: fscm Op Code = l0110cm Size = 32 bit'

+----------+----------+-------------------------
f 1,3be 1 Joperation Jargument
+----------+----------+-------------------------

!IAPM Im,c

c) Transfers the contents of consecutive IOU memory words

8-41

86/10/11
Rev: F

as successive words on channel c. The address of the first
IOU word is specified by m and the number of words to be
transferred is specified by fA). Termination occurs one of
two ways:

- (A) = 0 or
- channel becomes inactive; if this happens (A) contains
the difference between the initial value and the actual
number of words transferred.

If the channel is initially inactive when the execution
begins. no transfer takes place and (A) remains unchanged.

OAM - {Format = fscm Op Code = 00730cm Size = 32 bit}

+----------+----------+-------------------------
Ilabel loperation largument
+----------+----------+-------------------------
I lOAM

Note, if a 12-bit external interface is used. bits 48-51 of
the channel word is not transmitted and are lost. If an
a-bit interface is used, bits 48-55 are not transmitted and
are lost.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

8.0CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.8.3 lAM, IAPM, DAM, OAPM - BLOCK 110 Instructions

8-42

86/10/11
Rev:F

d) Transfers consecutive IOU memory words as bits 52-63 of
successive words on channel c. During the transfer the
contents of 3 IOU words result in 4 channel words (same
packing as above). Bits 48-51 of the 16-bit channel word
are cleared. The address for the first IOU word is
specified by m and the number of channe'. words transferred
is specified by CAl. Termination occurs one of two ways:

- CA) = 0 or
- channel is inactive; if this happens, (A) will contain
the difference of its initial value and the number of
words actually transferred.

If the channel is initially inactive when execution begins.
no transfer takes place and (A) remains unchanged.

OAPM - (Format = fscm Op Code = l0730cm Size = 32 bit)

+----------+----------+-------------------------
Ilabel loperation largument
+----------+----------+-------------------------

'OAPM I m,c

a) Prepares channel c for 110 transfer by setting the channel
active. If the channel is active, then the instruction
will wait for the channel to become inactive before
e,xecut i ng.

4CN - (Format = fsc Op Code = 00740c Size = 16 bit)

+----------+----------+-------------------------
I' abel loperation largument

I ACN I c

b) Prepares channel c for 1/0 transfer by setting the channel
active. The instruction will execute regardless to the
active/inactive status of the channel.

ACN - (Format = fsc Op Code = 00741c Size = 16 bit)

+----------+----------+-------------------------
, 1 abe 1 loperation largument
+----------+----------+-------------------------

IACN t40(8)+c

CDC - ADVANCED SYSTEMS DEVELOPMENT

(YBER 180 II Assembler ERS

8.0 (YHER 18.0 ASSfMBlER SYMBOLIC IOU INSTRUCTIONS
8.5.8.4 ACN. DCN - ACTIVATE/DEACTIVATE 110 Channels

8-43

86/10/17
Rev: F

c) Terminates 110 operations on channel c by setting the
channe 1 i nact i ve. I f the channel is i nact i ve. the
instruction will wait for the channel to become active
before executing.

oeN - (Format = fsc Op Code = 00750c Size = 16 bit)

+----------+----------+-------------------------
Ilabel 'operation largument
+----------+----------+-------------------------I DeN Ie

d) Terminates 1/0 operations on channel c by setting the
channel inactive. The instruction will execute regardless
of the active/inactive status of the channel.

DeN - (Format = fsc Op Code = 00751c Size = 16 bit)

+----------+----------+-------------------------
l1abel 'operation largument
+----------+----------+-------------------------
t loeN

Note, on both DeN instructions, if they are executed after
an output instruction without waiting for the channel to
become empty, the last channel word transferred may be
lost.

a) Transfers bits 48-63 of CA) as a function code to channel
c. If the channel is active, the instruction will wait for
the channel to become inactive before executing. The
content of A remains unchanged.

FAN - (Format = fsc Op Code = 00160c Size = 16 bit)

+----------+----------+-------------------------
, 1 abe 1 'operation largument
+----------+----------+-------------------------1 FAN I c

CDC - ADVANCED SYSTEMS DEVELOPMENT

eYBER 180 II Assembler ERS

8.0 CVBER 180 ASSEM8LER SYMBOLIC IOU INSTRUCTIONS
8.5.8.5 FAN, FNC - 110 Channel Functions

8-44

86/10/17
Rev: F

b) Transfers bits 48-63 of tA) as a function code to channel
c. If the channel is active. the function is not
transferred and the instruction exits. The content of A
remains unchanged.

FAN - (Format = fsc Op Code = 00761c Size = 16 bit)

+----------+----------+-------------------------
flabel 'operation largument
+----------+----------+-------------------------

I FAN t40(S)+c

c) Transfers m as a function code to channel c. If the
channe 1 is act ive, the "i nstruct ion wi 1 J wai t for the
channel to become inactive before executing.

FNC - (Format = fscm Op Code = 00710cm Size = 32 bit)

+----------+----------+-------------------------
11 abel 'operation largument
+----------+----------+-------------------------

IFNC Im,c

d) Transfers m as a function code to channel c. If the
channel is active, the function is not transferred and the
instruction exits.

FNC - (Format = fscm Op Code: 00111cm Size = 32 bit)

+----------+----------+-------------------------11 abe 'J 'operation largument
+----------+----------+-------------------------

,FNC Im,40(8)+c

Note, if a 12-bit external interface is used on the channel
bits 48-51 of the function code will not be transferred and
are lost. If an 8-bit interface is used, bits 48-55 of the
function code m are not transmitted and are lost.

• • •• • • •

8.5.9 OTHER IOU INSTRUCTIONS

CDC - ADVANCED SYSTEMS DEVELOPMENT

crBER 180 II Assembler ERS

8-45

86/10/11
Rev: F

--8.0 CVBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.9.1 EXN, HXN, MAN - EXCHANGE JUMP Instructions

These instructions provide for IOU programs to control the
execution of the CPU in CVBER 170 state.

Note, the d-field can be in the range of 0-1. The value of
the d-field specifies which processor (CPU) the exchange jump
wi 11 inter rupt.

a) Perform an unconditional exchange jump at the address
specified by (R) + CAl. This exchange package FWA address
is verified against the OS Bounds Register and if the jump
is into a prohibited region, the exchange will not occur.

EXN - (Format = fd Op Code = 002601 Size = 16 bit)

+----------+----------+-------------------------
I label 'operation 'argument
+----------+----------+-------------------------

IEXN Id

b) Performs a conditional exchange jump at the address
specified by (R) + (Al. The exchange package FWA is
verified against the OS Bounds Register and if the Jump is
in a prohibited region the exchange will· not occur.
Otherwise, if the monitor flag is clear, the exchange jump
is performed and the monitor flag is set. If the flag is
set, no exchange jump occurs and the instruction becomes a
PASS instruction.

MXN - (Format = fd Op Code = 002611 Size = 16 bit)

+----------+----------+-------------------------
, labe 1 loperation largument
+----------+----------+-------------------------

IMXN Id

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.9.1 EXN, "IN, HAN - EXCHANGE JUMP Instructions

8-46

86110/1"7
Rev: F

--
c) Performs a conditi6nal exchange jump at the address

specified by the CPU Moni tor Address (tl'tA) register. If the
monitor f1.ag is clear, the exchange jump is performed and
the flag is set. If the flag is set, the exchange Jump is
not performed and the instruction becomes a PASS
instruction.

MAN - (Format = fd Op Code = 00262X Size = 16 bit)

+----------+----------+-------------------------
Ilabe 1 loperation largument
+----------+----------+-------------------------

IMAN Id

a) The PASS instructions performs no operation.

PSN - (Format = fd Op Code = 002400 Size = 16 bit)

Ilabel loperation largument
+----------+----------+-------------------------

I PSN 100

Note, if the long/short form of an instruction is used and
there's no corresponding instruction defined, the
instruction acts as a PASS instruction. An example is LDN,
opcode = 0014. If 1014, which would be the long form of
the instruction and undefined, is used. the 1014 opcode
acts as a PASS instruction.

a) Executes as a P.ASSinstruction but a1·Jows sensing of its
execution by external monitoring equipment through a test
point.

KPT - (Format = fd Op Code = 0021d Size = 16 bit)

+----------+----------+-------------------------
flabel 'operation 1argument
+----------+----------+-------------------------

IKPT

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.9.4 INPN - INTERRUPT PROCESSOR

8-47

86.110/.11
Rev: F

--

a) Transmits an interrupt signal for the CPU on memory
port d. This interrupt signal causes the External
Interrupt bit to be set in the CPU Monitor Condition
Register. A serialization function is performed before
this instruction is executed. That is. execution is
delayed until all memory accesses on the part of the
interrupted processor are complete.

INPN - (Format = fd Op Code = l026d Size = 16 bit)

+----------+----------+-------------------------
'label loperation largument
+----------+----------+-------------------------

f INPN I d

Al
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYaER 180 II Assembler ERS
86110/17

Rev: F

APPENDIX A

The Assembl er is ca·' ·led on NOS/VE wi th the command name
"ASSEM8lE· followed by parameters in the System Command
Language format. All Assembler call parameters are optional.
Parameters of the Assembler are!

I INPUT=fi Ie

INPUT specifies the file containing source statements
that are to be assembled. If this parameter is omitted
the value $INPUT will be used.

8 BINARY_OBJECT=file

BINARY_OBJECT specifies the file to receive the object
text (binary) that is generated bu the assembler. If
this parameter is omitted the value lGO will be used.

L tlST=fi le

LIST specifies the file to receive the assembly listing.
If thi~ parameter is omitted the value SLIST will be
used.

E ERROR="file

ERROR specifies the file to receive the listing of
assemb"y errors. If thi s parameter is omitted the value
SERRORS will be used.

LO LIST_OPTIONS=list of A, R, S, NONE

LIST_OPTIONS specifies the content of the li~ting file.
If S is included In the list, the source and generated
code are listed. If A is included, the symbol
attributes listing is included. If R is specified, the
cross-reference is listed. If NONE is specified, only
errors will be listed. The default value is S.

C CHECKS=boolean

CHECKS specifies whether assembly checks are to be
performed or omitted. Assembly checks are used with the

Al
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

APPENDIX A
CALLING THE ASSEMBLER

CPU instruction set to validate that the correct
register type designators (A-reg or X-reg) are used. If
this parameter is omitted a value of TRUE will be used.

STATUS=statu5 variab1e

STATUS specifies a status variable to receive the
command's termination status.

EXAMPLE:

ASSEMBLE I=SOURCE B=8IN l=lISTING LO=(S,A.R) C=TRUE

81
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

APPENDIX 8 - NOTES AND EXAMPLES

To fully understand the Cyber 180 Hardware instructions and
thier parameters, one must first understand that the Cyber 180
machine is designed to be Stack oriented. Software written
for the Cyber 180 will be written in a Stack oriented higher
level language (CY8Il). However there will be some code that
will have to be written in Assembly language (ie Hardware
diagnostics). The following sections contain notes that will
hopefully aid in writing Assembly language programs.

REGISTER USAGE

When writing in Assembly language. it is important to
understand how the hardware works,especiaJly register usage.
The contents of the following registers are assumed to be as
described by the hardware, and should not be overwritten.

AO - Dynamic Space Pointer.
Al - Current Stack Frame Pointer.
A2 - Previous Save Area.
A3 - 8inding Section Pointer.
A4 - Argument Pointer.

GENERAL NOTES

In addition to understanding the hardware. it is also
important to understand some things about the Assembler.

SECTIONS-SEGMENTS The relationship between the Assembler
concept of Sections and the Hardware concept of Segments is
similar. but differs in that two or more sections may be
loaded in the same Hardware Segment when they have the same
access permissions.

RELOCATABllITY OF CODE Even though code in sections is
assembled as absolute, the sections can be loaded as
relocatable, and are accessed vIa pointers.

MONOLITH PROGRAMS When mixing code and data in the same
section, it is important to use the ALIGN command when
resuming to generate code. This will ensure that the code is
generated on the proper boundary.

82
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS
86/10/11

Rev: F

APPENDIX 8 - NOTES AND EXAMPLES
SAMPLE PROGRAM

The following is a sample program available in the SES
catalog. It is intended to aid in the understanding of the
eTBER 180 CPU Assembler and the CYBER 180 hardware.

test

•••

ident
defentl

.sample program

.defines the entry point

• This program will pick up an entry from the literal section,
• and makes a copy of it in the working section. The program
• is structured to use the default sections established by
• the .Assembler. and is executed using the C180 defaults.
• ••

space
use

•
dum bss

.(11 i go
temp bssz

space
use

•

3
working

1
0,8
20(16)
3
work'i og

.The working section will get loaded ia
segment with read+write permissions.

.Put here to show effect of align.

.Ensures word boundary.

.20(16) bytes{4 words) of temp storage

.The WORKINC section will be loaded
into a segment with read permission.

align 0,8 .Word boundary.
msg vfd,8*8 c'EXAMPlE f .Test data to be moved

•
•
•
•
mS9_pt
temp_pt
•
•
•
•
•

•

space 3
use binding

address p,msg
address p,temp

space 3
use code

space
proc

1

count pname

.The Binding section is used by the
hardware to store pointers which
facilitate the binding of segments.
This section will be loaded into
a segment with read+bind permissions.

.Creates a pointer to MSG.

.Creates a pointer to TEMP.
Pointers are set up with segment numbr
set to FFF, LINKER fills in this fiel~
The location field will show an offsef
word boundary + 2, because the 6 by teA
is right Justified in the 8 byte fiel.

.The Code section will be loaded into
a segment with read+execute permissio.

.This proc will count the number of
• by·tes moved.

num~move set
pend
space

num_move+1c:(f:{2,O» .Add the number of bytes
.end of procedure

2

8.3
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS
86'10/17

Rev: F

APPENDIX 8 - NOTES AND EXAMPLES
SAMPLE PROGRAM

en tl al ign 0,,8 .Entry point on a word boundary
.Initialize byte counter
.Include XO-X3 and AO-A3 when

num_move set 0
ente xO.33(16)

• saving the environment.
cal1rel move_msg,a3.a4 .move a copy of msg to temp

•
return .End execution.

•
• Move_msg will move data to working storage
•
move_ms9 align

la
0,8 .Ensureword boundary.

•

Ix.
1a
sx
count
return

end

a5,a3,ms9_pt.loadinto A5 the pointer to MSG.
xl,aS,O .load data into Xl.
a5,a3,temp_pt .AS = pointer to storage area.
x1,a5,O .Store MSG.
msg .Update HUM_HOVE.

.Return to caller

entl .Ent! is transfer label

SAMPLE EXECUTION

The sample program in the previous section was executed as
shown below:

To be supplied later.

Cl
CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS
86/10/11

Rev: F

APPENDIX C - RESERVED WORDS

The following words or categories have special meaning .and
can not be redefined in the user's program.

Register identifiers fAO-AF, XO-XF)

Section identifiers (binding, code, stack, working'

Section
Extcom)

types {Code, Binding, Working, Common, Extwork,

Attribute identifiers (8ind, Execute, Read, Write)

Machine identifiers (C180CPU, C18010U)

All pseudo and machine mnemonics.

All symbols starting with the pound-sign character.

Any symbol containing a colon.

Special internal symbols(PADA, PADS, SECT, ASECT, OSEeT)

01
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYDER 180 II Assembler ERS
86/10/.1'7

Rev: F

APPENDIX 0 - ERROR MESSAGES

Error messages may appear either on the listing, and/or on
the dayfile. depending on when the error is detected.

ALIAS NAME INVALID OR DUPLICATE

511ibllEltAHCE
The alias name has been defined as both an internal and
external entry point. (ie. appearing on both a OEF or
DEFG instruction and a REF instruction).

AtII1JM
An intern.alentry point must be unique. However, two
external entry points can be aliased to the same
1 i nkage symho 1.

ALIASEO SYMBOL MUST 8E REF OR DfF SYMBOL

SIGNIEltAHtf
The label fie' d of an al i as statement has not been
defined io a OEF, DEFG, or REF pseudo instruction.

AtIIOtt
Define the entry point to be aliased in a OEF, OEFG, or
REF instruction. Note for a DfF or OEFG symbol, these
values must be further defined as a re"'ocatab1e symbol
(symbol category = 6).

ANAME SYMBOL REQUIRED FOR ATTRIBUTES REFERENCING

SlGMIEICAtjtE
Encountered an ATRI8 statement where the user defined
attribute name was not previously defined in an ANAME
statement.

AtIIOrl
Define attribute name using the ANAME pseudo
instruction.

A-REG DESIGNATOR REQUIRED

02
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/17

Rev: F

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

.Sl!i.tllEltAt:ltE
An A register is required in instruction.

AtIIOM
Check register specifications for instruction in ERS.

ARGUMENT SUBFIElD MUST BE SYMBOLIC NAME

Sl!it:llEltAtitf
The argument field of the following pseudo instructions
must be a symbol and cannot be an expression: ADDRESS,
ALIAS, END. ERROR. FLAG, LOCAL, OPEN, REF, SECTION,
SKIPTO, and TITLE. (An exception is the address type R
on the ADDRESS instruction.)

ACIID~
Check the ERS for definition of the argument field.
Many of these instructions have pre-defined values for
use in the argument field.

BOP DESCRIPTOR ERROR

.sl!i~lEl'-A~'E
There's an error in either the source or destination
data descriptor within a SOP instruction.

ACIIDN
Check register specifications and descriptor
limitations for instruction in ERS.

BINDING ATTRIBUTE MUST BE BINOABlE OR NON8INDA8lE

.51~NlflCAMtf
The 'bind' type in the argument field of the MACHINE
pseudo instruction is not one of the pre-defined values
BINOABlE or NONBINOABlE.

ACI~fJri
Check value in argument field of the MACHINE pseudo
ins true t i on •

CHARACTER STRING TOO LONG

Sl!iHIEltA~tE
A character string cannot exceed one line, therefore is
limited to 87 characters.

ACIIDti
Check for missing quote mark or shorten current string.

ll3
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS
66/10/17

,Rev: F

APPENDIX 0 - ERROR MESSAGES
LISTING ERRORS

CMD STATEMENT ILLEGAL IN PROCEDURE DEFINITION

SlGMIEICAMCE
A CHO instruction is equivalent to a one statement
procedure definition. Nested procedures are not
allowed. therefore a CHO statement cannot be within a
procedure definition.

ACIIO~
Take the CHO statement out of the procedure. Or
redefine the CMO sta·tementas :a sep,ar ate procedure and
replace the CHO with a 'procedure call'.

DATA GENERATION IN STACK OR BINDING SECTION

.!iL!lt!lEl.cANCE
Data cannot be initialized in the STACK or BINDING
sections at assembly time. (An exception is the
binding section in which pointers can be initialized
with the ADDRESS pseudo instruction.)

ACIIO~
Check the last USE statement which was encountered.

DISPLACEMENT VALUE IS OUT-Of-RANGE

SlGMlfl.tAtiCE
The displacement value on a machine instruction
overflows the length of the field designated by the
instruction.

AC.IIDtl
Check the ERS for the calculation of the address
displacement to make sure the value can be represented
by the number of bits allotted for the displacement
(ie. for a 16 bit Q-field with sign extension the
value must be in the range: -7fff(16) < value <
"1fff(16)).

DIVISION BY ZERO ATTEMPTEO

51G~lEltAtltf
While evaluating an expression. an attempt to divide by
zero was made.

AtIIOt4
Check values in the divisor portion.

ERROR STATEMENT = 'character string'

0·4
CDC - ADVANCED SYSTEMS DEVELOPMENT

eYHER 180 II Assembler ERS
86.110117

Rev: F

APPENQIX 0 - ERROR MESSAGES
LISTING ERRORS

SIGHIEl'AHCE
The expression in the ERROR statement evaluated to true
causing the string or symbol in the argument field to
be printed in the object listing_ Control is
transferred conditionally on the presence of a label in
the operation 5ubfteld.

ACIION
Check ERS for rules concerning the ERROR statement and
the transfer of control.

EXPRESSION EVALUATION ERROR

.slGtilEl'A~tE
Whi Ie processing an expression, an arithmetic overflow
or underflow has occurred. The fO'Slowing conditions
will cause this error:

exceeding the following limits in integer
arithmetic

32 bit integer - -2(31} (= M (= 2(31) - 1
64 bit integer - -2(63) (= M (= 2(63) - 1

- exponent overflow and underflow are detected for
all single precision, but only for the leftmost part
of double precision.

floating point absolute value - 5.2 * 10*01232
- for general BOP instructions with data descriptors.
the source operand fields will be checked for
overflow but the destination operand will not.
- in BOP floating point Instructions, if the capacity
of designated fields are exceeded such that
significant digits are lost.

- an exception is the CALDF and EDIT instructions, no
overflow conditions detected for these.

At.IIOt:l
Check values used in the expression evaluation.

FIELD REFERENCE ERROR

SlliHIEltAHCE
This error occured because some field in the source
statement requires a symbolic name but an illegal field
reference (ie. F: function) or list reference (ie.
symbollX1) was encountered. The value that either of
these functions represent is not a symbolic name.

AtIIO~
Check the fields in the source statement that require
symbolic names (ie. label fields. operation subfields
as in the SKIPTO statement, etc.). One of the values

D5
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/17

Rev: F

APPENDIX 0 - ERROR MESSAGES
LISTING ERRORS

being referenced is not defined to be a symbolic name.

FIRST STATEMENT IS NOT {DENT

SlG!llfltA~tf
The first source statement encountered bv the assembler
was not an IDENT instruction. The only permissible
source lines before the IDENT are comments. This is
also true for multiple assembly modules. the only
allowable source lines between the END and the IOENT
are comments.

AtIIIJN
Delete those statements before the IDENT instruction.

FLAG STATEMENT ERROR

SlGr11flCAt:ltE
The FLAG statement was processed which conditionally
sets an error flag. The two permi ssi hie error types
are pre-defined as FATAL and WARNING.

A~IID~
Processing of this statement does not affect other
code.

GENERATED CODE IS NOT "BINOABLEu

5.1GHIE1CAtlt.E
The relocation information generated with a eHD, VFO,
INT. or DINT statement does not correspond to the
pre-defined values of the ReT or ADT fields of the
Relbcation attribute. Both the Relocation Container
Type and the Address Displacement Type are pre-defined
and the relocation information must agree with these
attribute values.

ACIIOt-l
Check values on these data generating statements so as
to make sure that a 1 J re 1 oca ti on i nformat ion h·as the
correctvaJues. Ie. one of those that is pre-defined.

ILLEGAL ATTRI8UTE REFERENCE

SlGHIEltAtfCf
When evaluating the argument of an attribute. either
defined in an ANAME statement or an internal attribute
(ie •• REGTYP). an illegal argument was encountered or

06
CDC - ADVANCED SYSTEMS DEVELOPMENT

CyoER 180 II Assembler ERS
86.110/11

Rev: F

APPENDIX 0 - ERROR MESSAGES
lISTING ERRORS

the argument was missing. This can also occur if a
register specification in a symbolic machine
instruction is incorrect.

AtIIOt:l
Check argument field of an attribute reference or check
the ERS for correct register specifications for mach.ine
instr uct ions.

ILLEGAL CONTINUATION

51.GhtlE.ltAH£f
The card following a continuation card contained a
non-blank character in column 1. This could also be a
non-graphic character.

ACIIO~ .
Change the card following the continuation character to
contain a blank in column 1.

ILLEGAL EXPRESSION

SlGHIEltAHCE
While evaluating an expression an illegal reference has
been encountered by the assembler. This can be an
element number reference, an attribute reference. an
intrinsic or user-defined function reference.

ACIIDt:l
Check the fo11owing conditions:

element number reference using parenthesis
rather than brackets or trying to access a list
value of a symbol that is not aSET/EQU symbol,
- attribute reference using parenthesis rather
than brackets or having more than one argument,

intrinsic or user-defined function reference -
using brackets rather than parenthesis or having no
argument or a null argument field.

ILLEGAL OR NON-GRAPHIC CHARACTER DETECTED

SlG~lEltAHtE
An illegal or non-graphic character has been detected.
Note that a single quote. which is not preceded by a
symbolic character, will cause this error.

A~IIDr1
The assembler accepts any graphic ASCII character in a
comment or character string. Check the ERS under
character set for the ASCII subset which the assembler

07
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/17

Rev: F

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

accepts as input.

ILLEGAL STATEMENT IN FUNCTION EXPANSION

SlGrllElCANtE
A function may not generate code or change location
counters, i fi tis called form a statement which
itself, generates code. This condition may occur in
any of the following st·atements: ALIGN, ass, assz, INT,
OINT, FLOAT, OFlOAT, POEC, VFO ora CMDca 11 statement.

ACIIOH
Change the function or the source statement from which
it is called.

INSUFFICIENT NUMBER OF ARGUMENTS

5IG~lEltAMCE
In either a tHO or VFD statement, the number of
elements in the value list is less than the number of
elements in the length list.

ACIIDti
Check the elements in the value list. Note that if the
number of elements in the value list exceeds the number
of elements in the length list no diagnostic occurs and
any extra arguments are ignored.

INTEGER OR REAL NUMBER CONVERSION ERROR

SIGHIEI.cAbltE
The f10ating point number in the argument field of a
FLOAT or OFlOAT pseudo instruction is an infinite or
indefinite value.

AtIIO~
limits on minimum and maximum values and exponents can
be found in the CV8ER 180 math library documents.

INVALID ELEMENT NUMBER IDENTIFIER

SlGNIEltAr:ltf
The element number being referenced has a value less
than O.

ACIIDt1
Check expression within the brackets which must be
greater than or equal to O.

08
CDC - ADVANCED SYSTEMS DEVELOPMENT

(YBER 180 II Assembler ERS
86110/11

Rev: F

APPENDIX 0 - ERROR MESSAGES
LISTING ERRORS
--

INVALID LOCATION COUNTER DESIGNATOR

.slG~lEltAH'E
The value X in $(X) did not evaluate to 0 or 1.

ACIIDt:f
The value X can be an expression but this expression
must evaluate to 0 for current byte offset or 1 for
current bit offset. If no value is given the function
defaults to o.

INVALID MACHINE TYPE

SlliHlfltAtjtE
The IDENT pseudo instruction is the first statement
recognized by the assembler and it pre-defines the
processor type due to the argument field. If this
value does not correspond with the type on the MACHINE
pseudo instruction this error will be produced.
Otherwise, the type in the argument field is not one of
the following pre-defined values, C180CPU or C18010U.

1C1101:l
Check the argument field of the IOENT andMACH.INE
pseudo instructions to insure they correspond to the
same processor type.

INVALID SECTION ATTRIBUTES

SI.GtjlElt A~'.E
The attributes defined on a SECTION statement are
either not in the set of pre-defined attributes or
there's an illegal expression in the definition of
these segment access attributes.

AtIID~
The pre-defined segment access attributes are: READ.
WRITE, EXECUTE and BIND and the only operator permitted
is the plus (+) operator.

INVALID SECTION TYPE

.slii.bllEltA~tf
The section type used in the SECTION statement was not
in the set of pre-defined types. Or the section type
was CODE, BINDING or STACK and these are a1ready
defined by the assembler and cannot be redefined by the
use,..

ACIlON

09
CDC - ADVANCED SYSTEMS DEVELOPMENT

(YBER 180 II Assembler ERS
86/10/11

Rev: F

APPENDIX D - ERROR MESSAGES
LISTING ERRORS
--

The section types available to the user are: WORKING.
COMMON. EXTWORK and ElreOM.

INVALID SYMBOL ERROR

SIGblIEICAbltE
The symbol encountered was illegal because of one of
the following conditions:

A1:IIOtl

- the first character of the symbol does not begin
with one of the legal alphabetic characters defined
for the assembler.
- there's a colon(:) somewhere in the symbol,
- the symbo li s in the Jist of ·theassemb ler- s
reserved words (see Appendix C of the ERS).

Check symbol for illegal character or that it appears
on the reserved word list.

INVALID DTYPI- SUBFIELO IN ADDRESS STATEMENT

SlGr:.lElCA~'f
The address type in the argument field of the ADDRESS
instruction is not one of the pre-defined types.

AtIIDti
The address types for the ADDRESS instruction are
defined as: P, C, CI, eE, or R.

LABEL NOT SYMBOLIC NAME

.s1~~lEltAHtf
The label field of one of the following statements does
not contain a legal symbol: ALIAS, ANAHE. ATRIB, eMO,
DO, WHILE, DEND, IOENT, SET or EQU.

ACI.lObi
Check the label field on the source statement.

MACHINE STATEMENT MUST PRECEDE CODE GENERATION

SlfitiIEltAt:lt.E
The MACHINE pseudo instruction did not precede a data
generating statement.

!tIIOM
The MACHINE pseudo instruction must appear before any
statment which generates code. Also there can be only
one MACHINE pseudo instruction between an [DENT and an

010
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYSER 180 II Assembler ERS
86/10/17

Rev: F

APPENDIX 0 - ERROR MESSAGES
II STING ERRORS

END assembly unit.

MAXIMUM SEGMENT OFFSET EXCEEDED

SlfiHIEltAtitE
Code has been generated in a sectionthatoverflowstne
maximum offset allowed by the operation system. This
value is OFFFFFFFF(16).

At.IIDH
Check the se~tion that currently is being used for code
generation.

MISSING CONT STATEMENT

SllitllfltAtitf
While processing a procedure call or a DOIWHIlE
sequence of statements a SKIPTO was encountered with a
name in it's argument field that did not appear before
a PEND or OEND statement. This also occurs if the
label on the ERROR statement does not appear.

AtIIDt!
Check symbol names in argument fie ld of SKIPTO
statement.

HISSING DEND STATEMENT

.slGtilElCA~'E
There's no matching OEND statement for a 00 directive.
An END or a PEND statement was encountered first.

A'IIOM
Include the OEND statement tn assembly module.

HISSING OPERATION FIELD

SlGf::IlElCAHtE
There's a value in the label field of the source
statement which has nothing following it.

AtIIDt!I
A null operation field is illegal. Check source
s·tatement for mi ssing value.

MISSING PEND STATEMENT

SlG~lEltAMtE

D11
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/1"1

Rev: F

APPENDIX 0 - ERROR MESSAGES
LISTING ERRORS

A PRDC directive was encountered but no statement
between this and the END statement contained PENO in
the operation field.

AtIIOt;l
Include the PEND statement in the assembly module.

NESTED PROCEOURE DEFINITION

SIG.HIEICAbltE
Encountered a PROC psuedo instruction between· a
PROC-PEND pair.

AtIIQf;l
Nested procedures are not allowed by the assembler. A
PROC instruction mus·t be followed by a PENO instruction
before another PROC instruction can be processed.

OFFSET ARGUMENT NOT ON REQUIRED BOUNOARY

.sIG~lEl.tAtltE
Whi leprocessing one of the offset functions (ie.
#WOFF, #HOFF, #POFF~ or #80FF) the address of the
argument does not fallon the appropriate boundary (Ie.
for ffWOFF function the argument must be on a word
boundary) •

AClIOt!
Check the address of the function argument. Sue the
ALIGN statement before the argument definition to
assure the correct boundary.

OPERAND MUST 8E A REAL NUMBER

51GbliEICAbitE
An operand in the argument field of a FLOAT or OFlOAT
pseudo instruction is not a legal floating point
number.

AC.IIOtl
Check the operands in argument field for 1egal floating
point numbers. Note, all floating point values must be
decimal values.

OPERAND TYPE INVALID

SI.GtllEltAtitE
The following pseudo instructions cause this error-if
the argument fi e ld is incorrect:

012
CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS
86/10/11

Rev: F

APPENDIX 0 - ERROR MESSAGES
LISTING ERRORS

AtIIQM

- ERROR - argument must be a legal symbol or ascii
string,

FLAG - argument field must be pre-defined symbols
FATAL or WARNING,
- INFOM5G - if there is an argument. it must be the
symbol lISTON,

POEt - the .argument must be an asci i string with
only the characters 0 - 9 or '+'/'-'. The '+'1'-'
must be the last character in the string.

Check the argument field for illegal value.

OPERATION SUBFIElO NOT A SYMBOLIC NAME

SlGt:llEltAHtE
One of the following two conditions has occurred:

A!:IIDM

the operation fie1d does not have a legal symbol
name in it.
- or one of the following pseudo instructions does
not have a legal symbol name in it's argument field:
CLOSE, OEF, OEFG, lOCAL, OPEN or REF.

Check the operation field or the argument field of the
listed pseudo instructions.

PNAHE/FNAHE STATEMENT HISSING

SI.G~lfltANtf
There was no PNAME or FNAME pseudo instruction between
a PROC/PEND pair. Or the PNAHE/FNAME instruction was
not the ins'truction immediately following the PROC
instruction.

ACIIOt1
The PNAME/FNAME statements must be the first
instruction after the PROt statement and there must be
at least one PNAME/FNAME statement In a procedure
defintion.

PNAME/FNAME STATEMENT OUT-OF-SEQUENCE

.sl.GrlIEl.cA~Cf
The PNAME/FNAME statement is not immediately following
a PROC, FNAME, or another PNAME statement.

AtIIQtl
The PNAME/FNAME pseudo instructions are part of the
procedure's heading along with the PROC statement. No

013
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVoER 180 II Assembler ERS
86110/11

Rev: F

APPENDIX 0 - ERROR MESSAGES
lISTING ERRORS

other instruction can appear between a PROC and
PNAME/FNAHE statement.

RElOCATABlE SYMBOL REQUIRED (CATEGORY = 6)

SIG.tilE~CAt!tf
An ADDRESS, OEF or END pseudo instruction has a
non-re locatab Ie symbo 1 (Ie. symbo 1 has a symbol
category other than 6) in it·s argument field.

AtIIDtj
A relocatable term represents a location of some
assembled code. These are defined in the label field
of a data generating statement such as VFD. INT, DINT.
FLOAT, OFLOAT, POEC, 8S5, BSSZ. ADDRESS, ORG, ALIGN or
a call to a CMD instruction. The labels of the
symbolic machine instructions will also have a symbol
category equal to 6.

REQUIRED OPERAND MISSING

'sl!iHlfltANtf
The argument field is blank on a pseudo instruction
that is required to have an operand.

AtIIOti
The following pseudo instructions require a value to be
present in the argument field: ADDRESS. ALIAS. BSS,
BSSI, CLOSE, OEF, OEFG, FLAG, LOCAL, INT, DINT, FLOAT,
OFlOAT, OPEN, ORG, POEC, POS, REF, SECTION, SKIPTO,
TITLE, USE, VFO, and a call to a tHO statement.

SECTION ALIAS NAME INVALID

SlGHIEltAbAtf
The 'cfd' field on the SECTION statement is either not
a symbol or has been previously used as a 'cid'.

ACIIDN
The 'cid' field is optional but if it's not used it
must contain a legal null subfield (ie. two commas).
If the symbol has already been used, redefine one of
the fields.

SPECIfIED SECTION SIZE EXCEEDED

Sl.Gt:llElCA~'E
The amount of code generated in the section exceeded

014
CDC - ADVANCED SYSTEMS DEVELOPMENT

CyoER 180 II Assembler ERS
86/10/11

Rev: F

APPENDIX D - ERROR MESSAGES
II STING ERRORS

the amount given by the 'maxsize f field on the SECTION
statement.

ACIIDf!.J
Check value for 'maxsize' field on the SECTION
statement and increase "this value as necess.ary. The
maximum segment length is OFFFFFFFf(16).

STATEMENT ILLEGAL IN IOU MODULE

'sl.Gt:JIEltAMCf
The ADDRESS, ALIAS. OfF. OfFG, INFOMSG, POEC, DINT,
FLOAT. OFlOAT, REF, SECTION. and USE pseudo
instructions are illegal in an IOU assembly module.

AC,IIDbJ
Delete these statemen.ts from assembly module.

STAlEMENT IS VALlO ONLY WITHIN A PROCEDURE

.sl!i~IEICAt:ltf
The LOCAL pseudo instruction can only be used within a
procedure definition (ie. between a PROt/PEND pair).

At-IIOti
The LOCAL pseudo instruction is used to define symbols
local to a procedure. A PEND or an END statement
terminates the symbols.

STATEMENT LABEL IS NOT UNIQUE

SlG~lfl.CA~tf
The symbol encountered in the label field has already
been defined. Note that this can be a directive or
procedure/function name.

AtIIDt!
Redefine one of the symbols and change the references
to the symbol. Note if a symbol appears in the label
field of a pseudo instruction that does not require a
label, the symbol is not considered defined.

STATEMENT LABEL REQUIRED

Sl!itilEltAt!!tf
The label field of the source statement is blank.

ACIIQ~
The following pseudo instructions require a 1 abe "J
field: ANAME, ATRIB, tMD, SET, EQU, PNAHE, fNAME, and

015
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

SECTION.

SYMBOL CANNOT BEA lOCAL OR OPENED SYMBOL

.5.lG.HIElt.Atitf
The symbol in the argument field of a REF, OEf, or DEFG
pseudo instruction is an OPENed, LOCAL or implied local
symbol that has not been closed.

ACIIDN
The symbol in the argument field of either a DEF. DEFG,
or REF statement must be a global symbol and cannot
have appeared in a lOCAL or OPEN instruction. It a1so
cannot be an implied local symbol.

SYM80l MUST BE DECLARED REF OR Off

SlG~lEltANtf
The symbol in the argument field of the END pseudo
instruction has not been declared as an entry point.

AtIIDl!4
If the argument field contains a transfer address, the
symbol must be declared as an entry polnt by appearing
in either a OEF, OEFG, or REF pseudo instruction in the
same assembly module.

SYNTAX ERROR

51G.HIEl'AHCE
The following conditions will cause this error:

AtIIQ~

an illegal character string such as missing or
misplaced quote marks,
- an illegal number such as a digit larger than the
base allows, a base value other than binary. octal,
decimal, or hexadecimal, an illegal character or a
missing parenthesis,

an illegal floating point number which includes
any base designator (ie. all floating point numbers
are decimal),
- expressions with mismatched parenthesis or illegal
or missing operands.

Check the ERS for the syntax of se1f-defining terms
(ie. number values or character strings). Or check
the expression in the source statement for illegal
operands or missing operands. Note tha a blank or
comma terminates an expression.

016
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVOER 180 II Assembler ERS
86110/11

Rev: F

APPENDIX 0 - ERROR MESSAGES
LISTING ERRORS

TOO MANY ARGUMENTS

51jif!jlflCAritE
The a.rgument field of the ALIAS s·tatementcontains more
than onesymbo 1.

AtIIDtl
The ALIAS pseudo instruction allows only one symbo1 in
the argument field fie. there can only be one linkage
symbol aliased to an internal entry point).

TOO MA~.fY CHARACTERS IN SYMBOLIC NAME

.sl!i~lEl.C.A~tE
The symbol being processed has more than 31 characters
in it.

AtIIDH
The maximum symbol length is 31 characters, redefine
symbol to be less than 31 characters.

TOO MANY STATEMENT LABELS

SltlbJIElt.At:lCE
The instruction encountered can have only one symbol in
the label field.

AtIIDN
If the instruction is one of the following statements.
only one symbol in the label field is allowed: ALIAS,
IOENT, PN.AMEt FNAME or a code generati 09 statement
which has the symbol category 6 (this includes the
symbolic machine instructions).

"TRALA8~L" FIELD INVALID

SlGt:JlflCAtltf
In an IOU module. the ftralabel' field of the END
pseudo instruction is not blank.

AtIIOM
The ftralabel' field of the END instruction is invalid
in an IOU module and must be blank.

TRUNCATION ERROR

SlGHIEltArltf
The value that is being put into a field specified by a
tHD or VFO statement must be truncated to fit.

017
CDC - ADVANCED SYSTEMS DEVELOPMENT

crHER 180 II Assembler ERS
86110/11

Rev: F

APPENDIX 0 - ERROR MESSAGES
LISTING ERRORS
--

AtI.lDtI
This message is turned on by the value 1 in the
argument field of the TRUNe pseudo instruction. If no
TRUNe instruction has been processed in the assembly
module the value defaults to zero. Check the TRUNC
statement in the ERS to see what constitutes loss of
s i go i fi cance.

UNDEFINED OPERATION SU8FIELD

SI!i~lfltAtJtf
The symbol in the operation field is not a pseudo
instruction, symbolic machine instruction. an intrinsic
or user-defined function (ie. appeared on a FNAME
statement), a procedure definition (ie. appeared on a
PNAME statement) or appeared on a CMD statement.

ACIIDM
Check the
symbol that
function or

symbol in the operation field for a valid
is either a pre-defined instruction or
is a user-defined procedure or function.

UNDEFINED SYMBOLIC NAME Usymbolic_name"

.sl1i~lEltAbltE
This error occurs when trying to evaluate an expression
or function where one of the operands or argument is
undefined. It also occurs when a REF, OfF or OffG
symbol has not appeared as a label for a code
generating statement.

A.tII0~
Symbol defintion occurs when a symbol appears in the
label field ofa statement (CPU, IOU or pseudo
instruction) unless the label field is ignored or used
for some other purpose.

VALUE OUT-OF-RANGE

SlfitllEltAMtE
The following conditions will cause this error:

- ANAME - argument field < 0
- BSSlBSSI - argument field < 0
- CMD/VFO - value in the length field < 0
- SET/EQU symbol - element number < 0
- LIST - argument field is incorrect value (check
ERS for lega) value
- INT/OINT - argument field must be in the following
range:

018
CDC - ADVANCED SYSTEMS DEVELOPMENT

CVHER 180 II Assembler ERS
86/10.111

Rev: F

APPENDIX D - ERROR MESSAGES
lISTING ERRORS
--

!!:IlfJrl

CPU - -1FFFfFFF(16) < H < lFFFFFFF(16)
IOU - -lFFF(16) < M < 7FFF(16)

- ORC - CPU - argument field < 0 or > OFFFFFFFf(16)
- IOU - argument field < load_address ("from
IOENT statement) or) OFFF(16)

- ~O/WHILE - argument field < 0
- SECTION - the offset. alignment, or maxsile values
are < 0 or) OFFFFFFFF(16)
- SKIPTO - F:(l.ll < 0
- PAGE - argument field < 0
- TRUNe - a~gument fie1d does not equal 0 or 1.

Check ERS for each pseudo instruction for the legal
values.

X-REGISTER DESIGNATOR

.slGNIEl.cA~tf
An X-register is required in thei nstruc t i on.

A'IIOM
Check register specifications for instruction in ERS.

E1
CDC - ADVANCED SYSTEMS DEVELOPMENT

86/10/17
CYHER 180 II Assembler ERS Rev: F

APPENDIX E

tYBEE_lfHl_CeU_SYMB.DLlt_t1A.c1il.~E_l~SI&UCIlfJ~_SUMMARI

REf :lit INSTRUCTION OPERANOS IOPCODE
-----+---------------------+---------------------+---------

0,01 I LBVTS,s I Xk,AJ,Xi,O 100-)01
009 I LBYT,XO I Xk,Aj,Xi,O I A4
013 1 L6YTP,J I Xk,Q* I 86
005 I LXI I Xk ,A j, Xi,' abel*' I A2
006 I LX I Xk,Aj,label* , 82
014 I LBIT I Xk,Aj,O,XO I 88
020 I lMUlT I Xk,AJ,Q , 80
016 t LAI I Ak,AJ,Xi ,0 1 AO
01'7 f LA J Ak,AJ,Q 1 84

I I 1
003 , SBYTS·,s I .Xk,Aj, Xi ,0 lO8-)OF
011 I SBYT,XO I Xk,Aj,Xi,O I A5
001 , SXI I Xk,AJ,Xi,label* I A3
008 I SX I X k , A J , 1 abe 1 * I 83
015 I S8IT t Xk,Aj,Q,XO I 89
021 I SMULT I Xk,Aj,Q I 81
018 J SAl I Ak.,AJ,Xi,O I A1
019 I SA I Ak,AJ,Q I 85

I I I
022 I ADOX I Xk,Xj I 24
027 I AOOR I Xk,Xj I 20
143 f .ADOXQ J Xk,Xj,Q I 88
028 I AOORQ I Xk,XJ,Q , SA
166 I INCX , Xk,J I 1.0
029 I INCR f Xk, j I 28

I I I
023 , SUBX 1 Xk,Xj , 25
030 1 SUBR I Xk,Xj t 21
167 I OECX J Xk,J 1 11
031 , DEeR I Xk, j , 29

t I I
024 f MULX I Xk,Xj 1 26
032 J MUlR I Xk,Xj I 22
1.68 I MUlXQ I Xk,XJ,Q , 82
033 I MULRQ , Xk,XJ.Q I ae

CDC - ADVANCED SYSTEMS DEVELOPMENT

CV8ER 180 II Assembler ERS

APPENDIX E
CVDER 180 CPU SYMBOLIC MACHINE INSTRUCTION SUMMARY

REF #1 INSTRUCTION OPERANOS IOPCOOE

E2

86/10/17
Rev: F

-----+---------------------+---------------------+---------
025 , OIVX I Xk,Xj I 27
0.34 t OIVR J Xk,X,J I 23

I , t
035 I CMPX I Xl,Xj,Xk I 20
036 I CMPR I Xl,Xj,Xk I .2e , , ,
049 I CPYXX I Xk,Xj , 00
053 I CPYRR I Xk,XJ I OC
050 I CPYAX J Xk"Aj I OB
051 I CPYAA I Ak,AJ I 09
052 I CPYXA I .Ak ,X j f lA
054 , AOOAQ I Ak.AJ,Q t SE
055 J AOOPXQ I Ak, X j, 1 abe l* I SF
056 I ADOAX I Ak,Xj t 2A
161 I AOD,AO I Ak,Ai,Q,J I A1

I t J
057 , ENTP 1 Xk,j , 30
058 I ENTN , :Xk,J I 3E
059 I ENTE I Xk,Q t 80
060 I ENTt J XO,Jk , 3F
061 , ENTl I X'k I IF

I ENTO I I
1 ENTS I I

164 I ENTX , XI,jk I 39
165 , ENTC I Xl,jkQ , 8'7
169 1 ENTA- I XQ,jkQ I 8.3

I 1 I
065 f IORX I XktXj I 18
066 f XORX I Xk,Xj I 19
061 , ANOX I Xk,Xj I IA
068 , NOTX I Xk,XJ , IB
069 I INHX I Xk,Xj I Ie
070 I 150M I Xk,XitD,j** 1 AC
071 I 1508 I Xk,Xj,Xi,O I AD
072 , INSB I Xk,Xj,Xi,O I AE
145 , MARK 1 Xk,Xl,j 1 lE

I I I
097 I CNIF , .Xk, X.i I 3.A
098 I CNFI f Xk,Xj I 3B
099 J AOOF 1 Xk,.XJ 1 .30
100 J SUBF I Xk,Xj J 31
103 J MtJlF I Xk,Xj f 32
104 , OIVF I .Xk,XJ I 33

£3
CDC - ADVANCED SYSTEMS DEVELOPMENT

86/10/17
(YBER 180 II Assembler ERS Rev: F
--
APPENDIX E
CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTION SUMMARY
--

REF tit INSTRUCTION OPERANOS IOPCOOE
-----+---------------------+---------------------+---------

114 , CMPF I Xl ,XJ, Xk I 3C
105 I AOOO t Xk,Xj I 34
106 I 5tJ80 t Xk,XJ , 35
107 , MUlO I Xk t .Xj I 36
108 J OIVO , Xk,Xj I 31 , I I
062 I SHFC I Xk, Xj ,Xi,D I AS
063 1 SHFX , Xk,XJ,Xi,O I A9
064 t SHFR I Xk,Xj,Xi,D I AA

J t I
031 , BRXEQ 1 Xj,Xk,label* I 94
038 I BRXNE I Xj,Xk.label* I 95
039 , BRXGT , Xj,Xk,label* I 96
040 I BRXGE I XJ, Xk, I abe 1";: 1 91
041 I BRREQ I X j. Xk,l abe 1:::: I 90
042 J BRRNE , Xj,Xk,label* I 91
043 I BRRGT I X J, X k, 1 ab e 1 * I 92
044 I BRRGE I X j , Xk t labe l* , 93

I I t
109 I BRFEQ J X j , X k , 1 abe 1* , 98
110 I BRFNE I Xj f Xk, label* , 99
III I 8:RFGT J .X j t Xk, 1 abe 1* I 9A
112 I SRFGE I X J , X k , 1 abe 1 * I 9B
113 , BROVR I Xk, 1 abe 1* I 9E

1 BRUNO I J
t BRINF I I
1 I t

045 t BRINe f Xj,Xk,label* 1 9C
046 I BRSEG , Xl,Aj,Ak,label* , 90
047 I SRREl I Xk I 2£
048 I BROIR I Aj,Xk f 2F
134 , BRCR I j,k, label* I 9F

I t I
115 I CAllSEG I label*,Aj,Ak t 85
116 I CAllREL I label*,AJ.Ak I 60
117 I RETURN f jk** I 04
lIB , POP I jk** I 06
120 I EXCHANGE I jk** I 02
121 , HALT I jk** 1 00
122 , INTRUPT I Xk,J** I 03 , I I
124 , LBSET J .Xk,Aj,XO , 14
125 I CMPXA , .Xk, Aj, XO, labe 1* , B4
126 , TPAGE I Xk,Aj I 16
127 1 lPAGE , Xk,XJ.Xl J 11

CDC - ADVANCED SYSTEMS oeVELOPMENT

CVBER 180 II Assembler ERS

APPENDIX E
CVBER 180 CPU SYMBOLIC MACHINE INSTRUCTION SUMMARY

REF #1 INSTRUCTION OPERANOS IOPCOOE

E4

86/10/1·7
Rev: F

-----+---------------------+---------------------+---------
130 J CPYSX I Xk,Xj I Of
131 J CPYXS I Xk,Xj 1 OF
132 , CPYTX I Xk,Xj I 08
136 I KEYPOINT I j,Xk,Q I 81
138 I PURGE I Xj,k I 05
139 t EXECUTE,s I j,k,i,O ICO-)(1 , 1 I
074 1 AOON,Aj.XO , Ak,Xl SO 00 I 70
156 , AODI,Xi,O I Ak,Xl.J flO t FB

1 I I
096 I CAlOF,Aj,XO 1 Xk,Ai,D so I F4
084 I CMPS, Aj. XO I Ak,Xl SO 00 1 11
085 I CMPC ,Aj ,.XO , Ak,X.l,Ai,O so DO I E9
083 f CMPN,AJ,XO I Ak,Xl SO 00 I 74
155 I CM?I,Xi,D 1 Ak,Xl,j DO I FA

I I I
017 I OIVN,AJ,XO I AktXl SO 00 I 13
091 I EOIT,Aj,XO I Ak,XlfAi,D SO 00 I ED

f I I
089 I MOVB,Aj,XO 1 Ak,Xl SO 00 f 16
154 , tiDVI ,X i ,0 I .Ak, X.l t j 00 f F9
092 I MOVN,Aj,XO , Ak,Xl SO 00 I 15
016 I MUlN,Aj,XO , Ak,Xl SO DO I 12

f I I
078 I SClN,AJ,XO I Ak, Xl ,X·j, 0 SO DO 1 £4
019 t SCLRtAJ,XO I Ak,Xl,Xi,O SD on , E5
086 , SCNB,AJ,XO , Ak,Xl,Ai,O 00 I F3

I I I
075 , SUBN,Aj,XO I Ak,Xl SO DO I 71
088 I TRANB,AJ,XO I Ak,Xl,Ai,O SO DO I £8

blQlf_l1. *-This field wi II be modified by the Assembler.

tlDlf_ll **-Parameter can opti on allv be left: blank.

~OIf_.2l. SO and 00 are Source Descriptor and Destination
Oescriptor. They both have the format F,r,L.O.

fl
CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS
86/10/11

Rev: F

APPENDIX F

A conversion program is provided to convert CI CPU source
proqrams to II CPU source programs. language differences
which can be converted are indicated by a w*_ in the list.

SUMMARY of CI -) II CPU Assembler Differences

1. II version uses 64-bit integer precision in evaluating
operands and performing arithmetic and logical
operations.

2. Multiple source statements per line are not allowed.

3. * AI. symbol names may be 31 characters maximum length
(versus 8 for the CI Assembler).

4. MACHINE pseudo instruction type will identify CPU or
IOU assembly type and corresponding object text
generation.

5. IOENT statement wi 11 have operands for IOU module.

6. * AOVF pseudo instruction is not valid in II Assembler.

7. * CYBIl data notation is used for numeric data.

8. Certain pseudo instructions are limited to the CPU
Assembler.

9. Mnemonics that reserve storage (like ass, INT. etc.)
reserve bytes in a CPU module and words in an IOU
module.

10. EBCDIC constants not available in II Assembler.

11. XTEXT pseudo instruction not available.

12. * Element number of symbol referenced as s[nl in II
Assembler versus s(n) in CI Assembler.

13. * II Assembler scans to column 88 versus 12 for CI
Assemb ler.

F2
CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS
86/10/17

Rev: F

APPENDIX F
II ASSEMBLER DIFFERENCES VERSUS CI ASSEMBLER

14. * II Assembler requires first statement input to be IDENT
and if a statement follows END then it must be IDENT.

15. * GEN statements are combined with YFD statements in II
As semb ., er •

16. Byte alignment is not performed for CMO or VFD
statements in II Assembler.

11. Only byte alignment is performed for tNT, DINT. FLOAT.
and OFLOAT statements in a CPU module.

18. LITERALS are not supported by II Assembler. Also not
supported are the lITORG statement and literal function
(L:).

19. * The object code listing format statement (OJC) is not
supported by the II Assembler. listing format of the
II Assembler is hexadecimal.

20. * Real numbers (FLOAT & DFLOAT statements) must have a
decimal point in II Assembler.

CDC - ADVANCED SYSTEMS DEVELOPMENT

CV8ER 180 II Assembler ERS

CPU Instruction Directory

LBYTS - {Format - SJkiD Op Code - 00-01 Ref' =
OOI} ••••••••••••••••••••

S8YTS - (Format = SjkiD Op Code = DB-Of Ref' =
003) ••••••••••••••••••••

LXI - (Format = jkiO Op Code = A2 Ref. = 005) •••
LX - (Format = jkQ Op Code = 82 Ref# = 006) • • • •
SXI - (Format = jkiD Op Code = A3 Ref# = 001) •••
SX - (Format = jkQ Op Code = 83 Ref' = 008) • • • •
lBYT - (Format = jkiD Op Code = A4 Ref. = 009) ••
58YT - (Format = jkiD Op Code = A5 Ref# = all) ••
lBYTP - (Format = jkQ Op Code = 86 Ref# = 013) ••
lSIT - (Format = jkQ Op Code = 88 Ref' = 014) •••
S8IT - (Format = jkQ Op Code = 89 Ref' = 015) •••
lAI - (Format = jkiD Op Code = 10 Ref' = 016) •••
LA - (Format = jkQ Op Code = 84 Ref' = 017) • • • •
SAl - (Format = jkiD Op Code = Al Ref. = 018) •••
SA - (Format = jkQ Op Code = 85 Ref. = 019) ••••
lMUlT - (Format.: jkQ Op Code =80 Refll = 020) ••
SMUlT - (Format = jkQ Op Code = 81 Ref# = 021) ••
• •••••
AOOX - (Format .- jk Op Code .: 24 Ref:# = 022) • • •
ADOXQ - (Format = jkQ fJp Code :: 88 Ref# .: 143) • •
INCX - (Format. .: jf< Op Code .- 10 Ref# .: 166) .• • •
SUBX - (Format = jk Op Code = 25 Ref' :: 023) • • •
OECX - (Format = -k J Op Code = 11 Ref' = 167) • • •
MULX .- (Format .: -k J Op Code = 26 Ref 1# :: 024) • • •
MUlXQ - (Format = JkQ Op Code = B2 Ref# := 168) • •
DIVX - (Format = jk Up Code = 21 Ref# ::: 02.5) • • •
AODR - (Format .: jk Op Code .: 20 Ref# = 021) • • •
AOORQ - (Format .: JkQ Op Code = SA Ref.fl = 028) • •
INCR - (Form.at = "'k J Op Code :: 28 Ref#: - 029) .. • •
SUBR - (Format = -k J Bp Code = 21 Ref# - 030) • • •
DEeR - (Forma·t .: .k. .J Op Code = 29 Reffl ::: 031) • • •
MULR - (Format = jk Op Code = 22 Reffl = 032) • • •
MUlRQ - (Format = jkQ Op Code .: Be Ref# .- 033) • •
OIVR - (Format = -k J Op Code :: 23 Ref# = 034) • • •
CMPX - (Format = -k J Op Code ::: 20 Refil .= 035) • • •
CMPR - (format = -k J Op Code = lC Ref# = 036) • • •
•
BRXEO - (Format - JkQ Op Code = 94 Ref' .- 031) • •
BRXNE - (Format = jkQ Op Code = 95 Reffl = 038) • •
BRXGT - (Format .: jkQ Op Code = 96 Ref# = 039) • •
BRXGE - (Format = -kQ J Op Code = 91 Ref# .- 040) • •
8RREQ - (Format = jkQ Op Code = 90 Reftl = 041) • •
BRRNE - (Format = jkQ Op Code :: 91 Ref# = 042) • •
BRRGT - (Format = jkQ Op Code = 92 Ref# = 043) • •
BRRGE - (Format .: JkQ Op Code = 93 Ref# .: 044) • •
BRINe - (Format .- jkQ Op Code = 9C Refl# .: 045) • •
BRSEG - (Format = JkQ Op Code .- 90 Ref# .: 046) • •
BRREt - (Format :: jk Op Code ,- 2E Ref:' = 047) • • •
BRDIR - (Format = jk Op Code .• - 2F Ref# .- 048) • • •

1

86/10/11
Rev: F

1-4

1-4
7-5
·]-5
7-5
1-6
1-6
1-6
1-1
7-1
·1-1
7-1
7-8
1-8
1-8
1-9
7-'9
7-9

7-10
7-10
]-10
7-10
1-11
1-11
1-11
7-11
7-12
7-12
1-12
7-12
7-13
7-13
7-13
1-.13
1-14
7-14
1-14
1-15
7-15
1-16
7-16
1-16
7-11
7-17
1-17
1-18
1-18
1-18
1-19

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ER5

.. ••• •• .. • .. • • • • .. • .. • •
CPYXX - (Format ::: jk Op Code ::: 00 Ref# =: 049) • • ..
CPYAX - (Format = jk Op Code ::: 06 Reffl ::: 050)
CPYAA .- (Format ::: jk Op Code ::: 09 Ref 1# ::: 051) • • •
CPYXA - (format ::: jk Op Code = OA Ref# = 052) • • •
CPYRR .- {Format = Jk Op Code = OC Ref' ::: 053} • • • •• • .. • • • .. • • • • • • • • • • •
AODAQ - (Format ::: jto Op Code ::: BE Ref. ::: 054)
AODPXQ - (Format ::: jkQ Op Code = 8F Ref' ::: 055) • •
AOOAX - (Format ::: jk Op Code = 2A Ref# = 056) • .. •
ADDAD - (Format = jkiD Op Code::: A7 Ref. ::: 161) ...
• ••• •• • • • • • • • • .. • • • • • • • • .. • ..
ENTP - (Format .- jl< Op Code = 3D Ref# ::: 057) •
ENTN - (Format .- .ok J Op Code ::: 3£ Ref-# .- 058) •
ENTE - (Format ::: Jk.Q Op Code .- aD Ref' = 059)
EMTt - (Format .- .1k Up Code :::. 3F Ref# ::: 0(0) • • ..
ENTX - « Format = -k Up Code = 39 Ref# ::: 164) • • .. J
ENTZ - (Format ::: jk Up Code ::: IF Ref# = 061)
ENTO - (format = "k Op Code = IF R.ef"# .- 061) • • • J
ENTS - (Format ::: jk Op Code = iF Ref# = 061) • • ..
ENTC - (Format: = jkQ Op Code :: 87 Ref# ::: 165) • • •
ENTA - (Format = jkQ Op Code :: 83 Ref# = 169) • • .. · .•
SHFC - (Format::: jkiO Op Code::: A8 Ref# - 062) ••
SHFX - (Format::: jkiD Op Code:: 19 Ref# = 063) ••
SHFR - (Format::: jkiO Op Code = AA Ref' = 064) ...
• ••••• •
IORX - (Format
XORX - {Format
ANOX - (Format
NOTX - (Format
INHX - (Format
.. • • • • • •
150M - (Format
IS0B - (Format
INSB - (Format
MARK - (Format
• • • • • • •
ADON - (Format
SUBN - (Format
MULN - (Format
O.IVN - (Format
SCLN - (Format
SCLR - (Format
MOVN - (Format
CMPN - (Format
• • • • • • •

.. .. • ..
.- Jk Dp
::: "k J Op
= jk Op
= -k J Op
= -k J Op

• • • •
= JkiO
= jkiO
::: Jk iD
= *k J Op

.• • • ..
Code =
Code .-
Code :::

Code =
Code =

• • • ..
Op Code
Op Code
Op Code

Code =

·
18 Ref# ::: 065) •••
19 Ref# ::: 066) •• ..
lA Ref# = 061)
IB Ref# = 068) •••
Ie Ref' = 069) ·
=AC Reffl = 010)
= AD Ref# ::: 011)
::: AE Ref# :: 072)
IE Ref. :: 145)

• •
• •
• •

• • • ·
= -k2 J [)p Code = 10 Ref# = 075) • • ..
= Jk.2 Op Code ::: 71 Reftl .- 075) .• • •
= Jk2 Op Code = 12 Ref# = 016) • • ..
= Jk2 Op Code = 73 Ref# ::: 071) • • •
::: jki02 0" Code = E4 Ref# = 018) • •
= jki02 Up Code = E5 Ref# = 019) • •
= jk2 Op Code = 15 Ref# -- 092) • • •
.- ·k2 J Op Code := 74 Ref# ::: 08.3) • • • ·

CMP8 - (Format = jk2 Op Code :: 17 Ref# = 084) • • •
CMPC - (Format::: jki02 Op Code = E9 Ref# ::: 085) ...
seNB - (Format = jkiOl Op Code::: F3 Ref' = 086) ...
TRANS - (Format::: jki02 Op Code:: E8 Ref# = 088) ..
MOVS - (Format = jk2 Op Code ::: 76 Ref# ::: 089) .. • •
EDIT - (Format = jkiD2 Op Code::: EO Ref# ::: 091) ••

2

86/10./11
Rev: F

7-19
7-19
1-19
1-20
7-20
7-20
7-20
1-21
'1-21
1-21
7-22
7-22
1-22
7-22
7-23
7-23
'7-23
7-24
1-24
1-24
1-24
1-25
7-25
1-26
1'-26
7-26
1-26
7-27
1-27
7-21
1-28
7-28
1-28
7-29
"]-29
7-30
7-32
1-32
1-40
1-41
7-41
1-41
1-43
1-43
7-44
7-44
7-45
7-45
7-45
7-46
1-41
7-48
1-48

CDC -
CYBER

AOVANCED SYSTEMS DEVELOPMENT

180 II ,Assembler ERS

HOVI - (Form·at = Jk i01 Op Code .- F9 Ref:" = 154) • •
CMPJ - (Format =]kiDl Op Code :: fA Ref# = 155) • •
AOOI .- (Format .- jkiDl Op Code :: FB Ref# = 156) • •
• ••••• • • • • • • • • • • • • • • • • . . • • •
CNIF -. (Format = -k .1 Op Code = 3A Ref# = 0(1) • • •
(NFl - (Format .- jk Op Code = 38 Ref# = 0(8) • • •
AOOF - (Format = jk Op Code = 30 Ref# = 099) • • •
SUBF - (Format = 'Ok J Op Code :: 31 Ref" :: 100) • • ..
MULF - (Format = -k J Op Code = 32 Ref:' = 103) • • •
OIVF - (Format = -k J Op Code ".: 33 Refit = 104) • • •
AOOO - (Format .- -I<, J Op Code = 34 Ref# = 105) • • •
SHaD - (Format = jk Op Code = 35 Ref#/; = 106) • • •
MULO - (Format = jk Op Code = 36 Refit = 107) • • •
OIVO - (Format = Jk Op Code .- 31 Ref# = 108) • • ..
• •••••
BRFEQ - (Format = jkQ Op Code = 98 Ref-II = 109) • •
BRFNE - (Format = jkQ Op Code -- 99 Ref# = 110) • •
BRFGT - (Format = jkQ Op Code = 9A Reffl = 111) • •
BRFCE - (Format .- jkQ Op Code = 9B Ref# ': 112) • .•
BROVR .- (Format ::: jkQ Op Code ::: 9E Ref# .- 113) • ,.
BRUNO - (Format - jkQ Op Code = 9E Ref:fl .- 113) • •
BRINF - (format = jkQ Up Code ::: 9E Ref' :: 113) • •
CMPF - (Format ::: -k J Op Code ::: 3C Ref# = 114) • • • · . ,. · . . . ,. ,.
EXECUTE - (Format = SJkiO Op Code = CO-C7 Refit =

139) ••••••••••••••• ••••
HALT - (Format = ik Op Code = 00 Ref' = 121) •••
SYNC - (Format:::)k Op Code = 01 Ref# = 194) •••
CAllSEG- (Format = JkQ Op Code = 85 Ref#= 115) •
CAllREL - (Format::: jkQ Op Code = BO Ref' = 116) •
RETURN - (Format:: jk Op Code::: 04 Ref' ::: 111) ••
POP - (Format = jk Op Code ::: 06 Ref' = 118) ••••
EXCHANGE - (Format ::: jk Op Code = 02 Ref# = 120) •
KEYPOINT - (Format,: jkQ Op Code = 81 Ref. = 136) •
CMPXA - (Format = jkQ Op Code = 84 Ref' = 125) ••
lOSET - (Format = jk Op Code = 14 Ref# = 124) •••
TPAGE - (Format ::: jk Op Code ::: 16 Ref' = 126) • • •
CPYTX - (Format ::: jk Op Code = 08 Ref. = 132) • • •
• • • •• ••
LPAGE - (Format :: jk Op Code - 17 Refit - 127) • • •
INTRUPT .- (Form-at = jk Op Code := 03 Ref# :- 122) • •
BRCR - (Format = jkQ Op Code = 9F Ref# ::: 134) • • •
CPYSX - (Format = 'Ok J Op Code .- OE Ref# = 130) • • •
CPYXS - (Format = jk Op Code = OF Ref# = 131) • • •
PURGE .- (Format = jk Op Code = 05 Ref# = 138) • • •
• • • • ••
ADDXV - (Format = JkiD Op Code = 44 Ref' = 172) •
SUBXV - (Format::: jkiO Op Code = 45 Ref' ::: 113) •
CMPEQV - (Format = jkiO Op Code = 50 Ref# = 176) •
CMPLTV - (Format::: jkiO Op Code = 51 Ref# = 171) •
CMPGEV - (Format = JkiO Op Code:: 52 Ref' = 118) •
CMPNEV - (Format::: jkiO Op Code::: 53 Ref' = 119) •
SHFV - (Format = jkiO Op Code = 40 Ref# = 180) ••

3

86/10/11
Rev: F

7-49
-7-50
7-52
1-52
1-5-1
7-58
7-58
1-58
1-59
7-59
7-59
1-60
1-60
7-60
7-60
1-61
7-62
·1-62
1-62
7-63
7-6.3
1-63
1-63
7-63

1-64
1-64
1-64
1-65
1-66
7-67
7-61
1-68
1-69
·7-6-9
1-10
1-10
1-71
1-11
7-72
7-73
7-14
1-15
1-76
1-16
1-17
7-78
7-79
1-80
1-80
1-80
1-80
7-81

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVHER 180 II Assembler ERS
86.110_/17

Rev: F

lORY - (Format = jkiD Op Code = 48 Ref' = 181) •• 1-82
XORV - (Format = jkiO Op Code = 49 Ref' = 182) •• 1-82
ANOV - (Format = jkiO Op Code = 4A Ref# = 163) •• 7-82
CNIFV - (Format - jkiD Op Code = 48 Ref# = 184) • 1-83
CNFIV - (Format = jkiD Op Code - 4C Ref' = 185) • 1-83
ADDFV - (Format - jkiD Op Code = 40 Ref' = 186) • 1-83
SUBFV - (Format = jkiD Op Code = 41 Ref' = 181) • 7-84
MUlFV - (Format = jkiD Op Code - 42 Ref' = 188) • 7-84
DIVFY - (Format = jkiD Op Code = 43 Ref. = 189) • 7-84
SUMFV - (format = JkiD Op Code = 51 Ref' - 190) • 1-84
MRGV - (Format = jkiD Op Code = 54 Ref# = 191) •• 1-85
GTHV - (Format = jk i 0 Op Code = -55 Ref# = 192) • .7-85
SeTV - (Format = jkiD Op Code = 56 Ref. = 193) •• 7-86

CDC - ADVANCED SYSTEMS DEVELOPMENT

CY8ER 180 II Assembler ERS

IOU Instruction Oirectory

lJM - (Format :: fdm Op Code -= 000Idm Size - 32
bit) •

RJM - (Format :: fdm Op Code -= 0OO2dm S"ize = 32
bit) •

UJN - (Format = fd Op Code :: 0OO3d Size -= 16 bit) •
lJN - (Format = fd Op Code = 0OO4d Size :: 16 bi tl •
NJN - (Format :: fd Op Code :: 0OO5d Size .= 16 bit) •
PJN - (Format = fd Op Code .- 0OO6d Size :: 16 bit) •
MJN - (Format = fd Op Code :: 0OO1d Size = 16 bit) •
•
SHN - (Format - fd Op Code -= OOlOd Size = 16 bit) •
• • •• • • • • • • • • • • • • • • •• • • • • • •
LON - (Format = fd Op Code:: 0014d Size = 16 bit) •
LeN - (Format -= fd Op Code = 0015d Size:: 16 bit) •
loe - (Format - fdm Op Code = 0020dm Size = 32

bit) •••••••••••••••••••••
LOO - (Format = fd Op Code = 0030d Size:: 16 bit) •
lOOL - (Format:: fd Op Code = l030d Size:: 16 bit)
STO - (Format = fd Op Code = 0034d Size = 16 bit) •
STOl - (Format = fd Op Code = l034d Size = 16 bit)
LOI - (Format = fd Op Code = 0040d Size: 16 bit) •
lOll - (Format = fd Op Code:: l040d Size = 16 bit)
STI - (Format = fd Op Code = 0044d Size = 16 bit) •
SIll - (Format = fd Op Code = I044d Si~e :: 16 bit)
lOM - (Format = fdm Op Code = 0050dm Size = 32

bit) •••••••••••••••••••••
LOHl - (Format:: fdm Op Code = 1050dm Size = 32

bit) •••••••••••••••••••••
STH - (Format = fdm Op Code:: 0054dm Size = 32

bit) •••••••••••••••••••••
STHL - (Format = fdm Op Code = l054dm Size -= 32

bit) •
• •••••
AON - (Format = fd Op Code = 0016d Size = 16 bit) •
ADC - (Format - fdm Op Code:: 0021dm Size = 32

bit) •••••••••••••••••••••
saN - (Format: fd Op Code = 0011d Size = 16 bit) •
ADD - (Format:: fd Op Code:: OOlid Size = 16 bit) •
AOOL - (Format = fd Op Code = l031d Size = 16 bit)
580 - (Format = fd Op Code = 0032d Size = 16 bit) •
SBot - (Format -= fd Op Code = l032d Size = 16 bit)
ADI - (Format = fd Op Code = 0041d Size:: 16 bit) •
AOIl - (Format = fd Op Code: l041d Size = 16 bit)
SB! - (Format = fd Op Code = 0042d Size = 16 bit) •
S8Il - (Format: fd Op Code = l042d Size: 16 bit)
ADM - (Format = fdm Op Code = 0051dm Size = 32

bit) •••••••••••••••••••••
AOMl - (Format: fdm Op Code = I051dm Size = 32

bit) • • • • • • • • • • • • • • • • • •• • •
SSM - (Format = fdm Op Code = 0052dm Size = 32

bit) •••••••••••••••••••••

:1

86/10/17
Rev: F

8-5

8-5
8-6
8-6
8-6
.8-6
8-1
8-7
8-7
8-7
8-8
8-8

8-8
8-8
8-9
8-9
8-9
8-9

8-10
8-10
8-10

8-11

8-11

8-11

8-11
8-11
8-12

8-12
8-12
8-12
8-13
8-13
8-13
8-13
8-14
8-14
8-14

8-15

8-15

8-15

CDC - ADVANCED SYSTEMS DEVELOPMENT

eTHER 180 II Assembler ERS

S8Ml - (Format = fdm Op Code = 1052dm Size = 32
bit) •••••••••••••••••••••

• • • • ••
lMN - (Format = fd Op Code = OotId Size = 16 bit) •
tHe - (Format - fdm Op Code = 0023dm Size = 32

bit) •••••••••••••••••••••
LPN - (Format = fd Op Code = 0012d Size = 16 bit) •
lPC - (Format - fdm Op Code = 0022dm Size = 32

bit) •••••••••••••••••••••
seN - (Format = fd Op Code = 0013d Size = 16 bit) •
tHO - (Format = fd Op Code = 0033d Size = 16 bit) •
lHOl - (Format = fd Op Code = l033d Size = 16 bit)
lPDl - (Format = fd Op Code = l022d Size = 16 bit)
LMI - (Format = fd Op Code = 0043d Size = 16 bit) •
lMIl - (Format = 'fd Op Code = l043d Size = 16 bit)
lPlt - (Format = fd Up Code = 1023d Size = 16 bit)
lMM - (Format = fdm Op Code = 0053dm Size = 32

bit) .•••••••••••••••••••••
lMMt - (Format = fdm Op Code: I053dm Size = 32

bit) •
lPHl - (format = fdm Op Code = l024dm Size: 32

bit) •••••••••••••••••••••
• •• • •••
RAD - (Format = fd Op Code: 0035d Size = 16 bit) •
RAOt - (Format = fd Op Code = 1035d Size = 16 bit)
AOO - «Format .: fd Op Code = 00:36d Size = 16 b j t) •
AOOl - (Format = fd Op Code = l036d Size = 16 bit)
SOD - (Format = fd Op Code = 0031d Size = 16 bit) •
SOOl - (format = fd Op Code = l031d Size = 16 bit)
RAI - (Format = fd Op Code = 0045d Size = 16 bit) •
RAIL - (Format = fd Op Code = l045d Size = 16 bit)
AOI - (Format = fd Op Code = 0046d Size = 16 bit' •
AOIL - (Format = fd Op Code = l046d Size = 16 bit)
SOl - (Format = fd Op Code = 0047d Size = 16 bit) •
SOIL - (Format = fd Op Code = 1041d Size = 16 bit)
RAM - (Format = fdm Op Code = 0055dm Size = 32

bit) •••••••••••••••••••••
RAMl - (format = fdm Op Code = l055dm Size = 32

bit) •••••••••••••••••••••
ADM - (Format = fdm Op Code = 0056dm Size = 32

bit) •••••••••••••••••••••
AOHl - (Format = fdm Op Code = 10~6dm Size = 32

bit) • • • • • • • • • • • •• • • • .• • • • .•
SOM - (Format = fdm Op Code = 0051dm Size = 32

bit) •••••••••••••••••••••
SOMl - (Format = fdm Op Code = l051dm Size = 32

bit) •••••••••••••••••••••
••••••
lRD - (Format - fd Op Code = 0024d Size - 16 bit) •
SRO - (Format = fd Op Code = 0025d Size = 16 bit) •
eRO - (Format = fd Op Code = 0060d Size = 16 bit) •
CRDL - (Format = fd Op Code = l060d Size = 16 bit)
cwo - (Format = fd Op Code = 0062d Size = 16 bit) •

2

86/10/17
Rev: F

8-16
8-16
8-16

8-16
8-1'7

8-11
8-11
8-18
8-.18
8-18
8-19
8-19
8-19

8-20

8-20

8-21
8-21
8-21
8-2.2
8-22
8-22
8-22
8-23
8-23
8-23
8-23
8-24
8-24
8-24

8-25

8-.25

8-25

8-26

8-26

8-26
8-26
8-28
8-28
8-30
8-31
8-31

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYHER 180 II Assembler ERS

eNOL - (Format: fd Op Code = l062d Size = 16 bit)
CRH - (Format = fdm Op Code = 0061dm Size = 32

bit) •••••••••••••••••••••
CRMl - (Format = fdm Op Code: 1061dm Size = 32

bit) •••••••••••••••••••••
CUM - (Format = fdm Op Code = 0063dm Size = 32

bit) •••••••••••••••••••••
CWMl - (Format = fdm Op Code = l063dm Size = 32

bit) •••••• ~ ••••••••••••••
RDSl - (Format = fd Op Code: IOOOd Size = 16 bit)
ROCl - (format = fd Op Code = lOOld Size = 16 bit)
• •••••
AJM - (Format - fscm Op Code = 00640cm Size = 32

bit) •••••••••••••••••••••
SCF - (Format = fscm Op Code = 0064lcm Size = 32

bit) •••••••••••••••••••••
FSJM - (Format = fsem Op Code = l064Xcm Size = 32

bit) •••••••••••••••••••••
IJM - (Format = fscm Op Code = 00650cm Size = 32

bit) •••••••••••••••••••••
FCJM - (Format = fscm Op Code = l065Xcm Size = 32

bit) •••••••••••••••••••••
FJH - (Format = fscm Op Code = 00660cm Size = 32

bit) •••••••••••••••••••••
EJM - (Format = fscm Op Code = 00610cm Size = 32

bit) •••••••••••••••••••••
SFH - (Format = fscm Op Code = 00661cm Size = 32

bit) •••••••••••••••••••••
CFM - (Format = fscm Op Code = 00611cm Size = 32

bit) •••••••••••••••••••••
CCF - (Format = fscm Op Code = 00651cm Size - 32

bit' •••••••••••••••••••••
IAN - (Format = fsc Op Code = 00100c Size = 16

bit) •••••••••••••••••••••
IAN - (Format = fsc Op Code = 0010te Size - 16

bit) •••••••••••••••••••••
DAN - (Format = fsc Op Code = 00720c Size = 16

bit) •••••••••••••••••••••
OAN - (Format = fsc Op Code = 00121e Size = 16

bit) •••••••••••••••••••••
lAM - {Format = fscm Op Code = 00110cm Size = 32

bitl •••••••••••••••••••••
IAPM -(Format = fscm Op Code = l0110cm Size = 32

bit) •••••••••••••••••••••
DAM - (Format = fscm Op Code = 00130cm Size = 32

bit) •••••••••••••••••••••
OAPM - (Format = fscm Op Code = l0130cm Size = 32

bit) •••••••••••••••••••••
AeN - (Format = fsc Op Code = 00140c Size = 16

bit) •••••••••••••••••••••
AeN - (Format = fsc Op Code = 00741c Size = 16

bit) •••••••••••••••••••••
DeN - (Format = fsc Op Code = 00150c Size = 16

3

86/10/11
Rev: F

8-31

8-32

8-32

8-32

8-33
8-33
8-34
8-34

8-34

8-35

8-35

8-35

8-35

8-36

8-36

8-36

8-36

8-31

8-31

8-31

8-38

8-38

8-38

8-41

8-41

8-42

8-42

8-42

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

bit) •••••••••••••••••••••
OCN- (Format = fsc Op Code = 00151c Si.ze = 16

bit) •••••••••••••••••••••
FAN - (Format = fsc Op Code = 00160c Size = 16

bit) •••••••••••••••••••••
FAN - (Format = fsc Op Code = 00161c Size = 16

bit) •••••••••••••••••••••
FNC - (Format = fscm Op Code = 00770cm Size = 32

bit) •••••••••••••••••••••
FNC - (Format - fscm Op Code = 00171cm Size = 32

bit) •••••••••••••••••••••

•
EXN - (Format = fd Op Code = 002601 Size = 16 bit)
MXN - (Format = fd Op Code = 002611 Size = 16 bit)
HAN - (Format = fd Op Code = 00262X Size = 16 bit)
PSN - (Format = fd Op Code = 002400 Size = 16 bit)
KPT - (Format = fd Op Code = 0021d Size = 16 bit) •
INPN - (Format = fd Op Code = l026d Size = 16 bit)

4

86/10/11
Rev: F

8-·43

8-43

8-43

8-44

8--44

8-44
8-44
8-45
8-45
8-46
8-46
8-46
8-41

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

Table of Contents

1.0 SCOPE ••••••••
1.1 APPLICABLE DOCUMENTS

• • • •• • • •
• • • • • • • •

2.0 LANGUAGE STRUCTURE •••••••••
2.1 STATEMENT ••••••••••••••

2.1.1 FIELD ••••••••••••••
2.1.2 SUBFIELO ••••••••••••
2.1.3 NULL FIELD •••••••••••

2.2 COMMENTS ••••••••••••••
2.2.1 STATEMENT CONTINUATION •••••

2.3 CHARACTER SET ••••••••••••
2.4 SYMBOL DEFINITION ••••••••••

2.4.1 LINKAGE SYMBOLS •••••••••
2.4.2 SYMBOL ATTRIBUTES ••••••••

2.5 REGISTERS ••••••••••••
2.6 DATA NOTATION • • • • • • • • • •

2.6.1 SELF DEFINING TERMS •••••
2.6.2 NUMERIC DATA NOTATION ••••

2.1 EXPRESSIONS • • • • ••• • • • •

• •
• •
• •
• •
• •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • •• ••

2.1.1 TERMS •••••••••••••••••••••
2.1.2 ORDER OF EVALUATION ••••••••••••••
2.7.3 THE LOGICAL NOT OPERATOR •••••••••••
2.1.4 LOGICAL AND. OR, EXCLUSIVE OR •••••••••
2.7.5 THE BINARY SHIFT OPERATOR •••••••••••
2.1.6 THE COMPARISON OPERATORS •••••••••••

2.8 ABSOLUTE AND RElOCATABLE TERMS AND EXPRESSIONS ••

3.0 PROGRAM STRUCTURE • • • • • • • •
3.1 PROGRAM SECTIONS ••••••••

3.1.1 DEFAULT SECTIONS ••••••
3.1.2 THE BINDING SECTION •••••

3.2 SECTION CONTROL COUNTER •••••
3.2.1 FORCING PARCEL ALIGNMENT ••

• •
• •
•• · .•
• •
• •

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

4.0 PSEUDO INSTRUCTIONS ••••••••••••••••
4.1 MODULE IDENTIFICATION •••••••••••••••

4.1.1 IDENT - MOOULE IDENTIFICATION •••••••••
4.1.2 END - ENO MODULE •••••••• • • • • • • •

4.2 8INARY CONTROL ••••••••••••••••••
4.2.1 MACHINE - OECLARE OBJECT PROCESSOR TYPE ••••

4.3 SYMBOL A S5I GNMENT • • • • • • • • • • • • • • • • •
4.3.1 SET/EQU - ASSIGNMENT OF VALUES ••••••••
4.3.2 ANAME DIRECTIVE ••••••••••••••••
4.3.3 ATRIS DIRECTIVE ••••••••••••••••
4.3.4 USE OF THE ANAME AND ATRIB PSEUDO INSTRUCTIONS

4.4 MOOULE LINKAGE ••••••••••••••••••
4.4.1 DEF,DEFG-OEClARE ENTRY SYMBOLS ••••••••
4.4.2 REF-DECLARE EXTERNAL SYMBOLS •••••••••
4.4.3 ALIAS - EQUATE LINKAGE SYMBOLS ••••••••
4.4.4 ADDRESS - FORM CVBER 180 ADDRESS •••••••

1

86/10/17
Rev: F

1-1
1-1

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-5
2-5
2-5
2-1
2-1
2-1
2-9

2-11
2-11
2-12
.2-13
2-14
2-14
2-14
2-15

3-1
3-1
.3-2
3-2
3-3
3-4

4-1
4-1
4-2
4-2
4-3
4-3
4-4
4-5
4-8
4-8
·4-9
4-9

4-10
4-10
4-11
4-11

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

4.5 DATA GENERATION • • • • • • • • • • • • • • • • • •
4.5.1 BSSl-RESERVE ZEROED STORAGE ••••••••••
4.5.2 INT - GENERATE INTEGERS • • • • • • • • • •••
4.5.3 OINT - GENERATE 64-8IT INTEGERS ••••••••
4.5.4 FLOAT - GENERATE SINGLE PRECISION

FLOATING-POINT NUMBERS ••••••••••••
4.5.5 DFLOAT - GENERATE DOUBLE PRECISION

FLOATING-POINT NUMBERS ••••••••••••
4.5.6 POEt - GENERATE PACKED DECIMAL DATA ••••••
4.5.1 CHO - GENERATE 8IT STRING •••••••••••
4.5.8 VFD - VARIABLE FIELD DEFINITION • • • • • •••
4.5.9 TRUNe - TRUNCATE •••••••••••••••
4.5.10 INFOHSG •••••••••••••••••••

4.6 .ASSEMBLYCONTROL •••••••••••••••••
4.6.1 OO/ELSE/OENO PSEUDO INSTRUCTIONS •••••••
4.6.2 WHILE/ElSEIDENO PSEUDO INSTRUCTIONS ••••••
4.6.3 SKIPTO - SKIP CODE ••••••••••••••

4.1 ERROR CONTROL • • • • • • • • • • • • •
4.1.1 ERROR PSEUDO OPERATION ••••••
4.7.2 FLAG - CONDITIONAllY SeT ERROR FLAG

• • • • • •
• • • • • •
• • • • • •

4.8 LISTING CONTROL ••••••••••••••••••
4.8.1 lIST - SELECT lIST OPTIONS ••••••••••
4.8.2 PAGE - EJECT PAGE •••••••••••••••
4.8.3 SPACE - SKIP LINES •••••••••••.•••
4.8.4 TITLE - ASSEM8lY LISTING TITLE ••••••••
4.8.5 XRSY - CONCORDANCE SELECTION •••••••••

4.9 SECTIONS •••••••••••••••••••••
4.9.1 SECTION - ESTABLISH BLOCK •••••••••••
4.9.2 USE - USE BLOCK ••••••••••••••••
4.9.3 ORG - SET SECTION COUNTER •••••••••••
4.9.4 POS - SET BIT POSITION IN THE SECTION COUNTER •
4.9.5 ass - STORAGE RESERVATION • • • • • • • • • • •
4.9.6 ALIGN - FORCE SfCT.ION COUNTER ALIGNMENT ••••

4.10 PROCEDURES ••••••••••••••••••••
4.10.1 PARAMETER REFERENCING WITHIN PROCEDURES •••

4.10.1.1 Parameter Identification Examples ••••
4.10.2 PROC - PROCEDURE HEADING •••••••••••
4.10.3 PNAME - PRoceOURE NAME DEFINITION ••••••
4.10.4 FNAME - FUNCTION NAME DEFINITION •••••••
4.10.5 PEND - END PROCEDURE DEFINITION •••••••
4.10.6 LOCAL - ESTA8LISH LOCAL SYMBOLS •••••••
4.10.1 OPEN - DECLARE TEMPORARY SYMBOLS •••••••
4.10.8 CLOSE - ERASE TEMPORARY SYMBOLS •••••••
4.10.9 CONT - NO OPERATION •••••••••••••
4.10.10 PROCEDURE CALLS •••••••••••••••
4.10.11 PROCEDURE EXAMPLES •••••••••••••

4.10.11.1 Procedure Definition ••••••••••
4.10.11.2 LOCAL Directive's Use ••••••••••

5.0 ATTRIBUTE FUNCTIONS ••••••••••••
5.1 LANGUAGE DEFINED ATTRI8UTES ••••••••

5.1.1 SYMBOL CATEGORY ATTRIBUTE - SC: ••••
5.1.2 ADDRESS MODE ATTRIBUTE ••••••••

• • • •
• • • •
• • • •
• • • •

2

86/10.111
Rev:F

4-13
4-13
4-14
4-14

4-15

4-16
4-16
4-17
4-18
4-19
4-20
4-20
4-20
·4-23
4-24
4-26
4-27
4-28
4-28
4-28
4-30
4-30
4-31
4-31
4-32
4-32
·4-34
4-35
4-35
4-36
·4-37
4-31
4-38
4-39
4-39
4-40
4-41
4-42
4-42
4-43
4-44
4-44
4-45
4-4'5
4-·46
4-4'7

5-1
5-1
5-1
5-3

CDC - ADVANCED SYSTEMS DEVELOPMENT

CVBER 180 II Assembler ERS

5.1.3 VALUE ATTRIBUTE •••••••••••••••.•
5.1.4 LENGTH ATTRIBUTES •••••• ' •••••••••
5.1.5 STARTING BIT POSITION ATTRIBUTE ••••••••
5.1.6 ELEMENT NUMBER ATTRIBUTE •••••••••••
5.1.1 LAST ELEMENT NUMBER ATTRIBUTE •••••••••
5.1.8 SYMBOL NUt18ER ATTRIBUTE. • • • • • • • • •• •
5.1.9 RELOCATION ATTRIBUTE •••••••••••••

5.2 PROGRAMMER DEFINED ATTRI8UTE FUNCTIONS ••••••
5.3 SYMBOL ATTRIBUTE EXAMPLES •••••••••••••

6.0 OFFSET FUNCTIONS (#WOFf. #HOFF, #POFF, NBOFF)
1.0 CY8ER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS ••
7.1 SYMBOLIC NOTATION •••••••••••••••
1.2 CPU INSTRUCTION FORMATS ••••••••••••
7.3 GENERAL CPU INSTRUCTIONS •••••••••••

7.3.1 LOAD AND STORE ••••••••••••••
1.3.1.1 lBYTS,SBYTS-load/Store Bytes. Xk length

• •
• •
• •
• •

Per S • • • • • • • • • • • • • • • • • • •
7.3.1.2 lXI,LX.SXI,5X-load/Store Word, Xk •••••
1.3.1.3 lBYT,S8YT-load/Store Bytes, Xk Length Per

10 ••••••••••••••••••••
1.3.1.4 l8YTP-load 8ytes, Xk length per J •••••
7.3.1.5 lBIT,SBIT-load/Store Bit, Xk •••••••
1.3.1.6 lAI,LA,SAI,SA-load/Store,Ak ••••••••
7.3.1.1 tMULT,SMUlT-load/Store Multiple Registers.

7.3.2 INTEGER ARITHMETIC ••••••••••••••
7.3.2.1 ADDX,ADDXQ,INCX-Integer Sum, Xk ••••••
7.3.2.2 5UBX,OECX-Integer Difference, Xk •••••
1.3.2.3 MUlX,MUlXQ-Integer Product, Xk ••••••
1.3.2.4 DIVX-Integer Quotient •••••••••••
1.3.2.5 AODR,AODRQ,INCR-Integer Sum, Xk right •••
7.3.2.6 SUBR,OECR-Integer Difference, Xk Right ••
1.3.2.7 MUlR,MUlR.Q-lnteger Product, .xk Right •••
1.3.2.8 DIVR-Integer Quotient, Xk Right ••••••
7.3.2.9 C~PX,CHPR-Integer Compare •••••••••

1.3.3 BRANCH ••••••••••••••••••••
7.3.3.1 8RXEQ,8RXNE,BRXGT,BRXGE-Branch Conditional
1.3.3.2 8RREQ,BRRNE,BRRGT,BRRGE-Conditional, X

Right •••••••••••••••••••
1.3.3.3 BRINC-Condi~ional, with Increment •••••
1.3.3.4 8RSEG-Conditional, Ak •••••••••••
7.3.3.5 BRREL-Unconditional Branch, (P) indexed ••
7.3.3.6 BROIR-Unconditional Branch, (A) indexed ••

1.3.4 COpy •••••••••••••••••••••
1.3.4.1 CPYXX-Copy to Xk from Xj •••••••••
1.3.4.2 CPYAX-Copy to Xk from Aj •••••••••
7.3.4.3 CPYlA-Copy to Ak from Aj •••••••••
7.3.4.4 CPVXA-CopV to Ak from Xj •• • • • • • • •
1.3.4.5 CPYRR-Copy to Xk Right from Xj Right •••

7.3.5 ADDRESS ARITHMETIC ••••••••••••••
7.3.5.1 ADDAQ-Copy A with Displacement ••••••
1.3.5.2 AOOPXQ-Copy P with Indexing and

3

86/10/17
Rev: F

5-3
5-4
5-5
5-5
5-6
5-6
5-6
5-1
5-8

6-1

7-1
1-1
1-2
1-3
1-.3

7-4
7-5

7-6
1-1
"]-1
1-1
7-9
1-9

7-10
1-10
7-11
7·-11
"1-12
'1-12
1-13
7-13
7-14
7-14
1-15

7-.16
1-18
7-18
1-18
7-19
1-19
7-19
1-19
7-20
1-20
1-20
1-20
7-21

CDC - ,ADVANCED SYSTEMS OEVELOPMENT

CVBER 180 II Assembler ERS

Displacement •••••••••••••••
1.3.5.3 ADDAX-A Indexed ••••••••••••••
1.3.5.4 ADD AD-Copy A with Displacement, Modulo ••

7.3.6 ENTER •••••••••••••••••••••
7 • 3 • 6. 1 E NT p. E NT N- En t er ,; • • • • • • • • •• • • •
1.3.6.2 ENTE-Enter Q •••••••••••••••
1.3.6.3 ENTt,ENTX-Enter,;k ••••••••••••
1.3.6.4 ENTI,ENTQ,ENTS-Enter Signs ••••••••
1.3.6.5 ENTC-Enter Xl jkQ •••••••••••••
7.3.6.6 ENTA-Enter XO jkQ •••••••••••••

7.3.1 SHIFT •••••••••••••••••••••
1.3.1.1 SHFC-Shift (Xj) to Xk, Circular ••••••
1.3.7.2 SHFX.SHfR-Shift (XJ) to Xk, End-Off ••••

7.3.8 LOGICAL ••••••••••••••••••••
1.3.8.1 IORX,XORX,ANOX-togical Sum. Diff. and

Prod. ••••••••••••••••••
1.3.8.2 NOTX-Logical Complement ••••••••••
1.3.8.3 INHX-Logical Inhibit •••••••••••

1.3.9 REGISTER BIT STRING ••••••••••••••
1.3.9.1 ISOM-Isolate Bit Mask •••••••••••
1.3.9.2 ISOB-Isolate into Xk •••••••••••
1.3.9.3 I~S8-Insert into Xk ••••••••••••

7.3.10 MARK-MARK TO BOOLEAN •••••••••••••
1.4 BUSINESS DATa PROCESSING INSTRUCTIONS •••••••

1.4.1 GENERAL DESCRIPTION ••••••••••••••
1.4.1.1 Operation Codes ••••••••••••••

1.4.2 DATA DESCRIPTORS •••••••••••••••
1.4.2.1 BOP Descriptor, 0 Field ••••••••••
7.4.2.2 SOP Operand Type, T Field •••••••••
7.4.2.3 BOP Operand Address. 0 Field •••••••
7.4.2.4 BOP Operand length, F and' L Fields ••••

7.4.3 DATA AND SIGN CONVENTIONS •••••••••••
7.4.4 BOP NUMERIC ••••••••••••••••••

7.4.4.1 Arithmetic ••••••••••••••••
7.4.4.2 AOON,SUBN,HULN,DIVN-Arithmetic ••••••
1.4.4.3 SCLN.SCLR-Shfft ••••••••••••••
7.4.4.4 MOYN-Move •••••••••••••••••
1.4.4.5 CMPN-Comparison ••••••••••••••

1.4.5 BYTE •••••••••••••••••••••
1.4.5.1 CMP8,CMPC-Comparison •••••••••••
7.4.5.2 SCNB-Byte Scan ••••••••••••••
1.4.5.3 TRANS-Translate ••••••••••••••
7.4.5.4 MOYS-Move • • • • • • • • • • • • • • •••
1.4.5.5 EDIT-Edit •••••••••••••••••

1.4.6 IMMEDIATE DATA ••••••••••••••••
1.4.6.1 HOYI-Move Immed Data (Xil Right plus 0 to

O(Ak) •••••••••••••••••••
1.4.6.2 CMPI-Comp~re Immed Oata(Xi) Right plus 0

to D(Ak) •••••••••••••••••
7.4.6.3 AOOI-Add Im~ed Data (Xi) Right plus 0 to

O(Ak) ••••••• e •••••• e ••••

1.5 FLOATING POINT INSTRUCTIONS ••••••• e· ••••

7.5.1 GENERAL DESCRIPTION • • • • • • • • • • • • • •

86/10/17
Rev: F

'1-21
1-21
1-22
7-22
1-22
7-23
1-23
1-24
1-24
1-25
7-25
1-26
1-26
1-27

1-27
1-28
7-28
7-28
1-29
7-29
1-30
1-30
7-32
7-32
1-34
'7-.34
7-35
1-35
7-37
7-31
1-38
1-38
7-39
1-40
1·-41
1-44
1-44
7-45
1-45
1-46
1-41
1-48
1·-48
7-49

1-49

1-50

1-52
1-52
7-53

CDC - ADVANCED SYSTEMS DEVELOPMENT

crBER 180 II Assembler ERS

7.5.2 FORMATS ••••••••••••••••••••
1.5.3 EXPONENT ARITHMETIC ••••••••••••••
1.5.4 NORMALIZATION •••••••••••••••••
7.5.5 DOUBLE PRECISION REGISTER DESIGNATORS •••••
1.5.6 CONVERSION ••••••••••••••••••

7.5.6.1 CNIF-Convert From Integer to F loati n9
Point •••••••••••••••••••

, 1.5.6.2 [NFl-Convert Floating Point to Integer ••
1.5.1 ARITHMETIC ••••••••••••••••••

1.5.1.1 AOOF,5UBF-Add/Subtract, Xk ••••••••
1.5.1.2 MUlF-Product. to XK ••••••••••••
7.5.1.3 OIVF-Quotient to XK ••••••••••••
7.5.7.4 ADDD,SUBD-Add/Subtract. Xk and Xk+l ••••
1.5.7.5 MULD-Product to Xk and Xk+l ••••••••
7.5.7.6 DIVD-Quotient to Xk and Xk+l •••••••

7.5.8 BRANCH ••••••••••••••••••••
1.5.8.1 BRFEQ,8RFNEtBRFGT.BRFGE-Compare and 8ranch
1.5.8.2 BROVR.8RUNO,BRINF-Exception Branch ••••
7.5.8.3 CMPF-Compare •••••••••••••••

7.6 SYSTEM INSTRUCTIONS ••••••••••••••••
1.6.1 NON-PRIVILEGED MODE • • • • • • • • • • • •••

7.6.1.1 EXECUTE, HALT. SYNC ••••••••••••
1.6.1.2 CALlSEG.CAllREl-Cal1 •••••••••••
7.6.1.3 RETURN ••••••••••••••••••
7.6.1.4 POP ••••••••••••••••••••
7.6.1.5 EXCHANGE •••••••••••••••••
1.6.1.6 KEYPOINT •••••••••••••••••
1.6.1.7 ("PXA-Compare Swap ••••••••••••
7.6.1.8 lOSEr-load Sit ••••••••••••••
1.6.1.9 TPAGE-Test Page ••••••••••••••
7.6.1.10 CPYTX-Copy Free Running Counter(TIHE) to

X ••••••••••••••••••••
1.6.2 lOCAL PRIVILEGED MODE •••••••••••••

7.6.2.1 lPAGE-load Page Table Index ••••••••
1.6.3 GL08AL PRIVILEGED MODE ••••••••••••

1.6.3.1 INTRUPT-Interrupt Processor ••••••••
1.6.4 MIXED MODE ••••••••••••••••••

1.6.4.1 BRCR-Branch and Alter Condition Register •
7.6.4.2 CPYSX.CPYXS-Copy State Registers •••••
7.6.4.3 PURGE-Purge Buffer ••••••••••••

7.1 VECTOR INSTRUCTIONS ••••••••••••••••
7.7.1 GENERAL DESCRIPTION ••••••••••••••
7.7.2 COMMON ATTRIBUTES OF VECTOR INSTRUCTIONS •••
7.7.3 INTEGER VECTOR ARITHMETIC •••••••••••

7.7.3.1 AODXV-Add Integer Vectors •••••••••
1.7.3.2 SUBXV-Subtract Integer Vectors ••••••

1.7.4 INTEGER VECTOR COMPARISON •••••••••••
7.1.4.1 CHPEQV-Integer Vector Comparison - Equal •
1.7.4.2 CMPLTV-Integer Vector Comparison - less

Than •••••••••••• • • • • • • •
7.1.4.3 CMPGEV-Integer Vector Comparison -

Greater Than Or Equal •••••••••••
7.1.4.4 CMPNEV-Integer Vector Comparison - Not

5

86110/17
Rev: F

7-53
7-56
1-56
1-51
7-51

7-51
1-58
7-58
'7-58
1-59
1-59
7-59
7-60
7·-60
7-60
1-61
1-63
1-63
1-64
1-64
7-64
1-64
7-61
1-67
1'-68
7-68
1-69
7-10
7-70

1-11
7-11
1-12
1-12
1-13
7-1:3
1-74
7-15
1-16
7-71
1-77
7-11
7-78
1-18
1-79
7-79
1-19

1-80

1-80

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

Equal • • • • • • • • • • • • • • • • • • •
7.1.5 SHIFT VECTOR CIRCULAR •••••••••••••
7.7.6 LOGICAL VECTORS ••••••••••••••••

1.1.6.1 lORY-Inclusive Or Vectors ••••••••.•
1.1.6.2 IORV-Exclusive Or Vectors •••••••••
7.7.6.3 ANDY-Logical And Vectors •••••••••

1.1.7 CONVERT VECTORS ••••••••••••••••
1.1.1.1 CNIFV-Convert Vector From Integer to Float
1.7.1.2 CNIFV-Convert Vector From Float to Integer

1.7.8 FLOATING POINT VECTOR ARITHMETIC •••••••
1.1.8.1 AOOF-Floating Point V~ctor Sum ••••••
7.7.8.2 SUBFV-Floatiog Point Vector Difference ••
1.1.8.3 MUlFV-Floating Point Vector Product ••••
7.1.8.4 DIVFV-Floating Point Vector Quotient •••

7.7.9 FLOATING POINT VECTOR SUMMATION ••••••••
1.7.9.1 5UMfV-Floating Point Vector Summation •••
1.1.9.2 HRGV-Merge Vector •••••••••••••

7.1.10 GATHER AND SCATTER VECTOR ••••••••••
1.7.10.1 Gather Vector •••••••••••• ' ••
7.7.10.2 Scatter Vector ••••••••••••••

8.0 (YHER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS • • •
e.l SYMSHlIC NOTATION •••••••••••••••••
8.2 IOU MACHINE INSTRUCTION FORMATS ••••••••••
8.3 IOU ADDRESS MODES •••••••••••••••••

8.3.1 NO-ADDRESS MODE (N) ••••••••••••••
8.3.2 CONSTANT MODE (C) • •• • • • • • • • • • • .• •
8.3.3 DIRECT MODE (0) ••••••••••••••••
8.3.4 INDIRECT MODE (ll •••••••••••••••
8.3.5 MEMORY MODE (H) ••••••••••••••••

8.4 NOMENCLATURE USED IN IOU INSTRUCTIONS •••••••
8.5 GENERAL IOU INSTRUCTIONS •••••••••••••

8.5.1 BRANCH INSTRUCTIONS ••••••••••••••
8.5.1.1 lJM, RJM, UJN, lJN, NJN, PJN, MJN •••••

8.5.2 SHIFT INSTRUCTION •••••••••••••••
8.5.2.1 SHN ••••••••••••••••••••

8.5.3 LOAD AND STORE INSTRUCTIONS ••••••••••
8.5.3.1 LON, LeN, loe - LOAD bits by NO ADDRESS

and CONS T ANT. • • • • • • • • • • • • • •
8.5.3.2 LOOt LOOL, STD, SlDl - LOAD/STORE bits by

DIRECT mode • • • • • • • • • • • • • • • •
8.5.3.3 LOI, lOlL, STI, SIll - LOAD/STORE bits by

INDIRECT mode • • • • • • • • • • • • • • •
8.5.3.4 lOM, lOMl. 5TM, STMl - LOAO/STORE bits by

MEMORY mode • •• • • • • • • • • • • •• •
8.5.4 ARITHMETIC INSTRUCTIONS ••••••••••••

8.5.4.1 AON, ADC, SBN - ADD/SUBTRACT by NO
ADDRESS and CONSTANT •••••••••••

8.5.4.2 ADO, ADOl, sao, seot - ADD/SUBTRACT bits
by DIRECT mode ••••••••••••••

8.5.4.3 AoI, AOll, 581, SaIL - ADO/SUBTRACT bits
by INDIRECT • • • • • • • • • • • • • • • •

8.5.4.4 ADM, ADMl, S8M, SBMl - ADO/SUBTRACT bits

6

86/10/17
Rev: F

1-80
1-81
7-82
·7-82
7-8.2
7-82
1-83
7-8.3
7-83
1-83
1-83
7-83
1-84
1-84
7-84
1-84
7-85
1-85
1-65
·1-86

8-1
8-1
8-1
8-3
8-3
8-3
8-3
8-3
8-3
8-4
8-5
8-5
8-5
8-7
8-1
8-7

8-8

8-8

8-9

8-10
8-11

8-12

8-12

8-13

CDC - ADVANCED SYSTEMS DEVELOPMENT

(YBER 180 II Assembler ERS

by MEMORY mode ••••••••••••••
8.5.5 LOGICAL INSTRUCTIONS •••••••••••••

8.5.5.1 LMN. lHe, LPN, lPC. SeN - NO ADDRESS and
CONSTANT modes ••• • • • • • • • • • • •

8.5.5.2 lHO. lMDl, lPOl - Instructions using
DIRECT mode • • • • • • • • ~ • • • • • • •

8.5.5.3 lMI, lMIl, lPIl - Instructions using
INO IREer mode. • • • • • • • • • • • • • •

8.5.5.4 LMM, LMMl, lPHl - Instructions using
MEMORY mode • • • • • • • • • • • • • • • •

8.5.6 REPLACE INSTRUCTIONS •••••••••••••
8.5.6.1 RAD, RADl - REPLACE ADD using DIRECT mode •
8.5.6.2 AOD, AOOL, SOD, SOOl - REPLACE

ADO/SUBTRACT ONE using DIRECT •••••••
8.5.6.3 RAI, RAIL - REPLACE ADD using INDIRECT

mode •••••••••••••••••••
8.5.6.4 AOI, AOIl, SOl, SOIL - REPLACE

ADD/SUBTRACT using INDIRECT • • • • • • • •
8.5.6.5 RAM, RAML - REPLACE ADO using MEMORY mode •
8.5.6.6 ADM, AOML, SOH, SOHL - REPLACE

ADD/SUBTRACT ONE using MEMORY mode ••••
8.5.1 CENTRAL MEMORY ACCESS INSTRUCTIONS ••••••

8.5.7.1 lRO, SRD, - LOAD/STORE R Register in IOU
Memory ••••••••••••••••••

8.5.1.2 (RO, CROl, CWO, CWOL - RDIWR CPU t-temory,
DIRECT mode • • • • • • • • • • • • • • • •

8.5.1.3 CRM, CRML, CWM, CWMl - READ/WRITE eM
Blocks ••••••••••••••••••

8.5.1.4 RDSl, RDCL - REAO CM and SET or CLEAR LOCK
8.5.8 INPUT/OUTPUT INSTRUCTIONS •••••••••••

8.5.8.1 AJM, SCF, FSJM, IJM, FCJM, FJM, EJM, SFM,
CFM, CCF •••••••••••••••••

8.5.8.2 IAN, OAN - A Register 1/0 Instructions ••
·S.5.8.3 lAM, IAPM, DAM, DAPM ~ BLOCK 110

Instructions •••••••••••••••
8.5.8.4 ACN, DeN - ACTIVATE/DEACTIVATE 110

Channels •••••••••••••••••
8.5.8.5 FAN, FNC - I/O Channel Functions •••••

8.5.9 OTHER IOU INSTRUCTIONS ••••••••••••
8.5.9.1 EXN, HXN, MAN - EXCHANGE JUMP Instructions
8.5.9.2 PSN - PASS Instruction ••••••••••
8.5.9.3 KPT - KEYPOINT Instruction ••••••••
8.5.9.4 INPN - INTERRUPT PROCESSOR • • ••••••

APPENDIX A •••••••••••••
CALtING THE ASSEMBLER • • • • • • • •

APPENDIX B - NOTES AND EXAMPLES •••
PROGRAMMING NOTES • • • • • • • • • •

REGISTER USAGE ••••••••••
GENERAL NOTES • • • • • • • • • • •

SAMPLE PROGRAM •••••••••••
SAMPLE EXECUTION •••••••••

• • • • •• • • •
• • • • •• • • •

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

7

86/10/11
Rev: F

8-15
8-16

8-16

8-18

8-19

8-20
8-21
8-21

8-22

8-23

8-23
8-25

8-25
8-.21

8-28

8-29

8-31
8-3.3
8-34

8-.34
8-37

8-38

8-42
8-4·3
8-44
8-45
8-46
8-46
8-47

Al
Al

81
81
81
B1
82
B3

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 II Assembler ERS

APPENDIX C - RESERVED WORDS • • • • •

APPENDIX D - ERROR MESSAGES • • • ••
LISTING ERRORS •••••••••••

• • • • • • •

• • • • • • •
• • • • • • •

APPENDIX E ••••••••••••••••••••
CVBER 180 CPU SYMBOLIC MACHINE INSTRUCTION SUMMARY

• •

• •
• •

• •
• •

8

86/10/17
Rev: F

Cl

01
Dl

El
El

APPENDIX F ••••••••• • • • • • • • • • • • • • Fl
II ASSEMBLER DIFFERENCES VERSUS CI ASSEMBLER ••••• Fl

