1
COC - ADVANCED SYSTEMS DEVELOPMENT

_ B&/10717
CYRER 180 1! Assembler ERS Reve: F

CYBER 180 II ASSEMBLER
for
CPU and 10U
EXTERNAL REFERENCE SPECIFICATIDN

(55233)

D S ASS A N W A G T N D A U T A D DA T T WD W AT A WU T W W WU T

This product 1is intended for
used only as described in this
document. Control Data cannot
be responsible for the proper
functioning of undescribed
features and parameters.

A S D W A W TR W D W D A D U T A S WD S W AW A DT S A D -~

o oy o - —

{c) Copyright Control Data Corporation 1985



2

CDC - ADVANCED SYSTEMS DEVELDOPMENT
86710717
CYBER 180 11 Assembler ERS Rev: F

REVISION DEFINITION SHEET

REV DATE DESCRIPTION
A 05730780 Original, for CPU Assembler only,
B 09715780 Revised for comments against REV, A,
C 05/705/81 Revised to add 10U mnemonic instructions,
several appendicies, and other corrections.
D gB/14/81 Revised to correct comments against REV, C.
E 12701781 Revised to corect grammatical errors, delete
obsolete pseudo-op GEN from examples, correct
errors in descriptions of the 10U
instructions, update titles and update this
revision page. Since revision D of this
document was never submitted to DCS the
ravision bars have been generated relative to
revision C.
F D4/711/785 Revised to include vector instructions for

the Cyber 180-990, Appendix A, which
describes the command parameters, changed to
include the LIST_DOPTINNS parameter.



1-1
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6710717
CYBER 180 11 Assembler ERS Revs F
1.0 SCOPE
1.0 3C0PE

This document is the external specification for the CYBER 180
1T Assembler, This assembler runs on the CYBER 180 machine in
CYBER 180 mode and assembles either CYBER 180 CPU or CYBER 180
IDU  code. The object program output of the Assembler is
compatible with the NOS/VE loader., The II Assembler 1is the
language successor to the CI Assembler described in the ARH1693
ERS document.

1.1 APPLICABLE DOCUMENTS

The following documents reference related material which would
be of value to the reader.

. CYBER 180 Mainframe Model Independent GDS (MIGDS), Rev., S
{ARH 1700},

CYBER 180 CI CPU Assembler ERS (ARH 14693).

NOS/VE Command Interface
. NOS/YE Program Interface



2-1
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 II Assembler ERS Rev: F

2.0 LANGUAGE STRUCTURE

2.0 LANGUAGE STRUCTURE

A CYBER 180 Assembly language source program consists of a
sequence of statements which contain symbolic  machine
instructions, pseudo instructions, and comment lines, With the
exception of the <comment lines, each statement consists of a
label field, an operation field, argument field(s), and a
comments field. Each field is terminated by one or more blank
characters, The size of the argument field is restricted by the
maximum statement size only. Statement format is essentially
free field, except for the label field which must start in column
1.

A statement consists of one or more physical lines of data. A
line may be up to 255 characters 1long and the Assembler will
print the entire line at the rate of 88 characters per print
line. Assembler will only examine the first 88 characters of a
line. Information after column 88 is presumed to be comments,

The language also supports a procedure mechanism with
parameter capability. Each time the name of the procedure Iis
referenced, the body of the procedure will be inserted in the
code. This will be further explained in the section entitled
'"Procedures?.,

2.1 STATEMENT

A statement is an ordered group of fields starting (from left
to right) with one Label field followed by 0Operation and Argument
fields and one Comments Ffield. The number of fields allowed in a
statement is not limited. The comments field is optional, but
the other fields must be accounted for by field delimiters. A
statement may be continued onto more than one line, but no more
than one statement is allowed per line,

2.1.1 FIELD

A Field 1is a consecutive group of characters starting with a
non-blank character and terminated by a blank character
end-of-line, or character position 88 of the line, whichever
occurs first,

The only exceptions to this definition are:

a) Blanks may appear freely in a CHARACTER STRING without



2=2

COC = ADYANCED SYSTEMS DEVELDPMENT
B&710/717
LYBER 180 Il Assembler ERS Rev: F

. - — W D W A VD A T - VA T . -

2.0 LANGUAGE STRUCTURE
2.1.1 FIELD

causing field termination.
b} Blanks may appear freely in the COMMENTS field.

¢} If a continuation character "3;¥ is encountered within a field
which is not a COMMENTS or CHARACTER STRING, the field is
continued on the next line.

d) Extra or spurious fields in a statement are not detected and
no error is diagnosed.

2.1.2 SUBFIELD

A Subfield is a consecutive group of characters starting with
a non-blank character and terminated by a comma ¥,¥ or by
End-Nf-Fieldy, whichever occurs first. A field may have one or
more subfields.

The only exceptions to this definition are:?

a) Commas may appear freely in a CHARACTER STRING without
causing subfield termination.

b) Commas may appear freely in the COMMENTS field.

¢) If a continuation character ¥3;¥ s encountered within a
subfieldy, the subfield is continued on the next line.

d) FExtra or spurious subfields in a field are not detected and
no error is diagnosed.

2.1.3 NULL FIELD

The absence of a field or subfield is automatically detected
by the Assembler based on the number of fields. An  DPERATION
field mpust__not _be_ _Null and must have as many ARGUMENT fields
following it as required by its defining pseudo instruction or
PROCEDURE, although the number of ARGUMENT fields can be variable
and depend on some other field.

The rules for NULL field:

a) A blank in character position 1 of a line indicates the
absence of the LABEL field on that line. The next non-blank
character on the line, excluding comments, is accepted as
part of an OPERATION field.



2=3
CDC - ADVANCED SYSTEMS DEVELOPMENT
B6/10/17
CYBER 180 I Assembler ERS Rev: F

2.0 LANGUAGE STRUCTURE
2.1.3 NULL FIELD

b} An DPERATIDON field cannot be blank.

c) Two consecutive commas indicate the presence of a null
suybfield,

d) One comma "," followed by a blank indicates (as specified)
end-of-subfield and end-of-field and can be used to delimit
trailing Null subfields. The configuration blank,blank
indicates a Null field with two Null subfields,

2.2 COMMENTS

Comments may start in any column, but are always the last
field on a line, and end at end of line, All:comments must begin
with a period. Scanning by the Assembler stops when a period
preceded by a blank or a period in column 1 is encountered, thus
comments may contain any Ascii charactery, Iincluding characters
that would otherwise have special meaning {e.g. the semicolon
which denotes continuation when used outside of comments).

When a statement is continued to the next line, comments may
appear after the continuation character on the 1line being
continued.

2.2+1 STATEMENT CONTINUATION

Normally, column 88 terminates a source starement that has not
otherwise terminated, However, a statement that cannot be
contained in the first BB characters can be continued on
successive lines by placing a semi-colon "3;¥ at the continuation
point.s A statement may only be broken between fields, subfields,
or terms of an expression. A term may not be broken onto 2 lines
{eeg. a long character string must fit on one 1line). The
statement will be continued at the first non-blank character on
the next line at or after character position 2, Character
position 1 of all continuation lines must contain a blank. The
continuation character, if used, must appear at or oprior to
character position 88.

The only exceptions to this definition are:

a) Semicolons may appear freely in a CHARACTER STRING without
causing continuation. This implies that character strings
cannot be continued across statements,

b) Semicolons may appear freely 1in a COMMENTS field without
causing continuation. Comments cannot be continued across



2=4

COC - ADVANCED SYSTEMS DEVELDPMENT
B6/10/717
CYRER 130 11 Assemblﬁr ERS Rev: F

2.0 LANG%AGE STQ”CTURE
2.2+1 STATEMENT CONTINUATIDON

A WD VR A A AN B WD N W W A T U A N D W D AN D A WD U WD VU A N D A T D T VG D WD D D DT D D ST B N T AT A A A WY D T U D W

statements.,

2.3 CHARACYER 3£

The Assembler recognizes the following, graphic character
subset of the NOS/VE ASCII character set as input:?

Alphabetic A through 7 {upper or lower case)
22 # _ 3
Numeric 0 through 9

Special Characters:
Blank or Space

Add

Subtract or Unary Minus
Multiply

Divide or Logical NOT
Equal

Less Than

Greater Than

Logical AND

Logical Inclusive OR {vertical bar)
Logical Exclusive DR (double vertical bar)
Less Than or Egqual To
Greater Than or Equal To
Not Equal To

Period or Decimal Point
Comma

Left Parenthesis

Right Parenthesis

Left Bracket

Right Bracket

Apostrophe

Continuation

* Shift

o W i s w8 NV A e VAN S
LI | B

In addition to the <characters 1listed above, the Assembler
accepts the following characters as part of program comments or
as part of a Character String:

"\~ 2?2 % {} ~

The Assembler distinguishes between upper and lower case
characters only when used within character strings enclosed by
quotes.



2-5
CDC - ADVANCED SYSTEMS DEVELDPMENT
86710717
CYRFQ 130 Il Assembler ERS Rev: F
2.0 LANEUAGF STRUCTURE
2.3 CHARACTER SET

Other ASCII characters appearing before the comment field are
diagnosed as an error.

2.4 SYMBOL _DEFINITION

A symbol is a set of alphabetic or numeric characters that
identifies a byte address or a wvalue and its associated
attributes. The symbol must start with any alphabetic character,
and the symbol can be a maximum of thirty-one (31) characters
long, and cannot include any of the special characters. The
colon {(:) may not be used as a character in a user defined
symbol, it 1is reserved for langquage defined names. Symbols are
defined when they are used in the label field of any statement
(CPU, 10U, or pseudo instruction), except for some pseudo
instructions which 1ignore the 1label field and other pseudo
instructions which use the label field for other purposes.

EXAMPLES?:

Legal Illegal
Symbols Symbols

P 543 First character must
be alphabetic,

R3 ABCDEFGHIJUKLMNOPQRSTUVWXYZD12345 FExceeds 31 characters

PROGRAM ABE+15 Contains plus sign

24,1 LINKAGE SYMBOLS

Modules (assembly units) can be linked to other modules
(assembly/compilation wunits) through symbols defined as entry
points.

Entry points in the current module are declared with a DEF or
DEFG pseudo instruction. This allows the entry point to be
referenced from another module, External entry points can be
referenced by declaring them with the REF pseudo 1nstructxon and
are treated as relocatable values.

To link to entry points with different names, a symbol can be
ALTIASed to another symbol.

2.442 SYMBOL ATTRIBUTES

In addition to the value or byte address associated with a
symbol, each symbol has symbol attributes. Symbol attributes are



2-6
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBFR iﬁﬂ 11 Asspmb!er ERS Reva F
2.0 LANGUAGE STRUCTURE |
2.4.2 SYMBOL ATTRIBUTES

various pieces of information about the symbol which describe
properties of that symbol. Attributes are normally associated
with a symbol at the time the symbol is defined. This is an
automatic process within the Assembler and takes place whenever
symbo!l definition takes place,

The CYRER 180 Assembler contains six built-in attributes which
are associated with a symbol, These attributes and their
associated mnemonics ares

Symbol Category 5C:
Address Mode AM3
Symbol Value VA3
Length LBz, LC:, LUz
Starting Bit Position sa3
Symbol- Number SN2

Each attribute is discussed and defined in the section on
Attribute Functions, A symbol's attributes are always referenced
using one of the attribute function mnemonics listed above. This
reference may not be forward. It is used for retrieval only, and
has the form:

attribute_function{symbol)

The Assembler also permits any symbol to have any number of
additional progr ammer defined attributes. These additional
attributes can be given names and values by the programmer and
can have any meaning desired., The values may not exceed 64 bits.,
The names and values can be altered during the course of the
program assembly using the ANAME and ATRIB pseudo instructions.
The ANAME pseudo instruction is wused to assign a pame to a
particular attribute, Following that, a symbol <can then be
assigned a value associated with the named attribute. This
attribute name may then be wused 1in the following manner to
retrieve the value of the attribute:

user_defined_attribute_namelsymboll

An attribute name for'any of the programmer defined attributes
will be valid until changed.



2=7
LOC ~ ADVANCED SYSTEMS DEVELDPMENT
86710717
CYBER 180 I1 Assembler ERS Rev?: F
2,0 LANGUAGE STRUCTURE
2»5 REGISTERS

2.5 REGISTERS

Register designators symbolically represent the 32 operating
registers. The designators are inherent to the Assembler and
cannot be changed during assembly., However, other symbols may be
equated to them. There is an Assembler defined attribute
(#reqtyp) which defines the type of register a symbol represents.

Register Type Designator

Address *An' or a symbol with its #REGTYP attribute
set to “HAREGY,

Operand *Xn* or a symbol with its H#REGTYP attribute
set to YH#XREG™,.

For the forms An or Xn, n is a single hex digit from 0 to F.
Any other value for n, for example H, causes An or Xn to be
interpreted as a symbol rather than a register designator.,

EXAMPLESS
Al Designates address register 1
AlO Interpreted as a symbol, not a register

2.6 DATA _NOTATION

Data notation provides a means of entering values for
calculation, increment counts, operand values, line counts,
control counter values, text for printing out messages,
characters for forming symbols, etc.

The two types of data notation are character and numeric. The
Assembler allows the user to introduce data in the program in two
basic ways.

As a3 self defining term
As a number in numeric data notation
2+6.1 SELF DEFINING TERMS
A Self-Defining Term is a constant whose value is defined by

its structure. The wvalue of a Self-Defining Term is constant
throughout the program and is not altered by the relative



2-8

CDC - ADVANCED SYSTEMS DEVELOPMENT

867107117

CYBER 180 II Assembler ERS Rev: F

2.0 LANGUAGE STRUCTURE
2+641 SELF DEFINING TERMS

- T A M NS W T W N D NN D T W DV 1 A S S0 T -

position of the program in storage. The Assembler uses two
methods by which a Self-Defining Term can be expressad:

a) As an unsigned string of binary, octal, decimal, or
hexadecimal characters, the first character of which must be
a decimal digit, which has the following format:

numer ic_character_string(base)

Base is optional, but when present it must be enclosed by
parenthesis. B8ase may only be hexadecimal {(16), decimal (10},
octal (B), or binary (2). Any other value for base results in an
error, The following examples illustrate the numeric notation:

ALPHA+OFF(16) “OFF(16)" is a Self-Defining Term
3 (NET_PAY) w3® is a Self-Defining Term

The range of this form of Self-Defining Term must be
consistent with its use in the programe

b) As a Generalized Self-Defining Term which has the following
structure

symbol?character~-string?

where the character string is always enclosed by apostrophes
and where Ysymbol" is one of the characters?

Symbol Jype_of Generalized Self-Defining Term

C CHARACIER__SIRING: Constant translated into B bit
ASCII code, The characters <can be any of the
characters in the Assembler character set.®* Note
that a lower case letter will generate a different
8 bit ASCII code than an upper case character. The
maximum string length is limited to one line and
therefor cannot exceed 87 characters.,

Self-defining terms can assume a range of values ({e.qg.
precision or storage occupied) depending on their type and usage.
In all cases however, the Internal representation of a
self-defining term 1is an integral number of bytes., When
transltation from input format to internal representation oOccurs,
self-defining terms are expanded to the next nearest multiple of
bytes, provided they do not exceed the maximum defined below.

#Two consecutive aaote marks in a C character
string are used to indicate a single quote within the string,



2=9
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 11 Assembler EQS Revs: F
2.0 LANGUAGE STRUCTURE
2.6.,1 SELF DEFINING TERMS

M W N A AUD D D T AU WD T T D D D B W T A T A U DA U T AT DTN T A SO WD AP DA NI TS NS S A N D A N T D N W > >

During the expansion process, justification and filling {(where
required) also take place as defined:

brmmm e —————— o ———————— e ———————————— -
I Type of } Minimum | Maximum | i

| Self-Defining | Size | Size | |

] Term | (Bytes) | (Bytes) | Justif:cat;on ] Filling
PO ———— Femm e m - o - premmc e
} Qec:ma? | B | 8 } Right ] Zero

| Hexadecimal | 1 | 8 | Right | Zero

| Octal { 1 ! 8 | Right | Zero

| 8inary § 1 | 3 ] Right ! Zero

! c | 1 las needed] Left | Space

A self-defining term used as a single term expression can
assume any of the values described above, Hhen self-defining
terms are wused as part of a multi-term expression however, the
following additional restrictions apply:

a) When an address symbol is used only the byte offset for the
address is used, Bit offset, if any, and section ordinal are
discarded,

b) The size of all numeric terms (decimal, hexadecimal, octal,
binary, or string will be 8 bytes when arithmetic operations
are performed. Strings are right justified and truncated or
zero filled as necessary to be 8 bytes and are treated as
integer. When an expression contains operators, the result
is 1integer. Arithmetic operations are performed using 2°'s
complement arithmetic. When the expression contains only one
term, the result 1is that term (which is not converted in
form).

2+6+2 NUMERIC DATA NOTATION

Numeric data can be specified in binary, octal, hexadecimal,
or decimal notation with the INT and DINT pseudo instructions.
Only decimal notation is available with the FLOAT and DFLOAT
pseudo instructions, The value is converted to an integer or a
floating point number in single or double precision. Floating
point conversion is performed by a CYBER 180 math library
conversion programs. The actual representation of the output data
is beyond the scope of this document,



2-10

CDC -~ ADVANCED SYSTEMS DEVELOPMENT

B6/10/717

CYBER 180 11 Assembler ERS Rev? F

<
T - N A Y -~

W W T T oA T . W D W T N T W T D S A WD D U S T A T D B D D T A I G A A D W T

2.0 LANGUAGE STRUCTURE
2.6.2 NUMERIC DATA NQTAY!SN

T -

Formarss

Data _Item

sign

- valuye

modifier

Fom - o e . o +

! sign | value | mndtf;er i
A U — A o o o i e 2 +

Optional.
+ or omitted The value is positive,.
- The negative value is formed.

A series of binary, octal, hex or decimal digits
consisting of an integer (required)s optional
decimal point and optional fraction, or optional
base. An integer value (fixed point) does not
contain a point, but may contain an optional base
indicator enclosed in parenthesis. The fixed point
format is thus a numeric, self-defining term with a
sign preceding. A floating point value is noted by
the occurrence of the point. If point occurs then
base may not occur and value is decimal.

An octal value can be a maximum of 22 octal digits
and cannot exceed 64 bits of significant data. A
decimal value cannot exceed 5,2 x 10%%1232 in
absolute value., used in a floating point pseudo
instruction. Extra significant digits cause a
diagnostics A hex value can be a maximum of 16
digits. If wvalue is omitted, it is assumed to be
zero. The actual minimum or maximum values
permitted are further limited by the pseudo
instruction in which the data notation appears.

Associated with the value is an optional exponent
modifier., Exponent defines a power of 10 scale
factor.

Format is £, En,y, E£E+n, or E-n.

When the sign is plus or omitted, the exponent (n)
is positive,

When n 1is omitted, it 1is assumed to be 0. The
value of n cannot exceed 32767 and 1is always a
decimal integer.

A fixed point value can have 32-bits or 64-bits of
precision and a floating point wvalue can be



2~11
CDC - ADVANLCED SYSTEMS DEVELOPMENT
R&/10/717
CYBER 180 11 Assembler ERS Rev: F
20 LAMGUAGE STRUCTURE
2.5H22 NUMERIC DATA NDOTATION

generated in either single precision {one word) or
double precision (two words), depending on the
pseudo instruction.

The effect of the exponent is to multiply the value
by 10 decimal raised to the n power or =n power.
Limitations of maximum and minimum values and
exponents may be found in the appropriate CYBER 180
math library documents,

Legal_ Illegal  Explanation
Examples:? -21904% 316E missing base
3.14159 7F{16)E~3 value must be decimal
1., 76-6 + 2893 interpreted as comments.

2.7 EXPRESSIONS

Entries in sub-fields of most source statements are
interpreted as expressions consisting of a combinartion of one or
more terms. A comma or blank terminates the expression.  When
symbolic names appear as terms in expressions the Assembler must
be able to replace the symbolic name with its associated value.
The association of a symbolic name with a value is called symbol
definition and is described in Section 2.4. An expression in
which all the symbolic names can be evaluated {which means the
expression can be reduced to a single value) is said to be an
Yevaluable expression”. An Yabsolute evaluable expression® is an
expression whose symbolic name terms are all defined in
statements previous to the current statement,

2.7+1 TERMS

A term represents an evaluation made during the assembly
process., A value is assigned to a term either by the Assembler
or the term may be self-defining ({as in the case of a constant).

A term can be a3

Symbol that is evaluable
{One that Assembler can associate with a value)

Self-defining term
fFunction reference

Attributes



2~12
DL - ADVANCED SYSTEMS DEVELOPMENT
B6710/717
CYBER 180 JI Assembler ERS Revy: F
2»0 LAMGUAGE STRUCTURE
27«1 TERMS

Register designator

2.7.2 ORDER OF EVALUATIDN

Expression evaluation normally is determined by the binding
strength of the operators involved, This can be altered by the
use of parenthesis. Terms inside of parenthesis are evaluated
First. Parenthesis can be nested to any depth, and will be
evaluated in the order of innermost to outermost. An expression
such as INDEX+4 or AD*{94+PAN), is reduced to a single value as
follows:

a) The expression takes on the attributes of the first term in
the expression from left to right.

b) fach term is given its defined value. When arithmetic
operations are per formed on a term it's internal
representation is converted to integer. MWhen strings are
used as arithmetic terms they are truncated, if necessary, or
right justified with zero fill, if necessary, to occupy 8
bytes and are treated as an integer.

c) Arithmetic operations are performed from 1left to right,
Operations at the same parenthetical level within the highest
binding strength are performed first. For example:

VE+VXFAE/ZAX
is evaluated as VE+{{(VX*AE)/AX).,

d) Division always vields a truncated integer result and

division by zero vyields a zero result with a generated

diagnostic.

The operators processed by the Assembler during expression
evaluation are?



CDC -~ ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 11 Assembler ERS

A A W T S T G AT WO NS AT NP VA N A D M T S S

2.0 LANGUAGE STRUCTURE
2+.7.2 ORDER OF EVALUATION

—— - - D S W A Wy -~

Operators Binding Strength

+ 7
- 7
/ 7

1
48
>

* 5
/ 5
+ 4
- 4
< 3
> 3
<= 3
>= 3
= 3
/= 3
& 2
| 1

11 1

NOTE: A1l  operators

2=-13

BH/10/717
Revs: F

W D D W T D D A D D AU T T WD A W D WA . WA T D N AT AU N "

Eunction
Plus {unary)
Minus (unarvy)

Logical NOT or Complement
{unary)

Binary Shifr (logical)
Integer Multiply
Integer Divide
Integer Add

Integer Subtract

Less Than

Greater Than

Less Than or Equal
Greater Than or Equal
Equal

Not Equal

Logical AND

Logical DR

Logical Exclusive OR

{i.e2.y require two operands)

except the three specifically indicated as wunary. These

require only one operand.

2.7.3 THE LOGICAL NOT OPERATOR

The logical NOT

comp lement operator causes a one's

comp lement of its operand, based on a length of 64 bits.,

Yalue B8inary Eguivalent

One's _Complement



2-14

CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/10/717

£782R 180 IX Assembler ERS Rey?

2.0 LANGUAGE STRUCTURE
2.7.3 THE LOGICAL NOT DPERATOR

F

T A T - W T TS W T S T T I S D D U VD W D U W TN Uy O A D W YD WO D D I A T D WD T T D . D WD W W

5 000,..0101 111...1010
12 000...,1100 111...0011
2.7.4 LOGICAL AND, OR, EXCLUSIVE DR

The logical AND, OR, and exclusive 0OR compare two operands YAY
and "B" as follows:?

A o o o b
tAalsfts V1 It
R et S R SR Rl S et
{ | ] ! ] |
f1 4141 11 1Yo |}
f11to0t1o 1t 11 1
fotrti1410 t1 11 1
fototo o o |
! | ! l 1 }
+ + + + + +

- o -

2.7+.5 THE BINARY SHIFT OPERATOR

The Binary Logical Shift Uperator determines the direction of
shift based on the sign of the second operand: a negative operand
denotes a right shift and a positive operand denotes a left
shift, For example: 7%%(-2) results in a logical right shift of
two bit positions for the operand 7. Shifts are end-off with
zero bit replacement.

2+.7+6 THE COMPARISON OPERATORS

The result of any comparison produced by the comparison
operators is: False = 03 True = 1,

FXAMPLES:

Expression Yalus

9>11 0 {9 is not greater than 11)

/3=4 0 {the word-size wvalue /3 is
equal to 11.,..1100 and is not
equa‘ to 43 i-e.) OOnQQOIEO)

3/=4 S | {3 is not equal to 4)



2-15
CDC - ADVANCED SYSTEMS DEVELDPMENT

86710717
CYBER 180 11 Assembier ERS Revs F
2.0 LANGUAGE STRUCTURE
2: 7.6 THE CDMPARiSGN GPERATERS
/{3=4) 1144011 {3 is not equal to 4, so the

result of the comparison is 0
which NOTed becomes a word size
value of all 1's,)

2.8 ABSOLUTE AND_RELDCATABLE TERMS AND EXPRESSIONS

Any term in an expression may be relocatable or absolute
{non-relocatable). A relocatable term is one which represents
the location of some piece of assembled code (i.e. represents an
address in the memory of the computer). Its symbol category
would be 6. An example would be the label of a 855 statement.

An absolute expression consists of either an absolute term or
a combination of terms that, when evaluated, has no relocation.
An  absolute term is an absolute symbol or a constant. All
operators may be used with absolute terms. Absolute terms are
always internally represented in the 2's complement number system
{the number =0 does not exist in this system). When the
Assembler is generating object data for an I0U module the data is
then converted to the 1's complement number system at the time
the data is output.

A relocatable expression consists of a single relocatable term
or a number of terms that, when evaluated, has relbcation. A
relocatable term results when an absolute term is added to or
subtracted from a relocatable term and the result is not negative
and does not exceed the storage capacity of a section. All
arithmetic operations may be performed on relocatable terms. If
a relocatable term cannot result, then the relocatable term is
first converted to an absolute term whose value is the byte
offset of the relocatable term and the result of the arithmetic
operation is an absolute term,

If an absolute value is required of an expression, then it is
converted to absolute value, A relocatable value is required
only for certain operands of the ADDRESS pseudo instruction. If
an expression contains only a single term, the result is that
term and the result may be absolute, relocatable, or string.



3-1
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 II Assembler ERS Rev?: F

3.0 PROGRAM STRUCTURE

3.0 PROGRAM_STRUCTURE

This chapter describes the general structure of a program. In
some casesy, 1t repeats information described elsewhere and
correlates it so that the programmer will obtain a better
understanding of how the program 1is assembled, loaded, and
executed, Some references are made to the NIOS/VE Loader but for
a complete description of the loader, refer to the applicable
NOS/YE document.,

A CYBER 180 program consists of one or more modules that can
be assembled separately, either in the same computer run or in
independent runs., The Assembler will assemble many modules from
the same input file per call, These many program modules can all
be written in the Assembler source language, or can be written in
any other source language available in the product set of the
operating system as long as the compiler or Assembler produces
relocatable binary output in a form acceptable to the NOS/VE
loader. An Assembly language module is composed of statements
beginning with an IDENT pseudo instruction and ending with an END
pseudo instruction,

The Assembler repertoire includes pseudo instructions that
facilitate relocatable module linkage., Through these Jlinkages,
modules loaded together can transfer control to each other and
can access common storage locations,

The Ffirst topic considered in this chapter is the program
module and how the Assembler and the programmer organize the
object code into program sections. Following this is a brief
description of the counters that control the sections.

3.1 PROGRAM SECTIONS

A CYBER 180 Assembly program is a collection of statements
which are translated via an assembly process, into a CYBER 180
ob ject module, Object modules resulting from separate
assemblies, or compilations by a CYBER 180 Compiler (CYBIL,
FORTRAN, etc.) can be combined, via a linking process, into a
single object module, and may undergo further transformation into
a form capable of direct execution by the CYBER 180 hardware.

A set of statements between an IDENT pseudo instruction and an
END pseudo instruction is a program module. A CPU program module
can be divided into sections having different attributes. For
instance, the CODE section has the attributes of READ and



3-2
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 11 Assemb!er ERS va‘ F
3.0 PROGRAM STRUCTURE
3.1 ?RQGR&H SECTIONS

EXECUTE, while the WORKING section is READ and WRITE. The use of
sections provides a means of code protection. As assembly of a
program module proceeds, the Assembler or the user designates
that object code be generated or that storage be reserved in
specific sections. By properly assigning code sequences, data,
or reserved storage areas in blocks through use of ORG or USE, a
programmer can intermix instructions and data for the different
sections. The Assembler assigns locations in a section
consecutively as it encounters instructions destined for the
section. A symbol defined within a section is not local to the
section. That is, it is global and can be referred to from any
other section in the program,

For the CPU there are several types of sections available, but
for the IDU only one section is permitted., 0Only a CPU module may
contain SECTION or USE statements. 1f a CPU module does not
contain a USE instruction or if object code is generated (or
storage reserved) before the first USE instruction, the Assembler
places the object code in the CODE section, which is one of the
five default sections. The user controls wuse of the
default~sections and any user-established sections, through USE,
ORG, and SECTIDN pseudo instructions.

3.1,1 DEFAULT SECTIONS
The following is a 1list of default sections and their
attributes established for the user by the Assembler?

CPU SECTIDNS:

CODE READ+EXECUTE
HWORKING READ+WRITE
BINDING* BIND+READ
STACK= READ+MWRITE

I0U SECTIDNS:
CODE READ+WRITE+EXECUTE

3

Symbols may be associated with addresses in these sections,
but data may not be initialized at assembly time except for
the BINDING section in which pointers may be established
through the use of the ADDRESS pseudo instruction.

3.1.2 THE BINDING SECTIDN
The BINDING section 1is a special purpose section whose

function is to permit access to data and code that {is either
internal or external to the current module. This is accomplished



3-3
CDC - ADVANCED SYSTEMS DEVELOPMENT
B6/710/717
CYBER IEQ II ASSthier £RS Rev: F
3.0 P&B&QAM STRU(?U&E
3.1.2 THE BINEINS SECTIDN

via pointers in the BINDING section which are built by the NDS/VE
1oader. In addition, the MDOS/VE Library_Generator may *bind®
modules together., Part of this "bindingY process consists of
consolidating the separate BINDING section of each module into
one common BINDING section by eliminating redundant entries
{pointers) in the BINDING section. This means that "binding"
inherently requires that entries in the BINDING section be Yorder
independent¥, The wuser must beware to preserve this Yorder
independence¥,

It is recommended that reference to the pointers in the
BINDING section be limited to the "load" type instructions {(See
Section 7.3.1) or the CALLSEG instruction. For these
instructions the Assembler inherently generates Yrelocation"
ob ject text which permits the Library_Generator to adjust the
displacement field of these instructions to a new value as a
result of module "binding¥.

The use of other CPU instructions {e.g. ADDRQ) or generation
of data which contains a displacement relative to the BINDING
section. is permitted and the Assembler will generate the
necessary YrelocationY object text with the assumption that the
field {displacement) being generated 1is an unsigned positive
field. If this assumption 1is not <correct, the relocation
attributes may be specified by the intrinsic Relocation_function
{R2) (See Section 5.1.9). If the relocation attributes cannot be
specified by the relocation function {(R:), then the module cannot
be bound and if the module is to be assembled without diagnostics
the module must be declared YNONBINDABLEY via the MACHINE
statement (See Section 4.2.1).

3.2 SECTION CONIRDL_COUNIER

Each section has a section counter from which the byte offset
from the beginning of the section, and the bit offset iIn the
current byte can be obtained. The Assembler automatically
updates and maintains this counter when a section is first
established, or its use is resumed. The current contents of the
location counter may be returned as a relocatable value via the
location counter function % {(dollar sign).

The byte offset is the relative location of the next byte to
be assembled or reserved in the section. It is possible to
increment the byte offset simply by wusing either ORG or B8SS
pseudo instructions. ORG also permits the programmer to reset
the counter to some lower location in the sections The current
byte offset can be referenced by using the function ${0).



3=4
CDC = ADVANCED SYSTEMS DEVELDOPMENT
B6710/717
CYBER 180 I1 Assembler ERS Rev: F
3.0 PROGRAM STRUCTURE
3,2 SECTION CONTROL CODUNTER

N A - . W N W T W AT WD A A A A T D Tl B U A T NG AP D WD A N T N A D D S T DD D A WD D T A . W W

The bit offset points to the next bit to be used in the
current byte, and can range in value from 0 to 7 for a CPU module
and D to 15 for an I0U module, It can be referenced by using the
function $%$(1).

3.2.1 FORCING PARCEL ALIGNMENT

A parcel is the minimum instruction size of either the CPU or
10U, For both the LPY and INU a parcel i5 2 bytes or 16 bits,
The CYBER 180 hardware requires that all instructions start on a
parcel boundary. For the CPU this also means that the byte
address of the instruction must be even., In a CYBER 180 Virtual
Machine assembly, if any of the following conditions are true,
the Assembler forces parcel alignment.

- Insufficient room remains in a partially filled parcel for the
next instruction to be generated.,

- The current statement is an END, IDENT, or ALIGN 0,2 pseudo
instruction.



4=1

COC - ADVANCED SYSTEMS DEVELDPMENT
BH/710/17
CYBER 1BD 11 Assembler ERS Rev: F

4,0 PSEUDD INSTRUCTIONS

4.0 PSEUDD_INSTRUCTIONS

Pseudo instructions are instructions needed by the programmer
to write programs, but for which there are no hardware
equivalents,

Pseudo instructions discussed in this chapter are classified
according to application as follows?

Module identification (IDENT and END)

Binary control (MACHINE)

Symbol assignment {EQU, SET, ANAME, ATRIB)

Module linkage (DEF, DEFG, REF, ALIAS and ADDRESS)

Data generation {BSSZ, INT, DINT, FLOAT, DFLGAT,.Pﬂﬁc, M,
VFD and TRUNC)

Assembly control (DGO, ELSE, DEMD, WHILE, and SKIPTOD)
Error control (ERROR, FLAG)

Listing control (LIST, PAGE, SPACE, TITLE, XRSY)
Section control {SECTION, USE, ORG, P0OS, B8SS, ALIGN)

Procedure/function pseudo instructions (PROC, PEND, PNAME,
FNAME LOCAL, DPEN, CLDSE, CONT)

In generaly, pseudo instructions can be placed anywhere in a
module, The following list of pseudo instructions is valid only
for a CPU module, The presence of any of these instructions in
an INU module will generate and error.

ADDRESS ALIAS DEF DEFG DFLOAT DINT
FLDAT INFOMSG PDEC REF SECTION USE

4.1 MODULE_IDENTIFICAYION

Module identification pseudo instructions designate the
beginning and end (IDENT-END) of a module).



4=2
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBEQ 1%0 II Assemb!er ERS Rews: F
4,0 PSEQDQ {MSTRU€?IGMS
%.1.1 IDENT - MODULE IDENTIFICATION

U A WD A D DU A D WD D A D A T N A N A YO NG A Dt D T D W W JE AU W U W D D D W W A I Y YD A D S NI W WD N N T T A WD N NI W A

4.1.,1 IDENT - MODULE IDENTIFICATION

An IDENY pseudo instruction of the following form is the first
statement of a module recognized by the Assembler. The first
input statement must be an IDENT or comment statement and if end
of information does not follow an END statement then the
statement following END must be another IDENT or comment
statement, Only an I0U module assembly permits several IDENT
statements before the END statement, where each IDENT identifies
an I0U overlay., Assembler flags any spurious use of IDENT before
END as an error, For an I0U module only, the IDENT statement
permits 3 operands. For a CPU module the argument field must be
blank.

N — o e e a2 PR — -
| 1abel !operat:on jargument
o a m en e A o e o e B e e -

Iname | IDENT lentry,origin, iouno

name Name of the module, It is reguired and can be 1-31
characters of which the first must be alphabetic as
defined in Section 2.3. This name cannot be
redefined, and may be wused to reference the code
section.

entry {required for an I0OU module} A symbol specifying the
I0U overlay entry address. Symbol category must be
6.

origin {required for an 10U module) An expression specifying
the first word address of the IDU overlay. It must
represent a valid IDU memory address (0-0FFF(16))
else an error is diagnosed.

iouno {opticnal) Absolute expression specifying the number
of the IDU on which the program is to be loaded.

Example:
TEST IDENT »TEST is the name of the module
4,12 END =~ END MODULE
An END pseudo instruction must be the last statement of each

module., It causes the Assembler to terminate all counters,
conditional assembly, procedure generation and code duplication.



4=-3
CDC - ADVANCED SYSTEMS DEVELOPMENT
, B6710/717
CYBER 180 I Assembler ERS Rev: F

N T T - D A W W - T S T W W W T N A W . S N AU WD W > D A

4.0 PSEUDD INSTRUCTIONS
4.1 2 END - ENB MODULE

The Assembler combines all 1local blocks {sections) into a
relocatable subprogram block, generates the relocatable binary
tables and produces the listing.

- - - - A - - e -~ - - - - - -~
l!ab»! loperation largument
A - - A - - - - A — A - — - - -
}1abel JEND Itralabel
Yabel Optional, last address of the module,
tralabel Optional, a 1-31 character symbol specifying the

entry point to which control transfers for a CPU
module., Tralabel is invalid in an I0U module and
must be omitted, This symbol must be declared as an
entry point in the {(linked) CPU module, either by a
DEF, DEFG, or REF pseudo instruction in this module.
At least one module must specify a transfer address
or the loader signals an error. If more than one
module indicates a transfer address, then the loader
uses the first one encountered,

Example:
END START +START is the transfer label

4.2 BINARY CONIRDL

This section describes a pseudo instruction that allows the
user to control the binary output produced by the Assembler.

4.2.1 MACHINE - DECLARE DBJECT PROCESSOR TYPE

The MACHINE pseudo Instruction specifies the type of computer
processor on which the object program can be executed. A MACHINE
statement must appear before any generated code. The MACHINE
pseudo instruction also identifies which instruction mnemonics
are permitted (CPU or I0U) and which type of object text to
generate {CPU or 1I0U). No more than one MACHINE pseudo
instruction may appear within any assembly unit (IDENT-END).,

prmmmm—— et ————— e T
{label loperation largument
o - e A -
| | MACHINE {type,bind

type C180CPU The object processor is a CYBER 180 CPU



4=4

CDC -~ ADVANCED SYSTEMS DEVELOPMENT
86/10/17
CYBER 180 IT Assembler ERS Rev: F

4.0 PSEUDD INSTRUCTIONS
4.2.1 MACHINE - DECLARE DBJECT PROCESSOR TYPE

T A T N T T W Y A T 0. WD W W AD AU W T D A AT D DD WD DN T DD D D W N N TS . T D A WA S VDD WA U A, S D -

{default), The Assembler w
instruction mnemonics and w
object text.

1 accept CPU
1 generate CPU

cC18010U The object processor is a CYBER 180 IDU. The
Assembler will accept 10U instruction
mnemonics and will generate IDU object text.
Negative numbers in the generated data will be
in 1's complement form {(since the IDU is a 1's
complement processor).

No other type is available at this time.
bind This subfield is applicable only if type is C180CPU.

BINDABLE (DEFAULT) The Assembler will generate
additional ob ject text to permit the
Library_generator to ¥bind® the module. IFf
the other statements in the module do not
conform to the rules for ¥bindable” code then
a FATAL diagnostic will be issued for each of
these statements {See Section 5.1.9).

NONBINDABLE The object text generated will have the
"non-bindable" attribute set. No diagnostics
will occur {if the rules for "bindable¥ code
are not followed. The Library_generator will
abort if an attempt is made to "bind®" this
module.

Example:

MACHINE C180CPUY .Binary is for a CYBER 180 CPU

4.3 SYMBOL ASSIGNMENT

The pseudo instructions SET and FQU permit direct assignment
of values to symbols. The values can be absolute or relocatable.
Subsequent use of the symbol in an expression produces the same
result as if the wvalue had been used as a constant. Symbols
defined using EQU cannot be redefined.

Any symbol may be given one or more programmer defined
attributes by using the ANAME pseudo instruction to define an
attribute name, and then using the ATRIB pseudo instruction which
assigns a specific value to a specific symbol. Once defined, the
attribute function may be used to recover the attribute value
assigned to the argument,



45
CDC - ADVANCED SYSTEMS DEVELDPMENT
B6710G/17
tYﬁER 180 11 Assembler ERS Rev: F
4,0 PSEUDD INSTRUCTIONS
4,3.1 SET/EQU - ASS!G@HENT OF VALUES

4,341 SET/EQU - ASSIGNMENT OF VALUES

A SEY or EQU pseudo instruction defines the symbol in the
label Ffield as having the value and attributes indicated by the
expressions in the arqgument field. The difference between SET
and EQU is that symbols defined with an EQU cannot be redefined,
whereas symbols defined with a SET may be redefined with a
subsequent SET any number of times,

i e e o 2 i o o o < S o T "

ilabel iaperatzon Jargument
pommmmm——— o ———— Ao ———————— - o o
{label {SET flist
{1abel {EQU flist
label {Required) A 1list of one or more symbols, or symbol

element number identifiers to which the argument
field 1list 1is assigned, It will have a symbol
category of 9.

list Evaluatable expressions, The expressions cannot
include symbols as yet undefined. The maximum value
of a list element cannot exceed 64 bits

(OFFFFFFFFFFFFFFFF(16)). When the first element in
the list is a symbol, the attributes of that symbol
will replace the attributes of the symbol in the
1abel field,

Any symbol in the label field cannot be referred to prior to
its first definition.

The SET and EQU pseudo instructions assign a list of values to
the symbol{s) in the label field. The 1list must contain only
evaluable expressions at the time the pseudo instruction is
processed by the Assembler., The label field may consist of list
names (symbols) or list element identifiers.

List e2lements are referenced using the form:
listnamefelement number}
where listname is the name of the list, and element number is an
evaluable expression denoting a particular element in the list,
where, for an n element list, element number = 0y 1y 25.as9n~1,
A negative element number is diagnosed as an error.

A SET or EQU pseudo instruction within a PROCEDURE Iis
processed by the Assembler only when the PROCEDURE is referenced



4-6
COC - ADVANCED SYSTEMS DEVELOPMENT

86/10/17
CYBER 180 IT Assembler ERS Rev: F
4.0 PSEUDO INSTRUCTIONS
4.3.1 SET/EQU - ASSIGNMENT OF VALUES

e R R e b L B A e R P R T P R T T P R

and not when the PROCEDURE is defined. The expressions which
comprise the list elements must be evaluable therefore, only when
the PROCEDURE is referenced.

A particular list element may have a value of ZERO or NULL
depending on how that element 1is defined.s A null element is
assigned to a list whenever a position for a 1ist element Iis
indicated with appropriate commas, but the position is devoid of
contents.,. A null list 2lement has the numeric wvalue zero when
used computationally., Null elements may be transferred from one
list to another,

The argument Ffield is completely processed and for each
subfield in the argument 1list the wvalue 1Is assigned to the
corresponding value element of each of the symbo!xc names in the
1abel field, If a list is spec1fzed; it is replaced completely
by the argument. If a list element is specified, replacement is
on an element by element basis. The designated element is
replaced by the first argument 1list wvalue, and succeeding
elements being replaced by the corresponding argument value,

Exampple #1
A SET 39597512,15
When this pseudo instruction is processed by the Assembler,

the labhel ¥AY is associated with the list 3,5,7,12,15. The
elements and their values ares

Afol = 3
Alll = 5
AL21 = 7
AI31 = 12
A4l = 15
Al5] = 0 (Null)

Following the previous pseudo instruction, we could then give
the pseudo instructions?

A1} SET 42
Al4] SET 17
Al5] SET 8

And the list associated with YAY would then be:

AfOY = 3
Afl1) = 42
Af2) = 7
Al3] = 12



4-7
CDC - ADVANCED SYSTEMS DEVELOPMENT
86/10/17
CYBER 180 II Assembler ERS Rev: F
4.0 PSEUDD INSTRUCTIONS
443.1 SET/EQU - ASSIGNMENT OF VALUES

Al4Y = 17

Al51 = B

Af6) = 0 JI{Null)
Example #2

X» Y SET SUM+3,12,5UM+7,6

In this <case, the symbol SUM must have been previously
defined. If its wvalue were 50, then the Assembler would
establish two lists X and Y which would both be associated with
the list:

53312,5746

In addition, any previous list associated with either X or Y
would be erased. The following instructions may then be given:

F4 SET X
Xtol SET SUM+1
1 SET X
X SET 59351

After these pseudo instructions have been executed, the lists
appear as?

x = 5’3}1
Y = 53,12:57+6
I = 53,12,57,:6
I1 = 51912,57;&
Example #3
BIND_REG EQU A3 «points to the binding segment
TEMP_REG SET AS «temporary working register

BIND_REG now 1is equal to 3 and has the attributes of #AREG.
The symbol BIND_REG cannot be redefined. TEMP_REG is equal to A5
and has the attributes of #AREG, TEMP_REG can be changed with a
subsequent SET.

Example #4
A SET D,1,24304
Al21 SET 5,6

results in the list:

A = 0’1'536’4



4-5

CDC - ADVANCED SYSTEMS DEVELOPMENT
B6710/717
CYﬁFR 180 11 Assemb!er ERS Revs: F

4.3 PSFUQG INSTRUCTIONS
4.3.1 SFT!EQU - ASS}ﬁﬁMﬁﬁT OF VALHES

The pseudo instruction:
Al1l} SET ,,10,,11
modifies the list to:
A = 0y5910,,11
4.3.2 AMAME DIRECTIVE
The AMNAME pseudo instruction 1is wused to define a programmer
defined attribute name and to assign a particular attribute

number to that name. A particular attribute number may have
several names associated with it by using ANAME more than once,

b m————— tormm—————— e -
| label 3oneratxon larqument
pm——m————— Frmm————— i ——————
| 1abel | ANAME fvalue
label A previously undefined symbol,
value Evaluatable expression whose value can be any

positive integer,

4,3,3 ATRIB DIRECTIVE

The purpose of the ATRIB pseudo instruction is to assign a
value to the programmer defined attribute of a particular symbol,
The symbol to which the attribute value is assigned is the symbol
in the LABEL field. If the symbol in the LABEL field of this
pseudo instruction is not previously defined, it will be placed
in the permanent symbol table and given a symbol category of 1,
and the specified attribute assigned to it. 1If the symbol in the
LABEL field has been previously defined, the value is assigned to
the attribute of the symbol and replaces any previous value
assigned to that symbol for that attribute. Normally, a symbol
must be defined before attribute wvalues are assigned to that
symbol. An exception occurs when PROCEDURES are executed while a
source statement is being processed.

e ————— -~ —— A - -~
J1abe] loperation iarqument
I S o " S - - 2 " 2 " o T - o -

{labe} |ATRIB lattribute,value



4=9

CDC - ADVANCED SYSTEMS DEVELDPMENT

86710717

CYBER 180 11 Assembler ERS Revs F

- -

4,0 PSEUDO INSTRUCTIONS
4.3.3 ATRIB DIRECTIVE

A S S A T A A A - - A . N A VO . A - - W . -

label A label field symbol is required.

attribute A previously defined {using the ANAME
pseudo instruction) programmer defined
attribute name.

value Evaluatable expression.

4,344 USE DF THE ANAME AND ATRIB PSEUDD INSTRUCTIONS

» CONSIDER THE FOLLOWING SEQUENCE OF DIRECYIVES:

INDEX
BASE

ANAME 1
ANAME 2

« At this point we have defined two programmer defined
« attributes INDEX and BASE. Any symbol can now have values
» assigned to these attributes.

- SMB1
SMB1

ATRIB INDEX,5
ATRIB BASE,DQA(15)

» At this point, the INDEX attribute of SMB1l is 5
« and the BASE attribute of SMBl is a hexadecimal A.

SMB1
SMB1

ATRIB INDEX,0
ATRIB BASE,2

« At this point the INDEX and BASE attributes of 5MB1 have been

reassigned to the values:?

INDEXI SMB1]
BASE{SMB1]

0
2

N Attributes may be used as terms of an expression.

JA
JB

SET BASEISMB11]
EQU INDEXI SMB1]

4.4 MODULE_LINKAGE

The pseudo instructions DEF, DEFG, and REF are valid only in
CPU modules, and are used to denote entry points, either in the

current
symbol

data or
through

module or a separately assembled/compiled module. A
flagged as an entry point denotes an address representing
code, which can be referenced by other modules. It is
the use of entry points that the NOS/VE lpoader is able to



4-10
CDC ~ ADVANCED SYSTEMS DEVELOPMENT
86710717
ﬁ?RE% 180 11 Assembier ERS Revs F
4,0 PSEUDD INSIRUCiIB%S
4.4 MODULE LINKAGE

A A T WD VD WS AN WG A WD A A D T D WG W NN W T WD D S AN A A N DT A A D A D R A WD UG W U WU WD WG D A DT A A W W N W DA o A~

link modules together, See the appropriate NOS/VE loader
document for complete details.

4.4.1 DEF,DEFG-DECLARE ENTRY SYMBOLS

The DEF and DEFG pseudo instructions define symbols as entry
points in the «current CPU module, DEFE pseudo instruction
defines symbols as gated entry points. ({Gated entry points are
explained further in the NOS/VE loader documentation.)

pmm———— ——— e frmmmnc e ——— ———————
|label loperation larqument
Fm————— e —————— e e
i | DEF !symi,syM¢,...,symn
l IDEFG Isymlssym2sees9symn
symi (Required) Linkage symbol from 1-31 characters of

which the first must be alphabetic as defined in
section 2.%4. {Also see ALIAS statement.) Each
symbol must be Ffurther defined in the module as a
relocatable address {catagory 6). The symbol may not
be a LOCAL or DPENED symbol. The appearance of the
same symbol more than once in a DEF or DEFG is not an
errory, but the symbol may not appear in both a DEF
and DEFG statement.

Example:
DEF PRG1 .PRG1 is a symbol in this compilation unit.
4.,4,2 REF-DECLARE EXTERNAL SYMBOLS
The REF pseudo instruction lists symbols that are defined as

entry points in independently compiled or assembled CPU modules
for which references can appear in the module being assembled.

e S e S -
}1abel loperatlon !argument
fmm——————— tmmm——————— fmmm e ————— e T
i I REF fsyml,sym2yessySYymn

symi {Required) Linkage symbol, 1-31 characters of which

the first must be alphabetic as defined in Section
2+4. These symbols must not be further defined
within the module being assembled. MNote that it is
still possible to have new definitions for the symbol
by wusing LOCAL or OPEN statements. {Also see ALIAS



4=-11
CDC -~ ADVANCED SYSTEMS DEVELDPMENT
' 86710717
CYBER 18% I1 Assembler ERS Revs: F
4,0 PSEUDD INSTRUCTIONS
b4, 2 REF~ ﬂEiLARE EXTERMAL SYHBBLS

statement.)

Symbols may be declared in a REF statement prior to or
subsequent to their wuse in the program. They must be global
symbols, and cannot have been declared OPEN or LOCAL, Symbols
which are declared in a REF pseudo instruction are assumed to be
relocatable and their use in expressions must follow the rules
for relocatability. Any further definition of a REF symbol will
be diagnosed as an error,

Example:

REF TAGX +« TAGX IS AN ENTRY PDINT IN A DIFFERENT
+ASSEMBLY/COMPILATION UNIT,

4.4,3 ALTAS - EQUATE LINKAGE SYMBOLS
The ALIAS pseudo instruction gives the programmer the ability

to declare entry points with names other that that used within
the current CPU module,

S - e R -
| 1abel loperation largument
o e o S R ettt o e e e e i e e
Inamel fALIAS Iname?2

namel 1-31 character linkage symbol used by the Assembler,.

This symbol must be further defined in the module as
a DEF, DEFG, or REF symbol.

name2 1-31 character CYBER 180 linkage symbol. This symbol
is not restricted by the limits of symbol! definition
in Section 2.4. The symbol must consist of
alphabetic or numeric characters, the first of which
must be alphabetic. The colon may not be used as one
of the characters.,

Example:

TAG ALIAS TAGFORALONGNAME «TAG FOR A LODONG NAME IS
«DEFINED IN A DIFFERENT
«COMPILATION UNIT,

4.4.4 ADDRESS - FDRM CYBER 180 ADDRESS

The ADDRESS pseudo instruction enables the generation of



4-12
CDC =~ ADVANCED SYSTEMS DEVELOPMENT
B6/710/17
CYBER 180 I1 Assembler ERS Rev: F
4,0 PSEUDD INSTRUCTIONS
4a4.4 ADDRESS ~ FORM LYBER 180D ADDRESS

T A W W W W T U W S DA P N A AN D TP A N A VA N 2 A TID AU U NG N T D D TP T WD AU T WD A J W DD >

references to full Process Virtual Address {(PVA*s) in a CPU
module, to be filled in by the NOS/VE Loader. Generally, this
pseudo instruction 1is wused in the BINDING section to form
pointers. ‘

frmmm————— o i e e e -
}label ioperat:on Iargument
b —————— F o e ————
| 1abe | ADDRESS ltyplysymlysenstypnysymn
label Optional, symbol assigned the value of the beginning
of the address list., Symbol category equals 6.
typi Type designating the address insertion type. It can
have only the following values else an error is
diagnosed:

P - {Pointer) Creates a pointer {PVA) to the
specified address. The generated object code is
one word long and is word aligned relative to the
section origin. The PYA is stored in the
generated object code right justified with zero
fill,

C - (Code Base Pointer) Used for linking procedures.
The format for the PVA is one word of generated
object code for internal symbols, and two words
of generated object code for external symbols.,
The generated object code is always word aligned
relative to the section origin with the PVA being
right justified with zero fill,

CI- (Code Base Pointer Internal Format) Generates
ob ject code for a code base pointer in internal
format (1 word) for the symbol, without regard as
to whether the symbol is internal or external,
The generated object <code is word aligned
relative to the section origin with the PVA being
right justified with zero fill,

CE~- (Code Base Pointer External Format) Generates
ob ject code for a code base pointer in external
format (2 words) for the symbol, without regard
as to whether the symbol is internal or external,
The generated object code is word aligned
relative to the section origin with the PVA being
right justified and zero filled.

R - (Relative) Generates object code for a PVA which



4=-13
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYRER 180 I Assembler ERS va. F
4.0 PSEUDD INSTRUCTIONS
L,4.,4 ADDRESS - FORM CYBER 180 ADDRESS

T - N W W N T Y I A T WS U WD WD W AN AN VS D W AU A DA A WD DDA VW D D W W A"

points to a symbol with an offset. The length of
the generated object code is 8 bytes in the
binding section, or 6 bytes in any other section.
The generated object «code is word aligned
relative to the section origin when in the
binding section with the PVA being right
justified with zero Ffill. ¥hen not in the
binding section, the generated object code is
" byte aligned.

symi Following each TYPI subfield there must be a single,
corresponding SYMI subfield which contains a symbol
or expression which identifies the internal or
external location for which a PVA is to be created.
Expressions are permitted only when TYPI is R,

Example:

USE BINDING
REF TESTDATA

TAG ADDRESS C,TESTDATA +GENERATES A 2 WORD PVA FOR TESTDATA
USE #LASTSEC +HHICH IS IN A DIFFERENT MODULE.

4.5 DATA_GENERATION

The instructions described in this section are the only pseudo
instructions that generate data. A1l other program data is
generated through symbolic machine instructions.

4,5.]1 BSSZ-RESERVE ZERQED STORAGE
The BSSZ pseudo instruction generates zeroed bytes of data in

the section of a CPU module currently in use or it generates
zeroed 16-bit words of storage in an I0U module,

Jo o - -t - - - - - - -
|1abel !operatxon Jargument
fomrmm———— e ————— fom————— ———————— e
{label |BSS2Z {aexp
label Optionaly label defined as the byte offset in the

section after the appropriate alignment occurs. The
symbol identifies the beginning of the reserved
storage area.

aexp Absolute evaluable expression specifying the number
of zeroed units (bytes for CPU or words for I0DU) of



4=14
CDC - ADVANCED SYSTEMS DEVELOPMENT
86/10/17
CYBER 180 11 Assembler ERS Rev: F
4,0 PSEUDND INSTRUCTIDNS
4,5.,1 BSSZ~RESERVE ZERDED STORAGE

storage to be reserved. The expression cannot
contain external symbols or result in a relocatable
or negative value,

A BSS2 0 or an erroneous expression causes a force to a unit
boundary {byte for CPU or word for 1I0U) and the symbol
definition, but no storage is reserved, If storage 1is to be
reserved in a CPU module starting at a word, halfword, or parcel
boundary, then the B8SSZ must be preceded by one of the
appropriate alignment pseudo instructions.

Example:

ALIGN 0,8 LFORCE BYTE DFFSETYT TO A WORD BOUNDARY,
TAG BSSZ 10 +RESERVES 10 BYTES OF ZERDES.

4.5.2 INT - GENERATE INTEGERS

The INT pseudo instruction generates one or more 32-bit
integers on a byte boundary in the current section of a CPU
module for each item listed in the argument field or it generates
one or more lé-bit integers on a word boundary in an I0U module
for each item listed in the arqgument field,

[ S —— o - - -
}1abel loperation larqumant
- —_——— - -~ o - -
| 1abel JINT jiteml,item2,...yitemn
label Optional, symbol is assigned the byte offset in the

section after the force to the appropriate boundary
occurs., Symbol category equals 6.

itemi Numeric data item. Value of the numeric data item
cannot exceed the storage capacity of the item being
generated.

Example:

TAG INT 192,3
4.5.3 DINT - GENERATE 64-BIT INTEGERS
The DINT pseudo instruction generates one $4-bit integer on a

byte boundary in the current section of a CPU module for each
item in the argument field,



4-15
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/710/717
CYBER 180 11 Assemb!er ERS Rsv. F
4.0 PSEUDQ INS?RUtT!BMS
4.5, 3 ﬂi%? - GE&ERATE 54-81T INTEGERS
fomm————— e B o e e e e e e
| 1abel loperatlon { ar gument
A fmm———————— o e e -
| 1abel | DINT Jiteml,item2 009 itemn
1abel fiptional, symbol assigned the byte offset in the

section after the force to a byte boundary occurs.
Symbol category equals 6.

itemi Numeric data item.

TAG DINT 152,53

4.,5.4 FLOAT ~ GENERATE SINGLE PRECISION FLOATING-PDINT NUMBERS

The FLDAT pseudo instruction generates one 64~bit floating
point number on a byte boundary in the current section of a CPU
module for each item listed in the argument field. Mote that
floating point numbers entered with a decimal point must have a
digit preceding the period {else the remainder of the statement
will be interpreted as comments).

bmm—————— fm———— Fm e e e e e
{1abe} loperation |argument
o ———— Fom———————— tmm——————— o
| 1abel | FLDAT fiteml,item2yesasitemn

label Optional symbol assigned the byte offset 1in the

section after the force to a byte boundary occurs.
Symbol category equals 6.

itemi Numeric data items. Value of numeric data item cannot
exceed the storage capacity of a single precision
{64-bit) floating point item. Conversion of the
numeric data item into the internal floating point
representation is performed by a CYBER 180 math
libray program. Consult the appropriate CYBER 180
math libray documentation for further information.

Example:

TAG FLOAT 1.347E-6,0,~6.3416E12,1,



4-16
COC ~ ADVANCED SYSTEMS DEVELDPMENT
B86/710/17
CYBER 180 iI Assembiﬁr EQS Rey: F
4,0 PSEUDD INSTRUﬁTIGMS
4,5.,5 DFLOAT - GENERATE DOUBLE PRECISION FLOATING-POINT NU%BERS

N S " WA DT D D WD AT A T D D TN WD S DD WD WD WD A T TN A A N AT AU U A N W A AU D A A A U WD NG U AU A D Tl D

4.5,5 DFLDAT - GENERATE DOUBLE PRECISION FLOATING-POINT NUMBERS

The DFLOAT pseudo instruction generates one double precision,
128-bit floating point number on a byte boundary in the current
section of a CPU module for each item 1Jisted in the argument
field, Note that floating point numbers entered with a decimal
point must have a digit preceding the period {else the remainder
of the statement is interpreted as comments).

fmm————— e o m———— o
}tabel loperation jargument
o R o -
| 1abel | DFLOAT Jiteml,item2y.s itemn
label Optional symbol assigned the byte offset in the

section after the force to a byte boundary occurs.
Symbol category equals 6.

itemi Numeric data item,. The value of the numeric data
item must be within the limits of the storage
capacity of the item being generated, Conversion of
the item into internal floating point representation
is performed by a CYBER 1B0 math library program.
Consult the appropriate CYBER 180 math tibrary
documentation for further information.

Example:
TAG DFLDAT ~22.661,6.87701E~-14,1E3,0.00000001762
4,56 PDEC ~ GENERATE PACKED DECIMAL DATA

The PDEC pseudo instruction generates packed decimal data on a
byte boundary for the length of the field desired.

R tmm———— - e 2 e e -
!labrl loperation Jargument
B e - - G- - - -
| 1abel | PDEC iC*string?
label Optional symbol assigned the byte offset in the

section after the force to a byte boundary occurs.
Symbol category equals 6.

string Signed or unsigned numeric decimal character string



4-17
CDC - ADVANCED SYSTEMS DEVELDPMENT
B6/10/17
CYBFR 180 11 Assemb?er FRS Rev* F
4,0 PSEUDC {§STRUCI¥BNS
#.5 6 ?QE( - GFMERAYE PACKED BECIxAL ﬂATA

is required, Any other argument type is diagnosed as
an  error. £ach character in the string generates a
4=bhit codes, UOnly the characters (-9 and + or =~ are
permitted, Any other characters in the string are
diagnosed as an error. The sign character {(+ or ~)
must be the last {rightmost) character, If the data
is to be used by a BDP instruction the user must
insure that the contents of the generated object code
fit the requirements of the BDP type designator {See
Section 7.4).

Example:
TAG PDEC Cr1234"

4.,5.,7 CMD =~ GENERATE BIT STRING

The CMD bpseudo instruction is a single statement form of
PROCEDURE. The output of the CMD pseudo instruction is a string
of binary bits together with appropriate control information for
the CYBER 180 LOADER., The length of the binary bit string 1is
controlled by the *length 1istY and the contents of the binary
bit string are controlled by the "value list", Both the ¥length
list® and the Yvalue Jlist" can contain multiple subfields,
provided that the total bit string produced is greater than zero
and less than or equal to 1024 bits.

e - - e o - -~ -
ilabe! loperation !arqument
Fomm————— o ——————— fommm——————— ,—————————
ilabe! IcMD,Y_1st fv_1st
label A label field symbol 1is required. It is used to

define the OPERATION field name by which this
particular CMD definition will be referenced in
subsequent statements of the program. The CMD
statement must appear prior to any reference to the
operation it defines and may not appear within a
PROCEDURE definition, The {optional) label
appearing on a line referencing a CMD defined
operation will be associated with the generated bit
string. Symbol category equals 6,

1_1st The length list is a 1list of evaluable expressions
whose value represents the length in bits, of each
argument field element to be generated by the
Assembler, This list is ordered from left to right.
If the value of the "1_Ist" causes an overfiow of



: 4-13
COC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CY%E? 180 II Assembler ERS Rev: F
4,0 PSEUDD INSTRUCTIONS
4.5.7 tﬁﬂ - GENERATE BIT STRING
the section counter, then an error will be
diagnosed.
v_1st In one-to-one correspondence with the ¥Ylength list"

is a "value listY, which is a list of expressions
which determines the value assigned to the
corresponding element of the "length list», If
number of elements in ¥*1_1st¥ does not match the
number of elements in ¥Yv_1st™ then an error is
diagnosed. If the wvalue of a Yy_lst¥ element
exceeds the storage capacity allocated by the
corresponding "1_lst* element, then an error may or
may not be diagnosed depending on the use of the
TRUNC statement {See Section 4,%,.,9).

Example: {Also see the section on PROCEDURES)
LA CMDeBylatylb B4{16),F1(2,1),F3{2,0),F21(2,2)
4,5.8 VFD - VARTABLE FIELD DEFINITION

The VFD pseudo instruction generates a string of binary bits.
The (optional) label is associated with the data string.

The difference between the CMD and VFD pseudo instructions is
that the CMD pseudo instruction is a template which does not

generate output until called, whereas the VFD pseudo instruction
generates output when it is encountered.

Fo e o o o o e o e
l1abel {operation |argument
e e Fomm—————— fom—— -
{label fVFD, 1_1st fv_1st
labe Optional symbol assigned the byte offset in the
section.
1_1st A list of evaluable expressions which represent the

length in bits of each subfield to be constructed.
This list is ordered from left to right. If length
list causes an overflow of the section counter then
an error will be diagnosed.

v_1st In one-to-one correspondence with the length list is
a list of expressions which determine the value
assigned to the elements of the length list. If the
number of elements of "1_1s5t¥Y does not match the



f=19
DL ~ ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 II Assembler ERS Rev: F
4.0 PSEUDD INSTRUCTIDNS
4.5.,8 VFD -~ VARIABLE FIELD DEFINITION

T T - - - . 1 N NS WD W A G A VDA WU A A W N AID W A N A

number of elements of Yv_1st¥Y then an error is
diagnosed. If the value of the ¥v_1st” element
exceeds the storage capacity specified by the
corresponding "1_lst* element, then an error may or
may not be diagnosed depending on the use of the
TRUNC statement {(See Section 4.5.9).

Examples
LIST1 VFD,B8,16,8,3%8 1.,4F(16),6,C*ABRC?
4.5.9 TRUNC = TRUNCATE
The TRUNC pseudo instruction is used to indicate what action

is to be taken, if it is necessary to truncate a value in order
to enable it to fit into a field specified by a CMD or VFD pseudo

instruction.
. S — o e N —
11abel !opﬂration |argument
- —_— o —————— N - o -
} 1 TRUNC fvalue
value Yalue is one of the numbers 0 and 1 which have the

following meaning:

03 Truncate and do not associate an error flag
with the data generated,

12 Truncate and flag the word generated as in
error,

An attempt will always be made to fit the significant bits of
a value into a field. When type 1 truncation is specified, the
elimination of an unbroken string of non-significant zeros or
elimination of an unbroken string of 1's 1in the case of a
negative number, {is not considered to be an error. When
character data 1is truncated, trailing blanks are not considered
an error.

More than one TRUNC pseudo (instruction may appear in a
programs, The most recently encountered TRUNC pseudo instruction
will be used. If no TRUNC pseudo instruction appears in a
program, Ytype O" truncation will be used,

Examples

TRUNC 1 +FLAG TRUNCATION ERRORS.



4=20
CDC - ADVANCED SYSTEMS DEVELOPMENT

: B86/10/17
CYBER 180 II Assembler ERS Rev: F

T A W T T WU T - T~ . A W W W - -

4.0 PSEUDDO INSTRUCTIONS
445,10 IMFQMSG

4.,5.10 INFOMSG

The INFOMSG pseudo instruction is used to control  the
generation of the Informative Diagnostic issued when data
generation occurs in the BINDING or STACK sections of a CPU

module, ¥
Fomm———————— P ——————— Fommmm———————————————
Jlabe] loperation }largument
fmm——————— e e -
i | INFOMSG Ivalue
value - LISTON - Turns generation of error message on
{default).
- blank - Suppresses generation of error message.
Example:

INFOMSG LISTON +FLAG DATA GENERATION ERRORS.,

% Data cannot be initialized in the Binding and Stack sections
at assembly time, with the exception of the ADDRESS pseudo
instruction which can be used in the Binding section.

4.6 ASSEMBLY CONIROL
.61 DDJELSE/DEND PSEUDD INSTRUCTIONS
This group of pseudo instructions is used for conditional

iterative control of Assembler processing. The Format of these
pseudo instructions is:

pom—————— pm———— —mmmm e ——————— - e e
I)abe! {operation iarqument
Fo———— ——— o mm e ——————————
| 1abel 100 lexpression
i |ELSE |
{ 1abel | DEND ]
label Dptional 1abel that 1{is assigned the value of the

expression when used on the D0 statement. It is not
valid on the ELSE pseudo instruction. When specified
on a DEND, a cycle effect can be created by wusing a
SKIPTO LABEL instruction. The 1label of a DEND
statement is never entered in the Assembler®s symbol
table and the presence of a label field is used only



4=-21
CDC =~ ADVANCED SYSTEMS DEVELOPMENTY
86710717
CYBER 180 II Assembler ERS Rev? F

T - N A A A WD W D A A W T W U N A A I VD Sl U T J A W D A G D D A WD N DD Y A A N AT D Y .

4,0 PSEUDDO INSTRUCTIONS
4.6.,1 DO/ELSE/DEND PSEUDD INSTRUCTIDNS

A - . - A T AT D N> W WD A W D W D Dy A T W A U DD A N D A AU A U T T D T A D PN T T AT D NG W MO D 2 AU s A

as the object of a SKIPTO,

expression Expression must be absolute and evaluable. This
expression represents the number of times the DO loop
will be executed. If no expression is present, the
argument of the DO will be treated as 0. A boolean
condition can be specified for conditional assembly
of code,

A DEND pseudo operation must be associated with each DD pseudo
operation written., However, the ELSE need not be present, but if
desired, must occur between the DD and DEND.

The DO pseudo operation operates as follows:

a) An internal counter is set up and initially given the value
of 0, '

h) If a label is present on the DO line, its value is set to 0.

c) The expression on the DO line is evaluated. Denote the
results of this calculation by n. {If no expression was
present or the expression was not evaluable, n = 0),

4) If n £ 0, skip succeeding lines until an ELSE or DEND pseudo
operation is encountered.

1) If an ELSE pseudo operation 1is encountered, assemble
succeeding statements until a DEND line is encountered.
Continue assembly at the statement after the DEND Yine.

2) If a DEND pseudo operation 1is encountered, resume
assembly at the statement following the DEND line.

e} If n > 0, the following action occurs:?
1) Increment the internal counter by 1,

2) If a 1label was present on the DO line, set the value of
the label =squal to the new value of the internal counter.

3) Assemble all lines until an ELSE or DEND pseudo operation
is encountered.

4} Compare the internal counter to n.
a) If the count is less than n, repeat the procedure

from step {e). This causes the count to be
incremented, and resumes assembly of the statements



4-22
CDC - ADVANCED SYSTEMS DEVELOPMENT
' 86/10/17
CYBER 180 II Assembler ERS Rev: F
4.0 PSEUDO INSTRUCTIONS
4.6.1 DOJELSE/DEND PSEUDO INSTRUCTIONS

A NG A W W W A N D DI WO A AT N A D U WD TS DA N A DD D D WD W D T D DD D Y W A T W D DN D A 2

following the DO,
b) If the count is e2qual to n, terminate control of the
DN pseudo operation and resume assembly at the line
immediately following the DEND, skipping all
statements between the ELSE and DEND if necessary.,
Example:

EXAMPLE 1) The following code will assemble one 64-bit word

. with a value of X factorial, If X is negative or
. zeros, then a word with value zero is assembled
N instead:
FACT SET 1
I DD X
FACT SET FACT*1 PROCESSED X TIMES IF X>0
ELSE
FACT SET 0 PROCESSED ONCE IF XL0
DEND
VFD,64 FACTY
« EXAMPLE 2) The following code will assembla N+1 64-bit words
. whose values are O,..+3N where N can be either
. positive or negative. The inner DO block is
. processed only if N<O.
VFD.64 O
1 Do N
VFD,64 1 PROCESSED N TIMES IF N>O
ELSE
J no -N
VFD, 64 =J PROCESSED =N TIMES IF N<O
DEND
DEND
« If N=3 the above code is equivalent to?
VFD,16 ©
VFD,16 1
VFD,16 2
VFD,16 3
« If N==2 the example code Is equivalent to:
VFD,16 O
VFD,16 ~-1

VFED,16 =2



CDC - ADVANCED SYSTEMS DEVELOPMENT

4=23

B6/ID/1T
CYBER 180 II Assembler ERS Revy: F

A A T T A - W A W T W T W W W N W W W W A W - W .

4.0 PSEUDD INSTRUCTIONS
4.6.2 WHILE/ELSE/DEND PSEUDD INSTRUCTIDNS

A . A - DD W T AW A AP T WA T A W A T D T NUD D D W W U W N WD T W T WD S N WD D 2 WA W ke W D W W H D W N A W WD "

He6.2 AHILE/ELSE/DEND PSEUDD INSTRUCTIDNS

The format of these pseudo instructions are:

e B Uy — G o - - - -
{ 1abe} loperation }argument

A —— o e 2 e e e ————
| 1abel HHILE jexpression

I | ELSE |

{1abe] { DEND i

Label and expression have the same meaning as in the DO pseudo
operation. However, there is no limit placed on the value of the

expression.

The execution of the WHILE loop is similar to that of the

00,

except that the expression is evaluated for each iteration in the

1oopa

The WHILE pseudo operation is performed as follows:

a) An internal counter is set up and nitially is given

value 0,

the

b)) If a label s present on the HWHILE line, its value is set to

Os

c) The expression of the WHILE line is evaluated. Denote the
results of this evaluation by m. {If no expression is
present, or the expression is not evaluable, m = 0.)

dY If m £ 0 and this is the first time through the WHILE loop,

suppress assembly wuntil an ELSE or DEND pseudo operation is

encountered,

1) If an ELSE pseudo operation 1is encountered, assemble
succeeding statements wuntil a DEND line is encountered.

Continue assembly at the statement following the
line.

2) If a DEND pseudo operation 1is encountered,
assembly at the line following the DEND line.

Ifm £ 0 and this is not the first time through the

DEND

resume

WHILE

loopy skip all lines wuntil a DEND pseudo operation is
encountered and resume assembly at the line following the

BDEND.



e - A
CYBER 1

- -

4,0 PSE

H=24

DVANCED SYSTEMS DEVELOPMENT
BH/710/717
B0 I1 Assembler ERS Rev?: F

upgo INSTRUCTIONS

4.6.2 WHILE/ELSE/DEND PSEUDO INSTRUCTIONS

- - -

1) 1Increment the internal counter by 1.
2) Set the value of the label on the WHILE line (if present)
to the new value of the counter.
3) Continue assembly until an ELSE or DEND pseudo operation
is encountered, and then repeat the procedure from step
CTa
Note that the only logical way to get out of a WHILE loop is
to change within the loop, one or more of the items which
make up the expression on the WHILE line so0 that the
expression will not have a value 0.
Example:
» This code will assemble a number of 16-bit words whose value
« are from the Fibonacci series. Starting with the value 1,
» each word is equal in value to the sum of the previous two
« words. In this example the series is terminated when all of
» 1ts members less than N have been generated.
OPEN AsB,TEMP
A SET 0
B SET 1
WHILE B<N
VFD,16 B
TEMP SET B
8 SET A+B
A SET TEMP
DEND
CLOSE A,B,TEMP
« If N=10 the above code is equivalent to:
VFD,16 1
VFD,16 1
VFD,16 2
VFD,16 3
VFD,16 5
VFD,16 8
4,6.3 SKIPTD ~ SKIP CODE

T

A T AT N T A D DD A T AT D G DTN T DT T WD VT T D T MDA N AOD T, T WD T WD FAD DA TN AT A A A A D AW -

he SKIPTD pseudo operation enables the user to conditionally

alter the sequence in which assembly lines are processed. It has

the

form:?



4=25

COC - ADVANCED SYSTEMS DEVELOPMENT
86/10/17
CYBER 180 I1I Asspmbler 59§ Rev: F
440 PSEUBG IMSTRUCIIGNS
4.6.3 SKIPTO - SKIP Cﬂﬂﬁ
- s o G e s e o - A s s - -
itabe! icperatxon | argument
o ————— pmm———————— e T TP ————
i |SKIPTD,exp Inamely...snamen
e xp Optional, must be evaluable.
namei A valid label appearing on a CONT, ODEND, or PEND

statement which follows the SKIPT) statement.

If the expression is not present, only a single label is

permissible,

a)

b}

SKIPTO operates as follows:

If no expression is present on the SKIPTO 1line, skip
succeeding lines wuntil a line with the appropriate label is
found.

If an expression is present, it is evaluated.

1) If value of the expression is k and k lies between 0 and
n=-1 where n is the number of labels on the SKIPTO
directive, the succeeding lines are skipped until a CONT,
DEND, or PEND statement is found which has as its label,
namek.

2) If the value of the expression is < D or > n {or the
expression is not evaluable), assembly resumes at the
line immediately following the SKIPTD pseudo instruction.

Note that when in the skipping mode, all pseudo instructions
except LOCAL, OPEN and CLOSE are ignored. Any symbhol defined
by LOCAL or DPEN pseudo instructions are not recognized.
Labels within PRDC/PEND, WHILE/DEND, or DO/DEND blocks are
not recognized, and it is illegal to write a SKIPTO pseudo
instructions which branches out of a procedure definition,
WHILE/DEND sequence, or DO/DEND sequence.

Examples

*

In the following example, the statement processed following
the first SKIPTO directive depends on the value of "AY,

SKIPTO, A SMALL,MEDIUM,LARGE, HUGE

UNEXPT SKIPTO MORE THIS STATEMENT IS PROCESSED

IF A IS NOT EQUAL 70 0, 1, 2
OrR 3.

SMALL RES 50 THIS STATEMENT IS PROCESSED



CDC -~ ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 11 Assembler ERS

A - A D - ] - - - - "

4.0 PSEUDO INSTRUCTIONS
4,643 SKIPTO - SKIP CODE

- W " Y T~ -

L

SKIPTO MORE

MEDIUM RES 100
SKIPTO MORE
LARGE RES 250
SKIPTO MORE
HUGE RES 1000
MORE CONT

»

»

¢ & & o

TAY,

SKIPYO X
OPEN X
X RES 5
CLOSE X
I DD 10
LOCAL X
X VFDy16 1
DEND
X ADD BASE,DISP

4.7 ERROR_CONTROL

4=26

85/10/717
Rev: F

N N -~ - -

IF A IS EQUAL TD 0.

THIS STATEMENT IS PROCESSED
IF A IS EQUAL 1O 1.

THIS STATEMENT IS PROCESSED
IF A IS EQUAL TO 2.

THIS STATEMENT IS PROCESSED
IF A IS EQUAL TO 3.

If "RESY is a user-defined procedure which reserves the
number of words of core specified by its argument, then the
amount of core reserved by the above code varies depending on

This example illustrates the effect of DPEN/CLOSE and DO/DEND
« blocks on the SKIPTD directive,

THIS LINE IS SKIPPED BECAUSE
IT APPEARS
BETWEEN AN OPEN AND CLOSE

THIS LINE IS SKIPPED BECAUSE
IT APPEARS WITHIN A DO/DEND
BLOCK

THIS LINE 1s PROCESSED
FOLLOWING THE SKIPTO DIRECTIVE



4=27
CDC - ADVANCED SYSTEMS DEVELDPMENT
86710717
CYB R 180 11 Assembler EQS Reay? F
4,0 PSEUQB INSTRUCTIONS
4,7.1 ERROR ?SEHQD DPERATIDN

4,7.1 ERROR PSEUDD OPERATION

T S — pomm e ——————— - e e e e e e -
¥1ab93 1operatxon fargument

..................... - o o - - -
3 iEﬁRGR.axp,iahel IC*message?

The ERROR pseudo operation provides a method for conditionally
generating an error message in the object 1listing and
transferring control to another portion of the program.

l1abel Labe) is any valid symbol appearing in the 1label
field of a subsequent CONT, DEND, or PEND statement.
The statement must be a CONT, DEND, or PEND statement
before label comparison is made.

exp Exp is a conditional expression whose value
determines whether the error message is to be
produced and if a transfer of control is necessary.
If this subfield is omitted, then the message is
unconditionally generated.

message Message 1is any valid combination of characters {(see
Character set),

When an ERROR pseudo instruction is encountered, the
expression is evaluated.

If it is true (1) or not specified, the error message is
produced on the object listing, If symbol 1{is present,
control is transferred to the indicated line. If no
symbol is present, assembly continues with the next
statement.

If the expression 1is false {0), no message is produced
and assembly is5 continued at the succeeding line.

Example:
ERROR, A<O CTILLEGAL ARGUMENT?
NELX SET 2y34A,My XOR, COMX
« WHEN THE ABOVE DIRECTIVE IS ENCOUNTERED, IF A IS LESS THAN
» ZERD THEN THE MESSAGE wILLEGAL ARGUMENTY WILL BE PRINTED. IF
« A IS5 NOT LESS THAN ZERO, NO MESSAGE WILL BE PRINTED. IN
o« FEITHER CASE, THE LINE NELX WILL BE PROCESSED NEXT,.



4-28

CNC - ADVANCED SYSTEMS DEVELOPMENT
B6710/717
CYBER 180 11 Assemb!er ERS Rev- F

4,0 PSEUDD INSTRUCTIONS
4.7.1 ERROR PSEUDD DPERATIODN

A - T D - B D A N A A U T S DN DS A N AT T T AT D VD VD A Al WD A D A T T N A T D WD DD S WD S U U N VD W W

ERROR,B<COIBD>15,ILR C* ILLEGAL REGISTER?

PSRL LPD,2 B
SKIPTO NEHWL

ILR ERR

MNEWL CONT

WHEN THIS ERROR DIRECTIVE IS ENCDUNTERED, IF 0£BL15, NO
MESSAGE IS PRINTED DUT AND THE LINE PSRL IS5 PROCESSED,
FOLLOWED BY LINE NEWL. IF B<0 OR 8415, THEN THE MESSAGE
"ILLEGAL REGISTERY WILL BE PRINTED AND THE LINE ILR IS
PROCESSED, FOLLOWED BY THE LINE NEWL. 1IN THIS EXAMPLE, ¥LPDY
AND YERRY ARE USER-DEFINED PROCEDURES.

*« % & & & ¥

4.,7.2 FLAG - CONDITIONALLY SET ERROR FLAG

A FLAG pseudo instruction produces an assembly error, but does
not affect other code.

A e e e o o o T e o S T -] -

]1abel !operat:on {argqument
A e R e o o e o e o
H FLAG lerrtype

errtype FATAL - a fatal error detected.

WARNING - a non-fatal error detected.
Examples
FLAG FATAL
4.8 LISTING CONIROL
The instructions described in this section permit extensive
control of the assembly listing format.

4.8,1 LIST - SELECY LIST OPTIDNS

frem—————- fmm——————— e e e o o e e -
}1abel joperation iarqument

prmmmm——— o e e e e e e e
| ILIST,val !exp-l,exp-z,exp-B

The LIST pseudo operation controls the assembly 1listing
generated, The argument field 1is used to select the various
listing options.



H=-29

CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717

CYBER 180 I1 Assembler ERS Rev: F

A - - -

4,0 PSEUDD

W T T T T " - - . . N N T NS W AT N T T - -

INSTRUCTIDNS

4.8,1 LIST - SELECY LIST OPTIONS

T A~ . -

exp_1

exp_2

exp_3

0

A T D A A W A T VT T D N T N T T D D D T A T A AT D T O W U A U S T D D A N Y Ty D D WD DA A W, W -

Val is an optional evaluable expression which Iis
interpreted as follows:

0 = List this statement according to the listing
controls in effect when this statement is
encountered.

1 = List this statement according to the value of
expression 3, This is the default,

An evaluable expression which may assume the
following values:

0 = Suppress complete listing.
1 = List input statements.

2 = List input statements plus all statements that
generate code {(VYFD, CMD statements that normally
would not be listed).

3 = List all generated statements including internal
procedure expansions.

4 = List all generated statements.

An evaluable expression used to control the 1listing
of unprocessed statements that are by-passed during
the assembly procedure and also the repeated
statements in a DO/WHILE which normally would not be
listed, This may occur during the processing of
SKIPTD, DD and WHILE pseudo instructions. The values
of the expression are as follows:

0 = List only processed statements, but not repeated
DO/WHILE statements.,

1 = List processed statements including repeated
DO/HWHILE statements that are processed.

2 = List all statements,.
Used to control the listing of the 1listing control

pseudo instructions, TITLE, PAGE, SPACE, XRSY, and
LISY., The values of this expression are as follows?

i

Do not list the Listing control statements.

1

H

List the Listing control statements.



4-30
CDC ~ ADVANCED SYSTEMS DEVELOPMENT

B6710717
£Y%ER 180 11 Assembler ERS Revs: F

4,0 PSEUDD INSTRUCTIONS
4.8.1 LIST - SELECY LIST OPTIONS

A T T NN D U A D W DA T TS W WD A D W A S N A D N A N

The standard LIST parameters established by default are:
LIST 1,2,1

Causing a full listing to be generated. Subsequently any of
these parameters may be altered. A null subfield specifies that

the parameter is to be unchanged. If no parameters are
specified, the LIST options will revert back to their previous
settings.

4.8.2 PAGE -~ EJECT PAGE

fomm——————— o ————— $m——— ————————— ——————————
Iiabe! 3operat:on fargument

fmm——— e ————— Fom e ———————————————— -
! | PAGE !

The appearance of this pseudo operation will cause the next
line of output to appear at the top of a new page on the computer
listing, If the next line would normally appear at the top of a
new page, the PAGE pseudo operation is ignored. Two consecutive
PAGE directives will generate a blank page.

4.8.3 SPACE ~ SKIP LINES

S Sy - o e e - o o v o s 2

{1abel foperation largqument

e o o e e S - - - - -

} | SPACE fexpression

expression Expression is any evaluable expression. The value of
this expression specifies the number of lines to be
spaced before the next line appears on the computer
1i$ting.

1f the expression is not present, a value of 1 iIs assumed. If
the value of the expression is greater than the number of lines
remaining on the page, the SPACE pseaudo operation will have the
same effect as the PAGE psesudo operation.
Examples

SPACE 3



4-31
CDC -~ ADVANCED SYSTEMS DEVELOPMENT
B&4710/17
CY&ER 180 11 Assemb!er ERS Rev? F

4,0 PSEUDD INSTRUCTIONS
4,8.4 TITLE ~ ASSEMBLY LISTINQ TITLE

4.8,4 TITLE - ASSEMBLY LISTING TITLE

e e e o e e e o e e -
] label !nperataon !arqument

pomm————— o ————— e m————————————— ————
{ ITITLE {C'character string’

character string
Character string is a sequence of any characters {see
Character Set) up to a maximum of 56 characters.

The TITLE pseudo instructions enables the programmer to
specify an identification for assembly listing.

When a TITLE pseudo instructions is encountered, the assembly
listing is advanced to a new page (if it is not already at a new
page). The indicated character string is printed at the top of
this page and at the top of all succeeding pages until another
TITLE pseudo instruction is encountered or the end of assembly is
reached.

A null arqument field on a TITLE pseudo instruction line will
cause the listing to be advanced to a new page, but no heading
printed,

Example:?
TITLE C*TESTCODE?

44845 XRSY - CONCDRDANCE SELECTION

A - - - - n--o-a’- ———————————————— - -
llabal !opﬂratlan | ar gument

- ——— - o - - - Ao - -
| | XRSY Inamel,y ... ynamen

The XRSY pseudo operation is used to select certain symbols to
be included in the concordance.

namen Namen designates symbols to be included in the
concordance.

Example:?

XRSY X0



4{=-32
CDC - ADVANCED SYSTEMS DEVELOPMENT
B6/10717
CYBER 180 11 ﬁssembler ERS Rev: F
4,0 PSEUDD INSTRUCTIDNS
4.9 SEC?IHNS

4.9 SECTIDONS

Sections are established for the user by the Assembler, and
optionally by the wuser., The concept of sections is valid only
for CPU programs. An IDU program has only one section, the code
section, which can be read, written, and executed. Sections in a
CP module are established with differing levels of access to
allow the wuser who uses them protection for code and data. The
concept of sections is similar to the hardware concept of
segments. Hardware segments are established to have different
levels of access, and generally so are the Assembler sections.
However, sections <can be established with the same level of
access, and they will then be combined 1into the same hardware
S&gmeﬂt »

Sections can be used to establish a blocking of data and code.
The section counter is automatically maintained by the Assembler,
but can be modified by wusing the O0ORG, POS or BSS pseudo
instructionse.

Data and code within a section 1is not relocatable. The
sections are treated as relocatable with references made via the
use of pointers. The CYBER 180 instruction set has been designed
to efficiently access data and code in other sections via a
mechanism of pointers to a byte address plus an offset in the
specific section. The pointers are generally established via the
ADDRESS pseudo instruction in the BINDING section.

4.9.,1 SECTION - ESTABLISH BLOCK

SECTION establishes a new block. This statement is valid only
for a CPU module, A user may establish up to 10 sections in
addition to the five default sections established for him. All
SECTION pseudo instructions must appear before any code or data
generation instructions are specified.

pmr————— —pm——— B e e T e
{1abel joperation largument
fmemm————— pomm—————— frmmm—— e e ——————————
Iname ISECTION jtypeyattrycidyalgn,maxsize

name {Required) Internal section name for USE block

definition.

type {Required) The section type identifier which must be
one of the following names:



4-33

CDC - ADVANCED SYSTEMS DEVELOPMENT

, 86710717
CYBER 180 II Assembler ERS Rev: F
4,0 PSEUDD INSTRUCTIONS
4.9.1 SFiTInN - £STA3LISH BLOCK
CODE Code section, only one code section is

attr

maxsize

The

permitted per module,

BINDING Binding section, only one binding section
is permitted per module.

WORK ING Working storage section.

COMMDN Common block section.

EXTHORK Extensible working storage section. Data
may not be established in sections of this
type at Assembly time.

EXTCOM Extensible common block section. Data may
not be established in sections of this
type at Assembly time,

{Required) An absolute expression which specifies
legal combinations of access attributes of the
segment to contain the section. Only the "y
operator is permitted in the expression.

READ - Read

WRITE - Hrite

EXECUTE - Executable

BIND - Binding

CACHE_BYPASS - cache bypass {(hardware feature)

{Optional) Common section name {1-31 character alias
name).,

{Optional) Two absolute expressions separated by a
comma which define section alignment. The first
parameter is an offset, the second is the base
{modulus).

Examples are?

0,8 = Word aligned section start.

BR,64 - Section starts at word one of an 8 word block
boundary.

0s8 = Word aligned section start (default for all
sections except binding sections).

{Optional) Absolute evaluable expression which
specifies the maximum section size.

following default sections are established by the

Assembler for a CPU module?

Section Name Attributes



CDC - ADVANCED SYSTEMS DEVELOPMENT

4=34

86710717
CYBER 180 11 Assembler ERS Rev: F

Y - T~ A V-~ - . A M - .

4.0 PSEUDD INSTRUCTIDNS
4,9.1 SECTION - ESTABLISH BLOCK

- e

U 2 - WG A W T W A W AV Y A A [ D W T WA WD AU O N D DA A 2D N W ST DT AU T D S D O W T A

=CONDE ReadtExecute

WORKING Read+Hrite
BINDING Read+Bind

STACK Read+hrite

# The name on the IDEMT card can also be used to reference
CODE section.

Example:
DUMMY SECTION WORKING,READ+HRITE,,0,8

4.9.2 USE = USE BLDCK

The USE statement 1is wvalid only for C(PU modules.

the

UsE

starts/resumes use of an already established section into which:

code is subsequently assembled.

o - - - — - - v - - - B Ll T T yep——
!!abe] joperation |argument
-~ - - - A - R T P T penp—
{ J1USE Iname

name The name of the section into which the text

that

follows is assembled. (It corresponds to the name of
a SECTION pseudo instruction). A blank name causes
the assembly of code into the default CODE section.
The name #LASTSEC will resume using the section in

use prior to the last USE statement.

The current position in a section is automatically maintained
by the Assembler. When the USE pseudo instruction is executed,

the section counter will automatically be restored to
previous value,

Example:
DUMMY SECTION WORKING,READ+WRITE, ,0,8

USE DUMMY

USE #LASTSEC

its



4-35
CDC ~ ADVANCED SYSTEMS DEVELOPMENT
B6/10717
CYRER 180 IT Assembler ERS Rev: F

W A A U BN AT T D T ST AW 1D N WD WS D WU T T T TUD WD NP WD D W WD T A VW W W A WP WD W T o O VA NI A " D -1 T~

4,0 PSEUDO INSTRUCTIONS
4.9.3 0ORG - SET SECTION QQUNTEQ

4.9.3 DORG = SET SECTION COUNTER

The ORG pseudo instruction specifies the unit {(bytes Ffor CPU
or words Ffor I0U) offset to which the section counter is to be

set.
o Fomm o e Fm——— s e
I!abe! 1operat10n | argument
Fom o o e i e
ilabei {DRG fexp
label Optional, if present, is set to the wvalue of exp.
Symbol category equals 6.
exp An absolute expression specifying the address to
which the unit offset is to be set. Any symbols in
the expression must have been previously defined.
Example:

TAG BSS 10 ~DATA AREA,

»

ORG TAG +STORE IN DATA AREA.
4.9.,4 PDS = SET BIT POSITION IN THE SECTION COUNTER
The POS pseudo instruction sets the value of the bit offset in

the section counter to the value specified by the expression in
the argument field for either CPU or I0U modules. :

tmm—————— $omm—————— o —————————— —————————
|1abel loperation Iargument
prmm————— $ommm——————— e — e ——————— ———e————————
| 1P0S 1 aexp
aexp An absolute, evaluable expression having a positive

value less than or equal to the bit position with a
unit {byte for CPU or word for I0U). A negative
value, or a value greater than 7 for a CPU module, or
a wvalue greater than 15 for an I0OU module causes an
error. The value indicates the bit position within
the current address unit at which the Assembler is to
generate the next data. Use caution, because if the
new bit position wvalue 1[Is less than the old bit
position value, part of the byte 1is reassembled.



4=-34
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710/17
CYBER 180 11 Assemb!er ERS Revs F
4,0 PSEUDD INSTRUCTIONS
4,9.,4 POS - SET BIT POSITION IN THE SECTION CDUNTER

- T WO T T W W T T T T T T - T - N A W T AT D WY N WU A TGN D AN AP W AP W U A A -

{New code is ORed with previous!y assembled data).
If the new bit position value is greater than the old
bit position value, the Assembler generates zero bits
to the specified bit position.

CAUTION: If the PDOS pseudo instruction 1is wused on a word
containing relocatable or external addresses, undefined
results may occur with no diagnostics.

The P0OS pseudo instruction does not alter the unit offset
{byte for CPU or word for I0U)., The PDS instruction never causes
the unit {byte for CPU or word for IDU) to be changed.

Examples

POsS 3

4,95 BSS = STORAGE RESERVATIDN

The BSS pseudo instruction reserves memory in the section in
use by adjusting the addressable unit offset (bytes for CPU or
words for I0U). It does not generate data to be stored in the
reserved area.

e tmmm—————— Fo e ———————————_——
{label Joperation }arqgument
e ————— fmm——— - e e e e e e e
] labe) 18SS | aexp
labe} Optional label defined as the addressable unit offset

after the force to an addressable unit boundary
occurs. It is the beginning symbol for the storage
area. Symbol category equals b.

aexp Absolute expression specifying the number of
addressable storage units to be reserved, AYl
symbols must be previously defined. Aexp cannot

contain external symbols or be relocatable. The
valye of the expression can be zero or positive, but
not negative, and the value 1is added to the
addressable units offset, A BSS 0 causes a force to
byte boundary and symbol definition, but no storage
is reserved.

Example:?

TAG BSS 5



4=37
CDC - ADVANCED SYSTEMS DEVELOPMENT
BR6710/17
ﬁYﬁFR 180 11 Assembler ERS Rev: F
4,0 PSEUDD INSTRUCTIONS
44.9.6 ALIGN -~ FORCE SECTION COUNTER ALIGNMENT

TN - T T - W AN S W W (DD A D DD AD T D DA T DA W R A A W VD A D A WD U A > D D A

4.9.6 ALIGN - FORCE SECTION COUNTER ALIGNMENT

The ALIGN pseudo instruction forces the unit offset to the
specified boundary (byte for CPU module, word for IDU module) and
sets the bit offset to zero.

o - U —— W —— - -
11abel ioperation fargument
pm———————— fomm—————— Fom i o e e e
| 1abel JALIGN !1ncr~ment.unitsnz£
label Optional label defined as the unit offset after the

force to the specified offset plus increment occurs.
Symbol cateqgory equals 6.

increment The increment is a value that is added to the unit
offset after the alignment 1is made to a unitsize
boundary.,

unitsize The unitsize specifies a value by which the unit
offset must be evenly divisible, The number
specified must be greater than zero. To do this, a
number between 0 and unitsize =1 is added to the unit
offset to make it evenly divisible,

Example:

ALIGN 0,2 « PARCEL BDUNDARY {CPU).
ALIGN 0,8 «WIRD BOUNDARY (CPU).

4,10 PROCEDURES

A procedure definition is a3 sequence of source statements that
are saved and then assembled whenever needed through a procedure
calls. A procedure call consists of the occurrence of the
procedure name in the operation field of a statement. It usually
includes parameters to be substituted for formal parameters in
the procedure code sequence so that code generated can vary with
each procedure call,

Use of a procedure requires two steps, definition of the
procedure sequence, and calling of the procedure.

A definition consists of three parts: heading, body, and
terminator.,

Heading A PROC definition 1is headed by a PROC pseudo



4~38
CDC ~ ADVANCED SYSTEMS DEVELOPMENT
B6/10717
CYBRER 180 I1 Assembler ERS Rev: F
4.0 PSEUDD INSTRUCTIDNS
4,10 PROCEDURES

instruction initiating the definition of a procedure,
and a  PNAME pseudo instruction stating the name of
the procedure.

Body The body begins with the first statement in a
definition after the heading. The body consists of a
series of symbolic instructions, A1l instructions
other than PEND, including other procedure calls are
legal within a definition. Within a PROCEDURE, calls
can appear to other Procedures, but a PROCEDURE
cannot call itself nor can any PROCEDURE in a nest of
calls call any other PROCEDURE previously in the
nest. PROCEDURE definitions cannot be nested. That
isy, a PRDC pseudo operation must be followed by a
PEND pseudo operation prior to the appearance of
another PROC pseudo operation. The overall order of
PROCEDURE definition is immaterial so 1long as the
definition precedes the first call to assemble the
PROCEDURE (i.e, a procedure call within a procedure
definition may reference a procedure that is not
defined prior to this point).

Terminator A PEND pseudo instruction terminates a procedure
definition.

A procedure can be defined anywhere in a program before it is
called. When the Assembler encounters a definition, it places
the name of the procedure along with the number of substitutable
parameters and local symbols in the Assembler operation code
table,

4.,10.,1 PARAMETER REFERENCING WITHIN PROCEDURES

Parameters on a procedure call can be referenced using the
Field function "F:” and specifying the position of the parameter.
The position of the parameter 1is indicated by using an (i,])
notation to describe where on the procedure call the parameters
should be gotten, Using the (i, j) notation, i describes the
field number (label field = 0, operation field = 1, argument
field = 2), and j describes the position in the field starting at
D. An entire field may be referenced by just quoting the first
parameter,

When a label is specified on the PROC statement, that 1abel is
equated to the Field function and can optionally be used instead
of F: (the colon is part of the Field function name). For more
information, refer to the section discussing the PROC statement,



4=-39
CDC - ADVANCED SYSTEMS DEVELOPMENT
_ BH/10/717
CYRER 180 II Assembler ERS Revs: F

D S W W A A D TG D A N T A T T D D D W W T T T T T S T N T - - - - -~

4.0 PSEUDD INSTRUCTIONS
4.10.1 PARAMETER REFERENCING WITHIN PRQCEEURES

Using F: notation, the i**th field and the j*¥th subfield of a
statement is referenced as:
F2liy,j)
A reference to the entire i%*¥th field would be:
F:L(i)

References to a particular field or subfield may occur
anywhere that such a reference has meaning. Each reference acts
as a direct substitution of the referenced subfield into the
referencing entity, The actual substitution mechanism can have
several meanings which are discussed in subsequent chapters.
4,10.1.1 Parameter Identification Examples
« THIS EXAMPLE SHOWS HDW RELATIVE FIELD IDENTIFICATION WORKS,

CONSIDER TRANSLATION OF THE FOLLOWING LINE:

IMPERAT ADD, 344 ADDEND, AUGEND MOVE 5.6 DEST,SOURCE

DURING PROCESSING OF THE OPERATION

L]

. F:{0) = IMPERAT

. F:{1,0) = ADD Fi(1,1) = 3 F:{1,2) = &
. F:{2,0) = ADDEND F:{(2,1) = AUGEND

» F3{3,0) = MOVE F32{3,1) = 5 F2{(3,2) = 6
. F:(4,0) = DEST F:(4,1) = SOURCE

4.,10.2 PROC - PROCEDURE HEADING

The PROC pseudo instruction is the first pseudo instruction
which must be given in the process of defining a PROCEDURE. This
pseudo instruction may contain an optional Tabel field.
Following the PROC pseudo instruction must appear the statements
which comprise the entire PROCEDURE being defined. The
appearance of the PROC pseudo instruction initiates definition of
a PROCEDURE. All statements which follow the PROC pseudo
instruction up to and including the first encountered PEND pseudo
instruction will be included as part of the PROCEDURE being
defined,

The PROCEDURE being defined will be considered terminated when
the first subfield of any subsequent DPERATION field contains the
pseudo instruction PEND., All statements of the PROCEDURE which
lie between the PROC pseudo instruction and the next PEND pseudo
instruction are considered to be the body of the PROCEDURE.



4=40
CDL - ADVANLCED SYSTEMS DEVELDPMENT
86710717
CYBEE 180 I1 Assembler ERS Rey: F

. AR A DN T A D WG T A T A - T R~ . . - " S T WD A W - W W W -~

4.0 PSEUDD INSTRUCTIDNS
4.10.2 PROC - PROCEDURE HEADING

AT D M W T W A NS D N A W N D T N D D N S W D W W N D T AN N A AU VD D D WD T W A D A T WY W MDA AU D AUD D AW D A W WD A D T

Within this PROCEDURE body, the first subfield of any subsequent
OPERATIDN field prior to a PEND pseudo instruction cannot contain
another PROC pseudo instruction.

S - N
label ioperat:on largument
fmm—————— B o e e e e e
{ 1abel {PROC |
1abel Optional, the label field of a PROC pseudo

instruction contains a symbol, this symbol can then
be used as a field function name within the procedure
body and also by any other {(nested) procedures. Note
that the label is defined only while the procedure is
active ({referenced), and cannot be used to call the
procedure.

The label on the PROC pseudo instruction line is
normally used within the PROCEDURE followed by field
and subfield notation to reference the actual
arguments by which the PROCEDURE was called, 1If no
1abel appears with the PROC pseudo instruction, then:
the parameters by which the procedure is called can
be referenced only by using the F? notation described
in the previous section.

Examples can be found in the section entitled "Procedure
Examples™,

4,10.3 PNAME - PROCEDURE NAME DEFINITION

The PNAME pseudo instruction is used to provide a name by
which a PROCEDURE can be referenced. The PNAME pseudo
instruction must immediately follow the PROL, FNAME, or another
PNAME pseudo instruction when a PROCEDURE is being defined. Any
PROCEDURE may have multiple PNAME pseudo instructions and,
therefore, be referenced by several names.

A - - v - - e - - - A - - - - — -
{1abel Joperation largument
tomm—————— o —————— $emmm e ———— ———————
| 1abel I PNAME ivalue
1abel Name by which the procedure is referenced.
value An evaluable expression,

Within the PROCEDURE, the value of the expression following



: H=41

CDC - ADVANCED SYSTEMS DEVELQOPMENT
86710717

CYBER 180 11 Assemb?er ERS Rev- F

4,0 PSEUDD iﬁSIRUCTIﬁMS

4,10,3 PNAME -~ PROCEDURE NAME EEF¥NITIG§

the name by which the PROCEDURE was actually referenced is
available as F:{(1,0). This permits the programmer to distinguish
between referencing names, when desired,

A PROCEDURE is referenced {as a procedure) by placing one of
its defined PNAME's in the first subfield of a OPERATION field.
The expression which represents the wvalue associated with the
PNAME is evaluated each time the PROCEDURE is referenced using
that name.,.

Examples can be found in the section entitled ¥YProcedure
Examples¥,

4,10.4 FNAME - FUNCTION NAME DEFINITION

The FNAME pseudo operation is used to provide a name by which
a PROCEDURE may be referenced as a FUNCTION. The FNAME pseudo
operation must immediately follow the PRIOC, PMAME or another
FNAME pseudo operation when a PRDCEDURE is being defined. Any
PROCEDURE may contain multiple FNAME pseudo 1n5tructxons and,
therefore, be referenced by several names.

- B v - — - - - -
!Iabel Joperation }argument
frmmmm———— Pmmmm—————— o e e e e e e e
!!abe! JFNAME jvalue
1abel Name by which the procedure 1Is referenced as a

function.
value An evaluable expression.

Within the PROCEDURE, the wvalue of the name by which the
PROCEDURE was actually referenced is available as F:{(1,0}. This
permits the programmer to distinguish between referencing names,
when desired.

A PROCEDURE 1is referenced (as a function) by forming a
structures

name{ ar gument)

Where name is its defined FNAME and argument is the argument to
the PROCEDURE, This bounded argument, less parentheses, 1is
available, starting at F:(2,0), just as if the PROCEDURE was
referenced as a procedure (via PNAME)., The argument is limited
to one field, although it may contain as many subfields as
necessary. No blanks may appear between the argument and the



4=42
CDC - ADVANCED SYSTEMS DEVELDOPMENT
86710717
£YEER 180 {I Assembler ERS Rev: F
4,0 PSEUDD INSYRUCTISNS
4,10.4 FMAME - FUNCTION NAME DEFINITION

N - - WA A A W WD W A D WD S A VDA D DA A N D A W D AN D A N A Wy N D D W A A W W A AT W D WY S T WA A WV D VI

enclosing parentheses. The expression which represents the value
associated with the FNAME is evaluated each time the PROCEDURE is
referenced using that name.,

A PROCEDURE, referenced using one of its FNAME®'s will have the
entire reference replaced by the value of the expression on the
PEND pseudo instruction when the PEND pseudo instruction is
executeds This value will always be 8 bytes long.

Note that a function may not generate code or change location
counters if it is invoked from a statement which, 1itself, is
generating code.

Examples can be found in the section entitled YProcedure
Examples¥.

4,10.5 PEND - END PRDCEDURE DEFINITION
A PEND terminates any unterminated definition. A PEND outside

the range of any procedure segquence has no effect other than to
be included in statement counts.

$m——————— o ———— femm—————— - ————————————
{1abel joperation largument
fmmmm————— $mm——————— e e
{label JPEND fexp

labe] (Optional) May be used as the object of a skip by a

SKIPTO or ERROR statement. The label symbol is not
entered into Assembler's symbol table and the
presence of a label does not constitute symbol
definition.

axp The arqument field can be null or can be an evaluable
expression. When the PROCEDURE is <called as a
procedure reference, any PEND expression is ignored.
When a PROCEDURE is called as a function reference,
the PEND expression is evaluated and the value is
returned as the value of the function. A null
expression returns the value zero.

Examples can be found in the section entitled ¥Procedure
Examples®.

4,10.6 LOCAL - ESTABLISH LOCAL SYMBOLS

The ULDCAL pseudo instruction 1is wused to establish symbols



4~473
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYRER 18D 11 Assemb¥er ERS Rev: F

4,0 PSEUDO INS?RUCTIG&S
4,10.6 LOCAL - ESTABLISH LOCAL SYMBOLS

which are to be considered local to the PROCEDURE in which they
are defined, The appearance of a LOCAL pseudo instruction
supersedes all previous LOCAL pseudo instructions in that program
or PROCEDURE and all symbols previously declared local are
erased., A PEND or END line terminates the LOCAL.

o ————— $mmm————— Fmmm—————————————— ———————
Jlabel lapvrat:on largument

o - - - —-_—- B e s -~ - -~ -
| jLocAL Inamel,.s.namen

namel,...namen Establish symbols local to a procedure.

A symbol may not be defined as LDCAL if its symbol category is
one of the following:

2 CMD defined instruction

4 PROCEDURE call

10 PROCEDURE Reference List

12 ANAME defined symbol (programmer defined attribute)
i3 Section counter

Examples can be found in the section entitled “Procedure
Examples®,

4.10.7 OPEN - DECLARE TEMPORARY SYMBOLS

The OPEN pseudo iInstruction is used to declare temporary
symbols without affecting any prior use of the label. A label
declared by an 0OPEN pseudo instruction remains active until
closed by a CLOSE pseudo instructio using the same label. OPEN
pseudo instructions may be nested wusing the same label, The
1abel «created wunder the last OPEN pseudo instruction executed
will be active until closed, It is important to note that
closing opened symbols takes place in reverse order from the
opening process. That is, the last open symbol is closed first,
then the next-to-last, etc. Subsequent OPEN pseudo instructions
only affect each other if they use the same symbol, otherwise
they act independently without cancelling prior OPEN pseudo
instructions as 1is the case with LOCAL pseudo instruction,
Definitions of OPEN'ed symbols are restricted in the same way as
LOCAL symbols.

- - - - - —_-*---‘ --------------- - v - -
{1abe} loperatnon {argqument
- - o - - o 2 o 2 o - - -~ -

| | DPEN Inamely.sepnamen



4=44
CDC - ADVANCED SYSTEMS DEVELDPMENT

86710717
CYBER 180 I1 Assembler ERS Rev: F
4,0 PSEUDD INSTRUCTIONS
4,10, ? OPEN ~ BEKLARE TEMPDRARY SYMBGLS
namelyssssnamen Establish temporary symbols with names

namel, .. snamen:

Examples can be found in the section entitled YProcedure
Examples¥,

4,10.8 CLOSE - ERASE TEMPORARY SYMBDLS

The CLOSE pseudo instruction erases the symbols whose names
are used as arguments to the pseudo instructions. If a symbol
has been opened by more than one OPEN pseudo instruction, then
CLOSE only erases the last OPEN and the symbol usage then reverts
to its usage under the previous OPEN. If there was only one DPEN
associated with the symbol, the symbol becomes non-existent and
is completely erased. It is illegal to CLOSE a symbol that has
not been opened,

o ——— - R e B - " — - -

l1abel !operatlon Jargument
R pomm————— —pm———— ————————— ——————
I {CLOSE Inamel,sssynamen
namely,sse.namen Erase temporary label field symbols with

names namel,...namen,

Examples can be found in the section entitled YProcedure
Examples¥,

4,10.9 CONT = NO DPERATIDON

The CONT pseudo instruction 1is used to place a symbol on a
statement only for the purpose of assembly time transfer of
control. The CONT pseudo instruction functions in all other
respects as a NO~0P.

S S Y S U N —

|1abel Joperation largument
Fmm—————— Fm———— e e 2 e e e o e
| 1abel JCONT |
label {Required) Symbol used ¥for transferring control

during the assembly process. The symbol is not
entered in Assembler's symbol table and use of a
symbol in the label field does not constitute symbol
definition.

Examples can be found in the section entitled ¥Procedure



L=45
CDC = ADVANCED SYSTEMS DEVELOPMENT
B6/710/17
CYBER 180 11 Assembler ER§ Rev: F

4,0 PSEUDD INSTRUCTIDNS
4,10.9 CONT = NO OPERATION

A D D b W D D D VI AN D DY U A AT W T AT A D T N A T T T B O N NN T D T TR A DS N WA >

Examples”,

4,10.10 PROCEDURE CALLS

A procedure headed by the PROC pseudo instruction can be
called by an instruction in the following format:

fom——————— A e o e e e e
iiabel | operatinn! argument
G - B T Ty p———
1abel | procname 3 fieldl,field2,...fieldn
label Optional, 1its value can be retrieved from within the

procedure®s body by the F:(D) field function.

procname Name of a predefined procedure {label on PNAME) .
fields One or more fields which might consist of several
subfields.

A defined PROCEDURE may be referenced using any one of its
names as defined by a PNAME or FNAME pseudo instruction. This
name 1is written as the first subfield of the OPERATION field.
The remainder of the PERATION field and as many argument fields
as necessary can follow the OPERATIDN subfield and contain the
arquments to the PROCEDURE. The Assembler is capable of handling
as many arguments as the user wishes to provide,

Parameters passed to PROCEDURES are call_by npname in that a
parameter is evaluated each time it is referenced within the body
of a PROCEDURE. Any previous statements within the body of the
PROCEDURE which have changed the value of a given parameter will
affect later references to the parameter. Any OPEN or LOCAL
pseudo instructions within the body of a referenced PROCEDURE
which declare labels with the same symbol as a 1abel passed as a
parameter will not affect the parameter being passed.

It is the actual call to a PROCEDURE which requires that it be
defined and not just the_appearance of_a _call in an Assembler
statement. Unexecuted <calls do not require that the named
PROCEDURE be defined.

4,10.11 PROCEDURE EXAMPLES



4=46
CDC ~ ADVANCED SYSTEMS DEVELDPMENT

B6/10717
CYBER 180 11 Asspmbigr ERS Rev: F
4,0 PSEUDD INSYRUCTIQ%S
4,10.11.1 Procedure Definition

T - > N T "B T T W Wt D WD WD B TR N> WD ML DAY N N VD AU W T VU N N Y D TG VD S D WD T AT N AU TN A A

4,10,11.1 Procedure Definition

THIS IS AN EXAMPLE OF THE USE OF PROCEDURES., THE
PROCEDURE STATEMENTS (THOSE APPEARING BETWEEN A PROC AND
A PEND DIRECTIVE) ARE NOT PROCESSED UNTIL THE PROCEDURE
NAME APPEARS IN THE OPERATION FIELD OF A STATEMENT BEING
PROCESSED,. IN THIS EXAMPLE, AFTER THE STATEMENT LABELLED
YCALLING™ IS ENCOUNTERED, PROCESSING DOF THE STATEMENTS IN
PROCEDURE ¥SAMY™ BEGINS., WHEN THE PEND DIRECTIVE IN WSAM®
IS ENCDUNTERED, PROCESSING RESUMES AT "NEXTLINEY,

SAMR PROC

* ¥ & O " s &

SAM PNAME 5
A SET F2(2,0) «F2{2,0) REFERENCES X#%3
B SEY Fi1{2,1) «F3{2,1) REFERENCES IXT
F:{2,2) ANAME 6 +ASSIGNS NAME INDEX 710
+ATTRIBUTE NUMBER 6
MAX SAMR:{2,2),SAMR:{2,1)
PEND
PROC
MAX PNAME
Fz{2,1) ATRIB F:{2,0),5 «INTERPRETED AS: ZXT ATRIB
b4 ’IHDEXyS
PEND » F3 REFERENCES LINE CALLING
. « MAX,
» « SAMR REFERENCES LINE
CALLING
. « SAM

CALLING 5AM X%34ZXT s INDEX
NEXTLINE VFD,16 ZIXT

» THE ABOVE CODE IS EQUIVALENT TO:

A SET X*3

B SET Xy
INDEX ANAME 6

IXY ATRIB INDEX,5

NEXTLINE VFD,16 IXT

« THE FOLLOWING EXAMPLE INVOLYES TWD DIFFERENT DEFINITIONS OF
THE LABEL X. THE NET EFFECT OF THIS CODE IS TO SET THE VALUES
OF X AND Y 7O 73

PROC
1ED PNAME
LOCAL X
X SET 2



4=47

CDC - ADVANCED SYSTEMS DEVELOPMENT

‘ 86/10/17
CYBER lﬁﬂ 11 Assemb%ar ERS Rev: F
4,0 PSEUDD INSTRUCTiﬁﬂs
4,10,11.1 Procedure Definition
F:{2,0) SET F1{2,0)+X
4 SET F2{(2,0)
PEND +HWHEN EXECUTED LOCAL X ND LONGER EXISTS
X SET 5 ~GLOBAL X
ZED X +GLOBAL X AS PARAMETER F2(2,0)
» THIS PROCEDURE DEFINES A SET 0OF INSTRUCTIONS FDOR THE C180 CPU
« FACH DPERATINN CNDE IS SPECIFIED AS A PROCEDURE ENTRY NAME
« WHEN HAS THE MACHINE CODE AS THE VALUE.
+ THESE INSTRUCTIONS ARE IN THE FORM op R1,R2 WHERE
« Rl AND R2 SPECIFY REGISTERS.
PROC
ADDR PNAME 20{15)
SUBRR PNAME 21{16)
MULR PNAME 221{15)
DIYR PNAME 23(16)
SR PNAME 1B{16)
F:(G,G’ VFD;%;%;& F:(lyg)yF=(211),F3(2a93
PEND
4.,10.11,2 LOCAL Directive's Use
A SET 5 THIS IS A GLOBAL vaAw
PROC
EVAL PNAME
LOCAL A,B,C ANY REFERENCES TO A, By, DR C WITHIN THE
. EVAL PROCEDURE SIGNIFY SYMBOLS LDOCAL
A SET 7 LOCAL YA®
D SET A GLOBAL *D%, LDCAL *A™
] SET A LOCAL vBv, LOCAL ¥%AW®
» AT THIS PDINT, VAS{A) = T, VAI{(B) = T,
PEND
C SET A GLOBAL "Cv, GLDBAL ™A®
13 SET D
. AT THIS POINT, VA:{A) = 5, VAI{(C) = 5,
o VAI{D) = 7, AND VA:{E) = 7



5-1
COC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBFR 180 I1 Assembler ERS Rewv: F

T D - - W VI WA D A T W W DN T T S A A A A WD VD A AT WD N U WD D D AW U N N A A D Y U W VI T ST MWD D VD U VS W W >

5.0 ATTRIBUTE FUNCTIONS

5.0 AITRIBUTE FUNCYIONS

The Assembler provides a set of built in functions to assign
and/or retrieve values of a symbol attribute, They are usually
used to aid in parameter analysis 1in procedure and function
definitions.

An attribute function is a replacement operation in which the
value of the specified attribute replaces the function in the
expression. The permitted arguments to an attribute function are
defined later in this section.

The set of Symbol Attribute Functions {(SC:, Va3, L8B3, LC:,
L W2y SB: and SN:), and the basic Field Reference Function (¥F:¥
used for parameter referencing)y, all include the character *:°?
{colon), which 1is an alphabetic character within the meaning of
the Assembler. This character is included as a means of avoiding
potential conflicts with wuser-defined symbols, and does not
represent an operator of any kind. Note that this character must
be entered in the NOS ASCII representation.

The general form of an attribute function is:?
attribute_function_name{argument)
where attribute_function_name is the name of a specific attribute
function, and the argument, enclosed in parentheses, immediately
followse.
A1l of the symbol attributes discussed in the section on
Symbol Definition have a corresponding attribute function which

can be used to retrieve that particular symbol attribute from the
internal Assembler symbol table.

5.1 LANGUAGE DEFINED ATTIRIBUTES
A1} the attribute functions described in this section are
built into the Assembler.

S.1.1 SYMBOL CATEGORY ATTRIBUTE -~ 5SC2

Format: SC:(argument)

The SYMBOL CATEGORY Attribute function is used to determine
the symbol category assigned to the argument. The argument can



5=2
CDC -~ ADVANCED SYSTEMS DEVELDPMENT
86710717
CYBER 180 Il Assembler ERS Rev: F
5.0 ATTRIBUTE FUNCTIONS
5,11 SYMBOL CATEGDRY ATTRIBUTE -~ S{3

be a symbol name or a PROCEDURE reference field specification.
This function returns the value of the category and may be used
for testings. When the arqument refers to an expression rather
than a symbol, the category of the expression will be the
category of the first term in the expression. The category of a
NULL subfield in a PROCEDURE reference 1is zero. The Symbol
Category attribute has the following values and meaning:

Category Meaning

0 Non~existent symbol. The symbol in aquestion has
not been encountered by the Assembler. The
existence of a blank LABEL field can be detected by
this category.,

1 The symbol has appeared in a LABEL field, may have
certain attributes, but no operation has taken
place to further define the symbol. After each
statement is processed, any remaining category 1
symbols are erased from the symbol table, unless
they have programmer defined attributes.

2 The symbol has been defined by a CMD pseudo
instruction and is now recognized as an instruction
generating symbol.

3 The symbol is an Assembler defined function,

4 The symbol is a PROCEDURE call, defined by an FNAME
or PNAME pseudo instruction.

5 The symbol is an Assembler pseudo instruction.

6 The symbol is a relocatable address defined by use

in a code generating statement such as VFD, INT,
DINT, FLOATY, DFLOAT, PDEC, BSS, BSSZ, ADDRESS, ORG,
ALIGN, or by the execution of an instruction
generating symbol defined by a €MD pseudo
instruction,

7 The symbol was defined by a REF pseudo instruction.
8 The symbol is the symbol ¥$¥ (section counter).
9 The symbol 1is a list name defined by a SET or EQU

pseudo instruction or as the label of a DO or WHILE
pseudo instruction.

10 The symbol is a list name of a symbolic list



5~=3
CDC - ADVANCED SYSTEMS DEVELDOPMENT
85/710/17
CYBER 180 I1 Assembler ERS ‘ Rev? F
5.0 ATTRIBUTE FUNCTIONS
5.1.1 SYMBOL CATEGDORY ATYTRIBUTE -~ SC:

D A WD N W D W T M U AN W U W W A S T WD D M W WD T T A AU T U D D U A WD WD A Y. A N N N A U T WD W T A A D AN WD A A" o

holding PRDCEDURE references, The symbol was
defined by a PROC pseudo instruction ({see

PROCEDURES) .

11 The symbol is a self-defining term.

12 The symbol is defined by an ANAME pseudo
instruction.

13 The symbol is a list defined by a SECTION pseudo
instruction,

Symbols defined in the 1label field of pseudo instructions
where the label field 1is not 1ignored will have the symbol
category documented for that instruction. Symbols defined in the
label field of the symbolic machine instructions will have a
Symbol Category of 6.

5.1.2 ADDRESS MODE ATTIRIBUTE

Format: AM:{argument)

The ADDRESS MODE attribute function is used to determine the
relocatability of the argument. The argument can be a symbol
name or a PROCEDURE field reference specification. This function
returns the value 1 if and only if the argument is defined and
relocatable. Otherwise, it returns a value of zero. When the
arqument refers to an expression rather than a symbol, the
ADDRESS MODE will be the ADDRESS MODE of the first term in the
expression. When the symbol is the symbol “4$¥, the address mode
value will be O,

5»1.3 VALUE ATTRIBUTE

Format: VA:(argument)

The YALUE attribute is used to determine the valus assigned to
the argument, where argument is either a symbol or a PROCEDURE
field reference specification. The meaning of the VALUE
attribute varies with the symbol category of the argument:

SYMBOL _CAYEGORY  VALUE and/or MEANING

OO0

0
1
2
3



=4
COC - ADVANCED SYSTEMS DEVELOPMENT
B&/10/717
CYBER 180 II Assembler ERS , Rev: F
5.0 ATTRIBUTE FQ&CTiﬁﬁS
5.1.3 VALUE ATTRIBUTE

s

The value of the PNAME/FNAME symbol when the

procedure is called,.

5 0

6 {Inteqger) address assigned to the symbol.

7 0

B The current integer location counter value,

9 The value of the first element of the list,.

10 g

11 The (word) value of the self-defining term.

12 The value is the programmer defined attribute
number assigned to the symbol.

13 _ The value of the first element of the 1list

{the integer location counter),

The wvalue of an expression is the net value found by
evaluating the expression. A NULL field or subfield has the
value of zero.

The VALUE attribute function is processed in a similar manner
to normal expression evaluation, except that errors caused by
invalid use of symbols are suppressed.

5.1.4 LENGTH ATTRIBUTES

Format: LB:{argument)
LC:{argument)
LWz {argument)

The LENGTH attribute is used to determine the length in bits
(LB:), bytes or cells (LC2), or words (LW:) of the argument,
where the argument is a symbol representing a data or instruction
area assigned by the Assembler in either a CPU or an I0U module.
A CYBER 180 CPU word is 64 bits long and an I0OU word is 16 bits
long.

The LENGTH function rounds up to the next integral number of
units in cases where the bit length of the arqument is not an
exact multiple of the defined character or word. LENGTH returns
the wvalue O if a symbol has not been defined at the time the
evaluation of LB:, LC:, or LW: takes place,

As explained in the section on SYMBOL DEFINITIONy a symbol
acquires a length attribute when it becomes defined by appearing
in the LABEL field of a data generating pseudo instruction. This
length attribute is the quantity of storage assignhed to the
information labeled with the symbol. A Self-Defining Term has a
LENGTH attribute assigned to that term based on its structure.



5=5

CDC - ADVANCED SYSTEMS DEVELOPMENT
86/10/17
CYBER 180 II Assembler ERS ' Rev?: F

5.0 ATTRIBUTE FUNCTIONS
5.1.4 LENGTH ATTRIBUTES

D N D D DS AU W A N T J Al D W D W DT " WD D A D D W T D D T D AW YD Y U TGS A . W Yl T D U T T S T VD D W Y >

If the symbol has been defined with a code generating pseudo
instruction {category 6) then the bit length is given by the
total number of bits generated by the statement. Applicable
pseudo instructions include VFD, INT, DINT, FLOAT, DFLOAT, PDEC,
BSS, BSSZ, ADDRESS, and CMD calls. A character is assumed to be
B bits, and the word size is taken to be 64 bits for a CPU
module, 16 bits for an I0DU module.

If the argument is a self-defining term, the length is
determined based on its structure. A character string (types C
and E) have a character/byte 1length equal to the number of
characters in the string, a bit length of 8%LC., For all other
types of self-defining terms, the bit length 1is equal to the
appropriate CYBER 180 word size,

5.1.5 STARTING BIT POSITION ATTRIBUTE

- Format: SB:{argument)

The STARTING BIT POSITION attribute is used to determine the
value of the BIT offset in the stored byte at the time storage
was assigned to the argument. This function has a zero value for
all arguments whose symbol category 1is not equal to 6, The
STARTING BIT POSITION attribute for an expression is the STARTING
BIT POSITION attribute of the first term in the expression, The
STARTING BIT PDSITION attribute of a NULL field or subfield is
zero. The maximum value for this attribute is 15.

5.1.6 ELEMENT NUMBER ATTRIBUTE

Format: EN:(argument)

The ELEMENT NUMBER attribute determines the number of
subfields {(elements) associated with or assigned to the argument,
The argument can be any lijst name and the value of the EN?
function will be the number of elements assigned to the list at
the time evaluation takes place. Note that a symbol name becomes
defined as a list only by appearing in the LABEL field of the SET
pseudo instruction,

When a PROCEDURE field reference is used as an argument to the
EN: function, then one of two forms of substitution take place:

a) If the specification contains a field index and no subfield
index (F:(0),F:{1)ysssetc.), then the count is made against
the actual subfield elements in the PROCEDURE reference line
itself,



5=6
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 II Assembler ERS Revs: F

. T T N A W AT T D AT T W W D A D D A T T W D G Sl T A D D D UG WD WD At P T A N W D D N . N " A T A

5.0 ATTRIBUTE FUNCTIONS
5:1.6 ELEM%NT NUMBER ATTQ!BUTE

b) If the specification contains both a field AND subfield index
(F:{0,0)+F2{(2,0)9e0s2tc.)y, then the count is made against the
contents of the designated subfield.

5.1.7 LAST ELEMENT NUMBER ATTRIBUTE

Format: EL:{argument)

The LAST ELEMENT NUMBER attribute determines the element
number of the last element assigned to the list used as an
argument. For lists with one or more elements:

EL3{argument) = EN:{argument)-1
For all non~list arguments:
EL3{argument) = 0

When a PROCEDURE field reference is used as an argument to the
EL: function, then one of two forms of substitution take place:

a) If the specification contains a field index and no subfield
index (F32(0),F2{1)y99se2tc.), then the count is made against
the actual subfield elements in the PROCEDURE reference line
itself,

b) If the specification contains both a field AND subfield index
(F2{0,0)4F2({240)y00sr2tc.)y then the count is made against
the contents of the designated subfield.

5.1.8 SYMBOL NUMBER ATTRIBUTE

Format: SN:{argument)

The SYMBOL NUMBER attribute determines a unique value
representing the symbol, This value is only meaningful when used
for comparison to test equality with the SYMAQOL NUMBER of other
symbols. If the argument does not correspond to a symbol, then a
value of zero is returned.

5.1.9 RELOCATION ATTRIBUTE

The Relocation attribute is not a property of a symbolic name.
The Relocation attribute is a function that is used to associate
relocation information with the generation of data and as such it
is meaninagful only when used in an expression in the argument



5~7
CDC ~ ADVANCED SYSTEMS DEVELDPMENT
86/10/17
CYBER 180 !I Assemb!er ERS Revs: F
5.0 ATYRIBGTE FUNCTiﬂMS
5.1.9 RELGCATIGN ATYRIBUT§

field of a VFD, CMD, INT, or DINT statement, See the example
be low. The function is valid only in a CPU module., If the CPU
module is declared YNONBINDABLEY, then the relocation information
is ignored. This function must have three {3) arquments. The
relocation function is called as follows?

RI{EXPRLCT,L,ADT)

EXP An expression defining the byte offset to be used as a
displacement., If the expression is not relocatable in the
BINDING section then no ¥relocation™ object text is
generated, The Ffunction result is the expression result
divided, if necessary, as determined by the ADT subfield.

RCT Defines the relocation container type {width and alignment).
This applies to the field being generated. {Note that only
discrete values are permitted.)? Unless otherwise indicated
the field must start on an addressable boundary.

0 = Parcel Size {(2-bytes)

1 = Three Bytes (3-bytes)

2 = Half Word {4=bytes)

3 = Word (B~bytes)

4 = Instr. D-Field (12-bits/MOD 4)

5 = Instr. Q-Field (2-bytes)

6 = Long D-Field {3-bytes) ENTC £ ENTA Instr.,
Any other value is diagnosed as an error,

ADT Defines the address displacement type of the field. The
function result is EXP divided by a constant determined by
the ADT subfield as follows:

0 = Byte Positive R: = EXP

1 = Parcel Positive R: = EXp /7 2
2 = Halfword Positive R: = EXP /7 4
3 = Word Positive R: = EXP / 8
4 = Byte Signed R: = EXP

5 = Parcel Signed R: = EXP / 2
6 = Halfword Signed R: = EXP /7 4
7 = Word Signed R: = EXP 7 8
Any other value is diagnosed as an error.

EXAMPLE 3
VFD,16 R:{binding_sect_disps»5,5)

5.2 PROGRAMMER_DEEINED _ATIRIBUIE EFUNCTIIONS
Any symbol may be given one or more programmer defined

attributes by first using the ANAME pseudo instruction to give
each programmer defined attribute a name and then using the ATRIB



; 5-8
COT - ADVANCED SYSTEMS DEVELOPMENT
B67I10/17
CYBER 180 11 Assembler ERS Revs: F
5.0 ATTRIBUTE FUNCTIDONS
5.2 PROGRAMMER DEFINED ATTRIBUTE FUNCTIONS

DA U A HD A A T AP D W A U Ay U VI A D N A MG Ay VD VO VA AU N T W A AP AN D 2. AP Y WD W W A A A AU W A AP AU AU AN A A W A WYy TV D U D A U WD -

pseudo instruction which assigns a value to a specific attribute
of a symbol, The Assembler permits the definition up to 16
programmer defined attribute names. Each programmer defined
attribute is given 3a name and an attribute number using the ANAME
pseudo instruction:

INDEX ANAME 1

BASE ANAME 2

FREQ ANAME 3
etcCs

Once defined, a programmer defined attribute function of the
form:

programmer defined_attribute_name{argument)

may be wused in the same way as an Assembler ﬁafinedkattribute
function to recover the value of a particular programmer defined
attribute assigned to the argument,

When the argument to an programmer defined attribute function
is an expression, the function value is the value of the named
programmer defined attribute of the first symbol in the
expression,

The names and values can be altered during the course of the
program assembly using the ANAME and ATRIB pseudo instructions
discussed in the section on pseudo instructions.,

5.3 SYMBOL_AYIRIBUTE EXAMPLES

length aname 1 «LENGTH IS A PROGRAMMER DEFINED ATTRIBUTE
proc

data pnhame

This procedure generates a character string of data

in the WORKING section starting on a half-word

boundary., It will also assign the length in

bytes as an attribute called length.

¢« o * @



CDC - ADVANCED SYSTEMS DEVELOPMENT

5=-9

86710717
CYBER 180 Il Assembler ERS Revs: F
5.0 ATTRIBUTE FUNCTIONS
5.3 SYMBOL ATTRIBUTE EXAMPLES
. label  data charstring
use working +puts us in working section
align 0,4 «puts us on a half-word boundary
F:{0,0) vfd,1b2(f:{2,0)) £3(2,0) «generate data
f:(0,0) atrib length,1c2{f21{2,0)) «puts byte length
use #lastsec
pend
labell data CYEXAMPLE? +data procedure call
numbyte set length{labell) .picks up byte length of string

L d

»

-



6-1
CDC - ADVANCED SYSTEMS DEVELOPMENT

Bs/710/717
CYBER 180 I Assembler ERS Revs F

A T WD 2 WA ATD A N . A D O Y A W D N A DDA, A A A A T DT AN T WD P T T WD DN WD A b T A A V2D A >

6.0 OFFSET FUNCTIONS (#WDFF, #HOFF, #POFF, #BOFF)

6.0 DEFSEY FUNCTIONS (HWOFF. #HOFE, #POFF. #BOFF)

The offset functions return the Word, Half-Word, Parcel, or
Byte offset of an address relative to the beginning of a CPU
section in which it is defined., For an I0U module, only Word and
Byte offset are defined. Use of #HOFF or #POFF in an 10U module
generates a diagnostics. An informative error will be generated
if label does not fall on the appropriate boundary,

The functions are:
#WOFF{1abel) CPU or 10U Returns the offset in words.
#HOFF (1abel) CPU only Returns the offset in half-words.,
#POFF{1abel) CPU only Returns the offset in parcels.

#B0OFF(1abal) CPY or IDU Returns the offset in bytes,



7-1
CDC - ADVANCED SYSTEMS DEVELOPMENT
BH/10717
CYBER 180 I1 Assembler ERS . Rev: F

TN SO N A" T T A SO A D W T DD T AT T A DU DU AT T N D D DN N A N D S I W N A D D AN A T TV D DT Y D N T AU T

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIDNS

7.0 CYRBER 180 CPU SYMBOLIL MACHINE INSTRUCTIONS

The CYBER 180 Assembler recognizes symbolic notation for all.
CYBER 180 CPU Instructions. Instructions in this group are valid
only for a MACHINE pseudo instruction type of C180LPU. If the
MACHINE pseudo instruction type is CIB0I(U the mnemonics listed
in this section will generate errors.

The Assembler identifies each symbolic instruction according
to its mnemonic. The object code for the instruction is
generated in the block in use when the instruction is
encountered. For a more complete description of the hardware
instructions, refer to the CYBER 180 Processor-Memory
Model=-Independent GDS.,

7.1 SYMBOLIC NOTATION

This section describes notation used for coding symbolic CYBER
180 instructions. The CPU instructions are listed according to
the CYBER 180 MIGDS Reference Numbers,

The instruction descriptions are obtained from the CYBER 180
MIGDS. Lengths will always specify the actual number. The
Assembler will make any adjustments necessary, as when the
hardware reguires the length to be entered as length~l. Any D or
Q@ field that is adjusted by the Assembler will be denoted by the
word label in the mnemonic description, and will then be further
described as to exactly what the Assembler expects for that
field.

The label field of a symbolic machine instruction optionally
contains a label, HWhen the label is present, it is assigned the
value of the byte offset after it 1is forced {(if required) to
parcel boundary. The symbol category of the label will be set to
6,

The operation field of a symbolic machine instruction contains
an instruction mnemonic and wmight also contain several other
subfields.

The arqument field contains the instruction operands as one or
more subfields.,

An optional comment field may appear following the last
subfield of the argument fields A comment field must begin with
a period (.) character,



-2
CDC - ADVANCED SYSTEMS DEVELOPMENT
B6/10717
CYBER 180 11 Assembler ERS Rews F
7.0 CYRER 180 CPU SYMBNOLIC MACHINE INSTRUCTIONS
7.1 SYMBOLIC NOTATION

The mnemonics chosen are descriptive of the actual hardware
operation being performed and will provide for a high degree of
recognition by the 2nd and 3rd reader of assembly language
programss. In all cases, the mnemonics are B8 characters or less,
and in most cases much less. This should provide for a certain
ease in programming. The rules enforced when defining the
instructions are?

o A common abbreviation used when shortening the mnemonics.

o The first part of the mnemonic describing the action to be
per formed.

o The second part of the mnemonic further qualifies the type of
action to be taken (X used to represent a full X register, R
for right half of an X register, BIT signifying operation on a
bit fie‘d‘ etca)a»

o The operand fields are written such that multiple subfields
relating to source or destination are positioned together,

o Implied registers are written as part of required instruction
syntax.

0 - The operands are written such that the most significant or
resultant register is written first,

7.2 CPU_INSTRUCTION FORMAIS
The figures 1in this section illustrate the formats for the
CYBER 180 16~bit and 32-bit CPU instructions generated by the

Assembler., For all instructions the Assembler generates parcel
alignment whenever necessary.

Figure 8,1 CYBER 180 jkiD Instruction Format



7=3
COC - ADVANCED SYSTEMS DEVELOPMENT
B6710/17
CYBER 180 11 Assembler ERS Revs: F
7.0 CYBER 180 CPU SYHBQLIC MACHINE imSTRUC?I&NS
7.2 CPU IMSTRUtTIQN FORMATS

fommccm—————— fommpommm o ———— ———

{ ﬁparatxcﬂ st i1 ki1 i1 D i

H Code 1 i | ! | |

frmmm———— D T S S -———
5 3 4 4 4 12

Figure 8,2 - CYBER 180 SjkiD Instructions Format

For these 32-bit instruction formats: the js» ks and i fields
provide register designations, the D Ffield provide either a
signed shift count, a positive displacement or a bit-string
descriptor, and the S field provide a sub-operation code.

G o e e e pomm—fm———

! Operation Code FoJ 1 ki

frrmmm e —————————— prmem et
8 4 4

Figure 8.3 - CYBER 180 jk Instruction Format

For this 16-bit instruction format, the j field provides a
register designation, a sub~operation code, or an immediate
operand value and the k fiald provides a register designation.

A — P +

] Qperatlon Code | j 1 ki Q |

o . ———————— PR pmmem o e —————— +
8 4 4 1%

Figure 8.4 - CYBER 180 jkQ Instruction Format

For this 32~-bit instruction format, the j and k fields provide
register designations or sub-operation codes. The 16~bit Q-field
provides a signed displacement or an immediate operand value.

7.3 GENERAL _CPU_INSTRUCTIONS

The CYBER 180 Assembler®s CPU Instructions Group is subdivided
into the following classes of instructions according to function,

7+3.1 LOAD AND STORE

This sub=group of instructions shall provide the means for
transferring data, in the form of a single bit, a byte string, a
64-bit word, or multiple 64~bit words between one or more
Registers and one or more Jocations in central memory as
specified by the individual instruction mnemonic.



T=4
CDC - ADVANCED SYSTEMS DEVELDPMENT
86710717
CYBER 189 IT Assemb!ar ERS _ Rev: F
7.0 CYB£R 180 LPU SYMBOLIC MACHINE INSTRUCTIDNS
7.3.1 LOAD AND STORE

SN A AR S WD A NI SR N TS A A T W W W WD P T W T A AN S AW TS U W A WD W WD D A A U T B AT AW UG B D WD D WA DT T W NN T U S T VDTN -

For the purpose of establishing operand access validity for
the associated central memory read and write accesses, the ring
number used for validation 1is the wvalue of the ring number
contained in bit positions 16 through 19 of the associated A
Register.,

The central memory operand access type is read-access for any
instruction which loads an A or X register, and write-access for
any instruction which stores an A or X register,

Instructions which transfer data from one or more Registers to
central memory, {(namely, Store instructions), do not alter the

contents of any Register which serves as a source of the data to
be transferred to central memory.

7+3.1.1 LBYTS,58YYS-1load/Store Bytess Xk Length Per 35

a) Load Bytes to Xk from (Aj) displaced by D and indexed by {Xi)
Right, Length Per S.

LBYTS -~ (Format = 5jkiD Op Code = DO-D7 Ref# = 001)

pmm o e——— $mm—— e
ilabe! iﬂperation Jargument

fommm———— fo o m—— o
| ILBYTS,S  1XksAjeXisD

S = number of bytes to load(1-8),

b) Store Bytes from Xk at (Aj) displaced by D and indexed by
{Xi) Right, Length per S.

SBYTS - (Format = S5SjkiD Op Code = DB-DF Ref# = 003)

N — R R S - -

iiabel ioperatxon ]argument
- o - - - - -
| 139?75,5 le,AJ,Xa,D

S - number of bytes to store{l-8).



7-5
COC - ADVANCED SYSTEMS DEVELOPMENTY

B6/710/17
CYBER 1B0 I1 Assembler £RS Rev: F

A T - T W WD TR N A S A DD T T D AU N VU TG W T W A VD NS A - A > T—T - T — - -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
?.3 1.2 LXS,LX,SXI,SX*LoadiStsre Hord, Xk

Te3ele2 LXI1alXeSXIaS5X~Load/Store Hords Xk

a) Load Xk from {Aj) displaced by 8%D and indexed by 8%(Xi)
Right,

LXI - {Format = jkiD Op Code = A2 Ref# = 005)

fomem————— pmm————— B e
llab#i Joperation largument

frm—em——— frmem—————— o o e e e e
1 Xy iXk,A;;X1,!abel

label - byte address, must be on a word boundary.

b) Load Xk from (Aj) displaced by 8%Q,

LX = {(Format = jk@ Op Code = 82 Ref# = 006)

v - - e - A - - " - - -
] iabel loperation }argument
E o —— A e o o s 2

Yabel - byte address, must be on a word boundary.

c) Store Xk at {(Aj) displaced by 8%D and indexed by 8%(Xi)
Right.

SXI - {(Format = jkiD Op Code = A3 Ref# = 007)

I R o B - -
|1abel loperation largument

T fom - o e e e -
i 1sx1 IXkyAjsXi,tabel

label - byte address, must be on a word boundary.



7-6
CDC - ADVANCED SYSTEMS DEVELOPMENT

BR6/10/717
CYRER 180 I1 Assembler ERS Revs F

T~ -~

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.1.2 LXI, LX SXI 45X~ LaadiStcre Word, Xk

d) Store Xk at {Aj) displaced by B¥*Q,

SX = {(Format = jkQ Op Code = B3 Ref# = 008)

Fmom e o o s s o i e e
j1abel loperation ?argument

e i e o o o e e S
1 15X sxk,Aj,!abe3

Jabel - byte address, must be on a word boundary.

7+3.1.3 LBYT,.58YT-1oad/Store Bytes, Xk lLength Per X0

a) Load Bytes to Xk from (Aj) displaced by D and indexed by (Xi)
Right, Length per X0.

LBYT - (Format = jkiD Op Code = A4 Ref# = 009)

fommm———— frm e ——— e ——— ————m——————————
j1abel joperation. iarqument

prmm—————— 4o m e ————————— —————————
i JLBYT,.XD ‘XK)AJ’Xi,D

b) Store Bytes from Xk at (Aj) displaced by D and indexed by
{Xi) Right, Length per XO0.

SBYT - (Format = jkiD Op Code = AS Ref# = 011)

A o o R — g o -
!¥abel loperation }argument
- o . ¥ S —— - >

i ISBYT,X0  §Xk, A;.x;,m



7-7
CDC - ADVANCED SYSTEMS DEVELOPMENT

BA710/717
CYBER 180 IT1 Assembler ERS Rev: F

T - - -~ . - W - - - -

7.0 CYBER 180 CPU SYMBDLIC MACHINE INSTRUCTIONS
7+3.1.4 LBYTP~Load Bytes, Xk Length per j

A D S AP DT T A T WD VT AU DD A A S WD N W Y T A W D D S T D VN T N T A W T D N D Y. T S T . A T S D W A T W N W -

7+.3.1.4 LBYIP-lLoad Bytess. Xk _lLength per_j

a) Load Bytes to Xk from (P} displaced by Q, Length per j.

LBYTP - {Format = jkQ Op Code = 86 Ref# = 013)

o —— o ———————— ——————————
i%abe! joperation largument
......... v o e e i i e 2 T T o S o o T 2 T
; iLBYTP,! IXky label

label - byte address of the data.
j = number of bytes to load(1-8).

T7+¢3.1.5 LBIT,581T~Load/Store Bit. Xk

a) Load Bit to Xk (A]) displaced by @ and bit indexed by (X0)

LBIT -~ {(Format = jkQ Op Code = 88 Ref# = 014)

- — ——— - - o e
|label !operatxon Jargument

fommm———— o —— Fomm——————————————
i L8ITY IXkoAjsQy X0

b) Store B8it from Xk at {Aj) displaced by Q@ and bit indexed by
(X0) Right.

SBIT - {(Format = jkQ Dp Code = 89 Ref# = 015)

I S O U —— A - -
{label Joperation Jargument

o o Ao s o e o
! 1SBIT 1Xk»AjyQ,sX0

Te3slet LAL2LASSALLSA=LoOad/Storesak

a) Load Ak from (A]j) displaced by D and indexed by (Xi) Right.

LAI - (Format = jkiD Op Code = AD Ref# = 016)



7-8
CDC ~ ADVANCED SYSTEMS DEVELDPMENT

BHS10/17
Rev: F

A -

CYBER 180 II Assembler ERS

S A o~ W - - N I - - A YT W D WY W T WA V-

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1:3.1.6 LAI»LA,SAI SA'Load/Store,Ak

pomm————— oo m————— fmm——— o o e
| 1abel joperation largument
bomm——————— Fomm ——fm e ——— ———————————
| LA TAK A joXisD

b) Load Ak from {(A]j) displaced by Q.

LA - {Format = jkQ Op Code = 84 Ref# = 017)
Fom e m——— pmm———— e e e o e e e e
{ 1abel loperation largument
A - - e -~ - - -~ - -
f LA 1Ak,Af,Q

c) Store Ak at {A]j) displaced by D and indexed by {Xi) Right.

SAI - (Format = jkiD 0Op Code = Al Ref# = 018)

o o R o 2 o e i e e R
i!abe! joperation largument

e o —— o e o s o e e s
! 'SAI !AkpﬁjyXivB

d) Store Ak at (Aj) displaced by Q.

SA - (Format = jkQ 0Op Code = 85 Ref# = 019)

A - - - - P - - — - - -
} 1abel Joperation largument
o v B R TR - -

! 1SA 1Ak,Aj,Q



-9
CDOC - ADVANCED SYSTEMS DEVELOPMENT

B6/10/717
CYBER 180 I1 Assembler ERS Rev: F

7.0 CYBER 180 CPU SYMBDLIC MACHINE INSTRUCTIONS
743.1.,7 LMULT,SMULT~Load/Store Multiple Registers

A T W A A DT D D D N AU A AU D202 AN N D AT WD D T NP U N T D U D N W WD M A N A T N N WD T D TP D N . WD A L TN N T T W DAY W W A D

7«3.1.7 LMULTSMULT-Load/Store Multiple Registers

a) Load Multiple Registers from (Aj) displaced by B8%0Q,
Selectivity per (Xk) Right.

LMULTY - {(Format = ikQ 0Op Code = B0 Ref# = 020)

T — pom——— ————— ————— e —————
!!abe! loperation largument

R —— I S ——" A 1 - -
| JLMULT Xk, Ajylabel

label = byte address, must bé on a3 word boundary

b) Store Multiple Registers ar {(Aj) displaced by B8%Q,
Selectivity per {(Xk) Right.

SMULT - (Format = jkQ Op Code = Bl Ref# = 021)

I I —— o - B R — - P -
l!abp! foperation largument

I ——— T P —— b ————— e ——————
{ FSMULT le'AJ,!abel

label - byte address, must be on a word boundary

L] L AR J .

7.3.2 INTEGER ARITHMETIC

Integer arithmetic operations shall be performed on words and
halfwords contained 1in Register Xk and Register Xk Right,
respectively, as described in the following subparagraphs.

Binary integers contained in the X Registers consist of
signed, two's complement, 32-bit or bH4-bit quantities. The
leftmost bit, (in position 00 for 64-bit integers and in position
32 for 32~bit integers), constitute the sign bit.

The ranges in magnitude, M, covered by binary integers in each
of the two fixed point formats, are the following:

32-bit Integer: =2{31){ML2{31)~1

64-bit Integer: =2(63)<ML2(63)~1



7-10
CDC - ADVANCED SYSTEMS DEVELDPMENT

B6710717
CYBER 180 I Assembler ERS Rev: F

T A A A W T DN W N NI DAY W W AT WP WD WU TS A AVD VN S YA T A T T WD D B D W WD NP TS W A S WD A T W P VD W N A D D W

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7+3+2.1 ADDX, ADDXQ, INCX~-Integer Sum, Xk

WD VIS A N T DT W T A W A B W A D W A N D D A D TR U TR A WS A WS W D T D WD D WD M A TU TV W A T T T D W D T D AW W "> -

723221 ADDXLADDXQaINCX-Integer Sums. Xk

a) Integer Sum, (Xk) replaced by {(Xk) plus (X]).

ADDX = {(Format = jk Op Code = 24 Ref# = 022)

fomm——————— pormm——————— e
llabel !operatxon !arqum&nt

o o o e e e B e A o o e e 2
i 1 ADDX IXKoXj

b) Integer Sum, {Xk) replaced by (Xj) plus Q.

ADDXQ - (Format = jkQ Op Code = 8B Ref# = 143)

o m—————— TR T T T
!!abe! ?opvratxon iarqument

frccmm———— O fer - ——————— -
| ADDXQ IXkyXjsQ

c) Integer Sum, {(Xk) replaced by (Xk) plus j.

INCX = (Format = jk Op Code = 10 Ref#f = 1658)

mm———— e ———— e pmem————— - ——————
I 1abel ioperaticn largument

- i — .
i J INCX Xk j

T+3.2.2 SUBX.DECX-Integer Difference.. Xk

a) 1Integer Difference, {(Xk) replaced by (Xk) minus (Xj).

SUBX - {Format = jk Op Code = 25 Ref# = 023)

o v e v v o - v v o -
ilabe! loperation }argument
P S F o e o o o o G e e e e > i e e > D > e e

| j SUBX IXkyXj



7-11
CDC - ADVANCED SYSTEMS DEVELDPMENT

86710717
CYBER 180 11 Assembler ERS Revys: F

- - -~ W . W A TN T WD AN T Y S D AW B U D D U N A HO D D S T A D NG A D B MDD WD NI N

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
Te3a2e2 SUBXYDECX-Inteqger Difference, Xk

T - N - . A TS W P S W A VS D W VD T W S U T T e D B S A A O S D D N T A T DA W N TG WA D WD B WD

b} Integer Difference, (Xk) replaced by {Xk) minus j.

DECX - {Format = jk DOp Code = 11 Ref# = 167}

o - o - —_— e —— - - -
!3abe! 3operatton {argument

O — e — ey
1 | DECX XKy j

Te3:2.3 MULX,MULXQ-Integer Products Xk

a) Integer Product, {Xk) replaced by (Xk} times {Xj).

MULX = (Format = jk DOp Code = 26 Ref# = 024)

pmm——————— frmm—————— frmcmem e — o ——————
] labe] !operataen largument

Fomomcem—— Fomm—————— Fm e e e o e e -
! 1MULX IXky X

b) Integer Product, {(Xk) replaced by {(Xj) times Q.

MULXQ - {(Format = jk@ Op Code = B2 Ref# = 168)

o D - - -
1 1abel {operation largument

fomm————— - fommm e ————————————————
} IMULXQ IXksXjsQ

723024 DIVX-Integer Quotient

a) Integer Quotient, (Xk) replaced by !XR) divided by (X]}).
DIVX - (Format = jk Op Code = 27 Ref# = 025)

B o o - - - o v - - o
l!abe! loperation larqgument
o o 2 o 5 - J o o o - -

1 IDIVX IXkyXj



7-12
CDC - ADVANCED SYSTEMS DEVELOPMENT

85710717
CYBER 180 11 Assembler ERS Rev: F

Y T T Y B U T - W D A A D T NS 1D TR T AU T W VD D WD A T U D A WU WD . W T WD AU T

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
T7e3.2+5 ADDR,ADDRQ, INCR-Integer Sum, Xk right

N D D NS WD A W W T A T T T Y A N T Y D N T T NG VU T U A D A D N T D D WD A WD D N A N A DN W W

7e3+2+5 ADDR,ADDRQ,INCR-Integer Sums. Xk right

a) Integer Sum, (Xk) Right replaced by (Xk) Right plus (X])
Right.

ADDR - (Format = jk Dp Code = 20 Ref# = 027)

b ——————— Frmr - —— o e e e e
i!abel loperation farqumﬂnt
T fom i ————— o 2 i e

b) 1Integer Sum, (Xk) Right replaced by (Xj) Right plus Q.

ADDRQ - {Format = jkQ Op Code = BA Ref# = 028)

tecenm— e pomc————— o e e . ————————
{label 3operatxon 1argumpnt

P — T R — fmmmmmc e, ————
| | ADDRQ IXkyX jo@

c) Integer Sum, {Xk) Right replaced by (Xk) Right plus j.
INCR - (Format = jk Op Code = 2B Ref# = 029)

prm—m———— prmmm————— prm e —————————————————
!!ab@i joperation largument

poemmmm——— pommm—————— fomm e — -
! 1 INCR 1XK, §

7+3.2.5 SUBR.DECR-Integer Differepces. Xk _Right

a) Integer Difference, (Xk) Right replaced by {Xk) Right minus
{Xj) Right. '

SUBR - (Format = jk Op Code = 21 Ref# = 030)

¥ SR —— S — -
3labe1 Joperation largument
§ > o o - I Q. - - -



7-13
CDC - ADVANCED SYSTEMS DEVELOPMENT

86/10717
CYBER 1B0 II Assembler ERS Rev: F

T W s A A > T TN W N T T - - W . - A - . - -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7+3.2.6 SUBR,DECR-Integer Difference, Xk Right

W —— W D T TN T DWW - D BT ST A" T T2 T A o W A A Wl AU W W U OO WD A T D T T A WD >

b) Integer Difference, {Xk) Right replaced by {(Xk} Right minus
e

DECR = {(Format = jk Op Code = 29 Ref# = 031)

S G e e o i i o o o 2 7 2 o 0 0 o 2
i!abei loperation largument

A —— foommm————— Sy
| | DECR I Xky i

7+3.2.7 MULR,MULROQ-Integer Products. Xk Right

a) Integer Product, {(Xk) Right replaced by {Xk) Right times (X])
Right.,

MULR =~ (Format = jk Op Code = 22 Ref# = 032)

A -~ o o - - A T - -
| 1abel !operatian Qarqument

- - - - - -.- ------------------------
| 1 MULR 1Xk o X j

b) Integer Product, {(Xk) Right replaced by {Xj) Right times Q.

MULRQ - {(Format = jkQ Op Code = BC Ref# = 033)

fmm—————— prmmmm————— formmmm— e —e e ——————
| label {operation !argument
e e m——— o ———— ———————————
{ | MULRQ IXkeXjsQ

7.3.2.8 DI¥R-Integer Quotients. Xk Right

a) Integer Quotient, {(Xk) Right replaced by {Xk) Right divided
by (Xj) Right. .

DIVR - {Format = jk Op Code = 23 Ref# = 034)

G - - - T ypp—— -
{1abel {operation largument
- - - - - -

i IDIVR I1XkyXj



7-14
COC - ADVANCED SYSTEMS DEVELOPMENT

86/10/17
CYBER 180 II Assembler ERS Rev: F

W - N W D W A W S S W W DA A VD WD NG A A A W A WO T N S Y i T U D WD > T T A U A T VAP U WY N T T - -~

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
743429 CMPX,CMPR~Integer Compare

WA - W - - WA A W A A D W DD D A A WD W ATy D A D D A A DD A A TP T AT >

T23.2.9 LMPX,CMPR-Integer Compare

a) Integer Compare (Xj) to (Xk), result to X1 Right,

CMPX = (Format = jk Op Code = 2D Ref# = 035)

By e e e -
i!abel loperation largument
-------- - e s s . o e

l !CMPX §XI’Xj,Xk

b} Integer Compare (Xj) Right to (Xk) Right, result to X1 Right.
CMPR = (Format = jk Op Code = 2C Ref# = 036)

R - G - - - -
!!abe! !operataon iargument
oo ——— pmm——— ———— ———————
! 1 CMPR 1X1,XjoXk

7.3.3 BRANCH

The instructions within this subgroup consist of both
conditional and unconditional branch instructions.

Each conditional branch instruction performs a comparison
between the contents of two general registers. Then, based on
the relationship between the results of that compar ison and the
branch condition as specified by means of the instruction’s
operation code, each conditional branch instruction performs
either a normal exit or a branch exit.

Normal exit: When the results of a comparison do not satisfy
the branch condition as specified by the operation code, a normal
exit is performed, A normal exit for all conditional branch
instructions consists of adding four to the rightmost 32 bits of
the PYA obtained from ¢the P Register, with that 32-bit sum
returned to the P Register in its rightmost 32-bit positions.

Branch exit: When the results of a comparison satisfy the
branch <condition as specified by the operation code, a branch
exit is performeds A branch exit consists of expanding the
16-bit Q field from the instruction to 31 bits by means of sign
extension, shifting these 31 bits left one bit position with a
zero inserted on the right, and adding this 32-bit shifted result



7-15

LDC - ADVANCED SYSTEMS DEVELOPMENT
BK/710/717
£YBER 180 II Assembler ERS Rev: F

7.0 CYBER 180 CPU SYMBOLIC MACHINE INﬁ?RUﬂYIDNS
7+3.3 BRANCH

A Y A D D A D A T T A DA D A N D T A D D D A D A B D N W D D DN U N O WD O D WD O . W WD A W AV W, WD D W U W D A -

to the rightmost 32-bits of the PVA obtained from the P Register,
with the 32-bit sum returned to the P Register in its rightmost
32-pit positions.

Unconditional branch instructions perform branch exits
according to the appropriate instruction descriptions contained
in subparagraphs 2.2.3.5 and 2.2.3.6 of the MIGDS.

The Assembler sets the instruction's Q field according to the
value of the *label? subfield of the instruction mnemonics, which
must correspond to a label of an Assembler statement within the

currently active section. Relative addresses cannot span section
houndar ies.

7.3.3.1 BRXEQ.BRXNE,BRXCY.BRXGE=-Branch Conditional

a) Branch to (P) displaced by 2%*Q if (Xj) equal to (Xk).
BRXEQ - {(Format = jkQ Op Code = 94 Ref# = 037)

o e o v 1 > o e e e 0 o o e e - 1 o 2 0
}1abel loperation ]argument

- A o o e o - s
! 1 BRXEQ IXjsXkslabel

label - byte address of the new location.

b) Branch to (P) displaced by 2%Q if (Xj) not equal to (Xk).
BRXNE = {Format = jkQ Op Code = 95 Ref# = 038)

pommm————— e fmmm e, ———————— ———
{label Joperation !argument

pomem———— P o e e e e e e -
| | BRXNE !XJ,Xk,!abe¥

label - byte address of the new location.



7-16
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 II Assembler ERS Rev: F

et X R R R e e e T R R A e R

7.0 CYRER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
T+3:3.1 BRIEQ,BRANE,BRXGTyBRXGE-Branch Conditional

A - W U WS T T DT A T WD A T A W DTS A D A N M T2 W D W A A A WD A N A W T A -

c¢) Branch to (P) displaced by 2%Q if (Xj) greater than {Xk),
BRXGT - (Format = jkQ Op Code = 96 Ref# = 039)

U o e e e 0 0 o st 2 i e S e S
3!abe! loperation largument

fommm———— frmm—————— o ———— ——————
i §BRXGT 1XjsXkylabel

label - byte address of the new location.

d) Branch to (P) displaced by 23Q if (Xj) greater than or equal
to {Xk},

BRXGE = {Format = jkQ Op Code = 97 Ref# = 040)

e —— T —— fmmme————— e —————————
iiabel !overat!on largument

promm————— A — -
LIS | BRXGE IXjsXkylabel

label = byte address of the new location.

7.3.3.2 BRREQ.BRRNE,BRRGT.BRRGE-Conditionals X Right

a) Branch to (P) displaced by 2%Q if {(Xj) Right equal to (Xk)
Right.

BRREQ - {(Format = jkQ DOp Code = 90 Ref# = 041)

S o o e o P R —— R ——
}1abel foperation largument

pomm—————— pemmmm————— b m————————————————
i I BRREQ IXjeXks labe?

label - byte address of the new location.



=17
COC - ADVANCED SYSTEMS DEVELOPMENT

B6E710/717
CYRER 180 I1 Assemblﬂr ERS Rev?: F
7.0 CYBER 180 EPU SYMBOLIC NACHIHF !NSTRUtTIQNS
7+3.3.2 BRREQ,BRRNE, 3RRGT,BRRG§~ConditiQna¥, X Right

b) Branch to {P) displaced by 2%Q if (Xj) Right not equal to
{Xk) Right,

BRRNE = {Format = jkQ Op Code = 91 Ref# = 042)

o e o - 1
I 1abel loperation !argument

fom i —— Fom————— o ———— - e e e
| | BRRNE {X jsXky 1abel

label - byte address of the new location,

c) Branch to (P) displaced by 2%Q if (Xj) Right greater than
{Xk) Right.

BRRGT - (Format = jkQ Op Code = 92 Ref# = 043)

e cememc e —————
11abel loperation iarqumant

o m——— o e e e
| |BRRGT !XJ;Xk,iabel

label - byte address of the new location.

d) PBranch to (P) displaced by 2%Q if (Xj) Right greater than or
equal to (Xk) Right.

BRRGE - (Format = jkQ Op Code = 93 Ref# = 044)
¥ W —— T A - e — R —
{labe !oneratxon !argument
G o 7 ¥ -
N | BRRGE 1XjsXkylabel

label - byte address of the new location.



CDC - ADVANCED SYSTEMS DEVELOPMENT
CYBER 180 II Assembler ERS

7.0 CYBER 1B0O CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.3.3 BRINC-Conditional, with Increment

7-18

B6/710/17
Rev: F

D D P S A N T TD WS W AT U W T D WD NN D O 2D ST WY A D A WD VIR NGB OB W A D T AT WD A A WD A Wl A NG U N D D A T A N D -

- A W W U W WD A WD W S D D A N W T W A DU W D AP SIS D A D NI W D D AW W T W A WA DA T T T D A

7.3.3.3 BRINC-Conditional, with Increment

a) Branch to {(P) displaced by 2%Q and increment
greater than {(Xk).,

BRINC - (Format = jkQ Op Code = 9C Ref# = 045)

fmmm————— Fmm————— b —————— - e e e
j1abel loperation largument

fomm————— fommmm———— o e e e e -
| |BRINC IXjeXkyTabel

label - byte address of the new location.

7+.3.3.4 BRSEG-Conditionala. Ak

Xk}

- -

if

(xj)

al Branch to (P} displaced by 2%Q if SEG{Aj) not equal to
SEG{AK); else Compare BN{Aj) to BN(Ak), result to X1 Right,

BRSEG - (Format = jkQ Dp Code = 9D Ref# = 046)

fom————— Fommm—————— Fm - -
|1abel Joperation largument

. * N — - 200 2 7 10 10 00
l | BRSEG IX1sAjsAk,label

label - byte address of the new location.

7.3.3.5 BRREL=linconditional Branch, (P)_indexed

a) Branch to {P) indexed by 2*%{Xk) Right.

BRREL - (Format = jk Op Code = 2E Ref# = 047)

Fo e e e e o e v e o e e e e e
| 1abel Joperation }largument
TP T — R . g g

| | BRRFL F Xk

- -

- -



719
CDC - ADVANCED SYSTEMS DEVELOPMENT

86/710/17
CYBER 180 11 Assembler ERS Rev: F
7.0 CY&&R 180 CPU) SYMBOLIC MAtHINg INSTRUCTIONS
?.3 3.6 3&91& Unconditional Branch, {A) 1ndex&d

7.3.3.5 BRDIR-Unconditional Branch, {A) indexed

a) Branch to {Aj) indexed by 2%{Xk) Right,

BRDIR = {(Format = jk Op Code = 2F Ref# = 048)

fmm o ———— o o e
| 1abel foperation largument
H e e Fo e e e o - e e
1 I BRDIR TAjsXk

T.3.4 CDPY

The instructions within this subgroup provide thas means for
accomplishing inter-register transfers to the extent definad by
the following instruction descriptions.

Ta3.%.1 CPYXX-Copy to Xk from Xj

CPYXX - {Format = jk Op Code = OD Ref# = 049)

fomem———— prm—————— e ————————— ———————
[1abel joperation }argument

- RN U SR ST
| jcPYXX IXkeXj

7+3.4.2 CPYAX~Copy to Xk from Aj

CPYAX - {(Format = jk {ip Code = 08 Ref# = 050)

T - o 1 - -
ilabel !oparataon J arqument
o R — s 2 e e ot o - -

i {CPYAX IXKsAj



7=20
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 II Assembler ERS Rev: F

W - WD S D D - U WS A SUD A S A N WD A T D WD U A S N A O D AV A D A W N, T DT T W P T N T VD A WU U O AW WV -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
Te3e4. 3 CPYAA-Copy to Ak from Aj

7+3+4.3 CPYAA-Copy to Ak from Aj

CPYAA - {(Format = jk Op Code = 09 Ref# = 051)

pmmm————— Fomm———— e e o o e o e
!]abe! lcaeratxon iarqumant

§om——— e e s e e e e e T
i 1CPYAA {AkyAj

7+3e%.4 CPYXA-Copy _to Ak from XJ

CPYXA - {Format = jk Op Code = 0A Ref# = 052)

tem——————— prmm—————— fommm———————————— -
] tabel loperation largument

fmm o ————— b ————— pmmmmm e m e ——————
! {CPYXA 1Ak, X j

7+3+4.5 CPYRR-Copy to Xk Right from Xj Right

CPYRR - {(Format = jk Op Code = 0C Ref# = 053)
R — T — pommem e ———— —————
{1abel loperat:on |argument
T - prmmm—————— S
| | CPYRR IXksXj

7+3+5 ADDRESS ARITHMETIC

The instructions within this subgroup shall provide the means
for accomplishing address arithmetic to the extent defined by the
following instruction descriptions.,



=21
CDC - ADVANCED SYSTEMS DEVELOPMENT

BH710/17
CYBER 180 II Assembler ERS Rev: F

N . T T W N TP VD T N N AU AT N T A A T T NI VD N TG FID D WU GUD W W AU A A W A W T DN W VIS N A W T WD A >

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.5.1 ADDAQ-Copy A with stp!acament

7+3.5.1 ADDAQ=Copy A_with Displacement

a) Address ({Ak) replaced by (Aj) plus Q.

ADDAQ - {Format = jkQ Op Code = BE Ref# = 054)

fmmm———— fmmm—————— o —————— o e
flabel icperatxon !arqumaﬂt
fmmmmm———— prmmm e ——————————— ————————
] 1 ADDAQ zak.aj,a

7+3.5.2 ADDPXQ-Copy P with Indexing and Displacement

a) Address (Ak) replaced by (P) plus 2*{(Xj) Right plus 2%qQ.

ADDPXQ ~ {(Format = jkQ Op Code = BF Ref# = 055)

T —— - o — ————— ————
!label foperation largument

o —————— D T A e e e e
1 1 ADDPXQ {Ak,X js 1abel

1abel - byte address of the new location,

T+e3.5.3 ADDAX-A_ Indexed

a) Address {Ak) replaced by (Ak) plus (Xj) Right.

ADDAX =~ (Format = jk Op Code = 2A Ref# = 056)

B o R, o i 20 oo S U S T T . v A
1abe} loperation iarqument
I P T, e v o e o e o e . o 7 i -

| 1 ADDAX 1Ak, X



7=-22
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/10/717
CYBER 18D 1! Assembler ERS Revy: F

Y A DD T N W ST T D A W WA A T A D A D WD A N D N B T D D U A S U T WA T WY W T AU D WD T NN U VD VU T - V-

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.5.4 ADDAD-Copy A with stp!acementa Modu lo

7+3.5.4 ADDAD-Copy A with Displacements Modulo

a) Address {Ak) replaced by {Ai) plus D per j.

ADDAD -~ (Format = jkiD Op Code = A7 Ref# = 161)

I W — U —— [ SRV — P ——
iiabe3 Joperation 3argument
fmm—————— e e
I | ADDAD 1Ak AisDsj

7+3.6 ENTER

The instructions within this subgroup provide the means for
entering immediate operands, {consisting of logical quantities of
signed, two's complement binary integers), into the X Registers
to the extent defined by the following instruction descriptions.

Te3.6.1 ENIP,ENTN-Enter j

a) Enter Xk with plus j.

ENTP - (Format = jk DOp Code = 3D Ref# = 057)

A - - o - - - -
!1abe! loperat:on iargument

Jro - - - o - - -
| IEMTP !xk.j

b) Enter Xk with minus j.

ENTN = {Format = jk DOp Code = 3E Ref# = 058)

G e o - - - o - - -
!!abel loperation largument
o e - .



7-23

CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 Il Assembler ERS

o A W T VI W W D A WD A WA WD TN DN W A T

86710717
Rewvs F

T T T - - T — A A U B -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS

Te3.6.2 ENTE~Enter 9

A N - T - -V A W - -

Te32642 ENIE-Enter 0

a) Enter Xk with sign extended Q.

ENTE - (Format = jkQ Op Code = BD Ref# = 059)
A I N — A o s A i A A D 2 s 20
1label loperation {argument
A e e o e e A o e s e -
| JENTE IXk,Q

7.3.6.3 ENIL.ENIX=Enter_jk

a) Enter X0 with logical jk.

ENTL - {Format = jk Op Code = 3F Ref# = 060)
prmmem———— fmmmm—————— fom—————— e —————————
| label !operatiﬂn iargument
o rmrm e ———— et e
i [ENTL 1X0, jk

b) Enter X1 with logical jk.

ENTX - {Format = jk Op Code = 39 Ref# = 164)

o o o v B L T - OV -
l}abe! loperation largument

o e - o e o
| 1ENTX 1X1, jk



CDC - ADVANCED SYSTEMS DEVELOPMENT

CYBER 180 11 Assembler ERS

- . - W W ke A WO A VWD T T T W W .- -

7.0 CYBER 180 CPU SYMBDLIC MACHINE INSTRUCTIONS
Ta3abe% ENTILENTR,ENTS-Enter Signs

A A Y A - A WD - . AU W W A0 D N WO RS T WD T DS IO DU TN A B B W U D W T -~

Te3ubats ENIZLENIQLENIS=Enter Signs

a) Enter Xk Left with sigﬁs per J.

The value of the right most 2-bits of the j field
instruction shall be translated as follows:

=24

B6/710/717
Rev: F

A -

- -

from the

If 00, 32 bit positions of Xk Left shall be cleared

{zeroes).

I1f 01, 32 bit positions of Xk Left shall be set {(ones).

I1f 10 or 11, 32 bit positions of Xk Left shall be

5t to

the value of the sign bit in position 32 of Xk Right.

ENTZ - (Format

i

jk DOp Code

1F Ref# 061)

i

ENTO - {(Format

1]
it

1F Ref#

jk Dp Code 061)

ENTS - {(Format = jk Op Code = 1F Ref# = 061)

e - o e e o T —— -
] 1abel loperation largument

pomm————— formm e ———— Ao e e 2 o e e
§ JENTZ J

| JENTD I Xk

} JENTS !

The assembler computes the value of | from the
instruction mnemonic used.

Te3e6.5 ﬁﬁIﬁ:fntaﬁ_ll_,}kQ

a) Enter X1 with sign extended jkQ.

ENTC - {(Format = jkQ Op Code = 87 Ref# = 165)

N e T
|1abe !oppratlon larqumpnt
B U N S D R —— - - - -

| lENTC 1X1, jkQ

specific



7-25
CDC - ADVANCED SYSTEMS DEVELDOPMENT
86/710/17
CYBER 180 II Assembler ERS Rev: F

- Y A VT T - N T W 2 - - Y S DTS UG T NI WD N D N D TS D N T D DD AT T, TN, DT -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIDNS
7.3.6.6 ENTA-Enter X0 jkQ

Te3.6e6 ENIA-Enter X0_jkQ

a) Enter X0 with sign extended jkQ.
ENTA - {(Format = jkQ Op Code = B3 Ref# = 169)

i o s e o —— - -

{label loperatlon fargument
e —— D T F e e e e e
1 JENTA 1X0, jkQ

7+.3.7 SHIFT

The instructions within this subgroup provided the means for
shifting the initial contents of the Xj Register and transferring
the result to the Xk Register, to the extent defined by the
following descriptions.,

A1l of the instructions within this subgroup derive the
computed shift count in the following manner: The rightmost 8
bits of the D field from the instruction is added to the
rightmost 8 bits initially contained in bit positions 56 through
63 of Register Xi Right and the 8-bit sum represents the computed
shift count. Any overflow from the 8-bit sum 1is ignored. In
this context, the contents of Register X0 Right are interpreted
as consisting entirely of zeroes.

The instructions within this subgroup shall interpret the
computed shift count as follows: The sign-bit in the leftmost
position of the 8-bit computed shift count shall determine the
direction of the shift, vhen the computed shift count is
positive {(sign bit of zero), these instructions shall left shift.
When the computed shift count 1is negative (sign-bit of one),
these instructions shall right shift. For 32-bit quantities,
shifts shall be from 0-31 bits left and from 1-32 bits right.
For 64-bit quantities, shifts shall be from 0-63 bits left and
from 1-64 bits right,

When these interpretations of the computed shift count result
in an actual shift count of zero, the associated (instructions
transfer the (initial contents of the Xj Register to the Xk
Register and no shifting is performed.



7-26
CDC -~ ADVANCED SYSTEMS DEVELOPMENT

: 86710717
CYBER 180 II Assembler ERS ' Rev?: F

A - A VD W W -, A A G WD DA W D A D D A NS WD W D N A S WD AP N AN D T A D T D M T D D N D >

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIDNS
7+3.7.1 SHFC-Shift (Xj) to Xk, Circular

A M M A A N AU D D A AU A N A T WD W A A A A T N W WA B TN TR AT D BB ANy N DD D O DD NN TP A >

7.3.7.1 SHEC-Shift (XJj) to Xk. Circular

a) Shift {(Xj) to Xk Circular, Direction and Count per (Xi) Right
plus D,
SHFC - {Format = jkiD Op Code = AB Ref# = 062)
R et P e e ———————
| 1abe) loperation ]argument
Fmmmm———— pom———————— i
| | SHFC IXksXjsXi,yD

723272 SHEX.SHER=Shift (Xj) to Xk. End=0ff

a) Shift (Xj) to Xk, Direction and Count per (Xi) Right plus D.

SHFX - (Format = jkiD Op Code = A9 Ref# = 063)

frm—————— $omm o e e e e e e e
| label logeration largument

pomem———— pormmm—————— Fomm————————————————————
] | SHFX IXkeXjoXiyD

b) Shift (Xj) Right to Xk Right, Direction and Count per (Xi)
Right plus D,

SHFR - {Format

i

jkiD Op Code = AA Ref# = 064)

I S G e e o o e e W, i o o 20 e
| 1abel !oppratxon {argument

T — pmm————c——— frmm e, ————————————————
| | SHFR 1 XKy X JoXioD



=27
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 11 Assembler ERS Revy: F

T D D 1 . W H A W N Ty AT D VD U D D AU W W T T G N WP T N TR T W T T WYY WD T T U D TS . VY A W A AW T N A A T D W -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.8 LOGICAL

The instructions within this subgroup shall provide the means
for performing BRoolean operations on the 64-bit words contained
in the X Registers to the extent defined by the following
instruction descriptions.,

7.3.8.1 13834382XLAEBZ:LQginal.ﬁnm;-Qifi;--anﬁ-&tnd;

a) Logical Sum {(Xk) replaced by {(Xk) OR (Xj).

IORX -~ (Format = jk Op Code = 18 Ref# = 065)

E R g ST e - - -
| 1abel Joperation iarqumenr

> - A - —_— - A -~ - -
| 1 IORX IXkyXj

b) Logical Difference, (Xk) replaced by (Xk) EOR (Xj).

XORX = {Format = jk Op Code = 19 Ref# = 066)

G o > - - - -
llabe} ioperation largument

o o ———— fmm e ————————————————
| I XDRX IXkoXj

c) Logical Product, (Xk) replaced by (Xk) AND {Xj).

ANDX = (Format = jk Op Code = 1A Ref# = 067)

o o o -
}1abel Joperation largument
E R — B R —— - - -



7-28

~CDC -~ ADVANCED SYSTEMS DEVELOPMENT

86710717

CYRER 180 II Assembler ERS Rev:

T A U AT A T T NI D A VD DA W A NS N WD WD W W A AP W W D A D A D S N T N S WD T AW D D N DA A D T MWD W AU AN D AT A 2

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7:3.8,2 NGTX'Logaca! Complement

F

7.3.8.2 NOIX=Logical Complement

a) Logical Complement, (Xk) replaced by {(Xj) NOT,
NOTX - (Format = jk Op Code = 1B Ref# = 068)

fm—————— pmmm—————— fm———— - e
{1abel !Operatian !arqument

S —— $om - e ——————————— e
i INOTX 1XKy X j

7.3.8.3 INHX=Logical Inhibit

a) Logical Inhibit, (Xk) replaced by (Xk) AND {(Xj) NDOT

INHX -~ (Format = jk Op Code = 1L Ref# = 069)

trmm————— fmm——————— fommm———————— -
11abel operation }arqument
$mm—————— e S
| | INHX !Xk,xj

7e3.9 REGISTER BIT STRING

The instructions within this subgroup provide the means for
addressing a contiguous string (field) of bits, beginning and
ending independently with any bit positions within a 64-bit word.

For each of these instructions (in this subgroup, the bit
string is addressed by means of a 12-bit field referred to as a
bit string descriptor. Any field of bits, including the field
constituting a bit field descriptor, is numbered from Jleft to
right, with the leftmost bit numbered 00. The six-bit subfield
in bit positions 00 through 05 of a bit string descriptor
designates the beginning, or 1leftmost, bit position within a
64=-bit word. The 6-bit subfield in bit positions 06 through 11
of the bit string descriptor 1is a length designator that is
interpreted as designating one less than the length (in bits) of
a bit string within a 64-bit word.



=29
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 11 Assemb}»r ERS Revs F
7.0 CYBER 180 CPU SYMBOLIC NACHINE INSTRUCTIONS
7.3.9 REGISTER BIT STRING
Bit String Descriptor

{00 05106 111

Fromm o o e e o e e e e e e e - +

| Lnftmost Position Designator | Length Designator |

o 2 e e -————————— A e s o e o i o +

{Bit Lenqgth-1)

For all instructions within this subgroup, indexing is carried
out as follows: the bit string descriptor obtained from the D
field of the instruction is zero~extended on the left to 32 bits
and then added, without overflow detection, to the contents of
register Xi Right (in this context, the contents of register XO
shall be interpreted as all zeroes); the rightmost 12 bits of the
result is then interpreted as a bit string descriptor, in the
mannear described above.

7+3.9.1 150M=1Ispolate Bit Mask

a) 1Isolate Bit Mask into Xk per {Xi) Right plus D.

ISOM - {(Format = jkiD Op Code = AC Ref# = 070)

- S ——— PR p— S -
liabel Joperation Sarqument
o - pommm—————— fmmmm—— e ——————————
i 1IS0M §XKQXi'9’j

7.3.9.2 1508~1solate into XKk

a) 1Isolate into Xk from Xj per {Xi) Right plus D.

IS0B - (Format = jkiD Op Code = AD Ref# = 071)

. T —— SR VI P p—— -
jlabel {operation {argument
SR —— G- - R —— -

| {1508 1XKyXjsXiyD



7-30
CoC - ADVANCED SYSTEMS DEVELOPMENT

BH/10/17
CYBER 180 I Assembler ERS Rev: F

- . . W Y D N WD W W T WD A A S AW T WD A WD A A W D WD W Ao A W o W A A -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTINONS
732943 INSB~Insert :nto Xk

7+.3.9.3 INSB-Insert_into_ Xk

a) Insert into Xk from Xj per{Xi) Right plus D.

INS8 - (Format = jkiD Op Code = AE Ref# = 072)

o ——————— e e et TR -
{label ioperat!on largument

Fmmm————— T —— o e e e e e e
| ] INSB IXksXjsXiaD

7+3.10 MARK-MARK T0 BOOLEAN

This instruction tests the two bits initially contained in the
leftmost two bit positions, 32 and 33, of Register X1 Right
according to the 4-bit j field from the instruction. When the
value of the two leftmost bits initially contained in Register X1
Right is equal to any of the one or more values specified by the
fnstruction’s j field, Register Xk shall be cleared in bit
positions 1 through 63 and set in bit position 0. HWhen the value

of the two leftmost bits initially contained in Register X1
Right is not equal to any of the one or more values specified by
the instruction's j field, Register Xk Right is cleared in all 64
bit positions, 0 through 53,



CDC - ADVANCED

CYBER 180 I1 Assembler

E

SYSTEMS DEVELOPMENT

RS

7-31

86710717
Revs F

. - T - W W -~ - -~ -

7.0 CYBER 180 CPU SYMBODLIC MACHINE INSTRUCTIDNS
7+.3.10 MARK~MARK T BODLEAN

A . - D N VR A G D A A A T U A A D A A S A W A W W A D TR D WD N A W O D AU D D WD W A A T D W

J

The values of the j field and the leftmost two bits
in Register X1 Right shall be interpreted with respect

contained

to equality {EQ) as follows:

initial?y

G 2 e e e e e -—
1 j 1Binary Valu9 of Bits 32 and 33 of X1 quht, respectively |
] | 00 | 01 | 10 H 11 H
e e fmmm———————— m—m e —————— +
00001 Uncondlt:onal inequality |
o e B et Fommm e +
{00011 i § 1 Q|
prmmm e ————————— $rmm—————————— e e et S e +
joo10l { ! EQ { |
fmmmm e ——— ——————— o e e G o o prmm——————— -—
o011} 1 ! £Q ! EQ |
o o e e A e o e -
101001 | EQ ! H |
pmm e ——— e —————— S et EL L LTSS - o e -—4
101011 | £Q 1 1 EQ |
prmmmfm e ————— —— - ———— - o e e —————— Ao e o e
lo110} ! £Q | EQ ! i
prmm—pm————— - fmmm—————————— pm———— - Fmm +
lo1111 ] EQ ! EQ 1 EQ
jommmfmmm————————— fmmm————————— - - = o e +
110001 £Q ] ! i |
fo—— —————— ——————— o mmmm————————— o o o o +
10011 EQ 1 { | EQ 1
prmmm e ———— —————— o m——————————— o ——————— e ———— -
11010} EQ | | EQ § l
o i o o o o e - e - fom e e e e e Fo———— —————
11011} EQ { ! EQ I Q|
frmmmpmm——————————— b m————————— e T fmm——————— —
1100} EQ { EQ i | |
o memmemm e — e ———————— - o o pmm—m——————— +
!11011 EQ 1 EQ | i £Q |
fmemmpmmm——————————— $m————— - e o o o e e $mm———— - +
!1110! EQ i EQ 1 EQ | |
fmmmm o ——————————— o e e e e e o ————————— +
I11111 Uncondit:onal Equa!tty |
N i ———————— e e ,m e ———————————— —————————
b m—————— + ] 1 1
F Ao e e e e e o e + i i
e ———————————— - o s —-————— i
- i - - - +
The four individual bits of j can be visualized as individual
pointers which are associated, from left to right, with the four

possible values {00,01,10,11) of the tested bit-pair (bits 32 and



7=32
COC -~ ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 1BD I1I Assembler ERS Rev. F
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTEQﬁTIBNS
Te 3 19 HARK MARK TO BOOLEAN

33 of Register X1 Right). For example, if j = 0101, equality is
detected when the value of the tested bit pair is 01 or 11,

a) Set Xk per j and {X1) Right.

MARK - {Format = jk Op Code = 1F Ref# = 145)
G s o B e W A g — - -
| 1abel 1operatlon | argqument
tomm————— fmm————— fmmm———————— - e e
i I MARK IXkyX1,j

T.4 QUSINESS DATA PROCESSING INSTRUCTIONS

The general form of execution for this group shall involve the
utilization of a first data field in central memory, referred to
as the Ysource", to modify, replace, or compare with a second
data field in central memory referred to as the ¥destination".
Both the source and destination fields shall be individually
described by means of independently designated Data Descriptors,
with respect to the types of representation, sign and zone
conventions, lengths and relative locations of the data fields.

The Data Descriptors shall be obtained from central memory at
locations immediately following the BDP instruction, as defined
by the BDP instruction format and number of descriptors used by
the instruction. A1l descriptors consist of a 32-bit hal¥f word,
aligned to a parcel {16 bit) boundary in central memory.

T+4e1 GENERAL DESCRIPTION

The instructions of this group wutilize the jk and jkiD
instruction formats in combination with one or two descriptors in
the following combinations:

1) jk and two descriptors.
Operation Code i k
e fm—m -t

P 8 14141

SN I W SR}



7-33
CDC - ADVANCED SYSTEMS DEVELOPMENT

B/710/717
CYBER 180 11 ASS?mhIPr ERS Rev?: F
?.ﬂ CYRBER 180 CPY SYM&QLIC MACHINE INSYRUtTIB&S
Tetsl BENERAL DESCR?P?IGM

Descriptor j

o e e - - > - - +
P42 |} 32 i
A e e T A 1 0 S - 1 - ¥

R . - A E 3
P+5 | 32 !
. - - - - +

2) jkid and two descriptors.,

fperation Code j k i D
tor e m e ———— Fmmm e fmmm o - ——————————— +
p | B ] 41 41 41 12 ]
pom—————— et e S g ———
Descriptor j
.'. ________ A - U O U op— +
P+4 | 32 H
Fm i e o e e e e e e +
Descriptor k
A e e o o o o T e o T +
p+3 | 32 !
pomm—m——— ————— e e +
3) jkiD and one descriptor.
Operation Code i k i D
e tmmm e —————————— +
P | 8 41 411 4l 12 1
pommm—— e e T R T T -t
Descriptor j or k
- - - - - - [ —— -

p+y | 32 I



7-34
CDC - ADVANCED SYSTEMS DEVELOPMENT
B6710/717
CYBER 180 IT Assembler ERS Rev: F

T A N D W TR A W D VS WO T W T WG NN T T 0 T T W A WD D N W W W W W S T W T W -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
T2%+1s1 Operation Coées

7.4.1.1 QOperation fLodes

A total of 18 operation codes shall be wutilized by the
instructions comprising the BDP Instruction group. For the
purpose of this specification, the BDP Instruction group shall be
further divided into four subgroups, including “short®
instruction names, as follows:

NOTE: For the order of exception sensing for these instructions,
as well as all other instructions, refer to the CYBER 180
Processor-Memory Model-Independent GDS.

Subqroup Short Name

]
i
'
]
i
i
i
i
l
C
[}
§
]
i
[}
]
i
[
i
i
]
i
1
'
i
]
1
i

BDP Numeric

A A JER G W W A YD N A W A S AW A A A D D D

W - . A WD T WD W W A A W WY - -

N W - W D D D W W T W N NN WD AU WD W N -

i
i
)
i
1
]
]
!
§
i
'
]
[}
]
[}
i
]
]
[}
]
i
i
i
]
i
[}
(]
i
L
L]
1
4
L
]

Sum

Difference
Product
Quotient

Scale

Scale Rounded
Decimal Compare
Numeric

W D A A D A AR AU D DA B DD D D T A DN P B N LU D NP -

Compare

Compare Collated

Scan While Non-Member
Translate

Move Bytes

N A A T D W D A U i e U WD S AU D D A D A NP AP VI D T D D D O

W A T A S Y A A A A o W AN " U W S D N - -

] Move Immediate Data
| Compare Immediate Data

! Add Immediate Data
....... -‘-‘m--‘-—‘--m—-nn--— L

Immediate Data

A > D D A DT WD T T T VI - -

7+4.2 DATA DESCRIPTORS



7-35

CDC -~ ADVANCED SYSTEMS DEVELDPMENT
B6/10/717
CYBER 180 I1 Assembler ERS Rev: F

T T O T T A W N W U A M W D A W WD A A AU A D A S T AT S A D WD D AN T WD T D WD VD D D WD A T A D N D A A A A 2

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIDNS
7442 DATA DESCRIPTORS

A S AT N N D D VD o A Y T A S Tl W T W D N D A A 0D D D NG A T T A D W WD AU A U JD o W WD W I A S N D T A D D D D AU A T D Y WD

The generated Data Descriptor shall be formatted as follows:

1Dt 1T 1 L | ) i

B S P et - e e o - -

11341 4 | B ] 16 !

Fom o e o e —————————— o e e e e -+
00 32-bit Descriptor

When specifying the data descriptor, the D field 1is not
specified. The format for the source descriptor {SD) and the
destination descriptor {DD) is the same, and {is specified as
F!TOL ’gy

F - 1 bit - Field specifier for length
T - 4 bits -~ data types

L - B bits - optional length f:e!d

B - 16 bits - offset address field

The data descriptor fields may be specified via either of two
methods.

1. = The field may consist of four subfields each <containing
an evaluatable expression.

2. = The field may consist of a single SET or EQU symbol
{category 9) which is associated with four values.

Example?
ADDN AT, X0 AF X1 0,750416 1,740,516 « DESCRIPTOR
+FIELDS ARE F,T,L,0.
DSCRPTR SET 097404516 «BDP DESCRIPTOR

ADDN,A7,X0 AF,X1 DSCRPTR DSCRPTIR »ALTERNATE METHOD

7+4.2.1 B8DP_Descriptor.. D Field

The D field is a 3 bit reserved field in bit positions 01, 02
and 03 of the data descriptor. Interpretation of other Data
Descriptor fields follow. This field is not specified in the
instruction.

7.4.2.2 BDP_Operand Iype. I _Eield
The T field shall consist of 4 bits, in bit positions 04

through 07 of the Data Descriptor, and shall describe the type of
data representation used in the associated source or destination



CDC - ADVANCED SYSTE%S DEVELOPMENT

7-36

B6/710717
CYRER 180 IT Assembler ERS Rev: F

- - W D S D N 0 W D . U WD VD NN ATD N TN TN AT - -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIDNS
T+4.2+2 BDP Operand Type, T Field

fields The 16 values of the T fFfield are assigned data
representations as follows:

0 Packed Decimal No Sign

1 Packed Decimal No Sign Leading Slack Digit

2 Packed Decimal Signed

3 Packed Decimal Signed Leading Slack Digit
4 Unpacked Decimal Unsigned
5 Unpacked Decimal Trailing Sign Combined Hollerith

6 Unpacked Decimal Trailing Sign Separate

7 Unpacked Decimal Leading Sign Combined Hollerith

B Unpacked Decimal Leading Sign Separate

9 Alphanumeric
10 Binary Unsigned

11 Binary Signed

12 Translated Packed Decimal Signed

13 Translated Packed Decimal Signed Leading Slack Digit
14 Translated Binary Unsigned

15 Translated Binary Signed

type

As determined by the operation code, source and destination
field, data types shall be restricted to only those combinations
which are defined as valid within the instruction descriptions.

The designation of invalid T field combinations within

the

associated Data Descriptors shall result in the detection of an
Instruction Specification error, the instruction's execution
shall be inhibited and the corresponding program interruption

shall occur. The term Yfreely compatible® as wused in the

BDP

instruction descriptions, means that any allowable source field
data type may be used with any allowable destination field data

t‘ypea



7-37
COC -~ ADVANCED SYSTEMS DEVELDPMENT
B6/10/717
CYBER 189 11 Assembler ERS Revs F
7.0 CYBER 180 CPU SYMBDLIC MACHINE INSTRUCTIONS
Te4+2.3 BDP Operand Address, 0 Field

A - T T Y - > AW A D W W Y A T D I N VO W TS WS A WD U WA A AUD N A T TP W ST T -

T+4+2.3 BDP_QOperand Address. 0 Field

The PVA corresponding to the leftmost byte of a BDP source or
destination field shall be obtained by utilizing the 16 bit O
field of the corresponding data descriptor (bit positions 156
through 31) as a byte item count to be added as 3a sign extended
32 bit offset (2's complement for negative offset) to the byte
number {BN) portion of the base PVA contained in Regtster Aj or
Ak respectively.

T+4+2.4 BDP_Operand Length., F_and L _Fields

The length in bytes of a BDP source or destination field shall
be obtained according to the value of the 1-bit F field (bit 00)
of the corresponding descriptor as follows:

E Length

0 Obtained from the 8 bit L field {(bits 08 through 15) of the
corresponding descriptor.

1 Obtained from bits 55-63 of X0 Right for the Ffirst
descriptor following an instruction, and from bits 55-63 of
X1 Right for the second descriptor following an instruction.

Although field lengths as long as 256 bytes are possible, the
length of a BDP operand shall be restricted to a smaller value
for decimal and binary operations, according to the operand data
type. These inclusive limits are the following:

19 bytes for Packed Decimal (types 0 through 3, 12 and 13)
38 bytes for Unpacked Decimal {(types 4 through 8)
8 bytes for Binary {types 10, 11, 14, and 15)

When any BDP field length exceeds the specified maximum
associated with a given data type, an Instruction Specification
error shall be detected, the execution of that instruction shall
be inhibited, and the corresponding program interruption shall
OCCUl

If F equals 1, then only the rightmost 9 bits of X0 and X1
will be checked to determine whether or not the field 1length
exceeds the maximum allowed., The other bits of X0 and X1 will
not be inspected.



7-38
CDC - ADVANCED SYSTEMS DEVELOPMENT

86/10/17
CYBER 180 II Assembler ERS Rev: F
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.3 DATA AND SIGN CONVENTIONS

I N NS D W S D D W D N U AW W T AT " U T IO DA SO Dl D A D T T WD AT VD A A D W A D W A D W GBS O D W T W G W D S DD . WD

T+%4+3 DATA AND SIGN CONVENTIONS

With respect to numeric data and sign conventions,
interpretation shall be performed according to Type (T) where
applicable, for characters {(C), Digits (D) and Signs (S}, wusing
hexadecimal notation.

NDOTE: Data field examples are illustrated in the CYBER 180
Processor=-Memory Model=-Independent GDS.

Te4a4 BDP NUMERIC

The instructions in this subgroup shall provide the means for
per forming arithmetic, shift, conversion and compar ison
operations for byte fields 1in central memory consisting of
numeric decimal data.

Unless the length and format fields within the Data
Descriptors associated with the source and destination fields,
conform to the restrictions defined within the following
instruction descriptions, the detection of a Length or Type error
shall result in an Instruction Specification Error condition, the
execution of the associated instruction shall be inhibited and
the corresponding program interruption shall occur.

Overflow into or other alteration of the slack digit of
destination field types 1 and 3 is not allowed. The result shall
be right justified in the destination field. If the decimal
result is shorter than the destination field, the destination
field shall be zero filled to the left, 1If the result is longer
than the destination field, the result shall be truncated on the
left as necessary. Thus, conceptually, these instructions shall
process the data fields from right to left.

Note that these conventions shall cover the end cases for
numeric operands of length equal to 1 for all numeric data types.
For instance, a Move Numeric from a type S operand to a type 3 or
type 6 operand of length 1 would amount to an extraction of the
source field sign.

A source BDP operand of numeric type (0 through 8 and 12
through 15) and a length zero, shall be interpreted as the value
Zero.

A destination BDP operand of length zero shall transform the
associated instruction into a no-op. However, exception sensing
for the source field shall occur normally, including the testing



7-39
COC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 186 Il Assembler ERS Rev? F
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
Tofa4 BDP NUMERIC

for an Arithmetic Loss of Significance or Arithmetic Overflow
condition, provided the source field does not also have a length
of zero.

Minus zero shall be considered equivalent to plus zero by all
the instructions in this subgroup, with respect to decimal
numer ic data.

The representation for zero, zones and siqns shall be normally
determined by interpreting the T field from the Data Descriptor
associated with the destination field.

Division by zero shall not be allowed to the extent that the
destination field in central memory shall not be changed and a
Divide Fault condition shall be detected.

Each source diqgit shall be checked for decimal digit validity.
An  invalid decimal digit shall cause an Invalid BDP Data

condition to be detected and, if enabled, a program interruption
shall occur upon the completion of these instructions.

Ts%4.4.1 Arithmetic

a) Decimal Sum, D{Ak) replaced by D{Ak) plus D{(A]).
074 jk (2 descriptors)
b) Decimal Difference, D{(Ak) replaced by D{Ak) minus D{Aj).
075 jk {2 descriptors)
c) Decimal Product, D{(Ak) replaced by D{Ak) times D(Aj).
076 jk {2 descriptors)
d) Decimal Quotient, D(Ak) replaced by D{Ak) divided by D{A]).
077 jk (2 descriptors)
Operation: These instructions shall arithmetically modify the
initial contents of the destination field in central memory,
(treated as an augend, minuend, multiplicand or dividend as
determined by the operation code) by the contents of the source
field in central memory (treated as an addend, subtrahend,
multiplier or divisor as determined by the operation code) and
shall transfer the decimal result consisting of a sum

difference, product or quotient, as determined by the operation
codey, to the destination field in central memory.



7=40
CDC -~ ADVANCED SYSTEMS DEVELDPMENT
‘ B&/710/17
tY&EQ 180 11 A559mb19r ERS Rev: F

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
Tats4.1 Arithmetic

W T - A W U A N DT WD WD T HU A D N W A A D WA U D N W T W T WD WD Uy D P T D AT

Types: A1l Packed decimal types and all Unpacked decimal types,
except for the Leading Sign formats, shall be freely allowed for
decimal arithmetici i.e., types O through 6, 12 and 13 shall be
compatible for these instructions.

Unpacked Decimal Leading Sign {(both conventions) shall not be
supported in the decimal arithmetic., A Numeric Move instruction
must be generated to format the operands of those types prior to
their use in arithmetic operations.

Lengths: The maximum allowablie lengths for the source and
destination fields shall be determined according to their
respective decimal data types.

NOTE: Decimal operands shall be treated as inteqer values,

When the results of these instructions exceed the capacity of
the designated field such that significant digits are not stored
into central memory, an Arithmetic Overflow condition shall be
detected, When the corresponding user condition mask bit is set
and the trap is enabled, instruction execution shall be inhibited
and program interruption shall occur.

Tehote2 ADDNLSUBN.MULNLDIVN=Arithmetic

a) Decimal Sum, D{Ak) replaced by D{Ak) plus D{A]).

ADDN - {Format = jk2 0Op Code = 70 Ref# = 075)

[t W — - - - o - - -
i!ahel !operat:on | ar gqument

pr——————— frmm—————— T L ————
1 JADDN,Aj,X0 [Ak,X1 SO DD

When the F field in the data descriptor is equal to O, the
length register (X0 for source, X1 for destination) is not a
required parameter, :



T-41
CDC - ADVANCED SYSTEMS DEVELOPMENT

BA/10/717
CYBER 180 11 Assembler ERS Rev: F

S B N R T TS D W T W AW DA AT T WD G T T AT WD DTS W D T A AT T D W O D T AP U D A N Y WY D A WY N D

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
Tehets2 ADDN,SUBN,MULN,DIVN-Arithmetic

A - A A T D W W T D A T W DA D D W D A U A A D D T T V], T A, -

b) Decimal Difference, D{Ak) replaced by D{Ak) minus D(Aj).

SUBN - (Format = jk2 Op Code = 71 Ref# = 075)

A — fomm——— s - ————
| labe) joperation largument

$ormm—————— fomm o —— B e
| ISUBN,Aj,XO 1Ak,X1 SD DD

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter.,

c) Decimal product, D{Ak) replaced by D{Ak) times D{Aj).

MULN - (Format = jk2 0Op Code = 72 Ref# = 076)
- - —— - - - . - - — A - —_— - - - - -~ -
| label loperation largument
$mm——————— $mmm——————— pommmrmc———————— ———————
| IMULN,A §,X0 TAk,X1 S0 DD

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter.

d) Decimal Quotient, D{Ak) replaced by D{Ak) times D{Aj).

DIVN - {(Format = jk2 Op Code = 73 Ref# = 077)

A = e - A > > - e
1abel loperation |argument

R — fomrmm————— -
] IDIVN,Aj,X0 JAk,X1 SD DD

When the F field in the data descriptor is equal to O, the
length register {X0 for source, X1 for destination) is not a
required parameter., :

Te4e4.3 SCLNL.SCLR-Shift

The following instructions shall move data initially contained
in the source field to the destination field, and shall provide
shifting of the data under control of a shift count. The shift
count shall be derived in the following manner? TYThe rightmost 8
bits from the instruction's D field shall be added to the
rightmost B8 bits initially contained in bit positions 56 through
63 of Register Xi Right and the 8-bit sum shall represent the



=42
CDC - ADVANCED SYSTEMS DEVELOPMENT
B6/710/717
CYBER 180 IT Assembler ERS ' Rev. F
7.0 CYBER 180 cPy SYMBBLIﬁ MACHINE INSTRUCTIDONS
Telatrs3 SCLN,SCLR'thft

computed shift count. Any overflow from the 8-bit sum is
ignored, In this context, the contents of Register X0 shall be
interpreted entirely of zeroes, A zero shift count shall cause
the instruction to act as a move only instruction.

The B-bit shift count shall be interpreted as a signed, binary
integer. When this 8-bit shift count is positive, the direction
of the shift shall be left with the number of decimal digit
positions to be shifted determined by the value of the right-most
seven bits ({(bit positions 57-63) of the shift count. Hhen this
B=bit shift count is negative, the direction of the shift shall
be right with the number of decimal digit positions to be shifted
determined by the value of the 2's complement of the rightmost 7
bits (bit positions 57-63) of the shift count, with minus 128
(1000 0000) being interpreted as zero. Thus, positive shift
counts shall provide the means for multiplying the source data
field by powers of ten, and negative shift counts shall provide
the means for dividing the source data fields by powers of ten,
as the source data is moved to the destination field.

When non-zero digits are shifted left end-off, or truncated on
the left, an Arithmetic Loss of Significance condition shall be
detected. If the corresponding user condition mask bit is set
and the trap is enabled, instruction execution shall be inhibited
and program interruption shall occur.

Shifting shall be accomplished end-off with zero fill on the
appropr iate end{s) as required to accommodate the length and type
of the receiving fields, (For example, when the destination field
is longer than the source field, and the difference in field
lengths is greater than the left shift count, such a scale
instruction shall provide zero fill, to the extent required, on
both the right and left ends of the destination field result).

Types: Source field data shall be restricted to Types 0O through
6y 9, 12 and 13, all of which shall be freely compatible with
allowable destination field data Types of 0 through 6, 12 and 13,

Lengths: The maximum allowable lengths for the source and
destination fields shall be determined according to their
respective decimal data types.



T-43
CDC - ADVANCED SYSTEMS DEVELOPMENT
B6/10/717
CYBER 180 11 Assembler ERS Revy: F

- A~ A A - - - D S -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7;6 4.3 SKLN,SCLR“Shift

a) Decimal Scale, D(AK) replaced by D{Aj), scaled per {Xi) Right
plus D.

SCLN - {Format = jkiD2 Op Code = E4 Ref# = 078)

pomm—m—— pmmm———— e e e T
}label Joperation !argument

fmm————— S T o e e e
! JSCLN,AjsXO [Ak,X1,Xi,sD sa DD

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter.

b) Decimal Scale Rounded, D(Ak) replaced by rounded D(Aj),
scaled per {(Xi) Right plus D,

SCLR - {Format = jkiD2 Op Code = E5 Ref# = 079)

I s o e s 0 0 e ¥ . -
] 1abel !operat:on } arqument

o —————— pom e ——— prmmmm—————————— ——————
i ISCLRLAjHXO [Ak,X1, Xi,D SD DD

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter.

These instructions shall move and scale the decimal data field
initially contained in the source field to the destination field.
They shall transfer the sign of the source field to the
destination field without change (unless the results consist
entirely of zeroes and there is no loss of significance, in which
case the sign of the destination field shall be made positive, or
unless the result would otherwise contain a non-preferred sign,
in which case the sign of the destination field shall contain the
preferred sign).

When specified by means of the operation code, rounding shall
be performed for negatively signed scale factors by adding five
to the last digit shifted end-off and propagating carries, if
anys through the decimal result transferred to the destination
fields Thus the absolute value shall be rounded upwards.



T=44

CDC -~ ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 I1 Assembler ERS Rev: F

- W T T - - T " - . - - . -

T.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
Taltatrethr HGYN'MQVP

Ta4behe4 MOVYN-Move

a) Numeric Move, D{Ak) replaced by D{Aj), after formatting.

MDVN - (Format = jk2 Op Code = 75 Ref# = 092)

pomm————— pommmm————— o e e e e e
i 1abel ioperat:an }argument

T — pmm o ————— o —————————————
) IMOVN,A X0 1Ak,X1 SB 2D

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter,

This instruction formats the number obtained from the source
field and transfers the result to the destination field.

The source field validated according to the T field from its
associated descriptor; the source field is reformatted according
to the T field from the data descriptor associated with the

destination field and the result is transferred to the
destination field. :

T+4.4.5 CMPN-Comparison

a) Decimal Compare, D{A]j) to D(AK), result to X1 Right,

CMPN - {Format = jk2 Op Code = 74 Ref# = 083)

fomem————— fo———— ————— e ————— -
{label loperation |argument

e ———— fomm——————— $memmmm e — e, —————
i ICMPN,A j, X0 1Ak,X1 SD ©D

When the F field of the source descriptor is equal to 0, X0 is
not a required parameter.,

This instruction algebraically compares the decimal contents
of the source field to the decimal contents of the destination
field and transfers a 32-bit halfword to Register X1 Right
according to the results of the comparison.

When the results of the source and destination fields are
equal, the entire 32-bit positions of Register X1 Right are
cleared.



T=-45
COC - ADVANCED SYSTEMS DEVELDPMENT
B6/710/17
CY&ER 180 11 &ssembl&r ERS Rev: F
?.Q CYBER 180 CPU S?MBGLIC MACHINE IhSTRUC?IﬁNS
Tohets5 CMPN~- Compar:son

When the contents of the source field are greater than the
contents of the destination field, Register X1 Right is cleared
in bit positions 32 and 34 through 63, and set 1in bit position
33,

When the contents of the source field are less than the
contents of the destination field, Register X1 Right 1is cleared
in bit positions 34 through 63 and set in bit positions 32 and
33,

» LR I »

T+4.5 BYTE

The instructions in this subgroup provide the means for
comparing, scanning, translating, moving and editing byte fields
in central memory to the extent defined by the following
descriptions.

T+445.1 CMPB,CMPL-Comparison

a) Byte Compare, D{Aj) to D{Ak), result to X1 Right, Index to X0

Right,
CMPB - (Format = jk2 Op Code = 77 Ref# = 084)
L L - o W - - - - - - . -
{11abe] joperation }argument
fommm———— fmmmm—————— tmm————— - -
i [CMPB,AJ,X0 JAk,X1 SD DD

by Byte Compare Collated, D{(Aj) to D{Ak), both translated per
{Ai) plus Dy result to X1 Right, Index to X0 Right.

CMPC ~ (Format = jkiD2 Op Code = E9 Ref# = 085)

fomm———— cmpeemee—————— fomm——— ————————— -
{1abe] !oyerat:cn {argument

$emmmm———— pom———— i ————
| JCMPC LA o X0 [AK,X1, A!gQ SD DD

These instructions compare the bytes contained in the source
field to the bytes contained in the destination field and
transfer the results to the comparison to Register X1 Right.

The comparison proceeds from left to right. When the field
lengths are unequal, trailing space characters are used for the
field having the shorter length. The maximum length for each



T=46

CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 11 Assemb!er ERS Revs F

7.0 CYBER 180 CPU SYMBOLIC MACHINE INS?RUCTIQNS
Te4:5.1 CMPB,CMPC~Comparison

A A N A AT D W S G D S D D A A A DA A A AT T D WD A W VDT D T WD D DA DA N D T AU T T W W W N T, D Y. VD DAY N AU U A T SV

operand is 256 bytes,

The comparison continues wuntil the 1longer field has been
exhausted or until an “inequality® 1is detected between
corresponding bytes from the source and destination fields
according to the following definitions.,. For the compare
instruction, inequality between the bytes pbtained directly from
the source and destination fields results in the completion of
the comparison. For the Collated Compare instruction inequality
of the bytes obtained directly from the source and destination
fields results in the translation of both bytes by means of a
translation table, and inequality of the post-translation bytes
results in the completion of the comparison., When the translated
bytes are equal, and the longer field has not been exhausted,
compar ison between the corresponding bytes obtained directly from
the source and destination fields is resumed.

Each byte shall be translated by using its value as a positive
offset to be added to the beginning (Jeftmost) address of the
Translation Table, {(Ai) + D, for the purpose of addressing the
franslated byte to be read from central memory.

T+%4e5.2 SCNB=Byte _Scan

a) Byte Scan While Non-Member, D{Ak) for presence bit in (Ai)+D,
index to X0 Right, character to X1 Right,

SCNB - (Format = jkiDl Op Code = F3 Ref# = 086)

R —— A o o v - o s o - = v o 20 o o
{1abel loperation !arqument

$oem—————— o ———— Fommr e ———————————
! !SCN*BIAJ’XO 'AkyXl,i\ipD on

The Aj field of this instruction {is wunused and optional.
Operationt: The operation shall proceed from left to right on the
destination field addressed by D[Ak). 0One character at a time
shall be taken from this character string and used as a bit
address into the string addressed by a PVA whose Ring Number (RN)
and Segment (SEG) are obtained from Ai, and whose Byte Number
(BN) is formed by the 32-bit sum {ignoring overflow) of the
rightmost 32 bits of Al plus the instruction’s 12-bit D field
extended to the left with 20 zeroes., The scan shall terminate if
the bit thus addressed in ON or if the destination field has been
exhausted; otherwise the next character in D(Ak) is considered.

Source Field: The operand addressed by Ai+D shall be interpreted
as 3 bit string consisting of 256 bits {32 bytes). The entire



1-47
CDC — ADVANCED SYSTEMS DEVELOPMENT
86/10717
CYBER 180 11 Assembler ERS Revs F

-~ - - T T - - -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
T+4+5.2 SCNB-Byte Scan

A R A A A D D N WD A N WD AU A AT A A A A T A . A W W AN O W D D D WD W A U WD Ay D D AU A A T A D W ST NI U A VD I T A W -

table, consisting of 256 bits, may be loaded internally to the
processory, on a model dependent basis, before any operation on
the data is performed,

Destination Field: The type field in D{Ak) shall be ignored.
The operand addressed by D{Ak) shall be interpreted as a byte
string, and restricted to no more than 256 charactars,

The binary value of the sequence number in the string of the
byte which caused the scan to terminate shall be placed right
justified into X0 Right.

The binary value of the character itself which caused the scan
to terminate shall be placed right justified into X1 Right.

If the scan stops by exhaustion of the characters in the byte
strings X0 Right shall contain the length of the original byte
string and X1 Right shall be set in bit position 32 and cleared
in bit positions 33 through 63,

Te4+5,3 TRANB-Iranslate

a) B8yte Translate, D{Ak) replaced by D{Aj), translated per {(Ai)

plus D.
TRANB -~ {Format = jkiD2 0Op Code = EB Ref# = 088)
A - (I S — [P — - - -
11abel loperation Jargument
$mm—————— tmmm———————— L e L
| | TRANB,A joXOJAKk,X1,Ai,D SD DD

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter.

This instruction translates each byte contained in the source
field according to the translation table in central memory and
transfers the results of the byte-by~byte translation to the
destination field.

The translation table is addressed in a manner identical ¢to
that previously described for the Collated Compare instruction.
The type fields in the Data Descriptors associated with the
source field and the destination field are 1ignored. Both
operands are restricted to no more than 256 bytes.

The translation operation shall occur from left to right with



1-48
CDC - ADVANCED S?STEMS DEVELOPMENT

85710717
CYRER 180 11 Ass»mbler ERS Rev: F
7.0 CYBER 180 CPU SYMAOLIC MacHI&E IwSTRuﬁTIBNS
T+4.5,3 TRANB-Translate

A T T AR WD W A D A N T, T T T A T S T U " AT WU W N W D T T T . T T T WD T A A A T D W N T W

each source byte used as a positive offset to be added to the
beginning {leftmost bvyte) address of the translation table for
the purpose of permitting each byte's translation, Transtated
bytes, thus obtained from the translation table, shall be
transferred to the destination field. The translation operation:
shall terminate after the destination field 1length has been
exhausted., When the source field length is greater than the
destination field 1length, rightmost bytes from the source field
shall be truncated, to the extent required, with respect to the
translation operation. When the source field length is less than
the destination field length, translated space characters shall
be wused to fill the rightmost byte positions of the destination
field to the extent required.

Teh5e4 MOYB-Move

a) Move Bytes, D{Ak) replaced by D{Aj).

MOVB - (Format = jk2 Op Code = 76 Ref# = 089)

pomem——— - - Fmm e —————————————— -
?!ab&! {operation !argument

frm—————— b ——————— fomm e — e ————————————
] IMOVB LA joX0 JAk,X1 SD DD

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter,

This instruction provides the means for moving the bytes
contained in the source field to the destination field. The type
fields of the source and destination data descriptors are
ignored. Field lengths are restricted to a maximum of 256 bytes.

7.4.5.5 EDII=EdiL

a) Edit, D(Ak) replaced by D(Aj) edited per M({Ai) + D).

EDIT -~ (Format = jkiD2 Op Code = ED Ref# = 091)

fm——————— fommm——————— fommmm———— e ————————————
llabel loperation Sargument

precmm - o ————— - —————
] 1EDIT,Aj,X0 1AKsX14Ai,D SD DD

The Aj field is unused and optional. When the F field in the
data descriptor is equal to 0, the length register (X0 for.



7-49
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 IT Assembler ERS Rev: F
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7e4.5.5 EDIT-Edit

A D D DDA A D T D A O A VB N S A W NG T N S A SO A I A WD WS D D A A U T W NS A M A FEY B WD D WD DA W U A S D W AU T W AP D AT N W A

sourcey X1 for destination) is not a required parameter,

This instruction shall edit the digits or characters contained
in the source field according to an edit mask in central memory
and shall transfer the result to the destination field. The edit
mask shall be addressed by a PVA whose Ring Number {(RN) and
Segment (SEG) are obtained from Ai, and whose Byte Number (BN) is
formed by the 32-bit sum {ignoring overfliow) of the rightmost 32
bit of Ai plus the instruction®s 12-bit D field extended to the
left with 20 zeroes. The edit mask shall consist of a one byte
length indication followed by a string of micro~operations., The
length indication shall include the byte containing the length.

Tat.6 IMMEDIATE DATA

Within this instruction group, the Immediate Data Byte is an 8
bit field formed by the 2's complement addition of bits 56~63
{Xi) Right and the rightmost B8 bits of the instruction®s D field.
Overflow is ignored on this summation, In this context, the
contents of Register X0 shall be interpreted as consisting
entirely of zeroes,

Tehabal MOYI-Move Immed Data (Xi) Right plus D _to D{Ak)

MOVI - (Format = jkiDl 0Op Code = F9 Ref# = 154)

tmm——————— fmm———————— e -
|1abe} loperation iargument

- e —— T Tpp— 2t e
l IMOVILXisD JAkyX1l,j DD

When the F field in the data descriptor is equal to 0, the
length register (X1 for destination) is not a required parameter,

This instruction shall move the Immediate Data Byte to the
destination field after format conversion per the destination
field type and the |j field sub—-operation code. The least
significant 2 bits of the j field shall be used as an encoding of
the operation to be performed:

a) If = 00, the unsigned {considered positive) numeric value
{Type 10) contained in the Immediate Data Byte shall be moved
right justified to the receiving field, which must be of type
10, 11, 14 or 15. 1If necessary, the destination field is
filled with zeroes on the left.

b) If = 01, the decimal numeric value (Type 4) contained in the



v 7-50
CDC ~ ADVANCED SYSTEMS DEVELOPMENT
B&/10/717
CYBER 180 11 Ass¢mbler ERS Rev: F
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTQUCTIBNS
Tehebe1l MOVI-Move Immed Data {(Xi) Right plus D to D{Ak)

B e Y R it R R TR R R R R R R R R e R e 2 T

Immediate Data Byte shall be moved right justified, to the
receiving field after possible reformatting to match the data
type of the destination. If the format requires a sign, a
positive sign shall be supplied. The destination shall be
restricted to one of the decimal data types 0 through 6, 12
or 13. This move shall be executed according to the rules of
the numeric move for truncation, padding and validation.

Each source digit shall be checked for decimal digit
validity. An invalid decimal digit shall cause an Invalid
BDP Data condition to be detected, When the corresponding
user mask bit 1is set, and the trap is enabled, instruction
execution shall be inhibited and program interruption shall
OCCUT «

c¢) If = 10, the ASCII character contained in the Immediate Data
Byte is repeated left to right in the receiving field. The
destination data type shall be ignored.

d) If = 11, the ASCII character contained in the Immediate Data
Byte is moved left justified into the receiving field, the

rest of that field 1is space filled., The destination data
type shall be ignored.

Tehebe2 LMPI-Compare Immed DatalXil Right plus D _to D{AK)

CMPI - (Format = jkiDl Op Code = FA Ref# = 155)

G - -

|1abel Joperation largument
T —— e —— T - —————
! {CMPI,XisD 1AkyX1sj DD

This operation shall, depending on the value of the j field,
compare the explicit value contained in the Immediate Data Byte
to D{Ak) after a possible reformatting to match the data type and
shall transfer a 32-bit half word to Register X1 Right according
to the result of the comparison.

When the contents of the source and destination fields are
equaly the entire 32-bit positions of Register X1 Right shall be
cleared.

The rightmost two bits of the j field shall be used as an
encoding of the operation to be performed:

a) If J=00, the wunsigned (considered positive) numeric value
(Type 10) contained in the Immediate ©Data Byte shall be



7-51
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 11 Assembier ERS Rev: F
7.0 CYBER 180 CPU SYMBBLIC MAtH!ME INSTRUCTIONS
Tethebe2 CMPI-Compare Immed Datal(Xi) Right plus D to D{AK)

T T T - - W N A A A W N U N T A W A T TN AN U D A W W T A A S WD D AU U AN A

compared to the contents of field D{Ak), which must be of
type 10, 11, 14 or 15. 1If field D(Ak) is longer than one
byte, then the Immediate Data Byte will be zero filled to the
left as necessarvy.

b) If j=01, the decimal numeric value {Type 4) contained in the
Immediate Data Byte shall be compared to the contents of
field D{Ak) after possible reformatting'to match the data
type of field D{Ak). If the format requires a sign, a
positive sign shall be supplieds The D{Ak) field shall be
restricted to one of the decimal data types O through 6, 12
or 13, If field D{Ak) 1is longer than one byte, then the
Immediate Data Byte shall be zero filled to the 1left as
necessary.

Each source digit shall be checked for decimal digit
validity. An invalid decimal digit shall cause an Invalid
BDP Data condition to be detected. When the corresponding
user mask bit is set, and the trap is enabled, instruction
execution shall be inhibited and program interruption shall
OCCUT »

c) 1If j=10, the ASCII character contained in the Immediate Data
Byte shall be compared Jeft to right with each successive
byte contained in the D{Ak) field. The data type of field
D{Ak) shall be ignored.

d4) If j=11, the ASCII character contained in the Immediate Data
Byte shall be compared to the leftmost byte in field D{AK).
If the comparison is equal and if field D{Ak) is longer than
one byte, then a space character shall be compared left to
right with each successive remaining byte contained in the
D(Ak) field., The data type of field D(Ak) shall be ignored.

When the contents of the source field are greater than the
contents of the destination field, Register X1 Right shall be
cleared in bit positions 32 and 34 through 63 and shall be set in
bit position 33,

When the contents of the source field are less than the
contents of the destination field, Register X1 Right shall be
cleared in bit positions 34 through 63 and shall be set in bit
positions 32 and 33,

The interpretation of the source and destination fields are
analogous to those described under the Move Immediate Data
Instruction.



752
COC -~ ADVANCED SYSTEMS DEVELOPMENT
26710717
CYBER 180 11 Assembler ERS Rev: F

A W W W O T T - -~ - W - . T A -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
Ts4+.6+3 ADDI-Add Immed Data (Xi) Right plus D to D(Ak)

A A A - A A A Y A AT AT WD AN AN T AU T D D T AW WD, N D A T W T A A N A VU SN VD T D~

T«4.6.3 ADDI=Add Immed Data (Xi) Right plus D _to D{Ak)

ADDI - (Format = jkiDl Op Code = FB Ref# = 156)

A v s —— - . . -~ -
!labe! inperatxon {arqument

o ———— Fmm——————— A - -
H JADDI, Xi,0 1Ak,X1l,j DD

When the F field in the data descriptor is equal to 0O, the
length register (X0 for source, X1 for destination) is not a
required parameter,

This operation shall add the explicit integer value contained
in the Immediate Data Byte to D{(Ak) after a possible conversion
to match the destination data type.

Source: The Immediate Data Byte is used to store the integer
value of the addend. The j field is used as an encoding of the
type of the data contained in the Immediate Data Byte. The least
significant bit of the j field is decoded as follows:

a) If = 0, the Immediate Data Byte, contains an unsigned
(considered positive) binary integer value; Immediate Data
Byte = Data Type 10.

b)Y If = 1, the Immediate Data Byte, contains one ASCII character
representing a decimal digit; 1if 1invalid decimal data is
encountered in the Immediate Data Byte, an Invalid BDP Data
condition shall be detected. When the corresponding user
condition mask bit is set and the trap 1is enabled,
instruction execution shall be inhibited and program
interruption shall occur., Immediate Data Byte = Data Type 4.

If the source corresponds to case a) above, the destination
shall be confined to types 10, 11, 14 and 15.

If the source corresponds to case b) abave. the destination
shall be confined to types O through 6, 12 and 13.

® L 2 I I 4 2

7.5 ELOATING POINY INSTRUCTIONS



7-53
CDC = ADVANCED SYSTEMS DEVELQOPMENT
86710717
CYBER 180 II Assembler ERS Rev: F
7.0 CYBER 180 CPU SYMBDLIC MACHINE IﬁSTRUCTIﬁNS
T7+5.1 GENERAL GESCRIPTiﬂm

7.5.1 GENERAL DESCRIPTIDN

A floating point number consists of a signed exponent and a
signed fraction. The signed exponent can also be referred to as
the characteristic and the signed fraction can also be referred
to as the coefficient.

The quantity expressed by a floating point number is of the
form (f)2x where f represents the signed fraction and x
represents the signed exponent of the base 2.

The exponent base of 2 is an implied constant for all floating
point numbers and thus does not explicitly appear in any floating
point format.

T5.2 FORMATS

Floating point data occupies one of two fixed length formats:
64-bit word (Single Precision) or 128-bit doubleword {(Double
Precision).

In both the single and double precision formats, the leftmost
bit position, 00, is occupied by the sign of the fraction, The
fifteen bit positions immediately to the right of bit 00, 01
through 1%, occupied by the signed exponent.

The field immediately to the right of the signed exponent Iis
occupied by the fraction which in single precision format
consists of 48 bits and in double precision format consists of 96
bits, according to the following figures,

joojo1 15116 531
TR S N S ——— - -
Is 151gned Fxpanent l ﬁa-b:t fraction |
e o i e e S i o . e R i o o o o -

Single Precision Floating Point Number



7-54
CDC - ADVANCED SYSTEMS DEVELOPMENT

| 86/10/17
CYBER 180 11 Assembler ERS Rev. F
T+0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
? 5.2 FORMATS
00101 15116 6314
s frmm e ————————— S —— ————
iS !S;gned Exponent !Leftmnst éa-bats of the fraction |
e —————————— o e e 2 e - e e e ——— +
164165 71172 127
- ————————————— Fom i ————————— -
is ingned Exponent lRightmost 48-bits of fract:on 1
bemfmmc e —————— frmmm e ————————— ———————— -4

Double Precision Floating Point Number

A double precision floating point number consists of two
single precision floating point numbers located in consecutively
numbered X Registers., The two single precision floating point
numbers comprising a double precision floating point number are
referred to as the leftmost and rightmost parts as contained in
the Xn and Xnt+l, respectively. The leftmost part may be any
single precision floating point number and when it is normalized,
(the leftmost bit of the fraction, in bit position 16, is equal
to a one) the double precision floating point number is
considered to be normalized., The sign of the fraction and the
characteristic of the leftmost part constitutes the sign of the
fraction and the characteristic of the double precision number.

The fraction field of the Jeftmost part constitutes the
leftmost 48 bits of the 96-bit double precision fraction. The
fraction field of the rightmost part constitutes the rightmost 48
bits of the 96-bit double precision fraction. The sign of the
fraction and the characteristic of the rightmost part cannot be
utilized from any number constituting an input operand {argument)
to a double precision floating point operation. Such operations
assume that the siagn of the fraction of the rightmost part is the
same as the sign of the fraction of the leftmost part and that
the characteristic of the rightmost part 1is 48 1less than the
characteristic of the leftmost part. However, the formation of a
double precision floating point result includes making the sign
of the fraction of the rightmost part the same as that of the
leftmost part and, except for certain cases involving
non-standard forms of floating point results, also includes
mak ing the characteristic of the rightmost part 48 less than the
characteristic of the leftmost part.

The following table illustrates hexadecimal exponent codes for
corresponding non-standard as well as standard Ffloating point
numbers?



CDC -~ ADVANCED SYSTEMS DEVELOPMENT

cy

BER

180 I1 Assembler ERS

7-55

86710717
Rev: F

AT WO A AN WO T D Y AV D W T DT T W A D Ty T D D T W N WD T WS AU W WD W U WD TN W T SO . N I U W VY T VD D -, -

7.0 CYBER 180 CPU SYMBOLIC MACHINE
7.5.2 FORMATS

INSTRUCTIONS

o 0 e S 7 2 ]~ o 1 -~
iﬂexadacima! Expoaent xncludanq cneff;c:&nt sign
| o e s o .
| !Actua! Exponent {to the base of 2)
H i " 2 77 20 T o T S T 2 o o T . 0
| i 1Input Arguments
] | { o
I i | {Results
------------- +-o--+--------—~-+-~—------—+------~-—-—----------~-5»+
~ 17xxxyp  ===-- lIndefin ei7aoa.o~-~>o |
i e e o o e o o e T TS - +
{ 6FFF]2%%12287 { I0verflow Mask = 0 ¢ {
| i~ 1 ~ JInfinite |5000.00~=-=->00 i
| I S ] | {Dverflow Mask = 1 3 1
1Coefficient|500012%%4096 i {As Shown {
Sign Equal #-==<-tr-mmenecce—- e A - —————————— *
to O JA4FFF ] 2%%4095 i i
{Positive | ~ | ~ i | |
numbers)| 1 | 1 { ] i
H }400012%%0 }Standard |As Shown i
{ 13FFF{2%%(~1) | ! i
| I i | | i
| I v | v ] i ]
| 1300012% «(-aogé) i i i
1 T oo i 2 +
i J2FFE12%%({~-4097) |} lUnderflow Mask = 0 @ !
| 111 | jZero 1000.00~~-->00 |
H I v | v 1 lunderflow Mask = 1 3 |
! 11000} 2%%x(~-12288) ] ]As Shown i
1 o o e fom———————— e ———————————————————— +
v fOXXX1 ] | |
----------- Attt Lt {Zero {Not Applicable |
~ 18xxx1 | | !
| G s e e e fmmm————— fme i ———————————— -————— +
! 19000 2%%(~ 12288 | 1Underf!ow Mask = 0 3 }
! ] ~ 1 ~ { 10000, 00=-==>00 1
| I I | i jZero jUnderflow Mask = 1 3 i
Coefficient |AFFF|2%%{~4097) |} {As Shown i
Sign Egqual t-=--drcorommmno- o e e Fom e ———— - +
to 1 1B0OOO | 2%%{~-4096) | | 1
{Negative | ~ | ~ | | |
Numbers)| | | ! { | |
] IBFFF]2%%(~-1) {Standard |As Shown i
i 1C00012%%D ] ! i
} I I | H | } |
| l v 1 v | { |
] ICFFF | 2%%4095 i | |
i G v o o R R et G o s o +
i D000 1 2%%4 096 ] 10verf!ow Mask = 0 = |
i ] | 1

! 1



7-56
CDC - ADVANCED SYSTEMS DEVELOPMENT

BH710O/17
CYE?R 180 11 Assembler ERS Rav: F
7.0 CYBER 180 CPU SYMBDLIC MACHINE IMSTRUCTIGNS
752 FORMATS ‘
| i I 1 | | {Infinite |D000.00~-~->00
i | I v | v | |0verflow Mask = 1 3 i
! H JEFFF {2%%12287 | 1As Shown |
1 { T T TP o —— e ———————— e e o
1 v JFXXX] ===~ 1indefinite]7000.00-~-=>00 i
fomm—————— frrem e ———————— frm———— A o e e o e e - +

Floating Point Representation

Ta5e3 EXPONENT ARITHMETIC

When the exponent fields from input arguments are added, as
for floating point multiplication, or subtracted, as for floating
point division, the exponent arithmetic is per formed
algebraically in 2's complement mode. Moreover, such operations
take place, conceptually, as if the bias were removed from each
exponent field prior to performing the addition or subtraction
and then restored following exponent arithmetic so as  to
correctly bias the exponent result,

Exponent Underflow and [Overflow conditions are detected for
all single precision, but only for the leftmost part of double
precision floating point results, When the generation of the
exponent of the rightmost part, by reducing the exponent of the
leftmost part by 48, results in underflow for the rightmost part,
this underflow is not to be detected and utilization of an QOut of
Range exponent permits the rightmost part of the double precision
floating point number to correctly express its value.

T+5e4 NORMALIZATION

A normalized floating point number has a one in the leftmost
bit position, 16, of the fraction field., If the leftmost bit of
the fraction is a zero, the number 1is considered unnormalized.
Normalization takes place when intermediate results are changed
to final results. Numbers with zero fractions cannot be
normalized and such fractions remain equal to zero.

For intermediate results in which coefficient overflow has not
occurred and the initial oper ands wer e normalized, the
normalization process consists of left shifting the fraction
until the leftmost bit position  contains a one and
correspondingly reducing the characteristics by the number of
positions shifted.s For intermediate results in which coefficient
overflow has occurred, the normalization process consists of
right shifting the fraction one bit position and correspondingly



7-57

CDC - ADVANCED SYSTEMS DEVELOPMENTY

B6/710/17

CYBER 180 I1 Assembler ERS Revs: F

- T - T -~ - - Y - -~

CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIDNS

?.5 4 NORMALIZATION

increasing the characteristic by one, For double precision
floating point numbers, the entire fraction participates in the
normalization such that the rightmost part may or may not appear
as a normalized single precision number as determined by the
value of the fraction.

For quotient and product instructions (reference numbers 103,
104, 107, 108) if the operands are unnormalized, the results may
be unnormalized.

When exponent arithmetic operations on standard floating
numbers generate an intermediate exponent which is Jut of Range,
but normalization requirements generate an adjusted exponent
which 1is no longer Dut of Range, then neither Exponent Overflow
nor Exponent Underflow is recorded for the final results.

7.5.5 DOUBLE PRECISION REGISTER DESIGNATORS

The terms "Xk+1® and "X j+1" is used to designate an X Register
associated with the rightmost part of a double precision floating
point number. Hhen the Tleftmost part of a double precision:
floating point number, as designated by the terms "Xk¥ and"Xj™ is
associated with Register XF {in hexadecimal notation) the terms
"Xk+1" and YXj+1" are interpreted as designating Register X0,

7.5+6 CONVERSION
The instructions within this subgroup provide the means for

converting 64-bit words, contained in the X Registers, between
floating point and integer formats.,

7.5.6.,1 CNIE=-Convert From Integer to Eloating Point

a) Floating Point Convert from Integer, Floating Point (Xk)
formed from Integer {Xj).

CNIF - (Format = jk Op Code = 3A Ref# = 097)

- - - - > S 1% > > A 2 T
| label ]opPration !argument
b mmm——— prmmmmm———— e fm—————— e ——————————— -



7-58
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CY?F? 139 II Assembler ERS Rav. F

7.0 CYBER 1%0 CPL} SYMBOLIC HACHI&F IMSTRUC?IDMS
7:5.6.2 CNFI-Convert Floating Point to Integer

W T W T D W P WD WD U N TN VS A U N A T D N AU M UG D ND T N W T WD D A ST Wy T AN AT D S D DD N N W A A T TN

7.5+6.2 CNEI-Convert Floating Point to Integer

a) Floating Point Convert to Integer, Integer (Xk) Fformed from
Floating Point {(Xj).

CNFI - (Format = jk Op Code = 3B Ref# = 098)

R ey I R — -
i!abe} joperation largument

- - A - A - - -
} JCNFY IXkoX ]

7e527 ARITHMETIC

The instructions within this subgroup provide the means for
per forming arithmetic operations on floating point numbers to the
extent described in the following subparagraphs.

7+.5+7«1 ADDE.SUBF-Add/Subtracta Xk

a) Floating Point Sum, {(Xk) replaced by {(Xk) plus (Xj).

ADDF -~ {(Format = jk Op Code = 30 Ref# = 099)

[ R — - Ry ———— —_—
| 1abe] Joperation {argument

Fom e e o §omm i e B e e e e
! | ADDF IXksXj

b) Floating Point Difference, (Xk) replaced by (Xk) minus (Xj).

SUBF - {(Format = jk Op Code = 31 Ref# = 100)

o . - AR — > o o
]tabe! 1operatlon }argument
¥ - PR N — - - -



7-59
CDC -~ ACVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 11 Assembler ERS Rev: F

A~ Y - W A - o T - -~ .

7.0 CYBER 130 CPU SYMBOLIC MACHINE INSTRUCTIONS
Te527a2 MULF*Product to XX

7e5.7.2 MULE=Product to XK

a) Floating Point Product, {Xk) replaced by {Xk) times (Xj),

MULF - (Format = jk 0Op Code = 32 Ref# = 103}

fmm———— fom—————— pm—— -
| 1abel loperation iarqument

B -
| !ﬁULF sxk.xj

7+5.7+3 DI¥E=Quotient to XX

a) Floating Point Quotient, {(Xk) replaced by (Xk)} divided by
{(xi.

DIVF - (Format = jk Op Code = 33 Ref# = 104)

b mm———— pmm——————— o e e e
| 1abel foperation !argument

T fom—e————— frmmmm— e cem————————————
| IDIVF 1 XKy X j

T«5.7.4 ADDDLSUBD-Add/Subtract, Xk _and Xk#l

a) Floating Point DP Sum {Xk, Xk+1) replaced by (Xk, Xk+1) plus
(xj’ Xj"‘l)a

ADDD - (Format = jk Op Code = 34 Ref# = 105)

o - - - - o - -
| 1abel loperation !arqument
o - E R —— - -



7-60
CDC -~ ADYVANCED SYSTEMS DEVELOPMENT
86710/17
CYBER 180 II Assembler ERS Rev: F

- W -, - - .- W - - - -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
1-5.7.4 ADDD,SUBD-Add/Subtract, Xk and Xk+1

O A W TS N AN U N W W N A T U N T WO DA AN D A A N A TG A D AT, . N U VU N S T O e D D N Tl U DD T D WD B N T D S UV T " WA~ -

b) Floating Point DP Difference {Xk, Xk+1) replaced by {(Xk,
Xk+1) minus {Xj, Xj*1).

SUBD -~ (Format = jk 0Op CTode = 35 Ref# = 106)

T ——— pm———— - R ——
11abel joperation |argument

D —— pom——————— T U — R — —————
| {suBD IXko X j

7.5,7+.5 MULD=Product to Xk and Xk#l

a) Floating Point DP Product {Xk, Xk+1) replaced by (Xk, Xk+l)
times {Xj, Xj+1).

MULD -~ {(Format = jk Op Code = 36 Ref# = 107)

frmcm e ——— fommm——— ————————— - e e e
1labe! !operatxen iargument

fommm————— formm—————— fo——————— - e e
| fMULD IXksXj

T+5.7.6 DI¥D~-Quotient to Xk and Xk+l

a) Floating Point DP Quotient, {Xk, Xk+1) replaced by (Xk, Xk+1)}
divided by {Xj, Xj+l1),

DIVD ~ {(Format = jk Op Code = 37 Ref# = 108)

T — —p———— pm————— e — e —————————
{label Joperation largument
foemm e —— fom—— g ————————— c——emm————— -
! I1DIVD XKy X j

7+.5.8 BRANCH

The instructions in this subgroup consist of conditional
branch instructions.

Each of these <conditional branch instructions perform a
comparison between two floating point numbers. Then, based on
the relationship between the results of that comparison and the
branch condition as specified by means of the instruction's



T-61
COC -~ ADVANCED SYSTEMS DEVELOPMENT
B&710/17
CYSFR 180 11 Assemb!er ERS Rev. F
7.0 cvaﬁa 180 CPU SYMBBL!ﬁ MACHINE IMS?RUCIXQNS
7.5.8 BRANCH

A A AT D SO T D B AU WD D S D T e S WO W D N U W T, D SO N N D A A U A AT T DD A D D T WD A T N D A D AT A TN D~

operation code, each conditional branch instruction performs
either a normal exit or a branch exit.

Normal Exit: MWhen the results of a comparison do not satisfy
the branch condition as specified by the operation code, a normal
exit is performed, A normal exit for all conditional branch
instructions consist of adding four to the rightmost 32 bits of
the PVA obtained from the P Register with that 32~bit sum
returned to the P Register in its rightmost 32~bit positions.,

Branch Exit: When the results of a comparison satisfy the
branch condition as specified by the operation code, a branch
exit is performeds A branch exit consists of expanding the
16-bit Q@ field from the instruction to 31 bits by means of sign
extension, shifting these 31 bits left one bit position with a
zero inserted on the right and adding this 32-bit shifted result
to the rightmost 32-bits of the PVA obtained from the P Register
with the 32-bit sum returned to the P Register in its rightmost
32-bit positions,.

The Assembler sets the instruction's Q field according to the
value of the '"label? subfield of the instruction mnemonics, which
must correspond to a label of an Assembler statement within the
currently active section. Relative addresses cannot span section
boundaries,

7.5.8.1 BREEQ.BRENE.BRFGT.8REGE-Compare _and Branch

a) Branch to (P) displaced by 2%*Q if Floating Point (Xj) egqua)
to (Xk).

BRFEQ - {(Format = jkQ Op Code = 98 Ref# = 109)

frmee e ———— pommmm————— pomm———— - m——————————
i!abe! loperation largument

tomem————— frm——————— R ———————— ——————
1 | BRFEQ IXjsXkslabel

label - byte address of the new location.



7-62
CDC - ADVANCED SYSTEMS DEVELDPMENT

B6710/17
CYBER 180 II Assembler ERS Rev: F

N S DD U T AN AT > W D T DD VD T T DD T U T A DT [ O T A T D AU N D A A AU IS DD D N W T D W T T W W~ —

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7+5.B.1 BRFEQ,BRFNE,BRFGT,BRFGE~-Compare and Branch

T D NN O 2T D WA A A D A U D D VU A NI D AU TP O N AD YD TS T D U WU T TS DD N T A U A D T2 TG WD VD T W Y

b) Branch to (P) displaced by 2%Q if Floating Point (X]J) not
equal to (Xk).

BRFNE - {Format = jkQ Op Code = 99 Ref# = 110)

tm———— - e e d e e ————
]1abe} ioperatlon iarqument

frmm————— pomm——— et e e o e e e
{ | BRFNE IXjsXkslabel

label - byte address of the new location.

c) Branch tolP) displaced by 2%Q if Floating Point {Xj) greater
than {Xk).

8RFGT - (Format = jkQ Op Code = 9A Ref# = 111)

o Fmm—————— e
11abel laperatxon 1arqum9nt

fom————— fomm——————— e m e ————————————————
i | BRFOGT in»XRs!abei

label - byte address of the new location.

d) Branch to (P) displaced by 2%Q if Floating Point tx;) greater
than or equal to (Xk).

BRFGE - {Format = jkQ Op Code = 9B Ref# = 112}

Fmmm—————— fmm e ———— o i ot e e e 2
|label loperation }argument

b mm————— e ———— femm e ——————————————————
! | BRFGE | Xj»Xky Yabel

labael - byte address of the new location.



7-63
COC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 IT1 Assembler E&S Rev: F

7.0 CYBER 180 CPU SYﬁBBLIC MACHINE INSTRUCYIQNS
T+528.2 BRHVR,BRUND,BR!NF~Except1on Branch

7.5.8.2 BROVR.BRUND,.BRINF-Exception Branch

a) Branch to {P) displaced by 2%Q if Floating Pa;nt Exception.
per j contained in Xk.

The wvalues of the rightmost 2 bits of the j field from the
instruction are associated with exception conditions as
follows:

if 00, Exponent Overflow
if 01, Exponent Under flow
if 10 or 11, Indefinite

BROVR - (Format = jk@ Op Code = 9& Ref# = 113)

BRUND - (Format = jkQ Op Code = 9E Ref# = 113)

BRINF - {(Format = jkQ Op Code = 9E Ref# = 113}
-l - - —-— A - - -~ - -
| 1abel loperation largument
fmm—————— o e e o
] IBROVR {

1 | BRUND Xk, 1abel
i I BRINF }

label - byte address of the new location.

The Assembler computes the value of j from the specific
instruction mnemonic used.

7-5.8.3 CMPE=Compare

a) Compare Floating Point (Xj) to {Xk), result to X1 Right.
CMPF = {(Format = jk Op Code = 3C Ref# = 114)

- - PR N R Sy —— v o 0 oo o o et -

|label !operatlon argument

o o - F N —— N - -

! | CMPF 1X14X joXk

» 2993929 -



T1~564%
COC - ADVANCED SYSTEMS DEVELOPMENT
B6/710717
CYBER 180 11 Assembler ERS Rev: F

A . . A - T D Wy A TN U D T VD WD N D WD S WD NG T W U T AT T WD T N WD W U T U T VNN T T D

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6 SYSTEM INSTRUCTIONS

A W W T WP AV A AU T WA U D W D U D VED WD D WD N D W BV D WD ST W D W AN WD WU NV WA WD T WD D

7.6 SYSYEM_INSTRUCTIONS
7+6.1 NON-PRIVILEGED MODE

This class of instructions is permitted to execute in any
processor mode.

Te6.1.1 EXECUTE, HALY. SYNC

a) Execute Algorithm - Processor Model Dependent Instruction.

EXECUTE -~ {(Format = SjkiD 0Op Code = CO-C7 Ref# = 139)

o ———— pom— ———— . ———— - e e e -
!!abe! loperation largument

frmmm———— fmm——————— o e e e e
| {EXECUTE,S ’)skolaﬁ

h) Program Error.

HALT = (Format = jk Op Code = D0 Ref# = 121)

o ————— tm———————— o e e -——
ilabe! iop»ration !arqument

fmmmem———- o c———— G s e S
] JHALY | jk

c) Synchronization - Scope Loop Sync.

SYNC - {(Format = jk Op Code = 01 Ref# = 194)

J o o - - - -

| 1abel 10peratxon largument
pomm—————— $omm——————— pomcm————— LT T ra——
! 1SYNC I ik

Te621.2 CALLSEG.CALLREL=Call

These instructions save the Yenvironment¥,as designated by the
contents of Register X0 Right, in the stack frame save area
pointed to by the Dynamic Space Pointer initially contained in
Register A0, The stack associated with the current ring of
execution, as determined by the RN field initially contained in
the P Register, Ypushed® by transferring the Dynamic Space
Pointer, modified 1in its rightmost 32-bit positions by the



T7=-465
COC - ADVANCED SYSTEMS DEVELOPMENT
BA/10/717
CYSFR 120 I ﬁssamb!er ERS Rev, =
7.0 CYBER 180 CPU SYﬁSBLIﬁ MACﬂIﬁE INSTRGCYIDHS
Teb. 1 2 QALLSEG.QALLREL Call

addition of 8 times the number of words stored into the stack
frame save area, to the appropriate Top of Stack entry in the
executing process's Exchange Package.

The AD, Al, and A2 Registers altered to reflect changes with
respect to the Current and Previous Stack Frames and the A3, and
A4 Registers shall be altered to reflect pertinent parameter
changes as required, in accomplishing this transfer of control
from a “calling® procedure to a Ycalled” procedure,

Register assignments are as follows?
{A0)- Dynamic Space Pointer
{Al1)- Current Stack Frame Pointer
{A2)~- Previous Save Area Pointer
{A3)- Binding Section Pointer
{A4)~ Argument Pointer
{X0) RIGHT - the Save Environment is defined as follows:

Bits 52-55: Xs

it

Starting X-Reg to save

Bits 56~59: At Final A-Reg to save

Bits 60-64: Xt

i

Final X-Reg to save
a) Call per {Aj) displaced by 8%Q, Arguments per (Ak).

The PVA obtained from Register Aj is modified iIn its
rightmost 32-bit positions by the addition of the
zero-extended Q field from the instruction, (shifted Jleft
3-bit positions with zeroes inserted on the right), and the
resulting PVA is used to address a Code Base Pointer from a
Binding Section Segment., This Code Base Pointer is
translated into a PVA used to address the first instruction
to be executed in the Ycalled" procedure, The ring of
execution of the called procedure, P{RN) final, shall be used
to obtain a Top of Stack pointer from the process' Exchange
Package to be used as the new Current Stack Frame Pointer,

CALLSEG - (Format = jk@ Dp Code = B5 Ref# = 115)

fom————— e —————— fmm————————— ————————
|1abel foperation largument

pmm—mm—————t - ————————— e it
| | CALLSEG l1abel,A jyAk

label =~ byte address of entry point in the new
procedure, must be on a word boundary.



7-66

CDC - ADVANCED SYSTEMS DEVELDPMENT

86710717

CYBER 180 1! Assembler ERS Rev: F

- - -

A T WD W A W A G N DD T A D JA NG T W WD VD AL AU N W A AT S A A T AU D VDA D D D RN AR W WD W N WO D MDA Ny DA D T A A A WM

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
Teba122 CALLSEG, CﬁtLRfL*CaT!

b}

Call to (P) displaced by 8*%Q, Binding Section Pointer per
{Aj)y Arguments per {(Ak).

The P Register shall be modified in its rightmost 32-bit
positions by the sign extended Q field from the instruction,
{left shifted 3-bit positions with zeroes inserted on the
right) and the final contents of the P Register shall be made
zeroes in the least significant three bit positions (61-63)
and shall be used to address the first instruction to be
exacuted in the Ycalled" procedure.

CALLREL -~ {(Format = jkQ Op Code = BO Ref# = 116)

A e e 2 o o e e e - e
| 1abel joperation largument

$mm—————— Fomm i ————— o ———————————— s
! ICALLREL  |label,AjyAk

label =~ byte address of the location to continue
execution, must be on a wor d
boundary.

The Assembler computes the value of Q from the "label” field
of the instruction mnemonics, which wmust correspond to a
label of an Assembler statement within the currently active
section. Relative addresses cannot span section boundaries.
The address represented by the label must be on a word
boundary. This can be insured by using the ALIGN pseudo
instruction.



=67
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBEP 180 11 Assembler ERS Revs: F
7.0 £Y§ER 180 CPU SYMAROLIC MACHINE IMST?UﬁTIGﬁS

et B A e e R kel g R B T

7+.621.3 REIURN

This instruction re~establishes the Stack Frame and
Yenvironment¥ of a previous procedure as defined by the Previous
Save Area Pointer.

The j and k fields from this instruction are not translated by
the hardware. Th values have no effect on the execution of this
instruction for which all execution parameters are implicit.

The Stack Frame Save Area from which a previous procedure's
Yenvironment® is obtained, is addressed by means of the PVA
initially contained in Register A2,

The RETURN instruction may also require global privilege,
Consult the MIGDS for further information.

RETURN = (Format = jk Up Code = 04 Ref# = 117)

A - v - - - - - N W A T T A D WA A - - -
] 1abel ioperatxon !argument

R R A -1 - - W A W Y W W W -~
! | RETURN ! jk

T.6.1.4 PP

This iInstruction re-establishes the Stack Frame of a previous
procedure as defined by the Previous Stack Frame®s Save Area.

The j and k fields from this instruction are not translated by

the hardware. Th values have no effect on the execution of this
instruction for which all execution parameters are implicit.

The Stack Frame Save Area from which a previous procedure®s
Stack Frame pointers is obtained, is addressed by means of the
PYA initially contained in Register A2,

POP - {Format = jk Op Code = 06 Ref# = 118)

P - o e - -

}label {operation largument

- - e - e o - - N D > - - —— - - - -

| IPOP I jk



T-A8
CDC -~ ADVANCED SYSTEMS DEVELOPMENT
B&HJIO/717
ﬁYﬁER 180 11 ﬁssemb!er ERS Rev: F
7.0 CY%ER 180 CPU SYMBOLIL MACHINE INSTRUCTIONS
?.6.1.5 EXCHANGE

7e641.5 EXCHANGE

When executed in Monitor mode, this instruction shall change
the processor from monitor process state to job process state,

When executed in Job mode this instruction changes the
processor from job process state to monitor process state. In
addition, the System Call bit in position 10 of the Monitor
Condition Register, job process state, is set.

The PVYA contained in Word O {P Register) of the Exchange
Package associated with the state from which the exchange is
taking place, is updated such that it points to the instruction
which would have been executed had the exchange not taken place,
i.2c.y the PVA of the YExchange® instruction with 2 added to its
BN field.

The j and k fields from this instruction are not transliated
and their wvalues have no effect on the execution of this
instruction.

EXCHANGE = (Format = jk Op Code = 02 Ref# = 120)

T pmm——— ———— e e -
11abel toperat:on }argument

e m————— pom——————— tm————— ———————————————— -
1 EXCHANGE | jk

Tebelebh KEYPOINT

The Keypoint Instruction allows performance monitoring of
programs via the optional Performance Monitoring Facility or via
Trap Interrupts. The Keypoint Instruction shall test bit j of
the Keypoint Mask Register. The j field, termed the Keypoint
Class Number (KCMN), shall be wused as a bit index into the
Keypoint Mask Register. Thus, a KCN or j field of value 4 tests
the fifth bit from the left in the Xeypoint Mask Register {(KMR),



=69
CDC - ADVANCED SYSTEMS DEVELOPMENT

Be710/17
CYBRER 18D 11 Assembler ERS Rev: F

T T D o D D WD W T T T WD T U W D NS W A S S T D W 0. O - W T S T T _~ - - . - - - -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
Tebaled KEYP&INT

a) Keypoint, class j» code equal to (XK) Right plus Q.

KEYPDINT - (Format = jkQ Op Code = Bl Ref# = 136)

-} ————————— + -------- o e . . - W A - -~ - - - —
i!abe! iogerat;on iargument
- - - J o e s - o o s

| IKEYPOINT | jsXk,0
Te6.1.,7 CMPXA-Compare_Swap

a) Compare (Xk) at (Aj); if not equal, load Xk Ffrom (Aj); if
equal store {X0) at {(Aj); however, if (Aj) locked, branch to
P plus 2%Q.

CMPXA - {Format = jkQ Op Code = B4 Ref# = 125)

- e — fm e —————————
{ label joperation largument

o fmmm——————— fmm e ——— -———
| CMPXA XksAjsX0,1abel

label - byte address of the new location, must be in
the same section.

A serialization function is performed before this instruction
begins and again at its end. FExecution of this instruction is
delayed until all previous accesses to central memory on the part
of this processor are completed,. Execution of subsequent
instructions 1is delayed until all central memory accesses due to
this instruction are completed.

Conceptually, the execution of this “Compare" instruction on
the part of a processor results in preventing other processors
from accessing any part of the central memory word at the PVA
contained in Register Aj between the read and write accesses
associated with the execution of this instruction, provided such
processors are also executing a YCompare" instruction. HWith
respect to this instruction only, in order to satisfy its
Ynon-preemptive® requirement, the use of 64-bit words consisting
entirely of ones in their leftmost 32-bit positions, ©00 through
31, 1is reserved for each processor’s implementation of this
instruction.



7-70
CDC - ADVANCED SYSTEMS DEVELOPMENT

86/10/717
£Y8£R 180 11 Assembler ERS Rev: F

7.0 CYBFR 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6 1.8 LBSET~-Load Bit

7.6.,1.8 LBSEY=-Load Bit

a) Load Bit to Xk Right from {Aj) bit indexed by {(X0) Right and
set bit in central memory.

LBSET - (Format = jk Op Code = 14 Ref# = 124)

fommm———— $mmmm—————— fomm—————— ————————— ——
!!abe! loperation largument
frmmm - fomm————— Jomm e ———————— -
} JLBSET IXksAja X0

This instruction transfers a single bit into Register Xk
Right, bit position 63, from a bit position in <central memory.
This instruction also clears the Xk Register in its leftmost 63
bit positions, 00 through 62, The bit position in central memory
is wunconditionally set without changing any other bit positions
within the byte or word,

No other accesses from any port shall be permitted access to
the byte in central memory from the beginning of the read access
until the end of the write access which sets the bit within that
byte.

A serialization function is performed before this instruction
begins and again at its ending. Execution of this instruction is
delayed until all previous accesses to central memory by this
processor are completed. Execution of subsequent instructions by
this processor is delayed until all central memory accesses from
this instruction are completed.

T+.6.,1.9 TPAGE=-Test Page

a) Test Page (Aj) and Set Xk Right.

TPAGE - (Format = jk Op Code = 16 Ref# = 126)

S W S PR U g — R ——

[tabe]l foperation largument
fommmm———— pomm——————— N
| 1 TPAGE IXkoAj

This instruction shall test for the presence of the page in
central memory corresponding to the PYA contained in Register Aj.
When this instruction finds the corresponding page in central
memorys the ¥YUsed" bit in the UM field of the associated Page
Descriptor is set, and the Real Memory Address (RMA) translated



7-71
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 11 Assemb?er ERS Rev. F
7.0 CYBER 180 CPH SYM&QLIC MACHINE 1N§TRH€YXBNS
T7+641.9 TPAGE~Test Page

A0 W WA W W WD WD U WD U A A T D WD D A G D VAP S D T A A D A T A A WD A D W AU AU T AU W T WD A A DY A DA WD A A D A WD A -

from the PVA contained in Register Aj is transferred to Register
Xk Right, When this instruction cannot find the corresponding
page in central memory, Register Xk Right is set in bit position
32 and cleared in bit positions 33 through 63.

T+641.10 CPYIX~-Copy Free Running Counter{TIME) to X

a) Copy to Xk from Central Memory Maintenance Register at (X}j)
Right. /

CPYTX - {Format = jk Op Code = 08 Ref# = 132)

pm————— fmmmm—————— fmm - -
| label !operatxon argument

fmmm—————— $ommmm———— $m e ——————————————————
| jCcPYTX IXky X j

This instruction shall copy the central memory Maintenance
Register specified by the contents of Register Xj into the Xk
Register., All 64 bits of the Xk Register shall be cleared before
the selected register is copied into it.

» LR N N ] L

T.6.2 LOCAL PRIVILEGED MODE

This class of instructions shall be permitted to execute only
from seqgqments having either local privileged mode or global
privileged mode. If an instruction in the local privileged mode
class attempts execution from a segment having neither local nor
global privileges, a Privileged Instruction Fault shall be
detected, execution of that instruction shall be inhibited, and
the corresponding program interruption shall occur.

Instructions in the local privileged mode class are executable
whenever a processor is executing instructions from a segment
whose Segment Descriptor defines that segment as either a local
privileged executable segment or a global privileged executable
segment.,



=712
COC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 11 Assembler ERS Rev: F

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
T+He2.1 LPAGE=-Load Page Table Index

Tebe2.1 LPAGE=Load Page _lIable Ipdex

a) Load Page Table Index per {(Xj} to Xk Right and Set X1 Right.

LPAGE - (Format = jk 0p Code = 17 Ref# = 127)

e - - A - - - A - v~ W T T > A - T -
l1abel joperation Jargument
A - e A o e - - - - - - -
i JLPAGE 1Xky X jo X1

This local privileged instruction searches the Page Table in
central memory, returns the final index value to Register Xk
Right, and sets Register X1 Right according to the results of the
search.

The entry searched for within the Page Table is defined by the
System Virtual Address {S5VA) contained in Register Xj.

The number of entries searched shall always be transferred to
Register X1 Right, bits 33-63, right-justified with zeroes
extended,

When a Page Descriptor corresponding to the SVA initially
contained in Register Xj is found, the index into the Page Table
which is associated with that entry shall be transferred
right=-justified and zero-extended to Register Xk Right, and bit
32 of Register X1 Right shall be set,

When the #Page Table search terminates as a result of not
finding a Page Descriptor which corresponds to the SVA initially
contained in Register Xj (whether the termination results from a
Continue bit equal to 0 or performing a maximum of 32
comparisons), the index into the Page Table associated with the
last entry compared shall be transferred into Register Xk Right
and bit 32 of Register X1 Right shall be cleared.

7.6.3 GLOBAL PRIVILEGED MODE

This class of instructions shall be permitted to execute only
from segments having global privileged mode. If an instruction
in the gqglobal privileged wmode class attempts execution from a
segment not having global privileges, a Privileged Instruction
Fault shall be detected, execution of that instruction shall be
inhibited, and the corresponding program interruption shall
oCcCcur.



7-73
CDC - ADVANCED SYSTEMS DEVELOPMENT
86/10/17
CYBER 180 II Assembler ERS Rev: F

- - N W - A - — . . — . -~

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
Te6.3 GLGBAL PRI¥ILEG£B MODE

Global privileged mode exists whenever the processor is
executing instructions from a segment whose Segment Descriptor
defines that segment as a global privileged executable segment,

T+6.3.1 INTRUPT-Interrupt Processor

a) Interrupt Processor per {Xk),

INTRUPT - {(Format = jk Op Code = 03 Ref# = 122)

tom——— - o o fm——— e
!1abp! joperation Jargument

o v [ SR —— B SR —— P ———
i | INTRUPT Xk j

The execution of this global privileged class (instruction
sends an external interrupt to one or more processors via their
central memory ports, The processors are identified by the
central memory port number to which they are connected.

The interrupting processor sends the contents of Register Xk
to central memory, Central memory then sends an external
interrupt to the processor{s) on those ports whose port numbers
correspond to the bit positions which are set within Register Xk.
When the interrupting processor has two ports connected to the
same memory, a YSwitch" selects the port wused to transmit the
contents of Register Xk to central memory along with the
"interrupt" function.

When the interrupting processor has two ports connected to
independent memories, the state of Bit 33 of Register Xk selects
the port used to transmit the contents of Register Xk to central
memory along with the *"interruptY Ffunction. When Bit 33 is
clear, Port 0 is used; when Bit 33 is saty, Port 1 is used.

A serialization function is performed before this instruction
begins execution. That iss execution of this instruction is
delayed until all previous central memory accesses on the part of
the interrupting processor are complete.

T.6.4 MIXED MODE

This class of instructions includes those instructions whose
mode is dependent on a parameter selection within the
instruction. Depending on the value of the parameter, the mode
of the instruction is non-privileged, 1local privileged, global
privileged, or monitor. The description of each instruction



T=T4%
CDC - ADVANCED SYSTEMS DEVELOPMENT
B6710/717
CYBER 18D 11 Assembler ERS Rev: F

. T A DA A A DT S VD DAY D D D N T TR W T T W DA D T D W W ST T WD T T WY T T " -~ -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIDNS
Te6.4 MIXED MODE

defines which parameter selects the mode and how the selection is
made.

T.6.%.1 BRCR=Branch and Alter Condition Register
a) PBranch to {P) displaced by 2*Q and alter Condition Register
per jke

BRCR - {Format = jkQ Op Code = 9F Ref# = 134)

jlabel iaperatlon {argument
- - E R — I S —— [ — -
| | BRCR joksTabel

label = byte address of the new location.

This instruction tests the value of a selected bit in the
Condition Register., The | field selects the bit number within
the Monitor Condition Register or within the User Condition
Register depending on the &k field, The k field shall also
determine the branch decision and Condition Register bit
alteration as follows:

k= 0 or By if bit j of the Monitor Condition Register is set,
clear it and take a branch exit,

k =1 or 9, if bit j of the Monitor Condition Register is not
sety, set it and take a branch exit.

k = 2 or Ay, if bit j of the Monitor Condition Register is set,
take a branch exit.

k = 3 or B, if bit j of the Monitor Condition Register is not
set,y, take a branch exit.

k = 4 or Cy, if bit j of the User Condition Register is set, clear
it and take a branch exit.

k = 5 or Dy if bit j of the User Condition Register is not set,
set it and take a branch exit.

k = 6 or E, if bit j of the User Condition Register is set, take
a branch exit.

k = 7T or Fy if bit j of the User Condition Register is not set,
take a branch exit.



7=75
COC = ADVANCED SYSTEMS DEVELDPMENT
86710717
CYBER 180 11 Assembier ERS Rev: F
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.4.1 BRCR-Branch and Alter Condition Register

A > AT "W T WD A A A D D A D T Y T WD VU A A WD U A TS A P U T NG D W T A T N A U AU WD W D D A NN D AU WY T D -

Monitor_and Privileged Mode - Some values of the k field of this
instruction shall <cause this instruction to be a Monitor or
Non=-privileged instruction as follows:

k Mode
or Monitor
Monitor

Non=privileged
Non-privileged

Non=-privileged
Non-privileged
Non=-privileged
Non=-privileged.

Q
.1
Mmoo

TeHeb.2 CPYSX.CPYXS=Copy State Registers

These instructions provide the means for copying certain state
registers to and from X Registers, The stare register is
addressed by means of the rightmost B-bits initially contained in
Register Xj Right.

The address assignments are defined in Table 2.6~1 and the
restrictions in Table 2.6-2 of the MIGDS,

a) Copy to Xk per {(Xj).

CPYSX - (Format = jk Op Code = 0E Ref# = 130)

[ A —— B S - o - - - -
!!abel !operat:on largument

F o e e - o ot o o . 1 i 2 e e 7 -~
| |CPYSX IXk o X j

This instruction copies the contents of the state register
addressed by the contents of Register Xj into Register Xk. This
instruction is a non-privileged instruction.



‘ 7~16
CDC -~ ADVANCED SYSTEMS DEVELDPMENT
‘ 86710717
CYBER 180 I! Assembler ERS Rev: F

T A S W W VU T N D T NS W WD D D A W D N T AU D NG AN A A D A T T A DD WD YD Y W D N WU T Sl A AT T A A N A AT T "

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
Tebastra2 LPYSX, CPYXS-Copy State Reqxstsrs

b) Copy from XK per (Xj).

CPYXS - (Format = jk Op Code = OF Ref# = 131)

A —— o ———— pormm————— R — - ————
I label foperation [argument

P —— D —— o e e
! {CPYXS 1Xk» X j

This instruction copies the contents of Register Xk into the
state register addressed by the contents of Register Xj.

Tebs#s3 PURGE=-Purge Buffer

a) Purge Buffer k of Entry per {(Xj),
PURGE - (Format = jk Op Code = 05 Ref# = 138)

o o o 2 2 s o e - -

| label Joperation iargumpnt
S — - o A s o . o 2o -
| | PURGE IXjok

The Purge Buffer instruction invalidates entries in the Map
and Cache buffers. The purge may invalidate all entries in a
buffer, 1invalidates all entries in a buffer which derive from a
given segment, invalidate all entries in a buffer for a given
pagey or invalidate all entries in a buffer for a given 512 byte
blocks. Register Xj contains the required address information,
either System Virtual Address (SVA) or Process Virtual Address
{PVA),

An SVA contains the Active Segment (ASID)in bits 16 through 31
of Register Xj. A PVA contains the Segment number {SEG) in bits
20 through 31 of Register Xj. Bits 32 through 63 contain the
Byte Number (BN) for either an SVA or a PVA. The rightmost 9
bits of the BN are ignored and assumed to be zeros since the
smallest purgeable portion of a buffer is a 512 byte page or a
512 byte block of a larger page. Proportionately more rightmost
bits of the B8N are ignored and assumed to be zero as page size
becomes larger than the 512 byte minimum,.

16 20 32 ‘ 55 63
A - - - - - - - R T R - - ———— -
}/////////‘ SEG | BN ’///l//i//!
. - R fom e - o s e e o e e e e e +
i 1 ASID | BN !f////////!
o - - o P W, - o - o +



: T=-77

CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717

CYBER 180 1T Assemb!er EES Rev: F

7.0 f?BER 180 CLPU SYMBDLIC MAtHINF INSTRUCTIONS

Te6+%+3 PURGE~Purge Buffer

WS A A AN T A D D DD W A A D A T WP D WA N T WD A T A NP . TN T A AU D A A S D AU YD D N T U D A AT N D A W N

The value of k determines the buffer to be purged, the range of
entries to be purged, and the type of addressing used to
determine the range of entries to be purged. The definition of k
follows.

k=D, Purge all entries in Cache which are included in the 512
byte block defined by the SVA in Xj.

k=1, Purge all entries in Cache which are included in the ASID
defined by the SVA in Xj.

k=24y Purge a3ll entries in Cache,

k=3, Purge all entries in Cache which are included in the 512
byte block defined by the PVA in Xj.

k=4=->7, Purge all entries in Cache which are included in the SEG

defined by the PVA in Xj.

k=8, Purge all entries in Map which are included in the page
defined by the SVA in Xj. This size of the page involved
shall be determined by the contents of the Page Size Mask
Register.

k=9, Purge all entries in Map which are included in the ASID
defined by the SVA in Xj.

k=A, Purge all information from the map pertaining to the PTE
defined by the PVA in Xj. The size of the page involved
shall be determined by the contents of the Page Size Mask
Register,

k=8B, Purge all information from the MAP pertaining to the SDE
defined by PVA in Xj, and to all PTE's included within
that segment.

k=C=>F, Purge all entries in Map.

For k=0, 1, 2, B=D>F this instruction 1is a local privileged
instruction, It is non-privileged for all other values of k.

. L B N L ]

To7 YECTOR_INSTRUCTIDNS
Te7el GENERAL DESCRIPTION

This class of instructions operate on vectors, that is,
sequences of full-word integer or real numbers., These
instructions are only implemented on the Cyber 180 Model 990.
Attempting to execute a vector instruction on any other processor
will result in an Unimplemented Instruction condition.

7.7.2 COMMON ATTRIBUTES OF VECTOR INSTRUCTIONS

All vector instructions utilize the jkiD instruction format.
However, some instructions do not use all operand fields, In



7-78
CDC -~ ADVANCED SYSTEMS DEVELOPMENT
BH/10/717
C?BER 180 II Assembler ERS Rev: F
7.0 €YBER 186 CPU SYMBOLIC MAﬁHINF INS?RUCTIQNS
T.7.2 COMMON ATTRIBUTES OF VECTDR INSTRUCTIONS

A T - W W T WD A AU A DD W VYA D W SO D T T DA T T Y S D VD S D T T D U DD T -

general, the J operand either is an A register which points to a
source vector, or is an X register which contains a value which
is turned into a vector by YbroadcastingY or repeating the value
the necessary number of times. The K operand is an A register
which points to the destination vector., The I operand Iis
normally a second source vector, but is used differently by some
instructions. All addresses used by wvector instructions must
point to a word boundary, or an Address Specification error will
result.

In the instruction descriptions that follow, V{(Aj) represents
either the vector addressed by Aj, or the broadcast vector.
created from the value in Xj.

The D field contains the length of the vector, when non-zero.
It must be an positive integer less than or equal to 512. This
is the size of the vector in words. When the rightmost ten bits
of the D field are zero, X1 Right specifies the length of the
vector. When X1 Right is negative, an Instruction Specification
error is recorded. When X1 Right is greater than 512, 512 is
used for the size of the vector. When the rightmost ten bits of
the D field are greater than 512, an Instruction Specification is
recorded.

The leftmost bit of the D field is set by the Assembler when
the J operand 1is an X register, to indicate that broadcasting
shall take place.

T.7.3 INTEGER VECTOR ARITHMETIC

7.7.3.1 ADDXVY=Add Integer VYectors

a) Integer vector sum, VI{Ak) replaced by V(Aj) plus V{(Ai).

ADDXY -~ { Format = jkiD Op Code = 44 Ref# = 172)

frmm—————— o e
f1abel foperation largument

i R e
! | ADDXY IAKsAjoAi,D

[ | ADDXV [Aks X jsAisD

The first form of this instruction adds each word in the
vector pointed to by Aj to the corresponding value in the vector
pointed to by Ai, storing the result in the vector pointed to by
Ak. The second form adds the value in Xj to each word pointed to
by Ai, storing the result in the vector pointed to by Ak.



=79
COC - ADVANCED SYSTEMS DEVELOPMENT
B6/10/717
CYBER 180 I Assembler ERS Rev: F

A A - W T T T W T W N D S W WS W W N W WU > A— T - T A -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
T+7+3.2 SUBXV~Subtract Integer VYectors

D A A A N A D D T B B S D A T N A AU N D A N D A S D D F U AU D T N DN S D W T T NN D AN A A N U B T D VD D o -

7+.7+3.2 SUBXY=-Subtract Integer_ Vectors

a) Integer vector difference, V{Ak) replaced by V{(Aj) minus

SUBXY - { Format = jkiD Op Code = 45 Ref# = 173)

pom—————— Fmm e ————————— —— -
1abel” loperation largument

prmm—————— fmm———— e e -
| | SUBXV FAKyAjoAi,D

| J SUBXY JAks XjoAisD

In the first form, each value in the vector pointed to by Ai
is subtracted from its corresponding value in the vector pointed
to by Aj. The results are stored in the vector pointed to by Ak.
In the second form, the values pointed to by Ai are subtracted
from the value in Xj.

T+7+4 INTEGER VECTOR COMPARISON

The following four instructions compare corresponding elements
of two vectors. The results are stored in the vector indicated
by Ak, If the compare is true, bit 0 of the corresponding word
in V{Ak) is set and bits 1 through 63 are cleared, If the
compare 1is false, bits 0 through 63 are cleared. If the second
form is used, where Xj is specified, each value in V(A{) is
compared to the value in Xj.

The following example shows the results in V{Ak) after the
instruction is executed,

CMPEQV A9,A7,A8,3

o o - + F - + o e e +
AT=-=>]} 2301 AB-->| 2001} A9==>]00...00]1
| 181 ! 271 100...001
- + et s o o ————

T+Te4.1 CMPEQV-Integer Vector Comparison = Egual

a) Integer vector compare, V{Ak) replaced by V{Aj) equal to
v{ai).



7-80
CDC - ADVANCED SYSTEMS DEVELOPMENTY

, B6710/717
CYRER 18D 11 Assembler ERS Rew: F

AV AT A W S A TR AN A M A D A A DD T T T D WA WD YD WA W W D W W W [ s A A U A T T - —

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTYIONS
7a7s4+1 CMPEQV-Integer Vector Comparison = Egual’

T . W W D D D W T D W W W A S AN A B WP A AR A WD A A WD D DD I S TS D S AU A D U WD A T U, D D N AT M TN T WY o D T S O T -

CMPEQV = { Format = jkiD Op Code = 50 Ref# = 176)

B e o E S ——— o o s
ilabp! loperation largument

T ——— S — Fo -
| jCHMPEQY JAk,AJsAi D

| jCMPEQY [AKsXjoAisD

Te7e%4.2 CMPLIV-Integer VYector Comparison = Less_Ihan

a) Integer vector compare, V{Ak) replaced by V(Aj) less than
V(Ai).

CMPLTY - { Format = JkiD 0Op Code = 51 Ref# = 177)

PO —— E T — e
i}abe! JOperataon Jargument

PR, S —— formmmc e — . ——— —————
i 1CMPLTY {AkyAjyAisD

| 1CMPLTYV 1AKs X joAT,D

TaT+4e3 CMPGEV~-Integer Vector Comparison = _Greater Yhap Ocr _Egqual

a) Integer vector compare, V{Ak) replaced by V(Aj) greater than
or equal to V{Ai).

CMPGEV = { Format = jkiD Op Code = 52 Ref# = 178)

tomm————— b —————— frmmmm e ——————————————
{label Joperation {argument

fmmm————— $mm—————— e
i | CMPGEY {AkyAjsAT,D

| |CMPGEY 1Aky X joAisD

Te7e4.4 CHMPNEV-Integer Vector Comparison = _Not Equal

a) Integer vector compare, V{(Ak) replaced by V(A]) not equal to
V(Ai).

CMPNEY - ( Format = jkiD Op Code = 53 Ref# = 179)



1~-81
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/10/717
CYBER 180 11 Assembler ERS Revs: F

N D A D W D A D YD e A D WD N T D VDN D A WD T AN D e T D DD W T A N B KU D WD A T D DD N N DD W T D T _

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
TaTebe4 CHMPNEV-Integer Vﬁctor Comnarzsnn - Not Equal

O —— pommm————— e ——————
i]abel loperation !argumﬁnt

pommm— e ——— T — pr e ———————————————
1 | CMPNEY Ak A jsAi,D

| | CMPNEY JAKs X jsAi,sD

7«75 SHIFT VECTDR CIRCULAR

a) Shift vector circular, V{Ak) replaced byV{Aj), direction and
count per V{Aj).

SHFV = { Format = jkiD Op Code = 4D Ref# = 180)
fommmm———— fomm————— —frmm e ———————————————
| 1abe]l joperation !argument
G ———— e ————— o —————————————
! | SHFV Ak AjsAiWD
| | SHFV 1AKs X jsAisD

This instruction performs a left circular shift on e=ach
element of V{Ai), as directed by the corresponding element of
Vi{Aj), storing the results in V{Ak)., The shift count for each
element of V{Ai) is taken form the rightmost 8 bits of the
corresponding element of V(Aj) and is interpreted as follows:

The sign-bit in the leftmost position of the 8-bit shift count
shall determine the direction of the shift. When the shift count
is positive {sign bit of zero), this instruction shall left
shift. When the shift count is negative {sign bit of one), this
instruction shall right shift. 5hifts shall be from 0-563 bits
left and from 1-64 bits right. Based on an B8-bit signed 2°'s
complement shift count, these shifts are as follows:

0111 1111 ==\
H ~= Left Shift 0-63
0100 0000 -~/

o011 1111 Left Shift 63
0000 0000 Left Shift 0
1111 1111 | Right Shift 1
1100 0000 Right Shift 64

1011 1111 ==\
: -~ Right Shift 1-64
1000 0000 ==/



7-82
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/10/717
CYBER 180 I1 Assembler ERS Rev: F

- W V- W . -~ - — T T~ T T — W~ — - -~

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
77«5 SHIFT VECTOR CIRCULAR

- . . . Ty W WD WS N VS N AT A W WD . S AU DU BN A O N NP AU A D T NP WD WD W AD W NN D W " - -

When these interpretations of the shift count result in an
actual shift count of zero, the instruction transfers the element
of V{Ai) to the corresponding element of V{Ak) with no shift.

When broadcast of V{Aj) is selected and j=0, the contents of
the X0 register shall be interpreted as consisting entirely of
Zeros.
7+7+6 LOGICAL VECTORS

T7.7.6.1 10RV=-Inclusive Or Yectors

a) Logical vector sum, V{Ak) replaced by V(Aj) OR V{Ai).

IORY - { Format = jkiD Op Code = 48 Ref# = 181)

fomm————— e m————— o e e e
| 1abel aOpPratXOH largument

T fomm - —— s R ——
i ] TORV 1AKyAjsAT4D

i | IORY 1A, XjeAisD

T+7+6.2 XORY-Exclusive Or Yectors

a) Logical vector difference, V{Ak) replaced by V{Aj) XOR V{Ai).

XORV = ( Format = jkiD Dp Code = 49 Ref# = 182)

prmm————— tmmmm—————— fmmm—————————— ——————————
I!abe) l{operation laragument

fmmmm———— tommm————— frmmrm—— e ————————————
| { XORY fAksAjyAisD

! 1 XORV 1Ak, XjsAisD

TaTebe3 Aﬁﬂ!:Laglcal-And-Mectncﬁ

a) Logical vector product, V{Ak) replaced by V(Aj) AND V{Ai).

ANDV = ( Format = jkiD Op Code = 4A Ref# = 183)

I — O — fmemcmr e S -
{1abel ioppratxon | argqument

I —— N p— - - o - -
] | ANDY lAksAjoAi,sD

| | ANDV JAksXGsAisD



7-83
CDC - ADVANCED SYSTEMS DEVELDOPMENT

BR6/710/717
CYQEQ 180 11 Assembler ERS Revs: F

TR D N W T T W N T - T - -V - W WA " W - -

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7.7 CONVERT VECTORS

W T S VT D AN I D W W A > W D WD D QT AU T > A A W D U AU A DD T D W A T D A A W AT U WD N T - A -~

T«7+7 CONVERT VECTORS

T+7.7.1 CNIEV=Convert Vector From Integec_to_Eloat

a) Convert vector, floating point V{(Ak) formed from integer
ViAj).

CNIFY - { Format = jkiD Op Code = 4B Reff# = 184)

R L T . E - o - 2 - - -
{1abel lcperatxon }argument

trmccnm—— P formme e ———————— —————
| 1CNIFV !Ak.xj,u

T7.7+7.2 CNIEY=-Convert Vector From Float to Integer

a) Convert wvector, integer V{(Ak} formed ¥from floating point
ViA]D).

CNFIV - { Format = jkiD Op Code = 4( Ref# = 185)

R —— S — frmmm e e c e e ————————————
| label loperation !arqument

PO . O — frme e ————————————————
| ICNFIV 1Ak,Aj,D

1 [CNFIV tAKyXjsD

T«7.8 FLOATING POINT VECTOR ARITHMETIC

7.7.8.1 ADDE-Floating Point Yector Sum

a) Floating point vector sum, Y{(Ak) replaced by V(Aj) plus V{Ail).

ADDFV - { Format = jkiD Op Code = 40 Ref# = 186)

fm——————— fmm—————— o ———— e -
{1abel foperation !arqument

fom——— fommm—————— frmm e — e ——— ———————
| 1AﬂDFV 3Ak1vaAin

7.7.8.2 SUBEV-Floating Point ¥Yector Difference

a) Floating point vector difference, V{(Ak) replaced by V{Aj)



7-84
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 1RO I1 Assembler ERS Revs: F

A W D T DT WD AOD T A D DD DA WD N D D D P T, A U] VTN 7T VD T DD ] TUD TAO N D MU T, SO T D NI W, D T -~

7.0 CYBER 180 CPU SYMBOLIC MACHINFE INSTRUCTIDNS
TeT:8.2 SUBFV-F!nating Point Vector Difference

minus V{Ai).

SUBFY - { Format = jkiD Op Code = 41 Ref# = 187)

SN - T ——
|1abel iopﬁratlon iargument

I SR o~ o A -
! | SUBFV IAKsAjsAisD

| | SUBFV IAksXjsAisD

7.7.8.3 MULEY=-Floating Point Vector Product

a) Floating point vector product, V{Ak) replaced by V{(Aj) times
V{Ai),

MULFV - { Format = jkiD Op Code = 42 Ref# = 188)

fmm——————— fmmm—————— frmm—————————————————————
{1abel loparatxon !argumeﬂt

A o e e o o e e o e s o s, e . S e e T S e 2 S 7w o P
{ IHULFV lAk AjsAisD

I | MULFY JAKs X joAisD

T7+.7.8.4 DIVEV-Floating Point Yector Quotient

a) Floating point vector quotient, V{(Ak) replaced by V{(Aj])
divided by V(Ai).,

DIVFV - { Format = jkiD Op Code = 43 Ref# = 189)

pmm———————— tmm——————— R ———————— ——————————
ilabe) joperation largument

o ———— ——mfem——————— e T
i |DIVFY JAksAjrAi,sD

| IDIVFY 1Ak, XjsAiWD

7.7.9 FLOATING POINT VECTOR SUMMATION

7.7.9.1 SUMEY-Floating Ppint VYector Summation

a) Floating point vector summation, Xk replaced by summation of
elements in V{Ai).

SUMFV = ( Format = jkiD Op Code = 57 Ref# = 190)



7-85
CDC = ADVANCED SYSTEMS DEVELOPMENT

B6710/717
CYRF& 180 11 Assembler ERS Rev?: F

7.0 CYBER 180 CPU SYMBOLIC NACHINF INSTR&C?IQNS
7.7.9.1 SUMFVY-Floating Point Vectnr Summation

- focmm—————— —————
jlabel. loperatxon 1argument

pommmmemaa - o —————
{ | SUMFY IXksAisD Merge Vector

Te79,2 MRGV=Mergs Vector

a) Merge vector, V{Ak)} partially replaced by V{(Aj) per mask
V{Ai).

MRGV =~ ( Format = jkiD 0Op Code = 54 Ref# = 191)

pomm————— B e e e e
Ilaba! loperation {argument

fomem——— A —— = o e o e e e
] I MRGY {AksAjsAiD

1 [MRGY IAKsXjsAi,D

This instruction replaces the first element of V{(Ak) with the
first element of V(Aj) if bit 0 is set in the first element of
viai). If bit O 1is clear, the first element of V{(Ak) is left
unchanged, This operation in repeated for successive elements
until the required number of operations has been performed.

7.7.10 GATHER AND SCATTER VECTOR

7.7.10.1 Gather Yector

a) Gather vector, VY{(Ak) replaced by gathered V(A j) with interval
Xi»

GTHY = { Format = jkiD 0Op Code = 55 Ref# = 192)

pommmm———— D A ——————————
Ilabel loperation largument

S o - A e o 1 0 e e 0 T o e s
| 1GTHY [AK,AJ,Xi,D

] |GTHY JAkyXjsAi,D

This instruction obtains the first element from V(Aj) and
stores {t as the first element of V{Ak). The second element to
be stored in V{Ak) is taken from the address formed by adding the
rightmost 32 bits of Xi, shifted left three places with zero
fill, to the rightmost 32 bits of Aj, Successive elements in
V{Ak) are taken from the address formed by adding the rightmost
32 bits of Xi, shifted left three places with zero fill, to the
rightmost 32 bits of the previous address, The Nth



7-86
CDC ~ ADVANCED SYSTEMS DEVELDOPMENT

B&/10717
CYBER 180 I1 Assembler ERS Rev: F

T - - W T - N - -~ - -

7.0 CYRER 180 CPU SYMADLIC MACHINE INSTRUCTIDNS
7.7.10.,1 Gather Vector

(192435042 3Nses+) element of V(Ak) is replaced by VI{Aj) whose
address is {(AJ)+8%(n-1)*(Xi). The contents of register Xi are
not altered by the execution.

Thus, contiguous vector V{Ak) is formed by gathering elements
from V{Aj) at interval Xi.

T+7.10.2 Scatter Vector

a) Scatter vector, V{Ak) replaced by scattered V{(Aj) with
interval Xi.

SCTY = { Format = jkiD Op Code = 56 Ref# = 193)

P —— S — - - -
|label joperation largument

frmm—m——— $m——————— o e e e ———————————
! !SC?V 1Ako§JOXlaﬂ

I ISCTV 1Ak, Xj»Ai oD

This instruction obtains the first element from V{Aj) and
stores it as the first element of V(Ak). The second contiguous
element from V{Aj) is stored into V{Ak) at the address formed by
adding the rightmost 32 bits of Xi, shfited left three places
with zero fill, to the rightmost 32 bits of Ak. Successive
elements from V{AJ) are stored into the addresses formed by
adding the rightmost 32 bits of Xi, shifted 1left three places
with zero €fill, to the rightmost 32 bits of the prevous address.
The Nth {152535e0e9N9.0.) element of VIAj) is stored into V{Ak)
at (Ak)+8*{n=1)*)Xi).

Thus, the contiguous elements from V{Aj) are scattered in
V{Ak) at interval Xi.



B-1
CDC - ADVANCED SYSTEMS DEVELOPMENT
Be/710/717
CYBER 180 1! Assembler ERS Rev: F

8,0 CYBER 180 ASSEMBLER SYMBDLIC 10U INSTRUCTIONS

8.0 CYRBER_180 ASSEMBLER SYMBOLIC 10U INSTRUCTIONS

8.1 SYMBOLIC NOTATION

The 1label fFfield of a symbolic machine instruction
optionally contains a symbol., If there is a label present, it
is assigned the value of the current location counter.

The operation field of a symbolic machine instruction
contains the instruction mnemonic which is a pre~defined three
or four character name., The first two characters generally
describe the function to be performed {ie. data transmission,
arithmetic, etc.). The third character indicates the
addressing mode used., And if there's a fourth character this
indicates it's a Ylong" machine instruction using a 16~bit
operand rather than a 12-bit operand,

The argument field of a symbolic machine instruction
contains one or two subfields. Each subfield contains an
absolute or relocatable expression that reduces to a b6-bit,
12-bit or 18-bit value.

An optional comment field may follow the last subfield of
the argument field, A comment must begin with the period (.)
character.

B.2 10U MACHINE INSTRUCTINN FORMATS

A1l IDU instructions are represented in one of four
formats,. Two of these use a single 16-bit word and the other
two use two consecuytive 16-bit words. These formats are shown

below.
16~bit Formats
£ 5 5 o)
8 2 8 3
R T ———— - e 0 s 2 2 +
fg 10 0 0} f i d !
D L L T et o i - e
N oo ————— +
19 10 0 0 | f | si c |

[ O R I —— PR R —— o o - o +



8=-2
COC - ADYANCED SYSTEMS DEVELOPMENT
B6/10/717
CYBER 180 11 Assembler ERS Rev: F
8,0 CYBER 180 ASSEMBLER SYMBOLIC 10U INSTRUCTIONS
B.2 I0U MACHIMNE INSTRUCTION FORMATS

T W S A D T A D D AU A WD A N WA I N T WD U D S T D WY W ST AU T A D S WD S NS AN VD A SO A A A A D VD D AW T W -

32-hHit Formats

4 5 5 6

8 2 8 3
R D et L P - s 2 e e e - o e +
lg !G 001 f ! d i
e -—— Fom——————— - - e e e —————————— +
10 Qooi m !
4o - A 2 D o T S S B o S +
A e o e e e e e R S N T e s 2
lg 10 00 i £ ] si c i
Fom o i e e s s o o e 2t 0 +
10 9001 m i
o e e Fom o o - 2 2 - o - 2 e -

The following field descriptions apply to both instruction

formats:?

f 6-bits the least significant 6 bits of the 7 bit
operation code,

d 6-bits an operand, part of an operand, or an
address specification depending upon the
instruction,

c 5-bits a channel number.

m 12-bits part of an operand, an address
specification or an [I/70 function code
depending upon the instruction.

e 1-bit the most significant bit of the 7 bit
operation code; g controls the width of
the value read or written from IDU memory.
If g is oy the operand is 12 bits; if g is
one the operand is 16 bits.

3 1-bit a sub-operation code used with certain 1/0

instructions.

0 unused bits which should be set to zero.



8~-3

CDC - ADVANCED SYSTEMS DEVELODPMENT
86/10/717
CYBER 180 II Assembler ERS Rev: F

A VI A VN T T W W WD T T . W A - - . N W A AT T — - -]~

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.3 IDQ AQQRESS MGGES

8.3 10U _ADDRESS MDDES

10U instruction operands are determined by the address mode
of the instruction. The 16-bit or 32-bit instruction format
provide for %, 6, 12, 16 or 1B bit operands and 6 or 12 bit
addresses.

B8.3.1 ND-ADDRESS MODE (N)

The no-address mode used the d-field directly as a 6-bit
operand.

8.3.2 CONSTANY MODE (C)

The constant mode uses the d=field and the m=field directly
as an 18-bit operand, The d-field contains the most
significant 6 bits and the m-field contains the least
significant 12 bits.

8.3.3 DIRECT MODE (D)

The direct mode uses the d-field as the 6-bit address of a
12 or 16 bit operand in memory.

Bse3.4 INDIRECT MODE (1)

The indirect mode uses the d-field as the 6-bit address of
a word in memory that is used as the address of a 12 or 16 bit
operand in memory.

Bs.3.5 MEMORY MODE (M)

The memory mode uses the d-field and the m-field to specify
the address of a 12 or 16 bit operand in memory.

If the d=-field is zero, the m-field is used as a 12 bit
address (bits 52-63).

If the d-field is not zero, the d-field is a 6~bit address
of a 12-bit index. This index is then added to the m-field to
generate the 12-bit address of all the possible I0U memory
locations { 0 to 07777(8)).

The 12-bit address 1is specified by d and m as follows
{expressed in octal):

U U e —— T R T e P S

| l m=0 | m=7777 10<m<7777 |



CDC - ADVANCED SYSTEMS DEVELOPMENT

B=4

B6/10/17
CYRER 18D 11 Assemb!er ERS Rev: F
8.0 CYBER 180 ASSEMBLER SYM&ELIQ IDU INSTRUCTIDNS
B.3,.5 MEMORY MODE {M}
1d=0 i 0 ! 0 i m i
1d7=0, (d)=0 | 0 | 0 ] m }
fd/7=0, (d)¥=7777 | 0 } 7777 | m |
1d7=0, 0<{d)<7777 ! {(d) 1 (4) | m+{d)}
o s o o s e R o e o i -

Note, in the block 1I/0 and central memory access
instructions, d has an alternate meaning and is not used in
address computation. The first word address for these
instructions is gotten directly from m and can reference

location 7777(8).

8.4 NOMENCLATURE USED IN JOU INSTRUCTIONS

This is the nomenclature used in the following instruction

descriptions.

A Refers to the A-register {arithmetic
register).

(ar) Refers to the contents of the A-register,

X Refers to one bit field which can be either 0
or 1l.

c Refers to channel number.

d Refers to the value of the d~-field

{no-address mode).

dm Refers to the 18~bit value obtained Ffrom the

d=-field and the m-field {constant mode).

(d) Refers to the contents of the location

specified by the d-field {direct mode).

{{d)) Rafers to the contents of the location

specified by the contents of the location

specified by the d-field (indirect mode).

m+{(d) Refers to the address specified by the
m-field indexed by the contents of the

location specified by the d-field,

{m+(d)) Refers to the <contents of the location
specified by the m-field Iindexed by the
contents of the location specified by the

d-field (memory mode).



8=-5
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/10/17
ﬁYBﬁﬂ 180 11 Assembler ERS Rev: F
B.0 CYBER 180 ASSEMBLER iYH%ﬂLIC 10U INSTRUC¥£BNS
Be 4 NQ%ENﬁLA?URC ns&a IN IDU INS?RUCI{GNS
p Refers to the P-register (program address
register).
R Refers to the R-register {relocation
register}.,
(R} Refers to the contents of the R-register,

(RY+(A) Refers to the central memory address formed
from the contents of the R and A registers.

8.5 GENERAL_I0OU_INSTRUCTIONS
The symbolic machine instructions are divided according to
their function and then further divided according to the
different addressing modes.,
B.5.1 BRANCH INSTRUCTIDNS
5121 LiMs RuiMa LINe Z.INe NiNa PJINs MJN

a) This instruction is a long jump to the address formed by
m"'{d}o

LJM - (Format = ¥Fdm Op Code = 000ldm Size = 32 bit)
{label loperation 3argumﬁnt
G - o -——— - - -
! LM Im,d
I1If d = Dy, then m is not modified.
b) This instruction stores the current program address plus
two ((P)+2) in the address formed by m + {d). The

instruction then does a return jump to m + (d) + 1,

RJM - (Format = fdm Op Code = 0002dm Size = 32 bit)

o fom————— o o o e o e e e e e
| 1abel loperation |argument

frmem e ——— $ommmm e frmmm e ————— ————————
I IRIM Im,d

If d = 0y then m is not modified.



8~6
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/10/717
CYBER 180 11 Assembler £RS Rev: F

A W - . W T W W T AR VDS D NI S T T VT T D WD T D N AT T -

8.0 CYBER 180 ASSEMBLER SYMBOLIC I0OU INSTRUCTIONS
B.5.1.1 LJMy RJIMy, UJNy ZJIN, NJIN, PJIN, MIN

D D A T D D D WA NI IS A U J WD U W WU W WD T W SO B D VU W VD W D T A W A O D AT WY WD P A DT AL WD A U D AU W T WD U D W D AW D -

c) This instruction causes an unconditional jump forward or
backward as specified by d.

UJN - {Format = fd Op Code = 0003d Size = 16 bit)

o e s 0 2 20 2 e e o e 2 i 7 . o 2 .

I1abel loperation iargument
o ———————— A — fomm e ee——m e ——————
] fUJIN id

d) If {A) is zero, then this instruction causes a branch
forward or backward as specified by d.

IJN - (Format = fd Op Code = 0004d Size = 16 bit)

A Y L T e o o ————————————
|1abel !operat:on | argument

L — T — fo——— . e ——
| 23N id

e) If (A) is non-zero, then this instruction causes a jump to
a location either forward or backward as specified by d.

NJN - (Format = fd Dp Code = 0005d Size = 16 bit)

frmmm————— fmmm————— frmmmm e me——————————————— -
| Jabel joperation largument

fmmmmm———— $rmmm————— pommmm e — e —————
i INJN Id

£) If (A) is positive, then this instruction causes a jump to
a Jocation either forward or backward as specified by d.

PIN - (Format = fd Op Code = 0006d Size = 16 bit)

e o o e e o s 2 e o S 2o i e < O e -
l1abel loperation |argument
¥ Q. - s o - —— - - -



8=-7
CDC - ADVANCED SYSTEMS DEVELDPMENT
B6/710/17
CYBER 180 I1 Assembler ERS Rev: F

D Y T YD MR D W N D W W D D D T A T T T U D I D WD TG N WD T WA WD D TS W Y D W T T W WV " "V - -

8.0 CYBER 180 ASSEMBLER SYMBOLIC IDU INSTRUCTIONS
B.5.1.1 LJIM, RIM, UJN, ZJN, NJIN, PJIN, MJIN

T A D A D A > A WA DS NG D T A ST D TP D N A A T D P D NG YD U D D I G WA G, DA T A T W T T D T DT

g) If (A) is negative, then this instruction causes a jump to
a location either forward or backward as specified by d.

MJIN - {Format = fd 0p Code = 0007d Size = 16 bit)

R S E - -
{1abe] joperation largument
e e o o 0 7 2 o o . -
| IMIN id

- L B I I ) »

8.5.2 SHIFT INSTRUCTIDN

The SHN instruction shifts the content of the A register
either right open~ended or left circularly as specifiasd by the
d-field. 1If the most significant bit of the d field is zero,
then the content of the A register shifts circularly to the
left. IF the most significant bit in the d field is one, the
content of A shifts open~ended to the right.

8+5.2.1 SHN
a) Shift {A) by + (left) or - {right) d bits.

SHN = {(Format = fd Op Code = 0010d Size = 16 bit)

pmmm————— fom—————— o e e e e e -
}label Joperation |argument
frmmm—————— o e e ——————————— -
| I SHN Id
If there's a d-field of 0 or 77{8), then no shifting takes
place.

8.5.3 LOAD AND STORE INSTRUCTIONS

This sub=-group of instructions is responsible for
transferring 6-bit, 12-bit, 16-bit or 1B8-bit values ejither to
or from the I0U A register or memory. When a LOAD instruction
is executed any remaining upper bits of the A register are
cleared, except for the LCN instruction where the remaining
bits are set to one., When a STORE instruction is executed,
the contents of the A register are not altered.



8-8
CDC - ADVANCED SYSTEMS DEVELDPMENT

B6/710/17
CYBER 180 IT1 Assembler ERS Rev: F

D A N D A WD S A AU M WD N AP U D P W N A Ny WD A NI TG D W S W A B AW VD NN U WD I T T W A U W B S A D D T AU W >

8.0 CYBER 180 ASSEMBLER SYMBOLIC I0OU INSTRUCTIONS
8.5+3.1 LDNy, LCN, LDC ~ LOAD bits by NO ADDRESS and CONSTANT

A W T " A T A" A N A T DD A D BT AU AU T AT D TP D W YD D W D A WD T AT DD DA AP T WD U U N N Y A . W~

8.5+3+1 LDNs LCN, LDC = LOAD bits by ND ADDRESS and CONSTANTY

a) Load bits 58-63 of the A register from d-field; bits 46~57
of A are cleared.

LON -~ {(Format = fd 0Op Code = 0014d Size = 16 bit)

fmm———————— - pommm————————— —— -
}1abel foperation !arqument

form—————— A e e e e e
| JLDN id

b) Load bits 58-63 of the A register with the bit by bit
complement of the d-field; bits 46-57 are set to one.

LCN - (Format = fd Op Code = 0015d Size = 16 bit)

o o - - - - - 2 -~ -~
!!abe! foperation largument

o —————— e L L o —————————— e
| JLCN id

c) Load A register with 18-bit operand from d-field and
m-field.

LDC - {Format = fdm Op Code = 0020dm Size = 32 bit)

prm———————— . ey
}1abe} loperation |argument

S o - - - " - -
| iLnc | dm

NOTE: There are no corresponding STORE instructions using
the NO-ADDRESS or CONSTANT modes.

Be5+3+2 LDD. LDDLs SID. STDL = LOADZSTORE bits by DIRECT mode

a) Load A register with a 12-bit quantity (short form) from
(d).

LDD - (Format = fd Op Code = 0030d Size = 16 bit)

P - - - - - *a. ......... A -~
{1abe ioperatnon largument
e - - G o - - -—— - -



: 8-9
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 11 Assembler ERS Revs: F

N AT W AT T FG D D AU D WA W T T A N T T YD AN H A T A A AUD A W AD W WD T D A T Tl T D D U AW TG W U AU AT ST W]

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.3.2 LDD, LDDL, S5TD, STDL - LOAD/STORE bits by DIRELT mode

A O A D D AN S D A A NS AT DS W D Ay D W T WD DA NI AP T D D W WD AT WD A AU A A DT U D D A W G A T AT T T AW T TN W WD T Y, W

b) Load A register with 16-bit quantity {(long form) from (d).
LDODL - {(Format = fd Op Code = 1030d Size = 16 bit)

pommm————— fom——————— o ————— e
flabel foperation iarqument

o ————— o —————— pommm— e e e m—— e ———————
I jLonL id

c) Store the 12-bit quantity {(short form) from A register into
(d).

STD = {Format = fd Op Code = 0034d Size = 156 bit)

pom e R e pom e e ——————— --
|label loperation largument

fommm————— pmm——————— e e e
1 }s5TD id

d) Store the 16-bit quantity {long form) from A register into
).

STDL = (Format = fd Op Code = 1034d Size = 16 bit)

o - —— B B o -
1 1abel loperation largument

g - o v s o T - -
| |STDL ld

8.5.3.,3 LDI. LDIL, STI, STIL = LOAD/SIORE bits by INDIRECT mode

a) Load A register with 12-bit quantity {(short form) from
(td)).

LDI - {(Format = fd Op Code = 0040d Size = 16 bit)

b ————— frmm—————— frmmr e e, —————————————
|label loperation ]argument
pommm—————— frm—————— femmme e —— e ————————



B-10
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6710717
CYBER 180 I1 Assembler ERS Rev: F

- T R A DA TP A T D AD A NTD W W A A U S A D A A T D A A VO A N D WD, T T T TN T S A N TN, T

B.0 CYBER 180 ASSEMBLER SYMBOLIC 10U INSTRUCTIONS
8+.5.3.,3 LDI, LDIL, STI, STIL - LOAD/STORE bits by INDIRECT mode

A - W A U A W WD W M R W AT A A A D Y UM WD A O N YD D D D A D T T WD DU WD T W W T Al T A W Bl A T

b) Load A register with 16-bit quantity {long form) from
{{d})).

LDIL - {Format = fd Op Code = 1040d Size = 16 bit)

fmm——————— prmm—————— o e o e e
{label ioperation iargument

o e e e o o e . s T -~ -
| §LDIL !d

c) Store 12-bit qguantity {(short form) from A register into
{(td).

STI - (Format = fd Op Code = 0044d Size = 16 bit)

NI B S —— F WR— e e T ——
!!ab#‘ Joperation iargument

N — - B e e
| jST1 1d

d) Store 16-bit quantity {long form) from A register into
({d)).

STIL - (Format = fd Op Code = 1044d Size = 16 bit)

e R e o e o e -
| 1abe} 1operatxon {argument

prm—————— ——fmmmm————— e
| ISTIL id

84534 LDMa LDML. STM, STML = LOADZSTORE bits by MEMORY mode

The address for the operand in these instructions is formed
in the following manner: if the d-field is zero, the m-field
contains the operand; if the d-field is not zero, the m-field
is added to the least significant 12 bits of (d) in ones
complement mode.



8-11
CDC ~ ADVANCED SYSTEMS DEVELOPMENT

: 4 B6/710/717
CYBER 180 II1 Assembler ERS Rev: F

A N " YT W W T Y - - - N T N N T - T . >

8,0 CYBER 180 ASSEMBLER SYMBOLIC IDU INSTRUCTIONS
8+5.3.4 LﬁMa LQML, STM, SYML - LBAD!STDRE bits by MEMDRY moda

a) Load 12-bit operand {short form) from memory into A
register.,

LDM - (Format = fdm Op Code = 0050dm Size = 32 bit)

o - - - — o - - -

{1abel loperation Jargument

i 1LDM Im,d

b) Load 16~bit operand {(long form) from memory into
A-register.,

LDML - {Format = fdm Op Code = 1050dm Size = 32 bit)

e o s . o i v s o e e . s 0 S S S i " =

i!abe! loparat:on } ar gument
Fomo o ———— S Fmmmm———————— R — -———
§ JLOML fm,d

c) Store 12-bit quantity (short form) from A register into
memory.

5TM - {Format = fdm Op Code = 0054dm Size = 32 bit)

J [ R ——— I TSRy SRR — PR g R —
}1abel !oparatxon !argumpnt

e m—————— fmmmm—m————f—— ———————— e 1 e e -
H fsTm Im.d

d) Store 16-bit quantity (long form) from A register into
memorys

STML - (Format = fdm Op Code = 1054dm Size = 32 bit)

A - - - - - - - -
11abel loperatnon | argument

o ———— o ————————— o e o e e e e -
] JSTML Imsd

Be5e4 ARITHMETIC INSTRUCTIONS

These instructions perform integer arithmetic using the A
register as one operand and the instruction specifying the
other operand. The result is then replaced in the A register.,



8-12
CDC - ADVANCED SYSTEMS DEVELOPMENT

' 86/10/17
CYBER 180 II Assembler ERS Rev: F

T T . N " T T A" WD WD T BT WO W W W A W D WD WD VDA T AT D T T W T Y W D D U A D T

8.0 CYBER 180 ASSEMBLER SYMBOLIC I0DU INSTRUCTIONS
8.5.441 ADN, ADC, SBN -~ ADD/SUBTRACT by NO ADDRESS and CONSTANT

S - W W D W A T T T U AW T AT D AT WO W U A W D A U O A D W T A VI AN WD A Y U W A VD T T U S G,

8.5.4.1 ADN,_ADCs_ SBN_=_ADD/SUBTRACT by NO_ADDRESS_ and_CONSIANT

a) Add a 6-bit quantity from the d-field to the contents of
the A-register. The result remains in the A register.

ADN = (Format = fd Op Code = 0016d Size = 16 bit)

E i R A - . - v o - - N - 2 . -
| Jabe} loperation largument

S — N - - - -
1 | ADN id

b) Add an 18-bit quantity from the 4 and m fields to the
contents of the A register. The result remains in the A

register., The d-field contains the 6 highest order bits
and the m-field contains the 12 lowest order bits,

ADC - (Format = fdm Op Code = 0021dm Size = 32 bit)

- - P S ——— Ay PR — P ——
iiabpl loperation |argument

.......... - - T - 4 22 = o o o
! jaDncC fdm

¢) Subtract a 6-bit quantity from the d-field from the

contents of the A register. The result remains in the A
register.

SBN - {Format.= fd Op Code = 0017d Size = 16 bit)

AU ——-— SRR — P —
| 1abe !operat:on jargument

[ S [ S G o e o e - -
| ] SBN id

8.5.4.2 ADDs_ADDLs SBDs SBDL _=_ADDZSUBYRACT bits by DIRECT mode

a) Add a 12-bit quantity [(short form) from {d) to the contents
of the A reqgister., The result remains in the A register.

ADD - (Format = fd Op Code = 0031d Size = 16 bit)

v o - - A —— -
{label foperation |argument
A — o e > o o -



8-13
(DC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 II Assembler ERS Rev: F

- T - W W W A — W . T W~ " - - . N~ U -~

8.0 CYBER 180 ASSEMBLER SYMBOLIC IDU INSTRUCTIONS
B.5.4.2 ADD, ADDL, SBD, SBDL - ADD/SUBTRACYT bits by DIRECT mode

T T~ W W YW WA S AT T WD WD A A D T A VA D D A DA WD WA N JD AU T W D NN A DD Y Y W A W W "

b) Add a 16-bit quantity (long form) from {d) to the contents
of the A register., The result remains in the A register.

ADDL - {Format = fd Op Code = 1031d Size = 16 bit)

S - e e ———
| label loperation largument

pomm————— e — Fom i e e e
| JADDL id

c) Subtract a 12-bit guantity (short form) found in (d) from
the contents of the A register, The result remains in the
A register.,

SBD - {Format = fd Op Code = 0032d Size = 16 bit)

Frm—————— T —— e e e e e
{label 1operatnon !arqument

bom e ———— pom———————— fom e —————— e 1 o
| 1s8D id

d) Subtract a 16-bit quantity (long form) found in (d) from
the contents of the A register., The result remains in the
A register,

SADL -~ {Format = fd Op Code = 1032d Size = 16 bir)

pommem e — pmm—— - — ——————————
{1abel {operation !arqument

G - - - - - — e - -~ - -~ -~
| js8nL id

8.5.4.3 ADI. ADIL. SBI. SBIL = ADD/ZSUBIRALY bits by INDIRECY

a) Add a 12-bit quantity (short form) from storage to the
contents of the A register, The address for the operand is
in (d). The result remains in the A register.

ADI - {(Format = fd Op Code = 0041d Size = 16 bit)

e o - - -

{label loperation !argument

o - - W g - s o -

1 |ADI id



8-14
CDC -~ ADVANCED SYSTEMS DEVELDPMENT
BO/I0/17
LYRER 18D 11 Assemb}er ERS Revs F
8.0 CYBER 180 ASSE&&LFR SYMBOLIC 10U INSTRUCTIONS
BeS5,.4.3 AQ!, ABIL, Spi, SRIL ~- AﬁﬂfSUﬁIRACT bits by INDIRECT

b) Add a 16~bit quantity {(long form) from storage to the
contents of the A reqgister. The address for the operand is
in {(d)s The result remains in the A register.

ADIL - {(Format = fd 0Op Code = 1041d Size = 16 bit)

P - -—— - - e - - - - . - - -
{1label joperation largument

G - - . - - - A - - -
} JADIL {d

c) Subtract a 12-bit quantity (short form) found in storage
from the contents of the A register. The address for the
operand is found in (d). The result remains in the A
register,

SB8I = {Format = fd Op Code = 0042d Size = 16 bit)

fmm—————— femm——————— Fm ——————
Jlabel Soperatnon { argument

o N o o o e e o -
| jss1 Id

d) Subtract a 16~bit quantity {long form) found in storage
from the contents of the A register, The address for the
operand is found in (d). The result remains in the A
register.,

SBIL - (Format = fd Op Code = 1042d Size = 16 bit)

G - - - B - - —— o - - - - -
[1abel !operatlon { ar gument
Foo - n - - - - o1 - - - -



CDC - ADVANCED SYSTEMS DEVELOPMENT

8-15

86710717
CYBER 180 I1 Assembler ERS Rev: F

A T W > D W T T A T T T ST - AT ] V] DT S DD T A WD ST . T B S T, D N WD D Y D T

Ba0 CYBER 180 ASSEMBLER SYMBOULIC IDU INSTRUCTIONS
8. 5 4, 4 ABMQ ADML, SBH: SBML - #BDISU&TRkﬁT bits by MEMORY mod“

B.5.4.4 ADMs ADML, S8M, S8ML_=_ ADD/SUBIRALT hits by MEMORY mode

a) Add a 12-bit quantity (short form) from storage to the

contents of the A regqister., The address for the operand is
formed by adding 12 bits of the m~-field to 12 bits from

{d), The result remains in the A register,

ADM -~ {Format = fdm Op Code = 0051dm Size = 32 bit)

o o ERURE U —— o o s G - o - - " " o
|1abel ioperat:oﬂ 1arqument

I N Vg —— A - -~ - -
] [ADM lm,d

If d = 0, the storage address is the m—-field.,

b) Add a 16-bit quantity (long form) from storage to the

contents of the A register. The address for the operand is
formed by adding 12 bits of the m-field to 12 bits from

{d). The result remains in the A register.

ADML -~ {Format = fdm Op Code = 1051dm Size = 32 bit)

frm e ——— tomm——————— o ———————— e
| 1abel joperation largument

fomm——————— prmm—————— cmpemm——— e —————————————
I jAaDML im,d

c) Subtract a 12-bit guantity {short form) found in storage

from the contents of the A register, The address of the
operand is formed by adding 12-bits of the m-field to

12-bits from (d). The result remains in the A register.
SBM - (Format = fdm Op Code = 0052dm Size = 32 bit)

2 o 7 - 2 7 - -

| label loperation largument



B=16
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 182D I1 Assembler ERS ' Rev: F

T S N A A - T T T AT DD DA Tl WD N TP D D T DD SUAD A D WD D NI D D T D N A WD T WD W T T T DT T U W TV T A W

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
B.5.4.4 ADM, ADML, S8M, SBML - ADD/SUBTRACT bits by MEMDRY mode

N N T W WD A A A N AT A AN A N WD U T T D T T S T T o D T D N S A W VD G W O W T A D T A WD S WD T AT T W, " " -

d) Subtract a 16~bit quantity {long form) found in storage
from the contents of the A register. The address of the
operand is formed by adding 12-bits of the m-field to
12-bits from {d). The result remains in the A register.

SBML - {(Format = fdm Op Code = 1052dm Size = 32 bit)

$mmm——————— fmm——— e e e e
!!abe! foperation largument
S fm——————— fom e ———————————————

Ba5.5 LOGICAL INSTRUCTIONS

These instructions perform operations using the A register
for one operand and the other operand specified by the
instruction. The result remains in the A register.

Bs5e5.1 LMN, 1 MCo LPNa LPC, SCN = NO_ARDRESS and CONSTANI modes

a) Performs the logical difference (EXCLUSIVE 0OR) function
between the d-field and the least significant 6 bits
(58-63) of the A register, The rest of the A register is
unchanged,

LMN - (Format = fd Op Code = 0011d Size = 16 bit)

e o ————— o — T
l1abel loperation !argument

foeem o ——— pem——————— e
} 1LMN Id

b) Performs the logical difference {(EXCLUSIVE OR) function on
an 18-bit operand and the A register. The 13-bit operand
is formed with the d-field being the highest order 6 bits
and the m-field being the lowest order 12 bits.

LMC - (Format = fdm Op Code = 0023dm Size = 32 bit)

A - A - - - o v o - - D -
{ 1abel loperation largument
R e o 1 i e o T T S ——



8-17
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6710717
CYBER 18D 11 Assembler ERS Rev? F

W W A W W S A WD DDA WO A T DD DN DT T A D D T WU D D WD T U T T - T - Y -~

8,0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
8.5.5.1 LMN, LWC, LPN, LPi. SCN - ND AQQRESS and CONSTANT modes

c) Performs the logical product {LOGICAL AND) function between
the d-field and the least significant 6 bits {58-53) of the
A register, The rest of the A register is cleared.

LPN - (Format = fd Op Code = 00124 Size = 16 bit)

o ————— -~ ———— T
l1abel joperation !arqument

e —— frm—m—————— o —————— = e
1 ILPN Id

d) Performs the logical product (LOGICAL AND) function between
an 18~bit operand and the A register., The 18~bit operand
is formed with the d-field being the highest order 6 bits
and the m-field being is the lowest order 12 bits.

LPC - {Format = fdm Op Code = 0022dm Size = 32 bit)

i

' -’»- ..... ---—*-—a-— ------ -}:‘ ------------------- - -
|label loperatlan !arqument
A - - - —- o o - - Y > - -—- A A A A A A A -
| jLPC jdm

e) Performs a selective clear function on the
least siginificant 6 bits (58-63) of the A register where
corresponding bits of the d-field are set to one (ie.
clears bits 58-63 of A if the corresponding bit in the
d-field is set to one). The rest of the A reqgister is
unchanged,

SCN = {(Format = fd Op Code = 0013d Size = 16 bit)



8-18
CDC - ADVANCED SYSTEMS DEVELDPMENT

86710717
CYBER 180 II Assembler ERS Rewv: F

T T .- W A - A W D N AP U T A AN T D A D T W D W WD AP D W D WD D D DDA D AN A D AP M VW -

B.0 CYRER 180 ASSEMBLER SYMBOLIC IQU INSTRUCTIDNS
B.5.5.,2 LMD, LMDL, LPDL ~ Instructions using DIRECT mode

T A Y AU U T T N D W S A T W D WD ST T DN W WD N D W T W D W D WD DAY T M A WD DN DA D W AU TS G NI W D A A D WA A

8,5.5.2 LMD, LMDLs LPDL_ = Instructions using DIRECY mode

a) Performs the logical difference (EXCLUSIVE OR) with 12-bit
quantity {short form) from {(d) and the A register., The
highest order 6 bits of the A register are unchanged.

LMD - (Format = fd Op Code = 0033d Size = 16 bit)

B - - o s o - - - - WA - -
| 1abel loperation largument

G- - o - A -
1 LMD id

b) Performs the !6gica! difference {(EXCLUSIVE DOR) with 16-bit
quantity {long form) from {(d) and the A register. B8its
46=47 of the A register are unchanged.

{tMDL - (Format = fd 0Op Code = 1033d Size = 16 bit)

o - . - G 1~ -
}label loperation |argqument

e - - A -———— ‘.---—* .........................
1 jLMDL id

c) Performs the logical product {LOGICAL AND) function with
16=bit quantity {long form) from (d) and the A register.
Bits 46-47 of the A register are cleared by this operation,

LPDL = (Format = fd Op Code = 1022d Size = 16 bit)

e s o o e o g N SR U —
1labe! Ioperat:on | arqument
S AR R S S —— o - -



8-19
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/10/17
CYBFER 180 11 Assembler ERS Rew: F

N AR VA - . W N W U N VD TN U W N D AT W WD 0D NS P DD S VWD W WD A A T D A W AN D D N B D A

B.O CYBER 180 ASSEMBLER SYMBOLIC I0U INSTRUCTIONS
Bsa5.5+3 LMI, LMIL, LPIL - Instructions using INDIRECT mode

- . NI Y T WO W A A D N W WD AR D AT WU N WD U W W S W W YD T N WD W WU W AU WY AU VD N AU N MDA D U A A T A N D -

B.5.5.3 LMI, LMIL, LPIL =~ Instructions using INDIRECT mode

a) Performs the logical difference {EXCLUSIVE DR) function on
12=-bit quantity {(short form) from storage and the A
register., The address for the operand is in {d). The rest
of the A register is unchanged.

LMI - {(Format = fd Op Code = 0D43d Size = 16 bit)

e o o o o o e e o 2 T -~
{1abel} iaperataon iarqumant

Fom e ————— pmmm——— e -
I LMl id

b) Performs the logical difference (EXCLUSIVE DOR) function on
16=-bit quantity (long form) from storage and the A
register, The address of the operand is in {(d). Bits
46=47 of the A register are unchanged.

LMIL - {(Format = fd Dp Code = 1043d Size = 16 bit)

e o s - - -~
J1abel imperat:on | argument

pmmmm—————— Fmmm—————— e e T
i ILMIL Id

c) Performs the logical product (LOGICAL AND) function on a
16~bit quantity {lonag form) from storage and the A
register. The address of the operand is in (d4), Bits
46=-47 of the A register are cleared by this operation.

LPIL - (Format = fd Dp Code = 1023d Size = 16 bit)

o - [ WP —— T AP Y - - -
] 1abel loperation !arqument
I SR R - - S Vg

1 iLPIL Id



8~-20
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 I1 Assembler ERS Rev: F

- W U WV W WD W W DV U VW WA JD D U AU NS N D M W A N D A T T W W A NI W A WD WD A W W N ST D . W -

B.0O CYBER 180 ASSEMBLER SYMBOLIC IDU INSTRUCTIONS
Ba525.4 LMM, LMML, LPML - Instructions using MEMDRY mode

A T N " D W T D NI AU A A D T A ] W N W S VU W WD DT W I A D T, O WD DA T WD WA B A A AT T AT VDA SO DA,

B8.5.5.4 LMM, LMML, LPML = Instructions _using MEMORY mode

a) Performs the logical difference (EXCLUSIVE DR) function on
a 12-bit quantity {(short form) from storage and the A
register. The address for the operand is formed by adding
the m~field to 12 bits of {d)., The rest of the A register
remains unchanged.,

LMM - (Format = fdm Op Code = 0053dm Size = 32 bit)

[ TR — e - - A ——— -
i!abP] ioperation largument '
e ————— pormmm————— mm e — e ————————————
| LM Im,d

If d = 0, then the m-field is the address for the operand.

b) Performs the logical difference {EXCLUSIVE OR) function on
a 16=bit quantity (long form) from storage and the A
register, The address for the operand is formed by adding
the m~-field to 12 bits of (d). Bits 46-47 of the A
register remain unchanged.

LMML - (Format = fdm DOp Code = 1053dm Size = 32 bit)

e - I PR B - - -
| 1abel loperation largument
fmmmm————— pm———————— prmmmm— e —————————

If d = 0, then the m~field is the address for the operand.



8-21
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYRER 180 11 Assembler ERS Rev: F

T o A A - A . W A M A D T A~ D W]’ AT WD D Y W " -

2,0 CYBER 180 ASSEMBLER SYMBOLIL I0U INSTRUCTIONS
BaBaBSaeh LMM, LMML, LPML - Instructions using MEMDRY mode

A A TS U N AU WS D W S D JD A WD TR D WD N DD T AU D Tl A A W WD U WD T W A D A VD AID D A VD M U D W T

c) Performs the logical product {LOGICAL AND) function on a
16=-bit quantity {long form) from storage and the A
register. The address for the operand is formed by adding
the m~field to 12 bits of the {(d). Bits 46-47 of the A
register are cleared by this operation.

LPML - {Format = fdm Op Code = 1024dm Size = 32 bit)

fmmm————— T —— B N ——— e —————
| label ioperatxon {argument

. o - A v~ - T V- - N -~ -~
! jLpML {m,d

If d = 0, then the m-field is the address for the operand.

» S B OR »

Bs5.6 REPLACE INSTRUCTIDNS

The replace instructions are similar ¢to the arithmetic
instructions in that they both wuse the A register as one
operand and the instruction specifies the other. The
difference is that both the A register and the contents of the
location of the other operand are replaced with the result,

If the instruction is the short {ie. 12~bit operand) then
the value returned to storage is the 12 lowest ordered bits of
the A register with 4 higher ordered zero bits added. If the
instruction is the long form {(ie. 16~bit operand) then the 16
lowest ordered bits of the A register are returned to storage.
Therefore, the A register and the value replaced in storage
are not necessarily equal.

A1l arithmetic is done in 18-bit ones complement mode.
8.5.6.1 RAD. RADL = REPLACE _ADD using DIRECY mode

a) Add a 12-bit quantxty {short form) from (d) to the A
register.

RAD = {Format = fd UOp Code = 0035d Size = 16 bit)

A - - - - - - - - - L

]label joperation Jargument



8-22
CDC- - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYRER 1R0 11 Assembler ERS Ravs F

- N - A A 2 - N D A U A D W AW WD A Ny W AT S T A MDA D S N A 1D AD B N D DT -

8,0 CYBER 180 ASSEMBLER SYMBOLIC I0U INSTRUCTIONS
Ba5.6.1 RAD, RADL - REPLACE ADD using DIRECT mode

T D DA N WD W A P N D S VR W T W T D D T AT T W - T - A - W N W D AN W - -

b} Add a 16-bit quantity {long form) from (d) to the A
register,

RADL - (Format = fd 0Op Code = 1035d Size = 16 bit)

R e - - PR S S - - " -
{label joperation largum@nt

fommm—————— fomm——— A o e e
! {RADL id

Be5.6.2 A(Da._AODL. 50D, S0DL - REPLACE ADD/SUBTRACY ONE _using DIRECY

a) Enter 1 into the A register then add the 12-bit quantity
{short form) from (d) to the A register.

ADD - (Format = fd Op Code = 0036d Size = 16 bit)

o e e e B S A o o e S i
}1abel joperation |argument

T —— prmm——— N
H 1A0D id

b} Enter 1 into the A register then add the 16~bit quantity
{long form) from (d) to the A register.

ADDL - (Format = fd Op Code = 1036d Size = 16 bit)

prmmme————— pm——— ————— Fomm
| 1abel Joperation }argument

omem———— frm——————— fomm—em— e, —————————————
H }ADDL id

c) Enter negative 1 into the A register the add the 12 bit
quantity

{short form) from (d) to the A register.

SOD - {Format = fd Op Code = 0D37d Size = 16 bit)

G o - A - — - - - - - -
|1abel loperation |argument



8=-23
CDC - ADVANCED SYSTEMS DEVELOPMENT

B&/10/717
CYBER 180 11 Assembler ERS Rev: F

- - V. A W AU WU A L. I YA T TG T T T WD A U WD D Y " T W T T T D — T

8,0 CYBER 180 ASSEMBLER SYMBOLIC IDU INSTRUCTIONS
8+.5.6,2 ADD, ADDL, SOD, SODL - REPLACE ADD/SUBTRACT ONE using DIRECT

A A N D N D A W S D D N MU U D T U NS WD TP A TR T W NG W AW G WA A D N W D D D T VD S A AN DA WD WD, AN Y-

d) Decrease the content of {d) by 1 then use 16~bit quantity
{long form) from (d) to add to the A register.

SODBL - (Format = fd Op Code = 1037d Size = 15 bit)

A e e - A - - - - - - - -~ - - -
] 1abel !operatlon !arqum»nt

+ .............................................
] ¥§99L !d

B.5.6.3 RAI2 RAIL = REPLACE ADD using INDIRECT mode

a) Add a 12-bit quantity {(short form) from storage to the A
register. The address for the operand is found in {(d).

RAI - (Format = fd Op Code = 0045d Size = 16 bit)

A —— I AP - o 700 o i > 2 2 2 > o 2 S
| 1abel !operatacn !argument

pmmm————— frmmmm————— From o e i e e e e
| JRAT id

b} Add a 16~bit quantity {(long form) from storage to the A
register. This result remains in A and the 16 lowest
ordered bits are returned to storage Therefore, the A
reqister and the value returned to storage are not
necessarily equal, The address for the operand is found in
(d).

RAIL - (Format = fd Op Code = 1045d Size = 16 bit)

- - e - b o - - -
|1abel Joperation |argument

- o I S — G -
| JRATIL jd

8.5.6.4 AQL. ADIL. SOI. SOIL - REPLACE ADD/ZSUBIRACT using INDIRECT

a) Enter 1 into the A register then add the 12-bit quantity
{short form)

of the operand in storage, The address for the operand is
found in (d).

AQI - (Format = fd Op Code = 0046d Size = 16 bit)

- o g o 2 - -

|1abel loperatxon {argument
o o e - e e e e e 20 o e 2t i e o 7 S 0 -



B=24
CDC - ADVANCED SYSTEMS DEVELOPMENT

BRH/710717
CYBER 180 I Assembler ERS Rev: F

W - DT N T A YD D AUD W W WD DSBS TAD TDD SUD W N  UD  NG AD D WD D T WD NI W N A N TG A N WIS WD D T W S WD Y T NG D WD S T

8.0 CYBER 1B0 ASSEMBLER SYMBOLIC IDU INSTRUCTIONS
B.5.6.4 ADI, ADIL, SOOI, SOIL - REPLACE ADD/SUBTRACT using INDIRECT

U - " - S . W W N Y T W " W SO VA A T TS D D T . D . ST D T D D WD VD N T WD Ay U Tl A D Wl D N NI . -

b) Enter 1 into the A register then add the 16-bit quantity
{long form)
of the operand in storage. The address for the operand is
found in {(d).

ADIL - {Format = fd Op Code = 1046d Size = 16 bit)

e - . - - - - - - -
{1abel joperation |argument

o ———— e ————— o ————————— e e e
H JADIL Id

¢) E£nter negative 1 into the A register then add the 12-bit
quantity
{short form) of the operand in storage. The address for
the operand is found in {d).

SOI - {Format = fd Op Code = 0047d Size = 16 bit)

prm——————— frm——————— fommmm e — e ——————————————
flabel loperation |argument

b ———— —fpmm——— e - —————————————————— -
| |SD1 1d

d) Enter negative 1 into the A register then add the 16-bit
quantity

of the operand in storage. The address for the operand is
found in (d).

SOIL - (Format = fd Op Code = 1047d Size = 16 bit)

o - T - -
11label Inperatxon largument
VP N — B - - - -



8=25
COC -~ ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 I Assembler E£ERS Rev: F

- N . W . N T T T . N W~~~

8.0 CYBER 180 ASSEMBLER SYMBOLIC IDU INSTRUCTIONS
B.5.6.5 RAM, RAML - REPLACE ADD using MEMORY made

8.5.6.5 RAM, RAML - REPLACE ADD using MEMORY mode

a) Add a 12-bit quantity {(short form) from storage to the A
register. The address for the operand is found by adding
the m=-field to the content of (d).

RAM - {Format = fdm Op Code = 0055dm Size = 32 bit)

P o v A 2 S - - -
ilabel ioyeration } ar gument

T . pomm——————— o e e e
i !RAM im,d

If d = 0, then the operand address is the m~-field.

b) Add a 16-bit quantity (long form) from storage to the A
register. The address for the operand is found by adding
the m-field to the content of (d).

RAML - (Format = fdm Op Code = 1055dm Size = 32 bit)

o - ¥ N —— e ———————_—— [ ——
|1abel loperation largument

tmmmm—————— trmmm————— $mm e e o e e e
1 IRAML Im,d

If d = 0, then the operand address is the m-field.

BaB5+6.6 AlMs _AOML, SOM, SOML - REPLACE ADD/SUBTRACT ONE_using MEMORY mode

a) Enter 1 into the A register the add the 12-bit quantity
(short form)

of the operand from storage. The address for the operand
is found by adding the m=field to the content of {d).

AOM - (Format = fdm Op Code = 0056dm Size = 32 bit)

o e o F R - - e -
| 1abel |operation largument

e g - e - - -
’ 'ADM 'm;d



B8=-26
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 II Assembler ERS Rev: F

T T - Wy T - . A - W T " -~

8,0 CYBER 180 ASSEMBLER SYMBOLIC I0U INSTRUCTIONS
8,5.6.,56 AOM, AOML, SOM, SOML - REPLACE ADD/SUBTRACT ONE using MEMDRY mode

A - W A M Y WD A U D D A D D N A 1O A U A M D A WD T D A O A A A U A A VD T ADD U D s D AU AN D WD WD WD A N WD

b) Enter 1 into the A register then add the 16-bit quantity
{long form)

of the operand from storage. The address for the operand
is found by adding the m-field to the contents of (d).

AOML - {Format = fdm Op Code = 1056dm Size = 32 bit)

o v 2o 2 o o v 2 o o A o -
] 1abel foperation iargument

A . s >~ e - - —_— Y - - - -
1 | AGML Im,d

If d = 0, then the operand address is the m-field.

c) Enter negative 1 into the A register then add the 12-bit
quantity
{short form) of the operand form storage. The address for
the operand is found by adding the m~field to the content
of (d).

SOM = (Format = fdm Op Code = D057dm Size = 32 bit)

[ - e e i e o e o e T

}label ioperation !argument
R —— o o - —
i iSOM ’M9d

If 4d = 0, then the operand address is the m-field.

4) Enter negative 1 into the A register then add the 16-bit
quantity
{long form) of the operand form storage. The address for
the operand 1is found by adding the m~field to the content
of (d).

SOML ~ (Format = fdm Op Code = 1057dm Size = 32 bit)

B i e e e e e e e e
| 1abel joperation |argument

o m—————— o ———— fo e e e e e
| jsoML imyd



8=-27
CDC - ADVANCED SYSTEMS DEVELOPMENT
B6/10717
CYBER 180 II Assembler ERS Rev: F
B.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
B.5.7 CENTRAL MEMORY ACCESS INSTRUCTIONS

A A D D MDA WD A W W B D A D A N D WD T A AU ATV AU W D N A N, D T A AR D D NV O WA A T U T W D D Wy T WA AT T -

8.5.7 CENTRAL MEMDRY ACCESS INSTRUCTIONS

The central memeory access instructions provide a means for
reading and writing central memory to and from I0U memory.
The IDU has read access to all of central memory but write and
exchange accesses are monitored by the 05 Bounds Register.
Central memory addressing uses real addresses rather than
virtual addresses and these are formed from the contents of
the A-register and the R-register,

The two types of addressing for these instructions are
absolute and relocation. The type of addressing desired is
determined by bit 46 of the A register. In all the central
memory acess instructions {R) + {(A) will mean the following:

If bit 46 of the A register is zero, the absolute central
memory address is specified by bits 47-63 of the A register.

If bit 46 of the A register is one, meaning relocation is
desired, 6 zeros are concatenated to the rightmost end of
the contents of the R register and this is added to bits
47-63 of (A) forming an absolute central memory address. '

The 0S5 Bounds Register divides central memory into two
reqgions for dual-state. For write and exchange accesses, 3
bit in the 0S Bounds Register for each PP indicates which
region the PP has access to?

A set bit indicates the lower region:
PP LM address < 05 boundary.

A cleared bit indicates the upper region:
1S boundary < PP (M address.,

Address verification for CM accesses occurs on the
following I0U instructions:

0026 EXCHANGE JUMP
0062 CENTRAL WRITE
1062 CENTRAL WRITE
0063 CENTRAL WRITE
1063 CENTRAL WRITE
1000 CENTRAL READ AND SET LDCK

1001 CENTRAL READ AND CLEAR LOCK



8-28
CDC ~ ADVANCED SYSTEMS DEVELOPMENT
B5/710/17
CYRER 180 II Assembler ERS Rev: F

A Y A T U BRI W A T G A D AT D DD D TYD M A WD A D WU AUE W WD WD W T A D AT A Ay A D T A W D D DS D WD T A"

B.0 CYBER 180 ASSEMBLER SYMBOLIC IDU INSTRUCTIONS
B.5.7.1 LRD, SRD, -~ LDAD/STORE R Register in I0U Memory

- N T N A AN Y A U S DD ST D TS D T D W A A T VOD D O U WD D AU W A U . VU WD T T D W -

8.5.7.1 LRD. SRD. - LDAD/ZSIORE R Register_in_IOU Memory

a) Loads 22~-bit {R) register from (d4) and {d)+1, Bits 456~57
of R are loaded from bits 52-63 of {(d)+1 and bits 52-63 of
R are loaded from bits 54-63 of {(d4)}).

LRD - {Format = fd Op Code = 0024d Size = 16 bit)

P - o o -— . 2] -
{1abel lnperatlon Sargument

G- - - - - A -~ - -
| JLRD Id

if d = 0, then the instruction is a pass.

b) Stores the content of the 22-bit R register into (d) and
{(d)+1, Bits 46-57 of the R register are stored Iin {d)+1
and bits 36-45 of R are stored in (d). The remaining bits
in {d) and {(d)}+]1 are cleared.

SRD - {(Format = fd Op Code = 0025d Size = 16 bit)

pommm o nr e fr e —————— R —— ———————————— -
flabe? loperation !argument

fremmcn——— S — S P
| | SRO id

If d = 0, then the instruction is 3 pass.



B8=29
{DC - ADVANCED SYSTEMS DEVELOPMENT
86/710/17
CYBER 180 {{ Assembter FRS Rev. F
8.0 CYRER 180 ASSEMBLER SYMBOLIC 10U IMSTRUC?IQNS
BsBe7+2 CRDy CRDL, CWD, CHWDL = ROD/WR CPU Memory, DIRECT mode

N S T AW AT N WD S NG N DA D A YD W U Y A T A D YO S A AT O DD U T D TR NN D D W N N U W, W N A D WD D AU U T W W " -

BeH52Ts2 ESD;-QEﬁLg.ﬁﬂﬁx,ﬁﬁﬂL-:-Rﬂlﬂﬁ-ﬁﬁﬁ,ﬁamﬂtx1.&12&&1-@9&&
When reading or writing a CM memory word to or from I0U
memory, two different packing/unpacking schemes are used

depending on if the instruction specifies the long {64 bit) or
short {60 bit) form.

PACKING/UNPACKING for short instructions {50 bit value)

Central Memory Hord

1 2 4 5 6

0 4 6 8 0 2 3
A SN —— - ISR S —— E - 2o - +
1(s) | (123 1 bilZ) I cf12) | d(12) 1 p(123 |
B R S 4 - o I S - T —— Jr e o e +

PP MEMORY WDRDS

4 5 6

8 2 3
- A e s +

d | 0(4) } a(12) |
- Fom +

d+1 | 0(4) 1| b(12) |
g - A o e s i +

d+2 | o(4) 1} c(12) |
fm——— o e e +

d+3 | o{4) |} d{12) |
Fom———— Fo e +

d+4 | 0(4) |} e{12) {
T o o o +



8-30
CDC -~ ADVANCED SYSTEMS DEVELOPMENT
, Bo/710/17
CYBER 18D 1] Assembler ERS Rev: F

-~ - A - W WA WA DT A, A A W T WD WA T N T D T A A D A

8.0 CYBER 180 ASSEMBLER SYMBOLIC IDU INSTRUCTIONS
B.5.7.2 CRD, CRDL, CWD, CHWDL - RD/WR CPU Memory, DIRECT mode

T - A 0 S AT D A N A W WD N YA W A D T D D S A U D D DD T WD A AN AU WS W N D WD WD N Ty D D W0 N T N A D W g W

PACKING/UNPACKING for long instructions (64 bit value)

Central Memory Word

1 3 4 5

0 H 2 B 3
e e e e o e o e e e e e e e +
| alls) | b{16)} ! c{l16) | d{156) H
Fomom e e e e fmm——————— o ————— pommm e ——————— +

4 6
8 3
A o 2 +
d { al1s) i
A o e s e o +
d+1 | b{16) i
- 2 2 2 2 +
d+2 1 cl(16) |
F o o o e e e +
d+3 | d{16) {
Fo - - e +

a) Reads one central memory word (60 bit word), 4~63, to
bits 52-63 of five consecutive I0OU memory words. The
address for the CM word is specified by (R) + (A), The
address for the first I0U memory word is specified by d.

CRD - (Format = fd 0Op Conde = 0060d Size = 16 bit)

g o - o T - -
flabel loperatlon !argument
o o s > - o - -



8-31
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
Rev: F

WA DT WU A D DD NI D AU W T D TN D D W S D W AU N A S T A N D D T WD A N TR N TN TP, WD U D W TN T U T T W -

8.0 CYBER 180 ASSEMBLER SYMBOLIC I0U INSTRUCTIONS
B.5.7.2 CRDy CRDL, CHWD, CWDL - RD/HWR CPU Memory, DIRECT mode

WD A A W Y AGS e AN A AR WD W N NS W AU A W TS A AT AN TP D U T T D WD Ay S T A N D A T A A D D S D A D T W T A T S, A N TP T 2

CYRER 180 11 Assembler ERS

b) Reads one central memory word {64 bit word) to four
consecutive iou memory words. The address for the (M word

is specified by (R} + {A). The address for the first 10U
memory word is specified by d.

CRDL - {(Format = fd Op Code = 1060d Size = 16 bit)

¥ S I E—— T -
|label !operat:on { argument

o - o o o o e -
| 1CRDL 1d

c) Transfers the 12 lowest ordered bits from five consecutive
IDYU memory words to bits 4-63 of a central memory word (60
bit word). Bits 0-3 are cleared., The address for the CM
word is specified by (R) + {A) and is verified against the
0S Bounds Register. The address for the first 10U memory
word is specified by d.

CWD - {Format = fd Op Code = 0062d Size = 16 bit)

- - - o - A - - - - - - -~
llabel joperation }argument

tmm———————— prm———————— Fmmm—————— B
l {CHD id

d) Transfers the 12 lowest ordered bits from four consecutive
10U memory words to one central memory word {64 bit word).
The address for the CM word is specified by (R) + (A) and
is verified against the 0S5 Bounds Register. The address
for the first IDU memory word is specified by d.

CHDL ~ (Format = fd Op Code = 1062d Size = 16 bit)

e > v o S i e -

ilabe! loperation {argument

R P — B T - G - - -

! ] CWDL Id
8,5.7.3 CRM. CRML, CWM. CWML - READ/ZWRITE CM Blocks

After the following instructions are completed A will
contain the non-relocated portion of the CM address plus one
of the last memory word transferred., Note that if the value
of bits 47-63 of A exceeds (2%%*17)-1, then bit 46 will be
toggled and the addressing mode will «change from direct
addressing to relocation addressing mode. Note also that if



8=-32
CDC -~ ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 II Asspmb¥ar ERS Rev: F

8.0 CYBER 180 ASSEMBLER SYHBDLIﬁ 10U INSTRUCTIONS
8. 5 7.3 CRM, CRML, CWM, CWML - READ/WRITE CM 3]ocks

the last (M word transferred has a relative address of
377776(8) and relocation is in affect, the A register will be
cleared and the value in A may not point to the last word
transferred plus one.

a) Transfers bit 4-63 of consecutive central memory words
{ie. 60 bit words) to consecutive I0U memory words. The
address of the first CM word is specified by (R) + {(A), the
address of the first 10U memory word is specified by m and
the number of CM words transferred is specified by (d).

CRM - (Format = fdm Op Code = 0061dm Size = 32 bit)

frmm—————— poem————— o ——— ———————————
{1abel ioperat;on | argument

fom—————— - e o e e e o ——————— e e e
i {CRM im,d

b) Transfers consecutive central memory words {64 bit words)
to consecutive I0U memory words. The address of the first
CM word is specified by (R) + (A), the address of the first
IDU memory word is specified by m and the number of (M
words transferred is given by (d).

CRML -~ {(Format = fdm 0Op Code = 1061ldm Size = 32 bit)

fommm——— fom———— cmme e ————— Y -
| label loperation largument

Fom - - e e e o e e e e e —————
] {CRML Im,d

c) Transfers bits 52-63 of consecutive IDU memory words to
bits 4-63 of consecutive <central memory words {60 bit
words). Bits 0-3 are cleared. The address for the first
INU memory word 1is specified by m, the address for the
first CM word is specified by (R) + (A) and is verified
against the 05 Bounds Register. The number of CM words
transferred is given by (d).

CWM - (Format = fdm Op Code = 0063dm Size = 32 bit)



: 8=-33

CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717

CYBER 180 Il Assembler ERS Rev: F

8.0 CYBER 180 ASSEMBLER SYMBOLIC I0U INSTRUCTIONS

B.5.7.3 CRM, CRML, CWM, CWML - READ/WRITE CM Blocks

S > WD W W W A WD W A D W A s WD A U T A A N A T T A S AN D WD S W T T T T T T D W S D A D D MU N W b

d) Transfers consecutive IDU words to consecutive central
memory words {64 bit words). The address for the first I0OU
word is specified by my, the address for the first (M word
is specified by (R) + {A) and is verified against the A0S
Rounds Register. The number of €M words transferred is
specified by (d).

CWML - (Format = fdm 0Op Code = 1063dm Size = 32 bit)

- - - o - - - -
{label Joperation largument

- " - s o v - T -~ -
| jCuML im,d

8.5.7.4 RDSL. _RDCL = READ CM _and SEY or CLEAR_LUCK

A serialization function is performed at the beginning and
the end of these instructions. Execution is delayed until all
accesses to central memory by the I0u are completeds no other
accesses are permitted ¥from the beginning of the read until
the end of the write and no execution from other instructions
are allowed until all accesses to and from CM from this
instruction are completed.

a) The LOGICAL OR function is performed between four
consecutive IDU memory words and one central memory word
{64 bit word). The result is replaced in the CM word while
the original contents of the CM word are replaced in the
four 10U words., The address of the first I0U word is
specified by d, the address for the CM word is specified by
(RY + (A) and is verified against the (S Bounds Register,

RDSL - (Format = fd Op Code = 1000d Size = 16 bit)

e - - o o e - o - - o -~
{label ioperatlon | argument
e o o - e e st e o e e e -



B~34
{DC - ADVANCED SYSTEMS DEVELOPMENT
B&E/IO/LT
LYBER 180 IY Assembler ERS Rev: F
8,0 CYBER 180 ASSEMBLER SYMBOLIC 10U ZMSYRUCTIQNS
8 S5«7+% RDSL, RDCL - READ CM and SET or CLEAR LOCK

b) The LOGICAL AND function is per formed between four
consecutive I0U memory words and one central memory word
{64 bit word)., The result is replaced in the CM word while
the original contents of the (M word are replaced in the
four 10U words. The address for the first IDU word is
specified by dy, the address for the CM word is specified by
{R) + (A) and is verified against the (S Bounds Register.

RDCL - (Format = fd Dp Code = 1001d Size = 16 bit)

R pm——— e e e e -
|1abe) ioagration | ar gument
e o e frmm————— Fom i o e e e e e e -
| ROCL id

B8.5.8 INPUT/OUTPUY INSTRUCTIONS

There are 26 instructions to control activity on I/0
channels, These 1instructions select an external device,
determine {if the device 1is available and ready to transfer.
data and then transfers data to or from the device.

Fach PP has a set of external function codes that
establishes the mode of operation and also starts and stops
data transfer. The devices are also capable of detecting
certain errors and they report these to the controlling PP.

B.5.8,1 AJMy SCES _ESJIMs 1.0Ms ECIM. EJIM, _EJM, SEM, CEM, CCE

The following instructions are conditional branch
instructions, =2ach of which tests for a condition on channel
Ce When the condition is true the branch to address m occurs
and when the condition is false execution continues with the
following instruction. The c expression is required.

a) Branch to the location specified by m if channel c is
active,

AJM - {(Format = fscm Op Code = 00640cm Size = 32 bit)

A S . S U —

{1abe}l loperation largument

- - - - - -

! FAIM Imyc



8-35
CDC - ADVANCED SYSTEMS DEVELOPMENT

BH/10/717
CYBER 180 11 Assembler ERS Rev: F

WA A A Y T W AT AT D A T > W] VT AT T WD T W A WD WD WD D T A T W D T W O T A WA T ] " — 1 —_— . - W

8.0 CYBER 180 ASSEMBLER SYMBOLIC I0U INSTRUCTIONS
8.5.8B.1 AJM, SCF, FSJM, I1JM, FCJM, FJIM, EJM, SFM, CFM, CCF

A A - WA D A AD W  D T A T W  W T WA D N T A D D D D A DD A N N WD W T G A N U . N, A A D W

b) Branch to location SQecified by m if the channel ¢ flag is
set, otherwise set channel flag and exit. One may
unconditionally set the channel flag by setting m to P+2,

SCF -~ {Format = fscm Op Code = 00641cm Size = 32 bit)

frmmmmm———— Feme e ——— fom e ——————— ————
{tabel joperation ]argumsnt

pommm e O — e
3 !S{:F !m,ﬁ

c) Branch to the location specified by m if the flag for
channel c is set,

FSJM - (Format = fscm Op Code = 1064Xcm Size = 32 bit)

pmmmm————— frm——————— T e
| 1abal laporatlan !argumant

o o e e e e e D L -
| {FSIM Imyc

d) Branch to the location specified by m if channel ¢ is
inactive.,

IJM - {Format = fscm Op Code = 00650cm Size = 32 bit)

. - - —— v - o - - - - - - -~ - -
}1abel !operataon { argument

e ——— - o e e e e
l ’IJM 3m;c

e) Branch to the location specified by m if the flag for
channel ¢ is ciear,

FCJUM = (Format = fscm Up Code = 1065Xcm Size = 32 bit)

P —— T i R - e o e
1!abe3 loperation largument
. - - - - A - - - . D - - - - -



8-36
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 1! Assembler ERS Rev: F

. - - - T W W W — VW W

8.0 CYBER 180 ASSEMBLER SYMBOLIC IOU INSTRUCTIONS
Ba5.Bs1 AJM, SCF, FSJM, I1JM, FCJUM, FJIM, EIM, SFM, CFM, CCF

W . . AN WD W A W A T N A U N S W TN U O N D NDD T G A A WU AU W A DU Dy A S A TR A -

f) Branch to the location specified by m if channel ¢ is
full,.

FIM - (Format = fscm 0Op Code = 00660cm Size = 32 bit)

- e o 2 I N - . 2" [
i!abe? 1opera*xon | argument

- o - - - - - o son - - - -
i 3FJM lmgc

gq) Branch to the location specified by m if channel ¢ is
emplys

EJM ~ {Format = fscm Op Code = 00670cm Size = 32 bit)

Pommm————— fm——— e e
| tabe loperation !arqument

I R ——— P L — A 2 oo o P —
, igJM im;c

h) Branch to the location specified by m if the channel ¢
error flag is set, and then clear error flag.

SFM - {Format = fscm Op Code = 00661cm Size = 32 bit)

B . - A - - i . - - —_— - -~
{label foperation largument

pmm e —— T —— b ————————————
1 I SFM Imsc

i) Branch to the location specified by m if the channel ¢
error flag is clear, and then clear error flag.

CFM - {Format = fscm Op Code = 00671cm Size = 32 bit)

v o e a2 -

jlabel loperation | argument



8-37
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6SIO/LT
CYBER 180 Il Assembler ERS Rev: F

N - A T - - . A T W VN -~ - -~ -~

8,0 CYBER 180 ASSEMBLER SYMBOLIC I0U INSTRUCTIONS
B.5.8.1 AJIM, SCF, FSJIM, IJM, FCJM, FJM, EJIM, S5FM, CFM, CCF

T A A N WD N BN VA DTy T WD A A A WD D WD WD ATV N A VD O WD A A WD D WD s W A . T WS W W D U W A AT WD AN~

j) Clear the flag on the channel specified by c. The m-field
is required but not used.

CCF = (Format = fscm Op Code = 00651cm Size = 32 bit)

- T e T - T
i!abe! !oparatlon l argument

- - - v o - - - - -
, h‘ZCF ]m,c

B.548.2 IANs DAN - A Register I1/0 Instructions

a) Transfers a word from channel ¢ to bits 48-63 of register
A, Bits 46-47 are cleared. The instruction waits for the
channel to become active and full before executing.

IAN - {Format = fsc Op Code = 00700c Size = 16 bit)

. - v - - o 2 e T - - - -
!labe! foperation largument

fmm——————— Fmm————— trmmce e ———— - o e
1 JIAN c

b} Transfers a word from channel ¢ to bits 48-63 of register
A. Bits 46-47 are cleared. 1If the channel is inactive or
becomes inactive before becoming full, no transfer takes
place and the instruction exits with (A) = 0,

IAN - (Format = fsc Op Code = 00701c Size = 16 bit)

Fom—m————— fm———— e ——————————— —————————— -
l1abel !oyeratlon | ar gument

pommm e —f - —————— Frommm e o e e
| JIAN j40(8)+c

Note, on these two instructions {if a 12-bit external
interface is used, bits 48B~63 of A are zero. If an 8-bhit
interface is used, bits 46-55 of A will be zero.



8-38
CDC - ADVANCED SYSTEMS DEVELDPMENT

B6/10/717
CYBER 180 II Assembler ERS Rev: F

T - . - - W - . . W . W W WU U

8.0 CYBER 150 ASSEMBLER SYMBOLIC 10U INSTRUCTIONS
Be5+Bs2 IAN, DAN - A Register 1/0 Instructions

W - 2 WA A T D WD WP W T A D AU SO A D VA W AT N D T D S NS e A DTS W D A T WA A T A T A D AU Y D T A T A D 1 0 .

c¢) Transfers bits 48-63 of (A) to channel c. The instruction
waits for the channel to become active and empty before
executing, The content of A is unchanged.

OAN - {Format = fsc 0p Code = 00720c Size = 16 bir)

A o - - — - S — R p——
11abel Joperation 1arqument

S S — e e s e o 2 o o o -
| J0AN !c

d) Transfers bits 48-63 of (A) to channel c. If the channel
is inactive, than no transfer takes place and the
instruction exits. The content of A is unchanged,

OAN - (Format = fsc 0Op Code = 00721c Size = 16 bit)

o e e e o o B e
| 1abel Joperation iargument

fom e —————— T - et e o
| |DAN 44013)*c

Note, on these two instructions if a 12-bit external
interface is used on the channel, bits 48-51 of the channel
word are not transmitted and are lost. If an B8-bit
interface 1is used, then bits 48-5%5 of the channel word are
not transmitted and are lost.

8+5.8.3 1AM, 1APM. 0AM. (APM_ = BLOCK 1/0 Instructions

a) Transfers successive words from channel ¢ to consecutive
INU memory words., The address of the first IDU memory word
is specified by m and the number of words transferred is
specified by (2). Termination can occur one of two ways:

- {(A) = 0 or

- channel becomes inactive; if this is the cause for
termination, the next 10U word is cleared and {A) will
contain the difference of the initial wvalue and the
number of words transferred.

If the «channel is initially inactive when the instruction
is executedy, no transfer takes p]ace, {A) remains unchanged
and the IDU word specified by m is set to zero.

1AM -~ (Format = fscm Op Code = 00710cm Size = 32 bit)

- o o e o - - o -



B-39
CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717

CYBER 180 II! Assembler ERS Reve: F

T D ST T W W W T YO LD T S YA DD D A T Y D TUD YD TS W N AUD W D T WD DA A A T W D T A U T - TN A T -

8.0 CYBER 180 ASSEMBLER SYMBOLIC I0OU INSTRUCTIONS
B+.5.8.3 {A%; 1APM, OAM, 0APM - BLDCK I/D Instructions

S W T A A S W A T D D T NS A WU D WD WD WD A A T W WD N U A AU A Y W N T YT N W > -

| 1abel loperation }argument
$om—— o e e e e e e e e e
! {TAM Imsc

Note, with a 12-bit external interface, bits 48-51 of 10U
memory will be zero; HWith an B~bit interface, bits 48-55 of
INU memory will be zero.



8-40

CDC - ADVANCED SYSTEMS DEVELQOPMENT
86710717
CYBER 1%0 II Assemb!er ERS Rev: F

8.0 CYBER 180 ASSEMBLER SYMBOLIC IBU !NSTRUC?ID&S
8.5.8. 3 1AM, IA?%; 0am, BAPM - ﬁLQCX 170 Instructhﬂs

b)Y Transfers bits 52-63 of successive words from channel ¢ to
consecutive 10U memory wordse. Dur ing this transfer, 4
channel words (48 bits) are packed into 3 IDU memory words.
{See belows.) Bits 48-51 of the channel word 1is ignored.
The address of the first 10U memory word is specified by m
and the number of channel. words is specified by (&),
Termination can occur one of two ways:

- {A) = 03 if the number of channel words transferred is
not a multiple of 4, then the last 10U word will be zero
Filled:

- channel becomes inactive; I0U words will be zero
filled to the next four channel word boundary.

If the channel is initially inactive when the instruction
is executed, no transfer takes place, {A) remains unchanged
and the 10U memory words m, mtl, mt2 are set to 0.

Channel HWords

4 5 6
B8 2 3
fm——— femmm————————— +
b (4) 1} a{12) |
fmm——— p——— Fm————— -
1 (&) | bta) | ci(8) |}
o o e e
1 (&) 1 d(a) !e(#)i
Fommmm - ——— +
1 (&) | f(lZ) i
§o - - -

10U Memory Words

4 5 5 ) )
8 2 6 0 3
form - ————————— O +
| a(12) 1 bla) 1}
fmm——————— et T S

{ c{8) | d(8) i
T e O Y

| ela) i f(lZ) |
b ————— fmm————— +



B=41
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/710717
CYBER 180 I1 Assembler ERS Rev: F

T VT T W - _ W - - T W - - -

B.0 CYRER 180 ASSEMBLER SYMBOLIC I0U INSTRUCTIONS
8.5.8.3 1AM, I1APY, DAM, DAPM - BLOCK I/0 Instructions

T . A O T - - S A - T A . - A -

IAPM ~-{Format = fscm Op Code = 10710cm Size = 32 bit)

fommmm————— fom——— e fm—————— —————————————
l!ahel lsperat}on }arqument

T — PO — R R
) 1IAPM Imyc

c) Transfers the contents of consecutive IDU memory words
as successive words on channel c. The address of the first
IDU word 1is specified by m and the number of words to be

transferred is specified by {(A)., Termination occurs one of
two ways?

- {&) = 0 or

- channel becomes inactive; if this happens {(A) contains
the difference between the initial value and the actual
number of words transferred.

If the channel is (initially inactive when the execution
begins, no transfer takes place and {A) remains unchanged.

0AM - {(Format = fscm 0Op Code = 00730cm Size = 32 bit)

et et o o e i e
| 1abel !op»ratxan iarqument

G - e - - - — - - -~ - - v -
! ‘BAM 1!“’{:

Note, if a 12-bit external interface is used, bits 48-51 of
the channel word is not transmitted and are lost. If an

A=-bit interface is used, bilts 48~55% are not transmitted and
are lost.



B8-42
CDC - ADVANCED SYSTEMS DEVELOPMENT

B86/710/717
CYBER 18D 11 Assembler ERS Reva F

B.0 CYBER 180 ASSEMBLER SYM&GL!C IBU INSTRUCTIONS
8.5,8.3 1AM, TAPM, DAM, DAPM - BLOCK I/0 Instructions

I . A - A WA NG A A D D N A N B YD M S TR A NG A W AN A T AU M WD WU AN N T D OB N W NS WD U A U N D NOD AD T WD A A 1 D

d) Transfers consecutive I0U memory words as bits 52-63 of
successive words on channel c. During the transfer the
contents of 3 I0U words result in 4 channel words {(same
packing as above), Bits 48-51 of the 16~bit channel word
are cleared, The address for the first 10U word is
specified by m and the number of channel words transferred
is specified by {(A). Termination occurs one of two ways:

- {(A) = 0 or

- channel is inactive; if this happens, {A) will contain
the difference of its initial value and the number of
words actually transferred.

1f the channel is initially inactive when execution begins,
no transfer takes place and {(A) remains unchanged.

DAPM ~ {Format = fscm Op Code = 10730cm Size = 32 bit)

o - RN S Py — ¥ N PR ——— R —
| 1abel joperation largument

fom - i e e o 2 e e o e e e e e -
i |0APM Im,c

B8e548.4 ACN, DOCN = ACTIVATE/ZDEACTIVAIE I/0 Channels

a) Prepares channel ¢ for I/0) transfer by setting the channel
active, If the channel is active, then the instruction

will wait for the channel to become inactive before
executing.

ACN - (Format = fsc Op Code = 00740c Size = 16 bit)

- - A o e A e o o o -
11abel Joperation |argument
R e > - -

! 1 ACN Ic

b) Prepares channel c¢ for 1/0 transfer by setting the channel
active. The instruction will execute regardless to the
active/inactive status of the channel.

ACN - (Format = fsc (Op Code = 0074lc Size = 16 bit)

l1abel joperation |arqument
G e v A o — B R —— - - -

| JACN 140(B)+c



B~43
COC - ADVANCED SYSTEMS DEVELOPMENT

B6/10/717
CYBER 180 I Assembler ERS Rey: F

W W T A N W T A W VW N T A A T T D VD D U VU T T T W, M -] Y T T - . - . .

8,0 CYBER 180 ASSEMBLER SYMBOLIC IDU INSTRUCTIONS
8.5.8.4 ACNy DCN = ACTIVATE/DEACTIVATE I/0 Channels

A A D W S A WA A TP N AU " T A A DD D A A I AU VD W U WD D D T AW 2D\t D A D D A A WA W W A A W A W T >

c) Terminates 1/0 operations on channel ¢ by setting the
channel (inactive, If the channel is inactive, the

instruction will wait for the channel to become active
before executing.

DCN = {Format = fsc Op Code = 00750c Size = 16 bit)

G o - ————— - - e -~ - - - - -
Slabe! !operatxon !arqument

G- - - - - —- - - - - - -
} | DCN ic

d) Terminates I/0D operations on channel ¢ by setting the
channel inactive. The instruction will execute

reqgardless
of the active/inactive status of the channel,
DCN = (Format = fsc Op Code = 00751c Size = 16 bit)
A -~ - A - v - s e A W A W - -
flabel ioparatlcn iargument
Ao T T N o e
{ JDCN 140(8)+c

Note, on both DCN instructions, if they are executed afrer
an output instruction without waiting for the channel to

become empty, the last channel word transferred may be
lost.

B.5.8.5 EANs _ENC - 170 Channel Functions

a) Transfers bits 4B-63 of {(A) as a Function code to channel
ce If the channel is active, the instruction will wait for

the channel to become inactive before executing. The
content of A remains unchanged.

FAN - (Format = fsc Op Code = 00760c Size = 16 bit)

o e o e s - - o
I1abel foperation largument
4o - - o - = o T - -



844
CDC - ADVANCED SYSTEMS DEVELOPMENT

86/10/717
CYBER 180 11 Assembler ERS Rev: F

T A - W S WV D A WS TN W T A T WD T A A D A 2 D D WD 1D A WD DMy DD WD D D D D T W D WD T T D A0 T T W D VDT -

8.0 CYBER 1BD ASSEMBLER SYEEQLIC 10U INSTRUCTIONS
8.5.8.5 FANy, FNCL ~ 170 Channel Functions

A - WS M A W W VD W D U S N A A W T WD VD D A 2D A W T WD N A N N A WD T W A AD D U A U W T T A W W >

b) Transfers bits 48-63 of {A) as a function code to channel
Cs If the channel 1is active, the function is not

transferred and the instruction exits. The content of A
remains unchanged,

FAN - {Format = fsc Op Code = 00761c Size = 16 bit)

{1abel loperation |arqument
[ RS ——— T —— f - -
| |FAN 140(8)+c

¢c) Transfers m as a function code to channel c. If the
channel is active, the instruction will wait for the
channel to become inactive before executing.

FNC - {Format = fscm Op Code = 00770cm Size = 32 bit)

pom—m—————— prm——————— F o e -
1abel loperation ]argument

- - - - - o - - - —— - - - ——— -~ -~ -~
! 1FNC Imyc

d) Transfers m as a function code to channel c. If the

channe]l 1is active, the function is not transferred and the
instruction exits.

FNC - {Format = fscm 0Op Lode = Q077lcm Size = 32 bit)

R i T o - - 2 - - S A .
| 1abel lmppratzon larqumant

G - - -~~~ - - -
! IFNC Im,40(8)+c

Note, if a 12-bit external interface is used on the channel
bits 48-51 of the function code will not be transferred and
are Jost. If an B-bit interface is used, bits 48-5%5 of the
function code m are not transmitted and are lost.

. S 8889 »

B.5.9 OTHER IDU INSTRUCTIONS



B=45
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/710/717
CYBER 180 11 Assembler ERS Revy: F

8,0 CYBER 180 ASSEMBLER SYM@GLIC 100 IMSTRUﬁIIﬂNS
P,5.9.1 EXNy, MXIN, MAN - EXCHANGE JUMP Instructions

W - A W D - D W T W W A W T M W T D A D D AT D A A D D A D N YD WD W D T O o

8.5+9.1 EXNso MXN, MAN = EXCHANGE JUMP Ipstructions

These instructions provide for I0QU programs to control the
execution of the CPY in CYBER 170 state.

Note, the d~field can be in the range of 0-7. The value of
the d-field specifies which processor (CLPU)} the exchange jump
will interrupt.

a) Perform an unconditional exchange jump at the address
specified by (R) + [(A). This exchange package FHWA address
is verified against the 0S Bounds Register and if the jump
is into a prohibited region, the exchange will not occur.

EXN =~ (Format = fd Op Code = 00260X Size = 16 bit)

o m——————— e ——————— B e e e e -——
{label loperation larqument

U — I O— [ . -2 - o 105 - o [ ——
| JEXN id

b) Performs a conditional exchange jump at the address
specified by (R} + (A), The exchange package FWHA is
verified against the 0S5 Bounds Register and if the jump is
in a prohibited region the exchange will not occur.
Otherwise, if the monitor flag is clear, the exchange jump
is performed and the monitor flag is set. If the flag is
set, no exchange jump occurs and the instruction becomes a
PASS instruction,

MXN - {(Format = fd Op Code = D0261X Size = 16 bit)

A o - . - - -
llabﬂ !operatxon fargument
R L B R ——— I R - -



B~45
CDC - ADVAMNMCED SYSTEMS DEVELOPMENT

BH/10/717
CYBER 180 11 Assembler ERS Rev: F

N A - T D D T D D TP W VD I S NI VD D T A TR D D D WD N D T T WD WD Sy W A O DT D WO VO T -V — T . -~

B.0 CYBER 180 ASSEMBLER SYMBOLIC I0OU INSTRUCTIONS
Bsa5.9.1 EXN, MXN, MAN - EXCHANGE JUMP Instructions

T D W M W A A T W W T W A A A A D D VD T WD D A DA DT A S DT A N AT NS AT DD A BN A S AT N T A U N T DD T N VD W T D D W D

c) Performs a conditional exchange jump at the address
specified by the CPU Monitor Address (MA) register. If the
monitor flag 1is clear, the exchange jump is performed and
the flag is set., If the flag is set, the exchange jump |is

not per formed and the instruction becomes a PASS
instruction.

MAN =~ (Format = fd Op Code = 00262X Size = 156 bit)

e N e N e T

iiabe1 loppration iargument
fmm——————— o ———— o e e e e e e
| I MAN id

B8.5.9.2 BPSN_ = PASS Instruction
a) The PASS instructions performs no operation.
PSN ~ {Format = fd Op Code = 002400 Size = 16 bit}

U — E SR - - - -

}1abel !operatxon Iargument
- - - - -*u- ---------------- A -
H {PSN 100

Note, if the long/short form of an instruction is used and
there'’s no corresponding instruction defined, the
instruction acts as a PASS instruction. An example is LDN,
opcode = (0014, If 1014, which would be the long form of
the instruction and undefined, is used, the 1014 opcode
acts as a PASS instruction.

Be5.9.3 KPI_ - KEYPOINT Instruction

a) Executes as a PASS instruction but allows sensing of its

execution by external monitoring equipment through a test
point,

KPT - (Format = fd Op Code = 0027d Size = 16 bit)

fom e ———— fmmmm—————— frmr e e e ————————————
{1abel loperatxon largument
jommm—————— o e e e o e e o e



B-47
COC = ADVANCED SYSTEMS DEVELOPMENT

BR6/710717
CYBER 18% 11 Assembler ERS Rev: F

8,0 CYBER 180 ASSEMBLER SYMBOLIC IDU INSTRUCT{QNS
E.ﬁ.aaé INPN - INTFR?UP? PPGCESS§R

Be5.9.4 INPN_ = INTERRUPT PROCESSOR

a)} Transmits an interrupt signal for the CPU on memory
port d. This interrupt signal causes the External
Interrupt bit to be set in the CPU Monitor Condition
Reqgister., A serialization function 1is performed before
this 1instruction 1is executed, That 1is, execution is
delayed until all memory accesses on the part of the
interrupted processor are complete,

INPN -~ (Format = fd Op Code = 1026d Size = 16 bit)

o - o e s - - o o - ——— - - -
Y!absl ioperatxon lar gument
o - v - - A - T -



Al
CDC - ADVANCED SYSTEMS DEVELOPMENT

B86/10/17
CYBER 180 II Assembler ERS Rev: F
APPENDIX A
APPENDIX_A

CALLING THE ASSEMBLER

The Assembler is called on NOS/VE with the command name
WASSEMBLEY followed by parameters in the System Command
Language format. All Assembler call parameters are optional.
Par ameters of the Assembler are:

I INPUT=File

INPUT specifies the file containing source statements
that are to be assembled., If this parameter is omitted
the value $INPUT will be used.

B BINARY_(OBJECT=File

BINARY_DOBJECT specifies the file to receive the object
text {binary) that is generated bu the assembler. if
this parameter is omitted the value LG0O will be used.

L LIST=Ffile

LISY specifies the file to receive the assembly listing.
If this parameter is omitted the value $LIST will be
used.

E ERROR=f{1le

ERROR specifies the file to receive the listing of
assembly errors. If this parameter is omitted the value
$ERRORS will be used.

LO LIST_OPTIONS=1list of A, R, S, NONE

LIST_OPTIONS specifies the content of the listing file.
If S is included in the list, the source and generated
code are listed, I1f A is included, the symbol
attributes listing is included., If R is specified, the
cross-reference is Jisted. 1If NONE is specifiedy only
errors will be listed. The default value is S.

C CHECKS=hoolean

CHECKS specifies whether assembly checks are to be
performed or omitted. Assembly checks are used with the



A2
CDC - ADVANCED SYSTEMS DEVELDPMENT

, 88710/17
CYB¥R 18@ 11 Assemblar ERS Ravi F

APPENDIX A
£ALLIN5 THE ASSEMBLER

CPU instruction set to validate that the correct
register type designators {A-reg or X-reg) are used. If
this parameter is omitted a value of TRUE will be used.
STATUS=status variable

STATUS specifies a status variable to receive the
command's termination status.

EXAMPLE?

ASSEMBLE I=SOURCE B=BIN L=LISTING LD=(S,A,R) C=TRUE



B1

DT - ADVANCED SYSTEMS DEVELOPMENT
8710717
CYBER 180 I1 Assembler ERS ‘ Rev: F

- - - N - - - -

APPENDIX B - NOTES AND EXAMPLES

APPENDIX_B_=-_NOTES_AND_EXAMPLES
PROGRAMMING _NOIES

To fully understand the Cyber 180 Hardware instructions and
thier parameters, one must first understand that the Cyber 180
machine is designed to be Stack oriented. Software written
for the Cyber 180 will be written in a Stack oriented higher
level language {CYB8IL). However there will be some code that
will have to be written 1in Assembly language {ie Hardware
diagnostics)s The following sections contain notes that will
hopefully aid in writing Assembly language programs.

REGISTER USAGE

When writing in Assembly 1languaqge, it is important to
understand how the hardware works, especially register usage.
The contents of the following registers are assumed to be as
described by the hardware, and should not be overwritten.

AC - Dynamic Space Pointer.

Al - Current 5tack Frame Pointer.
A2 Previous Save Area.

A3 - Binding Section Pointer,

A4 - Argument Pointer.

i

GENERAL NOTES

In addition to understanding the hardware, it 1is also
important to understand some things about the Assembler.

SECTIONS-SEGMENTS The relationship between the Assembler
concept of Sections and the Hardware concept of Segments is
similar, but differs in that two or more sections may be
loaded in the same Hardware Segment when they have the same
access permissions.

RELOCATABILITY OF CODE Even though code in sections is
assembled as absolute, the sections can be 1oaded as
relocatable, and are accessed via pointers.

MONOLITH PROGRAMS When mixing code and data in the same
sectiony it is important to wuse the ALIGN command when
resuming to generate code. This will ensure that the code is
generated on the proper boundary.



COC - ADVANCED SYSTEMS
CYBER 180 I1 Assembler ERS

T A A T A T O A S0l W W T AN U VT T A O WD AT D W N TG T A YD A U S G A WD AU N W WD A N A DD WO W AU U WD D TG WD T WA W T TN AT T Tk W -~ -

B2
DEVELDPMENT
B6/10D/17
Rev: F

APPENDIX B - NOTES AND EXAMPLES
SAMPLE PROGRAM

-

SAMPLE PROGRAM

The following is a sample program available in the SES
catalog. It is

intended to aid in the understanding of the

CYBER 180 CPU Assembler and the CYBER 180 hardware,

test

LR N

« This program will pick up
« and makes a copy of it in

ident
def

«sample program
entl sdefines the entry point
an entry from the Literal section,
the working section. The program

+ is structured to use the default sections established by

the Assembler,

msq

« o » 9

msg_pt
temp_pt

¢« & o @

count
num_move

and is executed using the C180 defaults,.

space 3

use working « The working section will get loaded ia
segment with readtwrite permissions.

bss 1 +Put here to show effect of align.

align 0,8 »Ensures word boundary.

bssz 20{15) «20{(16) bytes(4 words) of temp storage

space 3

use working » The WORKING section will be loaded
into a segment with read permission,

align 0,2 « Word boundary.

vfd,B8%8 Cc'EXAMPLE ' .Test data to be moved

space 3

use binding +The B8inding section is usad by the

hardware to store pointers which
facilitate the binding of segments.
This section will be loaded into

a segment with read+bind permissions.
«Creates a pointer to M5G.
.Creates a pointer to TEMP,

Pointers are set up with segment numbr
set to FFF, LINKER fills in this fiel,
The location field will show an offsef
word boundary + 2, because the 6 byteA
is right justified in the 8 byte fiel,

address psmsg
address pytemp

space 3

use code »The Code section will be loaded into
a segment with readt+execute permissio.

space 1

proc +This proc will count the number of

pname +bytes moved.

set num_move+lc:{(f2{(2,0)) .Add the number of bytes

pend
space 2

«end of procedure



B3
CDC - ADVANCED SYSTEMS DEVELDOPMENT
B6/10/717
CYRER 180 11 Assembler ERS Rav: F
APPENDIX B = NOTES AND EXAMPLES
SAMPLE PROGRAM

entl align 0,8 +Entry point on a word boundary
num_move set O «Initialize byte counter

ente x0,33(16) » Include X0-X3 and AO0-A3 when
» saving the environment.

callrel move_msg,a3,a4 .move a copy of msg to temp

return +End execution.
L
« Move_msg will move data to working storage

»

move_msqg align 0,8 «Ensure word boundarvy.
la a5ya3,msqg_pt +Load Into AS the pointer to M5SG.
I1x x1l,a5,0 sLoad data into X1,
1a a5y,a3, temp_pt +A5 = pointer to storage area.
X x1,25,0 +Store M5G,
count msg »Update NUM_MOVE.
return «Return to caller
end entl +Entl is transfer label

SAMPLE EXECUTION

The sample program in the previous section was executed as
shown below:

To be supplied later.



C1
CDC ~ ADVANCED SYSTEMS DEVELOPMENT

85710717
CYBER 180 I Assembler ERS : Rey: F

APPENDIX C - RESERVED WORDS

APPENDIX L - RESERVED WORDS

The following words or categories have special meaning and
can not be redefined in the user?s program.

Register identifiers (AO-AF, X0-XF)
Section identifiers {binding, code, stack, working}

Section types {Code, Binding, Working, Common, Extwork,
Extcom)

Attribute identifiers {(Bind, Execute, Read, Hrite)
Machine identifiers (C180CPU, C1B0I0U)

A11 pseudo and machine mnemonics.,

A1l symbols starting with the pound-sign character.
Any symbol containing a colon,

Special internal symbols{PADA, PADB, SECT, ASECT, DSECT)



D1
CDC - ADVANCED SYSTEMS DEVELDPMENT
B6710717
CY&FR 180 11 Assembier ERS Rev: F

APPENDIX D - ERROR _MESSAGES

Error messages may appear either on the listing, and/or on
the dayfile, depending on when the error is detected.

LISTING ERRORS

Message
ALTAS NAME INVALID OR DUPLICATE

SIGNIEICANCE
The alias name has been defined as both an internal and
external entry point. (ie. appearing on both:-a DEF or
DEFG instruction and a REF instruction).

ACTION
An internal entry point must be unique. However, two
external entry opoints can be aliased to the same
{inkage symbol.,

CALTASED SYMBOL MUST B8E REF OR DEF SYMBOL

SIGNIFICANCE
The 1abel field of an alias statement has not been

defined in a DFEF, DEFG, or REF pseudo instruction.
ACTION

Define the entry point to be aliased in a DEF, DEFG, or

REF instruction. Note for a DEF or DEFG symbol, these

values must be further defined as a relocatable symbol

{symbol category = 6).

ANAME SYMBOL REQUIRED FOR ATTRIBUTES REFERENCING

SIGNIFICANCE
Encountered an ATRIB statement where the user defined

attribute name was not previously defined in an ANAME
statement,

ACTION
Define attribute name using the ANAME pseudo

instruction.

A-REG DESIGNATOR REQUIRED



n2
CDC - ADVANCED SYSTEMS DEVELDOPMENT
85710717
CYRER 180 11 Assembler ERS Revs: F
APPENDIX D - ERROR MESSAGES
LISTING ERRORS

A - A 42D WD - D AU D Y A NP AT A TR N A N A A T S I T A, A A AU D WD Ty WU T A Sl A s WD A T A A A W WD A A W N -

SIGNIFICANCE
An A register is required in instruction.
ACTION
Check register specifications for instruction in ERS,

ARGUMENT SUBFIELD MUST BE SYMBOLIC NAME

SIGNIEICANCE
The arqument field of the following pseudo instructions
must be a symbol and cannot be an expression: ADDRESS,
ALIAS, END, ERROR, FLAG, LOCAL, OPEN, REF, SECTIDN,
SKIPTO, and TITLE. {An exception is the address type R
on the ADDRESS instruction.)

ACTION
Check the ERS for definition of the argument field,
Many of these instructions have pre-defined values for
use in the argument field.

BDP DESCRIPTOR ERRODR

SIGNIEICANCE
There's an error in either the source or destination
data descriptor within a BOP instruction,

ACTION
Check register specifications and descriptor
limitations for instruction in ERS.

BINDING ATTRIBUTE MUST BE BINDABLE DR NONBINDABLE

SIGNIFICANCE
The *bind? type in the argument field of +the MACHINE
psesudo instruction is not one of the pre-defined values
BINDABLE or NONBINDABLE.

ACTION
Check value in argument field of the MACHINE pseudo
instruction.

CHARACTER STRING TDO LONG

SIGNIEICANCE
A character string cannot exceed one line, therefore is
limited to B7 characters.

ACTION
Check for missing quote mark or shorten current stringe.



D3
CDC - ADVANCED SYSTEMS DEVELOPMENT

86/10/17
CYBER 1B0 II Assembler £ERS Revs: F
APPENDIX D - ERROR MESSAGES
LISTING ERRORS
CMD STATEMENT ILLEGAL IN PROCEDURE DEFINITION
SIGNIFICANCE
A CHMD instruction is equivalent to a one statement
procedure definition. Nested procedures are not

allowed, therefore a CMD statement cannot be within a
procedure definition.

ACTION
Take the CMD statement out of the procedure, Or
redefine the CMD statement as a separate procedure and
replace the CMD with a 'procedure call?,

DATA GENERATIDN IN STACK OR BINDING SECTION

SIGNIEICANCE
Data cannot be initialized 1in the STACK or BINDING
sections at assembly time, {An exception is the

binding section in which pointers can be initialized
with the ADDRESS pseudo instruction.)

ACTION
Check the last USE statement which was encountered.,

DISPLACEMENT VALUE IS OQUY-OF-RANGE

SIGNIFICANCE
The displacement value on a machine  instruction
overflows the length of the field designated by the
instruction,

ACTIDN
Check the ERS for the calculation of the address
displacement to make sure the value can be represented
by the number of bits allotted for the displacement
{ie. for a 16 bit Q-field with sign extension the
value must be in the range: =7fffF{16) < wvalue <
TFFEL16) ).

DIVISION BY ZERD ATTEMPTYED

SICNIEICANCE
While evaluating an expressions an attempt to divide by
zero was made.,

ACTION
Check values in the divisor portion.

ERRDR STATEMENT = ?character string?



D4
CDC - ADVANCED SYSTEMS DEVELOPMENT
86/10/17
CYRER 180 11 Assfmbler ERS Rav: F
APPENDIX D - ERROR MESSAGES |
LISTING ERRORS

SIGNIEICANCE
The expression in the ERROR statement evaluated to true
causing the string or symbol in the argument field to
be printed in the object listing. Control is
transferred conditionally on the presence of a label in
the operation subfield.

ACTION
Check ERS for rules concerning the ERROR statement and
the transfer of control.

EXPRESSION EVALUATION ERROR

SIGNIEICANCE
While processing an expression, an arithmetic overflow
or underf low has occurred, The following conditions
will cause this error:
- exceeding the following limits in integer
arithmetic
32 bit integer - =-2{31) <= M (= 2(31) - 1
64 bit integer - =2(63) <= M <= 2(63) - 1
- exponent overflow and underflow are detected for
all single precision, but only for the leftmost part
of double precision.
floating point absolute value - 5,2 * 10%%1232
~ for general BDP instructions with data descriptors,
the source operand fields will be checked for
overflow but the destination operand will not.
= in BDP floating point instructions, if the capacity
of designated fields are exceeded such that
significant digits are lost.
- an exception is the CALDF and EDIT instructions, no
over flow conditions detected for these,
ACTION
Check values used in the expression evaluation.

FIELD REFERENCE ERROR

SIGNIEICANCE
This error occured because some field in the source
statement requires a symbolic name but an illegal field
reference [(ie, F£3 function) or list reference {(ie,
symbol{X1) was encountered. The value that either of
these functions represent is not a symbolic name.
ACTION
Check the fields in the source statement that require
symbolic names {(ie. 1label fields, operation subfields
as in the SKIPYTO statement, etc.). 0{ne of the values



D5
CDC - ADVANCED SYSTEMS DEVELOPMENT
B&/10/17
CYBER 180 I1 Assemb}er ERS Rev» F
APPENDIX D - ERRGR MESSAGES
LISTING ERPGRS

being referenced is not defined to be a symbolic name.

FIRSY STATEMENT IS NOT IDENTY

SIGNIFICANCE
The first source statement encountered bv the assembler
was not an IDENT instruction. The only permissible
source lines before the IDENT are comments. This is
also true for multiple assembly modules, the only
allowable source lines between the END and the IDENT
are comments,

ACTIDN
Nelete those statements before the IDENT instruction.

FLAG STATEMENT ERRDOR

SIGNIEICANCE
The FLAG statement was processed which conditionally
sets an error flag. The two permissible error types
are pre~-defined as FATAL and WARNING.

ACTIDN
Processing of this statement does not affect other
code.,

GENERATED CODE IS NOT "BINDASLE®

SIGNIEICANCE
The relocation information generated with a CMD, VFD,
INT, or DINT statement does not correspond to the
pre~defined wvalues of the RCT or ADT fields of the
Relocation attribute, Both the Relocation Container.
Type and the Address Displacement Type are pre-defined
and the relocation information must agree with these
attribute values,

ACTIDN
Check wvalues on these data generating statements so as
to make sure that all relocation information has the
correct values, 1ie. one of those that is pre-defined.

ILLEGAL ATTRIBUTE REFERENCE

SICNIFICANCE
When evaluating the argument of an attribute, either
defined 1in an ANAME statement or an internal attribute
{ie. #REGTYP), an illegal argument was encountered or



: Do6
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/10/17

CYBER 180 11 Assembler ERS Rev?: F

A - A WD M A - W W A - W T W WD W A D VD D A, W N DN T D N WD T D

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

the argqument was missing. This can also occur if a

register specification in a symbolic machine
instruction is incorrect,
ACTION

Check argument field of an attribute reference or check
the ERS for correct register specifications for machine
instructions.,

TLLEGAL CONTINUATION

SIGNIEICANCE
The card following a «continuation card contained a
non-blank character in column 1. This could also be a
non=graphic character.,

ACTION
Change the card following the continuation character to
contain a blank in column 1.

JLLEGAL EXPRESSION

SIGNIEICANCE
While evaluating an expression an illegal reference has
been encountered by the assembler, This <can be an

element number reference, an attribute reference, an
intrinsic or user-defined function reference.
ACTION

Check the following conditions:
- element number reference =~ using parenthesis
rather than brackets or trying to access a list
value of a symbol that is not a SET/EQU symbol,
- attribute reference - using parenthesis rather
than brackets or having more than one argument,
= intrinsic or wuser~defined function reference -~
using brackets rather than parenthesis or having no
argument or a null argument field.

ILLEGAL OR NON-GRAPHIC CHARACTER DETECTED

SIGNIEICANCE
An illegal or non-graphic character has been detected,
Note that a single quote, which is not preceded by a
symbolic character, will cause this error,

ACTION
The assembler accepts any graphic ASCII character in a
comment or character string. Check the ERS under
character set for the ASCII subset which the assembler



D7
CDC - ADVANCED SYSTEMS DEVELOPMENT
R67ID717
CYBER 180 II Assembler ERS Revs: F
APPENDIX D - ERRDR MESSAGES
LISTING ERRDRS

N W T T T - T T W P T W DN A VDT YD D W D N N YD T U D YD A D W VU N D WA AU T YD U AW

accepts as input.

ILLEGAL STATEMENT IN FUNCTION EXPANSION

SIGNIEICANCE '
A function may not generate code or change location
counters, if it is called form a statement which
itself, generates code, This condition may occur in
any of the following statements: ALIGN, BSS, B3S5Z, INT,
DINT, FLOAT, DFLDAT, PDEC, VFD or a CMD call statement.
ACTION
Change the function or the source statement from which
it is called.

INSUFFICIENT NUMBER OF ARGUMENTS

SIGNIEICANCE
In either a CMD or VFD statement, the number of
elements in the value list is less than the number of
elements in the length list.

ACTION
Check the =lements in the value list. Note that iIf the
number of elements in the value list exceeds the number
of elements in the length list no diagnostic occurs and
any extra arguments are ignored.

INTEGER DR REAL NUMBER CONVERSION ERRDR

SIGNIEICANCE
The floating point number in the argument field of a
FLOAT or DFLDATY pseudo instruction is an infinite or
indefinite value,

ACTION
Limits on minimum and maximum values and exponents can

be found in the CYBER 180 math library documents,

INVALID ELEMENT NUMBER IDENTIFIER

SIGNIFICANCE
The element number being referenced has a value less

than 0.

ACTIDON
Check expression within the brackets which must be

qreater than or egual to 0.



DB

CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYRER 1BO 11 Assembler ERS Rewy: F

APPENDIX D - ERROR MESSAGES
LISTING ERRDORS

INVALID LOCATIDN COUNTER DESIGNATOR

SIGNIEICANCE
The value X in ${X) did not esvaluate to O or 1.

ACYION
The value X can be an expression but this expression
must evaluate to 0 for current byte offset or 1 for
current bit offset, 1If no value is given the function
defaults to 0.

INVALID MACHINE TYPE

SIGNIFICANCE
The IDENT pseudo instruction 1is the first statement

recognized by the assembler and it pre-defines the
processor type due to the argument field, If this
value does not correspond with the type on the MACHINE
pseudo instruction this error will be produced.
Otherwise, the type in the argument field is not one of
the following pre-defined values, C180CPU or C1B801IDU.
ACTION

Check the argument field of the [IDENT and MACHINE
pseudo instructions to insure they correspond to the
sSame processor type.

INVALID SECTION ATTRIBUTES

SIGNIFICANCE
The attributes defined on a SECTION statement are
either not in the set of pre-defined attributes or
there's an 1illegal expression in the definition of
these segment access attributes,

ACTION
The pre-defined segment access attributes are: READ,
WRITE, EXECUTE and BIND and the only operator permitted
is the plus (+) operator.

INVALID SECTION TYPE

SIGNIEICANCE
The section type used in the SECTION statement was not
in the set of pre~defined types. fir the section type
was CODE, BINDING or STACK and these are already
defined by the assembler and cannot be redefined by the
user.

ACTION



D9
CDC - ADVANCED SYSTEMS DEVELDPMENT
86710717
CYBER 180 11 Assemblar ERS Rev: F
APPENDIX D - ERROR HESSAGES |
LISTING ERRORS

T A AT YT - " 0 U TV T A~ - - A . -V W D D A A D D AT D AT T D 2 D BT WP AN T D T

The section types available to the user are: WORKING,
COMMON, EXTWORK and EXTCOM,.

INVALID SYMBOL ERRODR

SIGNIEICANCE
The symbol encountered was illegal because of one of
the following conditions:
- the first character of the symbol does not beqin
with one of the legal alphabetic characters defined
for the assembler,
- there's a colon () somewhere in the symbol,
- the symbol is in the list of the assembler’s
reserved words { see Appendix C of the ERS ).
ACTION
Check symbol for illegal character or that it appears
on the reserved word ltist.

INVALID »TYPIY SUBFIELD IN ADDRESS STATEMENT

SIGNIEICANCE
The address type in the argument field of the ADDRESS

instruction is not one of the pre-defined types.

ACTION
The address types for the ADDRESS instruction are

defined as: P, C, C1y, CE, Or R.

LABEL NDOT SYMBOLIC NAME

SIGNIEICANCE
The label field of one of the following statements does
not contain a legal symbol: ALIAS, ANAME, ATRIB, CMD,
DO, WHILE, DEND, IDENT, SET or EQU.

ACTION
Check the label field on the source statement.

MACHINE STATEMENT MUST PRECEDE CDDE GENERATION

SIGNIFICANCE
The MACHINE pseudo instruction did not precede a data
generating statement.

ACTION
The MACHINE pseudo instruction must appear before any
statment which generates code., Also there can be only
one MACHINE pseudo instruction between an IDENT and an



D10
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 II Assembler ERS Rav: F

APPENDIX D = ERROR KFSSABES
LISTING FRRGQS

END assembly unit.

MAXIMUM SEGMENT DFFSEY EXCEEDED

SIGNIFICANCE
Code has been generated in a section that overflows the
maximum offset allowed by the operation system., This
value is OFFFFFFFF(16).

ACTIDN
Check the section that currently is being used for code
generation.

MISSING CONT STATEMENT

SIGNIEICANCE
While processing a procedure «c¢all or a DO/WHILE
sequence of statements a SKIPT(O was encountered with a
name {in it's argument field that did not appear before
a PEND or DEND statement. This also occurs if the
label on the ERRDR statement does not appear.

ACTION
Check symbol  names in arqument Ffield of SXIPTOD
statement.

MISSING DEND STATEMENT

SIGNIFICANCE
There's no matching DEND statement for a DO directive,
An END or a PEND statement was encountered first,
ACTION
Include the DEND statement in assembly module.

MISSING DPERATION FIELD

SIGNIEICANCE
There’s a wvalue in the label field of the source
statement which has nothing following it.

ACTION
A null operation field is illegal, Check source
statement for missing value.

MISSING PEND STATEMENT

SIGNIEICANCE



D11
CDC -~ ADVANCED SYSTEMS DEVELDOPMENT
86710717
CYBER 180 Il Assembler ERS Rev: F
APPENDIX D « ERRDR MESSAGES
LISTING ERRORS

A PROC directive was encountered but no statement
batween this and the END statement contained PEND in
the operation field.

ACTION
Include the PEND statement in the assembly module.

NESTED PROCEDURE DEFINITION

SIGNIFICANCE
Encountered a PROC psuedo instruction between - a
PROC-PEND pair.

ACTION
Nested procedures are not allowed by the assembler., A
PROC instruction must be followed by a PEND instruction
before another PROC instruction can be processed.

OFFSET ARGUMENT NOT ON REQUIRED BOUNDARY

SIGNIEICANCE
While processing one of the offset functions {ie.
#WOFF, #HOFF, #POFF, or #BOFF) the address of the
argument does not fall on the appropriate boundary (ie,
for #WOFF function the argument must be on a word
boundary).

ACTION
Check the address of the function argument. Sue the
ALIGN statement before the argument definition to
assure the correct boundary.

OPERAND MUST BE A REAL NUMBER

SIGNIEICANCE
An operand in the argument field of a FLOAT or DFLDAY
pseudo instruction is not a 1legal floating point
number., '

ACTION
Check the operands in argument field for legal floating
point numbers. Note, all floating point values must be
decimal values.

NPERAND TYPE INVALID

SIGNIFICANCE
The following pseudo instructions cause this error if
the arqument field is incorrect:



D12
COC - ADVANCED SYSTEMS DEVELOPMENT
86710/17
CYBER 189 11 Assembler ERS Rev. F
a?ﬂFMBix D = ERROR MESSAGES
LISI!NE ERRORS

= ERRDR = argument must be a legal symbol or ascii
string,
- FLAG =~ argument field must be pre-defined symbols
FATAL or HARNING,
- INFOMSG - if there is an argument, it must be the
symbol LISTON,
- PDEC =~ the argument must be an ascii string with
only the characters 0 = 9 or '+*/31-7, The t#3/71-2
must be the last character in the string.
ACTION
Check the arqument field for illegal valu=,

OPERATION SUBFIELD NOT A SYMBOLIC NAME

SIGNIEICANCE
One of the following two conditions has occurred:
- the operation field does not have a legal symbol
name in it,
- or one of the following pseudo Iinstructions does
not have a3 legal symbol name in it's arqument field:
CLOSE, DEF, DEFG, LOCAL, OPEN or REF,
ACTION
Check the operation field or the argument field of the
listed pseudo instructions.

PMAME/FNAME STATEMENT MISSING

SIGNIFICANCE
There was no PNAME or FNAME pseudo instruction between
a PROC/PEND pair. 0Or the PNAME/FNAME instruction was
not the instruction immediately following the PROC
instruction.

ACTION
The PNAME/FNAME statements must be the First
instruction after the PROC statement and there must be
at least one PNAME/FNAME statement in a procedure
defintion.

PNAME/FNAME STATEMENT OUT-OF-SEQUENCE

SIGNIEICANCE
The PNAME/FNAME statement is not immediately following
a PROC, FNAME, or another PNAME statement,

ACTION
The PNAME/FNAME pseudo instructions are part of the

procedure®s heading along with the PRDC statement. No



D13
CDC - ADVANCED SYSTEMS DEVELOPMENTY
B6/10717
CYBER 180 I1I Assemb!er EQS Rgv. F
APPENDIX D - ERRDR MESiAQES
LISTING ERRORS

T TN O NG T DT D WD T T S J AT T D G AT D N T D M AT A D W T TS AT D TN SN D TN D AN T A DU VD D VU O WD D

other instruction can appear between a PROC and
PNAME/FNAME statement.

RELOCATABLE SYMBOL REQUIRED (CATEGORY = 6)

SIGNIFICANCE
An ADDRESS, DEF or END pseudo instruction has a
non-relocatable symbol {ie. symbol has a symbol
category other than 6) in it's argument field,

ACTION
A relocatable term represents a location of some
assembled code., These are defined in the 1label field
of a data generating statement such as VFD, INT, DINT,
FLOAT, OFLOAT, PDEC, BSS, BSSZ, ADDRESS, ORG, ALIGN or
a call to a CMD instruction. The labels of the
symbolic machine instructions will also have a symbol
category equal to 6.

REQUIRED DPERAND MISSING

SIGNIFICANCE
The argument field 1is blank on a pseudo instruction

that is required to have an operand.

ACTION
The following pseudo instructions require a value to be
present in the argument field: ADDRESS, ALIAS, BSS,
BSSZ, CLOSE, DEF, DEFG, FLAG, LOCAL, INT, DINT, FLOAT,
DFLOAT, OPEN, 0DRG, PDEC, POS, REF, SECTIDON, SKIPTO,
TITLE, USE, VFD, and a call to a CMD statement.

SECTION ALTIAS NAME INVALID

SIGNIEICANCE
The fcid?' field on the SECTINN statement is either not

a symbol or has been previously used as a ‘*cid’.

ACTION
The *cid' field 1is optional but if it*s not used it
must contain a legal null subfield (ie. two commas).
If the symbol has already been used, redefine one of
the fields., '

SPECIFIED SECTION SIZE EXCEEDED

SIGNIEICANCE
The amount of code generated in the section exceeded



D14

CDC - ADVANCED SYSTEMS DEVELOPMENT
86710717

CYBER 180 II Assembler ERS Rev: F

A M W A T T A WD D A WD NP T A AT AU DS W VDAY AT A WD S A D W VD W T T T ST N T T WD W A " AT AT W - -

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

T - W A SN DT VU N D P A A DD WD D AP T A D W W A A D N P T G A D T DA VU NS T T D A S D N D A, YD A A T G D -

the amount given by the *maxsize' field on the SECTION

statement.

ACTION
Check value for ‘*maxsize' field on the SECTION
statement and increase this value as necessary. The

maximum segment length is OFFFFFFFF{16),

STATEMENT ILLEGAL IN I0U MODULE

SIGNIEICANCE
The ADDRESS, ALIAS, ODEF, DEFG, INFOMSG, PDEC, DINT,

FLDAT, DFLDAT, REF, SECTION, and ISE pseudo
instructions are illegal in an IDU assembly module.

ACTION
Delete these statements from assembly module.

STATEMENT IS VALID ONLY WITHIN A PROCEDURE

SIGNIFICANCE
The LDCAL pseudo instruction can only be used within a
procedure definition (ie. between a PROC/PEND pair).
ACTION
The LOCAL pseudo instruction is used to define symbols
local to a procedure. A PEND or an END statement
terminates the symbols.

STATEMENTY LABEL IS NOT UNIQUE

SIGNIFICANCE
The symbol encountered in the label field has already
been defined, Note that this can be a directive or
procedure/function name.

ACTION
Redefine one of the symbols and change the references

to the symbol. Note if a symbol appears in the label
field of a pseudo instruction that does not require a
label, the symbol! is not considered defined.

STATEMENT LABEL REQUIRED

SIGNIFICANCE
The label field of the source statement is blank.
ACTION
The following pseudo instructions require a label
field: ANAME, ATRIB, CMD, SET, EQU, PNAHE, FNAME, and



D1s
DL - ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 18D 11 Asssmb!er ERS Rev: F
APPENDIX D - ERRDR MESSA&ES
LISTING ERRORS

D A - W D A W N T WA W U T WD A A D A A WD U DA W WD AU A WD AU T D AT D N Y WA O A D AT A S G T WD A T A I

SECTION.

SYMBOL CANNOT BE A LDCAL OR OPENED SYMBOL

SIGNIFICANCE '
The symbol in the argument field of a REF, DEF, or DEFG
pseudo instruction is an DPENed, LOCAL or implied local
symbol that has not been closed.

ACYTION
The symbol in the arqument field of either a DEF, DEFG,

-or REF statement must be a global symbol and cannot

have appeared in a LOCAL or DPEN instruction. It also
cannot be an implied local symbol.

SYMBOL MUST BE DECLARED REF DR DEF

SIGNIEICANCE ’
The symbol in the argument field of the END pseudo
instruction has not been declared as an entry point.
ACTION
If the argument field contains a transfer address, the
symbol must be declared as an entry point by appearing
in either a DEF, DEFG, or REF pseudo instruction in the
same assembly module.

SYNTAX ERROR

SIGNIFICANCE
The following conditions will cause this error?
- an illegal character string such as missing or
misplaced quote marks,
- an illegal number such as a digit larger than the
base allows, a base value other than binary, octal,
decimal, or hexadecimal, an illegal character or a
missing parenthesis,
- an illegal floating point number which includes
any base designator {(ie. all floating point numbers
are decimal),
- expressions with mismatched parenthesis or illegal
or missing operands.
ACTION
Check the ERS for the syntax of self-defining terms
{ie, number values or character strings). 0Or check
the expression in the source statement for illegal
operands or missing operands., Note tha a blank or
comma terminates an expression.



D16
CDC - ADVANCED SYSTEMS DEVELOPMENT '
86710717

CYBER 180 IT Assembler ERS Rev: F

A - V- 1] A O AT - - W W R N AW T WG T WD W VD T T W D T T WD N A WV A B Y NI T U e -

APPENDIX D - ERRDR MESSAGES
LIS?ING 5RﬂﬁRS

TDO MANY ARGUMENTS

SIGNIEICANCE
The argument field of the ALIAS statement contains more
than one symbol.

ACTION
The ALIAS pseudo instruction allows only one symbol in
the argument field (ie, there can only be one linkage
symbol aliased to an internal entry point),

TOO MANY CHARACTERS IN SYMBOLIC NAME

SIGNIEICANCE
The symbol being processed has more than 31 characters
in it.

ACTION
The maximum symbol length is 31 characters, redefine
symbol to be less than 31 characters.

TOO MANY STATEMENT LABELS

SIGNIFICANCE
The instruction encountered can have only one symbol in
the label field.

ACTION
If the instruction is one of the following statements,
only one symbol in the label field is allowed: ALIAS,
IDENT, PNAME, FNAME or a <code generating statement
which has the symbol category 6 { this includes the
symbolic machine instructions).

"TRALABELY FIELD INVALID

SIGNIFEICANCE
In an I0U module, the f*tralabel' field of the END
pseudo instruction is not blank.

ACTION
The *tralabel* field of the END instruction is invalid
in an IDU module and must be blank.

TRUNCATION ERRDR

SIGNIEICANCE
The value that is being put into a field specified by a
CMD or VFD statement must be truncated to fit.



D17
CDC - ADVANCED SYSTEMS DEVELDOPMENT
86710717
CYBER 180 II Assembler ERS Rev: F
APPENDIX D -~ ERRDOR MESSAGES
LISTING ERRDORS

ACTION
This message is turned on by the wvalue 1 in the
argument field of the TRUNC pseudo instruction, If no
TRUNC instruction has been processed in the assembly
module the wvalue defaults to zero. Check the TRUNC
statement in the ERS to see what constitutes loss of
significance.

UNDEFINED OPERATION SUBFIELD

SIGNIEICANCE
The symbol in the operation field 1is not a pseudo
instruction, symbolic machine instruction, an intrinsic
or user-defined function ({ie. appeared on a FNAME
statement), a procedure definition (ie. appeared on a
PNAME statement) or appeared on a CMD statement.

ACTION
Check the symbol in the operation field for a valid
symbol that is either a pre-defined instruction or
function or is a user-defined procedure or function.

UNDEFINED SYMBOLIC MAME ¥symbolic_name"

SIGNIEICANCE
This error occurs when trying to evaluate an expression
or function where one of the operands or argument |is
undefined, i1t also occurs when a REF, DEF or DEFG
symbol has not appeared as a label for a code
generating statement.

ACTION
Symbol defintion occurs when a symbol appears in the
label field of a statement ( CPU, IDU or pseudo
instruction) wunless the label field is ignored or used
for some other purpose,

VALUE DUT-0OF~-RANGE

SIGNIEICANCE
The following conditions will cause this error:
= ANAME - argument field < 0
- BSS/BSSZ - argument field < 0
- CMD/VFD - value in the length field < O
- SET/EQU symbol -~ element number < 0
= LIST - argument field is incorrect value (check
ERS for legal value
- INT/DINMYT - arqument field must be in the following
ranges



D18
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 I1I Assembler ERS Rev: F

APPENDIX D - ERROR MESSA&ES
LISTIMG ERRORS

CPY - ~TFFFFFFF{16) < M < TFFFFFFF{16)
IDU - =7FFF(16) < M £ 7FFF(1%6)
-~ ORG = CPU = argument field < 0 or > OFFFFFFFF({156)
- I0U - argqument field < 1load_address {(from
IDENT statement) or > OFFF{16)
-~ DO/WHILE - argument field < 0
- SECTION -~ the offset, alignment, or maxsize values
are £ 0 or > OFFFFFFFF{16)
- SKIPTD - F2(1,1) < O
- PAGE - argument field < O
= TRUNC -~ argument field does not equal 0 or 1.
ACTION
Check ERS for each pseudo instruction for the 1legal
values,

X~-REGISTER DESIGNATOR

SIGNIFICANCE
An X-register is required in the instruction,
ACTION
Check register specifications for instruction in ERS.



CDC - ADVANCED SYSTEMS

DEVELDPMENT

CYBER 188 1T Assembler ERS

3

86710717
Rev. F

APPENDIX E

CYBER 180 CPU SYMBOLIC MACHINE INSYRUCTION SUMMARY

REF #

!

INSTRUCTION

LBYTS,s

LBYT, X0
LBYTP, j

LXI

LX

LBIT

LMULTY

LAI

LA

SBYTSss
SBYT, X0
SXI

5X

SBIT
SMULT
SAL

SA

ADDX
ADDR
ADDXQ
ADDRQ
INCX
INCR

SUBX
SUBR
DECX
DECR

MULX
MULR
MULXQ
MULRQ

- - -

{
E 32
|
§
!
!
!
!
|
|
I
|
|
1
|
{
|
J
|
i
1
|
1
|
!
!
|
|
|
|
|
|
|
!
i
|
1

OPERANDS

XkoﬁijlyQ
XkoAjeXisD
Xk o Q%

Xk sAjsXislabelx
XksAjys Yabel®

Xk Af»QsXO
XkoAJsQ
AkyAjsXi,D
Ak oA jeQ

XKsAjsXisD
XksAjsXiysD
XK.Aj;xi,iabe!*
Xk:Aj:!abe!*

| Xk AjsQsXO

XksAG,sQ
AksAjyXiyD
Ak,A],0Q

XkoXj
XkaXj
XkeXja@
XkaXjoQ
XKy j
XKy j

XkoX]j
XK X j
Xk s j
Xkoj

XK o X j
XK o X

XKoXjsQ
Xk sX§2Q

j0PCODE

!90-)9?
A4
86
A2
82
B8
80
AD
84

DB=->DF
AS
A3
83
a9
81
Al
a5

24
20
R’8
BA
10
28

25
21
11
29

26
22
B2
8C

- o 1 - - o S 1 > -



£2
CDC - ADVANCED SYSTEMS DEVELOPMENT
R6710/17
CYBER 186 11 Assembler ERS Rev. F
APPENDIX E
CYBER 180 CPU SYMBDLILC MACHINE IHSTRBC¥IBM SUMMARY

A - T A D A WD D AU AV YD e A T AP T D D WD DY AU T T T A O T T T U N N D A D, WD A WD T WD T S S O A A A A WO D oD D 20

REF #] INSTRUCTION { DPERANDS 10PCODE
..... e - - o - -
025 | DIVX | Xk,Xj I
034 | DIVR I XkoXj { 23
1 | i
035 | CcMPX I X1,XjeXk i 2p
036 | CMPR | X1,XjsXk I 2C
| | |
049 | CPYXX I XkoXj ! ob
- 053 | CPYRR I Xk»Xj } oc
050 | CPYAX | XkyAj | o8
051 | CPYAA | AksAj I 09
052 | CPYXA 1 AksXj 1 1A
054 | ADDAQ | Ak,Aj,Q { B8
055 | ADDPXQ | AksXjslabelx | 8F
056 | ADDAX I Ak,Xj ] 2aA
161 | ADDAD | AksAisD,y ] I A7
| | i
057 | ENTP ] Xksj { 3D
058 | ENTN 1 Xk, j i 3E
059 | ENTE | XksQ ! 8D
060 | ENTL | X0, jk I 3F
061 | ENTZ D § 3 1 1F
| ENTO | {
1 ENTS | 1
164 | ENTX 1 X1, jk 1 39
165 | ENTC | X1, jkQ | 87
169 | ENTA | X0, jkQ 1 B3
! | |
065 | IDRX I XkoXj i 18
066 | XNRX I Xk, Xj { 19
067 | ANDX I XkaXj I 1A
068 | NOTX ] XkoXj { 18
069 | INHX I XksXj | 1cC
070 | 1SOM | XkyXi,D, j¥= ] AC
071 | 1S08 I XkyXJeXisD 1 AD
072 | INSB 1 XkyXjeXiyD 1l AE
145 | MARK : XksX1, j } 13
]
097 | CNIF | XkyXj I 3a
098 | CNFI I XkoXj } 38
099 | ADDF | XksXj 1 30
100 | SUBF | XkoX] I 31
103 | MULF 1 XkyXj 1 32
104 | DIVF I XkoXj ! 33



E3
CDC = ADYVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 180 11 Assemb!ar ERS Rev: F
APPENDIX E
C?BER 180 CPU SYMBOLIC ﬁACHIME !NST?USYIQN SHMMARY

REF #1 INSTRUCTIDN | OPERANDS 10PCODE
----- o e e s B e e o o 2 o
114 | CMPF I X1aXjaXk I 3cC
105 | ADDD | XkyX] I 234
106 | suap I XkyX] 1 35
107 | MULD | XkoXj | 36
108 | DIVD ! XkyXj 1 37
| | |
062 | SHFC | Xk XjsXisD | a8
063 | SHFX I XkoXjsXiysD I A9
064 | SHFR I XksXjoXisD I AA
| | |
037 | BRXEQ ] XjaXk,labelx I 94
038 | BRXNE I XjeXk,ylabel® I 95
039 | BRXGT } X},Xk;label* i 96
040 1 BRXGE I XjsXk,labelx i 97
041 | BRREQ I XjsXkylabelx I 90
042 | BRRNE I XjaXk,label® 1 91
043 | BRRGT | XjsXkylabelx 1 92
044 | BRRGE | XjeXkslabel® ] 93
| 1 i
109 | BRFEQ | XjsXkylabel® { 98
110 | BRFNE I XjeXkslabelx 1 99
111 |} BRFGT ! XjsXk,label* I 9a
112 | BRFGE ] XjeXkylabel® ! 98
113 | BROVR | Xkslabel= I 9t
| BRUND ] ]
! BRINF | 1
| ] |
045 | BRINC | XjsXkslabel= ! 9cC
046 | BRSEG | X1,AjsAk,labelx ! 9D
047 | BRREL 1 Xk | 2
048 | BRDIR | AjoXk | 2F
134 | BRCR | jrkslabel® I 9F
1 ! |
115 | CALLSEG | label%,Aj,Ak ! B85
116 | CALLREL | labelx,Aj,Ak 1 B8O
117 | RETURN I k=% I 04
118 | POP I jk*= | o6
120 | EXCHANGE | jkex I 02
121 | HALT | ojks% I oo
122 | INTRUPT | Xk o= z 03
{ i
124 | LBSET ] XkeAjsX0 ! 14
125 | CMPXA 1 XksAjsX0,1abel*® | B4
126 | TPAGE | XksAj | 16
127 | LPAGE | XkyXjoX1 S & 4



E4
CDC - ADVANCED SYSTEMS DEVELDPMENT
86710717
CYBER 180 11 Assemb1er ERS Rev: F
APPENDIX E
CYBER 180 CPU SYMBDLIC MACHINE INSTRUCTION SUMMARY

D A A T A AT " WP O W VWD TN T T W D AP A W T N N D D W A T AT N O T - -~

REF #1 INSTRUCTION i OPERANDS 10PCODE
------ e e o i a0 S 2 S e i o i 2 o s o s

130 ] CPYSX 1 XksX]j | oF

131 | CPYXS | XkoXj ! oOF

132 | CPYTX I XkeXj | o8

136 | KEYPOINT I jaXk,Q I 81

138 | PURGE I Xjsk 1 o5

139 | EXECUTE,s I jakeisD 1Co->C7

| 1 {

074 | ADDN,Aj,X0 1 Ak, X1 SD DD | 70
156 | ADDI,Xi,D I AkyX1,j Do { FB
1 | |
096 | CALDF,Aj,X0 1 Xk aAi,D SD | F4
084 | CMPB,Aj,X0 I Ak,X1 sb ooy 77
085 | CMPC,Aj,X0 ] AkyX1,Ai,D SD DD | E9
0B3 | CMPN,A jsXO | Ak,X1 SD DD 74
155 | CMPI,Xi,D | AksX1,] DD I Fa
! | i
077 )| DIVN,Aj,XO ] Ak,X1 spop | 73
091 | EDIT,Aj,X0 1 AkyX1,Ai,D SD DD | ED
i | |
089 | MOVB,Aj,X0 I Ak, X1 SD DD | 76
154 | MDVI,Xi,D | AksX1,j DD I F9
092 | MOVN,Aj,XO 1 Ak, X1 sbpp | 75
076 | MULN,A j, X0 1 Ak, X1 sh oDy 72
| | !

078 | SCLN,Aj,X0 ] AkyX1,Xi,D SD DD | E4
079 | SCLR,Aj§,X0 | Ak,X1,Xi,D SD PN} ES
086 | SCNB,AjsX0 | AksX1,Ai,D no | F3
i i |
075 | SUBN,AJ, XD | Ak,X1 spop T
088 | TRANB,Aj,X0 | Aks,X1,Ai,D SD DD | E8

NOIE 12 #*-This field will be modified by the Assembler.
NDIE 13 *%-Parameter can optionally be leftr blank.

NOIE 22 SD and DD are Source Descriptor and Destination
Descriptor. They both have the format F,T,L,0.



F1
CDC - ADVANCED SYSTEMS DEVELUOPMENT

BA710/17
CYBER 180 I1 Assembler ERS Rewv: F
APPENDIX F
APPENDIX E

II_ASSEMBLER DIFFERENCES VERSUS CI _ASSEMBLER

A conversion program is provided to convert Cl CPU source
programs to I! CPl} source programs. Language differences
which can be converted are indicated by a "%¥ in the list.

SUMMARY of CI -> 11 CPU Assembler Differences

1. 11 version uses 64-bit inteqger precision in evaluating
operands and performing arithmetic and logical
operations.

2. Multiple source statements per line are not allowed.

3. % All symbol names may be 31 characters maximum length
{versus 8 for the CI Assembler).

4, MACHINE pseudo instruction type will identify CPU or
10U assembly type and corresponding object text
generation.

5. IDENT statement will have operands for 10U module.

6. * ADVF pseudo instruction is not valid in 11 Assembler.

7. % CYBIL data notation is used for numeric data.

8. Certain pseudo instructions are limited to the CPU
Assembler.

9, Mnemonics that reserve storage (like 855, INT, etc.)
reserve bytes in a CPU module and words in an 10U
module.

10, EBCDIC constants not available in Il Assembler,

11, XTEXT pseudo instruction not available.

12. ¥ Element number of symbol referenced as sinl] in I1I
Assembler versus s{n) in CI Assembler.,

13. * I1 Assembler scans to column 88 versus 72 for CI
Assembler,



F2

CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717

CYBER 180 I1 Assemb!er ERS ; Rev: F

APPENDIX F

IT ASSEMBLER DIFFERENCES VERSUS CI ASSEMBLER

T T T W - A W - . - -~ . "

16,

17.

18.

19,

20,

e

.

3

4k

I1 Assembler requires first statement input to be IDENT
and if a statement follows END then it must be IDENT,

GEN statements are combined with VYFD statements in 11
Assembler.

Byte alignment is not per formed for CMD or VFD
statements in Il Assembler.,

Only byte alignment is performed for INT, DINT, FLDOAT,
and DFLOAT statements in a CPU module.

LITERALS are not supported by I1 Assembler. Also not
supported are the LITORG statement and literal function
(L3).

The object code listing format statement (0JC) is not
supported by the II Assembler. Listing format of the
I1 Assembler is hexadecimal,

Real numbers (FLOAT & DFLOAT statements) must have a
decimal point in Il Assembler.



1
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 Il Assembler ERS Rev: F
CPU Instruction Directory

LBYYS - (Format = SjkiD Op Code = DO-D7 Ref# =

DOTIY 2 4 s o o 5 3 o 2 o 3 8 2 2 5 5 % » » » T=4
SBYTS = {(Format = SjkiD Op Code = D8-DF Ref# =

0{}3} L 2 » L 4 E 4 L » » » L ] » * - . £ ] - L 4 » - » » 7-‘"
LXT = (Format = jkiD Op Code = A2 Ref# = 005) . . . 7-5
LX - {Format = jkQ Op Code = 82 Ref# = 006} + o« o » 7-5
SXI ~ {(Format = jkiD Op Code = A3 Ref# = 007) « + = 7-5
SX = {Format = jk@ 0Op Code = 83 Ref# = 008) . + - -6
LBYT - {(Format = jkiD Op Code = A4 Ref# = 009) . . 7-6
SBYYT - {Format = jkiD Op Code = A5 Ref# = 011) . . 7-5
LBYTP -~ {(Format = jkQ 0Op Code = 86 Ref# = 013) ., . -7
LBIT - {Format = jkQ Op Code = 88 Ref# = 014) . . . 7-7
SBIT - (Format = jkQ Up Code = 89 Ref# = 015) . . . 1-7
LAI - (Format = jkiD Op Code = A0 Ref# = D16) . . » -7
LA - (Format = jkQ 0Op Code = B4 Ref# = 017) + . + & 7-8
SAI - {(Format = jkiD DOp Code = Al Ref# = 018) . ., . 7-8
SA - (Format = jk? Op Code = 85 Ref# = 019) + +» « & 7-8
LMULT - (Format = jkQ Op Code = 80 Ref# = 020) . ., 7-9
SMULY - (Format = jkQ Op Code = 81 Ref# = 021) . . 7-9
» .99 88 » » * > - » » » » » » * » * * * L d * » L d ?-9
ADDX = {(Format = jk DOp Code = 24 Ref# = 022) . .+ 7-10
ADDXQ - (Format = jkQ Op Code = 8B Ref# = 143) ., . 7-10
INCX - {Format = jk Op Code = 10 Ref# = 166} . . » 7-10
SuUBX - {(Format = jk Op Code = 25 Ref# = 023) < . 7-10
DECX = {(Format = jk Op Code = 11 Ref# = 167) . - o 7-11
MULX - (Format = jk Op Code = 26 Ref# = 024) . . » 7-11
MULXQ - {Format = jkQ Op Code = B2 Ref# = 168) . . 7-11
DIVX - {(Format = Jjk Dp Code = 27 Ref# = 025) . . . 7-11
ADDR - (Format = jk Dp Code = 20 Ref# = 027) .+ + o 7-12
ADDRQ -~ (Format = jkQ 0Op Code = BA Ref# = 028) . . 7-12
INCR - {Format = jk Op Code = 2B Ref# = 029) ., .+ » 7-12
SUBR - {(Format = jk 0Op Code = 21 Ref# = 030) . . » 7-12
DECR - (Format = jk Op Code = 29 Ref# = 031) . . » 7-13
MULR - {(Format = jk Op Code = 22 Ref# = 032) . .« » 7-13
MULRQ - (Format = jkQ Op Code = 8C Ref# = 033) ., . 7-13
DIVR = {(Format = jk Op Code = 23 Ref# = 034) . + » 7-13
CMPX - (Format = jk Op Code = 2D Ref# = 035} . . . 7-14
CMPR - (Format = jk Dp Code = 2C Ref# = 036) . » 7-14
. *H 29D * £l » - - - » » - L ] L d » E ] - L ] . - * L ] L 7-14
BRXEQ - (Format = jkQ Op Code = 94 Ref# = 037) . . 7-15
BRXNE = (Format = jkQ Op Code = 95 Ref# = 038) . . 7-15
BRXGY - {(Format = jkQ Op Code = 96 Ref# = 039) . . 7-16
BRXGE - {(Format = jkQ 0Op Code = 97 Ref# = 040) . » 7-16
BRREQ - (Format = jkQ 0Op Code = 90 Ref# = 041) . . 7-16
BRRNE = (Format = jkQ Op Code = 91 Ref# = 042) . . 7-17
BRRGT =~ {(Format = jkQ Op Code = 92 Ref# = 043) . . =17
BRRGE - (Format = jkQ 0Op Code = 93 Ref# = 044) . . 7-17
BRINC - (Format = jkQ Op Code = 9C Ref# = 045) . . 7-18
BRSEG = {(Format = jkQ Op Code = 9D Ref# = 046) ., . 7-18
BRREL - (Format = jk Op Code = 2E Ref# = 047) . .« » 7-18
BRDIR = (Format = jk Op Code = 2F Ref# = 048) . .« 7-19



2
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 I1 Assembler ERS Rev: F
» LR B N 4 » » » * » . » » » * » » £ » » » » » - » ?-19
CPYXX = {Format = jk Op Code = OD Ref# = 049) . . . 7-19
CPYAX - (Format = jk 0Op Code = OB Ref# = 050) . . 7-19
CPYAA - (Format = jk 0Op Code = 09 Ref# = 051) . . . 7-20
CPYXA - (Format = jk Op Code = OA Ref# = 052) + + » 7-20
CPYRR = {(Format = jk Op Code = OC Ref# = 053) ., . » 7-20
. LB B B B J * » » L * - » - - L » L » . * » » » » L] ?-20
ADDARQ - {Format = jkQ Dp Code = BE Ref# = 054) . . 7=-21
ADDPXQ ~ {Format = jkQ Op Code = BF Ref# = 055) . . 7-21
ADDAX - {Format = jk Op Code = 2A Ref# = 056) . ., . 7-21
ADDAD =~ {(Format = jkiD Op Code = A7 Ref# = 161) . . 7-22
» LR R R ] * » . £ ] L ] » » » » » > - » » » » * * » - ?'22
ENTP - (Format = jk Op Code = 3D Ref# = 057) .« o« » 7-22
ENTN - (Format = jk Op Code = 3F Ref# = 058) ., « » 7-22
ENTE = {(Format = jkQ OUp Code = 8D Ref# = 059) ., . . 7-23
ENTL - {Format = jk Op Code = 3F Ref# = 060) . . & 7-23
ENTX - {(Format = jk Op Code = 39 Ref#f = 164) . . » 7-23
ENTZ - (Format = jk Dp Code = 1F Ref# = 061) . « » 7-24
ENTO - {(Format = jk Op Code = 1F Ref# = 061) .+ « =24
ENTS = (Format = jk Op Code = 1F Ref# = 061) . + » 7=24
ENTC - {Format = jk@ Op Code = 87 Ref# = 165) + + = 124
ENTA - {(Format = jkQ Op Code = B3 Ref# = 169) . . & 7-25
L] 28 8 99 L ] » » » » * - * » L] * * » L > * » - L d * 7-25
SHFC - {(Format = jkiD Op Code = A8 Ref# = 062) . . 7-26
SHFX = (Format = jkiD Op Code = A9 Ref# = 063) . . 1-26
SHFR = {Format = jkiD Op Code = AA Ref# = 064) . . 7-26
- E 2R B 2 I » » - » » » » * - » . - E ] » L - » L . » 7-26
IORX = {Format = jk Op Code = 18 Ref# = 065) . . » 7-27
XORX = {Format = jk Op Code = 19 Ref# = 066) . . . 7-27
ANDX = {Format = jk Op Code = 1A Ref# = 067) .+ « » 7-27
NOTX = {Format = jk Op Code = 1B Ref# = 068) ., , . 7-28
INHX = {Format = jk Op Code = 1C Ref# = 069) . . . 7-28
- 2989 . » . » » . » * » » » * » L J » » » » - L 7'28
ISOM - {Format = jkiD Op Code = AC Ref# = 070) . . 7-29
IS0B - (Format = jkiD Op Code = AD Ref# = 071) . . 7-29
INSB - {(Format = jkiD Op Code = AE Ref# = 072) . » 7-30
MARK = (Format = jk Op Code = 1E Ref# = 145) . . . 7-32
- S9 69 > L » * - E ] - » . L » * » . L - L » - ® 7-32
ADDN - {Format = jk2 Op Code = 70 Ref# = 075) + + « 7-40
SUBN - (Format = jk2 Op Code = 71 Ref# = 075) o« o« & 7-41
MULN = {Format = jk2 Op Code = 72 Ref# = 076) . + = 7-41
DIVN - (Format = jk2 Op Code = 73 Ref# = 077) « « & 7-41
SCLN - (Format = jkiD2 Op Code = E4 Ref# = 078) . . 7-43
SCLR - (Format = 3jkiD2 Op Code = ES Ref# = 079) ., . 7-43
MOVN - (Format = jk2 Op Code = 75 Ref# = 092) . « 1-44
CMPN - (Format = jk2 Op Code = 74 Ref# = 083) , . . 71-44
L LI A - . ] » L d . . L ] - L] » E ] k] ® 2 ] * E g » 2 7-&5
CMPB - {Format = jk2 Op Code = 77 Ref# = 0B4) . » . 7-45
CMPC - (Format = jkiD2 Op Code = E9 Ref# = 085%5) . . 7-45
SCNB - {(Format = jkiDl Op Code = F3 Ref# = 086) . . T-456
TRANB - (Format = jkiD2 Op Code = EB Ref# = 088) . T7-47
MOVB - {(Format = jk2 Op Code = 76 Ref#f = 089) . . . 7-48
EDIT - (Format = jkiD2 Op Code = ED Ref# = 091) ., » 7-48



3
CDC - ADVANCED SYSTEMS DEVELOPMENT

' 86710717
CYBER 180 II Assembler ERS Rev: F
MOVI - (Format = jkiDl Op Code = F9 Ref# = 154) . . 7-49
CMPI ~ (Format = jkiDl Op Code = FA Ref# = 155) . . 7-50
ADDI - (Format = jkiDl Op Code = FB Ref# = 156) . . 7-52
*H R 2L - » . » - - * - » - » - * E ] » - » * * L ] ?-52
CNIF - {Format = jk Op Code = 3A Ref# = 097) . .+ » 7-57
CNFI - {Format = jk Op Code = 3B Ref# = 098B) . .+ 7-58
ADDF - {Format = jk Op Code = 30 Ref# = 099) . . » 7-58
SUBF = {Format = jk Op Code = 31 Ref# = 100) . , » 7-58
MULF - (Format = jk Op Code = 32 Ref# = 103) ., . . 7-59
DIVF - {(Format = jk Op Code = 33 Ref# = 104) . + & 7-59
ADDD - (Format = jk Dp Code = 34 Ref# = 105) . . . 7-59
SusdD - {Format = jk 0Op Code = 35 Ref# = 106) . + » 7-60
MULD - (Format = jk Op Code = 36 Ref# = 107) ., . 7-60
DIVD - (Format = jk Op Code = 37 Ref# = 108) o « 7-60
* L B I 2 » » » » » L] » EJ - » » » L » » * E ] £ - » ?-63
BRFEQ =~ (Format = jkQ Op Code = 98 Ref# = 109) . » 7-61
BRFNE = {(Format = jkQ Op Code = 99 Ref# = 110) . . 7-62
BRFGT - (Format = jkQ Op Code = 9A Ref# = 111) . . T7-62
BRFGE = {Format = jkQ Op Code = 9B Ref# = 112) ., . 7-62
BROVR = {(Format = jkQ Op Code = 9E Ref# = 113) . . 7-63
BRUND ~ {Format = jkQ Op Code = 9E Ref# = 113) . . 7-63
BRINF - {Format = jkQ 0Op Code = 9E Ref# = 113} . . 7-63
CMPF - {Format = jk Op Code = 3C Ref# = 114) . . & 7-63
L Y s e 8 @ * ®» 8 ® s e 2 e @ 3 @ 7-63
FXEtHTE - {?ormat = Sjkxﬁ ﬁp Code = CO-C7 Ref# =
139) L - » L ] - * * » E » * t 2 » . » E ] » > ?‘64
HALT - {(Format = jk Op Code = 00 Ref# = 121) . + » 7-64
SYNC - {Format = jk Op Code = 01 Ref# = 194) . . . 7-64
CALLSEG - (Format = jkQ 0Op Code = BS5 Ref# = 115) . 7-65
CALLREL - (Format = jkQ 0Op Code = B0 Ref# = 116) . 7-66
RETURN -~ {(Format = jk 0Op Code = 04 Ref# = 117) . . =67
POP - {(Format = jk fip Code = 06 Ref# = 118) + + + & =67
EXCHANGE = (Format = jk Op Code = 02 Ref# = 120) . 7-68
KEYPOINT - (Format = jk@ 0Op Code = Bl Ref# = 136) . 7-69
CMPXA - (Format = jkQ Op Code = B4 Ref# = 125) ., . 7-69
LBSET - (Format = jk Op Code = 14 Ref# = 124) . .+ . =70
TPAGE -~ (Format = jk Op Code = 16 Ref# = 126) . . . 7-70
CPYTX - (Format = jk Dp Code = 08 Ref# = 132) . . . 7-71
.89 89 L » - 2 L L] - L d E ] ® » » L 2 * L ] E L ] - 7-71
LPAGE - {Format Jk Op Code = 17 Ref# = 127) . + & 1-72
INTRUPT =~ (Format = jk Op Code = 03 Ref# = 122) . . 7-73
BRCR - (Format = jkQ Op Code = 9F Ref# = 134) . ., . T-74
CPYSX = (Format = jk Op Code = OE Ref# = 130) ., . 7-75
CPYXS = (Format = jk Op Code = OF Ref# = 131) . . » 7-76
PURGE = (Format = jk Op Code = 05 Ref# = 138) . . » =76
2959 99 » L L L : ] E 4 » - - » » L ] £ L ] » .‘ L] E . 7-77
ADDXV -{ Format = jkiD Op Code = 44 Ref# = 172) . 7-78
SUBXV = { Format = jkiD Op Code = 45 Ref# = 173) . 7-79
CMPEQV = ( Format = jkiD 0Op Code = 50 Ref# = 176) . 7-80
CMPLTY - { Format = jkiD Op Code = 51 Ref# = 177) . 7-80
CMPGEY - ( Format = jkiD Op Code = 52 Ref# = 178) . 7-80
CMPNEV - ( Format = jkiD Op Code = 53 Ref# = 179) . 7-80
SHFV - { Format = jkiD Op Code = 4D Ref# = 180) . . 7-81



COC - ADYANCED SYSTEMS

CYBER 180 Il Assembler

I0RY - { Format
XORV = { Format

ANDY -

CNIFY
CNF1IV
ADDFV
SUBFV
MULFY
DIVFY
SUMFY

gy iy ey gy~

{ Format

Format
Format
Format
Format
Format
Format
Format

MRGY - [ Format
GTHV - { Format
SCTV - { Format

DEVELOPMENT

E

L

Howou

R

WoWoWonoaonon

S

kiD Op Code
kiD Op Code
kiD Op Code
jkiD Dp Code
jkiD Op Code
jkiD Op Code
jkiD Op Code
jkiD Op Code
jkiD Op Code
p Code
jkiD Op Code
jkiD DOp Code
jkiD Op Code

j
j
]

LI I 1

L

Wow oHo#owouu

4
4
4

5
5
5

8 Ref#
9 Reft#
A Ref#

48
4C
40
41
42
43
57

Ref#
Ref#
Ref#
Ref#
Ref#
Ref #
Raf#

4 Ref#
5 Ref#
6 Reafi

W oW H

o n

Woiowuw o oun

181}
182)
183)
184}
185)
186)
187)
188)
189)
190)
191}
192)
193)

$ & @ B O ¥ B " & » &

4

86710717

Rev:

7-82
7-82
7-82
7-83
7-83
7-83
7-84
7-84
7-84
7-84
7-85
7-85
7-86

F



CDC - ADVANCED SYSTEMS DEVELOPMENT
CYBER 180 II Assembler ERS

10U Instruction Directory

LJ® - {(Format = fdm Op Code = 0001dm Size
bit, » - » » £ - » - * 2 * * » * » *
RJM -~ (Format = fdm Op Code = 0002dm Size
bit) » L] » » * » » - L t ] 2 L ] » . » L]
UJN - (Format = fd Op Code = 0003d Size =
ZJN - (Format = fd Op Code = 0004d Size =
NJN = {(Format = fd 0Op Code = 0005d Size =
PJN - (Format = fd Op Code = 0006d Size =
MJN - (Format = fd Op Code = 0007d Size =
SHN - (Format = fd Op Code = 0010d Size =
LDN - (Format = fd Op Code = 0014d Size =
LCN - (Format = fd 0Op Code = 0015d Size =
LDC - {(Format = fdm Op Code = 0020dm Size
bit; L - L - > - - » » » * » ] » £ *
LDD - {(Format = fd Op Code = 0030d Size =
LODL - {Format = fd Op Code = 1030d Size =
STD - (Format = fd Op Code = 0034d Size =

STDL -~ {Format = fd Op Code = 1034d Size =

18I - (Format = fd 0Op Code = 0040d Size =
LDIL - {(Format = fd 0Op Code = 1040d Size =
STI - (Format = fd 0Op Code = 0044d Size =

5TIL - {Format =
LDM - {Format =
bit’ 2 2 o

fd Dp Code = 1044d Size =
fdm Op Code = 0050dm Size

LDML ~ {Format = fdm Op Code = 1050dm Size
bit)l'.'."'.i%.l”ﬁ
STM -~ {(Format = fdm Dp Code = 0054dm Size
bit}l.’.."'.."’.”

STML - {Format = fdm DOp Code = 1054dm Size
bit)’l".'..ll.."..
ADN = (Format = fd Dp Code = 0016d Size =
ADC - {(Format = fdm DOp Code = 0021dm Size
bit)anaou:oo.,.oo.oo
SBN - {Format = fd Op Code = 0017d Size =
ADD - {(Format = fd Op Code = 0031d Size =

ADDL - (Format = fd Op Code = 1031d Size =
SBD - {(Format = fd Op Code = 0032d Size =
SBDL. - {(Format = fd Op Code = 1032d Size =
ADI =~ (Format = fd Op Code = 0041d Size =

ADIL - (Format = fd Op Code = 1041d Size =

SBI - (Format = fd 0Op Code = D042d Size =
SBIL -~ {(Format = fd Op Code = 1042d Size =
ADM - (Format = fdm 0Op Code = 0051dm Size
bit) L 2 L ] L d » * - » . » L o * * * »
ADML - (Format = fdm Op Code = 1051dm Size
bit) L * * ] » > L ] » » » » » L ] L] * t
SBM = (Format = fdm Op Code = 0052dm Size

bit’ » » . L ] £ Ld - » . - . E ] » - -* ®

32

W

L4 -

i

32
16 bit)
16 bit)
16 bit)
16 bit)
16 bit)
bit)
16 bit)
16 bit)
= 32

16

» - » .
16 bit)
16 bit}
16 bit)
16 bit)
16 bit)
16 bit}
16 bit)
16 bit)
= 32

. » - L d
- - £ ] L d

= 32
16 bit)
= 32
16 bit}
16 bit})
16 bit)
16 bit)
16 bit)
16 bit)
16 bit)
16 birt)
16 bit)
= 32

- L ] » *

i
)
~N

i
w
N

$ 8 ¢ B & & & & & 8 0

»

»

»

Ed

»

»

1

BH/710/17
Revs F

8-5

8~-5
B-6
8-6
8-6
8-6
8~7
8-7
8=7
2-7
8~8
8-8

8-8
8-8
8-9
8-9
8=-9
8-9
8=-10
8-10
8-10

8-11
8-11
8-11

8-11
8-11
8=-12

B-12
B~-12
8-12
8-13
8-13
8-13
B8-13
8~14
8-14
8-14

8-1%
8~-15
8-15



2
CDC ~ ADVANCED SYSTEMS DEVELOPMENT

86710717
CYRER 180 II Assembler ERS Rev: F
SBML - {Format = fdm Op Code = 1052dm Size = 32
bit, * » » L] » - » - * » - - » - » - L 4 E ] » £ » 8-16
L 288 98 * *» » » » t E 4 E J t » - - L] » » - » - » » 8_16
LMN = (Format = fd Op Code = 0011ld Size = 16 bit} . 8-16
LMC - (Format = fdm Op Code = 0023dm Size = 32

bit, s = s s s @ B-16

LPN - {Format = fd Op Code = 0012d Size = 16 bit) . 8-17
LPC - (Format = fdm Op Code = 0022dm Size = 32

bit) s a 8 8 8 A s & B 3 B B & =8 B B 2 s = = = 8-17
SCN - {(Format = fd Op Code = 0013d Size = 16 hit) . B-17
LMD - {(Format = fd 0Op Code = 0033d Size = 156 bit) . 8-18
LMDL - (Format = fd 0Op Code = 1033d Size = 16 bit) g-18
LPBL -~ {Format = fd Op Code = 1022d Size = 16 bit) 8-18

L}

LMI ~ {Format fd Op Code = 0043d Size = 16 bit) . 8-19
LMIL - {(Format fd Dp Code 1043d Size 16 bit) 8-19
LPIL -~ {(Format fd Op Code 1023d Size 15 bit) . 8~19
LMM = {(Format = fdm Op Code 0053dm Size = 32

bit) » - - » - - » - » L ] - » L J » * - ” » . * - &’2{)

[ ]
0o

L]

H

LMML - {Format = fdm Op Code = 10%3dm Size = 32

b;t) 2 8 9 & B = e = » & B 8 8 B = B 2 B 8 2 3=20
LPML -~ {Format = fdm Op Code = 1024dm Size = 32

bit) 5 8 & & ® % &2 ® 8 & S 8 P 2 8 B 2 vV 8 5 = 8-21
» L B I = ] » *® L » * E ] » 2 » * » L ] . » * . » . L ] » 8-21
RAD - (Format = fd Op Code = 0035d Size = 16 bit) . 8-21
RADL - (Format = fd Op Code = 1035d Size = 16 bhit)} B=22
AQD - (Format = fd {p Code = 0036d Size = 16 bit) . B=-22
ADDL - {(Format = fd Op Code = 1036d Size = 16 bit) B=22
50D - {(Format = fd Op Code = 00374 Size = 16 bit) . f=-22
SODL - (Format = fd Op Code = 1037d Size = 16 bit) 8-23

RAI = (Format = fd 0Op Code = 0045d Size = 16 bit) . 8-23
RAIL - (Format = fd [Op Code = 1045d Size = 156 bit) 8-23
ADI - (Format = fd Op Code = D046d Size = 16 bit) . 8-23
ADIL -~ (Format = fd Op Code = 1046d Size = 16 bit) B~-24
S01 - {(Format = fd Op Code = 0047d Size = 16 bit) . B=-24
SDIL - (Format = fd Op Code = 1047d Size = 16 bit) B=24
RAM = (Format = fdm Op Code = 0055dm Size = 32

i

bit) . . » L - L L s Ld ] * > - » L 4 L ] - . - L 4 - 3‘25
RAML - (Format = fdm 0Op Code = 1055dm Size = 32
bit) » - » L » - * » » - *> » - » * * - » * » -* 8-25
AOM - (Format = fdm Op Code = 0056dm Size = 32
bit) Ed »> - L L * - L * - * * - * L - * - - * » 8‘25

ADML - {Format = fdm Op Code = 1056dm Size = 32
bit’ » L ] » o » - t 3 » » L ] » ] » . L ] » » » * » L J 8—26
SOM - {Format = fdm Op Code = 0057dm Size = 32
bit, » ® B 8 8 ® 8 & 8 & 8 9 8 » 8 8 8 3 8 s @ B8~26

SOML = (Format = fdm Op Code = 1057dm Size = 32

bit) » - ® » * [ ] » » » * » t ] » - » - ] » k L ] 8-26
- LI IR B N » * L d - * - » Ed * 2 - E ] * L - » . - L d E 8”26
LRD - (Format = fd Op Code = 0024d Size = 16 bit) . 8-28
SRD - {(Format = fd 0p Code = 0025d Size = 16 bit) . 8-28
CRD = (Format = fd Op Code = 0060d Size = 16 bit) . 8-30

CRDL - {(Format = fd Op Code = 1060d Size = 16 bit) 8-31
CWD - {Format = fd 0Op Code 0062d Size 16 bit) . 8=-31

L]
]



3
COL -~ ADVANCED SYSTEMS DEVELOPMENT
86710717
CYBER 18D 11 Assembler ERS Rev: F

CHDL ~ (Format = fd Op Code 1062d Size = 16 bit) 8-31
CRM = (Format = fdm Dp Code 0061dm Size = 32 ’
bit; * * » - . » - » » » E N » - * L] - - L E ] * 3-32
CRML - (Format = fdm Op Code 1061dm Size = 32
bit) » » * » Ld - » - - » - * £ - 2 > » » » * » 8-32
CWM - {Format = fdm Op Code = 0063dm Size = 32
bit) 2 8 2 3 B2 s 8 s »
CWML - {Format fdm 0Op Code
bit) » * . >

it

it

* = 8 3 ®» = 3 8 85 3 s » g=-32
1063dm Size = 32
» 0 @ 8~33

L]
i

RDSL - {Format = fd Op Code = 1000d Size = 16 bit) 8-33
RDCL ~ {Format = fd Op Code = 1001d Size = 16 bit) B=34
* 29938 -* - » » » k J » » L4 - L 2 » & * - » L » » ‘8-31’
AJM - {Format = fscm Op Code = 00640cm Size = 32

bit’ . E - » » - - L d - » » - » » - » » - - * » 8'3’“
SCF = (Format = fscm Op Code 00641cm Size = 32
bit) k L ] - » -» » » * L » » - - » » * » - » » » 8-35
FSJdM - (Format = fscm Op Code = 1084Xcm Size = 32
bit) » » L » » » » . » L . » - » L ] » » » * - » 8-35
IJM - (Format = fscm Up Code 00650cm Size = 32
bit) » L ] » E 4 ” * E ] L ] » » » » L J * - » -* - » L - 8-35
FCJIM =~ (Format = fscm Op Code = 1065Xcm Size = 32
bit) - * 4 L - - - - L d » » - » - L ] L] - £ » * - 8'35
FJM =~ (Format = fscm Op Code 00660cm Size = 32
bi t’ » » - » - k » » - L ] £ ] » L ] » E J » » . L k] * 8‘36
EJM - (Format = fscm Op Code = 00670cm Size = 32
bit} * » . » L * L » » » » L » » » » & * » » » 8-36
SFM = (Format = fscm 0Op Code 00661cm Size = 32
s 2 » B8-36

H

i

bit’ ] > . . L ] - L d » - * -

CFM - {(Format = fscm Op Code = 00671cm Size = 32
bit) L L 4 L - » » - - - - . L ] - L] » L ] -* £ ] 8-36

i

00651cm Size = 32
s 8 » 8’37

CCF -~ (Format = fscm Op Code

bit, - £ » » L L4 - - L - L ] L 4 - » - » -

IAN = (Format = fsc 0Op Code = 00700c Size = 16
bit’ s ® ® ® ® 8 = & 5 8 B B 8 B 8 3 B B B 8 8-37
IAN = (Format = fsc Op Code = D00701lc Size = 16
bit’ 2 8 8 8 B 8 2 8 2 B B & 8 5 B B " B s » B8=-37
OAN - (Format = fsc UOp Code = 00720c Size = 16
bi t) » * * * » * » * * » E ] L ] * L » E * » * » » 8-38
OAN = {Format = fsc Op Code = 00721c Size = 16
bit) s 8 8 8 & 8 82 & ® & ® e 3 3 = ® ® 3 2 B » B-38
IAM - {Format = fscm Op Code = 00710cm Size = 32
bit) - L ] » * L 4 - - - - » 2 L d » » » * » » » » » 8-38
IAPM -{Format = fscm Op Code = 10710cm Size = 32
bit) L d L d L ] » » » . » L » * L - * ] L] - L » L ] » 8-'{’1
OAM - (Format = fscm Op Code = 00730cm Size = 32
bit, » L L L4 L * L * L 4 » * L] » L » » . * - - B-t’l

OAPM - (Format = fscm Op Code = 10730cm Size = 32
BIit) o o o o o o s s » = » + s » B=-42
ACN - (Format = fsc Op Code
bit) .« .+ &

- £ b 4 » -

00740c Size = 16

s 8 = B8~42

ACN - (Format = fsc Op Code = 00741c Size = 16
bit’ e 8 5 & B *2 8 8 S 2 B S = B ® B 8 B 8 » » B=42
DCN - {Format = fsc Op Code = 00750c Size = 16



DC - ADVANCED SYSTEMS
CYBER 180 I1 Assembler

bit’ s = »

DCN - {(Format =
bit) .+ .
FAN =~ {(Format =
bit’ *» E ]
FAN - {(Format =
bit) o+ « &
FNC - {Format =
bit) .+ « &
FNC = {Format =
bit) .+ »
EXN - {(Format =
MIN - {Format =
MAN - {(Format =
PSN = {Format =
KPT - {(Format =
INPN - {Format =

DEVELOPMENT
ERS

fsc Op Code

fsc

]

-

1}

E »
Code
- £ ] L ]

Code

Op
fsc Op

fscm Op

it

Code
fscm Op Code

] . » * -

Lode
Lode
Code

fd Op
fd Op
fd Op
fd Op Code
fd Op Code
fd Op Code

oW oH oW oH

00751c Size
D0760c Size
t ] L 3 - ] » *
D0761c Size

00770cm Si

»

00771cm Si

- » * - - »

* » » - - »

00260X Size
00261X Size
00262X Size
002400 Size
00274 Size

1026d Size

=

i

e

ze

32
32

»  J

»
ze

L]

]

bit)
bit)
bit)
16 bit)
16 bit)
16 bit)

Pl ko
[# 8= W« S JENE TN NN SRS | NI

[

-«

B6/710717
Rev: F

8-43
8-43
8-43
B-44
8-44

B=44
B-44
8-45
8-45
8-46
B-46
B-46
8-47



1
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 I1 Assembler ERS Revs: F
Table of Contents
1.0 SCOPE . 4 & 2 8 3 B 2 2 = 8 % 2 3 B 5 8 B 3 3 8 i-1
1.1 APPLICARLE QQCUMENTS s 2 ® ® 3 3 8 3 B ¥ 5 B B % @ 1-1
2.0 LANGUAGE STRUCTURE s & 5 » 8 3 B2 =3 2 " 8 9 2 B3 9 » 2=1
221 STATEMENT o o » o 5 5 2 s » o 2 2 2 s 5 o s » 2 » » 2=-1
2'1’1 FIELQ » * - - » » . » L » L L * » L L4 * - - - L 2"}-
2.1.2 SUBFIELD * 8 3 2 8 3 3 2 » ® 3 5 8 B s B e b = 2=2
2.1.3 NULL FIELD s 3 2 2 3 % s 8 2 3 % & 3 8 »@ ® ® ® 2=2
2+2 COMMENTS 2 3 8 ® 8 8 3 2 8 2 8 ® » 5 B3 2 8 8 3 ® » 2=3
24221 STATEMENT CONTINUATIDN " s 2 2 8 8 e 3 3 s 3 @ 2=~3
23 THARACTER SET 4 o 5 ¢ 5 o 5 5 2 2 2 2 » » 5 » s » » 2=4
22% SYMBOL DEFINITION 4 o 5 5 o o 5 o 2 » s s o 2 » » » 2=5
2oftal LINKAGE SYMBOLS o o 2 ¢ » o » 52 5 2 2 o s » s » 2=5
2eha2 SYMBOL ATTRIBUTES o o 5 s 2 2 5 3 o o 5 s 3 » » 2=5
2+5 REGISTERS 4o o 2 o o s » 2 2 s o 2 5 2 3 8 » 2 » » » 2=1
2:6 DATA NOTATIDN 2 o o o 2 s 5 5 5 % s 3 2 5 5 5 s » » 2=7
2+H6s1 SELF DEFINING TERMS o o o o o s o s s 2 s » » » 2=7
2ebHe2 NUMERIC DATA NOTATION 2 o o s o s » 2 2 3 o » » 2=9
2:7 EXPRESSITNS o s 5 » 2 s 5 5 o s o 2 5 2 o s 2 » o » 2=11
2’7 }. TFRHS L ] » Ed » L ] - - - - - > - £ ] - L J » * * ] E ] » 2-11
22742 ORDER OF EVALUATION o o o 5 o o 5 o 2 s s s s » 2=-12
2+7+3 THE LOGICAL NOT DPERATOR » 5 3 8 » s 8 B 2 @ @ 2=13
2eTets LOGICAL AND, DR, EXCLUSIVE R 4 4 s s o s s » & 2=14
2275 THE BINARY SHIFT DPERATOR 4 5 4 o s s 5 2 + o » 2=14
2e7eH THE COMPARISON OPERATORS o o o o 5 5 5 s s » » 2=14
2.8 ABSOLUTE AND RELOCATABLE TERMS AND EXPRESSIONS . & 2=15
30 PROGRAM STRUCTURE o 2 o » 5 o » 2 2 3 o 5 32 » s » » 3-1
3.1 PROGRAM SECTIONS S 5 8 2 B 8 3 2 2 % B 2 B s s 3 3-1
3.1.1 DEFAULT SECTIONS " 8 & 3 B 32 3 » = . ® 2 9 a2 8 @ 3-2
32142 THE BINDING SECTION o o 5 o 5 2 5 o 2 » s 2 » » 3=-2
3,2 SECTION CONTROL COUNTER 4 o s o o s s 5 2 s 5 s » » 3-3
3.2.1 FORCING PARCEL ALIGNMENT 4 o s o o 5 s o s 2 » 3-4
4.0 PSEUDD INSTRUCTIONS o s o s o s 5 o 5 5 s 2 3 2 s » 4~1
4.1 MODULE IDENTIFICATION o o o o o o s o 5 o 5 3 » s 4=1
4o1o1 IDENT = MODULE IDENTIFICATION o o o o o o o o o 4=2
4,142 END - END MODULE e 2 5 » 8 e s 8 2 3 ® 3 0 a = 4=2
4 2 EINARY CBNTRBL - » L] * » L - . » L J * » L » » » 6-3
4,21 MACHINE - DECLARE QOBJECT PRUCESSQR TYPE o » o 4=3
443 SYMBDL ASSIGNMENT & &+ » & » 2 8 9 5 2 B W ® s @ 4=b
4.3.1 SET/EQU - ASSIGNMENT OF VALUES ® s » & s ® a2 4=-5
443¢2 ANAME DIRECTIVE 4 o o o 2 o o 2 o s s 8 s 8 » » 4-8
4,33 ATRIB DIRECTIVE o 4« s s % 2 8 9 s *2 2 2 8 e 4-8
4,3.4 USE DF THE ANAME AND AT?IB PSEUDO INSTRUCTIDONS 4~9
4.4 MODULE LINKAGE 2 8 85 2 6 8 8 2 B 3 8 8 8 ® s 5 B 4=-9
44,1 DEF,DEFG-DECLARE ENTRY SYMBOLS & o s » s o o 4=~10
Ho%,2 REF~DECLARE EXTERNAL SYMBNOLS s 8 % 8 ®» 3 = s » 4=~10
Ha.4,3 ALIAS - EQUATE LINXAGE SYMBAOLS 2 8 8 8 3 ® = = 4=-11
Holhtoh ADDRESS ~ FORM CYBER 180 ADDRESS o o o s o o » 4-11



2
CDC - ADVANCED SYSTEMS DEVELOPMENT

86710717
CYBER 180 Il Assembler ERS Revs F

4.5 DATA GENERATION o o o 5 s 2 2 o 2 2 2 3 3 8 2 3 % » 4-13
4,5,1 BSSZ~RESERVE ZERDOED STORAGE 4« 4 s s s o » s s 4-13
2522 INT ~ GENERATE INTEGERS o o ¢ 5 2 o » 2 2 » » » 4=14
44543 DINT = GENERATE 64-BIT INTEGERS 4 o o o s s s » 4-14

4.5.% FLOAT = GENERATE SINGLE PRECISIDN
FLOATING-POINT NUMBERS * & 8 3 3 ® » = 2 B a2 4=-15

4.5.5 DFLOAT -~ GENERATE DOUBLE PRECISION
FLOATING-POINT NUMBERS » & S 3 s ® 8 = 2 2 3 3 4-16
425.6 PDEC - GENERATE PACKED DECIMAL DATA + 2 » o s & 4~16
4,5.7 CMD = GENERATE BIT STRING 2 o 5 o s 2 s 2 2 s » 4=-17
4+5.8 VFD =~ VARIABLE FIELD DEFINITION o o o o o s s & 4=-18
4.5,9 TRUNC - TRUNCATE 2 8 5 A 2 A B B2 " A B ¥ 5 2 » 4=-19
4.5,10 INFOMSE L B N D Y T I R S ST S T T T T T 4=-20
4.6 ASSEMBLY CONTROL *» & » 2 % 5 8 82 8 ® 2 3 2 @ 4=20
4.6.,1 DOJELSE/DEND PSEUDD INSTRUCTIGNS o 2 % 3 s s » 4=20
4602 WHILE/Z/ELSE/DEND PSEUDDO INSTRUCTIONS o o 5 o o » 4=23
4,.,6.,3 SKIPTD ~ SKIP CODE 2 & 32 8 ® 8 B 3 8 ® B ® % B 4= 14
4,7 ERRDR CONTRIOL & o 2 o s s 5 2 5 3 s o 5 5 » 3 o s » 4=26
4.7.1 ERROR PSEUDD OPERATION . 8 2 ® B % 5 B s 2 e » 4L=27
4.7.2 FLAG = CONDITIONALLY SET ERROR FLAG o o o o o 4=-28
4.8 LISTING CONTRDL « o - a 3 ® 8 2 8 3 ® 3 » s » 4-28
4.,8,1 LIST - SELECT LISY GQIIDNS s ® 8 e 8 8 e » a0 4=28
H.8¢2 PAGE = EJECT PAGE » o o 5 5 5 s o 5 2 o 2 o » = 4=30
4.8.3 SPACE = SKIP LINES o s s 5 s 2 2 s 2 s 3 3 o » 4~30
484 TITLE =~ ASSEMBLY LISTING TITLE o o o o o o » 4=31
44.8,5 XRSY = CONCORDANCE SELECTION s s o s 5 o o » 4-31
4.9 SECTIONS ® 8 % e 8 3 B & B 8 93 4 8 B 8 W e 3 2 B » $=32
4,9,1 SECTIGM - FS}—ABLISH BILDOCK o o o o o o » ¢ » » » H=32
4,9,2 USE = USE BLOCK o+ o+ » 8 2 2 3 s 3 e 8 3 9 4=34
4,9.3 ORG - SET SECTION CGUNTER s s % 3 2 s » 3 2 s » 4=15
4.9.,4 POS - SET BIT POSITION IN THE SECTION COUNTER & 4-35
i,0.5 BSS = STORAGE RESERVATION 4 5 2 5 o » 2 s » = » 4=36
4,9,6 ALIGN = FDRCE SECTION CDUNTER ALIGNMENT o+ » » 4-37
#.1{3 prCEDURES * t ] » » - L ] » » * t ] » - » t ] * E ] L ] * » » 2"37
4,10.,1 PARAMETER REFERENCING WITHIN PROCEDURES .+ » » 4-38
4,10.1.1 Parameter Identification Examples . . + .« 4-39
4,10.2 PROC - PROCEDURE HEADING o o o » o 2 s » 2 » » 4-39
4,10.,3 PNAME - PROCEDURE NAME DEFIMNITION « o o o o o 4=40
44,10.,4 FNAME = FUNCTION NAME DEFINITION o o o s o o 4-41
4,10.5 PEND —~ END PROCEDURE DEFINITION o o o s + o h=42
4,10.,6 LOCAL - ESTABLISH LOCAL SYMBOLS o o o o o o » 442
4.,10,7 DPEN = DECLARE TEMPDRARY SYMBOLS o o o o o o » 4=43
4,10.8 CLOSE - ERASE TEMPORARY SYMBOLS « o s o o » b4=44
4,10.9 CONT = NO OPERATION o o o o 5 ¢ 5 o 2 s s » @ =i 4
4410410 PROCEDURE CALLS o 4 o o o s o s s o » o » o » 4=4%5
4.,10.,11 PROCEDURE EXAMPLES S 8 2 P e B s 2 2 8 2 @ 4=4%5
4,10.11.1 Procedure Definition .+ + 2 o o o o o 2 » 4=46
%,10411.2 LOCAL Directive?s UUSe o+ « s o o o s 3 = » 4=47
5.0 ATTRIBUTE FUNCTIONS % o 2 o 2 2 5 o o & s 2 s s s » 5=~1
5e1 LANGUAGE DEFINED ATTRIBUTES o o o s s ¢ o o s 3 o » 5-1
5«11 SYMBOL CATEGORY ATTRIBUTE = SC2 4 o o s s s o o 5-1
5.1.2 ADDRESS MODE ATTRIBUTE * 8 8 ® ® 3 B e 2 8 * @ 5=3



3
CDC - ADVANCED SYSTEMS DEVELOPMENT

B86/710/17
CYBER 180 II Assembler ERS Rev: F
5213 VALUE ATTRIBUTE 4 o 5 o o s o s 5 2 2 3 % » » » 5-3
514 LENGTH ATTRIBUTES +» « & * s 2 s 3 e s » s = S5=4
5125 STARTING BIT POSITION AT?RIBHTE e s s 8 % s s » 5=5
S5elet ELEMENT NUMBER ATTRIBUTE & o 5 2 » 2 » 5 s o » - B5=5
5.1.7 LAST ELEMENT NUMBER ATTRIBUTE o o o 2 o » 2 » @ 56
51.8 SYMBDL NUMBER ATTRIBUTE o o s o 2 3 2 2 » 3 » » 5-6
5219 RELODCATION ATTRIBUTE » 2 2 8 8 8 8 3 B 8 s 2 = HB=6
5.2 PROGRAMMER DEFINED ATTRIBUTE FUNCTIONS « o s + o » 5=7
5.3 SYMBOL ATTRIBUTE EXAMPLES 4 o s 2 2 2 s 2 5 2 s & » 5=-8
6.0 OFFSET FUNCTIONS (#WOFF, #HOFF, #POFF, #BOFF) . . o 6-1
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIDONS « . « » -1
Tal SYMBOLIC NOTATION o s o 2 2 o s ¢ 2 2 2 2 5 2 + s » 7-1
7.2 CPU INSTRUCTION FORMATS 4 o o 5 o 5 » o 2 s » » s » =2
7.3 GENERAL CPU INSTRUCTIONS o s s o o o » 5 s » s 2 » 73
T7.3.1 LOAD AND STORE s s =2 » s s 3 s . » 9 » 7-3
743211 LBYTS,SBYTS~Load/Store Bytes, Xk Lenqth
Per S o o o 2 2 3 35 2 8 8 8 3 8 8 % » » s s =4
Te321.2 LXI,LX,SXI,SX'Load!Store Word, XK s o o o » 7-5
7.3.1.3 LBYT,SBYT-Load/Store Bytes, Xk Length Per
X0 s 2 2 2 8 e = B m B 3 8 8 5 3 3 ® 8 s » 75
T+3.1.4 LBYTP-Load Bytes, Xk Length per j « o « « & 7-7
7+32145 LBIT,SBIT~Load/Store Bity, Xk o s o o s » o 7
Te3s1.6 LA!,LA,SAI.S%’LO&dIStOre,Ak s & =2 ® ® 8 5 = -7
7e3als7 LMULT,SMULT~Load/Store Multiple Registers . 79
72322 INTEGER ARITHMETIC 2 2 2 2 % 8 8 B .8 8 » . ® s s -9
723s2:1 ADDXADDXG,INCX-Integer Sumy XK o« o » o » o 7-10
Te3a2.2 ﬁUBX,BECK“Iﬂteger Oiffereﬂce, Xk * & » e 7-10
T23e2:3 HULX,”ULXQ“Intﬁgef prOduCty Xk 2 & » s 8 711
Te32244 BIVX'Iﬂtegﬁf QUOLICNT o o o o o 2 s 2 » » 7-11
T+322+5 ADDRLADDRQ, INCR-Integer Sum, Xk right . . . 7-12
743426 SUBR,DECR-Integer Difference, Xk Right ., . 7-12
7.3.2.7 MULR,MULR@-Integer Product, Xk Right . . . 7-13
7+3.2+.8 DIYR~Integer Quotient, Xk Right * s 8 s e o 7-13
723229 CMPX,CMPR~ Xﬂtﬁger COmparﬂ 2 % 2 8 ® 3 2 * » 714
7233 BRANCH . 5 o B 8 B 8 B s T-14
7233.1 BRXFQ,BRXNE,BRXGT BRXGE—Branch Conditional 7-15
7+¢3.3.2 BRREQ,BRRNE,BRRGT,BRRGE~Condi tional, X
Right » 8 ° ® 3 B ® 3 3 B 8 % = e s B 3 » 7=16
Te3.3.3 BRINC-Conditional, with Increment « « + « » 7-18
Te3:.3 .4 BRSEG‘CO“ditiona" AK o o o s 2 2 5 2 o s » =18
7.3.3.5 BRREL-Unconditional Branch, (P} indexed . » 7-18
7.3.3.6 BRDIR-Unconditional Branch, (A) indexed . . 7-19
7+3.4 COPY s 8 % 9 8 8 ® & B 8 B e 5 % B " 8 2 3 B B 7-19
Te344.1 CPYXX*ﬂopy to Xk from Xj 2 s e e 2 2 & » » 7-19
Te3atta2 CPYAX'ﬂOpy to Xk from hj » s % 2 2 2 s s » 7-19
T+344,.3 CDYAA°tOPy to Ak from Aj ® s 8 2 ® s a2 e = 7-20
Te3athah CPYXA”COPY to Ak from Xj 2 9 8 s ° » 2 8 » 7-20
7+3.4.,5 CPYRR-Copy to Xk Right from Xj Right .+ « & =20
7+3.5 ADDRESS ARITHMETIC 4 s o o o o s o 5 o o 2 o » =20
7¢3.5.1 ADDAQ-Copy A with Displacement . . P 7-21
7«3.5.2 ADDPXQ-Copy P with Indexing and



4
COC - ADVANCED SYSTEMS DEVELDOPMENT

86710717
CYBER 180 IY Assembler ERS Rev: F
QISQ]BCPmeﬂt 2 8 8 8 B » 2 ® 3 2 s 2 8 s = 7-21
7432523 ADDAX~-A !ndexad 2 » 3 8 8 3 ® s % s 8 s » = 7~21
7e3+5.4%4 ADDAD-Copy A with Displacement, Modulo . . 7-22
T232H ENTER o s o » » 2 2 3 » * s 3 8 B 85 =8 » 8 9 7-22
Te3s641 ENTP, ENTN'FﬂtBY } s 8 5 » 3 5 & s 32 5 5 » 8 7=-22
T2325e2 ENTE-Enter Q s 2 & = 3 3 8 3 5 ® 3 3 s * » =23
T+3e643 ENTLH,ENTX~Enter }k s 2 2 a2 s ® s 2 s 8 s 3 7-23
Ts3eHet ENY?,FNTQ;EHTS‘EﬂtPf Sigﬂs » * ® 8 ® @ # » 7=2%4
Te3aba5 ENTC~Enter X1 ij s 5 3 » s 8 32 =3 3 2 s & = T7-24
T+3ab25 ENTA-Enter X0 ij L T R T R I R T T 7=-25
T34 SHIFT 4 o 2 5 5 5 2 % 32 5 5 5 s s 3 3 5 % » s » 7-25
Te327.1 SHFC-Shift (Xj) to Xk, Circular « « o o s & 7-26
7+34a742 SHFX,SHFR~Shift (Xj) to Xk, End-0ff . . . & 7=-26
T3.8 LOGICAL « + & 2 8 8 2 e s 2 3 8 ® ® 2 B » ® 7-27
T7+3.8.,1 IDRX,XORX, ANﬁX Logical Sum, Diff. and

Prod. » ® B 8 8 8 » s 2 8 3 ® ® 3 B 3 ° 7-27
T+3.8.2 NOTX'LOQICH‘ ﬁomp!ﬂmﬁﬂt 2 s s 8 8 ® 3 # = 7-28
Te3:84s3 INHX~ Loglf31 Inhibit s 8 ® ®» = ® ® ®» 3 s » =28
T7+3+% REGISTER BIT STRING o s o # s s 5 » 5 ¢ o s s » 7-28
T743e49s1 ISOM=Isolate Bit MASKk o o o » s » 5 s 2 » » 1-29
7.3.92.2 ISOB-Isolate into Xk e 2 s 3 2 3 ® ® 3 3 7=29
T723:9.3 INS&‘!“S?rt INTO XK o o o 2 2 o 2 s o » & » =30
724310 MARK=MARK TO BODLEAN 4 s o 52 o 2 o 2 # 5 2 s » 7-30
7.4 BUSINESS DATA PROCESSING INSTRUCTIDNS s o s s » » » 7-32
Tohal GENERAL DESCRIPTION 4 o o o o s 2 o o 5 o 5 o s 7=-32
Tahalal ﬂparatxﬂn Codes o« s o o s o 5 2 32 s 2 o » » T=34
Te4+2 DATA DESCRIPTORS 4 o o o o 5 s o s o o » 2 o » T=34
T+4.2.1 BDP Descriptcf' D Field ¢« o o o ¢ s » 2 » o T=35
7:%:2 2 BDP ﬂpPraﬂd Type’ T Flﬁld e 5 & ® 8 8 8 » =35
Teltea2a3 BDP GPPrand Address, ) F!e‘d 2 5 2 s 8 8 » 7-37
Ts4e2+% BDP DOperand Length, F and L Fields .+ + + » 7-37
Tete3 DATA AND SIGN CONVENTIDNS o o o o s o s s o s » 7-38
Toltald BDP NUMERIL 4 o 2 o o 5 2 o 2 s o 5 » % % 2 5 7-38
7e4+%.1 Arithmetic s 2 ® ® % 2 2 s ® & 8 3 8 3 3 » 7=39
Tetabe2 ADDN,SUBNyMULN,DIVN=-Arithmetic o+ o+ ¢ o » T7=40
Tehoattad SCLNySCLR=ShIfL « 2 o o s 2 o 5 2 5 2 s » » T-41
Tehabalh MOUN-MOVE o o 2 5 % + 5 o s s o » 2 » s » » T=44
Tehattad CMPN‘Comparison 3 » =2 e B 8 % 8 ® 3 3 2 a » T=44
7.4.5 BYTE * 8 3 ® 8 % 8 ® 8 8 s 2 2 = B B 8 0w 2 8 » T7-45
TahteHal CMPB, ﬁﬁ?C-Compari 500 s 2 » ®» 8 8 s ® s ® » =45
Tebe5a2 SCNB'Byte Scan » 5 8 5 % & e 8 3 » 8 3 8 ® T-4%6
Te445.3 TRANB=Translate « +« » s » o o s s » o » » » T=47
TetaDald MOVB=MOVE 2 2 s o o o 5 5 2 0 o 5 % 2 » o » T-48
T244545 EDIT-EAIL o o o o » o o 5 2 o » s o » » o » T-48
.?.4.6 IMMEDIATE DATA ® 8 o ® % 8 8 8 e % o 8 B a = » =49

T+hebHs1 MOVI-Move Immed Data (Xi) Right plus O to
DUAK) o 2. ¢ 32 o 5 2 o 2 5 » s s » 2 3 s » » 1-49

Te4eb+2 CMPI-Compare Immed Dara{Xi) Right plus D
to D(AKk) » 2 2 e 2 3 8 B e 9 8 » s A @ 7-50

TeeHe3 ADDI-Add Immed Data (Xi) Right plus D to
DEAK) o o o o 2 s 2 3 3 s ® B s 8 » » 7-52
7.5 FLOATING POINT INSTRUCTIBNS s * 8 s 3 8 e s- 0 s o @ 7-52
T+5e1 GENERAL DESCRIPTION o o o o o 2 5 o o 2 o o » = 7-53



5
CDC - ADVANCED SYSTEMS DEVELOPMENT

B6/710/17
CYBER 180 II Assembler ERS Rev: F
Te522 FORMATS s s » » » 2 8 2 8 8 9 s 8 8 2 e s a2 » 7=-53
753 EXPONENT ARIYH”ETIC s * 2 e B & 3 B 2 B # » 2 * 7-56
TeS5.4% NORMALIZATION . & s » 5 8 1-56
7.5.5 DDUBLE PRECISIDN REGiSTEP QFSIQNﬁTQRS s s s = s =57
75,6 CONVERSION » 3 8 8 » & s 8 5 & 8 » *» 2 8 2 e 7-57
725621 CNIF-Convert From Integer to F!cat;ng
PoInt 2 s s s s 2 2 s 5 5 2 o 2 o & 5 2 = =57
7+5+6.2 CNFI-Convert Floating Point to Integer ., . 7-58
T=5.7 ARITHMETIL * » B 8 » ® 3 % B 2 ® 8 3 S * 2 s 7-58
TeBaTsl QEQFySﬁBF'Aﬂd/SUbtfacty Xk * # 8 5 8 = 8 @ T=h8
74572 MULF-Product to XK » 8 = 8 ® B B2 8 B 3 9 » 7-59
75:7.3 DBIVF=Quotient to XK « ¢ s o o 2 » » 5 2 s » 7-59
Te5+7«4 ADDD,SUBD-Add/Subtract, Xk and Xk+l . . + & 7-59
TeDaTe5 MULD-Product to Xk and Xk+1l o o o » s » » =« 7-60
7:5.7.6 DIVD-Quotient to Xk and Xk+1 I T ?'&Q
758 BRANCH » » *» 8 8 s 3 32 » = 7-60
7+5.8.1 BRFEQ, BRFNEsBRFGT’aﬂFﬁﬁ Compare and Branch 7-61
T7+5.8.2 BROVR,BRUND,BRINF-Exception Branch . ., + « 7-63
T25.8.3 tﬁpF’COmpafﬁ 2 2 3 8 2 3 3 B8 B3 s B B % s * 7=63
Te6 SYSTEM INSTRUCTIONS o o 5 o o » 3 3 » 5 3 3 5 » » » T-64
Tebal NON-PRIVILEGED MODE 4 4 o o o s o o o 3 s » o » T-64
Tabelal EXECUTE, HALTy SYNL 5 4 o o o 2 o 5 s o o » T-64
Tebels2 CALLSEG,CALLREL~Call 2 9 8 s e 8 2 3 = = » T-64
T+6+1+3 RETURN I I I I I I T L T I S S I R T-67
TaBalatt POP 2 o o 5 5 o 5 5 2 o 5 2 5 » 2 5 5 o » T-67
T+H21.5 EXCHANGE a % s 8 ® 8 B2 B 8 % B B 8 9 2 2 @ T7-68
761,56 KEYPOINTY % 8 2 82 s T B 3 8 B * 2 5 2 9 » 7-68
Tebhala? CHPKA-Compare Swap " 5 3 3 8 ® ® s ® 8 ° » T-69
7eH521.8 LBSET~Load Bit 2 8 8 8 3 » B 8 ® B % s » » T-70
Ts621.9 TPAGE~Test Page 2 ® 8 8 8 B s 8 8 = 2 8 o B 7-70
T+6.1+10 CPYTX-Copy Free Running Counter (TIME) to
x L 2 » . L ] £ t d » » - L » - * » £ ] * * L ] E - 7_71
Teba2 LOCAL PRIVILEGED MODE & o o o 5 5 5 » s s o 2 o 7-71
Tebelel LPAGE~Load Page Table Index + « s s o o o » 1=-72
Te643 GLOBAL PRIVILEGED MODE o o o o o s o 5 2 » s = 1-72
TeHa3sl INT&UPY‘InterrUPt Processor » » s s s » ¢ o 7-73
T.6e% MIXED MODE 2 8 e % 8 ® B 8 B 2 s B " P B 9 e 7-73
7+6+.4.1 BRCR=-Branch and Alter Condition Reqister . T-74
Tebo4e2 CPYSX,CPYXS~Copy State Registers . « « s =75
Tebshe3 PURGE~- PUng Buffer s 2 % 8 35 2 s . e s w® » =76
T+7 VECTOR INSTRUCTIDONS o o ¢ s o o 5 o s s 5 o » s » = =71
T«7+1 GENERAL DESCRIPTION + + & » s o ® e 3 8 » =77
T+7.2 COMMON ATTRIBUTES 0OF VFCTﬂR !NSTRUCTIU&S « » = 177
TeT7+3 INTEGER VECTOR ARITHMETIC o o o o o o o o o o 7-78
T7+7e3.1 ADDXV-Add Integer Vectors + « s » s s » s &« 7-78
T+7.3.2 SUBXYV-Subtract Integer Vectors s s« « » s » 7-79
TeT7ett INTEGER VECTOR COMPARISON o o o 5 o o 5 5 o s » 7-79
T7+7s4.1 CMPEQV~-Integer Vector Comparison - Equal . 7-79
TeTe4.2 CMPLTV~Integer Vector Comparison - lLess
Than s 8 8 8 % 5 8 3 8 8 8 8 * 3 8 ® s B =80
7+7+443 CMPGEV~Integer Vector Comparison -
Greater Than 0Or EqQUal + ¢ o s« s o s s » s » 7-80
7.T7+4s4 CMPNEV-Inteqer Vector Comparison - Not



6
CDC ~ ADVANCED SYSTEMS DEVELOPMENT

| 86/10/17
CYBER 180 II1 Assembler ERS Rev: F
Equ33 ® 2 % 3 » ® 3 8 8 5 3 3 % 5 2 s » e =» 7-80
T+7+5 SHIFY VECTOR CIRCULAR o 4 o 2 2 s o 5 s 35 s s = 7-81
TeaTeh LOGICAL VECTORS 2 2 o s 2 o 6 s 2 5 s 2 3 » & » 7-82
TeTabel IDRV=-INcTusive Or Vectors + » » » 2 s » » ' » 7-82
TeTebs2 XORV-Exclusive Or Vectors « « s s s » s o » 7-82
TaT7+6.3 Aﬁﬂ?‘tcgica? And Vectors 2 2 2 = 3 s 2 = = 7-82
TeTe7 CONVERY VECTORS & o o o o s » s o2 s N 7~83
7+7.7»1 CNIFV-Convert Vector From Integ 2r L0 F!oat 7-83
TeTe722 CNIFV-Convert Vector From Float to Integer 7-83
TeT7e8 FLOATING POINT VECTDOR ARITHMETIC 4 o s s s o 7-83
Ts7+8.1 AQDF”F;OQti“g Point Vector Sum » 8 s = 3 @ 7-83
7.7.8.2 SUBFY=-Floating Point Vector Difference . . 7-83
7.7.8.3 MULFV-Floating Point Vector Product . . . . 7-84
Te7.8B.4 DIVFV-Floating Point Vector Quotient .+ . o T7-84
779 FLOATING POINT VECTOR SUMMATION o o o 5 o o s o 7-84
7.7.9.1 SUMFY~Floating Point Vector Summation . . » T-84
TaTs%02 HRGV'HEVQE VeCtOr » o s » » s » 5 » » s » -85
T+7+10 GATHER AND SCATTER VECTOR o 5 o s o o = s s » 7-85
7+7410+1 Gather Vector s 8 2 2 8 8 B3 9 9 3 8 »'s = 7-85%
TeT7:10e2 Scatter Vector o« s o o 5 s s 5 o 3 3 3 » » 7-86
2.0 CYBER 180 ASSEMBLER SYMBOLIC IDU INSTRUCTIONS . . & 8-1
B,1 SYMBOLIC NOTATION o 5 2 o o o 5 3 2 » 5 2 3 5 3 » » 8~1
8,2 I0U MACHINE INSTRUCTION FORMATS o 2 2 o s 2 5 s s » 8-1
Boa3 T0U ADDRESS MIODES o o o » 8 o 5 5 2 2 s s 2 » » » » A=-3
Ba3a1 NO-ADDRESS MODE (N} o o o o 5 » o 5 o » 5 2 s » B=-3
B.3.2 CONSTANT MODE (C) 2 8 2 8 2 2 s 5 B B 8 5 » B = B8=3
Bo3.3 DIRECT MADE (D) o o s 5 s s » 2 5 o » 5 » s » = 8-3
Ba3sl INDIRECT MODE {I) o« o o 5 o 5 s 3 s s s = s s » 8-3
B,3.% MEMORY MODE (M, * 2 8 B B3 8 2 2 B 8 B 8 P 5 5 » 8-3
- B.4 NOMENCLATURE USED IN IQU INSTRUCTIONS o o o o o » B-4
8.5 GENERAL IDU INSTRUCTIONS o o o o o 2 o o 2 2 5 2 » 8-5
Be5Hal BRANCH INSTRUCTIONS o o o o o » o » s s s s s e 8~-5
Be5.1e1 LJIMy RIMy, UJIN, ZJIN, NJIN, PINy MIUN . & &« o & B~5
BeBa2 SHIFT INSTRUCTION o o s o s s s s s s s s s 2 = a-7
BeS542e1 SHN 4 4 o o 2 2 5 2 2 5 5 s o 2 » 2 » o » » 8-7
B.5.3 LOAD AND STORE INSTRUCTIDONS o 5 o o s o o o o o 8-7
8.5.3.1 LDN, LCN, LDC - LOAD hltS bY N ADDRESS

and CDOMSTANT s & o 9 . s 8 8 & 2 » = B-8

8.5.3.,2 LDD, LDDL, STD, STDL - LBAD/STQRE bits by
DIRECY mode o« o ¢ o o s » 2 » » & = s a » 8-8

8.5.3.3 LDI, LDIL, STI, STIL ~ LQAD/STURE bits by
INDIRECT MOAE o o o s » o o 8 o 5 o 2 o o 8~-9

825344 LDM, LDML, STM, STML - LOAD/STORE bits by
MEMORY mode « o s 5 o 9o 3 2 o s s 5 2 o 2 8=10
BeDah ARITHMETIC INSTRUCTIONS o « e s 2 8 8 s 8 ® 8-11

BaSe4hael ADN, ADC, SBN =- ADB/SUBTRACT by ND

ADDRESS and CONSTANT ., & * 8~-12
B.5.4.2 ADD, ADDL, SBD, SBDL - ADD/SUBTRACT bltS

bv DIRECT mode 2 % ® ® & 8 & 5 ® e » s » @ 8-12
B.5+4.3 ADI, ADIL, SBI, SBIL - ADD/SUBTRACT bits

by INDIRECT 4 o o o o s o o 2 5 2 s s » s » 8-13
B.5,4.4 ADM, ADML, SBM, SBML - ADD/SUBTRACT bits



CDC - ADVANCE
CYBER 180 II
B.5.5
8.5
B325.5.
8.5.5,
Ba5+5.
B8.5.6 RE
Ba5+6a
BaBabo
B.5.6,
BoSabHa

B.5a.6
BeSebos

B.5.7 CE
BeBaTe

8‘5’?.

BeB5sTa

B.5.7.4 RDSL, RDCL ~- READ Cﬁ and SET or CLEAR LQCK

0 SYSTEMS DEVELOPMENT
Assembler ERS

bv MEMORY mode » 2 2 3 ® ® 3 3 3 3 3 e »

LOGICAL INSTRUCTIDONS & o s o o o 2 s o
5.1

N ADDRESS and

LMN, LMC, LPN, LPC, SCN

COMSTANT modes » 5 5 2 » & 5 » 3 = 3 8 =

2 LMD, LMDL, LPDL - Instructions using
DIRECT mode « o o o 2 s o 2 2 5 » 2 » 2 »
3 LMI, LMIL, LPIL Instructions using
INDIRECT mode + » o s » s 5 8 » 2 s ®» 3 »
4 MM, LMML, LPML Instructions using
MFMDRY mode » E » » » * - E J » . » t 2 - L ] .
PLA{:& INSTRUﬁY{QmS » * » ] » L d - » - £ d L d
1 RAD, RADL ~ REPLACE ADD using ﬁiREtT mode
2 ADD, ADDL, SOD, SODL - REPLACE
ADD/SUATRACT ONE using DIRECT & o s s = »
3 RAI, RAIL - REPLACE ADD using INDIRECY
mode ® 8 8 e B s 3 » 2 s % 3 s 8 @ 3 »
4 ADI, AOIL, S0I, SOIL - REPLACE
ADD/SUBTRALCT USlng INDIRECT o o o & »

6 ADM, ADOML, S0OM, SOML - REPLACE
ADD/SUBTRACT ONE using MEMORY mode . . »

NTRAL MEMORY ACCESS INSTRUCTIONS . . .

1 LRD, SRD, - LOAD/STORE R Register in IGU
”pmﬂry 2 8 8 &2 3 3 ® = 3 8 * s B A B 8 »

2 CRD, CRDL, CHDy CWOL - RD/JWR CPU Memory,
DIRECY mode o« o s o 5 2 o 2 5 5 5 2 » » »

3 CRM, CRML, CHWM, CWML -~ READ/MWRITE CHM
Blocks « « » . . o .

B.5.8 INPUT/OUTPUT INSTRUCTIONS o o o o s 2 2 o »

B8.5.8.

B.5.8.
'8.5'8‘

Bs5.8

Be5+8.5 FAN, FNC - 170 Channel Functions s o
Be549 OTHER T0U INSTRUCTIONS & o 5 o o o s 5 s » »
B8.549.1 EXNy, MXN, MAN - EXCHANGE JUMP Instructions
Ba5:9.2 PSN - PASS Instruction s % s & B 8 8 8 »
BaB5.9.,3 KPT - KEYPOINT Instruction " s e 2 s s
B.5.9.4 INPN = INTERRUPT PROCESSDOR 4 s o » 5 » »
APPEMNDIX A ® % 5 » s 8 8 * ® 2 5 e ® B 32 3 B 2 3 e »
CALLING THE ASSEMBLER o o o 5 2 5 s s 35 5 » s s N
APPENDIX B - NDOTES AND EXAMPLES & s o 5 » o s s 5 » a
PROGRAMMING NOTES 4 o o o 2 5 2 2 5 o 5 3 8 8 2 8 o »
REGISTER USAGE s & 8 8 3 8 e 3 8 8 8 2 3 % s » »
GENERAL NOTES 4 o« o o 2 5 5 8 2 o 2 5 3 o o 5 s 2 »
SAMPLE PROGRAM s 8 3 8 % & & 8 6 8 8 8 8 o &8 » s » »
SAMPLE EXECUTION & 2 s o s o 5 2 s 5 o o 2 o o + »

1 AJdM, SCF, FSJUM, 1JM, FCJM, FJIM, EJM, SFM,
CF%’ CCF - L ] - » * - » L » * » L ] * » - »

2 TIAN, DAN ~ A Register I/0 Instructions .

3 1AM, IAPM, 0AM, DAPM - BLOCK 170
Instructions s+ + » - « 2 2 » » »

«4 ACN, DCN - ACTIVATF/QE#CTIVATE 1/0

Channels s » % = » 8 s ®» ® ° 8 ® »

.« % & & s @

+5 RAM, RAML - REPLACE ADD using MEMDRY mode .

7

86710717

Rev?:

B-15
8-16

8-16
8-18
8-19
8-20
8-21
8-21

B-22

8-23

B-23
B=-25

B8=25
8-27

8-28
8=-29

8-31
8-33
B8-34

8-34
B8-37

8-338

8-42
8-43
B=44
8-45
8-46
8-46
8-47

F



a8
CDC - ADVANCED SYSTEMS DEVELOPMENT

86/10/17

CYBER 180 I1 Assambler ERS Revs F
APPENDIX € - RESERVED WORDS o o o o » o s s o s o o » = c1
APPENDIX D = ERROR MESSAGES o o » o o o o o s » o 2 s o D1
LISTING FRRORS o s o s o o o o » o » 2 s 2 s s s o o o D1
APPENQIx E » » E J E » E ] » 2 E ‘v » L ] E » - » » E ] t ] » » E ] El
CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTION SUMMARY . . £1
APQENQIx F » - » » » * E ] . » » t d » » » * * » £ ] . » * » Fl
I1 ASSEMBLER DIFFERENCES VERSUS CT ASSEMBLER o o o o » F1



