
NOS/VE
Source Code Management
Usage

60464313 (52)CONT~L DATA

NOS NE

Source Code Management

Usage

This product is intended for use only as
described in tl!is document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60464313

Manual History

Revision System Version PSR Level Date

A 1.0.2

B 1.1.1

c 1.1.3

D 1.2.1

E 1.2.2

F 1.2.3

G 1.3.1

621

644

664

678

688

700

October 1983

July 1984

October 1985

September 1986

April 1987

September 1987

April 1988

Revision G of this manual, printed April 1988, documents the
management of source code for NOSNE Version 1.3.1 at PSR level
700. The following command and functions have been added to the
manual:

END_LIBRARY
$BASE
$ERRORS_FILE
$LIST_FILE
$RESULT

The following parameters have been added to the given command:

CHANGE_DECK

CHANGE_
LIBRARY

CLEAR_ ORIGIN AL_ INTERLOCK
CLEAR_SUB_INTERLOCK

LAST_ USED_DECK

LAST_ USED_MODIFICATION

EDIT_DECK DISPLAY_ UNPRINTABLE_CHARACTERS

Miscellaneous editorial and technical corrections have been made. This
edition obsoletes all previous editions.

©1983, 1984, 1985, 1986, 1987, 1988 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 Source Code Management Revision G

Contents

About This Manual

Audience
The NOSNE User

Manual Set
Conventions
Submitting Comments
CYBER Software Support

Hotline ...

Introduction to SCU

Terminology .
Entering Commands
Creating a Source

Library
Creating a Deck ..
Generating an Expanded

Text File from a Deck
Generating an Expanded

Text File from a File .
Editing Decks
Extracting Unexpanded

5

5

6
8
9

9

1-1

1-2
1-5

1-7
1-10

1-12

1-18
1-20

Text. 1-20
Creating a New Library

from an Existing
Library 1-20

Conditional Text
Expansion. . . . 1-26

Selecting Decks Using
Selection Criteria
Subcommands. 1-30

Editing the Modification
List 1-33

Sequencing Line
Identifiers. . . . 1-37

Extracting a Source
Library 1-39

Merging Libraries
Substituting Deck

Names

Revision G

1-44

1-48

Generating Editor
Subcommands.

Commands and
Subcommands.

Using NOSNE
Commands

Names
Commands .. .
Command Utilities
NOSNE Files . . .
Online Assistance
SCU Commands and

Subcommands. . . .
NOSNE Commands

Using the EDIT_FILE
Utility

Calling the EDIT_FILE
Utility

Deck Selection

1-49

2-1

2-1
2-1
2-3
2-8

2-12
2-19

2-20
2-108

3-1

3-1

Subcommands. 3-2

SCU Text-Embedded
Directives. 4-1

Selection Criteria
Subcommands. 5-1

Selection Criteria
Subcommand
Processing. 5-1

Selection Criteria
Subcommands. 5-3

SCU Functions . 6-1

Using SCU Functions 6-1

Contents 3

Glossary A-1 Maximum Limits for a e Source Library. . .. E-1

Related Manuals B-1

Ordering Printed
Accessing Online

Examples F-1
Manuals B-1 e Accessing Online Accessing Examples by
Manuals ... B-1 Name or by Manual. . F-2

Searching for Examples

Character Set . C-1
by Command or
Procedure Name F-3

ASCII Character Set C-1 Viewing, Copying, and
Printing an Example . F-4

Conversion Aids ... D-1
Executing an Example . F-4
Using Function Keys

Identifier Conversion . D-2 and Directives . F-5
Update Format

Conversion D-4 Index Index-I
NOS/VE Conversion

Commands D-6

Figures

1-1. SCU Text Units 1-3 1-4. Example of Nested
1-2. Command Prompt Interlocks 1-41

Example 1-6 2-1. Listing Title Formats 2-17
1-3. Source Library

Processing 1-7

Tables

2-1. Valid Characters for B-1. Related Manuals . . . B-2
NOS/VE Names 2-2 C-1. ASCII Character Set C-2

4 Source Code Management Revision G

About This Manual

This manual describes the System Command Language (SCL), which
provides the user interface to the CONTROL DATA® Network
Operating SystemNirtual Environment (NOSNE).

This manual describes SOURCE_CODE_UTILITY, a development tool
that organizes and maintains libraries of ASCII source code. Features
include deck editing and extraction, conditional text expansion,
modification state constraints, and use of the EDIT_FILE utility.

Audience
This manual is written for any NOSNE user who uses or maintains
libraries of source text. It assumes you are familiar with NOSNE file
concepts and the SCL command syntax and language. These concepts
are described in the NOSNE System Usage manual. The manual also
assumes you are familiar with the EDIT_FILE utility described in the
NOSNE File Editor manual.

Revision G About This Manual 5

The NOSNE User Manual Set
This manual is part of a set of user manuals that describe the
command interface to NOS/VE. The descriptions of these manuals
follow:

Introduction to NOS/VE

Introduces NOS/VE and SCL to users who have no previous
experience with them. It describes, in tutorial style, the basic
concepts of NOS/VE: creating and using files and catalogs of files,
executing and debugging programs, submitting jobs, and getting
help online.

The manual describes the conventions followed by all NOS/VE
commands and parameters, and lists many of the major commands,
products, and utilities available on NOS/VE.

NOSNE System Usage

Describes the command interface to NOS/VE using the SCL
language. It describes the complete SCL language specification,
including language elements, expressions, variables, command
stream structuring, and procedure creation. It also describes
system access, interactive processing, access to online e
documentation, file and catalog management, job management, tape
management, and terminal attributes.

NOS/VE File Editor

Describes the EDIT_FILE utility used to edit NOS/VE files and
decks. The manual has basic and advanced chapters describing
common uses of the utility, including creating files, copying lines,
moving text, editing more than one file at a time, and creating
editor procedures. It also contains descriptions of subcommands,
functions, and terminals.

NOS/VE Source Code Management

Describes the SOURCE_CODE_UTILITY, a development tool used
to organize and maintain libraries of ASCII source code. Topics
include deck editing and extraction, conditional text expansion,
modification state constraints, and using the EDIT_FILE utility. e
NOS/VE Object Code Management

Describes the CREATE_OBJECT_LIBRARY utility used to store
and manipulate units of object code within NOS/VE. Program A
execution is described in detail. Topics include loading a program, W

6 Source Code Management Revision G

program attributes, object files and modules, message module
capabilities, code sharing, segment types and binding, ring
attributes, and performance options for loading and executing.

NOS/VE Advanced File Management

Describes three file management tools: Sort/Merge, File
Management Utility (FMU), and keyed-file utilities. Sort/Merge
sorts and merges records; FMU reformats record data; and the
keyed-file utilities copy, display, and create keyed files (such as
indexed-sequential files).

NOS/VE Terminal Definition

Describes the DEFINE_ TERMINAL command and the statements
that define terminals for use with full-screen applications (for
example, the EDIT_FILE utility).

NOS/VE Commands and Functions

Lists the formats of the commands, functions, and statements
described in the NOS/VE user manual set. A format description
includes brief explanations of the parameters and an example
using the command, function, or statement.

Revision G About This Manual 7

Conventions
The following conventions are used in this manual:

Boldface

Italics

UPPERCASE

lowercase

Blue

Vertical bar

Numbers

In a format, boldface type represents names and
required parameters.

In a format, italic type represents optional
parameters.

In a format, uppercase letters represent reserved
words defined by the system for specific purposes.
You must use these words exactly as shown.

In a format, lowercase letters represent values you
choose.

In examples of interactive terminal sessions, blue
represents user input.

A vertical bar in the margin indicates a technical
change.

All numbers are decimal unless otherwise noted.

8 Source Code Management Revision G

Submitting Comments
There is a comment sheet at the back of this manual. You can use it
to give us your opinion of the manual's usability, to suggest specific
improvements, and to report errors. Mail your comments to:

Control Data Corporation
Technology and Publications Division ARH219
4201 North Lexington A venue
St. Paul, Minnesota 55126-6198

Please indicate whether you would like a response.

If you have access to SOLVER, the Control Data online facility for
reporting problems, you can use it to submit comments about the
manual. When entering your comments, use SC8 as the product
identifier. Include the name and publication number of the manual.

If you have questions about the packaging and/or distribution of a
printed manual, write to:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or call (612) 292-2101. If you are a Control Data employee, call (612)
292-2100.

CYBER Software Support Hotline
Control Data's CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help not
provided in the documentation, or find the product does not perform
as described, call us at one of the following numbers. A support
analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

Revision G About This Manual 9

Introduction to SCU 1

The Source Code Utility (SCU) is a NOSNE command utility designed
to store, organize, manipulate, and extract units of text. The Source
Code Utility is designed primarily as a development tool for large
systems or applications development groups. However, it can also be
used by anyone who is responsible for maintaining source code
libraries.

Although you can use it for any collection of text, SCU is primarily
designed for source text. Source text is text input for a processor,
such as program text for a compiler or procedure or job text for the
System Command Language (SCL) interpreter. Source text is stored in
libraries, which are NOSNE files that have a unique format and
structure.

You can also manipulate SCU libraries using the Professional
Programming Environment (PPE), which provides a full-screen
interface to SCU. To use the Professional Programming Environment,
enter the command ENTER_PPE. PPE is a full-screen, object-oriented
software development tool that coordinates the activities of large
multi-person programming projects. Using PPE, you can create and
delete decks and modifications, transmit and extract decks and
modifications, expand and compile product source code, and maintain
object and source libraries. More information is available in the
Professional Programming Environment for NOSNE manual.

This chapter explains how to use SCU and describes terminology,
basic features, and the more advanced capabilities of SCU.

All references to commands and their parameters within this chapter
use the complete command or parameter name. Command and
parameter names often have both singular and plural forms and also
abbreviated forms. All forms of the command and parameter names
are included in the individual description of the command.

Revision G Introduction to SCU 1-1

Terminology

Terminology

Before attempting to learn SCU capabilities, you must understand the
terms used for the different storage mechanisms and SCU units of
data. The following paragraphs define units as they are commonly
used.

Source Text Storage Units

Text is most usable when it is stored as units that can be accessed
independently.

For example, program text is most usable when it is stored as
individual compilation units. A compilation unit is a sequence of lines
compiled as an independent unit, such as a CYBIL module or a
FORTRAN program, subroutine, or function.

Similarly, text for individual procedures or jobs is most usable when
it is stored so that each procedure or job can be accessed individually.

As illustrated in figure 1-1, SCU uses the following text entities to
store and organize text units.

Line

Sequence of characters. SCU assigns a unique identifier to each
line so you can reference it individually.

Deck

Collection of lines with a header describing the collection. For
example, a deck could be a compilation unit, a procedure, or a job.
You reference a deck by its name.

Source library

Collection of decks on a file with a header describing the
collection. You reference a source library by the file on which it
resides.

1-2 Source Code Management Revision G

Source
Library

Terminology

Library Header

t-- - -------- --- ---~
Deck Header

r--- - ---------
t-- - --------- -----
1------- - -- - - ----

Deck Header

I-- - - - - -- - - - ---

Figure 1-1. SCU Text Units

Source Text Change Record

The process of debugging a program usually involves changing the
source text or input data, recompiling and executing the program, and
determining how the program results changed. The process is then
repeated. It is often important while debugging a program to maintain
a record of each set of changes made.

SCU requires that each set of text changes (including additions and
deletions) be associated with a modification name. You can later
reference the set of changes by its modification name. A modification
is defined as follows.

Modification

Each line in a deck belongs to a modification, and the modification
name is part of the line identifier. All lines belonging to a
modification can be referenced by that modification name. The
modification can be deactivated and reactivated, as described later
in this chapter.

Revision G Introduction to SCU 1-3

Terminology

Project Organization Units

A large programming project is often split into several subprojects,
and each subproject could involve more than one compilation unit.
SCU provides the following logical units to assist in project
organization.

Feature

Collection of modifications. A modification can belong to only one
feature. All modifications belonging to a feature can be referenced
by the feature name. Modifications do not have to belong to a
feature.

Group

Subset of decks within a library. A deck can belong to one group,
more than one group, or no group. All decks belonging to a group
can be referenced by the group name.

Modifications, features, and groups can be used for specifying the
decks and lines to be processed. For certain commands, you can
specify a separate file that lists the decks, groups, modifications, and
features to be processed.

1-4 Source Code Management Revision G

Entering Commands

e Entering Commands
An SCU subcommand is valid only within an SCU session. An SCU
session begins when you enter the SOURCE_CODE_ UTILITY
command. The session ends when you enter a QUIT subcommand.

You use the EDIT_FILE utility to enter and change SCU source text.
An EDIT_FILE session (also called an editing session) begins when
you enter EDIT_DECK or the EDIT_FILE command within an SCU
session.

The editing session ends when you enter QUIT. If you begin the
editing session within an SCU session, you remain in the SCU session
when you end the editing session.

For further information about the EDIT_FILE utility, refer to chapter
3 in this manual, and to the NOSNE File Editor manual.

During a NOSNE interactive terminal session, you can determine the
valid commands by the input prompt that appears on the screen.

• I prompts you for a NOSNE command.

e • sci prompts you for an SCU subcommand or a NOSNE command.

• sec/ prompts you for selection criteria subcommands. This prompt
appears when you specify COMMAND for the SELECTION_
CRITERIA parameter on an EXPAND_DECK, EXTRACT_DECK,
or EXPAND_FILE subcommand or EXTRACT_SOURCE_
LIBRARY or EXPAND_SOURCE_FILE command.

• see/ indicates you are in an editing session started by an EDIT_
DECK subcommand in line mode. You may enter an EDIT_FILE
subcommand, an SCL command, or a valid SCU subcommand. (The
individual SCU subcommand description indicates whether the
subcommand is valid in an editing session.). If you are editing in
screen mode, the prompt does not appear.

• ef I indicates you are in an editing session started by an EDIT_
FILE command in line mode (described in the NOSNE File Editor
manual). You are prompted for an EDIT_FILE subcommand or a
NOSNE command. If you are editing in screen mode, the prompt
does not appear.

Revision G Introduction to SCU 1-5

Entering Commands

Figure 1-2 shows an example of an interactive session using these
prompts.

/source_code_utility

sc/create_library result= ..
sc . ./any_ 1 i brary

sc/edit_deck deck=init_array
sc .. /modification=firstmod
Begin editing deck INIT_ARRAY

sce/insert_lines

Enter text
? program myprog
? stop
? end**

Begins an SCU session.

Creates an empty library and
specifies the result library.

Starts the editing session
and creates a deck.

Editing command. Inserts
text in the deck.

Text entry.

see/ end Ends the editing session.

sc/expand_deck deck=init_array

sc/fortran input=compile

sci quit
I

Expands a deck and
writes the expanded source
text to the file COMPILE.

Compiles the source text.

Ends the SCU session
and writes the result library.

Figure 1-2. Command Prompt Example

1-6 Source Code Management Revision G

Creating a Source Library

Creating a Source Library
To store text using SCU, you can either store it on an existing source
library or create a new one. SCU can accept one existing source
library as input, and it can overwrite that library. Or, alternatively,
the new source library can be written as a new cycle of the existing
source library file.- A source library file contains decks, modifications,
features, and groups that organize the text. This type of file has
specific file structure and file content attributes that make it behave
differently from other NOSNE files. When you specify a source
library file on a command, the system determines if the file you have
entered has the correct attributes for a library file.

To use modification states and set interlocks, a source library must be
a permanent file.

The following paragraphs describe how to create a new source library.

Base, Working, and Result Libraries

Within this manual, SCU processing is described in terms of a base
library, a working library, and a result library as shown in figure 1-3.
You specify a base library and a result library with the SCU
command USE_LIBRARY.

Base Library Working Library Result Library
(on a permanent f--1 (internal SCU r--1 (on a permanent

file) structure) file)

Figure 1-3. Source Library Processing

Revision G Introduction to SCU 1-7

Creating a Source Library

The base library is the starting point for the new library to be
created. If you enter no commands to modify the new library, the new
library is a duplicate of the base library.

The working library is the current state of the new library; it is the
new library in progress. Initially, it is a duplicate of the base library.
However, as you enter SCU subcommands, the content of the working
library changes. SCU subcommands affect only the working library;
they· do not change the base library.

The result library is the new source library SCU writes.

The file SOURCE_LIBRARY in your working catalog is used for both
base and result libraries during an SCU session if you do not enter a
CREATE_LIBRARY or a USE_LIBRARY subcommand before other
subcommands.

You must have read permission to the base library file and read and
write permission to the result library file. (Write permission is the
combination of modify, shorten, and append permissions.) For
information on read and write permissions to files, refer to the
NOSNE System Usage manual.

You specify the base and result libraries for the session on the USE_ e
LIBRARY subcommand. When you end the SCU session, changes will
be saved on the result library file unless you specify otherwise.

The following is an example of an SCU session.

/source_code_utility
sc/use_library base=$user.my_library
sc/create_deck deck=new_deck modification=modif1
sc .. /source=$user.new_deck_source
SC/Quit

Because no result library was specified by USE_LIBRARY, the result
library defaults to $USER.MY_LIBRARY. The CREATE_DECK
subcommand creates a deck called NEW_DECK by using the contents
of file $USER.NEW_DECK_SOURCE. The QUIT subcommand ends
the utility session. The base library on file $USER.MY_LIBRARY is A
rewritten with the changed library. W

1·8 Source Code Management Revision G

Creating a Source Library

Creating a Base Library

The first subcommand you usually enter in an SCU session is USE_
LIBRARY. With it you select a base and a result library. The base
library could be an existing source library or a source library
extracted from an existing source library. Or you could omit the
USE_LIBRARY subcommand and create a new empty source library
with the CREATE_LIBRARY subcommand during SCU processing.
The following are guidelines on creating a base library:

• Specify an existing source library as the base library if the new
source library is to be a new version of the existing source library.

• Extract a source library when the new source library is to contain
a subset of the decks on the base library. Use of an extracted
source library is described later in this chapter.

• Create an empty source library if the new library is to contain all
new decks.

To use an existing source library as the base library, you need not
attach the library file. All you need to do is specify the file on the
BASE parameter of the USE_LIBRARY subcommand, assuming you
have read access permission to the source library file.

To create a new empty source library, enter a CREATE_LIBRARY
subcommand after beginning an SCU session. The subcommand creates
a new library that is used as the working library during this SCU
session.

The file specified on the RESULT parameter of the CREATE_
LIBRARY subcommand is used as the result file for the SCU session.
You must have modify, shorten, and append permission to the file.

The following .example allows you to change all modification states
and set interlocks on source library file $USER.SOURCE_LIBRARY.

/create_file_permit file=$user.source_library ..
.. /group=user user=archie access_mode=(read modify)
.. /share_mode=none application_information='I4'

The I in the APPLICATION _INFORMATION parameter allows you to
interlock decks. The 4 in the APPLICATION_INFORMATION
parameter allows you to alter the state of all modifications. The
NOSNE command CREATE_FILE_PERMIT is described in the
NOSNE System Usage manual.

Revision G Introduction to SCU 1-9

Creating a Deck

Creating a Deck

After you have determined the base library and result library files to
use, you can store text as a deck on the result library. A deck can be
created by using one of the following methods:

• Create a deck containing text copied from a file

• Create an empty deck Hnd use the EDIT_FILE utility to enter text
in the deck

• Create a deck implicitly by naming it on the EDIT_FILE
command

The SCU subcommand CREATE_DECK creates a deck on a library. If
you specify a file using the SOURCE parameter of the CREATE_
DECK subcommand, SCU copies text from the file to the new deck. If
you omit the SOURCE parameter, SCU creates an empty deck.

The SCU subcommand EDIT_DECK creates an empty deck if the
specified deck does not exist. You must specify a deck name and a
modification name if one has not been specified before.

Deck Name

The name you give a deck when you create it is the name by which
it is later referenced. The name can be from 1 through 31 characters
and must follow the SCL naming conventions as defined in appendix
A; no other deck on the library may have the same name. The deck
name can be specified on the EDIT_DECK subcommand, on the
CREATE_DECK subcommand, or on DECK directives embedded in
source text. SCU orders decks on a source library alphabetically by
name (lowercase characters are converted to uppercase).

Modification Name

Besides a deck name, you can also specify a modification name on a
CREATE_DECK subcommand. The modification name can only be
from 1 to 9 characters long. It can name a new modification or a
modification already existing on the library.

1-10 Source Code Management Revision G

Creating a Deck

The modification used on the CREATE_DECK subcommand names the
creation modification for the deck. It applies to all lines of text SCU
copies to the deck during its creation. It can also apply to later
editing of the deck if the same modification name is referenced. If you
do not specify a modification name, the most recently specified name
is used.

Each line identifier contains a modification name and a sequence
number which SCU assigns to lines in the order it creates them. A
line identifier has the following format.

modification_ name.sequence_ number

For example, suppose you enter the following command sequence to
create a new source library and a new deck on the library.

/source_code_utility
sc/create_library result=$user.my_library
sc/collect_text output=in_file
ct? program example
ct? print •, 'Hello!'
ct? stop
ct? end
ct? *"
sc/create_deck deck=new_deck modification=modif1 source=in_file
sci Quit

The SCU subcommand CREATE_LIBRARY creates an empty source
library. The COLLECT_ TEXT command enters text on a file named
IN_FILE. The SCU subcommand CREATE_DECK creates a deck
named NEW_DECK and copies the text on file IN_FILE to the deck.
The QUIT subcommand ends the SCU session and, by default, writes
the new source library on file $USER.MY_LIBRARY. The new library
contains only one deck, NEW_DECK.

SCU assigns the following line identifiers to the lines in the new
deck.

MODIF1
MODIF1
MOOIF1
MODIF1

Revision G

,
2
3
4

program example
print *, 'Hello!'
stop
end

Introduction to SCU 1-11

Generating an Expanded Text File from a Deck

Generating an Expanded Text File from a
Deck
Text is stored in a deck for later access. For example, program text is
accessed for compilation. After storing a compilation unit as a deck on
a source library, you can generate an expanded text file for use as a
compiler input file. Expanding a deck processes the directives
embedded in the source text and copies the expanded text to a
separate compile file.

Generating an expanded text file involves the following steps.

1. Selecting the decks to be expanded.

2. Expanding the text as stored by SCU, including processing of
directives embedded in the text and writing the expanded text to a
file.

The SCU subcommand EXPAND_DECK performs both steps.

The following example shows the creation and use of an input file for
the FORTRAN compiler.

/scu
sc/use_library base=$user.my_Jibrary
sc/expand_deck deck=new_deck compile=fortran_input
sc/quit write_library=false
/fortran input=fortran_input

The USE_LIBRARY subcommand selects the library on file
$USER.MY_LIBRARY as the base library. The EXPAND_DECK
subcommand expands the deck named NEW_DECK. SCU reads the
deck from the base library file and writes the expanded text on the
file FORTRAN_INPUT. Because no changes were made to the library,
the QUIT subcommand ends the SCU session and specifies that a
result library is not written. The FORTRAN command calls the
FORTRAN compiler to compile the text or. the FORTRAN _INPUT
file. (The FORTRAN command could have been entered within the
SCU session.)

1-12 Source Code Management Revision G

Generating an Expanded Text File from a Deck

Selecting Decks

The first step in generating an expanded text file is selecting the
decks to be expanded. You specify the decks to be expanded using the
DECK parameter on the EXPAND_DECKS subcommand. You can
also use selection criteria commands to select decks to be expanded if
you specify the SELECTION_CRITERIA parameter on EXPAND_
DECKS. If you do not specify the DECK parameter, the most recently
used deck is expanded. To expand decks specified by selection criteria
commands, use keyword NONE _for the DECK parameter. Selection
criteria commands are described later in this chapter.

The DECK parameter can specify a list of decks by name or by
range. By default, the EXPAND_DECKS subcommand writes the
decks on the expanded text file in the order they are listed in the
working library deck list. To write the decks in the order you specify
on the DECK parameter, specify ORDER=COMMAND on the
EXPAND_DECKS subcommand.

For example, suppose the working library has the following deck list.

DEC KA

DEC KB

DEC KC

DECKD

DEC KE

The following EXPAND_DECKS subcommand selects four decks from
the list.

sc/expand_decks deck=(deckd,decka .. deckc) order=cOllllland

Because ORDER is specified as COMMAND, the EXPAND_DECKS
subcommand writes the decks in the following order.

DECKD

DEC KA

DEC KB

DECKC

Revision G Introduction to SCU 1-13

Generating an Expanded Text File from a Deck

Copying Decks into a Compiler Input File

One of SCU's primary uses is to insert the text of one deck into the
text of another deck before writing the deck to the expanded text file.
This process is called copying decks.

For example, a deck to be copied into a compiler input file usually
contains text used by more than one program. It could be text for a
utility routine or a system routine stored on a source library available
to many users. The CYBIL program interface procedure declaration
text is stored on a system-supplied source library. To use a CYBIL
program interface procedure, you must copy the procedure declaration
text into your CYBIL program.

To copy a deck into another deck, add a COPY directive in the deck
text where SCU is to insert the text of the other deck. The deck to be
copied is named on the COPY directive.

SCU processes the COPY directive as it expands your deck. When it
reads a COPY directive, it searches for the specified deck. Assuming
it fmds the deck, it expands the deck text and writes it on the
expanded text file. SCU does not write the COPY directive to the
expanded text file.

Text-Embedded Directives

The COPY directive is an SCU text-embedded directive. Chapter 4
describes the SCU text-embedded directives.

While expanding text, SCU recognizes a text-embedded directive when
it reads a line beginning with the key character followed by a
directive verb. The key character is the prefix character for all
text-embedded directives in the library. The key character can be
specified on the CREATE_LIBRARY subcommand. The default key
character is *.
When it is looking for a deck that is specified in a COPY directive,
SCU first searches in the working library and then examines the
alternate base library decks.

1-14 Source Code Management Revision G

Generating an Expanded Text File from a Deck

For example, suppose both DECKl and DECK2 reside on the source
library file $USER.MY_LIBRARY and the key character for the
source library is *. DECKl contains the following text.

program example
•copy deck2

stop
end

DECK2 contains the following text.

do 10 i=l,100
10 i = i +1

Suppose you enter the following subcommand within an SCU session.

sc/expand_deck deck=deck1 compile=fortran_input

The subcommand expands the DECKl text on the file FORTRAN_
INPUT. While expanding the text, it processes the *COPY directive,
copying DECK2 into DECKl. The following is the expanded text on
the FORTRAN _INPUT file.

program example
do 10 1=1, 100

10 i = ;+1
stop
end

Revision G Introduction to SCU 1-15

Generating an Expanded Text File from a Deck

Copying Decks from Another Source Library

You can copy decks that reside on another source library into your
compiler input file. The other source library is called an alternate
base library. You use an alternate base library by specifying the
name of the source library file that contains the decks to be merged
on the ALTERNATE_BASE parameter of the EXPAND_DECK
subcommand. SCU includes the alternate base library decks in the
working library for the duration of the subcommand.

When it is looking for a deck that is specified in a COPY directive,
SCU first searches the working library and then examines the
alternate base library decks. For example, the following subcommand
expands a CYBIL program that uses CYBIL program interface calls.

sc/expand_deck deck=deck10 compile=cybil_input ..
sc .. /alternate_base=$system.cybil.osf$program_interface

The subcommand expands DECKlO and writes the compiler input file
on file CYBIL_INPUT. SCU copies program interface procedure decks
from the source library file $SYSTEM.CYBIL.OSF$PROGRAM_
INTERFACE as specified by COPY directives in the deck text.

Selecting Decks Using the Expand Attribute

A deck could contain text that is only to be inserted into another
deck; the text is never expanded as a program in itself. For example,
the deck could contain a set of CYBIL TYPE declarations, but not
contain any executable statements. This type of deck is often called a
common deck. If you expand common decks, use COPY or COPYC
directives, not EXPAND_DECK subcommands. The EXPAND
parameter on the CREATE_DECK subcommand determines whether
an EXPAND_DECK subcommand expands the deck. The EXPAND
parameter sets the expand attribute for the deck, which is stored in
the deck header. By specifying that the expand attribute is FALSE
when you create a deck, the deck can be expanded only when copied
by a COPY or COPYC directive. Therefore, the expand attribute for
common decks should be FALSE.

1-16 Source Code Management Revision G

Generating an Expanded Text File from a Deck

The expand attribute is useful when a library contains both types of
decks. In this case, an EXPAND_DECK subcommand that specifies a
range of decks or all decks within the library expands only those
decks whose expand attribute is TRUE; it does not expand the
common decks whose expand attribute is FALSE.

For example, suppose the following is the deck list and expand
attributes for the working library.

Deck

COMMON I

DECKl

DECK2

Expand Attributes

FALSE

TRUE

TRUE

If you specify the EXPAND parameter on the CREATE_DECK
subcommand, the deck will be expanded.

The following subcommand expands all decks whose expand attribute
is TRUE.

sc/expand_deck deck=all

The subcommand writes the expanded text from DECKl and DECK2
on the default compile file COMPILE. It skips deck COMMONl and
generates a warning message because its expand attribute is FALSE.

Revision G Introduction to SCU 1-17

Generating an Expanded Text File from a File

Generating an Expanded Text File from a
File
In much the same way that you generate an expanded text file from a
deck, you can also generate an expanded text file from a source file
which you can then use as an input file to a compiler. When SCU
expands a file, it processes the directives embedded in the source text
and copies the expanded text to a separate SCU compile file. The file
is expanded as though it were a deck on an SCU library.

You can expand text files during an SCU session by entering an
EXPAND_FILE subcommand, or outside an SCU session by entering
the NOS/VE command EXPAND_SOURCE_FILE.

The following example shows how to create and use a compiler input
file within an SCU session.

/scu
sc/use_library base=$user.my_library
sc/expand_file f11e=new_f11e compile=fortran_input
sc/Quit wr1te_l1brary=false
/fortran input=fortran_input

The USE_LIBRARY subcommand selects the library on file
$USER.MY_LIBRARY as the base library. The EXPAND_FILE
subcommand expands the file named NEW_FILE. SCU writes the
expanded text on file FORTRAN_INPUT. The QUIT subcommand
ends the SCU session, specifying that a result library is not written.
The FORTRAN command calls the FORTRAN compiler to compile the
text on the FORTRAN _INPUT file. (The FORTRAN command could
have been entered within the SCU session.)

1-18 Source Code Management Revision G

Generating an Expanded Text File from a File

The next example uses the NOSNE command EXPAND_SOURCE_
FILE to produce the same result as the previous example without
directly using SCU.

/expand_source_file file=new_file compile=fortran_input
.. /alternate_base=$user.my_library
/fortran input=fortran_input

Both the EXPAND_FILE subcommand and the EXPAND_SOURCE_
FILE command process text-embedded directives within files as though
they were within decks. Chapter 4 describes the SCU text-embedded
directives.

To copy a deck into a compiler input file, for example, add a COPY
directive in the file text where SCU is to insert the text of the
specified deck. The deck to be copied is named on the COPY directive.

To copy decks from an alternate base library into your compiler input
file, specify the ALTERNATE_BASE parameter on an EXPAND_
SOURCE_FILE command; if you are in an SCU session, specify the
ALTERNATE_BASE parameter on the EXPAND_FILE subcommand.
The ALTERNATE_BASE parameter specifies the source library file
containing the decks to be merged. SCU includes the alternate base
library decks in the working library for the duration of the command
or subcommand.

SCU processes the COPY directive as it expands your file. When it
reads a COPY directive, it searches libraries for the specified deck.
Assuming it finds the deck, it expands the text and writes it on the
expanded file. SCU does not write the COPY directive to the expanded
text file.

The following EXPAND_ FILE subcommand expands a CYBIL program
that uses CYBIL program interface calls.

sc/expand_file file=file_10 compile=cybil_input
sc .. /alternate_base=$system.cybil .osf$program_interface

Entering the subcommand expands FILE_ 10 and writes the compiler
input file on file CYBIL_INPUT. When it is processing any COPY
directives on FILE_ 10, SCU first searches for the specified deck on
the working library and then searches the alternate base library.
Thus, SCU copies any program interface procedure decks from the
source library file $SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE.

Revision G Introduction to SCU 1-19

Editing Decks

Editing Decks

Chapter 3 lists the EDIT_FILE subcommands that pertain to editing
decks. These and all other subcommand descriptions for the EDIT_
FILE utility are described in the NOSNE File Editor manual.

Extracting Unexpanded Text
You can extract unexpanded text from a source library without
processing directives embedded in the text. You could then use the
unexpanded text as listing text, source text for a new deck, or input
to another text processor.

The following subcommands extract unexpanded text.

• The EDIT_FILE subcommand WRITE_FILE copies lines from the
deck being edited to the selected file.

• The SCU EXTRACT_DECK subcommand copies all lines from one
or more decks to a source file.

Refer to the NOSNE File Editor manual for a description of the
WRITE_FILE subcommand. e
To specify the decks an EXTRACT_DECK subcommand copies, specify
the decks using the DECK parameter, selection criteria commands, or
both.

Creating a New Library from an Existing
Library
To create a source library that contains copies of decks from an
existing source library, specify the existing source library as your
base library (assuming you have read permission to the file). Using
an existing source library as your base library does not affect the
existing library.

Initially, your working library is a duplicate of the base library.
However, during the SCU session, you can change both the library
header information and the library deck list.

1-20 Source Code Management Revision G

Creating a New Library from an Existing Library

Changing the Library Header

To display the contents of the library header, enter a DISPLAY_
LIBRARY subcommand. It displays the following header information.

• Library name

• Library version

• Version of SCU which created the library

• Source library format version

• Change counter

• Library description

• Creation date and time

• Last modification date and time

• Key character

• Most recently used deck and modification

• Number of decks, modifications, groups, and features in the library

Enter a CHANGE_LIBRARY subcommand to change the name,
version, or description of the working library.

Changing the Library Deck List

The deck list is the list of decks copied to the new source library; it
is ordered alphabetically by deck name. Initially, the working library
deck list is a duplicate of the base library deck list. To view the deck
list, enter the DISPLAY_DECK_LIST subcommand.

You can edit the deck list by deleting decks, creating decks, or
merging decks from other source libraries into the deck list. (The
process of merging libraries is described later.) You can also change e the deck header information in existing decks.

Revision G Introduction to SCU 1-21

Creating a New Library from an Existing Library

Deleting Decks

To delete decks from the deck list, enter DELETE_DECKS and
specify the decks to be deleted. You can specify them as a list, a
range, or a list of ranges within the deck list.

Specify a range by naming the first and last deck in the range
separated by an ellipsis (..). For example, the range DECKA .. DECKC
deletes all decks from DECKA through DECKC within the deck list.
If a DECKB exists within the deck list, SCU deletes it because it is
within the range.

Changing the Deck Header

To change deck header information, enter a CHANGE_DECK
subcommand. It can change the following deck header items:

• Deck author

• Deck content description

• Processor to which the deck text is input after it is expanded (for
example, CYBIL)

• Default tab character used in line mode only (if you do not define
a tab character, line mode tabbing is disabled)

• Default tab columns

• Default line width when the deck is expanded

• Default line identifier placement

• Expand attribute

Entering a CHANGE_DECK subcommand also allows you to change
the groups to which a deck belongs.

1-22 Source Code Management Revision G

Creating a New Library from an Existing Library

Deck Creation Options

The minimum requirements to create a deck have already been
described. SCU provides the following additional capabilities for the
CREATE_DECK subcommand.

• Copying information from another deck header for the header of
the new deck

• Creating a multipartitioned deck

• Creating several decks with one subcommand

Copying a Deck Header

When creating a new deck, you can copy deck header information
from a deck already in the working library. To display the header of
an existing deck, enter DISPLAY_DECK and specify the deck name.

You can copy the entire deck header or only portions of it for the new
deck. To do so, specify the name of the existing deck on the SAME_
AS parameter of the CREATE_DECK subcommand that creates the
new deck. If you do not want certain items copied, specify those items
explicitly with CREATE_DECK parameters.

For example, the following subcommand creates a new deck containing
the text from file TEXT_FILE.

sc/create_deck ..
sc .. /modification=firstmod
sc .. /deck=deck5 ..
sc .. /source=text_file ..
sc .. /same_as=deck4 ..
sc .. /author='Jane Doe'

The deck header of the new deck is identical to the deck header of
DECK4, except for the deck name and author.

Revision G Introduction to SCU 1·23

Creating a New Library from an Existing Library

Creating a Multipartitioned Deck

When you are creating a deck, by default only one partition of data is
copied to the new deck. However, if you specify MULTI_
PARTITION=TRUE on the CREATE_DECK subcommand, deck text
can consist of more than one partition.

If the MULTI_PARTITION parameter is FALSE, SCU copies text
until the first end-of-partition is encountered. If the MULTI_
PARTITION parameter is TRUE, SCU copies all text on the file,
converting each end-of-partition to a WRITE_END_OF_PARTITION
(WEOP) directive within the deck. When the deck is later expanded,
the WEOP directives become end-of-partition delimiters.

Creating Multiple Decks

Entering a CREATE_DECK subcommand can also create more than
one deck. The new deck headers are identical except for the deck
names and, optionally, the expand attribute. You can specify an
expand attribute for each deck name if you specify the deck names on
DECK directives within the source text.

The way in which multiple decks are created differs, depending on A
whether you specify the deck names on the subcommand or in the W
source text file.

Deck Names Specified on the Subcommand

If you specify deck names on the CREATE_DECK subcommand, SCU
copies text to the decks from the source files specified on the
SOURCE parameter. The text for the first deck listed is copied from
the first file listed, text for the second deck is copied from the second
file listed, and so forth.

If you specify the SOURCE parameter, the number of source files
specified must match the number of deck names specified. However,
you can create empty decks by specifying the $NULL file as the
source for the deck. For example, the following is the source file list
for a subcommand that creates four decks, with the second and third
decks empty.

SOURCE= (TEXT1,$NULL,$NULL, TEXT4)

If the MULTI_PARTITION parameter is FALSE, only one partition is A
copied; if the MULTI_PARTITION parameter is TRUE, all text on the W
file is copied.

1-24 Source Code Management Revision G

Creating a New Library from an Existing Library

Deck Names Specified in the Text

If you omit the DECK parameter and specify DECK_DIRECTIVES_
INCLUDED=TRUE on the CREATE_DECKS subcommand, SCU
creates a deck header for each DECK directive it finds in the source
text file. (Only one source text file is read.)

The text following the DECK directive is copied to the deck. If the
MULTl_PARTITION parameter is FALSE, it copies only the first
partition. If the MULTl_PARTITION parameter is TRUE, it copies
text until it encounters the end of the file and substitutes
text-embedded directives (*WEOP) for the partition separator.

For example, suppose the source file SOURCEl contains the following
text.

*deck. deck.1
program example

*COPY deck.a
stop
end

*deck. deck.a expand=false
do 1 O i = 1 , 1 oo

10 i=i+1

The following subcommand would create two decks, DECKl and
DECKA.

sc/create_deck.s modification=firstmod source=source1
sc .. /deck._directives_included=true

The CREATE_DECKS subcommand processes only the DECK
directives; it does not process the COPY directive.

Suppose an EXPAND_DECKS subcommand specified both decks.
Because EXPAND= FALSE was specified on the DEC KA directive, the
EXPAND_DECKS subcommand expands DECKl, but not DECKA.
However, when it processes the COPY directive in DECKl, it expands
the DECKA text and inserts it into the DECKl text.

Revision G Introduction to SCU 1-25

Conditional Text Expansion

Conditional Text Expansion

When writing source text, you may require that the expanded source
text be expanded differently. The text could differ by the content of a
single line or by the inclusion or omission of a block of lines. Text
can be expanded using string insertion or block expansion, as
described in the following paragraphs.

String Insertion

You can change the content of a single line of expanded text with the
PUT directive. When SCU processes a PUT directive during deck
expansion, it evaluates the expression in the line before inserting the
line in the expanded text.

The expression could use an SCL or SCU function. The NOSNE
System Usage manual describes the available SCL functions. Chapter
6 describes the available SCU functions.

For example, the following PUT directive concatenates strings to the
string returned by the SCL function $DATE.

•put 'current_date = '''//$date(month)//''';'

Assuming the current date is May 3, 1985, SCU inserts the following
line when it expands the text.

current_date = 'May 3, 1985';

1-26 Source Code Management Revision G

Conditional Text Expansion

Block Expansion

You can embed directives within source text so that you can include a
block of lines when the text is expanded.

By default, the entire deck is a block. However, you can subdivide the
deck into blocks using the following text-embedded directives.

• The BLOCK and BLOCKEND directives unconditionally delimit a
block. The block contains conditional directives such as COPYC,
which copies a deck only if the deck has not already been copied
within its block.

• The TEXT and TEXTEND directives delimit a block of lines that
are processed as text, not as text-embedded directives.

• The IF and IFEND directives delimit a block that is expanded
only if the boolean expression on the IF directive is TRUE.

For example, consider the following lines.

*block
*if (optimize=true)
•copy decka
*ifend
*COPY deckb
*COPYC decka
*blockend

If the OPTIMIZE variable is TRUE:

- The first COPY directive is processed and

- SCU writes DECKA and then DECKB.

The COPYC directive is not processed. If OPTIMIZE is FALSE:

- The first COPY directive is skipped.

SCU writes DECKB, and then writes DECKA as a result of
the COPYC directive.

Revision G Introduction to SCU 1-27

Conditional Text Expansion

• The ELSEIF and ELSE directives subdivide an IF/IFEND block.
More than one ELSEIF directive can appear within an IF/IFEND
block. An ELSEIF directive specifies a condition that is evaluated
only if all previous statements in the IF block are FALSE.

An ELSE directive can appear only once within an IF/IFEND
block; it must follow all ELSEIF directives in the block. It does
not specify a condition; the statements between ELSE and !FEND
are expanded only if all conditions are evaluated as FALSE.

For example, consider the following lines.

*if color='red'
*put 'You are dynamic'
*elseif color='white'
*put 'You are pure'
*elseif color='blue'
*put 'You are loyal'
*else
*put 'Try again'
*ifend

The IF/IFEND block inserts a line of text, depending on the value
of the COLOR variable.

Nesting Levels

Except for TEXT/TEXTEND blocks, you can nest blocks. A nested
block is entirely within another block.

You can also nest directives. The lines inserted by a COPY or
COPYC directive can contain additional directives. The DISPLAY_
DECK_REFERENCES subcommand lists all decks that a specified
deck copies and all decks that copy a specified deck. It can list both
direct and indirect references.

1-28 Source Code Management Revision G

Conditional Text Expansion

An example of an indirect reference is if DECKA copies DECKB,
which copies DECKC. In this case, DECKA indirectly references
DECKC. A directive within DECKC would be in the third nesting
level from DECKA.

*deck decka
program example

•copy deckb
stop
end

*deck deckb expand=false
integer i

•copy deckc
*deck deckc expand=false

integer j

By default, SCU processes all nested levels of directives, although the
sequence cannot be recursive. A recursive sequence is one in which a
deck copies itself, either directly or indirectly.

You can limit the number of nested levels that are processed by using
the EXPANSION_DEPTH parameter on the EXPAND_DECK
subcommand. If, during expansion, SCU reads a directive at a level
lower than the maximum expansion depth, it does not process the
directive, but instead SCU leaves it in the expanded text.

Condition Specification

You specify a condition on an IF or ELSEIF directive as a boolean
expression. Evaluation of the condition allows the expanded text to
change without changing the source text. The condition must depend
on an external condition, such as the value of a NOS/VE variable or
the value returned by a NOS/VE or SCU function.

The NOSNE System Usage manual describes the available NOSNE
functions and variables. Chapter 6 describes the available SCU
functions.

Revision G Introduction to SCU 1-29

I

Selecting Decks Using Selection Criteria Subcommands

Selecting Decks Using Selection Criteria
Subcommands

Selection criteria processing allows you to specify which decks to
extract or expand from a set of decks. The subcommands you use to
select the decks are called selection criteria subcommands. You can
store selection criteria subcommands in a separate text file or enter
them directly at the terminal.

To use selection criteria subcommands located in a separate text file,
specify the file on the SELECTION_CRITERIA parameter of the

• EXPAND_DECK, EXTRACT_DECK, or EXPAND_FILE
subcommand or

• EXTRACT_SOURCE_LIBRARY or EXPAND_SOURCE_FILE
command.

SCU reads commands from the file until it reads the QUIT
subcommand or reaches the end of the file.

To enter selection criteria subcommands from an interactive terminal,
specify COMMAND on the SELECTION_CRITERIA parameter. SCU A
asks you for commands with the sec/ prompt and continues to prompt W
until you enter the QUIT subcommand.

Chapter 5 describes the selection criteria subcommands. These
subcommands explicitly include or exclude parts of a library.

Using selection criteria subcommands, you can include or exclude
decks by name or by the group to which they belong. You can include
or exclude decks from the base library or an alternate base library.

Similarly, you can exclude modifications by name or by the feature
with which they are associated. When you exclude a modification, the
modification changes are not included in the text of the file.

For example, the following subcommand shows you how to exclude all
changes belonging to modification MODI.

scc/exclude_modification modl

1-30 Source Code Management Revision G

Selecting Decks Using Selection Criteria Subcommands

Expanding Decks that Reference a Common Deck

Making a change to a common deck often requires that you recompile
each deck that references the common deck. To get an expanded text
file containing all decks that reference the common deck, enter the
selection criteria subcommand INCLUDE_COPYING_DECKS.

For example, the following EXPAND_DECK subcommand expands all
decks in the working library that copy the deck COMMON _DECK.

sc/expand_deck decks=all selection_criteria=conmand
scc/include_copying_decks deck=conmon_deck
sec/quit
SC/

Excluding a Common Deck Library

You can copy common decks from an alternate base library without
expanding the alternate base library decks. You do so by excluding
the alternate base library with the selection criteria subcommand
EXCLUDE_LIBRARY.

For example, the following subcommand expands all decks in the
working library, but it does not expand decks on the alternate base
library COMMON_LIBRARY.

sc/expand_decks decks=all alternate_base=conmon_library
sc .. /selection_criteria=conmand
scc/exclude_library conmon_library
sec/quit
SC/

The EXPAND_DECKS subcommand expands all decks in the working
library whose expand attribute is TRUE. When searching for a deck
specified on a COPY or COPYC directive, EXPAND_DECKS searches
the alternate base library if the deck is not in the working library.

Revision G Introduction to SCU 1-31

Selecting Decks Using Selection Criteria Subcommands

Entering Other Control Statements

Besides selection criteria subcommands, you can enter SCU display
subcommands and SCL control statements in response to an sec/
prompt. The sec/ prompt appears whenever selection criteria
subcommands are being entered.

SCL control statements within the criteria file can create and assign
values to SCL variables. An expression on an IF, ELSEIF, or PUT
text-embedded directive can reference an SCL variable assigned in the
selection criteria file or elsewhere.

For example, suppose you enter the following SCL statement in
response to a selection criteria prompt.

sec/optimize = true

The statement specifies that the OPTIMIZE variable is TRUE. Either
of the following IF directives in the source text reference the SCL
variable.

*if (optimize true)
or

*if optimize

Because the expression is TRUE, SCU expands the subsequent block
of lines.

1-32 Source Code Management Revision G

Editing the Modificat~on List

Editing the Modification List
Editing modifications is a way of organizing and recording changes
you make to a source library. By associating a set of changes with a
modification, you can save and restore that set of changes. You can
list the modifications in a library by entering the DISPLAY_
MODIFICATION _LIST subcommand.

You can also change the level of authority associated with a
modification to allow or deny access to lines in any deck that belong
to the modification.

Creating a Modification

You can create a modification in the following ways:

• Use the CREATE_DECK subcommand to create a deck.

• Use the CREATE_MODIFICATION subcommand to predefine a
modification.

• Specify the new modification as the MODIFICATION parameter on
the EDIT_DECK subcommand that begins an editing session. All
changes that you make to any deck within an editing session are
associated with that modification name.

By using a CREATE_MODIFICATION subcommand to predefine a
modification, you can specify modification header information when
you create the modification. You can also specify modification header
information with a CHANGE_MODIFICATION subcommand.

The modification header describes the modification. It contains the
following items.

• Modification name

• Feature to which the modification belongs

• Modification author

e • Modification description

To list the current contents of a modification header, enter a
DISPLAY_MODIFICATION subcommand.

Revision G Introduction to SCU 1-33

Editing the Modification List

Deleting a Modification

To remove all text changes associated with a modification, enter a
DELETE_MODIFICATION subcommand. After you delete a
modification, all changes introduced by the modification are reversed.
All insertions are deleted, all replacements are removed, and all
deletions are reactivated.

When a line is deleted, it becomes an inactive line. SCU does not
expand inactive lines when it expands the deck. When a line is
reactivated, it is once again an active line and is included in a deck
expansion.

Changing Your Modification States and Authority

During a project, source text can pass through several phases of
development. SCU associates a development state with each
modification. It recognizes the following states.

State Development Phase

O Experimental (text and header changes allowed)

1 Developmental (header changes only)

2 Stable (header changes only)

3 Verified (header changes only)

4 Released (no changes allowed)

In states 1, 2, and 3, changes can be made to the modification header,
but not to modification text.

NOTE

Modifications in state 4 cannot be lowered in state, and their header
and text information cannot be changed. Changes to lines introduced
in state 4 must be made under a new modification.

The initial state of a modification is 0. You can display the current
state of a modification by entering the DISPLAY_MODIFICATION
subcommand.

1-34 Source Code Management Revision G

Editing the Modification List

SCU only allows users with the appropriate authority to change the
state of a modification. You can raise a modification state up to your
authority for the file. For example, if your authority for a file is 3,
you can raise the state to 1, 2, or 3, but not to 4.

Your authority for a file is 0, unless you are granted higher authority
by the NOSNE command CREATE_FILE_PERMIT. Your authority is
indicated by a digit (1 through 4) in the application information field
of your file permit entry. Interlocking decks in a library are allowed
if you include the character I in the application information field.

Examples:

To assign read-only access to a file, enter:

/create_file_permit file=$user.fname group=public
.. /access_mode=read share_mode=none

To assign yourself the highest authority (unrestricted access) to a
source library file, enter:

/create_file_permit file=$user.fname group=user
.. /access_mode=(all cycle control) share_mode=none
.. /application_information='I4'

To assign access authority so that the modification status can be
changed later, enter:

/create_file_permit file=$user.fname group=public
.. /access_mode=(read, modify) share_mode=none
.. /application_information='4'

To display your authority for a file, enter the following NOSNE
command to display the application_information string in your file
permit entry.

/display_catalog_entry file=$user.fname
.. /display_option=permits

The CREATE_FILE_PERMIT and DISPLAY_CATALOG_ENTRY
commands are described in the NOSNE System Usage manual.

Revision G Introduction to SCU 1-35

Editing the Modification List

Assuming you have the required authority, you can change a
modification state by entering a CHANGE_MODIFICATION
subcommand, which raises the state or lowers it to 0. Lowering the
state to 0 allows you to change the modification text.

You can lower the state of a modification to 0 only if your authority
is greater than or equal to the current state of the modification. For
example, if the modification state is 2, you can lower it only if your
authority is 2, 3, or 4.

Modification states and authority also affect the DELETE_DECK and
DELETE_MODIFICATION subcommands as follows.

• You can delete only those decks whose creation modification state
is no greater than your authority.

• You can delete only those modifications whose state is no greater
than your authority.

If you specify a deck or modification that you cannot delete because
you lack authority, SCU skips that deck or modification and continues
processing with the next deck or modification specified on the
command.

NOTE

The record of deck header changes cannot be reversed. If an attribute
such as EXPAND is changed along with text changes, it is not
reversed if a MODIFICATION is removed. Only the text changes that
belong to a MODIFICATION are easily removed.

Modification states and authority also limit use of the SEQUENCE_
DECK subcommand and EXTRACT_SOURCE_LIBRARY command as
described later in this chapter.

1-36 Source Code Management Revision G

Sequencing Line Identifiers

e Sequencing Line Identifiers
Sequencing assigns new line identifiers to each line of a modification
or deck.

e Sequencing a Modification

You can sequence a modification using the SEQUENCE_
MODIFICATION subcommand, which adjusts the sequence numbers to
top-down order.

During an editing session, SCU assigns sequence numbers in the same
order in which the lines are introduced in the modification. The
sequence numbers remain in the order in which they were introduced.

For example, suppose you entered the EDIT_DECK subcommand
specifying MY_MOD as the modification name. The editing session
includes the following subcommand.

see/insert_ lines
Enter text
? do10i=1,10
? 10 n(i)=n(i-1) +
?••

SCU assigns the two lines that were inserted the line identifiers MY_
MOD.I and MY_MOD.2.

my_mod
my_mod

1

2

do 10 i=1,10
10 n(i)=n(i-1)+i

Suppose the next editing session also specified the modification name
MY_MOD and contained the following subcommands.

sce/replace_text text='i=1,10' new_text='i=1,20'
sce/insert_line new_text='n(i)=1' placement=before

SCU gives the changed line the line identifier MY_MOD.3 and the
inserted line the identifier MY_MOD.4. After you exit the editing e session, the deck appears in the following order:

my_mod
my_mod
my_mod

Revision G

4

3
2

n(i)=1
do 10 i=1,20

10 n(i)=n(i-1) +

Introduction to SCU 1-37

Sequencing Line Identifiers

Sequencing a Deck

You can sequence a deck when the creation modification for the deck
has been raised to released state (state 4), and you have this level of
access for the file. Sequencing a deck renumbers the line identifiers of
all lines in the deck that belong to modifications in state 4.

Sequencing a deck also discards all lines deleted by modifications in
state 4. New line identifiers are assigned, consisting of the specified
modification name and a sequence number. Sequence numbers are
assigned in the order the lines appear in the deck. After they have
been sequenced, all deck lines in state 4 belong to the modification
specified in the SEQUENCE_DECK command.

NOTE

Line identifiers for deck lines belonging to modifications not in state 4
are not changed.

Enter the SEQUENCE_DECK subcommand to sequence a deck. You
can sequence the deck whenever a modification in the deck is raised
to released state. Changes cannot be made to a modification that is in
released state. Sequencing a deck consolidates the modifications that e
cannot be changed, thus minimizing the number of modifications in
the deck and freeing additional file space. Lines in a deck which were
introduced by modifications at states less than 4 maintain their
original identity.

1-38 Source Code Management Revision G

Extracting a Source Library

Extracting a Source Library

You can extract a source library by creating a new library containing
one or more decks copied from an existing source library.

Extracting a library allows you to edit copies of a subset of the decks
on an existing library for future use. Later, the edited version of the
extracted library can be merged with the old library to create a new
library. The user who merges the libraries must have read access
permission to your extracted library and to the original library; the
user must also have modify, shorten, and append access permission to
the new library file.

To extract a library, enter the command EXTRACT_SOURCE_
LIBRARY before starting your SCU session. The BASE parameter
specifies the file containing the existing source library and the
RESULT library specifies the file on which the extracted library is
written. Then, when you enter the SOURCE_CODE_ UTILITY
command to begin your session, specify the extracted library file on
the BASE parameter of the USE_LIBRARY subcommand.

For example, the following commands show how to extract a source
library and begin an SCU session using the extracted source library.

/extract_source_library decks=(deck114 .. deck120) ..
.. /base=$system.library result=$user.my_library ..
.. /interlock=none
/scu
sc/use_library base=$user.my_library
sc .. /result=$user.my_library.$next
SC/

Using Interlocks

When you extract a set of decks from a library using the EXTRACT_
SOURCE_LIBRARY command, you may want to interlock them so
you can:

• Notify other users that you have extracted a copy of the deck and
that any changes they make to the deck will not be included in
the future version of the library.

• Prevent other users from interlocking the deck.

Revision G Introduction to SCU 1-39

Extracting a Source Library

• Prevent other users from merging a deck list containing a copy of A
the interlocked deck with the original deck list to create a new W
library.

Setting an interlock sets the interlock fields. Two interlock fields exist
in a deck header: an original interlock field and a subinterlock field.
When you interlock decks, the subinterlock field is set in the deck
header on the base library and the original interlock field is set in
the deck header on the extracted library.

Setting an Interlock

To interlock decks, you must specify the INTERLOCK parameter on
the EXTRACT_SOURCE_LIBRARY command that extracts the deck.
The value specified on the INTERLOCK parameter is stored in the
appropriate interlock field in the deck header, with the date and time
the interlock was performed.

To interlock decks in a library, you must have modify and read
permission to the library file and the character I (for interlock)
specified in the application_information field of your file permit entry.
Permissions and the application_information string are specified on a
CREATE_FILE_PERMIT command as described in the NOS/VE
System Usage manual.

For example, to assign access authority allowing decks to be
interlocked on the library, enter:

/create_file_permlt file=$user.fname group=public
.. /access_mode=(read,modify) share_mode=none
.. /application_information='I'

An interlocked deck must be extracted whole. Modifications to the
deck cannot be excluded by selection criteria directives.

1-40 Source Code Management Revision G

Extracting a Source Library

Nesting Interlocks

You can nest interlocks: in other words, you can extract an
interlocked library from another interlocked library.

Figure 1-4 shows an example of nested interlocks. In the example,
user 1 extracts library B from library A, setting interlocks on decks X
and Y. The subinterlock field is set for the interlocked library A
decks (X and Y) and the original interlock field for the library B
decks. Then, user 2 extracts library C from library B, setting an
interlock on deck Y. The subinterlock field is set for the interlocked
library B deck and the original interlock field for the library C deck.
Therefore, the copy of deck Y on library B has both its original
interlock and subinterlock fields set.

Revision G

Library A

1
DeckX [user1

1
DeckY [user1

l
DeckZ l

Library B

1 user1

DeckX [

1 user1

DeckY [user2

(original)

(subinterlock)

(original)

(subinterlock)

(original)

(subinterlock)

(original)

(subinterlock)

UbraryC

~(original)
~ (subinterlock)

Figure 1-4. Example of Nested Interlocks

Introduction to SCU 1-41

Extracting a Source Library

Restrictions of Interlocking

Interlocking a deck restricts its use as follows:

• If you enter the EXTRACT_SOURCE_LIBRARY command to set
an interlock on a deck whose subinterlock is already set:

A warning message appears.

- The interlocked deck is skipped.

Remaining decks are processed.

• If you enter a COMBINE_LIBRARY or REPLACE_LIBRARY
subcommand to merge the extracted library with the base library:

- A warning message appears.

Nonmatching interlocked decks are skipped.

Merging of matching decks continues.

Decks are nonmatching if the following two conditions apply:

- The ENFORCE_INTERLOCKS parameter is set to TRUE.

- The original inter lock field of the extracted library decks does
not match the subinterlock field of the interlocked base library
decks.

• If you edit or sequence an interlocked deck, a warning message
appears. The message lets you know that changes will be omitted
from any new library created by merging the extracted decks with
the decks on the existing library.

1-42 Source Code Management Revision G

Extracting a Source Library

Clearing an Interlock

When you merge extracted decks with the decks in the original
library to form a new library, SCU checks the contents of the
interlock fields only if you request interlock enforcement. If requested
by the ENFORCE_INTERLOCKS parameter on a COMBINE_
LIBRARY or REPLACE_LIBRARY subcommand, SCU checks that the
subinterlock field of the base deck header matches the original
interlock field of the extracted deck header. If the fields match, the
base deck is replaced by the extracted deck and the interlock fields
are cleared on the result library.

For example, suppose you merge the libraries shown in figure 1-4 to
form library D. Assuming interlocks are enforced, the library C copy
of deck Y can only replace the library B copy of deck Y. It cannot
replace the library A copy, because its original interlock field does not
match the subinterlock field of the library A copy. You cannot merge
library C with library A to form library D if interlocks are enforced.
You could merge library C with library B, or library B with library
A, or you could merge all three libraries to form a new library
(described later in this chapter).

SCU provides a way of clearing the subinterlock field without merging
libraries. A user with access authority 4 for the library file can clear
a subinterlock field in a deck header by entering a CHANGE_DECK
subcommand.

Revision G Introduction to SCU 1-43

Merging Libraries

Merging Libraries
You can merge decks into the working library by entering ADD_
LIBRARY, REPLACE_LIBRARY, and COMBINE_LIBRARY
subcommands. The functions of each subcommand is as follows:

Subcommand

ADD_LIBRARY

REPLACE_LIBRARY

COMBINE_LIBRARY

Function

Adds new decks.

Replaces existing decks.

Adds new decks and replaces existing decks.

Each subcommand specifies one or more source libraries whose decks
can be merged into the working library. If all the decks are new,
enter the ADD_LIBRARY subcommand. If all the decks are copies of
existing decks extracted from the base library, enter the REPLACE_
LIBRARY subcommand. If the decks include both new decks and
copies of existing decks, enter the COMBINE_LIBRARY subcommand.
These subcommands do not change the contents of the working library
header.

The following paragraphs describe how each subcommand selects the e
decks that are copied to the working library.

Adding Libraries

The ADD_LIBRARY subcommand compares the decks in each source
library with the decks already in the working library. It compares
each source library in the order you specify the libraries on the
subcommand.

For each deck name it reads, SCU determines if a deck with that
name already exists in the working library. If it does not, ADD_
LIBRARY copies the new deck to the working library. If it is, ADD_
LIBRARY does not copy the deck. If the deck is in both the source
library and the working library, a warning message appears.

1-44 Source Code Management Revision G

Merging Libraries

For example, suppose an ADD_LIBRARY subcommand specifies source
libraries SOURCEA and SOURCEB. SCU first searches the deck list
of SOURCEA. The following shows the SOURCEA deck list, the
working library deck list, and the working library deck list after the
SOURCEA search is complete. A warning message appears, describing
the DECKl duplication.

SOURCEA

DEC Kl
DECK3

Working
Library

DEC Kl
DECK2

Intermediate Working Library

DECKl (from working library)
DECK2 (from working library)
DECK3 (from SOURCEA)

SCU then searches the deck list of SOURCEB. The following shows
the SOURCEB deck list, the intermediate working library deck list,
and the new working library after the SOURCEB search is complete.
Because DECK3 is included in both SOURCEA and SOURCEB deck
lists, it is not included in the working library deck list and a warning
message appears, describing the DECK3 duplication.

SOURCEB

DECK3
DECK4

Revision G

Intermediate
Working Library

DECKl (working library)
DECK2 (working library)
DECK3 (SOURCEA)

New
Working Library

DECKl (working library)
DECK2 (working library)
DECK4 (SOURCEB)

Introduction to SCU 1-45

Merging Libraries

Replacing Libraries

The REPLACE_LIBRARY subcommand compares the decks in each
source library with the decks already in the working library. It
compares each source library in the order you specify the libraries on
the subcommand.

For each deck name it reads, SCU determines if the deck with that
name already exists in the working library. If the deck is already in
the working library, REPLACE_LIBRARY replaces the existing deck
with the deck from the source library if it has not already been
replaced. If the deck is not in the working library, REPLACE_
LIBRARY does not copy the deck and a warning message appears.

For example, suppose a REPLACE_LIBRARY subcommand specifies
source libraries SOURCEA and SOURCEB. SCU first searches the
deck list of SOURCEA. The following shows the SOURCEA deck list,
the working library deck list, and the working library deck list after
the SOURCEA search is complete. A warning message appears,
stating that DECK4 is not on the base library.

SOUR CEA

DEC Kl
DECK4

Working
Library

DEC Kl
DECK2
DECK3

Intermediate
Working Library

DECKl (from SOURCEA)
DECK2 (from working library)
DECK3 (from working library)

SCU then searches the deck list of SOURCEB. The following shows
the SOURCEB deck list, the intermediate working library deck list,
and the new working library after the SOURCEB search is complete.
DECKl is not replaced by SOURCEB because it has already been
replaced by SOURCEA.

SOURCEB

DEC Kl
DECK2

Intermediate
Working Library

DECKl (SOURCEA)
DECK2 (working library)
DECK3 (working library)

1-46 Source Code Management

New
Working Library

DECKl (SOURCEA)
DECK2 (SOURCEB)
DECK3 (working library)

Revision G

Merging Libraries

Combining Libraries

The COMBINE_LIBRARY subcommand compares the decks in each
source library with the decks already in the working library. It
compares each source library in the order you specify the libraries on
the subcommand.

For each deck name it reads, SCU determines if the deck with that
name already exists in the working library. If the deck is already in
the working library and has not been replaced by a previous source
library copy, it replaces the existing deck with the deck from the
source library. If it is not in the working library, it adds the deck
from the source library.

For example, suppose a COMBINE_LIBRARY subcommand specifies
source libraries SOURCEA and SOURCEB. SCU first searches the
deck list of SOURCEA. The following shows the SOURCEA deck list,
the working library deck list, and the working library deck list after
the SOURCEA search is complete.

Working
SOURCEA Library

Intermediate
Working Library

DEC Kl
DECK4

DEC Kl
DECK2
DECK3

DECK! (from SOURCEA)
DECK2 (from working library)
DECK3 (from working library)
DECK4 (from SOURCEA)

SCU then searches the deck list of SOURCEB. The following shows
the SOURCEB deck list, the intermediate working library deck list,
and the new working library after the SOURCEB search is complete.
DECK4 is not replaced because it has already been replaced by
SOURCEA.

Intermediate
SOURCEB Working Library

DECK2
DECK4

Revision G

DECK! (SOURCEA)
DECK2 (working library)
DECK3 (working library)
DECK4 (SOURCEA)

New
Working Library

DECK! (SOURCEA)
DECK2 (SOURCEB)
DECK3 (working library)
DECK4 (SOURCEA)

Introduction to SCU 1-47

Substituting Deck Names

Substituting Deck Names

SCU has two subcommands that substitute new names in a result
library for old names in the base library: CHANGE_DECK_
REFERENCES and CHANGE_DECK_NAME. For both subcommands,
you specify the name substitutions on a separate file.

To change all deck references on COPY and COPYC directives, enter
a CHANGE_DECK_REFERENCES subcommand. For a list of all
references to the deck before changing the deck references, enter a
DISPLAY_DECK_REFERENCES subcommand.

To change a deck name both within the deck header and on COPY
and COPYC directives, use a CHANGE_DECK_NAME subcommand.

SCU reads the name substitutions from the file specified on the
NAME_LIST parameter on the subcommand. You should specify one
name substitution per line in the file. The substitution is specified as
an SCL parameter list containing the following parameters.

OLD_NAME (ON)

Existing name.

NEW_NAME (NN)

Substituted name.

For example, any of the following lines changes DECKA to FIRST_
DECK.

old_name=decka new_name=first_deck

on=decka, nn=first_deck

decka,first_deGk

1-48 Source Code Management Revision G

Generating Editor Subcommands

Generating Editor Subcommands

SCU provides two means of generating sequences of editor
subcommands.

• The EXTRACT_MODIFICATION subcommand generates a
sequence of editor subcommands that can reproduce the
modification.

• The GENERATE_SCU_EDIT_COMMANDS command compares
the text in a deck with that in a separate file and generates a
sequence of editor subcommands that change the deck text to
match file text. (GENERATE_SCU_EDIT_COMMANDS is a
NOSNE command that is described in the next chapter.)

NOTE

Changes made to the deck header such as changing the expand
attribute to TRUE or FALSE) are not part of a modification set.
Hence, these types of updates are not included in the GENERATE_
SCU _EDIT_ COMMANDS output.

The editor subcommand sequence generated by these two
subcommands consists of the INSERT_LINES, REPLACE_LINES, and
DELETE_LINES subcommands and the text they insert. Refer to the
N OSNE File Editor manual for descriptions of these subcommands.

Revision G Introduction to SCU 1-49

Commands and Subcommands

The first part of this chapter describes SCL command use,
abbreviations, parameters, and other syntax elements. It discusses
initiating utilities in line or screen mode and grouping and
referencing files. The second part of the chapter describes each SCU
subcommand, each SCL command that initiates SCU execution, and
other related SCL commands. The descriptions are presented in
alphabetical order by name.

2

The following sections describe how to use NOSNE commands and
utilities and how to get information about commands from the system.

Using NOSNE Commands

The following sections describe how to use NOSNE commands and
utilities and how to get information about commands from the system.

Names

NOSNE uses names to identify commands, parameter names, files,
and catalogs. Whether the name is predefined by the system or one
that you choose, the rules for forming it are the same. A name can be
any combination of alphanumeric characters, underscores, and other
special characters (listed below) as long as it does not begin with a
numeric character and contains 31 or fewer characters.

NOSNE does not distinguish between uppercase and lowercase letters
in a name: for example, it interprets the names MY_FILE and My_
File as being identical.

Table 2-1 contains a list of characters you can use when forming
names.

Revision G Commands and Subcommands 2-1

Names

Table 2-1. Valid Characters for NOSNE Names

Character Name

a-z Lowercase alphabetic

A-Z Uppercase alphabetic

Underline

$ Dollar sign1

Number sign

@ Commercial at

Opening bracket2

Closing bracket2

\ Reverse slant2

Circumflex2

Grave accent2

{ Opening brace2

} Closing brace2

I Vertical line2

Tilde2

1. A function name, variable name, or file name defined by NOSNE
contains a dollar sign to distinguish it from a user-defined name.
Names for SCL variables may not begin with a dollar sign. In
general, avoid defining names that contain the dollar sign character in
any position.

2. The special characters [,], \, A, ', {, }, I, -) apply to languages
requiring additional characters. Unless your language requires them, e
we recommend you avoid using these characters.

2-2 Source Code Management Revision G

Commands

Commands

Under NOSNE, a command initiates a specific operation, such as
creating or deleting a file. During an interactive session, you enter
NOSNE commands after the system prompt (/).

Each NOSNE command follows the same format: it begins with a
verb and is followed by an object, which can be one or more words
separated by underscores. An example is the CHANGE_ TERMINAL_
ATTRIBUTES command. The verb is CHANGE and the object is the
two words TERMINAL_ATTRIBUTES.

• Commonly used verbs in commands are CREATE, DELETE,
DISPLAY, CHANGE, and SET.

• Commonly used objects are FILE, CATALOG, and PROGRAM_
ATTRIBUTES.

Since NOSNE command names describe what they do, you can easily
recognize the purpose of commands and anticipate the names for
commands you have not yet used. For example, the DELETE_FILE
command deletes files and the DISPLAY_FILE_ATTRIBUTES
command displays file attributes.

Revision G Commands and Subcommands 2-3

Commands

Abbreviating Commands

You can abbreviate commands by using the first three letters of the
verb followed by the first letter of each word in the object without
underscores. For example, the following commands are shown with
their abbreviations.

COPY_FILE or COPF

SET_WORKING_CATALOG or SETWC

•. :~.='.=· The word PASSWORD when used in command or parameter names is
. abbreviated PW.

Continuing a Command on a New Line

To continue a command on another line, follow these steps:

~~ 1. End the current line with an ellipsis (..).

I
<-

~~

2. Press the return key. During an interactive session, the system
prompts for continued lines by preceding the input prompt with an
ellipsis. For example:

. ./

3. Continue the line.

The following example illustrates a command that is continued on a
second line:

/copy_f; le
.. /input=inf1le output= ..
. . /outfi le
I

2-4 Source Code Management Revision G

Commands

Using Parameters in Commands

Commands often contain parameters that let you select various
processing options. For each parameter, the command defines a value
type such as integer or boolean. When you specify the value for a
parameter, it must match the defined value type. Parameters have the
following format:

parameter= value list

Parameter Names

Parameter names consist of one or more words, separated by
underscores, and like command names, they describe what they do.

You must separate parameters from the command and from other
parameters using spaces or commas, as the following examples show:

/copy_file input=infile output=outfile
/change_terminal_attributes,terminal_model=dec_vt220

You can abbreviate parameter names by specifying the first letter of
each word in the parameter name. For example, you can abbreviate
the preceding commands and parameters as follows:

/copf i=infile o=outfile
/chata tm=dec_vt220

The following are exceptions to this standard:

• STATUS has no abbreviation.

• PASSWORD is abbreviated PW.

•
•
•

OUTPUT_DESTINATION is abbreviated ODE .

OUTPUT_DISPOSITION is abbreviated ODI .

Any parameter beginning with MAX or MIN (such as
MAXIMUM_ WORKING_SET and MINIMUM_ WORKING_ SET)
preserves those three characters as part of its abbreviation
(MAXWS and MINWS). In this way, the uniqueness of these
parameters is preserved.

Revision G Commands and Subcommands 2-5

Commands

Parameter Order

You can also specify parameter values without specifying the
parameter name, provided that you follow the order defined for the
parameters. If you specify parameter values positionally, use a comma
as a place holder for any unspecified parameters. The following
example shows the EDIT_FILE command with values specified for the
first and third parameters, and a comma used as a place holder for
the second parameter.

/edit_file my_file,,output_file

Parameter Types

Every parameter is defined as a certain type (such as integer or
boolean). The system verifies that the value you assign a parameter
matches its defined type. If there is a mismatch, an error message is
displayed.

The following table shows the different parameter types and some
examples of the values you can assign.

Type

Name or Keyword

Integer

String

Boolean

File

Example

N2000
ALL

100
-5000

'This is a string.'
'Names don"t have apostrophes, but strings
do.' 1

TRUE or FALSE
YES or NO
ON or OFF

MY_FILE
$USER.MY_ FILE
$LOCAL.MY_FILE

1. To include an apostrophe within a string, use two consecutive apostrophes.

2-6 Source Code Management Revision G

Commands

A value list specifies one or more values to be processed for a
parameter. To specify more than one value in a value list, enclose the
list in parentheses and separate the values by a space or comma, as
in the following example:

/detach_file file={file1,file2)

Every NOSNE command has an optional STATUS parameter which
you can use to check for error conditions. If an abnormal condition
occurs during execution of the command, the system passes
information about that condition to the variable supplied for the
STATUS parameter. You can include commands in your job to check
the contents of the status variable and change the flow of execution
based on the result.

Entering Commands

The two most common ways of executing commands are as follows:

• Enter the name of a command from the $SYSTEM command list
or the name of a command on an object library you have added to
the command list.

• Enter the name of an executable file.

For example, the following entry causes the DISPLAY_CATALOG
command found in your command list to be executed:

/display_catalog

You execute the commands in a file by specifying the path of the
executable file. The following entry causes the commands in
$LOCAL.SAMPLE_PROC to be executed:

/$1ocal.sample_proc

File paths are discussed later in this chapter.

Revision G Commands and Subcommands 2-7

Command Utilities

Command Utilities

Command utilities are commands that make a set of subcommands
available to you. The subcommands perform the operations of the
utility. For example, the EDIT_FILE utility provides subcommands for
editing files; the CREATE_OBJECT_LIBRARY utility provides
subcommands for maintaining object libraries. Utility subcommands
obey the same rules and conventions as other commands.

When you enter the command to initiate a utility, the system adds
the subcommands associated with the utility to the list of NOSNE
commands already available. While the command utility is executing,
you can enter both NOSNE commands and the utility's subcommands.
When you exit from a utility, however, its subcommands are removed
from the command list and are no longer available for your use.

Initiating Utilities

To start a command utility, enter the utility's command name and
any associated parameters. During an interactive job, the system
responds by displaying the utility's unique prompt. For example, if
you start the CREATE_OBJECT_LIBRARY utility, the system
responds with the COL/ prompt:

/create_object_library
COL/

All utilities have one subcommand in common: QUIT. Entering this
subcommand ends the utility.

2-8 Source Code Management Revision G

Command Utilities

Line and Screen Mode

Many utilities operate in both line mode and screen mode.

In line mode, you perform line-by-line operations by entering a
subcommand (or other NOSNE command) after the system prompt (/).

In screen mode, you interact with the utility by pressing keys
associated with specific operations (such as moving or deleting lines or
characters). The operations and their associated keys are displayed at
the bottom of your screen.

Before you use a utility in screen mode, you must first identify the
type of terminal you are using by entering the name of your terminal
model on the TERMINAL_MODEL parameter of the CHANGE_
TERMIN AL_ATTRIBUTES command and then the command that
changes your interactive style:

/change_terminal_attributes terminal_model=dec_vt220
/change_interaction_style style=screen

Because you typically identify your terminal once at the beginning of
an interactive session, you could place the preceding commands, as
well as those mentioned in the next section, in your user prolog
(typically file $USER.PROLOG). All commands in your user prolog are
processed by NOSNE each time you log in.

Revision G Commands and Subcommands 2-9

Command Utilities

Controlling Processing in Screen Mode

To be able to interrupt or terminate the processing of a utility
operation or an SCL command while you are in screen mode, you
must do the following:

1. Define an attention character.

If you are logged in through CDCNET, you will enter this
character to interrupt processing.

If you are logged in through NAM/CCP, you will use control·T and
control·P as you do in line mode to interrupt processing.

2. If you are a CDCNET user, specify how the network is to respond
when you enter the attention character. This is called the
attention character action. Specify a value of 1 if you want the
network to interrupt operations, or 2 if you want the network to
terminate operations.

The following sections give examples of establishing control processing
through the NAM/CCP, NAM/CDCNET, and NAMVE/CDCNET
networks. If you are not sure which network you use, ask your site
personnel. The NOS/VE commands used in the examples are described A
in the NOS/VE System Usage manual. The CDCNET commands used 9'
are described in the CDCNET Terminal Interface Usage manual.

2-10 Source Code Management Revision G

Command Utilities

NAM/CCP Example

To be able to use control-T to terminate a command and control-P to
interrupt operations while in a screen mode application, add the
following NOSNE command to your user prolog:

change_terminal_attributes attention_character=$char(1)

NAM/CDCNET Example

To use control-P to interrupt operations while in a screen mode
application, add the following CDCNET commands to your user prolog:

%change_terminal_attributes attention_character=10(16)
%change_connection_attributes attention_character_action=1

NOTE

In line mode, the network accepts the character sequences %1 to
interrupt processing and %2 to terminate processing. It also accepts
control-P as the pause break sequence if you have entered the above
commands in your user prolog.

NAMVE/CDCNET Example

To use control-T to terminate operations while in a screen mode
utility, add the following NOSNE commands to your user prolog:

change_terminal_attributes attention_character=20
change_term_conn_defaults attention_character_action=2
change_connection_attributes terminal_file_name=input aca=2
change_connection_attributes terminal_file_name=output aca=2
change_connection_attributes terminal_file_name=conmand aca=2

NOTE

In line mode, the network accepts the character sequences %1 to
interrupt processing and %2 to terminate processing. It also accepts
control-T as the terminate break sequence if you have entered the
above commands in your user prolog.

Revision G Commands and Subcommands 2-11

!

NOS/VE Files

NOSNE Files
NOS/VE stores all data and programs in files. Files, in turn, are
stored in logical groupings called catalogs. During an interactive job,
you have access to a catalog of temporary files (called the $LOCAL
catalog) and a catalog of permanent files (called the $USER catalog).

Temporary Files

Temporary files are created during an interactive job and are used as
work files. When your interactive job ends, all temporary files are
deleted.

The temporary files you create are stored in the $LOCAL catalog. In
addition, NOSNE uses the $LOCAL catalog to store certain
system-defined files which it requires to process your job.

The $LOCAL catalog contains files only; you cannot create catalogs
within $LOCAL.

2-12 Source Code Management Revision G

NOSNE Files

Permanent Files

Permanent files are files NOSNE saves in permanent catalogs under
your user name. Permanent files are grouped into a hierarchy. From
top to bottom, this hierarchy is described as follows:

e Element

Family

Master Catalog

Subcatalog

File

Revision G

Description

A grouping of NOSNE users that determines the
location of their permanent files. Each system can
have more than one family. You can also refer to
your family name as $FAMILY.

Catalog that contains all the permanent files and
subcatalogs belonging to a particular user. Users
can ref er to their master catalog by their user
name or by the name $USER.

Catalogs residing within the master catalog.
Subcatalogs can contain both files and other
subcatalogs.

A collection of information referenced by a name
and residing in a user's master catalog or
subcatalog.

Commands and Subcommands 2-13

NOS/VE Files

We can picture this hierarchy as shown in the following figure:

M•ter
C•tlllog

for User1

FMnily
NVE

Master
Cat•lo11
for PAT
ISUSEAI

Mater
Cat•log

for Unr3

M•ster
C•tlllog

tor User'

File
PROLOG

eat.log
EXAMPLES

Fiie
FTN_PROG

2-14 Source Code Management

File
C_PROG

Fmnlly
VE2

M•llter
Cat•log

tor Users

Mater
Catlllog
tor JIM

File
PRO LOG

File
ACCOUNTS

Revision G

NOSNE Files

Referencing Files

You reference a file by specifying its file path. A full file path
includes the family name and all the catalogs in the path leading to
the file. For example, the full file path for file FTN _PROG shown in
the previous illustration is:

:NVE.PAT.EXAMPLES.FTN _PROG

You can reference files within your own family of users and within
other families. Suppose you want to reference user JIM's CHECK_
STATS file. File CHECK_STATS is in JIM's subcatalog FINANCE,
and JIM's master catalog is part of family VE2. The correct file
reference, then, is as follows:

:VE2.JIM.FINANCE.CHECK_STATS

Files can have more than one version called a file cycle. You can also
specify a file position. Suppose the file FTN_PROG has three cycles
and you want to specify that the third cycle be positioned at the end­
of-information When it is first opened. The correct file reference, then,
is as follows:

:NVE.PAT.EXAMPLES.FTN _PROG.3.$EOI

While it is never incorrect to specify a full catalog or file path, it can
often be inconvenient. The following list describes the shortcuts
NOSNE accepts for referring to files.

• Specify the name of the family catalog only if you are referencing
a catalog or file residing under a family name other than your
own.

• Specify the name of a master catalog only if you are referencing a
catalog or file that does not reside in your working catalog, or
within a catalog subordinate to your working catalog.

• Specify the $LOCAL keyword only if your local catalog is not your
working catalog.

• Sp~cdify ~ust the namk~ of the 1catalog or file if the catalog or file -~::,:_,!
res1 es m your wor mg cata og.

Revision G Commands and Subcommands 2·15

NOS/VE Files

Using List Files Within SCU

You can establish a default listing file for the SCU subcommands by
specifying the LIST parameter of the SET_LIST_OPTIONS
subcommand. The default listing file is $LIST. You can override the
default for the duration of a subcommand by specifying a different
listing file on its LIST parameter.

For certain subcommands, you can select a brief or full listing with
the DISPLAY_OPTIONS parameter. The parameter description
indicates how the parameter changes the content of a listing.

You can also change the format of the listing by changing the
attributes of the listing file (refer to the SET_FILE_ATTRIBUTE
command description in the NOSNE System Usage manual). If you do
not specify the PAGE_ WIDTH file attribute, the default is what was
set for the terminal.

For listing on a terminal, you may have to reset the PAGE_ WIDTH
and PAGE_LENGTH terminal attributes to match the number of
characters allowed on your screen (refer to the CHANGE_
TERMINAL_ATTRIBUTE command description in the NOSNE
Commands and Functions manual).

The PAGE_FORMAT file attribute determines how often titles are
inserted in a listing. The PAGE_ WIDTH attribute determines the title
format used.

SCU provides two formats of titles, one for 132-character lines, the
other for 72-character lines. If the PAGE_ WIDTH value is at least
132, the 132-column title format is used. Otherwise, the 72-column
title format is used. Figure 2-1 shows examples of the two title
formats. The examples are for a DISPLAY_DECK subcommand for
base library :$LOCAL.SCD0587.

In general, a listing of names uses the most columns the page width
can accommodate.

2-16 Source Code Management Revision G

e e
~ rn g·
Q

'lCj
O'Q
i::
'1
(!)

~
I

i""'

~
fll g.

O'Q

~
l.l
0

e
(!)

8
8 =

'lCj

::s g.
0

=
a

[
II)
~
fll

~
" 0

8
8 = ::s
~

i::>
.:J

132-Column Format:

DISPLAY_DECK
BASE=:$1oca1.scd0587

72-Column Format:

e

NOS/VE SOURCE CODE UTILITY VO. 1 82263 1982-09-20

D!SPLAY_DECK 11:27:43 PAGE 2
1982-09-20 NOS/VE SOURCE CODE UTILITY VO. 1 82263
BASE=:$ loca 1. scd0587

e e

11: 27: 43 PAGE 2

z
0

~
"%j
:::.:
(D
rn

NOS/VE Files

Setting Your Working Catalog

You may want to establish a working catalog in your user prolog. By
default, NOSNE establishes $LOCAL as your working catalog when
you log in. You can also change your working catalog during
interactive sessions with the SET_ WORKING_CATALOG command.

Setting your working catalog to $USER eliminates the need to specify
the full file path to reference one of your permanent files. To set your
~orking catalog to $USER (the catalog containing your permanent
files), enter:

/set_working_catalog catalog=Suser

For example, if you are user PAT in the preceding figure and have set
your working catalog to $USER, you can make a reference to file C_
PROG as follows:

EXAMPLES.C_PROG

Another advantage of setting your working catalog to $USER is that
any files you created or copied to your $USER catalog are permanent.
Suppose you created file MONTHLY_REPORT and your working
catalog is set to $LOCAL. Before you log out, you need to copy file e
MONTHLY_REPORT to your $USER catalog to make it permanent.
All files created in $LOCAL are automatically deleted when you log
out.

2-18 Source Code Management Revision G

Online Assistance

Online Assistance

Any time you are working at your terminal, you can get online
assistance from NOSNE to learn about commands and parameters.
One way you can get help is to use the DISPLAY_COMMAND_
INFORMATION command.

For example, to find out the parameter requirements for the
CREATE_FILE command, enter the following:

/display_conmand_information create_file

NOSNE then displays the names and types for the parameters of the
CREATE_FILE command:

file, f
local_file_name, lfn
password, pw
ret ent ion , r
log, 1
status

f i 1 e $reoui red
name $optional
name none
integer 1 .. 999 = 999
boolean = false
var of status = $optional

The column on the left shows the parameter name and the column on
the right shows the data type requirement for each parameter. The
column on the right also shows the default value for the parameter (if
any) and whether the parameter is required.

For example, the RETENTION parameter is an integer in the range
from 1 through 999 and is not required. If you do not specify a value,
NOSNE assigns it the value 999 by default.

Revision G Commands and Subcommands 2-19

SCU Commands and Subcommands

The following table summarizes the commands provided by NOS/VE to A
help you get online information. W

Command

DISPLAY_COMMAND_LIST_
ENTRY

DISPLAY_ COMMAND_
INFORMATION

DISPLAY_FUNCTION _
INFORMATION

HELP

EXPLAIN

Description

Lists all available commands. This
comand is especially useful when
you are using a utility.

Lists a command's parameters,
abbreviations, types, and default
values.

Lists a function's parameters,
abbreviations, types, and default
values.

Accesses an online manual
containing general information
about the subject specified in this
command. If no subject is specified
and the last NOS/VE command
resulted in an error, HELP
accesses the online manual that
explains the error message. If a
utility is initiated, HELP displays
a list of the utility's subcommands
and functions.

Accesses the online manual you
specify in this command. If no
manual is specified, EXPLAIN
accesses the NOSNE System
Information manual.

SCU Commands and Subcommands
This section describes the commands used to manage source libraries.

2-20 Source Code Management Revision G

SOURCE_ CODE_ UTILITY

SOURCE_ CODE_ UTILITY
Command

Purpose

Format

Remarks

Examples

Revision G

Begins an SCU command utility session.

SOURCE_ CODE_ UTILITY or
SCU or
sou cu

STATUS=status variable

Entering a CREATE_LIBRARY or USE_LIBRARY
subcommand initializes the working library for the SCU
command utility session. If neither subcommand is issued,
file SOURCE_LIBRARY is used for the base and result
libraries. If file SOURCE_LIBRARY does not exist. it is
created.

The following sequence begins an SCU session and
initializes the working library from file OLDPL in your
working catalog, assumed not to be $LOCAL. The base
file, OLDPL, is a source file whose file structure is a
library. Entering the QUIT subcommand causes the
working library to be written on the next cycle of file
OLD PL.

/source_code_ut111ty
sc/use_11brary base=oldpl result=oldp1.$next
SC/QU1t

The next example does not use the USE_LIBRARY
subcommand, but rather initializes the working library
from file SOURCE_LIBRARY in your working catalog.

/source_code_utility
sc/create_deck deck=deck1 ..
sc .. /modificat1on=vers1on1
sci QU1t

Commands and Subcommands 2-21

ADD_LIBRARY

ADD_LIBRARY
SCU Subcommand

Purpose Adds decks from one or more source libraries to the
working library.

Format ADD_LIBRARY or
ADD_LIBRARIES or
ADDL

SOURCE_LIBRARY=list of file
LIST=file
DISPLAY_ OPTIONS= keyword
STATUS= status variable

Parameters SOURCE_LIBRARY or SOURCE_LIBRARIES or SL

List of one or more source library files. This parameter is
required.

Remarks

LIST or L

Listing file. You can specify a file position as part of the
file name. SCU lists the source library origin of each
deck in the working library. Within an SCU session, if A
you omit LIST, the listing file is the file specified on the W
SET_LIST_OPTIONS subcommand. Otherwise, the default
is file $LIST.

DISPLAY_ OPTIONS or DO

Specifies the level of information listed. Currently, both
keyword values produce the same listing.

BRIEF or B
FULL or F

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• ADD_LIBRARIES only adds decks that are not
already in the working library. It reads the deck list
for each source library in the order you specify the
libraries on the command. When it reads a deck name
that is not currently in the working library, it adds A
the deck to the library. When it reads a deck name W
that is already in the working library, it sends a
message describing the duplication, but it does not add
the deck to the working library.

2-22 Source Code Management Revision G

Examples

Revision G

ADD_LIBRARY

• If a modification is in more than one source library
modification list and the creation times do not match,
ADD_LIBRARY reports an error and does not add
any decks to the working library.

• If no decks could be merged because an exception
occurred in each deck, an error status is returned and
ADD_LIBRARY makes no change to the library.

• Decks, features, groups, and modifications are ordered
alphabetically on the ADD_LIBRARIES result library.

• Key characters in source libraries that are added to
the working library must match the key character in
the working library. If the key characters do not
match, SCU generates an error message.

The following command adds the decks from the source
library on file $USER.NEWLIB to the working library.
The contents of the working library are then displayed.

sc/add_library Suser.newlib list=output

DECKA
DECKB
DECKC
DECKD

BASE
BASE
NEWLIB
BASE

Commands and Subcommands 2-23

I
I
<·

I

CHANGE_DECK

CHANGE_DECK
SCU Subcommand

Purpose

Format

Parameters

Changes the content of one or more deck header fields.

CHANGE_DECK or
CHANGE_DECKS or
CHAD

DECK= list of name or keyword
AUTHOR =string
CLEAR_ORIGINAL_INTERLOCK =boolean
CLEAR_SUB_INTERLOCK =boolean
DECK_DESCRIPTION =list of string
PROCESSOR =string
GROUP= list of name
DELETE_GROUP=list of name
CHARACTER= string or keyword
TAB_COLUMN=list of integer
DELETE_COLUMN=list of integer
WIDTH= integer
LINE_IDENTIFIER =keyword
EXPAND= boolean
STATUS=status variable

DECK or DECKS or D

Decks whose headers are changed. You can specify a list
of one or more names, a list of one or more ranges, or
the keyword ALL. ALL specifies all decks in the library.
The default is the name of the most recently used deck.

AUTHOR or A

New author. If AUTHOR is omitted, the author field is
not changed.

CLEAR_ORIGINAL_INTERLOCK or COI

Indicates whether the original interlock for an extracted
deck should be cleared. Options are:

TRUE

Clears the original interlock field of the extracted deck
by erasing the name and time stamp that were
recorded in this deck.

2-24 Source Code. Management Revision G

Revision G

CHANGE_DECK

FALSE

Leaves the original interlock field of the extracted
deck unchanged.

If CLEAR_ORIGINAL_INTERLOCK is omitted, FALSE is
used.

CLEAR_SUB_INTERLOCKor CLEAR_INTERLOCKor
CI or CSI

Indicates whether the subinterlock field of the original
deck should be cleared. Options are:

TRUE

Clears the subinterlock field of the original deck.

FALSE

Leaves the subinterlock field of the original deck
unchanged.

If CLEAR_SUB_INTERLOCK or CLEAR_INTERLOCK
is omitted, FALSE is used.

NOTE

You must have authority 4 for the file to clear a deck
subinterlock or original interlock field.

DECK_DESCRIPTION or DD

List of strings containing the new deck description. If
DECK_DESCRIPTION is omitted, the description field is
not changed.

PROCESSOR or P

New processor. If PROCESSOR is omitted, the processor
field is not changed.

GROUP or GROUPS or G

Additional groups to which the deck is to belong. The
subcommand deletes any groups specified on the
DELETE_GROUP parameter before adding groups to the
group list. If GROUP is omitted, the deck is not
associated with additional groups.

Commands and Subcommands 2-25

CHANGE_DECK

DELETE_GROUPorDELETE_GROUPSorDG

Groups to which the deck should no longer belong. The
subcommand deletes groups specified before adding any
groups specified on the GROUP parameter. If DELETE_
GROUP is omitted, the deck continues to belong to the
same groups it did previously. e
CHARACTER or C

Either a 1-character string containing the new default tab
character or the keyword NONE to disable tabbing. If
CHARACTER is omitted, the tabbing status and default
tab character are not changed.

TAB_COLUMN or TAB_COLUMNS or TC

List of from 1 to 256 additional default tab columns. SCU
deletes the tab columns on the DELETE_COLUMN
parameter before it adds the new tab columns. If TAB_
COLUMN is omitted, no new tab columns are added.

DELETE_COLUMN or DELETE_COLUMNS or DC

List of default tab columns or tab column ranges to be
removed. SCU deletes the specified tab columns before it
adds the tab columns on the TAB_COLUMN parameter.
If DELETE_COLUMN is omitted, no tab columns are
removed.

WIDTHor W

New default line width. If WIDTH is omitted, the default
line width is not changed.

LINE_IDENTIFIER or LI

New default line identifier placement. Options are:

RIGHT (R)

Place line identifiers to the right of the text.

LEFT (L)

Place line identifiers to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, the default line
identifier placement is not changed.

2-26 Source Code Management Revision G

Remarks

Revision G

CHANGE_DECK

EXPAND or E

New expand attribute value. Options are:

TRUE

An EXPAND_DECK subcommand expands the deck.
(The deck can also be expanded by a COPY or COPYC
directive.)

FALSE

An EXPAND_DECK subcommand does not expand the
deck; it skips the deck and continues processing at the
next deck. Only a COPY or COPYC directive can
expand the deck.

If EXPAND is omitted, the expand attribute is not
changed.

• The DECK parameter specifies each deck to which the
changes should apply. The other parameters (except
STATUS) specify the deck header fields to be changed.

• To display a deck header, enter a DISPLAY_DECK
subcommand. You can reference deck header fields
with the SCU function $DECK_HEADER.

• If you have access authority 4 for the file, you can
enter a CHANGE_DECK subcommand to clear a
subinter lock that was set when a user extracted a
deck from the library.

• To eliminate unused groups from a library, enter
EXTRACT_SOURCE_LIBRARY DECKS=ALL
INTERLOCK= NONE to copy all decks to a new
RESULT file, saving only groups, modifications, and
features belonging to those decks.

• Changes to a deck header are not part of any
modification. When you include or exclude
modifications, you must make any associated deck
header changes separately by entering the CHANGE_
DECK subcommand.

Commands and Subcommands 2-27

CHANGE_DECK

Examples The following subcommand adds default tab column 35
and deletes default tab column 30 for DECKl.

sc/change_deck deck=deckl tab_column=35 delete_column=30

The following subcommand clears the subinterlock fields
of all deck headers in the working library if you have
access authority 4 for the file.

sc/change_deck all clear_interlock=true

2-28 Source Code Management Revision G

CHANGE_DECK_NAME

CHANGE_DECK_NAME
SCU Subcommand

Purpose

Format

Substitutes new names for existing deck names.

CHANGE_DECK_NAME or
CHANGE_DECK_NAMES or
CHADN

NAME _LIST= file
LIST=file
CHANGE_DECK_REFERENCES =boolean
MODIFICATION =name
STATUS= status variable

Parameters NAME_LIST or NL

Name substitution file. This parameter is required.

LISTor L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, the listing file is the file
specified on the SET_LIST_OPTIONS subcommand.
Otherwise, the default is file $LIST.

CHANGE_DECK_REFERENCESor CDR

Indicates whether the command substitutes deck names on
COPY and COPYC directives. Options are:

TRUE

COPY and COPYC names are substituted.

FALSE

COPY and COPYC names are not substituted.

If CHANGE_DECK_REFERENCES is omitted, FALSE is
used.

MODIFICATION or M

Modification to which the changed lines belong. If e MODIFICATION is omitted, SCU$ALTER is used.

Remarks • A deck name can occur in two places within a source
library: within its deck header, and on COPY and
COPYC directives in the source text. To list the COPY
and COPYC references to the deck, enter a DISPLAY_
DECK_REFERENCES command.

Revision G Commands and Subcommands 2-29

CHANGE_DECK_NAME

Examples

• You store the name substitutions on a separate file
andhspecify theb ~le ~n the NAMillEd_LIST 1~arameter. e
Eac name su stltut1on is spec ie as a me
containing an SCL parameter list. The parameter list
must have the following parameters:

OLD_NAME (ON)

Existing name.

NEW_NAME CNN)

Substituted name. NEW_NAME must be different
from ALL.

The following subcommand changes deck names as
specified in file NEW_DECK_NAMES. The changed lines
belong to the default modification SCU$ALTER.

sc/change_deck_names name_list=new_deck_names ..
sc .. /change_deck_references=true

The contents of file NEW_DECK_NAMES are:

my_deck,deck465

The command replaces each occurrence of the deck name e
MY_DECK with the new name DECK465. Because the
command specifies that the CHANGE_DECK_
REFERENCES parameter is TRUE, it replaces the deck
name both in the deck header and on COPY and COPYC
directives throughout the library.

2-30 Source Code Management Revision G

CHANGE_DECK_REFERENCES

CHANGE_DECK_REFERENCES
SCU Subcommand

Purpose

Format

Changes the deck names of COPY and COPYC directives
that are located in the specified decks.

CHANGE_DECK_REFERENCESor
CHADR

DECK= list of name
MODIFICATION= name
NAME_ LIST= file
LIST=file
STATUS =status variable

Parameters DECK or DECKS or D

Remarks

Revision G

Decks in which substitutions are performed. The keyword
ALL specifies all decks in the library. If DECK is
omitted, ALL is used.

MODIFICATION or M

Modification to which the changed lines belong. If
MODIFICATION is omitted, SCU$ALTER is used.

NAME_LIST or NL

Name substitution file. This parameter is required.

LISTor L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, the listing file is the file
specified on the SET_LIST_OPTIONS subcommand.
Otherwise, the default is file $LIST.

• The CHANGE_DECK_REFERENCES subcommand
only changes deck names on COPY and COPYC
directives, not in deck headers. To change a deck
name in its deck header, enter the CHANGE_DECK_
NAMES command.

• You use CHANGE_DECK_REFERENCES to replace
references to one deck with references to another deck.
To list the COPY and COPYC references to a deck,
enter a DISPLAY_DECK_REFERENCES command.

Commands and Subcommands 2-31

CHANGE_DECK_REFERENCES

Examples

• You store the name substitutions on a separate file
and specify the file on the NAME_LIST parameter.
Each name substitution is specified as a line
containing an SCL parameter list. The parameter list
must have the following parameters:

OLD_NAME (ON)

Existing name.

NEW_NAME (NN)

Substituted name. NEW_NAME should be different
from ALL.

The following subcommand changes references as specified
in file NEW_NAMES. The changes belong to modification
RENAME.

sc/change_deck_references name_11st=new_names
sc .. /mod1f1cat1on=rename

The following lists the contents of file NEW_NAMES.

deck44,deck45

The command changes each COPY or COPYC reference to A
DECK44 so that it references DECK45. W

2-32 Source Code Management Revision G

CHANGE_LIBRARY

CHANGE_LIBRARY
SCU Subcommand

Purpose

Format

Changes the content of one or more fields in the working
library header.

CHANGE_LIBRARY or
CHAL

LIBRARY=name
LIBRARY _DESCRIPTION= list of string
VERSION= string
LAST_ USED _DECK= name
LAST_ USED _MODIFICATION =name
STATUS=status variable

Parameters LIBRARY or L

Revision G

New library name. If LIBRARY is omitted, the library
name is not changed.

LIBRARY_DESCRIPTION or LD

Strings used to describe the source code that is
maintained on this library. If LIBRARY_DESCRIPTION is
omitted, the description field is not changed.

VERSION or V

New library version. If VERSION is omitted, the version
field is not changed.

LAST_USED_DECKor LUD

Default deck name that is stored in the library header.
The deck name is used as the default value for the deck
parameter on most subcommands. Specifying NONE clears
the last used deck name. If a name is explicitly stated for
a DECK parameter on an SCU subcommand, LAST_
USED_DECK is automatically changed.

LAST_ USED _MODIFICATION or LUM

Default modification name that is stored in the library
header. The modification name is used as the default
value for the modification parameter on most
subcommands. Specifying NONE clears the last used
modification name. If a name is explicitly stated for a
MODIFICATION parameter on an SCU subcommand,
LAST_ USED_MODIFICATION is automatically changed
to that name.

Commands and Subcommands 2-33

CHANGE_LIBRARY

Remarks

Examples

• To display the contents of the library header, enter a
DISPLAY_LIBRARY command.

• You can reference library header fields with the SCU
function $LIBRARY_HEADER.

The following command changes the content of the library
version field.

sc/change_library version='Version 1.1'

2-34 Source Code Management Revision G

CHANGE_MODIFICATION

CHANGE_MODIFICATION
SCU Subcommand

Purpose

Format

Changes information in one or more modification
descriptions.

CHANGE_MODIFICATION or
CHANGE_MODIFICATIONS or
CHAM

MODIFICATION= list of name or keyword
FEATURE= name or keyword
AUTHOR= string
MODIFICATION _DESCRIPTION= list of string
STATE =integer
STATUS =status variable

Parameters MODIFICATION or MODIFICATIONS or M

Revision G

Modification descriptions to be changed. You can specify a
list of one or more names (from 1 to 9 characters each), a
list of one or more ranges, or the keyword ALL. ALL
specifies all modifications in the library. If
MODIFICATION is omitted, the information for the
description of the last used modification is changed.

FEATUREor F

New feature name or keyword NONE. Specifying NONE
clears the current feature association. If FEATURE is
omitted, the feature field is not changed.

AUTHOR or A

New author. If AUTHOR is omitted, the author field is
not changed.

MODIFICATION _DESCRIPTION or MD

Strings used to describe the modifications. If
MODIFICATION _DESCRIPTION is omitted, the
description field is not changed.

STATE or S

New modification state. The following are the states and
their descriptions.

State Description

0 Experimental

Commands and Subcommands 2-35

CHANGE_MODIFICATION

Remarks

1
2
3
4

Developmental
Stable
Verified
Released

If STATE is omitted, the state is not changed.

NOTE

You cannot raise the modification state above your
authority for the file.

• The CHANGE_MODIFICATIONS subcommand can
only change the headers of modifications within the
modification list of the working library.

• To raise the value in the state field of the
modification header, your authority for the library file
must be the same or greater than the new state. For
example, to raise the state to 2, your authority must
be 2, 3, or 4.

You can only lower a state to 0. To lower the state to
0, your authority for the library file must be the same e
or greater than the current state. For example, to
lower a modification that is currently in state 2, your
authority must be 2, 3, or 4.

• To display a modification header, enter a DISPLAY_
MODIFICATION command. You can reference
modification header fields with the SCU function
$MODIFICATION _HEADER.

• To eliminate unused groups from a library, enter
EXTRACT_SOURCE_LIBRARY DECKS=ALL
INTERLOCK=NONE to copy all decks to a new
RESULT file, saving only groups, modifications, and
features that belong to these decks.

• The FEATURE name should not be a keyword.

2-36 Source Code Management Revision G

Examples

Revision G

CHANGE_MODIFICATION

The following command clears the feature associations of
all modifications in the working library.

sc/change_modification all feature=none

The following command raises the state of MOD_4 to
state 1 (developmental). You must have at least authority
1 for the file to raise the modification state to 1.

sc/change_mod1fication mod_4 state=1

Commands and Subcommands 2-37

COMBINE_LIBRARY

COMBINE_LIBRARY
SCU Subcommand

Purpose Combines the decks from one or more source libraries
with those in the working library.

Format COMBINE_LIBRARY or
COMBINE_LIBRARIES or
COML

SOURCE_LIBRARY=list of file
LIST=file
DISPLAY_OPTIONS =keyword
ENFORCE _INTERLOCKS= boolean
STATUS= status variable

Parameters SOURCE_LIBRARY or SOURCE_LIBRARIES or SL

List of one or more source library names. This parameter
is required.

LIST or L

Listing file. You can specify a file position as part of the
file name. scu lists the source library origin of each a
deck in the working library. If LIST is omitted, the •
listing file is the file specified on the SET_LIST_
OPTIONS subcommand. Otherwise, the default is file
$LIST.

DISPLAY_OPTIONS or DO

Specifies the information listed. Currently, both of the
following keywords produce the same listing.

BRIEF or B
FULL or F

If DISPLAY_OPTIONS is omitted, BRIEF is used.

ENFORCE_INTERLOCKSorEI

Indicates whether the original interlock field of a source
library deck must match the subinterlock field of the
working library deck it is to replace. Options are: e

TRUE

Interlocks must match.

2-38 Source Code Management Revision G

Remarks

COMBINE_LIBRARY

FALSE

Interlocks need not match.

If ENFORCE_INTERLOCKS is omitted, FALSE is used.

• COMBINE_LIBRARY reads the source library deck
lists in the order you specify the libraries on the
command.

• After reading a deck name, COMBINE_LIBRARY
determines if the deck name is already in the working
library deck list. If the name is not in the list, it adds
the deck to the working library. If the name is
already in the list, it replaces the deck in the working
library with the deck from the source library. The
combining process is continued until each successive
source library in the list has been combined with the
working library.

• If no decks could be merged because an exception
occurred in each deck, an error status is returned and
no change is made to the library.

If the creation times of modifications that occur on
both libraries do not match, COMBINE_LIBRARY
issues an error and does not alter the working library.

• COMBINE_LIBRARY lists the source library origin of
each deck in the working library on the listing file.

• Decks, features, groups, and modifications are ordered
alphabetically on the COMBINE_LIBRARY result
library.

• You can enter a COMBINE_LIBRARY subcommand to
merge decks from an extracted library with the decks
in the library from which it was extracted to form a
new library. It adds new decks and replaces existing
decks.

• If you set interlocks when you extract the library,
entering COMBINE_LIBRARY enforces the interlock
if you specify that the interlocks should be enforced.
COMBINE_LIBRARY checks whether the original
interlock value in the extracted deck header matches
the subinterlock value in the working library header.
If the values match, the working library deck is

Revision G Commands and Subcommands 2-39

COMBINE_LIBRARY

Examples

replaced with the extracted deck. Otherwise, it issues A
a warning messsage, does not replace the working W
library, and then attempts to combine any remaining
decks in the list.

• Key characters in source libraries that are added to A
the working library must match the key character in W
the working library. If the key characters do not
match, SCU generates an error message.

The following subcommand combines the decks in the
source library NEWLIB with the decks in the working
library.

sc/combine_library newlib list=output

DECKA
DECKB
DECKC
DECKD
DE CKE

BASE
BASE
NEWLIB
BASE
NEWLIB

2-40 Source Code Management Revision G

CREATE_DECK

CREATE_DECK
SCU Subcommand

Purpose

Format

Parameters

Revision G

Creates one or more decks.

CREATE_DECK or
CREATE _DECKS or
CRED

DECK= list of name
MODIFICATION =name
SOURCE =list of file
AUTHOR =string
DECK_DESCRIPTION =list of string
PROCESSOR =string
GROUP=list of name
CHARACTER= string or keyword
TAB_COLUMN=list of integer
WIDTH= integer
LINE _IDENTIFIER= keyword
EXPAND= boolean
DECK_DIRECTIVES _INCLUDED= boolean
MULTI_PARTITION =boolean
SAME_AS =name
STATUS=status variable

DECK or DECKS or D

List of one or more deck names. Each name must be
unique to the library. If DECK is omitted, you must
specify the SOURCE parameter and DECK_
DIRECTIVES_ INCLUDED= TRUE.

MODIFICATION or M

Modification name (1 to 9 characters). The modification
must be in state 0 (zero). The default is the last used
modification.

SOURCE or SOURCES or S

List of one or more files containing the source text for
the decks. You can specify a file position as part of the
file name. The SOURCE parameter is required when you
specify DECK_DIRECTIVES_INCLUDED=TRUE.

AUTHOR or A

Optional author identification.

Commands and Subcommands 2-41

CREATE_DECK

DECK_DESCRIPTION or DD

List of strings containing the optional deck description. If
DECK_DESCRIPTION is omitted, a description is not
saved.

PROCESSOR or P

Optional identification of the processor to which the deck
text is input.

GROUP or GROUPS or G

Optional list of groups to which the deck is to belong. If
any of the group names are not in the group list, SCU
adds the names to the list.

CHARACTER or C

Either a I-character string containing the tab character or
the keyword NONE to disable tabbing. If CHARACTER is
omitted, tabbing is disabled.

TAB_COLUMN or TAB_COLUMNS or TC

Optional list of 1 through 256 default tab columns. The
column numbers range from 1 through 256. e
WIDTH or W

Default line width. If WIDTH is omitted or specified as 0
(zero), deck lines can be up to 256 characters and the
lines are not padded with trailing blanks when the deck
is expanded.

LINE _IDENTIFIER or LI

Default line identifier placement.

RIGHT (R)

Identifiers are placed to the right of the text.

LEFT (L)

Identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, NONE is used.

2-42 Source Code Management Revision G

Revision G

CREATE_DECK

EXPANDor E

Specifies the expand attribute for the decks created.
Applicable only if the subcommand names decks on its
DECK parameter, not if DECK directives name the decks.
(A DECK directive specifies the expand attribute for its
deck.)

TRUE

An EXPAND_DECK subcommand expands the deck.
(COPY and COPYC directives can also expand the
deck.)

FALSE

An EXPAND_DECK subcommand skips the deck and
continues its processing with the next specified deck.
(Only COPY and COPYC directives can expand the
deck.)

If EXPAND is omitted, TRUE is used.

DECK_DIRECTNES_INCLUDED or DDI

Indicates whether the deck names are specified on DECK
directives embedded in the source text or as the DECK
parameter of this subcommand.

TRUE

The deck names are on DECK directives in the source
text on the source file. CREATE_DECK only reads
text from the first source file specified when DECK
directives are included.

FALSE

The deck names shown in the DECK parameter.

If DECK_DIRECTIVES_INCLUDED is omitted, FALSE is
used and the DECK parameter must be specified.

MULTI_PARTITION or MP

Indicates whether the deck text can be more than one
partition of data.

TRUE

The subcommand can copy more than one partition of
data to each deck.

Commands and Subcommands 2-43

CREATE_DECK

Remarks

FALSE

The subcommand can copy only one partition of data
to each deck.

If MULTI_PARTITION is omitted, FALSE is used.

SAME_AS or SA

Optional deck name. If a name is specified, the
subcommand copies deck header fields not specified on the
CREATE_DECK subcommand from the deck header of
this deck. If SAME_AS is omitted, unspecified header
fields are left blank.

• CREATE_DECK provides a header for each deck. The
minimum content of the deck header is the deck name
and the creation modification. You can specify
additional values for deck header fields with
parameters on the subcommand. You can also specify
the SAME_AS parameter to copy deck header fields
from another deck header; CREATE_DECK only
copies those deck header fields not explicitly specified.

• Each deck created is given a name (from 1 through 31 A
characters). By default, the subcommand uses the deck 'W'
names specified on the DECK parameter. However, if
you specify DECK_DIRECTIVES_INCLUDED=TRUE
on the subcommand, it uses the deck names specified
on DECK directives in the source text. You can
specify the expand attribute for a deck on its DECK
directive.

• The subcommand can specify the creation modification
for the deck. A modification name is from 1 through 9
characters, and it can be an existing modification
within the library or a new modification. Any source
text that the subcommand copies to a deck belongs to
the creation modification. The default is the last used
modification.

• To copy source text to the newly created decks, you A
must specify the SOURCE parameter. If you specify W
the SOURCE parameter and the DECK parameter, you
must specify a file name for each deck name on the
DECK parameter. The subcommand copies text to each A
deck from its corresponding file on the SOURCE W
parameter; that is, it copies the text from the first file

2-44 Source Code Management Revision G

Examples

Revision G

CREATE_DECK

to the first deck created, the text from the second file
to the second deck created, and so forth. If you specify
the file $NULL for a deck, the subcommand copies no
text and the deck remains empty.

• By default, the subcommand copies only the first
partition of text from a source text file. To copy more
than one partition of text, specify MULTI_
PARTITION=TRUE on the subcommand. This
indicates that if th.e subcommand reads an
end-of-partition delimiter when copying text, it
converts the delimiter to a WEOP text-embedded
directive and continues copying text.

• If you specify DECK_DIRECTIVES_
INCLUDED=TRUE and omit the DECK parameter,
the subcommand creates a deck header for each DECK
directive it reads on the source text file.

• If you specify DECK_DIRECTIVES_
INCLUDED=TRUE and errors are encountered in the
source file, CREATE_DECK attempts to skip ahead to
the next DECK directive. The working library will
contain the decks that were processed without errors.

• The subcommand places the created decks within the
library so that the alphabetic sequence of names in
the deck list is maintained.

• The maximum number of lines in one deck is
16,777,214.

The following subcommand creates two decks. First, it
creates a deck named DECK2 and copies one partition of
text to the deck from file FILE2. It then creates a deck
named DECK3 and copies one partition of text to the
deck from file FILE3. The deck headers contain the same
information as the DECKl header, except for their
description fields.

sc/create_deck (deck2,deck3) modification=original ..
sc .. /source=(file2,file3) same_as=deck1 ..
sc .. /deck_description='Second version of INIT_ARRAY'

The following subcommand creates decks using the text on
file FILE4. SCU generates a deck header for each DECK
directive embedded in the file text. The deck headers are

Commands and Subcommands 2-45

CREATE_DECK

the same as the DECKl header, except for the name and
expand attribute fields. The DECK directive specifies the e
deck name and expand attribute.

sc/create_deck modification=original source=file4
sc .. /same_as=deck1 deck_directives_included=true

2-46 Source Code Management Revision G

e

e

e

CREATE_LIBRARY

CREATE _LIBRARY
SCU Subcommand

Purpose Creates an empty source library at the beginning of an
SCU session. This subcommand also specifies the result
library used during an SCU session.

Format CREATE_LIBRARY or
CREL

RESULT=file
LIBRARY=name
LIBRARY_DESCRIPTION=list of string
KEY=string
VERSION= string
STATUS =status variable

Parameters RESULTor R

Name of the file to be used as the result file during an
SCU session. If RESULT is omitted, the file SOURCE_
LIBRARY in your working catalog is used as the result
file.

LIBRARYor L

Library name. If LIBRARY is omitted, the name specified
by the RESULT parameter is used as the library name.

LIBRARY_DESCRIPTION or LD

String or strings that describe the source code maintained
on this library. If LIBRARY_DESCRIPTION is omitted,
the null string is used.

KEYor K

One-character string containing the key character. The
key character is the first character of a text-embedded
directive. If KEY is omitted, * is used.

VERSIONor V

String used to describe the version of the library. If
VERSION is omitted, the null string is used.

Remarks • Using the CREATE_LIBRARY subcommand, you can
specify a key character other than the default
character *. The key character is the character SCU
recognizes as the prefix for all text-embedded
directives in the library.

Revision G Commands and Subcommands 2-47

CREATE_LIBRARY

Examples

• CREATE_LIBRARY creates a source library
containing only a library header, which you can
display with the DISPLAY_LIBRARY subcommand. To
change library header information, enter a CHANGE_
LIBRARY subcommand. To reference a library header
field, use the SCU function $LIBRARY_HEADER.

• After you execute CREATE_LIBRARY, the base
library is selected and cannot be changed by a
subsequent USE_LIBRARY or CREATE_LIBRARY
subcommand.

• During an SCU session, if neither a CREATE_
LIBRARY nor a USE_LIBRARY subcommand is
issued before other subcommands, file SOURCE_
LIBRARY in your working catalog is used for the base
and result libraries.

The following sequence creates an empty source library
named SOURCE_LIBRARY. The key character for the
library is *.

/scu
sc/create_library
SC/Quit

2-48 Source Code Management Revision G

CREATE_MODIFICATION

CREATE _MODIFICATION
SCU Subcommand

Purpose

Format

Creates one or more modifications in the library
modification list.

CREATE_MODIFICATION or
CREATE_MODIFICATIONS or
CREM

MODIFICATION=list of name
FEATURE =name
AUTHOR= string
MODIFICATION _DESCRIPTION =list of string
STATUS =status variable

Parameters MODIFICATION or MODIFICATIONS or M

Remarks

Revision G

List of one or more modification names (from 1 through 9
characters each). This parameter is required.

FEATURE or F

Optional name of the feature to which the modification
belongs. If the feature name is not in the feature list,
SCU adds the name to the list.

AUTHOR or A

Optional modification author.

MODIFICATION _DESCRIPTION or MD

Optional list of strings containing the modification
description.

• A modification created by a CREATE_MODIFICATION
subcommand contains only the modification header; no
lines belong to the modification. The modification is
defined for specification on subsequent commands.

• Modifications are placed on the library in alphabetical
order.

• If CREATE_MODIFICATIONS creates more than one
header, the headers are identical except for their
names.

Commands and Subcommands 2-49

CREATE_MODIFICATION

Examples

• To display the modifications defined within the
working library, enter a DISPLAY_MODIFICATION_ e
LIST command. To determine within an expression
whether a modification exists, use the SCU function
$MODIFICATION.

• FEATURE name should not be ALL or NONE. e
The following subcommand creates a description for
modification MOD_4 for feature SYNTAX_CHECK. The
author of the modification is K. Riley. The text in the
SCL variables LINEl and LINE2 is the modification
description.

sc/ltne1='This is a very long title for ..
sc .. /a modification to show that'
sc/line2='a list of strings may be used for
sc .. /the description.'
sc/create_modtftcation modiftcation=mod_4 ..
sc .. /feature=syntax_check author='K. Riley'
sc .. /modtficat1on_descriptton=(line1, ltne2)

2-50 Source Code Management Revision G

DELETE_DECK

DELETE _DECK
SCU Subcommand

Purpose

Format

Deletes one or more decks from the working library.

DELETE_ DECK or
DELETE_ DECKS or
DELD

DECK= list of range of name
STATUS =status variable

Parameters DECK or DECKS or D

Remarks

Examples

Revision G

Decks to be deleted. This parameter is required.

• You cannot delete a deck if the creation modification
of the deck is in a state greater than your authority
for the file.

• The DELETE_DECK subcommand removes the deck
name from the deck list of the working library (as
opposed to being deactivated like the EDIT_DECK
DELETE_LINE subcommand).

• When you specify a range of decks, DELETE_DECK
deletes each deck in the deck list, beginning with the
first deck specified through the last deck specified.
Before specifying a range of decks to be deleted, you
should display the deck list with a DISPLAY_DECK_
LIST subcommand to determine the decks included in
the range.

• If a deck to be deleted has a conflicting subinterlock
set, SCU sends a warning message, observing that
another user extracted the deck using an EXTRACT_
SOURCE_LIBRARY command. The deck is deleted.
SCU then attempts to delete any remaining decks.

The following command deletes deck DECKA and decks
DECKC through DECKF.

sc/delete_decks (decka,deckc .. deckf)

Commands and Subcommands 2-51

DELETE_MODIFICATION

DELETE _MODIFICATION
SCU Subcommand

Purpose Deletes one or more modifications. Deleting a modification
reverses all text changes that were introduced by the
modification. All insertions are deleted, all replacements A
are removed, and all deletions are reactivated. •

Format DELETE_MODIFICATION or
DELETE_MODIFICATIONS or
DELM

MODIFICATION= list of range of name
DECK= list of range of name
STATUS =status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be deleted. This parameter is required.

Remarks

DECK or DECKS or D

Either one or more deck names or the keyword ALL. ALL
specifies all decks in the working library. If DECK is
specified, SCU deletes only the modification changes A
within the specified decks. If DECK is omitted, ALL is •
used.

• You cannot delete the creation modification of a deck
directly: you must first delete each deck for which the
modification is the creation modification. You can then
delete the modification from the modification list.

• You cannot delete a modification whose state is
greater than your authority for the file.

• If a deck affected by a deleted modification has its
subinterlock set, SCU sends a warning message,
stating that a user has extracted the deck with an
EXTRACT_SOURCE_LIBRARY command. The
modification is deleted. SCU then attempts deletion of
modification changes on any remaining decks in the
deck list.

• You can use this subcommand to create a new library
without the modification. To temporarily reverse
modification changes when expanding text, use the
selection criteria subcommand EXCLUDE_
MODIFICATION.

2-52 Source Code Management Revision G

Examples

Revision G

DELETE_MODIFICATION

The following subcommand deletes modification MOD5.

sc/delete_modification mod5

Commands and Subcommands 2-53

DISPLAY_DECK

DISPLAY_DECK
SCU Subcommand

Purpose

Format

Displays one or more deck headers.

DISPLAY_DECK or
DISPLAY _DECKS or
DISD

DECK= list of name or keyword
OUTPUT= file
DISPLAY_ OPTIONS =keyword
TEXT= keyword
STATUS =status variable

Parameters DECK or DECKS or D

Decks whose headers are to be displayed. You can specify
a list of one or more deck names, a list of one or more
deck ranges, or the keyword ALL. ALL specifies all decks
in the working library. If DECK is omitted, the last used
deck is displayed.

OUTPUT or 0

fiFile on which the dispflahy isfi written. Yfou0 can spTecify a e
lle position as part o t e ile name. I UTPU is

omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only deck header information.

FULL (F)

Lists deck header information, modifications to which
deck lines belong, and the groups to which the deck
belongs.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

TEXT or T

Specifies deck text to be displayed. Options are:

IN ACTIVE (I)

Active and inactive lines.

2-54 Source Code Management Revision G

Remarks

Examples

Revision G

DISPLAY_DECK

ACTIVE (A)

Active lines only.

NONE

Deck text is not displayed.

If TEXT is omitted, NONE is used.

• You can display deck text with the DISPLAY_DECK
subcommand. You can display either the active lines
or both the active and inactive lines. Inactive lines are
lines that have been deleted; only active lines appear
in expanded deck text.

• The DISPLAY_DECK subcommand is valid within an
editing session started by an EDIT_DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character (/DISPLAY_
DECK).

The following subcommand displays the deck header of
deck DECKl. The subcommand specifies full information
level (DO =F) so the modifications in the deck and the
groups to which the deck belong are also displayed. The
subcommand also specifies a listing of both the inactive
and active lines in the deck (T=l).

sc/display_deck deck=deckl display_options=f text=i
Deck Information

DECK: DECKl
EXPAND: FALSE
AUTHOR: M.J.Perreten
PROCESSOR: Fortran
ORIGINAL_INTERLOCK:
SUB_INTERLOCK:
WIDTH: 80
LINE IDENTIFIER: none
TAB ACTIVE: TRUE
CHARACTER: #

TAB_COLUMNS: 5, 7, 9, 11, 13 15, 17
CREATION_DATE - TIME: 12/02/81 - 10:41:51
MODIFICATION_DATE -TIME: 03/24/82 - 13:37:19
DECK_DESCRIPTION: First example deck
COUNTS

MODS:2 GROUPS: 1 LINES ACTIVE :6 INACTIVE: 1

Commands and Subcommands 2-55

DISPLAY_ DECK

MODS AND SEQUENCE NUMBERS
ORIGINAL 6
FIRST_MOD 1

GROUP LIST
LOOPS

Act1ve(A)/Inactive(I) text lines for deck DECK1

A ORIGINAL 1
A ORIGINAL 2 DO 10 I=l,100
I ORIGINAL 3 10 I= I+l

I FIRST_MOD
A FIRST_MOD 10 I= I+1
A ORIGINAL 4
A ORIGINAL 5 *COPYC COMMON1
A ORIGINAL 6

Each line of the text listing contains a letter indicating
whether the line is active or inactive (A or I), the line
identifier, and the line text. If the line is inactive, the
succeeding line names the modification that deactivated
the line.

2-56 Source Code Management Revision G

DISPLAY_DECK_LIST

DISPLAY _DECK_LIST
SCU Subcommand

Purpose

Format

Lists the decks found in the working library in
alphabetical order by deck name.

DISPLAY_DECK_LIST or
DISDL

ALTERNATE _BASE= list of file
OUTPUT= file
DISPLAY_ OPTIONS= keyword
STATUS =status variable

Parameters ALTERNATE_BASE or ALTERNATE_BASES or AB

Optional list of one or more source libraries whose deck
lists are combined with the working library deck list. If
ALTERNATE_BASE is omitted, the decks on the current
working library will be displayed.

Remarks

Revision G

OUTPUT or 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information listed. Currently, both of the
following keywords produce the same listing.

BRIEF (B)
FULL (F)

If DISPLAY_OPTIONS is omitted, BRIEF is used.

If you specify one or more alternate base libraries,
DISPLAY_DECK_LIST combines their deck lists with the
working library deck list for the duration of the
subcommand. You can use this option to display the deck
list that would be used if you specified the alternate base
libraries on an EXPAND_DECKS or EXTRACT_DECKS
subcommand.

Commands and Subcommands 2-57

DISPLAY_DECK_LIST

Examples The following subcommand displays a combined deck list
of the decks on source library MY_LIB and the working
library.

sc/display_deck_list alternate_base=my_lib
FORTRAN_ TEXT FORTRAN_TEXT_II
MY_TEXT

The listing does not indicate which source library contains
the deck.

2-58 Source Code Management Revision G

DISPLAY_DECK_REFERENCES

DISPLAY_DECK_REFERENCES
SCU Subcommand

Purpose

Format

Displays a cross-reference listing for one or more decks. A
reference to a deck is a COPY or COPYC directive that
names the deck.

D~SPLAY_DECK_REFERENCES or
DISDR

DECK= list of name or keyword
EXTERNAL_DECK=list of name or keyword
OUTPUT=file
DECK_RESIDENCE =keyword
REFERENCE _DIRECTION= keyword
REFERENCE_ TYPE= keyword
STATUS=status variable

Parameters DECK or DECKS or D

Revision G

Decks to be cross-referenced. You can specify a list of
names, a list of ranges, or the keyword ALL or NONE.
ALL specifies all decks in the working library. If DECK
is omitted, the name of the last deck is used. If you
specify NONE, you prevent the last deck from being
cross-referenced.

EXTERNAL_DECKorEXTERNAL_DECKSorED

Decks to be cross-referenced that are not on the working
library. You can specify a list of names or the keyword
ALL. ALL specifies all decks not in the working library
that are referenced by decks in the working library. If
EXTERNAL_DECK is omitted, you must specify the
DECK parameter.

OUTPUTor 0

File on which the cross-reference is written. You can
specify a file position as part of the file name. If
OUTPUT is omitted, file $OUTPUT is used.

DECK_RESIDENCE or DR

Specifies the references to list. Options are:

EXTERNAL

List only references to decks not in the working
library.

Commands and Subcommands 2-59

DISPLAY_DECK_REFERENCES

INTERNAL

List only references to decks in the working library.

ALL

List references to decks both in the working library
and not in the working library.

If DECK_RESIDENCE is omitted, ALL is used.

REFERENCE_DIRECTION or RD

Specifies the direction the references are traced. Options
are:

TO

References to the decks.

FROM

References from the decks.

ALL

References to and from the decks.

If REFERENCE_DIRECTION is omitted, TO is used.

REFERENCE_ TYPE or RT

Specifies the reference type to be listed. Options are:

DIRECT

Lists only direct references.

INDIRECT

Lists only indirect references.

ALL

Lists both direct and indirect references.

If REFERENCE_TYPE is omitted, ALL is used.

2-80 Source Code Management Revision G

Remarks

Examples

Revision G

DISPLAY_DECK_REFERENCES

• The REFERENCE_ TYPE parameter indicates whether
DISPLAY_DECK_REFERENCES lists direct
references or indirect references or both.

• Direct references involve only two decks; indirect
references involve three or more decks. For example, if
DECKA contains a COPY directive that copies
DECKB, DECKA directly references DECKB. If
DECKB contains a COPY directive that copies
DECKC, DECKA indirectly references DECKC.

• The DECK_RESIDENCE parameter indicates whether
this subcommand lists references to decks within the
working library, decks not in the working library, or
both.

• This subcommand is valid within an editing session
started by an EDIT_DECK subcommand. It is also
valid within a selection criteria file if prefixed with
the slant character (/DISPLAY_DECK_
REFERENCES).

The following subcommand produces a cross-reference for
deck SUBl on the working library. It traces direct and
indirect references both to and from the deck, including
references to decks not resident on the working library.

sc/display_deck_references deck=sub1
sc .. /reference_directton=all

References FROM deck
(e = external deck, ; = indirect reference)

SUB1
e SUB2

References TO internal deck
(i = indirect reference)

SUB1
PROGRAM1

references

is referenced by

Commands and Subcommands 2-61

DISPLAY_FEATURE

DISPLAY _FEATURE
SCU Subcommand

Purpose

Format

Displays the modifications belonging to a feature.

DISPLAY_FEATURE or
DISF

FEATURE= name
OUTPUT= file
DISPLAY _OPTIONS =keyword
STATUS= status variable

Parameters FEATURE or F

Remarks

Feature name. This parameter is required.

OUTPUTor 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information displayed. Options are:

BRIEF (B)

Lists only the modification names.

FULL (F)

Lists the modification names and the modification
descriptions.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• You can change the feature to which a modification
belongs with the CHANGE_MODIFICATION
subcommand.

• The DISPLAY_FEATURE subcommand is valid within
an editing session started by an EDIT_DECK
subcommand. It is also valid within a selection criteria A
file if prefixed with the slant character (/DISPLAY_ W
FEATURE).

2-62 Source Code Management Revision G

Examples

Revision G

DISPLAY_FEATURE

The following subcommand displays the names and
modification descriptions for all modifications belonging to
the feature NEW_PROMPTS.

sc/display_feature new_prompts display_options=f
Descriptions of modifications associated with the feature

NEW_PROMPTS

MODIFICATION: PROMPT_ 1
STATE: 0
FEATURE: NEW_PROMPTS
AUTHOR: Jane Doe
CREATION_DATE - TIME: 10/31/83 - 08.24.54
MODIFICATION_DATE - TIME: 10/31/83 - 08.24.54
MODIFICATION_DESCRIPTION: This aCds a prompt for parameter

MODIFICATION: PR().1PT_2
STATE: 0
FEATURE: NEW_PROMPTS
AUTHOR: Jane Doe

NEW_DECK.

CREATJON_DATE - TIME: 11/05/83 - 13.29.04
MDDIFJCATION_DATE - TIME: 11/06/83 - 09.46. 15
MODIFICATION_DESCRIPTJON: This adds a prompt for parameter

DLD_DECK ..

Number of modifications associated with this feature: 2

Commands and Subcommands 2-63

DISPLAY_FEATURE_LIST

DISPLAY _FEATURE _LIST
SCU Subcommand

Purpose Lists the features in the source library.

Format DISPLAY_FEATURE_LIST or
DIS FL

OUTPUT=file
DISPLAY_ OPTIONS= keyword
STATUS =status variable

Parameters OUTPUT or 0

Remarks

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_ OPTIONS or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only the feature names.

FULL (F)

Lists the feature names and the names of the
modifications that belong to each feature.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• Features are listed alphabetically.

• To add a feature, create a modification that belongs to
the feature. Once created, a feature name cannot be
deleted from the feature list. If the feature list
contains an unused feature name, you can enter an
EXTRACT_SOURCE_LIBRARY command to remove
the unused feature name from the result library.

• The feature list of the new library includes only those
features with which modifications in the new library
are associated and which have not been explicitly a
excluded by selection criteria commands. •

2-64 Source Code Management Revision G

Examples

Revision G

DISPLAY_FEATURE_LIST

• The DISPLAY_FEATURE_LIST subcommand is valid
within an editing session started by an EDIT_DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character (/DISPLAY_
FEATURE_LIST).

The following subcommand lists the features in the
working library.

sc/display_feature_list
NEW_PROMPTS NEW_RESPONSE

Commands and Subcommands 2-65

DISPLAY_GROUP

DISPLAY_GROUP
SCU Subcommand

Purpose Lists the decks belonging to a group.

Format DISPLAY_GROUP or
DISG

GROUP=name
ALTERNATE _BASE= list of file
OUTPUT=file
DISPLAY _OPTIONS= keyword
STATUS =status variable

Parameters GROUP or G

Remarks

Group name. This parameter is required.

ALTERNATE_BASEor ALTERNATE_BASESor AB

Optional list of one or more additional source libraries
from which decks are listed if they belong to the group.

OUTPUTor 0

File on which output is written. You can specify a file A
position as part of the file name. If OUTPUT is omitted, W
file $OUTPUT is used.

DISPLAY_ OPTIONS or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only the deck names.

FULL (F)

Lists the deck names and the information in each deck
header.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• If you specify one or more alternate base libraries,
DISPLAY_GROUP combines their group and deck lists
with the working library group and deck lists for the
duration of the subcommand.

• You can change the group to which a deck belongs
with the CHANGE_DECK subcommand.

2-66 Source Code Management Revision G

Examples

Revision G

DISPLAY_ GROUP

• The DISPLAY_GROUP subcommand is valid within an
editing session started by an EDIT_DECK
subcommand.

The following subcommand lists the decks in the group
SECTIONl.

sc/display_group sectionl
Decks associated with group SECTION1

FORTRAN_ TEXT
FORTRAN_ TEXT I II

FORTRAN_ TEXT_II

Commands and Subcommands 2-67

DISPLAY_ GROUP_LIST

DISPLAY_GROUP _LIST
SCU Subcommand

Purpose Lists the groups in the library.

Format DISPLAY_GROUP _LIST or
DISGL

ALTERNATE_BASE=list of file
OUTPUT=file
DISPLAY_ OPTIONS= keyword
STATUS= status variable

Parameters ALTERNATE_BASE or ALTERNATE_BASES or AB

Optional list of one or more libraries whose groups are
listed with those of the base library.

Remarks

OUTPUTor 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only the group names.

FULL (F)

Lists the group names and the decks in each group.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• Groups are listed alphabetically.

• If you specify one or more alternate base libraries,
DISPLAY_GROUP _LIST combines their group and
deck lists with the working library group and deck
lists for the duration of the subcommand.

• To add a group, create a deck that belongs to the
group. Once created, a group name cannot be deleted
from the group list. If the group list contains an
unused group name, you can enter an EXTRACT_
SOURCE_LIBRARY command to remove the unused
group name from the result library. The group list of

2-68 Source Code Management Revision G

Examples

Revision G

DISPLAY_GROUP_LIST

the new library includes only those groups to which
decks in the new library belong and which have not
been explicitly excluded by selection criteria
commands.

• The DISPLAY_ GROUP _LIST subcommand is valid
within an editing session started by an EDIT_DECK
subcommand.

The following subcommand lists the groups on the
working library and on library MY_LIB.

sc/display_group_list alternate_base=my_lib
SECTION1 SECTION2
SECTIONS

Commands and Subcommands 2-69

DISPLAY_LIBRARY

DISPLAY _LIBRARY
SCU Subcommand

Purpose Displays the library header of the working library.

Format DISPLAY _LIBRARY or
DISL

OUTPUT=file
DISPLAY_ OPTIONS= keyword
STATUS =status variable

Parameters OUTPUT or 0

Remarks

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_ OPTIONS or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only library header information.

FULL (F)

Lists library header information and the names of the
decks, groups, modifications, and features in the
working library.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• Besides the library header fields, DISPLAY_LIBRARY
can also display the deck list, group list, modification
list, and feature list of the working library.

• You can change the content of fields in the working
library header with a CHANGE_LIBRARY
subcommand. To reference a field in the library
header, use the SCU function $LIBRARY_HEADER.

• The DISPLAY_LIBRARY subcommand is valid within
an editing session started by an EDIT_DECK e
subcommand. It is also valid within a selection criteria .
file if prefixed with the slant character (!DISPLAY_
LIBRARY).

2-70 Source Code Management Revision G

Examples

Revision G

DISPLAY_LIBRARY

The following subcommand displays the contents of the
working library header.

sc/display_11brary
BASE=:nve. 1ntve.scu.source_library

LIBRARY: SOURCE_CODE_UTILITY
VERSION: BUILD_12609
SCU_VERSION: 86133
LIBRARY_FORMAT_VERSION: Vl. 1
CHANGE_COUNTER: 394
LIBRARY_DESCRIPTION: This library contains the source for
SOURCE_CODE_UTILITY (SCU) and associated SCL procedures.
CREATION_DATE - TIME: 07/31/81 - 13:15:43
MODIFICATION_DATE - TIME: 06/10/86 - 22:33: 17
KEY: •
LAST_USED_DECK: SCP$GET_DEFAULT_RESOURCES
LAST_USED_MODIFICATION: SCB6134
COUNTS

DECKS: 1237 MODS: 719 GROUPS: 41 FEATURES: 246

Commands and Subcommands 2-71

DISPLAY_MODIFICATION

DISPLAY _MODIFICATION
SCU Subcommand

Purpose

Format

Displays one or more modification headers.

DISPLAY_MODIFICATION or
DISPLAY_MODIFICATIONS or
DISM

MODIFICATION= list of name or keyword
DECK= name or keyword
OUTPUT=file
DISPLAY_ OPTIONS= keyword
STATUS =status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be displayed. You can specify a list of
one or more names, a list of one or more ranges, or the
keyword ALL. ALL specifies all modification descriptions
in the working library. If MODIFICATION is omitted, the
last used modification is displayed.

DECK or D

Indicates whether the displayed information should apply e
to only the specified deck or to all decks. ALL specifies
all decks in the working library. If DECK is omitted,
ALL is used.

OUTPUT or 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information displayed. Options are:

BRIEF (B)

Displays the modification header only.

FULL (F) e
Displays the modification header and the sequence of
editing commands and inserted text that would
produce the modification changes.

If DISPLAY_OPTIONS is omitted, BRIEF is used. e
2-72 Source Code Management Revision G

Remarks

Examples

Revision G

DISPLAY_MODIFICATION

The DISPLAY_MODIFICATION subcommand is valid
within an editing session started by an EDIT_DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character (illISPLAY_
MODIFICATION).

The following subcommand displays the modification
MOD_4 description and changes.

sc/display_modification modification=mod_4
sc .. /display_options=f
MODIFICATION: MOD_4
STATE: 0
FEATURE:
AUTHOR: Sam Spade
CREATION_DATE - TIME: 02/23/83 - 13:09:26
MODIFICATION_DATE - TIME: 02/24/83 - 08:14:01
MODIFICATION_DESCRIPTION: Fourth example modification
Text lines altered by modification MOD_4
SELECT_DECK X
INSERT_LINES P=BEFORE IL=FIRST UNTIL='///END\\\'

do 10 i=l,10
10 i = i+l

///END\\\
INSERT_LINES P=AFTER IL=MOD_3.2 UNTIL='///END\\\'

100 i = i+lOO
///END\\\
SELECT_DECK Y
INSERT_LINES P=BEFORE IL=FIRST UNTIL='///END\\\'
*copyc z
///END\\\

Commands and Subcommands 2-73

DISPLAY_MODIFICATION_LIST

DISPLAY _MODIFICATION _LIST
SCU Subcommand

Purpose Lists all modifications in the working library.

Format DISPLAY_MODIFICATION_LIST or
DIS ML

OUTPUT=file
DISPLAY_OPTIONS =keyword
STATUS= status variable

Parameters OUTPUT or 0

Remarks

Examples

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Specifies the information listed.

ALPHABETIC (A)

Modificationf) are in alphabetical order.

CHRONOLOGICAL (C)

Modifications are ordered by date and time with the
oldest modification first.

If DISPLAY_OPTIONS is omitted, ALPHABETIC is used.

• To add a modification to the list, enter a CREATE_
MODIFICATION subcommand. To remove a
modification from the list, enter a DELETE_
MODIFICATION subcommand.

• The DISPLAY_MODIFICATION _LIST subcommand is
valid within an editing session started by an EDIT_
DECK subcommand. It is also valid within a selection
criteria file if prefixed with the slant character
(/DISPLAY_MODIFICATION _LIST).

The following subcommand lists all modifications in the
working library.

sc/display_modfficatfon_list
MOD_1 MOD_2 MOD_3 MOD_4

2·74 Source Code Management Revision G

EDIT_DECK

EDIT_DECK
SCU Subcommand

Purpose

Format

Begins an editing session within an SCU session.

EDIT_DECK or
EDID or
EDIT_LIBRARY or
EDIL

DECK=name
MODIFICATION =name
INPUT=file
OUTPUT=file
PROLOG=file
DISPLAY_ UNPRINTABLE_ CHARACTERS= boolean
STATUS =status variable

Parameters DECK or D

Revision G

Deck to be edited first.

NOTE

If the deck does not exist, it is created. If you have never
entered a deck name on a DECK parameter, this
parameter is required.

If DECK is omitted, the editing session begins with the
last deck used.

To begin the editing session without selecting a deck,
specify NONE on the DECK parameter.

MODIFICATION or M

Modification to which changes made during the editing
session belong. For you to edit a deck using an existing
modification, the modification must be in its initial state,
state 0. If the modification does not already exist, it is
created.

If MODIFICATION is omitted, the last modification is
used. If you have never created a modification, this
parameter is required.

Commands and Subcommands 2-75

EDIT_DECK

Remarks

INPUTor I

File from which commands are read. If INPUT is omitted,
$COMMAND is used.

OUTPUTor 0

File to which the display is written. If OUTPUT is
omitted, file $OUTPUT is used. ($OUTPUT is usually
connected to the terminal.)

PROLOGor P

File the system executes when you start an editing
session. If PROLOG is omitted, file $USER.SCU _
EDITOR_PROLOG is used.

DISPLAY_UNPRINTABLE_CHARACTERS or DUC

Spe~ifies whether unprintable ASCII characters in the
range 0 to 31 and 127 are replaced by mnemonics in the
file. Options are:

TRUE

Unprintable characters are replaced by mnemonics, A
preceded by a less than symbol and followed by a W
greater than symbol, according to the ASCII character
set.

FALSE

Unprintable characters are replaced by a single space
and a warning message is issued if they are
encountered. If the file is written when you exit the
editing session, the mapping to spaces is written to
the file.

If TRUE is specified, the mnemonics are replaced by the
ASCII characters when the file is replaced. If DISPLAY_
UNPRINTABLE_CHARACTERS is omitted, FALSE is
used.

• You can specify the deck to be edited with the DECK
parameter. If you specify NONE on the DECK
parameter, you must enter a deck selection
subcommand before entering subcommands to change
text.

2-76 Source Code Management Revision G

Revision G

EDIT_DECK

• This subcommand adds an entry containing the EDIT_
FILE utility subcommands to the NOSNE
subcommand list; the name of the entry is SCU _
EDIT.

• If the interaction style you selected is SCREEN, the
session occurs in full screen mode. The command
CHANGE_INTERACTION_STYLE selects interaction
modes.

• All' editing subcommands and the deck selection
subcommands that are available within the EDIT_
FILE utility are described in the NOSNE File Editor
manual.

• The EDIT_FILE utility uses the tab columns specified
in the deck header.

• Once you have started an editing session with an
EDIT_DECK subcommand, you can then use an
EDIT_FILE subcommand to edit a file.

• To discard decks that were created unintentionally,
enter:
end_deck write_deck=false

• Once you have entered the SCU EDIT_DECK
subcommand, you can enter the EDIT_DECK
subcommand to edit other decks. This subcommand has
only a DECK parameter.

• To change modifications, you must stop editing and
enter the EDIT_DECK SCU subcommand specifying a
different modification.

Commands and Subcommands 2-77

EDIT_DECK

Examples The following subcommand begins an editing session in
line mode. All text changes belong to the new
modification MOD_l.

sc/edit_deck modification=mod_1
see/

The following is the header written on the output file if
the EDIT_DECK subcommand is entered in batch mode.
EDITOR 08:39:10 PAGE 1
1986-07-09 NOS/VE SOURCE CODE UTILITY Vl. 1 86163
BASE=:nve. intve.scu.source_library.316
Begin editing deck SCM$SCU

2-78 Source Code Management Revision G

END_LIBRARY

END _LIBRARY
SCU Subcommand

Purpose

Format

Ends the interaction with the current working library.
Another library can then be specified as the working
library.

END _LIBRARY or
ENDL

WRITE _LIBRARY= boolean
STATUS =status variable

Parameters WRITE _LIBRARY or WL

Remarks

Examples

Revision G

Specifies whether the working library should be written to
the result file. The result file is specified in the
CREATE_LIBRARY or USE_LIBRARY subcommand. If
no result file was specified and you indicate that the
working library should be written to the result file, then
the library is written to file SOURCE_LIBRARY. If
WRITE_LIBRARY is omitted, TRUE is used.

After entering the END_LIBRARY subcommand, you can
work on another library by specifying either the USE_
LIBRARY or CREATE_LIBRARY subcommand.

The following example ends the association with the
current working library. The library is written if changes
have been detected by the $LIBRARY_MODIFIED
function. Another library is then accessed by the USE_
LIBRARY subcommand.

sc/end_library write_library=$1ibrary_modified
sc/use_library base=my_library result=new_library

Commands and Subcommands 2-79

EXPAND_DECK

EXPAND_DECK
SCU Subcommand

Purpose

Format

Expands one or more decks. When the SCU expands a
deck, it processes directives embedded in the source text
and copies the expanded text to a separate compile file.

EXPAND_DECK or
EXPAND_DECKS or
EXPD

DECK= list of range of name
COMPILE =file
DEBUG _AIDS= keyword
OUTPUT _SOURCE_MAP=file
SELECTION _CRITERIA =file
WIDTH= integer
LINE_IDENTIFIER =keyword
ALTERNATE _BASE= list of file
LIST=file
EXPANSION _DEPTH =integer
DISPLAY_ OPTIONS =keyword
ORDER =keyword
STATUS= status variable

Parameters DECK or DECKS or D

Decks to be expanded. You can specify a list of one or
more names, a list of one or more ranges, or the keyword
ALL. ALL specifies all decks in the working library and
in any alternate base libraries specified on the
ALTERNATE_BASE parameter. If DECK is omitted, the
last deck used is expanded. To prevent the last used deck
from being expanded, specify NONE on the DECK
parameter. In that case, SCU determines the decks
expanded by the subcommands entered via the selection
criteria file.

COMPILE or C

File on which the expanded text is written. You can
specify a file position as part of the file name. If
COMPILE is omitted, file COMPILE is used.

2-80 Source Code Management Revision G

Revision G

EXPAND_DECK

DEBUG _AIDS or DA

If this parameter is set to DT, screen debugging
information is written to the file named by the
OUTPUT_SOURCE_MAP parameter. If DEBUG_AIDS is
set to NONE or is omitted, no debugging information is
produced.

OUTPUT_SOURCE_MAPor OSM

Names a file to receive screen debugging information
specified by the DEBUG_AIDS parameter. If the file is
not named, the screen debugging information is written to
a file named OUTPUT_SOURCE_MAP.

SELECTION _CRITERIA or SC

File from which selection criteria commands are read.
You can specify a file position as part of the file name.
To enter selection criteria commands interactively, specify
COMMAND. If SELECTION_CRITERIA is omitted, no
selection criteria processing is performed and the DECK
parameter specifies which decks will be expanded.

WIDTHor W

Length of the expanded lines excluding line identifiers. If
WIDTH is omitted, SCU uses the default line width from
the header of each deck.

LINE_IDENTIFIER or LI

Line identifier placement. Options are:

RIGHT (R)

Line identifiers are placed to the right of the text.

LEFT (L)

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, SCU uses the default
line identifier placement from the header of each deck.

ALTERNATE_BASE or ALTERNATE_BASES or AB

Optional list of one or more additional libraries to be
searched for decks.

Commands and Subcommands 2-81

EXPAND_DECK

LIST or L

Listing file. You can specify a file position as part of the
file name. Within an SCU session, if LIST is omitted, the
listing file is the file specified on the SET_LIST_
OPTIONS subcommand. Otherwise, the default is file
$LIST.

EXPANSION _DEPTH or ED

Number of levels of COPY and COPYC directives to
process. COPY and COPYC directives beyond the
maximum expansion depth are expanded as text. If
EXPANSION_DEPTH is omitted, COPY and COPYC
directives are processed whenever they are encountered.

DISPLAY_ OPTIONS or DO

Indicates whether the listing includes the library for each
deck from which the deck was expanded. Options are:

BRIEF (B)

Does not list the decks or their library origins.

FULL (F)

Lists the library origin when more than one library is
used.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

ORDER or 0

Indicates whether the decks are expanded in the order
specified or in alphabetical order. Options are:

COMMAND (C)

Decks are expanded in the order specified on the
DECK parameter and by selection criteria commands.

LIBRARY (L)

Decks are expanded in alphabetical order.

If ORDER is omitted, LIBRARY is used.

2-82 Source Code Management Revision G

e Remarks

Revision G

EXPAND_DECK

• For each deck specified by the DECK parameter, the
EXPAND_DECK subcommand checks the expand
attribute to determine if it expands the deck. If the
expand attribute is TRUE, it expands the deck. If the
expand attribute is FALSE, it skips the deck and
continues processing with the next specified deck.

• To expand a text file, use the EXPAND_FILE
subcommand and the EXPAND_SOURCE_FILE
command.

In order for OUTPUT_SOURCE_MAP to correctly
reflect the origin of the text of each deck, the deck
must either be unmodified or have been written to a
result library. If a deck is encountered whose only
current source is on the working library and the result
library is currently scheduled for an actual file, then
the currently scheduled result library is logged in the
output source map as the origin and an error status is
issued. A WRITE_LIBRARY subcommand must be
entered to copy all decks from the working library to
an actual file.

If $NULL was specified as the result library, an error
status is issued and the attempt aborts. A WRITE_
LIBRARY subcommand must be entered, naming the
result library. Then the EXPAND_DECK subcommand
can be reissued.

• You can specify the decks to be expanded by name on
the DECK parameter or by selection criteria
commands in the selection criteria file or both. SCU
begins with the decks specified on the DECK
parameter and then adds and removes decks as
specified by selection criteria commands. It omits any
decks whose expand attribute is FALSE.

• You can specify alternate base libraries with the
ALTERNATE_BASE parameter. SCU begins searching
for a deck in the working library. If the deck is not
found, SCU searches the ALTERNATE_BASE libraries
in the order that they appear in the specified list.

• The EXPANSION_DEPTH parameter can limit the
levels of nested directives processed. If SCU reads a
directive at a level beyond the maximum level
processed, it expands the directive as text.

Commands and Subcommands 2-83

EXPAND_DECK

Examples

• The LINE_IDENTIFIER, WIDTH, and ORDER
parameters affect how the expanded text is written on
the compile file. The LINE_IDENTIFIER and WIDTH
parameters can override the default values in the deck
headers. The ORDER parameter allows you to specify
the order that SCU writes the decks on the file. If
LINE_IDENTIFIER is explicitly stated in the
EXPAND_DECK command, then the file attribute
STATEMENT_IDENTIFIER is set. If LINE_
IDENTIFIER is not explicitly stated, the system
assumes that the file contents of the decks are
inconsistent and does not set STATEMENT_
IDENTIFIER.

• The line width can be specified by the WIDTH
parameter. If the line width for a deck is 0 (zero),
EXPAND_DECKS writes each line as it is stored in
the deck (no trailing blanks or truncation); a blank
line, therefore, is written as a zero-length V record. If
the line width for a deck is nonzero, EXPAND_
DECKS writes each line using that width. Lines
shorter than the width are padded with trailing
blanks; lines longer than the width are truncated.

• SCU issues a warning message for those decks that
cannot be expanded.

The following subcommand expands the text of deck
FORTRAN_ TEXT and writes the expanded text on file
FORTRAN _INPUT.

sc/expand_deck fortran_text fortran_input ..
sc .. /display_options=full alternate_base=ftnlib
*=Deck was copied

FORTRAN_ TEXT
*FTN_IO
*FTN_FORM

FTNLIB
FTNLIB

2-84 Source Code Management Revision G

EXPAND_FILE

EXPAND _FILE
SCU Subcommand

Purpose

Format

Expands a text file. When the system expands a file, it
processes the directives embedded in the source text and
copies the expanded text to a separate compile file.

EXPAND _FILE or
EXPF

FILE=file
COMPILE=file
DEBUG _AIDS =keyword
INPUT_SOURCE_MAP=fik
OUTPUT _SOURCE_MAP =file
SELECTION_ CRITERIA=file
WIDTH =integer
LINE_IDENTIFIER =keyword
ALTERNATE_BASE=list of file
LIST=file
EXPANSION _DEPTH =integer
DISPLAY _OPTIONS =keyword
STATUS =status variable

Parameters FILE or F

Revision G

File to be expanded. This parameter is required.

COMPILE or C

File on which the expanded text is written. You can
specify a file position as part of the file name. If
COMPILE is omitted, file COMPILE is used.

DEBUG_AIDS or DA

If this parameter is set to DT, screen debugging
information is written to the file named by the
OUTPUT_SOURCE_MAP parameter. If DEBUG_AIDS is
set to NONE or is omitted, no debugging information is
produced.

INPUT:_SOURCE_MAP or ISM

Names a file from which screen debugging information is
copied for the file specified by the FILE parameter. The
content of the input source map is the output source map
that was generated when the content of the FILE was

Commands and Subcommands 2-85

EXPAND_FILE

produced. If INPUT_SOURCE_MAP is omitted, the
screen debugging information describes lines read from
FILE as having that origin.

OUTPUT_SOURCE_MAP or OSM

Names a file to receive screen debugging information
specified by the DEBUG_AIDS parameter. If OUTPUT_
SOURCE_MAP is omitted, the screen debugging
information is written to a file named OUTPUT_
SOURCE_MAP.

SELECTION _CRITERIA or SC

File from which selection criteria subcommands are read.
You can specify a file position as part of the file name.
To enter selection criteria subcommands interactively,
specify COMMAND. If SELECTION_CRITERIA is
omitted, no selection criteria processing is performed.

WIDTH or W

Length of the expanded lines, excluding line identifiers. If
WIDTH is omitted, SCU uses 0 (zero) for the default line
width. A line width of 0 (zero) means that lines can be
up to 256 characters (with no trailing blanks) when the
file is expanded.

LINE_IDENTIFIER or LI

Line identifier placement.

RIGHT (R)

Line identifiers are placed to the right of the text.

LEFT (L)

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, NONE is used.

ALTERNATE_BASEorALTERNATE_BASESorAB

Optional list of one or more additional libraries to be
searched for decks.

2-86 Source Code Management Revision G

Remarks

Revision G

EXPAND_FILE

LIST or L

Listing file. You can specify a file position as part of the
file name. Within an SCU session, if LIST is omitted, the
listing file is the file specified on the SET_LIST_
OPTIONS subcommand. Otherwise, the default is file
$LIST.

EXPANSION _DEPTH or ED

Number of levels of COPY and COPYC directives to
process. COPY and COPYC directives beyond the
maximum expansion depth are expanded as text. If
EXPANSION _DEPTH is omitted, COPY and COPYC
directives are processed whenever they are encountered.

DISPLAY_ OPTIONS or DO

Indicates whether the listing includes the library for each
deck from which the deck was expanded.

BRIEF (B)

Does not list the decks or their library origins.

FULL (F)

Lists the library origin when more than one library is
used.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• To expand a deck, use the EXPAND_DECK
subcommand.

• To expand a file while not in an SCU session, use the
EXPAND_SOURCE_FILE command.

• You can specify alternate base libraries with the
ALTERNATE_BASE parameter. When SCU processes
a COPY or COPYC directive, it first searches the deck
list of the working library for the deck specified on
the directive and then it searches the deck lists of the
alternate base libraries in the order the libraries are
listed on the ALTERNATE_BASE parameter.

• The EXPANSION _DEPTH parameter can limit the
levels of nested directives processed. If SCU reads a
directive at a level beyond the maximum level
processed, it expands it as text.

Commands and Subcommands 2-87

EXPAND_FILE

Examples

• The LINE_IDENTIFIER, WIDTH, and ORDER
parameters affect how the expanded text is written on e
the compile file.

• The line width can be specified by the WIDTH
parameter. If the line width for a file or deck is 0 a
(zero), EXPAND_FILE writes each line as it is stored W
in the file or deck (no trailing blanks or truncation); a
blank line, therefore, is written as a zero-length V
record. If the line width for a file or a deck is
nonzero, EXPAND_FILE writes each line using that
width. Lines shorter than the width are padded with
trailing blanks; lines longer than the width are
truncated.

The following subcommand expands the text of file NEW_
TEXT and writes the expanded text on file COMPILE.
The unique name given to the temporary deck created
from file NEW_ TEXT is $82 .. 17.

sc/expand_file new_text display_options=full
*=Deck was copied
$821497P3S0002D19860305T110817 Working Library

2-88 Source Code Management Revision G

EXTRACT_DECK

EXTRACT_DECK
SCU Subcommand

Purpose Extracts one or more decks. Extracting a deck copies the
deck text to another file without processing directives
embedded in the text. No delimiter is written between
extracted decks.

Format EXTRACT_DECK or
EXTRACT_DECKS or
EXTD

DECK= list of rarige of name
SOURCE=file
SELECTION _CRITERIA =file
WIDTH= integer
LINE_IDENTIFIER =keyword
ALTERNATE_BASE=list of file
LIST=file
DISPLAY_ OPTIONS= keyword
ORDER =keyword
EXPAND= boolean or keyword
DECK_DIRECTNES_INCLUDED= boolean e STATUS=status variable

Parameters DECK or DECKS or D

Revision G

Decks to be extracted. You can specify a list of one or
more names, a list of one or more ranges, or the keyword
ALL. ALL specifies all decks in the working library and
in any alternate base libraries specified on the
ALTERNATE_BASE parameter. If DECK is omitted, the
last used deck is extracted. To prevent the last used deck
from being extracted, specify NONE on the DECK
parameter. In that case, SCU determines the decks
extracted by the subcommands entered via the selection
criteria file.

SOURCE or S

File on which the extracted text is written. You can
specify a file position as part of the file name. If
SOURCE is omitted, file SOURCE is used.

Commands and Subcommands 2-89

EXTRACT_DECK

SELECTION_ CRITERIA or SC

File from which selection criteria commands are read.
You can specify a file position as part of the file name. If
SELECTION_CRITERIA is omitted, no selection criteria
processing is performed, and the decks extracted are
determined by the DECK parameter.

WIDTH or W

Length of the extracted lines, excluding line identifiers. If
WIDTH is omitted, the default line width for each deck is
used.

LINE _IDENTIFIER or LI

Line identifier placement. Options are:

RIGHT (R)

Line identifiers are placed to the right of the text.

LEFT (L)

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, the default line
identifier placement for each deck is used.

ALTERNATE_BASEorALTERNATE_BASESorAB

Optional list of one or more additional libraries to be
searched for decks.

LIST or L

Listing file. You can specify a file position as part of the
file name. Within an SCU session, if LIST is omitted, the
listing file is the file specified on the SET_LIST_
OPTIONS subcommand. Otherwise, the default is file
$LIST.

DISPLAY_ OPTIONS or DO

Indicates whether the listing includes the library for each
deck from which the deck was extracted. Options are:

BRIEF (B)

Does not list the decks or their library origins.

2-90 Source Code Management Revision G

Revision G

EXTRACT_DECK

FULL {F)

Lists the library origin when more than one library is
used.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

ORDER or 0

Indicates whether the decks are extracted in the order
specified or in alphabetical order. Options are:

COMMAND (C)

Decks are extracted in the order specified on the
subcommand.

LIBRARY (L)

Decks are extracted in alphabetical order.

If ORDER is omitted, LIBRARY is used.

EXPANDor E

Indicates the required expand attribute for each deck
extracted. Options are:

TRUE

Expand attribute must be TRUE.

FALSE

Expand attribute must be FALSE.

ALL

Expand attribute can be either TRUE or FALSE.

If EXPAND is omitted, ALL is used.

DECK_DIRECTNES_INCLUDED or DDI

Indicates whether a DECK directive precedes each
extracted deck on the source file. Options are:

TRUE

A DECK directive is written before each deck.

FALSE

No DECK directives are written.

If DECK_DIRECTIVES_INCLUDED is omitted, FALSE is
used.

Commands and Subcommands 2·91

EXTRACT_ DECK

Remarks • The EXTRACT_DECK subcommand has the same
deck selection options as the EXPAND_DECK
subcommand. You can select the decks extracted by
name, by selection critieria, or by both. However,
unlike the EXPAND_DECK subcommand, you can also
choose whether to use the expand deck attribute to
select the decks to be extracted. With the EXPAND
parameter, you can choose to extract decks whose
expand attribute is TRUE, FALSE, or either TRUE or
FALSE.

• You can use the extracted text as the source text
when creating new decks. To include a DECK directive
before the source text of each deck, specify DECK_
DIRECTIVES_INCLUDED=TRUE on the
subcommand. Using the embedded DECK directives,
the decks created using the source text file will have
the same names and expand attributes as the original
decks.

• The EXTRACT_DECK subcommand does not save any
of the deck header information such as DECK_
DESCRIPTION. You must re-enter this information
manually when you add the deck to the new library.

• You can specify alternate base libraries with the
ALTERNATE_BASE parameter. SCU first searches
the deck list of the working library for the deck and
then searches the deck lists of the alternate base
libraries in the order the libraries are listed on the
ALTERNATE_BASE parameter.

• The LINE_IDENTIFIER, WIDTH, and ORDER
parameters affect how the extracted text is written on
the source file. The LINE_IDENTIFIER and WIDTH
parameters can override the default values in the deck
headers. The ORDER parameter allows you to specify
the order that SCU writes the decks on the file.

• The line width can be specified by the WIDTH
parameter. If the line width for a deck is 0 (zero),
EXTRACT_DECK writes each line as it is stored in
the deck (no trailing blanks or truncation); a blank
line, therefore, is written as a zero-length V record. If

2-92 Source Code Manai?ement Revision G

Examples

Revision G

EXTRACT_DECK

the line width for a deck is nonzero, EXTRACT_
DECKS writes each line using that width. Lines
shorter than the width are padded with trailing
blanks; lines longer than the width are truncated.

The following subcommand extracts the text of deck
FORTRAN_ TEXT and writes the text on file SOURCE.

sc/extract_deck fortran_text display_option=full
FORTRAN_ TEXT SOURCE_LIBRARY

Commands and Subcommands 2-93

EXTRACT_MODIFICATION

EXTRACT _MODIFICATION
SCU Subcommand

Purpose

Format

Generates a sequence of EDIT_FILE utility subcommands
(INSERT_LINES, DELETE_LINES, and REPLACE_
LINES subcommands) that, if processed, would introduce
the modification changes.

EXTRACT_MODIFICATION or
EXTRACT_MODIFICATIONS or
EXTM

MODIFICATION= list of range of name
EDIT_ COMMANDS= tile
DECK=name
TERMINATING _DELIMITER =string
STATUS =status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be extracted. If MODIFICATION is
omitted, the last used modification is extracted.

Remarks

EDIT_ COMMANDS or EC

File to which the text and editing commands are written. e
You can specify a file position as part of the file name.
This parameter is required.

DECK or D

Indicates whether the extracted modification lines should
apply to only the specified deck or to all decks. ALL
specifies all decks. If DECK is omitted, ALL is used.

TERMINATING_DELIMITER or TD

Delimiter string used to mark the end of inserted text
(from 1 to 31 characters). If TERMINATING_DELIMITER
is omitted, '//!END\\\' is used.

• The EXTRACT_MODIFICATION subcommand writes
the editing commands and inserted text that make up
a modification on a file. EXTM does not save any of
the modification header information such as the author
name or feature name. You must re-enter this
information manually when you add the modification
to the new library.

2-94 Source Code Management Revision G

Examples

Revision G

EXTRACT_MODIFICATION

• Before deleting a modification, you can use the
EXTRACT_MODIFICATION subcommand to save the
modification changes on a separate file. You could
then reintroduce the modification by processing the
editing commands on the file.

• The subcommands can also extract only the
modification changes that apply to one or more decks
in the working library. To do so, specify the decks on
the DECK parameter.

• If more than one modification is specified on the
EXTRACT_MODIFICATION subcommand, the
sequence of subcommands generated, if executed, would
produce the combined modification changes.

• The EXTRACT_MODIFICATION subcommand is valid
within an editing session started by an EDIT_DECK
subcommand, but the modification changes extracted
do not include any changes made since you last
started editing the deck.

The following subcommand extracts modification MODl
onto file SAVE_MODl.

sc/extract_modification modl save_modl

Commands and Subcommands 2-95

QUIT

QUIT
SCU Subcommand

Purpose Ends an SCU session and optionally writes the working
library to the result source library.

Format QUIT or
END or
QUI

WRITE_LIBRARY =boolean
STATUS =status variable

Parameters WRITE _LIBRARY or WL

Remarks

Indicates whether SCU should generate a result library
from the working library.

TRUE

SCU generates a result library.

FALSE

SCU does not generate a result library.

If WRITE_LIBRARY is omitted, TRUE is used.

• The QUIT subcommand indicates whether SCU should
generate a result library from the working library. If
a library is to be generated, SCU writes the result
library on the result library file specified on a
CREATE_LIBRARY or USE_LIBRARY subcommand
at the beginning of the session. If a WRITE_
LIBRARY subcommand specifies a different result
library, SCU writes the result library on the file
specified by the last WRITE_LIBRARY subcommand.
If none of these subcommands are specified, the result
library is written on file SOURCE_LIBRARY in your
working catalog.

• If the result file is the same as the file named on the
BASE parameter of the USE_LIBRARY subcommand,
it is rewritten only when the result library has been A
modified. W'

• Refer to WRITE_LIBRARY and END_LIBRARY for
other subcommands that write a result library.

2-96 Source Code Management Revision G

Examples

Revision G

The following subcommand ends an SCU session and
generates a result library.

sci ou it true

QUIT

The following sequence changes and rewrites the source
library and then ends the SCU session.
/SCU

sc/use_l1brary $user.my_l1brary
sc/change_deck deck=deckl author='roger'
sc/Quit

Commands and Subcommands 2-97

REPLACE_LIBRARY

REPLACE_LIBRARY
SCU Subcommand

Purpose Replaces decks on the working library with decks from
one or more source libraries.

Format REPLACE_LIBRARY or
REPJ;..ACE _LIBRARIES or
REPL

SOURCE_LIBRARY =list of file
LIST=file
DISPLAY _OPTIONS =keyword
ENFORCE_INTERLOCKS =boolean
STATUS =status variable

Parameters SOURCE_LIBRARY or SOURCE_LIBRARIES or SL

List of one or more source library names. This parameter
is required.

LIST or L

Listing file. You can specify a file position as part of the
file name. SCU lists the source library origin of each A
deck in the working library. If LIST is omitted, the W
listing file is the file specified on the SET_ LIST_
OPTIONS subcommand. Otherwise, the default is file
$LIST.

DISPLAY_ OPTIONS or DO

Specifies the information listed. Currently, both of the
following keywords produce the same listing.

BRIEF or B
FULL or F

If DISPLAY_OPTIONS is omitted, BRIEF is used.

ENFORCE_INTERLOCKSorEI

Indicates whether the interlocks must match before a deck
can replace a base library deck. Options are:

TRUE

Interlocks must match.

2-98 Source Code Management Revision G

Remarks

Revision G

REPLACE_LIBRARY

FALSE

Interlocks need not match.

If ENFORCE_INTERLOCKS is omitted, FALSE is used.

• REPLACE_LIBRARIES reads the source library deck
lists in the order you specify the libraries on the
command.

• After reading a deck name, REPLACE_LIBRARIES
determines if the deck name is in the working library
deck list. If the name is in the list, it replaces the
deck in the working library with the deck from the
source library. If the name is not in the list, the
command does not add the deck to the working
library, but it sends a warning message, stating that
the deck cannot be replaced because it is not in the
working library.

• If no decks could be merged because an exception
occurred in each deck, an error status is returned and
REPLACE_LIBRARY makes no change to the library.

• REPLACE_LIBRARIES lists the source library origin
of each deck in the working library on the listing file.

• Decks, features, groups, and modifications are ordered
alphabetically on the REPLACE_LIBRARIES result
library.

• You can use this subcommand to merge decks from an
extracted library with decks from the original library
from which it was extracted to form a new library.
You use this command if you do not want to add any
new decks to the new library.

If you set interlocks when you extracted the library,
REPLACE_LIBRARY enforces the interlock if you
specify ENFORCE_INTERLOCKS=TRUE in the
subcommand. Interlock enforcement means that
REPLACE_LIBRARY checks whether the original
interlock value in the header of the extracted deck
copy matches the subinterlock value in the header of
the working library copy. If the values match,
REPLACE_LIBRARY replaces the working library
deck with the extracted deck; otherwise, it does not
replace the working library deck.

Commands and Subcommands 2-99

REPLACE_LIBRARY

Examples

• Key characters in source libraries that are added to
the working library must match the key character in
the working library. If the key characters do not
match, SCU generates an error message.

The following subcommand replaces decks on the working
library with decks from source library NEWLIB.

sc/replace_11brary newlib

DECK A

DECKB

DECKC

DECKD

SOURCE_LIBRARY

NE\llLIB

NE\llLIB

SOURCE_LIBRARY

2-100 Source Code Management Revision G

SEQUENCE_DECK

SEQUENCE_DECK
SCU Subcommand

Purpose

Format

Sequences deck lines in released state (state 4).

SEQUENCE_DECK or
SEQUENCE_DECKS or
SEQD

DECK= list of range of name
MODIFICATION =name or keyword
STATUS =status variable

Parameters DECK or DECKS or D

Remarks

Revision G

Decks to be sequenced. You can specify a list of one or
more names, a list of one or more ranges, or the keyword
ALL. ALL specifies all decks in the working library. This
parameter is required.

MODIFICATION or M

Modification name that is used in the line identifiers for
resequenced lines. If the modification already exists, it
must be in state 4.

You specify that the creation modification is to be used
for each deck by specifying the keyword CREATION_
MODIFICATION.

If MODIFICATION is omitted, the creation modification
for each deck is used.

• To sequence a deck, you must have authority 4 for the
file. The creation modification for each sequenced deck
must be in state 4.

• The subcommand only sequences lines belonging to
modifications in state 4. Each sequenced line is
assigned a new line identifier. The line identifier
consists of the name of the specified modification and
a sequence number. The sequence numbers are
assigned in the order the lines appear within the
source library.

• After sequencing, all sequenced lines belong to the
specified modification. The maximum sequence number
is 16,777,214.

Commands and Subcommands 2-101

SEQUENCE_DECK

Examples

• If a sequenced deck has its subinterlock set, SCU
reports a warning message.

The following subcommand sequences all decks in the
working library.

sc/seQuence_deck decks=all

2-102 Source Code Management Revision G

SEQUENCE_MODIFICATION

SEQUENCE _MODIFICATION
SCU Subcommand

Purpose

Format

Sequences modification lines.

SEQUENCE_MODIFICATION or
SEQUENCE_MODIFICATIONS or
SEQM

MODIFICATION= list of range of name
DECK= list of range of name,
STATUS =status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be resequenced. This parameter is
required.

Remarks

e Examples

Revision G

DECK or DECKS or D

One or more decks. You can specify a list of one or more
names, a list of one or more ranges, or the keyword ALL.
ALL specifies all decks in the working library. If DECK
is specified, only the modification lines that apply to the
specified decks are sequenced. If DECK is omitted, ALL is
used.

• The sequenced modifications must be in state 0 (zero).

• Before sequencing, the sequence numbers in the line
identifiers of a modification are ordered as the lines
were added to the modification. After sequencing, the
sequence numbers in the line identifiers are ordered as
the lines appear in the deck. The maximum sequence
number is 16,777,214.

• If a sequenced deck has its interlock set, SCU sends a
warning message.

• You can specify the DECK parameter to limit
sequencing to lines in the specified decks.

The following subcommand sequences modification MOD5.

sc/sequence_modification modS

Commands and Subcommands 2-103

SET_LIST_ OPTIONS

SET _LIST_ OPTIONS
SCU Subcommand

Purpose Establishes a default for the LIST parameters on SCU
subcommands. It also specifies the file to which
intermediate diagnostic messages are written.

Format SET_LIST_OPTIONS or
SETLO

LIST=file
ERRORS=file
STATUS =status variable

Parameters LIST or L

Remarks

Examples

Default listing file for the LIST parameter used on
subsequent subcommands in an SCU session. You can
specify a file position as part of the file name. If LIST is
omitted, file $LIST is used.

ERRORS or E

Name of the file on which intermediate error messages
are written. If ERRORS is omitted, file $ERRORS is used.

• This subcommand specifies the default value for the
LIST parameter on SCU subcommands. A file specified
for a LIST parameter overrides this value.

• The functions $ERRORS_FILE and $LIST_FILE
return the values specified for these files.

The following subcommand causes file SCU _LIST to be
used as the default value for the LIST parameter on
subsequent subcommands. Intermediate error messages are
written on file SCU _ERRORS.

sc/set_list_options list=scu_list errors=scu_errors

2-104 Source Code Management Revision G

USE_LIBRARY

USE_LIBRARY
SCU Subcommand

Purpose Specifies the base and result libraries for an SCU utility
session. This subcommand also specifies where the QUIT,
END_LIBRARY, and WRITE_LIBRARY subcommands
write their results.

Format USE_LIBRARY or
USEL

BASE=file
RESULT= file
STATUS=status variable

Parameters BASE or B

Remarks

Revision G

Name of the source library copied as the initial working
library for the session. The files specified by the BASE
and RESULT parameters can be the same. If BASE is
omitted, file SOURCE_LIBRARY in your working catalog
is used.

RESULT or R

Name of the file on which the new source library is
written by subsequent END_LIBRARY, WRITE_
LIBRARY, or QUIT subcommands. The new source library
can be written when either a QUIT, END_LIBRARY, or
WRITE_LIBRARY subcommand is entered. The WRITE_
LIBRARY subcommand can specify a different source
library than that specified by the USE_LIBRARY
subcommand. The files specified by the BASE and
RESULT parameters can be the same. If RESULT is
omitted, the file specified by the BASE parameter is used.

• All subcommands in the session affect the same
working library. The working library is initially a
duplicate of the base library specified on the BASE
parameter.

• If no USE_LIBRARY or CREATE_LIBRARY
subcommand is issued before other subcommands
during an SCU session, file SOURCE_LIBRARY is
used for the base and result libraries.

Commands and Subcommands 2-105

l

I
USE_LIBRARY

• You must have read and execute permission on the
base library. You must have read and write
permission on the result library. If you only want to
read the base library, specify $NULL as the result
library. I E~pre• The following sequence begins an SCU session and

intitializes the working library from file FSEWORK in
your working catalog, assumed not to be $LOCAL. In this
example, source libraries are written on the next cycle of
file FSEWORK by subsequent END_LIBRARY, WRITE_
LIBRARY, or QUIT subcommands.

/source_code_utility
sc/use_library base:fsework result:fsework.$next

The following sequence specifies $NULL as the result
library. You can use this example to look at a source
library, but not to change it.
/source_code_utility
sc/use_library ..
sc .. /$system.cybi1.osf$program_1nterface result:$nu11

2-106 Source Code Management Revision G

WRITE_LIBRARY

WRITE _LIBRARY
SCU Subcommand

Purpose Generates a result library from the current state of the
working library. It writes the result library on the file
specified by the RESULT parameter.

Format WRITE_LIBRARY or
WRIL

RESULT=file
STATUS=status variable

Parameters RESULT or R

Remarks

Revision G

File to which the result library is written. If RESULT is
omitted, the file used is specified by the RESULT
parameter of the CREATE_LIBRARY, previous WRITE_
LIBRARY, or USE_LIBRARY subcommand. If RESULT is
specified, that file name becomes the default for
subsequent QUIT or WRITE_LIBRARY subcommands.

• This subcommand allows you to generate more than
one source library in an SCU session. This is done if
you specify a file on the RESULT parameter. To create
an empty library, refer to the CREATE_LIBRARY
subcommand.

• The subcommand can save the contents of the working
library at an intermediate state in case the system
fails during the session. In this case, you can omit the
RESULT parameter and use the result file you
specified when you began the session. When you end
the session, you can overwrite the intermediate library
with the final result library.

• If the result file is the same as the file named on the
BASE parameter of the USE_LIBRARY subcommand,
the file is rewritten only if the working library has
been modified.

• The END_LIBRARY and QUIT subcommands also
generate a result library.

• Specifying RESULT changes the value of the $RESULT
function to reflect the new file name.

Commands and Subcommands 2-107

NOSNE Commands

Examples The following subcommand writes an intermediate library
to the result library file.

sc/wri te_ 1 i brary

NOSNE Commands

The following are NOSNE commands used with source libraries, listed
alphabetically.

2-108 Source Code Management Revision G

EXPAND_SOURCE_FILE

EXPAND _SOURCE _FILE
Command

Purpose Expands a text file as though the file were a deck on an
SCU library. Expanding a file processes the directives
embedded in the source text and copies the expanded text
to a separate compile file.

Format EXPAND_ SOURCE_ FILE or
EXPSF

FILE=tile
COMPILE =file
SELECTION_ CRITERIA= file
WIDTH= integer
LINE_IDENTIFIER =keyword
ALTERNATE_BASE=list of file
LIST=file
EXPANSION _DEPTH =integer
DISPLAY_OPTIONS=keyword
STATUS= status variable

Parameters FILE or F e File to be expanded. This parameter is required.

Revision G

COMPILE or C

File on which the expanded text is written. You can
specify a file position as part of the file name. If
COMPILE is omitted, file COMPILE is used.

SELECTION _CRITERIA or SC

File from which selection criteria subcommands are read.
You can specify a file position as part of the file name.
To enter selection criteria subcommands interactively,
specify COMMAND. If SELECTION_CRITERIA is
omitted, no selection criteria processing is performed.

WIDTH or W

Length of the expanded lines, excluding line identifiers. If
WIDTH is omitted, the default line width is 0 (zero).

Commands and Subcommands 2-109

EXPAND_SOURCE_FILE

LINE_lDENTIFIER or LI

Line identifier placement.

RIGHT (R)

Line identifiers are placed to the right of the text.

LEFT (L)

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, NONE is used.

ALTERNATE_BASEorALTERNATE_BASESorAB

Optional list of one or more additional libraries to be
searched for decks.

LIST or L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, the listing file is the file
specified on the SET_LIST_OPTIONS subcommand. A
Otherwise, the default is file $LIST. W'

EXPANSION _DEPTH or ED

Number of levels of COPY and COPYC directives to
process. COPY and COPYC directives beyond the
maximum expansion depth are expanded as text. If
EXPANSION _DEPTH is omitted, COPY and COPYC
directives are processed whenever they are encountered.

DISPLAY_ OPTIONS or DO

Indicates whether the listing includes the library for each
deck from which the deck was expanded.

BRIEF (B)

Does not list the decks or their library origins.

FULL (F)

Lists the library origin when more than one library is
used.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

2-110 Source Code Management Revision G

Remarks

Examples

Revision G

EXPAND_SOURCE_FILE

• EXPAND_SOURCE_FILE allows you to expand a text
file without starting an SCU session. It is identical to
the SCU subcommand EXPAND_FILE, except that the
EXPAND_SOURCE_FILE command does not interact
with the working library. Although the command can
be entered within an SCU session, it has no effect on
the working library of the session. It can be used to
expand files outside of an SCU session.

• You can specify alternate base libraries with the
ALTERNATE_BASE parameter. When SCU processes
a COPY or COPYC directive, it searches the deck lists
of the alternative base libraries in the order the
libraries are listed on the ALTERNATE_BASE
parameter.

• The EXPANSION _DEPTH parameter can limit the
levels of nested directives processed. If SCU reads a
directive at a level beyond the maximum level
processed, it expands it as text.

• The LINE_IDENTIFIER and WIDTH parameters
affect how the expanded text is written on the compile
file.

• The line width can be specified by the WIDTH
parameter. If the line width for a file or deck is 0
(zero), EXPAND_SOURCE_FILE writes each line as
it is stored in the file or deck (no trailing blanks or
truncation); a blank line, therefore, is written as a
zero-length V record. If the line width for a file or a
deck is nonzero, EXPAND_SOURCE_FILE writes
each line using that width. Lines shorter than the
width are padded with trailing blanks; lines longer
than the width are truncated.

The following command expands the text of file OLD_
TEXT and writes the expanded text on file COMPILE.
The unique name given to the temporary deck created
from file OLD_ TEXT is $95 .. 28.

/expand_source_f i le old_text a lternate_base=source_ library ..
. . /display_options=full list=output
•=DecK was copied
$800716132S0209D19880225T220933 WorKing Library

• SOURCE_LIBRARY F$$ __ 00011BDO_E3

Commands and Subcommands 2-111

EXTRACT_SOURCE_LIBRARY

EXTRACT _SOURCE _LIBRARY
Command

Purpose

Format

Extracts a set of decks from the base library for use as a
separate library.

EXTRACT_SOURCE_LIBRARY or
EXTSL

DECK= list of range of name
INTERLOCK= name
SELECTION _CRITERIA =file
BASE=file
RESULT= file
STATUS= status variable

Parameters DECK or DECKS or D

Decks to be copied. The decks can be specified as a list of
one or more names, a list of one or more ranges, or as
the keyword ALL. ALL specifies all decks on the base
library. If DECK is omitted, the decks copied are
determined by the contents of the criteria file.

INTERLOCK or I

Name of the user reserving the extracted decks; use the
keyword NONE if the decks are not to be reserved. The
name is written in the subinterlock field for each
extracted deck on the base library and in the original
interlock field of each deck in the extracted library. This
parameter is required.

SELECTION_ CRITERIA or SC

File from which selection criteria commands are read.
You can specify a file position as part of the file name. If
SELECTION_CRITERIA is omitted, decks are selected
using the DECK parameter.

NOTE

If an interlock is to be set, you cannot use the selection A
criteria commands EXCLUDE_MODIFICATION, W
EXCLUDE_FEATURE, or EXCLUDE_STATE to exclude
modifications. Interlocked decks can only be extracted as a
whole.

2-112 Source Code Management Revision G

Remarks

Revision G

EXTRACT_SOURCE_LIBRARY

BASE or B

File containing the source library from which decks are
copied. If BASE is omitted, file SOURCE_LIBRARY in
your current working catalog is used.

If the EXTRACT_SOURCE_LIBRARY command sets
interlocks, it modifies the base library file by writing the
interlock value in the original interlock field of the deck
header of each extracted deck.

RESULT or R

File on which the new source library is written. This
parameter is required.

• The EXTRACT_SOURCE_LIBRARY command is a
NOSNE command. Although you can enter the
command during an SCU session, it has no effect on
the working library of the session. However, if both
use the same result file, the first file is overwritten by
the second.

To set interlocks with an EXTRACT_SOURCE_
LIBRARY command, you must have modify permission
as well as read permission to the base library file.
You also must have interlock authority for the file
(the letter I in the application information field of
your file permit entry).

• If you intend to later merge the extracted library
decks with the base library decks to form a new
library, you can set interlocks on the extracted decks
to notify other users of the base library that you have
extracted the decks. You can set interlocks in the
extracted decks by specifying a user name on the
INTERLOCK parameter.

• When setting interlocks, the command stores the user
name both in the deck header of the extracted deck
copy and in the deck header of the original deck. The
name is stored in the original inter lock field of the
extracted deck copy and in the subinterlock field of
the original deck.

• If you set interlocks when you extracted the library,
the REPLACE_LIBRARY or COMBINE_LIBRARY
subcommand enforces the interlock if you specify
ENFORCE_INTERLOCKS=TRUE on the

Commands and Subcommands 2-113

EXTRACT_SOURCE_LIBRARY

Examples

subcommand. Interlock enforcement means that
REPLACE_LIBRARY or COMBINE_LIBRARY checks
whether the original interlock value in the header of
the extracted deck copy matches the subinterlock value
in the header of the working library copy.

If the values match, REPLACE_LIBRARY or
COMBINE_LIBRARY replaces the working library
deck with the extracted deck; otherwise, it issues a
warning message, does not replace the working library
deck, and attempts replacement of any remaining
decks in the deck list.

• The key characters of source libraries must match.

• You can select the decks extracted by deck names,
selection criteria, or names qualified by selection
criteria. SCU begins with the decks specified on the
DECK parameter and then adds and removes decks as
specified by selection criteria commands.

• The modification, feature, and group lists for the
extracted library contain only the modifications,
features, and groups applicable to the extracted decks. e

The following command copies the deck DECKI and the
decks in the range DECK5 through DECK7 from the base
library on permanent file OLDPL to the result library on
permanent file NEWLIB. No interlocks are set.

/extract_source_library (deck1,deck5 .. deck7) ..
.. /interlock=none base=$user.oldpl result=$user.newlib

2-114 Source Code Management Revision G

GENERATE_SCU _EDIT_COMMANDS

GENERATE_SCU _EDIT _COMMANDS
Command

Purpose

Format

Compares a deck to text on a source file and produces a
file of editing commands and text. If the deck is
subsequently edited using the file of commands and text
as input, the text of the edited deck would match that on
the source file.

GENERATE_SCU_EDIT_COMMANDS or
GEN SEC

DECK= name or keyword
SOURCE= file
EDIT_ COMMANDS= file
BASE=file
TERMINATING _DELIMITER =string
LEADING_SPACES_SIGNIFICANT=boolean
STATUS= status variable

Parameters DECK or D

Revision G

Deck to which the editor subcommands apply. You can
specify a name or the keyword ALL. ALL specifies that
the source file is to include the *DECK directives. Some
libraries may have a key character other than *. This
parameter is required.

SOURCE or S

File containing a modified version of the deck text. You
can specify a file position as part of the file name. This
parameter is required.

EDIT_ COMMANDS or EC

File to which the editor commands and text are written.
This parameter is required.

BASE or B

Source library file on which the deck resides. If BASE is
omitted, SOURCE_LIBRARY is used.

TERMINATING _DELIMITER or TD

Characters that mark the end of inserted text in the
editor commands file. If TERMINATING_DELIMITER is
omitted, ///END\\\ is used.

Commands and Subcommands 2-115

GENERATE_SCU _EDIT_COMMANDS

Remarks

Examples

LEADING_SPACES_SIGNIFICANT or LSS

Indicates whether the comparison should consider leading
spaces significant. Options are:

TRUE

Leading spaces are significant.

FALSE

Leading spaces are not significant.

If LEADING_SPACES_SIGNIFICANT is omitted, TRUE
is used.

• The GENERATE_SCU_EDIT_COMMANDS command
is a NOSNE command. Although you can enter the
command during an SCU session, it has no effect on
the working library of the session.

• The source file text must not contain line identifiers.
Also, the source file must not contain DECK directives
unless DECK= ALL is specified.

• If it does not matter how many spaces precede the a
text in a line, specify LEADING_SPACES_ W
SIGNIFICANT= FALSE, so that the command does not
generate editing commands whose only function is to
change the number of leading spaces.

The following command compares the text on file NEW_
DECK4 with the text in deck DECK4 on library OLDPL.
It then writes a sequence of editing commands and text
on permanent file DECK4_EDIT that, if executed, would
change the deck text to match the text on file NEW_
DECK4.

/generate_scu_edit_cOlllllands deck=deck4 ..
. . /source=$user.new_deck4 edit_cOlllllands= ..
.. /$user.deck4_edit base=$user.oldpl

If you specify the parameter EDIT_
COMMANDS= $USER.DECK4_EDIT on the GENSEC
command, the following example gives the generated
commands to the EDIT_FILE utility, and the utility
makes a modification for the new version of your deck.

sc/edit_deck modification=new_mod deck=deck4
sc .. /input~$user.deck4_edit

2-116 Source Code Management Revision G

Using the EDIT _FILE Utility

This chapter explains how to .activate the EDIT_FILE utility within
an SCU session, and lists the deck selection subcommands used for
editing decks. Refer to the NOSNE File Editor manual for complete
details.

Calling the EDIT _FILE Utility

3

You can use the EDIT_FILE utility to enter and change the contents
of a file or deck. To edit a text file, refer to the EDIT_FILE
command described in the NOSNE File Editor manual.

Use the EDIT_DECK subcommand to edit decks in an SCU source
library within an SCU session.

After using EDIT_DECK to enter the EDIT_FILE utility, the
following subcommands are available to select decks you wish to edit
from the working library.

EDIT_ DECK
EDIT_FIRST_DECK
EDIT_LAST_DECK
EDIT_ NEXT_ DECK
END_DECK
RESET_DECK
SELECT_DECK
SELECT_FIRST_DECK
SELECT_LAST_DECK
SELECT_NEXT_DECK

Decks can be edited using all available EDIT_FILE subcommands.
Refer to the NOSNE File Editor manual for complete details.

For further information about the EDIT_DECK subcommand, refer to
chapter 2.

Revision G Using the EDIT_FILE Utility 3-1

Deck Selection Subcommands

You can also use the following SCU subcommands during an editing
session.

CREA'l'E_MODIFICATION
DISPLAY_ DECK
DISPLAY_ DECK_ LIST
DISPLAY_ DECK_ REFERENCES
DISPLAY_FEATURE
DISPLAY_FEATURE_LIST
DISPLAY_ GROUP
DISPLAY_ GROUP _LIST
DISPLAY_ LIBRARY
DISPLAY_MODIFICATION
DISPLAY_MODIFICATION _LIST
EXTRACT_MODIFICATION

Deck Selection Subcommands

The deck selection subcommands offer two ways to get the deck you
want, EDIT or SELECT. Subcommands beginning with EDIT open a
new deck for editing while maintaining your position in the previous
decks (if any). They include:

EDIT_DECK
EDIT_FIRST_DECK
EDIT_LAST_DECK
EDIT_NEXT_DECK

Subcommands beginning with SELECT open a new deck and close the
previous decks. They include:

SELECT_ DECK
SELECT_FIRST_DECK
SELECT_ LAST_ DECK
SELECT_NEXT_DECK

The NOSNE File Editor manual describes the deck selection
subcommands.

3-2 Source Code Management Revision G

SCU Text-Embedded Directives

This chapter describes SCU text-embedded directives, presented in
alphabetical order.

NOTE

4

The directive formats in this chapter use the default key character *.
The key character for the library is specified when the library is
created with the CREATE_LIBRARY command.

Text-embedded directive processing is described in chapter 1.

Revision G SCU Text-Embedded Directives 4-1

BLOCK/BLOCKEND

BLOCK/BLOCKEND

Purpose

Format

Remarks

Examples

Marks the beginning and end of a block of text.

*BLOCK
and

*BLOCKEND

• Blocks determine the range "of a conditional copy (refer
to the COPYC directive description).

• A BLOCKEND directive must follow each BLOCK
directive within the deck. Blocks can be nested up to
32 levels.

The following sequence of lines delimit two blocks, one
nested within the other.

*block
*COPY deck1
*block
*copyc deck2
*blockend
*copy deck3
*blockend

When the text is expanded, COPY directives copy DECKl
and DECK3 in the outer block. A COPYC directive copies
DECK2 in the inner block.

Another example shows two CYBIL modules expanded
from the same deck. In this case, the content of
FSP$0PEN _FILE would be copied in both places, since
COPYC is in separate blocks.

*block
module one;

*copyc fsp$open_file
modend one;
*blockend
*block
module two;

*copyc fsp$open_file
modend two
*blockend

4-2 Source Code Management Revision G

COPY

COPY

Purpose Copies the text of the specified deck into the expanded
text file.

Format *COPY name

Parameters name

Examples

Revision G

Name of the deck to be copied. This parameter is
required.

The COPY directive in the outer block copies DECKl; the
COPYC directive does not copy DECK! because it has
already been copied in an enclosing block. Quote marks
indicate ·a comment on the inner deck that is not copied.

*block
•copy deck1
*block
*copyc deck1
*blockend
*blockend

"Inner DECK 1 is not copied.

SCU Text-Embedded Directives 4-3

COPYC

COPYC

Purpose Conditionally copies the text of the specified deck into the
expanded text file. The COPYC directive copies text only
if the deck has not already been copied within the current
block or within an enclosing block.

Format *COPYC name

Parameters name

Remarks

Name of the deck to be copied. This parameter is
required.

• The current block begins with the last BLOCK
directive or the beginning of the deck; the current
block ends with the next BLOCKEND directive or the
end of the deck. A block encloses the current block if
its BLOCK directive occurs before the BLOCK
directive for the current block and its BLOCKEND
directive occurs after the BLOCKEND directive of the
current block.

• If SCU expands a deck which tries to COPYC (or A
COPY) a nonexisting deck, an error message is sent to W
the listing, an error status is set, and the compile file
is generated (without the COPYC or COPY directive).

4-4 Source Code Management Revision G

Examples

Revision G

COPYC

The following directives delimit three blocks, two inner
blocks nested within an outer block.

*block
•copyc decka
*block
•copyc decka
•copyc deckb
*blockend
*block
•copyc decka
•copyc deckb
*blockend
•copyc deckb
*blockend

(Copies the deck)

(Does not copy the deck)
(Copies the deck)

(Does not copy the deck)
(Copies the deck)

(Copies the deck)

When these directives are processed during text
expansion, DECKA is copied only once. The COPYC
directive in the outer block copies DECKA, but the
COPYC directives in the inner blocks do not copy DECKA
because it has already been copied within an enclosing
block.

DECKB is copied three times, once in each of the inner
blocks and once in the outer block.

SCU Text-Embedded Directives 4-5

DECK

DECK

Purpose Specifies the deck name for the following text.

NOTE

The DECK directive is processed when the file containing e
the directive is specified on the SOURCE parameter of a
CREATE_DECK subcommand. The command must also
specify that deck directives are to be included. After
processing the DECK directive, SCU discards the
directive; it does not include the directive in the deck
text.

Format *DECK
DECK=name
EXPAND= boolean

Parameters DECK

Examples

Deck name. This parameter is required.

EXPAND or EXP

Optional expand attribute for the deck.

TRUE

The deck is expanded if specified on an EXPAND_
DECK subcommand or a COPY or COPYC directive.

FALSE

The deck is not expanded if specified on an EXPAND_
DECK subcommand; it is expanded if specified on a
COPY or COPYC directive.

If EXPAND is omitted, TRUE is used.

The following directive names a deck DECK2. Its expand
attribute is TRUE.

*deck deck2

4-6 Source Code Management Revision G

e ELSE

Purpose

e Format

Remarks

Examples

Revision G

ELSE

Marks the beginning of a block of text to be expanded if
the conditions on the preceding IF directive and any
preceding ELSEIF directives are all FALSE.

*ELSE

An IF/IFEND block can contain more than one ELSEIF
directive, but only one ELSE directive.

The following sequence of lines contains three blocks of
text, only one of which is expanded.

•if Sdeck(DSD)
Text to be expanded if DSD is a deck on the 1 ibrary.
•elseif Sdeck(DSO)
Text to be expanded if DSO is a deck on the 1 ibrary.
•else
Text to be expanded if neither DSD nor DSO is a deek on the 1 ibrary.
•ifend

SCU Text-Embedded Directives 4-7

ELSEIF

ELSE IF

Purpose Specifies a condition that is evaluated if the conditions on
the preceding IF directive and any preceding ELSEIF
directives are all FALSE. The condition determines
whether the text between the ELSEIF and the next
ELSEIF, ELSE, or !FEND directive is expanded. If the
condition on the ELSEIF is TRUE, the text is expanded.
If it is FALSE, the text is not expanded.

Format *ELSEIF boolean expression

Parameters boolean expression

Expression that can be evaluated as either TRUE or
FALSE. This parameter is required.

Remarks The boolean expression on the directive is an SCL
expression as described in the NOS/VE System Usage
manual. It can reference SCL variables. SCL returns an
error if the expression is invalid. When SCU detects this
error, the entire IF block is suppressed and it does not go
to the compile file.

Examples The following text lines comprise an IF/IFEND block
subdivided by ELSEIF and ELSE directives.

*if $modification(MOD1)
Text expanded 1f the modification MODl has not
been excluded.
*elseif $mod1fication(MOD2)
Text expanded if the modification MODl has
been excluded, but the modification
MOD2 has not been excluded.
*else
Text expanded if MODl and MOD2 have both
been excluded.
•ifend

4-8 Source Code Management Revision G

IF/IFEND

IF/IFEND

Purpose Delimits a block of text that is conditionally expanded. If
SCU evaluates the condition specified on the IF directive
as TRUE, it expands the text between the IF directive
and the next ELSEIF, ELSE, or IFEND directive. If it
evaluates the condition as FALSE, it does not expand the
text, and it evaluates the condition on the succeeding
ELSEIF directive if one exists within the IF/IFEND block.

Format *IF boolean expression
and

*IFEND

Parameters boolean expression

Expression that can be evaluated as either TRUE or
FALSE. This parameter is required.

Remarks • The boolean expression on the directive is an SCL

Examples

Revision G

expression as described in the NOSNE System Usage
manual. It can reference SCL variables. SCL returns
an error if the expression is invalid. When SCU
detects this error, the entire IF block is suppressed
and it does not go to the compile file.

• IF/IFEND blocks can be nested up to 32 levels.

The following text lines delimit two blocks, one block
nested within the other. Text in the outer block is
expanded if modification MODl is in the working library.
Text in the inner block is expanded if modifications
MODl and MOD2 are in the working library.

*if $modification(MOD1)
Text to be expanded if the library contains
modification MOD1.
*if $modification(MOD2)
Text to be expanded if the library contains
modification MOD1 and modification MOD2.
*ifend
*ifend

SCU Text-Embedded Directives 4-9

PUT

PUT

Purpose Specifies a string expression that is evaluated when the
deck is expanded and inserted as a line in the expanded
deck text.

Format *PUT string expression

Parameters string expression

Expression that can be· evaluated as a string. This
parameter is required.

Remarks The string expression on the directive is an SCL
expression as described in the NOS/VE System Usage
manual. It can reference SCL str~ng variables and SCL or
SCU functions that return string values. The only SCL
string operation is concatenation.

Examples The following airective inserts a line in the expanded text
consisting of three concatenated strings.

•PUT 'The library is '//$1ibrary_header(name)//' .'

Assuming the name in the library header is MY_ e
LIBRARY, SCU writes the following line when it expands
the directive.

The library is MY_LIBRARY.

4-10 Source Code Management Revision G

TEXTfl'EXTEND

TEXTfrEXTEND

Purpose

Format

Remarks

Examples

Revision G

Delimits a block of text in which embedded directives are
not processed.

*TEXT
and

*TEXTEND

TEXTtrEXTEND blocks cannot be nested. If a TEXTEND
directive does not follow each TEXT directive, SCU sends
a warning message when it expands the deck.

The COPY directive in the following text is not processed
as a directive, but is copied as a text line because of the
preceding TEXT directive.

•text
•copy deckl
•textend

SCU Text-Embedded Directives 4-11

WEOP

WEOP

Purpose

Format

Examples

Writes an end-of-partition delimiter on the expanded text
file.

NOTE

Because only the variable (V) record type supports
partitioning, the RECORD_ TYPE attribute of the file on
which SCU writes the text must be V.

*WEOP

The following example shows a WEOP directive
separating two blocks of text.

Text for the first partition.
•weop
Text for the second partition.

4-12 Source Code Management Revision G

WEOPC

WEOPC

Purpose Conditionally writes an end-of-partition delimiter on the
expanded text file. SCU writes the partition delimiter if it
has written text since it wrote the previous partition
delimiter.

Format

Examples

Revision G

NOTE

Because only the variable (V) record type supports
partitioning, the RECORD_ TYPE attribute of the file on
which SCU writes the text must be V.

*WEOPC

The following example shows a WEOPC directive that
writes an end-of-partition if the previous COPYC directive
writes text on the file.

Text for the first partition.
•weop
•copyc deck1
•weopc
Text for the second or third partition.

SCU Text-Embedded Directives 4-13

Selection Criteria Subcommands 5

Selection criteria processing is useful for expanding or extracting
portions of a source library file. Selection criteria subcommands allow
you to select decks to be expanded or extracted by including or
excluding them based on information contained in the deck headers.
For example, the INCLUDE_GROUP subcommand causes all decks in
a specific group to be selected.

Selection Criteria Subcommand Processing

To process selection criteria subcommands, specify the SELECTION_
CRITERIA parameter on an EXPAND_DECK subcommand,
EXTRACT_DECK subcommand, or EXTRACT_SOURCE_LIBRARY
command. SCU reads the subcommands to be processed from the
selection criteria file specified on the parameter. If the file specified is
COMMAND, SCU prompts you for subcommand entry from the
command input file with the prompt sec/.

The effect of the selection criteria subcommands entered is cumulative.
SCU processes each subcommand as it is entered; however, the effect
of subcommands entered earlier is overridden by the most recent
subcommand that affects the deck or modification. For example,
consider the following subcommand sequence.

sc/expand_deck deck1 .. deck30 selection_criteria=comnand
scc/exclude_group group1
scc/include_deck deck1

The second subcommand includes deck DECKl even if the deck
belongs to group GROUP!. However, if the subcommands are entered
in reverse order, DECKl would not be included if it belongs to group
GROUP I.

Due to the cumulative effect in the following subcommands, the
second subcommand overrides the first so that all decks that are in
GROUP! will expand, not just the decks in the range of DECKl to
DECK2.

sc/expand_deck deck1 .. deck2 selection_criteria=cClllllland
scc/include_group group1

Revision G Selection Criteria Subcommands 5·1

Selection Criteria Subcommand Processing

You can use SCU functions to loop through the source library from
DECKl to DECK2 to see if a particular deck belongs to GROUP!.

The selection criteria subcommands are valid only during selection
criteria processing, which places a command list entry containing the
selection criteria subcommands on the NOSNE command list. The A
name of the entry is SCU _CRITERIA. •

During criteria file processing, NOSNE searches the command list in
restricted mode. Therefore, commands entered in the selection criteria
file other than selection criteria subcommands must be prefixed by a
/. The prefix notifies NOS/VE that this command is located in a
different command list than the one that is currently being used,
namely, the selection criteria command list. For more information on
restricted command list search mode, refer to the NOS/VE System
Usage manual. SCL control statements and assignment statements do
not require a prefix.

The following SCU subcommands are allowed during criteria file
processing.

DISPLAY_ DECK

DISPLAY_ DECK_ REFERENCES

DISPLAY_FEATURE

DISPLAY_FEATURE_LIST

DISPLAY_ LIBRARY

DISPLAY_MODIFICATION

DISPLAY_MODIFICATION _LIST

The following example lists the contents of a selection criteria file.

/copy_file input=select_1

include_modif1cat1on modification=(mod1,mod3)
include_group group=section_1
exclude_deck deck=(deck5 .. deck7)
/display_ library
/Quit

5-2 Source Code Management Revision G

Selection Criteria Subcommands

Selection Criteria Subcommands
This section describes selection criteria subcommands, presented in
alphabetical order.

Revision G Selection Criteria Subcommands 5-3

EXCLUDE_DECK

EXCLUDE_DECK
Selection Criteria Subcommand

Purpose

Format

Explicitly excludes one or more decks.

EXCLUDE _DECK or
EXCLUDE_DECKS or
EXCD

DECK= list of range of name
STATUS =status variable

Parameters DECK or DECKS or D

Examples

Decks to be excluded. This parameter is required.

The following sequence extracts modules from base library
$USER.MY_LIBRARY using selection criteria commands.
The extracted modules are then written to $USER.PART_
OF _MY_ LIBRARY.

/extract_source_11brary base=Suser.my_library
.. /result=$user.part_of_my_library ..
.. /interlock=none selection_criteria=conmand
scc/include_group group1
scc/exclude_deck unwanted
sec/Quit

The command sequence extracts all decks belonging to
group GROUPl except deck UNWANTED. When selection
criteria entry has ended, the result is written on
$USER.PART_ OF _MY_ LIBRARY.

5-4 Source Code Management Revision G

EXCLUDE_FEATURE

EXCLUDE_FEATURE
Selection Criteria Subcommand

Purpose

e Format

Explicitly excludes modifications belonging to one or more
features.

EXCLUDE_FEATURE or
EXCLUDE_FEATURES or
EXCF

FEATURE= list of name
STATE= integer
STATUS =status variable

Parameters FEATURE or FEATURES or F

e Remarks

Examples

Revision G

Features to be excluded: This parameter is required.

STATE or S

Maximum state (from 0 through 4) of modifications
excluded. All modifications whose state is less than or
equal to this value are excluded. If STATE is omitted, all
modifications belonging to the feature are excluded.

This command is not valid for an EXTRACT_SOURCE_
LIBRARY subcommand that sets an interlock.

The following sequence extracts new source library
$USER.MY_RESULT from the library on file $USER.MY_
LIBRARY.

/extract_source_library decks=all
.. /base=$user.my_library ..
. . /result=$user.my_result ..
.. /interlock=none selection_cr1teria=command
scc/exclude_feature new_prompts
sec/Quit
I

The sequence extracts all decks from the source library.
However, it omits all lines of text belonging to
modifications associated with the feature NEW_
PROMPTS. It omits the feature NEW_PROMPTS from
the feature list of the new library and the modifications
associated with NEW_PROMPTS from the modification
list.

Selection Criteria Subcommands 5.5

EXCLUDE_ GROUP

EXCLUDE_GROUP
Selection Criteria Subcommand

Purpose Explicitly excludes the decks belonging to one or more
groups.

Format EXCLUDE_GROUP or
EXCLUDE_GROUPS or
EXCG

GROUP=list of name
COMBINATION =keyword
STATUS=status variable

Parameters GROUP or GROUPS or G

Examples

Groups to be excluded. This parameter is required.

COMBINATION or C

Indicates whether the decks excluded must belong to one
or all specified groups. Options are:

ANY

Excluded decks must belong to at least one of the
specified groups.

ALL

Excluded decks must belong to all the specified groups.

If COMBINATION is omitted, ANY is used.

The following subcommand sequence expands all decks on
the working library except those belonging to group
SECTION_!.

sc/expand_deck decks=all selection_criteria=c011111and
scc/exclude_group group=section_1
sec/Quit

5-6 Source Code Management Revision G

EXCLUDE_LIBRARY

EXCLUDE _LIBRARY
Selection Criteria Subcommand

Purpose Excludes decks found on one or more alternate base
libraries. Although the command prevents you from
selecting decks from specified libraries, COPY and
COPYC directives processed by an EXPAND_DECK
subcommand can still copy decks from the specified
libraries.

Format EXCLUDE_LIBRARY or
EXCLUDE_LIBRARIES or
EXCL

ALTERNATE_BASE=list of file
STATUS =status variable

Parameters ALTERNATE_BASE or ALTERNATE_BASES or AB

Source library files whose decks are excluded. The files
must be a subset of the libraries specified on the
ALTERNATE_BASE parameter of the subcommand. This
parameter is required.

Remarks

Examples

Revision G

The EXCLUDE_LIBRARIES subcommand allows you to
specify source libraries on the ALTERNATE_BASE
parameter of the EXPAND_DECK subcommand to be
used only for decks copied by COPY and COPYC
directives. No other decks on the excluded library are
expanded.

The following subcommand sequence expands all decks on
the working library. Decks are copied from the library on
file COMMON_LIBRARY if referenced by COPY or
COPYC directives in the text.

sc/expand_decks decks=all alternate_base= ..
sc .. /c0111110n_library selection_criteria=cornnand
scc/exclude_library alternate_base=conmon_library
scc/ciuit

Selection Criteria Subcommands 5.7

EXCLUDE_MODIFICATION

EXCLUDE _MODIFICATION
Selection Criteria Subcommand

Purpose

Format

Explicitly excludes one or more modifications.

EXCLUDE_MODIFICATION or
EXCLUDE _MODIFICATIONS or
EXCM

MODIFICATION= list of name
STATUS= status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be excluded. This parameter is required.

Remarks

Examples

• This subcommand is not valid for an EXTRACT_
SOURCE_LIBRARY subcommand that sets an
interlock.

• If several modifications of the same line exist, it is
possible for an expanded deck to contain two versions
of the same line if the modification deactivating the
original line is excluded from the expanded deck.

For example, assume Line 1 Version 1 is introduced e
by modification A. Modification B deactivates and
replaces that line with Line 1 Version 2. Then
modification C deactivates and replaces Line 1 Version
2 with Line 1 Version 3. If the deck is expanded with
modification B excluded, both the Line 1 Version 1
and Line 1 Version 3 will appear in the compile file
because Line 1 Version 1 is no longer activated.

The following subcommand sequence expands all text in
decks DECKl through DECK3 except those lines
belonging to modifications MOD2 and MOD4.

sc/expand_decks decks=(deck1 .. deck3)
sc .. /selection_criteria=conmand
scc/exclude_modification (mod2,mod4)
sec/Quit

5-8 Source Code Management Revision G

EXCLUDE_STATE

EXCLUDE_STATE
Selection Criteria Subcommand

Purpose

Format

Explicitly excludes all modifications whose state is not
greater than that specified.

EXCLUDE_STATE or
EXCS

STATE= integer
STATUS= status variable

Parameters STATE or S

Remarks

Examples

Revision G

Maximum state (from 0 through 3) of the modifications
excluded. This parameter is required.

This command is not valid for an EXTRACT_SOURCE_
LIBRARY subcommand that sets an interlock.

The following subcommand sequence extracts all text in
deck DECKl except those lines belonging to modifications
with a 0 (zero) or 1 state.

sc/extract_decks deck=deckl selection_criteria=conrnand
scc/exclude_state 1
sec/quit

Selection Criteria Subcommands 5-9

INCLUDE_COPYING_DECKS

INCLUDE _COPYING _DECKS
Selection Criteria Subcommand

Purpose

Format

Explicitly includes all decks that contain a COPY or
COPYC directive that directly or indirectly copies one of
the specified decks.

INCLUDE_ COPYING _DECKS or
INCCD

DECK= list of range of name
DECK_RESIDENCE =keyword
STATUS= status variable

Parameters DECK or DECKS or D

Remarks

Examples

Decks copied by the included decks. This parameter is
required.

DECK_RESlDENCE or DR

Specifies whether the decks specified on the DECK
parameter reside either on the working library or on
alternate base libraries used by the subcommand. Options
are:

EXTERNAL

The decks do not reside on the libraries.

INTERNAL

The decks reside on the libraries.

If DECK_RESIDENCE is omitted, INTERNAL is used.

The INCLUDE_COPYING_DECKS subcommand allows
you to expand or extract only those decks that reference
the specified decks.

The following subcommand sequence expands all decks
that copy deck COMMONl.

sc/expand_decks selection_criteria=conmand
scc/include_copying_decks deck=cOlllllOn1
sec/Quit

5-10 Source Code Management Revision G

INCLUDE_DECK

INCLUDE_DECK
Selection Criteria Subcommand

Purpose

Format

Explicitly includes one or more decks.

INCLUDE_DECK or
INCLUDE_DECKS or
INCD

DECK= list of range of name
STATUS =status variable

Parameters DECK or DECKS or D

Remarks

Examples

Revision G

Decks to be included. This parameter is required.

If a deck name in a deck list is in error, the subcommand
is not executed. ~=:

The following subcommand sequence excludes all decks in
group GROUPl, but includes deck WANTED even if it
belongs to GROUPl.

sc/expand_decks decks=all selection_criteria=c011111and
scc/exclude_group group1
scc/include_deck wanted
sec/Quit

Selection Criteria Subcommands 5·11

INCLUDE_FEATURE

INCLUDE _FEATURE
Selection Criteria Subcommand

Purpose

Format

Includes all modifications belonging to one or more
features.

INCLUDE_FEATURE or
INCLUDE _FEATURES or
INCF

FEATURE= list of name
STATE =integer
STATUS= status variable

Parameters FEATURE or FEATURES or F

Examples

Features to be included. This parameter is required.

STATE or S

Minimum state (0 through 4) of the modifications
included. All modifications whose state is greater than or
equal to the specified state are included. If STATE is
omitted, all modifications belonging to the feature are
included.

The following subcommand sequence expands DECKl
through DECK5. It includes all modifications belonging to
feature NEW_PROMPTS that have a state of 2, 3, or 4.

sc/expd decks=deck1 .. decks selection_criteria=conmand
scc/include_feature feature=new_prompts state=2
sec/quit

5-12 Source Code Management Revision G

INCLUDE_ GROUP

INCLUDE_GROUP
Selection Criteria Subcommand

Purpose

Format

Explicitly includes decks belonging to one or more groups.

INCLUDE_GROUP or
INCLUDE_GROUPS or
INCG

GROUP=list of name
COMBINATION= keyword
STATUS =status variable

Parameters GROUP or GROUPS or G

Examples

Revision G

Groups to be included. This parameter is required.

COMBINATION or C

Indicates whether the decks included must belong to any
or all specified groups. Options are:

ANY

Included decks must belong to at least one of the
specified groups.

ALL
Included decks must belong to all of the specified
groups.

If COMBINATION is omitted, ANY is used.

The following command sequence extracts all decks
belonging to group SECTION_ 1.

sc/extract_decks selection_cr1teria=c0111Tiand
scc/include_group group=section_1
sec/Quit

Selection Criteria Subcommands 5·13

INCLUDE_MODIFICATION

INCLUDE _MODIFICATION
Selection Criteria Subcommand

Purpose

Format

Explicitly includes one or more modifications.

INCLUDE_MODIFICATION or
INCLUDE_MODIFICATIONS or
INCM

MODIFICATION= list of name
STATUS =status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be included. This parameter is required.

Examples The following command sequence expands all text on deck
DECK5 except those lines belonging to feature MY_
CHANGES. However, lines belonging to modifications
MOD2 and MOD5 are expanded even if the modifications
are associated with feature MY_CHANGES.

sc/expand_deck deck=deckS selection_criteria=camiand
scc/exclude_feature my_cnanges
scc/include_modifications (mod2,mod5)
sec/Quit

5-14 Source Code Management Revision G

INCLUDE_MODIFIED _DECKS

INCLUDE _MODIFIED _DECKS
Selection Criteria Subcommand

Purpose

Format

Explicitly includes all decks that are modified by a
specified feature or modification. Decks directly modified
are always included. Decks which copy modified decks
(directly or indirectly through chains of indirect
references) can also be optionally included.

INCLUDE_MODIFIED_DECKS or
INCLUDE_MODIFIED_DECK or
INCMD

FEATURES=list of range of name
MODIFICATIONS= list of range of name
INCLUDE_COPYING _DECKS= boolean
STATUS =status variable

Parameters FEATURES or FEATURE or F

Examples

Revision G

Name of features to be included. If FEATURE is omitted,
MODIFICATION must be specified.

MODIFICATIONS or MODIFICATION or M

Names of modifications to be included. If MODIFICATION
is omitted, FEATURE must be specified.

INCLUDE_COPYING_DECKSor ICD

Specifies whether decks that copy modified decks should
be included. If INCLUDE_COPYING_DECKS is omitted,
decks that copy modified decks are not included.

The following example includes all of the decks modified
by the modification ACCOUNTING_FIXES and all the
decks that copy modified decks.

scc/include_modified_decks feature=accounting_fixes
scc .. /include_copying_decks=true

Selection Criteria Subcommands 5-15

INCLUDE_STATE

INCLUDE _STATE
Selection Criteria Subcommand

Purpose Includes all modifications whose state is greater than or
equal to that specified.

Format INCLUDE_STATE or
INCS

STATE= integer
STATUS= status variable

Parameters STATE or S

Examples

Minimum state (from 0 through 4) of the modifications
included. All modifications whose state is greater than or
equal to the specified value are included. This parameter
is required.

The following command sequence extracts all lines in
DECK5 belonging to modifications whose state is 2, 3, or
4.

sc/extract_deck deck=deckS selection_criteria""O&lmland
scc/include_state 2
scc/ouit

5-16 Source Code Management Revisien G

QUIT

QUIT
Selection Criteria Subcommand

Purpose

Format

Revision G

Ends SELECTION_ CRITERIA_ COMMAND command
processing.

QUIT or
END or
QUI

STATUS =status variable

Selection Criteria Subcommands 5-17

RETAIN_GROUP

RETAIN_GROUP
Selection Criteria Subcommand

Purpose

Format

Retains from the list of decks currently selected only
those decks that are members of the specified group.

RETAIN_ GROUP or
RETAIN _GROUPS or
RETG

GROUP=list of name
COMBINATION =keyword
STATUS= status variable

Parameters GROUP or GROUPS or G

Examples

Names of the groups to be retained. This parameter is
required.

COMBINATION or C

Decks to be retained. Options are:

ANY

Decks will be retained if they are members of any of
the groups specified by the GROUP parameter.

ALL

Decks will be retained if they are members of all of
the groups specified by the GROUP parameter.

If COMBINATION is omitted, ANY is used.

The following example retains the decks which are at the
same time members of group CYBIL and group
SCF$UNBOUND_ UTILITY.

scc/retain_groups groups=(cybi1,scf$unbound_utility)
sec .. /combination=all

5-18 Source Code Management Revision G

SCU Functions

This chapter describes the SCU functions, presented alphabetically.

All function parameters are required. You must supply a value for
each parameter shown in the function format.

6

SCU functions are processed using the SCL interpreter. The functions
use SCL condition handling, and follow the SCL command syntax.
Refer to the NOSNE System Usage manual for a complete definition
of SCL command syntax.

The $CURRENT_DECK function is an EDIT_FILE function and can
only be used within an editing session. Refer to the NOSNE File
Editor manual for more information.

Using SCU Functions

The following example allows you to see if deck MY_DECK is on
library SCUPL:

/scu
sc/use_library scupl
sc/·di splay_va lue $deck(my_deck)
TRUE

sc/Quit no

The following batch example writes all decks from the library on file
SCUPL to file COMPILE if the decks are to be processed by CYBIL,
were written by John Doe, and have the expand attribute.

scu
use_library scupl

x=$first_deck
loop

if ($deck_header($name(x),processor)='CYBIL') and
($deck_header($name(x),author)='John Doe') and
($deck_header($name(x),expand)=true) then
expand_deck $name(x) compile.$EOI

ifend
exit when x=$last_deck

x=$next_deck($name(x))
loopend

Quit write_library=false

Revision G SCU Functions 6-1

Using SCU Functions

The functions $FIRST_DECK, $LAST_DECK, and $NEXT_DECK
return strings as their values.

The following example:

• Changes the state of all modifications associated with the feature
UPDATE_FEATURE_TO_REVISION_C to 1.

• Produces the detailed display on all modifications associated with
feature UPDATE_FEATURE_ TO_REVISION _B.

• Raises the state of all modifications currently in state 3 to state 4.

• Writes the result library to file VE1107.

scu
use_library doc180 ve1107

modnames=Smodification_list
for mods=! to Svariable(modnames,upper_bound) do

if SmOdif icat ion_header(Sname(modnames(mods)), feature)= ..
'UPOATE_FEATURE_TO_REVISl()ll_C' then
Change_modif icat ion Sname(modnames(mods)) state=!

if end
if Smodif ication_header(Sname(modnames(mods)), feature)= ..

'UPDATE_FEATURE_TO_REVISI()ll_B' then
display_modification Sname(modnames(mods)) ..
display_options=full

if end
if Smodif icat ion_header(Sname(modnames(mods)) ,state)=3 then

change_modification Sname(modnames(mods)) state=4
if end

forend
quit write_ 1 ibrary=true

The function $MODIFICATION_LIST returns an array of strings as
its value.

6-2 Source Code Management Revision G

$BASE

$BASE
SCU Function

Purpose Returns the base library file.

Format $BASE

Parameters None.

Examples The following command displays the current value of the
base file.

Revision G

/scu
sc/use_library base=$user.fortran_lib
sc/display_value value=$base
$USER.FORTRAN_LIB

SCU Functions 6-3

$DECK

$DECK
SCU Function

Purpose Returns a boolean value indicating whether the specified
deck is in the working library.

Format $DECK
(name)

Parameters name

Examples

Name of the deck to be found. This parameter is required.

The following command assigns a boolean value to the
SCL variable DECK_EXISTS, depending on whether
DECKl is in the working library.

sc/deck_exists = $deck(deck1)

6-4 Source Code Management Revision G

$DECK_HEADER

$DECK_HEADER
SCU Function

Purpose

Format

Returns the contents of any deck header field.

$DECK_HEADER
(name
keyword)

ParlilJ)leters name

Revision G

Name of the deck whose header field is returned. This
parameter is required.

keyword

Deck header field. This parameter is required. Options
are:

AUTHOR (A)

Deck author. The value is returned as a string.

ORIGINAL_INTERLOCK (01)

Original interlock on the deck. The value is returned
as a string.

SUB_INTERLOCK (SI)

Deck subinterlock. The value is returned as a string.

DECK_DESCRIPTION (DD)

Deck description. The value is returned as a string.

PROCESSOR (P)

Deck processor. The value is returned as a string.

GROUP or GROUPS (G)

Groups to which the deck belongs. The value is
returned as an array of strings if the number of
groups is greater than 1; otherwise the value returned
is a single string.

CHARACTER (C)

Default tab character. The value is returned as a
string.

SCU Functions 6-5

$DECK_HEADER

TAB_COLUMN or TAB_COLUMNS (TC)

Default tab stop columns. The value is returned as a
string.

WIDTH (W)

Default line width. The value is returned as an
integer.

LINE_IDENTIFIER (LI)

Default line identifier placement. This value is
returned as a string.

EXPAND (E)

Expand attribute. The value is returned as a boolean
value.

MODIFICATION (M)

Names of the modifications that apply to the deck.
The value is returned as an array of strings.

CREATION_DATE (CD)

Date the deck was created. The value is returned as a e
string (mm/dd/yy).

CREATION_ TIME (CT)

Time the deck was created. The value is returned as a
string (hh.mm.ss).

MODIFICATION_DATE (MD)

Date the deck was last changed. The value is returned
as a string (mm/dd/yy).

MODIFICATION_ TIME (MT)

Time the deck was last changed. The value is returned
as a string (hh.mm.ss).

ACTIVE_LINE_COUNT (ALC)

Number of active lines in the deck. The value is
returned as an integer.

INACTIVE_LINE_COUNT (!LC)

Number of inactive lines in the deck. The value is
returned as an integer.

6-6 Source Code Management Revision G

Examples

Revision G

$DECK_HEADER

The following command assigns the active line count for
deck DECK5 to the SCL integer variable LINE_COUNT.

sc/line_count = $deck_header(deck5,alc)

SCU Functions 6-7

$DECK_LIST

$DECK_LIST
SCU Function

Purpose

Format

Returns an array of strings listing the names of decks on
a library.

$DECK_LIST

Parameters None.

Remarks

Examples

• The names in the array will be ordered alphabetically
as the decks are ordered on the library.

• When used in the selection criteria subcommand
processing, $DECK_LIST reflects the current deck list
to be written to the compile, result, or source file
being produced.

This example shows an array implicitly created and
values assigned to it. The first command assigns an array
of strings to the variable DECK_LIST and the following
commands execute a loop to display the values of the
array.

sc/deck_list = $deck_list
sc/for i=1 to $varfable(deck_list,upper_bound) do
for/display_value deck_list(i)
for/forend
DECK1
DECK2
DECK3
DECK4
sci

6-8 Source Code Management Revision G

$ERRORS_FILE

$ERRORS _FILE
SCU Function

Purpose

Format

Returns the file to which intermediate diagnostic
messages are written.

$ERRORS_FILE

Parameters None.

Examples The following command displays the current value of the
file to which intermediate diagnostic messages are
written.

Revision G

/scu
sc/set_list_options errors=$user.my_error_file
sc/display_value $errors_file
$USER.MY_ERROR_FILE

SCU Functions 6-9

$FEATURE

$FEATURE
SCU Function

Purpose Returns a boolean value indicating whether the specified
name is recognized as a feature on the working library.

Format $FEATURE
(name)

Parameters name

Examples

Name of the feature to be found. This parameter is
required.

The following command assigns a boolean value to the
SCL variable FEATURE_EXISTS, depending on whether
FEATURE! is recognized as a feature in the working
library.

sc/feature_exists $feature(feature1)

6-10 Source Code Management Revision G

$FEATURE LIST

$FEATURE _LIST
SCU Function

Purpose

Format

Returns an array of strings listing the names of features
on the working library.

$FEATURE _LIST

Parameters None.

Remarks

Examples

Revision G

• The array is ordered the same as it is on the working
library.

• When used inside selection criteria subcommand
processing, $FEATURE_LIST reflects the current
feature list to be written to the compile, result, or
source file being produced.

The following command assigns an array of strings
containing the names of features on the working library
to the variable FEATURE_LIST.

sc/feature_list = $feature_list

SCU Functions 6-11

$FEATURE MEMBERS

$FEATURE _MEMBERS
SCU Function

Purpose

Format

Parameters

Remarks

Examples

Returns an array of strings listing the names of
modifications on the working library that belong to the
specified feature.

$FEATURE MEMBERS . -
(name)

name

Name of the feature. This parameter is required.

The names in the array appear in the same order as the
names in the modification list in the working library.

The following command assigns to the variable
FEATURES_MEMBERS an array of strings containing
the names of modifications on the working library that
belong to the feature NEW_ VERSION.

feature_members = $feature_members(new_vers1on)

The following example returns an array of strings listing
the names of modifications on the working library that
belong to the feature FEATURE_NAME.

sc/fm=$feature_members(feature_name)
sc/for 1=1 to $var1able(fm,upper_bound) do
for/d1splay_value fm(i)
for/forend
MOD1
MOD2
MOD3
MOD4
sci

6-12 Source Code Management Revision G

$FIRST _DECK
SCU Function

$FIRST DECK

Purpose Returns the name of the first deck in the working library
as a string value.

Format $FIRST_DECK

Parameters None.

Remarks All letters in the string returned are uppercase, even if
the name was originally entered using lowercase letters.

Examples The following command assigns the name of the first deck
to the SCL variable FIRST_DECK.

sc/first_deck = $f1rst_deck

Revision G SCU Functions 6-13

$FIRST_MODIFICATION

$FIRST _MODIFICATION
SCU Function

Purpose Returns the name of the first modification in the library
modification list as a string value.

Format $FIRST _MODIFICATION

Parameters None.

Remarks • All letters in the string returned are uppercase, even

Examples

if the name was originally entered using lowercase
letters.

• The modification list is kept in alphabetical order.

The following command assigns the name of the first
modification to the SCL variable FIRST_MOD.

sc/first_mod = $first_modification

6-14 Source Code Management Revision G

$GROUP

$GROUP
SCU Function

Purpose

Format

Returns a boolean value indicating whether a name is
recognized as a group in the working library.

$GROUP
(name)

Parameters name

Examples

Revision G

Name of the group to be searched for on the working
library. This parameter is required.

The following command assigns a boolean value to the
variable GROUP _EXISTS, indicating whether the group
TEST exists on the working library.

sc/group_exists = $group(test)

SCU Functions 6-15

$GROUP LIST

$GROUP _LIST
SCU Function

Purpose Returns an array of strings giving the names of the
groups on the working library.

Format $GROUP _LIST

Parameters None.

Remarks

Examples

• The array is ordered the same as it is on the working
library.

• When used in selection criteria subcommand
processing, $GROUP _LIST reflects the current group
list to be written to the compile, result, or source file.

The following command assigns an array of strings
containing the names of groups on the working library to
the variable GROUP _LIST.

sc/group_list = $group_list

6-16 Source Code Management Revision G

$GROUP MEMBERS

$GROUP _MEMBERS
SCU Function

Purpose

e Format

Returns an array of strings giving the names of decks on
the working library that belong to the specified group.

$GROUP _MEMBERS
(name)

Parameters name

Remarks

Examples

Revision G

Name of the group whose members are to be listed. This
parameter is required.

The array is ordered the same as it is on the working
library.

The following command assigns to the variable GROUP_
MEMBERS an array of strings giving the names of decks
on the working library that belong to the group TEST.

sc/group_members = $Qroup_members(test)

SCU Functions 6-17

$LAST DECK

$LAST_DECK
SCU Function

Purpose Returns the name of the last deck on the working library
as a string value.

Format $LAST_DECK

Parameters None.

Remarks All letters in the string returned are uppercase, even if
the name was originally entered using lowercase letters.

Examples The following command assigns the name of the last deck
to the SCL string variable LAST_DECK.

sc/last_deck = $1ast_deck

6-18 Source Code Management Revision G

$LAST_MODIFICATION

$LAST _MODIFICATION
SCU Function

Purpose

Format

Returns the name of the last modification in the library
modification list as a string value.

$LAST _MODIFICATION

Parameters None.

Remarks • All letters in the string returned are uppercase, even

Examples

Revision G

if the name was originally entered using lowercase
letters.

• The modification list is kept in alphabetical order.

The following command assigns the name of the last
modification to the SCL string variable LAST_MOD.

sc/last_mod = $1ast_modification

SCU Functions 6-19

$LIBRARY HEADER

$LIBRARY_HEADER
SCU Function

Purpose Returns the contents of any library header field.

Format $LIBRARY_HEADER
(keyword)

Parameters keyword

Name of the field in the library header. This parameter is
required. The field name can be one of the following:

CHANGE_ COUNTER (CC)

Number of changes made to the library. The value is
returned as an integer.

CREATION _DATE (CD)

Date the library was created. The value is returned as
a string (MM/DD/YY).

CREATION_TIME (CT)

Time the library was created. The value is returned as A
a string (HR.MM.SS). W

DECK_ COUNT (DC)

Number of decks in the library. The value is returned
as an integer.

FEATURE_COUNT (FC)

Number of features in the library. The value is
returned as an integer.

GROUP _COUNT (GC)

Number of groups in the library. The value is
returned as an integer.

KEY (K)

Key character. The value is returned as a string of 1
character.

LAST_ USED_DECK (LUD)

Last value given explicitly for the DECK parameter.
The value is returned as an uppercase string.

6-20 Source Code Management Revision G

e Examples

Revision G

$LIBRARY HEADER

LAST_USED_MODIFICATION (LUM)

Last value given explicitly for the MODIFICATION
parameter. The value is returned as an uppercase
string.

LIBRARY {L)

Library name. The value is returned as a string (all
letters are uppercase).

LIBRARY_DESCRIPTION (LD)

Library description. The value is returned as a string.

LIBRARY_FORMAT_ VERSION (LFV)

Library format version. The value is returned as a
string of up to 4 characters.

MODIFICATION_ COUNT (MC)

Number of modifications in the library, including the
original modification names associated with deck
creation. The value is returned as an integer.

MODIFICATION_DATE (MD)

Date the library was last changed. The value is
returned as a string (MM/DD/YY).

MODIFICATION_ TIME (MT)

Time the library was last changed. The value is
returned as a string (RH.MM.SS).

scu _VERSION (SV)

SCU version. The value is returned as a string of up
to 9 characters.

VERSION (V)

Library version. The value is returned as a string of
up to 256 characters.

The following command assigns the number of decks in
the working library to the SCL integer variable
NUMBER_OF_DECKS.

sc/number_of_decks = $1ibrary_header(deck_count)

SCU Functions 6-21

$LIBRARY MODIFIED

$LIBRARY _MODIFIED
SCU Function

Purpose Returns a boolean value indicating whether the current
working library has been modified.

Format $LIBRARY_MODIFIED

Parameters None.

Remarks The value for $LIBRARY_MODIFIED is set to FALSE
whenever a $WRITE_LIBRARY command is entered.
TRUE means there are changes on the current working
library that are not recorded on an external file.

Examples The following command assigns a boolean value to the
SCL variable LIBRARY_CHANGED, depending on
whether the current working library has been modified.

sc/library_changed = $1ibrary_modified

6-22 Source Code Management Revision G

$LIST FILE

$LIST_FILE
SCU Function

Purpose

Format

Returns the default listing file for the LIST parameter on
SCU subcommands.

$LIST_FILE

Parameters None.

Examples The following command displays the current value of the
default listing file.

Revision G

/scu
sc/set_list_options list=$user.fortran_list_file
sc/display_value $1ist_file
$USER.FORTRAN_LIST_FILE

SCU Functions 6-23

$MODIFICATION

$MODIFICATION
SCU Function

Purpose Returns a boolean value indicating whether the specified
modification is in the working library.

Format $MODIFICATION
(name)

Parameters name

Remarks

Examples

Name of the modification to be found. This parameter is
required.

If you exclude the specified modification using a selection
criteria command, SCU evaluates the $MODIFICATION
function as FALSE.

The following command assigns a boolean value to the
SCL variable MOD_EXISTS, depending on whether MODI
is in the working library.

sc/mod_exists = $modif1cat1on(mod1)

6-24 Source Code Management Revision G

$MODIFICATION HEADER

$MODIFICATION _HEADER
SCU Function

Purpose

Format

Returns the contents of any modification header field.

$MODIFICATION _HEADER
(name
keyword)

Parameters name

Revision G

Name of the modification whose header field is returned.
This parameter is required.

keyword

The field in the modification header. This parameter is
required. Options are:

AUTHOR (A)

Modification author. The value is returned as a string
of up to 256 characters.

CREATION _DATE (CD)

Date when the modification was created. The value is
returned as a string (MM/DD!YY).

CREATION TIME (CT)

Time when the modification was created. The value is
returned as a string (HR.MM.SS).

FEATURE (F)

Feature to which the modification belongs. The value
is returned as a string.

MODIFICATION_DATE

Date when lines were last added to the modification.
The value is returned as a string (MM/DDNY).

MODIFICATION _DESCRIPTION (MD)

Modification description. The value is returned as an
array of strings.

MODIFICATION TIME (MT)

Time when lines were last added to the modification.
The value is returned as a string (RH.MM.SS).

SCU Functions 6-25

$MODIFICATION_HEADER

Examples

STATE (S)

Current state of the modification. The value is
returned as an integer.

The following command assigns the state of modification
MOD4 to the SCL integer variable CURRENT_STATE.

sc/current_state = $modification_header(mod4,state)

6-26 Source Code Management Revision G

$MODIFICATION_LIST

$MODIFICATION _LIST
SCU Function

Purpose

Format

Returns an array of strings listing the names of
modifications on the working library.

$MODIFICATION _LIST

Parameters None.

Remarks • The array is ordered alphabetically, as it is on the

Examples

Revision G

working library.

• When used in selection criteria subcommand
processing, $MODIFICATION _LIST reflects the
current modification list to be written to the compile,
result, or source file being produced.

The following command assigns an array of strings giving
the names of modifications on the working library to the
variable MODIFICATION _LIST.

sc/modification_list = $rnodification_list

SCU Functions 6-27

$MODIFIED_DECKS

$MODIFIED _DECKS
SCU Function

Purpose

Format

Returns an array of strings giving the names of decks on
the working library affected by a specified modification.

$MODIFIED _DECKS
(name)

Parameters name

Remarks

Examples

Name of the modification. This parameter is required.

The array is ordered the same as it is on the working
library.

The following command assigns to the variable
MODIFIED_DECKS an array of strings giving the names
of decks on the working library affected by the
modification TEST.

sc/modified_decks = Smodified_decks(test)

6-28 Source Code Management Revision G

$NEXT_DECK

$NEXT_DECK e SCU Function

Purpose

Format

Returns the name of the next deck as a string value.

$NEXT_DECK
(name)

Parameters name

Remarks

Examples

Revision G

Name of the deck whose successor is to be found. This
parameter is required.

All letters in the string returned are uppercase, even if
the name was originally entered using lowercase letters.

The following command assigns the name of the deck
following DECK! to the SCL string variable NEXT_
DECK.

sc/next_deck = $next_deck(deck1)

SCU Functions 6-29

$NEXT_MODIFICATION

$NEXT_MODIFICATION
SCU Function

Purpose

Format

Returns the name of the next modification in the library
modification list as a string value.

$NEXT _MODIFICATION
(name)

Parameters name

Remarks

Examples

Name of the modification whose successor is to be found.
This parameter is required.

All letters in the string returned are uppercase, even if
the name was originally entered using lowercase letters.

The following command assigns the name of the
modification following MODI to the SCL string variable
NEXT_MOD.

sc/next_mod = $next_modtftcatton(mod1)

6-30 Source Code Management Revision G

$RESULT
SCU Function

Purpose Returns the result library file.

Format $RESULT

Parameters None.

$RESULT

Remarks The value of $RESULT is updated when a WRITE_
LIBRARY subcommand is entered that specifies a result
file.

Examples The following command displays the current value of the
result file.

Revision G

/scu
sc/use_library base=$user.fortran_lib
sc .. /result=$user.new_fortran_lib
sc/display_value $result
$USER.NEW_FORTRAN_LIB

SCU Functions 6-31

Glossary A

A

e Active Lines

Lines expanded when a deck is expanded. See also Inactive Lines.

Authority

A privilege granted by the application information field of the file
permit entry. A digit from 1 through 4 in the field indicates the
maximum modification state that the user has authority to change.
The letter I in the field grants authority to set an interlock on a deck
in the file.

B

Base Library

The library from which the working library is copied. You must have
read permission to use this file.

Boolean

A kind of value that is evaluated as TRUE or FALSE.

c

Command Utility

A NOSNE processor that adds its command table (referred to as its
subcommands) to the beginning of the SCL command list. The
subcommands are removed from the command list when the processor
terminates.

Control Statement

A statement used to structure and control the flow of a job. e Creation Modification

The modification specified on the CREATE_DECK subcommand.

Criteria e See Selection Criteria.

Revision G Glossary A-1

Current Position Expansion

Current Position

The line in the current deck from which the editor determines the
location for an operation. The current position line can be referenced
with the keyword CURRENT.

D

Deck

A collection of lines with a header describing the collection. For
example, a deck can be a compilation unit, a procedure, or a job. You
reference a deck by its name.

Deck List

An alphabetical list of the decks on a source library.

Deck Reference

Specification of a deck on a COPY or COPYC text-embedded directive.

Default

The assumed value for a parameter when the parameter is not
specified by the user.

Delimiter String

A string that marks the end of text input.

E

Editing Session

The time from when you start the EDIT_FILE utility (the editor) to
the time you stop it.

Expand Attribute

A deck header field that determines whether a deck is expanded when
specified on an EXPAND_DECK subcommand. For example, if
DECKS=DECK1..DECK5 is specified, only the decks in that range
that have an expand attribute of TRUE are expanded. e
Expansion

Reformatting from the compressed text format on an SCU library to
input text format on a text file. Unlike extraction, expansion also
processes all text-embedded directives in the deck.

A-2 Source Code Management Revision G

Extraction File Position

Extraction e Reformatting from the compressed text format on a source library to
input text format on a text file. Unlike expansion, extraction does not

·process text-embedded directives in the deck.

e F

Feature

A collection of modifications. A modification can belong to only one
feature.

Feature List

A list of all features on a library listed in the order they were added
to the library.

File

An SCL element that specifies a temporary or permanent file,
including its path and, optionally, a cycle reference (for permanent
files). A file is identified by specifying a path and, optionally, a cycle
reference (for permanent files) as follows:

e path.cycle reference

See also Path and Cycle Reference.

Some files can also be positioned. See also File Position.

File Position

The location in the file at which the next read or write operation will
begin. A file that can be positioned is identified by specifying a path,
an optional cycle reference (for permanent files), and an optional file
position as follows:

path.cycle reference.file position

The file position designators are:

$ASIS Leave the file in its current position.

$BOI Position the file at the beginning-of-information.

$EOI Position the file at the end-of-information.

See also Path and Cycle Reference.

Revision G Glossary A-3

Group Intermediate Diagnostic Message

G

Group

A collection of decks in a library. A deck can belong to one or more
groups or to no group.

Group List

An alphabetical list of the groups in a library.

I

Inactive Lines

Lines deleted by a modification. Inactive lines are not included when
a deck is expanded. Inactive lines become active lines again if the
modification that deleted the lines is itself deleted. See also Active
Lines.

Integer

A value representing one of the numbers 0, + 1, -1, + 2, -2, and so
forth.

Integer Constant

One or more digits and, for hexadecimal integer constants, the
following characters:

ABCDEFabcdef

A hexadecimal integer constant must begin with a digit. A preceding
sign and subsequent radix are optional.

Interlock

A field set in the deck header indicating that the deck has been
extracted. The original interlock field is set in the deck header on the
extracted library; the subinterlock field is set in the deck header on
the base library. You must have the correct authority to set this field.
See also Authority.

Intermediate Diagnostic Message

Diagnostic message issued by a command. The command continues
processing after the message. When command processing completes,
the command returns another diagnostic message.

A-4 Source Code Management. Revision G

Key Character

K

Key Character

A character that prefixes each text-embedded directive in a source
library.

Keyword

List

A parameter value that has special meaning in the context of a
particular parameter. For example, a parameter called COUNT might
normally expect an integer but could be given the keyword ALL.

L

Last Used Deck

The last deck name explicity entered for a DECK parameter. The last
used deck is also the default for most subcommands with a DECK
parameter.

Last Used Modification

The last modification name explicity entered for a MODIFICATION
parameter. The last used modification is also the default for most
subcommands with a MODIFICATION parameter.

Line

SCU recognizes a line as a record of text.

A sequence of characters. SCU assigns a unique identifier to each line
so you can reference individual lines.

Line Identifier

The unique identifier of a line in a deck. The line identifier consists
of a modification name followed by a sequence number. The
modification name identifies the modification to which the line
belongs.

List

A command format notation specifying that a parameter can be given
several values.

Revision G Glossary A-5

Modification Range

M

Modification

A collection of line changes with a header describing the collection.

Modification List
A list of the modifications on a library. It is ordered alphabetically.

N

Name, SCL
Combination of from 1 through 31 characters chosen from the
following set:

• Alphabetic characters (A through Z and a through z).

• Digits (O through 9).

• Special characters: #, @, $, _, [,], \, ", ·, {, }, I, - .
The first character of a name cannot be numeric.

p

Partition

A unit of data in a sequential or byte-addressable file delimited by
end-of-partition separators or the beginning- or end-of-information.

R

Range

Value represented as two values separated by an ellipsis. The element
is associated with the values from the first value through the second
value. The first value must be less than or equal to the second value.
For example:

value .. value

A-6 Source Code Management Revision G

Result Library String

Result Library

The file to which the working library can be copied. You must have
read and write permission to use this file. An SCU session always
writes the working library to the result library file unless the
WRITE_LIBRARY parameter on the QUIT command directs it not to
do so.

s

SCL Variable

The means of storing a value to be tested or displayed by an SCL
statement.

SCU Session

The period of time from when you start the Source Code Utility to
when you stop it.

Selection Criteria

Qualifications specified by selection criteria subcommands for the
decks and modifications expanded or extracted.

Sequencing

The process that assigns new line identifiers to the lines in a deck or
modification.

Source Library

A collection of decks on a file, with a header describing the collection,
generated and manipulated by the Source Code Utility (SCU).

You reference a source library by the file on which it resides.

State

A field in a modification header indicating the current development
level of the modification.

Status Variable

A variable record of kind status that holds the completion status of a
command.

String

A value that represents a sequence of characters.

Revision G Glossary A-7

String Constant Value Set

String Constant

A sequence of characters delimited by apostrophes ('). An apostrophe
can be included in the string by specifying two consecutive
apostrophes.

T

Text-Embedded Directive

A text line that SCU processes as a directive when expanding a deck
or a file.

v

Value List

A series of value sets separated by spaces or commas and enclosed in
parentheses. If only one value set is given in the list, the parentheses
can be omitted. For example:

(value set,value set,value set)

or

value set

See also Value, Value Element, and Value Set.

Value Set

A series of value elements separated by spaces or commas and
enclosed in parentheses. If only one value element is given in the set,
the parentheses can be omitted. For example:

(value element,value element,value element)

or

value element

See also Value, Value Element, and Value List.

A-8 Source Code Management Revision G

\Vorking Library \Vorking Library

w
\Vorking Library

The temporary library on which an SCU session performs its
operations. It is copied from the base library and can be copied to the
result library.

Revision G Glossary A-9

Related Manuals B

All NOSNE manuals and related hardware manuals are listed in
table B-1. If your site has installed the online manuals, you can find
an abstract for each NOSNE manual in the online System
Information manual. To access this manual, enter:

/explain

Ordering Printed Manuals
To order a printed Control Data manual, send an order form to:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

To obtain an order form or to get more information about ordering
Control Data manuals, write to the above address or call (612)
292-2101. If you are a Control Data employee, call (612) 292-2100.

Accessing Online Manuals
To access the online version of a printed manual, log in to NOSNE
and enter the online title on the EXPLAIN command (table B-1
supplies the online titles). For example, to see the NOSNE Commands
and Functions manual, enter:

/help manual=scl

The examples in some printed manuals exist also in the online
Examples manual. To access this manual, enter:

/help manual=examples

When EXAMPLES is listed in the Online Manuals column in table
B-1, that manual is represented in the online Examples manual.

Revision G Related Manuals B-1

Related Manuals

Table B-1. Related Manuals

Manual Title

NOS/VE Site Manuals:

CYBER 930 Computer System
Guide to Operations
Usage

CYBER Initialization Package (CIP)
Reference Manual

DesktopNE Host Utilities
Usage

MAINTAIN _MAIL2
Usage

NOSNE Accounting Analysis System
Usage

NOSNE Accounting and Validation
Utilities for Dual State
Usage

NOSNE
LCN Configuration and Network
·Management
Usage

NOSNE
Network Management
Usage

NOSNE Operations
Usage

Publication Online
Number Manuals1

60469560

60457180

60463918

MAIM

60463923

60458910

60463917

60463916

60463914

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual. e
2. To access this manual, you must be the administrator for
MAIL/VE.

(Continued)

B-2 Source Code Management Revision G

e

e

e

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

Site Manuals (Continued):

NOSNE 60463915
System Performance and Maintenance
Volume 1: Performance
Usage

NOSNE 60463925
System Performance and Maintenance
Volume 2: Maintenance
Usage

NOSNE 60464513
User Validation
Usage

NOSNE User Manuals:

EDIT_CATALOG EDIT_
Usage CATALOG

EDIT_CATALOG for NOSNE 60487719
Summary

Introduction to NOSNE 60464012
Tutorial

NOSNE 60486412 AFM_T
Advanced File Management
Tutorial

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals B-3

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

NOS/VE User Manuals (Continued):

NOSNE 60486413 AFM
Advanced File Management
Usage

NOSNE 60486419
Advanced File Management
Summary

NOSNE 60464018 SCL
Commands and Functions
Quick Reference

NOSNE File Editor 60464015 EXAMPLES
Tutorial/Usage

NOSNE 60464413 OCM
Object Code Management
Usage

NOSNE Screen Formatting 60488813 EXAMPLES
Usage

NOSNE 60464313 SCU and
Source Code Management EXAMPLES
Usage

NOSNE System Usage 60464014 EXAMPLES

NOSNE 60464016
Terminal Definition
Usage

Screen Design Facility for NOSNE 60488613 SDF
Usage e 1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued) e
B-4 Source Code Management Revision G

e Table B-1. Related Manuals (Continued)

Publication
Manual Title

CYBIL Manuals:

CYBIL for NOSNE
File Management
Usage

CYBIL for NOSNE
Keyed-File and Sort/Merge Interfaces
Usage

CYBIL for NOSNE
Language Definition
Usage

CYBIL for NOSNE
Sequential and Byte-Addressable Files
Usage

CYBIL for NOSNE
System Interface
Usage

Number

60464114

60464117

60464113

60464116

60464115

Related Manuals

Online
Manuals1

EXAMPLES

EXAMPLES

CYBIL and
EXAMPLES

EXAMPLES

EXAMPLES

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals B-5

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

FORTRAN Manuals:

FORTRAN Version 1 for NOSNE
Language Definition
Usage

FORTRAN Version 1 for NOSNE
Quick Reference

FORTRAN Version 2 for NOSNE
Language Definition
Usage

FORTRAN Version 2 for NOSNE
Quick Reference

FORTRAN for NOSNE
Tutorial

FORTRAN for NOSNE
Topics for FORTRAN Programmers
Usage

FORTRAN for NOSNE
Summary

COBOL Manuals:

COBOL for NOSNE
Summary

Publication Online
Number Manuals I

60485913 EXAMPLES

FORTRAN

60487113 EXAMPLES

VFORTRAN

60485912 FORTRAN_T

60485916

60485919

60486019

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-6 Source Code Management Revision G

Related Manuals

e Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

COBOL Manuals (Continued):

e COBOL for NOSNE 60486012 COBOL_T
Tutorial

COBOL for NOSNE 60486013 COBOL and
Usage EXAMPLES

Other Compiler Manuals:

ADA for NOSNE 60498113 ADA
Usage

ADA for NOSNE 60498118 EXAMPLES
Reference Manual

APL for NOSNE 60485814
File Utilities

e Usage

APL for NOSNE 60485813
Language Definition
Usage

BASIC for NOSNE 60486319
Summary Card

BASIC for NOSNE 60486313 BASIC
Usage

LISP for NOSNE 60486213
Usage Supplement

Pascal for NOSNE 60485619
Summary Card

e 1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

e
Revision G Related Manuals B-7

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Other Compiler Manuals
(Continued):

Pascal for NOS/VE
Usage

Prolog for NOSNE
Quick Reference

Prolog for NOSNE
Usage

VX/VE Manuals:

C/VE for NOSNE
Quick Reference

CNE for NOS/VE
Usage

DWB/VX
Introduction and User Reference
Tutorial/Usage

DWB/VX
Macro Packages Guide
Usage

DWB/VX
Preprocessors Guide
Usage

DWB/VX
Text Formatters Guide
Usa e

Publication
Number

60485613

60486718

60486713

60469830

60469890

60469910

60469920

60469900

Online
Manuals1

PASCAL and
EXAMPLES

PRO LOG

c

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-8 Source Code Management Revision G

Table B-1. Related Manuals (Continued)

Manual Title

VX/VE Manuals (Continued):

VXNE
Administrator Guide and Reference
Tutorial/Usage

VXNE
An Introduction for UNIX Users
Tutorial/Usage

VXNE
Programmer Guide
Tutorial

VXNE
Programmer Reference
Usage

VXNE
Support Tools Guide
Tutorial

VXNE
User Guide
Tutorial

VXNE
User Reference
Usage

Publication
Number

60469770

60469980

60469790

60469820

60469800

60469780

60469810

Related Manuals

Online
Manuals1

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals B-9

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Data Management Manuals:

DM Command Procedures
Reference Manual

DM Concepts and Facilities
Manual

DM Error Message Summary
for DM on CDC NOS/VE

DM Fundamental Query and
Manipulation Manual

DM Report Writer
Reference Manual

DM System Administrator's
Reference Manual
for DM on CDC NOS/VE

DM Utilities
Reference Manual
for DM on CDC NOS/VE

Publication Online
Number Manuals1

60487905

60487900

60487906

60487903

60487904

60487902

60487901

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-10 Source Code Management Revision G

e

Related Manuals

Table B-1. Related Manuals (Continued) e Publication Online
Manual Title Number Manuals1

Information Management Manuals:

e IM/Control for NOSNE L60488918 CONTROL
Quick Reference

IM/Control for NOSNE 60488913
Usage

IM/Quick for NOSNE 60485712
Tutorial

IM/Quick for NOSNE 60485714
Summary

IM/Quick for NOSNE QUICK
Usage

CDCNET Manuals:

e CDCNET Access Guide 60463830 CDCNET_
ACCESS

CDCNET Batch Device 60463863 CDCNET_
User Guide BATCH

CDCNET Commands 60000020
Quick Reference

CDCNET Configuration and Site 60461550
Administration Guide

CDCNET Diagnostic Messages 60461600

CDCNET Conceptual Overview 60461540

1. This column lists the title of the online version of the manual and

e indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals B-11

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

CDCNET Manuals (Continued):

CDCNET Network Analysis

CDCNET Network Configuration
Utility

CDCNET Network Configuration
Utility
Summary Card

CDCNET Network Operations

CDCNET Network Performance
Analyzer

CDCNET Product Descriptions

CDCNET Systems Programmer's
Reference Manual Volume 1
Base System Software

CDCNET Systems Programmer's
Reference Manual Volume 2
Network Management Entities and
Layer Interfaces

CDCNET Systems Programmer's
Reference Manual Volume 3
Network Protocols

CDCNET Terminal Interface
Usage

CDCNET TCP/IP
Usage

Publication
Number

60461590

60000269

60461520

60461510

60460590

60462410

60462420

60462430

60463850

60000214

Online
Manuals1

NETCU

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-12 Source Code Management Revision G

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Migration Manuals:

Migration from IBM to NOSNE
Tutorial/Usage

Migration from NOS to NOSNE
Tutorial/Usage

Migration from NOS to
NOSNE Standalone
Tutorial/Usage

Migration from NOS/BE to NOSNE
Tutorial/Usage

Migration from NOS/BE to
NOSNE Standalone
Tutorial/Usage

e Migration from VAX/VMS to NOSNE
Tutorial/Usage

Miscellaneous Manuals:

Applications Directory

CONTEXT
Summary Card

CYBER Online Text for NOSNE
Usage

Control Data CONNECT
User's Guide

Publication
Number

60489507

60489503

60489504

60489505

60489506

60489508

60455370

60488419

60488403

60462560

Online
Manuals1

CONTEXT

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals B-13

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Miscellaneous Manuals (Continued):

Debug for NOSNE
Quick Reference

Debug for NOSNE
Usage

DesktopNE for Macintosh
Tutorial

DesktopNE for Macintosh
Usage

NOSNE Diagnostic Messages
Usage

MAILNE
Summary Card

MAILNE
Usage

Math Library for NOSNE
Usage

NOSNE Examples
Usage

NOSNE System Information

Publication
Number

60488213

60464502

60464503

60464613

60464519

60486513

Online
Manuals1

DEBUG

MESSAGES

MAIL_ VE

EXAMPLES

NOS_ VE

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-14 Source Code Management Revision G

e

e

e

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

Miscellaneous Manuals (Continued):

Programming Environment ENVIRON-
for NOSNE MENT
Usage

Programming Environment 60486819
for NOSNE
Summary

Professional Programming PPE
Environment
for NOSNE
Quick Reference

Professional Programming 60486613
Environment
for NOSNE
Usage

Remote Host Facility 60460620
Usage

Hardware Manuals:

CYBER 170 Computer Systems 60459960
Models 825, 835, and 855
General Description
Hardware Reference

CYBER 170 Computer Systems, 60458100
Models 815, 825, 835, 845, and 855
CYBER 180 Models 810, 830, 835,
840, 845, 850, 855, and 860
Codes Booklet

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals B-15

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Hardware Manuals (Continued):

CYBER 170 Computer Systems,
Models 815, 825, 835, 845, and 855
CYBER 180 Models 810, 830, 835,
840, 845, 850, 855, and 860
Maintenance Register
Codes Booklet

HPANE Reference

Virtual State Volume II
Hardware Reference

7021-31/32 Advanced Tape Subsystem
Reference

7221-1 Intelligent Small
Magnetic Tape Subsystem
Reference

Publication
Number

60458110

60461930

60458890

60449600

60461090

Online
Manuals1

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

B-16 Source Code Management Revision G

Character Set c

ASCII Character Set e This appendix lists the ASCII character set (refer to table C-1).

NOSNE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOSNE represents
each 7-bit ASCII code in an 8-bit byte. These 7 bits are right justified
in each byte. For ASCII characters, the eighth or leftmost bit is
always zero. However, in NOSNE the leftmost bit can also be used to
define an additional 128 characters.

If you want to define additional non-ASCII· characters, be certain that
the leftmost bit is available in your current working environment. The
full screen applications (such as the EDIT_FILE utility, the EDIT_
CATALOG utility, and the programming language environments)
already use this bit for special purposes. Therefore, these applications
accept only the standard ASCII characters. In applications in which
the leftmost bit is not used, however, you are free to use it to define
the interpretation of each character as you wish.

Revision G Character Set C-1

ASCII Character Set

Table C-1. ASCil Character Set

Hexa-
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning

000 00 000 NUL Null
001 01 001 SOH Start of heading e 002 02 002 STX Start of text
003 03 003 ETX End of text

004 04 004 EOT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell

008 08 010 BS Backspace
009 09 011 HT Horizontal tabulation
010 OA 012 LF Line feed
011 OB 013 VT Vertical tabulation

012 oc 014 FF Form feed
013 OD 015 CR Carriage return
014 OE 016 so Shift out
015 OF 017 SI Shift in

016 10 020 DLE Data link escape
017 11 021 DCl Device control 1
018 12 022 DC2 Device control 2
019 13 023 DC3 Device control 3

020 14 024 DC4 Device control 4
021 15 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle
023 17 027 ETB End of transmission block

024 18 030 CAN Cancel
025 19 031 EM End of medium
026 lA 032 SUB Substitute
027 1B 033 ESC Escape

028 lC 034 FS File separator
029 1D 035 GS Group separator
030 lE 036 RS Record separator
031 lF 037 us Unit separator

032 20 040 SP Space
033 21 041 Exclamation point
034 22 042 Quotation marks
035 23 043 # Number sign

036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 & Ampersand
039 27 047 Apostrophe

040 28 050 Opening parenthesis
041 29 051 Closing parenthesis
042 2A 052 • Asterisk e 043 2B 053 + Plus

(Continued)

C-2 Source Code Management Revision G

ASCII Character Set

Table C-1. ASCII Character Set (Continued) e Hexa-
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning

044 2C 054 Comma e 045 20 055 Hyphen
046 2E 056 Period
047 2F 057 Slant

048 30 060 0 Zero
049 31 061 1 One
050 32 062 2 Two
051 33 063 3 Three

052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven

056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 Colon
059 3B 073 Semicolon

060 3C 074 < Less than
061 30 075 Equals
062 3E 076 > Greater than e 063 3F 077 ? Question mark

064 40 100 @ Commercial at
065 41 101 A Uppercase A
066 42 102 B Uppercase B
067 43 103 c Uppercase C

068 44 104 0 Uppercase 0
069 45 105 E Uppercase E
070 46 106 F Uppercase F
071 47 107 G Uppercase G

072 48 110 H Uppercase H
073 49 111 I Uppercase I
074 4A 112 J Uppercase J
075 48 113 K Uppercase K

076 4C 114 L Uppercase L
077 40 115 M Uppercase M
078 4E 116 N Uppercase N
079 4F 117 0 Uppercase 0

080 50 120 p Uppercase P e 081 51 121 Q Uppercase Q
082 52 122 R Uppercase R
083 53 123 s Uppercase S

084 54 124 T Uppercase T
085 55 125 u Uppercase U e 086 56 126 v Uppercase V
087 57 127 w Uppercase W

(Continued)

Revision G Character Set C-3

ASCII Character Set

Table C-1. ASCil Character Set (Continued)

Hexa-
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning

088 58 130 x Uppercase X
089 59 131 y Uppercase Y
090 5A 132 z Uppercase Z
091 5B 133 [Opening bracket

092 5C 134 \ Reverse slant
093 5D 135 J Closing bracket
094 5E 13G Circwnflex
095 5F 137 Underline

09G GO 140 Grave accent
097 Gl 141 a Lowercase a
098 G2 142 b Lowercase b
099 G3 143 c Lowercase c

100 64 144 d Lowercased
101 G5 145 e Lowercase e
102 GG 14G f Lowercase f
103 67 147 g Lowercase g

104 G8 150 h Lowercase h
105 69 151 Lowercase i
lOG GA 152 j Lowercase j
107 GB 153 k Lowercase k

108 GC 154 Lowercase l
109 GD 155 m Lowercase m
110 GE 15G n Lowercase n
111 GF 157 0 Lowercase o

112 70 lGO p Lowercase p
113 71 lGl q Lowercase q
114 72 1G2 r Lowercase r
115 73 1G3 s Lowercase s

llG 74 1G4 t Lowercase t
117 75 1G5 u Lowercase u
118 7G lGG v Lowercase v
119 77 1G7 w Lowercase w

120 78 170 x Lowercase x
121 79 171 y Lowercase y
122 7A 172 z Lowercase z
123 7B 173 Opening brace

124 7C 174 Vertical line
125 7D 175 Closing brace e 12G 7E 17G Tilde
127 7F 177 DEL Delete

C-4 Source Code Management Revision G

Conversion Aids D

This appendix describes the SCL commands that convert a source code
library in another format to SCU format. Commands exist to convert
source libraries in Update format, Modify format, and SCU version 1.0
format.

NOTE

Each conversion command assumes that the file to be converted has
been transferred from a NOS or NOS/BE system that uses a 60-bit
word and that the transfer has right-justified each 60-bit word in the
64-bit NOSNE word. To do so, the GET_FILE command to transfer
the file from the NOS or NOS/BE system must specify DATA_
CONVERSION= B60.

Besides converting the file format, a conversion also changes the file
contents as follows:

• The state of each modification is changed to 0. This allows you to
change information in the modification header.

• Each WEOR (write end of record) and WEOF (write end of file)
text-embedded directive is changed to a WEOP directive. For
example, *WEOR,15 becomes *WEOP "15. (NOSNE has only one
level of file separator.)

• The conversion adds a modification named SCU$ALTER to the
library if the conversion requires changes to text lines to preserve
the logic of text-embedded directives. A full listing for the
conversion lists the changed text lines.

Revision G Conversion Aids D-1

Identifier Conversion

Identifier Conversion

The conversion process preserves identifiers used in the Update or
Modify file if the names are valid SCL names. A NOSNE name is
valid if it contains only the following:

A through Z
a through z
0 through 9
#,@,$,_,[J,\,A ,{,},!.-

The first character of a name cannot be a digit.

If you attempt to convert a file without specifying substitutions for all
invalid identifiers, the conversion utility returns a list of invalid
identifiers for which substitutions should be specified in the next
conversion attempt. The identifiers could name decks, correction sets,
and variables. The utility does not attempt to convert the library
format until it has a complete list of valid identifiers for the library.

To specify substitute names, you must specify a file of substitutions
on the NAME_LIST parameter on the conversion command.

Each line of the file specifies the name to be replaced and one or two e
replacement names. The line can specify a short name and/or a long
name. The short replacement name is used if the name to be replaced
occurs as a correction set name; the long replacement name is used if
the name to be replaced occurs as a deck name.

D-2 Source Code Management Revision G

Identifier Conversion

The file contains an SCL parameter list for each substitution. The
parameters can be specified with or without keywords. Each parameter
list must include the OLD_NAME parameter and one or both of the
substitution name parameters.

OLD _NAME= name
NEW_NAME =name
MODIFICATION _NAME= name

OLD_NAME or ON

Name to be replaced. If the name contains invalid characters, it
must be specified as a string (within quotes or apostrophes). This
parameter is required.

NEW_NAME or NN

New deck name (from 1 through 31 characters). If NEW_NAME is
omitted, the name specified by MODIFICATION _NAME is used
for deck names. Either NEW_NAME or MODIFICATION_NAME
must be specified.

MODIFICATION _NAME

New modification name (from 1 through 9 characters). If
MODIFICATION_NAME is omitted, the correction set name
specified by OLD_NAME remains unchanged. (Correction set
names are not converted to the NEW_NAME name.)

For example, the following file line replaces the Update correction set
name MOD**l with the SCU modification name MOD_l.

'mod** 1', ,mod_ 1

You may want to convert deck names or SCL variable names to
longer, more descriptive names. This is possible because names can be
up to 31 characters long under NOSNE. (Modification names must
remain a maximum of 9 characters long.)

For example, the following file line replaces the deck name GETREC
with the SCU deck name GET_NEXT_RECORD.

~ getrec,get_next_record

Revision G Conversion Aids D-3

Update Format Conversion

Update Format Conversion

The CONVERT_ UPDATE_ TO_SCU command converts a source
library from Update format to SCU format.

The Update file can be in sequential format; it cannot be in random
format. It must use either 64-character, 6-bit display code or
128-character, 8/12 ASCII code.

NOTE

The conversion utility only converts files that use the 64-character set;
it does not convert files that use the 63-character set. Before
attempting to convert a file using the 63-character set, convert it to
the 64-character set using the NOS command FCOPY.

All inactive lines (lines deleted by YANK, SELYANK, or YANKDECK
directives) are discarded during the conversion. In other words, the
YANK, SELYANK, and YANKDECK directives are processed as
PURGE, SELPURGE, and PURDECK directives, respectively.

Because SCU has no directives corresponding to the following Update A
directives, the conversion sends a warning message for each and W
includes the directive in the library as a text line.

Directive

*DEFINE

*DO or
*DONT

*WIDTH

Function

Defines a condition to be tested by an IF statement
(refer to Selection Criteria File).

Overrides deck and correction set yanks during a
deck expansion. SCU does not have this feature.

Overrides the control statement line width
specification. SCU allows you to specify a line width
for the entire expansion or for each deck expanded,
but not within the expanded deck.

D-4 Source Code Management Revision G

Update Format Conversion

Selection Criteria File

If you specify a file on the SELECTION_CRITERIA parameter, the
command converts each active DEFINE directive in the YANK$$$
deck to a CREATE_ VARIABLE command on the selection criteria file.
Because the IF directive in the source text that tested the DEFINE
condition is converted to an IF SCU directive, the content of the
created SCL variable can be tested by the converted IF directive.

NOTE

If the IF condition is not directly convertible because of overlapping
nested IF conditions, the conversion sends a warning message and
includes the IF directive as a text line.

The conversion ignores all inactive lines in the YANK$$$ deck. All
YANK and SELYANK directives in the YANK$$$ deck are processed
as PURGE and SELPURGE directives and are not converted.

Revision G Conversion Aids D-5

NOS/VE Conversion Commands

NOSNE Conversion Commands
The following are NOSNE commands that convert a NOS source code
library to a NOS/VE source code library.

D-6 Source Code Management Revision G

CONVERT_UPDATE_TO_SCU

CONVERT_UPDATE_TO_SCU
Command

Purpose

Format

Converts a source library file from Update format to SCU
format.

CONVERT_ UPDATE_ TO_ SCU or
CO NUTS

OLD _PROGRAM_LIBRAR.Y =file
RESULT=file
LIST=file
NAME_LIST=file
DISPLAY_ OPTIONS =keyword
CODE_SET=keyword
SELECTION_ CRITERIA =file
STATUS= status variable

Parameters OLD_PROGRAM_LIBRAR.Y or OLDPL

Revision G

Update library file. If OLD_PROGRAM_LIBRARY is
omitted, file OLDPL is used.

RESULT or R

SCU library file. If RESULT is omitted, file SOURCE_
LIBRARY in your working catalog is used.

LIST or L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, file $LIST is used.

NAME _LIST or NL

Substitution file. You can specify a file position as part of
the file name. If NAME_LIST is omitted, no names are
replaced.

DISPLAY_OPTIONS or DO

Indicates the information written on the listing file.
Options are:

BRIEF (B)

Brief listing.

Conversion Aids D-7

CONVERT_UPDATE_TO_SCU

Remarks

Examples

FULL (F)

Full listing including the text lines changed by the
conversion.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

CODE _SET or CS

Indicates the character code set used in the Update
library file. Options are:

ASCII64

64-character set (6-bit display code).

ASCII812

128-character set (8/12 ASCII code).

If CODE_SET is omitted, ASCII812 is used.

SELECTION _CRITERIA or SC

Criteria file. You can specify a file position as part of the
file name. DEFINE directives from the YANK$$$ deck
are converted to selection criteria commands that are
written on the file. If SELECTION_CRITERIA is omitted,
no selection criteria commands are written.

• The Update library file must be in sequential format;
it must not be in random format. It must use either
64-character, 6-bit display code or 128-character, 8/12
ASCII code.

• The CONVERT_UPDATE_TO_SCU command is a
NOSNE command. Although you can enter the
command during an SCU session, it does not affect the
working library.

The following command converts the Update library file
OLDPL to an SCU library on file SOURCE_LIBRARY. A
brief report is listed on file $LIST. The names to be
substituted are on file NEW_NAMES. Any DEFINE
directives in the file are converted to selection criteria
commands written on file OLDPL_CRITERIA.

D-8 Source Code Management Revision G

Revision G

CONVERT_UPDATE_To_scu

/convert_update_to_scu name_list=new_names ..
. . /code_set=ascii64 selection_criteria=oldpl_criteria
Name conversion list

*=invalid name. Error if used.

OLD_NAME
FTNFORM
FTNIO
FTN=1

NEW_NAME
FORTRAN_ FORMAT
FORTRAN_ IO
FTN_1

MODIFICATION_NAME
FTNFORM
FTNIO
FTN_1

Deck list as read from OLDPL directory

FORTRAN1 FORTRAN2

2 Decks Converted
SCU library on file - SOURCE_LIBRARY

Conversion Aids D-9

CONVERT_MODIFY_ TO _SCU

CONVERT _MODIFY_ TO _SCU
Command

Purpose

Format

Converts a source library file from Modify format to SCU
format.

CONVERT_MODIFY_TO_SCU or
CONMTS

OLD_PROGRAM_LIBRARY=file
RESULT=file
LIST=file
NAME_LIST=file
DISPLAY _OPTIONS= keyword
CODE_SET =keyword
KEY=string
STATUS= status variable

Parameters OLD_PROGRAM_LIBRARY or OPL

Modify library file. If OLD_PROGRAM_LIBRARY is
omitted, file OPL is used.

RESULT or R

SCU library file. If RESULT is omitted, file SOURCE_
LIBRARY is used.

LIST or L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, file $LIST is used.

NAME _LIST or NL

Substitution file. If NAME_LIST is omitted, no names are
substituted.

DISPLAY_OPTIONS or DO

Indicates the information written on the listing file.
Options are:

BRIEF (B)

Brief listing.

FULL (F)

Full listing including the text lines changed by the
conversion.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

D-10 Source Code Management Revision G

e Remarks

Examples

Revision G

CONVERT_MODIFY_TO_SCU

CODE_SET or CS

Indicates the character code set used in the Modify library
file. Options are:

ASCII64

64-character set (6-bit display code).

ASCII612

128-character set (6/12 ASCII using escape codes).

ASCIIMIX

Library contains a mix of decks that use the
64-character and 128-character code sets.

If CODE_SET is omitted, ASCIIMIX is used.

KEY or K

One-character string specifying the character used to
prefix MODIFY directives and used as the key character
on the SCU source library. If KEY is omitted, the
character string, '*', is used.

• The Modify file can use either 64-character (6-bit
display code), or 128-character (6/12 ASCII code), or a
mix of 64-character and 128-character set decks.

• The CONVERT_MODIFY_ TO_SCU command is a
NOSNE command. Although you can enter the
command during an SCU session, it does not affect the
working library.

The following command converts the Modify file OPL to
an SCU library on file SOURCE_FILE.

A brief report is listed on file $LIST. The names to be
substituted are on file NEW_NAMES. OPL uses the
64-character set.

Conversion Aids D-11

CONVERT_MODIFY_TO_SCU

/convert_modify_to_scu name_list=new_names
Name conversion list

• = invalid name. Error if used.

OLD_NAME NEW_NAME
FTNFORM FORTRAN_ FORMAT
FTNIO FORTRAN_ IO
FTN=l FTN_ 1

MODIFICATION_NAME
FTNFORM
FTNIO
FTN_l

Deck list as read from OPL directory

FORTRAN1 FORTRAN2

2 Decks Converted
SCU library on file - SOURCE_FILE

D-12 Source Code Management Revision G

CONVERT_SCUlO_TO_SCUll

CONVERT_SCUIO_TO_SCUll
Command

Purpose

Format

Reads an SCU source library in version 1.0 format and
writes it in version 1.1 format.

CONVERT_SCUlO_TO_SCUll or
CONSlOTOSll

BASE=file
RESULT=file
STATUS =status variable

Parameters BASE or B

e Examples

Revision G

Name of the file containing an SCU source library in the
version 1.0 library format. If BASE is omitted, an attempt
is made to access a file named SOURCE_LIBRARY.

RESULT or R

Name of the file to receive the converted library in
version 1.1 library format. If RESULT is omitted, the
library is written on file SOURCE_LIBRARY.$NEXT.

The following command converts the version 1.0 source
library file OLD_FORMAT to a version 1.1 source library
file named NEW_FORMAT.

/convert_scu10_to_scu11 base=old_format ..
.. /result=new_format

Conversion Aids D-13

e Maximum Limits for a Source Library E

This appendix lists the maximum limits that apply to an SCU source
library.

e Description Limit

Maximum number of decks on a library 262,143

Maximum description size (in characters) for a 65,535
deck, modification, or library

Maximum number of modifications on a library 262,143

Maximum number of modifications per deck 16,383

Maximum number of groups 32,767

Maximum number of groups per deck 255

Maximum number of features 65,535

e Maximum sequence number 16,777,214

Maximum number of lines per deck 16,777,214

Revision G Maximum Limits for a Source Library E-1

Accessing Online Examples F

An online manual named Examples contains examples which show you
how to use various NOSNE concepts, SCL commands, and CYBIL
procedures. You can use the online Examples manual to perform the
following operations.

• Access examples by name, manual, command name, or procedure
name.

• View the example.

• Print the example.

• Copy the example into your $USER catalog for subsequent
execution.

To access the online manual, enter:

/help manual=examples

In response, the system displays a menu of the topics for which
examples are provided. This menu includes topics from the following
manuals:

COBOL for NOSNE
CYBIL File Management
CYBIL Keyed-File and Sort/Merge Interfaces
CYBIL Language Definition
CYBIL Sequential and Byte-Addressable Files
CYBIL System Interface
FORTRAN for NOSNE
Introduction to NOSNE
NOSNE File Editor
NOSNE Screen Formatting
NOSNE System Usage
NOSNE Object Code Management
NOSNE Source Code Management

Revision G Accessing Online Examples F-1

Accessing Examples by Name or by Manual

Accessing Examples by Name or by Manual

In each of the printed manuals containing examples, the example's
name is supplied in the introduction to the example. Because the
online Examples manual is indexed by example name, you can access
the example directly by specifying its name.

For example, suppose you are re~ding the CREATE_PERMIT_PF_l
example in the CYBIL File Management manual and you want to
have a copy of the example in one of your catalogs. You can quickly
access the example by using either of the following methods.

• Specify the name of the example on the SUBJECT parameter of
the HELP command when you access the manual. For example:

help subject=create_permit_pf_l manual=examples

• If you have already accessed the Examples manual, enter the
example's name followed by a question mark:

create_permit_pf_l?

You are then positioned to the introductory screen of the CREATE_ A
PERMIT_PF_l example. This screen prompts you to view, copy, or W
print the example.

To access examples associated with a specific manual, select an option
from the main menu. The system displays a list of example names
associated with that manual. You can then choose a specific example
from the list.

F-2 Source Code Management Revision G

Searching for Examples by Command or Procedure Name

Searching for Examples by Command or
Procedure Name
The online Examples manual also enables you to search for examples
by SCL command or CYBIL procedure names. You can either view
the list of index topics by pressing the key associated with the Jrj(!gx
operation, or you can access a topic directly by entering the command
or procedure name itself.

For example, if you want to look at one or more ways in which the
CREATE_FILE command is used, enter the following request on the
home line:

create_file?

If you want to see one or more ways that the FSP$0PEN _FILE
procedure call is used in examples, enter:

fsp$open_file?

In response, the system displays an example that illustrates the use of
the procedure or command you specified.

e You can also specify the command or procedure name on the
SUBJECT parameter of the HELP command when you access the
manual. For example:

help subject=fsp$open_file manual=examples

To view a further example that illustrates the use of the command or
procedure you specified, enter another question mark (?). You can
enter as many question marks as there are examples indexed for that
command or procedure.

When the number of examples for that command or procedure is
exhausted, an informative message is displayed.

Revision G Accessing Online Examples F-3

Viewing, Copying, and Printing an Example

Viewing, Copying, and Printing an Example

After you access a particular example, the following menu of options
appears:

Enter your menu choice:
a. view the example
b. copy the example
c. print the example

use the menu of options as follows:

• To view the example, choose menu selection A, followed by a
return. The example is displayed at your terminal. Since the
example appears in full-screen mode, you can easily move from
screen to screen by following the function key prompts.

• To copy the example to a file, choose menu selection B, followed
by a return. You are then prompted for the name of the file to
which you want the example copied. Once you enter a file name,
NOSNE displays a message verifying the name of the file to
which the example was copied.

• To print the example, choose menu selection C. A message soon
appears which indicates that the file has been sent to the printer.

Executing an Example
After copying an example to a file, you can easily execute the
example by completing the following steps:

1. Exit the online Examples manual by entering a QUIT directive on
the home line.

2. Enter the full path name of the file to which the example was
copied.

For example, to execute the example contained in file DUP _FILE_
EXAMPLE in your $USER catalog, exit the online Examples manual
and enter:

/$user.dup_file_example

F-4 Source Code Management Revision G

Using Function Keys and Directives

Using Function Keys and Directives
Once you access the online Examples manual, you can read it by
pressing function keys or by entering directives on the home line.

Function key prompts for using this manual are displayed at the
bottom of your screen, provided you are in full-screen mode. These
function keys vary according to the type of terminal you are using.

If you need assistance on what a particular function key does, press
the help key for your terminal, and then press the function key in
question. Pressing the help key again displays a menu of online help
options (such as how to use the menus, or how to page forward and
backward).

The following function key prompts help you search for examples:

Function Key
Prompt Description

Enables you to locate screens where an example,
command, or procedure you specify appears.

Enables you to access the manual's index. After
pressing the key associated with this operation,
you can do one of the following:

• Specify the topic where you want to begin
reading the index.

• Press RETURN to display the beginning of the
index.

Many terminals have function keys or dedicated keys that return you
to the main menu (the first screen in the manual). On a VT220
terminal, hold down the shift key and press the F17 key.
Alternatively, you can enter the FIRST or TOP directive on the home
line of any ·terminal at which you can read online manuals.

The QijJjifunction key prompt is associated with the key(s) you press to
leave the Examples manual. On a VT220 terminal, press the Fll key.
Alternatively, you can enter the QUIT 9,irective on the home line of
any terminal at which you can read online manuals.

Reviaile G Accessing Online Examples F-5

Index

A
Access permissions required

To access a base library 1-8
To set interlocks 1-40
To write a new library 1-8

Active lines
ADD_LIBRARY 2-22
Adding libraries 1-44
ADDL 2-22
Alternate base library 1-16
Application information

field 1-35, 40
Authority

B

For deleting decks or
modifications 1-34

For modification state
changes 1-34

For setting interlocks 1-40

$BASE function 6-3
Base library 1-7

Creation 1-9
BLOCKJBLOCKEND

directives 4-2
Boolean

c
CHAD 2-24
CHADN 2-29
CHADR 2-31
CHAL 2-33
CHAM 2-35
CHANGE_DECK 2-24
CHANGE_DECK_NAMES 2-29
CHANGE_DECK_

REFERENCES 2-31
CHANGE_LIBRARY 2-33
CHANGE_

MODIFICATION 2-35

Revision G

Changing the
Deck header contents 1-22
Modification header

contents 1-33
Clearing an interlock 1-43
COMBINE_LIBRARY 2-38
Combining libraries 1-4 7
COML 2-38
Command

Entry 1-5
Command and subcommand

Description format 2-3
Command utility
Common deck expansion 1-16
Compiler input file

generation 1-14
Conditional

Block expansion 1-27
String insertion 1-26
Text expansion 1-26

CONMTS D-10
CONUTS D-7
Conversion aids D-1
CONVERT_MODIFY_ TO_

SCU D-10
CONVERT_SCUlO_TO_

SCUll D-13
CONVERT_ UPDATE_ TO_

SCU D-7
COPY directive 4-3
COPYC directive 4-4
Copying deck header

information 1-23
Copying decks 1-14

From an alternate base
library 1-16

CREATE_DECK 2-41
CREATE_LIBRARY 2-47
CREATE_MODIFICATION 2-49
Creating

Deck 1-10
More than one

partition 1-24
Empty decks 1-24
Empty library 1-9
Modification 1-33
Multiple decks 1-24

Source Code Management lndex-1

Creation modification

New library from existing
library 1-20

Source library 1-7
Creation modification 1-11
CRED 2-41
CREL 2-47
CREM 2-49
Criteria
Criteria (See Selection criteria)
Current position

D
Deck 1-2

Creation 1-10
Options 1-23

Deletion 1-22
Authority

requirements 1-36
Header 1-22

Duplication 1-23
Interlocks 1-39
Name 1-10

Specified in source
text 1-25

Specified on the
subcommand 1-24

Substitution 1-48
Selection for expansion 1-12
Sequencing 1-38

DECK directive 4-6
$DECK function 6-4
$DECK_HEADER function 6-5
$DECK_LIST function 6-8
DELD -2-51
DELETE_DECK 2-51
DELETE_MODIFICATION 2-52
Deleting

Decks, authority
requirements 1-36

Modifications 1-34
Authority

requirements 1-36
DELM 2-52
DISD 2-54
DISDL 2-57
DISDR 2-59
DISF 2-62
DISFL 2-64

Index-2 Source Code Management

EXCLUDE_STATE

DISG 2-66
DISGL 2-68 e
DISL 2-70
DISM 2-72
DISML 2-74
DISPLAY_DECK 2-54
DISPLAY_DECK_LIST 2-57 A
DISPLAY_ DECK_ •

REFERENCES 2-59
DISPLAY_FEATURE 2-62
DISPLAY_ FEATURE_

LIST 2-64
DISPLAY_GROUP 2-66
DISPLAY_GROUP_LIST 2-68
DISPLAY_LIBRARY 2-70
DISPLAY_MODIFICATION 2-72
DISPLAY_MODIFICATION _

LIST 2-74

E
EDID 2-75
EDIT_DECK 2-75
Editing

Decks 1-20
Modification list 1-33

Editor
Command format 3-1
Command list entry 3-1
Session 1-6
Subcommand generation 1-49

ELSE directive 4-7
ELSEIF directive 4-8
END_LIBRARY 2-79
ENDL 2-79
Entering expansion condition

values 1-32
$ERRORS_FILE function 6-9
EXCD 5-4
EXCF 5-5
EXCG 5-6
EXCL 5-7
EXCLUDE_DECK 5-4
EXCLUDE_FEATURE 5-5
EXCLUDE_GROUP 5-6
EXCLUDE_LIBRARY 5-7
EXCLUDE_

MODIFICATION 5-8
EXCLUDE_STATE 5-9

Revision G

Excluding a common deck library

Excluding a common deck
library 1-31

EXCM 5-8
EXCS 5-9
Expand attribute 1-16
EXPAND_DECK 2-80
EXPAND_FILE 2-85
EXPAND_SOURCE_FILE SCL

command 2-109
Expanded text file 1-12
Expanding decks that reference

a common deck 1-31
Expanding text 1-12
EXPD 2-80
EXPF 2-85
EXPSF SCL command 2-109
EXTD 2-89
EXTM 2-94
EXTRACT_DECK 2-89
EXTRACT_

MODIFICATION 2-94
EXTRACT_SOURCE_LIBRARY

SCL command 2-112
Extracting

Modification as editor
subcommand sequence 1-49

Source library 1-39
Unexpanded text 1-20

EXTSL SCL command 2-112

F
Feature 1-4
$FEATURE function 6-10
$FEATURE_LIST function 6-11
$FEATURE_MEMBERS

function 6-12
File permit entry 1-35, 40
$FIRST_DECK function 6-13
$FIRST_ MODIFICATION

function 6-14
Functions 6-1

Revision G

Interlocks

G
GENERATE_SCU _EDIT_

COMMANDS SCL
command 2-115

Generating an expanded text file
from a deck 1-12

Generating an expanded text file
from a file 1-18

Generating editor
subcommands 1-49

GENSEC SCL command 2-115
Group 1-4
$GROUP function 6-15
$GROUP _LIST function 6-16
$GROUP _MEMBER

function 6-1 7

I
IF/IFEND directives 4-9
INCCD 5-10
INCD 5-11
INCF 5-12
INCG 5-13
INCLUDE_ COPYING_

DECKS 5-10
INCLUDE_DECK 5-11
INCLUDE_FEATURE 5-12
INCLUDE_GROUP 5-13
INCLUDE_

MODIFICATION 5-14
INCLUDE_MODIFIED_

DECKS 5-15
INCLUDE_STATE 5-16
INCM 5-14
INCMD 5-15
INCS 5-16
Input prompts 1-5
Inserting decks 1-14
Interlock

Setting 1-40
Interlocks

Clearing 1-43
file permission 1-9
Restrictions 1-42
Usage 1-39

Source Code Management Index-3

Key character

K
Key character 1-14

L
$LAST_DECK function 6-18
$LAST_MODIFICATION

function 6-19
Library deck list 1-21
Library header 1-21
$LIBRARY_ HEADER

function 6-20
$LIBRARY_ MODIFIED

function 6-22
Line 1-2
Line identifier 1-11
$LIST_FILE function 6-23

M
Merging libraries 1-44
Modification 1-3

Creation 1-33
Deletion 1-34

Authority
requirements 1-34

Extraction 1-49
Header 1-33
List 1-33
Name 1-10
Sequencing 1-37
States 1-34

$MODIFICATION function 6-24
$MODIFICATION _HEADER

function 6-25
$MODIFICATION _LIST

function 6-27
$MODIFIED_DECKS

function 6-28
Multipartition, deck

creation 1-24

Index-4 Source Code Management

N
Name

Substitution 1-48
Valid characters 2-2

Nesting
Interlocks 1-41

RETG

Levels for text-embedded
directives 1-28

$NEXT_DECK function 6-29
$NEXT_MODIFICATION

function 6-30

0
Original interlock field 1-40

p

Parameter
Specification 2-5
Types 2-6

Prefix character 5-2
PUT directive 4-10

Q
QUI subcommand

scu 2-96
Selection criteria 5-17

QUIT subcommand
scu 2-96
Selection criteria 5-17

R
Range of lines
REPL 2-98
REPLACE_LIBRARY 2-98
Replacing libraries 1-46
Restricted mode command list

search 5-2
$RESULT function 6-31
Result library 1-7
RETAIN_GROUPS 5-18
RETG 5-18

Revision G

SCL (System Command Language)

s
SCL (System Command

Language)
Command syntax 2-1

SCU (Source Code Utility)
Command 2-21
Session 1-6
Using list files 2-16

SCU$ALTER modification D-1
Search margins
Selecting decks for

expansion 1-13
Using selection criteria 1-30
Using the expand
attribute 1-16

Selection criteria
Processing 1-30; 5-1

SEQD 2-101
SEQM 2-103
SEQUENCE_DECK 2-101
SEQUENCE_

MODIFICATION 2-103
Sequencing line 1-37
SET_LIST_OPTIONS 2-104
SETLO 2-104
Setting an interlock 1-40
SOURCE_CODE_UTILITY SCL

command 2-21
Source Code Utility (see SCU)

Revision G

WRITE_LIBRARY

Source library
Conversion D-1
Creation 1-7
Definition 1-2
Extraction 1-39

Source text 1-1
State 1-34
Subinterlock field 1-40
Substituting names 1-48
System Command Language (see

SCL)

T
Text-embedded directive 1-14
TEXT!I'EXTEND

directives 4-11
Text units 1-2

u
Update library conversion D-2
USE_LIBRARY 2-105
USEL 2-105

w
WEOP directive 4-12
WEOPC directive 4-13
Working library 1-7
WRIL 2-107
WRITE_LIBRARY 2-107

Source Code Management Index-5

Comments (continued from other side)

Please fold on dotted line;
·g~s _ w_!.t~ ~_!1:_ ~n!?' :_

BUSINESS REPLY MAIL
First-Class Mail Permit No. 8241 Minneapolis, MN

POSTAGE WILL BE PAID BY ADDRESSEE

CONTROL DATA
Technology & Publications Division
ARH219
4201 N. Lexington Avenue
Arden Hills, MN 55126-9983

1.1.1 •• 1.1 11 •• 1.1.11 .. 1.1 •• 1.1 .. 1 .. 1 ... 11 ... 1.11

NO POSTAGE
NECESSARY
IF MAILED

FOLD

IN THE
UNITED STATES

Source Code Management 60464313 G

We value your comments on this manual. While writing it, we made some assumptions
about who would use it and how it would be used. Your comments will help us
improve this manual. Please take a few minutes to reply.

Who are you? How do you use this manual?

O Manager O As an overview
O Systems analyst or programmer
O Applications programmer

O To learn the product or gystem

O For comprehensive reference

0 Operator O For quick look-up
O Other ____________ ~

What programming languages do you use? -------------------

How do you like this manual? Check those questions that apply.

Yes Somewhat No
0 0 0 ls the manual easy to read (print size, page layout, and so on)?

0 0 0 Is it easy to understand?

0 0 0 Does it tell you what you need to know about the topic?

0 0 0 ls the order of topics logical?

0 D 0 Are there enough examples?

0 0 0 Are the examples helpful? (0 Too simple? O Too complex?)

0 0 D Is the technical information accurate?

0 D 0 Can you easily find what you want?

0 0 0 Do the illustrations help you?

Comments? If applicable, note page and paragraph. Use other side if needed.

Would you like a reply? O Yes 0 No

From:

Name Company

Address Date

Phone

Please send program listing and output if applicable to your comment.

