NOS/VE

Source Code Management
Usage

60464313 (G2 CONTROL DATA

!

7'!1
‘2‘

P
il

iur

il

A

i

1

)
Loy

i
i
i

ki
i, :
I g : it
L) | ;
g

i

g i Mk il
S B DECE '\ ! s Wil
Ly { 1 " x‘ W i A LT

i
I
A
A

QP '

. f i Sty
D i ; Ui
b AN b] h Ay .
ISPLAY_DECK_ LIST. .
e e
SPLAY_ DECK. '
il oronedi LE
; UES .
Ry i

R
ot

it

i

iy ()] a8
i iy ‘ &
LSO

ity i
j:vr'v“,wf i

el
ke

,“*‘J#‘!“CM‘
el i
i i
) I
iy
w'v;‘ym
il

i

iy

it

‘~
i \,!

o
iy
i

?
!

NOS/VE

Source Code Management

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60464313

Manual History

Revision System Version PSR Level Date

1.0.2 - October 1983
B 1.11 621 July 1984
C 1.1.3 644 October 1985
D 1.2.1 664 September 1986
E 1.2.2 678 April 1987
F 1.2.3 688 September 1987
1.3.1 700 April 1988

Revision G of this manual, printed April 1988, documents the
management of source code for NOS/VE Version 1.3.1 at PSR level
700. The following command and functions have been added to the
manual:

END_LIBRARY
$BASE
$ERRORS_FILE
$LIST_FILE
$RESULT

The following parameters have been added to the given command:

CHANGE_DECK CLEAR_ORIGINAL_INTERLOCK
CLEAR_SUB_INTERLOCK

CHANGE_ LAST_USED_DECK
LIBRARY
LAST_USED_MODIFICATION

EDIT_DECK DISPLAY_UNPRINTABLE _CHARACTERS

Miscellaneous editorial and technical corrections have been made. This
edition obsoletes all previous editions.

©1983, 1984, 1985, 1986, 1987, 1988 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 Source Code Management Revision G

Contents

About This Manual

Audience

The NOS/VE User
Manual Set.

Conventions

Submitting Comments . . .

CYBER Software Support
Hotline

Introduction to SCU

Terminology
Entering Commands . . .

Creating a Source
Library

Creating a Deck

Generating an Expanded
Text File from a Deck

Generating an Expanded
Text File from a File .

Editing Decks

Extracting Unexpanded
Text.

Creating a New Library
from an Existing
Library

Conditional Text
Expansion.

Selecting Decks Using
Selection Criteria
Subcommands.

Editing the Modification
List

Sequencing Line
Identifiers.

Extracting a Source
Library

Merging Libraries

Substituting Deck

Revision G

1-12

1-18
1-20

1-20

1-20

1-26

Generating Editor

Subcommands. 1-49
Commands and
Subcommands 2-1
Using NOS/VE
Commands 2-1
Names 2-1
Commands 2-3
Command Utilities 2-8
NOS/VE Files 2-12
Online Assistance 2-19
SCU Commands and
Subcommands. 2-20
NOS/VE Commands 2-108
Using the EDIT_FILE
Utility 3-1
Calling the EDIT_FILE
Utility. 3-1
Deck Selection
Subcommands. 3-2
SCU Text-Embedded
Directives. 4-1
Selection Criteria
Subcommands 5-1
Selection Criteria
Subcommand
Processing. 5-1
Selection Criteria
Subcommands. 5-3
SCU Functions 6-1
Using SCU Functions . . 6-1

Contents 3

Glossary A-1 Maximum Limits for a
Source Library. E-1
Related Manuals B-1
. . Accessing Online
Ordering Printed Examples F-1
Manuals. B-1
Accessing Online Accessing Examples by
Manuals. B-1 Name or by Manual. . . F-2
Searching for Examples
by Command or
Character Set C-1 Procedure Name F-3
ASCII Character Set . . . C-1 Viewing, Copying, and
Printing an Example . . F-4
Conversion Aids D-1 Ex.ecutmg al? Example . . F-4
Using Function Keys
Identifier Conversion . . . D-2 and Directives F-5
Update Format
Conversion D-4 Index Index-1
NOS/VE Conversion
Commands D-6
Figures
1-1. SCU Text Units 1-3 1-4. Example of Nested
1-2. Command Prompt Interlocks 1-41
Example. 1-6 2-1. Listing Title Formats 2-17
1-3. Source Library
Processing. 1-7
Tables
2-1. Valid Characters for B-1. Related Manuals B-2
NOS/VE Names. 2-2 C-1. ASCII Character Set . C-2

4 Source Code Management

Revision G

About This Manual

This manual describes the System Command Language (SCL), which
provides the user interface to the CONTROL DATA® Network
Operating System/Virtual Environment (NOS/VE).

This manual describes SOURCE_CODE_UTILITY, a development tool
that organizes and maintains libraries of ASCII source code. Features
include deck editing and extraction, conditional text expansion,
modification state constraints, and use of the EDIT_FILE utility.

Audience

This manual is written for any NOS/VE user who uses or maintains
libraries of source text. It assumes you are familiar with NOS/VE file
concepts and the SCL command syntax and language. These concepts
are described in the NOS/VE System Usage manual. The manual also
assumes you are familiar with the EDIT_FILE utility described in the
NOS/VE File Editor manual.

Revision G About This Manual 5

The NOS/VE User Manual Set

This manual is part of a set of user manuals that describe the
command interface to NOS/VE. The descriptions of these manuals
follow:

Introduction to NOS/VE

Introduces NOS/VE and SCL to users who have no previous
experience with them. It describes, in tutorial style, the basic
concepts of NOS/VE: ¢reating and using files and catalogs of files,
executing and debugging programs, submitting jobs, and getting
help online.

The manual describes the conventions followed by all NOS/VE
commands and parameters, and lists many of the major commands,
products, and utilities available on NOS/VE.

NOS/VE System Usage

Describes the command interface to NOS/VE using the SCL
language. It describes the complete SCL language specification,
including language elements, expressions, variables, command
stream structuring, and procedure creation. It also describes
system access, interactive processing, access to online
documentation, file and catalog management, job management, tape
management, and terminal attributes.

NOS/VE File Editor

Describes the EDIT_FILE utility used to edit NOS/VE files and
decks. The manual has basic and advanced chapters describing
common uses of the utility, including creating files, copying lines,
moving text, editing more than one file at a time, and creating
editor procedures. It also contains descriptions of subcommands,
functions, and terminals.

NOS/VE Source Code Management

Describes the SOURCE_CODE_UTILITY, a development tool used
to organize and maintain libraries of ASCII source code. Topics
include deck editing and extraction, conditional text expansion,
modification state constraints, and using the EDIT_FILE utility.

NOS/VE Object Code Management

Describes the CREATE_OBJECT_LIBRARY utility used to store
and manipulate units of object code within NOS/VE. Program
execution is described in detail. Topics include loading a program,

6 Source Code Management Revision G

program attributes, object files and modules, message module
capabilities, code sharing, segment types and binding, ring
attributes, and performance options for loading and executing.

NOS/VE Advanced File Management

Describes three file management tools: Sort/Merge, File
Management Utility (FMU), and keyed-file utilities. Sort/Merge
sorts and merges records; FMU reformats record data; and the
keyed-file utilities copy, display, and create keyed files (such as
indexed-sequential files).

NOS/VE Terminal Definition

Describes the DEFINE_TERMINAL command and the statements
that define terminals for use with full-screen applications (for
example, the EDIT_FILE utility).

NOS/VE Commands and Functions

Lists the formats of the commands, functions, and statements
described in the NOS/VE user manual set. A format description
includes brief explanations of the parameters and an example
using the command, function, or statement.

Revision G About This Manual 7

Conventions

The following conventions are used in this manual:

Boldface

Italics

UPPERCASE

lowercase

Blue

Vertical bar

Numbers

In a format, boldface type represents names and
required parameters.

In a format, italic type represents optional
parameters.

In a format, uppercase letters represent reserved
words defined by the system for specific purposes.
You must use these words exactly as shown.

In a format, lowercase letters represent values you
choose.

In examples of interactive terminal sessions, blue
represents user input.

A vertical bar in the margin indicates a technical
change.

All numbers are decimal unless otherwise noted.

8 Source Code Management Revision G

‘ Submitting Comments

There is a comment sheet at the back of this manual. You can use it
to give us your opinion of the manual’s usability, to suggest specific
improvements, and to report errors. Mail your comments to:

‘ Control Data Corporation
Technology and Publications Division ARH219
4201 North Lexington Avenue
St. Paul, Minnesota 55126-6198

Please indicate whether you would like a response.

If you have access to SOLVER, the Control Data online facility for
reporting problems, you can use it to submit comments about the
manual. When entering your comments, use SC8 as the product
identifier. Include the name and publication number of the manual.

If you have questions about the packaging and/or distribution of a
printed manual, write to:

Control Data Corporation

Literature and Distribution Services
. 308 North Dale Street

St. Paul, Minnesota 55103

or call (612) 292-2101. If you are a Control Data employee, call (612)
292-2100.
CYBER Software Support Hotline

Control Data’s CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help not
provided in the documentation, or find the product does not perform
as described, call us at one of the following numbers. A support
analyst will work with you.

From the USA and Canada: (800) 345-9903

’ From other countries: (612) 851-4131

Revision G About This Manual 9

ology
e\‘fm’gvt
Text

‘ e
ANl i,
il ! ‘

il
i

i

e

"El\; :
i ’;(
*;VJA‘mﬁ

R

i
[A

i

eck H

|
i “‘ :
e

b

i
¢ ‘
il g
T "
i
el
i

))
e | i
f - ¥ ¥
i y
il ‘
IR M
L B W

o
i

il
1 it

g
pefog ATl
o

i
oy

[
e A
; A

ot . bk
ki
i i

Vel
g

i

il |
s

k)
A

e
b
EREL

o
fitkit
iRy
N
i
e

er .

S 5 Mulbes it
| Creating Multiple Decks .
T

bt

R
et Gy
iyt ,1’“" i

e
iy
AT

e

) b A
i) Iy
el

1

o S

i
it
e it

il

il
il

-
s oot

ik

ki

(iRt ;

i
AN
ke

L il
i i

: : Wi
AL Wi i
i ;

IRES T o
s

i !

i, vm‘m}”
O
T

Introduction to SCU 1

The Source Code Utility (SCU) is a NOS/VE command utility designed
to store, organize, manipulate, and extract units of text. The Source
Code Utility is designed primarily as a development tool for large
systems or applications development groups. However, it can also be
used by anyone who is responsible for maintaining source code
libraries.

Although you can use it for any collection of text, SCU is primarily
designed for source text. Source text is text input for a processor,
such as program text for a compiler or procedure or job text for the
System Command Language (SCL) interpreter. Source text is stored in
libraries, which are NOS/VE files that have a unique format and
structure.

You can also manipulate SCU libraries using the Professional
Programming Environment (PPE), which provides a full-screen
interface to SCU. To use the Professional Programming Environment,
enter the command ENTER_PPE. PPE is a full-screen, object-oriented
software development tool that coordinates the activities of large
multi-person programming projects. Using PPE, you can create and
delete decks and modifications, transmit and extract decks and
modifications, expand and compile product source code, and maintain
object and source libraries. More information is available in the
Professional Programming Environment for NOS/VE manual.

This chapter explains how to use SCU and describes terminology,
basic features, and the more advanced capabilities of SCU.

All references to commands and their parameters within this chapter
use the complete command or parameter name. Command and
parameter names often have both singular and plural forms and also
abbreviated forms. All forms of the command and parameter names
are included in the individual description of the command.

Revision G Introduction to SCU 1-1

Terminology

Terminology

Before attempting to learn SCU capabilities, you must understand the
terms used for the different storage mechanisms and SCU units of
data. The following paragraphs define units as they are commonly
used.

Source Text Storage Units

Text is most usable when it is stored as units that can be accessed
independently.

For example, program text is most usable when it is stored as
individual compilation units. A compilation unit is a sequence of lines
compiled as an independent unit, such as a CYBIL module or a
FORTRAN program, subroutine, or function.

Similarly, text for individual procedures or jobs is most usable when
it is stored so that each procedure or job can be accessed individually.

As illustrated in figure 1-1, SCU uses the following text entities to
store and organize text units.

Line
Sequence of characters. SCU assigns a unique identifier to each
line so you can reference it individually.

Deck

Collection of lines with a header describing the collection. For
example, a deck could be a compilation unit, a procedure, or a job.
You reference a deck by its name.

Source library

Collection of decks on a file with a header describing the
collection. You reference a source library by the file on which it
resides.

1-2 Source Code Management Revision G

Terminology

Library Header
' Deck Header
Source) Deck / Line {
Library - = — T
Deck Deck Header

Figure 1-1. SCU Text Units

‘ Source Text Change Record

The process of debugging a program usually involves changing the
source text or input data, recompiling and executing the program, and
determining how the program results changed. The process is then
repeated. It is often important while debugging a program to maintain
a record of each set of changes made.

SCU requires that each set of text changes (including additions and
deletions) be associated with a modification name. You can later
reference the set of changes by its modification name. A modification
is defined as follows.

Modification

Each line in a deck belongs to a modification, and the modification
name is part of the line identifier. All lines belonging to a
modification can be referenced by that modification name. The

‘ modification can be deactivated and reactivated, as described later
in this chapter.

Revision G Introduction to SCU 1-3

Terminology

Project Organization Units

A large programming project is often split into several subprojects,
and each subproject could involve more than one compilation unit.
SCU provides the following logical units to assist in project
organization.

Feature

Collection of modifications. A modification can belong to only one
feature. All modifications belonging to a feature can be referenced
by the feature name. Modifications do not have to belong to a
feature.

Group

Subset of decks within a library. A deck can belong to one group,
more than one group, or no group. All decks belonging to a group
can be referenced by the group name.

Modifications, features, and groups can be used for specifying the
decks and lines to be processed. For certain commands, you can
specify a separate file that lists the decks, groups, modifications, and
features to be processed.

1-4 Source Code Management Revision G

Entering Commands

Entering Commands

An SCU subcommand is valid only within an SCU session. An SCU
session begins when you enter the SOURCE_CODE_UTILITY
command. The session ends when you enter a QUIT subcommand.

You use the EDIT_FILE utility to enter and change SCU source text.
An EDIT_FILE session (also called an editing session) begins when
you enter EDIT_DECK or the EDIT_FILE command within an SCU
session.

The editing session ends when you enter QUIT. If you begin the
editing session within an SCU session, you remain in the SCU session
when you end the editing session.

For further information about the EDIT_FILE utility, refer to chapter
3 in this manual, and to the NOS/VE File Editor manual.

During a NOS/VE interactive terminal session, you can determine the
valid commands by the input prompt that appears on the screen.

® / prompts you for a NOS/VE command.
® sc/ prompts you for an SCU subcommand or a NOS/VE command.

® scc/ prompts you for selection criteria subcommands. This prompt
appears when you specify COMMAND for the SELECTION_
CRITERIA parameter on an EXPAND_DECK, EXTRACT_DECK,
or EXPAND_FILE subcommand or EXTRACT_SOURCE_
LIBRARY or EXPAND_SOURCE_FILE command.

® sce/ indicates you are in an editing session started by an EDIT_
DECK subcommand in line mode. You may enter an EDIT_FILE
subcommand, an SCL command, or a valid SCU subcommand. (The
individual SCU subcommand description indicates whether the
subcommand is valid in an editing session.) If you are editing in
screen mode, the prompt does not appear.

® ef/ indicates you are in an editing session started by an EDIT_
FILE command in line mode (described in the NOS/VE File Editor
manual). You are prompted for an EDIT_FILE subcommand or a
NOS/VE command. If you are editing in screen mode, the prompt
does not appear.

Revision G Introduction to SCU 1-5

Entering Commands

Figure 1-2 shows an example of an interactive session using these

prompts. ‘
/source_code_utility Begins an SCU session.
sc/create_library result=.. Creates an empty library and .
sc../any_library specifies the result library.
sc/edit_deck deck=init_array .. Starts the editing session
sc../modification=firstmod and creates a deck.

Begin editing deck INIT_ARRAY

sce/insert_lines Editing command. Inserts
text in the deck.

Enter text Text entry.

? program myprog

? stop

? end**

sce/end Ends the editing session.
sc/expand_deck deck=init_array Expands a deck and ‘

writes the expanded source
text to the file COMPILE.

sc/fortran input=compile Compiles the source text.
sc/quit Ends the SCU session
/ and writes the result library.

Figure 1-2. Command Prompt Example

1-6 Source Code Management Revision G

Creating a Source Library

. Creating a Source Library

To store text using SCU, you can either store it on an existing source
library or create a new one. SCU can accept one existing source
library as input, and it can overwrite that library. Or, alternatively,

’ the new source library can be written as a new cycle of the existing
source library file. A source library file contains decks, modifications,
features, and groups that organize the text. This type of file has
specific file structure and file content attributes that make it behave
differently from other NOS/VE files. When you specify a source
library file on a command, the system determines if the file you have
entered has the correct attributes for a library file.

To use modification states and set interlocks, a source library must be
a permanent file.

The following paragraphs describe how to create a new source library.

Base, Working, and Result Libraries

Within this manual, SCU processing is described in terms of a base
library, a working library, and a result library as shown in figure 1-3.

. You specify a base library and a result library with the SCU
command USE_LIBRARY.

Base Library Working Library Result Library
fon a permanent (internal SCU »{ (on a permanent
file) structure) file)

Figure 1-3. Source Library Processing

Revision G Introduction to SCU 1-7

Creating a Source Library

The base library is the starting point for the new library to be
created. If you enter no commands to modify the new library, the new
library is a duplicate of the base library.

The working library is the current state of the new library; it is the
new library in progress. Initially, it is a duplicate of the base library.
However, as you enter SCU subcommands, the content of the working
library changes. SCU subcommands affect only the working library;
they do not change the base library.

The result library is the new source library SCU writes.

The file SOURCE_LIBRARY in your working catalog is used for both
base and result libraries during an SCU session if you do not enter a
CREATE_LIBRARY or a USE_LIBRARY subcommand before other
subcommands.

You must have read permission to the base library file and read and
write permission to the result library file. (Write permission is the
combination of modify, shorten, and append permissions.) For
information on read and write permissions to files, refer to the
NOS/VE System Usage manual.

You specify the base and result libraries for the session on the USE_
LIBRARY subcommand. When you end the SCU session, changes will
be saved on the result library file unless you specify otherwise.

The following is an example of an SCU session.

/source_code_utility

sc/use_library base=$user _my_library

sc/create_deck deck=new_deck modification=modif1 ..
sc. ./source=$user .new_deck_source

sc/quit

Because no result library was specified by USE_LIBRARY, the result
library defaults to $USER.MY_LIBRARY. The CREATE_DECK
subcommand creates a deck called NEW_DECK by using the contents
of file $USER.NEW_DECK_SOURCE. The QUIT subcommand ends
the utility session. The base library on file $USER.MY_LIBRARY is
rewritten with the changed library.

1-8 Source Code Management Revision G

Creating a Source Library

Creating a Base Library

The first subcommand you usually enter in an SCU session is USE_
LIBRARY. With it you select a base and a result library. The base
library could be an existing source library or a source library
extracted from an existing source library. Or you could omit the
USE_LIBRARY subcommand and create a new empty source library
with the CREATE_LIBRARY subcommand during SCU processing.
The following are guidelines on creating a base library:

® Specify an existing source library as the base library if the new
source library is to be a new version of the existing source library.

® Extract a source library when the new source library is to contain
a subset of the decks on the base library. Use of an extracted
source library is described later in this chapter.

® (Create an empty source library if the new library is to contain all
new decks.

To use an existing source library as the base library, you need not
attach the library file. All you need to do is specify the file on the
BASE parameter of the USE_LIBRARY subcommand, assuming you
have read access permission to the source library file.

To create a new empty source library, enter a CREATE_LIBRARY
subcommand after beginning an SCU session. The subcommand creates
a new library that is used as the working library during this SCU
session.

The file specified on the RESULT parameter of the CREATE_
LIBRARY subcommand is used as the result file for the SCU session.
You must have modify, shorten, and append permission to the file.

The following .example allows you to change all modification states
and set interlocks on source library file $USER.SOURCE_LIBRARY.

/create_file_permit file=$user.source_library ..
../group=user user=archie access_mode=(read modify) ..
. ./share_mode=none application_information="14"

The I in the APPLICATION_INFORMATION parameter allows you to
interlock decks. The 4 in the APPLICATION_INFORMATION
parameter allows you to alter the state of all modifications. The
NOS/VE command CREATE_FILE_PERMIT is described in the
NOS/VE System Usage manual.

Revision G Introduction to SCU 1-9

Creating a Deck

Creating a Deck

After you have determined the base library and result library files to
use, you can store text as a deck on the result library. A deck can be
created by using one of the following methods:

® C(Create a deck containing text copied from a file

® (Create an empty deck and use the EDIT_FILE utility to enter text
in the deck

® Create a deck implicitly by naming it on the EDIT_FILE
command

The SCU subcommand CREATE_DECK creates a deck on a library. If
you specify a file using the SOURCE parameter of the CREATE_
DECK subcommand, SCU copies text from the file to the new deck. If
you omit the SOURCE parameter, SCU creates an empty deck.

The SCU subcommand EDIT_DECK creates an empty deck if the
specified deck does not exist. You must specify a deck name and a
modification name if one has not been specified before.

Deck Name

The name you give a deck when you create it is the name by which
it is later referenced. The name can be from 1 through 31 characters
and must follow the SCL naming conventions as defined in appendix
A; no other deck on the library may have the same name. The deck
name can be specified on the EDIT_DECK subcommand, on the
CREATE_DECK subcommand, or on DECK directives embedded in
source text. SCU orders decks on a source library alphabetically by
name (lowercase characters are converted to uppercase).

Modification Name

Besides a deck name, you can also specify a modification name on a
CREATE_DECK subcommand. The modification name can only be
from 1 to 9 characters long. It can name a new modification or a
modification already existing on the library.

1-10 Source Code Management Revision G

Creating a Deck

The modification used on the CREATE_DECK subcommand names the
creation modification for the deck. It applies to all lines of text SCU
copies to the deck during its creation. It can also apply to later
editing of the deck if the same modification name is referenced. If you
do not specify a modification name, the most recently specified name
is used.

Each line identifier contains a modification name and a sequence
number which SCU assigns to lines in the order it creates them. A
line identifier has the following format.

modification_name.sequence_number

For example, suppose you enter the following command sequence to
create a new source library and a new deck on the library.

/source_code_utility
sc/create_library result=$user.my_library
sc/collect_text output=in_file

ct? program example
ct? print *, ‘Hello!”’
ct? stop

ct? end

ct? ==

sc/create_deck deck=new_deck modification=modif1 source=in_file
sc/quit

The SCU subcommand CREATE_LIBRARY creates an empty source
library. The COLLECT_TEXT command enters text on a file named
IN_FILE. The SCU subcommand CREATE_DECK creates a deck
named NEW_DECK and copies the text on file IN_FILE to the deck.
The QUIT subcommand ends the SCU session and, by default, writes
the new source library on file $USER.MY_LIBRARY. The new library
contains only one deck, NEW_DECK.

SCU assigns the following line identifiers to the lines in the new
deck.

MODIF1 1 program example
MODIF 1 2 print *, “Hello!’
MODIF1 3 stop

MODIF1 4 end

Revision G Introduction to SCU 1-11

Generating an Expanded Text File from a Deck

Generating an Expanded Text File from a
Deck

Text is stored in a deck for later access. For example, program text is
accessed for compilation. After storing a compilation unit as a deck on
a source library, you can generate an expanded text file for use as a
compiler input file. Expanding a deck processes the directives
embedded in the source text and copies the expanded text to a
separate compile file.

Generating an expanded text file involves the following steps.
1. Selecting the decks to be expanded.

2. Expanding the text as stored by SCU, including processing of
directives embedded in the text and writing the expanded text to a
file.

The SCU subcommand EXPAND_DECK performs both steps.

The following example shows the creation and use of an input file for
the FORTRAN compiler.

/scu

sc/use_library base=$user.my_library
sc/expand_deck deck=new_deck compile=fortran_input
sc/quit write_library=false

/fortran input=fortran_input

The USE_LIBRARY subcommand selects the library on file
$USER.MY_LIBRARY as the base library. The EXPAND_DECK
subcommand expands the deck named NEW_DECK. SCU reads the
deck from the base library file and writes the expanded text on the
file FORTRAN_INPUT. Because no changes were made to the library,
the QUIT subcommand ends the SCU session and specifies that a
result library is not written. The FORTRAN command calls the
FORTRAN compiler to compile the text or. the FORTRAN_INPUT
file. (The FORTRAN command could have been entered within the
SCU session.)

1-12 Source Code Management Revision G

Generating an Expanded Text File from a Deck

‘ Selecting Decks

The first step in generating an expanded text file is selecting the
decks to be expanded. You specify the decks to be expanded using the
DECK parameter on the EXPAND_DECKS subcommand. You can

. also use selection criteria commands to select decks to be expanded if
you specify the SELECTION_CRITERIA parameter on EXPAND_
DECKS. If you do not specify the DECK parameter, the most recently
used deck is expanded. To expand decks specified by selection criteria
commands, use keyword NONE for the DECK parameter. Selection
criteria commands are described later in this chapter.

The DECK parameter can specify a list of decks by name or by
range. By default, the EXPAND_DECKS subcommand writes the
decks on the expanded text file in the order they are listed in the
working library deck list. To write the decks in the order you specify
on the DECK parameter, specify ORDER=COMMAND on the
EXPAND_DECKS subcommand.

For example, suppose the working library has the following deck list.
DECKA
. DECKB
DECKC
DECKD
DECKE

The following EXPAND_DECKS subcommand selects four decks from
the list.

sc/expand_decks deck=(deckd,decka..deckc) order=command

Because ORDER is specified as COMMAND, the EXPAND_DECKS
subcommand writes the decks in the following order.

DECKD
‘ DECKA

DECKB

. DECKC

Revision G Introduction to SCU 1-13

Generating an Expanded Text File from a Deck

Copying Decks into a Compiler Input File

One of SCU’s primary uses is to insert the text of one deck into the
text of another deck before writing the deck to the expanded text file.
This process is called copying decks.

For example, a deck to be copied into a compiler input file usually
contains text used by more than one program. It could be text for a
utility routine or a system routine stored on a source library available
to many users. The CYBIL program interface procedure declaration
text is stored on a system-supplied source library. To use a CYBIL
program interface procedure, you must copy the procedure declaration
text into your CYBIL program.

To copy a deck into another deck, add a COPY directive in the deck
text where SCU is to insert the text of the other deck. The deck to be
copied is named on the COPY directive.

SCU processes the COPY directive as it expands your deck. When it
reads a COPY directive, it searches for the specified deck. Assuming
it finds the deck, it expands the deck text and writes it on the
expanded text file. SCU does not write the COPY directive to the
expanded text file.

Text-Embedded Directives

The COPY directive is an SCU text-embedded directive. Chapter 4
describes the SCU text-embedded directives.

While expanding text, SCU recognizes a text-embedded directive when
it reads a line beginning with the key character followed by a
directive verb. The key character is the prefix character for all
text-embedded directives in the library. The key character can be
specified on the CREATE_LIBRARY subcommand. The default key
character is *.

When it is looking for a deck that is specified in a COPY directive,
SCU first searches in the working library and then examines the
alternate base library decks.

1-14 Source Code Management Revision G

Generating an Expanded Text File from a Deck

For example, suppose both DECK1 and DECK2 reside on the source
library file $USER.MY_LIBRARY and the key character for the
source library is *. DECK1 contains the following text.

program example
*copy deck?2

stop

end

DECK2 contains the following text.

do 10 i=1,100
10 i = i+1

Suppose you enter the following subcommand within an SCU session.

sc/expand_deck deck=deck1 compile=fortran_input

The subcommand expands the DECK1 text on the file FORTRAN_
INPUT. While expanding the text, it processes the *COPY directive,
copying DECK2 into DECK1. The following is the expanded text on
the FORTRAN_INPUT file.

program example

do 10 i=1,100
10 i = i+1

stop

end

Revision G Introduction to SCU 1-15

Generating an Expanded Text File from a Deck

Copying Decks from Another Source Library

You can copy decks that reside on another source library into your
compiler input file. The other source library is called an alternate
base library. You use an alternate base library by specifying the
name of the source library file that contains the decks to be merged
on the ALTERNATE_BASE parameter of the EXPAND_DECK
subcommand. SCU includes the alternate base library decks in the
working library for the duration of the subcommand.

When it is looking for a deck that is specified in a COPY directive,
SCU first searches the working library and then examines the

alternate base library decks. For example, the following subcommand
expands a CYBIL program that uses CYBIL program interface calls.

sc/expand_deck deck=deck10 compile=cybil_input ..
sc../alternate_base=$system.cybil.osf$program_interface

The subcommand expands DECK10 and writes the compiler input file
on file CYBIL_INPUT. SCU copies program interface procedure decks
from the source library file $SYSTEM.CYBIL.OSF$PROGRAM _
INTERFACE as specified by COPY directives in the deck text.

Selecting Decks Using the Expand Attribute

A deck could contain text that is only to be inserted into another
deck; the text is never expanded as a program in itself. For example,
the deck could contain a set of CYBIL TYPE declarations, but not
contain any executable statements. This type of deck is often called a
common deck. If you expand common decks, use COPY or COPYC
directives, not EXPAND_DECK subcommands. The EXPAND
parameter on the CREATE_DECK subcommand determines whether
an EXPAND_DECK subcommand expands the deck. The EXPAND
parameter sets the expand attribute for the deck, which is stored in
the deck header. By specifying that the expand attribute is FALSE
when you create a deck, the deck can be expanded only when copied
by a COPY or COPYC directive. Therefore, the expand attribute for
common decks should be FALSE.

1-16 Source Code Management Revision G

Generating an Expanded Text File from a Deck

The expand attribute is useful when a library contains both types of
decks. In this case, an EXPAND_DECK subcommand that specifies a
range of decks or all decks within the library expands only those
decks whose expand attribute is TRUE; it does not expand the
common decks whose expand attribute is FALSE.

For example, suppose the following is the deck list and expand
attributes for the working library.

Deck Expand Attributes
COMMON1 FALSE

DECK1 TRUE
DECK2 TRUE

If you specify the EXPAND parameter on the CREATE_DECK
subcommand, the deck will be expanded. .

The following subcommand expands all decks whose expand attribute
is TRUE.

sc/expand_deck deck=all

The subcommand writes the expanded text from DECK1 and DECK2
on the default compile file COMPILE. It skips deck COMMON1 and
generates a warning message because its expand attribute is FALSE.

Revision G Introduction to SCU 1-17

Generating an Expanded Text File from a File

Generating an Expanded Text File from a
File

In much the same way that you generate an expanded text file from a
deck, you can also generate an expanded text file from a source file
which you can then use as an input file to a compiler. When SCU
expands a file, it processes the directives embedded in the source text
and copies the expanded text to a separate SCU compile file. The file
is expanded as though it were a deck on an SCU library.

You can expand text files during an SCU session by entering an
EXPAND_FILE subcommand, or outside an SCU session by entering
the NOS/VE command EXPAND_SOURCE_FILE.

The following example shows how to create and use a compiler input
file within an SCU session.

/scu

sc/use_library base=$user.my_library
sc/expand_file file=new_file compile=fortran_input
sc/quit write_library=false

/fortran input=fortran_input

The USE_LIBRARY subcommand selects the library on file
$USER.MY_LIBRARY as the base library. The EXPAND_FILE
subcommand expands the file named NEW_FILE. SCU writes the
expanded text on file FORTRAN_INPUT. The QUIT subcommand
ends the SCU session, specifying that a result library is not written.
The FORTRAN command calls the FORTRAN compiler to compile the
text on the FORTRAN_INPUT file. (The FORTRAN command could
have been entered within the SCU session.)

1-18 Source Code Management Revision G

Generating an Expanded Text File from a File

The next example uses the NOS/VE command EXPAND_SOURCE _
FILE to produce the same result as the previous example without
directly using SCU.

/expand_source_file file=new_file compile=fortran_input ..
../alternate_base=$user .my_library
/fortran input=fortran_input

Both the EXPAND_FILE subcommand and the EXPAND_SOURCE_
FILE command process text-embedded directives within files as though
they were within decks. Chapter 4 describes the SCU text-embedded
directives.

To copy a deck into a compiler input file, for example, add a COPY
directive in the file text where SCU is to insert the text of the
specified deck. The deck to be copied is named on the COPY directive.

To copy decks from an alternate base library into your compiler input
file, specify the ALTERNATE_BASE parameter on an EXPAND_
SOURCE_FILE command; if you are in an SCU session, specify the
ALTERNATE_BASE parameter on the EXPAND_FILE subcommand.
The ALTERNATE_BASE parameter specifies the source library file
containing the decks to be merged. SCU includes the alternate base
library decks in the working library for the duration of the command
or subcommand.

SCU processes the COPY directive as it expands your file. When it
reads a COPY directive, it searches libraries for the specified deck.
Assuming it finds the deck, it expands the text and writes it on the
expanded file. SCU does not write the COPY directive to the expanded
text file.

The following EXPAND_FILE subcommand expands a CYBIL program
that uses CYBIL program interface calls.

sc/expand_file file=file_10 compile=cybil_input ..
sc../alternate_base=$system.cybil .osf$program_interface

Entering the subcommand expands FILE_10 and writes the compiler
input file on file CYBIL_INPUT. When it is processing any COPY
directives on FILE_10, SCU first searches for the specified deck on
the working library and then searches the alternate base library.
Thus, SCU copies any program interface procedure decks from the
source library file $SYSTEM.CYBIL.OSF$PROGRAM _INTERFACE.

Revision G Introduction to SCU 1-19

Editing Decks

Editing Decks .

Chapter 3 lists the EDIT_FILE subcommands that pertain to editing
decks. These and all other subcommand descriptions for the EDIT_
FILE utility are described in the NOS/VE File Editor manual.

Extracting Unexpanded Text

You can extract unexpanded text from a source library without
processing directives embedded in the text. You could then use the
unexpanded text as listing text, source text for a new deck, or input
to another text processor.

The following subcommands extract unexpanded text.

® The EDIT_FILE subcommand WRITE_FILE copies lines from the
deck being edited to the selected file.

® The SCU EXTRACT_DECK subcommand copies all lines from one
or more decks to a source file.

Refer to the NOS/VE File Editor manual for a description of the
WRITE_FILE subcommand. .

To specify the decks an EXTRACT_DECK subcommand copies, specify
the decks using the DECK parameter, selection criteria commands, or
both.

Creating a New Library from an Existing
Library

To create a source library that contains copies of decks from an
existing source library, specify the existing source library as your
base library (assuming you have read permission to the file). Using
an existing source library as your base library does not affect the
existing library.

Initially, your working library is a duplicate of the base library.
However, during the SCU session, you can change both the library ‘
header information and the library deck list.

1-20 Source Code Management Revision G

Creating a New Library from an Existing Library

Cha