CYBIL for NOS/VE G5

Language Definition CONTROL
DATA

60464113

Kevword Index
ARRAY (adaptable) 4-42 PROCEND (for a program) ...2-11
ARRAY (fixed) 424 PROGRAM 2-11
BOOLEAN 46 REAL 4-11
CELL........................ 4-12 RECORD (adaptable)......... 4-43
CHAR ... 4-5 RECORD (invariant) 4-27
CONST ... 3-1 RECORD (variant) 4-29
FUNCEND 623 RELccooiiiiiii.. 4-18
FUNCTION 623 SECTION.................... 3-17
HEAP (adaptable) 446 SET 4-37
HEAP (fixed)................. 4-40 SEQ (Adaptable) 4-45
INTEGER 44 SEQFixed).................. 4-39
MODEND 29 STRING (Adaptable) 4-19
MODULE..................... 29 STRING (Fixed) 4-19
Ordinal 47 Subrange 49
Pointer....................... 413 TYPE......... 3-15
PROCEDURE................ 721 VAR i 33
PROCEND (for a procedure) ..7-21
Statement Index
ALLOCATE 538 IF ... 5-24
Assignment 513 NEXT ..., 5-37
BEGIN 516 PUSH 5-40 .
CASE........................ 526 REPEAT..................... 5-20
CYCLE 528 RESET (inaheap)............ 5-36
EXIT ... 5-30 RESET (in a sequence). 5-35
FOR 517 RETURN 5-31
FREE........................ 539 WHILE 521
Function Index
#ADDRESS 616 #PTR 6-8
$CHAR ... 6-2 #READ_REGISTER 6-20
#FREE_RUNNING SREALt 6-9

CLOCKccovvuvni... 617 #REL 6-10
FUNCEND 623 HRING....................... 6-21
FUNCTION 6-23 #SEGMENT 6-22
$INTEGER 63 H#SIZE........................ 6-11
#LOCo 64 STRLENGTH................ 6-12
LOWERBOUND 65 SUCCccoiiiiiviin... 6-13
LOWERVALUE............... 66 UPPERBOUND.............. 6-14
#OFFSET 6-18 UPPERVALUE.............. 6-15 .
PRED 6-7 User-defined functions 6-23
#PREVIOUS _SAVE _

AREA 6-19

(Continued on inside back cover)

CYBIL for NOS/VE
Language Definition

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features

and parameters.

Publication Number 60464113

Related Manuals

Background (Access as Needed):

SCL : SCL

Language ! System

Definition ||| Interface
—

Usage Usage

60464013 60464014

CYBIL Manual Set:

CYBIL CYBIL

File System

Interface Interface

Usage Usage

60464114 60464115

Additional References:
ScL ! SCL SCL l
Source Code | Object Code
Management Management Quick
Reference
Usage Usage
60464313 D 60464413 [D 60464018 [D
[(==

— indicates the reading sequence.

g indicates an online version of the manual is available.

© 1984 by Control Data Corporation.
All rights reserved.
Printed in the United States of America.

® 2 (CYBIL Language Definition Revision B

| Manual History

This manual is Revision B, printed in July 1984. It reflects NOS/VE Version
1.1.1. at PSR level 613. Minor technical corrections and editorial changes
have been incorporated. New Debug commands and functions have been

added.

Previous

Revision System Version Date

A 1.0.2. February 1984

Revision B CYBIL Language Definition 3/4

® Contents

About This Manual 7
. Audience 7
Organization 7
Conventions................. 8
Additional Related Manuals.. 9
Ordering Manuals 9
Submitting Comments 9
Introduction 1-1
Program Structure 2-1
Elements Within a

Program 2-1
Structure of a Program 2-7

Constant, Variable, Type, and

Section Declarations 3-1
‘ Constant Declaration 31
Variable Declaration........ 3-3
Type Declaration 3-15
Section Declaration 3-17

Tupes 4-1
Using Types................ 4-2
Equivalent Types........... 4-2
Basic Types 4-3
Structured Types 4-19
Storage Types 4-39
Adaptable Types 4-41

Expressions and

Statements 5-1
Expressions 5-1
Statements 5-13

Functions................... 6-1
‘ Standard Functions......... 6-1
Revision B

System-Dependent
Functions 6-16
User-Defined Functions 6-23

Procedures 7-1
Standard Procedures........ 7-1
System-Dependent

Procedures 7-9

User-Defined Procedures ... 7-21

The CYBIL Command and
Other Compilation
Facilities 8-1
CYBIL Command 81
Compilation Declarations and
Statements................ 8-7

Compile-Time Directives ...8-11

The Debug Utility 9-1
Introduction................ 9-1
Accessing Debug 9-2
Debug Concepts 9-5
Debug Commands 9-18
Debug Functions 9-72
Using Debug 9-80

Glossary A-1

Character Set B-1

Reserved Words C-1

Data Representation in
Memory D-1

Contents 5/6

@ About This Manual

This manual describes CYBIL, the implementation language of the
CONTROL DATA® Network Operating System/Virtual Environment
(NOS/VE).

Audience

This manual is written as a reference for CYBIL programmers. It assumes
that you understand NOS/VE and System Command Language (SCL)
concepts as presented in the SCL Language Definition manual and the SCL
System Interface manual. You will also need to be familiar with the CYBIL
File Interface manual in order to perform input to and output from a CYBIL
program.

Organization

This manual is organized by topic, based on elements of the CYBIL
language. The first chapter introduces the basic elements of the language
. and refers you to the chapter in which each is further described.

This manual is part of the CYBIL manual set. The CYBIL File Interface
manual describes the facilities available to read and write files used by
CYBIL. The CYBIL System Interface manual describes the CYBIL
procedures you can call to use the special capabilities of NOS/VE.

Revision B About This Manual 7T @

CONVENTIONS

Conventions

Within the formats for declarations, type specifications, and statements
shown in this manual, uppercase letters represent reserved words; they must
appear exactly as shown. Lowercase letters represent names and values that .

you supply.

Required parameters are shown in bold type. Optional parameters are shown
in italics and are enclosed by braces, as in:

{ PACKED }

If the parameter is optional and can be repeated any number of times, it is
also followed by several periods, as in:

{ name }...

For example, the notation {digit} means zero digits or one digit can appear;
{digits}... means zero, one, or more digits can appear. Braces indicate that the
enclosed parameters are used together. For example,

{offset MOD base}

is considered a single parameter. Except for the braces and periods
indicating repetition, all other symbols shown in a format must be included. ‘

Numbers are assumed to be decimal unless otherwise noted.

In examples that show interactive terminal sessions, user input is printed in
blue. System output is printed in black.

New features, as well as changes, deletions, and additions to information in
this manual, are indicated by vertical bars in the margins or by a dot near
the page number if more than half the page is affected.

8 CYBIL Language Definition Revision B

ADDITIONAL RELATED MANUALS

.Additional Related Manuals

The related manuals listed on page 2 include the manuals you should be
familiar with to this point, and which manuals you may want to read
following this one. In addition, you may want to have a copy of the CDC®
CYBER 170/180 Models 810, 815, 825, 830, 835, 845, 855, and 990 (Virtual
State) Hardware Reference Manual, Volume II, publication number
60458890. You do not need the hardware manual to use the information in
this manual, but it provides you with more detail about the hardware and, in
particular, the hardware instructions used in certain CYBIL procedures
described in this manual.

The Math Library manual, publication number 60486513, describes the
mathematical routines available in the Math Library. These routines can be
accessed by CYBIL programs.

The Diagnostic Messages for NOS/VE manual, publication number
60464613, documents diagnostic messages generated by NOS/VE.

Ordering Manuals

Control Data manuals are available through Control Data sales offices or
through:

Control Data Corporation
Literature Distribution Services
308 North Dale Street

St. Paul, Minnesota 55103

Submitting Comments

The last page of this manual is a comment sheet. Please use it to give us your
opinion of the manual’s usability, to suggest specific improvements, and to
report technical or typographical errors. If the comment sheet has already
been used, you can mail your comments to:

Control Data Corporation
Publications and Graphics Division ARH219
4201 Lexington Avenue North

‘ St. Paul, Minnesota 55112

Please indicate whether you would like a written response.

Revision B About This Manual 9

@® Introduction 1

This chapter introduces the basic elements of a CYBIL program and refers
' you to the chapter in which each is further described.

‘lntroduction 1

A CYBIL program consists essentially of two kinds of elements: declarations
and statements. Declarations describe the data to be used in the program.
Statements describe the actions to be performed on the data.

Declarations and statements are made up of predefined reserved words and
user-defined names and values. The way you form these elements is
described in chapter 2, as is the general structure for forming a CYBIL
program.

Data can be either constant or variable. You can use the constant value itself
or give it a name using the constant declaration (CONST). Variables are
named, initialized, and given certain characteristics with the variable
declaration (VAR). One of the characteristics of a variable is its type, for
example, integer or character. You can use CYBIL'’s predefined types or
define your own types. To define a new type or redefine an existing type with
a new name, you use the type declaration (TYPE). Once you have defined a
type, CYBIL will treat it as a standard data type; you can specify your new
type name as a valid type in a variable declaration and CYBIL will perform
standard type checking on it. You can also declare where you want certain
variables to reside by defining an area called a section, which can be a read-
only section or a read/write section. This is done with the SECTION

. declaration. All of these data-related declarations are described in chapter 3.

Many standard types are available, including integers, floating-point
numbers, characters, and boolean values, to name a few. In addition, you
can use combinations of the standard types to define your own data types,
for example, a record that contains several fields. The next few paragraphs
summarize the types that are predefined by CYBIL. They are described in
detail in chapter 4.

Among the basic types are scalar types, that is, those that have a specific
order. Besides integer, character, and boolean values, you can declare an
ordinal type in which you define the elements and their order. You can also
specify a subrange of any of the scalar types by giving a lower and upper
bound. Floating-point (real) numbers are also available. A cell, which
represents the smallest addressable unit of memory, can be specified as a
type. A pointer is a type that points to a variable, allowing you to access the
variable by location rather than by name. These are the basic types: scalar,
floating point, cell, and pointer. With these basic types you can construct the
‘ structured types: strings, arrays, records, and sets.

Revision A Introduction 1-1

INTRODUCTION

A string is a sequence of characters. You can reference a portion of a string
(called a substring) or a single character within a string. An array is a
structure that contains components all of the same type. The components of
an array have a specific order and each one can be referenced individually. A
record is a structure that contains a fixed number of fields, which may be of
different types. Each field has a unique name within the record and can be
referenced individually. You can also declare a variant record that has
several possible variations (variants). The current value of a field common to
all variants, or the latest assignment to a specific variant field determines
which of the variants should be used for each execution. A set is a structure
that contains elements of a single type. Yet unlike an array, elements in a set
have no order and individual elements cannot be referenced. A set can be
operated on only as a whole.

Storage types are structures to which variables can be added, referenced, and
deleted under explicit program control using a set of storage management
statements. The two storage types are sequences and heaps.

All of the types mentioned above are considered fixed types; that is, there is a
definite size associated with each one when it is declared. If you want to
delay specifying a size until execution time, you can declare it as an
adaptable type. Then, sometime during execution, you assign a fixed size or
value to the type. A string, array, record, sequence, or heap can be adaptable.

All of these types are described in chapter 4.

Statements define the actions to be performed on the data you’ve defined.
The assignment statement changes the value of a variable. Structured
statements contain and control the execution of a list of statements. The
BEGIN statement unconditionally executes a statement list. The WHILE,
FOR, and REPEAT statements control repetitive executions of a statement
list.

Control statements control the flow of execution. The IF and CASE
statements execute one of a set of statement lists based on the evaluation of a
given expression or the value of a specific variable. CYCLE, EXIT, and
RETURN statements stop execution of a statement list and transfer control
to another place in the program.

Storage management statements allocate, access, and release variables in
sequences (using the RESET and NEXT statements), heaps (using the
RESET, ALLOCATE, and FREE statements), and the run-time stack (using
the PUSH statement).

All of the preceding statements are described in detail in chapter 5, along
with the operands and operators that can be used in expressions within
statements and declarations.

12 CYBIL Language Definition Revision A

INTRODUCTION

Statements can appear within a program (as described in chapter 2), a
function, or a procedure.

A function is a list of statements, optionally preceded by a list of
declarations. It is known by a unique name and can be called by that name
from elsewhere in the program. A function performs some calculation and
returns a value that takes the place of the function reference. There are many
standard functions defined in CYBIL and you can also create your own.
Standard functions and rules for forming your own functions are described
in chapter 6.

A procedure, like a function, is a list of statements, optionally preceded by a
list of declarations. It also is known by a unique name and can be called by
that name from elsewhere in the program. A procedure performs specific
operations and may or may not return values to existing variables. You can
use the standard procedures and also define your own. Chapter 7 describes
the standard procedures and rules for forming your own procedures.

Chapter 8 describes the CYBIL command you use to call the CYBIL
compiler, tell it which files to use for input and output, and specify what kind
of listing you want. It also describes directives that are available at
compilation time to specify listing options, run-time options, the layout of the
source text and resulting object listing, and what specific portions of the
source text to compile.

Chapter 9 describes the Debug utility, which aids you in debugging CYBIL
programs at a source code level or machine code level, in either interactive or
batch mode.

In summary, chapters 2 through 7 describe the elements within a CYBIL
program. Chapter 8 describes the command and directives that control how
the program is actually compiled. Chapter 9 describes debugging
capabilities.

Procedures that perform input to and output from CYBIL programs are
described in the CYBIL File Interface manual.

Revision A Introduction 1-3

® Program Structure 2

This chapter describes how to form the individual elements used within a
program and how to structure the program itself.

Elements Withina Programoiiiiiiiiiiiiiiiiiennns 2-1
Valid Charactersc.oiitiiiieii ettt aiannn, 21
CYBIL-Defined Elementsc.ccoviiiiiiniiiiiiiienannnn. 21
User-Defined Elementsccoiiiiiiiiiiiiiiiiiiiennnnnn, 2-2
N 4172 A 25

Structure of a Programcoiiiiiiiiiii i, 27
Module Structureovttiiiiii i e 27
7T) o< Y 27
Module Declarationcoiiiiiiiiii i, 29
Program Declaration i e 2-11

o Program Structure 2

This chapter describes how to form the individual elements used within a
‘ program and how to structure the program itself.

Elements Within a Program

Valid Characters

The characters that can be used within a program are those in the ASCII
character set that have graphic representations (that is, can be printed). This
character set is included in appendix B. It contains uppercase and lowercase
letters. In names that you define, you can use uppercase and lowercase
letters interchangeably. For example, the name LOOP_COUNT is
equivalent to the name loop_count.

CYBIL-Defined Elements

CYBIL has predefined meanings for many words and symbols. You cannot
. redefine or use these words and symbols for other purposes.

A complete list of CYBIL reserved words is given in appendix C. In the
formats for declarations, type specifications, and statements shown in this
manual, reserved words are shown in uppercase letters.

The following list includes the reserved symbols and a brief description of
the purpose of each. They are discussed in more detail throughout this

manual.

Symbol Purpose

=%/, 5 <, <5, These symbols are primarily operators used

> >= <> 0= () in expressions. They are discussed in chapter 5.

; The semicolon separates individual declarations and
statements.

: The colon is used in declarations as described in chapter
® .
, The comma separates repeated parameters or other

elements.

. A single period indicates a reference to a field within a
. record as described in chapter 4.

(Continued)

Revision A Program Structure 2-1

ELEMENTS WITHIN A PROGRAM

(Continued)
Symbol Purpose
Two consecutive periods indicate a subrange as
described in chapter 4. .
" The circumflex indicates a pointer reference as
described in chapter 4.
72 Apostrophes delimit strings.
[] Brackets enclose array subscripts, indefinite value
constructors, and set value constructors as described in
chapter 4.
{} Braces delimit comments. (Within the formats shown in
this manual, they are also used to enclose optional
parameters.)
?or 7?7 A single question mark or a pair of consecutive question
marks indicate compile-time statements and directives
as described in chapter 8.
User-Defined Elements ’
Names

You define the names for elements, such as constants, variables, types,
procedures, and so on, that you use within a program. A name:

e Can be from 1 through 31 characters in length.

e (Can consist of letters, digits, and the special characters # (number sign),
@ (commercial at sign), _ (underline), and $ (dollar sign).T

e Must begin with a letter. (There is an exception to this rule for system-
defined functions and procedures that begin with the # or $ character.)

e Cannot contain spaces.

t NOS/VE often uses $ in its predefined names. To keep from matching a ‘
system reserved name, avoid using $ in the names you define.

2-2 CYBIL Language Definition Revision A

ELEMENTS WITHIN A PROGRAM

. In the formats included in this manual, names that you supply are shown in
lowercase letters. Within a program, however, there is no distinction between
uppercase and lowercase letters. The name my _file is identical to the name
My _File.

There is considerable flexibility in forming names, so you should make them
as descriptive as possible to promote readability and maintainability of the
program. For example, LAST _FILE_ACCESSED is more obvious than

LASTFIL.

Examples:

Valid Names Invalid Names
SUM ARRAY
REGISTER#3 FILES&POSITIONS

POINTER_TABLE 2ND

The valid names need no explanation. Among the invalid names, ARRAY
cannot be used because it is a reserved word; FILES&POSITIONS contains
an invalid character (the ampersand); and 2ND does not begin with a letter.

Constants

‘ A constant is a fixed value. It is known at compilation time and does not
change throughout the execution of a program. It can be an integer,
character, boolean, ordinal, floating-point number, pointer, or string.

Integer constants can be binary, octal, decimal, or hexadecimal. The base is
specified by enclosing the radix in parentheses following the integer, as
follows:

integer (radix)

Examples are 1011(2) and 19A(16). If the radix is omitted, the integer is
assumed to be decimal. Integer constants must start with a digit; therefore,
zero must precede any hexadecimal constant that would otherwise begin
with a letter, for example, OFF(16). Negative integer constants must be
preceded by a minus sign. Positive integer constants can be preceded by a
plus sign but need not be.

Integer constants range in value from -(263-1) through 263-1.

‘ A character constant can be any single character in the ASCII character set.
The character is enclosed in apostrophes in the following form:

’character’

Examples are A’ and *?’. The apostrophe character itself is specified by a
‘ pair of apostrophes.

Revision B Program Structure 2.3

ELEMENTS WITHIN A PROGRAM

A boolean constant can be either FALSE or TRUE, each having its usual .
meaning.

An ordinal constant is an element of an ordinal type that you have defined.
For further information, refer to Ordinal under Scalar Types in chapter 4.

Floating-point (real) constants can be written in either decimal notation or
scientific notation. A real number written in decimal notation contains a
decimal point and at least one digit on each side, for example, 5.123 or
-72.18. If the number is positive, the sign is optional; if negative, the sign is
required.

A real number written in scientific notation is represented by a number (the
coefficient), which is multiplied by a power of 10 (the exponent) in the form:

coefficientEexponent
The prefix E is read as “times 10 to the power of ”’; for example,
5.1E6

is 5.1 times 10 to the power of 6, or 5,100,000. The decimal point in the

coefficient is optional. A decimal point cannot appear in the exponent; it

must be a whole number. If the coefficient or exponent is positive, the sign is
optional; if negative, the sign is required. .

The pointer constant is NIL. It indicates an unassigned pointer. NIL can be
assigned to a pointer of any type.

String constants consist of one or more characters enclosed in apostrophes in
the following form:

"string’

An example is 'USER1234’, a string of eight characters. An apostrophe in a
string constant is specified by a pair of apostrophes, for example, " DON"T".

String constants can be concatenated by using the reserved word CAT, as in:
’characters_1’ CAT ’characters_2’

The result is the string ’characters_1characters_2’. The CAT operation
cannot be used with string variables.

A string constant can be empty, that is, a null string; for example, '
str:=7";
assigns a null string to the string constant STR.

You cannot reference parts (substrings) of string constants.

2-4 CYBIL Language Definition Revision B

ELEMENTS WITHIN A PROGRAM

Constant Expressions

Expressions are combinations of operands and operators that are evaluated
to find scalar or string type values. In a constant expression, the operands
must be constants, names of constants (that you declare using the CONST
declaration described in chapter 3), or other constant expressions within
parentheses. Computation is done at compile time and the resulting value
used in the same way a constant is used.

The general rules for forming and evaluating expressions are described
under Expressions in chapter 5. These rules apply to constant expressions
with the following exceptions:

o (Constant expressions must be simple expressions; terms involving
relational operators must be delimited with parentheses.

e The only functions allowed as factors in constant expressions are the
SINTEGER, $CHAR, SUCC, and PRED functions with constant

expressions as arguments.

o Substring references are not allowed.

Syntax

The exact syntax of the language is shown in the formats of individual
declarations and statements described in the remainder of this manual. The
following paragraphs discuss general syntax rules.

Spaces
Spaces can be used freely in programs with the following exceptions:

e Names and reserved words cannot contain embedded spaces. Normally,
constants cannot contain spaces either, but a character constant or string
constant can.

® A name, reserved word, or constant cannot be split over two lines; it must
appear completely on one line.

e Names, reserved words, and constants must be separated from each other
by at least one space, or one of the other delimiters such as a parenthesis
or comma.

For further information, refer to Spacing later in this chapter.

Revision A Program Structure 2-5

ELEMENTS WITHIN A PROGRAM

Comments

Comments can be used in a program anywhere that spaces can be used
(except in string constants). They are printed in the source listing but
otherwise are ignored by the compiler.

A comment is enclosed in left and right braces: { }. It can contain any
character except the right brace (}). To extend a comment over several lines,
repeat the left brace ({) at the beginning of each line. If the right brace is
omitted at the end of the comment, the compiler ends it automatically at the
end of the line.

Example:

{this comment
{appears on
{several lines.}

Within this manual, the formats for declarations, type specifications, and
statements use braces to indicate an optional parameter.

Punctuation

A semicolon separates individual declarations and statements. It must be
included at the end of almost every declaration and statement. The single
exception is MODEND which can, but need not, end with a semicolon if it is
the last occurrence of MODEND in a compilation. Punctuation for specific
declarations and statements is shown in the formats in the following
chapters.

Two consecutive semicolons indicate an empty statement, which the
compiler ignores. Spacing between the semicolons in this case is
unimportant.

Spacing

Declarations and statements can start in any column. In this manual,
indentations are used in examples to improve readability. It is recommended
that similar conventions be used in your programs to aid in debugging and
documentation for yourself and other users.

The LEFT and RIGHT directives, described in chapter 8, can be used at
compilation time to specify the left and right margins of the source text. All
source text outside of those margins is then ignored. A warning diagnostic is
issued for every line that exceeds the specified right margin.

A name, reserved word, or constant cannot be split over two lines; each must
appear completely on one line.

2-6 CYBIL Language Definition Revision B

STRUCTURE OF A PROGRAM

Structure of a Program
Module Structure

The basic unit that can be compiled is a module and, optionally, compile-time
statements and directives. A module can, but need not, contain a program.
The general structure of a module is:

MODULE module_name;
declarations
PROGRAM program_name;
declarations
statements
PROCEND program_name;
MODEND module_name;

Declarations can be constant, type, variable, section, function, and procedure
declarations. A module can contain any number and combination of
declarations, but it can contain at most one program. The program contains
the code (that is, the statements) that are actually executed. The required
module and program declarations are described later in this chapter.

The structure within a module determines the scope of the elements you
declare within it.

Scope

The scope of an element you declare, such as a variable, function, or
procedure, is the area of code where you can refer to the element and it will
be recognized. Scope is determined by the way the program and procedures
are positioned in a module and where the elements are declared.

In terms of scope, the programs, procedures, and functions are often referred
to as blocks (that is, blocks of code). Generally, if an element is declared
within a block, its scope is just that block. Outside the block, the element is
unknown and references to it are not valid. A variable declared within a
block is said to be local to the block and is called a local variable.

An element declared at the module level (that is, one that is not declared
within a program, procedure, or function) has a scope of the entire module. It
can be referred to anywhere within the module. A variable declared at the
module level is said to be global and is called a global variable.

A block can contain one or more subordinate blocks. A variable declared in
an outer block can always be referenced in a subordinate block. However, if a
subordinate block declares an element of the same name, the new declaration
applies while inside that block. Figure 2-1 illustrates these rules.

Revision A Program Structure 2-7

STRUCTURE OF A PROGRAM

BLOCK 1
A DECLARATION <«—— Variable A can be referred to anywhere
in block 1, including blocks 2, 3, and 4.
BLOCK 2
B DECLARATION <4 Variable B can be referred to only in
block 2.
BLOCK 3
C DECLARATION 4—— Variables C and D can be referred to
D DECLARATION anywhere in blocks 3 and 4.
BLOCK 4
D DECLARATION <4—— However, block 4 again declares a
variable named D. This second
declaration identifies a different
variable D and is in effect within
block 4 only. Outside of block 4,
yet within block 3, the original
declaration for D applies.

Figure 2-1. Scope of Variables Within a Block Structure

Storage space is allocated for a variable when the block in which it is
declared is entered. Space is released when an exit is made from the block.
Because space is allocated and released automatically, these variables are
called automatic variables. You can specify that storage for a variable
remains throughout execution by including the STATIC attribute when you
declare the variable. A variable declared in this way is called a static
variable. A global variable is always static. Because it is declared at the
outermost level of a module (consider the module to be a block), storage for a
global variable is allocated throughout execution of the module (or block).
For further information on automatic and static variables, refer to Variable
Declaration in chapter 3.

The one exception to the preceding rules is an element declared with the

XDCL (externally declared) attribute. This attribute means the element is

declared in one module but can be referred to in another. In this case, the

loader handles the links between modules. For further information on the

XDCL attribute, refer to chapter 3. ‘

2-8 CYBIL Language Definition Revision A

MODULE DECLARATION

‘ Module Declaration

The module declaration marks the beginning of a module. MODEND marks
the end of a module. A module can contain at most one program and any
combination of type, constant, variable, section, function, and procedure
declarations. If two or more modules are compiled and linked together for
execution, there can be only one program declaration in all the linked
modules.

The format of the module declaration is:
MODULE name;}

name
The name of the module.

The format of MODEND is:
MODEND { name };

name

The name of the module. This parameter is optional. If used, the name
must be the same as that specified in the module declaration.

When compiling more than one module, a semicolon is required after each
occurrence of MODEND except the last one. There it is not required but is
recommended.

Examples:

The following example shows a module named ONE that contains various
declarations and a program named MAIN. The module name and semicolon
could be omitted following MODEND, but it is recommended that they both
be included.

MODULE one;
declarations
PROGRAM main;

declarations
statements
PROCEND main;
MODEND one;

t Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a module declaration. If included in a
CYBIL program run on NOS/VE, this parameter is ignored.

Revision A Program Structure 29

MODULE DECLARATION

The following example shows a compilation consisting of three modules ‘
named ONE, TWO, and THREE. All three modules can be compiled and the
resulting object modules linked together to form a single object module that

can then be executed. For readability, the module names are included in all
occurrences of MODEND. The semicolon could be left off the last occurrence .
of MODEND, but it is a good practice to include it.

MODULE one;
declarations/statements

MODEND one;

MODULE two;
declarations/statements

MODEND two;

MODULE three;
declarations/statements

MODEND three;

2-10 CYBIL Language Definition Revision A

PROGRAM DECLARATION

. Program Declaration

The program declaration marks the beginning of a program. The end of a

program is marked by a PROCEND statement. A program can contain any

combination of type, constant, variable, section, function, and procedure
‘ declarations, and any statements. If two or more modules are compiled and

linked together for execution, there can be only one program declaration in
the linked modules.

The format of the program declaration is:
PROGRAM name {(formal_parameters)};}

name

The name of the program.

formal_parameters

One or more optional parameters included if the program is to be called by
the operating system. They can be in the form

VAR name {,namej}... : type
{,name {,namej... : type...

and/or

‘ name {,namej... : type

{,name {,name}... : type}...

where name is the name of the parameter and type is the type of the
parameter, that is, a predefined type (described in chapter 4) or a user-
defined type (described in chapter 3).

The first form is called a reference parameter; its value can be changed
during execution of the program. The second form is called a value
parameter; its value cannot be changed by the program. Both kinds of
parameters can appear in the formal parameter list; if so, they are
separated by semicolons (for example, [INTEGER; VAR A:CHAR).
Reference and value parameters are discussed in more detail later in this
chapter.

t Some variations of CYBIL available on other operating systems allow an
. additional option, the alias name, in a program declaration. If included in
a CYBIL program run on NOS/VE, this parameter is ignored.

Revision B Program Structure 2-11

PROGRAM DECLARATION

The optional parameter list is included if a CYBIL program is to be called by ‘
the operating system. It allows the system fo pass values (for example, a

string that represents a command) to a CYBIL program. When the system

calls a program, it includes parameters called actual parameters in the call.

The values of those actual parameters replace the formal parameters in the
parameter list one-for-one based on position; that is, the first actual ‘
parameter replaces the first formal parameter, and so on. Wherever the

formal parameters appear in statements within the program, the values of

the corresponding actual parameters are substituted. For every formal

parameter in the program declaration, there must be a corresponding actual
parameter.

When a reference parameter is used, the formal parameter represents the
corresponding actual parameter throughout execution of the program. Thus,
an assignment to a formal parameter changes the variable that was passed
as the corresponding actual parameter. An actual parameter that
corresponds to a formal reference parameter must be addressable. A formal
reference parameter can be of any type.

When a value parameter is used, the formal parameter takes on the value of

the corresponding actual parameter. However, the program cannot change a

value parameter by assigning a value to it or specifying it as an actual

reference parameter to a procedure or function. A formal value parameter

can be of any type except a heap, or an array or record that contains a heap. .

The format of PROCEND is:
PROCEND { name };

name

The name of the program. This parameter is optional. If used, the name
must be the same as that specified in the program declaration.

Example:

The following example shows a program named MAIN that contains various
declarations, including a procedure named SUB_1.

PROGRAM main;
declarations
PROCEDURE sub_1;

declarations
statements

PROCEND sub_1; ‘

statements
PROCEND main;

2-12 CYBIL Language Definition Revision A

Constant, Variable, Type, and
Section Declarations 3

This chapter describes how you declare constant and variable data types and
new data types. It also describes how you specify a particular section in
which to group data.

Constant Declarationttt iiiiiiii it aanns 31
Variable Declarationottt 33
AttrIbuteso e 3-6
Initializationttt i e e et 3-12
Type Declarationot 3-15
Section Declaration.coiiiiiiiiriiii it et e 3-17

o Constant, Variable, Type, and
Section Declarations 3

‘ This chapter describes the constant declaration, which defines a name for a
value that never changes; the variable declaration, which defines a name for
a value that can change; and the type declaration, which defines a new type
of data and gives a name to that type. In addition, it also describes the
section declaration, which groups variables that share common access
characteristics.

Constant Declaration

A constant, as described in chapter 2, is a fixed value that is known at
compile time and doesn’t change during execution. A constant declaration
allows you to associate a name with a value and use that name instead of the
actual constant value. This provides greater readability because the name
can be descriptive of the constant. Constant declarations also provide greater
maintainability because the constant value need only be changed in one
place, the constant declaration, not every place it is used in the code.

. The format of the constant declaration is:
CONST name = value {,name = value}...;

name

The name associated with the constant value.

value

The constant value. It can be an integer, character, boolean, ordinal,
floating-point, pointer, string, or constant expression. Rules for forming
these values are given under Constants and under Constant Expressions
in chapter 2.

You can write several constant declarations, each declaring a single
constant, or a single declaration declaring several constants where each
name = value combination is separated by a comma.

Type is not specified in a constant declaration. The type of the constant is
the same as the type of the value assigned to it.

. If used, an expression is evaluated during compilation. The expression itself
can contain other constants.

Revision A Declarations 3-1

CONSTANT DECLARATION

Examples: .

Rather than repeat the value of pi throughout a program, you can use a
constant declaration to assign a descriptive name (in this case, PI) to the

value and use that name in subsequent expressions and operations. The
constant declaration is:

CONST pi = 3.1415927;

The following example shows a constant declaration containing several
different types.

CONST
first = 1,
Llast = 80,

hex = 0A8(16),
bit_pattern = 10110101(2),
fp_number = 1.2E3,

stop_character = '.',
continue = TRUE,
message = ‘end of Lline',

Llast_pointer = NIL,
length = last - first,
result = (1 * 2) DIV 3;

Each constant has the same type as the value assigned to it. For example, ‘
FIRST and LAST are integer types, as is LENGTH, which is the result of an
expression containing integers. Notice that the value of HEX begins with a 0

(zero) because integers must begin with a digit.

3-2 CYBIL Language Definition Revision B

VARIABLE DECLARATION

. Variable Declaration

A variable is an element within a program whose value can change during
execution. The name of the variable stays the same; it is only the value
contained in the variable that changes. To use a variable, you must declare

The format for a variable declaration is:

VAR name {,name}... : {{attributes]} type {:= initial_value}
{,name {,name}... {{attributes]} type {:= initial_value}}...;t
name

The name of the variable. Specifying more than one name indicates that
all of the named variables will have the characteristics that follow
(attributes, type, and initial _value).

attributes

One or more of the following attributes. If more than one are specified,
they are separated by commas.

READ

Access attribute specifying that the variable is a read-only variable;
the compiler checks to ensure that the value of the variable is not
changed. If READ is specified, an initial value is required.

XDCL

Scope attribute specifying that the variable is declared in this module
but can be referenced from another module.

XREF

Scope attribute specifying that the variable is declared in another
module but can be referenced from this module.

#GATETT

Scope attribute that allows the variable to be accessed by a procedure
at a higher ring level. If #GATE is specified, the XDCL attribute is
required also.

. 1 Some variations of CYBIL available on other operating systems allow an

additional option, the alias name, in a variable declaration. If included in
a CYBIL program run on NOS/VE, this parameter is ignored.

tt This attribute is not supported on variations of CYBIL available on other

operating systems.

Revision A Declarations 3-3

VARIABLE DECLARATION

STATIC ‘

Storage attribute specifying that storage space for the variable is
allocated at load time and remains when control exits from the block.
Static storage is assumed when any attributes are specified.

section_name

Storage attribute specifying the name of the section in which the
variable resides. A variable in a read-only section is protected by
hardware, as opposed to software. The section name and its read/write
attributes must be declared using the section declaration (discussed
later in this chapter).

Attributes are described in more detail later in this chapter.

The attributes parameter is optional. If omitted, CYBIL assumes the
variable can be read and written; can be referenced only within the block
where it is created; and, unless it is declared at the outermost level of a
module, is automatic (that is, storage for the variable is allocated only
during execution of the block in which the variable is declared.)

type
Data type defining the values that the variable can have. Only values
within this data type are allowed. Types are described in chapter 4.

initial_value ‘

Initial value assigned to the variable. It can be a constant expression, an
indefinite value constructor (described under Initialization later in this

chapter), or a pointer to a global procedure. Only a static variable can be
assigned an initial value. Initialization is discussed later in this chapter.

This parameter is optional. If omitted, the variable is undefined and filled
with the loader’s preset value.

Any variable referenced in a program must be declared with the VAR
declaration. A variable can be declared only once at each block level
although it can be redefined in another block or in a contained (nested) block.

The type assigned to a variable defines the range of values it can take on
and also the operations, functions, and procedures that can use it. CYBIL
checks to ensure that the operations performed on variables are compatible
with their types.

34 CYBIL Language Definition Revision B

VARIABLE DECLARATION

’ Examples:

The following declarations define a variable named SCORES that can be

any integer number, a variable named STATUS that can be either of the

boolean values FALSE or TRUE, and two variables named ALPHA1L and
. ALPHAZ2 that can be characters.

VAR scores : integer;
VAR status : boolean;
VAR alphal : char;
VAR alpha2 : char;

The declarations for the two character type variables, ALPHA1 and
ALPHAZ2, could be combined as follows:

VAR alphal, alpha2 : char;
To combine all of the variables in one declaration, you could use:

VAR scores : integer,
status : boolean,
alphal, alpha2 : char;

Revision A Declarations 35

VARIABLE DECLARATION

Attributes

Attributes control three characteristics of a variable:
Access - whether the variable can be both read and written
Scope - where within the program the variable can be referenced

Storage - when and where the variable is stored

Access

The access attribute that you can specify is READ. A variable declared with
the READ attribute can only be read. It must be initialized in the declaration
and cannot be assigned another value later. It is called a read-only variable.
If the READ attribute is omitted, CYBIL assumes the variable can be both
read and written (changed).

The READ attribute is enforced by software; that is, the compiler checks to
ensure that the value of a variable does not change. The READ attribute
alone does not mean that the variable is actually in a read-only section.t To
do that, you must specify the name of a read-only section as declared in a
section declaration (described later in this chapter).

A variable with the READ attribute specified is assumed to be static. (For .
further information on static variables, refer to Storage later in this chapter.)

A read-only variable can be used as an actual parameter in a procedure call

only if the corresponding formal parameter is a value parameter; that is, a

read-only variable can be passed to a procedure only if the procedure makes

no attempt to assign a value to it. (Procedure parameters are described in

chapter 7.)

A read-only variable is similar to a constant, but can’t always be used in the
same places. For example, the initial value that can be assigned to a variable
(as described earlier in this chapter) must be a constant expression, an
indefinite value constructor, or a pointer to a global procedure. In this case,
even though a read-only variable has a constant value, it cannot be used in
place of a constant expression. Also, as mentioned in chapter 2, you cannot
reference a substring of a constant. You can, however, reference a substring
of a variable and, thus, a read-only variable. There are other differences
similar to these. The descriptions in this manual state explicitly whether
constants and/or variables can be used.

t A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual.

3-6 CYBIL Language Definition Revision A

VARIABLE DECLARATION

Examples:

In this example the variable DEBUG is a read-only variable set to the
constant value of TRUE. NUMBER can be read and written.

VAR
debug : [READ] boolean := TRUE,
number : integer;

The following example illustrates a difference between constants and read-
only variables. To declare a string type, you must specify the length of the
string in parentheses following its name. As defined in chapter 4, the length
must be a positive, integer constant expression.

CONST
string_size_1 = 5;

VAR
string_size_2 : [READ] integer := 5,
stringl : string (string_size_1),
string2 : string (string_size_2);

The declaration of STRING1 is valid; the length of the string is 5 which is
the value of the constant STRING _SIZE _1. However, STRING2 is invalid;
even though STRING_SIZE _2 does not change in value, it is still a variable
and cannot be used in place of a constant expression.

Scope

The scope attributes define the part or parts of a module to which a variable
declaration applies. If no scope attributes are included in the declaration, the
scope of a variable is the block in which it is declared. A variable declared in
an outermost block applies to that block and all the blocks it contains.
However, a variable declared even at the outermost level of a module cannot
be used outside of that module. The scope attributes, XDCL and XREF, are
used to extend the scope of a variable so that it can be shared among
modules.

To use the same variable in different modules, you must specify the XDCL
and XREF attributes. The XDCL attribute indicates that the variable being
declared can be referenced from other modules. The XREF attribute indicates
that the variable is declared in another module. When the loader loads
modules, it resolves variable declarations so that each XDCL variable is
allocated static storage and the XREF variable shares the same space. This
is known as satisfying externals. The loader issues an error if an XREF
variable does not have a corresponding XDCL variable. In one compilation
unit or group of units that will be combined for execution, a specific variable
can have only one declaration that contains the XDCL attribute.

Revision A Declarations 3-7

VARIABLE DECLARATION

Declarations for a shared variable must match except for initialization. A .
variable declared with the XDCL attribute can be initialized and have

different values assigned during program execution. A variable declared

with the XREF attribute cannot be initialized but can be assigned values.

The #GATE attribute is an extension of the XDCL attribute. It allows the
variable to be accessed by a procedure at a higher ring level.t If #GATE is
specified, XDCL must also be specified or a compilation error occurs.

If any attributes are declared, the variable is assumed to be static in storage.
If no attributes are declared, the variable is assumed to be automatic, unless
it is declared at the outermost level of the module. (A variable declared at the
outermost level is always static.)

Example:

Assume the following two modules have been compiled. When the loader
loads the resulting object modules and satisfies externals, it allocates storage
to FLAG, an XDCL variable, and initializes it to FALSE. When the loader
finds the XREF variable FLAG in module TWO, it assigns the same storage.
Thus, references to FLAG from either module refer to the same storage
location.

MODULE one:

VAR "I'

flag : [XDCL] boolean := FALSE;

MODEr:lD one;

MODULE two;

VAR
flag : [XREF] boolean;

MODEND two;

T A ring level is a hardware feature. Rings provide hardware protection in .
that an unauthorized program cannot access anything at a lower ring
level. The ring levels you have access to are determined by your site
administrator. For further information on rings, refer to the SCL Object
Code Management manual and volume II of the virtual state hardware
reference manual. .

3-8 CYBIL Language Definition Revision A

VARIABLE DECLARATION

. Storage

The storage attributes determine when storage is allocated and where
storage is allocated.

. When Storage Is Allocated

There are two methods of allocating storage for variables: automatic and
static. For an automatic variable, storage is allocated when the block
containing the variable’s declaration begins execution. Storage is released
when execution of the block ends. If the block is entered again, storage is
allocated again, and so on. When storage is released, the value of the
variable is lost.

For a static variable, storage is allocated (and initialized, if that parameter is
included) only once, at load time. Storage remains allocated throughout
execution of the module. However, even though storage remains allocated, a
static variable still follows normal scope rules. It can be accessed only within
the block in which it is declared. A reference to a static variable from an
outer block is an error even though storage for the static variable is still
allocated.

The ability to declare a static variable is important, for example, in the case
where an XDCL variable is referenced by a procedure before the procedure

‘ that declares the variable is executed. Because an XDCL variable is static
(refer to Scope earlier in this chapter for further information), it is allocated
space and is initialized immediately at load time; therefore, it is available to
be referenced before execution of the procedure that actually declares it as
XDCL.

A variable can be declared static explicitly with the STATIC attribute. It is
assumed to be static implicitly if it is in the outermost level of a module or if
it has any other attributes declared. In all other cases, CYBIL assumes the
variable is automatic. Only a static variable can be initialized.

Revision A Declarations 39

VARIABLE DECLARATION

The period between the time storage for a variable is allocated and the time ’
that storage is released is called the lifetime of the variable. It is defined in

terms of modules and blocks. The lifetime of an automatic variable is the

execution of the block in which it is declared. The lifetime of a static variable

is the execution of the entire module. An attempt to reference a variable .
beyond its lifetime causes an error and unpredictable results.

The lifetime of a formal parameter in a procedure is the lifetime of the
procedure in which it is a part. Storage space for the parameter is allocated
when the procedure is called and released when the procedure finishes
executing.

The lifetime of a pointer must be less than or equal to the lifetime of the data
to which it is pointing.

The lifetime of a variable that is allocated using the storage management
statements (described in chapter 5) is the time between the allocation of
storage and the release of storage. A variable allocated by an automatic
pointer (using the ALLOCATE statement) must be explicitly freed (using the
FREE statement) before the block is left, or the space will not be released by
the program. When the block is left, the pointer no longer exists and,
therefore, the variable cannot be referenced. If the block is entered again, the
previous pointer and the variable referenced by the pointer cannot be

reclaimed. ‘

Example:

In this example, the variables COUNTER and FLAG will exist during
execution of the entire module; however, they can be accessed only within
program MAIN.

PROGRAM main;
VAR
counter : [STATIC] integer := 0,
flag : [STATIC] boolean;

PROCEND main;

3-10 CYBIL Language Definition Revision A

VARIABLE DECLARATION

Where Storage Is Allocated

You can optionally specify that storage for a variable be allocated in a
particular section. A section is a storage area that can hold variables sharing
common access attributes, that is, read-only variables or read/write
variables. You define the section and its access attributes yourself using the
section declaration (discussed later in this chapter).

If you define a section with the section READ attribute, you define a read-
only section in the hardware.f Any variable declared with that section’s
name as an attribute will reside in that read-only section. When you specify
the name of a read-only section in a variable declaration, you must also
include the variable access attribute READ.

Example:

This example defines a read-only section named NUMBERS. The variable
INPUT_NUMBER is a read-only variable that also resides in the section
NUMBERS. In the variable declaration, the READ attribute causes the
compiler to check that the variable is not written; the read-only section name,
NUMBERS, causes the hardware to ensure that the variable is not written.

SECTION
numbers : READ;
VAR
input_number : [READ, numbers] integer := 100;

t A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual.

Revision A Declarations 3-11

VARIABLE DECLARATION

Initialization

An initial value can be assigned to a variable only if it is a static variable.
The value can be a constant expression, an indefinite value constructor
(described next), or a pointer to a global procedure. The value must be of the
proper type and in the proper range. If no initial value is specified, the value
of the variable is undefined.

An indefinite value constructor is essentially a list of values. It is used to
assign values to the structured types sets, arrays, and records. It allows you
to specify several values rather than just one. Values listed in a value
constructor are assigned in order (except for sets, which have no order). The
types of the values must match the types of the components in the structure
to which they are being assigned. An indefinite value constructor has the
form

[value {,value}...]
where value can be one of the following:
e A constant expression.
® Another value constructor (that is, another list).
e The phrase
REP number OF value

which indicates the specified value is repeated the specified number of
times.

e The asterisk character (*), which indicates the element in the
corresponding position is uninitialized.

The REP phrase can be used only in arrays. The asterisk can be used only in
arrays and records. For further information, refer to the descriptions of
arrays and records in chapter 4.

If an initial value is assigned to a string variable and the variable is longer
than the initial value, spaces are appended on the right of the initial value to
fill the field. If the initial value is longer than the variable, the initial value is
truncated on the right to fit the variable.

In a variant record, fields are initialized in order until a special variable
called the tag field name is initialized. The tag field name is then used to
determine the variant for the remaining field or fields in the record, and they
are likewise initialized in order.

Depending on the attributes defined in the variable declaration, initialization
is required, prohibited, or optional. Table 3-1 shows the initialization possible
for various attributes.

3-12 CYBIL Language Definition Revision A

VARIABLE DECLARATION

‘ Table 3-1. Attributes and Initialization

Attributes Specifiedt

Initialization

None

READ

READ,STATIC
READ,XDCL
READ,STATIC,XDCL
READ,section_name
READ,XDCL,section_name
XREF

XREF,READ
XREF,STATIC
XREF,READ,STATIC
STATIC

XDCL

XDCL,STATIC
section_name

section_name,XDCL

Optional if static variable; prohibited

if automatic variable.
Required.
Required.
Required.
Required.
Required.
Required.
Prohibited.
Prohibited.
Prohibited.
Prohibited.
Optional.
Optional.
Optional.
Optional.

Optional.

1t The static attribute is assumed if any attributes are specified.

Revision A

Declarations

3-13

VARIABLE DECLARATION

Example: ‘

The variables declared in this example are inside program MAIN.
Therefore, they are automatic unless declared with an attribute. TOTAL is
automatic and as such cannot be initialized. COUNT is declared static
and can be initialized. ALPHA and BETA are also static and can be
initialized because they have other attributes declared.

PROGRAM main;
VAR
total : integer,
count : [STATIC] integer := 0,
alpha, beta : [XDCL,READ] char := 'p';

PROCEND main;

3-14 CYBIL Language Definition Revision A

TYPE DECLARATION

.Type Declaration

The standard data types that are defined in CYBIL are described in
chapter 4. Any of these can be declared as a valid type within a variable
.aieclaration. The type declaration allows you to define a new data type
nd give it a name, or redefine an existing type with a new name. Then
that name can be used as a valid type within a variable declaration.

The format of the type declaration is:
TYPE name = type {,name = type}...;

name

Name to be given to the new type.

type
Any of the standard types defined by CYBIL or another user-defined type.

Once you define a type, you can use it to define yet another type. Thus, you
can build a very complex type that can be referred to by a single name.

The type declaration is evaluated at compilation time. It does not occupy
storage space during execution.

Example:

In this example, INT is defined as a type consisting of all the integers; it is
just a shortened name for a standard type. LETTERS is defined as a type
consisting of the characters A through Z only; this is a selective subset of the
standard type characters. DEVICES is an ordinal type that in turn is used to
define EQ_TABLE, a type consisting of an array of 10 elements. Any

element in the type EQ_TABLE can have one of the ordinal values specified
in DEVICES.

TYPE
int = integer,
letters = 'a'..'z',
devices = (Lp512, dk844, dk885, nt679),
eq_table = array [1..10] of devices;
VAR
i int,
alpha : letters,
table_1 : eq_table,
. status_table : array [1..3] of eq_table;

Revision A Declarations 3-15

TYPE DECLARATION

All of the variables in the preceding example could have been declared
strictly using variable declarations, as in:

VAR
i : integer,
alpha : 'a'..'z',
table_1 : array [1..100 of (Lp512, dk844, dk885, nté79),
status_table : array [1..3] of array [1..10] of
(Lp512, dk844, dk885, nté67d;

However, it obviously becomes quite cumbersome to declare a complex
structure using only standard types. Defining your own types lets you avoid
needless repetition and the increased possibility of errors. In addition, it
makes code easier to maintain; to add a new device, you need add it only in
the type declaration, not in every variable declaration that contains devices.

3-16 CYBIL Language Definition Revision A

SECTION DECLARATION

Section Declaration

A section is an optional working storage area that contains variables with
common access attributes. Including the section name in a variable
declaration causes the variable to reside in that section.

The format of the section declaration is:

SECTION name {,namej}... : attribute
{,name {,name}... . attributel...;

name

Name of the section.

attribute
The keyword READ or WRITE.

A section defined with the READ attribute is considered a read-only section.}
A variable declared with that section’s name will reside in read-only
memory. In this case, the variable access attribute READ must also be
included in the variable declaration. The section name causes hardware
protection; the READ attribute causes compiler checking.

A section defined with the WRITE attribute contains variables that can be
both read and written.

The initialization of variables declared with a section name depends on their
attributes, as shown in table 3-1. Variables declared with a section name are
static.

The SCL Object Code Management manual gives further information on
sections regarding the object module format expected as input by the loader
and the object library generator.

1 A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual.

Revision A Declarations 3-17

SECTION DECLARATION

Example: .

Two sections are defined in this example: LETTERS is a read-only section

and NUMBERS is a read/write section. The variable CONTROL_LETTER

is a read-only variable that resides in LETTERS. The READ attribute is

required because of the read-only section name. UPDATE_NUMBER is a .
variable that can be read or written, and resides in the section NUMBERS.

In this example, it is also declared as an XDCL variable but this is not
required.

SECTION
letters : READ,
numbers : WRITE;
VAR

control_letter : [READ,letters] char := 'p',
update_number : [XDCL,numbers] integer;

3-18 CYBIL Language Definition Revision A

Types 4
This chapter describes the standard types predefined by CYBIL.
L 30 oV I oY P 42
Equivalent Typesooiiiiiiiiiiiii i e 42
Basic Types . . oot e e 4-3
Scalar TyPes ..ottt e e e, 43
Floating-Point Typec.oviiiiiiiii e it 4-11
(0= 1 B = PP 4-12
Pointer Types e e e 4-13
Structured TyPeso e e 4-19
' oY= 4-19
AT Y S v et i ettt e e e e s 4-24
Records ... 4-27
I 1= 7Pt 4-37
StOragZe Ty PeS . o ottt 4-39
SBQUEINICES . . . ettt ettt et e e e 4-39
Heaps .o e e e 4-40
Adaptable Types .. .o.ovii i e e 4-41
Adaptable Strings e 441
Adaptable Arrays 442
Adaptable Recordscciiiiiiii 443
Adaptable SEqUENCESoitt i e 445
Adaptable Heapso e s 4-46

Types 4

There are many standard types defined within CYBIL. A variable can be
assigned to (that is, an element of) any of these types. The type defines
characteristics of the variable and what operations can be performed using
the variable. In general, operations involving nonequivalent types are not
allowed; one type cannot be used where another type is expected. Exceptions
are noted in the descriptions that follow.

In this chapter, types are grouped into three major categories: basic types,
structured types, and storage types.

Basic types are the most elementary. They can stand alone but are also used
to build the more complex structures. The basic types are:

e Scalar types (integer, character, boolean, ordinal, and subrange)
e Floating-point types (real)

e Cell types

® Pointer types

Structured types are made from combinations of the basic types. The
structured types are:

e Strings
e Arrays
e Records
® Sets

Storage types hold groups of components of various types. The storage types
are:

o Heaps
e Sequences

Most types, when they are declared, have a fixed size. Strings, arrays,
records, sequences, and heaps can also be declared with an adaptable size
that is not fixed until execution. For this reason, they are sometimes called
adaptable types. Adaptable strings, arrays, records, sequences, and heaps
are discussed at the end of this chapter.

Revision A Types 4-1

USING TYPES

Using Types

Types are used as parameters in two kinds of declarations: the variable

declaration (to associate a type with a variable name) and the type

declaration (to associate a type with a new type name). Both declarations are ‘
described in detail in chapter 3, but their basic formats are:

VAR name : {/attributes] } type { := initial_value };
TYPE name = type;

The description of each type shown in this chapter will give the keyword and
any additional information necessary to specify that type as a parameter.
They replace the generic word “type” in the variable and type declarations.
For example, the keyword to specify an integer type is INTEGER. The
variable declaration would be:

VAR name : { [attributes] } INTEGER { := initial_value };
The type declaration would be:
TYPE name = INTEGER;

Equivalent Types .

As mentioned earlier in this chapter, operations involving nonequivalent
types are not allowed. Two types can be equivalent, though, even if they
don’t appear to be identical. For example, two arrays can have different
expressions defining their sizes, but the expressions may yield the same
value. Rules for determining whether types are equivalent are given in the
following descriptions of the types.

Adaptable types and bound variant record types (described under Records
later in this chapter) actually define classes of related types that vary by a
characteristic, such as size. Adaptable type variables, bound variant record
type variables, and pointers to both types are fixed explicitly at execution
time. These types are said to be potentially equivalent to any of the types to
which they can adapt. That is, during compilation, references to adaptable
types and bound variant record types are allowed wherever there is a
reference to one of the types to which they can adapt. However, further type
checking is done during execution when each type is fixed (assigned to a
specific type). It is the current type of an adaptable or bound variant record
type that determines what operations are valid for it at any given time.

4-2 CYBIL Language Definition Revision A

BASIC TYPES

. Basic Types
Scalar Types

All scalar types have an order; that is, for every element of a scalar type you
can find its predecessor and successor.

Scalar types are made up of five types:
e Integer

e (Character

e Boolean

e Ordinal

e Subrange

Revision A Types 43

INTEGER

Integer

The keyword used to specify an integer type is:
INTEGER

Integers range in value from -(263-1) through 263-1.

In general, the subrange type should be used rather than the integer type.
This allows the compiler to perform more rigorous type-checking and reduces
the amount of storage needed to hold the value.

The following operations are permitted on integers: assignment, addition,
subtraction, multiplication, division (both quotient and remainder), all
relational operations, and set membership. Refer to Operators in chapter 5
for further information on operations.

The functions $INTEGER and $REAL, described in chapter 6, convert
between integer type and real type. The $CHAR function, also described in
chapter 6, converts an integer value from 0 through 255 to a character
according to its position in the ASCII collating sequence.

Example:

This example shows the definition of a new type named INT, which consists

of elements of the type integer. The variable declaration declares variable I to

be of type INT, which is the integer type just declared. Also declared as a .
variable is NUMBERS, which is explicitly of integer type. Because

NUMBERS is static, it can be initialized.

TYPE

int = integer;
VAR

i:int,

numbers : L[STATIC] integer := 100,

4-4 CYBIL Language Definition Revision B

CHARACTER

. Character

The keyword used to specify a character type is:
CHAR

. An element of the character type can be any of the characters in the ASCII
character set defined in appendix B. It is always a single character; more
than one character is considered a string. (A string is a structured type that
is discussed later in this chapter. A string of length 1 can sometimes be used
as a character. Refer to Substrings under Strings later in this chapter.)

The following operations are permitted on characters: assignment, all
relational operations, and set membership. A character can be assigned to
and compared to a string of length 1. Refer to Operators in chapter 5 for
further information on operations and to Strings later in this chapter for
further information on string assignment.

The $INTEGER function described in chapter 6 converts a character value to
an integer value based on its position in the ASCII collating sequence. The
$CHAR function, also in chapter 6, converts an integer value between 0 and
255 to a character in the ASCII collating sequence.

Example:

. This example shows the definition of a new type named LETTERS, which
consists of elements of the type character. The variable declaration declares
variable ALPHA to be of type LETTERS, which is type character; it is static
and initialized to the character J. The variable IDS is explicitly declared to

be of type character.
TYPE

letters = char;
VAR

alpha : [STATIC] Lletters := 'j',
ids : char;

Revision A Types 45

BOOLEAN

Boolean .

The keyword used to specify a boolean type is:
BOOLEAN

An element of the boolean type can have one of two values: FALSE or
TRUE. As with other scalar types, boolean values are ordered. Their order is
FALSE, TRUE. FALSE is always less than TRUE.

You get a boolean value by performing a relational operation on integers,
characters, ordinals, floating-point numbers, or boolean values.

The following operations are permitted on boolean values: assignment, all
relational operations, set membership, and boolean sum, product, difference,
exclusive OR, and negation. Refer to Operators in chapter 5 for further
information on operations.

The $INTEGER function described in chapter 6 converts a boolean value to
an integer value. Zero (0) is returned for FALSE; one (1) is returned for
TRUE.

Example:

This example shows the definition of a new type named STATUS, which

consists of the boolean values FALSE and TRUE. The variable declaration .
declares variable CONTINUE to be of type STATUS; that is, it can be either
FALSE or TRUE. The variable DEBUG is explicitly declared to be boolean

and, because it is a read-only variable and therefore static, it can be

initialized.

TYPE
status = boolean;
VAR
continue : status,
debug : [READ] boolean := TRUE;

46 CYBIL Language Definition Revision A

ORDINAL

Ordinal

The ordinal type differs from the other scalar types in that you, the user,
define the elements within the type and their order. The term ordinal refers
to the list of elements you define; the term ordinal name refers to an
individual element within the ordinal.

The format used to specify an ordinal is:
(name, name {,name...})

name
Name of an element within the ordinal. There must be at least two ordinal
names.

The order is given in ascending order from left to right.

Each ordinal name can be used in just one ordinal type. If a name is used in
more than one ordinal, a compilation error occurs.

Ordinals are used to improve the readability and maintainability of
programs. They allow you to use meaningful names within a program rather
than, for example, map the names to a set of integers that are then used in
the program to represent the names.

The following operations are permitted on ordinals: assignment, all
relational operations, and set membership.

Two ordinal types are equivalent if they are defined in terms of the same
ordinal type names.

The SINTEGER function described in chapter 6 converts an ordinal value
(name) to an integer value based on its position within the defined ordinal.

Revision A Types 4-7

ORDINAL

Examples: '

In this example, the type declaration defines a type named COLORS, which

is an ordinal that consists of the elements RED, GREEN, and BLUE. The

variable PRIMARY _ COLORS is of COLORS type and therefore has the

same elements. The variable WORK _DAYS explicitly declares the ordinal .
consisting of elements MONDAY through FRIDAY.

TYPE
colors = (red, green, blue);
VAR
primary_colors : colors,
work_days : (monday, tuesday, wednesday, thursday,
friday);

In the ordinal type COLORS, the following relationships hold:
RED <GREEN

RED <BLUE

GREEN < BLUE

You can find the predecessor and successor of every element of an ordinal.

You can also map each element onto an integer using the $SINTEGER

function (described in chapter 6.) For example, $SINTEGER(RED) = 0; this is ’
the first element of the ordinal.

The type declaration

TYPE
primary_colors = (red, green, blue),
hot_colors = (red, orange, yellow);

is in error because the name RED appears in two ordinal definitions.

4-8 CYBIL Language Definition Revision B

SUBRANGE

Subrange

A subrange is not really a new type but a specified range of values within an
existing scalar type. A variable defined by a subrange can take on only the
values between and including the specified lower and upper bounds.

The format used to specify a subrange is:
lowerbound .. upperbound

lowerbound

Scalar expression specifying the lower bound of the subrange.

upperbound
Scalar expression specifying the upper bound of the subrange.

The lower bound must be less than or equal to the upper bound. Both bounds
must be of the same scalar type.

The type of a subrange is the type of its lower and upper bounds. If a
subrange completely encompasses its own type, it is said to be an improper
subrange type. For example, the subrange

FALSE.TRUE

is of type boolean and also contains every element of type boolean. It is
equivalent to specifying the type itself. An improper subrange type is always
equivalent to its own type.

Two subranges are equivalent if they have the same lower and upper bounds.

Subranges allow for additional error checking. Compilation options are
available that cause the compiler to check assignments during program
execution and issue an error if it finds a variable not within range. (Range
checking is available as an option on the compiler call command and as a
compiler directive. They are both described in chapter 8.) In addition,
subranges improve readability. Because a subrange defines the valid range
of values for a variable, it is more meaningful to the user for documentation
and maintenance.

The operations permitted on a subrange are the same as those permitted on
its type (the type of its lower and upper bound).

Revision A Types 49

SUBRANGE

Example: ‘

This example shows the definition of a new type named LETTERS, which

consists of the characters A through Z only. It also defines an ordinal named
COLORS consisting of the colors listed. The variable declaration declares

variable SCORES to consist of the numbers 0 through 100. The lower and '
upper bounds are of integer type, so the subrange is also an integer type.

STATUS is a subrange of boolean values, which could have been declared

simply as BOOLEAN. HOT_COLORS is a subrange of the ordinal type

COLORS. It consists of the colors RED, ORANGE, and YELLOW.

TYPE
letters = 'a'..'2',
colors = (red, orange, yellow, white, green, blue);

VAR
scores = 0..100,
status = FALSE..TRUE,

hot_colors = red..yellow;

4-10 CYBIL Language Definition Revision B

REAL

. Floating-Point Type

The floating-point type defines real numbers.

. Real

The keyword used to specify a real type is:
REAL
Real numbers range in value from 4.8%¥10-1234 through 5.2%101232,

The following operations are permitted on real types: assignment, addition,
subtraction, multiplication, division, and all relational operations.

The functions $INTEGER and $REAL, described in chapter 6, convert
between integer type and real type.

Revision A Types 4-11

CELL

Cell Type ‘

The cell type represents the smallest storage location that is directly
addressable by a pointer. On NOS/VE, a cell is an 8-bit byte within a 64-bit
memory word.

The keyword used for specifying a cell type is:

CELL

Operations permitted on a cell type are assignment and comparison for
equality and inequality.

4-12 CYBIL Language Definition Revision A

. POINTER
Pointer Types

A pointer represents the location of a value rather than the value itself.
When you reference a pointer, you indirectly reference the object to which it
is pointing.

The format for specifying a pointer type is:
" type

type

Type to which the pointer can point. It can be any defined type. With the
exception of a pointer to cell type (discussed later in this chapter), the
pointer can point only to objects of the type specified.

For example,
VAR integer_pointer = "integer;

defines a pointer named INTEGER_POINTER that can point only to
integers.

any

INTEGER POINTER ——» .
- integer

The format for specifying the object of a pointer (that is, what the pointer
points to) is:

pointer_name "

pointer_name

The name you gave the pointer in the variable declaration.

This preceding notation is called a pointer reference; it refers to the object to
which pointer_name points. It can also be referred to as a dereference. For
example,

integer_pointer °

identifies a location in memory; it is the location to which INTEGER _
POINTER points.

INTEGER_POINTER ~

any

INTEGER_POINTER — integer

Revision B Types 413 ®

POINTER

You can initialize or assign a value to the object of a pointer as you would

any other variable; that is:

pointer_name " := value;

This assigns the specified value to the object that the pointer points to. For

example,

integer_pointer ~ :=5;

assigns the integer value 5 to the location INTEGER_POINTER points to:

INTEGER_POINTER *

INTEGER_POINTER —

5

You can assign the object of a pointer to a variable in the same way:

variable := pointer_name “;

This takes the value of what pointer_name points to and assigns it to the

variable. For example,

i := integer_pointer ~;

assigns to I the contents of what INTEGER_POINTER points to, that is, 5.

If a pointer reference is to another pointer type variable, meaning that the
pointer points to a pointer that in turn points to a variable, you can specify

the variable with the form:

~

pointer_name "
For example, the declarations

TYPE

integer_pointer = “integer;
VAR

pointer_2: “integer_pointer;

can be pictured conceptually as follows:

POINTER_2 * POINTER_2~"
a pointer any
POINTER_2 —®| |NTEGER_POINTER integer
® 414 CYBIL Language Definition Revision B

POINTER

POINTER_2 points to a pointer of type INTEGER_POINTER. INTEGER _
POINTER points to integers. A reference to POINTER_2 ~ refers to the
location of the pointer that in turn points to an integer. A reference to
POINTER_2 "~ refers to the location of the integer.

The value assigned to a pointer can be:
e The pointer constant NIL.

o The pointer symbol ~ followed by a variable of the type to which the
pointer can point.

e A pointer variable.
e A pointer-valued function.

NIL is the value of a pointer variable without an object; the variable is not
currently assigned to any location. It can be assigned to or compared with
any pointer of any type.

Pointers allow you to manipulate storage dynamically. Using pointers, you
can create and destroy variables while a program is executing. Memory is
allocated when the variable is created and released when it is destroyed.
Pointers also allow you to reference the variables without giving each a
unique name.

A pointer variable can be a component of a structured type as well as a valid
parameter in a function. A function can return a pointer variable as a value.

Permissible operations on pointers are assignment and comparison for
equality and inequality.

Pointers to adaptable types (adaptable strings, arrays, records, sequences,
and heaps) provide the only method for accessing objects of these types other
than through formal parameters of a procedure. In particular, pointers to
adaptable types and pointers to bound variant records are used to access
adaptable variables and bound variant records whose types have been fixed
by an ALLOCATE, PUSH, or NEXT statement (described in chapter 5).

Pointers are equivalent if they are defined in terms of equivalent types. A
pointer to a fixed type (as opposed to an adaptable type) can be assigned and
compared to a pointer to an adaptable type or bound variant record if the
adaptable type is potentially equivalent to the fixed type. (Refer to
Equivalent Types earlier in this chapter for further information on
potentially equivalent types.)

Revision B Types 415

POINTER

Example:

The following example shows the declaration and manipulation of two
pointer type variables. Comments appear to the right.

TYPE ptr = “integer;

VAR i, j, k & integer,
pl1 : ptr,

p2 : “pl,

b1, b2 : boolean;
ALLOCATE p1;

ALLOCATE p2;

IF p2 = NIL THEN
k+1
IFEND;
Pl := "G + j + 2 % k);

4-16 CYBIL Language Definition

PTR is a type that can contain pointers to ‘
integers.

P1 is a variable that can contain pointers to
integers.

P2 is a variable that can contain pointers to
P1 (that is, pointers that point to pointers to
integers). It could have been written as

P2: "~ INTEGER.

Allocates space for an integer (because that
is what P1 points to) and sets P1 to point to
that space.

Allocates space for a pointer that points to
an integer and sets P2 to point to that
pointer.

The space pointed to by P1 is set to 10.

The space pointed to by P2 is set to the
value of the pointer P1.

The integer variable J is set to what P1 .
points to: the integer 10.

The integer variable K is set to the object of
the pointer that P2 points to. (Think of P2 **
as “P2 points to a pointer; that pointer
points to an object.” You are assigning that
object to K.) P2 points to P1, which points to
the integer 10.

J and K are both 10. B1 is TRUE.

P1 points to an integer. P2 points to the
pointer (P1) that points to the same integer.
Their values are the same and B2 is TRUE.
P1 no longer points to anything.

The statement is in error because P1 does
not point to anything.

A valid statement. K is not incremented
because P2 still points to P1.

An invalid statement. The location of an ‘
expression cannot be found.

Revision A

POINTER TO CELL

Pointer to Cell
A pointer to cell type can take on values of any type.
The format for declaring a pointer to a cell is:

“CELL

A variable declared simply as a pointer type variable can take on as values
only pointers to a single type, which is specified in the pointer’s declaration.
A variable declared as a pointer to cell variable has no such restrictions. It
can take on values of any type. Also, any fixed or bound variant pointer
variable can assume a value of pointer to cell.

Permissible operations on a pointer to a cell are assignment and comparison
for equality and inequality. In addition, a pointer to a cell can be assigned to
any pointer to a fixed or bound variant type. But the pointer to the fixed or
bound variant type cannot have as its value a pointer to a variable that is
not a cell type or, furthermore, whose type is not equivalent to the type to
which the target of the assignment points. A pointer to a cell can be the
target of assignment of any pointer to a fixed or bound variant type.

Revision A Types 4-17

RELATIVE POINTER

Relative Pointer ‘

Relative pointer types represent relative locations of components within an
object with respect to the beginning of the object.

The format for specifying a relative pointer is:
REL { (parent_name)} “component_type

parent_name

Name of the variable that contains the components being designated by
relative pointers. The variable can be a string, array, record, heap, or
sequence type (either fixed or adaptable). If omitted, the default heap is
used.

component_type

Type of the component to which the relative pointer will point.

Relative pointers are generated using the standard function #REL (described
in chapter 6). A relative pointer cannot be used to access data directly.
Instead, the relative pointer must be converted to a direct pointer using the
standard function #PTR (also described in chapter 6). The direct pointer can
then be used to access the data.

Relative pointers have three major differences from the other pointers
discussed in this chapter:

e Relative pointers may need less space than other pointers.

o A linked list or array of relative pointers (or some similar organization)
within a parent type variable is still correct if the entire variable is
assigned to another variable of the same parent type.

e Relative pointers are independent of the base address of the parent type
variable.

Operations permitted on a relative pointer are assignment, comparison for
equality and inequality, and the #PTR function. Relative pointers can be
assigned and compared if they are of equivalent relative pointer types.
Relative pointer types are equivalent if they are defined in terms of
equivalent parent types and equivalent component types.

4-18 CYBIL Language Definition Revision A

STRINGS

. Structured Types

Structured types are combinations of the basic types already described in
this chapter (integer, character, boolean, ordinal, subrange, real, pointer, and

‘ cell). Even the structured types discussed here can be combined with each
other but they are still essentially groups of the basic types. The structured
types described in this section are:

e Strings
e Arrays
e Records

o Sets

Strings

A string is one or more characters that can be identified and referenced as a
whole by one name.

The format used to specify a string type is:

. STRING (length)

length
A positive integer constant expression from 1 through 65,535.

If an initial value is specified in the variable declaration for a string, it can
be:

e A string constant.
e The name of a string constant declared with a constant declaration.
e A constant expression (as described in chapter 2).

A string cannot be packed. Two string types are equivalent if they have the
same length.

The following operations are permitted on string types: assignment and

comparison (all six relational operations). For further information, refer to
Assigning and Comparing String Elements later in this chapter.

Revision A Types 4-19

STRINGS

Substrings

You can reference a part of a string (this is called a substring) or a single
character of a string.

The format for referencing a substring or single character is:
name (position {, length})

name

Name of the string.

position

Position within the string of the first character of the substring. (The
position of the first character of the string is always 1.) It must be a
positive integer expression less than or equal to the length of the string
plus one; that is,

1 < position < string length + 1
If the string length plus one is specified, the substring is an empty string.

length

Number of characters in the substring. It must be a non-negative integer
expression or * (the asterisk character). If * is specified, the substring ‘
consists of the character specified by the position parameter and all

characters following it in the string. If O is specified, the substring is an

empty string. If the parameter is omitted, a length of 1 is assumed.

420 CYBIL Language Definition Revision B

STRINGS

‘ A substring reference in the form
name(position)

is a substring of length 1, a single character. In this form, it can be used
anywhere a character expression is allowed. It can be:

e Compared with a character.
e Tested for membership in a set of characters.

® Used as the initial and/or final value in a FOR statement that is
controlled by a character variable.

e Used as a value in a CASE statement.

e Used as an argument in the standard functions $INTEGER, SUCC, and
PRED.

e Assigned to a character variable.
e Used as an actual parameter to a formal parameter of type character.

e Used as an index value corresponding to a character type index in an
array.

. A string constant, even if it is declared with a name in a CONST declaration,
is not a variable. Therefore, substrings cannot be referenced in a string
constant.

Revision A Types 421

STRINGS

Examples:
If a string variable LETTERS is declared and initialized as follows
VAR Lletters : string (6) := ‘abcdef';

the following substring references are valid:

Substring Comments

LETTERS(1) Refers to ’A’.
LETTERS(6) Refers to 'F.
LETTERS(1,6) Refers to the entire string.
LETTERS(1,*) Refers to the entire string.

LETTERS(2,5) Refers to ' BCDEF".

LETTERS(2,*) Refers to ' BCDEF’.

LETTERS(2,0) Refers to an empty string ”.
LETTERS(7,*) Refers to an empty string ”.
LETTERS(0), LETTERS(8) and LETTERS(8,0) are illegal.
If a pointer variable is declared and initialized as follows
VAR string_ptr : “string (6) := "letters;

then STRING_PTR points to the string LETTERS and the pointer variable
STRING_PTR" can be used to make substring references just like the
variable LETTERS.

Substring Comments
STRING_PTR"(1) Refers to ’A’.
STRING_PTR"(6) Refers to 'F’.

STRING_PTR"(1,6) Refers to the entire string.
STRING_PTR"(2,%) Refers to ' BCDEF’.

STRING_PTR"(2,0) Refers to an empty string .

4-22 CYBIL Language Definition Revision A

STRINGS

Assigning and Comparing String Elements

You can assign or compare a character, substring, or string to a substring,
string variable, or character variable. A character is treated as a string of
length 1.

If you are assigning a value that is longer than the substring or variable to
which it is being assigned, the value is truncated on the right. If you are
assigning a value that is shorter, spaces are appended on the right to fill the
field. This method is also used for comparing strings of different lengths.

If a substring is being assigned to a substring of the same variable, the fields
cannot overlap or the results are undefined.

The concatentation operation, CAT, cannot be used with string variables.
Example:
Assume the string variable DAY is declared and initialized as follows:

VAR
day : string (6) := 'monday';

The following assignments can be made:

short :
empty :

day (1,3);
day (1,0);

SHORT is assigned the string '"MON’. EMPTY is assigned a null string.

Revision B Types 4.23

ARRAYS

Arrays ‘

An array in CYBIL is a collection of data of the same type. You can access
an array as a whole, using a single name, or you can access its elements

individually. .

The format used for specifying an array type is:
{PACKED} ARRAY [subscript_bounds] OF type

PACKED

Optional packing parameter. When specified, the elements of the array
are mapped in storage in a manner that conserves storage space, possibly
at the expense of access time. If omitted, the array is unpacked; that is,
the elements are mapped in storage to optimize access time rather than to
conserve space. (The array itself is always mapped into an addressable
memory location; that is, it starts on a word boundary or, in the case of a
packed array in a record, on a byte boundary.) For further information on
how data is stored in memory, refer to appendix D, Data Representation
in Memory.

If the array contains structured types (such as records), the elements of

that type (the fields in the records) are not automatically packed. The
structured type itself must be declared packed.

subscript_bounds ‘

Value that specifies the size of the array and what values you can use to
refer to individual elements. The bounds can be any scalar type or
subrange of a scalar type, except REAL; the bounds is often a subrange of
integers.

type

Type of the elements within the array. The type can be any defined type,
including another array, except an adaptable type (that is, an adaptable
string, array, or record). All elements must be of the same type.

Elements of a packed array cannot be passed as reference (that is, VAR)
parameters in programs, functions, or procedures.

Two array types are equivalent if they have the same packing attribute,
equivalent subscript bounds, and equivalent component types.

The only operation permitted on an array type is assignment.

4-24 CYBIL Language Definition Revision A

ARRAYS

. Initializing Elements

An array can be initialized using an indefinite value constructor. An
indefinite value constuctor is a list of values assigned in order to the
elements of an array. The first value in the list is assigned to the first

. element, and so on. The number of values in the value constructor must be
the same as the number of elements in the array. The type of the values must
match the type of the elements in the array. An indefinite value constructor
has the form

[value {,value}...]
where value can be one of the following:
e A constant expression.
e Another value constructor (that is, another list).
o The phrase
REP number OF value

which indicates the specified value is repeated the specified number of
times.

. e The asterisk character (*), which indicates the element in the
corresponding position is uninitialized.

An indefinite value constructor can be used only for initialization; it cannot
be used to assign values during program execution. Individual elements can
be assigned during execution using the assignment statement (described in

chapter 5).

Referencing Elements

The array name alone refers to the entire structure. The format for referring
to an individual element of an array is:

array_name[subscript]

subscript

A scalar expression within the range and of the type specified in the
subscript_bounds field of the array declaration. This subscript specifies a

. particular element.

Revision A Types 425

ARRAYS

Examples: .

This example shows the definition of a type named POS_TABLE, which is

an array of 10 elements that can take on the values defined in POSITION.

The variable declaration declares variable NUMBERS to be an array of five
elements initialized to the values 1, 2, 3, 4, and 5 where 1 is the value of the ‘
first element, and so on. LETTERS is an array of 26 elements that can be

any characters. BIG_TABLE is a 100-element array, each element of which

is an array of 10 elements.

TYPE
position = (boi, asis, eoi),
pos_table = array [1..10] of position;
VAR
i : integer := 5,
numbers : array [1..5] of integer := [1,2,3,4,5],
letters = array ['a'..'z'] of char,
big_table = array [1..100] of pos_table;

The declaration of BIG_TABLE is equivalent to:
VAR big_table = array [1..100] of array [1..10] of position;

Individual elements can be referenced using the following statements.

numbers [i] This reference is the same as ‘
NUMBERS]|5]; it refers to the fifth
element of the array NUMBERS.

letters ['b'] := 'B'; This statement sets the second element of
the array LETTERS to the uppercase
character B.

big_table [131[10] := asis; This statement sets the tenth element of
the thirteenth array to ASIS.

The following example shows the declaration and initialization of a two-
dimensional array named DATA_TABLE. All of the components of the third
element of the array (which is an array itself) are set to zero. Notice that the
third element of the last array, DATA_TABLE [4][3], is uninitialized.

TYPE
innerarray = array [1..5] of integer,
twodim = array [1..4] of innerarray;

VAR "I'

data_table : twodim := C L[5, -10, 2, 6, 3 1],
L4, 11,19, -3, 61,
Crep 5 of 01,
L3

, =9, %, 4, 151 1; .

4-26 CYBIL Language Definition Revision B

RECORDS

. Records

Records are collections of data that can be of different types. You can access
a record as a whole using a single name, or you can access elements
individually.

A record has a fixed number of components, usually called fields, each with
its own unique name. Different fields are used to indicate different data types
Or purposes.

There are two types of records: invariant records and variant records.
Invariant records consist of fields that don’t change in size or type. Variant
records can contain fields that vary depending on the value of a key variable.
Formats used for specifying both kinds of records are given later in this
chapter.

Operations permitted on record types are assignment and, for invariant
records only, comparison for equality and inequality. The invariant records
being compared cannot contain arrays as fields.

Invariant Records

An invariant record consists of fields that do not vary in size or type once
they have been declared. They are called fixed or invariant fields.

The format used for specifying an invariant record is:

{PACKED} RECORD
field_name : {ALIGNED {/offset MOD base]}} type
{field_name : {ALIGNED {/offset MOD base}}} type}...
RECEND

PACKED

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly at
the expense of access time. If omitted, the record is unpacked; that is, the
fields are mapped in storage to optimize access time rather than to
conserve space. For further information on how data is stored in memory,
refer to appendix D, Data Representation in Memory.

If one of the fields is a structured type (such as another record), the
elements of that type are not packed automatically. The structured type
itself must be declared packed.

field_name

Name identifying a particular field. The name must be unique within the
record. Outside of the record declaration, it can be redefined.

Revision A Types 4-27

RECORDS

ALIGNED .

Optional alignment parameter. If specified, it can appear alone or with an
offset, in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary to
facilitate rapid access to the field. This may negate some of the effect of
packing the record. For further information, refer to Alignment later in
this chapter.

offset MOD base

Optional offset to be used in conjunction with the ALIGNED parameter.
This offset causes the field to be mapped to a particular hardware address
relative to the specified base and offset. It can be a particular word or a
particular byte within a word. Base is evaluated first to find the word
boundary; offset is then evaluated to determine the number of bytes offset
within that word. Filler is created if necessary to ensure that the field
begins on the specified word or byte.

offset

Byte offset within the word specified by base. It must be an integer
constant less than base. .

base

Word boundary. It must be an integer constant that is divisible by 8.
For automatic variables, the base can only be 8.

type
Any defined type, including another record, but not an adaptable type.

Elements of a packed record cannot be passed as reference (that is, VAR)
parameters in programs, functions, or procedures unless they are aligned.

The only operations possible on whole invariant records are assignment and
comparison. A record can be assigned to another record if they are both of

the same type. A record can also be compared to another record for equality

or inequality if they are both of the same type. Invariant record types are the

same if they have the same packing attributes, the same number of fields,

and corresponding fields have the same field names, same alignment

attribute, and equivalent types. ‘

4-28 CYBIL Language Definition Revision A

RECORDS

. Example:

This example shows the definition of two new types, both records. The record
named DATE has three fields that can hold, respectively, DAY, MONTH,
and YEAR. The record named RECEIPTS appears to contain two fields,
NAME and PAYMENT; but PAYMENT is itself a record consisting of the
three fields in DATE, just described. Initialization of fields within records is
discussed under Initializing Elements later in this chapter.

TYPE
date = RECORD
day : 1..31,
month : string (4),
year : 1900..2100,
RECEND,

receipts = RECORD
name : string (40),
payment : date,
RECEND;

Variant Records

A variant record contains fields that may vary in size, type, or number
depending on the value of an optional tag field. These different fields are
called variant fields or simply variants.

The format used for specifying a variant record is:

{PACKED} {BOUND} RECORD
{fixed_field_name : {ALIGNED {{offset MOD basef}} type}...t
CASE {tag_field_name : } tag_field_type OF
=tag_field_value =
variant_field
{= tag_field_value =
variant_field;...
CASEND
RECEND

t When more than one fixed field is specified, they must be separated by
commas.

Revision A Types 429

RECORDS

PACKED .

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly at
the expense of access time. If omitted, the record is unpacked; that is, the
fields are mapped in storage to optimize access time rather than to
conserve space. For further information on how data is stored in memory,
refer to appendix D, Data Representation in Memory.

If a field is a structured type (such as another record), the elements of that
type are not packed automatically. The structured type itself must be
declared packed.

BOUND

Optional parameter indicating that this is a bound variant record. If
specified, the tag_field_name parameter is required. Additional
information on bound variant records follows the parameter descriptions.

fixed_field_name

The name of a fixed field (one that does not vary in size), as described
under Invariant Records earlier in this chapter. The name must be unique
within the record. Outside of the record declaration, it can be redefined.
There can be zero or more fixed fields.

ALIGNED ‘
Optional alignment parameter; the same as that for an invariant record.
If specified, it can appear alone or with an offset in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary to
facilitate rapid access to the field. This may negate some of the effect of
packing the record. For further information, refer to Alignment later in
this chapter.

4-30 CYBIL Language Definition Revision A

RECORDS

offset MOD base

Optional offset to be used in conjunction with the ALIGNED parameter,
the same as that for an invariant record. This offset causes the field to be
mapped to a particular hardware address relative to the specified base
and offset. It can be a particular word or a particular byte within a word.
Base is evaluated first to find the word boundary; offset is then evaluated
to determine the number of bytes offset within that word. Filler is created
if necessary to ensure that the field begins on the specified word or byte.

offset

Byte offset within the word specified by base. It must be an integer
constant less than base.

base

Word boundary. It must be an integer constant that is divisible by 8.
For automatic variables, the base can only be 8.

type
Any defined type, including another record, but not an adaptable type.

tag_field_name

Optional parameter specifying the name of the variable that determines
the variant. The current value of this variable determines which of the
variant fields that follow will actually be used. If omitted, the variant that
had the last assignment made to one of its fields is used. This parameter
is required if the record is a bound variant record (BOUND is specified).
Additional information is given following the parameter descriptions.

tag_field_type

Any scalar type. This type defines the values that the tag_field_value can
have.

tag_field_value

A constant scalar expression or subrange. It must be one of the possible
values that can be assigned to the variable specified by tag_field_name.
It must be of the type and within the range specified by tag_field _type.
Specifying a subrange has the same effect as listing each value
separately.

variant_field

Zero or more fixed fields of the same form as that shown in the second
line of this format. This field exists only if the current value of tag_field _
name is the same as that in the tag_field_value associated with the
variant_field. The last field can be a variant itself.

Revision A Types 431

RECORDS

The variant fields must follow all invariant (fixed) fields in the record. The

field following the reserved word CASE is called the tag_field_name. The
tag_field_name can take on different values during execution. When its

value matches one of the values specified in a tag_field_value, the variants
associated with that tag_field value are used. Variants themselves consists ‘
of zero or more fixed fields optionally followed by another variant. If the last

field is itself a variant, it can have another CASE clause, tag_field_name,

and so on.

The tag_field_name is an optional field. When it is omitted, no storage is
assigned for the tag field. If the record has no tag field, you choose a variant
by making an assignment to a subfield within a variant. The variant
containing that subfield becomes the currently active variant. In a variant
record without a tag field, all fields in a new active variant become undefined
except the subfield that was just assigned. An attempt to access a variant
field that is not currently active produces undefined results.

Space for a variant record is allocated using the largest possible variant.

Variant record types are equivalent if they have the same packing attribute,
their fixed fields are equivalent (as defined for invariant record types), they
have the same tag field names, their tag field types are equivalent, their tag
field values are the same, and their corresponding variant fields are

equivalent. .

A bound variant record is specified by including the BOUND parameter; the
tag_field_name is also required. A bound variant record type can be used
only to define pointers for bound variant record types (that is, bound variant
pointers). A variable of this type is always allocated in a sequence or heap, or
in the run-time stack managed by the system.

When allocating a bound variant record, you must specify the tag field
values that select the variation of the record. Only the specified space is
allocated. The ALLOCATE statement in this case returns a bound variant
pointer.

If a formal parameter of a procedure is a variant record type, the actual
parameter cannot be a bound variant record type.

A record cannot be assigned to a variable of bound variant record type.

Bound variant record types are equivalent if they are defined in terms of
equivalent, unbound records. A bound variant record type is never equivalent
to a variant record type. .

4-32 CYBIL Language Definition Revision A

RECORDS

. Example:

This example defines a type named SHAPE, which becomes the type of the
tag field, in this case a variable named S. When S is equal to TRIANGLE,
the record containing fields SIZE, INCLINATION, ANGLE1, and ANGLE2
is used as if it were the only record available. When the value of S changes,
the record variant being used changes too.

TYPE
shape = (triangle, rectangle, circle),
angle = -180..180,
figure = RECORD
X,
Y,
area : real,
CASE s : shape OF
= triangle =
size : real,
inclination,
anglel,
angle2 : angle,
= rectangle =
sidel,

side2 : integer,
‘ skew,
angle3 : angle,
= circle =
diameter : integer,
CASEND,
RECEND;

Revision A Types 4-33

RECORDS

Initializing Elements ‘

A record can be initialized using an indefinite value constructor. An

indefinite value constructor is a list of values assigned in order to the fields

of a record. The first value in the list is assigned to the first field, or first

element in a field, and so on. The type of the values must match the type of ’
the elements in the field. An indefinite value constructor has the form

[value {,value}...]

where value can be one of the following:

e A constant expression.

e Another value constructor (that is, another list).

o The asterisk character (*), which indicates the element in the
corresponding position is uninitialized.

An indefinite value constructor can be used only for initialization; it cannot
be used to assign values during program execution. Individual fields can be
assigned during execution using the assignment statement (described in
chapter 5).

Example:

The variable BIRTH_DAY, in this example, is a record with the fields
described in the record type named DATE. It is initialized using an indefinite
value constructor to the 24th day of August, 1950.

TYPE
date = RECORD
day : 1..31,
month : string (4),
year : 1900..2100,
RECEND;
VAR
birth_day : date :=[24, AUG, 1950];

4-3¢ CYBIL Language Definition Revision B

RECORDS

. Referencing Elements

The record name alone refers to the entire structure. The format for accessing
a field in a record is:

‘ record_name.field_name {.sub_field_namej...

record_name

Name of the record as declared in the variable declaration.

field_name

Name of the field to be accessed. If the field is an array, a reference to an
individual element can also be included using the form:

field_name[subscript]

sub_field name

Optional field name. This parameter is used if the field previously
specified is itself a structured type, for example, another record. If the
contained field is an array, a reference to an individual element can be
included using the form:

sub_field _name[subscript]

. Example:

The variable PROFILE is a record with the fields described in the record
type STATS. In this example, PROFILE is initialized with the values in the
indefinite value constructor in the variable declaration.

TYPE stats = RECORD
age : 6..66,
married : boolean,
date : RECORD
day : 1..31,
month : 1..12,
year : 80..90,
RECEND,
RECEND;

VAR profile : stats := [23,FALSE,[3,5,821];
The following references can be made to fields.

This field contains 23.
This field contains FALSE.
This field contains 3.

profile.age
profile.married
profile.date.day

profile.date.month

. profile.date.year

Revision A

This field contains 5.
This field contains 82.

Types 4-35

RECORDS

Alignment .

Unpacked records and their fields are always aligned (that is, directly
addressable). Even if it is packed, a record itself is always aligned (that is,
the first field is directly addressable) unless it is an unaligned field within
another packed structure. Fields in a packed record, however, are not aligned
unless the ALIGNED attribute is explicitly included. Aligning the first field
of a record aligns the entire record.

Unpacked records and their fields, because they are aligned, can always be
passed as reference (that is, VAR) parameters in programs, functions, and
procedures. Packed records must be aligned to be valid as reference
parameters. Packed, unaligned records cannot be used.

4-36 CYBIL Language Definition Revision A

SETS

‘ Sets

A set is a collection of elements that, unlike arrays and records, is always
operated on as a single unit. Individual elements are never referenced.

' The format used to specify a set type is:

SET OF scalar_type

scalar_type

Type of all the elements that will be within the set. It can be a scalar type
or a subrange of a scalar type.

All members of a set must be of the same type. Members within a set have no
specific order; that is, order has no effect in any of the operations performed
on sets.

Set types are equivalent if their elements have equivalent types.

Permissible operations on sets are assignment, intersection, union,
difference, symmetric difference, negation, inclusion, identity, and
membership. Refer to Operators in chapter 5 for further information on set
operations. The SUCC and PRED functions are not defined for set types.

The difference (-) or symmetric difference (XOR) of two identical sets is the
‘ empty set. The empty set is contained in any set. For a given set, the
complement of the empty set, -[], is the full set.

Initializing and Assigning Elements

Values can be assigned to a set using an indefinite value constructor or a set
value constructor. An indefinite value constructor can be used only for
initialization; a set value constructor can be used for both initialization and
assignment during program execution.

An indefinite value constructor is a list of values assigned to the set. The
type of the values must match the type of the set. An indefinite value
constructor has the form:

[value {,value}...]

value

A constant expression or another indefinite value constructor (that is,
. another list).

Revision A Types 4-37

SETS

A set value constructor constructs a set through explicit assignment. A set

value constructor has the form:
$name [{ value {,value}...} |

name

Name of the set type. The dollar sign ($) must precede the name to

indicate a set value constructor.

value

An expression of the same type as that specified for the set. When used in

initialization, only constants or constant expressions are valid. The empty

set can be specified by [).

A set value constructor can be used wherever an expression can be used.

Example:

This example shows the declaration of a variable named ODD that is a type
of a set of integers from O through 10. It is initialized with an indefinite value
constructor assigning the integers 1, 3, and 5 to the set. The variable
VOWELS is a set that can contain any of the letters A through Z. It is
assigned the letters A, E, I, O, and U using a set value constructor. It
constructs a set of type C, which contains the specified letters; then that set
is assigned to the set VOWELS. The variables LIST_1 and LIST_2 are sets
that can contain any characters. LIST _1 is assigned, using a set value
constructor, the letters X, Y, and Z. LIST _2 is assigned the complement of X,
Y, and Z, that is, a set consisting of every character except the letters X, Y,

and Z.

TYPE
a = set of 0..10,
c = set of 'a'..'z',
ch = set of char;
VAR
odd : a := 11, 3, 51,
vowels : c,
list_1, Llist_2 : ch;

vowels := $cl'a', 'e', 'i', ‘o'
list_1 == $chl'x', 'y', '2'];
list_2 == =$chl'x', 'y', '2'];

4-38 CYBIL Language Definition

Revision B

SEQUENCES

' Storage Types

Storage types represent structures to which variables can be added, deleted,
and referenced under program control. (The statements used to access the
storage types are described under Storage Management Statements in
chapter 5.) There are two storage types:

e Sequences

e Heaps

Sequences

A sequence type is a storage structure whose components are referenced
sequentially using pointers. These pointers are constructed by the NEXT and
RESET statements (described in chapter 5).

The format used for specifying a sequence type is:
SEQ ({REP number OF} type {,{REP number of} type}...)

number

Positive integer constant expression. This is an optional parameter
specifying the number of repetitions of the specified type.

type
A fixed type that can be a user-defined type name; one of the predefined

types integer, character, boolean, real, or cell; or a structured type using
the preceding types.

The phrase “REP number OF type” can be repeated as many times as
desired. It specifies that storage must be available to hold the indicated
number of occurrences of the named types simultaneously. The types that
are actually stored in a sequence do not have to be the same as the types
specified in the declaration, but adequate space must have been allocated to
hold those types in the declaration. In other words, if a sequence is declared
with several repetitions of integer type, the space to hold these integers has
to be available, but it might actually hold strings or boolean values.

Sequence types are equivalent if they have the same number of REP phrases
and corresponding phrases are equivalent. Two REP phrases are equivalent
if they have the same number of repetitions of equivalent types.

Assignment to another sequence is the only operation permitted on
sequences.

Revision A Types 4-39

HEAPS

Heaps ‘

A heap type is a storage structure whose components are allocated explicitly

by the ALLOCATE statement and released by the FREE and RESET

statements (described in chapter 5). They are referenced by pointers

constructed by the ALLOCATE statement. ‘

The format used for specifying a heap type is:
HEAP ((REP number OF} type {,{REP number of} type}...)

number

Positive integer constant expression. This is an optional parameter
specifying the number of repetitions of the specified type.

type

A fixed type that can be a user-defined type name; one of the predefined
types integer, character, boolean, real, or cell; or a structured type using
the preceding types.

The phrase “REP number OF type” can be repeated as many times as

desired. It specifies that storage must be available to hold the indicated

number of occurrences of the named types simultaneously. The types that

are actually stored in a heap do not have to be the same as the types

specified in the declaration, but adequate space must have been allocated to .
hold those types in the declaration. In other words, if a heap is declared with
several repetitions of integer type, the space to hold these integers has to be
available, but it might actually hold strings or boolean values.

Heap types are equivalent if they have the same number of REP phrases and
corresponding phrases are equivalent. Two REP phrases are equivalent if
they have the same number of repetitions of equivalent types.

The default heap can be managed with the ALLOCATE and FREE
statements in the same way as a user-defined heap. For further information,
refer to the descriptions of these statements in chapter 5.

440 CYBIL Language Definition Revision A

ADAPTABLE STRINGS

Adaptable Types

An adaptable type is a type that has indefinite size or bounds; it adapts to
data of the same type but of different sizes and bounds. The types described
thus far in this chapter are fixed types. An adaptable type differs from a
fixed type in that the storage required for a fixed type is constant and can be
determined before execution. Storage for an adaptable type is determined
during program execution.

An adaptable type can be a string, array, record, sequence, or heap. An
adaptable type can be used to define formal parameters in a procedure and
adapatable pointers. Pointers are the mechanism used for referencing
adaptable variables.

The size of an adaptable type must be fixed during execution. This can be
done in one of three ways:

e If the adaptable type is a formal parameter to a procedure or function, the
size is fixed by the actual parameters when the procedure or function is
called. You can determine the length of an actual parameter string using
the STRLENGTH function, and the bounds of an actual parameter array
using the UPPERBOUND and LOWERBOUND functions. (For further
information, refer to the description of the appropriate function in chapter
6.)

e An adaptable pointer type on the left side of an assignment statement is
fixed by the assignment operation. It can be assigned any pointer whose
current type is one of the types that the adaptable type can take on.

o An adaptable type can be fixed explicitly using the storage management
statements (described in chapter 5).

An adaptable type is declared with an asterisk taking the place of the size or
bounds normally found in the type or variable declaration.

Adaptable Strings
The format used for specifying an adaptable string is:
STRING (* {<= length})

length

Optional parameter specifying the maximum length of the adaptable
string. If omitted, 65,535 characters is assumed.

If the string exceeds the maximum allowable length, an error occurs.

Two adaptable string types are always equivalent.

Revision B Types 441

ADAPTABLE ARRAYS

Adaptable Arrays ‘

The format used for specifying an adaptable array is:
{PACKED} ARRAY [{lower_bound ..} *] OF type
PACKED

Optional packing parameter. When specified, the elements of the array
are mapped in storage in a manner that conserves storage space, possibly
at the expense of access time. If omitted, the array is unpacked; that is,
the elements are mapped in storage to optimize access time rather than to
conserve space. (The array itself is always mapped into an addressable
memory location.) For further information on how data is stored in
memory, refer to appendix D, Data Representation in Memory.

If the array contains structured types (such as records), the elements of
that type (the fields in the records) are not automatically packed. The
structured type itself must be declared packed.

lower_bound

A constant integer expression that specifies the lower bound of the
adaptable array. This parameter is optional, but its use is encouraged.
Omission of this parameter (only the * appears) indicates it is an
adaptable bound of type integer.

type .

Type of the elements within the array. The type can be any defined type
except an adaptable type (that is, an adaptable string, array, record,
sequence, or heap). All elements must be of the same type.

Only one dimension can be adaptable in an array and that dimension must
be the outermost (first one in the declaration).

Adaptable arrays adapt to a specific range of subscripts. An adaptable array
can adapt to any array with the same packing attribute, equivalent subscript
bounds, and equivalent component types. If a lower bound is specified in the
adaptable array declaration, both arrays must also have the same lower
bound.

Adaptable array types are equivalent if they have the same packing

attributes and equivalent component types, and if their corresponding array

and component subscript bounds are equivalent. Two subscript bounds that
contain asterisks only are always equivalent. Two subscript bounds that

contain identical lower bounds are equivalent. '

4-42 CYBIL Language Definition Revision A

ADAPTABLE RECORDS

‘ Adaptable Records

An adaptable record contains zero or more fixed fields followed by one
adaptable field that is a field of an adaptable type.

‘ The format used for specifying an adaptable record is:

{PACKED} RECORD
{fixed_field_name : {ALIGNED {[offset MOD base}}} type}...T
adaptable_field_name : {ALIGNED {/offset MOD base]}}
adaptable_type
RECEND

PACKED

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly at
the expense of access time. If omitted, the record is unpacked; that is, the
fields are mapped in storage to optimize access time rather than to
conserve space. For further information on how data is stored in memory,
refer to appendix D, Data Representation in Memory.

If a field is a structured type (such as another record), the elements of that
type are not packed automatically. The structured type itself must be
declared packed.

. fixed_field_name

Name identifying a particular fixed field. The name must be unique
within the record.

ALIGNED

Optional alignment parameter. If specified, it can appear alone, or with
an offset in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary to
facilitate rapid access to the field. This may negate some of the effect of
packing the record. For further information, refer to Alignment earlier in
this chapter.

T If more than one fixed (nonadaptable) field is specified, they must be
separated by commas.

Revision A Types 4-43

ADAPTABLE RECORDS

[offset MOD base] .

Optional offset to be used in conjunction with the ALIGNED parameter.
This offset causes the field to be mapped to a particular hardware address
relative to the specified base and offset. Filler is created if necessary to
ensure that the field begins on the specified addressable unit.

offset

An integer constant. Offset must be less than base.

base

An integer constant that must be divisible by 8. For automatic
variables, the base can only be 8.

type
Any defined type, including another record, but not an adaptable type.

adaptable_field_name

Name identifying the adaptable field.

adaptable_type
An adaptable type.

An adaptable record can adapt to any record whose types are the same
except for the last field. That last field must be one to which the adaptable ‘
field can adapt.

Two adaptable record types are equivalent if they have the same packing
attributes, the same alignment, the same number of fields, and
corresponding fields with identical names and equivalent types.

4-44 CYBIL Language Definition Revision A

ADAPTABLE SEQUENCES

. Adaptable Sequences

The format used for specifying an adaptable sequence is:

. SEQ ()

An adaptable sequence can adapt to a sequence of any size.

Two adaptable sequence types are always equivalent.

Revision A Types 4-45

ADAPTABLE HEAPS

Adaptable Heaps

The format used for specifying an adaptable heap is:
HEAP (*)
An adaptable heap can adapt to a heap of any size.

Two adaptable heap types are always equivalent.

4-46 CYBIL Language Definition Revision A

L Expressions and Statements 5

This chapter describes expressions and statements that can be used within a
‘ CYBIL program, procedure, or function.

D54 0) 4TI o) o 1= 1A 51
(00723 22 s Ve 1= O 51

(0] 4723221 7o) = U PP 52
P2 N7 o 8 =) 1 71O 513
Assignment Statement.ttt i 5-13
Structured Statements i e i e 5-16
BEGIN Statementoouuuuurinteeeiiiiiieeeeaennneeaanns 5-16

FOR Statementttt ittt e ieaaanns 517
REPEAT Statementc.ouuetriiieiiiiiiiinenaaaiieennnn. 5-20
WHILE Statementoovurniiiii it ii e eiieneeens 5-21
Control Statementsciiiiiir i it ie ettt 5-23
TF Statementttt e e e 5-24
CASE Statementooiiiiieii et 5-26
CYCLE Statementovurirer ettt eieiieeeeanns 5-28
EXIT Statementoiiiiiiiiiiiiii ittt iee e 5-30
RETURN Statementoouuiiiiiririeieeeieeeanannenneennn 5-31

' Storage Management Statements. ..., 5-32
RESET Statementoviiiiiiiiet et ieieee e 5-35
NEXT Statementooorniiiit it et 5-37
ALLOCATE Statementouurneitiiiiee .. 5-38
FREE Statementooiiiriririiitiiiiieiaiiennenenannnns 5-39
PUSH Statementooiiiiiiitit ittt ieeaaaeaennnann 5-40

Expressions and Statements 5

Expressions

Expressions are made up of operands and operators. Operators act on
operands to produce new values. (Constant expressions are evaluated to
provide values for constants. Refer also to Constant Expressions in chapter
2.)

In general, operations involving nonequivalent types are not allowed; one
type cannot be used where another type is expected. Exceptions are noted in
the following descriptions.

Operands

Operands hold or represent the values to be used during evaluation of an
expression. An operand can be a variable, constant, name of a constant, set
value constructor, function reference (either standard function or user-
defined function), pointer to a procedure name, pointer to a variable, or
another expression enclosed in parentheses.

The value of a variable being used as an operand is the last value assigned
to it. A constant name is replaced by the constant value associated with it in
the constant declaration.

A function reference causes the function to be executed; the value returned by
the function takes the place of the function reference in the expression.

Revision A Expressions and Statements ~ 5-1

OPERATORS

Operators ‘

Operators cause an action to be performed on one operand or a pair of

operands. Many of the operators can be used only on basic types; they will be

noted in their individual descriptions. Some operators can be used on sets. ‘
Although they are discussed in the individual descriptions that follow, there

is also a separate description in this chapter on set operations.

An operation on a variable or component of a variable that has an undefined
value will produce an undefined result.

There are five kinds of operators, many of which are identified by reserved
symbols. They are listed here in the order in which they are evaluated from
highest to lowest precedence.

e Negation operator (NOT)

e Multiplication operators (* , DIV, / , MOD, and AND)
e Sign operators (+ and -)

e Addition operators (+, -, OR, and XOR)

e Relational operators (<, <=,>,>= = <> and IN)

In the relational operators that consist of two symbols (that is, <=, >=, .
and < >), the symbols cannot be separated by a space or by any other
character; they must appear together.

When an expression contains two or more operators of the same precedence,
operations are performed from left to right. The only way to explicitly change
the order of evaluation is to use parentheses. Parentheses indicate that the
expression inside them should be evaluated first.

Negation Operator
The negation operator, NOT, applies only to boolean operands.

NOT TRUE equals FALSE. NOT FALSE equals TRUE.

Multiplication Operators

The multiplication operators perform multiplication and set intersection (*),
integer quotient division (DIV), real quotient division (/), remainder division ‘
(MOD), and the logical AND operation (AND). Table 5-1 shows the

multiplication operators, the permissible types of their operands, and the

type of result they produce.

5-2 CYBIL Language Definition Revision A

OPERATORS

. Table 5-1. Multiplication Operators

Type of Type of
Operator Operation Operands Result
* Multiplication Integer or subrange Integer
of integer
Real Real
* Set intersection Set of a scalar type Set of the
same type
DIV Integer quotientt Integer or subrange Integer
of integer
/ Real quotient Real Real
MOD Remaindertt Integer or subrange Integer
of integer
AND Logical ANDT1+ Boolean Boolean

t Integer quotient refers to the whole number that results from a
division operation. The remainder is ignored. A more formal definition
. is: for positive integers a, b, and n,

aDIVb=n

where n is the largest integer such thatb * n <= a.
For one or two negative integers,

(-a) DIV b =(a) DIV (-b) = - (a DIV b) and
(-a) DIV (-b)=a DIV b

1t Remainder refers to the remainder of a division operation. A more
formal definition is:

aMODb=a-(aDIVb)*b

1+ TRUE AND FALSE = FALSE
TRUE AND TRUE = TRUE
FALSE AND FALSE = FALSE
‘ FALSE AND TRUE = FALSE

When the first operand is FALSE, the second operand is never
evaluated.

Revision A Expressions and Statements 5-3

OPERATORS

Sign Operators ‘

The sign operators perform the identity operation (+) and sign inversion and
set complement operation (-). Table 5-2 shows the sign operators, the
permissible types of their operands, and the type of result they produce.

Table 5-2. Sign Operators

Type of Type of
Operator Operation Operands Result
+ Identity Integer Integer
(indicates a
positive operand) Real Real
- Sign inversion Integer Integer
(indicates a
negative operand) Real Real
- Set complement Set of a Set of the
scalar type same type
Addition Operators ‘

The addition operators perform addition and set union (+), subtraction,
boolean difference, and set difference (-), the logical OR operation (OR), and
the exclusive OR operation (XOR). Table 5-3 shows the addition operators,
the permissible types of their operands, and the type of result they produce.

5-4 CYBIL Language Definition Revision A

OPERATORS

Table 5-3. Addition Operators

Type of Type of
Operator Operation Operands Result
+ Addition Integer of subrange Integer
of integer
+ Set union Set of a Set of the
scalar type same type
- Subtraction Integer or subrange Integer
of integer
Real Real
- Boolean Boolean Boolean
differencet
- Set difference Set of a Set of the
scalar type same type
OR Logical ORtt Boolean Boolean
XOR Exclusive OR{1t Boolean Boolean
‘ Symmetric Set of a Set of the
difference scalar type same type

t TRUE - TRUE = FALSE
TRUE - FALSE = TRUE
FALSE - TRUE = FALSE
FALSE - FALSE = FALSE

t+ TRUE OR TRUE = TRUE
TRUE OR FALSE = TRUE
FALSE OR TRUE = TRUE
FALSE OR FALSE = FALSE

When the first operand is TRUE, the second operand is never
evaluated.

t# TRUE XOR TRUE = FALSE
TRUE XOR FALSE = TRUE
FALSE XOR TRUE = TRUE

. FALSE XOR FALSE = FALSE

Revision A Expressions and Statements 55

OPERATORS

Relational Operators ‘

The relational operators (<, <=, >, >=, = <> and IN) test for the truth or falsity

of these given conditions: less than (<), less than or equal to or subset of a set

(<=), greater than (>), greater than or equal to or a superset of a set (>=), equal

to or set identity (=), not equal to or set inequality (< >), and set membership .
(IN).

Because relational operators are valid on so many different types, some
special points about each type are noted next. Following these comments,
table 5-4 lists the relational operators and the permissible types of their
operands; they always produce a boolean type result.

Comparison of Scalar Types

The comparison operators (<,<=,>,>= = and <>) are allowed only
between operands of the same scalar type or between a substring of length 1
and a character.

For integer type operands, the relationships all have their usual meaning.

For character type operands, each character is essentially mapped to its
corresponding integer value according to the ASCII collating sequence. (This

is the same operation performed by the SINTEGER function described in

chapter 6.) The operands and relational operators are then evaluated using .
the characters’ integer values.

For boolean type operands, FALSE is always considered to be less than
TRUE.

For ordinal type operands, operands are equal only if they are the same
value; otherwise, they are not equal. For the other relational operators, each
ordinal is essentially mapped to the corresponding integer value of its
position in the ordinal list where it is defined. (This is the same operation
performed by the $INTEGER function described in chapter 6.) The operands
and relational operators are then evaluated using the ordinals’ integer
values. For an example, refer to the discussion of ordinal types under Scalar
Types in chapter 4.

Operands that are a subrange of a scalar type can be compared with
operands of the same type, including another subrange of the same type.

56 CYBIL Language Definition Revision A

OPERATORS

Comparison of Floating-Point Types

All of the comparison operators are valid between operands of the real type.

Comparison of Pointer Types

Two pointers can be compared if they are pointers to equivalent or
potentially equivalent types. (For further information on equivalent types,
refer to Equivalent Types in chapter 4.) For potentially equivalent types, one
or both of the pointers can be pointers to adaptable or bound variant types.
The current type of such a pointer must be equivalent to the type of the
pointer with which it is being compared; if it is not, the operation is
undefined.

Pointers can be compared for equality and inequality only. Two pointers are

equal if they designate the same variable or if they both have the value NIL.
A pointer of any type can be compared with the value NIL. Two pointers to a
procedure are equal if they designate the same declaration of a procedure.

Comparison of Relative Pointers

Two relative pointers can be compared only if they are of equivalent types.
Two relative pointers are equal if they can be converted to equal pointers
using the #PTR function (described in chapter 6).

Comparison of String Types

All of the comparison operators are valid between operands that are strings.
If the lengths of the two string operands are unequal, spaces are appended to
the right of the shorter string to fill the field.

Strings are compared character by character from left to right; that is, each
character from one string is compared with the character in the
corresponding position of the second string. Each character is compared
using the same method as for operands of character type; the integer value of
the character, when mapped to the ASCII collating sequence, is used.

Revision A Expressions and Statements 5-7

OPERATORS

Comparison of Sets and Set Membership .

Comparison operators have slightly different meanings for sets than for

other types. The only comparison operators valid for sets are: = (meaning

identical to), < > (meaning different from), <= (meaning the left operand is

contained in the right operand), and >= (meaning the left operand contains '
the right operand). These operators are valid between two sets of the same

type. Their exact meanings are detailed later in this chapter under Set

Operators.

The other relational operator for sets is IN. A specified operand is IN a set if
that operand is a member of the set. The set must be the same type or a
subrange of the same type as the operand. The operand can be a subrange of
the type of the set.

Comparison of Other Types

Invariant records can be compared for equality and inequality only. Two
equivalent records are equal if their corresponding fields are equal.

The following types cannot be compared:

e Arrays or structures that contain an array as a component or field.

e Variant records. ‘
o Sequences.

e Heaps.

Records that contain a field of one of the preceding types.

However, pointers to these types can be compared.

5-8 CYBIL Language Definition Revision A

Table 5-4. Relational Operators

OPERATORS

Type of Type of
Operator Operation Left Operand Right Operand
< Less than Any scalar The same
type scalar type
<= Less than or A string A string of
equal to the same
length
> Greater than
>= Greater than or A string A character
equal to of length 1t
= Equal to
<> Not equal to A character A string
of length 11
IN Set membership Any scalar A set of the
type same type
A string A set of
of length 1 character type
= Equality (also A set of any A set of the
called identity) scalar type same type
<> Inequality
<= Is contained in
<= Contains
= Equality A nonvariant The same type
<> Inequality record type
containing
no arrays

Any pointer
type or the
value NIL

The same type
or the value
NIL

1t The string of length 1 has the form
STRING(position)
where the length is implied. The form
STRING(position,1)

is not valid in this case.

Revision A

Expressions and Statements

OPERATORS

Set Operators ‘

The set operators have already been mentioned briefly in the preceding
sections on multiplication, sign, addition, and relational operators. This
section discusses all of them and details how they are used with sets.

The set operators perform assignment, union (+), intersection (*), difference
(-), symmetric difference (XOR), negation (-), identity or equality (=),
inequality (<>), inclusion (<=), containment (>=), and membership (IN).

Assignment is discussed under Sets in chapter 4. The next five operations
(union, intersection, difference, symmetric difference, and negation) all
produce results that are sets. They are described in table 5-5. The remaining
operations (identity, inequality, inclusion, containment, and membership)
produce boolean results. They are described in table 5-6.

The relational operations described in table 5-6 take place only after any
operations described in table 5-5 have been performed.

@® 510 CYBIL Language Definition Revision B

OPERATORS

‘ Table 5-5. Operations That Produce Sets

Operator

Operation

Description of Operation

+

XOR

Union

Difference

Intersection

Negation
(complement)

Symmetric
difference

The resulting set consists of all members of
both sets. The result of A + B is all elements of
sets A and B.

The resulting set consists of the members in
the lefthand set that are not in the righthand
set. The result of A - B is the elements of A
that are not in B. This operation differs from
negation in that two operands are present.

The resulting set consists of the members that
are in both sets. The result of A * B is all
elements that are in both A and B.

The resulting set consists of the members of the
set’s type that are not in the set. The result of
-A is all elements of A’s type that are not in A.
This operation differs from the difference
operation in that only one operand is present.

The resulting set consists of the members of
either but not both sets. The result of A XOR B
is all elements in A or B that are not common
to both A and B.

Revision B

Expressions and Statements — 5-11

OPERATORS

Table 5-6. Operations That Produce Boolean Results ‘

Operator Operation Description of Operation

= Equality The resulting value is TRUE if every member
(identity) of one set is present in the other set and vice .

versa. A = B is TRUE if every element of A is in
B and every element of B is in A. It is also
TRUE if A and B are both empty sets. In any
other case, it is FALSE.

> Inequality The resulting value is TRUE if not every
member of one set is a member of the other set.
A <>Bis TRUE if A= Bis FALSE.

<= Inclusion The resulting value is TRUE if every member
of the lefthand set is also a member of the
righthand set. A <= B is TRUE if every element
of A is in B. It is also TRUE if A is an empty
set. In all other cases, it is FALSE.

>= Containment The resulting value is TRUE if every member
of the righthand set is also a member of the
lefthand set. A >= B is TRUE if every element
of Bis in A (that is, B <= A). .

IN Membership This operation differs somewhat from the
others in that it can specify as an operand a
value or a variable rather than a set. It has the
form

scalar IN set

where scalar can be a value (including a
subrange) or a variable. The resulting value is
TRUE if the scalar is of the same type as the
type of the set, and is an element within the
set. A IN B is TRUE if A is the same type as
the set B and A is an element of B.

512 CYBIL Language Definition Revision B

ASSIGNMENT

. Statements

Statements indicate actions to be performed. Unlike declarations, statements
I can be executed. They can appear only in a program, procedure, or function.

A statement list is an ordered sequence of statements. In a statement list, a
statement is separated from the one following it by a semicolon. Two
consecutive semicolons indicate an empty statement, which means no action.

Statements can be divided into four types depending on their purpose or
nature:

e Assignment
e Structured
e Control

e Storage management

Assignment Statement

The assignment statement assigns a value to a variable.
‘ The format of the assignment statement is:
name := expression

name

Name of a variable previously declared.

expression

An expression that meets the requirements stated earlier in this chapter.
Any constant or variable contained in the expression must be defined and
have a value assigned.

Revision A Expressions and Statements 5-13

ASSIGNMENT

This statement is similar to the initialization part of the VAR declaration
where you can assign an initial value to a variable. (For further information
on initialization, refer to Variable Declaration in chapter 3.) The assignment
statement allows you to change that value at any point in the program. The
expression is evaluated and the result becomes the current value of the ‘
named variable.

The variable cannot be:
e A read-only variable.

e A formal value parameter of the procedure that contains the assignment
statement.

e A bound variant record.

e The tag field name of a bound variant record.
e A heap.

® An array or record that contains a heap.

The type of the expression must be equivalent to the type of the variable,
with the exceptions discussed next. Both types can be subranges of

equivalent types. ‘

A character, string, or substring variable can be assigned the value of a
character expression, a string, or a substring. If you assign a value that is
shorter than the variable or substring to which it is being assigned, spaces
are added to the right of the shorter string to fill the field. If you assign a
value that is longer than the variable or substring, the value is truncated on
the right. Assigning strings or substrings that overlap is not a valid
operation, for example, STRING_1 := STRING_1(3,7); results are
unpredictable.

5-14 CYBIL Language Definition Revision A

ASSIGNMENT

. If the variable is a pointer, its scope must be less than or equal to the scope of
the data to which it is pointing. For example, a static pointer variable should
not point to an automatic variable local to a procedure. When the procedure
is left, the pointer variable will be pointing at undefined data.

. A pointer to a bound variant record can be assigned a pointer to a variant
record that is not bound and is otherwise equivalent.

An adaptable pointer can be assigned either a pointer to a type to which it
can adapt, or an adaptable pointer than has been adapted to one of those
types. Both the type of the expression and its value are assigned, thus setting
the current type of the adaptable pointer.

Any fixed pointer except a pointer to sequence can be assigned a pointer to
cell. After the assignment, the #LLOC function (described in chapter 6)
performed on the fixed pointer would return the same value as the pointer to
cell.

A pointer to cell can be assigned any pointer type. The value assigned is a
pointer to the first cell allocated for the variable to which the pointer being
assigned points.

When assigning pointers, remember that generally the object of a pointer has
a different lifetime than the pointer variable. Automatic variables are

‘ released when the block in which they are declared has been executed.
Allocated variables no longer exist when they are explicitly released with the
FREE statement. An attempt to reference a variable beyond its lifetime
causes an error and unpredictable results to occur.

A variant record can be assigned a bound variant record of types that are
otherwise equivalent.

The colon () and equals sign (=) together are called the assignment operator.
When used as the assignment operator, there can be no spaces or comments
between the two symbols.

Revision A Expressions and Statements 515

BEGIN

Structured Statements .

A structured statement is one that actually contains one or more

statements. The statements contained in a structured statement are called,
collectively, a statement list. The structured statement determines when ‘
the statement list contained in it will be executed.

There are four structured statements:

BEGIN Provides a logical grouping of statements that performs a
specific function.

FOR Executes a list of statements while a variable is incremented
or decremented from an initial value to a final value.

REPEAT Executes a list of statements until a specified condition is
true. The test is made after each execution of the statements.
WHILE Executes a list of statements while a specified condition is
true. The test is made before each execution of the
statements.
BEGIN Statement
The BEGIN statement executes a single statement list once; there is no ‘

repetition. This statement provides for a logical grouping of statements that
performs a particular function and can improve readability.

The format of the BEGIN statement is:

{/label/}

BEGIN
statement list;

END {/label/};

label

Name that identifies the BEGIN statement and the statement list within
it. Use of labels is optional. If a label is used before BEGIN, it is not
required after END but is encouraged. If labels are used in both places,
they must match. The label name must be unique within the block in
which it is used.

statement list ‘
One or more statements.
Declarations are not allowed with the BEGIN statement. Execution of the

BEGIN statement ends when either the last statement in the list is executed
or control is explicitly transferred from within the list.

5-16 CYBIL Language Definition Revision A

FOR

. FOR Statement

The FOR statement executes a statement list repeatedly while a special
variable ranges from an initial value to a final value. There are two formats
for the FOR statement: one that increments the variable and one that

‘ decrements the variable.

The format that increments the variable is:

{/label/}

FOR name := initial_value TO final_value DO
statement list;

FOREND {/label/};

The format that decrements the variable is:

{/label/}

FOR name := initial_value DOWNTO final_value DO
statement list;

FOREND {/label/};
label

Name that identifies the FOR statement and the statement list in it. Use

of labels is optional. If a label is used before FOR, it is not required after
‘ FOREND but is encouraged. If labels are used in both places, they must

match. The label name must be unique within the block in which it is

used.

name

Name of the variable that controls the number of repetitions of the
statement list. It keeps track of the number of iterations performed or the
current position within the range of values.

initial _value

Scalar expression specifying the initial value assigned to the variable.

final _value

Scalar expression specifying the final value to be assigned to the variable
if the statement ends normally. If the statement ends abnormally or as
the result of an EXIT statement, this may not be the actual final value.

statement list
‘ One or more statements.

Revision A Expressions and Statements ~ 5-17

FOR

The variable, initial value, and final value must be of equivalent scalar types

or subranges of equivalent types. The variable cannot be assigned a value

within the statement list, or be passed as a reference parameter to a

procedure called within the statement list. Either condition causes a fatal
compilation error. The variable cannot be an unaligned component of a ’
packed structure.

When CYBIL encounters a FOR statement that increments (one containing
the TO clause), it evaluates the initial value and final value. If the initial
value is greater than the final value, the FOR statement ends and execution
continues with the statement following FOREND; the statement list is not
executed. If the initial value is less than or equal to the final value, the initial
value is assigned to the control variable and the statement list is executed.
Then, the control variable is incremented by one value and, for each
increment, the statement list is executed. This sequence of actions continues
through the final value. For example, the statement

FOR i =1 T0 5 DO

FOREND;

causes the statement list to be executed five times, that is, while I takes on
values from 1 through 5. Then the FOR statement ends and execution
continues with the statement following FOREND. ‘

5-18 CYBIL Language Definition Revision A

FOR

When CYBIL encounters a FOR statement that decrements (one containing
the DOWNTO clause), it performs essentially the same process. If the initial
value is less than the final value, the FOR statement ends and execution
continues with the statement following FOREND. If the initial value is
greater than or equal to the final value, the initial value is assigned to the
control variable and the statement list is executed. The control variable is
decremented by one value and, for each decrement, the statement list is
executed. When the control variable reaches the final value and the
statement list is executed the last time, the FOR statement ends.

The initial value and final value expressions are evaluated once, when the
statement is entered; the values are then held in temporary locations. Thus,
subsequent assignments to initial value and final value have no effect on the
execution of the FOR statement.

When a FOR statement completes normally, the value of the control
variable is that of the final value specified in the statement. This may not
be the case if the statement ends abnormally or ends as a result of an EXIT
statement.

Example:

Integer values are often used in FOR statements, but any scalar type can
be used. The following example executes a statement list while the value of
a character variable is incremented.

FOR control := 'a' TO 'z' DO
FOREND;

Each time the statement list is performed, the value of CONTROL increases
by one value, following the normal sequence of alphabetic characters from A
through Z; that is, after the statement list is executed once, the value of

CONTROL changes to B, and so on until the list has been executed 26 times.

Revision A Expressions and Statements 5-19

REPEAT

REPEAT Statement

The REPEAT statement executes a statement list repeatedly until a specific
condition is true.

The format of the REPEAT statement is:

{/label/}

REPEAT
statement list;

UNTIL expression;

label

Name that identifies the REPEAT statement and the statement list in it.
Use of the label before REPEAT is optional; a label is not permitted after
UNTIL. The label name must be unique within the block in which it is
used.

statement list

One or more statements.

expression

A boolean type expression.

The statement list is always executed at least once. After the last statement ‘
in the list, the expression is evaluated. Every time the expression is FALSE,

the statement list is executed again. When the expression is TRUE, the

REPEAT statement ends and execution continues with the statement

following the UNTIL clause.

The statement list can contain nested REPEAT statements.
Example:

In this example, the statement list (mod operation and assignments) is
executed once. If J is not equal to zero, it is executed again and continues
until J is equal to zero.

REPEAT
k := i MOD j;
i=j;
=k

UNTIL j = 0;

5-20 CYBIL Language Definition Revision A

WHILE

‘ WHILE Statement

The WHILE statement executes a statement list repeatedly while a specific
condition is true.

‘ The format of the WHILE statement is:

{/label/}

WHILE expression DO
statement list;

WHILEND {/label/};
label

Name that identifies the WHILE statement and the statement list in it.
Use of labels is optional. If a label is used before WHILE, it is not required
after WHILEND but is encouraged. If labels are used in both places, they
must match. The label name must be unique within the block in which it
is used.

expression

A boolean type expression.

statement list

. One or more statements.

Revision A Expressions and Statements 5-21

WHILE

If the boolean expression is evaluated as TRUE, the statement list is ‘
executed. After the last statement in the list, the expression is again

evaluated. Every time the expression is TRUE, the statement list is executed.

When the expression is FALSE, the WHILE statement ends and execution
continues with the statement following WHILEND. If the expression is

FALSE in the initial evaluation, the statement list is never executed.

Example:

In this example, the expression TABLE[I] < > 0 is evaluated; an element of
the array TABLE is compared to zero. While the expression is true (the
element is not zero), I is incremented. This causes the next element of the
array to be checked. When the expression is false, the statement list is not
executed. Execution continues with the statement following WHILEND. I is
the position of an element in the array that is zero.

/check_for_zero/
WHILE table[i] < > 0 DO
i=9+1;
WHILEND /check_for_zero/;

The preceding example assumes, of course, that the array contains an
element with the value zero. If not, the WHILE statement list executes in an
infinite loop. In either the WHILE expression or the statement list, there
must be a check. One solution is to set a variable, TABLE_MAX, to the
maximum number of elements in the array and check it before executing the
statement list, as in:

WHILE (i < table_max) AND (table[il < > 0 DO

Now both expressions must be true before the statement list is executed. If
either is false, execution continues following WHILEND.

5-22 CYBIL Language Definition Revision A

CONTROL STATEMENTS

. Control Statements

A control statement can change the flow of execution of a program by
transferring control from one place in the program to another.

There are five control statements:

IF

CASE

CYCLE

EXIT

RETURN

Executes one statement list if a given condition is true; ends
the statement or executes another statement list if the
condition is false.

Executes one statement list out of a set of statement lists
depending on the value of a given expression.

Causes the remaining statements in a repetitive statement
(FOR, REPEAT, or WHILE) to be skipped and the next
iteration of the statement to take place.

Unconditionally stops execution within a procedure,
function, or a structured statement (BEGIN, REPEAT,
WHILE, and FOR).

Returns control from a procedure or function to the point at
which it was called.

Procedure and function calls also transfer control of an executing program.
Functions are discussed in chapter 6 and procedures are discussed in

chapter 7.

Revision A

Expressions and Statements 5-23

IF

IF Statement ‘

The IF statement executes or skips a statement list depending on whether a
given condition is true or false.

The format of the IF statement is:

IF expression THEN
statement list;

{ELSEIF expression THEN
statement list;}...

{ELSE
statement list;}

IFEND;

expression

A boolean expression.

statement list

One or more statements.

The ELSEIF and ELSE clauses are optional. The ELSEIF clause contains

another test condition that is evaluated only if the preceding condition

(expression) is false. The ELSE clause provides a statement list that is

executed unconditionally when the preceding expression is false. .

When an expression is evaluated as true, the statement list following the
reserved word THEN is executed. When the list is completed, execution
continues with the first statement following IFEND. If the expression is
false, execution continues with the next clause or reserved word in the IF
statement format (that is, ELSEIF, ELSE, or IFEND).

If the next reserved word in the IF statement format is IFEND, execution
continues with the first statement following it.

5-24 CYBIL Language Definition Revision A

IF

If the next reserved word is ELSEIF, the expression contained in that clause
is evaluated; if true, the statement list that follows is executed. Otherwise,
execution continues with the next reserved word in the IF statement format.

If the next reserved word is ELSE, the statement list that follows is always
executed. You get to this point only if the preceding expression(s) is false.

Additional IF statements can be contained (nested) in any of the statement
lists. A consistent style of indentation or spacing greatly improves
readability of such statements.

If the ELSE clause is included in a nested IF statement, the clause applies to
the most recent IF statement.

Examples:
In this example, Y is assigned to X if and only if X is less than Y.

IF x < y THEN
X 1= y;
IFEND;

In the next example, Z is always assigned one of the values 1, 2, 3, or 4
depending on the value of X.

IF x <= 5 THEN

z :=1;

ELSEIF x > 30 THEN
z :=2;

ELSEIF x = 15 THEN
z :=3;

ELSE
z 1= 4;

IFEND;

Revision A Expressions and Statements 5-25

CASE

CASE Statement

The CASE statement executes one statement list out of a set of lists based on
the value of a given expression.

The format of the CASE statement is:

CASE expression OF

= value {,value}... =
statement list;

{= value {,ualue}... =
statement list;}...

{ELSE statement list;}

CASEND;

expression

A scalar expression. The expression must be of the same type as the value
or values that follow.

value

One or more constant scalar expressions or a subrange of constant scalar
expressions. A subrange indicates that all of the values included in the

subrange are acceptable values. If two or more values are specified, they

are separated by commas. The values must be of the same type as the
expression. Values can be in any order, not strictly sequential. Values ‘
must be unique within the CASE statement.

statement list

One or more statements.

You define a set of possible values that a variable or expression can have.
With one or more of the values you associate a statement list using
the format:

=value=
statement list;

When the CASE statement is executed, the expression is evaluated and the
statement list associated with the current value of the expression is executed.

If the current value is not found among those in the CASE statement,

execution continues with the ELSE clause. If ELSE is omitted and the value

is not found in the CASE statement, an error occurs at execution time. After

any one of the statement lists is executed, execution continues with the

statement following CASEND. ’

5-26 CYBIL Language Definition Revision A

CASE

. Examples:

In this example, I is