
NOS/VE
Commands and Functions
Quick Reference

60464018 (52)CONT~OL DATA

NOS NE

Commands and Functions

Quick Reference

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60464018

Manual History

System PSR
Revision Version Level Date

A 1.0.2

B 1.1.1

c 1.1.3

D 1.2.1

E 1.2.2

F 1.2.3

G 1.3.1

613

644

664

678

688

700

October 1982

July 1984

October 1985

October 1986

April 1987

November 1987

April 1988

Revision G, printed April 1988, documents NOS/VE V~rsion 1.3.1 at
PSR level 700. Changes include:

• Commands, subcommands, functions, and control statements are
updated.

• The information in the manual is reorganized as follows:

- Book 1 lists in alphabetical order the commands, functions, and
control statements that do not operate under NOS/VE command
utilities.

- Book 2 contains the subcommands and functions that operate
under NOS/VE utilities. A separate chapter is devoted to each
utility.

This edition obsoletes all previous editions.

©1982, 1984, 1985, 1986, 1987, 1988 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 NOSNE Commands and Functions Revision G

Contents

About This Manual 5

Audience 5
Organization ... 5
The NOS/VE User

Manual Set 6
Conventions 8

Submitting Comments 9
CYBER Software Support

Hotline 9

Introduction 1-1

How to Use the Format
Descriptions. 1-1

Condition Processing . 1-4

Commands and
Functions 2-1

Function Attributes 3-1

ADMINISTER
RECOVERY LOG. 4-1

ADMINISTER
VALIDATIONS. . . . 5-1

ANALYZE OBJECT
LIBRARY. ~ . . . 6-1

BACKUP_
PERMANENT_FILES . . 7-1

CHANGE KEYED· FILE
and CREATE KEYED
FILE - :- . 8-1

Revision G

CREATE _ALTERNATE_
INDEXES 9-1

CREATE _INTERSTATE_
CONNECTION. . . 10-1

CREATE _OBJECT_
LIBRARY. 11-1

Debug 12-1

EDIT _CATALOG. 13-1

EDIT _DECK 14-1

EDIT _FILE 15-1

MANAGE _REMOTE_
FILES 16-1

MEASURE PROGRAM
EXECUTION. . . . - 17-1

RECOVER_KEYED
FILES 18-1

RESTORE_LOG 19-1

RESTORE
PERMANENT_FILES . 20-1

SOURCE_CODE_
UTILITY 21-1

Contents 3

Related Manuals .

Ordering Printed
Manuals.

Tables

A-1

A-1

3-1. File Attributes 3-1
3-2. Job Attributes 3-6
3-3. Job Attribute Defaults 3-15
3-4. Job Output Attributes 3-19
3-5. Job Status Attributes 3-25

4 NOSNE Commands and Functions

Accessing Online
Manuals A-1

3-6. Output Status
Attributes

3-7. Program Attributes
3-8. Variable Attributes
A-1. Related Manuals ..

3-28
3-31
3-35
A-2

Revision G

About This Manual

This manual describes the command interface to the CONTROL
DATA® Network Operating System/Virtual Environment (NOS/VE)
using the System Command Language (SCL). It lists the formats of
the commands, subcommands, functions, and control statements; briefly
describes their parameters; and provides examples of their use.

This manual is part of a set of manuals that describes NOS/VE. For
descriptions of other manuals . in the set, see The NOS/VE User
Manual Set later in this preface.

Audience
This manual is directed to applications programmers. It assumes you
are familiar with SCL.

Organization
The information in this manual is divided into two books:

• Book 1 lists in alphabetical order the commands, functions, and
control statements that do not operate under NOS/VE utilities.
Included are:

APL
BASIC
c
COBOL
CYBIL
File management utility
FORTRAN
IM/DM

IM/Quick
LISP
MAIL/VE
Pascal
Programming environment utilities
Pro log
Screen design facility
Sort/Merge utility

• Book 2 contains the subcommands and functions that operate
under NOS/VE utilities. A separate chapter is devoted to each
utility (the utilities are listed in the Contents).

Revision G About This Manual 5

The NOSNE User Manual Set

This manual is part of a set of user manuals that describe the
command interface to NOS/VE. The descriptions of these manuals
follow:

Introduction to NOSNE

Introduces NOS/VE and SCL to users who have no previous
experience with them. It describes, in tutorial style, the basic
concepts of NOS/VE: creating and using files and catalogs of files,
executing and debugging programs, submitting jobs, and getting
help online.

The manual describes the conventions followed by all NOS/VE
commands and parameters, and lists many of the major commands,
products, and utilities available on NOS/VE.

NOS/VE System Usage

Describes the command interface to NOS/VE using the SCL
language. It describes the complete SCL language specification,
including language elements, expressions, variables, command
stream structuring, and procedure creation. It also describes
system access, interactive processing, access to online
documentation, file and catalog management, job management, tape
management, and terminal attributes.

NOS/VE File Editor

Describes the EDIT_FILE utility used to edit NOS/VE files and
decks. The manual has basic and advanced chapters describing
common uses of the utility, including creating files, copying lines,
moving text, editing more than one file at a time, and creating
editor procedures. It also contains descriptions of subcommands,
functions, and terminals.

NOS/VE Source Code Management

Describes the SOURCE_CODE_UTILITY, a development tool used
to organize and maintain libraries of ASCII source code. Topics
include deck editing and extraction, conditional text expansion,
modification state constraints, and using the EDIT_FILE utility.

NOS/VE Object Code Management

Describes the CREATE_OBJECT_LIBRARY utility used to store
and manipulate units of object code within NOS/VE. Program
execution is described in detail. Topics include loading a program,

6 NOS/VE Commands and Functions Revision G

program attributes, object files and modules, message module
capabilities, code sharing, segment types and binding, ring
attributes, and performance options for loading and executing.

NOS/VE Advanced File Management

Describes three file management tools: SortJMerge, File
Management Utility (FMU), and keyed-file utilities. SortJMerge
sorts and merges records; FMU reformats record data; and the
keyed-file utilities copy, display, and create keyed files (such as
indexed-sequential files).

NOS/VE Terminal Definition

Describes the DEFINE_TERMINAL command and the statements
that define terminals for use with full-screen applications (for
example, the EDIT_FILE utility).

NOSNE Commands and Functions

Lists the formats of the commands, functions, and statements
described in the NOS/VE user manual set. A format description
includes brief explanations of the parameters and an example
using the command, function, or statement.

Revision G About This Manual 7

Conventions

The following conventions are used in this manual:

Boldface

Italics

UPPERCASE

lowercase

Blue

Vertical bar

Numbers

In a format, boldface type represents names and
required parameters.

In a format, italic type represents optional
parameters.

In a format, uppercase letters represent reserved
words defined by the system for specific purposes.
You must use these words exactly as shown.

In a format, lowercase letters represent values you
choose.

In examples of interactive terminal sessions, blue
represents user input.

A vertical bar in the margin indicates a technical
change.

All numbers are decimal unless otherwise noted.

8 NOSNE Commands and Functions Revision G

Submitting Comments
There is a comment sheet at the back of this manual. You can use it
to give us your opinion of the manual's usability, to suggest specific
improvements, and to report errors. Mail your comments to:

Control Data Corporation
Technology and Publications Division ARH219
4201 North Lexington Avenue
St. Paul, Minnesota 55126-6198

Please indicate whether you would like a response.

If you have access to SOLVER, the Control Data online facility for
reporting problems, you can use it to submit comments about the
manual. When entering your comments, use NVO (zero) as the product
identifier. Include the name and publication number of the manual.

If you have questions about the packaging and/or distribution of a
printed manual, write to:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or call (612) 292-2101. If you are a Control Data employee, call (612)
292-2100.

CYBER Software Support Hotline

Control Data's CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help not
provided in the documentation, or find the product does not perform
as described, call us at one of the following numbers. A support
analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

Revision G About This Manual 9

Introduction

How to Use the Format Descriptions .

Condition Processing
Error Processing Using STATUS Parameter
Condition Handling

1

1-1

1-4
1-4
1-5

Introduction 1

This chapter explains how the descriptions of statements are organized
and the ways you can specify condition processing.

How to Use the Format Descriptions

The title of each format description lists the statement name and
defines the statement as a command, subcommand, function, or control
statement. For example:

DELETE_ VARIABLE

Command

For a subcommand or function that operates under a utility, the title
also .includes the abbreviated name of the utility. For example:

POSITION CURSOR

EDIF Subcommand

Definitions of these terms follow:

• A command operates outside a NOSNE utility.

• A subcommand operates under a NOS/VE utility.

• A control statement controls the flow of jobs and procedures.

• A function returns a value and can operate under a utility or in a
command.

Revision G Introduction 1-1

How to Use the Format Descriptions

The remainder of the description is organized in the following manner:

Purpose

Format

Contains a brief description of the purpose of the
statement.

Contains the format of a statement as follows:

statement name or
plural statement name or
statement name abbreviation

parameter name= value list
parameter name= value list

parameter name= value list

Plural versions of a name have the same abbreviation as
the singular version. The parameter value list is shown in
terms of its defined SCL type. Required parameters are
shown in boldface type; optional parameters are shown in
italic type.

For example:

DELETE_ VARIABLE or
DELETE_ VARIABLES or
DELV

NAMES=list of name
STATUS= status variable

For a function, the format is shown as follows:

function name
(value,
value,

value)

For example:

$STRREP
(any,
integer)

The conventions used to depict the formats of statements
and functions are for illustration only. The actual entry of
a statement or function must follow the SCL rules.

1-2 NOSNE Commands and Functions Revision G

How to Use the Format Descriptions

Parameters Contains brief descriptions of each parameter. For
commands, alternative spellings and abbreviations of
parameter names are also given. For example:

Remarks

Examples

Revision G

NAMES or NAME or N

If you do not specify an optional parameter, a default
value is used. Every command has a STATUS parameter
for error processing (error processing is described later in
this chapter).

Contains restrictions, rules, and additional information.

Contains one or more examples using the statement being
described. For example:

create_var1able
for 1= 1 to 123

f orend
clelete_var1able

Introduction 1-3

Condition Processing

Condition Processing
NOSNE provides the following mechanisms for specifying the action
to be taken when an abnormal condition occurs:

• Error processing is available when you include the STATUS
parameter on a command and the co~mand terminates with an
abnormal status other than a command syntax error.

• Condition handling is available:

- When you do not include the STATUS parameter on a
command and an abnormal condition occurs.

- When a syntax error occurs in a command.

- When the job time limit is reached.

- When a pause break is entered.

Error Processing Using STATUS Parameter

All NOSNE commands have an optional parameter called STATUS.
Including the STATUS parameter on a command causes the SCL
interpreter to proceed to the next command when an abnormal
condition occurs (with the exception of a command syntax error). Not
including the STATUS parameter causes the interpreter to skip
succeeding commands in the current block.

To specify a STATUS parameter, you must use a previously declared
variable of kind status. This status variable is used by the SCL
interpreter to hold the completion status of the command.

By checking the contents of the specified status variable, succeeding
commands can alter the flow of statements based on the occurrence of
abnormal conditions.

The status variable is a record and contains the following fields:

NORMAL

A boolean value. FALSE indicates the request could not be
processed correctly (abnormal status); TRUE indicates the request
was processed correctly (normal status).

1-4 NOS/VE Commands and Functions Revision G

Condition Processing

CONDITION

An integer. If the command had an error, this integer specifies the
condition code of the diagnostic message for the aborted command.
This field also contains a 2-character product identifier.

TEXT

A string with a maximum length of 256 characters. This string
consists of message parameters that substitute text into the error
message associated with the condition (undefined for normal
status).

NOTE

The STATUS parameter is listed in each command format but the
parameter description is not repeated for each command.

Condition Handling

You can establish condition handlers to be used when errors occur
while processing a job. When processing the error, NOSNE uses the
condition handler to determine what action to take:

• For batch jobs, if commands to process the error condition are
included in the job, these commands are executed and the job
continues. Otherwise, the job is terminated.

• For interactive jobs, the command is terminated. If commands are
included to process the error, these commands are executed.
Otherwise, you are prompted to enter another command.

The condition handler is called only for errors of severity level
ERROR or greater. For more information on severity levels, refer to
the NOSNE Diagnostic Messages manual.

Revision G Introduction 1-5

Condition Processing

To insert error processing commands, use a WHEN/WHENEND block
as follows:

when limit fault do
put_line ' Incrementing time limit by 1 minute.'
change_job_limit name=cp_time ..

resource_limit={$job_limit{cp_time,accumulator) + 60)
continue retry
whenend

Using CONTINUE RETRY as shown in the example tells the system
to retry the comand that caused the error. Either omitting
CONTINUE or using CONTINUE without RETRY tells the system to
resume execution with the command following the erroneous command.

When an error occurs, NOSNE searches, starting in the current
block, for the most recent WHEN block included for that error. The
WHEN command specifies which error or errors can be handled by a
WHEN block.

The WHEN command can test for the following conditions:

Condition Name

PROGRAM_ FAULT

LIMIT_FAULT

COMMAND_FAULT

ANY_FAULT

INTERRUPI'

Condition Description

Program terminated in error.

Job resource limit was reached.

Command had syntax error.

Any of the fault conditions occurred
(PROGRAM_FAULT, LIMIT_FAULT, or
COMMAND_FAULT).

Pause break (terminal interrupt) was
entered.

To cancel one or more condition selections made with a WHEN
command, use the CANCEL command. For example, to cancel the
most recent WHEN block processing for the COMMAND_FAULT and
PROGRAM_FAULT conditions, enter:

/cancel conmand_fault program_fault

For more information on condition handling, see the NOSNE System
Usage manual.

1-6 NOS/VE Commands and Functions Revision G

Commands and Functions 2

Commands and Functions 2

ACCEPT _LINE
Command

Purpose

Format

Reads a line from a file into a string variable.

ACCEPT_LINE or
ACCEPT_LINES or
ACCL

VARIABLE= string array
INPUT=file
PROMPT=string
LINE_ COUNT= integer variable
STATUS =status variable

Parameters VARIABLE or V

Specifies the variable into which the line .is to be read.
This variable may be an array of strings. This parameter
is required.

INPUT or I

Specifies the file from which the line is to be read. This
parameter is required.

PROMPT or P

Specifies the string to be used for the input prompt. The
default prompt is the word SUPPLY, followed by the
name of the variable into which the line will be placed. If
the file specified by the INPUT parameter is not assigned
to a terminal, no prompt is issued.

LINE_COUNT or LC

Specifies the SCL integer variable which receives a count
of the lines read by the ACCEPT_LINE command.

Remarks G To guarantee that the ACCEPT_LINE command reads
from a terminal, do not use a standard file (such as
$INPUT) for the INPUT parameter. Instead, use a file
such as the job file INPUT. This guarantees that the
reading occurs from the terminal rather than from
another target file connected to the $INPUT file. It
also ensures that the prompt is written to the
terminal.

Revision G Commands and Functions· 2-1

ACCEPT_LINE

Examples

• To use the ACCEPT_ LINE command to read
successive lines from a file:

- Attach the file using the ATTACH_FILE command.

Specify the $ASIS open position in the file
reference for the INPUT parameter of the
ACCEPT_LINE command.

- Use the LINE_COUNT parameter to determine
when the end of the file has been reached.

Detach the file using the DETACH_FILE
command.

If you do not explicitly attach the file, the $ASIS open
position is ignored and the file is accessed from the
beginning. See Examples below for an example.

• For more information, see the NOSNE System Usage
manual.

The following example reads successive lines from a file.

create_var1able n=11ne_count k=1nteger
create_variable n=lines k=str1ng d=l .. 100
attach_f11e f=$user.some_f11e
REPEAT

accept_11ne v=11nes 1=$user.sane_f11e.$as1s
1c=11ne_count

FOR 1 = 1 TO 11ne_count DO
•process the 11ne in the variable 11nes(1)•

FORE ND
UNTIL 11ne_count < $variable(11nes, upper_bound)
detach_file f=$user.some_file

Using an array variable to read information is more
efficient than using a single element variable, since the
file is opened fewer times.

2-2 NOS/VE Commands and Functions Revision G

$ACCESS_MODE

$ACCESS_MODE
Function

Purpose Returns a boolean value indicating whether specified
access modes are assigned to a file.

Format $ACCESS_MODE
(tile
keyword!
keyword2
keyword3
keyword4
keyword5)

Parameters file

Revision G

Specifies the name of the file whose access modes you are
querying. This parameter is required.

keyword!

Specifies the access modes you want checked. This
parameter is required. Use one or more of the following
keywords:

READ

You can read the file.

APPEND

You can append information to the end of the file.

MODIFY

You can alter existing data within the file.

SHORTEN

You can delete data from the end of the file.

WRITE

You can append, modify, and shorten the file.

EXECUTE

You can execute the object code in the file.

ALL

A combination of READ, APPEND, MODIFY,
SHORTEN, and EXECUTE access modes.

Commands and Functions 2-3

ADA

Remarks

Examples

keyword2

Reserved.

keyword3

Reserved.

keyword4

Reserved.

keyword5

Reserved.

• When the file is assigned the access modes you
specify, TRUE is returned. When the file is not
assigned the access modes you specify, FALSE is
returned.

• For further information about functions, see the
NOS/VE System Usage manual.

The following example uses the $ACCESS_MODE
function to determine whether a statement list should be
executed.

if $access_mode(data_file_1,read) then

."Statements that need READ access permission. 0

ifend

ADA
Command

Purpose

Format

Invokes the compiler and specifies the current sublibrary,
the files to be used, and the compiler options to be used.

ADA
INPUT=file
PROGRAM_LIBRARY=file
LIST=file
DEBUG _AIDS= keyword

2-4 NOSNE Commands and Functions Revision G

ERROR=file
ERROR_LEVEL=keyword
LIST_ OPTIONS= list of keyword
OPTIMIZATION _LEVEL= keyword
STATUS =status variable

ADA

Parameters INPUT or I

Revision G

Specifies the file that contains the source text ·to be read.
The source input ends when an end-of-partition or an
end-of-information is encountered on the source input file.
The default value is $INPUT.

PROGRAM_LIBRARY or PL

Specifies the name of the current sublibrary. The default
is $USER.ADA_PROGRAM_LIBRARY.

LIST or L

Specifies the file where the compiler writes the source
listing, diagnostics, statistics, and any additional list
information specified by the LIST_OPTIONS parameter.
The default value is $LIST which, by default, is connected
to $NULL.

DEBUG_AIDS or DA

Specifies the debug options to be used.

ALL

All of the available options are selected for the
DEBUG parameter.

DT

Generates a line number table as part of the object
code. This line number table is used by Debug during
traceback.

NONE

No debug tables are produced.

If the parameter is omitted, NONE is assumed.

ERROR or E

Specifies the file to receive the error listing. The default
value is $ERRORS.

Commands and Functions 2-5

ADA

ERROR_LEVEL or EL

Indicates the minimum severity level of the diagnostics to
be listed. The levels, in increasing order of severity, are:

w
WARNING - An error that does not change the
meaning of the program or hinder the generation of
object code. Also, a construct for which the object code
raises a CONSTRAINT_ERROR at run time.

F

FATAL - An illegal construct in the source program
has been detected. The compilation continues, but no
object code is generated.

c
CATASTROPHIC - An error that causes the compiler
to be terminated immediately. No object code is
generated.

If the parameter is omitted, W is assumed so all
diagnostics are listed.

LIST_OPTIONS or LO

Specifies what information appears on the listing file
(LIST parameter). Multiple options can be specified; for
example, LO= (0,S).

0

Object code listing.

R
Symbolic cross-reference listing of all program entities.

s
Source input listing.

NONE

No list options are selected.

If the parameter is omitted, S is assumed.

2-6 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

OPTIMIZATION _LEVEL or OL

Specifies the level of object code optimization.

LOW

Lowest level of production quality code. No
optimization is performed.

DEBUG

Generates code to support step mode debugging.

If the DEBUG parameter is omitted, LOW is assumed.

ADA

• You may want to write a short NOSNE procedure
that invokes the Ada compile command supplying the
parameter options you select, then prompts you for
your file name. See the Ada for NOSNE Usage
manual for a sample SCL procedure.

• For more information, see the ADA for NOSNE Usage
manual.

The following compile command specifies program library
YOURPL:

/ada i=your_file pl=yourpl l=list da=all e=error lo=(r,s)

The following compile command uses the default program
library:

/ada 1=your_file l=list da=all e=error lo=(r,s)

The following compile command uses all of the default
values:

/ada i=my_source

For Better Performance

Compiler throughput improves when multiple compilation
units are submitted. However, if the number of
compilation units grows over a certain limit (for example,
50 small compilation units of about 50 lines each) or if
the first compilation units are large, a degradation of the
throughput actually occurs.

Commands and Functions 2-7

ADA_PROGRAM_LIBRARY_ UTILITY

ADA_PROGRAM_LIBRARY_UTILITY
Command

Purpose Invokes the Program Library Utility and opens the
specified sub library.

Format ADA_PROGRAM_LIBRARY_UTILITY or
ADAPLU

PROGRAM _LIBRARY= file
INPUT=file
STATUS =status variable

Parameters PROGRAM _LIBRARY or PL

Remarks

Examples

A -file name assigned by the user to the current
sublibrary at creation time. The default is $USER.ADA_
PROGRAM_ LIBRARY.

INPUT or I

Specifies the file that provides the program library
commands. The default value is $INPUT (your terminal in
interactive mode).

For more information, see the ADA for NOSNE Usage
manual.

The following command uses the default parameters:

/adaplu

The following command invokes PLU commands in batch
mode:

/adaplu input=adaplu_conmands

The Program Library Utility is invoked by submitting the
following command to the command language interpreter:

/ada_program_11brary_ut111ty

or the abbreviation:

/adaplu

2·8 NOSNE Commands and Functions Revision G

ADMINISTER_RECOVERY_LOG

ADMINISTER _RECOVERY _LOG
Command

Purpose

Format

Remarks

Examples

Begins an Administer _Recovery _Log utility session.

ADMINISTER_RECOVERY_LOG or
ADMRL

STATUS =status variable

For more information, see the NOS/VE Advanced File
Management manual.

The following is the minimal Administer _Recovery _Log
session; it does nothing.

/administer_recovery_log
admrl/quit

To see a list of available subcommands you can type
HELP while in this utility.

ADMINISTER_ VALIDATIONS
Command

Purpose

Format

Remarks

Displays and changes validations.

ADMINISTER_ VALIDATIONS or
ADMV

STATUS =status variable

For more information, see the NOS/VE User Validation
manual.

AFTERBURN_OBJECT_TEXT
Command

Purpose Expands FORTRAN subroutines and functions in the
object text.

Format AFTERBURN _OBJECT_ TEXT or
AFTERBURN _BINARY or
AFTOT or
AFTB

INPUT_OBJECT_TEXT=file
OUTPUT_ OBJECT_ TEXT= file
LIST=file

Revision G Commands and Functions 2-9

AFTERBURN_OBJECT_TEXT

EXCLUDE_ENTRY_POINT=list of name
EXCLUDE_FILE_LIST=list of file
FORMAT= keyword
INCLUDE_ENTRY_POINT=list of name
INCLUDE_FILE_LIST=list of file
INCLUDE _MATH _LIBRARY= boolean
LIST_ OPTIONS= list of keyword
MAXIMUM _INLINE _SIZE= integer
OPTIMIZATION _LEVEL= keyword
STATUS=status variable

Parameters INPUT_ OBJECT_ TEXT or JOT

Object file or object library containing the object code you
want optimized. If INPUT_OBJECT_ TEXT is omitted,
$LOCAL.LGO is used.

If you specify an object file, the afterburner binds it into
an object module named NEW. The common math library
routines are included in NEW if you specify INCLUDE_
MATH_LIBRARY=YES. (You can change the name of
the module by using the CHANGE_MODULE_
ATTRIBUTE subcommand.)

If you specify an object library, it must have been bound
with the RETAIN =ALL and INCLUDE_BINARY_
SECTION_MAPS=TRUE options set on the CREATE_
MODULE subcommand. You should include the common
math library in the binding if you want to have math
library routines expanded in the object text.

OUTPUT_OBJECT_TEXT or OOT

Object file or object library to contain the optimized object
code. If OUTPUT_ OBJECT_ TEXT is omitted,
$LOCAL.LGO is used. The OUTPUT_ OBJECT_ TEXT file
overwrites the INPUT_ OBJECT_ TEXT file if the default
file, $LOCAL.LGO, or the same file name, is used for
both parameters.

LIST or L

File to contain the afterburner output listing. The listing
includes information specified by the LIST_ OPTIONS
parameter. If LIST is omitted, $LIST is used.

EXCLUDE_ENTRY_POINTorEXCEP

Specifies the names of entry points you do not want
expanded in the object text.

2-10 NOSNE Commands and Functions Revision G

Revision G

AFTERBURN_OBJECT_TEXT

EXCLUDE_FILE_LIST or EXCFL

Specifies a file or list of files containing entry point
names that you do not want expanded in the object text.
Each entry point name in a file should appear on a
separate line.

FORMAT or F

Specifies the type of the OUTPUT_ OBJECT_ TEXT
parameter. Options are:

LIBRARY or L

Specifies that the OUTPUT_ OBJECT_ TEXT
parameter name is an object library.

FILE or F

Specifies that the OUTPUT_ OBJECT_ TEXT
parameter name is an object file.

SAME

Specifies that the OUTPUT_OBJECT_ TEXT
parameter is the same type as the INPUT_OBJECT_
TEXT parameter. (If the INPUT_OBJECT_ TEXT
parameter specifies an object library, the OUTPUT_
OBJECT_ TEXT parameter also specifies an object
library. If the INPUT_OBJECT_ TEXT parameter
specifies an object file, then the OUTPUT_OBJECT_
TEXT parameter also specifies an object file.)

If FORMAT is omitted, SAME is used.

INCLUDE_ENTRY_POINTorINCEP

Specifies the names of entry points you want expanded in
the object text; no other entry points are expanded. If you
specify this parameter, the EXCLUDE_FILE_LIST and
EXCLUDE_ENTRY_POINT parameters are ignored.

If INCLUDE_ENTRY_POINT and INCLUDE_FILE LIST
are omitted, the afterburner considers all modules
specified in the INPUT_ OBJECT_ TEXT parameter for
expansion.

INCLUDE_FILE_LIST or INCFL

Specifies a file or list of files containing entry point
names that you want expanded in the object text; no
other entry points are expanded. If you specify this

Commands and Functions 2-11

AFTERBURN_OBJECT_TEXT

parameter, the EXCLUDE_FILE_LIST and EXCLUDE_
ENTRY_POINT parameters are ignored. Each entry point
name in a file should appear on a separate line.

If INCLUDE_ENTRY_POINT and INCLUDE_FILE LIST
are omitted, the afterburner considers all modules
specified in the INPUT_OBJECT_TEXT parameter for
expansion.

INCLUDE_MATH_LIBRARY or INCML

Specifies whether you want the common math library
routines expanded in the object text. Options are YES,
TRUE, or Y to expand the routines and NO, FALSE, or N
to not expand them. This parameter is only valid if
INPUT_ OBJECT_ TEXT specifies an object file, such as
$LOCAL.LGO.

If INCLUDE_MATH_LIBRARY is omitted, YES is used.

LIST_OPTIONS or LO

Specifies the information to appear on the afterburner
output listing. Options are:

OBJECT or 0

A listing of the optimized object code is provided.

REPORT or R

The afterburner report is generated. The afterburner
report indicates which routines were expanded in the
object text.

ALL

Selects both the 0 and R options. The afterburner
report appears at the beginning of the object listing.

NONE

No output listing is produced.

If LIST_ OPTIONS is omitted, NONE is used.

MAXIMUM_INLINE_SIZE or MAXIS

Specifies the maximum size, in bytes, of routines to be
expanded in the object text. Routines that are larger than
this size are not expanded. If MAXIMUM_INLINE_SIZE
is omitted, the maximum size is 2,000 bytes.

2-12 NOSNE Commands and Functions Revision G

Remarks

AFTERBURN_OBJECT_TEXT

OPTIMIZATION _LEVEL or OL

Specifies the level of optimization. Options are LOW and
HIGH. HIGH selects expansion with additional
optimization processing. LOW selects expansion only.

If OPTIMIZATION _LEVEL is omitted, HIGH is used.

o Common math library routines are called when a
FORTRAN program references an intrinsic function or
contains an expression with exponentiation. For
example, the expression x**3.1 in a FORTRAN
Version 2 program would cause a call to the math
library routine MLP$VXTOX. The module names for
common math library routines begin with the
characters MLP$. The common math library is in the
system file $LOCAL.MLF$LIBRARY.

e All debug tables and argument checking information
are discarded during the execution of this command.

o The afterburner report states whether a subprogram
was expanded in the object text or not and gives the
address offset if it was expanded.

o If you specify one or both of the INCLUDE_FILE_
LIST or INCLUDE_ENTRY_POINT parameters,
remember that these parameters alone specify which
routines are considered for expansion. The afterburner
may not expand them if the cost/benefit analysis shows
that expansion would not be efficient, they are too
large, or the routines cause a reference to certain
hardware instructions. Routines not listed, including
common math library routines, are not considered for
expansion.

o The EXCLUDE_FILE_LIST and EXCLUDE_ENTRY_
POINT parameters specify which routines you do not
want expanded in the object text. Routines that are
called once or infrequently, such as error handling
routines, are examples of routines which you would
not want to expand.

Revision G Commands and Functions 2-13

ANALYZE_ OBJECT_LIBRARY

• You can specify both the EXCLUDE_FILE_LIST and
EXCLUDE_ENTRY_POINT parameters to indicate
which entry points you do not want expanded in the
object text. Similarly, you can specify both the
INCLUDE_FILE_LIST and INCLUDE_ENTRY_
POINT parameters to indicate which entry points you
want expanded.

• For more information, see the NOSNE Object Code
Management manual.

ANALYZE_ OBJECT _LIBRARY
Command

Purpose Begins an ANALYZE_OBJECT_LIBRARY utility session.
The subcommands for this object code utility display the
internal characteristics of object modules, including: object
record counts, section sizes, section attributes, and
performance data for modules on an object library or
object file.

Format ANALYZE_OBJECT_LIBRARY or
AN AOL

LIBRARY= file
STATUS =status variable

Parameters LIBRARY or L

Remarks

Object library or object file to be analyzed.

If LIBRARY is omitted, you must use the USE_LIBRARY
subcommand to specify the object library or object file.

• After entering the ANALYZE_OBJECT_LIBRARY
command, you can enter any of the ANAOL
subcommands. The ANAOL session ends when you
enter the QUIT subcommand.

• An object library or file must be specified on the
ANALYZE_OBJECT_LIBRARY command or on the
USE_LIBRARY subcommand before an ANAOL
session can continue.

• For more information, see the NOSNE Object Code
Management manual.

2-14 NOSNE Commands and Functions Revision G

Examples

ANALYZE_PROGRAM_DYNAMICS

The following is a sequence that enters the ANALYZE_
OBJECT_LIBRARY utility, specifies LGO as the file to be
analyzed, and displays the characteristics of library LGO.

/analyze_object_library lgo
AOL/display_library_analysis
Library Analysis of LGO
Number of modules: 2
Record Analysis

Identification records: 2
Libraries: 2 - items: 10
Section definitions: 9
Text records: 21 - items: 519

Relocation records: 2 - items: 8
Binding templates: 8
Transfer symbols: 2

Total records: 84

AOL/quit

ANALYZE _PROGRAM _DYNAMICS
Command

Purpose Measures program execution characteristics and uses its
measurements to restructure the program as a single load
module.

Format ANALYZE_PROGRAM_DYNAMICS or
ANAPD

TARGET_ TEXT= file
RESTRUCTURED_MODULE=file
FILE= list of file
PARAMETER =string
LIBRARY= list of file
MODULE= list of any
STARTING_PROCEDURE=any
RESTRUCTURED_MODULE_NAME=any
RESTRUCTURING_ COMMANDS =file
STATUS =status variable

Revision G Commands and Functions 2-15

ANALYZE_PROGRAM_DYNAMICS

Parameters TARGET_ TEXT or TT

File containing the modules to be measured. This
parameter is required.

RESTRUCTURED_MODULE or RM

File on which the object library containing the
restructured module is written. This parameter is
required.

FILE or FILES or F

Object list for the program. Each module in the specified
object files and object libraries is unconditionally included
in the program. The list must include the target text file.
If FILE is omitted, the object list for the program consists
of only the file specified on the TARGET_ TEXT
parameter.

PARAMETER or P

Parameter list passed to the program.

LIBRARY or LIBRARIES or L

List of object libraries added to the program library list.
These object libraries are searched before any libraries in
the job library list. The libraries are searched in the
order listed.

MODULE or MODULES or M

Module list. Each module is unconditionally loaded from
the object libraries in the program library list.

You use a string value for a module whose name is not
an SCL name.

STARTING_PROCEDUREor SP

Name of the entry point where execution begins.

You use a string value for an entry point whose name is
not an SCL name.

If STARTING_PROCEDURE is omitted, the last transfer
symbol encountered during loading is used.

RESTRUCTURED_MODULE_NAME or RMN

Name given the restructured module. If
RESTRUCTURED_MODULE_NAME is omitted, the
module name is the same as the file name.

2-16 NOSNE Commands and Functions Revision G

Remarks

Examples

APL

RESTRUCTURING_COMMANDS or RC

File on which the restructuring procedure is written. If
RESTRUCTURING_COMMANDS is omitted, the
restructuring procedure is discarded when the command
completes processing.

• To save the procedure used to generate the new load
module, you must specify a file on the
RESTRUCTURING_COMMANDS parameter.

• ANALYZE_PROGRAM_DYNAMICS does not generate
a program profile.

• For more information, see the NOSNE Object Code
Management manual.

The following command restructures the program on file
LGO and writes the new load module NEWLGO on file
$USER.NEWLGO. It does not save the restructuring
procedure.

/analyze_program_dynamics target_text=lgo
.. /restructured_module=$user.newlgo

APL
Command

Purpose

Format

Revision G

Activates the APL system.

APL
WORKSPACE= file
TERMINAL_ TYPE= keyword
PASSWORD=name
WAIT= boolean
INPUT=file
OUTPUT=file
LIST_ OPTIONS= list of keyword
STATUS =status variable

Commands and Functions 2-17

APL

Parameters WORKSPACE or WS

Remarks

Specifies an APL workspace to be loaded when the APL
system starts execution. Default is:

$SYSTEM.APL.CLEARWS

TERMINAL_TYPEor TT

Specifies the translation to be performed on the input and
output files. Options are APL, COR, UCA, ASCII, and
BATCH. Default is APL. Refer to the APL usage manual
for descriptions of these options.

PASSWORD or PW

Specifies the password required to access the file specified
by the WS parameter. Default is no password.

WAIT or W

Directs APL to wait for the file specified by the WS
parameter if that file is unavailable. If the file is busy
and WAIT is OFF, the APL command returns non normal
status. Options are ON and OFF. Default is OFF.

INPUT or I

Specifies the input file containing APL statements.
Default is $INPUT.

OUTPUT or 0

Specifies the file to receive APL output. Default is
$OUTPUT.

LIST_ OPTIONS or LO

Specifies information to be written to the APL output file.
Options are B (suppresses APL banner), S (copies all
input to the output file), ahd P (suppresses prompts in the
output file). Default is no options (interactive jobs), or SP
(batch jobs).

For more information, see the APL Language Definition
manual.

2-18 NOSNE Commands and Functions Revision G

Examples

Revision G

The first example calls the APL system for interactive
use:

APL INPUT=APL_PROG OUTPUT=APL_OUT LIST_OPTIONS=S TT=UCA

The following options are specified:

INPUT=APL_PROG

APL statements are read from file APL_PROG.

OUTPUT= APL_ OUT

APL output is written to file APL_ OUT.

LIST_OPTIONS=S

All input is copied to the output file.

TT=UCA

APL

Terminal type is specified as an ASCII terminal that
does not support APL characters (you want lowercase
letters to be converted to uppercase on input). For
input and output that are not part of the ASCII
character set, the $ESCAPE sequences are used.

All other parameters assume default options.

The second example calls the APL system for batch use:

APL INPUT=APL_PROG OUTPUT=APL_OUT LIST _OPTIONS=S TT=ASC II

The following options are specified:

INPUT=APL_PROG

APL statements are read from file APL_PROG.

OUTPUT =APL_ OUT

APL output is written to file APL_OUT.

LIST_OPTIONS=S

All input is copied to the output file.

TT=ASCII

Terminal type is specified as ASCII.

All other parameters assume default options.

Commands and Functions 2-19

ASSEMBLE

ASSEMBLE
Command

Remarks Reserved for site personnel, Control Data, or future use.

ATTACH_FILE
Command

Purpose

Format

Attaches a file to a job.

ATTACH_FILE or
ATTF

FILE=file
LOCAL_FILE_NAME =name
PASSWORD=name or keyword
ACCESS_MODES=list of keyword
SHARE _MODES= list of keyword
WAIT= boolean
ERROR_EXIT_PROCEDURE_NAME=name
ERROR_LIMIT =integer
MESSAGE_CONTROL=list of keyword
OPEN _POSITION= keyword
PRNATE_READ=boolean
STATUS =status variable

Parameters FILE or F

Specifies the file to be attached. Omission of a cycle
reference causes $HIGH to be used. This parameter is
required.

LOCAL_FILE_NAMEorLFN

Specifies a local file name (an alias) which can be used
by subsequent commands and programs within the job to
refer to the file. If this name is already assigned within
the job, an error status is returned. Omission causes the
permanent file name to be used.

2-20 NOSNE Commands and Functions Revision G

Revision G

ATTACH_FILE

NOTE

Each attach within a job requires a unique LOCAL_
FILE_NAME. For this reason, and for compatibility with
future NOSNE releases, it is recommended that you
specify a unique LOCAL_FILE_NAME value.
Furthermore, it is recommended that you not create an
SCL variable with the same name as the LOCAL_FILE_
NAME. For example:

/create_variable n=lfnl k=string value=$unique
/create_file f=$user.file local_file_name=$name(lfn1)

PASSWORD or PW

Specifies the file password. It must match the file
password saved with the catalog entry. Otherwise, an
error status is returned. Omission or the specification of
the keyword NONE causes no password to be used.

ACCESS_MODES or ACCESS_MODE or AM

Specifies how the file is to be used within the job while
attached. Specify the modes you want to use and for
which you are validated. Choices are:

READ

You can read the file.

APPEND

You can append information to the end of the file.

MODIFY

You can alter existing data within the file.

EXECUTE

You can execute the object code or SCL procedure in
the file.

SHORTEN

You can delete data from the end of the file.

WRITE

You can access the file in SHORTEN, MODIFY, and
APPEND modes.

Commands and Functions 2-21

ATTACH_FILE

ALL

You can access the file in READ, APPEND, MODIFY,
SHORTEN, WRITE, and EXECUTE modes.

If omitted, R~AD and EXECUTE are assumed.

SHAR.E_MODES or SHAR.E_MODE or SM

Specifies how you will share the file with other jobs while
attached to the requesting job. Choices are:

READ

Other jobs may read the file.

APPEND

Other jobs may append data to the end of the file.

MODIFY

Other jobs may alter existing data within the file.

EXECUTE

Other jobs may execute the object code or SCL
procedure in the file.

SHORTEN

Other jobs may delete data from the end of the file.

WRITE

Other jobs may attach the file in SHORTEN,
MODIFY, and APPEND modes.

ALL

Other jobs may attach the file in READ, APPEND,
MODIFY, SHORTEN, WRITE, and EXECUTE modes.

NONE

No other jobs may use the file when it is attached to
your job.

Omission causes the share mode to be determined by the
value specified on the ACCESS_MODE parameter. If
access mode includes APPEND, SHORTEN, or MODIFY,
the file is attached with a share mode of NONE.
Otherwise, the file is attached with READ and EXECUTE
share modes.

2-22 NOSNE Commands and Functions Revision G

Revision G

ATTACH_FILE

WAIT or W

This parameter indicates whether the command should
wait if the file is temporarily unavailable. Omission
causes FALSE to be used (that is, if the file is
unavailable, terminate the command and return a status
noting the file is busy).

ERROR_EXIT_PROCEDURE_NAME or EEPN or
ERROR_EXIT_NAME or EEN

Specifies the name of an externally declared (XDCL)
CYBIL procedure to which control is given whenever an
abnormal status is returned by certain file access routine
requests. Omission causes no error exit procedure to be
used.

ERROR_LIMIT or EL

Specifies the maximum number of recoverable (nonfatal)
file errors that can occur before a fatal error is returned.
This parameter is ignored for sequential and
byte-addressable files. For details, see the SCL Advanced
File Management manual.

MESSAGE_CONTROL or MC

Specifies which classes of messages are generated during
access of a keyed file. This parameter is ignored for
sequential and byte-addressable files. For details, see the
SCL Advanced File Management manual.

OPEN _POSITION or OP

Specifies the positioning to occur before the file is opened.
Options are:

$BOI

Position to beginning-of-information.

$ASIS

Position differs depending on the status of the current
instances of open, and whether the requesting task is
a private reader of the file. See the NOS/VE System
Usage manual for more information.

Commands and Functions 2-23

ATTACH_FILE

Remarks

$EOI

Position to end-of-information.

If an open position is specified on a file reference from a
subsequent command, it takes precedence over the open
position specified by this command.

Omission of the OPEN _POSITION parameter causes $EOI
to be used for the OUTPUT file and $BOI to be used for
all other files.

PRIVATE_READ or PR

Specifies whether the attached file is to be accessed for
private read. Options are:

TRUE

The attached file is to be privately read. This option
has no meaning if any of the following is specified for
the ACCESS_MODE parameter:

APPEND
MODIFY
SHORTEN
WRITE
ALL

If none of the previous values are specified on the
ACCESS_MODE parameter, this option is the default.

FALSE

Specifies that the attached file is not to be privately
read.

For more information on private read, see the NOSNE
System Usage manual.

• The local file name can be used for all references to
the file by the attaching job.

• Access control information is retrieved from a catalog
and is used to validate your request to access the file.

• The access modes and share modes are verified to
ensure that the request does not conflict with current
file usage.

• The file remains attached until DETACH_FILE is
specified.

2-24 NOSNE Commands and Functions Revision G

Examples

Revision G

ATTACH_FILE

• Ordinarily, it is not necessary to use this command to
reference a file. NOSNE will automatically attach a
file when it is referenced by a command. However,
you may need to use this command in the following
cases:

The file has a password.

The subsequent commands require the use of a
local file name due to programming language
conventions.

The file may have multiple cycles and you did not
provide a cycle number in the file reference. In
this case you may need to use a local file name to
ensure that subsequent commands consistently
reference the file cycle you attached.

The subsequent commands each read part of the
file using the $ASIS open position.

You need to restrict access to the file by
subsequent commands in the job or in other jobs.

• For more information, see the NOSNE System Usage
manual.

The following example attaches file DATA_FILE_ l from
the master catalog, then begins an editing session on the
file.

/attach~file f=$user.data_file_1 pw=pw_for_data_file_l
.. /am=(read write) sm=none w=true
/edit_file $user.data_file_1

The file is assigned with the access modes READ and
WRITE and the share mode NONE. With this access, you
are allowed to read and write on the file only. In
addition, no one else can access the file while you have it
attached.

Commands and Functions 2-25

ATTACH_JOB

ATTACH_JOB
Command

Purpose

Format

Reconnects your terminal to a previously disconnected job.

ATTACH_JOB or
ATTJ

JOB_NAME=name
STATUS= status variable

Parameters JOB _NAME or JN

Remarks

Examples

Specifies the name of the job to be reconnected. You can
omit this parameter if only one job has been disconnected.
This parameter is required if more than one job has been
disconnected.

• You cannot attach a job that originated on a different
network from the one you are currently accessing. To
attach that job, you must log in again through the
network associated with the detached job.

• For more information, see the NOSNE System Usage
manual.

For an example of the ATTACH_JOB command, refer to
the example listed under DETACH_JOB.

BACKUP _PERMANENT _FILES
Command

Purpose

Format

Initiates execution of the utility that backs up permanent
files and catalogs. Further processing is directed by utility
subcommands.

BACKUP_PERMANENT_FILES or
BACKUP_PERMANENT_FILE or
BACPF

BACKUP _FILE= file
LIST=file
STATUS= status variable

2-26 NOSNE Commands and Functions Revision G

BASIC

Parameters BACKUP _FILE or BF

Remarks

Examples

Specifies the file to which backup information is copied.
You can specify a file position of beginning-of-information
or end-of-information if the file is a mass storage file or a
labelled tape. If no file position is specified, or the file is
an unlabelled tape, the file is initially positioned to
beginning-of-information. This parameter is required.

LIST or L

Identifies the file to which a summary of the results of
executing the backup utility is written and, optionally,
specifies how the file is to be positioned prior to use.
Omission causes $LIST to be used.

• You can back up only the files for which you have
read access.

• For more information, see the NOSNE System Usage
manual.

The following command initiates a BACKUP_
PERMANENT_FILE command utility session. The
command specifies that the backed up files are to be
written to file BACKED_ UP _FILES with the report
listing written to file BACKUP _LISTING.

/backup_permanent_files bf=backed_up_files
.. /l=backup_listing

Following the entry of this command, BACKUP_
PERMANENT_FILE subcommands can be entered in
response to the following prompt.

PUB/

BASIC
Command

Purpose

Format

Revision G

Compiles a BASIC source program.

BASIC
INPUT=file
BINAR.Y =file
LIST=file
LIST_ OPTIONS= list of keyword
AR.RAY _DIMENSIONS= keyword
STATUS= status variable

Commands and Functions 2-27

BASIC

Parameters INPUT or I

Specifies the file containing the source program to be
compiled. The default input file is $INPUT.

When the BASIC command is invoked using the INPUT
parameter, input is expected from the standard file
$INPUT. To terminate input and compile what is entered,
enter END_OF_INFORMATION after a prompt.

The END_OF_INFORMATION value is a connection
attribute. The default value is *EOI. To display the
connection attribute value, enter the following SCL
command:

display_term_conn_default, end_of_information

BINARY or B

Specifies the file to receive the binary object code. The
default binary object file is $LOCAL.LGO.

LIST or L

Specifies the file to receive the compiler output listing.
The default list file is $LIST.

LIST_ OPTIONS or LO

Specifies the information that is to appear in the compiler
output listing. ·The list options are:

s
Source listing

0

Object code listing

R
Cross-reference listing

N

None

The default list option is S.

2-28 NOSNE Commands and Functions Revision G

BASIC

Parameters BACKUP_ FILE or BF

Remarks

Examples

Specifies the file to which backup information is copied.
You can specify a file position of beginning-of-information
or end-of-information if the file is a mass storage file or a
labelled tape. If no file position is specified, or the file is
an unlabelled tape, the file is initially positioned to
beginning-of-information. This parameter is required.

LIST or L

Identifies the file to which a summary of the results of
executing the backup utility is written and, optionally,
specifies how the file is to be positioned prior to use.
Omission causes $LIST to be used.

ct You can back up only the files for which you have
read access.

o For more information, see the NOSNE System Usage
manual.

The following command initiates a BACKUP_
PERMANENT_FILE command utility session. The
command specifies that the backed up files are to be
written to file BACKED_ UP _FILES with the report
listing written to file BACKUP _LISTING.

/backup_permanent_files bf=backed_up_files
.. /l=backup_l1st1ng

Following the entry of this command, BACKUP_
PERMANENT_FILE subcommands can be entered in
response to the following prompt.

PUB/

BASIC
Command

Purpose

Format

Revision G

Compiles a BASIC source program.

BASIC
INPUT=file
BINAR.Y =file
LIST=file
LIST_ OPTIONS= list of keyword
AR.RAY _DIMENSIONS= keyword
STATUS= status variable

Commands and Functions 2-27

BASIC

Parameters INPUT or I

Specifies the file containing the source program to be
compiled. The default input file is $INPUT.

When the BASIC command is invoked using the INPUT
parameter, input is expected from the standard file
$INPUT. To terminate input and compile what is entered,
enter END_OF_INFORMATION after a prompt.

The END_OF_INFORMATION value is a connection
attribute. The default value is *EOI. To display the
connection attribute value, enter the following SCL
command:

display_term_conn_default, end_of _information

BINAR.Y or B

Specifies the file to receive the binary object code. The
default binary object file is $LOCAL.LGO.

LIST or L

Specifies the file to receive the compiler output listing.
The default list file is $LIST.

LIST_OPTIONS or LO

Specifies the information that is to appear in the compiler
output listing. 'The list options are:

s
Source listing

0

Object code listing

R
Cross-reference listirig

N
None

The default list option is S.

2-28 NOSNE Commands and Functions Revision G

Remarks

Examples

BLOCK

BLOCK

AR.RAY_DIMENSIONS or AD

Indicates whether static or dynamic dimensioning is used
for arrays when the program is compiled.

STATIC (S)

Array dimensions are fixed when the program is
compiled.

DYNAMIC (D)

Array dimensions can be changed when the program is
executed.

The default array is STATIC.

For more information, see the BASIC for NOSNE
manual.

/BASIC I=BASPROG B=BIN L=COMPLIST LO=(N,O)

This command selects the following options:

I=BASPROG

Reads source program from the file BASPROG.

B=BIN

Writes binary code listing to the file BIN.

L=COMPLIST

Writes compiler output listing to the file COMPLIST.

LO=(N,0)

Provides the object code listing but suppresses the
source listing.

No status variable is specified.

Control Statement

Purpose

Format

Revision G

Groups a sequence of statements into a block.

label: BLOCK
statement list

BLOCKEND label

Commands and Functions 2-29

BUILD _REAL_ MEMORY

Parameters label

Remarks

Examples

Specifies the name of the block. The label can be used by
EXIT statements within the block.

statement list

Specifies the list of statements that reside in the block.

• Exit from the block takes place either through
completing execution of the last statement of the
statement list or through explicit transfer of control
via an EXIT statement.

o For more information, see the NOSNE System Usage
manual.

The following example creates a block named MAIN. The
statement list includes an EXIT flow control statement
that causes an exit from block MAIN when the tested
condition is TRUE. If the tested condition is FALSE, the
EXIT statement is inhibited.

main: block

exit when not status.normal

blockend main

BUILD _REAL_MEMORY
Command

Remarks Reserved for site personnel, Control Data, or future use.

2-30 NOSNE Commands and Functions Revision G

c

c
Command

Purpose Compiles C source text to generate a NOS/VE object
module.

NOTE

Before compiling any program written in C, you must
first enter:

set_working_catalog $user "or another subcatalog"

The C command adds libraries to the job command list.
These are also required for execution of C binaries. If the
C command was not used before executing the program,
enter:

$system.c.setup

Format C
INPUT=file
BINARY=file
LIST=file
DEBUG _AIDS= keyword
ERROR=file
OPTIMIZATION _LEVEL= keyword
MATH _LIBRARY= keyword
SYMBOL_TABLE_SIZE_MULTIPLIER=integer
STATUS= status variable

Parameters INPUT or I

Revision G

File containing the source text to be compiled. The file
name must end with the characters _C or _c. (NOS/VE
file names are not case-sensitive.)

BINARY or B

File to which the object module is written. If the file does
not exist, it is created in the working catalog.

If BINARY is omitted, the object module is written on file
LGO in the working catalog.

Commands and Functions 2-31

c

LIST or L

File to which error messges are written.

If LIST is omitted, the error messages are written on file
LIST in the working catalog.

DEBUG_AIDS or DA

Indicates whether the object module is to be written with
debug tables so it can be used with Debug.

DT

Generate Debug tables.

NONE

Do not generate Debug tables.

Omission of the parameter causes NONE to be used.

ERROR or E

File to which error messages are written.

If ERROR is omitted, the error messages are written on
file ERROR in the working catalog.

OPTIMIZATION _LEVEL or OL or OPTIMIZATION or
OPT

Indicates whether optimization should be performed.

DEBUG or LOW

No optimization.

HIGH

Peephole optimization.

If OPTIMIZATION _LEVEL is omitted, no optimization
(LOW) is performed.

MATH_LIBRAR.Y or ML

Indicates which math library to use:

LM

Use the math library which calls the FORTRAN math
library (mlf$library).

2-32 NOSNE Commands and Functions Revision G

CHANGE_l 70_REQUEST

Parameters FILE or F

Revision G

Specifies the name of a N OSNE temporary file associated
with a 170 tape file by a previous CREATE_ 170_
REQUEST command. This parameter is required.

FILE_SET_POSITION or FSP

Specifies the position of the 170 tape file to be read.

The FILE_SET_POSITION parameter is not needed for
unlabeled tapes because NOSNE assumes that you wish
to read the first file on an unlabeled tape. That is, the
value of the FILE_SET_POSITION parameter for a file
on an unlabeled 170 tape is BEGINNING_OF_SET,
regardless of what you enter.

Only labeled tapes can use all the values of the FILE_
SET_POSITION parameter. If you omit the parameter for
a labeled tape, the NEXT_FILE position is assumed.

The parameter can have any of the following values:

BEGINNING_OF_SET or BOS

Specifies that the first tape file on the file set is to be
read.

CURRENT_FILE or CF

Specifies that the current tape file is to be read. That
is, the last tape file accessed will be accessed again. If
the tape is positioned at the beginning of the first
volume, the first tape file will be read.

FILE_IDENTIFIER_POSITION or FIP

Specifies that the tape file identified by the FILE_
IDENTIFIER and GENERATION_NUMBER
parameters is to be read.

FILE_SEQUENCE_POSITION or FSP

Specifies that the tape file identified by the FILE_
SEQUENCE_NUMBER parameter is to be read.

NEXT_FILE or NF

Specifies that the tape file following the last accessed
tape file will be read. If the tape is positioned at the
beginning of the first volume, the first tape file will
be read.

Commands and Functions 2-35

CHANGE_l 70_REQUEST

FILE_IDENTIFIER or FI
Specifies a file identifier as a string of 1 to 17 characters.
The FILE_IDENTIFIER parameter is for labeled tapes,
and it is ignored if you specify it for an unlabeled tape.
Each tape file on a multifile set has a unique file
identifier. If the FILE_SET_POSITION parameter does
not have the FILE_IDENTIFIER_POSITION value, the
FILE_IDENTIFIER parameter is ignored.

If you specify the FILE_IDENTIFIER_POSITION value
for the FILE_SET_POSITION parameter, the FILE_
IDENTIFIER parameter must have a value. If you omit
the FILE_IDENTIFIER parameter, a fatal diagnostic is
issued.

FILE_SEQUENCE_NUMBERorFSN
Specifies the numeric position of a tape file on a multifile
set. The position is an unsigned integer in the range 1
through 9999. The FILE_SEQUENCE_NUMBER
parameter is for labeled tapes, and it is ignored if you
specify it for an unlabeled tape. If the FILE_SET_
POSITION parameter is not set to FILE_SEQUENCE_
POSITION, the FILE_SEQUENCE_NUMBER parameter
value is ignored.

If you specify the FILE_SEQUENCE_POSITION value
for the FILE_SET_POSITION parameter, the FILE_
SEQUENCE_NUMBER parameter must have a value. If
you omit the FILE_SEQUENCE_NUMBER parameter, a
fatal diagnostic is issued.

GENERATION_NUMBERorGN
Identifies the specific revision of the tape file named by
the FILE_IDENTIFIER parameter. The revision is shown
as an unsigned integer in the range 1 through 9999. The
GENERATION _NUMBER parameter is for labeled tapes,
and it is ignored if you specify it for an unlabeled tape. If
the FILE_SET_POSITION parameter has the FILE_
IDENTIFIER_POSITION value, and the GENERATION_
NUMBER parameter is omitted, then the GENERATION_
NUMBER parameter value is set to one.

If the FILE_SET_POSITION parameter does not have the
FILE_IDENTIFIER_POSITION value, the
GENERATION _NUMBER parameter is ignored.

2-36 NOSNE Commands and Functions Revision G

Remarks

CANCEL

NONE

Math library is not selected.

If MATH_LIBRARY is omitted, no math library is
selected.

CANCEL

SYMBOL_TABLE_SIZE_MULTIPLIER or STSM

Specifies an integer in the range of 1 through 100. All of
the symbol tables are enlarged by this factor.

Omission of this parameter causes 1 to be used.

For more information, see the C for NOS/VE manual.

Control Statement

Purpose Cancels the most recently selected condition(s).

Format CANCEL
condition name(s)

Parameters condition names

Remarks

Examples

Revision G

Specifies one or more condition selections to be canceled.
Multiple condition names are separated by a comma or
space. This parameter is required. The following are valid
condition names:

PROGRAM_ FAULT
LIMIT_FAULT
INTERRUPT
COMMAND_FAULT
ANY_FAULT

• SCL ignores any attempt to cancel a nonselected
condition.

• For more information, see the NOS/VE System Usage
manual.

The following example cancels a previously established
LIMIT_FAULT condition:

/cancel 11m1t_fault

Several conditions can be canceled at the same time, as
shown in this example:

/cancel conmand_fault program_fault

Commands and Functions 2-33

$CATALOG

$CATALOG
Function

l\l Purpose Returns the name of the current working catalog.

Format $CATALOG

Parameters None.

Remarks For further information about functions, see the NOSNE
System Usage manual.

Examples The following example compares the current working
catalog with the catalog $USER. If the working catalog is
$USER, it is changed to $LOCAL.

if $string($catalog) = $string($fname('$user')) then
set_working_catalog $local

ifend

CHANGE_ 170 _REQUEST
Command

Purpose

Format

Changes the 170 tape file description in a temporary
NOSNE file formed in a preceding CREATE_l70_
REQUEST command.

CHANGE_170_REQUEST or
CHAIR

FILE=file
FILE_SET _POSITION= keyword
FILE _IDENTIFIER= string
FILE_SEQUENCE_NUMBER =integer
GENERATION _NUMBER= integer
INTERNAL_CODE =keyword
CHARACTER_ CONVERSION= boolean
BLOCK_ TYPE= keyword
RECORD_ TYPE= keyword
MAXIMUM _BLOCK_LENGTH =integer
MAXIMUM _RECORD _LENGTH =integer
TAPE_FORMAT=keyword
STATUS =status variable

2-34 NOSNE Commands and Functions Revision G

Revision G

CHANGE_l 70_REQUEST

INTERNAL_CODE or IC

Specifies the character set of the data on the tape volume.
If you omit the parameter, its value is left at its previous
setting. The INTERNAL_CODE parameter can have the
following values:

AS6

6/12-bit ASCII

ASS

8/12-bit ASCII

D63

63-character display code

D64

64-character display code

CHARACTER_CONVERSION or CC

Boolean value specifies whether or not file data is to be
converted to or from the character set specified by the
INTERNAL_CODE parameter. If you omit the
CHARACTER_CONVERSION parameter, its value is left
at its previous setting.

Of the tape file migration methods, only FMA and FMU
automatically do character conversion in addition to any
conversion specified by the CHARACTER_ CONVERSION
parameter value.

To obtain a properly migrated tape file, you usually want
to set the CHARACTER_CONVERSION parameter to
FALSE if you use FMA or FMU to migrate. Otherwise
you convert your tape file data twice. Set the parameter
to TRUE if you use any other tape file migration method.
Otherwise, you do not convert your tape file data at all.

BLOCK_TYPE or BT

Specifies the block type of the 170 input tape file. If you
omit this parameter, its value is left at its previous
setting. Its value can be either of the following:

INTERNAL or I

Internal blocking

Commands and Functions 2-37

CHANGE_l 70_REQUEST

CHARACTER_COUNT or CC

Character count blocking

RECORD_TYPE or RT
Specifies the record type of the 170 tape file. If you omit
this parameter, its value is left at its previous setting. Its
value can be any of the following:

CONTROL_ WORD, CW, or W

Control word

FIXED_LENGTH, FL, or F

Fixed length

SYSTEM_RECORD, SR, or S

System record

ZERO_BYTE, ZB, or Z

Zero-byte

MAXIMUM_BLOCK_LENGTHorMAXBLorMBL
Specifies with an unsigned integer the maximum length in
6-bit bytes of a block in the 170 tape file. The system
maximum for this parameter is 2,147,483,615. If you omit
this parameter, its value is left at its previous setting.

MAXIMUM_RECORD_LENGTHorMAXRLorMRL
Specifies with an unsigned integer the maximum length in
6-bit bytes of a record in the 170 tape file. The system
maximum for this parameter is 4,398,046,511,103. If you
omit this parameter, its value is left at its previous
setting.

TAPE_FORMAT or TF
Specifies the tape format of the 170 tape file. If you omit
this parameter, its value is left at its previous setting.
The possible values for this parameter are:

NOS_INTERNAL, NI, or I

Internal, NOS default tape format

NOS_BE_INTERNAL, NBI, or SI

SCOPE internal and NOS/BE default tape format

2-38 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

STRANGER or S

Stranger

LONG_STRANGER, LS, or L

Long block stranger

CHANGE_l 70_REQUEST

• This command is handy when you wish to use the
same temporary NOSNE file to reference several tape
files from the same multi.file set on tape. You simply
use the CHANGE_l70_REQUEST command to change
the tape file description.

o In general, when you omit a parameter from the
CHANGE_ l 70_REQUEST command, the value of that
parameter is not changed. Thus, usually, you need to
include only those parameters whose settings change
for the new 170 tape file.

The two exceptions to this rule are the FILE_SET_
POSITION and the GENERATION _NUMBER
parameters. When you omit these parameters, their
values become the default values of the parameters.
For the FILE_SET_POSITION parameter, the default
is BEGINNING_OF_SET for an unlabeled tape and
NEXT_FILE for a labeled tape. The default value for
the GENERATION _NUMBER parameter is 1.

Suppose that you have associated the first tape file of a
multifile set on a 170 labeled tape with the temporary
NOSNE file, MULTI_FILES. Once you have processed
this first tape file, you wish to access the fifth tape file
on the same multifile set. The following command
associates the fifth tape file with MULTLFILES.

/change_170_request file=multi_files ..
.. /file_set_position=file_sequence_position
.. /file_sequence_number=S ..
.. /internal_code=d63 ..
.. /character_conversion=true
.. /block_type=character_count ..
.. /record_type=system_record
.. /maximum_block_length=6000 ..
.. /maximum_record_length=300 ..
.. /tape_format=nos_be_interna)

The tape file has the following characteristics:

Commands and Functions 2-39

CHANGE_ 7600_REQUEST

• Found from its position within the multifile set.

• Data to be converted from its 63 character display
code.

• Character count blocking and system record type.

• Maximum length of a block is 6000 6-bit bytes; of a
record 300 6-bit bytes.

• NOS/BE default tape format.

CHANGE_ 7600 _REQUEST
Command

Purpose Changes the 7600 tape file description in a temporary
NOSNE file formed in a preceding CREATE_ 7600_
REQUEST command.

Format CHANGE_7600_REQUEST or
CHA7R

FILE=file
FILE_ SET _POSITION= keyword
FILE _IDENTIFIER= string
FILE _SEQUENCE _NUMBER= integer
GENERATION _NUMBER= integer
INTERN AL_ CODE= keyword
CHARACTER_ CONVERSION= boolean
BLOCK_ TYPE= keyword
RECORD_ TYPE= keyword
MAXIMUM _BLOCK_LENGTH =integer
MAXIMUM _RECORD _LENGTH= integer
STATUS= status variable

Parameters FILE or F

Specifies the name of a NOSNE temporary file associated
with a 7600 tape file by a previous CREATE_ 7600_
REQUEST command. This parameter is required.

FILE_SET_POSITION or FSP

Specifies the position of the 7600 tape file to be read.

The FILE_SET_POSITION parameter is not needed for
unlabeled tapes because NOSNE assumes that you wish
to read the first file on an unlabeled tape. That is, the

2-40 NOSNE Commands and Functions Revision G

Revision G

CHANGE_ 7600_REQUEST

value of the FILE_SET_POSITION parameter for a file
on an unlabeled 7600 tape is BEGINNING_OF_SET,
regardless of what you enter.

Only labeled tapes can use all the values of the FILE_
SET_POSITION parameter. If you omit the parameter for
a labeled tape, the NEXT_FILE position is assumed.

The parameter can have any of the following values:

BEGINNING_OF_SET or BOS

Specifies that the first tape file on the file set is to be
read.

CURRENT_FILE or CF

Specifies that the current tape file is to be read. That
is, the last tape file accessed will be accessed again. If
the tape is positioned at the beginning of the first
volume, the first tape file will be read.

FILE_IDENTIFIER_POSITION or FIP

Specifies that the tape file identified by the FILE_
IDENTIFIER and GENERATION _NUMBER
parameters is to be read.

FILE_SEQUENCE_POSITION or FSP

Specifies that the tape file identified by the FILE_
SEQUENCE_NUMBER parameter is to be read.

NEXT_FILE or NF

Specifies that the tape file following the last accessed
tape file will be read. If the tape is positioned at the
beginning of the first volume, the first tape file will
be read.

FILE_IDENTIFIER or FI

Specifies a file identifier as a string of 1 to 17 characters.
The FILE_IDENTIFIER parameter is for labeled tapes,
and it is ignored if you specify it for an unlabeled tape.
Each tape file on a multi.file set has a unique file
identifier. If the FILE_SET_POSITION parameter does
not have the FILE_IDENTIFIER_POSITION value, the
FILE_IDENTIFIER parameter is ignored.

Commands and Functions 2-41

CHANGE_ 7600_REQUEST

If you specify the FILE_IDENTIFIER_POSITION value
for the FILE_SET_POSITION parameter, the FILE_
IDENTIFIER parameter must have a value. If you omit
the FILE_IDENTIFIER parameter, a fatal diagnostic is
issued.

FILE_SEQUENCE_NUMBERorFSN
Specifies the numeric position of a tape file on a multifile
set. The position is an unsigned integer in the range 1
through 9999. The FILE_SEQUENCE_NUMBER
parameter is for labeled tapes, and it is ignored if you
specify it for an unlabeled tape. If the FILE_SET_
POSITION parameter is not set to FILE_SEQUENCE_
POSITION, the FILE_SEQUENCE_NUMBER parameter
value is ignored.

If you specify the FILE_SEQUENCE_POSITION value
for the FILE_SET_POSITION parameter, the FILE_
SEQUENCE_NUMBER parameter must have a value. If
you omit the FILE_SEQUENCE_NUMBER parameter, a
fatal diagnostic is issued.

GENERATION_NUMBERor GN
Identifies the specific revision of the tape file named by
the FILE_IDENTIFIER parameter. The revision is shown
as an unsigned integer in the range 1 through 9999. The
GENERATION_NUMBER parameter is for labeled tapes,
and it is ignored if you specify it for an unlabeled tape. If
the FILE_SET_POSITION parameter has the FILE_
IDENTIFIER_POSITION value, and the GENERATION_
NUMBER parameter is omitted, then the GENERATION_
NUMBER parameter value is set to one.

If the FILE_SET_POSITION parameter does not have the
FILE_IDENTIFIER_POSITION value, the
GENERATION _NUMBER parameter is ignored.

INTERNAL_CODE or IC
Specifies the character set of the data on the tape volume.
If you omit the parameter, its value is left at its previous
setting. The INTERNAL_CODE parameter can have the
following values:

AS6

6/12-bit ASCII

2-42 NOSNE Commands and Functions Revision G

Revision G

CHANGE_ 7600_REQUEST

ASS

8/12-bit ASCII

D63

63-character display code

D64

64-character display code

CHARACTER_CONVERSION or CC

Boolean value specifies whether or not file data is to be
converted to or from the character set specified by the
INTERNAL_CODE parameter. If you omit the
CHARACTER_CONVERSION parameter, its value is left
at its previous setting.

Of the tape file migration methods, only FMA and FMU
automatically do character conversion in addition to any
conversion specified by the CHARACTER_CONVERSION
parameter value.

To obtain a properly migrated tape file, you usually want
to set the CHARACTER_ CONVERSION parameter to
FALSE if you use FMA or FMU to migrate. Otherwise
you convert your tape file data twice. Set the parameter
to TRUE if you use any other tape file migration method.
Otherwise, you do not convert your tape file data at all.

BLOCK_ TYPE or BT

Specifies the block type of the 7600 input tape file. If you
omit this parameter, its value is left at its previous
setting. Its value can be either of the following:

INTERN AL or I

Internal blocking

CHARACTER_COUNT or CC

Character count blocking

RECORD_TYPE or RT

Specifies the record type of the 7600 tape file. If you omit
this parameter, its value is left at its previous setting. Its
value can be any of the following:

Commands and Functions 2-43

CHANGE_ 7600_REQUEST

Remarks

CONTROL_ WORD, CW, or W

Control word

FIXED_LENGTH, FL, or F

Fixed length

SYSTEM_RECORD, SR, or S

System record

ZERO_BYTE, ZB, or Z

Zero-byte

MAXIMUM_BLOCK_LENGTHorMAXBLorMBL
Specifies with an unsigned integer the maximum length in
6-bit bytes of a block in the 7600 tape file. The system
maximum for this parameter is 2,147,483,615. If you omit
this parameter, its value is left at its previous setting.

MAXIMUM_RECORD_LENGTHorMAXRLorMRL
Specifies with an unsigned integer the maximum length in
6-bit bytes of a record in the 7600 tape file. The system
maximum for this parameter is 4,398,046,511,103. If you
omit this parameter, its value is left at its previous
setting.

• This command is handy when you wish to use the
same temporary NOSNE file to reference several tape
files from the same multifile set on tape. You simply
use the CHANGE_ 7600_REQUEST command to
change the tape file description.

• In general, when you omit a parameter from the
CHANGE_ 7600_REQUEST command, the value of
that parameter is not changed. Thus, usually, you
need to include only those parameters whose settings
change for the new 7600 tape file.

The two exceptions to this rule are the FILE_SET_
POSITION and the GENERATION_NUMBER
parameters. When you omit these parameters, their
values become the default values of the parameters.
For the FILE_SET_POSITION parameter, the default
is BEGINNING_OF_SET for an unlabeled tape and
NEXT_FILE for a labeled tape. The default value for
the GENERATION _NUMBER parameter is 1.

2-44 NOSNE Commands and Functions Revision G

Examples

CHANGE_ALTERNATE_INDEXES

Suppose that you have associated a tape file on an
unlabelled 7600 tape with the temporary NOSNE file,
TAPE_ 7600. Once you have processed this tape file, you
wish to access it again. The file is at the beginning of the
volume. The following command fully describes the tape
file and again associates the tape file with TAPE_ 7600:

/change_7600_request file=tape_7600 ..
.. /file_set_position=beginning_of_set
.. /internal_code=as8 ..
.. /character_conversion=true ..
.. /block_type=character_count ..
.. /record_type=fixed_length ..
.. /maximum_block_length=8000 ..
.. /maximum_record_length=250

The tape file has the following characteristics:

• Data to be converted from its 8/12-bit ASCII character
set.

o Character count blocking and fixed length record type.

• Maximum length of a block is 8000 6-bit bytes; of a
record 250 6-bit bytes.

CHANGE_ALTERNATE_INDEXES
Command

Purpose Initiates execution of the CREATE_ALTERNATE_
INDEXES command utility. The utility can create, delete,
and display alternate-key definitions in ·a keyed file.

Format CHANGE_ALTERNATE_INDEXES or
CHANGE_ALTERNATE_INDEX or
CHANGE_ALTERNATE_INDICES or
CHAAI

INPUT= list of any
STATUS ==status variable

Parameters INPUT or I

Revision G

Keyed file to be processed by the utility. The file
permissions required depend on the subcommands entered
during the utility as described in the Remarks. This
parameter is required.

Commands and Functions 2-45

CHANGE_ALTERNATE_INDEXES

Remarks

To specify a nested file, first specify the file reference and
then the nested-file name, enclosed in parentheses.

• The command utility prompt is:

creai/

• In response to the creai/ prompt, you can enter certain
SCL commands and any of these subcommands:

QUIT

DISPLAY_KEY_DEFINITIONS

CREATE_KEY_DEFINITIONS

DELETE KEY_DEFINITIONS

CANCEL_KEY_DEFINITIONS

APPLY_ KEY_ DEFINITIONS

• The CREATE_ALTERNATE_INDEXES utility creates
a keyed file under these conditions:

- The file set does not exist and,

- A SET_FILE_ATTRIBUTES command for the file
was entered before the CREATE_ALTERNATE_
INDEXES command.

The SET_FILE_ATTRIBUTES command is required
because the default file-organization attribute is
sequential and CHANGE_ALTERNATE_INDEXES
only processes keyed files.

• The CHANGE_ALTERNATE_INDEXES command
does not check your file permissions. The
subcommands you enter in the utility session check
that you have the required permissions to do the
operation.

• To display key definitions, you must have at least
read permission.

• To create, delete, cancel, or apply key definitions you
must have at least the three permissions: append,
modify, and shorten.

2-46 NOSNE Commands and Functions Revision G

Examples

CHANGE_BACKUP_LABEL_TYPE

o For more information, see the NOSNE Advanced File
Management Usage manual.

This command begins a utility session that displays the
alternate key definitions of keyed file $USER.IS_FILE.

/change_alternate_indexes input=$user. is_file
creai/disp lay_key_def in it ions t<ey_names=a 11 display_opt ions=br ief

Display_Key_Definitions NOS/VE Keyed File Utilities 1.1
File= :NVE.USER99.IS_FILE

KEY NAME POSITION LENGTH TYPE STATE

ALTERNATE_KEY_l 0 10 uncollated Exists in file
creai/quit "The APPLY_KEY_DEFINITIONS parameter is not required here"

"because no creation or deletion requests are pending."

CHANGE_BACKUP_LABEL_TYPE
Command

Purpose Changes the job default label type for permanent file
backup and restore operations which have a backup file
assigned to a tape device. It does not affect the default
label type for other types of tape file usage.

Format CHANGE_BACKUP _LABEL_ TYPE or
CHABLT

FILE_ LABEL_ TYPE= keyword
STATUS= status variable

Parameters FILE_ LABEL_ TYPE or FLT

Remarks

Examples

Revision G

Specifies the tape label type. You must select:

UNLABELLED (U) for unlabelled tapes.

or

LABELLED (L) for labelled tapes.

For more information, see the NOSNE System Usage
manual.

The following example enables you to use unlabelled tapes
for permanent file backup:

/change_backup_label_type ..
.. /file_label_type =unlabelled

Commands and Functions 2-4 7

CHANGE_ CATALOG_ CONTENTS

CHANGE_CATALOG_CONTENTS
Command

Purpose Deletes damage conditions from files in the specified
catalogs. This command can also delete catalog entries for
files for which no file cycle data exists in mass storage.

Format CHANGE_CATALOG_CONTENTS or
CHANGE_CATALOG_CONTENT or
CHA CC

CATALOG= file or keyword
DELETE _DAMAGE_ CONDITION= list of keyword
DELETE_ UNRECONCILED _FILES= boolean
STATUS=status variable

Parameters CATALOG or C

Specifies the catalog for which to change the contents.
The keyword ALL specifies all catalogs for all families in
the system.

DELETE_DAMAGE_ CONDITION or DELETE_
DAMAGE_CONDITIONSorDDC

Specifies the damage condition to delete from the files in
the specified catalogs. DELETE_DAMAGE_CONDITION
has the following values:

PARENT_CATALOG_RESTORED or PCR

This damage condition warns users when catalogs have
been restored.

RESPF_MODIFICATION_MISMATCH or RMM

The damage condition warns users when a file
restored from a backup tape has a different
modification date than what is recorded in the file's
catalog.

If this parameter is omitted, RESPF _MODIFICATION_
MISMATCH is used.

DELETE_UNRECONCILED_FILESorDELETE_LOST_
CYCLES or DLC or DUF

Specifies whether to delete catalog entries for all files for
which no file cycle data exists in mass storage.
DELETE_ UNRECONCILED_FILES has the following
values:

2-48 NOSNE Commands and Functions Revision G

Remarks

Examples

CHANGE_CATALOG_ENTRY

TRUE

Delete unreconciled files.

FALSE

Do not delete unreconciled files.

For more information, see the NOSNE System
Performance and Maintenance manual, Volume 2.

This example deletes the RESPF _MODIFICATION_
MISMATCH damage condition from all catalogs in all
families:

/change_catalog_contents ..
/delete_damage_condition=respf _modification_mismatch

CHANGE_CATALOG_ENTRY
Command

Purpose

Format

Changes the file name, cycle, password, log selection,
retention period, charge identification, and damage
condition associated with a file.

CHANGE_CATALOG_ENTRY or
CHACE

FILE=file
PASSWORD=name or keyword
NEW _FILE _NAME= name
NEW_ CYCLE= integer
NEW_PASSWORD=name or keyword
NEW _LOG= boolean
NEW _RETENTION= integer
NEW _ACCOUNT _PROJECT= boolean
DELETE_DAMAGE_CONDITION=list of keyword
STATUS= status variable

Parameters FILE or F

Revision G

Specifies the file whose information is to be changed. ·
Omission of a cycle causes $HIGH to be used if it is
applicable to the command (that is, changing the cycle
number, retention, or damage condition). Otherwise, the
cycle is ignored. This parameter is required.

Commands and Functions 2-49

CHANGE_CATALOG_ENTRY

PASSWORD or PW

Specifies the current file password. It must match the file
password in the catalog entry or an abnormal status is
returned. The keyword NONE indicates that no password
has been specified for the file. Omission causes NONE to
be used.

NEW_FILE_NAME or NFN

Specifies the new permanent file name to be associated
with the file. All existing cycles of the file contain this
new name. If the new name already exists in the catalog,
an abnormal status is returned. Omission causes the
current name to be retained.

NEW_CYCLE or NC

Specifies the new cycle number (from . 1 through 999) to
be associated with a file cycle. If the specific number
already exists, an abnormal status is returned. Omission
causes the current cycle number to he retained.

NEW _PASSWORD or NPW

Specifies the new password to be associated with all
cycles of the file. The keyword NONE indicates that no
password is to be associated with the file. Omission
causes the current password to be retained.

NEW _LOG or NL

Specifies whether a new file access logging option is to be
associated with all cycles of the file. Omission causes the
current log option to be retained.

NEW _RETENTION or NR

Specifies a new retention period for the specified file
cycle. It determines the number of days (from 1 through
999) from the current date that a file cycle is to be
retained. Omission causes the current retention period to
be retained.

NEW_ACCOUNT_PROJECTorNAP

Specifies whether new account and project identifiers are
to be established for the file. These identifications apply
to all cycles of the file. The values are determined by
NOS/VE according to the project and account identification

2-50 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

CHANGE_CATALOG_ENTRY

associated with the requesting job. Omission causes the
current account and project identifiers associated with the
file to be retained.

DELETE_DAMAGE_CONDITIONorDDC
Specifies the cycle damage condition to be deleted from
the file cycle's catalog registration. Keyword:

RESPF_MODIFICATION_MISMATCH (RMM)

Indicates that a file cycle was restored even though
the last modification date and time were different from
the backed-up permanent file.

Omission, if a cycle damage condition exists, causes a
diagnostic message to be displayed.

• This request can be issued only if you have CONTROL
permission. If the file has a password associated with
it, you must also specify the password.

• A retention period of 999 indicates an infinite
retention period.

• For more information, see the NOS/VE System Usage
manual.

The following example changes the name, password, log
option, and retention period for cycle number 1 of file
DATA_FILE_l in subcatalog CATALOG_! in the master
catalog.

/change_catalog_entry Suser.catalog_1.data_file_1. 1 ..
.. /nfn=data_file_O nc=87 npw=new_data_O_pw nl=true nr=60
/disce Suser.catalog_l.data_file_O

NUMBER OF CYCLES: 2, ACCOUNT: D5927, PROJECT: P693N354
PASSWORD: NEW_DATA_O_PW, LOG SELECTION: TRUE
CYCLE NUMBER: 87, ACCESS COUNT: 3,
CREATION DATE AND TIME: 1987-03-19 10:32:28.750,
LAST ACCESS DATE AND TIME: 1987-03-19 10:32:46.252,
LAST MODIFICATION DATE AND TIME: 1987-03-19 10:32:46.252,
EXPIRATION DATE: 1987-05-18
CYCLE NUMBER: 2, ACCESS COUNT: 2,
CREATION DATE AND TIME: 1987-03-19 10:32:28.923,
LAST ACCESS DATE AND TIME: 1987-03-19 10:32:46.252,
LAST MODIFICATION DATE AND TIME: 1987-03-19 10:32:46.252,
EXPIRATION DATE: NONE

/disc Suser.catalog_l file
DATA_FILE_O

NUMBER OF CYCLES: 2, ACCOUNT: 05927, PROJECT: P693N354
DATA_FILE_2

NUMBER OF CYCLES: 1, ACCOUNT: D5927, PROJECT: P693N354

Commands and Functions 2-51

CHANGE_COMMAND_SEARCH_MODE

The name of the file is changed from DATA_FILE_l to
DATA_FILE_ O for all cycles in the file, the cycle number
for cycle 1 is changed to 87 (other cycle numbers remain
unchanged), the password for the file is changed from null
to NEW_DATA_O_PW, the log activity selection for the
file is changed to TRUE, and the retention period for
cycle 87 is changed to 60 days.

CHANGE_COMMAND_SEARCH_MODE
Command

Purpose Changes the command list search mode.

Format CHANGE_COMMAND_SEARCH_MODE or
CHACSM

SEARCH_MODE=keyword
STATUS =status variable

Parameters SEARCH_MODE or SM

Specifies the new search mode to be associated with the
current command list. Choose one of the following
keywords:

GLOBAL (G)

All entries in the command list can be searched.
Commands specified by path name and command name
can be executed.

RESTRICTED (R)

All entries in the command list can be searched.
However, for a search to proceed beyond the first
entry in the command list, the command you enter
must be preceded by a slash (/). Commands specified
by path name and command name can be executed.

EXCLUSIVE (E)

Only the entry at the beginning of the command list
is searched for a command. Commands that are
specified by path and command name are not allowed.

This parameter is required.

2-52 NOSNE Commands and Functions Revision G

Remarks

CHANGE_ CONNECTION _ATTRIBUTES

• This command may not be used when the command
list search mode is EXCLUSIVE, or if a command
utility is active and the command list search mode is
RESTRICTED.

• For more information, see the NOSNE System Usage
manual.

CHANGE_ CONNECTION _ATTRIBUTES
Command

Purpose Changes the terminal file's connection attributes.

Format CHANGE_CONNECTION_ATTRIBUTES or
CHANGE_ CONNECTION _ATTRIBUTE or
CHANGE_TERM_CONN_ATTRIBUTE or
CHANGE_TERM_CONN_ATTRIBUTES or
CHATCA or
CHA CA

TERMINAL_ FILE _NAME= file
ATTENTION_ CHAR.ACTER_ACTION =integer
BREAK_KEY _ACTION= integer
END_ OF _INFORMATION= string
INPUT _BLOCK_ SIZE= integer
INPUT _EDITING _MODE= keyword
INPUT_OUTPUT_MODE=keyword
INPUT_ TIMEOUT= boolean
INPUT_ TIMEOUT _LENGTH= integer
INPUT_ TIMEOUT _PURGE= boolean
PAR.TIAL_ CHAR.ACTER _FORWAR.DING =boolean
PROMPT_FILE=file
PROMPT_STRING=string
STORE _BACKSPACE_ CHAR.ACTER =boolean
STORE _NULS _DELS =boolean
TRANSPARENT_ CHAR.ACTER_MODE =keyword
TRANSPARENT _FORWARD _CHARACTER= list of

string
TRANSPARENT _LENGTH_MODE =keyword
TRANSPARENT _MESSAGE _LENGTH= integer
TRANSPARENT_ TERMINATE_ CHAR.ACTER =list of

string
TRANSPARENT_ TIMEOUT _MODE= keyword
STATUS= status variable

Revision G Commands and Functions 2-53

CHANGE_CONNECTION_ATTRIBUTES

Parameters TERMINAL_ FILE_ NAME or TFN

Specifies the terminal file name. This parameter is
required.

ATTENTION_CHAR.ACTER_ACTION or ACA

Specifies the type of user interrupt command simulated by
the network when the character defined by the
ATTENTION_ CHARACTER attribute is received from the
terminal. If the ATTENTION_ CHARACTER is set to
NUL, this attribute has no effect. Values are:

0

All typed-ahead input is discarded.

1
All undelivered input and output is discarded, and a
pause break condition is raised.

2 .. 9

All undelivered input and output is discarded, and a
terminate break condition is raised.

BREAK_KEY_ACTIONorBKA

Specifies the type of user interrupt command simulated by
the network when the break key is pressed at the
terminal. Values are:

0

All typed-ahead input is discarded.

1

All undelivered input and output is discarded, and a
pause break condition is raised.

2 - 9
All undelivered input and output is discarded, and a
terminate break condition is raised.

END_OF_INFORMATION or EOI

Specifies a string of 0 to 31 characters that, when entered
as a complete input line, is interpreted as an
end-of-information mark on the input file. A string of zero
characters indicates that EOI is never reached for the
terminal file.

2-54 NOSNE Commands and Functions Revision G

Revision G

CHANGE_ CONNECTION_ATTRIBUTES

INPUT _BLOCK_SIZE or !BS

Specifies the maximum number of characters (80 to 2,000)
stored by the network before input data is forwarded to
NOSNE. When the input data is forwarded, it is sent as
a partial input line.

INPUT_EDITING_MODE or !EM

Specifies how the network edits the data received from
the terminal. This attribute also determines how the
network edits ouput sent to the terminal.

NORMAL (N)

NORMAL editing mode is in effect. The network edits
input to remove special codes or characters before the
input is forwarded to NOSNE.

TRANSPARENT (T)

TRANSPARENT editing mode is in effect. The network
forwards input to NOSNE without converting or
deleting any special codes or characters.

INPUT_OUTPUT_MODE or !OM

Specifies how the network coordinates the terminal input
and output streams. Values are:

UNSOLICITED (U)

The network edits and forwards input data as it is
received. Input need not be solicited by a task in order
to be edited and forwarded.

SOLICITED (S)

The network does not edit or forward input data until
it is solicited by a task. A task solicits input by
reading from a terminal file associated with the
terminal.

FULL_DUPLEX (FD)

The network does not coordinate the input and output
streams. Input data is edited and forwarded as it is
received. Output data is sent to the terminal as it is
received.

Commands and Functions 2-55

CHANGE_CONNECTION_ATTRIBUTES

INPUT_ TIMEOUT or IT

Specifies whether NOSNE is to limit the amount of time
a task waits for input from the terminal when it reads
from a terminal file. Values are:

TRUE

NOSNE limits the task wait time.

FALSE

NOSNE does not limit the task wait time.

INPUT_TIMEOUT_LENGTH or ITL

Specifies the maximum number of milliseconds (0 to
86,401) that a task is to wait for input from a terminal
when it reads from a terminal file. If no input occurs
within the specified timeout interval, a GET call returns
an abnormal status.

INPUT_TIMEOUT_PURGE or ITP

Specifies whether undelivered terminal input and output is
to be discarded when an input timeout condition occurs. ·
This attribute has no effect if the INPUT_ TIMEOUT_
LENGTH attribute is set to 0 (zero).

PAR.TIAL_CHARACTER_FORWARDINGorPCF

Specifies whether the network forwards a partial input
line when an END_PARTIAL_CHARACTER is received
from the terminal. Values are:

TRUE

The network sends a partial input line to NOSNE
upon receipt of the END_PARTIAL_CHARACTER.

FALSE

The network stores the END_PARTIAL_CHARACTER
as part of the data to be forwarded to NOSNE. A
partial input line is not sent.

PROMPT_FILE or PF

Specifies the local file name of the file to which the
prompt string is written. NOSNE opens the file specified
by the PROMPT_FILE attribute when a task performs its
first input from the terminal file.

2-56 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_ CONNECTION_ATTRIBUTES

PROMPT_STRINGor PS
Specifies the string written to the prompt file when a
task reads from the terminal file.

STORE_BACKSPACE_CHARACTERor SBC
Specifies how the network processes the character
specified as the BACKSPACE_ CHARACTER when it is
received from the terminal. Values are:

TRUE

The network stores the BACKSPACE_ CHARACTER
as part of the data to be forwarded to NOSNE.

FALSE

The network discards the BACKSPACE_ CHARACTER
and removes the last character from the data to be
forwarded to NOSNE.

STORE_NULS_DELSor SND
Specifies whether the network stores or discards the NUL
and DEL characters when they are received from the
terminal. Values are:

TRUE

The network stores the NUL and DEL characters as
part of the data to be forwarded to NOSNE.

FALSE

The network discards the NUL and DEL characters.

TRANSPARENT_CHARACTER_MODE or TCM
Specifies the action the network takes when a
TRANSPARENT_FORWARD_CHARACTERora
TRANSPARENT_TERMINATE_CHARACTER is received
from the terminal. Values are:

FORWARD (F)

The network forwards the stored input characters as a
complete input line to NOSNE when a
TRANSPARENT_FORWARD_CHARACTER is received
from the terminal. The TRANSPARENT_FORWARD_
CHARACTER is not included in the input line.
TRANSPARENT editing mode remains in effect.

Commands and Functions 2-57

CHANGE_CONNECTION_ATTRIBUTES

TERMINATE (T)

The network forwards the stored input characters as a
complete input line to NOSNE and reverts to
NORMAL editing mode when a TRANSPARENT_
TERMINATE_CHARACTER is received from the
terminal.

FWD_ TERMINATE (FD)

The network forwards the stored input characters as a
complete input line to NOSNE when a
TRANSPARENT_FORWARD_CHARACTER is received
from the terminal. The TRANSPARENT_FORWARD_
CHARACTER is not included in the input line. The
network reverts to NORMAL editing mode when a
TRANSPARENT_TERMINATE_CHARACTERis
received after a TRANSPARENT_FORWARD_
CHARACTER.

NONE (N)

The network takes no action when a TRANSPARENT_
FORWARD_CHARACTER or TRANSPARENT_
TERMINATE_CHARACTER is received from the
terminal.

TRANSPAR.ENT_FORWARD_CHARACTERor TFC
Specifies a list of 1- to 4-character strings; any one of
these strings is recognized by the network as the
TRANSPARENT mode forwarding character.

TRANSPAR.ENT_LENGTH_MODE or TLM
Specifies the action the network takes when it receives
the number of characters specified by the
TRANSPARENT_MESSAGE_LENGTH connection
attribute. Values are:

FORWARD (F)

The network forwards the stored input characters as a
complete input line to NOSNE when the number of
characters specified by the TRANSPARENT_
MESSAGE_LENGTH attribute has been received. The
input line data is available by the time the line is
actually forwarded.

2-58 NOSNE Commands and Functions Revision G

Revision G

CHANGE_ CONNECTION _ATTRIBUTES

FORWARD_EXACT (FE)

The network forwards the stored input characters as a
complete input line to NOSNE when the number of
characters specified by the TRANSPARENT_
MESSAGE_LENGTH attribute has been received. The
length of the input line will equal the specified length.

TERMINATE (T)

The network forwards the stored input characters as a
complete input line to NOSNE and reverts to
NORMAL editing mode when the number of characters
specified by the TRANSPARENT_MESSAGE_
LENGTH attribute has been received.

NONE (N)

The network takes no action when the number of
characters specified by the TRANSPARENT_
MESSAGE_LENGTH attribute has been received.

TRANSPARENT _MESSAGE_LENGTH or TML

Specifies the minimum number of characters (1 to 32, 767)
forwarded in each transparent input message.

TRANSPARENT_TERMINATE_CHARACTERor TTC

Specifies a list of 1- to 4-character strings; any one of
these strings is recognized by the network as the
TRANSPARENT mode terminating character.

TRANSPARENT_TIMEOUT_MODE or TTM

Specifies the action the network takes when no input is
received from the terminal for an interval of 400
milliseconds or more. Values are:

FORWARD (F)

The network forwards the stored input characters as a
complete input line to NOSNE when a timeout occurs
between characters.

TERMINATE (T)

The network reverts to NORMAL editing mode when a
timeout occurs between characters.

Commands and Functions 2-59

CHANGE_FILE_ATTRIBUTES

Remarks

NONE (N)

No action is taken when a timeout occurs between
characters.

For more information, see the NOSNE System Usage
manual.

CHANGE _FILE _ATTRIBUTES
Command

Purpose Changes the file attributes for an existing file.

Format CHANGE_FILE_ATTRIBUTES or
CHANGE_FILE_ATTRIBUTE or
CHAFA

FILE=file
FILE_ACCESS_PROCEDURE _NAME =name
FILE_CONTENTS =name
FILE _LIMIT= integer
FILE_PROCESSOR =name
FILE_STRUCTURE =name
FORCED_ WRITE= boolean or keyword
LINE _NUMBER= list of integer
LOADING _FACTOR= integer
LOCK_EXPIRATION _TIME= integer
LOGGING_ OPTIONS= list of keyword
LOG _RESIDENCE= file or keyword
RECORD _LIMIT= integer
RING _ATTRIBUTES= list of integer
STATEMENT _IDENTIFIER= list of integer
USER _INFORMATION= string
STATUS= status variable

Parameters FILE or F

Specifies the file for which attributes are altered. This
parameter is required.

FILE_ACCESS_PROCEDURE_NAME or FAPN or
FILE_ACCESS_PROCEDUREorFAP

Specifies the name of a CYBIL procedure that intervenes
in the calling sequence between users of the file and the
access method. Omission causes the current file access
procedure to be retained.

2-60 NOSNE Commands and Functions Revision G

Revision G

CHANGE_FILE_ATTRIBUTES

The keyword NONE can also be used. For details, see the
CYBIL File Management manual.

FILE_CONTENTSorFILE_CONTENTorFC
Specifies the type of data contained in the file. Omission
causes the file content to be retained. The FILE_
CONTENT value for a keyed file must not be changed to
LIST.

FILE_LIMIT or FL
Specifies a new limit for the maximum length of the file.
This new value cannot be less than the old file limit.
Omission causes the current maximum length to be
retained.

FILE_PROCESSOR or FP
Specifies the name of the processor of the file. Omission
causes the current file processor to be retained.

FILE_STRUCTUREorFS
Specifies the structure of the file. Omission causes the
current file structure to be retained.

FORCED_ WRITE or FW
Specifies whether modified blocks of a file are to remain
in memory without being forced to the device when the
modification to each block has completed. Omission causes
the current entry to be retained.

LINE_NUMBER or LN
Specifies the length and location of a line number in each
record of a file. Omission causes the current line number
to be retained.

LOADING_FACTORorLF
Reserved for site personnel, Control Data, or future use.

LOCK_EXPIRATION_TIMEorLET
Specifies the number of milliseconds between the time a
lock is granted and the time that it could expire. Values
can be any integer from 0 to 604,800,000 (1 week). If the
value is changed to 0, locks for the file do not expire.

Commands and Functions 2-61

CHANGE_FILE_ATTRIBUTES

LOGGING_OPTIONS or LOGGING_OPTION or LO

Enables the use of keyed-file recovery options. Options
are:

ALL

All logging options are enabled.

ENABLE_PARCELS (EP)

Reserved for future use.

ENABLE_MEDIA_RECOVERY (EMR)

An update recovery log is to be maintained for the
keyed-file.

ENABLE_REQUEST_RECOVERY (ERR)

An automatic close upon task abort removes from the
keyed-file any partially completed update operation
caused by system failure.

NONE

No logging options are enabled. This is the default.

For more information on logging options, see the SCL
Advanced File Management Usage manual, or the CYBIL
Keyed-File and Sort/Merge Interface Usage manual.

LOG_RESIDENCE or LR

Specifies the catalog path for the keyed-file's update
recovery log. The log must be created by the
ADMINISTER_RECOVERY_LOG utility described in the
SCL Advanced File Management Usage manual.

Log entries are not written for the file unless its
LOGGING_OPTIONS attribute is ENABLE_MEDIA_
RECOVERY. If the LOGGING_OPTIONS attribute is
ENABLE_MEDIA_RECOVERY, the default for this
parameter is $SYSTEM.AAM.SHARED_RECOVERY_LOG.

2-62 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_FILE_ATTRIBUTES

NOTE

Whenever you change the LOG_RESIDENCE of an
existing keyed-file to a log other than the default log, you
must immediately back up the file if you want the entries
to be logged. If a back up has not been done since the
change and the file is damaged, the RECOVER_FILE_
MEDIA subcommand on the RECOVER_KEYED_FILE
utility cannot execute successfully for the file.

For more information on logging options, see the SCL
Advanced File Management manual and the CYBIL
Keyed-File and SortJMerge Interfaces manual.

RECORD _LIMIT or RL

Specifies a new limit for the maximum number of records
in each nested file in a keyed file. This new value cannot
be less than the old record limit. Omission causes the
current maximum number of records to be retained.

RING_ATTRIBUTES or RING_ATTRIBUTE or RA

Specifies new ring attributes for the file. The parameter
values are specified as:

(rl, r2, r3)

The following relation must hold:

minimum ring < = rl < = r2 < = r3 < = 13

Omission causes the current ring attribute to be retained.

STATEMENT_IDENTIFIER or SI

Specifies the length and location of a statement identifier
in each record of the file. Omission causes the current
statement identifier to be retained.

USER_INFORMATION or UI

Specifies a string of 32 characters that is preserved with
the file. Omission causes the current user information to
be retained.

Commands and Functions 2-63

CHANGE_IBM_REQUEST

Remarks

Examples

• This command may be used to alter file attributes of
permanent and temporary files.

• To alter a file's attributes, the file must not be in use
(that is, open) within the job. Furthermore, a
permanent file must not be attached to any job other
than the requesting job. If attached to the requesting
job, the share mode must be NONE.

• You must also have CONTROL permission for the file
to alter its file attributes.

• To prevent serious performance degradation, the
FORCED_ WRITE attribute should be set to FALSE if
the LOGGING_OPTIONS attribute includes
ENABLE_MEDIA_RECOVERY.

• For more information, see the NOSNE System Usage
manual.

The following example creates a file and changes several
attributes.

/collect_text $user.fortran_source
ct? program ctime
ct? character•a time
ct? print•,'The current time is: ',time()
ct? stop
ct? end
ct? ••
/change_file_attributes file=$user.fortran_source
.. /file_processor=fortran file_contents=leQible

CHANGE _IBM _REQUEST
Command

Purpose Changes the IBM tape file description in a temporary
NOSNE file formed in a preceding CREATE_IBM_
REQUEST command. The IBM tape file must be on an
ANSI labeled tape.

2-64 NOS/VE Commands and Functions Revision G

CHANGE_IBM_REQUEST

Format CHANGE_IBM_REQUEST or
CHAIR

FILE=file
FILE_ SET _POSITION= keyword
FILE _IDENTIFIER= string
FILE_SEQUENCE _NUMBER= integer
GENERATION _NUMBER =integer
CHARACTER_ CONVERSION= boolean
STATUS= status variable

Parameters FILE or F

Revision G

Specifies the name of a NOSNE temporary file associated
with an IBM tape file by a previous CREATE_IBM_
REQUEST command. This parameter is required.

FILE_SET_POSITION or FSP

Specifies the position of the IBM tape file to be read. If
you omit this parameter, the NEXT_FILE position is
assumed. The parameter can have any of the following
values:

BEGINNING_OF_SET or BOS

Specifies that the first tape file on the file set is to be
read.

CURRENT_FILE or CF

Specifies that the current tape file is to be read. That
is, the last tape file accessed will be accessed again. If
the tape is positioned at the beginning of the first
volume, the first tape file will be read.

FILE_IDENTIFIER_POSITION or FIP

Specifies that the tape file identified by the FILE_
IDENTIFIER and GENERATION_NUMBER
parameters is to be read.

FILE_SEQUENCE_POSITION or FSP

Specifies that the tape file identified by the FILE_
SEQUENCE_NUMBER parameter is to be read.

Commands and Functions 2-65

CHANGE_IBM_REQUEST

NEXT_FILE or NF

Specifies that the tape file following the last accessed
tape file will be read. If the tape is positioned at the
beginning of the first volume, the first tape file will
be read.

FILE_IDENTIFIER or FI
Specifies a file identifier as a string of 1 to 17 characters.
Each tape file on a multifile set has a unique file
identifier. If the FILE_SET_POSITION parameter does
not have the FILE_IDENTIFIER_POSITION value, the
FILE_IDENTIFIER parameter is ignored.

If you specify the FILE_IDENTIFIER_POSITION value
for the FILE_SET_POSITION parameter, the FILE_
IDENTIFIER parameter must have a value. If you omit
the FILE_IDENTIFIER parameter, a fatal diagnostic is
issued.

FILE_SEQUENCE_NUMBERorFSN
Specifies the numeric position of a tape file on a multifile
set. The position is an unsigned integer in the range 1
through 9999. If the FILE_SET_POSITION parameter is
not set to FILE_SEQUENCE_POSITION, the FILE_
SEQUENCE_NUMBER parameter value is ignored.

If you specify the FILE_SEQUENCE_POSITION value
for the FILE_SET_POSITION parameter, the FILE_
SEQUENCE_NUMBER parameter must have a value. If
you omit the FILE_SEQUENCE_NUMBER parameter, a
fatal diagnostic is issued.

GENERATION_NUMBERorGN
Identifies the specific revision of the tape file named by
the FILE_IDENTIFIER parameter. The revision is shown
as an unsigned integer in the range 1 through 9999. If
the FILE_SET_POSITION parameter has the FILE_
IDENTIFIER_POSITION value, and the GENERATION_
NUMBER parameter is omitted, then the GENERATION_
NUMBER parameter value is set to one.

If the FILE_SET_POSITION parameter does not have the
FILE_IDENTIFIER_POSITION value, the
GENERATION _NUMBER parameter is ignored.

2-66 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

CHANGE_IBM_REQUEST

CHARACTER_CONVERSION or CC

Boolean value specifies whether or not the tape file data
is to be converted to or from its character set. If you omit
the CHARACTER_CONVERSION parameter, its value is
left at its previous setting.

Of the tape file migration methods, only FMU
automatically does character conversion in addition to any
conversion specified by the CHARACTER_ CONVERSION
parameter value.

To obtain a properly migrated tape file, you usually want
to set the CHARACTER_ CONVERSION parameter to
FALSE if you use FMU to migrate. Otherwise you convert
your tape file data twice. Set this parameter to TRUE if
you use any other tape file migration method. Otherwise,
you do not convert your tape file data at all.

o This command is handy when you wish to use the
same temporary NOSNE file to reference several tape
files from the same multifile set on tape. You simply
use the CHANGE_IBM_REQUEST command to
change the tape file description.

• In general, when you omit a parameter from the
CHANGE_IBM_REQUEST command, the value of
that parameter is not changed. Thus, usually, you
need to include only those parameters whose settings
change for the new IBM tape file.

The two exceptions to this rule are the FILE_SET_
POSITION and the GENERATION_NUMBER
parameters. When you omit these parameters, their
values become the default values, NEXT_FILE and 1,
respectively, for those parameters.

Suppose you have associated the first tape file of a
multifile set on an IBM labeled tape with the temporary
NOSNE file, MULTLFILES. After you access this first
tape file, you want to access the next tape file in the
same multifile set. The following command associates the
next tape file with MULTl_FILES:

/change_ibm_reouest file=multi_files
.. /file_set_position=next_file
.. /character_conversion=true

Commands and Functions 2-67

CHANGE_INTERACTION_STYLE

The command also says that the data in the next tape file
is to be converted from its character set.

CHANGE _INTERACTION _STYLE
Command

Purpose Changes the style of system interaction.

Format CHANGE_INTERACTION_STYLE or
CHAIS

STYLE= keyword
STATUS= status variable

Parameters STYLE or S

Remarks

Specifies the style of system interaction. You can specify
the keyword LINE for line mode or SCREEN for screen
mode. This parameter is required.

• Interactive parameter prompting is disabled when you
first log in. Specifying an interaction style enables
interactive parameter prompting.

• The SCL function $INTERACTION_STYLE can be
used to determine the current interaction. style.

• For more information, see the NOS/VE System Usage
manual.

CHANGE_JOB_ATTRIBUTE
Command

Purpose

Format

Changes the current job's attributes.

CHANGE_JOB_ATTRIBUTE or
CHANGE_JOB_ATTRIBUTES or
CHAJA

COMMENT _BANNER =string
COPIES= integer
CYCLIC _AGING _INTERVAL= integer
DETACHED_JOB_WAIT_TIME=integer or keyword
DEVICE= name or keyword
DISPATCHING_PRIORITY=name or keyword
EXTERN AL_ CHARACTERISTICS= string or keyword

2-68 NOS/VE Commands and Functions Revision G

CHANGE_JOB_ATTRIBUTE

FORMS_CODE=string or keyword
JOB _ABORT _DISPOSITION= keyword
JOB _RECOVERY _DISPOSITION= keyword
MAXIMUM_ WORKING_SET=integer or keyword
MINIMUM_ WORKING_SET=integer
OPERATOR_FAMILY =name
OPERATOR_ USER =name
OUTPUT_CLASS=keyword
OUTPUT _DESTINATION =any
OUTPUT_DESTINATION_USAGE=name or keyword
OUTPUT_DISPOSITION=file or keyword
OUTPUT _PRIORITY= keyword
PAGE _AGING _INTERVAL= integer
REMOTE _HOST _DIRECTIVE= string
ROUTING_BANNER =string
STATION=name or keyword
USER_INFORMATION =string
VERTICAL_PRINT _DENSITY= keyword
VFU_LOAD_PROCEDURE=name or keyword
STATUS= status variable

Parameters COMMENT_BANNER or CB

Revision G

Specifies a default character string to be displayed with
the output files generated by the job (including the
OUTPUT file). Specify a string of 0 to 31 characters. Use
of this string is determined by your site.

If omitted, the attribute associated with this parameter
does not change.

COPIES or C

Specifies the default number of output file copies to be
made. The value can be an integer ranging from 1 to 10.

If omitted, this attribute is left unchanged.

CYCLIC_AGING_INTERVAL or CAI

Specifies the time, in microseconds, before the memory
manager ages the job's working set. This parameter's
allowable range is determined by the job's job class.

If omitted, the attribute associated with this parameter
does not change.

Commands and Functions 2-69

CHANGE_JOB_ATI'RIBUTE

DETACHED_JOB_WAIT_TIME or DJWT

Specifies the number of seconds a job, if detached or
disconnected from the terminal session, will remain
suspended before the job is terminated.

If you specify UNLIMITED, the job will be suspended
indefinitely. by the system will be used. This parameter's
allowable range is determined by the job's job class.

If omitted, the attribute associated with this parameter
does not change.

DEVICE or D

Specifies a default name that, when combined with the
STATION parameter value, identifies the printer to which
output files generated by the job are to be sent. Values
can be a valid printer name or the keyword AUTOMATIC.

If you specify AUTOMATIC, the system prints the file at
any printer that meets the EXTERNAL_
CHARACTERISTICS and FORMS_ CODE specifications
specified.

If omitted, the attribute associated with this parameter
does not change.

DISPATCHING_PRIORITY or DP

Specifies the default dispatching priority assigned to all
your tasks. Values are Pl (lowest priority) to PIO.
Attempting to raise the value of this parameter has no
effect, even though no error status is returned.

If DEFAULT is specified, the dispatching priority table
established by the job's service class is reinstated.

If omitted, the attribute associated with this parameter
does not change. A job's initial value for this attribute is
determined by its service class.

EXTERNAL_CHARACTERISTICS or EC

Specifies a default string to be used by all output files
generated by the current job. This string selects a printer
having the same string defining its external
characteristics. The actual meaning of this string is
defined by the site.

2-70 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_JOB_ATTRIBUTE

Values can be any string of 1 to 6 characters or the
keyword NORMAL. If you specify NORMAL, the system
selects a printer that has an EXTERNAL_
CHARACTERISTICS value of NORMAL.

If this parameter is omitted, this attribute is left
unchanged.

FORMS_CODE or FC

Specifies a default string for each output file generated by
the job. This string selects a printer that has the same
string defining its FORMS_ CODE value. The actual
strings are site-defined.

Values can be any string of 1 to 6 characters or the
keyword NORMAL. If you specify NORMAL, the system
selects a printer that has a FORMS_ CODE value of
NORMAL. If you specify NORMAL when the OUTPUT_
DESTINATION_ USAGE parameter value is DUAL_
STATE, the NORMAL value is equivalent to a string of
spaces.

If omitted, the attribute associated with this parameter
does not change.

JOB_ABORT_DISPOSITION or JAD

Specifies what should be done with the job if it aborts
because of system failure. The keywords are:

RESTART

Job is automatically resubmitted so that it starts over
from the beginning.

TERMINATE

Job is discarded.

If omitted, the attribute associated with this parameter
does not change.

JOB_RECOVERY_DISPOSITION or JRD

Specifies what the active job recovery process should do
with the job if there is a system interrupt while the job
is executing. The keywords are:

Commands and Functions 2-71

CHANGE_JOB_ATTRIBUTE

CONTINUE

An attempt is made to reestablish the state of the job
as it was at the point of interruption. If the attempt
succeeds, the job will continue normal execution. If the
attempt fails, the value specified on the JOB_
ABORT_DISPOSITION parameter is used.

RESTART

Job is automatically resubmitted so that it starts over
from the beginning.

TERMINATE

Job is discarded.

MAXIMUM_WORKING_SETorMAXWS
Specifies the maximum number of pages in the job's
working set. If necessary, the memory manager removes
pages from the working set to assure this value is not
exceeded. Specify one of the following:

integer

Specifies the maximum number of pages allowed in
the job's working set. This value can be any integer
between 20 and the maximum value allowed by the
job's job class.

SYSTEM_ DEFAULT

Specifies that the system default value for this
attribute for this job class is to be used. This value
may be displayed using the DISPLAY_JOB_
ATTRIBUTE_DEFAULTS command.

UNLIMITED

Specifies that the maximum value allowed by the
system is to be used.

If omitted, the attribute associated with this parameter
does not change.

MINIMUM_WORKING_SETorMINWS
Specifies the minimum number of pages in the job's
working set. The memory manager does not remove pages
from the working set if doing so reduces the working set
to below this value.

2-72 NOSNE Commands and Functions Revision G

Revision G

CHANGE_JOB_ATTRIBUTE

This parameter's allowable range is determined by the
job's job class.

If omitted, the attribute associated with this parameter
does not change.

OPERATOR_FAMILY or DESTINATION_FAMILY or DF
or OF

Specifies the default private station or remote system
operator family name attribute for output files generated
by this job. If the OUTPUT_ DESTINATION_ USAGE
value for an output file is PRIVATE or NTF, this family
name together with the OPERATOR_ USER attribute
identifies the private station operator or remote system
operator who can print or receive the file. This attribute
is also used to establish the control user attribute of
output files with OUTPUT_DESTINATION_USAGE
values of PRIVATE or NTF. If omitted, the attribute
associated with this parameter does not change.

OPERATOR_USER or STATION_OPERATOR or SO or
OU

Specifies the default private station or remote system
operator user name attribute for output files generated by
this job. If the OUTPUT_DESTINATION_USAGE value
for an output file is PRIVATE or NTF, this user name
together with the OPERATOR_FAMILY attribute
identifies the private station operator or remote system
operator who can print or receive the file. This attribute
is also used to establish the control user attribute of
output files with OUTPUT_ DESTINATION_ USAGE
values of PRIVATE or NTF. If omitted, the attribute
associated with this parameter does not change.

OUTPUT_CLASSor OC

Specifies the default output class for output files
generated by this job. The output class defines the initial
priority, maximum priority, an aging interval, and an
aging factor for the output file.

The only defined output class is NORMAL. This means
all output files have an initial priority of 100, a
maximum priority of 3700, an aging interval of 1 second,
and an aging factor of 1 priority unit per aging interval.

If omitted, the attribute associated with this parameter
does not change.

Commands and Functions 2-73

CHANGE_JOB_ATTRIBUTE

OUTPUT_DESTINATION or ODE

Specifies the default location name of the system where
the output file is to be sent for printing if the file's
OUTPUT_DESTINATION_USAGE attribute is QTF or
NTF. For all other values of OUTPUT_DESTINATION_
USAGE, this parameter is not meaningful and is ignored.

A location name is a name associated with a remote
system, such as a family name or a logical identifier.
Location names are determined by your site.

If omitted, the attribute associated with this parameter
does not change.

OUTPUT _DESTINATION_ USAGE or DESTINATION_
USAGE or DU or ODU

Specifies the default for either the kind of CDCNET print
station where the file is to be printed, or the queue file
transfer application to be used to forward the output file
to a remote system. The following options are available:

PUBLIC

Indicates that the file is to be printed at a public
CDCNET batch 1/0 station. If this value is specified,
the OPERATOR_FAMILY, OPERATOR_USER,
OUTPUT_DESTINATION, and REMOTE_HOST_
DIRECTIVE attributes are not meaningful.

PRIVATE

Indicates that the file is to be printed at a private
CDCNET batch 1/0 station when the designated
station operator is controlling the station. If this value
is specified, the OUTPUT_DESTINATION and
REMOTE_HOST_DIRECTIVE attributes are not
meaningful.

DUAL_ STATE

Indicates that the file is to be printed under control of
the partner system. If this value is specified, the only
meaningful attributes are the FORMS_ CODE,
COPIES, ROUTING_BANNER, and REMOTE_HOST_
DIRECTIVE attributes.

2-74 NOSNE Commands and Functions Revision G

Revision G

CHANGE_JOB_ATTRIBUTE

QTF

Indicates that the file is to be forwarded to the remote
system identified by the OUTPUT_DESTINATION job
attribute for processing by that system.

NTF

Indicates that the file is to be forwarded to a remote
NTF system for processing by that system. See your
site personnel for more information on NTF.

If this parameter is omitted, this attribute value does not
change.

OUTPUT_DISPOSITION or ODI

Specifies the default for how the job's standard output is
to be disposed. Allowable values are either a file name or
one of several keywords. The following list describes the
results of each of the allowable values. If omitted, the
attribute associated with this parameter does not change.

file_name

Specification of a file name indicates that the standard
output is to be copied to the specified permanent file
at job end. You may not specify a remote family name
with this file name. If the attempt to copy the
standard output file to this file fails, the output file
will be sent to the output queue for printing.

DISCARD_ALL_OUTPUT (DAO)

All output generated by the job is to be discarded as
it is generated. This includes the standard output at
jobend. This option has no effect unless the job
destination is a NOSNE or NTF system.

DISCARD_STANDARD_ OUTPUT (DSO)

Standard output is to be discarded at job end. This
option has no effect unless the job destination is a
NOS/VE or NTF system.

LOCAL (L)

Any output generated by the job is printed at the
destination system rather than being returned to the
originating user's default output station.

Commands· and Functions 2-75

CHANGE_JOB_ATTRIBUTE

If the job destination is a NOS/VE system, the
destination system's default for OUTPUT_
DESTINATION_ USAGE to used rather than the job's
normal default value.

PRINTER (P)

Any output generated by the job is returned to the
originating user's default output station.

WAIT_QUEUE (WQ)

Any output generated by the job is returned to the
originating user's $WAIT_ QUEUE subcatalog on the
originating system using the user's job name for the
file name. If the $WAIT_QUEUE subcatalog does not
exist at the time the output files are returned, it will
be created for the user.

OUTPUT_PRIORITY or OP

Specifies the default increment that is added to the output
file's initial priority (defined by the output class) for all
output files generated by this job. Values can be:

Keyword

LOW

MEDIUM

HIGH

Increment

0

1500

3000

If omitted, the attribute associated with this parameter
does not change.

PAGE_AGING_INTERVAL or PAI

Specifies the number of CP microseconds that will elapse
before the memory manager ages the job's working set.

This parameter's allowable range is determined by the
job's job class.

If omitted, the attribute associated with this parameter
does not change.

If you need to age your job, and if your job does not go
into extended waits or have numerous asynchronous,
unrelated tasks, set this parameter to a low value, and
the CYCLIC_AGING_INTERVAL parameter to a high

2-76 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_JOB_ATTRIBUTE

value. Otherwise, set the CYCLIC_AGING_INTERVAL
parameter to a low value and the PAGE_AGING_
INTERVAL to a high value.

REMOTE_HOST_DIRECTNE or DUAL_STATE_
ROUTE_PARAMETERSorDSRPorRHD

Specifies a default text string which may be used to
control output processing of output files, or control
processing of jobs submitted to remote systems. How this
string is interpreted depends upon the following:

• If this string is intended to control output processing
of output files, then this string should contain one of
the following:

- A PRINT_FILE command for output files to be
printed on a NOSNE system.

- A ROUTE command for output files to be printed
on a non-NOSNE system.

- The ROUTE command's parameters for output files
to be printed on the non-NOSNE side of a
dual-state system.

• If this string is intended to control processing of a job
submitted to a remote system, then this string should
contain one of the following:

- A SUBMIT~JOB command for jobs submitted to
remote NOSNE systems for processing.

- A ROUTE command for jobs submitted to
non-NOSNE systems for processing.

This parameter is ignored unless the OUTPUT_
DESTINATION_ USAGE output attribute or the JOB_
DESTINATION_ USAGE parameter on the SUBMIT_JOB
command specify the appropriate value. For more
information on submitting jobs and output files to remote
systems, see the NOSNE System Usage manual.

If omitted, the current value is not changed.

ROUTING_BANNER or RB

Defines a default 0 to 31 character string to be displayed
with output files generated by this job. The actual use of
this string is determined by the site.

Commands and Functions 2-77

CHANGE_JOB_ATTRIBUTE

If omitted, the attribute associated with this parameter
does not change.

STATION or S

Specifies a default 1/0 station name (or the control facility
name in the case of a private station or NTF remote
system) to which the file is to be sent. Note that NTF is
not currently supported.

Values can be any valid station name or the keyword
AUTOMATIC.

If you specify AUTOMATIC, the system default is used. If
omitted, the attribute associated with this parameter does
not change.

USER_INFORMATION or UI

Specifies a user information string of up to 256
characters. This string enables you to pass information
(such as a file path) to a submitted job. This string is
also passed on to all output files generated by the
submitted job.

If omitted, the attribute associated with this parameter
does not change.

VERTICAL_PRINT _DENSITY or VPD

Specifies the default vertical print density at which the
file is to be printed. This value affects the selection of the
printer where the file is printed. Select one of the
following keywords:

SIX

Selects a printer to print at six lines per inch.

EIGHT

Selects a printer to print at eight lines per inch.

NONE

Vertical print density is not used to select a printer.

FILE

Vertical print density of the source file is used to
determine the print density. If the source file attribute
is 6, SIX is used. If the source file attribute value is
in the range of 7 through 12, EIGHT is used.

2-78 NOS/VE Commands and Functions Revision G

Remarks

Revision G

CHANGE_JOB_ATTRIBUTE

If this parameter is omitted, this attribute does not
change.

VFU_LOAD_PROCEDUREor VLP
Specifies the default name of a procedure file containing
the definition of a vertical forms unit (VFU) load image
that must be loaded into the printer before the file is
printed. This parameter affects printer selection.

You can specify the keyword NONE to indicate that the
file need not be printed on a printer capable of using
VFU load procedures or that the default VFU load
procedure should be used.

If you specify the name of a procedure file, the system
selects a printer capable of using the VFU load
procedures and the procedure file is downloaded to the
printer before the file is printed.

If this parameter is omitted, this attribute value does not
change.

• The SCL command DISPLAY_JOB_ATTRIBUTE and
the SCL function $JOB can be used to determine job
attribute values.

ct The COMMENT_BANNER, COPIES, DEVICE,
EARLIEST_PRINT_ TIME, EXTERNAL_
CHARACTERISTICS, FORMS_CODE, LATEST_
PRINT_TIME, OPERATOR_FAMILY, OPERATOR_
USER, OUTPUT_CLASS, OUTPUT_DESTINATION,
OUTPUT_DESTINATION _USAGE, OUTPUT_
DISPOSITION, OUTPUT_PRIORITY, PURGE_DELAY,
REMOTE_HOST_DIRECTIVE, ROUTING_BANNER,
STATION, VERTICAL_PRINT_DENSITY, and VFU_
LOAD_PROCEDURE parameters on this command
establish default values for subsequently executed
PRINT_FILE commands.

• Queue file transfers to remote non-NOS/VE systems
are not currently supported.

• For more information, see the NOS/VE System Usage
manual.

Commands and Functions 2-79

CHANGE_JOB_LIMIT

CHANGE_JOB_LIMIT
Command

Purpose

Format

Changes the job resource limits for a job.

CHANGE_JOB_LIMIT or
CHAJL

NAME=name or keyword
RESOURCE _LIMIT= integer or keyword
STATUS =status variable

Parameters NAME or N

Remarks

Name of the resource limit you want to change. You can
enter the following keywords:

CP_TIME

Specifies the central processing (CP) time resource
limit.

SRU

Specifies the system resource unit (SRU) limit.

TASK

Specifies the system task resource limit.

This parameter is required.

RESOURCE_LIMIT or RL

Specifies a new value for the resource limit. You can
enter an integer value or the keyword UNLIMITED. The
integer value you enter must not exceed the resource
limits allowed for your user name.

This parameter is required.

• The SCL command DISPLAY_JOB_LIMIT and the
SCL function $JOB_LIMIT can be used to determine a
job's resource limits.

• For more information, see the NOSNE System Usage
manual.

2-80 NOSNE Commands and Functions Revision G

CHANGE_KEYED _FILE

CHANGE _KEYED _FILE
Command

Purpose Begins a CHANGE_KEYED_FILE utility session.

Format CHANGE_KEYED_FILE or
CHANGE_KEYED_FILES or
CHAKF

INPUT=file
OUTPUT=file
STATUS= status variable

Parameters INPUT or I

Remarks

Revision G

File path of an existing keyed file. If an output file is
specified, the input file is opened and copied to the output
file and then closed.

This parameter is required.

OUTPUT or 0

File path of the keyed file to which the input keyed file
is copied. The output file must be a duplicate of the input
file. If the output file does not exist, the command creates
it.

If an output file is specified, only the output file is
changed. If OUTPUT is omitted, the input file is changed.

• The command utility prompt is:

chakf /

In response to the chakf/ prompt, you can enter SCL
commands and any of these subcommands:

ADD_RECORDS
REPLACE_RECORDS
COMBINE_RECORDS
EXTRACT_RECORDS
DELETE_RECORDS
CREATE_NESTED_FILE
SELECT_NESTED_FILE
DELETE_NESTED_FILE
DISPLAY_NESTED_FILE
CREATE_ALTERNATE_INDEXES
HELP
QUIT

Commands and Functions 2-81

CHANGE_LINK_ATTRIBUTES

Examples

• All subcommands in the session apply to the currently
selected nested file. The initially selected nested file is
$MAIN _FILE. The nested file selection can be
changed by a CREATE_NESTED_FILE or SELECT_
NESTED_FILE subcommand.

• If the existing keyed file or a new nested file to be
created uses a user-defined collation table, hashing
procedure, or compression procedure, the object library
containing the compiled table or procedure must be in
the program library list before the Change_Keyed_
File session begins.

To add one or more object libraries to the program
library list, use the ADD_LIBRARIES parameter on a
SET_PROGRAM ATTRIBUTES command. For
example:

set_program_attr ibutes, add_ l ibrary=Suser. hash_ 1 ibrary

• For more information, see the NOSNE Advanced File
Management Usage manual.

The following session copies an existing keyed file and
then ends.

/Change_keyed_file, input=Suser.existing_keyed_file, ..
.. /output=Suser.new_keyed_file
chakf /QUit
I

CHANGE _LINK_ATTRIBUTES
Command

Purpose

Format

Changes individual link attributes.

CHANGE_LINK_ATTRIBUTES or
CHANGE_LINK_ATTRIBUTE or
CHALA

FAMILY=any
USER=any
PASSWORD=any
CHARGE=any .
PROJECT=any
STATUS= status variable

2-82 NOS/VE Commands and Functions Revision G

CHANGE_LOGIN_PASSWORD

Parameters FAMILY or F

Remarks

Specifies the NOS family name. If the partner system is
NOS/BE, this parameter has no meaning. Strings specified
on this parameter may be from 1 to 31 characters long.

USER or U

Specifies the NOS or NOS/BE user name. In NOS/BE,
this parameter specifies the name used to access the
system and is the default permanent file id if a file id is
not specified on subsequent file transfer commands.
Strings specified on this parameter may be from 1 to 31
characters long.

PASSWORD or PW

Specifies the password used to access either NOS or
NOS/BE. Strings specified on this parameter may be from
1 to 31 characters long.

CHARGE or C

Specifies the NOS or NOS/BE charge number. Strings
specified on this parameter may be from 1 to 31
characters long.

PROJECT or P

Specifies the NOS or NOS/BE project number. Strings
specified on this parameter may be from 1 to 31
characters long.

For more information, see the NOSNE System Usage
manual.

CHANGE _LOGIN _PASSWORD
Command

Purpose Sets or changes the password that is used to validate your
access to the system.

Revision G Commands and Functions 2-83

CHANGE_LOGIN_PASSWORD

Format CHANGE_LOGIN _PASSWORD or
SETPW or
SET_PASSWORD or
CHALPW

OLD _PASSWORD= name
NEW _PASSWORD =name
EXPIRATION_INTERVAL=integer or keyword
EXPIRATION _DATE =date_ time or keyword
STATUS= status variable

Parameters OLD_PASSWORD or OPW or FROM or F

Specifies the name of your current (old) password. This
parameter is required if the command is issued within a
batch job. NOS/VE prompts for entry of the old and new
passwords if the FROM parameter is omitted (both the
OLD_PASSWORD and NEW_PASSWORD parameters
must be omitted).

NEW_PASSWORD or NPW or TO or T

Specifies the name of your new password. This parameter
is required if the command is issued within a batch job. If
the command is issued within an interactive job and this
parameter is omitted, interactive prompting is given.

EXPIRATION _INTERVAL or EI

Specifies the number of days until the password will
expire. Note that this value may not exceed the maximum
expiration interval set for you by your site.

A value of UNLIMITED indicates that the password will
never expire. However, if your maximum expiration
interval is anything other than UNLIMITED, use of this
value will result in an error.

If both this parameter and the EXPIRATION_DATE
parameter are specified on this command, the value
specified on the EXPIRATION ~DATE parameter is used.
However, any use of this parameter causes your
expiration interval to be reset to the specified value.

If this parameter is omitted, and the EXPIRATION_
DATE parameter is also omitted, the expiration date for
the new password is calculated using the expiration
interval currently set for your user name.

2-84 NOS/VE Commands and Functions Revision G

Remarks

Revision G

CHANGE_LOGIN_PASSWORD

EXPIRATION _DATE or ED

Specifies the date and time the password will expire. Note
that the number of days between the current date and the
specified expiration date may not exceed the maximum
expiration interval set for you by your site.

Enter one of the following values:

YYYY-MM-DD.hh:mm:ss

Date and time the password expires. For instance:

1988-01-30.12:53:47

Note that the time part of the value is optional.
Omission causes 00:00:00 to be used. Thus, to set your
expiration date to midnight January 30, 1988, enter:

1988-01-30

NONE

Indicates that the password will never expire.
However, if your maximum expiration interval is
anything other than UNLIMITED, use of this value
will result in an error.

If this parameter is omitted, the value specified on the
EXPIRATION _INTERVAL parameter is used to calculate
the expiration date. If that value does not exist, the
current expiration interval set for your password is used
to calculate the expiration date.

• Any valid SCL name constitutes a valid NOSNE
password.

• For NOS dual-state users, your NOSNE password
must match your NOS batch password if you wish to
perform dual-state access. This matching requirement
does not apply to NOS/BE.

• Your password's expiration date, and your expiration
interval and maximum expiration interval can be
displayed using the ADMINISTER_ VALIDATION
command followed by the DISPLAY_USER command.
See the LOGIN_PASSWORD field of the resulting
output.

Commands and Functions 2-85

CHANGE_MESSAGE_LEVEL

Examples

• For more information, see the NOSNE System Usage
manual.

In the following example, the CHANGE_ LOGIN_
PASSWORD command is entered without parameters. The
system provides a blacked-out area for secure entry of the
old and new passwords.

/change_login_password
"system prompts for old and new"

Enter old password
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Enter new password
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In the following example, the old password is provided as
a parameter on the CHANGE_LOGIN_PASSWORD
command. The system prompts for secure entry of the
new password.

/change_login_password old_password=pass456
"system prompts for new"

Enter new password
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In the following example, the CHANGE_LOGIN_
PASSWORD command contains both the new and old
passwords.

/change_login_password old_password=pass456 ..
.. /new_password=pass789

In the following example, an expiration date of July 30,
1988 is specified.

/chalpw opw=pass456 npw=pass789 ed=1988-06-30

CHANGE_MESSAGE_LEVEL
Command

Purpose

Format

Selects the form of messages displayed by NOSNE.

CHANGE_MESSAGE_LEVEL or
SETMM or
SET_MESSAGE_MODE or
CHAML

LEVEL= keyword
STATUS=status variable

2-86 NOSNE Commands and Functions Revision G

CHANGE_NATURAL_LANGUAGE

Parameters LEVEL or INFORMATION_LEVEL or IL or L

Specifies that messages are to be issued in their brief or
full form. The keywords are:

Remarks

Examples

BRIEF

Displays messages, including their severity level and
message text. Any file references appearing in a
message are shown relative to the current working
catalog.

FULL

Displays messages, including their severity level,
product identifier, condition code, and message text.
Any file references appearing in a message are
expanded to show their complete path.

This parameter is required.

For more information, see the NOSNE System Usage
manual.

The following example illustrates the BRIEF and FULL
message modes.

/change_message_level l=brief
/set_file_attributes data_file
/copy_file data_file output
--ERROR-- FSP$0PEN_FILE was issued for file, DATA_FILE,
which does not exist.
/chaml 1=fu11
/copy_file data_file
--ERROR AM 1016-- FSP$0PEN_FILE was issued for file,
:NVE.$LOCAL.DATA_FILE, which does not exist.

A detailed description of a message can be obtained by
entering the HELP command.

CHANGE~NATURAL_LANGUAGE
Command

Purpose

Revision G

Determines the natural language used for messages and
help information. The actual text for most messages and
help information must be provided by the user or site.

Commands and Functions 2-87

CHANGE_NATURAL_LANGUAGE

Format CHANGE_NATURAL_LANGUAGE or
CHA NL

NATURAL_LANGUAGE =name
STATUS= status variable

Parameters NATURAL_LANGUAGE or NL

Remarks

Examples

Specifies the natural language being selected. Valid
keywords:

DANISH
DUTCH
ENGLISH
FINNISH
FLEMISH
FRENCH
GERMAN
ITALIAN
NORWEGIAN
PORTUGESE
SPANISH
SWEDISH
US_ ENGLISH

You may also specify a name if the natural language you
want is not on the list of keywords.

If NATURAL_LANGUAGE is omitted, US_ENGLISH is
assumed.

• You can use the function $NATURAL_LANGUAGE to
return the current natural language.

• For more information, see the NOSNE System Usage
manual.

The following example sets the natural language of status
messages and help information to Spanish.

/change_natural_language natural_language=spanish

2-88 NOS/VE Commands and Functions Revision G

CHANGE_ OUTPUT_ATTRIBUTE

CHANGE_ OUTPUT _ATTRIBUTE
Command

Purpose

Format

Changes the attributes of a file in the output queue.

CHANGE_OUTPUT_ATTRIBUTE or
CHANGE_OUTPUT_ATTRIBUTES or
CHAO A

NAME= list of name
COMMENT _BANNER= string
COPIES =integer
DEVICE= name or keyword
EXTERNAL_CHAR.ACTERISTICS=string or keyword
FORMS_ CODE= string or keyword
OPERATOR_FAMILY =name
OPERATOR_ USER =name
OUTPUT_CLASS=keyword
OUTPUT _DESTINATION =any
OUTPUT_DESTINATION_USAGE=name or keyword
OUTPUT_PRIORITY=keyword
REMOTE _HOST _DIRECTIVE= string
ROUTING _BANNER =string
STATION=name or keyword
VERTICAL_PRINT _DENSITY= keyword
VFU_LOAD_PROCEDURE=name or keyword
STATUS= status variable

Parameters NAME or NAMES or N

Revision G

Specifies the output file(s) whose attributes you want to
change.

Values must be either the system-supplied or
user-supplied name. If you specify a user-supplied name,
it must be unique. This parameter is required.

COMMENT_BANNERorCB

Specifies a character string to be displayed with the
printed file. Use of this string is determined by the site.

If omitted, the attribute associated with this parameter
does not change.

COPIES or C

Specifies the number of copies to be printed. If omitted,
the attribute associated with this parameter does not
change.

Commands and Functions 2-89

CHANGE_ OUTPUT_ATTRIBUTE

DEVICE or D

Specifies a name that, when combined with the STATION
parameter value, identifies the printer at which the file is
to be printed. ·

Values can be a valid printer name or the keyword
AUTOMATIC. If you specify AUTOMATIC, the system
prints the file at any printer that meets the
EXTERNAL_CHARACTERISTICS and FORMS_CODE
specifications specified.

If omitted, the attribute associated with this parameter
does not change.

EXTERNAL_CHARACTERISTICS or EC

Specifies a string that is used to select a printer that has
the same string defining its external characteristics. The
actual meaning of this string is defined by the site.

Values can be any string of 1 to 6 characters or the
keyword NORMAL.

If you specify NORMAL, the system selects a printer that
has an EXTERNAL_CHARACTERISTICS value of
NORMAL.

If omitted, the attribute associated with this parameter
does not change.

FORMS_CODE or FC

Specifies a string that is used to select a printer that has
the same string defining its forms code attribute. The
actual meaning of this parameter is defined by the site.

Values can be any string of 1 to 6 characters or the
keyword NORMAL. If you specify NORMAL when the
DESTINATION_ USAGE attribute is DUAL_STATE, the
NORMAL value is equivalent to a string of spaces.

If omitted, the attribute associated with this parameter
does not change.

OPERATOR_FAMILY or DESTINATION_FAMILY or DF
or OF

Specifies the family name of a private station or remote
system operator. This family name together with the
OPERATOR_ USER attribute identifies the private station
operator or remote system operator who can print or
receive the file. This attribute is also used to establish

2-90 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_ OUTPUT_ATTRIBUTE

the control family attribute of the output file. This
parameter is not meaningful unless the OUTPUT_
DESTINATION_ USAGE attribute specifies PRIVATE or
NTF. If omitted, the attribute associated with this
parameter does not change.

OPERATOR_USER or STATION_OPERATOR or SO or
OU

Specifies the user name of a private station or remote
system operator. This user name together with the
OPERATOR_FAMILY attribute identifies the private
station operator or remote system operator who can print
or receive the file. This attribute is also used to establish
the control user attribute of the output file. This
parameter is not meaningful unless the OUTPUT_
DESTINATION_ USAGE attribute specifies PRIVATE or
NTF.

OUTPUT_CLASSor OC

Specifies an output class for the output file. The output
class defines the initial priority, maximum priority, aging
interval, and an aging factor for the output file.

The only defined output class is NORMAL. This means
all output files have an initial priority of 100, a
maximum priority of 3700, an aging interval of one
second, and an aging factor of one priority unit per aging
interval.

If omitted, the attribute associated with this parameter
does not change.

OUTPUT_DESTINATION or ODE

Specifies the location name of the system where the
output file is to be sent for printing if the file's
OUTPUT_DESTINATION _USAGE attribute is QTF or
NTF. For all other values of OUTPUT_DESTINATION_
USAGE, this parameter is not meaningful and is ignored.

A location name is a name associated with a remote
system, such as a family name or a logical identifier.
Location names are determined by your site.

If omitted, the attribute associated with this parameter
does not change.

Commands and Functions 2-91

CHANGE_ OUTPUT_ATTRIBUTE

OUTPUT_DESTINATION_USAGE or DESTINATION_
USAGE or DU or ODU

Specifies either the kind of CDCNET print station where
the file is to be printed, or the queue file transfer
application to be used to forward the output file to a
remote system. The following options are available:

PUBLIC

Indicates that the file is to be printed at a public
CDCNET batch 110 station. If this value is specified,
the OPERATOR_FAMILY, OPERATOR_USER,
OUTPUT_DESTINATION, and REMOTE_HOST_
DIRECTIVE attributes are not meaningful.

PRIVATE

Indicates that the file is to be printed at a private
CDCNET batch 1/0 station when the designated
station operator is controlling the station. If this value
is specified, the OUTPUT_DESTINATION and
REMOTE_HOST_DIRECTIVE attributes are not
meaningful.

DUAL_ STATE

Indicates that the file is to be printed under control of
the partner system. If this value is specified, the only
other meaningful attributes are the FORMS_CODE,
COPIES, ROUTING_BANNER, and REMOTE_HOST_
DIRECTIVE attributes.

QTF

Indicates that the file is to be forwarded to a remote
system for printing by that system.

NTF

Indicates that the file is to be forwarded to a remote
NTF system for printing by that system. See your site
personnel for more information on NTF.

If omitted, the attribute associated with this parameter
does not change.

OUTPUT_PRIORITY or OP

Specifies a priority increment that is added to the output
file's initial priority (defined by the output class). Values
can be:

2-92 NOSNE Commands and Functions Revision G

Revision G

Value

LOW

MEDIUM

HIGH

CHANGE_ OUTPUT_ATTRIBUTE

Increment Value

0

1500

3000

If omitted, the attribute associated with this parameter
does not change.

REMOTE_HOST_DIRECTNE or DUAL_STATE_
ROUTE_PARAMETERSorDSRPorRHD

Specifies a default text string which may be used to
control output processing of output files. This string
should contain one of the following:

• A PRINT_FILE command for output files to be
printed on a NOSNE system.

• A ROUTE command for output files to be printed on a
non-NOSNE system.

• The ROUTE command's parameters for output files to
be printed oil the non-NOSNE side of a dual-state
system.

This parameter is ignored unless the OUTPUT_
DESTINATION_ USAGE output attribute specify the
appropriate value. For more information on submitting
output files to remote systems, see the NOSNE System
Usage manual.

If omitted, the attribute associated with this parameter
does not change.

ROUTING_BANNER or RB

Specifies a character string to be displayed with the
printed file. The actual use of this string is determined by
the site.

If omitted, the attribute associated with this parameter
does not change.

STATION or S

Specifies the I/O station name (or the control facility
name in the case of a private station or the NTF remote
station) to which the file is to be sent.

Commands and Functions 2-93

CHANGE_ OUTPUT_ATTRIBUTE

Values can be any valid station name or the keyword
AUTOMATIC. If you specify AUTOMATIC, the system
default is used.

If omitted, the attribute associated with this parameter
does not change.

VERTICAL_PRINT_DENSITY or VPD

Specifies the vertical print density at which the file is to
be printed. This value will affect the selection of the
printer where the file is printed. Select one of the
following keywords.

SIX

Selects a printer to print at six lines per inch.

EIGHT

Selects a printer to print at eight lines per inch.

NONE

Vertical print density is not used to select a printer.

If omitted, the attribute associated with this parameter
does not change.

VFU_LOAD_PROCEDUREor VLP

Specifies the name of a procedure file containing the
definition of a vertical forms unit (VFU) load image that
must be loaded into the printer before the file is printed.
This attribute affects printer selection.

You can specify the keyword NONE to indicate that the
file need not be printed on a printer capable of using
VFU load procedures or that the default VFU load
procedure should be used.

If you specify the name of a procedure file, the system
selects a printer capable of using the VFU load
procedures and the procedure file is downloaded to the
printer before the file is printed.

If omitted, the attribute associated with this parameter
does not change.

2-94 NOSNE Commands and Functions Revision G

Remarks

CHANGE_SCL_ OPTION

• To use this command, you must be logged in to the
NOS/VE system where the files were generated and
must be the login user or control user for the files. In
addition, your output file must not be printing.

• A file is processed according to the value of its output
attributes at the time it leaves the output queue.

• Queue file transfers to non-NOS/VE systems are not
currently supported.

• For more information, see the NOS/VE System Usage
manual.

CHANGE_ SCL_ OPTION
Command

Purpose Changes options provided by the SCL interpreter.

Format CHANGE_SCL_OPTION or
CHANGE_SCL_OPTIONS or
CHASCLO or
CHA SO

PROMPT_FOR_PARAMETER_
CORRECTION= boolean

NAME_FOLDING _LEVEL= keyword
STATUS=status variable

Parameters PROMPT_FOR_PARAMETER_CORRECTION or PFPC

Specifies whether parameter prompting will occur for a
command. A value of TRUE causes prompting to occur;
FALSE causes prompting to not occur.

Revision G

Omission causes the current value of this parameter to be
left unchanged. The initial value of this parameter is
TRUE.

NAME_FOLDING_LEVELorNFL

This parameter specifies which characters allowed in
NOS/VE names are considered to be letters with both
lower and upper case versions. When a name is specified,
any lower case letters in it are folded to their upper case
counterparts.

Commands and Functions 2-95

I

CHANGE_TAPE_LABEL_ATIRIBUTE

Remarks

STANDARD_FOLDING

This option designates that only the 26 letters a
through z are to be folded (to A through Z).

FULL_ FOLDING

This option specifies that in addition to the standard
26 letters, the following characters also are to be
folded.

Lower Case Upper Case Character
Character

@

\

{

I
}

This parameter affects the interpretation of all SCL
names, including file names, variable and parameter
names, names used within the Source Code Utility and
the Object Code Utilities, and so on.

Omission causes this option to be left unchanged. The
initial value for this option is STANDARD_FOLDING.

For more information, see the NOSNE System Usage
manual.

CHANGE_TAPE_LABEL_ATTRIBUTE
Command

Purpose Identifies an ANSI file to be read or written on an ANSI
labelled tape.

Format · CHANGE_TAPE_LABEL_ATTRIBUTE or
CHANGE_TAPE_LABEL_ATTRIBUTESor
CHATLA

FILE=file
FILE_ SET ~POSITION= keyword
REWRITE _LABELS= boolean
CREATION _DATE= creation_ date
EXPIRATION _DATE= expiration_ date

2-96 NOS/VE Commands and Functions Revision G

CHANGE_TAPE_LABEL_ATTRIBUTE

FILE _ACCESSIBILITY_ CODE= string
FILE _IDENTIFIER= string
FILE_ SEQUENCE _NUMBER= integer
FILE_ SET _IDENTIFIER= string
GENERATION _NUMBER =integer
GENERATION_ VERSION _NUMBER= integer
BLOCK_ TYPE =keyword
CHARACTER_ CONVERSION= boolean
CHARACTER_SET =keyword
MAXIMUM _BLOCK_LENGTH =integer
MAXIMUM_RECORD _LENGTH= integer
PADDING_ CHARACTER =string
RECORD_ TYPE= keyword
STATUS= status variable

Parameters FILE or F

Revision G

Specifies the name of the NOS/VE magnetic tape file to
which the ANSI tape attachment information applies.

The NOS/VE file has a list of magnetic tape volumes
associated with the file that was specified with the
REQUEST_MAGNETIC_ TAPE command entered
previously. This parameter is required.

FILE_SET_POSITION or FSP

Specifies the position of the ANSI file on the set of ANSI
files that reside on the associated set of tape volumes.

The tape volumes are specified on a REQUEST_
MAGNETIC_ TAPE command prior to the CHANGE_
TAPE_LABEL_ATTRIBUTES command entry.

Valid entries are:

BEGINNING_OF_SET (BOS)

During a READ operation, this values specifies that
the first ANSI file on the file set is to be accessed.
During a WRITE operation, this value specifies that
the ANSI file to be written is the first one on the file
set.

CURRENT_FILE (CF)

During a READ operation, this value specifies that the
current ANSI file is to be read. That is, the last file
accessed will be read again. During a WRITE
operation, this value specifies that the current file is
to be written (the last file accessed will be rewritten).

Commands and Functions 2-97

CHANGE_ TAPE_LABEL_ATTRIBUTE

NEXT_FILE (NF)

During a READ operation, this value specifies that the
ANSI file following the file last accessed will be read.
During a WRITE operation, this value specifies that
the ANSI file to be written follows the file last
accessed. If the tape is positioned at the beginning of
the first volume of the file set, the first ANSI file on
the file set is accessed.

FILE_IDENTIFIER_POSITION (FIP)

When reading, this value specifies that the ANSI file
identified by the FILE_IDENTIFIER and
GENERATION _NUMBER parameters is to be
accessed. When writing, this value specifies that the
ANSI file identified by these parameters is to be
rewritten. The FILE_IDENTIFIER and
GENERATION_NUMBER values of the new ANSI file
will be the same as those values for the existing ANSI
file.

FILE_SEQUENCE_POSITION (FSP)

During a READ or WRITE operation, this value
specifies that the ANSI file identified by the FILE_
SEQUENCE_NUMBER parameter is to be accessed.

END_OF_SET (EOS)

When the REWRITE_LABELS parameter is set to
TRUE, this value specifies that the ANSI file is to be
written after the last ANSI file on the file set. When
the REWRITE_LABELS parameter is set to FALSE,
this value will cause an error to be returned.

If omitted, NEXT_FILE is assumed.

If the ANSI file identified by the FILE_IDENTIFIER and
GENERATION_NUMBER.parameters or the FILE_
SEQUENCE_NUMBER parameter is not found, the tape
is positioned after the last ANSI file on the multifile set.

REWRITE_LABELS or RL

Specifies whether the HDR label group will be rewritten
when the ANSI file is opened for READ/WRITE or
WRITE access. Values are:

2-98 NOSNE Commands and Functions Revision G

Revision G

CHANGE_TAPE_LABEL_ATTRIBUTE

TRUE

Specifies that the HDR label group will be rewritten
when the ANSI file is opened for READ/WRITE or
WRITE access. TRUE is required for writing a new
file over an existing file. It is also required for writing
a new file subsequent to reading an existing file
(unless the last file on the file set was read).

FALSE

Specifies that the HDR label group will not be
rewritten when the ANSI file is opened for READ,
READ/WRITE, or WRITE access.

If omitted, FALSE is assumed.

CREATION _DATE or CD

Specifies the creation date of the ANSI file. Specified in
ISO format (yy-mm-dd). If omitted, today's date is
assumed.

EXPIRATION _DATE or ED

Specifies the lifetime of the ANSI file and, implicitly, the
lifetime of any subsequent ANSI files in the volume set.
This value is specified in the ISO format (yy-mm-dd). If
the expiration date is less than or equal to the creation
date, a zero is recorded in the ANSI label when the ANSI
file is written. If omitted, the system assumes the file has
expired.

FILE_ACCESSIBILITY_CODE or FAC

Specifies the validation code that must be associated with
users accessing the ANSI file. When writing an ANSI file,
the system records the specified value in the HDRl label
on the tape file. When reading an ANSI file, the system
ignores this parameter.

Values can be any I-character string consisting of any
valid NOSNE characters. If omitted, ' ' (space) is
assumed.

FILE_IDENTIFIER or FI

Specifies the label identifier; used to differentiate between
ANSI files on a multifile set. If omitted, the leftmost 17
characters of the file path name are assumed.

Commands and Functions 2-99

CHANGE_ TAPE_LABEL_ATTRIBUTE

FILE_SEQUENCE_NUMBERorFSN

Specifies the numeric position of an ANSI file on a
multifile set. Use this parameter to randomly position the
tape to any ANSI file on a multifile set. Values can be
any integer from 1 to 9999.

If you specify a value for the FILE_SET_POSITION
parameter, this parameter is required; otherwise, the
parameter value is ignored.

If omitted during the first access of a file, 1 is assumed.
If omitted during subsequent accesses, the last file
accessed plus 1 is assumed.

FILE_SET_IDENTIFIER or FSI

Specifies a unique identification for a set of ANSI files
within an installation. Enter a 1- to 6-character string.

The value specified is used for all subsequent ANSI files
written to the file set if this parameter is omitted from
subsequent CHANGE_ TAPE_LABEL_ATTRIBUTES
commands for the same magnetic tape file. If omitted, the
VOLUME_IDENTIFIER from the VOLl label is assumed.

GENERATION_NUMBERorGN

Specifies a specific revisison of the ANSI file defined by
the FILE_IDENTIFIER parameter. If omitted, 1 is
assumed.

GENERATION_ VERSION _NUMBER or GVN

Specifies the state of processing of the file specified by
the FILE_IDENTIFIER and GENERATION_NUMBER
parameters. Values can be any integer from 0 to 99. This
value is used to identify which steps, in a multistep file
creation process, the file has undergone. If omitted, 0 is
assumed.

BLOCK_ TYPE or BT

Specifies the NOSNE block type to be used to access the
file. Values can be:

SYSTEM_SPECIFIED (SS)
USER_SPECIFIED (US)

If you are accessing the ANSI file and the REWRITE_
LABELS parameter is FALSE, the file's block type is
taken from the block type value of the ANSI file's HDR2
label, if the value is present. If the HDR2 value is

2-100 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_ TAPE_LABEL_ATTRIBUTE

absent, the value specified in this parameter is used. If
this parameter is omitted and the HDR2 value is absent,
the value of the BLOCK_ TYPE attribute previously
defined for the file is used.

If this parameter is omitted and the REWRITE_LABELS
parameter is TRUE, the file attribute BLOCK_ TYPE
value is used and recorded in the HDR2 label.

CHARACTER_CONVERSION or CC

Specifies whether or not file data is to be converted to or
from the character set specified by the CHARACTER_
SET parameter. If omitted, FALSE is assumed. Values
are:

TRUE

~pecifies that the file data will be converted. During a
READ operation, the file is converted from the
character set specified in the CHARACTER_SET
parameter to ASCII when it is read by NOSNE.
During a WRITE operation, the tape file is written in
the character set specified by the CHARACTER_SET
parameter.

FALSE

No conversion takes place.

If you access a tape file and the REWRITE_LABELS
parameter is FALSE, the HDR2 value is used if it is
present. If the HDR2 value is absent, the value specified
in this parameter is used. If this parameter is omitted
and the HDR2 value is absent, the value of the
CHARACTER_CONVERSION attribute previously defined
for the file is used.

If this parameter is omitted and the REWRITE_LABELS
parameter is TRUE, the file attribute CHARACTER_
CONVERSION value is used and recorded in the HDR2
label.

CHARACTER_SET or CS

Specifies the character set of the labels and file data on
the tape. Values can be ASCII or EBCDIC. All labels on
the tape will be accessed in the character set specified by
this parameter. If omitted, and the REWRITE_LABELS
parameter is TRUE, the file attribute INTERNAL_CODE
value is used and recorded in the HDR2 label.

Commands and Functions 2-101

CHANGE_TAPE_LABEL_ATTRIBUTE

MAXIMUM_BLOCK_LENGTHorMAXBL
Specifies the NOSNE maximum block length used to
access the ANSI file. Values can be an integer from 1 to
2,147,483,615. However, to read or write tape blocks
which exceed 4,128 bytes, your site must be configured to
allow long tape blocks.

If you are accessing a tape file and the REWRITE_
LABELS parameter is FALSE, the maximum block length
is taken from the file's HDR2 label, if the value is
present. If the HDR2 value is absent, the value specified
in this parameter is used. If this parameter is omitted
and the HDR2 value is absent, the value of the
MAXIMUM_BLOCK_LENGTH attribute previously
defined for the file is used.

If this parameter is omitted and the REWRITE_LABELS
parameter is TRUE, the file attribute MAXIMUM_
BLOCK_LENGTH value is used and recorded in the
HDR2 label.

MAXIMUM_RECORD_LENGTHorMAXRL
Specifies the NOSNE maximum record length used to
access the ANSI file. Values can be an integer from 1 to
4,398,046,511,103.

If you are accessing a tape file and the REWRITE_
LABELS parameter is FALSE, the maximum record
length is taken from the file's HDR2 label, if the value is
present. If the HDR2 value is absent, the value specified
in this parameter is used. If this parameter is omitted
and the HDR2 value is absent, the value of the
MAXIMUM_RECORD_LENGTH attribute previously
defined for the file is used.

If this parameter is omitted and the REWRITE_LABELS
parameter is TRUE, the file attribute MAXIMUM_
RECORD_LENGTH value is used and recorded in the
HDR2 label.

PADDING_CHAR.ACTERorPC
Specifies the NOSNE padding character used to pad
records for ANSI fixed record type (RT= F).

If you are accessing a tape file and the REWRITE_
LABELS parameter is FALSE, the padding character is
taken from the file's HDR2 label, if the value is present.
If the HDR2 value is absent, the value specified in this

2-102 NOSNE Commands and Functions Revision G

Remarks

Revision G

CHANGE_ TAPE_LABEL_ATTRIBUTE

parameter is used. If this parameter is omitted and the
HDR2 value is absent, the value of the PADDING_
CHARACTER attribute previously defined for the file is
used.

If this parameter is omitted and the REWRITE_LABELS
parameter is TRUE, the file attribute PADDING_
CHARACTER value is used and recorded in the HDR2
label.

RECORD_TYPE or RT

Specifies the record type used to access the ANSI file.
Values are:

FIXED (F)
UNDEFINED (U)
VARIABLE (V)
ANSI_ VARIABLE (D)
ANSLSPANNED (S)

If you are accessing a tape file and the REWRITE_
LABELS parameter is FALSE, the record type length is
taken from the file's HDR2 label, if the value is present.
If the HDR2 value is absent, the value specified in this
parameter is used. If this parameter is omitted and the
HDR2 value is absent, the value of the RECORD_ TYPE
attribute previously defined for the file is used.

If this parameter is omitted and the REWRITE_LABELS
parameter is TRUE, the file attribute RECORD_ TYPE
value is used and recorded in the HDR2 label.

• Only one ANSI file can be defined for a NOSNE tape
file at a time. A subsequent CHANGE_ TAPE_
LABEL_ATTRIBUTES command for the same NOSNE
tape file augments previous CHANGE_ TAPE_
LABEL_ATTRIBUTES commands.

• Before you can use this command you must assign the
tape file to your job with a REQUEST_MAGNETIC_
TAPE command.

• This command does not cause device assignment to
occur. The system rejects this command if the tape file
is open at the time you enter the command.

Commands and Functions 2-103

CHANGE_ TERMINAL_ATTRIBUTES

• An ANSI file is considered to be expired on a day
whose date is equal to or later than the specified date.
To be effective on a multifile set, the expiration date
of an ANSI file must be earlier than or equal to the
expiration dates of all preceding ANSI files on the set.

• When writing a multifile ANSI labeled tape file, you
can use this command to specify a different HDRl and
HDR2 label for each ANSI file written. If used, this
command must precede the writing of each ANSI file.

• For more information, see the NOSNE System Usage
manual.

CHANGE_ TERMINAL_ATTRIBUTES
Command

Purpose

Format

Defines and changes the attributes of an interactive
terminal.

CHANGE_ TERMINAL_ATTRIBUTES or
CHANGE_ TERMINAL_ATTRIBUTE or
SETTA or
SET_ TERMINAL_ATTRIBUTE or
SET_TERMINAL_ATTRIBUTES or
CHATA

ATTENTION_ CHAR.ACTER =string
BACKSPACE_ CHAR.ACTER =string
BEGIN _LINE_ CHAR.ACTER =string
CANCEL_LINE _ CHAR.ACTER =string
CAR.RIA GE _RETURN _DELAY= integer
CAR.RIAGE _RETURN _SEQUENCE =string
CHAR.ACTER _FLOW_ CONTROL= boolean
CODE_SET=keyword
ECHOPLEX =boolean
END _LINE_ CHAR.ACTER =string
END _LINE_POSITIONING= keyword
END_OUTPUT_SEQUENCE=string
END _PAGE_ACTION =keyword
END _PAR.TIAL_ CHAR.ACTER =string
END _PAR.TIAL_POSITIONING =keyword
FOLD _LINE= boolean
FORM _FEED _DELAY= integer
FORM _FEED _SEQUENCE= string
HOLD _PAGE= boolean

2-104 NOSNE Co:nmands and Functions Revision G

CHANGE_ TERMINAL_ATTRIBUTES

HOLD _PAGE_ OVER= boolean
LINE _FEED _DELAY= integer
LINE_FEED_SEQUENCE=string
NETWORK_COMMAND _CHAR.ACTER =string
PAGE _LENGTH= integer
PAGE_ WIDTH= integer
PAR.ITY =keyword
PAUSE _BREAK_ CHAR.ACTER =string
STATUS_ACTION =keyword
TERMINAL_ CLASS =name
TERMINAL_MODEL=name or keyword
TERMINATE_BREAK_ CHAR.ACTER =string
STATUS =status variable

Parameters ATTENTION_ CHAR.ACTER or AC

Revision G

Specifies the character used to perform the action
specified by the ATTENTION_ CHARACTER_ACTION
connection attribute.

BACKSPACE_CHAR.ACTERorBC

Specifies the character used to delete the previous
character in an input line.

BEGIN_LINE_CHAR.ACTERorBLC

Identifies the character used to indicate the beginning of
the line.

CANCEL_LINE_CHAR.ACTERor CLC

Specifies the character that, when followed by the END_
LINE_ CHARACTER, discards the current input line.

CAR.RIAGE_RETURN_DELAY or CRD

Specifies the number of milliseconds the network is to
wait before sending additional output to the terminal after
a carriage return operation. These characters allow a
mechanical printing mechanism to reach the left margin
and ensure that characters are not lost due to printing
attempts during the carriage return operation.

CAR.RIAGE_RETURN_SEQUENCE or CRS

Defines the sequence of characters that position the cursor
or carriage return to the beginning of a line. Values can
be a sequence of 0 to 2 characters.

Commands and Functions 2-105

CHANGE_ TERMINAL_ATTRIBUTES

CHARACTER_FLOW_CONTROLor CFC

Specifies whether your terminal controls the flow of data
using X-ON/X-OFF protocol (DCl and DC3 characters).
Values can be:

TRUE

Uses the X-ON/X-OFF protocol to regulate input and
output.

FALSE

Does not use the X-ON/X-OFF protocol.

If this attribute is set the wrong way, you can lose data.

CODE_SET or CS

Identifies the code set that your terminal uses (usually
ASCII). Values can be:

ASCII

Uses the normal ASCII character set.

TPAPL

Uses the typewriter-pairing ASCII character set with
APL print.

BPAPL

Uses the bit-pairing ASCII character set with APL
print.

ECHOPLEX or E

Specifies whether each character entered on input should
be echoed back to the terminal. Values are:

TRUE

Input is echoed to the terminal.

FALSE

Input is not echoed to the terminal.

END_LINE_CHARACTER or ELC

Specifies the input character that indicates the end of a
complete input line.

2-106 NOS/VE Commands and Functions Revision G

CHANGE_ TERMINAL_ATTRIBUTES

HOLD_PAGE_OVER =boolean
LINE _FEED _DELAY= integer
LINE _FEED_ SEQUENCE= string
NETWORK_ COMMAND _CHARACTER= string
PAGE _LENGTH= integer
PAGE_ WIDTH=integer
PARITY= keyword
PAUSE_BREAK_ CHARACTER= string
STATUS_ACTION =keyword
TERMINAL_ CLASS =name
TERMINAL_MODEL=name or keyword
TERMINATE_BREAK_ CHARACTER= string
STATUS= status variable

Parameters ATTENTION _CHARACTER or AC

Revision G

Specifies the character used to perform the action
specified by the ATTENTION _CHARACTER_ACTION
connection attribute.

BACKSPACE_CHARACTERorBC

Specifies the character used to delete the previous
character in an input line.

BEGIN_LINE_CHARACTERorBLC

Identifies the character used to indicate the beginning· of
the line.

CANCEL_LINE_CHARACTERor CLC

Specifies the character that, when followed by the END_
LINE_ CHARACTER, discards the current input line.

CARRIAGE_RETURN_DELAY or CRD

Specifies the number of milliseconds the network is to
wait before sending additional output to the terminal after
a carriage return operation. These characters allow a
mechanical printing mechanism to reach the left margin
and ensure that characters are not lost due to printing
attempts during the carriage return operation.

CARRIAGE_RETURN_SEQUENCE or CRS

Defines the sequence of characters that position the cursor
or carriage return to the beginning of a line. Values can
be a sequence of 0 to 2 characters.

Commands and Functions 2-105

CHANGE_ TERMINAL_ATTRIBUTES

CHARACTER_FLOW_CONTROLor CFC
Specifies whether your terminal controls the flow of data
using X-ON/X-OFF protocol (DCl and DC3 characters).
Values can be:

TRUE

Uses the X-ON/X-OFF protocol to regulate input and
output.

FALSE

Does not use the X-ON/X-OFF protocol.

If this attribute is set the wrong way, you can lose data.

CODE_SET or CS
Identifies the code set that your terminal uses (usually
ASCII). Values can be:

ASCII

Uses the normal ASCII character set.

TPAPL

Uses the typewriter-pairing ASCII character set with
APL print.

BPAPL

Uses the bit-pairing ASCII character set with APL
print.

ECHOPLEX or E
Specifies whether each character entered on input should
be echoed back to the terminal. Values are:

TRUE

Input is echoed to the terminal.

FALSE

Input is not echoed to the terminal.

END_LINE_CHARACTERorELC

Specifies the input character that indicates the end of a
complete input line.

2-106 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_ TERMINAL_ATTRIBUTES

END_LINE_POSITIONING or ELP
Specifies the character string sent to the terminal to
position the cursor upon receipt of the END_LINE_
CHARACTER. Values are:

CRS

Sends the value of the CARRIAGE_RETURN_
SEQUENCE attribute.

LFS

Sends the value of the LINE_FEED_SEQUENCE
attribute.

CRSLFS

Sends the value of the CARRIAGE_RETURN_
SEQUENCE attribute followed by the value of the
LINE_FEED_SEQUENCE attribute.

NONE

Sends no response to the terminal.

END_OUTPUT_SEQUENCEorEOS
Defines the sequence of characters that terminates output.
Values can be a sequence of 0 to 4 characters.

END_PAGE_ACTION or EPA
Specifies whether your terminal divides your output into
pages. Values can be either:

FFS

Uses the setting you specified for the FORM_FEED_
SEQUENCE attribute.

NONE

Does not take any action.

END_PARTIAL_CHARACTERorEPC

Identifies the character which indicates the end of a
partial input line. The END_PARTIAL_CHARACTER is
not forwarded as part of the data. Values can be any
ASCII character.

Commands and Functions 2-107

CHANGE_ TERMINAL_ATTRIBUTES

END_PARTIAL_POSITIONING or EPP

Specifies the character string sent to the terminal to
position the cursor upon receipt of the END_PARTIAL_
CHARACTER. Values can be:

CRS

Uses the setting you specified with the CARRIAGE_
RETURN _SEQUENCE attribute.

LFS

Uses the setting you specified with the LINE_ FEED_
SEQUENCE attribute.

CRSLFS

Uses the setting you sepcified with both the
CARRIAGE_RETURN_SEQUENCE and LINE_
FEED_SEQUENCE attributes.

NONE

Does not use any character string.

FOLD_LINE or FL

Specifies whether the network folds output lines that
exceed the PAGE_ WIDTH attribute setting. Values are:

TRUE

Folds output lines.

FALSE

Does not fold output lines.

FORM_FEED_DELAYorFFD

Increases or decreases the amount of idle time (in
milliseconds) between pages of output.

FORM_FEED_SEQUENCE or FFS

Defines the sequence of characters that causes a page
break (or sets to top of form). This action typically
repositions the cursor or paper at the top of another page.
Values can be a string of 0 to 7 characters.

2-108 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_ TERMINAL_ATTRIBUTES

HOLD_PAGE or HP
Specifies whether the network suspends the flow of data
to the terminal when a page of output data has been sent
to the terminal without an intervening input line. Values
are:

TRUE

Terminal output is suspended when a page of output
has been displayed.

FALSE

Output is send to the terminal without interruption.

HOLD_PAGE_OVERorHPO
Specifies whether the network sends a prompt to the
terminal each time a hold page condition occurs. Values
are:

TRUE

A prompt is sent to the terminal after a page of
output has been displayed.

FALSE

No prompt is sent to the terminal.

LINE_FEED_DELAYorLFD
Specifies the number of milliseconds the network is to
wait before sending additional output to the terminal after
a line feed operation. This allows for a mechanical
printing mechanism to reach the left margin and ensures
that characters are not lost due to printing attempts
during the line feed operation.

LINE_FEED_SEQUENCE or LFS
Defines the sequence of characters that indicates a
line-feed action. This action moves the cursor down a line
or rolls the printer paper up a line in preparation for the
next line of information.

Values can be a string of 0 to 2 characters.

Commands and Functions 2-109

CHANGE_ TERMINAL_ATTRIBUTES

NETWORK_COMMAND_CHARACTERorNCC
Specifies the character that is used to identify network
commands. When this character is the first character in
an input line entered at the terminal, the line is
processed by the network and is not forwarded to
NOSNE.

PAGE_LENGTH or PL
Specifies the number of lines displayed at the terminal as
a page of output. If you enter 0 (zero), your output is
displayed or printed continuously, regardless of length.

PAGE_ WIDTH or PW
Specifies the number of characters that the terminal can
display on a line. A value of 0 (zero) indicates an infinite
page length, meaning . that the network does not perform
line folding.

PARITY or P

Specifies the parity checking performed on each character
received from the terminal and the parity generation
performed for each character sent to the terminal. Values
are:

EVEN

The sum of all bits in a character is an even number.

ODD

The sum of all bits in a character is an odd number.

MARK

Sets parity bit to 1.

NONE

If the INPUT_EDITING_MODE attribute is set to
TRANSPARENT, the parity bit passes through
unchanged. If set to NORMAL, no parity check is done
on input, but the parity bit is set to 0 (zero) in each
character sent to the terminal.

ZERO

Sets parity bit to 0 (zero).

2-110 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_ TERMINAL_ATTRIBUTES

PAUSE_BREAK_CHARACTERorPBC

Specifies the character used to cause a pause break
condition.

STATUS_ACTION or SA
Specifies how the network handles status messages from
network operators. Values can be any of:

DISCARD (D)

Does not display messages.

HOLD(H)

Saves the last four messages until you change
STATUS_ACTION or until your connections end.

SEND (S)

Displays each message when received.

TERMINAL_CLASSor TC
Specifies the class of terminal being used. The following
classes are defined for NOS/VE:

Keyword

TTY

C75x

C721

12741

TTY40

H2000

X364

T4010

HASP_POST

Terminals

M3x teletypewriters.

CDC 75x, 722-10, 722-20.

CDC 721.

IBM 2741.

M40 teletypewriters.

Hazeltine 2000.

ANSI X3.64 terminals, including
CDC 722-30.

Tektronix 4010.

HASP terminals that support only
postprint format effectors.

Commands and Functions 2-111

CHANGE_ TERMINAL_ATTRIBUTES

Remarks

HASP_PRE

C200UT

CDC714_30_40

C711

CDC714_10_20

C73x

12740

13270

13780

HASP terminals that support both
postprint and preprint format
effectors.

CDC 200 user terminal.

CDC 714-30 or CDC 714-40.

CDC 711.

CDC 714-10 or CDC714-20.

CDC 73x.

IBM 2740.

IBM 3270.

IBM 3780.

TERMINAL_MODEL or TRM or TM
Specifies the name of your terminal model. Currently, this
attribute determines what terminal definition is used for
full-screen applications such as EDIT_FILE.

TERMINATE_BREAK_CHAR.ACTERor TBC
Specifies the character used to cause a terminate break
condition.

• This command can be used to override the attributes
provided NOSNE by the network.

• Because the terminal attribute values affect all
connections from the terminal, use caution if you
decide to change any attribute value. In general,
terminal attributes should only be changed when you
are beginning a terminal session.

• For more information, see the NOSNE System Usage
manual.

2-112 NOS/VE Commands and Functions Revision G

Examples

CHANGE_ TERM_CONN_DEFAULTS

The following example changes the cancel line and
backspace characters.

/change_terminal_attributes
.. /cancel_line_character = '%'
.. /backspace_character = '<'
/•This line will be canceled.%.
DEL
"This line uses the new bacspace<<<<<kspace char.
/display_log do=1
10:45:31.003.CI."This line uses the new backspace char.
10:45:59.023.CI.display_log do=1

The next example changes the pause break character.
When the DISPLAY_LOG command begins executing, the
pause break character is entered, followed by the
TERMINATE_COMMAND command which is used to
terminate the suspended command.
/change_terminal_attributes ..
.. /pause_break_character='?'
/display_log do=3
10:45:31.003.CI. 0 This line uses? {pause break entered)
•suspended - 1*
p/terminate_conmand
Conmand terminated.

The next example defines the terminal model to be a VT
220.

/change_terminal_attributes
.. /terminal_model=dec_vt220

CHANGE_TERM_CONN_DEFAULTS
Command

Purpose Changes the connection attribute defaults for a terminal
connection.

Format CHANGE_TERM_CONN_DEFAULTS or
CHANGE_TERM_CONN_DEFAULT or
CHATCD

ATTENTION_ CHARACTER_ACTION =integer
BREAK_KEY _ACTION= integer
END_ OF _INFORMATION =string
INPUT _BLOCK_ SIZE= integer
INPUT _EDITING _MODE= keyword
INPUT _OUTPUT_MODE =keyword

Revision G Commands and Functions 2-113

CHANGE_TERM_CONN_DEFAULTS

INPUT_ TIMEOUT= boolean
INPUT_ TIMEOUT _LENGTH =integer
INPUT_TIMEOUT_PURGE=boolean
PAR.TIAL_CHAR.ACTER_FORWAR.DING=boolean
PROMPT _FILE =file
PROMPT _STRING=string
STORE _BACKSPACE_ CHAR.ACTER =boolean
STORE _NULS _DELS =boolean
TRANSPAR.ENT _ CHAR.ACTER_MODE =keyword
TRANSPAR.ENT _FORWAR.D _ CHAR.ACTER =list of
string

TRANSPAR.ENT _LENGTH_MODE =keyword
TRANSPARENT _MESSAGE_LENGTH =integer
TRANSPARENT_ TERMINATE_ CHARACTER= list of
string

TRANSPAR.ENT _TIMEOUT _MODE =keyword
STATUS =status variable

Parameters ATTENTION_CHAR.ACTER_ACTION or ACA

Specifies the type of user interrupt command simulated by
the network when the character defined by the
ATTENTION _CHARACTER attribute is received from the
terminal.

BREAK_KEY_ACTIONorBKA

Specifies the type of user interrupt command simulated by
the network when the break key is pressed at the
terminal.

END_OF_INFORMATION or EOI

Specifies a string of 0 to 31 characters that, when entered
as a complete input line, is interpreted as an
end-of-information mark on the input file.

INPUT_BLOCK_SIZE or IBS

Specifies the maximum number of characters (80 to 2000)
stored by the network before input data is forwarded to
NOSNE.

INPUT_EDITING_MODE or IEM

Specifies how the network edits the data received from
the terminal.

2-114 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_TERM_CONN_DEFAULTS

INPUT_OUTPUT_MODE or IOM
Specifies how the network coordinates the terminal input
and output streams.

INPUT_ TIMEOUT or IT
Specifies whether NOSNE is to limit the amount of time
a task waits for input from the terminal when it reads
from a terminal file.

INPUT_TIMEOUT_LENGTH or ITL
Specifies the maximum number of milliseconds (0 to
86,401) that a task is to wait for input from a terminal
when it reads from a terminal file.

INPUT_TIMEOUT_PURGE or ITP
Specifies whether undelivered terminal input and output is
to be discarded when an input timeout conditon occurs.

PARTIAL_CHARACTER_FORWARDINGorPCF
Specifies whether the network forwards a partial input
line when an END_PARTIAL_CHARACTER is received
from the terminal.

PROMPT_FILE or PF
Specifies the local file name of the file to which the
prompt string is written.

PROMPT_STRINGorPS
Specifies the string written to the prompt file when a
task reads from the terminal file.

STORE_BACKSPACE_CHARACTERor SBC
Specifies how the network processes the character
specified as the BACKSPACE_ CHARACTER when it is
received from the terminal.

STORE_NULS_DELSor SND
Specifies whether the network stores or discards the NUL
and DEL characters when they are received from the
terminal.

Commands and Functions 2-115

CHANGE_ TERM_CONN_DEFAULTS

Remarks

TRANSPARENT_CHARACTER_MODE or TCM

Specifies the action the network takes when a
TRANSPARENT_FORWARD_CHARACTER or a
TRANSPARENT_TERMINATE_CHARACTER is received
from the terminal.

TRANSPARENT_FORWARD_CHARACTER or TFC

Specifies a string of 1 to 4 characters; any of these
characters is recognized by the network as the
transparent mode forwarding character.

TRANSPARENT_LENGTH_MODE or TLM

Specifies the action the network takes when it receives
the number of characters specified by the
TRANSPARENT_MESSAGE_LENGTH connection
attribute.

TRANSPARENT _MESSAGE_LENGTH or TML

Specifies the minimum number of characters (1 to 32, 767)
forwarded in each transparent input message.

TRANSPARENT_TERMINATE_CHARACTERor TTC

Specifies a string of 1 to 4 characters; any one of these
characters is recognized by the network as the
transparent mode terminating character.

TRANSPARENT_TIMEOUT_MODE or TTM

Specifies the action the network takes when no input is
received from the terminal for an interval of 400
milliseconds or more.

For more information, see the NOSNE System Usage
manual.

2-116 NOS/VE Commands and Functions Revision G

CHANGE_ UTILITY_ATTRIBUTES

CHANGE_ UTILITY _ATTRIBUTES
Command

Purpose Changes attributes for a utility initiated by the
UTILITY /UTILITYEND command.

Format CHANGE_UTILITY_ATTRIBUTES or
CHANGE_UTILITY_ATTRIBUTE or
CHAU A

UTILITY= name
EN ABLE _SUBCOMMAND _LOGGING= boolean
LINE_PREPROCESSOR =name or keyword
ONLINE_MANUAL=name or keyword
PROMPT =string
TABLES= file
STATUS=status variable

Parameters UTILITY or U

Revision G

Specifies the name of the utility whose attributes are to
be changed.

ENABLE_SUBCOMMAND_LOGGING or ESL

Specifies whether the utility subcommands are logged
(YES) or not (NO). The only commands logged are those
read from either an interactive file or the main command
file ($LOCAL.COMMAND) of a batch job. If this
parameter is set to NO, the utility's subcommands are not
logged, even if they are read from such a file.

If you omit this parameter, the logging enabled attribute
is not changed.

LINE_PREPROCESSOR or LP

Reserved.

ONLINE_MAN,UAL or OM

Specifies the online manual that describes the utility. Use
the keyword NONE to designate that no online manual is
associated with the utility.

If you omit this parameter, the online manual attribute is
not changed. ·

Commands and Functions 2-i17

CHANGE_VAX_REQUEST

Remarks

PROMPT or P

Specifies the prompt string used for interactive command
input. For command lines, a slash character (/) is
appended to the specified prompt string. For command
continuation lines, the string . ./ is appended to the
specified prompt string.

If you omit this parameter, the prompt attribute is not
changed.

TABLES or TABLE or T

Specifies the file containing the table of utility
subcommands defined by the COMMAND command. This
table is searched for subcommands while the utility is
active.

If you omit this parameter, the command table for the
utility is not changed.

For more information, see the NOSNE System Usage
manual.

CHANGE_VAX_REQUEST
Command

Purpose

Format

Changes the VAX tape file description in a temporary
NOSNE file formed in a preceding CREATE_ VAX_
REQUEST command. The VAX tape file must be on an
ANSI labeled tape.

CHANGE_ VAX_REQUEST or
CHAVR

FILE=file
FILE_ SET _POSITION= keyword
FILE _IDENTIFIER= string
FILE _SEQUENCE_NUMBER =integer
GENERATION _NUMBER =integer
STATUS= status variable

2-118 NOSNE Commands and Functions Revision G

CHANGE_VAX_REQUEST

Parameters FILE or F

Revision G

Specifies the name of a NOSNE temporary file associated
with a VAX tape file by a previous CREATE_ VAX_
REQUEST command. This parameter is required.

FILE_SET_POSITION or FSP

Specifies the position of the VAX tape file to be read. If
you omit this parameter, the NEXT_FILE position is
assumed. The parameter can have any of the following
values:

BEGINNING_OF_SET or BOS

Specifies that the first tape file on the file set is to be
read.

CURRENT_FILE or CF

Specifies that the current tape file is to be read. That
is, the last tape file accessed will be accessed again. If
the tape is positioned at the beginning of the first
volume, the first tape file will be read.

FILE_IDENTIFIER_POSITION or FIP

Specifies that the tape file identified by the FILE_
IDENTIFIER and GENERATION_NUMBER
parameters is to be read.

FILE_SEQUENCE_POSITION or FSP

Specifies that the tape file identified by the FILE_
SEQUENCE_NUMBER parameter is to be read.

NEXT_FILE or NF

Specifies that the tape file following the last accessed
tape file will be read. If the tape is positioned at the
beginning of the first volume, the first tape file will
be read.

FILE_IDENTIFIER or FI

Specifies a file identifier as a string of 1 to 17 characters.
Each tape file on a multifile set has a unique file
identifier. If the FILE_SET_POSITION parameter does
not have the FILE_IDENTIFIER_POSITION value, the
FILE_IDENTIFIER parameter is ignored.

Commands and Functions 2-119

CHANGE_VAX_REQUEST

Remarks

If you specify the FILE_IDENTIFIER_POSITION value
for the FILE_SET_POSITION parameter, the FILE_
IDENTIFIER parameter must have a value. If you omit
the FILE_IDENTIFIER parameter, a fatal diagnostic is
issued.

FILE_SEQUENCE_NUMBERorFSN
Specifies the numeric position of a tape file on a multifile
set. The position is an unsigned integer in the range 1
through 9999. If the FILE_SET_POSITION parameter is
not set to FILE_SEQUENCE_POSITION, the FILE_
SEQUENCE_NUMBER parameter value is ignored.

If you specify the FILE_SEQUENCE_POSITION value
for the FILE_SET_POSITION parameter, the FILE_
SEQUENCE_NUMBER parameter must have a value. If
you omit the FILE_SEQUENCE_NUMBER parameter, a
fatal diagnostic is issued.

GENERATION_NUMBERorGN
Identifies the specific revision of the tape file named by
the FILE_IDENTIFIER parameter. The revision is shown
as an unsigned integer in the range 1 through 9999. If
the FILE_SET_POSITION parameter has the FILE_
IDENTIFIER_ POSITION value, and the GENERATION_
NUMBER parameter is omitted, then the GENERATION_
NUMBER parameter value is set to one.

If the FILE_SET_POSITION parameter does not have the
FILE_IDENTIFIER_POSITION value, the
GENERATION_NUMBER parameter is ignored.

e This command is handy when you wish to use the
same temporary NOS/VE file to reference several tape
files from the same multifile set on tape. You simply
use the CHANGE_ VAX_REQUEST command to
change the tape file description.

• In general, when you omit a parameter from the
CHANGE_ VAX_REQUEST command, the value of
that parameter is not changed. Thus, usually, you
need to include only those parameters whose settings
change for the new VAX tape file.

2-120 NOS/VE Commands and Functions Revision G

Examples

$CHAR
Function

$CHAR

The two exceptions to this rule are the FILE_SET_
POSITION and the GENERATION_NUMBER
parameters. When you omit these parameters, their
values become the default values, NEXT_FILE and 1,
respectively, for those parameters.

Suppose that you have associated a tape file on a VAX
labeled tape with the temporary NOSNE file, FILE_
AGAIN. Once you have accessed this tape file, you wish
to access it again. The following command associates the
tape file with FILE_AGAIN:

/change_vax_request file=file_again
.. /file_set_position=current_position

Purpose Returns the ASCII character that corresponds to the
integer you specify.

Format $CHAR
(integer)

Parameters integer

Specifies the integer from which you want the ASCII
character returned. The integer is an ordinal; it
represents the position of the character in question within
the ASCII collating sequence. This parameter is required.

Remarks For further information about functions, see the NOSNE
System Usage manual.

Examples • The following example returns the character that is

Revision G

represented as the ASCII code 25 hexadecimal:

/display_value $char(25(16))
%

• The next example displays the ASCII characters with
the decimal ordinals of 65, 66, and 67:

/display_value ($char(65),$char(66),$char(67))
A

B

c

Commands and Functions 2-121

$CHAR

2-122 NOS/VE Commands and Functions Revision G

COBOL
Command

Purpose Compiles a COBOL source program.

Format COBOL
INPUT=file
BINARY_OBJECT=file
LIST=file
LIST_ OPTIONS= list of keyword
AUDIT= boolean
BASE _LANGUAGE= keyword
DEBUG _AIDS= list of keyword
DUMP _DATA= boolean
ERROR=file
ERROR_LEVEL =keyword
EXTERNAL_INPUT=file

COBOL

FED _INFO _PROCESSING _STANDARD= list of
keyword

INPUT_SOURCE_MAP=file
LEADING _BLANK_ZERO =boolean
LITERAL_ CHARACTER =string
OPTIMIZATION= list of keyword
RUNTIME_ CHECKS= list of keyword
STANDARDS_DIAGNOSTICS=list of keyword
SUBPROGRAM=boolean
STATUS= status variable

Parameters INPUT or I

Revision G

Specifies the file containing the COBOL source statements
to be compiled. Default is $INPUT.

BINARY_OBJECT or BO or BINARY or B

Specifies the file to receive the compiled object code.
Options are: ·

Omitted

Same as BINARY=$LOCAL.LGO.

File reference

Writes binary object code to file named by file
reference.

$NULL

Does not write any binary object code output.

Commands and Functions 2-123

COBOL

LIST or L

Specifies the file to receive COBOL listable output,
including source listing and diagnostics. Options are:

Omitted

Same as L =$LIST.

File reference

Writes listable output to file named by file reference.

$NULL

Does not write listable output to a file.

LIST_OPTIONS or LO

Specifies compiler output listing options. You can select
multiple options, which are separated by a space or a
comma. Options are:

Omitted

Same as LIST_OPTIONS=S.

NONE

Does not select any of the options.

M

Data-name and procedure-name attributes.

0

Object code listing.

R

Cross-reference list of items referenced in the program.

RA

Cross-reference list of all items.

s
Source program listing.

SA
Source program listing, including lines turned off by
NOLIST directive.

2-124 NOS/VE Commands and Functions Revision G

Revision G

COBOL

AUDIT or AUD or A

Indicates whether the program is being run for the
Federal Software Training Center (FSTC) audit testing.
Selection of this option also selects the ERROR LEVEL=!
and STANDARDS_ DIAGNOSTICS= (!,ANSI) parameters.
Options are:

Omitted

Does not select AUDIT option.

A=TRUE

Performs FSTC audit testing.

BASE_LANGUAGEorBL

The BASE_LANGUAGE parameter allows you to compile
a program containing syntax based on different base
languages. This is a single value parameter. Valid options
are as follows:

Omitted

Equivalent to BL=ANS85.

BL=ANS74

Compiles programs whose syntax is based on the 197 4
ANSI COBOL Standard.

BL=ANS85

Compiles programs whose syntax is based on the 1985
ANSI COBOL Standard.

BL=COBOL5

Compiles programs written for compilation by COBOL
5.

DEBUG_AIDS or DA

Specifies debugging options. You can select multiple
options, which are separated by a space or a coma.
Options are:

Omitted

Same as DEBUG_AIDS=NONE.

Commands and Functions 2-125

COBOL

NONE

Selects no debugging options.

ALL

Selects all debugging options except SY.

DS

Compiles debugging lines in the source program (lines
with letter D in column 7).

DT

Generates line number, symbol, and source map loader
tables as part of the object code.

oc
Continues producing object code even after it finds
source code errors.

SY

Checks the syntax, but does not generate object code.
You cannot select this option if you selected the OC
option.

TR

Produces flow tracing of all paragraphs executed.

DUMP _DATA or DD

Reserved for NOS compatibility.

ERROR or E

Specifies the file to receive error information. Default is
the file specified by the LIST parameter. If no LIST
parameter is specified, default is $ERRORS.

ERROR_LEVEL or EL

Indicates the severity of the errors to be printed in the
file specified by the ERROR parameter. Options are:

Omitted

Lists all warning, fatal, and catastrophic errors.

NONE

Does not list any errors.

2-126 NOSNE Commands and Functions Revision G

Revision G

EL=T or EL=I

Lists all trivial, warning, fatal, and catastrophic
errors.

EL=W

Lists warning, fatal, and catastrophic errors.

EL=F

Lists fatal and catastrophic errors.

EL=C

Lists catastrophic errors only.

EXTERNAL_INPUT or EX_INPUT or EI

COBOL

Specifies the Source Code Utility (SCU) library file to be
used for COPY statements. Default is $NULL (no SCU
library file).

FED_INFO_PROCESSING_STANDARD or FIPS

The FIPS parameter specifies diagnosing of input source
statements which do not conform to standards in some
part of the 1985 Federal Information Processing Standards
(FIPS) COBOL subset. You can specify the entire 1985
FIPS COBOL subset or some part of its optional modules.

The FIPS parameter also permits diagnosing of the syntax
identified in the obsolete category of the American
National Standard Programming Language COBOL,
X3.23-1985. The FIPS parameter has meaning only when
BASE_LANGUAGE=ANS85. IF BL=ANS74 OR
BL= COBOL5, this parameter is ignored.

This parameter is specified as a list of keyword values.
The n that terminates several of the keywords can only
be the integer 1 or 2. Specifying two different levels of
the same keyword (such as CLl and CL2) is an error.
Valid options are:

Omitted

Equivalent to specifying FIPS=NONE.

Commands and Functions 2-127

COBOL

CLn

Issues diagnostics for syntax that does not conform to
level n of FIPS COBOL for the COMMUNICATIONS
optional module. Specifying CLn with OMLn is an
error.

DLn

Issues diagnostics for syntax that does not conform to
level n of FIPS COBOL for the DEBUG optional
module. Specifying DLn with OMLn is an error.

NONE

Does not select any option.

OBSOLETE or 0

Issues diagnostics for syntax that is identified in the
obsolete category of the 1985 ANSI COBOL standard.

OMLn

Issues diagnostics for syntax that does not conform to
level n of FIPS COBOL for all optional modules.
Specifying OMLn with CLn, DLn, RWLn, or SLn is an
error.

RWLn

Issues diagnostics for syntax that does not conform to
level n of FIPS COBOL for the REPORT WRITER
optional module. Specifying RWLn with OMLn is an
error.

SLn

Issues diagnostics for syntax does not conform to level
n of FIPS COBOL for the SEGMENTATION optional
module. Specifying SLn with OMLn is an error.

SH

Issues diagnostics for syntax that does conform to the
HIGH subset for FIPS COBOL.

SI

Issues diagnostics for syntax that does not conform to
the INTERMEDIATE subset for FIPS COBOL.

2-128 NOSNE Commands and Functions Revision G

Revision G

COBOL

SM

Issues diagnostics for syntax that does not conform to
the MINIMUM subset for FIPS COBOL.

When you specify this parameter, specify the
STANDARDS_DIAGNOSTICS parameter to set the
severity level of any diagnostics issued.

INPUT_SOURCE_MAP or ISM

Specifies the name of the file that contains the source
map describing the contents of the source input file. Valid
options are:

Omitted

ISM file is constructed during compilation based on
the contents of the source input file.

ISM= file reference

ISM is specified by the user. This allows you to
specify a file that contains the source map of the input
file, such as the OUTPUT_SOURCE_MAP file created
by the EXPAND_DECK command of the Source Code
Utility (SCU).

LEADING_BLANK_ZEROorLBZ

Causes leading blanks in numeric input fields to be
treated as zeros during execution. Valid options are:

Omitted

Specifies that numeric fields containing blanks are in
error.

LBZ=TRUE

Treats all leading blanks in numeric fields as zeros in
arithmetic statements and comparisons.

LITERAL_CHARACTER or LC

Changes the character that delimits nonnumeric literals in
the source program. Options are "" (apostrophe delimits
literals) and ' " ' (quotation mark delimits literals).
Default is ' " '.

Commands and Functions 2-129

COBOL

OPTIMIZATION or OPTIMIZATION _LEVEL or OPT or
OL

Specifies the level of optimization to be performed by the
compiler. Options are:

Omitted

Same as OPTIMIZATION_LEVEL=LOW.

DEBUG

Produces stylized object code for debugging.

LOW

Produces optimized object code for production runs.

RUNTIME_CHECKSorRC

Selects execution-time checking of reference modifiers,
subscripts, or index references. Options are:

Omitted

Same as RUNTIME_CHECKS=NONE.

NONE

Performs no runtime checks.

ALL

Selects all options.

R

Checks that reference modifiers fit in the subject data.

s
Checks that subscripts and index references are valid.

STANDARDS_DIAGNOSTICS or SD

The STANDARDS_DIAGNOSTICS parameter specifies
diagnosing of input source statements that do not conform
to American National Standard Programming Language
COBOL, X3.23-1974. Valid options are:

Omitted

Same as SD=NONE.

2-130 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

COBOL

SD=NONE

Does not select any option.

SD= (severity ,ANSI)

Specifies that source statements not conforming to the
1985 American National Programming Language
COBOL, as specified by the BASE_LANGUAGE and
FED_INFO_PROCESSING_STANDARD parameters,
are to be diagnosed. When you specify this option, also
specify the ERROR_LEVEL parameter and value.
Severity can be I, W, or F.

SUBPROGRAM or SP

Specifies that the source program is to be compiled as a
subprogram, rather than as a main program. Options are
TRUE (compiled as a subprogram) and FALSE (compiled
as a main program). Default is FALSE.

For more information, see the COBOL Usage manual.

/COBOL INPUT=$USER.COB_SOURCE ..
.. /BINARY=COB_OBJ ..
. . /LIST_OPTIONS=(S,R,M) LIST=COB_LIST

This command compiles a COBOL program and selects
the following options:

INPUT= $USER. COB_ SOURCE

Source statements are read from file $USER.COB_
SOURCE.

BINARY=COB_OBJ

Compiled object code is written to file COB_ OBJ.

LIST_ OPTIONS= (S,R,M)

The compiler produces a source listing, cross-reference
map, and attributes map.

LIST= COB_ LIST

The listable output selected by the LIST_ OPTIONS
parameter is written to file COB_LIST.

All other parameters assume default options.

Commands and Functions 2-131

COLLECT_ TEXT

COLLECT_TEXT
Command

Purpose

Format

Reads lines of text from the command list and writes
them to a specified file.

COLLECT_TEXT or
COLT

OUTPUT= file
UNTIL= string
PROMPT=string
SUBSTITUTION_MARK=string or keyword
STATUS= status variable

Parameters 0 UTPUT or 0

Identifies the file to which the collected text is to be
written and, optionally, specifies how the file is to be
positioned prior to use. This parameter is required.

UNTIL or U

Specifies the string that terminates text collection. The
string does not become part of the file. If omitted, the
string '**' is assumed.

PROMPT or P

Specifies the prompt string to be issued for each line if
input is coming from an interactive terminal. If the null
string is specified, no prompt is issued.

The first character in the prompt string is a format
effector character. A space character is often used to
cause each prompt to be issued on a new line.

Omission of the PROMPT parameter causes ct? to be
used.

SUBSTITUTION_MARKorSM

Specifies the character used to delimit the text to be
substituted, or specifies that no character is used to
delimit text.

Corresponding pairs of substitution marks must appear on
the same line. If the second substitution mark of a pair is
not found on the same line as the first mark, the end of
the line is treated as the second substitution mark. If two
consecutive marks appear on a line, they are replaced by
a single substitution mark in the collected text.

2-132 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

COLLECT_ TEXT

The text between the substitution marks is evaluated as
an SCL string expression, the result of which replaces the
original text including the substitution marks. If an
expression cannot be evaluated or its result cannot be
converted to a string, the COLLECT_ TEXT command
terminates with an error message.

Omission of the SUBSTITUTION _MARK parameter
causes NONE to be used.

• The text is read from file $COMMAND until a line
containing only a termination string is encountered, or
an end-of-partition or the end-of-information is
encountered.

• The termination string must be the first characters of
a line (no leading spaces or other characters).

• For more information, see the NOSNE System Usage
manual.

The following command sequence creates a file named
DATE into which an SCL procedure is entered and then
called.

/collect_text output=date until='end'
ct? proc date
ct? display_value $date(month)
ct? procend
ct? end
/date "Execute the procedure here."
March 19, 1987

The following listing of a file illustrates how the
COLLECT_ TEXT command can be used in a batch job to
provide input to a compiler. A FORTRAN program is
collected into a file named FORTRAN _SOURCE and then
read by the FORTRAN compiler.

Commands and Functions 2-133

COMMAND

LOGIN USER=SDH PASSWORD=PASS456 FAMILY=NVE
COLLECT_TEXT FORTRAN_SOURCE

PROGRAM CTIME
CHARACTER*8 TIME
PRINT*,'THE CURRENT TIME IS: ',TIME()
STOP
END
**

FORTRAN I=FORTRAN_SOURCE
LGO
LOGOUT

The job creates a text file containing a FORTRAN
program that displays the current time, calls the
FORTRAN compiler to compile the program, executes the
program, and logs out.

The final example illustrates the use of substitution
marks.

/al='test'
/collect_text output=f1 substitut1on_mark='~'
ct? 1 i ne 1
ct? ~$substr(a1,1,2)~as1ng
ct ? @ti 1 i ne 3
ct? ••
/copy_file f1
1 ine 1
teasing
ttl i ne 3

COMMAND
UTILITY Subcommand

Purpose

Format

Declares an entry in a utility command table.

COMMAND
NAME= list of name
PROCESSOR =name
AVAILABILITY= keyword
AUTOMATICALLY _LOG= boolean

2-134 NOS/VE Commands and Functions Revision G

$COMMAND_SOURCE

Parameters NAME or NAMES or N

Remarks

Specifies the name(s) by which the command can be
called. This parameter is required.

PROCESSOR or P

Specifies the name of the processor for the command.

If you omit this parameter, the first element in the
NAME parameter is assumed to be the name of the
processor.

AVAILABILITY or A

Specifies whether the command appears in a display of
the utility's command list entries. Values can be:

ADVERTISED (A)

Command appears in a display of the command list
entries.

HIDDEN (H)

Command does not appear in a display of the
command list entries.

If you omit this parameter, the command is
ADVERTISED.

AUTOMATICALLY_LOG or AL

Specifies whether the SCL interpreter should log the
command when it is recognized (YES), or leave the
logging of the command to the command processor (NO).
Designating the command processor as the logging control
allows you to specify and restrict access to secure
information.

If you omit this parameter, YES is assumed.

For more information, see the NOSNE System Usage
manual.

$COMMAND_SOURCE
Function

Purpose

Format

Revision G

Determines the location of the command processor for the
requesting command.

$COMMAND_SOURCE

Commands and Functions 2-135

$COMMAND SOURCE

Parameters None.

Remarks

Examples

• The returned value is one of the following:

File, if the source of the command is a file or
catalog.

Name of the utility, if the command is a
subcommand of a utility.

Name $SYSTEM, if the command is a
system-supplied command.

• This function is not particularly useful when used in
the expression for a parameter to a command because,
in this case, it returns the source of the command.
Therefore, it is more useful when used in control or
assignment statements.

• For further information about functions, see the
NOSNE System Usage manual.

The following example demonstrates the use of
$COMMAND_SOURCE in an assignment statement:

"The following proc resides on an"
"object library in some catalog."
PROC sample_conmand

cs = $conmand_source
cat = $path($fname(cs),catalog)
"The following conmand executes file"
"sample_program in the same catalog•
execute_task $fname(cat//'.sample_program)

PROCEND sample_COlllnand

2-136 NOS/VE Commands and Functions Revision G

COMPARE_FILE

COMPARE _FILE
Command

Purpose Performs a binary comparison of data on the specified
files.

Format COMPARE_FILE or
COMPARE_FILES or
COMF

FILE=file
WITH=file
ERROR _LIMIT= integer
OUTPUT= file
STATUS =status variable

Parameters FILE or F

Revision G

Identifies the file to be compared and, optionally, specifies
how the file is to be positioned prior to use. This
parameter is required.

WITH or W

Specifies the file used for comparison and, optionally,
specifies how the file is to be positioned prior to use. This
parameter is required.

ERROR_LIMIT or EL

Specifies the number of comparison errors to display.
When this limit is exceeded, the command is terminated.
Omission causes 0 (zero) to be used, and no comparison
errors are displayed.

OUTPUT or 0

Specifies the file upon which the comparison errors are
displayed and, optionally, specifies how the file is to be
positioned prior to use. Omission causes $OUTPUT to be
used.

Commands and Functions 2-137

COMPARE_FILE

Remarks

Examples

• The file attributes are not compared.

• Whenever data on the two files does not match, the
position, content, and logical difference is displayed on
the specified output file.

• The contents of both files are compared from the open
position of each until end-of-information is encountered
on the shorter of the two files.

• For more information, see the NOSNE System Usage
manual.

The following example creates two files and compares
their contents with the COMPARE_FILE command. The
COLLECT_ TEXT command is used to create the text file;
EDIT_FILE is used to change one character in the file so
that a comparison will result in errors (EDIT_FILE is
described in the NOSNE File Editor manual.)

/colt f; le_ 1
ct? This is a temporary f; le
ct? that wi 11 be usea in a
ct? COMPARE_FILE example.
ct? ••
/copy_f; le f; 1e_ 1 f; 1e_2
/edit_file file_2
Begin editing file: SLOCAL.FILE_2
ef /1 ist_forward n=2
ef/replace_text 'x' 'z'
C().4PARE_FILE ezample.
ef/end
/compare_f t le file_ 1 f i le_2
BYTE ADDRESS FILE WORD WITH WORD LOGICAL DIFFERENCE

96 46494c4520657861 46494c4520657a61 0000000000000200

-- Spec if ied compare error 1 im it exceeded.
1 compare errors .

--ERROR-- 1 compare errors.

The output from the COMPARE_FILE command indicates
that a comparison error resulted at byte address 96. The
entire contents of the relative words (in hexadecimal) of
each file and their logical difference are also shown.

2-138 NOS/VE Commands and Functions Revision G

COMPARE_ OBJECT_LIBRARY

COMPARE_ OBJECT _LIBRARY
Command

Purpose Compares two object libraries or two object files.

Format COMPARE_OBJECT_LIBRARY or
CO MOL

FILE=file
WITH=file
OUTPUT=file
STATUS= status variable

Parameters FILE or F

Remarks

Revision G

Old object file or object library file. This parameter is
required.

WITH or W

New object file or object library file. This parameter is
required.

OUTPUT or 0

Output file. This file can be positioned. If OUTPUT is
omitted, file $OUTPUT is used.

• The COMPARE_OBJECT_LIBRARY command does
not compare procedure files or text files. If the FILE_
CONTENTS attribute of each file is not OBJECT,
abnormal status is returned and the files are not
compared. Also, the command does not compare an
object file with an object library. An attempt to do so
returns abnormal status.

o COMPARE_OBJECT_LIBRARY compares the content
of the files for the following differences: module
content changed, modules deleted, and modules added.
If the content of a module has changed, the location
where the change begins is displayed.

o COMPARE_ OBJECT_ LIBRARY does not display
differences in module order, module creation date or
time, or commentary string within the module header.

• For more information, see the. NOSNE Object Code
Management manual.

Commands and Functions 2-139

$CONDITION_CODE

Examples

The following command compares the library files OLD_
LIB and NEW_LIB.

/compare_obJect_ library old_ lib new_ lib
Old modules deleted from OLD_LIB

SORT 1

New modules added to NEW_LIB

SORT2

Madu 1 es_ changed

PROCl - First difference at record number O - LIBRARY
MEMBER HEADER

REPLACED - 20 20 20 20 20 20 20 20 20 3 2 31 30 3A 32 31 3A 32 39 0
0 0 0 2 31 31 2F 30 33 2F

WITH - 20 20 20 20 20 20 20 20 20 3 2 31 30 3A 32 33 3A 31 36 0
0 2 0 2 31 31 2F 30 33 2F

Number of compare errors: 1

$CONDITION _CODE
Function

Purpose Returns the code that corresponds to a condition name
you specify.

Format $CONDITION_CODE
(name
keyword)

Parameters name

Specifies a condition name for which you want the
corresponding code. This parameter is required.

keyword

Value that indicates whether you want the condition code
returned as an integer or a string. Use one of the
following values:

NUMERIC (N)

Specifies an integer from 0 through OFFFFFFFFFF
(hexadecimal).

2-140 NOSNE Commands and Functions Revision G

Remarks

Examples

$CONDITION_NAME

SYMBOLIC (S)

Specifies a string that contains the 2-character product
identifier and the condition number from 0 through
OFFFFFF (hexadecimal).

o If a condition code for the specified name is not found,
a 0 is returned.

• For further information about functions, see the
NOSNE System Usage manual.

The following example displays the symbolic value for the
condition name specified.

/display_value $condition_code ..
.. /(cle$alpha_char_in_number,s)
CL 115

$CONDITION _NAME
Function

Purpose Returns the condition name that corresponds to the
condition code you specify.

Format $CONDITION _NAME or
$CONDITION

(integer
string)

Parameters integer

Revision G

Specifies a code that uniquely identifies the condition
whose name you want returned. The default radix is
decimal. This parameter is required.

If you specify an integer from 1000000 (hexadecimal) to
OFFFFFFFFFF (hexadecimal), the condition code is
completely identified. In this case, you need not use the
identifier parameter.

string

Specifies a 2-character product identifier. You must
distinguish between uppercase and lowercase letters when
specifying the identifier.

Commands and Functions 2-141

CONTINUE

Remarks

Examples

This parameter is required only when the condition
parameter is an integer from 0 through 1,000,000
(hexadecimal).

• The value returned is a string in uppercase letters.

• If no condition name is found for the code you specify,
the following string is returned:

UNKNOWN _CONDITION

• For further information about functions, see the
NOSNE System Usage manual.

• The following example displays the condition name for
an integer condition code expressed in decimal (the
default radix):

/display_value $condition_name(289037877363)
CLE$ALPHA_CHAR_IN_NUMBER

• The next example displays the condition name for a
string condition code that includes both an integer and
a 2-character product identifier.

/d1splay_value $cond1tion_name(115,'CL')
CLE$ALPHA_CHAR_IN_NUMBER

CONTINUE
Control Statement

Purpose

Format

Exits the current WHEN statement.

CONTINUE
RETRY
WHEN boolean expression

The following forms of the CONTINUE statement are
valid:

CONTINUE
CONTINUE RETRY
CONTINUE WHEN boolean condition
CONTINUE RETRY WHEN boolean condition

2-142 NOS/VE Commands and Functions Revision G

CONTINUE

Parameters RETRY

Remarks

Revision G

Instructs SCL to return control to the statement that
caused the condition. If this parameter is omitted, control
is returned to the statement following the statement that
caused the WHEN statement.

boolean expression

Specifies whether the exit should be honored. If the
expression is TRUE, the exit is taken; if the expression is
FALSE, processing continues at the next statement. If this
clause is omitted, the next exit is taken.

o The following descriptions illustrate the process of
exiting with a RETRY statement; they also apply to
the action taken in the absence of a CONTINUE
statement:

COMMAND_FAULT or PROGRAM_FAULT,
without RETRY

Processing continues at the statmeent following the
one that caused the WHEN statemen t to be
executed.

COMMAND_FAULT or PROGRAM_FAULT, with
RETRY

The statement that caused the WHEN statement to
be executed is reprocessed.

INTERRUPT or LIMIT_FAULT, without RETRY

Processing continues at the point of interruption.

INTERRUPT or LIMIT_FAULT, with RETRY

The results are undefined.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-143

CONTROL

Examples The following example establishes a condition handler for
a pause break (terminal interrupt). The user is prompted
for several options whenever an INTERRUPT condition
occurs.

WHEN interrupt DO
create_variable name=response kind=string
LOOP

accept_line variable=response ..
prompt='Enter RETRY, CONTINUE, or conmand:
input=1nput

IF $string $translate(tdu,response) = 'RETRY' THEN
CONTINUE RETRY

ELSEIF $string($name(response)) = 'CONTINUE' THEN
CONTINUE

ELSE
include_line variable=response

I FEND
LOOPEND

WHENEND

CONTROL
Command

Purpose Use the CONTROL (CON) command to access IM/Control
from NOSNE.

Format CONTROL or
CON

DICTION AR.Y =name
USER=name
MODE=keyword
FACILITY= keyword
VIEW=name
INPUT=file
LIST=file
STATUS= status variable

Parameters DICTIONAR.Y or D

The name of the dictionary to be used, created, or deleted.
On the CONTROL command, underscores must be used in
place of hyphens. For example, if the dictionary name is
ACME-DICTIONARY, you must specify
DICTIONARY=ACME_DICTIONARY.

2-144 NOS/VE Commands and Functions Revision G

Revision G

CONTROL

The DICTIONARY parameter is required unless you
specify FACILITY= CONTROL on the FACILITY
parameter.

USER or U

The name by which the caller is known to the dictionary.

On the CONTROL command, underscores must be used in
place of hyphens. For example, if the user name is
DATA-MGR, you must specify USER=DATA_MGR.

The USER parameter is required unless you specify
FACILITY= CONTROL on the FACILITY parameter. If
omitted, the user can enter only the control facility and
can execute only two commands, CREATE DICTIONARY
and QUIT.

MODE or M

The mode in which you enter IM/Control commands. The
following modes can be specified:

COMMAND (C)

The command mode interface to all IM/Control
facilities.

SCREEN (S)

The full screen interface to the dictionary maintenance
facility. Screen mode is valid only if you specify
FACILITY=DICTIONARY_MAINTENANCE on the
FACILITY parameter.

The MODE parameter is optional. For batch use, only
command mode is allowed. If omitted during batch use,
COMMAND is assumed. If omitted during interactive use,
the user is prompted for the mode.

FACILITY or F

The IM/Control facility to be used. The following facilities
can be specified:

CONTROL (C)
DICTIONARY_MAINTENANCE (DM)
GENERATE (G)
OUTPUT (0)

The FACILITY parameter is required during batch use. If
omitted during interactive use, the user is prompted for
the facility.

Commands and Functions 2-145

CONTROL

Remarks

Examples

VIEW or V

The subset of the data with which this IM/Control session
works.

On the CONTROL command, underscores must be used in
place of hyphens. For example, if the view name is
DBA-VIEW, you must specify VIEW=DBA_ VIEW.

The VIEW parameter is optional. If omitted, the default
view for the user specified on the USER parameter is
used. If you specify FACILITY= CONTROL on the
FACILITY parameter, the view is ignored.

INPUT or I

The path of a file containing IM/Control commands. These
commands are the input to IM/Control.

The INPUT parameter is optional. If omitted during
interactive use, $COMMAND is used. If omitted during
batch use, IM/Control reads the input from the job stream
input.

LIST or L

The path of the file to which the IM/Control displayed
output is to be written.

The LIST parameter is optional. If omitted, $OUTPUT is
used.

• For more information, see the IM/Control for NOS/VE
Usage manual.

The following example shows how to access IM/Control in
screen mode:

/control dictionary=acme_dictionary user=administrator ..
.. / mode=screen facility=dictionary_maintenance ..
. . I view=admin_view

The following example shows the same command in
abbreviated form:
/control d=acme_dictionary u=administrator m=s f=dm ..
. ./ v=admin_view

2-146 NOS/VE Commands and Functions Revision G

CONVERT_APL2_FILE

CONVERT _APL2 _FILE
Command

Purpose Converts NOS APL2 workspaces to NOSNE APL
workspace. Used automatically from within NOSNE APL
by starting the workspace :NVE.$SYSTEM.CONVERT_
APL2. This can be called from outside NOSNE APL.

Format CONVERT_APL2_FILE or
CON AF

FROM=file
TO=file
STATUS =status variable

Parameters FROM

Remarks

Revision G

Specifies the name of the NOS APL2 file to be converted.
If omitted, OLD is assumed.

TO

Specifies the name of the NOSNE file to which the
converted NOS APL2 file is written. If omitted, NEW is
assumed.

• Files to be converted may reside as permanent files on
NOS or as local files on NOSNE brought over from
NOS with the GET_FILE utility (in this case, specify
B60 conversion). The resultant file is placed in the
specified NOSNE file catalog.

o When you enter the CONVERT_APL2_FILE command
from within the CONVERT_APL2_FILE workspace,
you may specify more than one file to be converted.
You may enter the command interactively or as a
batch job.

• Before APL structured files can be converted from
NOS APL2 format to NOSNE APL format, you must
run it through the AFIFIX utility on NOS. This copies
the files to get rid of EORs so the files can be
transferred to NOSNE with their file directories in
sync with the data. To use AFIFIX, enter:

GET AFIFIX/UN=APLO

then, enter either of the following:

Commands and Functions 2-147

CONVERT_APL2_ WS

Examples

AFIFIX, 1fn1, 1fn2 Sets only the control
byte.

AFIFIX, NOEOR' lfn 1, 1 fn2- Sets the control byte
and copies the file
without EORs.)

See your local site analyst for more information on
AFIFIX.

The following example converts file OLD from NOS APL2
format to NOSNE APL format and puts the converted file
on file NEW in the $USER catalog:

CONVERT_APL2_FILE FROM=OLD TO=$USER.NEW

This example assumes you have run file OLD through
AFIFIX on the NOS side.

CONVERT _APL2 _ WS
Command

Purpose Converts NOS APL2 workspaces to NOSNE APL
workspaces. This is used automatically from within the
NOSNE APL workspace when you start it by entering
:NVE.$SYSTEM.CONVERT_APL2. To call it from outside
NOSNE APL, use this command.

Format CONVERT_APL2_ WS or
CON AW

FROM=file
TO=file
CC=boolean
STATUS=status variable

Parameters FROM

Specifies the NOS APL file to be converted. If omitted,
OLD is assumed.

TO

Specifies the NOSNE file that will contain the converted
file. If omitted, NEW is assumed.

2-148 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

CONVERT_APL2_ WS

CC or C170_COMPATIBLE

Specifies if names of functions in the WFNS workspace
are converted to APLNE special functions or if they are
copied over with APL2 definitions. TRUE converts the
functions; FALSE does not. If omitted, FALSE is assumed.

o Files to be converted may reside as permanent files on
NOS or as local files on NOSNE brought over from
NOS with the GET_FILE utility (in this case, specify
B60 conversion). The resultant file is placed in the
specified NOSNE file catalog.

• When you enter the CONVERT_APL2_ WS command
from within the CONVERT_APL2_ WS workspace, you
may specify more than one file to be converted. You
may enter the command interactively or as a batch
job.

• Although the workspace is converted to a form which
NOSNE understands, there are differences between
NOS APL2 and NOSNE APL which are not provided
for. Two differences, for example, are that the state
indicator list is not transferred and NOS file names
must be converted to NOSNE file names. For other
differences that must be considered, refer to the APL
for NOSNE Language Definition manual (publication
number 60485813).

The following example converts the user workspace in file
OLD of the working catalog from NOS APL2 format to
NOSNE APL format and writes the output to file NEW.
Names of functions in the WFNS workspace are converted
to NOSNE APL special functions:

CONVERT_APL2_WS FROM=OLD TO=NEW CC=TRUE

Commands and Functions 2-149

CONVERT_MODIFY_ To _scu

CONVERT _MODIFY_ TO _SCU
Command

Purpose Converts a source library file from Modify format to SCU
format.

Format CONVERT_MODIFY_TO_SCU or
CON MTS

OLD_PROGRAM_LIBRARY==file
RESULT=file
LIST=file
NAME_LIST=file
DISPLAY_ OPTIONS= keyword
CODE_ SET= keyword
KEY=string
STATUS =status variable

Parameters OLD_PROGRAM_LIBRARY or OPL

Modify library file. If OLD_PROGRAM_LIBRARY is
omitted, -file OPL is used.

RESULT or R

SCU library file. If RESULT is omitted, file SOURCE_
LIBRARY is used.

LIST or L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, file $LIST is used.

NAME_LIST or NL

Substitution file. If NAME_LIST is omitted, no names are
substituted.

DISPLAY_OPTIONS or DO

Indicates the information written on the listing file.
Options are:

BRIEF (B)

Brief listing.

FULL (F)

Full listing including the text lines changed by the
conversion.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

2-150 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

CONVERT_MODIFY_TO _SCU

CODE_SET or CS

Indicates the character code set used in the Modify library
file. Options are:

ASCII64

64-character set (6-bit display code).

ASCII612

128-character set (6/12 ASCII using escape codes).

ASCIIMIX

Library contains a mix of decks that use the
64-character and 128-character code sets.

If CODE_SET is omitted, ASCIIMIX is used.

KEY or K

One-character string specifying the character used to
prefix MODIFY directives and used as the key character
on the SCU source library. If KEY is omitted, the
character string, '*', is used.

• The Modify file can use either 64-character (6-bit
display code), or 128-character (6/12 ASCII code), or a
mix of 64-character and 128-character set decks.

• The CONVERT_MODIFY_ TO_SCU command is a
NOSNE command. Although you can enter the
command during an SCU session, it does not affect the
working library.

• For more information, see the NOSNE Source Code
Management manual.

The following command converts the Modify file OPL to
an SCU library on file SOURCE_FILE.

A brief report is listed on file $LIST. The names to be
substituted are on file NEW_NAMES. OPL uses the
64-character set.

Commands and Functions 2-151

CONVERT_SCUlO_TO_SCUll

/convert_modify_to_scu name_list=new_names
Name conversion list

• = invalid name. Error if used.

OLD_NAME NEW_NAME
FTNFORM FORTRAN_ FORMAT
FTNIO FORTRAN_ IO
FTN=1 FTN_ 1

MODIFICATION_NAME
FTNFORM
FTNIO
FTN_1

Deck list as read from OPL directory

FORTRAN1 FORTRAN2

2 Decks Converted
SCU library on file - SOURCE_FILE

CONVERT_SCUlO_TO_SCUll
Command

Purpose Reads an SCU source library in version 1.0 format and
writes it in version 1.1 format.

Format CONVERT_SCUlO_ TO_SCUll or
CONSIOTOSll

BASE=file
RESULT=file
STATUS= status variable

Parameters BASE or B

Remarks

Name of the file containing an SCU source library in the
version 1.0 library format. If BASE is omitted, an attempt
is made to access a file named SOURCE_LIBRARY.

RESULT or R

Name of the file to receive the converted library in
version 1.1 library format. If RESULT is omitted, the
library is written on file SOURCE_LIBRARY.$NEXT.

For more information, see the NOSNE Source Code
Management manual.

2-152 NOSNE Commands and Functions Revision·G

Examples

CONVERT_SCUl 70 _TO _SCU180

The following command converts the version 1.0 source
library file OLD_FORMAT to a version 1.1 source library
file named NEW_FORMAT.

/convert_scu10_to_scu11 base=old_format ..
.. /result=new_format

CONVERT_SCU170_ TO_SCU180
Command

Remarks Reserved for site personnel, Control Data, or future use.

CONVERT_UPDATE_TO_SCU
Command

Purpose Converts a source library file from Update format to SCU
format.

Format CONVERT_UPDATE_TO_SCU or
CO NUTS

OLD_PROGRAM_LIBRARY ==file
RESULT=file
LIST=file
NAME_LIST=file
DISPLAY_OPTIONS=keyword
CODE_ SET= keyword
SELECTION_ CRITERIA= file
STATUS= status variable

Parameters OLD_PROGRAM_LIBRARY or OLDPL

Revision G

Update library file. If OLD_PROGRAM_LIBRARY is
omitted, file OLDPL is used.

RESULT or R

SCU library file. If RESULT is omitted, file SOURCE_
LIBRARY in your working catalog is used.

LIST or L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, file $LIST is used.

Commands and Functions 2-153

CONVERT_UPDATE_To_scu

Remarks

NAME_LIST or NL

Substitution file. You can specify a file position as part of
the file name. If NAME_LIST is omitted, no names are
replaced.

DISPLAY_OPTIONS or DO

Indicates the information written on the listing file.
Options are:

BRIEF (B)

Brief listing.

FULL (F)

Full listing including the text lines changed by the
conversion.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

CODE_SET or CS

Indicates the character code set used in the Update
library file. Options are:

ASCII64

64-character set (6-bit display code).

ASCII812

128-character set (8/12 ASCII code).

If CODE_SET is omitted, ASCII812 is used.

SELECTION_ CRITERIA or SC

Criteria file. You can specify a file position as part of the
file name. DEFINE directives from the YANK$$$ deck
are converted to selection criteria commands that are
written on the file. If SELECTION _CRITERIA is omitted,
no selection criteria commands are written.

• The Update library file must be in sequential format;
it must not be in random format. It must use either
64-character, 6-bit display code or 128-character, 8/12
ASCII code.

• The CONVERT_ UPDATE_ TO_SCU command is a
NOS/VE command. Although you can enter the
command during an SCU session, it does not affect the
working library.

2-154 NOSNE Commands and Functions Revision G

Examples

COPY_FILE

o For more information, see the NOSNE Source Code
Management manual.

The following command converts the Update library file
OLDPL to an SCU library on file SOURCE_LIBRARY. A
brief report is listed on file $LIST. The names to be
substituted are on file NEW_NAMES. Any DEFINE
directives in the file are converted to selection criteria
commands written on file OLDPL_ CRITERIA.

/convert_update_to_scu name_list=new_names ..
. . /code_set=ascii64 selection_criteria=oldpl_criteria
Name conversion list

• = invalid name. Error if used.

OLD_NAME
FTNFORM
FTNIO
FTN=1

NEW_NAME
FORTRAN_FORMAT
FORTRAN_ IO
FTN_1

MODIFICATION_NAME
FTNFORM
FTNIO
FTN_1

Deck list as read from OLDPL directory

FORTRAN1 FORTRAN2

2 Decks Converted
SCU library on file - SOURCE_LIBRARY

COPY_FILE
Command

Purpose

Format

Copies data from one file to another.

COPY_FILE or
COPF

INPUT=file
OUTPUT= file
STATUS= status variable

Parameters INPUT or I

Revision G

Identifies the file from which data is to be copied and,
optionally, specifies how the file is to be positioned prior
to use. Data is copied from the open position until
end-of-information (EOI) is reached. Omission causes
$INPUT to be used.

Commands and Functions 2-155

COPY_FILE

Remarks

OUTPUT or 0

Specifies the file to which data is to be copied and,
optionally, specifies how the file is to be positioned prior
to use. Omission causes $OUTPUT to be used.

• The copy terminates when COPY_FILE encounters an
EOI in the input file. For tape files, the copy
terminates when a tape mark is encountered.

• If the input file is empty, COPY_FILE returns an
abnormal status condition. If the input file is at its
EOI, the exception condition FSE$INPUT_FILE_AT_
EOI is returned. If a tape is at a double tape mark,
the exception condition AME$INPUT_AFTER_EOI is
returned.

• If an unlabeled tape contains sets of data, each
followed by a single tape mark, issue COPY_FILE
once for each set of data to obtain a complete copy of
the tape file.

• This command does not copy single tape marks.

• If the output file has not been registered in a catalog,
COPY_FILE creates the output file.

• Unless a SET_FILE_ATTRIBUTE command has been
specified for the created output file, this file inherits
the file cycle attributes of the input file. The only
exception is the ring attributes of the created file,
which default to the ring of the caller of the COPY_
FILE command.

• The output file's structure may differ from the
corresponding attributes of the input file.

• COPY_FILE merges the separate FILE_CONTENTS
and FILE_STRUCTURE attribute values into a single
FILE_CONTENTS value. It is possible that this
merging may truncate the FILE_STRUCTURE value.
If this occurs, the warning message FSE$0UTPUT_
STRUCTURE_ TRUNCATED is issued.

• For more information, see the NOS/VE System Usage
manual.

2-156 NOS/VE Commands and Functions Revision G

Examples

COPY_ KEYED _FILE

In the following three examples, the first copies the
contents of $USER.PROLOG to $LOCAL.A; the second
copies file $USER.X to $OUTPUT; and the third copies
file $USER.INFILE to file $USER.OUTFILE. In the last
example, explicit file positioning is specified, that is, the
$BOI file position indicates that file $USER.INFILE is
appended to the end of file $USER.OUTFILE.

/copy_file input=$user.prolog output=$1oca1 .a
/copy_file $user.x $output
/copy_file $user.infile.$boi $user.outfile.$eoi

COPY_KEYED_FILE
Command

Purpose Performs a record-by-record copy.

Format COPY_KEYED_FILE or
COPKF

INPUT= list of any
OUTPUT=list of any
PRESERVE _KEY _DEFINITIONS= boolean
STATUS= status variable

Parameters INPUT or I

Revision G

File to be copied. You must have at least read permission
to the file. This parameter is required.

To specify a nested file, first specify the file reference and
then the nested-file name, enclosed in parentheses.

When a nested-file name is not specified, all nested files
in the file are copied.

COPY_KEYED_FILE positions the file before the copy
according to the open position specified for the file. If a
file position is not specified on the file reference, the
OPEN _POSITION attribute is used. (The default OPEN_
POSITION attribute value is $BOI.)

If the open position is $EOI or $ASIS, only the file
attributes are copied.

Commands and Functions 2-157

COPY_KEYED_FILE

Remarks

OUTPUT or 0

File to which data is copied. You must have at least
append permission to the file. This parameter is required.

If the INPUT parameter specifies a nested file, the
OUTPUT parameter can specify a nested file. (You cannot
copy multiple nested files to a single nested file or to a
sequential file.)

To specify a nested file, first specify the file reference and
then the nested-file name, enclosed in parentheses.

Do not specify the nested-file name $MAIN_FILE on the
OUTPVT parameter when the open position is $BOI.
(This requests deletion of $MAIN _FILE which is not
allowed.)

PRESERVE_KEY_DEFINITIONSorPKD
Indicates whether the alternate-key definitions from the
input file (if any) are copied to the output file.

TRUE (ON or YES)

Apply alternate-key definitions.

FALSE (OFF or NO)

Do not apply alternate-key definitions.

If PRESERVE_KEY_DEFINITIONS is omitted, the
alternate-key definitions are copied.

• The INPUT and OUTPUT parameters cannot specify
the same file cycle unless the parameters specify
different nested files in the same file.

• COPY_KEYED_FILE supports copying to and from
files with sequential and keyed-file organizations. It
does not support copying to or from byte-addressable
files.

• If the INPUT or OUTPUT file could be shared by
more than one instance of open, you should attach the
file for exclusive access (SHARE_MODE =NONE)
before the copy. This prevents other tasks from locking
records which would caused COPY_KEYED_FILE to
terminate.

2-158 NOSNE Commands and Functions Revision G

Revision G

COPY_ KEYED _FILE

o COPY_KEYED_FILE reads records sequentially using
the CYBIL procedure AMP$GET_NEXT. It reads
records from the input file until it reads an
end-of-partition or end-of-information delimiter.

As each record is read, COPY_KEYED_FILE writes
the record sequentially to the output file using the
CYBIL procedure AMP$PUT_NEXT.

• COPY_KEYED_FILE writes statistics to $ERRORS if
requested by the respective MESSAGE_CONTROL
attributes of the input and output files. It writes the
output file statistics before the input file statistics.
(For a sequential file, no statistics are written because
the MESSAGE_CONTROL attribute has no effect for
sequential files.)

• If the output file is a new file (a file that has never
been opened), the output file is given the preserved
attributes of the input file that have not been defined
for the output file.

Temporary attributes are not copied.

If no attributes have been defined for the output file
(no SET_FILE_ATTRIBUTES commands have been
executed for the file), the new output file is given all
attributes of the input file with the following
exception:

The RING_ATTRIBUTES attribute of the input file is
not given to the output file. The output file is given
the RING_ATTRIBUTES attribute of the caller of the
COPY_KEYED FILE command.

o When copying to an existing file, the file attributes of
the output file are not changed.

• The FILE_ CONTENTS attribute value of a keyed file
cannot be LIST.

o COPY_KEYED_FILE cannot copy multiple nested
files (all nested files in the input file) to a single
nested file or to a sequential file.

Commands and Functions 2-159

CREATE_l 70_REQUEST

Examples

• COPY_KEYED_FILE creates a new nested file when
a nested file name is specified on the OUTPUT
parameter and the open position of the output file is
$BOI. It creates the nested file with the attributes of
the input nested file.

• COPY_KEYED_FILE merges the records of the input
nested file with those of the output nested file when
the open position of the output file is $ASIS or $EOI.

• COPY_KEYED_FILE requires append, shorten, and
modify permissions to delete or create a nested file.

• For more information, see the NOSNE Advanced File
Management Usage manual.

This command copies the keyed file . YOUR.ISFILE to the
keyed file $USER.ISFILE. It discards any data or
alternate keys on $USER.ISFILE and then copies the data .
and alternate keys from . YOUR.ISFILE to $USER.ISFILE.

/copy_lrnyed_f i le . your. isf i le Suser. isf i le

This command copies the keyed file $USER.ISFILE to the
next cycle of the file. It does not copy the alternate-key
definitions.
/copkf Suser. isfile Suser. isfile.Snext pkd=no

This command copies one nested file to another nested
file. If the second nested file does not exist, it is created
(identical to the first nested file).
/copkf input=(Suser. direct_access_f i le, nested_f i le_ 1) ..
.. /output=(Suser.direct_access_file, nested_file_2)

CREATE_ 170 _REQUEST
Command

Purpose

Format

Creates a NOS/VE temporary file to be associated with a
170 tape file. Future references to the 170 tape file are
through the NOSNE temporary file.

CREATE_170_REQUEST or
CRElR

FILE=file
EXTERN AL_ VSN =list of string
RECORDED_ VSN =list of string
FILE_SET _POSITION= keyword
FILE _IDENTIFIER= string

2-160 NOSNE Commands and Functions Revision G

CREATE_l 70_REQUEST

FILE_SEQUENCE_NUMBER =integer
GENERATION _NUMBER =integer
INTERN AL_ CODE= keyword
CHARACTER_ CONVERSION= boolean
BLOCK_ TYPE= keyword
RECORD_ TYPE= keyword
MAXIMUM _BLOCK_LENGTH =integer
MAXIMUM _RECORD _LENGTH= integer
LABEL_ TYPE= keyword
TAPE _FORMAT= keyword
STATUS= status variable

Parameters FILE or F

Revision G

Specifies the name of a NOSNE temporary file to be
associated with a 170 tape file. This parameter is
required.

EXTERNAL_ VSN or EVSN or VSN

Gives the external identification of the tape volume(s)
containing the 170 tape file. Each parameter value is a
string 1 to 6 characters long.

If you specify more than one external volume serial
number (VSN), the volumes are requested in the order
specified in the parameter list. If you omit the
EXTERNAL_ VSN parameter, the RECORDED_ VSN
parameter is used.

You must specify either the EXTERNAL_ VSN parameter
or the RECORDED_ VSN parameter. Otherwise, a fatal
error results.

RECORDED_ VSN or RVSN

Gives the VSN recorded internally on the ANSI VOLl
label on the tape volume(s) holding the 170 tape file.
Each parameter value is a string 1 to 6 characters long.
File processing uses the RECORDED_ VSN parameter to
locate and verify the correct volume.

The RECORDED_ VSN parameter is for ANSI labeled
tapes only. If you enter this parameter for an unlabeled
tape, the parameter is ignored, unless there is no
matching EXTERNAL_ VSN parameter. In this case the
RECORDED_ VSN parameter takes on the functions of
the EXTERN AL_ VSN parameter.

Commands and Functions 2-161

CREATE_l 70_REQUEST

If you specify more than one recorded VSN, the volumes
are located and verified in the order specified in the
parameter list. If you omit the RECORDED_ VSN
parameter for an ANSI labeled tape, the system uses the
EXTERN AL_ VSN parameter to verify the VSN recorded
internally on the ANSI VOLl tape label.

If you specify both the EXTERN AL_ VSN and
RECORDED_ VSN parameters, they are matched; the first
external VSN with the first recorded VSN, the second
external VSN with the second recorded VSN, and so on.
For each such pair, NOSNE uses the external VSN
parameter to direct the system operator to mount the tape
with that external VSN. For ANSI labeled tapes, NOSNE
uses the recorded VSN value to verify the VSN recorded
internally on the ANSI VOLl label on that tape.

If there is an EXTERNAL_ VSN parameter with no
matching RECORDED_ VSN parameter, NOSNE uses the
EXTERN AL_ VSN parameter to direct the system
operator. For ANSI labeled tapes, NOSNE also uses the
EXTERN AL_ VSN parameter to verify the VSN recorded
internally on the ANSI VOLl tape label.

If there is a RECORDED_ VSN parameter with no
matching EXTERNAL_ VSN parameter, NOSNE uses the
RECORDED_ VSN parameter to direct the system
operator. For ANSI labeled tapes, NOSNE also uses the
RECORDED_ VSN parameter to verify the VSN recorded
internally on the ANSI VOLl tape label.

FILE_SET_POSITION or FSP

Specifies the position of the 170 tape file to be read.

The FILE_SET_POSITION parameter is not needed for
unlabeled tapes because NOSNE assumes that you wish
to read the first file on an unlabeled tape. That is, the
value of the FILE_SET_POSITION parameter for a tape
file on an unlabelled 170 tape is BEGINNING_OF_SET,
regardless of what you enter.

Only labeled tapes can use all the values of the FILE_
SET_POSITION parameter. If you omit the parameter for
a labeled tape, the NEXT_FILE position is assumed.

The parameter can have any of the following values:

2-162 NOSNE Commands and Functions Revision G

Revision G

CREATE_l 70_REQUEST

BEGINNING_OF_SET or BOS

Specifies that the first tape file on the file set is to be
read.

CURRENT_FILE or CF

Specifies that the current tape file is to be read. That
is, the last tape file accessed will be accessed again. If
the tape is positioned at the beginning of the first
volume, the first tape file will be read.

FILE_IDENTIFIER_POSITION or FIP

Specifies that the tape file identified by the FILE_
IDENTIFIER and GENERATION_NUMBER
parameters is to be read.

FILE_SEQUENCE_POSITION or FSP

Specifies that the tape file identified by the FILE_
SEQUENCE_NUMBER parameter is to be read.

NEXT_FILE or NF

Specifies that the tape file following the last accessed
tape file will be read. If the tape is positioned at the
beginning of the first volume, the first tape file will
be read.

FILE_IDENTIFIER or FI
Specifies a file identifier as a string of 1 to 17 characters.
The FILE_IDENTIFIER parameter is for labeled tapes,
and it is ignored if you specify it for an unlabeled tape.
Each tape file on a multifile set has a unique file
identifier. If you specify the FILE_IDENTIFIER_
POSITION value for the FILE_SET_POSITION
parameter, the FILE_IDENTIFIER parameter is required;
otherwise, its value is ignored.

FILE_SEQUENCE_NUMBERorFSN
Specifies the numeric position of a tape file on a multifile
set. The position is an unsigned integer in the range 1
through 9999. The FILE_SEQUENCE_NUMBER
parameter is for labeled tapes, and it is ignored if you
specify it for an unlabeled tape. If you specify the FILE_
SEQUENCE~POSITION value for the FILE_SET_
POSITION parameter, the FILE_SEQUENCE_NUMBER
parameter is required; otherwise, its value is ignored.

Commands and Functions 2-163

CREATE_l 70_REQUEST

GENERATION_NUMBERorGN

Identifies a specific revision of the tape file named by the
FILE_IDENTIFIER parameter. The revision shows as an
unsigned integer in the range 1 through 9999. The
GENERATION _NUMBER parameter is for labeled tapes,
and it is ignored if you specify it for an unlabeled tape. If
the FILE_SET_POSITION parameter has the FILE_
IDENTIFIER_POSITION value, and the GENERATION_
NUMBER parameter is omitted, then the GENERATION_
NUMBER parameter value is set to one.

INTERNAL_CODE or IC

Specifies the character set of the data on the tape volume.
You can enter one of the following values:

AS6

6/12-bit ASCII

ASS

8/12-bit ASCII

D63

63-character display code

D64

64-character display code

If you omit this parameter, its value is set to D64.

CHARACTER_CONVERSION or CC

Specifies with a boolean value whether or not file data is
to be converted to or from the character set specified by
the INTERNAL_CODE parameter. If you omit the
CHARACTER_CONVERSION parameter, FALSE is
assumed to be its value.

Of the tape file migration methods, only FMA and FMU
automatically do character conversion in addition to any
conversion specified by the CHARACTER_CONVERSION
parameter value.

To obtain a properly migrated tape file, you usually want
to set the CHARACTER_ CONVERSION parameter to:

2-164 NOS/VE Commands and Functions Revision G

Revision G

CREATE_l 70_REQUEST

FALSE

if you use FMA or FMU to migrate. Otherwise you
convert your tape file data twice.

TRUE

if you use any other tape file migration method.
Otherwise, you do not convert your tape file data at
all.

BLOCK_TYPE or BT

Specifies the block type of the 170 input tape file. Its
value can be one of the following keywords:

INTERNAL or I

Internal blocking.

CHARACTER_COUNT or CC

Character count blocking.

If you omit this parameter, its value is set to
INTERNAL.

RECORD_TYPE or RT

Specifies the record type of the 170 tape file. You can
specify one of the follwing record types:

CONTROL_ WORD, CW, or W

Control word.

FIXED_LENGTH, FL, or F

A fixed length. record.

SYSTEM_RECORD, SR, or S

System record.

ZERO_BYTE, ZB, or Z

Zero-byte.

If you omit this parameter, the record type is set to
CONTROL_ WORD.

Commands and Functions 2-165

CREATE_l 70_REQUEST

MAXIMUM_BLOCK_LENGTHorMAXBLorMBL
Specifies with an unsigned integer the maximum length in
6-bit bytes of a block in the 170 tape file. The system
maximum for this parameter is 2,147 ,483,615. If you omit
this parameter, its value is set to 5120.

MAXIMUM_RECORD_LENGTHorMAXRLorMRL
Specifies with an unsigned integer the maximum length in
6-bit bytes of a record in the 170 tape file. The system
maximum for this parameter is 4,398,046,511,103. If you
omit this parameter, its value is set to 5120.

LABEL_TYPE or LT
Specifies whether the tape is labeled. You can specify one
of the following keywords:

LABELLED or L

Same as STANDARD.

STANDARD or S

Tape has standard labels.

UNLABELLED or U

Tape is not labelled.

If this parameter is omitted, its value is set to
STANDARD.

TAPE_FORMAT or TF
Specifies the tape format of the NOS tape file. If you omit
this parameter, its value is set to NOS_INTERNAL. The
possible values for this parameter are:

NOS_INTERNAL or NI or I

Internal, NOS default tape format.

NOS_BE_INTERNAL or NBI or SI

SCOPE internal and NOS/BE default tape format.

STRANGER or S

Stranger.

LONG_STRANGER or LS or L

Long block stranger.

2-166 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

CREATE_l 70_REQUEST

o See the Migration From NOS to NOSNE
Tutorial/Usage manual or the Migration From NOS/BE
to NOSNE Tutorial/Usage manual for more
information about this command.

• You must enter a CREATE_l70_REQUEST command
before using FMA or FMU to migrate the 170 tape
file.

The following command associates temporary file FILE_
FTN with a typical FORTRAN formatted tape file
(BLOCK_TYPE=CHARACTER_COUNT, RECORD_
TYPE=ZERO_ WORD):

/create_170_request file=file_ftn
.. /external_vsn='h20' ..
.. /recorded_vsn='water' ..
. . /file_set_position=file_identifier_position
.. /file_identifier='ab_cd_goldfish'
.. /generation_number=3 ..
.. /internal_code=as6 ..
.. /character_conversion=true
.. /block_type=character_count ..
.. /record_type=zero_byte ..
.. /maximum_block_length=4000
.. /maximum_record_length=200
.. /label_type=labelled ..
.. /tape_format=nos_internal

The tape file has the following characteristics:

• Standard labeled volume with external vsn, H20;
recorded vsn, WATER.

• Found from its file identifier, AB_CD_GOLDFISH,
and generation number, 3.

• Data to be converted from its 6/12-bit ASCII character
set.

• Maximum length of a block is 4000 6-bit bytes; of a
record, 200 6-bit bytes.

• NOS default tape format.

Commands and Functions 2-167

CREATE_ 7600_REQUEST

CREATE_ 7600 _REQUEST
Command

Purpose

Format

Creates a NOSNE temporary file to be associated with a
7600 tape file. Future references to the 7600 tape file are
through the NOSNE temporary file.

CREATE_7600_REQUEST or
CRE7R

FILE=file
EXTERNAL_ VSN=list of string
RECORDED_ VSN =list of string
FILE _SET _POSITION =keyword
FILE _IDENTIFIER= string
FILE_ SEQUENCE _NUMBER= integer
GENERATION _NUMBER= integer
INTERN AL_ CODE= keyword
CHARACTER_ CONVERSION= boolean
BLOCK_ TYPE= keyword
RECORD_ TYPE= keyword
MAXIMUM _BLOCK_LENGTH =integer
MAXIMUM _RECORD _LENGTH= integer
LABEL_ TYPE= keyword
STATUS= status variable

Parameters FILE or F

Specifies the name of a NOSNE temporary file to be
associated with a 7600 tape file. This parameter is
required.

EXTERNAL_ VSN or EVSN or VSN

Gives the external identification of the tape volume(s)
containing the 170 tape file. Each parameter value is a
string 1 to 6 characters long.

If you specify more than one external volume serial
number (VSN), the volumes are requested in the order
specified in the parameter list. If you omit the
EXTERNAL_ VSN parameter, the RECORDED_ VSN
parameter is used.

You must specify either the EXTERNAL_ VSN parameter
or the RECORDED_ VSN parameter. Otherwise, a fatal
error results.

2-168 NOS/VE Commands and Functions Revision G

Revision G

CREATE_ 7600_REQUEST

RECORDED_ VSN or RVSN

Gives the VSN recorded internally on the ANSI VOLl
label on the tape volume(s) holding the 7600 tape file.
Each parameter value is a string 1 to 6 characters long.
File processing uses the RECORDED_ VSN parameter to
locate and verify the correct volume.

The RECORDED_ VSN parameter is for ANSI labeled
tapes only. If you enter this parameter for an unlabeled
tape, the parameter is ignored, unless there is no
matching EXTERN AL_ VSN parameter. In this case the
RECORDED_ VSN parameter takes on the functions of
the EXTERN AL_ VSN parameter.

If you specify more than one recorded VSN, the volumes
are located and verified in the order specified in the
parameter list. If you omit the RECORDED_ VSN
parameter for an ANSI labeled tape, the system uses the
EXTERN AL_ VSN parameter to verify the VSN recorded
internally on the ANSI VOLl label on the tape.

If you specify both the EXTERNAL_ VSN and
RECORDED_ VSN parameters, they are matched; the first
external VSN with the first recorded VSN, the second
external VSN with the second recorded VSN, and so on.
For each such pair, NOS/VE uses the external VSN
parameter to direct the system operator to mount the tape
with that external VSN. For an ANSI labeled tape,
NOS/VE uses the recorded VSN value to verify the VSN
recorded internally on the ANSI VOLl label on that tape.

If there is an EXTERN AL_ VSN parameter with no
matching RECORDED_ VSN parameter, NOS/VE uses the
EXTERN AL_ VSN parameter to direct the system
operator. For ANSI labeled tapes, NOSNE also uses the
EXTERNAL_ VSN parameter to verify the VSN recorded
internally on the ANSI VOLl tape label.

If there is a RECORDED_ VSN parameter with no
matching EXTERNAL_ VSN parameter, NOS/VE uses the
RECORDED_ VSN parameter to direct the system
operator. For ANSI labeled tapes, NOSNE also uses the
RECORDED_ VSN parameter to verify the VSN recorded
internally on the ANSI VOLl tape label.

Commands and Functions 2-169

CREATE_ 7600_REQUEST

FILE_SET_POSITION or FSP

Specifies the position of the 7600 tape file to be read.

The FILE_SET_POSITION parameter is not needed for
unlabeled tapes because NOSNE assumes that you wish
to read the first file on an unlabeled tape. That is, the
value of the FILE_SET_POSITION parameter for a tape
file on an unlabeled 7600 tape is BEGINNING_OF_SET,
regardless of what you enter.

Only labeled tapes can use all the values of the FILE_
SET_POSITION parameter. If you omit the parameter for
a labeled tape, the NEXT_FILE position is assumed.

The parameter can have any of the following values:

BEGINNING_OF_SET or BOS

Specifies that the first tape file on the file set is to be
read.

CURRENT_FILE or CF

Specifies that the current tape file is to be read. That
is, the last tape file accessed will be accessed again. ff
the tape is positioned at the beginning of the first
volume, the first tape file will be read.

FILE_IDENTIFIER_POSITION or FIP

Specifies that the tape file identified by the FILE_
IDENTIFIER and GENERATION_NUMBER
parameters is to be read.

FILE_SEQUENCE_POSITION or FSP

Specifies that the tape file identified by the FILE_
SEQUENCE_NUMBER parameter is to be read.

NEXT_FILE or NF

Specifies that the tape file following the last accessed
tape file will be read. If the tape is positioned at the
beginning of the first volume, the first tape file will
be read.

FILE_IDENTIFIER or FI

Specifies · a file identifier as a string of 1 to 17 characters.
The FILE_IDENTIFIER parameter is for labeled tapes,
and it is ignored if you specify it for an unlabeled tape.
Each tape file on a multifile set has a unique file

2-170 NOSNE Commands and Functions Revision G

Revision G

CREATE_ 7600_REQUEST

identifier. If you specify the FILE_IDENTIFIER_
POSITION value for the FILE_SET_POSITION
parameter, the FILE_IDENTIFIER parameter is required;
otherwise, its value is ignored.

FILE_SEQUENCE_NUMBER or FSN

Specifies the numeric position of a tape file on a multifile
set. The position is an unsigned integer in the range 1
through 9999. The FILE_SEQUENCE_NUMBER
parameter is for labeled tapes, and it is ignored if you
specify it for an unlabeled tape. If you specify the FILE_
SEQUENCE_POSITION value for the FILE_SET_
POSITION parameter, the FILE_SEQUENCE_NUMBER
parameter is required; otherwise, its value is ignored.

GENERATION_NUMBERorGN

Identifies a specific revision of the tape file named by the
FILE_IDENTIFIER parameter. The revision shows as an
unsigned integer in the range 1 through 9999. The
GENERATION_NUMBER parameter is for labeled tapes,
and it is ignored if you specify it for an unlabeled tape. If
the FILE_SET_POSITION parameter has the FILE_
IDENTIFIER_POSITION value, and the GENERATION_
NUMBER parameter is omitted, then the GENERATION_
NUMBER parameter value is set to one.

INTERNAL_CODE or IC

Specifies the character set of the data on the tape volume.
If you omit the parameter, its value is set to D64. The
INTERNAL_CODE parameter can have the following
values:

AS6

6/12-hit ASCII

ASS

8/12-hit ASCII

D63

63-character display code

D64

64-character display code

Commands and Functions 2-171

CREATE_ 7600_REQUEST

CHARACTER_CONVERSION or CC

Specifies with a boolean value whether or not file data is
to be converted to or from the character set specified by
the INTERNAL_CODE parameter. If you omit the
CHARACTER_CONVERSION parameter, FALSE is
assumed to be its value.

Of the tape file migration methods, only FMA and FMU
automatically do character conversion in addition to any
conversion specified by the CHARACTER_ CONVERSION
parameter value.

To obtain a properly migrated tape file, you usually want
to set the CHARACTER_ CONVERSION parameter to
FALSE if you use FMA or FMU to migrate. Otherwise
you convert your tape file data twice. Set it to TRUE if
you use any other tape file migration method. Otherwise,
you do not convert your tape file data at all.

BLOCK_ TYPE or BT

Specifies the block type of the 7600 input tape file. If you
omit this parameter, its value is set to INTERNAL. Its
value can be either of the following:

INTERNAL or I

Internal blocking

CHARACTER_COUNT or CC

Character count blocking

RECORD_TYPE or RT

Specifies the record type of the 7600 tape file. If you omit
this parameter, its value is set to CONTROL_ WORD. Its
value can be any of the following:

CONTROL_ WORD, CW, or W

Control word

FIXED_LENGTH, FL, or F

Fixed length

SYSTEM_RECORD, SR, or S

System record

2-172 NOS/VE Commands and Functions Revision G

Remarks

Revision G

ZERO_BYTE, ZB, or Z

Zero-byte

CREATE_ 7600_REQUEST

MAXIMUM_BLOCK_LENGTH or MAXBL or MBL

Specifies with an unsigned integer the maximum length in
6-bit bytes of a block in the 7600 tape file. The system
maximum for this parameter is 2,147,483,615. If you omit
this parameter, its value is set to 5120.

MAXIMUM_RECORD_LENGTH or MAXRL or MRL

Specifies with an unsigned integer the maximum length in
6-bit bytes of a record in the 7600 tape file. The system
maximum for this parameter is 4,398,046,511,103. If you
omit this parameter, its value is set to 5120.

LABEL_ TYPE or LT

Specifies whether the tape is labeled. If you omit this
parameter, its value is set to STANDARD. This parameter
can have the following values:

LABELLED or L

Same as STANDARD.

STANDARD or S

Tape has standard labels.

UNLABELLED or U

Tape is not labeled.

• This command is very similar to the CREATE_l70_
REQUEST_command. For more information about the
CREATE_ l 70_REQUEST command, see the Migration
From NOS to NOSNE Tutorial/Usage manual or the
Migration From NOS/BE to NOSNE Tutorial/Usage
manual.

• You must enter a CREATE_ 7600_REQUEST
command before using FMA or FMU to migrate the
7600 tape file.

Commands and Functions 2-173

CREATE_ALTERNATE_INDEXES

Examples The following command associates temporary file FILE_
FTN with a typical FORTRAN unformatted tape file
(BLOCK_TYPE=INTERNAL, RECORD_
TYPE= CONTROL_ WORD):

/create_7600_request file=file_ftn
.. /external_vsn='agua' ..
. . /recorded_vsn='wasser' ..
.. /file_set_position=file_sequence_position
.. /file_sequence_number=7 ..
.. /internal_code=d64 ..
.. /character_conversion=false
.. /block_type=internal ..
.. /record_type=control_word ..
.. /maximum_block_length=5120 ..
.. /maximum_record_length=5120 ..
.. /label_type=standard

The tape file has the following characteristics:

• Volume with external vsn, AGUA; recorded vsn,
WASSER.

• Found from its position, seventh, within the multifile
set.

• Other parameters have their default values.

CREATE_ALTERNATE_INDEXES
Command

Purpose

Format

Initiates execution of the CREATE_ALTERNATE_
INDEXES command utility. The utility can create, delete,
and display alternate-key definitions in a keyed file.

CREATE_ALTERNATE_INDEXES or
CREATE_ALTERNATE_INDEX or
CREATE_ALTERNATE_INDICES or
CREAi

INPUT= list of any .
STATUS= status variable

2-174 NOS/VE Commands and Functions Revision G

CREATE_ALTERNATE_INDEXES

Parameters INPUT or I

Remarks

Revision G

Keyed file to be processed by the utility. The file
permissions required depend on the subcommands entered
during the utility as described in the Remarks. This
parameter is required.

To specify a nested file, first specify the file reference and
then the nested-file name, enclosed in parentheses.

• The command utility prompt is:

creai/

• In response to the creai/ prompt, you can enter
NOSNE commands and any of these subcommands:

QUIT
DISPLAY_ KEY_ DEFINITIONS
CREATE_KEY_DEFINITION
DELETE_ KEY_ DEFINITION
CANCEL_KEY_DEFINITIONS
APPLY_ KEY_ DEFINITIONS

ca The CREATE_ALTERNATE_INDEXES utility creates
the specified keyed file if:

- The file does not exist and,

- A SET_FILE_ATTRIBUTES command has
specified the KEY_LENGTH and MAXIMUM_
RECORD_LENGTH attributes for the file.

If the SET_FILE_ATTRIBUTES command defining the
new file omits an attribute, the default attribute value
is used. However, if it omits the FILE_
ORGANIZATION attribute, indexed-sequential
organization is used.

• The CREATE_ALTERNATE_INDEXES command does
not check your file permissions. The subcommands you
enter in the utility session check that you have the
required permissions to do the operation.

To display key definitions, you must have at least
read permission. To create, delete, cancel, or apply key
definitions, you must have at least three permissions:
append, modify, and shorten.

Commands and Functions 2-175

CREATE_ CATALOG

Examples

• For more information, see the NOSNE Advanced File
Management Usage manual.

This command begins a utility session that displays the
alternate key definitions of keyed file $USER.IS_FILE.

/create_a 1 ternate_ indexes mput=Suser. 1s_f i le
crea i /d1sp lay_key_def mi t 1ons key_names=a 11 d1splay_opt 1ons=br ief

D1splay_Key_Defmit1ons NOS/VE Keyed File Utilities 1.1
Fi le = :NVE.USER99. IS_FILE

KEY NAME POSITION LENGTH TYPE STATE

AL TERNATE_KEY - 1 10 uncollated Ex is ts m file
crea1/auit '"The APPLY_KEY_DEFINITIONS parameter is not required here··

'"because no creat 10n or de let ion reouests are pend mg ...

CREATE_CATALOG
Command

Purpose Creates a new catalog.

Format CREATE_CATALOG or
CREC

CATALOG=file
STATUS= status variable

Parameters CATALOG or C

Remarks

Specifies the catalog to be created. This parameter is
required.

• An empty catalog is defined and is registered in the
catalog you specify.

• Only the master catalog owner can create a new
catalog.

• For more information, see the NOS/VE System Usage
manual.

2-176 NOSNE Commands and Functions Revision G

Examples

CREATE_CATALOG_PERMIT

The following example creates the catalog CATALOG_2 in
the master catalog.

/create_catalog $user.catalog_2
/disc $user

CATALOG: CATALOG_1
CATALOG: CATALOG_2

FILE: DATA_FILE_1
FILE: EPILOG
FILE: PROLOG

CREATE_CATALOG_PERMIT
Command

Purpose Establishes or modifies an access control entry for a
catalog.

Format CREATE_CATALOG_PERMIT or
CRECP

CATALOG= file
GROUP= keyword
FAMILY_NAME=name
USER=name
ACCOUNT=name
PROJECT=name
ACCESS_MODES=list of keyword
SHARE_MODES =list of keyword
APPLICATION _INFORMATION= string
STATUS= status variable

Parameters CATALOG or C

Revision G

Specifies the catalog for which an access control entry is
being established or modified. This parameter is required.

GROUP or G

Specifies if the permit entry is for a specific user or a
group of users. The selections are:

PUBLIC

The permit entry applies to all users regardless of
family, account, project, or user identifications.

FAMILY

The permit entry applies to all users in the specified
family.

Commands and Functions 2-177

CREATE_ CATALOG_PERMIT

ACCOUNT

The permit entry applies to all users associated with
the specified family and account identifications.

PROJECT

The permit entry applies to all users associated with
the specified family, account, and project
identifications.

USER

The permit entry applies to the user identified by the
specified family and user identifications.

USER_ ACCOUNT

The permit entry applies to the user identified by the
specified family, account, and user identifications.

MEMBER

The permit entry applies to the user identified by the
specified family, account, project, and user
identifications.

Omission causes USER to be used.

FAMILY_NAME or FN

Specifies the family name to be permitted access.
Omission causes the family name associated with the
requesting job to be used if the GROUP selection
indicates this parameter is applicable. If the GROUP
selection indicates this parameter is not applicable and
this parameter is specified, an abnormal status is
returned.

USER or U

Specifies the user name to be permitted access. Omission
causes the user name associated with the requesting job
to be used if the GROUP selection indicates this
parameter is applicable. If the GROUP selection indicates
this parameter is not applicable and this parameter is
specified, an abnormal status is returned.

ACCOUNT or A

Specifies the account to be permitted access. Omission
causes the account associated with the requesting job to
be used if the GROUP selection indicates this parameter

2-178 NOS/VE Commands and Functions Revision G

Revision G

CREATE_CATALOG_PERMIT

is applicable. If the GROUP selection indicates this
parameter is not applicable and this parameter is
specified, an abnormal status is returned.

PROJECT or P

Specifies the project to be permitted access. Omission
causes the project associated with the requesting job to be
used if the GROUP selection indicates this parameter is
applicable. If the GROUP selection indicates this
parameter is not applicable and this parameter is
specified, an abnormal status is returned.

ACCESS_MODES or ACCESS_MODE or AM

Specifies how all files registered relative to the catalog
may be used by the group specified. The access modes
are:

READ

Access is permitted to read files.

APPEND

Access is permitted to append information to the end
of files.

MODIFY

Access is permitted to alter data within existing files.

EXECUTE

Access is permitted to execute object code or SCL
procedures in the files.

SHORTEN

Access is permitted to delete data from the end of
files.

WRITE

Access is permitted for SHORTEN, MODIFY, and
APPEND modes.

ALL

Access is permitted for READ, APPEND, MODIFY,
SHORTEN, WRITE, and EXECUTE modes.

Commands and Functions 2-179

CREATE_ CATALOG_PERMIT

CONTROL

Access is permitted to delete files and to change file
identifications and/or attributes.

CYCLE

Access is permitted to add new file cycles and to
create the initial cycle of files.

NONE

Access is specifically prohibited.

Omission causes READ and EXECUTE to be used.

SHARE_MODES or SHARE_MODE or SM

Specifies how all files registered relative to the catalog
must be shared, as a minimum, by the group specified.
The share modes are:

READ

Permitted jobs are required to share the file for READ
access.

APPEND

Permitted jobs are required to share the file for
APPEND access.

MODIFY

Permitted jobs are required to share the file for
MODIFY access.

SHORTEN

Permitted jobs are required to share the file for
SHORTEN access.

WRITE

Permitted jobs are required to share the file for
SHORTEN, MODIFY, and APPEND access.

EXECUTE

Permitted jobs are required to share the file for
EXECUTE access.

2-180 NOS/VE Commands and Functions Revision G

Remarks

Revision G

CREATE_ CATALOG_PERMIT

ALL

Permitted jobs are required to share the file for
READ, APPEND, MODIFY, SHORTEN, WRITE, and
EXECUTE access.

NONE

No sharing requirements are imposed on permitted
jobs. When attaching the files registered in this
catalog, permitted jobs may select exclusive access or
any of the READ, APPEND, MODIFY, SHORTEN,
WRITE, or EXECUTE share modes.

Omission causes the share mode to be determined by the
value specified on the ACCESS_MODE parameter of this
command. If access mode includes APPEND, SHORTEN,
MODIFY, or WRITE, the share requirement chosen is
NONE. Otherwise, the share requirements chosen are
READ and EXECUTE.

APPLICATION _INFORMATION or Al

Specifies information to be saved in the permit entry for
use by application programs for additional access controls
they impose. A string of up to 31 characters can be
specified. Omission causes a string of spaces to be used.

• This request allows the catalog owner to specify a
general permission that applies to all attempts to
access any files registered relative to the specified
catalog.

• Permissions can be established for specific users or for
groups of users associated with a specific family,
account, and project.

• If an access control entry already exists for the
specified user or group of users, then the specified
access modes, share modes, and application information
replace the values currently defined.

• To display a catalog permit, use the DISPLAY_
CATALOG command with the DISPLAY_OPTIONS
parameter.

• This permit applies to all files in the catalog, except
those for which a file permit exists for a group that
includes the user who is attempting to gain access.

Commands and Functions 2-181

CREATE_ COMMAND _LIST_ENTRY

Examples

• For more information, see the NOSNE System Usage
manual.

In the following example, user KRJ is given permission to
catalog CATALOG_ I in the master catalog.

/create_catalog_permit $user.catalog_1 group=user
.. /user=krj am=write sm=none
/disc $user.catalog_1 permits

PERMIT_GROUP: USER
FAMILY: NVE, USER: KRJ
PERMITS: SHORTEN, APPEND, MODIFY
SHARE: NONE
APPLICATION_INFORMATION:

In this example, catalog permit allows KRJ append,
modify, and shorten access to all files in catalog
CATALOG_ l. User KRJ is not restricted to any share
mode.

This permit applies to all files in the catalog, except those
for which a file permit exists for a group that includes
the user who is attempting to gain access.

CREATE_ COMMAND _LIST _ENTRY
Command

Purpose

Format

Adds entries to either the beginning or the end of the
command list.

CREATE_COMMAND_LIST_ENTRY or
CREATE_COMMAND_LIST_ENTRIES or
CRECLE

ENTRY=list of file or keyword
PLACEMENT= keyword
STATUS =status variable

Parameters ENTRY or ENTRIES or E

Specifies the entries to be added to the command list. If
this parameter is specified as $SYSTEM, the $SYSTEM
command library is added to the command list. This
parameter is required.

2-182 NOS/VE Commands and Functions Revision G

Remarks

CREATE_FILE

PLACEMENT or P

Specifies whether the entries added to the command list
are placed before or after the current entries. Use one of
the following keywords:

AFTER (A)

Causes the new entries to be placed after the current
entries.

BEFORE (B)

Causes the new entries to be placed before the current
entries.

Omission of this parameter causes BEFORE to be used.

o This command may not be used when the command
list search mode is EXCLUSIVE.

• If the command list search mode is RESTRICTED,
AFTER is the only allowable value for the
PLACEMENT parameter.

G For more information, see the NOSNE System Usage
manual.

CREATE _FILE
Command

Purpose

Format

Revision G

Creates a new file, or file cycle and attaches the cycle to
the job.

CREATE_FILE or
CREF

FILE=file
LOCAL_FILE _NAME= name
PASSWORD=name or keyword
RETENTION= integer
LOG= boolean
STATUS= status variable

Commands and Functions 2-183

CREATE_FILE

Parameters FILE or F

Specifies the path and cycle reference of the file to be
created. It is also used to direct the registration in a
catalog. The file name and cycle must be unique within
the catalog in which the file is to be registered, or the
command is terminated with an error status.

Omission of a cycle causes $NEXT to be used (the initial
cycle is numbered 1). This parameter is required.

LOCAL_FILE_NAMEorLFN

Specifies a local file name (an alias) which can be used
by subsequent commands and programs within the job to
refer to the file. If this name is already assigned within
the job, an error status is returned. Omission causes the
permanent file name to be used.

NOTE

Each attach within a job requires a unique LOCAL_
FILE_NAME. For this reason and for compatability with
future NOSNE releases, it is recommended that you
specify a unique LOCAL_FILE_NAME value.
Furthermore, it is recommended that you not create an
SCL variable with the same name as the LOCAL_FILE_
NAME. For example:

/create_variable n=lfn k=string value=Sunique
/create_file f=Suser.file local_file_name=Sname(lfnl)

PASSWORD or PW

Specifies the password. A CREATE_FILE of an initial file
cycle results in saving this parameter with the catalog
entry. This password must then be specified with
subsequent requests to access any cycle of the file. For a
CREATE_FILE of an additional cycle, this value must
match the existing file password. Omission or specification
of the keyword value NONE causes no password to be
used.

RETENTION or R

Specifies the number of days (from 1 to 999) from the
current date that the file cycle is to be retained. The
number 999 indicates an infinite retention period.
Omission causes 999 to be used.

2-184 NOS/VE Commands and Functions Revision G

Remarks

CREATE_FILE

LOG or L

Specifies whether the system should keep a log of file
access activity. If TRUE is selected, the system maintains
a unique log entry for each user who accesses any cycle
of the file. This parameter is used only when defining an
initial file cycle. Omission causes FALSE to be used.

o This command records the file name, password, and
log selections in a catalog entry when defining the
initial file cycle.

A unique cycle descriptor that contains the cycle
number of the new file cycle, its creation date and
time, last access date and time, last modification date
and time, expiration date, and a set of usage statistics
is also recorded in the catalog.

o In addition to the catalog registration, this command
attaches the file for access within the requesting job.

o Ordinarily, it is not necessary to use this command to
reference a file. NOSNE will automatically attach a
file when it is referenced by a command. However,
you may need to use this command in the following
cases:

The file has a password

The subsequent commands require the use of a
local file name due to programming language
conventions.

The file may have multiple cycles and you did not
provide a cycle number in the file reference. In
this case you may need to use a local file name to
ensure that subsequent commands consistently
reference the file cycle you attached.

The subsequent commands each read part of the
file using the $ASIS open position.

• For more information, see the NOSNE System Usage
manual.

Revision G Commands and Functions 2-185

CREATE_FILE_CONNECTION

Examples The following example creates file DATA_FILE_l in the
master catalog, a password of PW_FOR_DATA_FILE_l,
a log selection of TRUE, and a retention period of 30
days.

/create_file $user.data_file_1 pw=pw_for_data_file_1 ..
.. /r=30 log=true
/detach_file $user.data_file_1

The following example creates another cycle of file
DATA_FILE_l in the master catalog. A cycle number of
88 is specified.

/cref $user.data_file_1.88 pw=pw_for_data_file_1
/detach_file $user.data_file_1.88

The following example creates a file named DATA_FILE_
1 in subcatalog CATALOG_l (refer to the CREATE_
CATALOG command) of the user's master catalog. An
initial cycle of 1 is assumed.

/create_catalog $user.catalog_1
/create_file $user.catalog_1.data_file_1
/detach_file $user.catalog_1.data_file_1

Since the first CREATE_FILE command created cycle 1,
the next cycle created must be a cycle other than 1. The
following command creates cycle 2 of the same file.

/create_file $user.catalog_1.data_file_1.2
/detach_file $user.catalog_1.data_file_1.2

The following example creates a second file in subcatalog
CATALOG_!.

/create_file $user.catalog_1.data_file_2 password= ..
.. /data_file_2_password retention=3 log=false
/detach_file $user.catalog.1_data_file_2

CREATE _FILE_ CONNECTION
Command

Purpose

Format

Creates a connection between one file (the subject) and
another file (the target) so that any data access request
against the subject file is passed on to the target file.

CREATE_FILE_CONNECTION or
CREFC

STANDARD FILE= file
FILE=file
STATUS= status variable

2-186 NOS/VE Commands and Functions Revision G

CREATE_FILE_ CONNECTION

Parameters STANDARD _FILE or SF

Remarks

Examples

Revision G

Specifies either one of the following file names: $ECHO,
$ERRORS, $INPUT, $LIST, $OUTPUT, $RESPONSE or
any other file. This parameter is required.

FILE or F

Specifies the name of the target file to be connected to
the specified subject file. This parameter is required.

• A subject file may be connected to more than one
target file.

• On input, the access requests are passed only to the
most recently connected target file. On output, the
access requests are passed to each of the connected
files.

• For more information, see the NOSNE System Usage
manual.

The following example connects subject file $ECHO to file
ECHO_FILE.

/crefc $echo echo_file

This connection results in each subsequent command being
echoed to file ECHO_FILE after it is interpreted. This is
very useful when debugging SCL procedures since the
commands within a procedure are not written to the log.
Commands written to $ECHO are preceded by an
identifier that indicates how the command was processed.

The following procedure is then created.

/colt new_proc
ct? proc new_proc
ct? display_catalog $user
ct? display_log 1
ct? display_value 'Test Complete.'
ct? procend
ct? **

The following output results when the procedure is
executed.

Commands and Functions 2-187

CREATE_FILE_PERMIT

/new_proc
CATALOG: CATALOG_1
CATALOG: CATALOG_2

FILE: DATA_FILE_1
FILE: EPILOG
FILE: PROLOG

13:38:30.063.CI.colt new_proc
13:39:25.264.CI.new_proc
Test Complete.

The last line of the job log (Test Complete) is displayed to
show that only the procedure call itself is written to the
log.

/disl 1
13:39:25.264.CI.new_proc
13:39:40.552.CI.disl 1

However, file ECHO_FILE contains a list of each
command executed within the procedure, as follows:

/delfc $echo echo_f11e
/copy_f11e echo_file
CI colt new_proc
CI new_proc
CI proc new_proc
CI d1splay_catalog $user
CI d1splay_log 1
CI display_value 'Test Complete.'
CI procend
CI disl 1
CI delfc $echo echo_file

CREATE _FILE _PERMIT
Command

Purpose

Format

Establishes or modifies. an access control entry for a
specific file.

CREATE_FILE_PERMIT or
CREFP

FILE=tile
GROUP=keyword
FAMILY _NAME= name
USER=name
ACCOUNT=name

2-188 NOS/VE Commands and Functions ·Revision G

CREATE_FILE_PERMIT

PROJECT= name
ACCESS_MODES=list of keyword
SHARE_MODES=list of keyword
APPLICATION _INFORMATION =string
STATUS=status variable

Parameters FILE or F

Revision G

Specifies the permanent file for which the access control
entry is being established. It determines the catalog in
which the file is registered and the file name. This
parameter is required.

GROUP or G

Specifies if the permit entry is for a specific user or
group of users. The selections are:

PUBLIC
The permit entry applies to all users regardless of
family, account, project, or user identifications.

FAMILY

The permit entry applies to all users in the specified
family.

ACCOUNT
The permit entry applies to all users associated with
the specified family and account identifications.

PROJECT
The permit entry applies to all users associated with
the specified family, account, and project
identifications.

USER
The permit entry applies to the user identified by the
specified family and user identifications.

USER_ ACCOUNT
The permit entry applies to the user identified by the
specified family, account, and user identifications.

Commands and Functions 2-189

CREATE_FILE_PERMIT

MEMBER

The permit entry applies to the user identified by the
specified family, account, project, and user
identifications.

Omission causes USER to be used.

FAMILY_NAME or FN

Specifies the family name to be permitted access.·
Omission causes the family name associated with the
requesting job to be used if the GROUP selection
indicates this parameter is applicable. If the GROUP
selection indicates this parameter is not applicable and
this parameter is specified, an abnormal status is
returned.

USER or U

Specifies the user name to be permitted access. Omission
causes the user name associated with the requesting job
to be used if the GROUP selection indicates this
parameter is applicable. If the GROUP selection indicates
this parameter is not applicable and this parameter is
specified, an abnormal status is returned.

ACCOUNT or A

Specifies the account to be permitted access. Omission
causes the account associated with the requesting job to
be used if the GROUP selection indicates this parameter
is applicable. If the GROUP selection indicates this
parameter is not applicable and this parameter is·
specified, an abnormal status is returned.

PROJECT or P

Specifies the project to be permitted access. Omission
causes the project associated with the requesting job to be
used if the GROUP selection indicates this parameter is
applicable. If the GROUP selection indicates this
parameter is not applicable and this parameter is
specified, an abnormal status is returned.

2-190 NOS/VE Commands and Functions Revision G

Revision G

CREATE_FILE_PERMIT

ACCESS_MODES or ACCESS_MODE or AM

Specifies how the file may be used by the group specified.
The access modes are:

READ

Access is permitted to read the file.

APPEND

Access is permitted to append information to the end
of the file.

MODIFY

Access is permitted to alter data within the existing
file.

SHORTEN

Access is permitted to delete information from the end
of the file.

WRITE

Access is permitted for SHORTEN, MODIFY, and
APPEND modes.

EXECUTE

Access is permitted to execute object code or an SCL
procedure in the file.

ALL

Access is permitted for READ, APPEND, MODIFY,
SHORTEN, WRITE, and EXECUTE.

_ CONTROL

Access is permitted to delete a cycle, to change its file
identity (file name, cycle number, password, log
selection, retention, and charge attributes) and to
change its file attributes.

CYCLE

Access is permitted to add new file cycles.

NONE

Access is specifically prohibited.

Omission causes READ and EXECUTE to he used.

Commands and Functions 2-191

CREATE_FILE_PERMIT

SHARE_MODESorSHARE_MODEorSM

Specifies how the file must be shared, as a minimum, by
the group specified. The share modes are:

READ

Permitted jobs are required to share the file for READ
access.

APPEND

Permitted jobs are required to share the file for
APPEND access.

MODIFY

Permitted jobs are required to share the file for
MODIFY access.

SHORTEN

Permitted jobs are required to share the file for
SHORTEN access.

WRITE

Permitted jobs are required to share the file for
SHORTEN, MODIFY, and APPEND access.

EXECUTE

Permitted jobs are required to share the file for
EXECUTE access.

ALL
Permitted jobs are required to share the file for
READ, APPEND, MODIFY, SHORTEN, WRITE, and
EXECUTE access.

NONE

No sharing requirements are imposed on permitted
jobs. When attaching the file, permitted jobs may
select exclusive access or any of the READ, APPEND,
MODIFY, SHORTEN, WRITE, or EXECUTE share
modes.

Omission causes the share mode to be determined by the
value specified on the ACCESS_MODE parameter of this
command. If access mode includes APPEND, SHORTEN,

2-192 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

CREATE_FILE_PERMIT

MODIFY, or WRITE, the share requirement chosen is
NONE. Otherwise, the share requirements chosen are
READ and EXECUTE.

APPLICATION _INFORMATION or AI

Specifies a string to be saved in the permit entry. An
application can use this information for additional access
control. A string of up to 31 characters can be specified.
Omission causes a string of spaces to be used.

e Access control also can be established at a catalog
level that controls access to all files registered relative
to the catalog.

Refer to the CREATE_CATALOG_PERMIT command
for more information.

o This request allows the file owner to specify who can
use a file with what modes of access. This access
control applies to all cycles of a file.

o Permission can be established for specific users or
groups of users associated with a specific family,
account, and project.

• If an access control entry already exists for the
specified user or group of users, then the specified
access modes, share modes, and application information
replace the selections currently defined.

• For more information, see the NOSNE System Usage
manual.

Following is an example of creating a file permit and
using the DISPLAY_CATALOG_ENTRY command to
display the file permit.

/create_file_permit $user.catalog_1.data_file_l
.. /group=user user=krj am=read sm=(read,execute)
/disce $user.catalog_1.data_file_1 do=permits

PERMIT_GROUP: USER
FAMILY: NVE, USER: KRJ
PERMITS: READ
SHARE: READ, EXECUTE
APPLICATION_INFORMATION:

Commands and Functions 2-193

CREATE_IBM_REQUEST

The file permit is created for file DATA_FILE_l in
subcatalog CATALOG_ I in the master catalog. The
GROUP parameter specifies that the permission applies to
a user and the USER parameter identifies the user as
KRJ. With this file permit, user KRJ is given read access
to the file, which can concurrently be assigned to another
user in read or execute modes.

In the following example, a similar file permit is created.

/crefp $user.catalog_1.data_file_1 group=user user=dlh
.. /am=write sm=none
/disce $user.catalog_1.data_f11e_1 do=permits

PERMIT_GROUP: USER
FAMILY: NVE, USER: DLH
PERMITS: SHORTEN, APPEND, MODIFY
SHARE: NONE
APPLICATION_INFORMATION:

PERMIT_GROUP: USER
FAMILY: NVE, USER: KRJ
PERMITS: READ
SHARE: READ, EXECUTE
APPLICATION_INFORMATION:

The preceding example gives user DLH append, modify,
and shorten access to the same file and specifies that no
share mode restrictions are required.

CREATE _IBM_REQUEST
Command

Purpose

Format

Creates a NOSNE temporary file to be associated with an
IBM tape file. Future references to the IBM tape file are
through the NOSNE temporary file. The IBM tape file
must be on an ANSI labeled tape.

CREATE_IBM_REQUEST or
CREIR

FILE=file
EXTERNAL_ VSN=list of string
RECORDED_ VSN =list of string
FILE_ SET _POSITION= keyword
FILE _IDENTIFIER= string
FILE_SEQUENCE_NUMBER =integer
GENERATION _NUMBER= integer
CHAR.ACTER _CONVERSION= boolean
STATUS= status variable

2-194 NOSNE Commands and Functions Revision G

CREATE_IBM_REQUEST

Parameters FILE or F

Revision G

Specifies the name of a NOSNE temporary file to be
associated with an IBM tape file. This parameter is
required.

EXTERNAL_ VSN or EVSN or VSN

Gives the external identification of the tape volume(s)
containing the IBM tape file. Each parameter value is a
string 1 to 6 characters long.

If you specify more than one external volume serial
number (VSN), the volumes are requested in the order
specified in the parameter list. If you omit the
EXTERNAL_ VSN parameter, the system uses the
RECORDED_ VSN parameter in its place.

You must specify either the EXTERNAL_ VSN parameter
or the RECORDED_ VSN parameter. Otherwise, a fatal
error results.

RECORDED_ VSN or RVSN

Gives the VSN recorded internally on the ANSI VOLl
label on the tape volume(s) holding the IBM tape file.
Each parameter value is a string 1 to 6 characters long.
File processing uses the RECORDED_ VSN parameter to
locate and verify the correct volume.

If you specify more than one recorded VSN, the volumes
are located and verified in the order specified in the
parameter list. If you omit the RECORDED_ VSN
parameter, the system uses the EXTERNAL_ VSN
parameter to verify the VSN recorded internally on the
ANSI VOLl label.

If you specify both the EXTERNAL_ VSN and
RECORDED_ VSN parameters, they are matched; the first
external VSN with the first recorded VSN, the second
external VSN with the second recorded VSN, and so on.
For each such pair, NOSNE uses the external VSN
parameter to direct the system operator to mount the tape
with that external VSN. NOSNE uses the recorded VSN
value to verify the VSN recorded internally on the ANSI
VOLl label on that tape.

If there is an EXTERNAL_ VSN parameter with no
matching RECORDED_ VSN parameter, NOSNE uses the
EXTERN AL_ VSN parameter to direct the system

Commands and Functions 2-195

CREATE_IBM_REQUEST

operator. NOSNE also uses the EXTERNAL_ VSN
parameter to verify the VSN recorded internally on the
ANSI VOLl tape label.

If there is a RECORDED_ VSN parameter with no
matching EXTERNAL_ VSN parameter, NOSNE uses the
RECORDED_ VSN parameter to direct the system
operator. NOSNE also uses the RECORDED_ VSN
parameter to verify the VSN recorded internally on the
ANSI VOLl tape label.

FILE_SET_POSITION or FSP

Specifies the position of the IBM tape file to be read. If
you omit this parameter, the NEXT_FILE position is
assumed. The parameter can have any of the following
values:

BEGINNING_OF_SET or BOS

Specifies that the first tape file on the file set is to be
read.

CURRENT_FILE or CF

Specifies that the current tape file is to be read. That
is, the last tape file accessed will be accessed again. If
the tape is positioned at the beginning of the first
volume, the first tape file will be read.

FILE_IDENTIFIER_POSITION or FIP

Specifies that the tape file identified by the FILE_
IDENTIFIER and GENERATION _NUMBER
parameters is to be read.

FILE_SEQUENCE_POSITION or FSP

Specifies that the tape file identified by the FILE_
SEQUENCE_NUMBER parameter is to be read.

NEXT_FILE or NF

Specifies that the tape file following the last accessed
tape file will be read. If the tape is positioned at the
beginning of the first volume, the first tape file will
be read.

2-196 NOS/VE Commands and Functions Revision G

Revision G

CREATE_IBM_REQUEST

FILE_IDENTIFIER or FI

Specifies a file identifier as a string of 1 to 17 characters.
Each tape file on a multifile set has a unique file
identifier. If you specify the FILE_IDENTIFIER_
POSITION value for the FILE_SET_POSITION
parameter, the FILE_IDENTIFIER parameter is required;
otherwise, its value is ignored.

FILE_SEQUENCE_NUMBER or FSN

Specifies the numeric position of a tape file on a multifile
set. The position is an unsigned integer in the range 1
through 9999. If you specify the FILE_SEQUENCE_
POSITION value for the FILE_SET_POSITION
parameter, the FILE_SEQUENCE_NUMBER parameter
is required; otherwise, its value is ignored.

GENERATION _NUMBER or GN

Identifies a specific revision of the tape file named by the
FILE_IDENTIFIER parameter. The revision shows as an
unsigned integer in the range 1 through 9999. If the
FILE_SET_POSITION parameter has the FILE_
IDENTIFIER_POSITION value, and the GENERATION_
NUMBER parameter is omitted, then the GENERATION_
NUMBER parameter value is set to one.

CHARACTER_CONVERSION or CC

Specifies with a boolean value whether or not the tape
file data is to be converted to or from its character set. If
you omit the CHARACTER_CONVERSION parameter,
FALSE is assumed to be its value.

Of the tape file migration methods, only FMU
automatically does character conversion in addition to any
conversion specified by the CHARACTER_ CONVERSION
parameter value.

To obtain a properly migrated tape file, you usually want
to set the CHARACTER_ CONVERSION parameter to
FALSE if you use FMU to migrate. Otherwise you convert
your tape file data twice. Set this parameter to TRUE if
you use any other tape file migration method. Otherwise,
you do not convert your tape file data at all.

Commands and Functions 2-197

CREATE_INTERSTATE_ CONNECTION

Remarks

Examples

• You must enter a CREATE_IBM_REQUEST command
before the FMU command.

• For more information, see the Migration From IBM to
NOS/VE Tutorial/Usage manual.

The following command associates temporary file FILE_
FTN with a typical FORTRAN formatted tape file:

/create_ibm_request file=file_ftn
.. /external_vsn='osar' ..
.. /recorded_vsn='audi' ..
.. /file_set_position=file_identifier_pos1tion
. ./f i 1 e_ identifier=' cm_pn' ..
.. /generation_number=23 ..
.. /character_conversion=true

The tape file has the following characteristics:

• Volume with external vsn, OSAR; recorded vsn, AUDI.

• Found from its file identifier, CM_PN, and generation
number, 23.

• Tape file data to be converted from its character set.

CREATE _INTERSTATE_ CONNECTION
Command

Purpose Establishes a NOS batch control point on a dual state
system.

Format CREATE_INTERSTATE_CONNECTION or
CREIC

PAR.TNER_JOB_CARD=string
STATUS= status variable

Parameters PARTNER_JOB_CARD or PJC

Specifies the job statement parameters to be used for the
NOS batch job. The parameter syntax must conform to
NOS job statement rules.

Omission causes the NOS default job statement
parameters to be used (an infinite time limit and no other
parameters specified).

2-198 NOS/VE Commands and Functions Revision G

Remarks

Examples

CREATE_KEYED _FILE

o After you enter a CREATE_INTERSTATE_
CONNECTION command, prompts are issued until you
enter QUIT (QUI) or DELETE_INTERSTATE_
CONNECTION (DELIC).

e While the interstate connection is open, you can enter
any NOSNE command (except another CREIC
command). You can enter NOS commands to be
executed on the NOS side of the dual state system
through the EXECUTE_INTERSTATE_COMMAND
command. The CREIC command is generally used in
conjunction with the File Management Utility to
migrate files between NOS and NOSNE.

o For more information, see the NOSNE Advanced File
Management Usage manual.

The following commands create an interstate connection,
execute NOS commands (ATTACH, DEFINE, and COPY),
and close the connection. FA is the CREATE_
INTERSTATE_CONNECTION prompt for user input.

/create_interstate_connection partner_job_card= ..
. . I 'my job , , 64 . '
FA/execute_interstate_corrmand comnand='attach,oldfil .'
FA/execute_interstate_corrmand comnand='define,newfil .'
FA/execute_interstate_corrmand comnand= ..
FA .. /'copy,oldfil,newfil .'
FA/delete_interstate_connection
I

CREATE _KEYED _FILE
Command

Purpose

Format

Revision G

Begins a CREATE_KEYED_FILE utility session.

CREATE_KEYED_FILE or
CREATE_KEYED_FILES or
CREKF

OUTPUT=tile
STATUS= status variable

Commands and Functions 2-199

CREATE_KEYED _FILE

Parameters OUTPUT or 0

Remarks

File path of the keyed file to be created. The keyed-file
attributes must already be specified by SET_FILE_
ATTRIBUTES commands.

This parameter is required.

The minimum attributes that must be defined are KEY_
LENGTH and MAXIMUM_RECORD_LENGTH. If the
FILE_ORGANIZATION is omitted, Create_Keyed_File
creates an indexed-sequential file.

• The command utility prompt is:

crekf /

In response to the crekf/ prompt, you can enter SCL
commands and any of these subcommands:

ADD_RECORDS
REPLACE_RECORDS
COMBINE_RECORDS
EXTRACT_ RECORDS
DISPLAY_ RECORDS
DELETE_RECORDS
CREATE_NESTED_FILE
SELECT_NESTED_FILE
DELETE_NESTED_FILE
DISPLAY_NESTED_FILE
CREATE_ALTERNATE_INDEXES
HELP
QUIT

• The new keyed file is created with one nested file,
named $MAIN _FILE. It is the initially selected nested
file and all subcommands apply to it until a
CREATE_NESTED_FILE or SELECT_NESTED_FILE
subcommand selects another nested file.

• If any nested file in the new keyed file uses a
user-defined collation table, hashing procedure, or
compression procedure, the object library containing
the compiled table or procedure must be in the
program library list before the Create_Keyed_File
session begins.

To add one or more object libraries to the program
library list, use the ADD_LIBRARIES parameter on a
SET_PROGRAM_ATTRIBUTES command. For
example:

2-200 NOS/VE Commands and Functions Revision G

Examples

CREATE_MANUAL

set_program_attributes. add_library=$user.hash_library

o If you specify DIRECT_ACCESS as the FILE_
ORGANIZATION attribute on the SET_FILE_
ATTRIBUTES command, but omit the INITIAL_
HOME_BLOCK_COUNT attribute, CREATE_
KEYED_FILE prompts you for calculation of the
INITIAL_HOME_BLOCK_COUNT.

o For more information, see the NOSNE Advanced File
Management Usage manual.

This CREATE_KEYED_FILE example defines the file
$USER.INDEXED SEQUENTIAL_FILE with the SET_
FILE_ATTRIBUTES command and then creates it.

/set_file_attributes, file=$user. indexed_sequent1al_file ..
.. /file_organization=indexed_sequential ..
.. /max1mum_record_length=32, minimum_record_length=14 ..
.. /k.ey_length=14
/create_k.eyed_f i le. output=Suser. indexed_sequent ia 1 _file
crek.f/

CREATE _MANUAL
Command

Purpose Reads a sequential (source) file containing directives and
text; creates a segmented access (bound) online manual
file which can be named in an EXPLAIN command
MANUAL parameter.

Format CREATE_MANUAL or
CREM

INPUT=file
OUTPUT= file
ERROR=file
LIST=file
LIST_ OPTIONS= keyword
STATUS=status variable

Parameters INPUT or I

Revision G

File reference for the source file containing online manual
text and directives. This parameter is required.

OUTPUT or 0

File reference for the bound file containing the finished
online manual. The default file is $LOCAL.MANUAL.

Commands and Functions 2-201

CREATE_MANUAL

Remarks

Examples

ERROR or E

File reference for the listing file to receive error
messages. The default file is $LOCAL.$ERRORS (the
terminal).

LIST or L

File reference for the listing file to receive a
cross-reference listing of screen names and indexed
subjects. If you do not specify the LIST_OP parameter, no
cross-reference listing is produced. The default file is
$LIST.

LIST_OPTIONS or LO

Specifies whether the LIST file should contain
information. Possible values:

R

Produce the listing

NONE

Do not produce the listing (default)

For more information, see the CYBER Online Text
manual.

The following command creates the manual called
CONTEXT from a source file called CONTEXT_SOURCE.
An error file called CONTEXT_ERRORS and a
cross-reference file called CONTEXT_ CROSS_
REFERENCE are produced.

/create_manual input=$user.context_source
.. /output=Suser.context
.. /error_list=Suser.context_errors ..
.. /1ist=$user.context_cross_reference
. ./ 1i st_op=r

2-202 NOS/VE Commands and Functions Revision G

CREATE_ OBJECT_LIBRARY

CREATE_OBJECT_LIBRARY
Command

Purpose

Format

Remarks

Revision G

Begins a CREATE_ OBJECT_LIBRARY utility session.
The utility produces an object library or an object file and
allows post-compilation manipulation of object or load
modules. It can also produce a text version of certain
kinds of modules on an object library.

CREATE_OBJECT_LIBRARY or
CREOL

STATUS= status variable

o The following files can be created by the
GENERATE_LIBRARY subcommand of this utility.
The utility issues a warning and does not process
input files whose file attributes do not conform to the
attributes listed in the right-hand column. The utility
sets the accompanying file attributes listed for output
files it creates. You can override attributes of a file
with the SCL SET_FILE_ATTRIBUTE command.

File Created

Object library

Object file

SCL procedure
file

File containing
the subcommands
that define
message modules

Attributes Given to the File

FILE_CONTENT=OBJECT
FILE_STRUCTURE =LIBRARY

FILE_ CONTENT= OBJECT
FILE_STRUCTURE =DATA

FILE_CONTENT =LEGIBLE
FILE_PROCESSOR = SCL
FILE_STRUCTURE =DATA

FILE_ CONTENT= LEGIBLE
FILE_PROCESSOR=SCL
FILE_STRUCTURE =DATA

• The CREOL session ends when you enter the QUIT
subcommand.

• For more information, see the NOSNE Object Code
Management manual.

Commands and Functions 2-203

CREATE_PROGRAM_PROFILE

Examples The following is a sequence that removes an object library
from the command list, creates a new version of the
object library from the modules on file $LOCAL.LGO,
then adds the object library to the command list.

/delete_cOrt111and_list_entry entry=$1ocal.my_conmands
/create_object_library
COL/add_module $local. lgo
COL/generate_11brary $1ocal.my_conmands
COL/Quit
/create_cOrt111and_list_entry entry=$1ocal.my_conmands
I

CREATE _PROGRAM _PROFILE
Command

Purpose Generates a program profile.

Format CREATE_PROGRAM_PROFILE or
CREPP

TARGET_ TEXT= file
FILE= list of file
PARAMETER= string
LIBRARY=list of file
MODULE= list of any
STARTING_PROCEDURE=any
PROFILE_ ORDER= keyword
PROGRAM_ UNIT_ CLASS= keyword
NUMBER= integer or keyword
OUTPUT=file
STATUS ==status variable

Parameters TARGET_ TEXT or TI

File containing the modules to be measured. This
parameter is required.

FILE or FILES or F

Object list for the program. Each module in the specified
object files and object libraries is unconditionally included
in the program. The list must include the target text file.
If FILE is omitted, the object list for the program consists
of only the file specified on the TARGET_ TEXT
parameter.

2-204 NOS/VE Commands and Functions Revision G

Revision G

CREATE_PROGRAM_PROFILE

PARAMETER or P

Parameter list passed to the program.

LIBRARY or LIBRARIES or L

List of object libraries added to the program library list.
These object libraries are searched before any libraries in
the job library list. The libraries are searched in the
order listed.

MODULE or MODULES or M

Module list.

You use a string value for a module whose name is not
an SCL name.

Each module is unconditionally loaded from the object
libraries in the program library list.

STARTING_PROCEDURE or SP

Name of the entry point where execution begins.

You use a string value for an entry point whose name is
not an SCL name.

If STARTING_PROCEDURE is omitted, the last transfer
symbol encountered during loading is used.

PROFILE_ORDER or PO

Order in which the program profile is displayed. Options
are:

TIME (T)

By percentage of time spent executing ordered greatest
to least.

PROGRAM_ UNIT (PU)

By program unit name ordered alphabetically.

MODULE_PROGRAM_ UNIT (MPU)

By module name ordered alphabetically.

If PROFILE_ORDER is omitted, TIME is used.

Commands and Functions 2-205

CREATE_PROGRAM_PROFILE

Remarks

Examples

PROGRAM_UNIT_CLASS or PUC

Class of program units whose statistics are displayed.
Options are:

ALL

All program units measured, both local and remote.

LOCAL

Only program units that are part of the target text.

REMOTE

Only program units that are called by target text
program units, but are not part of the target text.
These program units provide the remote block
statistics in the program profile.

If PROGRAM_ UNIT_ CLASS is omitted, ALL is used.

NUMBER or N

Number of program unit statistics displayed. The statistics
are sorted as specified by the PROFILE_ ORDER
parameter and then displayed in order until the specified
number of statistics have been displayed. If NUMBER is
omitted, the entire program profile is displayed.

OUTPUT or 0

File to which the display is written. This file can be
positioned. If OUTPUT is omitted, file $OUTPUT is used.

• The CREATE_PROGRAM_PROFILE command
executes the program described on the command and
accumulates the execution time of each of the program
units. It then generates a program profile listing the
execution time statistics. The command does not
generate a connectivity matrix or a restructuring
procedure for the program.

• For more information, see the NOSNE Object Code
Management manual.

The following command executes the program on file LGO
and saves the program profile on file PROFILE_LIST.

/create_program_profile lgo output=profile_list

2-206 NOS/VE Commands and Functions Revision G

CREATE_REMOTE_ VALIDATION

CREATE _REMOTE_ VALIDATION
Command

Purpose Provides remote system validation information for implicit
access to remote NOSNE files or for the MANAGE_
REMOTE_FILES command.

Format CREATE_REMOTE_ VALIDATION or
CRERV

LOCATION= name
VALIDATION= list of string
STATUS =status variable

Parameters LOCATION or L

Remarks

Revision G

Specifies the name of the remote location to be accessed.
For implicit remote file access, this is the family name of
the remote NOSNE system that you want to access.

For explicit remote access through MANAGE_REMOTE_
FILES command, this is a name associated with the
remote system, such as a family name or a logical
identifier. (Location names are determined by your
network application administrator.)

This parameter is required.

VALIDATION or V

Specifies the lines of text used to validate access to the
remote location. If the remote system is a NOSNE
system, the first (or only) string of this parameter must
be a NOSNE LOGIN command.

Refer to the Remote Host Facility Usage manual for
information about validation commands required by
non-NOSNE systems.

This parameter is required.

• You must enter this command before you can
implicitly reference a remote file or catalog. This
command is optional if you explicitly access a remote
system using the MANAGE_REMOTE_FILE
command. If you use CREATE_REMOTE_
VALIDATION in this case, the MANAGE_REMOTE_
FILES command sends the validation information so it
precedes any other commands sent to that location.

Commands and Functions 2-207

CREATE_ VARIABLE

Examples

• The validation information specified by this command
remains in effect until the job terminates or until you
enter a DELETE_REMOTE_ VALIDATION command,
which deletes the validation information.

• You can use this command to establish validation
information for more than one remote location. You
must enter a separate CREATE_REMOTE_
VALIDATION command for each remote location.

• For more information, see the NOS/VE System Usage
manual.

The following example establishes access to remote family
SKY on a remote system for user name MIKE_B, family
name SKY, and password STARS:

/create_remote_validat1on location=sky
.. /validation='login user=m1ke_b ..
.. /fn=sky pw=stars'

CREATE_ VARIABLE
Command

Purpose

Format

Creates an SCL variable.

CREATE_ VARIABLE or
CREATE_ VARIABLES or
CREV

NAMES=list of name
KIND= list of any
DIMENSION= range of integer
VALUE=any
SCOPE=name
STATUS=status variable

2-208 NOS/VE Commands and Functions Revision G

CREATE_ VARIABLE

Parameters NAMES or NAME or N

Revision G

Specifies the name(s) of the variable(s) to be created. This
parameter is required.

KIND or K

Specifies the type or kind of variable to be created. The
following are valid keywords for the KIND parameter:

INTEGER

Creates an integer variable.

BOOLEAN

Creates a boolean variable.

STRING

Creates an ASCII character string variable.

STATUS

Creates a status variable.

If you do not specify a keyword value element for this
parameter, INTEGER is assumed.

The integer element of the KIND parameter specifies the
maximum length for a string variable; it cannot be
specified for other variable kinds. If the integer element
is omitted for a string variable, the maximum length is
assumed to be 256.

DIMENSION or D

Specifies the lower and upper bounds of an array. This
parameter is used only when the variable being created is
an array. You can specify a range from -2,147,483,647 to
2,147,483,647. If you omit the DIMENSION parameter,
the system assumes that the variable is not an array
(that is, a dimension of 1..1 is assumed).

VALUE or V

Specifies the initial value of the variable to be created.
The following restrictions apply:

• You cannot use the VALUE parameter to assign
values to specific elements in an array. Each element
in an array is initialized with the value you specify.

Commands and Functions 2-209

CREATE_ VARIABLE

• You cannot use the VALUE parameter to assign
values to specific fields of a variable of type status.
You must either use the system default (see below) or
the $STATUS function.

If you omit the VALUE parameter, the following default
values are assigned:

Kind of Variable Default Value

Integer 0

String of zero " (null string)

Boolean FALSE

Status NORMAL field is TRUE
IDENTIFIER field is undefined
CONDITION field is undefined
TEXT field is undefined

SCOPE or S

Specifies the scope of the variable. The scope of a variable
defines the blocks in which the variable can be accessed.
The following are valid entries for the SCOPE parameter:

LOCAL

Causes the variables to be local to the current block.
These variables cannot be referenced by other blocks.
This is the default.

XDCL

Causes the variables to be externally declared (XDCL).
A variable with this scope can be referenced by other
blocks if a variable with identical KIND and
DIMENSION parameters is created with a scope of
XREF. A variable's KIND and DIMENSION attributes
can be returned using the $VARIABLE function.

XREF

States that the variables are externally referenced
(XREF). A variable with this scope must have been
created in an outer block with the scope XDCL and
with KIND and DIMENSION parameters identical to

2·210 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

CREATE_ VARIABLE

those supplied by this command. A variable's KIND
and DIMENSION parameters can be returned using
the $VARIABLE function.

JOB

Causes the variables to be created in the job block
with an XDCL scope. If the current block is not the
job block, an XREF declaration in the current block is
made. A variable with a scope of JOB is implicitly
accessible from SCL commands at the same level, from
within a utility environment, from within a block, and
from within another task. However, a JOB scope does
not allow a variable to be implicitly accessed from
within an SCL procedure. To access a variable with a
JOB scope from an SCL procedure, you must create
the variable within the procedure with an XREF
scope.

name

Causes the variables to be created in the utility block
specified by name with an XDCL scope. If the current
block is not the utility block, an XREF declaration in
the current block is made.

• If you specify a scope of XREF, any value you specify
for the VALUE parameter is ignored.

• For more information, see the NOSNE System Usage
manual.

• The following example creates a variable named
GLOBAL_STATUS, of kind STATUS, with a scope of
JOB:

/create_variable global_status kind=status ..
. . /scope=job

The GLOBAL_STATUS variable can be referenced
from any block from which it is externally referenced
(via the SCOPE=XREF parameter).

• The next example creates a variable named DONE of
kind boolean. Its initial value is set to FALSE, and it
is given a scope of XDCL. Other blocks can reference
the DONE variable if they create the same variable
with a scope of XREF.

Commands and Functions 2-211

CREATE_VAX_REQUEST

/create_variable name=done kind=boolean
.. /value=false scope=xdcl

CREATE_VAX_REQUEST
Command

Purpose Creates a NOSNE temporary file to be associated with a
VAX tape file. Future references to the VAX tape file are
through the NOSNE temporary file. The VAX tape file
must be on an ANSI labeled tape.

Format CREATE_ VAX_REQUEST or
CREVR

FILE=file
EXTERNAL_ VSN=list of string
RECORDED_ VSN =list of string
FILE _SET _POSITION= keyword
FILE _IDENTIFIER= string
FILE_SEQUENCE_NUMBER =integer
GENERATION _NUMBER= integer
STATUS= status variable

Parameters FILE or F

Specifies the name of a N OSNE temporary file to be
associated with a VAX tape file. This parameter is
required.

EXTERNAL_ VSN or EVSN or VSN

Gives the external identification of the tape volume(s)
containing the VAX tape file. Each parameter value is a
string 1 to 6 characters long.

If you specify more than one external volume serial
number (VSN), the volumes are requested in the order
specified in the parameter list. If you omit the
EXTERNAL_ VSN parameter, the system uses the
RECORDED_ VSN parameter in its stead.

You must specify either the EXTERNAL_ VSN parameter
or the RECORDED_ VSN parameter. Otherwise, a fatal
error results.

2-212 NOS/VE Commands and Functions Revision G

Revision G

CREATE_VAX_REQUEST

RECORDED_ VSN or RVSN

Gives the VSN recorded internally on the ANSI VOLl
label on the tape volume(s) holding the VAX tape file.
Each parameter value is a string 1 to 6 characters long.
File processing uses the RECORDED_ VSN parameter to
locate and verify the correct volume.

If you specify more than one recorded VSN, the volumes
are located and verified in the order specified in the
parameter list. If you omit the RECORDED_ VSN
parameter, the EXTERN AL_ VSN parameter is used to
verify the VSN recorded internally on the ANSI VOLl
label.

If you specify both the EXTERNAL_ VSN and
RECORDED_ VSN parameters, they are matched; the first
external VSN with the first recorded VSN, the second
external VSN with the second recorded VSN, and so on.
For each such pair, NOSNE uses the external VSN
parameter to direct the system operator to mount the tape
with that external VSN. NOSNE uses the recorded VSN
value to verify the VSN recorded internally on the ANSI
VOLl label on that tape.

If there is an EXTERN AL_ VSN parameter with no
matching RECORDED_ VSN parameter, NOSNE uses the
EXTERN AL_ VSN parameter to direct the system
operator. NOSNE also uses the EXTERNAL_ VSN
parameter to verify the VSN recorded internally on the
ANSI VOLl tape label.

If there is a RECORDED_ VSN parameter with no
matching EXTERNAL_ VSN parameter, NOSNE uses the
RECORDED_ VSN parameter to direct the system
operator. NOSNE also uses the RECORDED_ VSN
parameter to verify the VSN recorded internally on the
ANSI VOLl tape label.

FILE_SET_POSITION or FSP

Specifies the position of the VAX tape file to be read. If
you omit this parameter, the NEXT_FILE position is
assumed. The parameter can have any of the following
values:

BEGINNING_OF_SET or BOS

Specifies that the first tape file on the file set is to be
read.

Commands and Functions 2-213

CREATE_VAX_REQUEST

CURRENT_FILE or CF

Specifies that the current tape file is to be read. That
is, the last tape file accessed will be accessed again. H
the tape is positioned at the beginning of the first
volume, the first tape file will be read.

FILE_IDENTIFIER_POSITION or FIP

Specifies that the tape file identified by the FILE_
IDENTIFIER and GENERATION_NUMBER
parameters is to be read.

FILE_SEQUENCE_POSITION or FSP

Specifies that the tape file identified by the FILE_
SEQUENCE_NUMBER parameter is to be read.

NEXT_FILE or NF

Specifies that the tape file following the last accessed
tape file will be read. If the tape is positioned at the
beginning of the first volume, the first tape file will
be read.

FILE_IDENTIFIER or Fl
Specifies a file identifier as a string of 1 to 17 characters.
Each tape file on a multifile set has a unique file
identifier. If you specify the FILE_IDENTIFIER_
POSITION value for the FILE_SET_POSITION
parameter, the FILE_IDENTIFIER parameter is required;
otherwise, its value is ignored.

FILE_SEQUENCE_NUMBERorFSN
Specifies the numeric position of a tape file on a multifile
set. The position is an unsigned integer in the range 1
through 9999. If you specify the FILE_SEQUENCE_
POSITION value for the FILE_SET_POSITION
parameter, the FILE_SEQUENCE_NUMBER parameter
is required; otherwise, its value is ignored.

GENERATION_NUMBERorGN
Identifies a specific revision of the tape file named by the
FILE_IDENTIFIER parameter. The revision shows as an
unsigned integer in the range 1 through 9999. If the
FILE_SET_POSITION parameter has the FILE_

2-214 NOS/VE Commands and Functions Revision G

Remarks

Examples

CYBIL

IDENTIFIER_POSITION value, and the GENERATION_
NUMBER parameter is omitted, then the GENERATION_
NUMBER parameter value is set to one.

o For more information, see the Migration From
VAX/VMS to NOSNE Tutorial/Usage manual.

• You must enter a CREATE_ VAX_REQUEST
command before the FMU command.

The following command associates temporary file FILE_
FTN with a typical FORTRAN formatted tape file:

/create_vax_request file=file_ftn
.. /external_vsn='carp' ..
.. /recorded_vsn='fish' ..
.. /file_set_position=file_identifier_position
.. /file_identifier='lm_no_goldfish' ..
.. /generation_number=2

The tape file has the following characteristics:

o Volume with external vsn, CARP; recorded vsn, FISH.

• Found from its file identifier, LM_NO_GOLDFISH,
and generation number, 2.

CYBIL
Command

Purpose

Format

Revision G

Calls the compiler, specifies the files to be used for input
and output, and indicates the type of output to be
produced.

CYBIL
INPUT=file
BIN ARY= file
LIST=file
INPUT _SOURCE_MAP =file
LIST_ OPTIONS= list of keyword
DEBUG _AIDS= list of keyword
ERROR _LEVEL= keyword
OPTIMIZATION _LEVEL= keyword
CA=integer

Commands and Functions 2-215

CYBIL

PAD= integer
RUNTIME_ CHECKS= list of keyword
OPTIMIZATION_ OPTIONS= list of keyword
KEY POINT_ GENERATION= boolean
STATUS =status variable

Parameters INPUT or I

Specifies the file that contains the source text to be read.
Source input ends when an end-of-partition or an
end-of-information is encountered on the source input file.
If omitted, $INPUT is assumed.

BINARY or B or BINARY_OBJECT

Specifies the file on which object code is to be written.
You can specify a file position as part of the file name. If
$NULL is specified, the compiler performs a syntactic and
semantic scan of the program but does not generate object
code. If omitted, $LOCAL.LGO is assumed.

LIST or L

Specifies the file on which the compilation listing is to be
written. If $NULL is specified, all compile-time output is
discarded. If omitted, $LIST is assumed.

INPUT_SOURCE_MAP or ISM

Reserved.

LIST_ OPTIONS or LO

Specifies a combination of the following list options. If
NONE is specified, no list options are selected. If omitted,
option S (list the source input file) is assumed.

A

Produces an attribute list of source input block
structure and relative stack. The attribute listing is
produced following the source listing on the file
specified by the LIST parameter or, if the LIST
parameter is omitted, on file $LIST.

F

Produces a full listing. In effect, this option selects
options A, S, and R.

2-216 NOSNE Commands and Functions Revision G

Revision G

CYBIL

0

Lists compiler-generated object code. When selected,
this listing includes an assembly-like listing of the
generated object code. This option has no effect if the
BINARY_OBJECT parameter is set to $NULL.

R

Produces a symbolic cross-reference listing showing the
location of a program entity definition and its use
within a program.

RA

Produces a symbolic cross-reference listing of all
program entitites whether referenced or not.

s
Lists the source input file.

x
Used in conjunction with the compile-time directive
LISTEXT so that listings can be externally controlled
using the CYBIL command. The LISTEXT toggle must
be ON.

DEBUG_AIDS or DA

Specifies a combination of the following Debug options. If
omitted, NONE (no debug options) is assumed. Options
are:

ALL

Selects debug options DS and DT.

DS

Compiles all debugging statements. A debugging
statement is a statement in the source text that is
ignored unless this option is specified. These
statements are enclosed by the compile-time directives
COMPILE and NOCOMPILE. The symbol table and
the line table for interactive debugging are also
generated.

Commands and Functions 2-217

CYBIL

DT

Generates debug tables (that is, the symbol table and
line table) as part of the object code. These tables are
used by the Debug utility.

NONE

No debug options are selected.

ERROR_LEVEL or EL

Specifies one of the following error list options. If omitted,
W (list warning and fatal diagnostics) is assumed.

F

Lists fatal diagnostics. If selected, only fatal
diagnostics are listed.

w
Lists warning (informative) diagnostics as well as fatal
diagnostics.

OPTIMIZATION _LEVEL or OL or OPTIMIZATION or
OPT

Specifies one of the following optimization options. If
omitted, LOW is assumed.

DEBUG

Object code is stylized to facilitate debugging. Stylized
code contains a separate packet of instructions for each
executable source statement; it carries no variable
values across statement boundaries in registers, and it
notifies Debug each time the beginning of a statement
or procedure is reached.

LOW

Provides for keeping constant values in registers.

HIGH

Provides for keeping local variables in registers,
passing parameters to local procedures in registers,
and eliminating redundant memory references, common
subexpressions, and jumps to jumps.

CA
Reserved.

2-218 NOS/VE Commands and Functions Revision G

Revision G

CYBIL

PAD

Generates the specified number of no-op (no operation)
instructions between instructions that actually perform
operations. If omitted, 0 (zero) is assumed; no-op
instructions are not generated.

RUNTIME_CHECKS or RC

Specifies a combination of the following run-time checking
options. If omitted, NONE (no run-time checks) is
assumed.

ALL

Selects run-time checking options N, R, and S.

N

Produces compiler-generated code that checks for a
NIL value when a reference is made to the object of a
pointer.

NONE

No run-time checks are produced.

R

Produces compiler-generated code to check ranges.
Range checking code is generated for assignment to
integer subranges, ordinal subranges, and character
variables. All CASE statements are checked to ensure
that the selection expression corresponds to one of the
variant values specified if no ELSE clause is provided.
All references to substrings are verified. If an offset
(variable pointer) is specified on a RESET statement,
it is checked to ensure that it is valid for the specified
sequence.

s
Produces compiler-generated code to test the
subscripting of arrays.

OPTIMIZATION_OPTIONS or 00

Controls the optimizations applied to code generation. The
nature of the generated code (including optimizations) is
primarily determined by the OPTIMIZATION_LEVEL

Commands and Functions 2-219

CYBIL

parameter. The OPTIMIZATION_OPTIONS parameter,
however, controls certain aspects of optimization, as
follows. If this parameter is omitted, NONE is assumed.

INSTRUCTION _SCHEDULING or IS

To increase execution speed, instruction sequences are
rearranged to take advantage of the vector
architecture of the CYBER 990. 1 To select this option,
you must also set the OPTIMIZATION_ LEVEL
parameter to HIGH.

NONE

Instruction scheduling does not take place.

KEYPOINT_GENERATION or KG

Boolean value that specifies whether or not object code
keypoint instructions are generated for #KEYPOINT
procedures in the source file.#KEYPOINT is a tool for
analyzing program performance. For more information on
#KEYPOINT, refer to chapter 7. To produce optimal
object code, however, it is better to turn off #KEYPOINT
generation. If this parameter is omitted, TRUE is
assumed.

TRUE

Object code is generated for # KEYPOINT instructions.
During execution, the #KEYPOINT object code is
skipped (unless it is specifically enabled). Skipping the
#KEYPOINT object code involves a certain amount of
CPU overhead, which decreases program performance.

FALSE

No object code is generated for #KEYPOINT
instructions. To improve program performance when
you do not want keypoint processing, specify FALSE.

1. Instruction scheduling on other CYBER machines has little or no effect on execution
speed.

2-220 NOS/VE Commands and Functions Revision G

Remarks

Examples

CYCLE

CYCLE

Q If the compiler command specifies an option that
differs from a directive, the latest occurrence of either
the command or the directive takes precedence.

• For more information, see the CYBIL Language
Definition manual.

This command reads source code from a file named
COMPILE, writes the compilation file on file LIST, and
writes the object code on file BIN!. The listing includes
source code, compiler-generated object code, and a
symbolic cross-reference listing.

/cybi 1 i =compile 1=1 i st b=bi nl lo=(o, r)

Control Statement

Purpose

Format

Causes execution of the next iteration, if any, of a
repetitive statement.

CYCLE
label
WHEN boolean expression

The following are valid forms of the CYCLE statement:

CYCLE
CYCLE label
CYCLE WHEN boolean expression
CYCLE label WHEN boolean expression

Parameters label

Revision G

Specifies a label associated with the enclosing repetitive
statement to be cycled. If the label is omitted, the
innermost repetitive statement is cycled.

boolean expression

Specificies whether exiting from the designated enclosing
statement should take place. If the expression is TRUE,
cycling is performed. If the expression is FALSE, or if it
is omitted, cycling is not performed.

Commands and Functions 2-221

CYCLE

Remarks

Examples

• In the case of a LOOP statement, the first statement
of the LOOP statement list is given control.

• In the case of a WHILE or REPEAT statement, the
boolean expression controlling the loop is evaluated.

• In the case of a FOR statement, the processing done
at the FOR statement's FOREND clause is performed.

• The WHEN clause is evaluated at the point of
reference rather than continually, as is done by the
WHEN condition handler.

• For more information, see the NOSNE System Usage
manual.

In the block structure example on the following screen, if
the first CYCLE is executed, the LOOP statement labeled
BLOCKl is cycled.

If the second CYCLE is executed, the LOOP statement
labeled BLOCKl is also cycled. Thus, both BLOCK2 and
BLOCK! are effectively cycled.

If the third CYCLE statement is executed~ the LOOP
statement labeled BLOCK2 is cycled and control remains
in BLOCK2.

+-------+-->blockl: loop

+------ cycle -

+------>block2: loop
I
I

First CYCLE statement

+------ I --------- cycle blockl Second CYCLE statement
I
I
+---------- cycle Third CYCLE statement

loopend block2

loopend block1

2-222 NOS/VE Commands and Functions Revision G

$DATE
Function

$DATE

Purpose Returns the current date as a string.

Format $DATE
(keyword>

Parameters keyword

Revision G

Specifies the form in which the date is to be returned.
The following keywords are valid:

DMY

Returns an 8-character date as shown in the following
example:

28.03.87

MDY

Returns an 8-character date as shown in the following
example:

03/28/87

MONTH

Returns the date as shown in the following example:

March 28, 1987

The length of the returned string is variable.

ISOD or ISO

Returns a IO-character date as shown in the following
example:

1987-03-28

ISO is an acronym for the International Standards
Organization.

ORDINAL

Returns a 7-character Julian date in the form of the
year and number of day in the year. For example:

1987087

Commands and Functions 2-223

DEBUG_PROGRAM

Remarks

Examples

DEFAULT

Returns the default format of the date. This value is
determined by your site.

If you omit this parameter, DEFAULT is used.

For further information about functions, see the NOSNE
System Usage manual.

The following example returns the ordinal form of the
current date:

/display_value 'The current date 1s: '//$date ..
. ./ (ord i na 1)
The current date is: 1987087

DEBUG_PROGRAM
Command

Remarks Reserved for site personnel, Control Data, or future use.

DEFINE _PRIMARY_ TASK
Command

Purpose

Format

Remarks

Designates the requesting task as the primary task for
the job. It is the primary task or its innermost,
synchronous child task to which break conditions such as
terminate break and pause break are sent.

This command can be used to designate an asynchronous
task as the primary task.

When the task which issues this . command terminates, its
parent task becomes the primary task.

DEFINE_PRIMARY_ TASK or
DEFPT

STATUS= status variable

For more information, see the NOSNE System Usage
manual.

2-224 NOSIVE Commands and Functions Revision G

DEFINE_ TERMINAL

DEFINE_ TERMINAL
Command

Purpose Compiles your terminal definition file, creating an object
library of terminal definition modules.

Format DEFINE_TERMINAL or
DEFT

INPUT=file
BINAR.Y =file
LIST=file
STATUS =status variable

Parameters INPUT or I

Remarks

Revision G

Specifies the terminal definition file you want to compile.
Each input file can contain only one terminal definition.
This parameter is required.

BINARY or B

Specifies the object library to contain the compiled
terminal definition module. If the BINARY parameter is
omitted, object library TERMINAL_DEFINITIONS under
your working catalog is assumed.

LIST or L

Specifies the file you want to contain intermediate output
from the compilation process (CYBIL code). Most users do
not need to see this file. If omitted, $LIST is assumed.
For interactive users, $LIST is not displayed at the
terminal.

e The first time you use the DEFINE_ TERMINAL
command it creates an object library that can be used
by the Full Screen Editor and other screen-oriented
applications.

Thereafter, executing a DEFINE_ TERMINAL
command merges the new terminal definition with
definitions you previously compiled (assuming you use
the same object library name). Therefore, one library
can contain all your compiled terminal definitions,
even though each definition originates from its own
file.

Commands and Functions 2-225

DEFINE_ TERMINAL

Examples

In the library, the terminal definition module is
identified by the name you enter on the MODEL_
NAME statement in the terminal definition file. It is
the value for the MODEL parameter prefixed with the
characters CSM$. If a module with the same name is
already in the object library, the new module replaces
the one in the library.

To delete modules from the object library, use the
object library generator subcommand DELETE_
MODULE.

You should keep your object library on a permanent
file. By default, executing the DEFINE_ TERMINAL
command with your working catalog set to $USER
merges your terminal definition into permanent file
$USER.TERMINAL_ DEFINITIONS.

• For more information, see the Terminal Definition
Usage manual.

The following example shows how you would set up your
own terminal definition for the Lear Siegler ADM5
terminal:

Set your working catalog to $USER and then copy sample
deck CSM$SAMPLE from the source library
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE to your
own file by entering:

sc/use_library base=$system.cybi1 .osf$program_interface
sc/extract_deck deck=csm$sample source=lear_siegler_admS
sc/Quit fa 1 se

Then, having edited it, adding the needed information for
the Lear Siegler ADM5 terminal (using MODEL_
NAME=ADM5), you compile it:

/define_terminal input=lear_siegler_admS

With the working catalog set to $USER, the terminal
definition for the ADM5 terminal is merged into file
$USER.TERMINAL_DEFINITIONS. The entry in the
DISPLAY_ OBJECT_LIBRARY listing of
$USER.TERMINAL_DEFINITIONS is CSM$ADM5 and
the model name is ADM5.

2-226 NOS/VE Commands and Functions Revision G

DELETE_ CATALOG

DELETE_CATALOG
Command

Purpose

Format

Deletes a catalog and, optionally, its contents.

DELETE_CATALOG or
DELC

CATALOG= file
DELETE_ OPTION= keyword
STATUS= status variable

Parameters CATALOG or C

Remarks

Revision G

Specifies the catalog to be deleted. This parameter is
required.

DELETE_OPTION or DO

Specifies the parts of the catalog to delete. Options are as
follows:

CATALOG_AND_CONTENTS(CAC)

The catalog and all of its contents (including any files
and catalogs and their contents) is deleted.

CONTENTS_ONLY (CO)

All of a catalog's contents (including any files and
catalogs and their contents) is deleted, but the catalog
itself remains as an empty catalog.

ONLY_IF_EMPTY (OIE)

The catalog is deleted only if it is an empty catalog.
This is the default.

• This command releases all storage space associated
with the deleted catalogs and mass storage files.

• Only the catalog owner or family administrator can
delete a catalog.

• This command does not delete a master catalog. Only
the family administrator can delete a master catalog.

• For more information, see the NOS/VE System Usage
manual.

Commands and Functions 2-227

DELETE_ CATALOG_PERMIT

Examples The following example deletes subcatalog CATALOG_2
and all of its contents from the master catalog.

/delete_catalog catalog=$user.catalog_2
.. /delete_options=catalog_and_contents

DELETE_CATALOG_PERMIT
Command

Purpose

Format

Deletes an access control entry that was previously
established for a catalog.

DELETE_CATALOG_PERMIT or
DELCP

CATALOG=file
GROUP=keyword
FAMILY_NAME=name
USER=name
ACCOUNT=name
PROJECT=name
STATUS= status variable

Parameters CATALOG or C

Specifies the catalog for which the access control entry is
being deleted. This parameter is required.

GROUP or G

Specifies if the permit entry to be deleted applies to a
specific user or group of users. The group selections are:

PUBLIC

All users regardless of family, account, project, or user
identifications.

FAMILY

All users in the specified family.

ACCOUNT

All users associated with the specified family and
account identifications.

PROJECT

All users associated with the specified family, account,
and project identifications.

2-228 NOS/VE Commands and Functions Revision G

Revision G

DELETE_CATALOG_PERMIT

USER

The user identified by the specified family and user
identifications.

USER_ ACCOUNT

The user identified by the specified family, account,
and user identifications.

MEMBER

The user identified by the specified family, account,
project, and user identifications.

Omission causes USER to be used.

FAMILY_NAME or FN

Specifies the family name associated with the permit
entry being deleted. Omission causes the family name
associated with the requesting job to be used if the
GROUP selection indicates this parameter is applicable. If
the GROUP selection indicates this parameter is not
applicable, an abnormal status is returned.

USER or U

Specifies the user name associated with the permit entry
being deleted. Omission causes the user name associated
with the requesting job to be used if the GROUP selection
indicates this parameter is applicable. If the GROUP
selection indicates this parameter is not applicable, an
abnormal status is returned.

ACCOUNT or A

Specifies the account name associated with the permit
entry being deleted. Omission causes the account
associated with the requesting job to be used if the
GROUP selection indicates this parameter is applicable. If
the GROUP selection indicates this parameter is not
applicable, an abnormal status is returned.

PROJECT or P

Specifies the project name associated with the permit
entry being deleted. Omission causes the project associated
with the requesting job to be used if the GROUP selection
indicates this parameter is applicable. If the GROUP
selection indicates this parameter is not applicable, an
abnormal status is returned.

Commands and Functions 2-229

DELETE_ COMMAND_LIST_ENTRY

Remarks

Examples

• This request can be issued only by the owner of the
catalog.

• For more information, see the NOSNE System Usage
manual.

The following example deletes the permission for user
DLH to catalog CATALOG_ I in the master catalog,
leaving only the permission for user KRJ.

/delete_catalog_permit $user.catalog_1 group=user
. ./user=dlh
/disc $user.catalog_1 permits

PERMIT_GROUP: USER
FAMILY: NVE, USER: KRJ
PERMITS: SHORTEN, APPEND, MODIFY
SHARE: NONE
APPLICATION_INFORMATION:

Deletion of a catalog permit entry, however, does not
affect individual file permit entries. That is, even though
specific permission to CATALOG_ I for user DLH has
been removed, user DLH can still access file DATA_
FILE_ 0 for which specific file permission was previously
established.

DELETE_ COMMAND _LIST _ENTRY
Command

Purpose Deletes entries from the command list.

Format DELETE_COMMAND_LIST_ENTRY or
DELETE_COMMAND_LIST_ENTRIES or
DE LC LE

ENTRY=list of file or keyword
STATUS= status variable

Parameters ENTRY or ENTRIES or E

Specifies the entries to be deleted from the command list.
If this parameter is specified as $SYSTEM, the $SYSTEM
command library is deleted from the command list. This
parameter is required.

2-230 NOS/VE Commands and Functions Revision G

Remarks

DELETE_FILE

o This command cannot be used when the command list
search mode is EXCLUSIVE.

o If the command list search mode is RESTRICTED, the
entry at the beginning of the command list cannot be
deleted.

• For more information, see the NOSNE System Usage
manual.

DELETE _FILE
Command

Purpose

Format

Deletes a file or file cycle.

DELETE_FILE or
DELF

FILE=tile
PASSWORD=name or keyword
STATUS =status variable

Parameters FILE or F

Remarks

Specifies the permanent file to be deleted. Omission of a
cycle reference causes $LOW to be used. This parameter
is required.

PASSWORD or PW

Specifies the file password. It must match the file
password in the catalog entry; otherwise, the command is
terminated and an error status is returned. Omission or
specification of the keyword NONE causes no password to
be used.

• All storage space is released, and if the only
remaining cycle is being deleted, the entire catalog
entry is deleted.

• If the file is in use (open) within the requesting job,
an abnormal status is returned.

• If other jobs are using the file at the time it is
deleted, the file remains available to those jobs that
are currently accessing the file until they detach the
file.

Revision G Commands and Functions 2-231

DELETE_FILE_ CONNECTION

Examples

• The job issuing the DELETE_FILE command can no
longer access the file, that is, all outstanding
attachments of the cycle to this job will be detached.

• Only a user with CONTROL permission can delete a
file.

• For more information, see the NOSNE System Usage
manual.

The following example deletes cycle number 88 of file
DATA_FILE_ l that resides in the master catalog.

/delete_file $user.data_f11e_1.88 pw=pw_for_data_file_l

DELETE _FILE_ CONNECTION
Command

Purpose

Format

Deletes the connection between a subject file and a target
file.

DELETE_FILE_CONNECTION or
DELFC

STANDARD_FILE=file
FILE=file
STATUS=status variable

Parameters STANDARD_FILE or SF

Remarks

Specifies one of the following file names: $ECHO,
$ERRORS, $INPUT, $LIST, $OUTPUT, $RESPONSE, or
any other file which is connected. This parameter is
required.

FILE or F

Specifies the name of the target file to be disconnected.
This parameter is required.

• The original connections for $RESPONSE cannot be
deleted.

• The DISPLAY_FILE_CONNECTIONS command lists
each subject file and its target files.

• For more information, see the N OSNE System Usage
manual.

2-232 NOS/VE Commands and Functions Revision G

Examples

DELETE_FILE_PERMIT

The following example deletes two subject file connections.

/delete_file_connection $echo echo_file
/delfc $response response_file

DELETE_FILE_PERMIT
Command

Purpose Deletes an access control entry that was previously
established for a file.

Format DELETE_FILE_PERMIT or
DELFP

FILE=file
GROUP=keyword
FAMILY_NAME=name
USER=name
ACCOUNT= name
PROJECT=name
STATUS= status variable

Parameters FILE or F

Revision G

Specifies the file for which an access control entry is
being deleted. This parameter is required.

GROUP or G

Specifies if the permit entry to be deleted applies to a
specific user or group of users. The group selections are:

PUBLIC

All users regardless of family, account, project or user
identifications.

FAMILY

All users in the specified family.

ACCOUNT
All users associated with the specified family and
account identifications.

PROJECT
All users associated with the specified family, account,
and project identifications.

Commands and Functions 2-233

DELETE_FILE_PERMIT

USER

The user identified by the specified family and user
identifications.

USER_ ACCOUNT

The user identified by the specified family, account,
and user identifications.

MEMBER

The user identified by the specified family, account,
project, and user identifications.

Omission causes USER to be used.

FAMILY_NAME or FN

Specifies the family name associated with the permit
entry being deleted. Omission causes the family name
associated with the requesting job to be used if the
GROUP selection indicates this parameter is applicable. If
the GROUP selection indicates this parameter is not
applicable, an abnormal status is returned.

USER or U

Specifies the user name associated with the permit entry
being deleted. Omission causes the user name associated
with the requesting job to be used if the GROUP selection
indicates this parameter is applicable. If the GROUP
selection indicates this parameter is not applicable, an
abnormal status is returned.

ACCOUNT or A

Specifies the account name associated with the permit
entry being deleted. Omission causes the account name
associated with the requesting job to be used if the
GROUP selection indicates this parameter is applicable. If
the GROUP selection indicates this parameter is not
applicable, an abnormal status is returned.

PROJECT or P

Specifies the project name associated with the permit
entry being deleted. Omission causes the project name
associated with the requesting job to be used if the
GROUP selection indicates this parameter is applicable. If
the GROUP selection indicates this parameter is not
applicable an abnormal status is returned.

2-234 NOSNE Commands and Functions Revision G

Remarks

Examples

DELETE_REMOTE_ VALIDATION

• This request can be issued only by the owner of the
file.

o For more information, see the NOSNE System Usage
manual.

The following example deletes a file permit for file
DATA_FILE_ l in catalog CATALOG_ 1.

/delete_file_permit $user.catalog_1.data_file_O
.. /group=user user=krj
/disc $user.catalog_1.data_file_O permits

PERMIT_GROUP: USER
FAMILY: NVE, USER: DLH
PERMITS: READ
SHARE: READ
APPLICATION_INFORMATION:

The permission previously established for user KRJ is
removed, leaving only the permission for user DLH.

DELETE_REMOTE_ VALIDATION
Command

Purpose

Format

Removes a remote validation established by a previous
CREATE_REMOTE_ VALIDATION command.

DELETE_REMOTE_ VALIDATION or
DELRV

LOCATION=list of name or keyword
STATUS =status variable

Parameters LOCATION or L

Remarks

Revision G

Specifies the name of the remote location for which the
validation is to be deleted. Values can be a list of remote
location names or the keyword ALL. If ALL is specified,
all lists of validation information established by the
current job are deleted. If omitted, ALL is assumed.

For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-235

DELETE_ VARIABLE

DELETE_ VARIABLE
Command

Purpose

Format

Deletes variable declarations from the current block.

DELETE_ VARIABLE or
DELETE_ VARIABLES or
DELV

NAMES=list of name
STATUS= status variable

Parameters NAMES or NAME or N

Remarks

Examples

Specifies the name(s) of the variable(s) whose declaration
is to he removed. This parameter is required.

• You can use the DISPLAY_ VARIABLE_LIST command
to list variables that are currently accessible.

• For more information, see the NOSNE System Usage
manual.

The following example uses the DELETE_ VARIABLE
command to remove variables named COUNT and LOOPS.

/delete_var1able (count, loops)

DESIGN _SCREEN
Command

Purpose Enables you to enter the Screen Design Facility (SDF).

Format DESIGN_SCREEN or
DESIGN_SCREENS or
DESS

LIBRARY= file
MODE= keyword
SCREEN _NAME =name
SOURCE =file
STATUS= status variable

Parameters LIBRARY or L

Specifies the name of the object library for the SDF
session. All object screen modules for this SDF session are
extracted from and/or placed in this library. The default
library is SCREEN_LIBRARY in the current working
catalog. The maximum number of screens you can store in

2-236 NOSNE Commands and Functions Revision G

Revision G

DESIGN _SCREEN

your library is 200. The object library used by SDF can
be maintained by the CREATE_ OBJECT_ LIBRARY
utility.

MODE or M

Indicates the session mode. Options are:

EDIT

Displays the Select screen.

LEARN

Guides you to the SDF online manual.

This parameter enables you to bypass the SDF Banner
screen and go directly to the mode indicated by the
keyword. If not specified, you select the mode from the
SDF Banner screen.

SCREEN_NAME or SN

Specifies the name of an existing screen in your object
library. This optional parameter causes immediate entry
into an edit session at the named screen. You bypass the
Select screen from which you select a screen. The MODE
parameter takes precedence over the SCREEN_NAME
parameter.

SOURCE or S

Specifies a local file name to write a record definition for
any screen that is saved in the object library specified by
the LIBRARY parameter. Record definitions are generated
source code descriptions of all variables defined for the
screen.

The definitions are written in the programming language
of the application using the screen. Each definition is in
the form of a source text record which can be used as
input for SCU. The screen name is used as the name of
the deck. If SOURCE is not specified, record definitions
are written on the file $LOCAL.SOURCE.

Commands and Functions 2-237

DETACH_FILE

Remarks • For more information, see the Screen Design Facility
manual.

• There are three ways to access SDF when you logon
with the DESS command. First, you can enter the
DESS command without parameters and use the SDF
Banner screen. Second, you can enter the DESS
command with the SCREEN_NAME parameter and
immediately enter the EDIT mode with the specified
screen displayed at your terminal. Third, you can
enter the DESS command with the MODE parameter.

DETACH_FILE
Command

Purpose

Format

Detaches one or more files from a job.

DETACH_FILE or
DETACH_FILES or
DETF

FILES= list of file
STATUS=status variable

Parameters FILES or FILE or F

Remarks

Specifies the files to be detached. This parameter is
required.

• Following this command the files are no longer
accessible to the job.

• The file must not be opened.

• For temporary files, this request also deletes the
registration of the file in the temporary catalog.

• To return a file, all instances of open for the specified
local file name must be closed. Standard files that
reside in the $LOCAL catalog (such as $LIST) cannot
be returned, because those files always have an
outstanding instance of open within a job.

• If the file is a permanent mass storage file, the
attachment of the file to the job ends with this
request. The file's reserved mass storage space and its
related file attributes and catalog information remain
unaffected.

2-238 NOS/VE Commands and Functions Revision G

Examples

DETACH_JOB

• If the file is a temporary mass storage file, its space
is returned to the system and its attribute set is
deleted.

• If you specify more than one file and an abnormal
status is encountered when detaching one of the files,
only those files which were specified previous to the
file which returned an abnormal status are detached.

• For more information, see the NOS/VE System Usage
manual.

Following are examples of how to detach a single file
(SCRATCH) and more than one file (TESTl;TEST2):

/detach_file file=scratch
/detach_files file=(test1,test2)

DETACH_JOB
Command

Purpose

Format

Remarks

Explicitly disconnects your terminal from the current job.

DETACH_JOB or
DETJ

STATUS= status variable

• A disconnected terminal can be reconnected at any
time with the ATTACH_JOB command.

• You can also disconnect your terminal by entering the
network keystroke sequence of the network by which
your terminal is connected to the system; the
disconnection sequences are listed in this manual.

• For more information, see the NOS/VE System Usage
manual.

Revision G Commands and Functions 2-239

DISPLA Y_ACTIVE_ TASKS

Examples In the following NOS dual-state example from the NAM
network, the interactive session is interrupted,
disconnected, and then reconnected.

/detach_Job

Welcome to the NOS/VE Software System.
Copyright Control Data 1983, 1987.
CYBER 855 Class SN2. NOS/VE 14904 7P
March20, 1987. 8:46AM.

You have the fol lowing detached Jobs:
S0855_0002_PDQ_0861

/d1splay_Job_status all
System_Supp 11ed_Name
use~ _Supp 11 ed_Name
Or 1ginat ing_User
Origmat mg_Fami ly
Joo_Class
JOb_Mode
JOb_State
Operator _Act 1on_Posted
D 1sp1 ay _Message

System_Suppl 1ed_Name
User _Suppl ied_Name
Or iginat ing_User
Originating_Fami ly
Job_Class
Job_Mode
Job_State
Operator_Action_Posted
Di sp 1 ay _Message
/attach_job S0861

S0855_0002_PdQ_0861
dlh_23
dlh
nve
interactive
interactive command disconnect
initiated
no
fortran 1=Suser.source_file l=listing

S0855_0002_pctq_0862
dlh_23S
dlh
nve
interactive
interactive connected
in it 1atec:t
no
display_jOb_status al 1

Job has been reconnected to this terminal
•Suspended - 1 •
p/resume_command
I

DISPLAY _ACTIVE_ TASKS
Command

Purpose Displays the tasks which are executing within the current
job.

Format DISPLAY_ACTIVE_ TASKS or
DI SAT

OUTPUT=file
STATUS= status variable

Parameters OUTPUT or 0

Specifies the file to which output is to be written. If the
OUTPUT parameter is omitted, file $OUTPUT is used.

2-240 NOS/VE Commands and Functions Revision G

Remarks

DISPLAY_APL_ WORKSPACE

e You can also execute this command at any time from
an interactive terminal by entering:

(nee) A

Where (nee) is your network command character.

• For more information, see the NOSNE System Usage
manual.

DISPLAY _APL_ WORKSPACE
Command

Remarks Reserved for site personnel, Control Data, or future use.

DISPLAY_BACKUP_LABEL_TYPE
Command

Purpose Displays the current job default label type for a
permanent file backup file which is assigned to a tape
device.

Format DISPLAY_BACKUP _LABEL_ TYPE or
DISBLT

OUTPUT=file
STATUS=status variable

Parameters 0 UTP UT or 0

Remarks

Examples

Revision-G

Specifies the file into which information is written.
Omission causes $OUTPUT to be used.

For more information, see the NOSNE System Usage
manual.

The following example displays the current job default
label type for a permanent file backup assigned to a tape
device:

/display_baekup_label_type

Commands and Functions 2-241

DISPLAY_ CATALOG

DISPLAY_ CATALOG
Command

Purpose Displays information about the . files and catalogs
registered in a specified catalog or about the access
control list established at a catalog level.

Format DISPLAY_CATALOG or
DISC

CATALOG= file
DISPLAY_ OPTIONS= keyword
OUTPUT= file
DEPTH= integer or keyword
STATUS =status variable

Parameters CATALOG or C

Specifies the catalog from which information is to be
displayed. Omission causes the current working catalog to
be used.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Specifies the type of display being requested. Options are:

IDENTIFIER (ID, I)

Selects a display of the file or catalog name and type
(file or catalog) of each entry in the specified catalog.

FILE (F)

Selects a display of a summary description of files
registered in the specified catalog.

PERMIT (PERMITS, P)

Selects a display of access control entries that describe
the access permissions established at this catalog level.

CONTENT (CONTENTS, C)

Displays the amount of disk space in bytes that is
occupied by the files within the catalog, the size of
each file, and the damage condition of each cycle (if
damaged). The information to be displayed is specified
with the DEPTH parameter.

Omission causes IDENTIFIER to be used.

2-~42 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

DISPLAY_ CATALOG

OUTPUT or 0

Identifies the file to which information is displayed and,
optionally, specifies how the file is to be positioned prior
to use. This parameter cannot specify a file associated
with a remote family. Omission causes $OUTPUT to be
used.

DEPTH or D

Specifies the amount of information that is to be displayed
when the CONTENT display option is selected. If a depth
of 1 is specified, a one-line summary of the catalog is
displayed; if a depth of 2 is specified, a breakdown of the
files and subcatalogs contained in the catalog is displayed;
and if a depth of 3 or more is specified, a further
breakdown of the catalogs and files contained within the
subcatalogs of the catalog is displayed. Specifying the
keyword ALL displays information about all subcatalogs
and files contained in a catalog. If the DEPTH parameter
is omitted, a depth of 2 is assumed.

o If the catalog belongs to another user, the display
includes only information for files or catalogs to which
the requesting user is permitted access (that is,
permitted for any of the access modes).

• For more information, see the NOSNE System Usage
manual.

The following example displays information for the master
catalog using the ID option.

/display_catalog $user do=id
CATALOG: CATALOG_1

FILE: DATA_FILE_1
FILE: EPILOG
FILE: PROLOG

The following example displays information for the master
catalog using the FILE option.
/disc $user do=fil~

DATA_FILE_1
NUMBER OF CYCLES: 1, ACCOUNT: 05927, PROJECT: P693N354

EPILOG
NUMBER OF CYCLES: 1, ACCOUNT: 05923, PROJECT: P693N354

PROLOG
NUMBER OF CYCLES: 1, ACCOUNT: 05923, PROJECT: P693N354

The following example displays information for the master
catalog using the PERMITS option.

Commands and Functions 2-243

DISPLAY_ CATALOG_ENTRY

/disc $user do=permits
PERMIT_GROUP: USER

FAMILY: NVE, USER: SDH
PERMITS: READ, SHORTEN, APPEND, MODIFY, EXECUTE,

CYCLE, CONTROL
SHARE: NONE
APPLICATION_INFORMATION:

The following example shows the catalog information
displayed after a damage condition was encountered on
file DATA_FILE_ 1. Along with the file's cycle number
(88), the system indicates only that the file contains
greater than zero bytes.
/d1splay_catalog $user oo=content
sdn 3,978 bytes in 3 files

oata_f 1le_1 O bytes m cycle 88
prolog 991 bytes
scu_ed1tor _pro log 2,987 bytes

DISPLAY_ CATALOG _ENTRY
Command

Purpose Displays catalog information about a file, its usage, or its
access control list.

Format DISPLAY_CATALOG_ENTRY or
DISCE

FILE=file
DISPLAY_ OPTIONS= keyword
0 UTP UT= file
DEPTH= integer or keyword
STATUS= status variable

Parameters FILE or F

Specifies the file for which catalog information is to be
displayed. Omission of the cycle causes a display for each
cycle of the file. This parameter is required.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Specifies the type of display being requested. Options are:

LOG (L)

Selects a display of file usage information contained in
the usage log. If the file is not owned by the
requesting user, only the log entry for the requestor is
displayed.

2-244 NOSNE Commands and Functions Revision G

Remarks

Revision G

DISPLAY_CATALOG_ENTRY

PERMIT (PERMITS, P)

Selects a display of access control entries that describe
the access permission to a file. The access control
entries are created using the CREATE_FILE_PERMIT
command.

DESCRIPTOR (D)

Selects a display of the catalog information that
describes the file and the file cycles.

CYCLE (CYCLES, C)

Displays the amount of disk space in bytes that is
occupied by a file cycle as well as the damage
condition of the cycle (if it is damaged). Whether a
summary for all cycles or information for each cycle is
to be displayed is specified with the DEPTH
parameter.

Omission causes DESCRIPTOR to be used.

OUTPUT or 0

Identifies the file to which information is displayed and,
optionally, specifies how the file is to be positioned prior
to use. This parameter cannot specify a file associated
with a remote family. Omission causes $OUTPUT to be
used.

DEPTH or D

Specifies the amount of information that is to be displayed
when the CYCLE display option is selected.. If a depth of
1 is specified, a one-line summary of the file is displayed;
if a depth of 2 is specified, a breakdown of each cycle of
the file is displayed. Specifying the keyword ALL, displays
information about all cycles contained in a file. If the
DEPTH parameter is omitted, a depth of 2 is assumed.

e If the file belongs to another user, the display is
provided only if the requesting user is permitted
access for any of the access modes.

o For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-245

DISPLAY_ COMMAND _INFORMATION

Examples The following example displays information for file
DATA_FILE_ l in the master catalog using the LOG
display option.

/display_catalog_entry $user.data_file_1 do=log
DATE AND TIME: 1986-06-06 10:32:36.072,
FAMILY: NVE, USER: SDH,
ACCESS COUNT: 3, LAST CYCLE: 88

The following example displays information for file
DATA_FILE_ l in the master catalog using the PERMITS
display option.

/disce $user.data_file_1 do=permits
NO PERMITS

The following example displays information for file
DATA_FILE_l in the master catalog using the
DESCRIPTOR display option.
/d1sce $user.data_file_1 do=descriptor

NUMBER OF CYCLES: 1 , ACCOUNT: D5927, PROJECT: P693N354
PASSWORD: PW_FOR_DATA_FILE_ 1, LOG SELECTION: TRUE
CYCLE NUMBER: 1, ACCESS COUNT: 1,
CREATION DATE AND TIME: 1986-06-06 10:32: 18.550,
LAST ACCESS DATE AND TIME: 1986-06-06 10:32: 18.647,
LAST MODIFICATION DATE AND TIME: 1986-06-06 10:32: 18.647,
EXPIRATION DATE: 1986-12-11

The following example displays information for cycle 88 of
file DATA_FILE_ l after a damage condition has
occurred:

/display_catalog_entry $user.data_file_1 do=cycles
data_file_1 O bytes in cycle 88
-- cycle 88 -- respf modification mismatch

DISPLAY_ COMMAND _INFORMATION
Command

Purpose Displays information about a command and its parameters
in the defined order of that command's parameters. The
information includes the names and abbreviations of
parameters, their types (including allowed keywords), and
the default values (or an indication that the parameter is
required).

2-246 NOSNE Commands and Functions Revision G

Format

DISPLAY_COMMAND_INFORMATION

DISPLAY_COMMAND_INFORMATION or
DISCP or
DISPLAY_COMMAND_PARAMETER or
DISPLAY_COMMAND_PARAMETERS or
DISC I

COMMAND= command
OUTPUT= file
STATUS= status variable

Parameters COMMAND or C

Remarks

Revision G

Specifies the name of the command for which information
is being sought. This parameter is required.

OUTPUT or 0

Specifies the file to which information is written.
Omission casues $OUTPUT to be used.

o The DISPLAY_COMMAND_INFORMATION command
returns information for all system-supplied commands,
SCL procedures, user programs, and utility
subcommands. You can use it for any command that
can be called at the point where the DISPLAY_
COMMAND_INFORMATION command is issued. For
instance, to get information about a Source Code
Utility (SCU) subcommand, you must be in SCU when
you issue the DISPLAY_COMMAND_INFORMATION
command.

o This command is intended as a memory aid to help
you recall both the required entries for a commmand
and the optional parameters. The online manual or
printed manual should be consulted for complete
information about a command and its parameters.

o For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-247

DISPLAY_ COMMAND _LIST

Examples The following example shows command information for the
CREATE_FILE command.

/display_corrmand_information c01T1Tiand=create_file
f i 1 e, f f i 1 e $required
local_file_name, lfn
password, pw
retention, r
log, 1
status

name = $optional
name = none
integer 1 .. 999 = 999
boolean = false
var of status = $optional

The FILE parameter accepts a file name as a value; there
is no default value because the parameter is required. The
RETENTION parameter is an integer in the range 1
through 99, the parameter is optional and the default
value for the parameter is 999.

DISPLAY_ COMMAND _LIST
Command

Purpose Displays information about the command list.

Format DISPLAY_COMMAND_LIST or
DISCL

DISPLAY_OPTIONS=list of keyword
OUTPUT=file
STATUS =status variable

Parameters DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Specifies a display option, entries can be:

ENTRY (E)

Displays the names of all entries in the command list.

SEARCH_MODE (SM)

Displays the command list search mode.

ALL

Displays the names of all entries in the command list
and the command list search mode.

Omission causes ENTRY to be used.

2-248 NOSNE Commands and Functions Revision G

Remarks

Examples

DISPLAY_ COMMAND _LIST_ENTRY

OUTPUT or 0

Identifies the file to which the information is written and,
optionally, specifies how the file is to be positioned prior
to use. Omission causes $OUTPUT to be used.

o Control Data is not responsible for the proper
functioning of statements that are displayed by the
DISPLAY_COMMAND_LIST command but are not
documented in the NOSNE manuals.

e For more information, see the NOSNE System Usage
manual.

The following is an example of a command list display.

/display_cOfTITland_list display_option=all
SEARCH MODE IS global
ENTRIES ARE :$local, $system,
:system.$system.scu.corrmand_library.5

DISPLAY_ COMMAND _LIST _ENTRY
Command

Purpose

Format

Displays information about one or more entries in a
command list.

DISPLAY_COMMAND_LIST_ENTRY or
DISCLE

ENTRY =list of file or keyword
DISPLAY_ OPTIONS= list of keyword
OUTPUT=file
STATUS =status variable

Parameters ENTRY or ENTRIES or E

Revision G

Selects the command list entry or entries you want to
display. Any entry that can be put in the command list
can be selected even if the entry is not presently in the
command list. In addition to entering the name of a
particular command list entry, you can also specify one of
the following options to select a display based on entry
type.

CONTROL_STATEMENT (CS)

Displays the SCL control statements and commands.

Commands and Functions 2-249

DISPLAY_ COMMAND _LIST_ENTRY

FIRST (F)

Displays the first entry in the command list, allowing
you to select a display of the subcomands supplied by
an active utility.

ALL

Displays the entire command list including the control
statements.

Omission causes FIRST to be used.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Selects the content of the output. You may specify one of
the following options:

NAME (N)

Displays the names of commands, functions, or control
statements in the command list. The names displayed
depend on the other display options you have chosen.

ALL_NAMES (AN)

Displays all names for commands, functions, and
control statements in the command list. These names
include abbreviations and aliases.

COMMAND (C)

Displays information about individual commands
within the command list entries. Commands that
reside within catalogs are not displayed.

FUNCTION (F)

Displays information about individual functions within
the command list entries.

ALL

Selects all the other options.

Omission of the DISPLAY_OPTION parameter causes
COMMAND and NAME to be used. If you do not specify
either COMMAND or FUNCTION as one of the
DISPLAY_OPTION choices, COMMAND is automatically
selected.

2-250 NOSNE Commands and Functions Revision G

Remarks

DISPLAY_CONNECTION_ATTRIBUTES

OUTPUT or 0

Identifies the file to which information is written and,
optionally, specifies how the file is to be positioned prior
to use. Omission causes $OUTPUT to be used.

For more information, see the NOSNE System Usage
manual.

DISPLAY_ CONNECTION _ATTRIBUTES
Command

Purpose Displays either all or a specified set of the terminal file's
connection attributes.

Format DISPLAY_ CONNECTION _ATTRIBUTES or
DISPLAY_ CONNECTION _ATTRIBUTE or
DISPLAY_ TERM_CONN _ATTRIBUTE or
DISPLAY_ TERM_ CONN _ATTRIBUTES or
DISTCA or
DISCA

TERMINAL_FILE NAME=file
DISPLAY_OPTIONS=list of name
OUTPUT= file
STATUS =status variable

Parameters TERMINAL_FILE_NAME or TFN

Revision G

Specifies the terminal file name. This parameter is
required.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Specifies the names of the attributes you want displayed.

See the CHANGE_CONNECTION_ATTRIBUTES
(CHACA) command description for descriptions of the
attributes.

Omission or the keyword ALL causes all attributes to be
displayed.

OUTPUT or 0

Specifies the name of the file on which the information is
to be displayed and, optionally, how the file is to be
positioned prior to use. Omission causes $OUTPUT to be
used.

Commands and Functions 2-251

DISPLAY_FILE

Remarks For more information, see the NOSNE System Usage
manual.

DISPLAY _FILE
Command

Purpose Displays a file in hexadecimal and/or ASCII form.

Format DISPLAY_FILE or
DISF

INPUT=file
OUTPUT=file
FORMATS= list of keyword
BYTE_ADDRESSES =list of range of integer
STATUS= status variable

Parameters INPUT or I

Specifies the file from which data is to be obtained and,
optionally, specifies how the file is to be positioned prior
to use. The file must not be open or attached with a
SHARE_MODE or OPEN_SHARE_MODE parameter
value of APPEND, MODIFY, or SHORTEN.

Data is displayed from the open position or byte address
until end-of-information is reached. This parameter is
required.

OUTPUT or 0

Specifies the file to which data is to be written and,
optionally, specifies how the file is to be positioned prior
to use. Omission causes $OUTPUT to be used.

FORMATS or FORMAT or F

Specifies whether to display in ASCII, hexadecimal, or
both. Options are:

ASCII

Display in ASCII (appears in 2-byte quantities).

HEX

Display in hexadecimal (appears in 1-byte quantities).

Omission of the parameter or selection of both the ASCII
and HEX values causes both the hexadecimal and its
printable ASCII equivalent to be displayed.

2-252 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

DISPLAY_FILE

BYTE_ADDRESSESorBYTE_ADDRESSorBA
Specifies the range of byte addresses to be displayed from
the input file. This parameter can be used only if the
input file is assigned to a disk device. Omission causes
the file to be displayed starting at the open position.

For more information, see the NOSNE System Usage
manual.

The following example displays the internal contents of
the entire file FILE_l. Only the ASCII format is
requested.

/display_file file_1 f =a sci i
BYTE ADDRESS ASCII

0 This is a temporar
32 y file that wi 11 be
64 used in a & COMPARE_
96 FILE example.

The following example repeats the DISPLAY_FILE
operation, but requests both ASCII and hexadecimal
formats.
/disf file_1 f=(ascii,hex)
BYTE ADDRESS HEXADECIMAL ASCII

0 0000000000001800 00000000001e5468 Th
16 6973206973206120 74656d706f726172 is is a temporar
32 792066696c650000 0000000016000000 y file
48 0000001e74686174 2077696c6c206265 that will be
64 207573656420696e 2061000000000000 used in a
80 150000000000261e·434f4d504152455f & COMPARE_
96 46494c4520657861 6d706c652e FILE example.

The next example displays the following ranges of byte
addresses for file FILE_ l: bytes 3 through 8; bytes 16
through 24; and bytes 56 through 88.
/disf file_1ba=(3 .. 8,16 .. 24,56 .. 88)
BYTE ADDRESS HEXADECIMAL ASCII

3 000000180000
16 6973206973206120 74 is is a t
56 2077696c6c206265 207573656420696e will be used in
72 2061000000000000 150000000000261e a &
88 43 c

Commands and Functions 2-253

DISPLAY_FILE_ATTRIBUTES

DISPLAY _FILE _ATTRIBUTES
Command

Purpose Specifies the files for which the selected attributes are to
be displayed.

Format DISPLAY_FILE_ATTRIBUTES or
DISPLAY_FILE_ATTRIBUTE or
DIS FA

FILE =list of file
DISPLAY_ OPTIONS= list of name
OUTPUT=file
STATUS =status variable

Parameters FILE or F

Specifies the files for which the selected attributes are to
be displayed. This parameter is required.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Specifies the attribute that should be displayed. If ALL is
specified, all file attributes are displayed. If the keyword
value SOURCE is specified, a description of how the
attribute value was defined is provided.

The following is a list of attribute names (and their
abbreviations) whose values may be displayed with the
DISPLAY_FILE_ATTRIBUTE command:

ACCESS_MODE (AM)
AVERAGE_RECORD_LENGTH (ARL)
BLOCK_ TYPE (BT)
CHARACTER_CONVERSION (CC)
COLLATE_ TABLE_NAME (CTN)
COMPRESSION _PROCEDURE_NAME (CPN)
DATA_PADDING (DP)
EMBEDDED_KEY (EK) or
ERROR_EXIT_NAME (EEN)
ERROR_EXIT_PROCEDURE_NAME (EEPN)
ERROR_LIMIT (EL)
ESTIMATED_RECORD_COUNT (ERC)
FILE_ACCESS_PROCEDURE (FAP) or
FILE_ACCESS_PROCEDURE_NAME (FAPN)
FILE_ CONTENTS· (FC)
FILE_ LIMIT (FL)
FILE_ ORGANIZATION (FO)
FILE_PROCESSOR (FP)

2-254 NOSNE Commands and Functions Revision G

Revision G

DISPLAY_FILE_ATTRIBUTES

FILE_STRUCTURE (FS)
FORCED_ WRITE (FW)
HASHING_PROCEDURE_NAME (HPN)
INDEX_LEVEL (IL)
INDEX_PADDING (IP)
INITIAL_HOME_BLOCK_COUNT (IHBC)
INTERNAL_CODE (IC)
KEY_LENGTH (KL)
KEY_POSITION (KP)
KEY_TYPE (KT)
LINE_NUMBER (LN)
LOCK_EXPIRATION _TIME (LET)
MAXIMUM_BLOCK_LENGTH (MAXBL)
MAXIMUM_RECORD_LENGTH (MAXRL)
MESSAGE_CONTROL (MC)
MINIMUM_BLOCK_LENGTH (MINBL)
MINIMUM_RECORD_LENGTH (MINRL)
OPEN _POSITION (OP)
PADDING_CHARACTER (PC)
PAGE_FORMAT (PF)
PAGE_LENGTH (PL)
PAGE_ WIDTH (PW)
PRESET_ VALUE (PV)
RECORD_LIMIT (RL)
RECORD_TYPE (RT)
RECORDS_PER_BLOCK (RPB)
STATEMENT_IDENTIFIER (SI)
USER_INFORMATION (UI)

The following attribute names may be used to query
information about the file which was not provided by the
SET_FILE_ATTRIBUTE command: .

APPLICATION _INFORMATION (AI)

Specifies information used by application programs for
additional access controls they impose.

SIZE (S)

Gives the file length in bytes.

GLOBAL_ACCESS_MODE (GAM)

Gives the modes of access the job is permitted to the
file. The possible modes of access are READ, WRITE,
APPEND, MODIFY, SHORTEN, and EXECUTE.

Commands and Functions 2-255

DISPLA Y_FILE_ATTRIBUTES

GLOBAL_FILE_ADDRESS (GFA)

Indicates the current byte address attained by the last
file access request issued against the file.

GLOBAL_FILE_NAME (GFN)

Specifies the unique file name identifying the file. The
system generates this name when it creates the file.

GLOBAL_FILE_POSITION (GFP)

Indicates the file position attained by the last file
access request issued against the file. The possible file
positions:

BOI

Beginning-of-information.

BOP

Beginning-of-partition.

MID_RECORD

Positioned between the beginning and end of a
record.

EOR

End-of-record.

EOP

End-of-partition.

EOI

End-of-information.

GLOBAL_SHARE_MODE (GSM)

Indicates whether the file can be shared among other
jobs and which modes of access sharing are possible.
Possible modes are NONE (implies the job has
exclusive use of the file), READ, WRITE, APPEND,
MODIFY, SHORTEN, and EXECUTE.

PERMANENT (P)

Indicates (via a boolean value) whether or not the file
is permanent.

2-256 NOSNE Commands and Functions Revision G

Remarks

DISPLAY_FILE_ATTRIBUTES

RING_ATTRIBUTES (RA)

Indicates the ring attributes that are preserved with
the file.

Omission causes these options to be used:

FILE_ CONTENTS
FILE_PROCESSOR
FILE_STRUCTURE
GLOBAL_ACCESS_MODE
PERMANENT
SIZE

OUTPUT or 0

Specifies the file upon which the information is to be
displayed and, optionally, specifies how the file is to be
positioned prior to use. This parameter cannot specify a
file associated with a remote family. Omission causes
$OUTPUT to be used.

• Each display entry includes the file name and the list
of requested attribute names and their associated
values.

• For the DISPLAY_OPTION parameter, the SOURCE
keyword must be used with another keyword or an
abnormal status is returned.

• The SCL function $FILE can also be used to obtain
certain file attributes.

• For more information, see the NOSNE System Usage
manual.

Revision G Commands and Functions 2-257

DISPLA Y_FILE_ATTRIBUTES

Examples The following example displays the initial default
attributes for a new file.

/set_f i le_attributes new_f i le
/display_f i le_attributes new_f i le al 1
Access_Mode <read, shorten, append, modify)
Application_ Information none
Average_Record_Length 0
Block._ Type system_spec if ied
Character_Conversion no
Collate_Table_Name none
Compress ion_Procedure_Name
Data_Padding
Emoedded_Key
Error _Exit _Name
Error _Limit
Est imated_Record_Count
F 1 le_Access_Procedure
i:11e_Contents
Fi le_L imit
Fi le_Organ izat ion
Fi le_Processor
Fi le_Structure
Forced_Wr i te
G loba 1 ~Access_Mode

Global_Fi le_Adaress
Global_Fi le_Name
G loba 1 _F; le_Pos it ion
G looa l _Share_Moae
Hashing_Proceaure_Name
Jnoex_Levels
Inoex_Paddmg
Initial _Home_B lock._Count
Internal_Code
Key_Lengtn
Key_Pos it ion
Key_Type
L me_Numoer
Loading_Factor
Lock_Expirat ion_ Time
Max imum_B lock _Length
Max imum_Record_Length
Message_Controi
Mm imum_B lock._Length
Minimum_Record_Length
()pen_Pos it 10n
Padd mg_Character
Page_Format
Page_Length
Page_ Width
Permanent
Preset_Value
Record_L imit
Record_ Type
Records_Per _Block.
R ing_At tributes
Size
Statement_ Identifier
User _lnformat ion

none
0
yes
none
0
0
none
unlrnown
I 4398046511103

sequential
unknown
unknown
no
(read. shorten, append,
modify, execute)
0
S0000000p2s0000d 19800812t000000
boi
none

/CampSsystem_hashing_procedure)
2
0

/1
asc1i
0
0
uncollated

/("Length" 1. "Location" 1)
90
60000
4128
256
none
18"
0
Sboi

burstable
60
132
no
0

/ 4398046511103
variable

/65535
(11, 11. 11)
0
("Length" 1, "Location" 1)
none

2-258 NOSNE Commands and Functions Revision G

DISPLAY_FILE_ CONNECTIONS

DISPLAY _FILE_ CONNECTIONS
Command

Purpose

Format

Displays the names of the files currently connected to the
subject files.

DISPLAY_FILE_CONNECTIONS or
DISPLAY_FILE_CONNECTION or
DISFC

STANDARD _FILES= list of file or keyword
OUTPUT=file
STATUS =status variable

Parameters STANDARD_FILES or STANDARD_FILE or SF

Specifies any or all of the following subject file names:
$ECHO, $ERRORS, $INPUT, $LIST, $OUTPUT,
$RESPONSE, or any other file which is connected. If the
keyword ALL is specified or if this parameter is omitted,
the file connections for all subject files are listed.

Remarks

Examples

Revision G

OUTPUT or 0

Identifies the file on which to write the file names
associated with the job's current subject file connections
and optionally, specifies how the file is to be positioned
prior to use. Omission causes $OUTPUT to be used.

For more information, see the NOSNE System Usage
manual.

The following example displays the file connections for
subject files $RESPONSE, $ECHO, and $OUTPUT.

/display_file_connection ($response,$echo,$outout)
:$LOCAL.$RESPONSE. 1 is connected to: :$LOCAL.$JOB_LOG. 1, :$LOCAL.OUTPUT. 1.
:$LOCAL.$ECHO. 1 is not connected to any files.
:$LOCAL.$0UTPUT. 1 is connected to: :$LOCAL.OUTPUT. 1.

The following example displays the file connections for all
of the subject files.
/disfc all
:$LOCAL.$ECHO. 1 is net connected to any files.
:$LOCAL.$ERRORS. 1 is connected to: :$LOCAL.OUTPUT. 1.
:$LOCAL.$INPUT. 1 is connected to: :$LOCAL. INPUT. 1.
:$LOCAL.$L!ST.1 is not connected to any files.
:$LOCAL.$0UTPUT. 1 is connected to: :$LOCAL.OUTPUT. 1.
:$LOCAL.$RESPONSE. 1 is connected to: :$LOCAL.$JOB_LOG. 1, :$LOCAL.OUTPUT. 1.

Commands and Functions 2-259

DISPLAY_FUNCTION_INFORMATION

DISPLAY _FUNCTION _INFORMATION
Command

Purpose Displays information about a function.

Format DISPLAY_FUNCTION _INFORMATION or
DISFI

FUNCTION= function
OUTPUT=file
STATUS =status variable

Parameters FUNCTION or F

Remarks

Examples

Specifies the function. This parameter is required.

OUTPUT or 0

Specifies the file to which the function information is
written. The default file is OUTPUT.

For more information, see the NOSNE System Usage
manual.

The following example requests information about the
$DATE function:

/display_function_information function=$date
parameter 1 : key month, mdy, dmy, iso, isod,

ordinal, default= default

This description shows the following:

• The $DATE function has one parameter.

• Possible entries for this parameter are one of the
following keywords:

MONTH
MDY
DMY
ISO
ISOD
ORDINAL
DEFAULT

• The parameter is optional. If you omit this parameter,
the system assumes DEFAULT is in effect.

2-260 NOSNE Commands and Functions Revision G

DISPLAY_JOB_ATTRIBUTE

DISPLAY _JOB _ATTRIBUTE
Command

Purpose

Format

Displays the attributes of your current job.

DISPLAY_JOB_ATTRIBUTE or
DISPLAY_JOB_ATTRIBUTES or
DI SJ A

DISPLAY_OPTION=list of keyword
OUTPUT=file
STATUS= status variable

Parameters DISPLAY_ OPTION or DISPLAY_ OPTIONS or DO

Specifies the information you want to display. The
keywords are:

Revision G

ALL

Displays all information. This is the default.

COMMENT_BANNER (CB)

Displays the COMMENT_BANNER job attribute.

CONTROL_FAMILY (CF)

Displays the family name of the control user.

CONTROL_ USER (CU)

Displays the user name of the control user.

COPIES (C)

Displays the COPIES job attribute.

CYCLIC_AGING_INTERVAL (CAI)

Displays the CYCLIC_AGING_INTERVAL job
attribute.

DETACHED_JOB_ WAIT_ TIME (DJWT)

Displays the DETACHED_JOB_ WAIT_ TIME job
attribute.

DEVICE (D)

Displays the DEVICE job attribute.

DISPATCHING_PRIORITY (DP)

Displays the DISPATCHING_PRIORITY job attribute.

Commands and Functions 2-261

DISPLAY_JOB_ATTRIBUTE

EARLIEST_PRINT_ TIME (EPT)

Displays the EARLIEST_PRINT_ TIME job attribute.

EARLIEST_RUN_TIME CERT)

Displays the EARLIEST_RUN ""'""TIME job attribute.

EXTERN AL_ CHARACTERISTICS (EC)

Displays the EXTERNAL_CHARACTERISTICS job
attribute.

FORMS_CODE (FC)

Displays the FORMS_CODE job attribute.

JOB_ABORT_DISPOSITION (JAD)

Displays the JOB_ABORT_DISPOSITION job
attribute.

JOB_CLASS (JC)

Displays the job class of your job.

JOB_MODE (JM)

Displays your job's job mode. Returnable values are
INTERACTIVE or BATCH.

JOB_QUALIFIER (JOB_QUALIFIERS or JQ)

Displays from zero to five site-defined names that may
be used to limit your job to a specific job class or set
of job classes or mainframes. For instance, a job
qualifier of VECTOR could be defined to mean that
the job requires vector processors. In this way, jobs
specifying the VECTOR qualifier could not be
submitted to machines that do not support this
capability.

JOB_RECOVERY_DISPOSITION (JRD)

Displays the JOB_RECOVERY_DISPOSITION job
attribute.

JOB_SIZE (JS)

Displays the size (in bytes) of your job's input file.

2-262 NOSNE Commands and Functions Revision G

Revision G

DISPLAY_JOB_ATTRIBUTE

JOB_SUBMISSION_ TIME (QUEUED_ TIME or JST
or QT)

Displays the time when your job arrived in the input
queue.

LATEST_ PRINT_ TIME (LPT)

Displays the latest time that output files created by
your job are to be printed. A value of NONE indicates
there are no print restrictions.

LATEST_RUN _TIME (LRT)

Displays the latest time that your job may be
initiated. If your job is not initiated by the specified
time, your job is discarded. If no value is displayed,
there is no restriction. For this release, this value is
always NONE.

LOGIN _ACCOUNT (LA)

Displays the account name under which your job is
scheduled and run.

LOGIN_FAMILY (LF)

Displays the family name under which your job is
scheduled and run.

LOGIN _PROJECT (LP)

Displays the project name under which your job is
scheduled and run.

LOGIN_ USER (LU)

Displays the user name under which your job is
scheduled and run.

MAXIMUM_ WORKING_SET (MAXWS)

Displays the MAXIMUM_ WORKING_SET job
attribute.

MINIMUM_ WORKING_SET (MINWS)

Displays the MINIMUM_ WORKING_SET job
attribute.

OPERATOR_FAMILY (DESTINATION_FAMILY or OF
or DF)

Displays the OPERATOR_FAMILY job attribute.

Commands and Functions 2-263

DISPLAY_JOB_ATTRIBUTE

OPERATOR_USER (STATION_OPERATOR or OU or
SO)

Displays the OPERATOR_ USER job attribute.

ORIGINATING_APPLICATION_NAME (OAN)

Displays the name of the application from which your
job was entered in the system.

OUTPUT_CLASS (OC)

Displays the OUTPUT_CLASS job attribute.

OUTPUT_ DESTINATION (ODE)

Displays the OUTPUT_DESTINATION job attribute.

OUTPUT_DESTINATION_USAGE (ODU or DU)

Displays the OUTPUT_DESTINATION_USAGE job
attribute.

OUTPUT_DISPOSITION (ODI)

Displays the OUTPUT_DISPOSITION job attribute.

OUTPUT_PRIORITY (OP)

Displays the OUTPUT_PRIORITY job attributes.

PAGE_AGING_INTERVAL (PAI)

Displays the PAGE_AGING_INTERVAL job attribute.

PURGE_DELAY (PD)

Reserved for future use.

REMOTE_HOST_DIRECTIVE (RHD)

Displays the REMOTE_HOST_DIRECTIVE job
attribute.

ROUTING_BANNER (RB)

Displays the ROUTING_BANNER job attribute.

SENSE_SWITCHES (SS)

Displays the settings of the job's sense switches.

SERVICE_CLASS (SC)

Displays the name of the job's service class.

2-264 NOS/VE Commands and Functions Revision G

Remarks

Revision G

DISPLAY_JOB_ATTRIBUTE

SITE_INFORMATION (SI)

Displays the SITE_INFORMATION string associated
with all output files created by your job.

STATION (S)

Displays the STATION job attribute.

SYSTEM_JOB_NAME (SJN)

Displays the name assigned to your job by the system.

USER_INFORMATION (Ul)

Displays the USER_INFORMATION job attribute.

USER_JOB_NAME (UJN)

Displays the user-supplied name of your job.

VERTICAL_PRINT_DENSITY (VPD)

Displays the VERTICAL_PRINT_DENSITY job
attribute.

VFU_LOAD_PROCEDURE (VLP)

Displays the VFU _LOAD_PROCEDURE job attribute.

OUTPUT or 0

Specifies the file to which the requested information will
be written. You can specify a file position as part of the
name. If omitted, $OUTPUT is assumed.

o If you enter this command without parameters, the
system displays all of your job's attributes.

o The SCL function $JOB can be used to determine
certain attributes of your job.

o See the CHANGE_JOB_ATTRIBUTE command for
information on how to change the values of the
attributes displayed with this command.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-265

DISPLAY_JOB_ATTRIBUTE

Examples The following example shows the job attributes for user
job name SARETT.

/d1splay_job_attributes do=al l
Comment _Banner
Control_Fami ly
Control_User
Copies
Cyclic_Aging_lnterval
Detached_Job_Wait_Time
Device
Dispatching_Priority
Earl iest_Pr int_ Time
Earl iest_Run_Time
External _Characteristics
Forms_Code
Job_Abort_Dispos 1 t ion
Job_Class
Job_Moae
Job_Qualifier
Job_Recovery _Disposition
Job_S1ze
Job_Submission_Time
Latest_Print_ Time
Latest_Run_ T1me
Login_Account
Login_Fami ly
Login_Project
Login_User
Max imum_Work ing_Set
Mm imum_work ing_Set
Operator _Family
Operator_User
Or 1ginat ing_App l icat ion_Name
Output_Class
Output_Dest inat ion
Output_Destination_Usage
Output_Disposit1on
Output_Pr 1or i ty
Page_Ag ing_ l nterva l
Purge_Delay
Remote_Host_Directive
Rout i ng_Banner
Sense_ Sw i t ches
Service_Class
Site_Jnformation
Stat ion
System_Job_Name
User_lnformation
User_Job_Name
Vertical_Print_Density
VFU_Load_Procedure

2-266 NOSNE Commands and Functions

nve
sarett
1
1000000000
3600
automatic
p5
none
none
'NORMAL'
'NORMAL'
terminate
interactive
interactive connected
[]
continue
0
1987-07-31.14:51:41
none
none
d1257
nve
p83a2821
sarett
1000
20
nve
sarett
osa$dual_state_interactive
normal
'NVE'
dual_state
printer
low
50000
none

[)
interactive

automatic
$0990_0102_aad_1367

sarett
file
none

Revision G

Remarks

Revision G

DISPLAY_JOB_ATTRIBUTE

SITE_INFORMATION (SI)

Displays the SITE_INFORMATION string associated
with all output files created by your job.

STATION (S)

Displays the STATION job attribute.

SYSTEM_JOB_NAME (SJN)

Displays the name assigned to your job by the system.

USER_INFORMATION (Ul)

Displays the USER_INFORMATION job attribute.

USER_JOB_NAME (UJN)

Displays the user-supplied name of your job.

VERTICAL_PRINT_DENSITY (VPD)

Displays the VERTICAL_PRINT_DENSITY job
attribute.

VFU_LOAD_PROCEDURE (VLP)

Displays the VFU_LOAD_PROCEDURE job attribute.

OUTPUT or 0

Specifies the file to which the requested information will
be written. You can specify a file position as part of the
name. If omitted, $OUTPUT is assumed.

• If you enter this command without parameters, the
system displays all of your job's attributes.

" The SCL function $JOB can be used to determine
certain attributes of your job.

• See the CHANGE_JOB_ATTRIBUTE command for
information on how to change the values of the
attributes displayed with this command.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-265

DISPLAY_JOB_ATTRIBUTE

Examples The following example shows the job attributes for user
job name SARETT.

/d1splay_job_attributes do=al 1
Comment _Banner
Control_Fami ly
Control_User
Copies
Cyc 1 ic_Aging_ Interva 1
Detached_Job_Wait_Time
Device
Dispatching_Pr iority
Ear 1 i est _Pr int_ Time
Ear 1 iest_Run_ Time
Externa l_Characterist ics
Forms_Code
Job_Abort_Dispos 1t ion
Job_Class
Job_Mode
Job_Qua l if i er
Job_Recovery _Disposition
Job_S1ze
Job_Subm iss ion_ Time
Latest_Pr int_ Time
Latest_Run_T1me
Login_Account
Login_Family
Login_Project
Login_User
Max imum_Work ing_Set
Min imun:_Work ing_Set
Operator _Family
Operator_User
Or 1ginat ing_App l 1cat ion_Name
Output_Class
Output_Dest inat ion
Output_Dest inat ion_Usage
Output_Dispos; t ion
Output_Pr1ority
Page_Ag ing_ Interval
Purge_Delay
Remote_Host_Directive
Rout ing_Banner
Sense_Swi tches
Service_Class
Site_ lnformat ion
Station
System_Job_Name
User _lnformat ion
User _Job_Name
Vert ica l_Pr int_Dens ity
VFU_Load_Procedure

2-266 NOSNE Commands and Functions

nve
sarett
1
1000000000
3600
automatic
p5
none
none
'NORMAL'
'NORMAL'
terminate
interactive
interactive connected
[)
continue
0
1987-07-31.14:51:41
none
none
d1257
nve
p83a2821
sarett
1000
20
nve
sarett
osa$dual_state_interactive
normal
'NYE'
dual_state
printer
low
50000
none

[)
interact 1ve

automatic
$0990_0102_aad_1367

sarett
f; le
none

Revision G

DISPLAY_JOB_ATTRIBUTE_DEFAULT

DISPLAY _JOB _ATTRIBUTE_ DEFAULT
Command

Purpose

Format

Displays the current settings of the system default values
for job attributes.

DISPLAY_JOB_ATTRIBUTE_DEFAULT or
DISPLAY_JOB_ATTRIBUTE_DEFAULTS or
DI SJ AD

JOB_MODE=list of keyword
DISPLAY_OPTION=list of keyword
OUTPUT=file
STATUS =status variable

Parameters JOB_MODE or JOB_MODES or JM

Revision G

Specifies the job modes for which the system default job
attribute values are to be displayed. Options are:

ALL

Display the system default job attribute values for
both interactive and batch jobs. This is the default.

BATCH

Display the system default job attribute values for
batch jobs.

INTERACTIVE

Display the system default job attribute values for
interactive jobs.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

Specifies what system default job attributes are to be
displayed. Keywords are:

ALL

Displays all of the following keyword information. This
is the default DISPLAY_OPTION value.

CPU_ TIME_LIMIT (CTL)

Displays the system default CPU_ TIME_LIMIT job
attribute.

Commands and Functions 2-267

DISPLAY_JOB_ATTRIBUTE_DEFAULT

JOB_ABORT_DISPOSITION (JAD)

Displays the system default JOB_ABORT_
DISPOSITION job attribute.

JOB_ CLASS (JC)

Displays the system default job class attribute for your
job.

JOB_QUALIFIER (JOB_QUALIFIERS, JQ)

Displays the system default JOB_QUALITIER job
attribute.

JOB_RECOVERY_DISPOSITION (JRD)

Displays the system default JOB_RECOVERY_
DISPOSITION job attribute.

LOGIN _FAMILY (LF)

Displays the system default LOGIN _FAMILY job
attribute.

MAGNETIC_ TAPE_LIMIT (MTL)

Displays the system default MAGNETIC_ TAPE_
LIMIT job attribute.

MAXIMUM_ WORKING_SET (MAXWS)

Displays the system default MAXIMUM_ WORKING_
SET job attribute.

OUTPUT_CLASS (QC)

Displays the system default OUTPUT_ CLASS job
attribute.

OUTPUT_DESTINATION_USAGE (ODU)

Displays the system default OUTPUT_
DESTINATION_ USAGE job attribute.

SITE_INFORMATION (SI)

Displays the system default SITE_INFORMATION job
attribute.

SRU _LIMIT (SL)

Displays the system default SRU _LIMIT job attribute.

2-268 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

DISPLAY_JOB_ATTRIBUTE_DEFAULT

STATION (S)

Displays the system default STATION job attribute.

VERTICAL_PRINT_DENSITY (VPD)

Displays the system default VERTICAL_PRINT_
DENSITY job attribute.

OUTPUT or 0

Specifies the file to which information is written.
Omission causes $OUTPUT to be used.

e This command displays only those job attributes
having system default values that may be defined by
your site. Note that some job attributes do not have
system default values.

• Some of the values displayed by this command may be
changed using the CHANGE_JOB_ATTRIBUTE
command.

o For more information, see the NOSNE System Usage
manual.

The following example shows the default job attributes for
your system.

/display_job_attribute_default display_options=all
Job_Mode: BATCH
CPU_Time_Limit
Job_Abort_Disposition
Job_Class
Job_Qualifier
Job_Recovery_Disposition
Login_Fami ly
Magnetic_Tape_Limit
Maximum_Working_Set
Output_Class
Output_Destination_Usage
Site_Information
SRU_ 1 imi t
Station
Vertical_Print_Density

Job_Mode: INTERACTIVE
CPU_ Time_L imit
Job_Abort_Disposition

unlimited
terminate
batch
[]

continue
nve
unspecified
1000
normal
dual_state
'CYBER 995 Class 102'
un 1 imited
ve_printer_109
file

unlimited
terminate

Commands and Functions 2-269

DISPLAY_JOB_HISTORY

Job_Class
Job_Qualifier
Job_Recovery_Disposition
Login_Family
Magnetic_Tape_Limit
Maximum_Working_Set
Output_Class
Output_Destination_Usage
Site_Information
SRU_ 1 imi t
Station
Vertical_Print_Density

interactive
[]

continue
nve
unspecified
1000
normal
dual_state
'CYBER 995 Class 102'
un 1 imi ted
ve_printer_109
file

DISPLAY _JOB _HISTORY
Command

Purpose

Format

Displays entries from the job history log.

DISPLAY_JOB_HISTORY or
DISJH

JOB _NAME= list of name or keyword
LOGIN _FAMILY= list of name or keyword
TRACE_JOB_CHILDREN=boolean
TRACE_JOB_OUTPUT=boolean
BEGINNING _LOG _POSITION= keyword
SORTED_ ORDER= keyword
OUTPUT=file
STATUS= status variable

Parameters JOB _NAME or JN

Specifies the job name for which the job history is to be .
displayed. You can specify one or more system-supplied or
user-supplied job names or the keywords CURRENT or
ALL. The default is CURRENT.

LOGIN_FAMILY or FAMILY_NAME or FN or LF

Specifies the login family name of the job for which the
job history is to be displayed. You can specify one or
more family names or the keywords CURRENT or
LOCAL. The default is CURRENT.

TRACE_JOB_CHILDREN or TJC

Specifies whether the history of jobs generated by the
selected job should be displayed. Specify TRUE or FALSE.
The default is FALSE.

2-270 NOSNE Commands and Functions Revision G

Remarks

Revision G

DISPLAY_JOB_HISTORY

TRACE_JOB_OUTPUT or TJO

Specifies whether the history of output files generated by
the selected jobs should be displayed. Specify TRUE or
FALSE. The default is FALSE.

BEGINNING_LOG_POSITION or BLP

Specifies the time of the beginning position in the job
history log from which entries are to be displayed. Specify
one of the following keywords:

BOI (B)

Beginning of information on the log.

SESSION (S)

From the start of the login time of the requesting job.

TODAY (T)

From the start of the current day's entries.

The default is SESSION.

SORTED_ORDER or SO

Specifies how the selected events should be sorted for
display. You can specify one of the following keywords:
TIME, JOB, or FAMILY. The default is FAMILY.

OUTPUT or 0

Specifies the file to which the display should be written.
If omitted, $OUTPUT is assumed.

• You can only display the history of jobs for which you
are the login or control user.

• The DISPLAY_JOB_HISTORY command displays
entries from the job history log of the NOSNE system
on which the command is entered. If you submit a job
that will be forwarded to another system for
processing, you will not be able to trace the job
history of the submitted job after it has been
forwarded.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-271

DISPLAY_JOB_LIMIT

DISPLAY _JOB _LIMIT
Command

Purpose Displays your job's limits.

Format DISPLAY_JOB_LIMIT or
DISPLAY_JOB_LIMITS or
DISJL

OUTPUT=file
STATUS =status variable

Parameters OUTPUT or 0

Specifies the file to which the required information will
be written. If omitted, $OUTPUT is assumed.

Remarks

Examples

• The SCL function $JOB_LIMIT can also be used to
determine your job's limits.

• For more information, see the NOSNE System Usage
manual.

When you enter DISPLAY_JOB_LIMIT, a display of your
job limits similar to the following example appears:

/display_job_ 1 imits
Limit Name Accumulator Resource L 1mit

CP _TIME
SRU
TASK

126663748
UNLIMITED

10

Abort Limit

140737488
UNLIMITED

11

DISPLAY_JOB_STATUS
Command

Purpose

Format

Displays the current status of one or more jobs.

DISPLAY_JOB_STATUS or
DISJS

NAME= list of name or keyword
DISPLAY_OPTION=list of keyword
OUTPUT= file
STATUS= status variable

2-272 NOSNE Commands and Functions Revision G

DISPLAY_JOB_STATUS

Parameters NAME or NAMES or JOB_NAME or JOB_NAMES or
JN or N

Revision G

Specifies the job whose status is to be displayed. If ALL
is specified, status of all jobs you own or submit are
displayed. Omission causes the status of the requesting
job to be displayed.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

Specifies what information is displayed for the selected
jobs. Keywords are:

ALL

Displays all of the following keyword information.

CONTROL_FAMILY (CF)

Displays the family name of the control user of the
job.

CONTROL_ USER (CU)

Displays the user name of the control user of the job.

CPU_ TIME_ USED (CTU)

Displays the CPU time used by the job.

DISPLAY_MESSAGE (DM)

Displays the last command executed or the last display
message issued, whichever is most recent.

JOB_CLASS (JC)

Displays the job's job class.

JOB_DESTINATION_USAGE (JDU)

Displays the application used to forward the job to a
remote system for execution.

JOB_MODE (JM)

Displays the job mode.

Commands and Functions 2-273

DISPLAY_JOB_STATUS

JOB_STATE (JS)

Displays the current state of the job. The following
values may be returned:

DEFERRED

Job is not yet eligible to be initiated.

QUEUED

Job is waiting to be initiated.

INITIATED

Job has been initiated.

TERMINATING

Job is terminating.

COMPLETED

Reserved for future use.

LOGIN_FAMILY (LF)

Displays the family name under which the job is
scheduled and run.

LOGIN_ USER (LU)

Displays the user name under which the job is
scheduled and run.

OPERATOR_ACTION _POSTED (OAP)

Displays a boolean indicating whether the job is
waiting for operator action. A value of TRUE indicates
the job is waiting for operator action. A value of
FALSE indicates the job is not waiting for operator
action.

PAGE_FAULTS (PF)

Displays the number of page faults caused by the job.

SYSTEM_JOB_NAME (SJN)

Displays the name assigned to the job by the system.

2-274 NOS/VE Commands and Functions Revision G

Remarks

Revision G

DISPLAY_JOB_STATUS

USER_JOB_NAME (UJN)

Displays the job name supplied by the user.

The default is CPU_ TIME_ USED, DISPLAY_MESSAGE,
JOB_CLASS, PAGE_FAULTS, and SYSTEM_JOB_
NAME.

OUTPUT or 0

Identifies the file to which the information is displayed
and, optionally, specifies how the file is to be positioned
prior to use. Omission causes $OUTPUT to be used.

• You can display only the status of jobs for which you
are the login user, the control user, or the immediate
parent job.

• A system operator can display the status of any job.

• You can obtain the status of jobs you have submitted
by using the JOB_NAME parameter.

• The SCL function $JOB_STATUS can be used to
determine the status of a job.

• You can also execute this command at any time from
an interactive terminal by entering:

(nee) S

where (nee) is your network command character. For
more information, refer to chapter 3 in this manual.

• To display the status of all your jobs at any time from
an interactive terminal, enter:

(nee) J

where (nee) is your network command character. For
more information, refer to chapter 3 in this manual.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-275

DISPLAY_KEYED _FILE

Examples The following example displays the status of a submitted
hatch job.

/disjs jn=my_job do=all
Control_Family
Control_User
CPU_Time_Used

Display_Message
Job_Class
Job_Destination_Usage
Job_Mode
Job_State
Login_Family
Login_User
Operator_Action_Posted
Page_Fau 1 ts

System_Job_Name
User_Job_Name

nve
SClQr

Job Mode- 16.137
Monitor Mode- 0.365

f orend
batch
ve
batch
initiated
nve
sclor
no
Assigned- 105

From Disk- 67
Reclaimed- 23

$0990_0102_aad_2011
my_job

DISPLAY _KEYED _FILE
Command

Purpose Formats and displays the contents of a keyed file.

Format DISPLAY_KEYED_FILE or
DI SKF

INPUT=file
OUTPUT= file
FORMAT= keyword
DISPLAY_ OPTION= list of keyword
BLOCK_LIST =list of integer
STATUS= status variable

Parameters INPUT or I

File whose contents is to he displayed. You must have at
least read permission to the file. This parameter is
required.

OUTPUT or 0

File to which the formatted display is written. If the
OUTPUT parameter is omitted, the display is written to
file $OUTPUT.

2-276 NOSNE Commands and Functions Revision G

Revision G

DISPLAY_KEYED_FILE

FORMAT or FORMATS or F

List of one or more keywords indicating the
representation used for the contents of records.

ASCII (A)

ASCII characters.

HEXADECIMAL (H)

Hexadecimal digits.

ALL

Both ASCII characters and hexadecimal digits. (No
other formats can be specified with ALL.)

If the FORMAT parameter is omitted, the representation
used is ASCII.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

List of one or more keywords indicating the types of
information to be displayed.

MAP (M)

Cross-reference of all blocks

TABLES (T)

Formatted contents of internal tables

INDEX_BLOCKS (IB or I)

Index records

DATA_BLOCKS (DB or D)

Data records

EMPTY_BLOCKS (EB or E)

Block numbers of empty blocks.

ALL (A)

All the preceding options. (No other display options
can be specified with ALL.)

The default value depends on whether the BLOCK_LIST
parameter is specified.

If the BLOCK_ LIST parameter is not specified, the
default value is MAP.

Commands and Functions 2-277

DISPLA Y_KEYED _FILE

Remarks

Examples

If the BLOCK_LIST parameter is specified, the default
value is ALL.

BLOCK_LIST or BL

Optional list of block numbers indicating the blocks to be
displayed. The blocks are displayed in the order specified
in the list.

You can specify from 1 through 999 block numbers and
ranges of block numbers. Block numbers range from 0
through 4398046511103 ([2**42)-1).

The BLOCK_LIST parameter does not limit the blocks in
the MAP cross-reference.

If the BLOCK_LIST parameter is omitted, the command
applies to all blocks in the file.

• A dump of even a small keyed file produces a very
long listing. So it is recommended that you first get a
cross-reference listing of the file (DISPLAY_
OPTION= MAP) so that you can limit the file dump to
only the pertinent information. The parameters that
limit the file dump are FORMAT, DISPLAY_
OPTIONS, and BLOCK_LIST.

• Do not specify FORMAT= ALL unless you require both
ASCII and hexadecimal representation; ALL doubles
the number of lines required to list record contents.

• The DISPLAY_OPTIONS parameter specifies the types
of information dumped.

• The file specified on the command must be a keyed
file and it must exist; otherwise, DISPLAY_KEYED_
FILE returns a warning message.

• For more information, see the NOSNE Advanced File
Management Usage manual.

This command writes a cross-reference of the contents of
file $USER.ISFILE on file ISMAP:

/display_keyed_file input=$user.isfile output=ismap

Assume that using the cross-reference from the previous
example, you decide to dump the data records from blocks
6 and 7 and blocks 9 through 15 in ASCII format. To do
so, you enter this command:

2-278 NOSNE Commands and Functions Revision G

DISPLAY_KEYED_FILE_PROPERTIES

/display_keyed_file input=$user.isfile ..
.. /output=isdump display_option=data_blocks
.. /block_list=(6,7,9 .. 15)

You could then print the listing on file ISDUMP.

DISPLAY _KEYED _FILE _PROPERTIES
Command

Purpose Displays properties of a keyed file. The displayed
properties can include file attributes, structural properties,
and statistics.

Format DISPLAY_KEYED_FILE_PROPERTIES or
DISKFP

FILE =list of any
OUTPUT=file
DISPLAY_OPTION=list of keyword
STATUS =status variable

Parameters FILE or INPUT or F or I

Revision G

Keyed file for which properties are to be displayed. You
must have at least read permission to the file. This
parameter is required.

To specify a nested file, first specify the file reference and
then the nested-file name, enclosed in parentheses.

OUTPUT or 0

File to which the display is written. If the OUTPUT
parameter is omitted, the display is written to file
$OUTPUT.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

List of one or more keywords indicating the property
types to be displayed.

FILE_ATTRIBUTES (FA)

File attributes kept for the life of the keyed file.

STATISTICS (S)

Statistics maintained for the keyed file.
I

STRUCTURAL_PROPERTIES (SP)

Internal organization properties of the keyed file.

Commands and Functions 2-279

DISPLAY_KEYED_FILE_PROPERTIES

Remarks

Examples

ALL (A)

All of the above. (You cannot specify other keywords
with ALL.)

If the DISPLAY_OPTIONS parameter is omitted, the
display includes the file attributes and structural
properties, but not statistics.

• The display consists of two or more pages of output.

The first page lists the properties that pertain to
the entire file.

The second and any subsequent pages list the
properties of each nested file in the file and the
alternate keys defined for each nested file.

• Unless additional nested files have been created in a
file, a file contains only one nested file; it is named
$MAIN_FILE.

• For each alternate key, DISPLAY_KEYED_FILE_
PROPERTIES lists only those properties defined for
the key.

• The file access statistics listed may be inaccurate if
the file has been read without modify permission. The
reason for this is that when the file is read without
modify permission, the statistics for that read cannot
be recorded.

• The file specified on the command must be a keyed
file and it must exist; otherwise, DISPLAY_KEYED_
FILE_PROPERTIES returns a warning message.

• For more information, see the NOSNE Advanced File
Management Usage manual.

This command lists statistics and structural properties for
file $USER.KEYED_FILE on file $USER.LIST:

/display_keyed_file_properties ..
. . /file=$user.keyed_file output=$user. list
.. /display_option=(statistics, structural_properties)

This command lists the file attributes and structural
properties of file $USER.ISFIL on $OUTPUT. The
resulting display is shown:

2-280 NOSNE Commands and Functions Revision G

Revision G

DISPLAY_KEYED _FILE_PROPERTIES

/diskfp $user. isfil
Di sp 1 ay _Keyed_F i 1 e_Propert i es 10: 31 : 23

1984-09-19 NOS/VE Keyed Fi le Ut i 1 it ies 1. 1 11917
Fi le = .NVE.USER99. ISF!L

File_attributes and structural_properties at the file level

A 1 tered_Not _C 1 osed
Application_Information
Blocl_Length "actual"
Error _Ex it_Name
Fi le_Access_Procedure
Fi le_Content
Fi le_L imit
Forced_Wr i te
Logging_Opt ions
Log_Res i dence
t.lax imum_Record_Length
t.I in imum_Record_Length
Nested_File_Count
Qpen_Posit ion
Permanent
Record_L imit
R ing_Attr ibutes
Ruined_Flag
Segment_ Information

Blocks_ln_Use
Empty_B locl_Count

Size
User_lnformation

no
none
2048 "bytes"
none
none
UNKNOWN
100000000 "bytes"
unforced
none
none
80 "bytes"
50 "bytes"
1

Sboi
yes
10000
{11, 11, 11)
off

2
0
4096 "blocks"
none

Display_Keyed_File_Properties 10:31:23
1984-09-19 NOS/VE Keyed File Utilities 1. 1 11917

File attributes and structural_properties of St.IAIN_FILE

B lock_Count
Creation_Date
Data_Padding
Embedded_Key
Fi le_Organization
Index_Levels "current"
Index_Leve l _Overflow
Index_Padding
Key_Length
Key_Position
Key_Type
t.laximum_Record_Length
t.linimum_Record_Length
Record_ Type
Ruined_Flag

1
6/25/84 15:50: 14.274
0 "%"
yes
indexed_sequential
0
no
0 "%"
5 "bytes"
0
uncollated
80 "bytes"
5 "bytes"
undefined
off

Commands and Functions 2-281

DISPLAY_LINK_ATTRIBUTES

DISPLAY _LINK _ATTRIBUTES
Command

Purpose

Format

Displays the values set for individual link attributes.

DISPLAY_LINK_ATTRIBUTES or
DISPLAY_LINK_ATTRIBUTE or
DISLA

DISPLAY_ OPTIONS= list of keyword
OUTPUT=file
STATUS= status variable

Parameters DISPLAY_ OPTIONS or DISPLAY_ OPTION or DO

Specifies the link attributes you want displayed. The
keywords are:

Remarks

ALL

Displays all of the following keyword information.

CHARGE (C)

Displays the NOS or NOS/BE charge number.

FAMILY (F)

Displays the NOS family name. If the partner system
is NOS/BE, this option has no meaning.

PROJECT (P)

Displays the NOS or NOS/BE project number.

USER (U)

Displays the NOS or NOS/BE user name. In NOS/BE,
this parameter specifies the name used to access the
system and is the default permanent file id if a file id
is not specified on subsequent file transfer commands.

If this parameter is omitted, ALL is used.

OUTPUT or 0

Specifies the file to which information is to be sent.
Omission causes $OUTPUT to be used.

For more information, see the NOSNE System Usage
manual.

2-282 NOSNE Commands and Functions Revision G

DISPLAY_LOG

DISPLAY_LOG
Command

Purpose

Format

Displays the contents of the job log for the requesting job.

DISPLAY_LOG or
DISL

DISPLAY_ OPTIONS= integer or keyword
OUTPUT=file
STATUS=status variable

Parameters DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Specifies the portion of the log that is to be displayed.
Options are:

Remarks

Revision G

ALL (A)

Display starts at the beginning of the log.

LAST (L)

Display starts with the first message 8.fter the last
DISPLAY_LOG command.

integer

Displays the last n messages of the log, where n is a
positive integer value, and the current log message.

Omission causes ALL to be used.

OUTPUT or 0

Identifies the file to which the log contents are displayed
and, optionally, specifies how the file is positioned prior to
use. Omission causes $OUTPUT to be used.

• The display includes the time the log entry was made
(hh:mm:ss:mmm), message origin (CI if command
interpreted, CS if command skipped, PR if program
generated, RC if job recovery, or SY if system
generated), and the message text.

• The display terminates at the last log entry existing
at the time DISPLAY_LOG was entered.

Commands and Functions 2-283

DISPLAY_ MESSAGE

Examples

• You can also execute this command at any time from
an interactive terminal by entering:

(nee) L

Where (nee) is your network command character. For
more information, refer to chapter 3 in this manual.

• For more information, see the NOSNE System Usage
manual.

The following example displays the last seven lines of the
job log.

/a1s::i1ay_ log 01solay_o::it iori=7
09: 38: 05. 248. C:. se: _message_moae o~ 1e'
09:38:14.094.C:.se:_file_att~ioutes oata_file
09: 38: 2 ~. 386. c:. co;:iy_f i le oata_f i le
09:38:2~.497.PR. --ERRJR-- FSPSQPEN was issued for DATA_FILE. 1. wnicn does

nc: ex is:.
09:38:52.93G.c:.setmm full
09 : 39: O C . 656. C: . cooy _ f i 1 e data_ f i le
C9:39:0G.686.PR. --ERROR A~ 1016-- FSPSQPEN_FILE was issued for file,

:S:..OCA:...DATA_FILE. 1,
09:39:00.685.C:.wnicri does no: exist.
09: 39: 59. 427. Cl. d iso lay_ log a iso lay_oot ion=7

The following example displays the log starting with the
first message after the previous DISPLAY_LOG command.
/"Comments apoear in tne JOb log.
/"Tnese are inserted to orov1de entries for tnis example.
/disolay_ log do= last
09:40:20.034.Cl."Comments appear in tne JOO log.
09:41:05.444.Cl. "Tnese are inserted to provide entries for

tnis example.
09:41:38.007.CI.display_log do=last

The following example displays the entire job log on file
LOG_ OUTPUT.

/display_log o=log_output

DISPLAY _MESSAGE
Command

Purpose

Format

Displays a message in one or more logs.

DISPLAY_MESSAGE or
DISM

MESSAGE= string
TO= list of keyword
STATUS =status variable

2-284 NOS/VE Commands and Functions Revision G

DISPLAY_MESSAGE

Parameters MESSAGE or M

Revision G

Specifies the message text string to be placed in the log.
This parameter is required.

TO or T

Specifies the destination(s) to which the message is to be
directed. Options are:

SYSTEM

Sends a message to the system log.

STATISTIC

Places the message in the statistics log.

HISTORY

Places the message in the job history log. You can
view the message with the DISPLAY_JOB_HISTORY
command.

JOB_MESSAGE

Sends a message to your job status message area. You
can view the message with the DISPLAY_JOB_
STATUS command.

ACCOUNT

Sends a message to the account log.

ENGINEERING

Sends a message to the engineering log.

JOB_ STATISTIC

Sends a message to the job statistics log.

JOB

Sends a message to the job log. You can view the
message with the DISPLAY_LOG command.

ALL

Selects all of the TO parameter options.

Omission causes the option JOB to be used.

Commands and Functions 2-285

DISPLAY_ OBJECT_LIBRARY

Remarks

Examples

• Only the system operator can enter messages into the
system, account, engineering, or statistics log.

• " You can enter messages into the job statistic log, the
history log, the job status message area, and job log
associated with your job.

• For more information, see the NOSNE System Usage
manual.

The following example places a message in the job log
and displays that portion of the job log.

/d1solay_message 'Log message for job log.'
/display_ log do=2
10:07:20.036.Cl.disolay_message 'Log message for JOb log.·
10:07:41.879.PR.Log message for JOb log.
10: 07: 55. 654. Cl. d1sp lay_ log do=2

The following example uses the MESSAGE and TO
parameters to place a second message in the job log.

/dism 'Second log message.' to=job
/disl 2
10:08:43.089.CI.dism 'Second log message.' to=job
10:08:43.107.PR.Second log message.
10:08:47.219.CI.disl 2

The following example places a message in the history
log.

/dism 'Accounting jobs initiated.' to=history

DISPLAY~OBJECT_LIBRARY
Command

Purpose

Format

Displays information about an object library, object file, or
procedure file.

DISPLAY_OBJECT_LIBRARY or
DI SOL

LIBRARY= file
MODULE=list of range of any
DISPLAY_ OPTION= list of keyword
0 UTPUT =file
ALPHABETICAL_ ORDER= boolean
STATUS =status variable

2-286 NOSNE Commands and Functions Revision G

DISPLAY_ OBJECT_LIBRARY

Parameters LIBRARY or L

Object library, object file, or procedure file about which
information is displayed. This parameter is required.

MODULE or MODULES or M

List of modules whose information is to be displayed.

Use a string value for a module whose name is not an
SCL name. Some examples of such module names are: a
COBOL module, where a hyphen character (-) may be
part of the name, and a C function, where lower case is
significant.

If MODULE is omitted, information about all modules in
the file or library is displayed.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

Set of one or more keywords indicating the information
displayed in addition to the module type and name. (The
module types are load module, object module, bound
module, message module, SCL procedure, and program
description.) Options are:

NONE

No information other than the module type and name.

DATE_TIME (DT)

Creation date and time.

ENTRY_POINT (EP)

Entry point names.

HEADER (H)

Module header information. This includes the:

• Module type, name, creation date and time, kind,
generator, generator name version, and comments.

• Formal parameters availability, scope and log
option for SCL command procedures.

• Entire program description, availability, application
identifier, and scope and log option for program
description.

Revision G Commands and Functions 2-287

DISPLAY_ OBJECT_LIBRARY

• Natural language and online manual name for
message modules.

• The lowest and highest condition codes for message
modules that contain status message information.

LIBRARIES or LIBRARY (L)

Local file names within the object text of the modules
added to the program library list when the module is
loaded.

REFERENCE (R)

External references.

COMPONENT (C)

Module headers of the component modules if the
module is a bound module.

ALL

All of the options listed for the DISPLAY_OPTIONS
parameter.

If DISPLAY_OPTION is omitted, DATE_TIME is used.

OUTPUT or 0

Output file. This file can be positioned. If OUTPUT is
omitted, file $OUTPUT is used.

ALPHABETICAL_ORDER or AO

Indicates the display order for the module information.
Options are:

TRUE

Alphabetical order by module name.

FALSE

Order in which the modules exist on the file.

If ALPHABETICAL_ ORDER is omitted, FALSE is used.

2-288 NOSNE Commands and Functions Revision G

Remarks

Examples

DISPLAY_ OBJECT_ TEXT

e If you do not want to display information for all
modules in the file, you can limit the display by
specifying module names or module ranges on the
MODULE parameter.

• For more information, see the NOSNE Object Code
Management manual.

See the NOSNE Object Code Management manual for a
detailed example.

DISPLAY_OBJECT_TEXT
Command

Purpose Displays the internal object records of an object library or
file.

Format DISPLAY_OBJECT_TEXT or
DI SOT

FILE=file
OUTPUT= file
DISPLAY _HEX_RECORDS =boolean
STATUS= status variable

Parameters FILE or F

Remarks

Revision G

Object library or object file whose object records are to be
displayed. If FILE is omitted, file LGO is used.

OUTPUT or 0

Output file. This file can be positioned. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_HEX_RECORDS or DHR

Specifies whether large hexadecimal fields should be
displayed. (A code section is an example of a large
hexadecimal field.) If DISPLAY_HEX_RECORDS is not
specified, large hexadecimal fields are displayed.

o The first line of each object record pair displayed
contains information found in the object text
descriptor. This includes the record number and byte
offset of the object text descriptor, and the kind and
adaptable size of the next object record. The actual
object record is then displayed on subsequent lines.

Commands and Functions 2-289

DISPLAY_ OUTPUT_ATTRIBUTE

• For more information, see the NOSNE Object Code
Management manual.

DISPLAY_ OUTPUT _ATTRIBUTE
Command

Purpose

Format

Displays attributes of an output file.

DISPLAY_ OUTPUT _ATTRIBUTE or
DISPLAY_ OUTPUT _ATTRIBUTES or
DISOA

NAME=name
DISPLAY_ OPTION= list of keyword
OUTPUT=file
STATUS =status variable

Parameters NAME or N

Specifies the output file whose attributes are to be
displayed. Enter either the system-supplied or
user-supplied name.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

Specifies the information you want to display. The
keywords are:

ALL

Displays all of the following keyword information.

COMMENT_BANNER (CB)

Displays the COMMENT_BANNER attribute.

CONTROL_FAMILY (CF)

Displays the family name of the control user.

CONTROL_ USER (CU)

Displays the user name of the control user.

COPIES (C)

Displays the COPIES attribute.

COPIES_PRINTED (CP)

Displays the number of copies that have been printed,
if any.

2-290 NOSNE Commands and Functions Revision G

Revision G

DISPLAY_OUTPUT_ATTRIBUTE

DATA_MODE (DM)

Displays the DATA_MODE attribute.

DEVICE (D)

Displays a name that, when combined with the
STATION name, identifies a particular printer.

DEVICE_ TYPE (DT)

Displays the type of output device. Currently, this
value is always a printer.

EARLIEST_PRINT_ TIME (EPT)

Displays the EARLIEST_PRINT_ TIME attribute.

EXTERNAL_CHARACTERISTICS (EC)

Displays the EXTERNAL_ CHARACTERISTICS
attribute.

FILE_POSITION (FP)

Displays a restarting point for the output file if the
output is interrupted. The FILE_POSITION value is
always zero (BOI).

FILE_ SIZE (FS)

Displays the size of the output file in bytes.

FORMS_CODE (FC)

Displays the FORMS_CODE attribute.

LATEST_PRINT_ TIME (LPT)

Displays the LATEST_PRINT_ TIME attribute.

LOGIN_ACCOUNT (LA)

Displays the account name of the job generating the
output file.

LOGIN_FAMILY (LF)

Displays the family name of the job generating the
output file.

LOGIN _PROJECT (LP)

Displays the project name of the job generating the
output file.

Commands and Functions 2-291

DISPLAY_OUTPUT_ATTRIBUTE

LOGIN_USER (LU)

Displays the user name of the job generating the
output file.

OPERATOR_FAMILY (DESTINATION_FAMILY or OF
or DF)

Displays the OPERATOR_FAMILY attribute.

OPERATOR_USER (STATION_OPERATOR or OU or
SO)

Displays the OPERATOR_ USER attribute.

ORIGINATING_APPLICATION_NAME (OAN)

Displays the name of the application that entered the
job that generated the output file into the system.

OUTPUT_CLASS (OC)

Displays the OUTPUT_ CLASS attribute.

OUTPUT_DESTINATION (ODE)

Displays the OUTPUT_DESTINATION attribute.

OUTPUT_DESTINATION _USAGE (DESTINATION_
USAGE or DU or ODU)

Displays the OUTPUT_ DESTINATION_ USAGE
attribute.

OUTPUT_PRIORITY (OP)

Displays the OUTPUT_PRIORITY attribute.

OUTPUT_SUBMISSION _TIME (QUEUED_ TIME or
QT or OST)

Displays the time when the output file was released
from the job into the queue.

PURGE_DELAY (PD)

Reserved for future use.

REMOTE_HOST_DIRECTIVE (DUAL_STATE_
ROUTE_PARAMETERS or RHD or DSRP)

Displays the REMOTE_HOST_DIRECTIVE attribute.

2-292 NOSNE Commands and Functions Revision G

Revision G

DISPLAY_ OUTPUT_ATTRIBUTE

ROUTING_BANNER (RB)

Displays the ROUTING_BANNER attribute.

SITE_INFORMATION (SI)

Displays the SITE_INFORMATION string associated
with the job that generated the output file.

STATION (S)

Displays the STATION attribute.

SYSTEM_FILE_NAME (SFN)

Displays the system-supplied name of the output file.
This file is created by the NOSNE system on which
the PRINT_FILE command was entered. The name
created is unique (no other name on the network is
the same).

SYSTEM_JOB_NAME (SJN)

Displays the system-supplied name of the job that
generated the output file. This name is created by the
NOSNE system from which the job was submitted.
This name is unique (no other job in the network will
have the same name).

USER_FILE_NAME (UFN)

Displays the user-supplied name of the output file. If
no name is specified, the file name is used.

USER_INFORMATION (Ul)

Displays the user information string associated with
the job from which the output is generated.

USER_JOB_NAME (UJN)

Displays the user-supplied name of the job from which
the output file is generated.

VERTICAL_PRINT_DENSITY (VPD)

Displays the VERTICAL_PRINT_DENSITY attribute.

VFU_LOAD~PROCEDURE (VLP)

Displays the VFU_LOAD_PROCEDURE attribute.

Commands and Functions 2-293

DISPLAY_ OUTPUT_ATTRIBUTE

Remarks

Examples

OUTPUT or 0

Specifies the file to which the requested information will
be written. If omitted, $OUTPUT is assumed.

• The SCL function $JOB_OUTPUT can be used to
determine attribute information about an output file.

• For more information, see the NOS/VE System Usage
manual.

The following example display shows the output attributes
for file EXAMPLES:

/display_output_attributes name=examples do=all
Comment _Banner 'EXAMPLES'
Control_Fami ly nve
Control_User sarett
Copies 1
Cop1es_Printed O
Data_Mode coded
Device automatic
Device_ Type printer
Earliest_Print_Time none
E><terna l_Character 1st ics 'NORMAL'
Fi le_Pos it ion 0
Fi le_Size 6481
Forms _Code 'NORMAL'
Latest_Print_Time none
Login_Account d1257
Login_Family nve
Login_Project p83a2821
Log in_User sarett
Operator_Family nve
Operator_User sarett
Originat ing_Appl icat ion_Name osaSdua l_state_ interactive
Output_Class normal
Output_Destination 'NVE'
Output_Dest inat ion_Usage dual_state
Output_Priority low
Output_Subm ission_ Time 1987-07-31. 16: 09: 35
Purge_Delay none
Remote_Host_Directive
Routing_Banner
Site_lnformat ion
Station
System_Fi le_Name
System_Job_Name
User_File_Name
User _lnformat ion
User _Job_Name
Vertical _Pr int_Dens i ty
VFU_Load_Procedure

'SARETT'

automatic
$0990_0102_aad_1511
$0990_0102_aad_ 1367
examples

sarett
six
none

2-294 NOSNE Commands and Functions Revision G

DISPLAY_ OUTPUT_HISTORY

DISPLAY_ OUTPUT _HISTORY
Command

Purpose

Format

Displays output file entries from the job history log.

DISPLAY_OUTPUT_HISTORY or
DISOH

OUTPUT_FILE_NAME=list of name or keyword
JOB_NAME=list of name or keyword
LOGIN_FAMILY=list of name or keyword
BEGINNING _LOG _POSITION= keyword
SORTED_ ORDER= keyword
OUTPUT=file
STATUS =status variable

Parameters OUTPUT_FILE_NAME or OFN

Revision G

Specifies the output file name for which the output
history is to be displayed. You can specify a list of file
names or the keyword ALL. The default is ALL.

JOB_NAME or JN

Specifies the job name for which the output history is to
be displayed. You can supply a list of system-supplied or
user-supplied job names or the keywords CURRENT or
ALL. The default is CURRENT.

LOGIN_FAMILY or FAMILY_NAME or FN or LF

Specifies the login family name of the job for which the
output history is displayed. You can specify a list of
family names or the keywords CURRENT or LOCAL. The
default is CURRENT.

BEGINNING_LOG_POSITION or BLP

Specifies the time of the beginning position in the job
history log from which entries are to be displayed. Specify
one of the following keywords:

BOI (B)

Beginning of information on the log.

SESSION (S)

Beginning log position starting with the login time of
the requesting job.

Commands and Functions 2-295

DISPLAY_ OUTPUT_STATUS

Remarks

TODAY (T)

Start of the current day's entries.

The default is SESSION.

SORTED_ORDER or SO

Specifies how the selected events should be sorted for
display. You can specify one of the following keywords:
TIME, JOB, or FAMILY. The default is FAMILY.

OUTPUT or 0

Specifies the file to which the display should be written.
If omitted, $OUTPUT is assumed.

• You can only display the history of output files from
jobs for which you are the login or control user.

• The DISPLAY_OUTPUT_HISTORY command displays
entries from the job history log of the NOSNE system
on which the command is entered. If you route an
output file to another system for processing, you will
not be able to trace the output history of the file after
it has been forwarded.

• For more information, see the NOSNE System Usage
manual.

DISPLAY_OUTPUT_STATUS
Command

Purpose

Format

Displays information about the current status of an output
file from the NOSNE output queue.

DISPLAY_OUTPUT_STATUS or
DISOS or
DISPLAY_PRINT_STATUS or
DISPS

NAME= list of name or keyword
DISPLAY_OPTION=list of keyword
OUTPUT=file
STATUS= status variable

2-296 NOS/VE Commands and Functions Revision G

DISPLAY_ OUTPUT_STATUS

Parameters NAME or NAMES or N

Revision G

Specifies the output file(s) whose status will be displayed.

Values can be the system-supplied file name, the
user-supplied file name, or the keyword ALL. ALL
specifies that you want to display the status of all your
output files. If this parameter is omitted, ALL is assumed.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

Specifies what information is displayed for the selected
output files. Keywords are:

ALL

Displays all of the following keyword information.

CONTROL_FAMILY (CF)

Displays the family name of the control user of the
output files.

CONTROL_ USER (CU)

Displays the user name of the control user of the
output file.

LOGIN _FAMILY (LF)

Displays the login family name of the job that
generated the output file.

LOGIN_ USER (LU)

Displays the login user name of the job that generated
the output file.

OUTPUT_DESTINATION_USAGE (ODU)

Displays the OUTPUT_ DESTINATION_ USAGE
attribute.

OUTPUT_STATE (OS)

Displays the state of the output file. The following
values may be returned:

DEFERRED

File is not yet eligible for printing.

QUEUED

File is waiting to be printed.

Commands and Functions 2-297

DISPLAY_ OUTPUT_STATUS

Remarks

INITIATED

File is being printed.

TERMINATING

Printing process for the file is terminating.

SYSTEM_FILE_NAME (SFN)

Displays the system-supplied name of the output file.
This file name is generated by the NOSNE system
that executes the PRINT_FILE command. This name
is unique and identifies the file for the lifetime of the
file.

SYSTEM_JOB_NAME (ScJN)

Displays the system-supplied name of the job that
generated the output file. This name is generated by
the system that first queues the input file, is unique,
stays intact for the lifetime of the job, and is passed
on to all of the job's output files.

USER_FILE_NAME (UFN)

Displays the user-supplied name of the output file. If
no name is specified, the name of the file is used.

The default is OUTPUT_STATE, SYSTEM_FILE_NAME,
and USER_FILE_NAME.

OUTPUT or 0

Specifies' the file to which the requested information is
written. If omitted, $OUTPUT is assumed.

• You can only display the status of output files for
which you are the login user or the control user.

• A system operator can display the status of any output
file

• The SCL function $0UTPUT_STATUS can be used to
determine the current status of an output file.

• For more information, see the NOSNE System Usage
manual.

2-298 NOSNE Commands and Functions Revision G

Examples

DISPLAY_PROGRAM_ATTRIBUTES

The following sample display shows the output status for
user-supplied name EXAMPLES:

/display_output_status name=examples do=all
Control_Fami ly
Control_User
Login_Fami ly
Login_User
Output_Destination_Usage
Output_State
System_File_Name
System_Job_Name
User_File_Name

nve
sarett
nve
sarett
dual_state
printing
$0990_0102_aad_1516
$0990_0102_aad_1367
examples

DISPLAY _PROGRAM _ATTRIBUTES
Command

Purpose Displays the current job library list and default execution
option values for programs executed subsequently within
the job.

Format DISPLAY_PROGRAM_ATTRIBUTES or
DISPLAY_PROGRAM_ATTRIBUTE or
DI SPA

OUTPUT =file
STATUS= status variable

Parameters OUTPUT or 0

Remarks

Revision G

File on which the display is written. This file can be
positioned. If OUTPUT is omitted, file $OUTPUT is used.

• You can change the job library list and default
execution options with a SET_PROGRAM_
ATTRIBUTES command.

• For more information, see the NOSNE Object Code
Management manual.

Commands and Functions 2-299

DISPLAY_REMOTE_ VALIDATION

Examples The following command displays the current job library
list and default execution options.

/d isp l ay_program_attr ibutes
Libraries
Debug_L ibraries
Load_Map
Load_Map_Opt ions
Term inat ion_Error _Level
Preset_Value
Max imum_Stac1c_Size
Debug_Rmg
Debug_ Input
Debug_Output
Abort_Fi le
Debug_Mode

:$system.$system.aam.aaf$4dd_library. 105
: Ssystem. Ssystem. debug. bound_product. 4
:$local. loadmap
none
error
zero
2002944
11
: S local. command. 1
: S local. Soutput. 1
: S 1 oca l . Snu 1 l . 1
off

Ar ithmet ic_Overf low on
Arithmetic_Loss_of_S1gnificance: on
Divide_Fault
Exponent_Overf low
Exponent_Underf low
Fp_ Indefinite
Fp_Loss_of _Significance
lnval id_BDP _Data

on
on
on
on
off
on

You can change each listed attribute except the maximum
stack size, debug libraries and debug ring attributes using
a SET_PROGRAM_ATTRIBUTES command. The debug
libraries attribute lists the files containing the debug
object libraries. The list can be changed through the
SET_DEBUG_LIST command. The debug ring attribute
lists the ring in which Debug executes. The Debug ring
can be changed with the SET_DEBUG_RING command.

DISPLAY_REMOTE_ VALIDATION
Command

Purpose

Format

Displays the locations for which you created remote
validations using the CREATE_REMOTE_ VALIDATION
command.

DISPLAY_REMOTE_ VALIDATION or
DISRV

LOCATION= list of name or keyword
OUTPUT=file
STATUS= status variable

2-300 NOSNE Commands and Functions Revision G

DISPLAY_ TAPE_LABEL_ATTRIBUTES

Parameters LOCATION or L

Remarks

Examples

Specifies the name(s) of the remote location(s) to be
displayed. You can specify a family, a list of families, or
the keyword ALL. ALL specifies that the names of all the
locations for which there are current remote validations
will displayed.

If omitted, ALL is assumed.

OUTPUT or 0

Specifies the file to which the validation information is
written. This file must be assigned to an interactive
terminal. If omitted, OUTPUT is assumed. You may not
specify a remote file with this parameter.

• The $REMOTE_ VALIDATION function can also be
used to determine if validation has been defined for a
system.

• For more information, see the NOSNE System Usage
manual.

The following example displays location information for
location SKY:

/display_remote_validation l=sky
LOCATION: sky
I

DISPLAY_TAPE_LABEL_ATTRIBUTES
Command

Purpose Displays the current tape label attributes defined for an
ANSI labeled magnetic tape file.

Format DISPLAY_ TAPE_LABEL_ATTRIBUTES or
DISPLAY_ TAPE_LABEL_ATTRIBUTE or
DISTLA

FILE=file
DISPLAY_OPTIONS=list of name
OUTPUT=file
STATUS= status variable

Revision G Commands and Functions 2-301

DISPLAY_ TAPE_LABEL_ATTRIBUTES

Parameters FILE or F

Specifies the name of the file for which tape label
attribute information is to be displayed. This parameter is
required.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Specifies the tape label attribute information to be
displayed. Values are:

BLOCK_ TYPE (BT)
BUFFER_OFFSET (BO)
CHARACTER_CONVERSION (CC)
CHARACTER_SET (CS)
CREATION_DATE (CD)
CURRENT_FILE (CF)
EXPIRATION_DATE (ED)
FILE_ACCESSIBILITY_CODE (.FAC)
FILE_IDENTIFIER (FI)
FILE_SEQUENCE_NUMBER (FSN)
FILE_SET_IDENTIFIER (FSI)
FILE_SET_POSITION (FSP)
GENERATION _NUMBER (GN)
GENERATION_ VERSION_NUMBER (GVN)
MAXIMUM_BLOCK_LENGTH (MAXBL)
MAXIMUM_RECORD_LENGTH (MAXRL)
NEXT_FILE (NF)
PADDING_CHARACTER (PC)
RECORD_ TYPE (RT)
REWRITE_LABELS (RL)
SOURCE (S)
ALL

If omitted, ALL is assumed. See the CHANGE_ TAPE_
LABEL_ATTRIBUTES command for information on each
display option.

OUTPUT or 0

Specifies a file to which the information will be written.
You can position this file prior to use. If omitted,
$OUTPUT is assumed.

2-302 NOSNE Commands and Functions Revision. G

Remarks

DISPLAY_ TASK_STATUS

o If the file is not currently open when you enter this
command, the values specified on the most recent
CHANGE_TAPE_LABEL_ATTRIBUTES command are
displayed. If the file has not been opened by your job
and you have not entered a CHANGE_TAPE_
LABEL_ATTRIBUTES command, the default values
are displayed.

• Errors occur if the NOSNE file has not been assigned
to your job with a REQUEST_MAGNETIC_ TAPE
command.

• For more information, see the NOSNE System Usage
manual.

DISPLAY_TASK_STATUS
Command

Purpose

Format

Displays the current status of one or more named tasks.

DISPLAY_ TASK_STATUS or
DISTS

TASK_NAME=list of name or keyword
OUTPUT=file
STATUS ==status variable

Parameters TASK_NAME or TASK_NAMES or TN

Remarks

Revision G

Specifies the name of the task whose status is to be
displayed. This may be the names you supply or the
keyword ALL. If ALL is specified, the status of all tasks
initiated by the requesting group of synchronously
executing tasks is displayed. This parameter is required.

OUTPUT or 0

Specifies the file to which the display should be written.
Omission of the OUTPUT parameter causes $OUTPUT to
be used.

• The SCL function $TASK_STATUS can also be used
to determine the status of a task.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-303

DISPLAY_ TERMINAL_ATTRIBUTES

DISPLAY_ TERMINAL_ATTRIBUTES
Command

Purpose Di~plays the attributes and their corresponding values for
the interactive terminal currently in use.

Format DISPLAY_TERMINAL_ATTRIBUTES or
DISPLAY_ TERMINAL_ATTRIBUTE or
DI STA

DISPLAY_ OPTIONS= list of name
OUTPUT=file
STATUS= status variable

Parameters DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Specifies the names of the terminal attributes to be
displayed.

Remarks

Examples

Refer to the CHANGE_ TERMINAL_ATTRIBUTE
command for descriptions of the attributes.

Omission or the keyword ALL causes all attributes to be
displayed.

OUTPUT or 0

Identifies the file to which the information is to be
displayed and, optionally, specifies how the file is to be
positioned. Omission causes $OUTPUT to be used.

• The SCL function $TERMINAL_MODEL can be used
to determine the value of the TERMINAL_MODEL
terminal attribute.

• For more information, see the NOSNE System Usage
manual.

The following example lists the indicated terminal
attributes.

/display_terminal_attributes
.. /(cancel_line_character,
.. /backspace_character)
Backspace_Character
Cancel_Line_Character

$CHAR(8) "BS"
$CHAR(24) "CAN"

The following is an example of the default terminal
attributes for the DEC_ VT220 terminal model.

2-304 NOSNE Commands and Functions Revision G

/chata tm=dec_vt220
/display_terminal_attributes
Attention_Character
Backspace_Character
Begin_Line_Character
Cancel_Line_Character
Carriage_Return_Delay
Carriage_Return_Sequence
Character_Flow_Control
Code_Set
Echoplex
End_Line_Character
End_Line_Positioning
End_Output_Sequence
End_Page_Action
End_Partial_Character
End_Partial_Positioning
Fold_Line
Form_Feed_Delay
Form_Feed_Sequence
Hold_Page
Hold_Page_Over
Line_Feed_Delay
Line_Feed_Sequence
Network_Corrmand_Character
Page_Length
Page_Width
Parity
Status_Action
Terminal_Model

DISPLAY_TERM_CONN_DEFAULTS

$CHAR(O)
$CHAR(8)
$CHAR(O)
$CHAR(24)
0

CR
on
ascii
off
$CHAR(13)
lfs

none
$CHAR(10)
crs
off

0
FF
off

on
0
LF
$CHAR(37)
30
80
even
send
DEC_VT220

"NUL"
"BS"
"NUL"
"CAN"

"CR"

"LF"

"%"

DISPLAY_ TERM_CONN _DEFAULTS
Command

Purpose

Format

Revision G

Displays the connection attribute defaults for a terminal
connection.

DISPLAY_ TERM_CONN _DEFAULTS or
DISPLAY_TERM_CONN_DEFAULT or
DISTCD

DISPLAY_ OPTIONS= list of name
OUTPUT=file
STATUS =status variable

Commands and Functions 2-305

DISPLAY_ VALUE

Parameters DISPLAY_ OPTIONS or DISPLAY_ OPTION or DO

Specifies the names of the default attributes to be
displayed.

Remarks

For descriptions of the attributes, see the CHANGE_
TERM_CONN_DEFAULTS (CHATCD) command.

Omission or the keyword ALL causes all attributes to be
displayed.

OUTPUT or 0

Specifies the name of the file on which the information is
to be displayed, and, optionally, specifies how the file is
to be positioned prior to use. Omission causes $OUTPUT
to be used.

For more information, see the NOS/VE System Usage
manual.

DISPLAY_ VALUE
Command

Purpose Displays the value of one or more expressions.

Format DISPLAY_ VALUE or
DISPLAY_ VALUES or
DISV

VALUES=list of any
OUTPUT=file
STATUS =status variable

Parameters VALUES or VALUE or V

Specifies one or more expressions. When you specify more
than one value in the list, the system displays each on a
separate line. This parameter is required.

OUTPUT or 0

Specifies the file to which the information is to be
written. The default file is $OUTPUT.

2-306 NOSNE Commands and Functions Revision G

Remarks

Revision G

DISPLAY_ VALUE

o When the system returns an integer with a radix, the
radix matches the radix of the first operand of the
expression.

• Exercise care when using the DISPLAY_ VALUE
command when the file specified by the OUTPUT
parameter is not connected to the terminal (such as
file OUTPUT or $OUTPUT in a batch job). If you
create a file using this command's OUTPUT
parameter, the DISPLAY_ VALUE command gives the
PAGE_FORMAT file attribute of BURSTABLE if the
file is assigned to mass storage. If the file is assigned
to a terminal, the file is created with a PAGE_
FORMAT file attribute of CONTINUOUS. Thus, for
mass storage files, each time DISPLAY_ VALUE is
executed, a line printer page eject and page title may
result.

To avoid page ejects and page titles, set the PAGE_
FORMAT ATTRIBUTE to CONTINUOUS and the
FILE_CONTENTS attribute to LEGIBLE. Do this by
including the following command befQre using the
DISPLAY_FILE command on a mass storage file
(assuming an OUTPUT file named LIST_FILE):

/set_file_attribute file=list_file
.. /page_format=continuous ..
.. /file_contents=legible

For more information about file attributes, see the
NOSNE System Usage manual.

• If you supply a file reference as the argument for this
function, the file path returned depends on the current
message mode. If the current message mode if FULL,
the complete file path is returned. If the current
message mode is BRIEF, the file path relative to the
working catalog is returned.

You can use the SET_MESSAGE_MODE command to
change the current message mode.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-307

DISPLAY_ VARIABLE_LIST

Examples The following examples demonstrate use of the command
with several value kinds:

/display_value 2**7-4
124

/create_variable name=stat kind=status
/stat.normal =false
/stat .identifier= 'us'
/stat.condition= 330002
/stat.text= '?Text of Status Variable.'
/display_value stat
--ERROR--CC=us 330002 TEXT=?Text of status
variable.

/display_value ('Line 1' ,'Line 2' ,'Line 3')

Line 1

Line 2
Line 3

/display_value $variable(stat,kind)
STATUS

/display_value ($max_integer,$min_integer}
9223372036854775807
-9223372036854775807

DISPLAY_ VARIABLE_LIST
Command

Purpose Displays variables accessible to the current block.

Format DISPLAY_ VARIABLE_LIST or
DISVL

0 UT PUT= file
STATUS= status variable

Parameters OUTPUT or 0

Specifies the file you want to contain the list of variables.
The default file is $OUTPUT.

2-308 NOSNE Commands and Functions Revision G

Remarks

Examples

DMACT

DMACT

e The most recently created variable appears at the top
of the list.

• You can use the $VARIABLE function to return
attribute information about a specified variable.

• For more information, see the NOSNE System Usage
manual.

The following is a sample display of variables.
VARIABLE_! was created first, and VARIABLE_4 was
created last.

/display_variable_list
LOCAL VARIABLES IN JOB

variable_4
variable_2

osv$status

variable_3
variable_1

OSV$STATUS is a system variable created by the system
in the job block at the beginning of the job.

IM/DM Command

Purpose Creates reports showing how the database is used.

Format DMACT
FILE=file
LIST=file
REPORT=list of name
BEGIN _DATE= integer
END _DATE= integer
STATUS= status variable

Parameters FILE or F

Revision G

Specifies the DMACT input file. This file is the statistics
listing specified for the STATFILE parameter of the DMJ
command.

Omission of the FILE parameter causes DMSTATS to be
used.

Commands and Functions 2-309

DMACT

LIST or L

Specifies the output file to contain the selected report or
reports.

Omission of the LIST parameter causes DMSTOUT to be
used.

REPORT or REPORTS or R

Specifies the DMACT report or reports to generate.
Choose from the following reports:

TRANSACTION _ACTIVITY
PROGRAM_ACTIVITY
VIEW_ACTIVITY
RECORD_ACTIVITY
RESOURCE_LOCKS
PRIVACY_FAILURES
SESSION_LOG
USER_ ACTIVITY
HOURLY_ACTIVITY
ELEMENT_ USAGE

To generate multiple reports, separate the report names
by commas and enclose the names in parentheses. For
example, to generate the TRANSACTION _REPORT,
SESSION _LOG, and USER_ACTIVITY reports, enter the
following:

reports= (transact 10n_report, session_ log, user _act 1 vi ty)

To generate all ten reports, specify ALL or omit this
parameter.

BEGIN _DATE or BD

Specifies the date you want DMACT to begin compiling
the report or reports. Use the YYMMDD format when
specifying a date.

Omission of the BEGIN_ DATE parameter causes the first
date listed in the input file (the statistics listing file) to
be used.

END_DATE or ED

Specifies the date you want DMACT to stop compiling the
report or reports. Use the YYMMDD format when
specifying a date.

2-310 NOSNE Commands and Functions Revision G

Remarks

Examples

DMACT

DMACT

e The most recently created variable appears at the top
of the list.

o You can use the $VARIABLE function to return
attribute information about a specified variable.

• For more information, see the NOS/VE System Usage
manual.

The following is a sample display of variables.
VARIABLE_l was created first, and VARIABLE_4 was
created last.

/display_variable_list
LOCAL VARIABLES IN JOB

variable_4
variable_2

osv$status

variable_3
variable_1

OSV$STATUS is a system variable created by the system
in the job block at the beginning of the job.

IM/DM Command

Purpose Creates reports showing how the database is used.

Format DMACT
FILE=file
LIST=file
REPORT= list of name
BEGIN _DATE== integer
END _DATE= integer
STATUS= status variable

Parameters FILE or F

Revision G

Specifies the DMACT input file. This file is the statistics
listing specified for the STATFILE parameter of the DMJ
command.

Omission of the FILE parameter causes DMSTATS to be
used.

Commands and Functions 2-309

DMACT

LIST or L

Specifies the output file to contain the selected report or
reports.

Omission of the LIST parameter causes DMSTOUT to be
used.

REPORT or REPORTS or R

Specifies the DMACT report or reports to generate.
Choose from the following reports:

TRANSACTION _ACTIVITY
PROGRAM_ACTIVITY
VIEW_ACTIVITY
RECORD_ACTIVITY
RESOURCE_LOCKS
PRIVACY_FAILURES
SESSION_LOG
USER_ACTIVITY
HOURLY_ACTIVITY
ELEMENT_ USAGE

To generate multiple reports, separate the report names
by commas and enclose the names in parentheses. For
example, to generate the TRANSACTION _REPORT,
SESSION _LOG, and USER_ACTIVITY reports, enter the
following:

reports=(transact ion_report ,session_ log, user _act 1v ity)

To generate all ten reports, specify ALL or omit this
parameter.

BEGIN _DATE or BD

Specifies the date you want DMACT to begin compiling
the report or reports. Use the YYMMDD format when
specifying a date.

Omission of the BEGIN_ DATE parameter causes the first
date listed in the input file (the statistics listing file) to
be used.

END_DATE or ED

Specifies the date you want DMACT to stop compiling the
report or reports. Use the YYMMDD format when
specifying a date.

2-310 NOSNE Commands and Functions Revision G

Remarks

DMBR

DMBR

Omission of the END_DATE parameter causes the last
date listed in the input file (the statistics listing file) to
be used.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

IM/DM Command

Purpose

Format

Executes the DM Backup and Restore module, allowing
the data administrator to backup and restore files.

DMBR
UID=dm_name
UPW=dm_name
DB=name
ACTION= keyword
FILE= list of range of dm_ integer or keyword
JOURNAL=list of dm_star or keyword
BSN =list of range of dm_ integer or keyword
SET= list of dm_ integer or keyword
TO CB SN= list of range of dm_ integer or keyword
VERSION= integer
GET= dm_file_ descriptor
TOC =dm_file_descriptor
JOB =dm_file_descriptor
JOB _HEADER= dm_file_ descriptor
SUBMIT=keyword
WAIT= keyword
SUBACTION =keyword
INPUT=dm_file_descriptor
OUTPUT=dm_file_descriptor
VF =dm_file_descriptor
STATUS= status variable

Parameters UID

Revision G

User identification code (only first 8 characters are used).

IM/DM prompts you for this value if it is not specified.

UPW

User password (only the first 8 characters are used).

IM/DM prompts you for this value if it is not specified.

Commands and Functions 2-311

DMBR

DB

Name of the database.

IM/DM prompts you for this value if it is not specified.

ACTION

Action performed:

AUDIT

Lists the file sequence number, time span covered by
the file, last backup time, and last backup set used for
a DM journal file or data file.

BACKUP

Stores backup copies of data files and/or journal files
in a DM backup set.

FREE

Releases a DM backup set.

HISTORY

Lists the backup history for the specified data and
journal files.

LIST

Lists the contents of the specified DM backup sets.

RESET

Resets a journal file to the empty condition after it
has been successfully backed up using another utility
(not DMBR).

RESTORE

Restores a copy of a data file or journal file from a
DM backup set.

STATUS

Lists the file status of each occurrence database file.

IM/DM prompts you for this value if it is not specified.

2-312 NOSNE Commands and Functions Revision G

Revision G

DMBR

FILE or FILES

When ACTION= BACKUP, this parameter lists the data
files to be copied to a backup set.

When ACTION= HISTORY, this parameter specifies the
file on which the data file histories are written.

When ACTION= RESTORE, this parameter specifies the
data files to be restored.

Data files can be specified by number, a range of
numbers from 1 to 63, or by one of the following:

DDB

The definition database

ALL or *
All data files

NONE

No data files

If FILE is omitted, NONE is used.

JOURNAL or JOURNALS
Journal files on which the action (BACKUP, HISTORY,
RESET, or RESTORE) is performed. You can specify up to
6 files. Options include:

A

Primary journal file A

B

Primary journal file B

A COPY

Copy of journal file A

BCOPY

Copy of journal file B

ADDB

Definition database journal file A

BDDB

Definition database journal file B

Commands and Functions 2-313

DMBR

ALL or *
AU journal files

NONE

No journal files

If JOURNAL is omitted, NONE is used.

BSN

Backup sets on which the action (FREE or LIST) is
performed. It can specify a number, a range of numbers
(from 1 to 250), or the keyword ALL or * for all backup
sets.

SET or SETS

File sets to be copied to the backup set when
ACTION= BACKUP. It can be an integer, the keyword
ALL or * for all file sets, or the keyword NONE for no
file sets.

If SET is omitted, NONE is used.

TOCBSN

Backup file set from which a TOC file is restored. It can
be an integer, a range of integers from 1 to 250, or the
keyword ALL or * for all backup file sets.

VERSION

Version number of the default database.

If VERSION is omitted, 0 is used.

GET

File to audit when ACTION= AUDIT.

TOG

When ACTION= BACKUP, this parameter specifies the
file to which the table of contents is written.

When ACTION= RESTORE, this parameter specifies the
file descriptor skeleton for the table of contents files.

If TOC is omitted, BSN??? _ TOC is used where ??? is
replaced by the backup set number.

2-314 NOSNE Commands and Functions Revision G

Revision G

JOB

File on which the job statements are written when
ACTION=BACKUP or RESTORE.

If JOB is omitted, file DMBR_JOB is used.

JOB_HEADER

DMBR

File containing the statements that are to precede the
statements in the job file.

This parameter is required when DMBR is submitted in
batch mode.

SUBMIT

Indicates whether the JOB file should be submitted as a
batch job.

YES

Submit as a batch job.

NO

Do not submit as a batch job.

If SUBMIT is omitted, YES is used.

WAIT

Indicates whether the job should wait for files that are in
use.

YES

Waits for files.

NO

Does not wait for files.

If WAIT is omitted, YES is used.

SUBACTION

Reserved.

INPUT

File from which any missing required parameters are
read.

If INPUT is omitted, file INPUT is used.

Commands and Functions 2-315

DMCCF

Remarks

DMCCF

OUTPUT

File to which all messages produced are written.

If OUTPUT is omitted, file $OUTPUT is used.

VF

Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

IM/DM Command

Purpose

Format

Executes the DM Communications Control Facility to tune
the communication software.

DMCCF
ACTION= dm_ question_ mark or keyword
CCF = dm_file_ descriptor
INPUT= dm_file_ descriptor
0 UTP UT= dm_file _descriptor
VF= dm_file_ descriptor
STATUS =status variable

Parameters ACTION or A

Action to be performed on the communication control file
(CCF).

CREATE

Creates a new CCF.

UPDATE

Updates an existing CCF.

2-316 NOSNE Commands and Functions Revision G

Remarks

DMCPC

DMCPC

READ

Displays an existing CCF.

If ACTION is omitted, READ is used.

CCF

Communications control file.

If CCF is omitted, file DMCCF _ CCF is used.

INPUT

Input file containing any required parameters that are
missing.

If INPUT is omitted, file INPUT is used.

OUTPUT

Output file on which all messages are written.

If OUTPUT is omitted, file $OUTPUT is used.

VF
Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

For more information, see the DM System Administrator's
Reference Manual for DM on CDC NOSNE.

IM/DM Command

Purpose

Format

Revision G

Begins a DM COBOL Precompiler (DMCPC) session which
is used to compile special DM statements in the source
code of COBOL program and produces calls to the DM
user program interface (UPI).

DMCPC
SOURCE =dm_file_descriptor
DECKS= list of range of name or keyword
PC PUT= dm_file_descriptor
OBJECT=dm_file_descriptor

Commands and Functions 2-317

DMCPC

ERROR =dm_file_descriptor
UID=dm_name
UPW=dm_name
PROGRAM=name
STMT =keyword
LINELC =integer
RECORDTYPE =keyword
RECORDLC =integer
TRACE= keyword
STATS= keyword
INPUT= dm_file_ descriptor
VF= dm_file_ descriptor
COBOL= keyword
COBOL_PARAMETERS =string
STATUS =status variable

Parameters SOURCE or S

Sequential file or source library containing the source
code. The precompiler expands the special *DM commands
in the source code.

The source is assumed to be variable-length records
unless specified otherwise by the RECORDTYPE and
RECORDLC parameters.

If the file extension is omitted, _DMC is assumed. If the
file source_DMC exists, it is used; otherwise, the source
file is used. The precompiler default is a COBOL format
source file.

IM/DM prompts you for this value if it is not specified.

DECKS or D

If the source file is a source library, specifying
DECKS= ALL indicates that all the files in the source
library are to be precompiled. If the source file is not a
source library, the DECKS parameter performs no action.
By default, if you specify a source library as the source
file, you select the files to be precompiled.

PCP UT

Specifies the sequential file where the precompiled source
code is written. The PCPUT file defaults to variable
length records. Use the RECORDTYPE parameter to
specify fixed records for the PCPUT file and the source
file. Use the RECORD LC parameter to specify the length
in characters for these files. If you specify the PCPUT

2-318 NOSNE Commands and Functions Revision G

Revision G

DMCPC

parameter without a file descriptor, the source code is
written to the file source_COB (where source is a
variable name). If you specify NO on the COBOL
parameter, the file source_COB is created and saved;
otherwise, by default, it is deleted after the COBOL
compilation.

OBJECT or OBJ

The OBJECT parameter specifies the object file. Omission
of the OBJECT parameter causes program_OBJ to be
used.

ERROR

The ERROR parameter specifies the sequential file where
error and warning messages are listed. Omission of the
ERROR parameter causes OUTPUT to be used.

UID

The UID parameter specifies the user identification code.
UID can be an integer or an identifier that contains
letters and digits. Only the first 8 characters are used as
the UID.

The DID parameter is required. DM prompts you for the
UID parameter if you do not specify it on the command.

UPW

The UPW parameter specifies the user password. UPW
can be an integer or an identifier that contains letters
and digits. Only the first 8 characters are used as the
UPW.

The UPW parameter is required. DM prompts you for the
UPW parameter if you do not specify it on the command.

PROGRAM

Specifies an identifier that represents the name of the
program being compiled. A program name entered on a
*DM.PROGRAM statement within the GET file overrides
this parameter.

STMT

Reserved.

Commands and Functions 2-319

DMCPC

LINE LC

The LINELC parameter specifies the length in characters
of the source lines of the language. LINELC is an integer
value from 65 to 100. This overrides the global LINELC
in the PCD.

Omission of the LINELC parameter causes 72 to be used.

RECORDTYPE

Specifies the record types for the source and PCPUT files.
You can specify the keywords FIX and VAR. FIX indicates
that the source and PCPUT files have fixed length
records. VAR indicates that these files have variable
length records. If RECORDTYPE is set to FIX, then the
length in characters of the record is determined by the
RECORDLC parameter.

Omission of the RECORDTYPE parameter causes VAR to
be used.

RECORDLC

Specifies the length in characters of the records in the
source and PCPUT files when RECORDTYPE is set to
fixed. RECORDLC is an integer value from I to 200.

Omission of the RECORDLC parameter causes 200 to be
used.

TRACE

The TRACE parameter specifies the action of the trace
facility during program compilation. Options are:

NONE

Indicates that no tracing is performed.

REPLACE

Indicates that the precompiler should create program
trace records for all the database models referenced. If
a PTR for this program for a referenced model already
exists, its views are replaced with the new views
referenced by the current precompilation. You should
use TRACE= REPLACE when the program is moved
into production and when initial program trace records
are created.

2-320 NOSNE Commands and Functions Revision G

Revision G

DMCPC

UPDATE

Indicates that the view reference lists in the program
trace records are updated with any new views
referenced during the current compile. If a new model
is referenced, a new program trace record is created.
You should use TRACE= UPDATE when new models
and new views have been referenced within a module
of the program. Only the module that contains the
new references needs to be precompiled.

Omission of the TRACE parameter causes NONE to be
used.

STATS

The STATS parameter indicates if the statistics for the
precompile should be printed. STATS=NO indicates that
no statistics are printed. STATS= YES indicates that the
following statistics are printed:

ELAPSED SECONDS:
ELAPSED CPU SECONDS:
SOURCE LINES READ:
ROUTINES PROCESSED:
*DM STATEMENTS PROCESSED:

Omission of the STATS parameter causes NO to be used.

INPUT

Specifies the terminal or a sequential file of variable
length records. It contains answers to the prompts
produced by the program.

Omission of the INPUT parameter causes COMMAND to
be used.

VF

Specifies a valid vocabulary file. The descriptor of this file.
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

Commands and Functions 2-321

DMD BA

Remarks

DMD BA

COBOL or COB

Specifies whether or not to perform the COBOL
compilation. You can specify the keywords YES or NO.
YES means that a COBOL compilation is performed. NO
means that a COBOL compilation is not performed.

If you do not specify the PCPUT parameter, the file is
saved in the file source_COB (where source is a variable
name). By default, if no errors were detected during the
precompilation, a COBOL compilation is performed.

COBOL_PAR.AMETERS or CP

Specifies optional NOSNE COBOL parameters. You can
specify any of the NOSNE COBOL parameters. See the
COBOL Usage manual for more information.

Omission of the COBOL_PARAMETERS parameter causes
only the COBOL parameters specified on the DMCPC
command to be used.

e The precompiler can update the definition database to
identify which views are used by the program. This
trace information can be used to locate all the
programs that reference a particular view. Only
authorized users can use the precompiler and
unauthorized references to private models are not
allowed. ·

• For more information, see the IM/DM Application
Programming manual.

IM/DM Command

Purpose

Format

Executes the DM Database Administration module to
enter and modify the definition of a database.

DMD BA
UID=dm_name
UPW=dm_name
AIDS= keyword
DB=name
ACTION= keyword
MODE=keyword
TALK= integer
TERMINAL= dm_ terminal

2-322 NOSNE Commands and Functions Revision G

JO URN AL= keyword
APPLY _IF_ OK= keyword
CANCEL_ CHANGES= keyword
MENU= keyword
RECORDTYPE =keyword
RECORDLC =integer
LINELC =integer
GET= dm_file_ descriptor
INPUT =dm_file_descriptor
OUTPUT= dm_file_ descriptor
PRINT= dm_file_ descriptor
VOCABULARY _FILE= dm_file_descriptor
STATUS =status variable

DMD BA

Parameters UID

Revision G

User identification code (only first 8 characters are used).

IM/DM prompts you for this value if it is not specified.

UPW

User password (only the first 8 characters are used).

IM/DM prompts you for this value if it is not specified.

AIDS

Indicates whether you are given the option of reviewing
the user aids.

YES

Aids option is given.

NO

Aids option is not given.

Omission of this parameter when running a command
procedure in statement mode causes YES to be used. If
you are running the command procedure in dialog or
screen mode, the job terminates. Omission of this
parameter when running a job interactively causes
DMD BA to prompt you for the AIDS value.

DB

Name of the definition database to be processed.

IM/DM prompts you for this value if it is not specified.

Commands and Functions 2-323

DMD BA

ACTION or A

Action to be performed on the database.

CREATE

New database created.

UPDATE

Existing database updated.

APPLY

Definition applied.

ADM IN

Administrative tasks performed.

This parameter is required except when running a job in
statement mode, for which UPDATE is assumed.

MODE
Input mode used.

STATEMENTS

Data entered using a file of statements.

DIALOG

Data entered in response to prompts.

SCREEN

Data entered by filling in information on screens.

IM/DM prompts you for this value if it is not specified.

TALK

Level of message detail.

0

Brief messages.

1

Detailed messages.

Omission of this parameter when running a command
procedure in statement mode causes 1 to be used. If you
are running the command procedure in dialog or screen

2-324 NOS/VE Commands and Functions Revision G

Revision G

mode, the job terminates. Omission of the TALK
parameter when running a job interactively causes
DMDBA to prompt you for the TALK value.

TERMINAL

Type of terminal interface.

CVTI

Character Virtual Terminal Interface.

*
Site default.

If TERMINAL is omitted, * is used.

JOURNAL

Indicates whether journaling is to be performed.

YES

Journaling is performed.

NO

Journaling is not performed.

If JOURNAL is omitted, YES is used.

APPLY_IF_OK

Indicates whether the database definition is applied.

YES

Apply is performed.

NO

Apply is not performed.

If APPLY_IF _OK is omitted, NO is used.

CANCEL_CHANGES

DMD BA

Indicates whether erroneous change orders are cancelled.

YES

Erroneous change orders are cancelled.

Commands and Functions 2-325

DMD BA

NO

Change orders are not cancelled.

If CANCEL_CHANGES is omitted, NO is used.

MENU

Carriage control before printing of the menu.

PAGE

Page feed before the menu is printed.

MENU

Clear screen before the menu is displayed.

SCROLL

Line feed before the menu is printed.

If MENU is omitted, SCROLL is used.

RECORDTYPE

Type of records in the GET file.

VAR

Variable-length records.

FIX

Fixed-length records.

If RECORDTYPE is omitted, VAR is used.

RECORD LC

Record length in characters for the GET file (integer).

If RECORDLC is omitted, 255 is used.

LINE LC

Maximum length in characters of a line in the GET file
(integer).

If LINELC is omitted, 250 is used.

GET

Specifies the file of statements defining the database to be
used in the statement mode. DMDBA prompts you for this
parameter if you do not specify it on the command. This
parameter is required when ACTION= STATEMENTS is
specified.

2-326 NOSNE Commands and Functions Revision G

Remarks

INPUT

File containing responses to program prompts.

If INPUT is omitted, file INPUT is used.

OUTPUT

DMDDBD

File to which all error messages, prompts, and program
output is written.

If OUTPUT is omitted, the standard output file,
$OUTPUT, is used.

PRINT

Specifies a file that output is sent to if screens are
printed. Omission causes the file DBA_PRINT_FILE to
be used.

VOCABULARY_FILE or VF

Specifies the valid vocabulary file. The descriptor of this
file is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary files.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/D:M, DM$VOC: is
the default for the VF parameter.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

DMDDBD
IM/DM Command

Purpose

Format

Revision G

Executes the DM Definition Database Dump module for a
database administrator.

DMDDBD
UID=dm_name
UPW=dm_name
DB=name
ACTION= keyword
INPUT= dm_file_ descriptor
OUTPUT= dm_file_ descriptor
VF =dm_file_descriptor
STATUS=status variable

Commands and Functions 2-327

DMDDBD

Parameters UID

Specifies the user identification code. UID can contain
eight letters and digits. This parameter is required.
IM/DM prompts you for this value if it is not specified.

UPW

Specifies the user password. UPW can contain eight
letters or digits. This parameter is required. IM/DM
prompts you for this value if it is not specified.

DB

Name of the definition database to be processed.

IM/DM prompts you for this value if it is not specified.

ACTION

Definition database records to display.

SELECT

Records selected by key.

ALL

All records.

ALL KEYS

Keys of each record.

Omission of the ACTION parameter causes SELECT to be
used.

INPUT

File containing responses to program prompts.

If INPUT is omitted, file INPUT is used.

OUTPUT

File to which all error messages, prompts, and program
output are written.

If OUTPUT is omitted, the standard output file,
$OUTPUT, is used.

2-328 NOSNE Commands and Functions Revision G

Remarks

DMD DBE

VF

Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

• For more information, see the IM/DM Data
Administration manual.

DMD DBE
IM/DM Command

Purpose

Format

Executes the DM Definition Database Extract Utility to
generate a DDL statement file for input to DMDBA from
a definition database.

DMD DBE
UID=dm_name
UPW=dm_name
DB=name
ACTION= keyword
OBJECT_ TYPE =dm_ name
OBJECT _NAME =dm_name
RECORDTYPE =keyword
RECORDLC =integer
PUT= dm_file_ descriptor
INPUT= dm_file_ descriptor
0 UT PUT= dm_file_ descriptor
VF= dm_file_ descriptor
STATUS= status variable

Parameters UID

Revision G

User identification code (only first 8 characters are used).

IM/DM prompts you for this value if it is not specified.

UPW

User password (only the first 8 characters are used).

IM/DM prompts you for this value if it is not specified.

Commands and Functions 2-329

DMDDBE

DB

Name of the definition database to be processed.

IM/DM prompts you for this value if it is not specified.

ACTION or A

Action the utility is to perform.

SELECT

Extracts more than one object, but not the entire
definition database.

ALL

Extracts all objects in the database.

ONE

Extracts one object type from the database.

If ACTION is omitted, SELECT is used.

OBJECT_ TYPE

Used when ACTION= ONE to specify the object type to
be extracted.

OBJECT_NAME

Used when ACTION=ONE to specify the name of the
object to be extracted.

Object_ Type Object_Name

ADM_ALL None required.

SDM_ALL None required.

UDM_ALL None required.

FILES_ALL None required.

MODEL_ALL Model name Stem (all models)

RECORD _ALL Record name Stem (all record
types)

RECORD Record name Stem (all record
types)

2-330 NOSNE Commands and Functions Revision G

Revision G

WORD_LIST

CODE_ LIST

ELEMENT_LIST

VIEW

INDEX

ASSERT

DMDDBE

Word list name Stem (all word
lists)

Code list name Stem (all code lists)

ADM.record name.element list
ADM.record name.stem (all ADM
and UDM element lists)
ADM.record name. (all ADM and
UDM element lists)
ADM.stem (all ADM and UDM
element lists)
ADM. (all ADM and UDM element
lists)
Model name. view name.element list
Model name. view name.stem (all
ADM and UDM element lists)
Model name. view name. (all ADM
and UDM element lists)
Model name.stem (all ADM and
UDM element lists)
Model name. (all ADM and UDM
element lists) lists)

Model name.view name
Model name.stem (all models, all
view types)
Model name. (all models, all view
types)
Stem. view name (all models, all
view types)
Stem (all models, all view types)
. view name (all models, all view
types)

Record name.element name
Record name.stem (all indexes)
Record name. (all indexes)
Stem (all indexes)

Assert number:assert number
Assert number
* (all assertions)

Commands and Functions 2-331

DMDDBE

Remarks

RECORDTYPE

Record type for the file specified on the PUT parameter.

FIX

Fixed-length records.

VAR

Variable-length records.

If RECORDTYPE is omitted, VAR is used.

RECORD LC

Maximum record length in the PUT file.

If RECORDLC is omitted, 80 is used.

PUT

File containing the DDL statements created by DMDDBE.

If PUT is omitted, file DMDDBE_PUT is used. Specify a
file name for this parameter.

INPUT

Input file containing any required parameters that are
missing.

If INPUT is omitted, file INPUT is used.

OUTPUT

Output file on which all messages are written.

If OUTPUT is omitted, file $OUTPUT is used.

VF
Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

2-332 NOSNE Commands and Functions Revision G

DMDDBR

DMDDBR
IM/DM Command

Purpose

Format

The DM Definition Database Report Utility (DMDDBR)
generates reports that use the definition database as the
source of information. The reports show the structure of
the database and how parts of the database are related.
The reports are listed on menus for easy selection. When
the reports have been created, you can display them on
the terminal or write them to an output file.

DMDDBR
UID=dm_name
UPW=dm_name
INPUT=dm_file_descriptor
OUTPUT=dm_file_descriptor
STATUS =status variable

Parameters UID

Remarks

Revision G

Specifies the user identification code. It can contain 8
letters and digits. This parameter is required.

UPW

Specifies the user password. It can contain 8 letters and
digits. This parameter is required.

INPUT

Reserved.

OUTPUT

Reserved.

• For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

• Entering DMDDBR has the same effect as entering the
following command:

/dmrw dbprompt=no, aids=no, mtr=no, ..
.. /proc=dm$ddbr:nvn_prc

Commands and Functions 2-333

DMDRL

DMDRL
IM/DM Command

Purpose

Format

Executes the DM Dump and Reload module for a database
administrator.

DMDRL
UID=dm_name
UPW=dm_name
DB=name
MODEL=name
ACTION= keyword
DUMPFILE = dm_file_ descriptor
DATAFILE =dm_file_descriptor
FORMAT=dm_key or keyword
TLIB = dm_file_ descriptor
STATS=keyword
TRACE= keyword
DELETE= keyword
RECD ELIM= dm_ character
ELEMDELIM =dm_character
S UBDELIM = dm_ character
DELCODE = dm_ character
STARTOCC =dm_ integer
ENDOCC = dm_ integer
VIEW=name
KEY=name
VERSION= integer
METHOD= keyword
CHECKREF =keyword
VALIDATE =keyword
JOURNAL=keyword
RECOVERY= keyword
TRANSL/MIT= integer
ERRORLIMIT =integer
ERRORACTION =keyword
REJECT =dm_file_descriptor
REJECTFORMAT =keyword
INPUT= dm_file_ descriptor
0 UT PUT= dm_file_descriptor
VF= dm_file_ descriptor
STATUS =status variable

2-334 NOSNE Commands and Functions Revision G

DMDRL

Parameters UID

Revision G

Specifies the user identification code. UID contains eight
letters or digits. IM/DM prompts you for this value if it is
not specified.

UPW

Specifies the user password. UPW contains eight letters or
digits. IM/DM prompts you for this value if it is not
specified.

DB

Name of the database to be processed.

IM/DM prompts you for this value if it is not specified.

MODEL

Name of an FQM user data model that dumps or reloads
the records.

IM/DM prompts you for this value if it is not specified.

ACTION or A

Action performed.

DUMP

Write database records to a data file.

PARTIAL_DUMP (PARTIAL)

Write selected database records to a data file.

RELOAD

Read records from a data file and place the records in
the database.

SALVAGE

Write records to a data file from a database that has
been damaged.

UPDATE

Update the contents of the database.

If ACTION is omitted, DUMP is used.

Commands and Functions 2-335

DMDRL

DUMP FILE

Name of the data file. IM/DM prompts you for this value
if this parameter or the datafile parameter is not
specified.

DATAFILE

Specifies the name of the data file. The format of this file
is specified by the FORMAT parameter. Omission of the
DATAFILE parameter means the DUMPFILE parameter
must be specified.

FORMAT or FORM

Format of the data file.

DUMP

Binary file format.

FREE

Designated delimiter characters format.

STREAM

Sequential file format.

TEMPLATE

Specifies the layout of the file. Format is
FORMAT=TEMPLATE (template_name), where
template_name is the name of the template in the
template library.

This parameter is required.

TLIB

This parameter specifies the name of the template library.
A template library is a sequential file that contains
templates. The templates define the format of data files
and are used when the FORMAT parameter is set to
TEMPLATE (template_name) where template_name is
the name of the template.

STATS

Indicates whether run time statistics are displayed.

YES

Displays statistics.

2-336 NOSNE Commands and Functions Revision G

Revision G

DMDRL

NO

Does not display statistics.

If STATS is omitted, NO is used.

TRACE

This parameter specifies the explicitness of the trace
messages displayed. You can choose from the following
options:

FULL

Complete trace messages are displayed.

BRIEF

Brief trace messages are displayed.

NONE

No trace messages are displayed.

Omission causes BRIEF to be used.

DELETE

Indicates whether dumped records are deleted from the
database.

YES

Deletes records.

NO

Does not delete records.

If DELETE is omitted when ACTION= DUMP, NO is
used.

RECD ELIM

This parameter specifies the character to delimit record
occurrences in the data file when the format of the file is
free (FORMAT= FREE). The DATAFILE parameter
specifies the file containing the data file. Omission of the
RECDELIM parameter when the FORMAT parameter is
set to FREE causes the character @ to be read.

ELEMDELIM

Specifies the character to delimit record occurrences in
the data file when the format of the file is free
(FORMAT= FREE). The DATAFILE parameter specifies

Commands and Functions 2-337

DMDRL

the file containing the data file. Omission of this
parameter when the. FORMAT parameter is set to FREE
causes the character # to be read.

SUBDELIM

This parameter specifies the character to delimit
subelement values in the data file when the format of the
file is free (FORMAT= FREE). The DATAFILE parameter
specifies the file containing the data file. Omission of this
parameter when the FORMAT parameter is set to FREE
causes the character ; to be used.

DELCODE

This parameter specifies the character to indicate element
values to delete in the data file when the format of the
file is free (FORMAT= FREE). The DATAFILE parameter
specifies the file containing the data file. Omission of the
DELCODE parameter when the FORMAT parameter is set
to FREE causes the character \ to be used.

STARTOCC

Specifies on which record occurrence in the data file
processing is to start. Must be an integer. You can specify
this parameter when reloading or updating a database
(ACTION=RELOAD) or (ACTION=UPDATE). Omission of
this parameter when ACTION is set to RELOAD or
UPDATE causes processing to begin with the first record
occurrence in the data file.

ENDO CC

Specifies on which record occurrence in the data file
processing is to stop. ENDOCC must be an integer.

You can specify the ENDOCC parameter when reloading
or updating a database (ACTION= RELOAD or
ACTION=UPDATE). Omission of this parameter when
ACTION is set to RELOAD or UPDATE causes processing
to stop on the last record occurrence in the data file.

VIEW

Name of the view used to read records from the database.

This parameter is required when ACTION= DUMP or
ACTION= SALVAGE.

2-338 NOSNE Commands and Functions Revision G

Revision G

DMDRL

KEY
When ACTION=DUMP, the KEY parameter must specify
one of the following commands or methods: PUT,
REPLACE, DELETE, or UPDATE. This parameter
specifies the name of a key element to use for the PUT,
REPLACE, DELETE, and UPDATE commands. A key
element is the element that uniquely identifies a record
occurrence.

VERSION

Version number of the default database (O through 99).

If VERSION is omitted, o is used.

METHOD or COMMAND

This parameter is included for compatability with previous
releases of IM/DM. The COMMAND parameter replaces
the METHOD parameter.

This parameter specifies the command to use when the
input record of the datafile does not specify a command.
You can specify:

ADD

Adds a new record occurrence to the database.

PUT

Puts a new record occurrence in the database whether
or not a record occurrence with the same unique key
already exists. The unique key must be identified by
the KEY parameter of the DMHVL command or
identified in the input record.

REPLACE

Replaces an existing record occurrence with a record
occurrence listed in a data file.

DELETE

Deletes an existing record occurrence.

UPDATE

Updates an existing record occurrence.

This parameter is required for data files in the DUMP
format because the DUMP format does not allow
command values. You can specify this parameter when

Commands and Functions 2-339

DMDRL

reloading or updating a database. Omission of this
parameter when the ACTION parameter is set to
RELOAD or UPDATE causes PUT to be used.

CHECKREF

Indicates whether referential integrity constraints are
checked when data is loaded.

YES

Constraints are checked.

NO

Constraints are not checked.

If CHECKREF is omitted, YES is used.

VALIDATE

Indicates whether the system should perform records and
element validation checks when data is loaded.

YES

Validations are performed.

NO

Validations are not performed.

If VALIDATE is omitted, YES is used.

JOURNAL

Indicates whether journaling is performed when data is
loaded.

YES

Journaling is performed.

NO

Journaling is not performed.

If JOURNAL is omitted, YES is used.

RECOVERY

Indicates whether automatic recovery is enabled in the
case of system failure.

YES

Recovery is enabled.

2-340 NOSNE Commands and Functions Revision G

Revision G

DMDRL

NO

Recovery is not enabled.

If RECOVERY is omitted, YES is used.

TRANS LIMIT

This parameter specifies the transaction size used by
DMDRL. The value can be an integer ranging from 1 to
20,000. DMDRL dumps or reloads a database using
numerous transactions. When the transaction limit is
reached, a FINISH is performed to end the transaction. A
START is then performed to begin a new transaction.
Omission of the TRANSLIMIT parameter causes 20,000 to
be used.

ERRORLIMIT or EL

Maximum number of errors that occur before the program
terminates. The value can be an integer ranging from 1
to 1,000,000.

You can specify the ERRORLIMIT parameter when
reloading or updating a database (ACTION= RELOAD or
ACTION= UPDATE). Omission of the ERRORLIMIT
parameter when ACTION= RELOAD or
ACTION= UPDATE causes 1000 to be used.

ERRORACTION

Indicates whether database changes are kept if the error
limit is reached.

ABORT

All changes are rolled back.

FINISH

All changes made are retained.

ERRORACTION is used when ACTION=RELOAD or
ACTION=UPDATE. If you omit ERRORACTION when
ACTION=RELOAD or ACTION=UPDATE, ABORT is
used.

REJECT

Specifies a file to which records containing errors are
written. The records are written in STREAM format. The
records can be edited and then reloaded. You can specify

Commands and Functions 2-341

DMDRL

this parameter when reloading or updating a database
(ACTION=RELOAD or ACTION=UPDATE). Omission of
this parameter causes DMDRL_REJ to be used.

REJECTFORMAT

Specifies the format of the reject file, which is specified
by the REJECT parameter. Formats are:

STREAM

A sequential file where each record of the file provides
values for data elements. Long values can span several
records of a file.

INPUT

The rejected records are written as they appear in the
data file. The format of the data file is specified by
the format parameter.

Use this parameter only when you are reloading or
updating a database (ACTION= RELOAD) or
(ACTION= UPDATE). Omission of this parameter when
ACTION is set to RELOAD or UPDATE causes STREAM
to be used. If the data file references multiple view types
(MULTIVIEW=YES), the reject format should be INPUT.

INPUT

Specifies the input file. It should contain required
parameters not specified on the DMDRL command. If
INPUT is omitted, file INPUT is used.

OUTPUT

File to which all error messages, prompts, and program
output are written.

If OUTPUT is omitted, the standard output file,
$OUTPUT, is used.

VF

Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

2-342 NOSNE Commands and Functions Revision G

Remarks

DMEMS

DMEMS

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOS/VE.

IM/DM Command

Purpose

Format

The DMEMS command calls the DM Error Message
Summary (DMEMS) utility which reads through the
vocabulary file and prints out the error messages.

DMEMS
MSG= range of dm_integer
LEVEL= keyword
!=keyword
HEADER= keyword
EXACT=keyword
0 UTPUT = dm_file_ descriptor
VF= dm_file_ descriptor
STATUS=status variable

Parameters MSG

Revision G

Specifies the range of messages to print. MSG can be any
of the following:

m

Where m is an integer value from 1 to 90,000.

m:n

Where m and n are integer values that specify a
range of messages from 1 to 90,000. M must be less
than n.

m:*

Where m is an integer value from 1 to 90,000. An
asterisk indicates the last message the file contains.

Commands and Functions 2-343

DMEMS

*
An asterisk by itself means that all the messages in
the file are to be printed, subject to the settings of the
other parameters.

Omission of the MSG parameter causes an asterisk to be
used and all the messages in the file are printed.

LEVEL

Specifies the level of messages to be printed. If you
specify LEVEL=ANY, all levels of the messages are
printed. If you do not specify the LEVEL parameter, only
messages at level 3 and above are printed.

I

Specifies whether or not type I (INFORMATIVE) messages
are printed. You can specify the keywords YES or NO.
YES indicates that the messages of type I, along with the
UE (USER ERROR) and SE (SYSTEM ERROR) messages
above 5000, are printed. NO indicates that only type UE
and SE messages above 5000 are printed.

Omission of the I parameter causes NO to be used.

HEADER

Specifies whether or not the DMEMS heading, page
headers, and numbers are printed. You can specify the
keywords YES or NO. YES indicates that the heading,
page headers, and numbers are printed. NO means they
are not printed.

Omission of the HEADER parameter causes YES to be
used.

EXACT
Specifies how the error messages are printed. You can
specify the keywords YES or NO. For EXACT=NO, $S,
$P, and $Q are treated as $B. For EXACT=YES, $S
causes lines to be skipped. Also, column 2 of the first
output line for the message contains the level number,
column 3 contains Q for $Q, and column 4 contains M, if
MORE= YES is specified on the message. Messages of
type UE or SE have the appropriate prefix attached to
the output line.

Omission of the EXACT parameter causes NO to be used.

2-344 NOSNE Commands and Functions Revision G

Remarks

DMFORM

OUTPUT

Specifies an alternate output file to which the listing is
sent. Omission of the OUTPUT parameter causes
$OUTPUT to be used.

VF

Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

• All printing is done between columns 6 and 85 of the
output file to allow for a left margin. However, if
HEADER=NO, printing begins in column 1. At most,
55 lines are put on a page and only 50 lines of a
message can be printed. All $G and $C edits in a
message are ignored and parameter entries are
replaced with asterisks (*) up to the length specified
in the picture. The first line of message output is:

type message number ID= id

This is followed by the levels of the message separated
by a blank line. The actual format of the message text
is determined by the setting of the EXACT parameter.

• For more information, see the IM/DM Application
Programming manual.

DMFORM
IM/DM Command

Purpose

Format

Revision G

Begins DM Form View Development utility session to
define and maintain form views.

DMFORM
UID=dm_name
UPW=dm_name
DB=name
AIDS= keyword
TERMINAL= dm_ terminal
TALK=keyword

Commands and Functions 2-345

DMFORM

MRT =keyword
PROC = dm_file_ descriptor
INPUT= dm_file_ descriptor
OUTPUT= dm_file_ descriptor
VF= dm_file_ descriptor
STATUS= status variable

Parameters UID

User identification code. It can be an integer or an
identifier that contains eight letters and digits.

UPW

User password. It can be an integer or an identifier that
contains eight letters and digits.

DB

Name of the default definition database to be processed.

AIDS

Indicates whether you are given the option of reviewing
the user aids.

YES

Aids option is given.

NO
Aids option is not given.

If AIDS is omitted, YES is used.

TERMINAL

Type of terminal interface.

CVTI

Character Virtual Terminal Interface (CVTI). CVTI
tells DM the terminal you are using and enables the
DM screen features to work correctly on your
terminal. CVTI can be specified for any terminal
defined in the system by the TERMINAL_
DEFINITION_ UTILITY.

*
Site default terminal.

If TERMINAL is omitted, * is used.

2-346 NOSNE Commands and Functions Revision G

Revision G

DMFORM

TALK

Initial level of message detail.

EXPERT

Brief messages.

STANDARD

Normal messages.

NOVICE

Detailed messages.

If TALK is omitted, STANDARD is used.

MRT

Indicates whether the module revision tag is printed at
the start of DMFORM execution.

YES

The module revision tag is printed.

NO

The module revision tag is not printed.

If MRT is omitted, YES is used.

PROC

Name of an optional file containing a DM command
procedure to be executed.

INPUT

File containing responses to DMFORM prompts.

If INPUT is omitted, file INPUT is used.

OUTPUT

File to which all error messages, prompts, and program
output is written.

If OUTPUT is omitted, the standard output file,
$OUTPUT, is used.

Commands and Functions 2-34 7

DMFPC

Remarks

DMFPC

VF

Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

IM/DM Command

Purpose

Format

The DMFPC command begins a DM FORTRAN
precompiler (DMFPC) session that compiles special DM
statements in the source code of a FORTRAN program
and produce calls to the DM user program interface
(UPI).

DMFPC
SOURCE =dm_file_descriptor
DECKS= list of range of name or keyword
PCP UT= dm_file_ descriptor
OBJECT= dm_file_ descriptor
ERROR =dm_file_descriptor
UID=dm_name
UPW=dm_name
PROGRAM=name
STMT=keyword
LINELC =integer
RECORDTYPE =keyword
RECORD LC= integer
TRACE=keyword
STATS= keyword
INPUT= dm_file_ descriptor
VF= dm_file_ descriptor
FORTRAN= keyword
FORTRAN _PARAMETERS= string
STATUS= status variable

2-348 NOSNE Commands and Functions Revision G

DMFPC

Parameters SOURCE or S

Revision G

Sequential file or source library containing the source
code. The precompiler expands the special *DM commands
in the source code.

The source is assumed to be variable-length records
unless specified otherwise by the RECORDTYPE and
RECORDLC parameters.

If the file extension is omitted, _ DMF is assumed. If the
file source_DMF exists, it is used; otherwise, the source
file is used.

IM/DM prompts you for this value if it is not specified.

DECKS or D

If the source file is a source library, specifying
DECKS= ALL indicates that all the files in the source
library are to be precompiled. If the source file is not a
source library, the DECKS parameter performs no action.
By default, if you specify a source library as the source
file, you select the files to be precompiled.

PCP UT

Specifies the sequential file where the precompiled source
code is written. The PCPUT file defaults to variable
length records. Use the RECORDTYPE parameter to
specify fixed records for the PCPUT file and the source
file. Use the RECORD LC parameter to specify the length
in characters for these files. If the PCPUT parameter is
entered without a file descriptor, the source code is
written to the file source_FOR (where source is a
variable name). If you specify NO on the FORTRAN
parameter, the file source_FOR is created and saved;
otherwise, by default, it is deleted after the FORTRAN
compilation.

OBJECT or OBJ

Specifies the object file. Omission of the OBJECT
parameter causes program_ OBJ to be used.

ERROR

Specifies the sequential file where error and warning
messages are listed. Omission of the ERROR parameter
causes OUTPUT to be used.

Commands and Functions 2-349

DMFPC

UID

The UID parameter specifies the user identification code.
UID can be an integer or an identifier that contains
letters and digits. Only the first 8 characters are used as
the UID.

The UID parameter is required. DM prompts you for the
UID parameter if you do not specify it on the command.

UPW

Specifies the user password. UPW can be an integer or an
identifier that contains letters and digits. Only the first 8
characters are used as the UPW.

The UPW parameter is required. DM prompts you for the
UPW parameter if you do not specify it on the command.

PROGRAM

Specifies an identifier that represents the name of the
program being compiled. A program name entered on a
*DM.PROGRAM statement within the GET file overrides
this parameter.

STMT

Reserved.

LINE LC

Specifies the length in characters of the source lines of
the language. LINELC is an integer value from 65 to 100.
This overrides the global LINELC in the PCD.

Omission of the LINELC parameter causes 72 to be used.

RECORDTYPE

Specifies the record types for the source and PCPUT files.
You can specify the keywords FIX or VAR. FIX indicates
that the source and PCPUT files have fixed length
records. VAR indicates that these files have variable
length records. If RECORDTYPE is set to FIX, then the
length in characters of the record is determined by the
RECORDLC parameter.

Omission of the RECORDTYPE parameter causes VAR to
be used.

2-350 NOSNE Commands and Functions Revision G

Revision G

DMFPC

RECORDLC

Specifies the length in characters of the records in the
source and PCPUT files when RECORDTYPE is set to
fixed. RECORDLC is an integer value from 1 to 200.

Omission of the RECORDLC parameter causes 200 to be
used.

TRACE

The TRACE parameter specifies the action of the trace
facility during program compilation. Options are:

NONE

Indicates that no tracing is performed.

REPLACE

Indicates that the view reference lists in the program
trace records are replaced with the views referenced
by the current compilation. If there are program trace
records for public models no longer referenced, they
are deleted.

UPDATE

Indicates that the view reference lists in the program
trace records are updated with any new views
referenced during the current compilation. If a new
model is referenced, a new program trace record is
created.

Omission of the TRACE parameter causes NONE to be
used.

STATS

Indicates if the statistics for the precompilation should be
printed. You can specify the keywords YES or NO.
STATS= YES indicates that statistics are printed. NO
indicates that no statistics are printed.

The statistics are:

ELAPSED SECONDS:
ELAPSED CPU SECONDS:
SOURCE LINES READ: ·
ROUTINES PROCESSED:
*DM STATEMENTS PROCESSED:

Omission of the STATS parameter causes NO to be used.

Commands and Functions 2-351

DMFPC

Remarks

INPUT
Specifies the terminal or a sequential file of variable
length records. It contains answers to the prompts
produced by the program.

Omission of the INPUT parameter causes COMMAND to
be used.

VF
Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site

1

is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

FORTRAN or FOR
Specifies whether or not to perform the FORTRAN
compilation. You can specify the keywords YES or NO.
YES indicates that a FORTRAN compilation is performed.
NO indicates that a FORTRAN compilation is not
performed.

If you do not specify the PC PUT parameter, the PCPUT
file is saved in the file source_FOR (where source is a
variable name). By default, if no errors were detected
during the precompilation, a FORTRAN compilation is
performed.

FORTRAN_PARAMETERSorFP
Specifies optional NOS/VE FORTRAN parameters. You
can specify any of the NOS/VE FORTRAN parameters.
See the FORTRAN Language Definition manual for
detailed information on the FORTRAN command
parameters.

• DMFPC can update the definition database to identify
which views are used by the program. This trace
information can be used to locate all the programs
that reference a particular view. Only authorized users
can use the precompiler and unauthorized references to
private models are not allowed.

2-352 NOSNE Commands and Functions Revision G

DMFQM

DMFQM

• For more information, see the IM/DM Application
Programming manual.

IM/DM Command

Purpose Executes the DMFQM module to access the IM/DM Query
Facility.

Format DMFQM
UID==dm_name
UPW==dm_name
AIDS== keyword
DB ==dm_database_model
INTENT== keyword
PROC =dm_file_descriptor
TALK=keyword
MRT=keyword
TERMINAL=dm_terminal_name
VERSION= integer
WSLC =integer
INPUT =dm_file_descriptor
OUTPUT= dm_file_ descriptor
VF ==dm_file_descriptor
STATUS= status variable

Parameters UID

Revision G

User identifier. If omitted, DMFQM prompts for the UID.

UPW

User password. If omitted, DMFQM prompts for the UPW.

AIDS

Indicates if DMFQM prompts for the option to review
features and terminology. The default is YES.

DB

Default database name and user data model. The format
of this parameter is database.model. If omitted, DMFQM
prompts for the DB.

Commands and Functions 2-353

DMFQM

INTENT

Indicates how to use the database specified by the DB
parameter. Keywords are:

UPDATE

Changes can be made to the database.

READ

Data can be searched and displayed only.

EXCLUSIVE

Changes can be made to the database and no one else
may open the database.

USER

The intent is based on the user's privileges and the
database privileges. If possible, UPDATE intent is
used; otherwise, READ intent is used.

If INTENT is omitted, USER is used.

PROC
Name of the file containing the command procedure to be
automatically executed at the start of the DMFQM
session. If omitted, no command procedure is executed.

TALK

Level of expertise assumed by the DMFQM messages and
user prompts. Keywords are:

EXPERT

Brief messages.

STANDARD

Descriptive messages (default).

NOVICE

Most descriptive messages.

MRT
Indicates whether DMFQM displays the Module Revision
Tag when it begins the session. The default is YES.

2-354 NOSNE Commands and Functions Revision G

Remarks

Revision G

DMFQM

TERMINAL

Type of terminal interface.

CVTI

Character Virtual Terminal Interface (CVTI). CVTI
tells DM the terminal you are using and enables the
DM screen features to work correctly on your
terminal. CVTI can be specified for any terminal
defined in the system by the TERMINAL_
DEFINITION_ UTILITY.

*
Site default terminal.

If TERMINAL is omitted, * is used.

VERSION

Version number of the occurrence database to be
referenced. Version is an integer from 0 to 99. If omitted,
0 is used.

WSLC

The size in characters of the local work space. If omitted,
DM uses the default size set by the System
Administrator.

INPUT

Name of the sequential file that contains DMFQM
commands to be used as input. If omitted, DMFQM reads
its input from the terminal.

OUTPUT

Name of the sequential file to which DM writes messages
and prompts. If omitted, DMFQM writes to the terminal.

VF

Name of the vocabulary file. If omitted, the site default
vocabulary file is used.

For more information, see the DM Fundamental Query
and Manipulation manual.

Commands and Functions 2-355

DMG

Examples

DMG

The following shows the beginning of a DMFQM session:

/DMFQIJ
DMFQI,' V1 R12 851128 LIBCD381 S73 AO) 830901

user 10> soc
user pw> crud
oatabase> acme
user mode 1 > f oma

Tne <ACME.FQMA> user mooel is open witn UPDATE intent.

Do you want to review the user aios of this program
IYES or NO)? ,. n
DMFQl,I>

IM/DM Command

Purpose

Format

Executes the DM System Generation module to tune the
system.

DMG
ACTION=dm_question_mark or keyword
GET= dm_file_ descriptor
PUT= dm_file_ descriptor
RECORDTYPE =keyword
KERNELS= integer
USERS= integer
OUTPUT=dm_file_descriptor
STATUS= status variable

Parameters ACTION

Action performed:

ADB

Generates a skeleton authority database.

DECKS

Generates system routines for DMLIB.

FULL

Performs both the DECKS and ADB actions.

REGEN

Generates system routines and updates the authority
database.

2-356 NOSNE Commands and Functions Revision G

Revision G

KMUWF

Generates the user work files for the kernels (not
necessary for NOS/VE).

FQMUWF

DMG

Generates the user work files for the DMFQM module
(not necessary for NOS/VE).

If ACTION is omitted, FULL is used.

GET

File containing the source statements of the system
generation parameters to be set. It is used by the ADB,
DECKS, FULL, and REGEN actions.

If GET is omitted, file GET is used.

PUT

File to which the generated routines are written by the
DECKS, FULL, and REGEN actions.

If PUT is omitted, file PUT is used.

RECORDTYPE

Record type of the PUT file.

FIX

Fixed-length records of 72 characters.

VAR

Variable-length records.

If RECORDTYPE is omitted, VAR is used.

KERNELS

Number of kernels used in the system (1 through 9). Use
this parameter only for the KMUWF and FQMUWF
actions.

If KERNELS is omitted, 1 is used.

USERS

Maximum number of users allowed on a kernel (1 through
511). Use this parameter only for the KMUWF and
FQMUWF actions.

Commands and Functions 2-357

DMHELP

Remarks

DMHELP

OUTPUT

Output file on which all messages are written.

If OUTPUT is omitted, file $OUTPUT is used.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

IM/DM Command

Remarks Reserved for site personnel, Control Data, or future use.

DMHVL
IM/DM Command

Purpose

Format

The DM High Volume Loader, DMHVL, can quickly load
or update a database. With DMHVL, record occurrences
can be added, modified, or deleted without involving the
kernel. A sequential data file or a dump file provides
DMHVL with data and instructions for loading or
updating the data. The database is accessed through an
FQM model.

DMHVL
UID=dm_name
UPW=dm_name
DB=name
MODEL=name
ACTION=keyword
DATAFILE =dm_file_descriptor
FORMAT=dm_key or keyword
TLIB =dm_file_descriptor
COMMAND=keyword
STATS= keyword
TRACE =·keyword
DELETE= keyword
RECDELIM =dm_character
ELEMDELIM = dm_ character
SUBDELIM =dm_character
DELCODE =dm_character
STARTOCC=dm_integer
ENDOCC = dm_ integer
VIEW=name
KEY=name

2-358 NOSNE Commands and Functions Revision G

VERSION= integer
METHOD= keyword
CHECKREF =keyword
VALIDATE= keyword
JOURNAL=keyword
REJECT= dm_file_ descriptor
REJECTFORMAT =keyword
INPUT= dm_file_ descriptor
OUTPUT =dm_file_descriptor
VF= dm_file _descriptor
STATUS= status variable

DMHVL

Parameters UID

Revision G

Specifies the user identification code. UID contains eight
letters or digits. IM/DM prompts you for this value if it is
not specified.'

UPW

Specifies the user password. UPW contains eight letters or
digits. IM/DM prompts you for this value if it is not
specified.

DB

Specifies the name of the database to load. This
parameter is required.

MODEL

Specifies the name of a user data model that dumps and
reloads the records. This parameter is required.

ACTION or A

Specifies how the data is loaded into the database.

UPDATE

Recomputes the virtual elements specified as SET_
WHEN=ADD in the ADM for new records.

RELOAD

Does not recompute the virtual elements specified as
SET_ WHEN=ADD in the ADM for new records.

If ACTION is omitted, UPDATE is used.

Commands and Functions 2-359

DMHVL

DATAFILE

Specifies the name of the file that contains the data to be
processed and loaded into the database. The format of this
file is specified by the FORMAT parameter. This
parameter is required.

FORMAT

Specifies the format of the data in the data file (the file
specified on the DATAFILE parameter).

STREAM

A sequential file where each record of the file provides
values for data elements.

DUMP

A file that contains non-character values and therefore
cannot be edited with a conventional editor.

FREE

A file that uses designated delimiter characters to
indicate the start of a new record, a new element
value, a new subelement value, and element values to
delete.

TEMPLATE

Defines the layout of the file. The template is stored
in the template library which is a sequential file. The
file can contain character data or binary values. To
use this format, specify FORMAT= TEMPLATE
(template_name) where template_name is the name of
the template in the template library.

This parameter is required.

TLIB

Specifies the name of the template library. A template
library is a sequential file containing HVL templates that
are used when the data file uses the template format
(FORMAT= TEMPLATE).

2-360 NOSNE Commands and Functions Revision G

Revision G

DMHVL

COMMAND

This parameter specifies the command to use when the
input record of the datafile does not specify a command.
This parameter is required when the data file uses the
dump format because these files do not have a command
value. You can specify:

ADD

Adds a new record occurrence to the database.

PUT

Puts a new record occurrence in the database whether
or not a record occurrence with the same unique key
already exists. The unique key must be identified by
the KEY parameter of the DMHVL command or
identified in the input record.

REPLACE

Replaces an existing record occurrence with a record
occurrence listed in a data file.

DELETE

Deletes an existing record occurrence.

UPDATE

Updates an existing record occurrence.

Omission of the COMMAND parameter causes PUT to be
used.

STATS

Indicates whether run time statistics are displayed.

YES

Displays statistics.

NO

Does not display statistics.

If STATS is omitted, NO is used.

TRACE

This parameter specifies the explicitness of the trace
messages displayed. You can choose from the following
options:

Commands and Functions 2-361

DMHVL

FULL

Complete trace messages are displayed.

BRIEF

Brief trace messages are displayed.

NONE

No trace messages are displayed.

Omission of the TRACE parameter causes BRIEF to be
used.

DELETE

Reserved.

RECD ELIM

Specifies the character that delimits record occurrences in
the data file. This parameter is only valid when the data
file uses the free format (FORMAT=FREE). Omission of
this parameter when FORMAT= FREE causes @ to be
used.

ELEMDELIM

Specifies the character that delimits element occurrences
in the data file. This parameter is only valid when the
data file uses the free format (FORMAT=FREE).
Omission of this parameter when FORMAT= FREE causes
to be used.

SUBDELIM

This parameter specifies the character to delimit
subelement values in the data file when the format of the
file is free (FORMAT=FREE). Omission of this parameter
when the FORMAT parameter is set to FREE causes the
character ; to be used.

DELCODE

Specifies the character in the data file that indicates the
element value is being deleted. This parameter is only
valid for data files that use the free format
(FORMAT=FREE). Omission of the DELCODE parameter
when the FORMAT parameter is set to FREE causes the
character \ to be used.

2-362 NOSNE Commands and Functions Revision G

Revision G

DMHVL

STARTOCC

Specifies the record occurrence in the data file on which
the processing is to start. Omission causes processing to
start with the first record occurrence in the data file
(STARTOCC= 1).

ENDOCC

Specifies on which record occurrence in the data file
processing is to stop. ENDOCC must be an integer.
Omission of this parameter causes the processing to
continue through the end of the data file.

VIEW

Reserved.

KEY

Specifies the name of the default key element that
uniquely identifies a record occurrence. This parameter is
required when the data file uses the dump format
(FORMAT=DUMP) and the PUT, REPLACE, DELETE, or
UPDATE commands are performed. This parameter is
optional when the STREAM, FREE, or TEMPLATE data
file format is used. If this parameter is omitted, the
unique key element must be specified in the data file.

VERSION

Version number of the default database (O through 99).

If VERSION is omitted, 0 is used.

METHOD

Reserved.

CHECKREF

Specifies whether or not referential integrity constraints
are checked when data is loaded. You can specify the
keywords YES or NO.

If an index used in a referential integrity constraint was
dropped, the constraint cannot be checked and
CHECKREF =NO must be specified. DMDRL opens the
database with EXCLUSIVE intent if you specify
CHECKREF =NO.

Commands and Functions 2-363

DMHVL

YES

Referential integrity constraints are checked.

NO

Referential integrity constraints are not checked.

If CHECKREF is omitted, YES is used.

VALIDATE

Indicates whether the system should check if the data is
valid.

YES

Validations are performed.

NO

Validations are not performed.

If VALIDATE is omitted, NO is used.

JOURNAL

Reserved.

REJECT

Specifies the name of the file on which DM puts records
that contain errors. The records are written in the format
specified by the REJECTFORMAT parameter. Omission of
this parameter causes the file DMHVL_REJ to be used.

REJECTFORMAT

Specifies the format of the reject file, which is specified
by the REJECT parameter. Formats are:

STREAM

Converts the rejected record to STREAM format.

INPUT

The rejected records are written as they appear in the
data file.

Omission of this parameter causes STREAM to be used. If
the data file references multiple view types
(MULTIVIEW=YES), the reject format should be INPUT.

2-364 NOS/VE Commands and Functions Revision G

Remarks

DMJ

INPUT

Specifies the input file. It contains answers to user
prompts. If INPUT is omitted, file INPUT is used.

OUTPUT

Specifies the output file. This file lists all messages
produced by the program. Omission of the OUTPUT
parameter causes $OUTPUT to be used.

VF

DMJ

Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

IM/DM Command

Purpose

Format

Revision G

Executes the DM Journal Processor module to replay or
backout changes made to a database.

DMJ
UID=dm_name
UPW=dm_name
DB=name
ACTION =keyword
JOURNAL=list of dm_file_descriptor
VERSION= integer
DATE=dm_date
TIME= integer
SUMMARY= keyword
STATFILE =dm_file_descriptor
INPUT =dm_file_descriptor
OUTPUT= dm_file_ descriptor
VF= dm_file_ descriptor
STATUS= status variable

Commands and Functions 2-365

DMJ

Parameters UID
User identification code (only the first 8 characters are
used).

UPW

User password (only the first 8 characters are used).

DB

Database on which the action is performed.

This parameter is required for all actions except
SYNC LIST.

ACTION
Action to be performed.

REPLAY

Reads journals and applies committed transactions in
sequence.

BACK OUT

Reads journals backward, removing the committed
changes in reverse sequence.

SYNC LIST

Lists the synchronization points in the journal files.

STATISTICS

Lists the information gathered in the journal files
about database usage.

IM/DM prompts you for this value if it is not specified.

JOURNAL or JOURNALS
Journal files to be processed.

IM/DM prompts you for this value if it is not specified.

VERSION
Database version (0 through 99) used when
ACTION=REPLACE or BACKOUT.

If VERSION is omitted, 0 is used.

DATE
Date in standard DM date format.

2-366 NOSNE Commands and Functions Revision G

Revision G

TIME

Time in the format HHMMSS.

This parameter must be specified when the DATE
parameter is specified.

SUMMARY

DMJ

Indicates whether a summary listing of elapsed time, CPU
time, and images processed is given.

YES

Gives a summary.

NO

Does not give a summary.

If SUMMARY is omitted, NO is used.

STATFILE

File to which the statistics are written when
ACTION= STATISTICS.

If STATFILE is omitted, file DMJ _STA is used.

INPUT

File from which any missing required parameters are
read.

If INPUT is omitted, file INPUT is used.

OUTPUT

File to which all messages are written.

If OUTPUT is omitted, the standard output file,
$OUTPUT, is used.

VF
Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

Commands and Functions 2-367

DMK~Ol\

Remarks For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

DMKMON
IM/DM Command

Purpose

Format

The 0~1 Kernel Monitor Utility (DMKMON) monitors the
activity of the kernel. Reports generated from within
DMKMO!\ show both the type and amount of kernel
activity. The reports are updated periodically to provide
the user with current information about the kernel.
Report information can be displayed at the terminal or
saved in a file and used to generate reports later. Anyone
with a valid DM user ID and a valid user password can
use this utility.

DMKMON
UID=dm_name
UPW=dm_name
AIDS= keyword
REPORT= keyword
START= keyword
INTERVAL= integer
RUNTIME= integer
KERNEL= dm_ kernel
TERMINAL= dm_ terminal_ name
ACTION=keyword
RECORD FILE= dm_file_ descriptor
!NP UT= dm_file_ descriptor
OUTPUT=dm_file_descriptor
VF= dm_file_ descriptor
STATUS= status variable

Parameters UID

Specifies the user identification code. UID must begin
with a letter and can contain up to eight letters and
digits. IM/DM prompts you for Um if it is not specified.

The Um parameter is required.

UPW

Specifies the user password. UPW must begin with a
letter and can contain up to eight letters and digits.
IM/DM prompts you for UPW if it is not specified.

The UPW parameter is required.

2-368 NOS/VE Commands and Functions Revision G

Revision G

DMKMON

AIDS

Indicates whether you are given the option of reviewing
the user aids available. Options are YES or NO.

Omission of the AIDS parameter causes YES to be used.

REPORT

Specifies the name of a monitor report. DMKMON can
produce numerous reports; this parameter indicates which
report to execute. The REPORT parameter is not
applicable when ACTION= PLAYBACK. REPORT options
are:

ACTIVITY
CACHE
DATABASE
FILES
LOCK_ SUMMARY
LOCK_ PROCESS
LOCK_ USER
PROCESS
REQUEST_ COUNTS
REQUEST_ RATES
USER

Omission of this parameter causes ACTIVITY to be used.

START

Determines the starting point of report calculations.
Report calculations can be based on the start of execution
of the report or the start of execution of the kernel.
Options are:

START= REPORT

Calculations are based on the start of the report's
execution.

START= KERNEL

Calculations are based on the start of the kernel's
execution.

Omission of this parameter causes START= KERNEL to
be used.

INTERVAL

Reserved.

Commands and Functions 2-369

DMKMON

RUNTIME

Establishes the elapsed execution time in seconds.
RUNTIME controls the elapsed execution time of
DMKMON when DMKMON is run in non-interactive
mode. If the parameter INPUT is set to a terminal, this
parameter is ignored. Allowed values of elapsed time are
0 to 1000000.

Omission of the RUNTIME parameter causes DMKMON
to execute for 3600 seconds.

KERNEL

Specifies the number of the monitored kernel. The number
must be between 1 and 9 inclusive. If a kernel number is
specified, the indicated kernel within the kernel set of the
user's primary kernel is monitored.

Omission of the KERNEL parameter causes the user's
primary kernel to be monitored.

TERMINAL

Specifies the type of terminal on which the DMKMON
reports are displayed.

CVTI

Character Virtual Terminal Interface. CVTI informs
DMKMON of the type of terminal you are using and
enables DMKMON screen features to work correctly
on your terminal.

ACTION

Specifies the DMKMON action to perform. Options are:

DISPLAY

Displays DMKMON reports on the terminal. The
DISPLAY parameter can only be used if you are using
an interactive terminal.

RECORD

Saves report calculations in a file for use at a later
time. Reports are placed in the file specified on the
RECORD FILE parameter.

2-370 NOSNE Commands and Functions Revision G

Revision G

DMKMON

PLAYBACK

Produces reports from previously recorded report
calculations saved on a file. The file specified on the
RECORDFILE parameter is the input for PLAYBACK.

LOG

Displays the reports and records report calculations for
later use.

Omission of the ACTION parameter causes DISPLAY to
be used if the INPUT parameter is set to a terminal. In
all other cases, omission of the ACTION parameter causes
RECORD to be used.

RECORDFILE

Defines the file used for recording and playing back
reports. This file is defined with the standard file
descriptor. Reports are stored in the file when
ACTION= RECORD or ACTION= LOG is specified.
Reports are read from the file when
ACTION= PLAYBACK is specified.

Omission of the RECORDFILE parameter causes file
DMKMONLST to be used (:family_name.user_
name.DMKMONLST).

INPUT

Specifies a terminal or a sequential file of variable length
records containing answers to the DMKMON prompts. In
most cases, a terminal is specified on this parameter.

Omission of INPUT causes INPUT to be used.

OUTPUT

Specifies a terminal or a standard output file used by
DMKMON to list error messages, prompts, and other
program output. In most cases, a terminal is specified on
this parameter.

Omission of the OUTPUT parameter causes $OUTPUT to
be used.

VF
Specifies the valid vocabulary file. The descriptor of this
file is system generated, causing the default value of VF
to vary at sites that specify their own vocabulary file.

The VF parameter is optional.

Commands and Functions 2-371

DMOPEN

Remarks For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

DMOPEN
IM/DM Command

Purpose

Format

Opens, optionally locks, and closes a file. If the file is
busy, the utility waits until it is available.

DMOPEN
FILE =dm_file_descriptor
INTENT= keyword
WAIT= keyword
LOCK= keyword
MRT =keyword
CREATE= keyword
ACCESS= keyword
REWIND= keyword
RECORDTYPE =keyword
CAR.RIA GE= keyword
RECORDLC =integer
BLOCKLW =integer
STATUS =status variable

Parameters FILE

Specifies the file to be opened. This parameter is required.

INTENT

Access required to use the file.

READ

Read access only. The file can be shared with other
programs.

EXCLUSIVE

Read and write access. The file cannot be shared with
other programs.

PROTECTED

Read and write access. Other programs can read, but
not write to the file.

2-372 NOSNE Commands and Functions Revision G

Revision G

DMOPEN

WRITE

Read and write access. The file cannot be shared with
other programs.

WAIT

Indicates whether the command waits if the file is busy.

YES

Waits until the file is available.

NO

Aborts if the file is busy (another user has access to
it).

If WAIT is omitted, NO is used.

LOCK
Indicates whether the file is to be locked.

YES

Locks the file so that no one but the owner can read
or execute the file and no one, not even the owner,
can write or delete the file.

YES requires that the user own the file or have host
system privilege.

NO

The file is not locked.

If LOCK is omitted, NO is used.

MRT
Indicates whether the module revision tag is printed.

YES

The module revision tag and termination message are
printed.

NO

The module revision tag and termination message are
printed only at abnormal termination.

If MRT is omitted, YES is used.

Commands and Functions 2-373

DMOPEN

CREATE

Indicates whether the file exists.

YES

File does not exist and so is created.

NO

File already exists.

If CREATE is omitted, NO is used.

ACCESS

Indicates whether the file is direct-access or sequential.

DIRECT

Direct-access file containing fixed-length records of
2048 bytes each. All DM database data files and
journal files are direct-access.

SEQUENTIAL

Sequential file of fixed or variable-length records from
1 through 512 characters each. (All tape files are
sequential files.)

REWIND

Indicates whether the file is repositioned at its beginning.

YES

File repositioned at its beginning.

NO

File left at its current position.

If REWIND is omitted, YES is used.

RECORDTYPE

Type of records in the file (sequential files only).

VAR

Variable-length records.

FIX

Fixed-length records.

If RECORDTYPE is omitted, VAR is used.

2-374 NOSNE Commands and Functions Revision G

Remarks

DMPT

DMPT

CARRIAGE
Indicates whether the first character of each record is a
carriage control character (sequential files only).

YES

First character is carriage control.

NO

First character is data.

If CARRIAGE is omitted, YES is used.

RECORD LC
Record length in characters for sequential files (integer
from 1 through 512).

If RECORDLC is omitted, 255 is used.

BLOCKLW
Block length in words for tape files (integer from 0
through 5000; 0 specifies the system default block length).

If BLOCKLW is omitted, 0 is used.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

IM/DM Command

Purpose

Revision G

The DMPT command calls the DM Program Tr~ce Record
Utility which maintains program trace records created by
the DMDBA program and the precompilers. By using
DMPT, you can find the following:

• All the programs and subroutines that reference a
particular model.

• All the views of a model, a particular program, or
subroutine references.

• A variety of other combinations.

DMPT can also delete PTR records.

Commands and Functions 2-375

DMPT

Format DMPT
UID=dm_name
UPW=dm_name
DB=name
MODEL= dm_ wild_ name
ACTION= keyword
PROGRAM=dm_wild_name
CONFIRM= keyword
LOG= keyword
INPUT= dm_file_ descriptor
OUTPUT =dm_file_descriptor
VF= dm_file_ descriptor
STATUS =status variable

Parameters UID

Specifies the user identification code. UID can be an
integer or an identifier that contains letters and digits.
Only the first 8 characters are used as the UID.

The UID parameter is required. DM prompts you for the
UID parameter if you do not specify it on the command.

UPW

Specifies the user password. UPW can be an integer or an
identifier that contains letters and digits. Only the first 8
characters are used as the UPW.

The UPW parameter is required. DM prompts you for the
UPW parameter if you do not specify it on the command.

DB

Specifies the definition database containing the program
trace records. DB is an identifier consisting of 1 to 8
letters or digits and must begin with a letter. The letter
X, the first letter of all definition databases, need not be
included.

The DB parameter is required. DM prompts you for the
DB parameter if you do not specify it on the command.

MODEL

Specifies the model for which program trace records
should be listed or deleted. MODEL is an identifier
consisting of 1 to 8 letters or digits and must begin with
a letter. You can specify an asterisk (*) as a wildcard at
the end of or in place of the model name.

2-376 NOSNE Commands and Functions Revision G

Revision G

DMPT

The MODEL parameter is required. DM prompts you for
the MODEL parameter if you do not specify it on the
command.

ACTION

Specifies the action you want to perform. You can specify
the keywords SHOW and DELETE. SHOW means that
model access information can be listed for program trace
records specified by the MODEL and PROGRAM
parameters. DELETE means that program trace records
specified by the MODEL and PROGRAM parameters are
deleted.

Omission of the ACTION parameter causes SHOW to be
used.

PROGRAM

Specifies the program for which program trace records
should be listed or deleted. PROGRAM is an identifier
consisting of 1 to 8 letters or digits and must begin with
a letter. You can specify an asterisk (*) as a wildcard at
the end of or in place of the program name.

The PROGRAM parameter is required. DM prompts you
for the PROGRAM parameter if you do not specify it on
the command.

CONFIRM

Indicates whether or not you want the program to ask
you for confirmation before deleting program trace
records. You can specify the keywords YES and NO. YES
means that the program asks you for confirmation before
deleting each program trace record. NO means that the
program deletes all the program trace records specified by
the PROGRAM and MODEL parameters without asking
for any confirmation.

Omission of the CONFIRM parameter causes NO to be
used.

LOG

Specifies whether or not you want to be informed of the
program trace records that were deleted. You can specify
the keywords YES or NO. YES means that after deleting
a record, the program specifies which records were
deleted. NO means that the program does not specify
which records were deleted.

Commands and Functions 2-377

DMR

Remarks

DMR

Omission of the LOG parameter causes NO to be used.

INPUT

Specifies the terminal or a sequential file of variable
length records. It contains answers to the prompts
produced by the program.

Omission of the INPUT parameter causes INPUT to be
used.

OUTPUT

Specifies a standard output file or the terminal. This file
is used to list all error messages, prompts, and program
output.

Omission of the OUTPUT parameter causes $OUTPUT to
be used.

VF

Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

IM/DM Command

Purpose

Format

Executes the DM Restructure module to change the
definition of a database object.

DMR
UID=dm_name
UPW=dm_name
DB=name
A CTI ON= keyword
INDEX=dm_index
VERSION =dm_integer
PAD= integer

2-378 NOSNE Commands and Functions Revision G

CHACEBLW ==integer
INPUT== dm_file_ descriptor
OUTPUT ==dm_file_descriptor
VF= dm_file_ descriptor
STATUS ==status variable

DMR

Parameters UID

Revision G

User identification code (only the first 8 characters are
used). This parameter is required.

UPW

User password (only the first 8 characters are used). This
parameter is required.

DB

Name of the database to be processed. This parameter is
required.

ACTION

Action the DMR utility is to perform.

CREATE

Creates nonunique indexes that are dropped.

DROP

Drops nonunique indexes that have been created.

SHOW

Shows status of indexes.

INDEX

Record for which an index is created, specified by one of
the following:

record name.element name

record name.*

* *
VERSION

Version of the database to use (an integer or an asterisk).
An asterisk (*) specifies all versions of the database.

A version cannot be specified when ACTION= CREATE.

Commands and Functions 2-379

DMR

Remarks

If VERSION is omitted, 0 is used.

PAD

Used when ACTION=CREATE to specify the amount of
padding used in references.

If PAD is omitted, 0 is used.

CHACEBLW

Used when ACTION= CREATE to specify the number of
words of cache storage.

If CHACEBLW is omitted, 10000 is used.

INPUT

Input file containing any required parameters that are
missing.

If INPUT is omitted, file INPUT is used.

OUTPUT

Output file on which all messages are written.

If OUTPUT is omitted, file $OUTPUT is used.

VF
Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

2-380 NOSNE Commands and Functions Revision G

DMRW

DMRW
IM/DM Command

Purpose

Format

Executes the DMRW module that initiates an IM/DM
Report Writer session.

DMRW
UID=dm_name
UPW=dm_name
AIDS= keyword
DB= dm_ database_ model
PROC = dm_file_ descriptor
SIGN ON= keyword
DBPROMPT=keyword
MRT =keyword
VERSION= integer
INPUT= dm_file_ descriptor
OUTPUT =dm_file_descriptor
VF= dm_file_ descriptor
STATUS =status variable

Parameters UID

Revision G

Specifies the user identifier. It can contain letters or
digits. If omitted, DMRW prompts for the UID.

UPW

Specifies the user password. It can contain letters or
digits. If omitted, DMRW prompts for the password.

AIDS

Indicates if DMRW prompts for the option to review
features and terminology. The default is YES.

DB

Default database name and user data model in the form
of DB=database.model. If omitted, DMRW prompts for the
DB.

PROC

Specifies the file name of the command procedure
automatically executed when starting a DMRW session. If
omitted, DMRW does not automatically execute the
procedure. However, if a login procedure exists, DM
executes it whether or not you specify the PROC
parameter when you log in.

Commands and Functions 2-381

DMRW

Remarks

SIGN ON

Indicates whether DMRW is to sign on to the DM kernel
(required for database access). The default is
SIGN ON= YES.

DBPROMPT

Specifies whether the database prompt is displayed when
the DB parameter is not specified. If DBPROMPT =YES is
specified and DB is not specified, the database prompt is
displayed. If DBPROMPT =NO is specified, the database
prompt is not displayed. This parameter is ignored if
SIGNON=NO is specified. However, if DBPROMPT=NO
and SIGNON =YES are both· specified, the database
prompt is not displayed.

MRT

Indicates whether DM displays a message on the DMRW
revision number and date as the Module Revision Tag
(MRT) when starting a DMRW session. If MRT =YES, DM
displays the MRT. If MRT=NO, DM suppresses the MRT.
The default is MRT= YES.

VERSION

Version number of the occurrence database to be
referenced. Version is an integer from 0 to 99. If omitted,
0 is used.

INPUT

Specifies the terminal or the name of the sequential file
of variable length records. If omitted, DMRW reads its
input from INPUT.

OUTPUT

Specifies the name of the sequential file to which DMRW
writes messages and prompts. If omitted, DMRW writes to
the terminal.

VF
Specifies the name of the vocabulary file. If omitted, the
site default vocabulary file is used.

For more information, see the DM Report Writer
Reference manual.

2·382 NOSNE Commands and Functions Revision G

DMSA

DMSA
IM/DM Command

Purpose

Format

Executes the DM System Administration module to control
who can use DM, who can create a database, and how
databases are accessed.

DMSA
UID=dm_name
UPW=dm_name
AIDS= keyword
INPUT= dm_file_ descriptor
OUTPUT= dm_file_ descriptor
VF =dm_file_descriptor
STATUS= status variable

Parameters UID

Revision G

User identification code (only the first 8 characters are
used).

IM/DM prompts you for this value if it is not specified.

UPW

User password (only the first 8 characters are used).

IM/DM prompts you for this value if it is not specified.

AIDS

Indicates whether the user is given the option to review
the user aids.

YES

User is asked if he wants to review the aids.

NO
User cannot review aids.

If you omit AIDS, YES is used.

INPUT

Input file containing any required parameters that are
missing.

If INPUT is omitted, file INPUT is used.

Commands and Functions 2-383

DMSACK

·OUTPUT

Remarks

DMSACK

Output file on which all messages are written.

If OUTPUT is omitted, file $OUTPUT is used.

VF

Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

IM/DM Command

Purpose

Format

Checks referential integrity for the given database.

DMSACK
UID=dm_name
UPW=dm_name
DB =dm_database_model
VERSION= integer
ASSERTIONS= list of range of dm_ integer or keyword
ERRORLIMIT =integer
ERRORLOG = dm_file_ descriptor
INPUT= dm_file_ descriptor
0 UT PUT= dm_file_ descriptor
VF= dm_file_ descriptor
STATUS= status variable

Parameters UID

User identification code (only the first 8 characters are
used).

IM/DM prompts you for this value if it is not specified.

UPW

User password (only the first 8 characters are used).

IM/DM prompts you for this value if it is not specified.

2-384 NOSNE Commands and Functions Revision G

Revision G

DMSACK

DB

Database to be checked and the model through which the
checking is done. It is specified as either

<database.model> or database.model

IM/DM prompts you for this value if it is not specified.

VERSION

Database version (0 through 99).

If VERSION is omitted, 0 is used.

ASSERTIONS or ASSERTION

Number of assertions to be checked.

Integer

Checks the specified assertion number.

Range of integer

Checks the specified range of assertion numbers.

ALL or*

Checks every referential constraint.

NONE

Checks assertion numbers from the INPUT file.

ERRORLIMIT

Maximum number of errors allowed (1 through 10000000).
When the limit is reached, the command terminates.

If ERRORLIMIT is omitted, 1000 is used.

ERRORLOG

Reserved.

INPUT

File containing DMSACK instructions.

If INPUT is omitted, file INPUT is used.

Commands and Functions 2-385

DMSHOW

Remarks

OUTPUT

File to which all error messages, prompts, and program
output is written.

If OUTPUT is omitted, the standard output file,
$OUTPUT, is used.

VF

Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOS/VE.

DMSHOW
IM/DM Command

Remarks Reserved for site personnel, Control Data, or future use.

DMSPC
IM/DM Command

Remarks Reserved for site personnel, Control Data, or future use.

DMSTAT
IM/DM Command

Purpose

Format

The DMSTAT command calls the DM Display Status
Message (DMSTAT) utility that explains a status code
returned by a DM program.

DMSTAT
MR =range of dm_integer
ANY= keyword
EXACT= keyword
VF =dm_file_descriptor
STATUS= status variable

2-386 NOSNE Commands and Functions Revision G

DMSTAT

Parameters MR

Remarks

Revision G

Specifies the message or range of messages for which the
text is printed. MESSAGE_RANGE (MR) is an integer
value from 1 to 3.

Omission of this parameter causes 3 to be used.

ANY

Specifies what level of error messages are printed. You
can specify the keywords YES or NO. YES indicates that
all levels of the messages are printed. NO means that
only the first level of error messages is printed.

Omission of the ANY parameter causes NO to be used.

EXACT
Specifies whether or not error prefixes are inserted before
the first line of each message. You can specify the
keywords YES or NO. YES indicates that error prefixes
are inserted before the first line of each message. NO
indicates that error messages are not inserted before the
first line of each message. The level number is printed in
column 2 before each level, and Q is inserted in column 3
if $Q is encountered in the message. Column 4 contains
M if MORE= YES was specified in the message definition.
Also, $S causes lines to be skipped. Otherwise, $S, $P,
and $Q are treated like $B. $G and $C edits are always
ignored.

Omission of the EXACT parameter causes NO to be used.

VF
Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

o DMSTAT runs DMEMS with HEADER=NO. Thus, the
same rules for message output govern DMSTAT. For
further information, see the DMEMS description.

• For more information, see the DM Utilities Reference
Manual for DM on CDC NOS/VE.

Commands and Functions 2-387

DMUSER

DMUSER
IM/DM Command

Purpose

Format

The DMUSER command calls the DM User Password and
Terminal Change (DMUSER) utility that enables you to
change your current password and terminal type.

DMUSER
UID=dm_name
UPW=dm_name
INPUT= dm_file_ descriptor
0 UTP UT= dm_file_ descriptor
VF= dm_file_ descriptor
STATUS= status variable

Parameters UID

Specifies the user identification code. UID can be an
integer or an identifier that contains letters and digits.
Only the first 8 characters are used as the UID.

The UID parameter is required. DM prompts you for the
UID parameter if you do not specify it on the command.

UPW

Specifies the user password. UPW can be an integer or an
identifier that contains letters and digits. Only the first 8
characters are used as the UPW.

The UPW parameter is required. DM prompts you for the
UPW parameter if you do not specify it on the command.

INPUT

Specifies the terminal or a sequential file of variable
length records. It contains answers to the prompts
produced by the program.

Omission of the INPUT parameter causes INPUT to be
used.

OUTPUT

Specifies a standard output file or the terminal. This file
is used to list all error messages, prompts, and program
output.

Omission of the OUTPUT parameter causes $OUTPUT to
be used.

2-388 NOSNE Commands and Functions Revision G

Remarks

DMVP

DMVP

VF
Specifies a valid vocabulary file. The descriptor of this file
is system generated, causing the default value of this
parameter to vary at sites that specify their own
vocabulary file.

Omission of the VF parameter causes the default
vocabulary file of your system to be used. If your site is
using the vocabulary file supplied by IM/DM, DM$VOC: is
the default for the VF parameter.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOS/VE.

IMIDM Command

Purpose

Format

Executes the DM Vocabulary Processor module to
maintain a vocabulary file.

DMVP
ACTION=dm_question_mark or keyword
GET= dm_file_ descriptor
OLD= dm_file_ descriptor
NEW= dm_file_ descriptor
MSG= integer
INPUT== dm_file_ descriptor
OUTPUT =dm_file_descriptor
STATUS =status variable

Parameters ACTION

Revision G

Action performed.

CREATE

Creates a new vocabulary file from the source
statements in the GET file.

UPDATE

Creates a new vocabulary file from the source
statements in the GET file and the OLD vocabulary
file.

SHOW

Displays OLD vocabulary file.

Commands and Functions 2-389

DMXPC

Remarks

DMXPC

MSG

Prints the text for levels 3 and 4 of a message.

If ACTION is omitted, UPDATE is used.

GET

File containing the source statements to be used.

If GET is omitted, file GET is used.

OLD
Existing vocabulary file (used with ACTION= UPDATE or
SHOW).

If OLD is omitted, file OLD is used.

NEW

File to which new vocabulary file is written (used with
ACTION=CREATE or UPDATE).

If NEW is omitted, file NEW is used.

MSG

Number of the message to be printed (used with
ACTION=MSG).

If MSG is omitted, 0 is used.

INPUT

File containing commands for ACTION=SHOW.

If INPUT is omitted, file INPUT is used.

OUTPUT

Output file on which all messages are written.

If OUTPUT is omitted, file $OUTPUT is used.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

IM/DM Command

Remarks Reserved for site personnel, Control Data, or future use.

2-390 NOS/VE Commands and Functions Revision G

EDIT_ CATALOG

EDIT_CATALOG
Command

Purpose Accesses the EDIT_CATALOG (EDIC) utility, a full screen
application that can be used to create, move, copy, print,
view, edit, and execute files.

Format EDIT_ CATALOG or
EDIC

CATALOG= file
DISPLAY_ OPTIONS= keyword
NO _DOLLAR._FILES =boolean
STATUS =status variable

Parameters CATALOG or C

Remarks

Revision G

Catalog to be displayed. Omission causes the system to
display the current working catalog.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

File information to be displayed.

ALL (A)

All file attributes are displayed.

BRIEF (B)

Only the name and entry type (file or catalog) are
displayed.

The default is BRIEF.

NO_DOLLAR._FILESorNDF

Boolean indicating whether file names containing a dollar
sign are to be omitted from the display. (By convention, a
dollar sign character [$] appears only in CDC-defined file
names.)

TRUE (ON or YES)

File names containing a $ character are not displayed.

FALSE (OFF or NO)

File names containing a $ character are displayed.

The default is FALSE.

For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-391

EDIT_DECK

EDIT_DECK
EDID Subcommand

Purpose

Format

Opens the specified deck in the working library for
editing while maintaining your current position in other
decks.

EDIT_DECK or
EDID

DECK=name
STATUS= status variable

Parameters DECK or D

Remarks

Specifies the deck to be edited. If the deck does not exist,
it is created.

This parameter is required.

• To discard decks created unintentionally, enter:

end_deck write_deck=false

• For more information, see the NOSNE File Editor
manual.

EDIT_FILE
Command

Purpose Starts a file editor (EDIT_FILE utility) session.

Format EDIT_FILE or
EDIF

FILE=file
INPUT=file
OUTPUT=file
PROLOG-=file
DISPLAY_ UNPRINTABLE_ CHARACTERS= boolean
STATUS= status variable

Parameters FILE or F

Specifies the name of the file you want to edit. If the file
you specify does not exist, a new file is created.

The file cannot be an object file.

This parameter is required.

2-392 NOSNE Commands and Functions Revision G

Revision G

EDIT_FILE

INPUT or I

Specifies the file to be used as input to the editor. This
file can be positioned. This file contains optional editor
subcommands used to manipulate the working file. If
omitted, $COMMAND is assumed.

OUTPUT or 0

Specifies the file to which you want to write any output
that may result from your editing session. This file can
be positioned.

If OUTPUT is omitted, $OUTPUT is assumed. File
$OUTPUT is usually connected to the terminal.

PROLOG or P

Specifies the file containing subcommands you want
executed each time you start the editor.

If omitted, $USER.SCU _EDITOR_PROLOG is assumed.

DISPLAY_UNPRINTABLE_CHARACTERS or DUC

Specifies whether unprintable ASCII characters are
replaced by mnemonics when the file is displayed at the
terminal. Options are:

TRUE

Unprintable characters (ASCII values 127 and 0
through 31) are replaced by their respective mnemonic
values enclosed within the less than and greater than
characters, < >. The mnemonics are replaced by the
ASCII characters when the file is replaced.

FALSE

Unprintable characters are replaced by a single space
and a warning message is issued. If the file is written
when you exit the editing session, the unprintable
characters are replaced by spaces.

If DISPLAY_ UNPRINTABLE_ CHARACTERS is omitted,
FALSE is used.

ASCII characters and their corresponding mnemonic
values are listed in appendix C.

Commands and Functions 2-393

ENTER_PPE

Remarks

Examples

• If you would like to specify a file containing editor
subcommands to be executed when you leave the
editor (an epilog file), use the SET_EPILOG
subcommand. If you want this done each time, include
SETE in the file you specify for the PROLOG
parameter.

• The following prompt appears for line editing:

ef /

• To edit a second file while in the editor, enter the
EDIT_FILE subcommand. The FILE and STATUS
parameters are the only parameters allowed on the
EDIT_FILE subcommand.

• For more information, see the NOSNE File Editor
manual.

The following command starts the EDIT _FILE utility with
file $USER.MY_FILE:

edit_file file=$user.my_file

ENTER_PPE
Command

Purpose Accesses the Professional Programming Environment.

Format ENTER_ PPE or
ENTPPE or
ENTP

ENVIRONMENT_ CATALOG= file
STATUS =status variable

Parameters ENVIRONMENT_CATALOG or EC

Path to the subcatalog for which PPE is executed. It is
the lowest level of the PPE environment catalog hierarchy
presented in the current session.

PPE creates the subcatalog if it does not exist. If the
subcatalog belongs to another user, the owner must grant
you the following catalog permit:

access_modes=(all, cycle, control)
application_information='I1'

2-394 NOSNE Commands and Functions Revision G

Remarks

Examples

ENTER_PROGRAMMING_ENVIRONMENT

If you omit ENVIRONMENT_CATALOG, the subcatalog
used is $USER.PROFESSIONAL_ENVIRONMENT.

• The Professional Programming Environment uses the
full-screen interface.

• For more information, see the online ENVIRONMENT
manual.

The following command starts a PPE session in which the
PPE level is the default subcatalog,
$USER.PROFESSION AL_ ENVIRONMENT.

/entp

The following command starts a PPE session in which the
PPE level is the subcatalog named $USER.XYZ.PPE_
WORK.

/entp $user.xyz.ppe_work

ENTER_PROGRAMMING _ENVIRONMENT
Command

Purpose Accesses the Programming Environment.

Format ENTER_PROGRAMMING _ENVIRONMENT or
ENTPE

DEFAULT _PROCESSOR= keyword
ENVIRONMENT _CATALOG=file
STATUS =status variable

Parameters DEFAULT _PROCESSOR or DP

Revision G

Language in which you intend to program (C, COBOL,
CORAL, FORTRAN Version 1, FORTRAN Version 2, or
Pascal). Default is FORTRAN.

ENVIRONMENT_CATALOG or EC

Catalog in which the Programming Environment is to
maintain its files. Default is $USER.PROGRAMMING_
ENVIRONMENT.

Commands and Functions 2-395

EXECUTE_ COMMAND

Remarks

Examples

• You can access the ENVIRONMENT online manual
from within or outside of the utility using the
command:

/explain m =environment

• The Programming Environment uses the full screen
interface.

• For more information, see the online ENVIRONMENT
manual.

The following command enters the Programming
Environment.

/enter_prograrrming_environment

The next command enters the Programming Environment
with COBOL as the the default processor.

/entpe default_processor=cobol

The third command enters the environment maintained in
the $USER.BUSINESS catalog.

/entpe environment_catalog=$user.business

EXECUTE_COMMAND
Command

Pu:rpose Executes a single command asynchronously in a new task.
Utility subcommands cannot be executed using this
command.

Format EXECUTE_COMMAND or
EXEC

COMMAND= string
TASK_NAME =name
COMMAND _FILE= file
EN ABLE _ECHOING= boolean
STATUS= status variable

Parameters COMMAND or C

Specifies the command to be executed. The text of this
parameter must conform to the syntax requirements for
commands. This parameter is required.

TASK_NAME or TN

Specifies a name used to refer to the task.

2-396 NOSNE Commands and Functions Revision G

Remarks

EXECUTE_ TASK

COMMAND_FILE or CF

Specifies a file, a copy of which becomes the current
command file (such as $COMMAND) within the new task.
This parameter is only necessary if the command being
executed is a command utility, or references the current
command file.

Omission causes no current command file to be defined
for the new task.

ENABLE_ECHOING or ENABLE_ECHO or EE

Specifies whether the command is to be echoed back to
the terminal. Values can be:

YES

Echoing enabled

NO

Echoing not enabled

For more information, see the NOSNE System Usage
manual.

EXECUTE_TASK
Command

Purpose

Format

Revision G

Executes the program described on the command.

EXECUTE_TASK or
EXET

FILES =list of file
PARAMETERS =string
LIBRARIES= list of file or keyword
MODULES= list of name
STARTING_PROCEDURE=any
LOAD_MAP=file
LOAD_MAP_OPTIONS=list of keyword
PRESET_ VALUE=keyword
TERMINATION _ERROR_LEVEL =keyword
STACK_SIZE =integer
DEBUG_INPUT=file
DEBUG_OUTPUT=file
ABORT _FILE= file
DEBUG _MODE= boolean
TASK_NAME=name

Commands and Functions 2-397

EXECUTE_ TASK

ARITHMETIC_ OVERFLOW= boolean
ARITHMETIC _LOSS_ OF_ SIGNIFICANCE= boolean
DIVIDE _FAULT= boolean
EXPONENT_ OVERFLOW= boolean
EXPONENT_ UNDERFLOW= boolean
FP _INDEFINITE= boolean
FP _LOSS_ OF_ SIGNIFICANCE= boolean
INVALID _EDP _DATA= boolean
STATUS= status variable

Parameters FILES or FILE or F

Object list. Optional list of object files or object library
files whose modules are unconditionally loaded.

If FILE is omitted, the modules executed are determined
by the MODULE and STARTING_PROCEDURE
parameters. If the FILE, MODULE, and STARTING_
PROCEDURE parameters are all omitted, the loader
attempts to execute the modules on file $LOCAL.LOO.

PARAMETERSorPARAMETERorP

String passed to the program as its parameter list.

LIBRARIES or LIBRARY or L

List of object libraries added to the beginning of the
program library list. If LIBRARY is omitted, the program
library list consists of the local library list, the NOSNE
task services library, text embedded libraries, the job
library list, and the job debug library list if DEBUG_
MODE is ON.

MODULES or MODULE or M

Module list. Optional list of modules unconditionally
loaded from object libraries in the program library list.

You use a string value for a module whose name is not
an SCL name. Some examples of such module names are:
a COBOL module, where a hyphen character (-) may be
part of the name, and a C function, where lower case is
significant.

If MODULE is omitted, the modules executed are
determined by the FILE and STARTING_PROCEDURE
parameters. If the FILE, MODULE, and STARTING_
PROCEDURE parameters are all omitted, the loader
attempts to execute the modules on object file
$LOCAL.LOO.

2-398 NOSNE Commands and Functions Revision G

Revision G

EXECUTE_ TASK

STARTING_PROCEDURE or SP
Name of the entry point where execution begins.

You use a string value for an entry point whose name is
not an SCL name.

If STARTING_PROCEDURE is omitted, the last transfer
symbol loaded is used.

LOAD_MAP or LM
File on which the load map is written. This file can be
positioned. If LOAD_MAP is omitted, the job default
value is used. You can display the job default value with
the DISPLAY_PROGRAM_ATTRIBUTES command.

LOAD_MAP_OPTIONSorLOAD_MAP_OPTIONor
LMO
Set of one or more keywords indicating the information
included in the load map. Options are:

NONE

No load map is written.

SEGMENT (S)

Segment map.

BLOCK (B)

Block map.

ENTRY_POINT ·(EP)

Entry point map.

CROSS_REFERENCE (CR)

Entry point cross-reference.

ALL

Segment map, block map, entry point map, and entry
point cross-reference.

If LOAD_MAP _OPTION is omitted, the job default load
map option is used. You can display the job default value
with the DISPLAY_PROGRAM_ATTRIBUTES command.

Commands and Functions 2-399

EXECUTE_TASK

PRESET_ VALUE or PV

Value stored in all uninitialized words of program space.
Options are:

ZERO (Z)

All zeros.

FLOATING_POINT_INDEFINITE (FPI)

Floating-point indefinite value.

INFINITY (I)

Floating-point infinite value.

ALTERNATE_ONES (AO)

Alternating 0 and 1 bits; the leftmost (highest order)
bit is 1.

If PRESET_ VALUE is omitted, the job default value is
used. You can display the job default value with the
DISPLAY_PROGRAM_ATTRIBUTES command.

TERMINATION_ERROR_LEVEL or TEL

Error level that terminates program loading. Options are:

WARNING (W)

Warning, error, or fatal error.

ERROR (E)

Error or fatal error only.

FATAL (F)

Fatal error only.

If TERMINATION _ERROR_ LEVEL is omitted, the job
default termination error level is used. You can display
the job default value with a DISPLAY_PROGRAM_
ATTRIBUTES command.

STACK_SIZE or SS

Maximum number of bytes in the run-time stack. The
program uses the run-time stack for procedure call
linkages and local variables. If STACK_SIZE is omitted,
the system default value is used. You can display the
default value with a DISPLAY_PROGRAM_ATTRIBUTES
command.

2-400 NOS/VE Commands and Functions Revision G

Revision G

EXECUTE_ TASK

DEBUG_INPUT or DI

File containing Debug commands. The commands are read
only if the program is executed in Debug mode. This file
can be positioned. If DEBUG_INPUT is omitted, the
default Debug input file for the job is used. You can
display the job default value with the DISPLAY_
PROGRAM_ATTRIBUTES command.

DEBUG_OUTPUT or DO

File on which Debug output is written. Output is written
only if the program is executed in Debug mode. This file
can be positioned. If DEBUG_OUTPUT is omitted, the
default Debug output file for the job is used. You can
display the job default value with the DISPLAY_
PROGRAM_ATTRIBUTES command.

ABORT _FILE or AF

File containing Debug commands to be processed if the
program aborts. The commands are used only if the
program is not executed in Debug mode. This file can be
positioned.

If ABORT_FILE is omitted, the job default abort file is
used. You can display the job default value with a
DISPLAY_PROGRAM_ATTRIBUTES command.

DEBUG_MODE or DM

Indicates whether the program is to be run in Debug
mode. (For information on using Debug, refer to the
specific program's source language manual.) Options are:

ON

Program executed under Debug control.

OFF

Program executed without Debug control.

If DEBUG_MODE is omitted, the job default value is
used. You can display the job default value with the
DISPLAY_PROGRAM_ATTRIBUTES command.

Commands and Functions 2-401

EXECUTE_ TASK

TASK_NAME or TN

This parameter specifies that the program is to be
executed as an asynchronous task and provides a name
that can be used to refer to the task.

Omission causes the program to be executed
synchronously.

ARITHMETIC_OVERFLOW or AO

This parameter specifies whether or not the hardware
condition ARITHMETIC_ OVERFLOW causes an interrupt.
Valid specifications are:

ON

ARITHMETIC_ OVERFLOW is enabled. The condition
causes an interrupt.

OFF

ARITHMETIC_ OVERFLOW is disabled. The condition
does not cause an interrupt.

ARITHMETIC_LOSS_OF_SIGNIFICANCE or ALOS

This parameter specifies whether or not the hardware
condition ARITHMETIC_LOSS_ OF _SIGNIFICANCE
causes an interrupt. Valid specifications are:

ON

ARITHMETIC_LOSS_OF_SIGNIFICANCE is enabled.
The condition causes an interrupt.

OFF

ARITHMETIC_LOSS_OF_SIGNIFICANCE is disa'bled.
The condition does not cause an interrupt.

DNIDE_FAULT or DF

This parameter specifies whether or not the hardware
condition DIVIDE_FAULT causes an interrupt. Valid
specifications are:

ON

DIVIDE_FAULT is enabled. The condition causes an
interrupt.

2-402 NOSNE Commands and Functions Revision G

Revision G

EXECUTE_ TASK

OFF

DIVIDE_FAULT is disabled. The condition does not
cause an interrupt.

EXPONENT_OVERFLOW or EO

This parameter specifies whether or not the hardware
condition EXPONENT_OVERFLOW causes an interrupt.
Valid specifications are:

ON

EXPONENT_ OVERFLOW is enabled. The condition
causes an interrupt.

OFF

EXPONENT_ OVERFLOW is disabled. The condition
does not cause an interrupt.

EXPONENT_UNDERFLOW or EU

This parameter specifies whether or not the hardware
condition EXPONENT_ UNDERFLOW causes an interrupt.
Valid specifications are:

ON

EXPONENT_ UNDERFLOW is enabled. The condition
causes an interrupt.

OFF

EXPONENT_ UNDERFLOW is disabled. The condition
does not cause an interrupt.

FP _INDEFINITE or FPI or FI

This parameter specifies whether or not the hardware
condition FP _INDEFINITE causes an interrupt. Valid
specifications are:

ON

FP _INDEFINITE is enabled. The condition causes an
interrupt.

OFF

FP _INDEFINITE is disabled. The condition does not
cause an interrupt.

Commands and Functions 2-403

EXECUTE_ TASK

Remarks

FP_LOSS_OF_SIGNIFICANCE or FPLOS or FLOS

This parameter specifies whether or not the hardware
condition FP _LOSS_OF_SIGNIFICANCE causes an
interrupt. Valid specifications are:

ON

FP_LOSS_OF_SIGNIFICANCE is enabled. The
condition causes an interrupt.

OFF

FP_LOSS_OF_SIGNIFICANCE is disabled. The
condition does not cause an interrupt.

INVALID_BDP _DATA or IBDPD or IBD

This parameter specifies whether or not the hardware
condition INVALID_BDP _DATA causes an interrupt.
Valid specifications are:

ON

INVALID_BDP _DATA is enabled. The condition causes
an interrupt.

OFF

INVALID_BDP _DATA is disabled. The condition does
not cause an interrupt.

• The FILE, MODULE, and STARTING_PROCEDURE
parameters specify the modules executed. If you omit
all three parameters, the command attempts to execute
object file $LOCAL.LGO.

• If you specify a string using the PARAMETER
parameter, the string is passed to the program as its
parameter list.

• You can specify the program to be executed and any
of its execution options on the EXECUTE_ TASK
command or use default values. You can display the
default execution options with a DISPLAY_
PROGRAM_ATTRIBUTES command and change them
with a SET_PROGRAM_ATTRIBUTES command.

• For more information, see the NOSNE Object Code
Management manual.

2-404 NOSNE Commands and Functions Revision G

Examples

EXIT

EXIT

• The following command executes the object modules on
files OBJl and OBJ2.

/execute_task (obj1,obj2}

• The following command executes the object modules on
file OBJl in Debug mode. Assuming the initial default
values have not been changed, Debug commands are
read from file COMMAND and Debug output is
written on file $OUTPUT.

/execute_task obj1 debug_mode=on

Control Statement

Purpose

Format

Transfers control out of a structured statement, command
procedure, or command utility.

EXIT
designator
WHEN boolean expression
WITH status expression

The following are valid formats of the EXIT statement:

EXIT
EXIT designator
EXIT WHEN boolean expression
EXIT designator WHEN boolean expression
EXIT designator WITH status expression
EXIT WHEN boolean expression WITH status
expression
EXIT designator WHEN boolean expression WITH
status expression

Parameters designator

Revision G

Designates the labeled structured statement, command
procedure or command utility to be exited.

label

Label associated with the enclosing structured
statement. If you specify a label, the enclosing
structured statement with that label is exited. If you
omit a label, the innermost structured statement is
exited.

Commands and Functions 2-405

EXIT

Remarks

You may not use the WITH clause with structured
statements.

procedure name

Name of an active procedure. This name must be the
first in the list of names in the procedure header. To
exit the enclosing procedure, use PROCEDURE or
PROC.

utility name

Name of an active utility. To exit the innermost active
utility, use UTILITY.

boolean expression

Specificies whether the designated enclosing statement
should be exited. If the expression is TRUE, the
statement is exited. If the expression is FALSE, or if it is
omitted, the statement is not exited.

status expression

Specification indicating the status condition under which
an exit is to take place. This expression must be a
procedure's status value. This status becomes the
termination status of the specified procedure. If you omit
the WITH clause when exiting a procedure or utility,
termination with normal status occurs.

• The WHEN clause is evaluated at the point of
reference rather than continually, as is done by the
WHEN condition handler (discussed in the SCL
Language Definition manual).

• You can use the WHEN and. WITH clauses either
separately or together. If used together, you can list
either clause first.

• Only enclosing structured statements that are
self-contained can be exited. For example, only
structured statements with no outstanding file
references can be exited.

• Any active command procedure or utility can be
exited.

• For more information, see the NOSNE System Usage
manual.

2-406 NOSNE Commands and Functions Revision G

Examples

Revision G

EXIT

Q In the block structure example that follows, if the first
EXIT is executed, control is transferred to the next
statement after the LOOPEND statement labeled
BLOCKl, and BLOCKl is terminated.

If the second EXIT is executed, control is also
transferred to the next statement after the LOOPEND
statement labeled BLOCKl. Thus, both BLOCK2 and
BLOCKl are terminated.

If the third EXIT statement is executed, control is
transferred to the next statement after the LOOPEND
statement labeled BLOCK2, and BLOCKl remains
active.

block 1: loop

-------------- exit First EXIT statement

block2: loop

1-------------- exit block1 Second EXIT statement
I
I +---------- exit Third EXIT statement
I
I loopend block2
I
I 1------>next statement
I
I loopend block1
I

---+------>next statement

• The following example exits a procedure with an
abnormal status.

PROC example (status)

EXIT example WITH
$status(false,'US',1,'Proc Example Failed')

PROCEND example

If the EXIT statement is executed, the following
output is returned.

/example
--ERROR-- CI=US CC=1 TEXT=?Proc Example Failed

Commands and Functions 2-407

EXIT_PROC

EXIT_PROC
Control Statement

Purpose

Format

Exits a procedure. Execution resumes at the statement
following the procedure call.

EXIT_PROC
WITH status expression
WHEN boolean expression

The following are valid formats of the EXIT_PROC
statement:

EXIT_PROC
EXIT_PROCWITH status expression
EXIT_ PROC WHEN boolean expression

Parameters status expression

Remarks

Specifies the status to be returned to the block from
which the procedure was called. If you omit this
parameter, a normal status is returned.

boolean expression

Specifies whether exiting from the designated procedure
should take place. If the expression is TRUE or omitted,
the exit is performed. If the expression is FALSE, the exit
does not take place.

• A status parameter need not be included in the
procedure definition to use the WITH clause.

• The WHEN clause is evaluated at the point of
reference rather than continually, as is done by the
WHEN condition handler.

• For more information, see the NOS/VE System Usage
manual.

2-408 NOSNE Commands and Functions Revision G

Examples

EXPAND _SOURCE_FILE

The following example exits a procedure with an
abnormal status.

PROC example (status)

EXIT _PROC WITH
$status(false,'US' ,1,'Proc Example Failed')

PROCEND example

If the EXIT_PROC statement is executed, the following
output is returned.

/example
--ERROR-- CI=US CC=1 TEXT=?Proc Example Failed

EXPAND _SOURCE _FILE
Command

Purpose Expands a text file as though the file were a deck on an
SCU library. Expanding a file processes the directives
embedded in the source text and copies the expanded text
to a separate compile file.

Format EXPAND_SOURCE_FILE or
EXP SF

FILE=file
COMPILE ==file
SELECTION_ CRITERIA== file
WIDTH== integer
LINE _IDENTIFIER ==keyword
ALTERNATE_BASE==list of file
LIST==file
EXPANSION _DEPTH= integer
DISPLAY_ OPTIONS= keyword
STATUS =status variable

Parameters FILE or F

Revision G

File to be expanded. This parameter is required.

COMPILE or C

File on which the expanded text is written. You can
specify a file position as part of the file name. If
COMPILE is omitted, file COMPILE is used.

Commands and Functions 2-409

EXPAND _SOURCE_FILE

SELECTION_ CRITERIA or SC

File from which selection criteria subcommands are read.
You can specify a file position as part of the file name.
To enter selection criteria subcommands interactively,
specify COMMAND. If SELECTION _CRITERIA is
omitted, no selection criteria processing is performed.

WIDTH or W

Length of the expanded lines, excluding line identifiers. If
WIDTH is omitted, the default line width is 0 (zero).

LINE _IDENTIFIER or LI

Line identifier placement.

RIGHT (R)

Line identifiers are placed to the right of the text.

LEFT (L)

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, NONE is used.

ALTERNATE_BASEorALTERNATE_BASESorAB

Optional list of one or more additional libraries to be
searched for decks.

LIST or L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, the listing file is the file
specified on the SET_LIST_ OPTIONS subcommand.
Otherwise, the default is file $LIST.

EXPANSION _DEPTH or ED

Number of levels of COPY and COPYC directives to
process. COPY and COPYC directives beyond the
maximum expansion depth are expanded as text. If
EXPANSION _DEPTH is omitted, COPY and COPYC
directives are processed whenever they are encountered.

2-410 NOS/VE Commands and Functions Revision G

Remarks

Revision G

EXPAND _SOURCE_FILE

DISPLAY_OPTIONS or DO

Indicates whether the listing includes the library for each
deck from which the deck was expanded.

BRIEF (B)

Does not list the decks or their library origins.

FULL (F)

Lists the library origin when more than one library is
used.

If DISPLAY_ OPTIONS is omitted, BRIEF is used.

• EXPAND_SOURCE_FILE allows you to expand a text
file without starting an SCU session. It is identical to
the SCU subcommand EXPAND_FILE, except that the
EXPAND_SOURCE_FILE command does not interact
with the working library. Although the command can
be entered within an SCU session, it has no effect on
the working library of the session. It can be used to
expand files outside of an SCU session.

o You can specify alternate base libraries with the
ALTERNATE_BASE parameter. When SCU processes
a COPY or COPYC directive, it searches the deck lists
of the alternative base libraries in the order the
libraries are listed on the ALTERNATE_BASE
parameter.

o The EXPANSION _DEPTH parameter can limit the
levels of nested directives processed. If SCU reads a
directive at a level beyond the maximum level
processed, it expands it as text.

• The LINE_IDENTIFIER and WIDTH parameters
affect how the expanded text is written on the compile
file.

o The line width can be specified by the WIDTH
parameter. If the line width for a file or deck is 0
(zero), EXPAND_SOURCE_FILE writes each line as
it is stored in the file or deck (no trailing blanks or
truncation); a blank line, therefore, is written as a
zero-length V record. If the line width for a file or a

Commands and Functions 2-411

EXPLAIN

Examples

deck is nonzero, EXPAND_SOURCE_FILE writes
each line using that width. Lines shorter than the
width are padded with trailing blanks~ lines longer
than the width are truncated.

• For more information, see the NOS/VE Source Code
Management manual.

The following command expands the text of file OLD_
TEXT and writes the expanded text on file COMPILE.
The unique name given to the temporary deck created
from file OLD_ TEXT is $95 .. 28.

/excana_source_f1le old_text alternate_base=source_library
.. /d1splay_opt ions=ful 1 l 1st=outcut
•=Deck was coo i ed
$800716132S0209D19880225T220933 Working Library

• SOURCE_LIBRARY F$$ __ 00011BDO_E3

EXPLAIN
Command

Purpose

Format

Displays the text of an online manual.

EXPLAIN or
EXP

SUBJECT=string
MANUAL=file
LIST=file
EXPAND _DEPTH= integer
STATUS =status variable
$CHILD=name

Parameters SUBJECT or S

Specifies the initial index topic to be used to locate
information. Omission causes the main menu of the
manual to be displayed.

MANUAL or M

Specifies the online manual that is to be displayed.
Omission causes NOS_ VE, the name of the default online
manual, to be used.

LIST or L

Identifies the file to receive listable output produced by
the EXCERPT directive or the COPY key. Omission
causes file MANUAL_PAGES to be used.

2-412 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

EXPLAIN

EXPAND_DEPTH or ED

Specifies the number of levels of topics to be initially
displayed if you are using a TOPICS online manual. You
may specify a value of 1 to 10.

If omitted, 1 is assumed.

$CHILD

Reserved.

• If your interaction style is SCREEN, EXPLAIN uses
screen mode to display the on-line manual.

o EXPLAIN will first attempt to access the file using
the name specified by the MANUAL parameter. If no
such file exists in the specified catalog, then
$SYSTEM.MANUALS.NOS_ VE will be prefixed and
another attempt to access the manual will be made.

• For more information, see the NOSNE System Usage
manual.

In the following example, the EXPLAIN command is
entered without parameters, causing the default online
manual to be displayed. The default online manual can
also be accessed by specifying file
$SYSTEM.MANUALS.NOS_ VE on the MANUAL
parameter.

/explain

The following example calls the online FORTRAN manual
directly.

/explain m=fortran

The following example displays the description of the
ACCEPT_LINE command from the online SCL manual.

/explain 'accept_line' scl

Commands and Functions 2-413

EXPLAIN _MESSAGE

EXPLAIN _MESSAGE
Command

Purpose

Format

Requests a description of a system message.

EXPLAIN _MESSAGE or
EXPM

CONDITION= integer
IDENTIFIER= string
STATUS =status variable
CLV$PREVIOUS _STATUS= status

Parameters CONDITION or C

Remarks

Examples

Specifies a condition code identifying a message for which
an explanation is desired. Omission causes the code for
the last response message you received to be used. If the
previous status is normal, the first screen of the default
online manual is displayed.

IDENTIFIER or ID or I

Two character product identifier associated with the
condition code.

CLV$PREVIOUS_STATUS

Reserved.

• This explanation is more detailed than that provided
in a BRIEF or FULL mode message.

• Refer to the CHANGE_MESSAGE_LEVEL command
for further information.

• For more information, see the NOSNE System Usage
manual.

Assume you receive the following system message.

/attach_file not_a_file
--ERROR--File "NOT_A_FILE" does not exist or you are

not permitted for any access.

Entering HELP or EXPLAIN _MESSAGE without
parameters causes a description of the most recent
message to be displayed.

2-414 NOS/VE Commands and Functions Revision G

EXTRACT_SOURCE_LIBRARY

In the following example, a message description is
obtained by specifying the condition code on the
EXPLAIN_MESSAGE command.

/explain_message c=1016 id='am'

EXTRACT_SOURCE_LIBRARY
Command

Purpose

Format

Extracts a set of decks from the base library for use as a
separate library.

EXTRACT_ SOURCE_ LIBRARY or
EXTSL

DECK= list of range of name
INTERLOCK= name
SELECTION_ CRITERIA= file
BASE=file
RESULT= file
STATUS =status variable

Parameters DECK or DECKS or D

Revision G

Decks to be copied. The decks can be specified as a list of
one or more names, a list of one or more ranges, or as
the keyword ALL. ALL specifies all decks on the base
library. If DECK is omitted, the decks copied are
determined by the contents of the criteria file.

INTERLOCK or I

Name of the user reserving the extracted decks; use the
keyword NONE if the decks are not to be reserved. The
name is written in the subinter lock field for each
extracted deck on the base library and in the original
interlock field of each deck in the extracted library. This
parameter is required.

SELECTION _CRITERIA or SC

File from which selection criteria commands are read.
You can specify a file position as part of the file name. If
SELECTION_ CRITERIA is omitted, decks are selected
using the DECK parameter.

Commands and Functions 2-415

EXTRACT_SOURCE_LIBRARY

Remarks

NOTE

If an interlock is to be set, you cannot use the selection
criteria commands EXCLUDE_MODIFICATION,
EXCLUDE_FEATURE, or EXCLUDE_STATE to exclude
modifications. Interlocked decks can only be extracted as a
whole.

BASE or B

File containing the source library from which decks are
copied. If BASE is omitted, file SOURCE_LIBRARY in
your current working catalog is used.

If the EXTRACT_SOURCE_LIBRARY command sets
interlocks, it modifies the base library file by writing the
interlock value in the original interlock field of the deck
header of each extracted deck.

RESULT or R

File on which the new source library is written. This
parameter is required.

• The EXTRACT_SOURCE_LIBRARY command is a
NOS/VE command. Although you can enter the
command during an SCU session, it has no effect on
the working library of the session. However, if both
use the same result file, the first file is overwritten by
the second.

To set interlocks with an EXTRACT_SOURCE_
LIBRARY command, you must have modify permission
as well as read permission to the base library file.
You also must have interlock authority for the file
(the letter I in the application information field of
your file permit entry).

• If you intend to later merge the extracted library
decks with the base library decks to form a new
library, you can set interlocks on the extracted decks
to notify other users of the base library that you have
extracted the decks. You can set interlocks in the
extracted decks by specifying a user name on the
INTERLOCK parameter.

2-416 NOSNE Commands and Functions Revision G

Examples

Revision G

EXTRACT_SOURCE_LIBRARY

o When setting interlocks, the command stores the user
name both in the deck header of the extracted deck
copy and in the deck header of the original deck. The
name is stored in the original interlock field of the
extracted deck copy and in the subinterlock field of
the original deck.

• If you set interlocks when you extracted the library,
the REPLACE_LIBRARY or COMBINE_LIBRARY
subcommand enforces the interlock if you specify
ENFORCE_INTERLOCKS=TRUE on the
subcommand. Interlock enforcement means that
REPLACE_LIBRARY or COMBINE_LIBRARY checks
whether the original interlock value in the header of
the extracted deck copy matches the subinterlock value
in the header of the working library copy.

If the values match, REPLACE_LIBRARY or
COMBINE_LIBRARY replaces the working library
deck with the extracted deck; otherwise, it issues a
warning message, does not replace the working library
deck, and attempts replacement of any remaining
decks in the deck list.

• The key characters of source libraries must match.

• You can select the decks extracted by deck names,
selection criteria, or names qualified by selection
criteria. SCU begins with the decks specified on the
DECK parameter and then adds and removes decks as
specified by selection criteria commands.

• The modification, feature, and group lists for the
extracted library contain only the modifications,
features, and groups applicable to the extracted decks.

• For more information, see the NOSNE Source Code
Management manual.

The following command copies the deck DECK! and the
decks in the range DECKS through DECK7 from the base
library on permanent file OLDPL to the result library on
permanent file NEWLIB. No interlocks are set.

/extract_source_library (deck1,deck5 .. deck7) ..
.. /interlock=none base=$user.oldp1 result=$user.newlib

Commands and Functions 2-417

EXTRACT_SOURCE_LIBRARY

2-418 NOSNE Commands and Functions Revision G

$FILE
Function

$FILE

Purpose Returns certain file attributes.

Format $FILE
(file
keyword)

Parameters file

Remarks

Examples

Revision G

Specifies the name of the file whose attributes you are
querying. This parameter is required.

keyword

Specifies the file attribute you are querying. Chapter 3,
Function Attributes, lists and describes the keyword
values you can supply and the corresponding function
results. This parameter is required.

• Depending on the attribute being tested, either
boolean, string, or integer results are possible. When a
string value is returned, all letters within the string
are converted to uppercase (the exception is the
USER_INFORMATION attribute).

o For further information about functions, see the
NOS/VE System Usage manual.

o The following example queries whether a file is
temporary. If it is temporary, the statements in the IF
sequence are executed; otherwise, they are skipped.

IF $file(data_file_1,temporary) THEN

"Process statement list
"if DATA_FILE_1 is temporary.

I FEND

When the keyword TEMPORARY is used, $FILE
returns a TRUE value only if the specified file exists.

• The following example queries whether the FILE_
ORGANIZATION attribute is SEQUENTIAL and the
FILE_CONTENT attribute is LEGIBLE. If this is the
case, the file is compiled.

Commands and Functions 2-419

FILE_MANAGEMENT_ UTILITY

IF $file(program_able,file_organization)
='SEQUENTIAL' and ..
$file(program_able,file_content)
= 'LEGIBLE' THEN
fortran i=program_able

I FEND

• The following example extracts the USER_
INFORMATION file attribute and displays the string
value:

/display_value $file(data_file_1,user_information)
Data file for CONV_USER program.

FILE _MANAGEMENT_ UTILITY
Command

Purpose Executes the File Management Utility.

Format FILE_MANAGEMENT_UTILITY or
FILMU or
FMU

INPUT=file
OUTPUT=file
DIRECTIVES= file
LIST=file
ERROR _DISPOSITION= keyword
STATUS= status variable

Parameters INPUT or I

File reference of file to be copied. Specified only if
DIRECTIVES is omitted. Default is $INPUT.

OUTPUT or 0

File reference of file to be copied to. Specified only if
DIRECTIVES is omitted. Default is $OUTPUT.

DIRECTIVES or DIRECTIVE or DIR or D

File reference of a file containing FMU directives.
Specified only if INPUT and OUTPUT are omitted.
Required if INPUT and OUTPUT are omitted.

2-420 NOSNE Commands and Functions Revision G

Remarks

Examples

FIXC2

FIXC2

LIST or L

File reference of the file containing the summary of the
FMU run, including diagnostic messages. Required in an
interactive session. Default is $LIST.

ERROR_DISPOSITION or ED

Indicates whether FMU is to abort if any output file is
closed prematurely due to an error.

ABORT (A)

FMU aborts (default).

NO_ABORT (NA)

FMU continues writing the other output files.

• FMU performs a simple copy when the INPUT and
OUTPUT parameters are specified. When INPUT and
OUTPUT are omitted, FMU reads directives from the
file specified by the DIRECTIVES parameter. The
directives specify the input and output files and the
data reformatting to be preformed.

• For more information, see the NOSNE Advanced File
Management Usage manual.

FMU can be used to do a simple file copy.

/FMU,INPUT=IN_FILE,OUTPUT=OUT_FILE,LIST=FMULIST,ED=NA

FMU can be used to perform data reformatting:

/FMU,DIR=DIRFILE,LIST=FMLIST

IM/DM Command

Remarks

$FNAME
Function

Purpose

Format

Revision G

Reserved for site personnel, Control Data, or future use.

Converts a string to a file name.

$FNAME
(string)

Commands and Functions 2-421

FOR

Parameters string

Remarks

Examples

FOR

Specifies the string variable you want converted to a file
name. This parameter is required.

• This function is useful in constructing a file name
from a string value and using the file name as a
parameter on another command or function.

• For further information about functions, see the
NOSNE System Usage manual.

The following example uses the $FNAME function result
as a file name parameter.

/catalog_name = '$user'
/file_name = 'data_file_1'
/attach_file $fname(catalog_name//' .'//file_name)

In the preceding example, a variable CATALOG_NAME is
created with the string value '$user'. Similarly, a variable
FILE_NAME is created with the string value 'data_file_
1 '. The string expression is passed to the $FN AME
function, which is evaluated as the following:

$user.data_file_ l

Subsequently, the $FNAME function converts the
evaluated string to the file name $USER.DATA_FILE_l,
and the ATTACH_FILE command is processed with the
parameter converted as follows:

ATTACH_FILE $USER.DATA_FILE_ l

Control Statement

Purpose

Format

Provides controlled repetition of a statement list.

label: FOR
variable=initial TO final BY step DO
statement list
FOREND label

2-422 NOSNE Commands and Functions Revision G

FOR

Parameters label

Remarks

Specifies the name of the FOR block. This label can be
used by CYCLE or EXIT statements within the block.

variable

Specifies the control variable of the FOR statement. If not
already declared, it is created by the FOR statement, in
which case the variable may not contain a subscript or
field qualifier. This parameter is required.

initial

Integer that specifies the initial value of the control
variable. This parameter is required.

final

Integer expression that specifies the final value of the
control variable. This parameter is required.

step

Integer expression that specifies the increment of the
control variable for each loop. The default increment is 1.
If the step element is omitted, the FOR statement has the
following format:

label: FOR variable = initial TO final DO

statement list

Specifies the list of statements that reside in the block.

• Any alteration of the control variable or of the initial,
final, or step elements within the statement list has
no effect on the number of iterations of the FOR
statement.

• If initial is less than final, step must be positive or
the FOR statement is not executed.

• If initial is greater than final, step must be negative
or the FOR statement is not executed.

• If initial equals final or step is 0 (zero), the statement
list is executed once.

Revision G Commands and Functions 2-423

FORMAT_ CYBIL_SOURCE

Examples

• If the control variable is altered and then referenced
within the statement list, the altered value is used.
The control variable, however, is reset to the correct
value for the next iteration of the FOR statement.
After exiting from the FOR statement, the control
variable has the last value that it attained, either due
to alteration or FOR statement iteration.

• For more information, see the NOSNE System Usage
manual.

The following example displays each character in a string
on a separate line.

/string= 'down hill'
/blanks = ' '
/for i = 1 to $strlen(string) do
for/display_value ..
for .. /$substr(blanks,1,i)//$substr(string,i,1)
for/forend

d
0

w
n

h

1

FORMAT_CYBIL_SOURCE
Command

Purpose

Format

Formats CYBIL source code for consistency and greater
readability.

FORMAT_CYBIL_SOURCE or
FOR CS

INPUT=file
OUTPUT=file
ERROR=file
FORMAT_ OPTIONS= list of keyword
LINE_ WIDTH= integer
KEY=string
STATUS= status variable

2-424 NOSNE Commands and Functions Revision G

FORMAT_ CYBIL_SOURCE

Parameters INPUT or I

Revision G

Specifies the file from which the CYBIL source code is
read. If omitted, $INPUT is assumed.

OUTPUT or 0

Specifies the file on which the formatted CYBIL source
code is written. If omitted, $OUTPUT is assumed.

ERROR or E

Specifies the file on which error messages are written. If
omitted, $ERRORS is assumed.

FORMAT_OPTIONS or FO

Specifies one or more of the following format options. If
omitted, NONE (no format options are selected) is
assumed.

ALIGN_
COMMENTS
or AC

ALL

COMMENT_
BLOCK or
CB·

Specifies that comment blocks are aligned
in column one as follows:

• Comment blocks not beginning in
column one are repositioned to column
one.

• Comment lines exceeding the line
width are truncated and the text
aligned with the first non-blank
character of the original comment line.

• Trailing comment delimiters are
removed so that comments end with
the end-of-line.

Selects all the format options (CB, ME,
and NC).

Specifies that a comment block is preceded
and followed by a blank line. A comment
block is considered to be one or more lines
of comments.

Commands and Functions 2-425

FORMAT_ CYBIL_SOURCE

Remarks

MARK_
EXIT or ME

NO_
COMPRESS
or NC

NONE

Marks exit statements (that is, EXIT,
CYCLE, and RETURN) by adding the
comment

{----->
after the statement. This indicates that a
change in the program's flow of control
occurs here.

If the comment delimiter (the left brace)
is already in the statement, the statement
is not changed.

Selects no compression of successive space
characters. The same number of space
characters in the input file are written to
the output file. This option is overridden if
the formatter finds an FMT directive in
the source code with the COMPRESS
parameter set to ON. Unless otherwise
specified, spaces are compressed.

No format options are selected.

LINE_ WIDTH or LW

Specifies the line width of the formatted output. You can
specify an integer from 11 to 110. If omitted, a right
margin of 79 is assumed.

This setting is overridden if the formatter finds the LEFT
and RIGHT layout control directives in the source code.

KEY or K

Specifies the key character that indicates embedded
Source Code Utility directives. This value is specified as a
I-character string. Statements that begin with the key
character in column 1 are not formatted. If omitted, the
asterisk character is assumed.

• The file paths specified for the input and output files
cannot be the same. For example, INPUT= PROCl and
OUTPUT=PROCl are not valid;
INPUT= $LOCAL.PROC1 and
OUTPUT=$USER.PROC1 however, are valid.

2-426 NOSNE Commands and Functions Revision G

Examples

FORMAT_SCL_PROC

• The input and output files are rewound before
formatting if you don't specify a file position in the
file reference.

• For more information, see the CYBIL Language
Definition manual.

The following command formats the CYBIL source
program contained on file INITIAL and writes it to
$USER.FIN AL.

/format_cybil_source initial $user.final

FORMAT _SCL_PROC
Command

Purpose

Format

Formats a file containing SCL commands so that the
procedure is easier to read.

FORMAT_SCL_PROC or
FORMAT_SCL_PROCS or
FORSP or
FOR SC LP

INPUT=file
OUTPUT= file
PAGE_ WIDTH=integer
INITIAL_INDENT _COLUMN =integer
KEY_ CHARACTER =string
UTILITY _DEFINITION _FILE= file
PROCESS_COLLECT_TEXT=boolean
STATUS =status variable

Parameters INPUT or I

Revision G

Specifies the name of the file from which the commands
are read. This file must have the following file attribute
values:

• The FILE_CONTENTS attribute must be either
LEGIBLE or UNKNOWN.

• The FILE_PROCESSOR attribute must be either SCL
or UNKNOWN.

• The FILE_STRUCTURE attribute must be either
DATA or UNKNOWN.

This parameter is required.

Commands and Functions 2-427

FORMAT_SCL_PROC

OUTPUT or 0

Specifies the name of the file to which the formatted
commands are written. This file must have the same
attribute values as those described for the INPUT file.
This parameter is required.

PAGE_ WIDTH or PW

Specifies the page width of the OUTPUT file. The value
specified is the right margin of the OUTPUT file. The
value must be at least 64 greater than the value of the
INITIAL_INDENT_COLUMN parameter. The default
page width is 110.

INITIAL_INDENT_COLUMN or IIC

Specifies the starting column of the first line written to
the OUTPUT file. This parameter ensures formatting of a
section of commands not normally formatted (such as
those appearing as input to COLLECT_ TEXT). These
commands are extracted from a procedure, formatted, and
replaced in the formatted procedure. The default starting
column is 1.

KEY_CHAR.ACTER·or KC

Specifies the character that causes the entire input line to
be written to the output line without any format
processing. This character must appear in column 1 of an
input line. The default key character is the asterisk (*).

UTILITY _DEFINITION _FILE or UDF

Specifies the name of the file that lists the commands
that initiate and terminate command utilities. If you
create your own utilities, you need to create a file that
lists all the command utilities used in the procedure.

If you omit this parameter, only system-defined utility
names and terminators are included in the formatted
output.

PROCESS_COLLECT_TEXTorPCT

Boolean value specifying whether lines within the
COLLECT_ TEXT command and other similar commands
should be formatted. The default value is FALSE (lines
should not be formatted).

2-428 NOSNE Commands and Functions Revision G

Remarks

FORTRAN

e If the output file named in the FORMAT_SCL_PROC
command was not previously opened and any of its
FILE_ CONTENTS, FILE_PROCESSOR, and FILE_
STRUCTURE attributes are set to UNKNOWN, the
UNKNOWN value is changed as follows:

- For the FILE_CONTENTS attribute, UNKNOWN
is changed to LEGIBLE.

- For the FILE_PROCESSOR attribute, UNKNOWN
is changed to SCL.

- For the FILE_STRUCTURE attribute, UNKNOWN
is changed to DATA.

• For more information, see the NOSNE System Usage
manual.

FORTRAN
Command

Purpose Calls and executes the FORTRAN compiler.

Format FORTRAN or
FTN

INPUT=list of file
BINARY_OBJECT=file
LIST=file
COMPILATION _DIRECTNES =boolean
DEBUG _AIDS= list of keyword
DEFAULT_ COLLATION= keyword
ERROR=file
ERR OR _LEVEL= keyword
EXPRESSION _EVALUATION= list of keyword
FORCED _SAVE= boolean
INPUT_SOURCE_MAP=list of file
LIST_ OPTIONS= list of keyword
MACHINE _DEPENDENT= keyword
ONE_ TRIP _DO= boolean
OPTIMIZATION= keyword
OPTIMIZATION_ OPTIONS= list of keyword
RUNTIME_CHECKS=list of keyword

Revision G Commands and Functions 2-429

FORTRAN

SEQUENCED _LINES= boolean
STANDARDS _DIAGNOSTICS= keyword
TERMINATION _ERROR_LEVEL =keyword
TARGET _MAINFRAME= keyword
STATUS =status variable

Parameters !NP UT or I

Specifies the name of the file(s) containing the input
source code. Each file must contain a full program unit
and not parts of a program unit. If more than one file is
specified, the list of files is enclosed in parentheses.

Omission (or $INPUT) sets the specified file to $INPUT.

BINARY_OBJECT or BINARY or B or BO

Specifies the file to receive the binary object code
produced by the compiler. The binary object code will be
generated into a single file even if you specified a list of
file references for the INPUT parameter.

Omission causes $LOCAL.LGO to be used.

LIST or L

Specifies the file to receive the compiler output listing.
The format of the compiler output listing will be as
though you had combined the input files into a single file
even if you specified a list of file references for the
INPUT parameter.

Omission causes $LIST to be used for batch jobs and
$NULL to be used for interactive jobs.

COMPILATION _DIRECTNES or CD

Determines whether C$ directives within the source
program are recognized. If ON is selected, the C$
directives are processed. OFF causes the C$ directives not
to be processed.

Omission causes this parameter to be set to ON.

DEBUG _AIDS or DA

Selects debugging options.

NONE

No debugging options are selected (default).

2-430 NOSNE Commands and Functions Revision G

Revision G

FORTRAN

ALL

Selects all debugging options (DT and PC).

DT

Generates line number and symbol tables for use by
the Debug utility.

PC

Generates argument checking information as part of
the object code.

DEFAULT_COLLATION or DC

Specifies the weight table to be used for evaluating
character expressions and by the CHAR and !CHAR
functions. USER (U) allows a user-specified weight table
(DISPLAY) to be used.

Omission, or FIXED (F), causes the fixed weight table
(ASCII) to be used.

ERROR or E

Specifies the name of the file to receive
compiler-generated error messages. Omission causes the
error messages to be written to the file $ERRORS.

ERROR_LEVEL or EL

Determines the minimum severity level for which errors
are to be listed. All errors of severity greater than or
equal to the specified level will be listed on the error and
list files. Options are:

TRIVIAL (T) or INFORMATIONAL (I)
WARNING (W)
FATAL (F)
CATASTROPHIC (C)

Omission causes WARNING to be used.

Commands and Functions 2-431

FORTRAN

EXPRESSION _EVALUATION or EE

Controls the way the compiler evaluates expressions.
Options are:

CANONICAL (C)

Causes expressions to be evaluated according to
precedence rules. Refer to the FORTRAN usage
manual for detailed information about precedence
rules.

MAINTAIN EXCEPTIONS (ME)

Inhibits optimizations that eliminate instructions that
might cause runtime errors.

MAINTAIN PRECISION (MP)

Inhibits optimizations that change a floating-point
operation to a mathematically equivalent form.

OVERLAPPING_STRINGS_MOVES (OSM)

Guarantees valid character assignment in character
assignment statements of the form v=exp where the
character positions being defined in v are referenced in
exp.

REFERENCE (R)

Causes intrinsic· functions to be called by reference
rather than by value and results in the generation of
descriptive error messages (of execution errors) by
internal FORTRAN routines. If this option is not
selected, the operating system produces error messages
which generally provide less information.

Multiple options are specified in the form (op, ... , op).
Omission, or NONE, causes no options to be selected.

FORCED_SAVE or FS

Specifies whether or not the values of variables and
arrays in subprograms are to be retained after execution
of a RETURN or END statement.

ON causes variable and array values to be saved. This is
equivalent to specifying a SAVE statement in every
subprogram compiled.

Omission, or OFF, causes variable and array values not
to be saved.

2-432 NOSNE Commands and Functions Revision G

Revision G

FORTRAN

INPUT_SOURCE_MAP or ISM

Specifies the file containing the source map that was
generated by the OUTPUT_SOURCE_MAP option on the
SCU EXPAND_DECK command. Omission causes $NULL
to be used.

LIST_OPTIONS or LO

Specifies the information that is to appear on the compiler
output listing. Options are:

A

A listing of the attributes of each symbolic name used
or defined within the program is produced.

R

A cross reference listing. The listing shows the
locations of the definition and use of each symbolic
name in the program.

M

A symbol attribute list (same as A option), DO loop
map and common block map are produced.

s
A listing of the program source statements is written
to the output file.

SA

Same as the S option, except that lines turned off by
C$ LIST directives are listed.

0

A listing of the generated object code is provided. that

NONE

No output listing is produced.

Multiple options are specified in the form (op, ... , op).
Omission causes the S option to be used.

MACHINE_DEPENDENTorMD

Specifies whether the use of machine dependent
capabilities within the program are to be diagnosed and
how severely.

Commands and Functions 2-433

FORTRAN

NONE

Machine dependent usages are not diagnosed.

TRIVIAL (T) or INFORMATIONAL (I)

Machine dependent usages are diagnosed as trivial
errors.

WARNING (W)

Machine dependent usages are diagnosed as warning
errors.

FATAL (F)

Machine dependent usages are diagnosed as fatal
errors, which result in a nonexecutable program.

Omission causes NONE to be used.

ONE_TRIP_DO or OTD

Determines the manner in which DO loops are to be
optimized by the compiler. The trip count is the number
of times a DO loop is executed.

ON informs the compiler that the minimum trip count for
DO loops is one.

OFF informs the compiler that the minimum trip count
for DO loops is zero.

Omission selects the OFF option.

OPTIMIZATION or OPT or OPTIMIZATION _LEVEL or
OL

Selects the level of optimization performed by the
compiler. Options are HIGH, LOW or DEBUG. DEBUG
produces stylized object code for debugging. LOW produces
optimized code for production runs.

Omission selects the LOW option.

OPTIMIZATION _OPTIONS or 00

Specifies instruction scheduling. This parameter is only
significant when the OPTIMIZATION _LEVEL parameter
specifies HIGH. Options are NONE and INSTRUCTION
SCHEDULING. INSTRUCTION SCHEDULING allows for
improved execution on the Model 990 regardless of the
machine on which compilation occurs. NONE indicates

2-434 NOS/VE Commands and Functions Revision G

Revision G

FORTRAN

that instruction scheduling is determined by the values of
the OPTIMIZATION_LEVEL and TARGET_MAINFRAME
parameters as follows:

If TARGET_MAINFRAME specifies C180CM or C180V
and the compilation machine is a model 990, instruction
scheduling occurs. If TARGET_MAINFRAME specifies
C180CM and the compilation machine is not a model 990,
instruction scheduling also occurs. All other combinations
of the TARGET_MAINFRAME and compilation machine
do not produce instruction scheduling.

Omission selects NONE.

RUNTIME_CHECKSorRC
Specifies the checking done during execution.

R

Selects runtime range checking for character substring
expressions.

s
Selects runtime range checking for subscript
expressions.

NONE

Causes no options to be selected (default).

ALL

Selects both the R and S options.

SEQUENCED_LINESor SL
Specifies the sequencing format of the input source
program. Specify ON if the source program is in
sequenced format or OFF if the source program is in
nonsequenced format.

Omission selects the OFF option.

STANDARDS_DIAGNOSTICS or SD

Specifies whether or not non-ANSI source statements are
to be diagnosed and, if so, how severely.

NONE

Nonstandard usages are not diagnosed.

Commands and Functions 2-435

FORTRAN

TRIVIAL (T) or INFORMATIONAL (I)

Nonstandard usages are diagnosed as trivial errors.

WARNING (W)

Nonstandard usages are diagnosed as warning errors.

FATAL (F)

Nonstandard usages are diagnosed as fatal errors.

Omission causes NONE to be used.

TERMINATION _ERROR_LEVEL or TEL

Specifies the minimum error severity level for which the
compiler is to return abnormal status. Options are:

TRIVIAL (T) or INFORMATION AL (I)
WARNING (W)
FATAL (F)
CATASTROPHIC (C).

Abnormal status is returned for all errors having severity
equal or greater than the specified level. Omission selects
the FATAL option.

TARGET_MAINFRAME or TM

The TARGET_MAINFRAME(TM) parameter specifies the
kind of mainframe for which the object code is generated.
This parameter is only significant when the
OPTIMIZATION _LEVEL parameter specifies HIGH.
Options are:

Omitted

Same as TARGET_MAINFRAME=C180_CURRENT_
MAINFRAME.

TARGET_MAINFRAME = C180_ VECTOR
(TM=C180V)

The object code is generated for use on the model 990
of the CYBER 180. The model 990 has
vector-processing capabilities; object code produced by
this option also executes on any CYBER 180 model,
however, it performs optimally on a model 990.

2-436 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

TARGET_MAINFRAME = C180_MODEL_
INDEPENDENT (TM= 180MI)

FORTRAN

The object code is generated for use on any model of
the CYBER 180.

TARGET_MAINFRAME =Cl SO_ CURRENT_
MAINFRAME (TM=C180CM)

The object code is generated for use on the machine
on which compilation occurs.

• The parameters on the FORTRAN command can be
specified either by name or positionally (parameter
name omitted), and must be separated by a comma or
one or more blanks.

• When you specify a parameter positionally, you must
indicate the position of any omitted parameters that
precede the specified parameter by commas.

• If you omit any parameter from the FORTRAN
command, a default is automatically provided.

• For more information, see the FORTRAN Language
Definition manual.

The following commands specify three parameters and
select the default values for all other parameters.

/fortran input=afile binary object=bfile
.. /error level=fatal

/ftn i=afile b=bfile el=fatal

Options chosen:

INPUT= AFILE, I= AFILE

Source statements are read from file AFILE.

BINARY OBJECT=BFILE, B=BFILE

Object code is written to file BFILE.

Commands and Functions 2-437

GENERATE_ COMMAND_ TABLE

ERROR LEVEL=FATAL, EL=FATAL

Only fatal and catastrophic errors are written to the
error and list files.

The following commands are equivalent, both select
default values for all parameters.

FORTRAN or FTN

GENERATE_COMMAND_TABLE
Command

Purpose

Format

Generates command and function tables for a command
environment.

GENERATE COMMAND TABLE or
GEN CT

INPUT= file
OUTPUT= file
PAGE_ WIDTH=integer
STATUS =status variable

Parameters INPUT or I

Remarks

Specifies the file which contains the command table
declaration. This parameter is required.

OUTPUT or 0

Specifies the file to which the CYBIL declarations that
represent the command table are to be written. This
parameter is required.

PAGE_ WIDTH or PW

Specifies the desired page width of the output file
(31..110)

Omission causes the page width attribute of the output
file to be used. If the attribute value specified is outside
of the range 31 to 110, the nearest limit will be the value
used. If that attribute is not specified, a page width of
110 is used.

For more information, see the CYBIL System Interface
manual.

2-438 NOSNE Commands and Functions Revision G

GENERATE_ MESSAGE_ TEMPLATE

GENERATE _MESSAGE_ TEMPLATE
Command

Purpose Generates message templates.

Format GENERATE_MESSAGE_TEMPLATE or
GENERATE_MESSAGE_TEMPLATES or
GENMT

INPUT=file
OUTPUT= file
ERROR=file
PRODUCT _IDENTIFIER =name
STATUS= status variable

Parameters INPUT or I

Specifies the file containing the CYBIL definitions for the
condition codes, their severity levels and their message
templates. This parameter is required.

OUTPUT or 0

Specifies the file to receive the message module creation
commands. This file must be included within the
CREATE_OBJECT_LIBRARY utility to actually create
the message module(s). This parameter is required.

ERROR or E

Specifies the file to which information about errors
encountered in the input is written. Omission causes
$ERRORS to be used.

PRODUCT_IDENTIFIER or IDENTIFIER or PI

Reserved.

Remarks For more information, see the CYBIL System Interface
manual.

Revision G Commands and Functions 2-439

GENERATE_PDT

GENERATE_PDT
Command

Purpose

Format

Interprets a PDT declaration and generates CYBIL
statements that declare and initialize a PDT.

GENERATE_PDT or
GENPDT

INPUT=file
0 UTPUT =file
PAGE_ WIDTH;= integer
STATUS =status variable

Parameters INPUT or I

Remarks

Specifies the file containing the PDT declaration. Blank
lines and continuation lines are allowed anywhere in the
input file, but only one PDT declaration is allowed. This
parameter is required.

OUTPUT or 0

Specifies the file which is to receive the output from the
GENPDT command. All lines from the input file are
echoed to the output file in the form of block comments.
This parameter is required.

PAGE_ WIDTH or PW

Specifies the desired page width of the output file. The
range is 31 through 110. If the value specified is outside
the range, the nearest limit will be used.

Omission causes the page width attribute of the output
file to be used. If that attribute is not specified, a value
of 110 is used.

For more information, see the CYBIL System Interface
manual.

GENERATE_ SCU _EDIT_ COMMANDS
Command

Purpose Compares a deck to text on a source file and produces a
file of editing commands and text. If the deck is
subsequently edited using the file of commands and text
as input, the text of the edited deck would match that on
the source file.

2-440 NOSNE Commands and Functions Revision G

Format

GENERATE_SCU _EDIT_ COMMANDS

GENERATE_SCU _EDIT_COMMANDS or
GEN SEC

DECK= name or keyword
SOURCE= file
EDIT_ COMMANDS= file
BASE=file
TERMIN AT/NG _DELIMITER= string
LEADING_ SPACES_ SIGNIFICANT= boolean
STATUS= status variable

Parameters DECK or D

Revision G

Deck to which the editor subcommands apply. You can
specify a name or the keyword ALL. ALL specifies .that
the source file is to include the *DECK directives. Some
libraries may have a key character other than *. This
parameter is required.

SOURCE or S

File containing a modified version of the deck text. You
can specify a file position as part of the file name. This
parameter is required.

EDIT_COMMANDS or EC

File to which the editor commands and text are written.
This parameter is required.

BASE or B

Source library file on which the deck resides. If BASE is
omitted, SOURCE_LIBRARY is used.

TERMINATING_DELIMITER or TD

Characters that mark the end of inserted text in the
editor commands file. If TERMINATING_DELIMITER is
omitted, ///END\\\ is used.

LEADING_SPACES_SIGNIFICANT or LSS

Indicates whether the comparison should consider leading
spaces significant. Options are:

TRUE

Leading spaces are significant.

Commands and Functions 2-441

GENERATE_SCU _EDIT_ COMMANDS

Remarks

Examples

FALSE

Leading spaces are not significant.

If LEADING_SPACES_SIGNIFICANT is omitted, TRUE
is used.

• The GENERATE_SCU_EDIT_COMMANDS command
is a NOSNE command. Although you can enter the
command during an SCU session, it has no effect on
the working library of the session.

• The source file text must not contain line identifiers.
Also, the source file must not contain DECK directives
unless DECK= ALL is specified.

• If it does not matter how many spaces precede the
text in a line, specify LEADING_SPACES_
SIGNIFICANT=FALSE, so that the command does not
generate editing commands whose only function is to
change the number of leading spaces.

• For more information, see the NOSNE Source Code
Management manual.

The following command compares the text on file NEW_
DECK4 with the text in deck DECK4 on library OLDPL.
It then writes a sequence of editing commands and text
on permanent file DECK4_EDIT that, if executed, would
change the deck text to match the text on file NEW_
DECK4.

/generate_scu_edit_conmands deck=deck4 ..
.. /source=$user.new_deck4 edit_cOfTITlands= ..
.. /$user.deck4_edit base=$user.oldp1

If you specify the parameter EDIT_
COMMANDS=$USER.DECK4_EDIT on the GENSEC
command, the following example gives the generated
commands to the EDIT_FILE utility, and the utility
makes a modification for the new version of your deck.

sc/edit_deck modification=new_mod deck=deck4 ..
sc .. /input=$user.deck4_edit

2-442 NOSNE Commands and Functions Revision G

GET_FILE

GET_FILE
Command

Purpose

Format

Copies a file from NOS or NOS/BE to NOSNE.

GET_FILE or
GETF

TO=file
FROM=name
DATA_ CONVERSION= keyword
USER=name
PASSWORD= list of name
CYCLE= integer
STATUS=status variable

Parameters TO or T

Revision G

Identifies the NOSNE file to which the NOS or NOS/BE
file is copied and, optionally, specifies how the file is to
be positioned prior to use. This parameter is required.

"Jf'ROM or F

Specifies the name of the NOS or NOS/BE file to be
copied.

In NOS this file name can be up to seven characters in
length as defined in the NOS file system.

In NOS/BE only the filename part of the file reference is
used to access the NOS/BE file.

In either system omission of this parameter causes the
file name component of the TO parameter to be used.

DATA_CONVERSION or DC

Specifies the type of conversion to be done during the file
copy. The possible keywords are:

B60

Each 60-bit NOS or NOS/BE word is placed in the
rightmost bits of each 64-bit NOSNE word. The
leftmost 4-bits of each NOSNE word are set to 0
(zero).

B56

The rightmost 56 bits of each NOS or NOS/BE word
are packed into contiguous NOSNE bits. The leftmost
4 bits of each NOS or NOS/BE word are ignored. This

Commands and Functions 2-443

GET_FILE

specification is useful for retrieving a file that was
created on NOSNE and then transferred to NOS/BE
with the REPLACE_FILE command which also
specified B56 as the DATA_ CONVERSION parameter
value.

A6

The NOS or NOS/BE file contains character data in
the 6/12 display code format (ASCII 128-character set).
Each character is converted to an ASCII character
(7-bit code right-justified in an 8-bit byte).

AB
The NOS or NOS/BE file contains character data in
the 12-bit ASCII code format (ASCII 128-character set).
Each character is converted to an ASCII character
(7-bit code right-justified in an 8-bit byte).

D63

The NOS or NOS/BE file contains character data in
the 6-bit display code format (63 character subset of
the ASCII 128-character set). Each character is
converted to an ASCII character (7-bit code
right-justified in an 8-bit byte).

D64

The NOS or NOS/BE file contains character data in
the 6-bit display code format (64-character subset of
the ASCII 128-character set). Each character is
converted to an ASCII character (7-bit code
right-justified in an 8-bit byte).

A63, B32, and B64 values are not supported. Omission of
this parameter causes A6 to be used.

USER or U or ID

In NOS, USER specifies the NOS user name of the owner
of the file. This parameter is necessary only if the file is
registered in a catalog belonging to a user whose
identification is different than your NOS identification
(specified on a prior CHANGE_LINK_ATTRIBUTE
command).

2-444 NOS/VE Commands and Functions Revision G

Remarks

Revision G

GET_ FILE

In NOS/BE, USER specifies the file id of the NOS/BE file.
This parameter is not required if the NOS/BE file id is
the same as the current NOSNE user name or the user
name specified in the last CHANGE_LINK_ATTRIBUTE
command.

PASSWORD or PASSWORDS or PW

In NOS, PASSWORD specifies the NOS file password
needed to gain access to the file. It is required only when
the file does not belong to you.

In NOS/BE, PASSWORD specifies a list of up to two
passwords that may be supplied to control file access
(NOS/BE turnkey and read permissions are the only
meaningful passwords for a GET_FILE command). The
PASSWORD parameter is required only if turnkey and/or
read permissions are required to access the file.

CYCLE or CY or C

The CYCLE parameter applies only to NOS/BE. This
parameter specifies the NOS/BE file cycle number and is
required only if the file being accessed is not the highest
cycle cataloged.

• A SET_FILE_ATTRIBUTE command may precede the
GET_FILE command to establish attribute values that
are to be preserved with the file. A subsequent
REPLACE_FILE command does not preserve file
attribute values.

• A NOS or NOS/BE permanent file that resides on
online storage can be copied.

• A CHANGE_LINK_ATTRIBUTE command issued
prior to the GET_FILE identifies the accounting and
user identification information needed to access the
file.

• If the data conversion is D64, A6, or AS, then the
NOS or NOS/BE file must be formatted with zero-byte
terminated (Z-type) records.

• Any embedded end-of-record marks (EORs) in the NOS
or NOS/BE file are eliminated during transfer to the
NOSNE file.

Commands and Functions 2-445

GET_MULTI_RECORD _FILE

• For more information, see the NOS/VE System Usage
manual.

Examples NOS

The first example retrieves file A from the NOS system.

/get_file a

The next example retrieves a copy of a NOS file named
PROLOG and stores the file in the master catalog with
the NOS/VE file name PROLOG.

/get_file to=$user.prolog

NOS/BE

The first example accesses the NOS/BE file DATAFIL
with the following file attributes:

file id JLC
passwords PERM1 and PERM2
cycle 32

/get_file to=datafil_copy from=datafil user=jlc ..
.. /password=(perm1 perm2) cycle=32

The next example retrieves a file A from the NOS/BE
system with a file id equal to DWM for a NOS/VE user
named DWM.

/get_file a

GET _MULTI _RECORD _FILE
Command

Remarks Reserved for site personnel, Control Data, or future use.

HELP
Command

Purpose Requests a description of a system message or displays
the text of an online manual.

2-446 NOSNE Commands and Functions Revision G

Format HELP or
H

SUBJECT= subject
MANUAL=file
LIST=file
STATUS =status variable
CLV$PREVIOUS _STATUS= status

HELP

Parameters SUBJECT or S

Remarks

Revision G

Specifies the index topic for locating information. Enclose
the topic in apostrophes if the topic has spaces in it.

MANUAL or M

Specifies the online manual to be displayed. Omission
causes the SCL Quick Reference manual to be displayed.
If you are in a utility that has an online manual
associated with it, the utility's online manual is used by
default.

LIST or L

Specifies the file to receive listable output produced by
the EXCERPT directive or the COPY key. Omission
causes file MANUAL_PAGES to be used.

CLV$PREVIOUS_STATUS

Determines whether or not the previous status was
normal.

• Specifying HELP without parameters causes the
display of message information if the last command
you executed was not normal. Otherwise, it causes the
display of the main menu of the SCL Quick Reference
manual.

o With parameters, HELP can be used to specify a
particular online manual or a particular subject.

• If you are within a utility, HELP causes the display of
the online manual for your utility or the utility's
subcommand list menu in the SCL Quick Reference
manual.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-447

IF

Examples

IF

The following example calls the online FORTRAN manual:

/help m=fortran

The following example displays the description of the
$QUOTE function:

/help $quote

If you want the SUBJECT parameter to be evaluated, you
must use the EXPLAIN command. For example, suppose
the SCL string variable FTN were defined as follows:

/ftn='accept_line'

If you entered,

/help s=ftn

the system does not evaluate FTN as an SCL variable
and therefore provides a description of the FTN command.
If you entered,

/explain s=ftn m=scl

the system evaluates FTN as an SCL variable and
therefore provides a description of the ACCEPT_ LINE
command.

Control Statement

Purpose

Format

Provides for conditional execution of one or more
statement lists.

IF boolean expression THEN
statement list

ELSEIF boolean expression THEN
statement list

ELSE
statement list

IFEND

2-448 NOSNE Commands and Functions Revision G

INCLUDE_ COMMAND

Parameters boolean expression

Remarks

Examples

Specifies the condition that must be TRUE in order for
the following statement list to be executed. This
parameter is required.

statement list

Specifies the statements to be executed.

• The boolean expressions on the IF and ELSEIF clauses
are evaluated in turn until one with a TRUE value is
found or until an ELSE clause is found. The statement
list is executed next, and control passes to the
statement following the !FEND clause.

• For more information, see the NOS/VE System Usage
manual.

The following is an example of an IF statement within an
SCL procedure. Assume that an integer parameter named
INT is passed to the procedure. The following IF
statement causes the procedure to report whether the
integer is negative, zero, or positive.

IF $value(int) = 0 THEN
display_value $parameter(int)//' is Zero'

ELSEIF $value(int) > 0 THEN
display_value $parameter(int)//' is Positive'

ELSE
display_value $parameter(int)//' is Negative'

I FEND

INCLUDE_ COMMAND
Command

Purpose

Format

Revision G

Causes the text of a specified string to logically replace
the occurrence of the INCLUDE_COMMAND command,
thus enabling you to construct a command through string
manipulation and then have the command processed.

INCLUDE_COMMAND or
INCC

COMMAND= string
EN ABLE _ECHOING= boolean
STATUS=status variable

Commands and Functions 2-449

INCLUDE_FILE

Parameters COMMAND or C

Remarks

Examples

Specifies the string to be interpreted and processed as a
command. This parameter is required.

ENABLE_ECHOINGorENABLE_ECHOor EE

Specifies whether the command is echoed. If this
parameter is set to FALSE, the command is not echoed
back to the terminal. The default value is TRUE.

• The command you construct has access to the same
variables, conditions, and parameter substitutions as
the INCLUDE_COMMAND command.

• This command accepts only one command (unlike the
INCLUDE_LINE command).

• This command does not create an input control block
(unlike the INCLUDE_LINE command). That is, the
command included is not treated as if it were the
statement list of an unlabeled BLOCK statement.

• For more information, see the NOSNE System Usage
manual.

The following example creates a string that is to be
interpreted as a command. Next, it processes the
command with the INCLUDE_COMMAND command.

/time_call='$time(ampm)'
/conmand='display_value ('//time_call//')'
/include_conmand conmand=conmand
11 :41 AM

INCLUDE _FILE
Command

Purpose

Format

Inserts a text file containing SCL statements into the
command stream.

INCLUDE_FILE or
INCF

FILE=file
PROMPT=string
UTILITY= name or keyword
STATUS= status variable

2-450 NOSNE Commands and Functions Revision G

INCLUDE_FILE

Parameters FILE or F

Remarks

Revision G

Identifies the text file to be included. This parameter is
required.

PROMPT or P

Specifies a prompt string to be used if the file is assigned
to an interactive terminal. If you use the UTILITY
parameter to associate a utility with the INCLUDE_FILE
command, the utility's prompt is used.

If you omit this parameter and do not specify an
associated utility, the prompt inc{ is used.

UTILITY or U

Specifies the name of the utility to be associated with the
INCLUDE_FILE command. To avoid association with a
utility, use the keyword NONE.

If you omit this parameter, NONE is assumed.

• The inserted text logically replaces the INCLUDE_
FILE command.

" You can use this command either on its own or with a
command utility (to initiate command processing for
the utility).

• The inserted statement list is treated as if it were the
statement list of an unlabeled BLOCK statement.
When you exit the included file, the block no longer
exists. Consequently, if you call a command utility
within the statement list, and exit from the included
file, the utility is terminated even though no explicit
termination command (such as QUIT) was encountered.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-451

INCLUDE_LINE

Examples Suppose that file $LOCAL.CREOL_COMMANDS contains
the following commands:

add_module 1=$1oca1.programs_lgo
replace_module 1=$loca1. lgo

Entering the following CREATE_OBJECT_LIBRARY and
INCLUDE_FILE commands produces the results described
below:

/creel
COL/include_file f=$local .creol_cOfTITlands
COL/

The commands on file $LOCAL.CREOL_ COMMANDS are
executed. The contents of the file $LOCAL.PROGRAMS_
LGO are added to the module list, and are then replaced
by modules of the same name (if present) from the file
$LOCAL.LGO.

INCLUDE _LINE
Command

Purpose Inserts a string containing SCL statements into the
command stream.

Format INCLUDE_LINE or
INCL

STATEMENT _LIST= string
EN ABLE _ECHOING= boolean
UTILITY= name or keyword
STATUS= status varip,ble

Parameters STATEMENT_LIST or SL

Specifies the string to be processed as a statement list.
This parameter is required.

ENABLE_ECHOINGorENABLE_ECHOorEE

Specifies whether commands can be echoed (YES) or not
(NO).

If you omit this parameter, YES is used.

2-452 NOSNE Commands and Functions Revision G

Remarks

Examples

INITIALIZE_ TERMINAL

UTILITY or U

Specifies the name of the command utility to be
associated with the INCLUDE_LINE command. To avoid
association with a utility, use the keyword NONE.

If you omit this parameter, NONE is used.

• The specified statement list logically replaces the
INCLUDE_LINE command.

• You can use this command either on its own or with a
command utility (to initiate command processing for
the utility).

• The inserted statement list is treated as if it were the
statement list of an unlabeled BLOCK statement.
When you exit the included line, the block no longer
exists. Consequently, if you call a command utility
within the statement list, and exit from the included
line, the utility is terminated even though no explicit
termination command (such as QUIT) was encountered.

• For more information, see the NOSNE System Usage
manual.

The following example uses string concatenation to create
a line and then processes the line with the INCLUDE_
LINE command.

/time_call = '$time(ampm)'
/date_call = '$date(month)'
/corrrnand_list = 'display_value ('//time_call//','// ..
.. /date_call//')'
/include_line corrrnand_list
3:26 PM

March 28, 1987

INITIALIZE_ TERMINAL
Command

Purpose

Revision G

This command sends character sequences to change the
terminal settings according to the current mode of system
interaction. For the INITIALIZE_ TERMINAL command to
change the terminal settings, the terminal definition must
contain at least two APPLICATION _STRING statements
of the format:

Commands and Functions 2-453

$INTEGER

Format

Remarks

APPLICATION_STRING NAME='LINE_INIT' OUT='text sent t­
o ..
the terminal'

APPLICATION_STRING NAME='SCREEN_INIT' OUT='text sent­
to ..
the terminal'

where you supply the character string for the OUT
parameter.

INITIALIZE_ TERM IN AL or
INIT

STATUS= status variable

For more information, see the NOS/VE Terminal
Definition manual.

$INTEGER
Function

Purpose Converts a string .or boolean value to an integer.

Format $INTEGER
(any)

Parameters any

Remarks

Specifies the string or boolean value you want converted
to an integer. This parameter is required.

• If you use this function to convert a string, you must
be sure that the string contents conform to the rules
for forming an integer constant.

• Boolean values are converted to 0 when the value is
FALSE, and to 1 when the value is TRUE.

• For further information about functions, see the
NOS/VE System Usage manual.

2-454 NOSNE Commands and Functions Revision G

Examples

$INTERACTION_STYLE

o The following examples show the creation of string
variables and the use of the $INTEGER function to
convert these strings to integers.

/create_variable sample_1 kind=string
.. /value='Off(16)'
/display_value $integer(sample_1)
OFF(16)

/create_variable sample_2 kind=string
.. /value='123(10)'
/display_value $integer(sample_2)
123(10)

SCL maintains the radix for each integer variable you
create. If you want to know the current integer value
of a variable, reference the variable by name; SCL
returns the integer with the same radix you used
when creating the variable.

• The following example converts a boolean value to an
integer:

/display_value $integer(false)
0

$INTERACTION _STYLE
Function

Purpose Returns a boolean value indicating whether the specified
interaction sty le is in effect.

Format . $INTERACTION _STYLE
(keyword)

Parameters keyword

Remarks

Revision G

Specifies the interaction style you want verified. This
parameter is required. Use one of the following entries:

LINE (L)
SCREEN (S)

If the system returns a value of TRUE, the interaction
style you specified is in effect. If the system returns a
value of FALSE, the other interaction style is in effect.

For further information about functions, see the NOSNE
System Usage manual.

Commands and Functions 2-455

JOB

Examples The following example indicates that the current
interaction style is screen mode:

/display_value $interaction_style(screen)
TRUE

JOB
Command

Purpose

Format

Delimits a sequence of one or more SCL commands that
are to be submitted to NOS/VE for batch processing.

JOB
USER_JOB _NAME= name
CPU_ TIME _LIMIT= integer or keyword
JOB _ABORT _DISPOSITION= keyword
JOB_ CLASS= name
JOB _EXECUTION _RING= integer
JOB_QUALIFIER=list of name or keyword
JOB _RECOVERY _DISPOSITION= keyword
MAGNETIC_TAPE_LIMIT=integer or keyword
MAXIMUM_ WORKING_SET=integer or keyword
OPERATOR_FAMILY =name
OPERATOR_ USER =name
OUTPUT_DISPOSITION=file or keyword
SR U _LIMIT= integer or keyword
STATION= name or keyword
SUBSTITUTION_MARK=string or keyword
USER _INFORMATION= string
SYSTEM _JOB _NAME= string variable
STATUS= status variable

Parameters USER_JOB_NAME or JOB_NAME or JN or UJN

Specifies the user-supplied name by which the submitted
job is to be known. Omission causes the user name of the
submitting job to be used.

CPU _TIME_LIMIT or CTL

Specifies the maximum CPU time in seconds that will be
allocated to the job. If the value specified is greater than
the maximum CPU time limit allowed for the user by the
site, the job will be terminated immediately. During job
execution, if the job's accumulated job and monitor CPU
time exceeds the value specified here, a job abort limit
condition will occur and the job will be terminated.

2-456 NOSNE Commands and Functions Revision G

Revision G

JOB

If this parameter is specified, the job classes that the job
can be a member of may be restricted. The job may only
be a member in a job class that supports a CPU time
limit greater than or equal to this parameter's value.

Specify one of the following on this parameter:

integer

Maximum CPU seconds allocated for the job.

SYSTEM_ DEFAULT

The system default value for this attribute is to be
used.

UNLIMITED

The maximum value allowed by the system is to be
used.

If this parameter is omitted and an explicit job class
name is specified on the JOB_CLASS parameter of this
command, the CPU time limit is determined from the job
class's CPU time limit or the user's validation CPU time
limit, whichever is less. If the JOB_ CLASS is
AUTOMATIC, the CPU time limit for the job is
determined by the system default value or the user's
validation CPU time limit, whichever is less.

JOB_ABORT_DISPOSITION or JAD

Specifies what should be done with the job if it aborts
because of system failure. The keywords are:

RESTART

Job is automatically resubmitted so that it starts over
from the beginning.

TERMINATE

Job is discarded.

JOB_CLASS or JC

Specifies the name of the job class to be used for this job.
If this parameter is omitted, the default job class of the
login user is used. If that value does not exist, the system
default is used.

Commands and Functions 2-457

JOB

The name AUTOMATIC (if the user is validated for job
class AUTOMATIC) will automatically assign the job to a
job class based on the job's attributes.

JOB_EXECUTION_RING or JER

Specifies the job's execution ring. Allowable values are
from 4 through 13, but must be greater than or equal to
the user's minimum ring validation. If this parameter is
omitted, the user's nominal ring is used.

JOB_QUALIFIER or JOB_QUALIFIERS or JQ

Specifies from one to five site-defined names used to
possibly limit a job to a specific job class or set of classes
or mainframes.

Specify one of the following:

list of names

Up to five site defined job qualifiers.

NONE

No job qualifiers are to be used.

SYSTEM_ DEFAULT

The system default value for this attribute is to be
used.

If this parameter is omitted, the system default value is
used.

JOB_RECOVERY_DISPOSITION or JRD

Specifies what should be done with the job by the active
job recovery process if there is a system interrupt while
the job is executing. If this parameter is omitted, then the
system default is used. The keywords are:

CONTINUE

An attempt is made to reestablish the state of the job
as it was at the point of interruption. If the attempt
succeeds, the job continues normal execution. If the
attempt fails, the action specified by the JOB_
ABORT_DISPOSITION parameter is used.

2-458 NOSNE Commands and Functions Revision G

Revision G

JOB

RESTART

The job is automatically resubmitted so that it starts
over from the beginning.

TERMINATE

The job is discarded.

MAGNETIC_TAPE_LIMIT or MTL
Specifies the maximum number of magnetic tape drives
required simultaneously by the job.

If this parameter is specified, the job classes that the job
can be a member of may be restricted. The job may only
be a member in a job class that supports a magnetic tape
limit greater than or equal to this parameter's value.

Specify one of the following on this parameter:

integer

Maximum number of tape units required by the job.

SYSTEM_ DEFAULT

The system default value for this attribute is to be
used.

UNLIMITED

The maximum value allowed by the system is to be
used.

UNSPECIFIED

Assigns the value that is used when the parameter is
omitted.

If this parameter is omitted, the system default is used.

MAXIMUM_WORKING_SETorMAXWS
Specifies the maximum working set in pages that the job
requires. If this parameter is specified, the job classes
that the job can be a member of may be restricted. The
job may only be a member in a job class that supports a
maximum working set size greater than or equal to this
parameter's value.

Specify one of the following on this parameter:

Commands and Functions 2-459

·:·
·=·

JOB

integer

Maximum working set in pages needed for the job.

SYSTEM_DEFAULT

The system default value for this attribute is to be
used.

UNLIMITED

The maximum value allowed by the system is to be
used.

If this parameter is omitted, this values is determined by
the job class specified on the JOB_CLASS parameter of
this command. If the JOB_CLASS parameter is also not
specified, the system default value is used.

OPERATOR_FAMILY or OF

Specifies the default private station or remote system
operator family name attribute for output files generated
by this job. This family name together with the
OPERATOR_ USER attribute identifies the private station
operator or remote system operator who can print or
receive the file. This parameter is also used to establish
the control family attribute of the output file. This
parameter is not meaningful unless the OUTPUT_
DESTINATION_ USAGE job attribute is PRIVATE.

OPERATOR_USER or OU

Specifies the default private station or remote system
operator user name attribute for output files generated by
this job. This user name together with the OPERATOR_
USER attribute identifies the private station operator or
remote system operator who can print or receive the file.
This parameter is also used to establish the CONTROL_
USER attribute of the output file. This parameter is not
meaningful unless the OUTPUT_DESTINATION_USAGE
job attribute is PRIVATE.

OUTPUT _DISPOSITION or ODI

Specifies how the job's standard output is to be disposed.
Allowable values are either a file name or one of several
keywords. The following list describes the results of each
of the allowable values. If this parameter is omitted,
PRINTER is used.

2-460 NOS/VE Commands and Functions Revision G

Revision G

JOB

file_name

Specification of a file name indicates that the standard
output is to be copied to the specified permanent file
at job end. Specification of a file that resides on a
remote systems is not currently supported.

DISCARD_ALL_OUTPUT (DAO)

All output files generated by the job are discarded.

DISCARD_STANDARD_OUTPUT (DSO)

Standard output is to be discarded at job end.

PRINTER (P)

Any output generated by the job is printed at your
default output station.

WAIT_QUEUE (WQ)

Any output files generated by the job are returned to
the originating user's $WAIT_QUEUE subcatalog
using the user's job name for the output file name or
the user's file name for output generated by the
PRINT_FILE command. If the $WAIT_QUEUE
subcatalog does not exist at the time the output files
are returned, it will be created for the user.

SRU_LIMIT or SL

Specifies the maximum system resource units (SRU s) that
will be allocated to the job. If the value specified is
greater than the maximum SRU limit allowed for the
user by the site, the job will be terminated immediately.
During job execution, if the job's accumulated SRUs
exceed the value specified here, a job abort limit condition
will occur and the job will be terminated.

If this parameter is specified, the job classes that the job
can be a member of may be restricted. The job may only
be a member in a job class that supports an SRU limit
greater than or equal to this parameter's value.

Specify one of the following on this parameter:

integer

Maximum SRUs allocated for the job.

Commands and Functions 2-461

JOB

SYSTEM_ DEFAULT

The system default value for this attribute is to be
used.

UNLIMITED

The maximum value allowed by the system is to be
used.

If this parameter is omitted and an explicit job class
name is specified on the JOB_CLASS parameter of this
command, the SRU limit is determined from the job
class's SRU limit or the user's validation SRU limit,
whichever is less. If the JOB_ CLASS parameter is also
not specified, the SRU limit for the job is determined by
the system default value or the user's validation SRU
limit, whichever is less.

STATION or S
Specifies the default I/O station name for output files
generated by the job.

If the JOB_DESTINATION_USAGE attribute specifies
PRIVATE, this parameter must specify the control facility
name.

The keyword, AUTOMATIC, indicates that the system
default is to be used.

SUBSTITUTION_MARKorSM
Specifies a one-character string used within a statement
to delimit the text to be substituted. This character
cannot be any character that is valid in an SCL name.

Corresponding pairs of substitution marks must appear on
the same line.

If a second substitution mark is not found on the same
line, the end-of-line is treated as the second mark.

If two consecutive substitution marks appear, they are
replaced by a single substitution mark in the text.

Substitution marks cannot be used to construct the
JOBEND statement.

2-462 NOSNE Commands and Functions Revision G

Remarks

Revision G

USER_INFORMATION or UI

Specifies a user information string of up to 256
characters. This string enables you to pass information
(such as a file path) to a submitted job. This string is
also passed on to all output files generated by the
submitted job.

JOB

If omitted, the user information string associated with the
submitted job is assumed.

SYSTEM_JOB_NAME or SJN

Specifies a string variable to which the system supplied
name of the job is returned. Omission causes this value to
not be returned.

• LOGIN and LOGOUT commands are generated by
NOSNE and added to the statements you supply.

• Your family name, user name, and password along
with the specified job class and job name parameters
are used to generate the LOGIN command. Validation
of these values is done within the new batch job and
not during the processing of the JOB command.

• This command is especially useful in interactive mode
where you might submit several commands to execute
in batch mode on a one-time basis.

• The commands (statement list) to be processed as a
separate job are specified between the JOB and
JOBEND statements.

o The SUBSTITUTION_MARK parameter enables a
batch job to be constructed using variables and
procedure parameters contained within the initiating
job. If you want to pass parameters to a submitted job,
these parameters must be substituted directly into the
statements of the submitted job.

• The JOB command cannot be used to execute a job on
a remote system. Use the SUBMIT_JOB command to
submit jobs on remote systems.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-463

$JOB

Examples

$JOB
Function

The following example creates a batch job that compiles a
CYBIL program, prints the compiler listing, and executes
the object file:

/job job_name=compile
job/cybil i=$user.cybil_program l=list_file
job/print_file list_file
job/lgo
job/jobend

The following example illustrates the use of the
JOB/JOBEND command using the SUBSTITUTION_
MARK parameter:
proc compile_fortran (fortran_input: file=$required)

job substitution_mark='%'
fortran i=%$string($value(fortran_input))%

optimization_level=high b=$1oca1. lgo
$local. lgo

jobend

procend compile_fortran

Purpose Returns specified attributes of the current job.

Format $JOB
(keyword)

Parameters keyword

Remarks

Specifies the job attribute(s) you want returned. Chapter
3, Function Attributes, lists and describes the keyword
values you can supply and the corresponding function
results. This parameter is required.

• The kind of result returned depends on the attribute
being tested. When a string value is returned by the
function, all letters are converted to uppercase.

• For further information about functions, see the
NOSNE System Usage manual.

2-464 NOS/VE Commands and Functions Revision G

Examples

$JOB DEFAULT

The following example from an SCL procedure returns the
mode of the current job. If the mode is interactive, a
message is displayed.

IF $job(mode) = 'INTERACTIVE' THEN
display_value 'Welcome to NOS/VE.'

I FEND

$JOB_DEFAULT
Function

Purpose Returns the system default values for a job's attributes.

Format $JOB_DEFAULT or
$JOB_DEFAULTS

(keyword I
keyword2)

Parameters keyword!

Remarks

Revision G

Specifies the attribute you want returned.

Refer to appendix C for a listing of the job attribute
names and the corresponding function results. This
parameter is required.

keyword2

Specifies the job mode for which you want the system
default information. Options are:

BATCH (B)

Returns information specific to batch jobs.

INTERACTIVE (I)

Returns information specific to interactive jobs.

If this parameter is omitted, the job mode of the issuing
job is used.

For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-465

$JOB LIMIT

$JOB_LIMIT
Function

Purpose

Format

Returns information about specified job resource limits.

$JOB_LIMIT
(name,
keyword)

Parameters name

Specifies the job resource limit for which you want
information returned. Use one of the following names:

CP_TIME

Specifies the CP time, in microseconds.

SRU

Specifies the system resource units that your job
accumulates.

TASK

Specifies the task currently being executed within your
job.

keyword

Specifies the form in which you want the information
returned. This parameter is required. Use one of the
following keywords:

ACTIVE

Indicates whether the specified limit is active for the
job. If you specify this keyword, the $JOB_LIMIT
function returns a boolean value.

ACCUMULATOR

Specifies the current accumulator value. If you specify
this keyword, the $JOB_LIMIT function returns an
integer value.

RESOURCE_LIMIT

Specifies the current resource limit value. If you
specify this keyword, the $JOB_LIMIT function
returns an integer value.

2-466 NOSNE Commands and Functions Revision G

Remarks

Examples

$JOB_OUTPUT

ABORT_LIMIT

Specifies the maximum allowed resource limit value,
that is, the point at which your job will abort. If you
specify this keyword, the $JOB_LIMIT function
returns an integer value.

For further information about functions, see the NOSNE
System Usage manual.

The following example changes a job's CP time resource
limit so that it is 60 CP seconds over the current
accumulator value:

/change_job_limit name=cp_time
.. /resource_limit=($job_limit(cp_time,
.. /accumulator)+60)

$JOB_OUTPUT
Function

Purpose

Format

Returns attribute information about an output file.

$JOB_OUTPUT
(name,
keyword)

Parameters name

Remarks

Specifies the output file whose attributes you want
returned. Use either a system-supplied or user-supplied
file name. A user-supplied name must be unique;
otherwise the function will fail. This parameter is
required.

keyword

Specifies the attribute you want returned.

Chapter 3, Function Attributes, lists and describes the
keyword values you can supply and the corresponding
function results. This parameter is required.

• The type of result returned depends on the attribute
being tested.

• For further information about functions, see the
NOSNE System Usage manual.

Revision G Commands and Functions 2-467

$JOB_STATUS

Examples The following example returns the file size of file LIST_
FILE:

/print_file list~file du=private fc='xx'
/display_value $job_output(list_file,file_size)
98

$JOB_STATUS
Function

Purpose

Format

Returns the status of a job.

$JOB_STATUS
(name,
keyword)

Parameters name

Remarks

Specifies the name of the job for which you want the
status returned. Either a system-supplied or user-supplied
job name is valid. If you specify a user-supplied job name,
it must be unique; otherwise the function will fail. This
parameter is required.

keyword

Specifies the type of information you want returned.

Chapter 3, Function Attributes, lists and describes the
keyword values you can supply and the corresponding
function results. This parameter is required.

• The user of the function must be the login user, the
control user, a system operator, or the immediate
parent job, that is, the job's submitter. (A login user is
the user name under which the job is scheduled and
run; for most jobs, the control user is the login user.)

• You can use the JOB_STATE attribute to test for the
existence of a particular job.

• The type of result returned depends on the attribute
being tested.

• For further information about functions, see the
NOS/VE System Usage manual.

2-468 NOSNE Commands and Functions Revision G

Examples

KERMIT

The following example returns the status of a job using
the user-supplied job name:

/display_value $job_status(sueo_24,state)
INITIATED

KERMIT
Command

Purpose

Format

Begins a KERMIT file transfer session.

KERMIT
TAKE=file
STATUS= status variable

Parameters TAKE or T

Reserved.

Remarks For more information, see the online KERMIT manual.
LINK_ADA
Command

Purpose Links Ada code after it has been compiled and before it
can be executed.

Format LINK_ADA or
LINA

MAIN PROGRAM= name
PROGRAM _LIBRARY= file
BINARY== file
LIST=file
RECOMPILATIONS== string
STATUS =status variable

Parameters MAIN _PROGRAM or MP

Revision G

Specifies the compilation unit to be linked, that is, the
name of the function or procedure to be executed. The
function or procedure must have been compiled so that it
is a library unit in the sublibrary specified by the
PROGRAM_LIBRARY parameter. The compilation unit
names can be listed using the SHOW command in a PLU
session. This parameter is required.

Commands and Functions 2-469

I

I
\~\

I
I

1:1

I

I

LINK_ADA

Remarks

Examples

PROGRAM_LIBRARY or PL

Specifies the file· containing the sublibrary to be
referenced by the linker. The default value is
$USER.ADA_ PROGRAM_ LIBRARY.

BINARY or B

Specifies the file on which the executable code extracted
from the user's program library is written, thus creating
an object file acceptable to the CYBER 180 loader. If
$NULL is specified, the Ada linker performs all the
compilation order validation checks, but does not create
an object file. The default value is $LOCAL.LGO.

LIST or L

Specifies the file where the linker writes the library units
elaboration order list. The default value is $LIST.

RECOMPILATIONS or R

Specifies the name or names of any modules that need to
be recompiled. This parameter must be omitted to produce
a binary file.

• The main program name for the Ada linker is a
procedure name used in the source text.

• The default binary file name, $LOCAL.LGO, is also
the default file name for the EXECUTE_ TASK
command.

• For more information, see the ADA for NOSNE Usage
manual.

The following link command produces a list of
dependencies. A binary file is not produced:

/Jina mp=your_procedure recompilations l=dependencies_list

The following link command produces a binary file. A list
of dependencies is not produced:

/lina mp=your_procedure b=binary_file

NOTE

The main program for the LINK_ADA Command must be
a parameterless procedure.

2-470 NOSNE Commands and Functions Revision G

LINK_DM

LINK_DM
IM/DM Command

Purpose

Format

Links the specified program with the DM run time library
and the DM library routine.

LINK_DM or
LIND or
LINKDM

BINARY_ OBJECT= dm_file_ descriptor
EXECUTABLE =dm_file_descriptor
PROGRAM _DESCRIPTOR= name
LIBRARY= list of dm_file_descriptor
DMRWLIB =dm_file_descriptor or keyword
DEBUG= keyword
OPTION _FILE =dm_file_descriptor or keyword
MAP =dm_file_descriptor or keyword
DMSHR =keyword
SLANG= keyword
OMIT _DEBUG_ TABLE= keyword
STARTING _PROCEDURE= name
LOAD_MAP=dm_file_descriptor or keyword
LOAD _MAP_ OPTIONS= list of keyword
ABORT _FILE =dm_file_descriptor
INCLUDE_BINARY_SECTION _MAPS= keyword
PRELINK =keyword
MAX_MODULES==integer
STATUS= status variable

Parameters BINARY_OBJECT or OBJECT or OBJ or OLB or B

Name of the program module to be linked. If the file type
is not entered on the program name, it defaults to the
object library (program_OLB).

Revision G

EXECUTABLE or EXE or E

File on which the command writes an object library
containing the program description and the bound module.

If EXECUTABLE is omitted, file program_EXE in the
current working catalog is used.

Commands and Functions 2-471

LINK_ OM

PROGRAM_DESCRIPTOR or PD

Name given to the program description. (The name used
to execute the program.)

If PROGRAM_DESCRIPTOR is omitted, program_PD is
used.

LIBRARY or LIBRAJUES or LIB or L

Object library files searched to satisfy external references
(1 through 20 files).

If LIBRARY is omitted, no additional libraries are added
to the list.

DMRWLIB

Report writer object library file used by the link. The
keyword YES specifies the file DMRW_OLB. The
parameter is used only when linking DMFQM with
DMRW.

If DMRWLIB is omitted, no linking with DMRW is done.

DEBUG

Indicates whether the program is linked for debugging.

YES

Program is not bound, debug tables are kept, and a
minimal program descriptor is generated so that most
program attributes are taken from job defaults.

NO

Program is not linked for debugging.

If DEBUG is omitted, NO is used.

OPTION _FILE or OPT

File specifying a set of object libraries to be searched
before the object libraries specified by the LIBRARY
parameter.

The keyword YES specifies that the file program_ OPT in
the current working catalog is used.

If OPT is omitted, YES is used.

2-472 NOSNE Commands and Functions Revision G

Revision G

LINK_DM

MAP or M

File where the section map is written. The keyword YES
specifies the file program_MAP.

If MAP is omitted, no section map is generated.

DMSHR or DMSHARE
Indicates whether the DM run time library routines
should be bound into the executable library.

YES

DM run time routines are included.

NO

DM run time routines are not included.

Only DM run time libraries with ring attributes of
(11,11,11) are used.

If DMSHARE is omitted, YES is used unless
PRELINK =YES is specified in which case NO is used.

SLANG
Indicates whether the program being linked is a SLANG
program.

YES

The program is a SLANG program so the CYBIL
SLANG main routine is included.

NO

The program is not a SLANG program.

If SLANG is omitted, NO is used.

OMIT_DEBUG_TABLEor OMIT_DEBUG_TABLESor
ODT
Indicates whether Debug tables are removed by the link.

YES

Debug tables are omitted.

NO

Debug tables are kept.

If OMIT_DEBUG_ TABLE is omitted, NO is used.

Commands and Functions 2-473

LINK_DM

Remarks

STARTING_PROCEDURE or SP

Name of the starting procedure for the program.

LOAD_MAP or LM

File on which the load map is written. The keyword YES
specifies file program_LOAD_MAP in the current
working catalog.

If LOAD_MAP is omitted, $NULL is used (a load map is
not written).

LOAD_MAP_OPTIONS or LOAD_MAP_OPTION or
LMO

Information included in the load map.

If LOAD_MAP _OPTIONS is omitted, no information is
written to the load map.

ABORT _FILE or AF

File containing Debug commands to execute if the
program aborts.

If ABORT_FILE is omitted, $NULL is used (no abort file
is defined for the program).

INCLUDE_BINARY_SECTION_MAPS or IBSM

Reserved.

PRELINK or PL

Indicates whether the program is to be prelinked.

YES

Prelink the program.

NO

Do not prelink program.

Omission causes NO to be used.

MAX_MODULES or MM

Reserved.

For more information, see the DM Utilities Reference
Manual for DM on CDC NOSNE.

2-474 NOSNE Commands ·and Functions Revision G

LINK_ VIRTUAL_ENVIRONMENT

LINK_ VIRTUAL_ENVIRONMENT
Command

Remarks Reserved for site personnel, Control Data, or future use.

LISP
Command

Purpose Executes the List Processing (LISP) interpreter.

Format LISP
INPUT=file
OUTPUT=file
STATUS =status variable

Parameters INPUT or I

Remarks

Examples

Specifies the file reference for the file containing LISP
statements to be evaluated. If you omit this parameter,
the file $LOCAL.$INPUT is used and you are prompted
for input at your terminal.

OUTPUT or 0

Specifies the file reference for the file to receive output
values or diagnostic messages. If you omit this parameter,
the file $LOCAL.$0UTPUT (the terminal) is used.

For more information, see the LISP for NOSNE Usage
manual.

The following command executes LISP using the terminal
for both input and output.

LISP

LOGICAL_ CONFIGURATION_ UTILITY
Command

Remarks Reserved for site personnel, Control Data, or future use.

Revision G Commands and Functions 2-475

LOGIN

LOGIN
Command

Purpose Provides access to the NOSNE batch services. Login
parameters can be specified when you log in interactively
through NAMVE/CDCNET.

Format LOG IN
LOGIN_ USER= name
PASSWORD= name
LOGIN _FAMILY= name
LOGIN _ACCOUNT= name
LOGIN _PROJECT= name
CPU_ TIME _LIMIT= integer or keyword
JOB _ABORT _DISPOSITION= keyword
JOB_CLASS=name
JOB_EXECUTION _RING=integer
JOB_QUALIFIER =list of name or keyword
JOB _RECOVERY _DISPOSITION= keyword
MAGNETIC_TAPE_LIMIT=integer or keyword
MAXIMUM_ WORKING_SET=integer or keyword
SR U _LIMIT= integer or keyword
USER_JOB_NAME =name

Parameters LOGIN_ USER or USER or U or LU

Specifies your user name. This is the user name assigned
by your family administrator. This parameter is required.

PASSWORD or PW

Specifies your password. It is compared with the password
registered with your validation information to verify your
identity. This parameter is required.

LOGIN_FAMILY or FAMILY_NAME or FN or LF

Specifies the name of your family. If omitted, the default
family name defined by your site administrator is used.

LOGIN _ACCOUNT or ACCOUNT or A or LA

Specifies the account to which your resource usage will be
charged. If omitted, the default value established by your
family administrator is verified.

2-476 NOSNE Commands and Functions Revision G

Revision G

LOGIN

LOGIN _PROJECT or PROJECT or P or LP

Specifies the project to which your resource usage will be
charged. If omitted, the default value established by your
family administrator is verified.

CPU_TIME_LIMIT or CTL

Specifies the maximum cpu time in seconds that will be
allocated to the job. If the value specified is greater than
the maximum cpu time limit allowed for the user by the
site, the job will be terminated immediately. During job
execution, if the job's accumulated job and monitor cpu
time exceeds the value specified here, a job abort limit
condition will occur and the job will be terminated.

If this parameter is specified, the job classes that the job
can be a member of may be restricted. The job may only
be a member in a job class that supports a cpu time limit
greater than or equal to this parameter's value.

Specify one of the following on this parameter:

integer

Maximum cpu seconds allocated for the job.

SYSTEM_DEFAULT

The system default value for this attribute is to be
used.

UNLIMITED

The maximum value allowed by the system is to be
used.

If this parameter is omitted and an explicit job class
name is specified on the JOB_CLASS parameter of this
command, the cpu time limit is determined from the job
class' cpu time limit or the user's validation cpu time
limit, whichever is less. If the JOB_CLASS is
AUTOMATIC, the cpu time limit for the job is determined
by the system default value or the user's validation cpu
time limit, whichever is less.

JOB_ABORT_DISPOSITION or JAD

Specifies what should be done with the job if it aborts
because of system failure. If neither the SUBMIT_JOB
command nor this command specifies this parameter, then
the system default is used. The keywords are:

Commands and Functions 2-477

LOGIN

RESTART

Job is automatically resubmitted so that it starts over
from the beginning.

TERMINATE

Job is discarded.

JOB_CLASS or JC

Specifies the name of the class under which the job is to
run. The login will not be successful if the requesting
user is not validated to execute a job of the specified class
or if the current status of the system is such that it
cannot accept more jobs of this class.

The name AUTOMATIC (if the user is validated to use
the job class AUTOMATIC) will automatically assign the
job to a job class based on the job's attributes.

JOB_EXECUTION_RING or JER

Specifies the execution ring of the job. Enter a value
between 4 and 13 that is greater than or equal to your
minimum ring. If omitted, your nominal ring is used.

JOB_QUALIFIER or JOB_QUALIFIERS or JQ

Specifies from one to five site-defined names used to
possibly limit a job to a specific job class or set of classes
or mainframes.

Specify one of the following:

list of names

Up to five site defined job qualifiers.

NONE

No job qualifiers are to be used.

SYSTEM_ DEFAULT

The system default value for this attribute is to be
used.

If this parameter is omitted, the system default value is
used.

2-478 NOSNE Commands and Functions Revision G

Revision G

LOGIN

JOB_RECOVERY_DISPOSITION or JRD

Specifies what the active recovery process should do with
the job if there is a system interrupt while the job is
executing. If neither the SUBMIT_JOB command nor this
command specifies this parameter, then the system default
is used. The keywords are:

CONTINUE

An attempt is made to reestablish the state of the job
as it was at the point of interruption. If the attempt
succeeds, the job continues normal execution. If the
attempt fails, the value specified on the JOB_
ABORT_DISPOSITION parameter is used.

RESTART

Job is automatically resubmitted so that it starts over
from the beginning.

TERMINATE

Job is discarded.

MAGNETIC_TAPE_LIMIT or MTL

Specifies the maximum number of magnetic tape drives
required simultaneously by the job.

If this parameter is specified, the job classes that the job
can be a member of may be restricted. The job may only
be a member in a job class that supports a magnetic tape
limit greater than or equal to this parameter's value.

Specify one of the following on this parameter:

integer

Maximum number of tape units required by the job.

SYSTEM_ DEFAULT

The system default value for this attribute is to be
used.

UNLIMITED

The maximum value allowed by the system is to be
used.

Commands and Functions 2-4 79

LOGIN

UNSPECIFIED

Assigns the value that is used when the parameter is
omitted.

If this parameter is omitted, the system default is used.

MAXIMUM_ WORKING_SET or MAXWS

Specifies the maximum working set in pages that the job
requires. If this parameter is specified, the job classes
that the job can be a member of may be ·restricted. The
job may only be a member in a job class that supports a
maximum working set size greater than or equal to this
parameter's value.

Specify one of the following on this parameter:

integer

Maximum working set in pages needed for the job.

SYSTEM_DEFAULT

The system default value for this attribute is to be
used.

UNLIMITED

The maximum value allowed by the system is to be
used.

If this parameter is omitted, this values is determined by
the job class specified on the JOB_ CLASS parameter of
this command. If the JOB_CLASS parameter is also not
specified, the system default value is used.

SRU_LIMIT or SL

Specifies the maximum system resource units (srus) that
will be allocated to the job. If the value specified is
greater than the maximum sru limit allowed for the user
by the site, the job will be terminated immediately.
During job execution, if the job's accumulated srus exceed
the value specified here, a job abort limit condition will
occur and the job will be terminated.

If this parameter is specified, the job classes that the job
can be a member of may be restricted. The job may only
be a member in a job class that supports an sru limit
greater than or equal to this parameter's value.

2-480 NOSNE Commands and Functions Revision G

Remarks

LOGIN

If this parameter is omitted and an explicit job class
name is specified on the JOB_CLASS parameter of this
command, the sru limit is determined from the job class'
sru limit or the user's validation sru limit, whichever is
less. If the JOB_CLASS is AUTOMATIC, the sru limit
for the job is determined by the system default value or
the user's validation sru limit, whichever is less.

USER_JOB_NAME or JOB_NAME or JN or UJN

Specifies a name for the new job being established.
Omission causes your user name to be used.

o LOGIN must be the first command in a batch job.

• For interactive access, the system prompts you for
login information.

• LOGIN must be the first command in a set of
directives sent from a remote system with the
MANAGE_REMOTE_FILES command or the
MFLINK command.

• Once validated, NOSNE executes any existing prolog
file associated with your identification.

• LOGIN is a control command. Thus, you can override
LOGIN, but you cannot remove it from your command
list.

• If LOGIN _FAMILY is a remote family and the
SUBMIT_JOB command is not used to specify some
other queue file application, the job is transferred to
the remote system through QTF.

• For more information, see the NOSNE System Usage
manual.

Revision G Commands and Functions 2-481

LOGOUT

Examples The following example represents a NOS/VE batch job.

login login_user=sdh password=pass456
login_family=nve

collect_text fortran_source
program ctime
character•a time

••

print*,'The current time is: ',time()
stop
end

fortran i=fortran_source
lgo
logout

The job creates a text file containing a FORTRAN
program that displays the current time,. calls the
FORTRAN compiler to compile the program, executes the
program, and logs out.

LOGOUT
Command

Purpose Terminates a batch or interactive job.

Format LOGOUT

Parameters None.

Remarks • NOS/VE automatically logs out a batch job if the
end-of-information (EOI) is encountered on the initial
command file.

• Any epilog file associated with your validation is
executed.

• For an interactive job, logging out results in
termination of the NOS/VE session. The terminal
remains connected and the network allows you to
select another application or disconnect the terminal.

• LOGOUT is a control command. Thus, you can
override LOGOUT but you cannot remove it from your
command list.

• For more information, see the NOS/VE System Usage
manual.

2-482 NOSNE Commands and Functions Revision G

Examples

LOOP

LOOP

Following is an example of logging out of NOS/VE from
an interactive session.

/logout
VEIAF CONNECT TIME 00.01.52.
T13A26 - APPLICATION: bye
LOGGED OUT.

HOST DISCONNECTED CONTROL CHARACTER=(ESC}
ENTER INPUT TO CONNECT TO HOST

Control Statement

Purpose

Format

Causes unlimited repetition of a statement list.

label: LOOP
statement list

LOOPEND label

Parameters label

Remarks

Examples

Revision G

Specifies the name of the LOOP block. This label can be
used by CYCLE and EXIT statements within the block.

statement list

Specifies the list of statements that reside in the block.

• Exit from a LOOP statement is possible only via an
explicit transfer of control (that is, via an EXIT
statement).

o For more information, see the NOS/VE System Usage
manual.

The following example uses a LOOP statement to read
lines from file INPUT. Each line entered is stored in
string variable INPUT_STRING. When a null input line
is entered (by performing a single carriage return, the
execution of the loop is ended; otherwise, the string
variable is written to file $OUTPUT).

Commands and Functions 2-483

MAIL

input_string = ''
read_input: LOOP

accept_line input_string input
EXIT read_input WHEN $strlen(input_string) O
display_value input_string

LOOPEND read_input

When this loop is executed, the following interaction takes
place:

SUPPLY INPUT_STRING testing
testing
SUPPLY INPUT_STRING
I

Pressing RETURN after the SUPPLY INPUT_STRING
prompt results in the variable INPUT_STRING having a
length of 0. This causes the EXIT statement condition to
be TRUE. The loop is then exited.

MAIL
Command

Purpose Begins a MAILNE session.

Format MAIL or
MAI

PROLOG=file
EPILOG =file
OUTPUT=file
STATUS =status variable

Parameters PROLOG or P

File containing MAIL/VE subcommands, SCL commands,
or SCL procedures executed before MAIL/VE accepts
commands from the user. The default is
$USER.MAIL.PROLOG. This file can be positioned.

EPILOG or E

File containing MAIL/VE subcommands, SCL commands,
or SCL procedures executed when the QUIT subcommand
is processed. All MAIL/VE subcommands except
ACTIVATE_SCREEN are valid within the MAILNE
epilog. The default is $USER.MAIL.EPILOG. This file can
be positioned.

2-484 NOSNE Commands and Functions Revision G

Remarks

$MAINFRAME

OUTPUT or 0

Output file for all MAILNE subcommands. The default is
$OUTPUT. This file can be positioned.

• When you enter MAIL, the system verifies that you
are registered by checking if your NOSNE family
name and user name are in the mail directory. If you
are not authorized, command processing terminates
with an error message.

• See the NOSNE System Usage manual if you need
information on file positioning.

• For more information, see the MAILNE online
manual.

$MAINFRAME
Function

Purpose Returns attributes of the hardware mainframe on which
the job is currently executing.

Format $MAINFRAME
(keyword)

Parameters keyword

Revision G

Name of the attribute you are querying. This parameter
is required. Use one of the following names:

ACTIVE_PROCESSORS (ACTIVE_PROCESSOR or
AP)

Returns an integer indicating the number of processors
that are on.

IDENTIFIER (ID or I)

Returns a string that designates the mainframe.

PAGE_SIZE (PS)

Returns an integer that specifies the number of bytes
in a memory page.

TOTAL_PROCESSORS (TOTAL_PROCESSOR or TP)

Returns an integer that indicates the total number of
processors in the mainframe.

Commands and Functions 2-485

MANAGE_NETWORK_APPLICATIONS

Remarks

Examples

For further information about functions, see the NOSNE
System Usage manual.

The following example returns a string that designates
the mainframe:

/display_value $mainframe(identifier)
$SYSTEM_0860-0109

MANAGE_NETWORK_APPLICATIONS
Command

Remarks Reserved for site personnel, Control Data, or future use.

MANAGE _REMOTE _FILE
Command

Purpose

Format

Delimits a set of commands to be executed on the
specified remote system.

MANAGE REMOTE FILE or
MANAGE_REMOTE_FILES or
MANRF or
MFLINK

LOCATION= any
FILE=file
DATA_DECLARATION =keyword
UNTIL= string
SUBSTITUTION_MARK=string or keyword
STATUS= status variable

Parameters LOCATION or L

Specifies the name of the remote location to be accessed.
This is a name associated with a remote system, such as
a family name or a logical identifier. (Location names are
determined by your network application administrator.)

You cannot specify a variable name for this parameter. If
you want to use a variable that has a name value, you
can use the $NAME function instead.

This parameter is required.

2-486 NOSNE Commands and Functions Revision G

Revision G

MANAGE_REMOTE_FILE

FILE or F

Specifies the name of a file on the local NOS/VE system
to be used as the input or output file during a file
transfer. This parameter is required even when you are
not performing a file transfer.

DATA_DECLARATION or DD

Specifies the data format of a file to be transferred.

If the remote location is another NOS/VE host, this
parameter is ignored. The rules for copying NOS/VE files
based on the local and remote file attributes apply. For a
discussion of rules for copying NOS/VE files, see the
NOS/VE System Usage manual.

If the remote location is a non-NOS/VE host, the following :,:_:_:,
data descriptions are available. The meaning of each
varies among the various remote host types. Refer to the
Remote Host Facility Usage manual for system specific
information

• C6

Use this format when you transfer files to hosts
using a six-bit code set. This format indicates the
file contains character data from a character set
with 64 or fewer character codes.

The effect of this format is that that each machine
sees the file in its native character set. Thus, if
you transfer the file from NOS/VE to NOS,
NOS/VE sends the file in ASCII and NOS receives

·:·
:-:
:-:

it in display code. Transfers to other systems result .,.
in full ASCII transfers as if DD= CS was used. j:j

• cs
This format has the following meanings depending
upon which system the file is being transfered to:

NOS

Transfer results in a NOS S/12 ASCII file.
Use the NOS FCOPY command to convert
the file to NOS 6/12 format.

NOS/BE

Same as for NOS.

Commands and Functions 2-487

I

I
I

MANAGE_REMOTE_FILE

Remarks

Any other ASCII system

Transfer results in an ASCII file.

IBM/MVS

Transfer results in an EBCDIC file.

• uu
Use this format to transfer binary files to remote
systems. Object and source libraries should be
transferred using this format. Files transferred to
NOS or NOS/BE will be padded unless they end on
a 120 bit boundry (this is because NOS and
NOS/BE store their files in 60 bit format).
Similarily, files transferred from NOS or NOS/BE
to NOS/VE and that have a file length that is an
odd multiple of 60 bits will be padded to the next
full byte (8 bit) length.

UNTIL or U
Specifies the string indicating the end of commands in the
list. The string must appear on a separate line. If this
parameter is omitted, a string of two asterisks (**) is
assumed.

SUBSTITUTION_MARKorSM
Specifies a character used to delimit text to be substituted
within the command text following the MANAGE_
REMOTE_FILES command. Values can be any character
or the keyword NONE. NONE specifies that no
substitution mark is to be used. If this parameter is
omitted, NONE is assumed.

• You must provide validation information required by
the remote system. If this remote system is NOS/VE,
the first command in the list of commands must be a
LOGIN command. Alternately, you can issue a
CREATE_REMOTE_ VALIDATION command prior to
using the MANAGE_REMOTE_FILES command.

2-488 NOSNE Commands and Functions Revision G

$MAX INTEGER

• The names and parameters of commands accepted by
each remote system type are described in the Remote
Host Facility Usage manual.

The MANAGE_REMOTE_FILES command passes the
command text you supply to the remote system for
execution. If the remote system is NOSNE, the
command text is a set of SCL commands to be
executed as a batch job.

o You can include at most one remote command in the
command text which causes an explicit file transfer.
For remote NOSNE systems, use the SEND_FILE or
RECEIVE_FILE commands to explicitly transfer a
file.

• For more information, see the NOSNE System Usage
manual.

$MAX_INTEGER
Function

Purpose Returns the maximum positive integer allowed for a
parameter.

Format $MAX_INTEGER

Parameters None.

Remarks

Examples

Revision G

• The value returned is 9,223,372,036,854,775,807

• For further information about functions, see the
NOSNE System Usage manual.

In the following example, the system is interrogated for
the value of $MAX_INTEGER:

/display_value $max_integer
9223372036854775807

Commands and Functions 2-489

$MAX_NAME

$MAX_NAME
Function

Purpose Returns the maximum length of a name allowed for a
parameter.

Format $MAX_NAME

Parameters None.

Remarks

Examples

• The value returned is 31.

• For further information about functions, see the
NOS/VE System Usage manual.

In the following example, the system is interrogated for
the value of $MAX_NAME:

/display_value $max_name
31

$MAX_STRING
Function

Purpose Returns the maximum length of a string allowed for a
parameter.

Format $MAX_STRING

Parameters None.

Remarks

Examples

• The value returned is 256.

• For further information about functions, see the
NOS/VE System Usage manual.

In the following example, the system is interrogated for
the value of $MAX_STRING:

/display_value $max_string
256

2-490 NOSNE Commands and Functions Revision G

$MAX_ VALUE_SETS

$MAX_ VALUE_SETS
Function

Purpose Returns the maximum number of value sets allowed for a
parameter.

Format $MAX_ VALUE_SETS

Parameters None.

Remarks • The value returned is 2,147,483,647.

Examples

e For further information about functions, see the
NOS/VE System Usage manual.

In the following example, the system is interrogated for
the value of $MAX_ VALUE_SETS:

/display)_value $max_value_sets
2147483647

$MAX_ VALUES
Function

Purpose Returns the maximum number of values allowed per value
set.

Format $MAX_ VALUES

Parameters None.

Remarks • The value returned is 2,147,483,647.

Examples

Revision G

• For further information about functions, see the
NOS/VE System Usage manual.

In the following example, the system is interrogated for
the value of $MAX_ VALUES:

/display_value $max_values
2147483647

Commands and Functions 2-491

MEASURE_PROGRAM_EXECUTION

MEASURE _PROGRAM _EXECUTION
Command

Purpose

Format

Remarks

Examples

Starts a program measurement utility session.

MEASURE_PROGRAM_EXECUTION or
ME APE

STATUS =status variable

• The session ends when you enter the subcommand
QUIT. The descriptions of each program measurement
subcommand follow this description.

• For more information, see the NOSNE Object Code
Management manual.

The following utility session specifies the program as the
modules on file LGO, executes the program, and saves the
program profile on file MY_FILE.

/measure_program_execution
MPE/set_program_description target_text=lgo
MPE/execute_instrumented_task
MPE/display_program_profile output=my_file
MPE/QUit
I

MERGE
Command

Purpose

Format

Merges the sorted records from one or more files and
writes the records in sorted order to a single output file.

MERGE
FROM= list of file
TO=file
KEY= list of any
DIRECTNES =list of file
LIST=file
LIST_ OPTIONS= list of keyword
ERROR=file
ERROR_LEVEL =keyword
RESERVED_POSITION_9=boolean
ESTIMATED_NUMBER_RECORDS=range of integer
EXCEPTION _RECORDS _FILE= file
C170_COMPATIBLE=boolean

2-492 NOSNE Commands and Functions Revision G

OMIT _DUPLICATES= boolean
OWNCODE _FIXED _LENGTH= integer

MERGE

OWNCODE_ MAXIMUM _RECORD _LENGTH= integer
OWNCODE_PROCEDURE_l =name
OWNCODE_PROCEDURE_2 =name
OWNCODE _PROCEDURE _3 =name
OWNCODE_PROCEDURE_4=name
OWNCODE _PROCEDURE _5 =name
RETAIN_ ORIGIN AL_ ORDER= boolean
COLLATING_ SEQUENCE _NAME= name
COLLATING_SEQUENCE_STEP=list of any
COLLATING _SEQUENCE_REMAINDER =boolean
COLLATING _SEQUENCE_ALTER =boolean
STATUS =status variable
SUM =list of any
ZERO _LENGTH _RECORDS= keyword
VERIFY _MERGE _INPUT_ ORDER= boolean
LOAD_COLLATING_TABLE=list of name
RESULT _ARRAY =integer array

Parameters FROM or F

Revision G

List of 1 to 100 input files. (Merge input files must be
presorted. For a merge with summing, input files must be
presummed as well as presorted.)

If you omit the FROM parameter, the merge attempts to
read input records from file OLD in the $LOCAL catalog.

TO or T

Output file.

If you omit the TO parameter and specify an owncode 3
procedure that does not return output to the merge, the
merge does not require an output file. However, if you
omit the TO parameter and specify an owncode 3
procedure that does return output to the merge, the
merge writes the output to the default file NEW.

If you omit the TO parameter and the OWNCODE_
PROCEDURE_3 parameter, the merge writes all output
records to the default file NEW. If file NEW does not
exist, the merge creates and uses file $LOCAL.NEW.

KEY or K

List of 1 through 106 key field definitions. A key field
definition is a value set containing up to four values as
follows:

Commands and Functions 2-493

MERGE

(first . .last,type,order) or

(first, length, type,order)

first

Position of the first byte of the key field within the
record. (The leftmost byte in a record is numbered 1.)

last

Position of the last byte of the key field within the
record.

length

Optional number of bytes in the key field. The default
length is 1 byte.

type

Optional name of a numeric data format or collating
sequence. The default key field type is ASCII.

The valid numeric data format names are:

BINARY
BINARY_BITS
INTEGER
INTEGER_ BITS
NUMERIC_FS
NUMERIC_LO
NUMERIC_LS
NUMERIC_NS
NUMERIC_ TO
NUMERIC_ TS
PACKED
PACKED_NS
REAL

The predefined collating sequence names are: ASCII,
ASCII6, COBOL6, DISPLAY, EBCDIC, EBCDIC6.

order

Optional sort order indicator. Options are ascending
order (A) or descending order (D). The default is
ascending order.

2-494 NOSNE Commands and Functions Revision G

Revision G

MERGE

If you omit the KEY parameter, the merge uses one key;
the key field extends from the beginning of the record to
the smallest minimum record length (MINRL) defined for
an input file; the key field has key type ASCII and is
sorted in ascending order.

NOTE

If you intend to omit the KEY parameter, you should
change the minimum record length attribute value for all
input files. If you omit the KEY parameter and have not
specified a minimum record length for all files, the merge
attempts to use the default minimum record length as the
key length. The default minimum record length is (0)

zero; the merge cannot define a key of length 0 so it
returns a fatal error.

DIRECTIVES or DIRECTIVES_FILE or DIR or DF

List of 1 through 100 directive files. If you omit the
DIRECTIVES parameter, no parameters are read from a
directive file; the merge is completely specified on the
command.

LIST or L

Listing file. If you omit the LIST parameter, the merge
writes listing information on file $LIST.

LIST_OPTIONS or LO

List of one or more list options specifying the additional
information to be written to the listing file.

If you omit the LIST_OPTIONS parameter, the merge
writes only the minimum information to the listing file
(page number, error messages, directives, exception
records file summary, and the number of records merged).

The valid keywords are:

OFF or NONE

No additional information is written to the listing file

s
Source directives read

Commands and Functions 2-495

MERGE

DE

Detailed exception information (specify only when
EXCEPTION _RECORDS_FILE parameter is specified)

RS

Record statistics

MS

Merge statistics

ERROR or E

Error message file. If you omit the ERROR parameter,
the merge writes any error messages on file $ERRORS.

ERROR_LEVEL or EL

Minimum error severity to be reported. If you omit the
ERROR_LEVEL parameter, the merge reports all
warning, fatal, and catastrophic errors.

The valid keywords are:

INFORMATIONAL (I)

Report all errors

TRIVIAL (T)

Report all errors

WARNING (W)

Report warning, fatal and catastrophic errors only

FATAL (F)

Report fatal and catastrophic errors only

CATASTROPHIC (C)

Report catastrophic errors only

NONE

Report no errors

RESERVED _POSITION _9

Reserved.

2-496 NOS/VE Commands and Functions Revision G

Revision G

MERGE

ESTIMATED_NUMBER_RECORDSorENR
Integer range from 1 through 16,777,215. You can specify
the ESTIMATED_NUMBER_RECORDS parameter, but
the merge does not use the parameter value.

EXCEPTION _RECORDS_FILE or ERF
File to which invalid records are written (invalid records
are not written to the output file). If you omit this
parameter, the merge does not perform exception
processing; invalid records are written to the output file.

C170_COMPATIBLE or CC
Specifies whether lowercase letters in owncode procedure
names are to be converted to uppercase letters. required
for loading of the owncode procedure. If you omit this
parameter, the default is OFF and the owncode procedure
names are not converted. Use YES, TRUE, or ON to
specify a logical true.

OMIT _DUPLICATES or OD
Specifies whether merge outputs only one record in each
set of records with equivalent key values. Duplicates are
not omitted; equivalent key values are processed as
specified by the OWNCODE_PROCEDURE_5, RETAIN_
ORIGINAL_ORDER, or SUM parameter.

TRUE, YES, or NO

Duplicates are omitted.

FALSE, NO, or OFF

Duplicates are not omitted.

OWNCODE_FIXED_LENGTHorOWNFLor OFL
Fixed record length (integer from 1 through 4,096). If you
omit the OWNCODE_FIXED_LENGTH parameter, the
merge uses the OWNCODE_MAXIMUM_RECORD_
LENGTH parameter value as the record length.
Specification of this parameter or the OWNCODE_
MAXIMUM_RECORD_LENGTH parameter is required if
the TO and FROM parameters are omitted.

Commands and Functions 2-497

MERGE

OWNCODE_MAXIMUM_RECORD_LENGTHor
OWNMRL or OMRL

Maximum record length (integer from 1 through 4,096). If
you omit the OWNCODE_MAXIMUM_RECORD_
LENGTH parameter, the merge uses the record length
attribute of the first input file read or output file written
as the maximum record length. Specification of this
parameter or the OWNCODE_FIXED_RECORD_
LENGTH parameter is required if the TO and FROM
parameters are omitted.

OWNCODE_PROCEDURE_l or OPl or OWNl

Reserved.

OWNCODE_PROCEDURE_2 or OP2 or OWN2

Reserved.

OWNCODE_PROCEDURE_3 or OP3 or OWN3

Object library entry point name for the procedure that
postprocesses each output record. If you omit the
OWNCODE_PROCEDURE_3 parameter, no user-defined
output record postprocessing is performed.

OWNCODE_PROCEDURE_4or OP4or OWN4

Object library entry point name for the procedure that
can insert a record at the end of the output file. If you
omit the OWNCODE_PROCEDURE_4 parameter, no
user-defined output file postprocessing is performed.

OWNCODE_PROCEDURE_5or OP5or OWN5

Object library entry point name for the procedure called if
two input records have equal key values. This parameter
cannot be specified with the SUM parameter. If you omit
the OWNCODE_PROCEDURE_5 parameter, no
user-defined processing of equal records is performed.

RETAIN_ORIGINAL_ORDER or ROO or RETAIN or
RET

Reserved.

2-498 NOSNE Commands and Functions Revision G

Revision G

MERGE

COLLATING_SEQUENCE_NAME or CSN or SEQN

Name of the collating sequence defined by the subsequent
collating sequence parameters. If you omit the
COLLATING_SEQUENCE_NAME parameter, no user
collating sequence is defined.

COLLATING_SEQUENCE_STEP or CSS or SEQS

List of one or more value step definitions. If you omit the
COLLATING_SEQUENCE_STEP parameter, no specific
collating sequence value steps are defined.

A value step definition is a value set that defines one or
more value steps in the collating sequence as follows
(char is an ASCII character):

('char')

One 1-character value step

('char',' char', ...)

One multicharacter value step

('char' .. ' char')

Multiple 1-character value steps

('char' .. ' char',' char' .. ' char', ...)

Multiple multicharacter value steps. (All ranges must
be the same size.)

COLLATING_SEQUENCE_REMAINDER or CSR or
SEQR

Indicates whether a special value step is defined
containing all characters not specified by other value step
definitions. If you omit the COLLATING_SEQUENCE_
REMAINDER parameter, the remaining characters keep
their same collating positions as in the default ASCII
collating sequence.

COLLATING_SEQUENCE_ALTER or CSA or SEQA

Indicates whether all characters in a value step are
altered to match the first character in the value step. If
you omit the COLLATING_SEQUENCE_ALTER
parameter, no character alteration is performed.

Commands and Functions 2-499

MERGE

SUM or S

List of I through I 00 sum field definitions. This
parameter cannot be specified with the OWN5 or RETAIN
parameters. If you omit the SUM parameter, no summing
is performed.

A sum field definition is a value set containing up to four
values as follows:

(first . .last,type,repeat_count) or

(first,length,type,repeat_count)

first

Position of the first byte of the sum field within the
record. (The leftmost byte in a record is numbered I.)

last

Position of the last byte of the sum field within the
record.

length

Optional number of bytes in the sum field. The default
length is I byte.

type

Name of a numeric data format. The default format is
INTEGER. The valid numeric data format names are:

BINARY
BINARY_BITS
INTEGER
INTEGER_ BITS
NUMERIC_FS
NUMERIC_LO
NUMERIC_LS
NUMERIC_NS
NUMERIC_ TO
NUMERIC_ TS
PACKED
PACKED_NS

repeat_ count

Optional integer specifying the number of consecutive
sum fields defined by the value set. The default
number if 1.

2-500 NOSNE Commands and Functions Revision G

Revision G

ZERO_LENGTH_RECORDSorZERO_LENGTH_
RECORD or ZLR

MERGE

Specifies the disposition of zero-length input records. '!'his
parameter applies only to records read from input files; it
does not apply to records supplied by owncode procedures.

The keywords specifying the disposition of all zero-length
input records read for the sort are as follows:

DELETE

Each zero-length record is deleted from the sort or
merge. It is not written to the exception records file.

PAD

Each zero-length record is processed as a short record.

LAST

Each zero-length record is written at the end of the
output.

VERIFY_MERGE_INPUT_ORDER or VERIFY or VMIO
or VER

Indicates that the merge should check that all merge
input records are in sorted order. If you omit the
VERIFY_MERGE_INPUT_ ORDER parameter, the merge
does not check the input record order.

LOAD_COLLATING_TABLE or LCT

Loads a collating table to be used by one or more keys.
The parameter specifies two values enclosed in
parentheses. The first value is the key type name you
specify in the key field definition. The second value is the
name of the collation table. It can be one of the NOSNE
predefined collation table or a user-defined collation table.

RESULT_ARRAY or RA or RESA

Specifies an SCL variable in which merge statistics are
returned. The variable must be a 16-element integer
array. The first element of the array must be assigned
the number of statistics to be returned (0 through 15).

Commands and Functions 2-501

$MESSAGE_LEVEL

Remarks

Examples

o A user-defined collating sequence can be defined by a
sequence of parameters.

• The first parameter in the sequence must be a
COLLATING_SEQUENCE_NAME parameter naming
the collating seqence.

• The naming parameter is followed by one or more
COLLATING_SEQUENCE_STEP, COLLATING_
SEQUENCE_REMAINDER, and COLLATING_
SEQUENCE_ALTER parameters defining the collating
sequence steps that differ from the default ASCII
collating sequence.

• The collating sequence definition ends when a
parameter other than COLLATING_SEQUENCE_
STEP, COLLATING_SEQUENCE_REMAINDER, or
COLLATING_SEQUENCE_ALTER is read.

• More than one collating sequence can be defined for
the sort.

• For more information, see the NOSNE Advanced File
Management Usage manual.

The following command merges the sorted records on files
$USER.FILE3 and $USER.FILE5 and writes records on
file $USER.FILE6. The records are merged in sorted order
using the leftmost 10 characters as the key; the keys are
sorted in ascending order using the ASCII collating
sequence. The VERIFY parameter ensures that the input
records are presorted.

/merge,($user.file3,$user.file5),$user.file6, ..
. . /key=((1,10)),verify=yes.

$MESSAGE _LEVEL
Function

Purpose Returns a boolean value that identifies the message level
currently selected for messages produced in your job.

For more information about setting the message level for
a job, refer to the SET_MESSAGE_MODE command.

2-502 NOSNE Commands and Functions Revision G

$MIN INTEGER

Format $MESSAGE_LEVEL
(keyword)

Parameters keyword

Remarks

Examples

Specifies the message level you want verified. Use one of
the following keywords:

BRIEF (B)

FULL (F)

If the message level specified is the same as the current
message level, TRUE is returned. If the message level
specified is different from the current level, FALSE is
returned.

For further information about functions, see the NOSNE
System Usage manual.

The following example indicates that BRIEF is the
message level selected for messages within your job:

/display_value $message_level(brief)
TRUE

$MIN _INTEGER
Function

Purpose Returns the minimum integer value allowed for a
parameter.

Format $MIN_ INTEGER

Parameters None.

Remarks

Examples

Revision G

e The value returned is 9,223,372,036,854,775,807

• For further information about functions, see the
NOSNE System Usage manual.

In the following example, the system is interrogated for
the value of $MIN _INTEGER:

/display_value $min_integer
-9223372036854775807

Commands and Functions 2-503

$MOD

$MOD
Function

Purpose Returns the modulus of one integer with respect to
another integer.

Format $MOD
(integerl
integer2)

Parameters integer 1

Remarks

Examples

$NAME
Function

Specifies the number for which the modulus is to be
returned. This parameter is required.

integer2

Specifies the number to which the modulus is relative.
This parameter is required.

• The result is calculated using the following formula (a
and b are integers, and the division is integer
division):

modulus(a,b) = a-((alb)*b)

• For further information about functions, see the
NOS/VE System Usage manual.

The following example returns the modulus of 134 with
respect to 10.

/display_value $mod(134,10)
4

Purpose Converts a string to an SCL name.

Format $NAME
(string)

Parameters string

Specifies the string you want converted to an SCL name.
This parameter is required.

2-504 NOSNE Commands and Functions Revision G

Remarks

Examples

$NATURAL LANGUAGE

• With this function, you can construct a name using a
string and later use it as a name parameter value.

• The result of this function is convertd to uppercase
characters.

• For further information about functions, see the
NOS/VE System Usage manual.

• The following example creates a string variable named
DATE_FORMAT. This value is converted to a name
and passed to the $DATE function as the date option.

/date_format = 'month'
/display_value date_format
month
/display_value $name(date_format)
MONTH
/display_value $date($name(date_format))
March 28, 1987

• The following example illustrates the result when an
invalid name is supplied to the $NAME function:

/date_format = 'mon th'
/display_value $date($name(date_format))
--ERROR-- Improper name: mon th

$NATURAL_LANGUAGE
Function

Purpose Returns a name indicating the natural language of
messages produced within your job.

Format $NATURAL_LANGUAGE

Parameters None.

Remarks • Possible results are as follows:

Revision G

DANISH
DUTCH
ENGLISH
FINNISH
FLEMISH
FRENCH
GERMAN

ITALIAN
NORWEGIAN
PORTUGUESE
SPANISH
SWEDISH
US_ ENGLISH
Any other name

Commands and Functions 2-505

NETWORK_ OPERATOR_ UTILITY

Examples

• For more information about specifying the language
for messages, refer to the CHANGE_NATURAL_
LANGUAGE command.

• For further information about functions, see the
NOS/VE System Usage manual.

The following example indicates that American English is
the language of the job's messages:

/display_value $natura1_1anguage
US_ENGLISH

NETWORK_ OPERATOR_ UTILITY
Command

Remarks Reserved for site personnel, Control Data, or future use.

OPEN _FILE _MIG RATION _AID
Command

Purpose

Format

Calls the File Migration Aid (FMA) and opens the file
migration environment.

OPEN_FILE_MIGRATION_AID or
OPEFMA

PAR.TNER ~JOB_ CARD= string
STATUS =status variable

Parameters PARTNER_JOB_CAR.D or PJC

Specifies the job statment parameters for the CYBER 170
partner job. The specified string must conform to either
NOS (for NOS dual state sytems) or NOS/BE (for NOS/BE
dual state systems) job statement syntax. Omission causes
a default job statement to be used. If the NOS/VE job is a
batch job, the default job statement has an infinite time
limit with no other parameters specified; if the NOS/VE
job is an interactive job, the default job statement has no
parameters specified.

2-506 NOS/VE Commands and Functions Revision G

Remarks

Examples

OPERATE_STATION

• The OPEN _FILE_MIGRATION command initiates a
batch job, called the partner job, on the CYBER 170
(NOS or NOS/BE) side of the dual state system.

• An OPEN _FILE_MIGRATION command must be
executed before any other FMA command can be
entered.

The following example opens the File Migration Aid,
enters several FMA commands to migrate a NOS
FORTRAN file, and closes the File Migration Aid.

/open_file_migration_aid
fa/open_170_state
fa/execute_corrmand 'attach,binfile'
fa/execute_corrmand 'file,binfile,fa=sq,rt=w,bt=i,mrl=90.'
fa/close_environment
fa/execute_migration_task migration_file=(binfile,
fa .. /newfile,c170_to_c180) file=lgo
fa/close_environment

OPERATE _STATION
Command

Remarks

$ORD
Function

Reserved for site personnel, Control Data, or future use.

Purpose Returns the integer that corresponds to the ASCII
character you specify.

Format $ORD
(string)

Parameters string

Remarks

Specifies the ASCII character for which you want the
ordinal returned. This parameter is required.

o The integer returned is an ordinal; it represents the
position of the character in question within the ASCII
collating sequence.

o For further information about functions, see the
NOSNE System Usage manual.

Revision G Commands and Functions 2-507

$0UTPUT_STATUS

Examples o The following example returns the decimal integer that
corresponds to the ASCII character '#':

/display_value $ord('#')
35

• The following example performs the same operation,
but displays the hexadecimal value of the character
ordinal:

/post_radix = '(16)'
/display_value $strrep($ord('#'),16)//post_radix
23(16)

$OUTPUT _STATUS
Function

Purpose

Format

Returns information about the status of an output file.

$0UTPUT_STATUS
(name,
keyword)

Parameters name

Remarks

Specifies the file for which you want status returned. Use
either a system-supplied or user-supplied file name. If the
name is user-supplied, it must be unique; otherwise the
function will fail. This parameter is required.

keyword

Specifies the type of information you want returned.

Chapter 3, Function Attributes, lists and describes the
keyword values you can supply and the corresponding
function results. This parameter is required.

• You can use the OUTPUT_STATE attribute to test for
the existence of a particular output file.

• The type of result returned depends on the attribute
being tested.

• For further information about functions, see the
NOSNE System Usage manual.

2-508 NOSNE Commands and Functions Revision G

Examples

$PARAMETER

The following example displays the status of file xyz:

/print_file f=xyz
/display_value $output_status(xyz.state)
QUEUED

$PARAMETER
Function

Purpose Returns the evaluated form of the specified parameter
value list.

Format $PARAMETER
(name)

Parameters name

Remarks

Examples

Revision G

Specifies the parameter for which you want the value list
returned. This parameter is required.

• This function is used to reference parameters within
procedures.

• For further information about functions, see the
NOSNE System Usage manual.

The example is based on the following procedure header:

PROC display_number,display_numbers,disn (
number , numbers, n : 1 i st 1 .. 10, 1 .. 2, ..
range of integer -100 .. 100 =$required
output.a file= $OUTPUT
status
)

: var of status = $optional

Consider the following call to the preceding procedure:

/display_number (4,(2 .. 5,2),1*100(2),5*6) out_file

In this case, each element in the value list for the first
parameter is evaluated and displayed by including the
.following command in the DISPLAY_NUMBER procedure:

display_value $parameter(number)

It writes the following value list to the output file:

(4' (2 .. 5' 2) ' 4' 30)

Commands and Functions 2-509

- $PARAMETER_LIST

$PARAMETER_LIST
Function

Purpose Returns the entire unevaluated parameter list for the
procedure call.

Format $PARAMETER LIST

Parameters None.

Remarks • This function is used to reference parameters within

Examples

procedures.

• The parameter list is returned as a string.

• For further information about functions, see the
NOSNE System Usage manual.

The example is based on the following procedure header:

PROC display_number,display_numbers,disn (
number , numbers, n : 1 i st 1 .. 10, 1 .. 2, ..
range of integer -100 .. 100 =$required
output,o file= $OUTPUT
status
)

: var of status = $optional

Consider the following call to the preceding procedure:

/display_number (1,(2 .. 3,2),5,6) out_file

The entire parameter list is displayed by including the
following command in the DISPLAY_NUMBER procedure:

display_value $parameter_list

It writes the following information to the output file:

(4, (2 .. 3, 2) ,5,6) out_f i le

PASCAL
Command

Purpose Calls the PASCAL compiler, specifies the files to be used
for input and output, and indicates the type of output to
be used.

2-510 NOS/VE Commands and Functions Revision G

PASCAL

Format PASCAL
INPUT=file
BINARY =file
LIST=file
ERROR=file
ERROR_LEVEL=keyword
LIST_ OPTIONS= list of keyword
OPTIMIZATION _LEVEL= keyword
DEBUG _AIDS= list of keyword
RUNTIME_CHECKS =list of keyword
STANDARDS_DIAGNOSTICS =list of keyword
TERMINATION _ERROR_LEVEL =keyword
STATUS= status variable

Parameters INPUT or I

Revision G

File that contains the source text to be read. If omitted,
$INPUT is assumed. I= $NULL results in termination of
the compilation.

BINARY or B

File on which object code is written. If omitted,
$LOCAL.LGO is assumed. If $NULL is specified, the
compiler performs a syntactic and semantic scan of the
program, but does not generate any object code.

LIST or L

File on which the source (compilation) listing, diagnostic
listing, object listing, statistics and reference attributes
are written.

If omitted, $LIST is assumed. If $NULL is specified, all
compile-time output is discarded.

ERROR or E

File to which Pascal writes the text of diagnostic
messages. Diagnostic messages are also written to the
LIST file if present. If ERROR and LIST specify the same
file, only one copy of the diagnostics is output. If omitted,
$ERROR is assumed. If $NULL is specified, no error file
is written.

Commands and Functions 2-511

PASCAL

ERROR_LEVEL or EL

Any of the following error list options.

c
Lists only catastrophic diagnostic messages.

F

Lists only fatal diagnostic messages.

w
Lists warning (informative) diagnostic messages as
well as fatal diagnostic messages.

LIST_ OPTIONS or LO

Combination of the following options about information
that appears in the LIST file. If omitted, option S is
assumed.

A

Produces an attribute list of each entity in the
program. The attribute listing is produced following
the source listing on the file specified by the LIST
parameter or, if the LIST parameter is omitted, on file
$LIST. If the R option is selected, the references are
shown on the same listing.

0

Lists compiler-generated object code. When selected,
this listing includes an assembly-like listing of the
generated object code. This option has no effect if the
BINARY_OBJECT parameter is set to $NULL.

R
Produces a symbolic cross-reference listing that shows
the location of all program entities and their use
within the program.

s
Lists the source input file.

NONE

No listing is printed.

2~512 NOSNE Commands and Functions Revision G

Revision G

PASCAL

OPTIMIZATION _LEVEL or OL

Any of the following optimization options. If omitted, LOW
is assumed.

DEBUG

Object code is stylized to facilitate debugging. Stylized
code contains a separate packet of instructions for each
executable source statement; it carries no variable
values across statement boundaries in registers, and it
notifies Debug each time the beginning of a statement
or procedure is reached.

LOW

Provides for keeping constant values in registers.

DEBUG_AIDS or DA

Any of the following debug options. If omitted, NONE is
assumed.

DT
Debug generates line number tables or symbol tables
with the object code.

ALL

Debug selects all of the available options.

NONE

Debug line number table, and Debug symbol table are
not generated with the object code.

RUNTIME_CHECKS or RC

A combination of the following run-time checking options
are compiled into the object program. If omitted, NONE
(no run-time checks are produced) is selected.

F

Selects checking of errors involving file variables and
buff er variables.

N

Selects checking of misuse of pointer variables and
buffer variables, and invalid usage of NEW and
DISPOSE procedures.

Commands and Functions 2-513

PASCAL

R

Selects range checking for subrange and set
assignments and case variables.

s
Selects array subscript bound checking.

T

Selects checking of variant tag fields.

ALL

Selects all of the run-time checks available.

NONE

Selects no run-time checks.

STANDARDS_DIAGNOSTICS or SD

Specifies whether the use of nonstandard extensions in a
program is to be diagnosed. The first option (LEVEL)
defines the error level to be assumed by such diagnostics.
The second option (STANDARD) determines which of two
standards is used. If omitted, NONE is selected and
nonstandard extensions are not diagnosed.

(W)

ISO standard errors result in warning errors.

(F)

ISO standard errors result in fatal errors.

(W,ISO)

ISO standard errors result in warning errors.

(F,ISO)

ISO standard errors result in fatal errors.

(W,ANSI)

ANSI standard errors result in warning errors.

(F,ANSI)

ANSI standard errors result in fatal errors.

2-514 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

PASCAL

(NONE)

Standard errors are not diagnosed.

TERMINATION_ERROR_LEVEL or TEL

Indicates the diagnostic severity level at which the
PASCAL compiler returns an abnormal STATUS. If
omitted, F (fatal level diagnostics return an abnormal
STATUS) is selected.

w
Warning level and higher diagnostics return an
abnormal STATUS.

F

Fatal level diagnostics return an abnormal STATUS.

c
Catastrophic level diagnostics return an abnormal
STATUS.

o If the INPUT parameter specifies file $INPUT, you
will be prompted with a question mark (?) for one line
of source code at a time. Enter the END_OF_
INFORMATION value (*EOI) to terminate and compile
your input.

The EOI value is a connection attribute defined by
your site administrator (NOSNE default is *EOI). To
display the value for your site, enter:

/display_term_conn_default, end_of _information

For more information on connection attributes, see the
NOSNE System Usage manual.

• For more information, see the PASCAL for NOSNE
manual.

This command reads source code from a file named
SOURCE_REPORT, writes the listing file on the file
LIST_FILE, and writes the object code on the file
OBJECT_REPORT. The listing includes source code,
compiler-generated object code, and a symbolic
cross-reference listing. ISO standard errors result in only
warning errors. Fatal level errors only result in an
abnormal STATUS. All run-time error checks are selected.

Commands and Functions 2-515

$PATH

$PATH
Function

The following default parameters have been selected:

DEBUG_AIDS

(D=NONE)

ERROR

(E =$ERRORS)

ERROR_ LEVEL

(EL=W)

The command:

/pascal i=source_report l=list_file ..
. . /b=object_report lo=(o,r) sd=w tel=f rc=all

Purpose Returns either a portion of a path (a string) or the count
of the elements in a path (an integer).

Format $PATH

Parameters file

(file
keyword)

Specifies the file path you are querying. This parameter is
required.

keyword

Specifies whether a portion of the path or a count of the
elements is to be returned. This parameter is required.
Use one of the following names:

CATALOG

Causes the catalog portion of the path to be returned
as a string.

LAST

Causes the last element of the path to be returned as
a string.

2-516 NOSNE Commands and Functions Revision G

Remarks

Examples

PHYSICAL_ CONFIGURATION_ UTILITY

COUNT

Returns an integer count of the elements contained in
the path.

o When a string value is returned by the function, all
letters within the string are uppercase.

o For further information about functions, see the
NOSNE System Usage manual.

o The following example displays the catalog portion of
the file path USER.DATA_FILE_l. The user name is
USER_ 123 and the family name is FAMILY_Z.

/display_value $path($user.data_file_1,catalog)
:FAMILY_Z.USER_123

• The following example displays the last element in the
preceding file path:

/display_value $path($user.data_file_1, last)
DATA_FILE_1

o The following example displays the number of
elements in the preceding file path. The count of three
is derived from the family name FAMILY_Z, user
name USER_l23, and file name DATA_FILE_l.

/display_value $path($user.data_file_1,count)
3

e See the online EXAMPLES manual for a procedure
demonstrating how you can extract the different parts
of a file path. The procedure's name is SHOW_FILE_
PATH.

PHYSICAL_ CONFIGURATION_ UTILITY
Command

Remarks Reserved for site personnel, Control Data, or future use.

POP
Control Statement

Purpose

Revision G

Deletes a current version of a system environment object
in an SCL procedure, and restores the changed
environment object to its former value.

Commands and Functions 2-517

$PREVIOUS_STATUS

Format POP
environment object(s)

Parameters environment objects

Remarks

Specifies one or more components of the system
environment (environment objects) to be deleted. Multiple
components must be separated by spaces or commas. An
error occurs if the environment object was not previously
established (pushed). Choose from the following list of
system environment objects:

COMMAND_ LIST
FILE_CONNECTIONS
INTERACTION_ STYLE
MESSAGE_ LEVEL
NATURAL_ LANGUAGE
PROGRAM_ATTRIBUTES
WORKING_CATALOG

For more information, see the NOSNE System Usage
manual.

$PREVIOUS _STATUS
Function

Purpose Returns the completion status of the previous command.

Format $PREVIOUS_STATUS

Parameters None.

Remarks For further information about functions, see the NOSNE
System Usage manual.

Examples The example shows is based on the following procedure:

/collect_text display_status
ct? proc display_status, diss(
ct? status:status=$previous_status)
ct? display_value $value(status)
ct? procend display_status
ct? **
I

If the system cannot find the status message associated
with the status condition, the following message is
displayed:

2-518 NOSNE Commands and Functions Revision G

PRINT_FILE

/display_value $status(false, 'MY',O,'param1','param2')
--ERROR-- CC=MY 0 TEXT=?param1?param2

If you attempt to create a duplicate variable, the
$PREVIOUS_STATUS function can obtain the status of
the previous command, as in the following example:

/create_variable s kind=status
/create_variable x status=s
/display_status
NORMAL STATUS
/create_variable x status=s
/display_status
--ERROR-- X is already declared as a variable.

PRINT_FILE
Command

Purpose

Format

Revision G

Schedules one or more files for printing.

PRINT_ FILE or
PRINT_FILES or
PRIF

FILE = list of file
COMMENT _BANNER =string
COPIES= integer
DATA_MODE =keyword
DEVICE= name or keyword
EXTERNAL_CHARACTERISTICS=string or keyword
FORMS_CODE =string or keyword
OPERATOR_FAMILY =name
OPERATOR_ USER =name
OUTPUT_ CLASS= keyword
OUTPUT _DESTINATION =any
OUTPUT_DESTINATION_USAGE=name or keyword
OUTPUT _PRIORITY= keyword
REMOTE_HOST _DIRECTNE =string
ROUTING _BANNER= string
STATION=name or keyword
USER_FILE_NAME=list of name
VERTICAL_PRINT _DENSITY= keyword
VFU_LOAD_PROCEDURE=name or keyword
STATUS= status variable

Commands and Functions 2-519

PRINT_FILE

Parameters FILE or FILES or F

Specifies the files to be printed. This parameter is
required.

COMMENT_BANNERor CB

Specifies a character string to be displayed with the
printed file. Use of this string is determined by the site.

If omitted, the COMMENT_BANNER job attribute is
used. If the COMMENT_BANNER attribute is an empty
string, the file name is used.

COPIES or C

Specifies the number of copies of the printout required.
Omission causes the COPIES job attributes to be used.

DATA_MODE or DM

Specifies the data mode of the file to be printed. You can
specify the following keyword values:

CODED

Specifies that the data in the file contains codes to be
interpreted and handled by the printer.

TRANSPARENT

Specifies that the data in the file should be printed
without conversion or interpretation. This keyword
cannot be used if the OUTPUT_DESTINATION _
USAGE attribute is DUAL_STATE.

DEVICE or D

Specifies a name that, when combined with the STATION
attribute value, identifies the printer at which the file is
to be printed. Values can be a valid printer name or the
keyword AUTOMATIC.

If you specify AUTOMATIC, the system prints the file at
any printer that meets the external characteristics and
forms code specifications specified. If omitted, the device
job attribute is used.

EXTERNAL_CHARACTERISTICS or EC

Specifies a string that is used to select a printer that has
the same string defining its external characteristics. The
actual meaning of this string is defined by the site.

2-520 NOSNE Commands and Functions Revision G

Revision G

PRINT_FILE

Values for this parameter can be any string of 1 to 6
characters or the keyword NORMAL. If you specify
NORMAL, the system selects a printer that has an
EXTERNAL_CHARACTERISTICS value of NORMAL.

If the file is being sent through QTF to a NOS system for
printing, NORMAL is mapped to the NOS A9 value. For
more information on the NOS A9 value, see the NOS 2
Reference Set, Volume 3.

If omitted, the EXTERN AL_ CHARACTERISTICS job
attribute is used.

FORMS_CODE or FC

Specifies a string that is used to select a printer that has
the same string defining its forms code attribute. The
actual meaning of this parameter is defined by the site.

Values for this parameter can be any string of 1 to 6
characters or the keyword NORMAL. If you specify
NORMAL, the system selects a printer that has a
FORMS_CODE value of NORMAL. If you specify
NORMAL when the OUTPUT_DESTINATION_USAGE
attribute is DUAL_STATE, the NORMAL value is
equivalent to a string of spaces. When OUTPUT_
DESTINATION_ USAGE is PUBLIC or PRIVATE, keyword
NORMAL is equivalent to the string 'normal'.

If omitted, the FORMS_CODE job attribute is used.

OPERATOR_FAMILY or DESTINATION _FAMILY or DF
or OF

Specifies the family name of a private station or remote
system operator. This family name together with the
OPERATOR_ USER parameter identifies the private
station operator or remote system operator who can print
or receive the file. This parameter is also used to
establish the control family attribute of the output file.
This parameter is not meaningful unless the OUTPUT_
DESTINATION_USAGE attribute is PRIVATE or NTF.

OPERATOR_USER or STATION_OPERATOR or SO or
OU

Specifies the user name of a private station or remote
system operator. This user name together with the
OPERATOR_FAMILY parameter identifies the private
station operator or remote system operator who can print

Commands and Functions 2-521

PRINT_FILE

or receive the file. This parameter is also used to
establish the control user attribute of the output file. This
parameter is not meaningful unless the OUTPUT_
DESTINATION_ USAGE attribute is PRIVATE or NTF.

OUTPUT_CLASS or OC

Specifies an output class for the output file. The output
class defines the initial priority, the maximum priority,
an aging interval, and an aging factor for the output file.

For this release, the only defined output class is
NORMAL. This means all output files have an initial
priority of 100, a maximum priority of 3700, an aging
interval of one second, and an aging factor of one priority
unit per aging interval.

If omitted, the OUTPUT_ CLASS job attribute is used.

OUTPUT_DESTINATION or ODE

Specifies the location name of the system where the
output file is to be sent for printing if the file's
OUTPUT_DESTINATION_USAGE attribute is QTF or
NTF. For all other values of OUTPUT_DESTINATION_
USAGE, this parameter is not meaningful and is ignored.

A location name is a name associated with a remote
system, such as a family name or a logical identifier.
Location names are determined by your site. For more
information, see your Site Administrator.

If this parameter is omitted, the OUTPUT_
DESTINATION job attribute is used.

OUTPUT _DESTINATION_ USAGE or DESTINATION_
USAGE or DU or ODU

Specifies either the kind of CDCNET print station where
the file is to be printed, or the queue file transfer
application to be used to forward the output file to a
remote system. The following options are available:

PUBLIC

Indicates that the file is to be printed at a public
CDCNET batch 1/0 station. If this value is specified,
the OPERATOR_FAMILY, OPERATOR_USER,
OUTPUT_DESTINATION, and REMOTE_HOST_
DIRECTIVE attributes are not meaningful.

2-522 NOS/VE Commands and Functions Revision G

Revision G

PRINT_FILE

PRIVATE

Indicates that the file is to be printed at a private
CDCNET batch I/O station when the designated
station operator is controlling the station. If this value
is specified, the OUTPUT_DESTINATION and
REMOTE_HOST_DIRECTIVE attributes are not
meaningful.

DUAL_ STATE

Indicates that the file is to be printed under control of
the dual-state partner system. The NOS/VE file is
copied to a NOS or NOS/BE queue file in the 12-bit
ASCII format with zero-byte terminated (Z-type)
records. If this value is specified, no other attributes
are meaningful with the exception of the FORMS_
CODE, COPIES, ROUTING_BANNER, and
REMOTE_HOST_DIRECTIVE attributes.

QTF

Indicates that the file is to be forwarded to the remote
system identified by the OUTPUT_DESTINATION
attribute for processing by that system.

NTF

Indicates that the file is to be forwarded to the remote
NTF system identified by the OUTPUT_
DESTINATION attribute for processing by that system.

If this parameter is omitted, the OUTPUT_
DESTINATION_ USAGE job attribute is used unless the
value of the OUTPUT_DISPOSITION job attribute is
LOCAL. If the OUTPUT_DISPOSITION job attribute is
LOCAL, the system default is used.

OUTPUT_PRIORITY or OP

Specifies a priority increment that is added to the output
file's initial priority (defined by the output class).

Keywords are:

Keyword

LOW

MEDIUM

HIGH

Increment

0

1500

3000

Commands and Functions 2-523

PRINT_FILE

If omitted, the job's default attribute is used.

REMOTE_HOST_DIRECTIVE or DUAL_STATE_
ROUTE_PARAMETERSorDSRPorRHD

Specifies a default text string which may be used to
control output processing of output files. This string
should contain one of the following:

• A PRINT_FILE .command for output files to be
printed on a NOSNE system.

• A ROUTE command for output files to be printed on a
non-NOSNE system.

• The ROUTE command's parameters for output files to
be printed on the non-NOSNE side of a dual-state
system.

This parameter is ignored unless the OUTPUT_
DESTINATION_ USAGE output attribute specify the
appropriate value. For more information on submitting
output files to remote systems, see the NOSNE System
Usage manual.

If omitted, the REMOTE_HOST_DIRECTIVE job attribute
is used.

ROUTING_BANNER or RB

Specifies a character string to be displayed with the
printed file. The actual use of this string is determined by
the site. If omitted, the ROUTING_BANNER job attribute
is used. If that attribute is an empty string, the control
user name for the file is used.

STATION or S

Specifies the 1/0 station name (or the control facility
name in the case of a private station or NTF remote
system) to which the file is to be sent.

Values can be any valid station name or the keyword
AUTOMATIC. If you specify AUTOMATIC, the system
default is used.

If omitted, the STATION job attribute is used.

2-524 NOSNE Commands and Functions Revision G

Revision G

PRINT_FILE

USER_FlLE_NAMEor USER_FlLE_NAMESor UFN
Specifies a list of names to be associated with the files
being printed. The names in this list are matched
positionally with the files specified in the FILE parameter
(the first name in the list is matched with the first file to
be printed, and so on). For any file being printed, if a
user-supplied name is not specified, the file name is used.

VERTICAL_PRINT _DENSITY or VPD
Specifies the vertical print density at which the file is to
be printed. This value will affect the selection of the
printer where the file is printed. Select one of the
following keywords.

SIX

Selects a printer to print at six lines-per-inch.

EIGHT

Selects a printer to print at eight lines-per-inch~

NONE

Vertical print density is not used to select a printer.

FILE

Vertical print density of the source file is used to
determine the print density. If the source file attribute
is 6, SIX is used. If the source file attribute value is
in the range of 7 through 12, EIGHT is used.

If this parameter is omitted, the VERTICAL_PRINT
DENSITY job attribute is used.

VFU_LOAD_PROCEDUREor VLP
Specifies the name of a procedure file containing the
definition of a vertical forms unit (VFU) load image that
must be loaded into the printer before the file is printed.
This parameter affects printer selection.

You can specify the keyword NONE to indicate that the
file need not be printed on a printer capable of using
VFU load procedures or that the default VFU load
procedure should be used.

Commands and Functions 2-525

PRINT_FILE

Remarks

Examples

If you specify the name of a procedure file, the system
selects a printer capable of using the VFU load
procedures and the procedure file is downloaded to the
printer before the file is printed.

If this parameter is omitted, the VFU _LOAD_
PROCEDURE job attribute is used.

• The USER_FILE_NAME and DATA_MODE
parameters of the PRINT_FILE command are the only
parameters whose defaults are not based on your job's
attributes.

• If the OUTPUT_DISPOSITION job attribute is
DISCARD_ALL_OUTPUT or WAIT_QUEUE, the file
submitted for output by the PRINT_FILE command
will not be printed. See the CHANGE_JOB_
ATTRIBUTE command for more information on the
OUTPUT_DISPOSITION job attribute.

• A file is processed according to the value of its output
attributes at the time it leaves the output queue.
Refer to the CHANGE_OUTPUT_ATTRIBUTE
command for information on how to change a file's
output attrib~tes while it is in the output queue.

• Transfers to non-NOSNE systems are not currently
supported.

• For more information, see the NOSNE System Usage
manual.

The following example prints five copies of a listing.

/print_file file=list copies=S
/display_output_status all
Output_State
System_File_Name
User_File_Name
/disos name=all

None Were Found.

printing
$0990_0102_aad_1439
1 i st

The following example illustrates the use of PRINT_FILE
using the REMOTE_HOST_DIRECTIVE parameter to
print the file FORTRAN_LISTING on the partner system.

2-526 NOSNE Commands and Functions Revision G

/print_file f11e=fortran_list1ng ..
.. /output_destination_usage=dual_state
.. /remote_host_direct1ve='dc=pr,ec=a9'

PRINT_LETTER

To print the file ANY_OUT at the remote mainframe
VN3, enter:

/print_file f=any_out ode=vn3 odu=Qtf

The file in the preceding example will be printed using
the remote mainframe's default job attributes. To specify
job attributes other than the remote mainframe's default
job attributes, you must use the REMOTE_HOST_
DIRECTIVE parameter. See the REMOTE_HOST_
DIRECTIVE parameter description earlier in this manual
for more information.

PRINT _LETTER
Command

Remarks Reserved for site personnel, Control Data, or future use.

PROC
Control Statement

Purpose Defines the names by which an SCL procedure can be
called, the procedure attributes, and the parameters to the
procedure.

Format PROC list of procedure name (
list of parameter definition)

Parameters procedure name

Revision G

Specifies the name by which procedure is to be called.
Any one of the list of procedure names may be used as
the command name to call the procedure. This parameter
is required.

parameter definition

Defines the procedure parameters. A parameter is defined
as follows:

parameter names : value specification = default
specification

Commands and Functions 2-527

PROC

Remarks • If the value specification is omitted for a parameter,
FILE is assumed unless the parameter name is
STATUS, in which case a status variable is assumed.

• If you specify $REQUIRED as the default specification
for a parameter, the user must enter a value for that
parameter. If you specify $OPTIONAL as the default
specification for a parameter, or if you omit the
default specification, the user can optionally enter a
parameter value.

• The value specification specifies the type of value and
whether or not it can be represented as a list and/or
range. The value specification is comprised of the
following elements:

data type

Specifies the type of value the parameter can be.

value list type

Specifies whether the parameter value can be given
as a list and range of values.

• The data type clause defines the type of value,
whether it is a variable or array, and whether it can
be represented by one or more keywords. The following
are the formats of the data type specification.

data type
data type OR KEY keywords
VAR OF variable type
VAR OF variable type OR KEY keywords
ARRAY OF variable type
ARRAY OF variable typr OR KEY keywords

The following table lists the data types:

Data Type

FILE

NAME

STRING

INTEGER

REAL

Description

Specifies a file.

Specifies an SCL name.

Specifies a string.

Specifies an integer.

Specifies a real variable.

2-528 NOSNE Commands and Functions Revision G

Examples

Revision G

KEY

BOOLEAN

STATUS

ANY

application value name

PROC

Keyword value.

Specifies a boolean value.

Specifies a status variable.

Specifies that any data type
can be used.

Specifies the name of an
application value. For more
information on application
procedures, see the CYBIL
System Interface manual.

• The following formats of the value list type are valid:

LIST
LIST value set count
LIST value set count, value count
LIST value set count, RANGE
LIST value set count, value count, RANGE
LIST RANGE
RANGE

The value list type defines the parameter as a list of
value sets. The number of value sets allowed is
specified with the value set count clause.

• For more information, see the NOSNE System Usage
manual.

The following example defines a procedure named
DISPLAY_NUMBER. The procedure has the alternate
names DISPLAY_NUMBERS and DISN. It accepts a
parameter named NUMBER, which can be represented by
from 1 through 10 value sets that must be of kind
integer. Each value set can contain from 1 through 2
value elements. Each value element can be specified as a
range. The NUMBER parameter is required and has the
alternate names NUMBERS and N.

proc display_number,display_numbers,disn
number,numbers,n: list 1..10, 1..2,

range of integer = $required
status)

Commands and Functions 2-529

PROCEND

PROCEND
Control Statement

Purpose Terminates an SCL procedure. Execution of a PROCEND
causes normal status to be returned by the procedure.

Format PROCEND procedure name

Parameters procedure name

If the procedure name is given, it must be identical to the
first procedure name defined in the PROC statement for
the procedure being terminated. This is for checking
purposes only and does not affect the meaning of the
statement.

Remarks For more information, see the NOSNE System Usage
manual.

Examples The following procedure is defined.

PROC display_number,d1splay_numbers,d1sn
number,numbers,n: 11st 1 .. 10, 1..2,

range of 1nteger = $requ1red
status)

PROCEND display_number

$PROCESSOR
Function

Purpose Returns the specified attribute of a hardware processor in
the mainframe on which the request is made.

Format $PROCESSOR
(keyword
integer)

2-530 NOSNE Commands and Functions Revision G

$PROCESSOR

Parameters keyword

Revision G

Specifies the attribute you want returned. This parameter
is required. Use one of the following entries:

CLOCK (C)

Returns the integer value of the processor's
free-running microsecond clock. When this keyword is
specified, the integer parameter is ignored.

MODEL_ TYPE (MT or MODEL or M)

Returns a string indicating the performance class of
the mainframe's processors. The following are the
possible values returned for this keyword:

CYBER 810 Class
CYBER 815 Class
CYBER 825 Class
CYBER 830 Class
CYBER 835 Class
CYBER 840 Class
CYBER 840S Class
CYBER 845 Class
CYBER 845S Class
CYBER 850 Class
CYBER 855 Class
CYBER 855S Class
CYBER 860 Class
CYBER 870 Class
CYBER 930 Class
CYBER 990 Class
CYBER 995 Class

MODEL_NUMBER (MN)

Returns a string that designates the processor's model
number. The following are possible values returned for
this keyword:

810
815
825
830
835
840
840S
845
845S

Commands and Functions 2-531

$PROCESSOR

Remarks

Examples

850
855
855S
860
870
9301
9303
990
990E

SERIAL_NUMBER (SERIAL or SN)

Returns a string value indicating the processor's serial
number, for example, 109.

STATE (S)

Returns a string value indicating the processor's state;
the states are ON, OFF, and DOWN.

integer

Specifies the processor whose attribute you want returned;
applies only to a multiprocessor mainframe. The processor
number starts at 0.

If the processor you specify does not exist, a null string is
returned for all attributes except CLOCK.

If you do not specify a processor number, the number of
the current processor is used.

For further information about functions, see the NOSNE
System Usage manual.

The following procedure queries the system for the
number of processors, model types, serial numbers, and
model numbers.

PROC processor
FOR i=1 TO $mainframe(total_processors) DO

display_value 'Processor '//$strrep(i-1)
display_value

' Model Type - '//$processor(model_type,i-1)
display_value

' Serial Number - '//$processor(serial_number,i-1)
display_value

' Model Number - '//$processor(model_number,i-1)
FORE ND

PROCEND processor

2-532 NOSNE Commands and Functions Revision G

$PROGRAM

When the procedure is called, the following result is
returned:

Processor O
Model Type
Serial Number
Model Number

Processor 1
Model Type
Serial Number
Model Number

I

- CYBER 995 Class
- 102

- 990

- CYBER 995 Class
- 103

- 990

$PROGRAM
Function

Purpose Returns the default program attributes for the job.

Format $PROGRAM
(keywordl
keyword2)

Parameters keyword 1

Remarks

Revision G

Specifies the program attribute you want returned.
Chapter 3, Function Attributes, lists and describes the
keyword values you can supply and the corresponding
function results. This parameter is required.

keyword2

Specifies one of the keywords that you must include if
you specify the LOAD_MAP _OPTION parameter. See the
Remarks section for details.

c The kind of result returned depends on the program
attribute being tested. When a string value is
returned, all letters are converted to uppercase.

a When LOAD_MAP_OPTION is supplied as the
program attribute name, the format for $PROGRAM
changes as follows:

$PROGRAM
(LOAD _MAP_ OPTION)
(keyword)

Commands and Functions 2-533

PRO LOG

Examples

keyword

One of the keyword values listed in the following
table. This parameter is required.,

Keyword Value

BLOCK (B)

CROSS_ REFERENCE
(CR)

ENTRY_POINT (EP)

NONE (N)

SEGMENT (S)

Description

Block map.

Entry point
cross-reference map.

Entry point map.

No load map.

Segment map.

• For more information about program attributes, see
the NOSNE Object Code Management manual.

• For further information about functions, see the
NOSNE System Usage manual.

The following example tests whether debug mode is
currently in effect:

IF $program(debug_mode) THEN

. "Perform spec i a 1 processing if in debug mode. "

I FEND

PRO LOG
Command

Purpose

Format

Calls the PROLOG interpreter.

PRO LOG
WORKSPACE =file
PASSWORD= name
WAIT= boolean
INPUT=file
OUTPUT= file
LIST_ OPTION= list of keyword
QUESTION= string
STATUS= status variable

2-534 NOSNE Commands and Functions Revision G

PRO LOG

Parameters WORKSPACE or WS

Revision G

Specifies the name of the file containing a Prolog program
(saved state). The saved state is restored when Prolog is
activated. The file must have the following attributes:

• file_processor = 'prolog'

• file_organization = byte_addressable

• file_contents =object

• file_ structure =data

The file is accessed with the following permits:

• access_ mode= read

• share_ mode= read

If omitted, WS=$SYSTEM.PROLOG.INITIAL_STATE,
which contains all the system-supplied predicates, is
selected.

PASSWORD or PW

Specifies the password required to access a file specified
by the WORKSPACE parameter.

WAIT or W

Forces the Prolog interpreter to wait for the file specified
by the WS parameter if that file is busy.

If WAIT= FALSE and the file is busy, the interpreter
returns a non-normal status.

If omitted, WAIT=TRUE.

INPUT or I

Specifies the file that contains the Prolog statements to be
read. This file is obtained from the terminal when 'user'
is referenced in a Prolog session. For interactive use,
I = $INPUT specifies the user's terminal.

!=$INPUT

Specifies interactive processing from your terminal.

I=file

Specifies batch processing.

If omitted, I= $INPUT is selected.

Commands and Functions 2-535

PRO LOG

Remarks

OUTPUT or 0

Specifies the file on which the output is written.

O=filename

Indicates that the file remains when the job is
completed.

0=$0UTPUT

Specifies your terminal if you are in interactive mode.
If you are in batch mode, it specifies the file that is
printed at job completion.

If omitted, 0 =$OUTPUT is selected.

LIST_OPTION or LIST_OPTIONS or LO

Specifies the information that is to be written to the
output file. Options are:

B

Prevents the Prolog system banner from going to the
output file.

p

Prevents prompts, including ?- and :-, from going to
the output file.

s
Copies all input to the output file.

If LIST_ OPTIONS is omitted and you are in interactive
mode, no options are selected; otherwise, LO= (S,P) is
selected.

Multiple options specified in the format:

LO= (op, .. ,op)

QUESTION or Q

Allows Prolog for NOSNE to be started with a question.
If omitted, Q ='true' is selected.

For more information, see the PROLOG for NOSNE
manual.

2-536 NOSNE Commands and Functions Revision G

Examples

PRO LOG_ UTILITY

The first example shows an interactive session. The
second example shows a batch session.

Interactive:

/prolog WS=prolog_example PW=shazam !=input O=output

The following default parameters are selected:

WAIT=TRUE
LIST_OPTIONS=no options
QUESTION= 'TRUE'
STATUS=no status available

Batch:

prolog I=cheese_report O=cheese_report_output

The following default parameters are selected:

WS=$SYSTEM.PROLOG.INITIAL_STATE
PASSWORD=no password
LIST_OPTIONS=(S,P)
QUESTION='TRUE'
STATUS=no status variable

PRO LOG_ UTILITY
Command

Remarks Reserved for site personnel, Control Data, or future use.

PUSH
Control Statement

Purpose

Format

Temporarily changes certain system environments in SCL
procedures.

PUSH
environment object(s)

Parameters environment objects

Specifies one or more components of the system
environment (environment objects) to be changed (pushed).
The components must be separated by spaces or commas.
Choose from the following list of system environment
objects:

COMMAND_LIST
FILE_CONNECTIONS
INTERACTION _STYLE

Revision G Commands and Functions 2-537

PUT_LINE

Remarks

Examples

MESSAGE_ LEVEL
NATURAL_ LANGUAGE
PROGRAM_ ATTRIBUTES
WORKING_CATALOG

• Only the most recently pushed version of the system
environment can be referenced or changed.

• A specific object can be pushed only once in a
procedure.

• For more information, see the NOSNE System Usage
manual.

The following example illustrates a procedure that
changes the command list environment object. This
procedure uses the command library .AJL.COMMAND_
LIBRARY only during its execution. After exiting from
the procedure, you no longer have the command library in
your command list.

PROC change_environment
PUSH ConlTland_list
create_conrnand_list_entry .ajl.conrnand_library

"Execute conrnands found in . aj 1 . conrnand_ library."

PROCEND

PUT_LINE
Command

Purpose

Format

Writes lines to a file.

PUT_LINE or
PUT_LINES or
PUTL

LINES=list of string
OUTPUT=file
STATUS= status variable

2-538 NOSNE Commands and Functions Revision G

PUT_LINE

Parameters LINES or LINE or L

Remarks

Examples

Revision G

Specifies the lines to be written to the output file. This
parameter is required.

OUTPUT or 0

Identifies the output file to which lines are written. The
default output file is $OUTPUT.

o This command never adds page titling or format
effectors. The system assumes the first character of
each line is a format effector.

o . If you are writing more than one line in succession to
a file, use the COLLECT_ TEXT command for faster
response. This command opens the output file only
once for multiple lines, whereas the PUT_LINE
command opens the file for each line. In addition, the
COLLECT_ TEXT command allows you to substitute
the values of variables and string expressions in the
output file.

o For more information, see the NOS/VE System Usage
manual.

The following example writes a 3-line message to file
OUTPUT. The leading space in each of the three strings
is a format effector (a space character) that causes each
string to print on a separate line.

/put_ 1 i nes 1 i nes=(..
.. /' Today''s date: '//$date(month)
.. /'The current time: '//$time(ampm)
.. /'Welcome to NOS/VE.')
Today's date: March 28, 1987
The current time: 2:45 PM
Welcome to NOS/VE.

Commands and Functions 2-539

PUT_LINE

2-540 NOSNE Commands and Functions Revision G

$QUEUE
Function

$QUEUE

Purpose Returns the state of a local queue.

Format $QUEUE
(name
keyword)

Parameters name

Remarks

Examples

Revision G

Name of the local queue you are interrogating. This
parameter is required.

keyword

Specifies the attribute of the local queue you are
interrogating. This parameter is required. The following
are possible keywords:

CONNECT_ COUNT
MESSAGE_ COUNT
WAIT_COUNT

o If you specify CONNECT_COUNT, the number of
tasks connected to the queue is returned as an integer.

o If you specify MESSAGE_COUNT, the number of
messages in the queue is returned as an integer.

e If you specify WAIT_COUNT, the number of tasks
that are waiting for a message from the queue is
returned as an integer.

o For further information about functions, see the
NOS/VE System Usage manual.

The following example interrogates the system for the
number of messages in the local queue named WAIT:

/display_value $queue(wait,message_count)
0

Commands and Functions 2-541

QUICK

QUICK
Command

Purpose Enters the QUICK utility.

Format QUICK
PROFILE=file
UID=dm_name
UPW=dm_name
ERROR=file
EXECUTE_ ONLY= boolean
FROM=file
TO=file
LISTABLE_PROFILE =file
STATUS=status variable

Parameters PROFILE or P

Specifies the profile. If omitted, PROFILE is assumed.

UID

Specifies the IM/DM user identification code. It can
contain 8 letters and/or digits and is not enclosed in
quotes.

UPW

Specifies the IM/DM user password. It can contain 8
letters and/or digits and is not enclosed in quotes.

ERROR or E

Specifies the file to which QUICK writes any error
messages. If omitted, $LOCAL.QUICK_ERRORS is
assumed.

EXECUTE_ONLY or EO

Specifies whether you are executing a previously prepared
profile. If omitted, FALSE is assumed (you are executing
in interactive mode).

FROM or F

Specifies the input data file. If omitted, QUICK obtains
the file name from the INPUT_FILE_NAME window.
This parameter is used only in EXECUTE_ONLY mode.

2-542 NOSNE Commands and Functions Revision G

Remarks

$QUOTE
Function

$QUOTE

TO or T

Specifies the output file to which data is written. If
omitted, QUICK obtains the file reference from the
OUTPUT_NAME window. This parameter is used only in
EXECUTE_ONLY mode.

LISTABLE_PROFILE or LP

Specifies the file which Quick uses to load the profile.
The listable_profile is created by selecting the option
"Write profile onto a file in listable format" on the utility
screen of a previous execution of Quick. If omitted, Quick
does not load the profile from a listable_profile.

For more information, see the IM/Quick manuals.

Purpose Copies one string to another string and adds string
delimiters.

Format $QUOTE
(string)

Parameters string

Remarks

Examples

Revision G

Specifies the string you want copied. This parameter is
required.

For further information about functions, see the NOSNE
System Usage manual.

The following example copies string S to string Q:

Is = 'ABC" DEF'
/display_value s
ABC'DEF
/q = $quote(s)
/display_value q
'ABC''DEF'

Commands and Functions 2-543

$RANGE

$RANGE
Function

Purpose Returns a boolean value indicating whether a given
parameter is specified as a range (low value to high
value).

Format $RANGE
(name
integerl
integer2)

Parameters name

Remarks

Specifies the parameter you are interrogating. This
parameter is required.

integerl

Number describing the position of the value set for the
parameter in question. The default value is 1.

Use this parameter if the parameter is defined as
multiple value sets, each set having one value.

integer2

Number describing the position of the value element for
the parameter in question. The default value is 1.

Use this parameter if the parameter is defined as
multiple value sets, each set having multiple value
elements.

• This function is used to reference parameters within a
procedure.

o If this function returns a TRUE value, the parameter
was given as a range. If this function returns a
FALSE value, the parameter was not given as a range.

• For further information about functions, see the
NOSNE System Usage manual.

2-544 NOSNE Commands and Functions Revision G

Examples

RECOVER_KEYED_FILE

The examples are based on the following procedure
header:

PROC display_number,display_numbers,disn
number,numbers,n: list 1 .. 10, 1 .. 2, ..
range of integer -100 .. 100 =$required
output,o file= $OUTPUT
status
)

: var of status = $optional

• Consider the following call to the preceding procedure:

/display_number (2,(1 .. 10),3)

In this case, the second value set is tested for a range
by including the following command in the DISPLAY_
NUMBER procedure:

display_value $range(number,2)

The DISPLAY_ VALUE command writes TRUE to the
output file.

• The next example is based on the following call to
procedure DISPLAY_NUMBER:

display_number (1,(12 .. 14,16),6)

The first and second elements of the second value set
are tested for a range by having the following
commands in the procedure:

display_value $range(number,2, 1) TRUE is written to
the output file.

display_value $range(number,2,2) FALSE is written
to the output file.

RECOVER _KEYED _FILE
Command

Purpose

Format

Revision G

Begins a keyed-file recovery attempt.

RECOVER_KEYED_FILE or
RECKF

FILE=file
PASSWORD= name
STATUS =status variable

Commands and Functions 2-545

RECOVER_KEYED _FILE

Parameters FILE or F

Remarks

File path to the damaged keyed file to be recovered. This
parameter is required.

If the damaged file does not currently exist, its cycle
number cannot be determined by default. Therefore, the
file path must explicitly specify the file cycle number so
that the utility can reload the correct backup copy.

PASSWORD or PW

File password specified when Backup_Permanent_File
wrote the backup copy of the file. A file password is
optional, but, if a password exists for the file, it is
required on this command. If no password exists for the
file, NONE can be specified.

The file password in effect when the backup copy was
written must be the same password in effect when the file
was damaged. Otherwise, the backup copy cannot replace
the damaged file.

e The LOG_RESIDENCE attribute of the file specified
on the command must match the LOG_RESIDENCE
attribute of the backup copy to be reloaded. Recover_
Keyed_File cannot use a backup copy that was
written before the LOG_RESIDENCE attribute of the
file was changed.

• If the file does not currently exist and the LOG_
RESIDENCE of its backup copy is not the default log,
you must enter a SET_FILE_ATTRIBUTE command
for the file. The command must specify the same file
cycle specified on the RECOVER_KEYED _FILE
command and the same LOG_RESIDENCE as that of
the backup copy to be used. (See the Example.)

• Similarly, if the file does not currently exist, but the
file had a password when the backup copy was
written, you must create the file with the same
password. To do so, enter a CREATE_FILE command
specifying the file path (including its cycle number)
and the PASSWORD parameter.

• For more information, see the NOS/VE Advanced File
Management Usage manual.

2-546 NOSNE Commands and Functions Revision G

Examples

RELEASE_RESOURCE

The following session attempts to restore a keyed file that
no longer exists using its latest backup copy. When the
latest backup copy was written, the file password was
HUSH_HUSH and the LOG_RESIDENCE attribute was
$USER.MY_LOG. Therefore, those values must be
reestablished for the file cycle.

/recover_keyed_file, $user.keyed_file.1
reckf/create_file, $user.keyed_file.1, ..
reckf .. /password=hush_hush
reckf/set_file_attribute, $user.keyed_file.1, ..
reckf .. /1og_residence=$user.my_log
reckf/recover_file_media

RELEASE_RESOURCE
Command

Purpose

Format

Releases tape reservations previously established with the
RESERVE_RESOURCE command.

RELEASE_RESOURCE m
RELEASE_RESOURCES or
RELR

MT9$800 =integer or keyword
MT9$1600 =integer or keyword
MT9$6250 =integer or keyword
STATUS =status variable

Parameters MT9$800

Revision G

Specifies the integer number of 9-track tapes with 800-cpi
density that are no longer required by the job. If ALL is
specified, all of the unused resources of the class and
density defined by the parameter name are released.
Omission causes 0 to be used.

MT9$1600

Specifies the number of 9-track tapes with 1600-cpi
density that are no longer required by the job. If ALL is
specified, all of the unused resources of the class and
density defined by the parameter name are released.
Omission causes 0 to be used.

Commands and Functions 2-547

$REMOTE_ VALIDATION

Remarks

Examples

MT9$6250

Specifies the number of 9-track tapes with 6250-cpi
density that are no longer required by the job. If ALL is
specified, all of the unused resources of the class and
density defined by the parameter name are released.
Omission causes 0 to be used.

For more information, see the NOSNE System Usage
manual.

The following example releases reservations for three
9-track magnetic tape units: one with 1600-cpi and two
with 6250-cpi.

/release_resource mt9$1600=1 mt9$6250=2

$REMOTE_ VALIDATION
Function

Purpose Returns a boolean value indicating whether you are
validated for file access at the specified remote location.

Format $REMOTE_ VALIDATION
(name)

Parameters name

Remarks

Examples

Specifies the name of the remote location at which the
files to be accessed reside. If validation is established for
this location, the function returns a TRUE value. This
parameter is required.

• For details about how to establish remote validation,
see the CREATE_REMOTE_ VALIDATION command.

• For further information about functions, see the
NOSNE System Usage manual.

The following example queries whether remote validation
is established for the named location (MACHINE_A) and,
if it is not established, displays a message:

IF $remote_validation(machine_a) =FALSE THEN
display_value 'remote validation not defined
for MACHINE_A'

I FEND

2-548 NOSNE Commands and Functions Revision G

REPEAT

REPEAT
Control Statement

Purpose

Format

Provides for conditional repetition of a statement list.

label: REPEAT
statement list

UNTIL boolean expression

Parameters label

Remarks

Examples

Revision G

Specifies the name of the REPEAT block. This label can
be used by CYCLE or EXIT statements within the block.

statement list

Specifies the statements that reside in the block.

boolean expression

Specifies the terminating condition of the REPEAT
statement. This parameter is required.

o An ending label is not allowed for the REPEAT
statement.

• For more information, see the NOS/VE System Usage
manual.

The following example reads lines from file INPUT until
a null input line is entered.

1 i ne = ''
repeat
repeat/accept_line v=line i=input
repeat/display_value line
repeat/until line=
SUPPLY LINE Line 1

Line 1
SUPPLY LINE

I

Pressing RETURN after the SUPPLY LINE prompt
signals end of input for the loop.

Commands and Functions 2-549

REPLACE_FILE

REPLACE_FILE
Command

Purpose

Format

Transfers a copy of a NOSNE file to a NOS direct or
indirect access permanent file or to a NOS/BE file.

REPLACE_FILE or
REPF

FROM=file
TO=name
DATA_ CONVERSION= keyword
USER=name
PASSWORD=name
EXCLUSNE_ACCESS =name
CYCLE= integer
STATUS= status variable

Parameters FROM or F
Identifies the · NOSNE file to be copied into a NOS or
NOS/BE file and, optionally, specifies how the file is to be
positioned prior to use. This parameter is required.

TO or T

Specifies the name of the NOS or NOS/BE file to be
replaced or created.

In NOS, this is the permanent file name as registered in
the NOS file system and can be up to 7 characters in
length. Omission causes the permanent file name in the
FROM parameter to be used.

In NOS/BE, if the TO parameter is omitted, the file
specified on the FROM parameter is used and the file
name part of the FROM parameter must conform to the
NOS/BE permanent file naming conventions (except that
the length will be limited to 81 characters).

DATA_CONVERSION·or DC

Specifies the type of conversion to be done during the file
copy. The possible keywords are:

B60

The rightmost 60 bits of each 64-bit NOSNE word are
placed into a 60-bit NOS or NOS/BE word. The
leftmost 4 bits of each NOS/VE word are ignored.

2-550 NOSNE Commands and Functions Revision G

Revision G

REPLACE_FILE

B56

Contiguous bits from the NOSNE words are packed
into the rightmost 56 bits of each NOS or NOS/BE
word. The leftmost 4 bits of NOS words are set to 0
(zero). The leftmost 4 bits of each NOS/BE word are
ignored. Specify B56 for saving files such as NOSNE
object libraries, SCU libraries, or permanent file
backup files.

A6

Each 7-bit ASCII character (right-justified in an 8-bit
byte) is converted to NOS 6/12 display code
representation in the NOS or NOS/BE file.

AS

Each 7-bit ASCII character (right-justified in an 8-bit
byte) is converted to 12-bit ASCII code format in the
NOS or NOS/BE file.

D63

Each 7-bit ASCII character (right-justified in an 8-bit
byte) is converted to 6-bit display code (63-character
subset of the ASCII 128-character set) format in the
NOS or NOS/BE file.

D64

Each 7-bit ASCII character (right-justified in an 8-bit
byte) is converted to 6-bit display code (64-character
subset of the ASCII 128-character set) format in the
NOS or NOS/BE file.

A63, B32, and B64 values are not supported. Omission of
this parameter causes A6 to be used.

USER or U or ID

Specifies the NOS user identification of the owner of the
file.

In NOS, this parameter is only necessary if the file is
registered in a catalog belonging to a user whose
identification is different from your NOS identification
(specified on a prior CHANGE_LINK_ATTRIBUTE
command).

Commands and Functions 2-551

REPLACE_FILE

Remarks

In NOS/BE, this parameter is not required if the .NOS/BE
file id is the same as the current user name or the name
specified in the last CHANGE_LINK_ATTRIBUTE
command.

PASSWORD or PW or TURNKEY or TK

In NOS, this parameter specifies the NOS file password
needed to access the file. It is only required when the file
does not belong to you.

In NOS/BE, this parameter specifies NOS/BE permanent
file permissions. It is required only if you wish to deny
all access to a file without turnkey password specification.
If you specify any passwords when a NOS/BE file is
initially created, you must also specify these passwords on
any subsequent REPLACE_FILE commands for the file.

EXCLUSNE_ACCESS or XR

This parameter applies to NOS/BE only and is required if
you wish to limit users to read access without password
specification.

CYCLE or CY or C

This parameter specifies a NOS/BE file cycle number and
is only applicable to NOS/BE. It is required only if a
specific cycle of the file is to be replaced.

• If a NOS permanent file of the same name already
exists and you have write access to the file, then its
contents are replaced by a copy of the NOSNE file.

• If no NOS direct or indirect permanent file of the
specified name exists in the catalog, an attempt to
create a direct access file is made. If you are not
validated to create direct access files, an indirect
access file is created.

• A CHANGE_LINK_ATTRIBUTE command issued
prior to the REPLACE_FILE identifies the accounting
and user identification information needed to access
the file.

2-552 NOSNE Commands and Functions Revision G

REPLACE_MULTI_RECORD _FILE

o REPLACE_FILE does not preserve the attributes of
the NOSNE file. Therefore, a subsequent GET_FILE
command may not create the file with the proper
attributes. For information on how to preserve
NOSNE file attributes, see the SCL System Interface
manual.

o If the data conversion is D64, A6, or AS, the NOS or
NOS/BE file will be written with zero-byte terminated
(Z-type) records.

• In NOS/BE, when you enter a REPLACE_FILE
command the system copies the NOSNE file to the
NOS/BE default permanent file set and generates the
NOS/BE CATALOG command to make the file
permanent.

• For more information, see the NOSNE System Usage
manual.

Examples NOS

The following command copies NOSNE file NEW_
PROLOG to NOS file NPROLOG, which is stored under
the current user name.

/repf from=new_prolog to=nprolog

NOS/BE

The following example copies NOSNE file DATAFIL from
the master catalog to NOS/BE file DATAFIL with a file id
of RJG and an EXCLUSIVE_ACCESS password of XYZ.

/repf from=$user.datafi1 user=rjg exclusive_access=xyz

REPLACE _MULTI _RECORD _FILE
Command

Remarks Reserved for site personnel, Control Data, or future use.

Revision G Commands and Functions 2-553

REQUEST_LINK

REQUEST _LINK
Command

Purpose

Format

Defines a link file.

REQUEST_LINK or
REQL

FILE=file
STATUS= status variable

Parameters FILE or F

Remarks

Local file name. This file must not be assigned to another
device class; if it is, the command returns an error status
and terminates. This parameter is required.

For more information, see the CYBIL Language Definition
manual.

REQUEST _MAGNETIC_ TAPE
Command

Purpose Associates a file with a tape unit.

Format REQUEST_MAGNETIC_TAPE or
REQMT

FILE=file
EXTERNAL_ VSN=list of string
RECORDED_ VSN =list of string
TYPE=keyword
RING= boolean
STATUS= status variable

Parameters FILE or F

Specifies the file to be associated with a magnetic tape
unit. This parameter must specify a temporary file. This
parameter is required.

EXTERNAL_ VSN or EVSN

Specifies the identity of one or more tape volumes to be
associated with the file. An external volume serial
number (VSN) is used to inform the operator which tape
is to be mounted. If more than one external VSN is
specified, the tapes are requested in the order specified in
this list.

2-554 NOSNE Commands and Functions Revision G

Revision G

REQUEST_MAGNETIC_ TAPE

Specify a string of 1 to 6 alphanumeric characters. An
external VSN of less than 6 characters is left-justified
with trailing spaces added. Omission causes a string of
spaces to be used.

If the EXTERNAL_ VSN parameter is omitted but the
RECORDED_ VSN parameter is specified, the
RECORDED_ VSN informs the operator which volume is
to be mounted.

It is recommended that the external VSN be visible on
the canister containing the volume to be mounted.

RECORDED_ VSN or RVSN

Specifies the VSN corresponding to the volume identifier
recorded in an ANSI VOLl label. If you enter this
parameter for an unlabelled tape, it is ignored.

If the RECORDED_ VSN parameter is omitted for a
labelled tape, NOS/VE uses the EXTERNAL_ VSN
parameter to verify that the correct volume as identified
by the VOLl label has been mounted.

If both the RECORDED_ VSN and the EXTERNAL_ VSN
parameters are specified, NOS/VE uses the EXTERNAL_
VSN parameter to direct the system operator.

Specify 1 to 6 characters from any of these groups:

Integers 0 to 9.
Uppercase letters A to Z.
These characters:

SP ! " % & ' () * +, - . I : ; < = > ? _ $ # @

Where SP represents a blank.

An external VSN of less than 6 characters is left-justified
with trailing spaces added. Omission causes a string of
spaces to be used.

Lists of external and recorded VSN's can be specified for
the tape file. If both the external VSN list and the
recorded VSN list are specified the corresponding entries
in the lists are paired.

If the number of VSN's in the external and recorded VSN
lists are different, the system rejects the REQUEST_
MAGNETIC_ TAPE command.

If both the external VSN and the recorded VSN lists are
omitted, the system requests the operator to mount a
scratch tape. If a scratch tape is requested for a labelled

Commands and Functions 2-555

REQUEST_MAGNETIC_ TAPE

Remarks

tape file, NOSNE uses the EXTERNAL_ VSN assigned by
the operator to verify that the correct volume identified
by the VOLl label has been mounted.

TYPE or T

Specifies the type of tape transport required. The values
are:

MT9$800

Nine-track magnetic tape, 800-cpi density.

MT9$1600

Nine-track magnetic tape, 1600-cpi density.

MT9$6250

Nine-track magnetic tape, 6250-cpi density.

Omission causes MT9$1600 to be used.

RING or R

Specifies if a write ring should be present in each volume
mounted for this file. Omission causes FALSE to be used
(the tape cannot be written).

• Actual device assignment, access, or operator
communication for tape mounting does not occur until
the file is opened for access within the job.

• If this command is issued for a file that is currently
associated with a different device class, such as disk
or terminal, an error status is returned.

• A write ring is required to write on a tape.

• If you issue a request for a tape file that spans more
than one volume, you must list all relevant VSN s on
the EXTERN AL_ VSN parameter.

• For more information, see the NOSNE System Usage
manual.

2-556 NOSNE Commands and Functions Revision G

Examples

REQUEST_ OPERATOR_ACTION

The following example assigns a nine-track, 1600-cpi tape
with the external VSN of X01234 to file PAYROLL.

/request_magnetic_tape file=payroll type=mt9$1600 ..
.. /external_vsn='X01234'

The following example assigns a nine-track, 6250-cpi
multivolume tape file with external VSNs Y4567, Y4568,
and Y 4569 to file NEWPL.

/request_magnetic_tape newpl external_vsn=('Y4567',
.. /'Y4568','Y4569') type=mt9$6250

REQUEST_OPERATOR_ACTION
Command

Purpose Sends a message to the system operator and requests a
reply message from the operator.

Format REQUEST_OPERATOR_ACTION or
REQOA

MESSAGE= string
REPLY =string variable
STATUS= status variable

Parameters MESSAGE or M

Remarks

Revision G

Specifies the message string to be displayed to the
operator. The job is suspended until the operator issues a
REPLY_ACTION command in response to this action
request. This parameter is required.

REPLY or R

Specifies an SCL string variable in which the reply
message from the operator's REPLY_ACTION command is
placed. Omission causes the reply message to be put into
the requesting job's log and also to be written to the
$RESPONSE file.

• The job is suspended while it is waiting for the
operator to respond.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-557

REQUEST_ TERMINAL

Examples The following example sends a message to the system
operator.

/reply_string=''
/request_operator_action ..
.. /message='Do you have tape canister PF001?'
.. /reply=reply_string

The job is suspended until the operator responds to your
message. For example:

/display_value reply_string
SORRY, COULD NOT LOCATE PF001

REQUEST_ TERMINAL
Command

Purpose

Format

Associates a file with a terminal in an interactive job.

REQUEST_ TERMINAL or
REQT

FILE=file
ATTENTION _CHARACTER_ACTION =integer
BREAK_KEY _ACTION= integer
END_ OF _INFORMATION= string
INPUT _BLOCK_SIZE =integer
INPUT _EDITING _MODE= keyword
INPUT_OUTPUT_MODE==keyword
INPUT_ TIMEOUT= boolean
INPUT_ TIMEOUT _LENGTH= integer
INPUT_ TIMEOUT _PURGE= boolean
PAR.TIAL _CHARACTER _FORWARDING= boolean
PROMPT_FILE=file .
PROMPT _STRING= string
STORE _BACKSPACE_ CHARACTER= boolean
STORE _NULS _DELS =boolean
TRANSPARENT_ CHARACTER_MODE =keyword
TRANSPARENT _FORWARD_ CHARACTER= list of

string
TRANSPARENT _LENGTH _MODE= keyword
TRANSPARENT _MESSAGE_LENGTH =integer
TRANSPARENT_ TERMINATE_ CHARACTER= list of

string
TRANSPARENT_ TIMEOUT _MODE= keyword
STATUS =status variable

2-558 NOSNE Commands and Functions Revision G

REQUEST_ TERMINAL

Parameters FILE or F

Revision G

Specifies the file to be created and associated with your
terminal. This parameter can specify only a local file.
This parameter is required.

ATTENTION_CHARACTER_ACTION or ACA

Specifies how the network responds when it recognizes an
ATTENTION_ CHARACTER in the data from your
terminal. Values can be any integer from 0 to 9.

BREAK_KEY_ACTIONorBKA

Specifies how the network responds when it recognizes a
BREAK signal from you terminal. Values can be any
integer from 0 to 9.

END_OF_INFORMATION or EOI

Specifies the string (O to 31 characters) that marks
end-of-information in a file.

INPUT_BLOCK_SIZE or IBS

Specifies the maximum number of characters the network
can hold before forwarding the data. Values can be any
integer from 80 to 2000.

INPUT_EDITING_MODE or IEM

Specifies whether the network edits the data you enter at
your terminal. Values are NORMAL (which enables
editing) or TRANSPARENT (which tells the system not to
perform editing).

INPUT_OUTPUT_MODE or IOM

Specifies whether the network gives input priority over
output. Values can be:

UNSOLICITED (U)

Indicates that input has priority over output. The
network edits and forwards input as soon as it is
received. This action delays any output that may be in
progress.

SOLICITED (S)

Indicates that the service must request input. The
network does not edit or forward input until requested.

Commands and Functions 2-559

REQUEST_ TERMINAL

FULL_ DUPLEX (F)

Indicates that the network edits and forwards input as
soon as it is received. The network also receives and
forwards output whenever NOSNE sends it.

INPUT_TIMEOUT or IT

Specifies whether you want input timeout to be in effect.
Enter TRUE or FALSE. If you specify TRUE, input
timeout is enabled.

INPUT_TIMEOUT_LENGTH or ITL

Specifies the number of milliseconds (0 to 86,401) the
network will wait for input before timing out. If you
specify 0 (zero), the system returns an error condition
indicating that no data is available.

INPUT_TIMEOUT_PURGE or ITP

Specifies whether the network should purge the input and
output paths if an input timeout occurs. If you specify
TRUE, the input and output paths will be purged.

If input timeout is enabled and the input timeout length
is nonzero, the system returns an input timeout error
condition if the time limit is exceeded. Also, the system
performs an input timeout purge operation.

There is no effect if you specify 0 (zero) milliseconds.

PARTIAL_CHARACTER_FORWARDING or PCF

Specifies whether the network forwards a partial message
when an END _PARTIAL_ CHARACTER occurs. Enter
TRUE or FALSE. Specifying TRUE means that partial
character forwarding is enabled.

PROMPT _FILE or PF

Specifies the file to which the system should write the
automatically generated prompt string. If omitted, the
existing parameter value applies. The default is
$OUTPUT.

2-560 NOSNE Commands and Functions Revision G

Revision G

REQUEST_ TERMINAL

PROMPT_STRINGorPS

Specifies the string (O to 31 characters) that the system
will output when a program requests terminal input. The
system assumes the string contains a format effector. If
omitted, the existing parameter value applies. The default
is a question mark (?).

STORE_BACKSPACE_CHARACTER or SBC

Specifies how the network handles the backspace
character. If you specify TRUE, the network forwards the
backspace character as part of NORMAL mode data. If
you specify FALSE, the network discards the backspace
character from NORMAL mode data after it deletes the
previous character.

STORE_NULS_DELSor SND

Specifies how the network handles the NUL and DEL
characters. If you specify TRUE, the network forwards the
NUL and DEL characters to the service as part of
NORMAL mode data. If you specify FALSE, the network
discards the NUL and DEL characters from NORMAL
mode data.

TRANSPARENT_CHARACTER_MODE or TCM

Identifies the action the network takes when data entered
at your terminal contains a TRANSPARENT_FORWARD_
CHARACTERorTRANSPARENT_TERMINATE_
CHARACTER. The network processes these characters
only if INPUT_EDITING_MODE is set to
TRANSPARENT. Values can be:

TERMINATE (T)

Sends your data to the service and terminates
TRANSPARENT mode when TRANSPARENT_
TERMINATE_CHARACTER occurs in input.

FORWARD (F)

Sends your data to the service when a
TRANSPARENT_FORWARD_CHARACTER occurs in
input. TRANSPARENT mode remains in effect.

Commands and Functions 2-561

REQUEST_ TERMINAL

FORWARD_ TERMINATE (FT)

Sends your data to the service when a
TRANSPARENT_FORWARD_CHARACTER occurs in
input. This parameter ends TRANSPARENT mode
when a TRANSPARENT_TERMINATE_CHARACTER
occurs after a TRANSPARENT_FORWARD_
CHARACTER in input.

NONE (N)

Takes no action when a TRANSPARENT_FORWARD_
CHARACTER or TRANSPARENT_ TERMINATE_
CHARACTER is received from the terminal.

TRANSPARENT_FORWARD_CHARACTERor TFC
Identifies the key you press to forward information. The
network only recognizes this attribute if INPUT_
EDITING_MODE is set to TRANSPARENT. Values can
be a list of 1 to 4 character strings.

TRANSPARENT_LENGTH_MODE or TLM
Identifies the action the network takes when it has
received the number of characters specified by
TRANSPARENT_MESSAGE_LENGTH. The network only
performs this action when INPUT_EDITING_MODE is
set to TRANSPARENT. Values can be:

TERMINATE (T)

Sends your data to the service and terminates
TRANSPARENT mode when the TRANSPARENT_
MESSAGE_LENGTH is reached in input.

FORWARD (F)

Sends your data to the service when the
TRANSPARENT_MESSAGE_LENGTH is reached in
input. The message may exceed the specified length.

FORWARD_EXACT(FE)

Sends the exact data length to the service when the
TRANSPARENT_MESSAGE_LENGTH is reached in
input.

NONE (N)

Takes no action when the TRANSPARENT_
MESSAGE_LENGTH is reached.

2-562 NOSNE Commands and Functions Revision G

Remarks

Revision G

REQUEST_ TERMINAL

TRANSPAR.ENT_MESSAGE_LENGTH or TML

Specifies the number of characters in data. The network
only recognizes this parameter when INPUT_EDITING_
MODE is set to TRANSPARENT. Values can be any
integer from 1 to 32,767.

TRANSPAR.ENT _TERMINATE_ CHAR.ACTER or TTC

Identifies the key you press to terminate and forward
input. The network only recognizes this parameter when
INPUT_EDITING_MODE is set to TRANSPARENT.
Values can be a list of 1 to 4 character strings.

TRANSPAR.ENT_TIMEOUT_MODE or TTM

Identifies the action the network takes after a period of
inactivity during input (timeout). Values can be one of:

TERMINATE (T)

Terminates TRANSPARENT mode when a timeout of
400 milliseconds or more occurs in input.

FORWARD (F)

Sends your data to NOSNE when a timeout of 400
milliseconds or more occurs between characters.

NONE (N)

Takes no action when timeout occurs between
characters.

e If this command is issued for a file that is already
assigned to a different device class, such as magnetic
tape or disk, an error status is returned.

• Note that your terminal will become inoperable if all
three of the following conditions are met:

1. The INPUT_EDITING_MODE connection attribute
has been specified as TRANSPARENT.

2. The TRANSPARENT_CHARACTER_MODE,
TRANSPARENT_ TIMEOUT_MODE, and
TRANSPARENT_LENGTH_MODE attributes have
not been specified.

Commands and Functions 2-563

RESEQUENCE

Examples

3. Input occurs while output is being written to the
connected terminal file.

To correct this problem, be sure to specify a value
other than NONE on the TRANSPARENT_
CHARACTER_MODE, TRANSPARENT_ TIMEOUT_
MODE, and TRANSPARENT_LENGTH_MODE
parameters of this command.

• For more information, see the NOSNE System Usage
manual.

The following command associates local file
ALTERNATE_INPUT_FILE with a terminal.

/request_terminal file=alternate_input_file

A program that subsequently issues a read request to this
file will instead issue a read request to your terminal.

In the following example, file ALTERNATE_INPUT_FILE
is assigned to the terminal. A string variable name
STRINGl is created and a subsequent ACCEPT_LINE
command reads file ALTERNATE_INPUT_FILE for the
value of the string. A PUT_LINE command then writes
the string to file OUTPUT, which by default is assigned
to the terminal, and the output is displayed on the screen.

/request_terminal file=alternate_input_file
/create_variable string1 kind=string
/accept_line string1 input=alternate_input_file
.. /p='SUPPLY STRING1'
SUPPLY STRNG1 -Input to STRING1
/put_line string1

Input to STRING1

In this example, the first character of STRINGl (the
hyphen) is interpreted as a format effector. The hyphen
character causes the system to space down three lines
before printing the string.

RESEQUENCE
Command

Remarks Reserved for site personnel, Control Data, or future use.

2-564 NOSNE Commands and Functions Revision G

RESUME_COMMAND

RESUME _COMMAND
Command

Purpose

Format

Remarks

Examples

Revision G

Resumes any job activity that was interrupted because of
a pause break.

·RESUME_ COMMAND or
RESC

STATUS= status variable

• The state of the job is returned to what existed before
the interruption except for any alterations that you
might have made.

• This command is valid only while activity is suspended
after a pause break.

• For more information, see the NOSNE System Usage
manual.

Assume that you have initiated a command and are
unsure of what to do next. The following sequence returns
control to you.

/set_password
Enter old password
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
•suspended - 1*
p/

Pause break entered.

The SET_PASSWORD command is suspended by entering
a pause break. The system responds '*Suspended - 1 *' to
inform you that this is pause break 1 (the 'pf prompt
indicates to you that a pause break is in effect). You can
now enter any valid command.

For example:

p/help set_password

could be entered to receive an online explanation of the
SET_PASSWORD command.

In the following example, the SET_PASSWORD command
is resumed and is expecting entry of the old password
(any previous prompts are not reissued after a RESUME_
COMMAND).

Commands and Functions 2-565

RESERVE_RESOURCE

p/resume_corrmand
pass789
Enter new password
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Old password entered.

RESERVE_RESOURCE
Command

Purpose

Format

Specifies the number of tape units a job requires.

RESERVE_RESOURCE M
RESERVE_RESOURCES or
RESR

MT9$800 =integer
MT9$1600 =integer
MT9$6250 =integer
STATUS= status variable

Parameters MT9$800

Remarks

Specifies the number of nine-track tapes with 800-cpi
density that are required by the job. Omission causes 0
(zero) to he used.

MT9$1600

Specifies the number of nine-track tapes with 1600-cpi
density that are required by the job. Omission causes 0
(zero) to he used.

MT9$6250

Specifies the number of nine-track tapes with 6250-cpi
density that are required by the job. Omission causes 0
(zero) to be used.

• This information is used for job scheduling to prevent
deadlocks with other jobs that may need the same
resources.

• Actual equipment assignment is not made until a tape
file is opened for access.

• For more information, see the NOSNE System Usage
manual.

2-566 NOS/VE Commands and Functions Revision G

RESTORE_LOG

Examples The following example reserves three nine-track magnetic
tape units: one with 800 cpi and two with 6250 cpi.

/reserve_resources mt9$800=1 mt9$6250=2

RESTORE _LOG
Command

Purpose Begins a Restore_ Log utility session.

Format RESTORE _LOG or
RESL

LOG _RESIDENCE= file
STATUS= status variable

Parameters LOG _RESIDENCE or LR

Remarks

Catalog path containing the files composing the log to be
restored. This parameter is required.

• Immediately after entering the Restore_Log session,
you should use the VALIDATE_LOG or RESTORE_
REPOSITORIES subcommands to determine the type
and extent of log damage, if any.

• For more information, see the NOSNE Advanced File
Management Usage manual.

RESTORE _PERMANENT _FILES
Command

Purpose Initiates the utility that restores permanent files and
catalogs from backup copies created by the BACKUP_
PERMANENT_FILE utility. The restore operations are
directed by RESTORE_PERMANENT_FILE
subcommands.

Format RESTORE_PERMANENT_FILES or
RESTORE_PERMANENT_FILE or
RE SPF

LIST=file
STATUS= status variable

Revision G Commands and Functions 2-567

REWIND _FILE

Parameters LIST or L

Remarks

Examples

Identifies the file to which a summary of the results of
the restore utility are written and, optionally, specifies
how the file is to be positioned prior to use. Omission
causes $LIST to be used.

• The content of the list file can be specified using the
SET_LIST_OPTION subcommand prior to using a
RESTORE_PERMANENT_FILE subcommand. If the
SET_LIST_OPTION subcommand is omitted, the
modification date and time and size of the file are
displayed for each permanent file cycle.

• For more information, see the NOSNE System Usage
manual.

The following subcommand initiates a RESTORE_
PERMANENT_FILE subcommand utility session. The
subcommand specifies that the report listing be written to
file RESTORE_LISTING.

/restore_permanent_files list=restore_listing

Following entry of this subcommand, RESTORE_
PERMANENT_FILE subcommands can be entered in
response to the following prompt.

PURI

REWIND_FILE
Command

Purpose

Format

Positions a file to the beginning-of-information.

REWIND_FILE or
REWIND _FILES or
REWF

FILES= list of file
STATUS= status variable

Parameters FILES or FILE or F

Specifies the list of local files to be rewound. This
parameter is required.

2-568 NOSNE Commands and Functions Revision G

Remarks

Examples

$RING
Function

$RING

e When REWIND_FILE is issued for an unlabelled tape
file, The file is positioned to the beginning of the first
tape volume.

o If REWIND_FILE is issued for an ANSI labelled tape
file, and the value of the file's FILE_SET_POSITION
tape label attribute is NEXT_FILE, the next ANSI
labelled file accessed is the same as the previously
accessed file. For FILE_SET_POSITION values other
than NEXT_FILE, this command has no effect. (Refer
to the CHANGE_ TAPE_LABEL_ATTRIBUTES
command description of the FILE_SET_POSITION
parameter.)

• For more information, see the NOSNE System Usage
manual.

The following example rewinds several files.

/rewind_file file=source
/rewind_files file=(library,test,scratch)

Purpose Returns an integer indicating the current execution ring
for a task.

Format $RING

Parameters None.

Remarks For further information about functions, see the NOSNE
System Usage manual.

Examples The following example indicates that the current task is
associated with execution ring 11:

Revision G

/display_value $ring
11

Commands and Functions 2-569

ROUTE_JOB

ROUTE_JOB
Command

Purpose

Format

Specifies the name by which a job is to be known, the
system on which the job is to be executed, and the
destination of the output file generated by the job.

NOTE

This command can only be used for card input or for
input from a microcomputer or terminal which supports
HASP protocol.

ROUTE_JOB or
ROUJ

JOB_NAME =name
JOB_DESTINATION =name
JOB_ OUTPUT _DESTINATION= name
USER_NAME =name
USER_FAMILY =name
STATUS =status variable

Parameters JOB_NAME or JN

Specifies the user job name in upper-case, alphanumeric
characters. The default value is your user name.

JOB_DESTINATION or JD

Specifies the NOSNE family name to which the job is to
be sent. If this parameter is not specified, the input job
will be sent to the DEFAULT_JOB_DESTINATION
defined for the I/O station. If this job destination is
unavailable, the input job will either be discarded, or the
input device stopped, according to the DESTINATION_
AVAILABLE_ACTION defined for the 1/0 station.

JOB_OUTPUT_DESTINATION or JOD

Specifies a public 1/0 station or the control facility of a
private I/O station, to which the job's output file(s) will be
sent. If the specified destination is a control facility, the
USER_NAME and USER_FAMILY parameters must also
be included to uniquely identify the private 1/0 station.

If no JOB_OUTPUT_DESTINATION value is specified,
output is returned to the I/O station where the job was
initiated.

2-570 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

ROUTE_JOB

USER_NAME or UN

Specifies the user controlling the private 1/0 station to
which the job's output file(s) are to be sent. This
parameter must be specified if the value of the JOB_
OUPUT_DESTINATION parameter is the control facility
for a private 1/0 station.

If the value for this parameter is not specified, the value
of the JOB_OUTPUT_DESTINATION parane ter s
assumed to be a public 1/0 station.

USER_FAMILY or UF

Specifies the family in which the user identified by the
USER_ NAME parameter is validated. This parameter is
valid only if the USER_NAME parameter is specified.

• The ROUTE_JOB command must precede job input
(the LOGIN command) from the 1/0 station.

• For card input or for microcomputers that emulate
HASP protocol, the command must start at column six
with the ASCII string '/*BC' (specifying a Batch
Command text) in columns one through five. This
same format applies to any continuation card(s) needed
to specify the command.

• The length of this command cannot exceed 256
characters.

• A ROUTE_JOB command error causes the input job
to be discarded and an e~ror message to be sent to the
1/0 station operator.

• For more information, see the NOSNE System Usage
manual.

The following example routes JOBI to system NVE for
execution, and sends the job output to public 1/0 station
PUBLIC_STATION _ 1.

/*BC route_job jn=job1 jd=nve jod=public_station_1
login login_user=john password=XXX
collect_text output
This is just a test
**
/*EOI

Commands and Functions 2-571

$SCAN ANY

The following example submits JOB2 to system NVE for
execution and sends the job output, via the control
facility, to the 1/0 station controlled by :NVE.JOHN.

/*BC route_job jn=job2 ..
/*BC jd=nve ..
/*BC jod=NVE_control_facility
/*BC un=john ..
/*BC uf =nve
login login_user=john pass_word=xxx
collect_text output
This is just a test
••
/*EOI

$SCAN_ANY
Function

Purpose Searches a string for any one of a specified set of
characters.

Format $SCAN _ANY
(stringl
string2)

Parameters stringl

Remarks

Specifies the set of characters being searched for. This
parameter is required.

string2

Specifies the string being searched. This parameter is
required.

• This function returns a number indicating the position
of the first character in the first string that is also
found in the second string. If no character from the
first string appears in the second string, the integer 0
is returned.

• For further information about functions, see the
NOS/VE System Usage manual.

2-572 NOSNE Commands and Functions Revision G

Examples

$SCAN NOT ANY

The following example looks for the position of the first
character in string S that also occurs in string D:

/d = '0123456789'
Is = 'temp_32'
/display_value $scan_any(d,s)
6

The number 6 is returned because the first character in
string S that also occurs in string D is the number 3;
this number is in the sixth character position within
string S.

$SCAN _NOT _ANY
Function

Purpose Searches a string for any character that is not in a
specified set of characters

Format $SCAN_NOT_ANY or
$SCAN _NOTANY

(stringl
string2)

Parameters stringl

Remarks

Revision G

Specifies the string containing the set of characters. The
system searches for any character not in this set. This
parameter is required.

string2

Specifies the string being searched. This parameter is
required.

• This function returns an integer indicating the position
of the first character in the second string that is not
in the first string. If only characters from the first
string appear in the second string, the integer 0 is
returned.

• For further information about functions, see the
NOS/VE System Usage manual.

Commands and Functions 2-573

$SCAN_STRING

Examples The following example returns an integer showing the
position of the first character in string S (namely, t) that
is not found in string D:

' Id = 10123456789'
Is = 'temp_32'
ldisplay_value $scan_notany(d,s)
1

$SCAN _STRING
Function

Purpose Searches a string to locate occurrences of another string
(called the pattern).

Format $SCAN _STRING
(stringl
string2)

Parameters stringl

Remarks

Examples

Specifies the pattern string (string being searched for).
This parameter is required.

string2

Specifies the string being searched. This parameter is
required.

• This function returns an integer indicating the position
of the first character of the first occurrence of the
pattern string in the string being searched. If the
pattern is a null string, the integer 1 is returned. If
the pattern is not found in the string, the integer 0 is
returned.

• For further information about functions, see the
NOSNE System Usage manual.

The following example returns a number showing the
position in string S of the first occurrence of pattern
string P (namely, the sixth position):

Is = '0123_abc9'
Ip = 'abc'
/display_value $scan_string(p,s)
6

2-574 NOSNE Commands and Functions Revision G

SEARCHPCD

SEARCHPCD
IM/DM Command

Remarks Reserved for site personnel, Control Data, or future use.

SELECT_ USER_MENU
Command

Purpose Starts the NOSNE user menu system.

Format SELECT_USER_MENU or
SELUM or
MENU

PROLOG_CALL=boolean
NATURAL_LANGUAGE =name
STATUS= status variable

Parameters PROLOG _CALL or PC

Remarks

Reserved for use by site administrators.

NATURAL_LANGUAGE or NL

Specifies the natural language of the menus and help
messages. Omission causes US_ENGLISH to be used.
US_ENGLISH is currently the only supported natural
language for the NOSNE menu system.

For more information, see the NOSNE System Usage
manual.

SET_ COMMAND _LIST
Command

Purpose

Revision G

Changes the current command list by deleting and/or
adding command list entries, and/or altering the state of
the search mode indicator.

NOTE

The preferred commands are now CREATE_COMMAND_
LIST_ENTRY, DELETE_COMMAND_LIST_ENTRY, and
CHANGE_COMMAND_SEARCH_MODE.

Commands and Functions 2-575

SET_COMMAND_LIST

Format SET_COMMAND_LIST or
SETCL

DELETE= list of file or keyword
ADD= list of file or keyword
SEARCH _MODE= keyword
PLACEMENT= keyword
SYSTEM_COMMAND_LIBRARY=file or keyword
STATUS =status variable

Parameters DELETE or D

Specifies entries to be removed from the current command
list. If this parameter is specified as ALL, then all entries
in the current command list are deleted. All deletions are
performed prior to any additions. Omission causes no
entries to be deleted from the current command list.

ADD or A

Specifies entries to be added to the front of the current
command list. They appear in the command list in the
order specified. Omission causes no additions to the
current command list.

SEARCH_MODE or SM

Specifies the new search mode to be associated with the
current command list:

GLOBAL (G)

All entries in the command list can be searched.
Commands specified by path name and command name
can be executed.

RESTRICTED (R)

All entries in the command list can be searched.
However, for a search to proceed beyond the first
entry in the command list, the command must be
preceded by a slash (/). Commands specified by path
name and command name can be executed.

EXCLUSIVE (E)

Only the entry at the beginning of the command list
is searched for a command.Commands that are
specified by path name and command name are not
allowed.

Omission leaves the current search mode unchanged.

2-576 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

SET_COMMAND_LIST

PLACEMENT or P

Specifies whether the entries added to the command
list are placed before or after the current entries. Use
one of the following keywords:

AFTER (A)

Causes the entries to be placed after the current
entries.

BEFORE (B)

Causes the entries to be placed before the current
entries. This is the default.

If the SEARCH_MODE parameter is set to
RESTRICTED, the only allowable value for the
PLACEMENT parameter is AFTER.

SYSTEM_COMMAND_LIBRARY or SCL

Reserved.

For more information, see the NOSNE System Usage
manual.

An object library named PROCEDURE_LIBRARY can be
added to the end of the command list with the following
command.

/set_conTiland_list add=$user.procedure_library p=after

To delete the object library added in the preceding
example, enter the following command.

/set_conTiland_list delete=procedure_library

If you wish to move the $SYSTEM entry to the front of
the command list, enter the following command.

/set_conTiland_list delete=$system add=$system

With the $SYSTEM entry at the front of the command
list, system commands take precedence over local files
with the same name.

Commands and Functions 2-577

$SET_ COUNT

$SET_COUNT
Function

Purpose Returns an integer count of the number of value sets
actually passed for a specified parameter.

Format $SET_ COUNT
(name)

Parameters name

Remarks

Examples

Specifies the parameter you are interrogating. This
parameter is required.

• This function is used to reference parameters within
procedures.

• For further information about functions, see the
NOS/VE System Usage manual.

The example is based on the following procedure header:

PROC display_number,display_numbers,disn (
number,numbers,n: list 1 .. 10, 1..2, ..
range of integer -100 .. 100 = $reouired
output,o file= $OUTPUT
status
)

: var of status = $optional

Consider the following call to the preceding procedure:

/d1splay_number number = (2,4,5)

In this case, the number of value sets for the NUMBER
parameter is displayed by including the following
command in the DISPLAY_NUMBER procedure:

/display_value $set_count(number)

The value 3 is written to the output file.

SET _DEBUG _LIST
Command

Purpose Adds or deletes debug object libraries from the job debug
library list. (See the NOS/VE Object Code Management
Usage manual for a description of the job debug library
list.)

2-578 NOSNE Commands and Functions Revision G

SET_DEBUG_LIST

Format SET _DEBUG _LIST or
SETDL

DELETE _LIBRARIES= list of file or keyword
ADD _LIBRARIES= list of file
STATUS=status variable

Parameters DELETE_LIBRARIES or DELETE_LIBRARY or DL

Specifies the debug object libraries to be deleted from the
job debug library list. Options are:

Remarks

Revision G

Omitted

No libraries are deleted from the job debug library
list.

list of file

Deletes the specified library or libraries from the job
debug library list.

ALL
All entries in the job debug library list are deleted.

ADD_LIBRARIES or ADD_LIBRARY or AL

Specifies the debug object libraries to be added to the job
debug library list. Options are:

Omitted

No libraries are added to the job debug library list.

list of file

Adds the specified library or libraries to the job debug
library list. The libraries are added, in the order
specified, at the beginning of the job debug library
list.

• The job debug library list is the set of debug object
libraries used for debugging programs.

• The job debug library list initially contains the
system-supplied Debug utility. With SET_DEBUG_
LIST, you can specify a user-written debugger to be
available in your job.

Commands and Functions 2-579

SET_DEBUG_RING

Examples

• The job debug library list is added to the program
library list (see the NOS/VE Object Code Management
Usage manual for a description or the program library
list) whenever the debugger is required, that is, when
the program attribute DEBUG_MODE is ON.

• If the program attribute DEBUG_MODE is ON, the
loader gives control of program execution to the
debugger. Otherwise, the loader initiates program
execution by calling the starting procedure.

• An object library is recognized as a debug object
library by having a FILE_CONTENTS attribute of
OBJECT, a FILE_STRUCTURE attribute of
LIBRARY, and a FILE_PROCESSOR attribute of
DEBUGGER.

• The DELETE_LIBRARY parameter is always
processed before the ADD_LIBRARY parameter and
the same library can be specified on both parameters
on the same command. This allows you to reorder the
job debug library list with a single command.

In the following example, CID_l80_LIBRARY is a debug
object library added to the job debug library list. Because
the program attribute DEBUG_MODE is ON, the loader
gives control of program execution to the debugger
specified in the job debug library list, that is, CID_l80_
LIBRARY.

/set_debug_list add_library=cid_180_1ibrary
/set_program_attributes debug_mode=on
/execute_task lgo

SET _DEBUG _RING
Command

Purpose

Format

Specifies the ring in which Debug (or the debugger
specified on the job debug library list) is to execute.

SET_DEBUG_RING or
SETDR

RING= integer
STATUS =status variable

2-580 NOSNE Commands and Functions Revision G

SET_DM_RELEASE

Parameters RING or R

Remarks

Examples

Specifies the Debug ring number. Value must be an
integer in the range 1 to 13.

o The Debug ring cannot be set to a ring more
privileged than the lowest ring for which you are
validated.

e The initial setting of the Debug ring is your initial
ring of execution which is established by your user
name's NOMINAL_RING validation.

The following example changes the Debug ring to 11.

/set_debug_ring ring_number=11

SET_DM_RELEASE
IM/DM Command

Remarks Reserved for site personnel, Control Data, or future use.

SET _FILE _ATTRIBUTES
Command

Purpose

Revision G

Establishes the attributes of a file that are used to
manage its content and processing.

NOTE

Most attributes have a default value that is used if you
do not specify the attribute on the SET_FILE_
ATTRIBUTES command. However, the default value is
sometimes inappropriate for keyed files. It is therefore
recommended that you explicitly specify a value for all
relevant keyed-file attributes.

NOTE

Although the following parameters are currently supported
for this command, it is recommended that you use the
ATTACH_FILE command to specify the values for these
parameters.

Commands and Functions 2-581

SET_FILE_ATTRIBUTES

Format SET_FILE_ATTRIBUTES or
SET_FILE_ATTRIBUTE or
SETFA

FILE=file
ACCESS_MODES =list of keyword
AVERAGE _RECORD _LENGTH= integer
BLOCK_ TYPE= keyword
CHARACTER_ CONVERSION= boolean
COLLATE_TABLE_NAME=name or keyword
COMPRESSION _PROCEDURE_NAME =list of any or

keyword
DATA_PADDING=integer
DYNAMIC_HOME _BLOCK_SPACE =boolean
EMBEDDED _KEY= boolean
ERROR_EXIT_PROCEDURE_NAME=name or

keyword
ERROR_LIMIT =integer
ESTIMATED _RECORD_ COUNT =integer
FILE _ACCESS _PROCEDURE _NAME =name or

keyword
FILE_CONTENTS=name or keyword
FILE_LABEL_TYPE=keyword
FILE _LIMIT= integer
FILE_ ORGANIZATION= keyword
FILE_PROCESSOR=name or keyword
FILE_STRUCTURE=name or keyword
FORCED_ WRITE= boolean or keyword
HASHING_PROCEDURE_NAME=list of any or

keyword
INDEX _LEVELS= integer
INITIAL_HOME_BLOCK_COUNT=integer
INDEX _PADDING= integer
INTERNAL_ CODE= keyword
KEY _LENGTH= integer
KEY _POSITION= integer
KEY_TYPE=keyword
LINE _NUMBER= list of integer
LOADING _FACTOR= integer
LOCK_EXPIRATION _TIME= integer
LOGGING_ OPTIONS= list of keyword
LOG _RESIDENCE= file or keyword
MAXIMUM _BLOCK_LENGTH =integer
MAXIMUM _RECORD _LENGTH= integer
MESSAGE_CONTROL=list of keyword
MINIMUM _BLOCK_LENGTH =integer

2-582 NOSNE Commands and Functions Revision G

SET_FILE_ATTRIBUTES

MINIMUM_RECORD _LENGTH= integer
OPEN _POSITION =keyword
PADDING_ CHARACTER =string
PAGE_FORMAT =keyword
PAGE _LENGTH= integer
PAGE_ WIDTH= integer
PRESET_ VALUE =integer
RECORD _LIMIT= integer
RECORD_ TYPE= keyword
RECORDS _PER _BLOCK= integer
STATEMENT _IDENTIFIER= list of integer
USER_INFORMATION =string
STATUS= status variable

Parameters FILE or F

Revision G

Specifies the file whose attributes are being defined. This
parameter is required.

For compatability with future NOSNE releases, it is
recommended that this command follow the use of any of
the explicit file creation commands, specifically CREATE_
FILE, REQUEST_MAGNETIC_ TAPE, REQUEST_
TERMINAL, and REQUEST_LINK.

If you use the local file name defined by a CREATE_
FILE or an ATTACH_FILE command as the FILE
parameter for this command, the SET_FILE_
ATTRIBUTES command must follow the CREATE_FILE
or ATTACH_FILE commands.

ACCESS_MODES or ACCESS_MODE or AM

Specifies how the file is to be used by subsequent
commands that do not explicitly specify an access mode
when the file is opened. The following options are
available.

READ

You can read the file.

WRITE

You can write the file (combination of APPEND,
MODIFY, and SHORTEN).

APPEND

You can append information to the end of the file.

Commands and Functions 2-583

SET_FILE_ATTRIBUTES

MODIFY

You can alter data within the existing file.

SHORTEN

You can delete data from the end of the file.

EXECUTE

You can execute the file.

NONE

No access to the file is permitted until a subsequent
SET_FILE_ATTRIBUTE command restores file access
to one or more of the preceeding selections.

If the file is a permanent file, this access mode must be a
subset of the access mode selections specified with the
ATTACH_FILE command.

Omission for a new temporary file causes READ and
WRITE to be used.

Omission for an old file causes READ and/or WRITE to
be used depending upon whether the ring of the command
accessing the file is within the READ and/or WRITE
bracket of the file.

Omission for a permanent file that has been scheduled for
job access using the ATTACH_FILE command causes the
ACCESS_MODE specified on that command to be used as
qualified by the ring of the command accessing the file.

AVERAGE_RECORD_LENGTHorARL
Specifies your estimate of the length of the average record
in a new keyed file. This parameter is ignored for a
sequential or byte-addressable file and for an old indexed
sequential file.

For details, see the SCL Advanced File Management
manual (online name AFM).

2-584 NOSNE Commands and Functions Revision G

Revision G

SET_FILE_ATTRIBUTES

BLOCK_TYPE or BT

Specifies the block type. This parameter applies only to a
sequential or byte-addressable file. Options are:

SYSTEM_SPECIFIED (SS)

The file is logically divided into a number of
fixed-sized blocks whose length is determined by
NOSNE. The disk block size is 2,048 bytes. The tape
block size is 4,128 bytes. The MAXIMUM_BLOCK_
LENGTH and MINIMUM_BLOCK_LENGTH
attributes do not affect this blocking algorithm.

USER_SPECIFIED (US)

The file is logically divided into a number of blocks
whose length may vary between a user-defined
minimum and maximum length.

If the file is on disk, a block header is recorded on the
file. If the file is an unlabeled tape file, writing of the
block header to the tape volume is suppressed. Blocks in
memory are preceded by the block header followed by
MAXIMUM_BLOCK_LENGTH bytes of buffer space. The
block header includes a field that defines the actual
length of the block.

Blocks are padded with the circumflex (") character up to
the MINIMUM_BLOCK_LENGTH. MAXIMUM_
BLOCK_LENGTH for a tape file is constrained to 4,128
bytes or less.

Omission for a new file causes SYSTEM_SPECIFIED
blocking to be used. For an old file, the preserved value
is always used.

CHARACTER_CONVERSION or CC

Specifies whether conversion between the internal
character code of a file and ASCII should be performed.
The INTERNAL_CODE attribute directs conversion if
selected.

TRUE

Conversion is performed.

FALSE

No conversion is performed.

Omission for a new file causes FALSE to be used.

Commands and Functions 2-585

SET_FILE_ATTRIBUTES

COLLATE_TABLE_NAME or CTN

Specifies the name of a collation table for a keyed file
with collated keys. This parameter is ignored for a
sequential or byte-addressable file.

For further information, see the SCL Advanced File
Management manual (online name AFM).

COMPRESSION_PROCEDURE_NAME or CPN

Specifies the name of the optional compression procedure
used with the file.

This parameter is ignored for a sequential or
byte-addressable file. For more information, see the
CYBIL Keyed-File and Sort/Merge Interfaces manual.

DATA_PADDING or DP

Specifies the percentage of space within each new data
block of an indexed-sequential file that is to be left
unused left unused during initial file creation. This
parameter is ignored for a direct access, sequential, or
byte-addressable file.

Omission for a new keyed file causes 0 (zero) to be used.
For an old keyed file, the preserved value is always used.

For further information, see the SCL Advanced File
Management manual (online name AFM).

DYNAMIC_HOME_BLOCK_SPACEorDHBS

Reserved.

EMBEDDED _KEY or EK

Specifies whether the primary key values of a new keyed
file are part of the record data.

This parameter is ignored for a sequential or
byte-addressable file.

For further information, see the SCL Advanced File
Management manual (online name AFM).

ERROR_EXIT_PROCEDURE_NAME or EEPN or
ERROR_EXIT_NAME or EEN

Specifies the name of an externally declared (XDCL)
CYBIL procedure to which control is given whenever an
abnormal status is returned by certain file access routine

2-586 NOSNE Commands and Functions Revision G

Revision G

SET_FILE_ATTRIBUTES

requests. This parameter is equivalent to the ERROR_
EXIT_PROCEDURE_NAME parameter and can be used
interchangeably.

Omission causes no error exit procedure to be used.

ERROR_LIMIT or EL
Specifies the maximum number of recoverable (nonfatal)
file errors that 'can occur before a fatal error is returned.
This parameter is ignored for a sequential or
byte-addressable file.

For details, see the SCL Advanced File Management
manual (online name AFM).

ESTIMATED_RECORD_COUNTorERC
Specifies your optional estimate of the maximum number
of records to be stored in the ·new file. This parameter is
used to calculate a suitable block size for the keyed file.

This parameter is ignored for a sequential or
byte-addressable file.

For details, see the SCL Advanced File Management
manual (online name AFM).

FILE_ACCESS_PROCEDURE_NAME or FAPN or
FILE_ACCESS_PROCEDUREorFAP
Specifies the name of an externally declared (XDCL)
CYBIL procedure that intervenes in the calling sequence
between users of the file and the file access routines.

Omission for a new file causes no file access procedure to
be used. Omission for an old file causes the preserved
procedure name to be used.

FILE_CONTENTSorFILE_CONTENTorFC
Specifies the type of data contained in the file. It is used
by NOSNE facilities to verify correct usage of a file.
Options are:

UNKNOWN

Content is unknown.

OBJECT

Object module or object library.

Commands and Functions 2-587

SET_FILE_ATTRIBUTES

LIST

Character data for printing that includes a print
format control character as the first character of each
record. You cannot specify LIST for a keyed file. If
you do, an error is returne~ when the file is opened.

LEGIBLE

Character data.

ASCILLOG

Log file in ASCII format.

BINARY_LOG

Log file in binary format.

FILE_BACKUP

Backup file.

SCREEN

Screen file.

name

Variable specifying a name other than those indicated
in the preceding list.

Omission for a new file causes UNKNOWN to be used.
For an old file, the preserved value is always used.

FILE_LABEL_TYPE or _FLT

Specifies the label type for an ANSI-labeled tape file. This
parameter is valid only for systems running PSR level
665. These ANSI label standards are supported:

ANSI 1969 standard - READ only
ANSI 1978 standard - level 1
ANSI 1978 standard - level 2
ANSI 1983 standard revision - level 2

Valid parameter options:

LABELED (L)

Specifies an ANSI standard label.

2-588 NOSNE Commands and Functions Revision G

Revision G

SET_FILE_ATTRIBUTES

UNLABELED (UL)

Specifies that the tape is unlabeled.

If this parameter is omitted for a new file, U is assumed.
If omitted for an old file, the preserved value is used.

FILE_LIMIT or FL

Specifies the maximum length of the file in bytes. An
abnormal status is generated if this limit is exceeded.

The maximum file size is 150,000,000 bytes. Your site
may change this maximum value via the system attribute
MAXIMUM_SEGMENT_LENGTH.

If the length of a keyed file reaches its FILE_LIMIT
value, you must enter the COPY_KEYED_FILE command
to reinstate the file.

Omission for a new file causes 150,000,000 to be used.
For an old file, the preserved value is always used.

FILE_ORGANIZATIONorFO

Specifies the organization of a file. A sequential file may
be associated with a disk device, magnetic tape, or
terminal. A byte-addressable, keyed, or direct-access file
can reside only on a disk device. Options are:

SEQUENTIAL (SQ)
BYTE_ADDRESSABLE (BA)
INDEXED_SEQUENTIAL (IS)
DIRECT_ACCESS (DA)

Omission for a new file causes SEQUENTIAL to be used.
For an old file, the preserved value is always used.

FILE_PROCESSOR or FP

Specifies the name of the processor of the file. This
parameter qualifies the FILE_CONTENT attribute. It is
used by NOSNE facilities to verify correct usage of a file.
Options are:

ADA

ADA compiler.

APL

APL compiler.

Commands and Functions 2-589

SET_FILE_ATTRIBUTES

ASSEMBLER

NOSNE assembler.

BASIC

BASIC interpreter.

c
C compiler.

COBOL

COBOL compiler.

CYBIL

CYBIL compiler.

DEBUGGER

DEBUG utility.

FORTRAN

FORTRAN compiler.

LISP

LISP compiler.

PASCAL

Pascal compiler.

PLl

PLl compiler.

PPU _ASSEMBLER

PP assembler.

PRO LOG

PRO LOG compiler.

SCL

SCL interpreter.

scu
Source Code Utility.

UNKNOWN

2-590 NOSNE Commands and Functions Revision G

Revision G

SET_FILE_ATTRIBUTES

vx
File processor associated with VX/VE.

Omission for a new file causes UNKNOWN to be used.
For an old file, the preserved value is always used.

FILE_STRUCTUREorFS
Specifies the structure of the file. This parameter qualifies
the FILE_CONTENT and FILE_PROCESSOR attributes.
It is used by NOSNE and its facilities to verify correct

. file usage. Options are:

UNKNOWN

The structure is unknown.

DATA

Data file.

LIBRARY

Library file.

name

Name other than UNKNOWN, DATA, or LIBRARY.

Omission for a new file causes UNKNOWN to be used.
For an old file, the preserved value is always used.

FORCED_ WRITE or FW
Specifies whether modified blocks of a file are to remain
in memory without being forced to the device when the
modification to each block has completed.

This parameter is ignored for a sequential or
byte-addressable file.

For further information, see the SCL Advanced File
Management manual (online name AFM).

HASHING_PROCEDURE_NAMEorHPN
Specifies the optional, user-defined hashing procedure used
only for a direct-access file. This parameter is ignored for
a sequential or byte-addressable file. The default is
AMP$SYSTEM_HASHING_PROCEDURE.

For details, see the SCL Advanced File Management
manual (online name AFM).

Commands and Functions 2-591

SET_FILE_ATTRIBUTES

INDEX_LEVELS or INDEX_LEVEL or IL

Specifies the target number of index levels for a new
indexed-sequential file. The default is 2. This parameter is
ignored for direct access, sequential, or byte-addressable
files.

For details, see the SCL Advanced File Management
manual (online name AFM).

INITIAL_HOME_BLOCK_COUNTorIHBC

Specifies the number of home blocks to be created when a
new direct-access file is first opened. This parameter is
required for direct-access files. It is ignored for a
sequential or byte-addressable file.

For details, see the SCL Advanced File Management
manual (online name AFM).

INDEX_PADDING or IP

Specifies the percentage of space within each new index
block of an indexed-sequential file that is to be left
unused during the initial file creation. The default is 0
(zero). This parameter is ignored for direct access,
sequential, or byte-addressable files.

For details, see the SCL Advanced File Management
manual (online name AFM).

INTERNAL_CODE or IC

Specifies the internal code in which data is represented in
the file. It is used by the file access routines to direct
tape conversion. It is also available to utilities or
application programs to direct conversion on disk files.
The parameter selections are:

A6

NOS 6/12 display code (ASCII 128-character set).

AS

NOS 12-bit ASCII code (ASCII 128-character set).

ASCII

NOS/VE 7-bit ASCII code right-justified in an 8-bit
byte (ASCII 128-character set).

2-592 NOSNE Commands and Functions Revision G

Revision G

SET_FILE_ATTRIBUTES

D63

NOS 6-bit display code (CDC 63-character set).

D64

NOS 6-bit display code (CDC 64-character set).

Omission for a new file causes ASCII to be used. For an
old file, the preserved value is always used.

KEY _LENGTH or KL

Specifies the length, in bytes, of the primary key for a
new keyed file. KEY_LENGTH is a required parameter
for a new indexed sequential file. This parameter is
ignored for a sequential or byte-addressable file.

For an old keyed file, the preserved value is always used.

For details, see the SCL Advanced File Management
manual (online name AFM).

KEY_POSITION or KP

Specifies the byte number of each record at which the
EMBEDDED_KEY field starts. The first byte position is
0 (zero). This parameter is ignored for a sequential or
byte-addressable file.

For details, see the SCL Advanced File Management
manual (online name AFM).

KEY_TYPE or KT

Specifies how the primary key values of a new indexed­
sequential file are compared.

The default is UNCOLLATED. This parameter is ignored
for direct access, sequential, and byte-addressable files.

For details, see the SCL Advanced File Management
manual (online name AFM).

LINE_NUMBER or LN

Specifies the length and location of a line number in each
record of a file. The parameter values are specified as:

(location, length)

Line number length is limited to six characters. Line
number location is the byte in the line of the beginning
of the line number. The first byte in the record has a
location of 1.

Commands and Functions 2-593

SET_FILE_ATTRIBUTES

Omission for a new file indicates the absence of line
numbers in the file. For an old file, the preserved value
is always used.

LOADING_FACTORorLF

Reserved.

LOCK_EXPIRATION_TIME or LET

Specifies the number of milliseconds between the time a
lock is granted and the time it expires. This parameter is
valid only for direct access files. The default is 60,000
milliseconds. This parameter is ignored for sequential and
byte-addressable files.

For details, see the SCL Advanced File Management
manual (online name AFM).

LOGGING_OPTIONS or LOGGING_OPTION or LO

Enables the use of keyed-file recovery options. Options
are:

ALL

All logging options are enabled.

ENABLE_PARCELS (EP)

Reserved for future use.

ENABLE_MEDIA_RECOVERY (EMR)

An update recovery log is to be maintained for the
keyed-file.

ENABLE_REQUEST_RECOVERY (ERR)

An automatic close upon task abort removes from the
keyed-file any partially completed update operation
caused by system failure.

NONE

No logging options are enabled. This is the default.

For more information on logging options, see the SCL
Advanced File Management Usage manual, or the CYBIL
Keyed-File and Sort/Merge Interface Usage manual.

2-594 NOSNE Commands and Functions Revision G

Revision G

SET_FILE_ATTRIBUTES

LOG_RESIDENCE or LR

Specifies the catalog path for the keyed-file's update
recovery log. The log must be created by the
ADMINISTER_RECOVERY_LOG utility described in the
SCL Advanced File Management Usage manual.

Log entries are not written for the file unless its
LOGGING_OPTIONS attribute is ENABLE_MEDIA_
RECOVERY. If the LOGGING_OPTIONS attribute is
ENABLE_MEDIA_RECOVERY, the default for this
parameter is $SYSTEM.AAM.SHARED_RECOVERY_LOG.

NOTE

Whenever you change the LOG_RESIDENCE of an
existing keyed-file to a log other than the default log, you
should immediately backup the file or no entries will be
logged. If a backup has not been done since the change
and the file is damaged, the RECOVER_FILE_MEDIA
subcommand on the RECOVER_KEYED_FILE utility
cannot execute successfully for the file.

For more information on logging options, see the SCL
Advanced File Management manual and the CYBIL
Keyed-File and Sort/Merge Interfaces manual.

MAXIMUM_BLOCK_LENGTHorMAXBL
Specifies the maximum block length (0 to 65,497) in
bytes. A specification of a maximum block length is
ignored when SYSTEM_SPECIFIED_BLOCKING is
requested (block size is controlled by the operating system
in this case). All logical blocks are constrained to
MAXIMUM_BLOCK_LENGTH or less. Blocks may vary
in length between MINIMUM_BLOCK_LENGTH and
MAXIMUM_ BLOCK_ LENGTH.

This parameter is effective only for record access files.
Records are packed into blocks according to ANSI 1978
standards.

For a tape file, this block size determines the maximum
size of the physical record written to a tape volume.

For disk files, transfers between central memory and the
device are in multiples of one or more blocks.

Commands and Functions 2-595

SET_FILE_ATTRIBUTES

Maximum block length for a tape file is 4,128 bytes.
Omission of block length for a new file causes 4,128 to be
used. For an old file, the preserved value is always used.

For keyed files, block length is set at creation time and
does not change thereafter. If MAXIMUM_BLOCK_
LENGTH is specifed at creation time, the actual block
length is the nearest higher number in the series:

2048, 4096, 8192, 16384, 32768, 65536

MAXIMUM_RECORD_LENGTHorMAXRL
Specifies the maximum length in bytes (1 to 65,497)
allowed for a record. This parameter is used only for files
with ANSI fixed length (F) records. F type records are
padded to this length on output. This parameter is
required for a keyed file, regardless of record type.

Omssion for a new file with ANSI F type records causes
256 to be used. For an old file of ANSI F type records or
for an old keyed file, the preserved value is always used.

MESSAGE_CONTROL or MC
Specifies which classes of messages are generated during
access of a keyed file.

This parameter is ignored for a sequential or
byte-addressable file. For details, see the SCL Advanced
File Management manual (online name AFM).

MINIMUM_BLOCK_LENGTHorMINBL
Specifies, in bytes, the minimum block length. This
parameter is applicable only for files with user-specified
blocking.

For ANSI fixed records with user-specified blocking,
blocks are padded to MINIMUM_BLOCK_LENGTH using
the " character. All blocks are at least MINIMUM_
BLOCK_LENGTH and do not exceed MAXIMUM_
BLOCK_LENGTH regardless of record type. The specified
value must exceed 17 bytes, which is the length of the
longest noise block on tape.

This parameter is ignored for keyed files and for files
with system-specified blocking.

Omission for a new file causes 18 bytes to be used. For
an old file, the preserved value is always used.

2-596 NOSNE Commands and Functions Revision G

Revision G

SET_FILE_ATTRIBUTES

MINIMUM_RECORD_LENGTHorMINRL
Specifies the minimum record length in bytes for a new
keyed file. This parameter is ignored for a sequential or
byte-addressable file.

For details, see the SCL Advanced File Management
manual (online name AFM).

OPEN _POSITION or OP
Specifies the positioning to occur before the file is opened.
Options are:

$BOI

Position to beginning-of-information.

$ASIS

No positioning.

$EOI

Position to end-of-information.

If an open position is specified on a file reference, it takes
precedence over the file attribute open position.

If a file reference does not specify an open position, the
file attribute open position is used.

Omission of the OPEN _POSITION parameter causes $EOI
to be used for the OUTPUT file and $BOI to be used for
all other files.

PADDING_CHARACTERorPC
Specifies the padding character used to pad short ANSI
fixed records to their MAXIMUM_RECORD_LENGTH.

Omission for a new file causes the space character to be
used. For an old file, the preserved value is always used.

PAGE_FORMAT or PF
Specifies the frequency and separation of titling in a
legible file. This parameter is used only by the file access
routines if the file is associated with a terminal. It is
used by other services to prepare files for printing.
Options are:

Commands and Functions 2-597

SET_FILE_ATTRIBUTES

CONTINUOUS (C)

Specifies that a title should appear once at the
beginning of the file. ·

BURSTABLE (B)

Specifies that a title and page number should appear
at the top of each page of the file.

NON _BURSTABLE (NB)

Specifies that title and page number should be
separated from other data by a triple space rather
than forcing top of form as in the burstable selection.

UNTITLED (U)

Specifies that no titling or pagination should appear in
the file.

Omission for a new terminal file causes CONTINUOUS to
be used. Omission for a new nonterminal file causes
BURSTABLE to be used. For an old file, the preserved
value is always used.

PAGE_LENGTH or PL

Specifies the number of lines to be written on a printed
page. This parameter is used only by the file access
routines if the file is associated with a terminal. It is
used by other services to prepare files for printing.

Omission for a new file causes 60 to be used. For an old
file, the preserved value is always used.

PAGE_ WIDTH or PW

Specifies the number of characters to be written to a
printed line. This parameter is used only by the file
access routines if the file is associated with a terminal. It
is used by other services to prepare files for printing.

Omission for a new file causes 132 to be used for a
nonterminal file and the value of the PAGE_ WIDTH
terminal attribute to be used for a terminal file. For an
old file, the preserved value is always used.

PRESET_ VALUE or PV

Specifies the integer value to which memory associated
with a disk file is initialized. Currently, 0 (zero) is always
used.

2-598 NOSNE Commands and Functions Revision G

Revision G

SET_FILE_ATTRIBUTES

Omission for a new file causes 0 (zero) to be used. For an
old file, the preserved value is always used.

RECORD_LIMIT or RL

Specifies the maximum number of records to be included
in a keyed file. This parameter is ignored for a sequential
or byte-addressable file. The default is 2**42-1.

For details, see the SCL Advanced File Management
manual (online name AFM).

RECORD_TYPE or RT

Specifies the record type. Options are:

FIXED (F)

ANSI fixed length.

VARIABLE (V)

CDC variable.

UNDEFINED (U)

Undefined.

Omission for a new record access file causes VARIABLE
to be used. Omission for other disk files and for keyed
files causes UNDEFINED to he used. For an old file, the
preserved value is always used.

RECORDS_PER_BLOCK or RPB

Specifies an estimate of the number of data records that
are contained in each data block of a new keyed file. This
parameter is ignored for a sequential or byte-addressable
file or an old keyed file.

For details, see the SCL Advanced File Management
manual

STATEMENT_IDENTIFIER or SI

This parameter is applicable to files maintained by the
Source Code Utility (SCU) and is used to specify the
length and location of a statement identifier in each
record of the file. The values of the parameter are
specified as:

Commands and Functions 2-599

SET_FILE_ATTRIBUTES

Remarks

/

(location,length)

Statement identifier length is limited to 17 characters.
Statement identifier location is the byte in the record of
the beginning of the statement identifier. The first byte in
the record has a location of 1.

Omission for a new file indicates the absence of statement
identifiers in the file. For an old file, the preserved value
is always used.

USER_INFORMATION or UI

Specifies a string of 32 characters of information you
supply that is preserved with the file. This information is
not interpreted by NOSNE.

Omission for a new file indicates the absence of user
information.

• Only attributes that are noted as applicable to files
with a sequential file organization apply to tape files.

• The SET_FILE_ATTRIBUTE command can he used to
specify the attributes that are preserved with a new
file and those that are related to an instance of open
(for example, ACCESS_MODE and OPEN_
POSITION).

• When you specify a value for the FILE_CONTENTS
parameter hut not for the FILE_STRUCTURE
parameter, NOSNE selects a value for the FILE_
STRUCTURE parameter.

• When you specify a value for the FILE_STRUCTURE
parameter hut not for the FILE_CONTENTS
parameter, NOSNE selects a value for the FILE_
CONTENTS parameter.

• For compatability with future NOSNE releases, it is
recommended that this command follow the use of any
of the explicit file creation commands, specifically
CREATE_FILE, REQUEST_MAGNETIC_ TAPE,
REQUEST_TERMINAL, and REQUEST_LINK.

• To prevent serious performance degradation, the
FORCED_ WRITE attribute should be set to FALSE if
the LOGGING_OPTIONS attribute includes
ENABLE_MEDIA_RECOVERY.

2-600 NOSNE Commands and Functions Revision G

Examples

Revision G

SET_FILE_ATTRIBUTES

• For more information, see the NOSNE System Usage
manual.

The following command establishes READ and EXECUTE
access modes for file TEST_FILE.

/set_file_attributes test_file ..
.. /access_modes=(read,execute)

The following command establishes attributes for file
TEST_FILE_3 and specifies that its file organization is
an indexed sequential file.

/setfa test_file_3 file_organization=is

The following commands create an empty source file that
will contain a FORTRAN object file. The example creates
the file with a file content of OBJECT and a file
processor of FORTRAN.

/setfa program_object file_content=object ..
.. /file_processor=fortran

The following command sets the maximum length of file
TEST_FILE_4 to 1 million bytes.

/setfa test_file_4 file_lim1t=1000000

The following command establishes file attributes for a
disk file that is intended for the local site line printer.

/setfa printout page_format=burstable page_length=10 ..
. ./page_wi dth=40
/colt printout
ct? This file is intended for printing on the line
ct? printer. It has a page length of 10 and page width
ct? of 40.
ct? **
/print_file printout

Commands and Functions 2-601

SET_LINK_ATTRIBUTES

SET _LINK_ATTRIBUTES
Command

Purpose Establishes information needed to gain access to NOS or
NOS/BE permanent files or to execute a NOS or NOS/BE
job in a dual-state system.

NOTE

The preferred command is now CHANGE_LINK_
ATTRIBUTES.

Format SET_LINK_ATTRIBUTES or
SET_LINK_ATTRIBUTE or
SETLA

USER= list of name
PASSWORD= name
CHARGE =string
PROJECT= string
STATUS= status variable

Parameters USER or U

In NOS, USER specifies the NOS user name (from 1
through 7 characters), family name (from 1 through 7
characters), and is required.

In NOS/BE, USER specifies the name used to access the
system and is the default permanent file id if a file id is
not specified on subsequent file transfer commands.
Family name is optional (the system automatically
changes to NVE any name entered for the family name
parameter).

PASSWORD or PW

Specifies the NOS or NOS/BE INTERCOM password. For
NOS, the password must be the NOS batch password. Do
not confuse this password with a NOS/BE permanent file
password.

CHARGE or C

In NOS, CHARGE specifies the NOS charge number (from
1 through 10 characters) and is a required parameter.

In NOS/BE, CHARGE specifies the NOS/BE charge
number and may be required depending on the accounting
level implemented on the system at your site.

2-602 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

SET_LINK_ATTRIBUTES

PROJECT or P

In NOS, PROJECT specifies the NOS project number
(from 1 through 20 characters) and is a required
parameter.

In NOS/BE, PROJECT specifies the NOS/BE project
number and may be required depending on the accounting
level implemented on the system at your site.

• The command parameters provide the accounting and
user identification under which you have been
validated to execute on the real-state system. Omission
of this command causes the system to use the
validation information of the current user.

• Your link attributes are used in conjunction with the
following:

- GET_FILE and REPLACE_FILE

- The DUAL_STATE_ROUTE_PARAMETERS
output attribute.

CREATE_INTERSTATE_CONNECTION utility
(documented in the NOS or NOS/BE Migration
manual)).

- The Interstate Communication facility (documented
in the CYBIL System Interface manual) .

• For more information, see the NOSNE System Usage
manual.

In the first example, user SDH changes the default
accounting and user identification for subsequent NOS file
transfers.

/set_1ink_attributes user=(d1h,nve)
.. /password=pass789 charge='46358a' project='693453a473'

Subsequent NOS and NOSNE file transfers will access
user name DLH in family name NVE. User DLH has the
password PASS789. The charges for the file transfer will
be applied to charge number 46358A and project number
693453A473.

Commands and Functions 2-603

SET_ MULTIPROCESSING_ OPTIONS

In the next example, user DLH uses the SET_LINK_
ATTRIBUTE command to change the default accounting
and user identification information for subsequent NOS/BE
file transfers.

/set_link_attributes user=(dlh,nve) password=pass789 ..
.. /charge='46358a' project='693453a473'

Subsequent NOS/BE and NOSNE file transfers will access
user name DLH with password PASS789 (the NVE family
name is ignored). The charges for the file transfer will be
applied to charge number 46358A and project number
693453A473. If no permanent file id is specified on
subsequent file transfer commands, the user name DLH
will be used.

SET _MULTIPROCESSING_ OPTIONS
Command

Purpose Specifies the CPU(s) on which you want to run a job.

Format SET_MULTIPROCESSING_OPTIONS or
SET_ MULTIPROCESSING_ OPTION or
SETMO

MULTIPROCESS =keyword
PROCESSORS= list of keyword
STATUS= status variable

Parameters MULTIPROCESS or MP or M

Remarks

Specifies whether you want any subsequent jobs to use
both CPUs. Values can be ON or OFF. The default is
OFF.

PROCESSORS or PROCESSOR or, P

Specifies the processor you want to run on. Choose from
PO or Pl.

For more information, see the NOSNE System Usage
manual.

2-604 NOSNE Commands and Functions Revision G

Examples

SET_PROGRAM_ATTRIBUTES

The following example runs a job on PO and/or Pl.

/setmo mp=on

The following example runs a job on Pl only.

/setmo mp=off p=p1

The following example runs a job on PO or Pl, but not
both.

/setmo mp=off p=(p0,p1)

SET_PROGRAM_ATTRIBUTES
Command

Purpose Changes default attribute values for subsequent programs
executed within the job.

Format SET_PROGRAM_ATTRIBUTES or
SET_PROGRAM_ATTRIBUTE or
SETPA

LOAD_MAP=file
LOAD_MAP_OPTIONS=list of keyword
PRESET_ VALUE=keyword
TERMINATION _ERROR_LEVEL =keyword
DEBUG_INPUT=file
DEBUG_OUTPUT=file
ABORT _FILE= file
DEBUG _MODE= boolean
DELETE _LIBRARIES= list of file or keyword
ADD _LIBRARIES= list of file or keyword
ARITHMETIC_ OVERFLOW= boolean
ARITHMETIC _LOSS_ OF_ SIGNIFICANCE= boolean
DNIDE _FAULT= boolean
EXPONENT_ OVERFLOW= boolean
EXPONENT_ UNDERFLOW= boolean
FP _INDEFINITE= boolean
FP _LOSS_ OF_ SIGNIFICANCE= boolean
INVALID _EDP _DATA= boolean
STATUS= status variable

Parameters LOAD _MAP or LM

Revision G

Default load map file. This file can be positioned. If
LOAD_MAP is omitted, the default file is not changed.
The initial default file reference is
$LOCAL.LOADMAP.$BOI.

Commands and Functions 2-605

SET_PROGRAM_ATTRIBUTES

LOAD_MAP_OPTIONSorLOAD_MAP_OPTIONor
LMO
Set of one or more keywords indicating the information
included in the load map. Options are:

NONE

No load map is written.

SEGMENT (S)

Segment map.

BLOCK (B)

Block map.

ENTRY_POINT (EP)

Entry point map.

CROSS_REFERENCE (CR)

Entry point cross-reference.

ALL

Segment map, block map, entry point map, and entry
point cross-reference. ·

If LOAD_MAP _OPTION is omitted, the default load map
options are not changed. The initial default option is
NONE.

PRESET_ VALUE or PV

Default value stored in all uninitialized data words.
Options are:

ZERO (Z)

All zeros.

FLOATING_POINT_INDEFINITE (FPI)

Floating-point indefinite value.

INFINITY (I)

Floating-point infinite value.

2-606 NOSNE Commands and Functions Revision G

Revision G

SET_PROGRAM_ATTRIBUTES

ALTERNATE_ONES (AO)

Alternating 0 and 1 bits; the leftmost (highest order)
bit is 1.

If PRESET_ VALUE is omitted, the default preset value is
not changed. The initial preset value is ZERO.

TERMINATION_ERROR_LEVEL or TEL

Default error level that terminates program loading.
Options are:

WARNING (W)

Warning, error, or fatal error.

ERROR (E)

Error or fatal error only.

FATAL (F)

Fatal error only.

If TERMINATION_ERROR_LEVEL is omitted, the
default termination error level is not changed. The initial
termination error level is ERROR.

DEBUG_INPUT or DI

Default Debug command file. The commands are read only
if the program is executed in debug mode. This file can
be positioned. If DEBUG_INPUT is omitted, the default
debug input file is not changed. The initial default file is
COMMAND.

DEBUG_OUTPUT or DO

Default debug output file. Output is written only if the
program is executed in debug mode. This file can be
positioned. If DEBUG_ OUTPUT is omitted, the default
debug output file is not changed. The initial default file is
$OUTPUT.

ABORT _FILE or AF

File containing debug commands to be processed if the
program aborts. The commands are used only if the
program is not executed in debug mode. This file can be
positioned. If ABORT_FILE is omitted, the default abort

Commands and Functions 2-607

SET_PROGRAM_ATTRIBUTES

file is not changed. The initial default file is $NULL,
indicating that no debug commands are processed if the
program aborts.

DEBUG_MODE or DM

Default debug mode setting. (For information on using
Debug, refer to the specific program's source language
manual.) Options are:

ON

Program executed under Debug control.

OFF

Program executed without Debug control.

If DEBUG_MODE is omitted, the default debug option is
not changed. The initial default value is OFF.

DELETE_LIBRAR.IES or DELETE_LIBRAR.Y or DL

List of object libraries to he deleted from the job library
list. If you specify ALL, the job library list is cleared.
The object libraries are deleted before the object libraries
specified on the ADD_LIBRARY parameter are added.
The keyword OSF$TASK_SERVICES_LIBRARY specifies
the system table.

Specify DELETE_ LIBRARY =ALL to reorder your job
library list.

If DELETE_LIBRARY is omitted, no object libraries are
deleted.

ADD_LIBRARIES or ADD_LIBRAR.Y or AL

List of object libraries to add to the job library list. The
libraries are added to the beginning of the job library list
in the order listed. The keyword OSF$TASK_SERVICES_
LIBRARY specifies the system table.

Use the ADD_LIBRARY parameter to specify all object
libraries in your job library list and their respective
order.

To reorder your job library list, specify DELETE_
LIBRARY=ALL and then use the ADD_LIBRARY
parameter to list the order desired.

If ADD_LIBRARY is omitted, no object libraries are
added.

2-608 NOSNE Commands and Functions Revision G

Revision G

SET_PROGRAM_ATTRIBUTES

ARITHMETIC_OVERFLOW or AO

This parameter specifies whether or not the hardware
condition ARITHMETIC_ OVERFLOW causes an interrupt.
Valid specifications are:

ON

ARITHMETIC_OVERFLOW is enabled. The condition
causes an interrupt.

OFF

ARITHMETIC_OVERFLOW is disabled. The condition
does not cause an interrupt.

ARITHMETIC_LOSS_OF_SIGNIFICANCE or ALOS

This parameter specifies whether or not the hardware
condition ARITHMETIC_LOSS_OF_SIGNIFICANCE
causes an interrupt. Valid specifications are:

ON

ARITHMETIC_LOSS_OF_SIGNIFICANCE is enabled.
The condition causes an interrupt.

OFF

ARITHMETIC_LOSS~ OF _SIGNIFICANCE is disabled.
The condition does not cause an interrupt.

DIVIDE_FAULT or DF

This parameter specifies whether or not the hardware
condition DIVIDE_FAULT causes an interrupt. Valid
specifications are:

ON

DIVIDE_FAULT is enabled. The condition causes an
interrupt.

OFF

DIVIDE_FAULT is disabled. The condition does not
cause an interrupt.

EXPONENT_OVERFLOW or EO

This parameter specifies whether or not the hardware
condition EXPONENT_OVERFLOW causes an interrupt.
Valid specifications are:

Commands and Functions 2-609

SET_PROGRAM_ATTRIBUTES

ON

EXPONENT_ OVERFLOW is enabled. The condition
causes an interrupt.

OFF

EXPONENT_ OVERFLOW is disabled. The condition
does not cause an interrupt.

EXPONENT_UNDERFLOW or EU

This parameter specifies whether or not the hardware
condition EXPONENT_ UNDERFLOW causes an interrupt.
Valid specifications are:

ON

EXPONENT_ UNDERFLOW is enabled. The condition
causes an interrupt.

OFF

EXPONENT_ UNDERFLOW is disabled. The condition
does not cause an interrupt.

FP _INDEFINITE or FPI or FI

This parameter specifies whether or not the hardware
condition FP _INDEFINITE causes an interrupt. Valid
specifications are:

ON

FP _INDEFINITE is enabled. The condition causes an
interrupt.

OFF

FP _INDEFINITE is disabled. The condition does not
cause an interrupt.

FP_LOSS_OF_SIGNIFICANCE or FPLOS or FLOS

This parameter specifies whether or not the hardware
condition FP_LOSS_OF_SIGNIFICANCE causes an
interrupt. Valid specifications are:

ON

FP _LOSS_OF_SIGNIFICANCE is enabled. The
condition causes an interrupt.

2-610 NOSNE Commands and Functions Revision G

Remarks

Revision G

SET_PROGRAM_ATTRIBUTES

OFF

FP_LOSS_OF_SIGNIFICANCE is disabled. The
condition does not cause an interrupt.

INVALID_BDP_DATA or IBDPD or IBD

This parameter specifies whether or not the hardware
condition INVALID_BDP _DATA causes an interrupt.
Valid specifications are:

ON

INVALID_BDP _DATA is enabled. The condition causes
an interrupt.

OFF

INVALID_ BDP _DATA is disabled. The condition does
not cause an interrupt.

e The program attributes include the object libraries in
the job library list and the default execution option
values. The job library list is always included in the
program library list of each program in the job. You
can override the default execution option values if you
execute the program with an EXECUTE_ TASK
command or if you execute a predefined program
description module.

• In general, the default program attribute values do not
affect system-defined commands. This is because the
program descriptions for system-defined commands
specify all program attribute values for the command.

• Enter a DISPLAY_PROGRAM_ATTRIBUTES
command to display the current job library list and
default execution option values.

o By specifying a status variable on the SET_
PROGRAM_ATTRIBUTES command, error messages
are suppressed. The status variable describes the error.

o When you add libraries to the job library list using
the ADD_LIBRARY parameter, the list you specify is
processed in reverse order. If an error occurs during
this process, the libraries specified in the list after the

Commands and Functions 2-611

SET_SENSE_SWITCH

Examples

point of error are added to the job library list. The
library that incurred the error and all libraries
preceding it in the list are not added to the job library
list.

• For more information, see the NOSNE Object Code
Management manual.

The following command changes the job library list so it
contains only libraries LIBl and LIB2, in that order.

/set_program_attr1butes delete_11braries=a11
.. /add_11brar1es=(11b1,11b2)

SET_SENSE_SWITCH
Command -

Purpose Sets software-managed sense switches of your job or a job
you control to either on or off.

Format SET_SENSE_SWITCH or
SET_SENSE_SWITCHES or
SETSS

JOB_NAME=name
ON= list of range of integer
OFF= list of range of integer
STATUS= status variable

Parameters JOB _NAME or JN

Remarks

Specifies the name of the job whose sense switches are to
be altered. This may be the name you supplied or the
system-supplied name. Omission causes the sense switches
associated with the requesting job to be altered.

ON

Specifies the switches (from 1 through 8) that are to be
turned on. Omission causes no switches to be turned on.

OFF

Specifies the switches (from 1 through 8) that are to be
turned off. Omission causes no switches to be turned off.

For more information, see the NOSNE System Usage
manual.

2-612 NOSNE Commands and Functions Revision G

Examples

SET_ WORKING_ CATALOG

The following is an example of setting sense switches.

/set_sense_switch on=(1,2,3)
/set_sense_switches job_name=$0855_0104_pdq_0861
. ./on=1 off=2
/set_sense_switches job_name=$0855_0104_pdQ_0862
.. /off=(1,2,3,4,5,6,7,8)

SET_ WORKING_ CATALOG
Command

Purpose

Format

Establishes a job's default working catalog.

SET_ WORKING_ CATALOG or
SETWC

CATALOG= file
STATUS:= status variable

Parameters CATALOG or C

Remarks

Examples

Revision G

Specifies the catalog to be used as the working catalog.
This can be a specific catalog, the local catalog ($LOCAL),
or may specify $USER to indicate the master catalog.
This parameter is required.

• When a relative file reference (that is, relative path)
is given, the names of the working catalog are
prefixed to determine a complete file reference.

• Initially, the job's working catalog is $LOCAL.

• For more information, see the NOS/VE System Usage
manual.

The following example changes the working catalog to the
master catalog.

/set_working_catalog $user
/attach_fi le data_fi le_ 1 "$USER path supplied by system."

The following example changes the working catalog to
subcatalog DATA_CATALOG_l in the master catalog.

/set_working_catalog $user.data_catalog_1
/attach_file data_file_2 "System supplies catalog."

The following example displays your working catalog:

/display_value $catalog

Commands and Functions 2-613

$SEVERITY

$SEVERITY
Function

Purpose Returns the severity level of the condition you specify as
a string.

Format $SEVERITY
(integer)

Parameters integer

Remarks

Examples

Specifies the condition code of the status record for which
you want the severity level returned. This parameter is
required.

• The severity level is returned as a string value in
uppercase characters. The following are possible values
returned: ·

INFORMATIVE
WARNING
ERROR
FATAL
CATASTROPHIC

• For further information about functions, see the
NOSNE System Usage manual.

The following example displays the severity level of a
specified condition code:

/display_value $severity(pf _status.condition)
ERROR

SKIP_ TAPE _MARK
Command

Purpose

Format

Positions a tape file in a backward or forward direction.

SKIP_ TAPE_MARK or
SKIP_ TAPE _MARKS or
SKITM

FILE=file
DIRECTION= keyword'
COUNT= integer
STATUS= status variable

2-614 NOSNE Commands and Functions Revision G

SKIP_ TAPE_MARK

Parameters FILE or F

Remarks

Examples

Revision G

Specifies the local file to be positioned. If the file is not
associated with a magnetic tape device, the command is
ignored. This parameter is required.

DIRECTION or D

Specifies the direction of the file position. The values are:

FORWARD

Positions the file in the forward direction.

BACKWARD

Positions the file in the backward direction.

Omission causes FORWARD to be used.

COUNT or C

Specifies the number of tape marks to skip. The file is
positioned a specified number of tape marks from the
current position until the COUNT is exhausted or a
boundary condition is encountered. The boundary condition
for a forward skip is the end-of-volume of the last volume
in the list of volumes associated with the file. For a
backward skip, loadpoint terminates the operation.
Omission causes 1 to be used.

• This command is not allowed on a labelled tape file.

• For more information, see the NOS/VE System Usage
manual.

The following commands illustrate skipping tape marks.

/skip_tape_marks file=master count=3
/skip_tape_marks my_file forward 5
/skip_tape_mark file=new_master direction=backward

Commands and Functions 2-615

SORT

SORT
Command

Purpose

Format

Sorts the records from one or more files and writes the
records in sorted order to a single output file.

SORT
FROM= list of file
TO=file
KEY= list of any
DIRECTIVES= list of file
LIST=file
LIST_ OPTIONS= list of keyword
ERROR=file
ERROR_LEVEL =keyword
RESERVED _POSITION _9 =boolean
ESTIMATED _NUMBER _RECORDS= range of integer
EXCEPTION _RECORDS_FILE =file
C170_COMPATIBLE=boolean
OMIT _DUPLICATES= boolean
OWNCODE_FIXED _LENGTH= integer
OWNCODE_MAXIMUM _RECORD _LENGTH= integer
OWNCODE_PROCEDURE_l =name
OWNCODE_PROCEDURE_2 =name
OWNCODE_PROCEDURE_3 =name
OWNCODE_PROCEDURE_4=name
OWNCODE_PROCEDURE_5 =name
RETAIN_ORIGINAL_ORDER=boolean
COLLATING _SEQUENCE _NAME =name
COLLATING_SEQUENCE_STEP=list of any
COLLATING _SEQUENCE_REMAINDER =boolean
COLLATING _SEQUENCE _ALTER= boolean
STATUS= status variable
SUM= list of any
ZERO _LENGTH _RECORDS= keyword
VERIFY _MERGE_INPUT _ORDER= boolean
LOAD_COLLATING_TABLE=list of name
RESULT_AR.RAY=integer array

2-616 NOSNE Commands and Functions Revision G

SORT

Parameters FROM or F

Revision G

List of from 1 through 100 input files.

If you omit the FROM parameter but specify the
OWNCODE_PROCEDURE_l parameter, the sort expects
input records from the owncode 1 procedure; otherwise, it
attempts to read input records from file OLD in the
$LOCAL catalog.

TO or T

Output file.

If you omit the TO parameter and specify an owncode 3
procedure that does not return output to the sort, the sort
does not require an output file. However, if you omit the
TO parameter and specify an owncode 3 procedure that
does return output to the sort, the sort writes the output
to the default file NEW.

If you omit the TO parameter and the OWNCODE_
PROCEDURE_3 parameter, the sort writes all output
records to the default file NEW. If file NEW does not
exist, the sort creates and uses file $LOCAL.NEW.

KEY or K

List of 1 through 106 key field definitions. A key field
definition is a value set containing up to four values as
follows:

(first . .last,type,order) or

(first, length, type ,order)

first

Position of the first byte of the key field within the
record. (The leftmost byte in a record is numbered 1.)

last

Position of the last byte of the key field within the
record.

length

Optional number of bytes in the key field. The default
length is 1 byte.

Commands and Functions 2-617

SORT

type

Optional name of a numeric data format or collating
sequence. The default key field type is ASCII.

The valid numeric data format names are:

BINARY
BINARY_BITS
INTEGER
INTEGER_ BITS
NUMERIC_FS
NUMERIC_LO
NUMERIC_LS
NUMERIC_NS
NUMERIC_ TO
NUMERIC_ TS
PACKED
PACKED_NS
REAL

The predefined collating sequence names are ASCII,
ASCII6, COBOL6, DISPLAY, EBCDIC, EBCDIC6.

order

Optional sort order indicator: ascending order (A) or
descending order (D). The default is ascending order.

If you omit the KEY parameter, the sort uses one key;
the key field extends from the beginning of the record to
the smallest minimum record length (MINRL) defined for
an input file; the key field has key type ASCII and is
sorted in ascending order.

NOTE

If you intend to omit the KEY parameter, you should
change the minimum record length attribute value for all
input files. If you omit the KEY parameter and have not
specified a minimum record length for all files, the sort
attempts to use the default minimum record length as the
key length. The default minimum record length is 0
(zero); the sort cannot define a key of length 0 (zero) so it
returns a fatal error.

2-618 NOSNE Commands and Functions Revision G

Revision G

DIRECTNES or DIRECTNES_FILE or DIR or DF

List of from 1 through 100 directive files.

SORT

If you omit the DIRECTIVES parameter, no parameters
are read from a directive file; the sort is completely
specified on the command.

LIST or L

Listing file. If you omit the LIST parameter, the sort
listing is written on file $LIST.

LIST_OPTIONS or LO

List of one or more list options specifying the additional
information to be written to the listing file.

If you omit the LIST_OPTIONS parameter, the sort
writes only the minimum information to the listing file
(page number, error messages, directives, exception
records file summary, and the number of records sorted).

The valid keywords are:

OFF or NONE

No additional information is written to the listing file.

s
Source directives read

DE

Detailed exception information (specify only when
EXCEPTION_ RECORDS_ FILE parameter is specified)

RS

Record statistics

ERROR or E

Error message file. If you omit the ERROR parameter,
the sort writes any error messages on file $ERRORS.

ERROR_LEVEL or EL

Minimum error severity to be reported. If you omit the
ERROR_LEVEL parameter, the sort reports all warning,
fatal, and catastrophic errors.

The valid keywords are:

Commands and Functions 2-619

SORT

INFORMATIONAL (I)

Report all errors

TRIVIAL (T)

Report all errors

WARNING (W)

Report warning, fatal and catastrophic errors only

FATAL (F)

Report fatal and catastrophic errors only

CATASTROPHIC (C)

Report catastrophic errors only

NONE

Report no errors

RESERVED _POSITION _9
Reserved.

ESTIMATED_NUMBER_RECORDSorENR
Integer range from 1 through 16777215. You can specify
the ESTIMATED_NUMBER_RECORDS parameter, but
the sort does not use the parameter value.

EXCEPTION_RECORDS_FILEorERF
File to which invalid records are written (invalid records
are not written to the output file). If you omit this
parameter, the sort does not perform exception processing;
invalid records are written to the output file.

C170_COMPATIBLE or CC
Specifies whether lowercase letters in owncode procedure
names are to be converted to uppercase letters. required
for loading of the owncode procedure. If you omit this
parameter, the default is OFF and the owncode procedure
names are not converted. Use YES, TRUE, or ON to
specify a logical true.

2-620 NOS/VE Commands and Functions Revision G

Revision G

SORT

OMIT_DUPLICATES or OD
Specifies whether sort outputs only one record in each set
of records with equivalent key values. Duplicates are not
omitted; equivalent key values are processed as specified
by the OWNCODE_PROCEDURE_5, RETAIN_
ORIGINAL_ORDER, or SUM parameter.

TRUE, YES, or NO

Duplicates are omitted.

FALSE, NO, or OFF

Duplicates are not omitted.

OWNCODE_FIXED_LENGTHorOWNFLor OFL
Fixed record length (integer from 1 through 4096). If you
omit the OWNCODE_FIXED_LENGTH parameter, the
sort uses the OWNCODE_MAXIMUM_RECORD_
LENGTH parameter value as the record length.
Specification of this parameter or the OWNCODE_
MAXIMUM_RECORD_LENGTH parameter is required if
the TO and FROM parameters are omitted.

OWNCODE_MAXIMUM_RECORD_LENGTHor
OWNMRL or OMRL
Maximum record length (integer from 1 through 4096). If
you omit the OWNCODE_MAXIMUM_RECORD_
LENGTH parameter, the sort uses the record length
attribute of the first input file read or output file written
as the maximum record length. Specification of this

. parameter or the OWNCODE_FIXED_RECORD_
LENGTH parameter is required if the TO and FROM
parameters are omitted.

OWNCODE_PROCEDURE_l or OPl or OWNl
Object library entry point name for the procedure that
preprocesses each input record. If you omit the
OWNCODE_PROCEDURE_l parameter, no user-defined
input record preprocessing is performed.

OWNCODE_PROCEDURE_2or OP2or OWN2
Object library entry point name for the procedure that
can insert a record after each input file is read. If you
omit the OWNCODE_PROCEDURE_2 parameter, no
user-defined input file postprocessing is performed.

Commands and Functions 2-621

SORT

OWNCODE_PROCEDURE_3 or OP3 or OWN3

Object library entry point name for the procedure that
postprocesses each output record. If you omit the
OWNCODE_PROCEDURE_3 parameter, no user-defined
output record postprocessing is performed.

OWNCODE_PROCEDURE_4 or OP4 or OWN4

Object library entry point name for the procedure that
can insert a record at the end of the output file. If you
omit the OWNCODE_PROCEDURE_4 parameter, no
user-defined output file postprocessing is performed.

OWNCODE_PROCEDURE_5 or OP5 or OWN5

Object library entry point name for the procedure called if
two input records have equal key values. This parameter
cannot be specified with the SUM parameter. If you omit
the OWNCODE_PROCEDURE_5 parameter, no
user-defined processing of equal records is performed.

RETAIN_ORIGINAL_ORDER or ROO or RETAIN or
RET

Reserved.

COLLATING_SEQUENCE_NAME or CSN or SEQN

Name of the collating sequence defined by the subsequent
collating sequence parameters. If you omit the
COLLATING_SEQUENCE_NAME parameter, no user
collating sequence is defined.

COLLATING_SEQUENCE_STEP or CSS or SEQS

List of from 1 through 256 value step definitions. If you
omit the COLLATING_SEQUENCE_STEP parameter, no
specific collating sequence value steps are defined.

A value step definition is a value set that defines one or
more value steps in the collating sequence as follows
(char is an ASCII character):

('char')

One I-character value step.

('char',' char', ...)

One multicharacter value step.

2-622 NOSNE Commands and Functions Revision G

Revision G

SORT

('char' .. ' char')

Multiple I-character value steps.

('char' .. ' char', 'char' .. ' char', ...)

Multiple multicharacter value steps. (All ranges must
be the same size.)

COLLATING_SEQUENCE_REMAINDER or CSR or
SEQR

Indicates whether a special value step is defined
containing all characters not specified by other value step
definitions. If you omit the COLLATING_SEQUENCE_
REMAINDER parameter, the remaining characters keep
their same collating positions as in the default ASCII
collating sequence.

COLLATING_SEQUENCE_ALTER or CSA or SEQA

Indicates whether all characters in a value step are
altered to match the first character in the value step. If
you omit the COLLATING_SEQUENCE_ALTER
parameter, no character alteration is performed.

SUM or S

List of from 1 through 100 sum field definitions. This
parameter cannot be specified with the OWN5 or RETAIN
parameters. If you omit the SUM parameter, no summing
is performed.

A sum field definition is a value set containing up to four
values as follows:

(first . .last, type,repeat_ count) or

(first,length,type,repeat_count)

first

Position of the first byte of the sum field within the
record. (The leftmost byte in a record is numbered 1.)

last

Position of the last byte of the sum field within the
record.

Commands and Functions 2-623

SORT

length

Optional number of bytes in the sum field. The default
length is 1 byte.

type

Name of a numeric data format. The default format is
INTEGER. The valid numeric data format names are:

BINARY
BINARY_BITS
INTEGER
INTEGER_ BITS
NUMERIC_FS
NUMERIC_LO
NUMERIC_LS
NUMERIC_NS
NUMERIC_ TO
NUMERIC_ TS
PACKED
PACKED_NS

repeat_ count

Optional integer specifying the number of consecutive
sum fields defined by the value set. The default
number is 1.

ZERO_LENGTH_RECORDSorZERO_LENGTH_
RECORD or ZLR
Specifies the disposition of zero-length input records. This
parameter applies only to records read from input files; it
does not apply to records supplied by owncode procedures.

The keywords specifying the disposition of all zero-length
input records read for the sort are as follows:

DELETE

Each zero-length record is deleted from the sort or
merge. It is not written to the exception records file.

PAD

Each zero-length record is processed as a short record.

LAST

Each zero-length record is written at the end of the
output.

2-624 NOSNE Commands and Functions Revision G

Remarks

Revision G

SORT

VERIFY_MERGE_INPUT_ORDER or VERIFY or VMIO
or VER

Specifies that merge should check the order of all merge
input records. The records must be in sorted order. If this
parameter is omitted, the record order is not checked.

LOAD_COLLATING_TABLE or LCT

Loads a collation table to be used by one or more keys.
The parameter specifies two values enclosed in
parentheses. The first value is the keytype name you
specify in the key field definition. The second value is the
name of the collation table. The table can be one of the
NOSNE predefined collation tables or a user-defined
collation table.

RESULT_AR.RAY or RA or RESA

Specifies an SCL variable in which sort statistics are
returned. The variable must be a 16-element integer
array. The first element of the array must be assigned
the number of statistics to be returned (O through 15).

• A user-defined collating sequence can be defined by a
sequence of parameters. The first parameter in the
sequence must be a COLLATING_SEQUENCE_NAME
parameter naming the collating seqence.

The naming parameter is followed by one or more
COLLATING_SEQUENCE_STEP, COLLATING_
SEQUENCE_REMAINDER, and COLLATING_
SEQUENCE_ALTER parameters defining the collating
sequence steps that differ from the default ASCII
collating sequence.

The collating sequence definition ends when a
parameter other than COLLATING_SEQUENCE_
STEP, COLLATING_SEQUENCE_REMAINDER, or
COLLATING_SEQUENCE_ALTER is read.

More than one collating sequence can be defined for
the sort.

• For more information, see the NOSNE Advanced File
Management Usage manual.

Commands and Functions 2-625

SOURCE_ CODE_ UTILITY

Examples This command sorts the records on file $LOCAL. OLD and
writes the sorted records on file $LOCAL.NEW. The
records are sorted using the leftmost 10 characters as the
key; the keys are sorted in ascending order using the
ASCII collating sequence.

/sort,key=((1,10))

This command sorts the records on permanent files FILEl
and FILE2 and writes the sorted records on permanent

. file FILE3. The records are sorted using the leftmost 60
bits as the key; the keys are sorted in descending order
as integer values.

/sort,($user.file1,$user.file2),$user.file3, ..
.. /key=((l .. 60,integer_bits,d))

This command sorts the records on FILE4 and writes the
sorted records on FILE5. The records are sorted using two
keys: the first key is bytes 9 through 16 of the record
sorted in descending order as integer values; the second
key is the third character of the record sorted in
ascending order using the ASCII collating sequence. The
first key takes precedence over the second key.

/sort,file4,file5,((9 .. 16,integer,d),(3))

SOURCE_ CODE_ UTILITY
Command

Purpose

Format

Remarks

Begins an SCU command utility session.

SOURCE_CODE_ UTILITY or
SCU or
sou cu

STATUS=status variable

• Entering a CREATE_LIBRARY or USE_LIBRARY
subcommand initializes the working library for the
SCU command utility session. If neither subcommand
is issued, file SOURCE_LIBRARY is used for the base
and result libraries. If file SOURCE_LIBRARY does
not exist, it is created.

• For more information, see the NOSNE Source Code
Management manual.

2-626 NOSNE Commands and Functions Revision G

Examples

$SPECIFIED

The following sequence begins an SCU session and
initializes the working library from file OLDPL in your
working catalog, assumed not to be $LOCAL. The base
file, OLDPL, is a source file whose file structure is a
library. Entering the QUIT subcommand causes the
working library to be written on the next cycle of file
OLD PL.

/source_code_ut11ity
sc/use_library base=oldpl result=oldp1.$next
SC/Quit

The next example does not use the USE_LIBRARY
subcommand, but rather initializes the working library
from file SOURCE_ LIBRARY in your working catalog.

/source_code_uti11ty
sc/create_deck deck=deck1 ..
sc .. /modification=versionl
SC/Quit

$SPECIFIED
Function

Purpose Returns a boolean value indicating whether a parameter
was specified in the parameter list and passed to the
procedure, or whether the default value was passed to the
procedure.

Format $SPECIFIED
(name)

Parameters name

Remarks

Revision G

Specifies the parameter you are interrogating. This
parameter is required.

• This function is used to reference parameters within
procedures.

e If this function returns a value of TRUE, the named
parameter was specified on the parameter list and
passed to the procedure. If a value of FALSE is
returned, the named parameter was not specified, and
the default value, if any, was passed to the procedure.

• For further information about functions, see the
NOSNE System Usage manual.

Commands and Functions 2-627

$STATUS

Examples

_$STATUS
Function

Purpose

Format

The following example shows the portion of a procedure
that determines whether its OUTPUT parameter was
specified in its parameter list:

IF $specified(output) THEN

"Execute 1f OUTPUT specified.

ELSE

"Execute if OUTPUT not specified.

I FEND

Returns a status value with the status record fields you
specify.

$STATUS
(boolean
stringl
any
string2
string3
string4
string5
string6
string7
stringB
string9
string JO
stringll)

Parameters boolean

Specifies the boolean value of the NORMAL field of a
status record. If the normal parameter is TRUE, the
remaining parameters are ignored. If the value of this
parameter is FALSE, you must supply either the condition
parameter or the condition and identifier parameters. This
parameter is required.

2-628 NOSNE Commands and Functions Revision G

Revision G

$STATUS

stringl

Specifies the IDENTIFIER field of the status record. It is
a 2-character string.

any

Specifies the CONDITION field of the status record. It is
either an integer or the name of a status condition.

The condition parameter is assumed to represent the
complete condition code for $STATUS when its integer
value is greater than OFFFFFF(hexadecimal). When the
CONDITION parameter is less than or equal to this
value, you must also specify the product identifier
parameter.

string2

Specifies the TEXT field of the status record. It is a
string of up to 256 characters containing a maximum of
10 separate message parameters. The default is a null
string.

A unit separator character is prefixed to each message
parameter prior to its being inserted in the TEXT field.
This character is used as the status parameter delimiter.

string3

Reserved.

string4

Reserved.

string5

Reserved.

string6

Reserved.

string7

Reserved.

stringB

Reserved.

string9

Reserved.

Commands and Functions 2-629

$STATUS

Remarks

Examples

stringlO

Reserved.

stringl 1

Reserved.

• Some condition code numbers are reserved for Control
Data internal users; other numbers are reserved for
external customer use. For information on· condition
code numbers, refer to the NOSNE Object Code
Management manual.

• For further information about functions, see the
NOSNE System Usage manual.

• The following example displays a constructed status
value with two message parameters:

/display_value $status(false,'CL',
.. /cle$wrong_kind_of_value, ..
. . I 'integer' , 'string')
--ERROR-- Expecting integer value, found string.

• The following example illustrates what is displayed if
the system cannot find the status message associated
with the status condition:

/display_value $status(false, 'MY' ,O,'param1' , ..
. . /'param2')
--ERROR-- CC=MY 0 TEXT=?param1?param2

• The $STATUS function is especially useful when used
to report the terminating condition of an SCL
procedure. The EXIT_PROC statement can be used to
exit a procedure with a specified status, as shown in
the following example:

EXIT_PROC WITH $status(false, ..
'CL' ,cle$wrong_kind_of_value, ..
'INTEGER', 'STRING')

2-630 NOSNE Commands and Functions Revision G

$STRING
Function

$STRING

Purpose Converts a file reference, name, or variable reference to
an uppercase string.

Format $STRING
(any)

Parameters any

Remarks

Examples

Revision G

Identifies the file reference, name, or variable reference to
be converted. This parameter is required.

• If you are converting a file to a string, you can
specify how the file is to be positioned prior to use.

• This function is useful when it is necessary to
compare two names. Because names cannot be directly
compared with relational operators, they must first be
converted to strings and the resulting strings
compared.

• For further information about functions, see the
NOSNE System Usage manual.

The following example uses the $VALUE function to
compare two file names that were passed to an SCL
procedure:

IF $string($value(from)) = $string($value(to)) THEN

urssue appropriate status and exit procedure.a

I FEND

The $VALUE function returns the actual value that was
specified for a procedure parameter. The example assumes
that a procedure was called with file parameters FROM
and TO. The $VALUE(FROM) function supplies the actual
value specified in the FROM parameter. The $STRING
function then converts that value (a name) to a string
that can be compared with the string returned by
$STRING($VALUE(T0)). This string contains the name
specified in the TO parameter.

If the names passed to the procedure are identical, the
procedure sets an appropriate status and terminates.

Commands and Functions 2-631

$STRLEN

$STRLEN
Function

Purpose Returns an integer that represents the current length of a
string.

Format $STRLEN
(string)

Parameters string

Remarks

Examples

Specifies the string whose length you are interrogating.
This parameter is required.

• The length returned is the current length, not the
maximum. defined length. The current length is equal
to the character position of the last character in a
string.

• For further information about functions, see the
NOS/VE System Usage manual.

In the following example, the system is interrogated for
the current length of string 'abc/f123':

/display_value $strlen('abc'//'123')
6

$STRREP
Function

Purpose

Format

Converts an integer, boolean value, file, name, real value,
status, or variable to a string.

$STRREP
(any
integer)

2-632 NOSNE Commands and Functions Revision G

$STRREP

Parameters any

Remarks

Examples

Specifies the integer, boolean value, file, name, real value,
status, string, or variable you wanted converted to a
string. This parameter is required.

integer

Specifies the radix associated with an integer value. The
radix is not part of the created string value. The default
radix is decimal.

o If you supply a file reference as the argument for this
function, the file path returned depends on the current
message mode. If the current message mode if FULL,
the complete file path is returned. If the current
message mode is BRIEF, the file path relative to the
working catalog is returned.

You can use the SET_MESSAGE_MODE command to
change the current message mode.

o For further information about functions, see the
NOSNE System Usage manual.

• The following example converts the integer 256 to
hexadecimal and displays the resulting string:

/display_value $strrep(256,16)
OFF
100

• The following example converts the decimal integer
512 to octal.

/display_value '512 decimal is the same as '
.. ///$strrep(512,8)//' octal.'
512 decimal is the same as 1000 octal.

• The following example converts the boolean value
TRUE to its string representation in uppercase
characters:

/display_value 'The result is '//$strrep(true)//' .'
The result ts TRUE.

• The following example converts the hexadecimal
number OFF to decimal:

/disv $strrep(Off)(16))
255

Revision G Commands and Functions 2-633

SUBMIT_ JOB

For an alternative way of converting integers, see the
description of the DISPLAY_ VALUE command.

• In the following example, the $STRREP function
converts into a string any type of value you specify for
SUBJECT:

PROC exp, e (
subject
manual
status
)

any = 'GETTING HELP'
file= $system.manuals.scl
var of status = $optional

explain s=$strrep($value(subject))
m=$value(manual)

PROCEND exp

When called, the procedure executes the following
command:

explain s='ACCL' m=$system.manuals.sc1

SUBMIT_JOB
Command

Purpose

Format

Submits a job to NOSNE for batch processing.

SUBMIT_JOB or
SUBJ

FILE=file
CPU_ TIME _LIMIT= integer or keyword
JOB _ABORT _DISPOSITION= keyword
JOB_ CLASS= name
JOB _DESTINATION =any
JOB _DESTINATION_ USAGE= name or keyword
JOB _EXECUTION _RING= integer
JOB_ QUALIFIER= list of name or keyword
JOB _RECOVERY _DISPOSITION= keyword
LOGIN _FAMILY= name
MAGNETIC_TAPE_LIMIT=integer or keyword
MAXIMUM_ WORKING_SET=integer or keyword
OPERATOR_FAMILY=name
OPERATOR_ USER= name
OUTPUT_DISPOSITION=file or keyword
REMOTE _HOST _DIRECTNE =string

2-634 NOSNE Commands and Functions Revision G

SR U _LIMIT= integer or keyword
STATION =name or keyword
USER_INFORMATION =string
USER_JOB _NAME= name
SYSTEM_JOB_NAME =string variable
STATUS =status variable

SUBMIT_JOB

Parameters FILE or F

Revision G

Specifies the file to be submitted for processing as a batch
job. This parameter is required.

CPU_TIME_LIMIT or CTL

Specifies the maximum cpu time in seconds that will be
allocated to the job. If the value specified is greater than
the maximum cpu time limit allowed for the user by the
site, the job will be terminated immediately. During job
execution, if the job's accumulated job and monitor cpu
time exceeds the value specified here, a job abort limit
condition will occur and the job will be terminated.

If this parameter is specified, the job classes that the job
can be a member of may be restricted. The job may only
be a member in a job class that supports a cpu time limit
greater than or equal to this parameter's value.

Specify one of the following on this parameter:

integer

Maximum cpu seconds allocated for the job.

SYSTEM_ DEFAULT

The system default value for this attribute is to be
used.

UNLIMITED

The maximum value allowed by the system is to be
used.

UNSPECIFIED

Assigns the value that is used when the parameter is
omitted.

If this parameter is omitted and an explicit job class
name is specified on the JOB_CLASS parameter of this
command, the cpu time limit is determined from the job
class' cpu time limit or the user's validation cpu time

Commands and Functions 2-635

SUBMIT_ JOB

limit, whichever is less. If the JOB_CLASS is
AUTOMATIC, the cpu time limit for the job is determined
by the system default value or the user's validation cpu
time limit, whichever is less.

This parameter takes precedence over the CPU_ TIME_
LIMIT parameter on the LOGIN command.

JOB_ABORT_DISPOSITION or JAD

Specifies what should be done with the job if it aborts
because of system failure. This parameter takes
precedence over the JOB_ABORT_DISPOSITION
parameter on the LOGIN command. If neither the LOGIN
command nor this command specifies this parameter, then
the system default is used. The keywords are:

RESTART

Job is automatically resubmitted so that it starts over
from the beginning.

TERMINATE

Job is discarded.

JOB_CLASS or JC

Specifies the name of the job class to be used for the job.
This parameter takes precedence over a JOB_CLASS
parameter on the LOGIN command. If neither this
command nor the LOGIN command specifies a job class,
the default job class of the login user is used. If a default
job class does not exist for the login user, the system
default is used.

The name AUTOMATIC (if the user is validated to use
the job class AUTOMATIC) will automatically assign the
job to a job class based on the job's attributes.

JOB_DESTINATION or JD

Specifies the location name of the system where the job is
to execute. A location name is a name associated with a
remote system such as a family name or a logical
identifier. Location names are determined by your site.

This parameter is required if the JOB_DESTINATION_
USAGE parameter is specifed. If this parameter is
specified and the JOB_DESTINATION _USAGE parameter
is not specified, QTF is assumed for the JOB_
DESTINATION_ USAGE parameter.

2-636 NOSNE Commands and Functions Revision G

Revision G

SUBMIT_JOB

JOB_DESTINATION_USAGE or JDU

Specifies the queue file transfer application to be used to
forward the job to a remote system for execution. If this
parameter is specified, the job is placed in the job
store-and-forward queue and assigned to the named queue
file transfer application for forwarding. This occurs even if
the job destination has the same name as a local family.

If this parameter is specified, the JOB_DESTINATION
parameter must also be specified. If this parameter is
omitted and the JOB_DESTINATION parameter is
specified, the job is assigned to the QTF application for
forwarding. This occurs even if the job destination has the
same name as a local family.

If both this parameter and the JOB_DESTINATION
parameter are omitted and the LOGIN _FAMILY
parameter specifies a local family, the job is pre validated
and placed in the local job queue. If both this parameter
and the JOB_DESTINATION parameter are omitted and
the LOGIN _FAMILY parameter does not specify a local
family, the job is assigned to the QTF application for
forwarding.

The keywords are:

NTF

The NTF queue file transfer application is used to
forward the job. See your site personnel for more
information on the NTF application.

QTF

The QTF queue file transfer application is used to
forward the job. See the RHF Usage manual for more
information on the QTF application.

JOB_EXECUTION_RING or JER

Specifies the job's execution ring. Allowable values are
from 4 through 13, but must be greater than or equal to
the user's minimum ring validation. This parameter takes
precedence over the JOB_EXECUTION _RING parameter
on the LOGIN command. If neither this command nor the
LOGIN command specifies a job execution ring, the user's
nominal ring is used.

Commands and Functions 2-637

SUBMIT_JOB

JOB_QUALIFIER or JOB_QUALIFIERS or JQ

Specifies from one to five site-defined names used to
possibly limit a job to a specific job class or set of classes
or mainframes.

Specify one of the following:

list of names

Up to five site defined job qualifiers.

NONE

No job qualifiers are to be used.

SYSTEM_ DEFAULT

The system default value for this attribute is to be
used.

If this parameter is omitted, the system default value is
used.

JOB_RECOVERY_DISPOSITION or JRD

Specifies what should be done with the job by the active
job recovery process if there is a system interrupt while
the job is executing. This parameter takes precedence over
the JOB_RECOVERY_DISPOSITION parameter on the
LOGIN command. If neither the LOGIN command nor this
command specifies this parameter, the system default is
used. The keywords are:

CONTINUE

An attempt is made to reestablish the state of the job
as it was at the point of interruption. If the attempt
succeeds, the job continues normal execution. If the
attempt fails, the value specified on the JOB_
ABORT_ DISPOSITION parameter is used.

RESTART

Job is automatically resubmitted so that it starts over
from the beginning.

TERMINATE

Job is discarded.

2-638 NOSNE Commands and Functions Revision G

Revision G

SUBMIT_JOB

LOGIN_FAMILY or FAMILY_NAME or FN or LF

Specifies the family name under which the job is to be
run. This parameter takes precedence over the LOGIN_
FAMILY parameter on the LOGIN command. If neither
this command nor the LOGIN command specifies this
parameter, the family of the submitting job is used if the
job is to be run locally and the remote system default
family is used if the job is to be run at a remote NOSNE
system.

MAGNETIC_TAPE_LIMIT or MTL

Specifies the maximum number of magnetic tape drives
required simultaneously by the job.

If this parameter is specified, the job classes that the job
can be a member of may be restricted. The job may only
be a member in a job class that supports a magnetic tape
limit greater than or equal to this parameter's value.

Specify one of the following on this parameter:

integer

Maximum number of tape units required by the job.

SYSTEM_ DEFAULT

The system defaµlt value for this attribute is to be
used.

UNLIMITED

The maximum value allowed by the system is to be
used.

UNSPECIFIED

Assigns the value that is used when the parameter is
omitted.

If this parameter is omitted, the system default is used.

This parameter takes precedence over the MAGNETIC_
TAPE_LIMIT parameter on the LOGIN command.

MAXIMUM_WORKING_SETorMAXWS

Specifies the maximum working set in pages that the job
requires. If this parameter is specified, the job classes
that the job can be a member of may be restricted. The

Commands and Functions 2-639

SUBMIT_JOB

job may only be a member in a job class that supports a
maximum working set size greater than or equal to this
parameter's value.

Specify one of the following on this parameter:

integer

Maximum working set in pages needed for the job.

SYSTEM_ DEFAULT

The system default value for this attribute is to be
used.

UNLIMITED

The maximum value allowed by the system is to be
used.

UNSPECIFIED

Assigns the value that is used when the parameter is
omitted.

If this parameter is omitted, this values is determined by
the job class specified on the JOB_CLASS parameter of
this command. If the JOB_ CLASS parameter is also not
specified, the system default value is used.

This parameter takes precedence over the MAXIMUM_
WORKING_SET parameter on the LOGIN command.

OPERATOR_FAMILY or OF

Specifies the default private station or remote system
operator family name attribute for output files generated
by this job. If the OUTPUT_DESTINATION _USAGE
value for an output file is PRIVATE or NTF, this family
name together with the OPERATOR_ USER attribute
identifies the private station operator or remote system
operator who can print or receive the file. This attribute
is also used to establish the control user attribute of
output files with OUTPUT_DESTINATION_USAGE
values of PRIVATE or NTF.

OPERATOR_USER or OU

Specifies the default private station or remote system
operator user name attribute for output files generated by
this job. If the OUTPUT_DESTINATION _USAGE value
for an output file is PRIVATE or NTF, this user name

2-640 NOSNE Commands and Functions Revision G

Revision G

SUBMIT_JOB

together with the OPERATOR_FAMILY attribute
identifies the private station operator or remote system
operator who can print or receive the file. This attribute
is also used to establish the control user attribute of
output files with OUTPUT_DESTINATION _USAGE
values of PRIVATE or NTF.

OUTPUT_DISPOSITION or STANDARD_OUTPUT or
SO or ODI

Specifies how to dispose of the job's standard output. ·
Allowable values are either a file name or one of several
keywords. The following list describes the results of each
of the allowable values. If this parameter is omitted,
PRINTER is used,

file_name

Specification of a file name indicates that the standard
output is to be copied to the specified permanent file
at job end. You may not specify a remote family name
with this file name.

DISCARD_ALL_OUTPUT (DAO)

All output files generated by the job are discarded.
This option has no effect unless the job destination is
a NOSNE or NTF system.

DISCARD_STANDARD_OUTPUT (DSO)

Standard output is to be discarded at job end. This
option has no effect unless the job destination is a
NOSNE or NTF system.

LOCAL (L)

Any output generated by the job is printed at the
destination system rather than being returned to the
originating user's default output station.

If the job destination is the local system, this option
causes the destination system's default for OUTPUT_
DESTINATION_ USAGE is used rather than the job's
normal default value.

PRINTER (P)

Any output generated by the job is returned to the
originating user's default output station.

Commands and Functions 2-641

SUBMIT_JOB

WAIT_QUEUE (WQ)

Any output generated by the job is returned to the
originating user's $WAIT_QUEUE subcatalog on the
originating system using the user's job name for the
output file name or the user file name for output
generated by the PRINT_FILE command. If the
$WAIT_ QUEUE subcatalog does not exist at the time
the output files are returned, it will be created for the
user.

REMOTE_HOST_DIRECTNE or RHD

Specifies a default text string which may be used to
control processing of jobs submitted to remote systems.
This string should contain one of the following:

• A SUBMIT_JOB command for jobs submitted to
remote NOSNE systems for processing.

• A ROUTE command for jobs submitted to non-NOSNE
systems for processing.

This parameter is ignored unless the JOB_
DESTINATION_USAGE parameter specifies the
appropriate value. For more information on submitting
jobs to remote systems, see the NOSNE System Usage
manual.

If omitted, the REMOTE_HOST_DIRECTIVE job attribute
is used.

SRU_LIMIT or SL

Specifies the maximum system resource units (srus) that
will be allocated to the job. If the value specified is
greater than the maximum sru limit allowed for the user
by the site, the job will be terminated immediately.
During job execution, if the job's accumulated srus exceed
the value specified here, a job abort limit condition will
occur and the job will be terminated.

If this parameter is specified, the job classes that the job
can be a member of may be restricted. The job may only
be a member in a job class that supports an sru limit
greater than or equal to this parameter's value.

Specify one of the following on this parameter:

integer

Maximum srus allocated for the job.

2-642 NOSNE Commands and Functions Revision G

Revision G

SUBMIT_JOB

SYSTEM_DEFAULT

The system default value for this attribute is to be
used.

UNLIMITED

The maximum value allowed by the system is to be
used.

UNSPECIFIED

Assigns the value that is used when the parameter is
omitted.

If this parameter is omitted and an explicit job class
name is specified on the JOB_CLASS parameter of this
command, the sru limit is determined from the job class'
sru limit or the user's validation sru limit, whichever is
less. If the JOB_CLASS is AUTOMATIC, the sru limit
for the job is determined by the system default value or
the user's validation sru limit, whichever is less.

This parameter takes precedence over the SRU _LIMIT
parameter on the LOGIN command.

STATION or S

If the JOB_DESTINATION_USAGE parameter does not
specify NTF, this parameter specifies the default I/O
station name for output files generated by the job.

If the JOB_DESTINATION _USAGE parameter does
specify NTF, this parameter specifies the name of the
control facility that controls the transfer of the job to the
NTF remote system. See your site personnel for more
information on the NTF application.

If the JOB_DESTINATION _USAGE attribute specifies
PRIVATE, this parameter must specify the control facility
name.

The keyword AUTOMATIC, indicates that the system
default is to be used.

USER_INFORMATION or UI

Specifies a user information string of up to 256
characters. This string enables you to pass information
(such as a file path) to a submitted job. This string is
also passed on to all output files generated by the
submitted job.

Commands and Functions 2-643

SUBMIT_JOB

Remarks

If omitted, the user information string associated with the
submitting job is assumed.

USER_JOB_NAME or JOB_NAME or JN or UJN

Specifies the name by which the submitted job is to be
known. This name is used in place of a user job name
specified as a parameter on the LOGIN command. If this
parameter is omitted and the LOGIN command does not
specify a USER_JOB_NAME, the LOGIN_ USER value
from the LOGIN command is used.

SYSTEM_JOB_NAME or SJN

Specifies a variable to which the system-supplied name of
the job is returned. The system-supplied name is returned
in a string variable.

• For jobs whose destination is NOS/VE, The batch job
is the collection of SCL statements contained in a file.
A LOGIN command must be included as the first
command in the file.

• The progress of the jobs that execute on the local
system can be determined using the DISPLAY_JOB_
STATUS and DISPLAY_HISTORY_LOG commands.

• If both the JOB_DESTINATION and LOGIN _FAMILY
are specified on this command, the job first goes to
the job destination. Once there, the LOGIN _FAMILY
value is examined to see if it is a family that is local
or remote to the job destination system. If the family
is remote to the job destination system, QTF is used
to transfer the job to the remot~ system.

• The file referenced on the FILE parameter of this
command must have a FILE_ CONTENTS file
attribute of UNKNOWN or LIST.

• For more information, see the NOS/VE System Usage
manual.

2-644 NOS/VE Commands and Functions Revision G

Examples

Revision G

SUBMIT_JOB

In the following example, a NOS/VE job is created on file
SUBMIT_FILE using the COLLECT_TEXT command.

/colt submit_file

ct? login login_user=sdh password=pass456
login_family=nve

ct? display_cOITllland_list all
ct? logout
ct? **

The job is complete with LOGIN and LOGOUT commands
(the LOGOUT command is optional). The job requests a
full display of the command list. The job is submitted
with the following command and is given the name MY_
JOB.

/submit_job f=submit_file ujn=my_job

You can monitor the progress of the job using the
DISPLAY_JOB_STATUS command. For example:

/disjs jn=my_job do=all
Control_Family
Control_User
CPU_ T1 me_ Used

Display_Message
Job_Class
Job_Destination_Usage
Job_Mode
Job_State
Login_Family
Login_User
Operator_Action_Posted
Page_Faults

System_Job_Name
User_Job_Name

nve
sclqr
Job Mode- 16.137

Monitor Mode- 0.365
f orend
batch
ve
batch
initiated
nve
sclqr
no
Assigned- 105

From Disk- 67
Reclaimed- 23

$0990_0102_aad_2011
my_job

The preceding display indicates that the job is executing
(the Display _Message field shows the command currently
executing). A subsequent DISPLAY_JOB_STATUS
command could not locate the job, which indicates that
the job has completed.

Commands and Functions 2-645

$SUBSTR

/d1sjs jn=my_job do=all
Name Not Found my_job

$SUBSTR
Function

Purpose Returns a specified portion of a string.

Format $SUBSTR
(stringl
integerl
integer2
string2)

Parameters stringl

Remarks

Examples

Specifies the string from which you want the substring
extracted. This parameter is required.

integerl

Specifies the position in the string where you want the
substring to begin. This parameter is required.

integer2

Specifies the length (in characters) of the substring you
want returned. The default length is 1.

string2

Specifies the character used to pad the string when the
full string is shorter than the requested length of the
substring. The substring is padded on the right with the
fill character. The default is the ASCII space character.

o To use $SUBSTR in its simplest form, provide a string
and a substring starting position. $SUBSTR returns th
single character that occurs at the specified position.

• For further information about functions, see the
NOS/VE System Usage manual.

• The following example accepts the default length of 1
character and the substring starting position.
$SUBSTR returns the single character that occurs at
the specified position.

/display_value $substr('abcdefghijklm',10)
j

2-646 NOSNE Commands and Functions Revision G

TABLE ND

o The next example specifies a substring length of 3
characters. It returns a 3-character string starting
with the 10th character of the string 'abcdefghijklm'.

/d1splay_value $substr('abcdefgh1jklm' ,10,3)
jkl

• The next example specifies the character that fills the
substring when the length you request is longer than
the string. It returns an 8-character substring starting
with the 10th character of the string 'abcdefghijklm'
and specifies the fill character to be 11

-
11

•

/display_value $substr('abcdefghijklm' ,10,8,'-')
jklm----

• In the next example, the $DATE function is provided
as the string subject in the $SUBSTR function. The
current Julian date is returned.

/display_value $date(ordinal)
1987087
/display_value $substr($date(ordina1),5,3)
087

TABLE ND
UTILITY Subcommand

Purpose Ends the collection of definitions for a utility command
table. This command has no parameters.

Format TABLE ND

Parameters None.

Remarks • This command separates the entries in the command

Revision G

table from the executable statements in the established
utility.

This command is required only if the utility's
command table is defined within the
UTILITY /UTILITYEND block.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-647

TASK

TASK
Command

Purpose

Format

Delimits a sequence of one or more SCL statements to be
executed as a synchronous or asynchronous task.

TASK
TASK_NAME =name
RING= integer
DEBUG _MODE= boolean
SUBSTITUTION_MARK=string or keyword
STATUS= status variable

Parameters TASK_NAME or TN

Specifies that the delimited command sequence is to be
executed as an asynchronous task and provides a name
that can be used to refer to the task.

RING or R

Specifies the ring at which the new task is to begin
execution. This parameter can be used to switch to any
ring between and including the minimum ring for which
you are validated and 13.

If RING is omitted, the current ring is used.

DEBUG_MODE or DM

Indicates whether the task is to be run in Debug mode.
Options are:

ON

Task executed under Debug control.

OFF

Task executed without Debug control.

If the DEBUG_MODE is omitted, OFF is used.

SUBSTITUTION_MARKorSM

Specifies a one-character string used within a statement
to delimit the text to be substituted. This character
cannot be any character that is valid in an SCL name.

Corresponding pairs of substitution marks must appear on
the same line.

2-648 NOSNE Commands and Functions Revision G

Remarks

$TASK_NAME

If a second substitution mark is not found on the same
line, the end-of-line is treated as the second mark.

If two consecutive substitution marks appear, they are
replaced by a single substitution mark in the text.

Substitution marks cannot be used to construct the
TASKEND statement.

• An asychronous task inherits the current system
environment objects of the job. Any change to these
objects by the asychronous task are effective only for
the asychronous task. The system environment objects
are COMMAND_LIST, FILE_CONNECTIONS,
INTERACTION_STYLE, MESSAGE_LEVEL,
NATURAL_LANGUAGE, PROGRAM_ATTRIBUTES,
and WORKING_CATALOG.

• The commands (statement list) to be processed as a
separate task are specified between the TASK and
TASKEND statements.

• For more information, see the NOSNE System Usage
manual.

$TASK_NAME
Function

Purpose Returns the name of the requesting task as a string.

Format $TASK_NAME

Parameters None.

Remarks G The task name is the name supplied on either the

Revision G

TASK/TASKEND statements or the EXECUTE_ TASK
command that initiated the requesting task. If the
requesting task was not given a name in this way,
$TASK_NAME returns a null string.

• For further information about functions, see the
NOSNE System Usage manual.

Commands and Functions 2-649

$TASK_STATUS

Examples The following example creates a task and displays its own
task name:

/task alpha
task/display_value $task_name
task/taskend
I
ALPHA

$TASK_STATUS
Function

Purpose

Format

Returns status information for a task that was executed
asynchronously and was specified by its task name.

$TASK_STATUS
(name,
keyword)

Parameters name

Remarks

Specifies the task (supplied on either the TASK/TASKEND
statements or the EXECUTE_ TASK command that
initiated the requesting task). This parameter is required.

keyword

Specifies the type of status information you wanted
returned. Use one of the following values:

COMPLETED (C)

Asks whether the task is known to the system and
has not yet terminated. The value returned is either
TRUE (task is known to the system and has not yet
terminated) or FALSE.

STATUS (8)

Returns the completion status of the task. If the task
has terminated, its final status is returned. If the task
has not yet terminated, or if it is not known to the
system, normal status is returned.

For further information about functions, see the NOS/VE
System Usage manual.

2-650 NOSNE Commands and Functions Revision G

Examples

$TERMINAL_MODEL

The following example shows that TASK_ 2 is known to
the system and has not yet terminated:

/$task_status(task_2,complete)
FALSE

$TERMINAL_MODEL
Function

Purpose Returns the terminal model number.

Format $TERMINAL_ MODEL
(file)

Parameters file

Remarks

Examples

Specifies the name of a terminal file associated with the
terminal.

o For this function to return the model of your terminal,
the model must first be set with the CHANGE_
TERMINAL_ATTRIBUTES command.

o The model number is returned as a string. If no
terminal model is defined, a null string is returned.

o For further information about functions, see the
NOSNE System Usage manual.

The following example queries the system for the terminal
model name:

/display_value $terminal_model
OEC_VT220

TERMINATE_ COMMAND
Command

Purpose

Format

Revision G

Terminates all program activity you invoked that was
interrupted because of a pause break.

TERMINATE_COMMAND or
TERC

STATUS= status variable

Commands and Functions 2-651

TERMINATE_JOB

Remarks

Examples

• This command is valid only while activity is suspended
after a pause break. All activity in the job is
terminated and further commands can be entered.

• For more information, see the NOSNE System Usage
manual.

In this example, the SET_PASSWORD command is
suspended, some other commands entered, and then the
command is terminated with the following sequence.

Enter new password
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Suspended - 1
p/ "Perform some other activity"
p/terminate_comnand
Comnand terminated.
I

Pause break entered.

TERMINATE _JOB
Command

Purpose

Format

Terminates one or more jobs.

TERMINATE_JOB or
TERMINATE_JOBS or
TERJ

NAME= list of name
JOB _STATE= keyword
OUTPUT _DISPOSITION= keyword
STATUS =status variable

Parameters NAME or NAMES or JOB_NAME or JOB_NAMES or
JN or N

Specifies the names of the jobs to be terminated. This
may be the names you supply or the system-supplied
names. This parameter is required.

JOB_STATE or STATE or Sor JS

Restricts the termination of the jobs to those in the
specified state. The keywords are:

ALL

Uses all of the following keyword values.

2-652 NOSNE Commands and Functions Revision G

Remarks

Revision G

TERMINATE_JOB

DEFERRED (D)

Jobs not yet eligible to be initiated.

QUEUED (Q)

Jobs waiting to be initiated.

INITIATED (I)

Jobs that have been initiated.

TERMINATED (T)

Jobs that are terminating.

OUTPUT _DISPOSITION or ODI

Specifies how the terminated job's standard output is to be
disposed of. The following list describes the results of
each of the allowable values. If this parameter is omitted,
the output disposition attribute of the terminating job is
unchanged.

DISCARD_STANDARD_OUTPUT (DSO)

The job's standard output file is to be discarded.

PRINTER (P)

The job's standard output file is to be printed.

WAIT_QUEUE (WQ)

The job's standard output file is to be copied to the
user's $WAIT_ QUEUE subcatalog using the user's job
name as the file name. If the $WAIT_ QUEUE
subcatalog does not exist at the time the job is
terminated, it will be created for the user.

• Jobs can be terminated if they are waiting to be
initiated or have already been initiated.

• You only can terminate jobs for which you are the
login user or the control user.

• A system operator can terminate any job.

• If a job is waiting to be initiated, it is eliminated as a
candidate for execution.

Commands and Functions 2-653

TERMINATE_ OUTPUT

Examples

• If a job has been initiated, NOSNE causes an
abnormal termination. This termination includes
releasing all files and resources used by the job and
routing of its output file and job log for printing.

• Conditions established by WHEN statements are not
processed.

• This command may have to be repeated several times.
If after five attempts, the job does not terminate, the
job will most likely not terminate until NOSNE
operations are suspended.

• For more information, see the NOSNE System Usage
manual.

In this example, a previously submitted job named JOB_ l
is terminated.

/terminate_job n=job_1
/disjs job_1
Name Not Found job_1

TERMINATE_ OUTPUT
Command

Purpose

Format

Deletes a file (or files) from the NOSNE output queue.

TERMINATE_OUTPUT or
TERMINATE_OUTPUTS or
TERMINATE_PRINT or
TERMINATE_PRINTS or
TERO or
TERP

NAME= list of name
OUTPUT _STATE= keyword
STATUS=status variable

2-654 NOSNE Commands and Functions Revision G

TERMINATE_ OUTPUT

Parameters NAME or NAMES or N

Remarks

Examples

Revision G

Specifies the output file(s) to be deleted. Values can be
either the user-supplied or system-supplied name. This
parameter is required.

OUTPUT_STATE or OS

Restricts the termination to output files in the specified
state. Note that an initiated file will not be terminated
until the output application has completed its processing
of the file. Keywords are:

ALL

Output is terminated regardless of its state.

DEFERRED (D)

Restricts termination to files not yet eligible for
printing.

QUEUED (Q)

Restricts termination to files waiting for printing.

INITIATED (I)

Restricts termination to files being printed.

• To use this command you must be the login user, the
control user, or a system operator.

• Specifying OUTPUT on the NAME parameter prevents
output from being printed or written to the file
specified by the OUTPUT_DISPOSITION parameter of
the SUBMIT_JOB command.

• For more information, see the NOSNE System Usage
manual.

The following command deletes the output files named
RESULTS and RESULTS_ I from the output queue:

/term1nate_output name=(results,results_l)

Commands and Functions 2-655

TERMINATE_ TASK

TERMINATE_ TASK
Command

Purpose

Format

Terminates one or more asynchronous tasks. This
command terminates the named tasks and all the tasks
generated within those tasks. The specified tasks must
have been initiated by the requesting task.

TERMINATE_TASK or
TERT

TASK_NAME=list of name or keyword
STATUS= status variable

Parameters TASK_NAME or TASK_NAMES or TN

Remarks

$TIME
Function

Specifies the names of the tasks to be terminated. This
may be the names you supply or the keyword ALL. If
ALL is specified, all tasks initiated by the requesting task
are terminated. This parameter is required.

For more information, see the NOSNE System Usage
manual.

Purpose Returns the current time as a string.

Format $TIME
(keyword)

Parameters keyword

Specifies the form in which the time is returned. Use one
of the following keywords:

AMPM

Returns the time in terms of a 12-hour clock with an
AM or PM designation, as in the following example:

6:38 PM

HMS

Returns the time in terms of a 24-hour clock, as in
the following example:

18:38: 14

2-656 NOSNE Commands and Functions Revision G

Remarks

Examples

TRANSFER_FILE_XMODEM

The 24-hour designation for the hour is obtained by
adding 12 to each hour after noon and treating
midnight as 00:00:00. In the preceding example, the
time is 14 seconds after 6:38 p.m.

ISOT

Returns the time as hours, minutes, seconds, and
hundredths of a second, as in the following example:

18.38.14, 79

ISOT stands for International Standards Organization
Time.

MILLISECOND (MS)

Returns the time as hours, minutes, seconds, and
thousandths of a second, as in the following example:

18:38: 14. 796

DEFAULT

Returns the default format of the time. This value is
determined by your site.

If you omit this parameter, DEFAULT is used.

For further information about functions, see the NOS/VE
System Usage manual.

The following examples display the current date and time:

/display_value $time(ampm)//' on '//$date(month)
6:38 PM on March 28, 1987

TRANSFER_FILE_XMODEM
Command

Purpose Initiates a file transfer between the mainframe and a
microcomputer using Christensen protocol.

Format TRANSFER_FILE_XMODEM or
TRAFX or
XMODEM

FILE_NAME=file
TRANSFER_DIRECTION =keyword
FILE_ TYPE =keyword

Revision G Commands and Functions 2-657

TRANSFER_FILE_XMODEM

LINE _FEEDS= boolean
SPECIAL_FILE _TYPE _BLOCKS= boolean
ERROR_ CHECKING= keyword
FILE_ MAR.KERB= keyword
CONFIGURATION _FILE= file
STATUS =status variable

Parameters FILE_NAME or FN

Specifies the file to be transferred. There is no default for
this parameter. If you do not specify a file name the
system prompts you for one.

TRANSFER_DIRECTION or TD

Indicates the direction of file transfer from the point of
view of the host. There are two options available.

SEND (S)

File is sent from the host to a microcomputer.

RECEIVE (R)

File is received by the host from a microcomputer.

There is no default for this parameter. If you do not
specify an option, the system prompts you for one.

FILE_TYPE or FT

Specifies the type of file received from a microcomputer.
The following are valid keywords.

TEXT (T)

A text file is to be received.

BINARY (B)

A CYBER binary file is to be received.

OBJECT_LIBRARY (OL)

An object library is to be received.

MICRO_BINARY (MB)

A micro binary is to be received.

SELECT_AUTOMATICALLY (SA)

The file type to be received will be determined by the
first block received.

2-658 NOSNE Commands and Functions Revision G

Revision G

TRANSFER_FILE_XMODEM

VE_BACKUP

A N OSNE backup file is to be received.

There is no default for this parameter.

If TRANSFER_ DIRECTION= RECEIVE and you do not
make an entry, you will be prompted for an entry.

If TRANSFER_ DIRECTION= SEND, this parameter is
ignored.

LINE_FEEDS or LINE_FEED or LF
Specifies whether a line feed is required after a carriage
return to signal the end of a line.

If line is set to TRUE, a carriage return and a line feed
are transmitted to the microcomputer to indicate the
end-of-line.

If set to FALSE, this block is never transmitted.

The default is FALSE.

This parameter is only used for transfers from the host
(TRANSFER_ DIRECTION= SEND).

When TRANSFER_DIRECTION=RECEIVE, this
parameter is ignored and either a carriage return and a
line feed or a carriage return alone will indicate the
end-of-line.

SPECIAL_FILE_TYPE_BLOCKSorSPECIAL_FILE_
TYPE_BLOCK or SFTB or SP
Specifies whether a nonstandard block is transmitted.

If TRUE, the nonstandard block is transmitted as the first
block of the file.

If FALSE, this block is never transmitted.

The default is TRUE.

ERROR_CHECKINGorEC
Determines whether error detection is done using
checksums or a CRC algorithm. This parameter is only
used when the host is the receiver (TRANSFER_
DIRECTION= RECEIVE).

If TRANSFER_ DIRECTION= SEND the microcomputer
determines the error checking method used and this
parameter is ignored. The following are valid keywords.

Commands and Functions 2-659

TRANSFER_FILE_XMODEM

CRC (CR)

Error detection is done using the CCITT cyclic
redundancy method.

CHECKSUM (CH)

Error detection is done using the checksum method.

If you do not specify a value, CRC is assumed.

FILE_MARKERSorFILE_MARKERorFM
Specifies both the sequences sent as file markers and the
sequences received that are interpreted as file markers.
This parameter is only applicable to text files.

You may specify one of the following keywords.

NOS (N) or NOSVE (N)

These keywords are equivalent. If the FILE_
MARKERS parameter is specified as NOS or NOSVE,
the following file markers are used.

If TRANSFER_ DIRECTION= SEND:

#EOR is sent from the host to the microcomputer to
indicate end-of-partition.

#EOI is sent from the host to the microcomputer to
indicate end-of-information.

If TRANSFER_ DIRECTION =RECEIVE:

#EOI indicates end-of-information when received by
the host alone on a line. Any characters received after
an #EOI are ignored.

#EOR, #EOF, or #EOP causes an end-of-partition to
be written when any one of the sequences is received
by the host alone on a line.

CPM (C) or MSDOS (M)

These keywords are equivalent. If the FILE_
MARKERS parameter is specified as CPM or MSDOS,
the following file markers are used.

2-660 NOS/VE Commands and Functions Revision G

Remarks

Revision G

TRANSFER_FILE_XMODEM

If TRANSFER_ DIRECTION= SEND:

CONTROL Z is sent by the host to indicate the
end-of-information.

End-of-partitions are ignored when sent to a
microcomputer.

If TRANSFER_DIRECTION=RECEIVE:

CONTROL Z is recognized by the host as
end-of-information.

#EOR, #EOF, #EOP, and #EOI are recognized by the
host as end-of-partition.

If you do not enter a value for this parameter, NOSVE is
assumed.

CONFIGURATION _FILE or CF

Enables you to change the default values for the LINE_
FEED, SPECIAL_FILE_ TYPE_BLOCK, ERROR_
CHECKING, and FILE_MARKERS parameters.

The file you specify for this parameter must exist. If you
do not specify a file, PFTF uses file $USER.PFTF _
CONFIG as the configuration file. If $USER.PFTF _
CONFIG does not exist, PFTF assumes there is no
configuration file.

• If you specify SEND on the TRANSFER_DIRECTION
parameter, the file sent must not be empty and must
have READ access.

• CONTROL X (the ASCII CAN character) will end or
abort a transfer.

• If you specify RECEIVE on the TRANSFER_
DIRECTION parameter and the file does not exist, it
is created. If the file exists, it must have WRITE
access. If the file is an old file (a file that has been
opened regardless of whether it contains data), the
record type must be compatible with the type of file
being received.

If the file is a CYB ER binary or micro binary, the
RECORD_ TYPE file attribute must be undefined.

If the file is a text file, the RECORD_ TYPE file
attribute must be VARIABLE.

Commands and Functions 2-661

$TRANSLATE

Examples

• XMODEM cannot be used when you are connected to
NOS/VE through INTERCOM.

• To use XMODEM, your data network must be able to
set parity to NONE and pass 8-bit data.

• For more information, see the NOS/VE System Usage
manual.

The following example sends file MAIL from the host to a
microcomputer.

/xmodem file_name=mail transfer_direction=send

In the next example you receive file TEST from a
microcomputer.

/xmodem file_name=test transfer_direction=receive

You will be prompted for other parameters.

$TRANSLATE
Function

Purpose Uses a translation table to change characters in a string.

Format $TRANSLATE
(string or keyword
string)

Parameters string or keyword

Specifies a keyword or string that specifes a translation
table. This parameter is required. To use a
NOS/VE-supplied translation table, specify one of the
following keywords:

LOWER_TO_UPPER (LTU)

Produces a string in which all lowercase characters
are changed to uppercase characters.

UPPER_ TO_LOWER (UTL)

Produces a string in which all uppercase characters
are changed to lowercase characters.

string

Specifies the string in which you want the characters
changed. This parameter is required.

2-662 NOSNE Commands and Functions Revision G

Remarks

Examples

$TRIM
Function

Purpose

Format

Revision G

$TRIM

e You can also create your own translation tables. Like
the NOS/VE-supplied translation tables, a user-defined
translation table is a string of 256 characters that
uses the following algorithm:

result = "
FOR i = 1 to $strlen($str1ng) DO

j = $ord($substr(string, i))
result = result//$substr(table, j+1)

FORE ND

• For further information about functions, see the
NOS/VE System Usage manual.

• The following example uses the LOWER_ TO_ UPPER
keyword to translate lowercase characters in a string
to uppercase characters:

/display_value $translate(lower_to_upper,'123_abc')
123_ABC

• The following user-defined translation table converts
every integer in a string to 9:

create_variable name=table kind=string value=''
FOR i=O to 255 DO

j=$char(i)
IF ('O'<=j) and (j<='9') THEN

j ='9'
!FEND
table=table//j
FORE ND

The $TRANSLATE function is then used to change
every integer to a 9:

/tt = $translate(table,'ab12xy3')
/display_variable tt
ab99xy9

Removes trailing space characters from a string.

$TRIM
(string)

Commands and Functions 2-663

$UNIQUE

Parameters string

Remarks

Examples

Specifies the string from which you want trailing space
characters removed. This parameter is required.

For further information about functions, see the NOS/VE
System Usage manual.

Assume that file SAMPLE contains records with a
20-character NAME field followed by a 20-character
ADDRESS field. To access the NAME field and delete any
trailing space characters, enter the following commands:

/create_variable name=line kind=string
/accept~line input=sample var1able=11ne
/name= $tr1m($substr(11ne,1,20))

$UNIQUE
Function

Purpose Returns a 31-character name (beginning with a dollar
sign) that is unique within the context of all NOS/VE
systems.

Format $UNIQUE

Parameters None.

Remarks • This function is used in procedures to create file
names (via the $FNAME function) for scratch files.

• Since variable names cannot begin with a dollar sign,
you must use a substring of $UNIQUE to create
unique variable names.

• Do not use substrings of the value returned by the
$UNIQUE function for other information, such as
processor attibutes. Instead, use the values returned by
the $PROCESSOR, $DATE, and $TIME functions.

• For further information about functions, see the
NOS/VE System Usage manual.

2-664 NOSNE Commands and Functions Revision G

Examples

UTILITY

o In the following example, a string representing a
unique name is assigned to the variable SCRATCH_
FILE. Subsequently, the file specified by the value
contained in the INPUT parameter of the procedure is
copied to file SCRATCH_FILE.

scratch_file =$unique
copy_file $value(input) $fname(scratch_file)

"Process scratch file

• The following example illustrates the type of name the
system returns:
/display_value $unique
$523891440S0102D19870210T100435

UTILITY
Command

Purpose

Format

Delimits the definition and execution of a command
utility.

UTILITY
NAME=name
ENABLE _SUBCOMMAND _LOGGING= boolean
INTERACTNE_INCLUDE_PROCESSOR =name or

keyword
LIBRARY= list of file
LINE_PREPROCESSOR=name or keyword
ONLINE_MANUAL=name or keyword
PROMPT= string
SEARCH_MODE =keyword
TABLES= file
TERMINATION_ COMMAND _NAME =name
STATUS= status variable

Parameters NAME or N

Revision G

Specifies the name used to refer to the utility while it is
active. This parameter is required.

ENABLE_SUBCOMMAND_LOGGING or ESL

Determines whether the utility subcommands are logged
(YES) or not (NO). Logging of commands occurs only for
commands read either from an interactive file or the main

Commands and Functions 2-665

UTILITY

command file ($LOCAL.COMMAND) of a batch job. If this
parameter is set to NO, the utility's subcommands are not
logged, even if they are read from such a file.

If you omit this parameter, YES is assumed.

INTERACTIVE_INCLUDE_PROCESSOR or IIP

Reserved.

LIBRARY or LIBRARIES or L

Specifies the object library or libraries containing the
processors for the utility subcommands. If you omit this
parameter, the library containing the utility is used.

LINE_PREPROCESSOR or LP

Reserved.

ONLINE_MANUAL or OM

Specifies the online manual that describes the utility .This
value is used as the default for the MANUAL parameter
of a HELP command entered from within the utility.

Use the keyword NONE to designate that no online
manual is associated with the utility.

If you omit this parameter, no online manual is associated
with the utility.

PROMPT or P

Specifies the prompt string used for interactive command
input. For command lines, a slash character ({) is
appended to the specified prompt string. For command
continuation lines, the string . .I is appended to the
specified prompt string.

If you omit this parameter, the utility name is used.

SEARCH_MODE or SM

Specifies the command search mode used while processing
commands for the utility. Values can be:

GLOBAL (G)

All entries in the command list can be searched.
Commands specified by command name or file
reference can be executed.

2-666 NOSNE Commands and Functions Revision G

Remarks

Revision G

UTILITY

RESTRICTED (R)

All entries in the command list can be searched. In
order for the search to proceed beyond the first entry
in the command list, the command must be preceded
by a slash (/). Commands specified by command name
or file reference can also be executed.

EXCLUSIVE (E)

Only the entry at the beginning of the command list
is searched for a command. Commands that are
specified by command name or file reference are not
allowed.

When you exit the utility, the command search mode is
restored to the value it had when you entered the utility.

If you omit this parameter, GLOBAL is used.

TABLES or TABLE or T
Specifies the file containing the table of utility
subcommands defined by the COMMAND com~and. This
table is searched for subcommands while the utility is
active.

If you omit this parameter, $COMMAND is used; that is,
the file containing the UTILITY /UTILITYEND command
is assumed to contain the command table.

TERMINATION_COMMAND_NAMEor TCN
Specifies the utility subcommand used to terminate the
utility. This must be one of the commands defined by the
COMMAND command in the utility's command table.

If you omit this parameter, QUIT is assumed to be the
termination command for the utility.

• This command can only be executed from a procedure
residing in an object library.

• Unlike many NOSNE utilities, utilities you create
using this command are not executed as a separate
task within your job.

• For more information, see the NOSNE System Usage
manual.

Commands and Functions 2-667

$UTILITY

$UTILITY
Function

Purpose Returns the specified attribute of the currently executing
command utility.

Format $UTILITY
(keyword)

Parameters keyword

Remarks

Examples

Name of the attribute you want returned. This parameter
is required. Use one of the following keywords:

NAME (N)

Returns the name of the currently active command
utility. If no utility is currently active, NONE is
returned.

ONLINE_MANUAL (OM)

Returns the name of the online manual associated
with the utility. If no online manual is associated with
the manual or no utility is active, NONE is returned.

PROMPT (P)

Returns the string the utility is using to prompt for
interactive command input. If no utility is active, the
null string is returned.

SUBCOMMAND_LOGGING_ENABLED (SCLE or
SLE)

Returns a boolean value specifying whether
subcommand logging is enabled (TRUE) or not
(FALSE). If no utility is active, TRUE is returned.

For further information about functions, see the NOSNE
System Usage manual.

• The following example obtains the name of the active
CREATE_ OBJECT_LIBRARY utility:

COL/display_value $utility(name)
CREATE_OBJECT_LIBRARY
COL/

2-668 NOS/VE Commands and Functions Revision G

$VALIDATION_LEVEL

o The following IF statement tests if the currently active
utility is the SOURCE_CODE_UTILITY, which has
the name SCU:

IF strrep($ut11ity(name)) = 'SCU' THEN
list of statements to be executed

I FEND

$VALIDATION _LEVEL
Function

Purpose Returns the current validation level of the job.

Format $VALIDATION _LEVEL

Parameters None.

Remarks • Returnable values are:

Revision G

USER

During login, you must supply the system with
valid family name, user name and password
information.

ACCOUNT

During login, you must supply the system with a
valid account number in addition to valid USER
level information.

PROJECT

During login, you must supply the system with a
valid project number in addition to valid USER
and ACCOUNT level information.

The values returned by this function are of type
NAME.

• For more information on validation levels, see the
NOSNE System Usage manual.

Commands and Functions 2-669

$VALUE

$VALUE
Function

Purpose

Format

Returns or sets the value of the specified parameter, or
stores a value in a parameter from within the procedure.

$VALUE
(name
integerl
integer2
keyword)

Parameters name

Specifies the parameter for which you want a value
returned, set, or stored. This parameter is required.

integerl

Specifies the number describing the position of the value
set for which you want a value returned, set, or stored;
The default value is 1.

Use this parameter if a parameter is defined as multiple
value sets, each set having one value.

integer2

Specifies the number describing the position of the value
element for which you want a value returned, set, or
stored. The default value is 1.

Use this parameter if a parameter is defined as multiple
value sets, each set having multiple value elements.

keyword

Specifies a range element for which you want a value
returned; this parameter is valid only when the value is
represented as a range. Use one of the following
keywords:

LOW

Returns, sets, or stores the value of the low element.
This is the default.

HIGH

Returns, sets, or stores the value of the high element.

2-670 NOSNE Commands and Functions Revision G

Remarks

Examples

$VALUE

e This function is used to reference parameters within
procedures.

• For further information about functions, see the
NOSNE System Usage manual.

• The following example is based on this procedure
header:

PROC d1splay_number,display_numbers,disn (
number , numbers, n : 1 i st 1 .. 10, 1 .. 2, ..
range of integer -100 .. 100 =$required
output,o file= $OUTPUT
status : var of status = $opt1ona1
)

Consider the following call to the preceding procedure:

/display_number (4,(2 .. 3,2),5,6)

The high element of the first value element in the
second value set is displayed by including the
following command in the DISPLAY_NUMBER
procedure:

/display_value $value(number,2,1,high)

The integer 3 is written to the output file.

• The next example shows how the $VALUE function
can be used to set a variable kind parameter in a
procedure. The following procedure has one parameter,
ANSWER, which is a string variable. The procedure
issues a prompt until a value starting with Y, y, N, or
n is entered. The procedure then sets the value of the
ANSWER parameter to Y or N.

Revision G Commands and Functions 2-671

$VALUE COUNT

PROC ask(
answer, a
status

var of string $required,
var of status $optional

)

input_answer = ,,
REPEAT

accept_line v=input_answer i=input ..
p='Enter Yes or No -'
input_answer = $substr($translate ..
(1 tu i nput_answer) 1 1))

UNTIL (input_answer = 'N')
$value(answer) input_answer

PROCEND ask

An example of using this procedure follows:

/response=''
ask response
Enter Yes or No - you bet
/display_value response
y

$VALUE_COUNT
Function

Purpose Returns an integer count of the number of value elements
supplied in a value set for a parameter.

Format $VALUE_COUNT
(name
integer)

Parameters name

Specifies the parameter for which you want to know the
number of value elements in a value set. This parameter
is required.

integer

Specifies the number describing the position of the value
set for which you want to know the count of elements.
The default value is 1.

Use this parameter if you expect multiple value sets (you
can determine the number of value sets with the $SET_
COUNT function).

2-672 NOSNE Commands and Functions Revision G

Remarks

Examples

$VALUE_KIND

o This function is used to reference parameters within
procedures.

• For further information about functions, see the
NOS/VE System Usage manual.

The example is based on the following procedure header:

PROC d1splay_number,display_numbers,disn (
number , numbers, n : 1 i st 1 .. 10, 1 .. 2, ..
range of integer -100 .. 100 =$required
output.a file= $OUTPUT
status
)

: var of status = $optional

Consider the following call to the preceding procedure:

/display_number ((7,8),4,(6,7))

In this case, the number of elements in the each value
set is displayed by including the following commands in
the procedure:

display_value $value_count(number, 1)

The integer 2 is written to the output file.

display_value $value_count(number,2)

The integer 1 is written to the output file.

display_value $value_count(number,3)

The integer 3 is written to the output file.

$VALUE_KIND
Function

Purpose

Format

. Revision G

Returns a string specifying the type of value supplied for
a parameter.

$VALUE_KIND
(name
integerl
integer2
keyword)

Commands and Functions 2-673

$VALUE KIND

Parameters name

Remarks

Specifies the parameter you are interrogating. This
parameter is required.

integerl

Specifies the number describing the position of the value
set for which you want to tknow the kind of value
supplied. The default value is 1.

Use this parameter if a parameter is defined as multiple
value sets, each set having one value.

integer2

Specifies the number describing the position of the value
element for which you want to tknow the kind of value
supplied. The default value is 1.

Use this parameter if a parameter is defined as multiple
value sets, each set having multiple value elements.

keyword

Range element for which you want the value kind
returned; this parameter is valid only when the value is
represented as a range. Use one of the following
keywords:

LOW

Returns the value kind of the low element. This is the
default.

HIGH

Returns the value kind of the high element.

• This function is used to reference parameters within
procedures.

• This function is generally intended for parameters that
can have a value kind of ANY or can be passed as
keyword values.

• This function returns one of the following strings:

'FILE'
'NAME'
'STRING'
'INTEGER'
'REAL'

2-674 NOSNE Commands and Functions Revision G

Examples

Revision G

'BOOLEAN'
'STATUS'
'VARIABLE'
'UNKNOWN'

$VALUE_KIND

If you do not specify this parameter, the string
'UNKNOWN' is returned.

If a parameter was defined as also accepting a
keyword value, the string 'NAME' is returned.

If the parameter is specified with an application value,
a string is returned that is defined by the application
and describes the kind of value.

• For further information about functions, see the
NOSNE System Usage manual.

The example is based on the following procedure header:

PROC display_number,display_numbers,disn (
number,numbers,n: list 1 .. 10, 1 .. 2, ..
range of integer -100 .. 100 =$required
output,o file= $OUTPUT
status
)

: var of status = $optional

Consider the following call to the preceding procedure:

/display_number (1,(2 .. 3)) out_file

In this case, the value kind of the second parameter is
displayed by including the following command in the
DISPLAY_NUMBER procedure:

/display_value ($value_kind(output)

File is written to the output file.

The value kind of the low range of the second value set
for the NUMBER parameter is displayed by including the
following command in the DISPLAY_NUMBER procedure:

/display_value ($value_kind(number,2,1, low)

INTEGER is written to the output file.

Commands and Functions 2-675

$VARIABLE

$VARIABLE
Function

Purpose Returns the attributes of a variable.

Format $VARIABLE
(name
keyword)

Parameters name

Remarks

Specifies the variable for which you want the specified
attribute returned. This parameter is required.

keyword

Specifies the variable attribute you want returned.

Chapter 3, Function Attributes, lists and describes the
keyword values you can supply and the corresponding
function results. This parameter is required.

• The kind of result returned depends on the attribute
being tested.

• When a string value is returned, all letters within the
string are converted to uppercase.

• For further information about functions, see the
NOSNE System Usage manual.

2-676 NOS/VE Commands and Functions Revision G

Examples

VECTOR_FORTRAN

The following example queries whether a name is
currently a local variable. If it is, it is further queried for
the kind of variable.

IF $variable(data_item,declared) = 'LOCAL' THEN
IF $variable(data_item,kind) = 'BOOLEAN' THEN

"Process boolean variable.

ELSEIF $variable(data_item,kind) 'INTEGER' THEN

"Process integer variable.

ELSEIF $variable(data_item,kind) 'REAL' THEN

"Process real variable.

ELSEIF $variable(data_item,kind) 'STATUS' THEN

ELSE

I FEND
ELSE

"Process status variable.

"Process string variable.

create_variable data_item kind=integer
I FEND

VECTOR_FORTRAN
Command

Purpose

Format

Revision G

Calls and executes the FORTRAN Version 2 compiler.

VECTOR_FORTRAN or
FTN2 or
VECF or
VFORTRAN or
VFTN or
FORTRAN2

INPUT=list of file
BINARY_OBJECT=file

Commands and Functions 2-677

VECTOR_ FORTRAN

LIST=file
COMPILATION _DIRECTIVES= boolean
DEBUG _AIDS= list of keyword
DEFAULT_ COLLATION= keyword
ERROR =file
ERROR_LEVEL =keyword
EXPRESSION_EVALUATION=list of keyword
FORCED _SAVE= boolean
INPUT_SOURCE_MAP=list of file
LIST_ OPTIONS= list of keyword
MACHINE _DEPENDENT= keyword
ONE_ TRIP _DO= boolean
OPTIMIZATION _LEVEL= keyword
OPTIMIZATION_ OPTIONS= list of keyword
REPORT_ OPTIONS= keyword
RUNTIME_CHECKS=list of keyword
STANDARDS_DIAGNOSTICS =keyword
TARGET _MAINFRAME= keyword
TERMINATION _ERROR_LEVEL =keyword
VECTORIZATION _LEVEL= list of keyword
STATUS =status variable

Parameters INPUT or I

Optional; specifies the name of the file or files containing
the input source code. If more than one file is specified,
the list of files is enclosed in parentheses. Omission
causes $INPUT to be used.

BINARY_OBJECT or BO or BINARY or B

Optional; specifies the file to receive the binary object
code produced. Omission selects $LOCAL.LGO. $NULL
discards object code.

LIST or L

Optional; specifies the file to receive the compiler output
listing. Omission selects $LIST for batch jobs and $NULL
for interactive jobs.

COMPILATION _DIRECTIVES or CD

Optional; determines whether C$ directives within the
source program are recognized. If ON is selected, the C$
directives are processed. OFF causes the C$ directives not
to be processed. Omission selects ON.

2-678 NOSNE Commands and Functions Revision G

Revision G

VECTOR_ FORTRAN

DEBUG_AIDS or DA

Optional; selects debugging options. Options are:

PC

Generates argument checking information in the object
code.

DT

Generates line number and symbol tables in the object
code.

ALL

Selects both the PC and DT options.

NONE

Causes no argument checking information or line
number and symbol tables to be generated in the
object code.

Omission selects NONE.

DEFAULT_COLLATION or DC

Optional; specifies the weight table to be used for
evaluating character expressions and by the CHAR and
ICHAR functions. USER or U selects a user-specified
weight table (DISPLAY). Omission, or FIXED or F, selects
the fixed weight table (ASCII).

ERROR or E

Optional; specifies the name of the file to receive
compiler-generated error messages. Omission writes the
error messages to the file $ERRORS.

ERROR_LEVEL or EL

Optional; determines the minimum severity level for
which errors are to be listed. All errors of severity
greater than or equal to the specified level will be listed
on the error and list files. Options are: TRIVIAL or T,
INFORMATIONAL or I, WARNING or W, FATAL or F, or
CATASTROPHIC or C. Omission selects WARNING.

Commands and Functions 2-679

VECTOR_FORTRAN

EXPRESSION _EVALUATION or EE

Optional; controls the way the compiler evaluates
expressions. Options are:

CANONICAL or C

Expressions are evaluated according· to precedence
rules.

MAINTAIN _EXCEPTIONS or ME

Inhibits optimizations that eliminate instructions that
might cause runtime errors. Also causes floating-point
comparisons for real or double precision operands.

MAINTAIN_PRECISION or MP

Inhibits optimizations that change a floating-point
operation to a mathematically equivalent form.

OVERLAPPING_STRINGS_MOVES or OSM

Guarantees valid character assignment statements of
the form v =exp where the character positions being
defined in v are referenced in exp.

REFERENCE or R

Intrinsic functions are called by reference rather than
by value. Also results in the generation of descriptive
error messages by internal FORTRAN routines if
execution errors occur. If this option is not selected,
the operating system produces error messages which
generally provide less information.

Omission, or NONE, selects no options. Multiple options
are specified in the form (op, ... , op).

FORCED_SAVE or FS

Optional; specifies whether or not the values of variables
and arrays in subprograms are to be retained after
execution of a RETURN or END statement. ON saves
variable and array values. This is equivalent to specifying
a SAVE statement in every subprogram compiled.
Omission, or OFF, does not save variable and array
values.

2-680 NOSNE Commands and Functions Revision G

Revision G

VECTOR_FORTRAN

INPUT_SOURCE_MAP or ISM

Specifies the file containing the source map that was
generated by the OUTPUT_SOURCE_MAP option on the
SCU EXPAND_DECK command. Omission causes $NULL
to be used.

LIST_OPTIONS or LO

Optional; specifies the information that is to appear on
the compiler output listing. Options are:

A

Lists the attributes of each symbolic name used ·or
defined within the program.

M

A symbol attribute list (same as A option), Do loop
map, and common block map are produced.

0

A listing of the generated object code is provided.

R

A cross reference listing; the listing shows the
locations of the definition and use of each symbolic
name in the program.

s
A listing of the program source statements is written
to the output file.

SA

Same as the S option, except that lines turned off by
C$ directives are listed.

NONE

No output listing is produced.

Omission selects the S option. Multiple options are
specified in the form (op, ... , op).

MACHINE_DEPENDENT or MD

Optional; specifies whether the use of machine dependent
capabilities within the program are to be diagnosed and if
so, how severely:

Commands and Functions 2-681

VECTOR_FORTRAN

NONE

Machine dependent usages are not diagnosed.

TRIVIAL (T) or INFORMATION AL (I)

Machine dependent usages are diagnosed as trivial
errors.

WARNING (W)

Machine dependent usages are diagnosed as warning
errors.

FATAL (F)

Machine dependent usages are diagnosed as fatal
errors, which result in a nonexecutable program.

Omission selects NONE.

ONE_TRIP_DO or OTD

Optional; sets the minimum trip count (mtc) for DO loops.
The trip count is the number of times a DO loop is
executed. ON sets the mtc to one. OFF sets the mtc to
zero. Omission selects the OFF option.

If the terminal conditions of a DO loop are satisfied
before the loop is entered, the mtc determines whether
the loop is executed. If the mtc equals 1, the loop is
executed once. If the mtc equals 0, the loop is not
executed.

OPTIMIZATION _LEVEL or OL or OPTIMIZATION or
OPT

Optional; selects the level of compiler optimization.
Options are LOW, HIGH or DEBUG. DEBUG results in
object code modified for use with Debug. Omission selects
the LOW option.

OPTIMIZATION_OPTIONSorOO

Specifies instruction scheduling. This parameter is only
significant when the OPTIMIZATION_LEVEL parameter
specifies HIGH. Options are NONE and INSTRUCTION
SCHEDULING. INSTRUCTION SCHEDULING allows for
improved execution on the Model 990 regardless of the
machine on which compilation occurs. NONE indicates

2-682 NOSNE Commands and Functions Revision G

Revision G

VECTOR_FORTRAN

that instruction scheduling is determined by the values of
the OPTIMIZATION_LEVEL and TARGET_MAINFRAME
parameters as follows:

If TARGET..:..MAINFRAME specifies C180_CM or C180V
and the compilation machine is a model 990, instruction
scheduling occurs. If TARGET_MAINFRAME specifies
C180_CM and the compilation machine is not a model
990, instruction scheduling also occurs. All other
combinations of the TARGET_MAINFRAME and
compilation machine do not produce instruction
scheduling.

Omission selects NONE.

REPORT_OPTIONS or RO

Specifies the level of detail of the report messages on the
listing file. BRIEF(B) selects brief mode messages.
FULL(F) selects full mode messages. Omission selects
NONE.

RUNTIME_CHECKS or RC

The RUNTIME_CHECKS parameter selects runtime
range checking of subscripts and substrings. This
parameter allows you to select multiple options. Options
are:

Omitted

Same as RUNTIME_CHECK=NONE.

RUNTIME_CHECKS=NONE

Causes no options to be selected.

RUNTIME_ CHECKS= R

Selects runtime range checking for character substring
expressions. If a character substring expression would
cause the substring to exceed the bounds declared by
the CHARACTER statement, an informative diagnostic
is issued and execution continues.

RUNTIME_CHECKS=S

Selects runtime range checking for subscript
expressions. If a subscript expression would cause the
substring to exceed its declared dimension bounds, an
informative diagnostic is issued and execution
continues.

Commands and Functions 2-683

VECTOR_ FORTRAN

RUNTIME_ CHECKS= ALL

Selects both the R and S options.

NOTE

If RUNTIME_ CHECKS specifies R, S, or ALL, and
OPTIMIZATION_LEVEL=HIGH and VECTORIZATION_
LEVEL= HIGH is also selected, the RUNTIME_CHECKS
parameter is ignored.

STANDARDS_DIAGNOSTICS or SD

Optional; specifies whether or not non-ANSI source
statements are to be diagnosed and, if so, how severely:

NONE

Nonstandard usages are not diagnosed.

TRIVIAL (T) or INFORMATIONAL (I)

Nonstandard usages are diagnosed as trivial errors.

WARNING (W)

Nonstandard usages are diagnosed as warning errors.

FATAL (F)

Nonstandard usages are diagnosed as fatal errors.

Omission selects NONE.

TARGET _MAINFRAME or TM

The TARGET_MAINFRAME parameter specifies the kind
of mainframe for which the object code is generated. This
parameter is only significant when the OPTIMIZATION_
LEVEL parameter specifies HIGH. Options are:

Omitted

Same as TARGET_MAINFRAME=C180_CURRENT_
MAINFRAME.

TARGET_MAINFRAME = C180_ VECTOR
(TM=Cl80V)

The object code is generated for use on the model 990
of the CYBER 180. The model 990 has
vector-processing capabilities.

2-684 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

VECTOR_FORTRAN

TARGET_MAINFRAME = C180_MODEL_
INDEPENDENT (TM= 180MI)

The object code is generated for use on any model of
the CYBER 180.

TARGET_MAINFRAME =Cl SO_ CURRENT_
MAINFRAME (TM=C180CM)

The object code is generated for use on the machine
on which compilation occurs.

For Better Performance

Be sure to use the TARGET_MAINFRAME=C180_
VECTOR option for code that is going to be executed on a
model 990 of the CYBER 180.

TERMINATION_ERROR_LEVEL or TEL

Optional; specifies the minimum error severity level for
which the compiler is to return abnormal status. Options
are: TRIVIAL(T), INFORMATIONAL(I), WARNING (W),
FATAL (F) or CATASTROPHIC (C). Abnormal status is
returned for all errors having severity equal or greater
than the specified level. Omission selects FATAL.

VECTORIZATION _LEVEL or VL or VECTORIZATION
or VEC

Specifies the vectorization level. NONE performs no
vectorization. HIGH performs a high level of vectorization
resulting in faster execution time but slower compilation
time. Omission selects NONE.

• For more information, see the FORTRAN Version 2
Language Definition manual.

• FORTRAN Version 2 is also known as VECTOR
FORTRAN.

The following commands specify three parameters and
select the default values for all other parameters:

/vector_fortran input=afile binary_object=bfile
.. /error_level=fatal

vftn i=afile b=bfile el=fatal

Options chosen:

Commands and Functions 2-685

$VNAME

$VNAME
Function

INPUT=AFILE

Source statements are read from file AFILE

BINARY_OBJECT=BFILE

Object code is written to file BFILE

ERROR_LEVEL=FATAL

Only fatal and catastrophic errors are written to the
error and list files

The following commands are equivalent; they select
default values for all parameters except the INPUT
parameter:

/vector_fortran input=myfile

or

/vftn 1=myf11e

Purpose Converts a string to a variable name.

Format $VNAME
(string)

Parameters string

Remarks

Specifies the string you want converted to a variable
name. This parameter is required.

• This function makes it possible to reference a variable
via a string.

• For further information about functions, see the
NOS/VE System Usage manual.

2-686 NOSNE Commands and Functions Revision G

Examples

vx

The following example creates an integer variable named
COUNT and a string variable named COUNT_POINTER.
To access the value of COUNT, the $VNAME function is
given the value in COUNT_POINTER.

/count = 10
/count_pointer = 'count'
/display_value Svname(count_pointer)
10

vx
Command

Purpose

Format

Places you in the VX/VE environment.

vx
AR.GUMENTS =string
GENERATE _LOAD _MAP =keyword
LIBRARIES= list of file
LOAD_MAP_OPTIONS=list of keyword
STATUS=status variable

Parameters ARGUMENTS or ARGS or A

Revision G

The first process executed by the process manager.
Default is 'pm', which causes the regular login shell to be
executed.

GENERATE_LOAD_MAPorGLM

Generate loadmaps for each task that is executed. The
loadmap names are of the form "$LOCAL.$LOADMAPnn"
where nn is the process slot number. The appropriate
loadmap can be determined by looking in the job log for a
message of the form "Generating $LOADMAPnn for pid=
<process id>.".

If GENERATE_LOAD_MAP is omitted, a loadmap will
not be generated.

LIBRARIES or LIBRARY or L

Replace the default bound emulation library with a list of
user-specified libraries. The optional list of object libraries
will be added to the beginning of the program library list.
The pm searches the libraries in the order specified.

Maximum number of libraries that can be specified is ten.

Commands and Functions 2-687

vx

Remarks

WARNING: A bound emulation library must be one of the
user-specified libraries.

This option is typically used to test a new version of the
bound emulation library or to specify an ordered list of
multiple libraries to be searched to satisfy externals for
each process that pm starts.

If LIBRARY is omitted, the default VX/VE bound
emulation library $SYSTEM.VX.LIB.BOUND_EM_LIB is
used.

LOAD_MAP_OPTIONSorLMO

Set of one or more keywords indicating the information to
be included in the load map. Options are:

NONE

No load map is written.

SEGMENT (S)

Segment map.

BLOCK (B)

Block map.

ENTRY_POINT (EP)

Entry point map.

CROSS_REFERENCE (CR)

Entry point cross-reference.

ALL

Segment map, block map, entry point map, and entry
point cross-reference.

If LOAD_MAP _OPTION is omitted, the default load map
options are not changed. The initial default option is
NONE.

The VXNE environment is documented in the VX/VE
publications.

2-688 NOSNE Commands and Functions Revision G

WAIT

WAIT
Command

Purpose

Format

Suspends command processing until either a specified
number of milliseconds have elapsed, or another specified
event has taken place.

WAIT
TIME= integer
TASK_NAMES=list of name
QUEUE_NAMES=list of name
UNTIL= keyword
STATUS =status variable

Parameters TIME or T

Revision G

Specifies the number of milliseconds you want command
processing suspended before the command sequence that
issued the WAIT command is eligible to resume
processing. If you omit this parameter, no suspension
occurs.

TASK_NAMES or TASK_NAME or TN

Specifies the task(s) that must be completed before
command processing can resume. The specified task(s)
must have been initiated by the requesting task.

QUEUE_NAMES or QUEUE_NAME or QN

Specifies the job queue(s) from which a message must be
received before command processing resumes.

UNTIL or U

Specifies whether any or all of a specified set of events
must occur before the command terminates. This
parameter can be immediately followed by one of the
following keywords:

ANY
Stipulates that any of the specified events must occur.
This is the default.

ALL

Stipulates that all of the specified events must occur.

Commands and Functions 2-689

WAIT_FOR_SYSTEM_IDLE

Remarks

Examples

• This command affects only the task in which it was
issued.

• For more information, see the NOS/VE System Usage
manual.

The following command causes a job to wait for 20,000
milliseconds (20 seconds).

/wait 20000

WAIT_FOR_SYSTEM_IDLE
Command

Remarks Reserved for site personnel, Control Data, or future use.

WHEN
Control Statement

Purpose

Format

Delimits a sequence of SCL statements that are to be
executed when a specified condition occurs.

WHEN condition names DO
statement list

WHENEND

Parameters condition name

One or more names specifying conditions for which the
sequence of statements is to be processed. Multiple
condition names are separated by a comma or space. This
parameter is required. The following are valid condition
names:

PROGRAM_ FAULT
LIMIT_FAULT
INTERRUPT
COMMAND_FAULT
ANY_FAULT

statement list

Specifies the statements that reside in the WHEN block.

2-690 NOSNE Commands and Functions Revision G

Remarks

Examples

WHILE

o You can use the CONTINUE statement to exit a
WHEN block.

WHILE

• The following variables are available for obtaining
more information about a condition:

OSV$STATUS

Status variable initialized by the program that
determined the condition.

OSV$COMMAND_NAME

String variable initialized as the name of the
command being processed.

• For more information, see the NOSNE System Usage
manual.

The following is an example of establishing a condition
handler. In this case, the statements following the WHEN
clause are executed if a time limit condition is detected.

WHEN limit_fault DO
put_line 'Incrementing time limit by 100 CP seconds.'
change_job_limit name=cp_time ..
resource_limit={$job_limit(cp_time, accumulator)+100)
CONTINUE RETRY

WHENEND

Control Statement

Purpose

Format

Provides for conditional repetition of a statement list.

label: WHILE
boolean expression DO
statement list

WHILEND label

Parameters label

Revision G

Specifies the name of the WHILE block. This label can be
used by CYCLE or EXIT statements within the block. The
label on the WHILEND clause is optional and is used for
documentation purposes only. It does not affect the
meaning of the WHILEND statement.

Commands and Functions 2-691

WHILE

Remarks

Examples

boolean expression

Specifies the condition that must be TRUE for the
following statement list to be executed. This parameter is
required.

statement list

Specifies the statements that reside in the block.

• The boolean expression is evaluated prior to each
iteration of the statement list. If the expression is
true, the statement list is executed. If the expression
is FALSE, control passes to the statement following
the WHILEND clause.

• For more information, see the NOSNE System Usage
manual.

The following example computes the factorial of a variable
named FACTORIAL_OF:

factorial_of = 5 "Compute the factorial of 5 11

1ast_va1 ue = 1 "Va 1 ue for first loop"
factorial: while factorial_of > 1 do

last_value = factorial_of • last_value
factorial_of = factorial_of - 1

whilend factorial
/d1splay_value last_value
120

I

2-692 NOSNE Commands and Functions Revision G

Function Attributes 3

Function Attributes 3

This appendix contains tables listing the attributes that can be
returned for the $FILE, $JOB, $JOB_OUTPUT, $JOB_STATUS,
$JOB_DEFAULT, $0UTPUT_STATUS, $PROGRAM, and $VARIABLE
functions.

The following table shows the file attributes that can be returned by
the $FILE function.

Table 3-1. File Attributes

Keyword Description Function Result

APPLICATION_ Access control String
INFORMATION (Al) information used by

an application. Refer
to the CREATE_
FILE_PERMIT and
CREATE_
CATALOG_PERMIT
commands for more
information.

ASSIGNED (A) File within the Boolean
requesting job is
assigned to a device.

ATTACHED File is attached. Boolean

CYCLE_NUMBER (CN) Cycle number of a Integer
file.

DEVICE_CLASS (DC) File is assigned to a 'NULL'
NULL device.

File is assigned to 'MASS_
disk (mass storage). STORAGE'

File is assigned to a 'MAGNETIC_ TAPE'
magnetic tape unit.

File is assigned to a 'TERMINAL'
terminal.

(Continued)

Revision G Function Attributes 3-1

Table 3-1. File Attributes (Continued)

Keyword Description Function Result

FILE_CONTENT (FC) Content is unknown. 'UNKNOWN'

Character data. 'LEGIBLE'

Object module. 'OBJECT'

List format (format 'LIST'
effectors included).

Screen formatting 'SCREEN'
form definition.

FILE_ LABEL_ TYPE ANSI labels. 'LABELLED'
(FLT)

Nonstandard labels. 'NON_
STANDARD_
LABELLED'

No labels. 'UNLABELLED'

FILE_ORGANIZATION File organization is 'SEQUENTIAL'
(FO) sequential.

File organization is 'BYTE_
byte-addressable. ADDRESSABLE'

File organization is 'DIRECT_
direct access. ACCESS'

File organization is 'INDEXED
indexed sequential. SEQUENTIAL'

(Continued)

3-2 NOSNE Commands and Functions Revision G

Table 3-1. File Attributes (Continued)

Keyword

FILE_PROCESSOR
(FP)

Revision G

Description

Processor is
unknown.

ADA text.

APL text.

NOS/VE
ASSEMBLER text.

BASIC text.

C text.

COBOL text.

CYBIL text.

Debug object file.

FORTRAN text.

LISP text.

SCL text.

SCU library.

PASCAL text.

PLI text.

NOS PP
ASSEMBLER text.

PROLOG text.

Associated with
VX/VE.

Function Result

'UNKNOWN'

'ADA'

'APL'

'ASSEMBLER'

'BASIC'

'C'

'COBOL'

'CYBIL'

'DEBUGGER'

'FORTRAN'

'LISP'

'SCL'

'SCU'

'PASCAL'

'PLI'

'PPU_
ASSEMBLER'

'PRO LOG'

'VX'

(Continued)

Function Attributes 3-3

Table 3-1. File Attributes (Continued)

Keyword Description Function Result

I f i~~-STRUCTURE Structure is
unknown.

'UNKNOWN'

:·:

:·:

GLOBAL_ FILE_
POSITION (GFP)

Screen formatting
file.

'FORM'

Data file.

Library file.

'DATA'

'LIBRARY'

File is positioned at 'BOI'
beginning-of-
information after the
last file access
request.

File is positioned at 'BOP'
beginning-of-partition
after the last file
access request.

File is positioned at 'EOI'
end-of-information
after the last file
access request.

File is positioned at 'EOP'
end-of-partition after
the last file access
request.

File is positioned at 'EOR'
end-of-record after
the last file access
request.

File is positioned 'MID_RECORD'
between the
beginning and the
end of a record after
the last file access
request.

(Continued)

3-4 NOSNE Commands and Functions Revision G

Table 3-1. File Attributes (Continued)

Keyword Description Function Result

OPENED (0) File is opened. Boolean

OPEN _POSITION (OP) File is positioned at '$BOI'
beginning-of-
information after an
open operation.

File is positioned at '$EOI'
end-of-information
after an open
operation.

File is not positioned '$ASIS'
after an open
operation.

PERMANENT (P) File is permanent. Boolean

SIZE (S) Length of the file in Integer
bytes.

TEMPORARY (T) File is temporary. Boolean

USER_ INFORMATION A string of up to 32 String
(UI) characters supplied

by the user when the
file was defined.
Uppercase conversion
is not performed.

Revision G Function Attributes 3-5

The following table shows the job attributes that can be returned for
the $JOB function.

Table 3-2. Job Attributes

Keyword Description Function Result

C170_0S_TYPE The dual-state 'NOS'
partner for the
current job is NOS.

The dual-state 'NOS/BE'
partner for· the
current job is
NOS/BE.

There is no 'NONE'
dual-state partner;
the job is executing
on a standalone
system.

COMMENT_BANNER Default character String
(CB) string displayed with

output files
generated by the job.
Used as a comment
about the printed
output.

CONTROL_ FAMILY Family name of. the Name
(CF) control user. For

most jobs, this is the
family name of the
login user.

CONTROL_USER (CU) Name of the control Name
user. For most jobs,
this is the name of
the login user.

COPIES (C) Default number of Integer
copies to be made for
output files
generated by the job.

(Continued)

3-6 NOSNE Commands and Functions Revision G

Table 3-2. Job Attributes (Continued)

Keyword Description Function Result

CYCLIC_AGING_ Number in Integer
INTERVAL (CAI) milliseconds at which

the working set of
the job is aged.

DETACHED_JOB_ Number of seconds Integer or name
WAIT_ TIME (DJWT) the job remains

suspended if
detached or
disconnected from
the terminal session
before the job
terminates.

The job is suspended UNLIMITED
indefinitelly.

DEVICE (D) Default device name Name
which, when
combined with the
station name,
identifies a
particular output
device.

DISPATCHING_ Dispatching priority Name
PRIORITY (DP) assigned as default

to all user tasks.

EXTERNAL_ Default external String
CHARACTERISTICS characteristics string
(EC) for output files

generated by the job.

FORMS_CODE (FC) Default forms code String
string for output
files generated by
the job.

(Continued)

Revision G Function Attributes 3-7

Table 3-2. Job Attributes (Continued)

Keyword Description Function Result

JOB_ABORT_
DISPOSITION (JAD)

Action taken when a Name

JOB_CLASS (JC)

JOB_MODE (JM)

JOB_MODE (JM)

job is aborted due to
a system failure:

Job is restarted.

Job is terminated.

Class of the current
job.

Mode of the current
job.

Mode of the current
job is batch.

Mode of the current
job is interactive.

Interactive job was
disconnected from a
terminal as a result
of a DETACH_JOB
command.

Interactive job was
disconnected from a
terminal because of
a problem with the
communication line
(such as hanging up
a telephone).

Interactive job was
disconnected from
the terminal because
of a system failure.

3-8 NOSNE Commands and Functions

RESTART

TERMINATE

Name

name

BATCH

INTERACTIVE

INTERACTIVE_
COMMAND_
DISCONNECT

INTERACTIVE_
LINE_
DISCONNECT

INTERACTIVE_
SYSTEM_
DISCONNECT

(Continued)

Revision G

Table 3-2. Job Attributes (Continued)

Keyword

JOB_RECOVERY_
DISPOSITION (JRD)

JOB_SIZE (JS)

LOGIN _ACCOUNT
(LA)

LOGIN _FAMILY (LF)

LOGIN _PROJECT (LP)

LOGIN_USER (LU)

MAXIMUM_
WORKING_SET
(MAXWS)

MINIMUM_
WORKING_SET
(MINWS)

Revision G

Description

Action taken
following a system
interrupt:

Job is continued
after the point of
interruption.

Job is restarted.

Job is terminated.

Size in bytes of the
job input file. For
interactive jobs, this
value is always zero.

Account name under
which the job is
scheduled and run.

Family name under
which the job is
scheduled and run.

Project name under
which the job is
scheduled and run.

User name under
which the job is
scheduled and run.

Maximum number of
pages of memory
allowed in the job's
working set.

Minimum number of
pages of memory
allowed in the job's
working set.

Function Result

Name

CONTINUE

RESTART

TERMINATE

Integer

Name

Name

Name

Name

Integer or name

Integer

(Continued)

Function Attributes 3-9

I

I
I

I
I

Table 3-2. Job Attributes (Continued)

Keyword Description Function Result

OPERATOR (0) Indicates whether the Boolean
current job has
operator privileges.

OPERATOR_ FAMILY Default family name Name
(OF) of the private station

operator who
receives output files
generated by the job.

OPERATOR_ USER Default name of the Name
(OU) private station

operator who
receives output files
generated by the job.

ORIGINATING_ Name of the Name
APPLICATION_NAME application that
(OAN) caused the job to be

entered into the
system.

OS_ VERSION Name and version of String
the operating system.

OUTPUT_CLASS (QC) Default output class Name
for output files
generated by the job.

OUTPUT_ Default identifier of String
DESTINATION (ODE) system or station

where output files
are printed.

(Continued)

3-10 NOSNE Commands and Functions Revision G

Table 3-2. Job Attributes (Continued)

Keyword

OUTPUT_
DESTINATION_ USAGE
(ODU)

Revision G

Description Function Result

Default use of the
destination to which
output files
generated by the job
are sent. One of the
following activities
takes place:

Name

Output is sent to the DUAL_STATE
NOS or NOS/BE
system that shares
the mainframe. If
there is no dual
state partner, output
is queued
indefinitely.

Output is sent via NTF
the network transfer
facility to a remote
system for printing.

Output is sent to a PRIVATE
private CDCNET I/O
station.

Output is sent to a PUBLIC
public CDCNET I/O
station.

Output is sent via QTF
the queue file
transfer facility to a
remote system for
printing.

(Continued)

Function Attributes 3-11

Table 3-2. Job Attributes (Continued)

Keyword Description Function Result

OUTPUT_ Specifies how the Name or file
DISPOSITION (ODI) job's output is

disposed.

Output is directed to File
the specified file.

All output is DISCARD_ALL_
discarded. OUTPUT

Standard output is DISCARD_
discarded. STANDARD_

OUTPUT

Output gener~ted by LOCAL
a job run on a
remote system is
directed to the
printer on the
. remote system.

Output is directed to PRINTER
the job owner's
default output
station.

Output is directed to WAIT_ QUEUE
the job owner's
$WAIT_ QUEUE
subcatalog.

OUTPUT_PRIORITY Default priority Name
(OP) increment that is

added to the initial
output priority of
output files
generated by the job.

(Continued)

3-12 NOSNE Commands and Functions Revision G

Table 3-2. Job Attributes (Continued)

Keyword

PAGE_AGING_
INTERVAL (PAI)

REMOTE_HOST_
DIRECTIVE (RHD)

ROUTING_BANNER
(RB)

SERVICE_ CLASS (SC)

SITE_INFORMATION
(SI)

STATION (S)

Revision G

Description

Number of job mode
central processing
units (in
milliseconds) at
which the pages of
memory in a job's
working set are
aged.

Default directives for
output files
generated by the job
if the OUTPUT_
DESTINATION_
USAGE parameter
either is DUAL_
STATE or names a
transfer facility.

Default character
string that is
displayed with output
files generated by
the job.

Service class of
current job.

Character string that
is established by the
site when the job is
queued.

Default 1/0 station
name to which
output files
generated by the job
are sent.

Function Result

Integer

String

String

Name

String

Name

(Continued)

Function Attributes 3-13

111

I
I
I

Table 3-2. Job Attributes (Continued)

Keyword Description Function Result

SWITCHn Specifies whether the Boolean
sense switch of the
current job is on or
off (n is an integer
from 1 through 8).

SYSTEM Specifies ·whether the Boolean
current job is the
system job.

SYSTEM_JOB_NAME Name assigned to Name
(SJN) the job by the

system.

USER_ INFORMATION Character string of 1 String
(UI) to 256 characters

that is passed on to
all output files
generated by the job.

USER_JOB_NAME Name that was Name
(UJN) supplied by the user

for. the job.

VERTICAL_ PRINT_ Default vertical print Name
DENSITY (VPD) density at which the

files generated by
the job will be
printed (SIX, EIGHT,
or NONE).

VFU_LOAD_ Default name of the Name
PROCEDURE (VLP) network procedure

file which defines the
vertical format unit
(VFU) image to be
loaded when a file
generated by the job
is printed.

3-14 NOSNE Commands and Functions Revision G

The following table shows the values that can be returned for the
$JOB_DEFAULT function.

Table 3-3. Job Attribute Defaults

Keyword

CPU_ TIME_LIMIT
(CTL)

JOB_ABORT_
DISPOSITION (JAD)

JOB_CLASS (JC)

JOB_RECOVERY_
DISPOSITION (JRD)

Revision G

Description

Maximum CPU time
in seconds that is
allocated for the job.

This information is
required during
login.

No limit is set on
the allocated CPU
time for a job.

Action taken when a
job is aborted due to
a system failure:

Job is restarted.

Job is terminated.

Default job class of
the current job.

Action taken
following a system
interrupt.

Job is continued
after the point of
interruption.

Job is restarted.

Job is terminated.

Function Result

Integer

REQUIRED

UNLIMITED

RESTART

TERMINATE

Name

Name

CONTINUE

RESTART

TERMINATE

(Continued)

Function Attributes 3-15

Table 3-3. Job Attribute Defaults (Continued)

Keyword Description Function Result

LOGIN _FAMILY (LF) Family name under Name
which the job is
scheduled and run.

MAGNETIC_ TAPE_ Maximum number of Integer
LIMIT (MTL) tapes drives that can

be used
simultaneously by
the job.

This information is REQUIRED
required during
login.

No limit is set on UNLIMITED
the number of tape
drives simultaneously
in use by the job.

This parameter does UNSPECIFIED
not need to be
specified in order for
the job to he
considered for a
particular job class.

MAXIMUM_ Maximum number of Integer
WORKING_ SET pages of memory
(MAXWS) allowed in the job's

working set.

This information is REQUIRED
required during
login.

The maximum UNLIMITED
number of pages
allowed in the job's
working set is
unlimited.

(Continued)

3-16 NOSNE Commands and Functions Revision G

Table 3-3. Job Attribute Defaults (Continued)

Keyword

OUTPUT_CLASS (QC)

OUTPUT_
DESTINATION_ USAGE
(ODU)

Revision G

Description Function Result

Default output class
for output files
generated by the job.

Default use of the
destination to which
output files
generated by the job
are sent. One of the
following activities
takes place:

Name

Name

Output is sent to the DUAL_STATE
NOS or NOS/BE
system that shares
the mainframe. If
there is no dual
state partner, output
is queued
indefinitely.

Output is sent via NTF
the network transfer
facility to a remote
system for printing.

Output is sent to a PRIVATE
private CDCNET 1/0
station.

Output is sent to a PUBLIC
public CDCNET 1/0
station.

Output is sent via QTF
the queue file
transfer facility to a
remote system for
printing.

(Continued)

Function Attributes 3-17

Table 3-3. Job Attribute Defaults (Continued)

Keyword Description Function Result

SITE_INFORMATION Character string that String
(SI) is established by the

site when the job is
queued.

SRU _LIMIT (SL) Maximum system Integer
resource units
allocated for the job.

This information is REQUIRED
required during
login.

No limit is set on UNLIMITED
the allocated CPU
time for a job.

STATION (S) Default 1/0 station Name
name to which
output files
generated by the job
are sent.

VERTICAL_ PRINT_ Default vertical print Name
DENSITY (VPD) density at which the

files generated by
the job will be
printed (SIX, EIGHT,
or NONE).

3-18 NOSNE Commands and Functions Revision G

The following table shows the job_output attributes that can be
returned for the $JOB_OUTPUT function.

Table 3-4. Job Output Attributes

Keyword

COMMENT_ BANNER
(CB)

CONTROL_ FAMILY
(CF)

CONTROL_USER (CU)

COPIES (C)

COPIES_ PRINTED
(CP)

DATA_MODE (DM)

DEVICE (D)

DEVICE_ TYPE (DT)

Revision G

Description

Character string
displayed with the
output file; used as a
comment about the
output.

Family name of the
control user of the
output file.

Name of the control
user of the output
file.

Number of copies to
be printed.

Number of copies
already printed.

Type of data
contained in the file.
Either CODED or
TRANSPARENT is
returned.

Device name; when
combined with the
station name, this
name identifies a
particular output
device.

Device type. For this
release, this value is
always PRINTER.

Function Result

String

Name

Name

Integer

Integer

Name

Name

Name

(Continued)

Function Attributes 3-19

I
I

I

Table 3-4. Job Output Attributes (Continued)

Keyword Description Function Result

EXTERNAL_ External String
CHARACTERISTICS characteristics string
(EC) for the output file.

FILE_POSITION (FP) Point in the output Integer
file at which an
interruption occurred.
The restarting point
is the beginning of
information.

FILE_SIZE (FS) Size of the output Integer
file in bytes.

FORMS_CODE (FC) Forms code string String
for the output file.

LOGIN _ACCOUNT Account name under Name
(LA) which the job

responsible for
genera ting the
output file was
scheduled and run.

LOGIN _FAMILY (LF) Family name under Name
which the job
responsible for
generating the
output file was
scheduled and run.

LOGIN _PROJECT (LP) Project name under Name
which the job
responsible for
ge~erating the
output file was
scheduled and run.

(Continued)

3-20 NOSNE Commands and Functions Revision G

Table 3-4. Job Output Attributes (Continued)

Keyword

LOGIN_USER (LU)

OPERATOR_ FAMILY
(OF)

OPERATOR_ USER
(OU)

ORIGINATING_
APPLICATION _NAME
(OAN)

OUTPUT_CLASS (OC)

OUTPUT_
DESTINATION (ODE)

Revision G

Description

User name under
which the job
responsible for
generating the
output file was
scheduled and run.

Family name of the
private station
operator who
receives the output
file.

Name of the private
station operator who
receives the output
file.

Name of the
application that
caused the job
responsible for
generating the
output file to be
entered into the
system.

Output class for the
output file.

Identifier of system
or station where the
output file is printed.

Function Result

Name

Name

Name

Name

Name

String

(Continued)

Function Attributes 3-21

Table 3-4. Job Output Attributes (Continued)

Keyword

OUTPUT_
DESTINATION_ USAGE
(ODU)

OUTPUT_PRIORITY
(OP)

Description

Use of the
destination to which
the output file is
sent. One of the
following· activities
takes place:

Output is sent to the DUAL_ STATE
NOS or NOS/BE
system that shares
the mainframe. If
there is no dual
state partner, output
is queued
indefinitely.

Output is sent via NTF
the network transfer
facility to a remote
system for printing.

Output is sent to a PRIVATE
private CDCNET 1/0
station.

Output is sent to a PUBLIC
public CDCNET I/O
station.

Output is sent via QTF
the queue file
transfer facility to a
remote system for
printing.

Priority increment Name
that is added to the
initial output priority
of the output file.

(Continued)

3-22 NOSNE Commands and Functions Revision G

Table 3-4. Job Output Attributes (Continued)

Keyword Description Function Result

REMOTE_HOST_ Directives for the String
DIRECTIVE (RHD) output file if the

OUTPUT_
DESTINATION_
USAGE parameter
either is DUAL_
STATE or names a
transfer facility.

ROUTING_BANNER Character string that String
(RB) is displayed with the

output file.

SITE_INFORMATION Character string that String
(SI) is established by the

site when the job is
queued.

STATION (S) UO station name to Name
which the output file
is to be sent (the
control facility name
if the OUTPUT_
DESTINATION_
USAGE attribute is
PRIVATE).

SYSTEM_FILE_NAME System-supplied Name
(SFN) name of the output

file. This file name
is generated by the
NOS/VE system that
executed the
PRINT_FILE
command.

SYSTEM_JOB_NAME Name assigned by Name
(SJN) the system to the job

responsible for
generating the
output file.

(Continued)

Revision G Function Attributes 3-23

Table 3-4. Job Output Attributes (Continued)

Keyword Description Function Result

USER_FILE_NAME User-supplied name Name
(UFN) of the output file. If

no name is specified,
the file name is
used.

USER_ INFORMATION Character string of 0 String
(UI) to 256 characters

that are inherited
from the job that
generated the output
file.

USER_JOB_NAME Name supplied by Name
(UJN) the user for the job

responsible for
generating the
output file.

VERTICAL_PRINT_ Vertical print density Name
DENSITY (VPD) at which the file will

be printed (SIX,
EIGHT, or NONE).

VFU_LOAD_ Name of the network Name
PROCEDURE (VLP) procedure file which

defines the VFU
(vertical format unit)
image to be loaded
when the file is
printed.

3-24 NOSNE Commands and Functions Revision G

The following table shows the job_status attributes that can be
returned for the $JOB_STATUS function.

Table 3-5. Job Status Attributes

Keyword Description Function Result

CONTROL_ FAMILY Family name of the Name
(CF) control user. For

most jobs, this is the
family name of login
user.

CONTROL_ USER (CU) Name of the control Name
user. For most jobs,
this is the name of
login user.

DISPLAY_MESSAGE Displays either the String
(DM) last command

submitted by the job
or the last message
returned to the job,
whichever is most
recent.

JOB_ CLASS (JC) Class of the specified Name
job.

JOB_ DESTINATION_ Specifies the queue Name
USAGE (JDU) file transfer

application used to
forward the job to a
remote system for
execution.

JOB_MODE (JM) Mode of the specified 'BATCH'
job is batch.

Mode of the specified 'INTERACTIVE'
job is interactive.

(Continued)

Revision G Function Attributes 3-25

Table 3-5. Job Status Attributes (Continued)

Keyword Description Function Result

Specified job was 'INTERACTIVE_
disconnected from a COMMAND_
terminal as a result DISCONNECT'
of a DETACH_JOB
command.

Specified job was 'INTERACTIVE_
disconnected from a LINE_
terminal because of DISCONNECT'
a problem with the
communication line
(such as hanging up
a telephone).

Interactive job was 'INTERACTIVE_
disconnected from SYSTEM_
the terminal bee a use DISCONNECT'
of a system failure.

JOB_STATE (JS) Returns the state of
a job.

Job has finished COMPLETED
executing.

Job is not yet DEFERRED
eligible to be
initiated.

Job has been INITIATED
initiated.

Job is waiting to be QUEUED
initiated.

Job has been TERMINATED
terminated.

The specified job is UNKNOWN
not known to the
system.

(Continued)

3-26 NOSNE Commands and Functions Revision G

Table 3-5. Job Status Attributes (Continued)

Keyword Description Function Result

LOGIN _FAMILY (LF) Family name under Name
which the job is
scheduled and run.

LOGIN_USER (LU) User name under Name
which the job is
scheduled and run.

OPERATOR_ACTION _ Indicates whether the Boolean
POSTED (OAP) job is waiting for

operator action.

SYSTEM_JOB_NAME Name assigned to Name
(SJN) the job by the

system.

USER_JOB_NAME Name that was .Name
(UJN) supplied by the user

for the job.

Revision G Function Attributes 3-27

The following table shows the output_status attributes that can be
returned for the $0UTPUT_STATUS function.

Table 3-6. Output Status Attributes

Keyword Description Function Result

CONTROL_ FAMILY Family name of the Name
(CF) control user of the

output file.

CONTROL_USER (CU) Name of the control Name
. user of the output
file.

LOGIN_FAMILY (LF) Family name of the Name
job that generated
the output file.

LOGIN_ USER (LU) User name of the job Name
that generated the
output file.

OUTPUT_ Use of the
DESTINATION_ USAGE destination to which
(ODU) the output file is

sent. One of the
following activities
takes place:

Output is sent to the DUAL_STATE
NOS or NOS/BE
system that shares
the mainframe.

Output is sent via NTF
the network transfer
facility to a remote
system for printing.

Output is sent to a PRIVATE
private CDCNET I/O
station.

(Continued)

3-28 NOSNE Commands and Functions Revision G

Table 3-6. Output Status Attributes (Continued)

Keyword Description Function Result

Output is sent to a PUBLIC
public CDCNET I/O
station.

Output is sent via QTF
the queue file
transfer facility to a
remote system for
printing.

OUTPUT_STATE (OS) Returns the status of
the output file.

File is being printed. INITIATED

File is waiting to be QUEUED
printed.

Printing process for TERMINATED
the file has been
terminated.

The specified output UNKNOWN
file is not known to
the system.

SYSTEM_FILE_NAME System-supplied Name
(SFN) name of the output

file. This file name
is generated by the
NOSNE system that
executes the PRINT_
FILE command.

(Continued)

Revision G Function Attributes 3-29

Table 3-6. Output Status Attributes (Continued)

Keyword Description Function Result

SYSTEM_JOB_NAME
(SJN)

USER_FILE_NAME
(UFN)

Name assigned by Name
the system to the job
responsible for.
generating the
output file.

User-supplied name Name
of the output file. If
no name is specified,
the file name is
used.

3-30 NOSNE Commands and Functions Revision G

The following table shows the program attributes that can be returned
for the $PROGRAM function.

Table 3-7. Program Attributes

Keyword Description Function Result

ABORT_FILE (AF) Abort file. File

ARITHMETIC_ Indicates whether an Boolean
OVERFLOW (AF) interrupt will occur

when an
ARITHMETIC_
OVERFLOW
condition is
encountered.

ARITHMETIC_LOSS_ Indicates whether an Boolean
OF _SIGNIFICANCE interrupt will occur
(ALOS) when an

ARITHMETIC_
LOSS_ OF_
SIGNIFICANCE
condition is
encountered.

DEBUG_INPUT (DI) Debug subcommand File
file.

DEBUG_MODE (DM) Indicates whether Boolean
debug mode is on.

DEBUG_OUTPUT (DO) Debug output file. File

DIVIDE_FAULT (DF) Indicates whether an Boolean
interrupt will occur
when a DIVIDE_
FAULT condition is
encountered.

(Continued)

Revision G Function Attributes 3-31

Table 3-7. Program Attributes (Continued)

Keyword Description Function Result

EXPONENT_ Indicates whether an Boolean
OVERFLOW (EO) interrupt will occur

when an
EXPONENT_
OVERFLOW
condition is
encountered.

EXPONENT_ Indicates whether an Boolean
UNDERFLOW (EU) interrupt will occur

when an
EXPONENT_
UNDERFLOW
condition is
encountered.

FP _INDEFINITE (FPI) Indicates whether an Boolean
interrupt will occur
when a FLOATING_
POINT_INDEFINITE
condition is
encountered (FP
stands for floating
point).

FP_LOSS_OF_ Indicates whether an Boolean
SIGNIFICANCE interrupt will occur
(FPLOS) when a FLOATING_

POINT_LOSS_OF_
SIGNIFICANCE
condition is
encountered (FP
stands for fioating
point).

(Continued)

3-32 NOSNE Commands and Functions Revision G

Table 3-7. Program Attributes (Continued)

Keyword Description Function Result

INVALID_BDP _DATA Indicates whether an Boolean
(IBDPD) interrupt will occur

when a FLOATING_
POINT_LOSS_OF_
SIGNIFICANCE
condition is
encountered (BDP
stands for business
data processing).

LOAD_MAP (LM) Load map file. File

LOAD_MAP _OPTION Indicates whether Boolean
(LMO) load map option

specified by keyword
value is selected. If
a LOAD_MAP_
OPTION program
attribute is specified,
one of the keywords
listed in the
Remarks section
must also be
supplied.

PRESET_ VALUE (PV) Preset value is 0. 'ZERO'

Preset value is 'FLOATING_
floating point POINT_
indefinite. INDEFINITE'

Preset value is 'INFINITY'
infinity.

Preset value is 'ALTERNATE_
alternate l's. ONES'

(Continued)

Revision G Function Attributes 3-33

Table 3-7. Program Attributes (Continued)

Keyword

TERMINATION_
ERROR_LEVEL (TEL)

Description

Termination error
level is warning.

Termination error
level is error.

Termination error
level is fatal.

3-34 NOSNE Commands and Functions

Function Result

'WARNING'

'ERROR'

'FATAL'

Revision G

The following table shows the variable attributes that can be returned
for the $VARIABLE function.

Table 3-8. Variable Attributes

Keyword

DECLARED

KIND

LOWER_ BOUND

Revision G

Description

Variable is not
accessible in the
current block.

variable is deelared
in the current block.

Variable is declared
in an outer block
with an externally
declared (XDCL)
scope.

Boolean variable.

Integer variable.

Real variable.

Status variable.

String variable.

Lower bound
(smallest subscript)
of an array variable
(1 if the variable is
not an array).

Function Result

'UNKNOWN'

'LOCAL'

'NONLOCAL'

'BOOLEAN'

'INTEGER'

'REAL'

'STATUS'

'STRING'

Integer

(Continued)

Function Attributes 3-35

Table 3-8. Variable Attributes (Continued)

Keyword Description Function Result

STRING_SIZE

UPPER_ BOUND

Maximum number of Integer
characters that can
be held by a string
variable (if the
variable is not a
string variable, an
abnormal status is
returned).

Upper bound (largest Integer
subscript) of an
array variable (1 if
the variable is not
an array).

3-36 NOSNE Commands and Functions Revision G

ADMINISTER _RECOVERY _LOG 4

ADMINISTER_RECOVERY_LOG 4-1
BACKUP_LOG . 4-1
CANCEL_LOG_CHANGES . 4-2
CLEAR_PROBLEM_JOURNAL ~3

CONFIGURE_LOG_BACKUP 4-4
CONFIGURE_LOG_RESIDENCE 4-6
DELETE_LOG . 4-8
DISPLAY_LOG_CONFIGURATION 4-9
DISPLAY_PROBLEM_JOURNAL ~10
HELP 4-11
QUIT 4-12
SET_LOG_BACKUP_ACCOUNT 4-14
SET_PERFORMANCE_OPTION 4-17
SET_ VERIFICATION_LEVEL 4-19
USE_LOG ~19

ADMINISTER _RECOVERY _LOG

ADMINISTER_RECOVERY_LOG
Command,..

Purpose

Format

Remarks

Examples

Begins an Administer _Recovery _Log utility session.

ADMINISTER_RECOVERY_LOG or
ADMRL

STATUS =status variable

For more information, see the NOSNE Advanced File
Management manual.

The following is the minimal Administer _Recovery _Log
session; it does nothing.

/administer_recovery_log
admrl/quit

To see a list of available subcommands you can type
HELP while in this utility.

BACKUP_LOG
ADMRL Subcommand

Purpose

Format

Remarks

Initiates an immediate backup of the log.

BACKUP _LOG or
BACL

STATUS =status variable

• This subcommand must be preceded in the session by
a USE_ LOG subcommand to specify the log to be
backed up.

4

• This subcommand can be performed only on a log that
has been configured for log backups. (This is done
using the CONFIGURE_LOG_BACKUP subcommand.)

Revision G ADMINISTER_RECOVERY_LOG 4-1

CANCEL_LOG_CHANGES

Examples

• You should use the BACKUP_LOG subcommand in
both of the following situations:

Log users are receiving the status AAE$LOG_
TEMPORARILY_FULL, which indicates that an
immediate repository switch is needed.

- A system failure seems imminent.

• For more information see the NOSNE Advanced File
Map.agement Usage manual.

The following session initiates an immediate repository
switch and backup for the existing log in $USER.MY_
LOG.

/administer_recovery_log
admr1/use_log,catalog=$user.my_log
admrl/backup_log
admr 1 /Quit
I

CANCEL_LOG_CHANGES
ADMRL Subcommand

Purpose

Format

Remarks

Discards the log specifications and any delete requests
accumulated in the session.

CANCEL_LOG_CHANGESor
CANLC

STATUS= status variable

• This subcommand discards the accumulated log
specifications and delete requests before they are put
into effect by the QUIT subcommand.

• The CANCEL_'LOG_CHANGES subcommand is
appropriate only after a USE_LOG subcommand has
been entered.

• You can begin accumulating log specifications again
after the CANCEL_LOG_CHANGES subcommand. To
do so, you must begin with another USE_LOG
subcommand to specify the log to be created or
changed.

4-2 NOSNE Commands and Functions Revision G

Examples

CLEAR_PROBLEM_JOURNAL

o For more information, see the NOSNE Advanced File
Management Usage manual.

The following session enters a change for $USER.MY_
LOG, but then discards the change so the session does
nothing.

/administer_recovery_log
admrl/use_log, $user.my_log,
admrl .. /set_performance_option, emphasis=speed
admrl/cancel_log_changes
admrl/Quit
I

CLEAR_PROBLEM_JOURNAL
ADMRL Subcommand

Purpose

Format

Remarks

Revision G

Clears the problem journal for the log.

CLEAR_PROBLEM_JOURNAL or
CLEPJ

STATUS= status variable

• The system maintains a problem journal in each log in
which it records any problems that occur while using
the log.

• You must display the problem journal before clearing
it. To do so, use the DISPLAY_PROBLEM_JOURNAL
subcommand.

• The log referenced by a CLEAR_PROBLEM_
JOURNAL subcommand is the log specified on the
USE_LOG subcommand earlier in the session.

• For more information, see the NOSNE Advanced File
Management Usage manual.

ADMINISTER_RECOVERY_LOG 4-3

CONFIGURE_LOG_BACKUP

Examples The following session prints the contents of the problem
journal for $USER.MY_LOG before clearing the problem
journal.

/adm1nister_recovery_log
admrl/use_log, $user.my_log
admrl/display_problem_journal, output=log_problems
admrl/print_file, log_problems
admrl/clear_problem_journal
admrl/quit
I

CONFIGURE_LOG_BACKUP
ADMRL Subcommand

Purpose Establishes the backup file pool for the log.

Format CONFIGURE_LOG_BACKUP or
CON LB

ADD _FILE= file
REMOVE_FILE=file
MEDIA= keyword
EXTERNAL_ VSN=list of string
RECORDED_ VSN =list of string
TYPE= keyword
VERIFY= boolean
STATUS =status variable

Parameters ADD _FILE or AF

File to be added to the pool of backup files for the log. If
ADD_FILE is omitted, no backup file is added.

REMOVE_FILE or RF

File to be removed from the pool of backup files for the
log. If REMOVE_FILE is omitted, no backup file is
removed.

MEDIA or M

Device class of the file specified by the ADD_FILE
parameter.

MAGNETIC_ TAPE_DEVICE or MTD

Indicates that the log files are backed up to a labeled
tape.

4-4 NOSNE Commands and Functions Revision G

Revision G

CONFIGURE_LOG_BACKUP

MASS_STORAGE_DEVICE or MSD

Indicates that the log files are backed up to disk. (The
next four parameters are not used.)

The default value is MAGNETIC_ TAPE_DEVICE.

EXTERNAL_ VSN or EVSN

List of external VSN s identifying the tape volumes that
compose the file specified by the ADD_FILE parameter.
The VSN s are specified as strings of from 1 through 6
characters enclosed in apostrophes. This parameter must
be specified if MEDIA is set to MAGNETIC_ TAPE_
DEVICE.

RECORDED_ VSN or RVSN

List of recorded VSN s of the tape volumes that compose
the file specified by the ADD_FILE parameter. The
recorded VSN is in the ANSI VOLl label on the volume.
The VSNs are specified as strings of from 1 through 6
characters enclosed in apostrophes. This parameter must
be specified if MEDIA is set to MAGNETIC_ TAPE_
DEVICE.

TYPE or T

Tape density written by a nine-track tape drive for the
file specified by the ADD_FILE parameter. This
parameter is used only if MEDIA is set to MAGNETIC_
TAPE_ DEVICE.

MT9$800

800 cpi.

MT9$1600

1600 cpi.

MT9$6250

6250 cpi.

The default value is MT9$6250.

VERIFY or V

Indicates whether the backup file specified by the ADD_
FILE parameter is verified. This parameter is used only if
MEDIA is set to MAGNETIC_ TAPE_DEVICE.

ADMINISTER_RECOVERY_LOG 4-5

CONFIGURE_LOG_RESIDENCE

Remarks

TRUE or YES or ON

The magnetic tape is mounted; the backup file is
opened to verify that it exists and that it has read
and write capabilities.

FALSE or NO or OFF

The backup file is not verified.

The default value is TRUE.

• A mass storage backup file is specified by its file
path. However, any file cycle specification on the file
path is ignored. The backup is always written to cycle
1. (Cycle 1 is created if it does not exist and
overwritten if it does exist.)

• If any backup files are configured for the log, a
backup file must be configured for each log repository.
For example, if backup files are configured, a log with
five repositories must have five backup files.

• The FILE_CLASS and INITIAL_ VOLUME parameters
are described in detail as parameters of the
REQUEST_MASS_STORAGE command in the
NOS/VE System Performance and Maintenance,
Volume 2, Maintenance manual.

• For more information, see the NOS/VE Advanced File
Management Usage manual.

CONFIGURE _LOG _RESIDENCE
ADMRL Subcommand

Purpose

Format

Establishes configuration of the log.

CONFIGURE_LOG_RESIDENCE or
CONLR

REPOSITORIES= integer
REPOSITORY _SWITCHING _SIZE= integer
REPOSITORY _SWITCHING_ TIME= integer
SWITCH_SUPPRESSION _SIZE =integer or keyword
SWITCH_SUPPRESSION_TIME=integer or keyword
REPOSITORY _SIZE _LIMIT= integer
STATUS= status variable

4-6 NOSNE Commands and Functions Revision G

CONFIGURE_LOG_RESIDENCE

Parameters REPOSITORIES or R

Remarks

Revision G

Number of disk-resident repositories for the log (integer
from 2 through 4096). The default value is 5.

If a backup account or backup pool is specified for the
log, the log must have at least 3 repositories.

REPOSITORY_SWITCHING_SIZE or RSS

Repository size threshold for the log (in bytes, from
500,000 through 2,132,483,647 [(231 - 1) - 15,000,000]). The
default value is 70,000,000 bytes.

REPOSITORY_SWITCHING_TIME or RST

Repository time threshold for the log (in minutes, from 1
through 525,600 [365 days]). The default value is 1440 (24
hours).

SWITCH_SUPPRESSION_SIZE or SSS

Minimum repository size required before switching (in
bytes, from 500,000 through 2,132,483,647 [(231 - 1) -
15,000,000]). The default value is 0.

SWITCH_SUPPRESSION_TIME or SST

Minimum repository time required before switching (in
minutes, from 1 through 525,600 [365 days]). The default
value is 0.

REPOSITORY_SIZE_LIMIT or RSL

Absolute maximum repository size limit (in bytes, from
15,500,000 through 2,147,483,647 [231 - l]). It must be at
least 15,000,000 bytes larger than the REPOSITORY_
SWITCHING_SIZE. The default value is 100,000,000
bytes.

• You cannot modify an existing log while any keyed
file that uses the log is being updated. The
subcommand notifies you when it cannot get exclusive
access to the log. You should then quit the session and
try again later.

• This subcommand can be specified only for a new log.
The configuration cannot he changed for an existing
log.

ADMINISTER_RECOVERY_LOG 4-7

DELETE_LOG

• During normal log activity, the active repository size
should never approach the REPOSITORY_SIZE_
LIMIT.

• The FILE_CLASS and INITIAL_ VOLUME parameters
are described in detail as parameters of the
REQUEST_MASS_STORAGE command in the
NOSNE System Performance and Maintnenance,
Volume 2, Maintenance manual.

• For more information see the NOSNE Advanced File
Management Usage manual.

DELETE_LOG
ADMRL Subcommand

Purpose Requests deletion of an existing log.

Format DELETE_LOG or
DELL

CATALOG= file
RETAIN_ CONFIGURATION= boolean
STATUS= status variable

Parameters CATALOG or C

Catalog path of the log to be deleted. This parameter is
required.

RETAIN_CONFIGURATION or RC

Indicates whether the log configuration is kept.

TRUE or YES or ON

Empty the repositories and the log journal, but keep
the log configuration.

FALSE or NO or OFF

Delete all files composing the log, including the
repositories, the log journal, and mass storage log
backup files.

This parameter is required.

4-8 NOSNE Commands and Functions Revision G

Remarks

Examples

DISPLAY_LOG_CONFIGURATION

• The logs specified by DELETE_LOG subcommands are
not deleted until the QUIT subcommand is entered for
the session. A CANCEL_LOG_CHANGES
subcommand clears any pending deletion requests.

• If the log configuration is to be retained, the
subcommand deletes all the log data, but the log data
on the repositories continues to exist and can continue
to be used.

If the log configuration is not to be retained, the
subcommand requests deletion of all files relating to
the log in the catalog. The catalog will no longer be
usable as a log until a new log is created in it.

If the subcommand requests deletion of all files in the
catalog, the catalog is deleted as well.

• The catalog used is specified on the DELETE_LOG
subcommand. Therefore, the subcommand does not
reference the log specified by the USE_LOG
subcommand. More than one log can be deleted in a
session.

• For more information see the NOSNE Advanced File
Management Usage manual.

The following session requests deletion of log $USER.MY_
LOG, but then cancels the request:

/administer_recovery_log
admr 1/de lete_ log, $user. my_ log, reta in_conf igurat ion=f a lse
admr 1/cance 1_ log_changes
admrl/Quit
I

DISPLAY _LOG_ CONFIGURATION
ADMRL Subcommand

Purpose

Format

Revision G

Displays the current log specifications.

DISPLAY_LOG_CONFIGURATION or
DISLC

OUTPUT=file
STATUS=status variable

ADMINISTER_RECOVERY_LOG 4-9

DISPLAY_PROBLEM_JOURNAL

Parameters OUTPUT or 0

Remarks

File to which the display is written.

The subcommand positions the file according to the file
position ($BO!, $EOI) appended to the file reference or, if
no position is specified, according to its OPEN _POSITION
attribute value.

If OUTPUT is omitted, the display is written to the
standard output file, $OUTPUT.

• This subcommand must be preceded in the session by
a USE_LOG subcommand to specify the log whose
configuration is displayed.

• For more information see the NOSNE Advanced File
Management Usage manual.

DISPLAY _PROBLEM _JOURNAL
ADMRL Subcommand

Purpose Displays the problem journal for the log.

Format DISPLAY_PROBLEM_JOURNAL or
DISPJ

OUTPUT=file
STATUS= status variable

Parameters OUTPUT or 0

Remarks

File to which the display is written.

The subcommand positions the file according to the file
position ($BO!, $EOI) appended to the file reference or, if
no position is specified, according to its OPEN _POSITION
attribute value.

If OUTPUT is omitted, the display is written to the
standard output file, $OUTPUT.

• The system records any problems that have occurred
while using the log in the problem journal for the log.

• The log referenced by a DISPLAY_PROBLEM_
JOURNAL subcommand is the log specified on the
USE_LOG subcommand earlier in the session.

• For more information see the NOSNE Advanced File
Management Usage manual.

4-10 NOSNE Commands and Functions Revision G

Examples

HELP

HELP

The following session writes the problem journal for
$USER.MY_LOG to file LOG_PROBLEMS and prints it.

/administer_recovery_log
admrl/use_log, $user.my_log
admrl/display_problem_journal,
admrl .. /output=log_problems
admrl/print_file, log_problems
admrl/Quit
I

ADMRL Subcommand

Purpose

Format

Provides access to online information about the utility.

HELP or
HEL

SUBJECT= string
MANUAL=file
STATUS= status variable

Parameters SUBJECT or S

Remarks

Revision G

Topic to be found in the index of the online manual. The
topic must be enclosed in apostrophes ('topic').

If you omit the SUBJECT parameter, HELP displays a
list of the available subcommands and prompts for display
of a subcommand description in the online manual.

MANUAL or M

Online manual file to be read. If you omit the MANUAL
parameter, the default is AFM. The subcommand searches
for the file in the working catalog and then in the
$SYSTEM.MANUALS catalog.

• If the SUBJECT parameter specifies a topic that is not
in the manual index, a nonfatal error is returned
notifying you that the topic could not be found.

• The default manual file, $SYSTEM.MANUALS.AFM,
contains the online version of the NOSNE Advanced
File Management Usage manual, as provided with the
NOSNE system.

ADMINISTER_RECOVERY_LOG 4-11

QUIT

Examples

QUIT

• If your terminal is defined for screen applications,
online manuals are displayed in screen mode. Help is
available for reading the online. To leave the online
manual and return to the utility, use QUIT.

• For more information, see the NOS/VE Advanced File
Management Usage manual.

The following session shows the default display returned
by the HELP subcommand.

/aomin1ster- _recovery_ log
aom,.1 /ne lp
Tne fol lowing Administer _Recovery_Log subcommands are available:
BACKUP _LOG
CANCEL_ L 00 _CHANGES
CLEAR_PRQBLEM_JOURNAL
CO.-F I GURE_LOG_BACKUP
CON;: IGURE_LOG_RES !DENCE
DELETE_LOG
DI SPLAY _LOG_CONF IGURAT ION
DISPLAY _PROBLEM_JOURNAL
HELP
QUIT
SET _LOG_BACKUP _ACCOUNT
SET _PERFORMANCE_OOT I ON
SET_ VER IF !CA TION_LEVEL

For a description of a subcommand in the online manual,
enter: HELP subject = '<subcommand>'

To return from an online manual, enter: QUIT

admr 1/Quit

I

ADMRL Subcommand

Purpose

Format

Executes the accumulated log specifications and ends the
session.

QUIT or
QUI

APPLY _LOG _CHANGES= boolean
STATUS= status variable

4-12 NOSNE Commands and Functions Revision G

QUIT

Parameters APPLY_LOG_CHANGES or ALC

Remarks

Revision G

Indicates whether the log repositories are created or
updated based upon the accumulated log specifications.

TRUE or YES or ON

The log is created or updated. Any logs specified on a
DELETE_LOG subcommand during the session are
deleted.

If a new log is being created, the log catalog is
created if it does not exist. The log files are created
and initialized. If the log catalog already exists, only
the performance option and backup account information
can be changed.

FALSE or NO or OFF

Log repositories are not created or updated; log
specifications are discarded. Any logs specified on a
DELETE_ LOG subcommand during the session are
kept.

The default value is TRUE.

• To discard the accumulated log specifications or delete
requests before ending the session, enter a CANCEL_
LOG_CHANGES subcommand before entering the
QUIT subcommand.

• The changes specified by the following subcommands
do not take effect until the log changes are applied
when the QUIT subcommand is entered:

CONFIGURE_LOG_BACKUP
CONFIGURE_LOG_RESIDENCE
DELETE_LOG
SET_LOG_BACKUP_ACCOUNT
SET_PERFORMANCE_OPTION
SET_ VERIFICATION_LEVEL

• For more information, see the NOSNE Advanced File
Management Usage manual.

ADMINISTER_RECOVERY_LOG 4-13

SET_LOG_BACKUP _ACCOUNT

SET_LOG_BACKUP_ACCOUNT
ADMRL Subcommand

Purpose

Format

Specifies the validation information used by backup jobs
for the log.

NOTE

Each time the password is changed for the user name
used as the backup account, the password must also be
changed in the log configuration. Otherwise, all
subsequent backup jobs fail to execute.

SET_LOG_BACKUP_ACCOUNT or
SETLBA

USER=name
PASSWORD= name
FAMILY_NAME=name
USER_JOB _NAME= name
JOB_CLASS =name
ACCOUNT=name
PROJECT=name
OUTPUT _DISPOSITION= file or keyword
USER_INFORMATION =string
STATUS= status variable

Parameters USER or U

User name under which backup jobs are run. This
parameter is required.

PASSWORD or PW

Password for the user name specified by the USER
parameter. This parameter is required.

FAMILY_NAME or FN

Optional family name under which backup jobs are run. If
FAMILY_NAME is omitted, backup jobs run under the
family to which the specified user name belongs.

USER_JOB_NAME or JOB_NAME or UJN or JN

Optional name by which the backup jobs are identified in
the system. If USER_JOB_NAME is omitted, the name
assigned backup jobs is the user name.

4-14 NOSNE Commands and Functions Revision G

Revision G

SET_LOG_BACKUP_ACCOUNT

JOB_CLASS or JC

Optional job class in which the backup jobs are run. If
JOB_ CLASS is omitted, the jobs run in the default job
class for the user name.

ACCOUNT or A

Account to which resource usage is charged for the
backup jobs. If you omit this parameter for a user name
that requires an account, the backup jobs will fail to
execute. (See the Remarks.)

PROJECT or P

Project to which resource usage is charged for the backup
jobs. If you omit this parameter for a user name that
requires a project, the backup jobs will fail to execute.
(See the Remarks.)

OUTPUT_DISPOSITION or OD or ODI or STANDARD_
OUTPUT or SO

Specifies the default for how the backup job's standard
output is to be disposed. If omitted, the attribute
associated with this parameter does not change.

File name

The standard output is copied to the specified file
name at job end.

DISCARD_ALL_OUTPUT or DAO

All output generated by the backup job is to be
discarded at job end.

DISCARD_STANDARD_OUTPUT or DSO

Standard output is to be discarded at job end.

LOCAL or L

Any output generated by the backup job is printed at
the destination system rather than being returned to
the originating user's default output station.

PRINTER or P

Any output generated by the backup job is returned to
the originating user's default output station.

ADMINISTER_RECOVERY_LOG 4-15

SET_LOG_BACKUP_ACCOUNT

Remarks

WAIT_QUEUE or WQ

Any output generated by the backup job is returned to
the originating user's $WAIT_ QUEUE subcatalog on
the originating system using the user's job name for
the file name. If the $WAIT_QUEUE subcatalog does
not exist at the time the output files are returned, it
is created for the user.

The default value is PRINTER.

USER_INFORMATION or Ul

Specifies a user information string of up to 256
characters. This string enables you to pass information
(such as a file path)· to a backup job. This string is also
passed on to all output files generated by the backup job.

If omitted, the user information string associated with the
backup job is assumed.

• If backup files are included in the log configuration,
each repository switch for the log starts a job to back
up the log. Each backup job uses the validation
information specified on this subcommand.

• To determine if the ACCOUNT and PROJECT
parameters are required and the valid JOB_CLASS
values, display the validation information for the user
name.

To display validation information for a user name, use
the Administer_User utility with the DISPLAY_USER
subcommand. If you are logged in as the family
administrator, you can display information on any user
in the family; otherwise, you can display information
only for the user name you are using.

For more information about family administration and
user validation see the NOSNE User Validation
manual and the NOSNE System Usage manual.

• For more information see the NOSNE Advanced File
Management Usage manual.

4-16 NOSNE Commands and Functions Revision G

SET_PERFORMANCE_ OPTION

SET ~PERFORMANCE_ OPTION
ADMRL Subcommand

Purpose Specifies the performance emphasis (speed or reliability)
for the log.

Format SET_PERFORMANCE_OPTION or
SET PO

EMPHASIS= keyword
LOG _ENTRY= keyword
STATUS =status variable

Parameters EMPHASIS or E

Revision G

Specifies whether speed or reliability is more important.

SPEED or S

Speed is more important than reliability.

RELIABILITY or R

Reliability is more important than than speed.

BALANCED or B

Both speed and reliability are important.

This parameter is required.

LOG_ENTRYorLOG_ENTRIESorLE

Indicates the types of log entries to which the specified
emphasis applies.

RECORD or R

Record entries, but not parcel entries.

PARCEL or P

For future implementation.

ALL or A

For future implementation.

The default value is RECORD.

ADMINISTER_RECOVERY_LOG 4-17

SET_ PERFORMANCE_ OPTION

Remarks

Examples

• This subcommand determines how frequently log
entries in memory are written to disk. (Its purpose is
similar to that of the FORCED_ WRITE attribute for
keyed files.)

• If this subcommand is not specified, the default
performance option is BALANCED.

• The EMPHASIS values have the following meanings:

SPEED

The system memory manager determines when log
entries are written to disk.

RELIABILITY

Each log entry is written to disk before the next
log entry begins.

BALANCED

The system must begin writing a log entry to disk
before the next log entry can begin.

• Any value specified for parcels is recorded for future
use, but is currently ignored.

• For more information, see the NOSNE Advanced File
Management Usage manual.

The following session changes the performance options for
$USER.MY_LOG.

/administer_recovery_log
admrl/use_log, $user.my_log
admrl/set_performance_option,
admrl .. /emphasis=reliability
admr 1/quit
I

4-18 NOSNE Commands and Functions Revision G

SET_ VERIFICATION_LEVEL

SET_ VERIFICATION _LEVEL
ADMRL Subcommand

Purpose Indicates whether checksums should be performed for the
header and trailer parts of log records.

Format SET_ VERIFICATION _LEVEL or
SETVL

VERIFY_LOG _ENTRIES= boolean
STATUS= status variable

Parameters VERIFY_LOG_ENTRIES or VLE

Remarks

Indicates whether checksums are performed for the log.

TRUE or YES or ON

Checksums are performed.

FALSE or NO or OFF

Checksums are not performed.

This parameter is required.

• This subcommand can be specified only for a new log.
The verification level cannot be changed for an
existing log.

• This subcommand is optional. If it is omitted from a
session· that creates a new log, the default verification
level is FALSE.

• For more information see the NOSNE Advanced File
Management Usage manual.

USE_LOG
ADMRL Subcommand

Purpose

Format

Revision G

Establishes the log to be created or changed by the
session.

USE_LOG or
USEL

CATALOG= file
STATUS =status variable

ADMINISTER_RECOVERY_LOG 4-19

USE_LOG

Parameters CATALOG or C

Remarks

Examples

Catalog path for the log created or changed by the
session.

A session can create or change only one log; therefore,
any subsequent USE_LOG subcommands are ignored.

If the catalog does not exist, the subcommand creates it.
If the catalog exists, but does not contain a log, a log is
created in it. If a log exists in the catalog, the session
verifies that the log contains the proper characteristics.

This parameter is required.

• You must establish a catalog before any of the other
subcommands (except QUIT, DELETE_LOG, HELP, or
CANCEL_LOG_CHANGES (after DELETE_LOG))
can be entered.

• Once established, the catalog can only be changed
after using CANCEL_LOG_CHANGES.

• For more information see the NOS/VE Advanced File
Management Usage manual.

The following session establishes $USER.MY_LOG as the
log to be used. The performance options for $USER.MY_
LOG are changed, but then the changes are cancelled and
another log is specified.

/administer_recovery_log
admrl/use_log, $user.my_log
admrl/set_performance_option, emphasis=reliability
admrl/cancel_log_changes
admrl/use_log, $user.my_log_2
admrl/

4-20 NOS/VE Commands and Functions Revision G

ADMINISTER_ VALIDATIONS 5

ADMINISTER_ VALIDATIONS 5-1
CHANGE_DEFAULT_ACCOUNT_PROJECT 5-1
CHANGE_LINK_ATTRIBUTE_CHARGE 5-2
CHANGE_LINK_ATTRIBUTE_FAMILY 5-3
CHANGE_LINK_ATTRIBUTE_PASSWORD 5-3
CHANGE_LINK_ATTRIBUTE_PROJECT 5-4
CHANGE_LINK_ATTRIBUTE_ USER 5-5
CHANGE_LOGIN_PASSWORD 5-6
CHANGE_USER . 5-9
CHANGE_USER_EPILOG 5-10
CHANGE_ USER_PROLOG . 5-11
DISPLAY_ USER 5-12
END_ADMINISTER_ VALIDATIONS 5-13
END_CHANGE_USER 5-13

ADMINISTER_ VALIDATIONS

ADMINISTER_ VALIDATIONS
Command

Purpose

Format

Remarks

Displays and changes validations.

ADMINISTER_ VALIDATIONS or
ADMV

STATUS= status variable

For more information, see the NOSNE User Validation
manual.

CHANGE_DEFAULT_ACCOUNT_PROJECT
CREU and CHAU Subcommand

Purpose

Format

Changes the default account and project for the LOGIN
and SUBMIT_JOB commands.

CHANGE_DEFAULT_ACCOUNT_PROJECTor
CHAD AP

ACCOUNT=name or keyword
PROJECT=name or keyword
STATUS= s'tatus variable

Parameters ACCOUNT or A

Specifies the new account name. The default is that the
account is not changed. The keywords are:

DEFAULT

5

The account is set to the default value specified in the
DEFAULT_ACCOUNT_PROJECT field description as
defined by the family or system administrator.

Revision G

CURRENT

The account of the job executing this command is
used.

ADMINISTER_ VALIDATIONS 5-1

CHANGE_LINK_ATTRIBUTE_CHARGE

Remarks

Examples

PROJECT or P

Specifies the new project name. The default is that the
project is not changed. The keywords are:

DEFAULT

The project is set to the default value specified in the
DEFAULT_ACCOUNT_PROJECT field description as
defined by the family or system administrator.

CURRENT

The account of the job executing this command is
used.

• If the system is running at an account or project
validation level, a warning error is returned if the
specified account or project does not exist.

• For more information, see the N OSNE User
Validation manual.

To change the default login account and project, enter:

ADMV/change_user
CHAU/change_default_account_project account=a project=b
CHAU/Quit

CHANGE_LINK_ATTRIBUTE_CHARGE
CREU and CHAU Subcommand

Purpose

Format

Changes the charge number needed to gain access to NOS
or NOS/BE permanent files or to submit a job to NOS or
NOS/BE.

CHANGE_LINK_ATTRIBUTE_ CHARGE or
CHALAC

VALUE= string or keyword
STATUS=status variable

Parameters VALUE or V

Specifies the new NOS or NOS/BE charge number. The
default is that the link attribute charge number is not
changed. If you specify DEFAULT, the default value
specified iii the LINK_ATTRIBUTE_ CHARGE field
description as defined by the family or system
administrator is used.

5-2 NOS/VE Commands and Functions Revision G

Remarks

CHANGE_LINK_ATTRIBUTE_FAMILY

e You can override this value by using the CHANGE....,
LINK_ATTRIBUTE command.

• You are responsible for maintaining the values in the
LINK_ATTRIBUTE_CHARGE validation field.

• For more information, see the NOSNE User
Validation manual.

CHANGE _LINK_ATTRIBUTE _FAMILY
CREU and CHAU Subcommand

Purpose

Format

Changes the family name needed to gain access to NOS
or NOS/BE permanent files or to submit a job to NOS or
NOS/BE.

CHANGE_LINK_ATTRIBUTE_FAMILY or
CHALAF

VALUE=string or keyword
STATUS= status variable

Parameters VALUE or V

Remarks

Specifies the new NOS or NOS/BE family name. The
default is that the link attribute family is not changed. If
you specify DEFAULT, the default value specified in the
LINK_ATTRIBUTE_FAMILY field description as defined
by the family or system administrator is used.

• You can override this value by using the CHANGE_
LINK_ATTRIBUTE command.

• You are responsible for maintaining the values in the
LINK_ATTRIBUTE_FAMILY validation field.

• For more information, see the NOSNE User
Validation manual.

CHANGE _LINK_ATTRIBUTE _PASSWORD
CREU and CHAU Subcommand

Purpose Changes the password needed to gain access to NOS or
NOS/BE permanent files or to submit a job to NOS or
NOS/BE.

Revision G ADMINISTER_ VALIDATIONS 5-3

CHANGE_LINK_ATTRIBUTE_PROJECT

Format CHANGE_LINK_AITRIBUTE_PASSWORD or
CHALAPW

VALUE= string or keyword
STATUS =status variable

Parameters VALUE or V

Remarks

Specifies the new NOS or NOS/BE password. The default
is that the link attribute password is not changed. If you
specify DEFAULT, the default value specified in the
LINK_ATTRIBUTE_PASSWORD field description as
defined by the family or system administrator is used.

• You can override this value by using the CHANGE_
LINK_ATTRIBUTE command.

• You are responsible for maintaining the values in the
LINK_ATTRIBUTE_PASSWORD validation field.

• For more information, see the NOSNE User
Validation manual.

CHANGE _LINK_ATTRIBUTE _PROJECT
CREU and CHAU Subcommand

Purpose

Format

Changes the project number needed to gain access to NOS
or NOS/BE permanent files or to submit a job to NOS or
NOS/BE.

CHANGE_LINK_AITRIBUTE_PROJECT or
CHALAP

VALUE= string or keyword
STATUS= status variable

Parameters VALUE or V

Specifies the project number needed to gain access to NOS
and NOS/BE permanent files or to submit a job to NOS
or NOS/BE. The default is that the link attribute project
is not changed. If you specify DEFAULT, the default value
specified in the LINK_ATTRIBUTE_PROJECT field
description as defined by the family or system
administrator is used.

5-4 NOS/VE Commands and Functions Revision G

Remarks

CHANGE_LINK_ATTRIBUTE_ USER

• You can override this value by using the CHANGE_
LINK_ATTRIBUTE command.

• You are responsible for maintaining the values in the
LINK_ATTRIBUTE_PROJECT validation field.

• For more information, see the NOSNE User
Validation manual.

CHANGE _LINK_ATTRIBUTE _USER
CREU and CHAU Subcommand

Purpose

Format

Changes the user name needed to gain access to NOS or
NOS/BE permanent files or to submit a job to NOS or
NOS/BE.

CHANGE_LINK_ATTRIBUTE_USER or
CHA LAU

VALUE=string or keyword
STATUS= status variable

Parameters VALUE or V

Remarks

Revision G

Specifies the new NOS or NOS/BE user name. The default
is that the link attribute user is not changed. If you
specify DEFAULT, the default value specified in the
LINK_ATTRIBUTE_USER field description as defined by
the family or system administrator is used.

• You can override this value by using the CHANGE_
LINK_ATTRIBUTE command.

• You are responsible for maintaining the values in the
LINK_ATTRIBUTE_ USER validation field.

• For more information, see the NOSNE User
Validation manual.

ADMINISTER_ VALIDATIONS 5-5

CHANGE_LOGIN_PASSWORD

CHANGE _LOGIN _PASSWORD
CREU and CHAU Subcommand

Purpose Changes information about the user's login password.

Format CHANGE_LOGIN _PASSWORD or
CHALPW

OLD _PASSWORD =name
NEW _PASSWORD= name
EXPIRATION _DATE =date_ time or keyword
EXPIRATION _INTERVAL= integer or keyword
MAXIMUM_EXPIRATION_INTERVAL=integer or

keyword ·
EXPIRATION_ WARNING _INTERVAL= integer or

keyword
ADD _ATTRIBUTES= list of name or keyword
DELETE_ATTRIBUTES=list of name or keyword
ENCRYPTED _PASSWORD= string
STATUS =status variable

Parameters OLD _PASSWORD or OPW

Specifies the current login password. This parameter is
required for a user if the NEW_PASSWORD parameter is
specified. This parameter is optional for all
administrators.

NEW_PASSWORD or NPW

Specifies the new login password for the user. The default
is that the user's password is not changed.

EXPIRATION _DATE or ED

Specifies the date and time when this password expires.
The number of days between the current date and what
the EXPIRATION _DATE parameter specifies cannot
exceed the number of days specified by the MAXIMUM_
EXPIRATION _INTERVAL parameter.

The format is YYYY-MM-DD.HH:MM:SS. The hours,
minutes, and seconds portion is optional, and the time
defaults to midnight 00:00:00.

The default is that a new expiration date is calculated by
adding the value specified by the EXPIRATION_
INTERVAL parameter to the current date. You must use

5-6 NOSNE Commands and Functions Revision G

Revision G

CHANGE_LOGIN_PASSWORD

a new password and this parameter to override the
calculation of the EXPIRATION _DATE value. The
keywords are:

NONE

The password for this user never expires.

DEFAULT

The expiration date is set to the default value
specified in the LOGIN_PASSWORD field description
as defined by the family or system administrator.

EXPIRATION _INTERVAL or EI

Specifies the number of days (1 to 365) until the password
expires. When you change the password but don't specify
the EXPIRATION_DATE parameter, the system calculates
day the new password will expire by adding the value
specified by the EXPIRATION _INTERVAL parameter to
the current date and time. The number of days specified
by the EXPIRATION _INTERVAL parameter must not
exceed the MAXIMUM_EXPIRATION_INTERVAL
parameter for this user. The default is that the current
EXPIRATION_INTERVAL parameter is not changed. The
keywords are:

UNLIMITED

The password will not expire until a specific date is
specified by the EXPIRATION_DATE parameter.

DEFAULT

The expiration interval is set to the default value
specified in the LOGIN_PASSWORD field description
as defined by the family or system administrator.

MAXIMUM_EXPIRATION_INTERVAL or MEI

Specifies the an upper limit in days for the
EXPIRATION _INTERVAL parameter. Only system
administrators, family administrators, account members
with user administration capability, or project members
with user administration capability can specify this
parameter.

ADMINISTER_ VALIDATIONS 5-7

CHANGE_LOGIN_PASSWORD

Remarks

EXPIRATION_ WARNING _INTERVAL or EWI

Specifies the number of days (O to 365) before the
password expiration date that warnings are sent to the
user user that the password will expire. If you specify
zero, the user does not receive a warning. The default is
that the current value is not changed. The keywords are:

UNLIMITED

The user always receives a warning during each login.

DEFAULT

The expiration warning interval is set to the default
value specified in the LOGIN _PASSWORD field
description as defined by the family or system
administrator.

ADD_ATTRIBUTES or AA

Specifies a list of site-defined password attributes to be
added. No attributes are released. Only system
administrators, family administrators, account members
with user administration capability, or project members
with user administration capability can specify this
parameter.

DELETE_ATTRIBUTES or DA

Specifies a list of site-defined password attributes to be
deleted. No attributes are released. Only system
administrators, family administrators, account members
with user administration capability, or project members
with user administration capability can specify this
parameter.

ENCRYPTED_PASSWORDorEPW

Currently not supported. Passwords are encrypted, and it
is impossible to enter an encrypted value for the
password.

• You can also change passwords using CHANGE_
LOGIN _PASSWORD command.

• You cannot change your expiration date unless you
also change your password.

• For more information, see the NOSNE User
Validation manual.

5-8 NOS/VE Commands and Functions Revision G

Examples

CHANGE_ USER

To change the password and set the expiration date,
enter:

ADMV/change_user
CHAU/change_login_password
CHAU .. /old_password=example
CHAU .. /new_password=sample ..
CHAU .. /expiration_date=1987-12-10
CHAU .. /expiration_interva1=60
CHAU/quit
ADMV/

This password expires in 60 days.

CHANGE_USER
ADMV Subcommand

Purpose

Format

Starts the CHANGE_ USER subutility to change a user
validation.

CHANGE_USER or
CHAU

USER=name
STATUS=status variable

Parameters USER or U

Remarks

Revision G

Specifies the user name to change. The default is that the
user name specified during login is used.

• System and family administrators can change any
user's validations. Account or project members with
user administration capability can only change user
validations for user names under their control. Users
can change some of their own validations.

• For more information, see the NOSNE User
Validation manual.

ADMINISTER_ VALIDATIONS 5-9

CHANGE_ USER_EPILOG

Examples To change the default account and project for the LOGIN
and SUBMIT_JOB commands, enter:

ADMV/change_user
CHAU/change_default_account_project account=a ..
CHAU .. /project=b
CHAU/Quit
ADMV/

CHANGE_ USER_EPILOG
CREU and CHAU Subcommand

Purpose

Format

Specifies the name of the user's epilog file.

CHANGE_USER_EPILOG or
CHAUE

VALUE=any or keyword
STATUS= status variable

Parameters VALUE or V

Specifies the new file reference. You can specify a file
reference value as a string or file path. A string or a file
path produce equivalent results. The default is that the
user epilog is not changed. The keywords are:

Remarks •

DEFAULT

The name of the user epilog is set to the default value
specified in the USER_EPILOG field description as
defined by the administrator.

NONE

The file reference $NULL is used. The user does not
have an epilog file.

If you enter the file reference as a file path, it is
translated to a full path before it is stored in the
validation file. If you enter the file reference as a
string, the string is stored in the validation file, and
the full path name is completed when the epilog is
called during job termination.

• For more information, see the NOSNE User
Validation manual.

5-10 NOS/VE Commands and Functions Revision G

Examples

CHANGE_USER_PROLOG

To change your epilog that file ALL_DONE is used,
enter:

ADMV/change_user
CHAU/change_user_epilog value=$user.all_done
CHAU/quit
ADMV/

CHANGE_USER_PROLOG
CREU and CHAU Subcommand

Purpose

Format

Specifies the name of the user's prolog file.

CHANGE_USER_PROLOG or
CHA UP

VALUE=any or keyword
STATUS= status variable

Parameters VALUE or V

Specifies the new file reference. You can specify a file
reference value as a string or file path. A string or a file
path produce equivalent results. The default is that the
user prolog is not changed. The keywords are:

DEFAULT

The name of the user prolog is set to the default
value specified in the USER_PROLOG field
description as defined by the administrator.

NONE

The file reference $NULL is used. The user does not
have a prolog file.

Remarks •

Revision G

If you enter the file reference as a file path, it is
translated to a full path before it is stored in the
validation file. If you enter the file reference as a
string, the string is stored in the validation file, and
the full path name is completed when the epilog is
called during job termination.

o For more information, see the NOS/VE User
Validation manual.

ADMINISTER_ VALIDATIONS 5-11

DISPLAY_ USER

Examples

To change your prolog so that file START_ UP is used,
enter:

ADMV/change_user
CHAU/change_user_prolog value=$user.start_up
CHAU/Quit
ADMV/

DISPLAY_USER
ADMV Subcommand

Purpose

Format

Displays your validations.

DISPLAY_ USER or
DISPLAY_USERS or
DISU

USER= list of name or keyword
OUTPUT=file
DISPLAY_OPTION=list of name or keyword
STATUS =status variable

Parameters USER or USERS or U

Lists the user names to display. The default is the user
specified during login.

OUTPUT or 0

Specifies the file to which the validations are written. The
default is $OUTPUT.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

Lists the names of the user validations to display. The
default is the keyword ALL. The keywords are:

ALL

The value of every user validation field is displayed.

NONE
Only the user names are displayed.

5-12 NOSNE Commands and Functions Revision G

Remarks

Examples

END _ADMINISTER_ VALIDATIONS

e Each validation has an associated display authority
that specifies who can display the value of the
validation. If a user does not have enough authority to
display the value, the message "Not authorized to
display value" is written in place of the validation
value.

• For more information, see the NOSNE User
Validation manual.

To display all of the validations, enter:

ADMV/display_user

To display the default login account and project, enter:

ADMV/display_user all ..
ADMV .. /display_option=default_account_project

END _ADMINISTER_ VALIDATIONS
ADMV Subcommand

Purpose

Format

Remarks

Terminates an ADMINISTER_ VALIDATIONS utility
session.

END_ADMINISTER_ VALIDATIONS or
ENDAV or
QUIT or
QUI

STATUS= status variable

For more information, see the NOSNE User Validation
manual.

END_CHANGE_USER
CHAU Subcommand

Purpose Terminates a CHANGE_ USER subutility session.

Format END_CHANGE_USER or
ENDCU or
QUIT or
QUI

WRITE_ CHANGES= boolean
STATUS= status variable

Revision G ADMINISTER_ VALIDATIONS 5-13

END_CHANGE_USER

Parameters WRITE_CHANGES or WC

Remarks

Specifies whether the changes made during the
CHANGE_ USER subutility session are written to the
validation file. The default is TRUE. The keywords are:

TRUE

The changes are written to the validation file.

FALSE

No changes are written to the validation file.

For more information, see the NOSNE User Validation
manual.

5-14 NOS/VE Commands and Functions Revision G

ANALYZE_ OBJECT _LIBRARY 6

ANALYZE_OBJECT_LIBRARY 6-1
DISPLAY_LIBRARY_ANALYSIS 6-2
DISPLAY_MODULE_ANALYSIS 6-4
DISPLAY_PERFORMANCE_DATA 6-6
DISPLAY_SECTION_ANALYSIS. 6-9
QUIT 6-12
USE_LIBRARY 6-13

ANALYZE_ OBJECT _LIBRARY 6

ANALYZE_ OBJECT _LIBRARY
Command

Purpose Begins an ANALYZE_OBJECT_LIBRARY utility session.
The subcommands for this object code utility display the
internal characteristics of object modules, including: object
record counts, section sizes, section attributes, and
performance data for modules on an object library or
object file.

Format ANALYZE_OBJECT_LIBRARY or
AN AOL

LIBRARY= file
STATUS=status variable

Parameters LIBRARY or L

Remarks

Revision G

Object library or object file to be analyzed.

If LIBRARY is omitted, you must use the USE_LIBRARY
subcommand to specify the object library or object file.

• After entering the ANALYZE_OBJECT_LIBRARY
command, you can enter any of the ANAOL
subcommands. The ANAOL session ends when you
enter the QUIT subcommand.

• An object library or file must be specified on the
ANALYZE_OBJECT_LIBRARY command or on the
USE_LIBRARY subcommand before an ANAOL
session can continue.

• For more information, see the NOS/VE Object Code
Management manual.

ANALYZE_ OBJECT_LIBRARY 6-1

DISPLAY_LIBRARY_ANALYSIS

Examples The following is a sequence that enters the ANALYZE_
OBJECT_LIBRARY utility, specifies LGO as the file to be
analyzed, and displays the characteristics of library LGO.

/analyze_object_library lgo
AOL/display_library_analysis
Library Analysis of LGO
Number of modules: 2
Record Analysis

Identification records: 2
Libraries: 2 - items: 10
Section definitions: 9
Text records: 21 - items: 519

Relocation records: 2 - items: 8
Binding templates: 8
Transfer symbols: 2

Total records: 84

AOL/Quit

DISPLAY _LIBRARY _ANALYSIS
ANAOL Subcommand

Purpose Displays the number of modules and/or the total number
of each type of object record on the current object library
or file. The current object library or file is specified by a
previous USE_LIBRARY subcommand or ANALYZE_
OBJECT_LIBRARY command.

Format DISPLAY_LIBRARY_ANALYSIS or
DISLA

DISPLAY_ OPTIONS= list of keyword
OUTPUT= file
STATUS== status variable

Parameters DISPLAY_OPTIONS or DISPLAY_OPTION or DO

List of one or more keywords indicating the analysis
information to be displayed. Options are:

NUMBER_OF_MODULESorNOM

Number of modules on the object library or file.

6-2 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

DISPLAY_LIBRARY_ANALYSIS

RECORD_ANALYSIS or RA

Total number of each type of object record on the
object library or file.

ALL

All of the previously listed options.

IF DISPLAY_OPTION is omitted, all analysis information
is displayed.

OUTPUT or 0

Output file. This file can be positioned.

If OUTPUT is omitted, file $OUTPUT is used.

• In a library analysis (see example), the record analysis
contains the number of each type of object record in
the library or file. The total number of adaptable
items is also listed with the object records that have
adaptable fields.

• For more information, see the NOSNE Object Code
Management manual.

The following ANAOL session lists the number of modules
and the type and number of object records in the current
library LGO.

/analyze_object_ library lgo
AOL/display_ l ibrary_analysis

Library Analysis of LGO

Number of modu l es : 2

Record Ana 1 ys is

Identification records:
Libraries:
Sect ion def in it ions:
Text records:
Address formulation records:
External linkage records:
Entry definitions:
Rel ocat ion records:
Binding templates:
Transfer symbols:

Total records:

AOL/

2
2 items: 10
9

21 items: 519
31 items: 31

5 items: 5
2
2 items: 8
8
2

84

ANALYZE_ OBJECT_LIBRARY 6-3

DISPLAY_MODULE_ANALYSIS

DISPLAY _MODULE _ANALYSIS
ANAOL Subcommand

Purpose Displays analysis information about specified modules on
the object library or file, such as:

• Total number of each type of object record in the
module.

• Size, type, attributes initialized, addresses in, externals
in, and addresses to each section in the module.

The current object library or file is specified by a
previous USE_LIBRARY subcommand or ANALYZE_
OBJECT_LIBRARY command.

Format DISPLAY_MODULE_ANALYSIS or
DISMA

MODULES= list of range of any
DISPLAY_ OPTIONS= list of keyword
OUTPUT=file
STATUS=status variable

Parameters MODULES or MODULE or M

List of modules whose analysis information is to be
displayed.

You use a string value for a module whose name is not
an SCL name.

If MODULE is omitted or the keyword ALL is used,
analysis information for all modules in the object library
or file is displayed.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

List of one or more keywords indicating the analysis
information to be displayed. Options are:

RECORD_ANALYSIS or RA

Total number of each type of object record in the
module.

SECTION_ANALYSIS or SA

Size, type, attributes, bytes initialized, addresses built
in this section, and addresses built in other sections
that the loader will build that point to this section.

6-4 NOSNE Commands and Functions Revision G

Remarks

Revision G

DISPLAY_MODULE_ANALYSIS

ALL

All of the previously listed options.

If DISPLAY_OPTION is omitted, all analysis information
is displayed.

OUTPUT or 0

Output file. This file can be positioned. If OUTPUT is
omitted, file $OUTPUT is used.

o In a module analysis display, the record analysis
contains the number of each type of object record in
the module. The total number of adaptable items is
also listed with the object records that have adaptable
fields. The number of items contained in the next ·
column lists the total size of the adaptable record
types.

• The section analysis display includes the following:

- Total number of bytes in the section.

Section type: code section, binding section, working
storage section, common block, extensible working
storage, and extensible common block.

- Attributes of the section: R =read, W =write,
X =execute, and B =binding.

- Number of bytes initialized in the section by text
and replication records or by allotted text.

- Number of internal addresses (Addresses in) the
loader will build in this section.

- Number of addresses (Addresses to) in other
sections the loader will build that point to this
section.

• For more information, see the NOSNE Object Code
Management manual.

ANALYZE_ OBJECT_LIBRARY 6-5

DISPLAY_PERFORMANCE_DATA

Examples The following subcommand lists the record analysis and
section analysis of module TEST.

AOL/display_module_analys is module=test

"4odule Analysis of TEST

Record Ana 1 ys is

!dent if icat ion records:
Libraries: items:
Sect ion definitions: 4
Text records: 9 items:
Address f ormu 1 at ion records : 15 items:
External 1 inlc;age records: 2 items:
Entry definitions:
Relocation records: 1 items:
Binding templates: 4
Transfer symbols:

Total records: 39

Section Analysis

Section: TEST 60 bytes CODE [R x]
Bytes initialized: 60 Addresses to: 1

Section: 56 bytes BINDING [B]
Externals in: 2 Addresses in: 3 Addresses to: 1

5

233
15
2

4

Section: 207 bytes V«.lRKING STORAGE [R]
Bytes initialized: 163 Addresses in: 6 Addresses to: 8

Sect ion: 104 bytes V«.lRK I NG STORAGE [R W]
Bytes initialized: 10 Addresses in: 7 Addresses to: 5

AOL/

DISPLAY _PERFORMANCE _DATA
ANAOL Subcommand

Purpose

Format

Displays possible load and execution time performance
problems that may exist in specified modules on the object
library or file. The current object library or file is
specified by a previous USE_LIBRARY subcommand or
ANALYZE_OBJECT_LIBRARY command.

DISPLAY_PERFORMANCE_DATA or
DIS PD

MODULES= list of range of any
PERFORMANCE_DATA=list of keyword
DISPLAY_OPTION=list of keyword
OUTPUT =file
STATUS= status variable

6-6 NOS/VE Commands and Functions Revision G

DISPLAY_PERFORMANCE_DATA

Parameters MODULES or MODULE or M

Revision G

List of modules whose performance data is to be
displayed.

You use a string value for a module whose name is not
an SCL name.

If MODULE is omitted or keyword ALL is specified,
performance data for all modules is displayed.

PERFORMANCE_DATA or PD

List of one or more keywords indicating the performance
data to be displayed. Options are:

SYMBOL_ TABLES or ST

Modules that have debug symbol tables.

LINE_ TABLES or LT

Modules that have debug line address tables.

PARAMETER_CHECKING or PC

Modules that have parameter checking records.

RUNTIME_CHECKING or RC

Modules that have run-time range checking for
variables, subscripts, and substring character
expressions.

RUNTIME_LIBRARY_CALLS or RLC

Modules that have calls to local run-time libraries.

RUNTIME_LIBRARIES or RL

Modules that have text-embedded run-time library
directives.

OPT_DEBUG or OD

Modules that are compiled with the parameter
OPTIMIZATION _LEVEL= DEBUG.

OPT_LOW or OL

Modules that are compiled with the parameter
OPTIMIZATION_LEVEL=LOW.

OBJECT_MODULES or OM

Object modules that are not on an object library.

ANALYZE_ OBJECT_LIBRARY 6-7

DISPLAY:....PERFORMANCE_DATA

LOAD_MODULESorLM

Load modules that have not been bound.

BOUND_MODULESorBM

Bound modules that have not been prelinked.

UNREFERENCED_SECTIONS or US

Modules that have uninitialized and unreferenced
sections.

MULTIPLE_ENTRY_POINTS or MEP

Bound or prelinked modules that have multiple entry
points. ·

ALL

All of the previously listed options.

If PERFORMANCE_DATA is omitted, all performance
data is displayed.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

List of one or more keywords indicating the information
to be displayed. The number of modules with the possible
performance problem is always displayed. Options are:

NONE

No information other than the number of modules with
the possible performance problem.

MODULE_NAMES or MN

Names of modules with the possible performance
problem.

DESCRIPTION or D

Brief description of the possible performance problem
and recommended changes to correct the problem.

ALL

All of the previously listed options.

If DISPLAY_OPTION is omitted, the number of modules
with the possible problem and the description of the
problem (DESCRIPTION) are displayed.

6-8 NOSNE Commands and Functions Revision G

Remarks

DISPLAY_SECTION _ANALYSIS

OUTPUT or 0

Output file. This file can be positioned.

If OUTPUT is omitted, file $OUTPUT is used.

• The analysis performed is very general, and the
recommendations may not be applicable to all
programs. Each recommendation should be looked at to
determine if any changes should be made to the
program or its packaging.

• The quality of analysis performed depends on the
amount of information placed in the object modules by
the compilers. Some modules may have performance
problems that are not detected.

• Since binding and prelinking may hide some of a
product's performance problems, analysis should also
be done on the unbound product.

• For more information, see the NOSNE Object Code
Management manual.

DISPLAY _SECTION _ANALYSIS
ANAOL Subcommand

Purpose

Format

Revision G

Displays section usage information for specified modules
on the object library or file. Information displayed
includes size, attributes, bytes initialized, addresses in the
section, and addresses to the section. The current object
library or file is specified by a previous USE_LIBRARY
subcommand or ANALYZE_OBJECT_LIBRARY command.

DISPLAY_SECTION_ANALYSIS or
DIS SA

MODULES= list of range of any
SECTION _KINDS= list of keyword
SECTION _ACCESS _ATTRIBUTES= list of keyword
SECTION _NAME= name
OUTPUT= file
STATUS=status variable

ANALYZE_ OBJECT_LIBRARY 6-9

DISPLAY_SECTION_ANALYSIS

Parameters MODULES or MODULE or M

List of modules whose section usage information is to be
displayed.

Use a string value for a module whose name is not an
SCL name.

If MODULE is omitted or the keyword ALL is used,
section usage information for all modules in the object
library or file is displayed.

SECTION _KINDS or SK

List of one or more keywords indicating the type of
section to be displayed. Types are:

CODE or C

Code section.

BINDING or B

Binding section.

WORKING_STORAGE or WS

Working storage section.

EXTENSIBLE_ WORKING_STORAGE or EWS

Extensible working storage section.

COMMON_BLOCK or CB

Common block section.

EXTENSIBLE_COMMON_BLOCK or ECB

Extensible common block section.

ALL

All of the previously listed section types:

If SECTION_KIND is omitted, all section types are
displayed.

SECTION_ACCESS_ATTRIBUTES or SAA

List of one or more keywords indicating the access
attributes of the section to be displayed. The access
attributes are:

6-10 NOSNE Commands and Functions Revision G

Remarks

Revision G

READ or R

Read attributes.

WRITE or W

Write attributes.

EXECUTE or E

Execute attributes.

BINDING or B

Binding attributes.

ALL

Any of the listed attributes.

DISPLAY_SECTION_ANALYSIS

If SECTION _ACCESS_ATTRIBUTE is omitted, sections
with any attributes are displayed.

SECTION_NAME or SN

The name of the section to be displayed. If SECTION_
NAME is omitted, sections with any names are displayed.

Use a string value for a section whose name is not an
SCL name.

OUTPUT or 0

Output file. This file can be positioned.

If OUTPUT is omitted, file $OUTPUT is used.

The section analysis display (see example) includes the
following:

• Name of section (if any).

• Total number of bytes in the section.

• Section type: code section, binding section, working
storage section, common block, extensible working
storage, and extensible common block.

• Attributes of the section: R =read, W =write,
X =execute, B =binding.

• Number of bytes initialized in the section by text and
replication records or by allotted text.

ANALYZE_ OBJECT_LIBRARY 6-11

QUIT

Examples

QUIT

• Number of internal addresses (Addresses in) and
external addresses (Externals in) the loader will build
in this section.

• Number of addresses (Addresses to) in other sections
which the loader will build that point to this section.

• For more information, see the NOS/VE Object Code
Management manual.

The following subcommand lists the section definitions for
module SUB.

AOL/display_sect ion_analys is modu le=sub

Section Usage of SUB
Sect ion: SUB 50 bytes CODE [R X]

Bytes initialized: 50
Sect ion: 24 bytes BINDING [B]

Externals in: 1 Addresses in: 1
Section: 125 bytes V()RKING STORAGE [R]

Bytes initialized: 101 Addresses in: 4 Addresses to: 2
Sect ion: 64 bytes V()RKING STORAGE [R w]

Bytes initialized: 12 Addresses in: 2 Addresses to: 5

AOL/

ANAOL Subcommand

Purpose Ends the ANALYZE_OBJECT_LIBRARY session.

Format QUIT or
QUI

Parameters None.

Remarks For more information, see the NOS/VE Object Code
Management manual.

6-12 NOS/VE Commands and Functions Revision G

Examples

USE_LIBRARY

The following sequence writes a library and a module
analysis of LIBRARY_ I to file OUTl and writes a library
analysis of OBJECT_FILE_2 to file OUT2. The output
files are then printed.

/analyze_object_library library_l
AOL/display_11brary_analysis output=outl
AOL/display_module_analysis display_option= ..
AOL .. /section_analysis output=out1.$eoi
AOL/use_library object_file_2
AOL/display_library_analysis output=out2
AOL/Quit
/print_file outl
/print_file out2

USE _LIBRARY
ANAOL Subcommand

Purpose

Format

Specifies the object library or object file to be analyzed.

USE_LIBRARY or
USEL

LIBRARY= file
STATUS= status variable

Parameters LIBRARY or L

Remarks

Examples

Revision G

Object library or object file to be analyzed. This
parameter is required.

o If an object library or object file was not specified on
the ANALYZE_OBJECT_LIBRARY command, you
must specify the library or file with the USE_
LIBRARY subcommand before you can analyze the
library, its modules, or its sections.

• You use this subcommand to specify a new object
library or object file to analyze.

• For more information, see the NOSNE Object Code
Management manual.

The following subcommand. selects object file LOO as the
next library to be analyzed.

AOL/use_library lgo

ANALYZE_ OBJECT_LIBRARY 6-13

BACKUP _PERMANENT _FILES 7

BACKUP_PERMANENT_FILES 7-1
BACKUP_CATALOG. 7-2
BACKUP_FILE. 7-3
DELETE_CATALOG_CONTENTS 7-4
DELETE_FILE_CONTENTS . 7-6
EXCLUDE_CATALOG : 7-7
EXCLUDE_FILE . 7-7
EXCLUDE_HIGHEST_CYCLES 7-8
INCLUDE_CYCLES . 7-9
INCLUDE_EMPTY_CATALOGS 7-13
INCLUDE_LARGE_CYCLES 7-14
INCLUDE_SMALL_CYCLES 7-15
INCLUDE_ VOLUMES 7-15
QUIT 7-17
SET_BACKUP_OPTIONS 7-17
SET_LIST_OPTIONS 7-19

BACKUP _PERMANENT _FILES 7

BACKUP _PERMANENT _FILES
Command

Purpose Initiates execution of the utility that backs up permanent
files and catalogs. Further processing is directed by utility
subcommands.

Format BACKUP _PERMANENT_FILES or
BACKUP _PERMANENT _FILE or
BACPF

BACKUP _FILE= file
LIST=file
STATUS= status variable

Parameters BACKUP _FILE or BF

Remarks

Examples

Revision G

Specifies the file to which backup information is copied.
You can specify a file position of beginning-of-information
or end-of-information if the file is a mass storage file or a
labelled tape. If no file position is specified, or the file is
an unlabelled tape, the file is initially positioned to
beginning-of-information. This parameter is required.

LIST or L

Identifies the file to which a summary of the results of
executing the backup utility is written and, optionally,
specifies how the file is to be positioned prior to use.
Omission causes $LIST to be used.

• You can back up only the files for which you have
read access.

o For more information, see the NOSNE System Usage
manual.

The following command initiates a BACKUP_
PERMANENT_FILE command utility session. The
command specifies that the backed up files are to be
written to file BACKED_UP_FILES with the report
listing written to file BACKUP_LISTING.

/backup_permanent_files bf=backed_up_files
.. /l=backup_listing

BACKUP_PERMANENT_FILES 7-1

BACKUP_CATALOG

Following the entry of this command, BACKUP_
PERMANENT_FILE subcommands can be entered in
response to the following prompt.

PUB/

BACKUP _CATALOG
BACPF Subcommand

Purpose

Format

Creates a backup copy of each file cycle and catalog
registered in a specified catalog.

BACKUP_ CATALOG or
BACC

CATALOG= file
STATUS= status variable

Parameters CATALOG or C

Remarks

Specifies the catalog to be backed up. This parameter is
required.

• Starting at the specified catalog, the complete catalog
hierarchy is followed to obtain a backup copy of each
file and its associated catalog information.

• You must have READ access to the files in the
catalog to be backed up, and not be required to share
the files for APPEND, MODIFY or SHORTEN access.

• If you are not the owner of the catalog, backup copies
for all file cycles (and their associated catalogs) to
which you have read access and only for those files
that have null passwords are made.

• BACKUP_ CATALOG skips a file cycle if the file cycle
is busy (that is, if it cannot access the file with an
access mode of read and a share mode of read and
execute).

• Previous EXCLUDE_CATALOG and EXCLUDE_FILE
subcommands enable you to exclude catalogs and files
from the backup operation.

7-2 NOSNE Commands and Functions Revision G

Examples

BACKUP_FILE

• Previous INCLUDE_CYCLES, INCLUDE_ VOLUME,
INCLUDE_LARGE_CYCLES, and EXCLUDE_
HIGHEST_ CYCLE subcommands can limit the number
of cycles actually backed up with the BACKUP_
CATALOG subcommand.

• For more information, see the NOSNE System Usage
manual.

The following command and subcommands back up all
files in the master catalog.

/backup_permanent_files bf=back_up_files
PUB .. /11st=backup_listing
PUB/backup_catalog c=$user
PUB/quit

BACKUP _FILE
BACPF Subcommand

Purpose

Format

Creates a backup copy of a specified permanent file.

BACKUP_FILE or
BACF

FILE=file
PASSWORD=name or keyword
STATUS=status variable

Parameters FILE or F

Remarks

Revision G

Specifies the permanent file or permanent file cycle for
which· a backup copy is to be made. This parameter is
required.

PASSWORD or PW

Specifies the password of the file to be backed up. If you
omit this parameter, or specify the keyword NONE, no
password is used.

• If the FILE parameter specifies· a cycle reference, only
that cycle is backed up. If a cycle reference is omitted,
all cycles of the file are backed up.

• You must have READ access to the files to be backed
up and not be required to share the files for APPEND,
MODIFY, or SHORTEN access.

BACKUP _PERMANENT_FILES 7-3

DELETE_ CATALOG_ CONTENTS

Examples

• BACKUP _FILE skips a file cycle if the file cycle is
busy (that is, if it cannot access the file with an
access mode of read and a share mode of read and
execute).

• A previous EXCLUDE_FILE subcommand can be used
to exclude specific cycles from the backup operation.

• Previous INCLUDE_CYCLES, INCLUDE_ VOLUME,
INCLUDE_LARGE_CYCLES, and EXCLUDE_
HIGHEST_CYCLE subcommands can limit the number
of cycles actually backed up with the BACKUP _FILE
subcommand.

• For more information, see the NOS/VE System Usage
manual.

The following example backs up cycle number 87 of file
DATA_FILE_O in subcatalog CATALOG_! of the master
catalog.

/bacpf bf=copy_of_file
PUB/backup_f11e $user.catalog_1.data_file_0.87
PUB .. /pw=new_data_O_pw
PUB/Quit

DELETE_CATALOG_CONTENTS
BACPF Subcommand

Purpose

Format

Deletes all files and subcatalogs in a catalog.

DELETE_CATALOG_CONTENTSor
DELETE_ CATALOG_ CONTENT or
DELCC

CATALOG=file
STATUS =status .variable

Parameters CATALOG or C

Specifies the catalog whose contents is to be deleted. This
parameter is required. ·

7-4 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

DELETE_ CATALOG_ CONTENTS

o Only the owner of a catalog can use this subcommand
to delete a catalog and to delete files with nonnull
passwords.

• Alternate users can use this request to delete all files:

- to which they have control and read access
permission.

- that they are not required to share for modify,
shorten, and append access.

- that have null passwords.

• If a file cycle is in use at the time this subcommand
is entered, the actual delete is not done until the last
user detaches the file.

• Previous EXCLUDE_CATALOG, EXCLUDE_FILE,
EXCLUDE_HIGHEST_CYCLES, INCLUDE_CYCLES,
INCLUDE_LARGE_CYCLES, INCLUDE_ VOLUME,
and INCLUDE_EMPTY_CATALOGS subcommands can
be used to specify a subset of the permanent files to
be deleted.

• DELETE_CATALOG_CONTENT skips a file cycle if
the file cycle is busy (that is, if it cannot access the
file with an access mode of read and a share mode of
read and execute).

• For more information, see the NOS/VE System Usage
manual.

The following example deletes the contents of catalog
CATALOG_ I for the current user.

/backup_permanent_files bf=backup_of_files
PUB/delcc $user.catalog_1

BACKUP_PERMANENT_FILES 7-5

DELETE_FILE_ CONTENTS

DELETE _FILE_ CONTENTS
BACPF Subcommand

Purpose Deletes all cycles of a file.

Format DELETE_FILE_CONTENTS or
DELETE_FILE_CONTENT or
DELFC

FILE=file
PASSWORD=name or keyword
STATUS= status variable

Parameters FILE or F

Remarks

Specifies the file to be deleted. The cycle number is
ignored. This parameter is required.

PASSWORD or PW

Specifies the file password of the file to be deleted. This
name must match the password registered with the file.
Omission or specifying the keyword NONE causes no
password to be used.

• Only the owner of the file or a user with control and
read access permission and a share mode permission
that does not include modify, shorten, or append can
delete a file.

• DELETE_FILE_ CONTENT skips a file cycle if the
file cycle is busy (that is, if it cannot access the file
with an access mode of read and a share mode of read
and execute).

• If a file cycle is in use at the time this subcommand
is entered, the actual delete is not done until the last
user detaches the file.

• Previous EXCLUDE_FILE, EXCLUDE_HIGHEST_
CYCLES, INCLUDE_ VOLUME, INCLUDE_LARGE_
CYCLES, and INCLUDE_CYCLES subcommands can
be used to specify a subset of the permanent file
cycles to be deleted.

• For more information, see the NOSNE System Usage
manual.

7-6 NOS/VE Commands and Functions Revision G

Examples

EXCLUDE_ CATALOG

The following example deletes all cycles of permanent file
DATA_FILE_l for the current user.

/bacpf backup_of_files
PUB/delete_file_contents $user.data_file_1

EXCLUDE_CATALOG
BACPF Subcommand

Purpose

Format

Excludes a catalog from subsequent backup and delete
operations.

EXCLUDE_CATALOG or
EXCC

CATALOG= file
STATUS =status variable

Parameters CATALOG or C

Remarks

Specifies the catalog that is to be excluded from
subsequent backup and delete operations. This parameter
is required.

• This subcommand takes precedence over all INCLUDE
subcommands.

• The catalog is excluded only if the subsequent backup
operation is at a higher level in the catalog hierarchy;
thus, you can override this subcommand by explicitly
backing up a catalog that is at a lower level in the
catalog hierarchy.

• For more information, see the NOSNE System Usage
manual.

EXCLUDE _FILE
BACPF Subcommand

Purpose

Format

Revision G

Excludes a file or cycle from subsequent backup and
delete operations.

EXCLUDE_FILE or
EXCF

FILE=tile
STATUS= status variable

BACKUP _PERMANENT_FILES 7-7

EXCLUDE_HIGHEST_ CYCLES

Parameters FILE or F

Remarks

Specifies the file or cycle that is to he excluded from
subsequent backup and delete operations. This parameter
is required.

• This subcommand takes precedence over all INCLUDE
subcommands.

o The file or cycle is excluded only if the subsequent
backup or delete operation is at a higher level in the
catalog hierarchy; thus, you can override this
subcommand by explicitly backing up the file or cycle.

• For more information, see the NOS/VE System Usage
manual.

EXCLUDE_HIGHEST_CYCLES
BACPF Subcommand

Purpose

Format

Causes the specified number of high (largest numbered)
cycles of permanent files to be -excluded from subsequent
backup and delete operations.

EXCLUDE_HIGHEST_CYCLES or
EXCLUDE_HIGHEST_CYCLE or
EXCHC

NUMBER_OF_CYCLES=integer or keyword
STATUS= status variable

Parameters NUMBER_OF_CYCLES or NOC

Remarks

Specifies the number of high cycles to be excluded. The
value must be an integer in the range from 0 through
999. Omission causes 3 to be used.

• This subcommand takes precedence over all INCLUDE
subcommands.

• For more information, see the NOS/VE System Usage
manual.

7-8 NOSNE Commands and Functions Revision G

Examples

INCLUDE_CYCLES

The following example excludes the highest cycle of each
file in a user's catalog from a subsequent DELETE_
CATALOG_CONTENTS command.

/bacpf bf=backup_of_files
PUB/exclude_highest_cycles noc=1
PUB/delete_catalog_contents $user

INCLUDE_CYCLES
BACPF Subcommand

Purpose Includes cycles in subsequent backup and delete operations
based on the creation date and time, last access date and
time, last modification date and time, or expiration date
of the cycle.

Format INCLUDE_CYCLES or
INCLUDE_CYCLE or
INCC

SELE CTI ON_ CRITERIA= keyword
MONTH= integer or keyword
DAY= integer
YEAR= integer
HOUR =integer
MINUTE= integer
SECOND= integer
MILLISECOND= integer
STATUS= status variable

Parameters SELECTION_ CRITERIA or SC

Revision G

Specifies the selection criteria to be used in determining
which cycles will be backed up on subsequent backup and
delete operations. This parameter is required. The
following keywords can be specified:

ACCESSED_BEFORE

Only cycles whose last access was before the given
date and time are selected.

ACCESSED_AFTER

Only cycles whose last access was after the given date
and time are selected.

BACKUP_PERMANENT_FILES 7-9

INCLUDE_CYCLES

CREATED_BEFORE

Only cycles created before the given date and time are
selected.

CREATED_AFTER

Only cycles created after the given date and time are
selected.

EXPIRED_BEFORE

Only cycles whose expiration date is before the given
date are selected. If no date is specified, the current
date is used.

EXPIRED_AFTER

Only cycles whose expiration date is after the given
date are selected.

MODIFIED_BEFORE

Only cycles that were last modified prior to the given
date and time are selected.

MODIFIED_AFTER

Only cycles that were last modified after the given
date and time are selected.

ALL

Removes the effect of any previous INCLUDE_
CYCLES subcommand. No date or time parameters
can be specified with this selection.

MONTH or M

Specifies the month. This parameter must be given as an
integer from 1 through 12 (corresponding to the months
January through December) or as one of the following
keyword values.

JANUARY
FEBRUARY
MARCH
APRIL
MAY
JUNE
JULY
AUGUST
SEPTEMBER

7-10 NOSNE Commands and Functions Revision G

Revision G

OCTOBER
NOVEMBER
DECEMBER

INCLUDE_ CYCLES

This parameter is required unless a SELECTION_
CRITERIA of EXPIRED_BEFORE is specified, in which
case omission causes the current month to be used.

If a SELECTION_ CRITERIA of ALL is specified, this
parameter must not be specified.

DAY or D

Specifies the day of the month. This parameter must be
given as an integer from 1 through 31.

This parameter is required unless a SELECTION_
CRITERIA of EXPIRED_BEFORE is specified, in which
case omission causes the current day to be used.

If a SELECTION_ CRITERIA of ALL is specified, this
parameter must not be specified.

YEAR or Y

Specifies the year. This parameter must be an integer in
the range from 1983 through 1999.

This parameter is required unless a SELECTION_
CRITERIA of EXPIRED_BEFORE is specified, in which
case omission causes the current year to be used.

If a SELECTION_CRITERIA of ALL is specified, this
parameter must not be specified.

HOUR or HR

Specifies the hour of the day. This parameter must be an
integer in the range from 0 through 23 (where 0 is
midnight and 23 is 11 p.m.). Omission causes 0 to be
used.

MINUTE or MIN

Specifies the minute of the hour. This parameter must be
an integer in the range from 0 through 59. Omission
causes 0 to be used.

SECOND or SEC

Specifies the second of the minute. This parameter must
be an integer in the range from 0 through 59. Omission
causes 0 to be used.

BACKUP_PERMANENT_FILES 7-11

INCLUDE_ CYCLES

Remarks

Examples

MILLISECOND or MSEC

Specifies the millisecond part of the second. This
parameter must he an integer in the range from 0
through 999. Omission causes 0 to he used.

• If a before criteria is selected, only cycles created, last
accessed, last modified, or expired prior to the given
date and time are hacked up or deleted; if an after
criteria is selected, only cycles created, last accessed,
last modified, or expired after the given date and time
are hacked up or deleted.

• The following values for the selection criteria can he
used together in this manner:

ACCESSED_AFTER and ACCESSED_BEFORE
CREATED_AFTER and CREATED_BEFORE
EXPIRED_AFTER and EXPIRED_BEFORE
MODIFIED_AFTER and MODIFIED_BEFORE

• INCLUDE_CYCLES provides the capability to perform
a partial permanent file backup.

• To reduce the size of the permanent file base by
deleting permanent file cycles that have not been
accessed since the specified date and time, an
INCLUDE_CYCLES subcommand with an accessed
before selection criteria followed by a BACKUP _ALL_
FILES and a DELETE_ALL_FILES subcommand can
be used.

• Any EXCLUDE subcommands take precedence over
this subcommand.

• For more information, see the NOSNE System Usage
manual.

The following example produces a partial backup
composed of all files that were modified on or after
January 2, 1987.

/backup_permanent_files bf=backup_of_files
PUB/1nclude_cycles modified_after 1 2 1987

Two INCLUDE_CYCLES subcommands can be used to
specify a window for backup and delete operations. For
example:

7-12 NOSNE Commands and Functions Revision G

INCLUDE_EMPTY_ CATALOGS

PUB/include_cycles modified_after january 1 1987
PUB/include_cycles modified_before january 3 1987

These subcommands cause only those cycles modified on
January 1, 1987, and January 2, 1987 to be selected for
backup and delete operations.

The following example backs up and deletes all files that
have not been accessed since May 1, 1986.
PUB/include_cycles accessed_before
.. /may 1, 1986
PUB/backup_catalog c=$user
PUB/delete_all_files

INCLUDE_EMPTY_CATALOGS
BACPF Subcommand

Purpose Specifies whether or not subsequent DELETE_
CATALOG_CONTENTS subcommands should delete empty
catalogs.

Format INCLUDE_EMPTY_CATALOGS or
INCLUDE_EMPTY_CATALOG or
INCEC

DELETE_ CATALOGS= boolean
STATUS= status variable

Parameters DELETE_CATALOGS or DELETE_CATALOG or DC

Specifies whether or not empty catalogs encountered
during a subsequent DELETE_ALL_FILES or DELETE_
CATALOG_CONTENTS subcommand should be deleted.
Omission causes TRUE to used.

Remarks

Revision G

• This subcommand must be entered during a
BACKUP _PERMANENT_FILES command utility
session.

• If this subcommand is not issued prior to a DELETE_
ALL_FILES or DELE'rE_CATALOG_CONTENTS
subcommand, empty catalogs are not deleted when
those subcommands are entered.

• For more information, see the NOSNE System Usage
manual.

BACKUP_PERMANENT_FILES 7-13

INCLUDE_LARGE_CYCLES

Examples The following example deletes all catalogs in subcatalog
CATALOG_! of a user's master catalog.

PUB/include_empty_catalogs
PUB/delete_catalog_contents
PUB .. /$user.catalog_1

The following example saves empty catalogs from being
deleted for user DLH in family FAMILYl.
PUB/include_empty_catalogs dc=false
PUB/delete_catalog_contents :fam11y1.dlh

INCLUDE_LARGE_CYCLES
BACPF Subcommand

Purpose Specifies that subsequent backup and delete operations
should include only permanent file cycles whose size is
greater than or equal to a specified number of bytes. An
excluded cycle is not backed up or deleted, regardless of
its size.

Format INCLUDE_LARGE_CYCLES or
INCLUDE_LARGE_CYCLE or
INCLC

MINIMUM_ SIZE= integer
STATUS= status variable

Parameters MINIMUM_ SIZE or MS

Remarks

Examples

Specifies the minimum size in bytes of cycles included on
subsequent backup and delete operations. This parameter
is required.

For more information, see the NOS/VE System Usage
manual.

The following example backs up and deletes all cycles
greater than or equal to 1,000,000 bytes in size.

PUB/include_large_cycles ms=1000000
PUB/backup_catalog c=$use r
PUB/delete_all_files

7-14 NOS/VE Commands and Functions Revision G

INCLUDE_SMALL_CYCLES

INCLUDE_SMALL_CYCLES
BACPF Subcommand

Purpose Specifies that subsequent backup and delete operations
should include only permanent file cycles whose size is
less than or equal to a specified number of bytes. An
excluded cycle is not backed up or deleted, regardless of
its size.

Format INCLUDE_SMALL_CYCLES or
INCLUDE_SMALL_CYCLE or
INCSC

MAXIMUM_SIZE=integer or keyword
STATUS =status variable

Parameters MAXIMUM_ SIZE or MS

Remarks

Examples

Specifies the maximum size in bytes of cycles included on
subsequent backup and delete operations. The keyword
MAXIMUM specifies that no limit is placed on the size of
cycles included in subsequent backup commands. This

. parameter is required.

For more information, see the NOSNE System Usage
manual.

The following example backs up and deletes all cycles less
than or equal to 1,000,000 bytes in size.

PUB/include_small_cycles ms=1000000
PUB/backup_catalog c=$use r
PUB/delete_all_files

INCLUDE_ VOLUMES
BACPF Subcommand

Purpose Specifies which permanent file cycles included in a
specified volume are to be backed up or deleted by
subsequent backup operations.

Format INCLUDE_ VOLUMES or
INCLUDE_ VOLUME or
INCV

RECORDED_ VSNS=list of name or keyword
CYCLE _SELECTION= keyword
STATUS=status variable

Revision G BACKUP_PERMANENT_FILES 7-15

INCLUDE_ VOLUMES

Parameters RECORDED_ VSNS or RECORDED_ VSN or RVSN

Specifies the volumes to include; must be a name of from
1 to 6 characters or the keyword ALL. The RECORDED_
VSN specified when the volume was initialized must be
supplied. This parameter is· required.

Remarks

CYCLE_SELECTION or CS

Specifies which cycles on a volume should be backed up.
Options are:

INITIAL_ VOLUME (IV)

Backup only the cycles whose beginning of information
(BOI) is on the volume. Cycles whose BOI is on
another volume are skipped.

MULTIPLE_ VOLUMES (MV)

Backup all cycles which reside either partially or
completely on the volume.

If CYCLE_SELECTION is omitted, MULTIPLE_
VOLUMES is used.

• The CYCLE_SELECTION parameter is ignored when
the keyword ALL is specified on the RECORDED_
VSN parameter.

• If you select the MULTIPLE_ VOLUMES option and
cycles reside on more than one volume and each
volume is backed up by a different backup, then cycles
will be redundantly backed up. If the system fails due
to a permanent file device failure, you may reload the
lost cycles with the Permanent File Restore utility's
RESTORE_EXCLUDED_FILE_CYCLES subcommand
on just the backup tapes containing the cycles of the
failed device.

• If you select the INITIAL_ VOLUME option, data will
not be redundantly backed up. Hence, all volumes in a
backup must be read when a restore operation is done
after a device failure.

• For more information, see the NOSNE System Usage
manual.

7-16 NOS/VE Commands and Functions Revision G

Examples

QUIT

QUIT

The following example backs up all files that reside on
the disk volume VOL033, and then deletes and restores
the files so that they are dispersed over all volumes in
the permanent file system.

/backup_permanent_files bf=temp_backup
PUB/include_volume rvsn=VOL033 cs=mv
PUB/backup_catalog $user
PUB/delete_catalog_contents $user
PUB/Quit
/restore_permanent_files
PUR/restore_existing_catalog
PUR .. /$user bf=temp_backup
PUR/Quit
I

BACPF Subcommand

Purpose Ends a BACKUP _PERMANENT_FILES utility session.

Format QUIT or
QUI

Parameters None.

Remarks For more information, see the NOSNE System Usage
manual.

SET_BACKUP _OPTIONS
BACPF Subcommand

Purpose

Format

Revision G

Specifies actions to be taken by the BACKUP_
PERMANENT_FILE utility.

SET_BACKUP_OPTIONS or
SET_BACKUP_OPTION or
SETBO

EXCLUDE_CATALOG _INFORMATION= boolean or
keyword

NULL_BACKUP _FILE_ OPTION= keyword
INCLUDE_ARCHIVE_INFORMATION =boolean or

keyword
INCLUDE_DATA=list of keyword
STATUS =status variable

BACKUP_PERMANENT_FILES 7-17

I

SET_BACKUP_ OPTIONS

Parameters EXCLUDE_CATALOG_INFORMATION or ECI

Remarks

Reserved for the site administrator's use. See the NOSNE
System Performance and Maintenance manual, volume 2
for more information.

NULL_BACKUP_FILE_OPTIONorNBFO

Specifies whether the BACKUP_PERMANENT_FILE
utility should attempt to read file data during backups to
$NULL or any file assigned to the NULL device class. If
$NULL was not specified on the BACKUP _FILE
parameter on the BACKUP _PERMANENT_FILES
command, then this parameter has no effect. The
keywords are:

READ_DATA (RD)

Specifies that BACKUP _PERMANENT_ FILES should
attempt to read all file data when backing up to
$NULL.

UNSPECIFIED

Specifies that BACKUP _PERMANENT_FILES should
not attempt to read all file data when backing up to
$NULL. For this option, the only action taken by
BACPF when backing up to $NULL is to generate a
listing of the file base.

Omission of this parameter causes the current value for
this parameter to remain the same. The initial default for
this parameter is UNSPECIFIED.

INCLUDE_ARCHNE_INFORMATION or IAI

Reserved.

INCLUDE_DATA or ID

Reserved.

• When using this subcommand, it is recommended that
you always specify parameter names rather than
depending upon positional placement of parameters.
This is because it is anticipated that additional
parameters will be added at a future date.

• For more information, see the NOSNE System Usage
manual.

7-18 NOSNE Commands and Functions Revision G

SET_LIST_ OPTIONS

SET _LIST_ OPTIONS
BACPF Subcommand

Purpose Specifies the information that is written to the list file by
subsequent subcommands.

Format SET_LIST_OPTIONS or
SET_LIST_OPTION or
SETLO

FILE_DISPLAY_OPTIONS=list of keyword
CYCLE_DISPLAY_OPTIONS=list of keyword
DISPLAY _EXCLUDED _ITEMS= boolean
STATUS= status variable

Parameters FILE_DISPLAY_OPTIONS or FILE_DISPLAY_OPTION
or FDO

Revision G

Selects the data to be displayed with the file name.
Options are:

ACCOUNT (A)

Displays the account name.

PROJECT (P)

Displays the project name.

NONE

Displays only the file name.

ALL

Displays the account and project name.

If the FILE_DISPLAY_OPTION parameter is omitted,
NONE is selected.

CYCLE_DISPLAY_OPTIONS or CYCLE_DISPLAY_
OPTION or CDO

Selects the data to be displayed for each cycle backed up
or restored. The cycle number and whether the cycle was
excluded is also displayed. Options are:

CREATION _DATE_ TIME (CDT)

Displays the date and time the cycle was created.

BACKUP_PERMANENT_FILES 7-19

SET_LIST_ OPTIONS

ACCESS_DATE_ TIME (ADT)

Displays the date and time the cycle was last
accessed.

MODIFICATION_DATE_TIME (MDT)

Displays the date and time the cycle was last
modified.

EXPIRATION_DATE (ED)

Displays the expiration date of the cycle.

ACCESS_COUNT (AC)

Displays the number of accesses to the cycle.

SIZE (S)

Displays the size of the cycle in bytes.

RECORDED_VSN(RVSN)

Displays all mass storage volumes on which the cycle
resides.

GLOBAL_FILE_NAME (GFN)

Displays the internally generated global file name.
This name is neither backed up nor restored.

NONE

Displays the cycle number.

ALL

Selects all of the display options.

If the CYCLE_DISPLAY_OPTION parameter is omitted,
the MODIFICATION _DATE_ TIME and SIZE options are
selected.

DISPLAY_EXCLUDED_ITEMS or DISPLAY_
EXCLUDED_ITEM or DEI

Determines whether or not excluded catalogs, files, and
cycles are displayed on the list file. TRUE causes the
identification of all excluded catalogs, files, and cycles to
be displayed. If FALSE is specified, excluded items are
not displayed. If omitted, TRUE is assumed.

7-20 NOSNE Commands and Functions Revision G

Remarks

Revision G

SET_LIST_ OPTIONS

For more information, see the NOSNE System Usage
manual.

BACKUP_PERMANENT_FILES 7-21

CHANGE _KEYED _FILE and CREATE_
KEYED _FILE 8

CHANGE_KEYED_FILE . 8-1
CREATE_KEYED_FILE . 8-2
ADD_RECORDS . ~4
COMBINE_RECORDS . 8-6
CREATE_ALTERNATE_INDEXES 8-7
CREATE_NESTED_FILE . 8-8
DELETE_NESTED_FILE 8-13
DELETE_RECORDS 8-14
DISPLAY_NESTED_FILE 8-16 ·
DISPLAY_RECORDS 8-18
EXTRACT_RECORDS . 8-20
HELP 8-22
QUIT 8-23
REPLACE_RECORDS .· . 8-23
SELECT_NESTED_FILE . 8-24

CHANGE _KEYED _FILE and CREATE_
KEYED_HLE 8

CHANGE _KEYED _FILE
Command

Purpose Begins a CHANGE_KEYED_FILE utility session ..

Format CHANGE_KEYED_FILE or
CHANGE_KEYED_FILES or
CHAKF

INPUT=file
OUTPUT=file
STATUS= status variable

Parameters INPUT or I

Remarks

Revision G

File path of an existing keyed file. If an output file is
specified, the input file is opened and copied to the output
file and then closed.

This parameter is required.

OUTPUT or 0

File path of the keyed file to which the input keyed file
is copied. The output file must be a duplicate of the input
file. If the output file does not exist, the command creates
it.

If an output file is specified, only the output file is
changed. If OUTPUT. is omitted, the input file is changed.

• The command utility prompt is:

chakf /

In response to the chakf/ prompt, you can enter SCL
commands, and any of these subcommands:

ADD_RECORDS
REPLACE_RECORDS
COMBINE_RECORDS
EXTRACT_ RECORDS
DELETE_ RECORDS
CREATE_NESTED_FILE
SELECT_NESTED_FILE
DELETE_NESTED_FILE

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8-1

CREATE_KEYED _FILE

Examples

DISPLAY_NESTED_FILE
CREATE_ALTERNATE_INDEXES
HELP
QUIT

o All subcommands in the session apply to the currently
selected nested file. The initially selected nested file is
$MAIN_FILE. The nested file selection can be
changed by a CREATE_NESTED_FILE or SELECT_
NESTED_FILE subcommand.

o If the existing keyed file or a new nested file to be
created uses a user-defined collation table, hashing
procedure, or compression procedure, the object library
containing the compiled table or procedure must be in
the program library list before the Change_Keyed_
File session begins.

To add one or more object libraries to the program
library list, use the ADD_LIBRARIES parameter on a
SET_PROGRAM ATTRIBUTES command. For
example:

set_program_attributes, add_library=$user.hash_library

o For more information, see the NOSNE Advanced File
Management Usage manual.

The following session copies an existing keyed file and
then ends.

/change_keyed_f i le, input=$user. exist ing_keyed_f i le, ..
. . /output=$user. new_keyed_f i le
chal<:f/quit
I

CREATE _KEYED _FILE
Command

Purpose

Format

Begins a CREATE_KEYED_FILE utility session.

CREATE_KEYED_FILE or
CREATE_KEYED_FILES or
CREKF

OUTPUT=file
STATUS =status variable

8-2 NOS/VE Commands and Functions Revision G

CREATE_KEYED _FILE

Parameters OUTPUT or 0

Remarks

Revision G

File path of the keyed file to be created. The keyed-file
attributes must already be specified by SET_FILE_
ATrRIBUTES commands.

This parameter is required.

The minimum attributes that must be defined are KEY_
LENGTH and MAXIMUM_RECORD_LENGTH. If the
FILE_ORGANIZATION is omitted, Create_Keyed_File
creates an indexed-sequential file.

• The command utility prompt is:

crekf /

In response to the crekf/ prompt, you can enter SCL
commands and any of these subcommands:

ADD_RECORDS
REPLACE_RECORDS
COMBINE_RECORDS
EXTRACT_RECORDS
DISPLAY_RECORDS
DELETE_RECORDS
CREATE_NESTED_FILE
SELECT_NESTED_FILE
DELETE_NESTED_FILE
DISPLAY_NESTED_FILE
CREATE_ALTERNATE_INDEXES
HELP
QUIT

• The new keyed file is created with one nested file,
named $MAIN _FILE. It is the initially selected nested
file and all subcommands apply to it until a
CREATE_NESTED_FILE or SELECT_NESTED_FILE
subcommand selects another nested file.

• If any nested file in the new keyed file uses a
user-defined collation table, hashing procedure, or
compression procedure, the object library containing
the compiled table or procedure must be in the
program library list before the Create_Keyed_File
session begins.

To add one or more object libraries to the program
library list, use the ADD_LIBRARIES parameter on a
SET_PROGRAM_ATrRIBUTES command. For
example:

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8-3

ADD_RECORDS

Examples

set_program_attributes, add_library=$user.hash_library

• If you specify DIRECT_ACCESS as the FILE_
ORGANIZATION attribute on the SET_FILE_
ATTRIBUTES command, but omit the INITIAL_
HOME_BLOCK_COUNT attribute, CREATE_
KEYED_FILE prompts you for calculation of the
INITIAL_HOME_BLOCK_COUNT.

• For more information, see the NOSNE Advanced File
Management Usage manual.

This CREATE_KEYED_FILE example defines the file
$USER.INDEXED SEQUENTIAL_FILE with the SET_
FILE_ATTRIBUTES command and then creates it.

/set_fi le_attributes, fi le=Suser. indexed_seouential_fi le ..
. ./f i le_organ 1zat ion= indexed_seouent ia 1 ..
. . /maxi mum_record_ 1 ength=32, mini mum_record_ 1ength=14 ..
. . /key_ length= 14
/create_keyed_file, output=Suser.indexed_sequential_file
crekf I

ADD_RECORDS
CHAKF and CREKF Subcommand

Purpose Adds records to the currently selected nested file.

Format ADD _RECORDS or
ADD _RECORD or
ADDR

INPUT= list of any
SORT= boolean
ERROR_LIMIT =integer
STATUS= status variable

Parameters INPUT or I

List of one or more files whose records are to be copied.
You must have at least read access to the files.

This parameter is required.

SORT or S

Indicates whether the records are sorted before they are
added to the file. (Sorting is recommended for better file
performance.)

8-4 NOS/VE Commands and Functions Revision G

~emarks

::x:amples

evision G

ADD_RECORDS

TRUE, ON, or YES

The records from the input file list are copied to a
temporary file and sorted. Records for an
indexed-sequential file are sorted by their primary-key
value; records for a direct-access file are sorted by
their hash value.

FALSE, OFF, or NO

The records are copied to a temporary file, but are not
sorted.

If SORT is omitted, the default is TRUE.

ERROR_LIMIT or EL

Number of nonfatal errors required to force termination of
the add (0 through [2**42-1]). A 0 sets an unlimited error
limit.

If ERROR_LIMIT is omitted, 0 is used.

For more information, see the NOS/VE Advanced File
Management Usage manual.

This Create_Keyed_File example creates the file
$USER.INDEXED_SEQUENTIAL_FILE, adds the records
of file $USER.ADD_RECORDS to it, and then displays
the file.

/set_f i 1 e_attr ibutes ..
. . /f i le=Suser. indexed_sequent ia l_f i le ..
. . /f i le_organ izat ion= indexed_sec:ruent ia 1 ..
. . /max imum_record_ length=32 ..
. . /minimum_record_ length=14 ..
. . /key_ length= 14

/create_keyed_f i le ..
. . /output=Suser. indexed_sequent ia l _file
crekf /add_records input=Suser. add_records

crekf/display_records count=al 1
Display_Nested_Fi le

t-a>/VE Keyed Fi le Ut i 1 it ies 1. 2 85357
1986-02-17

11: 19:36
Fi le = :NVE.USER99. INDEXED_SEOOENTIAL_FILE. 1
Display of records in SMAIN_FILE

Byte: 0
Byte: 0
Byte: 0
Byte: 0
Byte: 0

crekf/

ASCII: Everest
ASCII: K2
ASCII : K 11 i man jaro
ASCII: Matterhorn
ASCII: McKinley

Asia 8848
Asia 8611
Africa 5895
Europe 4478
North America 6194

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8-5

COMBINE_RECORDS

COMBINE _RECORDS
CHAKF and CREKF Subcommand

Purpose Combines additional records with the records in the
currently selected nested file.

Format COMBINE_RECORDS or
COMBINE_RECORD or
COMR

INPUT= list of any
SORT=boolean
ERROR_LIMIT =integer
STATUS=status variable

Parameters INPUT or I

Remarks

List of one or more files whose records are to be copied.
You must have at least read access to the files.

This parameter is required.

SORT or S

Indicates whether the input records are sorted before they
are combined. (Sorting is recommended for better file
performance.)

TRUE

The records from the input file list are copied to a
temporary file and sorted. Records for an
indexed-sequential file are sorted by their primary-key
value; records for a direct-access file are sorted by
their hash value.

FALSE

The records are copied to a temporary file, but are not
sorted.

If SORT is omitted, the default is TRUE.

ERROR_LIMIT or EL

Number of nonfatal errors required to force termination of
the combine (0 through [2**42-1]). A 0 sets an unlimited
error limit.

If ERROR_LIMIT is omitted, 0 is used.

For more information, see the NOSNE Advanced File
Management Usage manual.

8-6 NOS/VE Commands and Functions Revision G

Examples

CREATE_ALTERNATE_INDEXES

This Create_Keyed_File example adds records that have
a new primary key and replaces records that have an
existing primary-key value.

/copy_lceyecLf i le_adcl_f i le
Everest Africa 8800
K2 Asia 8611
Kn imanjaro Africa 5895

/copy_lceyed_f i le combine_f i le
Everest Asia 8848
Matterhorn Europe 4478
McKinley North America 6194

/create_lceyed_fne ..
. . /output=Suser. indexed_sequential_f i le
crelcf/add_records input-Suser.add_file
crelcf /combine_recordS input=Suser. combine_f i le
crelcf /di sp 1 ay _records count=a 11

Display_Nested_Fi le 1986-02-17
NOS/VE Keyed File Utilities 1. 2 85357 12: 01: 46
File =:NVE.USER99. INDEXED_SEQUENTIAL_FILE. 1
Display of records in SMAIN_FILE

Byte: 0
Byte: 0
Byte: 0
Byte: 0
Byte: 0

crelcf I

ASCII: Everest
ASCII: K2
ASCII: Kilimanjaro
ASCII: Matterhorn
ASCII: McKinley

Asia 8848
Asia 8611
Africa 5895
Europe 4478
North America 6194

CREATE_ALTERNATE_INDEXES
CHAKF and CREKF Subcommand

Purpose

Format

Remarks

Revision G

Initiates execution of the CREATE_ALTERNATE_
INDEXES command utility.

CREATE_ALTERNATE_INDEXESor
CHANGE_ALTERNATE_INDEX or
CHANGE_ALTERNATE_INDEXES or
CHANGE_ALTERNATE_INDICES or
CREAi or
CREATE_ALTERNATE_INDEX or
CREATE_ALTERNATE_INDICES or
CHAAI

STATUS= status variable

• The subutility prompt is:

crea1/

In response to the creai/ prompt, you can enter
NOS/VE commands and any of these subcommands:

CREATE_ KEY_ DEFINITIONS

CHANGE_KEYED_FILE and CREATE_KEYED FILE 8-7

I

CREATE_NESTED_FILE

Examples

DISPLAY_KEY_DEFINITIONS
DELETE_KEY_DEFINITIONS
CANCEL_KEY_DEFINITIONS
APPLY_ KEY_ DEFINITIONS
HELP
QUIT

• For more information, see the NOS/VE Advanced File
Management Usage manual.

The following subutility session creates an alternate-key
definition and then displays it.

crelcf /creat_alternate_ indexes
crea i/create_key_def in it ions ..
crea L . /key _name=a 1ternate_lcey_1 ..
crea i .. /key _pos 1 ti on=28 key_ length=4
crea1/display_lcey_definitions display_opt1ons=al 1
Display_Nested_Fi le

NOS/VE Keyed Fi le Ut i 1 it ies 1. 2 86034
Fi le = :NVE. INDEXED_SEQJENTIAL_FILE
Nested_Fi le_Name

KEY_NAME POSITION LENGTH TYPE

1986-02-17
12: 20: 26

STATE

AL TERNATE_KEY _ 1 28 4 uncollated creation pending
Dupl icate_Key_Value
Nu 11 _Suppress ion

: not_a 1 lowed
: no

RECORD 1 (in asc i i) : E v e r e s t A s i a

ALTERNATE_KEY_l

creai/

(in hex) : 457665726573742020202020202041736961202020202020

(in ascii) : 8 8 4 8
(in hex) : 2020202038383438

u_u_u_u_

CREATE _NESTED _FILE
CHAKF and CREKF Subcommand

Purpose

Format

Creates and selects a new nested file.

CREATE_NESTED_FILE or
CRENF

NAME=name
KEY_LENGTH =integer
KEY _POSITION= integer
KEY_ TYPE= keyword
MAXIMUM_RECORD_LENGTH=integer
COLLATE_TABLE_NAME=name
COMPRESSION_PROCEDURE_NAME=list of any or

8-8 NOS/VE Commands and Functions Revision G

CREATE_NESTED _FILE

keyword
DATA_PADDING =integer
DYNAMIC_HOME_BLOCK_SPACE =boolean
EMBEDDED _KEY= boolean
FILE_ ORGANIZATION= keyword
HASHING_PROCEDURE_NAME=list of any or

keyword
INDEX_PADDING=integer
INITIAL_HOME _BLOCK_ COUNT= integer
LOADING _FACTOR= integer
MINIMUM _RECORD _LENGTH= integer
RECORDS _PER _BLOCK= integer
RECORD_ TYPE= keyword
STATUS =status variable

Parameters NAME or N

Revision G

Name of the new nested file. It must be unique in the
keyed file.

This parameter is required.

KEY_LENGT.H or KL

Primary-key length in bytes (for integer keys, 1 through
8; for character keys from 1 through 255).

This parameter is required.

KEY _POSITION or KP

Position of the leftmost byte of the primary key (specified
only if the key is embedded). The byte positions in a
record are numbered from the left, beginning with 0.

If KEY_POSITION is omitted, the default is 0.

KEY_TYPE or KT

Primary key type.

UNCOLLATED or UC

Key values ordered byte-by-byte according to the
ASCII collating sequence.

INTEGER or I

Key values ordered numerically as integer values.

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8-9

CREATE_NESTED_FILE

COLLATED or C

Key values ordered byte-by-byte according to the
collating sequence specified by the COLLATE_
TABLE_NAME parameter (invalid if FILE_
ORGANIZATION= DIRECT_ACCESS).

If KEY_ TYPE is omitted, the default is UNCOLLATED.

MAXIMUM_RECORD_LENGTH or MAXRL

Maximum number of bytes of data in a record (1 through
65497).

This parameter is required.

COLLATE_TABLE_NAME or CTN

Name of the collating sequence used to sort the primary
key (indexed-sequential files only).

This parameter is required if the KEY_ TYPE is
COLLATED.

COMPRESSION_PROCEDURE_NAME or CPN

Name of the optional data compression or encryption
procedure used with the nested file. The name can be
either the name of the system-defined compression
procedure (AMP$RECORD _COMPRESSION or the name
of an entry point in the current program library list.

If COMPRESSION _PROCEDURE_NAME is omitted, the
nested file does not use a compression procedure.

DATA_PADDING or DP

Percentage of data block space left empty when the
indexed-sequential file is created (integer from 0 through
99).

The percentage must allow for storage of at least one
maximum-length record per block.

If DATA_PADDING is omitted, the default is 0.

DYNAMIC_HOME_BLOCK_SPACEorDHBS

This parameter is reserved for future use. Its default
value is FALSE.

8-10 NOS/VE Commands and Functions Revision G

Revision G

CREATE_NESTED_FILE

EMBEDDED_KEY or EK

Indicates whether the primary-key value is embedded in
the record data.

TRUE, ON, or YES

Primary-key value is embedded in the record data.

FALSE, OFF, or NO

Primary-key value is not part of the record data.

If EMBEDDED_KEY is omitted, the default is TRUE.

FILE_ORGANIZATIONorFO

Keyed-file structure used.

INDEXED_SEQUENTIAL or IS

Data records accessed by searching for the primary-key
value in a hierarchical index.

DIRECT_ACCESS or DA

Data record block accessed directly by hashed
primary-key value.

If FILE_ ORGANIZATION is omitted, the default is
INDEXED_SEQUENTIAL.

HASHING_PROCEDURE_NAME or HPN

Name of the hashing procedure to he executed for the
direct-access file.

If HASHING_PROCEDURE_NAME is omitted, the
default is the system-provided hashing procedure (named
AMP$SYSTEM_HASHING_PROCEDURE).

INDEX_PADDING or IP

Percentage of index block space left empty when the
indexed-sequential file is created (integer from 0 through
99).

The percentage must allow for storage of at least one
index record per block. (The length of an index record is
the key length plus 4.)

If INDEX_PADDING is omitted, the default is 0.

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8-11

CREATE_NESTED _FILE

I Remarks

INITIAL_HOME_BLOCK_COUNTorIHBC
Number of home blocks to be created in the direct-access
file (1 through 2**31-1).

This parameter is required when FILE_
ORGANIZATION= DIRECT_FILE_ ORGANIZATION
ACCESS.

LOADING _FACTOR or LF
Percentage of file space used when the direct-access file is
created (no more than 90%).

If an initial home block count is specified, the loading
factor is ignored. Otherwise, if LOADING_FACTOR is
omitted, the default is 75%.

MINIMUM_RECORD_LENGTHorMINRL
Minimum number of bytes of data in a record (0 through
65497).

The minimum record length for a fixed-length record is
the same as its maximum record length. The default
minimum record length for variable-length records with
an embedded key is the sum of the key _position and the
key_length. Otherwise, the default minimum record
length is 0.

RECORDS_PER_BLOCKorRPB
Reserved.

RECORD_TYPE or RT
Record type.

FIXED or F

Fixed-length records.

VARIABLE or V

Variable-length records.

UNDEFINED or U

Variable-length records.

If RECORD_ TYPE is omitted, the default is
UNDEFINED.

For more information, see the NOSNE Advanced File
Management Usage manual.

8-12 NOS/VE Commands and Functions Revision G

Examples

DELETE_NESTED_FILE

This Create_Keyed_File example creates a new nested
file NESTED_FILE_l and then displays the newly
created file.

crekf /create_nested_f i le name=nested_f i le_ 1 ..
crekf .. /max imum_record_ length=32, key_ length= 14 ..
crekf .. /f i le_organ izat ion= indexed_seQUent ia 1
crekf /display_nested_f i le

Display_Nested_Fi le 1986-02-17
~/VE Keyed File Utilities 1.2 85357 12:42:49
Fi le = :NVE. lf'.l>EXED_SEQUENTIAL_FILE

List of Nested Files for file lf>l)EXED_SEQUENTIAL_FILE
NESTED_FILE_l (currently selected nested file)
SMAIN_FILE

DELETE _NESTED _FILE
CHAKF and CREKF Subcommand

Purpose Deletes one or more nested files.

Format DELETE_NESTED_FILE or
DELNF

NAMES=list of name
STATUS=status variable

Parameters NAMES or NAME or N

Remarks

List of one or more nested files to he deleted.

This parameter is required.

• You cannot delete the currently selected nested file or
$MAIN_FILE.

• To delete the currently selected nested file, select
another nested file first using the SELECT_NESTED_
FILE subcommand and then issue the DELETE_
NESTED_FILE subcommand.

• To display the names of the nested files, enter a
DISPLAY_NESTED_FILE subcommand.

• For more information, see the NOSNE Advanced File
Management Usage manual.

Revision G CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8-13

DELETE_RECORDS

Examples This Create_Keyed_File example displays the list of
nested files and then deletes the nested file NESTED_
FILE_2.

crekf /display_nested_f i le
Display_Nested_Fi le

NOS/VE Keyed File Utilities 1.2 85357
Fi le = :NVE. INDEXED_SEQUENTIAL_FILE

List of Nested Files for file INDEXED_SEQUENTIAL_FILE

1986-02-17
12:50:12

NESTED_FILE_ 1 (currently· selected nested file)
NESTED_FILE_2
SMAIN_FILE

crekf/delete_nested_file name=nested_file_2
crekf/display_nested_file

Display_Nested_Fi le
NOS/VE Keyed File Utilities 1.2 85357
Fi le =:NVE. INoEXED_SEQUENTIAL_FILE

L1st of Nested Files for file INDEXED_SEQUENTIAL_FILE

1986-02-17
12:52:02

SMAIN_FILE (currently selected nested file)
NESTED_FILE_l

DELETE_RECORDS
CHAKF and CREKF Subcommand

Purpose

Format

Deletes records from the currently selected nested file.

DELETE_RECORDS or
DELETE_RECORD or
DELR

KEYS=range of any
COUNT=integer or keyword
VETO= boolean
STATUS =status variable

Parameters KEYS or KEY or K

Optional range of primary-key values to be deleted. The
range may be specified as either:

1. Two primary-key values separated by two periods (..).
(such as 'KEY1' .. 'KEY2'). The first key value must be
less than the second. (Valid only for indexed-sequential
files.)

8-14 NOS/VE Commands and Functions Revision G

Revision G

DELETE_RECORDS

2. One primary-key value specifying the beginning of the
range. The number of records in the range is specified
by the COUNT parameter.

The keywords $FIRST_KEY and $LAST_KEY can specify
the lowest and highest key values, respectively, in an
indexed-sequential file.

If KEYS is omitted, the range of records to be deleted
begins with the first record in the nested file. ·

COUNT or C

Number of records to be deleted (O through 2**42-1 or, to
delete all records, the keyword ALL or A).

If a range is specified by the KEYS parameter, the
COUNT value limits the number of records deleted.

If COUNT is omitted, but KEYS is specified, the default
count the number of records in the specified range.
Otherwise, the default is 1.

VETO or V

Indicates whether the interactive user must confirm each
deletion.

TRUE

Each record to be deleted is displayed with the prompt
Okay to delete?==>.

FALSE

All specified records are deleted.

If VETO is omitted, the default is FALSE.

The possible responses to the veto prompt are:

YES or Y

Delete the record.

NO or N

Do not delete the record.

ALL or A

Delete the rest of the records without prompts.

QUIT or Q
Stop without deleting any more records.

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8-15

DISPLAY_NESTED _FILE

Remarks

Examples

HEX or H

Redisplays the record in hexadecimal and reissues the
prompt.

For more information, see the NOSNE Advanced File
Management Usage manual.

This Create_Keyed_File example deletes a record in the
currently selected nested file.

crekf/delete_records, keys='Matterhorn' .. 'McKinley' ..
crekf .. /count=2. veto=true
Byte: O ASCII: Matterhorn Europe 4478
Okay to delete: ==>Yes
Byte: 0 ASCII: McKinley North America 6194
Okay to delete: ==>No
--INFORMATIVE AA 501285-- As req.iested by the user. th ls record was not
deleted.
--INFORMATIVE AA 501285-- The Delete_Records subcommand of
CREATE_KEYED_FILE deleted 1 record from nested f lle $MAIN_FILE in file
:NVE. INDEXED_SEQUENTIAL_FILE.
crekf I

DISPLAY _NESTED _FILE
CHAKF and CREKF Subcommand

Purpose

Format

Displays the nested file definitions and the alternate-key
names and number of records in each nested file.

DISPLAY_NESTED_FILE or
DISNF

NAMES= list of name or keyword
OUTPUT=file
DISPLAY_OPTIONS=list of keyword
STATUS= status variable

Parameters NAMES or NAME or N

List of one or more names of nested files to be displayed
or the keyword ALL to display all nested files in the file.

If NAMES is omitted, the default is ALL.

OUTPUT or 0

File to which the display is written. The file must be a
sequential file.

If OUTPUT is omitted, the default file is $OUTPUT.

8-16 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

DISPLAY_NESTED_FILE

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

List of one or more keywords indicating the type of
information to be displayed.

DEFINITIONS or DEFINITION or D

Nested-file definitions.

KEY_NAMES or KEY_NAME or K

Names of the alternate keys in each nested file.

NAMES or NAME or N

Nested-file names.

RECORD_COUNTS or RECORD_COUNT or RC

Number of records in each nested file.

If DISPLAY_OPTION is omitted, the default is NAMES.

• The currently selected nested file is marked as such in
the list of nested files.

• For more information, see the NOSNE Advanced File
Management Usage manual.

This Create_Keyed_File example displays the default
nested file ($MAIN_FILE) with the DISPLAY_OPTIONS
parameter set to ALL. No alternate keys have been
defined.

crekf /display_nested_f i le/Display_opt ions=al l
Display_Nested_Fi le 1986-02-17

NOS/VE Keyed File Utilities 1.2 86034 12:59:58
Fi le = :NVE. INDEXED_SEQUENTIAL_FILE

$MAIN_FILE
Record_ Count

Nested_File_Definitions
Compression_Procedure_Name
Embedded_ Key
Key-Position
Key-Length
Maxi mum_Record_Length
Mini mum_Record_Length
Record_ Type
Fi le_Organization
Key_Type
Col late_Table_Name
Data_Padding
Index Padding

(currently selected nested file)
: 3

: none
: yes
: 0
: 14
: 32
: 32
: undefined
: indexed_sequential
: unco 1 lated

: 0
: 0

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8-17

DISPLAY_RECORDS

DISPLAY _RECORDS
CHAKF and CREKF Subcommand

Purpose Displays records in the currently selected nested file.

Format DISPLAY_RECORDS or
DISPLAY_RECORD or
DISR

OUTPUT== file
KEYS== range of any
COUNT== integer or keyword
DISPLAY_OPTION==keyword
STATUS== status variable

Parameters OUTPUT or 0

File to which the display is written. The file must be a
sequential file for which you have append access.

If OUTPUT is omitted, $OUTPUT is the default.

KEYS or KEY or K

Optional range of primary-key values to be displayed. The
range may be specified as either:

1. Two primary-key values separated by two periods (..).
(such as 'KEY1' .. 'KEY2'). The first key value must be
less than the second. (Valid only for indexed-sequential
files.)

2. One primary-key value specifying the beginning of the
range. The number of records in the range is specified
by the COUNT parameter.

The keywords $FIRST_KEY and $LAST_KEY can specify
the lowest and highest key values, respectively, in an
indexed-sequential file.

If KEYS is omitted, the range of records to be displayed
begins with the first record in the nested file.

COUNT or C

Number of records to be displayed (0 through 2**42-1 or,
to display all records, the keyword ALL or A).

If a range is specified by the KEYS parameter, the
COUNT. value limits the number of records displayed.

8-18 NOS/VE Commands and Functions Revision G

Remarks

Revision G

DISPLAY_RECORDS

If COUNT is omitted, but KEYS is specified, the default
count is the number of records in the specified range.
Otherwise, the default is 1.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

List of one or more keywords indicating the
representation used to display records.

ASCII

ASCII characters.

HEX or H

Hexadecimal digits.

BOTH

Both ASCII characters and hexadecimal digits.

ALTERNATE_KEY_DEFINITION or AKD or ALL

Both ASCII and hexadecimal representation with
alternate-key values marked.

If DISPLAY_OPTION is omitted, the default is ASCII.

• The ALTERNATE_KEY_DEFINITION display shows
the record contents in ASCII characters and
hexadecimal digits with the alternate-key values
underscored.

• For more information, see the NOSNE Advanced File
Management Usage manual.

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8-19

EXTRACT_RECORDS

Examples The following session displays a range of records showing
both ASCII and hexadecimal representations.

creio:f /display_records display_opt ion=both ..
creio:f .. /io:eys=' Everest' .. ' Ki 1 imanjaro'

Display_Nested_Fi le 1986-04-23
NOS/VE Keyed File Utilities 1.2 86099 15:08:18
Fi le = :NVE.USER99. INDEXED_SEQUENTIAL_FILE. 1
Display of records in SMAIN_FILE for:

COUNT: all
FIRST _KEY: Everest

LAST_KEY: Kilimanjaro
Byte: 0
Byte: 0(16
Byte: 25
Byte: 19(16)
Byte: 0
Byte: 0(16)
Byte: 25
Byte: 19(16)
Byte: 0
Byte: (16)
Byte: 25
Byte: 19(16)
crekf/

ASCII: E v e r e s t A s i a
HEX: 45766572657374202020202020204 173696120202020202020

ASCII: 8 8 4 8
HEX: 20202038303438

ASCII: K 2 A s i a
HEX: 48322020202020202020202020204173696120202020202020

ASCII: 8 6 1 1
HEX: 20202038363131

ASCII: K i 1 i m a n j a r o A f r i c a
HEX: 4B696C696D616E6A61726F2020204 166726963612020202020

ASCII: 5 8 9 5
HEX: 20202035383935

EXTRACT_RECORDS
CHAKF and CREKF Subcommand

Purpose Copies records from the currently selected nested file.

Format EXTRACT_RECORDS or
EXTRACT_RECORD or
EXTR

OUTPUT=list of any
KEYS= range of any
COUNT= integer or keyword
ERROR _LIMIT= integer
STATUS =status variable

8-20 NOS/VE Commands and Functions Revision G

EXTRACT_RECORDS

Parameters OUTPUT or 0

Remarks

Revision G

File to which records are copied. You must have at least
append access to the file.

If OUTPUT is omitted, the default is $OUTPUT.

KEYS or KEY or K

Optional range of primary-key values of the records to be
copied. The range may be specified as either:

1. Two primary-key values separated by two periods (..)
(such as 'KEY1' .. 'KEY2'). The first key value must be
less than the second. (Valid only for indexed-sequential
files.)

2. One primary-key value specifying the beginning of the
range. The number of records in the range is specified
by the COUNT parameter.

The keywords $FIRST_ KEY and $LAST_ KEY can specify
the lowest and highest key values, respectively, in an
indexed-sequential file.

If KEYS is omitted, the range of records to be copied
begins with the first record in the nested file.

COUNT or C

Number of records to be copied (O through 2**42-1 or, to
copy all records, the keyword ALL or A).

If a range is specified by the KEYS parameter, the
COUNT value limits the number of records copied.

If COUNT is omitted, but KEYS is specified, the default
count is the number of records in the specified range.
Otherwise, the default is 1.

ERROR_LIMIT or EL

Reserved.

• Records are extracted only from the currently selected
nested file.

• For more information, see the NOSNE Advanced File
Management Usage manual.

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8·21

I

HELP

HELP
CHAKF and CREKF Subcommand

Purpose

Format

Displays information about utility subcommands.

HELP or
HEL

SUBJECT=string
MANUAL=file
STATUS =status variable

Parameters SUBJECT or S

Remarks

Index topic to be located in the online manual.

If SUBJECT is omitted, the HELP subcommand lists the
names of the utility subcommands.

MANUAL or M

Online manual file.

If MANUAL is omitted, the default is
$SYSTEM.MANUALS.AFM.

• If you enter a topic that is not in the manual index, a
message appears telling you that the topic could not
be found.

• The default manual, $SYSTEM.MANUALS.AFM,
contains the online version of the NOSNE Advanced
File Management Usage manual, as provided with the
NOS/VE system.

• If your terminal is defined for screen applications, the
online manual is displayed in screen mode.

To leave the online manual, use QUIT. To get help on
reading the online manual, use HELP.

• For more information, see the NOSNE Advanced File
Management Usage manual.

8-22 NOS/VE Commands and Functions Revision G

QUIT

QUIT
CHAKF and CREKF Subcommand

Purpose

Format

Remarks

Ends the utility session and closes the output file.

QUIT or
QUI

STATUS= status variable

For more information, see the NOSNE Advanced File
Management manual.

REPLACE_RECORDS
CHAKF and CREKF Subcommand

Purpose Replaces existing records in the currently selected nested
file.

Format REPLACE_RECORDS or
REPLACE_RECORD or
REPR

INPUT= list of any
SORT= boolean
ERROR _LIMIT= integer
STATUS= status variable

Parameters INPUT or I

Revision G

List of one or more files whose records are to replace the
corresponding records already in the keyed file. You must
have at least read access to t~e input files.

This parameter is required.

SORT or S

Indicates whether the records are sorted before they are
copied to the file. (Sorting is recommended for better file
performance.)

TRUE, ON, or YES

The records from the input file list are copied to a
temporary file and sorted. Records for an
indexed-sequential file are sorted by their primary-key
value; records for a direct-access file are sorted by
thek hash value.

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8-23

SELECT_NESTED_FILE

Remarks

Examples

FALSE, OFF, or NO

The records are copied to a temporary file, but are not
sorted.

If SORT is omitted, the default is TRUE.

ERROR_LIMIT or EL

Number of nonfatal errors required to force termination of
the replace (0 through [2**42-1]). A 0 sets an unlimited
error limit.

If ERROR_LIMIT is omitted, 0 is used.

For more information, see the NOSNE Advanced File
Management Usage manual.

This Create_Keyed_File example replaces records in file
$USER.INDEXED_SEQUENTIAL_FILE that have the
same primary key.

/copy_keyed_f i le Suser. add_f i le
Everest Africa 8800
K2 Asia 8611
Ki 1 imanjaro Africa 5895

/copy_keyed_file Suser.replace_file
Everest Asia 8848

/create_keyed_f i le ..
.. /output=Suser.indexed_sequential_file
crekf /add_records input=Suser. add_f i le
crekf I rep 1 ace_records 1 nput=Suser. rep 1 ace_ f i 1 e
crekf /display_records count=al l

Display_Nested_fi le 1986-02-17
NOS/VE Keyed File Utilities 1.2 85357 13:19:24
Fi le = : NVE. USER99. INDEXED_SEQUENTIAL_FILE. 1
Display of records in SMAIN_FILE

Byte: 0
Byte: 0
Byte: 0

crekf I

ASC I I : Everest
ASCII: K2
ASCII: Kilimanjaro

Asia
Asia
Africa

8848
8611
5895

SELECT _NESTED _FILE
CHAKF and CREKF Subcommand

Purpose

Format

Selects the nested file to which subsequent subcommands
are to apply.

SELECT_NESTED_FILE or
SELNF

NAME=name
STATUS= status variable

8-24 NOSNE Commands and Functions Revision G

SELECT_NESTED _FILE

Parameters NAME or N

Remarks

Revision G

Name of an existing nested file. To select the default
nested file, specify $MAIN_FILE.

This parameter is r~quired.

For more information, see the NOS/VE Advanced File
Management manual.

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 8-25

CREATE_ALTERNATE_INDEXES 9

CREATE_ALTERNATE_INDEXES 9-1
ADD_PIECE . 9-3
APPLY_KEY_DEFINITIONS . 9-5
CANCEL_KEY_DEFINITIONS 9-8
CREATE_KEY_DEFINITION 9-10
DELETE_KEY_DEFINITION 9-16
DISPLAY_KEY_DEFINITIONS 9-17
QUIT 9-20
SEPARATE_KEY_GROUPS 9-22

CREATE_ALTERNATE_INDEXES

CREATE_ALTERNATE_INDEXES
Command

9

Purpose Initiates execution of the CREATE_ALTERNATE_
INDEXES command utility. The utility can create, delete,
and display alternate-key definitions in a keyed file.

Format CREATE_ALTERNATE_INDEXES or
CREATE_ALTERNATE_INDEX or
CREATE _ALTERNATE _INDICES or
CREAi

INPUT= list of any
STATUS= status variable

Parameters INPUT or I

Remarks

Revision G

Keyed file to be processed by the utility. The file
permissions required depend on the subcommands entered
during the utility as described in the Remarks. This
parameter is required.

To specify a nested file, first specify the file reference and
then the nested-file name, enclosed in parentheses.

• The command utility prompt is:

creai/

• In response to the creai/ prompt, you can enter
NOSNE commands and any of these subcommands:

QUIT
DISPLAY_ KEY_ DEFINITIONS
CREATE_ KEY_ DEFINITION
DELETE_KEY_DEFINITION
CANCEL_ KEY_ DEFINITIONS
APPLY_ KEY_ DEFINITIONS

CREATE_ALTERNATE_INDEXES 9-1

CREATE_ALTERNATE_INDEXES

Examples

• The CREATE_ALTERNATE_INDEXES utility creates
the specified keyed file if:

The file does not exist and,

A SET_FILE_ATTRIBUTES command has
specified the KEY_LENGTH and MAXIMUM_
RECORD_LENGTH attributes for the file.

If the SET_FILE_ATTRIBUTES command defining the
new file omits an attribute, the default attribute value
is used. However, if it omits the FILE_
ORGANIZATION attribute, indexed-sequential
organization is used.

• The CREATE_ALTERNATE_INDEXES command does
not check your file permissions. The subcommands you
enter in the utility session check that you have the
required permissions to do the operation.

To display key definitions, you must have at least
read permission. To create, delete, cancel, or apply key
definitions, you must have at least three permissions:
append, modify, and shorten.

• For more information, see the NOSNE Advanced File
Management Usage manual.

This command begins a utility session that displays the
alternate key definitions of keyed file $USER.IS_FILE.

/create_alternate_ indexes input=$user. is_f i le
crea i/display_lc;ey_def in it ions Key_names=a 11 display_opt ions=br ief

Display_Key_Definitions NOS/VE Keyed File Utilities 1. 1
File= :NVE.USER99. IS_FILE

KEY NAME POSITION LENGTH TYPE STATE

ALTERNATE_KEY_1 10 uncollated Exists in file
creai/quit "The APPLY_KEY_DEFINITIONS parameter is not required here"

"because no creation or deletion requests are pending."

9-2 NOSNE Commands and Functions Revision G

ADD_PIECE

ADD_PIECE
CREKD Subcommand

Purpose Defines a piece of a concatenated key within a CREATE_
KEY_DEFINITION utility session.

Format ADD_PIECE or
ADDP

POSITION= integer
LENGTH= integer
TYPE=keyword
STATUS= status variable

Parameters POSITION or P or KEY_POSITION or KP

Revision G

Byte position in the record at which the piece begins. The
byte positions are numbered from the left, beginning with
0. The maximum byte position is 65496. This parameter
is required.

LENGTH or L or KEY_LENGTH or KL

Number of bytes in the piece. The maximum length is
255 bytes. The piece must be within the minimum record
length unless sparse-key control is used. This parameter
is required.

TYPE or Tor KEY_TYPE or KT

Type of the piece.

INTEGER (I)

Integer key ordered numerically.

UNCOLLATED (UC or U)

Character key ordered byte-by-byte according to the
ASCII collating sequence.

COLLATED (C)

Character key ordered byte-by-byte according to the
collation table specified by the COLLATE_ TABLE_
NAME parameter on the CREATE_KEY_
DEFINITION command.

The default key type is UNCOLLATED.

CREATE_ALTERNATE_INDEXES 9-3

ADD_PIECE

Remarks

Examples

• The utility is initiated in response to a CREATE_
KEY_DEFINITION subcommand that specifies the
CONCATENATED_PIECES=TRUE parameter.

• To end concatenated-key specification, enter the QUIT
subcommand for the CREATE_KEY_DEFINITION
utility.

• You must enter an ADD_PIECE subcommand for each
piece to be concatenated to the first piece to define a
concatenated key. The first piece is defined by the
KEY_LENGTH, KEY_POSITION, and KEY_TYPE
parameters on the CREATE_KEY_DEFINITION
command.

• A concatenated key can comprise from 2 through 64
pieces. The pieces are concatenated in the order that
you enter the ADD_PIECE subcommands that define
the pieces.

• For more information, see the NOSNE Advanced File
Management Usage manual.

This CREATE_ALTERNATE_INDEXES session defines
an alternate key that concatenates the first, third and
fifth bytes of the record in reverse order. It displays the
definition and then cancels the request.

/create_a lternate_ index input=$user. is_f i le
crea i/create_l<ey_def in it ion l<ey_name=a lternate_l<ey_2 ..
crea i .. /l<ey_pos it ion=4 l<ey_ length= 1 concatenated_pieces=yes
crel<d/add_piece l<ey_posit ion=2 key_ length= 1
crel<d/addp kp=O 1<1=1
crel<d/quit
creai/display_l<ey_def in it ions

Display_Key_Definitions NOS/VE Keyed File Utilities 1.1
Fi le = .NVE.USER99. IS_FILE
KEY NAME POSITION LENGTH TYPE STATE

AL TERNATE_KEY _2 4
piece b 2
piece c 0

Dupl icate_Key_Values : not_al lowed
Nu 11 _Suppression : no

1 uncollated Creation pending
1 uncollated
1 uncollated

RECORDl (inascii) This is the first record
(in hex) 5468697320697320746865206669727374207265636F72

AL TERNATE_KEY_2 c_ b_ a_
(in ascii) d .
(in hex) 642E

creai/quit cancel
I

9-4 NOSNE Commands and Functions Revision G

APPLY_KEY_DEFINITIONS

APPLY _KEY _DEFINITIONS
CREAi Subcommand

Purpose

Format

Applies the pending alternate-key definition and deletion
requests within a CREATE_ALTERNATE_INDEXES
utility session.

APPLY_KEY_DEFINITIONS or
APPLY_KEY_DEFINITION or
APPKD

ERROR_LIMIT =integer
STATUS =status variable

Parameters ERROR_LIMIT or EL

Remarks

Revision G

Number of trivial (nonfatal) errors allowed for the apply
operation (integer from 0 through 4398046511103
[2**42-1]).

A 0 value indicates no limit; 0 is the default value.

See Remarks for a description of apply error processing.

• This CREATE_ALTERNATE_INDEXES subcommand
applies all pending alternate-key creation and deletion
requests to the file. It applies deletion requests first
and then the creation requests.

• The ERROR_LIMIT file attribute value has no effect
on keyed-file utility processing. This is done so that
nonfatal errors (such as typing errors during
interactive use) do not terminate the utility session.

However, you can specify an error limit that applies to
the apply operation only by specifying the ERROR_
LIMIT parameter.

• The two nonfatal (trivial) errors that an apply
operation can detect result from improper record data,
as follows:

Duplicate_Key_ Value

The duplicate_ key_ value attribute of the alternate
index being built is NOT_ALLOWED, but the
apply operation finds an alternate-key value
matching an alternate-key value already in the
alternate index.

CREATE_ALTERNATE_INDEXES 9-5

APPLY_KEY_DEFINITIONS

Sparse_Key _Beyond_EOR

The apply operation is building an alternate index
that uses sparse-key control and it finds a record
for which an alternate-key value should be included
in the index except that the record is too short to
provide a complete alternate-key value.

• APPLY_KEY_DEFINITIONS keeps a count of the
number of times it detects a nonfatal (trivial) error.
Each time it increments the count, it checks whether
the count has reached the value specified on the
ERROR_ LIMIT parameter.

- If the error limit is not yet reached, APPLY_
KEY_DEFINITIONS performs the correction
processing. for the condition as described later.

- If the error limit is reached, APPLY_KEY_
DEFINITIONS terminates with a fatal error. The
fatal error returned depends on the last nonfatal
error detected:

For a Duplicate_Key_ Value error, it returns
AAE$DUPLICATE_KEY_LIMIT.

For a Sparse_Key _Beyond_EOR error, it
returns AAE$ERROR_LIMIT_EXCEEDED.

• Before terminating, APPLY_KEY_DEFINITIONS
discards all alternate indexes it has built. (Deleted
alternate indexes are not restored.)

• If APPLY_KEY_DEFINITIONS finds one or more
nonfatal errors, but completes its processing before
reaching the error limit, it returns a warning message.

• As correction processing for a sparse_key _beyond_
EOR error, APPLY_KEY_DEFINITIONS does not
enter an alternate-key value for the record in the
alternate index it is building, even though the
sparse-key character indicates that a value should be
entered for the record.

• As correction processing for a Duplicate_Key_ Value
error, APPLY_KEY_DEFINITIONS changes the
duplicate_key _values attribute of the alternate-key
definition from NOT_ALLOWED to ORDERED_BY_

9-6 NOSNE Commands and Functions Revision G

Examples

Revision G

APPLY_KEY_DEFINITIONS

PRIMARY_KEY. It then discards the partially-built
index and begins building the index again, ordering
duplicate alternate-key values by their primary-key
value.

• Entry of a pause-break character is ignored during
application of alternate-key definitions.

• Entry of a terminate_break_character during
application of alternate-key definitions returns a
prompt to the terminal user, asking for confirmation.

• As described in the prompt, the terminal user should
then enter a carriage return or any entry other than
RUIN FILE (uppercase or lowercase) to continue the
application of alternate-key definitions. Applied
alternate-key definitions can be removed without harm
to the file after the apply operation executes.

• A request to ruin the file is not recommended. No file
operation can be performed on a ruined file; therefore,
no data can be retrieved from the file.

• For more information, see the NOSNE Advanced File
Management Usage manual.

This CREATE_ALTERNATE_INDEXES session attempts
to create and apply an alternate key. The attempt fails
when it finds a duplicate alternate-key value because the
alternate-key definition does not allow duplicate values
and the error limit for the apply is 1.

CREATE_ALTERNATE_INDEXES 9-7

CANCEL_KEY_DEFINITIONS

/create_alternate_indexes input=$user.is_file
crea i/create_li;ey_def in it ion key_name=a lternate_key_6 ..
creai .. /ii;ey_posit ion=5 key_ length=lO
creai/apply_key_definition error_limit=l
-- File :NVE.USER99.IS_FILE begin creating labels for
alternate li;ey definitions.
-- File :NVE.USER99.IS_FILE finished creating labels for
alternate li;ey definitions.
-- File :NVE.USER99.IS_FILE begin collecting the alternate
key values from the file.
-- Fi le : NVE. USER99. IS_FILE AMP$APPL y _KEY _DEFINITIONS has
reached a file boundary: EOI.
-- File :NVE.USER99.IS_FILE collecting of the alternate li;ey
values completed.
-- File :NVE.USER99.IS_FILE begin sorting the alternate.li;ey
values.
-- Fi le :NVE.USER99. IS_FILE sorting of the alternate li;ey
values completed.
-- File :NVE.USER99. IS_FILE begin building alternate key
indexes into the file.
-- File :NVE.USER99.IS_FILE the ALTERNATE_KEY_6 index

is being built.
-- File :NVE.USER99.IS_FILE Alternate li;ey ALTERNATE_KEY_6

has been deleted.
--ERROR-- File :NVE.USER99. IS_FILE :

AMP$APPL Y _KEY _DEFINITIONS encountered a dup 1 icate key
and found that error 1 imit had been reached. Because
ERROR_LIMIT was involved, any new indexes were removed
(though deleted indexes are gone). Had ERROR_LIMIT not
been reached. the key def in it ion wou 1 d have been
modified to allow duplicates. The duplicate key values
relate to alternate key name = AL TERNATE_KEY_6, primary
key = 96070, alternate_key_value = John Smith.
-- FATAL-- Fi le :NVE.USER99. IS_FILE :

AMP$APPLY_KEY_DEFINITIONS : the user-declared maximum
number of trivial errors has been recorded since the
last OPEN.
creai/Quit
I

CANCEL_KEY _DEFINITIONS
CREAi Subcommand

Purpose Removes a pending request to create or delete an
alternate key within a CREATE_ALTERNATE_INDEXES
utility session.

Format CANCEL_KEY_DEFINITIONS or
CANCEL_KEY_DEFINITION or
CANKD

NAMES=list of name
STATUS =status variable

9-8 NOSNE Commands and Functions Revision G

CANCEL_KEY_DEFINITIONS

Parameters NAMES or NAME or N or KEY_NAMES or KEY_
NAME or KN

Remarks

Examples

Revision G

Pending requests to be canceled.

list of names

Cancel the requests for the listed alternate-key names.

ALL

Cancel all requests.

This parameter is required.

• The CANCEL_KEY_DEFINITIONS subcommand can
cancel creation and deletion requests only while they
are pending.

• After a creation or deletion request is applied, the
CANCEL_KEY_DEFINITIONS subcommand has no
effect. To reverse the action of an APPLY_KEY_
DEFINITIONS subcommand, you must issue new
requests to delete the created alternate key or recreate
the deleted alternate key.

• For more information, see the NOSNE Advanced File
Management Usage manual.

This CREATE_ALTERNATE_INDEXES session requests
creation of an alternate key and deletion of another
alternate key, cancels the creation request, and finally
applies the deletion request.

/create_alternate_indexes input=$user.is_file
crea i/create_k:ey_def in it ion k:ey_name=a lternate_k:ey_4 ..
crea i.. /k:ey_pos it ion=5 k:ey_ length=2
crea i/delete_k:ey_def init ion icey_name=al ternate_k:ey_ 1
creai/cancel_lcey_definition alternate_lcey_4
creai/quit apply
-- File :NVE.USER99.IS_FILE: begin deleting alternate lcey
definitions.
-- File :NVE.USER99.IS_FILE: Alternate lcey ALTERNATE_KEY_1
has been deleted.
-- Fi le :NVE.USER99. IS_FILE : end deleting alternate key
definitions.
I

CREATE_ALTERNATE_INDEXES 9-9

CREATE_KEY_DEFINITION

CREATE _KEY _DEFINITION
CREAi Subcommand

Purpose

Format

Creates a pending alternate-key definition within a
CREATE_ALTERNATE_INDEXES utility session.

CREATE_KEY_DEFINITION or
CREKD

NAME=name
POSITION= integer
LENGTH=integer
TYPE=keyword
COLLATE_ TABLE_NAME =name
DUPLICATE_KEY_ VALUES=boolean or keyword
NULL_SUPPRESSION =boolean
SPARSE _KEY_ CONTROL _POSITION== integer
SPARSE _KEY_ CONTROL_ CHARACTERS== string
SPARSE_KEY _ CONTROL_EFFECT ==keyword
REPEATING _GROUP _LENGTH ==integer
REPEATING_GROUP_COUNT=integer or keyword
GROUP_NAME=name
CONCATENATED _PIECES= boolean
VARIABLE _LENGTH_KEY =string
STATUS =status variable

Parameters NAME or N or KEY_ NAME or KN

Name of the new alternate key. The name must follow
the SCL naming rules. This parameter is required.

POSITION or P or KEY_POSITION or KP

Byte position within the record at which the alternate-key
field begins. The byte positions are numbered from the
left, beginning with 0. The maximum byte position is
65496. This parameter is required.

LENGTH or L or KEY_LENGTH or KL

Number of bytes in the alternate-key field. The maximum
length is 255 bytes. The key field must be within the
minimum record length (unless sparse key control is
used). This parameter is required.

9-10 NOSNE Commands and Functions Revision G

Revision G

TYPE or Tor KEY_TYPE or KT

Type of the alternate key.

INTEGER (I)

CREATE_KEY_DEFINITION

Integer key ordered numerically.

UNCOLLATED (UC or U)

Character key ordered byte-by-byte according to the
ASCII collating sequence.

COLLATED (C)

Character key ordered byte-by-byte according to the
collation table specified by the COLLATE_ TABLE_
NAME parameter.

If the KEY_ TYPE parameter is omitted, the key type is
UNCOLLATED.

COLLATE_TABLE_NAME or CTN

Name of the collation table used to order the alternate
key if its key type is collated. The collation table can be
for NOSNE predefined collating sequence or a
user-defined collating sequence.

If the file is an indexed-sequential file with a collated
primary key, the collation table for the primary key is
used as the default collation table for an alternate key.

Otherwise, you must specify a collation table for a
collated alternate key.

DUPLICATE_KEY_ VALUES or DKV

Indicates whether duplicate alternate-key values are
allowed and, if so, how the duplicate values are ordered.

NOT_ALLOWED (NA), FALSE (OFF or NO)

No duplicate values are allowed for the alternate key.

ORDERED_BY_PRIMARY_KEY (OBPK), TRUE (ON
or YES)

Duplicate values are allowed. Duplicates are accessed
in order by their primary key.

CREATE_ALTERNATE_INDEXES 9-11

CREATE_KEY_DEFINITION

FIRST_IN_FIRST_OUT (FIFO)

Duplicate values are allowed. Duplicates are accessed
in the order the values were entered in the index.

If the DUPLICATE_KEY_ VALUES parameter is omitted,
no duplicate values are allowed.

NULL_SUPPRESSION or NS
Indicates whether null alternate-key values should be
stored in the alternate index. (The null value is all zeros
for integer keys, all blanks for the other key types.)

TRUE (ON or YES)

Null values are not included in the index.

FALSE (OFF or NO)

All values are included in the index.

If the NULL_ SUPPRESSION parameter is omitted, all
values, including nulls, are stored in the index.

SPARSE_KEY_CONTROL_POSITION or SKCP
Byte position of the sparse-key control character. The
position must be within the minimum record length. The
byte positions are numbered from the left, beginning with
0. The maximum byte position is 65496.

NOTE

The two parameters, SPARSE_KEY_CONTROL_
POSITION and SPARSE_KEY_CONTROL_
CHARACTERS, work together; they must either both be
specified or both be omitted. If they are omitted,
sparse-key control is not used for the alternate key.

SPARSE_KEY_CONTROL_CHARACTERSor SKCC
String containing the set of characters with which the
sparse-key control character in each record is compared.

SPARSE_KEY_CONTROL_EFFECTor SKCE
Indicates whether a sparse-key control character match
causes the alternate-key value to be included in or
excluded from the alternate index.

9-12 NOSNE Commands and Functions Revision G

Revision G

CREATE_KEY_DEFINITION

INCLUDE_ KEY_ VALUE (IKV)

The alternate-key value is included in the alternate
index.

EXCLUDE_KEY_ VALUE (EKV)

The alternate-key value is excluded from the alternate
index.

You can specify the SPARSE_KEY_EFFECT parameter
only if you specify the SPARSE_KEY_POSITION and
SPARSE_KEY_CHARACTERS parameters.

If the SPARSE_KEY_CONTROL_EFFECT parameter is
omitted, INCLUDE_KEY_ VALUE is used.

REPEATING_GROUP_LENGTHorRGL
Length, in bytes of the repeating group of fields. It is the
distance from the beginning of an alternate-key value to
the beginning of the next value for the same alternate
key in the same record.

The group length range is from 1 through 65497.

If the REPEATING_GROUP_LENGTH parameter is
omitted, the alternate key has no more than one value
per record.

REPEATING_GROUP_COUNTorRGC
Indicates how many alternate-key values are in a record.
(The alternate-key value is in a repeating group of fields.)

integer (1 through 65497)

Number of times the alternate key occurs in a record.
The specified number of alternate-key values must
occur within the minimum record length.

REPEAT_TO_END_OF_RECORD (RTEOR)

The alternate key repeats until the record ends. (An
incomplete key at the end of the record is not used.)

You can specify the REPEATING_GROUP_COUNT
parameter only if you specify the REPEATING_ GROUP_
LENGTH parameter.

If the REPEATING_GROUP_COUNT parameter is
omitted, the alternate key repeats until the end of the
record.

CREATE_ALTERNATE_INDEXES 9-13

CREATE_KEY_DEFINITION

GROUP_NAME or GN or KEY_GROUP_NAME or KGN

Name of the key group for this key. The key-grouping
feature is not currently implemented. The default value
for the key-group name is the key name.

CONCATENATED _PIECES or CONCATENATED _PIECE
or GP

Indicates whether the alternate key is a concatenated key.

TRUE (ON or YES)

The key is a concatenated key.

FALSE (OFF or NO)

The key is not a concatenated key.

If you specify CONCATENATED_PIECES=TRUE, the
CREATE_KEY_DEFINITION command initiates the
CREATE_KEY_DEFINITION subcommand utility. The
utility prompt is crekd/ and it processes ADD_PIECE and
QUIT subcommands.

If the CONCATENATED_PIECES parameter is omitted,
the key is not a concatenated key.

VARIABLE_LENGTH_KEY or VLK

Indicates that the key is a variable_length key by
specifying its set of delimiter characters. The set is
specified as a string (0 through 256 characters, enclosed
in apostrophes).

If the REPEATING_GROUP_LENGTH parameter is
omitted, no more than one value for the key is taken
from a record. The end of the value is marked by a
delimiter character, by the end of the key field (KEY_
LENGTH length), or by the end of the record, whichever
occurs first after the KEY_POSITION.

If the REPEATING_GROUP_LENGTH parameter is
specified, the record can contain more than one value for
the key. Multiple key values are separated by one or
more delimiter characters. The REPEATING_GROUP_
COUNT parameter indicates whether the sequence of
values continues to the end of the record or is limited to
a fixed number of characters.

If VARIABLE_LENGTH_KEY is omitted, the alternate
key has fixed-length values.

9-14 NOSNE Commands and Functions Revision G

Remarks

Revision G

CREATE_KEY_DEFINITION

• The CREATE_KEY_DEFINITION subcommand defines
an alternate key but does not apply the definition to
the file. The definition remains pending until it is
either applied or canceled.

• A definition is applied by either an APPLY_KEY_
DEFINITIONS subcommand or an APPLY_KEY_
DEFINITIONS= YES parameter on the QUIT
subcommand. It is canceled by a CANCEL_KEY_
DEFINITIONS subcommand or an APPLY_KEY_
DEFINITIONS= NO parameter on the QUIT
subcommand.

• The REPEATING_ GROUP _LENGTH and the
VARIABLE_LENGTH_KEY parameters cannot be
specified with either the CONCATENATED_PIECES
parameter or the DUPLICATE_KEY_
VALUES= FIRST_IN _FIRST_ OUT parameter.

• If the alternate-key definition defines a collated key,
CREATE_KEY_DEFINITIONS searches for the
collation-table name as an entry point in the object
libraries in the program-library list.

• You must set the program-library list before you enter
the utility. You cannot change the object libraries
searched from within the utility session.

• The following command adds an object library to the
program-library list:

/set_program_attributes add_library=file_reference

• For more information, see the NOSNE Advanced File
Management Usage manual.

CREATE_ALTERNATE_INDEXES 9-15

DELETE_KEY_DEFINITION

Examples This CREATE_ALTERNATE_INDEXES utility session
creates and applies an alternate-key definition to file
$USER.IS_ FILE.

/create_a 1 ternate_ index input=$user. is_f i le
crea i/create_key_def in it ion key_name=a lternate_key_ 1 ..
creai .. /key_position=O key_length=10
crea i/qu it app ly_key_def in it ion
-- File :NVE.USER99. IS_FILE : begin creating labels for
alternate key definitions.
-- File :NVE.USER99.IS_FILE; finished creating labels for
alternate key definitions.
-- Fi le :NVE.USER99. IS_FILE : begin collecting the alternate
key values from the file.
-- File :NVE.USER99. IS_FILE ; AMP$APPLY_KEY_DEFINITIONS has
reached a file boundary: EDI .
-- Fi le :NVE.USER99. IS_FILE : collecting of the alternate key
values completed.
-- Fi le :NVE.USER99. IS_FILE : begin sorting the alternate key
values.
-- File :NVE.USER99.IS_FILE : sorting of the alternate key
values completed.
-- File :NVE.USER99.IS_FILE: begin building alternate key
indexes into the file.
-- File :NVE.USER99.IS_FILE: the ALTERNATE_KEY_l index is
being built.
-- File :NVE.USER99.IS_FILE: AMP$APPLY_KEY_DEFINITIONS
completed building the alternate indexes into the file.
I

DELETE _KEY _DEFINITION
CREAi Subcommand

Purpose

Format

Requests the deletion of an existing alternate key within
a CREATE_ALTERNATE_INDEXES utility session.

DELETE_KEY_DEFINITION or
DELKD

NAME=name
STATUS= status variable

Parameters NAME or N or KEY_ NAME or KN

Remarks

Name of the alternate key to he deleted. This parameter
is required.

• The DELETE_KEY_DEFINITION subcommand
requests deletion of an alternate key but does not
actually delete the key from the file. The deletion
remains pending until it is applied by either an
APPLY_KEY_DEFINITIONS or QUIT subcommand or,
it is canceled by a CANCEL_KEY_DEFINITIONS
subcommand.

9-16 NOSNE Commands and Functions Revision G

Examples

DISPLAY_KEY_DEFINITIONS

e For more information, see the NOSNE Advanced File
Management Usage manual.

This CREATE_ALTERNATE_INDEXES session deletes an
alternate key named ALTERNATE_KEY_l.

/create_alternate_indexes input=Suser.is_file
crea i/delete_key_def in it ion key_name=alternate_key_ 1
crea i/quit apply_key_def init ions=yes
-- Fi le :NVE.USER99. IS_FILE : begin deleting alternate key
def in it ions.
-- File :NVE.USER99. IS_FILE: Alternate key ALTERNATE_KEY_1
has been deleted.
-- File :NVE.USER99. IS_FILE: end deleting alternate key
definitions.
I

DISPLAY _KEY _DEFINITIONS
CREAi Subcommand

Purpose

Format

Displays alternate-key definitions within a CREATE_
ALTERNATE_INDEXES utility session.

DISPLAY_KEY_DEFINITIONS or
DISPLAY_KEY_DEFINITION or
DISKD

NAMES= list of name
DISPLAY_ OPTION= keyword
SAMPLE_RECORD_COUNT=integer or keyword
OUTPUT=file
STATUS=status variable

Parameters NAMES or NAME or Nor KEY_NAMES or KEY_
NAME or KN

Revision G

Indicates the alternate key definitions displayed.

list of names

Displays the specified alternate-key definitions.

PENDING {P)

Displays only the pending alternate-key creations and
deletions.

CREATE_ALTERNATE_INDEXES 9-17

DISPLAY_KEY_DEFINITIONS

ALL (A)

Displays both pending and existing alternate-key
definitions.

If the KEY_NAMES parameter is omitted, only the
pending alternate-key creations and deletions are
displayed.

DISPLAY_OPTION or DO
Indicates the contents of the display.

BRIEF (B)

Displays the key name, position, length, type, and
state.

FULL (F)

Displays all information in the alternate-key definition.

SAMPLE_RECORDS (SR)

Displays only sample records with the alternate keys
marked.

BRIEF _SAMPLE_RECORDS (BSR)

Displays the brief definition and the sample records.

FULL_SAMPLE_RECORDS (FSR)

Displays the full definition and the sample records.

ALL (A)

If the DISPLAY_OPTIONS parameter is omitted, the full
definition and the sample records are displayed.

SAMPLE_RECORD_COUNTorSRC

Indicates the number of records displayed if the
DISPLAY_OPTIONS parameter requests a sample record
display. ·

integer

Displays the specified number of records. Values can
be 0 through 4398046511103.

9-18 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

DISPLAY_KEY_DEFINITIONS

ALL (A)

Displays all records in the file.

The default is a one-record display.

OUTPUT or 0

File to which the display is written. If the OUTPUT
parameter is omitted, the display is written to file
$OUTPUT.

• A sample-record display shows the record contents in
ASCII characters and hexadecimal digits with the
alternate-key fields underscored. Each alternate key is
shown separately by underscores as follows:

If the concatenated-key or repeating-groups
attributes are not defined for the key, the
underscore characters indicate the alternate-key
type (C for collated, I for integer, or U for
uncollated).

If the key is a concatenated key, the underscores
for each key field include one or two letters
indicating the order the fields are concatenated
(a_, b_, and so forth up to z_ and then, aa, ba,
ca, and so forth).

If the alternate-key definition specifies repeating
groups, the underscores for each alternate-key
value in the record include a number (1, 2, and so
forth).

• For more information, see the NOSNE Advanced File
Management Usage manual.

This CREATE_ALTERNATE_INDEXES session writes a
display to file LIST. The listing includes all records in the
file, marked with the proposed alternate-key
ALTERNATE_KEY_2.

/create_alternate_ indexes input=Suser. is_f i le
creai/crekd key_name=alternate_key_2 ..
creai. ./key_position=O key_length=2 ..
creai .. /repeating_group_length=20
creai/display_key_def in it ions ..
crea i.. /display_opt ion=sample_records ..
creai .. /sample_record_count=all output=list
creai/quit apply_key_definitions=no
I

CREATE_ALTERNATE_INDEXES 9-19

QUIT

QUIT

The following CREATE_ALTERNATE_INDEXES session
contains a DISPLAY_KEY_DEFINITIONS subcommand
for a default display, that is, a full definition of all
pending alternate-key creations and deletions and a .single
sample record.
/create_alternate_ indexes input=$user. is_f i le
creai/create_key_definition key_name=alternate_key_l ..
crea i.. /key_pos it ion=O key_ length=2 ..
crea i/display_key_def in it ions

Display_Key_Definitions NOS/VE Keyed File Utilities 1.1
File= .NVE.USER99. IS_FILE

KEY NAME POSITION LENGTH TYPE STATE

ALTERNATE_KEY_l
Duplicate_Key_Values
Null_Suppression

O 2 uncollated Creation pending

Repeat ing_Groups_Specif ied
Repeating_Group_Length

Repeat ing_Group_Count

: not_a I lowed
: no

: 4
: repeat_to_end_of_record

RECORD 1 (in asc i i) : T h i s i s t h e f i r s t r e c o r d
(in hex) : 5468697320697320746865206669727374207265636F72

ALTERNATE_KEY_l : 1_1_ 2_2_ 3_3_ 4_4_ 5_5_ 6_6_
(in ascii): d.
(in hex) : 642E

crea i/Quit apply_key_def init ions=no
I

CREAi Subcommand

Purpose

Format

Ends the CREATE_ALTERNATE_INDEXES utility
session.

QUIT or
QUI

APPLY _KEY _DEFINITIONS= boolean or keyword
ERROR_LIMIT =integer
STATUS =status variable

Parameters APPLY_KEY_DEFINITIONS or APPLY_KEY_
DEFINITION or AKD

Indicates how pending alternate-key creation and deletion
requests are processed.

APPLY (A), TRUE (ON or YES)

Apply all pending creation and deletion requests.

9-20 NOSNE Commands and Functions Revision G

Remarks

Revision G

QUIT

CANCEL (C), FALSE (OFF or NO)

Cancel all pending creation and deletion requests.

This parameter is required if creation or deletion requests
are pending.

ERROR_LIMIT or EL

Number of trivial (nonfatal) errors allowed for the apply
operation (integer from 0 through 4398046511103
[2**42-1]).

0 is the default value and indicates no limit.

See the APPLY_KEY_DEFINITIONS command description
for a description of apply error processing.

• The APPLY_KEY_DEFINITIONS parameter is
required only if alternate-key creation or deletion
requests are pending. In this case, you must specify
whether to apply or cancel the pending requests.

If you request application of the pending creations
and deletions, the QUIT subcommand performs the
same processing as the APPLY_KEY_
DEFINITIONS subcommand before exiting the
utility.

If you request cancellation of the requests, the
QUIT subcommand performs the same processing
as the CANCEL_KEY_DEFINITIONS subcommand
before exiting the utility.

• For more information, see the APPLY_KEY_
DEFINITIONS and CANCEL_KEY_DEFINITIONS
subcommand descriptions.

• For more information, see the NOSNE Advanced File
Management Usage manual.

CREATE_ALTERNATE_INDEXES 9-21

QUIT

Examples

QUIT

This CREATE_ALTERNATE_INDEXES session requests
an alternate-key deletion and an alternate-key creation,
but then cancels the requests.

/create_alternate_indexes file=$user.isfile
creai/delete_key_definition alternate_key_1
creai/create_key_definition alternate_key_1
creai .. /key_position=O key_length=S key_type=integer
creai/quit apply_key_definitions=no
I

CREKD Subcommand

Purpose

Format

Remarks

Examples

Exits the CREATE_KEY_DEFINITION utility, ending
concatenated-key specification.

QUIT or
QUI

STATUS=status variable

Entry of the QUIT subcommand returns you to the
CREATE_ALTERNATE_INDEXES utility session. This is
indicated by the prompt creai/.

This CREATE_ALTERNATE_INDEXES session defines a
concatenated alternate key having two pieces. The first
piece is the ten bytes beginning at byte 5. (Remember,
bytes are numbered from the left beginning with zero.)
The second piece is the five-byte integer at the beginning
of the record.

/create_a 1 ternate_ indexes input=Suser. is_f i le
creai/create_!(ey_def inition alternate_!(ey_3 ..
creai. ./!(ey_position=5 !(ey_length=lO ..
creai .. /concatenated_pieces=yes
cre!(d/add_piece !(ey_pos it ion=O !(ey_ length=5 ..
cre!(d .. /key_type= integer
cre!(d/quit "Exits CREATE_KEY_DEFINITIONS.
creai/QUit no "Exits CREATE_ALTERNATE_INDEXES without
/ "applying the alternate-!(ey definition.

SEPARATE_KEY_GROUPS
CREAi Subcommand

Remarks Reserved for site personnel, Control Data, or future use.

9-22 NOSNE Commands and Functions Revision G

CREATE _INTERSTATE _CONNECTION 10

CREATE_INTERSTATE_CONNECTION 10-1
DELETE_INTERSTATE_CONNECTION 10-2
EXECUTE_INTERSTATE_COMMAND 10-2

CREATE _INTERSTATE_ CONNECTION 10

CREATE _INTERSTATE_ CONNECTION
Command

Purpose Establishes a NOS batch control point on a dual state
system.

Format CREATE_INTERSTATE_CONNECTION or
CREIC

PARTNER_JOB _CARD =string
STATUS =status variable

Parameters PARTNER_JOB_CARD or PJC

Remarks

Revision G

Specifies the job statement parameters to be used for the
NOS batch job. The parameter syntax must conform to
NOS job statement rules.

Omission causes the NOS default job statement
parameters to be used (an infinite time limit and no other
parameters specified).

• After you enter a CREATE_INTERSTATE_
CONNECTION command, prompts are issued until you
enter QUIT (QUI) or DELETE_INTERSTATE_
CONNECTION (DELIC).

• While the interstate connection is open, you can enter
any NOS/VE command (except another CREIC
command). You can enter NOS commands to be
executed on the NOS side of the dual state system
through the EXECUTE_INTERSTATE_COMMAND
command. The CREIC command is generally used in
conjunction with the File Management Utility to
migrate files between NOS and NOSNE.

• For more information, see the NOSNE Advanced File
Management Usage manual.

CREATE_INTERSTATE_ CONNECTION 10-1

DELETE_INTERSTATE_CONNECTION

Examples The following commands create an interstate connection,
execute NOS commands (ATTACH, DEFINE, and COPY),
and close the connection. FA is the CREATE_
INTERSTATE_CONNECTION prompt for user input.

/create_interstate_connection partner_job_card= ..
. ./'myjob, ,64.'
FA/execute_interstate_conmand conmand='attach,oldfil.'
FA/execute_1nterstate_conmand conmand='define,newfil .'
FA/execute_interstate_conmand conmand= ..
FA .. /'copy,oldfil,newfil.'
FA/delete_interstate_connect1on
I

DELETE _INTERSTATE_ CONNECTION
CREIC Subcommand

Purpose Ends a CREATE_INTERSTATE_ CONNECTION session.

Format DELETE_INTERSTATE_CONNECTION or
QUI or
QUIT or
DELIC

Parameters None.

Remarks For more information, see the Migration from NOS to
NOSNE manual.

EXECUTE _INTERSTATE_ COMMAND
CREIC Subcommand

j[j Purpose Precedes all NOS commands when the interstate
connection established by CREATE_INTERSTATE_
CONNECTION (CREIC) is in effect.

Format EXECUTE_INTERSTATE_COMMAND or
EXEIC

COMMANDS= list of string
STATUS= status variable

Parameters COMMANDS or COMMAND or C

A NOS command followed by a period. The command
string can include up to 80 characters and must be
enclosed in apostrophes. This command is required.

10-2 NOS/VE Commands and Functions Revision G

Remarks

Revision G

EXECUTE_INTERSTATE_COMMAND

For more information, see the Migration From NOS to
NOSNE manual.

CREATE_INTERSTATE_ CONNECTION 10-3

CREATE_ OBJECT _LIBRARY 11

CREATE_OBJECT_LIBRARY 11-1
ADD_MODULE . 11-2
BIND_MODULE 11-4
CHANGE_MODULE_ATTRIBUTE 11-7
CHANGE_PROGRAM_DESCRIPTION 11-12
COMBINE_MODULE . 11-21
CREATE_APPLICATION_MENU 11-24
CREATE_BRIEF_HELP_MESSAGE 11-24
CREATE_FULL_HELP _MESSAGE 11-25
CREATE_LINKED_MODULE 11-25
CREATE_MENU_CLASS . 11-29
CREATE_MENU_ITEM 11-30
CREATE_MESSAGE_MODULE 11-32
CREATE_MODULE . 11-34
CREATE_PARAMETER_ASSIST_MESSAGE 11-39
CREATE_PARAMETER_HELP _MESSAGE 11-40
CREATE_PARAMETER_PROMPT_MESSAGE 11-41
CREATE_PROGRAM_DESCRIPTION 11-44
CREATE_STATUS_MESSAGE 11-54
DELETE_MODULE . 11-57
DISPLAY_NEW_LIBRARY . 11-58
END_APPLICATION_MENU 11-60
END_MESSAGE_MODULE 11-61
GENERATE_LIBRARY . 11-61
QUIT 11-64
REORDER_MODULE . 11-65
REPLACE_MODULE . 11-66
SATISFY_EXTERNAL_REFERENCE 11-67
SET_DISPLAY_ OPTION . 11-70

CREATE _OBJECT _LIBRARY 11

CREATE_ OBJECT _LIBRARY
Command

Purpose

Format

Remarks

Revision G

Begins a CREATE_OBJECT_LIBRARY utility session.
The utility produces an object library or an object file and
allows post-compilation manipulation of object or load
modules. It can also produce a text version of certain
kinds of modules on an object library.

CREATE_OBJECT_LIBRARY or
CREOL

STATUS= status variable

• The following files can be created by the
GENERATE_LIBRARY subcommand of this utility.
The utility issues a warning and does not process
input files whose file attributes do not conform to the
attributes listed in the right-hand column. The utility
sets the accompanying file attributes listed for output
files it creates. You can override attributes of a file
with the SCL SET_FILE_ATTRIBUTE command.

File Created

Object library

Object file

SCL procedure
file

File containing
the subcommands
that define
message modules

Attributes Given to the File

FILE_ CONTENT= OBJECT
FILE_ STRUCTURE= LIBRARY

FILE_CONTENT= OBJECT
FILE_STRUCTURE =DATA

FILE_CONTENT=LEGIBLE
FILE_PROCESSOR = SCL
FILE_STRUCTURE =DATA

FILE_ CONTENT= LEGIBLE
FILE_PROCESSOR= SCL
FILE_ STRUCTURE= DATA

• The CREOL session ends when you enter the QUIT
subcommand.

• For more information, see the NOSNE Object Code
Management manual.

CREATE_OBJECT_LIBRARY 11-1

ADD_MODULE

Examples The following is a sequence that removes an object library
from the command list, creates a new version of the
object library from the modules on file $LOCAL.LGO,
then adds the object library to the command list.

/delete_conmand_list_entry entry=$1ocal .my_cormiands
/create_object_library
COL/add_module $local. lgo
COL/generate_library $1ocal.my_cormiands
COL/quit
/create_cormiand_list_entry entry=$1ocal .my_cormiands
I

ADD_MODULE
CREOL Subcommand

Purpose

Format

Adds one or more modules to the module list.

ADD _MODULE or
ADD_MODULES or
ADDM

LIBRARY= list of file
MODULE= list of range of any
PLACEMENT=keyword
DESTINATION =any
STATUS =status variable

Parameters LIBRARY or LIBRARIES or L

Object files, SCL procedure files, or object library files
containing the modules to be added. This parameter is
required.

MODULE or MODULES or M

Modules to be added.

You use a string value for a module whose name is not
an SCL name. Some examples of such module names are:
a COBOL module, where a hyphen character (-) may be
part of the name, and a C function, where lower case is
significant.

If MODULE is omitted, all modules on the files specified
on the LIBRARY parameter are added.

11-2 NOSNE Commands and Functions Revision G

Remarks

Revision G

ADD_MODULE

PLACEMENT or P

Indicates whether the added modules are placed before or
after the module specified on the DESTINATION
parameter. Options are:

BEFORE (B)

Modules added before the destination module.

AFTER (A)

Modules added after the destination module.

If PLACEMENT is omitted, AFTER is used.

DESTINATION or D

Module before or after which the added modules are
placed.

If DESTINATION is omitted, the location depends on the
PLACEMENT parameter value. If
PLACEMENT= BEFORE, the modules are placed at the
beginning of the module list; if PLACEMENT=AFTER,
the modules are placed at the end of the module list.

• The ADD_MODULE subcommand can specify object
files, SCL procedure files, or object libraries. The
CREOL utility adds modules from files in the order
you specify the files on the LIBRARY parameter. If
you do not want to use all modules in the files,
specify the modules to be added on the MODULE
parameter.

• Unless specified otherwise by the PLACEMENT and
DESTINATION parameters, the subcommand adds each
module to the end of the module list. If the module
list already contains a module with the same name, a
warning status message is returned and the module is
not added.

• The ADD_MODULE subcommand does not replace
modules in the module list. To replace modules, enter
a REPLACE_MODULES subcommand. To add and
replace modules, enter a COMBINE_MODULES
subcommand.

• For more information, see the NOSNE Object Code
Management manual.

CREATE_ OBJECT_LIBRARY 11-3

BIND _MODULE

Examples The following subcommand adds all modules on files
BINARY! and BINARY2 to the beginning of the module
list.

COL/add_rnodule (binary1,binary2) placement=before

BIND _MODULE
CREOL Subcommand

Purpose Subcommand used in a restructuring procedure to bind
component modules into a single load module. This
subcommand is not recommended for your use. The
subcommand description is provided only to help you
interpret the commands in a restructuring procedure. To
create a new module by binding component modules, you
should use the subcommand CREATE_MODULE.

Format BIND_MODULE or
BINM

MODE=keyword
NAME=name
FILE=file
STARTING _PROCEDURE =any
SECTION_ORDER=list of any
PRESET_ VALUE=keyword
INCLUDE_BINARY_SECTION_MAPS=boolean
OUTPUT={ile
STATUS= status variable

Parameters MODE or M

Indicates whether additional BIND_MODULE
subcommands for the module follow this subcommand.
Options are:

CONTINUE

More BIND_MODULE subcommands follow.

QUIT

This is the last BIND_MODULE subcommand for the
module.

This parameter is required.

11-4 NOSNE Commands and Functions Revision G

Revision G

BIND_MODULE

NAME or N

Name of the new module. This parameter is required only
on the first BIND_MODULE subcommand for the module.

You use a string value for a module whose name is not
an SCL name.

FILE or F

File containing the· modules to be bound. This parameter
is required only on the first BIND_MODULE
subcommand for the module.

STARTING_PROCEDUREorSP

Name of the transfer symbol for the new module.

You use a string value for a transfer symbol whose name
is not an SCL name.

If STARTING_PROCEDURE is omitted, the last transfer
symbol encountered is used.

SECTION_ORDER or SO

Code chapter ordering for the component modules in the
new module. Each item in the list contains a module
name and its chapter ordinal.

PRESET_ VALUE or PV

Specifies text record reduction as follows.

ZERO (Z)

Reduces the number of individual text records in an
object module. Reducing the number of records reduces
the amount of time it takes to load the module.

If PRESET_ VALUE is omitted, the number of text records
is not reduced.

INCLUDE_BINARY_SECTION_MAPS or IBSM

Indicates whether the binary section map is included in
the information element· for the bound module.

OUTPUT or 0

File to which the section map for the new module is
written. This file can be positioned. If OUTPUT is
omitted, no section map is written.

CREATE_ OBJECT_LIBRARY 11-5

BIND_MODULE

Remarks

Examples

• The new module is not generated until you enter a
GENERATE_LIBRARY subcommand. Therefore, the
section map for the module is not written on the file
specified on the OUTPUT parameter until the module
is generated.

• A restructuring procedure uses a sequence of BIND_
MODULE subcommands to direct the generation of the
load module. The first subcommand in the sequence
must specify the module name and the file containing
the modules to be bound. Each subcommand except the
last in the sequence for the module must specify
MODE=CONTINUE. The last subcommand in the
sequence must specify MODE=QUIT. Refer to the
Application Efficiency chapter of the Object Code
Management manual for more information on
restructuring.

• For more information, see the NOSNE Object Code
Management manual.

The following is a restructuring procedure generated for
two object modules named EXAMP and NAND on file
BIN3.

PROC MY _PROC(
target_text. tt: file= :$LOCAL. BIN3
library, l :f i le=:SLOCAL.MY_FILE
module_name,mn:narne=MY_FILE
status)

create_object_ library
bind_module name=SVALUE(module_name) ..

f i le=SVALUE(target_ text) mode=cont 1nue
bind_module mode=continue section_order=((EXAMP 0))
bind_module mode=continue section_order=((NAND 0))
bi nd_modu le mode=qu 1t
generate_ l 1brary l 1brary=$VALUE(library)

l),Jit
PROCEND

11-6 NOS/VE Commands and Functions Revision G

CHANGE_MODULE_ATTRIBUTE

CHANGE _MODULE _ATTRIBUTE
CREOL Subcommand

Purpose Changes one or more attributes of a module in the
module list.

Format CHANGE_MODULE_ATTRIBUTE or
CHANGE_MODULE_ATTRIBUTES or
CHAMA

MODULE= list of range of any
NEW_NAME==any
SUBSTITUTE ==list of any
OMIT==list of any
GATE== list of any
NOT_ GATE== list of any
STARTING_PROCEDURE==any
OMIT _LIBRARY== list of name
ADD _LIBRARY== list of name
RETAIN==list of any
NOT_RETAIN=list of any
OMIT _NON _RETAINED _ENTRY_POINTS ==boolean
OMIT_DEBUG_TABLES==list of keyword
COMMENT= string
APPLICATION_lDENTIFIER==name or keyword
STATUS ==s'tatus variable

Parameters MODULE or M

Revision G

Module whose attributes are changed.

You use a string value for an entry point whose name is
not an SCL name. Some examples of such module names
are: a COBOL module, where a hyphen character (-) may
be part of the name, and a C function, where lower case
is significant.

ALL may be specified to change the attributes of all
modules.

This parameter is required.

NEW_NAME or NN

New module name.

You use a string value for an entry point whose name is
not an SCL name. Examples of such names are the same
as for the MODULE parameter.

CREATE_OBJECT_LIBRARY 11-7

CHANGE_MODULE_ATTRIBUTE

If ALL is specified in the MODULE parameter, NEW_
NAME should not be used.

If NEW_NAME is omitted, the module name is not
changed.

SUBSTITUTE or SUBSTITUTES or S

List of name substitutions. Each item in the list specifies
two names: the name to be replaced and the name to
replace it.

You use a string value for an entry point whose name is
not an SCL name. Examples of such names are the same
as for the MODULE parameter.

The name to be replaced can be an entry point name or
the name of a CYBIL variable with the XDCL attribute.
If SUBSTITUTE is omitted, no names are changed.

OMIT or 0

List of names whose definitions are removed from the
module. The name to be removed can be an entry point
name or the name of a CYBIL variable with the XDCL
attribute.

You use a string value for an entry point whose name is
not an SCL name. If OMIT is omitted, no name
definitions are removed.

GATE or GATES or G

List of entry points to which the gate attribute is added.

You use a string value for an entry point whose name is
not an SCL name. An example of such an entry point is
in the COBOL language, where a hyphen character (-)
may be part of the name.

If ALL is specified, the gate attribute is added to all
entry points in the module.

If GATE is omitted, the gate attribute is not added to any
entry point name.

11-8 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_MODULE_ATTRIBUTE

NOT_GATE or NOT_GATES or NG

List of entry points from which the gate attribute is
removed.

You use a string value for an entry point whose name is
not an SCL name. An example of such an entry point is
in the COBOL language, where a hyphen character (-)
may be part of the name.

If ALL is specified, the gate attribute is removed from all
entry points in the module. _

If NOT_GATE is omitted, the gate attribute is not
removed from any entry point.

STARTING_PROCEDUREor SP

Name of the entry point where execution begins.

You use a string value for an entry point whose name is
not an SCL name. An example of such an entry point is
in the COBOL language, where a hyphen character (-)
may be part of the name.

If STARTING_PROCEDURE is omitted, the starting
procedure is not changed.

OMIT_LIBRARY or OMIT_LIBRARIES or OL

List of local file names to be removed from the object text
(text-embedded libraries). The local file names specify
object libraries to be added to the program library list
when the module is loaded. All specifications for these
files are removed from the object text when the load
module is written on the new object library.

If OMIT_LIBRARY is omitted, no library specifications
are removed.

ADD_LIBRARY or ADD_LIBRARIES or AL

List of local file names to be added to the object text
(text-embedded libraries). The local file names specify
object libraries to be added to the program library list
when the module is loaded. The CREOL utility adds the
file specifications to each module when it writes the load
module on the new object library.

If ADD_LIBRARY is omitted, no library specifications are
added.

CREATE_OBJECT_LIBRARY 11-9

CHANGE_MODULE_ATTRIBUTE

RETAIN or R

List of additional entry points to be given the retain
attribute. An entry point with the retain attribute is kept
in a new module created by combining this module with
other modules.

You use a string value for an entry point whose name is
not an SCL name. An example of such an entry point is
in the COBOL language, where a hyphen character (-)
may be part of the name.

If ALL is specified, the retain attribute is given to all
entry points.

If RETAIN is omitted, no additional entry points are
given the retain attribute.

NOT _RETAIN or NR

List of entry points from which the retain attribute is
removed. Without the retain attribute, the entry point is
removed from any new module created by combining this
module with other modules that reference the entry point.

You use a string value for an entry point whose name is
not an SCL name. An example of such an entry point is
in the COBOL language, where a hyphen character (-)
may be part of the name.

If ALL is specified, the retain attribute is removed from
all entry points.

If NOT_RETAIN is omitted, the retain attribute is not
removed from any entry point.

OMIT_NON_RETAINED_ENTRY_POINTSor ONREP

Specifies that all entry points are removed from the
module unless they are explicitly retained. If OMIT_
NON _RETAINED_ENTRY_POINTS is omitted, all entry
points are retained.

OMIT_DEBUG_TABLES or OMIT_DEBUG_TABLE or
ODT

List of one or more keywords indicating the debug tables
to be omitted when the module is loaded. Options are:

LINE_ TABLE (LT)

Omits the debug table containing line numbers that
correspond to the module.

11-10 NOS/VE Commands and Functions Revision G

Remarks

Revision G

CHANGE_MODULE_ATTRIBUTE

SYMBOL_ TABLE (ST)

Omits the debug table containing the names and
addresses of the program variables in the module.

PARAMETER_CHECKING (PC)

Omits parameter checking records in the module.

ALL

Omits all the debug tables.

Using the OMIT_DEBUG_ TABLE parameter causes the
module to load faster. If it is omitted, any debug tables in
the module are included when the module is loaded.
(Debug tables are generated during compilation, if
requested by the compiler command.)

COMMENT or C

Commentary stored in the module header (from one
through 40 characters). If COMMENT is omitted, the
commentary is not changed.

APPLICATION _IDENTIFIER or AI

Name of application identifier stored in the module header
and included on the application accounting statistics when
the software is executed. Application identifiers can be
specified only for program description, command
procedure, and load modules. Only a user with the
SYSTEM_ADMINISTRATION or APPLICATION_
ADMINISTRATION capability can specify an application
identifier.

If the keyword $UNSPECIFIED is used, the application
identifier is removed.

If an application identifier is already assigned and if the
APPLICATION _IDENTIFIER parameter is omitted, the
application identifier is not changed.

• The MODULE parameter specifies the module whose
attributes are changed. The module must be in the
current module list.

• You specify an attribute parameter for each attribute
to be changed. If you omit an attribute parameter, the
attribute value is not changed.

CREATE_OBJECT_LIBRARY 11-11

CHANGE_PROGRAM_DESCRIPTION

Examples

• The CHANGE_MODULE_ATTRIBUTES subcommand
only changes the attributes of the module written by a
subsequent GENERATE_LIBRARY subcommand. It
does not change the attributes of the original module.

• For more information, see the NOSNE Object Code
Management manual.

The following subcommand changes the name of entry
point EXAMPLE in module MY_MODULE to
EXAMPLE_l.

COL/change_module_attributes my_module
COL .. /substitute=((example,example_1))

CHANGE _PROGRAM_DESCRIPTION
CREOL Subcommand

Purpose

Format

Changes the components of a program description

CHANGE_PROGRAM_DESCRIPTION or
CHAPD

NAME=any
FILE= list of any or keyword
LIBRAR.Y=list of any or keyword
MODULE= list of any or keyword
STARTING_PROCEDURE=any or keyword
LOAD_MAP=any or keyword
LOAD _MAP_ OPTION= list of keyword
TERMINATION _ERROR_LEVEL =keyword
PRESET_ VALUE=keyword
STACK_SIZE=integer or keyword
ABORT_FILE=any or keyword
DEBUG_INPUT=any or keyword
DEBUG_OUTPUT=any or keyword
DEBUG_MODE=boolean or keyword
AVAILABILITY =keyword
SCOPE= keyword
LOG_ OPTION= keyword
APPLICATION_lDENTIFIER=name or keyword
ARITHMETIC_OVERFLOW=boolean or keyword
ARITHMETIC_LOSS_ OF _SIGNIFICANCE= boolean

or keyword
DNIDE_FAULT=boolean or keyword
EXPONENT_ OVERFLOW= boolean or keyword

11-12 NOSNE Commands and Functions Revision G

CHANGE_PROGRAM_DESCRIPTION

EXPONENT_ UNDERFLOW= boolean or keyword
FP _INDEFINITE= boolean or keyword
FP _LOSS_ OF _SIGNIFICANCE= boolean or keyword
INVALlD_BDP_DATA=boolean or keyword
STATUS= status variable

Parameters NAME or N

Revision G

Specifies the name of the program being changed. This
parameter is required.

FILE or FILES or F

List of object files or object libraries to be unconditionally
loaded when the program is executed.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

If the FILE parameter is omitted, the FILE parameter of
the program description is not changed. If
$UNSPECIFIED is used, the FILE parameter is removed
from the program description.

LIBRARYorLIBRARIESorL

List of library files to be added to the program library
list when the program is executed. A file value is
evaluated when the object library is generated. Path
values containing $FAMILY, $USER, or $SYSTEM

, elements can be supplied as strings to be evaluated when
the program description is used.

If $UNSPECIFIED is used, the LIBRARY parameter is
removed from the program description.

The keyword OSF$TASK_SERVICES_LIBRARY specifies
the system table, and keyword OSF$CURRENT_LIBRARY
represents the library that contains the program
description being changed.

If the LIBRARY parameter is omitted, the LIBRARY
parameter of the program description is not changed.

MODULE or MODULES or M

List of modules to be loaded from the program library list
when the program is executed. The modules are loaded in
the order in which they are specified in the list.

CREATE_ OBJECT_LIBRARY 11-13

CHANGE_PROGRAM_DESCRIPTION

You use a string value for a module whose name is not
an SCL name. Some examples of such module names are:
a COBOL module, where a hyphen character (-) may be
part of name, and a C function, where lower case is
significant.

If the MODULE parameter is omitted, the MODULE
parameter of the program description is not changed. If
$UNSPECIFIED is used, the MODULE parameter is
removed from the program description.

STARTING_PROCEDUREor SP
Name of the entry point at which program execution
begins.

You use a string value for an entry point whose name is
not an SCL name. An example of such an entry point is
in the COBOL language, where a hyphen character (-)
may be part of the name.

If the STARTING_PROCEDURE parameter is omitted,
the STARTING_PROCEDURE parameter of the program
description is not changed. If $UNSPECIFIED is used, the
STARTING_PROCEDURE parameter is removed from the
program description.

LOAD _MAP or LM
File on which the load map is written. A file value is
evaluated when the object library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

If the LOAD_MAP parameter is omitted, the LOAD_
MAP parameter of the program description is not
changed. If $UNSPECIFIED is used, the LOAD_MAP
parameter is removed from the program description.

LOAD_MAP_OPTIONorLOAD_MAP_OPTIONSor
LMO
List one or more keywords indicating the information to
include in the load map. Options are:

NONE

No load map is written.

11-14 NOS/VE Commands and Functions Revision G

Revision G

SEGMENT (S)

Segment map.

BLOCK (B)

Block map.

ENTRY_POINT (EP)

Entry point map.

CHANGE_PROGRAM_DESCRIPTION

CROSS_REFERENCE (CR)

Entry point cross-reference.

ALL

Selects SEGMENT, BLOCK, ENTRY_POINT, and
CROSS_ REFERENCE.

$UNSPECIFIED

The LOAD_MAP_OPTION parameter is removed from
the program description.

If the LOAD_MAP_OPTION parameter is omitted, the
LOAD_MAP_OPTION parameter of the program
description is not changed.

TERMINATION_ERROR_LEVELorTEL
Specifies the severity level of error that terminates
program loading. Options are:

WARNING (W)

Warning, error, or fatal severity level errors.

ERROR (E)

Error or fatal severity level errors.

FATAL (F)

Fatal severity level errors.

$UNSPECIFIED

The TERMINATION_ERROR_LEVEL parameter is
removed from the program description. ·

If the TERMINATION _ERROR_LEVEL parameter is
omitted, the TERMINATION _ERROR_LEVEL parameter
of the program description is. not changed.

CREATE_ OBJECT_LIBRARY 11-15

CHANGE_PROGRAM_DESCRIPTION

PRESET_ VALUE or PV

Value to store in all uninitialized data words. Options
are:

ZERO (Z)

All zeroes.

FLOATING_POINT_INDEFINITE (FPI)

Floating-point indefinite value.

INFINITY (I)

Floating-point infinite value.

ALTERNATE_ONES (AO)

Alternating 0 and 1 bits; the leftmost (highest order)
bit is 1.

UNSPECIFIED

The PRESET_ VALUE parameter is removed from the
program description.

If the PRESET_ VALUE parameter is omitted, the
parameter of the program description is not changed.

STACK_SIZE or SS

Maximum number of bytes in the run-time stack. The
program uses the run-time stack for procedure call
linkages and local variables. If STACK_SIZE is omitted,
the system default value is used. You can display the
default stack size by entering a DISPLAY.;....PROGRAM_
ATTRIBUTE command. If $UNSPECIFIED is used, the
STACK_SIZE parameter is removed from the program
description.

ABORT_FILE or AF

File containing Debug commands to be processed if the
program aborts. The commands are executed only if the
program is not executed in Debug mode. A file value is
evaluated when the object library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

11-16 NOSNE Commands and Functions Revision G

Revision G

CHANGE_PROGRAM_DESCRIPTION

If ABORT_FILE is omitted, the program description for
the ABORT_FILE parameter is not changed. If
$UNSPECIFIED is used, the ABORT_FILE parameter is
removed from the program description.

DEBUG_INPUT or DI

File containing Debug commands. The commands are' read
only if the program is executed under the control of
Debug (refer to the DEBUG_MODE parameter). This file
can be positioned. A file value is evaluated when the
object library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

If DEBUG_INPUT is omitted, the DEBUG_INPUT
parameter of the program description is not changed. If
$UNSPECIFIED is used, the DEBUG_INPUT parameter
is removed from the program description.

DEBUG_OUTPUTorDO

File on which Debug output is written. Output is written
only if the program is executed in Debug mode. This file
can be positioned. A file value is evaluated when the
object library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

If DEBUG_OUTPUT is omitted, the DEBUG_OUTPUT
parameter of the program description is not changed. If
$UNSPECIFIED is used, the DEBUG_OUTPUT
parameter is removed from the program description.

DEBUG_MODE or DM

Indicates whether the program is to be run under the
control of Debug. (For information on using Debug, refer
to the program's specific source language manual.) Options
are:

ON

Program executed under control of the Debug program.

CREATE_OBJECT_LIBRARY 11-17

CHANGE_PROGRAM_DESCRIPTION

OFF

Program executed without the Debug program.

If the DEBUG_MODE parameter is omitted, the
DEBUG_MODE parameter of the program description is
not changed. If $UNSPECIFIED is used, the DEBUG_
MODE parameter is removed from the program
description.

AVAILABILITY or A

Specifies whether or not the program description is made
known to users as a command. Options are:

ADVERTISED (A)

Program description appears in the· output produced by
the DISPLAY_COMMAND_LIST_ENTRY command
(and in similar situations).

HIDDEN (H)

Program description is suppressed from the output
produced by DISPLAY_COMMAND_LIST_ENTRY
command (and in similar situations).

If this parameter is omitted, the AVAILABILITY
parameter of the program description is. not changed.

SCOPE or S

Reserved for future use.

LOG_OPTION or LO

Reserved for future use.

APPLICATION _IDENTIFIER or AI

Name of application identifier stored in the module header
and included on the application accounting statistics when
the software is executed. Only a user with the SYSTEM_
ADMINISTRATION or APPLICATION_
AQMINISTRATION capability can specify an application
identifier.

If the keyword $UNSPECIFIED is used, the application
identifier is removed. If the APPLICATION _IDENTIFIER
parameter is omitted, the application identifier is not
changed.

11-18 NOSNE Commands and Functions Revision G

Revision G

CHANGE_PROGRAM_DESCRIPTION

ARITHMETIC_OVERFLOW or AO

This parameter specifies whether or not the hardware
condition ARITHMETIC_OVERFLOW causes an interrupt.
Valid specifications are:

ON

ARITHMETIC_ OVERFLOW is enabled. The condition
causes an interrupt.

OFF

ARITHMETIC_OVERFLOW is disabled. The condition
does not cause an interrupt.

ARITHMETIC_LOSS_OF_SIGNIFICANCE or ALOS

This parameter specifies whether or not the hardware
condition ARITHMETIC_LOSS_OF _SIGNIFICANCE
causes an interrupt. Valid specifications are:

ON

ARITHMETIC_LOSS_OF_SIGNIFICANCE is enabled.
The condition causes an interrupt.

OFF

ARITHMETIC_LOSS_OF_SIGNIFICANCE is disabled.
The condition does not cause an interrupt.

DIVlDE_FAULT or DF

This parameter specifies whether or not the hardware
condition DIVIDE_FAULT causes an interrupt. Valid
specifications are:

ON

DIVIDE_FAULT is enabled. The condition causes an
interrup~.

OFF

DIVIDE_FAULT is disabled. The condition does not
cause an interrupt.

EXPONENT_OVERFLOW or EO

This parameter specifies whether or not the hardware
condition EXPONENT_ OVERFLOW causes an interrupt.
Valid specifications are:

CREATE_ OBJECT_LIBRARY 11-19

CHANGE_PROGRAM_DESCRIPTION

ON

EXPONENT_ OVERFLOW is enabled. The condition
causes an interrupt.

OFF

EXPONENT_ OVERFLOW is disabled. The condition
does not cause an interrupt.

EXPONENT_ UNDERFLOW or EU

This parameter specifies whether or not the hardware
condition EXPONENT_UNDERFLOW causes an interrupt.
Valid specifications are:

ON

EXPONENT_ UNDERFLOW is enabled. The condition
causes an interrupt.

OFF

EXPONENT_ UNDERFLOW is disabled. The condition
does not cause an interrupt.

FP _INDEFINITE or FPI or FI

This parameter specifies whether or not the hardware
condition FP _INDEFINITE causes an interrupt. Valid
specifications are:

ON

FP _INDEFINITE is enabled. The condition causes an
interrupt.

OFF

FP _INDEFINITE is disabled. The condition does not
cause an interrupt.

FP_LOSS_OF_SIGNIFICANCE or FPLOS or FLOS

This parameter specifies whether or not the hardware
condition FP_LOSS_OF_SIGNIFICANCE causes an
interrupt. Valid specifications are:

ON

FP _LOSS_OF_SIGNIFICANCE is enabled. The
condition causes an interrupt.

11-20 NOS/VE Commands and Functions Revision G

Remarks

Examples

COMBINE_MODULE

OFF

FP_LOSS_OF_SIGNIFICANCE is disabled. The
condition does not cause an interrupt.

INVALID_BDP_DATA or IBDPD or IBD

This parameter specifies whether or not the hardware
condition INVALID_BDP _DATA causes an interrupt.
Valid specifications are:

ON

INVALID_BDP _DATA is enabled. The condition causes
an interrupt.

OFF

INVALID_BDP _DATA is disabled. The condition does
not cause an interrupt.

• To allow users the option of rescinding a previously
specified value or not including a given parameter in
the CHAPD command, the keyword $UNSPECIFIED
may be used for some parameters. This removes the
parameter from the description. The result of using
the $UNSPECIFIED is the same as not supplying the
parameter on the CREATE_PROGRAM_
DESCRIPTION subcommand. When the program is
executed, the corresponding job default program
attribute value is used.

• For more information, see the NOS/VE Object Code
Management manual.

See the NOS/VE Object Code Management manual for a
detailed example.

COMBINE _MODULE
CREOL Subcommand

Purpose Adds new modules and replaces existing modules in the
module list.

Revision G CREATE_OBJECT_LIBRARY 11-21

COMBINE_MODULE

Format COMBINE_MODULE or
COMBINE_MODULES or
COMM

LIBRARY= list of file
MODULE=list of range of any
PLACEMENT= keyword
DESTINATION =any
STATUS= status variable

Parameters LIBRA_RY or LIBRARIES or L

Object files, SCL procedure files, or object library files
containing the modules to be combined. This parameter is
required.

MODULE or MODULES or M

Modules to be combined.

You use a string value for a module whose name is not
an SCL name. Some examples of such module names are:
a COBOL inodule, where a hyphen character (-) may be
part of the name, and a C function, where lowercase is
significant.

If MODULE is omitted, all modules on the specified files
or libraries are combined.

PLACEMENT or P

Indicates whether the added modules are placed before or
after the module specified on the DESTINATION
parameter. Options are:

BEFORE (B)

Modules added before the destination module.

AFTER (A)

Modules added after the destination module.

If PLACEMENT is omitted, AFTER is used.

DESTINATION or D

Module before or after which the added modules are
placed.

This parameter does not affect the location of replacement
modules. A replacement module is always placed in the
same location as the module it replaces.

11-22 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

COMBINE_MODULE

If DESTINATION is omitted, added modules are placed
according to the PLACEMENT parameter value. If
PLACEMENT=BEFORE, the modules are placed at the
beginning of the library. If PLACEMENT= AFTER, the
modules are placed at the end of the library.

• The COMBINE_MODULES subcommand can specify
object files, SCL procedure files, or object libraries
that are processed in the order you specify the files on
the LIBRARY parameter.

• The COMBINE_MODULES subcommand checks for
duplicate modules in the specified files and reports an
error if duplicates are found.

You can,. however, combine modules in libraries with
duplicate modules. You add one of the libraries to the
module list with an ADD_MODULES subcommand
and then perform a COMBINE_MODULES of the
second library.

• If you do not want to use all modules in a file, specify
the modules to be used on the MODULE parameter.

• A module to be combined replaces any module already
existing with the same name in the module list. If the
name is not already in the module list, the module to
be combined is added to the module list.

• A replacement module is placed in the module list at
the same location as the module it replaces. An added
module is added at the end of the list unless you
specify another location with the DESTINATION and
PLACEMENT parameters. You can change the module
order later with a REORDER_MODULES
subcommand.

• For more information, see the NOSNE Object Code
Management manual.

The following subcommand combines all modules in files
MY_LIBRARY and YOUR_LIBRARY with the modules
already in· the module list.

COL/combine_module (my_11brary,your_library)

CREATE_ OBJECT_LIBRARY 11-23

CREATE_APPLICATION_MENU

CREATE _APPLICATION _MENU
CREMM Subcommand

Purpose

Format

Initiates the CREATE_APPLICATION _MENU utility
session.

CREATE _APPLICATION _MENU or
CREAM

NAME=name
STATUS= status variable

Parameters NAME or N

Remarks

Specifies the name of the application menu. The NAME
parameter is a string containing 1 through 31 characters.
This parameter is required.

For more information, see the NOS/VE Object Code
Management manual.

CREATE _BRIEF _HELP _MESSAGE
CREMM Subcommand

Purpose Creates a brief description of a command. The complete
description is generated by the CREATE_FULL_HELP _
MESSAGE subcommand.

Format CREATE _BRIEF _HELP _MESSAGE or
CREBHM

COLLECT_ TEMPLATE_ UNTIL= string
STATUS= status variable

Parameters COLLECT_TEMPLATE_UNTIL or CTU

Remarks

Examples

Specifies the termination string used in collecting the
template of the brief help message. If the COLLECT_
TEMPLATE_ UNTIL parameter is omitted, the string '**'
is assumed.

For more information, see the NOS/VE Object Code
Management manual.

The following creates a brief help message.

CMM/create_brief _help_message
? This is a little bit of help.
? **
CMM/

11-24 NOS/VE Commands and Functions Revision C

CREATE_FULL_HELP _MESSAGE

CREATE_FULL_HELP_MESSAGE
CREMM Subcommand

Purpose Creates a message containing a complete description of
the command. A brief description is generated with the
CREATE_BRIEF _HELP _MESSAGE subcommand.

Format CREATE_FULL_HELP _MESSAGE or
CREFHM

COLLECT_ TEMPLATE_ UNTIL== string
STATUS== status variable

Parameters COLLECT_TEMPLATE_UNTIL or CTU

Remarks

Examples

Specifies the termination string used in collection of the
template of the full help message. If the COLLECT_
TEMPLATE_ UNTIL parameter is omitted, the string '**'
is assumed.

For more information, see the NOSNE Object Code
Management manual.

The following creates a full help message.

CMM/create_full_help_message
? This is a complete description, providing more
? detailed instructions than the brief help message.
? ••

CMM/

CREATE _LINKED _MODULE
CREOL Subcommand

Purpose

Format

Revision G

Creates a new prelinked module from an existing module
and adds it to the module list.

CREATE_LINKED_MODULE or
CRELM

NAME=name
COMPONENT=list of any
RING _BRACKETS= list of integer
RETAIN_COMMON_BLOCK==list of any
IGNORE_ SECTION _NAMES== boolean
STAR.TING_SEGMENT==integer

CREATE_ OBJECT_LIBRARY 11-25

CREATE_LINKED_MODULE

OUTPUT= file
DEBUG_TABLE=file
NEXT _AVAILABLE _SEGMENT= integer variable
APPLICATION _IDENTIFIER =name
STATUS= status variable

Parameters NAME or N

Name of the new prelinked module.

You use a string value for a module whose name is not
an SCL name. Some examples of such module names are:·
a COBOL module, where a hyphen character (-) may be
part of the name, and a C function, where lower case is
significant.

This parameter is required.

COMPONENTorCOMPONENTSorC

Component modules of the new module. Each item in the
list is a list consisting of a file name followed by a series
of module names on the file, which are to be used. A
range of names may be specified. If no module names. are
specified for a file, all modules on the file are used.

You use a string value for a module whose name is not
an SCL name. Some examples of such module names are:
a COBOL module, where a hyphen character (-) may be
part of the name, and a C function, where lower case is
significant.

NOTE

A component module can be only an object, load, or bound
module.

This parameter is required. At least one file must be
specified.

RING _BRACKETS or RB

Specifies three integers representing the rl, r2, and r3
ring execution values for the new module. The ring values
can be from 3 through 15. This parameter is required.

11-26 NOS/VE Commands and Functions Revision G

Revision G

CREATE_LINKED _MODULE

RETAIN_COMMON_BLOCKorRETAIN_COMMON_
BLOCKS or RCB
Specifies which common block names are retained in the
new modules. The keyword ALL specifies that all common
blocks are retained.

You use a string value for a common block whose name
is not an SCL name.

If RETAIN_ COMMON _BLOCK is omitted, no common
blocks are retained.

IGNORE_SECTION_NAMES or ISN
Specifies whether working storage sections with different
names should be placed in· unique segments. If IGNORE_
SECTION_NAMES is omitted or IGNORE_SECTION_
NAMES=TRUE, sections with similar access attributes
(read and write) are placed in the same segments,
regardless of the section names.

STARTING_SEGMENTorSS
First segment number to use in prelinking this module.
The STARTING_SEGMENT parameter provides a unique
starting segment number. It is used only when creating
multiple pre linked modules that are loaded together.

Use the NEXT_AVAILABLE_SEGMENT parameter to
generate the integer value for the STARTING_SEGMENT
parameter on the next CREATE_LINKED_MODULE
subcommand.

Integer values are 0 through 4,095. The operating system
reserves segments 36 through 63 for prelinked programs.
Each program must fit into these segments. Do not use
segments 0 through 35, and 64 through 4,095.

If STARTING_SEGMENT is omitted, the integer value 36
is used as the starting segment number.

OUTPUT or 0
File to which the prelink information and diagnostics are
written. This file can be positioned.

If OUTPUT is omitted, information is written to file
$LOCAL.LINKMAP.

CREATE_OBJECT_LIBRARY 11-27

CREATE_LINKED_MODULE

Remarks

DEBUG_TABLE or DT

File to which the table containing binary debug
information is written. This parameter is for Control Data
internal use only.

If DEBUG_ TABLE is omitted, no debug information .is
written.

NEXT_AVAILABLE_SEGMENTorNAS

Integer variable to contain the next available segment
number. Use this parameter only when you are creating
multiple prelinked modules that are to be loaded together.
This parameter generates unique . segment numbers to be
used by the STARTING_SEGMENT parameter on the
next CREATE_LINKED_MODULE subcommand.

If NEXT_AVAILABLE_SEGMENT is omitted, no segment
number is returned.

APPLICATION _IDENTIFIER or AI

Name of the application identifier stored in the module
header and included on the application accounting
statistics when the software is executed. Only a user with
the SYSTEM_ADMINISTRATION or APPLICATION_
ADMINISTRATION capability can specify an application
identifier.

If an application identifier is placed on a load module, the
module is assumed to be a unit-measured application.

If APPLICATION _IDENTIFIER is omitted, no application
identifier is assigned to the module.

• When building programs that consist of multiple
prelinked modules, all predefined segment numbers
must be unique for the entire load sequence.

• Use the STARTING_SEGMENT parameter on the
CREATE_LINKED_MODULE subcommand to specify
the first reserved segment number for a module. This
allows modules that are prelinked separately to be
used together at execution time.

• The system issues a warning diagnostic message for
all text-embedded libraries encountered during
prelinking. If the warning is ignored, the loader
attempts to satisfy text-embedded library references at
load time.

11-28 NOSNE Commands and Functions Revision G

Examples

CREATE_MENU_CLASS

• During prelinking, an output file is generated that
contains diagnostics and information on how the
program was prelinked. This link map's default file
name is $LOCAL.LINKMAP.

• Do not prelink COBOL programs that use CALL and
CANCEL into a single module because CALL will try
to overlay a single component module that is no
longer available.

• Once you have prelinked modules, they can no longer
he debugged using the interactive debugger. The debug
information written to the file specified by the
DEBUG_TABLE parameter is not the same as the
debug tables used by the interactive debugger.

• For more information, see the NOSNE Object Code
Management manual.

The ·following sequence creates a prelinked module named
PRELINKED_MODULE from component BOUND_
PRODUCT with ring brackets of (11,11,11). The module is
then put in object library PRELINKED_PRODUCT and
executed.

/create_object_library
COL/create_linked_module name=prelinked_module ..
COL .. /component=bound_product ..
COL .. /ring_brackets=(11,11,11)
COL/generate_library prelinked_product
COL/Quit
/execute_task ..
.. /starting_procedure=product_entry_point
.. /library=prelinked_product

CREATE_MENU_CLASS
CREAM Subcommand

Purpose

Revision G

Creates a class for an application menu. A class is
defined as a name for a submenu. This subcommand
allows you to identify a grouping of menu items. Up to 16
menu classes can be defined for a menu.

CREATE_OBJECT_LIBRARY 11-29

CREATE_MENU_ITEM

Format CREATE _MENU_ CLASS or
CREMC

NAME=string
STATUS =status variable

Parameters NAME or N

Remarks

Specifies the identification for the menu class being
defined. Menu class names . must be unique within a
menu. The NAME parameter is a string containing 1
through 31 characters. This parameter is required.

For more information, see the NOSNE Object Code
Mana~ement manual.

CREATE_MENU _ITEM
CREAM Subcommand

Purpose

Format

Creates an item for an application menu. A menu
represents a particular action to be performed by the
application program, or a particular option for such an
action. Up to 20 menu items can be defined for each
menu class.

CREATE_MENU_ITEM or
CREMI

KEY=keyword
SHIFT= boolean
CLASS=string
SHORT_LABEL=string
ALTERNATE_SHORT _LABEL= string
LONG _LABEL= string
ALTERNATE _LONG _LABEL =string
PAIR_ WITH_PREVIOUS=boolean
STATUS =status variable

Parameters KEY or K

Specifies the key on a terminal keyboard that is
associated with the menu item. The name of the key and
the associated SHIFT parameter must be unique within
the menu. Selectable keys are fl, f2, f3, f4, f5, f6, f7, f8,
f9, fl.O, fl.I, f12, fl.3, f14, f15, fl.6, next, help, stop, back,
up, down, forward, backward, edit, data, insert_line,
delete_line, home, clear, clear_eol_menu_item, delete_
char _menu_item, insert_char _menu_item, and undo.

11-30 NOS/VE Commands and Functions Revision G

Revision G

CREATE_MENU_ITEM

Omission of the KEY parameter causes no assignment of
the menu item to a key. The menu item is automatically
assigned to a key, however, when the menu is used.

SHIFT
Indicates whether the menu item is associated with a
shifted key (YES) or an unshifted key (NO).

Omission of the SHIFT parameter assumes an unshifted
key. If the KEY parameter is omitted, the SHIFT
parameter is ignored.

CLASS or C
Specifies the menu class for this menu item. The CLASS
parameter is a string containing 1 through 31 characters.

Omission of the CLASS parameter causes the most
recently created menu class to he used. If no menu
classes have been defined, an error results.

SHORT_LABEL or SL

Provides a short label to represent this menu item for the
application user. The SHORT_LABEL parameter is a
string containing 1 through 6 characters. this parameter
is required.

ALTERNATE_SHORT_LABELorASL
Provides a short label when the meaning of the menu
item is toggled. The ALTERNATE_SHORT_LABEL
parameter is a string containing 1 through 6 characters.

Omission of the ALTERNATE_SHORT_LABEL parameter
causes the value for the SHORT_LABEL parameter to he
used; the menu item's meaning does not toggle.

LONG _LABEL or LL
Provides a long label to represent this menu item for the
application user. The LONG_LABEL parameter is a
string containing 1 through 31 characters.

Omission of the LONG_LABEL parameter causes the
SHORT_LABEL parameter to be used.

ALTERNATE_LONG_LABELorALL
Provides a long label when the meaning of the menu item
is toggled. The ALTERNATE_LONG_LABEL parameter
is a string containing 1 through 31 characters.

CREATE_ OBJECT_LIBRARY 11-31

CREATE_MESSAGE_MODULE

Remarks

Omission of the ALTERNATE_LONG_LABEL parameter
causes the value for the LONG_LABEL parameter to he
used; the menu item's meaning does not toggle.

PAIR_ WITH_PREVIOUS or PWP

Indicates (YES) that this menu item is to he paired with
the most recently created menu item during automatic
assignment of menu items to keys.

Omission causes NO to he assumed; that is, there is no
assignment preference in pairing this menu item with
other menu items.

For more information, see the NOSNE Object Code
Management manual.

CREATE _MESSAGE _MODULE
CREOL Subcommand

Purpose Initiates the construction of a message module. It also
initiates the CREATE_MESSAGE_MODULE utility.

Format CREATE_MESSAGE_MODULE or
CREMM

NAME=any
MANUAL=any
NATURAL_LANGUAGE =keyword
MERGE_ OPTION= keyword
STATUS= status variable

Parameters NAME or N

Specifies the name of the message module being created.
This parameter is required.

For status messages, any name can he specified.

For help and prompt messages, the name references the
procedure or command for which the message module is
being created. It must he in the form:

name$language

name is the seed name of the message module specified
on either the parameter descriptor table (PDT) or the
procedure header. language is the natural language used
to compose the messages in in this module (it should he
the same as that specified by the NATURAL_
LANGUAGE parameter).

11-32 NOS/VE Commands and Functions Revision G

Revision G

CREATE_MESSAGE_MODULE

You use a string value for a message module whose name
is not an SCL name.

MANUAL or M

Reserved for future use.

NATURAL_LANGUAGE or NL

Specifies the natural language used to compose the
messages for the message module. Options are:

DANISH
DUTCH
ENGLISH
FINNISH
FLEMISH
FRENCH
GERMAN
ITALIAN
NORWEGIAN
PORTUGUESE
SPANISH
SWEDISH
US_ ENGLISH

Omission causes US_ENGLISH to be used.

MERGE_OPTION or MO

Specifies whether the message module should be added,
replaced, or combined with the new object library. Options
are:

ADD (A)

Message module is added to the new library.

REPLACE (R)

Message module replaces an existing module on the
library.

COMBINE (C)

Message module is placed in the new library whether
a module with the same name is present or not. If one
is present, it is replaced with the new module.

Omission of the MERGE_OPTION parameter causes
COMBINE to be used.

CREATE_OBJECT_LIBRARY 11-33

CREATE_MODULE

Remarks •

Examples

CYBIL programmers can use GENERATE_
MESSAGE_ TEMPLATE to facilitate creating message
modules for status messages, described in the CYBIL
System Interface manual. -

• For more information, see the NOS/VE Object Code
Management manual.

The following example creates a message module
containing the status message: + P is· not a command.

/create_object_library
COL/create_message_module name=a_message_module
COL .. /manual=my_manual
CMM/create_status_message name=cle$~nknown ..
CMM .. /_conmand code=790 severity=error
? +p is not a conmand.
? ••

CMM/end_message_module
COL/

CREATE _MODULE
CREOL Subcommand

Purpose

Format

Creates a new load module from existing modules and
adds it to the module list.

CREATE_MODULE or
CREM.

NAME=any
COMPONENT=list of any
GATE= list of any
RETAIN=list of any
STARTING _PROCEDURE =any
PRESET_ VALUE=keyword .
INCLUDE_BINARY_SECTION_MAPS=boolean
OUTPUT= file
APPLICATION _IDENTIFIER =name
STATUS= status variable

11-34 NOSNE Commands and Functions Revision G

CRE,ATE_MODULE

Parameters NAME or N

Revision G

Name of the new module.

You use a string value for a module whose name is not
an SCL name. Some examples of. s.uch. module names are:
a COBOL module, where a hyphen character (-) may be
part of the name; and· a· C function, ·where lowercase is
significant · ···~ · ·' ·

· This parameter is required.·

COMPONE~T or COMJ>ONENTS or -C

Component modules of. the new module. Y, OU can specify a
list 'of files which 'may b~; object libraries or object files.
Each file name can be Jollpy.re,d . by . a list . of m~dules to be
added from that file. If no mOdule names a·r·e given, all of
the modules are used~ 'You rise a string value' for a
module whose name is not an SCL naxµe.

NOTE -

A component module cannot be a command procedure
module or a program description . module.

The component module.s are combined within the new
module in the order you list them on the COMPONENT
parameter.

This parameter is required. At least one file must be
specified.

GATE or GATES or G

List of additional entry points to be given the gate
attribute in the new module.

You use a string value for an entry point whose name is
not an SCL name.

If GATE is omitted, the gated entry points in the new
module are the entry points gated in the component
modules.

RETAIN or R

List of additional entry points given the retain attribute.

You use a string value for an entry point whose name is
not an SCL name.

CREATE_ OBJECT_LIBRARY 11-35

CREATE~MODULE

If RETAIN is omitted, the new module retains gated entry
points, entry points assigned the retain attribute in the
component modules, and entry points not referenced by
any .other component module. ·

STARTING_PROCEDURE or sp·

Starting procedure for the new module.

You use a string value for an entry point whose name is
not an SCL name.

If STARTING..:PROCEDURE is omitted, the starting
procedure . is tpe last transfer symbol in the last module
specified in. the COMPONENr parameter value list.

PRESET_ VALUE or PV

Specifies text record reduction.

ZERO (Z)

Reduces the number of individual text records in an
object module. Reducing the number of records reduces
the module loading time. ·

If PRESET_ VALUE is omitted, the number of text records
is not reduced. · · ·

INCLUDE_BINARY_SECTION_MAPS or IBSM

Indicates whether the binary section map is included in
the information element for the bound module.

If INCLUDE_BINARY_SECTION_MAPS is omitted,
binary section maps are not included.

OUTPUT or 0

File to which the section map for the new module is
written. This file can be positioned.

If OUTPUT is omitted, no section map is written.

APPLICATION _IDENTIFIER or AI

Name of the application identifier stored in the module
header and included on the application accounting
statistics when the software is executed. Only a user with
the SYSTEM_ADMINISTRATION or APPLICATION_
ADMINISTRATION capability can specify an application
identifier.

11-36 NOS/VE Commands and Functions Revision G

Remarks

Revision G

CREATE_MODULE

If an application identifier is placed on a load module, the
module is assumed to be a unit-measured application.

If APPLICATION _IDENTIFIER is omitted, no application
identifier is assigned to the module.

• The new module is not generated until you enter a
GENERATE_LIBRARY subcommand. Therefore, the
section map for the module is not written on the file
specified on the OUTPUT parameter until the module
is generated.

• The existing modules to be combined are referred to
as the component modules of the new module. The
module type of the new module is a bound module
because it is created by the combination of other
modules.

• If a component module contains an external reference
to another component module, CREOL links the
modules.

o Although the command adds the new module to the
module list, and stores information from the
component module headers in the bound module
header, it does not add the component modules to the
module list. You can display component module
information with the subcommand DISPLAY_NEW_
LIBRARY or the SCL command DISPLAY_OBJECT_
LIBRARY.

• The following entry points are kept in the bound
module.

- The starting procedure entry point for the bound
module.

- Entry points with the gate attribute. (The gate
attribute indicates that a procedure executing in a
ring within the call bracket of the module can call
the entry point.)

- Entry points with the retain attribute. (The retain
attribute indicates the entry point is to be kept in
a new module created by combining the module
with other modules.)

CREATE_ OBJECT_LIBRARY 11-37

CREATE_MODULE

Examples

Entry points not referenced by any other
component module.

• You can assign the gate and retain attributes with the
CREOL subcommands CREATE_MODULE or
CHANGE_MODULE_ATTRIBUTES. You can also
assign the gate attribute within the CYBIL source
code (the #GATE attribute on the declaration).

• Do not bind COBOL programs that use CALL and
CANCEL into a single module, because CALL will try
to overlay a single module that is no longer available.

• For more information, see the NOSNE Object Code
Management manual.

The following subcommand sequence creates a module,
displays the module information, then generates a new
object library. The new module is named NEW_MODULE
and combines modules EXAMPLE and NAND on file
OBJi. When the new library is generated, it writes the
section map on file $OUTPUT.

COL/create_mOdu le name=new_modu le component= ..
COL .. /((objl ,example,nand)) ,output=$output
COL/display_new_ library module=new_module ..
COL .. /display_options=(header,component)

NEW_MODULE - load module - 18:05:32 03/28/86
kind: MI_VIRTUAL_STATE generator: OBJECT_LIBRARY_GENERATOR
generator name version: OBJECT LIBRARY GENERATOR Vl. 1
components ----------

component: EXAMPLE
created: 18:05:32 1986-03-28
generator: FORTRAN
generator name version: FTN
commentary: VS FORTRAN - level 86063

component: NANO
created: 18:05:32 1986-03-28
generator: FORTRAN
generator name version: FTN
commentary: VS FORTRAN - level 86063

COL/generate_ library l ibrary=my_new_ library
Sect ion map for module NEW_MODULE created: 18: 05:32 03/28/86
kind: CODE length: 6E

offset: 0 length: 54
offset: 58 length: 16

kind: BINDING length: 50

kind: V!JRKING STORAGE length: 180

offset: o
offset: OFO

length: DEF
length: 90

module: EXAMPLE
module: NANO

module: EXAMPLE
module: NANO

sect ion: EXAMPLE
section: NANO

11-38 NOSNE Commands and Functions Revision G

CREATE_PARAMETER_ASSIST_MESSAGE

k:ind: WORKING STORAGE length: 88

offset: o
offset: 78

length: 78
length: 10

module: EXAMPLE
module: NANO

CREATE _PARAMETER _ASSIST _MESSAGE
CREMM Subcommand

Purpose

Format

Creates a help message to be displayed when a user
enters an incorrect value for the parameter named by this
command.

CREATE _PARAMETER_ASSIST _MESSAGE or
CREPAM

NAME=name
COLLECT_TEMPLATE_UNTIL=string
STATUS= status variable

Parameters NAME or N

Remarks

Examples

Revision G

Name of the command parameter for which the assist
message is defined. If the command parameter has aliases,
you must specify the first name listed in the PDT or
PROC header. This parameter is required.

COLLECT_TEMPLATE_UNTIL or CTU

Specifies the termination string used in collection of the
template of the parameter assist message. If the
COLLECT_ TEMPLATE_ UNTIL parameter is omitted, the
string '**' is assumed.

For more information, see the NOS/VE Object Code
Management manual.

The following creates a parameter assist message.

CMM/create_parameter_assist_message name=name
? The NAME parameter must specify the first name
? listed in the cOITITland parameter
? descriptor table.
? ••

CMM/

CREATE_ OBJECT_LIBRARY 11-39

CREATE_PARAMETER_HELP _MESSAGE

CREATE_PARAMETER_HELP_MESSAGE
CREMM Subcommand

Purpose

Format

Creates a help message for a parameter. The help
message is displayed when a user requests help for the
parameter named by this command.

CREATE_PARAMETER_HELP _MESSAGE or
CREPHM

NAME=name
COLLECT_ TEMPLATE_ UNTIL= string
STATUS= status variable

Parameters NAME or N

Remarks

Examples

Name of the command parameter for which the help
message is defined. If the command parameter has aliases,
you must specify the first name listed in the PDT or
PROC header. This parameter is required.

COLLECT_TEMPLATE_UNTIL or CTU

Specifies the termination string used in collection of the
template of the parameter help message. If the
COLLECT_ TEMPLATE_ UNTIL parameter is omitted, the
string '**' is assumed.

For more information, see the NOSNE Object Code
Management manual.

The following creates a parameter help message.

CMM/create_parameter_help_message name=name
? The NAME parameter specifies the comnand
? parameter for wh1ch you are def1n1ng
? a help message.
? ••

CMM/

11-40 NOS/VE Commands and Functions Revision G

CREATE_PARAMETER_PROMPT_MESSAGE

CREATE_PARAMETER_PROMPT_MESSAGE
CREMM Subcommand

Purpose

Format

Creates the prompt message that elicits a value for the
command parameter named by this command.

CREATE_PARAMETER_PROMPT_MESSAGE or
CREPPM

NAME=name
COLLECT_ TEMPLATE_ UNTIL =string
STATUS= status variable

Parameters NAME or N

Remarks

Revision G

Name of the command parameter for which the prompt
message is defined. If the command parameter has aliases,
you must specify the first name listed in the PDT or
PROC header. This parameter is required.

COLLECT_TEMPLATE_UNTIL or CTU

Specifies the termination string used in collection of the
template of the parameter prompt message. If the
COLLECT_ TEMPLATE_ UNTIL parameter is omitted, the
string '**' is assumed.

NOSNE allows you to name time zones, months, and days
in any natural language. The conventions for defining a
message module containing these identifiers are as
follows:

• To specify an identifier (name) for a time zone, use
the following rules:

The seed name for the message module is TIME_
ZONES. Thus, the name of the module specified in the
CREMM command for the US_ENGLISH language is
TIME_ZONES$US_ENGLISH.

The parameter prompt message is used to define the
identifier for a time zone.Use as the NAME parameter
a name with the following format:

st$hours_digits$minutes_digits or
dst$hours_digits$minutes_digits

where st or dst is STANDARD_ TIME or DAYLIGHT_
SAVING_TIME, hours_digits represents the hours
from Coordinated Universal Time (formerly known as
Greenwich Mean Time), and minutes_digits represents

CREATE_OBJECT_LIBRARY 11-41

CREATE_PARAMETER_PROMPT_MESSAGE

the minutes offset of the time zone. If the time zone's
hours from Coordinated Universal Time is negative, an
underscore (_) must precede the hours_digits value. If
the minutes offset of the time zone is negative, an
underscore must precede the minutes_digits value.
The minutes_digits value is included in the name only
if the time zone's minutes offset is not zero.

• Use as the message template text the following
format:

full_ identifier, abbreviated_ identifier

If the abbreviated identifier is omitted, it is formed
from the first characters of each word of the full
identifier.

• To specify an identifier for months and days in
natural languages other than US_ENGLISH or
ENGLISH, use the following rules. The languages
currently supported on NOSNE are:

DANISH
DUTCH
ENGLISH
FINNISH
FLEMISH
FRENCH
GERMAN

ITALIAN
NORWEGIAN
PORTUGESE
SPANISH
SWEDISH
US_ ENGLISH

The mechanism for adding such support for other
languages is the message module.

1. The seed name for the message module is
MONTHS_AND_DAYS. Thus, the name of the
module specified in the CREMM command for the
French language is MONTHS_AND_
DAYS$FRENCH.

2. The module must contain specifications for all
months of the year and days of the week.

3. The parameter prompt message defines the name
for each month and day. Use as the NAME
parameter the name of the month or day in
English. As the message template, use text in the
following format:

11-42 NOS/VE Commands and Functions Revision G

Examples

Revision G

CREATE_PARAMETER_PROMPT_MESSAGE

full_name, abbreviated_name

If the abbreviated name is omitted, the first three
characters of the full name are used.

4. Once a MONTHS_AND_DAYS module for a
particular language has been referenced in a job,
modifying the module on the object library or
adding a different object library with a MONTHS_
AND_ DAYS module for the same language to your
command list will have no effect on the current
job.

• For more information, see the NOSNE Object Co.de
Management manual.

• The following creates a parameter prompt message.

CMM/create_parameter_prompt_message name=name
? Enter the f1rst name 1n the PDT or PROC
? header for the conrnand parameter for
? which the prompt message is being defined.
? ••
CMM/

• The following creates a parameter prompt for time
zones in US_ENGLISH.

/create_object_library
COL/create_message_module
COL .. /name=time_zones$us_english
CMM/create_parameter_prompt_message
CMM .. /name=standard_time$0
? Coordinated Universal Time
? ••

CMM/create_parameter_prompt_message
CMM .. /name=standard_time$_6
? Central Standard Time
? ••

CMM/create_parameter_prompt_message
CMM .. /name=dayl~ght_saving_time$_6
? Central Daylight Saving Time, CDT
? ••

CMM/end_message_module
COL/generate_library library=my_times
COL/Quit
I

CREATE_OBJECT_LIBRARY 11-43

CREATE_PROGRAM_DESCRIPTION

• The following extracts the released French month and
day names.

/create_object_library
COL/add_module $system.osf$corrmand_library ..
COL .. /module=months_and_days$french
COL/generate_library $1oca1.months_days$..
COL .. /french format=message_module
COL/Quit

The example DAYS_MONTHS_AND_ TIME_ZONES in
the online NOSNE Examples manual demonstrates the
definition of message modules for time zone, month
names, and day names.

CREATE _PROGRAM _DESCRIPTION
CREOL Subcommand

Purpose

Format

Defines a program description module and adds it to the
module list.

CREATE_PROGRAM_DESCRIPTION or
CREPD

NAME= list of any
FILE= list of any
LIBRAR, Y =list of any or keyword
MODULE=list of any
STAR.TING _PROCEDURE =any
LOAD_MAP=any
LOAD_MAP_OPTION=list of keyword
TERMINATION _ERROR_LEVEL =keyword
PRESET_ VALUE=keyword
STACK_SIZE =integer
ABORT_FILE =any
DEBUG_INPUT=any
DEBUG_OUTPUT=any
DEBUG _MODE= boolean
AVAILABILITY= keyword
SCOPE= keyword .
LOG_ OPTION= keyword
MERGE_ OPTION= keyword
APPLICATION _IDENTIFIER =name
ARITHMETIC_ OVERFLOW= boolean
ARITHMETIC_LOSS _OF _SIGNIFICANCE= boolean
DIVIDE _FAULT= boolean

11-44 NOSNE Commands and Functions Revision G

CREATE_PROGRAM_DESCRIPTION

EXPONENT_ OVERFLOW= boolean
EXPONENT_ UNDERFLOW= boolean
FP _INDEFINITE= boolean
FP _LOSS_ OF_ SIGNIFICANCE= boolean
INVALID _EDP _DATA= boolean
STATUS =status variable

Parameters NAME or NAMES or N

Revision G

List of program names. The first name is the module
name. Any subsequent names are aliases. A command
reference can specify the module by its module name or
by an alias. This parameter is required.

FILE or FILES or F

List of object files or object library files to be
unconditionally loaded when the program is executed. A
file value is evaluated when the library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

LIBRARY or LIBRARIES or L

List of library files added to the program library list
when the program is executed. A file value is evaluated
when the object library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

The keyword OSF$TASK_SERVICES_LIBRARY specifies
the system table, and keyword OSF$CURRENT_LIBRARY
represents the library containing the program description.

MODULE or MODULES or M

List of modules loaded from the program library list when
the program is executed.

You use a string value for a module whose name is not
an SCL name.

If MODULE is omitted, no additional modules are loaded
when the program is executed.

CREATE_OBJECT_LIBRARY 11-45

CREATE_PROGRAM_DESCRIPTION

STARTING_PROCEDUREor SP

Name of the entry point where execution begins.

You use a string value for an entry point whose name is
not an SCL name.

If STARTING_PROCEDURE is omitted, the last transfer
symbol loaded is used.

LOAD_MAP or LM

File on which the load map is written. A file value is
evaluated when the library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

This file can be positioned.

LOAD_MAP_OPTION or LOAD_MAP_OPTIONS or
LMO

Set of one or more keywords indicating the information
included in the load map. Options are:

NONE

No load map is written.

SEGMENT (S)

Segment map.

BLOCK (B)

Block map.

ENTRY_POINT (EP)

Entry point map.

CROSS_REFERENCE (CR)

Entry point cross-reference.

TERMINATION _ERROR_LEVEL or TEL

Error level that terminates program loading. Options are:

WARNING (W)

Warning, error, or fatal error.

11-46 NOSNE Commands and Functions Revision G

Revision G

CREATE_PROGRAM_DESCRIPTION

ERROR (E)

Error or fatal error only.

FATAL (F)

Fatal error only.

PRESET_ VALUE or PV

Value stored in all uninitialized words of program space.
Options are:

ZERO (Z)

All zeros.

FLOATING_POINT_INDEFINITE (FPI)

Floating-point indefinite value.

INFINITY (I)

Floating-point infinite value.

ALTERNATE_ONES (AO)

Alternating 0 and 1 bits. The leftmost (highest order)
bit is 1.

STACK_SIZE or SS

Maximum number of bytes in the run-time stack. The
program uses the run-time stack for procedure call
linkages and local variables.

ABORT_FILE or AF

File containing Debug commands to be processed if the
program aborts. The commands are used only if the
program is not executed in Debug mode. A file value is
evaluated when the object library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used. This file can be
positioned.

CREATE_OBJECT_LIBRARY 11-47

CREATE_PROGRAM_DESCRIPTION

DEBUG_INPUT or DI

File containing Debug commands. The commands are read
only if the program is executed under control of Debug
(refer to DEBUG_MODE parameter). This file can be
positioned. A file value is evaluated when the object
library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

DEBUG_OUTPUTorDO

File on which Debug output is written. Output is written
only if the program is executed in Debug mode. This file
can be positioned. A file value is evaluated when the
object library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

DEBUG_MODE or DM

Indicates whether the program is to be run under the
control of Debug. (For information on using Debug, refer
to the program's specific source language manual). Options
are:

ON

Program executed under control of the Debug program.

OFF

Program executed without the Debug program.

AVAILABILITY or A

Specifies whether the program description is made known
to users as a command or not. Options are:

ADVERTISED (A)

The program description appears in . the output
produced by the DISPLAY_COMMAND_LIST_ENTRY
command (and in other similar situations).

11-48 NOS/VE Commands and Functions Revision G

Revision G

CREATE_PROGRAM_DESCRIPTION

HIDDEN (H)

The program description is suppressed from the output
produced by DISPLAY_COMMAND_LIST_ENTRY
command (and in other similar situations).

Omission causes ADVERTISED to he used.

SCOPE or S

Reserved for future use.

LOG_OPTION or LO

Reserved for future use.

MERGE_OPTION or MO

Indicates where the program description module is
inserted in the module list. Options are:

ADD (A)

Added to the end of the module list.

REPLACE (R)

Replaces the module with the same name in the
module list, if one exists.

COMBINE (C)

Added to the end of the module list if a module of the
same name does not exist; replaces the module if it
does exist.

If MERGE_ OPTION is omitted, COMBINE is used.

APPUCATION_IDENTIFIBRorAI

Name of the application identifier stored in the module
header and included on the application accounting
statistics when the software is executed. Only a user with
the SYSTEM_ADMINISTRATION or APPLICATION_
ADMINISTRATION capability can specify an application
identifier.

If APPLICATION _IDENTIFIER is omitted, no application
is identified with the program description.

ARITHMETIC_OVERFLOW or AO

This parameter specifies whether or not the hardware
condition ARITHMETIC_OVERFLOW causes an interrupt.
Valid specifications are:

CREATE_ OBJECT_LIBRARY 11-49

CREATE_PROGRAM_DESCRIPTION

ON

ARITHMETIC_OVERFLOW is enabled. The condition
causes an interrupt.

OFF

ARITHMETIC_OVERFLOW is disabled. The condition
does not cause an interrupt.

ARITHMETIC_LOSS_OF_SIGNIFICANCE or ALOS

This parameter specifies whether or not the hardware
condition ARITHMETIC_LOSS_ OF _SIGNIFICANCE
causes an interrupt. Valid specifications are:

ON

ARITHMETIC_LOSS_OF_SIGNIFICANCE is enabled.
The condition causes an interrupt.

OFF

ARITHMETIC_LOSS_OF_SIGNIFICANCE is disabled.
The condition does not cause an interrupt.

DIVIDE_FAULT or DF

This parameter specifies whether or not the hardware
condition DIVIDE_FAULT causes an interrupt. Valid
specifications are:

ON

DIVIDE_FAULT is enabled. The condition causes an
interrupt.

OFF

DIVIDE_FAULT is disabled. The condition does not
cause an interrupt.

EXPONENT_OVERFLOW or EO

This parameter specifies whether or not the hardware
condition EXPONENT_ OVERFLOW causes an interrupt.
Valid specifications are:

ON

EXPONENT_ OVERFLOW is enabled. The condition
causes an interrupt.

11-50 NOS/VE Commands and Functions Revision G

Revision G

CREATE_PROGRAM_DESCRIPTION

OFF

EXPONENT_ OVERFLOW is disabled. The condition
does not cause an interrupt.

EXPONENT_UNDERFLOW or EU

This parameter specifies whether or not the hardware
condition EXPONENT_ UNDERFLOW causes an interrupt.
Valid specifications are:

ON

EXPONENT_ UNDERFLOW is enabled. The condition
causes an interrupt.

OFF

· EXPONENT_ UNDERFLOW is disabled. The condition
does not cause an interrupt.

FP _INDEFINITE or FPI or FI

This parameter specifies whether or not the hardware
condition FP _INDEFINITE causes an interrupt. Valid
specifications are:

ON

FP _INDEFINITE is enabled. The condition causes an
interrupt.

OFF

FP _INDEFINITE is disabled. The condition does not
cause an interrupt.

FP_LOSS_OF_SIGNIFICANCEorFPLOSorFLOS

This parameter specifies whether or not the hardware
condition FP _LOSS_ OF _SIGNIFICANCE causes an
interrupt. Valid specificatio~s are:

ON

FP _LOSS_OF_SIGNIFICANCE is enabled. The
condition causes an interrupt.

OFF

FP_LOSS_OF_SIGNIFICANCE is disabled. The
condition does not cause an interrupt.

CREATE_ OBJECT_LIBRARY 11-51

CREATE_PROGRAM_DESCRIPTION

Remarks

Examples

INVALID_BDP_DATA or IBDPD or IBD

This parameter specifies whether or not the hardware
condition INVALID_BDP_DATA causes an interrupt.
Valid specifications are:

ON

INVALID_BDP _DATA is enabled. The condition causes
an interrupt.

OFF

INVALID_BDP _DATA is disabled. The condition does
not cause an interrupt.

• You can execute the program described by the
program description module with a command reference
that specifies the module.

• Except where otherwise noted, omitting a parameter
from the CREATE_PROGRAM_DESCRIPTION
subcommand omits a corresponding attribute from the
program description. This causes the corresponding job
default program attribute value to he used when the
program is executed. You can display the job default
attributes by entering the DISPLAY_PROGRAM_
ATTRIBUTES command.

o For more information, see the NOSNE Object Code
Management manual.

• The following subcommand creates a program
description for a FORTRAN program.

COL/create_program_description ..
COL .. /name=fortran_program file=$1oca1. lgo
COL .. /library='$1oca1 .flf$1ibrary'
COL/

A name call command that executes module
FORTRAN _PROGRAM loads all modules in file
$LOCAL.LGO and adds the object library
$LOCAL.FLF$LIBRARY to the program library list.

The value $LOCAL.FLF$LIBRARY is specified as a
string instead of a file reference because this results
in the string $LOCAL.FLF$LIBRARY being evaluated

11-52 NOSNE Commands and Functions Revision G

Revision G

CREATE_PROGRAM_DESCRIPTION

each time the program description is executed. If
$LOCAL.FLF$LIBRARY (a file reference value) is
specified, then a value such as

:$SYSTEM.$SYSTEM.FORTRAN.FLF$LIBRARY.35

is stored in the program description when the object
library is generated. Since this references a specific
cycle of this FORTRAN library, the program
description must be updated if a new version (i.e., a
different cycle number) of this FORTRAN library is
made available.

CREATE_OBJECT_LIBRARY 11-53

CREATE_STATUS_MESSAGE

• The following sequence demonstrates using
OSF$CURRENT_LIBRARY in a program description.
The NAME parameter on the program description
defines SHOW_OFF and SHOO as two aliases for the
FORTRAN program P9939. The LIBRARY parameter
specifies that the library on which this program
description resides is to be added to the program
library list when the program is executed.

Thus, if the object library is copied to another file, the
program description does not have to be updated. The
program description always specifies the library on
which it resides.

/collect_text ftn_pgm
ct? program p9939
ct? print *,'In P9939'
ct? end
ct?**
/fortran input=ftn_pgm
/create_object_library
COL/add_module library=lgo
COL/create_program_description name= ..
COL .. /(show_off shoo) starting_procedure=p9939
COL .. /1ibrary=osf$current_11brary
COL/generate_library 11brary=my_11b
COL/Quit
/my_lib.show_off
In P9939
/copy_file input=my_lib output=d1ff_11b
/diff _lib.show_off
In P9939
I

CREATE_STATUS_MESSAGE
CREMM Subcommand

Purpose Creates the description of a status message.

11-54 NOSNE Commands and Functions Revision G

Format

CREATE_STATUS_MESSAGE

CREATE_STATUS_MESSAGE or
CRESM

NAME=name
CODE= integer
IDENTIFIER= string
SEVERITY= keyword
COLLECT_TEMPLATE_UNTIL=string
STATUS= status variable

Parameters ~AME or N

Revision G

Specifies the condition identifier. This parameter is
required.

CODE or C

Specifies the status condition code. If the CODE
parameter is less than or equal to 16,777,215, the
IDENTIFIER parameter must be specified and combined
with CODE to form the condition code. If CODE is
greater than 16, 777 ,215, it represents the complete status
condition code. The IDENTIFIER parameter, if specified,
is ignored.

Codes 0 through 9,999 for every possible product identifier
are reserved for Control Data use. Codes 10,000 through
19,999 for every possible product identifier are for
user-developed products. The remainder of each range is
reserved for future use.

The CODE parameter is required.

IDENTIFIER or I

Reserved.

SEVERITY or S

Specifies the severity level of the status condition.
Omission causes ERROR to be assumed. Options are:

NON_STANDARD (N)

Non-standard condition. This flags non-standard
extensions to the language specification.

CREATE_OBJECT_LIBRARY 11-55

CREATE_STATUS_MESSAGE

DEPENDENT (D)

Dependent condition. This flags machine dependent
usage in code. It is intended primarily for use by the
implementation language (CYBIL), but other products
with similar needs may also use it.

INFORMATIVE (I)

Information condition. These messages report
conditions encountered during command processing that
do not cause incorrect or incomplete operation of a
command.

WARNING (W)

Warning condition. These messages report conditions
encountered during command processing that may have
caused incorrect or incomplete operation of a command
or of subsequent commands.

ERROR (E)

Error condition. These messages report that the last
command was not completed correctly. By default, a
batch job is terminated. For an interactive session,
additional input is requested from the user to direct
continued job processing.

FATAL (F)

Fatal condition. These messages report that the last
command or subcommand was not completed correctly.
Subsequent processing is usually provided to discover
additional problems.

CATASTROPHIC (C)

Catastrophic condition. These messages report that the
last command or subcommand was not completed
correctly. No further processing for the requested
function is possible.

COLLECT_TEMPLATE_UNTIL or CTU

Specifies the termination string used in collection of the
template of the status message. If the COLLECT_
TEMPLATE_ UNTIL parameter is omitted, the string '**'
is assumed.

11-56 NOSNE Commands and Functions Revision G

Remarks

Examples

DELETE_ MODULE

For more information, see the NOSNE Object Code
Management manual.

See the NOSNE Object Code Management manual for a
detailed example.

DELETE _MODULE
CREOL Subcommand

Purpose

Format

Deletes one or more modules from the module list.

DELETE_MODULE or
DELETE_MODULES or
DELM

MODULE= list of range of any
STATUS=status variable

Parameters MODULE or MODULES or M

Remarks

Examples

Revision G

Modules deleted. If ALL is specified, all modules in the
module list are deleted. This parameter is required.

For more information, see the NOSNE Object Code
Management manual.

The following session generates a new object library from
a subset of the modules in an existing object library.

/create_object_11brary
COL/add_modules library=old_library
COL/delete_module (sort4,merge5)
COL/generate_library library=new_library
COL/Quit
I

The object library generated on file NEW_LIBRARY
contains all modules from file OLD_LIBRARY except
modules SORT4 and MERGES.

CREATE_OBJECT_LIBRARY 11-57

DISPLAY_NEW_LIBRARY

DISPLAY _NEW _LIBRARY
CREOL Subcommand

Purpose

Format

Displays information about modules in the module list.

DISPLAY_NEW_LIBRARY or
DISNL

MODULE= list of range of any
DISPLAY_ OPTION= list of keyword
OUTPUT =file
ALPHABETICAL_ ORDER= boolean
STATUS= status variable

Parameters MODULE or MODULES or M

List of modules for which information is displayed.

You use a string value for a module whose name is not
an SCL name. Some examples of such module names are:
a COBOL module, where a hyphen character (-) may be
part of a name, and a C function, where lowercase is
significant.

If MODULE is omitted, information for all modules in the
module list is displayed.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

Set of keywords indicating the information displayed in
addition to the module type and name. Options are:

NONE

No information other than the module type and name.

' DATE_ TIME (DT)

Creation date and time.

ENTRY_POINT (EP)

Entry point names.

HEADER (H)

Module header information. This includes the:

• Module type, name, creation date and time, kind,
generator, generator name version, and
commentary.

11-58 NOS/VE Commands and Functions Revision G

Revision G

DISPLAY_NEW_LIBRARY

• Formal parameters, availability, scope, and log
option for SCL command procedures.

• Entire program description, availability, scope, log
option, and application identifier (if one has been
specified) for program descriptions.

• Natural language for online manuals and message
modules.

• The lowest and highest condition codes for message
modules that contain status message information.

LIBRARIES or LIBRARY (L)

Local file names within the object text of the modules
that are added to the program library list when the
module is loaded (i.e., text-embedded libraries).

REFERENCE (R)

External references.

COMPONENT (C)

Module headers of the component modules if the
module is a bound module.

ALL

All of the listed options.

If DISPLAY_ OPTION is omitted, the default set by the
last SET_DISPLAY_OPTIONS subcommand is used. The
initial default is DATE_ TIME.

OUTPUT or 0

Output file. This file can be positioned. If OUTPUT is
omitted, file $OUTPUT is used.

ALPHABETICAL_ORDER. or AO

Indicates the display order for the module information.
Options are:

TRUE

Alphabetical order by module name.

CREATE_OBJECT_LIBRARY 11-59

END_APPLICATION_MENU

Remarks

Examples

FALSE

Order in which modules exist on the library or file.

If ALPHABETICAL_ ORDER is omitted, FALSE is used.

• The DISPLAY_NEW_LIBRARY subcommand displays
the contents of the new library that would be
generated if the subcommand GENERATE_LIBRARY
were entered.

• To change and display the default display options for
subsequent DISPLAY_NEW_LIBRARY subcommands,
enter a SET_DISPLAY_OPTION subcommand.

• For more information, see the NOS/VE Object Code
Management manual.

The following subcommand lists the module header and
entry point information for module EXAMPLE.

COL/display_new_ library example display_opt ions=(n,ep)
EXAMPLE - Object module - 15:40:31 1986-04-09
kind: Ml_VIRTUAL_STATE generator: CYBIL
generator name version: C180 CYBIL/II 1.0 LEVEL 85302
commentary: DA=NONE RC=NONE OPT=LOW

~~:~~-e~~~:~
EXAMPLE

starting procedure: EXAMPLE

END _APPLICATION _MENU
CREAM Subcommand

Purpose Terminates creation of the application and ends the
CREATE_APPLICATION _MENU utility session.

Format END _APPLICATION _MENU or
QUIT or
END AM

Parameters None.

Remarks For more information, see the NOS/VE Object Code
Management manual.

11-60 NOS/VE Commands and Functions Revision G

END_MESSAGE_MODULE

END _MESSAGE _MODULE
CREMM Subcommand

Purpose

Format

Terminates creation of the message module and ends the
CREATE_MESSAGE_MODULE utility session.

END_MESSAGE_MODULE or
QUI or
QUIT or
END MM

CREATE_MODULE =boolean
STATUS= status variable

Parameters CREATE_MODULE or CM

Remarks

Specifies whether the message, module should be created.
If omitted, YES is assumed and the message module is
created.

For more information, see the NOSNE Object Code
Management manual.

GENERATE _LIBRARY
CREOL Subcommand

Purpose Generates a new object library using the information in
the module list. This subcommand can also write an
object file, SCL procedure text file, or CREATE_
MESSAGE_MODULE subcommands.

Format GENERATE_LIBRARY or
GENL

LIBRARY= file
FORMAT= keyword
STATUS= status variable

Revision G CREATE_OBJECT_LIBRARY 11-61

GENERATE_LIBRARY

Parameters LIBRARY or L

Remarks

File on which the modules are written. This parameter is
required.

FORMAT or F

Specifies the format written. Options are:

LIBRARY (L)

Object library. Dictionaries are generated, and each
object module in the module list is converted to the
load module format. A module dictionary is written on
the file.

FILE (F)

Object file. All modules in the module list must be
object or load modules. All load modules are converted
back to object modules. No dictionaries are generated.

SCL_PROC (SP)

SCL procedure text file. All command procedure
modules in the module list are written to the file.
This option allows command procedures to be edited on
libraries.

MESSAGE_MODULE (MM)

Creates a file containing the CREOL subcommands for
building message template modules. When the
MESSAGE_MODULE parameter is specified, all
message modules in the module list are written to the
file. This option allows message module definitions to
be edited on libraries.

If FORMAT is omitted, LIBRARY is used.

• Refer to the CREATE_OBJECT_LIBRARY command
for more specific information on which file attributes
are created using GENERATE_LIBRARY.

• The GENERATE_LIBRARY subcommand always
discards the contents of the module list after it has
used it.

11-62 NOSNE Commands and Functions Revision G

Examples

Revision G

GENERATE_LIBRARY

• The GENERATE_LIBRARY subcommand requires
ACCESS_ MODE= (APPEND SHORTEN) to write the
file. If this access cannot be obtained, the file is
written to a uniquely named file, -and the subcommand
reports the file name.

This should be considered when manipulating an object
library that is an entry in the command list. The
object library remains open while it is in the command
list, and the ACCESS_MODE needed by the
GENERATE_LIBRARY subcommand cannot be
obtained. The examples that follow include one on
updating an object library that is in a command list.

• You can reference the library file written using
subsequent subcommands within the CREOL session.

• For more information, see the NOSNE Object Code
Management manual.

• The following sequence generates an object library that
contains the modules from object files OBJl and OBJ2.

/create_object_library
COL/add_module (obj1,obj2)
COL/generate_ library $user. library_l
COL/Quit

• The following sequence extracts the text in a command
procedure stored in the object library on file
$USER.MY_PROCED. The SCL command COPY_FILE
lists the contents of the text file.

/create_object_library
COL/add_module library=$user.my_proced
COL .. /module=procl
COL/generate_library library=text_file
COL .. /format=scl_proc
COL/copy_file input=text_file
PROC procl

attach_file $system.library
detach_file $system.library2

PROCEND procl
COL/Quit
I

CREATE_OBJECT_LIBRARY 11-63

QUIT

QUIT

e The following sequence demonstrates how to update an
object library that is in a command list. It makes the
object library $USER.MY_PROCED.1 an entry in the
command list, extracts a procedure from the object
library, edits the procedure, puts the edited procedure
on the new object library $USER.MY_PROCED.2,
removes the command list entry for $USER.MY_
PROCED.1, and adds the command list entry for
$USER.MY_PROCED.2.

/create_object_library
COL/add_module library=$user.my_proced.1
COL .. /module=proc1
COL/generate_library 11brary=proc1_source
COL .. /format=scl_proc
COL/edit_file file=proc1_source

"Use EDIT_FILE to make changes.

COL/add_module 11brary=$user.my_proced.1
COL/replace_module 11brary=proc1_source
COL/generate_library library=$user.my_proced.2
COL/Quit
/delete_conmand_list_entry
.. /entry=$user.my_proced.1
/create_conmand_list_entry
.. /entry=$user.my_proced.2

CREOL Subcommand

Purpose Ends a CREATE_OBJECT_LIBRARY utility session.

Format QUIT or
QUI

Parameters None.

Remarks For more information, see the NOSNE Object Code
Management manual.

11-64 NOS/VE Commands and Functions Revision G

REORDER_MODULE

REORDER_MODULE
CREOL Subcommand

Purpose Changes the order of one or more modules in the module
list.

Format REORDER_MODULE or
REORDER_MODULES or
REOM

MODULE=list of range of any
PLACEMENT =keyword
DESTINATION=any
STATUS= status variable

Parameters MODULE or MODULES or M

Revision G

List of modules in the order the modules are to appear in
the module list.

You use a string value for a module whose name is not
an SCL name.

This parameter is required.

PLACEMENT or P

Indicates whether the ordered modules are placed before
or after the module specified on the DESTINATION
parameter. Options are:

BEFORE (B)

Modules placed before the destination module.

AFTER (A)

Modules placed after the destination module.

If PLACEMENT is omitted, AFTER is used.

DESTINATION or D

Module before or after which the ordered modules are
placed.

If DESTINATION is omitted, the location depends on the
PLACEMENT parameter value. If
PLACEMENT= BEFORE is specified, the modules are
placed at the beginning of the module list; if
PLACEMENT= AFTER is specified, the modules are
placed at the end of the module list.

CREATE_ OBJECT_LIBRARY 11-65

REPLACE_ MODULE

Remarks

Examples

• To reorder modules, list the modules on the MODULE
parameter of the subcommand in the order the
modules are to appear in the module list. Then specify
the location where CREOL is to insert the modules, as
reordered, into the module list using the
DESTINATION and PLACEMENT parameters.

• For more information, see the NOSNE Object Code
Management manual.

The following subcommand reorders the modules START,
MIDDLE, and END and places them at the end of the
module list.

COL/reorder _module modules=·(start ,middle, end)

REPLACE _MODULE
CREOL Subcommand

Purpose Replaces one or more modules in the module list.

Format REPLACE_MODULE or
REPLACE_MODULES or
REPM

LIBRARY=list of file
MODULE=list of range of any
STATUS= status variable

Parameters LIBRARY or LIBRARIES or L

Object files, SCL procedure files, or object library files
containing the replacement modules. This parameter is
required.

MODULE or MODULES or M

Replacement modules.

You use a string value for a module whose name is not
an SCL name.

If MODULE is omitted, all modules contained in the files
specified on the library parameter are used.

11-66 NOS/VE Commands and Functions Revision G

Remarks

Examples

SATISFY_EXTERNAL_REFERENCE

• The REPLACE_MODULES subcommand can specify
object files, SCL procedure files, or object library files.
The files are replaced in the order you specify them
on the LIBRARY parameter. If you do not want to use
all modules in the files, specify the modules to be used
on the MODULE parameter.

• If the name of a specified module matches a module
name in the module list, the specified module replaces
the existing module. If no module exists with the same
name, a warning status is returned and the module is
not added to the module list.

• A replacement module is always placed in the module
list at the same location as the module it replaces.

o The REPLACE_MODULES subcommand does not add
modules to the module list. To add modules, enter an
ADD_MODULES subcommand. To add and replace
modules, enter a COMBINE_MODULES subcommand.

o For more information, see the NOSNE Object Code
Management manual.

The following subcommand uses all modules on file
BINARY to replace modules in the current module list.

COL/replace_module library=binary

SATISFY _EXTERNAL_ REFERENCE
CREOL Subcommand

Purpose

Format

Adds modules to the module list that satisfy external
references.

SATISFY_EXTERNAL_REFERENCE or
SATISFY_EXTERNAL_REFERENCES or
SATER

LIBRARY= list of file
STATUS =status variable

Parameters LIBRARY or LIBRARIES or L

Revision G

Object library files that are searched for modules
containing referenced entry points. The libraries are
searched in the order specified on the parameter. This
parameter is required.

CREATE_OBJECT_LIBRARY 11-67

SATISFY_EXTERNAL_REFERENCE

Remarks • You should enter the. SATISFY_EXTERNAL_
REFERENCES subcommand after you have entered
the ADD_MODULE, REPLACE_MODULE,
COMBINE_MODULE, and CREATE_MODULE
subcommands that specify the initial module list so
that a single SATISFY_EXTERNAL_REFERENCES
subcommand is effective for the entire new object
library.

• If none of the procedures in the new object library
request that entry points be loaded dynamically, then
the SATISFY_EXTERNAL_REFERENCES
subcommand ensures that the object library files
specified on the subcommand need not be specified in
the program library list when a module from the new
object library is loaded. The object libraries need not
be specified because all modules required from these
libraries are part of the new object library.

For example, if MODA in the module list references
FTNMODl and FTNMOD2 from file FTNLIB, a
SATISFY_EXTERNAL_REFERENCES subcommand
that specifies FTNLIB adds FTNMODl and FTNMOD2
to the module list. Later, after the new object library
is generated, a subcommand to execute MODA need
not specify FTNLIB in the program library list. The
loader can load modules FTNMODl and FTNMOD2
from the same file as MODA.

• To process a SATISFY_EXTERNAL_REFERENCES
subcommand, the CREOL utility generates an external
reference list and an entry point list for all modules
currently in the module list. It then attempts to match
each external reference to an entry point. If the entry
point to satisfy an external reference is not in the
entry point list, CREOL searches the files specified on
the subcommand for a module containing the entry
point. The files are searched in the order listed on the
subcommand.

If, after searching each specified file, the CREOL
utility does not find the entry point, it continues with
the next external reference in the list. No abnormal
status is returned if an external reference is not
matched.

11-68 NOS/VE Commands and Functions Revision G

Examples

Revision G

SATISFY_EXTERNAL_REFERENCE

If the entry point is found, the module is added to the
end of the module list. When a module is added to the
module list, the entry points and external references
within the module are also added to the entry point
list and external reference list, respectively. Because
the external references of the added modules are added
to the external reference list, the SATISFY_
EXTERNAL_REFERENCES subcommand also
attempts to match the added external references.

The process of matching external references continues
until reaching the end of the external reference list,
when the entry point and external reference lists are
discarded.

• The NOSNE task service library (OSF$TASK_
SERVICES_LIBRARY) should not be used on the
SATISFY_EXTERNAL_REFERENCES subcommand. If
it is, an error status is returned. There is no way to
bind the system entry points into a module such that
external references to program interfaces FSP$0PEN _
FILE, PMP$EXIT, or similar system routines, can be
eliminated from the loading process.

o For more information, see the NOSNE Object Code
Management manual.

The following sequence compiles a FORTRAN source
program and then generates an object library. The object
library contains the modules from file MY_LGO, and the
modules referenced from the FORTRAN run-time and
math libraries on files FLF$LIBRARY and
MLF$LIBRARY.

/fortran input=source binary=my_lgo
/create_object_library
COL/add_module library=my_lgo
COL/satisfy_external_references
COL .. /libraries=(flf$library,mlf$library)
COL/generate_library library=$user.my_library
COL/Quit
I

CREATE_OBJECT_LIBRARY 11-69

SET_DISPLAY_ OPTION

SET _DISPLAY_ OPTION
CREOL Subcommand

Purpose Changes and displays the default display options for
subsequent DISPLAY_NEW_LIBRARY subcommands
within the CREATE_OBJECT_LIBRARY session.

Format SET_DISPLAY_OPTION or
SET_DISPLAY_OPTIONS or
SETDO

DISPLAY_ OPTION= list of keyword
STATUS= status variable

Parameters DISPLAY_OPTION or DISPLAY_OPTIONS or DO.

List of one or more keywords indicating the new default
display options. The keywords indicate the information
displayed in addition to the module type and name.
Options are:

NONE

No information other than the module type and name.

DATE_ TIME (DT)

Creation date and time.

ENTRY_POINT (EP)

Entry point names.

HEADER(H)

Module header information. This includes the
following:

• Module type, name, creation date and time, kind,
generator, generator name version, and
commentary.

• Formal parameters, availability, scope, and log
option for SCL command procedures.

• Entire program description, availability, scope, log
option, and application identifier (if one has been
specified for program descriptions).

• Natural language for online manuals and message
modules.

11-70 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

SET_DISPLAY_OPTION

o The lowest and highest condition codes for message
modules that contain status message information.

LIBRARIES (L)

Local file names within the object text of the modules
that are added to the program library list when the
module is loaded (for example, text-embedded
libraries).

REFERENCE (R)

External references.

COMPONENT (C)

Module headers of the component modules if the
module is a bound module.

ALL

All of the listed options.

If DISPLAY_OPTION is· omitted, the default display
options are displayed without change.

e The initial default display option is DATE_ TIME.

o For more information, see the NOSNE Object Code
Management manual.

The following subcommand changes and displays the
default display option.

COL/set_display_options display_options= ..
COL .. /(date_time,header,entry_point)
-- display option = (DATE_TIME,HEADER,ENTRY_POINT)
COL/

CREATE_ OBJECT_LIBRARY 11-71

Debug 12

ACTIVATE_SCREEN . 12-1
CHANGE_DEFAULT . 12-2
CHANGE_MEMORY . 12-3
CHANGE_PROGRAM_ VALUE 12-5
CHANGE_REGISTER 12-7
$CURRENT_LINE 12-9
$CURRENT_MODULE . 12-9
$CURRENT_PROCEDURE . 12-9
$CURRENT_PVA . 12-10
DELETE_BREAK . 12-10
DISPLAY_BREAK . 12-11
DISPLAY_CALL . 12-12
DISPLAY_DEBUGGING_ENVIRONMENT 12-14
DISPLAY_MEMORY . 12-16
DISPLAY_PROGRAM_ VALUE 12-20
DISPLAY_REGISTER . 12-25
DISPLAY_STACK_FRAME . 12-27
$MEMORY . 12-30
$PROGRAM_ VALUE . 12-30
QUIT. 12-32
$REGISTER . 12-33
RUN 12-33
SET_BREAK . 12-34
SET_SCREEN_OPTIONS 12-41
SET_ STEP _MODE . 12-44

Debug 12

ACTIVATE_SCREEN
DEBUG Subcommand

Purpose Moves you to screen mode DEBUG from line mode
DEBUG.

Format ACTIVATE_SCREEN or
ACTS

SOURCE_FILES=list of file
STATUS= status variable

Parameters SOURCE_FILES or SOURCE_FILE or SF

Remarks

Revision G

Specifies the file containing the source statements of the
program to be debugged in screen mode. If this parameter
is omitted, DEBUG requests the file name.

• To use this command, the FILE_PROCESSOR
attribute of each file must contain the name of the
compiler that compiled the file. This is done with the
CHANGE_FILE_ATTRIBUTE command before you
begin the DEBUG session.

e You can enter ACTIVATE_SCREEN anytime during
an interactive DEBUG session.

• When ACTIVATE_SCREEN is entered, any existing
breaks are deleted and STEP _MODE is turned off.
The DEBUG input and DEBUG output files are
changed to specific files used by DEBUG for screen
mode.

• Once DEBUG is in screen mode, screen mode
functions, certain line mode commands, and SCL
commands are available. The DEACTIVATE_SCREEN
(DEAS) screen mode functions can be used to return to
line mode.

o For more information, see the Debug for NOSNE
Usage manual.

Debug 12-1

CHANGE_DEFAULT

Examples The following example changes the DEBUG session from
line mode to screen mode. The source program to be
debugged in screen mode is $USER.FORT.

DB/activate_screen sf=$user.fort

CHANGE _DEFAULT
DEBUG Subcommand

Purpose

Format

Changes one or more default Debug settings.

CHANGE_DEFAULT or
CHANGE_DEFAULTSor
CHAD

MODULE= module or keyword
PROCEDURE= procedure or keyword
DEBUG_INPUT=file
DEBUG_OUTPUT=file
STATUS =status variable

Parameters MODULE or M

New default name for the MODULE parameter on
subsequent Debug commands. If you specify $CURRENT,
the default module is reset to the module that was
executing when Debug gained control. If this parameter is
omitted, the current default module remains unchanged.

PROCEDURE or P

New default name for the PROCEDURE parameter on
subsequent Debug commands. If you specify $CURRENT,
the default procedure is reset to the procedure that was
executing when Debug gained control. If this parameter is
omitted, the current default procedure remains unchanged.

DEBUG_INPUT or DI

New default file from which Debug commands are read
when Debug next gains control. If this parameter is
omitted, the current DEBUG_INPUT file remains
unchanged. Unless otherwise specified, the initial
DEBUG_INPUT file is $COMMAND.

12-2 NOSNE Commands and Functions Revision G

Remarks

Examples

CHANGE_MEMORY

NOTE

Unless a file position is specified in the file reference, the
DEBUG_INPUT and DEBUG_OUTPUT files are
positioned at the beginning-of-information the first time it
is used. The file is not repositioned the next time it is
used. Commands are read from the file sequentially. If an
end-of-partition or an end-of-file is reached on the input
file, program execution resumes.

DEBUG_OUTPUT or DO

New default file on which Debug output is written. The
change takes effect immediately. Both break report
messages and command output are written to this file. If
this parameter is omitted, the current DEBUG_OUTPUT
file remains unchanged. Unless otherwise specified, the
initial DEBUG_OUTPUT file is $OUTPUT.

For more information, see the Debug for NOSNE Usage
manual.

Read commands from the file DBIN the next time Debug
gains control:

DB/change_default debug_input=dbin

Write output to file $LIST:

DB/change_default debug_output=$1ist

Specify the default module name:

DB/chad module=main

CHANGE_MEMORY
DEBUG Subcommand

Purpose

Format

Changes the contents of memory starting at the specified
address. You can only change values in memory locations
for which you have ~rite permission.

CHANGE_MEMORY or
CHAM

ADDRESS =address
VALUE=any
TYPE= keyword
REPEAT_COUNT=integer or keyword
STATUS =status variable

Revision G Debug 12-3

CHANGE_ MEMORY

Parameters ADDRESS or A

Remarks

Examples

Address of the first byte of memory to he changed.

The form of an address· is rsssoooooooo(l 6) where r is the
ring number, sss is the segment number, and 00000000 is
the offset from the beginning of the segment. You can get
machine addresses from the cross-reference and load maps
for your program. This parameter is required.

VALUE or V

New memory value. An integer value completely replaces
the contents of eight bytes. A string value is interpreted
as a hexadecimal or ASCII string depending on the TYPE
parameter. This parameter is required.

TYPE or T

Type of data specified by the VALUE parameter. If this
parameter is omitted, a string value is assumed to he a
hexadecimal value.

ASCII (A)

ASCII string value.

HEX (H)

Hexadecimal string value.

INTEGER (I)

Integer value.

REPEAT_COUNT or RC

Number of times the value is to he repeated in memory.
If you specify ALL, it repeats the value until the end of
the data segment containing the address. If this
parameter is omitted, a value of 1 is used.

For more information, see the Debug for NOSNE Usage
manual.

Replace four bytes of memory beginning at location
B02200001112(16) with the hexadecimal string '1010aaab':

DB/change_mernory address=b02200001112(16) ..
DB .. /value='1010aaab'

Replace six bytes of memory beginning at location
B02200000055(16) with the ASCII string 'STRING':

12-4 NOS/VE Commands and Functions Revision G

CHANGE_PROGRAM_VALUE

DB/change_memory address=b02200000055(16) ..
DB .. /value='str1ng' type=ascii

Replace eight bytes of memory beginning at location
B02300000223(16) with the integer value 44:

DB/change_memory address=b02300000223(16) value=44

CHANGE_PROGRAM_VALUE
DEBUG Subcommand

Purpose

Format

Changes the value of named program variables.
Replacement values are entered in the same format as
defined in your program, not as they are represented in
memory.

CHANGE_PROGRAM_VALUEor
CHAPV

NAME =variable
VALUE=list of value
MODULE= module
PROCEDURE= procedure
RECURSION _LEVEL= integer
RECURSION _DIRECTION= keyword
STATUS= status variable

Parameters NAME or N

Revision G

Name of the program variable in the source program
whose value is to be changed.

VALUE or V
New value for the variable. This parameter is required.

MODULE or M

Name of the module that contains the variable. If this
parameter is omitted, the default module (the module
executing when Debug gained control or the module
specified by the CHANGE_DEFAULTS command) is used.

PROCEDURE or P

Specifies the name of the procedure that contains the
variable. If this parameter is omitted, the default
procedure (the procedure executing when Debug gained
control or the procedure specified by the CHANGE_
DEFAULTS command) is used.

Debug 12-5

CHANGE_PROGRAM_VALUE

Remarks

Examples

NOTE

The following two parameters, RECURSION_LEVEL and
RECURSION_DIRECTION, are applicable only when
debugging programs written in languages that support
recursion (such as CYBIL and PASCAL). The parameter
values are ignored for all other languages.

RECURSION _LEVEL or RL

Indicates the particular call of a recursive procedure to be
used. If RECURSION _DIRECTION specifies FORWARD,
the integer 1 specifies the first call, 2 .the second call, and
so forth; if RECURSION _DIRECTION is omitted or
specifies BACKWARD, the integer 1 specifies the most
recent call, 2 its predecessor, and so forth;

Recursion applies only to stack variables; it does not
apply to variables stored in either a common block or the
$STATIC section.

The default value is 1.

RECURSION _DIRECTION or RD

Indicates the order in which calls are counted by the
RECURSION_LEVEL parameter. The default value is
BACKWARD.

FORWARD

The integer 1 specifies the first call, 2 the second call,
and so forth.

BACKWARD

The integer 1 specifies the most recent call, 2 its
predecessor, and so forth.

For more information, see the Debug for NOSNE Usage
manual.

The first example refers to the following definition:

COMMON /BLK/ OVAL, RVAL, !VAL, ZVAL
DATA OVAL, RVAL, !VAL, ZVAL /20.0D+O, 3.45E+01, 30,
•(+20.0,20.3)/

Display initial value of variable DVAL:

12-6 NOS/VE Commands and Functions Revision G

DB/display_program_value name=dval
dval = 20.

CHANGE_REGISTER

Change the value of variable DVAL to 30.0:

DB/change_program_value name=dval value=+30.0d+O

Display the new value of DVAL:

DB/dispv dval
dval = 30.

Change the value of vari~ble INDEX:

DB/chapv name=index value=63 module=ff _pp

Change the value of logical variable VAR:

DB/change_program_value var value=true

CHANGE _REGISTER
DEBUG Subcommand

Purpose

Format

Changes the value of the P, A, or X registers that are
associated with the program executing when Debug gained
control.

CHANGE_REGISTER or
CHANGE_REGISTERS or
CHAR

KIND= keyword
NUMBER= list of range of integer or keyword
VALUE=any
TYPE=keyword
STATUS=status variable

Parameters KIND or K

Revision G

Specifies the register to change. By default, it changes the
P register.

p

Changes the P register.

A

Changes the A registers.

x
Changes the X registers.

Debug 12-7

CHANGE_REGISTER

Remarks

NUMBER or N

Indicates the A or X registers to change. ALL specifies
all registers of the specified kind (A or X).

If KIND is specified, but NUMBER is omitted, the AO or
XO register is changed.

If the KIND parameter is omitted, the P register is
changed and this parameter is ignored.

VALUE or V

New value of the register. This parameter is required.

A P or A register value can be an integer from 0 through
OFFFFFFFFFFF hexadecimal or a string containing up to
12 hexadecimal digits (blanks are ignored). The upper 4
bits are ignored when changing the P register because the
ring number in P cannot be changed.

An X register value can be an integer from
-7FFFFFFFFFFFFFFF through 7FFFFFFFFFFFFFFF
hexadecimal or a string containing up to 16 hexadecimal
digits (blanks are ignored) or an ASCII string of up to
eight characters.

The upper bits of the register are set to zero if an integer
is negative or to 1 if an integer is positive when the
value does not fill the register. A string value is
left-justified with remaining bytes unchanged.

TYPE or T

Type of data specified by the VALUE parameter. If this
parameter is omitted, a string value is assumed to be a
hexadecimal value and a numeric value is assumed to be
an integer.

ASCII (A)

ASCII string value.

HEX (H)

Hexadecimal string value.

INTEGER (I)

Integer value.

For more information, see the Debug for NOSNE Usage
manual.

12-8 NOSNE Commands and Functions Revision G

$CURRENT_LINE

Examples Change the current value of the P register to
OA02200004500(16). The upper 4 bits for the ring number
are ignored.

DB/change_register kind=p value=Oa02200004500(16)

Change the current value of the X7 register to
'ABCDEFGH':

DB/char kind=x number=7 value='abcdefgh' type=ascii

$CURRENT _LINE
DEBUG Function

Purpose Returns an integer identifying the current line number in
the program where Debug has control.

Format $CURRENT_LINE or
$CL

Parameters None.

Remarks For more information, see the Debug for NOSNE Usage
manual.

$CURRENT _MODULE
DEBUG Function

Purpose Returns a string identifying the name of the module
where execution stopped.

Format $CURRENT_MODULE or
$CM

Parameters None.

Remarks For more information, see the Debug for NOSNE Usage
manual.

$CURRENT_PROCEDURE
DEBUG Function

Purpose Returns a string identifying the name of the procedure
where execution is stopped.

Format $CURRENT_PROCEDURE or
$CP

Revision G Debug 12-9

$CURRENT_PVA

Parameters None.

Remarks For more information, see the Debug for NOSNE Usage
manual.

$CURRENT _PVA
DEBUG Function

Purpose Returns an integer identifying the process virtual address
(PVA) where execution is stopped.

Format $CURRENT_PVA or
$CPVA

Parameters None.

Remarks For more information, see the Debug for NOSNE Usage
manual.

DELETE_BREAK
DEBUG Subcommand

Purpose

Format

Deletes one or more break definitions.

DELETE_BREAK or
DELETE_BREAKS or
DELB

BREAK= list of name
STATUS= status variable

Parameters BREAK or BREAKS or B

Remarks

Examples

Specifies the break definitions to he deleted. If the
keyword ALL appears in the list of names, all breaks are
deleted. This parameter is required.

For more information, see the Debug for NOSNE Usage
manual.

Delete break definitions Bl, B2, and B3:

08/delete_breaks breaks=(b1,b2,b3)

Delete all break definitions:

08/delete_breaks all

Delete break definition B4:

12-10 NOS/VE Commands and Functions Revision G

DISPLAY_BREAK

DB/delete_break b4

DISPLAY_BREAK
DEBUG Subcommand

Purpose

Format

Displays specified break definitions. The break name,
events, address, and any commands associated with the
break are displayed.

DISPLAY_BREAK or
DISPLAY_BREAKS or
DISS-

BREAKS= list of name
OUTPUT=file
STATUS= status variable

Parameters BREAKS or BREAK or B

Remarks

Examples

Revision G

Break definitions to be displayed. If the keyword ALL
appears in the list of names, all breaks are displayed. If
this parameter is omitted, all breaks are displayed.

OUTPUT or 0

File on which the break definitions are written. The
default file is the current default Debug output file.

For more information, see the Debug for NOSNE Usage
manual.

Display break definitions Bl, B3:

DB/display_breaks breaks=(b1,b3)

Break B1
event(s) = execution
location: M=TEST L=16

Break B3
event(s) = eu
range: M=TEST L=18 to M=TEST L=19 B0=15

Debug 12-11

DISPLAY_ CALL

Display all break definitions:

DB/display_breaks

Break Bl
event(s} = execution
location: M=TEST L=16

Break 62
event(s} = execution
range: M=TEST L=22 to M=test 60=39

Break 63
event(s} = eu
range: M=TEST L=18 to M=TEST L=19 80=15

Break 64
event(s} = execution
location: M=TEST L=25

DISPLAY_CALL
DEBUG Subcommand

Purpose

Format

Displays information about the dynamic call chain.

DISPLAY_CALL or
DISPLAY_CALLS or
DISC

COUNT=integer or keyword
START=integer
DISPLAY_OPTION=list of keyword
OUTPUT=file
STATUS =status variable

Parameters COUNT or C

Number of calls to be displayed. If the keyword ALL is
specified or this parameter is omitted, all calls are
displayed.

START or S

Call in the chain to be displayed first. The integer 1
specifies the most recent call, 2 the predecessor to the
most recent call, and so forth. The default value is 1, the
most recent call.

12-12 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

DISPLAY_ CALL

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

Type of information to be displayed. If this parameter is
omitted, only calls which are in user code are displayed.

USER_CALLS (UC)

Displays only calls which are in user code.

SYSTEM_CALLS (SC)

Displays only calls which are not part of the user
code.

ALL_CALLS (AC)

Displays both user calls and system calls.

VARIABLE_ VALUES (VV)

Displays all variables known to the proced~re.

OUTPUT or 0

File on which the call information is written. If this
parameter is omitted, the information is written to the
current DEBUG_OUTPUT file.

For more information, see the Debug for NOS/VE Usage
manual.

Display all the calls on the call chain beginning with the
second most recent call:

DB/display_calls start=2

-- Called from procedure 101 module 101 at line 16
byte off set 12

-- Called from procedure TEST module TEST at line 54
byte offset 12

Display system code calls on the call chain beginning with
the third most recent call:

DB/display_calls start=3 display_option=system_calls

-- Traceback from module MLM$0UTPUT_FLOATING_NUMBER
byte offset 14C(16)

-- Called from procedure FLP$SEQ_ACC_LST_OUT module
FLM$LIST_DIRECTED_IO byte offset 61E(16)

Debug 12-13

DISPLAY_DEBUGGING_ENVIRONMENT

Display all user code calls on the call chain, as well as
all variables known to the procedure:

OB/display_calls display_options=(user_call,
OB .. /variable_values)

-- Traceback from procedure TEST module TEST at
1 ine 42
DISPLAY OF ALL VARIABLES IN TEST

ARAY = 0(20 OCCURRENCES)
ARG = 0
BASE = 2.
OVAL = 20.
I = 0
IVAL = 30
LOGl = FALSE
LOG2 = FALSE
LOG3 = FALSE
PINO = 70000000000000000(16)
RESLT = 0.
RVAL = 34.5
Xl = 0
XPWR = 4094.
Yl = 0.
ZERO = 0.
ZVAL = (20.,20.3)

DISPLAY _DEBUGGING _ENVIRONMENT
DEBUG Subcommand

Purpose Displays the following:

• Current defaults for module, procedure, DEBUG_
INPUT, DEBUG_OUTPUT

• Total number of breaks you have set and Debug has
set

• STEP _MODE values

• Location in your program where execution has stopped

12-14 NOS/VE Commands and Functions Revision G

DISPLAY_DEBUGGING_ENVIRONMENT

Format DISPLAY_DEBUGGING_ENVIRONMENT or
DISDE

DISPLAY_ OPTION= list of keyword
OUTPUT= file
STATUS= status variable

Parameters DISPLAY_OPTION or DISPLAY_OPTIONS or DO

Type of information to be displayed. If this parameter is
omitted, defaults, breaks, STEP _MODE attributes, and
user addresses are displayed.

DEFAULTS (D)

Current default values for module, procedure,
DEBUG_INPUT, and DEBUG_OUTPUT.

Unless the CHANGE_DEFAULT subcommand has
been specified, the default module and procedure is
where execution has stopped in your task. The text
$CURRENT is output if module or procedure has not
been initialized.

BREAKS (B)

Number of breaks you have set, number of breaks
currently in use by Debug, and the maximum number
of allowed breaks.

STEP _MODE (SM)

Current STEP _MODE attributes.

USER_ADDRESS (UA)

Location where execution has stopped in your program.

ALL

Displays defaults, breaks, STEP _MODE attributes, and
the user address.

OUTPUT or 0

File where the debugging environment display is written.
If this parameter is omitted, the current default Debug
output file is written.

Remarks For more information, see the Debug for NOS/VE Usage
manual.

Revision G Debug 12-15

DISPLAY_MEMORY

Examples Display the number of breaks set, the number of breaks
in use by Debug, the maximum number of allowed breaks,
and the location where execution has stopped:

DB/display_debugging_env1ronment do=(b,ua)

-- The number of breaks set by the user 1s 1.
-- The number of breaks in use by DEBUG is 0.
-- The number of available breaks is 63.

Execution is currently stopped at B 02E 0000013C
which, in higher symbolic terms is M=TEST L=36
80=12

Write defaults, breaks, STEP _MODE attributes, and
location where execution has stopped to file FILE 1 and
returns the status to variable SS:

DB/disde do=all output=filel status=ss

Write defaults, breaks, STEP _MODE attributes, and
location where execution has stopped to the current
default Debug output file:

DB/disde

Default module is $CURRENT.
Default procedure is $CURRENT.
Default debug_input file is OBIN
Default debug_output file is $OUTPUT
The number of breaks set by the user is 5
The number of breaks in use by DEBUG is o.
The number of available breaks is 59.
Step_mode is OFF.
Execution is currently stopped at B 02E 0000013C
which, in higher symbolic terms is M=TEST L=36
80=12

DISPLAY _MEMORY
DEBUG Subcommand

Purpose ·Displays information located at a location to which you
have read access. The location can be specified by section
and module or by address.

12-16 NOS/VE Commands and Functions Revision G

DISPLAY_MEMORY

Format DISPLAY_MEMORY or
DISM

ADDRESS =address
SECTION= name
MODULE= module
BYTE_ OFFSET= integer
BYTE_COUNT=integer
REPEAT_COUNT=integer or keyword
OUTPUT=file
STATUS= status variable

Parameters ADDRESS or A

Revision G

Address of the first byte of memory to be displayed. If the
ADDRESS parameter is omitted, the location must be
specified by the SECTION and MODULE parameters.

The address has the format rsssoooooooo(16) where r is
the ring number, sss is the segment number, and 00000000

is the offset from the beginning of the segment. You can
use the BYTE_OFFSET parameter to modify the starting
address of memory to be displayed. This parameter is
required.

SECTION or SEC

Memory section containing the data to be displayed.

$BLANK

Section that contains unnamed common.

$BINDING

Section that contains the links to external procedures
and the data for the module.

$LITERAL

Section containing the literal data (for example, long
constants) of the module.

$STATIC

Section containing the static (not on the run-time
stack) variables not explicitly allocated to a named
section of the module.

When you use SECTION to specify a location, you must
qualify it with the MODULE parameter. You can use the
BYTE_ OFFSET parameter to modify the starting address
of memory to be displayed.

Debug 12-17

DISPLAY_MEMORY

MODULE or M

Module containing the data to be displayed. The
MODULE parameter cannot be specified unless the
SECTION parameter is also specified. If MODULE and
SECTION are omitted, the location must be specified by
the ADDRESS parameter.

BYTE_OFFSET or BO

Offset to the location specified by the SECTION and
MODULE parameters or the ADDRESS parameter. If
BYTE_ OFFSET is omitted, a zero offset is used.

The address generated by adding BYTE_OFFSET to the
base address must be within the memory block implied ~y
the base address. The block size is the length of the
section when the SECTION parameter is specified, and
the length of the segment containing the machine address
when the ADDRESS parameter is specified.

BYTE_COUNT or BC

Number of bytes in the item to be displayed. The default
value is eight bytes.

REPEAT_COUNT or RC

Number of items of length BYTE_COUNT to be
displayed. If REPEAT_ COUNT is omitted, only one item
is displayed.

The maximum amount of memory that can be displayed is
limited to the block size implied by address (section
length for SECTION and segment length for ADDRESS).
A large integer causes all memory from the specified
address to the end of the memory block to be displayed.

The keyword ALL displays all memory from the specified
address to the end of the memory block.

OUTPUT or 0

File on which the displayed information is written. If
OUTPUT is omitted, the display is written to the current
Debug output file.

12-18 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

DISPLAY_ MEMORY

o This command allows you to debug your program even
when compiler-generated symbol tables are not
available, and to display memory areas that do not
correspond to program identifiers. Each display line
shows the memory contents in hexadecimal and ASCII
formats; the relative byte offset from the initial
address is also shown.

e The compiler-generated attributes list shows the
section name and offset for all variables. To reference
static variables, specify the section name and byte
offset. To reference variables on the stack, specify the
machine address of the stack frame and byte offset.

• To get the address of the stack frame of the procedure
executing when Debug got control, display register Al
(see the DISPLAY_REGISTER command description).
To get the address of other stack frames, display the
save area of the wanted stack frame using the
DISPLAY_STACK_FRAME command and get the
value of register Al from that display.

o You can use the DISPLAY_PROGRAM_ VALUE
command to display program variables when symbol
tables are available.

• For more information, see the Debug for NOSNE
Usage manual.

Display the first three bytes of the literal memory section
for module MODl:

DB/display_memory section=$literal module=mod1 ..
DB .. /byte_count=3

Display the first 32 bytes of the memory section DATAl
for module MOD2 as separate items:

DB/display_memory sec=data1 module=mod2 rc=4

Display the first 200 bytes of memory starting from the
specified address:

DB/dism a=Ob02400000224(16) bo=B rc=25

Debug 12-19

DISPLAY_PROGRAM_ VALUE

DISPLAY_PROGRAM_ VALUE
DEBUG Subcommand

Purpose

Format

Displays the value of a program variable.

DISPLAY_PROGRAM_ VALUE or
DISPV

NAME= list of variable
MODULE= module
f ROCEDURE =procedure
RECURSION _LEVEL= integer
RECURSION _DIRECTION= keyword
TYPE=keyword
VARIANT_SELECTION=list of any
NAME_OPTION=list of keyword
SCOPE=keyword
SECTION= section or keyword
OUTPUT= file
STATUS= status variable

Parameters NAME or N

Name of the program variable in the source program
whose value is to he displayed, or the keyword $ALL to
display all variables in the procedure. This parameter is
required.

The program variable can he one of the following:

• Simple variable or constant name.

• Substring reference.

• Subscripted name.

• Field reference.

• Pointer reference or dereference.

Subscripts can he constants or variables but not
expressions. NAME cannot he a substring.

SCL string variables can be used to name long program
names. To do this, assign a string containing the
identifier to the SCL variable. Then use the SCL variable
preceded by a question mark as the value of the NAME
parameter.

12-20 NOS/VE Commands and Functions Revision G

Revision G

DISPLAY_PROGRAM_ VALUE

MODULE or M

Name of the module that contains the variable. The
default module is the module executing when Debug
gained control or the module specified by the CHANGE_
DEFAULT subcommand.

PROCEDURE or P

Name of the procedure that contains the variable. The
default procedure is the procedure executing when Debug
gained control or the procedure specified by the
CHANGE_DEFAULTS command.

NOTE

The following two parameters, RECURSION _LEVEL and
RECURSION_DIRECTION, are applicable only when
debugging programs written in languages that support
recursion (such as CYBIL and PASCAL). The parameter
values are ignored for all other languages.

RECURSION _LEVEL or RL

Indicates the particular call of a recursive procedure to be
used. If RECURSION _DIRECTION specifies FORWARD,
the integer 1 specifies the first call, 2 the second call, and
so forth; if RECURSION_DIRECTION is omitted or
specifies BACKWARD, the integer 1 specifies the most
recent call, 2 its predecessor, and so forth;

Recursion applies only to stack variables; it does not
apply to variables stored in either a common block or the
$STATIC section.

The default value is 1.

RECURSION _DIRECTION or RD

Indicates the order in which calls are counted by the
RECURSION_LEVEL parameter. The default value is
BACKWARD.

FORWARD

The integer 1 specifies the first call, 2 the second call,
and so forth.

Debug 12-21

DISPLAY_PROGRAM_ VALUE

BACKWARD

The integer 1 specifies the most recent call, 2 its
predecessor, and so forth.

TYPE or T
Data representation used for the display.

HEX (H)

Hexadecimal dump. The display includes the variable
name, its starting address, and the data displayed as
hexadecimal digits and as ASCII characters.

INTEGER (I)

Decimal integer. The data length must be from 1
through 8 bytes. Each element of an array is displayed
as a separate integer.

REAL (R)

Floating-point. The data length must be 8 bytes. Each
element of an array is displayed as a separate
floating-point number.

If TYPE is omitted, the data representation used
corresponds to the data type as defined in the program.

VARIANT_SELECTION or VS
Selector value specifying the tagless variant to be
displayed. The specified value can be an integer, boolean,
name or one-character string, but it cannot be a string
longer than one character. The value specifies the ordinal
of the variant to be displayed.

Debug prompts the user when the VARIANT_ SELECTION
parameter is required, but has not been supplied.

NAME_OPTIONorNAME_OPTIONSorNO
Qualifies the identifier(s) given for the NAME parameter.
Options are:

Omitted ,

There is no default for the NAME_OPTION parameter
when a single identifier is specified for the parameter.
If $ALL is specified for the NAME parameter, the
default for the NAME_OPTION parameter is
VARIABLES.

12-22 NOS/VE Commands and Functions Revision G

Revision G

DISPLAY_PROGRAM_ VALUE

CONSTANTS (C)

The identifier in the source program must be a
constant.

VARIABLES (V)

The identifier in the source program must be a
variable.

PARAMETERS (P)

The identifier in the source program must be a
variable that was passed as a parameter to the default
procedure or the procedure specified by the
PROCEDURE parameter.

ALL

The identifier in the source program can be either a
constant or a variable.

NOTE

NAME_OPTIONS=PARAMETERS cannot be used
with the SECTION parameter.

SCOPE or SCO

Determines the type of search for identifiers specified
by the NAME parameter. Options are:

GLOBAL (G)

The value of the NAME parameter must reference
identifier(s) known outside the defining module.
The Entry Point Table is searched to locate the
identifier(s).

NOTE

GLOBAL cannot be used with the MODULE,
PROCEDURE, RECURSION LEVEL, and
RECURSION_DIRECTION parameters or with the
NAME_OPTION =PARAMETERS.

Debug 12-23

DISPLAY_PROGRAM_ VALUE

Remarks

Examples

MODULE (M)

The value of the NAME parameter must reference
identifiers(s) defined at the outermost level of the
module.

LOCAL (L)

The identifier(s) referenced by the NAME
parameter must be defined in the procedure
specified by the PROCEDURE parameter or by
default.

SECTION or SEC

Displays a group of identifiers by specifying the
section where they are stored. This parameter is valid
only when the value of the NAME parameter is $ALL.

NOTE

The SECTION parameter cannot be used with the
RECURSION _LEVEL and RECURSION _DIRECTION
parameters or with NAME_OPTION=PARAMETERS
or SCOPE=GLOBAL.

OUTPUT or 0

File where the display information is written. The
default is the current Debug output file.

For more information, see the Debug for NOSNE Usage
manual.

The examples refer to the following definitions:

COMMON /BLK/ OVAL, RYAL, !VAL, ZVAL
DATA OVAL, RYAL, !VAL, ZVAL/20.0D+O, 3.45E+01, 30, (+20.0,20.3)/

Display the value of DVAL:

DB/display_program_value name=dval
dval = 20.
DB/

Display the value of RVAL:

DB/dispv name=rval
rval = 34.5
DB/

Display the value of IVAL:

12-24 NOS/VE Commands and Functions Revision G

DB/display_program_value ival
ival = 30
DB/

DISPLAY_REGISTER

DISPLAY _REGISTER
DEBUG Subcommand

Purpose

Format

Displays the contents of the P, A, or X registers that are
associated with the procedure executing when Debug
gained control.

DISPLAY_REGISTER or
DISPLAY_REGISTERS or
DISR

KIND=list of keyword
NUMBER =list of range of integer or keyword
TYPE= keyword
OUTPUT=file
STATUS= status variable

Parameters KIND or K

Revision G

Register to he displayed. By default, it displays all
registers.

p

Displays the P register.

A

Displays the A registers.

x
Displays the X registers.

NUMBER or N

Indicates the A or X registers to display. ALL specifies
all registers of the specified kind (A or X).

If the KIND parameter is omitted, the P register is
assumed and this parameter is ignored. If KIND is
specified, but NUMBER is omitted, the AO or XO register
is displayed.

Debug 12-25

DISPLAY_REGISTER

Remarks

Examples

TYPE or T

Type of data to be displayed. If this parameter is omitted,
a string value is assumed to be a hexadecimal value and
a numeric value is assumed to be an integer.

ASCII (A)

ASCII string value.

HEX (H)

Hexadecimal string value.

INTEGER (I)

Integer value.

OUTPUT or 0

File where the display information is written. The default
file is the current Debug· output file.

For more information, see the Debug for NOSNE Usage
manual.

Display the contents of the P register in hexadecimal:

DB/d1splay_register p

P=B 031 00000040

Display the contents of the AS register in hexadecimal:

DB/d1splay_register k1nd=a number=B type=hex

AB=B 04E 000004A8

Display the contents of the X4, X5, X6, X7, XS, X9, and
XlO registers in hexadecimal:

DB/disr k1nd=x number=4 .. 10

X4=70000000 0000000
X5=40019482 53FCOCD1
X6=0000B01B 0000253A
X7=00000000 00000001
XB=OOOOOOOO 00000064
X9=00000000 00000273
XA=OOOOOOOO OOOOOOCA

12-26 NOS/VE Commands and Functions Revision G

DISPLAY_STACK_FRAME

DISPLAY_STACK_FRAME
DEBUG Subcommand

Purpose

Format

Displays the contents of one or more stack frames. Values
are displayed in hexadecimal.

DISPLAY_STACK_FRAME or
DISPLAY_STACK_FRAMES or
DISSF

COUNT= integer or keyword
START= integer
DISPLAY_ OPTION= list of keyword
OUTPUT= file
STATUS= status variable

Parameters COUNT or C

Revision G

Number of stack frames to be displayed. The keyword
ALL displays all stack frames. The default is one stack
frame.

START or S

Frame on the stack to be displayed first. The integer 1
represents the most recent stack frame, 2 the predecessor
of the most recent stack frame, and so forth. By default,
the display begins with the most recent stack frame.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

Area of the stack frames to be displayed. By default, it
displays both the automatic and save areas.

AUTO (A)

Displays the area that contains the automatic
(dynamically allocated) variables of the procedure.

SAVE (8)

Displays the area that contains a copy of the registers
of the procedure as they existed at the time of a call
or trap.

ALL

Displays both the automatic and save areas.

Debug 12-27

DISPLAY_STACK_FRAME

Remarks

Examples

OUTPUT or 0

File on which the stack frame information is written. The
default file is the current DEBUG_OUTPUT file.

For more information, see the Debug for NOSNE Usage
manual.

Display the save area of the most recent stack frame:

OB/display_stack_frame display_option=save

SAVE AREA

P=~ 035 00000026
UM=FFF7 UCR=0040

AO=B 032 00000460
A2=B 032 000003CO
A4=B 032 00000390
A6=B 02E 00000000
A8=B OOF 00000018
AA=B 032 OOOOOA30
AC=F FFF 80000000
AE=F FFF 80000000

XO=OOOOB010 00020060
X2=0000FFFF 80000000

X4=00000000 10000000
X6=00000000 00000000
X8=00000000 00000000
XA=OOOOOOOO 00000300
XC=OOOOOOOO 00000001
XE=OOOOOOOO 00010040

VMID=O
MCR=OOOO

A1=B 032 00000408
A3=B 030 00000000
AS=B 02F 00000020
A7=B 02F 00000000
A9=B 032 00000630
AB=F FFF 80000000
AO=B 032 00001058
AF=B OOB 000557F8

X1=00000000
X3=000007FF

XS=OOOOOOOO
X7=00000000
X9=00000000
XB=OOOOOOOO
XD=OOOOOOOO
XF=OOOOOOOO

00000000
FFFFFFFF

00000008
00000010
00000008
00000000
00000022
0000004E

Display the automatic and save areas of the most recent
stack frame:

12-28 NOSNE Commands and Functions Revision G

DISPLAY_STACK_FRAME

06/dissf count=1

STACK FRAME 001 SEGMENT=032
00000000 00000000 00000000
00000008 00000000 00000000
00000010 30300000 OOCOFFFF 00
00000018 80000000 00000000
00000020 60326031 00000000 2 1
00000028 00006010 00096346 F

00000030 00006032 00000430 2 0
00000038 00406032 00000400 E:' 2
00000040 FF776032 000003CO w 2
00000048 FFFC6016 00020F78 x
00000050 00006032 00000390 2

SAVE AREA

P=6 035 00000026 VMID=O
UM=FFF7 UCR=0040 MCR=OOOO

A0=6 032 00000460 A1=6 032 00000408
A2=B 032 000003CO A3=B 030 00000000
A4=B 032 00000390 AS=B 02F 00000020
A6=B 02E 00000000 A7=B 02F 00000000
A8=B OOF 00000018 A9=B 032 00000630
AA=B 032 OOOOOA30 AB=F FFF 80000000
AC=F FFF 80000000 AD=B 032 00001058
AE=F FFF 80000000 AF=B 006 000557F8

XO=OOOOB01D 00020060 X1=00000000 00000000
X2=0000FFFF 80000000 X3=000007FF FFFFFFFF

X4=00000000 10000000 XS=OOOOOOOO 00000008
X6=00000000 00000000 X7=00000000 00000010
XB=OOOOOOOO 00000000 X9=00000000 00000008
XA=OOOOOOOO 00000300 XB=OOOOOOOO 00000000
XC=OOOOOOOO 00000001 XD=OOOOOOOO 00000022
XE=OOOOOOOO 00010040 XF=OOOOOOOO 0000004E

Revision G Debug 12-29

$MEMORY

$MEMORY
DEBUG Function

Purpose

Format

Returns the contents of memory which can be used as
input to the DISPLAY_MEMORY or CHANGE_MEMORY
commands. You can display memory which is the object of
a pointer in memory if the pointer is contained in a
register.

$MEMORY or
$MEM

(address
integer
keyworclJ

Parameters address

Remarks

Specifies the process virtual address. This parameter is
required.

integer

The number of bytes to return. If kind is an integer,
number must be in the range of 1 through 8. If kind is a
string, number must be in the range of 1 through 256. If
number is omitted, 6 bytes are returned.

keyword

The type of value to return. If kind is integer, a
hexadecimal integer with radix is returned. If kind is a
string, a string is returned. If kind is omitted, an integer
is returned.

For more information, see the Debug for NOSNE Usage
manual.

$PROGRAM_ VALUE
DEBUG Function

Purpose Returns the value of the program element which is
specified as the name parameter. Additional parameters
for module, procedure, recursion level, and recursion
direction can be specified to fully identify the named
variable.

12-30 NOS/VE Commands and Functions Revision G

Format

$PROGRAM_ VALUE

The $PROGRAM_ VALUE function allows you to
incorporate the values of program variables in SCL
statements in order to enhance debugging capabilities.

$PROGRAM_ VALUE or
$PV

(program_ value
module
procedure
integer
keyword)

Parameters program_ value

Revision G

Name of the program element whose value is to be
displayed. This parameter is required. Values can be one
of the following types:

• Simple variable

• Subscripted name

• Field reference ·

• Pointer reference

The named variable must be used in your program.

Because names can be long, SCL string variables can be
used as aliases for them. To do this, assign the SCL
variable to a string containing the identifier. Then use
the SCL variable preceded by a question mark as the
value of the name parameter.

module

Name of the module that contains the element specified
by the name parameter. Omission causes the module
executing when Debug gained control or the module
specified by the CHANGE_DEFAULT subcommand to be
used.

procedure

Name of the procedure that contains the element specified
by the name parameter. If you specify a procedure that is
not in the active call chain, its automatic variables cannot
be used because it has no stack frame. Omission causes
the procedure executing when Debug gained control to be
used if a module name is not specified. Otherwise, there

Debug 12-31

QUIT

Remarks

Examples

QUIT

is no default procedure when a module name is specified
and a procedure name is not specified; the element
specified by the name parameter must exist at the module
level.

integer

The particular call of a recursive procedure to be used. It
must be a positive integer greater than zero. If the
recursion direction parameter specified the keyword
FORWARD, a value of 1 is the first call, 2 is the second
call (the one called by the first call), and so on. If the
recursion direction parameter is BACKWARD, 1 is the
most recent call, 2 is the predecessor, and so on.

Omission causes a value of 1 to be used.

keyword

Order in which calls to a recursive procedure are
searched. It controls how the value of the recursion_level
parameter is interpreted. It can be one of the following
keywords:

FORWARD or F

If the RECURSION _LEVEL parameter specifies that
the first call to the procedure is used, a 2 specifies the
second call, and so on.

BACKWARD or B

If the RECURSION _LEVEL parameter specifies that
the most recent call to the procedure is used, a 2
specifies its predecessor, and so on.

Omission causes BACKWARD to be used.

For more information, see the Debug for NOSNE Usage
manual.

DB/set_break name=b1 line=23 conmand= ..
DB .. /'1f $program_value(1ndex) <45 then; run; ifend'

DEBUG Subcommand

Purpose Ends the Debug session and returns control to NOS/VE.
The session is terminated· immediately; the program is not
executed to completion.

12-32 NOSNE Commands and Functions Revision G

Format

Remarks

QUIT or
QUI

STATUS =status variable

$REGISTER

For more information, see the Debug for NOSNE Usage
manual.

$REGISTER
DEBUG Function

Purpose Returns the contents of a specified register in hexadecimal
integer format, including radix. $REGISTER is useful
when specified for the ADDRESS parameter value on the
DISPLAY_MEMORY and CHANGE_MEMORY commands.

Format $REGISTER or
$REG

(keyword
integer)

Parameters keyword

Remarks

RUN

The type of register the value is returned from. P
specifies a P register, A specifies an A register, and X
specifies an X register.

integer

Specifies the register number the value is returned from.

For more information, see the Debug for NOSNE Usage
manual.

DEBUG Subcommand

Purpose

Format

Revision G

Begins or resumes program execution once Debug has
gained control. Execution continues until Debug again
gains control. If the program has run to completion,
entering the RUN command terminates program
execution.

RUN
STATUS= status variable

Debug 12-33

SET_BREAK

Remarks

Examples

• Execution begins at the instruction whose address is
stored in the P register of the program when the
event that caused Debug to gain control occurred.

• If the P register points to the instruction that caused
the event (such as division by zero), the same event
will occur immediately after entering the RUN
command. In this case, you must change the value in
the P register with the CHANGE_REGISTER
command or change the value of one of the operands
with the CHANGE_PROGRAM_ VALUE command
before entering the RUN command.

• When Debug processes the RUN command, all
previously created SCL blocks (except SET_BREAK
command information and the name of the current
DEBUG_INPUT and DEBUG_ OUTPUT files) are lost.
This means that all information about SCL commands,
such as if-then blocks or while-for loops that span
RUN commands are lost. Global variables must be
recreated with XREF.

• For more information, see the Debug for NOS/VE
Usage manual.

The following sequence recreates the variable COUNT:

DB/crev count kind=integer scope=job v=O
DB/setb b=one l=one
DB/run ·BREAK ONE"

By specifying SCOPE=JOB, the variable COUNT will be
retained past the RUN command.

SET_BREAK
DEBUG Subcommand

Purpose

Format

Defines a break.

SET_BREAK or
SETB

BREAK=name
EVENT= list of name
LINE= integer
STATEMENT= integer
STATEMENT _LABEL= statement_ label
NAME= variable

12-34 NOS/VE Commands and Functions Revision G

SECTION= section or keyword
MODULE= module
PROCEDURE= procedure
ENTRY _POINT =entry _point
ADDRESS =address
BYTE_OFFSET=integer
BYTE_COUNT=integer
COMMANDS =string
STATUS= status variable

SET_BREAK

Parameters BREAK or B

Revision G

Name of the break. By default, Debug assigns a unique
name and displays the name assignment to the user.

The name is used to reference the break definition in the
DISPLAY_BREAK and DELETE_BREAK commands. The
name is displayed in the break report message when the
break occurs.

A break cannot be named ALL. The break name must not
contain the character '$'. The form is:

EVENTorEVENTSorE

One or more events that will cause the break. If you
specify more than one event, the break occurs for any of
the events.

ARITHMETIC_OVERFLOW (AO)

Breaks when an arithmetic overflow occurs on an
instruction in the specified address range. The P
register points to the instruction that caused the
overflow.

ARITHMETIC_SIGNIFICANCE (AS)

Breaks when arithmetic significance is lost on an
instruction in the specified address range. The P
register points to the instruction that caused the loss
of significance.

BRANCH (B)

Breaks before either a branch to or a return from any
location in the specified address range occurs.

CALL (C)

Breaks before a subprogram call occurs to any address
in the specified address range.

Debug 12-35

SET_BREAK

DIVIDE_FAULT (DF)

Breaks when division by zero occurs in an instruction
in the specified address range. The P register points to
the instruction that caused the division by zero.

EXECUTION (E)

Breaks before the instruction in the specified address
range is executed.

If the address is specified by the line number, not
every line is usable. For example, breaks cannot be
set at ENDIF statements because it is not obvious
when control reaches them.

EXPONENT_OVERFLOW (EO)

Breaks when an exponent overflow occurs in an
instruction in the specified address range. The P
register points to the instruction following the one that
caused the overflow.

EXPONENT_UNDERFLOW (EU)

Breaks when an exponent underflow occurs in an
instruction in the specified address range. The P
register points to the instruction following the one that
caused the underflow.

FLOATING_POINT_INDEFINITE (FPI)

Breaks when the result of a floating-point operation is
indefinite in an instruction in the specified address
range. The P register points to the instruction
following the one that caused the results to be
indefinite.

FLOATING_POINT_SIGNIFICANCE (FPS)

Breaks when significance is lost during a floating-point
operation in an instruction in the specified address
range. The P register points to the instruction
following the one that caused the loss of significance.
This event will not occur unless your program sets the
floating-point loss-of-significance bit in the user mask
register.

12-36 NOS/VE Commands and Functions Revision G

Revision G

SET_BREAK

INVALID_BDP_DATA (IBD)

Breaks when a business data processing (BDP)
instruction fault occurs in an instruction in the
specified address range. The P register points to the
instruction that caused the fault. The BDP instructions
are described in the Virtual State Hardware reference
manual.

READ (R)

Breaks before a read occurs from the specified address
range. The break occurs on~y if the first byte of the
item to be read is within the address range.

READ_NEXT_INSTRUCTION (RNI)

Breaks before . the instruction in the specified address
range is executed.

WRITE (W)

Breaks before a write occurs into the specified address
range. The break occurs only if the first byte of the
item to be written is within the address range.

The default event is EXECUTION.

NOTE

The following optional parameters (up to the COMMAND
parameter) specify the location at which the break occurs.
For the break to occur, the specified event must occur
within the range defined by the address parameters. If all
of these parameters are· omitted, an address range of one
byte is used.

LINE or L

Line number in the module. The module is specified by
the MODULE parameter.

STATEMENT or S

Statement in the multi-statement line specified by the
LINE parameter. The statements are numbered in
consecutive order beginning with 1.

1£ STATEMENT is omitted, the default is 1.

Debug 12-37

SET_BREAK

STATEMENT_LABEL or SL

Source statement label at which to set the break. The
module is specified by the MODULE parameter. The
procedure is specified by the PROCEDURE parameter.

The parameter value depends on the programming
language.

For FORTRAN, BASIC, and PASCAL, a statement label is
an integer.

For CYBIL, a statement label is a name enclosed in
slashes (/name/).

For COBOL, a statement label is a COBOL_
PARAGRAPH or COBOL_SECTION identifier.

NAME or N

Variable name on which a READ or WRITE break is set.
You must also specify EVENT= READ or
EVENT= WRITE. If NAME is omitted, the break is
specified by another parameter.

SECTION or SEC

Memory section.

$BINDING

Section containing the links to external procedures and
the data of the module.

$BLANK

Section containing unnamed common.

$LITERAL

Section containing the literal data (for example, long
constants) of the module.

$STATIC

Section containing the static (not on the run-time
stack) variables not explicitly allocated to a named
section of the module.

Unless the MODULE parameter is also specified, the
section must exist for the current default module.

The SECTION parameter cannot be specified for modules
that are components of a bound module unless the section
is a common block.

12-38 NOS/VE Commands and Functions Revision G

Revision G

SET_BREAK

MODULE or M

Module name. The module may qualify another address
parameter. Otherwise it specifies the first byte of the code
section of the module.

If this parameter is omitted, the current default module is
used. The default module can be specified by a
CHANGE_DEFAULTS command. If not specified, it is the
module executing when Debug gained control.

PROCEDURE or P

Procedure name specifies the first byte of the code section
of the procedure. Unless the MODULE parameter is
specified, the procedure must exist in the current default
module.

You cannot specify the LINE or SECTION address
parameters with PROCEDURE.

ENTRY_POINT or EP

Entry point name.

You can use the BYTE_OFFSET and BYTE_COUNT
parameters to modify the ENTRY_POINT parameter. You
cannot use other address parameters with this parameter.

ADDRESS or A

Address of the first byte of memory to be changed.

Its format is rsssoooooooo(16) where r is the ring number,
sss is the segment number, and 00000000 is the offset
from the beginning of the segment. You can get machine
addresses from the cross-reference and load maps for your
program.

BYTE_OFFSET or BO

Offset to the base address established by one of the
address parameters. The default offset is zero.

The address generated by adding BYTE_OFFSET to the
base address must be within the memory block implied by
the base address. The block size is the length of the
section when the SECTION parameter is specified, and
the length of the segment containing the machine address
when the ADDRESS parameter is specified.

BYTE_COUNT or BC

Number of bytes in the item. The default byte count is 1.

Debug 12-39

SET_ BREAK

Remarks

COMMANDS or COMMAND or C

Optional string of commands to be executed by Debug,
SCL, or any other active command processor when the
break is honored. After the commands in the string have
been executed, commands are read from the current
Debug input file unless the string contains a RUN
command.

If a command in the string includes a quoted string, that
string must be enclosed in two single apostrophes.

No break report message is issued before the commands
in the string are executed. If you want a message to be
displayed, include an SCL DISPLAY_ VALUE command in
the string.

If an error is detected in one of the commands in the
string, the break report message is issued, the error is
reported, and commands are read from the Debug input
file. The remaining commands in the string are not
executed.

• You specify one or more events and the location at
which Debug takes control. When a specified event
occurs, program execution is suspended and a message
informs you which break occurred. At this point, you
can enter another Debug command that can be
processed by the operating system command or other
active command utility (such as an SCL command).

• Debug gains control when the following events occur,
even if you do not set a break for them:

ARITHMETIC_OVERFLOW
ARITHMETIC_ SIGNIFICANCE
DIVIDE_FAULT
EXPONENT_OVERFLOW
EXPONENT_ UNDERFLOW
FLOATING_POINT_INDEFINITE
FLOATING_POINT_SIGNIFICANCE
INVALID_BDP _DATA

Specific breaks can be set for these events so that the
specified command string can be executed when Debug
gains control.

• For more information, see the Debug for NOS/VE
Usage manual.

12-40 NOS/VE Commands and Functions Revision G

Examples

SET_SCREEN_ OPTIONS

Cause a break to occur when execution reaches line 10 of
module PROG 1:

DB/set_break 11ne=10 module=prog1
-- Break name DBB$1 assigned to this break

Cause a break when a branch or return occurs to line 40
(of the module executing when Debug gained control):

DB/set_break break=b2 event=branch 1ine=40

SET _SCREEN_ OPTIONS
DEBUG Subcommand

Purpose Enables you to change the appearance of your screen for
a screen mode Debug session.

Format SET_SCREEN_OPTIONS or
SE TSO

MENU _ROWS= integer
COLUMNS =integer
SPLIT_SIZES=list of integer
STATUS =status variable

Parameters MENU _ROWS or MENU _ROW or MR

Revision G

Specifies the number of rows of function key prompts to
display on your screen. Options are:

Omitted

The number of rows of function key prompts remains
the same. The default number of rows is one.

0

Displays no function key prompts.

1

Displays one row of function key prompts (functions 1
through 8).

2

Displays two rows of function key prompts (functions 1
through 16).

Debug 12-41

SET_SCREEN_ OPI'IONS

COLUMNS or C

Specifies the number of columns to be displayed for
terminals that support multiple screen sizes. Options are:

Omitted

The number of columns displayed remains the same.

Integer

Specifies the number of columns to be displayed.
Values can range from 40 to the maximum number
allowed for your terminal screen (up to 256). The
number you enter is compared to the screen sizes set
up in the terminal definition for your terminal. The
number of columns displayed is the closest number as
large or larger than the number you enter on the
COLUMNS parameter. When first entering Debug, it
assumes a value of 80 columns.

SPLIT_SIZES or SPLIT_SIZE or SS

Specifies the number of lines displayed in the Source and
Output windows. Options are:

Omitted

The number of lines displayed in the Source and
Output windows remains the same.

List of integer

Specifies the number of lines displayed in the Source
and Output windows. Values can be a list of at most
two integers in the range 1 to the maximum number
allowed for your terminal screen (up to 255). If two
values are specified, they must be enclosed in
parentheses and separated by commas or spaces. The
first value specifies the number of lines displayed in
the Source window and the second value specifies the
number of lines displayed in the Output window (not
including header information). Each window must
contain at least one line.

Because the Source window is allocated first with the
remainder of the screen allocated to the Output
window, the second value is not necessary.

12-42 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

SET_SCREEN_OPTIONS

When first entering Debug, the source window occupies
the top three-fourths of the screen and the Output
window occupies the bottom one-fourth of the screen.
The number of lines displayed is determined by the
size of your terminal screen.

• SET_SCREEN_OPTIONS, when entered in line mode,
determines the screen characteristics to be displayed
when screen mode Debug is activated with the
ACTIVATE_SCREEN command.

• When SET_ SCREEN_ OPTIONS is entered on the
home line while in screen mode, the screen is updated
immediately according to the parameters specified.

o For all omitted parameters, Debug assumes you want
the same value used the last time you entered the
SET_SCREEN_OPTIONS command in the current
Debug session. If SET_SCREEN_OPTIONS has not
been entered, Debug assumes the default values.

c Screen characteristics remain in effect throughout the
Debug session until they are changed by another
SET_ SCREEN_ OPTIONS command or by the tailoring
functions of screen mode Debug. When you end the
Debug session, all screen characteristics return to
their default values.

o You can also include the SET_SCREEN_OPTIONS
command in the debug_input file so that your screen
characteristics are modified immediately when you
begin a Debug session.

e For more information, see the Debug for NOS/VE
Usage manual.

The following example displays (when screen mode is
activated) two rows of function key prompts, 132 columns,
and a source window as large as possible.

DB/set_screen_options menu_rows=2 columm=132 spl it_size=255

Debug 12-43

SET_STEP_MODE

SET_STEP _MODE
DEBUG Subcommand

Purpose Activates or deactives step mode. In step mode, control is
returned after a specified subset of a task is executed.

Format SET_STEP_MODE or
SETSM

MODE=keyword
UNIT=keyword
MODULE=list of module or keyword
PROCEDURE= list of procedure or keyword
SPAN= integer
COMMAND=string
STATUS =status variable

Parameters MODE

Indicates whether to activate or deactivate step mode.
This parameter is required.

ON

Activates step mode.

OFF
Deactivates step mode. When step mode is off, any
remaining parameters are iWl;ored.

If you specify MODE=ON and step mode is already on,
all previous values are replaced with the new parameter
values.

UNIT or U

Length of each step. The default value is LINE.

LINE (L)

The step is reported before the code is executed for
each line, except for the procedure lines.

PROCEDURE (P)

The step is reported each time a new procedure begins
and after any prolog code for the procedure has
executed.

12-44 NOS/VE Commands and Functions Revision G

Revision G

SET_STEP_MODE

COBOL_SECTION (CS)

The step is reported each time a section header is
reached (COBOL programs only).

COBOL_PARAGRAPH (CP)

The step is reported each time a paragraph is reached
(COBOL programs only).

MODULE or M

Used with the UNIT parameter to specify the modules
reported. If this parameter is omitted, the current default
module is used.

$ALL

A step is reported that is in any module.

$CURRENT

A step is reported only if the step occurs in the
module where the program is executing when step
mode is activated.

list of names

A step is reported if the step occurs in any of the
named modules.

You cannot specify both the MODULE and PROCEDURE
parameters in the same SET_ STEP _MODE command.

PROCEDURE or P

Used with the UNIT parameter to specify the procedure
reported. If the parameter is omitted, the current default
procedure is used.

$ALL

A step is reported that is in any procedure.

$CURRENT

A step is reported only if the step occurs in the
procedure where the program is executing when step
mode is activated.

Debug 12-45

SET_STEP_MODE

Remarks

list of names

A step is reported if the step occurs in any of the
named procedures.

You cannot specify both the MODULE and PROCEDURE
parameters in the same SET_ STEP _MODE command.

SPAN or S

Number of steps to occur before execution stops and the
step is reported. By default, eyery step that occurs is
reported.

COMMAND or COMMANDS or C

Optional string of commands to be executed when the step
occurs.

If the string of commands includes a RUN command, the
task is resumed and the step is not reported.

If the string does not include a RUN command, command
input will be requested from the current DEBUG_INPUT
file after the string of commands has been executed.

• If step mode is activated, a RUN command causes
your program to execute for the specified unit. You
are then prompted for further command input.

• A string of commands can be associated with the step
and will be processed each time the step is completed.
Stepping with a unit of line or procedure is only
available if the source program was compiled with
OPT= DEBUG.

• Activating step mode is an effective debugging aid, but
it uses a lot of execution time.

• For more information, see the Debug for NOSNE
Usage manual.

12-46 NOS/VE Commands and Functions Revision G

Examples

Revision G

SET_STEP_MODE

The following command sequence shows a command to
turn on step mode, two RUN commands to execute two
steps, and a command to turn off step mode. The value of
variable x is displayed at each step.

DB/set_step_mode,on,conmand='d1splay_program_value,x'
DB/run
x = 2.00000000000000E+OOOO
-- DEBUG: step at M=$MAIN L=34 B0=212

DB/run
x = 2.00000000000000E+OOOO
-- DEBUG: step at M=$MAIN L=35 80=6

DB/set_step_mode off

Debug 12-47

EDIT _CATALOG 13

EDIT_CATALOG 13-1
$CURRENT_FILE . 13-2
SET_DISPLAY_OPTION . 13-3
SET_SCREEN_OPTION 13-3

EDIT_ CATALOG 13

EDIT_CATALOG
Command

Purpose Accesses the EDIT_CATALOG (EDIC) utility, a full screen
application that can be used to create, move, copy, print,
view, edit, and execute files.

Format EDIT_CATALOG or
EDIC

CATALOG=file
DISPLAY_ OPTIONS= keyword
NO _DOLLAR. _FILES= boolean
STATUS= status variable

Parameters CATALOG or C

Revision G

Catalog to be displayed. Omission causes the system to
display the current working catalog.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

File information to be displayed.

ALL (A)

All file attributes are displayed.

BRIEF (B)

Only the name and entry type (file or catalog) are
displayed.

The default is BRIEF.

NO_DOLLAR._FILESorNDF

Boolean indicating whether file names containing a dollar
sign are to be omitted from the display. (By convention, a
dollar sign character [$] appears only in CDC-defined file
names.)

TRUE (ON or YES)

File names containing a $ character are not displayed.

EDIT_CATALOG 13-1

$CURRENT_FILE

Remarks

FALSE (OFF or NO)

File names containing a $ character are displayed.

The default is FALSE.

For more information. see the NOSNE System Usage
manual.

$CURRENT _FILE
EDIC Function

Purpose Specifies the current file. This function can be used
instead of explicitly naming a file within an SCL
command you enter from within EDIT_ CATALOG. The
current file is considered to be the file at which the
cursor was positioned before you pressed HOME. If you
use this function within an SCL command and did not
previously position the cursor on a file name, an error
occurs.

Format $CURRENT _FILE or
$CF

Parameters None.

Remarks • Evaluation of the $CURRENT_FILE function must
occur within EDIT~CATALOG. Consequently, if you
enter a command which initiates the execution of
another task and specify the $CURRENT_FILE as a
parameter, the $CURRENT_FILE will not be
evaluated and you will receive an error message
regarding the filename $CURRENT_FILE.

If you execute a procedure and spe cify $CURRENT_
FILE as one of the parameters, the $CURRENT_FILE
will be evaluated.

• For more information, see the NOSNE System Usage
manual.

13-2 NOS/VE Commands and Functions Revision G

SET_DISPLAY_ OPTION

SET _DISPLAY_ OPTION
EDIC Subcommand

Purpose Specifies the display option you wish to see while using
the EDIT_CATALOG command.

Format SET_DISPLAY_OPTION or
SET_DISPLAY_OPTIONS or
SETDO

DISPLAY_ OPTIONS= keyword
STATUS =status variable

Parameters DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Specifies the amount of information that you want to have
displayed. The following are possible entries:

Remarks

BRIEF (B)

Selects a display in which file and catalog names are
displayed. The display also includes the notation
(catalog) indicating that a displayed name is a catalog.

ALL (A)

Selects a display showing all file and catalog
information.

If the DISPLAY_ OPTION parameter is omitted, BRIEF is
used.

For more information, see the NOSNE System Usage
manual.

SET_SCREEN_OPTION
EDIC Subcommand

Purpose

Format

Revision G

Specifies the number of rows of keys to be displayed at
the bottom of your screen with the SET_SCREEN_
OPTION subcommand.

SET_SCREEN_OPTION or
SET_SCREEN_OPTIONS or
SE TSO

MENU _ROWS =integer
STATUS= status variable

EDIT_ CATALOG 13-3

SET_SCREEN_ OPTION

Parameters MENU _ROWS or MR

Remarks

Specifies the number of rows of keys to be displayed. You
may specify a value of zero, one, or two. If omitted, a
value of one is assumed.

For more information, see the NOSNE System Usage
manual.

13-4 NOSNE Commands and Functions Revision G

EDIT _DECK 14

EDIT_ DECK . 14-1
EDIT_FIRST_DECK . 14-1
EDIT_LAST_DECK 14-2
EDIT_NEXT_DECK . 14-2
END_DECK 14-2
RESET_DECK 14-3
SELECT_DECK . 14-3
SELECT_FIRST_DECK 14-4
SELECT_LAST_DECK 14-4
SELECT_NEXT_DECK 14-5

EDIT_DECK 14

EDIT_DECK
EDID Subcommand

Purpose

Format

Opens the specified deck in the working library for
editing while maintaining your current position in other
decks.

EDIT_DECK or
EDID

DECK=name
STATUS= status variable

Parameters DECK or D

Remarks

Specifies the deck to be edited. If the deck does not exist,
it is created. ·

This parameter is required.

• To discard decks created unintentionally; enter:

end_deck write_deck=false

• For more information, see the NOSNE File Editor
manual.

EDIT _FIRST _DECK
EDID Subcommand

Purpose

Format

Remarks

Revision G

Opens the first deck on the working library for editing
while maintaining your current position in other decks.

EDIT_FIRST_DECK or
EDIFD

STATUS=status variable

• Decks are always in alphabetical order in the working
library.

• For more information, see the NOSNE File Editor
manual.

EDIT_DECK 14-1

EDIT_LAST_DECK

EDIT _LAST _DECK
EDID Subcommand

Purpose

Format

Remarks

Opens the last deck in the working library for editing
while maintaining your current position in other decks.

EDIT_LAST_DECK or
EDILD

STATUS= status variable

• Decks are always in alphabetical order in the working
library.

• For more information, see the NOSNE File Editor
manual.

EDIT _NEXT _DECK
EDID Subcommand

Purpose

Format

Remarks

Opens the next deck on the working library for editing
while maintaining your current position in other decks.

EDIT_NEXT_DECK or
ED IND

STATUS= status variable

• Decks are always in alphabetical order in the working
library.

• For more information, see the NOS/VE File Editor
manual.

END_DECK
EDID Subcommand

Purpose

Format

Closes editing on the current deck.

END_DECK or
ENDD

WRITE _DECK= boolean
STATUS= status variable

14-2 NOS/VE Commands and Functions Revision G

RESE'l'_DECK

Parameters WRITE_DECK or WD or WRITE_FILE or WF

Specifies whether the changes made to the deck since it
was opened for editing are to be written to the working
library.

Remarks

TRUE indicates that the deck is to be rewritten.

FALSE indicates that the deck remains unchanged (the
edited copy is discarded). FALSE also discards a deck that
has been created during the current editing session
provided that you have not closed the deck. This is the
easiest way to delete decks that were unintentionally
created.

If omitted, TRUE is assumed and the results are written
to the working library.

For more information, see the NOS/VE File Editor
manual.

RESET_DECK
EDID Subcommand

Purpose

Format

Remarks

Discards changes made to the current deck being edited.
All changes made since the last time the deck was opened
for editing are discarded. The editor obtains a new copy of
the deck from the working library.

RESET_DECK or
RESD

STATUS =status variable

For more information, see the NOS/VE File Editor
manual.

SELECT_DECK
EDID Subcommand

Purpose

Format

Revision G

Opens the specified deck on the working library for
editing and closes the previous deck (if any).

SELECT_DECK or
SELD

DECK=name
STATUS= status variable

EDIT_DECK 14-3

SELECT_FIRST_DECK

Parameters DECK or D

Remarks

Specifies the name of the deck to be edited. If the deck
does not exist, it is created.

This parameter is required.

• Decks are always in alphabetical order in the working
library.

• For more information, see the NOS/VE File Editor
manual.

SELECT_FIRST_DECK
EDID Subcommand

Purpose

Format

Remarks

Opens the first deck on the working library for editing
and closes the previous deck (if any).

SELECT_FIRST_DECK or
SELFD

STATUS= status variable

• Decks are always in alphabetical order in the working
library.

• For more information, see the NOS/VE File Editor
manual.

SELECT_LAST_DECK
EDID Subcommand

Purpose

Format

Remarks

Opens the last deck on the working library for editing
and closes the previous deck (if any).

SELECT_LAST_DECK or
SE LLD

STATUS= status variable

• Decks are always in alphabetical order in the working
library.

• For more information, see the NOSNE' File Editor
manual.

14-4 NOSNE Commands and Functions Revision G

SELECT_NEXT_DECK

SELECT_NEXT_DECK
EDID Subcommand

Purpose

Format

Remarks

Revision G

Opens the next deck on the working library for editing
and closes the previous deck (if any).

SELECT_NEXT_DECK or
SELND

STATUS=status variable

o Decks are always in alphabetical order in the working
library.

• For more information, see the NOSNE File Editor
manual.

EDIT_DECK 14·5

EDIT_FILE 15

EDIT_FILE 15-1
ACTIVATE_SCREEN . 15-3
$ACTIVE_IDENTIFIER . 15-5
ALIGN_SCREEN 15-5
BREAK_TEXT 15-7
CENTER_LINES . 15-7
CLEAR_ TABS . 15-8
COPY_TEXT 15-9
$CURRENT_COLUMN . 15-12
$CURRENT_DECK . 15-13
$CURRENT_LINE 15-13
$CURRENT_OBJECT 15-14
$CURRENT_OBJECT_TYPE 15-15
$CURRENT_ROW . 15-15
$CURRENT_SPLIT . 15-15
$CURRENT_ WORD . 15-16
$CURRENT_ WORD_COLUMN 15-17
DEACTIVATE_SCREEN . 15-17
DELETE_CHARACTERS . 15-18
DELETE_EMPTY_LINES . 15-19
DELETE_LINES . 15-19
DELETE_ TEXT . 15-21
DELETE_ WORD . 15-24
DISPLAY_COLUMN_NUMBERS 15-25
DISPLAY_EDITOR_STATUS 15-26
DISPLAY_POSITION . 15-27
$DISPLAY_UNPRINTABLE_CHARACTERS 15-27
EDIT_FILE . ; . 15-28
END 15-29
END_FILE 15-29
EXCHANGE_POSITION . 15-30
EXCHANGE_SCREEN_ WIDTH 15-30
FORMAT_PARAGRAPHS . 15-31
$FUNCTION_ROW 15-32
$FUNCTION _SIZE . 15-32
$HOME_ROW . 15-33
INDENT_ TEXT . 15-33
INSERT_CHARACTERS 15-34
INSERT_EMPTY_LINES . 15-35
INSERT_LINES 15-36
INSERT_ WORD : 15-38
JOIN_TEXT 15-39
$LINE_IDENTIFIER 15-40

$LINE_ TEXT . 15-40
LIST_BACKWARDS . 15-41
LIST_FORWARDS . 15-42
LIST_LINES · 15-42
LOCATE_ALL 15-43
LOCATE_EMPTY_LINES . 15-44
LOCATE_NEXT 15-45
LOCATE_STRING 15-46
LOCATE_TEXT 15-46
LOCATE_ WIDE_LINES . 15-50
MARK_BOXES . 15-52
MARK_CHARACTERS 15-54
$MARK_FIRST_COLUMN . 15-56
$MARK_FIRST_LINE 15-56
$MARK_LAST_COLUMN . 15-57
$MARK_LAST_LINE . 15-57
MARK_LINES 15-58
$MARK_OBJECT . 15-59
$MARK_OBJECT_TYPE 15-59
$MARK_ TYPE . 15-59
$MESSAGE_ROW . 15-60
MOVE_ TEXT . 15-60
$NEW_ TEXT . 15-64
$NUMBER_OF_COLUMNS 15-64
$NUMBER_OF_ROWS 15-64
$NUMBER_OF_SPLITS. 15-65
$OFFSET . 15-65
$PARAGRAPH_MARGINS . 15-66
POSITION_BACKWARDS 15-67
POSITION_CURSOR . 15-67
POSITION_FORWARDS 15-71
PUT_ROW . 15-71
READ_FILE 15-72
REPLACE_LINES . 15-74
REPLACE_TEXT 15-76
RESET_FILE . 15-80
RESTORE_POSITION . 15-81
$ROW_TEXT 15-81
SAVE_POSITION . 15-81
$SCREEN _ACTIVE . 15-81
$SCREEN _INPUT . 15-82
$SEARCH_MARGINS . 15-83
SET_EPILOG 15-83
SET_FUNCTION_KEY 15-84
SET_LINE_ WIDTH . 15-86
SET_LIST_OPTIONS . 15-87

SET_MASK . 15-87
SET_PARAGRAPH_MARGINS 15-88
SET_SCREEN_OPTIONS 15-90
SET_SEARCH_MARGINS . 15-93
SET_ TAB_ OPTIONS -. 15-94
SET_ VERIFY_ OPTION . 15-95
SET_ WORD_CHARACTERS 15-96
$SPLIT_SIZE 15-97
$TEXT 15-98
$TITLE_ROW . 15-98
UNDO 15-98
UNMARK . 15-100
$UPPER_CASE . 15-100
$VERIFY_OPTION. 15-101
$WORD . 15-101
WRITE_FILE . 15-101

EDIT_FILE 15

EDIT_FILE
Command

Purpose Starts a file editor (EDIT_FILE utility) session.

Format EDIT_FILE or
EDIF

FILE=tile
INPUT=file
OUTPUT =file
PROLOG=file
DISPLAY_ UNPRINTABLE_ CHARACTERS= boolean
STATUS =status variable

Parameters FILE or F

Revision G

Specifies the name of the file you want to edit. If the file
you specify does not exist, a new file is created.

The file cannot be an object file.

This parameter is required.

INPUT or I

Specifies the file to he used as input to the editor. This
file can be positioned. This file contains optional editor
subcommands used to manipulate the working file. If
omitted, $COMMAND is assumed.

OUTPUT or 0

Specifies the file to which you want to write any output
that may result from your editing session. This file can
be positioned.

If OUTPUT is omitted, $OUTPUT is assumed. File
$OUTPUT is usually connected to the terminal.

PROLOG or P

Specifies the file containing subcommands you want
executed each time you start the editor.

If omitted, $USER.SCU _EDITOR_PROLOG is assumed.

EDIT_FILE 15-1

EDIT_FILE

Remarks

Examples

DISPLAY_UNPRINTABLE_CHARACTERS or nuc··
Specifies whether unprintable ASCII characters are
replaced by mnemonics when the file is displayed at the
terminal. Options are:

TRUE

Unprintable characters (ASCII values 127 and 0
through 31) are replaced by their respective mnemonic
values enclosed within the less than and greater than
characters, < >. The mnemonics are replaced by the
ASCII characters when the file is replaced.

FALSE

Unprintable characters are replaced by a single space
and a warning message is issued. If the file is written
when you exit the editing session, the unprintable
characters are replaced by spaces.

If DISPLAY_UNPRINTABLE_CHARACTERS is omitted,
FALSE is used.

ASCII characters and their corresponding mnemonic
values are listed in appendix C.

• If you would like to specify a file containing editor
subcommands to be executed when you leave the
editor (an epilog file), use the SET_EPILOG
subcommand. If you want this done each time, include
SETE in the file you specify for the PROLOG
parameter.

• The following prompt appears for line editing:

ef /

• To edit a second file while in the editor, enter the
EDIT_FILE subcommand. The FILE and STATUS
parameters are the only parameters allowed on the
EDIT_FILE subcommand.

• For more information, see the NOSNE File Editor
manual.

The following command starts the EDIT_FILE utility with
file $USER.MY_FILE:

edit_file file=$user.my_file

15-2 NOS/VE Commands and Fnnctions Revision G

ACTIVATE_SCREEN

ACTIVATE_SCREEN
EDIF Subcommand

Purpose

Format

Activates screen mode; specifies terminal type.

ACTIVATE_SCREEN or
ACTS

MODEL=name
STATUS= status variable

Parameters MODEL or M

Revision G

Specifies the type of terminal you are using. Valid entries
are:

Entry

CDC_721

CDC_722

CDC_722_30

MAC_CONNECT_lO

MAC_CONNECT_ll

PC_CONNECT_lO

PC_CONNECT_ll

PC_CONNECT_l2

PC_CONNECT_l3

Terminal

Control Data 721

Control Data 722

Control Data 722-30

Apple Macintosh running
version 1.0 or 1.0+ of Control
Data CONNECT for the
Macintosh

Apple Macintosh running
version 1.1 of Control Data
CONNECT for the Macintosh

IBM PC or equivalent running
version 1.0 of Control Data
CONNECT for the IBM PC

IBM PC or equivalent running
version 1.1 of Control Data
CONNECT for the IBM PC

IBM PC or equivalent running
version 1.2 of Control Data
CONNECT for the IBM PC

IBM PC or equivalent running
version 1.3 of Control Data
CONNECT for the IBM PC

EDIT_FILE 15-3

ACTIVATE_SCREEN

Remarks

Examples

DEC_ VTlOO_GOLD

DEC_ VT220

ZEN_Zl9

ZEN_Z29

Digital Equipment VTl 00

Digital Equipment VT220

Zenith Z19 or Heathkit H19

Zenith Z29

If the terminal you are using is not on this list, ask site
personnel for the entry that activates your screen. ·

If the MODEL parameter was not specified on an earlier
ACTIVATE_SCREEN or SET_SCREEN_OPTIONS
subcommand or on the TERMINAL_MODEL parameter of
the CHANGE_TERMINAL_ATTRIBUTES command, it is
required.

• The recommended method for preparing your session
for screen editing is to ~nter the CHANGE_
TERMINAL_ATTRIBUTES and CHANGE_
INTERACTION_STYLE commands, described in the
NOSNE System Usage manual, before you start an
editing session. To do this automatically, include these
commands in your user prolog.

• Inside procedures, you can use the ACTIVATE_
SCREEN subcommand to allow the user of the
procedure to enter editor subcommands.

• Executing this subcommand causes the firmware of
some terminals to be reinitialized. Refer to your
terminal's documentation for more information.

G Use ·the $SCREEN _ACTIVE function to determine
whether screen mode is active.

• For more information, see the NOSNE File Editor
manual.

To switch from line mode to screen mode in an editing
session, enter:

activate_screen

15-4 NOSNE Commands and Functions Revision G

$ACTIVE_IDENTIFIER

$ACTIVE _IDENTIFIER
EDIF Function

Purpose Returns a line identifier string (for editing decks only)
that indicates if the line you specify is active.

Format $ACTIVE_IDENTIFIER or
$Al

(lines)

Parameters lines

Remarks

Identifies the line for which you want to find the status.
If the line you specify is active, the same string is
returned. If the line is not active, the line identifier for
the nearest active line is returned. If no lines are active,
FIRST is returned.

This parameter is required.

For more information, see the NOSNE File Editor
manual.

ALIGN_SCREEN
EDIF Subcommand

Purpose

Format

Enables you to change the alignment of your screen.

ALIGN_SCREEN or
ALIS or
A

MIDDLE= lines or keyword
TOP= lines or keyword
BOTTOM= lines or keyword
OFFSET =integer
STATUS= status variable

Parameters MIDDLE or M

Revision G

Specifies a line to be centered vertically on the screen.
Values can be an integer, line identifier, or one of the
keywords: CURRENT, FIRST, FIRST_MARK, FIRST_
SCREEN, LAST, LAST_MARK, LAST_SCREEN. You
cannot use this parameter with the TOP and BOTTOM
parameters.

If you omit this parameter, CURRENT is assumed.

EDIT_FILE 15-5

ALIGN_SCREEN

Remarks

Examples

TOP or T

Specifies a line to be positioned at the top of the screen.
The resulting middle line of the screen becomes the
current line. Values can be an integer, line identifier, or
one of the keywords: CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN.
You cannot use this parameter with the MIDDLE and
BOTTOM parameters. ·

If you omit this parameter, no value is supplied.

BOTTOM or B

Specifies a line to appear at the bottom of the screen. The
resulting middle line of the screen becomes the current
line. Values can be an integer, line identifier, or one of
the keywords: CURRENT, FIRST, FIRST_MARK, FIRST_
SCREEN, LAST, LAST_MARK, LAST_SCREEN. You
cannot use this parameter with the TOP and MIDDLE
parameters.

If you omit this parameter, no value is supplied.

OFFSET or 0

Specifies the number of columns to offset your view of the
file on the screen. The number can be an integer from 0
through 216. The number you specify is added to column
1 and the last column displayed. For example, if the
rightmost column is 80 and you specify an OFFSET value
of 20, the leftmost column becomes 21 and the rightmost
column becomes 100.

• You can use $OFFSET to return the current OFFSET
value.

• For more information, see the NOSNE File Editor
manual.

• The following example moves the current line to the
bottom of the screen (same as the i#tj@ operation):

align_screen bottom=current

• The following example displays column 51 as the
leftmost column:

alis offset=SO

15-6 NOSNE Commands and Functions Revision G

BREAK_ TEXT

BREAK_ TEXT
EDIF Subcommand

Purpose

Format

Breaks a line at a specific point in the line to make one
line into two lines.

BREAK_TEXT or
BRET or
B

LINES= lines or keyword
COLUMN= integer or keyword
STATUS =status variable

Parameters LINES or LINE or L

Remarks

Identifies the line to be broken. Values can be an integer,
line identifier, or one of the keywords: CURRENT, FIRST,
FIRST_MARK, FIRST_SCREEN, LAST, LAST_MARK,
LAST_SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

COLUMN or C

Specifies the column before which the break is to occur.
In other words, the break occurs just before the column
specified. Values can be an integer from 1 through 256,
or one of the keywords: CURRENT, FIRST_MARK,
LAST_MARK, MAXIMUM.

If omitted, CURRENT is assumed.

For more information, see the NOSNE File Editor
manual.

CENTER_LINES
EDIF Subcommand

Purpose

Format

Revision G

Centers a line or lines between margins set with the
SET_PARAGRAPH_MARGINS subcommand.

CENTER_LINES or
CENTER_LINE or
CENL

NUMBER= integer or keyword
LINES= range of lines or keyword
STATUS= status variable

EDIT_FILE 15-7

CLEAR_ TABS

Parameters NUMBER or N

Remarks

Examples

Specifies the number of lines to be centered.

If you omit this parameter and specify a range for the
LINE parameter, NUMBER assumes a value of ALL.

If you omit this parameter without specifying a range of
lines, NUMBER assumes a value of 1.

If NUMBER and LINES are both omitted, CURRENT is
assumed.

LINES or LINE or L

Specifies a range of lines to be centered.

If one line is specified, the centering is limited to that
line. Values can be an integer, line identifier, or one of
the keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN.
MARK, SCREEN.

If LINES is omitted, the lines to be centered are
determined by the NUMBER parameter. If LINES and
NUMBER are both omitted, CURRENT is assumed.

For more information, see the NOSNE File Editor
manual.

• The following example centers the next five lines.

center_lines number=5

• The following example centers all lines between lines
15 and 23.

cenl line=15 .. 23

CLEAR_ TABS
EDIF Subcommand

Purpose

Format

Deletes all or some of the tab columns.

CLEAR_TABS or
CLEAR_TAB or
CLET

TAB_COLUMN=list of range of integer or keyword
STATUS= status variable

15-8 NOS/VE Commands and Functions Revision G

COPY_ TEXT

Parameters TAB_COLUMN or TAB_COLUMNS or TC

Remarks

Examples

Specifies the columns to delete as tab columns. Values
can be the keyword ALL or a list of a range of integers
from 1 through 256.

If TAB_COLUMN is omitted, all tabs are cleared.

For more information, se·e the NOSNE File Editor
manual.

The following CLEAR_ TAB subcommand clears columns 7
and 65 as tab columns:

clear_tab tab_column=(7,65)

COPY_TEXT
EDIF Subcommand

Purpose

Format

Copies a block of text from one place to ·another within
your working files.

COPY_ TEXT or
COPT or
c

TEXT= range of string
NUMBER= integer or keyword
LINES= range of lines or keyword
COLUMNS=range of integer or keyword
INSERTION _LOCATION= lines or keyword
INSERTION_COLUMN=integer or keyword
PLACEMENT =keyword
BOUNDARY= keyword
UPPER_ CASE= boolean
WORD= boolean
REPEAT _SEARCH= boolean
STATUS= status variable

Parameters TEXT or T

Revision G

Specifies strings of text in the first and last lines of a
block of text to be copied. If you enter only one string,
the block of text to be copied will contain only one line. If
you enter two strings, the search for the second begins
immediately after the first is found.

EDIT_FILE 15-9

COPY_ TEXT

If TEXT is specified, the INSERTION_ COLUMN and
BOUNDARY parameters are ignored and line boundaries
are used.

If omitted, the lines to be copied will be determined by
the NUMBER and LINES parameters or the REPEAT_
SEARCH parameter.

NUMBER or N

Specifies the number of blocks of text to be copied. Values
for this parameter can be numbers or the keyword ALL
(A).

If omitted and a range is specified for the LINES
parameter, NUMBER assumes a value of ALL. Otherwise
the assumed value is 1.

LINES or LINE or L

Specifies the range of lines to be searched for the text to
be copied. If a single value is specified, only that line is
searched. Values can be an integer, line identifier, or one
of the keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN.

If omitted, CURRENT .. LAST is assumed.

COLUMNS or COLUMN or C

Specifies the range of columns to be searched for text to
be copied. The integers can be from 1 through 256 or any
of the keywords: CURRENT, FIRST_MARK, LAST_
MARK, MARK, MAXIMUM ..

If omitted, CURRENT is assumed. If omitted and you
have specified LINE= MARK, the marked lines provide
the column boundaries. If COLUMN is omitted and you
have specified a LINE parameter other than MARK, all
columns will be searched.

INSERTION _LOCATION or IL

Specifies the line before or after which the text is to be
copied (depending on the value of the PLACEMENT
parameter). Values can be an integer, line identifier, or
one of the LINE- keywords: CURRENT, FIRST, FIRST_
MAR~, FIRST_SCREEN, LAST, LAST_MARK, LAST_
SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

15-10 NOS/VE Commands and Functions Revision G

Revision G

COPY_ TEXT

INSERTION_COLUMN or IC

Specifies the column before or after which the text is to
be copied (depending on the value of the PLACEMENT
parameter). Values can be an integer from 1 through 256,
or any of the COLUMN keywords: CURRENT, FIRST_
MARK, LAST_MARK, MAXIMUM. Ranges are not
allowed.

If omitted, CURRENT is assumed.

If a value for TEXT is specified, INSERTION_COLUMN
is ignored.

PLACEMENT or P

Specifies if the copied lines are to appear BEFORE (B) or
AFTER (A) the location specified by the INSERTION_
LOCATION parameter.

If omitted, AFTER is assumed.

BOUNDAR.Y or B

Specifies the type of boundary that will limit the search.
Values can be LINE or STREAM.

If BOUNDARY and COLUMNS are both omitted, LINE is
assumed.

If BOUNDARY is omitted but COLUMNS is specified,
STREAM is assumed.

If a value for TEXT is specified, BOUNDARY is ignored;
line boundaries are used.

UPPER_CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
UPPER_ CASE is used. .

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

EDIT_FILE 15-11

$CURRENT_ COLUMN

Remarks

Examples

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used.

REPEAT_SEARCHorRS
Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

For more information, see .the NOSNE File Editor
manual.

• The following copies lines 30 through 40 to
immediately after the current line:

copy_text 1ine=30 .. 40

• The following copies the next occurrence of a block of
text beginning with the line containing one and ending
with the line containing five to immediately before line
71:

capt text='one' .. 'five' insertion_location=71 ..
placement=backward

$CURRENT_ COLUMN
EDIF Function

Purpose Returns the value of the current column number.

Format $CURRENT_COLUMN or
$CC

Parameters None.

15-12 NOS/VE Commands and Functions Revision G

Remarks

$CURRENT_DECK

o If the POSITION_CURSOR subcommand is used to
specify a column on a row that is not part of the file
text, the value returned is the column at which the
cursor was positioned before the POSITION_ CURSOR
subcommand was entered.

• For more information, see the NOSNE File Editor
manual.

$CURRENT_DECK
EDIF Function

Purpose Returns a string specifying the current deck's name (for
editing decks only).

Format $CURRENT_DECK or
$CD

Parameters None.

Remarks • You can also use the $CURRENT_ OBJECT function
for this purpose.

• All letters in the string are uppercase, even if the
name was originally entered using lowercase letters.

• For more information, see the NOSNE File Editor
manual.

$CURRENT _LINE
EDIF Function

Purpose Returns an integer specifying the current line number.

Format $CURRENT_LINE or
$CL

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

Revision G EDIT_FILE 15-13

$CURRENT_ OBJECT

Examples The following statements assign variable LAST_LINE an
integer value reflecting the number of lines in a file or
deck:

position_cursor l=last
last_line = $current_line

$CURRENT_ OBJECT
EDIF Function

Purpose Returns a string identifying the current file name or deck
name.

Format $CURRENT_OBJECT or
$CO

Parameters None.

Remarks • You can use the $CURRENT_OBJECT_TYPE function

Examples

to determine if the string is a file name or a deck
name.

• For more information, see the NOSNE File Editor
manual.

The following procedure rewrites the current file, or if
you are editing a deck or a local file, the procedure places
a copy of the deck or file in the catalog $USER.SAVE_
EDITOR_FILES. This catalog must be present in your
$USER catalog.

PROC checkpoint_file, chef (status)

IF $file($fname($co), permanent) THEN
write_file f=$fname($co)

ELSE
write_file f=$fname('$user.save_editor_files.'// ..

$path($fname($co), last))
I FEND

PROCEND checkpoint_file

15-14 NOSNE Commands and Fll;Ilctions Revision G

$CURRENT_OBJECT_TYPE
EDIF Function

$CURRENT OBJECT TYPE - -

Purpose Returns a string identifying the current object being
edited. Possible values are FILE, DECK, or NULL.

Format $CURRENT_ OBJECT_ TYPE or
$COT

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$CURRENT_ROW
EDIF Function

Purpose Returns an integer identifying the row on the screen
where the cursor is positioned (as opposed to the current
line number of a file).

Format $CURRENT_ROW or
$CR

Parameters None.

Remarks • Zero is returned if the current row is not within
screen boundaries or if you are in line mode.

• For more information, see the NOSNE File Editor
manual.

$CURRENT _SPLIT
EDIF Function

Purpose Returns an integer specifying the split of the screen in
which the cursor is positioned.

Format $CURRENT_SPLIT or
$CS

Parameters None.

Revision G EDIT_FILE 15-15

$CURRENT_ WORD

Remarks • If you are in line mode, zero is returned.

• Values returned can be from 1 through 16. The top
split of the screen is 1, the next lower is 2, and so on.

• For more information, see the NOSNE File Editor
manual.

$CURRENT_ WORD
EDIF Function

Purpose Returns the current word as a string.

Format $CURRENT_ WORD or
$CW

Parameters None.

Remarks • This function is particularly useful when supplied as

Examples

the value for the TEXT parameter for the LOCATE_
TEXT and REPLACE_ TEXT subcommands.

• For more information, see the NOSNE File Editor
manual.

• The following example converts the characters in the
current word to lower case:

replace_text t=$cw ..
nt=$translate(upper_to_lower,$cw)

• If the current word is a deck name, you can edit that
deck by entering the following command:

edit_deck d=$name($cw)

• If the current word is a command name, you can
display information about that command by entering
the following command:

include_cornnand ..
c='display_cornnand_information c='//$cw

15-16 NOS/VE Commands and Functions Revision G

$CURRENT_ WORD_COLUMN

$CURRENT_WORD_COLUMN
EDIF Function

Purpose Returns an integer specifying the column in which the
current word begins.

Format $CURRENT_ WORD_COLUMN or
$CWC

Parameters None.

Remarks Fo:r;- more information, see the NOSNE File Editor
manual.

Examples The following marks the current word:

mark_character c=$cwc .. $strlen($cw)+$cwc-1

DEACTIVATE_SCREEN
EDIF Subcommand

Purpose

Format

Remarks

Revision G

Stops screen mode without stopping the editor.

DEACTIVATE_SCREEN or
DEAS

STATUS= status variable

• When you enter this subcommand, the screen is
cleared and the line mode prompt appears:

ef /

o Use DEACTIVATE_SCREEN to enter line mode
commands that must be continued over more than one
input line.

• For more information, see the NOSNE File Editor
manual.

EDIT_FILE 15-17

DELETE_CHARACTERS

DELETE_CHARACTERS
EDIF Subcommand

Purpose

Format

Enables you to delete characters.

DELETE_CHARACTERSor
DELC or
DELETE_CHARACTER or
DC

NUMBER= integer or keyword
LINES= lines or keyword
COLUMNS= range of integer or keyword
STATUS= status variable

Parameters NUMBER or N

Remarks

Examples

Specifies the number of characters to be deleted. Values
may be an integer or the keyword ALL.

If you omit this parameter without specifying LINE or
COLUMN, a value of 1 is assumed.

If you ~mit this parameter and specify a range for
COLUMN, ALL is assumed.

LINES or LINE or L

Specifies the line in which characters will be deleted.
Values can be an integer, line identifier, or any of the
keywords: CURRENT, FIRST, FIRST_MARK, FIRST_
SCREEN, LAST, LAST_MARK, LAST_SCREEN. Ranges
are not allowed.

If omitted, CURRENT is assumed.

COLUMNS or COLUMN or C

Specifies the columns to be deleted within the specified
line(s). Values can be an integer from 1 through 256, or
one of the keywords: CURRENT, FIRST_MARK, LAST_
MARK,MAXIMUM.

If omitted, CURRENT is assumed.

For more information, see the NOS/VE File Editor
manual.

The following deletes the characters in columns 1 through
17 of the current line. ·

delete_characters columns=(1 .. 17)

15-18 NOS/VE Commands and Functions Revision G

DELETE_EMPTY_LINES

DELETE _EMPTY _LINES
EDIF Subcommand

Purpose

Format

Deletes a block of blank lines until a nonblank line is
encountered.

DELETE_EMPTY_LINES or
DELETE_EMPTY_LINE or
DELEL

LINES= lines or keyword
STATUS=status variable

Parameters LINES or LINE or L

Remarks

Specifies the line at which the deletion of blank lines is
to begin. Values can be an integer, line identifier, or any
of the keywords: CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN.
Ranges are not allowed.

If the line you specify is not a blank line, nothing
happens.

If LINES is omitted, CURRENT is assumed.

For more information, see the NOS/VE File Editor
manual.

DELETE_LINES
EDIF Subcommand

Purpose

Format

Revision G

Enables you to delete a line or range of lines.

DELETE_LINES or
DELETE_LINE or
DELL

TEXT= range of string
NUMBER= integer or keyword
LINES= range of lines or keyword
UPPER_ CASE= boolean
WORD= boolean
REPEAT _SEARCH= boolean
STATUS =status variable

EDIT_FILE 15-19

DELETE_LINES

Parameters TEXT or T

Specifies a block of text to be deleted, beginning with the
line containing the first string and ending with the line
containing the second string.

If TEXT is omitted, the editor does not supply a value
and the NUMBER and LINE parameters determine which
text will be deleted.

NUMBER or N

Specifies the number of lines to be deleted, or the number
of blocks of text to be deleted depending on the values
you specify for the LINES and TEXT parameter. Values
can be an integer or the keyword ALL.

If you omit this parameter and specify a range for the
LINE parameter, NUMBER assumes a value of ALL.

If you omit this parameter without specifying a range of
lines, NUMBER assumes a value of 1.

LINES or LINE or L

Specifies a range of lines to be deleted. Values can be an
integer, line identifier, or any of the keywords: ALL,
CURRENT, FIRST, FIRST_MARK, FIRST_SCREEN,
LAST, LAST_MARK, LAST_SCREEN, MARK, SCREEN.

If a single integer or keyword is specified, only that line
is deleted.

If LINE= MARK is specified, marked lines are deleted in
their entirety (even if the boundary implied by the mark
is STREAM).

If LINE is omitted, CURRENT .. LAST is assumed.

UPPER_CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches Jor the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
UPPER_ CASE is used.

15-20 NOS/VE Commands and Functions Revision G

Remarks

Examples

DELETE_ TEXT

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you $pecify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used.

REPEAT_SEARCH or RS

Instructs the editor hpw to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the. editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

The following subcommand deletes marked lines.

delete_lines line=mark

DELETE_TEXT
EDIF Subcommand

Purpose

Format

Revision G

Enables you to delete blocks of text.

DELETE_ TEXT or
DELT or
D

TEXT= range of string
NUMBER= integer or keyword
LINES= range of lines or keyword
COLUMNS=range of integer or keyword

EDIT_FILE 15-21

n·ELETE~TEXT

BOUNDAR.Y =keyword
UPPER_CASE=boolean
WORD= boolean
REPEAT _SEAR.CH= boolean
STATUS =status variable

Parameters TEXT or T

Specifies strings of text in the first and last lines of a
block of text to be deleted. If you enter only one string,
the block of text to be deleted will contain only one line.
If you enter two strings, the search for the second begins
immediately after the first is found.

If omitted, the lines to be deleted will be determined by
the NUMBER and LINES parameters or the REPEAT_
SEARCH parameter.

NUMBER or N

Specifies the number of lines to be deleted. Values can be
numbers or the keyword ALL.

If you omit this parameter and specify a range for the
LINE parameter, NUMBER assumes a value of ALL.

If you omit this parameter without specifying a range of
lines, NUMBER assumes a value of 1.

LINES or LINE or L

Specifies a range of lines to be deleted.

If a single value is specified, only that line is deleted.

If omitted, CURRENT .. LAST is assumed.

COLUMNS or COLUMN or C

Specifies the columns to be deleted in the specified lines.

If specified, deletion occurs from the first line and column
to the last line and column.

If omitted, the entire line is deleted.

BOUNDAR.Y or B

Specifies the type of boundary that will limit the search.
Values can be.LINE or STREAM.

If BOUNDARY is omitted, LINE is assumed.

If COLUMN is specified, STREAM is assumed.

15-22 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

DELETE_TEXT

UPPER_CASE or-UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
UPPER_ CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used.

REPEAT_SEARCH or RS

Instructs the editor on how to use the values entered for
the last TEXT, UPPER_CASE, and WORD parameters.

TRUE instructs the editor to use the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them on any subcommand, unless you have
specified values for them on this subcommand.

FALSE instructs the editor to use the parameters entered
with the current DELETE_ TEXT subcommand.

If omitted, FALSE is assumed.

For more information, see the NOS/VE File Editor
manual.

The following deletes all lines from the line containing
first to the line containing last.

delete_text text='first' .. 'last'

EDIT_FILE 15-23

DELETE_ WORD

DELETE_ WORD
EDIF Subcommand

Purpose

Format

Deletes words, blanks, or characters, depending on the
position in the file you specify.

DELETE_ WORD or
DELW or
DW

LINES= lines or keyword
COLUMN=integer or keyword
STATUS =status variable

Parameters LINES or LINE or L

Remarks

Specifies a line in which the deletion is to occur. Values
can be an integer, line identifier, or any of the keywords:
CURRENT, FIRST, FIRST_MARK, FIRST_SCREEN,
LAST, LAST_MARK, LAST_SCREEN. Ranges are not
allowed.

If omitted, CURRENT is assumed.

COLUMN or C

Specifies the column to begin the deletion. Values can be
an integer or any of the keywords: CURRENT, FIRST_
MARK, LAST_MARK, MAXIMUM. Ranges are not
allowed.

If omitted, CURRENT is assumed.

• For the editor, a word is a string of letters, numbers,
or the special characters $, #, @, and _, surrounded
by any other characters. The end of a line or
beginning of a line is also considered a word
boundary.

• If you specify a position that is part of a word, the
entire word is deleted.

• If you specify a position that is a blank character, it
and all following blanks are deleted.

• If you specify a position that is not part of a word or
a blank character, only that character is deleted.

• For more information, see the NOS/VE File Editor
manual.

15-24 NOSNE Commands and Functions Revision G

DISPLAY_COLUMN_NUMBERS

Examples The following deletes . the first word in line 50:

delete_word 11ne=SO column=1

DISPLAY_ COLUMN _NUMBERS
EDIF Subcommand

Purpose

Format

Enables you to list column numbers, which will
temporarily overwrite the specified line.

DISPLAY_COLUMN_NUMBERS or
DISCN

ROWS= integer
STATUS= status variable

Parameters ROWS or ROW or R

Remarks

Examples

Revision G

Specifies which row on the screen is to show the column
numbers.

If omitted, the column numbers temporarily overwrite the
current line.

• The column numbers shown correspond to columns in
the file and not column numbers on the screen.

• If the offset is currently nonzero, it is set to zero.

• For more information, see the NOSNE File Editor
manual.

In screen mode, to display the column numbers on the
third line, position the .cursor on the third line, press
Home, and enter:

display_column_numbers

The following appears:

FIRST LINE
SECOND LINE
123456789A123456789B123456789C1234567890123
FOURTH LINE

EDIT_FILE 15-25

DISPLAY_EDITOR_STATUS

DISPLAY _EDITOR _STATUS
EDIF Subcommand

Purpose

Format

Remarks

Examples

Enables you to check the status of a number of editor
variables including the current tab character, tab columns,
and function key definitions.

DISPLAY_EDITOR_STATUS or
DISES

STATUS= status variable

• The complete command text for each key is not
displayed. For the complete command text, see
Appendix D in the NOSNE File Editor manual.

• For more information, see the NOSNE File Editor
manual.

The following example displays the editor status for an
editing session in screen mode using a CDC 721 terminal:

dises
Press Next/Return for more
Displaying Editor Status

SCU Editor version is 87314
Modification name is EDIT_FILE
Current file is : NVE. scu. TEACH
Line width is 0. Search margins are 1 to 256
Set verify option FALSE. State FALSE. No mas1<; character. Tab character is \
Tab columns are: 1 7 72

Funct ion Keys :
Key Label

Fl Copy
Shift Fl Move

F2 Mark
Shift F2 Unmrk

F3 MrkCh
Shift F3 MrkBx

F4 Locate
Shift F4 LocNxt

F5 Undo
Shift F5

F6 Quit
Shift F6 Exit

F7 LocA 11
Shift F7 Width

F8 Break
Shift F8 Join

F9 SkpEL
Shift F9

FlO Middle
Shift FlO

Commands
copy_text l=m p=b
move_text l=m p=b
mark_ lines
unmark
mark_characters
mark_boxes
locate_text t=$si('Enter search string')
locate_next
undo

end
esv$text=$si('Reply Y to abandon edit session. or N
esv$text=$si('Enter search string'); if esv$text=''
if $o>O then; al is o=O; else; if $noc>80 then; setso
break_text
join_ text
position_cursor l=c c=1+$strlen($1t)

a 1 ign_screen m=c

15-26 NOS/VE Commands and Functions Revision G

DISPLAY_POSITION

dises
Press Next/Return to complete
Displaying Editor Status

Fl 1 Format
Shift Fl 1 Center

F12 lnsWd
Shift F12 DelWd

F13 lnsBI(
Shift F13 DelBI(

F14 Indent
Shift F14 Dedent

F15
Shift F15

F16
Shift F16

format _paragraphs
center_ 1 ines
insert_Characters nt='
de lete_word
insert_empty_ 1 ines p=b n=Sss-4; pas it ion_cursor d=b
delete_empty_ 1 ines
indent_text l=m o=2
indent_text l=m o=-2

DISPLAY_POSITION
EDIF Subcommand

Purpose

Format

Remarks

Examples

Displays the current line number, current column number,
size of the file, and, for screen mode, the line number of
the top and bottom line of the screen on the message line.

DISPLAY_POSITION or
DISP

STATUS =status variable

For more information, see the NOSNE File Editor
manual.

If, in screen mode, you enter:

display_position

A display similar to the following appears:

Current Line:12 Column:10 Size:109 Top:10 Bottom:18

$DISPLAY_ UNPRINTABLE_ CHARACTERS
EDIF Function

Purpose Returns a boolean value indicating whether unprintable
ASCII characters displayed at the terminal are replaced
by their corresponding mnemonic values (TRUE) or not
(FALSE).

Format $DISPLAY_UNPRINTABLE_CHARACTERS or
$DUC

Parameters None.

Revision G EDIT_FILE 15-27

EDIT_FILE

Remarks For further information about functions, see the NOSNE
System Usage manual.

EDIT FILE
EDIF Subcommand

Purpose

Format

Enables you to edit multiple files within the editor.

EDIT_FILE or
EDIF

FILE=file
STATUS =status variable

Parameters FILE or F

Remarks

Examples

Specifies the name of the file you want to edit. If the file
you specify does not exist, a new file is created.The file
must be a sequential file. By default, files created by
NOSNE have this attribute.

The file cannot be an object file.

This parameter is required.

• Unlike the EDIT_FILE command, the EDIT_FILE
subcommand does not have INPUT, OUTPUT, or
PROLOG parameters. Once you are in the editor, you
can specify only another file to edit.

• To edit two files on the same screen, use the SET_
SCREEN_OPTIONS and EDIT_FILE subcommands.

• For more information, see the NOSNE File Editor
manual.

To edit file BERT, after editing another file, enter:

edit_file file=$user.bert

15-28 NOS/VE Commands and Functions Revision G

END

END
EDIF Subcommand

Purpose Stops the editor and closes all edited files.

Format END or
QUIT or
QUI

WRITE _FILE= boolean
STATUS=status variable

Parameters WRITE _FILE or WF

Remarks

Specifies if you want changes to all open files made
permanent.

If FALSE is specified, no changes are made. If omitted,
TRUE is assumed and the changes are permanent.

For more information, see the NOSNE File Editor
manual.

END_FILE
EDIF Subcommand

Purpose

Format

Enables you to close the current file, and continue editing
other files.

END_FILE or
ENDF

WRITE _DECK= boolean
STATUS=status variable

Parameters WRITE_DECK or WD or WRITE_FILE or WF

Specifies whether to make changes to the current file
permanent.

Remarks

Revision G

If FALSE is specified, changes are not made permanent.

If omitted, TRUE is assumed.

• The END_FILE and END_DECK subcommands can
be used interchangeably. (The editor decides on the
appropriate action based on the object type (FILE or
DECK).

• For more information, see the N OSNE File Editor
manual.

EDIT_FILE 15-29

EXCHANGE_POSITION

EXCHANGE _POSITION
EDIF Subcommand

Purpose

Format

Remarks

Saves the current position in the file you are editing and
returns you to a previously saved position.

EXCHANGE_POSITION or
EXCP

STATUS= status variable

• You must save a position with the SAVE_POSITION
subcommand before executing an EXCHANGE_
POSITION subcommand.

• For more information, see the NOSNE File Editor
manual.

EXCHANGE_SCREEN_WIDTH
EDIF Subcommand

Purpose

Format

Remarks

Examples

Alternates between the 80- and 132-column screen
displays, for those terminals that support them.

EXCHANGE_SCREEN _WIDTH or
EXCSW

STATUS= status variable

• To set your column width to a value other than 80 or
132, use the SET_SCREEN _OPTIONS subcommand.

• For more information, see the NOSNE File Editor
manual.

If you are using an 80-column screen, entering

excsw

changes it to a 132-column screen.

15-30 NOS/VE Commands and Functions Revision G

FORMAT_PARAGRAPHS

FORMAT_PARAGRAPHS
EDIF Subcommand

Purpose

Format

Adjusts words or sentences in a paragraph of text to
bring line lengths as close as possible to preset margins.

FORMAT_PARAGRAPHSor
FORMAT_PARAGRAPH or
FORP

NUMBER= integer or keyword
LINES= range of lines or keyword
STATUS= status variable

Parameters NUMBER or N

Remarks

Examples

Revision G

Specifies the number of lines to format starting with
current line and moving forward. If LINE is omitted and
NUMBER is specified, the number of lines in the current
paragraph specified by the NUMBER parameter are
formatted. If both the NUMBER and LINE parameter are
omitted, the current paragraph is assumed.

LINES or LINE or L

Specifies a range of lines to format. If omitted, the
current paragraph is assumed.

• Using this subcommand adds two blanks after periods,
colons, exclamation marks, and question marks.

• A paragraph consists of any group of lines delimited
by empty lines.

• Margins are set using the SET_PARAGRAPH_
MARGINS subcommand.

• If you have not entered the SET_PARAGRAPH_
MARGINS subcommand, the paragraph margins are
set at 1 and 65. The first line is indented four
characters.

• For more information, see the NOSNE File Editor
manual.

The following example adjusts the current line and the 5
subsequent lines to conform to previously set margins.

format_paragraph number=6

EDIT_FILE 15-31

$FUNCTION_ROW

$FUNCTION _ROW
EDIF Function

Purpose Returns an integer specifying the top row in which the
menu of operations is displayed.

Format $FUNCTION _ROW or
$FR

Parameters None.

Remarks • If you are in line mode, zero is returned.

• For more information, see the NOSNE File Editor
manual.

$FUNCTION _SIZE
EDIF Function

Purpose Returns an integer specifying the number of rows on the
screen used by the menu of operations.

Format $FUNCTION _SIZE or
$FS

Parameters None.

Remarks

Examples

• If you are in line mode, zero is returned.

• For more information, see the NOSNE File Editor
manual.

• The following commands display the number of screen
rows required to display a single menu row.

/set_screen_options mr=1
/display_value $function_size
2

• The following command, executed repeatedly, will
display 0, 1, and 2 rows of the menu of operations.

setso mr=$mod($function_size/2+1,3)

15-32 NOS/VE Commands and Functions Revision G

$HOME_ROW

$HOME_ROW
EDIF Function

Purpose Returns an integer specifying the row used for entering
subcommands and responses to the editor.

Format $HOME_ROW or
$HR

Parameters None.

Remarks • If you are in line mode, zero is returned.

• For more information, see the NOSNE File Editor
manual.

INDENT_ TEXT
EDIF Subcommand

Purpose

Format

Inserts blank characters or deletes characters in front of
lines of text.

INDENT_ TEXT or
INDT

OFFSET= integer
NUMBER= integer or keyword
LINES= range of lines or keyword
STATUS =status variable

Parameters OFFSET or 0

Revision G

Specifies the number of columns to indent the specified
block of text.

If positive, that number of blanks are added.

If negative, that number of characters are deleted.

If omitted, 1 is assumed.

NUMBER or N

Specifies the number of lines to be indented.

If you specify a range for the LINES parameter, the
NUMBER parameter assumes a value of ALL.

If no range is specified for the LINES parameter, the
NUMBER parameter assumes a value of 1.

EDIT_FILE 15-33

INSERT_CHARACTERS

Remarks

Examples

LINES or LINE or L

Specifies a range of lines to be indented. Values can be
an integer, line identifier, or one of the keywords: ALL,
CURRENT, FIRST, FIRST_MARK, FIRST_SCREEN,
LAST, LAST_MARK, LAST_SCREEN, MARK, SCREEN.

If no range is specified, range is the current line to the
last line.

For more information, see the NOS/VE File Editor
manual.

• The following example indents all lines five spaces:

indt offset=5 line=all

• The following example deletes the first 7 characters
from lines 25 through the last line:

indent_text offset=-7 1ine=25 .. last

INSERT_CHARACTERS
EDIF Subcommand

Purpose

Format

Inserts a string of characters before a specified location.

INSERT_CHARACTERS or
INSC or
INSERT_CHARACTER or
IC

NEW_ TEXT= string
INSERTION _LOCATION= lines or keyword
INSERTION_ COLUMN= integer or keyword
STATUS =status variable

Parameters NEW_ TEXT or NT

Specifies the text to be inserted. The text must be
enclosed in apostrophes.

If you omit this parameter, one blank character is
inserted.

INSERTION _LOCATION or IL

Specifies the line in which the text is to be inserted.
Values can be an integer, line identifier, or one of the
keywords: CURRENT, FIRST, FIRST_MARK, FIRST_
SCREEN, LAST, LAST_MARK, LAST_SCREEN. Ranges
are not allowed.

15-34 NOS/VE Commands and Functions Revision G

Remarks

Examples

INSERT_EMPTY_LINES

If omitted, the value is the current line.

INSERTION_COLUMN or IC

Specifies the column before which the insertion is to
occur. Values can be an integer from 1 through 256 or
any of the keywords: CURRENT, FIRST_MARK, LAST_
MARK, MAXIMUM. Ranges are not allowed.

If you omit this parameter, the current- column is
assumed.

For more information, see the NOSNE File Editor
manual.

• The following inserts the text Short Comment in front
of the current column on the current line:

insert_characters 'Short C011111ent'

• Using an SCL string variable as the value for the
NEW_ TEXT parameter is an efficient way of inserting
the same text numerous places in a file. For example,
you could initialize a string variable as follows:

a = 'characters to be inserted'

When the cursor is positioned at a point where you
want to insert the text, simply enter the following
command:

insert_characters a

INSERT _EMPTY _LINES
EDIF Subcommand

Purpose

Format

Revision G

Enables you to insert empty lines.

INSERT_EMPTY_LINES or
INSERT_EMPTY_LINE or
INSEL

NUMBER= integer
INSERTION _LOCATION= lines or keyword
PLACEMENT =keyword
STATUS =status variable

EDIT_FILE 15-35

INSERT_LINES

Parameters NUMBER or N

Remarks

Examples

Specifies the number of empty lines to be inserted.

If omitted, 1 is assumed.

INSERTION _LOCATION or IL

Specifies the line before or after which the insertion is to
occur. Values can be an integer, line identifier, or one of
the keywords: CURRENT, FIRST, FIRST_MARK, FIRST_
SCREEN, LAST, LAST_MARK, LAST_SCREEN. Ranges
are not allowed.

If omitted, CURRENT is assumed.

PLACEMENT or P

Specifies whether the insertion is to occur BEFORE(B) or
AFTER(A) the line specified by the INSERTION_
LOCATION parameter.

If omitted, AFTER is assumed.

For more information, see the NOSNE File Editor
manual.

The following inserts 2 empty lines after line 50:

insel number=2 insertion_location=SO

INSERT _LINES
EDIF Subcommand

Purpose

Format

Inserts one or more lines of text.

INSERT_LINES or
INSERT_LINE or
INSL or
I

NEW_ TEXT= string
PLACEMENT= keyword
INSERTION _LOCATION= insertion_location or

keyword
UNTIL= string
STATUS=status variable

15-36 NOS/VE Commands and Functions Revision G

INSERT_LINES

Parameters NEW_ TEXT or NT

Remarks

Examples

Revision G

Specifies the new line of text to be inserted.

If NEW_ TEXT is omitted, the text to be inserted is taken
from the command input file.

PLACEMENT or P

Indicates whether the insertion is to occur BEFORE (B)
or AFTER (A) the location specified by the INSERTION_
LOCATION parameter.

If omitted, AFTER is assumed.

INSERTION _LOCATION or IL

Specifies the line after which or before which the
insertion is to occur. Values can be an integer, line
identifier, or one of the keywords: CURRENT, FIRST,
FIRST_MARK, FIRST_SCREEN, LAST, LAST_MARK,
LAST_SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

UNTIL or U

In line mode, specifies a string that stops the insert.

If the NEW_ TEXT parameter is omitted, you are
prompted to enter input until the editor encounters the
string specified by this parameter at the end of a line.

If the UNTIL parameter is omitted, ** is assumed.

For more information, see the NOSNE File Editor
manual.

• The following inserts the line NEW LINE after the
current line.

insert_lines 'NEW LINE'

• The following inserts the line Insert before the current
line:

insert_lines new_text='Insert' placement=before

• The following inserts the line First line before the first
line of the file.

insl nt='First line' insertion_location=first p=b

EDIT_FILE 15-37

INSERT_ WORD

• The following inserts lines from the command input
file before line 45 until a # character is encountered
as the last character in a line.

i i1=45 p=b until='#'

INSERT_ WORD
EDIF Subcommand

Purpose

Format

Inserts a string or 32 blank characters.

INSERT_ WORD or
INSW or
IW

NEW_ TEXT= string
INSERTION _LOCATION= lines or keyword
INSERTION_ COLUMN= integer or keyword
STATUS= status variable

Parameters NEW_ TEXT or NT

Remarks

Specifies the string to be inserted. The default is 32
blanks.

INSERTION _LOCATION or IL

Specifies the line in which the string is to be inserted.
Values can be an integer, line identifier, or one of the
keywords: CURRENT, FIRST, FIRST_MARK, FIRST_
SCREEN, LAST, LAST_MARK, LAST_SCREEN. Ranges
are not allowed.

If omitted, value is the current line.

INSERTION_COLUMN or IC

Specifies the column before which the insertion is to
occur. Values can he an integer from 1 through 256 or
any of the keywords: CURRENT, FIRST_MARK, LAST_
MARK, MAXIMUM.

If omitted, CURRENT is assumed.

For more information, see the NOSNE File Editor
manual.

15-38 NOS/VE Commands and Functions Revision G

Examples

JOIN_TEXT

o The following inserts the word LINE in front of line
10:

insw new_text='LINE' insertion_location=10
insertion_column=1

• The following inserts 32 blank characters before the
current column of the current line:

insert_word

JOIN_TEXT
EDIF Subcommand

Purpose

Format

Joins a line with the next line by appending the second to
the first.

JOIN_ TEXT or
JOIT or
J

LINES= lines or keyword
COLUMN= integer or keyword
STATUS =status variable

Parameters LINES or LINE or L

Revision G

Specifies the first of two lines to be joined. The next line
is joined to the specified line. Values can be an integer,
line identifier, or one of the keywords: CURRENT, FIRST,
FIRST_MARK, FIRST_SCREEN, LAST, LAST_MARK,
LAST_SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

COLUMN or C

Specifies the starting column to which the second line is
moved. The second line is al ways added after the end of
the first line. The columns parameter determines how far
after the first line the second line is added.

Values can be an integer from 1 through 256 or any of
the keywords: CURRENT, FIRST_MARK, LAST_MARK,
MAXIMUM. Ranges are not allowed.

If the value you specify is less than or equal to the
length of the first line, the line is added to the end of the
first line. If the value you specify is greater than the
length of the first line, the editor fills the columns in
between with blank characters.

EDIT_FILE 15-39

$LINE_IDENTIFIER

If COLUMN is omitted, CURRENT is assumed.

Remarks • If the joined line is longer than 256 characters, the
subcommand is not performed and the editor displays
the following message:

Line length exceeded.

• For more information, see the NOSNE File Editor
manual.

$LINE _IDENTIFIER
EDIF Function

Purpose Returns a string specifying the line identifier of the
current line (for editing decks only).

Format $LINE_ IDENTIFIER or
$LI

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$LINE_TEXT
EDIF Function

Purpose Returns the text of the current line as a string.

Format $LINE_ TEXT or
$LT

Parameters None.

Remarks • One of the uses for this function is in procedures that
operate on lines of a file. You can use the
POSITION_ CURSOR subcommand to move to a line,
and then use the $LINE_ TEXT function to return the
value of the line.

• For more information, see the NOSNE File Editor
manual.

15-40 NOS/VE Commands and Functions Revision G

Examples

LIST_BACKWARDS

o The following adds the string 'append' to the end of
the current line:

replace_line nt=$1t//'append'

• The following expression returns the length of the
current line:

$strlen($1ine_text)

• The following executes the current line:

include_line s1=$1t

LIST _BACKWARDS
EDIF Subcommand

Purpose

Format

In line mode, displays a range of lines ending with the
current line. In effect, it enables you to view a number of
lines just before the current line and end up where you
started.

LIST_BACKWARDS or
LISB or
LIST_BACKWARD or
LB

NUMBER= integer or keyword
STATUS= status variable

Parameters NUMBER or N

Remarks

Examples

Revision G

Specifies the number of lines to list. Values can be
integers or the keyword ALL. ALL lists all lines from the
beginning of the file to the current line.

If NUMBER is omitted, a value of 1 is assumed.

o This subcommand is typically only used in line mode.

• For more information, see the NOSNE File Editor
manual.

The following example lists 15 lines ending with the
current line.

list_backward n=15

EDIT_FILE 15-41

LIST_FORWARDS

LIST _FORWARDS
EDIF Subcommand

Purpose

Format

In line mode, displays a range of lines beginning with the
current line.

LIST_FORWARDS or
LISF or
LIST_FORWARD or
LF

NUMBER= integer or keyword
STATUS= status variable

Parameters NUMBER or N

Remarks

Examples

Specifies the number of lines to list. Values can he
integers or the keyword ALL. ALL lists all lines from the
current line to the end of the file.

If NUMBER is omitted, a value of 1 is assumed.

• This subcommand is typically used only in line mode.

• For more information, see the NOSNE File Editor
manual.

The following example lists 15 lines beginning with the
current line.

list_forward n=15

LIST_LINES
EDIF Subcommand

Purpose

Format

In line mode, lists a specified line or range of lines. In
screen mode, the cursor is positioned at the specified line,
or the last line in the range.

LIST_LINES or
LISL or
LIST_LINE or
LL

LINES= range of lines or keyword
STATUS= status variable

15-42 NOS/VE Commands and Functions Revision G

LOCATE_ALL

Parameters LINES or LINE or L

Remarks

Examples

Specifies the line or range of lines to list. Values can be
an integer, line identifier, or one of the keywords: ALL,
CURRENT, FIRST, FIRST_MARK, FIRST_SCREEN,
LAST, LAST_MARK, LAST_SCREEN, MARK, SCREEN.

If LINE is omitted, CURRENT is assumed.

For more information, see the NOSNE File Editor
manual.

The following example lists lines 25 through 40.

1 i st_ 1 i nes 1 =25 .. 40

LOCATE_ALL
EDIF Subcommand

Purpose

Format

Searches the entire file to locate all occurrences of a
specified string. In screen mode, all occurrences are then
listed in a directory enabling you to either position the
cursor at a specific line or enter the desired line number.
In line mode, all occurrences are listed and you are
positioned at the last occurrence of the string.

LOCATE_ALL or
LOCA or
LA

TEXT= range of string
STATUS=status variable

Parameters TEXT or T

Remarks

Examples

Revision G

Specifies the text string you want to find. If omitted, the
last text string specified is assumed, if any.

For more information, see the NOSNE File Editor
manual.

The following example locates all occurrences of the
string, find this text, in the file and lists them.

locate_all text='find this text'

EDIT_FILE 15-43

LOCATE_EMPTY_LINES

LOCATE _EMPTY _LINES
EDIF Subcommand

Purpose

Format

Finds empty lines. An empty line is a line of all blank
characters.

LOCATE_EMPTY_LINES or
LOCATE_EMPTY_LINE or
LOCEL

NUMBER= integer or keyword
LINES== range of lines or keyword
DIRECTION= keyword
VETO= boolean
STATUS= status variable

Parameters NUMBER or N

Specifies the number of empty lines to find. Values can be
numbers or the keyword ALL.

If a LINE parameter is specified, NUMBER assumes a
value of ALL.

If no LINE parameter is specified, NUMBER assumes a
value of 1.

LINES or LINE or L

Specifies a range of lines to search.

Values can be an integer, line identifier, or one of the
keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN. If you specify a value of only one line,
the search is limited to that line.

If you omit LINE and specify BACKWARD for the
DIRECTION parameter, CURRENT .. FIRST is assumed.

If both LINE and DIRECTION are omitted,
CURRENT .. LAST is assumed.

DIRECTION or D

Specifies whether to search FORWARD (F) or
BACKWARD (B) from the current line.

If no value is specified, FORWARD is assumed.

15-44 NOS/VE Commands and Functions Revision G

Remarks

Examples

LOCATE_NEXT

VETO or V

Instructs the editor to turn the veto option on or off.

If TRUE is specified, the editor displays a directory of
located line~. ·

If VETO is omitted, FALSE is assumed.

For more information, see the NOS/VE File Editor
manual.

o The following positions the cursor to the fifth empty
line:

locate_empty_lines number=S

• The following positions the cursor to the last empty
line:

locel 1ine=20 .. 40

• The following positions the cursor to the tenth empty
line in the marked text:

locel number=lO line=mark

LOCATE_NEXT
EDIF Subcommand

Purpose

Format

Remarks

Revision G

Locates the next occurrence of a previously specified
string. The search begins one column after the current
column.

LOCATE_NEXT or
LOCN or
LN

STATUS= status variable

For more information, see the NOS/VE File Editor
manual.

EDIT_FILE 15-45

LOCATE_STRING

LOCATE_STRING
EDIF Subcommand

Purpose

Format

Beginning at the current line and column, it searches for
the specified string.

LOCATE_STRING or
LOCS or
LS

TEXT= range of string
STATUS =status variable

Parameters TEXT or T

Remarks

Examples

Specifies strings of text in the first and last lines of a
block of text to be located. If you enter only one string,
the block of text to be located will contain only one line.
If you enter two strings, the search for the second begins
immediately after the first is found and the cursor is
positioned at the beginning of the first string.

If omitted, the last string parameter specified, if any, is
used.

• This subcommand is typically only used in line mode.

• For more information, see the NOS/VE File Editor
manual.

The following example locates the string work now:

locate_string 'work now'

LOCATE_TEXT
EDIF Subcommand

Purpose

Format

Locates blocks of text.

LOCATE_ TEXT or
LOCT or
L

TEXT= range of string
NUMBER= integer or keyword
LINES= range of lines or keyword
COLUMNS =range of integer or keyword
BOUNDARY=keyword
DIRECTION= keyword

15-46 NOS/VE Commands and Functions Revision G

UPPER_ CASE= boolean
WORD= boolean
REPEAT _SEARCH= boolean
VETO= boolean
STATUS =status variable

LOCATE_ TEXT

Parameters TEXT or T

Revision G

Specifies strings of text in the first and last lines of a
block of text to be located. If you enter only one string,
the block of text to be located will contain only one line.
If you enter two strings, the search for the second begins
immediately after the first is found and the cursor is
positioned at the beginning of the first string.

If TEXT is omitted, the lines to be located will be
determined by the NUMBER, LINE, and DIRECTION
parameters.

NUMBER or N

Specifies the number of blocks of text to be found. Values
for this parameter can be an integer or the keyword
ALL(A).

In line mode, use the NUMBER parameter to display a
range of lines.

If you specify a range of values for the LINE parameter,
NUMBER assumes a value of ALL.

If no range is specified for the LINE parameter,
NUMBER assumes a value of 1.

LINES or LINE or L

Specifies a range of lines to be searched.

Values can be an integer, line identifier, or any of the
keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN. If one line is specified, the search is
limited to that line.

In line mode, use the LINE parameter to specify which
lines to print.

If you omit LINE and specify BACKWARD for the
DIRECTION parameter, CURRENT .. FIRST is assumed.

If LINE and DIRECTION are both omitted,
CURRENT .. LAST is assumed.

EDIT_FILE 15-47

LOCATE_ TEXT

COLUMNS or COLUMN or C

Specifies the range of columns to search. Values can be
an integer from 1 through 256 or any of the keywords:
CURRENT, FIRST_MARK, LAST_MARK, MARK,
MAXIMUM.

If omitted, CURRENT is assumed. If omitted and you
have specified LINE= MARK, the marked lines provide
the column boundaries. If COLUMN is omitted and you
have specified a LINE parameter other than MARK, all
columns will be searched.

BOUND.AR.¥ or B

Specifies the type of boundary that will limit the search.
Values can be LINE or STREAM.

If COLUMNS is specified and BOUNDARY is omitted,
STREAM is assumed.

If both BOUNDARY and COLUMNS are omitted, LINE is
assumed.

DIRECTION or D

Specifies whether to search FORWARD (F) or
BACKWARD (B) from the current line.

If no value is specified, FORWARD is assumed.

UPPER_CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
UPPER_ CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

15-48 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

LOCATE_ TEXT

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used.

REPEAT_SEARCHorRS
Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

VETO or V

Instructs the editor to turn the veto option on or off.

If TRUE is specified, the editor displays a directory of
located lines.

If VETO is omitted, FALSE is assumed.

For more information, see the NOS/VE File Editor
manual.

• The following example locates the next occurrence of
PROCEND:
locate_text 'PROCEND'

• The following example locates the previous occurrence
of TITLE:

locate_text 'TITLE' direction=backward

• The following example positions the cursor on line 250
of the current file or deck:

loct line=250

• The following example locates the string you last
specified as a value for the TEXT parameter:

loct repeat_search=true

EDIT_FILE 15-49

LOCATE_WIDE_LINES

• The following example locates all occurrences of
PARAMETER from the current position to the end of
the file and displays the lines in a directory-type
display:

1 'PARAMETER' number=all veto=true

• The following example locates the next block of text
beginning with one and ending with twenty:

1 'one' .. 'twenty'

• The following example prints the current line and four
subsequent lines in line mode. In screen mode, the
cursor is positioned four lines forward:

1 n=S

• The following example displays a directory of each
occurrence of the word MISPELL regardless of case:

1 'mispell' l=a uc=true v=true

LOCATE_ WIDE _LINES
EDIF Subcommand

Purpose

Format

Locates lines that are wider than the margins set by the
SET_LINE_ WIDTH subcommand.

LOCATE_ WIDE_LINES or
LOCATE_WIDE_LINE or
LOCWL

NUMBER= integer or keyword
LINES= range of lines or keyword
DIRECTION= keyword
VETO= boolean
STATUS =status variable

Parameters NUMBER or N

Specifies the number of wide lines to be found. Values for
this parameter can be an integer or the keyword ALL(A).

If a LINES parameter is specified, NUMBER assumes a
value of ALL. Otherwise, the assumed value for NUMBER
is 1.

15-50 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

LOCATE_ WIDE_LINES

LINES or LINE or L

Specifies a range of lines to be searched. Values can be
an integer, line identifier, or one of the keywords: ALL,
CURRENT, FIRST, FIRST_MARK, FIRST_SCREEN,
LAST, LAST_MARK, LAST_SCREEN, MARK, SCREEN.
If you specify a value for only one line, the search is
limited to that line.

If LINE and DIRECTION are omitted, CURRENT .. LAST
is assumed. If you omit LINE and specify BACKWARD
for the DIRECTION parameter, CURRENT .. FIRST is
assumed.

DIRECTION or D

Specifies whether to search FORWARD (F) or
BACKWARD (B) from the current line.

If omitted, FORWARD is assumed.

VETO or V

Instructs the editor to turn the veto option on or off.

If TRUE is specified, the editor displays a directory of
located lines.

If VETO is omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

• The following locates the first wide line in the file:

locate_wide_lines number=1 lines=all

• The following locates the next wide line starting at
the current line:

locwl

• The following locates and displays a directory of all
wide lines between the top line of the current screen
and the last line of the file:

locwl line=first_screen .. last veto=true

EDIT_FILE 15-51

MARK_BOXES

MARK_BOXES
EDIF Subcommand

Purpose

Format

Marks a rectangular area of text.

MARK_BOXES or
MARB or
MARK_BOX or
MB

LINES= range of lines or keyword
COLUMNS= range of integer or keyword
STATUS= status variable

Parameters LINES or LINE or L

Remarks

Specifies the lines in which the corners of the box reside.
Values can be an integer, line identifier, or one of the
keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN.

If omitted, CURRENT is assumed.

COLUMNS or COLUMN or C

Specifies the columns in which the corners of the box
reside. Values can be any integer from 1 through 256 or
any of the keywords: CURRENT, FIRST_MARK, LAST_
MARK, MARK, MAXIMUM.

If omitted, CURRENT is assumed.

• Currently, the only operations supported for MARK_
BOX are the following functions:

$MARK_FIRST_COLUMN .
$MARK_FIRST_LINE
$MARK_ LAST_ COLUMN
$MARK_ LAST_ LINE
$MARK_ TYPE (returns a value of BOX)

These allow you to implement your own SCL
procedures to operate on the rectangular area of text.
None of the CDC-supplied editor subcommands support
box marks.

• For more information, see the NOSNE File Editor
manual.

15-52 NOS/VE Commands and Functions Revision G

Examples

Revision G

MARK_BOXES

e An example procedure called MOVE_BOX that moves
a marked box can be found in the online Examples
manual.

o The following example marks a box 5 lines by 1
column; the marked area will cover lines 4 through 8
at column 12:

mark_box 1ines=4 .. B column=12

• To mark a box with dimensions 5 lines by 3 columns,
enter:

mark_box 1ines=2 .. 6 columns=3 .. 5

The marked area covers lines 2, 3, 4, 5, and 6 at
columns 3, 4, and 5 in each line as illustrated below:

1 2 3 4 5 6 7 8

1 xxxxxxxx
2 x x XtK/X. x x x
3 x x :X\~)X x x x
4 x x :xt~?X. x x x
5 x x :i.J~:tt x x x
6 x x :i.t~Yt x x x
7 xxxxxxxx

The same results can be achieved by positioning the
cursor to the upper left corner of the intended box
(line 2, column 3), entering the MARK_BOX
subcommand, then positioning the cursor to the lower
right corner of the intended box, (line 6, column 5)
and entering the MARK_BOX subcommand.

EDIT_FILE 15-53

MARK_ CHARACTERS

• The following procedure deletes a marked box:

PROC delete_box, db (
status : var of status= $optional)
IF $mark_type <> 'BOX' THEN

put_row 'No box has been marked.' r=$mr
EXIT_PROC

I FEND
FOR box_line=$mark_first_line

TO $mark_last_line DO
delete_text line=box_line ..

column=$mark_first_column .. $mark_last_column
FORE ND
unmark

PROCEND delete_box

MARK_CHARACTERS
EDIF Subcommand

Purpose

Format

Marks specific characters. These marks specify the
boundary for text that is to be processed later by
subcommands that insert, delete, move, copy, and replace
text.

MARK_CHARACTERSor
MARC or
MARK_CHARACTER or
MC

LINES= range of lines or keyword
COLUMNS= range of integer or keyword
STATUS=status variable

Parameters LINES or LINE or L

Specifies the lines in which the marked characters reside.

If LINES is omitted, CURRENT is assumed.

COLUMNS or COLUMN or C

Specifies the columns to be marked within the specified
line(s). Values can be any integer from 1 through 256 or
any of the keywords: CURRENT, FIRST_MARK, LAST_
MARK, MARK, MAXIMUM.

If COLUMN is omitted, CURRENT is assumed.

15-54 NOSNE Commands and Fw1ctions Revision G

Remarks

Examples

MARK_ CHARACTERS

• If a character is specified, only that character is
marked. If a single character is specified and another
single character is already marked, the characters
between the two will become marked. If a range is
specified, the entire range is marked and any other
marks are unmarked.

• Even though you can mark a range of characters by
entering two MARK_ CHARACTER subcommands, if
you mark one character and then reference the mark
in another editing operation such as inserting or
copying, the editor assumes the marking operation is
complete. Then, when you mark a second character,
the editor starts another marking operation; the first
character is unmarked, and the second marked.

• The following functions can be used to determine the
location and type of the marked region.

$MARK_ FIRST_ COLUMN
$MARK_ FIRST_ LINE
$MARK_ LAST_ COLUMN
$MARK_ LAST_LINE
$MARK_ TYPE (returns a value of STREAM)

• For more information, see the NOSNE File Editor
manual.

• The following marks column 30 of line 40 through
column 30 of line 50:

mark_character 1ine=40 .. 50 column=30

• The following marks columns 7 through 10 of the
current line:

mark_character column=7 .. 10

• To mark column 5 of line 2 through column 3 of line
5, enter:

mark_character 1ines=2 .. 5 columns=S .. 3

The marked area covers column 5 of line 2 through
column 3 of line 5 as illustrated below:

12345678 ...

1 xxxxxxxx
2 x x x x iit~<iFi

Revision G EDIT_FILE 15-55

$MARK FIRST COLUMN - -

3
4
5
6
7

:x·:x..··x•••X•:::x.:x•·ac x
=x:. :x/x<X=:x.·:=~1('.:Jc
x::xx xx xx x
xxxxxxxx
xxxxxxxx

The same results can be achieved by positioning the
cursor to the first character to be marked (line 2,
column 5), entering the MARK_CHARACTER
subcommand, then positioning the cursor to the last
character to be marked (line 5, column 3) and entering
the .MARK_CHARACTER subcommand.

$MARK_FIRST _COLUMN
EDIF Function

Purpose Returns an integer specifying the column number of the
first marked column.

Format $MARK_FIRST_COLUMN or
$MFC

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$MARK_FIRST _LINE
EDIF Function

Purpose Returns an integer specifying the line number of the first
marked line.

Format $MARK_FIRST_LINE or
$MFL

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

15-56 NOS/VE· Commands and Functions Revision G

$MARK LAST COLUMN - -

$MARK_LAST_COLUMN
EDIF Function

Purpose Returns an integer specifying the column number of the
last marked column.

Format $MARK_LAST_COLUMN or
$MLC

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$MARK_LAST_LINE
EDIF Function

Purpose Returns an integer specifying the line number of the last
marked line.

Format $MARK_LAST_LINE or
$MLL

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

Examples The following statements write marked lines to file
$LOCAL.SCR1. If no lines (or one line) are marked, all
lines are written to the file.

Revision G

11nes_to_write = 'all'
IF $mark_first_line<>$mark_last_line THEN

lines_to_write = 'mark'
I FEND
write_file f=$1ocal.scr1 l=lines_to_write

EDIT_FILE 15-57

MARK_LINES

MARK_LINES
EDIF Subcommand

Purpose

Format

Marks a line to be processed later.

MARK_LINES or
MARK_LINE or
MARL or
ML

LINES= range of lines or keyword
STATUS= status variable

Parameters LINES or LINE or L

Remarks

Specifies a line or range of lines to be marked. Marked
text can be processed by subcommands that insert, delete,
move, copy, and replace text. Values can be an integer,
line identifier, or one of the keywords: ALL, CURRENT,
FIRST, FIRST_MARK, FIRST_SCREEN, LAST, LAST_
MARK, LAST_SCREEN, MARK, SCREEN.

If LINE is omitted, the current line is assumed.

• If a line is specified, only that line is marked. If a
single line is specified and another single line is
already marked, the lines between the two will become
marked. If a range is specified, the entire range is
marked and any other marks are unmarked.

• Even though you can mark a range of lines by
entering two MARK_LINES subcommands, if you
mark one line and then reference the mark in another
editing operation such as inserting. or copying, the
editor assumes the marking operation is complete.
Then, when you mark a second line, the editor starts
another marking operation; the first line is unmarked,
and the second marked.

• The following functions can be used to determine the
location and type of the marked region.

$MARK_FIRST_LINE
$MARK_LAST_LINE
$MARK_ TYPE (returns a value of LINES)

• For more information, see the NOS/VE File Editor
manual.

15-58 NOSNE Commands and Functions Revision G

$MARK_ OBJECT
EDIF Function

$MARK_ OBJECT

Purpose Returns a string specifying the name of the current file
or deck containing the marked text.

Format $MARK_OBJECT or
$MO

Parameters None.

Remarks • Use the $MARK_ OBJECT_ TYPE function to
determine if the object is a file or a deck.

• For more information, see the NOSNE File Editor
manual.

$MARK_OBJECT_TYPE
EDIF Function

Purpose Returns a string specifying if the marked text is in a file
or a deck. Values returned can be FILE, DECK, or
NULL.

Format $MARK_OBJECT_TYPE or
$MOT

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$MARK_ TYPE
EDIF Function

Purpose Returns a value indicating whether the marked region is
bounded by lines, bounded by characters, or is a box.
Values returned can be LINES (line boundary), STREAM
(character boundary), or BOX.

Format $MARK_ TYPE or
$MT

Parameters None.

Revision G EDIT_FILE 15-59

$MESSAGE_ROW

Remarks For more information, see the NOSNE File Editor
manual.

$MESSAGE_ROW
EDIF Function

Purpose Returns an integer specifying the number of the row on
the screen used to display messages.

Format $MESSAGE_ROW or
$MR

Parameters None.

Remarks • If you are in line mode, zero is returned.

• This function is often used as the value for the ROW
parameter on the PUT_ROW subcommand.

• For more information, see the NOSNE File Editor
manual.

MOVE_TEXT
EDIF Subcommand

Purpose

Format

Moves a block of text from one place to another in the
same file.

MOVE_TEXT or
MOVT or
M

TEXT= range of string
NUMBER= integer or keyword
LINES= range of lines or keyword
COLUMNS=range of integer or keyword
INSERTION _LOCATION= lines or keyword
INSERTION_COLUMN=integer or keyword
PLACEMENT= keyword
BOUNDARY=keyword
UPPER_ CASE= boolean
WORD= boolean
REPEAT _SEARCH= boolean
STATUS= status variable

15-60 NOS/VE Commands and Functions Revision· G

MOVE_ TEXT

Parameters TEXT or T

Revision G

Specifies string(s) of text in the first and last lines of a
block of text to be moved. If you enter only one string,
the block of text to be moved will contain only one line.
If you enter two strings, the search for the second begins
immediately after the first is found.

If TEXT is specified, the INSERTION_ COLUMNS and
BOUNDARY parameters are ignored and line boundaries
are used.

If omitted, the lines to be copied will be determined by
the NUMBER and LINES parameters or the REPEAT_
SEARCH parameter.

NUMBER or N

Specifies the number of blocks of text to be moved.
Values for this parameter can be numbers or the keyword
ALL (A).

If omitted and a range is specified for the LINES
parameter, this parameter assumes a value of ALL.
Otherwise, the assumed value is 1.

LINES or LINE or L

Specifies the range of lines to be searched for the text to
be moved. If a single value is specified, only that line is
searched. Values can be an integer, line identifier, or one
of the keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN.

If omitted, CURRENT .. LAST is assumed.

COLUMNS or COLUMN or C

Specifies the range of columns to be searched for text to
be moved. The integers can be from 1 through 256 or any
of the keywords: CURRENT, FIRST_MARK, LAST_
MARK, MARK, MAXIMUM.

If omitted, CURRENT is assumed. If omitted and you
have specified LINE= MARK, the marked lines provide
the column boundaries. If COLUMN is omitted and you
have specified a LINE parameter other than MARK, all
columns will be searched.

EDIT_FILE 15-61

MOVE_ TEXT

INSERTION _LOCATION or IL

Specifies the line before or after which the text is to be
moved (depending on the value of the PLACEMENT
parameter). Values can be an integer, line identifier, or
one of the LINE keywords: CURRENT, FIRST, FIRST_
MARK, FIRST_SCREEN, LAST, LAST_MARK, LAST_
SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

INSERTION_COLUMN or IC

Specifies the column before or after which the text is to
be moved (depending on the value of the PLACEMENT
parameter). Values can be an integer from 1 through 256,
or any of the COLUMN keywords: CURRENT, FIRST_
MARK, LAST_MARK, MAXIMUM. Ranges are not
allowed.

If omitted, CURRENT is assumed.

If a value for TEXT is specified, INSERTION_COLUMN
is ignored.

PLACEMENT or P

Specifies if the moved lines are to appear BEFORE (B) or
AFTER (A) the location specified by the INSERTION_
LOCATION parameter.

If omitted, AFTER is assumed.

BOUNDAR.Y or B

Specifies the type of boundary that will limit the search.
Values can be LINE or STREAM.

If COLUMNS is specified and BOUNDARY is omitted,
STREAM is assumed.

If both BOUNDARY and COLUMNS are omitted, LINE is
assumed.

If a value for TEXT is specified, BOUNDARY is ignored;
line boundaries are used.

UPPER_CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

15-62 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

MOVE_ TEXT

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
UPPER_ CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used.

REPEAT_SEARCH or RS

Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the ·same TEXT,
UPPER_ CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

o The following moves lines 30 through 40 to
immediately after the current line.

move_text line=30 .. 40

o The following moves the next occurrence of a block of
text beginning with the line containing orchid and
ending with the line containing violet to immediately
before line 71:

movt text='orchid' .. 'violet' i1=71 placement=before

EDIT_FILE 15-63

$NEW_TEXT

$NEW_TEXT
EDIF Function

Purpose Returns the last string entered in a NEW_ TEXT
parameter.

Format $NEW_ TEXT or
$NT

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

Examples If you enter:

replace_text text='good' new_text='the best'

you can then use:

r t='better' nt=$nt

to replace better with the best.

$NUMBER_OF_COLUMNS
EDIF Function

Purpose Returns an integer specifying the number of columns
currently being used to display text on the screen.

Format $NUMBER_OF_COLUMNS or
$NUMBER_OF_COLUMN or
$NOC

Parameters None.

Remarks • If you are in line mode, zero is returned.

• For more information, see the NOSNE File Editor
manual.

$NUMBER_OF_ROWS
EDIF Function

Purpose Returns an integer specifying the number of rows
currently displayed on the screen, including the menu of
operations, message line, home line, and file header.

15-64 NOSNE Commands and Functions Revision G

Format $NUMBER_OF_ROWS or
$NUMBER_OF_ROW or
$NOR

Parameters None.

$NUMBER OF SPLITS

Remarks • If you are in line mode, zero is returned .

., For more information, see the NOSNE File Editor
manual.

$NUMBER_OF_SPLITS
EDIF Function

Purpose Returns an integer specifying the number of splits on the
screen.

Format $NUMBER_OF_SPLITS or
$NUMBER_OF_SPLIT or
$NOS

Parameters None.

Remarks • If you are in line mode, zero is returned.

Examples

• For more information, see the NOSNE File Editor
manual.

The following alternates between 1 or 2 screens:

set_screen_option s=3-$number_of_splits

$OFFSET
EDIF Function

Purpose Returns an integer identifying the number specified on
the OFFSET parameter of the ALIGN_SCREEN
subcommand.

Format $OFFSET or
$0

Parameters None.

Revision G EDIT_FILE 15-65

$PARAGRAPH_MARGINS

Remarks • If you have not specified the OFFSET parameter, or
are in line mode, zero is returned.

• For more information, see the NOSNE File Editor
manual.

$PARAGRAPH_MARGINS
EDIF Function

Purpose Returns an integer specifying the current margin setting.
The keyword specified determines the value returned.

Format $PARAGRAPH_MARGINS or
$PARAGRAPH_MARGIN or
$PM

(keyword)

Parameters keyword

Remarks

Examples

Determines the current margin for which you want a
value returned. Values can be LEFT (for the left margin
setting), or RIGHT (for the right margin setting), or
OFFSET (for the current margin offset).

This parameter is required.

For more information, see the NOSNE File Editor
manual.

The following example saves and then restores the current
margin settings:

left_margin = $pm(left)
right_margin = $pm(right)
offset = $pm(offset)

"temporarily change the values"

set_paragraph_margins mc=left_margin .. right_margin
o=off set

15-66 NOS/VE Commands and Functions Revision G

POSITION_BACKWARDS

POSITION _BACKWARDS
EDIF Subcommand

Purpose

Format

Moves your position in the file backward a specified
number of lines.

POSITION _BACKWARDS or
POSB or .
POSITION_BACKWARD or
PB

NUMBER= integer or keyword
STATUS =status variable

Param'eters NUMBER or N

Remarks

Examples

Specifies the number of lines to move backward. If you
specify ALL, the cursor will be positioned on the first line
of the file.

If omitted, 1 is assumed.

• This subcommand is typically only used in line mode.

• For more information, see the NOSNE File Editor
manual.

The following example moves the cursor backward 25
lines from the current line.

position_backward number=25

POSITION_ CURSOR
EDIF Subcommand

Purpose

Format

Revision G

Locates text and positions the cursor at the specified line
of text. Using this subcommand in screen mode, you can
move the cursor to a nontext line.

POSITION_ CURSOR or
POSC or
p

TEXT= range of string
NUMBER= integer or keyword
LINES= range of lines or keyword
COLUMNS=range of integer or keyword
BOUNDARY =keyword
DIRECTION= keyword

EDIT_FILE 15-67

POSITION_CURSOR

UPPER_ CASE= boolean
WORD= boolean
REPEAT _SEARCH= boolean
ROW= integer
STATUS= status variable

Parameters TEXT or T

Specifies a text string at which to position the cursor. If
omitted, the new cursor position is determined by the
LINE, COLUMNS, and BOUNDARY parameters.

NUMBER or N

Specifies the number of times the search is to be
repeated. Values can be an integer or the keyword ALL
(A).

If NUMBER is omitted, and you have specified a range
for the LINES parameter, ALL is assumed.

If NUMBER is omitted and no range has been specified
for LINES, 1 is assumed.

LINES or LINE or L

Specifies one of two things:

• When a single line number is specified, the cursor is
positioned at that line.

• When a range of lines is specified, the editor searches
for the specified text string within that range of lines.

Values can be an integer, line identifier, or any of the
keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN.

If you omit LINE and specify BACKWARD for the
DIRECTION parameter, CURRENT .. FIRST is assumed.

If both LINE and DIRECTION are omitted,
CURRENT .. LAST is assumed.

COLUMNS or COLUMN or C

Specifies the range of columns to be searched to locate
the specifed text or word. Values can be an integer from
1 through 256 or any of the keywords: CURRENT,
FIRST_MARK, LAST_MARK, MARK, MAXIMUM.

15-68 NOS/VE Commands and Functions Revision G

Revision G

POSITION_CURSOR

When you supply a value, the BOUNDARY parameter
assumes a value of STREAM.

If omitted, CURRENT is assumed. If omitted and you
have specified LINE= MARK, the marked lines provide
the column boundaries. If COLUMN is omitted and you
have specified a LINE parameter other than MARK, all
columns will be searched.

BOUNDARY or B

Specifies the type of boundary that will limit the search.
Values can be LINE or STREAM.

If COLUMNS is specified and BOUNDARY is omitted,
STREAM is assumed.

If both BOUNDARY and COLUMNS are omitted, LINE is
assumed.

DIRECTION or D

Specifies whether to search FORWARD (F) or
BACKWARD (B) from the current line.

If no value is specified, FORWARD is assumed.

UPPER_CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
UPPER_ CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used. ·

EDIT_FILE 15-69

POSITION_CURSOR

Remarks

Examples

REPEAT_SEARCH or RS

Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

ROW or R

Enables you to move the cursor in relation to the screen
instead of in relation to the file text.

For more information, see the NOS/VE File Editor
manual.

• The following positions the cursor at line 500 of the
file:

position_eursor line=SOO

• The following moves the current position backward
three lines from the current line:

position_eursor number=3 direetion=baekward

• The following moves the cursor to the first column of
the next line:

pose lines=current .. last number=2 eolumn=1

• The following moves the cursor to the second line of
the current screen:

pose row=2

• The following moves the cursor to the first line in the
file:

p line=first

15-70 NOS/VE Commands and Functions Revision G

POSITION _FORWARDS

POSITION _FORWARDS
EDIF Subcommand

Purpose

Format

Moves your position in the file forward a specified number
of lines.

POSITION _FORWARDS or
POSF or
POSITION _FORWARD or
PF

NUMBER= integer or keyword
STATUS =status variable

Parameters NUMBER or N

Remarks

Examples

Specifies the number of lines to move forward. If you
specify ALL, the cursor will be positioned on the last line
of the file.

If omitted, 1 is assumed.

• Using this subcommand, you cannot position past the
last line of the file.

• This subcommand is typically only used in line mode.

• For more information, see the NOSNE File Editor
manual.

The following example moves the cursor forward 63 lines
from the current line.

position_forward number=63

PUT_ROW
EDIF Subcommand

Purpose

Format

Revision G

Used with procedures to print text on any row on the
screen. Enables you to display messages on different lines
on the screen.

PUT_ROW or
PUTR

TEXT= string
ROW=integer
STATUS= status variable

EDIT_FILE 15-71

READ_FILE

Parameters TEXT or T

Remarks

Examples

Specifies the text to be printed. This is a text string from
1 through 256 characters.

This parameter is required.

ROW or R

Indicates the row in which the text will be written.
Values can be any integer from 1 through the number of
rows available on your screen.

If ROW is omitted, the current line number is assumed.

For more information, see the NOSNE File Editor
manual.

In a procedure which defines an alternate set of function
key definitions for the CDC721 terminal, you might want
to write the message

New 721 Keys are set.

in the message row. To do this, include the following
subcommand in the procedure:

put_row text='New 721 keys are set.' row=$message_row

READ FILE
EDIF Subcommand

Purpose

Format

Inserts the text of another file into the current file.

READ_FILE or
REAF

FILE=file
INSERTION _LOCATION= insertion_ location or

keyword
PLACEMENT= keyword
MULTI_PARTITION =boolean
STATUS= status variable

15-72 NOS/VE Commands and Functions Revision G

READ_FILE

Parameters FILE or F

Remarks

Revision G

Specifies the name of the file from which the text is to be
inserted. The entire file will be inserted. This parameter
is required.

INSERTION _LOCATION or IL

Specifies the line before or after which the text is to be
inserted (depending on the value of the PLACEMENT
parameter). Values can be an integer, line identifier, or
one of the LINE keywords: CURRENT, FIRST, FIRST_
MARK, FIRST_SCREEN, LAST, LAST_MARK, LAST_
SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

PLACEMENT or P

Specifies whether the insertion is to occur BEFORE (B) or
AFTER (A) the line specified by the INSERTION_
LOCATION parameter.

If omitted, AFTER is assumed.

MULTI_PAllTITION or MP

Specifies whether the editor is to change end-of-partition
delimiters to WEOP directives when an external file is
copied to the current working file.

If you specify TRUE, the editor changes end-of-partition
delimiters to WEOP directives and reads the entire file.

If you specify FALSE, no change takes place and the
editor stops reading at the first partition.

If omitted, FALSE is assumed.

• The READ_FILE subcommand reads the external copy
of the specified file. If you have been editing a file
within the editor and have not made the changes
permanent using the WRITE-_FILE subcommand and
then specify that file on a READ_FILE subcommand,
an external copy is inserted, not the changed working
copy.

• For more information, see the NOSNE File Editor
manual.

EDIT_FILE 15-73

REPLACE_LINES

Examples • The following inserts the contents of file ERNIE into
the current file immediately after line 320:

read_file file=ernie insertion_location=320

• The following inserts the contents of file BERT into
the current file immediately before the last marked
line:

reaf f=bert il=last_mark placement=before

REPLACE _LINES
EDIF Subcommand

Purpose

Format

Replaces lines of text by deleting the old text and
replacing it with the text you specify.

REPLACE_LINES or
REPLACE_LINE or
REPL

TEXT= range of string
NEW_ TEXT= string
NUMBER= integer or keyword
LINES= range of lines or keyword
UNTIL= string
UPPER_CASE=boolean
WORD= boolean
REPEAT _SEARCH= boolean
STATUS= status variable

Parameters TEXT or T

Specifies the text you want to replace.

If a range of text is specified, the lines containing the
entire range are replaced with the string supplied in the
NEW_TEXT parameter.

If TEXT is omitted, the LINE and NUMBER parameters
determine the lines to be replaced.

NEW_TEXT or NT

Specifies the new line of text that is to replace the
specified line.

If this parameter is omitted, you are prompted to enter
text line by line until the editor encounters the
character(s) specified by the UNTIL parameter.

15-74 NOS/VE Commands and Functions Revision G

Revision G

REPLACE_LINES

NUMBER or N

Specifies the number of lines to replace. Values can be a
number or the keyword ALL.

If a range of text is specified, NUMBER indicates the
number of blocks of text to replace.

If you omit this parameter and specify a range for the
LINE parameter, the assumed value is ALL.

If you omit this parameter and do not specify a range for
the LINE parameter, the assumed value is 1.

LINES or LINE or L

Specifies a range of lines in which the replacement is to
occur. Values can be an integer, line identifier, or one of
the keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN. If a single value is specified, only that
line is replaced.

If omitted, CURRENT .. LAST is assumed.

UNTIL or U

In line mode, specifies a string that stops the replacement
text.

If NEW_ TEXT is omitted, you are prompted to enter
input until the editor encounters the character(s) you
specify with the UNTIL parameter.

If the UNTIL parameter is omitted, ** is assumed.

UPPER_CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
UPPER_ CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

EDIT_FILE 15-75

REPLACE_ TEXT

Remarks

Examples

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used.

REPEAT_SEARCHorRS

Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is ass~med.

For more information, see the NOSNE File Editor
manual.

• The following replaces lines 30 to the end of the file
with a line that says text.
replace_ line new_text='text' 1ine=30 .. last

• The following replaces the current line with text you
are prompted to enter until the editor encounters ** at
the end of one of the replacement lines.

repl

REPLACE_TEXT
EDIF Subcommand

Purpose

Format

Replaces blocks of text.

REPLACE_TEXT or
REPT or
R

TEXT= string
NEW_ TEXT= string
NUMBER= integer or keyword
LINES= range of lines or keyword
COLUMNS=range of integer or keyword
BOUNDARY=keyword

15-76 NOS/VE Commands and Functions Revision G

UPPER_CASE=boolean
WORD= boolean
REPEAT _SEARCH= boolean
VETO= boolean
STATUS= status variable

REPLACE_ TEXT

Parameters TEXT or T

Revision G

Specifies the text string to replace in the specified block
of text.

If omitted, REPEAT_SEARCH is required.

NEW_ TEXT or NT

Specifies the replacement text for the string specified in
the TEXT parameter.

If omitted, the string specified in the TEXT parameter is
deleted.

NUMBER or N

Specifies the number of times the original text is to be
replaced within the block of text. Values can be any
integer or the keyword ALL (A).

If you omit this parameter and specify a range of values
for the LINE parameter, the assumed value is ALL.

If you omit this parameter and do not specify a range for
the LINE parameter, the assumed value is 1.

LINES or LINE or L

Specifies the range of lines affected by the replacement.
Values can be an integer, line identifier, or one of the
keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN. If a single value is specified, only the
number of occurrences of text are replaced in that line.

If omitted, CURRENT .. LAST is assumed.

COLUMNS or COLUMN or C

Specifies the range of columns affected by the
replacement. The integers can be from 1 through 256 or
any of the keywords: CURRENT, FIRST_MARK, LAST_
MARK, MARK, MAXIMUM.

With the COLUMN parameter you can specify a
beginning and ending column for the replacement. When
you specify a boundary of STREAM, the search for

EDIT_FILE 15-77

REPLACE_TEXT

replacement starts at the beginning column on the
beginning line, continues through all columns of the next
lines, and stops at the end column of the ending line.

If COLUMN, BOUNDARY, and LINE are omitted and
NUMBER= ALL, the· replacement search starts at the
current column of the current line and ends at the last
column of the last line. If COLUMN is omitted and LINE
is specified, the replacement search uses all columns of
the lines specified. If COLUMN, BOUNDARY, LINE, and
NUMBER are omitted, the current column is assumed.

BOUNDARY or B

Specifies the type of boundary that will limit the
replacement. Values can be LINE or STREAM.

If BOUNDARY and COLUMNS are both omitted, LINE is
assumed.

If BOUNDARY is omitted but COLUMNS is specified,
STREAM is assumed.

UPPER_CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
UPPER_ CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used.

15-78 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

REPLACE_ TEXT

REPEAT _SEAR.CH or RS

Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
NEW_TEXT, UPPER_CASE, and WORD parameters as
the last time you entered them for any subcommand
(unless you have specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

VETO or V

Enables you to display a directory of replaced lines
allowing you to choose a line at which you want the
cursor to be positioned. Allows you to veto any of the
displayed lines affected by the subcommand.

• If you want to replace text within certain columns in
many lines as in the following example,

Before replacement:

rrrrrrr
rrrrrrr
rrrrrrr
rrrrrrr

After replacement:

rrrtttr
rrrtttr
rrrttt r
rrrtttr

you should not use the COLUMNS parameter for this
subcommand. Rather, use the SET_SEARCH_
MARGINS subcommand followed by the REPLACE_
TEXT subcommand.

• For more information, see the NOSNE File Editor
manual.

• The following changes the first occurrence of water to
wine from the current line and column to the last line
and column:

replace_text text='water' new_text='wine'

• The following uses the same values for TEXT, NEW_
TEXT, UPPER_CASE, and WORD parameters
specified on a previous subcommand:

rept repeat_search=true

EDIT_FILE 15-79

RESET_FILE

• The following replaces all occurrences of JILL with
BETTY from line 50 to the end of the file:

r text=' JILL' new_text='BETTY' line=SO .. last

• The following replaces the first occurrence of $ with #
from the current line and column to the last line and
column:

reot t='$' nt='#'

• The following deletes the text bye in all lines of the
file:

r text='bye' line=a

• The following changes r to t starting at line 2 column
5, and ending at line 4 column 3.

replace_text 'r' 't' line=2 .. 4 column=S .. 3

The following occurs:

Before replacement:

rrrrrrr
rrrrrrr
rrrrrrr
rrrrrrr

After replacement:

rrrrrrr
rrrrttt
ttttttt
tttrrrr

RESET_FILE
EDIF Subcommand

Purpose

Format

Remarks

Cancels all the changes you have made to your current
file since you last accessed the file using the EDIT_FILE
command.

RESET_FILE or
RESF

STATUS =status variable

• The RESET_DECK subcommand discards changes to
decks.

• For more information, see the NOS/VE File Editor
manual.

15-80 NOSNE Commands and Functions Revision G

RESTORE_POSITION

RESTORE_POSITION
EDIF Subcommand

Purpose

Format

Remarks

Enables you to return to the position saved by the
SAVE_POSITION subcommand.

RESTORE_POSITION or
RESP

STATUS= status variable

For more information, see the NOS/VE File Editor
manual.

$ROW_TEXT
EDIF Function

Remarks Reserved for site personnel, Control Data, or future use.

SAVE _POSITION
EDIF Subcommand

Purpose

Format

Remarks

Enables you to save the current column, line, and file
name for reference later.

SAVE_POSITION or
SAVP

STATUS= status variable

• To return to this position later, use the RESTORE_
POSITION subcommand.

• For more information, see the NOS/VE File Editor
manual.

$SCREEN _ACTIVE
EDIF Function

Purpose Returns a boolean value. It is TRUE if screen mode is
active, and FALSE if it is not.

Format $SCREEN _ACTIVE or
$SA

Parameters None.

Revision G EDIT_FILE 15-81

$SCREEN _INPUT

Remarks For more information, see the NOSNE File Editor
manual.

$SCREEN _INPUT
EDIF Function

Purpose Returns the text you enter on the subcommand line as
the string for the TEXT parameter value.

Format $SCREEN_ INPUT or
$SI

(string)

Parameters string

Remarks

Examples

The text you want displayed on the message row as a
prompt for input. If omitted, ENTER TEXT is used as the
prompt.

• This function allows an SCL procedure to pause and
request input.

• When the LOCATE_ TEXT subcommand is executed,
the user provides the text normally, without concern
that it will become a string. The user does not put
apostrophes around the text or use double apostrophes
within the text.

• For more information, see the NOSNE File Editor
manual.

• The following subcommand locates whatever text the
user provides in response to $81.

locate_text t=$si('What do you want to locate?')

• The following subcommand programs key 7 to insert
whatever characters are specified:

setfk n=7 ..
cs='insc '//$Quote($SI('characters
to be inserted by key 7'))

15-82 NOSNE Commands and Functions Revision G

$SEARCH_MARGINS
EDIF Function

$SEARCH_MARGINS

Purpose Returns an integer specifying the column number of
either the right or left margin. The keyword specified
determines the value returned.

Format $SEARCH_MARGINS or
$SEARCH_MARGIN or
$SM

(keyword)

Parameters keyword

Specifies the margin for which you want a value returned.
Values can be LOW (for the left margin) or HIGH (for

Remarks

the right margin).

This parameter is required.

• The function can be used to save the values for the
current search margins so they can be temporarily
altered.

• For more information, see the NOSNE File Editor
manual.

SET_EPILOG
EDIF Subcommand

Purpose Specifies a file containing editor subcommands you want
executed each time you leave the editor.

Format SET_ EPILOG or
SETE

FILE=file
STATUS= status variable

Parameters FILE or F

Specifies the file to contain the editor subcommands. If
omitted, $USER.SCU _EDITOR_EPILOG is assumed.

Revision G EDIT_FILE 15-83

SET_FUNCTION_KEY

Remarks

Examples

• If you do not enter a SET_EPILOG subcommand
within your editing session, no epilog file is executed.

• You can enter this command anytime within your
editing session.

• If you want epilog file processing to occur
automatically, put the SET_EPILOG subcommand into
your prolog file.

• For more information, see the NOS/VE File Editor
manual.

The following process always leaves your screen display at
132 columns after stopping the editor:

1. Place the following in file $USER.SCU _EDITOR_
EPILOG.

if $screen_active then;setso c=132;1fend

2. Include the following subcommand in your prolog file.

set_epi log

SET _FUNCTION _KEY
EDIF Subcommand

Purpose

Format

Enables you to create your own set or sets of function
keys.

SET_FUNCTION_KEY or
SETFK

NUMBER=integer or keyword
COMMAND _STRING= string
SHIFT= boolean
LABEL= string
STATUS=status variable

Parameters NUMBER or N

Specifies the number of the key to be defined. Values can
be any integer from 1 through 16. These numbers
correspond to the highlighted boxes in the menu of
operations at the bottom of the screen. The numbers 1
through 8 correspond to the first row of boxes; 9 through
16 correspond to the second row of boxes.

15-84 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

SET_FUNCTION_KEY

You can also specify one of the following keywords:
DOWN(D), EDIT(E), FWD(F), BKW(B), BACK, HELP(H)
STOP(S), UNDO, UP(U).

The keywords relate to keys on some terminals. If your
terminal has defined sequences that relate to these
keywords, you can create your own function keys using
these keywords.

This parameter is required.

COMMAND_STRING or CS

Specifies the subcommand(s) to be executed when the
specified key is pressed. Values can be any editor or SCL
command. When more than one subcommand is specified,
separate them with semicolons.

This parameter is required.

SHIFT or S

For those terminals that have one key identifier next to
each highlighted box in the menu of operations, the
SHIFT parameter indicates whether the key to be used is
shifted. Specify TRUE for the shifted key and FALSE for
the nonshifted key.

For those terminals that have two key identifiers next to
each highlighted box in the menu of operations, the
SHIFT parameter indicates which key you use.

Specify TRUE to use the key corresponding to the top key
identifier. Specify FALSE to use the key corresponding to
the bottom key identifier.

If SHIFT is omitted, FALSE is assumed.

LABEL or L

Specifies a string as the label that is to appear in the
menu of operations for the specified key.

If LABEL is omitted, current label remains the same.

For more information, see the NOSNE File Editor
manual.

• The following SET_FUNCTION _KEY subcommand
defines the shifted F5 key to execute the HELP
subcommand. The key has a screen label of help:

set_function_key number=S conmand_string='help'
shift=true label='help'

EDIT_FILE 15-85

SET_LINE_ WIDTH

• The online Examples manual lists a number of useful
function key definitions.

SET _LINE_ WIDTH
EDIF Subcommand

Purpose Specifies the maximum line length. When a line exceeds
this limit, a warning message is displayed.

Format SET_ LINE_ WIDTH or
SETLW

WIDTH= integer
STATUS= status variable

Parameters WIDTH or W

Remarks

Examples

Specifies the number of characters you can have on one
line before the editor sends you a message. Values can be
an integer from 0 through 256. Specifying 0 eliminates
the message and adds no trailing blanks to lines. When
you create a file, an initial width value of 0 is assumed.
For decks the value is taken from the deck header
information.

This parameter is required.

• Each time you edit a file, you must enter the SET_
LINE_ WIDTH subcommand to be warned when lines
exceed a given length.

• Once this command is entered, the editor adds trailing
spaces to lines with a character count less than the
limit for string comparisons.

• You can locate long lines using the LOCATE_ WIDE_
LINES subcommand.

• For more information, see the NOSNE File Editor
manual.

The following subcommand sets the line width limit at 80:

set_line_width width=BO

15-86 NOS/VE Commands and Functions Revision G

SET_LIST_ OPTIONS

SET _LIST_ OPTIONS
EDIF Subcommand

Purpose Provides you with the options in line mode of either
displaying the line identifier on the same line as the text,
on a separate line from the text, or not at all.

Format SET_LIST_OPTIONS or
SET_LIST_OPTION or
SETLO

LINE _IDENTIFIER =keyword
STATE= boolean
STATUS =status variable

Parameters LINE _IDENTIFIER or LI

Remarks

Specifies where or if the identifier is to be displayed.
Values can be LEFT (L), SEPARATE (S), or NONE.

If LINE_IDENTIFIER is omitted, NONE is assumed.

STATE or S

Specifies whether the state of the modification associated
with the line's introduction is to be displayed.

If TRUE, the state is displayed.

If omitted, FALSE is assumed.

• This subcommand is usually entered when you are line
editing decks and want to see the line identifiers.

• Modification states are described in the NOSNE
Source Code Management manual.

• For more information, see the NOSNE File Editor
manual.

SET_MASK
EDIF Subcommand

Purpose

Revision G

When specifying a value for the TEXT parameter, you
can specify a special character that can be used to match
any other character. This character serves as a wild card
character.

EDIT_FILE 15-87

SET_PARAGRAPH_MARGINS

Format SET_ MASK or
SETM

CHARACTER=string or keyword
STATUS= status variable

Parameters CHARACTER or C

Remarks

Examples

Specifies the mask character. Values can be any
alphanumeric character or the keyword NONE. If NONE
is specified, the mask feature is turned off.

This parameter is required.

• When you start editing, no mask character is set.

• For more information, see the NOSNE File Editor
manual.

• The following changes the SET_MASK character to #:

set_mask character=#

• The following are strings that match the string
'F##d':

Ford Fred Food Find Fund

SET _PARAGRAPH _MARGINS
EDIF Subcommand

Purpose

Format

Changes the paragraph margins. In any subsequent
FORMAT_PARAGRAPH or CENTER_LINE subcommands,
the margins set with SET_PARAGRAPH_MARGINS are
used.

SET_PARAGRAPH_MARGINS or
SET_PARAGRAPH_MARGIN or
SETPM

MAR.GIN_COLUMNS=range of integer
OFFSET= integer
STATUS= status variable

15-88 NOS/VE Commands and Functions Revision G

SET_PARAGRAPH_MARGINS

Parameters MAilGIN_COLUMNS or MAilGIN_COLUMN or MC

Specifies the left and right margins. If just one column
number is specified, the left margin is set to that number.

Remarks

Examples

Revision G

If omitted and you have not specified this subcommand
previously in your editing session, columns 1 and 65 are
used. If you have specified the subcommand previously,
any parameter not specified is not changed.

OFFSET or 0

Specifies the number of columns the first line in the
paragraph is to be offset from the rest of the . lines in the
paragraph. If the number specified is a positive number,
the first line of the paragraph is indented the number of
columns specified. If zero is specified, the first line is not
indented. If a negative value is given, the first line begins
to the left of the rest of the paragraph.

If omitted and you have specified this subcommand during
this terminal session, the previous value is used. If you
have not entered this subcommand previously and omit
the OFFSET parameter, 4 is assumed.

• You can use the $PARAGRAPH_MARGINS function to
return paragraph margin values.

• For more information, see the NOSNE File Editor
manual.

• To set the paragraph margins to columns 7 and 72,
with an offset of 4, enter:

set_paragraph_margins margin_columns=7 .. 72

o To set the margins to 10 and 70 and also specify that
you want the first line of the paragraph indented 5
columns, enter:

setpm mc=10 .. 70 o=S

EDIT_FILE 15-89

SET_SCREEN_OPTIONS

SET _SCREEN _OPTIONS
EDIF Subcommand

Purpose

Format

Enables you to change the way the screen appears.
Among other things, you can change the number of lines
that are listed on your screen, the number of rows in the
menu of operations that is displayed, the number of files
displayed at one time, and the number of columns
displayed.

SET_SCREEN _OPTIONS or
SET_SCREEN_OPTION or
SETSO

MODEL==name
COLUMNS== integer
MENU _ROWS ==integer
ROWS== integer
SPLITS ==integer
SPLIT _SIZES =list of integer
STATUS== status variable

Parameters MODEL or M

Specifies the type of terminal you are using. Valid entries
are:

Entry

CDC_721

CDC_722

CDC_722_30

MAC_ CONNECT_ IO

MAC_CONNECT_ll

PC_ CONNECT_ IO

15-90 NOS/VE Commands and Functions

Terminal

Control Data 721

Control Data 722

Control Data 722-30

Apple Macintosh running
version 1.0 or 1.0+ of Control
Data CONNECT for the
Macintosh

Apple Macintosh running
version 1.1 of Control Data
CONNECT for the Macintosh

IBM PC or equivalent running
version 1.0 of Control Data
CONNECT for the IBM PC

Revision G

Revision G

PC_CONNECT_ll

PC_CONNECT_l2

PC_CONNECT_l3

DEC_ VTlOO_GOLD

DEC_ VT220

ZEN_Z19

ZEN_Z29

SET_SCREEN _OPTIONS

IBM PC or equivalent running
version 1.1 of Control Data
CONNECT for the IBM PC

IBM PC or equivalent running
version 1.2 of Control Data
CONNECT for the IBM PC

IBM PC or equivalent running
version 1.3 of Control Data
CONNECT for the IBM PC

Digital Equipment VTlOO

Digital Equipment VT220

Zenith Z19 or Heathkit H19

Zenith Z29

If the MODEL parameter has not been specified on an
earlier subcommand of the editing session, or by a
CHANGE_ TERMINAL_ATTRIBUTES TM= name
command previous to the editing session, it is required.

COLUMNS or COLUMN or C

Specifies the number of columns to be displayed. Values
range from 1 to the maximum number allowed on your
terminal. The number you enter is compared to the screen
sizes set up in the terminal definition for your terminal.
The number of columns displayed is the closest number as
large or larger than the number you enter on the
COLUMNS parameter.

Each time the editor is entered, a value of 80 columns is
assumed.

If COLUMN is omitted, the number of columns displayed
remains the same.

EDIT_FILE 15-91

SET_SCREEN_ OPTIONS

MENU_ROWSorMENU_ROWorMR

Specifies the number of rows of the menu of operations
prompts to display. Values can be:

0 Does not display the menu of operations.

1 Displays 1 row of highlighted boxes from the
menu of operations.

2 Displays 2 rows of the menu.

If MENU _ROW is omitted, the number of rows displayed
remains the same. When starting the editor, 1 row is
displayed.

ROWS or ROW or R

Specifies the number of rows to display for terminals that
support multiple screen sizes. Values can be from 10 to
the maximum number allowed for your terminal. The
number you enter is compared to the screen sizes set up
in the terminal definition for your terminal. The number
of rows displayed is the closest number as large or larger
than the number you enter on the ROWS parameter.

When you first enter the editor, it assumes a value of 32.

Not all terminals support multiple screen sizes.

SPLITS or SPLIT or S

Specifies the number of areas of text (splits) you want
displayed on the screen when the screen is divided
horizontally to show more than one file. This number
determines how many files you can display at the same
time. Values are 1 through 16.

Each time the editor is entered, a value of l is assumed.

If SPLIT is omitted, the number of splits remains the
same.

SPLIT _SIZES or SPLIT _SIZE or SS

Specifies the number of lines you want displayed within a
particular area of text (split). The value(s) you specify
correspond positionally to the splits displayed; the first
value you specify corresponds to the topmost split, the
second value to the next lowest split and so on. Values
are 2 through 255.

15-92 NOSNE Commands and Functions Revision G

Remarks

Examples

SET_SEARCH_MARGINS

If SPLIT_SIZE is omitted, each split contains an equal
number of lines.

• For all omitted parameters, the editor assumes you
want the same value used the last time you entered
the SET_SCREEN _OPTIONS subcommand.

• For more information, see the NOSNE File Editor
manual.

• The following example displays an additional file onto
a screen. The new screen contains two split areas with
a different file in each area.

1. Press Home and enter:

set_screen_options sp11t=2

2. Move the cursor to the split in which you want the
new file (ZAP) to appear.

3. Press Home and enter:

ed1f zap

File ZAP appears in the split area the cursor was
last in.

o The following example displays all of your menu of
operations:

setso menu_row=2

SET _SEARCH_MARGINS
EDIF Subcommand

Purpose

Format

Revision G

Limits the number of columns to be searched in
subsequent subcommands that use string searches.

SET_SEARCH_MARGINS or
SET_SEARCH_MARGIN or
SETSM

MAR.GIN_COLUMNS=range of integer
STATUS= status variable

EDIT_FILE 15-93

SET_ TAB_ OPTIONS

Parameters MARGIN_COLUMNS or MC

Remarks

Examples

Specifies the column(s) in which to perform the search.
Values can be any number or any of the COLUMN
keywords: CURRENT, FIRST_MARK, LAST_MARK,
MARK, MAXIMUM. If you specify two values, the search
is done from the first column through the last column
specified. If you specify a single integer, only that column
is searched.

If MARGIN _COLUMN is omitted, columns 1 through 256
are assumed.

• The $SEARCH_MARGINS function can be used to
return the MARGIN_COLUMNS values.

• This subcommand can be used with the REPLACE_
TEXT subcommand to change a string within a limited
range of columns for many lines.

• For more information, see the NOSNE File Editor
manual.

To set the search margins to columns 1 and 7, enter:

set_search_margins margin_columns=1 .. 7

SET_ TAB_ OPTIONS
EDIF Subcommand

Purpose Sets a tab character and the columns in which you want
tabs set.

Format SET_TAB_OPTIONS or
SET_TAB_OPTION or
SETTO

CHARACTER =string
TAB_ COLUMN= list of integer
STATUS= status variable

Parameters CHARACTER or C

Specifies the tab character. Values can be any character.
The horizontal tab character, $char(9), works well as a
value.

When you enter a tab character within text typed from
your terminal, the tab character moves any text from the
current position to the next tab setting.

15-94 NOSNE Commands and Functions Revision G

Remarks

Examples

SET_ VERIFY_ OPTION

If you enter a tab character after the last tab column, the
tab character is included as part of the file text.

When you start editing a file, the tab character is set to
the reverse slant. When you start editing a deck, the tab
character is set as specified in the deck header (refer to
the CREATE_DECK SCU subcommand in the NOSNE
Source Code Management manual).

If CHARACTER is omitted, the tab character is not
changed.

TAB_COLUMN or TAB_COLUMNS or TC

Specifies tab columns to be added to those already
selected.

A maximum of 256 columns can be specified as tab
columns. Values can be any integer from 1 through 256
and must be enclosed in parentheses. When you start
editing a file, the tabs are set at columns 1, 7, and 72.

When you start editing a deck, the tab columns selected
are those specified in the deck header (refer to the
CREATE_DECK SCU subcommand in the NOSNE Source
Code Management manual).

If TAB_COLUMN is omitted, the tab settings are not
changed.

For more information, see the NOSNE File Editor
manual.

• The following sets the tab character to] and adds
columns 11, 18, 41 and 53 as tab columns:

set_tab_options character=']'
tab_column=(ll,18,41,53)

• The following sets the tab character to ! and adds
column 3 as a tab column:

set_tab_opt1ons character='!' tab_column=(3)

SET_ VERIFY_OPTION
EDIF Subcommand

Purpose. Displays lines that have been changed using the
REPLACE_ TEXT subcommand and displays the first and
last lines of a block of text located with the LOCATE_
TEXT subcommand.

Revision G EDIT_FILE 15-95

SET_WORD_CHARACTERS

Format SET_ V,ERIFY_OPTION or
SETVO

ECHO= boolean
STATUS= status variable

Parameters ECHO or E

Remarks

Specifies whether you want the verify option on or off.

This parameter is required.

• In screen mode the verify option is al ways off.

• The system sets the verify option to TRUE when you
start the editor. Therefore, in line mode the verify
option is on unless you specify ECHO=FALSE.·

• The function $VERIFY_OPTION returns the current
value of the verify option.

• For more information, see the NOSNE File Editor
manual.

SET_WORD_CHARACTERS
EDIF Subcommand

Purpose

Format

Enables you to add or delete allowable characters (within
words) for use with the WORD parameter.

SET_WORD_CHARACTERS or
SET_ WORD_CHARACTER or
SETWC

ADD= list of string
DELETE= list of string
STATUS =status variable

Parameters ADD or A

Specifies the characters to add as allowable characters.
Values can he any printable character. The space
character cannot he specified as an allowable character.

Enclose each character in quotes and all inside
parentheses.

If ADD is omitted, no characters are added.

15-96 NOSNE Commands and Functions Revision G

Remarks

Examples

$SPLIT_SIZE

DELETE or D

Specifies the characters to delete as allowable characters
in a word. In other words, characters specified by this
parameter will be treated as punctuation marks. Values
can be any printable character. The space character is not
allowed.

Enclose each character in quotes and all inside
parentheses.

If DELETE is omitted, no characters are deleted.

• The initial word characters consist of the
alphanumerics plus the underscore (_), dollar-sign ($),
number-sign (#), and at-sign (@).

• If you specify more than one character, separate them
with commas or spaces.

• For more information, see the NOSNE File Editor
manual.

o The following adds % as an allowable word character
and deletes x as an allowable word character:

set_word_characters add=('%') delete=('x')

o The following changes the characters allowed in words
to those used in the NOSNE COBOL compiler:

setwc add=('-') delete=('$' '#' '-' '@')

$SPLIT_SIZE
EDIF Function

Purpose Returns an integer specifying the number of available text
lines for the specified split of the screen.

Format $SPLIT_ SIZE or
$SS

(integer)

Parameters integer

Specifies the split of the screen for which you want a
value returned. If omitted, the current split is assumed.

Revision G EDIT_FILE 15-97

$TEXT

Remarks • If you are in line mode, zero is returned.

• For more information, see the NOS/VE File Editor
manual.

$TEXT
EDIF Function

Purpose Returns a string specifying the last text you specified for
- a TEXT parameter.

Format $TEXT or
$T

Parameters None.

Remarks For more information, see the NOS/VE File Editor
manual.

$TITLE_ROW
EDIF Function

Purpose Returns an integer specifying the row number of the title
row (file header) used for the specified split of the screen.

Format $TITLE_ ROW or
$TR

(integer)

Parameters integer

Specifies the split of the screen for which you want a
value returned. If omitted, the current split is assumed.

Remarks • If you are in line mode, zero is returned.

UNDO

• For more information, see the NOS/VE File Editor
manual.

EDIF Subcommand

Purpose Cancels changes in reverse chronological order. Entire
transactions are undone until one is undone that included
a change in text.

15-98 NOS/VE Commands and Functions Revision G

Format

Remarks

Examples

Revision G

UNDO or
UND

STATUS= status variable

UNDO

• A transaction consists of all changes made between
two presses of the return key.

• The following terminals include an automatic return
when you press keys that perform editing operations:

CDC 721
CDC 722-30
IBM PC
Apple Macintosh

At these terminals, pressing keys that perform editing
operations marks the end of a transaction. At other
terminals, you press return to end transactions that
include editing operations.

• Use the UNMARK subcommand to cancel marks.

o For each UNDO subcommand, all changes made since
the last time you pressed the return key are canceled.

• You can undo only changes made to the current file.
You can, however, make any file that was edited
during this session the current file if it has not been
closed with END_FILE, END_DECK, or a SELECT_
DECK subcommand. You can do this by entering the
EDIT_FILE or EDIT_ DECK subcommand, or, if your
screen is split, by positioning the cursor in the file
you want to be the current file.

o To undo all changes you have made since opening the
current file, use the RESET_FILE subcommand.

• For more information, see the NOSNE File Editor
manual.

The following changes were made to a file in the order
given:

1. Five lines in the file were deleted using one
DELETE_LINES subcommand.

2. The next three lines are displayed using the
LOCATE_ TEXT subcommand.

EDIT_FILE 15-99

UNMARK

3. A new line is entered using the INSERT_LINES
subcommand.

Each time UNDO is entered, the following changes are
undone:

1. The first time UNDO is entered, the new line inserted
is deleted.

2. The second time, the five lines deleted are returned.

UNMARK
EDIF Subcommand

Purpose

Format

Remarks

Explicitly cancels the marks on any lines or characters
you previously marked.

UNMARK or
UNM

STATUS= status variable

• You implicitly unmark text by marking a new region
of text, by deleting marked text, or by entering the
Q@c) operation (or UNDO subcommand), which undoes
the most recent change as well as undoing any current
marks.

• When you enter the END_FILE subcommand you can
close a file containing the marked text.

• For more information, see the NOSNE File Editor
manual.

$UPPER_CASE
EDIF Function

Purpose Returns a boolean value specifying the most recent value
supplied for an UPPER_ CASE parameter.

Format $UPPER_ CASE or
$UC

Parameters None.

Remarks For more informatiOn, see the NOSNE File Editor
manual.

15-100 NOSNE Commands and Functions Revision G

$VERIFY_OPTION
EDIF Function

$VERIFY_ OPTION

Purpose Returns a boolean value indicating whether the VERIFY
option has been activated (TRUE) or not (FALSE).

Format $VERIFY_OPTION or
$VO

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$WORD
EDIF Function

Purpose Returns a boolean value indicating whether the word
search feature is active (TRUE) or not (FALSE).

Format $WORD or
$W

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

WRITE_FILE
EDIF Subcommand

Purpose

Format

Revision G

Copies text from the current working file to the external
copy of a file.

WRITE_FILE or
WRIF

TEXT= range of string
NUMBER= integer or keyword
LINES= range of lines or keyword
FILE=file
UPPER_ CASE= boolean
WORD=boolean
REPEAT _SEARCH= boolean
MULTI_PARTITION =boolean
STATUS=status variable

EDIT_FILE 15-101

WRITE_FILE

Parameters TEXT or T

Specifies string(s) of text in the first and last lines of a
block of text to be written.

If you enter only one string, the block of text to be
written will contain only one line. If you enter two
strings, the search for the second· begins immediately after
the first is found and the cursor is positioned at the
beginning of the first string.

If omitted, the lines to be written are determined by the
NUMBER, LINE, and DIRECTION parameters or by the
REPEAT_SEARCH parameter.

NUMBER or N

Specifies the number of blocks of text to be copied. Values
for this parameter can be an integer the keyword ALL
(A).

If NUMBER is omitted, ALL is assumed.

LINES or LINE or L

Specifies a range of lines to be searched to locate the text
to be copied. Values can be an integer, line identifier, or
one of the keywords: ALL, CURRENT, FIRST~ FIRST~
MARK, FIRST_SCREEN, LAST, LAST_MARK, LAST_
SCREEN, MARK, SCREEN.

If a single value is specified, only that line is searched.

If LINE is omitted, ALL is assumed.

FILE or F

Specifies the file to which the text is to be copied.

If the object you are editing is a file and FILE is omitted,
the editor writes the file to the external file from which
the working file was made.

If the object you are editing is a deck, this parameter is
required.

UPPER_CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

15-102 NOSNE Commands and Functions Revision G

WRITE_FILE

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
UPPER_ CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used.

REPEAT_SEARCHorRS

Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

MULTI_PARTITION or MP

Specifies whether the editor is to change WEOP directives
to end-of-partition delimiters when the current working
file is copied to an external file.

If TRUE, the editor changes WEOP directives to end-of
partition delimiters.

If FALSE, no substitution takes place.

If omitted, FALSE is assumed.

Remarks For more information, see the NOSNE File Editor
manual.

Revision G EDIT_FILE 15-103

WRITE_FILE

Examples • The following copies 3 blocks of text beginning with
the line containing even and ending with the line
containing odd to the file BOTH:

write_file text='even' .. 'odd' number=3 file=both

• The following copies all lines from the current file to
the external copy of file SPLAT:

write_file line=all file=splat

• The following copies all of the current working file to
the end of file ZAP:

wrif file=ZAP.$EOI

• The following copies the working copy of the current
file to the external copy. In other words, it makes
your changes permanent without closing the current
file and leaving the editor:

wrif

15-104 NOSNE Commands and Functions Revision G

MANAGE _REMOTE _FILES 16

MANAGE_REMOTE_FILE . 16-1
RECEIVE_FILE 16-4
SEND_FILE . 16-4

MANAGE _REMOTE _FILES 16

MANAGE _REMOTE _FILE
Command

Purpose Delimits a set of commands to be executed on the
specified remote system.

Format MANAGE_REMOTE_FILE or
MANAGE_REMOTE_FILES or
MANRF or
MF LINK

LOCATION=any
FILE=file
DATA_DECLARATION =keyword
UNTIL= string
SUBSTITUTION_MARK=string or keyword
STATUS=status variable

Parameters LOCATION or L

Revision G

Specifies the name of the remote location to be accessed.
This is a name associated with a remote system, such as
a family name or a logical identifier. (Location names are
determined by your network application administrator.)

You cannot specify a variable name for this parameter. If
you want to use a variable that has a name value, you
can use the $NAME function instead.

This parameter is required.

FILE or F

Specifies the name of a file on the local NOS/VE system
to be used as the input or output file during a file
transfer. This parameter is required even when you are
not performing a file transfer.

DATA_DECLARATION or DD

Specifies the data format of a file to be transferred.

If the remote location is another NOS/VE host, this
parameter is ignored. The rules for copying NOS/VE files
based on the local and remote file attributes apply. For a
discussion of rules for copying NOS/VE files, see the
NOS/VE System Usage manual.

MANAGE_REMOTE_FILES 16-1

MANAGE_REMOTE_FILE

If the remote location is a non-NOSNE host, the following
data descriptions are available. The meaning of each
varies among the various remote host types. Refer to the
Remote Host Facility Usage manual for system specific
information

• C6

Use this format when you transfer files to hosts
using a six-bit code set. This format indicates the
file contains character data from a character set
with 64 or fewer character codes.

The effect of this format is that that each machine
sees the file in its native character set. Thus, if
you transfer the file from NOSNE to NOS,
NOSNE sends the file in ASCII and NOS receives
it in display code. Transfers to other systems result
in full ASCII transfers as if DD=CS was used.

0 cs
This format has the following meanings depending
upon which system the file is being transfered to:

• uu

- NOS

Transfer results in a NOS 8/12 ASCII file.
Use the NOS FCOPY command to convert
the file to NOS 6/12 format.

- NOS/BE

Same as for NOS.

- Any other ASCII system

Transfer results in an ASCII file.

- IBM/MVS

Transfer results in an EBCDIC file.

Use this format to transfer binary files to remote
systems. Object and source libraries should be
transferred using this format. Files transferred to
NOS or NOS/BE will be padded unless they end on
a 120 bit boundry (this is because NOS and
NOS/BE store their files in 60 bit format).
Similarily, files transferred from NOS or NOS/BE

16-2 NOS/VE Commands and Functions Revision G

Remarks

Revision G

MANAGE_REMOTE_FILE

to NOSNE and that have a file length that is an
odd multiple of 60 bits will be padded to the next
full byte (8 bit) length.

UNTIL or U
Specifies the string indicating the end of commands in the
list. The string must appear on a separate line. If this
parameter is omitted, a string of two asterisks (**) is
assumed.

SUBSTITUTION_MARKorSM
Specifies a character used to delimit text to be substituted
within the command text following the MANAGE_
REMOTE_FILES command. Values can be any character
or the keyword NONE. NONE specifies that no
substitution mark is to be used. If this parameter is
omitted, NONE is assumed.

o You must provide validation information required by
the remote system. If this remote system is NOSNE,
the first command in the list of commands must be a
LOGIN command. Alternately, you can issue a
CREATE_REMOTE_ VALIDATION command prior to
using the MANAGE_REMOTE_FILES command.

o The names and parameters of commands accepted by
each remote system type are described in the Remote
Host Facility Usage manual.

The MANAGE_REMOTE_FILES command passes the
command text you supply to the remote system for
execution. If the remote system is NOSNE, the
command text is a set of SCL commands to be
executed as a batch job.

o You can include at most one remote command in the
command text which causes an explicit file transfer.
For remote NOSNE systems, use the SEND_FILE or
RECEIVE_FILE commands to explicitly transfer a
file.

o For more information, see the NOSNE System Usage
manual.

MANAGE_REMOTE_FILES 16-3

RECEIVE_FILE

RECEIVE _FILE
MANRF Subcommand

Purpose

Format

When used within the list of commands delimited by the
MANAGE_REMOTE_FILES command, transfers a file
from your local system to a remote system.

RECEIVE_ FILE or
RECF

FILE=file
STATUS=status variable

Parameters FILE or F

Remarks

Specifies the name of the file on the remote system that
is to receive the file from your local system.

• You can use the RECEIVE_FILE command only with
the MANAGE_REMOTE_FILES command. (Refer to
the MANAGE_REMOTE_FILES command.)

• Refer to the SEND_FILE command for informtion
about transferring files from a remote system to your
local system.

• For more information, see the NOS/VE System Usage
manual.

SEND_FILE
MANRF Subcommand

Purpose

Format

When used within the list of commands delimited by the
MANAGE_REMOTE_FILES command, sends a file from
a remote system to your local system.

SEND _FILE or
SENF

FILE=file
STATUS= status variable

Parameters FILE or F

Specifies the name of the file on the remote system that
is to be sent to your local system.

16-4 NOS/VE Commands and Functions Revision G

Remarks

Revision G

SEND_FILE

o You can use the SEND_ FILE command only with the
MANAGE_REMOTE_FILES command. (Refer to the
MANAGE_REMOTE_FILES command.)

o Refer to the RECEIVE_FILE command for informtion
about transferring files from your local system to a
remote system.

o For more information, see the NOS/VE System Usage
manual.

MANAGE_REMOTE_FILES 16-5

MEASURE _PROGRAM _EXECUTION 17

MEASURE_PROGRAM_EXECUTION 17-1
CREATE_RESTRUCTURED_MODULE 17-1
CREATE_RESTRUCTURING_COMMANDS 17-2
DISPLAY_PROGRAM_PROFILE 17-3
EXECUTE_INSTRUMENTED_TASK 17-5
QUIT 17-6
RESTORE_PROGRAM_MEASURES 17-6
SAVE_PROGRAM_MEASURES 17-7
SET_PROGRAM_DESCRIPTION 17-9

MEASURE _PROGRAM _EXECUTION 17

MEASURE_PROGRAM_EXECUTION
Command

Purpose

Format

Remarks

Examples

Starts a program measurement utility session.

MEASURE_PROGRAM_EXECUTION or
ME APE

STATUS =status variable

o The session ends when you enter the subcommand
QUIT. The descriptions of each program measurement
subcommand follow this description.

o For more information, see the NOSNE Object Code
Management manual.

The following utility session specifies the program as the
modules on file LGO, executes the program, and saves the
program profile on file MY_FILE.

/measure_program_execution
MPE/set_program_description target_text=lgo
MPE/execute_instrumented_task
MPE/display_program_profile output=my_file
FAPE/quit
I

CREATE_RESTRUCTURED_MODULE
MEAPE Subcommand

Purpose Generates a restructuring procedure and executes the
procedure to create a restructured load module on an
object library. It can also save the restructuring
procedure.

Format CREATE_RESTRUCTURED_MODULE or
CRERM

RESTRUCTURED_MODULE=file
RESTRUCTURED_MODULE_NAME=any
RESTRUCTURING_ COMMANDS= file
STATUS =status variable

Revision G MEASURE_PROGRAM_EXECUTION 17-1

CREATE_RESTRUCTURING_COMMANDS

Parameters RESTRUCTURED_MODULE or RM

Remarks

File to which the object library containing the new load
module is written. This parameter is required.

RESTRUCTURED_MODULE_NAMEorRMN
Name given the new load module. If RESTRUCTURED_
MODULE_NAME is omitted, the module name is the
same as the file name.

RESTRUCTURING_COMMANDSorRC

File on which the restructuring procedure is saved. If
RESTRUCTURING_COMMANDS is omitted, the
restructuring procedure is discarded.

For more information, see the NOSNE Object Code
Management manual.

CREATE _RESTRUCTURING_ COMMANDS
MEAPE Subcommand

Purpose Generates and saves a restructuring procedure.

Format CREATE_RESTRUCTURING_COMMANDS or
CRERC

RESTRUCTURING_ COMMANDS= file
RESTRUCTURED_MODULE=file
RESTRUCTURED_MODULE_NAME=any
STATUS= status variable

Parameters RESTRUCTURING_COMMANDS or RC

File to which the procedure is written. The procedure
name is the same as the file name. This parameter is
required.

RESTRUCTURED_MODULEmRM

Object library file to which the restructured module is
written after the restructuring procedure is executed. This
parameter is required.

RESTRUCTURED_MODULE_NAMEorRMN

Name to be given the module created when the
restructuring procedure is executed. If the
RESTRUCTURED_MODULE_NAME parameter is
omitted, the module name is the same as the file name.

17-2 NOSNE Commands and Functions Revision G

Remarks

Examples

DISPLAY_PROGRAM_PROFILE

o The CREATE_RESTRUCTURING_COMMANDS
subcommand uses the information accumulated in the
connectivity matrix to generate the restructuring
procedure.

o The CREATE_RESTRUCTURING_COMMANDS
subcommand does not execute the restructuring
procedure. To generate a restructured module, either
enter a CREATE_RESTRUCTURED_MODULE
subcommand during the session or execute the saved
restructuring procedure.

o For more information, see the NOSNE Object Code
Management manual.

The following subcommand writes a restructuring
procedure on file MODULE_RESTRUCTURE. If the
procedure is executed, it creates a module named
NEWLGO on object library file $USER.NEWLGO.

MPE/create_restructuring_conmands restructuring_ ..
.. MPE/conmands=module_restructure restructured_ ..
.. MPE/module=$user.newlgo

For an example of a restructuring procedure, refer to the
BIND_MODULE subcommand description.

DISPLAY_PROGRAM_PROFILE
MEAPE Subcommand

Purpose Generates and displays a program profile. The program
profile uses the execution time totals accumulated by
previous EXECUTE_INSTRUMENTED_ TASK
subcommands.

Format DISPLAY_PROGRAM_PROFILE or
DIS PP

PROFILE_ ORDER= keyword
PROGRAM_UNIT_CLASS=keyword
NUMBER= integer or keyword
OUTPUT=file
STATUS =status variable

Revision G MEASURE_PROGRAM_EXECUTION 17-3

DISPLAY_PROGRAM_PROFILE

Parameters PROFILE_ORDER or PO

Order in which the program profile is displayed. Options
are:

TIME (T)

By percentage of the total execution time ordered
greatest to least.

PROGRAM_ UNIT (PU)

By program unit name ordered alphabetically.

MODULE_PROGRAM_ UNIT (MPU)

By module name ordered alphabetically.

If PROFILE_ORDER is omitted, TIME is used.

PROGRAM_UNIT_CLASS or PUC

Class of program units whose statistics are displayed.
Options are:

ALL

All program units measured, both local and remote.

LOCAL

Only program units that are part of the target text.

REMOTE

Only program units that are called by target text
program units, but are not part of the target text.
These program units provide the remote block
statistics in the program profile.

If PROGRAM_UNIT_CLASS is omitted, ALL is used.

NUMBER or N

Number of program unit statistics displayed. The statistics
are sorted as specified by the PROFILE_ ORDER
parameter and then displayed in order until the specified
number of statistics have been displayed. If NUMBER is
omitted, the entire program profile is displayed.

OUTPUT or 0

File to which the display is written. This file can be
positioned. If OUTPUT is omitted, file $OUTPUT is used.

17 -4 NOSNE Commands and Functions Revision G

Remarks

EXECUTE_INSTRUMENTED_ TASK

For more information, see the NOSNE Object Code
Management manual.

EXECUTE_INSTRUMENTED_TASK
MEAPE Subcommand

Purpose

Format

Executes and measures the performance of the last
program specified by a SET_PROGRAM_DESCRIPTION
or SET_PROGRAM_MEASURES subcommand.

EXECUTE_INSTRUMENTED_TASK or
EXE IT

PARAMETER =string
NO_CONNECTIVITY_MATRIX=boolean
WORKING_ SET _INTERVAL= integer
STATUS= status variable

Parameters PARAMETER or P

Revision G

Parameter string passed to the program.

NO_CONNECTIVITY_MATRIX or NCM

Indicates whether a connectivity matrix is generated.

NOTE

Specify NO_CONNECTIVITY_MATRIX=TRUE if you do
not intend to generate a restructuring procedure for the
program. Omitting generation of a connectivity matrix
saves time and system resources.

TRUE

No connectivity matrix is generated.

FALSE

A connectivity matrix is generated.

If NO_CONNECTIVITY_MATRIX is omitted, FALSE is
assumed and a connectivity matrix is generated.

WORKING_SET_INTERVAL or WSI

Reserved.

MEASURE_PROGRAM_EXECUTION 17-5

QUIT

Remarks

Examples

QUIT

• The program is executed once for each EXECUTE_
INSTRUMENTED_TASK subcommand you enter. You
can specify a different parameter list for each
execution. Cumulative statistics for all executions are
kept.

• For more information, see the NOSNE Object Code
Management manual.

The following sequence executes the modules on file LGO
twice; cumulative statistics are kept for the program
executions. The program profile is saved on file
$USER.PROFILE_LIST.

/measure_program_execution
MPE/set_program_definition target_text=lgo
MPE/execute_instrumented_task parameter='size=40'
MPE .. /no_connectivity_matrix=true
MPE/execute_instrumented_task parameter='size=400' ..
MPE .. /no_connectivity_matrix=true
MPE/display_program_profile output=$user.profile_list
MPE/QUit
I

MEAPE Subcommand

Purpose Ends a MEASURE_PROGRAM_EXECUTION utility
session.

Format QUIT or
QUI

Parameters None.

Remarks For more information, see the NOSNE Object Code
Management manual.

RESTORE_PROGRAM~MEASURES
MEAPE Subcommand

Purpose Restores the program measurement environment using the
information saved by a SAVE_PROGRAM_MEASURES
subcommand.

17-6 NOSNE Commands and Functions Revision G

Format

SAVE_PROGRAM_MEASURES

RESTORE_PROGRAM_MEASURESM
RES PM

MEASURES= file
STATUS= status variable

Parameters MEASURES or M

Remarks

Examples

File containing a saved program measurement
environment. This parameter is required.

• The RESTORE_PROGRAM_MEASURES subcommand
always restores the program description. It also
restores the execution time statistics and connectivity
matrix if that information was saved on the file.

• For more information, see the NOSNE Object Code
Management manual.

The following sequence begins a program measurement
session and restores the program measurement
environment saved on file SAVED_MEASUREMENT.

/measure_program_execution
MPE/restore_program_measures measures= ..
MPE .. /saved_measurement
MPE/

SAVE_PROGRAM_MEASURES
MEAPE Subcommand

Purpose

Format

Revision G

Saves the current program measurement environment on
a file.

SAVE_PROGRAM_MEASURES or
SAVPM

MEASURES= file
AMOUNT=list of keyword
STATUS=status variable

MEASURE_PROGRAM_EXECUTION 17-7

SAVE_PROGRAM_MEASURES

Parameters MEASURES or M

Remarks

File on which the program measurement environment is
saved. This parameter is required.

AMOUNT or A

Information to be saved. Options are:

ALL

Program description, connectivity matrix, and
execution time totals.

CONNECTIVITY_MATRIX (CM)

Program description and connectivity matrix only.

EXECUTION_ TIME_ TOTALS (ETT)

Program description and execution time totals only.

If AMOUNT is omitted, ALL is used.

• By default, the SAVE_PROGRAM_MEASURES
subcommand saves the execution time totals and the
connectivity matrix. If the session that uses the saved
program measurement environment will not use the
execution time totals or connectivity matrix, you can
direct the subcommand not to save that information
with the AMOUNT parameter.

o The SAVE_PROGRAM_MEASURES subcommand does
not discard the program measurement statistics. The
statistics are discarded when you specify another
program description or end the session.

o To use the saved program environment in another
session, enter a RESTORE_PROGRAM_MEASURES
subcommand that specifies the file containing the
saved program environment.

e The program measures file is written as a sequential
data file. It is not intended to be listed; its only
intended use is to resume a MEASURE_PROGRAM_
EXECUTION session.

e For more information, see the NOSNE Object Code
Management manual.

17-8 NOS/VE Commands and Functions Revision G

Examples

SET_PROGRAM_DESCRIPTION

The following subcommand copies the program description
and any accumulated statistics to file SAVED_
MEASUREMENT.

MPE/save_program_measure measures=saved_measurement

SET _PROGRAM _DESCRIPTION
MEAPE Subcommand

Purpose Specifies the program whose performance is to be
measured.

Format SET_PROGRAM_DESCRIPTION or
SETPD

TARGET_ TEXT=file
FILE= list of file
LIBRARY== list of file
MODULE= list of any
STARTING_PROCEDURE=any
STACK_ SIZE =integer
STATUS=status variable

Parameters TARGET_ TEXT or TT

Revision G

Object file or object library containing the modules to be
measured. This parameter is required.

FILE or FILES or F

Object list for the program. Each module in the specified
object files and object libraries is unconditionally included
in the program. The list must include the target text file.
If FILE is omitted, the object list for the program consists
of only the file specified on the TARGET_ TEXT
parameter.

LIBRARYorLIBRARIESorL

List of object libraries added to the program library list.

MODULE or MODULES or M

Module list.

You use a string value for a module whose name is not
an SCL name.

Each module is unconditionally loaded from -the object
libraries in the program library list.

MEASURE_PROGRAM:._EXECUTION 17-9

SET_PROGRAM_DESCRIPTION

Remarks

Examples

STARTING_PROCEDUREor SP
Name of the entry point where execution begins.

You use a string value for an entry point whose name is
not an SCL name.

If STARTING_PROCEDURE is omitted, the last transfer
symbol encountered during loading is used.

STACK_SIZE or SS

Upper size limit in bytes of the run-time stack used for
procedure call linkages and local variables. If STACK_
SIZE is omitted, a 2-million byte limit is used.

o The program to be measured should be debugged and
ready for use in a production environment. The
program description specified on the subcommand
should be the same program description used to
execute the program in a production environment.

o When you execute the SET_PROGRAM_
DESCRIPTION subcommand, any program description
previously in effect and any program measurement
statistics accumulated for that program are discarded.

o For more information, see the NOSNE Object Code
Management manual.

The following subcommand specifies that program modules
are on files LGO and SUBLGO but only the module on
file LGO is to be measured.

MPE/set_program_description target_text=lgo ..
.. MPE/file={lgo,sublgo)

17-10 NOSNE Commands and Functions Revision G

RECOVER _KEYED _FILE 18

RECOVER_KEYED_FILE 18-1
HELP 18-2
QUIT 18-4
RECOVER_FILE_MEDIA . 18-4
VOID_LOG_FOR_RESTORED_FILE 18-6

RECOVER _KEYED _FILES

RECOVER_KEYED_FILE
Command

Purpose Begins a keyed-file recovery attempt.

Format RECOVER_KEYED_FILE or
RECKF

FILE=file
PASSWORD= name
STATUS =status variable

Parameters FILE or F

18

File path to the damaged keyed file to be recovered. This
parameter is required.

If the damaged file does not currently exist, its cycle
number cannot be determined by default. Therefore, the
file path must explicitly specify the file cycle number so
that the utility can reload the correct backup copy.

PASSWORD or PW

File password specified when Backup_.Permanent_File
wrote the backup copy of the file. A file password is
optional, but, if a password exists for the file, it is
required on this command. If no password exists for the
file, NONE can be specified.

The file password in effect when the backup copy was
written must be the same password in effect when the file
was damaged. Otherwise, the backup copy cannot replace
the damaged file.

Remarks o The LOG_RESIDENCE attribute of the file specified
on the command must match the LOG_RESIDENCE
attribute of the backup copy to be reloaded. Recover_
Keyed_File cannot use a backup copy that was
written before the LOG_RESIDENCE attribute of the
file was changed.

Revision G RECOVER_KEYED_FILES 18-1

HELP

Examples

HELP

• If the file does not currently exist and the LOG_
RESIDENCE of its backup copy is not the default log,
you must enter a SET_FILE_ATTRIBUTE command
for the file. The command must specify the same file
cycle specified on the RECOVER_KEYED_FILE
command and the same LOG_RESIDENCE as that of
the backup copy to be used. (See the Example.)

• Similarly, if the file does not currently exist, but the
file had a password when the backup copy was
written, you must create the file with the same
password. To do so, enter a CREATE_FILE command
specifying the file path (including its cycle number)
and the PASSWORD parameter.

• For more information, see the NOSNE Advanced File
Management Usage manual.

The following session attempts to restore a keyed file that
no longer exists using its latest backup copy. When the
latest backup copy was written, the file password was
HUSH_HUSH and the LOG_RESIDENCE attribute was
$USER.MY_LOG. Therefore, those values must be
reestablished for the file cycle.

/recover_keyed_file, $user.keyed_file.1
reckf/create_file, $user.keyed_file.1, ..
reckf .. /password=hush_hush
reckf/set_file_attribute, $user.keyed_file.1,
reckf .. /log_residence=$user.my_log
reckf/recover_file_media

RECKF Subcommand

Purpose

Format

Provides access to online information about the utility.

HELP or
HEL

SUBJECT= string
MANUAL=file
STATUS= status variable

18-2 NOS/VE Commands and Functions Revision G

HELP

Parameters SUBJECT or S

Remarks

Examples

Revision G

Topic to be found in the index of the online manual. The
topic title must be enclosed in apostrophes ('topic').

If you omit the SUBJECT parameter, HELP displays a
list of the available subcommands and prompts for display
of a subcommand description in the online manual.

MANUAL or M

Online manual file to be read. If you omit the MANUAL
parameter, the default is AFM. The working catalog is
searched for the AFM file and then the
$SYSTEM.MANUALS catalog.

ca If the SUBJECT parameter specifies a topic that is not
in the manual index, a nonfatal error is returned
notifying you that the topic could not be found.

• The default manual file, $SYSTEM.MANUALS.AFM,
contains the online version of the NOSNE Advanced
File Management Usage manual, as provided with the
NOSNE system.

• If your terminal is defined for full-screen applications,
the online manual is displayed in screen mode. Help is
available for reading the online manual. To leave the
online manual and return to the utility, use QUIT.

o For more information, see the NOSNE Advanced File
Management Usage manual.

The following session shows the default display returned
by the HELP subcommand.

/recover_keyed_file, $user.keyed_file. 1
reckf /help
The fol lowing Recover _Keyed_Fi le subcommands are available:
RECOVER_F I LE_MED I A
VOID_LOG_FOR_RESTORED_FILE
HELP
QUIT

For a description of a subcommand in the onl ine manua 1, enter:
HELP subject = '<subcommand>'

To return from an online manual, enter: QUIT
reckf /quit
I

RECOVER_KEYED _FILES 18-3

QUIT

QUIT
RECKF Subcommand

Purpose

Format

Remarks

Ends the Recover_ Keyed_File session.

QUIT or
QUI

STATUS =status variable

o The QUIT command is required to end a session.

• A recovery attempt that returns a fatal error ends the
session.

• For more information, see the NOSNE Advanced File
Management Usage manual.

RECOVER_FILE _MEDIA
RECKF Subcommand

Purpose Reloads a backup of the file and then updates it using an
update recovery log for the file.

Format RECOVER_FILE_MEDIA or
REC FM

DAYS_ SINCE _LAST_ GOOD= integer
HOURS _SINCE _LAST_ GOOD= integer
MINUTES_ SINCE _LAST_ GOOD= integer
STATUS =status variable

Parameters DAYS_SINCE_LAST_GOOD or DSLG

Number of days since the damaged file was intact (any
integer not less than 0). It is used with the next two
parameters to determine the backup copy to be reloaded.

If the first three parameters are omitted, the default
value for each is 0, causing the latest backup copy to be
reloaded.

HOURS_SINCE_LAST_GOOD or HSLG

Number of hours (added to the days specified by the first
parameter) since the damaged file was intact (an integer
from 0 through 23).

If the first three parameters are omitted, the latest
backup copy is reloaded.

18-4 NOSNE Commands and Functions Revision G

Remarks

Revision G

RECOVER_FILE_MEDIA

MINUTES_SINCE_LAST_GOOD or MSLG

Number of minutes (added to the days and hours specified
by the first two parameters) since the damaged file was
intact (an integer from 0 through 59).

If the first three parameters are omitted, the latest
backup copy is reloaded.

• This subcommand is effective only if both a backup
copy and an update recovery log are available for the
file.

o An update recovery log is maintained for the file only
if its LOGGING_OPTIONS attribute includes the
option ENABLE_MEDIA_RECOVERY.

o The subcommand can only reload backup copies
created by the Backup_Permanent_File utility because
those backup copies are recorded in the update
recovery log for the file. (The ENABLE_MEDIA_
RECOVERY logging option must be set before the
backup.)

o For a backup copy to be used, the file password (if
any), the LOG_RESIDENCE attribute, and the
LOGGING_OPTIONS attribute for the file must not
have changed since the backup copy was written.

o The FILE_CLASS and INITIAL_ VOLUME parameters
are described in detail as parameters of the
REQUEST_MASS_STORAGE command in the
NOSNE System Performance and Maintenance,
Volume 2, Maintenance manual.

• Once a keyed file is recovered using RECOVER_
FILE_MEDIA, it must be backed up (using the
Backup_Permanent_File utility) before it can be
updated.

• The subcommand issues progress messages as it
proceeds. Be sure to read the messages as they
appear.

• For more information, see the NOSNE Advanced File
Management Usage manual.

RECOVER_KEYED_FILES 18-5

VOID_LOG_FOR_RESTORED_FILE

Examples The following session recovers the file using the last
backup copy.

/recover_keyed_file, $user.my_keyed_file
reckf/recover_file_media
I

VOID _LOG _FOR_RESTORED _FILE
RECKF Subcommand

Purpose

Format

Remarks

Discards the update recovery log associated with a file
that has been restored using the RESTORE_
PERMANENT_FILE utility.

VOID_LOG_FOR_RESTORED_FILE or
VOILFRF

STATUS= status variable

e This subcommand is provided for situations in which
an older version of the file is restored using the
Restore_Permanent_File utility, and the user, content
with this version, does not want to try to recover lost
updates from the log.

o Updates cannot be recorded on a log associated with a
restored file because the updates on the log do not
correspond to the restored version of the file. (The
restored file is an older version.) As a result, this
subcommand is used to discard all past logged updates
for the restored file.

o After the update recovery log is discarded, a backup
copy of the file must be created by the Backup_
Permanent_File utility if subsequent updates are to be
recorded on the log.

o For more information, see the NOSNE Advanced File
Management Usage manual.

18-6 NOSNE Commands and Functions Revision G

RESTORE_LOG 19

RESTORE_LOG . 19-1
DELETE_LOG_CONTROL_FILE 19-1
DELETE_REPOSITORIES . 19-2
ENABLE_LOG . 19-3
HELP 19-3
QUIT . 19-5
RESTORE_LOG_CONTROL_FILE 19-6
RESTORE_REPOSITORIES . 19-8
VALIDATE_LOG . 19-9

RESTORE_LOG 19

RESTORE _LOG
Command

Purpose

Format

Begins a Restore_Log utility session.

RESTORE_LOG or
RESL

LOG_ RESIDENCE= file
STATUS =status variable

Parameters LOG _RESIDENCE or LR

Remarks

Catalog path containing the files composing the log to be
restored. This parameter is required.

• Immediately after entering the Restore_Log session,
you should use the VALIDATE_LOG or RESTORE_
REPOSITORIES subcommands to determine the type
and extent of log damage, if any. -

o For more information, see the NOSNE Advanced File
Management Usage manual.

DELETE _LOG_ CONTROL_FILE
RESL Subcommand

Purpose

Format

Remarks

Revision G

Deletes the log control file.

DELETE_LOG_CONTROL_FILE or
DELLCF

STATUS= status variable

o The log control file should be deleted only if it is
damaged or if you want to force the log control file to
be restored from the backup file. Damage to the log
control file can be detected by the VALIDATE_LOG,
RESTORE_REPOSITORIES, or RESTORE_LOG_
CONTROL_FILE subcommands.

• For more information, see the NOSNE Advanced File
Management Usage manual.

RESTORE_LOG 19-1

DELETE_REPOSITORIES

DELETE _REPOSITORIES
RESL Subcommand

Purpose

Format

Deletes log repositories.

DELETE_REPOSITORIES or
DELETE_REPOSITORY or
DELR

REPOSITORIES= list of range of integer or
keyword

STATUS= status variable

Parameters REPOSITORIES or REPOSITORY or R

Remarks

Specifies which repositories in the log are to be deleted.
This parameter is required.

List of integer

Specifies the repositories to be deleted. Values can be
a list of repository numbers specified in the repository
name. Repositories have names in the format
AAF$REPOSITORY_n where n is the integer value
specified; that is, AAF$REPOSITORY_ l, starting at
one for the first repository, and incremented
sequentially and contiguously. The last repository is
specified as AAF$REPOSITORY_O. You can specify as
many values as there are repositories to be deleted. If
more than one value is specified, the values must be
enclosed in parentheses and separated by commas or
spaces.

ALL or A

All repositories in the log are deleted.

o Repositories should be deleted only if they are
damaged or if you want to force the repositories to be
restored from the backup files. Damage to repositories
can be detected by the VALIDATE_LOG or
RESTORE_REPOSITORIES subcommands.

o For more information see the NOSNE Advanced File
Management Usage manual.

19-2 NOS/VE Commands and Functions Revision G

ENABLE_LOG

ENABLE_LOG
RESL Subcommand

Purpose

Format

Remarks

HELP

Enables a disabled log; that is, makes the log available
for general use.

ENABLE_LOG or
ENAL

STATUS =status variable

• If the log is disabled and it is usable; that is, the log
is undamaged, ENABLE_LOG enables it. This makes
the log available for general use.

• If the log is disabled but not usable, an error is
displayed and the log remains disabled. Damage can
be detected on the log control file and/or the
repositories.

e A log must be enabled and usable before you can use
it to recover keyed files.

o For more information see the NOSNE Advanced File
Management Usage manual.

RESL Subcommand

Purpose

Format

Provides access to online information about the utility.

HELP or
HEL

SUBJECT=string
MANUAL=file
STATUS =status variable

Parameters SUBJECT or S

Revision G

Topic to be found in the index of the online manual. The
topic must be enclosed in apostrophes ('topic').

If you omit the SUBJECT parameter, HELP displays a
list of the available subcommands and prompts for display
of a subcommand description in the online manual.

RESTORE_LOG 19-3

HELP

Remarks

MANUAL or M

Online manual file to be read. If you omit the MANUAL
parameter, the default is AFM. The subcommand searches
for the file in the working catalog and then in the
$SYSTEM.MANUALS catalog.

• If the SUBJECT parameter specifies a topic that is not
in the manual index, a nonfatal error is returned
notifying you that the topic could not be found.

• The default manual file, $SYSTEM.MANUALS.AFM,
contains the online version of the NOSNE Advanced
File Management Usage manual, as provided with the
NOSNE system.

• If your terminal is defined for full-screen applications,
online manuals are displayed in screen mode. Help on
reading online manuals is available in the online
manual. To leave the online manual and return to the
utility, use QUIT.

• For more information see the NOSNE Advanced File
Management Usage manual.

19-4 NOS/VE Commands and Functions Revision G

Examples

QUIT

QUIT

The following session shows the default display returned
by the HELP subcommand.

/restore_ log
resl/help

The following Restore_Log subconmands are available:

VALIDATE_LOG
RESTORE_REPOSITORIES
RESTORE_LOG_CONTROL_FILE
DELETE_REPOSITORIES
DELETE_LOG_CONTROL_FILE
ENABLE_LOG
HELP
QUIT

For the description of a subconmand in the online
manual, enter: HELP subject = '<subconmand>'

To return from an online manual, enter: QUIT
resl/Quit
I

RESL Subcommand

Purpose

Format

Remarks

Revision G

Ends the Restore_Log session.

QUIT or
QUI

STATUS =status variable

• The QUIT command is required to end a session.

• For more information see the NOSNE Advanced File
Management Usage manual.

RESTORE_LOG 19·5

RESTORE_LOG_ CONTROL_FILE

RESTORE _LOG_ CONTROL_FILE
RESL Subcommand

Purpose

Format

Restores the log control file from the specified log backup
file.

RESTORE_LOG _ CONTROL_FILE or
RESLCF

MEDIA= keyword
BACKUP _FILE= file
EXTERNAL_ VSN=list of string
RECORDED_ VSN =list of string
TYPE=keyword
STATUS= status variable

Parameters MEDIA or M

Device class of the log backup file to be restored. This
parameter is required.

MAGNETIC_TAPE_DEVICE or MTD

Indicates that the log backup file is stored on a
labeled tape. (In this case, the BACKUP _FILE
parameter is not used.)

MASS_STORAGE_DEVICE or MSD

Indicates that the log backup file specified by the
BACKUP _FILE parameter is stored on disk. (In this
case, the RECORDED_ VSN, EXTERNAL_ VSN, and
TYPE parameters are not used.)

BACKUP _FILE or BF

The file path name of one of the backup files in the log
(previously established by the CONFIGURE_LOG_
BACKUP subcommand of the Administer _Recovery _Log
utility) to be used for restoring the log control file. This
parameter must be specified if MEDIA is set to MASS_
STORAGE_DEVICE.

EXTERNAL_ VSN or EVSN

List of external VSNs identifying the tape volumes that
compose the log backup file. The VSN s are specified as
strings of from 1 through 6 characters enclosed in
apostrophes.

19-6 NOS/VE Commands and Functions Revision G

Remarks

Revision G

RESTORE_LOG_ CONTROL_FILE

RECORDED_ VSN or RVSN

List of recorded VSN s of the tape volumes that compose
the log backup file. The recorded VSN is in the ANSI
VOLl label on the volume. The VSNs are specified as
strings of from 1 through 6 characters enclosed in
apostrophes. This parameter must be specified if MEDIA
is set to MAGNETIC_ TAPE_DEVICE.

TYPE or T

Tape density of the nine-track tape drive on which the log
backup file was written.

MT9$800

Indicates 800 cpi.

MT9$1600

Indicates 1600 cpi.

MT9$6250

Indicates 6250 cpi.

The default value is MT9$6250.

o In general, the backup file that was written to most
recently is the best one to specify first as the log
backup file. If RESTORE_LOG_CONTROL_FILE
fails, try again specifying the next most recent backup
file, and so on.

o The log control file can be restored only if the log was
configured for log backups (see the CONFIGURE_
LOG_BACKUP subcommand of the Administer_
Recovery _Log utility). A copy of the log control file
exists at the front of each log backup file, having been
written there as part of the ongoing process of backing
up the log.

o If the log control file is not already disabled,
RESTORE_LOG_CONTROL_FILE immediately
disables it. This is to ensure the log is not used while
it is being restored. The log can be enabled using
ENABLE_LOG (described later in this chapter).

RESTORE_LOG 19-7

RESTORE_REPOSITORIES

• RESTORE_LOG_CONTROL_FILE restores a log
control file only if it detects damage to the log control
file. Damage to the log control file can also be
detected by the RESTORE_REPOSITORIES or
VALIDATE_LOG subcommands.

o Once a damaged log control file is restored, the log is
no longer available for logging entries. The log is
available only for recovering keyed files. To begin
logging entries again, you must switch to a different
log, or you must delete the log whose log control file
has been restored, then recreate it.

• For more information see the NOSNE Advanced File
Management Usage manual.

RESTO RE_ RE PO SITO RIES
RESL Subcommand

Purpose

Format

Remarks

Restores damaged repository log files from the log backup
files.

RESTORE_REPOSITORIES or
RESR

STATUS= status variable

o Older repositories can be restored only if the log was
configured for automatic backups (see CONFIGURE_
LOG_BACKUPS of the Administer _Recovery _Log
utility). If the active repository is to be replaced,
backups are not required.

o If the log is not already disabled, RESTORE_
REPOSITORIES immediately disables it. This is to
ensure that the log is not used while it is being
restored. Once the log is restored, it can be enabled
using ENABLE_LOG.

o Initially, RESTORE_REPOSITORIES determines the
usability of the log; that is, the type and extent of log
damage, if any.

19-8 NOS/VE Commands and Functions Revision G

VALIDATE_LOG

o Once the log is restored, if recovery information is lost
(for example, the active repository is lost, which had
not yet been backed up), or if the log control file has
been restored, the log is available only for recovery
operations. To begin recording 1-0g entries again, you
must switch to a different log, or you must delete the
log, then recreate it.

• For more information see the NOSNE Advanced File
Management Usage manual.

VALIDATE_LOG
RESL Subcommand

Purpose

Format

Remarks

Revision G

Determines the usability of the log; that is, the type and
extent of log damage, if any.

VALIDATE_LOG or
VALL

STATUS= status variable

o If damage to the log is detected and if the log is not
already disabled, VALIDATE_LOG immediately
disables it. This is to ensure that the log is not used
while it is being restored. Once the log is restored, it
can be enabled using ENABLE_LOG. If no damage to
the log is detected, the log is not disabled.

• For more information see the NOSNE Advanced File
Management Usage manual.

RESTORE_LOG 19-9

RESTORE_PERMANENT_FILES 20

RESTORE_PERMANENT_FILES 20-1
$BACKUP _FILE . 20-2
DISPLAY_BACKUP _FILE . 20-3
QUIT 20-5
RESTORE_ALL_FILES ... 20-5
RESTORE_CATALOG 20-7
RESTORE_EXCLUDED_FILE_CYCLES 20-8
RESTORE_EXISTING_CATALOG 20-10
RESTORE_EXISTING_FILE 20-11
RESTORE_FILE . 20-12
SET_LIST_ OPTIONS . 20-14

RESTORE_PERMANENT_FILES 20

RESTORE _PERMANENT _FILES
Command

Purpose Initiates the utility that restores permanent files and
catalogs from backup copies created by the BACKUP_
PERMANENT_FILE utility. The restore operations are
directed by RESTORE_PERMANENT_FILE
subcommands.

Format RESTORE_PERMANENT_FILES or
RESTORE_PERMANENT_FILE or
RE SPF

LIST==file
STATUS =status variable

Parameters LIST or L

Remarks

Examples

Revision G

Identifies the file to which a summary of the results of
the restore utility are written and, optionally, specifies
how the file is to be positioned prior to use. Omission
causes $LIST to be used.

e The content of the list file can be specified using the
SET_LIST_OPTION subcommand prior to using a
RESTORE_PERMANENT_FILE subcommand. If the
SET_LIST_OPTION subcommand is omitted, the
modification date and time and size of the file are
displayed for each permanent file cycle.

o For more information, see the NOSNE System Usage
manual.

The following subcommand initiates a RESTORE_
PERMANENT_FILE subcommand utility session. The
subcommand specifies that the report listing be written to
file RESTORE_LISTING.

/restore_permanent_files list=restore_listing

Following entry of this subcommand, RESTORE_
PERMANENT_FILE subcommands can be entered in
response to the following prompt.

PUR/

RESTORE_PERMANENT_FILES 20-1

$BACKUP_FILE

$BACKUP _FILE
RESPF Function

Purpose Returns a string containing information on a backup file
produced by the BACKUP _PERMANENT_FILE utility.
Because this function causes the file to be rewound, only
the first item of information found on the file can be
queried and returned to you. When the string value is
returned, all letters within the string are converted to
uppercase. This function is valid only within the
RESTORE_PERMANENT_FILE utility.

Format $BACKUP _FILE or
$BF

(tile
keyword)

Parameters tile

Specifies the name of the backup file to be queried. This
parameter is required.

keyword

Specifies the particular attribute that is being queried.
The following are valid keywords.

IDENTIFIER (I)

Returns a string containing the path name of the first
name on the backup file.

IDENTIFIER_ TYPE (IT)

Returns a string containing a name that indicates the
type of the first item on the backup file. One of the
following names is returned.

SET, CATALOG, FILE, CYCLE

If you do not specify a keyword, IDENTIFIER is assumed.

20· 2 NOS/VE Commands and Functions Revision G

Remarks

Examples

DISPLAY_BACKUP _FILE

o This function is especially useful when attempting to
restore from a backup file for which the destination is
known but the name of the file or catalog is unknown.

• The $BACKUP _FILE function always returns a string.
The $FNAME function is included in the RESTORE_
CATALOG command to convert this string to a file
name. Once the string has been converted to a file
name, you can use the file name in any subsequent
RESTORE_FILE or RESTORE_CATALOG
subcommands.

o For more information, see the NOSNE System Usage
manual.

For the following example, assume that you receive a
backup tape produced by the BACKUP_ CATALOG
command and you wish to restore the catalog to your own
$USER.MY_CATALOG. To do this, enter the following
commands.

/restore_permanent_files l=list_file
PUR/restore_catalog $fname($backup_file(backup_file, ..
PUR .. /identifier)) backup_file=backup_file
PUR .. /new_catalog_name=$user.my_catalog
PUR/qu1t

DISPLAY_BACKUP _FILE
RESPF Subcommand

Purpose Displays the contents of a backup file.

Format DISPLAY_BACKUP _FILE or
DIS BF

BACKUP _FILE= file
DISPLAY_ OPTION== keyword
NUMBER ==integer or keyword
STATUS= status variable

Revision G RESTORE_PERMANENT_FILES 20-3

DISPLAY_BACKUP _FILE

Parameters BACKUP_ FILE or BF

Specifies the file that contains the backup copies of the
files and catalogs previously backed up by a BACKUP_
PERMANENT_FILE utility session.

DISPLAY_OPTION or DO

Specifies the level of information to be displayed. Options
are:

IDENTIFIER (I)

Displays the name and type (file or catalog) of each
entry on the backup file.

DESCRIPTOR (D)

Displays the following information:

• Record headers maintained on the backup file.

• Version of the backup utility that produced the
backup file.

• Date and time the backup file was written.

• Backup utility subcommand that produced the
backup file.

• Cycle number of each file cycle.

• Usage count of each file cycle.

• Creation date and time of each file cycle.

• Last access date and time of each file cycle.

• Date and time of the last modification of each file
cycle.

• Expiration date of each file cycle.

• Size of each file cycle.

READ_DATA (RD)

Displays the information described for the
DESCRIPTOR parameter and also attempts to read all
data for each cycle on the backup file. The listing

20-4 NOSNE Commands and Functions Revision G

QUIT

reports whether or not the data is read without error.
No attempt is made to verify the data with the
original file backed up.

Remarks

QUIT

If omitted, IDENTIFIER is assumed.

NUMBER or N

Selects the number of catalogs, files, or cycles from the
beginning of the backup file for which information is to
be displayed. If this parameter is omitted or if the
keyword value ALL is specified, all entries on the backup
file are displayed.

For more information, see the NOSNE System Usage
manual.

RESPF Subcommand

Purpose Ends a RESTORE_PERMANENT_FILES utility session.

Format QUIT or
QUI

Parameters None.

Remarks For more information, see the NOSNE System Usage
manual.

RESTORE _ALL_FILES
RESPF Subcommand

Purpose Enables a system operator to restore all catalogs and all
permanent files for a NOSNE system (those written to
the backup file with the BACKUP _ALL_ FILES
subcommand). Other users can restore all .catalogs which
they own and all files and cycles for which they have
cycle permission.

Format RESTORE_ALL_FILES or
RES AF

BACKUP _FILE=file
STATUS=status variable

Revision G RESTORE_PERMANENT_FILES 20-5

RESTORE_ALL_FILES

Parameters BACKUP _FILE or BF

Remarks

Examples

Specifies the file that contains the backup copies of the
files and catalogs to be restored. This parameter is
required.

• Backup copies of catalogs and files that do not already
exist in the permanent file system are restored.

• Catalogs and files that already exist are not altered.

o The file specified by the BACKUP _FILE parameter is
initially positioned to beginning-of-information.

o To restore permanent files when partial backups have
been taken, the RESTORE_ALL_FILES subcommand
is used to restore the last partial backup first. This
has the effect of restoring the catalog structure as it
was at the time of the last partial backup. File cycle
data that is not contained on the last partial back is
restored using the RESTORE_EXCLUDED_FILE_
CYCLES subcommand.

• For more information, see the NOSNE System Usage
manual.

The following job restores all files in the system that
were previously backed up with a BACKUP _ALL_ FILES
subcommand.

/job
job/request_magnetic_tape file=pf_tape_file
job .. /evsn='pfb001' type=mt9$6250
job/restore_permanent_files
job/restore_all_files backup_file=pf_tape_file
job/quit
job/jobend

20-6 NOSNE Commands and Functions Revision G

RESTORE_ CATALOG

RESTORE_ CATALOG
RESPF Subcommand

Purpose Restores a catalog that does not currently exist as a
catalog.

Format RESTORE_CATALOG or
RESC

CATALOG= file
BACKUP_ FILE= file
NEW_CATALOG_NAME=file
STATUS= status variable

Parameters CATALOG or C

Remarks

Revision G

Specifies the catalog that is to be restored from the
backup file. This parameter is required.

BACKUP _FILE or BF

Specifies the file that contains the backup copy of the
catalog and its associated files and subcatalogs. This
parameter is required.

NEW_CATALOG_NAME or NCN

Specifies the catalog into which the files and subcatalogs
on the backup file are restored. Omission causes the name
as it exists on the backup file to be used.

o Backup copies of files and subcatalogs are restored.

& You must be the owner of the catalog.

o This command cannot be used to restore your master
catalog.

o The catalog being restored must not currently exist.

o The file specified by the BACKUP _FILE parameter
must have been created by the BACKUP_
PERMANENT_FILE utility.

o The backup file is initially positioned at
beginning-of-information.

o For more information, see the NOSNE System Usage
manual.

RESTORE_PERMANENT_FILES 20-7

RESTORE_EXCLUDED _FILE_ CYCLES

Examples The following example restores the master catalog to a
new subcatalog in the master catalog.

/restore_permanent_files list=restore_listing
PUR/restore_catalog catalog=$user new_catalog_name= ..
PUR .. /$user.catalog_2 backup_file=backed_up_files
PUR/Quit

RESTORE_EXCLUDED_FILE_CYCLES
RESPF Subcommand

Purpose Restores cycles to files that currently exist in the
permanent file system but do not have data defined for
them.

Format RESTORE_EXCLUDED_FILE_CYCLES or
RESTORE_EXCLUDED_FILE_CYCLE or
RESEFC

FILE=file
CATALOG= file
BACKUP_ FILE= file
NEW_NAME=file
RESTORE_ OPTIONS= list of keyword
STATUS= status variable

Parameters FILE or F

The FILE parameter specifies the file or cycle for which
data is to be restored (as identified on the backup file). IT
no cycle number is specified, data for all cycles of the file
is restored. If specified, a cycle number must be a specific
cycle (not $HIGH or $LOW).

CATALOG or C

The CATALOG parameter specifies the catalog for which
data is to be restored (as identified on the backup file).
Data for all cycles in the catalog is restored.

BACKUP _FILE or BF

Specifies the file containing the backup information. This
file is positioned at the beginning-of-information. This
parameter is required.

20-8 NOS/VE Commands and Functions Revision G

Remarks

Examples

Revision G

RESTORE_EXCLUDED _FILE_ CYCLES

NEW_NAME or NN or NEW_CATALOG_NAME or NCN
or NEW_FILE_NAME or NFN

Specifies a new name for the catalog, file, or cycle for
which the data is being restored. This parameter can be
used if the name on the backup file is different than that
in the current permanent file system. Omission causes the
name as it exists on the backup file to be used. If a cycle
reference was included on the FILE parameter but not on
the NEW_NAME parameter, $HIGH is used.

RESTORE_OPTIONS or RESTORE_OPTION or RO

Reserved for site personnel.

o This subcommand is used to restore cycle data when
partial backups have been performed. If the permanent
file system is backed up by a full backup followed by
daily partial backups, then the last partial backup is
restored with the RESTORE_ALL_FILES
subcommand. All other backups are restored in reverse
order using this subcommand.

o The modification date on the backup file must match
the modification date in the current permanent file
catalog, unless otherwise specified by a SET_
RESTORE_OPTIONS subcommand.

o If a cycle already has data defined for it, the cycle is
not altered.

G You may specify either the file or catalog parameter,
but not both. Omission of both parameters causes all
data to be restored, in which case the NEW_NAME
parameter cannot be used.

o For more information, see the NOSNE System Usage
manual.

The following example restores files from a previous
partial dump and a previous full dump.

/restore_permanent_files
PUR/restore_all_files bf=partial_dump
PUR/restore_excluded_file_cycles bf=full_dump

The following example restores all cycles of a file from a
partial and full dump.

RESTORE_PERMANENT_FILES 20-9

RESTORE_EXISTING_ CATALOG

PUR/restore_file $user.data_file_1 bf=partial_dump
PUR/resefc file=$user.data_file_1 bf=full_dump

RESTORE _EXISTING_ CATALOG
RESPF Subcommand

Purpose Restores the contents of a currently existing catalog.

Format RESTORE_EXISTING_CATALOG or
RE SEC

CATALOG= file
BACKUP _FILE= file
NEW_CATALOG_NAME=file
STATUS =status variable

Parameters CATALOG or C

Remarks

Specifies the catalog that is to be restored from the
backup file. This parameter is required.

BACl\:UP _FILE or BF

Specifies the file that contains the backup copy of the
catalog and its associated files and subcatalogs. The file is
initially positioned at beginning-of-information. This
parameter is required.

NEW_CATALOG_NAME or NCN

. Specifies the existing catalog into which the files and
subcatalogs on the backup file are restored. Omission
causes the name as it exists on the backup file to be
used.

o Backup copies of files and subcatalogs that do not
already exist in the specified catalog are restored.

o Any cycle that already exists is not altered.

o Cycle permission is required to restore any file cycle
within an existing catalog.

o You must be the owner of the catalog to restore any
subcatalogs.

o The file specified by the BACKUP _FILE parameter
must have been created by the BACKUP_
PERMANENT_FILE utility.

20-10 NOSNE Commends and Functions Revision G

Examples

RESTORE_EXISTING_FILE

o The backup file is initially positioned at
beginning-of-information.

ct For more information, see the NOS/VE System Usage
manual.

The following commands restore the master catalog that
was backed up with the BACKUP_ CATALOG
subcommand.

/restore_permanent_files list=restore_list
PUR/restore_ex1sting_catalog ..
PUR .. /catalog=$user backup_file=backed_up_files
PUR/QUit

RESTORE _EXISTING _FILE
RESPF Subcommand

Purpose Restores the file cycles of an existing file.

Format RESTORE _EXISTING _FILE or
RESEF

FILE=file
BACKUP_ FILE= file
PASSWORD=name or keyword
NEW _FILE _NAME =file
STATUS =status variable

Parameters FILE or F

Revision G

Specifies the file whose file cycles are to be restored from
the backup file. If a cycle reference is included the cycle
reference is ignored. This parameter is required.

BACKUP _FILE or BF

Specifies the file that contains the backup copy of the file.
This parameter is required.

PASSWORD or PW

Specifies the file password. This parameter must match
the password of the existing file. Omission or specifying
the keyword NONE causes no password to be used.

NEW_FILE_NAME or NFN

Specifies the existing file to be restored. Omission causes
the name as it exists on the backup file to be used.

RESTORE_PERMANENT_FILES 20-11

RESTORE_FILE

Remarks

Examples

• All file cycles that exist on the backup file but do not
exist as a permanent file are restored.

• Cycles that currently exist as permanent files are not
altered.

o You must have CYCLE permission to restore an
existing file.

• The file specified by the BACKUP _FILE parameter
must have been created during by BACKUP_
PERMANENT_FILE utility.

• The backup file is initially positioned at
beginning-of-information.

• For more information, see the NOSNE System Usage
manual.

The following example restores cycle number 87 of file
DATA_FILE_O in subcatalog CATALOG_l of the master
catalog that was previously backed up.

/delete_file $user.catalog_1.data_file_0.87
.. /pw=new_data_O_pw
/respf
PUR/restore_existing_file
PUR .. /$user.catalog_1.data_file_O
PUR .. /bf=copy_of_file pw=new_data_O_pw
PUR/Quit

RESTORE_FILE
RESPF Subcommand

Purpose

Format

Restores the file cycles of a file that does not currently
exist as a permanent file.

RESTORE_FILE or
RESF

FILE=file
BACKUP _FILE= file
PASSWORD=name or keyword
NEW _FILE _NAME =file
STATUS=status variable

20-12 NOSNE Commands and Functions Revision G

RESTORE_FILE

Parameters FILE or F

Remarks

Revision G

Specifies the file whose file cycles are to be restored from
the backup file. This parameter is required.

BACKUP _FILE or BF

Specifies the file that contains the backup copy of the file.
This parameter is required.

PASSWORD or PW

Specifies the file password. It must match the existing file
password. This parameter is used only if a specific cycle
of an existing file is being restored. Omission or
specifying the keyword NONE causes no password to be
used.

NEW_FILE_NAME or NFN

Specifies a new name for the file being restored. Omission
causes the name as it exists on the backup file to be
used.

a If the file name includes a cycle reference, only that
cycle is restored (at least one file cycle must already
exist).

o If a cycle reference is omitted, all file cycles are
restored (the file must not already exist).

o If a cycle reference is included on the FILE parameter,
it must be a specific cycle number; the keywords
$HIGH and $LOW cannot be used.

o If a cycle reference is not specified on the NEW_
FILE_NAME parameter, $NEXT is used.

o If a cycle reference is specified on the NEW_FILE_
NAME parameter, the file specified with the FILE
parameter must also include a cycle reference.

o You must have CYCLE permission to the file in order
to restore all file cycles or an additional file cycle.

o The file specified by the BACKUP _FILE parameter
must have been created by the BACKUP_
PERMANENT_FILE utility.

RESTORE_PERMANENT_FILES 20-13

SET_LIST_ OPTIONS

Examples

• The backup file is initially positioned at
beginning-of-information.

• For more information, see the NOSNE System Usage
manual.

The following subcommands restore cycle number 87 of
file DATA_FILE_O in subcatalog CATALOG_l. The file
is restored as cycle number 1 of file DATA_FILE_2 in
CATALOG_2 of the master catalog.

/respf
PUR/restore_file $user.catalog_1.data_file_0.87
PUR .. /bf=copy_of_file pw=new_data_O_pw
PUR .. /nfn=$user.catalog_2.data_file_2
PUR/quit

SET_LIST_OPTIONS
RESPF Subcommand

Purpose

Format

Specifies the information that is written to the list file by
subsequent subcommands.

SET_LIST_OPTIONS or
SET_LIST_OPTION or
SETLO

FILE_DISPLAY_OPTIONS=list of keyword
CYCLE_DISPLAY_OPTIONS=list of keyword
DISPLAY _EXCLUDED _ITEMS= boolean
STATUS= status variable

Parameters FILE_DISPLAY_OPTIONS or FILE_DISPLAY_OPTION
or FDO

Selects the data to be displayed with the file name.
Options are:

ACCOUNT (A)

Displays the account name.

PROJECT (P)

Displays the project name.

NONE

Displays only the file name.

20-14 NOS/VE Commands and Functions Revision G

Revision G

SET_LIST_ OPTIONS

ALL

Displays the account and project name.

If the FILE_DISPLAY_OPTION parameter is omitted,
NONE is selected.

CYCLE_DISPLAY_OPTIONS or CYCLE_DISPLAY_
OPTION or CDO

Selects the data to be displayed for each cycle backed up
or restored. The cycle number and whether the cycle was
excluded is also displayed. Options are:

CREATION _DATE_ TIME (CDT)

Displays the date and time the cycle was created.

ACCESS_DATE_ TIME (ADT)

Displays the date and time the cycle was last
accessed.

MODIFICATION _DATE_ TIME (MDT)

Displays the date and time the cycle was last
modified.

EXPIRATION_DATE (ED)

Displays the expiration date of the cycle.

ACCESS_COUNT (AC)

Displays the number of accesses to the cycle.

SIZE (S)

Displays the size of the cycle in bytes.

RECORDED_VSN (RVSN)

Displays the disk volumes on which the cycle resides.

GLOBAL_FILE_NAME (GFN)

Displays the internally generated global file name.
This name is neither backed up nor restored.

NONE

Displays the only cycle number.

RESTORE_PERMANENT_FILES 20-15

SET_LIST_ OPTIONS

Remarks

ALL

Selects all of the display options.

If the CYCLE_DISPLAY_OPTION parameter is omitted,
the MODIFICATION_DATE_TIME and SIZE options are
used.

DISPLAY_EXCLUDED_ITEMS or DISPLAY_
EXCLUDED_ITEM or DEI

Determines whether or not excluded catalogs, files, and
cycles are displayed on the list file. TRUE causes the
identification of all excluded catalogs, files, and cycles to
be displayed. If FALSE is specified, excluded items are
not displayed. Omission causes TRUE to be used.

For more information, see the NOSNE System Usage
manual.

20-16 NOS/VE Commands and Functions Revision G

SOURCE _CODE_ UTILITY 21

SOURCE_CODE_ UTILITY 21-1
ADD_LIBRARY . 21-2
CHANGE_DECK 21-3
CHANGE_DECK_NAME 21-8
CHANGE_DECK_REFERENCES 21-9
CHANGE_LIBRARY . 21-11
CHANGE_MODIFICATION . 21-12
COMBINE_LIBRARY . 21-15
CREATE_DECK . 21-17
CREATE_LIBRARY . 21-23
CREATE_MODIFICATION . 21-24
$BASE 21-26
$DECK . 21-26
$DECK_HEADER . 21-27
$DECK_LIST 21-29
DELETE_DECK 21-30
DELETE_MODIFICATION . 21-31
DISPLAY_DECK . 21-32
DISPLAY_DECK_LIST . 21-35
DISPLAY_DECK_REFERENCES 21-36
DISPLAY_FEATURE . 21-39
DISPLAY_FEATURE_LIST . 21-41
DISPLAY_GROUP . 21-42
DISPLAY_GROUP_LIST . 21-43
DISPLAY_LIBRARY 21-45
DISPLAY_MODIFICATION . 21-46
DISPLAY_MODIFICATION _LIST 21-48
EDIT_DECK 21-50
END_LIBRARY . 21-53
$ERRORS_FILE . 21-54
EXCLUDE_DECK . 21-54
EXCLUDE_FEATURE . 21-55
EXCLUDE_GROUP . 21-56
EXCLUDE_LIBRARY . 21-57
EXCLUDE_MODIFICATION 21-58
EXCLUDE_STATE . 21-59
EXPAND_DECK . 21-60
EXPAND_FILE _. 21-65
EXTRACT_DECK . 21-69
EXTRACT_MODIFICATION 21-73
$FEATURE 21-75
$FEATURE_LIST . 21-75
$FEATURE_MEMBERS . 21-76

$FIRST_DECK . 21-77
$FIRST_MODIFICATION . 21-77
$GROUP . 21°·78
$GROUP_LIST 21-78
$GROUP _MEMBERS . 21-79
INCLUDE_COPYING_DECKS 21-79
INCLUDE_DECK 21-80
INCLUDE_FEATURE . 21-81
INCLUDE_GROUP . 21-82
INCLUDE_MODIFICATION 21-83
INCLUDE_MODIFIED_DECKS 21-83
INCLUDE_STATE . 21-84
$LAST_DECK . 21-85
$LAST_MODIFICATION . 21-85
$LIBRARY_HEADER . 21-86
$LIBRARY_MODIFIED . 21-88
$LIST_FILE 21-89
$MODIFICATION 21-89
$MODIFICATION _HEADER 21-90
$MODIFICATION _LIST . 21-91
$MODIFIED_DECKS . 21-92
$NEXT_DECK . 21-92
$NEXT_MODIFICATION . 21-93
QUIT 21-93
QUIT 21-94
REPLACE_LIBRARY . 21-95
$RESULT 21-97
RETAIN_GROUP 21-98
SEQUENCE_DECK . 21-99
SEQUENCE_MODIFICATION · 21-100
SET_LIST_ OPTIONS . 21-101
USE_LIBRARY . 21-102
WRITE_LIBRARY . 21-104

SOURCE_ CODE_ UTILITY 21

SOURCE_ CODE_ UTILITY
Command

Purpose

Format

Remarks

Examples

Revision G

Begins an SCU command utility session.

SOURCE_CODE_UTILITY or
SCU or
sou cu

STATUS =status variable

• Entering a CREATE_LIBRARY or USE_LIBRARY
subcommand initializes the working library for the
SCU command utility session. If neither subcommand
is issued, file SOURCE_LIBRARY is used for the base
and result libraries. If file SOURCE_LIBRARY does
not exist, it is created.

o For more information, see the NOSNE Source Code
Management manual.

The following sequence begins an SCU session and
initializes the working library from file OLDPL in your
working catalog, assumed not to be $LOCAL. The base
file, OLDPL, is a source file whose file structure is a
library. Entering the QUIT subcommand causes the
working library to be written on the next cycle of file
OLD PL.

/source_code_utility
sc/use_library base=oldpl result=oldp1.$next
SC/Quit

The next example does not use the USE_LIBRARY
subcommand, but rather initializes the working library
from file SOURCE_LIBRARY in your working catalog.

/source_code_utility
sc/create_deck deck=deck1 ..
sc .. /modification=version1
SC/Quit

SOURCE_CODE_UTILITY 21-1

ADD_LIBRARY

ADD _LIBRARY
SCU Subcommand

Purpose Adds decks from one or more source libraries to the
working library.

Format ADD_LIBRARY or
ADD_LIBRARIES or
ADDL

SOURCE_LIBRARY=list of file
LIST=file
DISPLAY_ OPTIONS= keyword
STATUS =status variable

Parameters SOURCE_LIBRARY or SOURCE_LIBRARIES or SL

List of one or more source library files. This parameter is
required.

Remarks

LIST or L

Listing file. You can specify a file position as part of the
file name. SCU lists the source library origin of each
deck in the working library. Within an SCU session, if
you omit LIST, the listing file is the file specified on the
SET_LIST_OPTIONS subcommand. Otherwise, the default
is file $LIST.

DISPLAY_OPTIONS or DO

Specifies the level of information listed. Currently, both
keyword values produce the same listing.

BRIEF or B
FULL or F

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• ADD_LIBRARIES only adds decks that are not
already in the working library. It reads the deck list
for each source library in the order you specify the
libraries· on the command. When it reads a deck name
that is not currently in the working library, it adds
the deck to the library. When it reads a deck name
that is already in the working library, it sends a
message describing the duplication, but it does not add
the deck to the working library.

21-2 NOS/VE Commands and Functions Revision G

Examples

CHANGE_ DECK

o If a modification is in more than one source library
modification list and the creation times do not match,
ADD_LIBRARY reports an error and does not add
any decks to the working library.

• If no decks could be merged because an exception
occurred in each deck, an error status is returned and
ADD_LIBRARY makes no change to the library.

• Decks, features, groups, and modifications are ordered
alphabetically on the ADD_LIBRARIES result library.

• Key characters in source libraries that are added to
the working library must match the key character in
the working library. If the key characters do not
match, SCU generates an error message.

• For more information, see the NOSNE Source Code
Management manual.

The following command adds the decks from the source
library on file $USER.NEWLIB to the working library.
The contents of the working library are then displayed.

sc/add_11brary $user.new11b list=output

DECKA
DECKS
DECKC
DECKD

BASE
BASE
NEWLIB
BASE

CHANGE_DECK
SCU Subcommand

Purpose

Format

Revision G

Changes the content of one or more deck header fields.

CHANGE_DECK or
CHANGE_DECKS or
CHAD

DECK= list of name or keyword
AUTHOR =string
CLEAR_ ORIGINAL_INTERLOCK =boolean
CLEAR _SUB _INTERLOCK= boolean
DECK_DESCRIPTION =list of string
PROCESSOR =string
GROUP=list of name

SOURCE_CODE_UTILITY 21-3

CHANGE_DECK

DELETE_GROUP=list of name
CHAR.ACTER =string or keyword
TAB_COLUMN=list of integer
DELETE_ COLUMN= list of integer
WIDTH= integer
LINE _IDENTIFIER= keyword
EXPAND= boolean
STATUS= status variable

Parameters DECK or DECKS or D

Decks whose headers are changed. You can specify a list
of one or more names, a list of one or more ranges, or
the keyword ALL. ALL specifies all decks in the library.
The default is the name of the most recently used deck.

AUTHOR or A

New author. If AUTHOR is omitted, the author field is
not changed.

CLEAR._ORIGINAL_INTERLOCK or CO!

Indicates whether the original interlock for an extracted
deck should be cleared. Options are:

TRUE

Clears the original interlock field of the extracted deck
by erasing the name and time stamp that were
recorded in this deck.

FALSE

Leaves the original interlock field of the extracted
deck unchanged.

If CLEAR_ORIGINAL_INTERLOCK is omitted, FALSE is
used.

CLEAR._SUB_INTERLOCK or CLEAR._INTERLOCK or
CI or CS!

Indicates whether the subinterlock field of the original
deck should be cleared. Options are:

TRUE

Clears the subinterlock field of the original deck.

21-4 NOS/VE Commands and Functions Revision G

Revision G

CHANGE_DECK

FALSE

Leaves the subinterlock field of the original deck
unchanged.

If CLEAR_SUB_INTERLOCK or CLEAR_INTERLOCK
is omitted, FALSE is used.

NOTE

You must have authority 4 for the file to clear a deck
subinterlock or original interlock field.

DECK_DESCRIPTION or DD

List of strings containing the new deck description. If
DECK_ DESCRIPTION is omitted, the description field is
not changed.

PROCESSOR or P

New processor. If PROCESSOR is omitted, the processor
field is not changed.

GROUP or GROUPS or G

Additional groups to which the deck is to belong. The
subcommand deletes any groups specified on the
DELETE_GROUP parameter before adding groups to the
group list. If GROUP is omitted, the deck is not
associated with additional groups.

DELETE_GROUP or DELETE_GROUPS or DG

Groups to which the deck should no longer belong. The
subcommand deletes groups specified before adding any
groups specified on the GROUP parameter. If DELETE_
GROUP is omitted, the deck continues to belong to the
same groups it did previously.

CHARACTER or C

Either a 1-character string containing the new default tab
character or the keyword NONE to disable tabbing. If
CHARACTER is omitted, the tabbing status and default
tab character are not changed.

SOURCE_CODE_UTILITY 21-5

CHANGE_DECK

TAB_COLUMN or TAB_COLUMNS or TC

List of from 1 to 256 additional default tab columns. SCU
deletes the tab columns on the DELETE_COLUMN
parameter before it adds the new tab columns. If TAB_
COLUMN is omitted, no new tab columns are added.

DELETE_COLUMN or DELETE_COLUMNS or DC

List of default tab columns or tab column ranges to be
removed. SCU deletes the specified tab columns before it
adds the tab columns on the TAB_COLUMN parameter.
If DELETE_COLUMN is omitted, no tab columns are
removed.

WIDTH or W

New default line width. If WIDTH is omitted, the default
line width is not changed.

LINE_lDENTIFIER or LI

New default line identifier placement. Options are:

RIGHT (R)

Place line identifiers to the right of the text.

LEFT (L)

Place line identifiers to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, the default line
identifier placement is not changed.

EXPAND or E

New expand attribute value. Options are:

TRUE

An EXPAND_DECK subcommand expands the deck.
(The deck can also be expanded by a COPY or COPYC
directive.)

21-6 NOSNE Commands and Functions Revision G

Remarks

Examples

Revision G

CHANGE_DECK

FALSE

An EXPAND_DECK subcommand does not expand the
deck; it skips the deck and continues processing at the
next deck. Only a COPY or COPYC directive can
expand the deck.

If EXPAND is omitted, the expand attribute is not
changed.

e The DECK parameter specifies each deck to which the
changes should apply. The other parameters (except
STATUS) specify the deck header fields to be changed.

e To display a deck header, enter a DISPLAY_DECK
subcommand. You can reference deck header fields
with the SCU function $DECK_HEADER.

o If you have access authority 4 for the file, you can
enter a CHANGE_DECK subcommand to clear a
subinterlock that was set when a user extracted a
deck from the library.

o To eliminate unused groups from a library, enter
EXTRACT_SOURCE_LIBRARY DECKS=ALL
INTERLOCK= 'NONE to copy all decks to a new
RESULT file, saving only groups, modifications, and
features belonging to those decks.

o Changes to a deck header are not part of any
modification. When you include or exclude
modifications, you must make any associated deck
header changes separately by entering the CHANGE_
DECK subcommand.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand adds default tab column 35
and deletes default tab column 30 for DECK!.

sc/change_deck deck=deck1 tab_column=35 delete_column=30

The following subcommand clears the subinterlock fields
of all deck headers in the working library if you have
access authority 4 for the file.

sc/change_deck all clear_interlock=true

SOURCE_ CODE_ UTILITY 21-7

CHANGE_DECK_NAME

CHANGE_DECK_NAME
SCU Subcommand

Purpose Substitutes new names for existing deck names.

Format CHANGE_DECK_NAME or
CHANGE_DECK_NAMESor
CHADN

NAME _LIST= tile
LIST=file
CHANGE_DECK_REFERENCES =boolean
MODIFICATION= name
STATUS =status variable

Parameters NAME_LIST or NL

Remarks

Name substitution file. This parameter is required.

LIST or L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, the listing file is the file
specified on the SET_LIST_OPTIONS subcommand.
Otherwise, the default is file $LIST.

CHANGE_DECK_REFERENCESor CDR

Indicates whether the command substitutes deck names on
COPY and COPYC directives. Options are:

TRUE

COPY and COPYC names are substituted.

FALSE

COPY and COPYC names are not substituted.

If CHANGE_DECK_REFERENCES is omitted, FALSE is
used.

MODIFICATION or M

Modification to which the changed lines belong. If
MODIFICATION is omitted, SCU$ALTER is used.

o A deck name can occur in two places within a source
library: within its deck header, and on COPY and
COPYC directives in the source text. To list the COPY
and COPYC references to the deck, enter a DISPLAY_
DECK_REFERENCES command.

21-8 NOSNE Commands and Functions Revision G

Examples

CHANGE_DECK_REFERENCES

G You store the name substitutions on a separate file
and specify the file on the NAME_ LIST parameter.
Each name substitution is specified as a line
containing an SCL parameter list. The parameter list
must have the following parameters:

OLD_NAME (ON)

Existing name.

NEW_NAME (NN)

Substituted name. NEW_NAME must be different
from ALL.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand changes deck names as
specified in file NEW_DECK_NAMES. The changed lines
belong to the default modification SCU$ALTER.

sc/change_deck_names name_list=new_deck_names ..
sc .. /change_deck_references=true

The contents of file NEW_DECK_NAMES are:

my_deck,deck465

The command replaces each occurrence of the deck name
MY_DECK with the new name DECK465. Because the
command specifies that the CHANGE_DECK_
REFERENCES parameter is TRUE, it replaces the deck
name both in the deck header and on COPY and COPYC
directives throughout the library.

CHANGE_DECK_REFERENCES
SCU Subcommand

Purpose

Format

Revision G

Changes the deck names of COPY and COPYC directives
that are located in the specified decks.

CHANGE_DECK_REFERENCESor
CHADR

DECK= list of name
MODIFICATION =name
NAME _LIST= file
LIST=file
STATUS= status variable

SOURCE_CODE_UTILITY 21-9

CHANGE_DECK_REFERENCES

Parameters DECK or DECKS or D

Remarks

Decks in which substitutions are performed. The keyword
ALL specifies all decks in the library. If DECK is
omitted, ALL is used.

MODIFICATION or M

Modification to which the changed lines belong. If
MODIFICATION is omitted, SCU$ALTER is used.

NAME_LIST or NL

Name substitution file. This parameter is required.

LIST or L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, the listing file is the file
specified on the SET_LIST_OPTIONS subcommand.
Otherwise, the default is file $LIST.

o The CHANGE_DECK_REFERENCES subcommand
only changes deck names on COPY and COPYC
directives, not in deck headers. To change a deck
name in its deck header, enter the CHANGE_DECK_
NAMES command.

• You use CHANGE_DECK_REFERENCES to replace
references to one deck with references to another deck.
To list the COPY and COPYC references to a deck,
enter a DISPLAY_DECK_REFERENCES command.

o You store the name substitutions on a separate file
and specify the file on the NAME_LIST parameter.
Each name substitution is specified as a line
containing an SCL parameter list. The parameter list
must have the following parameters:

OLD_NAME (ON)

Existing name.

NEW_NAME (NN)

Substituted name. NEW_NAME should be different
from ALL.

o For more information, see the NOSNE Source Code
Management manual.

21-10 NOSNE Commands and Functions Revision G

Examples

CHANGE_LIBRARY

The following subcommand changes references as specified
in file NEW_NAMES. The changes belong to modification
RENAME.

sc/change_deck_references name_list=new_names ..
sc .. /modification=rename

The following lists the contents of file NEW_NAMES.

deck44,deck45

The command changes each COPY or COPYC reference to
DECK44 so that it references DECK45.

CHANGE _LIBRARY
SCU Subcommand

Purpose

Format

Changes the content of one or more fields in the working
library header.

CHANGE_LIBRARY or
CHAL

LIBRARY=name
LIBRARY _DESCRIPTION= list of string
VERSION= string
LAST_ USED _DECK= name
LAST_ USED _MODIFICATION =name
STATUS =status variable

Parameters LIBRARY or L

Revision G

New library name. If LIBRARY is omitted, the library
name is not changed.

LIBRARY_DESCRIPTION or LD

Strings used to describe the source code that is
maintained on this library. If LIBRARY_DESCRIPTION is
omitted, the description field is not changed.

VERSION or V

New library version. If VERSION is omitted, the version
field is not changed.

LAST_USED_DECKorLUD

Default deck name that is stored in the library header.
The deck name is used as the default value for the deck
parameter on most subcommands. Specifying NONE clears

SOURCE_CODE_UTILITY 21-11

CHANGE_ MODIFICATION

Remarks

Examples

the last used deck name. If a name is explicitly stated for
a DECK parameter on an SCU subcommand, LAST_
USED_DECK is automatically changed.

LAST_USED_MODIFICATION or LUM

Default modification name that is stored in the library
header. The modification name is used as the default
value for the modification parameter on most
subcommands. Specifying NONE clears the last used
modification name. If a name is explicitly stated for a
MODIFICATION parameter on an SCU subcommand,
LAST_ USED_MODIFICATION is automatically changed
to that name.

o To display the contents of the library header, enter a
DISPLAY_LIBRARY command.

• You can reference library header fields with the SCU
function $LIBRARY_HEADER.

o For more information, see the NOSNE Source Code
Management manual.

The following command changes the content of the library
version field.

sc/change_library version='Version 1.1'

CHANGE _MODIFICATION
SCU Subcommand

Purpose

Format

Changes information in one or more modification
descriptions.

CHANGE_MODIFICATION or
CHANGE_MODIFICATIONS or
CHAM

MODIFICATION= list of name or keyword
FEATURE=name or keyword
AUTHOR= string
MODIFICATION _DESCRIPTION= list of string
STATE= integer
STATUS =status variable

21-12 NOSNE Commands and Functions Revision G

CHANGE_MODIFICATION

Parameters MODIFICATION or MODIFICATIONS or M

Revision G

Modification descriptions to be changed. You can specify a
list of one or more names (from 1 to 9 characters each), a
list of one or more ranges, or the keyword ALL. ALL
specifies all modifications in the library. If
MODIFICATION is omitted, the information for the
description of the last used modification is changed.

FEATURE or F

New feature name or keyword NONE. Specifying NONE
clears the current feature association. If FEATURE is
omitted, the feature field is not changed.

AUTHOR or A

New author. If AUTHOR is omitted, the author field is
not changed.

MODIFICATION _DESCRIPTION or MD

Strings used to describe the modifications. If
MODIFICATION_ DESCRIPTION is omitted, the
description field is not changed.

STATE or S

New modification state. The following are the states and
their descriptions.

State

0
1
2
3
4

Description

Experimental
Developmental
Stable
Verified
Released

If STATE is omitted, the state is not changed.

NOTE

You cannot raise the modification state above your
authority for the file.

SOURCE_CODE_UTILITY 21-13

CHANGE_ MODIFICATION

Remarks

Examples

• The CHANGE_MODIFICATIONS subcommand can
only change the headers of modifications within the
modification list of the working library.

• To raise the value in the state field of the
modification header, your authority for the library file
must be the same or greater than the new state. For
example, to raise the state to 2, your authority must
be 2, 3, or 4:
You can only lower a state to 0. To lower the state to
0, your authority for the library file must be the same
or greater than the current state. For example, to
lower a modification that is currently in state 2, your
authority must be 2, 3, or 4.

• To display a modification header, enter a DISPLAY_
MODIFICATION command. You can reference
modification header fields with the SCU function
$MODIFICATION _HEADER.

o To eliminate unused groups from a library, enter
EXTRACT_SOURCE_LIBRARY DECKS=ALL
INTERLOCK=NONE to copy all decks to a new
RESULT file, saving only groups, modifications, and
features that belong to these decks.

o The FEATURE name should not be a keyword.

• For more information, see the NOSNE Source Code
Management manual.

The following command clears the feature associations of
all modifications in the working library.

sc/change_modification all feature=none

The following command raises the state of MOD_4 to
state 1 (developmental). You must have at least authority
1 for the file to raise the modification state to 1.

sc/change_modification mod_4 state=1

21-14 NOSNE Commands and Functions Revision G

COMBINE_LIBRARY

COMBINE _LIBRARY
SCU Subcommand

Purpose Combines the decks from one or more source libraries
with those in the working library.

Format COMBINE_LIBRARY or
COMBINE_LIBRARIES or
COML

SOURCE_LIBRARY=list of file
LIST=file
DISPLAY_ OPTIONS= keyword
ENFORCE _INTERLOCKS= boolean
STATUS=status variable

Parameters SOURCE_LIBRARY or SOURCE_LIBRARIES or SL

List of one or more source library names. This parameter
is required.

Revision G

LIST or L

Listing file. You can specify a file position as part of the
file name. SCU lists the source library origin of each
deck in the working library. If LIST is omitted, the
listing file is the file specified on the SET_LIST_
OPTIONS subcommand. Otherwise, the default is file
$LIST.

DISPLAY_OPTIONS or DO

Specifies the information listed. Currently, both of the
following keywords produce the same listing.

BRIEF or B
FULL or F

If DISPLAY_OPTIONS is omitted, BRIEF is used.

ENFORCE_INTERLOCKS or EI

Indicates whether the original interlock field of a source
library deck must match the subinterlock field of the
working library deck it is to replace. Options are:

TRUE

Interlocks must match.

SOURCE_CODE_UTILITY 21-15

COMBINE_LIBRARY

Remarks

FALSE

Interlocks need not match.

If ENFORCE_INTERLOCKS is omitted, FALSE is used.

• COMBINE_LIBRARY reads the source library deck
lists in the order you specify the libraries on the
command.

• After reading a deck name, COMBINE_LIBRARY
determines if the deck name is already in the working
library deck list. If the name is not in the list, it adds
the deck to the working library. If the name is ·
already in the list, it replaces the deck in the working
library with the deck from the source library. The
combining process is continued until each successive
source library in the list has been combined with the
working library.

o If no decks could be merged because an exception
occurred in each deck, an error status is returned and
no change is made to the library.

If the creation times of modifications that occur on
both libraries do not match, COMBINE_LIBRARY
issues an error and does not alter the working library.

o COMBINE_LIBRARY lists the source library origin of
each deck in the working library on the listing file.

o Decks, features, groups, and modifications are ordered
alphabetically on the COMBINE_LIBRARY result
library. ·

• You can enter a COMBINE_LIBRARY subcommand to
merge decks from an extracted library with the decks
in the library from which it was extracted to form a
new library. It adds new decks and replaces existing
decks.

o If you set interlocks when you extract the library,
entering COMBINE_LIBRARY enforces the interlock
if you specify that the interlocks should be enforced.
COMBINE_LIBRARY checks whether the original
interlock value in the extracted deck header matches
the subinterlock value 'in the working library header.
If the values match, the working library deck is

21-16 NOS/VE Commands and Functions Revision G

Examples

CREATE_DECK

replaced with the extracted deck. Otherwise, it issues
a warning messsage, does not replace the working
library, and then attempts to combine any remaining
decks in the list.

• Key characters in source libraries that are added to
the working library must match the key character in
the working library. If the key characters do not
match, SCU generates an error message.

• For more information, see the NOS/VE Source Code
Management manual.

The following subcommand combines the decks in the
source library NEWLIB with the decks in the working
library.

sc/combine_library newlib list=output

DECK A
DECKB
DECKC
DECKD
DE CKE

BASE
BASE
NEWLIB
BASE
NEWLIB

CREATE_DECK
SCU Subcommand

Purpose

Format

Revision G

Creates one or more decks.

CREATE_DECK or
CREATE_DECKS or
CRED

DECK= list of name
MODIFICATION =name
SOURCE =list of file
AUTHOR =string
DECK_DESCRIPTION =list of string
PROCESSOR= string
GROUP=list of name
CHARACTER= string or keyword
TAB_COLUMN=list of integer
WIDTH =integer
LINE _IDENTIFIER= keyword

SOURCE_CODE_UTILITY 21-17

CREATE_DECK

EXPAND= boolean
DECK_DIRECTNES_INCLUDED =boolean
MULTI_PAR.TITION =boolean
SAME _AS= name
STATUS =status variable

Parameters DECK or DECKS or D

List of one or more deck names. Each name must be
unique to the library. If DECK is omitted, you must
specify the SOURCE parameter and DECK_
DIRECTIVES_INCLUDED=TRUE.

MODIFICATION or M

Modification name (1 to 9 characters). The modification
must be in state 0 (zero). The default is the last used
modification.

SOURCEorSOURCESorS

List of one or more files containing the source text for
the decks. You can specify a file position as part of the
file name. The SOURCE parameter is required when you
specify DECK_DIRECTIVES_INCLUDED=TRUE.

AUTHOR or A

Optional author identification.

DECK_DESCRIPTION or DD

List of strings containing the optional deck description. If
DECK_DESCRIPTION is omitted, a description is not
saved.

PROCESSOR or P

Optional identification of the processor to which the deck
text is input.

GROUPorGROUPSorG

Optional list of groups to which the deck is to belong. If
any of the group names are not in the group list, SCU
adds the names to the list.

CHAR.ACTER or C

Either a 1-character string containing the tab character or
the keyword NONE to disable tabbing. If CHARACTER is
omitted, tabbing is disabled.

21-18 NOSNE Commands and Functions Revision G

Revision G

CREATE_DECK

TAB_COLUMN or TAB_COLUMNS or TC

Optional list of 1 through 256 default tab columns. The
column numbers range from 1 through 256.

WIDTH or W

Default line width. If WIDTH is omitted or specified as 0
(zero), deck lines can be up to 256 characters and the
lines are not padded with trailing blanks when the deck
is expanded.

LINE_lDENTIFIER or LI

Default line identifier placement.

RIGHT (R)

Identifiers are placed to the right of the text.

LEFT (L)

Identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, NONE is used.

EXPAND or E

Specifies the expand attribute for the decks created.­
Applicable only if the subcommand names decks on its
DECK parameter, not if DECK directives name the decks.
(A DECK directive specifies the expand attribute for its
deck.)

TRUE

An EXPAND_DECK subcommand expands the deck.
(COPY and COPYC directives can also expand the
deck.)

FALSE

An EXPAND_DECK subcommand skips the deck and
continues its processing with the next specified deck.
Only COPY and COPYC directives can expand the
deck.

If EXPAND is omitted, TRUE is used.

SOURCE_CODE_UTILITY 21-19

CREATE_DECK

DECK_DIRECTNES_INCLUDED or DDI

Indicates whether the deck names are specified on DECK
directives embedded in the source text or as the DECK
parameter of this subcommand.

TRUE

The deck names are on DECK directives in the source
text on the source file. CREATE_DECK only reads
text from the first source file specified when DECK
directives are included.

FALSE

The deck names shown in the DECK parameter.

If DECK_DIRECTIVES_INCLUDED is omitted, FALSE is
used and the DECK parameter must be specified.

MULTI_PARTITION or MP

Indicates whether the deck text can be more than one
partition of data.

TRUE

The subcommand can copy more than one partition of
data to each deck.

FALSE

The subcommand can copy only one partition of data
to each deck.

If MULTl_PARTITION is omitted, FALSE is used.

SAME_AS or SA

Optional deck name. If a name is specified, the
subcommand copies deck header fields not specified on the
CREATE_DECK subcommand from the deck header of
this deck. If SAME_AS is omitted, unspecified header
fields are left blank.

21-2.0 NOSNE Commands and Functions Revision G

Remarks

Revision G

CREATE_DECK

o CREATE_DECK provides a header for each deck. The
minimum content of the deck header is the deck name
and the creation modification. You can specify
additional values for deck header fields with
parameters on the subcommand. You can also specify
the SAME_AS parameter to copy deck header fields
from another deck header; CREATE_DECK only
copies those deck header fields not explicitly specified.

o Each deck created is given a name (from 1 through 31
characters). By default, the subcommand uses the deck
names specified on the DECK parameter. However, if
you specify DECK_DIRECTIVES_INCLUDED =TRUE
on the subcommand, it uses the deck names specified
on DECK directives in the source text. You can
specify the EXPAND attribute for a deck on its DECK
directive.

o The subcommand can specify the creation modification
for the deck. A modification name is from 1 through 9
characters, and it can be an existing modification
within the library or a new modification. Any source
text that the subcommand copies to a deck belongs to
the creation modification. The default is the last used
modification.

o To copy source text to the newly created decks, you
must specify the SOURCE parameter. If you specify
the SOURCE parameter and the DECK parameter, you
must specify a file name for each deck name on the
DECK parameter. The subcommand copies text to each
deck from its corresponding file on the SOURCE
parameter; that is, it copies the text from the first file
to the first deck created, the text from the second file
to the second deck created, and so forth. If you specify
the file $NULL for a deck, the subcommand copies no
text and the deck remains empty.

o By default, the subcommand copies only the first
partition of text from a source text file. To copy more
than one partition of text, specify MULTI_
PARTITION =TRUE on the subcommand. This
indicates that if the subcommand reads an
end-of-partition delimiter when copying text, it
converts the delimiter to a WEOP text-embedded
directive and continues copying text.

SOURCE_CODE_UTILITY 21-21

CREATE_DECK

Examples

• If you specify DECK_DIRECTIVES_
INCLUDED=TRUE and omit the DECK parameter,
the subcommand creates a deck header for each DECK
directive it reads on the source text file.

• If you specify DECK_ DIRECTIVES_
INCLUDED= TRUE and errors are encountered in the
source file, CREATE_DECK attempts to skip ahead to
the next DECK directive. The working library will
contain the decks that were processed without errors.

o The subcommand places the created decks within the
library so that the alphabetic sequence of names in
the deck list is maintained.

• The maximum number of lines in one deck is
16,777,214.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand creates two decks. First, it
creates a deck named DECK2 and copies one partition of
text to the deck from file FILE2. It then creates a deck
named DECK3 and copies one partition of text to the
deck from file FILE3. The deck headers contain the same
information as the DEC Kl header, except for their
description fields.

sc/create_deck (deck2,deck3) modification=original ..
sc .. /source=(file2,file3) same_as=deck1 ..
sc .. /deck_description='Second version of INIT_ARRAY'

The following subcommand creates decks using the text on
file FILE4. SCU generates a deck header for each DECK
directive embedded in the file text. The deck headers are
the same as the DECKl header, except for the name and
expand attribute fields. The DECK directive specifies the
deck name and expand attribute.

sc/create_deck modification=original source=file4
sc .. /same_as=deck1 deck_directives_included=true

21-22 NOSNE Commands and Functions Revision G

CREATE _LIBRARY
SCU Subcommand

CREATE_LIBRARY

Purpose Creates an empty source library at the beginning of an
SCU session. This subcommand also specifies the result
library used during an SCU session.

Format CREATE_LIBRARY or
CREL

RES ULT= file
LIBRAR.Y =name
LIBRAR.Y _DESCRIPTION= list of string
KEY=string
VERSION= string
STATUS =status variable

Parameters RESULT or R

Name of the file to be used as the result file during an
SCU session. If RESULT is omitted, the file SOURCE_
LIBRARY in your working catalog is used as the result
file.

LIBRAR.Y or L

Library name. If LIBRARY is omitted, the name specified
by the RESULT parameter is used as the library name.

LIBRAR.Y_DESCRIPTION or LD

String or strings that describe the source code maintained
on this library. If LIBRARY_DESCRIPTION is omitted,
the null string is used.

KEY or K

One-character string containing the key character. The
key character is the first character of a text-embedded
directive. If KEY is omitted, * is used.

VERSION or V

String used to describe the version of the library. If
VERSION is omitted, the null string is used.

Remarks o Using the CREATE_LIBRARY subcommand, you can
specify a key character other than the default
character *. The key character is the character SCU
recognizes as the prefix for all text-embedded
directives in the library.

Revision G SOURCE_CODE_UTILITY 21-23

CREATE_MODIFICATION

Examples

• CREATE_LIBRARY creates a source library
containing only a library header, which you can
display with the DISPLAY_LIBRARY subcommand. To
change library header information, enter a CHANGE_
LIBRARY subcommand. To reference a library header
field, use the SCU function $LIBRARY_HEADER.

o After you execute CREATE_LIBRARY, the base
library is selected and cannot be changed by a
subsequent USE_LIBRARY or CREATE_LIBRARY
subcommand.

• During an SCU session, if neither a CREATE_
LIBRARY nor a USE_LIBRARY subcommand is
issued before other subcommands, file SOURCE_
LIBRARY in your working catalog is used for the base
and result libraries.

CD For more information, see the NOSNE Source Code
Management manual.

The following sequence creates an empty source library
named SOURCE_LIBRARY. The key character for the
library is *.

/scu
sc/create_library
SC/Quit

CREATE _MODIFICATION
SCU Subcommand

Purpose

Format

Creates one or more modifications in the library
modification list.

CREATE_MODIFICATION or
CREATE_MODIFICATIONS or
CREM

MODIFICATION= list of name
FEATURE =name
AUTHOR= string
MODIFICATION_DESCRIPTION=list of string
STATUS= status variable

21-24 NOS/VE Commands and Functions Revision G

CREATE_MODIFICATION

Parameters MODIFICATION or MODIFICATIONS or M

Remarks

Examples

Revision G

List of one or more modification names (from 1 through 9
characters each). This parameter is required.

FEATURE or F

Optional name of the feature to which the modification
belongs. If the feature name is not in the feature list,
SCU adds the name to the list.

AUTHOR or A

Optional modification author.

MODIFICATION _DESCRIPTION or MD

Optional list of strings containing the modification
description.

o A modification created by a CREATE_MODIFICATION
subcommand contains only the modification header; no
lines belong to the modification. The modification is
defined for specification on subsequent commands.

o Modifications are placed on the library in alphabetical
order.

o If CREATE_MODIFICATIONS creates more than one
header, the headers are identical except for their
names.

o To display the modifications defined within the
working library, enter a DISPLAY_MODIFICATION_
LIST command. To determine within an expression
whether a modification exists, use the SCU function
$MODIFICATION.

o FEATURE name should not be ALL or NONE.

e> For more information, see the NOSNE Source Code
Management manual.

The following subcommand creates a description for
modification MOD_4 for feature SYNTAX_CHECK. The
author of the modification is K. Riley. The text in the
SCL variables LINE! and LINE2 is the modification
description.

SOURCE_CODE_UTILITY 21-25

$BASE

$BASE

sc/line1='This is a very long title for
sc .. /a modification to show that'
sc/line2='a list of strings may be used for
sc .. /the description.'
sc/create_modification modification=mod_4 ..
sc .. /feature=syntax_check author='K. Riley'
sc .. /modification_description=(line1, line2)

SCU Function

Purpose Returns the base library file.

Format $BASE

Parameters None.

Remarks For more information, see the NOSNE Source Code
Management manual.

Examples The following command displays the current value of the
base file.

$DECK

/scu
sc/use_library base=$user.fortran_lib
sc/display_value value=$base
$USER.FORTRAN_LIB

SCU Function

Purpose Returns a boolean value indicating whether the specified
deck is in the working library.

Format $DECK
(name)

Parameters name

Name of the deck to be found. This parameter is required.

Remarks For more information, see the NOSNE Source Code
Management manual.

21-26 NOS/VE Commands and Functions Revision G

Examples

$DECK_HEADER

The following command assigns a boolean value to the
SCL variable DECK_EXISTS, depending on whether
DECKl is in the working library.

sc/deck_exists = $deck(deck1)

$DECK_HEADER
SCU Function

Purpose Returns the contents of any deck header field.

Format $DECK_HEADER
(name
keyword)

Parameters name

Revision G

Name of the deck whose header field is returned. This
parameter is required.

keyword

Deck header field. This parameter is required. Options
are:

AUTHOR (A)

Deck author. The value is returned as a string.

ORIGINAL_INTERLOCK (Ol)

Original interlock on the deck. The value is returned
as a string.

SUB_INTERLOCK (SI)

Deck subinterlock. The value is returned as a string.

DECK_DESCRIPTION (DD)

Deck description. The value is returned as a string.

PROCESSOR (P)

Deck processor. The value is returned as a string.

GROUP or GROUPS (G)

Groups to which the deck belongs. The value is
returned as an array of strings if the number of
groups is greater than 1; otherwise the value returned
is a single string.

SOURCE_ CODE_ UTILITY 21-27

$DECK_ HEADER

CHARACTER (C)

Default tab character. The value is returned as a
string.

TAB_COLUMN or TAB_COLUMNS (TC)

Default tab stop columns. The value is returned as a
string.

WIDTH (W)

Default line width. The value is returned as an
integer.

LINE_IDENTIFIER (LI)

Default line identifier placement. This value is
returned as a string.

EXPAND (E)

Expand attribute. The value is returned as a boolean
value.

MODIFICATION (M)

Names of the modifications that apply to the deck.
The value is returned as an array of strings.

CREATION_DATE (CD)

Date the deck was created. The value is returned as a
string (mm/dd/yy).

CREATION_TIME (CT)

Time the deck was created. The value is returned as a
string (hh.mm.ss).

MODIFICATION _DATE (MD)

Date the deck was last changed. The value is returned
as a string (mm/dd/yy).

MODIFICATION_TIME (MT)

Time the deck was last changed. The value is returned
as a string (hh.mm.ss).

ACTIVE_LINE_COUNT (ALC)

Number of active lines in the deck. The value is
returned as an integer.

21-28 NOS/VE Commands and Functions Revision G

Remarks

Examples

$DECK_LIST

INACTIVE_LINE_COUNT (ILC)

Number of inactive lines in the deck. The value is
returned as an integer.

For more information, see the NOSNE Source Code
Management manual.

The following command assigns the active line count for
deck DECK5 to the SCL integer variable LINE_COUNT.

sc/line_count = $deck_header(deck5,alc)

$DECK_LIST
SCU Function

Purpose Returns an array of strings listing the names of decks on
a library.

Format $DECK_LIST

Parameters None.

Remarks o The names in the array will be ordered alphabetically

Examples

Revision G

as the decks are ordered on the library.

o When used in the selection criteria subcommand
processing, $DECK_ LIST reflects the current deck list
to be written to the compile, result, or source file
being produced.

o For more information, see the NOSNE Source Code
Management manual.

This example shows an array implicitly created and
values assigned to it. The first command assigns an array
of strings to the variable DECK_LIST and the following
commands execute a loop to display the values of the
array.

SOURCE_CODE_UTILITY 21-29

DELETE_DECK

sc/deck_list = $deck_list
sc/for i=1 to $variable(deck_list,upper_bound) do
for/display_value deck_list(i)
for/forend
DECK1
DECK2
DECK3
DECK4
sci

DELETE_DECK
SCU Subcommand

Purpose

Format

Deletes one or more decks from the working library.

DELETE_DECK or
DELETE_DECKS or
DELD

DECK= list of range of name
STATUS= status variable

Parameters DECK or DECKS or D

Remarks

Decks to be deleted. This parameter is required.

e You cannot delete a deck if the creation modification
of the deck is in a state greater than your authority
for the file.

• The DELETE_DECK subcommand removes the deck
name from the deck list of the working library (as
opposed to being deactivated like the EDIT_DECK
DELETE_ LINE subcommand).

o When you specify a range of decks, DELETE_DECK
deletes each deck in the deck list, beginning with the
first deck specified through the last deck specified.
Before specifying a range of decks to be deleted, you
should display the deck list with a DISPLAY_DECK_
LIST subcommand to determine the decks included in
the range.

o If a deck to be deleted has a conflicting subinterlock
set, SCU sends a warning message, observing that
another user extracted the deck using an EXTRACT_
SOURCE_LIBRARY command. The deck is deleted.
SCU then attempts to delete any remaining decks.

21-30 NOS/VE Commands and Functions Revision G

Examples

DELETE_MODIFICATION

• For more information, see the NOSNE Source Code
Management manual.

The following command deletes deck DECKA and decks
DEC KC through DECKF.

sc/delete_decks (decka,deckc .. deckf)

DELETE _MODIFICATION
SCU Subcommand

Purpose

Format

Deletes one or more modifications. Deleting a modification
reverses all text changes that were introduced by the
modification. All insertions are deleted, all replacements
are removed, and all deletions are reactivated.

DELETE_MODIFICATION or
DELETE_MODIFICATIONS or
DELM

MODIFICATION= list of range of name
DECK= list of range of name
STATUS= status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be deleted. This parameter is required.

Remarks

Revision G

DECK or DECKS or D

Either one or more deck names or the keyword ALL. ALL
specifies all decks in the working library. If DECK is
specified, SCU deletes only the modification changes
within the specified decks. If DECK is omitted, ALL is
used.

e You cannot delete the creation modification of a deck
directly: you must first delete each deck for which the
modification is the creation modification. You can then
delete the modification from the modification list.

• You cannot delete a modification whose state is
greater than your authority for the file.

SOURCE_CODE_UTILITY 21-31

DISPLAY_DECK

Examples

• If a deck affected by a deleted modification has its
subinterlock set, SCU sends a warning message,
stating that a user has extracted the deck with an
EXTRACT_SOURCE_LIBRARY command. The
modification is deleted. SCU then attempts deletion of
modification changes on any remaining decks in the
deck list.

• You can use this subcommand to create a new library
without the modification. To temporarily reverse
modification changes when expanding text, use the
selection criteria subcommand EXCLUDE_
MODIFICATION.

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand deletes modification MOD5.

sc/delete_modification mod5

DISPLAY _DECK
SCU Subcommand

Purpose

Format

Displays one or more deck headers.

DISPLAY_DECK or
DISPLAY_DECKS or
DISD

DECK= list of name or keyword
OUTPUT=file
DISPLAY_ OPTIONS= keyword
TEXT= keyword
STATUS= status variable

Parameters DECK or DECKS or D

Decks whose headers are to be displayed. You can specify
a list of one or more deck names, a list of one or more
deck ranges, or the keyword ALL. ALL specifies all decks
in the working library. If DECK is omitted, the last used
deck is displayed.

21-32 NOS/VE Commands and Functions Revision G

Remarks

Revision G

DISPLAY_DECK

OUTPUT or 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only deck header information.

FULL (F)

Lists deck header information, modifications to which
deck lines belong, and the groups to which the deck
belongs.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

TEXT or T

Specifies deck text to be displayed. Options are:

INACTIVE (I)

Active and inactive lines.

ACTIVE (A)

Active lines only.

NONE

Deck text is not displayed.

If TEXT is omitted, NONE is used.

o You can display deck text with the DISPLAY_DECK
subcommand. You can display either the active lines
or both the active and inactive lines. Inactive lines are
lines that have been deleted; only active lines appear
in expanded deck text.

o The DISPLAY_DECK subcommand is valid within an
editing session started by an EDIT_DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character (!DISPLAY_
DECK).

e For more information, see the NOSNE Source Code
Management manual.

SOURCE_ CODE_ UTILITY 21-33

DISPLAY_DECK

Examples The following subcommand displays the deck header of
deck DECKI. The subcommand specifies full information
level (DO= F) so the modifications in the deck and the
groups to which the deck belong are also displayed. The
subcommand also specifies a listing of both the inactive
and active lines in the deck (T =I).

sc/d1splay_deck deck=deck1 display_options=f text=i
Deck Information

DECK: DECK1
EXPAND: FALSE
AUTHOR: M.J.Perreten
PROCESSOR: Fortran
ORIGINAL_INTERLOCK:
SUB_INTERLOCK:
WIDTH: 80
LINE IDENTIFIER: none
TAB ACTIVE: TRUE
CHARACTER: #

TAB_COLUMNS: 5, 7, 9, 11, 13 15, 17
CREATION_DATE - TIME: 12/02/81 - 10:41:51
MODIFICATION_DATE -TIME: 03/24/82 - 13:37:19
DECK_DESCRIPTION: First example deck
COUNTS

MODS:2 GROUPS:1

MODS AND SEQUENCE NUMBERS
ORIGINAL 6
FIRST_MOD 1

GROUP LIST
LOOPS

LINES ACTIVE: 6 INACTIVE: 1

Active(A)/Inactive(I) text lines for deck DECK1

A ORIGINAL 1
A ORIGINAL 2 DO 10 I=1, 100
I ORIGINAL 3 10 I= I+1

I FIRST_MOD
A FIRST_MOD 10 I= I+1
A ORIGINAL 4
A ORIGINAL 5 *COPYC COMMON1
A ORIGINAL 6

21-34 NOS/VE Commands and Functions Revision G

DISPLAY_DECK_LIST

Each line of the text listing contains a letter indicating
whether the line is active or inactive (A or I), the line
identifier, and the line text. If the line is inactive, the
succeeding line names the modification that deactivated
the line.

DISPLAY _DECK_LIST
SCU Subcommand

Purpose Lists the decks found in the working library in
alphabetical order by deck name.

Format DISPLAY_DECK_LIST or
DISDL

ALTERNATE _BASE== list of file
0 UTP UT== file
DISPLAY_ OPTIONS== keyword
STATUS ==status variable

Parameters ALTERNATE_BASE or ALTERNATE_BASES or AB

Optional list of one or more source libraries whose deck
lists are combined with the working library deck list. If
ALTERNATE_BASE is omitted, the decks on the current
working library will be displayed.

Revision G

OUTPUT or 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information listed. Currently, both of the
following keywords produce the same listing.

BRIEF (B)
FULL (F)

If DISPLAY_OPTIONS is omitted, BRIEF is used.

SOURCE_CODE_UTILITY 21-35

DISPLAY_DECK_REFERENCES

Remarks

Examples

• If you specify one or more alternate base libraries,
DISPLAY_DECK_LIST combines their deck lists with
the working library deck list for the duration of the
subcommand. You can use this option to display the
deck list that would be used if you specified the
alternate base libraries on an EXPAND_DECKS or
EXTRACT_DECKS subcommand.

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand displays a combined deck list
of the decks on source library MY_LIB and the working
library.

sc/display_deck_list alternate_base=my_lib
FORTRAN_ TEXT FORTRAN_TEXT_II
MY_TEXT

The listing does not indicate which source library contains
the deck. -

DISPLAY _DECK_REFERENCES
SCU Subcommand

Purpose

Format

Displays a cross-reference listing for one or more decks. A
reference to a deck is a COPY or COPYC directive that
names the deck.

DISPLAY _DECK_REFERENCES or
DISDR

DECK= list of name or keyword
EXTERNAL_DECK=list of name or keyword
OUTPUT=file
DECK_RESIDENCE =keyword
REFERENCE _DIRECTION= keyword
REFERENCE_ TYPE= keyword
STATUS =status variable

Parameters DECK or DECKS or D

Decks to be cross-referenced. You can specify a list of
names, a list of ranges, or the keyword ALL or NONE.
ALL specifies all decks in the working library. If DECK
is omitted, the name of the last deck is used. If you
specify NONE, you prevent the last deck from being
cross-referenced.

21-36 NOS/VE Commands and Functions Revision G

Revision G

DISPLAY_DECK_REFERENCES

EXTERNAL_DECKorEXTERNAL_DECKSorED

Decks to be cross-referenced that are not on the working
library. You can specify a list of names or the keyword
ALL. ALL specifies all decks not in the working library
that are referenced by decks in the working library. If
EXTERNAL_DECK is omitted, you must specify the
DECK parameter.

OUTPUT or 0

File on which the cross-reference is written. You can
specify a file position as part of the file name. If
OUTPUT is omitted, file $OUTPUT is used.

DECK_RESIDENCE or DR

Specifies the references to list. Options are:

EXTERNAL

List only references to decks not in the working
library.

INTERNAL

List only references to decks in the working library.

ALL

List references to decks both in the working library
and not in the working library.

If DECK_RESIDENCE is omitted, ALL is used.

REFERENCE_DIRECTION or RD

Specifies the direction the references are traced. Options
are:

TO

References to the decks.

FROM

References from the decks.

ALL

References to and from the decks.

If REFERENCE_DIRECTION is omitted, TO is used.

SOURCE_CODE_UTILITY 21-37

DISPLAY_DECK_REFERENCES

Remarks

REFERENCE_TYPEorRT
Specifies the reference type to be listed. Options are:

DIRECT

Lists only direct references.

INDIRECT

Lists only indirect references.

ALL

Lists both direct and indirect references.

If REFERENCE_ TYPE is omitted, ALL is used.

• The REFERENCE_ TYPE parameter indicates whether
DISPLAY_DECK_REFERENCES lists direct
references or indirect references or both.

• Direct references involve only two decks; indirect
references involve three or more decks. For example, if
DECKA contains a COPY directive that copies
DECKB, DECKA directly references DECKB. If
DECKB contains a COPY directive that copies
DECKC, DECKA indirectly references DECKC.

• The DECK_RESIDENCE parameter indicates whether
this subcommand lists references to decks within the
working library, decks not in the working library, or
both.

• This subcommand is valid within an editing session
started by an EDIT_DECK subcommand. It is also
valid within a selection criteria file if prefixed with
the slant character {!DISPLAY_DECK_
REFERENCES).

• For more information, see the NOSNE Source Code
Management manual.

21-38 NOSNE Commands and Functions Revision G

Examples

DISPLAY_FEATURE

The following subcommand produces a cross-reference for
deck SUBl on the working library. It traces direct and
indirect references both to and from the deck, including
references to decks not resident on the working library.

sc/display_deck_references deck=sub1
sc .. /reference_direction=all

References FROM deck
(e = external deck, i = indirect reference)

SUB1
e SUB2

References TO internal deck
(i = indirect reference)

SUB1
PROGRAM1

references

is referenced by

DISPLAY _FEATURE
SCU Subcommand

Purpose Displays the modifications belonging to a feature.

Format DISPLAY_FEATURE or
DISF

FEATURE= name
OUTPUT=file
DISPLAY_ OPTIONS= keyword
STATUS= status variable

Parameters FEATURE or F

. Revision G

Feature name. This parameter is required.

OUTPUT or 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information displayed. Options are:

BRIEF (B)

Lists only the modification names .

SOURCE_CODE_UTILITY 21-39

DISPLAY_FEATURE

Remarks

Examples

FULL (F)

Lists the modification names and the modification
descriptions.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• You can change the feature to which a modification
belongs with the CHANGE_MODIFICATION
subcommand.

• The DISPLAY_FEATURE subcommand is valid within
an editing session started by an EDIT_DECK ·
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character (/DISPLAY_
FEATURE).

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand displays the names and
modification descriptions for all modifications belonging to
the feature NEW_PROMPTS.

sc/disptay_feature new_prompts display_options=f
Descriptions of modifications associated with the feature

NEW_PR().4PTS

MODIFICATICN: PR().4PT _ 1
STATE: 0
FEATURE: NEW_PR().4PTS
AUTHOR: Jane Doe
CREATICN_DATE - TIME: 10/31/83 - 08.24.54
MOOIFICATICN_DATE - TIME: 10/31/83 - 08.24.54
MODIFICATICN_DESCRIPTION: This adds a prompt for parameter

MOOIFICATICN: PROMPT _2
STATE: 0
FEATURE: NEW_PR().4PTS
AUTHOR: Jane Doe

NEW_DECK.

CREATICN_DATE - TIME: 11/05/83 - 13. 29. 04
MODIFICATION_DATE - TIME: 11/06/83 - 09.46. 15
MODIFICATICN_DESCRIPTION: This adds a prompt for parameter

OLD_DECK.

Number of modifications associated with this feature: 2

21-40 NOS/VE Commands and Functions Revision G

DISPLAY_FEATURE_LIST

DISPLAY _FEATURE _LIST
SCU Subcommand

Purpose Lists the features in the source library.

Format DISPLAY_FEATURE_LIST or
DIS FL

OUTPUT=file
DISPLAY_ OPTIONS= keyword
STATUS= status variable

Parameters OUTPUT or 0

Remarks

Revision G

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only the feature names.

FULL (F)

Lists the feature names and the names of the
modifications that belong to each feature.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• Features are listed alphabetically.

o To add a feature, create a modification that belongs to
the feature. Once created, a feature name cannot be
deleted from the feature list. If the feature list
contains an unused feature name, you can enter an
EXTRACT_SOURCE_LIBRARY command to remove
the unused feature name from the result library.

• The feature list of the new library includes only those
features with which modifications in the new library
are associated and which have not been explicitly
excluded by selection criteria commands.

SOURCE_CODE_UTILITY 21-41

DISPLAY_GROUP

Examples

• The DISPLAY_FEATURE_LIST subcommand is valid
within an editing session started by an EDIT_DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character (!DISPLAY_
FEATURE_ LIST).

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand lists the features in the
working library.

sc/d1splay_feature_list
NE\'LPROMPTS NEW_RESPONSE

DISPLAY_GROUP
SCU Subcommand

Purpose Lists the decks belonging to a group.

Format DISPLAY_GROUP or
DISG

GROUP=name
ALTERNATE_BASE=list of file
OUTPUT=file
DISPLAY_ OPTIONS= keyword
STATUS= status variable

Parameters GROUP or G

Group name. This parameter is required.

ALTERNATE_BASEorALTERNATE_BASESorAB

Optional list of one or more additional source libraries
from which decks are listed if they belong to the group.

OUTPUT or 0

File on which output is written. You can specify a file
position as part of the file name. If OUTPUT is omitted,
file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information listed. Options are:

BRIEF {B)

Lists only the deck names.

21-42 NOS/VE Commands and Functions Revision G

Remarks

Examples

DISPLAY_ GROUP_LIST

FULL (F)

Lists the deck names and the information in each deck
header.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• If you specify one or more alternate base libraries,
DISPLAY_ GROUP combines their group and deck lists
with the working library group and deck lists for the
duration of the subcommand.

• You can change the group to which a deck belongs
with the CHANGE_DECK subcommand.

• The DISPLAY_GROUP subcommand is valid within an
editing session started by an EDIT_DECK
subcommand.

• For more information, see the N OSNE Source Code
Management manual.

The following subcommand lists the_ decks in the group
SECTIONl.

sc/display_group section1
Decks associated with group SECTION1

FORTRAN_ TEXT
FORTRAN_TEXT_III

FORTRAN_TEXT_II

DISPLAY_GROUP _LIST
SCU Subcommand

Purpose Lists the groups in the library.

Format DISPLAY_ GROUP _LIST or
DISGL

ALTERNATE _BASE= list of file
OUTPUT=file
DISPLAY_ OPTIONS= keyword
STATUS= status variable

Revision G SOURCE_CODE_UTILITY 21-43

DISPLAY_ GROUP _LIST

Parameters ALTERNATE_BASE or ALTERNATE_BASES or AB

Optional list of one or more libraries whose groups are
listed with those of the base library.

Remarks

OUTPUT or 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only the group names.

FULL (F)

Lists the group names and the decks in each group.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• Groups are listed alphabetically.

• If you specify one or more alternate base libraries,
DISPLAY_GROUP_LIST combines their group and
deck lists with the working library group and deck
lists for the duration of the subcommand.

• To add a group, create a deck that belongs to the
group. Once created, a group name cannot be deleted
from the group list. If the group list contains an
unused group name, you can enter an EXTRACT_
SOURCE_LIBRARY command to remove the unused
group name from the result library. The group list of
the new library includes only those groups to which
decks in the new library belong and which have not
been explicitly excluded by selection criteria
commands.

• The DISPLAY_GROUP_LIST subcommand is valid
within an editing session started by an EDIT_DECK
subcommand.

• For more inforll1-ation, see the NOSNE Source Code
Management manual.

21-44 NOS/VE Commands and Functions Revision G

Examples

DISPLAY_LIBRARY

The following subcommand lists the groups on the
working library and on library MY_LIB.

sc/display_group_list alternate_base=my_lib
SECTIONl SECTION2
SECTION3

DISPLAY_LIBRARY
SCU Subcommand

Purpose Displays the library header of the working library.

Format DISPLAY _LIBRARY or
DISL

OUTPUT=file
DISPLAY_ OPTIONS= keyword
STATUS =status variable

Parameters OUTPUT or 0

Remarks

Revision G

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only library header information.

FULL (F)

Lists library header information and the names of the
decks, groups, modifications, and features in the
working library.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

o Besides the library header fields, DISPLAY_LIBRARY
can also display the deck list, group list, modification
list, and feature list of the working library.

• You can change the content of fields in the working
library header with a CHANGE_LIBRARY
subcommand. To reference a field in the library
header, use the SCU function $LIBRARY_HEADER.

SOURCE_CODE_UTILITY 21-45

DISPLAY_MODIFICATION

Examples

• The DISPLAY_LIBRARY subcommand is valid within
an editing session started by an EDIT_DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character (/DISPLAY_
LIBRARY).

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand displays the ·contents of the
working library header.

sc/display_ 1 ibrary
BASE=:nve.intve.scu.source_library

LIBRARY: SOURCE_CODE_UTILITY
VERSION: BUILD_ 12609
SCU_VERSION: 86133
LIBRARY_FORMAT_VERSION: Vl. 1
CHANGE_COUNTER: 394
LIBRARY_DESCRIPTION: This library contains the source for
SOURCE_CODE_UTILITY (SCU) and associated SCL procedures.
CREATION_DATE - TIME: 07/31/81 - 13: 15:43
MOOIFICATION_DATE - TIME: 06/10/86 - 22:33: 17
KEY: •
LAST _USED _DECK: SCPSGET _DEFAULT _RESOURCES
LAST_USED_MOOIFICATION: SCB6134
COUNTS

DECKS: 1237 MOOS: 719 GROUPS: 41 FEATURES: 246

DISPLAY _MODIFICATION
SCU Subcommand

Purpose Displays one or more modification headers.

Format DISPLAY_MODIFICATION or
DISPLAY_MODIFICATIONS or
DISM

MODIFICATION= list of name or keyword
DECK=name or keyword
OUTPUT= file
DISPLAY_ OPTIONS= keyword
STATUS= status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be displayed. You can specify a list of
one or more names, a list of one or more ranges, or the
keyword ALL. ALL specifies all modification descriptions
in the working library. If MODIFICATION is omitted, the
last used modification is displayed.

21-46 NOS/VE Commands and Functions Revision G

Remarks

Revision G

DISPLAY_ MODIFICATION

DECK or D

Indicates whether the displayed information should apply
to only the specified deck or to all decks. ALL specifies
all decks in the working library. If DECK is omitted,
ALL is used.

OUTPUT or 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DO

Specifies the information displayed. Options are:

BRIEF (B)

Displays the modification header only.

FULL (F)

Displays the modification header and the sequence of
editing commands and inserted text that would
produce the modification changes.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• The DISPLAY_MODIFICATION subcommand is valid
within an editor session started by an EDIT_DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character (/DISPLAY_
MODIFICATION).

• For more information, see the NOSNE Source Code
Management manual.

SOURCE_CODE_UTILITY 21-47

DISPLAY_MODIFICATION_LIST

Examples The following subcommand displays the modification
MOD_4 description and changes.

sc/display_modification modification=mod_4
sc .. /display_options=f
MODIFICATION: MOD_4
STATE: 0
FEATURE:
AUTHOR: Sam Spade
CREATION_DATE - TIME: 02/23/83 - 13:09:26
MODIFICATION_DATE - TIME: 02/24/83 - 08:14:01
MODIFICATION_DESCRIPTION: Fourth example modification
Text lines altered by modification MOD_4
SELECT_DECK X
INSERT_LINES P=BEFORE IL=FIRST UNTIL='///END\\\'

do 10 i =1, 10
10 i = i +1

///END\\\
INSERT_LINES P=AFTER IL=MOD_3.2 UNTIL='///END\\\'

100 i = 1+100
///END\\\
SELECT_DECK Y
INSERT_LINES P=BEFORE IL=FIRST UNTIL='///END\\\'
•copyc z
///END\\\

DISPLAY _MODIFICATION _LIST
SCU Subcommand

Purpose

Format

Lists all modifications in the working library.

DISPLAY_MODIFICATION _LIST or
DIS ML

OUTPUT=file
DISPLAY_ OPTIONS= keyword
STATUS= status variable

21-48 NOS/VE Commands and Functions Revision G

DISPLAY_MODIFICATION_LIST.

Parameters OUTPUT or 0

Remarks

Examples

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

Specifies the information listed.

ALPHABETIC (A)

Modifications are in alphabetical order.

CHRONOLOGICAL (C)

Modifications are ordered by date and time with the
oldest modification first.

If DISPLAY_OPTIONS is omitted, ALPHABETIC is used.

• To add a modification to the list, enter a CREATE_
MODIFICATION subcommand. To remove a
modification from the list, enter a DELETE_
MODIFICATION subcommand.

• The DISPLAY_MODIFICATION_LIST subcommand is
valid within an editing session started by an EDIT_
DECK subcommand. It is also valid within a selection
criteria file if prefixed with the slant character
(ffiISPLAY_MODIFICATION _LIST).

• For more information, see the NOS/VE Source Code
Management manual.

The following subcommand lists all modifications in the
working library.

sc/display_modification_list
MOD_1 MOD_2 MOD_3 MOD_4

Revision G SOURCE_CODE_UTILITY 21-49

EDIT_DECK

EDIT_DECK
SCU Subcommand

Purpose

Format

Begins an editing session within an SCU session.

EDIT_DECK or
EDID or
EDIT_LIBRARY or
EDIL

DECK=name
MODIFICATION= name
INPUT=file
OUTPUT=file
PROLOG=file
DISPLAY_ UNPRINTABLE_ CHARACTERS= boolean
STATUS= status variable

Parameters DECK or D

Deck to be edited first.

NOTE

If the deck does not exist, it is created. If you have never
entered a deck name on a DECK parameter, this
parameter is required.

If DECK is omitted, the editing session begins with the
last deck used.

To begin the editing session without selecting a deck,
specify NONE on the DECK parameter.

MODIFICATION or M

Modification to which changes made during the editing
session belong. For you to edit a deck using an existing
modification, the modification must be in its initial state,
state 0. If the modification does not already exist, it is
created.

If MODIFICATION is omitted, the last modification is
used. If you have never created a modification, this
parameter is required.

21-50 NOS/VE Commands and Functions Revision G

~DIT_DECK

INPUT or I

File from which commands are read. If INPUT is omitted,
$COMMAND is used.

OUTPUT or 0

File to which the display is written. If OUTPUT is
omitted, file $OUTPUT is used. ($OUTPUT is usually
connected to the terminal.)

PROLOG or P

File the system executes when you start an editing
session. If PROLOG is omitted, file $USER.SCU _
EDITOR_PROLOG is used.

DISPLAY_UNPRINTABLE_CHARACTERS or DUC

Specifies whether unprintable ASCII characters in the
range 0 to 31 and 127 are replaced by mnemonics in the
file. Options are:

TRUE

Unprintable characters are replaced by mnemonics,
preceded by a less than symbol and followed by a
greater than symbol, according to the ASCII character
set.

FALSE

Unprintable characters are replaced by a single space
and a warning message is issued if they are
encountered. If the file is written when you exit the
editing session, the mapping to spaces is written to
the file.

If TRUE is specified, the mnemonics are replaced by the
ASCII characters when the file is replaced. If DISPLAY_
UNPRINTABLE_CHARACTERS is omitted, FALSE is
used.

Remarks • You can specify the deck to be edited with the DECK
parameter. If you specify NONE on the DECK
parameter, you must enter a deck selection
subcommand before entering subcommands to change
text.

Revision G SOURCE_CODE_UTILITY 21-51

EDIT_DECK

• This subcommand adds an entry containing the EDIT_
FILE utility subcommands to the NOSNE
subcommand list; the name of the entry is SCU _
EDIT.

• If the interaction style you selected is SCREEN, the
session occurs in full screen mode. The command
CHANGE_INTERACTION _STYLE selects interaction
modes.

• All editing subcommands and the deck selection
subcommands that are available within the EDIT_
FILE utility are described in the NOSNE File Editor
manual.

• The EDIT_FILE utility uses the tab columns specified
in the deck header.

• Once you have started an editing session with an
EDIT_DECK subcommand, you can then use an
EDIT_FILE subcommand to edit a file.

• To discard decks that were created unintentionally,
enter:

end_deck write_deck=false

• Once you have entered the SCU EDIT_DECK
subcommand, you can enter the EDIT_DECK
subcommand to edit other decks. This subcommand has
only a DECK parameter.

• To change modifications, you must stop editing and
enter the EDIT_DECK SCU subcommand specifying a
different modification.

• The mnemonics that appear when DISPLAY_
UNPRINTABLE_CHARACTERS=TRUE will be
enclosed in less than and greater than symbols. For
example, the mnemonic for the ASCII character 0 is
NUL. This mnemonic appears on the terminal screen
as follows: < NUL >

• For more information, see the NOSNE Source Code
Management manual.

21-52 NOS/VE Commands and Functions Revision G

Examples

END _LIBRARY

The following subcommand begins an editing session in
line mode. All text changes belong to the new
modification MOD_l.

sc/edit_deck modification=mod_1
see/

The following is the header written on the output file if
the EDIT_DECK subcommand is entered in batch mode.
EDITOR 08:39:10 PAGE 1
1986-07-09 NOS/VE SOURCE CODE UTILITY Vl. 1 86163
BASE=: nve. intve. scu. source_ 1ibrary.316
Begin editing deck SCM$SCU

END _LIBRARY
SCU Subcommand

Purpose

Format

Ends the interaction with the current working library.
Another library can then be specified as the working
library.

END_LIBRARY or
ENDL

WRITE _LIBRAR.Y =boolean
STATUS= status variable

Parameters WRITE _LIBRAR.Y or WL

Remarks

Revision G

Specifies whether the working library should be written to
the result file. The result file is specified in the
CREATE_LIBRARY or USE_LIBRARY subcommand. If
no result file was specified and you indicate that the
working library should be written to the result file, then
the library is written to file SOURCE_LIBRARY. If
WRITE_LIBRARY is omitted, TRUE is used.

After entering the END_LIBRARY subcommand, you can
work on another library by specifying either the USE_
LIBRARY or CREATE_LIBRARY subcommand.

«> After entering the END_LIBRARY subcommand, you
can work on another library by specifying either the
USE_LIBRARY or CREATE_LIBRARY subcommand.

o For more information, see the NOSNE Source Code
Management manual.

SOURCE_CODE_UTILITY 21-53

$ERRORS FILE

Examples The following example ends the association with the
current working library. The library is written if changes
have been detected by the $LIBRARY_MODIFIED
function. Another library is then accessed by the USE_
LIBRARY subcommand.

sc/end_library write_library=$1ibrary_modified
sc/use_library base=my_library result=new_library

$ERRORS_FILE
SCU Function

Purpose Returns the file to which intermediate diagnostic
messages are written.

Format $ERRORS_FILE

Parameters None.

Remarks For more information, see the NOS/VE Source Code
Management manual.

Examples The following command displays the current value of the
file to which intermediate diagnostic messages are
written.

/scu
sc/set_list_options errors=$user.my_error_file
sc/display_value $errors_file
$USER.MY_ERROR_FILE

EXCLUDE_DECK
Selection Criteria Subcommand

Purpose

Format

Explicitly excludes one or more decks.

EXCLUDE_DECK or
EXCLUDE_DECKS or
EXCD

DECK= list of range of name
STATUS=status variable

Parameters DECK or DECKS or D

Decks to be excluded. This parameter is required.

21-54 NOS/VE Commands and Functions Revision G

Remarks

Examples

EXCLUDE_FEATURE

For more information, see the NOSNE Source Code
Management manual.

The following sequence extracts modules from base library
$USER.MY_LIBRARY using selection criteria commands.
The extracted modules are then written to $USER.PART_
OF _MY_LIBRARY.

/extract_source_library base=$user.my_library
.. /result=$user.part_of_my_library ..
.. /interlock=none selection_cr1teria=cornnand
scc/include_group groupl
scc/exclude_deck unwanted
sec/quit

The command sequence extracts all decks belonging to
group GROUP! except deck UNWANTED. When selection
criteria entry has ended, the result is written on
$USER.PART_ OF _MY_ LIBRARY.

EXCLUDE_FEATURE
Selection Criteria Subcommand

Purpose Explicitly excludes modifications belonging to one or more
features.

Format EXCLUDE_FEATURE or
EXCLUDE_FEATURES or
EXCF

FEATURE= list of name
STATE =integer
STATUS= status variable

Parameters FEATURE or FEATURES or F

Revision G

Features to be excluded. This parameter is required.

STATE or S

Maximum state (from 0 through 4) of modifications
excluded. All modifications whose state is less than or
equal to .this value are excluded. If STATE is omitted, all
modifications belonging to the feature are excluded.

SOURCE_CODE_UTILITY 21-55

EXCLUDE_ GROUP

Remarks

Examples

• This command is not valid for an EXTRACT_
SOURCE_LIBRARY subcommand that sets an
interlock.

• For more information, see the NOSNE Source Code
Management manual.

The following sequence extracts new source library
$USER.MY_RESULT from the library on file $USER.MY_
LIBRARY.

/extract_source_11brary decks=all
.. /base=$user.my_library ..
.. /result=$user.my_result ..
. . /interlock=none selection_criteria=conmand
scc/exclude_feature new_prompts
sec/quit
I

The sequence extracts all decks from the source library.
However, it omits all lines of text belonging to
modifications associated with the feature NEW_
PROMPTS. It omits the feature NEW_PROMPTS from
the feature list of the new library and the modifications
associated with NEW_PROMPTS from the modification
list.

EXCLUDE_GROUP
Selection Criteria Subcommand

Purpose

Format

Explicitly excludes the decks belonging to one or more
groups.

EXCLUDE_GROUP or
EXCLUDE_GROUPS or
EXCG

GROUP=list of name
COMBINATION=keyword
STATUS= status variable

21-56 NOS/VE Commands and Functions Revision G

EXCLUDE_LIBRARY

Parameters GROUP or GROUPS or G

Remarks

Examples

Groups to be excluded. This parameter is required.

COMBINATION or C

Indicates whether the decks excluded must belong to one
or all specified groups. Options are:

ANY

Excluded decks must belong to at least one of the
specified groups.

ALL
Excluded decks must belong to all the specified groups.

If COMBINATION is omitted, ANY is used.

For more information, see the NOSNE Source Code
Management manual.

The following subcommand sequence expands all decks on
the working library except those belonging to group
SECTION_!.

sc/expand_deck decks=all selection_criteria=conmand
scc/exclude_group group=section_1
sec/Quit

EXCLUDE _LIBRARY
Selection Criteria Subcommand

Purpose Excludes decks found on one or more alternate base
libraries. Although the command prevents you from
selecting decks from specified libraries, COPY and
COPYC directives processed by an EXPAND_DECK
subcommand can still copy decks from the specified
libraries.

Format EXCLUDE_LIBRARY or
EXCLUDE_LIBRARIES or
EXCL

ALTERNATE _BASE= list of tile
STATUS= status variable

Revision G SOURCE_CODE_UTILITY 21-57

EXCLUDE_MODIFICATION

Parameters ALTERNATE_BASE or ALTERNATE_BASES or AB

Source library files whose decks are excluded. The files
must be a subset of the libraries specified on the
ALTERNATE_BASE parameter of the subcommand. This
parameter is required.

Remarks

Examples

• The EXCLUDE_LIBRARIES subcommand allows you
to specify source libraries on the ALTERNATE_BASE
parameter of the EXPAND_DECK subcommand that
are to be used only for decks copied by COPY and
COPYC directives. No other decks on the excluded
library are expanded.

• For more information, see the NOS/VE Source Code
Management manual.

The following subcommand sequence expands all decks on
the working library. Decks are copied from the library on
file COMMON _LIBRARY if referenced by COPY or
COPYC directives in the text.

sc/expand_decks decks=all alternate_base= ..
sc .. /comnon_11brary select1on_criteria=conmand
scc/exclude_library alternate_base=conmon_library
sec/Quit

EXCLUDE _MODIFICATION
Selection Criteria Subcommand

Purpose Explicitly excludes one or more modifications.

Format EXCLUDE_MODIFICATION or
EXCLUDE_MODIFICATIONS or
EXCM

MODIFICATION= list of name
STATUS= status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be excluded. This parameter is required.

21-58 NOS/VE Commands and Functions Revision G

Remarks

Examples

EXCLUDE_STATE

• This subcommand is not valid for an EXTRACT_
SOURCE_LIBRARY subcommand that sets an
interlock.

• If several modifications of the same line exist, it is
possible for an expanded deck to contain two versions
of the same line if the modification deactivating the
original line is excluded from the expanded deck.

For example, assume Line 1 Version 1 is introduced
by modification A. Modification B deactivates and
replaces that line with Line 1 Version 2. Then
modification C deactivates and replaces Line 1 Version
2 with Line 1 Version 3. If the deck is expanded with
modification B excluded, both the Line 1 Version 1
and Line 1 Version 3 will appear in the compile file
because Line 1 Version 1 is no longer activated.

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand sequence expands all text in
decks DECKl through DECK3 except those lines
belonging to modifications MOD2 and MOD4.

sc/expand_decks decks=(deck1 .. deck3)
sc .. /selection_criteria=comnand
scc/exclude_modification (mod2,mod4)
sec/Quit

EXCLUDE_STATE
Selection Criteria Subcommand

Purpose Explicitly excludes all modifications whose state is not
greater than that specified.

Format EXCLUDE_STATE or
EXCS

STATE= integer
STATUS =status variable

Parameters STATE or S

Maximum state (from 0 through 3) of the modifications
excluded. This parameter is required.

Revision G SOURCE_ CODE_ UTILITY 21-59

EXPAND_DECK

Remarks

Examples

• This command is not valid for an EXTRACT_
SOURCE_LIBRARY subcommand that sets an
interlock.

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand sequence extracts all text in
deck DECK! except those lines belonging to modifications
with a 0 (zero) or 1 state.

sc/extract_decks deck=deck1 selection_criteria=comnand
scc/exclude_state 1
sec/Quit

EXPAND_DECK
SCU Subcommand

Purpose

Format

Expands one or more decks. When the SCU expands a
deck, it processes directives embedded in the source text
and copies the expanded text to a separate compile file.

EXPAND _DECK or
EXPAND_DECKS or
EXPD

DECK= list of range of name
COMPILE=file
DEBUG _AIDS= keyword
OUTPUT_SOURCE_MAP=file
SELECTION_ CRITERIA= file
WIDTH= integer
LINE _IDENTIFIER= keyword
ALTERNATE _BASE= list of file
LIST=file
EXPANSION _DEPTH= integer
DISPLAY_ OPTIONS= keyword
ORDER= keyword
STATUS =status variable

Parameters DECK or DECKS or D

Decks to be expanded. You can specify a list of one or
more names, a list of one qr more ranges, or the keyword
ALL. ALL specifies all decks in the working library and
in any alternate base libraries specified on the
ALTERNATE_BASE parameter. If DECK is omitted, the

21-60 NOS/VE Commands and Functions Revision G

Revision G

EXPAND_DECK

last deck used is expanded. To prevent the last used deck
from being expanded, specify NONE on the DECK
parameter. In that case, SCU determines the decks
expanded by the subcommands entered via the selection
criteria file.

COMPILE or C

File on which the expanded text is written. You can
specify a file position as part of the file name. If
COMPILE is omitted, file COMPILE is used.

DEBUG_AIDS or DA

If this parameter is set to DT, screen debugging
information is written to the file named by the
OUTPUT_SOURCE_MAP parameter. If DEBUG_AIDS is
set to NONE or is omitted, no debugging information is
produced.

OUTPUT_SOURCE_MAPor OSM

Names a file to receive screen debugging information
specified by the DEBUG_AIDS parameter. If the file is
not named, the screen debugging information is written to
a file named OUTPUT_SOURCE_MAP.

SELECTION_CRITERIA or SC

File from which selection criteria commands are read.
You can specify a file position as part of the file name.
To enter selection criteria commands interactively, specify
COMMAND. If SELECTION_CRITERIA is omitted, no
selection criteria processing is performed and the DECK
parameter specifies which decks will be expanded.

WIDTH or W

Length of the expanded lines excluding line identifiers. If
WIDTH is omitted, SCU uses the default line width from
the header of each deck.

LINE_IDENTIFIER or LI

Line identifier placement. Options are:

RIGHT (R)

Line identifiers are placed to the right of the text.

SOURCE_ CODE_ UTILITY 21-61

EXPAND.,;_DECK

LEFT (L)

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, SCU uses the default
line identifier placement from the header of each deck.

ALTERNATE_BASEorALTERNATE_BASESorAB

Optional list of one or more additional libraries to he
searched for decks.

LIST or L

Listing file. You can specify a file position as part of the
file name. Within an SCU session, if LIST is omitted, the
listing file is the file specified on the SET_LIST_
OPTIONS subcommand. Otherwise, the default is file
$LIST.

EXPANSION _DEPTH or ED

Number of levels of COPY and COPYC directives to
process. COPY and COPYC directives beyond the
maximum expansion depth are expanded as text. If
EXPANSION_DEPTH is omitted, COPY and COPYC
directives are processed whenever they are encountered.

DISPLAY_OPTIONS or DO

Indicates whether the listing includes the library for each
deck from which the deck was expanded. Options are:

BRIEF (B)

Does not list the decks or their library origins.

FULL (F)

Lists the library origin when more than one library is
used.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

21-62 NOS/VE Commands and Functions Revision G

Remarks

Revision G

EXPAND_DECK

ORDER or 0

Indicates whether the decks are expanded in the order
specified or in alphabetical order. Options are:

COMMAND (C)

Decks are expanded in the order specified on the
DECK parameter and by selection criteria commands.

LIBRARY (L)

Decks are expanded in alphabetical . order.

If ORDER is omitted, LIBRARY is used.

o For each deck specified by the DECK parameter, the
EXPAND_DECK subcommand checks the expand
attribute to determine if it expands the deck. If the
expand attribute is TRUE, it expands the deck. If the
expand attribute is FALSE, it skips the deck and
continues processing with the next specified deck.

o To expand a text file, use the EXPAND_FILE
subcommand and the EXPAND_SOURCE_FILE
command.

In order for OUTPUT_SOURCE_MAP to correctly
reflect the origin of the text of each deck, the deck
must either be unmodified or have been written to a
result library. If a deck is encountered whose only
current source is on the working library and the result
library is currently scheduled for an actual file, then
the currently scheduled result library is logged in the
output source map as the origin and an error status is
issued. A WRITE_LIBRARY subcommand must be
entered to copy all decks from the working library to
an actual file.

If $NULL was specified as the result library, an error
status is issued and the attempt aborts. A WRITE_
LIBRARY subcommand must be entered, naming the
result library. Then the EXPAND_DECK subcommand
can be reissued.

SOURCE_CODE_UTILITY 21-63

EXPAND_DECK

• You can specify the decks to be expanded by name on
the DECK parameter or by selection criteria
commands in the selection criteria file or both. SCU
begins with the decks specified on the DECK
parameter and then adds and removes decks as
specified by selection criteria commands. It omits any
decks whose expand attribute is FALSE.

• You can specify alternate base libraries with the
ALTERNATE_BASE parameter. SCU begins searching
for a deck in the working library. If the deck is not
found, SCU searches the ALTERNATE_BASE libraries
in the order that they appear in the specified list.

• The EXPANSION_ DEPTH parameter can limit the
levels of nested directives processed. If SCU reads a
directive at a level beyond the maximum level
processed, it expands the directive as text.

• The LINE_IDENTIFIER, WIDTH, and ORDER
parameters affect how the expanded text is written on
the compile file. The LINE_IDENTIFIER and WIDTH
parameters can override the default values in the deck
headers. The ORDER parameter allows you to specify
the order that SCU writes the decks on the file. If
LINE_IDENTIFIER is explicitly stated in the
EXPAND_ DECK command, then the file attribute
STATEMENT_IDENTIFIER is set. If LINE_
IDENTIFIER is not explicitly stated, the system
assumes that the file contents of the decks are
inconsistent and does not set STATEMENT_
IDENTIFIER.

• The line width can be specified by the WIDTH
parameter. If the line width for a deck is 0 (zero),
EXPAND_ DECKS writes each line as it is stored in
the deck (no trailing blanks or truncation); a blank
line, therefore, is written as a zero-length V record. If
the line width for a deck is nonzero, EXPAND_
DECKS writes each line using that width. Lines
shorter than the width are padded with trailing
blanks; lines longer than the width are truncated.

• SCU issues a warning message for those decks that
cannot be expanded.

21-64 NOS/VE Commands and Functions Revision G

Examples

EXPAND_FILE

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand expands the text of deck
FORTRAN_ TEXT and writes the expanded text on file
FORTRAN_INPUT.

sc/expand_deck fortran_text fortran_input ..
sc .. /display_options=full alternate_base=ftn11b
•=Deck was copied

FORTRAN_TEXT .
*FTN_IO
*FTN_FORM

FTNLIB
FTNLIB

EXPAND _FILE
SCU Subcommand

Purpose Expands a text file. When the system expands a file, it
processes the . directives embedded in the source text and
copies the expanded text to a separate compile file.

Format EXPAND _FILE or
EXPF

FILE=file
COMPILE= file
DEBUG _AIDS= keyword
INPUT_SOURCE_MAP=file
OUTPUT_SOURCE_MAP=file
SELECTION_ CRITERIA= file
WIDTH= integer
LINE _IDENTIFIER= keyword
ALTERNATE _BASE= list of file
LIST=file
EXPANSION _DEPTH =integer
DISPLAY_ OPTIONS= keyword
STATUS= status variable

Parameters FILE or F

Revision G

File to be expanded. This parameter is required.

COMPILE or C

File on which the expanded text is written. You can
specify a file position as part of the file name. If
COMPILE is omitted, file COMPILE is used.

SOURCE_ CODE_ UTILITY 21-65

EXPAND _FILE

DEBUG_AIDS or DA

If this parameter is set to DT, screen debugging
information is written to the file named by the
OUTPUT_SOURCE_MAP parameter. If DEBUG_AIDS is
set to NONE or is omitted, no debugging information is
produced.

INPUT_SOURCE_MAP or ISM

Names a file from which screen debugging information is
copied for the file specified by the FILE parameter. The
content of the input source map is the output source map
that was generated when the content of the FILE was
produced. If INPUT_SOURCE_MAP is omitted, the
screen debugging information describes lines read from
FILE as having that origin.

OUTPUT_SOURCE_MAPorOSM

Names a file to receive screen debugging information
specified by the DEBUG_AIDS parameter. If OUTPUT_
SOURCE_MAP is omitted, the screen debugging
information is written to a file named OUTPUT_
SOURCE_MAP.

SELECTION_CRITERIA or SC

File from which selection criteria subcommands are read.
You can specify a file position as part of the file name.
To enter selection criteria subcommands interactively,
specify COMMAND. If SELECTION_CRITERIA is
omitted, no selection criteria processing is performed.

WIDTH or W

Length of the expanded lines, excluding line identifiers. If
WIDTH is omitted, SCU uses 0 (zero) for the default line
width. A line width of 0 (zero) means that lines can be
up to 256 characters (with no trailing blanks) when the
file is expanded.

LINE_IDENTIFIER or LI

Line identifier placement.

RIGHT (R)

Line identifiers are placed to the right of the text.

21-66 NOS/VE Commands and Functions Revision G

Revision G

EXPAND _FILE

LEFT (L)

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, NONE is used.

ALTERNATE_BASEorALTERNATE_BASESorAB

Optional list of one or more additional libraries to be
searched for decks.

LIST or L

Listing file. You can specify a file position as part of the
file name. Within an SCU session, if LIST is omitted, the
listing file is the file specified on the SET_LIST_
OPTIONS subcommand. Otherwise, the default is file
$LIST.

EXPANSION _DEPTH or ED

Number of levels of COPY and COPYC directives to
process. COPY and COPYC directives beyond the
maximum expansion depth are expanded as text. If
EXPANSION_DEPTH is omitted, COPY and COPYC
directives are processed whenever they are encountered.

DISPLAY_OPTIONS or DO

Indicates whether the listing includes the library for each
deck from which the deck was expanded.

BRIEF (B)

Does not list the decks or their library origins.

FULL (F)

Lists the library origin when more than one library is
used.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

SOURCE_CODE_UTILITY 21-67

EXPAND~FILE

Remarks

Examples

• To expand a deck, use the EXPAND_DECK
subcommand.

• To expand a file while not in an SCU session, use the
EXPAND_SOURCE_FILE command.

• You can specify alternate base libraries with the
ALTERNATE_BASE parameter. When SCU processes
a COPY or COPYC directive, it first searches the deck
list of the working library for the deck specified on
the directive and then it searches the deck lists of the
alternate base libraries in the order the libraries are
listed on the ALTERNATE_BASE parameter.

• The EXPANSION_DEPTH parameter can limit the
levels of nested directives processed. If SCU reads a
directive at a level beyond the maximum level
processed, it expands it as text.

• The LINE_IDENTIFIER, WIDTH, and ORDER
parameters affect how the expanded text is written on
the compile file.

• The line width can be specified by the WIDTH
parameter. If the line width for a file or deck is 0
(zero), EXPAND_FILE writes each line as it is stored
in the file or deck (no trailing blanks or truncation); a
blank line, therefore, is written as a zero-length V
record. If the line width for a file or a deck is
nonzero, EXPAND_FILE writes each line using that
width. Lines shorter than the width are padded with
trailing blanks; lines longer than the width are
truncated.

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand expands the text of file NEW_
TEXT and writes the expanded text on file COMPILE.
The unique name given to the temporary deck created
from file NEW_ TEXT is $82 . . 17.

sc/expand_file new_text display_options=full
*=Deck was copied
$821497P3S0002D19860305T110817 Working Library

21-68 NOS/VE Commands and Functions Revision G

EXTRACT_DECK

EXTRACT_DECK
SCU Subcommand

Purpose

Format

Extracts one or more decks. Extracting a deck copies the
deck text to another file without processing directives
embedded in the text. No delimiter is written between
extracted decks.

EXTRACT_DECK or
EXTRACT_DECKS or
EXTD

DECK= list of range of name
SOURCE =file
SELECTION_ CRITERIA:: file
WIDTH= integer
LINE _IDENTIFIER= keyword
ALTERNATE _BASE= list of file
LIST=file
DISPLAY_ OPTIONS= keyword
ORDER= keyword
EXPAND= boolean or keyword
DECK_DIRECTWES_INCLUDED =boolean
STATUS =status variable

Parameters DECK or DECKS or D

Revision G

Decks to be extracted. You can specify a list of one or
more names, a list of one or more ranges, or the keyword
ALL. ALL specifies all decks in the working library and
in any alternate base libraries specified on the
ALTERNATE_BASE parameter. If DECK is omitted, the
last used deck is extracted. To prevent the last used deck
from being extracted, specify NONE on the DECK
parameter. In that case, SCU determines the decks
extracted by the subcommands entered via the selection
criteria file.

SOURCE or S

File on which the extracted text is written. You can
specify a file position as part of the file name. If
SOURCE is omitted, file SOURCE is used.

SOURCE_CODE_UTILITY 21-69

EXTRACT_DECK

SELECTION_CRITERIA or SC

File from which selection criteria commands are read.
You can specify a file position as part of the file name. If
SELECTION_CRITERIA is omitted, no selection criteria
processing is performed, and the decks extracted are
determined by the DECK parameter.

WIDTH or W

Length of the extracted lines, excluding line identifiers. If
WIDTH is omitted, the default line width for each deck is
used.

LINE_IDENTIFIER or LI

Line identifier placement. Options are:

RIGHT (R)

Line identifiers are placed to the right of the text.

LEFT (L)

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, the default line
identifier placement for each deck is used.

ALTERNATE_BASEorALTERNATE_BASESorAB

Optional list of one or more additional libraries to be
searched for decks.

LIST or L

Listing file. You can specify a file position as part of the
file name. Within an SCU session, if LIST is omitted, the
listing file is the file specified on the SET_LIST_
OPTIONS subcommand. Otherwise, the default is file
$LIST.

DISPLAY_OPTIONS or DO

Indicates whether the listing includes the library for each
deck from which the deck was extracted. Options are:

BRIEF (B)

Does not list the decks or their library origins.

21-70 NOS/VE Commands and Functions Revision G

Revision G

EXTRACT_DECK

FULL (F)

Lists the library origin when more than one library is
used.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

ORDER or 0

Indicates whether the decks are extracted in the order
specified or in alphabetical order. Options are:

COMMAND (C)

Decks are extracted in the order specified on the
subcommand.

LIBRARY (L)

Decks are extracted in alphabetical order.

If ORDER is omitted, LIBRARY is ·used.

EXPAND or E

Indicates the required expand attribute for each deck
extracted. Options are:

TRUE

Expand attribute must be TRUE.

FALSE

Expand attribute must be FALSE.

ALL

Expand attribute can be either TRUE or FALSE.

If EXPAND is omitted, ALL is used.

DECK_DIRECTNES_INCLUDED or DDI

Indicates whether a DECK directive precedes each
extracted deck on the source file. Options are:

TRUE

A DECK directive is written before each deck.

FALSE

No DECK directives are written.

If DECK_DIRECTIVES_INCLUDED is omitted, FALSE is
used.

SOURCE_ CODE_ UTILITY 21-71

EXTRACT_DECK

Remarks • The EXTRACT_DECK subcommand has the same
deck selection options as the EXPAND_DECK
subcommand. You can select the decks extracted by
name, by selection critieria, or by both. However,
unlike the EXPAND_DECK subcommand, you can also
choose whether to use the expand deck attribute to
select the decks to be extracted. With the EXPAND
parameter, you can choose to extract decks whose
expand attribute is TRUE, FALSE, or either TRUE or
FALSE.

G> You can use the extracted text as the source text
when creating new decks. To include a DECK directive
before the source text of each deck, specify DECK_
DIRECTIVES_INCLUDED=TRUE on the
subcommand. Using the embedded DECK directives,
the decks created using the source text file will have
the same names and expand attributes as the original
decks.

o The EXTRACT_DECK subcommand does not save any
of the deck header information such as DECK_
DESCRIPTION. You must re-enter this information
manually when you add the deck to the new library.

o You can specify alternate base libraries with the
ALTERNATE_BASE parameter. SCU first searches
the deck list of the working library for the deck and
then searches the deck lists of the alternate base
libraries in the order the libraries are listed on the
ALTERNATE_BASE parameter.

o The LINE_IDENTIFIER, WIDTH, and ORDER
parameters affect how the extracted text is written on
the source file. The LINE_IDENTIFIER and WIDTH
parameters can override the default values in the deck
head~rs. The ORDER parameter allows you to specify
the order that SCU writes the decks on the file.

o The line width can be specified by the WIDTH
parameter. If the line width for a deck is 0 (zero),
EXTRACT_ DECK writes each line as it is stored in
the deck (no trailing blanks or truncation); a blank
line, therefore, is written as a zero-length V record. If

21-72 NOSNE Commands and Functions Revision G

Examples

EXTRACT_MODIFICATION

the line width for a deck is nonzero, EXTRACT_
DECKS writes each line using that width. Lines
shorter than the width are padded with trailing
blanks; lines longer than the width are truncated.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand extracts the text of deck
FORTRAN_ TEXT and writes the text on file SOURCE.

sc/extract_deck fortran_text display_option=full
FORTRAN_ TEXT SOURCE_LIBRARY

EXTRACT _MODIFICATION
SCU Subcommand

Purpose

Format

Generates a sequence of EDIT_FILE utility subcommands
(INSERT_LINES, DELETE_LINES, and REPLACE_
LINES subcommands) that, if processed, would introduce
the modification changes.

EXTRACT_MODIFICATION or
EXTRACT_MODIFICATIONS or
EXTM

MODIFICATION= list of range of name
EDIT_COMMANDS=file
DECK=name
TERMINATING _DELIMITER =string
STATUS=status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be extracted. If MODIFICATION is
omitted, the last used modification is extracted.

Revision G

EDIT_COMMANDS or EC

File to which the text and editing commands are written.
You can specify a file position as part of the file name.
This parameter is required.

DECK or D

Indicates whether the extracted modification lines should
apply to only the specified deck or to all decks. ALL
specifies all decks. If DECK is omitted, ALL is used.

SOURCE_CODE_UTILITY 21-73

EXTRACT_MODIFICATION

Remarks

Examples

TERMINATING_DELIMITER or TD

Delimiter string used to mark the end of inserted text
(from 1 to 31 characters). If TERMINATING_DELIMITER
is omitted, '///END\\\' is used.

o The EXTRACT_MODIFICATION subcommand writes
the editing commands and inserted text that make up
a modification on a file. EXTM does not save any of
the modification header information such as the author
name or feature name. You must re-enter this
information manually when you add the modification
to the new library.

o Before deleting a modification, you can use the
EXTRACT_MODIFICATION subcommand to save the
modification changes on a separate file. You could
then reintroduce the modification by processing the
editing commands on the file.

o The subcommands can also extract only the
modification changes that apply to one or more decks
in the working library. To do so, specify the decks on
the DECK parameter.

o If more than one modification is specified on the
EXTRACT_MODIFICATION subcommand, the
sequence of subcommands generated, if executed, would
produce the combined modification changes.

o The EXTRACT_MODIFICATION subcommand is valid
within an editing session started by an EDIT_DECK
subcommand, but the modification changes extracted
do not include any changes made since you last
started editing the deck.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand extracts modification MODI
onto file SAVE_MODl.

sc/extract_modification mod1 save_mod1

21-74 NOS/VE Commands and Functions Revision G

$FEATURE

$FEATURE
SCU Function

Purpose Returns a boolean value indicating whether the specified
name is recognized as a feature on the working library.

Format $FEATURE
(name)

Parameters name

Remarks

Examples

Name of the feature to be found. This parameter is
required.

For more information, see the NOSNE Source Code
Management manual.

The following command assigns a boolean value to the
SCL variable FEATURE_EXISTS, depending on whether
FEATURE! is recognized as a feature in the working
library.

sc/feature_exists = $feature(feature1)

$FEATURE _LIST
SCU Function

Purpose Returns an array of strings listing the names of features
on the working library.

Format $FEATURE_LIST

Parameters None.

Remarks o The array is ordered the same as it is on the working

Revision G

library.

• When used inside selection criteria subcommand
processing, $FEATURE_LIST reflects the current
feature list to be written to the compile, result, or
source file being produced.

• For more information, see the NOSNE Source Code
Management manual.

SOURCE_ CODE_ UTILITY 21-75

$FEATURE MEMBERS

Examples The following command assigns an array of strings
containing the names of features on the working library
to the variable FEATURE_LIST.

sc/feature_list = $feature_list

$FEATURE _MEMBERS
SCU Function

Purpose Returns an array of strings listing the names of
modifications on the working library that belong to the
specified feature.

Format $FEATURE_MEMBERS
(name)

Parameters name

Remarks

Examples

Name of the feature. This parameter is required.

• The names in the array appear in the same order as
the names in the modification list in the working
library.

• For more information, see the NOSNE Source Code
Management manual.

The following command assigns to the variable
FEATURES_MEMBERS an array of strings containing
the names of modifications on the working library that
belong to the feature NEW_ VERSION.

feature_members = $feature_members(new_vers1on)

The following example returns an array of strings listing
the names of modifications on the working library that
belong to the feature FEATURE_NAME.

sc/fm=$feature_members(feature_name)
sc/for i=1 to $variable(fm,upper_bound) do
for/display_value fm(i)
for/forend
MOD1
MOD2
MOD3
MOD4
sci

21-76 NOS/VE Commands and Functions Revision G

$FIRST_DECK

$FIRST_DECK
SCU Function

Purpose Returns the name of the first deck in the working library
as a string value.

Format $FIRST_ DECK

Parameters None.

Remarks o All letters in the string returned are uppercase, even

Examples

if the name was originally entered using lowercase
letters.

o For more information, see the NOSNE Source Code
Management manual.

The following command assigns the name of the first deck
to the SCL variable FIRST_DECK.

sc/first_deck = $first_deck

$FIRST _MODIFICATION
SCU Function

Purpose Returns the name of the first modification in the library
modification list as a string value.

Format $FIRST_MODIFICATION

Parameters None.

Remarks o All letters in the string returned are uppercase, even

Examples

Revision G

if the name was originally entered using lowercase
letters.

o The modification list is kept in alphabetical order.

o For more information, see the NOSNE Source Code
Management manual.

The following command assigns the name of the first
modification to the SCL variable FIRST_MOD.

sc/first_mod·= $first_modification

SOURCE_CODE_UTILITY 21-77

$GROUP

$GROUP
SCU Function

Purpose Returns a boolean value indicating whether a name is
recognized as a group in the working library.

Format $GROUP
(name)

Parameters name

Remarks

Examples

Name of the group to be searched for on the working
library. This parameter is required.

For more information, see the NOSNE Source Code
Management manual.

The following command assigns a boolean value to the
variable GROUP _EXISTS, indicating whether the group
TEST exists on the working library.

sc/group_exists = $group(test)

$GROUP _LIST
SCU Function

Purpose Returns an array of strings giving the names of the
groups on the working library.

Format $GROUP _LIST

Parameters None.

Remarks

Examples

o The array is ordered the same as it is on the working
library.

o When used in selection criteria subcommand
processing, $GROUP_LIST reflects the current group
list to be written to the compile, result, or source file.

o For more information, see the NOSNE Source Code
Management manual.

The following command assigns an array of strings
containing the names of groups on the working library to
the variable GROUP _LIST.

sc/group_list = $Qroup_list

21-78 NOS/VE Commands and Functions Revision G

$GROUP_MEMBERS

$GROUP _MEMBERS
SCU Function

Purpose Returns an array of strings giving the names of decks on
the working library that belong to the specified group.

Format $GROUP _MEMBERS
(name)

Parameters name

Remarks

Examples

Name of the group whose members are to be listed. This
parameter is required.

o The array is ordered the same as it is on the working
library.

• For more information, see the NOSNE Source Code
Management manual.

The following command assigns to the variable GROUP_
MEMBERS an array of strings giving the names of decks
on the working library that belong to the group TEST.

sc/group_members = $group_members(test)

INCLUDE _COPYING _DECKS
Selection Criteria Subcommand

Purpose

Format

Revision G

Explicitly includes all decks that contain a COPY or
COPYC directive that directly or indirectly copies one of
the specified decks.

INCLUDE_COPYING_DECKS or
INCCD

DECK=list of range of name
DECK_RESlDENCE =keyword
STATUS= status variable

SOURCE_CODE_UTILITY 21-79

INCLUDE_DECK

Parameters DECK or DECKS or D

Remarks

Examples

Decks copied by the included decks. This parameter is
required.

DECK_RESIDENCEorDR
Specifies whether the decks specified on the DECK
parameter reside either on the working library or on
alternate base libraries used by the subcommand. Options
are:

EXTERNAL

The decks do not reside on the libraries.

INTERNAL

The decks reside on the libraries.

If DECK_RESIDENCE is omitted, INTERNAL is used.

o The INCLUDE_COPYING_DECKS subcommand
allows you to expand or extract only those decks that
reference the specified decks.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand sequence expands all decks
that copy deck COMMONl.

sc/expand_decks selection_criteria=conmand
scc/include_copying_decks deck=conmon1
sec/Quit

INCLUDE _DECK
Selection Criteria Subcommand

Purpose

Format

Explicitly includes one or more decks.

INCLUDE_DECK or
INCLUDE_DECKS or
INCD

DECK= list of range of name
STATUS= status variable

Parameters DECK or DECKS or D

Decks to be included. This parameter is required.

21-80 NOS/VE Commands and Functions Revision G

Remarks

Examples

INCLUDE_FEATURE

e If a deck name in a deck list is in error, the
subcommand is not executed.

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand sequence excludes all decks in
group GROUPl, but includes deck WANTED even if it
belongs to GROUPl.

sc/expand_decks decks=all selection_criteria=conmand
scc/exclude_group group1
scc/include_deck wanted
sec/Quit

INCLUDE _FEATURE
Selection Criteria Subcommand

Purpose

Format

Includes all modifications belonging to one or more
features.

INCLUDE_FEATURE or
INCLUDE_FEATURES or
INCF

FEATURE= list of name
STATE= integer
STATUS =status variable

Parameters FEATURE or FEATURES or F

Features to be included. This parameter is required.

STATE or S

Minimum state (O through 4) of the modifications
included. All modifications whose state is greater than or
equal to the specified state are included. If STATE is
omitted, all modifications belonging to the feature are
included.

Remarks For more information, see the NOSNE Source Code
Management manual.

Revision G SOURCE_CODE_UTILITY 21-81

INCLUDE_ GROUP

Examples The following subcommand sequence expands DECK!
through DECK5. It includes all modifications belonging to
feature NEW _PROMPTS that have a state of 2, 3, or 4.

sc/expd decks=deck1 .. deck5 selection_criteria=corrmand
scc/include_feature feature=new_prompts state=2
sec/quit

INCLUDE_ GROUP
Selection Criteria Subcommand

Purpose Explicitly includes decks belonging to one or more groups.

Format INCLUDE_GROUP or
INCLUDE_GROUPS or
INCG

GROUP=list of name
COMBINATION= keyword
STATUS =status variable

Parameters GROUP or GROUPS or G

Remarks

Examples

Groups to be included. This parameter is required.

COMBINATION or C

Indicates whether the decks included must belong to any
or all specified groups. Options are:

ANY

Included decks must belong to at least one of the
specified groups.

ALL

Included decks must belong to all of the specified
groups.

If COMBINATION is omitted, ANY is used.

For more information, see the NOSNE Source Code
Management manual.

The following command sequence extracts all decks
belonging to group SECTION_ 1.

sc/extract_decks selection_criteria=corrmand
scc/include_group group=section_l
sec/Quit

21-82 NOS/VE Commands and Functions Revision G

INCLUDE_MODIFICATION

INCLUDE _MODIFICATION
Selection Criteria Subcommand

Purpose Explicitly includes one or more modifications.

Format INCLUDE_MODIFICATION or
INCLUDE_MODIFICATIONS or
INCM

MODIFICATION= list of name
STATUS= status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be included. This parameter is required.

Remarks

Examples

For more information, see the NOSNE Source Code
Management manual.

The following command sequence expands all text on ·deck
DECK5 except those lines belonging to feature MY_
CHANGES. However, lines belonging to modifications
MOD2 and MOD5 are expanded even if the modifications
are associated with feature MY_CHANGES.

sc/expand_deck deck=deck5 selection_criteria=conrnand
scc/exclude_feature my_changes
scc/include_modifications (mod2,mod5)
sec/Quit

INCLUDE _MODIFIED _DECKS
Selection Criteria Subcommand

Purpose

Format

Revision G

Explicitly includes all decks that are modified by a
specified feature or modification. Decks directly modified
are always included. Decks which copy modified decks
(directly or indirectly through chains of indirect
references) can also be optionally included.

INCLUDE_MODIFIED_DECKS or
INCLUDE_MODIFIED_DECK or
INCMD

FEATURES= list of range of name
MODIFICATIONS= list of range of name
INCLUDE_ COPYING _DECKS= boolean
STATUS= status variable

SOURCE_CODE_UTILITY 21-83

INCLUDE_STATE

Parameters FEATURES or FEATURE or F

Remarks

Examples

Name of features to be included. If FEATURE is omitted,
MODIFICATION must be specified.

MODIFICATIONS or MODIFICATION or M

Names of modifications to be included. If MODIFICATION
is omitted, FEATURE must be specified.

INCLUDE_COPYING_DECKS or ICD

Specifies whether decks that copy modified decks should
be included. If INCLUDE_COPYING_DECKS is omitted,
decks that copy modified decks are not included.

For more information, see the NOSNE Source Code
Management manual.

The following example includes all of the decks modified
by the modification ACCOUNTING_FIXES and all the
decks that copy modified decks.

scc/include_modified_decks feature=accounting_fixes
scc .. /1nclude_copying_decks=true

INCLUDE _STATE
Selection Criteria Subcommand

Purpose Includes all modifications whose state is greater than or
equal to that specified.

Format INCLUDE_STATE or
INCS

STATE= integer
STATUS= status variable

Parameters STATE or S

Remarks

Minimum state (from 0 through 4) of the modifications
included. All modifications whose state is greater than or
equal to the specified value are included. This parameter
is required.

For more information, see the NOSNE Source Code
Management manual.

21-84 NOSNE Commands and Functions Revision G

Examples

$LAST_DECK

The following command sequence extracts all lines in
DECK5 belonging to modifications whose state is 2, 3, or
4.

sc/extract_deck deck=deck5 selection_criteria=conmand
scc/include_state 2
sec/Quit

$LAST_DECK
SCU Function

Purpose Returns the name of the last deck on the working library
as a string value.

Format $LAST_DECK

Parameters None.

Remarks o All letters in the string returned are uppercase, even

Examples

if the name was originally entered using lowercase
letters.

o For more information, see the NOSNE Source Code
Management manual.

The following command assigns the name of the last deck
to the SCL string variable LAST_DECK.

sc/last_deck = $1ast_deck

$LAST _MODIFICATION
SCU Function

Purpose Returns the name of the last modification in the library
modification list as a string value.

Format $LAST_MODIFICATION

Parameters None.

Revision G SOURCE_CODE_UTILITY 21-85

$LIBRARY_HEADER

Remarks

Examples

o All letters in the string returned are uppercase, even
if the name was originally entered using lowercase
letters.

• The modification list is kept in alphabetical order.

• For more information, see the NOSNE Source Code
Management manual.

The following command assigns the name of the last
modification to the SCL string variable LAST_MOD.

sc/last_mod = $1ast_modification

$LIBRARY _HEADER
SCU Function

Purpose Returns the contents of any library header field.

Format $LIBRARY_HEADER
(keyword)

Parameters keyword

Name of the field in the library header. This parameter is
required. The field name can be one of the following:

CHANGE_COUNTER (CC)

Number of changes made to the library. The value is
returned as an integer.

CREATION_DATE (CD)

Date the library was created. The value is returned as
a string (MM/DD/YY).

CREATION_TIME (CT)

Time the library was created. The value is returned as
a string (RH.MM.SS).

DECK_COUNT (DC)

Number of decks in the library. The value is returned
as an integer.

FEATURE_COUNT (FC)

Number of features in the library. The value is
returned as an integer.

21-86 NOS/VE Commands and Functions Revision G

Revision G

$LIBRARY_HEADER

GROUP_COUNT (GC)

Number of groups in the library. The value is
returned as an integer.

KEY (K)

Key character. The value is returned as a string of 1
character.

LAST_USED_DECK (LUD)

Last value given explicitly for the DECK parameter.
The value is returned as an uppercase string.

LAST_ USED_MODIFICATION (LUM)

Last value given explicitly for the MODIFICATION
parameter. The value is returned as an uppercase
string.

LIBRARY (L)

Library name. The value is returned as a string (all
letters are uppercase).

LIBRARY_DESCRIPTION (LD)

Library description. The value is returned as a string.

LIBRARY_FORMAT_ VERSION (LFV)

Library format version. The value is returned as a
string of up to 4 characters.

MODIFICATION_COUNT (MC)

Number of modifications in the library, including the
original modification names associated with deck
creation. The value is returned as an integer.

MODIFICATION_DATE (MD)

Date the library was last changed. The value is
returned as a string (MM/DD/YY).

MODIFICATION_TIME (MT)

Time the library was last changed. The value is
returned as a string (HR.MM.SS).

SOURCE_CODE_UTILITY 21-87

$LIBRARY MODIFIED

Remarks

Examples

scu _VERSION (SV)

SCU version. The value is returned as a string of up
to 9 characters.

VERSION (V)

Library version. The value is returned as a string of
up to 256 characters.

For more information, see the NOSNE Source Code
Management manual.

The following command assigns the number of decks· in
the working library to the SCL integer variable
NUMBER_ OF _DECKS.

'sc/number_of_decks = $1ibrary_header(deck_count)

$LIBRARY _MODIFIED
SCU Function

Purpose Returns a boolean value indicating whether the current
working library has been modified.

Format $LIBRARY_MODIFIED

Parameters None.

Remarks c:> The value for $LIBRARY_MODIFIED is set to FALSE

Examples

whenever a $WRITE_LIBRARY command is entered.
TRUE means there are changes on the current
working library that are not recorded on an external
file.

• For more information, see the NOSNE Source Code
Management manual.

The following command assigns a boolean value to the
SCL variable LIBRARY_CHANGED, depending on
whether the current working library has been modified.

sc/library_changed = $1ibrary_modified

21-88 NOSNE Commands and Functions Revision G

$LIST FILE

$LIST_FILE
SCU Function

Purpose Returns the default listing file for the LIST parameter on
SCU subcommands.

Format $LIST_ FILE

Parameters None.

Remarks For more information, see the NOS/VE Source Code
Management manual.

Examples The following command displays the current value of the
default listing file.

/scu
sc/set_list_options 1ist=$user.fortran_list_file
sc/display_value $1ist_file
$USER.FORTRAN_LIST_FILE

$MODIFICATION
SCU Function

Purpose Returns a boolean value indicating whether the specified
modification is in the working library.

Format $MODIFICATION
(name)

Parameters name

Remarks

Examples

Revision G

Name of the modification to be found. This parameter is
required.

o If you exclude the specified modification using a
selection criteria command, SCU evaluates the
$MODIFICATION function as FALSE.

o For more information, see the NOS/VE Source Code
Management manual.

The following command assigns a boolean value to the
SCL variable MOD_EXISTS, depending on whether MODl
is in the working library.

sc/mod_exists = $m0dification(mod1)

SOURCE_CODE_UTILITY 21-89

$MODIFICATION_HEADER

$MODIFICATION _HEADER
SCU Function

Purpose Returns the contents of any modification header field.

Format $MODIFICATION _HEADER
(name
keyword)

Parameters name

Name of the modification whose header field is returned.
This parameter is required.

keyword

The field in the modification header. This parameter is
required. Options are:

AUTHOR (A)

Modification author. The value is returned as a string
of up to 256 characters.

CREATION_DATE (CD)

Date when the modification was created. The value is
returned as a string (MM/DD!YY).

CREATION TIME (CT)

Time when the modification was created. The value is
returned as a string (RH.MM.SS).

FEATURE (F)

Feature to which the modification belongs. The value
is returned as a string.

MODIFICATION _DATE

Date when lines were last added to the modification.
The value is returned as a string (MM/DD/YY).

MODIFICATION _DESCRIPTION (MD)

Modification description. The value is returned as an
array of strings.

MODIFICATION TIME (MT)

Time when lines were last added to the modification.
The value is returned as a string (RH.MM.SS).

21-90 NOS/VE Commands and Functions Revision G

Remarks

Examples

$MODIFICATION _LIST

STATE (S)

Current state of the modification. The value is
returned as an integer.

For more information, see the NOSNE Source Code
Management manual.

The following command assigns the state of modification
MOD4 to the SCL integer variable CURRENT_STATE.

sc/current_state = $modification_header(rnod4,state)

$MODIFICATION _LIST
SCU Function

Purpose Returns an array of strings listing the names of
modifications on the working library.

Format $MODIFICATION _LIST

Parameters None.

Remarks o The array is ordered alphabetically, as it is on the

Examples

Revision G

working library.

o When used in selection criteria subcommand
processing, $MODIFICATION_LIST reflects the
current modification list to be written to the compile,
result, or source file being produced.

o For more information, see the NOSNE Source Code
Management manual.

The following command assigns an array of strings giving
the names of modifications on the working library to the
variable MODIFICATION _LIST.

sc/rnodification_list = $modification_list

SOURCE_CODE_UTILITY 21-91

$MODIFIED _DECKS

$MODIFIED _DECKS
SCU Function

Purpose Returns an array of strings giving the names of decks on
the working library affected by a specified modification.

Format $MODIFIED _DECKS
(name)

Parameters name

Remarks

Examples

Name of the modification. This parameter is required.

• The array is ordered the same as it is on the working
library.

• For more information, see the NOSNE Source Code
Management manual.

The following command assigns to the variable
MODIFIED_DECKS an array of strings giving the names
of decks on the working library affected by the
modification TEST.

sc/modified_decks $modified_decks(test)

$NEXT_DECK
SCU Function

Purpose Returns the name of the next deck as a string value.

Format $NEXT_DECK
(name)

Parameters name

Remarks

Name of the deck whose successor is to be found. This
parameter is required.

o All letters in the string returned are uppercase, even
if the name was originally entered using lowercase
letters.

o For more information, see the NOSNE Source Code
Management manual.

21-92 NOS/VE Commands and Functions Revision G

Examples

$NEXT MODIFICATION

The following command assigns the name of the deck
following DECKl to the SCL string variable NEXT_
DECK.

sc/next_deck = $next_deck(deck1)

$NEXT _MODIFICATION
SCU Function

Purpose Returns the name of the next modification in the library
modification list as a string value.

Format $NEXT_MODIFICATION
(name)

Parameters name

Remarks

Examples

QUIT

Name of the modification whose successor is to be found.
This parameter is required.

o All letters in the string returned are uppercase, even
if the name was originally entered using lowercase
letters.

• For more information, see the NOSNE Source Code
Management manual.

The following command assigns the name of the
modification following MODl to the SCL string variable
NEXT_MOD.

sc/next_mod = $next_modification(mod1)

Selection Criteria Subcommand

Purpose

Format

Remarks

Revision G

Ends SELECTION_CRITERIA_COMMAND command
processing.

QUIT or
END or
QUI

STATUS=status variable

For more information, see the NOSNE Source Code
Management manual.

SOURCE_CODE_UTILITY 21-93

QUIT

QUIT
SCU Subcommand

Purpose Ends an SCU session and optionally writes the working
library to the result source library.

Format QUIT or
END or
QUI

WRITE _LIBRARY= boolean
STATUS= status variable

Parameters WRITE_LIBRARY or WL

Remarks

Indicates whether SCU should generate a result library
from the working library.

TRUE

SCU generates a result library.

FALSE

SCU does not generate a result library.

If WRITE_LIBRARY is omitted, TRUE is used.

o The QUIT subcommand indicates whether SCU should
generate a result library from the working library. If
a library is to be generated, SCU writes the result
library on the result library file specified on a
CREATE_LIBRARY or USE_LIBRARY subcommand
at the beginning of the session. If a WRITE_
LIBRARY subcommand specifies a different result
library, SCU writes the result library on the file
specified by the last WRITE_LIBRARY subcommand.
If none of these subcommands are specified, the result
library is written on file SOURCE_LIBRARY in your
working catalog.

• If the result file is the same as the file named on the
BASE parameter of the USE_LIBRARY subcommand,
it is rewritten only when the result library has been
modified.

o Refer to WRITE_LIBRARY and END_LIBRARY for
other subcommands that write a result library.

21-94 NOS/VE Commands and Functions Revision G

Examples

REPLACE_LIBRARY

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand ends an SCU session and
generates a result library.

sc/Quit true

The following sequence changes and rewrites the source
library and then ends the SCU session.

/scu
sc/use_library $user.my_library
sc/change_deck deck=.deck 1 author='roger'
SC/Quit

REPLACE _LIBRARY
SCU Subcommand

Purpose Replaces decks on the working library with decks from
one or more source libraries.

Format REPLACE_LIBRARY or
REPLACE_LIBRARIES or
REPL

SOURCE_LIBRARY=list of file
LIST=file
DISPLAY_ OPTIONS= keyword
ENFORCE _INTERLOCKS= boolean
STATUS= status variable

Parameters SOURCE_LJBRARY or SOURCE_LIBRARIES or SL

List of one or more source library names. This parameter
is required.

Revision G

LIST or L

Listing file. You can specify a file position as part of the
file name. SCU lists the source library origin of each
deck in the working library. If LIST is omitted, the
listing file is the file specified on the SET_LIST_
OPTIONS subcommand. Otherwise, the default is file
$LIST.

SOURCE_ CODE_ UTILITY 21-95

REPLACE_LIBRARY

Remarks

DISPLAY_OPTIONS or DO

Specifies the information listed. Currently, both of the
following keywords produce the same listing.

BRIEF or B
FULL or F

If DISPLAY_OPTIONS is omitted, BRIEF is used.

ENFORCE_INTERLOCKS or EI

Indicates whether the interlocks must match before a deck
can replace a base library deck. Options are:

TRUE

Interlocks must match.

FALSE

Interlocks need not match.

If ENFORCE_INTERLOCKS is omitted, FALSE is used.

o REPLACE_LIBRARIES reads the source library deck
lists in the order you specify the libraries on the
command.

o After reading a deck name, REPLACE_LIBRARIES
determines if the deck name is in the working library
deck list. If the name is in the list, it replaces the
deck in the working library with the deck from the
source library. If the name is not in the list, the
command does not add the deck to the working
library, but it sends a warning message, stating that
the deck cannot be replaced because it is not in the
working library.

o If no decks could be merged because an exception
occurred in each deck, an error status is returned and
REPLACE_LIBRARY makes no change to the library.

o REPLACE_LIBRARIES lists the source library origin
of each deck in the working library on the listing file.

o Decks, features, groups, and modifications are ordered
alphabetically on the REPLACE_LIBRARIES result
library.

21-96 NOS/VE Commands and Functions Revision G

Examples

$RESULT

e You can use this subcommand to merge decks from an
extracted library with decks from the original library
from which it was extracted to form a new library.
You use this command if you do not want to add any
new decks to the new library.

If you set interlocks when you extracted the library,
REPLACE_LIBRARY enforces the interlock if you
specify ENFORCE_INTERLOCKS=TRUE in the
subcommand. Interlock enforcement means that
REPLACE_LIBRARY checks whether the original
interlock value in the header of the extracted deck
copy matches the subinterlock value in the header of
the working library copy. If the values match,
REPLACE_LIBRARY replaces the working library
deck with the extracted deck; otherwise, it does not
replace the working library deck.

o Key characters in source libraries that are added to
the working library must match the key character in
the working library. If the key characters do not
match, SCU generates an error message.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand replaces decks on the working
library with decks from source library NEWLIB.

sc/replace_library newlib

DECK A
DECKB
DECKC
DECKD

SOURCE_ LIBRARY
NEWLIB
NEW LIB
SOURCE_LIBRARY

$RESULT
SCU Function

Purpose Returns the result library file.

Format $RESULT

Parameters None.

Revision G SOURCE_CODE_UTILITY 21-97

RETAIN_GROUP

Remarks

Examples

• The value of $RESULT is updated when a WRITE_
LIBRARY subcommand is entered that specifies a
result file.

• For more information, see the NOSNE Source Code
Management manual.

The following command displays the current value of the
result file.

/scu
sc/use_library base=$user.fortran_l1b
sc .. /result=$user.new_fortran_lib
sc/display_value $result
$USER.NEW_FORTRAN_LIB

RETAIN_GROUP
Selection Criteria Subcommand

Purpose Retains from the list of decks currently selected, only
those decks that are members of the specified group.

Format RETAIN_GROUP or
RETAIN_GROUPS or
RETG

GROUP= list of name
COMBINATION= keyword
STATUS= status variable

Parameters GROUP or GROUPS or G

Names of the groups to be retained. This parameter is
required.

COMBINATION or C

Decks to be retained. Options are:

ANY

Decks will be retained if they are members of any of
the groups specified by the GROUP parameter.

ALL

Decks will be retained if they are members of all of
the groups specified by the GROUP parameter.

If COMBINATION is omitted, ANY is used.

21-98 NOS/VE Commands and Functions Revision G

Remarks

Examples

SEQUENCE_DECK

For more information, see the NOS/VE Source Code
Management manual.

The following example retains the decks which are at the
same time members of group CYBIL and group
SCF$UNBOUND _UTILITY.

scc/retain_groups groups=(cybi1,scf$unbound_utility)
sec .. /combination=all

SEQUENCE _.DECK
SCU Subcommand

Purpose Sequences deck lines in released state (state 4).

Format SEQUENCE_DECK or
SEQUENCE_DECKS or
SEQD

DECK=list of range of name
MODIFICATION=name or keyword
STATUS= status variable

Parameters DECK or DECKS or D

Revision G

Decks to be sequenced. You can specify a list of one or
more names, a list of one or more ranges, or the keyword
ALL. ALL specifies all decks in the working library. This
parameter is required.

MODIFICATION or M

Modification name that is used in the line identifiers for
resequenced lines. If the modification already exists, it
must be in state 4.

You specify that the creation modification is to be used
for each deck by specifying the keyword CREATION_
MODIFICATION.

If MODIFICATION is omitted, the creation modification
for each deck is used.

SOURCE_ CODE_ UTILITY 21-99

SEQUENCE_MODIFICATION

Remarks

Examples

• To sequence a deck, you must have authority 4 for the
file. The creation modification for each sequenced deck
must be in state 4.

• The subcommand only sequences lines belonging to
modifications in state 4. Each sequenced line is
assigned a new line identifier. The line identifier
consists of the name of the specified modification and
a sequence number. The sequence numbers are
assigned in the order the lines appear within the
source library.

o After sequencing, all sequenced lines belong to the
specified modification. The maximum sequence number
is 16,777,214.

o If a sequenced deck has its subinterlock set, SCU
reports a warning message.

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand sequences all decks in the
working library.

sc/seQuence_deck decks=all

SEQUENCE _MODIFICATION
SCU Subcommand

Purpose

Format

Sequences modification lines.

SEQUENCE_MODIFICATION or
SEQUENCE_MODIFICATIONS or
SEQM

MODIFICATION= list of range of name
DECK= list of range of name
STATUS= status variable

21-100 NOSNE Commands and Functions Revision G

SET_LIST_ OPTIONS

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be resequenced. This parameter is
required.

Remarks

Examples

DECK or DECKS or D

One or more decks. You can specify a list of one or more
names, a list of one or more ranges, or the keyword ALL.
ALL specifies all decks in the working library. If DECK
is specified, only the modification lines that apply to the
specified decks are sequenced. If DECK is omitted, ALL is
used.

o The sequenced modifications must be in state 0 (zero).

o Before sequencing, the sequence numbers in the line
identifiers of a modification are ordered as the lines
were added to the modification. After sequencing, the
sequence numbers in the line identifiers are ordered as
the lines appear in the deck. The maximum sequence
number is 16,777,214.

o If a sequenced deck has its interlock set, SCU sends a
warning message.

o You can specify the DECK parameter to limit
sequencing to lines in the specified decks.

o For more information, see the NOS/VE Source Code
Management manual.

The following subcommand sequences modification MOD5.

sc/sequence_modification mods

SET_LIST_OPTIONS
SCU Subcommand

Purpose

Format

Revision G

Establishes a default for the LIST parameters on SCU
subcommands. It also specifies the file to which
intermediate diagnostic messages are written.

SET_LIST_OPTIONS or
SETLO

LIST=file
ERRORS=file
STATUS =status variable

SOURCE_ CODE_ UTILITY 21-101

USE_LIBRARY

Parameters LIST or L

Remarks

. Examples

Default listing file for the LIST parameter used on
subsequent subcommands in an SCU session. You can
specify a file position as part of the file name. If LIST is
omitted, file $LIST is used.

ERRORS or E

Name of the file on which intermediate error messages
are written. If ERRORS is omitted, file $ERRORS is used.

o This subcommand specifies the default value for the
LIST parameter on SCU subcommands. A file specified
for a LIST parameter overrides this value.

o The functions $ERRORS_FILE and $LIST_FILE
return the values specified for these files.

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand causes file SCU_LIST to be
used as the default value for the LIST parameter on
subsequent subcommands. Intermediate error messages are
written on file SCU _ERRORS.

sc/set_list_options list=scu_list errors=scu_errors

USE _LIBRARY
SCU Subcommand

Purpose

Format

Specifies the base and result libraries for an SCU utility
session. This subcommand also specifies where the QUIT,
END_LIBRARY, and WRITE_LIBRARY subcommands
write their results.

USE_LIBRARY or
USEL

BASE=file
RESULT= file
STATUS =status variable

21-102 NOS/VE Commands and Functions Revision G

USE_LIBRARY

Parameters BASE or B

Remarks

Name of the source library copied as the initial working
library for the session. The files specified by the BASE
and RESULT parameters can be the same. If BASE is
omitted, file SOURCE_LIBRARY in your working catalog
is used. ·

RESULT or R

Name of the file on which the new source library is
written by subsequent END_LIBRARY, WRITE_
LIBRARY, or QUIT subcommands. The new source library
can be written when either a QUIT, END_LIBRARY, or
WRITE_LIBRARY subcommand is entered. The WRITE_
LIBRARY subcommand can specify a different source
library than that specified by the USE_LIBRARY
subcommand. The files specified by the BASE and
RESULT parameters can be the same. If RESULT is ·
omitted, the file specified by the BASE parameter is used.

o All subcommands in the session affect the same
working library. The working library is initially a
duplicate of the base library specified on the BASE
parameter.

o If no USE_LIBRARY or CREATE_LIBRARY
subcommand is issued before other subcommands
during an SCU session, file SOURCE_LIBRARY is
used for the base and result libraries.

o You must have read and execute permission on the
base library. You must have read and write
permission on the result library. If you only want to
read the base library, specify $NULL as the result
library.

e For more information, see the NOSNE Source Code
Management manual.

Examples The following sequence begins an SCU session and
intitializes the working library from file FSEWORK in
your working catalog, assumed not to be $LOCAL. In this
example, source libraries are written on the next cycle of
file FSEWORK by subsequent END_LIBRARY, WRITE_
LIBRARY, or QUIT subcommands.

Revision G SOURCE_CODE_UTILITY 21-103

WRITE_LIBRARY

/source_code_utility
sc/use_library base=fsework result=fsework.$next

The following sequence specifies $NULL as the result
library. You can use this example to look at a source
library, but not to change it.

/source_code_utility
sc/use_library ..
sc .. /$system.cybi1.osf$program_interface result=$nu11

WRITE _LIBRARY
SCU Subcommand

Purpose Generates a result library from the current state of the
working library. It writes the result library on the file
specified by the RESULT parameter.

Format WRITE_LIBRARY or
WRIL

RESULT= file
STATUS =status variable

Parameters RESULT or R

Remarks

File to which the result library is written. If RESULT is
omitted, the file used is specified by the RESULT
parameter of the CREATE_LIBRARY, previous WRITE_
LIBRARY, or USE_LIBRARY subcommand. If RESULT is
specified, that file name becomes the default for
subsequent QUIT or WRITE_LIBRARY subcommands.

o This subcommand allows you to generate more than
one source library in an SCU session. This is done if
you specify a file on the RESULT parameter. To create
an empty library, refer to the CREATE_LIBRARY
subcommand.

o The subcommand can save the contents of the working
library at an intermediate state in case the system
fails during the session. In this case, you can omit the
RESULT parameter and use the result file you
specified when you began the session. When you end
the session, you can overwrite the intermediate library
with the final result library.

21-104 NOS/VE Commands and Functions Revision G

Examples

Revision G

WRITE_LIBRARY

g If the result file is the same as the file named on the
BASE parameter of the USE_ LIBRARY subcommand,
the file is rewritten only if the working library has
been modified.

• The END_LIBRARY and QUIT subcommands also
generate a result library.

• Specifying RESULT changes the value of the $RESULT
function to reflect the new file name.

• For more information, see the NOS/VE Source Code
Management manual.

The following subcommand writes an intermediate library
to the result library file.

sc/wr1te_11brary

SOURCE_CODE_UTILITY 21-105

Related Manuals A

The following lists the categories of manuals which relate to NOSNE.

Ordering Printed Manuals

Accessing Online Manuals

Table B-1. Related Manuals
NOSNE Site Manuals .
NOSNE User Manuals
CYBIL Manuals . .
FORTRAN Manuals . .
COBOL Manuals
Other Compiler Manuals
VXNE Manuals
Data Management Manuals .
Information Management Manuals
CDCNET Manuals . . .
Migration Manuals ...
Miscellaneous Manuals.
Hardware Manuals . . .

A-1

A-1

A-2
A-2
A-3
A-5
A-6
A-6
A-7
A-8

A-10
A-11
A-11
A-13
A-13
A-15

If you are familiar with the SCL System Interface, SCL Language
Definition, and SCL Quick Reference manuals, you will find they are
retitled and reorganized for NOSNE release 1.3.1, PSR level 700.
Descriptions of the changes follow:

SCL System Interface and SCL Language Definition
The SCL System Interface and SCL Language Definition manuals
are replaced by a single manual, NOS/VE System Usage. NOSNE
System Usage contains the information you once found in the two
manuals, except for the formats of commands and functions. Look
for the command and function formats in the NOSNE Commands
and Functions manual.

SCL Quick Reference

The SCL Quick Reference manual is retitled NOS/VE Commands
and Functions. It contains the same information, but is organized
differently. Book 1 describes the formats of the commands and
functions not associated with utilities. Book 2 describes the
commands and subcommands of the command utilities.

Related Manuals A

All NOSNE manuals and related hardware manuals are listed in
table A-1. If your site has installed the online manuals, you can find
an abstract for each NOSNE manual in the online System
Information manual. To access this manual, enter:

/explain

Ordering Printed Manuals

To order a printed Control Data manual, send an order form to:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

To obtain an order form or to get more information about ordering
Control Data manuals, write to the above address or call (612)
292-2101. If you are a Control Data employee, call (612) 292-2100.

Accessing Online Manuals

To access the online version of a printed manual, log in to NOSNE
and enter the online title on the EXPLAIN command (table A-1
supplies the online titles). For example, to see the NOSNE Commands
and Functions manual, enter:

/help manual=scl

The examples in some printed manuals exist also in the online
Examples manual. To access this manual, enter:

/help manual=examples

When EXAMPLES is listed in the Online Manuals column in table
A-1, that manual is represented in the online Examples manual.

Revision G Related Manuals A-1

Related Manuals

Table A-1. Related Manuals

Manual Title

NOS/VE Site Manuals:

CYBER 930 Computer System
Guide to Operations
Usage

CYBER Initialization Package (CIP)
Reference Manual

DesktopNE Host Utilities
Usage

MAINTAIN _MAIL2

Usage

NOSNE Accounting Analysis System
Usage

NOSNE Accounting and Validation
Utilities for Dual State
Usage

NOSNE
LCN Configuration and Network
Management
Usage

NOSNE
Network Management
Usage

NOSNE Operations
Usage

Publication Online
Number Manuals1

60469560

60457180

60463918

MAIM

60463923

60458910

60463917

60463916

60463914

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

2. To access this manual, you must be the administrator for
MAILNE.

(Continued)

A-2 NOS/VE Commands and Functions Revision G

Related Manuals

Table A-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

Site Manuals (Continued):

NOSNE 60463915
System Performance and Maintenance
Volume 1: Performance

· Usage

NOSNE 60463925
System Performance and Maintenance
Volume 2: Maintenance
Usage

NOSNE 60464513
User Validation
Usage

NOSNE User Manuals:

EDIT_ CATALOG EDIT_
Usage CATALOG

EDIT_CATALOG for NOSNE 60487719
Summary

Introduction to NOSNE 60464012
Tutorial

NOSNE 60486412 AFM_T
Advanced File Management
Tutorial

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals A-3

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

NOS/VE User Manuals (Continued):

NOSNE
Advanced File Management
Usage

NOSNE
Advanced File Management
Summary

NOSNE
Commands and Functions
Quick Reference

NOSNE File Editor
Tutorial/Usage

NOSNE
Object Code Management
Usage

NOSNE Screen Formatting
Usage

NOSNE
Source Code Management
Usage

NOSNE System Usage

NOSNE
Terminal Definition
Usage

Screen Design Facility for NOSNE
Usage

Publication Online
Number Manualsl

60486413

60486419

60464018

60464015

60464413

60488813

60464313

60464014

60464016

60488613

AFM

SCL

EXAMPLES

OCM

EXAMPLES

SCU and
EXAMPLES

EXAMPLES

SDF

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-4 NOS/VE Commands and Functions Revision G

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

CYBIL Manuals:

CYBIL for NOSNE
File Management
Usage

CYBIL for NOSNE
Keyed-File and Sort/Merge Interfaces
Usage

CYBIL for NOSNE
Language Definition
Usage

CYBIL for NOSNE
Sequential and Byte-Addressable Files
Usage

CYBIL for NOSNE
System Interface
Usage

Publication Online
Number Manualsl

60464114

60464117

60464113

60464116

60464115

EXAMPLES

EXAMPLES

CYBIL and
EXAMPLES

EXAMPLES

EXAMPLES

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals A-5

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

FORTRAN Manuals:

FORTRAN Version 1 for NOSNE
Language Definition
Usage

FORTRAN Version 1 for NOSNE
Quick Reference

FORTRAN Version 2 for NOSNE
Language Definition
Usage

FORTRAN Version 2 for NOSNE
Quick Reference

FORTRAN for NOSNE
Tutorial

FORTRAN for NOSNE
Topics for FORTRAN Programmers
Usage

FORTRAN for NOSNE
Summary

COBOL Manuals:

COBOL for NOSNE
Summary

Publication Online
Number Manuals1

60485913 EXAMPLES

FORTRAN

60487113 EXAMPLES

VFORTRAN

60485912 FORTRAN_T

60485916

60485919

60486019

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-6 NOS/VE Commands and Functions Revision G

Table A-1. Related Manuals (Continued)

Manual Title

COBOL Manuals (Continued):

COBOL for NOSNE
Tutorial

COBOL for NOSNE
Usage

Other Compiler Manuals:

ADA for NOSNE
Usage

ADA for NOSNE
Reference Manual

APL for NOSNE
File Utilities
Usage

APL for NOSNE
Language Definition
Usage

BASIC for NOSNE
Summary Card

BASIC for NOSNE
Usage

LISP for NOSNE
Usage Supplement

Pascal for NOSNE
Summary Card

Publication
Number

60486012

60486013

60498113

60498118

60485814

60485813

60486319

60486313

60486213

60485619

Related Manuals

Online
Manuals1

COBOL_T

COBOL and
EXAMPLES

ADA

EXAMPLES

BASIC

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals A-7

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

Other Compiler Manuals
(Continued):

Pascal for NOSNE
Usage

Prolog for NOSNE
Quick Reference

Prolog for NOSNE
Usage

VX/VE Manuals:

C/VE for NOS/VE
Quick Reference

C/VE for NOS/VE
Usage

DWB/VX
Introduction and User Reference
Tutorial/Usage

DWB/VX
Macro Packages Guide
Usage

DWB/VX
Preprocessors Guide
Usage

DWB/VX
Text Formatters Guide
Usage

Publication Online
Number Manuals1

60485613

60486718

60486713

60469830

60469890

60469910

60469920

60469900

PASCAL and
EXAMPLES

PRO LOG

c

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-8 NOS/VE Commands and Functions Revision G

Table A-1. Related Manuals (Continued)

Manual Title

VX/VE Manuals (Continued):

VX/VE
Administrator Guide and Reference
Tutorial/Usage

VXNE
An Introduction for UNIX Users
Tutorial/Usage

VX/VE
Programmer Guide
Tutorial

VX/VE
Programmer Reference
Usage

VXNE
Support Tools Guide
Tutorial

VX/VE
User Guide
Tutorial

VX/VE
User Reference
Usage

Publication
Number

60469770

60469980

60469790

60469820

60469800

60469780

60469810

Related Manuals

Online
Manuals1

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals A-9

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

Data Management Manuals:

DM Command Procedures
Reference Manual

DM Concepts and Facilities
Manual

DM Error Message Summary
for DM on CDC NOSNE

DM Fundamental Query and
Manipulation Manual

DM Report Writer
Reference Manual

DM System Administrator's
Reference Manual
for DM on CDC NOSNE

DM Utilities
Reference Manual
for DM on CDC NOSNE

Publication Online
Number Manuals1

60487905

60487900

60487906

60487903

60487904

60487902

60487901

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

·A..:10. NOS/VE Commands and Functions RevisiOn G

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

Information Management Manuals:

IM/Control for NOSNE
Quick Reference .

IM/Control for NOS/VE
Usage

IM/Quick for NOSNE
Tutorial

IM/Quick for NOSNE
Summary

IM/Quick for NOS/VE
Usage

CDCNET Manuals:

CDCNET Access Guide

CDCNET Batch Device
User Guide

CDCNET Commands
Quick Reference

CDCNET Configuration and Site
Administration Guide

CDCNET Diagnostic Messages

CDCNET Conceptual Overview

Publication Online
Number Manualsl

L60488918

60488913

60485712

60485714

60463830

60463863

60000020

60461550

60461600

60461540

CONTROL

QUICK

CDCNET_
ACCESS

CDCNET_
BATCH

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals A-11

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

CDCNET Manuals (Continued):

CDCNET Network Analysis

CDCNET Network Configuration
Utility

CDCNET Network Configuration
Utility
Summary Card

CDC NET Network Operations

CDCNET Network Performance
Analyzer

CDCNET Product Descriptions

CDCNET Systems Programmer's
Reference Manual Volume 1
Base System SOftware

CDCNET Systems Programmer's
Reference Manual Volume 2
Network Management Entities and
Layer Interfaces

CDCNET Systems Programmer's
Reference Manual Volume 3
Network Protocols

CDCNET Terminal Interface
Usage

CDCNET TCP/IP
Usage

Publication Online
Number Manualsl

60461590

60000269

60461520

60461510

60460590

60462410

60462420

60462430

60463850

60000214

NETCU

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-12 NOS/VE Commands and Functions Revision G

Related Manuals

Table A-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

Migration Manuals:

Migration from IBM to NOS/VE 60489507
Tutorial/Usage

Migration from NOS to NOS/VE 60489503
Tutorial/Usage

Migration from NOS to 60489504
NOS/VE Standalone
Tutorial/Usage

Migration from NOS/BE to NOS/VE 60489505
Tutorial/Usage

Migration from NOS/BE to 60489506
NOS/VE Standalone
Tutorial/Usage

Migration from VAX/VMS to NOS/VE 60489508
Tutorial/Usage

Miscellaneous Manuals:

Applications Directory 60455370

CONTEXT 60488419
Summary Card

CYBER Online Text for NOS/VE 60488403 CONTEXT
Usage

Control Data CONNECT 60462560
User's Guide

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related. Manuals A-13

Related Manuals

Table A-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

Miscellaneous Manuals (Continued):

Debug for NOSNE DEBUG
Quick Reference

Debug for NOSNE 60488213
Usage

DesktopNE for Macintosh 60464502
Tutorial

DesktopNE for Macintosh 60464503
Usage

N OSNE Diagnostic Messages 60464613 MESSAGES
Usage

MAIL/VE 60464519
Summary Card

MAILNE MAIL_ VE
Usage

Math Library for NOSNE 60486513
Usage

NOSNE Examples EXAMPLES
Usage

NOSNE System Information NOS_ VE

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-14 NOS/VE Commands and Functions Revision G

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

Miscellaneous Manuals (Continued):

Programming Environment
for NOS/VE
Usage

Programming Environment
for NOS/VE
Summary

Professional Programming
Environment
for NOS/VE
Quick Reference

Professional Programming
Environment
for NOS/VE
Usage

Remote Host Facility
Usage

Hardware Manuals:

CYBER 170 Computer Systems
. Models 825, 835, and 855

General Description
Hardware Reference

CYBER 170 Computer Systems,
Models 815, 825, 835, 845, and 855
CYBER 180 Models 810, 830, 835,
840, 845, 850, 855, and 860
Codes Booklet

Publication Online
Number Manualsl

60486819

60486613

60460620

60459960

60458100

ENVIRON­
MENT

PPE

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision G Related Manuals A-15

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

Hardware Manuals (Continued):

CYBER 170 Computer Systems,
Models 815, 825, 835, 845, and 855
CYBER 180 Models 810, 830, 835,
840, 845, 850, 855, and 860
Maintenance Register
Codes Booklet

HPANE Reference

Virtual State Volume II
Hardware Reference

7021-31/32 Advanced Tape Subsystem
Reference

7221-1 Intelligent Small
Magnetic Tape Subsystem
Reference

Publication
Number

60458110

60461930

60458890

60449600

60461090

Online
Manuals1

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

A-16 NOS/VE Commands and Functions Revision G

Comments (continued from other side)

'lease fold on dotted line;
;eal edges with tape only. --------------

BUSINESS REPLY MAIL
First-Class Mail Permit No. 8241 Minneapolis, MN

POSTAGE WILL BE PAID BY ADDRESSEE

CONTROL DATA
Technology & Publications Division
ARH219
4201 N. Lexington Avenue
Arden Hills, MN 55126-9983

1.1.1 •• 1.1 •••• 11 •• 1.1.11 •• 1.1 .. 1.1 .. 1 •• 1 ••• 11 ... 1.11

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

FASWt ?.f9§8!§4f.r'. 1

Htfdf AUE ??I
''¥ft.i4§MW\WQSWM

iM etiiM
CH SW4

•

NOS/VE Commands and Functions 60464018 G

We value your comments on this manual. While writing it, we made some assumptions
about who would use it and how it would be used. Your comments will help us
improve this manual. Please take a few minutes to reply.

Who are you? How do you use this manual?

D Manager D As an overview

D Systems analyst or programmer

D Applications programmer

D To learn the product or system

D For comprehensive reference

D Operator D For quick look-up

D Other

What programming languages do you use? ___ _

How do you like this manual? Check those questions that apply.

Yes Somewhat No
D D D Is the manual easy to read (print size, page layout, and so on)?

D D D Is it easy to understand?

D D D Does it tell you what you need to know about the topic?

D D D Is the order of topics logical?

D D D Are there enough examples?

D D D Are the examples helpful? (D Too simple? D Too complex?)

D D D Is the technical information accurate?

D D D Can you easily find what you want?

D D D Do the illustrations help you?

Comments? If applicable, note page and paragraph. Use other side if needed.

Would you like a reply? D Yes D No

From:

Name Company

Address Date

Phone

Please send program listing and output if applicable to your comment.

Replacements for Old NOSNE Commands

The following table lists old commands from previous versions of
NOSNE and the preferred command or replacement command. Some
of the preferred commands may have parameters that differ from an
old command. Commands listed more than once were replaced by more
than one command.

Old Command

CHANGE_ TERM_ CONN_
ATTRIBUTES

DISPLAY_ l 70_REQUEST

DISPLAY_ 7600_REQUEST

DISPLAY_COMMAND_
PARAMETERS

DISPLAY_IBM_REQUEST

DISPLAY_PRINT_ STATUS

DISPLAY_ TERM_ CONN_
ATTRIBUTES

DISPLAY_ VAX_REQUEST

EDIT_LIBRARY (SCU
subcommand)

SET_COMMAND_LIST

SET_COMMAND_LIST

Preferred/Replacement Command

CHANGE_ CONNECTION_
ATTRIBUTES

DISPLAY_ TAPE_ LABEL_
ATTRIBUTES

DISPLAY_ TAPE_LABEL_
ATTRIBUTES

DISPLAY_ COMMAND_
INFORMATION

DISPLAY_ TAPE_LABEL_
ATTRIBUTES

DISPLAY_ OUTPUT_ STATUS

DISPLAY_ CONNECTION_
ATTRIBUTES

DISPLAY_ TAPE_LABEL_
ATTRIBUTES

EDIT_DECK (SCU Subcommand)

CREATE_COMMAND_LIST_
ENTRY

DELETE_COMMAND_LIST_
ENTRY

Old Command

SET_COMMAND_LIST

SET_COMMAND_MODE

SET_COMMAND_MODE

SET_JOB_LIMIT

SET_LINK_ATTRIBUTES

SET_MESSAGE_MODE

SET_PASSWORD

Preferred/Replacement Command

CHANGE_COMMAND_SEARCH_
MODE

CHANGE_INTERACTION _STYLE

CHANGE_SCL_OPTIONS

CHANGE_JOB_LIMIT

CHANGE_LINK_ATTRIBUTES

CHANGE_MESSAGE_LEVEL

CHANGE_LOGIN _PASSWORD

SET_ TERMINAL_ATTRIBUTES CHANGE_ TERMINAL_
ATTRIBUTES

TERMINATE_PRINT TERMINATE_ OUTPUT

Command, Subcommand, and Control
Statement Index

This index lists the commands, subcommands, and control statements
described in this manual and the page on which each is described.
Each subcommand entry is followed by the word "sub" and the
abbreviation of the command that starts the utility session.

A

B

c

ACCEPT_LINE
ACTIVATE_SCREEN sub DEBUG ..
ACTIVATE_SCREEN sub EDIF . . .
ADA
ADA_ PROGRAM_ LIBRARY_ UTILITY
ADD_LIBRARY sub SCU
ADD_MODULE sub CREOL
ADD_PIECE sub CREKD
ADD_RECORDS sub CHAKF & CREKF . .
ADMINISTER_RECOVERY_LOG
ADMINISTER_ VALIDATIONS .
AFTERBURN_OBJECT_TEXT
ALIGN_SCREEN sub EDIF
ANALYZE_OBJECT_LIBRARY .. .
ANALYZE_PROGRAM_DYNAMICS .
APL
APPLY_KEY_DEFINITIONS sub CREA!
ATTACH_FILE . .
ATTACH_JOB

BACKUP_CATALOG sub BACPF ..
BACKUP _FILE sub BACPF
BACKUP_LOG sub ADMRL
BACKUP _PERMANENT_ FILES . . .
BASIC
BIND_MODULE sub CREOL ..
BLOCK/BLOCKEND
BREAK_ TEXT sub EDIF . .

c
CANCEL
CANCEL_KEY_DEFINITIONS sub CREAi
CANCEL_LOG_CHANGES sub ADMRL
CENTER_LINES sub EDIF

2-1
12-1
15-3

2-4
2-8

21-2
11-2

9-3
8-4
4-1
5-1
2-9

15-5
6-1

2-15
2-17

9-5
2-20
2-26

7-2·
7-3
4-1
7-1

2-27
11-4
2-29
15-7

2-31
2-33

9-8
4-2

15-7

CHANGE_ l 70_REQUEST 2-34
CHANGE_ 7600_REQUEST 2-40
CHANGE_ALTERNATE_INDEXES 2-45
CHANGE_BACKUP_LABEL_TYPE ... 2-47
CHANGE_CATALOG_CONTENTS 2-48
CHANGE_CATALOG_ENTRY 2-49
CHANGE_COMMAND_SEARCH_MODE 2-52
CHANGE_CONNECTION_ATTRIBUTES. 2-53
CHANGE_DECK sub SCU 21-3
CHANGE_DECK_NAME sub SCU 21-8
CHANGE_DECK_REFERENCES sub SCU 21-9
CHANGE_DEFAULT sub Debug 12-2
CHANGE_DEFAULT_ACCOUNT_PROJECT sub Debug . 5-1
CHANGE_FILE_ATTRIBUTES 2-60
CHANGE_IBM_REQUEST 2-64
CHANGE_INTERACTION_STYLE 2-68
CHANGE_JOB_ATTRIBUTE 2-68
CHANGE_JOB_LIMIT . 2-80
CHANGE_KEYED_FILE . 8-1
CHANGE_LIBRARY sub SCU 21-11
CHANGE_LINK_ATTRIBUTES 2-82
CHANGE_LINK_ATTRIBUTE_CHARGE sub CHAU . . 5-2
CHANGE_LINK_ATTRIBUTE_FAMILY sub CHAU . . . 5-3
CHANGE_LINK_ATTRIBUTE_PASSWORD sub CHAU . 5-3
CHANGE_LINK_ATTRIBUTE_PROJECT sub CHAU 5-4
CHANGE_LINK_ATTRIBUTE_USER sub CHAU 5-5
CHANGE_LOGIN_PASSWORD sub CHAU. . . 5-6
CHANGE_LOGIN_PASSWORD 2-83
CHANGE_MEMORY sub Debug 12-3
CHANGE_MESSAGE_LEVEL 2-86
CHANGE_MODIFICATION sub SCU 21-12
CHANGE_MODULE_ATTRIBUTE sub CREOL ... 11-7
CHANGE_NATURAL_LANGUAGE 2-87
CHANGE_OUTPUT_ATTRIBUTE 2-89
CHANGE_PROGRAM_DESCRIPTION sub CREOL 11-12
CHANGE_PROGRAM_ VALUE sub Debug 12-5
CHANGE_REGISTER sub Debug 12-7
CHANGE_SCL_OPTION 2-95
CHANGE_ TAPE_LABEL_ATTRIBUTE 2-96
CHANGE_TERMINAL_ATTRIBUTES 2-104
CHANGE_ TERM_CONN _DEFAULTS 2-113
CHANGE_ USER sub ADMV 5-9
CHANGE_USER_EPILOG sub CHAU 5-10
CHANGE_USER_PROLOG sub CHAU 5-11
CHANGE_UTILITY_ATTRIBUTES 2-117
CHANGE_ VAX_REQUEST 2-118

CLEAR_PROBLEM_JOURNAL sub ADMRL 4-3
CLEAR_ TABS sub EDIF . 15-8
COBOL . 2-123
COLLECT_ TEXT . 2-132
COMBINE_LIBRARY sub SCU 21-15
COMBINE_MODULE sub CREOL 11-21
COMBINE_RECORDS sub CHAKF & CREFK 8-6
COMMAND sub UTILITY . 2-134
COMPARE_FILE . 2-137
COMPARE_OBJECT_LIBRARY 2-139
CONFIGURE_LOG_BACKUP sub ADMRL 4-4
CONFIGURE_LOG_RESIDENCE sub ADMRL 4-6
CONTINUE 2-142
CONTROL . 2-144
CONVERT_APL2_FILE . 2-147
CONVERT_APL2_ WS . 2-148
CONVERT_MODIFY_TO_SCU 2-150
CONVERT_SCUlO_ TO_SCUll 2-152
CONVERT_UPDATE_TO_SCU 2-153
COPY_FILE . 2-155
COPY_KEYED_FILE . 2-157
COPY_ TEXT sub EDIF . 15-9
CREATE_ l 70_REQUEST . 2-160
CREATE_ 7600_REQUEST . 2-168
CREATE_ALTERNATE_INDEXES sub CHAKF & CREKF . . 8-7
CREATE_ALTERNATE_INDEXES 9-1
CREATE_APPLICATION_MENU sub CREMM 11-24
CREATE_BRIEF_HELP_MESSAGE sub CREMM 11-24
CREATE_CATALOG 2-176
CREATE_CATALOG_PERMIT 2-177
CREATE_COMMAND_LIST_ENTRY 2-182
CREATE_DECK sub SCU . 21-17
CREATE_FILE 2-183
CREATE_FILE_CONNECTION 2-186
CREATE_FILE_PERMIT . 2-188
CREATE_FULL_HELP_MESSAGE sub CREMM 11-25
CREATE_IBM_REQUEST . 2-194
CREATE_INTERSTATE_CONNECTION 10-1
CREATE_KEY_DEFINITION sub CREA! 9-10
CREATE_KEYED_FILE . 8-2
CREATE_LIBRARY sub SCU 21-23
CREATE_LINKED_MODULE sub CREOL 11-25
CREATE_MANUAL . 2-201
CREATE_MENU_CLASS 11-29
CREATE_MENU_ITEM . 11-30
CREATE_MESSAGE_MODULE sub CREOL 11-32

D

CREATE_MODIFICATION sub SCU
CREATE_MODULE sub CREOL
CREATE_NESTED_FILE sub CHAKF & CREKF
CREATE_OBJECT_LIBRARY
CREATE_PARAMETER_ASSIST_MESSAGE sub CREMM . .
CREATE_PARAMETER_HELP _MESSAGE sub CREMM . . .
CREATE_PARAMETER_PROMPT_MESSAGE sub CREMM .
CREATE_PROGRAM_DESCRIPTION sub CREOL
CREATE_PROGRAM_PROFILE
CREATE_REMOTE_ VALIDATION
CREATE_RESTRUCTURED_MODULE sub MEAPE
CREATE_RESTRUCTURING_COMMANDS sub MEAPE ...
CREATE_STATUS_MESSAGE sub CREMM
CREATE_ VARIABLE .
CREATE_ VAX_REQUEST .
CYBIL
CYCLE

DEACTIVATE_SCREEN sub EDIF
Debug (EXECUTE_ TASK)
DEFINE_PRIMARY_ TASK
DEFINE_ TERMINAL .
DELETE_BREAK sub Debug
DELETE_CATALOG
DELETE_CATALOG_CONTENTS sub BACPF
DELETE_CATALOG_PERMIT
DELETE_CHARACTERS sub EDIF
DELETE_COMMAND_LIST_ENTRY
DELETE_DECK sub SCU
DELETE_EMPTY_LINES sub EDIF
DELETE_FILE .
DELETE_FILE_CONNECTION
DELETE_FILE_CONTENTS sub BACPF
DELETE_FILE_PERMIT
DELETE_INTERSTATE_CONNECTION sub CREIC ..
DELETE_KEY_DEFINITION sub CREA! ..
DELETE_LINES sub EDIF
DELETE_LOG sub ADMRL
DELETE_LOG_CONTROL_FILE sub RESL
DELETE_MODIFICATION sub SCU
DELETE_MODULE sub CREOL
DELETE_NESTED_FILE sub CHAKF & CREKF ...
DELETE_RECORDS sub CHAKF & CREKF
DELETE_REMOTE_ VALIDATION
DELETE_REPOSITORIES sub RESL

21-24
11-34

. 8-8

. 11-1
11-39
11-40
11-41
11-44
2-204
2-207

. 17-1

. 17-2
11-54
2-208
2-212
2-215
2-221

15-17
2-397
2-224
2-225
12-10
2-227

. 7-4
2-228
15-18
2-230
21-30
15-19
2-231
2-232

. 7-6
2-233

. 10-2

. 9-16
15-19

. 4-8

. 19-1
21-31
11-57

. 8-13

. 8-14
2-235

. 19-2

DELETE_ TEXT sub EDIF . 15-21
DELETE_ VARIABLE . 2-236
DELETE_ WORD sub EDIF . 15-24
DESIGN _SCREEN . 2-236
DETACH_FILE . 2-238
DETACH_JOB . 2-239
DISPLAY_ACTIVE_ TASKS . 2-240
DISPLAY_BACKUP _FILE sub RESPF 20-3
DISPLAY_BACKUP _LABEL_ TYPE 2-241
DISPLAY_BREAK sub Debug 12-11
DISPLAY_CALL sub Debug. 12-12
DISPLAY_CATALOG 2-242
DISPLAY_CATALOG_ENTRY 2-244
DISPLAY_COLUMN_NUMBERS sub EDIF 15-25
DISPLAY_COMMAND_INFORMATION 2-246
DISPLAY_COMMAND_LIST 2-248
DISPLAY_COMMAND_LIST_ENTRY 2-249
DISPLAY_CONNECTION_ATTRIBUTES 2-251
DISPLAY_DEBUGGING_ENVIRONMENT sub Debug 12-14
DISPLAY_DECK sub SCU . 21-32
DISPLAY_DECK_LIST sub SCU 21-35
DISPLAY_DECK_REFERENCES sub SCU 21-36
DISPLAY_EDITOR_STATUS sub EDIF 15-26
DISPLAY_FEATURE sub SCU 21-39
DISPLAY_FEATURE_LIST sub SCU 21-41
DISPLAY_FILE . 2-252
DISPLAY_FILE_ATTRIBUTES 2-254
DISPLAY_FILE_CONNECTIONS 2-259
DISPLAY_FUNCTION_INFORMATION. 2-260
DISPLAY_GROUP sub SCU 21-42
DISPLAY_GROUP _LIST sub SCU 21-43
DISPLAY_JOB_ATTRIBUTE 2-261
DISPLAY_JOB_ATTRIBUTE_DEFAULT 2-267
DISPLAY_JOB_HISTORY 2-270
DISPLAY_JOB_LIMIT . 2-272
DISPLAY_JOB_STATUS . 2-272
DISPLAY_KEY_DEFINITIONS sub CREAi 9-17
DISPLAY_KEYED_FILE . 2-276
DISPLAY_KEYED_FILE_PROPERTIES 2-279
DISPLAY_LIBRARY sub SCU 21-45
DISPLAY_LIBRARY_ANALYSIS sub ANAOL 6-2
DISPLAY_LINK_ATTRIBUTES 2-282
DISPLAY_LOG . 2-283
DISPLAY_LOG_CONFIGURATION sub ADMRL 4-9
DISPLAY_MEMORY sub Debug 12-16
DISPLAY_MESSAGE . 2-284

DISPLAY_MODIFICATION sub SCU 21-46
DISPLAY_MODIFICATION _LIST sub SCU 21-48
DISPLAY_MODULE_ANALYSIS sub ANAOL 6-4
DISPLAY_NESTED_FILE sub CHAKF & CREKF 8-16
DISPLAY_NEW_LIBRARY sub CREOL 11-58
DISPLAY_OBJECT_LIBRARY 2-286
DISPLAY_OBJECT_TEXT 2-289
DISPLAY_OUTPUT_ATTRIBUTE 2-290
DISPLAY_OUTPUT_HISTORY 2-295
DISPLAY_OUTPUT_STATUS 2-296
DISPLAY_PERFORMANCE_DATA sub ANAOL 6-6
DISPLAY_POSITION sub EDIF 15-27
DISPLAY_PROBLEM_JOURNAL sub ADMRL 4-10
DISPLAY_PROGRAM_ATTRIBUTES 2-299
DISPLAY_PROGRAM_PROFILE sub MEAPE 17-3
DISPLAY_PROGRAM_ VALUE sub Debug 12-20
DISPLAY_RECORDS sub CHAKF & CREKF 8-18
DISPLAY_REGISTER sub Debug 12-25
DISPLAY_REMOTE_ VALIDATION 2-300
DISPLAY_SECTION_ANALYSIS sub ANAOL 6-9
DISPLAY_STACK_FRAME sub Debug 12-27
DISPLAY_TAPE_LABEL_ATTRIBUTES 2-301
DISPLAY_TASK_STATUS 2-303
DISPLAY_ TERMINAL_ATTRIBUTES 2-304
DISPLAY_TERM_CONN_DEFAULTS. 2-305
DISPLAY_ USER sub ADMV 5-12
DISPLAY_ VALUE . 2-306
DISPLAY_ VARIABLE_LIST 2-308
DMACT . 2-309
DMBR . 2-311
DMCCF . 2-316
DMCPC . 2-317
DMDBA 2-322
DMDDBD . 2-327
DMDDBE . 2-329
DMDDBR . 2-333
DMDRL . 2-334
DMEMS . 2-343
DMFORM . 2-345
DMFPC . 2-348
DMFQM . 2-353
DMG. 2-356
DMHVL . 2-358
DMJ 2-365
DMKMON . 2-368
DMOPEN . 2-372

E

DMPT ..
DMR ...
DMRW ..
DMSA ..
DMSACK
DMSTAT.
DMUSER
DMVP ..

EDIT_CATALOG
EDIT_DECK sub EDID
EDIT_DECK sub SCU
EDIT_FILE
EDIT_FILE sub EDIF
EDIT_FIRST_DECK sub EDID
EDIT_LAST_DECK sub EDID
EDIT_NEXT_DECK sub EDID
ENABLE_LOG sub RESL
END_ADMINISTER_ VALIDATIONS sub ADMV
END_APPLICATION_MENU
END_CHANGE_USER sub CHAU
END_DECK sub EDID
END_FILE sub EDIF
END_LIBRARY sub SCU
END_MESSAGE_MODULE sub CREMM .
END sub EDIF
ENTER_PPE
ENTER_PROGRAMMING_ENVIRONMENT . .
EXCHANGE_POSITION sub EDIF
EXCHANGE_SCREEN_ WIDTH sub EDIF .
EXCLUDE_CATALOG sub BACPF
EXCLUDE_DECK sub selection criteria ..
EXCLUDE_FEATURE sub selection criteria
EXCLUDE_FILE sub BACPF
EXCLUDE_GROUP sub selection criteria ...
EXCLUDE_HIGHEST_CYCLES sub BACPF ..
EXCLUDE_LIBRARY sub selection criteria ..
EXCLUDE_MODIFICATION sub selection criteria
EXCLUDE_STATE sub selection criteria
EXECUTE_COMMAND
EXECUTE_INSTRUMENTED_TASK sub MEAPE
EXECUTE_INTERSTATE_COMMAND sub CREIC
EXECUTE_ TASK
EXIT
EXIT_PROC

2-375
2-378
2-381
2-383
2-384
2-386
2-388
2-389

.. 13-1

. . 14-1
21-50

. . 15-1
15-28

14-1
14-2
14-2
19-3
5-13

11-60
. 5-13
. 14-2
15-29
21-53
11-61
15-29
2-394
2-395
15-30
15-30

. 7-7
21-54
21-55

. 7-7
21-56

. . . 7-8
21-57
21-58
21-59
2-396

. 17-5

. 10-2
2-397
2-405
2-408

F

G

H

I

EXPAND_DECK sub SCU
EXPAND_FILE sub SCU .
EXPAND_SOURCE_FILE
EXPLAIN
EXPLAIN_MESSAGE
EXTRACT_DECK sub SCU
EXTRACT_MODIFICATION sub SCU .
EXTRACT_RECORDS sub CHAKF & CREKF . .
EXTRACT_SOURCE_LIBRARY

FILE_ MANAGEMENT_ UTILITY
FORJFOREND
FORMAT_CYBIL_SOURCE
FORMAT_PARAGRAPHS sub EDIF
FORMAT_SCL_PROC
FORTRAN

GENERATE_COMMAND_TABLE .
GENERATE_LIBRARY sub CREOL . .
GENERATE_MESSAGE_ TEMPLATE .
GENERATE_PDT
GENERATE_SCU _EDIT_COMMANDS ..
GET_FILE

HELP
HELP sub ADMRL
HELP sub CHAKF & CREKF . . .
HELP sub RECKF
HELP sub RESL

21-60
21-65
2-409
2-412
2-414
21-69
21-73

. 8-20
2-415

2-420
2-422
2-424
15-31
2-427
2-429

2-438
11-61
2-439
2-440
2-440
2-443

2-446
. 4-11
. 8-22

18-2
. 19-3

IF/ELSEIF/ELSE/IFEND 2-448
INCLUDE_COMMAND 2-449
INCLUDE_COPYING_DECKS sub selection criteria . 21-79
INCLUDE_CYCLES sub BACPF 7-9
INCLUDE_DECK sub selection criteria 21-80
INCLUDE_EMPTY_CATALOG sub BACPF . . 7-13
INCLUDE_FEATURE sub selection criteria 21-81
INCLUDE_FILE 2-450
INCLUDE_GROUP sub selection criteria . . 21-82
INCLUDE_LARGE_CYCLES sub BACPF . . 7-14
INCLUDE_LINE 2-452
INCLUDE_MODIFICATION sub selection criteria . 21-83

J

K

L

M

INCLUDE_MODIFIED_DECKS sub selection criteria 21-83
INCLUDE_SMALL_CYCLES sub BACPF 7-15
INCLUDE_STATE sub selection criteria 21-84
INCLUDE_ VOLUMES sub BACPF 7-15
INDENT_ TEXT sub EDIF 15-33
INITIALIZE_ TERMINAL 2-453
INSERT_CHARACTERS sub EDIF 15-34
INSERT_EMPTY_LINES sub EDIF 15-35
INSERT_LINES sub EDIF . 15-36
INSERT_ WORD sub EDIF . 15-38

JOB
JOIN_ TEXT sub EDIF

KERMIT

2-456
15-39

2-469

LINK_ADA 2-469
2-471
2-475
15-41
15-42
15-42
15-43
15-44
15-45
15-46
15-46
15-50
2-476
2-482
2-483

LINK_DM
LISP
LIST_BACKWARDS sub EDIF
LIST_FORWARDS sub EDIF
LIST_LINES sub EDIF
LOCATE_ALL sub EDIF
LOCATE_EMPTY_LINES sub EDIF
LOCATE_NEXT sub EDIF
LOCATE_STRING sub EDIF
LOCATE_ TEXT sub EDIF
LOCATE_ WIDE_LINES sub EDIF
LOGIN
LOGOUT
LOOWLOOPEND..

MAIL
MANAGE_REMOTE_FILE
MARK_BOXES sub EDIF
MARK_CHARACTERS sub EDIF
MARK_LINES sub EDIF
MEASURE_PROGRAM_EXECUTION . .
MERGE
MOVE_ TEXT sub EDIF

. 2-484

. 16-1

. 15-52

. 15-54

. 15-58

........ 17-1

. 2-492

. 15-60

0

p

Q

R

OPEN _FILE_MIGRATION _AID . 2-506

PASCAL . 2-510
POP 2-517
POSITION _BACKWARD sub EDIF 15-67
POSITION_ CURSOR sub EDIF 15-67
POSITION _FORWARD sub EDIF 15-71
PRINT_FILE . 2-519
PROC/PROCEND . 2-527
PROLOG 2-534
PUSH 2-537
PUT_LINE 2-538
PUT_ROW sub EDIF . 15-71

QUICK ~ 2-542
QUIT sub ADMRL 4-12
QUIT sub ANAOL 6-12
QUIT sub BACPF 7-17
QUIT sub CHAKF & CREKF 8-23
QUIT sub CREAi . 9-20
QUIT sub CREKD . 9-22
QUIT sub CREOL . 11-64
QUIT sub Debug . 12-32
QUIT sub MEAPE . 17-6
QUIT sub RECKF 18-4
QUIT sub RESL . 19-5
QUIT sub RESPF . 20-5
QUIT sub selection criteria . 21-93
QUIT sub SCU . 21-94

READ_FILE sub EDIF . 15-72
RECEIVE_FILE sub MANRF 16-4
RECOVER_FILE_MEDIA sub RECKF 18-4
RECOVER_KEYED_FILES 18-1
RELEASE_RESOURCE 2-547
REORDER_MODULE sub CREOL 11-65
REPEAT/UNTIL . 2-549
REPLACE_FILE . 2-550
REPLACE_LIBRARY sub SCU 21-95
REPLACE_LINES sub EDIF 15-74
REPLACE_MODULE sub CREOL 11-66
REPLACE_RECORDS sub CHAKF & CREKF 8-23

s

REPLACE_ TEXT sub EDIF 15-76
REQUEST_LINK . 2-554
REQUEST_MAGNETIC_ TAPE 2-554
REQUEST_OPERATOR_ACTION 2-557
REQUEST_TERMINAL 2-558
RESERVE_RESOURCE . 2-566
RESET_ DECK sub EDID . 14-3
RESET_FILE sub EDIF . 15-80
RESTORE_ALL_FILES sub RESPF 20-5
RESTORE_CATALOG sub RESPF 20-7
RESTORE_EXCLUDED_FILE_CYCLES sub RESPF 20-8
RESTORE_EXISTING_CATALOG sub RESPF 20-10
RESTORE_EXISTING_FILE sub RESPF 20-11
RESTORE_FILE sub RESPF 20-12
RESTORE_LOG 19-1
RESTORE_LOG_CONTROL_FILE sub RESL 19-6
RESTORE_PERMANENT_FILES 20-1
RESTORE_POSITION sub EDIF 15-81
RESTORE_PROGRAM_MEASURES sub MEAPE 17-6
RESTORE_REPOSITORIES sub RESL 19-8
RESUME_COMMAND 2-565
RETAIN _GROUP sub selection criteria 21-98
REWIND_FILE . 2-568
ROUTE_JOB . 2-570
RUN sub Debug 12-33

SATISFY_EXTERNAL_REFERENCE sub CREOL 11-67
SAVE_POSITION sub EDIF 15-81
SAVE_PROGRAM_MEASURES sub MEAPE 17-7
SELECT_DECK sub EDID . 14-3
SELECT_FIRST_DECK sub EDID 14-4
SELECT_LAST_DECK sub EDID 14-4
SELECT_NESTED_FILE sub CHAKF & CREKF 8-24
SELECT_NEXT_DECK sub EDID 14-5
SELECT_USER_MENU 2-575
SEND_FILE sub MANRF 16-4
SEPARATE_KEY_GROUPS sub CREAi 9-22
SEQUENCE_DECK sub SCU 21-99
SEQUENCE_MODIFICATION sub SCU 21-100
SET_BACKUP_OPTIONS sub BACPF 7-17
SET_BREAK sub Debug 12-34
SET_COMMAND_LIST 2-575
SET_DEBUG_LIST 2-578
SET_DEBUG_RING 2-580
SET_DISPLAY_OPTION sub CREOL 11-70

T

SET_DISPLAY_OPTION sub EDIC 13-3
SET_EPILOG sub EDIF . 15-83
SET_FILE_ATTRIBUTES . 2-581
SET_FUNCTION _KEY sub EDIF 15-84
SET_LINE_ WIDTH sub EDIF 15-86
SET_LINK_ATTRIBUTES . 2-602
SET_LIST_OPTIONS sub BACPF 7-19
SET_LIST_OPTIONS sub EDIF 15-87
SET_LIST_OPTIONS sub RESPF 20-14
SET_LIST_OPTIONS sub SCU 21-101
SET_LOG_BACKUP _ACCOUNT sub ADMRL 4-14
SET_MASK sub EDIF . 15-87
SET_MULTIPROCESSING_ OPTIONS 2-604
SET_PARAGRAPH_MARGINS sub EDIF 15-88
SET_PASSWORD . 2-83
SET_PERFORMANCE_OPTION sub ADMRL 4-17
SET_PROGRAM_ATTRIBUTES 2-605
SET_PROGRAM_DESCRIPTION sub MEAPE 17-9
SET_SCREEN_OPTION sub EDIC 13-3
SET_SCREEN _OPTIONS sub Debug 12-41
SET_SCREEN_OPTIONS sub EDIF 15-90
SET_SEARCH_MARGINS sub EDIF 15-93
SET_SENSE_SWITCH 2-612
SET_STEP _MODE sub Debug 12-44
SET_TAB_OPTIONS sub EDIF 15-94
SET_ VERIFICATION_LEVEL sub ADMRL 4-19
SET_ VERIFY_OPTION sub EDIF 15-95
SET_ WORD_CHARACTERS sub EDIF 15-96
SET_ WORKING_ CATALOG 2-613
SKIP_ TAPE_MARK 2-614
SORT . 2-616
SOURCE_CODE_ UTILITY 21-1
SUBMIT_JOB 2-634

TABLEND sub UTILITY .
TASKtrASKEND .
TERMINATE_COMMAND
TERMINATE_JOB
TERMINATE_OUTPUT
TERMINATE_PRINT
TERMINATE_ TASK
TRANSFER_FILE_XMODEM

2-647
2-648
2-651
2-652
2-654
2-654
2-656
2-657

u

v

w

UNDO sub EDIF . 15-98
UNMARK sub EDIF . 15-100
USE_LIBRARY sub ANAOL 6-13
USE_LIBRARY sub SCU 21-102
USE_LOG sub ADMRL ,. 4-19
UTILITY /UTILITYEND 2-665

VALIDATE_LOG sub RESL
VECTOR_FORTRAN
VOID_LOG_FOR_RESTORED_FILE sub RECKF
vx

. .. 19-9

.. 2-677

... 18-6
2-687

WAIT 2-689
WHEN
WHILE
WRITE_FILE sub EDIF
WRITE_LIBRARY sub SCU ..

2-690
2-691

15-101
. 21-104

Functions Index

This index lists the functions described in this manual and the pa
which each is described. Some functions are followed by the word
"fun" abbreviation of the command utility in which the function can
be used.

A

B

c

D

E

$ACCESS_MODE
$ACTIVE_IDENTIFIER fun EDIF

$BACKUP _FILE fun RESPF
$BASE fun SCU .

2-3
15-5

20-2
21-26

$CATALOG . 2-34
$CHAR . 2-121
$COMMAND_SOURCE . 2-135
$CONDITION_CODE . 2-140
$CONDITION_NAME . 2-141
$CURRENT_COLUMN fun EDIF 15-12
$CURRENT_DECK fun EDIF 15-13
$CURRENT_FILE fun EDIC . 13-2
$CURRENT_LINE fun Debug 12-9
$CURRENT_LINE fun EDIF 15-13
$CURRENT_MODULE fun Debug 12-9
$CURRENT_ OBJECT fun EDIF 15-14
$CURRENT_OBJECT_TYPE fun EDIF 15-15
$CURRENT_PROCEDURE fun Debug 12-9
$CURRENT_PVA fun Debug 12-10
$CURRENT_ROW fun EDIF 15-15
$CURRENT_SPLIT fun EDIF 15-15
$CURRENT_ WORD fun EDIF 15-16
$CURRENT_WORD_COLUMN fun EDIF 15-17

$DATE 2-223
$DECK fun SCU . 21-26
$DECK_HEADER fun SCU 21-27
$DECK_LIST fun SCU . 21-29
$DISPLAY_UNPRINTABLE_CHARACTERS fun EDIF 15-27

$ERRORS_FILE fun SCU . 21-54

F

G

H

I

J

L

M

$FEATURE fun SCU . 21-75
$FEATURE_LIST fun SCU . 21-75
$FEATURE_MEMBERS fun SCU 21-76
$FILE . 2-419
$FIRST_DECK sub SCU . 21-77
$FIRST_MODIFICATION sub SCU 21-77
$FNAME 2-421
$FUNCTION_ROW fun EDIF 15-32
$FUNCTION _SIZE fun EDIF 15-32

$GROUP fun SCU . 21-78
$GROUP _LIST fun SCU . 21-78
$GROUP_MEMBERS fun SCU 21-79

$HOME_ROW fun EDIF 15-33

$INTEGER . 2-454
$INTERACTION _STYLE . 2-455

$J'OB . 2-464
$J'OB_DEFAULT 2-465
$J'OB_LIMIT . 2-466
$J'OB_ OUTPUT . 2-467
$J'OB_STATUS 2-468

$LAST_DECK fun SCU . 21-85
$LAST_MODIFICATION fun SCU 21-85
$LIBRARY_HEADER fun SCU 21-86
$LIBRARY_MODIFIED fun SCU 21-88
$LINE_IDENTIFIER fun EDIF 15-40
$LINE_ TEXT fun EDIF . 15-40
$LIST_FILE fun SCU . 21-89

$MAINFRAME . 2-485
$MARK_FIRST_COLUMN fun EDIF 15-56
$MARK_FIRST_LINE fun EDIF 15-56
$MARK_LAST_COLUMN fun EDIF 15-57
$MARK_LAST_LINE fun EDIF 15-57
$MARK_OBJECT fun EDIF 15-59

N

0

p

Q

$MARK_OBJECT_TYPE fun EDIF 15-59
$MARK_ TYPE fun EDIF . 15-59
$MAX_INTEGER . 2-489
$MAX_NAME 2-490
$MAX_STRING 2-490
$MAX_ VALUES . 2-491
$MAX_ VALUES_SET . 2-491
$MEMORY fun Debug . 12-30
$MESSAGE_LEVEL 2-502
$MESSAGE_ROW fun EDIF 15-60
$MIN_INTEGER 2-503
$MOD 2-504
$MODIFICATION fun SCU . 21-89
$MODIFICATION _HEADER fun SCU 21-90
$MODIFICATION _LIST fun SCU 21-91
$MODIFIED_DECKS fun SCU 21-92

$NAME . 2-504
$NATURAL_LANGUAGE . 2-505
$NEW_ TEXT fun EDIF . 15-64
$NEXT_DECK fun SCU . 21-92
$NEXT_MODIFICATION fun SCU 21-93
$NUMBER_OF_COLUMNS fun EDIF 15-64
$NUMBER_OF_ROWS fun EDIF 15-64
$NUMBER_OF_SPLITS fun EDIF. 15-65

$OFFSET fun EDIF . 15-65
$ORD 2-507
$0UTPUT_STATUS . 2-508

$PARAGRAPH_MARGINS fun EDIF 15-66
$PARAMETER . 2-509
$PARAMETER_LIST . 2-510
$PATH . 2-516
$PREVIOUS_STATUS . 2-518
$PROCESSOR . 2-530
$PROGRAM . 2-533
$PROGRAM_ VALUE fun Debug 12-30

$QUEUE . 2-541
$QUOTE . 2-543

R

s

T

u

v

$RANGE . 2-544
$REGISTER fun Debug . 12-33
$REMOTE_ VALIDATION . 2-548
$RESULT fun SCU 21-97
$RING 2-569
$ROW_ TEXT fun EDIF . 15-81

$SCAN _ANY . 2-572
$SCAN_NOT_ANY 2-573
$SCAN_STRING . 2-574
$SCREEN _ACTIVE fun EDIF 15-81
$SCREEN_INPUT fun EDIF 15-82
$SEARCH_MARGINS fun EDIF 15-83
$SET_ COUNT . 2-578
$SEVERITY . 2-614
$SPECIFIED . 2-627
$SPLIT_SIZE fun EDIF . 15-97
$STATUS . 2-628
$STRING . 2-631
$STRLEN . 2-632
$STRREP . 2-632
$SUBSTR . 2-646

$TASK_NAME . 2-649
$TASK_STATUS 2-650
$TERMINAL_MODEL . 2-651
$TEXT fun EDIF . 15-98
$TIME 2-656
$TITLE_ROW fun EDIF . 15-98
$TRANSLATE . 2-662
$TRIM . 2-663

$UNIQUE 2-664
$UPPER_CASE fun EDIF 15-100
$UTILITY . 2-668

$VALIDATION _LEVEL · 2-669
$VALUE . 2-670
$VALUE_COUNT . 2-672
$VALUE_KIND . 2-673
$VARIABLE . 2-676

$VERIFY_OPTION fun EDIF. 15-101
$VNAME 2-686

w
$WORD fun EDIF . 15-101

~ ~ CONT1'0L DATA

